
IMAGE TEMPLATE MATCHING USING VECTORIZED 
IMAGE FEATUKE REPRESENTATION 

BY 

Muhammad Anwaar Manzar 

A dissertation submitted to 1.I.U. in partial fulfillment of the 
requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Department of Electronic Engineering 

Faculty of Engineering and Technology 

INTERNATIONAL ISLAMIC UNIVERSITY 

2008 , 



Copyright O 2008 by M. A. Manzar : 

All rights reserved. No part of the material protected by this copyright notice 

may be reproduced or utilized in any form or by any means, electronic or 

mechanical, including photocopying, recording or by any information storage 

and retrieval system, without the permission from the author. 



DEDICATED TO 

HOLY PROPIIET (P. B. U. 1-1.) 
THE GREATEST SOCIAL REFORMER 



Certificate of Approval 

It is certified that the research work contained in this dissertation has been carried out 
under the supervision of Dr. ljaz Mansoor Qureshi, at International Islamic 
University. Islamabad. It  is fully adcquate, in scope and quality. as  a dissertation for 
the degree of Doctor of Philosophy. 

Signature: 
Sunervisor: Co-supervisor: 
Prof. Dr. ljaz Mansoor Qureshi, ~ssistant  Prof. Dr. Tanveer A. Cheema, 
Dean Department of Electronic Engineering, Department of Electronic Engineerin$, 
Faculty of Engineering and Technology, Faculty of Engineering and Technology, 
International Islamic University. International Islamic University. 

Signature: 



Abstract 

Navigation is the science which tells about the position, orientation and velocity o f  a 

f lying vehicle, relative to some geographical entities. Inertial systems and visual 

seekers are used for navigation with no external dependency and are always desirable 

as compared to the methods with external dependency because o f  their probability o f  

outage and spoofing. Though the inertial based systems in  self-sufficient methods are 

popular, but they are expensive and cannot guide the vehicle accurately on longer 

routes due to their built-in tendency for accumu!ating position errors over time. 

Thercfore, the visual navigation is a low cost and efficient solution once supported by 

machine intelligence and computer vision algorithms. The f lying vehicle can store a 

map o f  the area for matching the snap shots taken by  an onboard camera to navigate 

efficiently. Thus, different image matching schemes have been presented in  this 

dissertation for reliable aerial visual navigation. 

The first approach proposed in  this dissertation is through vector matching. The imagc 

is lirst converted into edges from which the prominent ones are vectorized in a hyper- 

dimension space. Once the imagc and the template arc represented in this hyper spacc. 

the matching reduces merely to vector subtraction process. The result of this 

subtraction gives the matching co-ordinates o f  the template matched location with 

respect to the main image. The computation can further be reduced if the main image 

is represented in  hyper-space offline. The whole process is further being supervised to 

gauge the level ofconfidence for the early termination o f  the matching process. 

The second approach utilizes the gray values o f  the pixels in the imagc for 

vectorization. The image is first converted into a set o f  binary images through a gray 

level slicing process. Then, the connected components in the binary images al-c 



expressed in the form o f  vectors. The image matching is performed in this vector 

domain. This algorithm gives a solution for scale and rotation invariance template 

matching along with a 30 dB o f  noise robustness. 

The last approach forms an adaptive prediclion mechanism which further enhances 

the image slicing scheme suitable to match many incoming templates with a single 

main image as in the form o f  a video sequence. The high rate o f  adaptive convergence 

impose a tighter bound on the nest template location position estimation, which 

further reduces the computations as the search area is lesser. This adaptive schcme is 

more efficient in a variety o f  routes configurations and vehicle velocities as comparcd 

to many other techniques. 

The proposed algorithms have been evaluated. using percentagc o f  correct rnatchcs 

and computational analysis, under a variety o f  feature situations on database images 

as well as the real images. These algorithms have also been compared with some 

other wcll known techniques reported in the literature. The proposed schemes 

outperform the other competitive methods in  terms o f  percentage o f  correct matchcs 

and computational complexity. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

Image template matching i s  an important field o f  research. Image matching can be 

defined as the process o f  finding the locations in  an image that are similar to the given 

pattcrn template. The pattern template may have a different rotation or (and) scale 

than the main image. The matching o f  the templa!e with the main image is a well 

known problem in the field o f  computer vision, artificial intelligence, visual 

navigation and pattern recognition. 

The digital representation o f  the picture image is in  the form o f  pixels which have 

discrete values in the spatial domain. Let f (x. y) be the main image with dimensions 

(M.N) such that I S x _ <  M and I _< y s N . Similarly, let J(x.7) be the ten~plate 

- - 
image with dimensions (M,N) such that I 5 Y 5 M and 15 7 < fl . Wc necd to find 

a transformation: 

( 1 . 1 . 1 )  

where Ax and Ay are the translations in x and y directions, respectively, whercas. 111 

and 0 are the scaling factor and the rotation angle o f  the template image, respectively. 

under which the template coordinates are best mapped onto the main image 



(4 
Fig. 1.2 la)  Main Image (h) Original Template (c) Rotated Template (d) Scaled Template (e) Scaled 

and Rotated Template. 

template. rotated template, scaled template and scaled-rotated template, rcspeclively. 

The research covered in  this dissertation is only for r igid body registration only. 

1.2 Contribution of the Dissertation 

Many template matching techniques are available in the area o f  pattern malching. 

They can be broadly categorized into two classes. First o f  these are based on image 

pixel values and the second are based on image fcatures. The methods which process 

the image pixel values are mostly those which are based on a correlation kernel for 

the search o f  the best f i t  location o f  the template image inside the main image. 

Advanced methodologies in  this domain deal with the optimization o f  the algorithms 

and their faster convergence towards a unified solution while util izing the samc 

correlation kernel. 

This dissertation presents a fast template matching scheme through a suitable 

proposed vectorized rcpresentation o f  the image features. Two different matching 

schemes are presented. The first scheme deals with the image edge matching. while 

the second scheme matches the gray level pixels in the image after necessary pre- 

processing. Matching the edges o f  both the images provides an effective and robust 



way of the determination o f  best fit location between the two. Matching edges in the 

spatial domain leads us towards the correlation type o f  processing in general. The 

same matching in  the frequency domain reduces a lot o f  computations. but the 

transform process between the two domains is the undesirable overhead in this area. 

The til-st scheme presented in this dissertation deals with the transformation o f  the 

image edgcs in the form o f  a vector table. The cdge exrraction i s  donc i t 1  a specitic 

fashion to suit the upcoming stages o f  the method. Then the vectorization process i s  

facilitated through a modified version o f  the conventional Radon Transform. Thus the 

inherent property o f  the Radon Transform to scan the image with the line slicing o f  

the 2D function helps the realization o f  the vectors. These 4D hyper-vectors form a 

cluster o f  points in the same 4D hyper-space representing the significance o f  thc 

edges in an image. The main vector matching scheme in fact fits thc templatc cdge 

cluster with that o f  the main image to ascertain the match or a mismatch situation. In 

case o f  a match. the algorithm calculates the best matching location o f  the templatc in 

the main image. 

The second scheme converts the gray scale pixel information in the matching images 

into the form o f  normalized vector signatures. The conversion starts with the grouping 

o f  the image pixels based on their pixel values and their location. The pixel groups are 

then utilized to form binary images for further processing. These binary irnagcs are 

then used to Form the connected component o f  the pixels for making different types of 

the vector signatures. These signatures are then normalized for further processing. 

The normalized vector signatures are subtracted with each other to establish a match 

or a mismatch condition with a good degree o f  scale and rotation invariancr as well. 

These schemes are more robust against noise an3 provide a better and fast imagc 

matching solution over a wide range o f  image scale and rotation than many o f  the 



methods existing in  the literature. Furthermore, these schemes are used lo r  the 

application o f  automated visual aerial navigation. 

Navigation can be defined as the science which tells us about the position, orientatio~i 

and velocity o f  an aerial vehicle, with reference to some geographical entities [ I ] .  The 

methodologics used for navigation are broadly categorized into two  classes. firstly 

those which are dependent on external sources like Global Positioning System (GPS) 

and guidance beacons etc.. secondly the ones which have no external dependencies 

for their operation l ike inertial systems and visual seekers. Howcver. the methods with 

extcrnal dependencies are always less desirable because o f  their probability o f  outage, 

spoofing and jamming [2] [3]. I n  self-sufficient methods, the inertial based systems 

are popular but they are expensive and cannot guide the vehicle accurately on long 

routcs. This is due to their built-in tendency for zccumulating position errors over 

time. This keeps on increasing the ambiguity in position. However, visual navigation 

is a low cost and efficient solution. The algorithms are based on machine intelligence 

and computer vision through which a flying vehicle can store a map o f  the area for 

niatching the snap shots taken by an onboard camera to navigate cl'fic~ently 14J 151. 

Thus an efficient image matching scheme is presented for reliable visual navigation. 

This schcme utilizes less computation to match two images by  converting their edgcs 

in the form o f  hyper-dimensional vectors. 

1.3 Organization of the Dissertation 

Chapter 2 summarizes the previous work in the domain o f  template matching. Each 

technique is listed with the discussion covering its implementation. The chapter 

analyzes the strengths and weaknesses o f  the most common template matching 

techniques. 



Chapter 3 covers the first scheme for the template matching problem. I t  is bascd on 

the vectorization o f  image edges. The template matching is done through vector 

matching after a similar conversion in a hyper dimension space. 

Chapter 4 covers the second scheme o f  the same template matching problem. I t  also 

deals with the new idea o f  vectorization o f  the image features. The vcctorization 

process includes formation o f  the normalized vectors suitable for matching two 

images over a wide range o f  rotation and scale difference. 

Chapter 5 demonstrates a new hybrid scheme which involves the imagc vectorization 

for the purpose o f  matching and a supervisory adaptive prediction mechanism o f  the 

nest matching location. We utilized this mechanism to demonstrate the application o r  

the said techniques towards efticient target tracking. This kind o f  scheme is also 

suitable i n  a video sequence template matching wi th a further reduction in the 

computation level. 

Chapter 6 concludes the dissertation. The summary is also narrated for comparison o f  

the proposed scheme with others. Some of the future directions are also highlighted in 

this chapter. 



Chapter 2 

Image Template Matching: An Overview 

Image matching problem appears i n  many tields. It is a vital f ield o f  research in 

automated robot movement and machine based navigation. Its application areas 

include military reconnaissance [6] ,  ~nedicine 171, and astronomy [8] [9], to name a 

few. The visual perception o f  an image can be processed for matching in a numbcr o f  

ways. Image edge matching is the matching procedure for the image edges which 

stecr the iresearch towards shape matching o f  the edged skeleton. Similarly. the 

matching can be based on gray values o f  the corresponding pixels which lead towards 

the correlation process. High level image feature identification and their use for the 

template matching is also a research area. 

2.1 Classical correlation and its variants 

The basic of al l  operations in  the domain o f  image matching is the correlation process 

Tor template image matching [ lo].  Let the main image be f ( x , y )  o f  size A f x  N and 

the tcmplate image be iv(x,y) o f  size J x  K and we assume that J 5 M and K 5 N . 

The correlation function is expressed as [I I]: 

For x = 1.2 ,.... M - J, y = 1,2 ,..., N -K  , and the summation is taken over the image 

region where IV and f overlap. These schemes are computationally expensive as the 



handle this method is used. The domain o f  parallel processing for a faster 2-D 

convolution was explored on dedicated correlation hardware [15]. A systolic design 

was also presented for a parallel 2 D  convolution [16]. The modular nature o f  the 

design made it  possible to adjust a desirable balance between the cornpulation speed 

and system 110. Similarly, a new form o f  convolution algorithm was presented to bc 

used in parallcl processing setups enhancing the matching speed as compared to the 

conventional sequential schemes [17]. A further advancement in the parallel 

architecture schemes o f  the image convolution was presented, which utilizes non- 

broadcast mechanism to achieve still better performance in matching specds [ I  8j. The 

dedicated hardware design solution to the correlation problem docs not catcr for thc 

increase in the level o f  computation with increase in  the size o f  the matching images. 

Furthermore. the hardware realization always imposes a practical limitation between 

the selection o f  resources and 110's. 

2.1.2 Block Matching Approaches 

Image block matching is a frequently used image matching technique specially 

employed in video coding. A new scheme in this regard was presented, which uses 

multi-resolution blocks o f  image to achieve a lower computation levels [19][20]. The 

algorithms gave 14-20% o f  speed improvement over different motion scenarios cases. 

Similarly, another block matching approach was presented for the estimation o f  

blocks in  the consecutive video frames [21]. This niclhod was based on lcsting only 

four vital locations for the matching estimation. Another block motion estimation 

scheme was suggested, which was based on motion fields and pixel sub-sampling 

[22]. The blocks are fractioned and the sub-samp!ing space was determined using 

these fractional blocks. A similar motion vector based algorithm was suggested 



identification strategy was also presented [30]. This inethod divides the template in 

sub-classes. The class o f  the template is determined in  the first stage o f  search. This 

search is then further refined at the second stage for a specific and exact match. Test 

results were presented for an optical character recognition problem. A sub-template 

image matching approach was presented to cut down the heavy computations in the 

classical correlation image matching scheme [31][32]. The new point selection in  the 

sub-template process reduces the overall computations to a greater extent. In the same 

context, another image matching schcme was presented on parallel virtual machinc 

which was based on wavelets dealing with coarse to fine pixel processing 1331-1351. 

This scheme was superimposed by the process o f  extraction o f  interesting feature 

from the image and representing them in the form o f  a point set. This scheme also 

utilizes an adaptive selection o f  the threshold value based on compactness measures 

o f  fuzzy sets. A n  efticient parallel and pipelined implementation o f  the convolution 

algorithm on Xilinx's Vertex FPGA is presented [36]. The scheme produces the 

correlation results in every clock cycle. 

2.1.4 Early Truncation Approaches 

L o w  complexity variants o f  the correlation problem have been suggested with 

statistical bounds to achieve partial correlations. A new form o f  normalized minimum 

correlation (NMC) was introduced which employs low complexity and proves to be 

robust against noise [37]. Similarly, a new direction in the sum ofabsolute differences 

(SAD) algorithm was explored with a hybrid approach with Monte Carlo algorithm to 

achieve a low  computation level [38]. Another approximate solution scheme was 

suggested for the weighted graph matching problem which involvcs finding thc 

optimum match between two weighted graphs [39][40]. In order to reduce the 



computations to a great deal a fast image matching scheme was PI-esented which ships 

the comparison location o f  the template on the basis o f  a lower bound o f  a distance 

parameter [41]. The scheme claimed to be five times faster than the ordinary search 

with the same accuracy in  the results. Another attempt to reduce the computation 

related to the inherent correlation process is bounded partial correlation (BPC). based 

on the normalized cross-correlation (NCC) function [42]. This schenie scarclies a 

suitable elimination condition at each search location which forms the basis o f  the 

upper bound for N C C  function. This upper-bounding function incorporates the partial 

infol-mation from the actual cross correlation function and can be calculated 

efl icie~it ly using the given recursive scheme. A simple improvement to thc basic BPC 

formulation is also shown in this reference that provides additional computational 

benefits and renders the technique more robust with respect to parameters choice. A 

similar template searching approach was suggested which was based on the Zero 

lnean Normalized Cross-Correlation function (ZNCC) [43]. This scheme achicvcs a 

reduced computation level by checking the proposed two sufficient conditions at each 

scarch location. These methods rely on the bounded partial correlation that eliminates 

the points which may not provide a better cross correlation score. A bounded partial 

correlation method [44] has also been presented, which checks two sufficient 

conditions at each image positions to achieve a reduced computational lcvel for image 

matching. I n  this method. most o f  the computationally expensive calculations were 

skipped for those image points that may not improve the best corl-elation score. 

Further attempts in the direction o f  image correlation are towards modification o f  the 

basic kernel design o f  the process to achieve a better, fast and robust solution. A new 

image registl-ation method was devised in  this context which utilizes the non- 

parametric (NP) sampling method [45]. This method performs better as compared to 



esisting registering techniques as the spatial image structures are utilized and no 

arbitrary selection o f  the kernel is required. I n  another proposed technique the basic 

square error kernel underlying the correlation operation was also modified in 

weighted least square image matching based target tracking [46]. Similarly, an 

advanccd form o f  correlation filter is suggested to achieve rotation invariance during 

pattern recognition [47][48]. Also a general form o f  a multi-class rotation-invariant 

filter is suggested which minimizes the average correlation plane error by controlling 

the side-lobes o f  this signal resulting in the improvement in discrimination against 

false targets. 

2.2 Chamfer image matching development 

Images can also be compared by comparing their edges. A n  efficient method o f  imagc 

edge matching has been prescnted known as "Chamfer Matching" [49]. The method 

proceeds with transforming the edges o f  the main image into its Distance Transform 

(DT). This DT is a 2D representation o f  the image in  which the edge pixels are set to 

zero and the pixels farther away from the edge have an increasing value. The  neth hod 

o f  transformation works in an iterative fashion starting from a state where edgc pixels 

are set to zero and the rest as infinity. The individual pixel obtains a new value using 

the following expression at the end o f  each iteration: 

where v,!, is the value o f  the pixel in position (i, j) at iteration k. The iterations 

continue until no value changcs. The number o f  iterations is proportional to the 

longest edge distance occurring in  the image. A t  the end o f  the process, the edge 

pixels attain the value zero and the pixels away from the edge w i l l  have higher values 



in general. I n  order to match, the template image edges are superimposed ovcr the 

distance transform o f  the main image already formed. A n  average o f  the DT pixcl 

values which the template edges hi t  is called the edge distance. A perfect match w i l l  

produce the edge distance o f  zero. Root mean square average can also be used for a 

better ~n in ima location, given as : 

where v, are the distance values, n is the number o f  points in the template edgcs and 

E ( i .  j) is the error function value for the location ( i ,  j) . 

2.2.1 Modifications in Chamfer Approach 

I The search offered by  the Chamfer image matching scheme is o f  greater robustness 

against noise but inherently i t  proceeds in a correlation fashion which takes a lot o f  

the processing time for verification o f  the global minima value. The multi-resolution 

approach however, reduces the level o f  computations in signal processing 1501. 

Applying the similar concept to the technique o f  Chamfer image matching. a further 

advancenient was suggested to utilize an image pyramid for the image edge matching 

[51]. Here, thc matching is performed in a series o f  images depicting the same scene. 

but in different resolutions, i.e. in a resolution pyramid. Because o f  this hierarchical 

approach significant amount o f  computations are cut down. The search starts at a low 

resolution and the results from the low resolution guides the matching at finer levels. 

The hierarchical Chamfer matching is further retined with a new proposed matching 

scheme in  which DT o f  both the image and the template are used [52]. The low 

resolution image search may ignore the tine details o f  the tcmplate which can 

sometimes be important for the discrimination. 



Another approach to reduce the computations was presented which was based on the 

selection and usage o f  a few interesting points [53][54]. The algorithm extends the 

traditional method by introducing interesting points to replace edge points in distance 

transform for the matching measurement. A series o f  images with differenl number o f  

interesting points to feature the original image is created in a pyramid structure 

through a dynamic threshold scheme. 1 he matching is performed in this pyramid from 

course level to fine level by minimizing a giver, matching criterion in terms o f  

distance between selected points o f  interest. The selection o f  a fewer points for the 

image processing is, however, a compromise towards the robustness in speed and 

performance. 

A new image matching strategy was presented, known as center-on fit. bascd on 

simulated annealing and Chamfer matching [ 5 5 ] .  Simulated annealing is a stochastic 

opt~mization technique guiding the results towards the matching solution and is based 

on the analogy between the annealing o f  solids and solving optimization p~ablem. 

Simulated annealing has been applied to a wide variety o f  image processing 

applications which simulates the evolution to thermal equilibrium o f  a solid for a 

fixed value o f  temperature T .  A t  each temperature T. the solid is allowed to reach 

thermal equilibrium, characterized by a probability o f  being in a state with cncrgy L' 

givcn by the Boltzmann distribution: 

(. L) 
p ( E ) = e  

K7 (2.2.3) 

whcre E denotes the energy, K is the Boltzmann constant and T is the absolute 

temperature (Kelvin). p ( E )  denotes the probability o f  a state having energy E and 

temperature T. Another approach combining the Chamfer match process and ihc 

shape matching is presented [56]. This hybrid method utilizes a new form o f  the shape 



matching based on shape context and i ts  con-espondences which covers for the 

shortfalls o f  Chamfer. The cost function is minimized using the viterbi algorithm 

around the image feature. 

2.3 Image matching in different domains 

The image has got multiple forms o f  its representation. A l l  the difrerent image 

representations are devised to suite different needs o f  image coding, transmission and 

processing. The use o f  Hough transform for shape recognition in  images was explored 

[57J. Hough transform exploits the straight line feature in an image. Similarly, the 

statistical processing o f  the image also makes i t  possible to reduce some computations 

while template matching [58][59]. The cost o f  template matching has been reduced 

utilizing the probabilistic domain knowledge o f  the matching images in these 

techniques. 

The use o f  2D digital filters for the template image matching was presented 1601. The 

scheme uses a simple lookup table along with the two-complement image 

representation to yield good results over a modest amount o f  hardware. Another 

template imagc matching scheme was presented and its limitations wcrt  csplored 

where the matching process was expedited in the compressed image domain [61]. A 

similar new transformation for the image template matching is presented [62]. This 

transform is defined as grayscale morphological hit-or-miss transform (GHMT) and i t  

was claimed to be robust against Gaussian noise. 

A new approach towards image template matching in  relation with multi-resolution 

approach util izing the ortlio-normal wavelet basis was discussed [63]. The use o f  

symrnctric convolution along with the discrete cosine transform (DCT) was csplored 

[64] in the similar compression domain for images. A fast template matching method 

was suggested by using the dual transform o f  Fourier and the Karhunen-Loeve [65]. 



The vector subspace spanned by the Eigen-vectors is generated which is then used for 

the matching o f  distorted shapes as well. A new approach towards pattern matching 

was presented which creates a transform space and divides i t  sequentially to perform 

Boolean operations on the constraint sets that are defined by template and target 

points 1661. A fast template matching algorithm was suggested which was based on L- 

p norm [67][68]. This algorithm produces the same result as ful l  exhaustive lernplatc 

search ill Fourier domain once the template and image window is properly partitioned. 

The fast Fourier algorithm provides an edge over the conventional image inatching as 

the iterative algorithm makes the realization o f  Fourier transform possible with a low 

computational level. However, the requirement o f  transforming the image back lo  

spatial domain for the interpretation o f  the results is an unwanted overhead. 

Furthermore. these schemes show low endurance towards the scale and orientation 

differences between the matching images. Another scheme was proposed for fast 

template matching which takes the advantage o f  energy packing property o f  Walsh- 

tladamard transforniation [69]. A l l  o f  these schemes provide efficient image matching 

directions. The common drawback is the interpretation o f  the processcd data Tor 

which the inverse transform has to be done, causing an extra overhead. 

2.4 Featurc image matching 

Image can be represented in the form o f  the features they possess. Tl ic representation 

can be directed towards achieving a specific goal o f  image coding, compression or 

matching. I n  the fields o f  image compression and coding, i t  is desired to achieve the 

extraction o f  the original image to a highest possible levcl, whereas in  the domain o f  

image matching, i t  is not required to regenerate the original image at all 1701. 

Especially i n  the application area o f  visual navigation, only matching coordinates are 

essentially required to fulf i l l  the necd. 



Many methods have been proposed for image feature comparison and matching. A 

pattern matching scheme was proposed based on  their correspondences [711. The 

finite grid set and distance mapping strategies are utilized and tested on binary images 

in this scheme. It is also efficient to represent the feature in the images LO be matched 

in the form o f  descriptors. Different descriptors as Legendre descriptors. Zcrnikc 

descriptors and two-dimensional Fourier descriptors were explored [72]-(751. 

Emphasis was also made on the method o f  template extraction through which the 

performance o f  image matching may be enhanced a lot. A n  entropy based method was 

presented which extracts the template from the binary images by eliminating the 

unreliable pixels [76]. A contour based image matching was presented which employs 

a key representation o f  the image contours [65]. This is achieved by a dual 

transformation scheme both Fourier transform and the Karhunen-Locvc transform and 

was utilized in  matching objects with unknown distortions. Many other forms o f  

image curves representation are discussed (77.871. These representations facilitate the 

image matching process in one way or the other. The hybrid approach combining the 

shape representation along with the multi-scale platform was also explored 1881-[891. 

Many other image representations were also explored to achieve a better enhancement 

goal [90]. A comprehensive comparison o f  the image features descriptors is prcscnted 

P I ] .  

New improved methods have been explored in  the direction o f  image matching. Early 

jump out schemes have been proven to be far more efficient as they truncate the 

processing cycle when necessary and sufticient conditions for the image matching arc 

attained [92].  This proposed technique is also applicable to most o f  the motion 

estimation algorithms. Similarly, the role o f  neural networks and different training 

based solutions in  target recognition and pattern matching was explored [93]-[95]. 



Hough transform was explored in  object detection was explored which uses clustering 

representdon o f  the data in space [96][97]. Data bounds were also derived for the 

schemes to avoid false peaks. Tracking targets i n v i d e o  sequences through a low- 

order parametric model for motion estimation was also discussed [98]. The method is 

based on off-line learning o f  targets for a better and faster online recognition. Stil l 

newer and hybrid mechanisms are being explored towards better image perception 

and faster template matching challenge. 

2.4.1 Shapcs and Line approaches 

Shapes and lines present i n  the image constitute a powerful feature set o f  the image 

suitable for effective image matching. Corners and junctions detection in image edges 

is utilized in current efficient techniques for the image matching [99-1021. Another 

algorithm with corner matching approach was presented wi th a great deal o f  

robustness [lo)]-[105]. Many other algorithms explored the use o f  shape descriptors 

for the effective image matching under invariant parameters [106]-[107]. Many 

strategies to match images on the basis o f  shapes and exploring a reduced 

computation approach were presented in most recent techniques [ I  101-[I 131. 

Similarly, extraction o f  geometric image features makes the comparison casier and 

faster and the results are robust in noisy environment. A new shape matching 

algorithm is presented [ I  141. Here the shapes to be matched are registered as a 

boundary encircling the represented cluster. The matching itself is correlation based 

once the boundaries are represented by a DT. Representation o f  the image in the Tonn 

o f  shapes o f  its contents is discussed in many recent techniques [I 15-1201. Matching 

the contours present i n  the image is one way o f  feature comparison [121]. Inclined 

targets are also compared in this study using a voting mechanism. 



Multiple similarity measures for the comparing images were devised for fastcr and 

robust image matching. A concise comparison between a few similarity-measures 

used in  medical imaging was presented using the result o f  computed tomography (CT) 

[131]. Classification o f  image features is also a part o f  the image understanding. A 

new statistical measure for the idcntification o f  image spatial features as tcxturcs was 

proposed [132]. This scheme utilizes a directional RANK-strength vector for 

classification and has produced good results. Similarly, another texture classification 

technique was presented which is orientation and resolution (scale) insensitive [ I  331. 

The algorithm utilizes a 2D linked list to tune a mask over the normal and multi-scale 

and orientation Brodatz data set. 

2.4.3 Image Vectorizations 

The modern form o f  image vectorization is a new direction for image matching area. 

Image representation space is also explored to find better ways for faster matching 

[134]. A vectorization technique to be used in data compression was presented which 

utilizes half-12-norm pyramid data structure for effective data encoding 11351. Hypcr- 

dimensional vectors i n  association with larger codebooks outperform Inany o f  the 

other existing techniques. Similarly, an extension to the feature image matching is 

proposed [I361 in which component block projections (CBP) are used in the form of 

concatenated directional vector for the efficient image template matching. Zernike 

moments have also been used [I371 as a powerful image descriptors. A relationship 

between geometric and Zernike moments was suggested to reduce the inherent 

complexity o f  Zernike moments to achieve a real-time processing o f  images upto 4 

Mega pixels. Another similar implementation of hyper-plane image representation 



the use of reduced set o f  interesting points extracted from the image feature for 

reduction o f  computation in the template image matching. A study was presented 

towards the effect on this selection once the template image is scaled [147]. Similarly. 

the extraction o f  distinctive image feature point set was discussed 1148-1511 having a 

level o f  affine and illumination invariance. Another strategy for the selection o f  only 

useful image features for the template matching was presented based on principal 

component dimensionality reduction to form a reduced processing space 

[152][153][161]. Similarly, the redundant features were removed using the classical 

factorization theorem. 

A feature based image matching method was presented for the selection of landmark 

in satellite images (1541. It extracts a small set o f  features by  decomposing the world 

into small number o f  maximally sized regions for robotic navigation. Although. this 

scheme can work in a cluttered environment but i t  is not suitable for visual navigation 

in aerial vehicle. 

The trend o f  the techniques used for image matzhing is now gradually tcnding 

towards advanced feature matching schemes. The emphasis o f the proposed work is to 

establish a unique vectorized feature representation. The representation can thus be 

utilized for the effective image matching exploring the matching PI-ocess in the 

transform domain. 



Chapter 3 

Template Image Matching Through Hyper Vectorization 

Using Modified Radon Transform 

In this chapter. the theory o f  Radon Transform (RT) has been presented in context o f  

its ability towards enhancement and projection o f  straight segmented image edges. 

Then, the formulation o f  the RT methodology i s  explained on the basis o f  simple 

examples towards image matching. The limitations o f  R T  towards the practical use 

has also been highlighted which further becomes the basis o f  modifying the RT 

approach to formulate an algorithm to form a practical and robust image matching 

scheme. The new methodology is explained along with the experimental setup and 

discussion ofthe results. 

3.1 Radon Transform 

RT is a parametric transform which converts the spatial information in an image into 

the consecutive parametric domain. It i s  another way o f  representing the same 

information which highlights the edges in an image in the transform domain. RT o f  a 

2-D function f ( x ,  y )  is defined as follows [ I S ] :  



Fig. 3.1 Radon Transform (RT) Line of integration. 

where -m < .s < m and 0 < 6' < n . The angle 6' is the angle formed by the l ~ n e  o i  

integration with rcspect to y axis as shown in  Fig. 3.1, while s is the perpendicular 

offset from the origin to the line o f  integration and i t  can be positive or negative. The 

positive and the negative values o f  s are interpreted as shown in Fig. 3.1. I n  this way 

the 2-D kronecker delta function S(xcosB+ys inB . r )  extracts a line slice out o f  the 

function/(x,y). This line wi l l  be referred to as J -0 line. Hencc, g(s,B) is I - D  

projection o f f  (x, y) at an angle 6' with offset ., from the origin. In our case J(s.j,) 

is a discrete 2-D function (or image). Thus the integration operation in R T  is 

converted to a summation. Hcnce. the R T  simply adds up the gray scalc piscl valucs 

lying on the s-6' line. Similarly, if the edge detected binary image is considered, its 

RT  simply reduces to counting the ones constituting the edges lying on the . r -8 line. 

The difference o f  the two is shown in Fig. 3.2 and Fig. 3.3. Fig. 3.2 (a) shows a gray 

scale image and its R T  has bcen presented in Fig. 3.2 (b). Similarly, an edged binary 

image is shown in Fig. 3.3 (a) and the corresponding R T  is displayed in Fig. 3.3 (b). 

The integration limits in equation (3.1 . I )  are from -a to +a,. The image functio~i 

/(r,y) has finite dimensions (M. N) such that IS x s M and I s y s N , thus the 

integral limits w i l l  automatically reduce to a finite 



(a) (b) 
Fig. 3.2 RT of a gray scale image (a) Image (b) RT 

(a) (b) 
Fig. 3.3 RT of an edged binary image (a) Imase (b) RT. 

valuc and the maximum value o f  s for which g(,r.O) will bc givcn as: 

The brighter spots in Fig. 3.2 (b) represent the orientation o f  the edge patterns o f  the 

gray scale image o f  Fig. 3.2 (a). Similarly, in Fig. 3.3 (b) the same patterns arc more 

visible and distinguishable because the edged binary image o f  Fig. 3.3 (a) only shows 

the edges. The white spots can easily be localized and spotted in Fig. 3.3 (b) than 

compared to the Fig. 3.2 (b). 



(c) (4 
Fig. 3.4 (a) A binary test h a z e  ih)  Radon Transhrrn (c) RT Surlsce (d) Contour plot of the RT peaks 

3.2 Surface Interpretation in Radon Transform 

A test image o f  200x200 pixels, i s  considered in Fig. 3.4 (a) with six simulated vital 

edges having different orientation across the image. Its RT is shown in Fig. 3.4 (b) in 

which six bright spots can be easily demarcated. ~ h k  location o f  these bright spots in 

the transform domain corresponds to the prominent edges in the images in the spatial 

domain. If the values in the transform domain are plotted as a 3-D mesh surface. the 

peaks are well prominent as compared to the rest o f  lhc radon surfacc as shown in Fig. 

3.4 (c). Similarly, the contour plot o f  Fig. 3.4 (d) also demonstrates the sudden change 

in altitude o f  the radon surface. 



(a) Template 1 from ( l o ,  75) (b) Template 2 from (93. 28) 

(c) Template 3 from (300,260) (d) Template 4 from (80, 260) 
Fig. 3.5 Template taken from different locations of the test image. 

The spread o f  the radon surface corresponding to each peak constitute a butterfly type 

pattern signifying the near zero values as the s - 8  line is gctting perpendicular to the 

image edge. I t  is also to be noted that six edges in Fig. 3.4 (a) correspond to the 

relative six peaks o f  the radon surface o f  Fig. 3.4 (c). The peaks corresponding to each 

image edge can thus be detected from the radon surface and are listed in table 3.1 

displaying the orientation B and offset s for each o f  the six edges. Four example 

templates each o f  size 100x100 pixels are then extracted from the image o f  Fig. 3.4 

(a) from the locations (row, column) as shown in Fig. 3.5 (a) to (d). Each o f  the 

templates thus obtained has been subjected to R T  and peak detection and location o f  

the peaks were found. These peaks corresponding to each teniplatc image 

Table 3.1 Radon transform parameters 6' and s for the image o f  Fig. 3.4 (a) 
8 
19 
32 
56 
100 
106 
17x 

S 

60 
-124 
128 
-5 

173 
-66 



have been listed in table 3.2 corresponding t o  template 1 t o  4, respectively. It is  t o  be 

noted that the data given in these tables do not directly corresponds t o  the data o f  the 

~ n a i n  image as the values o f  B and s are relative to the particular image center. As 

each template image contains two edges and their orientation can be matchcd with 

that o f  the edges in the main image o f  Fig. 3.4, mathematical correlation shows the 

estimate o f  the template location as listed in table 3.3. I t  is required to have a 

minimum o f  two different edges to be present in the template image as essential 

condition for the estimation o f  the template extracted location. The accuracy o f  this 

estimation can be enhanced if either more edges are present in the template image or 

bigger vital edges with accurate orientation data can be recorded. Finding the location 

o f  the given template images o f  Fig. 3.5 in the main image o f  Fig. 3.4 (a) through 

conventional correlation based techniques requires a lot o f  computations as i t  involves 

& 
-2 the comparison o f  all template pixels with that o f  corresponding main image pixels 

G, for each probable template ~natching location. These comparison operations count to a 

@ total o f  10' for the main image o f  size 200x200 pixels and template o f  sire lOOx I00  

pixels ( lo4 pixels comparison for one template location by  lo4 probable template 

matching locations). The comparison may differ from that o f  a simple subtraction to a 

correlation based square error sum. Whereas, the estimation o f  the template image 

locations through the orientation information o f  the edges only take a few 

trigonometric and logical operations for the same results. I n  the quoted example. 

Table 3.3 Actual and Calculated Locations. 
Teinplate Locations Calculated Locations - 

X 
10 
93 

300 
80 

X 
7.8 
90.1 

299.8 
81.9 

Y 
75 
28 

260 
260 

Y 
77.6 
30.1 

257.2 
260.3 



( 4  (d) 
Fig. 3.6 The flooding of peripheral surface as the number of peaks increases in images with (a) 3 (h) 

4 (c) l l and (d) 50 edges. 

once the orientation 0 and offset s o f  the template edges are given, the proposed 

method only takes 6 logical comparisons 2 subtractions and a veclor addition to locate 

the template image center with respect to the main image center. 

3.3 Problems in a Practical Case 

RT is a parametric transform and it detects the orientation o f  an edge in the image. 

The integration or summation operation involved in RT creates a peak on tha~ 

location. Any image with three vital edges wi l l  create three peaks at different location 

in RT domain as shown in Fig. 3.6 (a). Although, the peaks are prominent and can 

easily be located in the transform signal, yet the peripherals produced which is 

associated by the peak cannot be ignored completely. These insignificant peripheral 

values o f  the radon surface cannot be indistinguishably neglected once the number o f  



image edges increased. Images with 3, 4, 11 and 50 edges are considered and there 

RT surfaces are plotted in Fig. 3.6 (a) to (d), respectively. With the increase in image 

edges. the peaks o f  the radon surface losses their significance as they submerge in the 

flooding peripheral surface. Hence, the RT cannot be directly used for the practical 

image matching case because the number o f  edges may cause a bigger portion 

o f  the radon surface peaks to become undistinguishable. Thus a niodilied form o f  RT 

i s  presented for the use in image matching applications. 

3.4 Proposed Image Matching Technique 

Image matching is the pl-ocess o f  finding the location in  the given main image that is 

similar to a given pattern template. Let the main image be represented as f ( s , ~ ~ )  

with dimensions (M,N) such that Is x s  M and 1 s y s N . Similarly, the pattern 

- - 
template image be represented as f (x,~) with dimensions ( M . N )  such that 

I < Y s 2 and I < 7 5 N . The proposed image matching scheme finds whether thc 

template image f is a part o f  the main image f or not. If 7 i s  a part o f  f. it also 

finds the best matching location as: 

where C,, and R,, are the translations in x and y direction, respectively. to be 

found. Fig. 3.7 shows the main steps o f  the proposed scheme. First o f  all edge 

detection i s  performed on both the main image and the template. The binary images. 

thus, produced are then vectorized to form hyper vector tables (HVT) for both images. 

Finally, vector matching is performed on these HVT to ascertain the match/mismatch 

and the best template matching location. 



Fig. 3.7 Main steps for the proposed image matching scheme 

(c) (d) 
Fig. 3.8 (a) Original Image (b) Less Amount of Edges 

(c) Appropriate Edge Detection (d) More then desired Edges 

3.4.1 Edge Detection 

The purpose of edge detection is to detect a suitable amount of prominent image 

', 
edges which can be considered as a good representation of the main features in the 

image. The Sobel method is used to detect the edges with both the horizontal and 

vertical high-pass masks [ I  I]. The threshold value used in the final binarization step 

of Sobcl algorithm is directly related to the number of detected cdges in the image. 

The variation of the threshold value and its impact on edge extraction is elaborated in 

Fig. 3.8. The threshold value is low in the image of Fig. 3.8 (b) and it is respectively 



Fig. 3.9 The effect of image segmentation in spatial domain on the 
number ofextracted edges. (a) Example image (b) Edge detection 
with one global threshold (c) Segmented image (d) Edge detection 

after image segmentation. 

increased in Fig. 3.8 (c) and Fig. 3.8 (d). The edges are also incl-eased in the samc 

manner. It i s  desired that the value o f  this threshold i s  so selected that 10-1 5% of the 

total image pixels may appear in the form o f  edges for the uniformity in the 

comparison process. This method gives essentially enough number o f  edges suitable 

for the proposed edge matching scheme. Similarly. the use o f  one global threshold for 

edge extraction may sometimes create bigger black portions ill the image without any 

significant edges. An example in point is the image considered in Fig. 3.9 (a). I t  uses 

one global threshold value for edge detection results in  the binary image as shown in 

Fig. 3.9 (b). It i s  to be noted that Fig. 3.9 (b) has got a large portion o f  black patch 

revealing no information about the edges there. The segmentation o f  the image in Fig. 

3.9 (a) can resolve this problem. The segmented image is shown in Fig. 3.9 (c) and thc 

application o f  different threshold values for each segment image results in better edge 



extraction as shown in  Fig. 3.9 (d). Let b and b be the edged binary images o f  the 

gray images f and 7, respectively. 

3.4.2 Hyper Vectorization 

A modified Radon Transform based hyper-vectorization method has been proposed to 

represent the edged binary images in the form o f  feature vectors. A 2-D kronecker 

delta function S(xcosB+ ys in8 -s )  has been multiplied to extract a line slicc out o f  

the function b(x, y) to form g(s.8) for each value o f  s and 8, in order to vectorize 

the binary image 6 .  

The factor s varies i n  the range -s,, to +s,,, beyond which the function g(s,8) 

w i l l  have zero values. I n  order to scan the whole image in a complete manner, it is 

recommended to use the discrete steps o f  parameter s as AY = I . Whereas, the angle 

B varies from 0' to 179' with discrete steps o f  A 0  = 1" .  The value o f  A 8  = I" is 

selected for the sake o f  simplicity and to scan the image with a reasonably good 

resolution. Too low a value for the At7 wi l l  cause over scanning o f  the image edges 

and one vector w i l l  be recounted many times in this way, whereas higher values o f  

A 8  may cause some missing radial segments specially i n  the farther regions o f  the 

mage. The recommended value o f  A 8  step is plotted in Fig. 3.10 (a) between the two 

bounds o f  acceptable regions. 

One can use a value less than this, but i t  w i l l  produces more vectors and w i l l  also 

increase the computations as well. Furthermore. the technique presented in this 

dissertation does not need all o f  the image edges to qualify a match or a mismatch. 



Fig. 3.1 0 (a) Recommended value for the factor A6 step size (b) Scanning the circular regions. 

The corresponding Fig. 3.10 (b) shows three regions in  the image marked as "A", 

"B" and "C". Region "A" corresponds to the circle o f  20 pixel radius in which the 

value o f  A 0  should be taken as 3' as shown in  Fig. 3.10 (a). Similarly. for the region 

"B" and "C" these recommended values are lo and 0.5'. respectively. For the rcgions 

larger than "C" extending to more than 260 pixels from the image center. this value 

must further be reduce to 0.25 for a good image coverage. The upper and lower 

bounds o f  A 6  for a good coverage are given as: 

where x is the distance from the image center i n  pixels. The upper and lower bounds 

o f  the A 6  given by  eq. (3.4.3) ensures the step size in a suitable range as to pick all 

pixels intcgrally and to avoid sub-pixels interpolated values. 

Each binary image g(s.6) wi l l  then be checked for a connected digital path from 



for i 2 il L with V = { I )  [ I  I]. This digital path will be qualified to  be listed in the 

I-IVT if L > r ,  where r is a small positive integral constant value whose value is 

considered as 8 pixels for the experiments whose results are quoted here. Once the 

digital path is qualified, only one of the two end points will be listed in HVT as 

(8, L,C,  R )  as follows: 

Similarly, all the entries from all binary images g(s.8) will be listcd in HVT. Lct the 

main image HVT have N, vectors denoted as I,, (0, L C  R )  with I <  11 < N, . 

Similarly. the template has N, vectors denoted as T,(O,,L,,,.C,,.R,,,) with 

I < n r < N , .  

3.4.3 Vector Matching 

The proposed vector matching algorithm consists of pair formalion, main imagc 

subset extraction, evaluation of potential solutions, vector matching, solution grid 

formation and template location estimation. The flow chart of the matching algorithm 

has also been shown in Fig. 3.1 I. The steps ofthe algorithm are explained as follow: 

Pai r  Formation: First of all pairs are formed which consist of two distinct hyper- 

vectors taken from the template HVT. For this purpose, the template HVT is divided 

into two groups and the pair formation is done as follows: 



M a i n  Image Subset Extraction: Each pair formed, in the previous step, w i l l  thcn bc 

used to formulate two subsets from the main image H V T  on the basis o f  thcir edge 

orientation '8 ' .  i.e. close to the orientation o f  the template pairs. Consider the 

following pair is selected:- 

then. the two subsets from the main image H V T  are formulated as follows. 

, ( , , L , R , C ~ )  U s p s V  (3.4.7) 

and 

such that abs(oy - 8 , )  5 2 degrees and ubs(8, -8,)  s 2 degrees where 

l s U , V , W , X ~ N , .  

Potential Solutions: The potential solutions can be calculated by taking one entry 

from subset 1, and the second entry from subset$. There wi l l  be 

1 
(X -IY + I)(V -U+I) pairs. A l l  those pairs that satisfy the fol lowing two constraints 

w i l l  be considered as potential solutions if i t  is known that, the template is o f  the same 

scale as that o f  the main image. 

u b s ( ( ~ ,  - R,) -  ( R ,  - R , ) )  2 2 pixels (3.4.9) 

ubs ((c, - Cy ) - (cJ - C, )) s 2 pi.wls (3.4.10) 

The pairs satisfying the above constraints w i l l  qualify as potential solutions to be used 

in the next step o f  the algorithm (vector matching) with c,, and 5,. both equal l o  I. 



Make Template HVT: 
Length NT 

Pair 
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Matching Confidence '4' 
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Fig. 3.1 1 Flow Chart for vector ~natching in the proposed scheme 



The two scaling factors have been defined to achieve the scale invariant matching 

which are given below: 

A l l  o f  the pairs which satisfy the following three constraints w i l l  qualify as potential 

solution: 

(3.4.15) 
~ 0 . 2  if 5, > 1 and 5,. > l 

The pails satisfying the above constraints w i l l  qualify as potential solutions to be used 

in the next step o f  the algorithm. The constant value o f  0.2 (which should ideally be 0) 

i s  determined experimentally to accommodate the discrete integral mapping o f  the 

floating values in the image domain and, at the same time, to avoid the wrongly 

scaled potential solutions to become the part o f  the grid arrays. Also if 5, < I  and 

r,: <I, the template is o f  greater scale and vice versa. I t  is assumed that the aspect 

ratio is maintained while scaling the template image. The difference o f  the predicted 

scales 5, and 5,. can be directly compared if both o f  them are less than I ,  otherwise i t  

is preferred to compare the reciprocals o f  the both, as mentioned in  the second part o f  

the equation (3.4.1 5 ) .  
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Fig. 3.12 The concept o f  solution mapping in a grid cel l  array. 

Vcctor  Matching: Each potential solution from the last step w i l l  then produce a 

displacement vector D(R,,,C,,), where either 

R,, = R, - R, .5, 
c,, = C" - c, .I$ 

Both the options (either equation (3.4.16) or equation (3.4.1 7)) arc acceptable as they 

cause a difference o f  2 pixels within the solutions. The factors R,, and C,, formulate 

the required potential answer to the matching problem and i t  describes the template 

location in terms o f  rows and column in the main image. 

Solution Grid Formation: Each displacement vector entry D froln the last step w i l l  

then be used to map the solution in  a grid cell array. Grid cell array is coniposed o f  

square cells in a grid formation. Each grid cell lnay get one o r  more solution counts 



. . 
Fig. 3.13 Grid array population distribution for (a) Non-matching and (b) Matching 

lernplate cases. 

Main Image 

Fig. $.I4 Vector matching results with final displacement vector D, 
during the process o f  mapping o f  these displacement vectors. The center o f  the grid 

cell with maximum number o f  solution counts w i l l  be considered as the final template 

~natching solution D, as shown in Fig. 3.12. 

Template Location Estimation: If thc distribution o f  the population in the different 

grid cells is not varying much as compared to each other, the algorithm wi l l  then 

declare a mismatch as shown in  Fig. 3.13 (a). I n  case if one o f  the grid cells is heavily 

populated as compared to the rest, as shown in  Fig. 3.1 3 (b). i t  w i l l  be considered as a 

match. The center o f  this grid cell w i l l  then be considered as the final solution with 

distance D, from the top left corner. Fig. 3.14 shows the location o f the template in the 

~ n a i n  image through the vector D,. 

The confidence factor expressed in the flow chart is defined as follows: 



- 
where y,,,*,. is the count o f  the most densely populated grid cell and y ,  the mean 

count o f  the rest o f  the non empty grid cells with count more than 0.25yMA,. This 

figure is determined experimentally to ignore the grid cells wi th smallcr count and the 

matched and non-matched cases are thus totally separated out on the basis o f  the valuc 

o f  Y .  The plots o f  the confidence factor Y show initial random transients in the 

value as the grid cell array is getting populated. I t  is found experimentally that after 

about 200 iterations. the value o f  Y settles greater than MCF for the matching 

template cases and i t  remains less than MCF for non-matching templates. 

3.5 Results and Discussion 

The experiments have been designed to evaluate the performance o f  the proposed 

algorithm. The algorithm has been tested on a single test image, a real satellite image 

and on 30 different satellite images from USC-SIPI-HAAI databasc. The USC-SIPI- 

HAAl images contain a variety o f  aerial satellite images having multiple ground 

features covering almost al l  kind o f  scenarios to be faced by an aerial vehicle. Tliesc 

multiple experiments confirm the scale and rotation endurance o f  the proposed 

algorithm in comparison with three other image matching techniques: Similar 

experiments have also been performed separately for the speed analysis o f  the 

proposed algorithm with respect to others methods under similar testing conditions. 

The noise analysis has been provided to evaluate the performance o f  the proposed 

algorithm under noisy conditions. 

A simple example for the simulation o f  the proposed image matching algorithm is 

presented. The main image is shown in Fig. 3.15 (a) with many edges. These edges 



Ic) 
Fig. 3.15 The main image. template and grid cell array of a simple example 
(a) Main image for simulation test (b) Template image with five edges (c) 

Grid cell array solution superimposed on the displacement vectors. 

are denoted by small alphabets. The template i s  shown in Fig. 3.15 (b). I t  has five 

straight edges 'a' to 'e'. The main image has got the same orientations o f  the edges as 

present in the template but the perfect match should refer to solution Yq. Fig. 3.15 (c) 
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Table 3.4 Edge Pairs and their contribution towards solution. 

d e ~~~~~0~~~~~~~ 70.0 
Total 1 ~ 1 ~ 1 ~ 1 ~ O 1 ~ 1 3 1  

shows the potential solution locations superimposed on a grid cell array underneath. 

Let us consider the template edge pair 'a' and 'b'. For this edge pair. thrce solutions in 

the main image w i l l  qualify as this edge pair is present in the main image with the 

same orientation at three different locations (i.e. Yq. YS and Ye). The liest step is to 

list out all considered edge pairs and their results in the Table 3.4. The ' I  ' in the Table 

3.4 means that i t  qualifies as a potential solution and '0' means that i t  does not 

qualify. The solution count for Y4 i s  maximum i.e. 10 and hence, w i l l  be considered 

as the final matching point. The grid array population distribution is shown in Fig. 

3.16 at the end o f  the matching algorithm. Grid cell st sixth row and first colunln have 

got the highest solution score o f  ' lo '  pointing towards Y4 o f  Fig. 3.15 (a). The value 

of the confidence factor Y' is updated with each new qualified edge pair entry and the 

new value is listed in the last column o f  Table 3.4. This trend o f  confidence Factor 

'1' has been plotted in Fig. 3.17. As more and Inore edge pairs are taken into account. 

the general trend o f  the confidence factor gets closer to 100%. The confidence factor 

Y serves as discriminatory property which classifies between a matching and an 

unmatched template image. 



Fig. 3.16 Grid Array Population Distribution Fig. 3.17 The value for the Confidence Factor tbr 
each vector matching ilcralin~i. 

Fig. X 18 Example Real Satellile Image. with white square pointing out the location ol' 
Lhe leniplate and the vector D.\ giving the final solution. 

3.5.1 Template Image Matching of a Real Satellite Image 

In order to explain the performance o f  the proposed algorithm on a real satellite 

image, a sample image is considered as shown Fig. 3.1 8. The template itnage has been 

extracted from the location Ds(200,200). The white square in the Fig. 3.18 shows the 

template image boundary. This matching template image is shown separately in Fig. 

3.19 (a). The main image o f  512x5 12 pixels has bccn vcctorizcd to form 3896 

vectors. Similarly, the matching template has also been vectorized to form 124 



Fig. 3.19 The results of a matchingte~nplate image that belongs to Fi%. 9 
(a) Matching template image (b) Solution Distribution in grid cell array 

(c) Confidence factor growth trend. 

vectors. This makes 7626 template edge pairs to be compared with the H V T  of the 

main image. Each template edge pair can score multiple qualifying solution entrics in 

the grid cell array. A total o f  10368 qualified solutions have been obtained. These 

solutions are populated in a grid cell array. The size of each cell is o f  10x10 pixel. 

The maximum score is contained by the grid cell at 20'" row and 20Ih co lun~n o f  3x41 

which points towards the final solution vector D,(200.200), as shown in Fig. 3.20 (b). 

The rest of the qualified solutions are scattered insignificantly over the rest o f  the grid 



Fig. 3.20 The results o f  anon matching template image that does not belongs to 
the image shown in Fig. 9 (a)  Unmatched template image (b) Solution 

distribution in grid cell array lc) Contidence factor growth trend. 

cells. The value o f  the confidence factor Y was updated with each entry o f  ihc 

qualified solution in the grid cell array. The trend o f  this factor was plotted in Fig. 

3.19 (c) for the first 20 iterations. This value settles to 100% atloth iteration and 

remains there for the rest o f a l l  iterations as the template is a perfect matching onc, 

Similarly, another template image was taken, as shown in  Fig. 3.20 (a), which is not 

the part o f  the main image in  Fig. 3.18. The vectorization forms 65 vectors from this 

template image. This makes a total edge pairs o f  2080. A total o f  2250 qualified 



solution entries were obtained which were populated on a grid cell array o f  each cell 

size o f  I O x l O  pixels. This population distribution is shown in Fig. 3.20 (b). The 

maximum score is 114 o f  the cell at 40'" row and 201h column which shows a bcst 

matching location o f  this template at Ds(400,200). This figure o f  1 14 is also not 

significantly larger than the rest o f  the grid cell score. The trend o f  the confidence 

factor 'f' is also plotted in Fig. 3.20 (c) for the complete 2250 qualifying solution 

entries. The linal value o f  the confidence factor Y is 67.41%. It is to be noted that 

after the initial transients, this value remain below 70% throughout the matching 

process. 

Therefore. the steady state value o f  confidence factor Y at 100% shows a ~natch and 

less then 70% can be considered as un-matched template. The trend o f  the confidence 

factor growth with respect to vector matching iterations serves two important 

functions. Firstly, i t  forms a basis o f  identification between a match and a mismatch 

image matching. Secondly, it is used to truncate the image matching process 

whenever essential conditions for the decision regarding image matching are met. 

3.5.2 Template Image Matching on USC-SIPI-HAAI Database 

Thirty real satellite images o f  size 512x512 pixels have been considered as main 

image one by one. Templates o f  size I O O x l O O  pixels have been extracted from 16 

different locations from each main image. The value o f  confidence factor is evaluated 

and recorded after each vector matching iterations. The resulting plots for 480 trends 

are recorded and fifteen cases are plotted on the same graph for comparison in Fig. 

3.21 (a) for matching templates. Similar experiments have also been conducted for 

noti matching templates and the fifteen such plots are consolidated in Fig. 3.21 (b). I t  

is evident that the matched case plots lead to the final value o f  100%. whereas the 



Fig. 3.21 Confidence factor growth trends of  database images for 
matching and non matching templates (a) Matched template cases 

(b) Unmatched template cases. 

unmatched case settles around less the 70% for the same plots. Therefore. it is 

recommended that the value o f  MCF can be taken as 75%. I t  is observed that 85% of  

the matching cases converge to 100% value within first 70 iterations whereas 95% are 

converged after 200 iterations. There are 4% solutions which could not converge at all 

giving wrong results. A similar trend i s  observed in non-matching tcmplate cases as 

87% o f  the cases settle to a value less than 70% within first 70 image matching 

iterations. Similarly, 2% cases wrongly converge to a 100% level giving matching 



Fig. 3.22 The percentage correct matches lor template image scaling and rotalio~i on 
database images (a) Percentage of correct matches vs. Template scaling factor lh) 

Percentage of  correct matches vs. Template rotation angle. 

conditions. The first two hundred image matching iterations must be skipped to avoid 

the initial random transients o f  the value of Confidence factor. This quantity is 

determined experimentally after analyzing the statistical results including noisy data. 

3.5.3 Scale and Rotation Invariant Template Image Matching 

The effcct on performance of the ditrerence o f  scale in the template image with 

respect to the main image was evaluated on USC-SIPI-HAAI database. Template 

images were extracted from 16 different locations from the available 30 main imagcs. 

The scale o f  each template image was varied from 0.8 to 1.2 times the original with a 



step size o f  0.1. The scale factor o f  1.0 means no scale change in the template imagc. 

The percentages o f  correct matches are thus plotted in Fig. 3.22 (a). Similarly. the 

results o f  Correlation [lo], Chamfer [I41 and RlMA (Robust Image Matching 

Algorithm) [I 81 are also plotted on the same graph o f  Fig. 3.22 (a) with template scale 

varying from 0.8 to 1.2 with a smaller step o f  0.01. The proposed technique has 

shown greater endurance with varying template scale as compared to the rest o f  the 

techniques. Al l  o f  the other techniques have shown less than 10% results at a scaling 

factor o f  l . I  whereas the proposed technique has shown 63.07%. 

A similar test was conducted to evaluate the performance o f  the proposed algorithm 

when the template is rotated. Al l  ofthe template images were rotated from an angle o f  

-5" to -1-5' prior to image matching. Thc results are consolidated in Fig. 3.22 (b). The 

proposed algorithm has shown an effective endurance o f  *2" after which the 

performance drops rapidly. This is primarily due to the effect o f  considering i 2 '  in 

the process o f  subset extraction from the main image I-IVT. Increasing this range may 

increase the rotation endurance, but will have negative impact on the speed and 

performance o f  the algorithm. 

3.5.4 Template Image Matching with Impulsive and AWGN noise 

The performance o f  the proposed algorithm was evaluated on USC-SIPI-I-IAAI 

database image matching experiment with 30 dB o f  impulsive noise with varying 

template image scale. The impulsive noise occurs due to the malfunction or saturation 

o f  some o f  the sensor elements. This noise introduces black and white dots in  the 

image and it is also known as salt and pepper noise. The resulting plot o f  percentage 

o f  correct matches i s  shown in Fig. 3.23 (a). The statistical data shows a reduction o f  

correct matches from 53.4% to 38.1% at 0.9 scaling factor for the template image. 



Fig. 3.23 The percentage correct matches for noisy and scaled template 
images (a) Percentage of correct matches vs. Template scaling factor with 

30 dB impulsive noise (b) Percentage of correct matches vs. Template 
scaling factor with 30 dB Gaussian noise. 

The performance o f  other techniques has shown significant degradation in ihc results 

as compared with the proposed method as they have failed to match for the same 

scaling factor under the presence o f  30dB impulsive noise. Similar experiments were 

conducted in the presence o f  3OdB Additive White Gaussian Noise (AWGN) and the 

results are shown in Fig. 3.23 (b). A drop in performance i s  observed from 93% to 

57.8% at scale I .O for the proposed method. The AWGN noise has more effect on the 

image edges as it tends to change the gray level value randomly. whereas the 



impulsive noise is observed to be deteriorating only few edges disturbing only those 

edgcs where i t  effects. 

3.5.5 Computational Analysis of the Proposed Algorithm 

The computational load o f  the proposed algorithm has been invcstigatcd by 

calculating the number o f  operations required to estimate the position o f  the template 

in the main image. The speed comparison has also been provided with different image 

sizes and on noisy images. The main image has size M x N pixels and the template 

has size IG N pixels. In proposed algorithm 10% o f  the total pixels w i l l  constitute 

as the edges. Each edge wi l l  have length o f  8 pixels for the worst case. If the 

vectorization process counts 100% o f  the total edge pixels as vectors, we wi l l  have the 

E, template edges or hyper-vectors given as 

whereas the main image w i l l  have E ,  edges or hyper-vectors 

Edge pair formation from the template image wi l l  form P edge pairs. where 

If we assume an equal distribution o f  the edges in the main image for al l  angles in the 

range o f  6. a total o f  (5MN) l (80x 180) vectors w i l l  be extracted as a suhsct from the 

H V T  o f  the main image. Hence, each vector matching iterations w i l l  cost 



Table 3.5 Total Number o f  Operations in Image Matching with respect to thc Main 
Image Size (.lo8). 

((5MN)/(80x180))Z subtractions. comparisons and equal multiplications 

(operations). The total computations C given in terms o f  image edges as 

200x200 pixels 

This process o f  hyper vectorization comprises ((M2 + N 2 ) x  180) logical comparisons 

400x400 pixels 

--- 
5280 
434 
427 
39.5 

Correlation Method 
Chamfer Algorithm 

RIMA 
Proposed Algorithm 

only if wc assume that the main image is vectorized omine. I n  case o f  chamfer based 

correlation approach, a typical o f  (M - M+I)(N- N+ I ) (~ I I o )  multiplications. 

600x600 pixels 

-~ -. .. - 
74100 
3380 - 

3710 
200 

31.6 
3.74 
3.84 
2.47 

along with (M - M + I)(N - N + I) square root operations and 

(M - M +I)(N - N + I) divisions are required. This i s  indeed a heavy computational 

load as compared to our technique which has little real time multiplications. Table 3.5 

shows the comparison o f  number o f  operations required to estimate the position o r  

template image in the ~ n a i n  image with different image sizes. The computations o f  

compared techniques were observed after implementing these techniques on similar 

platforms. The table clearly shows that the number o f  computations o f  the proposed 

algorithm is much less than the other schemes i.e. Correlation [lo], Chamfer [ I41 and 

R I M A  [18]. 



Fig. 3.24 Database experiment results with varying size of lhe square main image 
vs. the time required for the matching operation. 

The size o f  the main image in image ~natching experiments determines the search arca 

and is a vital parameter for evaluating the speed and the variation o f  speed with 

respect to main image size. Main image size is varied from 200x200 pixels to 

800x800 pixels. Templates were extracted from the 9 different locations from al l  o f  

the 30 sets o f  main images. Experiments were conducted on a 2.0 G t l z  Intel based 

Centrino Core2 Duo PC using Matlab@ 7.1. 

The average time taken by  the experiments for all configurations is shown in Fig. 

3.24. Similar experiments were conducted for Correlation [lo], Chamfer (141 and 

RlMA [I81 and their plots are also displayed in  Fig. 3.24 for comparison. Thc specd 

o f  the proposed algorithm is much better than the techniques with which i t  is 

compared. Furthermore. the proposed algorithm shows a linear proportional 

dependency on the main image size whereas the rest o f  the techniques show a non- 

linear rise with the increase in the search area. The proposed algorithm took 10.15 

seconds for the main image size o f  300x300 pixels, whereas the Correlation [lo], 

Chamfer [I41 and RlMA [I81 took 518.74 seconds. 48.7 seconds and 54.57 seconds, 

respectively. The proposed algorithm took 18.65 seconds for the main iiuagc size o f  

500x500 pixels, whereas the Correlation [lo], Chamfer [ I41 and R l M A  [I81 took 



Fig. 3.25 Percentage o f  Correct lmage Matching Experiments 
vs. Template lmage Category. 

2655.1 seconds, 154.2 seconds and 209.85 seconds. respectively. This time can 

ful-ther be decreased if a dedicated hardwarc with DSP processor may bc 

implemented. 

The proposed image edge matching algorithm depends on proper image edge 

extraction and presence o f  vital image edges. Images with less number o f  edges tend 

to degrade the performance heavily. The template images o f  different categories are 

thus investigated for the analysis o f  the performance in each case. Each category 

consisted o f  104 template images. Category I was o f  the templates with good and 

prominent edges. This category refers to the satellite images with clear permanent 

ground features likes roads and constructions etc. Category 2 templates werc thosc 

with sparsely populated rural areas. Category 3 images were those with mixed 

vegctation and cultivation lands. Category 4 consisted o f  the images with sand and 

desert lands with insignificant and temporary ground features whereas category 5 is 

composed o f  mostly water and lake type images. The results are shown in Fig. 3.25. 

The effect o f  noise on algorithm speed is also investigated. The value o f  confidence 

factor quickly converges towards 100% in the template image without any noisc. as 

shown in plot o f  Fig. 3.26. Similar study has been conducted on a template with 30 



Fig. 3.26 Confidence Factor Trends fbr Templale Fig. 3.27 Speed Comparison for Template Location 
with no noise and Similar Trends for Templates Estimation with no noise and in the presence of30 

\vith 30dB and 40 dB impulsivc noise. dB Impulsive Noise and 30 dB AWGN. 

dB impulsive noise in which the value o f  confidence factor took greater iterations to 

converge to 100%. If the noise is further increased, two facts are observed. Firstly, 

rewcr solutions qualify and cause lesser number o f  iterations. Secondly. the final 

value o f  the confidence factor is as low as 50% which puts this experiment in the 

category o f  unmatched template because o f  the presence o f  noise as shown in Fig. 

3.26. A t  this level o f  noise, the algorithm actually fails to recognize a matching 

template and may declare an unmatched result. Speed analysis is also performed with 

varying main image size. A slight increase in  processing time is observed with 30 dB 

impulsive noise because some edges may be broken or distorted in the presence o f  

impulsive noise. Therefore, the total number o f  edges slightly increases, causing a 

slight increase in the processing time. However, i n  case o f  AWGN, the edges numbcr 

was slightly decreased. Therefore, the speed o f  the proposed algorithm slightly 

increases, as shown in Fig. 3.27. The time required for the matching a template with 

impulsive noise is 20.52 sec and the one with AWGN is 16.58 sec as compared to the 

template with no noise which is 18.81 sec for the main image size o f  500x500 pixels. 



3.6 Conclusions 

This scheme presents a new approach towards image edge matching. Once the 

important properties o f  the edges are converted into a cluster o f  hyper-vectors. the 

matching problem simply reduces to a few subtractions and comparisons and nominal 

multiplications if scale invariance template matching is desired. Increasing the 

dimensionality o f  the image feature representation has found to be helpful i n  reducing 

the complexity o f  the solution procedure. Listing more parameters o f  an image feature 

helps in elaborated image description. The algorithm is simpler and much faster for 

the use in real time systems. As the algorithm proceeds, the grid cells get populated 

and the pattern o f  the population distribution tends the solution either towards a match 

or a mismatch. Due to this methodology, the matching process can be stopped at any 

time once the direction o f  the solution is clear which gives a further benetit towards 

the overall computations. The results clearly demonstrate that the performance o f  the 

proposed algorithm is much better than the competitor techniques under different 

situations. 



Chapter 4 

Template Matching Through Hyper Vectorization Using 

Gray Level Sliced Binary Images 

I n  this chapter, a feature based image matching approach suitable For aerial visual 

navigation is discussed. The image features were extracted through quantization o f  

gray levels in an image to form sub-band binary images. These binary images are then 

subjected to the boundary extraction o f  connected patches. The boundaries wcrc 

vectorized and then normalized for sorting in an order o f  significance. Hence. the 

complicated image matching process was reduced to only a few vector subtractions. 

The main advantage o f  this approach lies i n  their low computational overhead. which 

is primarily due to the small size o f  feature vectors and early truncation o f  the 

algorithm as the position o f  the vehicle is ascertained. Another important advantage o f  

this algorithm is that i t  provides a rotation and scale invariant image matching. High 

level o f  noise immunity has also been observed which makes the scheme more robust. 

4.1 Problcm Formulation 

Image inatching is the process o f  finding the locations that are similar to the given 

pattern template from the given main image. The pattern template may have a 

different scale and rotation. Let f (x, y) be the main image with dimensions M x N. 

Similarly, let f (x,~) be the template image having smaller dimensions M X F  than 

the main image. We need to find a transformation: 



where Ax and Ay represents the translations o f  the template image in .r and y 

directions. respectively. ni and 9 are the scaling factor and the rotation angle o f  the 

template image, respectively. The ni scaled and B rotated template image gray levels 

best match with the gray levels o f  the main image at the displacement o f  Ar and Ay 

Therefore, the template matching requires the estimation o f  these four parameters 

(Ar. ~ ~ , n i , 8 )  for any given image set f and 7. 

4.2 Image Feature Extraction and Matching in the l'roposcd 

Scheme 

Image matching is performed in three major steps, i.c. gray level slicing, hyper- 

vectorization and vector matching. The gray level slicing is performed on both the 

main image f ( x , ~ )  and the template image J(Y,L) to form sub-band binary image 

set. Then. these binary images are hyper-vectorized to form shape signatures for both 

the image sets. Finally, vector matching is performed to obtain the best matching 

location (Ar,Ay) and orientation (ni.8) o f  the template image in thc main image. 

The main steps o f  the proposed algorithm are implemented in  a sequence shown in 

Fig. 4.1. A l l  these steps are explained as follows. 

4.2.1 Gray Level Slicing 

Gray level slicing is often used to highlight a specific range o f  gray levels i n  an image 

[41] [42]. The gray level slicing has been utilized to form a binary image by puning 

the range o f  interest to maximum intensity while keeping al l  the other pisels to a zero 



Gray Level Main 
Image Slicing Vcclorizalian 

Veclorlzalian 

Fig. 4.1 Main steps for the proposed image matching scheme 

level. This facilitates the vectorization o f  the images in the next step for al l  o f  the 

image features. Gray level slicing process wi l l  produce B number o f  binary images 

{gl (x, y),g2 (x, y),...,gn (x, y)} o f  the same size. Hence, let g y x ,  y) be the kLh 

binary image formed from the main image f (x, Y )  where I < k I R . The process o f  

obtaining binary images from f (x, y) can be represented as: 

Similarly. the template f ( ~ . y ) w i l l  also be converted into B number o f  binary 

image formed from the template J(?i,y) with I <  k s B . I n  the gray level slicing o f  a 

satellite image, we have proposed ibr four band slicing for the use in rotation and 

scale invariant image matching under the scope o f  visual aerial navigation as shown 

in Fig. 4.2. 

42 .2  Hyper Vectorization 

Vectorization o f  image is an effective method to represent the image features in the 

desired form [43] [44]. A scale and rotation invariant hyper-vectorization based 

melhodology is proposed for shape matching. The goal o f  this work is not l o  



Fig. 4.2 Real Gray Scale Satellite Image and iis Sliced Bands for I3 = 4. 

reconstruct the matching images but to estimate the best matching location (ALA-v) 

and orientation (m.0) o f  the template in the main image. The process o f  vectorization 

includes the following four steps: 

Boundary Extraction o f  Shapcs: Each binary image formed in the previous step. 

gk (x, y )  or gk (x, y ) ,  i s  then subjected to a boundary extraction process [37]. In this 

process, the image may be subtracted from its eroded image to extract all the 

boundaries o f  connected patches o f  the binary images. Each binary image may 

produce more than one boundary. Each boundary may be represented by the co- 

ordinates o f  i ts  perimeter. The boundary co-ordinates o f  the $' boundary and ofthe kth 

binary image, g' (x, y )  , can be represented as So (k.9) where I 5 n L"" and L''" 

i s  the number o f  points in the perimeter. The S"(k.q) may also be represented in 

complex form as: 

s " ( k , q ) = ( x " ( k , q ) + j y n ( k , q ) )  I < n < L' .~ (4.2.2) 



Fig. 4.3. Centroid of a given boundary 

Similarly, the boundaries o f the binary image g' ( ~ , y )  may be extracted and can be 

represented as: 

F" ( k , q )  = (?" ( k . q ) + . j ~  ( k . 4 ) )  I_<n<L 7 . 1  (4.2.3) 

Centroid o f  the Shape: The first step is to find out the centroid o f  the shape. The 

centroid o f  a shape is defined as the midpoint o f  the extremes o f  the boundary in both 

the horizontal and vertical directions. The procedure o f  obtaining the centroid is 

explained in the Fig. 4.3. I n  this figure, the centroid is labeled as "0" and is located at 

c ( k , q ) = ( c , ( k , q ) + j ~ ~ ( k , q ) )  (4.2.4) 

in the main image corresponding to kLh binary image and qLh boundary, whereas the 

first co-ordinate o f  the centroid cr ( k , q )  is defined as 

c, ( k ,  q) = mean {max (VX" ( k ,  q )  1 I <  n < L'.~), min  (vx,, ( k ,  q )  1 1  n L'-')} (4.2.5) 

I n  this equation, the I (  . )  finds the mean value o f  the two entries in thc 

parenthesis. ~ n a x {  ...) gives the maximum value o f  the quantities in the respective 

argument sets and m in {  ...} gives the minimum values o f  the quantities in the 

respective argument sets. The other co-ordinate c, ( k , q )  o f  the centroid is given as 



c,  ( k ,q )  = n~ean{max( t l~ ,  ( k ,q )  1 I < n 5 LA."), rnin (vy, ( k ,  q )  1 I 5 n'< L'.")} (4.2.6) 

Similarly, the centroid of the template w i l l  be 

~ ( k  q )  = (c, ( k  q )  + l~ , , .  (k .  q ) )  (4.2.7) 

Magni tude Signatures: Then, a row matrix G ( k . q )  is formulated which is 

composed of  Euclidean distances d,,(k,q) o f  all the boundary ~ o i n t  in ~ " ( k , q )  with 

the centroid point O(cr (k.q)+ ,c,(k,q)). This vector is represented as 

where 

which is the n' distance o f  the bh boundary i n  the Ph binary image formed from the 

main image. Similarly. for the template, the list w i l l  be represented as 

where 

The pictorial representation o f  these distances is shown in  Fig. 4.4(a) and a 

corresponding plot is shown in  Fig. 4.4(b). If the particular boundary point in the 

binary image is farther away from the centroid. the distance in the plot w i l l  reveal the 

same. Hence, the plot is another way o f  representing the boundary in the binary image 

and wi l l  remain a unique one for one particular shape. This plot is then normalized in 



(a) (b) 

Fig. 4.4 (a) Distances of boundary points from centroid (b) Corresponding plot 

both the horizontal and vertical axes. The horizontal normalization process was 

applied on vector G ( k , q )  to form a fixed length representation having " 3" elements 

as 

where h, ( k ,  q )  = mean (k ,q ) .d  ( k ,  4  1 (4.2.13) 
,ci,($) 

Similarly. the horizontal normalization process for template image w i l l  yield p ( k . q )  

with fixed length representation 

The values thus formulated are expressed in the form o f  a row matrix, which wi l l  be 

used to formulate a unique signature o f  this particular boundary in the next stage. The 

vertical normalization is achieved by dividing each magnitude with the maximum 

distance in the set as shown here 
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Fig. 4.5 The componenls of the vector header (a) Signature (b) Shape (c) Header Coniponents. 

H ( k d ? )  
' (*")= mar ( ~ ( k . q ) )  

Similarly, the template image is also normalized, as shown below 

A three valued header y ( k , q )  (consisting o f  quantities A 1 ( k , q ) ,  A 2 ( k . q )  and 

A' ( k . q ) )  is proposed to generate and place before the row matrix 4 ( k ,  q )  to form a 

complete " 5 +3" valued signature as given below 

r ( k , q )  = [ ~ ( k , q )  z + . ~ ) I  (4.2.17) 



The shape o f  this particular boundary i s  also shown in Fig. 4.5(b). ~ ' ( k . q )  and 

A2(k,q) are the maximum and the minimum distances from the centroid o f  the 

boundary prior to normalization i.e. rnax(~(k.q)) and min(~(k .q) ) .  respectively. 

These distances are also represented graphically in Fig. 4.5(c). ( k , )  i s  the 

perimeter length o f  the boundary before normalizing the signature lo  length 3. 

Similarly. we have a complete normalized shape signature for the template image 

shown in Fig. 4.5(a) as 

~ ( k , q ) = [ ~ ( k , q )  r ( k . q ) l  (4.2.18) 

Phase Signatures: A row matrix is then formed which is composed o f  the angles o f  

vectors d,,.This row matrix i s  represented as 

~ ( k , q )  = [ad, (k,q) ad, (k.q) adj ( k q )  ... ad,!., (b)] (4.2.19) 

wlicre 

The ad,, (k.q) is the phase of the nt" angle with centroid o f  the qth boundary in the !?I' 

binary image formed from the main image. This representation is also expanded or 

shrunk (re-scaled) to form a fixed length representation having ' '3"  elements in 

horizontal direction only as 

a<(k,q) =[Dl (k,q) Dl (k.4) D, (k,q) ... DIi ( k q ) ]  (4.2.71) 

Similarly. for the template image we have 

aT(k ,q)  =[D,  (k,?) U.(k.q) 4 (kq)  ... b3 (k ,q ) l  (4.2.23) 



This completes the process o f  vectorization in which the important featurcs o f  both 

the main image and the template are represented by a normalized magnitude signaturc 

along with a header component and a normalized phase signature. These signaturcs 

constitute a 3 - D  hyper-space which wi l l  be processed in the next stage for solution 

estimation. I n  this section our contribution i s  the utilization o f  an associated phase 

signature along with the normalized magnitude signature. The combined arrangement 

gives precise rotation information orthe template feature shape with respect to that o f  

the main image. 

4.3 Vector Match ing 

Vcctor matching is the most important step after the vectorization process. I n  thc 

vectorization process, both the main image and the template are in thc Form o f  a 

vector sets. Each binary image may produce many vectors after the boundary 

extraction process and each boundary produces one vector. The vectors in thc 

template set are then so~ted with I-cspect to perimeter length in dcscending order and 

considered one by one for matching. We consider only those vectors will1 

1' ( k , q ) - A 2 ( k , g )  t T and A' ( k , g )  t $3. The reason for this selection is to ignore 

the shapes which are close to a circle and those which are insignilicantly small. Such 

shapes may produce false results as the signatures for the circular or closc to circular 

shapes tend to become quite indistinctively flat. The qualified vector o f  the template 

image is then matched with all o f  the vectors o f  the main image belonging to the same 

binary band. 

4.3.1. Rotation Estimation 

First step o f  vector matching is to tind out the template rotation angle for which the 

magnitude signatures are correlated, as follows, to Form an error function E(S). We 



have proposed the following I-D SAD (sum o f  absolute difference) for estimation o f  

the template matching location as: 

c ( S )  = sum (ubs (6 ( k .  g )  -4'" ( k ,  4 ) ) )  1<953 (4.3. I )  

where F 1 " ( k , q )  is defined as a shifted and rotated version o f  the template signature 

< ( k . q )  with shifts S varying from I to 3 given as: 

4'" ( M )  =[E7,-,+1 ( M )  @3-,+2 ( k , q )  ... R , ( k , q )  (4.3.2) 
H t ( k , q )  H ,  ( k , ~ )  ... HZ-, (kq)l 

The ~n in in ia  o f  this correlation error function &(S)  is located at S = S,,,,,,, and is given 

Emin = 6 (9,;" ) (4.33 

If this E,,>,,~ 5 y .  then this vector pair w i l l  be considered as matched, where y is a 

threshold value for vector matching. 

6' = mean((*< (k ,  q ) )  - (* 'S-8)4(k ,  q)))  (4.3.4) 

4.3.2. Scale Estimation 

The second step is to estimate the scale o f  the template with respect to thc main 

image. The perimeter o f  the boundary extracted in the template can be compared with 

that o f  the main image prior to normalization process for this estimation. Hence, the 

proposed scale estimate for this particular vector pair is simply a division process and 

is given as 

4.3.3. Location Estimation 

The third and last step o f  vector matching is to tind out the ~natching co-ordinates o f  

the template i n  the main image. The centroid o f  the template shape has to be rotated 



and scaled back in order to match the orientation and the scale o f  the shapc in  thc 

main image before finding the matching co-ordinates. The co-ordinates of thc ccntroid 

of this template shape is given as a(c ( k , q ) +  jzV ( k , ~ ) ) .  The center o f  the template 

image is given as P -+ J- . We can define a vector extending from the [: 
template image center towards the respective shape centroid, as given below 

Q = G - P  (4.3.6) 

This vector can also be represented in  polar form as 

0 = Iplem) (4.3.7) 

This vector is then subjected to a rotation to an angle "-B" given in equation (4.3.4) 

to form another vector R as 

R=IPl<e ,&(u)-e) (4.3.8) 

Another vector is then defined as T ,  which is extending from the template image 

upper left corner to the new rotated position o f  given as 

T = P + R = ( q i -  j z . )  IJ..L~) 

This vector is then finally scaled to form a vector U  as 

u = rnT = ( m T  + j m c )  (4.3.10) 

The co-ordinates o f  the respective shape in  the main image is given as 

~ ( c ,  ( k , q ) +  jc, ( k , q ) ) .  The final displacement co-ordinates o f  the template image in 

the main image are represented by a vector V as given below 

V = O - U = ( A x i - j A y )  (4.Xl I )  



4.3.4. Confidence Factor Estimation 

The solution set ( , A Y i i )  is an estimated solution which i s  obtained from 

comparing one template vector from the set o f  main image vectors. Many such 

solution set w i l l  be created when the comparison process goes on and ultiniately a 

solution space w i l l  be formed with the total number o f  91 solutions. Let this solution 

space be represented by  the set Z as 

Then a fifth index, s, wi l l  be included in the ordered pairs o f th i s  set to make the new 

representation as 

such that 

where 12, -Z,I gives the Euclidean distance between the vector Z, and Z, . The 

argument n(,..) gives the cardinal nuniber o f  the set, where q is a small positive 

quantity showing the limits o f  the cluster neighborhood. Then the final predicted 

solution o f  the template matching location and orientation is given as Z, in which .v, 

has the highest value. It is not necessary to match al l  the template features with the 

~ n a i n  image to ascertain the best matching position o f  the template. The earlicr 

truncation o f  the matching process can be achieved using the following proposed 

confidence factor O, which is defined as follows: 



where s,, is the maximum neighborhood count and is the mean neighborhood 

count o f  tlic rest o f  the solutions with count more than 0.25s,,- . The value o f  O can 

be updated with each new entry in the set Zr and i t  also serves as a distinguislling 

factor for matching and non-matching template. If  O > O,,,,,,,,, the truncation process 

wi l l  be truncated declaring a match. 

4.3.5. Pseudo Code o f  the Proposed A lgor i t l~ rn  

The procedure for the estimation o f  template image matching location can also be 

summarized as given in Table 4.1 i n  the form o f  tabulated pseudo-code: 

I Main image and the template image 
are sliced into B binary images o f  
the same size. 

Table 4.1 The Pseudo code o f  the Proposed Schente. 
Process I Input  I - Output -- .- 

~ l a l e m e n l  

A l l  the binary images ofstep I are 
lo be subtracted from their own 
eroded copy to extract the perimeler 
co-ordinates boundary of this q' 
connected patch. 

To  find template image (7) best 

matching location (Ax,AY). and 

orientation ( n r . 0 ) .  in the main 

Centroid point "0" is found for 
each boundary o f  step 2. 

Row matrix is formed which 
consisl o f  the distances from all the 
perimeter points to the centroid. 

A l l  o f  the row matrices obtained in 
step 4 are re-scaled to a lised length 
.. C .. J 

The matrices obtained i n  step 5 are 
normalized by dividing each 
element by the maximum of the 
array. 

f (x, y )  size: M x  N 
- 
.f (x.y) size: u x  E'  

t a p  I: Gray  Level Slicin 

-- 

( A X .  A)~. fl1.0). 

age 2: Hyper Vectorizalic 

g' (1. Y )  . g' (X .7 )  

S" ( k ,  q) . S" ( k ,  q )  



distance (.1' and A'), and the length 
( 4 ' )  ofthe houndary perimeter are 
placed as header to form full 
~naenitude signature - - 
Phase signature is also formed 
uhich consist o f  the angles 01-all ot' 
the houndary point from the 
centroid with respect to positive u 
axis. 
A l l  of the row matrices obtained in 
step 8 are re-scaled to a fixed length 
.- 3 " as a final phase signature 

Magnilude signatures are sorted 
with the lengthiest perimeter placed 
lirst. The magnitude signatures of 
the template from this list wi l l  then 
he correlated i n  I -D form by all of 
the nlagnitude signatures of the 
main image of the same hinary 
hnnd. 

Template image rotation angle "8" 

Teniplatc image scale" nl " 
estimation. 

The vector Q is defined as the one 
extending fioni template image 
center towards the shape's centroid. 
Whereas R is a new vector with 
rotated orientation and same length 
as Q. 

Vector from upper left corner ofthe 
template i m a g  to R .. . - 
The vector o f  step 14 is then scaled 
lo match lhe scale o f lh r  main 
image 
The rekrence is then changed to thc 
~na in  image upper left corno- 
4-D hyper space cluster fornlulation 
for the qualifying solutionsand its 
neighhorhood counl "s" is 
calculated at the same time. . 
Conlidence faclor for the match is 
lnund and the trend of th is  factor 
leads to early truncation of the 
iterative vector ~iiatching process. 

itage 3: Vcctor Matchin 

<(k.q),<(k,g),for 

A1(k,q)- A"k,y) 2 

A' (k, q) 2 p as 

qualifying conditions 

< (k. q), < (k. 9 )  for 

s :  Max ncighhor 

count 

G: Mean neighbor 

count with 
count > 

&(s) : correlation crror hnction with ~nin ima 

8 = m e o n ( < ~ ( k , ~ )  - < " " - ' ~ ( k , ~ ) )  

(. . .)"-": Shifted anglc signature 

R has got the same magnitude as Q and with 

rotatcd orientation as estimated i n  step I I 

(Ax. Ay, m. 8, s) 

If @ > @,,m.s,x,,,, then the matching process is terminated and the solution i n  thc solutron space with mn imun i  

ncighhor count wi l l  he declared are matching parameter otherwise pick the next vector ibr  ~natching and go to step 
10. - p-p~~ 



- 
1 y r z l o f t h e  vector pairs are processed and s t i l l  the O < OdrCrhdd then the match is declared as a nun-rnacbint! I 

(a) 

4.3.6 Test Case 

(b) 
Fig. 4.6 Test image and its four binary bands. 

A test image is considered as shown in Fig. 4.6 (a). I t  is apparent that the image 

contains eighteen connected patches o f  different gray scale values. Gray level slicing 

with R = 4 form four binary images b,,  . b i z .  bll and b,, as shown in Fig. 4.6 (b). 

The boundary algorithm then extracts the outer boundary o f  the conncc~cd while 

pixels objects contained in  the binary images. The connected components extracted 

for each binary band arc elaborated separately in Fig. 4.7 for clarity. Similarly. Fig. 

4.8 (a) shows the template image, Fig. 4.8 (b) shows gray level sliced binary bands 

and i n  Fig. 4.8 (c), the four shapes are elaborated. Fig. 4.9 shows the bar plots o f  the 

normalized vector signatures "<" for the respective shapes shown in Fig. 4.7. 

Similarly. Fig. 4.10 shows the same bar plots for the respeclive template image 

shapes. I t  is evident that c,.,, is matching with Crl l  with Ciw and with 



Band I. P I =  1 Band 2, P2= 5 Band 3, Pj= 8 Band 4. P.,= 5 
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Fig. 4.7 Boundaries extracted from the test image bands 

Fig. 4.8 (a) Template Image (b) Binary Images Bands (c) Shapes. 



Band I .  C,,, 

Fig. 4.9 Signatures for the shapes in ihe main image. 



Band 1, C,,, Band 2. C, Band 3. c,.,, Band 4. C,,, 

Fig. 4.10 Signatures o f  the shapes in the template image. 

4.4 RESULTS AND DISCUSSION 

The experiments are designed to test our following claims: 

I. Image matching experiments on the bulk o f  satellite imagery database for thc 

verification o f  robustness and versatility o f  the algorithm. 

a. Intelligent detection and segregation o f  the non matching template 

images. 

b. Early truncation o f  the matching process after establishing cnough 

matching operations. 

2. Scale invariance image matching and comparison o f  results. 

3. Rotation invariant image matching and full range verification. 

4. Computations comparison o f  the proposed algorithm. 

5 .  Effect o f  computation on image size. 

6. Noise effect and the level o f  endurance in both AWGN and impulsive noise 

types. 



4.4.1 Database Image Matching Experiments 

The proposed algorithm was implemented and was evaluated on USC-SII'I-HAAI 

database. This database o f  images contains a variety o f  aerial images having multiple 

ground features. The images used as main image have the size o f  512x512 pixels. The 

template images for matching had the size o f  I O O x l O O  pixels. 'The fixcd length 

nol-malization, 3 ,  for boundary signatures was selected to be 100. Multiple 

experiments were conducted to test the performance o f  the matching algorithm. Thirty 

two real satellite images were considered for this purpose. Templates were extracted 

from 64 different locations from each image. The gray level slicing was performed 

with four bands i.e. B = 4.  Other parameters are kept as Y = 10. 6 = I 0  and 11 = 10. 

The proposed algorithm was evaluated using the right prediction percentage factor P 

defined as 

Correct Mokhiiig Experii~ierit.~ r = x l 0 0  
Total Erperin~enrs 

This right prediction percentage factor has been utilized to evaluate the robustness and 

versatility o f  the proposed algorithm as compared with the ones reported earlier in 

literature. 

4.4.2 Computation Load  o f  the Algor i thm 

The proposed algorithm is based on extraction o f  shape contour in the different gray 

level sliced binary images, as features and simpler computations as integcr 

comparison and additionshbtractions for vector matching. A relative computational 

analysis o f  the algorithm with that o f  Chamfer image matching algorithm [14]. Robust 

Image Matching Algorithm (RIMA) [18]. PCA-base Rotation Invariant Texture 

Features (PCA RITF) [159], Fourier Descriptor Image Matching (FDIM) (1571 and 



The 3D-FR [I581 is a face recognition scheme which converts the facial gray levcl 

Table 4.2 Comparison o f  Computations for Different Image Matching Schemes for a 100x1 00 
pixel template in x lo4  computations. 

-- 

features in  the form o f  contours and the distances between two contour lines in a 

Logical 
Comparisons 

convenient form for the purpose o f  face matching. The table shows that only the 

proposed algorithm utilizes much less computations as compared with the other 

Three-dimensional Face Recognition (3D-FR) [I581 has been presented in Table 4.2. 

22500 

algorithms 

The computations for the image matching experiments increase with increase in thc 

160016 

image size. We have also compared the processing time o f  the proposed algorithm 

with the Chamfer [14], R l M A  (181. PCA RITF [159], Fourier Descriptor image 

22500 

Matching (FDIM) [I 571 and 3D-FR [158]. Results o f  this comparison are provided in 

Fig. 4.1 1. Size o f  the template i s  taken fixed as 1 OOx 100 pixels, whereas the size o f  

160900 

the main image is varied from 200 to 800 pixels side for square images in 100 pixels 

step, 

121 

Plat fom used for the experiments was MatlabB 7.3.011 a PIV based 3.0 Ghz PC. I t  is 

evident that other techniques take more time for the same image matching a faster rate 

449  877 22 37.1 l i 



Fig. 4.1 1 Comparison of  the processing time of the proposed algorithm with other 
techniques. 

experiments for any given image size. I t  is clear from Fig. 4.1 1 that as the size o f  the 

main image is increased, the time required to perform the template search increases at 

showing a non-linear rising trend. The results o f  proposed scheme, however. show a 

little dependency on the size o f  the main image. 

The proposed algorithm can be intelligently terminated earlier without performing the 

full inatching iterations. The matching confidence factor given in equation (4.3.15) 

scrves as discrimination between the matched and the unmatched image cases. T o  

verify this property. ten examples o f  both the matched and unmatched cases havc 

been considered. The value o f  the confidence factor has been recorded a1 each image 

~natching iterations and has been plotted in  Fig. 4.12 for al l  o f  these cases. These ten 

experiments show that matched and the unmatched templates are well  distinguished at 

the earlier stages o f  vector comparison. Furthermore, the unmatched tcinplate 

confidence factor stays close to 0% as the solution set i n  this case is 
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Fig. 4.12 Confidence Factor Value and its growth vs. Matching and Un-matched templales. 

randomly populated, whereas in the case o f  a matched template many solutions sliow 

a fixed convergence trend towards the true match point which increases the value of 

this inatcliing confidence factor rapidly. 

44.3 Scale Invariance 

A test run o f  the proposed algorithm was performed o n  database o f  satellite images in 

order to observe the scale invariance o f  the algorithm. Therefore. the template images 

werc scalcd from 0.4 to 2.0 with a step o f  0.1. Scalc value o f  "I" sliows that the 

template iinage used in  matching experiment is o f  the same scale as that o f the main 

image. The scale greater than "1" shows expansion in the template prior to matching 

and vice versa. The results were consolidated in Fig. 4.1 3 for the proposed algorithm 

as well as the other schemes, i.e. Chamfer [14], R l M A  [18]. PCA RlTF [159]. F D I M  

[I571 and 3D-FR [158]. These results are provided in  the percentage P o f  right 

prediction o f  the templates for each scale factor. The scale range o f  0.8 to 1.2 has 

been studied with a smaller step o f  0.01 because the Chamfer 1141 and R l M A  [I81 

sliows a degraded performance within this range. Chamfer [ I41 and R l M A  [I 81 liavc 

failed to match outside the scaling factor o f  0.8 to 1.2. However, FDIM [I 571 and 3D- 
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Fig. 4.13 Template matching error vs. the original template scaling factor. 

FR [I581 produced result comparatively less then the proposed algorithm. These 

schemes produce fairly accurate matching statistics in case o f  no scaling i.e. with 

scaling factor "I". The proposed scheme produces comparable image matching for thc 

scaling factor o f  "1". However, the proposed scheme produces much better results 

than the other five schemes for scaling factors other than 0.9 to 1 .I. For example. at a 

scaling factor o f  1.2, Chamfer [ I41 fails to match. R l M A  [I81 shows 7% results. 3D- 

FR [I 581 shows 68% results, F D l M  [I571 shows 72% results, PCA R lTF  [I 591 shows 

19%. whereas the proposed scheme shows 88.41% o f  correct matches. The scheme 

presented in  chapter 3 shows 45% results at scale 1.2 as shown in  F ig  3.23 (a). The 

proposed scheme matches image features using a normalized represenlation o f  lcature 

signatures which enable the comparison wi th scale invariance over a greater scale 

range. However, the image features degrades more if i t  is shrunk then in the case o f  

image expansion. This fact has affected the results i n  the same pattern as the factor P 

drops to 40% at a template scale o f  "0.4". 



Template Rotation Angle (Degrees) 

Fig. 4.14 Templale rotation angle plotted vs. the percentage of correct solutions. 

4.4.4 Rotation Invariance 

A consolidated test run was made on 30 real satellite images. Templates were 

extracted from 16 different locations. Each template was given a rotation o f  0" to 359" 

with the step o f  20'. The angular range o f  0' to 10' and 350' to 359' is, however, 

covered with a smaller step o f  lo.  Fig. 4.14 shows the value o f  factor P plotted 

against each rotated angle. The proposed scheme shows a good percentage for 

Iemplate matching Tor the whole 360" template rotation. R I M A  [ I81 and Chamfer [ I41 

show a limited range o f  rotation coverage close to 0' when the template image is only 

slightly rotated. For the rotation o f  20' 3D-FR [I581 shows 70% results. Chamfer [ I41 

shows 0%. R I M A  [I81 shows 0%. F D l M  [I571 shows 67%. PCA RITF (1591 shows 

60% and the proposed scheme shows 90% of correct matches. The previous schcnie 

o f  chapter 3 has shown 39% at 2' and 6.2% at 5' as shown i n  F ig  3.23(b) as a great 

distortion effect has been observed on the edges with minor rotations. This new 

proposed scheme, however, has made it possible to ~natch feature shapes with a high 

degree o f  rotation invariance as i t  is representing each shape in  the form o f  



normalized magnitude and phase signatures as shown in Fig. 4.14. Each magnitude 

shapc signature is correlated in a I D  fashion to establish the best f i t  at a particular 

rotation angle. The angle estimate is then made through the phase representation o r  

the same signature. Finally, the clustering o f  qualified solutions in a 4 D  space filters 

out the unwanted solutions and k t  the result converge towards thc truc rotation 

orientation. Note that the results are near ideal when the rotation is through a multiple 

o f  90'. because in this way the rotation has the least effect on feature shapes. I t  is 

evident from Fig. 4.14 that the results o f  the proposed scheme deteriorate significantly 

for rotations o f  45'. This is due to the fact that at this rotation the maximum number 

o f  pixels o f  the image has been estimated by an interpolator. We have used a bilinear 

interpolator. The results may improve significantly if a better interpolator is  used. 

4.4.5 Effect o f  Noise in the Image Matching 

The proposed algorithm has also been evaluated for two different types o f  noises i.c. 

additive white Gaussian noise (AWGN) and impulsive noise. The behavior o f  the 

proposed algorithm was evaluated for 30 dB AWGN. The results were also compared 

at different scales o f  the template image as well as at different rotations o f  the 

template. The results were also compared with the other five techniques as well. Fig. 

4.1 5 shows the percentage o f  correct matches for 0.4 to 2.0 scale range o f the template 

image in  the prcscnce o f  30 dB AWGN. The results show that the proposed algorithm 

performs better than the Chamfer [14], R l M A  [18]. 3D-FR [158], F D l M  [I571 and 

PCA RITF [159]. I t  has also been observed that proposed algorithm provides 85% o f  

correct matches at I .O scale which i s  significantly greater than 73% o f  3D-FR I 15x1. 

0% o f  Chamfer [14], 65% o f  R l M A  [18], 68% o f  PCA RITF 11591, 71% o f  F D l M  

[I571 and 61% o f  the edge based scheme o f  chapter 3 as shown in  F ig  3.24 (b). The 

results for different rotations in  the presence o f  30 dB A W G N  are compared with 
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Fig. 4.15 Template matching ermr vs. the original template scaling factor with 30 dB A WGN 

Fig. 4.16 Template rotation angle plotted vs. the percentage of correct solutions with 30 dB AWGN. 

other methods in Fig. 4.16. The behavior ofthe results have similar pattern which was 

elaborated in Fig. 4.14. However, the results deteriorate slightly due to thc presence o f  

AWGN. 



The results have also been assessed for excessive impulsive noise which is primarily 

due to imperfection/malfunctioning o f  different sensors. We have evaluatcd the 

proposed algorithm at different template scales as well as different template image 

rotations in the presence o f  30 dB impulsive noise. Fig. 4.17 shows the comparison o f  

the percentage o f  correct matches for 0.4 to 2.0 template scalc range. The results in 

Fig. 4.17 shows that the proposed algorithm out performs than that o f  the Chamfer 

[19], R l M A  (231, PCA RlTF [17], F D l M  [35] and 3D-FR [16]. A similar behavior is 

also observed at different template rotation angles in the presence o f  30dB impulsive 

noise, as shown in  Fig. 4.18. 

The performance o f  thc algorithm with respect to different noise levels is analyzed as 

shown in F ig  4.19. A W G N  has more effect over the performance as the matching 

degrades to 66% with 40 dB level. Whereas the impulsive noise degrades the 

performance to 80% at 80 dB noise level. This is due to the fact that A W G N  distorts 

thc shapes o f  the image features more than the impulsive noise. The effect o f  the 

performance is analyzed with gray level shift for the template image. The results are 

consolidated in Fig 4.20. The shift o f  the gray level i n  the pixels o f  template image 

causes either the shape registration from one band to another or thc distortion o f  thc 

image shape feature. This distortion causes the degradation of the performance quoted 

earlier. 

4.4.6 The Real Application Results 

We have obtained several real images o f  district Swabi, NWPF. Pakistan. The images 

were obtained by a gray scale Sony camera (XC-ST70CE) with analog vidco out. This 

video was digitized at a resolution o f  720x480 pixels at the height o f  700 m. Thesc 

snapshots represent real noisyldegraded, scaled and rotated images with varying 

illumination. A sample image o f  this class is shown in Fig. 4.21. The satellite imagc 



o f  this arca i s  also shown in  Fig. 4.22. These I000 real images were matchcd with the 

satellite images o f  the area using the proposed algorithm and the results show that the 

percentage o f  correct classification was 86%. However, the F D l M  [157]. R l M A  [18], 

Chamfer [14]. 3D-FR [I581 and PCA RlTF [I591 showed the percentage o f  correct 

classification as 18.7%. 32%. 39.1%. 61.5% and 45.2%, respectively. Thc results 

clearly show that the proposed algorithm is capable o f  image ~natching under a varicty 

o f  real environment. 

This method presents a new image matching method using hyper vectorization orzray 

levcl sliced binary image. It is proposed to utilize the gray level binary sliced images 

Ibr boundary extraction ofconnected patches. The process o f  signaturization has been 

proposed to form image feature vectors o f  fixed dimensions. Therefore. the proposed 

method represents the image gray shape features in terms o f  1 D normalized vector 

cluster. These vectors were proposed to be compared to find the image matching 

solution in  an iterative way. Thus shape matching is performed in a much more 

effective way as the computation has been reduced to vector subtraction only. The 

image representation suggested in this scheme is devised in a way to facilitate the 

image malcliing in much lesser computations without the nccd for any inverse 

transformation. The results o f  the algorithm are fairly robust and computationally 

attractive. Image matching shows good performance for a complete 360' rotated 

template and over a wide range o f  template scaling. The immunity against noise also 

shows to be much better than many techniques known in the literature. 
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Fig. 4.19 Template matching ermr vs. the noise level of A W G N  and Impulsive. 

Canma 01 the Template image 

Fig. 4.20 Template matching error vs. the Gamma of the Template Image. 



Fig. 4.22 Satellite Image o f  the Operation Area 



Chapter 5 

Template Matching in a Video Sequence Using Hyper 

Vectorization and Adaptive Tracking 

5.1 Adaptive Tracking and its Impact on the Computations 

'The proposcd image matching scheme in  the last chapter employ the image 

representation in a vectorized form. Hence. the main image as well  as the template 

image w i l l  ultimately be represented in the form o f  a hyper-vector cluster. Image 

~natcl i ing is achieved by comparing the two clusters representing the two images to be 

matched. The adaptive tracking scheme presentcd in this chapter facilitates the 

reduction o f  the cluster size o f the main image. This reduction provides a vital impact 

on the processing time o f  the experiments. 

5.2 Subsct Extraction 

Matching the template vectors with that o f  the complete set o f  hyper-vectors from the 

~ n a i n  image takes a lot o f  processing time. The reduction in the quantity o f  these 

hyper-vectors has a direct impact on the computations and speed o f  the algorithm. 

This reduction is achieved by making the subset tk." o f  the set of complete hyper- 

vectors €'." o f  the main image as given by  the following equation (5.2.1). 



This is achieved using the information of the current matching scale K and rotation O 

o f  the template image, along with the information about the next predicted matching 

location as estimated by the supervisory adaptive algorithm (t,c,.). The actual size 

o f  the cul-rent template image size ( M ~ , N ? )  is scaled with the scaling factor K and 

rotated by an angle B to find the area o f  bounding rectangle placed at the next 

predicted ~natching location (e,. tv). The shape centroid (cy,cy)  o f  all the vectors 

in <'."are checked with an enlarged factor o f  safcty "a" uscd to cnhancc the last 

prediction error " e  ". 

5.3 Adaptive Prediction 

Aerial vehicles mostly moves on a route which consists o f  legs and waypoints. Thc 

flying altitude and vehicle speed may vary according to the mission profile. The 

adaptive ~iiechanism can be trained quickly to predict the next location o f  the vehicle 

according to the current speed. Similarly, changing the course and speed wi l l  again 

produce a larger error which w i l l  be used to modify the weights o f  thc adaptivc li ltcr 

for the convergence towards a lower error solution. Least-Mean-Square and 

flecursive-Least-Square algorithm have been used for the prediction OF the next 

matching location [156]. 

Adaptive supervisory algorithm is elaborated in  Fig. 5.1. The image matching location 

for the mth template frame is converted to a complex input (v, + iV , )  . The input for 
38, 

the adaptive filter is actually the difference o f  the two consecutive matching solutions. 



Image 't"4 ~ectorization I 

Fig. 5.1 Block diagram of the hybrid vectorized image matching and adaptive prediction mechanism. 

The adaptive filter i s  required to predict the next matching coordinate difference 

+ i ~ c , ) , , , + ~ .  This is then used to evaluate the predicted location o f  the next match 

as: 

whereas the error i s  found as: 

~ = ( A v , + ~ A v , )  ,,, -(A+" 4 - i ~ c , )  ,,, 

5.4 Result and Discussion 

The experiments are designed to test the accuracy and speed o f  the proposcd image 

matching scheme. The effect of adaptive prediction on the performance towards 



computation reduction is also emphasized. Statistical results are presented covcring a 

widc variety o f  experimental aspects to show the robustness in the presence o f  noise. 

5.4.1 Sample Image Experiment 

A sample experiment is explained as follows. The ~ n a i n  image is shown in Fiy. 5.2 

along with the route shown superimposed with black lines. 450 images havc been 

extracted along the route and are shown in Fig. 5.3 separately. The size o f  the ~ n a i n  

image is o f  1128x1592 pixels whereas each template image is o f  100x100 pixels. The 

motion o f  the aerial vehicle is assumed to be with uniform speed and at constant 

altitude creating footprints o f  equal size and spaced equally apart. The main image has 

been vectorized and stored before hand. A t  the real time the incoming template 

images are vectorized and this vector set is matched with the reduced vector set of the 

main image. This reduce vector set is generated using the information about the 

prediction o r  the next vehicle location given by the adaptive filter associated with this 

~natching mechanism. The error in prediction is used to train the weights o f  thc 

adaptive filter for the next iteration as well as to extract the subset from the main 

image with a reasonable boundary margin. Experimental perimeters wcre taken as 

B = 4 ,  Ci=100, Y = I O ,  & = l o ,  q = I O  and c = 2 .  L M S  (Least Mean Square) 

algorithm is used for the adaptive prediction with tap length o f  32 and step si7.e o f  
I 

9x 10.'. For the first matching process. whole of the main image is considered whereas 

the subsequent region o f  scarch shrinks to a low value. Both thc actual route and the 

predicted route are plotted in Fig. 5.4. I t  is to be noted that over the straight path. the 

error gradually reduces as the output o f  the adaptive filter tends towards the desired 

output. The search area after incorporating the predicted matching location, image 

scalc and rotation is plotted in Fig. 5.5. The crror is low as conipared to the image size 

and 



Fig. 5.2 Satellite imagery considered fbr sample test Fig. 5.3 Sample template images extracted 
as sho\rn along with the simulated route super- along the route of Fig. 5.2. 

imposed. 

Fig. 5.4 Actual Route (0) Predicted Route (+). Fig. 5 5  Search area based on the prediction 
mechanism. 
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Fig. 5.6 Result of the adaptive prediction on the sample route of Fig. 5.2. 

hence search area strictly follows the bounds given by the. adaptive filter. The 

absolutc valucs o f  the desired and the actual outputs along with the error i s  plotted in 

Fig. 5.6. 

5.4.2 Database Image Matching Experiments 

The speed o f  the image matching processing directly dcpends upon the search area. 

Multiple sizes o f  square main image have been considered varying from I00 lo  I000 

pixels with a step o f  50 pixels. Time required for the image matching has been 

observed for a fixed template size o f  I O O x l O O  pixels. Experiments has been 

performed on 2.0 GHz Intel Centrino Core2 Duo PC using MatlabB 7.3 on USC- 

SIPI-HAAI image database. This database o f  images contains a verity o f  aerial 

images having multiple ground features. Results are consolidated in Fig. 5.7 in which 

the main image size is plotted on the horizontal axis whereas the average time 

required for 250 image matching expcrimcnts is plotted on the ve~tical axis. 11 is lo be 

noted that the variation o f  time with respect to image size i s  following a linear rise 

trend whereas the search area is being increased with square power o f  the image sidc. 



Fig. 5.7 Main image search area vs. the processing time. Fig. 5.8 Time required for the image matching experiments. 

Hcnce, the reduction o f  the search area is desired to achieve a high level o f  speed 

pcrlbrniance Tor the proposed vector based image ~natching scheme. 

The reduction o f  processing time has been observed once the adaptivc prediction 

mechanism is incorporated along with the vector image matching scheme. For the 

experimental setup 16 satellite images has been considered. 12 routes have been 

plotted over these images with random waypoints coordinates. Each route i s  divided 

into 500 segments for the acquisition o f  the camera snapshots. This constitute 6000 

image ~iiatching experiments per satellite image and a total o f  96000 experiments. The 

time required for thc image matching is plotted statistically in Fig. 5.8. When tlic crror 

o f  the adaptive prediction is more, it causes a wider search area selection which 

requires more time for the proposed ~iiatching scheme. Where as the reduction o f  the 

error value along with the information about the current matching coordinates, scale 

and image rotation allows tliis search area to reduce considerably which in turns has a 

direct impact on the processing of the proposed sclicme. 

The convergence o f  adaptive prediction in tliis scenario is important as i t  is directly 

relatcd to tlic performance o f  tlic proposed image matching scheme. Two types o f  

adaptivc setups are considered namely LMS and RLS (Recursivc Lcast 



(a) Straight Routes (b) Routes with multiple waypoints (c) Routes with multiplc waypoints and 
varying velocity 

Fig. 5.9 Adaptive prcdiction of LMS algorithm for 96000 experiments. Absolute values of the average, maximum and  minimum cl-rol- vs. 
each image matching ileration. 

(a) Straight Routes (b) Routes with multiple waypoints (c) Routes with multiple waypoinls and 
varying velocily 

Fig. 5.10 Adaplive prediction o f  RLS algorithm for 96000 experiments. Absolute values ofthe average. masirnun1 and minimum rrror vh. 

each image matching iteration. 

Square). Three route configurations are considered. Firstly straight routes. secondly 

routes with multiple waypoints and thirdly routes with niultiple waypoints and 

randomly varying vehicle velocity. The experimental setup constitute of 16 satdlitc 

images, 12 routes per image, 500 waypoints per route for each adaptive setup and 

corresponding to each route configuration. For straight routes the average crror value 

shows a fast reduction trend as shown in Fig. 5.9(a) and Fig. 5.1O(a). I'or a ~nultiple 

waypoint route. the average error trend shows an overall gradual convergence towards 

a zero valued error as shown in Fig 5.9(b, c) and Fig 5.10(b, c). Thus, the adaptive 

prcdiction mechanism supervises the subset extraction process and provides a tight 

bound in the search area boundaries. The proposed algorithm is compared with six 

different algorithms. classical correlation schcmc [lo], NCC [42], SSDA [160], 
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Fig. 5.1 1 Processing Time vs. the Search Area 

Chamfer image matching [14], Robust image matching algorithm (R IMA)  [I81 and 

Fourier Descriptors Image Matching (FDIM) [157]. The classical correlation schcme 

[ l o ]  accumulates pixel errors on the basis o f  their gray value diffcrcnce. NCC 1421 

utilizes an advance form o f  the correlation. SSDA is a block matching algorithm used 

with early truncation approach [160]. Chamfer image matching [I41 and R I M A  [I81 

are edge matching algorithms using distance transforms o f  the images. F D I M  ( 1  571 i s  

a contour matching algorithm which compares image contour features. Time requircd 

for each scheme with respect to the main image search area on the similar platform is 

shown in Fig 5.1 1. The result shows that the proposed algorithm has the minimum 

processing time as compared to the rest o f  the techniques and i t  has also shown a 

linear dependency on the main image size. The scheme presented in  chapter 4 shows 

18.7 sec processing time as shown in Fig 4.6. whereas the incorporation o f  adaptivc 

prediction for the reduction o f  search area in this proposed improvement shows 16.6 

sec on the main image size o f  800 pixels. 



Fig. 5.12 Sample template image from the camern. 

Fig. 5 1 3  Main imagc 

5.4.3 R e a l  A p p l i c a t i o n  Rcsults 

We have obtained several real aerial images o f  disirict Mansehra, NWPF. Pakistan. 

The images were obtained by a gray scale Sony camera (XC-ST70CE) with analog 

video out. This video was digitized at a resolution o f  720 x 480 pixcls at the height of 

700 m. These snapshots represent real noisyldegraded, scaled and rotated images with 

varying illumination. A sample image o f th is  class is shown in  Fig. 5.12. The satellite 

image o f  this area is also shown in Fig. 5.13. These 1000 real images were matched 

with thc satellite imagcs o f thc  area using thc proposed algorithm and the results show 

that the percentage o f  correct classification was 86%. However, the classical 

correlation [ IO] ,  N C C  [42], SSDA [160], Chamfer image matching algorithm [14]. 

R l M A  [I 8 j  and F D l M  [ I  571 showed the percentage o f  correct classification as 54.6%, 



57.3%. 62.1%. 1.2%, 59.8% and 71.2%. respectively. The results show that the 

proposed algorithm is capable o f  image matching under a variety o f  real environment. 

5.5 Conclusion 

This scheme presents an improvement i n  the method explained in previous chapter. 

The supervisory modular algorithm checks the current matching parameters and 

PI-edicts about the probable next matching location. The prediction is realized through 

an adaptive filter. The prediction helps the scheme to reduce the search area in the 
/ 

main image which has a direct effect on the speed o f  the image matching process. The 

results o f  the algorithm are fairly robust as the prediction error stays within a hundred 

pixel o f  the search area for both the prediction schemes. The prediction scheme is also 

co~nputationally attractive as the search area in the main image is reduced to 10% of 

the total main image size. Image matching shows good perfor~nance for a complete 

360' rotated template and over a wide range o f  template scaling. The immunity 

against noise also shows to be much better than many techniques known in the 

literature. 



Chapter 6 

Conclusion 

6.1 Summary of Iiesults 

Image matching through a high level feature comparison was presented in this 

dissertation. The goals were to achieve a fast, reliable and robust image matching. 

'Three new schemes for the said purpose were discussed along with their test and 

statistical results. 

The first scheme converts the image in the binary form through the process o f  edge 

detection. These edges can be listed in the form ol'hyper-vectors and the compa~-ison 

o f  these vectors yield fast results as shown in the relevant chapter o f  this dissertation. 

This method gives good immunity against both impulsive and AWGN noises. As the 

process is accomplish in binary domain, higher level o f  gray scale invariance is also 

noted to be present in the scheme. Similarly, a wide range o f  scaling difference 

between the matching images is also covered. This range o f  the template scaling 

easily provides an  efficient onboard solution for the application likc,visual acrial 

navigation. The scheme however. does not provide a reliable practical range o f  

rotation invariance becausc o f thc  wrong projection o f  the discrete hyper vcctors data. 

once the template image is rotated. 



The second scheme explores the use o f  gray scale information in the image alier 

converting them into a hyper vector feature cluster. This hyper space clustc~- 

comparison gives a faster and robust matching solution over a wide range o f  template 

image scale and rotation difference. l'he iterative search ~nechanism also provides an 

attractive computation-reduction process. I t  is being superviscd by an early 11-uncation 

o f  the final solution. 

Tlic third hybrid scheme utilizes an adaptive supervisory mechanism for the 

prediction o f  the next template which is suitable if many templates are l o  bc matched 

with one main image. This mechanism can be linked with any of the schenies 

proposed above. The impact o f  this prediction on computational ovcrhead is discussed 

in ihc relcvant section o f  this dissertation as the reduction in computation i s  vital 

because the adaptive prediction reduces the search area to a considerable limit. 

The overall work o f  this dissertation emphasizes cfticient ~iiethods o f  image matching 

for the application domain o f  visual navigation. The classical style o f  image matching 

starts the journey from correlation and its associated methods. l'he Chamfer and the 

methods associated with different image representation domains attempts to specd up 

this image matching. The modern methods are directed towards feature based image 

representation. The matching and image comparison is thus modified to becomc a 

high level feature processing. The presented work deals with the representation o f  

image features in the form o f  hyper-vectors. Thus the complex form o f  feature 

matching reduces to a simple vector comparison yielding fast and robust image 

matching results. 

6.2 Directions of Future Work 

Practical implementation o f  these schemes on hardware for a real time 

matching solution. 



Parallel processing and pipelined architecture is also to tie explored for the 

maximum throughput o f  the performance in the proposed scheme. 

The effect o f  multi-dimensional data can also be explored fol- rutlhcr 

improvement in data match time as a hybrid approach for future potential. 

Incorporation o f  texture classification can provide one good edge over the 

performance for the image matching. 

The scheme can be upgraded for an affine invariant transform to generate 

practical controls and navigation queues for an aerial vehicle. 

The high resolution and high speed cameras can bc incorporated in  the 

practical experiments for enhancing the accuracy o f  the system. 

High level ground features may also be vectorized through intelligent pattern 

recognition algorithms which can facilitate the identification o f  local and 

global navigation. 

Matching two images with different viewing angles may be looked into 

through a simulated 3-D world generation and correlating the features with 

actual camera shots. 

The fcature identification o f  the images captured from the camera can be 

positions stamped and can further be used atier integration for the curvc li lt ing 

in hyper-dimensional representation o f  the main image features in  the similar 

fashion. 

Image integration can be performed which employs matching o f  onc frame 

image with the consecutive. This integration can also be used for the position 

estimation o f  the observer as well  as its roll, pitch and yaw parameters. This 



can provide a complete attitude picture for the control o f  an aerial vehicle on 

the basis o f  visual perception. 

The effect o f  infra red region imaging and mult i  sensor data fusion may also 

be explored and the features representation methodology may be reviscd in 

order to match the higher image features for a day-night operation. 

The role o f  edgelets and curvlets can also be explored for the sake o f  image 

vectorization and effective representation o f  image edges. 
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