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ABSTRACT

Despite a lot of research on unit roots, consensus on several important
issues and implications has not emerged to date (Libanio, 2005).
Conflicting opinions exist on the existence of unit root in economic series
being investigated by multiple researchers. The development of literature
on unit root and cointegration is mainly stimulated by two problems: (i)
The results of unit root tests are often misleading; application of unit root
test requires number of prior specification decisions and improper choice
of the specification decisions results in misleading inference. (ii) Classical
techniques for specification of economic model using time series data are
often misleading; In the presence of unit root many of conventional
inference procedures and tests used for model specification are invalid

and hence result in misleading inference.

This thesis makes two confributions to obtain more reliable inference
from unit root tests. First, the existing literature does not provide
satisfactory solution for choice of deterministic part in a model, to be used
for testing unit root. We propose a new method for specification of
deterministic part. The performance of new method is compared with
various alternatives via Monte Carlo simulations and results show that

the method works better than the alternatives.
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Second, for a given data series it is generally not possible to decide which
of unit root tests would be the best. The performance of unit root tests
depends on the type of data generating process (DGP), but for the real
data we do not know the true DGP, hence, we cannot decide which of
tests would perform best for a given time series. The bootstrap approach
of Rudebusch (1993) offers an alternative to measure the performance of
unit root test for any real time series with unknown DGP. Rudebusch
(1993)’s approach is extended to measure and compare the performance
of unit root tests for real GDP series of various countries. Our results
show that unit root tests have very low probability to discriminate
between best fitting trend stationary and difference stationary models for
GDP series of most of countries. Phillips Perron test is superior to its
rivals including Dickey-Fuller, DF-GLS and Ng-Perron tests. The results

also support existence of unit root in real GDP series.
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CHAPTER 1

UNIT ROOT IN ECONOMICS &

ECONOMETRICS

1.1: INTRODUCTION

Past three decades have witnessed very fast development in unit root literature.
Perhaps, unit root and cointegration has been most debated issue in Econometrics.
However, despite a lot of research, consensus on several important issues and
implications has not emerged to date (Libanio, 2005). Conflicting opinions exist on the
existence of unit root in economic series being investigated by various researchers. The
growth of literature on unit root and cointegration is mainly stimulated by two

problems:



i. The results of unit root tests are often misleading; application of unit root
test requires a number of prior specification decisions, and improper

choice of the specification decisions results in misleading inference.

ii. Classical techniques for specification of economic model using time series
data are often misleading; In the presence of unit roots, many of
conventional inference procedures and tests used for model specification

are invalid, hence, result in misleading inference.

Our focus in this thesis is on first problem, which is reflected in size and power
distortion of commonly used unit root tests. Performance of unit root tests depends on
several specification decisions prior to their application e.g. whether or not to include a
deterministic trend and how to choose the number of the included lags in a model.
Practitioners routinely make several arbitrary specification decisions to specify the
model used for testing unit root. For real data series, arbitrary specification decisions
are often unjustifiable and sometimes incompatible with data [see Andreou & Spanos
(2003) and Atig-ur-Rehman & Zaman (2008)]. Specification of model before

application of unit root tests is a major challenge in application of unit root tests.

This thesis makes two contributions to obtain more reliable inference from unit root

tests.

First, we propose a method for specification of deterministic part in a model, to be used
for testing unit root. Second, via extensive Monte Carlo experiments, we measure

capability of various unit root tests to discriminate between trend and difference



stationary models congruent to the best fitting models of either class for real time
series. We use GDP data for a large pool of countries for this purpose and recommend a

best test on the basis of these experiments.

The rest of this chapter is organized as follows; Section 2 of this chapter discusses
importance of theme of unit roots in economics and econometrics. Implications of unit
root regarding the economic theory, policy making and the econometric practices are
discussed. Section 3 consists of brief history of major developments in unit root
literature. Section 4 consists of discussion on inconclusiveness of unit root debate and
the role of model specification. Section 5 describes contribution of the thesis in

resolving problems posed by model specification and the outline of the thesis.



1.2: WHY ARE UNIT ROOTS IMPORTANT?

The presence or otherwise of unit root in a time series plays a very important role in
determining statistical and economic properties of the series. Therefore, the literature
on unit root developed very rapidly during past three decades. In the words of Haldrup
and Jansson (2005), ‘Since the mid-1980s there has been a veritable explosion of
research on unit roots in the analysis of economic and other time series data’. To the
question ‘why do we care about unit roots?’, Cribari-Neto (1996) provides the

following interesting response:

...to a policymaker the answer could be: ‘Because the policy
implications are different.” To a macroeconomist, it could be
answered that ‘there are theoretical implications on several theories
and models.’ Finally, an econometrician would be satisfied with the

answer: ‘Because the asympltotics are different.’

Cribari-Neto (1996) very beautifully summarized wide range of implications of unit
roots. His view about importance of unit roots can be divided into three ideas: (i) Policy
implications (ii) Macroeconomic theories (iii) Econometric implications. Presence or
otherwise of unit root substantially affect all three areas discussed. For example,
consider the econometric implication of unit roots, the distribution of conventional test

statistics and estimators are simply invalid when there is unit root in the time series.



Although this thesis is not about the philosophy of unit root testing, it is important to
mention some of the implications of unit roots to make it clear that the idea of unit root
has deeper implications than apparent from a purely statistical perspective. In this
section, we review some of the implications of unit root regarding econometric
procedures and the economic theory in non-technical and intuitive way. Avoiding
intricate algebraic detail, we focus on the main concepts related to the implications of
unit root in empirical work. We elaborate the concepts using AR(1) model; however,

similar logic applies to more complicated models.

1.2.1: IMPLICATIONS FOR ECONOMIC THEORY

Existence of unit root in a time series has serious implications regarding economic
theory. Economic theory often predicts that a variable should be stationary or
otherwise. Here we mention a few implications of unit roots in macroeconomic

theories:

Let us start by a simple example; suppose we are interested in exploring whether or not

there is long run relationship between two time series z, and y,. Suppose the
relationship exists and it is given by: y, = a +bz, +¢,. If £, is a unit root process,
than it can deviate from its expectation for a long time unboundedly, so that y,can be

unboundedly away from its long run path for a long period of time. This contradicts

with the existence of long run equilibrium relationship between z, and y,. Therefore, a
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long run relationship exists only, if €, is stationary; the answer to purely theoretical

question of long run equilibrium relationship depends on the existence or otherwise of
unit root. This line of argument led to the development of concept of the cointegration.
Loosely speaking, cointegration occurs when a linear combination of some unit root
series is stationary. Existence of Purchasing Power Parity (PPP) is another example of
this type of question. If PPP exists, the real exchange rate should be stationary so that

domestic currency always has same purchasing power in the foreign markets.

Here are some other economic theories whose validity depends on existence of unit

root.

Efficient Markets Theory of Assets:

Efficient markets theory of asset pricing by Fama (1970) suggests that if future excess
returns were predictable, they would provide chance of exploitations so that the price

(or log price) would follow a random walk.

Real Business Cycle theory:

At first, evidence of unit roots in time series (Nelson and Plosser, 1982) was used to
provide support for theories of fluctuations based on real factors. Nelson and Plosser
(1982) argue that most of the fluctuations in output should be attributable to changes in
the trend component, in a trend versus cyclical decomposition. The existence of unit

roots implies that movements in output are persistent. Since the cyclical component is



assumed to be stationary, it follows that output fluctuations are mostly associated with
the stochastic component. The argument is supported by the idea that monetary shocks
are necessarily temporary and so can only affect the cyclical component, and that the
long run path of the economy is mainly guided by real factors such as tastes and

technology.

New Keynesian Aggregate Fluctuation models:

First reaction to the conclusions of Nelson and Plosser can be seen as an attempt to
promote New-Keynesian models of aggregate fluctuations, in which, GNP is expected
to revert to a long run trend but the adjustment process can be very slow due to
imperfections in goods and labor markets. A number of papers were published during
the 1980s with different arguments in this direction. Campbell and Mankiw (1987),
McCallum (1986) and others present various arguments in favor of/against the New

Keynesian Model of aggregate fluctuations.

Models for Income and Consumptions:

If labor income has a unit root, then a simple version of the inter-temporal permanent
income hypothesis (PIH) implies that consumption will also have a unit root, and that
income minus consumption (savings) will not have a unit root, so that consumption and

income are cointegrated (Stock, 1995).



1.2.2: ECONOMETRIC IMPLICATIONS

The econometric implications of unit roots cover almost many econometric procedures

including estimation, testing and forecasting. A brief review is presented as under:
1.2.2.1: Point/Interval Estimation
Consider the unit root process

Y, = py,, +e,. (1.1)

The least square estimator for p is given by

(12)

-1
p=(Tvt) T

Mann and Wald (1943) proved that under the assumption of IID errors, when lpl <1

JT(5 — p) converges in distribution to N(0,1 — p?). This suggests that expected value of
the estimator p is equal to the true p, therefore, the estimator is unbiased. However,
when p =1, the least squarc estimator is biased towards negativity even

asymptotically (Phillips, 1987). Hence if we are interested in the point estimates, use

of OLS estimator can be problematic.



1.2.2.2: Hypothesis Testing

Dickey and Fuller (1979) observed that in regression model (1.1), the usual t-statistics
for testing p = 1 does not have standard Student’s t-distribution under the null. They
tabulated the percentiles of t-statistics for the unit root processes. Phillips (1987)
proved that the distribution of t-statistics is non-standard and converges to some
function of Wiener process. This means that we cannot use conventional statistical
tools for hypothesis testing, when there is unit root in the series and that the hypothesis

p = 1 cannot be tested by conventional hypothesis testing techniques.

Consider the autoregressive model described in equation (1.1), the t-statistics for testing

p = p, - Under the null hypothesis, if p = p,, and |p,| < 1 then Mann & Wald theorem
implies that the test statistics has asymptotic normal distribution ¢, - N (po,—ql,-(l - pg)).
If |p,| =1, it follows that ¢, ~ N(1,0), but this limit is obviously not valid. Therefore,

the Mann & Wald theorem does not hold for the unit root processes. Phillips (1987)
proves that the t-statistics converges in distribution to a function of Wiener process.

Further analysis yield following interesting results:

i. p is super-consistent; that is, it converges to p more rapidly than

conventional estimators.

10



ii. p is not asymptotically normally distributed and ¢, is not asymptotically

standard normal. Its limiting distribution is called the Dickey-Fuller (DF)
distribution and does not have a closed form representation. Therefore,
quintiles of the distribution must be computed by simulation or by

numerical approximation.

The above discussion implies that conventional hypothesis tests are not valid for the

unit root process and different hypothesis testing techniques are required when there is

unit root in the time series.

1.2.2.3: Spurious Regression

The most important implication of unit root is, the presence or otherwise of spurious
regression. A spurious regression occurs when a pair of independent series, with strong
temporal properties, is found apparently to be related according to standard inference in
an OLS regression (Granger et al. 1998). Yule (1926) showed that two unrelated
economic time series might have strong correlation, but he was not sure of the reasons
responsible for these results. He argues that spurious correlations appear when we drop

some theoretically relevant series from the model, in particular the linear trend.

Consider two independent random walks

11



xr, = z, +e, e, ~ 14d(0,0°)

y = y_ +u u, ~ 1d(0,07)

Consider the regression y, = a + bz, +¢,, since the two series are independent, the true

value of b is zero and the estimated coefficient should be insignificant in the regression
output. Similarly, growth in one series is unrelated to growth in the other series so that
R-square should be closer to zero. However, Granger & Newbold (1974) observed that
in the above setup, the frequency of rejection of (true) hypothesis 5 = 0 is much greater

than the nominal 5% significance level, and R-square is unusually high.

The results of Granger & Newbold (1974) were explained by Phillips (1987) who
derived limiting distribution of regression coefficient 4 and proved that this coefficient

does not have asymptotic normal distribution, as is the case for stationary variables.

In fact, there is always some possibility of spurious regression when there is some non-
stationary variable involved in the regression. This fact is illustrated in the following

table:

12



Series X/Series Y Trend Stationary Unit root

Trend Stationary Valid Regression Spurious Regression

Unit root Spurious Regression Spurious Regression unless the

two series are cointegrated

The Table shows that the existence of unit root carries the risk of spurious regression.
Therefore, to establish validity of regression output, it is very important to know

whether or not the series is stationary.

1.2.3: POLICY IMPLICATIONS

We can divide the policy implications of unit roots into two types: indirect implications

and direct implications. The two types of implications are discussed below:

1.2.3.1: Direct Policy Implications

The direct implications are due to characteristic of a single economic time series. Let us
mention an intuitive example first. Suppose the GNP of a country contains unit root.
This means the effect of a negative cut in income will persist over time, Therefore, the
government will be more reluctant to induce a tax cut to facilitate some industry.

Hamilton and Flavin (1986) argued that the economic notion of sustainability of budget

13



deficit translates to the statistical notion of stationarity of series. That is, a stationary
budgetary position is consistent with the idea that a government should run a sequence
of discounted future non-interest budget surpluses capable of offsetting the current

outstanding debt/deficit.

1.2.3.2: Indirect Policy Implications

Indirect implications are via the econometric models used in the policy making.
Ultimate use of econometric models is the assessment of alternative economic policies
[Ericsson et al (1998)]. Although classical econometric theory generally assumed
stationary data, particularly constant means and variances across time periods,
empirical evidence is strongly against the validity of this assumption. Stationary and
non-stationary data need different sets of tools for developing a valid econometric
model. As we have discussed in section (1.2.2) many classical econometric procedures
are simply invalid in unit root regime. Hence data based economic policymaking rests
on assumptions regarding existence of unit roots in the data. Therefore, the range of
indirect implications of unit root in policy making is as wide as the implications of time
series itself. For further details, reader is referred to Hendry and Juselius (1999) and

Chinn (1991).

Chinn (1991) examines several cases where trend and difference stationary models lead
to quite different policy implications. In general, it is assumed that depreciation in real

exchange rate will enhance the exports and will lower the trade deficit, but in 1985-87,

14
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US$ depreciated by about 40% accompanied by a record trade deficit of $112 billion.
Chinn argues that this happened because of belief of economists in so called J curve,
which says that if exchange rate is decreased, the trade balance will deteriorate for short
term and then it will rise. But Chinn (1991) argues that all econometric models
supporting J curve are built on assumption of stationarity, whereas, the time series used
has been proven to be non-stationary. So, he attributes failure of exchange rate policy to

the model built on assumption of stationarity.

15



1.3: BRIEF HISTORY OF DEVELOPMENTS IN UNIT ROOTS

MODELS AND TESTS

This section gives brief review of the history of application of unit root models in
econometrics and the development of statistical theory/tests for unit root. The statistical
models with autoregressive coefficient equal to or near unity are familiar to
econometricians since 1940’s but the research in this area got momentum after study of
Nelson and Plosser (1982). The statistical theory of autoregressive process with root
near unity has been active area of research during past three decades and a flood of
articles emerged so far. Several good reviews and commentaries of literature in this
area are already available. For example, Phillips (1988, 1992), Campbell and Perron
(1992), Banerjee et al. (1993), Maddala and Kim (1998), Stock (1995) and Perron
(2005) provide excellent commentary of development in this area. Therefore, a
comprehensive survey of the development in unit root would be unnecessary and
undesirable addition to the already prolific literature. We just go through major
development in unit roots and the studies that are closely related to topics treated in this

thesis.

Models with high persistence are familiar to econometricians since 1940’s. Orcutt

(1948) found high serial correlation in the econometric model of US economy

16



developed by Tinbergen (1939). Orcutt examined a number of time series and
concluded that they are better described by the model Ay, = 0.3Ay, | +¢,, which is a
unit root model. Mann and Wald (1943) developed theory of least square estimator of
stationary autoregressive model which was extended to unit root and explosive models
by White (1959), Anderson (1959) and Rao (1961). According to Stock (1995), it was
customary in 1960’s and 1970’s to model economic relationship in differences which is

more appropriate method for unit root process.

Formal test for unit root were developed by Fuller (1976), Dickey (1976) and Dickey &

Fuller (1979). These tests test the null hypothesis p =1 versus one sided alternative

p < 1 in one of following autoregression:

Y, =py,, t¢&
y=a+py,, te
y=a+pft+py,  +e¢

It was proved by Mann & Wald (1943) that if p <1 and = (zleyf_l )"l S Y

than VT(5 — p) = N(0,1 — p?). Rubin (1950) proved that 5 is consistent estimator for all

values of p. However, the distribution of 5 was unknown when p =1. Dickey &
Fuller (1979) derived limiting distribution of 5 and ¢, = %E ) when p = 1. These

distributions are nonstandard and converge to functions of Wiener process (Phillips,
1987). Dickey & Fuller (1979) provided various statistics for testing presence of

autoregressive unit root. These statistics are:
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K-statistics T(p—1)
t-statistics t, =(p—1)/ SE(p)

The asymptotic distribution of ¢, = (5 —1) / SE(5) is nonstandard. The numerator is

right skewed, but the ratio is left skewed.

Meanwhile, Meese & Singleton (1982) and Nelson & Plosser (1982) applied Dickey
Fuller test to various economic time series and found that they were unable to reject
presence of autoregressive unit root in most of the series. These findings enhanced the
professional interest in unit root tests, since many econometric procedures and
economic theories hinge on the existence of unit root. Findings of Nelson and Plosser
have been supported by many authors in next few years. This led to faster development

in theory of unit root tests.

The limiting distribution of ¢, developed by Dickey & Fuller (1979) depends on

assumption of independence of error structure. In case of serially correlated errors, the
distribution tabulated by Dickey & Fuller (1979) is not valid. To get consistent
estimator and test with serially correlated error structure, either the regression equation

should be changed or the test statistics should be modified.

Modification to the regression equation is due to Dickey & Fuller (1981) and Said &
Dickey (1984), whereas, modification to unit root test statistics is due to Phillips (1987)

and Phillips & Perron (1988). Sargan & Bhargava (1983) generalize Durbin Watson
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(DW) test and Brenblutt-Webb (WB) Test to use for unit root testing. Hall (1989, 1992)
proposed Instrumental variable (IV) test for unit root in ARMA(p,q) models. Further
modifications to this test are due to Li (1995), Lee and Schmidt (1994) and Choi

(1992).

Elliott, Rothenberg & Stock (1996) used King (1988) approach to develop best point
optimal test. They find out a test whose power function is tangent to the power envelop
and never far below it. They then find a test which has power function closest to this
test. This test is based on GLS detrending. Detrending is a procedure of subtracting
deterministic part from a time series. There are several detrending techniques which

differ in minute computational detail and exhibit a variety of characteristics.

Another approach to differentiate between trend and difference stationarity is to use
stationarity as a null rather than the unit root. This type of tests are due to Tanaka
(1991), Kwiatkowski et al. (1992) and Leybourne and McCabe (1994) etc. The most
popular test of this kind is KPSS due to Kwaitkowsky, Phillips, Schmidt and Shin
(1992). Consider the representation of a time series in terms of sum of unit root and

stationary process:

y =0t +§ +u,

where v, is stationary and £ is random walk ¢ = ¢,_, +¢, ¢ ~ iidN(0,02). If y,is trend
stationary than variance of random walk component would be zero, Therefore, test for

stationarity is equivalent to testing o2 = 0 versus o2 > 0. Kwiatkowski et al. (1992)
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used LM statistics developed by Nabeya and Tanaka (1988) for testing stationarity. The

test statistics is:
~1 T
LM =(a?) Y8t
t=1

where e, denotes the least square residuals from regression of y,on constant and trend,

i
o? is variance of residuals and S, = > ;.

i=1

Perron (1989) opened a new avenue in the theory of unit root testing. Perron (1989)
proves that unit root tests are biased against stationarity, if there is structural break in
the deterministic part of the series. Perron suggests that the strong evidence for unit
root observed by Nelson & Plosser (1982) and successors was due to failure to account
for structural breaks in the series. Perron modified ADF test to incorporate structural
breaks and using these tests, reversed the conclusion of Nelson & Plosser (1982) for
many time series. An enormous literature emerged after the study of Perron (1989)
analyzing impact of structural breaks, methods to find and test the breakpoints and to
design powerful tests in presence of structural breaks. Zivot and Andrew (1992),
Banejee et al. (1992) proposed tests for unit root with endogenized structural change.
Further developments to unit root tests with known/unknown structural breaks date are
due to Kunitomo and Sato (1995), Amsler and Lee (1995), Saikkonen and Liitkepohl
(2001), & Lanne et al. (2002) etc. For a comprehensive survey of literature see Perron

(2005).
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1.4: UNIT ROOT DEBATE AND MODEL SPECIFICATION

Perhaps the issue discussed most in the history of econometric literature is the debate
on trend versus difference stationarity, initiated by Nelson and Plosser (1982). We have
described in detail the importance of information about existence of unit root with
regard to econometric procedures and economic theory. The empirical relevance of unit
root led to a huge amount of research in the past three decades, with no consensus on
several basic questions. Even though vast numbers of unit root tests have been
proposed and studied, conflicting opinions exist on the simplest of problems. For
example, here is a list of the conclusions of authors who have studied the USA annual

GNP series:
Difference stationary; Nelson and Plosser (1982),
Trend Stationary; Perron (1989),
Trend Stationary; Zivot and Andrews (1992),
Don’t know; Rudebusch (1993),
Trend stationary; Diebold and Senhadji (1996),
Difference stationary; Murray and Nelson (2002), Kilian and Ohanian (2002),

Trend stationary; Papell and Prodan (2003)
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Similarly, the so-called purchasing-power parity is another controversy in
Econometrics that led to purchasing-power parity (PPP) puzzle. Purchasing-power
parity puzzle takes one of two forms. In its first form, early tests of the PPP-hypothesis
failed to reject unit roots in real exchange rates, thus rejecting the hypothesis of PPP
holding in the long term. In the more recent literature, the literature on the PPP puzzle
focused on stochastic real exchange rate models that allow long term PPP to hold. One
can find and list a lot of controversial results on this issue with the conclusion that no
definite answer could be found so far. The following quote by El-Gamal and Ryu

(2003) reflects the ambiguity in the consequence of PPP debate:

... In particular, we show that it is possible to match desired "half-lives"
Jfor any of the most popular non-linear models recently proposed in the
literature, at the expense of matching their more general dynamic
structure. We conclude that depending on the models and criteria
selected for investigating the PPP-puzzle, the puzzle may be in the eye of
the beholder.

Similarly, take any series that has been explored many times for stationarity, you will

find number of conflicting conclusions.

A major reason responsible for ambiguity in the inference of unit root tests is the model
specification prior to application of unit root tests. Performance of unit root tests
depends on several specification decisions prior to application of unit root test e.g.
whether or not to include a deterministic trend and how to choose the order of the

included lags in the model. Practitioners routinely make several arbitrary specification
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decisions either implicitly or explicitly. Since Monte Carlo studies take these initial
decisions as valid background information, such studies often overestimate the
performance of tests on real data. In Monte Carlo, when the experiments condition on
some implicit specification, the design of data generating process supports the implicit
assumptions. But for the real data series, implicit assumptions/arbitrary specification
decisions are often unjustifiable and sometimes incompatible with data (Rehman &

Zaman, 2008).

For some of these specification decisions, there exist well documented and analyzed
procedures and techniques e.g. selection of lag length and presence of structural break.
The choice of lag length and presence of structural breaks have a lot of literature to
their credit; see Ng and Perron (2001) and Perron (2005) for detailed surveys.
However, existing literature does not provide satisfactory solution for choice of
deterministic part in a model used for testing unit root (Elder and Kennedy, 2001). A
part of this thesis is devoted to discuss the procedure for specification of deterministic
part. A new procedure is proposed for specification of deterministic part and the

performance of this procedure is illustrated via extensive Monte Carlo experiments.

Similarly, an absence of information about deterministic part in DGP of a series makes
it difficult to choose the best test for a time series. This problem led to variety of
opinion about stationarity of GDP series. Chapter 5 of this thesis is devoted to measure
performance of unit root tests for GDP series of various countries and to compare

various unit root tests on the basis of these measure of performances.
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1.5: OUTLINE OF THE THESIS

The rest of this thesis is organized as follows:

Chapter 2 consists of discussion of technical background required to understand this
thesis. It provides brief review of unit root tests utilized in the thesis, the asymptotic

theory of unit root processes and other relevant background information.

Chapter 3 consists of brief review of literature most relevant to our study. The
discussion mainly addresses the specification of deterministic part in a model used for

testing unit root, and a discussion on the opinion of econometricians about stationarity

of GNP series.

Chapter 4 is devoted to propose new procedure for the Specification of deterministic
part in autoregressive model. First, evidences are presented that the decision of
deterministic part is very important to determine output of unit root test. Next, it is
discussed that existing methods and techniques are incapable of specifying
deterministic part even in stationary autoregressive series. Than we present new
strategy for choice of deterministic part. The performance of this strategy is measured

via extensive Monte Carlo experiments.

In chapter 5 we aim to propose best test when we do not know about the true form of
data generating process. In particular, we compare various unit root tests for their

ability to discriminate between best fitting trend stationary and best fitting difference
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stationary models of GDP series of various countries. The best test is recommended on

the basis of performance in these Monte Carlo simulations.

Chapter 6 presents real application of the two contributions. The extent to which
proposed techniques are helpful in solving specification issue is discussed. Conclusion,
recommendations and directions for new research are presented in the last section of

this chapter.
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CHAPTER 2

ESSENTIALS OF UNIT ROOTS

This chapter consists of brief introduction to techniques, results and concepts utilized in
the thesis. Most of these results can be found in any advanced Time Series Textbook,
therefore, the proofs are not provided. However, reference to the source of results is

mentioned. Outline of the Chapter is as follows:

Section 1 consists of the Functional Central Limit Theorem (FCLT) and its
implications. Section 2 consists of the discussion on the unit root tests utilized in this
thesis and their salient characteristic. Section 3 discusses pre-test model specification
techniques utilized in the thesis. Section 4 discusses the approach of Rudebusch (1992)

to analyze the performance of unit root tests.
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2.1: ASYMPTOTIC THEORY FOR UNIT ROOT PROCESS

2.1.1: WIENER PROCESS

Let W(.): [0,1] — R be a continuous function such that
1. W(0)=0

2. f O0<n<7n..<r.<l than W(r)-W(r_) is independent of

W(r)—-W(r_),i=j

3. Forany t,s€[0,1] W(s)—W(t)~ N(O,s—1t),for t<s

Than W(.)is called a wiener process

Wiener process is important because limiting distributions of most of functions of
random walk processes converge to the functionals of wiener process. This detail could

be found in number of econometric texts including Hamilton (1994).
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2.1.2: CONTINUOUS MAPPING THEOREM

According to Continuous Mapping Theorem, Let {X , }:: be a sequence of random
variables with X, = X and let g:R — R be a continuous functional, than

9(X,) = 9(X)
2.1.3: FUNCTIONAL CENTRAL LIMIT THEOREM
According to the functional central limit theorem (FCLT),

T
Let ¢, ~ N(0,0%), and S, = ZE;' , than S, is a random walk process. For any

i=1

r €[0,1], Let Tr* be the largest positive integer less than or equal to Tr. Define

1 Tr*
XT(’I") = ?ZEt

=1
Jr
Then TXT(T‘) = ‘V(T‘)

2.1.4: SOME IMPLICATION OF FCLT FOR UNIT ROOT PROCESSES

Let y, = y, , + ¢, where ¢, is i.i.d. with mean zero and variance o’ and Y, = O then
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TH¥8AS

T
T*Y e, = oW(1)
t=1

a.
T
b. Ty, €, = 050 {[WQ)F -1}
t=1
T 1
c. T te, = oW(l) -0 f W(r)dr
t=1 0
T 1
d Ty, = crfW(r)dr
t=1 0

T 1
e. Ty 9" = azf[W(r)]er
=1 o

The proof of these theorems and implications can be found in Maddala & Kim (1998)

and Hamilton (1994), | evin and Lin (1992) etc.
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2.2: TESTING FOR UNIT ROOT

In this thesis, we have utilized four univariate unit root tests: Augmented Dickey Fuller
(ADF) test, Phillips Perron (PP) test, Dickey Fuller GLS test (DF-GLS) test and Ng-
Perron (NP) test. The detail on computation of tests statistics and critical values is

discussed in detail in following:

2.2.1: ADF TEST

ADF test is the modified version of test statistics proposed by Dickey and Fuller

(1979). ADF test statistics is based on one of following regression equations.

k
M1  Without drift, trend Ay, =py,_, + > 7Ay,_, +e,
i=1
With drift, but no K
M2 Ay, =o+py_ +3 1Ay, +e, @1
trend =1
k
M3 With drift and trend Ay, =a+pt+py,, + Z'yiAyH +e,
i=1
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Where e, ~ 1id(0,0%)

The test statistics is given by t, = L, where g is OLS estimate of p.

SE(p)
Distribution of test Statistics:

Unlike the standard regression model, the t-statistics in regression equation 2.1 does not
have Student’s t-distribution and does not have asymptotic normal distribution under
the null. Limiting distribution depends on the data generating process and the choice of

regression equation used for testing unit root (Hamilton, 1994).

Summary of the limiting distributions is provided by Hamilton (1994) and is

summarized below.
Case 1: True model and estimated equations are M1

The DF t-statistics has following limiting distribution

fW(r)dW(r)

t = 2
p

j‘[W(r)]"’dr

1/2

Case 2: True model is M1, estimated equation is M2
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0.5{W P -1} - W(l)fW(r)dr

J[W(r)]2dr - [J W(r)dr] |

t. =
p

Case 3: True model is M2, estimated equation is M2

In this case, the limiting distribution t, is asymptotical Gaussian, can be approximated

by standard normal critical values. The asymptotic distribution does not depend on

variance and drift.

Case 4: True model is M2, estimated equation is M3

-1
, o ABC(2,2)
g Q

Where A =

[ R
o Q9 ©
= o O

1
1 W(r)dr 0.5
/

1

B = JW(r)dr J[LV(T)]ZdT f rW(r)dr

0

1
0.5 rW(r)dr
I
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w(Q)
¢ =|os{wr -1}

Wm—fwmw

And
0
Q= (0 1 0) B 1
0
Critical Values:

Asymptotic distribution of ADF test statistics is non-standard. Therefore, the critical
values are to be computed by simulations or numerical approximations. The critical
values of ADF test statistics are provided by McKinnon (1992) computed via Monte

Carlo experiments.

2.2.2: PHILLIPS-PERRON TEST

Phillips-Perron test is a unit root test, based on the Dickey-Fuller regression equation.
But unlike the Augmented Dickey-Fuller test, which extends the Dickey-Fuller test by
including additional lags of variables as regressors in the model, the Phillips-Perron test
makes a non-parametric correction to the t-test statistic to capture the effect of

autocorrelation.
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The Phillips Perron test statistics

The Phillips Perron test statistics is based on one of the three regression equation

describe below:

M1 Without drift, trend Ay, = py, | te,

M2 With drift, but no trend Ay, =a+py, , +e (2.2)
M3 With drift and trend Ay, =a+B8t+py, , +e,

Where e, is stationary stochastic process

These three equations are similar to Dickey Fuller regression equations without any

‘augmentation’.

The test statistics is given by:

=1, [;‘%)] - O )(SE:S) 3)
o[ 03]
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T ~
L_ &= T') e’ and e, are the residuals of the regression. f(0)is
SE(p) t=2 '

where ¢. =
g

estimate of spectral density at frequency zero whose estimation procedure is described

as under:
Estimating Spectral Density at Frequency Zero

There are various ways of computing spectral density at frequency zero for a series.
Following Ng & Perron (2001), we will use autoregressive estimate of spectral density,

wherever needed in the thesis. This can be computed as follows:

Consider the ADF regression equation described in (2.1). Estimate number of lags
included in ADF equation using some consistent criterion e.g. MAIC. Than the

estimate of autoregressive spectral density at frequency zero is given by:

~2
ag

1-4, =9, = -4,

f(0) = ( (2.4)

Where 67 is estimate of error variance and ¥, =1,k are the estimated coefficients

from regression equation 2.1
Limiting Distribution of Phillips Perron Test Statistics and Critical Values

The limiting distributions of Phillips Perron test statistics are similar to corresponding

distributions of Dickey Fuller test. Finite sample critical values are also same.
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2.2.3: DF-GLS TEST

Elliott, Rothenberg & Stock (1996), use King (1988)’s approach to develop a best point
optimal test. They find a test whose power function is tangent to the power envelope
and never far below it. Then they find a test which has power function closest to this

test. This test is based on GLS detrending whose procedure is as follows:

Let y,,9,,...y, be the data series. The quasi differenced series is obtained as:

Vo — Y, if t=1 @2.5)
Y y,—ay,, if t>1 '

Next considered following OLS regression:
Vy, =Vz,8+u, (2.6)

where z,is the deterministic part; the GLS detrended series yf is defined as:

v =y, —ap @7

B is the estimate of 3 from (2.6). The deterministic part z, would be vector of ones,

1
{1} = (1, 1,...1)T if series is assumed not to have linear trend and {1,t} = [

series is assumed to have a linear trend. Value of a is chosen as under:

3.5 . . .
a= T if series is assumed to have linear trend
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-7 . . .
a= —T— if series does not have linear trend

This procedure is also called local to unity GLS detrending.

The DF-GLS statistics is then computed from following regression:

k
Ayl = py, + Y VAU +e, (2.8)
i=1
o p
And the test statistics ¢, = ———0
o~ SB(p)

Limiting behavior and critical values of

Elliot et al. (1996) show that the power curve of fGL is tangent to asymptotic power

S
envelop and is never far below it. The finite sample critical values can be found in

Elliot at al. (1996).

2.2.4: NG-PERRON TEST

Elliott et al. (1996) and Dufour & King (1991) found that local GLS detrending of the
data yields substantial power gains. Ng & Perron (2001) apply the idea of GLS
detrending to some modified tests and show that substantial size and power gains can
be made, when used in conjunction with an autoregressive spectral density estimator at

frequency zero, provided the truncation lag is appropriately selected.

37



Elliott et al. (1996) showed that power function of their test is tangent to power envelop
at 50% power. However, inappropriate choice of lag length can still lead to poor
size/power properties. While the power gains of the DF from using GLS detrended data
are impressive, simulations also show that the test exhibits strong size distortions when
there is MA root with negative coefficient. Size distortions, however, are less of an
issue with the M-tests in theory as shown by Perron and Ng (1996). In practice, it does
require us to have a way to find the appropriate lag length. So, Ng & Perron kept these
three things in mind and designed M test for GLS detrended data. They also designed a
criterion for choice of appropriate lag length, which they show better than other
existing criteria. Therefore, this test accumulates the intellectual wisdom of GLS
detrending proposed by Elliot et al. (1996), and usage of M-estimators proposed by
Stock (1990). M-type test use the estimate of spectral density of autoregressive process.
Ng and Perron (2001) proposed a set of four tests all using M-estimator. Further detail

on computation of these tests is as under:

Let y,,y,,...y, be a time series to be tested for unit root. Compute GLS-detrended series

¥,y;,..ys as defined in equation 2.7
k

Consider the OLS regression equation 2.8 i.e. Ay’ = pyf_l + E ,ijtd_] +e,
=1

Than spectral density estimate at frequency zero from equation 2.4 is:

foy=6"(1-4,-4,-..4,)
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T

Define k = Z(yf_l)2

t=2

The set of tests proposed by Ng and Perron contain tests MZ ,MZ,, MSB and MF, .

These tests are defined as follows:

(77 @) - f(0)

MZ, = - 2.9)
1/2
MSB = [L] (2.10)
£(0) *
MZ, = MSB x MZ, (2.11)
1 ( 2 1 a 2] :
—|a’k —aT " |y, if z={1}
MP, = 1f ©0) () : 2.12)
%(a% +(1-a)T™* (y;) ] if z={1t}

where a isequal to -7 if z = {1} and -13.5if z = {1,¢}.

Asymptotic Behavior and Critical Values of Ng-Perron Test

Ng & Perron claim that the four tests have optimal properties of DF-GLS test and M-
estimator proposed by Stock (1990). They argue that asymptotic power curve of these
tests is never far below the asymptotic power envelop. The asymptotic critical values of

Ng-Perron test are provided by Ng & Perron (2001).
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2.3: PRE-TEST MODEL SPECIFICATION

Before application of unit root test to a real data series, a researcher has to make
number of specification decisions. There are various methods for making such
decisions. Two important decisions are the choice of lag length and specification of
deterministic regressors. Among many methods of these specification decisions, the

methods utilized in the thesis are summarized below.
2.3.1: THE SEQUENTIAL TESTING STRATEGY

This strategy is to specify the deterministic regressors in a model to be used for testing

unit root. The strategy is outlined in Enders (2004 ) and is summarized below:

1. Estimate the autoregression Ay, = a + 8t + py, , +e,

1(a). Apply Dickey Fuller t-testtotest p =0 versus p <0
i If p = 0 is rejected, conclude no unit root, model M1 or M2 or
M3
ii If p = 0 is not rejected, go to 1(b)
1(b). Apply Dickey Fuller F —test to test (5, p) = (0,0)

i If (8,p) =(0,0) is rejected, go to 1(c)
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it If (8, p) = (0,0) is not rejected, go to (2)
1(c). Test p = 0 versus p < 0 using conventional normal critical values
i If p =0 is rejected, conclude no unit root, model M1 or M2
ii If p = 0 is not rejected, decide unit root, model M3
2. Estimate the autoregression Ay, = a + py, | +e¢,
2(a). Apply Dickey Fuller t-test to test p = 0 versus p < 0
i If p =0 is rejected, conclude no unit root, model M1 or M2
ii If p = 0 is not rejected, go to 2(b)
2(b). Apply Dickey Fuller F —test to test («, p) = (0,0)
i If (o, p) = (0,0) is rejected, go to 2(c)
ii If (a, p) = (0,0) in not rejected, go to (3)
2(c). Test p = 0 versus p < 0 using conventional normal critical values
i If p =0 isrejected, conclude no unit root, model M2
ii If p = 0 is not rejected, decide unit root, model M2
3. Estimate the autoregression Ay, = py, | +e¢,
3(a). Apply Dickey Fuller t-test totest p = 0 versus p <0
i If p = 0 isrejected, conclude no unit root, model M1

ii If p = 0 is not rejected, conclude unit root, model M1
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2.3.2: CRITERION FOR CHOICE OF LAG LENGTH

Appropriate choice of truncation lag is important for the implementation of unit root
test proposed by Dickey & Fuller (1981) and Said & Dickey (1984). It is also required
to estimate the autoregressive spectral density at frequency zero. Several criteria exist
for the choice of truncation lag. Ng & Perron (2001) compare performance of several
criteria for the choice of lag length and show that Modified Akaike Information
Criterion outperforms other criteria for the appropriate choice of lag length. Following
Ng & Perron (2001), throughout this thesis we will use MAIC for the choice of lag

length. This MAIC statistics is given as under:

For any of the autoregression defined in (1) the MAIC is computed as:

2(ry )+

MAIC = In(5}) +——

(2.11)

Here &} is the variance of residuals from regression equation 2.1 when k lags are

T
included in the autoregression and 7, (k) = (62)'p" > # ,.Also §j, = y,for ADF,

t=k,  +1

ax

PP and PP test whereas §, = ;' for DF-GLS and NP test.
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2.4: RUDEBUSCH APPROACH TO EVALUATE

PERFORMANCE OF UNIT ROOT TESTS

Rudebusch (1993) measures the ability of a unit root test to discriminate the best fitting
trend stationary and best fitting difference stationary models estimated from given data

series. This approach is outlined as under:

For a given real time series {yt} , compute the best fitting trend stationary model by

estimating following autoregression:
k
y=a+bt+3 0y, +e, (2.13)
i=1

For the same series, compute the best fitting difference stationary model by estimating

following autoregression:

k
Ayt =a+ Z,YiAyt—k + vt (2'14) {

=1

Use the estimates of a,b,¢, and a: to generate artificial data series analogues to DS

model of the real data series. Compute the unit root test statistics for this series.

Use the estimates of «,v, and ag to generate artificial data series analogues to TS

model of the real data series. Compute the unit root test statistics for this series.
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Repeating the above process for a large number of times one can estimate distribution
of the test statistics for two types of models. If the two distributions are distant to each
other than the unit root test would be able to discriminate between the two types of

models whereas it would fail if the distributions are overlapping.
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CHAPTER 3

LITERATURE REVIEW

The Literature on unit root related issues is so vast that it cannot be covered in several
volumes of a book. There exist number of good summaries, reviews and commentaries
on unit root literature. Interested reader is referred to these sources for detail; Libanio
(2005), Chinn (1991), and Stock (1995) discuss the implications of unit root in
economic theory, policy implications and econometric procedures. Stock (1995) and
Patterson (2003) provide review of history of unit root models in economics and
econometrics. Maddala and Kim (1998) provide excellent overview of contemporary
approaches to unit root testing and cointegration. There are several surveys on
specialized topics in unit roots e.g. Ng and Perron (2001) provide summary of available
methods for choice of lag length. Perron (2005) provides a detailed review of literature

on unit root in conjunction with structural breaks.

As we have discussed in Section 1.3, despite huge literature on theory related to

autoregressive process near or equal to unity, there is no clarity on several important
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issues and implications regarding unit root. We have illustrated this by using example
of widely studied GNP series of United States. Every author reaches a different

conclusion after investigation of dynamics of the series.

A major reason responsible for ambiguity in the inference of unit root tests is the model
specification prior to application of unit root tests. Before the application of unit root
tests, a researcher has to make number of specification decisions (implicit or explicit)

e.g.

a. decision about selection of lag length,

b. presence of structural break

c. deterministic part used in the model.

The choice of lag length and presence of structural breaks have a lot of literature to
their credit and well documented methods exist for making these decision; see Ng and
Perron (2001) and Perron (2005) for detail. However, existing literature does not
provide satisfactory solutions for choice of deterministic part in a model used for
testing unit root (Elder and Kennedy, 2001). Chapter 4 and 5 of this thesis are dedicated
to present a systematic procedure for specification of deterministic trend in a model to
be used for testing unit root. Therefore, necessary detail of literature related to this issue

is provided in section 1.

Moreover, the question about existence of unit root in real GNP has been addressed by

various authors, with each one reaching a different conclusion. The performance of unit
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root tests depends on the DGP but no one knows the DGP of real time series. So, it
cannot be decided which of the tests is most reliable. A second contribution of this
thesis is evaluates performance of unit root tests. An overview of the opinion of
econometricians about existence of unit root in American real GNP series is presented

in section 3.2.
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3.1: SPECIFICATION OF DETERMINISTIC PART IN UNIT

ROOT MODELS

The study of Dickey and Fuller (1979) is a premier in unit root testing. They developed
various statistics for unit root testing and computed distributions of these statistics via
Monte Carlo simulations. They used three different equations for computing unit root

test statistics. These three equations are:

Ml Without drift, trend y =0y, +e,
M2 With drift, but no trend y=a+dby,_ +e 3.1
M3 With drift and trend y=a+pt+éy,_ +e,

Where g, ~ 1d(0,0”)

The parameters of interest in these equations is value of 6 but the distribution of test
statistics for testing 6 = 1 depends on the nuisance parameters « and 3. That is, there
are three different asymptotic distributions for various combinations of data generating
process and regression model. This fact was realized by Dickey & Fuller (1979),
therefore, they present three different sets of quintiles of distributions of statistic

corresponding to the model used for testing unit root. Computation of critical value
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assumes that testing equation is congruent with data generating process. However,

Dickey & Fuller do not provide any systematic procedure to choose between three test

equations for real data sets.

The choice among three equations has very serious impact on the output of unit root

tests. Campbell and Perron (1992) report following properties of unit root tests with

regard to choice of deterministic part:

When the estimated regression includes at least all deterministic elements in the
actual data generating process, the distribution of test statistics is non-normal
under the mull. The distribution itself varies with the set of parameters included

in the estimating equations.

If the estimated regression includes deterministic regressors that are not in the
actual data generating process, power of unit root test against a stationary

alternative decreases as additional deterministic regressors are added.

If the estimated regression omits an important deterministic trending variable
present in the true data generating process, such as linear deterministic trend,
the power of t-test goes to zero as the sample size increases. If the estimated
regression omits a non-trending variable, (mean or a change in the mean), t-
statistics is consistent but finite sample power is adversely affected and
decreases as the magnitude of coefficient of omitted component increases

(Campbell and Perron, 1992).
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The remarks of Campbell and Perron (1992) can be summarized as follows:

If extraneous regressors are included in a model used for testing unit root, the power of
unit root decreases and if some valid regressor is missing, the power of test goes to
zero. This means that the unit root tests work better only, if we correctly specify the
deterministic regressors. However, despite realizing importance of deterministic trend,
in the early years of development of unit root test procedures, we don’t find any
systematic procedure for specification of deterministic part in a model used for testing

unit root.

Nelson and Kang (1984) found that if conventional t-statistics for testing coefficient
linear trend in Dickey fuller regression is heavily biased towards non-rejection. They

conducted a Monte Carlo experiment in which simple random walks were generated by
model y, =y, | +¢,. Then, they estimated following regression equation from the
series thus generated: y, = 8¢ +¢,. According to standard statistical theory, there is

no predictable relationship between time path of simple random walk series and linear
deterministic trend; therefore, its coefficient should be insignificant. But Nelson and

Kang (1984) found that in 87% of the regressions, 1 appeared to be significant. This

finding created skepticism about use of classical hypothesis testing procedure for

deterministic component in the unit root models.

The first systematic procedure for specification deterministic part has been presented

by Perron (1988), which is termed as sequential testing strategy. This strategy starts
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from most general model including drift and linear trend and number of deterministic

regressors is reduced by successive testing.

Minor modifications to the sequential testing strategy were proposed by Dolado,
Jenkinson, & Sosvilla-Rivero (1990) and Holden & Perman (1994). All these strategies
start by the most general model [Elder and Kennedy, 2001], and then reduce the model
in several steps. The latest version of sequential testing strategy is discussed in detail by

Ender (2004) and is summarized in Section 2.2.

In fact, the literature on ‘how to choose deterministic part’ is much smaller than other
decisions of similar nature; like choice of lag length. Elder & Kennedy (2001) noted the
following weakness of the literature in the exposition of Dickey-Fuller test, which is
most popular test of unit root, and it is being taught in almost all courses of time series

econometrics.

....... a crucial ingredient of this test, not well recognized in textbooks, is
that a testing strategy is required, as opposed to mere calculation of a
single test statistic. This strategy is necessary to determine if an
intercept, an intercept plus a time trend, or neither an intercept nor a
time trend, should be included in the regression run to conduct the unit-

root test.

Elder & Kennedy (2001) oppose sequential testing strategies to be used in practice.

Their arguments against use of these strategies are as follows:
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® They do not exploit prior knowledge of the growth status of the variable under
test, forcing their strategies to cover all possibilities. For example,
unemployment clearly does not have a long-run growth trend, and so, for this
variable, unit-root testing should begin by setting the trend coefficient equal to

zero but these strategies never do so.

* They worry about outcomes that are not realistic, for example, simultaneous
existence of a unit root and a trend. This is thought to be unrealistic as noted for

example by Perron (1988).

o They double- and triple-test for unit root as they start by most general model

and then testing is done at each step of reduction.

Elder & Kennedy (2001) proposed an alternate strategy, which differs from sequential

testing strategy in following:

1. They recommend to start modeling by the graphical analysis of the data

2. They discard to consider some models which they consider economically
implausible. In particular they discard the possibility of a model with

simultaneous unit root and trend.

Given the crucial effect of these choices, it is surprising that there is a lack of studies on
comparison of the performance of these strategies. Despite utilizing several search
facilitators, we were unable to find any comparison of these strategies except an
unpublished study of Hacker and Hatemi-J (2006). This study compares Ender’s

strategy with Elder and Kennedy’s strategy with the conclusion that the latter strategy
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is superior. However, the study is restricted to Dickey-Fuller environment, since it
utilizes Dickey-Fuller F-test for model reduction. A feasible strategy for choice of
deterministic part evaluating more recent tests like Ng-Perron (2001)’s test remains to

be explored.

The sequential testing strategy and the Elder & Kennedy (2001)’s strategy have many

things common. In particular, both strategies utilize Dickey Fuller F-test in model
reduction. Consider the &, test proposed by Dickey & Fuller (1981) which is the F test
of joint null hypothesis (ﬁ, p) = (0, 1) in model M3 (Eq. 3.1); if the value p is closer to

zero, this is against the null and value of test statistics would be greater than the critical
value. However, it would be misleading to infer 3 = 0 from the output. Therefore the

use of F test for specification of deterministic regressors must be justified.

3.1.1: CONTRIBUTION OF THE THESIS FOR SPECIFICATION OF

DETERMINISTIC PART

This thesis proposes a solution to the problem of specification of deterministic part

which is based on following principle:

The standard t-test of the hypothesis 5 = 0 in Dickey & Fuller (1979) type regressions
is biased towards rejection, when a series has strong autocorrelation, but performs well

when there is weak autocorrelation. The F-test of joint hypothesis (ﬂ, 6 ) = (0,1) works

fine for testing S =0 when § is close to unity (strong autocorrelation) and biased
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towards rejection when correlation is very weak. Therefore, a suitable combination of
two tests should be capable of specifying the deterministic part for any value of

autocorrelation.

In this thesis, we propose a strategy which utilizes t-test and F-test simultaneously for
specification of deterministic part. Performance of this strategy is measured for a
variety of autoregressive processes via Monte Carlo experiments. The results show that
the strategy we propose have reasonable probability of specifying correct form
deterministic regressors thus can be used for specification of deterministic part for

many unit root test.
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3.2: STATIONARITY OF GDP AND PERFORMANCE OF

UNIT ROOT TESTS

There was a consensus among the econometricians that the economic time series
behave like stationary fluctuation around some deterministic trend. This consensus was
challenged by Nelson & Plossor (1982). Nelson and Plossor applied Dickey Fuller unit
root test to a number of American macroeconomic time series including real GNP and
found that they are unable to reject unit root for most of these series. Due to important
implications of their findings, the issue got interest of econometricians. The question
about existence of unit root in real GNP has been addressed by various authors, with
each one reaching a different conclusion. An overview of the opinion of
econometricians about existence of unit root in American real GNP series is presented
in section 1.4. Here we will discuss the arguments of econometricians for their different

opinions.

The findings of Nelson and Plossor were supported by various authors including Stock
& Watson (1986), Perron and Phillips (1987) and Evans (1989). The DF/ADF tests
were unable to reject unit root for various transformations of the time series used by

Nelson and Plossor.
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The widespread acceptance of a unit root in GNP was challenged by Perron (1989).
Perron (1989) suggested that Nelson and Plossor’s strong evidence in support of the
unit root hypothesis rested on a failure to account for structural change in the data, and
demonstrated this through incorporating an exogenous structural break for the 1929
crash. In doing so he reversed the conclusion of Nelson-Plossor (1982) for 9 out of 13
series including real GNP series. This finding was supported by studies of Banerjee et
al. (1992), Christiano (1992) and Zivot & Andrews (1992), using various methods for

specification of the structural break.

Using bootstrap approach, Rudebusch (1993) investigated the ability of unit root tests
to discriminate between trend stationary and difference stationary models. Rudebusch
found that the distribution of unit root test statistics when the series is generated by
trend stationary model is overlapping with the distribution of test statistics for series
generated by difference stationary model. These results led him to the conclusion that
little can be said about the relative likelihood of DS and TS models of (US) real GNP
on the basis of conventional unit root tests. Diebold and Senhadji (1996), using long

span data, argue that trend stationarity is supported by Rudebusch’s procedure.

Murray and Nelson (2002) argue that the rejection of unit root in favor of trend
stationarity is due to the bias in unit root tests with structural breaks for stationarity.
They find that when a transitory component is added to underlying unit root process,
the unit root hypothesis is (incorrectly) rejected too often. This finding was supported

by Kilian and hanian (2002). However Papell and Prodan (2003) oppose the arguments
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of Murray and Nelson (2002) using the procedure of Murray and Nelson and tests

developed by Lumsdaine and Papell (1997).

The variety of opinions on the existence of unit root in GNP exists because different
people use different types of models for testing unit root, and for each model, there is a
different optimal test. However, for the real time series, we have no access to the data

generating process of the series. Therefore, the optimal test cannot be decided.

3.2.1: CONTRIBUTION OF THE THESIS FOR FINDING

STATIONARITY OF GDP

For any given data series, different unit root tests give different results and it is
generally not possible to decide which of unit root tests would be the most feasible for
this series. The performance of unit root tests depends on the type of data generating
process, but for the real data we do not know the true DGP. Rudebusch (1993)
approach offers an alternative to measure the performance of unit root test for any real
time series with unknown DGP. Rudebusch (1993) measures the ability of a unit root
test to discriminate the best fitting trend stationary and difference stationary models
estimated from given data series. An extension of Rudebusch (1993) approach is used
to evaluate the performance of unit root tests for the GDP series of various countries.

Rudebusch (1993) approach is extended in two directions:
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i.  Rudebusch (1993) procedure measures the performance of single unit root test;

we use this approximation of the performance to compare various tests.

ii.  Rudebusch (1993) estimates best fitting trend stationary and difference
stationary model for single time series and then uses these estimates to evaluate
size and power of unit root tests. We formulate two parametric spaces covering
the estimated parameters of simplest of the best fitting difference stationary and
trend stationary models of a large pool of countries. The performance of unit
root tests is evaluated on these parametric spaces. Thus, the results can be
generalized to any data series, whose estimated parameters fall into these

parametric spaces.

Our results show that for most data series unit root tests are unable to discriminate
between best fitting models of two types. However, for small number of series, it is
possible to discriminate between two types of models and Phillips Perron test performs

best for the purpose.
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CHAPTER 4

SPECIFICATION OF DETERMINISTIC
REGRESSORS IN UNIT ROOT TESTING

This chapter deals with the appropriate methodology to specify the deterministic
regressors prior to testing for unit root. The discussion presented in section 3.1 reveals
that no satisfactory solution exists for specification of deterministic regressors in unit
root models. A new procedure is proposed for the specification of deterministic
regressors. Performance of this new procedure is illustrated via Monte Carlo

experiments.

The chapter is organized as follows:

Section 4.1 consists of introduction and brief description of the problem. Section 4.2
discusses impact of misspecified deterministic regressors on the output of unit root
tests. Section 4.3 is about relationship between autoregression and deterministic
regressors. Section 4.4 discusses properties of procedures for specification of
deterministic regressors. Section 4.5 is describes new strategy proposed for
specification of deterministic regressors. Section 4.6 presents results of Monte Carlo

experiments for the evaluation of new strategy.
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4.1: INTRODUCTION

Consider three models:

Ml Without drift, trend

M2 With drift, but no trend

M3 With drift and trend

‘Where

y =0y, +e

yt = +6yt—l + Et

y,=a+Bt+6by,_ +e¢,

g, ~ 1d(0,0%)

(4.1a)

(4.1b)

(4.1¢)

The three models described in (4.1) are to be used as the data generating process and

the tests equations. We will use Mi, i=1,2,3, when equations are used as data generating

process, and Mi, i=1,2,3, when equation is used as a model for the data. Thus M2

means that equation (4.1b) is used as data generating process, whereas M2 means

equation (4.1b) is used as a model assumed to be the DGP by an econometrician.

The comments of Campbell & Perron (1991) summarized in section 3.1 reveal that unit

root tests will give optimal performance only, if assumed data generating process is

congruent with the actual data generating process. Unit root tests suffer power loss, if

number of deterministic regressors is larger in the model than from the original data

generating process. On the other hand, the power of tests converge to zero if the
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number of deterministic regressors in testing equation is smaller than the number of
deterministic regressors in actual data generating process. This chapter quantifies the
remarks of Campbell and Perron for ADF and PP test via Monte Carlo experiments.
The effect of deterministic regressors on GLS-detrending based tests is also analyzed. It
is shown that conventional methods and general to simple methods are inadequate to
specify the deterministic regressors in autoregressive models, even with stationary
roots. A new procedure for specification of deterministic regressors is presented and its

performance is analyzed via Monte Carlos experiments.
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4.2: IMPORTANCE OF DETERMINISTIC REGRESSORS IN

UNIT ROOT TESTING

In this section, we demonstrate the practical importance of the proper specification of
deterministic regressors in unit root testing. Dickey & Fuller (1979) designed unit root
test for three specifications of deterministic trend and tabulated the percentiles of
Dickey Fuller distribution. As discussed earlier, the computation of Dickey Fuller
distribution assumes a match between the data generating process and the model used

for testing unit root.

The classical tests of unit root including Phillips-Perron and Dickey-Fuller tests are
based on one of three regression equations described in (4.1), whereas, another class of
unit root tests which have been invented later, depends on detrending of the data prior
to computation of tests statistics. This class includes DF-GLS test and Ng-Perron test
etc. We discuss size and power properties of tests separately for these two types of
tests, so as to illustrate the importance of proper specification of deterministic part in

the model used for testing unit root.

4.2.1: DETERMINISTIC REGRESSORS AND TESTS BASED ON DF

EQUATION

The tests based on Dickey-Fuller regression equations M1, M2 & M3 include Phillips

Perron and Dickey Fuller test. Recall the three model specifications described in (4.1).
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The Figure 4.1 illustrates results of the Monte Carlo experiment for the sample of size
50. The Panel A summarizes percentage rejection by various tests when data is actually
generated by model M1. The horizontal axis represents the value of autoregressive
parameter 6. The tests applied to the data in all three scenarios i.e. M1, M2, and M3.
The power curve for various value of § is plotted. The rejection percentage in panel A
for model Mt is about 55% when § = 0.7 and it is about 5% for 6 = 1. The power

curves for M2 and M3 are far below the power curve of M.

Panel B and C give results for model M2 and M3 respectively. In Panel B and C, power
curve of M1 is almost identical with the X-axis. This means, if data was actually
generated by M2, the DF test based on model M is unable to reject the null of unit root
for any value of § in (0.7, 1). Therefore, this panel illustrates the intensity of the
problem posed by the misspecification of model. Similarly, Panel C illustrates that the
powers of DF regressions Mt and M2 are virtually zero. This means M4 and M2 have
no power if the data was actually generated by M3. In all three panels, it is visible that
power curve are highest when the DGP matches with test equations. Detailed Results

are reported in Table 4.1.1 and 4.1.2. (in appendix)
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Figure 4.1: Percentage Rejection of Null of Unit Root with different specification of DF

Equation
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Power of Unit Root Tests is plotted against the value of autoregressive parameter. It can be seen that in
all of three panels, highest power correspond to the test matching with the data generating process.

Similar results were obtained for Phillips-Perron test which are summarized in Table

4.1.3 and 4.1.4. Fig 4.1 and table 4.1 clearly show that unit root tests attain maximum

power, when there is match between DGP and the test scenario.
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4.2.2: DETERMINISTIC REGRESSORS AND TESTS BASED ON

DETRENDING

Elliot et al. (1996) observed that detrending a series before application of Dickey-Fuller
type test improves the performance of unit root tests. This finding originated a new
class of unit root tests, which depends on detrending of the series before application of
unit root tests. This class of tests includes Elliot, Rothenberg and Stock (1992)’s point
optimal test, DF-GLS test and Ng-Perron test etc. The detrending is the procedure of
subtracting the deterministic component from the time series. The detrending

techniques differ in minute computational detail and exhibit a variety of characteristics.

Unfortunately, there is a misconceived perception that the dependence of detrending
based tests on the proper specification is not as serious as for DF type tests. In fact,
commonly used detrending methods are also of two types depending on the form of
DGP with respect to the deterministic part. These two types are: with linear trend and
without trend. Once the series has been detrended, the computation of test statistics is
same for all specifications of deterministic part. However, the distribution of test
statistics depends on both DGP and the detrending procedure. Detrending does not
reduce the importance of information about appropriate specification of deterministic
component in the model used for testing unit root. The distribution of test statistics still

depends on the (i) deterministic component in DGP and (ii) the deterministic
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component used for detrending the data. This section is to show that, the tests show

best performance when (i) and (ii) match with each other.

To investigate the impact of misspecified trend on the output of detrending based unit

root tests, we have designed another Monte Carlo experiment on the lines similar to the

previous experiment for DF and PP tests. The design of experiment is as under:

Consider the three models M1, M2 and M3 discussed in (1) above

1. Choose a particular model Mj, i=1,2,3

2. Generate the data series using Mi as a data generating process

3. Choose a unit root test

4. Apply the unit root test to series generated in step 2 under all possible variations

of deterministic part and compute size/power of all variations for the series.

The experiments were performed for different sample sizes results of the experiments
are summarized in Table 4.2. It can be seen from the table that the tests performance is

best when there is appropriate match between DGP and the variant of test used.
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4.3: RELATIONSHIP BETWEEN AUTOREGRESSION AND

LINEAR TREND

Consider the data generated by the model
y=atdy, +e

The successive substitution yields:

y, =68y, + aio 5+ ié'st_i

=0

So that

87
& 5<0
= ¥

E(y,) = when t is large
Yy tat if 6=1

If « =0, and E(y,) =0, than E(y,)does not depend on time trend, this means a data

series generated by M1 is independent of t, regardless of value of § and a regression of

autoregressive series on time trend should be insignificant. Furthermore, if a =0

(series is generated by M2) and 6 < 1 than again there is no relationship between linear

trend and the autoregressive series. Butif a = 0 and 6 =1 i.e. the process is random

walk with drift, then the expectation of autoregressive series depends on the time trend.

Equation tells that if the data generating process is of the form of M2 and § < 0, there
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is no predictable relationship between the trend and the observations of the time series.

However, above derivation is valid if the time series length is large enough. This is

12 t __ Kt
because we approximateZ&i by 1—1—6, whereas, Z&i = ll—i and &' should be
i=0 - =0 -

close to zero to make the approximation work. Thus, for smaller ¢, E(y,)is not

independent of time.
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4.4: PROPERTIES OF PROCEDURES FOR SPECIFICATIONS

OF DETERMINISTIC REGRESSORS

The models M3 and M2 are nested in model M3, therefore, the general to simple
procedure is to start from M3 and reduce the models by testing significance of
deterministic regressors. If the regressand is independent of regressor, then the
regressor should not be significant. But as discussed in section 3.1, this is not true for
random walk process. Nelson & Kang (1984) experiment reveals that, although there is
no relation between random walk and linear trend, the regression on trend appear to be
significant for about 87% of the times. We show that regression of stationary
autoregressive series also produces spurious significance of trend even if autoregressive
root is not close to unity. Therefore the General to Simple type methodology does not

work for the specification of deterministic trend in series with autoregression.

Two types of equations are used to show that general to simple strategy does not work

for autoregressive series.

First is Nelson & Kang (1984)’s equation [NK Equation hereafter] described by:

y,=a+bt+e, “.2)
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where y, is the autoregressive series. The discussion presented in section 4.3 reveals

that if data was actually generated by M1, or M2 with § < 1, then there is no relation
between trend and autoregressive series and trend and trend should be insignificant. But

we show that this does not happen in the proceeding section.

Second is Dickey Fuller (1979)’s Equation [DF equation hereafter] described by:

y =a+Bt+6by,  +e, 4.3)

This regression equation should also produce insignificant coefficient of trend if data is

generated by M1 or M2 with 6§ < 1.

4.4.1: RESULTS OF MONTE CARLO USING NK EQUATION

To investigate the distribution of coefficient of linear trend in NK Equation (4.2), we

performed Monte Carlo experiment with following design:

1. Generate a series according to the model Mj, i=1,2,3 described in eq. (4.1)

2. Estimate the least square regression equations y, = a+ b ¢ + ¢,
3. Record the conventional t-statistics for coefficient b i.e. ¢,..

The data generating process M1 becomes similar to the data generating process used by
Nelson and Kang (1984) if & = 1. The study of Nelson & Kang (1984) is silent about

the distribution of t-statistics for § < 1.
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Fig 4.2: The distribution of ¢ in NK Equation, DGP:M1
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The distribution of t-statistics for coefficient of linear trend is plotted for vatious values of
autoregressive parameters in the NK Equation. It is visible that distribution of t-statistics is very
‘ different for different values of 8, the autoregressive coefficient.

4 The results on the distribution of t-statistics t, are summarized in Table 4.3 for various

sample sizes. The Fig 4.2 visually illustrates the distribution of t-statistics ¢, for Sample

of size 30and 500 and for various values of the autoregressive coefficients. The
distribution of t-statistics is approximately identical with Standard Normal Distribution
when 6 = 0 i.e. when series is serially independent (IID). But the distribution is very
different from Standard Normal when § > 0. If we look at the distribution of t-
! statistics for § = 0.7in the right panel (sample size 500, we see that the distribution
ranges from -6 to +6. This clearly indicates that, the distribution of t-statistics is not
standard normal, although the series is stationary with sufficiently large sample size.
We have recorded percentage rejection of null of no relation with linear trend (See

Table 4.4 in appendix) for various sample sizes ranging from 30 to 500. For § = 0.7,
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the percentage of t-statistics observed outside +2SE band was recorded to be 20%

instead of 5% nominal probability of type-1 error.

Fig 4.3: Percéntage Rejecfion of =0 inNK Equéﬁon, GDP:M1
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The probability of rejection of null of no relation between linear trend and autoregtessive series is
plotted for different sample sizes and different values of autoregressive parameters. It can be
observed that the rejection percentage decreases very slowly with increase in sample size.

By looking at Fig 4.3, following facts can be observed about the rejection rate of no

linear trend.

i. For é closer to zero, percentage rejection of (true) null hypothesis 5 =0
decreases, however, the decrease is slow. If § = 0.7 the probability of rejection

of b =0 is 42% when sample size is 30 & 40% for sample size 500.

ii. For & closer to 1 the probability of rejection of b = 0 increases initially with

the increase in sample size and eventually decreases.
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This implies that the problem of spurious significance of linear trend exists regardless
of the type of stationarity, if the series has autocorrelation. For the small and moderate
sample sizes, the trend appears to be significant for a proportion much higher than the
nominal significance level. Practically for all moderate sample sizes, the distribution of

t-statistics is very different from the standard normal distribution.

The figure 4.4 demonstrates the distribution of t-statistic when data is generated by M2

and sample size is 100.

Figure 4.4 gives the pictorial summary of the distribution of t-statistics of for the
autoregressive process. If drift parameter « is positive, the distribution of t-statistics is
skewed towards right. The skewness increases with increase in value of autoregressive

parameter. With increase of sample size, the magnitude of bias reduces.

Fig 4.4: The distribution of ¢, in NK Equation, DGP:M2
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" The distribution of t-statistics for coefficient of linear trend is plottca for various values of
autoregressive parameters in the NK Equation. Itis visible that distribution of t-statistics is skewed
and is very different from standard normal distribution for nonzero autoregression.
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However, for the moderate sample sizes the bias does not vanish. The distribution of

t, for the data generated by M2 is summarized in Table 4.5 and the percentage rejection

of null & = 0 is tabulated in Table 4.6.

4.4.2: RESULTS OF MONTE CARLO USING DF EQUATION

The DF Equation is given by y, =a+ Bt+ 6y, +¢,. Fig 4.5 illustrates the

distribution of t-statistics ¢, in the DF Equation where the data is generated by M1;

Fig 4.5: The distribution of ¢_in DF equation, DGP is M1

The distribution of t-statistics for coefficient of linear trend is plotted for various values of
autoregressive parameters in the Dickey-Fuller Equation. It is vistble that distribution of t-statistics
is different from standard normal distribution. The distdibution is bimodal for unit root case

For all non-zero values of autoregressive parameters, the distribution of t-statistics is
very different from the conventional Student’s distribution. The distribution is bimodal

when the value of autoregressive parameter is 1. Table 4.8 summarizes the rejection
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probability of the null hypothesis of no relationship between trend and the time path of

series.

But the distribution changes a lot when data is generated by the M2. Fig 4.6 plots the

distribution of t-statistics when M2 is used as DGP:

Fig 4.6: The distribution of tﬂ in DF equation, DGP: M2

The disttibution of t-statistics for coefficient of linear trend is plotted for various values of autoregressive
parameters in the DF Equation when DGP is M2. It is visible that distribution of t-statistics is very
different from standard normal disttibution for nonzero autoregression. The skewness of distribution of

t-statistics is clearly visible.

The distribution skewed towards infinity, if the positive drift coefficient is present in
the data generating process. Figure 4.7 visualizes rejection probability for different

sample sizes.

Fig 4.7 also shows that the rejection of 8 = 0 is close to nominal size if é €[0,0.8].

This implies that in DF Equation, t-test can be used to specify the deterministic

regressor, if the autoregressive root 8 is closer to zero. However, if autoregressive root
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is closer to 1 (but less than 1 i.e. stationary series), the false rejection of null 3 =0

increases drastically.

Fig 4.7: Percentage Rejection of null 8 = 0 in DF equation, GDP is M1

0.00 0.40 0.70 0.85 0.90 0.97 1&1’

The probability of rejection of null of no relation between linear trend and autoregressive series is
plotted for different sample sizes. It can be obsetved that the rejection percentage decreases with
increase in sample size when value of autoregressive parameter is close to zero but doesnot

decrease when it is close to unity

4.4.3: A COMPARISON OF NK EQUATION AND DF EQUATION

FOR M1 AND M2

The Fig 4.8 presents a comparison of the rejection rates of coefficient of linear trend for
model M1 and M2. It can be observed that rejection rates by NK Equation when M2 is
used as DGP (NKM2) are always higher than the rejection rates for NKMI1. This
implies that in the drift model M2, there are more chances of spurious significance of

the trend.
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Fig 4.8: A compéi'isbn of Rejeétion Rate by Nelson & Kang an DF eQuatidhs

100 1 g - NkM1
—B— NKM2
751 o DFM1
—>—DFM2
50 4
25 -
o . : v q i 0 T T T 1
0.7 0.8 0.9 1 : 0.7 0.8 0.9 1
Sample size 100 :  Sample size 400

Percentage Rejection of the null hypothesis of no linear trend is given for two sample sizes. X-axis
corresponds to different values of autoregressive parameter. Rejection Probability is always higher for
NK Equation then from DF Equation. 1

Similarly, rejection rates for NKM1 are always higher than DFM1. This implies the NK
Equation would produce more spurious results then DF Equation. The percentage
rejection for § = 0 is approximately 5% for all the tests. This implies, if the series are
serially independent then these methods perform equally well. When 6 <1, the
rejection probabilities are smaller in right panel than corresponding probabilities in the
left panel. This means that the probability of spurious significance decreases as the
sample size grows large. However, it can also be observed that the convergence of
rejection probabilities to the nominal size is very slow. For example, if § = 0.7, DGP
is M1 and sample size is 100, rejection probability of linear trend is 44% using NK
Equation. The rejection probability reduces by 4% only, if the sample size is increased

to 500.
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4.5: PROPOSED STRATEGY FOR SPECIFICATION OF

DETERMINISTIC PART

The aim of the new strategy is to test =0 in AR model M3 and/or a = 0 in M2.

The new strategy utilizes conventional t-test as well as the likelihood ratio tests . and

@, defined in 2.3 to test the two hypotheses. The idea starts from using likelihood ratio
test of joint hypothesis (3,6) =(0,1) for testing 3 =0 in M3 and hypothesis
(e, 6) =(0,1) for testing o = 0 in model M2. However, consider the joint hypothesis
(8,6) = (0,1), the likelihood ratio test works fine to test § = 0 if § is close to unity.
But if 6 is away from unity, the joint hypothesis would be rejected even if 8 = 0.

Therefore, the test cannot be utilized to specify the deterministic regressor.

Fortunately, the conventional t-test for hypothesis # = 0 in DF Equation works better
when 6 is close to zero. Therefore, a combination of two tests is capable for specifying
the deterministic regressors. The strategy works in following sequence: the presence of
deterministic regressors is tested by conventional t-test, if this test fails to reject mll
hypothesis of absence of deterministic regressor, the series is than referred to the
likelihood ratio test. The deterministic regressor is finally included in the model if both

tests reject the null of absence of regressor.

Therefore, the sequence of tests described in OSS and TSS have following properties:
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No deterministic regressor; autoregressive root is close to zero:
In this case conventional t-test will be able to detect absence of deterministic regressor.
No deterministic regressor; autoregressive root is close to unity:

In this case conventional t-test will not be able to detect absence of deterministic
regressor and will refer it to LR test. LR test performs better in finding deterministic

regressor in neighborhood of unity.

Deterministic regressor is present; autoregressive root is close to zero:

In this case conventional t-test will be able to detect absence of deterministic regressor.
Also LR test is biased towards non-rejection of deterministic regressor in the
neighborhood of unity. Therefore, both tests would reject absence of deterministic

regressor.

Deterministic regressor is present; autoregressive root is close to unity:

Conventional t-test will be biased towards non-rejection of deterministic regressor;
therefore, will refer the case to LR test. LR test would be able to discriminate regressor

in neighborhood of unity.

The four situations discussed above are summarized in following decision table:

80



Deterministic

Regressors/AR root

Present

Not Present

Near Zero

t-test will accept deterministic

¢ regressor and will refer to LR test.

LR have tendency to accept
deterministic regressor when AR

root is near zero, so deterministic

. regressor is included in the model

- Near 1

t-test will accept deterministic

regressor and will refer to LR test.

- LR can make accurate decision about

deterministic regressors in

neighborhood of unity

t-test will not accept deterministic

regressor, so series would not be

is no deterministic regressors in

model

t-test is biased for deterministic

regressors, so it will accept

. deterministic regressor and will refer
| referred to LR test. So the decision

to LR test. LR can make accurate
decision about deterministic

regressors in neighborhood of unity

In any case, the strategy of using a combination of two tests is expected to perform

better in finding out the performance of deterministic regressor. To support this claim,

we perform several Monte Carlo experiments.

The new strategy utilizes following four simple tests:

TTT: the Trend t-test

Compute the following autoregression

y=a+Bt+by,, +e
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Test H : 3=0 versus H :f=0 using conventional t-test. Use the conventional

Student’s t-critical value for testing the hypothesis.

TLT: the Trend LR-test

Apply LR test to the following problem

H :Ay, =a+u,
Hiy=a+Bt+by +e

Compare the computed test statistics with simulated critical values, and decide to reject

H, if the test statistics is greater than one sided critical value.

DTT: the Drift t-test
Compute the following autoregression
y=atdy, +e

Test o = 0 versus o = Ousing conventional t-test. Use the conventional Student’s t-

critical value for testing the hypothesis.

DLT: the Drift LR-test

Apply LR test to the following problem

H : Ay, =,
Hiy=atby, +e
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Compare the computed test statistics with simulated critical values, and decide to reject

H, if the test statistics is greater than the critical value.

These four test arranged in a proper sequence formulate a strategy which is extremely

useful in uncovering the original form of model. This sequencing is described as under:

4.5.1: ONE STEP STRATEGY (OSS)

This strategy is aimed to specify model for tests based on detrending of the series.
These tests usually have two variants with respect to the deterministic part i.e. with

linear trend and without it. The strategy is outlined below

Apply TTT and TLT
1. If TTT does not rejects null: decide no linear trend

2. If TTT rejects null and
a. TLT does not reject; decide no linear trend

| b. TLT reject; decide linear trend

This procedure is summarized in following flow chart:

The One Step Strategy for Specification of Linear Trend
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[ Apply TTT and TLT J

1

[ TTT fails to reject Null )

_ J

[ TTT rejects Null }

1

(" Decide no Linear Trend )

N S/

( I TLT fails to reject Null )

L )

Ve

If TLT rejects null )

J

' . . ™\
Decide no Linear Trend

N J

Decide Linear Trend )

J

4.5.2: TWO STEP STRATEGY (TSS)

This strategy is designed to specify model for tests based on Dickey Fuller Regression

and it comprises two steps. Step 1 is to determine whether or not linear trend is present

in the model. This strategy is to test the presence of drift in the model.

Step 1:

Apply TTT and TLT

3. If TTT does not rejects null: proceed to step2

4. If TTT rejects null and

a. TLT reject; conclude M3

b. TLT does not reject; conclude M2

Step 2:
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Apply DTT and DLT
1. If DTT does not reject; conclude M1
2. IfDTT reject and
a. DLT reject; M2

b. DLT does not reject; M1

This procedure is summarized in following flow chart

The Two Step Strategy for Specification of Deterministic Part

Step 1: Apply
TIT and TLT

TTT fails to TIT rejects
reject Null Null

Step 2: Apply If TLT falls to If TLT rejects
DTT and DLT re)ect Nuli nu]l
If DTT rejects If DTT falls to Conclude M2 onclude M3
null re)ect null
If DLT rejects IfDLT falls to Conclude Mi
re]ect

Eonclude MZ} [Conclude Ml]

4.5.3: ASYMPTOTIC DISTRIBUTION OF LR TESTS

We are utilizing two likelihood ratio tests in the proposed strategy. These tests are:
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TLT: the Trend LR-test

LR test for the following problem

H Ay =a+uy,
leyt=a+ﬁt+6yt_1+et

DLT: the Drift LR-test
LR test for the following

H Ay, =u,
Hi:y =oatdy, +e

We summarize here the asymptotic distributions of the two tests.

Theorem 1 (The limit distribution of DLT): Suppose null and alternative hypothesis
are as defined in definition of DLT, the limiting distribution of test statistics is

described as:

AT 1
r= 2=
(T -1)— A'BA

where

A= (aW(l) 0.50 {IV)P - 1})
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1 aj: W(r)dr

B= 1 1
aj; W(r)dr 02‘/; W(r)fdr

Proof:

The likelihood ratio test between two regression models can be described as:

Where 62 and 67 are maximum likelihood estimates of variance under null and

alternative respectively.
The regression model under the null is:
H :Ay, =u,

The asymptotic distribution of the statistics is to be computed assuming null is true.

When null is true, the right hand side of model is just errors, and 63 is the estimate of

variance of these errors having distribution x*(T —1).

However, the denominator of the regression model involves following regression:

Yy, =a+by,_, +e

This regression equation contains stochastic integrated regressor. Limiting distribution

of the denominator can be computed as follows:
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It is easy to show that the residual variance under the alternative

6’ =c’'e— €' X(X'X)'X' €

1 1 ... 1
Where X =
Yo ¥ - Yy

Let D be the scaling matrix defined as: D = , it is easy to see that

Jr
0

€ X(X'X)'X'e = €XD'D'X'XD)'D'X' ¢
Now simple computation yields:
e XD = (T‘”'Sz;q 37 y,_le,)
= (ch(l) 0.50* {[W(V)F — 1}) = A" (4.10)

Similarly it is straight forward to compute

15T
D—IXIXD—I — 1 r T TE=1 t-1
T_Ls Zt:l yt—l T_Z Zt:l yt2—1
1
1 o| W(r)dr
= f" “4.11)

oj: W(r)dr az‘l:[W(r)]zdr -
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Using 4.10 & 4.11

€ XDY(D'X'XDY'D'X' e= A'B7'A

Therefore,
R = % ce
2 €e—-€ XD(D'X'XD)'D'X' €
2 —
N x (T -1)

X(T-1)—-A'B'A
Proposition 1 (Re-parameterization of the trend model):
Suppose y, = o + Bt + 6y, | +e,
This model can be equivalently written as:
y, = all—8)+6(y,, —alt = 1) +(B+8a)t +,
§=a +66 +Bt+e
Under the null hypothesis (3,6) = (1,0) it can be seen that
(8°,67) = (1,0)

And

T
=y, —t=y, +Zt=1ut
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Thus the process can be written as sum of deterministic polynomial plus a random walk

without drift with same restriction on parameters under the null.
Theorem 2 (Limit Distribution of TLT): Suppose null and alternative hypothesis are

as defined in definition of TLT, the limiting distribution of test statistics is described as:

LR = X(T =1
YT —-1)—-CDC

where

C= [aW(l) 0.507 ([W(l)]2 - 1) oW(1)— aj: VV(r)dr}

1 of. "W (r)dr 1/2
D= afol W(r)dr O'ZJ;I [W(r)fdr aj:rW(r)dr
1/2 afolW(r)dr 1/3

Proof:

As described above, the likelihood ratio test between two regression models can be

described as:
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Where 62 and 6’ are maximum likelihood estimates of variance under null and

alternative respectively.
The regression model under the null is:
H :Ay, =a+u,

The asymptotic distribution of the statistics is to be computed assuming null is true.

When null is true, the right hand side of model contains only constant as a regressor,

therefore the estimate of variance 6> has distribution x*(T —1).

However, the denominator of the regression model involves following regression:

yt=a+ﬁt+5yt_l+et

This regression equation contains stochastic integrated regressors.  Limiting

distribution of the denominator can be computed as follows:

It is easy to show that the residual variance under the alternative is:

6! =€'e - X(X'X)'X'e

The computation of limit distribution the first term in denominator is straightforward
and it converges to y*(T —1). All what we have to compute is the limit distribution of

second term in the denominator i.e. € X(X'X)' X’ €

Here matrix of Regressor X is given as:
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We can write

€ X(X'X)'X'e = € XD'(D'X'XD')'D'X'e

Where D is 3 x 3 scaling matrix given by:

T 0 0
D=0 TY 0
0 o T

Now It can be seen that
- _ T - T _ T
e XD = (T IZM% T ”'Z,:l L T lzt=1tu¢)
1
= [0W(1) 0.50° ([W(l)]2 - 1) oW(Q)—o j; I/V('r)d'r] =C

Similarly it can be shown that:

. _ T _ T
1 1 T 1521‘:1 Et—l T 2Zi=lt
; -1y tyn-1 _ |15 T 2T 2 25T
| D"X'XD" =|T Zt=1 Et_l T Zt:l € T =1 tEt—l

—ax\T ~25 T -3 \T 2
T2t T te, T3¢
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1 af: W(r)dr 1/2
= |o fo 'W(rdr o fo W Pdr o j; ' W(r)dr|=D 4.13)
1/2 af:W(r)dr 1/3

Using 4.12 & 4.13, we get

eI .X(.XI.X)_IXI € — eI XD—I(D—lxlXD—l)—ID—lxl €
= c'D'C
Therefore,
R = % €€
é? €e~-€ XD(D'X'XD'Y'D'X' €

2
- x(T -1
(T -1)-C'D'C

The two asymptotic distributions are non-standard and depend on functions of Wiener

process. Therefore the critical values are to be computed via simulations.
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4.6: PERFORMANCE OF NEW STRATEGY

4.6.1: PERFORMANCE OF OSS

We measure the performance of one step methodology by the probability of uncovering

the true form of data generating process. Consider the general model M3:

y=a+pft+dy,  +e,

The purpose of the strategy is to test H : (3 =0 versus the alternative § = 0. We

know that if in the DGP, 3 = 0 (model M1 and M2) and § < 1, then there is no
predictable relationship between linear trend and the time series. However, as the
discussion in section 4.2 reveals that a start from general equation of the form of NK
Equation or the DF equation is biased towards non rejection of 3 = 0 for all sample
sizes and for any 6 > 0. However, the t-test for trend in DF Equation, which we call
TTT, always performs better then Nelson & Kang equation. Therefore, we compare

TTT with one step strategy to find how much improvement is possible by using OSS.
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Percentage Rejection of 3 = 0 is plotted for different DGPs and different values of
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autoregressive parameter. ‘OSS’ corresponds to rejection probability using one step strategy,

whereas TTT corresponds to rejection probability using conventional t-test. It can be seen that in
most of cases, probability of false rejection of 3 = 0 is larger when TTT is used
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Figure 4.9 presents present rejection of 3 = 0 for the three types of DGPs. Panels A,
B and C presents percentage rejection of 3 = § for data generated by M1, M2 and M3
respectively. First two panels correspond to size of the strategies, since they measure
the rejection of null when it is true. It is visible from the first two panels that the size of
TTT keeps on increasing as the value of autoregressive parameter 6 approaches to 1.
However, the OSS maintains its size (and even improves) when the value of « is close

to 1. This experiment was repeated for various sample sizes which yield similar resuits

(see Table 4.11).

The B panel rejection probabilities of the (True) null hypothesis for different values of
6, where data is generated by M2. The probability of rejecting null is a bit higher when
data is generated by the M2, however, the size characteristic remain almost same for
M1 and M2. The CTT fails to perform in both the cases whereas the OSS performs

exceptionally well for all values of autoregressive parameter.

Panel C gives probability of rejection of null hypothesis b = 0 when data is generated
by Model C. This panel corresponds to the power of test since § = 0 in the actual data
generating process. The TTT rejects null with approximately 100% probability. The

power of OSS is reasonable and it is not smaller than power of TTT except int a small

interval.
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4.6.2: PERFORMANCE OF TSS

The purpose of two step strategy is to find out most appropriate model for the data
series out of the three models M1, M2 and M3. Given a time series, we apply 2-step

procedure to find out which model is most appropriate for modeling the data series;

~ Fig 4.10: Probability of Choosing True model, Comparison of G2S and TSS

100 50
== _
75 py
-~ ~
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0 — T T ™ -~ 0 T T ——
0.00 0.40 0.80 0.90 0.95 0.99 1.00 ! 000 040 080 090 0.95 0.89 100
Panel A; DGP M1 Panel B; DGP M2
100 N "'”'

7%

0.00 040 080 090 095 0.89 1.00

Panel C; DGP M3
Probability of finding true models using G2S and TSS methods 1splotted It can be seen that TSS
petforms better than G2S strategy, especially in the neighborhood of unity, where it is more

important to have correct information of true DGP
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Fig 4.10 summarizes performance of TSS for three types of DGP. The panel A gives
probabilities of finding out correct model for different values of 8§, where data is
generated by M1. It can be seen that TSS works fine especially in the neighborhood of
unity. This is desirable because unit root tests suffer power loss if the value of
autoregressive parameter is close to unity, so it is more important to pick up true model

to apply the test having maximum attainable power.

Similarly, Panel B and C summarize probability of picking up the correct model when
data is actually generated by M2 and M3 respectively. Panel B reveals that OSS
outperforms conventional tests in the neighborhood of unity, which is very useful in

real life applications.
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4.7: SUMMARY

Although the unit root tests are heavily dependent on the specification of
deterministic part in the model, there is no systematic procedure for making decision
about it, except the Sequential Testing Strategy, which is applicable to DF test only.
We present the evidence that if General to Simple type methodology is adopted for the
specification of deterministic part; it is unable to work even for the stationary
processes. We present the evidences that if deterministic part is misspecified, the
performance of unit root tests is badly affected. Then, we present two different
strategies for specification of models for tests based on DF regression and the tests
based on GLS detrending. We show that performance of this strategy is much better
than the classical inference procedure in General to Simple type models especially in

the neighborhood of unity.
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4.8: APPENDIX

Table 4.1: Percentage rejection of unit root by DF and PP for various DGPs

Table 4.1.1: Percentage rejection of unit root by DF test for various DGPs Sample

size 40
DGP Ml M2 M3
Test Scenario/ MI M2 M3 M1 M2 M3 Ml M2 M3
Value of §
0.7 55 22 15 0 29 18 0 0 15
0.8 34 10 7 0 20 11 0 0 21
0.9 13 4 4 0 14 4 0 0 65
1.0 5 3 4 0 3 5 1 0 5

Table 4.1.2: Percentage rejection of unit root by DF test for various DGPs, Sample size

80
DGP M1 M2 M3
Test Scenario/ Ml M2 M3 Ml M2 M3 Ml M2 M3
Value of 6
0.7 89 S0 34 O 60 40 O 0 52
0.8 86 41 25 0 54 32 0 0 55
0.9 19 6 5 0 13 6 17 0 35
1.0 4 4 2 0 5 4 28 0 4

Table 4.1.3:Percentage rejection of unit root by PP test for various DGPs Sample size

40
DGP Ml M2 M3
Test Scenario/ MI M2 M3 Ml M2 M3 Ml M2 M3
Value of 6
0.7 87 42 26 0 60 34 0 0 27
0.8 57 20 13 0 42 20 0 0 38
09 23 9 7 0 28 8 0 0 98
1.0 5 5 5 0 3 0 0 5
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Table 4.1.4: Percentage rejection of unit root by PP test for various DGPs Sample size

80
DGP M1 M2 M3
Test Scenario/ Ml M2 M3 M1 M2 M3 Ml M2 M3
Value of 6
0.7 98 77 56 0 91 69 0 0 87
0.8 97 66 42 0 86 58 0 0 89
0.9 23 11 8 0 23 11 0 0 36
1.0 4 5 5 0 0 5 0 0 5

Table 4.1 gives percentage rejection of unit root for different combination of data
generating process (DGP) and the test Scenarios. Table 4.1.1 and 4.1.2 give
tejection percentage of Dickey Fuller test for two different sample sizes 40 and 80
respectively whereas 4.1.3 and 4.1.4 give tejection percentage of Phillips Perron
test for same sample sizes. The rejection Percentage is computed for
6 = 0.7:0.1: 1. Therefore, first three rows of each table cortrespond to power
of test and last row corresponds to power of test. It is clearly visible that the
maximum power for each DGP is obtained when test equation is congruent with

the data generating process. Fig 4.1 is based on this table.
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Table 4.2: Percentage rejection of unit root by Ng-Perron test for various

DGPs

Table 4.2:Percentage Rejection of Unit Root by Ng-Perron Test, Sample Size 100

DGP M1 M2

Test/6 0.8 0.9 1.0 0.8 0.9 1.0
MZA 100 96 7 25 15 6

Without MZT 100 95 6 23 13 4

trend MSB 100 93 6 32 16 5
MPT 100 93 6 31 22 6
MZA 97 49 4 42 32 3

With MZT 97 49 4 38 45 5

trend MSB 98 52 5 45 23 7
MPT 98 53 5 33 28 6

Table 4.2 gives percentage rejection of unit root for different combination of data

generating process (DGP) and the test scenario for the Ng-Perron test. Rejection

percentage is calculated for § = 0.8,0.9,1. It can be observed that choice of test

scenario plays vety important in the power properties of test.
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Table 4.4: Distribution of ¢, in NK Equation (M1)

Table 4.3.1: Distribution of ¢, in NK Equation

Value of 6/ ¢ 04 07 08 09 0975 099 1.00
Bin
-10 0O o0 0 1 2 6 8 11
-8 0o o0 0 2 3 5 5 6
-6 ¢ 0 2 5 6 8 8 8
-4 0 3 9 12 12 1 10 10
-2 16 23 23 19 18 14 12 11
0 66 47 32 23 20 15 13 12
2 16 23 23 20 18 14 12 11
4 0 3 9 11 12 11 10 9
6 0 0 2 5 6 8 8 8
8 0o o0 0 2 3 5 5 5
10 0o o0 0 1 1 6 8 11
Nelson & Kang Equation, M1, sample Size 30

Table 4.3.2: Distribution of ¢, in NK Equation
Value of 6/ ¢ 04 07 08 09 0975 099 1.00
Bin
-10 0 0 0 1 2 12 17 24
-8 0 o 0 2 4 6 6 5
-6 0O O 2 6 7 8 7 5
-4 0 3 9 12 i2 9 8 6
-2 16 23 23 19 16 10 8 6
0 68 49 32 22 18 11 9 6
2 16 23 23 19 16 10 8 6
4 0 3 9 12 12 9 8 6
6 0 o 2 5 7 8 7 5
8 ¢ O 0 2 4 6 6 5
10 ¢ o0 0 1 2 12 17 24

Nelson & Kang Equation for Data by M1, sample Size 80
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Table 4.3.3: Distribution of #, in NK Equation

Value of 6/ 0 04 07 08 09 0975 099 1.00
Bin

-10 0 0 0 2 16 25 37
-8 0 o0 0 6 5 3
-6 0 o0 2 7 5 3
-4 0 3 9 12 12 8 6 3
-2 16 23 23 19 16 9 6 3
0 68 48 32 22 18 9 6 3
2 16 23 23 19 16 9 6 3
4 0 3 9 12 12 8 6 3
6 0 0 2 6 7 7 5 3
8 0 o0 0 2 3 6 5 3

10 0 o0 0 1 2
Nelson & Kang Equation for Data by M1, sample Size 500

—
(@)
N
W
w
(=2}

Table 4.3 gives distribution of t-statistics for the coefficient of linear trend (2,) in
the NK Equation 4, = a + bt +¢ , for three different sample sizes i.e. 30, 80

and 500. The DGP is M1 ie. y, = by, | + v,. Value of autoregressive

parameter 0 increases moving hotizontally in any row of the Table. When § is
close to zero, the distribution of t-statistics is closer to standard normal and
however, it deviates from normality with increase in value of 8. When
6 =1and sample size is 500, only 6% of the simulated values of t-statistics lie
inside region 0 & 2. Results of this table are visually illustrated in fig 4.2.
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Table 4.4: Percentage rejection of null b =0 in NK Equation (M1)

Table 4.4: Percentage Rejection of null =0 in NK Equation
Valueof 6/ 000 040 070 085 090 0975 0.99 1.00

Sample size

30 6 21 42 56 61 71 74 77
50 5 20 42 57 63 75 79 82
100 5 20 41 58 65 79 83 88
250 5 19 40 57 65 82 86 92
500 5 19 40 57 65 82 88 94
Percentage of Rejection of No Relation with Linear Trend, M1, different sample

sizes NK Equation

Table 4.4 gives percentage rejection of null hypothesis b = 0 in the NK

Equation y, = a + bt + ¢, for various sample sizes considering #, > 0 as
rejection. The DGP is Mlie. y, = 6y, ; + v,. Value of autoregressive

parameter & increases moving horizontally in any row. It is visible that rejection
rate of (true) null hypothesis is much greater than 5% when autoregressive
coefficient is nonzero. The probability of rejecting & = 0 decteases very slowly

with the increase in sample size if 8 is not very close to unity. Fig 4.3 is based on

this table.
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Table 4.5: Distribution of #, in NK Equation (M2)

Table 4.5.1: Distribution of ¢, in NK Equation
000 040 0.70 085

Value of 6/

Bin

-10 0 0
-8 0 0
-6 0 0
-4 0 2
-2 16 20
0 67 48
2 16 25
4 0 4
6 0 0
8 0 0
10 0 0
12 0 0
14 0 0
16 0 0
18 0 0
20 0 0

090 0975
0 0
0 0
0 0
1 0
5 1
11 2
17 3
20 6
17 9
12 12
8 12
4 12
2 11
1 9
0 7
0 16

Nelson & Kang Equation for Data by M2, sample Size 30

0.99

o & AN~ O O O O O

U O = et et e
=) S = = O

1.00

O 00 AN AN = = O O O O O

O O =
o

41
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Bin
-10

16
18

Table 4.5.2: Distribution of ¢, in NK Equation

Valueof 6/ 000 040 070 085 090 0975 099 1.00
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 1 3 3 0 0 0
0 2 7 8 7 0 0 0
16 22 21 15 12 1 0 0
68 48 32 22 17 1 0 0
16 24 25 22 18 3 0 0
0 3 10 16 16 5 0 0
0 0 2 8 12 7 0 0
0 0 0 3 7 8 0 0
0 0 0 1 4 9 0 0
0 0 0 0 2 10 1 0
0 0 0 0 1 9 1 0
0 0 0 0 0 9 2 0
0 0 0 0 0 8 2 0
0 0 0 0 0 31 94 100

20

Nelson & Kang Equation for data generated by M2, sample Size 250

Table 4.5 gives distribution of t-statistics for the coefficient of linear trend (2, ) in
the NK Equation y, = a + bt + ¢, for two different sample sizes i.e. 30 (4.5.1)

and 250 (4.5.2). The DGPis M2 ie. Yy, =oa+ 6y¢_1 + v, with & = 0.5 . The

value of autoregressive parameter 8 increases moving horizontally in any row. It
1s discussed in Section 4.2 that an autoregression has relationship with linear trend
only if § = 1, however, the results of this table reveal that any nonzero value of
autoregressive coefficient causes the distribution of t-statistics to deviate from
normality. The distribution is not centered at zero when § = 0. These results are

visually fllustrated in fig 4.4
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Table 4.6: Percentage rejection of null =0 in NK Equation (M2)

Table 4.6: Percentage Rejection of null b = 0in NK Equation
000 040 070 085

Value of 6/
Sample size
30

50

100

250

500 5

W L L O\

21
20
20
19
19

44
42
42
40
40

66
63
60
58
58

0.90

78
76
72
67
66

0.975

97
99
99
97
92

0.99

98

100
100
100
100

1.00

99

100
100
100
100

Percentage of Rejection of No Linear Trend for Data Generated by M2, Different

Sample Sizes, NK Equation

Table 4.6 gives percentage rejection of null hypothesis b = 0 in the NK

Equation y, = a + bt + €, for vatious sample sizes considering ‘tbl > 2 as

rejection. The DGPis M2ie. y, = a + 6yt_1 + v,. The value of autoregressive

patameter § increases moving horizontally in any row of the table. It is visible

that rejection tate of (true) null hypothests is much greater than 5% for nonzero

autoregressive coefficient. The probability of rejecting & = O decreases very

slowly with the increase in sample size if § is not very close to unity.
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Table 4.7: Distribution of t,in DF Equation (M1)

Table 4.7.1: Distribution of ¢, in DF Equation

Valueof 6/ 000 040 070 085 090 0975 099 1.00
Bin

-4 0 0 0 1 1 1 1 1
-3 1 1 3 4 5 7 7 8
-2 7 8 10 13 14 15 16 17
-1 24 24 23 21 19 18 17 17
0 36 33 28 23 21 17 16 15
1 24 23 23 21 20 18 17 17
2 7 8 10 13 14 15 16 16
3 1 2 3 4 5 7 7 8
4 0 0 0 1 1 1 I |

DF Equation for Data by M1, sample Size 30

Table 4.7.2: Distribution of ¢, in DF Equation

Valueof 6/ 000 040 070 085 090 0975 099 1.00
Bin

-4 0 0 0 0 0 0 1 1
-3 1 1 1 1 1 3 5 7
-2 6 6 7 7 8 12 15 17
-1 24 24 24 24 23 22 19 17
0 38 38 37 35 34 25 20 15
1 24 24 24 24 24 22 19 17
2 6 6 7 8 8 12 15 17
3 1 1 1 1 1 3 5 7
4 0 0 0 0 0 0 1 1

DF Equation for Data by M1, sample Size 250

Table 4.7 gives distribution of t-statistics for the coefficient of linear trend (#4) in
the Dickey-Fuller Equation y, = a + Bt + 6y, | + €, for two different sample
sizes i.e. 30 (4.7.1) and 250 (4.7.2). The DGP is M1 ie. y, = 6y, | + v,. When

6 is close to zero, the distribution of t-statistics is closer to standard normal

however, it deviates from standard normality with increase in value of 6. Fig 4.5
is based on this table.
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Table 4.8: Percentage rejection of null 8 = 0 in DF Equation

Table 4.8: Percentage Rejection of null 3 = 0 in DF Equation
Value of 6/ 000 040 070 085 09 0975 099 100

Sample size

30 7 9 13 20 24 30 32 33
50 6 7 10 15 19 27 30 33
100 5 6 7 10 13 24 28 33
250 5 5 6 7 8 16 24 33
500 5 5 5 6 6 11 18 33

Percentage of Rejection of No Relation with Linear Trend, M1, different sample
sizes DF equation

Table 4.8 gives percentage rejection of null hypothesis 3 = 0 in the Dickey-
Fuller Equation y, = a + Bt + by, | + ¢, for various sample sizes considering
|th > 2 as rejection. The DGP is M1 ie. y, = 8y, | + v,. Value of

autoregressive parameter 0 increases moving horizontally in any row of the
Table. It is visible that rejection rate of (true) null hypothesis is much greater than
5% if there is nonzero autoregressive coefficient. However, the probability of

rejecting b = 0 decreases with the increase in sample size.
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Table 4.9: Distribution of t in DF Equation (M2)

Table 4.9.1: Distribution of ¢, in DF Equation

Value of 6/

Bin

-4 -4

-3 -3 7
2 -2 24
-1 -1 36
0 0 24
1 1 7
2 2 1
3 3 0
4 4 0

8
23
33
24
9
2
0
0

20
29
25
12

000 040 070 0385

DF Equation for Data by M2, sample Size 30

090 0.975
2 1

7 5

15 12
23 20

26 27

19 23

6 9

1 1

0 0

0.99

10
24
38
19
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Table 4.9.2: Distribution of ¢, in DF Equation

Valueof 6/ 000 040 070 085 090 0975 099 1.00
Bin

-3 1 1 1 1 0 0
-2 6 6 7 7 7 4 1 0
-1 24 24 24 23 23 14 8 0
0 38 38 37 35 34 27 22 2
1 24 24 24 24 25 31 33 16
2 6 6 7 8 9 18 27 50
3 1 1 1 1 1 4 8 29
4 0 0 0 0 0 0 1 4
5 0 0 0 0 0 0 0 0

DF Equation for Data by M2, sample Size 250

Table 4.9 gives distribution of t-statistics for the coefficient of linear trend (%) in
the Dickey-Fuller Equation y, = a + Bt + 6y, , + ¢, for two different sample

sizes i.e. 30 (4.9.1) and 250 (4.9.2). The DGP is M2ie. y, = o + 6y, | + v,

with & = 0.5. Value of autoregressive parameter 6 increases moving
hotizontally in any row. It is discussed in Section 4.2 that an autoregtession has
relationship with linear trend only if § = 1, however, the results of this Table
reveal that the distribution of t-statistics for coefficient of linear trend deviates
from normality when § = 0 and the distribution is not centered at zero. These

results are illustrated via fig 4.6
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Table 4.10: Petcentage rejection of null 5 = 0 in DF Equation

Table 4.10: Percentage Rejection of null 8 = 0 in DF Equation

Value of 6/ 000 040 070 085 090 0975 099 1.00
Sample size

30 7 9 13 20 24 42 49 53
50 6 7 10 14 18 37 48 57
100 5 6 7 10 12 25 40 58
250 5 5 6 7 8 14 21 60
500 5 5 5 6 6 9 12 60

Percentage of Rejection of No Relation with Linear Trend, M1, different sample sizes
DF equation

Table 4.10 gives percentage rejection of null hypothesis 3 = 0 in the Dickey-
Fuller Equation y, = a + (3t + 8y, | + ¢, for various sample sizes considering
Itbl > 2 as rejection. The DGPis M2ie. y, = a + 6y, ;, + v, with a = 0.5.

The value of autoregressive parameter § increases moving horizontally in any
row of the table. It is visible that rejection rate of (true) null hypothesis is much
greater than 5% if there is nonzero autoregressive coefficient. However, the

probability of rejecting 3 = 0 decreases with the increase in sample size.
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Table 4.11: Percentage rejection of null of No Linear Trend, CTS vs. OSS

Table 4.11.1: Percentage Rejection of Null of No Linear Trend, CTS
versus OSS, DGP: M1 a=8=0

Sample Size

50 100 200
Value of & OSS CIS OSS CTS OSS CTS
0.00 6 6 5 5
0.20 8 6 6 5
0.40 7 7 6 5 5 4
0.85 4 14 7 10 7 7
0.90 3 18 6 13 8 9
0.95 3 25 4 21 5 13
097 3 26 4 24 4 17
0.99 3 29 4 30 4 27
1.00 4 31 4 33 4 33

Table 4.11.2: Percentage Rejection of Null of No Linear Trend, CTS
versus OSS, DGP: M2 a =10 (=0

Sample Size

50 100 200
Value of & OSS CIS OSS CTS OSS CTS
0.00 6 5 6 6 4 4
0.20 7 7 6 6 S 4
0.40 7 7 6 5 6 6
0.85 5 12 8 9 7 7
0.90 6 17 7 9 8 8
0.95 6 22 8 12 8 9
0.97 5 30 7 16 9 10
0.99 4 45 6 32 11 14
1.00 5 60 5 60 5 58
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Table 4.11.3: Percentage Rejection of Null of No Linear Trend, CTS
versus OSS, DGP: M3 a«=0.5 (=0.25

Sample Size
50 100 200
Value of § 0SS CIS OSS CTS OSS CTS
0.00 97 100 ~ 100 100 100 100
0.20 91 100 100 100 100 100
0.40 79 100 100 100 100 100
0.85 33 88 39 100 91 100
0.90 45 87 74 99 95 100
095 92 94 100 100 100 100
0.97 99 99 100 100 100 100
0.99 100 100 100 100 100 100
1.00 100 100 100 100 100 100

Table 4.11 compares the performance of One Step Strategy (OSS) with that of
General to Simple Strategy using conventional t-test fot specification of linear
trend in a model. Table 4.11.1 & 4.11.2 correspond to data generating process M1
& M2 (no trend), whereas 4.11.3 corresponds to M3. Therefore, 4.11.1 & 4.11.2
give the empirical size of procedure for selection of linear trend whereas 4.11.3
gives power of the procedure. It can be seen that the size of OSS does not
exceeds the nominal 5% size, but the size of TTT deviate a lot. The power of
OSS 1s smaller for some values of autoregressive parameters but the not very

small especially in the neighborhood of unity. Fig 4.9 is based on this table.
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Table 4.12: Performance of Two Step Strategy

Table 4.12.1:Performance of Two Step Strategy
DGP: M1 a = 8 = 0, Sample Size 50,

Two Step Strategy Classical Testing Strategy
o Ml M2 M3 CD Ml M2 M3 CD
0 88 6 88 90 6 5 90
0.4 86 7 7 86 89 5 89
0.8 80 16 5 80 81 7 12 81
0.9 75 21 3 75 72 9 19 72
0.95 71 26 3 71 63 13 24 63
0.99 65 32 3 65 48 21 31 48
1.00 61 35 3 61 46 23 32 46

CD: Percentage of correct decision

Table 4.12.2: Performance of Two Step Strategy
DGP: M1 a = 8 = 0, Sample Size 150,

Two Step Strategy Classical Testing Strategy

1) Mi M2 M3 CD Ml M2 M3

0 90 5 90 91 5

04 87 8 6 87 90 5

0.8 70 23 7 70 88 5

09 69 25 6 69 84 6 10
0.95 76 20 4 76 76 9 15
0.99 70 26 4 70 56 19 25
1.00 64 31 5 64 46 23 32

CD

91
90
88
84
76
56
46

CD: Percentage of correct decision
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Table 4.12.3: Performance of Two Step Strategy
DGP: M2 « = 0.25 B = 0, Sample Size 50,

Two Step Strategy Classical Testing Strategy
7] M1 M2 M3 CD Ml M2 M3 CD
0 56 38 6 38 59 35 6 35
0.4 50 43 7 43 57 36 7 36
0.8 70 26 4 26 56 32 12 32
0.9 74 23 3 23 50 32 17 32
0.95 67 30 3 30 42 34 24 34
0.99 52 43 4 43 32 30 38 30
1.00 46 51 3 51 30 26 43 26

CD: Percentage of correct decision

Table 4.12.4: Performance of Two Step Strategy
DGP: M2 a = 0.25 B = 0, Sample Size 150,

Two Step Strategy Classical Testing Strategy

) Ml M2 M3 CD Mi M2 M3

0 12 82 6 82 13 81 6

04 11 84 6 84 16 78 6

0.8 9 84 7 84 20 73 7

0.9 44 49 7 49 24 66 10
0.95 68 28 5 28 30 56 14
0.99 53 42 5 42 20 46 34
1.00 20 76 5 76 18 28 55

CD

81
78
73
66
56
46
28

CD: Percentage of correct decision
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Table 4.12.5: Performance of Two Step Strategy
DGP: M2 a=0.25 B =0, Sample Size 50,

)

0
0.4
0.8
0.9
0.95
0.99
1.00

Two Step Strategy Classical Testing Strategy

Ml M2 M3 CD Mi M2 M3 CDh
1 93 6 93 0 95 5 95
8 86 6 86 0 94 6 94
51 44 6 44 2 87 11 87
50 45 5 45 3 83 14 83
24 71 5 71 1 77 22 77
4 92 4 92 1 51 48 51
1 95 4 95 1 43 56 43

CD: Percentage of correct decision

Table 4.12 (4.12.1 to 4.12.5) summarize the percentage of finding correct form of
deterministic regressors for various DGPs using General to Simple Strategy
(Classical Testing Strategy) and the Two Step Strategy developed in Section 4.5. If
data generating process is M1 or M2, the T'SS performs better than the General to
Simple Strategy for almost all specifications of autoregressive parameter and for

all sample sizes. Fig 4.10 is based on this table.
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CHAPTER 5

DETECTING STATIONARITY OF GDP;
A TEST OF UNIT ROOT TESTS

Although the stationarity of a time series has very important implications, the problem
of testing stationarity of GDP series is still unresolved [see section 1.2 & 1.4 for
detail]. There exist large numbers of studies each of which comes to a different
conclusion regarding the stationarity of the annual GDP/GNP data. For any given data
series, different unit root tests give different results and it is generally not possible to
decide which of unit root tests would be the most feasible for this series. This is
because the performance of unit root tests depends on the type of data generating
process, but for the real data we do not know the true DGP [see section 3.1, 4.1 &
4.2]. Rudebusch (1993)’s bootstrap approach offers an alternative to measure the
performance of unit root test for any real time series with unknown DGP. This
approach is utilized to measure the performance of unit root tests for the GDP series
of various countries, and to compare the tests with each other. Results show that for

most data series, unit root tests are unable to discriminate between best fitting models
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of two types. However, for small number of series, it is possible to discriminate

between two types of models and Phillips Perron test performs best for the purpose.

This chapter is organized as follows:

Section 5.1 consists of introduction; Section 5.2 gives the detail of methodology, data
and results of the Monte Carlo experiment to compare unit root tests. Section 5.3
discusses implications of the finding of Monte Carlo experiments Section 5.4

concludes the discussion.
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5.1: INTRODUCTION

There are a vast number of unit root tests, which often give conflicting results when
applied to real data series. Power studies of unit root tests also do not settle the issue
that which test is the best, since each test has its strengths and weaknesses. Our study
is motivated by the idea that if the problem under study is restricted sufficiently, it
may be possible to answer the question as to which test is the best, how much power it
has under varying circumstances, and thereby come to a reliable conclusion regarding
the original question of whether or not a given GNP series is Trend Stationary or

Difference Stationary.

The performance of unit root test is heavily dependent on the type of DGP.
Discussion presented in section 3.1 & 4.2 reveals that the tests have optimal
performance only when number of deterministic regressors in unit root test equation is
equal to the number of deterministic regressors in the true DGP. If there is mismatch,
unit root tests suffer severe loss of power. Therefore, the optimal test for a real data
series cannot be chosen since we don’t know the number of deterministic regressors
in true DGP of the data series. Moreover, the conventional methods for specification
of deterministic regressors have different properties for trend and difference
stationary; therefore, any approximation of number of deterministic regressors is

invalid.

121



Rudebusch (1993) approach offers an alternative to measure the performance of a unit

root test for a data series with unknown data generating process. Rudebusch (1993)

approach which is summarized in section 2.3, starts by estimating best fitting trend

stationary trend stationary and best fitting difference stationary model for the given

time series. These models are then used as data generating process to compute the size

and power of a unit root test.

An extension of Rudebusch (1993) approach is used to evaluate the performance of

unit root tests for the GDP series of various countries. Rudebusch (1993) approach is

extended in two directions

i

ii.

Rudebusch (1993) procedure measures the performance of single unit root
test; we use this approximation of the performance to compare various unit

root tests.

Rudebusch (1993) estimates best fitting trend stationary and difference
stationary model for single time series and then uses these estimates to

evaluate size and power of unit root tests. We formulate two parametric

spaces: © . covering the estimated parameters of simplest of the best fitting

difference stationary models and ©,,; covering the estimated parameters of

simplest of the best fitting trend stationary models for GDP series. The
performance of unit root tests is evaluated on these parametric spaces. Thus,
the results can be generalized to any data series, whose estimated parameters

fall into these parametric spaces.
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Extensive Monte Carlo experiments were performed to compute the size and power of
various unit root tests for models belonging to the two parametric spaces. Although,
the scope of study is limited to the series whose parameters fall into these parametric
spaces, our results give a fair measure of the ability of unit root tests to differentiate
between trend stationary models. The simulation results lead to the following

conclusions:

a. The Detrending based tests including DF-GLS and Ng-Perron tests are unable

to discriminate between two types of models for the real GDP series.

b. The size of all unit root tests under consideration in this study does not exceed

the nominal size, therefore, the probability of Type I error is not distorted.

c. Most of the tests have virtually zero power for the models under consideration.
Phillips Perron test (with constant but no linear trend) maximizes the power
for the trend stationary model. The Dickey Fuller test (with constant but no

linear trend) comes second in the competition of tests.

d. For many of the series, Dicey Fuller tests and Phillips Perron tests are also
unable to discriminate between two types of models with reliable level of
confidence. However, for some series these tests have reasonable probability

to differentiate between two types of models.

e. For a majority of the countries, nothing can be said about relative likelihood of
TS and DS models for the DGP data. For the few countries, where sufficient

power is available, the empirical evidence favors the DS model.
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5.2: METHODOLOGY, DATA AND RESULTS

5.2.1: TESTS IN COMPETITION

The tests compared in this study are listed as under. The detail on computation of all
of these tests is given in Section 22 Details about salient features of these tests and
critical values are also given in Section 2.2.
% (Augmented) Dickey Fuller Test
=  Without drift and trend (DFN)
®  With drift but no trend (DFC)
= With drift and Trend (DFT)
« Phillips Perron Test
=  Without drift and trend (PPN)
»  With drift but no trend (PPC)
»  With drift and Trend (PPT)
< Dickey Fuller GLS tests
= Without Trend (DFGC)
=  With (DFGT)
< Ng Perron Test
= MZA test without Trend (ZAC)
s MZA test with Trend (ZAT)
= MSB test without Trend (SBC)
= MSB test with Trend (SBT)

= MPT test without Trend (PTC)
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= MPT test with Trend (PTT)
= MZT test without Trend (ZTC)

& MZT test with Trend (ZTT)

This list includes different versions of Dickey-Fuller and Phillips-Perron test from the
classical tests and DF-GLS and Ng-Perron tests from the class of Detrending based

tests.

5.2.2: DATA AND SAMPLE SIZE

Our main focus in this chapter is the annual GDP series, which share several common
characteristics. One of the important characteristic is the small sample size. Most
developing countries have small amount of macroeconomic data, which can be used
for econometric analysis. The WDI database which is perhaps the largest data source
for data on developing countries and is published by World Bank, consist of annual
time series for various countries. This database has data starting from 1960; therefore,
the length of data available today is smaller than 50 observations. However, for many
countries, the available length of macroeconomic time series data does not exceed 20

observations.

The problem we have to study, is to decide whether a given GNP series is TS or DS,
requires working with small samples. Samples larger than 50, are not available in our
data set. This has important implication because the many tests which have good

size/power in large/moderate sample sizes, fail to perform well in the small samples.
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The data we use are GDP per capita (Constant USS$) retrieved from WDI-2007
CDROM. We select the countries for which data is available from 1960 to 2006 and
there is no evidence of structural break in this period. The structural break is inspected

by applying Chow break point test to the following autoregression:

3
Yy =oa+ Pt + ZyH +¢,. Here y,is the log transform of the GDP series. There

i=1
were 96 countries for which we find full length data series. After discarding the data

series with structural breaks we are left with following 55 countries:

Australia, Austria, Belgium, Benin, Botswana, Burkina Faso, Burundi, Cameroon,
Central Africa, Chad, China, Cote d’Ivoire, Denmark, Dominican Rep, Ecuador,
Egypt, Finland, France, Greece, Guyana, Honduras, Hong Kong, Iceland, Indonesia,
Ireland, I.taly, J apan, Kenya, Korea, Luxembourg, Malawi, Malta, Nepal, Netherlands,
New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan, Portugal, Seychelles,
Sierra Leone, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Syria, United Kingdom

and Zimbabwe

5.2.3: ESTIMATING BEST FITTING MODELS AND EMPIRICAL

PARAMETRIC SPACES

For the GDP of selected 55 countries, best fitting trend stationary and best fitting
stationary model were estimated using Rudebusch (1993) approach described in
section 2.3. The estimated models have various specifications, however, the simplest

and most common trend stationary and difference stationary models were chosen to
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formulate the parametric spaces. Parametric space ©,, covers the estimated

parameters of DS models and ©,, covers estimated parameters of TS models.

We report best fitting Difference Stationary models in Table 5.1. The simplest most
common DS model was Ay, = a, +¢,, where q, € (0,.25)and se(e,) € (0,.027).

Thus, the two dimensional parametric space for DS models is:

0,, = {(a,,0%) : ¢, € (0,0.025),0, € (0,.027)} 5.1

This parametric space covers best fitting models for 22 out of 51 countries.

Best fitting Trend Stationary models are reported in Table 5.2. The simplest most

common TS model was y, = a, +by, , +¢,, where a, €(0,.45),b € (0.85,1) and

se(¢,) € (0,0.3). Thus, the parametric space is:

O = {(a,8,07) : a, €(0,.45),b, €(.85,1),0, €(0,.027)} (52)

This parametric space covers best fitting models for 21 out of 51 countries. The

intersection covers 9 countries.
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5.2.4: MONTE CARLO DESIGN & RESULTS
5.2.4.1 Size of Tests

Parametric space for DS models i.e. ©,, was divided into multidimensional grid.

Each point of this grid was used as parameter of data generating process. Size of unit
root tests was computed at each point of this grid. Size of various unit root tests is
reported in Table 5.3. For all tests, the size does not exceed the nominal size.
Therefore, the probability of type I error is bounded above by the nominal size. No

distortion of size was observed. Also it was observed that the size of tests is

independent from the variance of error term o .

5.2.4.2: Power of Tests

The parametric space for TS models © , was divided into another multidimensional

grid and power of unit root tests was computed at each point of this grid. The powers

of various unit root tests are reported in Table 5.4.

The powers of unit root tests show many unéxpected results. Most surprising was the
failure of tests based on GLS detrending including the Ng-Perron and the DF-GLS
test. The DF-GLS is shown to have power closest to asymptotic power envelope
(Elliot et al., 1996). Ng-Perron test is a test accumulating intellectual heritage of the

DF-GLS test and M-estimator by King (1990). However, the optimality of these tests
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is based on asymptotic properties. The simulations show that these properties do not
hold for small samples. For instance, the minimum sample size used for simulations
by Ng & Perron (2001) is 100, whereas our sample size is 45. Anyway, these
simulations show clear superiority of Dickey Fuller and Phillips Perron tests over the
DF-GLS and the Ng-Perron tests in small samples. In fact an overview of Table 5.4
reveals that the power of detrending based tests i.e. the DF-GLS and Ng-Perron test
rarely exceeds their size, so that these tests have no ability to discriminate between the
trend and difference stationary processes for data under consideration. Furthermore,
an overview of power of tests tabulated in table 5.4 reveals that ranking of tests

according to average power for TS models is as follows: PPC, DFC, PPT and DFT.

5.2.5: THE RESPONSE SURFACE FOR POWER OF TESTS

The PPC test and DFC tests have maximum average power for the TS models, thus
they have best overall performance in the context under consideration. The response
surface function was estimated to decide better test among these two.

The response surface for DFC and PPC tests are given in Fig 5.1.
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The response surfaces for the powers of two tests show similar behavior. The power

of the tests is positively related to the difference of lag coefficient b from unity i.e.
its power increases if the value of b goes to zero (distance from unity increases). The
power is positively associated with the constant a, i.e. increases with the increase in

value of a . However, it can be observed from table 5.4 that power of PPC test is

higher than that of DFC test for entire parametric space.

We compute the approximate response surface functions for the powers of two tests

by regressing the power of tests on various functions of a, and b, . These response

surface functions are:

In(P, |a,,b) = 374.394 — 17.392a, — 211.413b, — 8.03a” + 28.765a,b, — 163.386b"
And
In(P, |a,,b) = 355.046 — 22.041a, — 201.320b, — 10.032a? + 34.762a,b, — 154.032b;”

where P, and PW are the powers of DFC and PPC tests respectively. The two

models are fairly similar to each other and both provide equal degree of fitness (R-

square = 92% for the two models).

The numerical evaluation of the two functions reveals that value of difference

In(P,_, IH) —In(P,, IH) is never smaller than zero for all § € ©, . Fig 5.2 plots the

131



difference between power of PPC test and DFC test i.e. Diff =P, — F,, estimated by

using response surface function. Figure 5.2 confirms that power of PPC test is

superior to that of DFC test, since the difference is always positive.

Fig 5.2: Difference Between powers of PPC and DFC

The figure plots the difference Diff = P, . — Py, . The difference is positive for all points in

parametric space ®TS which shows that PPC test is superior to DFC test with regard to its power.

The estimated function was than used to predict power of tests for actual models for

the real data.
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Fig 5.3: The predictions by estimated response surface functions of PPC and DFC
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The estimation of Response Surface function was carried out using power of tests at regular grid and
this function was than used to predict power of tests on some other points in the parametric space
which corresponds to estimated models for real time series. The predictive performance of two tests

seems reasonable

The Figure 5.3 gives the power of PPC and DFC tests for the estimated best fitting
models for various countries. It is clear that the PPC test has better performance than
DFC for all models. The powers of all other tests are much smaller than the powers of

these two tests.

Fig 5.4: Power of PPC and DFC for best fitting TS models
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Powers of DFC and PPC for TS models of various countries are plotted. The superiority of PPC to
DFC is clearly visible
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It can be seen that for all of the countries, the performance of PPC test is superior to
that of DFC test. This leads to the conclusion that the PPC test is superior to other
tests with regard to its power for testing stationarity of real GDP series. This
superiority occurs without any distortion in the size of test, Therefore, the PPC test is

superior to all other tests.
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5.3: IMPLICATIONS

5.3.1: COMPARISON OF UNIT ROOT TESTS

Assume that for GDP of any country, the estimated best fitting trend stationary and
difference stationary model are only two possible models. If the true data generating
process was difference stationary, the tests should not reject unit root. Table 5.3 gives
simulated probabilities of rejection of unit root for the DS models. It can be seen that

the probability of rejection of unit root (Type I error) does not exceed 5% nominal

size if the estimated parameters lie within the parametric space © . Therefore, all

unit root tests have capability of transmitting right message about stationarity of the

series when true model is DS with parameters belonging to the parametric space.

Now if the true data generating process was trend stationary, than the unit root should
be rejected. However, table 5.4 reveals that the GLS detrending based tests including
DF-GLS and Ng-Perron test are unable to reject unit root for the trend stationary

models with parameters belonging to © . Detrending based tests have the tendency

of not rejecting unit root, regardless of the type of data generating process. Therefore,
these tests are unable to determine the type of stationarity for the data under
consideration. Similarly DFN and PPN tests are also unable to reject unit root when
true DGP is Trend Stationary. The PPT test and DFT tests also have low probability

to reject unit root for trend stationary DGP.
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However, PPC and DFC tests have maximum probabilities of rejecting unit root if the
data was actually generated by TS model. Section 5.3 reveals that overall best

performer test is PPC test.

The power of PPC test depends on the two parameters if the estimated model is

generated from parametric space ©,; . Power depends on distance from the unity

1 -5 and on the lag coefficient a . Larger values of 1—5 and @, lead to increased

power (see Fig 5.2) and positively related to the value of drift coefficient.

5.3.2: RELIABILITY OF UNIT ROOT TESTS

The expected power of the best performing test i.e. the PPC tests for various countries
based on response surface function is summarized in table 5.5. The simulation results
in reported in section 5.3 and Fig 5.3 reveal that actual power of unit root tests does
not deviate much from this approximation. Power of PPC test shows different

characteristic for different models.

The TS models for various countries can be divided into three groups with respect to
the power attained. For first group of countries, say Group I, PPC test has very low
probability of rejecting unit root. This group contains the countries for which value of
lag coefficient b, is close to unity and/or value of drift coefficient a, is close to zero.

These countries include Malta, Nicaragua, Austria, Belgium, Guyana, Italy and

Cameroon. For these countries the PPC test has less than 25% power. Since all other
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5.3.3: STATIONARITY OF GDP SERIES

The analysis presented in 5.3.2 shows that the tests would be inconclusive for most of
the countries. However, for Group III of countries containing Burundi, Chad, Malawi,
Benin and Nigeria, we can determine the stationarity of data series with reasonable
level of confidence using PPC test. Also for countries belonging to Group II, PPC test

has power between 25%-75%.

‘When the unit root tests were applied to real data, all tests failed to reject unit root, for
all of the countries including Group III. This implies the real data series have more

resemblance with the DS model.

138



-

5.3.3: STATIONARITY OF GDP SERIES

The analysis presented in 5.3.2 shows that the tests would be inconclusive for most of
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5.4: CONCLUSION

A major problem in the comparison of various unit root tests is the absence of
information about the data generating process of time series in hand. The properties
of unit root tests crucially depend on the DGP, and for the real data, we have no
information about the true DGP. The estimation of DGP via general to simple
methodology is also not feasible since the performance of estimators depend on

existence or otherwise of unit root.

Rudebusch (1993) approach offers an alternative to measure the performance of unit
root test for any given series with unknown DGP. Rudebusch (1993) first estimates
best fitting trend stationary and difference stationary models. The two models provide
unbiased and consistent estimates of the parameters in general to simple specification

procedure since they involve the stationary regressors [See Section 2.4].

Rudebusch (1993) approach is extended in various dimensions to use it to compare
the unit root tests (see 5.1). Section 5.2 summarizes the results. This procedure gives
fairly clear comparison of various unit root tests in terms of their size and power

properties.

The findings of this study are summarized as under:
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a. Size of Unit Root Tests: If we look at size of various unit root tests, it appears
that actual size of all tests is smaller than the nominal size. This means that
there is upper bound on probability of Type I error. No size distortion was

observed for any of the tests.

b. Power of Detrending based Unit Root Tests: The simulated power of unit
root tests gives some unexpected results. The most important is the failure of
tests based on GLS detrending i.e. the DF-GLS and the Ng-Perron tests. DF-
GLS test is assumed to have power closest to asymptotic power envelope and
the Ng-Perron tests accumulates over the DF-GLS and some other tests.
However, the optimality properties of these tests are based on asymptotic
results and our study shows that these properties are not be valid for small

samples.

c. Power of ADF and PP Tests: An overview of power of various unit root tests
(Table 5.4) reveals that the clear winners in competition of unit root tests are
PPC tests and DFC tests. The response surface analysis (Section 5.3) reveals
that PPC test is superior to DFC test for all points in the parametric

spaces©, .

d. Reliability of Unit Root Tests: The simulations show that most of tests have

tendency to accept unit root even if series is generated by TS model. Only

PPC and DFC test have reasonable power for TS models of few countries.
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Therefore the tests have little ability to discriminate between TS and DS

models.

e. Stationarity of GDP: The analysis in 5.4 shows that the tests would be
inconclusive for most of the countries. However, for few countries we can
determine the stationarity of data series with reasonable level of confidence
using PPC test. We find that unit root cannot be rejected for any of these
countries. Therefore, we conclude that the real GDP series is better described
by a DS model. Unit root was also not rejected for the group of countries for

which PPC test have power between 25% and 75%.

Limitations of Study: However, the limitations of this analysis are presented as

under: This analysis is valid if the estimated parameters of best fitting DS and TS

models of a series fall within the parametric spaces©,,and O, . Also the length of

time series was 46 throughout this analysis and results may not hold for longer time

series.
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5.5: APPENDIX:

Table 5:1: Best Fitting Difference Stationary Models for Various Countries

Table 5.1: Best Fitting Difference Stationary Models for Various Countries

. Country Const Lagl Sigma Country Const Lag1l  Sigma :
Australia 0.009 0.009 Japan 0.005 0.660  0.011
Austria 0.012 0.008 Kenya 0.006 0.018
Belgium 0.011 0.008 Korea - 0.025 0.015 -
Benin 0.002 0.013  Luxembourg 0.013 0.014
Botswana 0.008 0.734  0.013 Malawi 0.004 0.024

. Burkina Faso 0.006 -0.332 0.013 Malta 0.007 0.673  0.013
Burundi 0.001 0.024  Nepal 0313 -0313 0012

- Cameroon 0.004 0.026  Netherlands 0.006 0.363  0.007

. Central Africa -0.004 -0.076 0.018 New Zealand 0.006 0.013
Chad 0.001 0.098 0.037 Nicaragua -0.002 0301  0.029 |

- China 0.020 0340 0.020 Niger -0.007 0.054 0.027 :
Cote d’Ivoire -0.001 0.297 0.022 Nigeria 0.003 0.325 0.031
Denmark 0.009 0.009 Norway 0.008 0.394  0.006
Dominican Rep.  0.012 0.022  Pakistan 0.011 0.010 |
Ecuador 0.006 0.015 Portugal 0.007 0.495 0.014
Egypt 0.007 0473 0.011 Seychelles 0.010 0.026
Finland 0.005 0.520. 0.011  Sierra Leone 0.000 0.030
France 0.005 0.534  0.006 Spain 0.004 0.651  0.008 °
Greece - 0.008 0.368  0.015  Sri Lanka 0.013 0.012 |

- Guyana 0.003 0.309 0.023 Sudan 0.005 0.024

: Honduras 0.004 0.013  Sweden 0.005 0.468  0.007
Hong Kong 0.021 0.018  Switzerland 0.004 0.328  0.009
Iceland 0.008 0396 0.015 Syria -0.265  0.009  0.032
Indonesia 0.011 0.324  0.017 United Kingdom 0.009 0.008
Ireland 0.009 0465 0.010 Zimbabwe -0.001 0374 0.025 .
Italy 0.008 0.321  0.009

Table 5.1 gives Best Fitting Difference Stationary models for GDP series of
various countries. Detail about this estimation of models is given in Section 2.3.
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Table 5.2: Best Fitting Trend Stationary Models for Vatious Countries

Table 5.2: Best Fitting Trend Stationa:y Models for Various Countries

Country - Const -Lagl - Trend Sigma Country . Const | Lag1 Trend Sigma :

Australia 0.700 0.83 0.001 0.008 ' Japan 0257  0.95 0.010
Austria 1 0.119  0.97 0.007 Kenya 0.166 0.94 . 0.020
Belgium 0135 097 0007 | Korea 0502 0.84 0004 0015
Benin 0311 087 0013 | Luxembourg 0469 0.89 0002 0013
~ Botswana 0.070 099 0.019 | Malawi - 0.268  0.88 0.023
Burkina Faso  1.157 0.47 = 0.002 0012 Malta 0.081 098 0.017
Burundi 10222 0.89 10.023  Nepal 0214 090 0001  0.012
Cameroon 0139 095 0025 Netherlands 0493 088 0.001 . 0.007
Central Africa 0054 0.98  0.018 | NewZealand ~ 0.844 079 0001 0.012
Chad 0300 0.87 0036 Nicaragua 0077 097 0031
China 0445 074 0008 0026 Niger 0670 074 -0.002 0026
Cote d’Ivoire  0.297 © 0.90 -0.001 0.021 = Nigeria 1 0.348  0.87 - 0.031
Denmark  1.001 ' 0.76 0002 0008 Norway 0200 096 0.007
Dominican § - ;' 7 ; i
Rep. 10430 085 0002 0.023  Pakistan 10234 090 0001 0.010
Ecuador 0205 093 0015 Portugal 10271, 093 0001 0.014
Egypt 0205 093 0001 0012 Seychelles 0613 0.82 0002 0026
Finland 10333 092 0001 0012 SiemaLeone  0.133 094 £ 0.030
France 0.158 097 0.001 0.05 Spain 0.587 ' 0.85 0.001 . 0.008
Greece 0213 095 0.014 . Sri Lanka 0.805 0.66 0005 0011
Guyana 0.115 096 0.023 = Sudan - 0.185 092 0001 0.023
Honduras 0438  0.85 0001 0012 Sweden 1 0.668 | 0.84  0.001  0.007
HongKong  0.114 098 0001 0017 Switzerland  0.784 | 0.82  0.001 0.008
Iceland 0395 091 0001 0016 Syria 10202 093 0.033
; United ' ; ,
Indonesia 0292 0.87 0.003 0.017 Kingdom 10989 0.76 0.002 0.007
Treland 0079 098 0001 0011 Zimbabwe  0.187 093 1 0.026
Ialy 0171 096 0008 R -

Table 5.2 gives Best Fitting Trend Stationary models for GDP seties of vatious
countries. Detail about this estimation is given in Section 2.3.
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Table 5.3: Probability of Rejection of Unit Root (size) for Various DS

models

Table 5.3: Probabilitywof Rej'ectionﬂ of Unit Root (siZé) for Various DS models |

! Sigma=0.01 Sigma=0.02
'CNST DFN | DFC | DFT PPN PPC | PPT | DFN | DFC | DFT PPN PPC | PPT
0 4 s s 4 s el a4 s s 4 s s
005 o o0 5 2 1. 5 1, 0o s 2 o 5
01 e o0/ 5 0o o 5 e o0 s 0 0 s
o015 o, 0 5 o0 o0 6 o o0 5 o o 6
02 o o s 0 o 6 o o s 0o o 3
025, ¢ 0 s 0 0 5 0/ 0 5 0 0 6

Table 5.3 gives probability of rejection (size) of unit root tests for Difference
Stationary models belonging to parametric space © ;. The variance does not

seem to play any role in determining size of tests within the parametric space.
The size of tests does not exceed nominal level of 5%.
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Table 5.4: Probability of Rejection of Unit Root for Various TS models

(power)

Table 5.4: Probability of Rejection of Unit Root (power) for Various TS models
CNST LAGI DFN DFEC DFT PPN PPC PPT DFGC DFGT ZAC ZIC SBC PTC ZAT ZIT SBT PTT

11
11

11
11

11
11

12
12

13
13
10

16
12
10

12 39

13
10
8

32
28

0.86
0.88
09

35

29

6

24
19
15
10

092
0.94
0.96
0.97
0.98
0.99
0.86
0.88

0.9

0.1

7
5
3

1 58 23
56
54
52

0

18
14

11

48

18
13
10

45

0
0

44
42

9

0.92
0.94
0.96
0.97
0.98
0.99
0.86
0.88
09

35
25

0.2

17

11

2

1

0 78 36
79 28
0

0
0

26
20

67

68

0

15 80 21
11

69
67

14

81

0.92
0.94
0.96
0.97
0.98
0.99

65

0.3

53

39

24
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Table 5.4 gives probability of rejection of unit root tests for trend stationary
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models (power) belonging to parametric space © ;. Simulation was done for

different values of variance but the vatiance did not effect power of tests..
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‘Table 5.5: Power of PPC test for Various Countries

Country

Malta
Nicaragua

Austria
Belgium
. Guyana

Italy
Cameroon
Norway
Sierra Leone

Kenya

‘ 'I"able’ 55Powerof PPC (tés't forVarlous ébﬁntries

Estimated TS Model
Const Lag
0.081 0.98
0.077 0.97
0.119 0.97
0.135 0.97
0.115 0.96
0.171 0.96
0.139 0.95

0.2 0.96
0.133 0.94
0.94

0.166

Power

10
11
13
21

21

26

26

33

Country

Greece
Zimbabwe
Japan
Syria
Ecuador
Burundi

Chad
Malawi
Benin

Nigeria
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Estimated TS
Model
Const Lag
0.213 0.95
0.187 0.93
0.257 0.95
0.202 0.93
0.205 0.93
0.222 0.89

0.3 0.87
0.268 0.88
0.311 0.87
0.348 0.87

Power

36
46

48
51
52
78

89
89
91

98
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Chapter 6

CONCLUSION, APPLICATIONS &
DIRECTIONS FOR FURTHER RESEARCH

6.1: CONCLUDING REMARKS

As stated in the introduction, the development of unit root literature is stimulated by

two problems:

1. The results of unit root tests are often misleading, which is obvious from
the concerns about size and power of unit root tests. Unit root tests have
optimal power/size properties when the model used for testing unit root is
similar to the data generating process. Unit root tests suffer size/power

distortion when there is mismatch between the two.

2. Classical techniques for specification of economic model using time series
data are often misleading; this fact is reflected in the frequent encounter

with the spurious regression. In the presence of unit roots, all conventional
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various countries. (ii) Phillips Perron test with intercept (no linear trend) achieves
maximum probability to discriminate two types of models (iii) the tests have limited
ability to discriminate between Trend and Difference Stationary models. (iv) the

difference stationary model is more appropriate for the GDP series (see Section 5.3

and 5.4).
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6.2: APPLICATIONS

6.2.1: THE OSS AND TSS

We apply the Two Step Strategy to the unemployment rate of 12 high income OECD
countries to specify drift and trend. The economic theory does not support existence
of trend and drift in the unemployment rate [Elder & Kennedy, 2001]. The results
show that the outcomes of TSS are in conformity with this for all countries under
investigation, whereas the alternative methods often reject null of no deterministic

regressor. The results are reported in Table 7.1 (in Appendix):

6.2.2: THE TEST OF UNIT ROOT TESTS

The discussion presented in chapter 5 reveals that in the time series with smaller
sample sizes, the Ng-Perron test and the DF-GLS test have little probability to reject
unit root and thus unable to discriminate between the trend and difference stationary
model. At the same time Phillips Perron and ADF test do better job to discriminate
trend and difference stationary model. Therefore, we predict that Ng-Perron and DF-
GLS test will accept null hypothesis of unit root for time series of with small sample
sizes. There are number of evidences to support this claim. We provide here some

evidences from published results.
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Shahbaz, Ahmad and Chaudhary (2007) analyze real GDP per capita, financial
development, foreign direct investment, GDP, and annual inflation for Pakistan. Hye,
Shahbaz and Butt (2008) analyze output, agricultural terms of trade and technology in
agriculture, Hye and Riaz (2008) analyze energy consumption and economic growth
for Pakistan using Ng-Perron test. Unit root null was not rejected for all of the series

analyzed in three studies.

Soytas and Sari (2007) apply various unit root test to following Turkish economic
timer series: Total employment in manufacturing, total electricity consumption in
industry, value added-GNP manufacturing and total fixed investment in
manufacturing. They apply DF, DFGLS, PP and Ng-Perron test to these series with
two specifications of deterministic part i.e. including linear trend and without
including linear trend. Their results are totally consistent with the results we
computed and summarized in chapter 5. Phillips Perron test reject unit root for some
of these series at 1% significance level but Ng Perron test and DF-GLS fail to reject
unit root for the same series at 10% level of significance. For the remaining series,

neither PP test nor remaining tests reject unit root.
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6.3: DIRECTIONS FOR FURTHER RESEARCH

Here is the list of some problems which can be investigated further.

1.  We have computed performance of OSS and TSS for AR(1) models. The
performance of these strategies can be be analyzed for AR(p) model and

ARMA(p,q) models

2. The methodology of OSS and TSS can be used in conjunctions with structural

breaks

3. The methodology of ‘Test of Unit Root Test’ is applied to small samples
where we saw that GLS-detrending based tests failed to perform. This analysis
can be repeated for large sample data to explore the dominant test in large

sample sizes.
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6.4: APPENDIX

Table 6.1: Specification of Deterministic Regressors by G2S and T'SS

Table 6.1: Specification of Deterministic Regressors via G2S and TSS

Conventional Significance Two Step Strategy

Drift Trend Drift Trend
Australia Yes No No No
Canada Yes Yes No No
Finland No No No No
France Yes No No - No
Italy No Yes No No
Japan No No No No
Korea No No No No
Norway No No No No
Portugal No No No No
Spain Yes Yes No No
Sweden No No No No
United States  No No No No

Yes if coefficient is significant, No Otherwise

Table 6.1 gives result of specification of drift and trend for
unemployment series of number of countries using sequential testing
strategy and the two step strategy. The economic theoty does not suppott
existence of drift and trend in unemployment seties. The results of two
step strategy ate consistent with the theoty for all countries whereas

results of sequential testing strategy often contradict.
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