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Abstract

Navigation is the science which tells about the posiiion, orientation and velocity of a
flying vehicle, relative to some geographical entities. Inertial systems and visual
seekers are used for navigation with no external dependency and are always desirable
as compared (o the methods with external dependency. because of their probability of
outage and spoofing. Though the inertial based systems in self-sufficient methods are
popular, but they are expensive and cannot guide the vehicle accurately on longer
routes due to their built-in tendency for accumulating position errors over time.
Therefore, the visual navigation is a low cost and efficient solution once supported by
machine inteltigence and computer vision algarithms. The flying vehicle can store a
map of the area for matching the snap shots taken by an onboard camera to navigate
efficiently. Thus, different image matching schemes have been presented in this
dissertation for reliable aeriat visuval navigation.

The first approach proposed in this dissertation is through vector matching. The image
is first converted into edges from which the prominent ones are vectorized in a hyper-
dimension space. Once the tmage and the template are represented in this hyper spacc,
the matching reduces merely to vector subtraction process. The result of this
subtraction gives the matching co-ordinates of the template matched location with
respect to the main image. The computation can further be reduced if the main image
is represented in hyper-space offline. The whole process is further being supervised to
gauge the level of confidence for the early terminati(')n of the matching process.

The second approach utilizes the gray values of the pixels in the image for
vectorization. The image is first converted into a set of binary images through a gray

level slicing process. Then, the connected components in the binary images arc



expressed in the form of vectors. The image matching is performed in this vector
domain. This algorithm gives a sotution for scale and rotation invariance template
matching along with a 30 dB of noise robustness.

The last approach forms an adaptive prediction mechanism which further enhances
the image slicing scheme suitable to match many incoming templates with a single
main image as in the form of a video sequence. The high rate of adaptive convergence
impose a tighter bound on the next template location position estimation, which
further reduces the computations as the search area is lesser. This adaptive scheme is
more efficient in a variety of routes configurations and vehicle velocities as compared
to many other technigues.

The proposed algorithms have been evaluated, using percentage of correct matches
and computational analysis, under a variety of feature situations on database images
as well as the real images. These algorithms have also been compared with some
other well known techniques reported in the literature. The proposed schemes
outperform the other competitive method; in terms of perceniage of correct matches

and computational complexity.
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Chapter 1

Introduction

1.1 Problem Statement

Image template matching is an important field of research. Image matching can be
defined as the process of finding the locations in an image that are similar to the given
pattern template. The pattern template may have a different rotation or (and) scaie
than the main image. The matching of the template with the main image is a well
known problem in the field of computer vision, artificial intelligence, visual
navigation and pattern recognition.

The digital representation of the picture image is in the form of pixels which have
discrete values in the spatial domain. Let f(x, y) be the main image with dimensions
(M.N) such that 1<x<M and 1<y<N. Similarly, let f(x.7) be the template

image with dimensions (A?,]V) suchthat 1<X¥<M and 1=y < N . We necd to find

x Ax cos@ -sinf || x
= +m _ (1.1.1)
y Ay sinf  cosé@ || ¥

where Ax and Ay are the translations in x and y directions, respectively, whercas, n

a transformation:

and @ are the scaling factor and the rotation angle of the template image, respectively.

under which the template coordinates are best mapped onlo the main image



(a)
Fig. 1.2 (a) Main Image (b) Original Template {¢) Rotated Template () Scaled Template (e) Scaled
and Rotated Template.

template, rotated template, scaled template and scaled-rotated template, respectively.

The research covered in this dissertation is only for rigid body registration only.
1.2 Contribution of the Dissertation

Many template matching techniques are available in the area of pattern matching.
They can be broadly categorized into two classes. First of these are based on image
pixel values and the second are based on image fcatures. The methods which process
the image pixel values are mostly those which are based on a correlation kernel for
the search of the best fit location of the template image inside the main image.
Advanced methodologies in this domain deal with the optimization of the algorithms
and their faster convergence towards a unified solution while utilizing the samc
correlation kernel.

This dissertation presents a fast template matching scheme through a suitable
proposed vectorized rcpresentation of the image features. Two different matching
schemes are presented. The first scheme deals with the image edge matching, while
the second scheme matches the gray level pixels in the image after necessary pre-

processing. Matching the edges of both the images provides an effective and robust



way of the determination of best fit location between the two. Matching edges in the
spatial domain leads us towards the correlation type of processing in general. The
same matching in the frequency domain reduces a lot of computations, but the
transform process between the two domains is the undesirabie overhead in this area.
The first scheme presented in this dissertation deals with the transformation of the
image edges in the form of a vector table. The cdge extraction is donc in a spcc;ﬁc
fashion to suit the upcoming stages of the method. Then the vectorization process is
facilitated through a modified version of the conventional Radon Transform. Thus the
inherent property of the Radon Transform to scan the image with the line slicing of
the 2D function helps the realization of the vectors. These 4D hyper-vectors form a
cluster of points in the same 4D hyper-space representing the significance of the
edges in an image. The main vector matching scheme in fact fits the templatc edge
cluster with that of the main image to ascertain the match or a mismatch situation. In
case of a match, the algorithm calculates the best matching location of the tempiate in
the main image.

The second scheme converts the gray scale pixel information in the matching images
into the form of normalized vector signatures. The conversion starts with the grouping
of the image pixels based on their pixel values-and their location. The pixel groups are
then utilized to form binary images for further processing. These binary images are
then used to form the connected component of the pixels for making different types of
the vector signatures. These signatures are then normalized for further processing.
The normalized vector signatures are subtracted with each other to establish a match
or a mismatch condition with a good degree of scale and rotation invariance as well.
These schemes are more robust against noise and provide a better and fast imagc

matching solution over a wide range of image scale and rotation than many of the



methods existing in the literature. Furthermore, these schemes are used for the
application of automated visual acrial navigation.

Navigation can be defined as the science which tells us about the position, orientation
and velocity of an aerial vehicle, with reference to some geographical entities [1]. The
methodologies used for navigation are broadly categorized into two classes, firstly
those which are dependent on external sources like Global Positioning System {GPS)
and guidance beacons etc., secondly the ones which have no external dependencies
for their operation like inertial systems and visual seckers. However. the methods with
external dependencies are always less desirable because of their probability of outage,
spoofing and jamming [2] [3]. In self-sufficient methods, the inertial based systems
are popular but they are expensive and cannot guide the vehicle accurately on long
routcs. This is due to their built-in tendency for accumulating position errors over
time. This keeps on increasing the ambiguity in position. However, visual navigation
is a low cost and efficient solution. The algorithms are based on machine intelligence
and computer vision through which a flying vehicle can store a map of the area for
malching the snap shots taken by an onboard camera to navigate efficiently 4] [5].
Thus an efficient image matching scheme is presented for reliable visual navigation.
This scheme utilizes less computation to match two_‘images by converting their edgcs
in the form of hyper-dimensional vectors.

1.3  Organization of the Dissertation

Chapter 2 summarizes the previous work in the domain of template matching. Each
technique is listed with the discussion covering its implemeniation. The chapter
analyzes the strengths and weaknesses of the most common template matching

techniques.



Chapter 3 covers the first scheme for the template matching problem. Il is bascd on
the vectorization of image edges. The template matching is done through vector
matching after a similar conversion in a hyper dimension space.

Chapter 4 covers the second scheme of the same template matching problem. It also
deals with the new idea of vectorization of the image features. The vectorization
process includes formation of the normalized vectors suitable for matching two
images over a wide range of rotation and scale difference.

Chapter 5 demonstrates a new hybrid scheme which involves the image vectorization
for the purpose of matching and a supervisory adaptive prediction mechanism of the
next matching location. We utilized this mechanism to demonstrate the application of
the said techniques towards efficient target tracking. This kind of scheme is also
suitable in a video sequence template matching with a further reduction in the
computation level.

Chapter 6 concludes the dissertation. The summary is also narrated for comparison of
the proposed scheme with others. Some of the future directions are also highlighted in

this chapter.



Chapter 2

Image Template Matching: An Overview

Image matching problem appears in many fields. It is a vital field of research in
automated robot movement and machine based navigation. Its application areas
include military reconnaissance [6], medicine 7], and astronomy [8] [9], to name a
few. The visual perception of an image can be processed for matching in a number of
ways. Image edge matching is the matching procedure for the tmage edges which
steer the research towards shape matching of the edged skeleton. Similarly, the
matching can be based on gray values of the corresponding pixels which lead towards
the correlation process. High level image feature identification and their use for the

templaie matching is also a research area.
2.1 Classical correlation and its variants

The basic of all operations in the domain of image matching is the correlaticn process

for template image matching [10]. Let the main image be f(x,y) of size M xN and

the template image be w(x, y) of size /x K and we assume that J <M and K <N

The correlation function is expressed as [11]:

xy =ii (x+s Yo w(s t) (2.1.1)

For x=12,..M-J, y=1,2,.,N-K, and the summation is taken over the image

region where w and f overlap. These schemes are computationally expensive as the



handle this method is used. The domain of parallel processing for a faster 2-D
convolution was explored on dedicated correlation hardware [15]. A systolic design
was also presented for a parallel 2D convolution [16]. The modular nature of the
design made it possible to adjust a desirable balance between the computation speed
and system 1/O. Similarly, a new form of convolution algorithin was presented to be
used in paraliel processing setups enhancing the matching speed as compared to the
conventional sequential schemes [17]. A further advancement in the parallel
architecture schemes of the image convolution was presented, which utilizes non-
broadcast mechanism to achieve still better performance in matching speeds [18). The
dedicated hardware design solution to the correlation problem does not cater for the
increase in the level of computation with increase in the size of the matching images.
Furthermore, the hardware realization always imposes a practical {imitation between

the selection of resources and 1/0°s.

2.1.2 Block Matching Approaches

Image block matching is a frequently used image matching technique specially
employed in video coding. A new scheme in this regard was presented, which uses
multi-resolution blocks of image to achieve a lower computation levels [19][20]. The
algorithms gave 14-20% of speed improvement over different motion scenarios cases.
Similarly, another block matching approach was presented for the estimation of
blocks in the consecutive video frames [21]. This mecthod was based on lesting only
four vital locations for the matching estimation. Another block motion estimation
scheme was suggested, which was based on motion fields and pixel sub-sampling
[22]. The blocks are fractioned and the sub-sampling space was determined using

these fractional blocks. A similar motion vector based algorithm was suggested



identification strategy was also presented [30]. This method divides the template in
sub-classes. The class of the template is determined in the first stage of search. This
search is then further refined at the second stage for a specific and exact match. Test
results were presented for an optical character recognition problem. A sub-template
image matching approach was presented to cut down the heavy computations in the
classical correlation image matching scheme [31][32]. The new point selection in the
sub-template process reduces the overall computations to a greater extent. In the same
context, another image matching schcme was presented on parallel virtual machine
which was based on wavelets dealing with coarse to fine pixel processing [33]-[35].
This schcme was superimposed by the process of extraction of interesting feature
from the image and representing them in the form of a point set. This scheme also
utilizes an adaptive selection of the threshold value based on compactness measures
of fuzzy sets. An efficient parallel and pipelined implementation of the convolution
algoritim on Xilinx’s Vertex FPGA is presented [36]. The scheme produces the

correlation results in every clock cycle.

2.1.4 Early Truncation Approaches

Low complexity variants of the correlation problem have been suggested with
statistical bounds to achieve partiai correlations. A new form of normalized minimum
correlation (NMC) was introduced which employs low complexity and proves to be
robust against noise [37]. Similarly. a new direction in the sum of absolute differences
(SAD} algorithm was explored with a hybrid approach with Monte Carlo algorithm to
achieve a low computation level [38]. Another approximate solution scheme was
suggested for the weighted graph matching problem which involves finding the

optimum match between two weighted graphs [39]f40]. In order to reduce the



computations to a great deal a fast image matching scheme was presented which skips
the comparison location of the template on the basis of a lower bound of a distance
parameter [41]. The scheme claimed to be five times faster than the ordinary search
with the same accuracy in the results. Another attempt to reduce the computation
related to the inherent correlation process is bounded partial correlation (BPC), based
on the normalized cross-correlation (NCC) function [42]. This scheme scarches a
suitable elimination condition at each search location which forms the basis of the
upper bound for NCC function. This upper-bounding function incorporates the partial
information from the actual cross correlation function and can be calculated
efficiently using the given recursive scheme. A simple improvement to the basic BPC
formulation is also shown in this reference that provides additional computational
benefits and renders the technique more robust with respect to parameters choice. A
similar template searching approach was suggested which was based on the Zero
mean Normalized Cross-Correlation function (ZNCC) {43]. This scheme achicves a
reduced computation level by checking the proposed two sufficient conditions at each
scarch location. These methods rely on the bounded partial correlation that eliminates
the points which may not provide a better cross correlation score. A bounded partial
correlation method [44] has also been presented, which checks two sufficient
conditions at each image positions to achieve a reduced computational level for image
matching. In this method, most of the computationally expensive calculations were

skipped for those image points that may not improve the best correlation score.

Further attempts in the direction of image correlation are towards modification of the
basic kernel design of the process to achieve a better, fast and robust solution. A new
image registration method was devised in this context which utilizes the non-

parametric (NP) sampling method [45]. This method performs better as compared to



existing registering techniques as the spatial image structures are utilized and no
arbitrary selection of the kernel is required. In another proposed technique thc basic
square error kernel underlying the correlation operation was also modified in
weighted least square image matching based target tracking [46]. Similarly, an
advanced form of correlation filter is suggested to achieve rotation invariance during
pattern recognition [47]{48]. Also a general form of a multi-class rotation-invariant
filter is suggested which minimizes the average correlation plane error by controlling
the side-lobes of this signal resulting in the improvement in discrimination apainst

false targets.
2.2 Chamfer image matching development

Images can also be compared by comparing their edges. An efficient method of image
edge matching has been presented known as “Chamfer Matching” [49]. The method
proceeds with transforming the edges of the main image into its Distance Transform
(DT). This DT is a 2D representation of the image in which the edge pixels are set to
zero and the pixels farther away from the edge have an increasing value. The method
of transformation works in an iterative fashion starting from a state where edgce pixels
are set to zero and the rest as infinity. The individual pixel obtains a new value using

the following expression at the end of each iteration:
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where vf, is the value of the pixel in position (i, j) at iteration k. The iterations

continue until no value changes. The number of iterations is proportional to the
longest edge distance occurring in the image. At the end of the process, the edge

pixels attain the value zero and the pixels away from the edge will have higher values



in general. In order to match, the template image edges are superimposed over the
distance transform of the main image already formed. An average of the DT pixcl
values which the template edges hit is called the edge distance. A perfect match will
produce the edge distance of zero. Root mean square average can also be used for a

better minima location, given as :

1 1
E(i, j):3 ;va (2.2.2)

izl
where v, are the distance values, » is the number of points in the template edges and

E{i.7) is the error function value for the tocation (i, /).

2.2.1 Modifications in Chamfer Approach
{

The search offered by the Chamfer image matching scheme is of greater robustness®
against noise but inherently it proceeds in a correlation fashion which takes a lot of
the processing time for verification of the global minima value. The multi-resolution
approach however, reduces the level of computations in signal processing [50].
Applying the similar concept to the technique of Chamfer image matching, a turther
advancement was suggested to utilize an image pyramid for the image edge matching
[51]. Here, the matching is performed in a serics of images depicting the same scene,
but in different resolutions, i.e. in a resolution pyramid. Because of this hierarchical
approach significant amount of computations are cut down. The search starts at a low
resolution and the results from the low resolution guides the matching at finer fevels.
The hierarchical Chamfer matching is further refined with a new proposed matching
scheme in which DT of both the image and the template are used [52]. The low
resolution image search may ignore the fine details of the template which can

sometimes be important for the discrimination.



Another approach to reduce the computations was presented which was based on the
selection and usage of a few interesting points [53][54]. The algorithm extends the
traditional method by introducing interesting points to replace edge points in distance
transform for the matching measurement. A series of images with different number of
interesting points to feature the original image is created in a pyramid structure
through a dynamic threshold scheme. The matching is performed in this pyramid from
course level to fine level by minimizing a giver matching criterion in terms of
distance between selected points of interest. The selection of a fewer points for the
image processing is, however, a compromise towards the robustness in speed and
performance.

A new image matching strategy was presenied, known as center-on fit, based on
simulated annealing and Chamfer matching [55]. Simulated annealing is a stochastic
optimization technique guiding the results towards the matching solution and is based
on the analogy between the annealing of solids and solving optimization problem.
Simulated annealing has been applied to a wide variety of image processing
applications which simulates the eveolution to thermal equilibrium of a solid for a
fixed value of temperature T . At each temperature T, the solid is allowed to reach
thermal equilibrium, characterized by a probability of being in a state with cnergy £

given by the Boltzmann distribution:

v

p(E)ze[ ) (2.2.3)
where E denotes the energy, XK is the Boltzmann constant and T is the absolute
temperature (Kelvin). p(E) denotes the probability of a state having energy / and

temperature . Another approach combining the Chamfer match process and the

shape matching is presented [56]. This hybrid method utilizes a new form of the shape



maiching based on shape context and its correspondences which covers for the
shortfalls of Chamfer. The cost function is minimized using the viterbi algorithm

around the image feature.
2.3 Image matching in different domains

The image has got multiple forms of its representation. All the different image
representations are devised to suite different needs of image coding, transmission and
processing. The use of Hough transform for shape recognition in images was explored
[57]. Hough transform exploits the straight line feature in an image. Similarly, the
statistical processing of the image also makes it possible to reduce some computations
while template matching [58][59]. The cost of template matching has been reduced
utilizing the probabilistic domain knowledge of the matching images in these
techniques.

The use of 2D digital filters for the template image matching was presented [60]. The
scheme uses a simple lookup table along with the two-complement image
representation to yield good results over a modest amount of hardware. Another
template image matching scheme was presented and its limitations were explored
where the matching process was expedited in the compressed image domain [61]. A
similar new transformation for the image template matching is presented [62]. This
transform is defined as grayscale morphological hit-or-miss transform (GHMT) and it
was claimed to be robust against Gaussian noise.

A new approach towards image template matching in relation with multi-resolution
approach utilizing the ortho-normal wavelet basis was discussed [63]. The use of
symmetric convolution along with the discrete cosine transform (DCT) was cxplored
[64] in the similar compression domain for images. A fast templaie matching method

was suggested by using the dual transform of Fourier and the Karhunen-lLoeve [65].



The vector subspace spanned by the Eigen-vectors is generated which is then used for
the matching of distorted shapes as well. A new approach towards pattern matching
was presented which creates a transform space and divides it sequentially to perform
Boolean operations on the constraint sets that are defined by template and target
points {66]. A fast template matching algorithm was suggested which was based on L-
p norm [67][68]. This algorithm produces the same result as full exhaustive template
search in Fourier domain once the template and image window is properly partitioned.
The fast Fourier algorithm provides an edge over the conventional image matching as
the iterative algorithm makes the realization of Fourier transform possible with a low
computational level. However, the requirement of transforming the image back (o
spatial domain for the interpretation of the results is an unwanted overhead.
Furthermore, these schemes show low endurance towards the scale and orientation
differences between the matching images. Another scheme was proposed for fast
template matching which takes the advantage of energy packing property of Walsh-
Hadamard transformation [69]. All of these schemes provide efficient image matching
directions. The common drawback is the interpretation of the processed data lor

which the inverse transform has to be done, causing an extra overhead.
2.4 Feature image matching

Image can be represented in the form of the features they possess. The representation
can be directed towards achieving a specific goal of image coding, compression or
matching. In the fields of image compression and coding, it is desired to achieve the
extraction of the original image to a highest possible level, whereas in the domain of
image matching, it is not required to regenerate the original image at all [70].
Especially in the appiication area of visual navigation, only matching coordinates are

esscntially required to fulfill the need.



Many methods have been proposed for image feature comparison and matching. A
pattern matching scheme was proposed based on their correspondences [71]. The
finite grid set and distance mapping strategies are utilized and tested on binary images
in this scheme. It is also efficient to represent the feature in the images to be matched
in the form of descriptors. Different descriptors as Legendre descriptors. Zernike
descriptors and two-dimensional Fourier descriptors were explored [72]-[75].
Emphasis was also made on the method of template extraction through which the
performance of image matching may be enhanced a lot. An entropy based method was
presented which extracts the template from the binary images by eliminating the
pnreliable pixels [76]. A contour based image matching was presented which employs
a key representation of the image contours [65]. This is achieved by a dual
transformation scheme both Fourier transform and ihe Karhunen-Loeve transform and
was utilized in matching objects with unknown distortions. Many other forms of
image curves representation are discussed [77-87]. These representations facilitate the
image matching process in one way or the other. The hybrid approach combining the
shape representation along with the multi-scale platform was also explored [88]-]89].
Many other image representations were also explored to achieve a better enhancement
goal [90]. A comprehensive comparison of the image features descriptors is presented
[91].

New improved methods have been explored in the direction of image matching. Early
jump out schemes have been proven to be far more efficient as they truncate the
processing cycle when necessary and sufficient conditions for the image matching are
attained [92]. This proposed technique is also applicable to most of the motion
estimation algorithms. Similarly, the role of neural networks and different training

based solutions in target recognition and pattern matching was explored {93]-[95].



Hough transform was explored in object detection was explored which uses clustering
representation of the data in space [96][97]. Data bounds were also derived for the
schemes lc; avoid false peaks. Tracking targets in video sequences through a low-
order parametric model for motion estimation was aiso discussed [98]. The method is
based on off-line learning of targets for a better and faster online recognition. Still

newer and hybrid mechanisms are being explored towards better image perceplion

and faster template matching challenge.

2.4.1 Shapes and Line approaches

Shapes and lines present in the image constitute a powerful feature set of the image
suitable for effective image matching. Corners and junctions detection in image edges
is utilized in current efficient techniques for the image matching [99-102]. Another
algorithm with corner matching approach was presented with a great deal of
robustness [103]-[105]. Many other algorithms explored the use of shape descriptors
for the effective image matching under invariant parameters [106]-[t07]. Many
strategies to match images on the basis of shapes and exploring a reduced
computation approach were presented in most recent techniques [110]-{113].
Similarly, extraction of geometric image features makes the comparison casier and
faster and the results are robust in noisy environment. A new shape matching
algorithm is presented [114]. Here the shapes to be matched are rcgistered as a
boundary encircling the represented cluster. The matching itself is correlation based
once the boundaries are represented by a DT. Representation of the image in the form
of shapes of its contents is discussed in many recent techniques [115-120]. Matching
the contours present in the image is one way of feature comparison [121]. Inclined

targets are also compared in this study using a voting mechanism.



Multiple similarity measures for the comparing imaées were devised for faster and
robust image matching. A concise comparison between a few similarity-measures
used in medical imaging was presented using the result of computed tomography (CT)
[131]. Classification of image features is also a part of the image understanding. A
new statistical measure for the identification of tmage spatial features as icxtures was
proposed [132]). This scheme utilizes a directional RANK-strength vector for
classification and has produced good results. Similarly, another texture classification
technique was presented which is orientation and resolution (scale) insensitive [133].
The algorithm utilizes a 2D linked list to tune a mask over the normal and multi-scale

and orientation Brodatz data set.

2.4.3 Image Vectorizations

The modern form of image vectorization is a new direction for image matching area.
Image representation space is also exptored to find better ways for faster matching
[134]. A vectorization technique to be used in data compression was presented which
utilizes half-L2-norm pyramid data structure for effective data encoding [135]. Hyper-
dimensional vectors in association with larger codebooks outperform many of the
other existing techniques. Similarly, an extension to the feature image maiching is
proposed [136] in which component block projections (CBP) are used in the form of
concatenated directional vector for the efficient image template matching. Zernike
moments have also been used [137] as a powerful image descriptors. A relationship
between geometric and Zernike moments was suggested to reduce the inherent
complexity of Zernike moments to achicve a real-time processing of images upto 4

Mega pixels. Another similar implementation of hyper-plane image representation
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the use of reduced set of interesting points extracted from the image featurc for
reduction of computation in the template image matching. A study was presented
towards the effect on this selection once the template image is scaled [147]). Similarly,
the extraction of distinctive image feature point set was discussed [148-151] having a
level of affine and illumination invariance. Another sirategy for the selection of only
useful image features for the template matching was presented based on principal
component dimensionality reduction to form a reduced processing Sspace
[152]{153)[161]. Similarly, the redundant features were removed using the classical
factorization theorem.

A feature based image matching method was presented for the selection of landmark
in satellite images [154]. It extracts a small set of features by decomposing the world
into small number of maximally sized regions for robotic navigation. Although, this
scheme can work in a cluttered environment but it is not suitable for visual navigation
in aerial vehicle.

The trend of the techniques used for image maiching is now gradually tending
towards advanced feature matching schemes. The emphasis of the proposed work is to
establish a unique vectorized feature representation. The representation can thus be
utitized for the effective image matching exploring the matching process in the

transform domain.
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Chapter 3

Template Image Matching Through Hyper Vectorization

Using Modified Radon Transform

In this chapter, the theory of Radon Transform (RT) has been presented in context of
its ability towards enhancement and projection of straight segmented image edges.
Then, the formulation of the RT methodology is explained on the basis of simple
examples towards image matching. The limitations of RT towards the practical use
has also been highlighted which further becomes the basis of modifying the RT
approach to formulate an algorithm to form a practical and robust image matching
scheme. The new methodology is explained along with the experimental setup and

discussion of the results.

3.1 Radon Transform

RT is a parametric transform which converts the spatial information in an image into
the consecutive parametric domain. [t is another way of representing the same
information which highlights the edges in an image in the transform domain. RT of a

2-D function f(x, y) is defined as follows {155]:

wy

g(.s-,@)=]R[f(x,y)]= I I f(x,y)8(xcos@+ysin@—s)dxdy  (3.1.0)

- —a
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Fig. 3.1 Radon Transform (RT) Line of integration.

where —m<s<eo and 0<&@<x. The angle & is the angle formed by the line of
integration with respect to y axis as shown in Fig. 3.1, while s is the perpendicular
offset from the origin to the line of integration and it can be positive or negative. The
positive and the nepative values of s are interpreted as shown in Fig. 3.1. In this way
the 2-D kronecker delta function §(xcos@+ ysin @ —s) extracts a line slice out of the
function f(x, y). This line will be referred to as s—@ line. Hence, g(s5,8) is 1-D
projection of f(x, y) at an angle @ with offset s from the origin. In our case f(x, )
is a discrete 2-D function (or image). Thus the integration operation in RT is
converted to @ summation. Hence, the RT simply adds up the gray scalc pixel values
lying on the s—@ line. Similarly, if the edge detected binary image is considered, its
RT simply reduces to counting the ones constituting the edges lying on the s -8 line.
The difference of the two is shown in Fig. 3.2 and Fig. 3.3. Fig. 3.2 (a) shows a gray
scale image and its RT has bcen presented in Fig. 3.2 (b). Similarly, an edged binary
image is shown in Fig. 3.3 (2} and the corresponding RT is displayed in Fig. 3.3 (b).
The integration limits in equation (3.1.1) are from - to -+oo. The image function

J(x,¥) has finite dimensions (M.N) such that |<x<M and 1<y <N, thus the

integral limits will automatically reduce to a finite
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(a) b
Fig. 3.2 RT of a gray scale image (a) lmage (b) RT

4 [degrees)

(a) (b
Fig. 3.3 RT of an edged binary image (2) Image (b) RT.

value and the maximum value of 5 for which g(s,8) will be given as:

(3.1.2}

The brighter spots in Fig. 3.2 (b) represent the oriel;tation of the edge patterns of the
gray scale image of Fig. 3.2 (a). Similarly, in Fig. 3.3 (b) the same patterns arc more
visible and distinguishable because the edged binary image of Fig. 3.3 (a) only shows
the edges. The white spots can easily be localized and spotted in Fig. 3.3 (b) than

compared to the Fig. 3.2 (b).
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Fig. 3.4 (a) A binary test image (b} Radon Transform (c) RT Surface (d) Contour plot of the RT peaks.

3.2 Surface Interpretation in Radon Transform

A test image of 200x200 pixels, is considered in Fig. 3.4 (a) with six simulated vital
edges having different orientation across the image. lts RT is shown in Fig. 3.4 (b) in
which six bright spots can be easily demarcated. Thc location of these bright spots in
the transform domain corresponds to the prominent edges in the images in the spatial
domain. If the values in the transform domain are plotted as a 3-D mesh surface, the
peaks are well prominent as compared to the rest of the radon surface as shown in Fig.
3.4 (c). Similarly, the contour plot of Fig. 3.4 (d) also demonstrates the sudden change

in altitude of the radon surface.
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Table 3.1 Radon transform parameters @ and & for the image of Fig. 3.4 (a)

(2) Template 1 from (10, 75)

|

(c) Template 3 from (300, 260)

\

(b) Template 2 from (93, 28)

=

(d) Template 4 from (80, 260)

Fig. 3.5 Template taken from different locations of the test image.

[ s
19 60
32 -124
56 128
100 -5
106 173
138 -66

The spread of the radon surface corresponding to each peak constitute a butterfly type
pattern signifying the near zero values as the s--@ line is getting perpendicular to the
image edge. It is also to be noted that six edges in Fig. 3.4 (a) correspond to the
relative six peaks of the radon surface of Fig. 3.4 (c). The peaks corresponding to each
image edge can thus be detected from the radon surface and are listed in table 3.1
displaying the orientation 8 and offset s for each of the six edges. Four example
templates each of size 100%100 pixels are then extracted from the image of Fig. 3.4
(a) from the locations (row, column) as shown in Fig. 3.5 (a) to (d). Each of the
templates thus obtained has been subjected to RT and peak detection and location of

the peaks were found. These peaks corresponding to each template image

Table 3.2 Edge orientation listings of the template images of Fig 3.5

Template [ Template 2 Template 3 Template 4

g s 2] s a 5 g s
31 -24 56 47 19 -12 32 10
106 -5 106 -28 138 38 100 27
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have been listed in table 3.2 corresponding to template 1 to 4, respectively. it is 10 be
noted that the data given in these tables do not directly corresponds to the data of the
main image as the values of @ and s are relative to the particular image center. As
each template image contains two edges and their orientation can be matched with
that of the edges in the main image of Fig. 3.4, mathematical correlation shows the
estimate of the template location as listed in table 3.3. It is required to have a
minimum of two different edges to be present in the template image as essential
condition for the estimation of the template extracted location. The accuracy of this
estimation can be enhanced if either more edges are present in the template image or
bigger vital edges with accurate orientation data can be recorded. Finding the location
of the given template images of Fig. 3.5 in the main image of Fig. 3.4 (a) through
conventional correlation based techniques requires a lot of computations as it involves
the comparison of all template pixels with that of corresponding main image pixels
for cach probable template ma-tching location. These comparison operations count to a
total of 10° for the main image of size 200x200 pixels and template of size 100x100
pixels (10° pixels comparison for one template location by 10* probable template
matching locations). The comparison may differ from that of a simple subtraction to a
correlation based square error sum. Whereas, the estimation of the template image
locations through the orientation information of the edges only take a few

trigonometric and logical operations for the same results. In the quoted example,

Table 3.3 Actual and Calculated Locations.

Template Locations Calculated Locations |
X Y X Y
10 75 7.8 77.6
93 28 90.1 30.1
300 260 299.8 257.2
| 80 260 81.9 260.3
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Fig. 3.6 The flooding of peripheral surface as the number of peaks increases in images with {a) 3 (h)
4 (c) 11 and (d) 50 edges.

once the orientation & and offset sof the template edges are given, the proposed
method only takes 6 logical comparisons 2 subtractions and a vector addition to locate

the template image center with respect to the main image center.

3.3 Problems in a Practical Case

RT is a parametric transform and it detects the orientation of an edge in the image.
The integration or summation operation involved in RT creates a peak on that
location. Any image with three vital edges will create three peaks at different location
in RT domain as shown in Fig. 3.6 (a). Although, the peaks are prominent and can
easily be located in the transform signal, yet the peripherals produced which is
associated by the peak cannot be ignored completely. These insignificant peripheral

values of the radon surface cannot be indistinguishably neglected once the number of
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image edges increased. Images with 3, 4, 11 and 50 edges are constdered and there
RT surfaces are plotted in Fig. 3.6 (a) to (d), respectively. With the increase in image
edges, the peaks of the radon surface losses their significance as they submerge in the
flooding peripheral surface. Hence, the RT cannot be directly used for the practical
image matching case because the number of edges may cause a bigger portion
of the radon surface peaks to become undistinguishable. Thus a modified fortm of RT

is presented for the use in image matching applications.
3.4 Proposed Image Matching Technique

Image matching is the process of finding the location in the given main image that is

similar to a given pattern template. Let the main image be represented as f{x, y)
L}

with dimensions (M,N) such that 1<x<M and 1< y<N. Similarly, the pattern
template image be represented as f(%,7) with dimensions (A_fﬁ) such that
1<¥<M and 1<F<N . The proposed image matching scheme finds whether the

template image f is a part of the main image f or not. If £ is a part of £ it also

finds the best matching location as:

SR

where C,, and R, are the translations in x and y direction, respectively, to be

found. Fig. 3.7 shows the main steps of the proposed scheme. Fisst of all edge
detection is performed on both the main image and the template. The binary images,
thus, produced are then vectorized to form hyper vector tables (HVT) for both images.
Finally, vector matching is performed on these HVT to ascertain the match/mismatch

and the best template matching location.
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Fig. 3.7 Main steps for the proposed image matching scheme.

() (&)
Fig. 3.8 (a) Original Image (b) Less Amount of Edges
(c) Appropriate Edge Detection (d) More then desired Edges.

3.4.1 Edge Detection

The purpose of edge detection is to detect a suitable amount of prominent image
edges which can be considered as a good represeni’alion of the main features in the
image. The Sobel method is used to detect the edges with both the horizontal and
vertical high-pass masks [11]. The threshold value used in the final binarization step
of Sobel algorithm is directly related to the number of detected cdges in the image.
The variation of the threshold value and its impact on edge extraction is elaborated in

Fig. 3.8. The threshold value is low in the image of Fig. 3.8 (b) and it is respectively
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Fig. 3.9 The effect of image segmentation in spatial domain on the
number of extracted edges. (a) Example image (b) Edge detection
with one global threshold (c) Segmented image (d) Edge detection
after image segmentation.

increased in Fig. 3.8 (¢) and Fig. 3.8 (d). The edges are also increased in the samc
manner. [t is desired that the value of this threshold is so selected that 10-15% of the
total image pixels may appear in the form of edges for the uniformity in the
comparison process. This method gives essentially enough number of edges suitable
for the proposed edge matching scheme. Similarly, the use of one global threshold for
edge extraction may sometimes create bigger black portions in the iage without any
significant edges. An example in point is the image considered in Fig. 3.9 (a). It uses
one global threshold value for edge detection resuits in the binary image as shown in
Fig. 3.9 (b). It is to be noted that Fig. 3.9 (b) has got a large portion of black patch
revealing no information about the edges there. The segmentation of the image in Fig.
3.9 (a) can resolve this problem. The segmented image is shown in Fig. 3.9 (¢) and the

application of different threshold values for each segment image results in better edge
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extraction as shown in Fig. 3.9 (d). Let &# and b be the edged binary images of the

gray images f and f, respectively.

3.4.2 Hyper Vectorization

A modified Radon Transform based hyper-vectorization method has been proposed to

represent the edged binary images in the form of feature vectors. A 2-D kronecker

delta function & (xcos@+ ysin@—s) has been multiplied to extract a line slice out of

the function b(x,y) to form g(s,8) for each value of s and @, in order to vectorize

the binary image & .

g(s.0)=b(x,y)6(xcos0+ysing-s)  -s, <s558,,,0<0<x (3.4.2)

max = Sipox Y

The factor s varies in the range —s, to +s,,, beyond which the function g(s,&)

A

will have zero values. In order to scan the whole image in a complete manner, it is
recommended to use the discrete steps of parameter s as As=1. Whereas, the angle
@ varies from 0° to 179° with discrete steps of A8=1". The value of AG@=1" is
selected for the sake of simplicity and to scan the image with a reasonably good
resolution. Too low a value for the A@ will cause over scanning of the image edges
and one vector will be recounted many times in this way, whereas higher values of
A@ may cause some missing radial segments specially in the farther regions of the
mage. The recommended value of A8 step is plotted in Fig. 3.10 (a) between the two

bounds of acceptable regions.

One can use a value less than this, but it will produces more vectors and will also
increase the computations as well. Furthermore, the technique presented in this

dissertation does not need all of the image edges to qualify a match or a mismatch.
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Fig. 3.10 (a) Recommended value for the factor 48 step size (b} Scanning the circular regions.
The corresponding Fig. 3.10 (b) shows three regions in the image marked as “A”,
“B” and “C”. Region “A” corresponds to the circle of 20 pixel radius in which the
value of A should be taken as 3° as shown in Fig. 3.10 (a). Similarly, for the region
“B” and “C” these recommended values are 1° and 0.5°% respectively. For the regions
larger than “C” extending to more than 260 pixels from the image center, this value
must further be reduce to 0.25 for a good image coverage. The upper and lower

bounds of A# for a good coverage are given as:

tan"[—]—)gAGSZIan"(l] (3.4.3)
x

X

where x is the distance from the image center in pixels. The upper and lower bounds
of the A@ given by eq. (3.4.3) ensures the step size in a suitable range as to pick all

pixels intcgrally and to avoid sub-pixels interpolated values.

Each binary image g(s.€) will then be checked for a connected digital path from

pixel p(c,,r,) to pixel g{c,.r, ), such that pixels {c,,7,) and (¢, ,,,_,} are 8-adjacent

udo =17
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for l<i< L with V ::{l} [11]. This digital path will be gualified to be listed in the

HVT if L>17, where T is a small positive integral constant value whose value is
considered as 8 pixels for the experiments whose results are quoted here. Once the

digital path is qualified, only one of the two end points will be listed in HVT as

(0,L,C, R) as follows:

(0,L.c,.r,) ife,>c,orifc, =c,andr, >r,

344
(0' L‘C,lr‘r;l) if‘cu <Cn ( )

(B.L.C.R)z{

Similarly, all the entries from all binary images g(s,8) will be listed in HVT. Let the

main image HVT have N, vectors denoted as 1, (6,, L,

n*

C,,R,) with 1sn<N,.
Similarly, the template has N, vectors denoted as T,(6,.L,.C,.R,) with

l<ms<N,.

3.4.3 Vector Matching

The proposed vector matching algorithm consists of pair formation, main image
subset extraction, cvaluation of potential solutions, vector matching, solution grid
formation and template location estimation. The flow chart of the matching algorithm

has also been shown in Fig. 3.11. The steps of the algorithm are explained as follow:

Pair Formation: First of all pairs are formed which consist of two distinct hyper-
vectors taken from the template HVT. For this purpose, the template HVT is divided
into two groups and the pair formation is done as follows:

(7,.1;) I<j<N, -1
J+I<k<N,

(3.4.5)
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Main Image Subset Extraction: Each pair forined, in the previous step, will then be
used to formulate two subsets from the main image HVT on the basis of their edge
orientation '@°, i.e. close to the orientation of the template pairs. Consider the

following pair is selected:-
T,(6,L,R,,C,), (6,1, R,,C,) (3.4.6)

then, the two subsets from the main image HVT are formulated as follows:

1,(6,.L,.R,.C)) Us<psv (3.4.7)
and
1(6,,L,.R.C) WsgsX (3.4.8)

such that abs(Bq—B,)sz degrees and aba-(Gp—6j)s2 degrees where

ISUV.W,X<N,.

Potential Solutions: The potential solutions can be calculated by taking one entry

from subset 7, and the second entry from subset/ . There will be

(X =W +1)(¥ =U +1) pairs. All those pairs that satisfy the following two constraints

will be considered as potential solutions if it is known that, the template is of the same

scale as that of the main image.
abs((Rﬂv—Rq)—(R}.—Rl))SZ pixels (3.4.9
abs((C,~C,)~(C,-C,))<2  pixels (3.4.10)

The pairs satisfying the above constraints will qualify as potential solutions to be used

in the next step of the algorithm (vector matching) with £, and &, both equal 1o 1.

37



Yes

Make Template HVT:
Length Ny

j=t; lteration =0

v

Vector T =™ HV from
template HVT

No

JFitl

Yes

»  k=j+

v

Vector 2 = k" HV from
template HVT

;

Formation

Subset Extraction from
Main Image HVT

v

Calculate Factor of
Matching Confidence W

Potential Solutions & Vector

Matching
No ¢
Populate/Update Solution
Grid Cells
k>=NT ¢

lteration = iteration+1

Iteration
>200

k=k+] Yes

Fy

No

s

Match

A

L

;_’ No Match
{ Stop )

Fig. 3.11 Flow Chart for vector matching in the proposed scheme.
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The two scaling factors have been defined to achicve the scale invariant matching

which are given below:

(R -R,
S| 2% (34.11)
4 3
C,-C )
& = C” C" (3.4.12)

All of the pairs which satisfy the following three constraints will qualify as potential

solution:
E.>0 (3.4.13)

E,>0 (3.4.14)

abs[&,—&.]<02  if &<l and £&.<]

[1 1] _ (3.4.15)
abs| ——— (<02 if &,>1 and  £.>1

R &

The pairs satisfying the above constraints will qualify as potential solutions to be used
in the next step of the algorithm. The constant value of 0.2 (which should ideally be 0)
is determined experimentally to accommodate the discrete integral mapping of the
floating values in the image domain and, at the same time, to avoid the wrongly

scaled potential solutions to become the part of the grid arrays. Also if &, <1 and
£ <1, the template is of greater scale and vice versa. It is assumed that the aspect

ratio is maintained while scaling the template image. The difference of the predicted

scales &, and £ . can be directly compared if both of them are less than 1, otherwise it

is preferred to compare the reciprocals of the both, as mentioned in the second part of

the equation (3.4.15).
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Fig. 3.12 The concept of solution mapping in a grid cell array.

Vector Matching: Each potential solution from the last step will then produce a

displacement vector D{R,,,C,,), where either

R.u = Rp - R, "gu (3.4.16)
CI) = Cp - Cp 'gt'

or
Rn = Rq _R&-éu (3.4.17)
C,, = C"'r -C, &

Both the options (either equation (3.4.16) or equation (3.4.17)) arc acceptable as they
cause a difference of 2 pixels within the solutions. The factors R, and C,, formulate
the required potential answer to the matching problem and it describes the template
location in terms of rows and column in the main image.

Solution Grid Formation: Each displacement vector entry D from the last step will
then be used 10 map the solution in a grid cell array. Grid cell array is composed of

square cells in a grid formation. Each grid cell may get one or more solution counts
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Mismatch

(a) (b)
Fig. 3.13 Grid array population distribution for (a) Non-matching and (b) Matching
template cases.

Main Imape

Template Location

Fig. 3.14 Vector matching results with final displacement vector Dy
during the process of mapping of these displacement vectors. The center of the grid

cell with maximum number of solution counts will be considered as the final template
matching solution Ds as shown in Fig. 3.12.

Template Location Estimation: If the distribution of the population in the different
grid cells is not varying much as compared to each other, the algorithm will then
declare a mismatch as shown in Fig. 3.13 (a). In case if one of the grid cells is heavily
populated as compared to the rest, as shown in Fig. 3.13 (b), it will be cansidered as a
match. The center of this grid cell will then be considered as the final soll;tion with
distance Dy from the top left corner. Fig. 3.14 shows the ocation of the template in the
main image through the vector D;.

The confidence factor expressed in the flow chart is defined as follows:
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w =T "V 00 (3.4.18)
Yasay

where y,,.. is the count of the most densely populated grid cell and ;R the mean

count of the rest of the non empty grid cells with count more than 0.25y,,,,. This

tigure is determined experimentally to ignore the grid cells with smaller count and the
matched and non-matched cases are thus totally separated out on the basis of the value
of ¥. The plots of the confidence factor ¥ show initial random transients in the
value as the grid cell array is getting populated. It is found experimentally that after
about 200 iterations, the value of W settles greater than MCr for the matching

template cases and it remains less than MCr for non-matching templates.

3.5 Results and Discussion

The experiments have been designed to evaluate the performance of the proposed
algorithm. The algorithm has been tested on a single test image, a real satellite image
and on 30 different satellite images from USC-SIPI-HAAI database. The USC-SIPI-
HAAI images contain a variety of acrial satellite images having multiple ground
features covering almost all kind of scenarios to be faced by an aerial vehicle. These
multiple experiments confirm the scale and rotation endurance of the proposed
algorithm in comparison with three other image matching techniques: Similar
experiments have also been performed separately for the speed analysis of the
proposed algorithm with respect to others methods under similar testing conditions.
The noise analysis has been provided to evaluate the performance of the prop_osed
algorithm under noisy conditions.

A simple example for the simulation of the proposed image matching algorithm is

presented. The main image is shown in Fig. 3.15 (a) with many edges. These edges
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Fig. 3.15 The main image. template and grid cell array of a simple example
(a) Main image for simulation test (b) Template image with five edges (c)
Grid cell array solution superimposed on the displacement vectors,

arc denoted by small alphabets. The templatc is shown in Fig. 3.15 (b). It has five
straight edges ‘a’ to ‘e’. The main image has got the same orientations of the edges as

present in the template but the perfect match should refer to solution Yy, Fig. 3.15 (c)
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Table 3.4 Edge Pairs and their contribution towards solution.
Edge Pair Solution Counts
Ya | Ys | Y y

0
333
333
50.0
40.0
50.0
57.1
62.5
66.6
70.0
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shows the potential solution locations superimposed on a grid cell array underneath.
Let us consider the template edge pair ‘a’ and ‘b’. For this edge pair, thrce solutions in
the main image will qualify as this edge pair is present in the main image with the
same orientation at three different locations (i.e. Y4, Ys and Y¢). The next step is to
fist out all considered edge pairs and their results in the Table 3.4. The *I" in the Table
3.4 means that it qualifies as a potential solution and ‘0’ means that it does not
qualify. The solution count for Y4 is maximum i.e. 10 and hence, will be considered
as the final matching point. ‘The grid array population distribution is shown in Fig.
3.16 at the end of the matching algorithm. Grid cell at sixth row and first column have
got the highest solution score of ‘10° pointing towards Y4 of Fig. 3.15 (a). The value
of the confidence factor ‘¥ is updated with each new qualified edge pair entry and the
new value is listed in the last column of Table 3.4. This trend of confidence factor
¥ has been plotted in Fig. 3.17. As more and more edge pairs are taken into account,
the general trend of the confidence factor gets closer to 100%. The confidence factor
¥ serves as discriminatory property which classifies between a matching and an

unmatched template image.
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Fig. 3.16 Grid Array Population Distribution. Fig. 3.17 The value for the Conlidence Factor for
each vector matching iteration.

Fig. 3.18 Example Real Satellite Image. with white square poinling out the focation of’
the template and the vector Dy giving the final solution.

3.5.1 Template Image Matching of a Real Satellite Image

In order to explain the performance of the proposed algorithm on a real satcllite
image, a sample image is considered as shown Fig. 5.18. The template image has been
extracted from the location D3(200,200). The white square in the Fig. 3.18 shows the
template image boundary. This matching template image is shown separately in Fig.
3.19 (a). The main image of 512x512 pixels has been vectorized to form 3896

vectors. Similarly, the matching template has also been vectorized to form 124
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Fig. 3.19 The results of a matching template image that belongs to Fig. 9
(a) Matching template image (b) Solution Distribution in grid cell array
(c) Confidence factor growth trend.

vectors. This makes 7626 template edge pairs to be compared with the HVT of the
main image. Each templatc edge pair can score multiple qualifying solution entrics in
the grid cell array. A total of 10368 qualified solutions have been obtained. These
solutions are populated in a grid cell array. The size of each cell is of 10x10 pixel.
The maximum score is contained by the grid cell at 20" row and 20™ column of 3841
which points towards the final solution vector D,;(200,200), as shown in Fig. 3.20 (b).

The rest of the qualified solutions are scattered insignificantly over the rest of the grid
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Fig. 3.2¢ The results of a non matching template image that does not belongs to
the image shown in Fig. 9 (a} Un-matched template image (b) Solution
distribution in grid cell array (c) Confidence factor growth trend.

cells. The value of the confidence factor W was updated with each entry of the
qualified solution in the grid cell array. The trend of this factor was plotted in Fig.
3.19 (c) for the first 20 iterations. This value settles to 100% at10™ iteration and
remains there for the rest of all iterations as the template is a perfect matching onc.

Similarly, another template image was taken, as shown in Fig. 3.20 (a), which is not
the part of the main image in Fig. 3.18. The vectorization forms 65 vectors from this

template image. This makes a total edge pairs of 2080. A total of 2250 qualified
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solution entries were obtained which were populated on a grid cell array of cach cell
size of 10x10 pixels. This population distribution is shown in Fig. 3.20 (b). The

™ row and 20" column which shows a best

maximum score is 114 of the cell at 40
matching location of this template at D¢(400,200). This figure of 114 is also not
significantly larger than the rest of the grid cell score. The trend of the confidence
factor ¥ is also plotted in Fig. 3.20 (¢} for the complete 2250 qualifying solution
entries. The final value of the confidence factor W is 67.41%. It is to be noted that
after the initial transients, this value remain below 70% throughout the matching
process.

Therefore, the steady state value of confidence factor ¥ at 100% shows a match and
less then 70% can be considered as un-matched template. The trend of the confidence
factor growth with respect to vector matching iterations serves two important
functions. Firstly, it forms a basis of identification between a match and a mismatch

image matching. Secondly, it is used to truncate the image matching process

whenever essential conditions for the decision regarding image matching are met.

3.5.2 Template Image Matching on USC-SIPI-HA AI Database

Thirty real satellite images of size 512x512 pixcl; have been considered as main
image one by one. Templates of size 100%100 pixels have been extracted from 16
different locations from each main image. The value of confidence factor is evaluated
and recorded after each vector matching iterations. The resulting plots for 480 trends
are recorded and fifteen cases are plotted on the same graph for comparison in Fig.
3.21 (a) for matching templates. Similar experiments have also been conducted for
non matching templates and the fifteen such plots are consolidated in Fig. 3.21 (b). It

is evident that the matched case plots lead to the final value of 100%, whereas the
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Fig. 3.21 Confidence factor growth trends of database images for
matching and non matching templates (a} Maiched template cases
{b} Un-matched template cases.

unmatched case settles around less the 70% for the same plots. Therefore, it is
recommended that the value of MCy can be taken as 75%. It is observed that 85% of
the matching cases converge to 100% value within first 70 iterations whereas 95% arc
converged after 200 iterations. There are 4% solutions which could not converge at all
giving wrong results. A similar trend is observed in non-matching template cases as
87% of the cases settle to a value less than 70% within first 70 image matching

iterations. Similarly, 2% cases wrongly converge to a 100% level giving matching
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Fig. 3.22 The percentage correct matches for template image scaling and rotation an
database images {a) Percentage of correct matches vs. Template scaling facior (b)
Percentage of correct matches vs. Template rotation angle.

conditions. The first two hundred image matching iterations must be skipped to avoid

the initial random transients of the value of Confidence factor. This quantity is

determined experimentally after analyzing the statistical results including noisy data.

3.5.3 Scale and Rotation Invariant Template Image Matching

The effect on performance of the difference of scale in the template image with
respect to the main image was evaluated on USC-SIPI-HAAI database. Template
images were extracted from 16 different locations from the available 30 main imagcs.

The scale of each template image was varied from 0.8 to 1.2 times the original with a
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step size of 0.1. The scale factor of 1.0 means no scale change in the template image.
The percentages of correct matches are thus plotted in Fig. 3.22 (a). Similarly, the
results of Correlation [10], Chamfer {14] and RIMA (Robust Image Matching
Algorithm} [18] are also plotted on the same graph of Fig. 3.22 (a) with template scale
varying from 0.8 to 1.2 with a smaller step of 0.01. The proposed technique has
shown greater endurance with varying template scale as compared to the rest of the
techniques. All of the other techniques have shown less than 10% results at a scaling
factor of 1.1 whereas the proposed technique has shown 63.07%.

A similar test was conducted to evaluate the performance of the proposed algorithm
when the template is rotated. All of the template images were rotated from an angle of
-5° to +5° prior to image matching. The results are consolidated in Fig. 3.22 (b). The
proposed algorithm has shown an effective endurance of +2° after which the
performance drops rapidly. This is primarily due to the effect of considering +2° in
the process of subset extraction from the main image HVT. Increasing this range may
increase the rotation endurance, but will have negative impact on the speed and

performance of the algorithm.

3.5.4 Template Image Matching with Impulsive and AWGN noise

The performance of the proposed algorithm was evaluated on USC-SIPI-HAAI
database image matching experiment with 30 dB of impuisive noise with varying
tempiate image scale. The impulsive noise occurs due to the malfunction or saturation
of some of the sensor elements. This noise introduces black and white dots in the
image and it is also known as salt and pepper noise. The resulting plot of percentage
of correct matches is shown in Fig. 3.23 (a). The statistical data shows a reduction of

correct matches from 53.4% to 38.1% at 0.9 scaling factor for the template image.
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Fig. 3.23 The percentage correct malches for noisy and scaled template
images {a) Percentage of correct matches vs. Template scaling factor with
30 dB impulsive noise {b) Percentage of correct matches vs. Template
scaling factor with 30 dB Gaussian noise.

The performance of other techniques has shown significant degradation in the results
as compared with the proposed method as they have failed to match for the same
scaling factor under the presence of 30dB impulsive noise. Similar experiments were
conducted in the presence of 30dB Additive White Gaussian Noise (AWGN) and the
results are shown in Fig. 3.23 (b). A drop in performance is observed from 93% to
57.8% at scale 1.0 for the proposed method. The AWGN noise has more effect on the

image edges as it tends to change the gray level value randomly, whereas the



impulsive noise is observed to be deteriorating only few edges disturbing only those

edges where it effects,

3.5.5 Computational Analysis of the Proposed Algorithm

The computational load of the proposed algorithm has been investigatcd by
calculating the number of operations required to estimate the paosition of the template
in the main image. The speed comparison has also been provided with different image
sizes and on noisy images. The main image has size M x N pixels and the template
has size M x N pixels. [n proposed algorithm 10% of the total pixels will constitute
as the edges. Each edge will have length of 8 pixels for the worst case. If the

vectorization process counts 100% of the total edge pixels as vectors, we will have the

E, template edges or hyper-vectors given as

E =" (3.5.1)

whereas the main image will have E,, edges or hyper-vectors

MN

E, =— 3.5.2
M 80 (3 )
Edge pair formation from the template image will form P edge pairs. wherc
(42N
pP= 2 (3.5.3)

IT we assume an equal distribution of the edges in the main image for all angles in the
range of &. a total of (5MN)}/(80x180) vectors will be extracted as a subsct from the

HVT of the main image. Hence, each vector matching iterations will cost
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Table 3.5 Total Number of Operations in Image Matching with respect to the Main
Image Size (x10").

ain Image Size
200x200 pixels 400=400 pixels 600x600 pixels
Mecthods L
| Correlation Method 31.6 5280 74100
Chamfer Algorithm 3.74 434 3380
RIMA 3.84 427 3710
Proposed Algorithm 2.47 39.5 200

((SMN)/(SOMSO))I subtractions, comparisons and equal multiplications

(operations). The total computations C given in terms of image edges as

2
CP(5;‘8’3“J (3.5.4)
25Y -,
or Cz(*lEJMNE,E.,, (3.5.5)

This process of hyper vectorization comprises ((ﬂz + 1\72) x 1 80) logical comparisons

only if we assume that the main image is vectorized offline. In case of chamfer based

correlation approach, a typical of (M—]VIH)(N—]VH)(W/IO) multiplications,

along with (M ~M+ 1)(N—N+l) square - root operations and

(M—MH](N—]\_/-H) divisions are requircd. This is indeed a heavy computational

load as compared to our technique which has little real time multiplications. Table 3.5
shows the comparison of number of operations required to estimate the position of
template image in the main image with different image sizes. The computations of
compared techniques were observed after implementing these techniques on similar
platforms. The table clearly shows that the number of computations of the proposed
algorithm is much less than the other schemes i.e. Correlation [10], Chamfer [14] and

RIMA [18].
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Fig. 3.24 Database experiment resulls with varying size of lhe square main image
vs. the time required for the matching operation.

The size of the main image in image matching experiments determines the search area
and is a vital parameter for evaluating the speed and the variation of speed with
respect to main image size. Main image size is varied from 200x200 pixels to
800x800 pixels. Tempiates were extracted from the 9 different locations from all of
the 30 sets of main images. Experiments were conducted on a 2.0 GHz Intel based

Centrino Core2 Duo PC using Matlab® 7.1.

The average time taken by the experiments for all configurations is shown in Fig.
3.24. Similar experiments were conducted for Correlation [10], Chamfer [14] and
RIMA [18] and their plots are also displayed in Fig. 3.24 for comparison. The speed
of the proposed algorithm is much better than the techniques with which it is
compared, Furthermore, the proposed algorithm shows a linear proportional
dependency on the main image size whereas the rest of the techniques show a non-
linear rise with the increase in the search area. The proposed algorithm took 10.15
seconds for the main image size of 300x300 pixels, whereas the Correlation [10],
Chamfer [14] and RIMA [18] took 518.74 seconds, 48.7 seconds and 54.57 seconds,
respectively. The proposed algorithm took 18.65 seconds for the main image size of

500x500 pixels, whereas the Correlation [10], Chamfer [14] and RIMA [18] took
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2655.1 seconds, 154.2 seconds and 209.85 seconds, respectively. This time can
further be decreased if a dedicated hardwarc with DSP processor may be
implemented.

The proposed image edge matching algorithm depends on proper image edge
extraction and presence of vital image edges. images with less number of edges tend
to degrade the performance heavily. The template images of different categorics are
thus investigated for the analysis of the performance in each case. Each category
consisted of 104 template images. Category 1 was of the templates with good and
prominent edges. This category refers to the satellite images with clear permanent
ground features likes roads and constructions etc. Category 2 templates werc those
with sparsely populated rural areas. Category 3 images were those with mixed
vegetation and cultivation lands. Category 4 consisted of the images with sand and
desert tands with insignificant and temporary ground features whereas category 5 is
composed of mostly water and lake type images. The results are shown in Fig. 3.25.
The effect of noise on algorithm speed is also investigated. The value of confidence
factor quickly converges towards 100% in the template image without any noise, as

shown in plot of Fig. 3.26. Similar study has been conducted on a template with 30
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dB impulsive noise in which the value of confidence factor took greater iterations to
converge to 100%. If the noise is further increased, two facts are observed. Firstly,
fewer solutions qualify and cause lesser number of iterations. Secondly, the final
value of the confidence factor is as low as 50% which puts this experiment in the
category of unmatched template because of the presence of noise as shown in Fig.
3.26. At this level of noise, the algorithm actually fails to recognize a matching
template and may declare an unmatched result. Speed analysis is also performed with
varying main image size. A slight increase in processing time is observed with 30 dB
impulsive noise because some edges may be broken or distorted in the presence of
impulsive noise. Therefore, the total number of edges slightly increases, causing a
slight increase in the processing time. However, in case of AWGN, the edges number
was slightly decreased. Therefore, the speed of the proposed algorithm slightly
increases, as shown in Fig. 3.27. The time required for the matching a template with
impulsive noise is 20.52 sec and the one with AWGN is 16.58 sec as compared to the

template with no noise which is 18.81 sec for the main image size of 500%500 pixels.
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3.6 Conclusions

This scheme presents a new approach towards image edge matching. Once the
important properties of the edges are converted into a cluster of hyper-vectors, the
matching problem simply reduces to a few subtractions and comparisons and nominal
multiplications if scale invariance template matching is desired. Increasing the
dimensionality of the image feature representation has found to be helpful in reducing
the complexity of the solution procedure. Listing more parameters of an image feature
helps in elaborated image description. The algorithm is simpler and much faster for
the use in real time systems. As the algorithm proceeds, the grid cells get populated
and the pattern of the population distribution tends the solution either towards a match
or a mismatch. Due to this methodology, the matching process can be stopped at any
time once the direction of the solution is clear which gives a further benefit towards
the overall computations. The results clearly demonstrate that the performance of the
proposed algorithm is much better than the competitor techniques under different

situations.
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Chapter 4

Template Matching Through Hyper Vectorization Using

Gray Level Sliced Binary Images

In this chapter, a feature based image matching approach suitable for aerial visual
navigation is discussed. The image features were extracted through quantization of
gray levels in an image to form sub-band binary images. These binary images are then
subjected to the boundary extraction of connected patches. The boundaries were
vectorized and then normalized for sorting in an order of significance. Hence, the
complicated image matching process was reduced to only a few vector subtractions.
The main advantage of this approach lies in their low computational overhead. which
is primarily due to the small size of feature vectors and early truncation of the
algorithm as the position of the vehicle is ascertained. Another important advantage of
this algorithm is that it provides a rotation and scale invariant image matching. High

level of noise immunity has also been observed which makes the scheme more robust.

4.1 Problem Formulation

Image matching is the process of finding the locations that are similar to the given

pattern template from the given main image. The pattern template may have a

different scale and rotation. Let f(x,y) be the main image with dimensions M x N .

Similarly, let 7(X,) be the template image having smaller dimensions M x N than

the main image. We need to find a transformation:
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X Ax cosf -siné (| x
= +m| _ 4.1.1)

¥y Ay sind cosf@ ||y
where Ax and Ay represents the translations of the template image in x and y
directions, respectively. m and & are the scaling factor and the rotation angle of the
template image, respectively. The m scaled and & rotated template image gray levels
best match with the gray levels of the main image at the displacement ol Ax and Ay .

Therefore, the template matching requires the estimation of these four parameters

(Ax,Ay,m,8) for any given image set f and 7.

4.2 Image Feature Extraction and Matching in the Proposed

Scheme

Image matching is performed in three major steps, i.c. gray level slicing, hyper-

vectorization and vector matching. The gray level slicing is performed on both the
main image f(x,y) and the template image f(,%) to form sub-band binary image
set. Then, these binary images are hyper-vectorized to form shape signatures for both
the image sets. Finally, vector matching is performed to obtain the best matching
location (Ax,Ay) and orientation (m,8) of the template image in thc main image.

The main steps of the proposed algorithm are implemented in a sequence shown in

Fig. 4.1. All these steps are explained as follows.

4.2.1 Gray Level Slicing
Gray level slicing is often used to highlight a specific range of gray levels in an image
[41] [42]. The gray level slicing has been utilized to form a binary image by putting

the range of interest to maximum intensity while keeping all the other pixels to a zero
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Main Gray Level Hyper
Image - Slicing | Vectorization KA

Vector
Matching

Gray Level Hyper A
Template —>, Shicing | Vectorization

> Results

Fig. 4.1 Main steps for the proposed image matching scheme.

level. This facilitates the vectorization of the images in the next step for all of the

image features. Gray level slicing process will praduce B number of binary images
{g'(x,y),gz(x,y),...,g” (x,y)} of the same size. Hence, let g*(x,y) be the A"
binary image formed from the main image f(x,y) where 1<k < B . The process of

obtaining binary images from f(x, y) can be represented as:

g*(x,y)= 1, (ﬂ:-ﬂ)gf(x,y)S(%—l)

»

4.2.11
otherwise

Similarly, the template f(X.7)will also be converted into B number of binary

images {g'(f,?),gz(x,}),...,é‘”(f,}_z)}. Hence, let g°(X,7) be the K Binary
image formed from the template j—"(f,ﬁ) with | €& < B . In the gray level slicing of a

satellite image, we have proposed for four band slicing for the use in rotation and

scale invariant image matching under the scope of visual aerial navigation as shown

in Fig. 4.2
4.2.2 Hyper Vectorization

Vectorization of image is an effective method to represent the image features in the
desired form [43] [44]. A scale and rotation invariant hyper-vectorization based

methodology is proposed for shape matching. The goal of this work is not 1o
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Fig. 4.2 Real Gray Scale Satellite Image and its Sliced Bands for B = 4.

reconstruct the matching images but to estimate the best matching location {Avx, Av)

and orientation (me) of the template in the main image. The process of vectorization

includes the foltlowing four steps:

Boundary Extraction of Shapes: Each binary image formed in the previous step.

g' (x.y) or g"(x,»), is then subjected to a boundary extraction process [37]. In this

process, the image may be subtracted from its croded image to extract all the
boundaries of connected patches of the binary images. Each binary image may
produce more than one boundary. Each boundary may be represented by the co-

ordinates of its perimeter. The boundary co-ordinates of the ¢ boundary and of the &"

binary image. g* (x,»), can be represented as S"(k.q) where 1<n< [ and LY

is the number of points in the perimeter. The S”(k.g) may also be represented in

complex form as:

S"(k,q) = (x" (k.q)+ " (k,q)) l<n< [t (4.2.2)
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Fig. 4.3. Centroid of a given boundary.

Similarly, the boundaries of the binary image g* (fﬁ) may be extracted and can be

represented as:

5" (k.q)=(3"(k.§)+ 7" (k.7)) l<n<I (4.2.3)
Centroid of the Shape: The first step is to find out the centroid of the shape. The
centroid of a shape is defined as the midpoint of the extremes of the boundary in both

the horizontal and vertical directions. The procedure of obtaining the centroid is

explained in the Fig. 4.3. In this figure, the centroid is [abeled as “O™ and is located at

C(k’q):(C;(k,CI)+J'C,.(k,Q)) (4.2.4)
in the main image corresponding fo i binary image and n:jLh boundary, whereas the

first co-ordinate of the centroid ¢_(£,q) is defined as

¢, (k,q)= mean{max(Vx” (k,q)|1gn< Lk"’),min (Vx” (k,q)|1<n=< LM )} (4.2.5)
In this equation, the mean(...,...) finds the mean va-lue of the two entries in the
parenthesis, max{...} gives the maximum value of the quantities in the respective
argument sets and min{..} gives the minimum values of the quantities in the

respective argument sets. The other co-ordinate ¢, (k,g) of the centroid is given as
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c,(k.q)= mean{max(\?’y" (k,q)|1sn< L""),min (Vy" (k,q}il< n< L*"’)} (4.2.6)
Simnilarly, the centroid of the template will be

¢(kq)=(c, (k.7)+ jc, (k7)) (4.2

Magnitude Signatures: Then, a row matrix G(k,q) is formulated which is

composed of Euclidean distances d, (,q) of all the boundary point in S"(k,q) with

the centroid point O(cr (k,q)+jc_‘,(k,q)). This vector is represented as

G(k,q)=(d,(k.q) dy(k.q) di{kg) - d,,(kag)] (4.2.8)

where

d, (k,2)= (e, (k.a)-x (k.a)) +(c, (k.a)-», (k)]  1snsl* @29

which is the n™ distance of the g™ boundary in the & binary image formed from the

main image. Similarly. for the template, the list will be represented as

G(kq)=[d/(k7) &(k7) &(kT) . dn, (k)] (£.2.10)

where

2

(Z,(k,zj)z\/(E,(k,a)ﬁfn(k,a))z+(E_V(k.§)—)7n(k,c7)) l<n<IM (211

The pictorial representation of these distances is shown in Fig. 4.4(a) and a
corresponding plot is shown in Fig. 4.4(b). If the particular boundary point in the
binary image is farther away from the centroid, the distance in the plot will reveal the
same. Hence, the plot is another way of representing the boundary in the binary image

and will remain a unique one for one particular shape. This plot is then normalized in

64



Distance lrom tha Baundary Centrold

[ 1m0 %0 b 00 500 600

(a) (b)

Fig. 4.4 (a} Distances of boundary points from centroid (b) Corresponding plot.

both the horizontal and vertical axes. The horizontal normalization process was
applied on vector G(k,g) to form a fixed length representation having “ 37 elements

as

H(k,q)::[hl(k,q) h(k.q) h(kq) .- h:‘(k,q)] {4.2.12)

where hn(k,q)zmean d b (k,q),d i (k,q) (4.2.13)
jhmr[--}:j-m] cein'["T]

Similarly, the horizontal normalization process for template image will yield ﬁ(k.(ﬂ

with fixed length representation.

H(kg)=[A(k7) hk7) h(kg) - k7)) (42.14)
The values thus formulated are expressed in the form of a row matrix, which will be
used to formulate a unique signature of this particular boundary in the next stage. The

vertical normalization is achieved by dividing each magnitude with the maximum

distance in the set as shown here
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Fig. 4.5 The components of the vector header (a) Signature (b) Shape (¢) Header Components.

H

k.gy= 4215
¢ (ka) max ( H (k.q)) @
Similarlty, the template image is also normalized, as shown below
_ H(k,q
§(k,§)——-—-(( i) {4.2.16)

)

A three valued header y(k,g) (consisting of quantities A'(k,q}, A7(k.¢) and
A’ (k.q)) is proposed to generate and place before the row matrix ¢ (k,¢) to form a

complete “ 3-+3" valued signature as given below

E(k,g)=[w(k,q) <¢{kq)] (4.2.17)
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The shape of this particular boundary is also shown in Fig. 4.5(b). A'(k.¢) and
A*(k,q) are the maximum and the minimum distances from the centroid of the
boundary prior to normalization i.e. max (G (k.¢)) and min (G(k.q)). respectively.

These distances are also represented graphically in Fig. 4.5(c). A}(k,q) is the

perimeter length of the boundary before normalizing the signature to length 3.
Similarly. we have a complete normalized shape signature for the template image

shown in Fig. 4.5(a) as

E(kg)=lp(kq) < (kG)] (4.2.18)
Phase Signatures: A row matrix is then formed which is composed of the angles of

vectors d,.This row matrix is represented as

J(k.q)=[«d (k.q) «d,(kq) «d(k.q) .. «d,, (kg)] @219

where

(c,(k.q9)~y,(k.q))
(c. (k.a)-x, (k.q))

The «d, (k.q) is the phase of the 7" angle with centroid of the g™ boundary in the £
" o q .y

l<n< M (4.2.20)

«d,(k.q)=1an”'

binary image formed from the main image. This representation is also expanded or
T M

shrunk (re-scaled) to form a fixed length representation having “3” clements in

horizontal direction only as

«¢(k.q)=[D (k.q) D,(k.q) Di(k.q) - Di(k.q)] (4.2.21)

where D,(k.q)=mean) <d  , (k.q).<d .. (k.q) {4.2.22)
_ﬂrmr{ ] u‘nf[ 1 ]

Similarly. for the template image we have

«f (k.q)=| D (kg) D(kg) D,(kg) .. Di(k.7)] (4.2.23)
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This completes the process of vectorization in which the important features of both
the main image and the template are represented by a normalized magnitude signaturc
along with a header component and a normalized phase signature. These signatures
constitute a I -D hyper-space which will be processed in the next stage for solution
estimation. In this section our contribution is the utilization of an associated phase
signature along with the normalized magnitude signature. The combined arrangement
gives precise rotation information ot the template feature shape with respect to that of

the main image.
4.3 Vector Matching

Vector matching is the most important step after the vectorization process. In the
vectorization process, both the main image and the template are in the form of a
vector sets. Each binary image may produce many vectors after the boundary
extraction process and each boundary produces one vector. The vectors in the
template set are then sorted with respect to perimeter length in descending order and
considered one by one for matching. We consider only those vectors with
A (k,g)- A (k.g)2Y and A’(k,g)2 g . The reason for this selection is to ignore
the shapes which are close to a circle and those which are insignificantly small. Such
shapes may produce false results as the signatures for the circular or close to circular
shapes tend to become quite indistinctively flat. The qualified vector of the template
image is then matched with all of the vectors of the main image belonging to the same

binary band.

4.3.1. Rotation Estimation
First step of vector matching is to find out the template rotation angle for which the

magnitude signatures are correlated, as follows, to form an error function £(S). We
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have proposed the following 1-D SAD (sum of absolute difference) for estimation of

the template matching location as:
E(S) = sum (abs (g’ (k,q)-(f(s’ (k, cj))) 1£8<3 (4.3.1)
where &) (k,q‘) is defined as a shifted and rotated version of the template signature

¢ (k.g) with shifts S varying from | to T given as:

5(3,(1‘7"?):[}?3-5”(’("7) Hs~s+2(k’q) JF_{:s("‘("—f.)

_ _ _ (4.3.2)
Hl(k’a) H!(k,a") H:‘—s(ksq)]

The minima of this correlation error function £(S) is located at $=S§_,, and is given

win
as

Enin = & (Sein) (4.3.3)
[f this £, <. then this vector pair will be considered as matched, where y is a

threshold value for vector matching.

6 - mean(({é‘(k,q))—({‘S""Q_'(kj))) (4.3.4)
4.3.2. Scale Estimation
The second step is to estimate the scale of the template with respect to the main
image. The perimeter of the boundary extracted in the template can be compared with
that of the main image prior to normalization process for this estimation. Hence, the
proposed scale estimate for this particular vector pair is simply a division process and

is given as

A (k,q)

m= m (4.3.5)

4.3.3. Location Estimation
The third and last step of vector matching is to find out the matching co-ordinates of

the template in the main image. The centroid of the template shape has to be rotated
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and scaled back in order to match the orientation and the scale of the shape in the

main image before finding the matching co-ordinates. The co-ordinates of the centroid

of this template shape is given as 5((':; (k.q)+ jc, (£, q_)) The center of the template

image is given as ?(%+jg—]. We can define a vector (0 extending from the

template image center towards the respective shape centroid, as given below
Q=0-P (4.3.6)
This vector can also be represented in polar form as
Q= |Q|f-"{@ (4.3.7)
This vector is then subjected to a rotation to an angle “—@” given in equation (4.3.4)
to form another vector R as
R=|g| <t @38
Another vector is then defined as T, which is extending from the template image
upper left corner to the new rotated position of O given as
T:ﬁ+ﬁ:(f; 4-;’?}) {4.3.9)
This vector is then finally scaled to form a vector U as
U =mT ={mT, + jmT,) (4.3.10)
The co-ordinates of the respective shape in the main image is given as
O(cx (k.q)+ je, (k,q)). The final displacement co-ordinates of the template image in
the main image are represented by a vector ¥ as given below

V=0-U=(ac+ jiy) (4.3.11)

70



4.3.4. Confidence Factor Estimation

The solution set (Ax,Ay.m.@) is an estimated solution which is obtained from

comparing one template vector from the set of main image vectors. Many such
solution set will be created when the comparison process goes on and ultimately a
solution space will be formed with the total number of 9 solutions. Let this solution

space be represented by the set Z as

Z:CJZ, =D{(Ax,,Ay,,m,,,9,)} (43.12)
r=|

r=|

Then a fifth index, s, will be included in the ordered pairs of this set to make the new

representation as

H

z; = J{(&x,.4y,.m,.0,.5.)} (4.3.13)

r=|

such that
5,=n({VZ, e Z||Z - Z|<n)<r <R #4}) (4.3.14)
where |Z, - Z,| gives the Euclidean distance between the vector Z, and Z,. The

argument n(---) gives the cardinal number of the set, where n is a small positive

quantity showing the limits of the cluster neighborhood. Then the final predicted

solution of the template matching location and orientation is given as Z

_in which
has the highest value. It is not necessary to match all the template features with the
main image to ascertain the best matching position of the template. The earlier

truncation of the matching process can be achieved using the following proposed

confidence factor @, which is defined as follows:

@ — SH(u _SR X]OO (4.3.15)

S.l oy
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where s, is the maximum neighborhood count and 5, is the mean neighborhood

count of the rest of the solutions with count more than 0.25s,,,. . The value of @ can

be updated with each new entry in the set Z_ and it also serves as a distinguishin

&
o

factor for matching and non-matching template. 1f © > @,, ., .. the truncation process

will be truncated declaring a match.

4.3.5. Pseudo Code of the Proposed Algorithm

The procedure for the estimation of template image matching location can also be

summarized as given in Table 4.1 in the form of tabulated pseudo-code:

Table 4.1 The Pscudo code of the Proposed Scheme.

Steps I Process

| Input ]

Output

Problem Statement

To find template image (f) best
matching focation (Ax, Ay). and

orientalion (m.@) . in the main

image (f)

f(x,y) size: M x N
4—(3}) size: Mx N

(Ax.Ay,m,0).

Proposed Algorithm

Stage 1: Gray Level Slicin

1 Main image and the template image

are sliced into B binary images of
the same size.

f(xy). 7 (%)

Stage 2: Hyper Vectorization

2 All the binary images of step 1 are k el kT " — " N i
to be subtracted from their own & (x’y) -8 (l’y) I_S' (k’q) X (k’q) D U"\Q)
eroded copy 1o extract the perimeler I1<k<h S (k, ?j) =x" (k, 6) 4 (k. ﬁ)
co-ordinates boundary of this g™ | < e b
connected patch. <n=L"
I No. of perimeter points in & binary
image and g™ boundary.
| S e |5 (k). () | e(ka)=(c, (k) e, ()
¢(hg)=(z.(k7)+ 7 (k7))
4 Row matrix is formed which " o — A=
consist of the distances from all the S (k’q) 'S (k’q G(k'q) ) G(k'q)
perimeter points to the centroid. c(k. q) . E(k, @7)
3 All of the row matrices obtained in ~fp = — T
step 4 are re-scaled ta a fixed length G (k.q). G (k) H(k. q) A (k.)
6 The matrices obtained in step 5 are H(k,q). ﬁ(ka) Q’(k.q).g(k.q) o

normalized by dividing each
element by the maximum of the
array.
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7 The maximum and the minimum k (kg Tk k¢ o
distance (4" and 4%), and the length g( ‘CI)-.Q'I( f]) , §(k.q) L4 ( J]) I({( . ])Il
(A of the boundary‘perirn_eler are W(kJI): A A A ’f_(ka):[(}_’(kfj) |§ (kff—)ll
placed as header to form full o - =1 =3
magnitude signature W(hq) =A,4",4
8 Phase signature is also {ormed S"(k S*'(k.a J(k T(k.a
which consist of the angles of all aof ( ‘q)' ( ) q) ( q) ( ' 1)
the boundary point from the ,;-(,t'(1 q) E(k. (7)
centroid with respect 1o positive x
axis.
9 All of the row matrices ohtained in J(k Tk a x(k {f k.o
step 8 are re-scaled to a fixed length ( ’q)’ ( 'q) é,( q)’ - ( : 1)
= " as a final phase signature
Stage 3: Vector Matchin
10 Magnitude signatures are sorted k 4 k,q),for £[S): correlation error funclion with minima
with the lengthiest perimeter placed E‘( 'q)’g g ,f]), ( ) y
first. The magnitude signatures of | 4" (k, (j) - A (k_, q) P Enin =€ (Smi“ ) avshift $=8,,
the template from this list will then -3 _
be correlated in 1-D form by all of A (k,q)2gp as
the magnitude signatures of the qualifying conditions
main image of the same binary
band.
1 Template image rotation angle = 3™ é’(qu),g(k_a) for 9=lrreun(dg(k,q)r—{“r‘“'f(k.Ef))
estimation, < 6
Enin =V ( .)t“""" : Shitted angle signature
|2 3 “ " - _ 3
Tefnpla.tc image scale * m é'(k, q),C (k,q) for A (k,q)
estunation. = =TT~
Epin 57, A (k,q)
13 The vector  is defined as the one (= - 1= (=x[0)-a
’ extending ['rgt))m template image C__(k’q)_ R = |Ql <e (ter-0)
cenler towards the shape’s centroid. (M N o . P .
Whereas R is a new vectar with P(_zm.pj ?] R has got ll?e san_n: m agmfude as Q and with
rotated orientation and same length rotatcd orientation as estimated in step [
as 0. Q=E—]_)=|Q|€‘((Q)
14 Vector from upper left corner of the P.R F-—P+R— (7—; + IT,) '
template image to R 3 )
13 The vector of step 14 is then scaled T T T4 imT
to match the scale of the main U=ml (m‘Tt 4 )
image e
16 Th(.: r|.:l'erence is lhen_changed 1o the c, U Vee-U = (L\r N fﬂj’)
main image upper left corner . L
17 4-D hyper space cluster formulation Ax. Av.m.0 Ax.Av. 1. 0.5
for the qualifying solutions and its ( B 1, ) ( "B LG5 )
neighborhood count *s™ is
calculated at the same time. -
18 Conlidence faclor for the match is ¢ . Max nciehb . —F
e ¢ * < gnbor Ayt
faund and the trend of (his lactor Mas™ . Q= —“—‘w—--ﬁ—x 100
leads to early truncation of the _ LOUI’T Satar
iterative vector matching process, Sy Mean neighbor
count with
count >
0.25 8, i .
19 o0, then the matching process is terminated and the solution in the solution space with maximum
tireslmdid p

neighbar count will be declared are matching parameter otherwise pick the next vector for matching and go to siep

10.
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, 20 ' If all of the vector pairs are processed and still the © <G, then the maich is declared as a non-matching

case.

{a) (b}
Fig. 4.6 Test image and its four binary bands.

4.3.6 Test Case

A test image is considered as shown in Fig. 4.6 (a). It is apparent that the image
contains eighteen connected patches of different gray scale values. Gray level slicing
with B =4 form four binary images b,,. b,,. b,, and b,, as shown in Fig. 4.6 (b).
The boundary algorithm then extracts the outer boundary of the connected white
pixels objects contained in the binary images. The connected components extracted
for each binary band arc elaborated separately in Fig. 4.7 for clarity. Similarly, Fig.
4.8 (a) shows the template image, Fig. 4.8 (b) shows gray level sliced binary bands
and in Fig. 4.8 (c), the four shapes are elaborated. Fig. 4.9 shows the bar plots of the
normalized vector signatures “¢ ” for the respective shapes shown in Fig. 4.7,
Similarly, Fig. 4.10 shows the same bar plots for the respeclive template image

shapes. It is evident that ¢7,, is matching with ¢,,,, {;;, with ¢,;, and ¢,,, with

C.Nd .
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Band I, P;=1 Band?2, P;=5 Band 3, P;=8 Band4,P;=5

Fig. 4.7 Boundaries extracted from the test image bands.

(b) (<)

Fig. 4.8 (a) Template Image (b) Binary Images Bands (c) Shapes.
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Fig. 4.9 Signatures for the shapes in the main image.
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Band 1, {7y, Band 2, ¢, Band 3, ¢, Band 4, ¢,

PR

Fig, 4.10 Signatures of the shapes in the lemplate image.

4.4 RESULTS AND DISCUSSION
The experiments are designed to test our following claims:

i. hmage matching experiments on the bulk of satellite imagery database for the

verification of robustness and versatility of the algorithm.

a. Intelligent detection and segregation of the non matching template

images,

b. Early truncation of the matching process after establishing cnough

matching operations.
2. Scale invariance image matching and comparison of results.
3. Rotation invariant image matching and full range verification.
4. Computations comparison of the proposed algorithm.
5. Lffect of computation on image size.

6. Noise effect and the level of endurance in both AWGN and impulsive noise

types.
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4.4.1 Database Image Matching Experiments

The proposed algorithm was implemented and was evaluated on USC-SIPI-HAALI
database. This database of images contains a variety of aerial images having multiple

ground features. The images used as main image have the size of 512x512 pixels. The

template images for matching had the size of 100x100 pixcls. The fixed length

o

normalization, 3, for boundary signatures was selected to be 100. Multiple
experiments were conducted to test the performance of the matching algorithm_ Thirty
two real satellite images were considered for this purpose. Templates were extracted
from 64 different locations from each image. The gray level slicing was performed

with four bands i.e. B=4. Other parameters are keptas Y =10, £=10 and =10.

The proposed algorithm was evaluated using the right prediction percentage factor £

defined as

Correct Matching Experiments
= x

p 100 {4.4.1)

Total Experiments

This right prediction percentage factor has been utilized to evaluate the robustness and
versatility of the propaosed algorithm as compared with the ones reported earlier in

literature,
4.4.2 Computation Load of the Algorithm

The proposed algorithm is based on extraction of shape contour in the different gray
level sliced binary images, as features and simpler computations as integer
companson and additions/subtractions for vector matching. A relative computational
analysis of the algorithm with that of Chamfer image matching algorithm [14), Robust
Image Matching Algorithm (RIMA) [18], PCA-base Rotation Invariant Texture

Features (PCA RITF) [159], Fourier Descriptor image Matching (FDIM) [157] and
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Table 4.2 Comparison of Computations for Different Image Matching Schemes for a 100x100

pixel template in x 10* computations.

Algorithm Chamfer RIMA PCA RITF 3D-FR lyper Vector T
Matching
Pre Online Pre Online Pre Online Pre Online Pre Online
Computatigns L R R
Additions / i
o 300 16012 300 176012 142440| 81773 144 32 16 24
Subtractions
Multiplications/ |, 12 300 12 154980| 78330 96 45 32 32
Divisions
Square Roots - 16 - - - - - - 8 8
Logical 22500 | 160016 | 22500 | 160900 | 121 449 877 22 375 i5
Comparisons

Three-dimensional Face Recognition (3D-FR) [158] has been presented in Table 4.2.
The 3D-FR [158] is a face recognition scheme which converts the facial gray level
features in the form of contours and the distances between two contour lines in a
convenient form for the purpose of face matching. The table shows that only the
proposed algorithm utilizes much less computations as compared with the other

algorithms.

The computations for the image matching experiments increase with increasc in the
image size. We have also compared the processing time of the proposed algorithm
with the Chamfer [14], RIMA (18], PCA RITF [159], Fouricr Descriptor Image
Matching (FDIM) [157] and 3D-FR [158]. Results of this comparison are provided in
Fig. 4.11. Size of the template is taken fixed as 100x100 pixels, whereas the size of
the main image is varied from 200 to 800 pixels side for square images in 100 pixels

slep.

Platform used for the experiments was Matlab® 7.3.on a PIV based 3.0 Ghz PC. It is

cvident that other techniques take more time for the same image matching a faster rate
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Fig. 4.11 Comparison of the processing time of the proposed algorithm with other
technigues,

experiments for any given image size. It is clear from Fig. 4.11 that as the size of the

main image is increased, the time required to perform the template search increases at

showing a non-linear rising trend. The results of proposed scheme, however, show a

littie dependency on the size of the main image.

The proposed algorithm can be intelligently terminated earlier without performing the
full matching iterations. The matching confidence factor given in equation (4.3.15)
serves as discrimination between the matched and the unmatched image cases. To
verify this property, ten examples of both the matched and unmatched cases have
been considered. The value of the confidence factor has been recorded at each image
matching iterations and has been plotted in Fig. 4.12 for all of these cases. These ten
experiments show that matched and the unmatched templates are well distinguished at
the earlier stages of vector comparison. Furthermore, the unmaliched template

confidence factor stays close to 0% as the solution set in this case is
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randomly populated, whereas in the case of a matched templatc many solutions show
a fixed convergence trend towards the true match point which increases the value of

this matching confidence factor rapidly.
4.4,3 Scale Invariance

A test run of the proposed algorithm was performed on database of satellite images in
order to observe the scale invariance of the algorithm. Therefore, the template images
were scaled from 0.4 to 2.0 with a step of 0.1. Scalc value of “1” shows that the

template image used in matching experiment is of the same scale as that of the main

image. The scale greater than “1” shows expansion in the template prior to matching
and vice versa. The results were consolidated in Fig. 4.13 for the proposed algorithm
as well as the other schemes, i.e. Chamfer [14], RIMA [18]), PCA RITF [159]. FDIM
[157] and 3D-FR [158]. These results are provided in the percentage P of right
prediction of the templates for each scale factor. The scale range of 0.8 to 1.2 has
been studied with a smaller step of 0.01 because the Chamfer [14] and RIMA [18]
shows a degraded performance within this range. Chamfer [14] and RIMA [i8] have

failed to match outside the scaling factor of 0.8 to 1.2. However, FDIM [157] and 3D-
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Fig. 4.13 Template matching error vs. the original template scaling factor.

FR [158] produced result comparatively less then the proposed algorithm. These
schemes produce fairly accurate matching statistics in case of no scaling i.e. with
scaling factor *“1”. The proposed scheme produces conparable image matching for the
scaling factor of “1”. However, the proposed scheme produces much better results
than the other five schemes for scaling factors other than 0.9 to 1.1. For example, at a
scaling factor of 1.2, Chamfer [14] fails to match, RIMA [18] shows 7% results. 3D-

FR [158] shows 68% results, FDIM [157] shows 72% results, PCA RITF [159] shows

19%. whereas the proposed scheme shows 88.41% of correct matches. The scheme
presented in chapter 3 shows 45% results at scale 1.2 as shown in Fig 3.23 {a). The
proposed scheme matches image features using a normalized representation of leature
signatures which enable the comparison with scale invariance over a greater scale
range, However, the image features degrades more if it is shrunk then in the case of
image expansion. This fact has affected the results in the same pattern as the factor P

drops to 40% at a template scale of “0.4”.
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4.4.4 Rotation Invariance

A consolidated test run was made on 30 real satcllite images. Templates were
extracted from 16 different locations. Each template was given a rotation of 0° to 359°
with the step of 20°. The angular range of 0° to 10 and 350° to 359° is, however,
covered with a smaller step of 1° Fig. 4.14 shows the value of factor P plotted
against each rotated angle. The proposed scheme shows a good percentage for
template matching for the whole 360° template rotation. RIMA [18] and Chamfer [14]
show a limited range of rotation coverage close to 0° when the template image is only
slightly rotated. For the rotation of 20° 3D-FR [158] shows 70% results, Chamfer [14]
shows 0%, RIMA [18] shows 0%, FDIM [157] shows 67%, PCA RITF {159] shows
60% and the proposed scheme shows 90% of correct matches. The previous schcme
of chapter 3 has shown 39% at 2° and 6.2% at 5° as shown in Fig 3.23(b) as a great
distortion effect has been observed on the edges with minor rotations. This new
proposed scheme, however, has made it possibie to match feature shapes with a high

degree of rotation invariance as it is representing each shape in the form of
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normalized magnitude and phase signatures as shown in Fig. 4.14. Each magnitude
shapc signature is correlated in a 1D fashion to establish the best fit at a particular
rotation angle. The angle estimate is then made through the phase representation ol
the same signature. Finally, the clustering of qualified solutions in a 4D space filters
out the unwanted solutions and let the result converge towards the true rotation
orientation. Note that the results are near ideal when the rotation is through a multiple
of 90°, because in this way the rotation has the least effect on featurc shapes. It is
evident from Fig. 4.14 that the results of the proposed scheme deteriorate significantly
for rotations of 45°. This is due to the fact that at this rotation the maximum number
of pixels of the image has been estimated by an interpolator. We have used a bilinear

interpolator. The results may improve significantly if a better interpolator is used.
4.4.5 Effect of Noise in the Image Matching

The proposed algorithm has also been evaluated for two different types of noises i.c.
additive white Gaussian noise (AWGN) and impulsive noise. The behavior of the
proposed algorithm was evaluated for 30 dB AWGN. The results were also compared
at different scales of the template image as well as at different rotations of the
template. The results were also compared with the other five techniques as well. Fig.
4.15 shows the percentage of correct matches for 0.4 to 2.0 scale range of the template
image in the presence of 30 dB AWGN. The results show that the proposed algorithm
performs better than the Chamfer [14], RIMA [18], 3D-FR [158], FDIM [157} and
PCA RITF [159]. It has also been observed that proposed algorithm provides 85% of
correct matches at 1.0 scale which is significantly greater than 73% of 3D-FR | 15§].
0% of Chamfer [14], 65% of RIMA [18], 68% of PCA RITF [159], 71% of FDIM
[157] and 61% of the edge based scheme of chapter 3 as shown in Fig 3.24 (b). The

results for different rotations in the presence of 30 dB AWGN are compared with
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Fig. 4,16 Template rotation angle plotted vs. the percentage of correct solutions with 30 dB AWGN.

other methods in Fig. 4.16. The behavior of the results have similar pattern which was
elaborated in Fig. 4.14. However, the results deteriorate slightly due to the prescnce of

AWGN.
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The results have also been assessed for excessive impulsive noise which is primarily
due to imperfection/malfunctioning of different sensors. We have evaluated the
proposed algorithm at different template scales as well as different template image
rotations in the presence of 3¢ dB impulsive noise. Fig. 4.17 shows the comparison of
the percentage of carrect matches for 0.4 to 2.0 template scale range. The results in
Fig. 4.17 shows that the proposed algorithm out performs than that of the Chamfer
[19], RIMA [23], PCA RITF [17], FDIM [35] and 3D-FR [16]. A similar behavior is
also observed at different template rotation angles in the presence of 30dB impulsive

noise, as shown in Fig. 4.18.

The perforinance of the algorithm with respect to difTerent noise levels is analyzed as
shown in Fig 4.19. AWGN has more effect over the performance as the matching
degrades to 66% with 40 dB level. Whereas the impulsive noise degrades the
performance to 80% at 80 dB noise level. This is due to the fact that AWGN distorts
the shapes of the image features more than the impulsive noise. The cffect of the
performance is analyzed with gray level shift for the template image. The results are
consolidated in Fig 4.20. The shift of the gray level in the pixels of template image
causes either the shape registration from one band to another or the distortion of the
image shape feature. This distortion causes the degradation of the performance quated

earlier.
4.4.6 The Real Application Resulis

We have obtained several real images of district Swabi, NWPF, Pakistan. The images
were obtained by a gray scale Sony camera (XC-ST70CE) with analog vidco out. This
video was digitized at a resolution of 720x480 pixels at the height of 700 m. These
snapshots represent real noisy/degraded, scaled and rotated images with varying

ilumination. A sample image of this class is shown in Fig. 4.21. The satelite image
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of this arca is also shown in Fig. 4.22, These 1000 real images werce matched with the
satellite images of the area using the proposed algorithm and the results show that the
percentage of correct classification was 86%. However, the FDIM [157], RIMA [18],
Chamfer [14], 3D-FR [158] and PCA RITF [159] showed the percentage of correct
classification as 18.7%, 32%, 39.1%, 61.5% and 45.2%, respectively. The results
clearly show that the proposed algorithm is capable of image matching under a varicty

of real environment.

4.5 CONCLUSIONS

This method presents a new image matching method using hyper vectorization of gray
level sliced binary image. It is proposed to utilize the gray level binary sliced images
for boundary extraction of connected patches. The process of signaturization has been
proposed to form image feature vectors of fixed dimensions. Therefore, the proposed
method represents the image gray shape features in terms of 1D normalized vector
cluster. These vectors were proposed to be compared to find the image matching
solution in an iterative way. Thus shape matching is performed in a much more
effective way as the computation has been reduced to vector subtraction only. The
image representation suggested in this scheme is devised in a way to facilitate the
image maliching in much lesser computations without the need for any inverse
transformation. The results of the algorithm are fairly robust and computationally
attractive. linage matching shows good performance for a complete 360° rotated
template and over a wide range of template scaling. The immunity against noise also

shows to be much better than many techniques known in the literature.

37



100 v r T v v v
—e— Proposed
—a-— RIKA b
—+— FDIM
—6&— Chamfer
-—B--3D.FR

——pCARITF|]

Percentaga of Correct Matchas

0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Tempiate Scaling Factor

Fig. 4.17 Template matching error vs. the original template scaling factor with 30 dB Impulsive noise.

100 T T T Y T v
94} E
80 b
0 b
—— Proposad
80T —a—mima 1

sof| ——Fom |
—e— Chamler M
wol| ——30FR [ J
—+—PCARITF
3 \ -1
B__E/B—“a“—ﬂ—-..g M
20 b

10} b

Parcentzga of Corract Matches

] TS50 100 %50 200 250 300 350
Template Rotation Angle (Degrees)

Fig. 4.18 Template rotation angle plolted vs. the percentape of correct solutions with 30 dB Impulsive
noise.

88



100 fmssmmmre———p——— . . . .

B8O}

T0r

60F

—e— AWGH
—=— |Impulsive

S0

10}

Percentage of Correct Matches

20

10

0 1 1
10 20 30 40 50 60 70 60 0
Hoise Level (dB)

Fig. 4.19 Template matching error vs. the noise level of AWGN and Impulsive.

100

/ '
p:0d g J
gop E
]
§ 10} ;
=
t; 50‘ b
-4
3 sof 1
%
o a0f 1
=
s o} 1
5
L ]
10F E
U L K
0.5 1 1.5 2

Gamma of the Template image

Fig. 4.20 Template matching errar vs. the Gamma of the Template Image.

&9



Fig. 421 A Real Template Image Sample.

d,

Fig. 4.22 Satellite Image of the QOperation Are
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Chapter 5

Template Matching in a Video Sequence Using Hyper

Vectorization and Adaptive Tracking

5.1 Adaptive Tracking and its Impact on the Computations

The proposed image matching scheme in the last chapter employ the image
representation in a vectorized form. Hence, the main image as well as the template
image will ultimately be represented in the form of a hyper-vector cluster. Image
matching is achieved by comparing the two clusters representing the two images to be
matched. The adaptive tracking scheme presentcd in this chapter facilitates the
reduction of the cluster size of the main image. This reduction provides a vital impact

on the processing time of the experiments.

5.2 Subset Extraction

Matching the template vectors with that of the complete set of hyper-vectors from the
main image takes a lot of processing time. The reduction in the quantity of these

hyper-veclors has a direct impact on the computations and specd of the algorithm.
This reduction is achieved by making the subset £*¥ of the set of complete hyper-

vectors £ of the main image as given by the following equation (5.2.1),
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This is achieved using the information of the current matching scale k and rotation @

£ ¥ ) > KN?
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2sin(0)

of the template image, along with the information about the next predicted matching

location as estimated by the supervisory adaptive algorithm (I/A’J,I}_‘,). The actual size

of the current template image size (MF‘NI) is scaled with the scaling factor x and

rotated by an angle @ to find the area of bounding rectangle placed at the next

predicted matching location (17‘ I;I) The shape centroid (cf"‘,c_ﬁ"’) of all the vectors

in &*7are checked with an enlarged factor of safety “a ™ used to enhance the last

prediction error “e ™,

5.3 Adaptive Prediction

Aerial vehicles mostly moves on a route which consists of legs and waypoints. The
flying altitude and vehicle speed may vary according to the mission profile. The
adaptive mechanism can be trained quickly to predict the next location of the vehicle
according to the current speed. Similarly, changing the course and speed will again
produce a larger error which will be used to modify the weights of the adaptive filter
for the convergence towards a lower error solution. Least-Mean-Square and
Recursive-Least-Square algorithm have been used for the prediction of the next
matching location [156].

Adaptive supervisory algorithm is elaborated in Fig. 5.1. The image matching location

for the m" template frame is converted to a complex input (I/_’r +1‘V_‘_) . The input for

A

the adaptive filter is actually the difference of the two consecutive matching solutions.
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Fig. 5.1 Block diagram of the hybrid vectorized image matching and adaptive prediction mechanism.

(av, +iav,) =(v,+iv,) —(V,+iV,) (53.1)
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The adaptive filter is required to predict the next matching coordinate difference

(AJ;; +iAI}r) . This is then used to evaluate the predicted location of the next match

= |

as:;
(. +i1'?,)m+| =(v,+iv,) +(a¥, +iAV, ) (53.2)

whereas the error is found as:
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s
=

e=(av,+iav,) —(av, viaV,) (5.
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5.4 Result and Discussion

The experiments are designed to test the accuracy and speed of the proposed image

matching scheme. The effect of adaptive prediction on the performance towards
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computation reduction is also emphasized. Statistical results are presented covering a

wide variety of experimental aspects to show the robustness in the presence of noise.
5.4.1 Sample Image Experiment

A sample experiment is explained as follows. The main image is shown in Fig. 5.2
along with the route shown superimposed with black lines. 450 images have been
extracted along the route and are shown in Fig. 5.3 separately. The size of the main
image is of 1128x1592 pixels whereas each template image is of 100x 100 pixels. The
motion of the aerial vehicle is assumed to be with uniform speed and at constant
altitude creating footprints of equal size and spaced equally apart. The main image has
been vectorized and stored before hand. At the real time the incoming template
images are vectorized and this vector set is matched with the reduced vector set of the
main image. This reduce vector set is gencrated using the information aboul the
prediction of the next vehicle location given by the adaptive filter associated with this
matching mechanism. The error in prediction is used to train the weights of the
adaptive filter for the next iteration as well as to extract the subset from the main
image with a reasonable boundary margin. Experimental perimeters wcre taken as
B=4, 3=100, Y=10, £¢=10, =10 and o=2. LMS (Least Mecan Square)
algorithm is used for the adaptive prediction with tap length of 32 and step size of
!
9x107. For the first matching process, whole of the main image is considered whereas
the subsequent region of scarch shrinks to a low value. Both the actual route and the
predicted route are plotted in Fig. 5.4. It is to be noted that over the straight path. the
error gradually reduces as the output of the adaptive filter tends towards the desired
output. The search area after incorporating the predicted matching location, image

scale and rotation is plotied in Fig. 5.5. The crror is low as compared to the image size

and
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Fig. 5.6 Result of the adaptive prediction on the sample route of Fig, 3.2.

hence search area strictly follows the bounds given by the adaptive filter. The
absolutc valucs of the desired and the actual outputs along with the error is plotted in

Fig. 5.6.
5.4.2 Database Image Matching Experiments

The speed of the image matching processing directly depends upon the search area.
Multiple sizes of square main image have been considered varying from 100 1o 1000
pixels with a step of 50 pixels. Time required for the image matching has been
observed for a fixed template size of 100x100 pixels. Experiments has been
performed on 2.0 GHz Intel Centrino Core2 Duo PC using Matlab® 7.3 on USC-
SIPI-HAAI image database. This database of images contains a verity of aerial
images having multiple ground features. Results are consolidated in Fig. 5.7 in which
the main image size is plotted on the horizontal axis whereas the average time
required for 250 image matching experiments is plotted on the vertical axis. It is to be
noted that the variation of time with respect to image size is following a linear rise

trend whereas the search area is being increased with square power of the image side.
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Hence, the reduction of the search area is desired to achieve a high level of speed

performance for the proposed vector based image matching scheme.

The reduction of processing time has been observed once the adaptive prediction
mechanism is incorporated along with the vector image matching scheme. For the
experimental setup 16 satellitc images has been considered. 12 routes have been
plotted over these images with random waypoints coordinates. Each route is divided
into 500 segments for the acquisition of the camera snapshots. This constitute 60600
image matching experiments per satellite image and a total of 96000 experiments. The
time required for the image matching is plotted statistically in Fig. 5.8. When the crror
of the adaptive prediction is more, it causes a wider search area selcction which
requires more time for the proposed matching scheme. Where as the reduction of the
error value along with the information about the current matching coordinates, scale
and image rotation allows this search area to reduce considerably which in turns has a

direct impact on the processing of the proposed scheme.

The convergence of adaptive prediction in this scenario is important as it is directly
related to the performance of the proposed image matching scheme. Two types of

adaptive sctups are considercd namely LMS and RLS (Recursive Lcast
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Square). Three route configurations are considered. Firstly straight routes, secondly

routes with multiple waypoints and thirdly routes with multiple waypoints and

randomly varying vehicle velocity. The experimental setup constitute of 16 satellitc

images, 12 routes per image, 500 waypoints per route for each adaptive setup and

corresponding to each route configuration. For straight routes the average crror value

shows a fast reduction trend as shown in Fig. 5.9(a) and Fig. 5.i0(a). For a multiple

waypoint route, the average error trend shows an overall gradual convergence towards

a zero valued error as shown in Fig 5.9(b, ¢} and Fig 5.10(b, ¢). Thus, the adaptive

prediction mechanism supervises the subset extraction process and provides a tight

bound in the search area boundaries. The proposed algorithm is compared with six

different algorithms, classicat correlation scheme [10], NCC [42], SSDA [160],
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Chamfer image matching [14], Robust image matching algorithm (RIMA) [18] and
Fourier Descriptors Image Matching (FDIM) [157]. The classical correlation scheme
[10] accumulates pixel errors on the basis of their gray value difference. NCC [42]
utilizes an advance form of the correlation. SSDA is a block matching algorithm used
with early truncation approach [160]. Chamfer image matching [14] and RIMA [18]
are edge matching algorithms using distance transforms of the images. FDIM {157] is
a contour matching algorithm which compares image contour features. Time required
for each scheme with respect to the main image search area on the similar platform is
shown in Fig 5.11. The result shows that the proposed algorithm has the minimum
processing time as compared to the rest of the techniques and it has also shown a
linear dependency on the main image size. The scheme presented in chapter 4 shows
18.7 sec processing time as shown in Fig 4.6, whereas the incorporation of adaptive
prediction for the reduction of search area in this proposed improvement shows 16.6

sec on the main image size of 800 pixels.
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Fig. 3.13 Main image.

5.4.3 Real Application Results

We have obtained several real aerial images of district Mansehra, NWPF, Pakistan.
The images were obtained by a gray scale Sony camera (XC-ST70CE) with analog
video out. This video was digitized at a resolution of 720 x 480 pixels at the height of
700 m. These snapshots represent real noisy/degraded, scaled and rotated images with
varying illumination. A sample image of this class is shown in Fig. 5.12. The satellite
image of this arca is also shown in Fig. 5.13. These 1000 real images were matched
with the satellite images of the area using the proposed algorithm and the results show
that the percentage of correct classification was 86%. However, the classical
correlation [10], NCC [42], SSDA [160], Chamfer image matching algorithm [14].

RIMA [18] and FDIM [157] showed the percentage of correct classification as 54.6%,
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57.3%. 62.1%, 1.2%, 39.8% and 71.2%, respectively. The results show that the

proposed algorithm is capable of image matching under a variety of real environment.

5.5 Conclusion

This scheme presents an improvement in the method explained in previous chapter.
The supervisory modular atgorithm checks the current matching parameters and
predicts about the probable next matching location. The prediction is realized through
an adaptive fiiter. The prediction helps the scheme to reduce the search area in the
"
main image which has a direct effect on the speed of the image matching process. The
results of the algorithm are fairly robust as the prediction error stays within a hundred
pixel of the search area for both the prediction schemes. The prediction scheme is also
computationally atiractive as the search area in the main image is reduced to 10% of
the total main image size. [mage matching shows good performance for a complete
360° rotated template and over a wide range of template scaling. The immunity
against noise also shows to be much better than many techniques known in the

literature.
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Chapter 6

Conclusion

6.1 Summary of Results

Image matching through a high level feature comparison was presented in this
dissertation. The goals were to achieve a fast, reliable and robust image matching.
‘Three new schemes for the said purpose were discussed along with their test and
statistical results.

The first scheme converts the image in the binary form through the process of edge
detection. These edges can be listed in the form of hyper-vectors and the comparison
of these vectors yield fast results as shown in the relevant chapter of this dissertation.
This method gives good immunity against both impulsive and AWGN noises. As the
process is accomplish in binary domain, higher level of gray scale invariance is also
noted to be present in the scheme. Similarly, a wide range of scaling difference
between the matching images is also covered. This range of the template scaling
easily provides an efficient onboard solution for the application like gvisual aerial
navigation. The scheme however, does not provide a reliable practical range of
rotation invariance becausc of the wrong projection of the discrete hyper vectors data.

once the template image is rotated.
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The second scheme explores the use of gray scale information in the image aiter
converting them into a hyper vector feature cluster. This hyper space clustcr
comparison gives a faster and robust matching solution over a wide range of template
image scale and rotation difference. The iterative search mechanism also provides an
attractive computation-reduction process. It is being supervised by an early truncation
of the final solution.

The third hybrid scheme utilizes an adaptive supervisory mechanism for the
prediction of the next template which is suitable if many templates are 1o be matched
with one main image. This mechanism can be linked with any of the schemes
proposed above. The impact of this prediction on computational overhead is discussed
in the relevant section of this dissertation as the reduction in computation is vital
because the adaptive prediction reduces the search area to a considerable limit.

The overall work of this dissertation emphasizes efficient methods of image matching
for the application domain of visual navigation. The classical style of image maiching
starts the journey from correlation and its associated methods. The Chamfer and the
methods assoctated with different image representation domains attempts to speed up
this image matching. The modern methods are directed towards feature based image
representation. The matching and image comparison is thus modified to become a
high level feature processing. The presented work deals with the representation of
image features in the form of hyper-vectors. Thus the complex form of feature
matching reduces to a simple vector comparison yielding fast and robust image

matching results.

6.2 Directions of Future Work

® Practical implementation of these schemes on hardware for a real time

matching solution,
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Parallel processing and pipelined architecture is also to be explored for the

maximum throughput of the performance in the proposed scheme.

The effect of multi-dimensional data can also be explored for further

improvement in data match time as a hybrid approach for future potential.

Incorporation of texture classification can provide one good edge over the

performance for the image matching.

The scheme can be upgraded for an affine invariant transform to generate

practical controls and navigation queues for an aerial vehicle.

The high resolution and high speed cameras can be incorporated in the

practical experiments for enhancing the accuracy of the system.

High level ground features may also be vectorized through intelligent pattern
recognition algorithms which can facilitate the identification of local and

global navigation.

Matching two images with different viewing angles may be looked into
through a simulated 3-D world generation and correlating the features with

actual camera shots.,

The feature identification of the images captured from the camera can be
positions stamped and can further be used after integration for the curve fitling
in hyper-dimensional representation of the main image features in the similar

fashion.

Image integration can be performed which employs matching of one frame
image with the consecutive. This integration can also be used for the position

estimation of the observer as well as its roll, pitch and yaw parameters. This
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can provide a complete attitude picture for the control of an aerial vehicle on

the basis of visual perception.

The effect of infra red region imaging and muiti sensor data fusion may also
be explored and the features representation methodology may be revised in

order to match the higher image features for a day-night operation.

The role of edgelets and curviets can also be explored for the sake of image

veclorization and effective representation of image edges.
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