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Preface

In the past few years, many researchers have elongated their work over exponentially extended
curved surfaces due to their vast applications in polymer extrusion, diagnosis of diseases,
manufacturing of heat exchangers and pumps, and so on. Muhammad and Alghamdi [1] have
investigated flow of Darcy Forchheimer Newtonian fluid over an exponentially extended curved
surface. Kempannagari[2] examined the stagnation point motion of non-Newtonian fluid over
curved surface, which is also extended exponentially. Shi et al.[3] numerically described the
micropolar fluid moving over exponentially extended curved surface using the Keller box
method. Kumar [4] investigated the free convective stagnation motion of non-Newtonian fluid
over a curved surface, which is extended an exponentially. Algahtani [5] extended their work to
check its stability.

The Catteno-Christov equation tells us about those cases in which temperature changes rapidly
and allow us to study heat transfer at microscopic level. It has numerous applications in
microelectronics, laser beams, the formation of batteries, and biomedical field. Hafeez et al. [6]
proposed research on Oldroyd-B fluid moving in a rotating disk. Khan [7] analyzed the flow of
Carreu fluid in a slandering sheet. Rehman and Muhammad [8] examined the viscoelastic fluid
over an extended surface along with soret and dufour effects. Few more efforts shedding light on
Catteno-Christov can be seen through the studies [9-13].

Variable thermal conductivity helps us to deal with how corresponding material behave when
temperature varies to make various heat transfer models. It is useful in fields of power
generation, computer chips, and aeronautical engineering. Usman et al. [14] analyzed Cu-
Al,Oz/Water, which is a hybrid nanofluid moving from a permeable surface, along with the
effects of radiation. Gbadeyan [15] has worked on Casson fluid flowing over a vertically flat
plate along with the effects of thermal conductivity, which is variable, and viscosity. Muatafa
[16] has extended the research on the flow of Maxwell fluid moving in a rotating frame.
Mahmoud [17] have also worked on micropolar fluid with variable thermal conductivity. This
thesis organized as follows:

Chapter one contains basic definitions.
Chapter two is a review of Ref [18]. In this chapter, the micropolar fluid flow over a curved sheet is
considered. The modified Fourier’s law is considered in view of the response of heat transfer.

Chapter three discusses the microploar fluid over an exponentially stretching sheet. Variable thermal
conductivity is taken as temperature-dependent. For all the relevant parameters, the physical
understandings of the flow quantities are studied.
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Chapter 1

Preliminaries

Some fundamental definitions of fluid mechanics have been covered in order to better grasp the

further concepts in this chapter.

1.1 Fluid

Any substance that flows when shear stress is applied, it does not have any specific shape and
it shape changes when external force is applied. Liquid and gases such as water, gasoline, and

ketchup are examples of fluid.

1.2 Fluid Mechanics

It is field of physics concerned with the investigation of fluid either at rest or in motion.

1.3 Fluid Properties

1.3.1 Pressure
Pressure is defined as the proportion of force to an area. Mathematically, it is represented as
‘F

pP= ;‘, (1.1)



—

where |F' ‘ the magnitude of force and area is denoted by A.

1.3.2 Viscosity

It determines the amount of resistance or friction in fluid flow. Mathematically, it is expressed

as
Shear Stress T
W= — = . (1.2)
Shear Strain (d—y)
1.3.3 Density
Density defines mass in terms of unit volume. Mathematically it is shown as
m
== 1.
p=1 (1.3)

where V' and m stand for volume and mass, respectively.

1.4 Types of Fluids

1.4.1 Inviscid Fluid

It is defined as fluid with zero viscosity (4 = 0). They donot exist in nature.

1.4.2 Real Fluid

The fluid which have non zero viscosity is said to be a real fluid.

1.4.3 Newtonian Fluid
The viscosity of fluid remains unaffected by shear rate i.e., it obeys law of viscosity given by

Newton. Mathematically it is represented as

T :Ud—y, (1.4)

where Z—Z shows shear rate and v shows the viscosity. Water and alcohol are examples of

Newtonian fluid.



1.4.4 Non-Newtonian Fluid

If a fluid deviates from Newton’s viscosity law, it is known as Non-Newtonian fluid. Mathe-

matically,

T:K,(j—Z) ,n#0,1, (1.5)

where k is stability parameter and n is power law parameter. Some examples of Non-Newtonian

fluids are butter, cheese, and paint etc.

1.5 Types of Flows

1.5.1 Steady Flow

A flow of fluid in which velocity and other characteristics donot vary w.r.t. time is known as

steady flow. Mathematically,
dp Ov

—=—=..=0. 1.6

ot ot (16)
1.5.2 Unsteady Flow

In unsteady flow the characteristics of fluid like pressure, density, and velocity at specific point
vary w.r.t. time.

1.5.3 Compressible Flow

If density of fluid donot remains the same, it varies during the flow is known as compressible
fluids.

1.5.4 Incompressible Flow

In the incompressible flow density of fluid doesnot vary throughout the flow.

1.5.5 Rotational Flow

When fluid particles spin about their own center of mass is called rotational flow.



1.5.6 Irrotational Flow

When fluid is moving then no particle of fluid rotate in any direction then it is known as

irrotational flow.

1.6 Fundamental Laws

1.6.1 Continuity Equation

It is called as law of conservation of mass. According to this law, the amount of mass entering

the body is equal to amount of mass leaving the body. Mathematically,

V. (pV) % —0, (1.7)

where V denotes velocity, p denotes density and ¢ is time. When density is constant then Eq.
(1.7) takes the following form

V.V =0. (1.8)
1.6.2 Law of Conservation of Momentum

This law asserts that the total of all external forces equals to the rate at which a body’s linear

momentum changes over time. Mathematically,
av
P = div 7 + pb, (1.9)

where material time derivative is represented by %, 7 and b are body forces and Cauchy stress

tensor respectively.

1.6.3 Catteno-Christov Heat Flux Model
This model is modification of Fourier’s law in which the thermal relaxation time characteristic

has been taken into account. Its equation is represented as

o ~
¢+ )\*(8—;1 + V.V — . VV + (V.V)©) = —kVT (1.11)



here ¢, describes the specific heat of fluid at constant pressure,% shows thermal conductivity,

A* represents thermal relaxation time and density is denoted by p.

1.7 Non-dimensional Parameters

1.7.1 Prandtl Number

It is obtained by dividing the momentum diffusivity by thermal diffusivity. It can be expressed
as:

(1.12)

where p represents dynamic viscosity, ¢, shows specific heat and k describes thermal conduc-
tivity.
1.7.2 Magnetic Parameter

The ratio of electromagnetic forces to inertial forces is defined as magnetic parameter

oB?L¢

M:
Up ’

(1.13)

where L¢, o, B, p, and U are characteristic length, electric conductivity, magnetic field, density

and velocity respectively.

1.8 Micropolar Fluid

It belong to class of Newtonian fluid which exhibit some special microscopic properties that is
due to the rotation of its fluid particles along their center of mass and due this rotational flow
of particles micropolar fluid posses both couple stress and body stress. Their behavior is also
effected by microstructure present in them. The stress tensor 7;; and couple stress tenor ¢;; is
represented as

Tij = 2u + k) dij + (divV — p) wij + kegjp (A — N), (1.14)

cij = Bij + (adiv V) wij + A4, (1.15)



where d;; represents strain rate component, N shows the microrotation vector, A represents
vorticity vector, w;; is known as Kronecker delta, k is coefficient of vortex viscosity and gyro-

viscosity coefficients are represented by «, 3, .

1.9 Solution Methodology

We have used ND-Solve technique to solve our nonlinear complex coupled ODEs, it is a built

in command in mathematica.



Chapter 2

Study of Non-Newtonian Fluid over

a Curve Stretching Surface

In this chapter, we basically focused on micropolar fluid is flowing over a curved sheet that is
stretched, along with the effects of Cattaneo-Christov heat flux model and MHD. By modelling
the governing equations of fluid in curvilinear coordinates, we obtained non-linear, complicated
PDEs. After using specific transformations, we get non-linear coupled ODEs. After that, we
apply OHAM to solve these complex, non-linear, and coupled ODES. Then we examined the

parameters that are involved and also studied them graphically.

2.1 Mathematical Formulation

Consider a steady and incompressible micropolar fluid across a stretched curved sheet. The
fluid is flowing in a circle whose radius is R°. Assuming the fluid which is electrically conducting
with constant magnetic field represented by By, which is directed in r-axis. Ty is the surface
temperature, where Ty > To, is temperature of surroundings. Using these assumptions, the

governing equation for micropolar fluid and energy equation are as follows:

o o0u o ov B
R%%—(R —I-T)aT—I-U—O, (2.1)
u? 10P
Rir por (22)



W—FRO—FTaT (R° + )2

R°u @—i—v@—i— uv 1 R 8_P+ 1/*+K 0%u 1 Ou u
Re 4+ 1710z or  R°+r pR°+ 1 Ox

p

KON B?
R°u ON ON ¢ 9’N 1 ON K (0Ou U

s () (X ON 2.4
Ro—i-r@x—H}@r pj<8r2+R°+r8r> pj<6r+R°+r+ >’ (2.4)

LT Rwor PSR REgtm S\ k(1 or | 0T
or R +rdx _ 9T Rouv OT | 2R°uv 6°T pcp \R°+r dr  0r?)’

or Or RC+r Ox RC+r OxOr

(2.5)

where j is micro-inertia, u is the velocity component in x direction and v is in r direction,
P represents the pressure, o shows the electric conductivity, ¢ represents the spin gradient
viscosity, 1" represents the temperature, vortex viscosity is denoted by K, N shows the microro-
tation parameter, v* is kinematic viscosity, p describes the fluid density, thermal conductivity
is denoted by k and « shows the thermal relaxation time.

The boundary conditions are given as:

u = a:c,N:—mo@,v:O, T=1T, atr=0,
or
ou
u — 0, 6——>0, N—-0, T—T, at r— oo, (2.6)
r

where mg(0 < mg < 1) is constant.

Using the following dimensionless transformation

R a
w = arf(n)e =~ Vel (n), N = az [y,

a T-T
7 \/ =7 b= pate”P(n), 6(n) T (2.7)

after using these transformations, Eq. (2.1) is identically satisfied and Egs. (2.2) to (2.5)

become
or _ f?
on  w+n’

(2.8)
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(2.9)

(2.10)

(2.11)

(2.12)

where W and w are the material and curvature parameters respectively, thermal relaxation time

is denoted by ~, Pr represents the Prandtl number and M? is magnetic parameter.

The non dimensional form of boundary conditions will be

0 =g(0), 6(0) =
0, g(oco) =0, 8(c0) =0.

Now removing pressure term between Eqs. (2.8) and (2.9), we get

’

v f 2
o (w+n)3 +w+nf
w
(w+mn)

The expression of pressure is

P= [(1+W){f’”+Lf' (1

w+n

" w

1 _ w 9 w " w r r 2 4
)} T s e e e

1 f// w
w+m?2"  (w+n)

ff=rf - 5 f

w+n

f
w+n

— (P i) - M <f” - —) =0,

The coeflicients of skin friction and Couple stress are defined as

Cy =

TT’ S

—
puz,
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(2.13)

!

f

(2.14)

(2.15)

(2.16)



where M, is the wall Couple stress and 7). is the wall stress given as

ou U
Trs = (N“‘K)(E_m)“‘KN |T’:0a
ON
M, = CW lr=0, (2.17)

2.2 Solution of the Problem

We have solved our equations by using OHAM. Initially, we defined a set of base function

{nke=™ /k > 0,n > 0}, as follow:

f) =ado+ > af,nte ™, (2.19)
n=0 k=0
gm) =D bfnfe ™, (2.20)
n=0 k=0
0n)=>_> e, (2:21)
n=0 k=0

where afn, bfn, cfn are coeflicients. We choose initial guess and linear operators as follow

d4 3
L o
dn*  dn3
d? d?
Lg = — -1, Ly=—-1 2.22
fO(n) =1- 6*77’ 90(77) = 776777, o (0) = 6*77’ (223)

L= [Ci+Coy+ Csy® + Cyen]

Lg == [05 ‘I‘ 06677]] 5 LQ == [07 + 086777] . (224)

2.2.1 Zeroth Order Deformation

(=002 [Tt = fo ()] =eefy [T n.0)]. (225)
(=)L, [i00) = a0 )] =tk [3000), F (.0)|. (2.26)
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(- )L [5<n, )~ o <n>} — 1Ny [5 (n,0), (. t>] , (2.27)

9f(n,1) ~

f (777t) = 07 87] = 17 9(777t) = 17 5(777 t) = 07 at n= 0
ofmt) _ o PIn) _w _
o 0, e =0,9(n,t)=0,0(n,t) =0, at n=o0, (2.28)

where auxiliary parameters cg , e, cg and nonlinear operators Ny, Ny, Ny are defined as

" "

~

Gl - Pl D J e (s
Nf |:f(”77t):| - f (777t)+ (W+77) - (OJ+77)2 - (W‘H?) <f (nvt)f (nvt)_f (777t)f(777t)>

/

~

+ f (ﬁ,t) v <} 2(777t) _} (777t)} (77775)>

(w+n)?3  (w+mn)?

—ﬁ} (.6) f (n,) — MZ% ~M2F (1), (2.29)

N i fmn] = (1+5) {{’w(i’;§+5"<n,t>](w‘jn) (7 030,05 00 F 00)

W ( (J; (Z;; 25, t) + f (n,t)), (2.30)
YN — Pr( O 0] (t) ) = <Z,t>f<n,t>f<n,t>>
+0 (n,t) f(n,t) f (n,1)
T )+ Pr—2 E(nw}(ty+5wj) (2.31)
’ (w+n) ’ ’ (w+mn)’
whent=0and t =1
Fm0) = fo(n). 0(n,0)=00(n), 7 m0) =g (n),
) = fmn), G =gm), 0m1)=0(). (2.32)



Expand 6 (n,t), f(n,t)and g (n,t) in Taylor’s series as

Fty=fom)+> fitm)t
=1

g (n,t) = go (1 +Z§/z
5 t) =00 (n Zez

where

~

101 (1,) 1 9g' (1, 106 (3,)
fi(n) = ﬂ ot lt=0, g1 (n) = ﬁ ot =0, 01 (n) = N od |t:07

when ¢t = 1 series converges and thus

l l l

Fa)=fom)+> M, gm) =gom)+Y_ gx(n), 0(n)=00(n)+Y_ 0k(n).

=1 =1 =1

2.2.2 Ith Order Deformation

Ly [£1 ) = xafia () = Ru ()]
Ly [91 (n) = xag1-1 (n) = cg R ()],

Lo (61 (1) = xib1-1 (n) = c§Ru (m)]

fi(0) =0, 6";7(70) =1, 6:(00=1, a(0) =0,
2
8fza(7700) _ o 2 g;;@ =0, 0;(c0) =0, g (00) =0,
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(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)



where

"

~iv 2 fiv f . ! »
Ru(m) = fi + (w%fn) - (win)2 - w+77 <kafz k_kafl k)

w+n (kaf{ ke kafl k> - w+n kafl K

a2 (ﬁf n (wﬁ n)) 7 (2.40)
’ l ’
k=0

’ !

7" 0 w !
R = 0 +——+Pr——— 0,f_
31 (1) l+(w+n)+ r(w+n)]§lﬁk

I I
“7_pr Z Ji—k Z O fit — O froey + O fit | | - (2.42)
+n) =

2.2.3 Convergence of Solution

In series solution, the auxiliary parameters are cg , ¢) and cg, they are used to find rate of
homotopy series solution and region of convergence, values of c{; , ¢§ and cg are found by using

average residual error which is defined as

"
1 / "

2
Ef_/o {fw w4kt U~ 1) - o - mff}dm

T (2 1) = M2+ )

(2.43)
, 2

Eg—/ooo{<1+§> [9/,+%ﬂg/]+w+n(§’f gf') - (29+f"+wL+n>} dn,

(2.44)
%:AM{

’

0 "
— +4
w+n

2
w ’ yw ’ ’ ’ ’
—0f —Pr s (f29 +f 10 +f29)} . (2.45)

+ Pr
w
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Order | Ey E, Ey

2 1.75962 x 1072 | 0.944391 8.9332 x 1073

6 1.71826 x 1078 | 3.36992 x 10~° | 1.55282 x 10~
8 2.20361 x 10711 | 3.26767 x 107> | 2.92079 x 10~°
10 3.44720 x 10714 | 4.02019 x 1076 | 6.19870 x 10~6
16 1.97829 x 10722 | 2.88390 x 1078 | 9.19519 x 1078
18 1.00031 x 10724 | 7.44161 x 1079 | 2.45420 x 1078
20 3.12892 x 10727 | 2.05989 x 1072 | 6.92849 x 10~
22 9.26099 x 10730 | 5.9870 x 10710 | 1.98332 x 10~
26 1.53241 x 1073* | 5.60159 x 107! | 1.72688 x 10~10
28 6.43949 x 1073% | 1.78228 x 10~ | 5.2213 x 10~

30 2.60758 x 10730 | 5.79461 x 10712 | 1.59839 x 10~

Table 2.1: Square residual error

2.2.4 Results and Discussion

We have computed graphically the impacts of the parameters that appeared in the above
equations in Figs 2.1 to 2.12. Fig 2.1 shows that if we rise the value of M which represents the
magnetic parameter, the velocity f (n) decreases because magnetic field is a force which cause
resistance, this results reduction in velocity profile. In Fig 2.2, we examined the influence of
material parameter on velocity. They have direct relation as W increases, velocity profile fl (n)
also increases. Fig 2.3 shows the influence of curvature w on f’ (n). The velocity extends with
increase in curvature. Fig 2.4 demonstrates the effect of microrotation parameter g (n) when
magnetic force M is changed. It shows that g (1) decreases as we increase the value of magnetic
force. Fig 2.5 demonstrates the effect of curvature w on the microrotation parameter g (n),
this graph depicts that as curvature rises g (1) also increases. Fig 2.6 illustrates the impact of
material parameter W on g (n) . We observed that mirorotation rises with rising values of S. Fig
2.7 describes the effect of temperature profile 6 () on Prandtl number. The graph shows that
by increasing Pr, the 6 (n) declines. Fig 2.8 depicts the effect of thermal relaxation parameter

16



~ on 0 (n), the 6 (n) reduces by enhancing the thermal relaxation parameter. Fig 2.9 describes
the impact of curvature on 6 (n). We have seen that 6 (n) increases with increasing in w. Fig
2.10 demonstrates the effect of M on the pressure of a fluid, by rising the value of M pressure
reduces. Fig 2.11 is plotted to show the influence of curvature parameter on the pressure. We
have seen that by increasing w pressure also increases. Fig 2.12 illustrates the same effect as in
Fig 2.10 when material parameter W changes.

Tables 2.2, 2.3 and 2.4 are calculated to analyze the numerical results of skin friction, couple
stress, and rate of heat transfer for various values of M, w and S. From Table 2.2, it is shown
that the value of skin friction reduces by increasing the value of curvature, and if we rise the
value of M and S skin friction value also increases. It is observed from Table 2.3 that stress
tensor coefficient increases when value of M and S rises, while keeping the value of w constant.

Table 2.4 illustrates that rate at which heat transfer increases by rising the value of Pr and 7.

2.3 Conclusions

In this chapter, we analyze the flow of micropolar fluid across a stretched curved sheet with
MHD effects. The Cattaneo-Christov model has also been applied to check thermal effects.
The following observations have been shown by graphical results:
(1) By rising the values of w, M, and S, the pressure distribution value also enhances.
(2) By enhancing the value of M,the microrotation and velocity distribution reduces.
(3) The temperature is reduced by rising the v parameter.
(4)

4) By enhancing the curvature value, the microrotation and velocity also increases.
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w | S | M| -RezCy

0.3]10.1(0.9] 1.45901

0.4 1.23812
0.5 0.97872
05101091 0.97873
0.2 1.06428
0.3 1.14991

0.3]01]|0.8]0.43489

0.9 | 1.45825
1 1.86598

Table 2.2: Value of — Re2 Cy when Pr=1 and v = 0.5

S M | Res Cy,
0.3 ] 0.1 | 0.23989

0.5 0.30109

1 0.45182

1 0.1 ] 0.45183
0.5 | 0.64390
0.9 | 0.73354

Table 2.3: Value of couple Re; C,;, when w = 7.

v | Pr | —6(0)
0 1 1.90752

0.2 1.91535

0.4 1.92210

0.210.9 | 1.90172

1 1.91531

1.5 | 1.98102

Table 2.4: Value of heat transfer rate when w = 0.2 and S = 0.1.
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Chapter 3

Micropolar Fluid Flow over an
Exponentially Stretching Curved
Sheet with Variable Thermal

Conductivity

In this chapter, we study the flow of micropolar fluid across an exponentially extended, curved
sheet with variable thermal conductivity. Curvilinear coordinates are used in the formation of
flow equations. The Cattaneo-Christov heat flux model is used for the formation of heat transfer
equation. This study also takes into account the boundary layer flow along with variable thermal
conductivity. The equation arising in the fluid flow is non-linear and complicated PDEs, which
cannot be solved analytically. By applying suitable transformations, the PDEs are simplified
into coupled and non-linear ODEs. Then we apply ND-solver command to get the desired
results. The influence of parameters appearing in equations on microrotation,temperature, and

velocity is also described graphically.
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3.1 Mathematical Formulation

Let us consider the flow of micropolar fluid across an curved surface which is extended expo-
nentially. The flow is steady and incompressible. Consider the curvilinear coordinate system
(r, s), where r-axis is perpendicular to the direction in which fluid will flow and s-axis is in the
direction of flow. Let R° denotes the radius of a circle and surface becomes flat for greater
values of R°. The stretching on the surface is caused by velocity u, (s) = ced (o, d > 0) along
the s-direction where « is the initial rate of stretching and reference length is represented by
d. Assuming the fluid which is electrically conducting with constant magnetic field By, which
is directed in r-axis. Let us assume the temperature distribution 7' =T (r, s) and velocity dis-
tribution V = [v (1, s),u (1, s)] . The temperature of surface is Ty, where Ty > T, is ambient

temperature of fluid. Fig 3.1 shows geometry of the fluid.

7

Fig 3.1 : Fluid geometry

The governing equations of the fluid based on the above assumptions are as follows:

0 o cOu
5 ((r+ B)v) + R°== =0, (3.1)
@_ P 2
o r+R (3:2)
uy B ou, w N B gy (P, L du u
P\"r TR 1r"0s R+r) Ro+ros o2 R°4rdr  (Ro+r)?
~ —ON
—oB3u — K-~ (3.3)
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[ ON R° ON 1 ON 0°N — (Ou U
p]<vE+R°+ruE>g<R°+TE+_8r2>_K<E+2N+R°+r>’ (34)

U@_T . R°u 6_T B V.[-K(T)VT] 1 6_T n 0T e
or R°+r 0s PCp Re+7rOr  Or?
20°T | Rou QudT | R°2u2 92T | R°u v IT
Oor2 RO+4r Or Os (R°+r)2 0s? R°+r Os Or (35)

_U@()_T _ Rouvﬁ_T + 2R°uv 0%T + R°%y_ Ou 0T
or or R°+r Os R° +r Osor (R°+r)2 Or Os

where variable thermal conductivity in curved channel is modeled as

_V(—K(T)VT) = % <—K(T)aa—f>—% <<%K(T)> %)-(%) aa—f, (3.6)

The components of corresponding velocities is represented as (u,v) in direction (s,7) respec-
tively. Likewise pressure is represented by p, p represents density, electrical conductivity is
represented by o, u shows viscosity, K (T') is variable thermal conductivity which also depends
on temperature, K describes the vortex viscosity, T’ represents the temperature, N is microro-

tation parameter, c, is heat capacitance, j is micro-inertia , thermal relaxation time is denoted

2dv
.
aed

by A, ¢ = (,u + %) = uj (1 + g) describes the spin gradient viscosity, where j =

The variable thermal conductivity is defined as linear function of temperature (ref [17])

K(T) = keo[1 + ¢(T — Tio)].- (3.7)

In above equation c¢ is the constant which varies according to nature of fluid, ko, is ambient
thermal conductivity and § is micropolar parameter.
The term ¢* represents heat source/sink which is non uniform and is represented by following

equation

¢ = K (T) “;”T(j) (ﬁ (T — Tso) UWU(S) +B(T - Too)> . (3.8)

If the variables 27 B> 0, this show that heat is rising and ,ZL B < 0, this show that heat is
reducing.

By using Eqs. (3.7 & 3.8) and Eq. (3.5) can be written as

20%T | R°u 0udT R°242 92T | R°u 0v dT

’UaT R°u 0T - _\ U orz + R°+r Or Os + (R°+r)2 0s2 + R°+r 0s Or
or R°+r Os _pu T _ R’ uv 9T 4 2R°wv T | _R°%u_Qu 9T
or Or R°+r Os R® +r 0sOr (R°+r)2 Or Os
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V.[-K(T)VT) 1 0T 9*r U (8) u ~
- — 4+ — |-V.[-K(T)VT A(Ty — Teo B(T-Tx
PCp R°+r3r+87"2 VKTV 2dv ( )uw(s)+ ( )
(3.9)
The boundary condition are given as
ou
u = Uy (s), v=0, N:_MTE’ T=T, at r=0,
ou
u — 0, E—)O’ N—0, T—Tyx as r— 0, (3.10)

where M, (0 < M, < 1) shows the microrotation parameter. As microelements of the fluid
cannot spin near the wall because the concentration of fluid is very high, so M, = 0.

Lets define the transformation

oed

. —R° a , .
w = acif (), v=gm ([T (F ) +0f (), p=pa’eiP (),
q s Ty
N = a\[Gaetgm), T=To (140w =100), bu=7", (3.12)
Egs, (3.2) to (3.9) become
P 1 (df\?
dy (W) <d77> ’ (3.13)
wn dP 4w a3 f 1 d*f 1 df)
il P = =z J zdJ bl
Ca et = O (G o @+ P dn
e <ﬂ>2+L<ﬁ>2+L &f
(w+mn) \dn (w+mn)* \dn (w+mn)" dn?
w4 g9 A (3.14)

(W+n)?"dn  “dn dn’

15} d%g 1 dg w dg df d>f 1 df\
(“5> <d—772+ (w+77)d_77> T ( %‘W) ‘5<29+d—nz+<w+n>%) =0
(3.15)
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d20 1 d0  ~df =~ do\ 2 w .df
1+ b — 4+ AL 4+ B = Pr— f—~
( +€){d2+(w+n)dn+ an " }+€<dn> " r(ern)fdn

d?9 db d d
w 2 f2dn2 + lern) d?ﬂ% (f+773,§) _
—|—f}/ w_|_77 da i i —0, (316)
Kz <f+”dn) <2 "dﬁ>
where
HCp aed oB.2d k
Pr= = M = =—,7= =c(Ty —Tso), 1
r K(T)’w 2d’UR7 O[p 77/3 ’U’PY QOCY?E C( ) (3 7)

Pr shows the Prandtl number, w represents the curvature, M is magnetic field, S is mate-
rial parameter, thermal relaxation time is given by v and e shows the thermal conductivity
parameter.

The non dimensional form of boundary conditions will be

FO) = 0, fO)=1, g=-Mf"(0), §(0)=-Bi(l-0(0),

f(o0) — 0, f(c0) =0, g(c0)—0, 6(c0)—0, (3.18)
where
Bi:%,

h is heat transfer, Bi is Biot number, it represents the ratio of convection on surface of material
to conduction inside the material. After eliminating the pressure term from Eqs. (3.13) and

(3.14), we get

dtf 2 By 1 df 1 df}
1 - - =24, - A
( +6)[ d* (w4 n)dp? (w+n)2d772+(w+n)3d77
d d3f af  df d°f df 1
‘°’<— > ( Tan d_772>_M<d_77+(w+77)f>
5 (@) [
w+17 d (w+mn) w—|—77)2 (w+mn)
2 df _
w+77 d_ [ —2 nw] =0. (3.19)

In field of engineering and manufacturing industries, the couple stress, skin friction are the
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main application of many problems. These are given as

Tw M., SJw
Cr=——,Cs=—, Nu= ————, 3.20
! %p (Uw)2 I U koo (T — To) ( )
The surface heat flow, couple stress, and shear stress are shown as
ou U K ON
s = K) (&= - EN) My=(p+=)i(%=) .,
r= (e (G ) <R e (e2)i (5)
oT —160* 0T
s = —V.[-K(T)VT] | — 35—, 3.21
’ R (5) ey (3:21)
The above factors in non dimensional form are as follows
Re? C 2(1+ ) <d2f ! df) 28 M, <d2f>
= ——5 — 55 - r| 53 )
dn*>  Bdn),_g an? /=0
d df
c. = (1+ ﬁ) <—9> Re} Nu=— (1+N,63) <_> (322
2 dn ) o dn ) ,—o

uw(s)d

where Re = is localized Reynolds number.

3.1.1 Results and Discussion

The coupled and non-linear ODEs are now numerically simplified by the ND-Solve method. To
examine the effect of magnetic force M on velocity distribution f’ (n) Fig 3.2 is generated, which
describes that when value of the magnetic force M rises, the velocity is reduced. The reason
behind this is magnetic force produce resistance in direction of flow. Due to this, we observe
that the velocity is decreased. Fig 3.3 describes the influence of microrotation parameter M, on
velocity distribution fl (n). We notice that velocity decreases when the M, value increases. Fig
3.4 describes the influence of material factor 8 on the velocity distribution fl (1), which shows
that by increasing 3, the velocity also increases. Because (3 is inversely proportional to viscosity,
as viscosity decreases the thickness of boundary layer also decreases. From Fig 3.5, we observe
that the influence of curvature w on velocity f, (n). We notice that by raising the curvature
values the velocity also grows because the radius of the exponential surface expands, which

cause an increase in velocity. To show the influence of magnetic force on microrotation. Fig 3.6
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is generated which shows that when the values of M enhances the microrotation distribution
g (n) decreases due to the Lorentz force caused by magnetic field which produces disturbance
in the flow. Fig 3.7 depicts the effect of microrotation parameter M, on g(n). We observe
that when values of M, increases the microrotation distribution also rises. In Fig 3.8, we have
seen the effect of material parameter 5 on microrotation which describes as 3 increases g(n)
also increases. e reason for this is that boundary layer thickness decreases as viscosity decreases
because [ and viscosity are inversely proportional. Fig 3.9 describes the influence of biot number
on temperature 6 (n). We see that temperature rises when values of Bi rises. Fig 3.10 describes
how the Prandtl number effects temperature. The temperature decreases as we enhances Pr
values. Basically Pr is ratio between thermal diffusivity and momentum diffusivity because the
temperature and the boundary layer thickness both reduce when Pr increases. Fig 3.11, 3.12
show how increase in g, B values effects temperature 0 (n). We observe temperature rises due
to the presence of irregular heat factors. Fig 3.13 is plotted to show the impact of curvature
w of temperature 6 (1), the temperature decreases when curvature values rises. Because the
radius of the exponential surface increases then the temperature reduces. We notice the effect
of thermal conductivity € on temperature in Fig 3.14. When thermal conductivity increases
temperature also rises.

Tables 3.1,3.2 and 3.3 are calculated to analyze the numerical results of skin friction, couple
stress and rate of heat transfer for various values of M, w and . From Table 3.1, it is shown that
the value of skin friction reduces by increasing the value of curvature, and if we rise the value
of M and [ skin friction value also increases. It is observed from Table 3.2 that couple stress
coefficient increases when value of M and f rises, while keeping the value of w constant. Table
3.3 illustrates that rate at which heat transfer increases by rising the value of Pr and . Table

3.4 shows the comparison of skin friction of present work with published work Algahtani[5].
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Fig 3.3: Influence of M, via velocity w = 1.4 and M = 0.4.
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Fig 3.5: Influence of curvature via velocity when g = 0.2 and M = 0.5.
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Fig 3.7: Influence of M, via microrotation when M = 0.4 and g = 0.2.
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Fig 3.10: Influence of Pr via temperature when w = 1.5 and M = 0.2.
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Fig 3.11: Influence of A via temperature when w = 1.5 and M = 0.2.
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Fig 3.13: Influence of curvature w via temperature when M = 0.2 and Pr = 5.
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Fig 3.14: Influence of thermal conductivity via temperature when M = 0.3 and Pr = 5.

w | B | M | —RezCy
1.5 0.6 | 0.9 | 0.74651
1.8 0.65943
2.5 0.58972
1.8 0.5 | 0.5 | 0.45853
0.6 0.63018
0.9 0.78699
1.8 0.6 | 0.9 | 0.65943
1.1 | 0.70581
1.6 | 0.73219

Table 3.1: Value of — Re? Cy when Pr=3 and v = 0.7
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15} M Re; C),
0.4 0.5 | 0.01343

0.6 0.01368

1.2 0.01881

091 0.7 |0.01767

0.85 | 0.01838

0.9 | 0.01904

Table 3.2: Value of couple Re; C,,, when w = 1.

vy | Pr|—6(0)
0.1 |3 |0.13424
0.15 0.14618
0.2 0.15352

01 |1 0.31660
1.5 | 0.48672
2 0.57226

Table 3.3: Value of heat transfer rate when w =1 and 5 = 0.

B | Pr —6'(0)
0.5 | 1.52075 | 1.52054
1 1.45782 | 1.45745
1.5 | 1.42466 | 1.42479
2 1.41392 | 1.41368
2.5 1.30860 | 1.30852

3 1.30558 | 1.30565

Table 3.4: Comparison of skin friction of present work with published work.
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3.2 Conclusion

The main objective of this chapter is to examine the rate at which heat will transfer in a
magnetohydrodynamic flow of micropolar fluid across an exponentially stretched curved surface.
The flow is steady and incompressible. The key points are:

- By increasing MHD the velocity and microrotation distribution decreases.

- Temperature reduces by enhancing Prandtl number.

- By increasing the material parameter, velocity decreases and microrotation increases.

- The velocity and microrotation curves both increases when material parameter rises.

- By rising the curvature values, the velocity profile increases and the temperature decreases.
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