
Model Based Testing of Aspect-Oriented Software using UML

Diagram

A THESIS PRESENTED

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF

MS IN SCFIWi\REE^ONEERING

BY

SANAAKBAR
B7-FBAS/MSSE/F06

SUPERVISED BY
ASSISTANT PROFESSOR

SALMA IMTIA2

Department of Computer Science 8c Software
Engineering

Faculty of Basic and Applied Sciences
International Islamic University, H-IQ, Islamabad

(December 2011)

Accession No..

f\
- C j: y r y ^ (A ^ t/S t

2 / - J l p f i iA o ^ 'o u ,

Final Approval

Date:

It is certified that we have read the research thesis report and have fully evaluated the research
undertaken by Sana Akbar Registration No. 137-FBAS/MSSE/F06. ITiis research*thesis fully
meets the requirements of Department of Computer Science and Software Engineering and
hence, International Islamic University Islamabad.

External Examiner

Dr. Muhammad Ramzan
Assistant Professor t
Department of Software Engineering
FUIEMS, New Lalazarf
Rawalpindi

Internal Examiner,

Dr. Abdul Rauf
Assistant Professor
Department of Computer Science and Software Engineering
Faculty of Basic and Applied Sciences
International Islamic University Islamabad

Supervisor

Miss Salma Imtiaz
Assistant Professor
Department of Computer Science and Software Engineering
Faculty of Basic and Applied Sciences
International Islamic University Islamabad

D ed ic a tio n

/ would like to dedicate my research work to the

HOLIEST man Ever Born on Earth, PROPHET

Muhammad (Peace Be Upon Him) and

I also dedicate my work to my
PARENTS

Whose sincere love and prayers are a source of

strength for me and made me to do this research work

successfully.

SANAAKBAR
137-FBAS/MSSE/F06

A dissertation submitted to the

Department of Computer Science &

Software Engineering. Faculty of

Basic and Applied Sciences.

International Islamic University. Islamabad.

as a partial fulfillment of the requirements

for the award o f the degree of

MS in Software Engineering (MSSE)

D e c l a r a t io n

I hereby declare that this Thesis ‘Model Based Testing of Aspect-Oriented Software using
UML Diagram”, neither as a whole nor as a part thereof, has been copied out from any
source. It is further declared fliat I have written this thesis entirely on the basis of my personal
efforts, made under the proficient guidance of my thesis supervisor. Miss Salma Imtiaz.

If any part of this research thesis proved to be copied or found to be a research of some other
individual, I shall standby the consequences.

No portion of the research work presented in this thesis report has been submitted in support
of any other degree or qualification of this or any other University or institute of learning.

Sana Akbar
137-FBAS/MSSE/F06

ArKNOWT.KDGFMENT

In the name of Allah, the most passionate and the most merciful whose blessings made it
possible for me to complete this research work. It is a great pleasure for me to complete it
successfully. It is all because of Almighty Allah’s guidance that made me so able.

I owe my deepest gratitude to my thesis supervisor Miss Salma Imtiaz whose brain was behind
the theoretical raw idea of this research work. Without her guidance and supports it was not
possible to complete this research work. She has made available her support in a number of
ways. Her commendable advices, sincere supervision and gracious attitude are worth mentioning
and for which 1 am extremely grateful.

I would also like to show my gratitude to my parents, sisters (Aliya, Attiya, their husbands
and their children), my husband and in-laws for their continuous support for the completion
of my work. Especially my mother, whom is responsible for my intellectual curiosity and is
always there for me in my hard time, this is the reason I am on this stage today.

Lastly, but by no means least, I would like to acknowledge Miss Iram Rauf, Miss Irum
Rubab and Sir Zafar Malik, who were always there to support me in my research work and
tolerated me.

For errors and inadequacies in this research work, I accept the
responsibility.

SanaAkbar
137-FBAS/MSSE/F06

T h f s is in B r ie f

T hksts T it l e : Model Based Testing of Aspect-Oriented Software
Using UML Diagram

O r t e c t iv e: To discover the new way of model based testing
technique in the evolving field of aspect-oriented
programs

IJ n t>e r t a k e n B y : Sana Akbar 137-FBAS/MSSE/F06

Student of MS in Software Engineering

Department of Computer Science &
Software Engineering, Faculty of Basic
and Apphed Sciences International
Islamic University, Islamabad

SlTPFI^VISEn BV!

Start Date:

Miss Salma Imtiaz

April 10, 2011.

Completion Da te: December 20,2011.

Abstract

Aspect oriented programming (AOP) with increase in modularization and abstraction also

increases risks of errors in both ways, statically and dynamically. Its constructs like

pointcut, joinpoint, advice and introduction may affect the normal execution at compile

and runtime. Therefore, well formed testing techniques are required to reduce maximum

errors in an AOP. This thesis proposes a model based testing of aspect oriented programs

to test the integration and interactions between different classes and aspects. UML 2.0

sequence diagram is used and extended for modeling the behavior of an AOP and its

testing. Interaction of classes and aspects are shown using weaved sequence diagram,

that is then converted to a Control Flow Graph (CFG) for the ease of testing from it. CFG

behaves as a secondary model to test the classes, aspects and their weaving. The thesis

proposes an algorithm to make CFG from weaved sequence diagram. It also proposes two

coverage criteria as, all message sequence coverage criterion and all post-condition

sequence coverage criterion. Both coverage criteria are applied on CFG, from which

different test paths are generated. Also faults are inserted, explicitly, in a sequence

diagram to assess whether the coverage criteria can cover the errors or not. It is'stated

that the proposed approach is capable to cover two faults such as, incorrect strength in

pointcut patterns and failure to establish expected post condition. The technique is

validated using two examples and is also partially automated.

vin

Table of Contents ^

1. INTRODUCTION 1

1.1 PROBLEM DOMAIN 3

1.2 RESEARCH QUESTIONS 3

1.3 RESEARCH METHOD 4

1.4 THESIS OUTLINE 5

2. BACKGROUND 8

2.1 TESTING 8

2.2 MODEL BASED TESTING 8

2.3 ASPECT-ORIENTED PROGRAMMING 9

2.4 ASPECT ORIENTED MODELING 10

3 LITERATURE SURVEY 13

3.1 PARAMETERS SELECTED: 17

3.1.1 Incorrect strength in pointcut patterns: 17

3.1.2 Incorrect aspect precedence 17

3.1.3 Failure to establish expected postconditions 18

3.1.4 Failure to preserve state invariants 18

3.1.5 Incorrect focus of control flow 18

1.4.1 Incorrect changes in control dependencies 18

1.4.2 Incorrect Advice Implementation 18

1.4.3 Weaving Mechanism 18

3.1.6 Modeling Notation 19

3.1.7 Artifact used 19

3.1.8 Test Coverage Criteria 19

3.1.9 Static/Dynamic Testing 19

3.1.10 Case Study 19

3.1.11 Tool Support 19

3.2 REVIEW TABLE: 20

3.3 ANALYSIS: 25

4. PROPOSED APPROACH 29

4.1 WEAVED SEQUENCE DIAGRAM 30

4:2’̂ CONTROL FLOW GENERATION i 32

4.3 PROPOSED COVERAGE CRITERIA 34

4.3.1 All Message Sequence Coverage Criterion 34

4.3.2 All Post Conditions Sequence Coverage Criterion 35

4.4 TEST CASE GENERATION 35

4.4.1 Applying All Message Sequence Coverage Criterion 35

4.4.1.1 Test Path Generation after Inserting Faults 35

4.4.2 Applying All Post Condition Sequence Coverage Criterion 36

4.4.2.1 Test Path Generation after Inserting Faults 37

4.5 Proposed faults 37

4.5.1 Missing Advice 37

4.5.2 Missing Advice Implementation 37

5 VALIDATION OF PROPOSED SOLUTION Error! Bookmark not defined.

5.1 TRANSACTION MANAGEMENT Error! Bookmark not defined

5.1.1 Weaved Sequence Diagram Error! Bookmark not defined.

5.1.2 Control Flow Generation 41

5.1.3 Test Case Generation 42

5.1.3.1 Test Path Generation by Applying All Message Sequence Coverage

Criterion 42

5.1.3.2 Test Paths Generated by Applying All Post conditions Sequence

Coverage Criterion 42

6 RESULTS OBTAINED 45

7 CONCLUSION AND FUTURE WORK 46

8 REFERENCES 49

List of Figures Page #

Figure 1 Activity Diagram of Proposed Approach 29
Figure 2 Weaved Sequence Diagram of RentalMovie 31
Figure 3 CFG build by Software using XML of Weaved Sequence Diagram 34

Chapter 1

Introduction

1. INTRODUCTION

Testing helps in minimizing possible errors that can affect the operation and function of a

system and the needs of the clients and end users [1]. It increases the quality of a system

and confidence level of stakeholders on a system [2]. The whole testing process is

comprised of analyzing the system, generating test cases using some testing technique ,

applying the generated test cases on the system under test (SUT) and finally analyzing the

results obtained with the expected results i.e. test oracles [2,1]. The whole testing process

should be automated [3] to get maximum benefits out of it. The benefits would be in

terms of cost, effort and reduced amount of time.

Model based Testing (MBT), as evident by name, is the automatable testing process

based on models [1], to facilitate the process of test selection and test results evaluation.

It allows an early detection of faults in software, as design models are made before the

implementation phase [4]. It is usually considered as black box testing technique [9], as

mostly, there are no implementation details in models. It helps to catch subtle bugs that

may create difficulty in the end. In MBT we first understand the system under test,

choose the model to represent the behavior of a system, and build it. Test cases are

generated meeting certain criteria and run on SUT. We perform MBT because models

provide a common platform for developers and testers to communicate on and also help

them to grasp the client’s needs easily. Similarly, its automation [5] will provide more

ease for the testers to test larger projects.

Aspect oriented programming (AOP) is an evolving paradigm and started a decade ago

[2]. It helps to increase modularization and abstraction in a program thus avoiding

appearance of repeated code segments, known as crosscutting concerns. It [3] extends

object oriented programming and also proposes many of its own, new constructs.

Crosscutting concern [2] is named as an aspect in AOP that is made of some constructs,

such as pointcut, joinpoint, advice and introduction. Pointcut is a set of joinpoints and

combine them with the help of few specified operators. Joinpoint is a point in base

 ̂ _

Model Based Testing o f Aspect Oriented Programs using UML Diagram

concern where implementation of an aspect has to weave in; an advice contains the

implementation of crosscutting concern that is executed at a given joinpoint. There can be

after, bSbre, around, after throwing and after returning advices. Another construct i.e.

introduction helps to add new fields, aspects, classes and interfaces to core concerns and

affect the classes structurally. All these new constructs of AOP needs new modeling and

testing techniques, other than OOP.

Aspect oriented modeling (AOM) allows to model the core concern, crosscutting concern

and their weaving process. There is no standard profile or notation to model aspects [6]

but many researchers have proposed different ideas to model it. The proposed, model

based testing approach, in the thesis is based on a modeling technique [7] that extends

sequence diagram of UML to represent aspect oriented program. UML is the standard

modeling notation [8] to represent design of software and provides an extension

mechanism such as stereotype, tagged values and constraints to model new paradigms.

The approach in the thesis adapt sequence diagram as it shows the message sequence

with respect to time. Therefore, we are able to clearly see at particular time and joinpoint,

where and when an aspect is weaved in a class. Sequence diagram also shows the control

flow between different objects and messages. Modeling of aspect oriented programs will

help to clarify and simplify the testing process of the aspect implementation, their

weaving mechanism and can facilitate in capturing faults that can originate statically or

dynamically. This is how MBT help to reduce cost, time and maintenance.

The central point of this thesis is to perform model based testing of aspect oriented

software using sequence diagram of UML. The model is converted to a control ''flow

graph to make the UML model testable. Coverage criteria are applied and test paths are

generated to see which faults can be caught by the approach. There is validation of the

approach through examples and partial automation is also done.

1.1 PROBLEM DOMAIN

Aspect oriented programming besides keeping the distributed or scattered code in one

place and helping in easy maintenance, also increases the possibility of faults in aspects,

classes and weaving process [11]. Testing, consequently, is required to be strong enough

to test the new programming paradigm. In the thesis we use model based testing to' test

AOP because it helps to test a program before its implementation; long before the

deadline; when the developers are in the process of understanding it. Weaving is the

process by which the encapsulated functionality in an aspect is inserted at a specified

joinpoint of a class. Weaving of classes and aspects is a critical task which requires

proper testing for finding static and dynamic errors. Modeling, thus, provide different

behavioral views to capture the outlook of a system. Model based testing of aspect

oriented programs requires models to be expressive and strong enough so that aspects can

be tested separately, as well as their weaving with classes. Many faults can reside in an

AOP that can also be located in its model; therefore MBT of AOP will help to decrease

the appearance of faults in future.

The current techniques used for model based testing purpose do not cover most of the

faults in aspect oriented software, resulting in weaving problems and ineffective testing

[22]. We want to cover the faults that are not addressed, yet, by such coverage criteria

which can provide effective testing technique.

1.2 RESEARCH QUESTIONS
%

The aim of the research is twofold. To motivate people towards aspect oriented

programming paradigm because it helps to modularize implementation of crosscutting

concerns (repeated code), easy maintenance of systems, greater code reusability, and

ability to test application code automatically without disturbing the code. We emphasize

the need for a model based testing technique for AOP because it [5, 12], explain

requirements, enhances communication between developers and testers; design models, if

available, eases the maintenance and can be used again for testing; the practice can be

automated; and MBT can improvise error detection ability and minimizes the testing cost

by automatically generating and executing loads of test cases.

Following are the questions that will be addressed by this research:

1. What faults are covered by existing techniques using different models and

coverage criteria?

2. How model based testing can be performed using an aspect oriented model which

can cover maximum number of faults?

1.3 RESEARCH METHOD

The research questions are answered by the following research process steps:

1. Literature review

2. Analysis of findings

3. Presenting an approach

4. Validation of the proposed approach

Following are the tasks that are carried out to achieve the specified goal;

• A study of literature to understand the concepts of Model Based Testing and the

various techniques that are widely employed.

• A study of Aspect-oriented Programming issues with a focus on its constructs

such as aspect, joinpoint, pointcut and advice and weaving between class and

aspect and what can be the faults that can originate in weaving.

• An analysis and evaluation of different techniques proposed for model based

testing of aspect oriented programs performed using a fault model and other

generic evaluation parameters. The evaluation is used to discover which faults are

being covered by the techniques, using which model and coverage criteria.

• A possible approach to increase the use of model based testing of aspect oriented

programs.

• Validation of the proposed solution through examples.
-

• Partial automation of the proposed solution.

1.4 THESIS OUTLINE

The thesis is explained and organized using following chapters as:

Chapter 2: The second chapter explains the background of the problem domain, which is

Model Based Testing, Aspect Oriented Programming and its modeling. Moreover, it

gives a broad overview of its constructs and discusses different techniques to model these

constructs in UML.

Chapter 3: The third chapter discusses the different techniques already proposed for

model based testing of aspect oriented software. It performs evaluation of each individual

technique proposed. The techniques in literature are compared and analyzed on a fault

model and on different other parameters, to judge the contributions and limitations of

each technique.

Chapter 4: The fourth chapter explains the technique that is proposed after the survey of

literature and results are attained by applying model based testing on modeling of AOPs.

The approach, proposed an algorithm to model an intermediate testable model, some

coverage criteria and generation of test cases to cover maximum faults in an AOP,

presented by a fault model.

Chapter 5: The fifth chapter validates the proposed technique in the prior chapter with the

help of an example. The chapter provides an introduction to the selected example, which

is used to explain the step by step process of the proposed technique. It is also evaluated

by a fault model that how many different faults can be caught by the application of the

proposed solution.

Chapter 6; the sixth chapter contains the result and evaluation of the proposed approach

Chapter 7: The seventh and final chapter of the thesis provides the conclusion of the work

iC done. It discusses the contribution and limitation of the work and talk about future work

that can Support in further improving the model based testing of aspect oriented

programs.

r-N

Chapter 2

Background

2 BACKGROUND

2.1 TESTING

Testing is an important task in software lifecycle to ensure its correct behavior. [13]. It is

the only function that introduces faults in software to see if software is able to cover the

problem or not. It helps to increase the efficiency and effectiveness of software. The

testing process facilitates the confidence of developers, testers, vendors and clients

towards software. The process is also a significant task as hundred percent testing cannot

be done in any case, there remains possibility for hidden errors even an extensive testing

have been performed.

2.2 MODEL BASED TESTING

Testing is now performed in many ways and MBT is one of the most popular and

acceptable testing strategy [12]. Automating the process of test generation using model is

widely known as Model Based Testing (MBT). MBT ftjlfilled the demand, of efficient

and effective software performance, of different stakeholders such as customers,

developers and testers. It also aids less cost and easy maintenance [14]. It is considered as

a noteworthy process, as OMG also has proposed UML based testing profile [15]. The

general procedure for performing model based testing is building a model, building a%
testable model, defining coverage criteria, generating test cases by applying coverage

criteria and obtaining the test results in the end [14].

Model has got a fundamental position in MBT. Various models depict different behaviors

of software, therefore, adapting and building of models must be performed with careftil

and expert advice [12]. In the literature [12] several models like finite state machine

(FSM), state charts, Markov Chain [4], and UML [8] has been used for representing

different software and their various behaviors. Sometimes, model of software does not

represent an adequate amount of information that is required for testing, which can be a

cause of failure of a system [16], The thesis, with some modifications, adapts the
_

modeling of [7] that extended UML which is a standard modehng notation and has got a

diverse range of acceptance and usage. It allows representing both the dynamic and static

nature of software.

A testable, intermediate model is build as sometimes the models are complex and'test

case generation from the design model becomes a laborious task and difficult.

Occasionally it is difficult to test directly from a model if there is a lot of information

present in the model, from which test cases cannot be derived. Therefore, at some places

either data flow graph, control flow graph, or a simple flow graph is made, depending

upon the requirements of a tester [4].

2.3 ASPECT-ORIENTED PROGRAMMING

Gregor Kiczales [36] and his team present the theory of AOP, at Xerox PARC. The need

of aspect oriented programming (AOP) originated when there is demand of same type of

security, exception handling, error handling etc at different points and levels of

programming [17]. In contrast to procedural languages, AOP is not about executing step

by step code of functionality [17]. Similarly, in contrast with OOP, AOP is not restricted

to the boundaries of an object(s), its data and methods [17]. AOP enhances OOP but not

replace it. AOP is meant to increase modularity and abstraction with the help of which

maintenance, reuse and nonfunctional requirements of software are easy to implement.

The abstraction and modularization in AOP is increased when tangled code, dispersed

throughout the sofltware implementation, is encapsulated in an aspect. Aspect is the"* main

modular unit of AOP that contains the crosscutting concerns, known as advice, and the

points, known as pointcut, where a crosscutting concern has to weave in.

Pointcut is composed of different joinpoints that shows where the crosscutting

functionality of an aspect will be executed at a particular point in a class. Pointcuts can be

static or dynamic. Static pointcuts contain the joinpoints that are known before the

execution time of a program. Dynamic pointcuts contain the joinpoints that appear in the

flow of a program execution or at runtime.

An advice contains the body of a crosscutting concern and executes at the joinpoint with

which it is attached. An advice can be before, after, around, after returning, before

returning etc. Before advice executes before the specified jointpoint and after advice

executes after the specified joinpoint. The around advice allows to cut down the normal

execution of a class and replace the class’ functionality with its own. It is primarily meant

for handling exceptions in software.

Weaving is the process by which the concerns and crosscutting concerns work mutually

with each other. The process of execution of an advice at some point of execution of a

method of a class is known as weaving process.

Many programming languages support AOP and some new languages are also proposed

for the implementation of aspect oriented programs. The languages are AspectJ, Perl,

Aspect#. AspectC-H-, AspectXML.

2.4 ASPECT ORIENTED MODELING

Aspect oriented modeling (AOM) facilitate AOP and help to represent it using models.

Different techniques have been proposed for AOM [19], [30], [33], but there is no

standard notation or profile for modeling AOP.

Banniasad and Clarke [18] gave an idea of “Theme” to represent advice and method. It

combines UML sequence diagram and class diagram in a theme i.e. symbolize the

dynamic and static nature of an advice and method. The technique also proposed the new

weaving process by extending UML composition. It uses the operators such as merge and

override for the weaving process.

Zakaria et al [19] presents a profile and extends UML to model AOP by-using

stereotypes, tagged values and constraints. The technique categorizes the aspects as

abstract aspect, active and passive aspect. It also categorizes the composition or

relationship of aspect and class using tagged values as control, report, track, validate,

handle error, handle exception etc. Iconic representation is proposed for an aspect and

pointcut. The aspect and pointcut, both, in the proposed modeling extend class’ Meta

model.

Basch and Sanchez [41], proposed to add two new constructs in UML to represent

aspects and joinpoints using UML. Each aspect is represented with a UML package to be

separated and encapsulated. The joinpoint is shown with a circle having cross in it. It is

neither in the aspect nor in the core component but joins the two, to clarify that which

aspect is weaving with which class. Each package of class and aspect contains the

interaction diagrams such as sequence and collaboration diagram, which clearly shows

that at which joinpoint which advice is invoked to be executed.

J Chapter 3

Literature Survey

The chapter compares and analyzes different approaches proposed for model based

testing of aspect oriented software, in the literature. It performs evaluation of each

technique on a fault model proposed by Alexander [11] and on different other general

parameters, to find out how approaches act upon model based testing issues of AOPs.

3 LITERATURE SURVEY

Model based testing of aspect-oriented programs using models is a new area of research.

Few techniques have been proposed since 2005, which are assessed through different

parameters, discussed below in the chapter.

In 2005 Xu and Xu [7] test the interactions between aspects and class using aspect

diagram, class diagram and sequence diagram. The approach models AOP, both statically

and dynamically, but tests using sequence diagram only. This is the only paper > that

discusses and gives algorithm for test data generation. It also tests polymorphic behavior

of an object through polymorphic coverage criteria.

In the same year Xu et al. [20] propose first ever state based testing approach for AOP.

They use FREE state model to depict the dynamic behavior of integration of class and

aspects. Weaving mechanism shows the impact of aspects on class’ state and transitions.

An N+ coverage criterion is used to reveal all the sneak paths, corrupt states, wrong’states

and wrong paths.

Massicotte et al. [21] proposed an iterative and incremental, integration testing approach.

It uses UML collaboration diagram to depict interactions between aspects and classes, in

context of Aspect!. Multi-aspects are integrated incrementally in classes to localize the

source of faults. The approach presents two phase aspect-class integration testing

strategy: (1) Static analysis: generating test sequences fi*om the dynamic interactions of

aspects and classes. (2) Dynamic analysis: verification of execution of generated test

sequences. An automated aspect is generated by the tool to track the sequences. Five

testing criteria are adopted by the approach. These are:

• Transition Coverage Criterion: Test all transitions of objects at least once.

• Sequence Coverage Criterion: Test all the sequences i.e. group of transitions of

objects at least once.

• Modified Sequence Coverage Criterion: all set of transitions i.e. all possible

sequences that are affected by aspect must also be re-tested.

• Simple Integration Coverage Criterion: If only one aspect is weaved in a class

then all the sequences should be tested at least once again, in which the affected

method resides.

• Multi Aspect Integration Coverage Criterion: If a method is affected by many

aspects then all the possible sequences containing the transition should be re­

tested well.

Many researchers; till now have proposed many approaches for testing AOPs. Naqvi et al

[22] in 2005 presents a survey on testing techniques for AOPs. The paper compares and

analyzes three [34], [20], and [25] different techniques based on the fault model proposed

by Alexander et al [11]. Deriving from their own learning Naqvi et al show that incorrect

aspect precedence, failure to establish expected postconditions, incorrect focus of control

flow are still not addressed by any approach and there is a lot of work to be done in the

field.

Xu and Xu [23] in 2006 give an approach, based on FREE state model to test the impact

of aspects on classes after incremental weaving. This is the only approach in literature

that adopts regression testing. It defines rules to reuse the class tests on the aspect-

oriented model. The aspect-oriented state model is not self explanatory; it does not show

where an aspect and joinpoint resides. We have to see code to locate the classes and

aspects in the model. The approach uses only branch coverage criterion to generate test

cases.

Xu and Xu [24] in 2006, give the first ever state-based approach that introduces the

concept of integration aspect in aspect-oriented model based testing. An integration

aspect is composed of interactions between multiple classes with each other. Weaving

mechanism is given, explicitly, that explains the integration of two classes in an aspect.

Base classes and integrated classes can be unit tested, so this approach gives the

paradigm to test the integration aspect. The aspect is tested through the interface of base

classes. The test cases of classes are reused for integration aspect, but the approach does

not give any specific principles to reuse them on integration. The approach claims to

address two faults i.e. incorrect strength in pointcut patterns and advice implementation.

Xu et al. [25] in 2006, give the hybrid testing model based on state models and flow

graphs. FREE state model is used to sketch the semantics of classes and aspects and -flow

graphs are used to reveal the essential details to test intra-class paths i.e. only methods

and advices are converted to flow graphs. Control and data flow testing is performed on

the resultant model.

Xu and He [26] in 2007, proposed to test an AOP by using its aspect oriented use cases.

The paper focuses on formalizing the use cases to Petri nets^ It gives an algorithm to

model weaving between aspects and classes using Petri nets. No algorithm is given to

generate test cases from the Petri nets of aspect oriented programs.

Jackson et al [27] target unit testing strategy, named as Kertheme. It tests core and

crosscutting concerns, named as themes, separately, but not the interactions between

them. It is a design validation technique, i.e. creating tests using design of software for

avoiding late error identification. The approach tests the themes by merging sequence

diagrams of test cases with the concerns. So, using semantic based weaving of scenarios

and executable class diagram it is able to test theme approach. The benefits by the

approach are: design can be easily validated and designer gets confident, the process of

making and changing test cases becomes easy as there are isolated scenarios for tests,

identification of errors becomes easier as expected and executed both will be in hand,

change will cost little effort as themes are highly modular in nature, and its modularity

also increases reusability. The approach does not point towards specific fault.

Its main drawback is that it does not check the interactions between themes, which can

result in incorrect weaving and joinpoint selection, could be full of errors. The paper just

goes for testing of individual theme but not for the whole integrated system. The

integration of tested themes can also create many faults in a system.

Parizi and Ghani [28] give another survey on AOP testing strategies. This survey again is

based on the fault model proposed by Alexander et al [11]. It includes five [34], [20],

[25], [35], and [7] techniques in its studies and describes them; include their conclusions

and fijture work. The comparison shown is same as that of the previous one i.e. of Naqvi

et al [22].

Liu and Chang [29] in 2008, propose a new approach in the field that cater the dynamic

nature of AOP. It is a state based testing approach. Object State Diagram (OSD) of state

variables of classes is made using [6], Crosscutting Weaving Model (CWM) is proposed

to model the weaving of aspects in classes and another algorithm is proposed to model

the Aspect oriented Object State Diagram (AsOSD), that shows the state variables and

their transitions between classes and weaved aspects. Based on AsOSD a procedure for

test tree is given

Xu et al [42], in 2008, extended their own work [7]. They used the same models such as

class diagram, aspect diagram and sequence diagram to build the aspect object flow tree.

The aspect object flow tree is made by applying different coverage criteria such as

condition coverage, polymorphic coverage and loop coverage (the new one) on the

sequence diagram. They now claim to cover the three faults such as incorrect advice type,

incorrect (weaker or stronger) pointcut strengths, and incorrect aspect precedence. The

paper also gives ever first empirical study in the field.

Madadpour et al, [43] in 2011, propose an incremental testing strategy using UML

activity diagram. The activity diagram of core concerns is made first and then the same

diagram is made for aspects. Both the models are then weaved to represent an aspect

oriented model using the extension mechanism of UML, such as stereotypes. The paper

proposes three coverage criteria such as, action path coverage criterion, modified action

path coverage criterion and multi-aspect integration coverage criterion. These coverage

criteria are supposed to cover the three faults from the Alexander’s fault model [11], such

as, incorrect aspect precedence, incorrect advice type, and incorrect strength in pointcut

pattems. The paper elaborates its technique using a case study and also automates the

process.

3.1 PARAMETERS SELECTED:

The approaches in the survey are compared on various parameters. First six are from the

fault model proposed by Alexander et al. [11]. The fault model describes six faults that

can appear in aspect-oriented programs or models. The other ones are common to aspect-

oriented programs and modeling. The approaches which have claimed to cover a fault(s)

in the fault model and also those parameters which are found in the approaches are

assigned tick. The parameters which are not found are assigned a cross. The parameters

are described below:

3.1.1 Incorrect strength in pointcut patterns:
Pointcut selects different joinpoints where aspect has to weave. If the pointcut is too

strong, some necessary joinpoints will not be selected and if the pointcut is too weak,

additional joinpoints will be selected that should be ignored.

3.1.2 Incorrect aspect precedence
There can be joinpoints where more than one aspect can be weaved. Check whether the

order of the aspects is according to the specification or not.

3.1.3‘‘Failure to establish expected postconditions
Clients expect the post conditions according to the contracts, whether the aspects are

weaved or not. Test if advices inserted in core concerns are affecting the post conditions

or not.

3.1.4 Failure to preserve state invariants
Weaving of advices and introductions may cause change in the state invariants of core

concerns. This fault may affect the post conditions also. Ensure that weaving does not

cause violations of state invariants.

3.1.5 Incorrect focus of control flow
It should be tested whether execution reach the point where aspect is weaved or not.

3.1.6 Incorrect changes in control dependencies
Dynamic nature of aspects can change the control dependency at any time e.g. around

advice. Check if there is alteration of behavior and if after alteration, program gives the

expected results or not.

3.1.7 Incorrect Advice Implementation
Advice is the function that aspect weaves at a joinpoint. Check if implementation of an

advice is correct or not.

3.1.8 Weaving Mechanism
It is a basic strategy of aspect oriented programming. Check if any weaving mechanism is

given by the proposed approach or not.

3.1.9 Modeling Notation
As survey is on model based testing, it becomes important to check which modeling

language is used. Whether standard UML, UML profile or, any other, modeling technique

is used for the illustration of approach or not.

3.1.10 Artifact used
Which artifact (s) of a modeling technique is used by a solution?

3.1.11 Test Coverage Criteria
Coverage criteria facilitate testing by identifying paths that should be tested and also

assess the testing technique. The parameter helps us to know which approach used which

coverage criteria.

3.1.12 Static/Dynamic Testing
This parameter allows testing if an approach uses static diagram, dynamic diagram or

both.

3.1.13 Case Study
It shows the implementation of proposed approach on a system, and how many

approaches till now are validated by a case study.

3.1.14 Tool Support
It is automation of a proposed approach. The parameter checks how many of the

approaches have been automated.

I
to

a

i
I

I
§
I

I
I
S

hjo

»9 n
r “ M
K» a
o 2 .
VI %

X
ts> e
S «O

»

K . X
o X s
o c »
tA '* S

a

{ ?
■S

<L. ^ - X Incorrect strength in
Pointcut patterns

X X X Incorrect aspect
precedence

X X X
Failure to establish

Expected
nostcnnditinns

X X Failure to preserve
state invariants

X X X Incorrect focus of
Control flow

X X Incorrect changes in
Control dependencies

X X X
Incorrect Advice
Implementation

X Weaving Mechanism

a

r

c
r

c i; i I '

CL § c

Modeling Notation

GO
S '

t r
&3
3-M

T!

1 w
a ^ p l-h

(D

• • •

« w O > o
•2 »
g “ 8 "
g ”

Artifact used

• • • • •

^ S w > Op H
§ - | 3

■B !? ?■ S K- g Seu ^ ' S- a> 3 rt-
I S’ 8 §•

:z:
+

• •
O ^ W

a 3
1 1o ^
*3

Test Coverage Criteria

o
C>3
3.
n‘

D
p
3
o

0

1 !->• o

Static/ Dynamic Testing

Case Study

X X X
Tool Support

c/3
e

a.

asc_
arecr»
o'•-I

CO
Kj

73m
<

I
>
DO
nm

ort)
S
2^
o*

■n&9sre
re■t

1

to
g

M

ro

02
a
HiCi.

1
2i>j
I
S'

oq

I
b

I
3

K)

u

2 ^ 2 K» » r> ft
2 w* S ft t»O *-► W5 ^ »5 » o' ^ » nr- o r- o

hS s BD 12

1 t &•

X Incorrect strength in
Pointcut patterns

c
ddft3-

O*

X X Incorrect aspect
precedence

X X Failure to establish
Expected

nnstcnnditinns

X X Failure to preserve
state invariants

X X Incorrect focus of
Control flow

X X Incorrect changes in
Control dependencies

X Incorrect Advice
Implementation

0n9ft
2.S*
s»"t
Sn
ft
3

X Weaving Mechanism

c
r

G
r*

Modeling Notation

c/1
<?
30
1

0

1o

Artifact used

•

ro
33oS'

• • • • •

f l »T3£*w3 ‘̂ 2 ' ^ M aon>|C-. OQ' Og &g ' S
s . " a " g 1 g g-
o § s “■ -" §

Test Coverage Criteria

D

" 1

o

" 1

Static/ Dynamic Testing

X Case Study

X
'-0p3-
&.

Tool Support

s
§

I
to

I

I
§!
i
a.

I
I
I.
d

i
I
s

toS)

K. ><o a =o re » ^ Ba

K) S
s »O
^ »

►o X o X = o c »
o s '* H a

c/5
IS cSB «3“O <rtJ fp ̂ ';S »> a.

X
X Incorrect strength in

Pointcut patterns

dd
recr
»
o'

X
X X Incorrect aspect

precedence
X

X X
Failure to establish

Expected
nnstconditinns

X
X X Failure to preserve

state invariants
X

X X Incorrect focus of
Control flov»̂

X
X Incorrect changes in

Control dependencies

X X
Incorrect Advice
Implementation

ore
sre
n
IS
aa
"t
s»
3re«-►re
n

' t . Weaving Mechanism

*-a
n
B.
g

c

t-*

a
Modeling Notation

•nd
o>
B.
3
nr-*'tJi

3
3 S
g . m

rt

s0
1

1:

Artifact used

m m

00 H
^ B
K »K)

o '
3

•

o
n
V ’
cw
m

2a-d S.
§ H
CD n> B w3

o
&3w
(D

Test Coverage Criteria

a

i

D

^ • 1
3

D

" 1
3

Static/ Dynamic Testing

X Case Study

X X X

Tool Support

§

i

I

bocto

3'Crq

I
a
9
a
ns

1
2Oa
CJ2
c|

I
&

1

S)U)

® ft s ^
£.

o g »
OTQ Q,

& » Jo «^ ft 5“O £
^ ® <1 B

X X Incorrect strength in
Pointcut patterns

X X Incorrect aspect
precedence

X X X
Failure to establish

Expected
nn.Ucnnditinns

X X X Failure to preserve
state invariants

X X X Incorrect focus of
Control flow

X X X Incorrect changes in
Control dependencies

X X
Incorrect Advice
Implementation

Weaving Mechanism

c
r

c
r S 3

^ 1

Modeling Notation

• •

rt ^ O
j:i ^ c <» « “ 3 o

• •

sa o > sa Ota CO ja cr
" E l " !

• •
ft w n

c ^s «3o

Artifact used

• •

o n
? o f 1
■° 1 S'

5t ^

X X

Test Coverage Criteria

*5 sa
fa Cu E?. 3. o

O

3.

OS ^o ^ 3 p
3 o‘

Static/ Dynamic Testing

X X Case Study

X X X

Tool Support

a c/>

T3 ffi a '< n ft>

*51ssC
00ftsr»
o'

Onart>
2.o‘
ss
»
3o
n•1Sff

CJ
I;
S’
I

§
fo

s
s.
I
ssO}
C00
d

1

1

N>4̂

n nS9 to9 S

crre

O'rt

3a0

1 • !O' S'V! rt>
tt » ?rt> nq
T3 ®
1 Io r^&3ntr

cr

JOre<,re'
H
o*

ls> C » o n o<
2- a

C
r

>
g
<

r+ nH) Cera 5
U 3

> g *-13 a -Td
L i C r->-, J> O r^.^ Ei 3̂ 5 ci. ^ o o* ^I—►

O ?

>O 1—»■
o'3

o
•s»3
o ‘

c/3
^ e » "1 T3 <
 ̂ *;S(A O &<

Incorrect strength in
Pointcut patterns

Incorrect aspect
precedence

Failure to establish
Expected

__Dostcnnditinns__
Failure to preserve

state invariants

Incorrect focus of
Control flow

Incorrect changes in
Control dependencies

Incorrect Advice
Implementation

Weaving Mechanism

Modeling Notation

Artifact used

Test Coverage Criteria

Static/ Dynamic Testing

Case Study

Tool Support

toe_
ancr&9
So*

o«sffi
«'
&9

sfD
rt

3.3 ANALYSIS:
We have analyzed the survey on the fault model proposed by Alexander et al [11],

because it is the first model proposed in the field of AOP, it discusses general faults of

AOP but not specific to pointcuts or other constructs and it is also referenced by two

surveys [22, 28], performed already in the field. The results of two surveys [22, 28] are

also considered. Some research papers in the field, also, referenced the fault model and

claim to cover a fault(s) in it. The analysis is discussed as under:

1. Literature provides evidence that two faults of Alexander’s fault model are not

addressed by any of the approaches in the literature, the faults are: ’Failure to

establish expected post conditions’ and ‘incorrect focus of control flow’. Every

client is concerned about its decided and contracted post conditions whether or

not any advice is weaved. Thus we have to design such advices that do not change

the expected post conditions or produce the expected post condition in anyway,

which is a difficult task. The advice inclusion can behave as a source of error in

the core concern’s post conditions that need to be tested thoroughly. ‘Incorrect

focus of control flow’ is another fault that is not tackled by the literature. The

static changes or additions done by an advice are being covered previously but it

is hard to test the advice with its class in a dynamic context, which decides to be

weaved at runtime. For example, in AspectJ the keywords cflow and cfiowbelow

are used to weave advice in the recursive calls. The keywords decide at runtime

that which recursive call has to be weaved with the advice. Consequently, this

type of weaving is likely to produce the said fault, which creates problems for the

stakeholders.

2. Studies provide evidence that all of the work uses dynamic diagrams to model and

test AOP, thus addressing the testing of dynamic nature of AOP. There is an

exception of one approach [27], which tests using both static and dynamic part of

program. The approaches used dynamic view of an AOP for testing because stafic

diagrams only show the objects, attributes, operations and relationships of a

system, they do not show the details of a system such as behavior of a system, an

action and its reaction, and how weaving affect the core concerns, which thing is

affected and which is not. The dynamic diagrams show the collaborations

between objects and changes to the internal states of objects, which clearly show

the affect of an aspect to the core concern. Therefore, dynamic diagrams clearly

represent the process and details of weaving and the affects of aspects on the core

concerns.
■ Si

3. Weaving mechanism is an important and a must part of AOP. All the work done

in model based testing of AOP address weaving because there is still no standard

notation or modeling language to model AOP and its weaving. Most of the

researchers of model based testing have used newly proposed profiles of UML in

the field of aspect oriented modeling. One of the testing techniques [26] has used

petrinets to model AOP, but it results in weak testing strategy.

4. Empirical study and evaluation helps to observe the results of an approach by

providing experimental results leading to the authenticity the approach. The

existing literature gives only one evidence [42] of empirical study in this area,

because AOP is a new programming paradigm and is not in use commonly in the

field of programming. Consequently, there is very less work done in model based

testing of aspect oriented programs which is hazardous to the empirical study.

5. Few of the techniques [21, 42] are supported by a tool, implemented their

approach and showed the results. One of them has automated only the weaving

process of AOP but the testing is manual and the other has automated only the

testing process but not the weaving.

6. Most of the approaches [20, 23, 24, 25 and 29] have used state diagrams to

represent the aspect oriented behavior of a system, because apparently, using the

diagram, it becomes easy to represent the weaved behavior of an AOP, the

weaving of before and after advice can be shown clearly and the also the detail of

changing and making of new connections can be seen clearly. Furthermore,

different state based techniques have covered different faults in a fault model.

7. Only one approach [7] has used sequence diagram to represent AOP. There is no

standard modeling notation proposed yet, for AOP, therefore, it become difficult

to represent AOP using sequeiice diagram. We cannot clearly model the different
_

types of advices in it but can clearly see that where and when an advice is invoked

on a lifeline..We can also show the static insertion by an aspect to the classes/Xhe

thesis has also used sequence diagram to model AOP to fulfill the curiosity that

why only one approach has used it and why the approach has not addressed the

faults that are not covered yet at all.

8. Only one technique [43] has used activity diagram to perform testing on AOP.

Model based testing of AOP is a new area of research and also needs different

experimentations to know which model would be most helpful to cover which

fault and as well which can cater maximum faults.

I

Chapter 4

Proposed Approach

4 PROPOSED APPROACH

Model based testing of aspect oriented program is a field of research which caters the

problem and research of aspect oriented programming, modeling of aspect oriented

programs, testing, model based testing and model based testing of aspect oriented

software.

The proposed technique is adapted from the framework of model based testing. Block

diagram of the proposed approach is shown in figure 1 below. The proposed model based

testing of aspect oriented software is based on sequence diagram of UML 2.0. The

weaving of aspects and classes through pointcuts and advices, is shown by weaved

sequence diagram proposed in [7], with some modifications.

Weaved Sequence Diagram

Control Row GeneraticxiV

(z

ConlroJ Flow Graph^^--------^Coverage Criteria^

\ f

Test Patfi Generation

\/

Figure 1 Activity Diagram of Proposed Approacli

Weaved model of sequence diagram, adapted from [7], would behave as an input to the
a

testing process. Control flow generation introduce an algorithm to build a control flow

graph (CFG) from weaved sequence diagram which is an intermediary model of the

technique. Control flow graph shows the sequence of control between various messages

and advices. The thesis proposes an algorithm to generate CFG from weaved sequence

diagram, that help further in testing. Faults specific to aspect oriented programming are

considered and introduced, which affect CFG. Coverage criteria ensure an almost bugs

free software and help to generate a finite number of test cases [4]. They are applied on

CFG to see if a coverage criterion can cover the fault introduced or not. Test paths are

generated, which are the end result of the technique. These help to track errors/faults

present in weaved sequence diagram. The approach claims to cover two faults from the

fault model [11], i.e. incorrect strength in pointcut pattern and failure to establish

expected post condition

The steps of the proposed approach are explained using an example Rental Movie taken

from [7]. It is about renting a movie. Whenever a transaction starts, an aspect authorizes

the user, using an advice at pointcut. If the user is authenticated the transaction is

continued, otherwise the transaction is truncated.

The proposed technique is also partially automated. The weaved sequence diagram is first

converted to an XML format, then with some modifications the XML file is given as an

input to the software to convert to a CFG. Coverage criteria are applied to the CFG and

test paths are generated.

4.1 WEAVED SEQUENCE DIAGRAM

UML can be extended using stereotypes, tagged values and constraints [4]. There is no

standard profile, notation or language to model aspect oriented software [30]. Different

approaches are proposed to represent aspect oriented software by extension mechanism

of modeling notations. In this thesis weaving of aspects and classes are represented by

extending sequence diagram of UML 2.0. The idea of modeling is grasped from the

approach proposed by [7], with some modifications. The aspect oriented modeling in [7]

clearly models the process of weaving, create lifelines in sequence diagram for classes

and advices and represents a joinpoint with writing comments on a link between

messages and advices. The approach proposed in the thesis modifies the modeling in [7],

by

• Treating aspects as classes in sequence diagram, similarly as it is treated in

[30].

• Building separate lifelines for every aspect in a program.

• Representing pointcuts using stereotype on message arrow or link.

The example taken from [7], is shown using weaved sequence diagram in figure below

with modifications.

Rental "'Movies*; <<a^oc±»AcoB ss Control

1 1
I !
j 1: prlce:=getPric«<):Price j

1 ̂ u^ienticatjoo{ result)

W

2; <s>t»cor rsfttethods
W

! 2
1

alt^ '

j
(result=tniej

\

' 1

i 2.2; pioceed{)

I

2.3: display 1F.esdtO

1
s

1k

\
: .3.1: getRe^teredPHoeO

} :2.3.2; 9etDiscountedPrice()
W

2.3.3; getPofiodO
IhI i

J LJ
w

Figure 2 Weaved Sequence Diagram of RentalMovie

We can clearly see that the aspect AccessControl lays equivalent to the classes in the

example, with a separate lifeline as well. Aspect and pointcut are represented using

stereotypes « a s p e c t» and « p t » . The placement of pointcut arrow shows that the

advice in an aspect is weaved at the function call, as the pointcut is present right after the

function call and its tail lays on the same lifeline as of the function call. Finally, weaved

sequence diagram of RentalMovie symbolize that whenever a transaction starts, an aspect

« a s p e c t» AccessControl authorize the user, using an advice at pointcut « p t »

controlMethods. The post conditions of the messages are written and saved in the

description of each message that is why it is not visible in the sequence diagram.

Weaved sequence diagram is made using visual paradigm and XML of it, is generated

automatically. The software of the system takes the XML of weaved sequence diagram as

input and slightly modify the XML to be useful for the further operation.

4.2 CONTROL FLOW GENERATION

Control flow graph generation is used to test the aspect oriented sequence diagram and to

test the control flow of a program that is affected by an aspect(s). Control flow graph is an

intermediary output of the approach. It provides a simple way to track changes in a normal

flow of program. It is helpful to generate the execution sequence of the design model. The

control flow graph is composed of vertices and edges. In our control flow graph, the

vertices represent messages of weaved sequence diagram and edges represent post

condition of a message, if any. A general algorithm to construct a top to bottom flow graph

from weaved sequence diagram is as under:

Algorilitin: Create CFG (WSEQDIA (D))

Input: WSEQDL\ (D); Weaved Sequence Diagiain of a problem/Software

Output: CFG: Control Flow Gi'aphfor a sequence diagram

Begin: M= set of messa^s in WSE QDL\ (D)

Node []M]; Edge [M];

For each message m € M do {

Add (message no., message name, condition (if any), object invoked)

to Node[m]

Generate nodes in CFG for eacliNode[m]

Add {post condition of m} to Edge[m]

Connect Node[m] and Node [m+1] with Edge [m]

)
End Create CFG

The sequence diagram of example RentalMovie shown in figure 2 is now converted to

CFG using the algorithm illustrated above. Figure 3 below shows the control flow graph

made by weaved sequence diagram shown in figure 2 above. The algorithm applied on

sequence diagram puts first message of the sequence diagram to the first node of control

flow graph with some information e.g. getPrice 0 is the first message in the sequence

diagram and it is the first node in CFG. Message with stereotype is also made a node e.g.

« p t » controlMethods. Each node contains the message number, message name, object

invoked and condition (if any). The information is gathered to be used for performing

further tasks proposed in the approach. Connect first node to the next node with an arrow.

It is exited when there are no more messages in the sequence diagram. Each node is

annotated with alphabets for ease of generating test paths from the CFG.

The software apply the proposed algorithm to the XML of weaved sequence diagram and

build the required CFG out of it. The software shows it as under in figure 3:

Figure 3 CFG build by Software using XML of Weaved Sequence Diagram

4.3 PROPOSED COVERAGE CRITERIA

Coverage criteria help to limit the test paths that can be infinite in number such as in case

of loop structure [4], The thesis proposes two coverage criteria that help to cover two

faults from the sequence diagram of aspect oriented software. The proposed coverage

criteria are as under:

4.3.1 All Message Sequence Coverage Criterion

A criterion C that traverses all nodes (messages) Ni in a CFG at least once, where i=n and

n is the total number of nodes (messages) in a CFG. The idea of the criterion is adapted

from [4]. The criterion in [4] provides larger coverage and tries to cover every possible

node of a CFG. The thesis applies the proposed criterion on CFG and covers the fault

incorrect strength in poincut patterns, proposed in the fault model [11]. It was necessary
U

to propose the criterion because pointcut is the basic element of AOP, which directs an

advice(s) to weave in. If the process of weaving is not correct then the whole execution is

affected by it, which can create problems.

4.3.2 All Post Conditions Sequence Coverage Criterion

A criterion C that traverses all transitions (post conditions) Ti in a CFG at least once,

where i=n and n is the total number of transitions (post conditions) in a CFG. It covers

the fault failure to establish expected post conditions, present in the fault model [11]. It

was necessary to propose the criterion because no other approach in the literature has

addressed the fault before.

4.4 TEST CASE GENERATION
Here now test cases are generated after applying the proposed coverage criteria in the

thesis.

4.4.1 Applying All Message Sequence Coverage Criterion

CFG is now used to generate test cases by using the coverage criteria. All message

sequence coverage criterion help to generate the test cases constitute of all sequences of

message. It is also automated and the test cases are shown as under:

• A-B-C-D-F-G-H-Ex

• A-B-C-E-Ex

4.4.2 Test Path Generation after Inserting Faults

The approach covers some faults specific to aspect oriented software. We now insert

faults which affect the sequence diagram and as well as CFG and see by applying the

coverage criterion, that the proposed testing approach is able to test the inserted fault or

not. We claim that all message sequence coverage criterion after traversing all messages
35

in a CFG can cover the fault i.e. incorrect strength in pointcut pattern, inserted in

software. “

If pointcut “public pointcut controlMethodsO’getPrice(price Movie.price)”, is modified to

“public pointcut controlMethods():get*(*)” then the advice will execute at every ftinction

with the name started with get, that will create errors in a software. The CFG will now be

extended by the following nodes, as under in figure 6:

©
getRegisteredPric 0 AuthenticationO

Obj
lnv:AccessControl

Aspect
Cond: None

DisplayScreenO
eO Post Cond: Post Cond: Ob] Inv: Rental

Obj Inv: Price None NotValidated Cond:
Cond: None result==false

Post Cond;
Validated

getRegisteredPric
eO

Obj Inv: Price
Cond: None

Post Cond:
Process completed

Post Cond:
Process Incompleted

M Ex

Figure 4 Extended part of CFG by the insertion of faults

Now the test cases generated by the all message sequence coverage criterion are:

• A-B-C-H-Ex

• A-B-C-D-E-I-J-Ex

• A-B-C-D-E-I-K-Ex

4.4.3 Applying All Post Condition Sequence Coverage Criterion

All post condition coverage criterion traverse all post conditions in CFG and compares

expected sequence of post conditions to the obtained sequence of post conditions.

Expected sequence of post conditions, before inserting faults, obtained from the

generated CFG is shown as under:

• None-None-Not Validated-Process Incomplete-None-None-Ex

• None-None-Validated-Ex

4.4.4 Test Path Generation after Inserting Faults

If same fault is inserted and shown in CFG in figure, then the obtained sequence of post

condition is as under:

• None-None-Validated-Process Completed-None-Validated-Process

Completed-None-None-Ex

• None-None-Validated-Process Completed-None-Not Validated-Process

Incomplete-Ex

It is claimed that after applying the coverage criterion to the CFG the fault, failure to

establish expected post condition, can be easily caught.

4.5 Proposed faults

Beside already proposed fault models specific to aspect oriented software, the thesis also

proposes new faults that can appear in aspect oriented software. The faults are:

4.5.1 Missing Advice

Different faults can arise if there is a pointcut without an advice i.e. there is no advice

signature as well as its implementation.

4.5.2 Missing Advice Implementation

Different faults can arise if a pointcut has an advice signature but no advice

implementation.

Chapter 5

S’ Validation of Proposed Solution

5 validatio n of pr o po sed so lu tio n

The proposed technique in this thesis is first elaborated in the previous chapter with the

help of short example Rental Movie taken from [7]. It is also now validated with a large

example, Transaction Management taken firom [32]. The following sections give an

introduction to the example, how it is modeled and how the partially automated, proposed

testing technique is able to capture the faults, inserted in the example.

5.1 TRANSACTION MANAGEMENT

Transaction management is larger example taken from [32], as compared in the previous

chapter, to demonstrate and validate the technique proposed in the thesis. Transaction

management encapsulates the crosscutting concerns residing and touching the normal

execution of banking system. Banking system constitutes common functionality, such as,

debit, credit and transfer of currency between different accounts, where as transaction

management monitors and facilitates the processes to move in a smooth way. The

following text explains the core concerns and crosscutting concerns, their weaving and

testing using coverage criteria.

5.1.1 Weaved Sequence Diagram

Weaved sequence diagram is made by weaving the different functionality present in the

classes and aspects. It is shown in the figure below.

Figure 5 Weaved Sequence Diagram of Transaction Management System

5.1.2 Control Flow Generation
CFG is generated using the algorithm proposed in the thesis. CFG of above weaved sequence diagram generated by the software is shown

Figure 6 CFG created from Weaved Sequence Diagram of Transaction Management System

5.1.3 Test Case Generation

5.1.3.1 Test Path Generation by Applying All Message Sequence

Coverage Criterion

Below are the test paths generated by applying all message sequence coverage criterion.

• A-B-C-D-E-F-G-H-I-J-N-O-P-Q-V-R-S-T-V-W-X-Ex

• A-B-C-D-E-F-G-H-I-J-N-O-P-V-R-S-T-V-W-X-Ex

• A-B-C-D-E-F-G-H-I-J-N-O-P-V-R-S-T-U-V-W-X-Ex

• A-B-C-D-E-F-G-H-I-J-N-O-P-Q-V-R-S-T-U-V-W-X-Ex

• A-B-C-D-E-F-G-H-I-J-K-L-Ex

5.1.3.2 Test Paths Generated by Applying All Post conditions

Sequence Coverage Criterion

The test paths generated by applying the all post conditions sequence coverage criterion

are as under:

• None- None- None- None- None- None- None- None- None- None-No

Exception- None- None- None- None- None- None- None- None- None- Process

Completed-Ex

• None- None- None- None- None- None- None- None- None- None-No

Exception- None- None- None- None- None- None- None- None- Process

Completed-Ex

• None- None- None- None- None- None- None- None- None- None-No

Exception- None- None- None- None- None- None- None- None- None- Process

Completed-Ex

• None- None- None- None- None- None- None- None- None- None-No

Exception- None- None- None- None- None- None- None- None- None- None-

Process Completed-Ex

• None- None- None- None- None- None- None- None- None- None- Exception

Held- Process Incomplete-Ex

Chapter 6

Results

Chapter 6

6 RESULTS OBTAINED

The results obtained after applying the two coverage criteria are evaluated in this chapter. Same set of paramete

the approaches of the literature were compared. The evaluation is shown using a table.

Proposed

'echnique

Fault Behavior

a
- «a s
t t
♦-* a

t a
S i£a ^

On
C3

.a

« *o ,StS « .'t« t> Xo SJ c
a X
- W I

=

O)
^ 42

ftf t e<
o s;^ a
£ «
a «
‘3 M

o
3 o
.5 C
•4-> OU U4» '♦->iM a
t; ®S ua

_ f/ia o>
V ca
W! «o ^
r t H

ts -O
k. ou uO '«w da o

U

Generic Parameters

S g
^ «
-4-» aju s ̂Io a
0 s

o‘C
O
z<
bJDa

•■ ri

"3
o

•V<u

u
tSVn
U
<

uQi ■W • pNIm
U
a>M)OSIh9i>O
U
ceV
H

ecT
h

E
c>
C
t.T
(/

na Akbar Y T UML Sequence
diagram.

All
Messages
Sequence
Coverage
Criterion

All Post
Conditions
Sequence
Coverage
Criterion

D;
T<

Table 2 Results Obtained

The table above clearly shows that the proposed technique uses UML sequence diagram

to cover the two faults i.e. incorrect strength in pointcut patterns and failure to establish

expected post condition. It uses two coverage criteria to capture the two faults in an AOP.

The technique is validated with two examples and is also partially automated.

Literature survey of the field illustrate that only few of the researches have used UML

sequence diagram and two faults of fault model [11] are not addressed by any of them.

The research in the thesis found the gap and wanted to know why this gap is left and how

to fill up the space, so that we can have arguments against or in favor of it.

The research only able to cover one uncovered fault using sequence diagram, but also we

have come to the result that state diagram would be more specific to cover the fault

‘unable to establish post conditions.”

Chapter 7

Conclusion and Future Work

7 CONCLUSION AND FUTURE WORK

This work proposes a model based testing approach for aspect oriented programs.

Aspects, classes and their weaving is shown using UML Sequence diagram. CFG is made

by proposed algorithm, to facilitate the process of testing from the model. Coverage

criteria are applied to CFG to generate test paths. The technique is validated using two

examples, which prove that it helps to cover two faults of fault model [11], such as,

incorrect strength in pointcuts and failure to preserve post conditions. The process is also

partially automated.

Our future work will be to cater other faults in fault model [11], by some amendments in

the same technique or by a new approach. It is also aimed that the process may be

automated at its maximum, so as to make the process easily used by testers.

8 REFERENCES

[1] M. Utting, A. Pretschner and B.Legeard ,“A Taxonomy Of Model-Based Testing,”
Working paper series ISSN 1170-487X, April 2006, Department of Computer Science,
The University of Waikato, Private Bag 3105 Hamilton, New Zealand.

[2] MJ. Harrold, J.D. McGregor,and KJ. Fitzpatrick, “Incremental Testing of
Object-Oriented Class Structure,” in Proceedings of the 11th International Conference on
Sojtwam Engineering, pages 68-80, May 1992.

[3] IBM Research Report Software Debugging, Testing, and Verification Brent
Hailpem, Padmanabhan Santhanam

[4] R. V. Binder, ‘Testing Object-Oriented Systems: Models, Patterns, and Tools,”
Addison-Wesley Professional, Boston, 1999.

[5] A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel, M. Baumgartner, B.
Sostawa, R. Zolch, and T. Stauner, “On Evaluation of Model-Based Testing and its
Automation,” in Proceedings of the 27th International Conference on Software
Engineering (ICSE’05), 2005.

[6] D. C. Kung, P. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen, “On Object
State Testing,” in Proceedings of the 18th Annual International Computer Software and
Applications Conference, 1994, pp. 222-227.

[7] W. Xu and D.Xu, “A model-based approach to test generation for aspect-oriented
programs,” in Proceedings of the AOSD 2005 Workshop on Testing Aspect-Oriented
Programs, Chicago, March 2005.

[8] http://www.omg.0rg/technology/documents/modeling_spec_catalog.htm#UML

[9] B. Beizer, “Black-Box Testing Techniques for Functional Testing of Software and
Systems,” Wiley, 1995.

[10] J. Boberg, “Early Fault Detection with Model-Based Testing,” in Proceedings of
the 2008 SIGPLAN workshop on ERLANG

[11] R. T. Alexander, J. M. Bieman, and A. A. Andrews, “Towards the Systematic
Testing of Aspect-Oriented Programs,” Technical Report No. CS-4-105, Department of
Computer Science, Colorado State University, Fort Collins, CO, 2004.

[12] I. K. El-Far, and J. A. Whittaker, “Model-Based Software Testing,” in
Encyclopedia on Software Engineering (edited by Marciniak), Wiley, 2001.

http://www.omg.0rg/technology/documents/modeling_spec_catalog.htm%23UML

[13] Mrs. R. Jeevarathinam, Dr. A. S. Thanamani, “Test Case Generation using
Mutation Operators and Fault Classification,” (IJCSIS) International Journal of
Computer Science and Information Security, Vol. 7, No. 1, 2010

[14] S.R. Dalai, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton, and
B.M. Horowitz, “Model-Based Testing in Practice,” in Proceedings of the International
Conference on Software Engineering, 1999.

[15] utp.omg.org/

[16] T. Dinh Trong, “A Systematic Procedure for Testing UML Designs,” in
Proceedings of ISSRE, 2003.

[17] Patent no. US 6467086 B 1

[18] E. Baniassad and S. Clarke. “Theme; An Approach for Aspect-Oriented Analysis
and Design,” in Proceedings of the International Conference on Software Engineering,
pages 158-167,2004.

[19] A. A. Zakaria, H. Hosny and A. Zeid, “A UML Extension for Modeling Aspect-
Oriented Systems,” in Proceedings of Aspect Modeling with UML workshop at the 5th
International Conference on the Unified Modeling Language, the Language and its
Applications, September 2002.

[20] D. Xu, W. Xu, and K. Nygard, “A State-Based Approach to Testing Aspect-
Oriented Programs,” in Proceedings of the 17th International Conference on Sofhvare
Engineering and Knowledge Engineering, 2005, pp. 366-371.

[21] P. Massicotte, M. Badri, and L. Badri, “Generating Aspects-Classes Integration
Testing Sequences: A Collaboration Diagram Based Strategy,” in Proceedings of the* 3rd
ACIS International Conference on Management and Applications, 2005, pp. 30-37.

[22] S. A. A. Naqvi, S. Ali, and M. U. Khan, “An Evaluation of Aspect Oriented
Testing Techniques,” in Proceedings of the IEEE Symposium on Emerging
Technologies, 2005, pp. 461-466.

[23] D. Xu and W. Xu, “State-Based Incremental Testing of Aspect-Oriented
Programs,” in Proceedings of the 5th International Conference on Aspect-Oriented
Software Development, 2006, pp. 180-189.

[24] W. Xu and D. Xu, “State-Based Testing of Integration Aspects,” in Proceedings
of the2nd Workshop on Testing Aspect-Oriented Programs, 2006, pp. 7-14.

[25] W. Xu, D. Xu, V. Go el and K. Nygard, “Aspect Flow Graph for Testing Aspect-
Oriented Programs,” http://www.cs.ndsu.nodak.edu/~wxu/research/436-l 1 llid.pdf

[26] D. Xu and X. He, “Generation of Test Requirements from Aspectual Use Cases,”
in Proceedings of the Workshop on Testing Aspect-Oriented Programs, 2007, pp. 7-14,

[27] A. Jackson, J. Klein, B. Baudry, and S. Clarke, “KerTheme: Testing Aspect
Oriented Models,” in Proceedings of the workshop on Integration of Model Driven
Development and Model Driven Testing (ECMDA’07), Bilbao, Spain, July, 2007.

[28] R. M. Parizi and A. A. Ghani, “A Survey on Aspect-Oriented Testing
Approaches,” in Proceedings of 5th International Conference on Computational Science
and Applications, IEEE, 2007.

[29] C. H. Liu And C. W. Chang, “A State-Based Testing Approach for Aspect-
Oriented Programming,” Journal Of Information Science And Engineering 24, 11-31,
2008.

[30] T. Aldawud, and A. Bader, “UML Profile for Aspect-Oriented Software
Development,” in Proceedings of the 3rd International Workshop on Aspect Oriented
Modeling, 2003.

[31] D. Stein, S. Hanenberg, and R. Unland, “An UML-based Aspect-Oriented Design
Notation for AspectJ,” in Proceedings of the 1̂ ̂ International Conference on Aspect-
Oriented Software Development (AOSD), 2002.

[32] R. Laddad, “AspectJ in Action”. Manning, 2003.

[33] C. Chavez, and C. Lucena, “A Metamodel for Aspect-Oriented Modeling,” in
Proceedings of the Workshop on Aspect-Oriented Modeling with UML, 2002.

[34] J. Zhao, “Data-Flow-Based Unit Testing of Aspect Oriented Programs,” in
Proceedings of 27th Annual IEEE International Computer Software and Applications
Conference (COMPSAC’2003), Dallas, Texas, December 2003, pp 188-197.

[35] C.C. Lopes and T. C. Ngo, “Unit-Testing Aspectual Behavior,” in Proceedings of
the Workshop on Testing Aspect-Oriented Programs (WTAOP), held in conjunction with
the 4th International Conference on Aspect-Oriented Software Development (AOSD),
2005.

[41] M. Basch and A. Sanchez, “Incorporating Aspects into the UML,” in Proceedings
of the AOM workshop at AOSD, 2003.

[42] W. Xu, D. Xu„ and W. E. Wong, “Testing Aspect-Oriented Programs with UML
Design Models”, International Journal of Software Engineering and Knowledge
Engineering, Vol. 18, No. 3, pp. 413-437, May 2008.

http://www.cs.ndsu.nodak.edu/~wxu/research/436-l

[43] S. Madadpour, S. H. M. Hosseinabadi and V. Abdelzad. Article: “Testing Aspect-
Oriented Programs with UML Activity Diagrams,” International Journal of

. Computer Applications 33(8):4-l 1, November 2011.

