
Transformations Co-Evolution in Response to Meta-model Evolution:
A Systematic and Automatable Approach

BY
Shehla Zeb

304-FBASlMSSElF09

Department of Computer Science and Software Engineering

Faculty of Basic and Applied Sciences

International Islamic University Islamabad

2014

Transformations Co-Evolution in Response to Meta-model Evolution:
A Systematic and Automatable Approach

Researcher Supervisor
Shehla Zeb Atif Aftab Ahmad Jilani
3 04-FBASIMSSEIF-09 Assistant Professor

Fast-NU Islamabad

Co-Supervisor
Miss.Saima Imtiaz

Lecturer DCS/SE

IIUI

Department of Computer Science and Software Engineering

Faculty of Basic and Applied Sciences

International Islamic University Islamabad

2014

Department of Computer Science and Software Engineering
International Islamic University Islamabad I

It is a certificate that we have read the thesis submitted by Miss.
Shehla Zeb and it is our decree that this dissertation of satisfactory
standard to certify its acceptance by the International Islamic
University Islamabad, for MS degree in Software Engineering.

I

COMMITTEE
I

External Examiner
Dr. Amir Nadeem
Associate Professor
MAJU, Islamabad

Internal Examiner
Muhammad Nasir
Lecturer, DCS & SE
IIUI Islamabad
Supervisor
Mr. Atif Aftab Ahmad Jilani
Assistant Professor
Co-Supervisor
Miss. Saima Imtiaz
Lecture, DCS & SE
IIUI Islamabad
Acting Chairperson
Miss. Asma Batool
DCS & SE, IIUI Islamabad

A Thesis submitted to Department of Computer Science and Software
Engineering, International Islamic University, Islamabad

As a partial fulfillment for the award of the

Degree of MSSE

Dedication

Dedication
I would like to dedicate this research work to my Late Uncle, Khan
Meher Dad, and my parents. I have no dubiety in my mind that without
their persistent encouragement, provision and counsel I could not have
completed this process.

Acknowledgement

Acknowledgment
I would like to acknowledge the inspirational instructions and guidance of
Mr.Atif Aftab Ahmad Jilani who gave me the initial impetus to study Model
Driven Engineering. I would like to thank him along with Dr. Uzair, Dr. Zohaib
and Miss Saima Imtiaz for their kind support, continuous guidance and worthy
co-ordination. Their persistent support and inspirational guidance made me able
to go through the entire process successfully. They have been very generous in
their support and many times, they have pervade some worthy impressions,
views, criticism and recommendations. Lastly, I would like to thank Mr.Jeff Gray
whose valuable comments, moral support and suggestions were obliging and
worthwhile.

Thank you all for being so kind and gentle

I

Declaration

Declaration
I hereby declare that the research presented in this thesis is my own
work, excluding where otherwise acknowledged and that the thesis is
my own composition. No part of the thesis has been previously
presented for any other degree.

Table of Contents

Table of Contents

ABSTRACT ... 1

CHAPTER . 1 INTRODUCTION .. 3

CHAPTER . 2 BACKGROUND .. 13

.. 2.1 INTRODUCTION. 14
2.2 MODEL DRIVEN ENGINEERING (MDE): AN OVERVIEW .. 14
2.3 MDE BASIC TERMINOLOGIES AND PRINCIPLES ... 15

... 2.3.1 Models 15
... 2.3.2 Modeling Languages 16

2.3.3 Meta-models ... 20
2.3.4 Meta-modeling Languages ... 20

... 2.3.5 Model Transformations 21
.. 2.3.6 Model Transformation Approaches 23

2.3.7 Model Transformation Languages ... 23
2.3.8 Model Transformation Description .. 23
2.3.9 Model Transformation Rule .. 23
2.3.10 Model Transformation Engine ... 24
2.3.1 1 Higher Order Transformation (HOT) ... 24
2.3.12 ATL: Atlas Transformations language ... 25
2.3.13 Traceability Management .. 27

2.4 MDE PRINCIPLES. STANDARDS. GUIDELINES AND METHODS .. 27
2.4.1 Model Driven Architecture (MDA) ... 27
2.4.2 MDA Principles ... 29
2.4.3 Model Driven Architecture Standards ... 30
2.4.4 Methods for Model Driven Engineering (MDE) ... 32
2.4.5 MDE Tools ... 33

CHAPTER . 3 RELATED WORK .. 43

3.1 INTRODUCTION ... 44
3.2 CO-EVOLUTION APPROACHES ... 44

3.2.1 Meta-model\model co-evolution approaches .. 44
3.2.2 Meta-model\transformations co-evolution approaches ... 53
3.2.3 Meta-model\ Editors co-evolution approaches .. 55

.................................... 3.2.4 Uniform approaches to Meta-model and related artifacts co-evolution 56
3.3 MODEL DRIVEN ENGINEERING AND TRACEABILITY .. 56

Table of Contents

.. 3.3.1 Requirements Management Approaches 56
3.3.2 Model Consistency Management Approaches .. 57
3.3.3 Models Synchronization approaches ... 58

.. 3.4 CHANGE CLASSIFICATION 59
... 3.5 DIFFERENCE REPRESENTATION MECHANISMS 60

... 3.6 MODEL/TRANSFORMATIONS MIGRATION STRATEGIES 61
.. 3.7 ISSUES AND CHALLENGES RELATED TO THE CO-EVOLUTION APPROACHES 61

.. 3.7.1 Issues of change classification scheme 62
3.7.2 Issues of Existing Difference Representation Mechanisms .. 62

.. 3.7.3 Issues of Model Migration strategies 62
.. 3.7.4 Issues of Transformations migration strategies 63

.. 3.8 CHAPTER SUMMARY 63

CHAPTER . 4 PROBLEM DEFINITION .. 65

CHAPTER . 5 PROPOSED APPROACH .. 68

... 5.1 INTRODUCTION 69
... 5.2 PRE-REQUISITES 69

... 5.2.1 Transformations 69
.. 5.2.2 Model Element 69

5.2.3 Trace .. 69
5.2.4 Change ... 70
5.2.5 Co-change ... 70

.. 5.2.6 Transformation Example 70
... 5.2.7 Model Transformations 70
................................... 5.2.8 The Meta Meta-models 72
.. 5.2.9 The Input meta-models 73
... 5.2.10 Input transformations 74

5.3 DEFINITIONS .. 74
.. 5.3.1 Relationship based Change Propagation 75

5.3.2 Trace meta-mode 1 ... 75
.. 5.3.3 Change representation and visualization 78

.. 5.3.4 Change meta-model 78
.. 5.3.5 Change classification scheme 80

.. 5.3.6 Transformations classification scheme 81
... 5.4 APPROACH'S OVERVIEW 81
.. 5.4.1 Mapping Elements 82

5.4.2 Detect and classify Changes ... 83
5.4.3 Impact Detection and Analysis .. 83

... 5.4.4 Transformations co.evolution 84
5.5 Co-Evo: AN ALGORITHM .. 85

.. 5.6 CHAPTER'S SUMMARY 86

CHAPTER . 6 CONSIDERED CASES .. 88

6.1 INTRODUCTION ... 89
6.2 UML2JAVA: AN ATL TRANSFORMATIONS EXAMPLE ... 89

6.2.1 Transformations ... 89
6.2.2 Rule Specifications ... 89
6.2.3 The ATL Code ... 90

Table of Contents

... 6.2.4 Source Meta-model: Simplified UML model 91
... 6.2.5 Evolved Class Meta-model 92

6.2.6 Target Meta-model: Simplified Java model ... 93
.. 6.3 PETRINET~PNML: QVT CORE TRANSFORMATION EXAMPLE 93

... 6.3.1 Transformations 93
6.3.2 Rule Specifications ... 94

.. 6.3.3 QVT Code 94
... 6.3.4 Source Meta-model: PetriNet model 96

... 6.3.5 Evolved PetriNet Meta-model 96
.. 6.3.6 Target Meta-mode: PNML model 97

... 6.4 CLASS~RELATIONAL: KERMETA TRANSFORMATION EXAMPLE. 97
... 6.4.1 Transformations 98

... 6.4.2 Rule Specifications 98
.. 6.4.3 Kermeta Code 99

.. 6.4.4 Source Meta-model: Class Meta-model 102
... 6.4.5 Evolved Class Meta-model 1 0 3

.. 6.4.6 Target Relational Meta-model 103
.. 6.5 CONSIDERED CHANGES AND ITS TYPES. 104

CHAPTER . 7 EVALUATION .. 107

... 7.1 INTRODUCTION 1 0 8
... 7.2 UML~JAVA T R A N S F ~ R M A T ~ ~ N S 108

... 7.2.1 Case-1 Set-up 108
7.2.2 Results and discussions ... 109

... 7.3 QVT TRANSFORMATIONS 1 1 1
... 7.3.1 Case-2 Set.up 1 1 1

... 7.3.2 Results and discussions 112
... 7.4 KERMETA TRANSFORMATIONS 1 14

.. 7.4.1 Case-111 Set-up 114
.. 7.4.2 Results and Discussions 115

.................... 7.5 SMPLFIED VIEW OF CLASSIFIED CHANGES AND CORRESPONDING ACTION FOR CASE-I 116
... 7.6 COMPARISON 1 17

... 7.6.1 Difference detection and identification mechanisms 118
... 7.6.2 Change Classification Scheme 118

.. 7.6.3 Impact Analysis 118
... 7.6.4 Migration Strategy 119

... 7.7 ASSESSMENT 119
7.7.1 Benefits .. 119

.. 7.7.2 Limitations 120
Capturing traces for implicitly transformed model element: .. 120

... Capturing complex modifications: 120

.. CHAPTER . 8 CONCLUSION AND FUTURE WORK 121

8.1 INTRODUCTION .. 122
... 8.2 CONCLUSION 122
... 8.3 FUTURE WORK 1 2 4

... 8.3.1 Tool support 124
.. 8.3.2 Design Validation strategy 124

...................................... 8.3.3 Defining Semantic Relationship and ensuring Semantic correctness 125
.. 8.3.4 Investigate reverse transformations co-evolution 125

... 8.3.5 Unified Solution for Co-evolution of models and transformations 125
.. 8.3.6 Co-evolution management Processes and structures 125

Table of Contents

.. 8.3.7 Transformation migration notations 1 2 5
... 8.3.8 Application to diverse transformations languages 1 2 5

... 8.3.9 Application to industrial case studies 125

List of Figures

List of Figure

.. FIGURE 1.1 META-MODEL EVOLUTION PROBLEM 6

... FIGURE 1.2 RESEARCH METHOD 8
... FIGURE 2.1 AN OVERVIEW OF MODEL DRIVEN ENGINEERING APPROACH 15

.. FIGURE 2.2 UML PACKAGE STRUCTURE [22] 18
.. FIGURE 2.3 UML FOUNDATION PACKAGE [22] 18

.. FIGURE 2.4 UML BEHAVIORAL ELEMENT PACKAGE [22] 19
.. FIGURE 2.5 MOF POSITIONING IN OMG's META-MODEL HIERARCHY [25] 21

... FIGLIRE 2.6 MODEL TRANSFORMATION COMPONENTS 22
... FIGURE 2.7 META-LEVELS OF MODEL TRANSFORMATION [26] 23

FIGLIRE 2.8 GENERIC VIEW OF HIGHER ORDER TRANSFORMATIONS [12] .. 25
.. FIGURE 2.9 PIM TRANSFORMATIONS TO PSM [19] 28

FIGURE 2.10 PIM TRANSFORMATION TO MULTIPLE PSM's [19] .. 28
.. FIGURE 2.1 1 A GENERIC VIEW OF MDA CONCEPT [12] 30

.. FIGURE 2.12 OMG's META-MODEL HIERARCHY 31
FIGURE 2.13 A SIMPLIFIED VIEW OF MOF [25] ... 32
FIGURE 2.14 ECLIPSE ARCHITECTURE [I ... 34

... FIGURE 2.15 AN ECORE META-MODEL 36
... FIGURE 2.16 A TREE-BASED EDITOR FOR META-MODEL 37

FIGURE 2.17 A GRAPHICAL EDITOR FOR META-MODEL ... 37
FIGURE 2.18 KERMETA OVERVIEW .. 38
FIGURE 2.19 KERMETA'S STRUCTURE PACKAGE ... 39
FIGURE 2.20 KERMETA'S BEHAVIOR PACKAGE .. 40
FIGURE 5.1 SAMPLE ATL TRANSFORMATIONS ... 71
FIGURE 5.2 ORIGINAL CLASS META-MODEL ... 71
FIGURE 5.3 EVOLVED VERSION OF META-MODEL ... 72
FIGURE 5.4 SAMPLE MOF META META-MODEL REPRESENTATION ... 73
FIGURE 5.5 SAMPLE INPUT MODEL ... 7 4
FIGURE 5.6 SAMPLE QVT TRANSFORMATIONS ... 74
FIGURE 5.7 TRACE META-MODEL .. 76
FIGURE 5.8 EXTENDED TRACE META-MODEL FOR UML2JAVA ATL TRANSFORMATIONS 77
FIGURE 5.9 TRACE OF UML META-CLASS "FEATURE" AND ATL TRANSFORMATIONS 78
FIGURE 5.10 CHANGE META-MODEL .. 79

... FIGURE 5.1 1 CHANGE MODEL OF THE CHANGE "PULL META-PROPERTY" 80
FIGURE 5.12 FLOW CHART OF THE APPROACH ... 82
FIGURE 5.13 TRACE MODEL FOR META-ATTRIBUTE "CHANGEABILITY" ... 82
FIGURE 5.14 CHANGE MODEL FOR CHANGE "PULL META-PROPERTY" .. 83
FIGrJRE 5.15 DETECTING THE IMPACT ... 84
FIGURE 6.1 PART OF UML META-MODEL ... 92
FIGURE 6.2 EVOLVED VERSION OF UML CLASS META-MODEL .. 92
FIGURE 6.3 A SIMPLIFIED JAVA META-MODEL ... 93
FIGURE 6.4 A SIMPLIFIED PETRINET MODEL .. 96
FIGURE 6.5 EVOLVED VERSION OF PETRINET ~ T A - M O D E L ... 97
FIGURE 6.6 TARGET PNML MODEL .. 97
FIGURE 6.7 ORIGINAL CLASS META-MODEL ... 102

List of Figures

XIV

List of Tables

List of Tables
TABLE 2-1 META-LEVEL HIERARCHY DESCRIPTION .. 31

... TABLE 7-1 TRACE MODELS SUMMARY 1 0 9

TABLE 7-2 TYPE OF CHANGES ... 109
................................... TABLE 7-3 SUMMARY OF THE APPROACH'S APPLICATION ON UML2JAVA EXAMPLE 111

TABLE 7-4 CHANGE CLASSIFICATION ... 111

TABLE 7-5 SUMMARY OF THE CAPTURED TRACES 112
... TABLE 7-6 SUMMARY OF THE APPLICATION OF PROPOSED APPROACH 114

.TABLE 7-7 CHANGE CLASSIFICATION .. 114

TABLE 7-8 TRACES CAPTURED FOR KERMETA TRANSFORMATIONS 115
.. TABLE 7-9 CHANGE CLASSIFICATION 115

... TABLE 7-10 CLASSIFICATION OF MODEL ELEMENT CHANGES 117

.. TABLE 7-1 1 COMPARISON WITH THE EXISTWG APPROACHES 118

Abstract

Abstract
In the context of model driven engineering, models and transformations are treated as first class
citizens during the software engineering process. These models and transformations are
principally based on meta-models. Like any software system, meta-models are subject to
evolutionary changes due to several reasons. When a meta-model evolves, all the dependent
artifacts, e.g., models and transformations become inconsistent with respect to the new version
of the meta-model. Consequently, the co-evolution of the dependent artifacts becomes
essential. The researchers' divide the problem of co-evolution into three sub problems based
on the relationship of meta-model and its related artifacts. They addressed each problem
separately. The researchers investigated the co-evolution of meta-model and models intensely.
However, they paid less attention to the co-evolution of meta-model and transformations and
the co-evolution of meta-model and editors. Due to the intrinsic nature of transformations, the
researchers have not sufficiently investigated the co-evolution of meta-model and
transformations. Few of the researchers used the difference based and operator based
approaches for transformations co-evolution. Therefore, these approaches have the inherent
issues with some additional issues particular to the transformations co-evolution problem. For
example, these approaches do not take into account the difference in the nature of models and
transformations. They ignored to contemplate the intelligence the transformations employ for
generating target model elements. These aforementioned issues make the transformations co-
evolution process cumbersome and impractical. This research proposes a systematic and
automatable approach to transformations co-evolution that overcomes the issues of the existing
approaches. The proposed approach employs a relationship based change propagation
mechanism, which considers the model element usage by transformations and the intelligence
that transformations employed to generate target elements. It uses the change model and trace
model for analyzing the impact of model element change on transformations. It also ensures
the correct co-evolution, which might not always be possible in case of the existing employing
existing co-evolution approaches.

The evaluation showed promising results when applied on the considered examples. Total nine
well-known changes are introduced to the meta-model and its impact on transformations is
analyzed. The extension of trace meta-model with the elements of considered transformation
language assists in identifying the exact part of transformation, which is impacted by the
change, therefore, ensuring the correct change propagation. Our approach is significantly
different from the existing approaches in detecting and propagating change to transformations.
To signify the difference and novelty of the approach, the proposed approach is compared with
the existing approaches. The comparison showed that the exiting approaches ignored the
impact analysis activity, which is crucial part of the co-evolution process to determine the cost
of change and to identify the model element usage by the transformations. The comparison also
demonstrated the difference in the ways that two versions of meta-model is compared. The
evaluation signified the proposed approach's generality, correctness and applicability on a
variety of transformations languages and meta-models. During evaluation, it is observed that
traces for the model elements, e.g., associations that are transformed implicitly by the
transformations are not captured by trace meta-model and requires further investigation. We
applied the proposed approach on three different examples to demonstrate its applicability. The

Transformations Co-evolution in Response to Meta-model Evolution
1

Abstract

transformations in each example are specified using different dedicated transformation
languages.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 1 Introduction

Introduction

1.1 Introduction

The key objectives of Model Driven Engineering are to improve productivity, quality and cost
effectiveness of software applications. Seeing models as first class citizens of the software
development process, and employing model transformations to automate the implementation
accomplish these objectives.

MDE is gains attention with time as a technique to leverage intellectual property and business
logic malleable to technological advancements via shifting focus from code to modeling [I].
MDE is based on three main concepts, i.e., meta-models, models and transformations. Meta-
models lie at the heart of MDE. Models conform to meta-model. Transformations are defined
based on some source and target meta-model and are employed to generate target models from
source models [2]. Meta-models evolve over time because of various reasons such as design
refinements and requirements changes [3,4]. Meta-model evolution might influence its related
artifacts and they, therefore, need to be adapted to the evolved meta-model [2, 51. Changing
meta-model and propagating those changes to its related artifacts are termed as evolution and
co-evolution respectively by the researchers [6, 71. Researchers investigated the model co-
evolution largely during last several years. However, transformations co-evolution does not
only consider the "DomainConformence" relationship, it also takes into account the
intelligence that transformations employed for producing target model elements [S]. Therefore,
the problem of transformations co-evolution is intrinsically more complex than the problem of
co-evolution of models and researchers paid less attention to transformations co-evolution.

To co-evolve transformations, few approaches have been proposed until now. Generally, most
of them tend to employ techniques devised for model co-evolution [2]. The approaches
proposed to transformations co-evolution focused on devising migration strategies [S, 571.
They assumed that the meta-model change history is available which might not always be
possible. Some of the existing approaches overlooked the fact that the impact of meta-model
evolution on transformations not only depends on the type of changes but also on the usage of
elements in transformations. Many of the existing approaches to transformation co-evolution
employed the change classification scheme proposed for model co-evolution [9]. While the
change classification scheme proposed for transformation co-evolution, classifies meta-model
changes from adaptation automation point of view [S]. This classification scheme does not
reflect the impact of changes on transformations.

In this dissertation, we propose a systematic and automatable approach to transformations co-
evolution. The approach supports both meta-model evolution and transformations co-
evolution. A traceability meta-model is proposed to capture and store dependency relationship
between meta-model and transformations. The trace links illustrate the usage of model
elements in transformations and assist in change impact analysis. A change meta-model is
employed to capture changes introduced to the meta-model. This helps in identifying which
type of changes are introduced to the meta-model. A change classification scheme is proposed
to classify changes according to its impact on transformations. In addition, we propose a
transformation classification scheme, which will assist in determining the required steps to co-
evolve transformations. The main steps of the proposed approach are:

Establish relationship between model elements and transformations and capture it
as trace model (that conforms to trace meta-model).

Transformations Co-evolution in Response to Meta-model Evolution

Introduction

Capture and store the changes, introduced in the new version of meta-model, as
change model (that conforms to change meta-model).

Classify the meta-model changes according to the proposed classification scheme.

Analyzing the impact of model element change on transformations by using the
change model and traces.

Classify transformations based on the proposed transformations classification
scheme.

Employ relationship based change propagation mechanism to propagate changes
to transformations.

To validate the generality, correctness and applicability of the proposed approach, the approach
is applied on three transformation examples. These examples are taken from Atlas
Transformation Language Zoo (ATL Zoo) [90]. The transformations of these examples are
specified using Atlas Transformation Language (a transformation specification language)
abbrivated as ATL. We converted the transformations of two examples from ATL to Query
View and Transformations (QVT) and Kermeta (these are also transformation specification
languages), so, that we can demonstrate the applicability of the proposed approach on a variety
of transformations languages. The meta-model defined in these examples are either MOF based
or EMFJEcore based, which will validate that the proposed approach is meta-model
independent.

The remaining part of this chapter is organized as follows: section 1.2 defines a problem
statement for this research. Section 1.3 presents motivation for this research. Section 1.4 states
research objectives. Section 1.5 presents research questions we will investigate in this research.
Section 1.6 describes the research method we followed for this research. Section 1.7 describes
the proposed solution for transformations co-evolution. Section 1.8 discusses the contribution
of this research. Section 1.9 presents the results of the research. Section 1.10 presents the
outline of the dissertation.

1.2 Problem Statement

Like every type of software component, meta-models are also subject to evolutionary changes,
for example, if a new version of meta-model is released; than all the artifacts based on old
version of meta-model become inconsistent with respect to the new version of meta-model and
need to co-evolvelmigrate accordingly.

Let suppose some people are using software that uses old version of meta-model. Then, with
the release of new version of meta-model all the artifacts, e.g., models and transformation rules,
etc., based on the old version of the underlying meta-model become inconsistent and they all
will rely on the availability of migration rules to adapt/co-evolve their models and
transformation rules contents to new version. On the side of the software developer, the editor
of the meta-model should be aware of the way in which changes to the meta-model layout will
affect the compatibility to existing data in terms of meta-model compliance and interface
compatibility, so that the tools that the modeling software offer can still be used by customers
of the previous versions. This problem does not only affect the relationship of the software
vendor to a customer. Since different persons can take the roles of the meta-model editor and
the software engineer who implements the modeling tools, the knowledge of the impact of the
meta-model changes is also relevant for the internal software development process.

Transformations Co-evolution in Response to Meta-model Evolution 5

Introduction

1.3 Motivation

Meta-models lay at the center of model driven engineering idea. Both models and
transformation rules are tightly coupled with meta-model. Models conform to meta-model and
transformation rules are specified upon meta-model. Like any other software system, meta-
models are also under the pressure of evolutionary changes due to design refinements and
emerging requirements.

These evolutionary changes cause inconsistency in models and transformation rules with
respect to the new version of meta-model. Let suppose an organization is using software that
creates models based on old version of meta-model say MM. Now a new version of meta-
model is released let suppose MM'. Now the models that conform to meta-model MM and the
transformation rules based on it became inconsistent with respect to meta-model MM'. To use
models and transformation rules with new version of meta-model they need some migratiodco-
evolution mechanism.

Original mea-model

Figure 1.1 meta-model evolution problem

This research aims to provide the co-evolution mechanism that would assist user automatically
in co-evolution/migration of legacy transformation rules to the new version of meta-model.

1.4 Objectives

The key objectives of this research are:

To evaluate the impact of meta-model evolution on model transformation rules
= To model relationship between model transformations and meta-models.

To provide mechanism for legacy model transformations adaptation for new version of
meta-model upon which they are specified.

Provide a systematic and automated approach that supports the whole co-evolution.
process from meta-model evolution to transformations co-evolution.

To assist user automatically in adapting model transformation rules.

Transformations Co-evolution in Response to Meta-model Evolution

Introduction

To perform the impact analysis activity for identifying the exact parts of the
transformations that are affected by the model element change.

Evaluate the proposed Approach for transformations co-evolution by applying on the
available examples.

1.5 Research Questions

Meta-model evolution is an obvious and essential step in the development life cycle of meta-
models. However, this evolution affects the entire set of artifacts depending on the old version
of the meta-model. Transformation rules are one of the important artifact affected by meta-
model evolution. Therefore, adaptationlco evolution of transformation rules is an essential step
after meta-model evolution. The problems we have to investigate here are:

How to detect the impact of meta-model evolution on transformations?

How to co-evolve transformations with the evolution of meta-model?

Can we automate the process of evolution? If yes, up to what extent can we automate
this process?

1.6 Research Method

To explore the problem outlined above, we conducted this research by employing the method
outlined in Figure 1.2 and discussed in this section. The shaded squares represent the three main
phases of the research, which are discussed below while the simple squares represent the inputs
and output to these phases.

First, the analysis phase is carried out by studying the existing co-evolution approaches, change
classification schemes, co-evolution strategies, traceability techniques employed in different
related research areas, change categorization schemes and co-evolution in other related areas.
This has led to the identification of many important requirements like change classification
scheme particular to the transformation co-evolution process, traceability support for co-
evolution problem and transformation classification scheme that has not been recognized and
employed previously in the co-evolution research.

The designing phase involved proposing and designing a systematic and automatable approach
for managing co-evolution of meta-model and transformations. The co-evolution issues
identified in the analysis phase are resolved by designing an automated and systematic
approach and the identified requirements for a novel approach are fulfilled.

The evaluation phase comprised assessing the proposed approach for managing transformation
co-evolution by applying it on three examples chosen from Atlas Transformations Language
Zoo (ATL Zoo). To alleviate possible threats to validity of the research the examples used in
the evaluation phase is different from the examples used for demonstration purpose. In
addition, transformations in each example are specified using different transformation
language. The strengths and weaknesses of the approach are synthesized from it applicability
on different examples, particularly from how accurately the changes are propagated, which
type of changes are identified and how accurately transformations are co-evolved.

Transformations Co-evolution in Response to Meta-model Evolution

Introduction

Figure 1.2 Research Ilethoci

1.7 Proposed Solution

We proposed a systematic and automatable approach that is capable to co-evolve
transformations after meta-model evolution automatically. The proposed approach is capable
to detect, visualize and represent model element changes, classify these changes according to
its impact on transformations, and establish a dependency relationship between model elements

Transformations Co-evolution in Response to Meta-model Evolution 8

Introduction

and transformations, classify transformations according to the required co-changes and finally
co-evolving transformations. The proposed approach is automatable. This approach relies on
the following principle steps:

Mapping Elements: In this step, Model Elements are mapped on transformations to
make their relationship explicit and capture it as trace model conforming to trace meta-
model.

Change Detection and Classification: In this step, changes that are introduced to the
meta-model are captured and stored as change model conforming to change meta-
model. After change detection, model element changes are classified according to the
proposed classification scheme. This assists in identifying which type of changes are
introduced to the meta-model.

Impact Analysis: In this step, the impact of model element changes on transformations
are analyzed by using the change model and traces.

Transformations Co-evolution: During co-evolution step, transformations are first
classified based on the proposed classification scheme and then the relationship based
change propagation mechanism is employed to propagate changes to transformations.

In first step, "Consistency" relationship between model elements and transformations is made
explicit and formalized via establishing trace links that would conform to "Trace" meta-model.
To identify the type of changes introduced to the meta-model, meta-model changes are
captured as change model conforming to the change meta-model by comparing the old and new
version of meta-model. Once the changes are identified, these changes are then classified
according to the proposed classification scheme. The impact of each change is then identified
by mapping changes on trace links. The impacted transformations are then co-evolved
accordingly. An algorithm is designed to support the proposed approach that takes the impacted
transformations and asks for the desired changes along with the location of change.

1.8 Thesis Contribution

This research proposes a systematic and automatable approach for managing co-evolution of
transformations in response to meta-model evolution. The approach covers the entire co-
evolution process starting with the detection of changes in the new version of meta-model,
making consistency relationship explicit via establishing traces, analyzing change impact,
propagating changes accurately and systematically and co-evolving transformations. An
algorithm is constructed to automate the co-evolution process. The algorithm supports all
defined steps starting from difference identification to migrating transformations.

To detect the impact of meta-model change on transformations and to propagate the meta-
model change accurately, we formalized a relationship-based mechanism. Following the MDE
principles, the mechanism comprised a trace meta-model, which defines all the concepts
necessary to formalize consistency relationship and make it explicit. Currently there is no
mechanism to support traceability in the context of meta-model evolution. We provide
traceability support for problem of co-evolution of meta-model and transformations in this
research.

For change detection, representation and visualization, this dissertation proposed a change
meta-model along with the change classification scheme. The change meta-model defines all

Transformations Co-evolution in Response to Meta-model Evolution 9

Introduction

mandatory concepts related to the change as well as the meta-model (since meta-model is
subject to evolutionary pressures and the change is introduced mainly to the meta-model).

For determining which type of action is required to co-evolve transformation after meta-model
evolution, we proposed a transformations classification scheme. Previously, there is no
classification scheme proposed for transformations classification by the researchers. Here, this
research proposed a transformation classification scheme to facilitate the identification of co-
changes and the process of transformation co-evolution. The key benefits of our approach to
transformation co-evolution are:

It minimizes the effort and time required to transformation co-evolution and saves
money.

It guarantees the synthetic correctness of transformations after co-evolution.

It provides a complete process which covers all steps of meta-model and
transformations co-evolution from change detection to transformations co-evolution.

The presented change classification scheme classify changes based on its impact on
transformations.

The successful employment of the concept of traceability for transformations co-
evolution illustrated significant results.

The concept of relationship based change propagation for meta-model and
transformations co-evolution improved the significance and correctness of the proposed
approach.

The execution of Impact analysis activity assists in identifying the exact parts of
transformations that are impacted by the model element change, therefore, ensuring
correct propagation of change to transformations.

Capturing changes as change model and employing change model to analyze the impact
of change on transformations showed promising results.

The proposed algorithm and prototype validated that the proposed approach is
automatable.

Results of the research

This research proposed a systematic and automatable approach to meta-model evolution and
transformations co-evolution. Our approach supports the entire process starting with the
detection of changes between two meta-model versions, establishing a relationship between
model elements and transformations, analyzing the impact of change and propagating the
changes to the transformations.

The approach is generic enough to be applicable on transformations written in any dedicated
transformation language. It is independent of the meta-model as well. The approach is
applicable on any type of meta-model either EMFEcore based or MOF based. This makes our
approach distinct and better from the existing approaches for transformations co-evolution. Our
approach is automatable and implementable. We provide an algorithm, to support the complete
co-evolution process.

The proposed approach is evaluated, by applying it, on three different examples that are
obtained from the Atlas Transformations language ZOO (ATL ZOO). The examples comprised
the source and target meta-models, transformations description and transformations rules

Transformations Co-evolution in Response to Meta-model Evolution 10

Introduction

specified in ATL. To validate the generality of the approach, transformations of the one
example are re-written in Qvt and the other example are re-written in kermeta.

To evaluate the proposed approach, total nine well-defined and obvious changes reported by
the industry as well as academia were introduced to the meta-models in the considered
examples. During evaluation, it is observed that all the changes are captured and recorded
accurately by change model. The change meta-model captured sufficient information about the
change, to use later on during impact analysis. The classification of changes assisted not only
in identifying which type of changes are introduced, but also in determining the category of
impacted transformations. The evaluation also demonstrated that the change classification
could not be generalized for all co-evolution scenarios, because the impact of model element
change relies not only on the type of change but also on the model element usage by
transformations. The change classification varies from scenario to scenario depending on the
type of transformation language used and on the model element usage by transformations.

The trace model captured the relationship between model element and transformations. The
evaluation showed that the extension of trace meta-model with the meta-model elements of
underlying transformation language helps in identifying the exact part of transformation, which
is impacted by the change, therefore, ensuring the correct change propagation. The trace
models are used during impact analysis to identifjr the impacted part of transformations and
during transformations co-evolution to propagate changes. However, the trace meta-model is
not capable to capture the implicit traces between model elements and transformations, i.e., the
implicit relationship between model element and transformations is not captured and requires
more attention and investigation.

The execution of impact analysis for identifying the affected transformations demonstrated
substantial benefits. First, it located the exact part of the transformation impacted by model
element change. Second, it helped in determining the model element usage by the
transformations. Third, it assisted in taking into account the intelligence employed by the
transformations to transform a source model element into target model element.

Our approach is considerably different from the existing approaches in detecting as well as in
propagating changes to transformations. To indicate the difference and demonstrate the
uniqueness of the approach, the proposed approach is compared with the existing approaches.
The comparison of our approach with existing approaches revealed that the exiting approaches
do not perform the impact analysis activity, which is crucial part of the co-evolution process to
determine the cost of change and to identify the model element usage by transformations. The
comparison also demonstrated the difference in the ways; the two versions of meta-model are
compared. Our approach employs a dedicated meta-model based mechanism to identify the
changes introduced in the new version of meta-model. While the existing approaches, either
used EMFCompare, to find the difference between two versions of the meta-model or assume
that meta-model change history is already available. In addition, we proposed a dedicated
classification scheme to classify model element changes, while the existing approaches used
the classification scheme devised for model co-evolution process. Thus, the evaluation
validated the proposed approach's generality, correctness and applicability on a range of
transformation languages as well as meta-models.

Transformations Co-evolution in Response to Meta-model Evolution

Introduction

1.10 Dissertation Outline

The remaining dissertation is ordered in a manner described in this section. Chapter. 2
establishes and founds the ground for this research by defining basic concepts and
terminologies; describing the tools, standards and methods used in the context of model driven
engineering; reviewing the principles, guidelines and practices the organizations, that practices
MDE, are employing.

Chapter. 3 reviews the existing research related to meta-model evolution either theoretical or
practical. The review then describes the research related to the particular category of meta-
model evolution problem. The chapter then reviews the approaches related to the traceability,
requirements management, model consistency management and model synchronization. The
review then discusses change classification schemes, difference representation mechanisms
and migration strategies presented in the literature and highlighted the potential issues and
challenges related to it.

Chapter. 4 narrows down the focus of this research by formalizing the problem statement for
this dissertation. Identifying the key issues that this research work targets, the remaining
dissertation then focus only on the development of a systematic and automatable approach for
transformations co-evolution problem.

Chapter. 5 describes a systematic and automatable approach for transformations co-evolution,
including trace meta-model that is used to establish relationship between model elements and
transformations as well as for relationship based change propagation, and change meta-model
that captures the difference between the two version of meta-model. The change classification
scheme proposed by this research classifies changes according to its impact on transformations.
This research then proposed an algorithm to perform the proposed steps automatically.

Chapter. 6 discusses the case studies on which the approach is applied and evaluated. The
UML2JAVA example (ATL transformation example), the PetriNet2PNML example (Qvt
transformation example) and the Class2Relational example (Kermeta transformation example)
are discussed in detail. ATL, kermeta and Qvt are three different languages to define
transformations. The chapter then discussed the considered changes incorporated in the new
versions of the underlying meta-models.

Chapter. 7 evaluates the approach proposed by applying on the three examples discussed in
thechapter. 6. The results were discussed after the evaluation. The chapter then assesses the
approach by comparing it with the existing approaches. The limitations and advantages of the
approach, identified and observed during evaluation process, are also specified in this chapter.

Chapter. 8 summarizes the accomplishments of this research and discusses the results. This
chapter ends up with concluding the entire research and discussing the future work.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 2 Background

Background

2.1 Introduction

This chapter presents background knowledge for the underlying research, introducing MDE
related concepts and reviews MDE Literature. MDE is a standardized approach to software
engineering in which models are first class entities and the software engineers specify, design,
implement and deploy software systems through a series of models. Section 2.2 gives an
overview of model driven software engineering. Section 2.3 introduces basic terminologies and
principles related to MDE. Section 2.4 surveys principles standards, guidelines and methods
used in Model Driven Engineering. Section 2.5 summarizes the entire chapter.

2.2 Model Driven Engineering (MDE): An Overview
Lifting up the level of abstractions is proved to be effective several times to improve the
efficiency and descriptive power in software engineering process [lo, 111. In this manner,
coding languages became more advanced from pure machine-readable commands to generally
utilized object-oriented languages like Java and C++ that are general purpose in nature. MDE
is the paradigm that pursues this drift and simplifies the historically full-fledged abstraction
process. The fundamental objectives of MDE are to raise productivity, improve software
quality and enhance the manageability of larger software projects [12, 131. Abstract models
present high level view of programming code. So far, models are used to present the developer's
mental conceptualization, which allow describing the system functionality rather than focusing
on its implementation details. This assists spontaneous and quick implementation of software
systems, which are complicated in nature.

Models are considered as first class development citizens that are typically equipped with code
generators. These code generators generate programming code, which is executable [14, 151.
Thus a model is a fundamental component of the specification of software system. Models are
no more used only for the purpose to document the system [12]. Code generation makes the
idea, of the employment of the random implementation technologies and diverse design
patterns; which are specified once, realistic. For minimizing the risk to produced erroneous
code, the available code generators can be reused [16]. In recent years, MDE has taken a front
position in advancing a new paradigm shift in the field of software engineering. Figure 2.1
presents an overview of the MDE approach.

Transformations Co-evolution in Response to Meta-model Evolution

Background

C
Codeonly C Centric

VisuaBizatim

1:igal-e 2.1 \,I cncrvic~i of atodcl dri\cn crigineering approach

2.3 MDE basic Terminologies and Principles

MDE presents development approaches and methods to software engineering with focus on
minimizing the abstraction gap between problem area and solution area. The use of models
geared the complexity of bridging the abstraction gap. Models describe complex system at
multiple levels of abstraction and from different viewpoints.

Software engineers applying MDE techniques to develop software applications have to work
with artifacts like models, meta-models and transformations in addition with traditional
software engineering artifacts like code and documentation. In addition, MDE entails new
development activities like model management. This section explains artifacts and activities
associated with MDE.

2.3.1 Models

Dating back to the earliest programming days, modeling has a prosperous convention in the
software engineering world. Current advancements included languages and tools, which let the
modelers to articulate system viewpoint from various perspectives to software architect and
developers in such manners, which can be plotted into code of some programming language
that can be assembled for any specified 01s platform [16].

Models are considered as key artifacts from which components of software system can be
automatically generated. "A Model is an abstraction of something for the purpose of
understanding it before building itU[17]. A model allows the description of a family unit of
problems for a particular domain having the abstraction level carefully selected in order to
discard irrelevant and constant details and separates explicit important details. This results in
reducing complexity making things simple and clear[l2, 131. A model may have either a
textual or a graphical representation, depending on the type of language used. Some languages
supports both textual and graphical representation, e.g., an ecore while other supports either
graphical, e.g., UML or textual e.g. FORM.

Models can be used to describe a real world problem, e.g., Library providing a lending services
or a computer based system, e.g., software and hardware specification for Library lending
services. In other words, model can be used to illustrate both the domain and the machine.

Transformations Co-evolution in Response to Meta-model Evolution 15

Background

Models are employed in a variety of modes, i.e., to estimate system characteristics, to reason
about particular features when changes are introduced in a system and to communicate key
attributes to the stakeholders. Models can be developed either to implement a physical system
or derived from existing system to understand its behavior.

Models are at the heart of MDE. It increases the software development abstraction level from
code to models with a huge prominence on keeping the software engineer focus on problem
domain rather than on solution domain [12, 181. OMG categorized models used in MDE to
three type's i.e. [19]

Computational independent model (CIM) that is called business model or
domain model as well since, it employs the terminologies and expressions well-
known to the concerned experts. It defines precisely the functionality of the
system, i.e., what functions the system is expected to perform and hide all the
technological specifications so that it can be independent of the details about
how that system will be implemented. The CIM perform a crucial role in
minimizing the space between domain experts and the information
technologists who are accountable for software system implementation. There
must be traces between CIM specification to the PIM and PSM constructs that
employ them and vice versa.

Platform independent model (PIM) reveals adequate independence level,
which assists in its mapping to one or few platforms. The abstraction is usually
done via specifying different sets of services in such a way, which omits
technical particulars. Further models realize these services in a platform specific
way.

Platform Specific Model (PSM) merges the system requirements in the PIM
with the particulars/information necessary to lay down how the system makes
the use of a particular type of platform. However, if the PSM does not have
sufficient details required to generate an implementation of that platform, it is
deemed abstract illustrating its reliance on some supplementary explicit or
implicit models that includes sufficient information.

2.3.2 Modeling Languages
In MDE, models are structured defined by using some modeling language. A modeling
language specifies the structure and semantics of a set of models. Modeling language itself is
specified by model termed as meta-model. A model conforms to meta-model only if it uses the
concepts specified by the meta-model and satisfies the set of constraints defined by the meta-
model [20]. A meta-model encompasses three types of constraints in general [21].

Concrete Syntax: It describes the specific representation of the modeling
language, covering encoding and/or visual appearance. It defines set of
notations of language used to create models that conforms to that language's
meta-model. A standardized concrete syntax facilitates communication. It
provides a way to present a concept. The concrete syntax may be textual or
graphical.

Abstract Syntax: It expresses the structure of the language and the means the
different primitives can be combined together, independently of any particular

Transformations Co-evolution in Response to Meta-model Evolution 16

Background

representation or encoding. The concepts used by the language are specified by
the abstract syntax, e.g., Data types, Attributes, classifiers etc. The meta-model
illustrates abstract syntax of the underlying language.

Semantics: It describes the meaning of elements defined in the language and
the meaning of the various ways of combining them. It specifies the meaning of
concepts for a specific domain.

The concrete syntax, abstract syntax and semantics defines any modeling language. This is a
common practice used in MDE to define modeling languages although many other ways to
define modeling language does exist. The industry and academia uses the UML as a common
modeling language.

UML: UML is employed, as the primary language of modeling by the Practitioners [22] . It is
an OMG's standard defines for modeling software or non-software system's structure, behavior,
architecture and business processes and data structure. It describes concepts and their
relationships. The meta-model defines the abstract syntax of the language while semantics is
defined using natural language.

UML is use to model diverse application domain including banking, health care, aerospace,
internet, etc. UML comprises best engineering practices proven booming in the modeling of
huge and intricate software applications.

Based on a four-layer metamodel structure, the UML architecture comprises the user objects,
model, metamodel, and meta-metamodel. The UML metamodel is not an implementation
model. It is a logical model the benefit of which is that, it accentuates declarative semantics
and restrains particulars of implementation. As implementations make the use of the logical
meta-model, therefore, it must be conformant to the meta-model semantics, and ought to be
capable to import and export complete and partial models. The drawback of a logical model is
the shortness of the imperative semantics needed for precise and proficient implementation.
Therefore, for the tool developers the meta-model is escorted with implementation notes.

In meta-model hierarchy, UML lies within the meta-model layer. It is moldered into various
logical packages, i.e., Foundation package, Behavioral Elements package, and Model
Management. They are than further decomposed into sub-packages. The UML meta-model is
specified in a semi-formal way via rules for well-forrnedness, abstract syntax and Semantics.
A model specified in a subset of UML (composed of a UML class diagram and a supporting
natural language description) presents the abstract syntax. The formal language (Object
Constraint language) and natural language (English) is used to define the well-formedness rules
while, to articulate the semantics natural language is used, but some supplementary notation
can be added, relying on the component of the model that is described.

The specification of UML is composed of infrastructure and superstructure specifications.
Infrastructure defines the UML core metamodel. While the superstructure defines UML
elements (diagram etc). The intricacy of UML is gripped by codifying it into logical packages.
These packages combine meta-classes having strong cohesion among the meta-classes within
the package and loose coupling with meta-classes in other packages. Figure 2.2 shows the
top-level decomposition of meta-model into packages.

Transformations Co-evolution in Response to Meta-model Evolution

Background

Foundation package specifies the static structure of models. It is the language infrastructure. It
is further decomposed into Core, Data Types and Extension Mechanisms sub packages. The
Data Type package specifies basic data structures for the language. The package Extension
Mechanisms states the way in which model elements can be customized and extended through
new semantics. The Core package defines the fundamental concepts needed for a basic
metarnodel and defines architectural spine for adding further language constructs like Meta-
class, Meta-attributes, etc. Figure 2.3 shows the sub packages of UML foundation package:

Mechanism 5

\ /
\ 8'
". /

kJ
Data Types t-l

Figure 2.3 UML Foundation Package [22]

The behavioral elements package is divided into sub packages i.e. common behavior, use cases,
collaborations, state machines and activity graphs. The key concepts for model elements are
described by the package Common Behavior while a behavioral context for using model
elements to achieve a certain task is described by the package Collaborations. The package use
case uses actors and use cases to describe the behavior elements. The stat machine package
describes behavior via state machines while the activity graphs package is used to model
processes. Figure 2.4 illustrates sub packages of UML Behavioral Package:

Transformations Co-evolution in Response to Meta-model Evolution

Background

Behavior

1;iguw 2.4 1 511. t%clia\iorri klerrient IJrckugc 1221

The UML uses its extension mechanisms to permit variations to be expressed. The UML offers
the subsequent facilities, i.e.

Semantics and notation to tackle a spacious range of existing modeling issues
in a straight and economical way.

Semantics to deal with certain probable future modeling problems specially
linked to distributed computing, component technology, excitability and
frameworks.

Extensibility mechanisms to broaden the meta-model concepts for users own
use in an economical way.

Extensibility mechanisms to develop future modeling approaches on top of the
UML.
Semantics to simplify model interchange between a various tools.

Semantics for the stipulation of the interface to repositories for the sharing and
storage of model artifacts.

A UML can be used to define each platform-independent model and platform-specific model,
as one's require. The MDE uses both model types. In Model Driven Engineering, every
standard or application is based on PIM which embody its functionality and behavior without
of technical details. MDE tools than produce one or several platform specific models from this
PIM, for one or more chosen target platforms, also in UML. This generation step is automatic.
The PSM composes of similar knowledge in the form of a UML model not in executable code
as an implementation. Subsequently, executable code from the PSM is generated by the code
generator, with other essential documents consisting interface definition files if required,
configuration files etc. The tool runs the make-files to generate deployable software, after
making necessary changes in the produced executable code.

Transformations Co-evolution in Response to Meta-model Evolution

Background

2.3.3 Meta-niodels

In Greek, word "Meta" means "After". Meta related themes have fascinated people through the
centuries. In computer science, the term is used heavily and with several different meanings,
e.g., in database, metadata means "data about data" and refers to data dictionaries, repositories,
etc. In programming languages, meta-interpreter is an interpreter of a program (interpreter)
[23]. In conceptual modeling, metamodel is a model of a data model, e.g., an ER model of the
relational model, or an ER model of the ER model. Another dimension of metamodeling is
"The world is modeled by a story; the story is modeled by a metastory".

Meta-models can be deemed as comprising part of MDE. Meta-models are formal definitions
of well-structured models [24] or meta-models comprise the languages, which can portray a
given reality in some abstract sense. It is a concise means of specifying the set of models for a
specific domain. It defines ontology of concepts for a specific domain and vocabulary and
grammatical rules of a modeling language. Modelers use meta-models mainly for domain
specific language construction, model validation i.e. checking models against meta-models, for
describing model-to-model transformations and model-to code transformations, and for tool
integration.

2.3.4 Meta-modeling Languages

Meta modeling is the activity to develop meta-models that describe modeling language, and
offer modeling tool to support this modeling language. It is one of the most significant aspects
of MDE; the purpose is to construct a modeling language that describes models correctly.

To define meta-model, different meta-modeling languages exists. MDE gives three ways to
choose meta-modeling language: use a standardized language, use lightweight language
extensions, and use heavy weight language extensions.

MOF (A Meta-modeling Language): An organization that employs a Model driven
engineering approach, uses existing meta-models or defined their own meta-models. MOF is
an OMG's standard language for defining meta-models. MOF itself is defined as model so it
often called as meta-meta-model. OMG standardizes MOF as a language for specifying meta-
models to assist interoperability between tools. Existing tools are interoperable as MOF
standardizes a means for presenting models with an additional OMG standard, XMI (i.e. XML
meta-data interchange), a language for loading, storing and exchanging models [25].
The MOF and meta-model hierarchy exercised in a combination. It is designed to be at the top
level of OMG's meta-model hierarchy. OMG defined a four-layer meta-model hierarchy, i.e.

Meta-metarnodel layer (M3)

Metarnodel layer (M2)

Model layer (Ml)

Runtime layer (MO)

M3 layer specifies the language used to define meta-models. This layer comprises of one meta-
model, i.e., MOF. MOF based on itself. M2 is modelling language specification layer, which
is more specific with respect to M3 but still abstract. These languages used to define models.
This layer can have multiple meta-models based on which models for the same domain can be
defined. The M1 layer is a model layer (user specification) layer where the user can define the
model confirming to model at M2 layer. This layer contains actual definition of data. The MO

Transformations Co-evolution in Response to Meta-model Evolution 20

Background

layer is the instance layer that contains instances of models initialized at runtime. Figure 2.5
illustrates where MOF lies in OMG's meta-model hierarchy.

/ Real world objects \,,
!

/I instantiantion \
I:igwe 2.5 positionirtg ill OJlG's meta-model Ilierarcti) 1251

MOF has a modular architecture. MOF uses a concept of packages to group constructs. The
concept of nested packages allows creating a hierarchy out of packages. The outer most
packages are MOF and UML infrastructure library. Twofold dependency exists between MOF
and lJML infrastructure library. 1) A reuse relationship, and 2) UML is an instance of MOF.

The UML infrastructure library defines common meta-language elements, so that to define
other meta-models designers can use it. The purpose of reusing the same infrastructure amongst
meta-models is to acquire architecturally aligned meta-models. MOF is a self-describing meta-
model. It based on its own constructs. The interfaces and behavior of MOF meta-model can be
defined by applying MOF IDL mappings to MOF itself.

2.3.5 Model Transformations

One of the main concepts, in model driven software engineering is model transformations. It
provides mechanisms to automate model manipulation. Model transformations can be defined
as "a program that mutates one model into another". OMG defines model transformations as
"the process of converting model into another model of the same system". Model
transformations can also be defined as the automation of the transition from business models
to implementation models.

Kleppe et al. defines model transformations as "the automatic generation of target model from
source model, according to transformation description"[l2]. Mens et al. added the concept of
several input or several output models to this definition and defined model transformations as
"the automatic generation of one or more target models from one or more source models,
according to a transformation description" [26]. Figure 2.6 shows the components of model
transformations.

Transformations Co-evolution in Response to Meta-model Evolution

Background

Figure 2.6 lloiirl I'ran&wii~stinn ('omponenth

The major challenge to model driven engineering is in the transformation of platform
independent models into platform specific models that can be further utilize to generate models
of the implementation level. Based on some transformation rules, the Transformation of one
model to the other model implies the source model is converted into target model.
Transformation rules specified relationships between two or more models. Thus, these
transformation rules are the means to automate the conversion between models and from
models to text [27].

Different methods can be used for specifying model transformations rules. A transformation
Rule comprises of two parts: left hand side and right hand side. The left hand side selects the
source model while right hand side of the rule defines parts of the target meta-model generated
by the transformations from source model elements.

MDA community identified four types of transformations, i.e., PIM-to-PIM transformations,
PIM-to-PSM transformations, PSM-to-PSM transformations and PSM-to-PIM transformations
[19]. The more generic classification is:

Model-to-Model Transformations: Model-to-Model transformations are used to
generate one or more target models from a given source model (s).

Model-to-Text Transformations: Model-to-Text Transformations are used to
generate textual artifacts from models.

In MDE, model transformations can be used to perform various tasks, i.e., making, altering,
weaving, merging or filtering models. The common feature of the above mention tasks is the
reuse of captured information in models. Instead of generating new models from the scratch
model transformations reuse the information captured once as a model and generate artifacts
based on it.

Transformations can be used for synthesis as refinements that append information to the model.
The Source and target models of transformations might have same or different meta-models.
In both cases, the detail level is raised gradually and it probably includes shifting from higher
abstraction level to lower abstraction level. Probably, a model-to-model transformation chain

Transformations Co-evolution in Response to Meta-model Evolution 2 2

Background

exists and the chain of model-to-code transformations does exist too. This type of code
generation process, where source code is generated from models of higher abstraction level, is
a particular type of synthesis transformations. The Synthesis transformations might improve a
model in different manners, i.e., higher level idea's decomposition, algorithm's choice,
abstraction specialization for certain usage context. Figure 2.7 illustrates the Meta-Levels
Model Transformations:

~on fokns to Refers to on fohns to Refers to ~ o n f o k to

MO

2.3.6 Model Transformation Approaches

Model transformation languages are built based on model transformation approaches. Model
Transformation approach is a collection of design principles. Many model transformation
approaches have been proposed by researcher's community, e.g., imperative, declarative,
functional, relational and operational approaches.

2.3.7 Model Transformation Languages

A model transformation language comprises a well-defined vocabulary, grammar and
semantics for carrying out model transformations. Language is founded on some model
transformation approach.

2.3.8 Model Transformation Description

A Model Transformation Description articulates how a source model is transformed to a target
model. Model Transformation description is specified using some model transformation
language. If the transformation description is a collection of transformation rules then it
illustrates the language is rule-based. Other names used to refer a Model Transformation
description are, Model Transformation Definition, Model Transformation Code or Model
Transformation Program.

2.3.9 Model Transformation Rule

Model Transformation Rule is the smallest part of Model Transformation Description. It
specifies the conversion from source model scrap to the target model scrap. A rule has a source
pattern and a target pattern. For each element of the source model, a target element is created

Transformations Co-evolution in Response to Meta-model Evolution 23

Background

in the target model. In Graph Transformations, the source pattern is also referred as Left Hand
Side (LHS) and the target pattern as Right Hand Side (RHS).
2.3.10 Model Transformation Engine

A Model Transformation Engine runs a Model Transformation Description. It takes the source
model as input and generates target model by applying Model Transformation Description.
They are also referred as Re-write Engines. ATL, MOdTransF, ModMorf and smartQVT are
the examples of Model Transformation Engines. Typical step that a Model Transformation
Engine Perform while executing Model Transformation:

Source model elements identification for transformation purpose.

Generating related target elements for each identified source model element.

Generate trace information, which relate source element and target element
influenced by executed rule.

Source Model: A source model is a model that is passed as input to the model transformations.
This model would conform to the source meta-model. The input to Model Transformation can
be one or more source models.

Target Model: A target model is a model generated by Model Transformations as output. The
target model would conform to the target meta-model. The target models of Model
Transformations can be one or more. The term target model is used in the context of Model-
to-Model transformations. In Model-to-Text transformations, the source code is generated
instead of target model.

Transformations model: The description of transformation can be symbolized as model
which could make it ultimately input and or output tolof some other transformations. The
transformation model conforms to the transformation language meta-model in which
transformations are specified. Like other models, Transformation Model can be instantiated,
altered by Higher Order Transformations.

2.3.11 Higher Order Transformation (HOT)
A model transformation Description that accepts one or more transformation models
as input and/or generate one or more Transformation models as output are referred
to as Higher Order Transformations (HOT). Figure 2.8 gives a generic overview of
how HOT works.

Transformations Co-evolution in Response to Meta-model Evolution

Background

IJnfortunately, the definition of Higher Order Transformations is not as easy as seems in the
figure above. The fact that transformation language meta-model is relatively huge and
transformation models seems similar to abstract syntax trees, with various containment levels
made the development of HOT difficult and error prone.

2.3.12 ATL: Atlas Transformations language

Atlas transformation language is a model transformation language defined both as meta-model
and textual concrete syntax [28, 291. It is a mixture of declarative and imperative constructs,
thus simple as well as complex mappings can be handled through ATL. Simple mappings are
handled using declarative constructs while complex mappings are handled via imperative
constructs. The recommended way of programming is declarative.

The ATL transformation program is typically composed of rules. Rules specify how source
model elements are mapped and navigated to create and initialize target model elements. ATL
supports QVT query, view and transformations. Even so, there are some trivial variations. ATL
program carry out queries and transformations. As views are models and ATL program take
model as input or create model as output, views are particular type of the input or else output
of ATL programs.

Two kinds of ATL program exists, modules and queries. Modules are used to transform model
into model while queries are used to transform model into text. ATL supports libraries, which
allow defining repetitive sections of code in one place. ATL is founded on Object constraint
language (OCL). It has type model analogous to OCL. OCL is used to expression constraints
on rules.

The ATL program is composed of four sections i.e. header section, import section, rules and
helpers.

The header section defines module name and declares the input model and
output model. The module name and ATL file name must be identical.

The import section specifies the definitions used by the program from other
modules or libraries.

Transformations Co-evolution in Response to Meta-model Evolution

Background

Transformation rules describe the mapping of a source model element on a
target model element by relating meta-models. Each rule has a unique name.

A rule is defined by a key word "rule" followed by rule's name. There are three
types of rules. They are termed as lazy rules, rules and called rules.

The part of rule called "source pattern" is use to state which element type of
source model is transformed.

The target pattern is use to state which target model elemenvelements the source
pattern is transformed. Example of a transformation rule is given below:

ruleClassToClass

I
from inputclass : ClassModel!Class
to javaclass : JavaModel!JavaClass

(
name <-inputClass.getJavaClassName(),
description <-'Java class ' + inputClass.name,
variables <-inputClass.attributes,
methods <-javaClassConstructor

1,

javaClassConstructor : JavaModel!Method

(
name <-inputClass.name,
body <-' // Default constructor'

1,
secondclass : JavaModel!JavaClass

(
name <-inputClass.name + '-Anotherl,description <-'Another class ...I + inputClass.name

1
1

Helpers can be defined as a variable or function. Helper functions are defined as OCL
expressions. The helper functions can call each other and can be called by rule as well. Helpers
are use to define repetitive pieces of code at one place.

A Helper is defined by a key word "helper"
A name is introduced with key word def
It finishes with a semi colon

A context variable is defined with the help of ATL path expression
metamodel!element and is accessible via a self variable. If the context is not
defined, the module itself is taken as context. Example of helper definition is
given below:

Transformations Co-evolution in Response to Meta-model Evolution

Background

helper context Class!Class def: checkAttributeCount():Boolean=

helper context Class!Class def:isFAttribute():Boolean=

2.3.13 Traceability Management

Traceability is a crucial system attribute as it facilitates system evolution, validation and
software management. Traceability is an essential part of the change impact analysis too.
Traceability management assists in understanding, capturing, tracing and verifying software
artifacts and their links and dependency relationship with other artifacts during the entire
development life cycle [30]. Apart from its recognized significance, traceability management
is ignored mainly due to the inherent complexity of maintaining links between different
software artifacts.

In MDE, the key role of models considerably changes this landscape. Particularly, the central
role of models can positively influence traceability management because the traces to preserve
might be simply the links between different model elements managed during the entire
development process. Besides, traces between models can be stored in other models to process
them by any model processing technique e.g. model transformations, model merging, matching
models etc.

2.4 MDE Principles, Standards, guidelines and Methods

Applying Model driven engineering to software development, different engineering practices
and processes have been proposed. OMG's MDA is one the base line that set out guidelines for
MDE. This section discusses the principles, standards, guidelines and methods.

2.4.1 Model Driven Architecture (MDA)

The OMG's Model Driven Architecture is intended at improving quality, enhancing
productivity and reuse by separating the concerns and increasing the level of abstraction. One
or more platform specific models are generated from a platform independent model, which is
abstract model comprising sufficient information for PSM's generation. Potential Platform
specific models are particular to the target platform like source code, etc., [I].
The Model Driven Architecture intends to augment portability through separating system
architecture and platform architecture. The system architecture is defined through a model
called platform independent model which describe the structure and function of a system. The
platform architecture is defined through platform specific model, having implementation
information of a specific platform. For mapping platform independent model on platform
specific models, MDA has the capability to define transformations. This helps in the system
engineering and makes the realization of a system implementation easy, across various
platforms. Figure 2.9 shows PIM transformation to PSM:

Transformations Co-evolution in Response to Meta-model Evolution

. "-"...-

Background

Abstract Concrete

For example, a PIM is transformed to PSM, i.e., DDL. This transformation results in the
creation of table elements in Data Definition Language format from a class whereas EJB entity
is also produced from this class. This would result in a package that comprised the essential
element required by EJB, i.e., class and interface. The tool that assists in managing such type
of transformations is Enterprise Architect. It allows writing transformation rules for any
language. It let the user to keep as many PSM synchronized to a single PIM. EA has a built-in
support for Model transformation to C#, DDL, EJB, JAVA and XSD [18]. Figure 2.10
demonstrates the transformation of PIM to multiple PSMs:

A on& Plh4 can dnve rnuit~ple PSMs 1
ihangesa the PIM can be sgndmnrzed
into the PSM asrequlted matniamtng a 1
t~ght muplmg between the PIM and PSM '
o v a 8rne 1

Model Driven Architecture offers a conceptual framework to use models and to apply
transformations to the models seeing that an ingredient of managed and well-organized
software development process. Today, the main theories and aspects that govern MDA
practices are:

Models assist in understanding and communicating complex ideas.

Transformations Co-evolution in Response to Meta-model Evolution

Background

Depending on the context, various types of elements can be modeled. These
models bring in different perspectives of the world that ought to eventually
merged.

Commonality at all levels of models in both problem analysis and proposed
solution does exist.

A well-defined development process is offered by OMG by employing the ideas
of diverse types of models and its transformation between different
representations. This enables the identification and reuse of general approaches.

2.4.2 MDA Principles

Model Driven Engineering is based on four principles [12]. Following are the base principles
MDA relies on:

Models articulated in a well-formed language are a basis to realizing
applications for enterprise scale solutions.

The development of applications can be structured through a set of models by
enforcing chain of conversions involving models, structured into an
architectural framework constituting transformations and layers.

Meta-models, a formalized basis to express models, assist meaningful
incorporation and conversion between models, and are the origin to automation
through tools.

3-
For the broader acceptance and adoption of the proposed approach, which is

4 model-based, industry standards need to be developed to give openness to
1

customers, and support contest between sellers. F The Object Management Group has defined an explicit set of layers and transformations to
support these principles, which offer a conceptual framework and vocabulary for MDA.
Particularly, four categories of models are identified by OMG: CIM, i.e., Computation
Independent Model, PIM, i.e., Platform Independent Model, PSM, i.e., Platform Specific
Model and an Implementation Specific Model. Figure 2.1 1 gives a generic view of MDA key
concept:

Transformations Co-evolution in Response to Meta-model Evolution

Background

Fig~ire 2.11 .Z generic lie++ of ' \ I D I, concept 119-1

This means, an MDE tool may support transformation of models in a number of steps, i.e. from
analysis model to running code. For example, tool like pattern facility carries multi-
transformation development whereas IBM Rational Rose produce running code from UML
models at once.

2.4.3 Model Driven Architecture Standards
The OMG lay down standards for MDA, as parts of the guidelines for Model-Driven
Engineering. The standards are allocated to one of the four layer of OMG's Four Layer Meta-
modeling Architecture.
2.4.3.1 Meta-Model Hierarchy:
The four-layer architecture defines an infrastructure for specifying models, meta-models,
modeling languages and activities and provides foundation for future meta-modeling language
extensions. This architecture supplies framework for meta-models exchange among different
meta-modeling environments. This framework is crucial for tool interoperability, because such
interoperability relies on a precise specification of the structure of the language.

Each layer in Four-Layer Meta-model Architecture represents level of model abstraction
members of one layer conforms to the member of the above layer. Figure 2.12 illustrates each
layer of meta-model Hierarchy:

Transformations Co-evolution in Response to Meta-model Evolution

Background

UML Models
1
I
i

Real world objects
instantiantion

Vigtlrc 2.12 0 \1< ; 's \Icta-mudcl 1lic.rarctrq

M3 Layer: At layer M3 the meta-metamodel lies that defines languages for describing meta-
models. MOF is an example of meta-metamodeling language. The MOF meta-model is used
to instantiate meta-models that becomes a part of layer M2. The UML meta-model conforms
to MOF.

M2 Layer: The M2 contains the modeling language meta-model for example UML, meta-
model is at layer M2. UML meta-model is conformant to MOF meta-model. The models at
layer M1 confirms to the meta-model at layer M2. For example, class diagram defined for
some business application would conform to UML meta-model.

M1 Layer: The M1 defines models for the concepts in MO. The Objects at MO conforms to the
models defines at layer M1. For example, the concept customer might be defined as a class
with attributes at MI. In other words, the Layer M1 contains the models that is defined using
some modeling language, e.g., UML. This model would be defined using a modeling language
that lies at layer M2.

MO Layer: The base layer of this pyramid, i.e., MO represents the domain, i.e., a real world
model instance, i.e., user instance. It is the information layer that comprises the actual
objects/instances, thus data. For example, if some business entities are modeled this layer is
used to represents items of the business like customer or invoice, etc. If modeling a software
application the MO layer describes the software representation of such items. Below is the
Table 2-1 that illustrates each level and its description:

Layer Description

Meta-Model / This is the instance of meta-metamodel which defines a language for
' model specification.

Transformations Co-evolution in Response to Meta-model Evolution 31

Background

references

I 1

Figure 2.13 i \iruplit~cd ~ i c v of \10F 1251

2.4.4 Methods for Model Driven Engineering (MDE)

Various methods for MDE exist today. In this section, the most advanced method of MDE will
be discussed, i.e., Domain specific modeling, Model-Centric software engineering and service
oriented software engineering. Model driven engineering practitioners defined these methods.
The industry (practicing MDE) used these methods repeatedly for solving problems. The
methods differ in the degree to which they follow the guidelines commenced by the MDA.
2.4.4.1 Model-Centric Software Development

The Model-Centric Software Engineering is a software Engineering approach that uses concise
and expressive models throughout the development process. It utilizes the models to articulate
correlated notions of every domain hence they grow to be translucent and can be employed in
other related domains. Although for software development, model-centric approaches have
been used and employed for several years. However, Model-Centric software engineering is
the particular area of model driven engineering that deals with the creation of running code
from model of implementation level, which have enthused special attention over several years.
Model-Centric Software Development nonetheless has a wide scope and fields like business
process modeling, architectural models or enterprise wide federated repositories.

In general, it might proposes an enormous opportunity to empower individual intellectual
property in software engineering and in particular, to realize domain driven development
pledge of technology or business alignment when utilized appropriately. However, it can lead
a project to the failure if the significant level of additional intricacy it brings in the technical
and organizational level, is ignored.

Transformations Co-evolution in Response to Meta-model Evolution

Background

2.4.4.2 Domain SpeciJic Modeling

A particular type of model-based software engineering approach to design and develop a
system. It entails systematic utilization of domain specific languages to symbolize different
system's aspects under development. It also includes the concept of code generation that is
automating the generation of executable source code directly from the DSL models. It presents
a set of principles, practices and guidelines for developing systems by employing MDE. . DSM
is based on the direct transformation of domain models into code. The motivation behind the
idea of DSM is the comparison of the huge gains in productivity made when third generation
programming languages were employed instead of assembler.

Domain Specific modeling can notably improve developer's efficiency because it is free from
manual creation and maintenance of source code. The automatic generation of source code as
compare to manual coding will lower the number of errors in resulting program therefore
enhancing quality of the developed system.

The major components of DSM are Domain Specific Modeling Language, Code Generator and
Framework Code. These are designed to firmly fulfill the requirements of a single organization.
Below is the brief description of the above mentioned components:

Domain Specific Modeling Language: The system's requireme~ts, structure and
behavior in the considered domain is formalized by its type system. DSML are specified
using meta-models that define the concepts and relationships between these concepts
specific to the domain. It precisely specifies the semantics and constraints related to
these domain specific concepts. Developers utilize domain specific languages to
develop application systems by employing elements of the type system captured by
meta-models and articulate design goal declaratively rather than imperatively.

Code Generators: customized code generators are employed to generate source code
from models directly. Code can be generated in any programming language and for any
development paradigm. It does not require any later manual changes to code. This
automated generation of code is possible just because of domain specificity. During the
generation process, existing platforms, libraries, components, legacy code can be used
efficiently.

Framework Code: It puts in a nutshell the common areas of all applications lying
within that specific domain.

Domain specific modeling puts forward the huge advancement in software development
productivity since the major shift from assembler to 3GLs. Industrial experiences shows
consistently the efficiency of DSM than the current practices, including UML-based
implementation of MDA. Nevertheless, without the right tool support building a domain
specific modeling solution might be a huge task, probably preventing an organization from
adapting DSM.

2.4.5 MDE Tools
Today, after many years the field of MDE is mature enough that powerful tools and language
support for many MDE activities are available. This section provides brief description of MDE
tools that are well suited and mature and would be used in this research. Eclipse Modeling
Framework, Kermeta, ATL and Rational Software Architect are discussed in detail in the
subsequent section.

Transformations Co-evolution in Response to Meta-model Evolution 33

Background

Eclipse

Eclipse offers an open platform for application development tools. It runs on a variety of
operating system. The Eclipse is intended to use for building Integrated Development
Environments (IDE's) and arbitrary tools and applications. Applications and tools built on the
top of Eclipse can easily be integrated with applications and tools built by means of Eclipse
Platform. The java development components like JDT are added to the Eclipse platform. And
it is turned in Java Integrated Development Environment. Likewise, C/C++ development
components like the CDT are added to the Eclipse and it is turned into C /CU development
environment too. Eclipse integrates individual applications and tools in one product offering a
prosperous and reliable experience for its users. One of its prominent and distinguishing
features is its extensibility. Its Graphical User interface is based on Standard Widget Toolkit
(SWT). Eclipse project is divided into three sub projects, i.e.

The Eclipse Platform
The Java Development Toolkit (JDT)
The Plug -in Development Environment

Architecture

The Eclipse platform comprises of workbench, workspace, help and team components, in
addition to the small platform runtime kernel. The tools based on Eclipse plug-in to this
foundation framework to build a handy application. Figure 2.14 gives a view of Eclipse
Architecture:

Eclipse Modeling Framework
EMF is a java framework. It provides code generation facility for constructing applications and
tools established on a structured model. It offers the facility to build data model from various
sources for example UML, annotated java, XMLIXSD etc. It serves as a basic building block
for constructing modeling tools. It provides the facility to build both visual and programmatic
manipulation tools and editors.

Eclipse Modeling Framework was initially founded on Object management Group's MOF 1.0
specification. Later on, it has influenced MOF 2.0 specifications. The EMF 2.0 claims support

Transformations Co-evolution in Response to Meta-model Evolution 34

Background

Essential MOF (EMOF). EMF constitutes of an Ecore Model, Core Model, GenModel, JET
and JMerge. The Ecore is a meta-model used to create a model. It is based on itself so it is a
meta meta-model as well. An EMF basically consists of:

EMF: It is the core framework which is composed of a model, i.e., Ecore which
describes models as well as it offers runtime support for models. The runtime
support may include change notifications and persistence support (which can be
with default XMI serialization). To manipulate EMF objects generically, it
provides an API.

EMF.Edit It consists of reusable classes that are generic in nature for constructing
editors designed for manipulating EMF models. It includes a

Command framework, which comprises a set of command implementation
classes (generic in nature) for constructing editors, which can completely
supports automatic undo and redo.

Property source support, classes of content and label provider, and classes
for other convenience that enable models of EMF to be presented by
property sheets and standard desktop viewers.

EMF-Codegen: It generates all the required things to develop a full editor for
editing EMF models. It consists of a GUI. It is use to specify generation option and
to invoke generators. The Java Development Tooling (JDT) component of Eclipse
is leveraged by the EMF.Codegen generation feature.

The prominent facilities EMF offers are the generation of an efficient, correct and easily
customizable implementation code from model definition; converts user's models to Ecore;
tooling support in Eclipse Framework, reflective and dynamic invocation and supports
XMLIXMI serialization and de-serialization of instances of model, etc. Figure 2.15 shows an
Ecore meta-model. A simple Ecore model is composed of:

EClass: It represents a modeled class. It has a name and is composed of zero or
more than one reference and attributes.

EReference: It characterizes an end of an association that exists between classes.
This reference has a name, a containment property, and type.

EAttribute: It characterizes a modeled attribute, which must have some name and
is of some type.

EDataType: It defines the type of an attribute. It can be a primitive type e.g. an
integer or Boolean or object type, e.g., java.util.date.

EMF lets the users to specify their own meta-models in Ecore, the meta-modeling language
and the MOF implementation of EMF. It provides two types of editors to create a meta-model
i.e. graphical and tree-based editor. Figure 2.16 illustrates a tree-based view and Figure 2.17 a
graphical view for petri-net meta-model.

Transformations Co-evolution in Response to Meta-model Evolution

Background

Transformations Co-evolution in Response to Meta-model Evolution

Background

7 tr per-

I
I:igrtrc 2.17 4 (;rilphieai Kclitor for 1Icti1-model

The editors illustrated in Figure 2.16 and Figure 2.17 are used to manipulate the same meta-
models but via using different syntaxes. A change made to the meta-model using one editor
can be automatically propagated to the other editors. Furthermore, EMF can generate editors
for models that conform to the underlying meta-model from which the editor is generated. For
example, a simple Petri Net meta-model specified in figure was used to generate the code for
the model editor shown in figure. EMF incorporates the mechanisms for loading and saving
models in the model editors it generates. EMF normally generates codes that stores models via
XMI, an XML dialect optimized for model interchange.

Kermeta

Kermeta is a domain specific meta-modeling language, which is designed to define both the
structure and behavior of meta-models. It is compliant with EMOF and Ecoe. EMOF is a part
of the MOF 2.0 specification. For defining behavior of models, it offers an action language.
Kermeta is designed to be exercised as the core language of a model-oriented platform. It is

Transformations Co-evolution in Response to Meta-model Evolution

Background

intended to be a common basis to implemented constraints languages meta-data Languages,
action languages and transformation language.

The main purpose of Kermeta is to provide an action language for MOF models. The key
concept is to initiate from MOF, which provides the structure of a language, and to add an
action model which describes the static semantic and dynamic semantic of model. It includes
most of the classical object-oriented mechanisms, i.e., operation redefinition, operation
specialization and operation overloading. MOF specifies the structures and the operational
semantics consequent to MOF concepts has to be specified using Kermeta.

Action
Languages

Languages

Tra nsforma tion
Languages

Constraint
Languages 1 Common

denurninator

Figure 2.18 I<emeta C)ver.riew

Architecture

Kermeta is intended to be fully compliant with the EMOF (an OMG's standard meta-data
language). Kermeta is composed of two key packages, i.e., structure package which
corresponds to essential MOF and behavior package which corresponds to the
semantics/actions.

Transformations Co-evolution in Response to Meta-model Evolution

Background

nes irq Pa

0. .=

belkrbcdy 1
Figure 2.19 kcrmcta'+ Structt~re Package

Figure 2.19 describes the structure package of Kermeta. The main classes included in structure
package are presented here which defines the static structure of kermeta. The base concepts are
taken from EMOF and several modifications were made since EMOF was not initially designed
to be executable. For this purpose, an action language is added Kermeta's Behavior package.
Figure 2.20 illustrates Behavior package.

Transformations Co-evolution in Response to Meta-model Evolution

Background

f ieure 2.20 kernretit's Selia.tictr Package

Kermeta provide two ways to define a meta-model, i.e., using Kermeta textual syntax or
creating an Ecore file via tools built by EMF. Kermeta textual syntax allows creating a .kmt
file and building a meta-model programmatically. Kermeta provides the facility to convert the
Ecore file in kmt format and vice versa. Below is the textual representation of sample class
diagram meta-model.

i f uri "sirnplcuml.com"
package SimpleUML;

require "l\crlneta"
req uire "http::;~ ~1 M .eclipse.or~e111f/2002/Gc~)re"
abstract class UMLModelElement

{
attribute kind : PrimitiveTypes::String[l..l]

attribute name : ecore::EString[l.. 1]

1
class Attribute inherits UMLModelElement

{
reference owner : Class[l ..l]#-attribute

reference type : Classifier[l .. l]#typeOpposite

1
class Package inherits UMLModelElement

{
attribute elements : set PackageElement[O. .*]#namespace

1
abstract class PackageElement inherits UMLModelElement

Transformations Co-evolution in Response to Meta-model Evolution

Background

{
reference namespace : Package[l .. l]#elements

1
abstract class Classifier inherits PackageElement

{
reference typeopposite : set Attribute[O..*]#type

1
class Class inherits Classifier

{
attribute -attribute : set Attribute[O..*]#owner

reference general : set Class[O..*]#generalOpposite

reference generalopposite : set Class[O..*]#general

reference reverse : set Association[O..*]#source

reference forward : set Association[O..*]#destination

}
class PrimitiveDataType inherits Classifier

{
}
class Association inherits PackageElement

{
reference source : Class[l .. l]#reverse

reference destination : Class[l .. l]#forward

}
'u uri "platfor~n:/resourcc/org.eclipsc.atl.tcsttransforrnations/~~~etamodel/Si~npleU~~~l.ecore"
package PrimitiveTypes;

require "ltc~~ineta"
require "l~ttp:~;'~v~vw.cclipse.or~cmf/2002/Ecore"
alias String : kermeta::language::structure::Object;
2.5 Chapter Summary
This chapter discussed the idea of model driven engineering. The basic terminologies,
guidelines, methods, activities and tools utilized in Model Driven Engineering process are
introduced. Two prominent methods that utilized MDE were reviewed. System evolution in
the context of model driven engineering was discussed and the key issues and challenges
related to evolution were highlighted in this chapter.
Traditional software engineering approaches do not consider modeling artifacts like models
and meta-models as its key artifacts and they are presented in an unstructured way, if at all.

Transformations Co-evolution in Response to Meta-model Evolution 41

Background

MDE comprised generating, utilizing and managing changes to modeling artifacts thus these
modeling artifacts are presented in a structured way. This chapter showed that MDE tools for
example EMF give structures and processes for generating and manipulating modeling artifacts
but does not provide any support for managing evolutionary changes. Chapter 3 explores and
investigates ways to manage evolution of modeling artifacts.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 3 Related Work

Related Work

3.1 Introduction

In model driven engineering, large number of models and transformations on different level of
abstraction needs to be taken into consideration. A huge number of models engaged, hail from
a layered modeling architecture, i.e., meta-models as well as from refinements, i.e.,
transformations from generic to implementation-centric model representations [I , 151. Meta-
models lie at the heart of Model Driven engineering as it defines structure and semantics for a
set of models and transformations are specified upon it. Meta-models are subject to
evolutionary pressures and hence artifacts based on it might become invalid with respect to the
new version of meta-model [21].

This chapter reviews existing approaches proposed to address the co-evolution of meta-model
and its related artifacts. Particularly, this chapter investigates the mechanisms used to identify
changes introduced to the meta-model and manage the co-evolution process.Section 3.2
reviews co-evolution approaches. Section 3.3 reviews traceability approaches in model driven
engineering. Section 3.4 explores classification scheme employed to classify meta-model
changes. Section 3.5 investigates difference representation mechanisms utilized to represent
difference between two versions of meta-models. Section 3.6 discusses migration strategies
proposed and employed to solve the co-evolution of meta-model\model and meta-
model\transformations. Section 3.7 discusses issues and challenges related to the co-evolution
approaches. Section 3.8 sums up the entire chapter.

3.2 Co-evolution approaches
Meta-models are subject to change and evolve over time. With the evolution of meta-model,
the artifacts, which are specified based on it, need to be co-evolved. The researchers have
proposed a number of approaches to address the co-evolution of meta-model and its related
artifacts. Next sections describe the research related to the co-evolution of meta-model and its
related artifacts.

3.2.1 Meta-model\model co-evolution approaches

Since Meta-models evolve over time, models that conform to it possibly will not conform to
the new version of meta-model anymore. The researchers proposed various approaches to
model migration during the previous several years. Cicchetti et al. proposed a mechanism for
meta-model evolution management [24]. They presented changes in model based manner. They
employed a difference meta-model and the change representation mechanism together to record
the changes introduced to the meta-model. They utilized difference model, conforming to the
difference meta-model, to correctly classify meta-model modifications and to accordingly
implement required countermeasures to co-evolve the existing models. Higher order
transformations (HOT) are defined for the co-evolution of models, which takes the difference
model as input and produce the intended model migration. However, the proposed approach
only deals with breaking and resolvable changes. Human assistance is required to resolve
breaking and unresolvable changes. Furthermore, empirical evaluation of the approach is
required.

Antonio Cicchetti et al. designed a mechanism to manage the evolution of meta-model in a
model driven engineering environment [3 11. They used a model based technique to represent
meta-model changes. They used difference models to classify meta-model operations

Transformations Co-evolution in Response to Meta-model Evolution 44

Related Work

accurately and to implement subsequent countermeasures to co-evolve existing instances
accordingly. They then classified a meta-model evolution based on their impact on models and
managed each type separately.

Moritz Eyshildt presented an approach for managing changes between different versions of
EMF Ecore based meta-models and consequent evolving model instances [32]. They
introduced EPatch and Metapatch formats, which are capable of specifying the amendments
and routines supporting the migrations. Both formats compose textual domain specific
language, each one specified by its own XText grammar. They offer a handy integrated
development environment, for example code completion. EPatch is a declarative, self-reliant,
meta-model agnostic. As EPatch is a meta-model agnostic it does not need the to-be-patched
models to be instances of a definite meta-model. The difference between models is obtained
by comparison. A comparison is made on the top of EMFCompare. EPatch has the ability to
describe changes occurring due to the refactoring, construction or destruction of meta-model
elements. The Patcher Tool EPatch and create a copy of the model thus preventing a source
model from modification and creates a mapping between source and target model. The
MetaPatch utilizes the EPatch in two distinct manners. Initially, the MteaPatch format extends
the EPtach format through inheriting grammar. Additionally, it adds instructions in java or
Xtend to customize the model migration algorithm and bounds the EPatch to Meta-models, i.e.,
EMF ecore models. Finally, the The MetaPatcherMigrator takes the mappings of the meta-
model elements as input and migrates the models from one meta-model to another. The
EPatch format became a part of EMF Comparer and Metapatch format will be a part of Eclipse
Edapt project. They briefly described the overall process of migration. However, the resolution
of complex and arbitrary changes have been ignored.

Graces et al. proposed an approach for the adaption of model after meta-model evolution [5].
This approach automatically generates adaptation transformation for migrating models to make
them consistent with the evolved meta-model. Both versions of meta-model are translated into
the KM3 notation. A matching strategy is defined that identifies equivalences and differences
between both versions of the meta-model. A matching strategy discovers the similarity and
differences by implementing a set of heuristics. Equivalence and difference are represented as
matching model. The matching model conforms to the matching meta-model. The matching
model is described graphically as well as textually. The main concept of matching meta-model
is Equal that specifies similarity between two versions of meta-model. It has a similarity value
between 0 and 1 that signifies the apparent validity of the correspondence. Higher Order
transformations are defined that takes matching model as input and migrate instances of the
old version of meta-model to the new version of meta-model.

Boris and Grusko Dimitrios S. Kolovos proposed a five step solution to the problem of
synchronizing models with evolving meta-models that is 1) Change Detection 2) Classification
3) User Input Gathering 4) Algorithm Determination and 5) Migration [33]. In change
Detection step, changes are detected either by direct comparison between versions of meta-
model or by tracing and recording the changes introduced to the old version of meta-model.
These differences are stored in delta model. In the next step, changes are classified under the
categories mentioned as non-breaking, breaking and resolvable and breaking and non-
resolvable. User input is taken for the changes that are not automatically resolvable. An

Transformations Co-evolution in Response to Meta-model Evolution 45

Related Work

appropriate migration algorithm for model migration is determined and finally models are
migrated to re-establish conformance relationship of models with the new version of meta-
model.

Demuth et al. proposed a generic approach that identifies the co-evolution failures and suggests
model migrations to co-evolve models correctly [34]. Particularly, the approach is used to find
out whether the adapted models are conformant to the evolved meta-model. The approach is
composed of two phases, i.e., co-evolution failure detection and derive options for the
corrections of failures. In first phase, locations where co-evolution is not performed are
detected while in phase two different options for the correct meta-model change propagation
to the effected models are derived. For constraints management, they used an incremental
constraint management approach to update constraints after meta-model evolution in order to
make it certain that the models are valid with respect to the new constraints imposed by the
meta-model. Model consistency is checked via an appropriate consistency checking
mechanism. To find appropriate adaptation, the approach utilizes a reasoning mechanism,
which takes into consideration all design constraints present in model. However, the approach
only resolves simple and atomic changes. Furthermore, the prototype implemented requires
empirical evaluation.

The work in [35] specified a catalogue of operators to co-evolve meta-model and model. The
defined coupled operators are able to evolve meta-models and to automatically co-evolve the
corresponding meta-model instances, i.e., models in response to meta-model evolution. The
catalogue covers operators from the literature and the case study they performed. The catalogue
is founded on a broadly used EMOF (Extended Meta-Object Facility), a meta-modeling
formalism that was refined that is the model elements that are not capable to be instantiated in
the models are removed. Every time, when a meta-modeling formalism is extended by adding
new model elements, then the catalogue must be must be updated by adding new operators,
i.e., to add, delete or change a construct primitive operators are added while to perform more
obscure evolutions involving constructs complex operators are added. This catalogue provides
foundation for operator based tools and difference based tools. However, this approach has a
major drawback of selecting an operator when multiple operators exist for one specific
scenario.

Ludovico Iovino et al. presented an approach to better comprehend the impact significance of
the changes drive on a domain metamodel[4]. This is deemed handy for a number of reasons,
particularly, to understand formal documentation to be passed on to implementers responsible
of grasping the desirable adaptation; and to predict the diffusion of its impact through the many
artifacts and bear out the efforts required to restore the validity of the compromised
components. They recognized the usual relations between a domain meta-model and its
associated modeling artifacts, and symbolized them with a mega-model. Mega-models have
been demonstrated to be helpful and useful in specifying those infrastructures where numerous
artifacts are involved and linked together through some mechanisms, like model transformation
andlor model weaving. Consequently, a general architecture is presented to automatically
specify the relation, called Dependency, between modeling artifact and domain metamodel.
Dependencies can be derived via the Relation characterization between the meta-metamodel
and the artifact metamodel. This lets to emphasize those dependencies, which have been

Transformations Co-evolution in Response to Meta-model Evolution 46

Related Work

exaggerated by the domain meta-model evolution and to have a general overview of the change
propagation. An appropriate mega-model specifies the whole ecosystem and weaving models
formalizes the relationships between the artifacts and the domain meta-model. The technique
is general offers tools independently from the chosen adaptation approach.

Di Ruscio et al. provided an overview of the coupled evolution methods and tools used to solve
the coupled evolution problem [36]. They first defined the problem of coupled evolution and
explained it through examples. Then they introduced the important elements of the coupled
evolution approaches. Based on these elements, tools available for handling the problem of
coupled evolution are compared. These tools compared were EMFMigrate, Flock, Cope,
GMFEvolution and Levendovszky. These tools were compared based on differencing,
adaptations, order, and transformation type, and focus, lack of information management,
modularity/reuse, paradigm concrete syntax, refinement, model navigation, directed
environment and reference platform. This paper helps in selecting tool selection for solving
coupled evolution problem.

A process model and classification scheme is introduced by Becker et a1 to perform coupled
evolution of meta-models and models semi-automatically [37]. The objective of this approach
was to reduce the manual effort necessary to migrate old meta-model instances to the new
version of meta-model to make them valid. In change detection step, two versions of the meta-
model are taken as input and changes are traced. Once the difference is computed, it is stored
as a difference model conforming to the difference meta-model. In migration algorithm
construction step, changes are categorized according to the proposed classification scheme. As
the non-breaking change category does not influence models in any way, no action is required
to take in order to resolve this class of changes. Breaking and resolvable changes are handled
automatically by generating migration rules to migrate the existing model instances, while
breaking and not resolvable changes needs user assistance in order to resolve them. Once the
user input is gathered, an appropriate algorithm for model migration is determined. In migration
algorithm execution step, the algorithm is executed to migrate all the M1 instances into the M2
instances. However, it is unclear when the migration algorithm is executed either at time when
MI models are instantiated or subsequent to M2 changes. Furthermore, the approach cannot be
applied to M3 model changes as the use of M3 model is fixed.

The work in [3 81 proposed a language called Flock for defining and executing model migration
strategies. Flock is a rule based transformation domain specific transformation language. A
transformation specification language is a mixture of declarative and imperative syntax. The
hybrid M2M transformation languages stir it. Flock handles the relationship between source
and target meta-model by utilizing a conservative copying algorithm, which minimizes the
need for plainly doubling or un-positioning model elements. Flock utilizes a model-
connectivity framework for decoupling model migration and model representation. It has a
compatibility with various modeling frameworks. Flock maps each model construct of the old
version of model on the corresponding construct of the migrated model by employing a novel
conservative copying algorithm and migration rules defined by user. Flock has been applied on
various co-evolutions of meta-modelhodel situations. However, efforts are still needed to
develop some indigenous mechanisms for facilitating the reuse of available migrations, and to
facilitate user's intervention when required.
Guido Wachsmuth presented a transformational approach to support meta-model evolution by
means of stepwise adaptation [39]. For the adaptation of MOF compliant meta-models a

Transformations Co-evolution in Response to Meta-model Evolution 47

Related Work

transformation library is presented. The transformation detaches the semantic preservation
properties and makes distinguish three types of transformations, i.e., transformations for
semantic preserving refactoring, introduction and increase in transformation supports meta-
model construction and decrease and eliminate transformations permits for meta-model
destruction. The transformations are specified as QVT relations and its graphical notations are
used. Likewise, transformations for model co-adaptations are also defined that are called as co-
transformations. A co-transformation relies on it triggering meta-model adaptation
transformations. The co-transformations are described as transformation pattern. The
transformation pattern is a QVT relation that takes parameter for meta-model elements. A
meta-model transformation initializes a transformation pattern, to obtain a consequent co-
transformation.

Schoenboeck et al. presented an approach "CARE" to re-establish an ontological conformance
relationship between meta-model and its corresponding instances based on conformance
constraints facilitated via logic programming [40]. The relationship between meta-models and
its instances are formalized as constraints. CARE relies on the core concepts of meta-modeling,
i.e., class, attribute, reference which is a representative subset of Ecore concerning to the
structure of meta-model. The approach has three step, i.e., detection of constraints violation,
repairing violations and ranking and selection of best possible solution. In detection phase,
constraints violations are detected based on the ontological conformance relationship
formalized in dedicated constraints form. ASP rules are utilized for this purpose. In repairing
phase, violations are repaired via repair actions (ASP repair rules) resulting into the generation
of multiple solutions. In the last phase, the quality criteria are applied to rank and select the
best possible solution to re-establish the ontological conformance relationship. The quality
criteria comprised the structural and semantic knowledge about the prospective solution space.
CARE is capable of re-establishing an ontological conformance relationship either the
violations are caused by changes in the meta-models or models. CARE is independent of the
specific tool via offering a standalone framework as it is not deeply woven into any existing
modeling environment. It also minimized human intervention by using pre-defined repair
actions. However, models, meta-models and the corresponding constraints are required to be
transformed into ASP. Furthermore, it is applicable to the Ecore based meta-models. To make
it applicable to other meta-models implementation of the appropriate transformations,
modification of the conformance constraints are required.

The work in [41] proposed an approach to automatically adapt existing models after meta-
model evolution. They defined meta-model relations to provide foundation for the semantic
and instance preservation. The approach handles resolvable changes via QVT transformations,
which are classified as refactorings, construction and destruction transformations accordingly.
However, it is not clear if co-adaptation rules are automatically generated. In addition, meta-
model revisions are represented as QVT transformations, which could be not always exact.
Lastly, there is no support to non-resolvable change resolution.

Markus et al. provided a tool support for the coupled evolution of meta-models and models so
that the intention behind adaptation cannot be lost. COPE is built on top of Eclipse Modeling
Framework (EMF) [42]. The COPE trace and record meta-model evolution as a series of
coupled operations. These coupled operations are stored in an explicit history model. The

Transformations Co-evolution in Response to Meta-model Evolution 48

Related Work

coupled operations are structured in a library, which is extendable. Every coupled operation is
composed of meta-model adaptation and model migration. To further minimize, the effort of
constructing a model migration, frequenttchronic operations are reused. The existing model
instances are adapted automatically by employing history model. Besides, COPE facilitates to
examine, recover and refactor the coupled evolution whenever the history model is not
recorded and requires to be recovered from the old and new version of meta-models. Although
it is applied to several case studies, still the applicability needs to be investigated with a larger
number of operators.

They extended an operation-based approach through a way to make certain the semantic
preservation of meta-modeling languages [43]. The features, meta-model adaptation, model
migration and semantic preservation are combined in an operation-based approach. This
approach ensures semantic preservation by specifying couples of semantic adaptation and
model migration. The approach is applied to a running Petri Net Example in order to prove its
applicability. However, it is applied manually and its integration to the COPE is not addressed
yet. Similarly, custom-coupled operators require manual specification of model migration and
semantic preservation.

The applicability of COPE is demonstrated by migrating UML Activity Diagrams from 1.5 to
2.0 [44]. Its applicability is demonstrated by reverse engineering the coupled evolution of UML
Activity models. The process of reverse engineer the coupled evolution is complex and requires
much effort to choose proper coupled operators. To cope with this problem, they proposed a
function that based on difference model defines a coupled operator.

Bart Meyers et al. proposed an approach for model migration after meta-model evolution [45].
The approach is based on in place migrations of models. Based on the difference operates,
captured during meta-model evolution, in place transformations for model migration are semi
automatically derived. Based on the meta-model difference operations, in place
transformations are generated for migrating models automatically. Higher Order
Transformations are defined for the step-wise evolution of meta-model. Migration
transformation is created from difference operation and template where the template defines
the migration behavior. The in place transformation migration can then be executed for
migrating models. After synthetic adaptation, semantic adaptation is done, which require user
intervention. User intervention is restricted in order to ensure model conformance of the
migrated model to the evolved meta-model. However, this approach relies on the assumption
that difference model is constructed before. This approach does not offer support for the
evolution of meta-model. This approach is applicable only when the source and target meta-
models are same.

Markus et al. analyzed the practicability of the concept of coupled evolution of meta-models
and models [46]. They analyzed and classified the meta-model changes based on their level of
potential automation. In addition, a list of suggestions for the implementation of an effective
tool for the meta-model and model co-evolution is provided. The change is called a coupled
change. The automation of coupled change depends on the level on which it depend i.e. the
higher the level, the more it could be reused and thus automated. The coupled changes are
classified as 1) Coupled Change Specific to Model: which can be applied only to a subset of
models of a meta-model2) Model Independent, Meta-model Specific Change: can be employed

Transformations Co-evolution in Response to Meta-model Evolution 49

Related Work

to all possible meta-model instances as it is domain specific that's why it is called meta-model
specific change. This type of coupled change offers automation for all model instances of a
meta-model and 3) Coupled Change Independent of Meta-model: This type of change can be
employed to all meta-models and its corresponding instances. The potential of coupled
evolution automation in practice was then assessed by applying the above mentioned
classification on the history of two industrial meta-models. This study found that most of the
meta-model changes required migration of its corresponding instances. Moreover, to derive
migrations automatically snapshots of different meta-model versions are not enough. This
study concluded that there exists a great possibility of the reuse of coupled operations of
evolution, which could help in minimizing maintenance effort and reduce the chances of error
occurrence. Meta-models evolved in a series of meta-model independent as well as meta-model
specific changes. Thus, the approaches for automated migration of models ought to maintain
the reuse of existing coupled changes also to define new meta-model specific changes.
Furthermore, automated coupled evolution requirements are defined here on the basis of results
of this study which includes requirements like, reuse of model migration, expressiveness,
modularity and history.

M.Wimmer et al. addressed the coupled evolution of meta-models and models by employing
existing in-place transformation languages [47]. They merged the initial and final version of
meta-model to obtain one meta-model to make in-place transformations applicable. To
eliminate model elements that are not the part of evolved meta-model anymore, a check out
transformation is used. The approach is demonstrated via employing atlas transformation
language for merging meta-models and for taking in the check-out transformations.

Sander D. Vermolen et al. addressed the problem of detecting complex meta-model evolution.
They proposed an approach for reconstructing complex meta-model evolution traces from
difference model automatically [48]. They formalized the base concepts, which comprise meta-
model, difference models and evolution traces. First, changes from difference model are
mapped on primitive operators in evolution traces. Then preconditions are defined to solve
dependency for all primitive operators. Then the dependency relation between operators is
defined based on those pre-conditions, which add sequence to the operators on dependency and
to build valid primitive evolution traces from difference model. The primitive traces are then
re-ordered and patterns for mapping chain of primitive operators to complex operators are
defined. Complex traces are detected by reordering primitive traces to different normal forms.
A prototype is implemented in Acoda, A tool of data model evolution for WebDSL. While
constructing meta-model formalism concepts like enumerations, packages annotations,
operations and derived features are omitted making the approach validity vague. Furthermore,
only defined primitive types are supported by the approach. User defined types are not handled
for attributes.

Anantha Narayanan et al. proposed a Model Change Language 1491. It is declarative and a high
level graphical language that supports a set of co-evolution idioms. The MCL is a model
migration language, which is intended to specify model migration rules in order to migrate
models (conforming to the old meta-model) to models (that conforms to new meta-model). The
MCL comprise UML class diagrams to specify both meta-models and migration rules. MCL is
defined via MOF-complaint meta-model. The MCL provides the facility to specify patterns

Transformations Co-evolution in Response to Meta-model Evolution 50

Related Work

that capture the intention behind the evolution. The basic pattern composes of a LHS element
from old meta-model a RHS element from new meta-model and a MapsTo relationship
between elements of both sides. However, MCL requires the change specifications. It can be
applied only if the change specifications are available. The idioms only cover the syntactical
co-evolution not the semantic co-evolution. Furthermore, the meta-model of the change
language and its applicability is not demonstrated.

The work in [50] addressed the meta-model changes that prevent automatic model migration.
The author presented several techniques to deal with model-specific changes. In addition, they
presented a framework to characterize model-specific changes formally in terms of effort
required for migrating old models to the new models. They discussed several techniques to
deal with model-specific coupled evolution like effort analysis, interactive migration and
implicit information. When all models are known and language designers and consumers are
relatively close to each other, the language developers can evaluate the effort required for
manual migration after meta-model adaptation. Another possible way to deal with model
specific coupled evolution is interactive migration, i.e., to make users engage in model
migration process. All models are migrated automatically by employing model migration
algorithm to extent it is possible and wherever possible it asks for the assistance of user. The
user would supply the supplementary information the algorithm is required. It can also provide
several alternatives from which the user can choose one. In situation where csers make the use
of implicit information before making this information explicit through meta-model, the
language users can make the use of this implicit information introduced by the language
developers.

Markus et al. proposed a generic operation recorder to capture the sequence of operations
performed on model via model editor. The recorder is implemented using Eclipse Modeling
Framework [51]. The operation recorder supplies operation meta-model, functions on
operations and operation recording facility. The operation meta-model express all operations
on model and is independent of the meta-model of model. It explicitly defines the types of
operations. It is fed with methods defining the semantics of meta-model constructs. The
operation performed on model when meta-model is evolved is recorded as model, which
conforms to operation meta-model. Two basic types of operations are defined by the operation
meta-model i.e. the primitive operations and the composite operations. It permits to persist
operations on models, provide support for different model referencing schemes and can be
extended by composite and high level operations. Based on operation meta-model, functions
are defined to apply and revert operations on models. The operation recording capability can
be customized with different patterns to identify composite operations. The operation recorder
utilizes the Observer mechanism provided by EMF to pay attention to the changes of evolving
meta-model. It records the sequence of primitive operations. Composite operations can be
enclosed programmatically or detected automatically. The detection mechanism group a
subsequence of operations into a composite operation.

In [52] Antonio Cicchetti et al. improved the adoption of the transformational approach
proposed in [53]. This approach is based on the difference model breakdown to differentiate
breaking resolvable and un-resolvable changes, which is made to the meta-model. This
classification is employed to state the criteria of resolution that offer the break down and the

Transformations Co-evolution in Response to Meta-model Evolution 51

Related Work

accurate scheduling of amendments. Furthermore, they depicted that how the reliance are
rooted by the properties that are specified in the meta-metamodel (they considered KM3 here).
This illustrates generality and independence of the results from the metamodel and its
semantics. However, the approach is not validated by applying on large set of meta-models.
Moreover, power model presented here is not implemented.

Antonio Cicchetti et al. proposed solution to the identified issues and challenges related to the
concurrent versioning of modeling artifacts such as meta-models and models [54]. Model based
representation is adapted to store the difference between the new and old language revisions.
For this purpose, a difference language is obtained by simply extending the meta-model to
which models conforms-to. The approach is dependent on the concept of a union meta-model
that facilitates the existing representation of manipulations coming from both old and new
meta-model versions and consequently their management in terms of change commits, conflict
detection and resolution. Furthermore, splitting of difference models can be achieved by the
annotations present in the difference meta-model. However, the migration process specified
here could result in loss of information. Furthermore, the approach is not validated by applying
on some industrial case study.

In [5 5] Antonio Cicchetti et al. improved the approach proposed in [54] and presented a better
solution for the management of concurrent versions of meta-models and models exclusive of
threatening abstract and concrete syntax of models and local saving formats a well. The
approach relies on computing meta-model differences between meta-model versions and
tracking compatibility links between meta-model and model versions. They showed the issues
come up while solving the problem of concurrent versioning of meta-models and models
through a scenario driven description. Then they proposed a solution for each scenario. The
approach has been validated against different examples. However, the complexity of the
process requires a systematic validation against industrial scenarios.

In [56] Louis M.Rose et al. analyzed the existing approaches for meta-model evolution and
model co-evolution either automatically or semi automatically. They then categorized the
existing approaches to co-evolution of models into manual specification, operator based and
difference based approaches. They then discussed the prominent features and benefits of each
approach and highlighted their limitations too.

In [33] the authors presented an analogous idea in differentiating between group of meta-model
adaptations. However, the representation of evolution is not defined and it only handles non-
resolvable changes, which need full specification for their resolution.

In [31] proposed an approach for automating model adaptation process every time the
consequent meta-model is subject to evolution, that is for example, too complicated, random,
and probably non-monotonic adaptations. Until now, the already proposed approaches only
handled the atomic changes that are assumed to happen in separation and that can then be done
automatically in a very simple and easy manner. Complex changes that can be employed with
subjective multiplicity and intricacy, pose rigorous complicatedness because these changes can
illustrate interdependencies, which compromise the automatablity of the adaptation process.

In [20] the author presented concepts for constructing a formal approach to meta-model
evolution. The proposed approach is founded on the Diagram Predicate Framework that
formalizes meta-modeling and model transformations based on category theory and graph

Transformations Co-evolution in Response to Meta-model Evolution 5 2

Related Work

theory. In DPF perspective, modifications of meta-model can be specified via a set of
constraint-aware transformation rules application including the matches and the sequence of
the rules applications. These rules are well-grounded in with respect to the modifications. The
analysis of meta-model evolution problem is founded on categorical constructions like pullout
and pullback. Besides, to guarantee a conformance preserving model migration additional
properties are specified.

These approaches attempted to migrating models either automatically or semi-automatically.
All these approaches can be classified according to the categories discussed below:

Manual Specification Approaches defines and uses transformation languages to
manually specify model migration [38], [49].

Meta-model Matching Techniques used to generate model transformations from the
difference models illustrating the changes between subsequent versions of the same
meta-model [45], [53], [54]. And

Operator Based Approaches define and record coupled operators that allow to specify
meta-model changes along with the corresponding migrations to be applied on the
existing models [43], [35], [42].

Apart from the fact, several approaches exist for model migration it is not possible to decide
which approach is best suited for the coupled evolution of meta-models and models. Since each
approach has pros and cons and depends on particular situation at venturelstake, e.g., frequent
and incremental coupled evolution, minimal user intervention and inaccessibility or
unavailability of meta-model change history. Next section discusses the approaches proposed
to tackle the meta-model/transformations co-evolution.

3.2.2 Meta-model\transformations co-evolution approaches

Since changes introduced to a given meta-model results in transformation inconsistencies,
transformations specified on the old meta-model no longer valid with respect to the new version
of the meta-model. Transformations need migratiodco-evolution to make them consistent and
valid with respect to the new version of meta-model.

Surprisingly, metamodel/transformations co-evolution problem have been paid less attention
as compare to the meta-model/model coupled evolution problem. This is because it is
intrinsically more difficult as compared to meta-modellmodel coupled evolution problem and
because the problem of coupled evolution of meta-model and model has been regarded first by
natural choice.

Jokin Garcia et al. proposed a two steps solution for transformations co-evolution after meta-
.model evolution [2]. At detection stage, simple changes are detected by comparing original
meta-model with the evolved meta-model using EMFCompre. The output of this comparison
is a Difference model. Then complex changes are detected by considering complex change as
predicate over simple change. Complex changes are obtained by extended difference meta-
model. From implementation point of view this task is recognized as transformation that takes
difference model as an input and generate DiffExtended model comprising of both simple and
complex changes. The similarity analysis can be done between source and target metamodels
is done using AML (AtlanMod Matching Language). The matches are saved into a weaving
model". This weaving model acts as a high-level specification of adaptation transformation.
The similarity analysis step is optional. At co-evolution Stage, Higher Order Transformations

Transformations Co-evolution in Response to Meta-model Evolution 53

Related Work

(HOT) is defined that takes transformations as input and return modified transformations. It
takes the changes, detected at detection stage, as input and defines correspondence that maps
original transformations on evolved transformations. Higher Order Transformations (HOT) are
realized as ATL rules. The transformation rules R are captured as tuple rule, i.e., (id, source,
target, filters, and mappings), where "source" and "target" refers to classes of the input and
output meta-model correspondingly; "filters" comprised related predicates, in the form of set,
over the source elements, i.e., the rule will only be activated if the predicate is fulfilled,
"mappings" refer to bindings, in the form of set, to settle the attributes of the intended target
model element.

David Mendez et al. specified transformation consistency by analyzing the relationship
between meta-models and transformations, called as domain conformance and outlines
necessary steps to reinstate the consistency after meta-model evolution [9]. The steps they
proposed for transformation migration are the impact detection, the impact analysis and the last
step is transformation migration. In impact detection step, transformations inconsistencies
induced by meta-model evolution are identified. Every transformation that is violating domain
conformance is identified. In the next step, transformation updates required to re-establish the
domain conformance relationship is gotten through possible human assistance. During the final
step, all the required updates identified during impact analysis are applied. Furthermore, some
useful steps to perform impact analysis are mentioned. While the steps of impact analysis are
applied on some useful examples, no demonstration for the entire idea is performed.

Davide De Ruscio et al. presented a procedural approach to the co-evolution of meta-model
along with ATL Transformations [8]. This approach comprises various activities that include
description of meta-model changes, the assessment of their impact on the related artifacts, the
maintainability of the stimulated adaptations and migration of the impacted artifacts. The
coupled evolution is performed via 1) defining dependencies between source meta-model and
ATL Transformations by establishing a relation of each meta-model element to its
corresponding transformation. Which is later on weaved in a weaving model automatically. 2)
Analyzing the impact of changes by detecting which element of transformation is impacted by
a change. 4) Assessing the cost of transformation adaptation by taking into account the
previously identified affected elements. 3) Determining its sustainability by ultimately
reviewing certain decisions and in final step 4) if the evaluation has positive result then the
impacted transformation is adapted. The supporting techniques for each activity that can be
used are mentioned. Furthermore, cost evaluation of each adaptation is described in details and
its applicability is shown.

Steffen Kruse presented a set of operators to adapt transformations afier meta-model evolution
to make them consistent with the new version of meta-model[57]. These operators assist in the
evolution of meta-model along with the automatic or semi-automatic adaptation of
transformations depending on the type of change introduced to the meta-model. Operators are
categorized as atomic and complex operators. Complex operators formed of the combination
of atomic operators. The operators are tested on Copy Transformations specified in ATL and
targeted only the declarative part of ATL. They analyzed the impact of change on ATL
transformation rules and highlighted the parts of the rule, which can be impacted by meta-
model changes either directly or indirectly. The parts of rules like source pattern, condition

Transformations Co-evolution in Response to Meta-model Evolution 54

Related Work

imposed on source pattern and bindings can be impacted by source meta-model evolution while
the target pattern can be impacted by target meta-model evolution. The evaluation
demonstrated that operator-based approach could be useful if applied to the transformations
co-evolution. It guaranteed the synthetic correctness of transformations. Nevertheless,
semantics of transformations is still difficult to handle. Because the semantic relationship
between meta-model and transformations is still not well-defined and is ambiguous.
Furthermore, the impact of meta-model evolution on transformations not only depends on the
type of change but also on the usage of elements in transformations. It might be possible that
one transformation can be automatically adapted to the change in meta-model while other
transformation using the same meta-model might require human assistance. This makes the
idea of automatic evolution of transformations a bit more difficult and needs further
investigation.

3.2.3 Meta-model\ Editors co-evolution approaches

As discussed formerly, meta-models support the development of broad range of relevant
artifacts together with the models and transformations. For example, meta-models play a major
role in the definition of domain specific modeling languages (DSMLs), since they define the
abstract syntax of the language being proposed. In addition, a number of other related artifacts
are developed to specify the concrete syntax as well as additional aspects associated to the
semantics or requirements of a particular domain specific modeling language tool. In such
scenarios, specific techniques are essential ingredient to transmit any kind of change related to
abstract syntax to the reliant artifact for instance, graphical or concrete syntax models.

Different approaches have been proposed to specify concrete syntax of modeling languages, in
the Eclipse Modeling Framework (EMF) [58]. For instance, for developing graphical editors
GMF [12] is defined, for generating textual editors EMFText [59], TCS [60], and XText 1611
are defined. These approaches are generative in nature capable of generating working editors
starting from source specifications that at different level are associated to the abstract syntax
of the considered DSML. The relation between the metamodel of the language and the editor
models is fragile as compare to the relationship amongst the meta-model and model and
metamodel and transformations. Consequently, even the detection of the inconsistencies
between the new version of the metamodel and the editor's models is too difficult to be
identified. Moreover, even if one could identify such inconsistencies, re-establishing
consistency needs a profound knowledge of the used editor technology to appropriately
proliferate the metamodel changes to the editor models, and in some scenarios to the generated
code.
In [62] the author proposed an approach to adapt the GMF editors. The approach is dependent
on three adapters capable of automating the propagation of domain model changes i.e. meta-
model modifications to the GMFTool, EMFGen and GMFMap models needed to generate the
graphical editor by GMF. Particularly, EMFGen is a model used by the EMF generator to
generate Java code required for the management of models conforming to the metamodel of
the modeling language. GMFTool specifies toolbars and additional periphery of the editor to
assist the diagram content management. GMFMap connects jointly all the other GMF models.
The mentioned approach is the only attempt made to deal with the coupled evolution problem
of GMF. Further efforts are required to deal with the problem particularly to attain the full
coverage of Ecore and to gain complete understanding of the semantics of model dependencies
of tools and GMF.

Transformations Co-evolution in Response to Meta-model Evolution

Related Work

3.2.4 Uniform approaches to Meta-model and related artifacts co-evolution
Hoisl et al. proposed an approach for solving not only the coupled evolution problem of meta-
models and model but also of meta-models and transformations [36]. The approach is based on
1) creating bi-directional transformations between modeling artifacts, which ensures tracing,
coupling and synchronization of all modeling artifacts and 2) employing Higher Order
Transformations (HOT) on first class model representations of transformation specifications.
This enables the propagation of changes in both directions, i.e., from source model to target
model and target model to source model. Furthermore, transformations are presented as models
and changes are propagated into horizontal and vertical transformations, i.e., transformation
between models on the same as well as different abstraction level. However, the applicability
of approach is not demonstrated by applying on examples. Furthermore, no prototype is
developed.

Di Ruscio et al. aimed at providing a uniform and comprehensive support to the coupled
evolution in a way that it is not restricted to specific types of artifacts [63]. They defined the
relationships of meta-models with their related artifacts that lies in a common meta-modeling
ecosystem and discovered the commanlities to define a systematic adaptation process. Based
on these commonalities, they proposed EMFMigrate to manage meta-model evolution in a
comprehensive and uniform way. They utilized migration programs to co-evolve artifacts
uniformly without through ecosystem. EMFMigrate comprises a domain specific language
aimed to provide modelers with constructs to 1) define migration libraries to substantiate and
allow the reuse of repeatedtperennial artifacts adaptations, 2) customization of migrations
available in library 3) management of migrations not fully automated and requires human
assistance. The migration rules are executed following meta-model changes. Meta-model
changes can be specified manually or introduced automatically to the meta-model. Tool
support is provided to implement the presented approach. The approach is demonstrated by
applying on different scenarios of coupled evolution.

3.3 Model Driven Engineering and Traceability
Any of the software artifacts hardly evolves in isolation. Changes introduced to the one artifact
might cause changes to the other related artifacts or it may be because of some changes to the
other artifacts. For instance, source code and documentation are modified due to change in
requirements. Thus, traceability is strongly related to software evolution and is used to support
software management, software evolution and validation [64].

Traceability is an essential property of system. Traceability mechanisms assist in
understanding, capturing, tracking and verifying software components the dependencies and
relationships among different software components during the entire software development life
cycle[65]. Typically, traceability is the subfield of Requirements Engineering. Nonetheless, it
is now increasingly employed for other artifacts likewise. Since, Model Driven Engineering
offers new opportunities to create and utilize traceability information. The next subsequent
sections discuss the traceability approaches in model driven engineering.

3.3.1 Requirements Management Approaches
Traceability is defined as "The capability of defining and following the life of requirements in
forward as well as in backward specification, to its following deployment and usage, and during
the stages of ongoing refinement and iteration in any of these phases" in Requirements

Transformations Co-evolution in Response to Meta-model Evolution 56

Related Work

Engineering [66]. Forward and backward requirements traceability assists the engineers and
stakeholders to know in depth the semantics of requirements.

Almeida et al. designed a framework particularly tracing requirements, model transformation
specification quality assessment and the quality assessment of meta-models, models and
realization as well [67]. They intended to simplify relationship management among
requirements and several design artifacts. The framework proposed here let the designer to
associate requirements to several artifacts of the design process of MDE at the start of the
development. They utilized traceability cross-tables to represent relationships among s o h a r e
system models and requirements, contemplating several granularities of the models and the
description of conformant transformation descriptions. Furthermore, they proposed a concept
of conformance among models throughout the various abstraction levels in order to trace
requirements. They identified the analysis of the impact of the requirements change on these
models as future work.
Cleland-Huang et al. proposed an approach to manage effect of change on the nonfunctional
requirements of a system [70]. This approach is goal-centric. To model non-functional
requirements and their dependencies, the Goal Centric Traceability uses a Softgoal
Interdependency Graph (SIG). GCT facilitates developers in understanding and assessing the
effect of modifications in functional requirements on non-functional requirements to preserve
the software system quality. The goal modeling, the impact detection, the analysis of goal, and
decision making are the four main stages of this process for the assessment and up-dation of
the dependent artifacts with modifications. During the first phase i.e. goal modeling, all goals
are broken down into sub-goals to imitate the reality that general inter-relationships happen
among different non-functional requirements and is modeled by sub-goals. Besides, to
comprehend the trade-offs between non-functional requirements, the sub-goals are further
broken down into operations that gives contestant resolutions for each goal. During impact
detection stage, once the changes to the non-functional requirements are occurred, the
algorithm (a probabilistic retrieval algorithm) dynamically returns connections between
elements in the SIG and affected classes. During goal analysis; the user changes the
contributions, from the goal elements that are affected to their parents. For all affected
elements, modifications are transmitted during the SIG to detect goals, which are affected
strongly. During the last stage, i.e., decision making, decision is made about to carry on with
which planned modification. Stakeholders then assess the effect of the planned modification
on goals of the non-functional requirements and deal with threats.
Cleland-Huang et al. used Event Based Traceability for the management of meta-model
evolutionary modification. Event-Based Traceability (EBT) is a technique to automate the
generation and maintenance of the trace links [68]. In EBT, the requirements and related
traceable artifacts, for instance design models, linked through publish-subscribe relationships
and are not directly related any more. The proposed mechanism is built based on the Observer
design pattern [69]. Links are created via an event service, rather than the direct establishment
and tightly coupled relationships among requirements and other related artifacts. First,
subscriber manager registered all the considered artifacts with the event server. Then, for the
management of the requirements document modifications and to bring out these modifications
as event to the event server, the requirements manager employed its event recognition
algorithm. The event server handled some links among the requirement and its reliant artifacts
by means of several information retrieval algorithms.
3.3.2 Model Consistency Management Approaches

The model driven approach is centering models as its key artifacts. Model Driven Engineering
identifies the need to have several model types to represent system at different development
stages, i.e., from requirements analysis through final implementation. The intended models

Transformations Co-evolution in Response to Meta-model Evolution 57

Related Work

might characterize various system characteristics that are structural or behavioral or the models
might model application at different abstraction levels that is analysis models or design models.

Contradictions between models, which represents diverse aspects of a software application or
amongst descriptions at varying abstraction levels, may arise at some stage in any phase or
between development phases, lifting up the issue of how to deal with inconsistencies between
models and among models and code[71]. Grundy et a1 reviewed tool, approaches to manage
inconsistencies, and identified the need to develop mechanisms to identify inconsistencies and
warn users about inconsistencies and help in monitoring and resolving inconsistencies [72].
Desfray identified traceability as an essential ingredients if the solution to manage
inconsistencies [73]. [68, 74, 751 utilized traceability as the basis for the detection of
inconsistencies and to inform concerned stakeholders about inconsistencies raised at any point
in any phase during development.

3.3.3 Models Synchronization approaches
Development artifacts modifications may probably require the synchronization of interrelated
artifacts e.g. models, code, documentation etc. Traceability links (which record the
relationships among different software artifacts) make the synchronization of interrelated
artifacts possible. This section debates the ways in which change is propagated to the dependent
artifacts by the researchers, which usually comprises employing an incremental style of
transformation.
Several approaches to model synchronization extend the existing model-to-model
transformation languages. Transformation languages with declarative syntax are appropriate
for the specification of bi-directional transformations and incremental transformations, a model
transformation method that supports incremental modification of the target models. In fact,
considerable part of the research related to model synchronization focuses on incremental
transformation. [76] [77-801

Automated Model Synchronization: Besides live transformation, the researchers proposed
several techniques to record trace links between models. For this purpose, a model-to-model
transformation has been supplemented with traceability information via a generic higher-order
transformation [8 11. The generic higher-order transformation takes model transformation as
input and adds transformation rules that produce a traceability model. In contrast to the
generosity of the above mentioned approach, Drivalos et al. offered domain specific
traceability meta-models for more productive and deeper traceability link semantics [82].
Additional research is needed to evaluate and identify automated model synchronization tools
requirements and to decide an appropriate traceability approach for their implementation.
Impact analysis is the activity carries out to reason about the effects of a modification to a
development artifact. Besides alleviating change propagation, impact analysis might assist in
predicting the cost and complexity of changes[83]. Impact analysis demands solutions to
several sub-problems including change detection, change impact analysis, and effective
presentation of the analysis.
Impact analysis can be done for UML models by making comparison of the original and
evolved versions of the same model to generate a report of evolved elements of model that are
impacted by the modifications made to the original model elements [84]. To provide support
for impact analysis, Briand et al. described change patterns that consist of a trigger for change
detection and an impact rule for marking model elements affected by this change.
Only event-based approaches attempted to automate impact analysis activity. Winkler et al.
proposed an event based approach for automating impact analysis [64]. Due to the employment

Transformations Co-evolution in Response to Meta-model Evolution 58

Related Work

of patterns for change detection and to specify resulting actions, event-based impact analysis
is analogous to differencing approaches used for schema evolution for instance the approach
proposed in [85]. If more than one trigger is applied, event-based impact analysis approaches
should offer mechanisms for the selection of pattern between available applicable patterns. For
selection between applicable patterns the selection policy employed by Briand et al. is implicit,
user cannot change it and does not support the selection of particular applicable pattern between
the available applicable patterns.
To end with, model synchronization tools may employ techniques, which are used in automated
synchronization tools for traditional development environments. For instance, the refactoring
operation of the Eclipse JDT transmits modifications between classes via a cache of the
workspace to enhance scalability and performance [86].
Model-to-Text Synchronization: Until now, this section focused on model-to-model
synchronization supported by traceability. Traceability is of crucial importance for other
software evolution activities in a model-driven development environment for example, models-
to-text synchronization and between models and trace links and these activities are now
discussed below in detail.
While most of the researchers focused on model-to model synchronization, some researchers
focused on synchronization between models and text or models and trace links. For change
synchronization in requirements documents with models, there is loads of work in the
requirements engineering field, where the requirement for traceability was first identified and
taken into account. For the synchronization of models with generated text (for example,
throughout code generation), Epsilon Generation Language (EGL) proposed by Rose et a1 [87].
EGL is a model-to-text language, which creates traceability links between code generation
templates and generated files. Segments of code can be checked off protected, and are not
overwritten by consequent calls of the code generation template. The MOFScript is a model-
to-text language, like EGL, which provides protected sections. But contrasting to EGL,
MOFScript records and saves traceability links in a structured way, facilitating impact analysis,
model coverage (so as to highlight which areas of the model is contributing to the generated
code) and orphan analysis (so as to detect invalid traceability links)[88].
Model-to-Trace Links Synchronization: Trace links might also be affected when modification
is made to the development artifacts. Synchronization tools depend on accurate trace links and
thus the maintenance of trace links is crucial. Winkler & Pilgrim proposed that trace versioning
should be used to deal with the challenges of trace link maintenance [64], which consist the
accidental inclusion of unplanned dependencies as well as the exclusion of essential
dependencies. Besides, they noted that, though versioning traces has been investigated in many
specialized areas, e.g., hypermedia[89], there is no holistic approach for versioning traces.
3.4 Change classification

In [48] a classification scheme has been proposed for meta-model changes in the Eclipse
Modeling Framework Ecore meta-metarnodel. They categorized all possible change
operations in three categories i.e. non-breaking changes, breaking and reso!vable changes and
breaking and non-resolvable changes.

In [47] this classification scheme is adapted for classifying MOF-based meta-model changes.
In addition to this classification scheme, they proposed change meta-model to represent
changes introduced to the MOF based meta-model. The change meta-model is capable to
express evolution process of MOF-based meta-model employing MOF itself as a change
description language. So far, this is the only proposed classification scheme employed to
classify change operations while addressing co-evolution problem, particularly co-evolution of
meta-model\rnodel.

Transformations Co-evolution in Response to Meta-model Evolution 59

Related Work

3.5 Difference Representation Mechanisms

Meta-models are subject to evolutionary pressures which ineluctablylcertainly affects its
related artifacts, i.e., models and transformations, etc. These artifacts are no longer consistent
to the new version of meta-model and need to be migrated.

To cope up with this issue, different co-evolution approaches have been proposed during last
several years. These co-evolution approaches heavily relied on differencing techniques.
Differencing techniques are employed to find out difference between the old and new version
of meta-models. These differences are then utilized to derive migration strategies.

In [3] the difference between the two versions of meta-model are symbolized as model, whose
meta-model is derived from KM3 meta-model automatically. To represent deletion, addition
and modification of each meta-class MC AddedMC, deletedMC and changedMC are produced.
All types of changes either breaking and resolvable or breaking and not resolvable are
formalized as difference model. The difference model is capable to capture the breaking and
resolvable and breaking and non-resolvable changes altogether that is then decomposed into
two disjoint models i.e. AR and A-R, denoting breaking and resolvable and breaking and non-
resolvable, respectively. Furthermore, to resolve the parallel dependencies between breaking
and resolvable and breaking and non-resolvable changes, the analysis of the dependency and
criteria for resolution are presented to break and plan the modifications.

A Meta-model to present delta (difference) between models has been proposed in [57] by David
Hearnden et al. the Delta model is founded on MOF and is capable to describe model deltas by
means of identity maps. However, an element's addition, deletion and modifications made to
properties are specified systematically, the delta model misses the descriptive methods for the
modifications made to the model structure e.g. containment or generalization. This work
focused on meta-model transformations, for which evolutionary aspects are characterized by
means of the TeKat language. The change meta-model proposed here is fixed, as the meta-
model is the MOF model, and the change semantics can be defined more explicitly, concerning
meta-model changes effects to existing instances.

In [40] a meta-model independent approach to derive the difference model, which also relied
on single change operations is presented. The difference between two models is represented as
model, which conforms to the difference meta-model derived from the former meta-model.
Moreover, the DiffModel provoked transformations that can be applied to one of the delta
models to get the other model.

In [4] the changes between two versions of meta-model are represented ss EPatch format. An
EPatch comprised a textual domain specific language defined by XText gammer. EPatch is
obtained from two available versions of meta-model. The Patcher tool applies an EPatch format
to upgrade an old version of meta-model to the new version automatically. The EPatch is
capable to define changes occurred due to constructing, destructing or refactoring elements of
a meta-model. The EPatch relies on difference computed via EMFCompare. Since
EMFCompare DifWOdel holds a hard, reference to the compared models and thus can't be
employed to just one model.

Transformations Co-evolution in Response to Meta-model Evolution

Related Work

3.6 Model/transformations Migration strategies

The approaches proposed to meta-modelhodel co-evolution attempted to migrating models
either automatically or semi-automatically. All these approaches can be classified according to
the categories discussed below:

Manual Specification Approaches, define and use transformation languages, which
manually specify model migrations However, manual specification of migration is
monotonous and error prone and the developers need to learn more languages

Meta-model Matching Techniques use to generate model transformations from the
difference models illustrating the changes between subsequent versions of the same
meta-model Nonetheless, matching techniques have the capability to completely
automate the migration building process, and it might lead to incorrect migrations.
Furthermore, they can suggest more than one strategy for migration. and

Operator Based Approaches define and record coupled operators that allow specifying
meta-model changes along with the corresponding migrations to be applied on the
existing models. Though operator based approaches, overcome issues of the manual as
well as matching techniques. Nonetheless, it requires seamless integration into meta-
model editor. Of the proposed approaches to model migration, several consider only
atomic changes as in [15], and it is not clear that the approach can be employed in
general case.

Apart from the fact, several approaches exist for model migration it is not possible to decide,
which approach is best suited for the coupled evolution of meta-models and models; since,
each tool has pros and cons and depends on particular situation at venturelstake, e.g., frequent
and incremental coupled evolution, minimal user intervention and inaccessibility or
unavailability of meta-model change history.

Up till now, researchers addressing the meta-model/transformations co-evolution problem
utilized the migration strategies proposed and employed to cope up with co-evolution of meta-
modelhodel tuning out the fact that the relationship between meta-model and models and
meta-models and transformations is different. Hence, transformation migration requires
distinct approaches to be employed to address meta-modelhransformation co-evolution.
Furthermore, a well- defined relationship might help in defining migration approaches to
address co-evolution problem. To this end, the relationship between meta-model and
transformation is formalized in [I 91 and further refined in [15]. An appropriate approach that
can re-establish the formalized relationship between meta-model and transformation after
meta-model evolution is needed to be developed.

3.7 Issues and challenges related to the co-evolution approaches

Model transformation holds a significant part in model driven engineering [30]. Since
transformations are defined based on meta-models, evolution of meta-model causes
inconsistencies in the existing transformations with respect to the evolved meta-model. To
make transformations consistent with respect to the evolved version of meta-model only few
approaches have been proposed, so far. This section sums up the literature review by
highlighting the potential research directions, discussing the issues of existing approaches and
summing up the chapter with a problem statement.

Transformations Co-evolution in Response to Meta-model Evolution

Related Work

3.7.1 Issues of change classification scheme

Meta-models might evolve in several ways: some changes may be additive and autonomous in
nature, thus demanding no or little action. However, most of the changes to meta-model lead
to inconsistencies and incompatibilities that cannot be easily resolved. Because, the coupled
modifications, essential to adapt modeling artifacts in response to the modifications made to
the corresponding meta-model, depending on the relation that mutually couples the modeling
artifact and the meta-model. As the literature (e.g., [5], [15], [19] and [49, 501 suggests, the
relations involved in the co-evolution problem are

ConformsTo: a relation between meta-model and model
DomainConnformsTo: a relation between meta-model and transformations

Dependson: a generic and more complex type of relation that exists between meta-
model and other modeling artifacts which don't have a direct and well-defined
dependence on meta-model

Since meta-models have different type of relationship with its related artifacts, changes
introduced to the meta-model might influence its relationship with different artifacts in
different manner. Meta-model changes may affect severely its relationship with one specific
artifact and may have no impact on other. Therefore, changes should be classify with respect
to its impact on considered artifact, i.e., models, transformations and\or other related artifacts.
As discussed previously, the classification scheme proposed for meta-modelhodel co-
evolution problem classified meta-model changes with respect to its impact on models. Same
classification scheme is employed for transformations co-evolution tuning out the fact the
relationship type vary depending upon the considered artifact. Tough, meta-
model\transformations co-evolution requires different type of change classification schemes;
currently no change classification scheme exists for meta-model\transformation co-evolution
problem.
3.7.2 Issues of Existing Difference Representation Mechanisms

Previously proposed difference representation mechanisms for co-evolution of meta-
models\rnodels are all meta-model dependent as in [3], [53]. The approach in [40] claimed that
the difference representation is independent of meta-model however, the Diff meta-model is
derived from the old version of meta-model making the approach meta-model dependent. A
change meta-model proposed in [47] is based on MOF and represent a difference only between
meta-models which are based on MOF.

The dependency of difference mechanisms on meta-models restricts their applicability to only
specific situations and meta-models. Furthermore, the existing mechanisms lack the capability
of representing the complexity as well as severity of change impact. The categorization of
difference representation is formless, making it difficult and quit confusing to place a change
under a certain category.

3.7.3 Issues of Model Migration strategies
Migrations strategies proposed for meta-modelhodel co-evolution fail in three basic
categories, i.e., manual specification approaches, meta-model matching techniques and
operator based approaches. The conspicuous issues of these approaches are:

Manual specification of migration is tedious and error prone and the developers must
have to learn new languages to specify migrations.

Matching techniques can lead to incorrect migrations and can propose more than one
workable strategy for migration and

Transformations Co-evolution in Response to Meta-model Evolution 62

Related Work

Operator-based approaches require seamless integration into model editors to identify
changes.

Existing approaches typically wind up with obscuring the gap between impact analysis and
adaptation semantics. Consequently, it is of crucial importance to illuminate the type of the
relation, which exists between the meta-model and the other artifacts. Certainly, dependencies
come out at different stages throughout the life-cycle of meta-model, and with various levels
of causality relying on the nature of the artifact under study. Besides, some of approaches and
tools work on the assumption the traces of meta-model changes are available as in [6], [16],
which might not always be feasible.

Furthermore, as discussed in [52] and [15] it is unfeasible to identify the best tool to support
the meta-modelshodels co-evolution. Every tool has some strong and weak points and relying
on the particular situation of interest (e.g., recurrent, and incremental co-evolution, minimal
user intervention, and missing meta-model change history) some approaches can be preferred
with respect to others.
3.7.4 Issues of Transformations migration strategies

Meta-model evolution may affect transformations and cause inconsistencies to the
transformations specified on it, hence, transformations might no longer satisfy the
"DomainConformsTo" relationship. To re-establish the domain conformance relationship only
few approaches have been proposed by the researchers during last several years. Most of the
researchers employed the migration strategies proposed to cope up with meta-modelhodel co-
evolution problem overlooking the fact that co-evolution of meta-modelhodel and meta-
model\transformations differs in nature and, therefore, requires a different and dedicated
solution.

Moreover, these approaches guaranteed the syntactic correctness but semantics of
transformations is still difficult to handle. Because, the semantic relationship between meta-
model and transformations is still not well-defined and is ambiguous. Furthermore, the impact
of meta-model evolution on transformations not only depends on the type of change but also
on the usage of elements in transformations. It might be possible that one transformation can
be automatically adapted to the change in meta-model while other transformation using the
same meta-model might require human assistance. This makes the idea of automatic evolution
of transformations a bit more difficult than expected or assumed and need further investigation.

3.8 Chapter Summary

This chapter has assessed and reviewed the research related to the evolution of meta-model.
Three types of approaches addressing the co-evolution of meta-modelhodel were identified
and explored. Manual specifications approaches, specify and employ transformation languages
that manually defines migration strategies. However, manual specification of migration is
difficult and the error prone and the developers need to learn more languages. Matching
techniques generate model transformations from delta models illustrating the difference
between the subsequent versions of meta-model. Nonetheless, matching techniques have the
capability to completely automate the migration building process; it might lead to incorrect
migrations. Furthermore, they can suggest more than one strategy for migration. Operator-
Based Approaches define and record coupled operators that allow specifying meta-model
changes along with the corresponding migrations to be applied on the existing models. Though
operator based approaches, overcome issues of the manual as well as matching techniques.

Transformations Co-evolution in Response to Meta-model Evolution 63

Related Work

Nonetheless, it requires seamless integration into meta-model editor. Of the proposed
approaches to model migration, several consider only atomic changes as in [15], and it is not
clear that the approach can be employed in general case.

Further review of the literature explored the employment of operator-based approach to co-
evolution of meta-model\transformation. Though, meta-model have different type relationship
with models and transformations. This aspect has been totally overlooked while addressing co-
evolution of meta-model\transformation issue and employing it to both issues i.e. meta-
modelhodel co-evolution and meta-model\transformation co-evolution. Both issues must be
handled in different way and different techniques, focusing on the relationship type, needed to
be developed.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 4 Problem Definition

Problem Definition

4.1 Introduction
Model transformation performs a significant role in the context of MDSE (model driven
software engineering). Transformations are defined based on meta-models. Therefore, meta-
model evolution causes inconsistencies in the existing transformations. So far, the proposed
approaches to solve transformations co-evolution problem focuses only on some specific
aspects of transformation co-evolution problem leaving the others.

4.2 Problem Statement

Meta-model may evolve due to several reasons such as design refinements and requirements
change. The evolution causes inconsistencies in artifacts that are relying on meta-models and
need to co-evolve to re-establish the relationship between meta-model and related artifacts. The
problem of co-evolution of models is extensively investigated during last several years. Several
approaches manual, semi-automated or automated have been proposed to address models co-
evolution problem.

Although, transformations are fundamental ingredients of Model Driven Engineering (MDE)
and are specified upon source and target meta-models. Like any other artifact, the evolution of
meta-model also cause inconsistencies in transformations defined over the meta-model.
Transformations need to co-evolve with the evolution of meta-model to re-establish its
consistency. However, transformations co-evolution has been paid less attention. Only few
approaches have been proposed to address the transformations co-evolution problem.
However, many of these approaches are acquired from model co-evolution approaches. The
fact that co-evolution of model and transformations differs in nature, is totally overlooked.

Being particular, the change classification scheme proposed for model co-evolution is
employed for transformation co-evolution problem. This classification scheme classifies meta-
model changes based on its impact on models. The impact of meta-model change on model
depends only on the type of change, while the impact of meta-model evolution on
transformations not only depends on the type of change but also on the usage of elements in
transformations. Besides, models and transformations differs in nature and both have different
type of relationship with meta-model, therefore it is inappropriate to employ or devise same
classification scheme for both.

In addition, difference between meta-model versions needs to be represented in some formal
form. Current approaches do not employ any difference mechanism to compute difference
between different versions of considered meta-model. Difference representation mechanism
assists in identifying and recording the difference between old and new version of meta-model.
Based on this difference, migration strategies can be devised.

Furthermore, there is no support to establish dependency relationship between meta-model and
transformations. In [lo] the author created implicit traces between meta-model elements and
transformations by defining bi-directional transformations between modeling artifacts.
However, no explicit traces are defined and stored which can be used later on to detect the
impact of meta-model changes on transformations.

4.3 Research Gap
Moreover, the approaches proposed previously guaranteed the synthetic correctness but
semantics of transformations is still complicated to handle. Because the semantic relationship,

Transformations Co-evolution in Response to Meta-model Evolution 66

Problem Definition

between meta-model and transformations, is still not well-defined and is ambiguous. Therefore,
Meta-model\transformation co-evolution problem requires a novel and dedicated solution to
overcome the following limitations:

9 Current approaches lack the capability to provide change classification Scheme
particular to the Transformation co-evolution problem that categorize meta-model
changes according to its impact on transformations and is generic enough to employ in
any kind of situation of transformation co-evolution problem.

9 Existing approaches lack the capability to devise difference mechanism, which is meta-
model independent and generic enough to be applicable in any situation of
transformation co-evolution problem.

k Transformation migration strategy, are meta-model and transformations specific.
Currently, there is no generic transformation migration strategy, which is meta-model
and transformation language independent is independent.

9 Existing difference mechanisms lack the capability of estimating the complexity and
severity of change.

9 The proposed approaches guaranteed the syntactic correctness but semantics of
transformations is still difficult to handle.

9 The existing approaches overlooked the fact that the impact of meta-model evolution
on transformations not only depends on the type of change but also on the usage of
elements in transformations.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 5 Proposed Approach

Proposed Approach

5.1 Introduction

Meta-model evolution affects its related artifacts drastically. The impact of meta-model
evolution varies from artifact to artifact. This is because it depends on the type of meta-model
change as well as the type of relationship that meta-model hold with its related artifacts. In
previous chapters, we have analyzed various approaches that have been proposed during
previous decades targeting meta-model evolution and co-evolution problem. The thorough
analysis of the existing approaches has identified several issues with the existing approaches.

To reduce the effort required to evolve meta-model and to co-evolve transformations and to
overcome the limitations of the existing approaches identified and highlighted in the previous
chapters, we propose a systematic and automatable approach to transformations co-evolution.
Our approach is remarkably eccentric from existing approaches to transformations co-
evolution. Our approach employs traceability meta-model and change meta-model to automate
the entire strategy of co-evolution of meta-model and transformations. Until now, none of the
existing approaches used the concept of traceability for the impact analysis and change
propagation to evolve meta-model and co-evolve transformations.

This chapter illuminates the systematic automatable approach to meta-model and
transformations co-evolution. The chapter begins by presenting some important concepts
significant to our proposed approach and proceeds by defining and founding the basic idea of
"traceability" and "change" that would be employed by the approach for chrnge identification
and propagation and impact analysis. Section 5.5 gives an overview of the supported algorithm
and 5.6 summarizes the entire chapter.

5.2 Pre-Requisites

This section introduces some essential and basic concepts and terms required to support and
explain the proposed approach. Section 5.2.1 presents the running example, which is used to
explain different steps of the approach. Section 5.2.8 discusses the meta meta-models.
Section 5.2.9 describes the input source meta-models. Section 5.2.10 discusses the input
transformations.

5.2.1 Transformations

The term transformation T denotes the mapping between source models and target models.
Transformation can be queries, transformation rules or helpers depending on the type of
transformation language used to specify mapping between source and target models. For
example, the transformation rule defined to map a UML class on relational Table using an ATL
language is transformation T.

5.2.2 Model Element

The term model element E is used to represent the element of the source or target meta-model
element employed by the transformations T either implicitly or explicitly. A model element
can be a type, class, an attribute or reference. For instance, a class "Attribute" in Class meta-
model is model element.

5.2.3 Trace

A trace TR is the mapping between a model element E and Transformations T. These traces
can be either implicit or explicit depending on the type of usage of model element E by

Transformations Co-evolution in Response to Meta-model Evolution 69

Proposed Approach

transformation T. For instance, A TR "ClasstoCT" is the trace that mapped the model element
class in Class meta-model on the transformation ClassToTable in ATL Transformation file.

5.2.4 Change

The concept "Change" C represents the change that is introduced to some model element E.
For example, renaming a model element "Attribute" to "Property" denotes a change C in the
name of model element "Attribute", which would be now identified as "Property", Le.,

C -+ AE where E is model Element

5.2.5 Co-change

The co-change Cc depicts the resultant changes of the model element change that need to be
made to the transformations T in order to reflect the model element change C in transformations
T and make them consistent with the new version of underlying input source meta-model. For
example, C that is introduced into model element "Attribute" requires incorporating the Cc to
the source of the rule "AttributetoColumn", i.e.

Cc-+AT where T is transformations and Cc is the resultant change of C

5.2.6 Transformation Example

"Class to Relational" transformation example obtained from ATL Zoo (link) is used to
demonstrate the proposed approach. The "ClassToRelational" example specifies the simplified
model transformations of a class model to a data base model. This transformation executes the
case study applied in the Workshop Model Transformations in Practice collocated with the
MoIIElS Conference, October, 2005. The description of the case study can be found at the
workshop web site: http://sosym.dcs.kcl.ac.uMevents/mtivO5/.
5.2.7 Model Transformations

Model transformations play a vital role in Model Driven Engineering since they are capable to
produce target models from source models. Transformation definition is based on source and
target meta-models. Figure 5.1 illustrates transformations capable to generate tables
conforming to relational meta-model from class models conforming to simple UMI class
diagram meta-model and is part of the "ClassToRelational" transformation example.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

I.igtrre 5.2 Original ('litas mcta-rnodci

The simple UML class diagram meta-model UML comprises classes that must have some
name. These classes inherit their name from the class "NamedElement" which is abstract. The
main class is class "Class" which is composed of a set of attributes. The attributes are of type
"Attribute". The class "DataType" represents primitive types. The class "Datatype" and "Class"

Transformations Co-evolution in Response to Meta-model Evolution

Troposed Approach

inherit from "Classifier" which is used to declare the type of attributes. Figure 5.2 shows part
of the original UML meta-model comprising all the mandatory concepts discussed above.

The evolved Class meta-model consists of the main concept class "Class" which comprised
"Feature" either structural or behavioral. As the class "PrimitiveType" models primitive type,
here in the evolved version it is renamed as "DataType" and two classes "PrimitiveType" and
"EnumerationTypeU are added as subtypes. Figure 5.3 demonstrates the evolved concepts in
new version of sample Class meta-model.

5.2.8 The Meta Meta-models
Our approach relies on the meta meta-model(s). To find the difference between the old and
new version of the underlying meta-model, we need to give an old and new version of source
meta-model as input to the approach. The meta-model is defined in ecore format supported by
eclipse. To make the approach generic both Emflecore and MOF meta meta-models are
defined. This is because any meta-model either MOF-based or emf-ecore b ~ e d can be given
as input to the approach and thus make the approach generic. Figure 5.4 illustrates MOF meta
meta-model representation.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

ModetEiemrnt

Nammpace -2 ModtlE
GeneratitableElment -

r -% GcnerafizabBcElcmmt

Attribute -2 Shcturs~cubfe
Reference -: Sw&udFcatun

sociation -2 Cfassifier

Figttt'c' 5.4 Simple \ I 0 1 7 meta n~ets-n~oclel represetitalion

5.2.9 The Input meta-models

Our approach will take as input the class diagram of the original (old version) and evolved
version of the source meta-model. This source meta-model can be either be an EMFEcore
based or MOF -based model. Our approach is generic enough to take any type of meta-model
as input. The input source meta-model would be treated as model that would conform to a
certain meta meta-model e.g. the UML meta-model conforms to the MOF Meta meta-model
discussed in section 5.2.8. The input source model will be presented in xmi format. Since meta-
model is the model itself conforming to a meta meta-model, therefore, for simplification
purpose we will consider and refer the meta-model as model and a meta meta-model as meta-
model in further discussion.

The basic concepts that our approach requires for mapping are: the class, its attributes and
relationships. The input source model will be traversed along with the hierarchy. Below,
Figure 5.5 shows the sample format of input source meta-model.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

& Model:Paekage
xm~.td a1

@ name TestPaclurgef
@ annotatron
@ rsRoot
@ d e a f
@ isAGstract
@ vtstbttity
3 MadekPaamespce.contentr
ModckPackage

g Model:Paekage:
ModekPnrnlt~veType
Model:PrimRwcT

& i?odet:PnmdiveType

fake
felse
false

Figure 5 5 San~pIc input model

5.2.10 Input transformations

The other important file that our approach will take as input is the transformations that need to
be co-evolved with the evolution of meta-model. Our approach is generic enough that can take
transformations written in any dedicated transformation language either declarative or
imperative e.g. Kermeta, ATL or QVT. Transformations written in generic programming
languages e.g. java is not supported by our approach. The format of the input transformations
depends on the type of language the transformations written in. For example, sample QVT
transformations are given in Figure 5.6.

Figure 5.6 Si~nlplc Q\. I' ira~~sforntatiotls

5.3 Definitions

This section defines the Traceability and change meta-models and introduces the
transformation and change classification schemes. In section 5.3.1 the concept of relationship

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

based change propagation is introduced. Section 5.3.2 defines and explains the trace meta-
model, which would be employed to carry out the relationship based change propagation
activity. In section 5.3.3 the concept of difference representation and visualization is
introduced and explained. While in section 5.3.4 the change meta-model, which would assist
in representation and visualization of change. Section 5.3.5 and 5.3.6 introduce the change
classification scheme and transformation classification scheme correspondingly.

5.3.1 Relationship based Change Propagation

For change propagation, we would use relationship based change propagation mechanism. For
this purpose, we first need to establish a "Consistency" relationship between meta-model
elements and transformations, and then make these relationships explicit; so, that any
inconsistency in the "Consistency" relationship introduced by model element change can be
identified and make it consistent by propagating model element change to the transformations.

Following the MDE principles, we formalized a meta-model based mechanism to establish the
"Consistency" relationship and make it explicit for propagating the change and analyzing its
impact. This mechanism is based-on trace meta-model. The "Consistency" relationship is
captured as model conforming to the Trace meta-model. The trace model is capable to capture
each "Consistency" relationship either explicit or implicit and provides support to capture the
forward as well as backward traceability. Next section describes briefly the trace meta-model.

5.3.2 Trace meta-model

The problem of co-evolution is intrinsically complex and requires specialized methods and
notations to cope up with it, particularly to determine its impact propagation. Currently there
is no support to establish and formalize the dependency relationship between meta-model and
transformations which the researchers called "consistency" relationship. We formalized this
consistency relationship to make it explicit and well-defined so that it becomes easy to find the
impact of meta-model change on transformations and identify the usage of meta-model
elements in transformations. Since, the impact of meta-model change on transformations not
only depends on the type of change; but also depends on the usage of meta-model element by
transformations, so, the formalization of the relationship between meta-model and
transformation is of crucial importance.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

L--. --.. 1

I:ig~iie 5.7 1 rarr otct;t- nod el

To formalize the dependency relationship between model elements "EN and transformations
"T" we proposed a trace meta-model. The trace meta-model is composed of traces, i.e. "TR"
capable to capture the relationship between model element "EM and transformation "T". The
trace "TR" would comprise all the required information including the source and target element
of the trace. For identification and unification of traces "TR", the trace would have assigned
some unique name. In addition, it would capture the type information of model element "EN as
well as transformation "T". This would make it easy to map model element changes, i.e., C on
traces, i.e., T at the time of impact analysis. It would also assist in searching and locating
transformation element T during impact detection. Moreover, it provides support for both
forward and backward traceability.

The main concept, that Trace meta-model comprised, is "Trace". The concept "Trxe" holds
the information about the source element and the target element of the "Trace". Each "Trace"
would have some unique name. A "Trace" would compose of mainly only one source element.
The "Trace" can have 0 or more target elements because it is possible that some meta-model
elements are not employed by the transformations. However, these elements are part of the
meta-model because they have mandatory relationship with the elements employed by
transformations.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

Pigwe 5.W E \iritctedi I raw meta-model tor 1 \11,2J.\\.\ .\ 1'1. 'I'ransCot.nialioi~s

Another important concept of the trace meta-model is "TraceableElement". The
"TraceableElement" are the source element and target element of the "Trace". The
"TraceableElement" can either be a "Meta-modelElementU or a "TransformationElement"
depending on the type of traceability (Forwar or backward). To store the calVreferences to the
transformations by other transformations, the concept of "RefferedBy" is used. A
transformation can be called by "0" or more transformations. The Trace meta-model is capable
to capture all the calls. This information is necessary in case of the deletion of meta-model and
ultimately for the transformation employing the deleted meta-model element.

A "MetamodelElementl' can be a class, an attribute, a type or a relationship. While a
transformation element can, be either declarative or imperative depending on the type of
transformation language used for model transformations. To make the Trace meta-model
generic enough the meta-model is designed in a way that it can be easily extended by appending
the transformation language elements. For the running example discussed in section 5.2.1 the
trace meta-model is extended with the ATL meta-model elements. The basic Trace meta-model
is enriched with the ATL meta-elements to make it capable of capturing traces of ATL
transformations. Figure 5.7 shows the trace meta-model, while Figure 5.8 demonstrates it
extended version, which is enriched with the ATL language constructs. The Figure 5.9 below
shows how the traces are represented as trace model.

Transformations Co-evolution in Response to Meta-model Evolution

?reposed Approach

target
elementtype = teiement

" "- ---- - traceabIeElemnt I

5.3.3 Change representation and visualization

To visualize and represent difference between two versions of the underlying meta-model, a
well-defined mechanism is required. Following the MDE principles, we proposed and
formulated a meta-model based mechanism. The difference between two versions of
underlying meta-model would be captured as model conforming to the change meta-model.
The meta-model changesldifference can be visualize easily as model whenever required.

Difference between meta-model are specified and presented as a model in [40]. However,
difference visualization is well supported by the mechanism proposed in [40] but it captures
limited information, insufficient to propagate meta-model changes to transformations. In
contrast, our difference mechanism is capable to not only capture differences but visualize
meta-model differences as well. The aim to define difference mechanism is to provide a means
to represent version differences, capture changes appropriately and in a structured way and to
propagate change impact in well-defined way. Our difference visualization and representation
mechanism not only represent and visualize differences between different versions of meta-
models, but, also assists in identifying and classifying meta-model changes based on its impact
on transformations.

The change meta-model is capable of capturing each change introduced to the meta-model
along with all the required information including change type, element type and affected
element. The change model is capable to capture each minor and major meta-model change.
This would assist in identifying meta-model changes impact on transformations together with
trace model. In addition, it provides a means to identify co-changes that need to introduce to
the transformations to reflect meta-model changes. Next section describes the change meta-
model briefly.

5.3.4 Change meta-model

To identify, which types of changes are introduced to the meta-model, we proposed a change
meta-model. The change would be presented as model conforming to the change meta-model.

Transformations Co-evolution in Response to Meta-model Evolution 78

Proposed Approach

Either each change model would capture a single change or multiple changes at once,
depending on the type of change introduced to the meta-model.

Figure 5.10 <:l~iinge tr~rta-model

A change meta-model is mainly composed of the two concepts "Change" and
"ImpactedElement". The meta-model elements can be impacted by the "Change" introduced to
that "Element". The important information about the change, i.e., change's type, consequence
and name (for unique identification) would be captured and stored. A "Change" can be
additive, subtractive or up-dative. The Enumeration "ChangeType" is added to represent the
type of change. The "Consequence" of "Change" is presented using an enumeration
"Consequence" having three literals i.e. non-propagative, propagative and wallop. These literal
illustrate the transformation classification categories proposed in this research.

A "change" is either composed of 0 or more "Subchange(s)". The meta-class
"ImpactedElement" captures the name of the impacted element its type and the impacted part.
If any of the property of the meta-model elements is changed, for example, "name", the meta-
class "Propertychange" captures the "name" and "type" of the property, its "old value" and
"new value". An "Attribute" change, might be a change in its "type", "multiplicity" or "scope".
The change meta-model is capable to capture all these changes.

The meta-model "Element" can be a "Type", an "Attribute", a "Class", or a "Reference". The
"reference" includes "Association(s)" and "Generalization(s)". Since the child, class contains
information about its parent and parent class does not have any information about its children.
So, for "Generalization" relationship information about the change in parent is mandatory to
capture as it would have an impact on transformations. The meta-class "Association" in change
meta-model captures the information about the change in association. The essential information
about any type of change in association is captured by this meta-class including the change in
"multiplicity", "opposite", "associationtype" and "associationend". The meta-class
"AssociationEnd" has attributes role, type, multiplicity and aggregation. These attributes
represent the properties of the association end that can be change and it mi&t have an impact
on transformations. Figure 5.10 above illustrates the change meta-model. The Figure 5.1 1
below illustrates how change "pull meta-property" is captured by the change model. Next
section, describes the change classification scheme.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

. elementtype = Attribute

I affectedelement = Changeability
I consequence - vmpagatrw 1

-9 - 7 - 9 - * + f ---"-- -

changetype = Add
eirrnenttlpe = kttrrbute

anped * Attnbute ---- w3.*.-w.--.

krgure 5.11 change motfcl of tile change "pull mrta-properQ"

5.3.5 Change classification scheme

Previously, meta-model changes are classified with respect to its impact on models [48]. Since
it is cleared, that meta-model evolution affects its related artifacts in different way depending
on the type of relationship that it hold with its related artifacts. Furthermore, the impact of
meta-model change on transformations not only depends on type of change but also on the
usage of elements in transformations. Therefore, the change classification formulated for model
co-evolution cannot be employed for transformation co-evolution. The change classification
proposed in [38] for transformation co-evolution classifies meta-model changes from
adaptation automation point of view. This classification scheme does not reflect the impact of
changes on transformations. Moreover, change classification scheme should be generic
enough, so that it can be applicable in almost all co-evolution scenarios. Keeping the above
factors in mind, a generic change classification scheme is proposed here:

Non-propagative changes: Changes that do not require propagation to the
transformations, to reflect meta-model changes in transformations, will be classified as
non-propagative changes.
Propagative changes: Changes that require propagation to transformations, to reflect
meta-model changes in transformations, will be classified as propagative changes.
Wallop changes: Changes, which hit multiple transformations simultaneously and
demand propagation at multiple places, to reflect meta-model changes in
transformations, would be wallop changes.

Our approach will employ this change classification scheme to classify meta-model changes.
The change classification together with transformations classification and trace links would
assist in formulating co-evolution strategy.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

5.3.6 Transformations classification scheme

Transformation classification is essential for determining the required steps to co-evolve
transformations. This would help in devising the necessary transformations migration strategy.
Transformations can be classified as:

Use as it is, i.e., required no action
Add transformations
Delete transformations
Modify transformations

5.4 Approach's Overview

We proposed a systematic and automatable approach for transformations co-evolution with
meta-model evolution. The approach is capable to detect, visualize and represent model
element changes, classify these changes according to its impact on transformations, and
establish a dependency relationship between model elements and transformations, classifL
transformations according to the required co-changes and finally co-evolving transformations.
The proposed approach is automatable. The principle steps of the proposed approach are:

Mapping model elements of the source meta-model on transformations by establishing
an explicit dependency relationship between model elements and transformations.
Identify model element changes, capture them as change model, and classify model
elements changes according to the proposed classification scheme.
Detect the impact of model element changes on transformations.
Classify and highlight the impacted transformations and finally
Co-evolve the impacted transformations while copying the remaining transformations,
which are not impacted by the model element changes.

The steps of the proposed approach are explained via applying on the running example
described in section 5.2.1. The change model captured for the change "add meta-class" and the
trace "Trace " is kept under consideration. This is because the property "Changeability" is
pulled from meta-concept class "Attribute" to the meta-class "StructuralFeature" and the trace
pull meta-property trace is tracing this meta-element "Changeability", which is changed and
the change is captured and stored in change model. This would assist in the demonstration and
validation of the proposed approach. Figure 5.12 demonstrates how the proposed approach
works.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

5.4.1 Mapping Elements

In first step, a relationship between model elements and transformations is formalized through
establishing trace links that would conform to "Trace" meta-model (discussed in section 5.3.2).

t'igtirc 5.13 trace rnodcl for rncta-attribote "chal~gcabiliiy"

Consider the example given above in section 5.2.6. The meta-attribute "changeability" in Mold
is selected and the transformations are searched for any mapping that is using it. The
transformations, i.e., "isFinal()" is identified. In the next step, it would search for calls made to
the "isFinal(). Once all the transformations and calls are collected, the trace is captured and
stored. Remember, if there were no call made to the transformations then only transformations
element would be the part of trace, not the calls. All the.traces are captured this way. These
trace links would assist in identifying meta-model elements usage in transformations and would
be use during impact analysis. As discussed before, the meta-model change impact on
transformations not only depends on the type of change but also on the usage of meta-model
elements in transformations. Thus capturing trace links is essential ingredient to identify and

Transformations Co-evolution in Response to Meta-model Evolution 82

Proposed Approach

analyze the impact of meta-model changes on transformations. Figure 5.13 illustrates the trace
captured for the meta-attribute "changeability" of UML meta-model.

5.4.2 Detect and classify Changes

When meta-model evolves, some changes are introduced to the new version of meta-model.
These changes can be additive, subtractive or up-dative. To identify the type of changes
introduces to the meta-model, meta-model changes are captured as change model conforming
to the change meta-model (dicussed in section 5.3.4). The change model represents the meta-
model changes. For instance, meta-attribute "changeability" is pulled to the super class
" StructuralFeatureU.

Figure 5.14 illustrates the change model representing the change "pull meta-property".

Figure 5.14 change model for change "pull meta-property"

All the meta-model changes are captured this way. Once the changes are identified, these
changes are then classified according to the proposed classification scheme (Discussed in
section 5.3.5). The pull meta-property change is classified as propagative change as it requires
modification in the context of helper "isFinal()".

5.4.3 Impact Detection and Analysis

In this step, impact of changes is identified by mapping changes on trace links. The impact
analyzer takes the change model and traces as input and returns the transformations that are
impacted by the meta-model changes. The impact analyzer classifies the transformation
according to the co-changes required to make to the transformations and transformations are
then treated accordingly.

The impact analyzer takes the trace links and change model as input. It selects the elements
that are changed and search for traces exist for that specific meta-element. If traces exist, it
navigates through it and tries to find the impacted transformations. If there exist some
transformation for that considered model element, the analyzer tries to find, which part of that
transformation element is impacted. It then classified transformations based on the type of co-
change required to make to the transformations. The analyzer is capable of copying the
transformations that are not impacted by model element changes.

For instance, the change pull meta-property is selected. It is cleared from the change, that the
element affected by the change is the "Changeability" itself, "Attribute" and

Transformations Co-evolution in Response to Meta-model Evolution 83

Proposed Approach

"StructuralFeature". The affected element names, i.e., "Changeability and its type, i.e., attribute
is extracted from the change model and the corresponding transformation, which is employing
this model element, is searched for the trace that is impacted by this change. The trace
"changeability" is found and by its target links, the impacted transformations are extracted.
These transformations are returned to the user. The users then identified the co-changes
required to propagate the meta-model change into transformations. Figure 5.15 shows the
impact of renaming class feature on transformations

name - Delete f'ram

F i g w e 5.15 Detecting the impact

5.4.4 Transformations co-evolution

After, the impacted transformations are identified. The next step, is to co-evolve impacted
transformations. An algorithm is designed for this purpose, which takes the impacted
transformations and asks for the desired changes along with the location of change. For
instance, the rename class "Feature" impacted two transformations i.e. "isPublic()" and
"isStatic()". The particular part that needs to be changed, in both transformations, is the context
of these transformations. The user would specify the context along with the co-change, i.e.,
replace "UML!FeatureU by "UMLStructuralFeature". The algorithm changes the context and
returns the co-evolved transformations. Below are the old and evolved transformations:
Original Transformations:

Helper context UML!Attribute def: isFinal():Boolean=
Self.changeability=#ckkfrozen;

Evolved Transformations:

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

Helper context UML!StructuralFeature def: isFinal() :Boolean=
Self.changeability=#ckSelf.changeability=#ck_frozen;frozen;

5.5 Co-Evo: An Algorithm

An algorithm for transformation co-evolution abbrivated as "Co-Evo", is designed to support
the steps defined and explained above. The "Co-Evo" algorithm will take the old and new
version of meta-model and transformations as input. First, consistency relationship between
the elements of old version of meta-model and transformations will be made explicit by
establishing traces between meta-model elements and transformations. Traces are established
for each meta-model element, captured and stored; as model conforming to the trace meta-
model.

Next, it will compare the old and new version of meta-model to find, what changes are
introduced in the new version. Each change is captured as model conforming to the change
meta-model. The comparison starts from the root element, i.e., the root class of the old version
of meta-model and compare it with the elements in the new version to check either it is same
or not. Each property of the selected meta-element is compared one by one to the element in
the old version. Ifthe properties are same, it is ignored else the difference is captured as change
model and stored. All the differences are captured and stored this way.

Once, traces are established and changes are identified the next step is to identify the impacted
transformations. For this purpose, these the algorithm select a change from the change model
extract change name, type and the impacted element name and type and try to search the
repository for the trace with the same model element name and type. Once, it gets the element
in the trace with the same name and type, it navigates through the trace and extracts the
impacted part of the transformations. The next step is to classify the impacted transformations
based on the type of change introduced to the meta-model. After extracting and classifying
transformations, the classified impacted transformations are returned by the algorithm along
with the co-change suggestion if poosible to predict. The user then analyze if the co-change is
correct or some other actions need to take to modify transformations. In the last step,
transformations would be tested by running on the instances of the new version of meta-model.
Below is the proposed algorithm:

Algorithm Co-Evo(mm1, T, mmz)

Input: mml: Old version of meta-model, T: transformations, mmz: new version of
meta-model

Output: impacted transformations, co-change

1. Begin
2. for each e in mml
3. establish trace tr=e-+t where tcT
4. save tr
5. for each ei in mmz where ei is the element selected from mm2

a. select ei.name && ei.type
i. if ei.name==ej.name where ej is the element of mml

1. if ej.typeZ=ej.type
2. do nothing

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

3. else capture AC where c is the change in the selected element
4. end if

ii. endif
6. increment i
7. end for
8. for each AC
9. select e.name && e.type && c.type from AC where c.type is the change type

a. if e.name==tr.ename and e.type==tr.etype
b. navigate tr to the target trace
c. get tcT
d. for each t in T
e. classify t as t.type=c.type
f. retun t.type
g. end for

10. increment j
a. if t.type==add transformations
b. generate transformation template
c. elseif t.type==delete transformations
d. delete tr
e. elseif t.type==update transformations
f. predict co-change

1 1. return classified and updated transformations
12. end for
13. end

5.6 Chapter's Summary

The proposed approach for managing co-evolution of meta-model and transformation has been
presented in this chapter. The way, meta-model change impact models, is different; from the
way it affects other related artifacts. In addition, the meta-model change impact not only
depends on the type of change but also on the usage of meta-model elements in transformations.
Therefore, the problem of co-evolution of meta-model and transformations must be handled
differently than the problem of co-evolution of meta-model and models. The proposed
approach solves these issues by devising a relationship-based mechanism along with the
change meta-model. Finally, an algorithm is designed to cany out the entire process of co-
evolution of meta-model and transformations automatically with minimal user intervention.

The relationship-based mechanism consists of traceability meta-model, which makes the
consistency relationship explicit by establishing traces between meta-model elements and
transformations, represent, and store these traces as model. The trace model conforms to the
trace meta-model. These traces assist in impact analysis and accurate change propagation. The
trace meta-model is defined as EMFEcore model in Eclipse and its instances are stored and
manipulated as xmi files.

For detecting, representing and visualizing changes introduced in the new version of meta-
model, a change meta-model is proposed. Changes introduced to the meta-model are captured
as change model. This mechanism not only captures the changes but also visualizes and
represents these changes as model whenever required. This assists in getting a better
understanding of which type of changes are introduced to the meta-model and propagating
these change changes accurately to transformations.

Transformations Co-evolution in Response to Meta-model Evolution

Proposed Approach

Meta-model evolution affects its related artifacts in a different way depending on the type of
relationship it holds with its related artifacts. The impact of meta-model change on
transformation not only depends on the type of change but also on the usage of elements in
transformations. Therefore, change classification is designed specifically for transformations
co-evolution as the classification scheme proposed for co-evolution of models does not suit
well to the transformations co-evolution problem. According to the proposed classification
scheme, Changes can be classified as non-propagative, propagative and wallop change.

Transformations classification scheme is proposed, to classify transformations. This would
assists in taking action in the co-evolution/migration strategy selection process. Transformation
classification scheme is composed of use as it is, add transformation, delete transformation and
modify transformation. Next chapter applies the approach on three different examples.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 6 Considered Cases

Considered Cases

6.1 Introduction

This chapter presents the underlying cases and considered modifications, which we would use
to demonstrate the applicability of our approach in practice. We used to model the co-evolution
of two existing meta-models. In this chapter, we would present three major cases that we
considered to evaluate and validate our approach. Because of the availability and the
application of wide range of transformation languages in industry, we would apply the
approach on three different transformation cases having the transformations written in three
different transformation languages. Originally, the transformations were defined using ATL
language. We have re-written the transformations using QVT for specifying PetriNet2PNML
transformation example. While for Class2Relational transformation example, we have re-
written the transformations using Kermeta. This would assist in the validation of the approach's
generality. We have selected three Cases from ATL ZOO, i.e., UML2Java, UML2MOF and
Petri Net transformation example.

In section 6.2, ATL transformation is discussed in detail. Section 6.3 explains the Kermeta
transformation example. Section 6.4 outlines QVT transformation example. Section 6.5
presents the changes introduced to the meta-model.

6.2 UML2JAVA: a n ATL transformations Example

This section is screened off into four subsections. The first subsection provides an overview of
the UML 2JAVA transformations specifications. The second subsection briefly describes the
functionality of the Transformations. Transformation defined using ATL, are depicted in third
subsection. The original and evolved version of the input source meta-model is described in
subsection fourth and fifth. In subsection sixth, the target meta-model of ATL transformations
is discussed.

6.2.1 Transformations
The main function of the ATL transformations is to transform a UML model to a simplified
Java models. The Java model carries the information for the creation ofjava classes especially
what concerns the structure of these classes, namely the package, reference, the attributes and
the methods.

6.2.2 Rule Specifications
To write transformations for transforming UML model to a java model first all the essential
rules, conditions and circumstances are specified. Below, the specifications of the rules to
transform a UML model into Java model are explained:

A java package instance has to be created for each UML package instance.
o Their name must have to keep up a correspondence. However, java package

contains the complete path information as compare to UML packages, which
hold plain names. The path separation is a point "."

A java class instance has to be created for UML class instance.
o Their names have to equate.
o Package reference must have to keep up correspondence.
o The modifiers must have to correlate.

A java primitive type instance must have to be created for each UML data type instance.

Transformations Co-evolution in Response to Meta-model Evolution 89

Considered Cases

o Their names must match.
o The package reference has to correlate.

A java field instance has to be produced for each UML Attribute instance.
o Their name must equate.
o Their type must correlate.
o Their modifiers must match.
o The classes have to keep up correspondence.

A java method instance has to be generated for each UML Operation instance.
o Their name must equate.
o Their type must correlate.
o Their modifiers must match.
o The classes have to keep up correspondence.

6.2.3 The ATL Code

The ATL code that transforms a UML model to a simplified java model comprised various
functions and rules. It is of crucial importance to declare the "getExtendedNameV function as
it explores recursively to hook up a complete path name. The remaining functions like
ispublic(), isstatic() and isFinla() set the accessibility, scope and finalizing the implementation
for the java classes methods and attributes.

Regarding the rules, there are crucial remarks related to the rule 02M, which generate java
method instance for UML operation instance. This rule demonstrates how to access sets
employing OCL expressions. For simplification of implementation, the return type of the java
method is the first parameter of an UML operation. Concerning the remaining rules, rule P2P
generates java package from UML package calling the getExtendedname function, which
discovers repeatedly to concatenate a full path name for java package. The rule C2C generates
java class instance for each UML class instance importing namespace, scope and name from
UML class instance. Rule D2P produces java primitive type for UML Data Type. Some trivial
details like modifiers are not yet completely implemented. Below is the ATL code to transform
UML model to a java model:

module UML2JAVA;
create OUT : JAVA from IN : UML;

helper context UML!Feature def: ispublic() : Boolean =self.visibility = #vk_public;
helper context UML!Feature def: isstatic() : Boolean =self.ownerScope = #sk-static;
helper context UML!Attribute def: isFinal() : Boolean =self.changeability = #ck-frozen;
helper context UML!Namespace def: getExtendedName0 : String =if
celf.namespace.oclIsUndefined() then

11

else if self.namespace.oclIsKindOf(UML!Model) then
11

else

endif endif + self.name;

rule P2P { from e : UML!Package (e.oclIsTypeOf(UML!Package))

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

to out : JAVA!Package (name <- e.

rule C2C {from e : UML!Class
to out : JAVA!JavaClass (name <- e.name,isAbstract <- e.isAbstract,isPublic <-

e.isPublic(),package <- e.namespace))

rulc D2P {from e : UML!DataType
to out : JAVA!PrimitiveType (name <- e.name,package <- e.narnespace))

rule A2F {from e : UML!Attribute
to out : JAVA!Field (name <- e.name,isStatic <- e.isStatic(),isPublic <- e.isPublic(),

isFinal <- e.isFinal(),owner <- e.owner,type <- e.type)}

rule 0 2 M {from e : UML!Operation
to out : JAVA!Method (name <- e.name,isStatic <- e.isStatic(),isPublic <-

e.isPublic(),owner <- e.owner,
type <- e.parameter->select(x)x.kind=#pdk~retu~Sequence()-

>first().type,
parameters <- e.parameter->select(x~x.kind~~#pdkkretu~Sequence()))

rule P2F {from e : UML!Parameter (e.kind 0 #pdk-return)
to out : JAVA!FeatureParameter (name <- e.name,type <- e.type))

6.2.4 Source Meta-model: Simplified UML model

The simple UML meta-model composes of classes having name which they inherits from the
abstract class "ModelElement". The main class is class "Class" comprised a set of attributes of
type "Attribute". The class "DataType" models primitive types. The class "Datatype" and
"Class" inherit from "Classifier" which serves to declare the type of attributes. Figure 6.1 shows
part of the original UML meta-model comprising all the mandatory concepts, we have
discussed before.

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

Figure 6.1 Part of I 111. meti~-rnod~I

6.2.5 Evolved Class Meta-model

The evolved version of class meta-model consists of an additional meta-class i.e.
"StructuralFeature", which classifies the Attribute a structural feature of class. The association
end "owner" is moved from meta-class "Attribute" to newly added meta-class
"StructuralFeature". The attribute "changeablity" is pulled up to the meta-class "Structural
Feature". A new attribute "isAbstract" is added to the classifier of type "Boolean" that
represents, if the class is abstract or not. The meta-class "DataType" is renamed as
"PrimitiveType". The generalization hierarchy of meta-class "Attribute" is moved from meta-
class "Feature" to "StructuralFeature".

Figure 6.2 Evolved version of UML Class meta-model

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

6.2.6 Target Meta-model: Simplified Java model

A simplified target java meta-model principally comprises Java Elements which all have some
unique name. A Java Class is possibly composed of some methods and fields and is a part of
some package. Classes, fields and methods are some part of modifiers and therefore signify
them as public, static or final. Java Classes and Methods have "isAbstract" attribute to indicate
whether they are abstract or not. The types in java meta-model are classes and primitive types.
A java field must be of some type. Java methods have parameters of some types and they must
have some return types. Below is the target java meta-model that illustrates main concepts of
the Java Language.

I
+mm?l

Figure 6.3 A simplified Java Meta-model

6.3 PetriNetZPNML: Qvt Core Transformation Example

The PetriNet transformation example is chose from ATL Zoo. The transformations are
originally specified using ATL language. But for demonstrating the applicability of our
approach, the transformations are redesigned and specified using Qvt transformation language.

This section is screened off into four subsections. The first subsection provides an overview of
the PetriNet2PNML transformations specifications. The second subsection briefly describes
the functionality of the Transformations. Transformation defined using kermeta are depicted
in third subsection. The input source meta-model of PetriNet is described in subsection fourth.
In subsection fifth, the target meta-model of Kermeta Transformations is discussed.

6.3.1 Transformations
The main function of the PetriNet to PNML transformations is to transform a PetriNet models
conforming to the PetriNet meta-model into a Petri net Markup language model models
conforming to the Petri Net Mark-up language meta-model. The PNML meta-model comprises
the mandatory information about PNML document.

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

6.3.2 Rule Specifications
To write transformations for transforming PetriNet models into PNML models first all the
essential rules, conditions and circumstances are specified. Below, the specifications of the
rules to transform a PetriNet model into PNML model are explained:

PNMLDocument instance of PNML has to be created for every PertiNet Instance of
PetriNet model.

o Their name must have to correspond.
o Since the PNML document name is composed of a PNML Label its value must

be initialized by PetriNet name.
o The PNML Document set of contents must have to correspond to the union of

the PetriNetElement and Arcs.
For every instance of the Net in PetriNet model, a corresponding NetElement instance
of PNML model has to be created.

o Their name of PNML Net must be copied to create a PNML Label which value
is initialized by the Net Instance name of The PetriNet model.

o Their location must have to correspond.
o Their type must have to correspond.

For each Place instance in PetriNet model, a corresponding Place instance of PNML
model has to be created.

o Their name of PNML Place must be copied to create a PNML Label which value
is initialized by the Place Instance name of The PetriNet model.

o Their location must have to correspond.
o The PNML Place Id must be created by copying the Name of PetriNet Place

Element instance.
For each instance of Transition in PetriNet model, a corresponding Transition instance
of PNML model has to be created.

o Their name of PNML Transition must be copied to create a PNML Label which
value is initialized by the Transition Intance name of The PetriNet model.

For each Arc instance in PetriNet model, a corresponding PNML Arc instance has to
be created.

o Their name of PNML Arc must be copied to create a PNML Label which value
is initialized by the Arc Instance name of The PetriNet model.

o The source and target references of the PNML arc must correspond to the "from
and to references" of the Arc element instance in the PetriNet model.

6.3.3 QVT Code

The Qvt code that generates a PNML document from a simple Petrinet model is composed of
few mappings. The Qvt transformation PetriNet-to-PNML is first defined that generates
PNMLDocument. The mapping Net() generates a NetElement instance of PNML model
corresponding to the net instance of PetriNet model. It does not only generate the PNML
document but the net elements too on which the PNML document is composed of. Its set of
contents corresponds to the union of PetriNet elements and arcs. The mapping place generates
a PNML Place elment from a PetriNet Place. It creates a PNML name comprised of a PNML
Label. The value of the label is initialized by the name of Place element of PetriNet. The

Transformations Co-evolution in Response to Meta-model Evolution 94

Considered Cases

mapping Transition produces a PNML Transtion correlating to the PetriNet Transition. The
name of the PNML Transition is copied from the input PetriNet Transition. It is composed of
PNML name comprised of PNML Label. The PetriNet Transition initializes the label's value.
The mapping Arc produces PNML Arc correlates to the Arc element of PetriNet model. Its
name, source and target referecnes are copied from the input PetriNet arc and correspond to
the "to" and "from" references respectively.

Transformation Petrinet-to-PNML(in netmodel:PetriNet, out pnm1:PNML);

main()

{
Netmodel.object()[PetriNet]+map Petrinet-to-PNML();

1
mapping Net::net():Net

{

C
xlmns:=self.uri;

Location:=self.location.narne;

Nets:=net;

1
Uri:=PNML.uri (value:='http://www.infomatik.hu-berlin.de/top/pnmVptNetb');

Net:=PNML!NetElement

{
Name:=name;

Location:=self.location;

Id:=self.location;

Type:-typeuri;

Contents:=self.places.union(self.transition)

1
Name:=PNML!Name(label:=label);

Label:=PNML!Label(text:=self.name);

Type-uri:=PNML!URI(value:=' http://www.infomatik.hu-berlin.de/top/pnmVptNetb')

1
mapping Place::place2place():Place

{

C
Name:=self.name;

Id:=self.name;

Location:=self.location

Source:=self."src";

}
Name:=PNML!name(label:=label);

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

Label:=PNML!Label(text:=self.name);

1
mapping Transition::transition():Transition

i

{
Name:=name;

Id:=self.name;

Location:=self.location;

Source:=self. "src";

Target:=self."desM;

1
Name:=PNML!Name(label:=label);

Label:=PNML! Label(text:=self.name);

}
mapping createarcsrc(

6.3.4 Source Meta-model: PetriNet model

The petri nets also called as placeltransition net or PIT net was first defined by call adam petri.
They extend the state machines with the notion of concurrency. The petri net is the graphical
and mathematical representation of distributed systems.

A simplified PetriNet model in the selected example mainly comprises places and transitions,
which are enclosed in the net element. The class "Net" is the root element of PetriNet mode,l
which represents the PetriNet. It mainly consists of places and transitions.

kigiire 6.4 i ~impiiiiecl Pelrillrt rrwdel

6.3.5 Evolved PetriNet Meta-model

The Evolved version of PetriNet meta-model consists of additional meta-classes that is "Arc",
"PlaceToTransition" and "TransitionToPlace". The references "places" and "transition" have
been merged into the new elements. Furthermore, the class "Net" is renamed as "PetriNet".

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

Figure 6.5 Evolved version of PetriNet Meta-model

6.3.6 Target Meta-mode: PNML model
The target PNML model composes of the root element PNMLDocument class. This class
consists of Petrinets defined via NetElement instances. A PetriNet is comprised of Netcontent
elements, which are differentiated into arc, place and transition. Net elements and net contents
may have a name which is a labled elemnt comprised of Labels.

Figirrc 6.6 I argrt Ph\r.\ll. model

ClassZRelational: kermeta Transformation Example:
This section is screened off into four subsections. The subsection 6.4.1 provides an overview
of the Class2Relational transformation example. The subsection 6.4.2 briefly describes the
functionality of the Transformations. Transformation defined using kermeta are depicted in
subsection 6.4.3. The input source meta-model of Class is described in subsection 6.4.4. In

Transformations Co-evolution in Response to Meta-model Evolution 97

Considered Cases

subsection 6.4.5, the evolved Class meta-model is defined and in subsection 6.4.6, the target
meta-model i.e. relational meta-model of Kermeta Transformations is discussed.

6.4.1 Transformations
The Class2Relational transformations specifies a simple transformation from class schema
model into a relational database model.

6.4.2 Rule Specifications
Below is the description of rules to generate a relational model from a class model:

A Table instance has to be generated from a Class instance.
o Name of the Class and Table have to correspond.
o The col reference set has to comprise all Columns that have been created for

single valued attribute and also the key described in the following
o An Attribute instance has to be created as key

Its name has set be as "objetcId"
Its type reference has to reference a Type with the name Integer which
-if not yet existing-has to be generated.

A Type instance has to be generated, for each DataType instance.
o Names and types of the Type and DataType have to be similar.

A Table instance has to be generated for each multivalued Attribute instance of type
DataType.

o The Table's name is the name of the Attribute's Class concatenated with an
underscore and the name of the Attribute.

o The col reference set has to reference the two columns described in the
following.

o An identifier column instance has to be created.
Its name has to be set to the Attribute's class name concatenated with
'Id'
Its type reference has to reference a Type with the name Integer which
-if not yet existing- has to be created.

o A Column instance has to be created to contain the values of the Attribute.
The name and their types have to correspond.

A new column has to be generated, for each single-valued Attribute of type Class.
o Its name has to be set to the attribute's name concatenated with 'Id'.
o Its type reference has to reference a Type with the name Integer which -if not

yet existing- has to be created.
A new Table has to be generated, for each multivalued Attribute of the type Class.

o The Table's name is the name of the Attribute's Class concatenated with an
underscore and the name of the Attribute.

o The col reference set has to reference the two Columns described in the
following.

o An identifier Column instance has to be created.
Its name has to be set to the Attribute's class name concatenated with
'Id'.

Transformations Co-evolution in Response to Meta-model Evolution 98

Considered Cases

Its type reference has to reference a Type with the name Integer which
- if not yet existing - has to be created.

o A foreign key Column instance has to be created.
Its name has to be set to the Attribute's name concatenated with 'Id'.

Its type reference has to reference a Type with the name Integer which
- if not yet existing - has to be created.

6.4.3 Kermeta Code
Below is the Kermeta code for generating Table model from Class model. The transformations
were originally written in ATL. It was re-written using Kermeta to demonstrate the proposed
approach in this dissertation.

class Class2Relational{

reference flceys: Collection <FKey>

operation transform(inputMode1: ClassModel): RelationalModel is do

//Initialize the trace

//create tables

getA11Classes(inputModel).select{c~c.ispersistent}.each{c~ var tab1e:Table init Table.new

class2table.storeTrace(c, table)

1

//Create columns

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

//create foreign keys

Fkeys.each{k~k.createKeyColumns)

end

1

operation createColumns(tab1e : Table, cls : Class, prefix : String) is do

// add all attributes

getAllAttributes(cls).each { att 1 createColumnsForAttribute(table, att, prefix)

1

11 add all associations

getA11Association(cls).each{ asso I createColumnsForAssociation(table, asso, prefix)

I

end

operation createColumnsForAttribute (table : Table, att : Attribute, prefix : String) is do

/I The type is primitive : create a simple column

if PrimitiveDataType.isInstance(att.type) then var c : Column init Column.new

c.name := prefix + att.name

c.type := att.type.narne

table.cols.add(c)

if att.is - primary then table.pkey.add(c) end

else

var type : Class type ?= att.type

I/ The type is persitant

if isPersistentClass(type) then

/I Create a FKey

var fk : FKey init FKey.new

&.prefix := prefix + att.narne

table. fieys.add(fk)

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

fi.references:=class2table.getTargetElem(getPersistentClass(~pe))

fkeys.add(fk)

else

// Recusively add all attributes and associations of the non-persistent table

createColumns(table, type, prefix + att.name)

end

end

end

1

class FKey

{

reference references : Table

reference cols : Column[l ..*I

/* *

* prefix for the name of the columns

* used by the createFKeyColumns method

*I

attribute prefix : String

I* *

* Create the FKey columns in the table

* /

operation createFKeyColumns() is do

var src-table : Table

src-table ?= container

/I add columns

references.pkey.each{ k I

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

var c : Column init Column.new

c.name := prefix + k.name

end

6.4.4 Source Meta-model: Class Meta-model

Figure 6.7 Original Class meta-model

The simple class meta-model mainly composed of classes. Every class have some name, which
they inherit from the abstract class "NamedElt". The main concept is the class "Class" which
encompasses a set of attributes of type "Attribute" and has the super references pointing to
super classes for modeling inheritance trees. The Class "DatyeType" represents primitive data
types. "Class" and "DataType" inherits from Class "Classifier" which serves to declare the type
of Attributes. Attributes can be multivalued, which has an important impact on the
transformation.

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

6.4.5 Evolved Class Meta-model
The evolved version of "Class" meta-model consists of additional class "Feature" with two
attribute i.e. "ownerscope" and "visibility". The meta-class "Feature" classify the "Attribute"
as feature of class and defines the scope and visibility of the attribute. The meta-class
"Reference" is added to the new version of "Class" meta-model. The meta-class "Class" may
composed of attributes and references. The reference is the composition of associations having
'2' or '3' association ends. Figure 6.8 illustrates the evolved version of class meta-model.

Figure 6.8 Evolved Class Meta-model

6.4.6 Target Relational Meta-model
The Relational meta-model encompasses classes having some name, which they inherit from
the class "Named" that is abstract. The main class "Table" encompasses a set of "Columns"
and has a reference to its keys. The class "Column" has the references 'owner' and 'keyof
pointing to the "Table" it belongs to and of which it is part of the key (only in case it is a key).
In addition, "Column" has reference to Type.

Transformations Co-evolution in Response to Meta-model Evolution

Considered Cases

Figure 6.9 Target Relational Meta-model

6.5 Considered Changes and Its Types:
The whole consequences of transformations co-evolution can be handled according to the
possible changes made to the underlying meta-model. These changes can be divided into
different categories that are additive, subtractive, and up-dative changes. Specifically, additive
changes can be referred to as additions of model elements to the meta-model. These additive
changes can be further categorized as follows:

Add metri-ckuss: The type of change in which a new meta-class is introduced to the
meta-model. It is an ordinary change in meta-model evolution which brings extensions
into meta-model. The addition of a new meta-class causes co-evolution problems only,
in case, if the added model elements are compulsory according to the specified
cardinality. In the above mentioned case, the instances of the newly added meta-class
must be initialized accordingly in the existing models and therefore the must be handled
by the specified transformations.
Generalize metu-property: If it type or multiplicity of the meta-property are relaxed. It
is commonly referred to as the generalization of a meta-property. No action to co-
evolve models and transformations is needed to be taken as the existing model instances
still it is conformant to the new version of the meta-class and the instances are still
handled by the transformations.
Add meta-property: The type of change in which a new meta-property is introduced to
the underlying meta-model. This case is similar to the above mentioned case. A newly
defined mcta-property can be or cannot be compulsory according to the specified
cardinality. Therefore, the already defined models have to maintain the "Conformance"
relationship with the underlying meta-model and the transformations must handle it if
the addition is made to some abstract meta-class without having sub-classes; in rest of
the scenario, some human assistance is essential to define a value for the newly
introduced meta-property in all the involved elements of model.
Extract super-class: If a new meta-class is defined in a hierarchy as super-class and
some repeated and common meta-properties are moved to that super-class. This type of
change is referred to as Extract super-class. If the super-class is abstract, the existing

Transformations Co-evolution in Response to Meta-model Evolution 104

Considered Cases

model instances are conserved; in other case the consequences are similar to that of the
meta-property pulls.
Pd1 nzetu-property: when a property p is moved to a super-class Z from a sub-class A
and the old one is removed from a subclass A, this is called pulling a meta-property.
'T'his change requires the modification of the instances of the meta-class Z through
inheriting the value of p from the instances of the meta-class A and therefore the
transformation specified to handle this considered meta-property need to be modified
to enable it to handle the pulled up meta-property.

I'he Subtractive changes comprised the removal of the existing model elements. These changes
are termed in the following:

Elinzinate metaclass: a metaclass is eliminated from meta-model to make it either
simple or to exclude some obsolete concepts. In common, such changes prompt the
deletion of the meta-class instances in the corresponding models. So the transformation
defined to handle such meta-class is no longer consistent with the new version of meta-
model and need to be eliminated. Besides, if the targeted meta-class has some other
classes as sub-classes or it is called by other meta-class, the elimination brings terrible
side effects.
Push nzetaproperty: A meta-property is pushed to subclasses. It indicates that this meta-
property is eliminated from its original super-class. Let suppose X and then replicated
in every sub-class of let suppose Y of X. Now let suppose if super-class X is abstract
in nature then this type of change does not require any step to co-evolve model and
ultimately transformation co-evolution. In other cases, the existing instances of X and
its sub-classes require to be modified accordingly.
Eliminate meta-property: The impact of the elimination of the meta-property is the
same as the elimination of meta-class.
Restrict meta-property: If the type or multiplicity of a meta-property is imposed this
type of change is referred as Restrict meta-property. This is a complicated situation in
which existing instances require to be restricted or co-evolved and the transformations
need to be modified to handle the imposed restriction. If the restriction is imposed on
the upper bound of the multiplicity then it requires definite slots to be removed.
Growing the lower bound of the multiplicity needs new values to be added and therefore
need transformations modification accordingly. As for as type restriction of a property
is concerned it needs the conversion of type for each value.
Flatten hierarchy: The removal of a super-class and pushing down all its properties
into its subclasses is referred a Flatten Hierarchy.

Lastly, a new version of the model might compose of some modifications of the existing
model elements causing up-dative changes in transformations that can be categorized as
follows:

Move metaproperty: it is a type of change in which a property p is moved from a
metaclass A to a metaclass B. This is a propagative change and the existing
transformation can be co-evolved simply by updating the context of the transformation.
Rename metuelement: A complex type of modification in which the change requires
to be propagated to existing transformations and can be propagated in an automatic way
or require user assistance depending on the type of transformation language used to
define transformation.
Extract/inline metuclass: A meta-class is said to be extracted if a new meta-class is
created and all the related attributes are pulled from the old class into the newly created
class. All the attributes of the considered meta-class are moved into newly added meta-
class and eliminate the previous meta-class in order to inline a meta-class. These

Transformations Co-evolution in Response to Meta-model Evolution 105

Considered Cases

mentioned meta-model re-factorings stimulate either automated or semi-automated
transformations co-evolutions.

The categorization mentioned above until now, put together verification ofthe primary role
of evolution representation. In first glimpse, it gives the impression that the categorization
does not include rejkrences, which are associations between meta-classes. Nonetheless,
references can be regarded as properties of meta-classes at the same level of attributes.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 7 Evaluation

Evaluation

7.1 Introduction

This chapter is dedicated to explicate, explore and assess the results of the experiments, we
have executed to validate our proposed approach for meta-model and transformations co-
evolution. We will employ the proposed approach on the examples, discussed in the previous
chapter to validate our proposed approach, in this chapter.

7.2 UML2Java transformations

This section explains the set-up we made for performing an experiment, discuss and assess the
results of our proposed approach by applying it on UML2Java transformation example. The
transformations are written in ATL and the meta-model is MOF based. The changes introduced
were discussed in previous chapter (see section 6.5).

7.2.1 Case-1 Set-up

This section sums up the main steps we performed to execute our experiment below:

In the first step, the trace meta-model is extended by adding model element of ATL
meta-model. Since, the example is based on ATL transformations. All the essential
ATL concepts either declarative or imperative are added to the trace meta-model. This
empowers the Trace meta-model to capture the exact impacted part of transformations.
Then, we established traces between considered UML model and underlying
transformations. Total thirteen traces were captured between the old version of sample
UML model and the implemented transformations in the underlying UML2JAVA
example. The traces are recorded as trace models conforming to the trace meta-model.
Each trace model captured the source and target of the trace. Below is the Table 7-1
trace models summary that illustrates the detail related to traces:

Transformations Co-evolution in Response to Meta-model Evolution 108

Evaluation

Trgackage

te rule

'I able 7-1 trace ntodels stmlnltry

In second step, we introduced some changes to the sample UML model. Total nine well
known and most common changes reported by the industry as well as academia were
introduced to the sample UML model. Below, Table 7-2 shows the type of changes
introduced to the sample UML model.

Add meta-property Eliminate meta-property 1 Rename meta-property . . .

Generalize meta-property Push meta-property ; I * Move meta-property
Pull meta-property Flatten hierarchy a Inline metz-class
Extract super-class Restrict meta-property

I I

- - -- --- -- --

In the third step, the change introduced to the sample UML model are captured as
change model. The change model captured each simple change individually. Each
change is identified and then classified according to the proposed criteria for change
classification based on its impact on transformations. Classification is shown in
Table 7-2.

In the fourth step, the change models employed together with the trace model to analyze
the impact of meta-model evolution on transformations.
In fifth step, the changes are propagated to the transformations. The co-changes are
incorporated to the impacted transformations and the un-impacted transformations are
copied unchanged.

To scrutinize the correctness of the co-evolution of transformations the co-evolved
transformations are applied to the evolved sample UML model. This guarantees the synthetic
and semantic correctness of co-evolved transformations.

7.2.2 Results and discussions

Table 7-3 illustrates the type of changes introduced to the sample UML model and its impact
on transformations. We introduced total nine changes to the meta-modei and assessed its
impact on transformations. Table 7-3 depicts the important outcomes of the different steps of
approach. This illuminates that if the trace for the impacted element does exist or not. This
make it obvious if model element like that were changed, it would not have any impact on
transformations. Our approach is capable to detect such kind of changes and classify them as
non-propagative change. Table 7-3 also demonstrates that none of the relationship transform
by the transformations are mapped and captured in traces by trace model. It might be due to
the limitation of our approach or due to the implicit way of transforming the relationships.

The trace meta-model captured traces for each element either its corresponding transformation
does exist or not. This indicates that if the model element is not used in transformations, yet

Transformations Co-evolution in Response to Meta-model Evolution 109

Evaluation

the trace is captured. If that element changed, it would have no impact on transformations and
those changes would automatically go in the non-propagative change class. Traces for model
elements like "Feature" captured not only multiple targets for the trace against that model
element but also the calls made to those targets. The information about the calls made to the
transformation is useful in case of eliminating a model element that requires the deletion of the
corresponding transformation as well as calls made to those transformations. Since mapping,
elements and change detection and identification are not dependent on each other. Both
activities can carried out in parallel. This improves the performance of our approach.

Changes introduced to the metamodel saved and represented as change model conforming to
the change meta-model. The change meta-model captured all the information related to the
change and require to detect the impact of changes on transformations. For instance, for the
change, rename meta-class "DataType" as "PrimitiveType", the change model captured the
name of the impacted element i.e. meta-class "DataType", the property changed i.e. "name",
its old value i.e. "DataType" and newvalue i.e. "PrimitiveType". All this information would
captured by the meta-model in any case renaming a class, an attribute, either a relationship or
Type. Capturing the type of change assists in determining the type of action needs to take to
co-evolve transformations. For instance, if the change type is "Modify" it implies that the
corresponding transformations need some modification. This helps in classifying
transformations as well as determines the type of co-change for transformations modification.

Meta-model changes might not affect transformations only if the element experiencing the
change is not employed by the transformations. Moreover, the main reason behind classifying
changes with the minor impact on transformations as propagative is that, a meta-element
change, which requires co-change in transformations make transformations inconsistent and
transformation file does not run at all and generate an error. The change "Extract superclass"
were not propagated accurately. The approach generated only transformation for the added
super class. While it requires not only the addition of transformation but also the reference to
that superclass by the corresponding transformation of child classes.

The changes identified were then mapped on the traces to find the impacted transformations.
The impacted element name and type was taken from the change model and was mapped on
the trace. Apart from that the type of change is also captured. Capturing the type of change
assists in determining the type of action needs to be taken to co-evolve transformations. It also
assists in classifying the transformations according to the proposed classification scheme
according to the proposed criteria.

Since the trace meta-model is able to capture implicit as well as explicit transformations as
demonstrated in the previous chapter by employing it on running example. Therefore, the
possibility of the implicit way of transforming references is more obvious.

Propagative transformation
. Non- Add Generate

Transformations Co-evolution in Response to Meta-model Evolution 110

Evaluation

Trace 9

Trace 14

Rule D2P Propagative

- -- -
isPublic0: context Propagative

.
Trace 8

Trace 15

L - - -- -
propagative

- -- - - -- -
C2 Wallop

I

isFinal() Wallop

Wallop Modify and add

- -- - -
Delete and add - -" -- -
Add and modify

Use as it is

Use as it is

-- - -u --
Modify

calls
Modify and
generate - - - -- - - -
Delete and add -- --- -- - .
Add and
modify

~ o d i f y -
context - ---

Generalize meta-property
Restrict meta-property
Add meta-class
Add meta-property

Pull meta-property inate meta-class
Rename meta-property Eliminate meta-property
Move meta-property I Push meta-property
Extract super-class : Extract meta-class
Inline meta-class i Flatten hierarchy - i -

'Sable 7-3 charge classification

7.3 QVT transformations

This section explains the set-up we made for performing an experiment, discusses, and assesses
the results of our proposed approach for PetriNet transformations written in Query view
transformation language.

7.3.1 Case-2 Set-up

This section summarizes the set-up we prepared to execute an experiment for validating the
proposed approach

In the first step, we extended the trace meta-model by adding model element of QVT
meta-model. Since the example is based on QVT transformations. We added the QVT
concepts particularly, the concepts related to the core and the operational part of QVT
to the trace meta-model. This enables the Trace meta-model to capture the exact
impacted part of transformations. Then, we established traces between the underlying
PetriNet model and QVT transformations. Total seven traces were captured between
sample PetriNet model and the implemented transformations in the underlying
PetriNet2PNML example. The traces are recorded as trace models conforming to the

Transformations Co-evolution in Response to Meta-model Evolution 111

Evaluation

trace meta-model. Each trace model captured the source and target of the trace. The
Table 7-5 given below illustrates the details related to traces:

'fable 7-5 sunmar) of the captured t.races

In second step, some changes were introduced to the sample petri net meta-model. The
PetrNet meta-model was refined by introducing four changes to obtain the new version
of meta-model i.e.

o TransitionToPlace and PlaceToTransition meta-classes have been added.
o The class Arc has been added as super class of the meta-classes

TransitionToPlace and PlaceToTransition.
o The class Net has been renamed as PetriNet.
o The references place and transition of the Net class have been merged in the

elements reference of the PetriNet class.
In the third step, the change introduced to the sample PetriNet model are captured as
change model. The change model captured each simple change individually. Each
change is identified and then classified according to the proposed criteria for change
classification based on its impact on transformations.
In the fourth step, the change models are employed together with the trace model to
analyze the impact of meta-model evolution on transformations.
In fifth step, the change propagation is done via employing higher order
transformations.

7.3.2 Results and discussions

During the investigation process of evaluating the applicability of the approach, the approach
applied to PetriNet transformation example. In this example, the transformations were defined
using Qvt core mappings. Total four mapping does happen between PetriNet and PNML. Total
seven traces were identified. Total six changes were introduced to the PetriNet meta-model. It
is clear from Table 7-5 that the trace meta-model is capable to capture the traces of links as
well but the links must be transformed by the transformations explicitly. The trace model is
unable to capture the implicit transformation of the links.

Table 7-6 depicts the summary of the approach's applicability. Table 7-6 clearly illustrates that
the change "merge references" is a complex change that requires multiple actions not only at
model level but also at transformation level to propagate it accurately. The change "merged
referenceUrequires the deletion of mapping content from the mapping object Net(). The
approach captured this change as the deletion of reference place and transition from model

Transformations Co-evolution in Response to Meta-model Evolution 112

Evaluation

element Net and as the addition of new reference to the model element PetriNet class. This
shows that the approach is capable to capture simple modification change while complex
modifications like "merged reference" is handled as simple additions and deletions. This results
in the context loss while propagating change to the transformations.

Table 7-7 shows the change classification. If we compare the changes introduced to the Case-
TI and I. It clearly shows that change classification may vary from example to example and
language to language. Since the impact of change depends not only the type of change but also
on the usage of model element by transformations and the relationship that transformations
hold with the meta-model. That is why change that might not have an impact and classify as
non-propagative in one case might have a drastic impact in the other underlying case and fall
in a wallop class.

We have not observed any of the non-propagative change in Case-11. Four out of six changes
were propagative while two were classified as wallop changes. The change "Merged
References" were a complex change and it was not identified as "merge references". It was
identified as the deletion of reference "place" and "transition" and the addition of new element
"Element", addition of reference "element" and "net" between class "Element" and "Net". The
deletion of reference "place", "transition", and addition of class "Element" were handled
accurately. However, the addition of reference "net" and "element" were not handled accurately
as these two reference required the modification the previously added transformation and the
approach simply generated transformation for both of references.

The change add reference "net" and "element" were erroneously classified as non-propagative
by the approach. Complex changes like "merged references" are not handled by our approach
and while handling such changes the actual context ofthe change is lost and hence, the changes
were propagated erroneously. This shows the limitation of our approach that does not handled
references and complex modifications accurately. It requires further investigation. We
observed in previous case that implicit traces between references and transformations were not
captured. This requires further improvement to handle the references as well as complex
modifications.

Transformations Co-evolution in Response to Meta-model Evolution 113

Evaluation

E Non- Add Generate
propagative transformation transformation

E I Non- ; Add statement : Mod@

Add super class Pull meta-property

7.4 Kermeta transformations
The third case we considered to evaluate our approach is the Kermeta transformation example
i.e. Class2Relational. This section elucidates the set-up we made to evaluate the applicability
and validity of our proposed approach by applying it on Kermeta transformation example.

This section sums up the set-up we prepared to execute an experiment for validating the
proposed approach on Kermeta transformation example.

In the first step, we extended the trace meta-model by adding model element of Kermeta
meta-model. Since the example is based on Kermeta transformaticns. We added the
essential Kermeta concepts particularly, the concepts used to specify transformations
to the trace meta-model. This enables the Trace meta-model to capture the exact
impacted part of transformations. Then, we established traces between the underlying
"Class" model elements and Kermeta transformations. The traces are recorded as trace
models conforming to the trace meta-model. Each trace model captured the source and
target of the trace. The Table 7-8 given below illustrates the details related to traces:

Transformations Co-evolution in Response to Meta-model Evolution 114

Evaluation

In second step, some changes were introduced to the sample considered "Class" meta-
model. The Class meta-model was extended by introducing some changes to obtain the
new version of meta-model i.e.

o Addition of class "Feature" that classify the attribute of the class as its feature.
o The Addition of attributes "ownerscope" and "visibility" to the class "Feature"

that defines the visibility and the scope of the attribute.
o The addition of "Reference" meta-class that have upper and lower bound.
o The class is composed of references and attributes. Each reference composed of

associations having '2' association ends.

I Add class I Add Attribute I Add composition I

In the third step, the change introduced to the Class model are captured as change
model. The change model captured each simple change individually. Each change is
identified and then classified according to the proposed criteria for change classification
based on its impact on transformations.
In the fourth step, the change models are employed together with the trace model to
analyze the impact of meta-model evolution on transformations.
In fifth step, the change propagation is done via incorporating co-changes to the
transformations.

-

7.4.2 Results and Discussions
The proposed approach is applied on the considered Kermeta example. The possible changes
added to the class meta-model was addition of classes, attributes, references of type
composition and aggregation and its effect were analysed. The nature of Kermeta
transformations and the structure of transformation definition is quite different from the other
considered transformation languages i.e. ATL and QVT. The transformations are defined as
operations and the processing is done like general-purpose languages. Therefore, the impact of
evolution were observed to be quite different and illustrated different results.

The approach captured nine traces as trace model successfully and identified the exact location
where the model elements are employed by the transformations. Trace for the attributes
"isAbstractM and "multivalued" showed that there is no target element for those two model
elements. This indicates that if these model elements are modified they will not impact any

Table 7-9 Change Classification

- - -

Add association end-

Transformations Co-evolution in Response to Meta-model Evolution 115

Add Associations

Evaluation

transformations and therefore the corresponding transformations are copied automatically. The
rest of the traces captured the transformations as well the calls to that transformations, which
would be helpful in propagating corresponding changes to the transformations.

The addition of meta-class "Feature" did not affected any transformation and it does not need
to be propagated since, this class is defined as parent class of the meta-class "Attribute". The
purpose of this addition is the extension of meta-model and to define the scope and visibility
of the attribute. Therefore, the generation of transformation for meta-class "Feature" would be
less significant. However, the meta-attributes "ownerscope" and "visibility" of meta-class
"Feature" would be propagated. The reason of their classification as propagative is that one can
now define scope and visibility of the attributes and the transformations must need to take into
account its visibility and scope.

The addition of association end were classified by our approach as propagative. However, the
association ends are handled already by the transformations and it cannot effect
transformations. The approach classified it as propagative and the corresponding action taken
for propagating the change to transformations make a change that was ambiguous and created
duplicate statements that caused an error.

The addition of new reference types i.e. "aggregation" and "composition" were not evaluated
in the previous example. Both the changes require to define operation and require to create
tables while generating relational model. This requires a highly intelligent mechanism to
generate operation that handle the added relationships. This showed that co-evolution of
transformation can be hard in case of additions as well.

7.5 Simplified View of Classified Changes and Corresponding Action for Case-I
After applying the approach on three different example, we observed the pattern of
classification that is explained in the Table given below:

Eliminate Meta-Class

Transformations Co-evolution in Response to Meta-model Evolution 116

Evaluation

Eliminate Meta-property Deletion af the rule is
required along with the
references made to it and
values initialized for that -7
particular property

Restrict Meta-property Modification is required
to limit tke bounds

Add Meta-property New conditions and
transformations require to
be added along with the
bindings

Add Meta-class New conditions,
transformations and
bindings is required to be
added

Extract Meta-class Add transformations and
modify context for the
properties moved to the
that class -

Inline Meta-class To modify the context of
the transformations
defined the properties
moved and the deletion of
the transformation

Move Meta-property The transformations
context require
modification

Table 7-10 C'lassiti~tltion of ~nodei element changes
7.6 Comparison
The exiting approaches for transformations co-evolution use the strategies and schemes devised
for model co-evolution problem. Therefore, in addition to the inherent limitations, these
approaches have some additional issues that are particular to transformations co-evolution
problem. Our approach employs dedicated mechanisms we formulated specifically for
transformation co-evolution problem keeping in mind:

The difference between the nature of models and transformations.
The difference in the nature of relationship between meta-model/transformations and
meta-model/models. and
In case of transformations co-evolution the impact of change not only depends on the
type of change but also on the usage of model element by transformations and the
intelligence the transformations use to generate model elements.

This section compares our approach with the existing approaches by considering whether they
support the essential steps that one must carry out while performing the process of co-evolution.
We also performed the comparison based on the essence of the approaches by setting criteria.
Below is Table 7-1 1 comparison with the existing approaches that summarizes the comparison
of the approaches.

Transformations Co-evolution in Response to Meta-model Evolution 117

Evaluation

Co-evolution Change Change Impact Change
Approach Detection Classification Analysis Propagatiodco-

Evolution

Difierence
Based
Approach

Use any of the Uses E Uses higher
existing tool classification order

scheme of transformations
model co-
evolution

Defmes and Definc~,. . ,:&
uses a dedicated ddicatai '. . ;

mechanism to s c h w

'1 able 7-1 1 rom1)arison with the rxistinp appvuacheu

7.6.1 Difference detection and identification mechanisms

The existing transformation co-evolution approaches suppose either meta-model change
history is already available (which is not feasible in every case) or use the available tools
dedicated to difference detection (which requires the integration of tools). However, our
approach is significantly different fiom existing approaches regarding the change detection and
identification phase. Our approach proposes and employs a dedicated mechanism to identify
changes between two versions of meta-model. Therefore, our approach do not require tool
integration neither the availability of the meta-model change history. It is capable to identify
changes if the two versions of the meta-model are available. It addresses all the issues and
cover up the limitations of existing approaches.

7.6.2 Change Classification Scheme

The existing approaches use the classification scheme proposed for model co-evolution process
ignoring the difference in the essence of models and transformations and the type of
relationship that they hold with meta-model. Our approach have a classification scheme that
considers the difference in both the nature of models and transformations and the difference in
the type of relationship that meta-model holds with transformations and models. This makes
our approach significantly different from the existing approaches and is appropriate for solving
the problem of transformations co-evolution.

7.6.3 Impact Analysis

The existing co-evolution approaches does not provide any support for performing impact
analysis. Impact analysis is an important step; need to perform to identify the impacted parts
of transformations. Therefore, that meta-model change can be accurately propagated to
transformations to co-evolve transformations and make transformations consistent to the
evolved version of meta-model. The Operator based approach defines coupled operators for
the co-evolution of meta-model and ATL transformations they analyzed the transformations
manually to identify that model element change can influenced which parts of the
transformation. They defined operators for propagating changes excluding the impact analysis
part. While our approach identify the impacted transformations during performing, the co-

Transformations Co-evolution in Response to Meta-model Evolution 118

Evaluation

evolution process and we used a meta-model based strategy to identify the impacted
transformations, which enables the approach applicable on a variety of transformations written
in any language.

7.6.4 Migration Strategy

For transformations co-evolution, we used a relationship based change propagation mechanism
while the existing approaches used either Higher Order Transformations (HOT) or operators.
The availability of multiple operators creates misperception and the selection of incorrect
operator can lead to incorrect migrations. Similarly, the transformations migration in
difference-based approach depends on the difference captured by the comparer. Our approach
used relationship-based approach, which employs the relationship to locate inconsistencies in
transformations and therefore, lead to correct change propagation.

7.7 Assessment
This section emphasizes mainly the key advantages and the limitations of our proposed
approach. We observed numerous benefits of the proposed approach and some limitations we
will discuss in the next subsections.

7.7.1 Benefits
During the execution of the designed experiments, various unique features and advantages of
the proposed approach are observed. The key benefits that our approach offers over the existing
approaches are discussed in this section.

Generic Approach: our approach is generic approach, which is proficient enough to co-evolve
transformations written in any dedicated transformation language. The approach is generic
enough to be applicable on transformations written in any dedicated transformations language.

Systematic Approach: Our approach is systematic i.e. it supports the entire process starting
with the detection of changes between two versions of meta-model, establishing a relationship
between model elements and transformations, analyzing the impact of change and propagating
the change to the transformations.

Implementable Approach: our proposed approach is implementable. We provided a co-
evolution algorithm, which can be implemented to provide a tool support that can co-evolve
transformations automatically.

Meta-model Independent Approach: It is independent of the meta-model as well. The
approach is applicable on any type of meta-model either EMFlEcore based or MOF based. This
makes our approach distinct and better from the existing approaches for transformations co-
evolution.

Transformation Language Independent Approach: it is independent of the transformation
language i.e. this approach is applicable on transformations written in any dedicated
transformations language. This makes our approach generic and diverse and marks as distinct
and better from the existing transformations co-evolution approaches.

Synthetic Correctness: our approach ensures the synthetic correctness of evolved
transformations by employing relationship based approach to propagate model element
changes.

Support source and target meta-model evolution: Our proposed approach is capable to
support the evolution of both source and/or target meta-model and co-evolution of

Transformations Co-evolution in Response to Meta-model Evolution 119

Evaluation

transformations in response to sourceltarget meta-model. The trace meta-model as well as the
difference meta-model is independent of the meta-model type and its usage in transformations.
It can capture the traces for meta-model either it I used on the left hand side of transformations
or at the right hand side of transformations.
Relationship based change propagation: Our approach is capable to propagate changes based
on the relationship between model elements and transformations. This make the approach
capable to capture the usage of model elements by transformations, which was ignored by the
previous transformations co-evolution approaches, and therefore making those approaches
incapable to propagate change changes appropriately.

Difference Representation and Visualization: Our approach provide a means to represent
and visualize changes introduced in the new version of meta-model. The aim to define
difference mechanism is to provide a means to represent version differences, capture changes
appropriately and in a structured way and to propagate change impact in well-defined way. Our
difference mechanism not only represent and visualize differences between different versions
of meta-models but assists in identifying and classifying meta-model changes based on its
impact on transformations.
Minimal User Intervention: our proposed approach required minimal user intervention. The
user needs only to validate either the transformations are co-evolved correctly by executing co-
evolved transformations on the evolved meta-model instances.

7.7.2 Limitations
Nonetheless, our approach provides numerous features that are distinct and better from the
existing approaches. Yet some limitations exist that confines the applicability of the approach
and that requires attention and in-depth study and analysis to overcome. Below are the major
limitations of our proposed approach observed during the conduction of case study.

Capturing traces for implicitly transformed model element: Our study results illustrated
that this approach is not capable to capture the traces for the linkstreferences that transformed
implicitly by the transformations. This means that the model elements that are explicitly used
by the transformations is captured by the proposed approach but the model elements that are
utilized by the transformations implicitly cannot be traced by the transformations.
Capturing complex modifications: Complex changes e.g. modifications that requires
multiple additions and deletions are identified and handled by the approach as simple additions
and deletions of the model elements, which results the loss of the context of change while
propagating the change to transformations.
Application to Diverse examples: we applied our approach on three different examples. To
demonstrate and validate its applicability on a variety of transformations, it should be applied
to additional diverse and large examples.

Transformations Co-evolution in Response to Meta-model Evolution

Chapter. 8 Conclusion and Future Work

Conclusion and Future Work

8.1 Introduction

This chapter is dedicated to highlight the momentous and noteworthy findings from this
research. The entire research and its significant findings are summarized as general conclusion
in section 8.2. As a final point, section 0 sums up some future key research directions identified
by this search.

8.2 Conclusion

This research has an impact and can be viewed as an endowment to the area of co-evolution of
meta-model and its related artifacts particularly to the transformations, which is still an open
research area to be studied and researched intensely. The area of meta-model evolution and the
co-evolution of it related artifacts has been enriched and supported by various co-evolution
approaches, languages and tools by the industry and academia for the meta-model and model
co-evolution. These efforts make it convenient to perform the co-evolution process of meta-
model and models semi-automatically. Because of these efforts, the process of co-evolution of
meta-models and models is quite mature and plausible. The study of the existing research in
the area of co-evolution of meta-model and its related artifacts proved that meta-model model
co-evolution has been largely investigated while the problem of meta-model and
transformations co-evolution has been not sufficiently investigated and researched. This makes
it obvious that the meta-model and transformations co-evolution research is in its formative
years and the key issues need to be dealt with. Only few efforts has been made to cope up with
the problem of meta-model and transformations so far.

Existing research related to transformations co-evolution mostly employed the model co-
evolution strategies ignoring the fact that there is significant difference between the nature of
these artifacts and their relationship to the meta-model. The relationship between meta-model
and transformations does not only be influenced by the type of relationship but also the usage
of model element by transformations and the intelligence the transformations employed to
transform source elements into target elements. It makes the employment of model co-
evolution strategies on transformations impractical and the results are not viable and
practicable. The supposition that meta-model change history is available, further confines the
applicability of the existing co-evolution approaches to transformations co-evolution. The co-
evolution approaches particular to the transformations co-evolution does not cover the entire
co-evolution process. Some of the approaches define only the co-evolution strategy while
assuming that meta-model change history is already available while few of them only
concentrate on the recovery of meta-model change history.

A broad and thorough study of the existing research discloses the fact that current approaches
are not systematic and holistic in nature, which could cover the entire process of
transformations co-evolution. As discussed above, some of the approaches are concerned with
devising strategies for transformations co-evolution neglecting the fact of model element
change identification and detection. While others focused on employing the model migration
strategies leaving the fact of change in the nature of models and transformations and the
relationship that does exist between meta-models and models and meta-models and
transformations, behind.

Transformations Co-evolution in Response to Meta-model Evolution 122

Conclusion and Future Work

This study also reveals that transformations languages employed to specify transformations
also vary in nature as well as the way they specify transformations. It makes it clear that the
usage of model element by transformations will also differ and ultimately the impact of same
model element change might influence transformations of different transformation languages
entirely in different way. It might be possible that one transformation written in transformation
language x can be automatically adapted to the change in model element while the
transformation defined in language y consuming the same model element might require human
assistance. This makes the idea of automatic evolution of transformations a bit more difficult
than expected or assumed and needs further investigation. Our research originates from these
interpretations and elucidations to believe and consider the systematic and automated approach
as one holistic solution to resolve the issues identified by this research study and to answer the
research challenges of transformations co-evolution process via providing traceability and
change propagation support.

In this research study, we have devised a systematic and automatable approach to
transformation co-evolution by employing the concepts of relationship based change
propagation, i.e., tracing model elements through transformations and difference representation
and visualization. The algorithm is designed to support and automate the co-evolution process.
First, model elements of input source model are traced to transformations to identify model
element usage by transformations and to utilize it later on for relationship based change
propagation and impact analysis. Second, the changes incorporated in the new version of meta-
model are identified and captured as change models. The change model captures the change
along with every detail essential for analyzing its impact on transformations and for
propagating change to the transformations. The change model either is capable to capture each
change individually or as sequence, depends on the type of strategy employed. Third, for
analyzing the impact of model element on transformations or its propagation, the approach
used the change model and trace model. The recorded change and the model element and
change type is selected from the change model and traces are searched for the selected model
element. Once the trace having the underlying model element is identified, it is navigated to
capture the particular part where the model element is used. Fourth, the impacted
transformations are classified according to the proposed classification scheme. The next step
is to search the impacted part in the actual transformation file and to incorporate the co-change
identified during impact analysis.

An algorithm referred as transformations evolver abbreviated as Co-Evo supplements the
proposed approach. We executed the algorithm successfully on the underlying examples. It
takes the old and new version of meta-model and a transformation file as input. The algorithm
comprised three basic parts i.e. the change detection and classification, tracing model elements
and transformation and analyzing change impact and propagating this change to the
transformation file. The approach is generic enough to be applicable on transformation
specified in any transformation language as well as to any type of meta-model. The
experimental results illustrated the applicability and generality of the approach. However, the
only pre-requisite is that the trace meta-model must be extended and enriched by the
transformation language elements of the considered transformations.

Transformations Co-evolution in Response to Meta-model Evolution

Conclusion and Future Work

An in-depth and thorough analysis of the experimental results bring out that our approach is
capable to propagate model element change keeping the synthetic correctness preserved. It re-
establish the consistency relationship between model elements and transformations
successfully and in a systematic way. The approach is capable to copy the transformations that
are not impacted by the model element change. Changes can be represented and visualize as
model conforming to the change meta-model.

The comparison of our approach to the existing transformations co-evolution approaches
showed significant difference. Our approach support to carry out the impact analysis activity
for transformations co-evolution process. While none of the existing approaches provide
support to carry out impact analysis for co-evolution process. To carry out impact analysis
activity to co-evolve transformations, showed promising results. It assisted not only in
identifying the impacted parts of transformations but also the model element usage by
transformations. The comparison also illustrated that none of the existing approach is using
dedicated change classification scheme for transformations co-evolution process. We proposed
and used dedicated change classification scheme that classifies changes according to its impact
on transformations. Furthermore, the employment of relationship based change propagation
mechanism showed momentous results. This mechanism employed a relationship between
model element and transformations to propagate change. The exact part of the transformation,
which uses the model element, is identified by establishing traces between model element and
transformations during mapping element step. This relationship along with the change model
is then used to identify the impacted part and part and incorporating co-change to
transformations. This ensures the correct change propagation to transformations.

However, the proposed approach have also some limitations. The trace meta-model is not
capable to capture traces for model elements that are transformed implicitly by the
transformations. Furthermore, the change model could not capture complex modifications e.g.
"merged references" accurately. This change was captures as sequence of individual changes
and migration action was taken accordingly, which resulted in the loss of the context of change
and therefore the change is propagated erroneously.

8.3 Future Work

This section discusses and highlights the potential research areas that need to be further
investigated and explored.

8.3.1 Tool support

The proposed approach is automatable and need to be implemented. The supported algorithm
and its successful execution and demonstration on the three underlying examples proved its
applicability and practicability. The best tools and language that will assist in its
implementation are the Eclipse Modeling Frame work (EMF), OCL, Ecore, JAVA and
Kermeta.

8.3.2 Design Validation strategy

We performed the validation of co-evolved transformations manually by employing co-
evolved transformations on the instances of the new version of meta-model. A suitable
validation mechanism is required to be designed to make it possible to automate the validation
process of the co-evolved transformations.

Transformations Co-evolution in Response to Meta-model Evolution

Conclusion and Future Work

8.3.3 Defining Semantic Relationship and ensuring Semantic correctness

The proposed approach guarantees the synthetic correctness of the evolved transformations but
the semantic correctness still needs to be investigated as the semantic relationship between
meta-model and transformations is still not well-defined and is ambiguous. The semantic
relationship between meta-model and transformations need to be first explored and defined and
established appropriately. After defining the semantic relationship, it would become easy to
explore and investigate methods and mechanisms to ensure it.

8.3.4 Investigate reverse transformations co-evolution
We have validated the applicability ofthe proposed approach by applying it on the source meta-
model of transformations. As this presented approach is devised keeping in mind the target
meta-model as well. In addition, we claim that it is capable to handle the co-evolution of target
meta-model and transformations, therefore co-evolution of target meta-model and
transformations need to be investigated in future.

8.3.5 Unified Solution for Co-evolution of models and transformations

The researchers investigated the problem of co-evolution of models and transformations
separately. A possible research idea is to compare both problems and the existing approaches
to address these problems to identify the commonality and variability. Based on the identified
commonality and variability, a unified solution can be designed and implemented.

8.3.6 Co-evolution management Processes and structures
As the co-evolution is continues and step by step process, therefore it needs to be handled in a
structured and systematic way. Hence, appropriate structures and process for managing the
process of co-evolution of meta-model and its related artifacts needs to be investigated and
defined.

8.3.7 Transformation migration notations
An open research challenge is the identification of appropriate notations for defining and
specifying transformations migration strategy. Existing approaches employed either general-
purpose programming languages or higher order transformation languages. The migration
strategy is a specialization of model transformations languages, therefore to define specialized
languages for defining transformation migration might be more appropriate.

8.3.8 Application to diverse transformations languages

Presently, we have demonstrated the diverse and generic nature of our approach by applying it
on transformation example specified using three different transformations languages i.e. QVT,
ATL and Kermeta. To investigate its generality it should be applied to the transformation
example specified using other transformation languages in future.

8.3.9 Application to industrial case studies
We have demonstrated the applicability of the proposed approach by applying it on small and
medium sized transformations examples. Nonetheless, to prove its effectiveness its
applicability to large industrial case study should be investigated in future.

Transformations Co-evolution in Response to Meta-model Evolution

References

References
D. C. Schmidt, "Model-Driven Engineering," Computer, vol. 39(2), pp. 25-31,
2006.
J. Garcia, 0. Diaz, and M. Azanza, "Model transformation co-evolution: A semi-
automatic approach," in Software Language Engineering, ed: Springer, 201 3, pp.
144-163.
J.-M. Favre, "Meta-model and model co-evolution within the 3D sofhvare
space," in ELISA: Workshop on Evolution of Large-scale Industrial Software
Applications, 2003, pp. 98-109.
L. Iovino, A. Pierantonio, and I. Malavolta, "On the Impact Significance of
Metamodel Evolution in MDE," Journal of Object Technology, vol. 1 1, pp. 3: 1 -
33,2012.
K. Garces, F. Jouault, P. Cointe, and J. Bezivin, "Adaptation of models to
evolving metamodels," 2008.
M. W. T. Mens, S. Ducasse, S. Demeyer, R. Hirschfeld, and M. Jazayeri,
"Challenges in software evolution," IWPSE,, pp. 13-22,2005.
D. S. K. L. M. Rose, R. F. Paige, and F. A. C. Polack, "Enhanced automation for
managing model and metamodel inconsistency," ASE, pp. 545-549,2009.
D. Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio, "A methodological
approach for the coupled evolution of metamodels and at1 transformations,"
Theory and Practice of Model Transformations. Springer Berlin Heidelberg, pp.
60-75,2013.
D. Mendez, et al., "Towards transformation migration after metamodel
evolution.," Model and Evolution Workshop. 2010, 2010.
B. Boehm, "A view of 20th and 21st century sof'tware engineering," 2006, pp.
12-29 %@ 159593375 1.
J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, &d J. Sprinkle,
"Domain-specific modeling," Handbook of Dynamic System Modeling, pp. 7-1,
2007.
A. Kleppe, J. Warmer, and W. Bast, "MDA Explained. The Practice and Promise
of The Model Driven Architecture," ed: Addison Wesley Reading, 2003.
D. Frankel and J. Parodi, "Using model-driven architecture to develop web
services," IONA Technologies white paper, 2002.
J.-M. Favre, "Foundations of model (driven)(reverse) engineering: Models,"
2004.
S. Kent, "Model driven engineering," 2002, pp. 286-298 %@ 3540437037.
D. C. Schmidt, "Model-driven engineering," COMPUTER-IEEE COMPUTER
SOCIETY-, V O ~ . 39, pp. 25 %@ 0018-9162,2006.
M. Blaha and J. Rumbaugh, Object-oriented modeling and design with UML:
Pearson Education Upper Saddle River, 2005.
B. Selic, "The pragmatics of model-driven development," IEEE software, vol.
20, pp. 19-25 %@ 0740-7459,2003.

References

F. Truyen, "The Fast Guide to Model Driven Architecture The Basics of Model
Driven Architecture," URL: htt~://www. omg. org/mda/presentations. htm,
January, 2006.
J. BCzivin, "On the unification power of models," Software & Systems Modeling,
vol. 4, pp. 171-188 %@ 1619-1366,2005.
C. Atkinson and T. Kuhne, "Model-driven development: a metamodeling
foundation," Software, IEEE, vol. 20, pp. 36-41 %@ 0740-7459,2003.
0. M. G. Uml, "2.0 Superstructure Specification," OMG, Needham, 2004.
T. Kiihne, "Matters of (meta-) modeling," Software & Systems Modeling, vol. 5,
pp. 369-385 %@ 1619-1366,2006.
A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, "Meta-model
differences for supporting model co-evolution," in proceedings of the 2nd
Workshop on Model-Driven Software Evolution, MoDSE '2008,2008.
Q. Omg, "Meta object facility (mof) 2.0 query/view/transforrnation
specification," Final Adopted Specijication (November 2005), 2008.
T. Mens and P. Van Gorp, "A taxonomy of model transformation," Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 125-142 %@ 1571-0661,
2006.
K. Czarnecki and S. Helsen, "Classification of model transformation
approaches," 2003, pp. 1-17.
F. Allilaire, J. Bkzivin, F. Jouault, and I. Kurtev, "ATL-eclipse support for model
transformation," 2006.
A. Group, "ATL User Manual Version 0.7," LINA & INRIA, 2006.
A. G. Ismnenia GalvWao, "Survey of Traceability Approaches in Model-Driven
Engineering. "
A. Cicchetti, D. Di Ruscio, and A. Pierantonio, "Managing dependent changes
in coupled evolution," in Theory and Practice of Model Transformations, ed:
Springer, 2009, pp. 35-5 1.
M. Eysholdt, S. Frey, and W. Hasselbring, "EMF Ecore based meta model
evolution and model co-evolution," Softwaretechnik-Trends, vol. 29, pp. 20-21,
2009.
B. Gruschko, D. Kolovos, and R. Paige, "Towards synchronizing models with
evolving metamodels," in Proceedings of the International Workshop on Model-
Driven Software Evolution, 2007.
A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, "Co-evolution of Metamodels
and Models through Consistent Change Propagation," in ME 2013-Models and
Evolution Workshop Proceedings, 20 13, p. 14.
M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth, "An extensive
catalog of operators for the coupled evolution of metamodels and models," in
Software Language Engineering, ed: Springer, 201 1, pp. 163-1 82.
B. Hoisl, Z. Hu, and S. Hidaka, "Towards Co-Evolution in Model-driven
Development via Bidirectional Higher-Order Transformation."
S. Becker, B. Gruschko, T. Goldschrnidt, and H. Koziolek, "A process model
and classification scheme for semi-automatic meta-model evolution," in 1st

References

Workshop MDD, SOA und IT-Management (MSI), GI, GiTO-Verlag, 2007, pp.
35-46.
L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack, "Model migration with
epsilon flock," in Theory and Practice of Model Transformations, ed: Springer,
2010, pp. 184-198.
G. Wachsmuth, "Metamodel adaptation and model co-adaptation," in ECOOP
2007-Object-Oriented Programming, ed: Springer, 2007, pp. 600-624.
J. Schoenboeck, A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Schwinger, M.
Wimmer, and M. Wischenbart, "CARE-A Constraint-Based Approach for Re-
Establishing Conformance-Relationships," Information Technology (CRPIT),
vol. 20, p. 23,2014.
S. Roser and B. Bauer, "Automatic generation and evolution of model
transformations using ontology engineering space," in Journal on Data
Semantics XI, ed: Springer, 2008, pp. 32-64 %@ 3540921478.
M. Herrmannsdoerfer, S. Benz, and E. Juergens, "COPE-automating coupled
evolution of metamodels and models," in ECOOP 2009-Object-Oriented
Programming, ed: Springer, 2009, pp. 52-76.
M. Herrrnannsdoerfer and M. Koegel, "Towards semantics-preserving model
migration," in International Workshop on Models and Evolution, 201 0.
M. Herrmannsdoerfer, "Migrating UML activity models with COPE,"
Transformation Tool Contest 201 0 1-2 July 201 0, Malaga, Spain, p. 72,20 10.
B. Meyers, M. Wimmer, A. Cicchetti, and J. Sprinkle, "A generic in-place
transformation-based approach to structured model co-evolution," Electronic
Communications of the EASST, vol. 42, 2012.
M. Herrrnannsdoerfer, S. Benz, and E. Juergens, "Automatability of coupled
evolution of metamodels and models in practice," in Model Driven Engineering
Languages and Systems, ed: Springer, 2008, pp. 645-659.
M. Wimmer, A. Kusel, J. Schonbock, W. Retschitzegger, W. Schwinger, and G.
Kappel, "On using inplace transformations for model co-evolution," in
Proceedings of the 2nd International Workshop on Model Transformation with
ATL (MtATL)@ TOOLS, 2010, pp. 65-78.
S. D. Verrnolen, G. Wachsmuth, and E. Visser, "Reconstructing complex
metamodel evolution," in Software Language Engineering, ed: Springer, 2012,
pp. 201-221.
A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Karsai,
"Automatic domain model migration to manage metamodel evolution," in Model
Driven Engineering Languages and Systems, ed: Springer, 2009, pp. 706-71 1.
M. Herrrnannsdoerfer and D. Ratiu, "Limitations of automating model migration
in response to metamodel adaptation," in Models in Software Engineering, ed:
Springer, 2010, pp. 205-219.
M. Herrrnannsdoerfer and M. Koegel, "Towards a generic operation recorder for
model evolution," in Proceedings of the 1st International Workshop on Model
Comparison in Practice, 2010, pp. 76-81.
A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, "Automating co-
evolution in model-driven engineering," in Enterprise Distributed Object

References

Computing Conference, 2008. EDOC108. 12th International IEEE, 2008, pp.
222-23 1.
A. Cicchetti, D. Di Ruscio, and A. Pierantonio, "A Metamodel Independent
Approach to Difference Representation," Journal of Object Technology, vol. 6,
pp. 165-185,2007.
A. Cicchetti, F. Ciccozzi, T. Leveque, and A. Pierantonio, "On the concurrent
Versioning of Metamodels and Models: Challenges and possible Solutions," in
Proceedings of the 2nd International Workshop on Model Comparison in
Practice, 201 1, pp. 16-25.
A. Cicchetti, F. Ciccozzi, and T. Leveque, "A Solution for Concurrent
Versioning of Metamodels and Models," Journal of Object Technology, vol. 11,
pp. 1:l-32, 2012.
L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, "An analysis of
approaches to model migration," in Proc. Joint MoDSE-MCCM Workshop,
2009, pp. 6-15.
S. Kruse, "On the use of operators for the co-evolution of metamodels and
transformations," in International Workshop on Models and Evolution, 201 1.
D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modelingframework: Pearson Education, 2008.
"Emftext project: concrete syntax mapper available at
http://www.reuseware.ortzlindex.php/EMFText.."
F. Jouault, BCzivin, J., Kurtev, I., "TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering.," In: Procs of the 5th Int. Con$ on
Generative programming and Component Engineering (GPCE '06), vol.
ACM(2006), pp. 249-254.
S. Efftinge and M. Volter, "oAW xText: A framework for textual DSLs," 2006,
p. 118.
D. Di Ruscio, R. Lammel, and A. Pierantonio, "Automated co-evolution of GMF
editor models," in Software Language Engineering, ed: Springer, 20 1 1, pp. 143-
162 %@ 3642194397.
D. Di Ruscio, L. Iovino, and A. Pierantonio, "What is needed for managing co-
evolution in MDE?," in Proceedings of the 2nd International Workshop on
Model Comparison in Practice, 201 1, pp. 30-38.
S. Winkler and J. Pilgrim, "A survey of traceability in requirements engineering
and model-driven development," Software and Systems Modeling (SoSyM), vol.
9, pp. 529-565 %@ 1619-1366,2010.
T. A. A. L. Naslavsky, D. J. Richardson, H. Ziv, "Using Scenarios to Support
Traceability," In TEFSE '05:Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering, pp. 25-30,2005.
A. C. W. F. 0 . C. Z. Gotel, "An Analysis of the Requirements Traceability
Problem," IEEE Computer Science Press, vol. In Proceedings of the
International Conference on Requirements Engineering., 1994.
P. v. E. J. P. Almeida, M.-E. Iacob, "Requirements Traceability and
Transformation Conformance in Model-Driven Development," Tenth IEEE

References

International Enterprise Distributed Object Computing Conference (EDOC'06),
pp. 355-366,2006.
C. K. C. J. Cleland-Huang, M. Christensen, "Event-Based Traceability for
Managing Evolutionary Change," IEEE Transactions on Software Engineering,
pp. 796-8 10,2003.
R. H. E. Gamma, R. Johnson, J. Vlissides, "Design Patterns: Elements of
Reusable Object-Oriented Software," Addison- Wesley Professional, 1995.
R. S. J. Cleland-Huang, 0 . BenKhadra, E. Berezhanskaya, S. Christina, "Goal-
centric Traceability for Managing Non-functional Requirements," In
Proceedings of the 27th International Conference on Software Engineering
(ICSE '05), pp. 362-371,2005.
B. T. N. N. Aizenbud-Reshef, J. Rubin, Y. Shaham-Gafni, "Model Traceability,"
IBM SYSTEMS JOURNAL, vol. 45,2006.
J . H. J. Grundy, W. B. Mugridge, "Inconsistency Management for Multiple-
View Software Development Environments," IEEE Transactions on Software
Engineering, vol. 1 1, pp. 960-981, 1998.
P. Desfray, "MDA-When a Major Software Industry Trend Meets Our
Toolset," Softeam, 2001.
J. G. T. Olsson, "Supporting Traceability and Inconsistency Management
Between Software Artifacts," Proceedings of the USTED International
Conference on Software Engineering and Applications, Boston, 2002.
R. F. P. N. Aizenbud-Reshef, J. Rubin, Y. Shaham-Gafni, D. S. Kolovos,
"Operational Semantics for Traceability," ECMDA Traceability Workshop,
Nuremberg, Germany, pp. 7-14,2005.
M . L. D. Hearnden, K. Raymond, "Incremental model transformation for the
evolution of model-driven systems," International Conference on Model Driven
Engineering Languages and Systems (MODELS), vol. 4199, pp. 321-335,2006.
G. B. I. Rath, A. Okros, and D. Varro., "model transformations driven by
incremental pattern matching," International Conference on the Theory and
Practice of Model Transformations (ICMT), vol. 5063, pp. 107- 12 1,2008.
L. Tratt, "A change propagating model transformation language," Journal of
Object Technology, pp. 107- 124, 2008.
R. F. P. D.S. Kolovos, F.A.Polack, "The Epsilon Object Language (EOL),"
European Conference on Model-Driven Architecture - Foundations and
Applications (ECMDA-FA), vol. 4066, pp. 128-142,2006.
J. J. M. Fritzsche, S. Zschaler, A. Zherebtsov, A. Terekhov, "Application of
tracing techniques in model-driven performance engineering," Proc. Traceability
Workshop, co-located with the European Conference on Model-Driven
Architecture - Foundations and Applications (ECMDA-FA), pp. 1 1 1 - 120,2008.
F. Jouault, "Loosely coupled traceability for ATL," In Proceeding Workshop on
Traceability co-located with the European Conference on Model-Driven
Architeclure (ECMDA), 2005.
R. F. P. N. Drivalos, K.J. Fernandes, D.S. Kolovos, "Towards rigorously defined
model-to-model traceability," In Proceeding Workshop onTraceability, co-

References

located with the European Conference on Model Driven Architecture
(ECMDA),, 2008.
S. A. Bohner, "Software change impacts - an evolving perspective," In
Proceeding International Conference on Software Maintenance (ICSM), pp.
263-272,2002.
Y. L. L.C. Briand, L. O'Sullivan, "Impact analysis and change management of
uml models," In Proc. International Conference on Sofiware Maintenance
(ICSM), pp. 256-265,2003.
B. S. Lerner, "A model for compound type changes encountered in schema
evolution," ACM Transactions on Database Systems, pp. 83- 127,2000.
A. K. R.M. Fuhrer, M. Keller, "Refactoring in the Eclipse JDT: Past, present,
and future," In Proc. Workshop on Refactoring Tools (WRT), co-located with
European Conference on Object-Oriented Programming (ECOOP), 2007.
R. F . P. L.M. Rose, D.S. Kolovos, F.A.C. Polack, "The Epsilon Generation
Language," In Proceedings European Conference on Model Driven Architecture
-Foundations and Applications, vol. 5095, pp. 1-16,2008.
J. 0 . G.K. Olsen, "Scenarios of traceability in model to text transformations," In
Proceeding European Conference on Model-Driven Architecture - Foundations
and Applications (ECMDA-FA), vol. 4530, pp. 144- 156,2007.
C. T. T.N. Nguyen, E.V. Munson, "On product versioning for hypertexts," In
Proc. International Workshop on Sofiware Conguration Management (SCM),
pp. 113-132,2005.

[90] http: //www.eclipse.org/atl/atlTransformations/.

