
i 

 

Resource Allocation and Spectrum Sensing in 

Cognitive Radio Network with Malicious Users 

using Soft Computing and Statistical Techniques 

 

By 

Noor Gul 

Reg. No. 51-FET/PHDEE/S12 

Supervised By 

Prof. Dr. Ijaz Mansoor Qureshi 

A dissertation submitted to I.I.U. in partial fulfillment of 
the requirements for the degree of  

 

DOCTOR OF PHILOSOPHY  
 

Department of Electrical Engineering  

Faculty of Engineering and Technology  
INTERNATIONAL ISLAMIC 
UNIVERSITYISLAMABAD 

2019 



i 

 

Copyright © 2019 by Noor Gul  

All rights reserved. No part of the material protected by this copyright notice may be reproduced 

or utilized in any form or by any means, electronic or mechanical, including photocopying, 

recording or by any information storage and retrieval system, without the permission from the 

author. 

  



ii 

 

DEDICATED TO 

 

My Teachers, 

Parents,  

Kids, Friends 

Sisters and Brothers  

  



iii 

 

CERTIFICATE OF APPROVAL 

 

Title of Thesis: Resource Allocation and Spectrum Sensing in Cognitive Radio Network with 

Malicious Users using Soft Computing and Statistical Techniques.   

Name of Student: Noor Gul 

Registration No: 51-FET/PHDEE/S12 

Accepted by the Department of Electrical Engineering, Faculty of Engineering and Technology, 

International Islamic University, Islamabad, in partial fulfillment of the requirements for the 

Doctor of Philosophy degree in Electronic Engineering. 

Viva voce committee: 
 

Prof. Dr. Ijaz Mansoor Qureshi (Supervisor) 
Professor 

Department of Electrical Engineering  

Air University, E – 9, Islamabad. 

 

Prof. Dr. Aqdas Naveed Malik (Internal Examiner) 

Professor / VP (HS&R) 

International Islamic University, Islamabad. 

 

Dr. Muhammad Usman (External Examiner-I)   
Senior Director, NESCOM, Islamabad 

 

Dr. Hafiz Muhammad Faisal Zafar (External Examiner-II) 

Principle Scientist, PAEC, Islamabad 

 

Dr. Suheel Abdullah Malik (Chairman, DEE)   

Associate Professor, DEE, FET    

International Islamic University, Islamabad. 

 

Prof. Dr. Muhammad Amir (Dean, FET)   

Professor, DEE, FET    

International Islamic University, Islamabad. 

 

February  06, 2019 
 

 



iv 

 

ABSTRACT 

Due to the strict management policy and limited space in wireless spectrum, it is very difficult to 

overcome the demands of high data rate and bandwidth requirements in the wireless 

communication. To deal with this problem effectively, random allocation of the spectrum is 

considered, which resulted in the concept of cognitive radio network (CRN). Resource 

Allocation and Spectrum sensing in CRN is of high interest, where opportunistic users also 

called secondary users (SUs), have to detect the licensed primary user (PU) spectrum and make 

use of the vacant. The effects of multipath fading, shadowing and receiver uncertainty lead to 

poor spectrum sensing performance of individual users. Cooperative spectrum sensing (CSS) is a 

solution to acquire accurate information about the PU channel in the fading and shadowing 

environment. CSS enables each user to share its local sensing information with the neighbors to 

reach a more precise spectrum sensing decision. The malicious users (MUs) false sensing reports 

prevent the fusion center (FC) from taking a precise final decision, hence it can reduce 

effectiveness of CSS system. Many detection and suppression schemes are found in the literature 

to make the FC decision secure and robust in the presence of these abnormalities. 

This dissertation is a contribution to the above mentioned areas. The dissertation is mainly 

divided into three parts. In the first part, we have proposed two variants of the Kullback Leibler 

(KL) divergence, including simple KL divergence and weighted KL divergence schemes to 

prevent the system from always yes, always no, opposite and random opposite categories of MUs 

without identification. The final decision made by the FC, using simple KL divergence and 

weighted KL divergences schemes is more precise with high detection, less false alarm and low 

energy consumption. In the second part, we have proposed heuristic algorithms, including 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based soft and hard fusion 
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combination schemes at the FC. In the last part, for efficient detection and mitigation of MUs, 

we have proposed statistical techniques. In this section, FC is allowed to take its cooperative 

decision normally about the sensing channel, based on the received local decisions of the 

cooperative SUs. When enough statistics are collected about the reporting users, Box-whisker‟s 

plot (BWP) and Hampel‟s test (HT) are employed to detect and separate the false sensing data 

provided by MUs as abnormal data and is able to further shape the hard and soft fusion decisions 

based on the reported data of the normally reporting users. 

The effectiveness and reliability of our proposed techniques are demonstrated in the results and 

simulations where graphs are plotted for the detection, false alarm, miss-detection and error 

probabilities against different types of MUs, total number of cooperative users and signal to 

noise ratios (SNRs). 

The spectrum sensing responsibility in the presence of various categories of MUs is a 

challenging job that is made authentic using KL divergence, GA, PSO and some statistical 

techniques in the dissertation. The proposed techniques in the dissertation allow the FC to 

estimate the PU channel status accurately so that the SUs are able to make use of the available 

spectral holes without any disturbances and interference to the legitimate users. In the industrial 

environment, sensors and robot in coordination detect the abnormal behavior of any robot, as the 

malfunctioning in such robots due to any reason reduce overall performance of the system. 

Therefore, the proposed CSS model can precisely detect faulty sensors and robots in the 

industrial environment and it has a centralized performance monitoring mechanism.  
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Chapter 1 

Introduction 

 

1.1 Background 

The recent increase in the wireless communication applications and high data rate demands in 

today‟s environment is the major reason for spectral shrinkages. Spectrum study carried out at 

various times shows that a large number of frequencies are mostly unoccupied. This leads to the 

following conclusion: First, it requires a more flexible spectrum management policy of the 

spectrum and secondly, a more compatible technology.  

Different thoughts regarding the flexible spectrum management policy can be found in the 

literature. Several suggestions include allocation of the spectrum resources to different users 

dynamically or randomly operating in the same allocated range of frequency. Similarly, to allow 

the access of the spectral resources to everyone without any constraint, or to use spectrum 

auctioning that allocate spectrum assets for a limited time to the most demanding user. The 

literature study recommends that dynamic spectrum allocation is more beneficial as compared to 

fixed spectrum allocation. This is in accordance with the recent improvements of the spectrum 

policies. Regulatory bodies have started routing to dynamic spectrum allocation instead of fixed 

spectrum allocation. 

For technology compatibility Gerald Q. Maguire and J. Mitola in 1999 have proposed Cognitive 

Radio (CR)  [1], [2]. CR is an encouraging solution and highly tempting area for the research 
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community. CR has the capability to dynamically allocate the available spaces in the primary 

user (PU) channel to the secondary users (SUs) at a certain time and at specific geographic 

locations. The transmitted signal shape is controlled using different techniques at the transmitter 

side to allow both the SU and PU to make use of the same spectrum resources with minimum 

disturbances to transmission  [3], [4]. 

1.2 Research Problem 

The individual user spectrum detections have many restrictions. The sensing performance is 

highly restricted by fading, energy constraints, shadowing and other hidden problems. It is likely 

that a SU might inaccurately detect the PU activity. In the cooperative spectrum sensing (CSS), 

SU devices located few wavelengths apart experience unlike fading and attenuation effects. 

Consequently, the fading is reduced by permitting sensing users to share the detection results and 

to cooperatively resolve the licensed spectrum tenancy. All cooperative users conduct their local 

spectrum survey and send data to a common receiver that merge individual SU decisions to yield 

a final decision of the PU channel  [5]- [11]. 

The involvement of malicious users (MUs) in a CSS reduces the strength of cooperation, 

therefore their detection and omission is crucial. Significant research is in progress to immune 

the CSS to the MUs attack. The attacker sends inaccurate sensing information to the fusion 

center (FC), inducing confusion about the actual spectrum conditions. These attacks are called 

spectrum sensing data falsification (SSDF), and the fusion schemes needs protection against 

these attacks. 

To improve the sensing performance in presence of MUs, different soft and hard fusion 

combination schemes are proposed in the literature. These methods can reduce the error 
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contribution due to opposite, random opposite, always YES and always NO categories of MUs. 

Therefore, they can efficiently utilize the spectrum holes with minimum disturbance to the 

licensed PU  [12]- [15]. 

The purpose of this dissertation is to develop an efficient technique for CSS that can minimize 

the errors contributed by abnormal users. This will enable FC to establish a global decision about 

the PU channel with high detection, low false alarm and minimum level of interference to the 

PU. 

1.2 Research Methodology 

The contributions made by this dissertation are summarized as follows:  

1. In the first part, the Kullback Leibler (KL) divergence  [16], [17] method for minimizing 

SSDF attack is considered. In the proposed CSS scheme, each user report to FC about the 

availability of PU and keep the same evidence in its local database. Based on the KL 

divergence value, if the FC acknowledges the user as normal, then the user will send 

unified energy information to the FC based on its current and previous sensed 

observations. In the second part of this algorithm, another KL divergence algorithm is 

proposed where the SU local sensing information is utilized with the average sensing 

information provided by all other users in measuring the KL divergence. In this part, 

MUs are identified and separated based on the individual SU decisions and the average 

sensing information received from all other users. This second KL divergence method 

assigns lower weights to the sensing information of MUs, while the normal SUs 

information receives higher weights. The proposed scheme is tested in an environment of 

always YES, always NO, opposite and random opposite categories of MUs. It gives best 
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detection results as compared to the traditional KL divergence, equal gain combination 

(EGC) and maximum gain combination (MGC) schemes  [18], [19].  

2. Next, we focus on the use of double sided neighbor distance (DSND)  [20] along-with 

Genetic Algorithm (GA) for the detection and avoidance of misbehaving users in CSS, so 

that to make the FC final decision more authentic. GA uses the DSND algorithm for 

detecting misbehaving user and then utilizes crossover and mutation to select reliable 

sensing results. The results of the GA are further utilized in the majority voting hard 

fusion combination schemes  [21], [22]. In the second part, GA use one-to-many neighbor 

distance along-with Z-Score (ZS) as a composite fitness function for the identification of 

accurate sensing information received from all cooperative users. Simulation results 

demonstrate that the proposed scheme has surpassed the traditional majority voting hard 

fusion scheme, the equal gain combination (EGC) and maximum gain combination 

(MGC) schemes for different numbers of cooperative and MUs. Similarly, the proposed 

method also outperform the traditional schemes at different levels of the average signal to 

noise ratios (SNRs)  [9], [18], [19], [21], [22]. 

In the third proposed scheme, all SUs send soft energy statistics of the PU channel to the 

FC. The fusion center make use of the particle swarm optimization (PSO) to determine 

the most suitable energy statistics out of the individual sensing information provided by 

all cooperative SUs including normal and malicious  [23], [24]. An outlier score is 

determined for all particles using PSO fitness function at the FC. Out of the PSO 

population, the sensing report with minimum total outlying value is selected as the actual 

PU channel status on behalf of all cooperating SUs for a global decision. The global 

decision of the licensed user channel is made with PSO based EGC (PSO-EGC), PSO 
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based MGC (PSO-MGC) and PSO based Majority voting hard fusion combination 

schemes (PSO-Hard). Simulation gives high detection, low false alarm and minimum 

error results for the PSO based soft and hard fusion schemes. 

3. Finally, different techniques to reduce the harmful effects of the false sensing data 

reported by various malicious SUs are investigated. In this part, FC takes a global 

decision normally based on the local decisions of all cooperative users until the 

establishment of enough statistics against these cooperative users. FC combines the 

sensing results of the users and isolates abnormal user as outlier from the normal SUs by 

taking them out of the hard fusion combination (HFC). Correlation is determined in the 

local sensing information of individual users and then Box-whiskers plot (BWP) is used 

to designate an abnormal user as malicious  [25]- [30]. A modified HFC scheme is 

employed in a global decision. Similarly, this part also comprises the investigations for 

the performance of OTMSD and ZS algorithms for different number of MUs. Both one to 

many sensing distance (OTMSD) and Z-score (ZS) algorithms are able to detect 

abnormal user as malicious at the FC and provides more secure detection results in 

comparison with traditional soft and hard fusion combination schemes. By detecting and 

omitting MUs a more precise and valid decision is formulated by the soft decision fusion 

(SDF) schemes at the FC. 

1.3 Thesis Organization 

The dissertation is organized as follows: 

Chapter 1 presents the conceptual design of the whole thesis, stating motivation, problem 

identification, statement, and definition with general/specific research questions/objectives and 
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with utility interests. It presents philosophy and hypothesis of the work and a sequential account 

of how the research proceeds gradually onward. Chapter 2 gives Literature Review of 

contemporary reported research, which turns out to be critical preparing a ground of why this 

research is conducted. The relevant theory and issues of concerns are diagrammatically 

highlighted gearing it into becoming a good reason for the justification of thesis title. Chapter 3 

gives the methodological details, and Chapter 4 presents details of the proposed algorithm of 

forward and feedback mechanism, KL divergence and weighted KL divergence schemes tested 

in a CSS. Detection, false alarm and error probabilities are calculated for different ratios of 

cooperative users, malicious users and SNR. 

In Chapter 5 is first proposed the use of DSND algorithm for the identification of MUs and then 

utilized GA to select accurate sensing results out of the sensing information‟s reported by all 

cooperative users. In the second part, GA is employed to use OTMSD and ZS as a fitness 

function to determine accurate sensing data out of the local binary decisions of all cooperative 

users. Finally, we collect soft energies at the FC and apply the OTMSD and ZS algorithms on 

these energies using PSO. Performance and reliability of the proposed technique is tested and 

compared with the traditional schemes in the simulations.  

In Chapter 6, we present a  new HFC scheme where FC first collect hard binary decisions of the 

cooperative users and apply hard fusion schemes based on the reports of all cooperative users. 

After the collection of enough sensing reports from all SUs, correlation is applied on the sensing 

differences of individual user and the combine sensing reports provided by all other users. SUs 

with their correlation results dissimilar to the normal users are categorized as malicious using 

BWP are further isolated from the normal SUs in the history log. In the second part of the 

chapter, OTMSD and ZS techniques are employed for detection and separation of malicious 
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users. The OTMSD and ZS results are followed by the HT to separate malicious activity as 

outlier from the normal users.  

Chapter 7 concludes the thesis by stating that the research objectives are achieved and 

suggestions for further work are given. 

1.4 Summary 

The spectrum shortage problems indicate that most of the frequency bands are fully or partially 

occupied by license users. The idea of CR introduces by Gerald Q. Maguire and J. Mitola allows 

the unlicensed users to utilize the licensed user spectrum when they sense the channel free. 

Sensing ability of an individual user cannot be fully trusted due to different environmental 

effects. CSS has the ability to reduce a single user sensing problems but its performance get 

lowers when any of the users work as MU with forwarding false sensing reports to the FC. 

Different variations of the soft and hard combination schemes such as MGC, EGC, AND, OR are 

available in the literature to reduce the impact of including MUs in the combination. 

This chapter gives an idea of dividing the thesis into three parts. First, the use of history based 

KL divergence with feedback mechanism along with the weighted KL divergence at the FC is 

discussed. Then the use of the GA and PSO heuristic algorithms are discussed that gives 

optimum PU detection performance as compared to the traditional soft and hard combinations. In 

the last section, the abnormal users are easily categorized as malicious using BWP and HT based 

statistical techniques that uses correlations and other sensing stats. 

 



8 

 

Chapter 2 

Literature Review 

 

2.1 Introduction 

In this chapter, we present necessary details of the existing CR construction. It starts with the 

background and motivation to CR technology, then a brief discussion about the CR, its function 

and network architecture is given. MUs are considered in the non-cognitive radio networks such 

as cloud computing, internet, wireless sensor network (WSN), mobile ad-hoc network (MANET) 

and wireless body area network (WBAN). Similarly, cognitive radio network performance is 

investigated in the presence of selfish users, byzantine users, jammers, eavesdroppers and 

primary user emulation categories of attacks. A discussion is made about the commonly used 

spectrum sensing schemes at the SUs. The benefits and strength of using several combination 

schemes at the FC are shown in comparison with the sensing decisions made by individual users 

under the fading and shadowing environment along-with MU considerations. Some hard and soft 

combination schemes such as logical-OR, logical-AND, majority voting, EGC and MGC 

schemes are discussed and their effectiveness in detecting spectral opportunity is highlighted. 

The impact of including MUs in the FC global decision is shown and the most commonly used 

detection schemes are discussed that enable FC to overcome the effects of abnormalities. At last, 

the applications of different heuristic techniques at the FC are discussed to get to accurate 

spectrum sensing decisions. 

 



9 

 

2.2 Background 

The user demands for higher data rates and services is increasing rapidly over the last few 

decades that results in shortage of the spectrum to new services  [31]- [33]. In November 2002, 

spectrum policy task force (SPTF) of the federal communication commission (FCC) has shown 

in their report that in most of the frequency bands, spectrum access is a serious issue as 

compared with its physical inadequacy. This is due to the traditional command and control 

system that restricts the potential spectrum users to obtain such access. Secondly, the spectrum 

resources are either fully or partially occupied most of the time. To encounter these problems, 

their recommendations are, to improve the flexibility of spectrum usage, to support and 

encourage efficient use of the spectrum and to take all dimensions and related issues of the 

spectrum usage into policy. The aim has been to improve both the technical and economic 

efficiency of the spectrum management. These recommendations introduce the concept of 

dynamic spectrum access (DSA), where the un-licensed user also called SU has the right to use 

the temporarily un-usable spectrum of the licensed user. Therefore, CR has been proposed for 

efficient use of the spectrum in  [34]- [37].  

2.3 Cognitive radio 

The cognitive word is derived from the Latin word " cognoscere " means "to come to know" or 

to get awareness of something  [38]- [40]. The word CR is introduced by J. Mitola, with the idea 

of designing a wireless communication system, which is able to provide wireless communication 

using dynamic spectrum assignment, in order to improve the performance of the wireless 

transmission, as well as to improve frequency spectrum utilization to solve the underutilization 

problem of the spectrum  [1], [41], [42]. CR is equipped with the features of cognition and re-
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configurability, which makes it different from the conventional radio. The ability of cognition 

allow CR users to sense and collect information about its surrounding environment transmission 

frequency, allocated power, modulation scheme, and bandwidth etc., enabling them thus to find 

best available spectrum. In CR, cognitive re-configurability is the ability of the radio to swiftly 

adapt to the operational parameters according to environmental information to attain best 

operational performance. The platform of software-defined radio (SDR) provides cognitive re-

configurability, which is the basic building block of cognitive radio. The convergence of the 

digital radio and computer software has made the SDR a practical reality  [1], [3], [43]. To make 

best use of the available spectral resources in an opportunistic manner, cognitive radio empowers 

opportunistic users to search for the spectrum holes, selecting the most suitable free channel, 

sharing its spectrum sensing information with other users, and to make the occupied channel free 

for the transmission of the PU, when it is reclaiming the channel. 

 

Figure 2. 1 Spectrum hand-off in cognitive radio network 
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2.4 Functions of Cognitive Radio 

The duty cycle of CR is shown in Figure 2. 2, including detection of available spectral holes, 

selecting the best frequency bands, coordinating their local spectral information with other users 

and to vacate the spectral resources for the primary user when it appears. 

2.4.1 Spectrum sensing and analysis 

The first step in the dynamic spectrum utilization is the spectrum sensing and analysis. Efficient 

spectrum utilization is obtained by the CR with sensing the surrounding environment to adjust 

the transmission and receiving parameters, that is transmit power, modulation scheme and 

frequency etc. The three different features of the spectrum sensing are the interference 

temperature model, detection of spectral holes and CSS using multiple sensing users.  

 

 

Figure 2. 2 Cognitive Radio Operational Cycle 
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2.4.2 Spectrum management and handoff 

When unlicensed users have knowledge about the available spectrum holes, spectrum 

management and handoff functions enable these opportunistic users to select the best frequency 

bands and to hop in the multiple bands according to the time varying channel characteristics to 

meet various qualities of service needs. If the licensed user starts its transmission in the vacant 

band, SUs must be intelligent enough to direct and shift its activity to other available frequencies 

according to capacity of the channel determined by the interference level, noise, channel error 

rate, path loss and holding time etc. 

 

Figure 2. 3 DSA Network architecture 



13 

 

2.4.3 Spectrum allocation and sharing 

The DSA allows SUs to share their spectrum resources with other unlicensed users and PUs. But 

it is difficult to achieve better spectrum allocation for sharing with increased spectral efficiency. 

As the PU has the right to use the spectrum without any restrictions and disturbances, therefore, 

interference level due to the transmission of unlicensed users must be limited to a certain 

threshold. In the process when multiple users try to access the frequency band of the PU, their 

access needs to be coordinated so that to reduce collision and interference. 

2.5 Network architecture of Cognitive Radio 

The current fixed spectrum assignment is not able to meet with the growing demands of higher 

data rate and to accommodate new wireless services. The use of cognitive radio has emerged as a 

new wireless communication technology to meet up with challenges of the underutilized 

spectrum resources in the most efficient manner. A CR network architecture is divided into a 

secondary network with SUs and secondary base station and the primary network with PU and 

the primary base station in Figure 2. 3  [43]. 

 

Figure 2. 4 Spectrum holes 



14 

 

The secondary network both with and without any secondary base station, consists of many SUs, 

all trying to detect the occupancy of the PU spectral hole, when there is no activity of the PU. 

The secondary base station is serving as a hub for secondary network, having fixed infrastructure 

components and coordinating the possession of the PU spectrum holes with SUs, when it is not 

in use of the PU in Figure 2. 4. 

The secondary base station and users are both equipped with the features of CR. The spectrum 

broker manages the transmission of all secondary networks, when large number of secondary 

networks tries to make use of the same spectral band. This is done with the help of collecting 

information from each secondary network, so that to assign network resources in the most 

efficient and fair spectrum sharing manner. The PUs are legal in using the assigned portion of the 

spectrum band by taking help of the primary network base station. This provides the authenticity 

such that no interference or interruption is received by these licensed users due to the 

transmission of secondary network. As the PUs and their base station do not have the properties 

of CR, therefore, any secondary base station sharing the licensed spectrum band with the PU 

without determining activity of the PU is certainly generating problems in the PU transmission. 

It is therefore mandatory for the secondary network to detect immediately the PU activity and to 

further direct any secondary transmission to other freely available spectral bands  [44], [45]. 

Efficient utilization of the radio spectrum is characterized by overlay and underlay techniques in 

CR. The underlay cognitive radio is able to sense the radio spectrum and communicate over the 

vacant channel. Overlay antennas of the CR are using two ports, where one port is narrowband 

and frequency reconfigurable, while the other port support UWB. A new kind of antennas with 

challenging and counterintuitive evolutionary computation like GA is used to optimize the 

antenna geometry for achieving maximum frequency bands with minimum switches  [46]. 
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Cognitive Radio is the wireless architecture representation in which fixed band is not assigned to 

the communication system and that search by itself to find a vacant band to operate. It is shown 

that the detection performance of an unknown weak signal in a known weak constellation is 

similar to the energy detector (ED). The use of the pilot signals is introduced in the presence of 

moderate level of noise uncertainty, which produces improved detection results  [47]. 

2.6 Malicious users in Non-Cognitive Networks 

The impacts of malicious users on the performance of cloud computing, internet, WSN and 

MANET are discussed below. 

2.6.1 Cloud Computing 

Cloud computing is the type of computing system based on the internet that allows sharing data 

and resources, in order to create and to configure an application online in Figure 2. 5. The goal of 

mobile cloud computing is to provide services to users of cloud computing conventionally and 

efficiently without any limits. Similarly, mobile cloud computing is integrating the mobile 

internet and cloud computing, in the provision of diverse types of integrated cloud computing 

services  [48]. 

To overcome the abnormality effects in cloud computing, analyses and behavior of the users 

traffic is investigated in  [49]. At first, whole feature set is constructed by collecting features from 

the user traffic that helps in the selection of essential and more accurate features to select and 

predict an abnormal user using Naive Bayes classification. 
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Figure 2. 5 Cloud Computing 

2.6.2 Distributed Denial of Service attacks on the Internet 

A distributed denial of service (DDOS) attacker denies the licensed user entry in to the service 

with takeover of the system resources, which leads to congestion in the system. In the intrusion 

detection framework, network traffic is divided into three types, that is, suspicious, malicious 

and innocent traffic. The normal user causes the innocent traffic, while the malicious traffic is 

due to the malicious user. A suspicious traffic is difficult to be categorized as malicious or 

normal. The normal incoming traffic is transported to the destination, while the malicious users‟ 

incoming traffic is dropped. However, suspicious users traffic is a challenge to the system and do 

not fall precisely into either of the two scenarios of the normal and malicious, therefore, a simple 

drop out of the suspicious traffic results in a false positive problem at the system. 

Participation of the DDoS users have a major impact to affect the network outage, packet 

transmission delay, economic losses, website disruption, and legitimate user obstruction. The 

DDoS detection techniques are implemented either at the victim nodes or at many intermediate 

routers that run DDoS identification algorithms. 
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A network with a single victim node surrounded by a single hop distance is recognized as 

protection nodes that form an overlay. The single nodes deployment schemes are not capable 

enough to detect DDoS attacks with great reliability, as the network traffic is not aggregate 

enough at the intermediate nodes. Instead of designing systems that work in isolation, utilization 

of the distributed framework for nodes detection with various systems plugged in and assist to 

reach to a better overall detection is proposed in  [50], [51]. 

The security areas of the customer network are expanded to include an internet service provider 

network, in order to effectively handle any suspicious traffic. A DDoS category of attack is 

discussed  [52] that has not only an impact on the QoS of the victim systems, but can also poor 

down the QoS of the outsider systems. This distributed detection approach detects the DDoS 

attacks with coordination across the internet. The proposed scheme uses a nonparametric 

detection technique to improve individual nodes detection precision. Further, a gossip multicast 

method swap information is made of the individual nodes to get to the accurate detection results. 

A semi supervised clustering scheme for intrusion detection is proposed  [53]. In this work, the 

network data flows are first divided into three data types such as ICMP flow, TCP flow and UDP 

flow according to the network protocols and is next forwarded to the detection agents. The 

chances of MUs existence increase with the P2P applications and total users that have a negative 

impact on the performance of the P2P network. In  [54] outlier mining based malicious node 

detection model is proposed for the hybrid P2P networks. 

2.6.3 Wireless Sensor Network 

Sensor networks have the ability to provide the most feasible/economical solution to challenging 

problems like defense, traffic observation, weather/pollution monitoring and in wild life tracking 



18 

 

system. Sensor networks allow the rapid deployment of low cost intelligent sensors in an 

environment of high interest. Along with the process capabilities, wireless sensor network has 

the important constraints of large memory and bandwidth requirements. It is mainly deployed in 

the particular environment where the exchange of data is through short range radio technology. 

Wireless sensor networks have obtained an amazing gratitude and hi-tech progress in recent 

times. In spite of the easiness in employment and considerable advantages, protection has always 

been a testing subject due to the environment in which the sensing nodes work. To handle the 

malicious signals involvement in the wireless sensor network and to keep it secure from viruses 

and worms, some strong security mechanisms are required. A susceptible infrared vaccinated 

(SIV) model for analyzing the effects of node injection and worms aggressive dynamics in the 

wireless sensor network is proposed in  [55]. 

To provide the idea and benefit of the holistic approach to cognition in the sensor network, an 

inclusion of learning and analysis is performed in the top and physical layer opportunistic 

spectrum access. The pre attack behavior is recognized using emotional ant based centralized 

intrusion detection system in  [56]. Similarly, the affected sensor nodes can be precisely 

recognized in the application independent framework. This model establishes unique properties 

of the sensor network with appropriate generalization of the application specific detection 

method. Based on the frame, alert reasoning algorithm can easily identify compromised sensor 

nodes  [57]. An extensive literature review is investigated for the trust and reputation-based 

model in both the sensor and ad-hoc networks. Based on the trust establishment mechanism, state 

of the art is categorized into two parts, that is, system centric trust model and node centric trust 

models. Efficacy of the existing schemes is evaluated based on computation, trust evidence 

initialization, weight assignments and propagation  [58]. 
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In the wireless ad-hoc networks, intermediate nodes provide the facility of relay for the nodes to 

talk with far-off targets. As wireless nodes are limited by the energy constraints, therefore it may 

not be in the nodes interest to admit relay requests all the times. An assumption is made to state 

node actions, rigorously determined by the nodes self interest in  [59].  

2.6.4 Mobile Ad-hoc Network 

The advent of intelligent transportation system is on the horizon that leads to safer and more 

efficient roadways. The automotive industry has begun the deployment of its first intelligent 

vehicle system that consists of technologies such as route guidance, adaptive cruise control 

systems, black boxes and night vision systems. Intelligent vehicles get knowledge of the nearby 

vehicle dynamics and the presence of any roadway risks through the advance wireless 

communication and sensor technologies  [60]. 

 

Figure 2. 6 Malicious Users in Mobile Ad-hoc Network 

The focus on the fundamental security problem in the MANET as in Figure 2. 6 is to protect 

multi hope network connectivity of mobile nodes is proposed in  [61]. This has identified security 

issues related to the problem, and discusses the security challenges in the design, and review 
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state of the art security proposals to protect the mobile ad hoc network link and network layer 

operations over the multi-hope wireless channel. 

The malicious actions make a threat to the general packet radio services (GPRS) network, mobile 

users with GPRS, and the data transferred through the network. The malicious attacks are carried 

out by third parties, users or network operators, to exploit the security limitations in the network 

 [62]. An examination of the pivotal security issues in the 5G network is investigated  [63], where 

the wireless communications are essentially susceptible to the security breaks. A physical layer 

security can safeguard confidentiality of the data with the exploitation of inherent 

unpredictability of the communications medium with the disruptive technologies. 

2.6.5 Wireless Body Area Network 

A wireless body area network which is a type of sensor network as in Figure 2. 7, autonomously 

operate to connect a variety of health check sensors and appliances. These sensors and 

appliances may be placed either internal or external to human body. The major advantages of the 

WBAN are to facilitate patients with the handy applications that can move along with the 

patients. The sensors are placed at accessible distance or on patient body communicate with the 

local control devices. Local managing devices further talk to the distant targets to share 

analytical and therapeutic purpose data  [64]. 
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Figure 2. 7 Wireless Body Area Network 

A small size and low cost sensor development system is achieved with the advancement in large 

scale and integrated communication technologies, which can be injected into human body for 

suitable healthcare applications. Some applications of the wireless sensor network are to provide 

an all time supervision of the user and also to avoid the risky state. In case of any emergency 

situations, WSN is cable to take appropriate actions to guarantee full safety for the patients  [65]. 

The theory of Internet of Things (IoT) enables the possible information discovery about a tagged 

person or tagged object by searching internet address or record entry  [66]. The security issue and 

confidentiality shelter of the WBAN data is a challenging problem, when it is stored either 

within the WBAN or in their transmission out of WBAN areas. Investigation of the two 

important data security issues is made such as the fine grained distributed access control and 

accurate distributed data storage for susceptible and confidential patient therapeutic data  [67]. 

2.7 Malicious Users in Cognitive Network 
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The existing spectrum sensing schemes are not reliable to mitigate security attacks. Conventional 

security solutions in the non cognitive networks erroneously operate when faced by the new 

spectrum sensing attacks. The most considerable features of any WSNs is the facility to gather 

and practice in parallel with the massive amounts of data using tiny and limited power devices. 

This may enable their use in target detection, surveillance and monitoring applications. In recent 

times, some new ideas have been suggested to make best use of the cognitive WSNs (CWSNs), 

to develop knowledge of the environment, and to further make adjustable decisions based on 

desired goals  [68]. 

The security issues in cognitive radio mobile ad-hoc network (CR-MANET) are in the greater 

interest of the research community. The impact of including malicious users in the CR-MANET 

is investigated and its suitability under the SSDF category of malicious users is illustrated. A 

consensus based technique for the CR-MANET is discussed to reduce the effects of any SSDF 

user in  [69]. This shows the design of a wideband autonomous CR scheme for jamming and 

interference avoidance. The cognitive anti-jamming stochastic game model is able to avoid the 

transmission of other WACRs as well as to predict and evade the dynamic signal of the jammer 

that sweeps across the desired spectrum  [70]. Similarly, vehicular ad-hoc networks (VANETs) 

can satisfy the demands of high bandwidth requirements in amount of applications to 

communicate between vehicles using CR features. An assumption is made in this work to declare 

every vehicle as benign and honest in the network. As reduction of security issues in the CR-

MANET is a major issue, therefore, a weighted agreement based sensing scheme is implemented 

to look after the sensing practice in the belligerent cognitive radio vehicular ad-hoc network 

(CR-VANET) in  [71]. Some of the SUs always report existence of the PU transmission, in order 

to utilize the spectrum themselves. To protect the system against these challenges, an 
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abnormality identification algorithm that measure the suspicious level of the users and to further 

utilize these suspicious levels in eliminating the influence of malicious users is presented in  [72].  

A single suspicious user elimination in CRN is of high interest in most of the literatures. In case 

of more than one suspicious users in the network, detection accuracy of the system is degraded 

considerably. A generalized extreme studentized deviate and adjust box plot schemes handle 

multiple suspicious users efficiently in the collaborative network in  [73]. 

2.7.1 Selfish Users in Cognitive Network 

The CR attacks are classified as: sensing attacks, decision attacks and the spectrum mobility 

attacks. Similarly, the selfish user attack is studied at various classification standards that 

increase to share the spectrum resources. An adaptive attacker can adapt its power and channel 

parameters by employing estimation and learning techniques in  [74]. The existing cognitive 

routing protocols assume the nodes to participate honestly in the packet forwarding. This 

assumption is no longer authentic due to lack of a trusted centralized authority in the CRNs. A 

cross layer selfish avoidance routing protocol in the presence of selfish nodes in the dynamic 

CRNs is proposed in  [75]. 

Various categories of the network attacks such as node masquerading, deliberate packet dropping 

and packet mislabeling pose challenge to the quality of service (QoS) provisioning in the CRN. 

The existing work focus in the literature is in the medium access control and physical layer of the 

CR, however, security threats at the network layer are not being explored well in order to 

establish communication between different users  [76]. Trusted nodes operate normally in the 

CRN by following the network standards and protocols. The selfish nodes fraudulently increase 

access to the spectral resources in order to avoid other users access to the channels. Similarly, the 
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inspiration for malicious users is to obstruct other users from contacting the resources in several 

ways, such as disturbing and degrading the network performance. This can result in significant 

reduction of the network performance due to the vulnerabilities of the CR-MAC layer as in  [77]. 

2.7.2 Byzantine Users in Cognitive Network 

The Byzantine category of attack is the type of spectrum sensing data falsification (SSDF) attack 

in the text. Byzantine user is the key adversary to the success of CRNs. The Byzantine category 

of malicious users and the protection schemes against these attacks has gained increasing 

awareness in recent times. An abnormality detection approach is proposed to alleviate the 

unknown strategy of attackers in CRN  [20]. The Byzantine user behavior is classified based on 

the attack parameters, and to determine how, who and where the attack is launched. The 

increased number of Byzantine users in the network leads data fusion schemes incompetent to 

decide accurately and most of the reputation based schemes are incapable to attain the desired 

performance gain  [78]. 

The work demonstrates the susceptibility of two specific cognitive networking schemes in the 

presence of single Byzantine user. A novel energy well category of attack is discussed against 

the Q-routing, in which a Byzantine member can draw traffic meant for a sincere contributor. A 

denial of service attack learning algorithm with the single Byzantine participant degrading 

network performance for an arbitrary amount of time is investigated in  [79]. This technique 

includes, measurements involving history trust factors, incentive factors, consistency factors and 

active factors. The doubtful users are recognized and take out of the final decision based on the 

measured trust factors  [80]. 
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The Adaptive cooperative schemes identify attackers along with their attacking plans to estimate 

the credit value of the users and identify any malicious attacker. In order to do this, a novel 

ACSS technique is compared with the usual likelihood ratio test and sequential ratio test at 

different levels of MUs that allocates an appropriate mutual weight to the users, in order to 

improve the system performance  [15]. 

2.7.3 Jammers and Eavesdroppers in Cognitive Network 

The PU activity is often eavesdropped by a number of eavesdroppers, therefore, SUs are required 

to intelligently interface with these eavesdroppers to minimize their harmful effects and gain 

transmission opportunities. In order to assure the highest quality service to the users, 

transmission rate of users must be kept higher than a certain level  [81]. 

The CR system physical layer security under multi-eavesdropper system is investigated, that 

consists of several SUs transmission to the general cognitive base station (CBS). An optimal and 

suboptimal arranging algorithm using round robin system improves the security issues of the 

CBS transmissions in the presence of eavesdropping attacks  [82]. 

Little study is met in the literature regarding the general security areas such as the network 

reliability in the presence of jamming users. Traditional jamming is targeting frequency band of 

operating target radio with malicious signals injection to interfere with the desired signal at the 

receiver. The interference history takes the form of the narrowband continuous wave (CW) 

jamming, broadband noise jamming, swept CW jamming, narrowband CW jamming or pulsed 

jamming. There are various objectives a jammer is searching, i.e., network degradation, herding 

and Intermediate denial of service (IDoS)  [83]. 
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The cognitive anti jamming problem in a multi agent environment that is modeled as a general 

stochastic game is addressed. This work first introduce action and reward definitions for the 

projected stochastic game and then, an optimal and suboptimal anti jamming and hindrance 

prevention policies using reinforcement learning (RL) is suggested  [84]. The confidential data 

need to be accessed by the intended users only rather than any intruder. Similarly, eavesdroppers 

using the attacks of jamming and eavesdropping  [85] compromise the physical layer security. 

2.7.4 Primary User Emulation Attacks in Cognitive Network 

The primary user emulation attack (PUEA) is one of the common security attack that 

compromise spectrum sensing process. In the PUEA attack, malicious user prevents vacant 

spectrum bands by masquerading as the primary user in order to prevent other secondary users 

from accessing the spectrum opportunity. Although, test beds exists in the literature, but no 

diagnostic models relevant to the various parameters which could cause a PUE attack is studied 

in the literature  [86]. The sensing information of the different SUs is combine at the fusion center 

and the combine weights are optimized so that to maximize detection probability of available 

channels with the constraints of required false alarm probability  [87]. 

Most of the previous studies on the PUEA assume that the unique properties of the PU 

transmitter and its physical location are known at the SU or at the FC. However, an accurate 

strategy which is capable to accurately detect PU, without the prior information is of high 

interest. In the study of  [12], a new technique called attack aware threshold selection scheme 

requires no a prior information about the properties and location of the PU. An always present 

attacker leads to wastage of energy resources and must be ignored at the fusion center. The 
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PUEA category of MU is disrupting the spectral resources of the PU more hazardously as 

compared with the always present attackers in  [88]. 

2.8 Sensing schemes in the literature 

Spectrum sensing in CR is a demanding research area these days. The unlicensed opportunistic 

access of the unused frequency bands across the licensed radio spectrum is investigated for 

increasing the efficiency of the spectrum utilization. As the spectrum access demands protection 

of the licensed spectrum operations, therefore, sensing based access is the most reliable and 

simple method to allow the unlicensed users to transmit through the free spectrum bands  [2] in 

Figure 2. 8. 

In CRN, SUs are looking out for opportunities to find vacancies in the radio spectrum in order to 

utilize the spectrum for communication. When the PU rejoins the spectrum, SU has to terminate 

its connectivity, it is therefore difficult to insure QoS for the SUs. In case of the frequent usage 

of the channel by PUs, termination probability of SUs is difficult to be ensured. The channel 

reservation scheme raises the QoS for SUs, where, it enables the terminated SUs to move to the 

reserved channel and keep communication active  [89]. KL divergence based sensing method 

with the constant false alarm probability in  [90] provides reliable sensing results. The detector is 

based on the distribution analysis of the incumbent user received signal. A theoretical false alarm 

probability will be derived for fixed threshold using Meijer G-function with the product of p 

Rayleigh independent random variables.  
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Figure 2. 8 Spectrum sensing concept 

The statistical modeling of the network traffic is able to predict behavior of the PU with high 

performance. In particular, an innovative technique for the detection of an orthogonal frequency 

division multiplexing (OFDM) based PU signal is discussed in  [91], where performance analysis 

is carried out in comparison with conventional spectrum sensing method that exploits the 

autocorrelation coefficients. Unlike the conventional method, the strategy is completely blind 

and can be applied with no a priori knowledge of any characteristics of the signal of interest. The 

new system implementation challenges involved in the design of CRs is the ability to efficiently 

sense the spectral environment and to flexibly adapt the transmission parameters in order to 

maximize the capacity of the system. The critical design problem in such system is the need to 

process multi-gigahertz wide bandwidth and to reliably detect the presence of the PUs. These 

requirements put severe limits on the linearity, sensitivity and dynamic ranges in the circuitry of 

the RF front ends  [92]. The use of multiple antennas for spectrum sensing is considered when 

noise and signal of the PU are considered independent complex zero-mean Gaussian random 

variables. In the implementation of multiple antennas for spectrum sensing the system get 

knowledge of the channel gain, PU signal variance and noise variance  [93]. The spectrum 
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sensing process has the main objective of providing more spectrum access opportunities to the 

cognitive users without making any interference with the licensed users. The transmission 

efficiency of the current radio frequency front-ends inevitably decreases due to its inability to do 

the sensing and transmission jobs at the same time. In the solution to cope with both the 

interference avoidance and spectral efficiency problems, a theoretical framework is built to 

optimize the sensing parameters and to maximize the sensing efficiency with the constraint on 

interference avoidance  [94]. To consider spectrum sensing of the OFDM signals in an AWGN 

channel for the completely determined noise and signal power, a vector matrix model setup is 

made for the OFDM signal using cyclic prefix and optimal Neyman-Pearson detector. The 

optimal detector results are compared with the ED numerically. It is shown that the ED is near 

optimal with a gain of 1 dB SNR. To deal with the unknown noise and power of the signal, 

results are derived for the generalized likelihood ratio test (GLRT) detector based on the second-

order statistics of the received data. Detection results of the GLRT detector in unknown noise 

and signal power are compared with the OFDM based signal detector, producing improved 

detection performance with 5dB SNR gain  [95].  

SUs try to sense the primary channel ( )s l and make the absence and presence hypothesis 

assumption about the channel as follows  [6]: 
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Where 0H  is the hypothesis about the availability and 1H is the hypothesis for the occupancy of 

the PU spectrum by the licensed user. ( )jy l is the received signal of the
thj user at the thl time slot. 
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( )jn l is the Additive White Gaussian Noise (AWGN) at the
thj receiver.

jh is the amplitude of the 

channel gain, while ( )s l denotes the transmit signal of the PU in the thl time slot. 

As a consequence of 1H and 0H  hypothesis, the observed signal energy at the
thj receiver can be 

represented as  [6]: 
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GLRT detector for sensing: GLRT detectors have been proposed for multi antenna systems and 

for sensing OFDM signals by taking some of the system parameters, such as channel gains, noise 

variance, and PU signal variance as the unknown parameters  [93], [95], [96]. 

Matched Filter Detector: When information of the PU signal is known at the SUs, the optimal 

detection method is the matched filter detector in Figure 2. 9. 

This detector utilizes correlation property to determine, if the known primary and received 

signals have any correlation to maximize the SNR. This technique work inappropriately when 

transmits signals of the PUs are unknown at the SUs  [47]. 

 

 

Figure 2. 9 Matched Filter Detector 
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Energy detector: Energy detector is the most common used option due to its simplicity in 

Figure 2. 10. In this scheme, the received signal energy is compared with a threshold. If the total 

energy is greater than threshold, SU take decision to show the PU signal is present; otherwise, it 

declares that the PU is absent  [47], [97]. 

 

 

Figure 2. 10 Energy detector 

Feature detector: Cyclo-stationary detector is the one that uses cyclo-stationary features of the 

signal for spectrum sensing  [97], [98]. It can distinguish both noise and PU signal and is very 

helpful in the detection of weak signals under the low SNR, where energy detection and matched 

filtering detection are not applicable [29]. 

In the literature cyclo-stationary feature detection is superior of all due to their ability to 

differentiate modulated signal, noise and interference in the presence of low SNR  [99]. The 

conventional detection solution for spectrum sensing is based on the ED which is completely 

blind and characterized by the lowest computational complexity of the decision device. 

Therefore, detector sensing performance is often compared with the ED, but unfortunately, in 

low SNR regimes and in the presence of noise uncertainty, ED dramatically degrades its 

performance  [100]. An inappropriate detection of the vacant spaces might generate interference 
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to licensees if misdetection operation is made by the sensing users. To avoid such problems, an 

alternate series representation of the Marcum Q-function, for the exact detection probability over 

Nakagami fading channels is discussed in  [101], where SUs do not interfere with transmission of 

the PUs. 

The telecommunication signals are often sculptured cyclo-stationary, therefore this problem is 

translated to the detection of cyclo-stationary attributes over a cyclic scope of frequencies and 

fixed false alarm rates in  [97], [98].  

2.9 Cooperative spectrum sensing 

Cooperative communication in CRN is a new technology that allows distributed sensors in the 

wireless network to operate using distributed transmission and signal processing techniques in 

Figure 2. 11. In the fading environment, detection of white spaces in the licensed user channel is 

a challenging job for the individuals. The quality of received signal is severely degraded due to 

path-loss and shadowing in the propagation path from various obstacles. Fading effects due to 

the constructive/destructive interference in multipath strongly suffered the received signals. The 

effects of fading can be reduced using diversity schemes in which copies of the received signal 

are provided to the receiver. Diversity effects are obtained using multiple antenna systems with 

more than one antenna installed at the transmitter and receiver sides. However, the cost, size and 

weight constraints make the practical implementation of multi antenna wireless terminal very 

difficult to insure. Cooperative spectrum sensing guides the sensing process to fight against the 

fading effects with improved detection performance. The use of cooperation among individual 

sensors has greatly attracted the research community interest in the wireless network  [102].  
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Figure 2. 11 Cooperative spectrum sensing in a shadowed environment. 

CSS design consists of designing cooperative model, selection of spectrum sensing techniques, 

control and reporting channels, data fusion schemes, hypothesis test,  selection of user, and 

knowledge base center as in Figure 2. 12. 

 Spectrum sensing techniques are used to monitor PU spectrum band to state its free and 

occupied information. Individual users cooperation can highly affect the spectrum 

selections. 

 The detection performance of cooperative sensing is supported and improved with the 

knowledge base. The prior knowledge as well as licensee and unlicensed user locations 

are stored in the knowledge base. 

 Data fusion schemes integrate the shared sensing results to take cooperative decision. 

 The control and reporting channels dealt with transferring the sensing data to control 

coordinator or to other SUs using limited bandwidth. 

 Hypothesis testing is used to state the presence and absence information of the PU. This 

testing is made individually by the control coordinator or by each SU to take cooperative 

decision. 
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Figure 2. 12 Elements of CSS 

Cooperative spectrum sensing consists of a series of actions with centralized and distributed 

sensing responsibilities. 

2.9.1 Centralized and Distributed Spectrum Sensing 

Centralized cooperative strategy is the most popular of all cooperative schemes. In the 

centralized cooperative strategy a central unit, also called FC collect the sensing information 

from all cooperative users to take the final decision. Either opportunistic information is broadcast 

to all SUs by the central unit or the FC itself controls the SU traffic by managing the vacant 

spectrum opportunity in an optimum fashion. The central unit can be an access point (AP) in the 

wireless local area network (WLAN) or a base station (BS) in a cellular network. Similarly, in 

the ad hoc network any SU can act as master node to coordinate CSS operation. Hence, the 

centralized cooperation can take place in both the distributed and centralized network 

architecture. The cooperative decision made by the distributed scheme is not relying on the FC 
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decision. Instead, all SUs communicate among themselves to converge to a joint global decision 

on in an iterative manner. The three basic steps accomplished by the distributed cooperated 

algorithms are as follows: 

1. Local findings of each user are forwarded to the other users in its neighborhood. 

2. Cooperative SUs combine their local sensing information with the sensing information 

reported by other SUs to decide the presence and absence of PU based. The shared 

sensing results consist of either soft or hard decisions. 

3. If the spectrum hole is not identified, SUs forward their combined results to other users in 

the next iteration. The process continues until the scheme converges and final decision on 

the availability of the spectrum is achieved. 

Table 2. 1 Centralized and Distributed Spectrum Sensing comparison 

CSS approach Advantages Disadvantages 

 

Centralized spectrum sensing 

 

 

This scheme is more 

bandwidth efficient as 

compared with the distributed 

scheme under the same 

number of cooperative users. 

 

The fusion center becomes 

very critical and complex to 

take the burden of all 

cooperative users.  

 

 

Distributed spectrum sensing No requirements of the 

backbone infrastructure, that 

results in low implementation 

cost. 

This scheme needs large 

control bandwidth to share 

information among the 

cooperating users. 

Each CR finds neighborhood 

for information exchange by 

itself, which is a challenging 

job. 

Large sensing duration 

resulted due to the iterative 

nature of the distributed 

algorithm. 

 

A new form of space diversity in the cooperative sensors is realized to overcome the detrimental 

effects of the fading channels. The most important challenge for a CR system is the identification 
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of licensed users on a wide range of frequency spectrum, at a certain time and specific 

geographic locations. The detection process of the license user is made stronger and effective 

with CSS in CRN. All cooperative users in  [103], [104]  make use of equal energy detectors in 

spectrum sensing, where received energies of the users are modeled as correlated log-normal 

random variables. Cooperative spectrum sensing employing PSO based threshold adapting 

technique address the said problem in  [10]. The use of iterative property is carried out round 

wise in the scheme, where in each round, SUs first selects few primary channels as the 

candidates for sensing based on the primary SNR. Then the users selected the same  channels 

collaboratively form coalitions through coalitional game theory. Multiple games are then played 

concurrently over multiple channels in terms of the false alarm and miss detection probabilities. 

After generating stable coalitional structure, the best coalition on each channel is chosen to 

perform the CSS  [105]. The sensitivity requirement in the receiving devices is highly demanded 

as any local radio can face deep fading environment. This sensitivity requirement of the 

individual nodes is reduced by following a light weight CSS using hard decision schemes. In the 

cooperative environment few independent users are almost robust than many of the correlated 

users participation. The consideration of failure or adverse nodes can strongly affect the 

cooperative scheme gain. Failure sensing nodes, reporting the absence and presence information 

of the PU are easily compensated by noting their behavior in  [5]. A novel channel assignment 

scheme in  [106], exploits the channel selection dependence on the signal frequency, attenuation, 

communication range and interference levels. This model is considered more realistic compared 

to the traditional methods in the mobility pattern of the CR nodes. It adaptively selects the 

maximal transmission range of each node over which reliable transmission is possible. An 

adaptive random nature scheme in  [107] is able to better estimate about the license user spectrum 
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and to solve sensing data collection problems in an intelligent manner. This study considered the 

environment of un-equal SNR values of the primary signal at the local SUs. A random access 

method is used to collect spectrum sensing data of the users at collection time and the length of 

collection time is adaptively determined based on the known sensing data. In spectrum sensing 

CSS has got special attention, but it has shortcomings in terms of energy consumption and 

sensing overhead. The batteries limited life spans allow individual sensors in CSS to make a 

balance in the energy consumption of the individual sensors. Different variants of the centralized 

cooperative sensing techniques such as fuzzy logic, asynchronous cooperative sensing and 

weighted cooperative sensing of the primary transmitter detection are discussed in  [108]. A novel 

linear combination scheme that requires mean and variance of the individual test statistics in  [7] 

is tested under the block fading, slow fading and fast fading. This introduced a stochastic 

geometry tool to investigate the performance of CSS. String matching algorithms like Smith 

Waterman algorithm is widely used in bio-informatics for aligning the biological sequences in 

 [109], to compare the reports of CR users with each other and to measure the similarity index. 

The sensing information of the users with their similarity index below this threshold value is 

discarded from the global decision. An energy harvest-based weighed CSS is proposed in  [110]-

 [112] to decrease energy wastage of the users with increased sensing performance. This 

maximizes the spectrum access probability of the users by jointly optimizing the sensing time 

and total number of cooperative users. The probabilities of detection and false alarm results are 

important for the users to guarantee their usage of the channel. Cooperating spectrum sensing 

sets one of the probabilities as target and optimize the other using cooperative schemes. The 

derivations in  [25], [113] show that in cooperative sensing, not all users participation is 

necessary, but the users with high SNR information of the PU signal is important. In the presence 
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of large number of cooperative users, the network latency and sensing traffic forwarded to FC 

rises quickly. This increase the number of parameters which leads to increase sensing time 

along-with collision at the control channel between fusion center and SUs. The work in  [6] 

proposed the implementation of extended sequential CSS, in which individual SUs reputation 

help in efficient collection of local sensing notifications at the FC. A novel Bayesian method in 

 [14] has increased robustness in the presence of abnormal SUs to artificially reduce or increase 

throughput of the radio network  [14] . 

2.9.2 Combination schemes at the Fusion Center 

Combination schemes are employed at the FC to deal with the received sensing notifications of 

individual users. The three basic steps to perform fusion combination schemes at the FC are as 

below: 

1. The fusion center selects a channel or frequency band of interest for sensing and requests 

all cooperative users to individually perform the sensing operation. 

2. Cooperating users report their local sensing observations using the control channel. 

3. The collection center fuses the local sensing observations of all cooperative users to 

decide about the presence and absence hypothesis of the PU and also to report back the 

same to the individual users. 

As in Figure 2. 13, cooperative users sense the PU spectrum individually and reports FC about 

the channel condition. Based on the FC local decision and received observations from all other 

users, a global decision is obtained about the free and occupied status of the PU spectrum. The 

history logs of the users also enable FC to identify an MU. The received energy observations 

( )jE i of the 
thj user in equation (2. 2) are further used in the hard and soft fusion combinations 

in the following sections. 
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Figure 2. 13 Cooperative users report collection at the FC 

 

2.9.2.1 Hard Fusion Combination schemes 

The three most commonly used hard fusion schemes applied by the FC are the voting rule, OR 

and AND rules. The voting rule decides about the PU activity based on the voting of K SUs 

decision out of total S cooperative users. If K out of S users decides that a signal is present, then 

FC takes a global decision 1H . Here S is the total number of cooperative SUs and K is the count 

of how many of the SUs have reported PU signal presence. The count / 2K M  is selected as a 

special case of the voting rule called the majority decision rule. Similarly, in the majority voting 

decision if the PU detection reports are less than K then FC takes the global decision as 0H  
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In equation (2. 3), ( )B MVG i is the global decision made by the FC using majority voting scheme. 

While applying AND rule by the FC, all the M SUs has to provide a unanimous decision of the 
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PU detection, then the FC declares the channel as occupied by the PU and generate a global 

decision as 1H representing the PU signal, otherwise decision 0H is made by the FC as: 
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On following the OR rule procedure by the FC during each sensing interval, if at least one of the 

SUs provide local detection information to the FC, then FC decides a global decision 1H , 

otherwise decision is made in favour of 0H  
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A CSS based on the counting rule is proposed  in [27], where optimal sensing parameters of CSS 

for minimizing error is derived, and then simple algorithm is proposed to set CSS with the 

optimal parameters  [21]. A closed form expression for the detection, false alarm and 

misdetection probabilities are derived for the AND and OR fusion schemes in  [114]. The 

literature is following several fusion schemes like majority voting, OR rule and so on, which are 

special cases of the general k out of n decision rule. A dynamic adjustments of the value k instead 

of keeping any fixed value for k  in  [115]- [117] is able to provide more suitable detection results. 

2.9.2.2 Soft Fusion Combination schemes 

In the soft decision fusion scheme all users inform FC with their local energy statistic without 

any local processing‟s. FC further uses soft decision fusion schemes like EGC and MGC to take 

global decision that could best fit with the licensed user status. 
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The EGC employed by the proposed method is combining the individual statistical information 

of all SUs, giving equal weight to each individual SU decision and summed coherently. The 

result is compared with the threshold to decide the license user spectrum by the EGC as: 
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In MGC scheme, each receiving signal branch is multiplied with a weighed function proportional 

to the branch gain. Branches with strong signals are further amplified while weak signals get 

attenuated with these weights. The idea to boost the strong signal components and attenuate the 

weak ones as in MGC diversity is exactly the same as that of filtering and signal weighting in the 

matched filter receiver. The MGC scheme at the FC assign higher weights to the decision of the 

SUs with higher SNR values and low weight to the decision of SUs with low SNR as: 
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An alternate closed form expression for the detection probability over Nakagami channel is 

presented in the  [118]. Square law combining is proposed, when users of the wireless service 

experience Nakagami fading channel and detection results are obtained with closed form 

expression of the integral Nakagami parameters  [118]. Two simple and computationally efficient 

spectrum sensing schemes that enable faster decision at the FC using sequential and order 

transmission schemes in the presence of different SNR distribution assumptions are in  [119]. 
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CSS is considering MGC one of the optimal spectrums sensing choice. However, MGC requires 

the use of SNR information for better operation, therefore the use of the robust KL divergence 

based soft fusion combination in CSS has enabled FC to obtain almost similar performance to 

MGC scheme with no requirements of the SNR and no additional steps for the identification of 

MUs  [16]. An optimal soft combination scheme using relay behavior of the cooperative users 

provides space diversity to the spectrum sensing operation. The optimal soft fusion scheme of 

the relay observation is derived with the Neyman-Pearson model that maximizes deflection 

coefficients of the global test statistics at the FC using instantaneous value of the received PU 

signal power at SUs  [120]. 

Although CRN performance has majorly improved with cooperation, but an increase in the total 

number of cooperative users is not the best solution, as it can degrade total throughput of the 

CRN. A multistage cross entropy (MSCE) algorithm is used to optimize the trade-off between 

the global detection probability and achieved throughput  [121]. An ED based cooperative 

spectrum sensing for CRNs is considered in  [122], where Neyman-Pearson criterion is obtained 

based on the optimal soft combination schemes to maximize the detection probability with a 

given false alarm probability and establish a suitable trade-off in detection performance and 

system complexity  [22], [122].  

2.9.3 Cooperative spectrum sensing schemes against malicious users 

Although CSS is providing an efficient solution in CRN spectrum utilization, but the presence of 

spectrum falsification type of MUs can degrade its performance. Reliability of the CSS is 

seriously compromised with its exposition to the data spectrum falsification attack that sets vital 

menace to the reliability of CSS.  
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The effects of deterministic falsified category of MUs can be ignored by the FC with following 

traditional static threshold based decision mechanism. This static threshold mechanism is unable 

to cope with the nature of SSDF users in CSS. A dynamic threshold based strategy help to 

defend the CSS against the SSDF attacks in  [123] . A novel reputation based cooperative scheme 

first detects, and then reject any malicious user, to improve the system performance. Finally, it 

compares the results with the well known reputation based methods in a blind or un-blind way 

 [124], [125]. A novel defense scheme that jointly exploits the cognitive process of sensing and 

spectrum access in a close loop manner without any prior information about the number of 

attacking users is proposed in  [13]. The results obtained are important from two perspectives, 

efficient spectrum sensing and identification of MUs. The work in  [17] make use of the KL 

divergence method to reduce the spectrum falsification effects of MUs. Outlier detection 

techniques, such as BWP has its major application in the identification of outlier data 

components  [126]. A combination of DSND and GA proposed reduce the effect of opposite, 

random opposite, always no and yes nature of malicious users and get superior results in 

comparison with the simple majority voting and EGC schemes. A traditional static threshold 

based decision mechanism that uses trust based secure routing model is able to resist the 

forwarding routing attacks in CRN. The monitoring nodes establish trust against the forwarding 

nodes and declare the nodes to be malicious based on their trust values. The malicious behavior 

of the non-trusted nodes is charged with stricter punishment policy that results in better network 

throughput and end-to-end delay performance  [127]. An onion-peeling based approach enables 

CSS to oppose against multiple un-trusty sensors. A suspicious level is accumulated for all 

cooperative users based on their reputation. The users with their suspicious level beyond 

threshold are considered malicious and take out of the final decision  [128]. It is necessary in CSS 
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to detect any abnormal users and to further ignore their sensing reports in spectrum sensing. 

Many techniques are based on the bias method, which require enough knowledge of the 

attacker's behavior. It is typically seen that the FC has no information of the attacker tactics. The 

use of abnormality based approaches in data mining can cope with the unpredictable behavior of 

the malicious users  [16], [129].  

To counteract the data falsification attack of MUs, Tietjen-Moore and Shapiro-Wilk based tests 

are suggested in the literature  [25]. This work first considers the basic and statistical falsification 

attacks from MUs independently, and then proposes a novel SSDF attacks that involve the 

cooperation in misbehaved users by masking their results. The total number of MUs is further 

estimated using clustering and largest gap methods. In  [21] and  [130], the PUEA is nearly placed 

to the licensed PU and transmit with similar power as that of the PU in a way that it look similar 

to it  [14], [131]. 

Evolutionary computing has great applications in the wireless communication. Evolutionary 

computing is used in the spectrum sensing, resource allocation and interference mitigation in 

CRN. Cooperative spectrum sensing also utilize evolutionary computing, such as GA and PSO to 

get to a more realistic decision about the license user activity.  

Genetic algorithm enables CSS to produce optimized sensing results in order to increase 

bandwidth efficiency and spectrum utilization. A binary GA based soft combination scheme 

proposed in  [130] produces improved detection results and bandwidth utilization for CSS. 

Genetic algorithm is analyzed under the impact of correlated user decisions to minimize the 

sensing error based on the Neyman-Pearson criterion in  [132]. An effort is made in CRN to 

optimize the detection and false alarm probabilities, in order to reduce the error probability of 

SUs in centralized network using GA with the aim to keep the error probability minimum and to 



45 

 

search for the most optimum values of detection and false alarm probabilities. The GA 

performance is compared with the differential evolutions and it is obvious that the differential 

evolution finds a better solution with less number of evolutions  [23]. The multi-parent crossover 

based soft decision fusion scheme in  [133] using GA is able to reach to the better detection 

results as compared to the standard GA and other soft and hard decision fusion schemes. 

In  [134], a hybridize PSO-OR scheme use the combination of PSO and logical OR hard decision 

scheme together with double threshold ED to perform spectrum sensing operation. The FC 

received local decisions and energy observations reported by the users. PSO is then employed to 

optimize sensing decisions of the fuzzy users. A final global decision is then made by the FC 

based on the local decisions provided by all SUs. Similarly, the PSO scheme using MINI-MAX 

criterion is investigated in  [135], in order to reduce the error probability more accurately 

compared with GA using optimized weighting coefficients against cooperative users. The multi 

objective hybrid invasive weed based PSO scheme, optimize soft combination in selection of the 

threshold and coefficient vector assignment to various users in order to reduce the probability of 

error in  [136]. An optimal weighted coefficient vector in the soft fusion combination is 

determined using PSO to improve detection performance. This scheme has better results in 

achieving desired fitness, stability and convergence speed  [112]. The major concern in CRN is to 

provide protection to the licensee channel against the harmful interference caused by the 

spectrum access of SUs. Detection error in the soft combinations is bitterly minimized by using 

imperialist competive algorithm in a structurally centralized CRN. The imperialist competive 

algorithm enabled CSS to assign optimize weights to the sensing measurements of individual 

users that established more optimum results compared with other soft and hard fusion 

combination and evolutionary algorithms  [8].  
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2.10 Summary 

The rapid evolutions in wireless communication demand new wireless services in both, the used 

and vacant parts of the radio spectrum. The FCC exclusively assigns spectrum bands to various 

services. CR is a smart technique that gains knowledge from the environment and adjust its 

parameters accordingly. The PUs are free to transmit any time with no restrictions, while the SUs 

can utilize the spectrum only when the licensee declares it free. In CRN, sensing the incumbent 

user spectrum is vital. An offensive detection on the PU channel due to false alarm reduces the 

SUs opportunity to utilize the free spectrum. Similarly, any misdetection in the PU transmission 

will produce interference in the transmission of legitimate and opportunistic users. In case of the 

frequent usage of the spectrum by the PUs, the termination probability of SUs is not easy to 

ensure. The cooperative user devices placed more than a few wavelengths apart experience an 

independent fading effect. The doubt to efficiently detect the licensed spectrum possession is 

removed by enabling different users to share their local sensing results and make a cooperative 

decision. In this dissertation of the Resource Allocation and Spectrum Sensing in Cognitive 

Radio Network using Soft Computing and Statistical Techniques, KL divergence, GA, PSO, 

correlation and BWP has been employed to protect the CSS against the spectrum falsification 

attack (SFA) of the AYMU, ANMU, ROMU and OMU categories of MUs.  

In chapter 3, different techniques are investigated for selecting an optimal resource allocation 

and spectrum sensing policy in the presence of MU‟s. 
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Chapter 3 

Statistical and Heuristic Algorithms 

3.1 Background 

In this chapter, we will discuss KL divergence, GA, PSO, BWP and Hampels Test (HT) to detect 

abnormal activity of the Always Yes, Always No, Opposite and Random opposite categories of 

MUs. KL divergence is the basic equation in the information theory to measure the similarity in 

data. KL divergence is the statistical measure that quantifies the closeness of the probability 

distribution with a model distribution  [137]. However, its intuitive understanding arises from the 

likelihood theory, which shows the probability that one observes a set of data given a particular 

model is true  [138]. This link in the KL divergence and the likelihood arise from the reality in 

cases where large number of measurements, possibly infinite are performed  [137], [139]. The KL 

divergence provides many applications in the field of statistics and information theory to 

determine the behaviour of the data  [137]. Similarly, in order to judge a model inconsistency, the 

KL divergence is the most frequently used information principle  [140]- [143]. KL divergence is 

also defined as the logarithmic ratio of the probability density functions (PDFs) of the two 

models, where one is always considered to be a fitted model and the other model as a reference 

model. The expectation is always taken in the KL divergence with respect to the reference 

model. KL divergence is suitable for model comparison in the Bayesian framework, typically 

involve the integrated likelihood of the competing models  [142]. 

The name heuristic is a Greek word which means „to discover‟ or „to find‟ something. It is the 

terminology used in the algorithms, to solve a problem more quickly and efficiently as compared 
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with the traditional method of algorithm in the exchange of precision and accuracy with more 

optimality, completeness and execution time. The optimization problems make good use of the 

heuristic algorithms (HA), when the optimal solution is not possible or when it is unrealistic. HA 

can be helpful to speed up the process of finding any satisfactory solution. Different researchers 

from all over the world have shown their interest in the HA, due to its ease in the perception and 

implementation and also helpful act against variations in the environment  [144]- [147]. Heuristic 

algorithms are based on the concept of biological evolution, that is, Darwin‟s theory of 

evolution, with the population based searching methods using genetic operators, including 

crossover, mutation, inheritance and selection. Further advantages of the HA as compared with 

the traditional optimization methods include its broad series of applications, ease of concept, 

hybridization, parallelism, ability to solve problems with no solution and their adaptability to the 

dynamical changes  [148]- [151]. Among the many HA found in the literature, few of them are 

listed below. 

 Firefly algorithm 

 Genetic algorithm 

 Cuckoo search algorithm 

 Differential algorithm 

 Ant colony optimization  

 Cultural algorithm 

 Particle swarm optimization 

 Pattern search algorithm 

 Bee colony optimization 

 Fire algorithm 
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 Backtracking search algorithm 

 Evolutionary programming 

 Self-organizing migration algorithm 

 Harmony search algorithm 

 Bat algorithm 

In this chapter, we will restrict our discussion to the KL divergence, GA, PSO, BWP and HT. 

3.2 Kullback Leibler Divergence 

As the KL divergence value between the two probability distribution functions (PDFs) ( )a x and

( )b x both normally distributed as follows  [152]. 
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Similarly, the KL divergence for functions ( )a x with mean and variance  2,a a  and function

( )b x with mean and variance values  2,b b  is further calculated as: 
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The result in Equation (3. 2) clearly shows that for functions ( )a x and ( )b x with similar PDF 

occurrence, has “0” KL divergence value. As always Yes and always No MUs are giving 

identical energy distribution with similar mean and variance values under both 1H and 0H as in 

Figure 3. 1, therefore the KL divergence has a value 0 for always Yes and always No MU. The 
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opposite MU and random opposite MUs are generating dissimilar KL divergence results in 

comparison with normal SUs as shown in the energy distribution in Figure 3. 1. 

 

Figure 3. 1 PDF of the energy distribution reported from the CR users under the absence or 

presence hypothesis of the PU signal: (a) normal user, (b) opposite MU, (c) always Yes MU, (d) 

always No MU, (e) random opposite MU. 

The PDF of the energy distributions received from the normal SU, opposite MU, always Yes 

MU, always No MU and random opposite MU are shown for comparison in Figure 3. 1. It is to 

be noted that the energy distribution of these MUs is totally different from the normal SU. These 

differences in the energy distribution of the SUs are used for the detection of MUs. A normal SU 

in Figure 3. 1(a) is shown with positive energy distribution under 1H
 
hypothesis and negative 

energy distribution under 0H  hypothesis. The opposite MU has opposite energy distribution to 
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the normal users as in Figure 3. 1(b) under both 0H and 1H . Always Yes MUs with positive 

energy distribution under both 0H and 1H hypothesis and always No MUs with negative energy 

distribution under both 0H and 1H hypothesis are shown in Figure 3. 1(c)-3.1(d). Random 

opposite MU has statistically opposite nature to the normal SUs with probability p and results in 

distributions as in Figure 3. 1(e) in both hypotheses. 

3.3 Genetic Algorithm 

The idea Genetic algorithm was introduced for the first time in 1975 by John. H. Holland in his 

work of presenting an easy solution for the natural selection ‎[153],‎[154]. GA has its major 

advantage in the fact that it cannot be struck in the local minima and give suitable result to the 

problems that are difficult to dealt with by other methods, or having no mathematical model, or 

the problem with complex mathematical model, or when the problem consists of large number of 

parameters. Nowadays, various fields of engineering make use of the GA in solving diverse 

optimization problems ‎[155]-‎[158].  

GA technique with its recycling features starts with the randomly generated population having a 

fixed number of individuals. The population is the representation of the possible solution to the 

problem in the concern environment. All individuals of the population are known as 

chromosomes, where each chromosome consists of fixed genes. When the population is formed, 

selections of the stochastic operator go for the best solution during each generation. A new set of 

individuals called parents is formed with the selected solutions, which will further participate in 

the outstanding evolutionary process. The parent chromosomes employ the process of crossover, 

mutation and elitism, in order to find the best solution, which further constitute a new set of 

individuals labelled as children (offspring‟s). This selection of the parents and production of the 
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offspring‟s continues until the establishment of given number of iterations or when best 

individuals are selected. The procedural steps of the GA are depicted in the flow chart diagram in 

Figure 3. 2. 

Step I Initialization: This is the commonly used step in all HA, as the set of individuals that 

contains a possible solution of a problem being solved is mandatory for every HA. Therefore, 

this step has no constraint on the size of the individuals that constitute the population. 

Step II Fitness Evaluation: The most important part of HA techniques is the design of the 

fitness function, as the performance and result of any algorithm mainly depends on the particular 

fitness function, which is specific to a problem. The fitness score is evaluated for all individuals 

and are placed in descending order of their fitness. 

Step III Parent selection and Offspring production: These sorted individuals in the previous 

step now became parents in the next generation. The probability to generate children population 

is proportional to the fitness of their parents. Single point and multi point crossover are helpful in 

this production. Parents with higher fitness score have the opportunity to produce more 

children‟s. More children will be produced by parent having higher fitness and vice versa. There 

are two approaches for doing this: 

1. Selecting parents with their probability is inversely related to their fitness and invite them 

to bring into being. 

2. Selecting roulette wheel method with angle of the sector directly associated with the 

fitness, therefore, the sector with a higher angle has more possibility to be successful as a 

better parent.  
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Step IV Generating the new population: Children are selected for the next generation by 

following three methods such as Generation replacement, Elitism and Survival of the fittest. 

(a): Replacement of generation: This step allows the complete replacement of parents by their 

children. Although a thorough process for mixing of genes is allowed in the practice, even then 

there is no assurance that all of the children will be better candidates as compared with their 

parents. Therefore, this will happen in degradation of the fitness due to losing some of the 

individuals having best genes. 

(b): Elitism: Some of the best individuals from the previous should be retained in this process, 

so that to deal with the handicap of generational replacement.  

(c): Survival of fitness: In this process, both the children and parents are sorted in descending 

order of their fitness results.  

Step V Mutation: The process of mutation is the only choice when no development is observed 

in fitness of the next generation. In mutation individual genes are selected randomly for a 

change.   

Step VI Termination criteria: The GA algorithm will automatically come to an end if the 

iteration limit is achieved or if the necessary MSE is accomplished. Otherwise, the process will 

go back to step II as in the GA flow-chart diagram of Figure 3. 2. 
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Figure 3. 2 GA Flow chart diagram 

3.4 Particle Swarm Optimization 

Particle swarm optimization is utilized as a tool for optimization of the threshold point in  [159]. 

Different variants of the PSO are used in  [160] to find optimal weighting coefficients against 

SUs in CSS. PSO with ED having double thresholds for the cooperative SUs is in  [161]. An 
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efficient PSO with optimized throughput and providing high protection to the legitimate user is 

proposed in  [162]. 

PSO is derived from the bird flocking or fish swarming, and was introduced by Eberhart and 

Kennedy in 1952. In PSO, individual intelligence as well as collective intelligence is playing a 

role in finding an enhanced solution. In the GA, it is likely that every novel group is flourishing 

better than the previous generation. Similarly, in the PSO the same group which has been 

initially created is likely to become better and better. Each individual establishes his intelligence 

and improves it with time. The whole group is expected to improve upon its group intelligence. 

Particles in PSO algorithm utilizes its own and neighbor knowledge to update their position and 

velocity. The PSO particle exchange information about their best position among each other 

during a number of iterations. The procedural steps of the PSO are as below in Figure 3. 3. 

Step I Initialization: In this step, PSO population is initialized randomly, consisting all possible 

solutions of the specific problem as in the GA. Where each particle is the candidate solution. 

Step II Fitness Evaluation: In this process, the fitness of each particle is determined according 

to the requirements and suitability to the specific environment. 

Step III Local best and global best: After the determination of fitness functions, global best and 

local best particles are determined. As each PSO particle may improve on its own. If a new 

version of the particle improves compared with its previous one, it will be taken as the local best. 

Similarly, the particle with the best fitness out of the population is selected as the global best. 

Step IV Update Velocity: In this step particles velocities are updated, which is directly 

proportional to its previous velocity, its distance from the local best and distance from the global 

best. 
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Figure 3. 3 PSO Flow chart diagram 

Step V Update Local and Global best particles: 

The Fitness function of the new population is determined and its local best and global best results 

are compared with the previous results of the local and global best particles to search for any 

improvement in the local best and global best results. 
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Step VI Termination Criteria: The PSO algorithm is terminated if required solution is met or 

when the maximum number of iterations is achieved. Otherwise, the program goes back to step 

II.  

3.5 Box-whisker plot and Hampel’s Test 

A box-whisker plot and Hampel‟s test are the simple ways for the identification of outliers in any 

statistical data. Box-whiskers plot is the most commonly and widely used statistical tool for 

exploratory data analysis. It‟s a useful method invented in 1969 by John W. Tukey an American 

mathematician to visualize the data dispersion ‎[26]. Box-whisker plot can instinctively reflect 

outliers by dividing data into four equal parts 

 1 2 ... Md d dd
 

(3. 3) 

First, the result is made in ascending order and the median value is identified that divides the 

data into upper and lower half using median value. Lower and upper quartile values are 

determined from the data d . An outlier in the data using BWP is a dispersal of the data greater 

than 1.5 times the box away from either the lower or the upper quartile ‎[163]-‎[166]. The median 

value of vector d is determined as: 
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The first and third quartile values that contain 25th and 75th  percentile of the data in equation (3. 

3) are denoted as 1

LowerQ  and 
3

UpperQ . The inter-quartile value for the range of the upper and lower 

quartile values is measured as: 
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(3. 5) 

Similarly, the lower and upper limits are selected to detect MUs as: 
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After setting all parameters of the BWP, MUs are identified using the following criteria. 
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In equation (3. 8), a user is declared malicious if its correlation score is outside the lower and 

higher limits of the BWP.  

Traditionally, in case of no outlier contamination in the data, location and scatter for the data is 

efficiently estimated with the sample mean and variance. HT introduced in 1971 by Hampel has 

the ability that it is not susceptible to the quantity and value of outlier. The HT also shows no 

limitation to the abundance of the statistical data. Therefore, it is applicable to the data 

containing abnormalities in order to search for abnormal contributing data  [27]- [30]: 

First, the value of deviation
1

jr from the median is determined for all data elements as: 

 1 1 1( )j j jr d med d 
 

(3. 9) 

Here
1( )jmed d is the median value of the data in equation (3. 3) 

1

jd  made by all SU. A data is 

declared outlier, when the following condition is satisfied: 



59 

 

1 1, 4.5

0,

th

j j

mu

j if r Med r
M

otherwise

  
  
  
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Where 1

jr is the absolute value of the median deviation and 1

jMed r is the median of the absolute 

median deviation results.  

3.5 Summary 

This chapter focuses on the heuristic and statistical techniques for detecting abnormal sensing 

users that misguide other SUs about the licensee activity. It further creates the problem of 

improper resource allocation and incorrect spectrum sensing in CRN. The chapter is divided into 

three parts. Part I explains the optimal soft combination scheme, that is, KL divergence, that 

works on the PDF dissimilarity. The focus in part II is on the GA and PSO algorithms with its 

flowchart and necessary decision steps. In Part III, a theoretical and mathematical background of 

the BWP and HT methods are highlighted for detecting an abnormal sensing data among the data 

provided by all cooperative users. The detected MUs by the BWP and HT are isolated from the 

normal sensing users in the hard combination schemes that leads to better resource allocation and 

spectrum sensing in CRN in the presence of MUs. 
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Chapter 4 

Cooperative Spectrum Sensing using Kullback Leibler divergence 

 

4.1 Introduction 

In this chapter, we have discussed the KL divergence scheme for MUs detection in CSS. Fading 

and shadowing in the communication channel degrades the sensing capability of individual 

users. To resolve this issue CSS is suggested. Although the system reliability is improved with 

cooperation but the presence of MU in CSS deteriorates the sensing performance. This chapter is 

divided into two parts. In part I, we have considered history based forward and feedback KL 

divergence method for minimizing SSDF attack. In the proposed CSS scheme, each SU reports 

the PU availability to the FC and also keeps the same evidence in its local database. Based on the 

KL divergence, if the user is acknowledged normal by the FC, then unified energy information is 

reported to the FC based on its current and previous sensed results. This method leads to high 

detection probability with optimum transmission energy, thus providing an improvement in 

performance. Simulation results show that the proposed KL divergence method has performed 

better than the existing EGC, MGC and simple KL divergence schemes in the presence of MUs 

at different levels of SNRs, total number of cooperative users and MUs. In part II, unlike the KL 

divergence in part I, where the individual SU sensing information is utilized for measuring the 

KL divergence, MUs are identified and separated based on the KL measurements of the 

individual SU decision and the average sensing statistics received from all other users. The 

proposed KL divergence scheme allocates lower weights to the MUs sensing and higher weights 
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to the normal SUs sensing. The proposed method has been tested in the presence of always yes, 

always no, opposite and random opposite MUs. Simulations confirm that the proposed KL 

divergence scheme performance has exceeded the existing soft combination schemes in 

estimating the PU status. 

4.2 Data Model 

 

Figure 4. 1 Conventional CSS mechanism. 

 

All SUs in the centralized CSS as in Figure 4. 1 report FC about the existence of PUs with local 

spectrum sensing information. FC combines the received sensing notifications from all SUs with 

his own sensing results and generates a global decision about the free and the occupied status of 

the PU spectrum.  

Based on the spectrum sensing information by each SU in a particular band decision between 1H

and 0H
 
is as follows  [6]: 
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(4. 1) 

Here 0H and 1H are the hypothesis about the absence and presence of the PU. ( )jy l  is the received 

signal from the
thj SU, ( )jn l is the AWGN at the thl time slot for the

thj SU, 
jh is the channel gain 

value between the
thj SU and PU and ( )s l is the signal transmitted from the PU. According to the 

hypothesis 1H and 0H the received signal energy of the channel by the
thj SU user at the thi sensing 

interval is  [6]: 
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(4. 2) 

Where S is representation of the number of samples in the thi sensing interval. The number of 

samples is to be considered large enough so that the energy reported by each SU resembles a 

Gaussian random variable under both 0H and 1H hypotheses.  
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    
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0 0 0
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N S S H

 

   

  
 
 

     
 

(4. 3) 

Here
j is the SNR value between the

thj SU and the PU. 2

0 0( , )  , 2

1 1( , )  are the mean and 

variance values of the energy under 0H and 1H hypothesis. 

4.3 Proposed history based Kullback Leibler divergence scheme 
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Figure 4. 2 Proposed CSS mechanism in the presence of MUs. 

 

In the proposed work, the total number of MUs considered is less than the total number of 

cooperating SUs. All SUs report FC about the existence of PUs with local spectrum sensing 

information and also stores this data locally. FC combines the individual reports and generates a 

global decision of the PU spectrum. FC also creates a feedback report for each SU about its 

individual detection performance as in Figure 4. 2 by measuring the KL divergence score for 

each SU. Before SU reports any sensing information, it compares the detection results feedback 

received from the FC with a target value. Based on the feedback from the FC, if  the detection 

results are achieved on behalf of a user, then this particular user will further participate in the 
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sensing process by combining current sensing results with its local history to report a more solid 

PU status to FC. SUs not declared as normal will forward their current sensing energy of the PU 

channel to the FC, while the confirmed normal user will sense the channel and forward mean 

energy of the reports already made under 1H and 0H hypothesis.  

Pseudo code of the proposed method is as below 

For 1i  to sensing limit 

For 1j  to number of SU 

IF    1( 1) 1ji
K i T OR i    

( ) ( )j jZ i E i . Where ( )jE i is current sensing energy 

Else 

1 0( ) ( ) ( )j j jZ i M i M i or is the average of the reported energy for the
thj SU under

1H and 0H Hypothesis. 

End If 

End of loop 

For 1j  to number of SU 

Estimate new values of mean and variances under 1H as  2
1_ 1_,j new j new  and under

0H as  2
0_ 0_,j new j new  based on ( )jZ i  

The difference of the KL distances for the
thj SU under 1H and 0H is measured as

, ( )L jK i  

Update the KL distance score ( )jK i for the
thj SU as 

,( ) ( 1) ( )
N

j j L ji
K i K i K i     and send feedback report of ( )jK i to the

thj SU. 

End of Loop 

The combine KL divergence is determined as ,( ) ( )T j L jj
K i W K i   . Where jW

is the weighting factor assigned to the
thj SU decision. 

IF ( ) 0TK i   

( ) 1BG i   

Else 

( ) 0BG i   

End If 

IF ( ) 1BG i   

Update mean 1j and variance
2
1j for the next iteration. 

Else 

Update mean 0j and variance
2
0j for the next iteration. 

End If 
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End sensing limit 

 

4.3.1 Local decision and history maintenance by the SU 

In this step, pre-sensing check is done by each SU, before forwarding, local sensing information 

to the FC based on its KL distance feedback information received from the FC. 

   1

1 0

( ), 1 ( 1)
( )

( ) ( ),

j ji

j

j j

E i IF i OR K i T
Z i

M i or M i Otherwise

    
  
  


 

(4. 4) 

Where ( 1)ji
K i  is the KL distance value received by the

thj SU and
1 ( )jM i , 

0 ( )jM i are the 

mean sample values of all sensing energies reported by the
thj SUs under 1H and 0H hypothesis 

based on the history results.  

If it is the first time, sensing is done by the
thj SU or if the KL divergence satisfaction score is not 

achieved by a particular SU then, according to equation (4. 4) the sense energy ( ) ( )j jZ i E i is 

reported by the SU to the FC and stores this energy locally for future implication.  

Similarly, if detection results for the
thj SU are met by achieving the KL divergence satisfaction 

score, then the user is declared as normal. The normal user will search local history and calculate 

the mean of all high reporting energies as
1 ( )jM i and of low energies as

0 ( )jM i and will no more 

send energy ( )jE i to the FC as: 

  1 0 1( ) ( ) ( ), ( 1)j j j ji
Z i M i or M i IF K i T  

 
(4. 5) 
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The normal SUs further forward these mean energy samples to the FC during the current and in 

the following sensing intervals according to the observation of the channel to forward decision

1 jM or
0 jM to the FC. 

4.3.2 KL Divergence at the FC 

Based on the energies reported by the
thj SU and the previous mean and variance values, new 

values of the mean and variances in the thi sensing interval are calculated for all SUs at the FC as 

follows: 

 

 

1_ 1 1 2

2
2 2

1_ 1 1 1 1

0_ 1 0 2

2
2 2

0_ 1 0 1 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

j new j j

j new j j j

j new j j

j new j j j

i z z Z i

i z z Z i

i z z Z i

i z z Z i

 

  

 

  

 

  

 

  

 

 

 (4. 6) 

1z and 2z are constants with 1

1k
z

k


 and 2

1
z

k
 . Here k is the effecting level of the received 

energy to corresponding mean and variance of SUs PDF. 

The KL divergence value for the
thj SU is determined as: 

 2 2

1 1_ 1 1_ 1( ) ( ), , ( ),j j new j j new jK i KL i i   

 

(4. 7) 

 2 2

0 0_ 0 0_ 0( ) ( ), , ( ),j j new j j new jK i KL i i   
 

(4. 8) 
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Where
1( )jK i  is the KL divergence score for the

thj SU under the presence hypothesis and
0 ( )jK i

is the KL divergence for the
thj SU under the absence hypothesis. The difference in the PDF

, ( )L jK i for the
thj SU under 1H and 0H hypothesis is calculated as: 

 , 1 0( ) ( ) ( )L j j jK i K i K i  
 

(4. 9) 

The total KL divergence value ( )jK i of the
thj user is further updated as below: 

,( ) ( 1) ( )j j L ji
K i K i K i    

(4. 10) 

This updated value of ( )jK i  is sent by the FC to the
thj SU in order to utilize this information 

prior to any further reports.  

4.3.3 Global decision at the FC 

Based on the KL divergence values of all SUs, the global decision ( )BG i is made at the FC as 

follows: 

 1 ,

2
0 1 2

1

, ( ) ( ) 0 1
( )

1,

T j L jj

B j

j j

j

H IF K i W K i
G i whereW

H Otherwise 


     
  
  




 

 

(4. 11) 

 

where
jW is the weighting value assigned to the

thj SU for data fusion combination. The lower 

weights are assigned by the FC to the reports of SUs with higher variance under the presence 

hypothesis before combination. As MUs including always Yes, always No, opposite and random 

opposite MUs have a dissimilar
1( )jK i and

0 ( )jK i in comparison with normal SUs, therefore their 

contribution in effecting CSS rule is minimized.  
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4.3.4 Updating mean and variance for the next iteration 

As perfect values of the 
1 0( , )j j  and

2 2

0 1( , )j j  for calculating KL divergence is not possible due 

to unavailability of exact information about the PU. Therefore, universal decision ( )BG i value 

calculated previously is further taken as an estimate of the PU signal for calculating and updating 

mean and variance values, which is used in the next sensing interval for KL divergence value 

calculation. 

   1 1 1( ) ( ) ( )j j j BZ Z i H Z i G i H  
 

(4. 12) 

   0 0 0( ) ( ) ( )j j j BZ Z i H Z i G i H  
 

(4. 13) 

Therefore, based on the universal decision results generated by the FC updated values of mean 

and variances are calculated. If the global decision ( ) 1BG i  , mean and variance
1j and

2

1j are 

updated as: 

 

1 1 1 2

2
2 2 1
1 1 1 1

2

( )

( )

j j j

j j j j

D D Z i

D
D Z i

D

 

  

 

    

 

(4. 14) 

 

Similarly, if ( ) 0BG i  , then mean and variance
2

0 0,j j  are updated for all SUs as: 

 

0 1 0 2

2
2 2 1
0 1 0 0

2

( )

( )

j j j

j j j j

D D Z i

D
D Z i

D

 

  

 

    
(4. 15) 
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1
1

d
D

d



and 2

1
D

d
 , where d is window size related to the history of the sensing performance 

for estimated mean and variance. 

A flowchart diagram representing the detail operation of the proposed scheme is shown in Figure 

4. 3. 

 

Figure 4. 3 Flowchart diagram of the history based KL divergence 

4.3.5 Simulation results of the history based KL divergence scheme 

For simulation purposes parameters setting is made for the Cognitive Radio Network with a total 

number of 16, 20 and 24 SUs at different ratios of MUs. Variation in the SNR for the SUs is 
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made in a range of -20 dB to -10 dB. The window size d  related to the history of the sensing 

information is kept as 250 and k (energy affecting mean variance values) is elected as 25. The 

sensing time is taken as 1 ms for each SU and the number of samples in a sensing interval is 

taken as 270M  . Total sensing iterations N in this simulation is 100, and the  maximum number 

of MUs considered for comparison are 4, 8 and 10 with equal distributions of always Yes, 

always No, opposite and random opposite MUs for comparing the detection performance. The 

system was simulated under three different cases. In the first phase 4 MUs are selected in 16, 20 

and 24 cooperative SUs with an equal percentage of always Yes, always No, opposite and 

random opposite MUs. Similarly, in the second phase, 8 MUs were equally distributed as always 

Yes, always No, opposite and random opposite MUs under total 16, 20 and 24 cooperative SUs. 

In the third phase, the MUs are extended to 10 for a total of 16, 20 and 24 SUs to test the 

performance. In order to check the performance of the proposed history based KL divergence 

scheme in searching for optimized resource allocation and spectrum sensing in CRN in the 

presence of MUs using soft computing and statistical techniques, the detection, false alarm and 

error results are obtained in Figure 4. 4-Figure 4. 12. The objective of the proposed scheme is to 

precisely sense the PU channel in the presence of MUs which is possible with high detection and 

low false alarm probabilities, that ultimately leads to a low error probability in sensing the  PU 

channel. The performance of the proposed methodology is compared with the KL divergence, 

maximum gain combination (MGC) and equal gain combination (EGC). Receiver operating 

characteristics (ROC) curve is drawn for proposed method, traditional KL  [16], MGC and EGC 

schemes in Figure 4. 4-Figure 4. 6. Simulation results confirmed that the proposed KL 

divergence statistical scheme has superior resource allocation and spectrum sensing results in 

CRN than the previous KL, EGC and MGC schemes at different levels of total cooperative and 
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MUs. The ROC results collected in these figures show the superiority of the proposed method in 

comparison with traditional KL, EGC and MGC schemes. In Figure 4. 4 results plotted between 

false alarms and detection probability for a total of 4 MUs when the total number of SUs varies 

from 16 to 24. It is clear to see that as the total number of SUs increases in Figure 4. 4, the 

detection results of all fusion schemes increases with increasing total number of cooperative SUs 

for a given false alarm and fixed number of MUs. Similarly, ROC results are generated for the 

proposed and all other fusion schemes i.e. traditional KL, EGC and MGC in Figure 4. 5 and 

Figure 4. 6 with total 8 and 10 MUs at different levels of cooperative SUs. By comparing the 

results collected in Figure 4. 4-Figure 4. 6 it is noticeable to change predominant increase in the 

probability of detection for a given false alarm probability as the total number of cooperative 

SUs increases from 16 to 24. The results generated in Figure 4. 4-Figure 4. 6 also shows that as 

the number of total MUs were increased from 4 in Figure 4. 4 to 10 in Figure 4. 6 with 16, 20 

and 24 total cooperative users, the proposed method is least affected with the increasing number 

of MUs in comparison with other soft fusion schemes. In this part of the simulation results, the 

proposed method is able to provide higher detection results for a given false alarm at different 

concentration levels of the normal and malicious cooperative users.  
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Figure 4. 4 Probability of Detection vs. Probability of False Alarm (ROC) curve for (1) 16 total 

SUs with 4 MUs (2) 20 total SUs with 4 MUs (3) 24 total SUs with 4 MUs. 

 

Figure 4. 5 Probability of Detection vs. Probability of False Alarm (ROC) for (1) 16 total SUs 

with 8 MUs (2) 20 total SUs with 8 MUs (3) 24 total SUs with 8 MUs. 
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Figure 4. 6 Probability of Detection vs. Probability of False Alarm (ROC) for (1) 16 total SUs 

with 10 MUs (2) 20 total SUs with 10 MUs (3) 24 total SUs with 10 MUs. 

A similar comparison is shown in Figure 4. 7-Figure 4. 9 by drawing the probability of error 

against the probability of detection for the proposed, KL  [16], MGC and EGC schemes. The 

graphical results showed improved detection results for the proposed scheme against traditional 

KL, MGC and EGC schemes at all numbers of cooperative and malicious SUs. By inspecting 

these results, it can be observed that for the proposed scheme, the error probability in detecting 

PU is lowest in comparison with the previous fusion schemes and has less vulnerability to the 

increasing MUs.  



74 

 

 

Figure 4. 7 Probability of Error vs. Probability of Detection for (1) 16 total SUs with 4 MUs (2) 

20 total SUs with 4 MUs (3) 24 total SUs with 4 MUs. 

 

Figure 4. 8 Probability of Error vs. Probability of Detection for (1) 16 total SUs with 8 MUs (2) 

20 total SUs with 8 MUs (3) 24 total SUs with 8 MUs. 
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Figure 4. 9 Probability of Error vs. Probability of Detection for (1) 16 total SUs with 10 MUs (2) 

20 total SUs with 10 MUs (3) 24 total SUs with 10 MUs. 

Probability of error results for each individual SU is drawn against the varying SNRs from -20 

dB to -10 dB in Figure 4. 10-Figure 4. 12. The graphical results showed that with the increasing 

average SNR values, the proposed method results showed sophisticated improvements and is 

able to reduce the channel sensing error quickly in comparison with all other fusion schemes. 

Similarly, it can be seen that for a given average SNR value, the probability of error decrease 

even further by varying the total number of cooperative SUs from 16 to 24 in Figure 4. 10-Figure 

4. 12. The efficiency in terms of sensing the licensed user channel reduces with an increase in the 

total number of MUs from 4 in Figure 4. 10 to 10 in Figure 4. 12 at different level of total SUs. 

The graphical results demonstrates that the proposed algorithm is least influenced with 

increasing the number of MUs, while EGC has the worst probability of error.  
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Figure 4. 10 Probability of Error vs. Signal to Noise Ratio for (1) 16 total SUs with 4 MUs (2) 

20 total SUs with 4 MUs (3) 24 total SUs with 4 MUs. 

 

Figure 4. 11 Probability of Error vs. Signal to Noise Ratio for (1) 16 total SUs with 8 MUs (2) 

20 total SUs with 8 MUs (3) 24 total SUs with 8 MUs. 
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Figure 4. 12 Probability of Error vs. Signal to Noise Ratio for (1) 16 total SUs with 10 MUs (2) 

20 total SUs with 10 MUs (3) 24 total SUs with 10 MUs. 

For energy comparison of the proposed scheme and traditional KL divergence scheme, 

simulation results are plotted in Figure 4. 13 among the total average transmitted energy of all 

SUs and MUs. In Figure 4. 13 the total number of MUs is increased from 4 to 20 and the average 

transmitted energy of all SUs are collected under 20, 25 and 30 total cooperative SUs. It is 

obvious from Figure 4. 13 that the proposed scheme is outperforming the traditional KL method 

in terms of energy utilization in all three cases when 20, 25 and 30 cooperative SUs participate in 

CSS. The energy transmitted by all SUs increases when the number of cooperative SUs is 

increased from 20 to 30 for a given total number of MUs. The MUs are selected for energy 

comparison with 25% always Yes, 25% always No, 25% opposite and 25% random opposite 

MUs. These energy plots display that the proposed scheme results in overall savings of the 

transmitting energy for the proposed scheme under all 20, 25 and 30 total cooperative SUs. The 

simulation results show effectiveness of the proposed scheme in getting optimized resource 

allocation and spectrum sensing in cognitive radio network with malicious users using KL 
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divergence statistical technique with higher detection results of the PU, which results in lower 

error with optimize transmission energy. 

 

Figure 4. 13 Energy Transmitted vs. Number of MUs for (1) total 20 SUs (2) total 25 SUs (3) 

total 30 SUs. 

4.4 Proposed one-to-many relations based KL divergence 

The proposed work considers total cooperative users larger in number compared with MUs. All 

the cooperative users inform FC with their local spectrum observations of the primary channel. 

FC collects and takes its global decision based on the received energy statistics of the reporting 

users. Before making any global decision about the licensed user spectrum, FC is able to assign 

weights to the local sensing of SU reports with the proposed KL divergence method. The 

resultant weights illustrate reliability of the local spectrum sensing information of the individual 

cooperating users prior to making any final decision at the FC.  
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A  pseudo code showing the proposed KL divergence algorithm for the local detection, 

determining KL divergence score using one-to-many relationship based energy statistics and 

taking global decision based on the received energy and measured weights are as given below: 

For 1i  to limit 

For 1j  to SU 

Local detection ( )jE i by the
thj user 

New values of mean and variance  2( ), ( )ja jbi i  based on ( )jE i  

Average means and variance values while taking out the
thj user energy statistics. 

 
'

1

( ) ( )

( ) , 1,...,
1

M

ja ja
j

ja

i i

i i N
M

 




  
  

  
 
 
 
 
 


 

 
'

2 2

12

( ) ( )

( ) , 1,...,
1

M

jb jb
j

jb

i i

i i N
M

 




  
  

  
 
 
 
 
 


 

One-to-many relationship based KL divergence 

 ' '

2 2( ) ( ), ( ), ,j ja jbja jb
K i KL i i     

Weights for the
thj user in the thi interval 

1

( )1
( ) , ( ) , 1,...,

( )
( )

j

j j M
j

j
j

c i
c i w i i N

K i
c i



 
  
    

    
 
 


 

End SUs 

IF
1

( )* ( )
M

j j
j

w i E i 


  

Global decision, 1( )BG i H  

Else 

Global decision, 0( )BG i H  

End 

End limit 

 

4.4.1 Data collection and mean variances adjustments by the FC 
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FC receives the individual soft energy information ( )jE i in the thi interval from all the
thj

cooperating SUs as: 

 1 2 3( ) ( ) ( ) ... ( ) , 1,...,ME i E i E i E i i N e
 

(4. 16) 

Where M is a row vector containing the soft spectrum sensing data of all M users during the thi

interval. The soft energy report ( )jE i has mean and variance  2

1 1,  under hypothesis 1H and

 2

0 0,  under the 0H hypothesis. 

FC further determines new values of the mean and variance for all users in the thi sensing interval 

based on the received energy observations in equation (4. 16) as: 

 1 2 3( ) ( ) ( ) ( )... ( ) , 1,...,a a a Mai i i i i i N    a
 

(4. 17) 

1 1 2 1

1 0 2 0

( ),
( )

( ),

j j

ja

j j

z z E i H
i

z z E i H






  
  

  
 

(4. 18) 

Here ( )ja i is the new value of the mean for the
thj SU in the thi sensing interval, which is updated 

according to the received energy ( )jE i and 1 2( , )z z preselected constants.  

Similarly, new variance values are determined and collected based on the received energy ( )jE i

as: 

2 2 2 2

1 2 3( ) ... , 1,...,b b b Mbb i i N        
(4. 19) 
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(4. 20) 

 

In the new mean and variance measurements in equation (4. 18) and equation (4. 20) the 

constants    1 1 /z k k  and  2 1/z k , where the constant k is the effecting level of the mean 

and variance by the received energy ( )jE i . 

4.4.2 One-to-many relationship based KL divergence measurement 

After the collection of mean and variance information on behalf of all M users in the thi sensing 

intervals, FC measures a difference in the mean and variance of the
thj user energy statistics with 

all other users. The average mean values are measured on behalf of all M SUs based on the new 

mean values of equation (4. 18) as: 
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(4. 21) 

The one-to-many difference results of the mean for all M SUs are collected as: 

 1 ' 2 ' ''( ) ( ) ( )... ( ) , 1,...,a a Mai i i i i N   a
 

(4. 22) 

Similarly, the average variance values are measured on behalf of all M SUs based on the new 

variance values of equation (4. 20) as below: 
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(4. 23) 

 

2 2 2 2

1 ' 2 ' 3 ' ''( ) ( ) ( ) ( )... ( ) , 1,...,b b b Mbi i i i i i N      b

 

(4. 24) 

Here ( )
ja

i ' is the average mean and 2 ( )
ja

i ' is the average variance value of the energy samples 

provided by all other users while ignoring the mean and variance results of the
thj user. These 

mean and variance values are obtained by excluding the
thj user. The result in equation (4. 22) 

and equation (4. 24) determines the impact of not including each cooperative user during the 

average mean and variance observation measurement. As all MUs including always yes (AY), 

always no (AN), always opposite (AO) and random opposite (RO) have dissimilar results of the 

mean and variance in comparison with normal SUs, therefore the average results attained against 

these users is different from the normal SUs in equation (4. 22) and equation (4. 24). 

The KL divergence value for the
thj SU is determined between the individual sensing results in 

equation (4. 17), equation (4. 19) and the information provided by all other SU information as in 

equation (4. 22) and equation (4. 24) as: 

 2 2

' '( ) ( ), ( ), ( ), ( )j ja ja jb jbK i KL i i i i   
 

(4. 25) 

Where ( )jK i denotes the KL divergence result in the presence and absence hypothesis of the
thj

SU in the thi interval. These KL divergence scores against each SU sensing are modified as: 
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(4. 26) 

The result in equation (4. 26) is normalized for assigning weights to each SU decision as: 

1

( )
( ) , 1,..., , 1,...,

( )

j
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j
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w i i N j M

c i

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 
 
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

 
(4. 27) 

In equation (4. 27) the users with abnormal behavior acquire lower weights in comparison with 

normal users. 

Table 4.1 shows the weight measurement for the normal and malicious users against various 

SNRs. These weights are obtained for the case when one of the four categories of MUs 

participates in CSS. In Table 4.1 as the value of SNR increase, the weight assigned to these MUs 

decreases while the normal user‟s weights increase. 

Similarly, Table 4.2 shows the weights for the case when all four categories of MUs participate 

in CSS. In Table 4.2, the weight results assigned to each MU along with the average weights 

received by all the normal cooperative SUs are. In this case, the different weights received by 

these MUs approaches near to zero with increasing SNR while the normal SUs weights increase 

with increasing SNR. 

Table 4. 1. KL weights assigned by the FC under one category of MU participation. 

SNR (dB) 

Weights 

AY only AN only AO only RO only Normal User 

-20 0.006757 0.006553 0.016615 0.008775 0.080399 
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-19 0.006750 0.006551 0.008679 0.006123 0.080798 

-18 0.006745 0.006547 0.008341 0.005763 0.081049 

-17 0.006740 0.006544 0.008341 0.005757 0.081110 

-16 0.006737 0.006539 0.006206 0.005616 0.081198 

-15 0.006731 0.006537 0.006186 0.005537 0.081231 

-14 0.006722 0.006532 0.006164 0.005393 0.081266 

-13 0.006717 0.006530 0.005722 0.005295 0.081306 

-12 0.006715 0.006526 0.005722 0.005290 0.081324 

-11 0.006711 0.006525 0.005629 0.004688 0.081428 

-10 0.006709 0.006521 0.005629 0.004318 0.081441 

-9 0.006706 0.006518 0.005190 0.003863 0.081545 

-8 0.006704 0.006516 0.004947 0.003836 0.081636 

-7 0.006701 0.006510 0.003674 0.003773 0.081739 

-6 0.006692 0.006505 0.001509 0.003198 0.081777 

-5 0.006687 0.006502 0.001507 0.001335 0.082069 

 

Table 4. 2. KL weights assigned by the FC when all categories of MUs participate. 

SNR (dB) 

Weights 

1 AY 1 AN 1 AO 1 RO Normal User 

-20 0.000682 0.000359 0.001661 0.065425 0.077865 

-19 0.000523 0.000331 0.001155 0.012339 0.082344 

-18 0.000466 0.000319 0.001085 0.006149 0.082800 

-17 0.000379 0.000277 0.001037 0.005841 0.082875 

-16 0.000287 0.000212 0.000825 0.005060 0.082967 
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-15 0.000229 0.000169 0.000817 0.004495 0.082984 

-14 0.000175 0.000159 0.000766 0.004449 0.083008 

-13 0.000160 0.000139 0.000645 0.004355 0.083035 

-12 0.000137 0.000113 0.000637 0.003774 0.083047 

-11 0.000112 0.000080 0.000477 0.002980 0.083048 

-10 0.000096 0.000079 0.000469 0.002719 0.083058 

-9 0.000095 0.000070 0.000285 0.002563 0.083061 

-8 0.000094 0.000069 0.000242 0.002524 0.083136 

-7 0.000082 0.000066 0.000222 0.002486 0.083254 

-6 0.000055 0.000039 0.000137 0.001171 0.083307 

-5 0.000010 0.000008 0.000057 0.000266 0.083694 

 

4.4.3 Global statement by the FC 

Grounded on the weighted results measured to guarantee the authenticity sensing information in 

equation (4. 27), the global statement ( )BG i is declared by the FC as: 

1
1

0

, ( )* ( )
( ) , 1,...,

,

M

j j
jB

H i E i
G i i N

H otherwise




 
 

  
 
 

w

 
(4. 28) 

Where
jw is the weight assigned to the

thj user energy in the data fusion at the FC and is the 

threshold value for the detection of the PU. The lesser weight results are charged by the FC 

against the sensing information of a user with malicious behavior, while the normal user sensing 

report is assigned a higher weight value. All MUs including AY, AN, AO and RO are easily 

identified by the proposed scheme with their KL divergence behavior. The normal SUs have a 
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higher KL divergence result because they have less inconsistency from the average of all other 

users sensing information. The MUs receive minimum weight because the information provided 

by MUs deviates more from the average sensing information provided by all other SUs. It is 

therefore noticeable that these MUs get lower weights as compared with normal SUs.  

4.4.4 Next iteration mean and variance based on the global statement 

Due to the non-availability of the exact information about the PU, perfect values of the means

 1 0,j j  and variances  2 2

0 1,j j  for measuring KL divergence are not possible. It is therefore 

good to consider the global decision ( )BG i results as an estimate of the primary signal. The 

updated mean and variance will be used by the FC in the KL divergence calculation in the next 

sensing interval. 

   1 1 1( ) ( ) ( )j j j BE E i H E i G i H  
 

(4. 29) 

   0 0 0( ) ( ) ( )j j j BE E i H E i G i H  
 

(4. 30) 

The global decision ( ) 1BG i   at the FC will update mean
1j and variance

2

1j under the 1H

hypothesis as follows:   

 

1 1 1 2
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1 1 1 1
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 
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(4. 31) 

 

Similarly, the decision ( ) 0BG i  will update mean
0j and variance

2

0j under the 0H hypothesis 

for all cooperative users as: 
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(4. 32) 

 

In equation (4. 32) 1
1

z
B

z



and 2

1
B

z
 , where z indicate the window size of the sensing history 

for the estimated mean and variance. 

 

Figure 4. 14 Flowchart diagram of the proposed weighted KL divergence scheme. 

 



88 

 

The proposed scheme flowchart diagram in Figure 4. 14 illustrates the local detection, KL 

divergence measurement based on the weight assignments and global decision establishment by 

the FC. 

4.4.5 Simulation results of the one to many relations based KL divergence scheme 

In order to get simulation results for the CRN parameter settings are made with 10, 16, 20 and 30 

total cooperative users. Out of the total cooperative SUs, four users are intentionally selected as 

AY, AO, RO and AO nature of MUs. The average SNRs for the simulation are selected as -20 

dB to -5 dB for all SUs. The sensing time for each SU is selected as 1 ms containing 270 samples 

in each sensing interval. Total sensing intervals for the cooperative users are selected as 200. The 

RO users perform malicious acts probabilistically in the intervals 1 to N . The window size (z) 

for updating mean and variance is selected as 270. In the study, all 4 categories of MUs i.e. AY, 

AN, AO and RO are spread evenly. In order to check the performance of the proposed weighted 

KL divergence scheme in determining optimized solution of resource allocation and spectrum 

sensing in CRN with MUs using soft computing and statistical techniques the PU activity 

detection and false alarm results are collected in Figure 4. 15-Figure 4. 20. The MUs task in CSS 

is to minimize the detection probability and maximize the false alarm probability. The proposed 

weighted KL divergence scheme can smartly overcome these issues. 

The proposed KL divergence performance is compared with traditional KL and EGC schemes in 

6 different cases as below. 

Case 1: In this case ROC results are drawn between the proposed method, traditional KL and 

EGC scheme under various SNR values of -20 dB to -5 dB as displayed in Figure 4. 15. MUs are 

selected as AY only in the first part of the comparison in Figure 4. 15. Results are obtained for 

all combinations by taking the total number of AY as 1, 2, 3 and 4 subsequently. The results 
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illustrate that the KL divergence scheme is more secure against the increasing number of AY 

users 1 to 4 and has better detection probability results in comparison with all other schemes. In 

Figure 4. 15 when there is only 1 AY user active in CSS the ROC results of all fusion schemes 

are less affected, but as the total number of AY users is increased to 3 and 4 the proposed KL 

results dominate the traditional KL and EGC schemes by producing a high detection with less 

false alarms. The EGC scheme is more affected by the increasing number of AY users because 

EGC gives equal weight to the detection performance of normal and AY users. The proposed KL 

is able to assign less weight to the AY users in comparison with normal SUs as it is clear from 

the average weight value measured against each AY in Table 1. The less weight assigned to the 

AY reduces the false data effect of the AY participation in CSS. The harmful effect of the AY 

contribution in CSS is further reduced with increasing average SNR by lowering the weight 

assignment to them in the global decision. 

 

Figure 4. 15. Detection vs. False Alarm results with 1, 2, 3 and 4 (AY) malicious users. 

Case 2: In this part of the simulation, all parameters are kept similar to case 1 with changing 

only the nature of MUs from AY to AN user. Comparison is made between proposed KL, 
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traditional KL and EGC scheme by testing the system against increasing number of AY from 1 

to 4 as in Figure 4. 16. 

Since the proposed KL is treating AY and AN users similar in determining the KL divergence, 

therefore using proposed KL divergence the weight that AN user receives is almost equal to the 

AY user weights in case 1. The ROC performance of the proposed and all other schemes against 

the AN scenario is very similar to case 1, due to the likely behavior of the AN user to that of the 

AY user. As it was in case 1, when the numbers of AN user are increased from 1 to 4, the 

proposed KL is less affected by this increment in Figure 4. 16. All AN users receive lower 

weight while the normal SUs receive higher weights in comparison with AN users, which results 

in better performance of the proposed KL scheme. The traditional KL and EGC schemes 

performance in detecting the licensed PU channel reduces more quickly in comparison with the 

proposed technique as the total AY increases from 1 to 4. The gap in the ROC curves of the 

traditional fusion schemes becomes wider for a total of 4 AN users from the one when only 1 AN 

user participates in sensing as shown in Figure 4. 16. 

 

Figure 4. 16 Detection vs. False Alarm results with 1, 2, 3 and 4 (AN) malicious users. 
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Case 3:  In the third scenario, simulation results are obtained for the increasing number of AO 

users from 1 to 4 in Figure 4. 17 with the same parameters in case 1 and case 2. Since the AO 

users have its mean and variance results opposite to the average mean and variance values 

provided by all other users, therefore, the proposed KL method is able to generate lower 

reliability report in terms of weight for the AO user in comparison with normal cooperative 

users. The results show that as AO user‟s increases to 4 few drops is observed in the ROC curve 

of the proposed scheme as compared with the traditional KL and EGC scheme. In comparison 

with case 1 and case 2, the traditional soft combination schemes like KL and EGC performance 

degrade even more. The existence of AO users results in less correct detection and high false 

alarm rate of the PU spectrum for the EGC and KL scheme. Proposed method results in Figure 4. 

17 are followed by the KL while EGC has shown its worst performance among all fusions. 

 

Figure 4. 17 Detection vs. False Alarm results with 1, 2, 3 and 4 (AO) malicious users. 

Case 4: The ROC results in which only RO user participates in CSS are depicted in Figure 4. 18. 

The RO user hides its malicious identity by acting probabilistically as AO at randomly selected 

sensing intervals in the N total intervals and is difficult to catch with the provided statistics. 
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The traditional KL and EGC schemes are not able to handle the RO user information 

intelligently and their ROC results degrade severely with the increased number of RO 

participations in Figure 4. 18.  

The proposed KL scheme is able to identify the RO users when they perform malicious acts 

probabilistically and generate better detection and false alarm results in Figure 4. 18 compared 

with the traditional KL and EGC schemes. Results show that unlike the traditional EGC and KL 

divergence schemes, increasing number of RO users less affects the proposed KL divergence. 

All the RO nature users in the proposed CSS receive lesser weights in comparison with weights 

obtained by the normal SUs because their malicious behavior is easily caught by the proposed 

KL scheme. 

 

Figure 4. 18. Detection vs. False Alarm results with 1, 2, 3 and 4 (RO) users. 

Case 5: In this part of the simulation as in Figure 4. 19, 8 MUs are equally selected in numbers 

as AY, AN, AO and RO categories. The simulation is performed against an average signal-to-

noise ratio of -12.5 dB.  
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The detection and false alarm probability results are obtained for the proposed, traditional KL 

and EGC schemes for a total of 10, 20 and 30 cooperative SUs in Figure 4. 19. The average 

signal-to-noise ratio is kept -12.5 dB with total 4 MUs. Figure 4. 19 show that one-to-many 

relation based KL divergence scheme has better ROC performance than all other schemes. It is 

noticeable that all combination schemes detection performance improves with the increasing 

number of total cooperative and fixed MUs. The proposed method ROC results are more precise 

and superior to the traditional schemes i.e. KL and EGC schemes at all levels of the total sensing 

users.  

Case 6: In this case, the number of AY, AO, AN and RO is kept the same. The total number of 

participating SUs in CSS is kept fixed at 16 and different ROC results are plotted for the one-to-

many relations based KL divergence and other soft combination schemes at different levels of 

the averages signal-to-noise ratios.  

 

Figure 4. 19. Detection vs. False Alarm results with all MUs and 10, 20, 30 total reporting users. 
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Figure 4. 20. Detection vs. False Alarm results with all MUs and different levels of signal-to-

noise ratios (-9.5 dB, -12.5 dB, -15.5 dB). 

The simulation results in Figure 4. 20 shows that under fixed malicious and total cooperative 

users the ROC performance rises with increasing SNRs for all combination schemes. As the 

signal-to-noise ratio increases from -15.5 dB to -9.5 dB, proposed scheme ROC results are more 

accurate and precise than the traditional combination schemes at both SNR levels. The proposed 

method ROC improvement with increasing signal-to-noise ratio is due to more clear distinction 

on the energy distribution of the absence and presence hypothesis information provided by the 

normal and MUs. These results also show that the CSS performance improves more with the 

increasing signal-to-noise ratio information in case 6 as compared with the increasing number 

cooperative users in case 5. 

All the above experimental results clarify the fact that by following the proposed one-to-many 

relations based KL divergence method an improvement is obvious in the sensing performance at 

the FC. This improvement is achieved by raising the detection probability and lowering the false 

alarm results leading to a reduction in the error probability of the system. The proposed fusion 

combination scheme shows optimum and accurate resource allocation and spectrum sensing 
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results in cognitive radio network with malicious users using one to many relationship based KL 

divergence statistical technique. The use of the proposed method for calculating weights 

following by soft combination scheme makes the proposed CSS results more valid in the 

presence of malicious users. The simulation results show that the risk of AY, AN, RO and AO 

users with CSS significantly reduces by adopting the proposed scheme. It is clear from the 

graphical result that cooperation turns out to be more precise by using the suggested 

methodology. The one to many relation based KL divergence is able to generate better resource 

allocation and spectrum sensing results in cognitive radio network with malicious users using 

one to many relationship based KL divergence statistical technique, by assigning lower weights 

to the MUs information and is able to eliminate the effect of MUs in CSS. 

4.5 Summary 

As MUs mislead other users to access the license user spectrum, it is therefore, mandatory in 

CSS to filter the MU sensing information. The KL divergence tool is used to detect MU in CSS 

based on the PDF dissimilarity of a normal and MU. The proposed KL divergence scheme in 

part I is following a modified pre-sensing check by the users before forwarding the spectrum 

information to the FC. SUs with their KL divergence reputation score feedback by the FC 

attained, will report PU activity with the sensed energy based on the current and past results from 

its local database. Simulations exhibit the proposed scheme‟s effectiveness in terms of 

sophisticated detection while exercising comparatively less total transmission energy. 

In part II, the efficiency degrading effects due to the presence of abnormal users in CSS is 

minimized using one-to-many relationship based KL divergence method for the PU detection. 

Functionality of the proposed scheme is verified in the presence of AY, AN, AO and RO type 
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MUs. FC first receives the individual sensing information of all SUs and then applies the 

proposed method for measuring weights against each SU. MUs with abnormal behavior as 

compared with normal SUs are given lower weights by the proposed scheme, while the normal 

SUs receive higher weights. FC further employs these weights in combining the sensing 

information of all SUs in predicting a global decision. The results show that the user with 

abnormal behavior has less impact on the global decision as compared to a normal SU decision. 

Simulation result reflects the superiority and authenticity of the proposed scheme in producing 

more accurate, precise and reliable decisions as compared with EGC and traditional KL fusion 

schemes. 
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Chapter 5 

Malicious user detection using soft computing techniques 

 

5.1 Introduction 

In this chapter, we have discussed heuristic techniques such as GA and PSO for determining 

optimal cooperative decision in the presence of malicious activity. This chapter is divided into 

three parts. In part I, FC apply GA using DSND method to detect abnormal users and then with 

the help of crossover and mutation, best fitness is selected. These results are then used in a hard 

fusion combination scheme such as logical AND, OR and majority voting to declare final 

decision of the PU status. In part II, GA used one-to-many hamming distance and Z-score outlier 

factors in determining suitable PU detection information in the presence of MUs. At last 

detection, false alarm and error probabilities of the proposed GA based majority voting hard 

decision fusion (GAMV-HDF) scheme is compared with the majority voting hard decision 

fusion (MV-HDF), EGC based soft decision fusion (EGC-SDF) and MGC based soft decision 

fusion (MGC-SDF) schemes at different levels of the SNRs and cooperative users. In part III, 

PSO is employed to take global decision at the FC based on the soft energy reports of all 

cooperative users. In this part, users send their sensing statistics to the FC for a number of 

observations. Simulation results are obtained for the proposed PSO-Hard, PSO-EGC and PSO-

MGC schemes and are compared with the traditional Hard, EGC and MGC schemes. Results 

illustrate that the proposed scheme outperformed all other techniques in detection, false alarm 

and error probabilities for different number of MUs. 
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5.2 Data Model for DSND based GA 

5.2.1 Local spectrum decisions 

SUs take its local decision by comparing the observed energy of the PU channel with a threshold 

in order to send a hard decision “1” or “0” to the FC as  

1, ( )
( )

0,

j j

j

if E i
y i

Otherwise

 
  
 

 
(5. 1) 

where ( )jE i is the receive energy in the thi sensing interval by the
thj SU, 

j is the threshold value 

set for the
thj SU. If energy of the received signal by the

thj SU is greater than the threshold, then 

it declares PU existence by forwarding a binary decision “1” to the FC otherwise decision “0” is 

forwarded to the FC to state the channel as open of the incumbent authorized user. 

The probability of detection j

dP and probability of false alarm
j

fP of the
thj SU are defined as  [22]: 

   1 1Pr ( ) 1 Pr ( )j

d j j jP y i H E i H   
 

 

(5. 2) 

   0 0Pr ( ) 1 Pr ( )j

f j j jP y i H E i H   
 

 (5. 3) 

The probability of detection, probability of false alarm and probability of miss-detection over an 

AWGN channel is expressed as 

 2 ,j

d k j jP Q  
 

(5. 4) 
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1j j

m dP P 

 

(5. 6) 

where
j is the SNR, K TW is the time bandwidth product. (.,.)KQ  is the generalized Marcum 

Q-function, (.) and (. ,.) are complete and incomplete gamma functions respectively  [21]. 

 

Figure 5. 1 Proposed CSS Model of the DSND based GA scheme 

 

FC collects the spectrum sensing decisions of individual SUs to form a history reporting matrix 

consisting individual hard decision of all SUs as below: 
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(5. 7) 

 

WhereY is a population matrix of size 0N M consists of the spectrum sensing information 

accumulated in the database of FC by all M SUs in the 0N sensing reports, made by normal and 

malicious users. The SSDF effects of always yes MU (AYMU), always no MU (ANMU), 

opposite MU (OMU) and random opposite MU (ROMU) in CSS is minimized with the 

following algorithm. 

5.2.2 Genetic Algorithm at the Fusion Centre 

The DSND Algorithm utilizes by GA for the detection of abnormalities in the CSS system at the 

FC is as below: 

5.2.2.1 DSND for catching Malicious Users 

Based on the local sensing information received from all SUs in the 0N sensing intervals, FC is 

able to identify all abnormal SUs i.e. AYMU, ANMU, OMU and ROMU with DSND. 

The DSND algorithm is based on the history of SUs reports made to the FC. After the collection 

of 0N reports from all M SUs as in equation (5. 7), indices 1K and 2K are selected such that

1 2.K K  The indices 1K and 2K are chosen such that 0 1M K M  and 0 2M K M  . The 1K

and 2K values are the gauges for the detection of MUs in CSS with 0M total number of MUs out 

of total M cooperative SUs. The DSND algorithm is based on comparing the history information 

of the users. In case the inter-user distance is greater than a certain limit 1K or less than the limit
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2K , then the user is termed as malicious. A user cannot exist which is malicious in both 1K and

2K senses. As the method is based on the history of the user reports the more information the 

system has about a user the more accurately this algorithm work. 

The distance between the reports of the " "thj user and all other users show how many bits are 

different in the reports made by the " "thj user with other users. 0N shows the total reports made 

by all " "thj  users. 

01
, 1,..., , 1,...,

M

ij ij ikk
d y y wherei N and j k M


     

(5. 8) 

Where
ijd is the sum of absolute distance of the " "thj user sensing report with all M SUs reports in 

the thi sensing interval.  
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(5. 9) 

The distance matrix D shows the distances calculated for all the
thj SUs during each sensing 

interval. The sorted results of D  is used to set the upper and lower limits in equation (5. 10) as 

follows: 

2Limit C   
 

(5. 10) 
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where   is the mean and 2 is the variance value measurement of the distance matrix. The 

constant consider is 010 N , with 0N shows history length of the total reports. Upper and lower 

limits are further defined as below: 

2

1 010 /HI N   
 

(5. 11) 

2

1 010 /LI N   
 

(5. 12) 

After setting upper and lower limits values
1

HI and
1

LI from the sorted results of the distance matrix 

D and selection of
1

stK and
2

stK for detecting abnormalities, if
1

stK entry is greater than
1

HI the user is 

declaring malicious in 1K sense and if
2

stK entry is less than
1

LI the user is declared malicious in 2K

sense. 

 1 1 2 1

0,

th st H st Lj user if K I or K I
MU

Otherwise

   
  
  

 
(5. 13) 

After identification of any abnormal behavior as above, the sensing data from such abnormalities 

is randomly mutated and crossover operation is performed as below, to make the final decision 

authentic and error proof. 

5.2.2.2 Crossover and Mutation 

Reference to the GA population, this work refers to the gathering of SU sensing information 

collected for certain sensing intervals, with rows of the population is the representation of the 

sensing information reported by all SUs. As fitness function is a representation of the utility of 

each chromosome, fit chromosomes are able to pass through heredity, while unhealthy 

chromosomes are deceased due to the natural phenomenon of the survival of the fittest. 
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The fitness function in this work is selected based on the results in equation (5. 9) as:  

01 2 3 ... NF F F F F     
(5. 14) 

where each fitness function value is calculated as: 

1

M

i ijj
F d


  

(5. 15) 

The information with minimum total neighbor distances for all users is selected as the best 

chromosome. Based on the result of equation (5. 15) the top two chromosomes are selected as 

the parent chromosome and crossover operations are done among the rest to determine new 

offspring. 

Crossover: The crossover exploits the best behaviors of the current chromosomes and mixes 

them in a bid to increase their appropriateness. This operator randomly selects a locus and 

exchanges the sub-sequences before and after that locus between two parent chromosomes to 

build a pair of children. A crossover point is randomly selected in this work. 

The fitter chromosomes likely passes to the next generation and the population is sorted in 

ascending order of fitness values. 

Mutation: The process of mutation represents a random change of the value of the gene, which 

shows the change in the sensing data for the selected user. The mutation operation is performed 

on the sensing information provided by abnormal users. The reported information of abnormal 

detected user is randomly inverted. If the genome bit is 0, it is changed to 1 and vice versa. 

After the random mutation and crossover operation, a new population matrix is obtained which 

results in a neighbor distance matrix
'

D as follows: 



104 

 

0 0 0

' ' '

11 12 1

' ' '

21 22 2

' ' '

1 2

M

M

N N N M

d d d

d d d

d d d

 
 
 
 
 
  





   



D'
 

(5. 16) 

Therefore, new fitness function values are determined as: 

' '

1

M

i ijj
F d


  

(5. 17) 

 

Figure 5. 2 DSND based GA scheme Flowchart 
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Fitness values in equation (5. 17) are further sorted in ascending order and the minimum is 

selected as the best fitness. Sensing reports inY with similar index to the best fitness is selected 

final recommendation of the GA. The recommended sensing information is further utilizes in the 

hard fusion combination scheme as in section 3.3 to finalize a unified global decision.  

A flow chart diagram with step wise operation is shown in Figure 5. 2. 

5.2.2.3 Counting rule as hard decision rule at the FC  

The three most commonly used hard fusion combination schemes are the Voting scheme 

(majority decision here), OR scheme and AND fusion scheme. After the identification of 

abnormal users by the DSND algorithm GA is utilized to make the final decision as free of these 

abnormal users and to make the sensing decision more reliable and accurate.   

In the voting decision scheme an unanimous decision on the PU existence 1H is made if K out of 

total M users make a decision of the PU presence. Similarly, if the number of SUs with PU 

detection information is less than K then decision is made in favor of 0H to declare the license 

channel as free. In the proposed work, majority voting scheme is selected with 2K M as a 

special case 

1 1

0

: ( )
2

:

M

jj

M
H y i

H otherwise



 
  
 


 

(5. 18) 

Here M is the total number of SUs reports made to the fusion center. 

Cooperative detection and false alarm probabilities of the DSND based GA is represented at the 

FC based on the local detection made by individual SUs as follow: 



106 

 

 

 

1 11

0 01

Pr 1 Pr ( )
2

Pr 1 Pr ( )
2

M

d jj

M

f jj

M
P Y H y i H

M
P Y H y i H





 
    

 

 
    

 




 

(5. 19) 

Where dP and
fP are the cooperative detection and false alarm probabilities of the majority voting 

scheme when DSND based GA mechanism is used to detect the licensed user spectrum. 

5.2.3 Simulation Results of the DSND based GA scheme 

For simulation purposes, parameters are set for the cognitive radio network with total 10 

cooperative users. Out of the total M users in cooperation, 6 users are selected as honest SUs and 

4 of the users as AYMU, ANMU, OMU and ROMU. The SNRs varies from -20 dB to 10 dB. 

The sensing time is taken as 1 ms and number of samples K in each sensing interval is selected 

270. The number of sensing iterations are considered 100 and sensing intervals during which 

ROMU act maliciously are selected randomly from 1 to N . Similarly, a crossover locus point is 

randomly selected from 1 to ( 1)M  . The crossover and mutation operation is observed for 10 

cycles. Performance of the system is verified and checked by keeping the number of OMU, 

ROMU, AYMU and ANMU users same. The sensing population size of the GA is selected 

0N M with 0N is the total number of chromosomes, selected as 16 in this study, which shows 

the sensing history information for the M SUs. 

Simulation results collected shows the ROC curve of the proposed method along-with EGC and 

simple majority voting decision. Probability of detection against probability of false alarm and 

probability of miss detection versus probability of false alarm is shown in Figure 5. 3 and Figure 

5. 4, respectively. The proposed majority voting with prior identification of MUs using DSND 



107 

 

followed by crossover and mutation regarding the PU status is giving sophisticated detection 

results against EGC and simple majority voting schemes. Probability of detection and probability 

of miss detection results in both the cases when MUs are taken into account and the one without 

the consideration of these MUs are drawn. In both cases detection and false alarm results of the 

proposed scheme is outperforming the simple majority voting and EGC with almost same 

probability of false alarm. 

 

Figure 5. 3 Probability of Detection vs. Probability of False Alarm for the proposed voting, 

EGC, voting without MUs and simple voting schemes  

 

Results for the probability of detection and probability of miss-detection are obtained against the 

SNRs in Figure 5. 5 and Figure 5. 6, it is clear to see improvement in the detection and miss-

detection results with an increase in SNR. In both Figure 5. 5 and Figure 5. 6 results of the 

proposed majority voting scheme are suitable against EGC and simple majority voting scheme 

even when MUs are included in majority voting CSS. 
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Finally, the probability of error ( )eP results vs. SNR is drawn between the simple majority voting, 

Proposed DSND based GA and EGC 

 

Figure 5. 4 Probability of Miss Detection vs. Probability of False Alarm for the proposed voting, 

EGC, voting without MUs and simple voting schemes 

 

Figure 5. 5 Probability of Detection vs. Signal to Noise Ratio for the proposed voting, EGC, 

voting without MUs and simple voting schemes 
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Figure 5. 6 Probability of Miss Detection vs. Signal to Noise Ratio for the proposed, EGC, 

voting without MUs and simple voting schemes 

 

Figure 5. 7 Probability of Error vs. Signal to Noise Ratio for the proposed voting, EGC, voting 

without MUs and simple voting schemes 

 The graphical results in Figure 5. 7 shows that the probability of error of the proposed scheme is 

below the simple majority voting and EGC schemes at the same level of SNR. 
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It is clear from the simulation results that the combination of DSND with GA followed by the 

majority voting hard fusion scheme makes the performance of CSS more authentic and valid in 

the presence of AYMU, ANMU, ROMU and OMU. 

5.3 Data Model for majority voting GA scheme 

Model of the proposed CSS is shown in Figure 5. 8. SUs sense the licensed channel and take a 

local decision to forward either 1H or 0H decision to the FC. The rule of FC is divided into two 

parts. First, it collects local spectral observations from all SUs and applies GA using one-to-

many hamming distance along with z-score as a total outlier factor for determining the fitness of 

all sensing reports. The final sensing selection is made for the sensing report with minimal total 

outlier score results at the end of desired iterations. In the second part it uses majority voting 

hard decision fusion (MV-HDF) scheme to declare the final status of the PU channel based on 

the selection results of the GA. 

5.3.1 Local Spectrum Decisions 

Based on the hard binary sensing decisions by all users in equation (5. 1), FC collects their local 

sensing reports and form a reporting matrix as below: 

, 1,..., , 1,...,ijy i N j M    Y
 

(5. 20) 

WhereY is a population matrix of size N M containing the hard binary decisions at the FC by 

all M users in the N sensing reports of the PU channel. The population is built for both the NSUs 

and MUs. Furthermore, GA is used as a tool for minimizing the SSDF effects of MUs and any 

imperfections by the normal SU (NSU) in the following section. 
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5.3.2 Best sensing report selection using GA 

On the basis of all the sensing information of SUs during each sensing interval as above, FC 

further utilizes GA for determining the best sensing results out of the local decision reports 

provided by all SUs for taking out a global decision. 

 

Figure 5. 8 GA based CSS Flowchart. 

FC determines absolute differences of the
thj user sensing with the average sensing energy 

reported by all other SUs based on the result in equation (5. 20). Average of all SU decisions is 

calculated by neglecting the
thj SU results in the thi sensing interval to find out the impact of not 
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including this particular user in the collective sensing result. A similar procedure is followed for 

the reports of all M users in the N sensing interval as: 

11 12 1

21 22 2

1 2
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m m m

m m m

m m m

 
 
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 
 

   



A
 

(5. 21) 

                                          where 
1

1

M

ij ijj

ij

y y

m
M



       
  

 
  



  

 

In equation (5. 21)
ijm is the average value of energy reports of all other SUs in the thi sensing 

interval while keeping away the sensing results of the
thj SU out of the average measurement. 

The PU spectrum reports of the MUs are different from the NSUs, therefore taking these MUs 

out during each sensing interval is generating dissimilar averaging results for the OMU, ROMU, 

AYMU and ANMU compared with NSUs. 

5.3.2.1 Outlying using One-to-many sensing distance 

To figure out how much the individual sensing results of each SU " "y are behaving differently 

from the average sensing results " "m of all other users. Outlying factors are determined for the 

sensing reports of SUs based on the one-to-many sensing distances
1 ( )j io for the

thj user in the thi

sensing interval as:  

1 ( ) , 1,..., , 1,...,j ij iji y m i N j M   o
 

(5. 22) 

Based on the results in equation (5. 22) the outlier score
1 ( )j io of the NSUs and MUs are added to 

discover the total one-to-many hamming distance score under each sensing interval as: 
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 1 1

1
( ) , 1,...,

M

i jj
i j M


 o o

 
(5. 23) 

Where 1

io  in equation (5. 23) is the total outlier score representing the absolute sum of the 

hamming distances of the individual user detection
ijy with the average detection

ijm of all other 

SUs. 

The calculations in equation (5. 23) are made for all the N intervals and results are collected as: 

1 1 1 1

1 2 ... N
   o o o o

 
(5. 24) 

Here 1o in equation (5. 24) is the outlier score result for all the N sensing intervals. This score is a 

measurement of how far the report of each SU is lying away from the average sensing reports 

provided by all other SUs by making separable those sensing intervals during which MUs and 

the imperfection of the NSU were misguiding the FC‟s final decision about the PU channel. 

5.3.2.2 Outlying using z-score 

Similarly, the other outlier score measurement for each user report is made with the help of the z-

score measurement in comparison with the sensing report received from each SU as: 

 
2

( )
( ) , 1,..., , 1,...,

( )

ij

j

y i
i i N j M

i






  o  

(5. 25) 

Where
1

( )
M ij

j

y
i

M



  is the mean value of the sensing reports of all M users in the thi sensing 

interval.
 

2

1
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M

ijj
y i

i
M



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




is the standard deviation of the thi interval reports and
2 ( )j io is 

the z-score outlying of the
thj user report in the thi interval of the historical formation. 
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The result for
2 ( )j io

 
in equation (5. 25) shows how much local sensing observation of the

thj user 

is detached away from the group observations provided by all other users using z-score.  

Now for guaranteeing the authenticity of each of the thi reports, a sum of the z-score results for all 

intervals is made as: 

 2 2

1

( ) , 1,...,
M

i j

j

i i N


 o o
 

(5. 26) 

The total 2
o score result for all N sensing reports are collected as: 

2 2 2 2

1 2 ...
T

N
   o o o o

 
(5. 27) 

 

As fitness function is the representation for the suitability of each sensing reports, the final 

selection of the fitness of each sensing reports from both the NSU and MU reports is determined. 

The best selection results having less abnormal behavior on behalf of the NSU and MU users are 

calculated. 

In order to select the best sensing reports received from the normal and MUs, fitness function is 

calculated based on the result in equation (5. 23) and equation (5. 26) as: 

 1 2( ) i ii  f o o
 

(5. 28) 

The result of equation (5. 28) is able to make clear separation between reports under the 

predominant impact of MUs and NSU malfunctioning from the one containing less effect of 

these abnormalities. The fit chromosomes in equation (5. 28) are allowed to pass through 
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heredity, while the unhealthy chromosomes with higher abnormalities deceased due to the 

natural phenomenon of the survival of the fittest. 

The sensing results inY with the minimum  total outlier score in equation (5. 28) are selected as 

the best chromosome and considered to be accurate sensing information on behalf of the NSU 

and MUs. The top chromosomes based on the fitness results in equation (5. 28) are selected as 

the parent chromosomes and crossover operation is performed in the rest to determine new 

offsprings. 

The crossover operator randomly selects a locus and exchanges the sub-sequences before and 

after that locus between two parent chromosomes to build a pair of children. A crossover point is 

randomly selected here in this thesis. The fitter chromosomes are more likely to be passed on to 

the next generation. The population is then sorted in ascending order of fitness values. 

The process of mutation represents a random change in the bit values of the gene. The mutation 

operation is performed on the sensing information of the least fit chromosome. Genome bits of 

the least fit chromosome are inverted after random selection. 

After the random mutation of genome bits and crossover operation, a new population matrixY is 

obtained and the same procedure as in equations (5. 22) to (5. 27) is repeated for the 

determination of best fitness which results in new values of the fitness function as in equation (5. 

28). After achieving the desired iteration criteria, the sensing reports ( )jy b with minimum outlier 

score in equation (5. 28) is selected for a global decision.  

A flowchart diagram with detailed operation of the proposed scheme from local binary decisions 

by the SUs following by the data collection at the FC and GA operation for the identification of 

best sensing reports selection on behalf of NSUs and MUs is shown in Figure 5. 8.  
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5.3.3 Counting rule as Hard decision Rule at the FC 

After the selection of best sensing reports ( )jy b inY with minimal outlier value as in equation (5. 

28), FC applies one of the hard fusion combination schemes to take a global decision of the 

primary user status. The three most commonly used hard fusion schemes applied by the FC are 

the voting rule, OR and AND rules. 

The voting rule decides about the PU activity based on the voting of K SUs decision out of total

M cooperative users. If K out of M users decides that a signal is present, then FC takes a global 

decision 1H . Here M is the number of cooperative SUs and K is the count of how many of the 

SUs have reported PU signal presence. The count 2K M  is selected as a special case of the 

voting rule called the majority decision rule. Similarly, in the majority voting decision if the PU 

detection reports are less than K then FC takes the global decision as 0H  
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  


 

(5. 29) 

While applying AND rule by the FC, all the M SUs has to provide a unanimous decision of the 

PU presence, then the FC declares the channel as occupied by the PU and generate a global 

decision as 1H representing the PU signal, otherwise decision 0H is made by the FC as: 
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(5. 30) 
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On following the OR rule procedure by the FC during each sensing interval if at least one of the 

SUs provide local detection information to the FC, then FC decides a global decision 1H , 

otherwise decision is made in favour of 0H  
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(5. 31) 

The results of the cooperative detection and false alarm probability for the voting rule based on 

the local detection of all the M SUs is demarcated at the FC as  [22]: 
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(5. 32) 

Here FC declares a global decision as ( ) 1BG i  of the PU status if K out of total M SUs are 

reporting in favour of 1H . The majority voting decision is taken as a special case of the voting 

rule with / 2K M . Both OR and AND rules are also special cases of the voting rule with 1K 

for the OR and K M for the AND category of the hard combination schemes.  

Similarly, the results of the cooperative detection and false alarm probabilities for the OR and 

AND rules are as given below: 
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(5. 33) 
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(5. 34) 

where
_d ORP and

_f ORP are the cooperative spectrum detection and false alarm probabilities, 

respectively while applying OR rule, while
_d ANDP and

_f ANDP are the detection and false alarm 

results, respectively when AND hard fusion scheme is applied. A pseudo code demonstrating a 

procedure of the proposed scheme is given below. 

For 1k  to sensing limit 

For 1i  to iterations 

For 1j  to total SUs 

If ( )jE i Threshold  

( ) 1jy i  , hard decision “1” 

Else 

( ) 0jy i  , hard decision “0”. 

End 

End 

For 1j  to total SUs 
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Crossover the new population 

Randomly mutation of the least fit 

End iterations 

Best sensing sample ( )jy b out of Y  

If 
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Global decision 
1( )BG i H  
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Else 

Global decision 
0( )BG i H  

End 

End sensing limit 

 

5.3.4 Simulation Results of the majority voting GA scheme 

For simulation purposes cognitive radio network parameters are set with total M cooperating SUs 

including NSUs, MUs and FC. Out of the M users, 4 users are selected as AYMU, ANMU, 

OMU and ROMU nature of MUs. Performance of the proposed and other schemes is tested 

under various simulation conditions. At first the total number of cooperating SUs is taken as 12 

at different average SNR values (-9.5 dB, -13.5 dB, -15.5 dB). In this study MUs were observed 

under low and higher SNR values compared with NSUs. In the second part the simulation is 

done for the proposed and all other schemes at different ratios of cooperative SUs with 8, 12 and 

16. The sensing time is taken as 1 ms and the number of samples M in each sensing interval is 

270. The total number of sensing iterations is taken as 1000. The sensing intervals during which 

ROMU perform a malicious act is selected randomly from 1 to 1000.The crossover points for the 

GA is randomly selected from 1 to M . The crossover operation in the chromosomes and the 

production of new offspring is observed for 10 cycles. MUs are equally distributed as OMU, 

ROMU, AYMU and ANMU. The GA population consists of 10N  chromosomes with a total 

of M number of SUs in each chromosome. The GA population represents the sensing information 

of the M users in the N trials.  

The simulation results collected in Figure 5. 9-5. 12 show the ROC curves for the GAMV-HDF, 

MV-HDF, EGC-SDF and MGC-SDF schemes. The results collected in Figure 5. 9 and Figure 5. 

10 shows that as the average SNR raises from -17.5 dB to -9.5 dB, the ROC curves of all fusion 
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schemes enhance. In Figure 5. 9 cooperating users are kept 12 and simulation is done for the 

proposed GAMV-HDF, MV-HDF, EGC-SDF and MGC-SDF at different average SNRs. In this 

part of the simulation MUs are observed with low SNR values compared with normal 

cooperating SUs. The results demonstrate that the proposed scheme has improved ROC results at 

all average SNR values. This is followed by the MGC-SDF, EGC-SDF and simple MV-HDF 

schemes. The outcomes in Figure 5. 10 shows the ROC results against different average SNR 

values for a total of 12 cooperative SUs with malicious behaviour changed for the abnormal SUs. 

In this part MUs are taking higher SNR values compared with normal cooperating SUs. In Figure 

5. 10 when MUs are having higher SNR values compared with normal cooperating SUs, the 

results of the EGC-SDF and MGC-SDF is getting worse among all schemes. The proposed 

method has improved performance at all values of SNR in Figure 5. 10 compared with other 

combination schemes. 

Similarly, Figure 5. 11 and Figure 5. 12 show probability of detection versus probability of false 

alarm under -10.5 dB average SNR value. In Figure 5. 11 the system is tested against 8, 12 and 

16 cooperative SUs with low SNR by MUs compared with NSUs while in Figure 5. 12 the 

system was observed when MUs participate with higher SNR values against the NSUs. It is clear 

of the results in Figure 5. 11 and Figure 5. 12 that cooperation has resulted in improved 

performance for all fusion schemes with the increased number of cooperative stations from 8 to 

16. 
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Figure 5. 9. Probability of Detection vs. Probability of False Alarm (ROC) at different SNR 

values (-9.5 dB, -13.5 dB, -17.5 dB) with MUs having low SNR compared with NSUs for the 

MV-HDF, EGC-SDF, MGC-SDF and GAMV-HDF schemes. 

 

Figure 5. 10. Probability of Detection vs. Probability of False Alarm at different SNR values (-

9.5 dB, -13.5 dB, -17.5 dB) with MUs having high SNR compared with NSUs for the MV-HDF, 

EGC-SDF, MGC-SDF and GAMV-HDF schemes. 

The proposed GAMV-HDF method in Figure 5. 11 are able to surpass all other schemes in this 

low SNR situation of MUs. In case of higher SNR participation from MUs compared with NSUs 
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as in Figure 5. 12, ROC results of the MGC-SDF is weak under all 8, 12 and 16 total number of 

cooperating SUs cases when MUs taking higher SNR values. The simple MV-HDF is able to 

produce improved ROC performance in comparison with EGC-SDF and MGC-SDF schemes in 

Figure 5. 12. 

Results for the probability of detection are obtained against the varying SNR values in Figure 5. 

13 and Figure 5. 14 at different ratios of cooperating SUs. In Figure 5. 13 detection results are 

collected when MUs are observed with low SNR and in Figure 5. 14 with higher SNR values for 

MUs compared with normal cooperative users. It is good to see development in the detection 

results for the proposed GAMV-HDF scheme with increasing SNR in both results. Figure 5. 13 

shows that when MUs have a low SNR compared with normal SUs proposed method has better 

detection results at all SNRs and all cases of 8, 12 and 16 cooperating users. The proposed 

method detection results are followed by the MGC-SDF and EGC-SDF schemes at different 

contributions of 8, 12 and 16 cooperating users, while the detection results obtained for the 

simple MV-HDF scheme is the lowest of all in Figure 5. 13. In Figure 5. 14 when MUs have 

higher SNR values the propose method detection results is less vulnerable. The simple MV-HDF 

is able to surpass both the EGC-SDF and MGC-SDF schemes at all values of SNRs and different 

ratios of cooperating SUs. 

Finally the probability of error results of the PU detection is shown in Figure 5. 15 and Figure 5. 

16. The result shows minimum error in the proposed GAMV-HDF scheme against the simple 

MV-HDF, EGC-SDF and MGC-SDF schemes. In both Figure 5. 15 and Figure 5. 16 results are 

drawn with a total of 8, 12 and 16 users under low SNR observed in Figure 5. 15 and with higher 

SNR in Figure 5. 16.  
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Figure 5. 11. Probability of Detection vs. Probability of False Alarm at different ratio of 

cooperating SUs (8, 12, 16) with MUs having low SNR compared with NSUs for the MV-HDF, 

EGC-SDF, MGC-SDF and GAMV-HDF 

 

 

Figure 5. 12. Probability of Detection vs. Probability of False Alarm (ROC) at different ratio of 

cooperating SUs (8, 12, 16) with MUs having high SNR compared with NSUs for the MV-HDF, 

EGC-SDF, MGC-SDF and GAMV-HDF schemes. 
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Figure 5. 13. The Probability of Detection vs. Signal to Noise Ratio at different ratio of 

cooperative SUs (8, 12, 16) with MUs having low SNR compared with NSUs for the MV-HDF, 

EGC-SDF, MGC-SDF and GAMV-HDF schemes. 

 

 

Figure 5. 14 The Probability of Detection vs. Signal to Noise Ratio at different ratio of 

cooperative SUs (8, 12, 16) with MUs having high SNR compared with SUs for the MV-HDF, 

EGC-SDF, MGC-SDF and GAMV-HDF schemes 
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Figure 5. 15. Probability of Error vs. Signal to Noise Ratio at different ratio of cooperative SUs 

(8, 12, 16) with MUs having low SNR compared with NSUs for the MV-HDF, EGC-SDF, 

MGC-SDF and GAMV-HDF schemes. 

 

 

Figure 5. 16. Probability of Error vs. Signal to Noise Ratio at different ratio of cooperative SUs 

(8, 12, 16) with MUs having high SNR compared with NSUs for the MV-HDF, EGC-SDF, 

MGC-SDF and GAMV-HDF schemes. 
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The proposed scheme is able to produce less detection error in terms of sensing the licensed user 

channel followed by the MGC-SDF scheme in Figure 5. 15. Furthermore, the simple MV-HDF 

scheme has resulted in high probability of error in Figure 5. 15. From the results in Figure 5. 16 

when MUs have higher SNR values as compared with NSUs, the error probability of the MGC-

SDF and EGC-SDF increases compared with simple MV-HDF and proposed GAMV-HDF 

method. The MGC-SDF performance degrades in this case because MGC-SDF is giving higher 

preference to the detection of SUs with higher SNR information. As MUs are considered with 

higher SNR, therefore MGC-SDF decision about the PU channel is strongly misguided by the 

MUs. Similarly, EGC-SDF performance is also affected by the higher SNR of the MUs because 

it is equally considering the reported information of all SUs for a global decision. 

It is clear from these simulations that the use of GA followed by the MV-HDF scheme makes the 

performance of CSS more authentic and valid in the presence of MUs at various numbers of 

cooperating SUs and SNR ratios. 

The harmful risk of AYMU, ANMU, ROMU and OMU user participation in CSS is reduced 

with the usage of the recommended technique. From the graphical results of the proposed 

scheme, simple MV-HDF, EGC-SDF and MGC-SDF schemes it is clear that the cooperation 

process turn out to be more solid and systematic by following the proposed methodology. 

5.4 Data Model for PSO based scheme 

PSO is derived from the bird flocking or fish swarming, and was introduced by Eberhart and 

Kenedy in 1952. In PSO, individual intelligence as well as collective intelligence plays a role in 

finding an enhanced solution. In the GA, it is likely that every novel group is flourishing better 

than the previous generation. Similarly, in the PSO the same group is likely to become better and 
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better. In PSO each individual establishes his local intelligence and improves it with time. The 

whole group is expected to improve upon its group intelligence. Particles in PSO algorithm 

utilizes its own and neighbor knowledge to update their velocity and position. The PSO particle 

exchange information about their best position among each other during a number of iterations. 

The proposed CSS model using PSO is in Figure 5. 17. In this model SUs senses the licensed PU 

channel, and forward their local energy statistics information to the FC for a number of 

observations to form a PSO population. FC then applies the PSO method for identifying that 

sensing report, which has a better resemblance with the actual status of the PU transmission 

activity. The decision center measure the fitness score under all sensing iterations and declare the 

minimum total outlying score particle as the actual channel information of the PU for a final 

decision. Fusion combination schemes are applied by the FC, based on the selected global best 

particle of the population to generate a more accurate and reliable final decision of the PU 

channel. 

5.4.1 Local Spectrum decisions 

FC receives the soft energy reports of all users and form a history matrix consisting energy 

statistics observed by each user during the 0N sensing intervals as below: 
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(5. 35) 

Where
ijE is the energy information of the

thj SU in the thi  interval. Spectrum sensing information 

is gathered in the FC database for all M SUs including both normal and malicious users. 
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The sensing falsification effects of the MUs as discussed are minimized using the following steps 

of the proposed method. 

 

Figure 5. 17 PSO based CSS Model. 

 

5.4.2 Finding the fitness of particles 

After the collection of energy information from all M SUs for the 0N sensing intervals as in 

equation (5. 35), FC modifies the particle positions to observe the differences in each individual 
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sensing report with the reports provided by all other SUs. A new population is formed on behalf 

of all users based on the information already collected in equation (5. 35) as below: 
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Here ijE '
is the average of the individual soft energies reports provided by all other users while 

taking out the report of the
thj user in this averaging. 

5.4.2.1 Outlying using one-to-many sensing distance 

In order to determine how much individual sensing reports of each SU is behaving differently 

from the average sensing results, an outlying factor is measured based on the one-to-many 

sensing distance ( )j id for the
thj user in the thi sensing particle as: 

'

0( ) , 1,..., , 1,...,j ij iji E E i N j M   d

 

(5. 37) 

Based on the results in equation (5. 37) the outlier score ( )j id of the normal SUs and MUs are 

added to discover the total one-to-many hamming distance score under each sensing interval 
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(5. 38) 
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Where id  in equation (5. 38) is the total outlier score representing the absolute sum of the 

hamming distances of the one individual SU detection" "ijE with the average detection ijE '
of all 

other SUs in the thi sensing interval. 

The measurement in equation (5. 38) is made for all the 0N intervals and results are collected as: 

01 2 3 ...
T

Nd d d d   d

 

(5. 39) 

Here d is the outlier score result for all the 0N sensing intervals. This score is a measurement of 

how far, the report of each SU is lying away from the average sensing reports provided by all 

other SUs by making separate those sensing intervals during which MUs and the imperfection of 

the normal SU were misguiding the FC final decision about the PU channel. 

5.4.2.2 Outlying using z-score 

Similarly, the other outlier score measurement for each user report is made with the help of the z-

score measurement in comparison with the sensing report received from each SU as: 
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
is the mean and ( )i is the standard deviation of the thi particle in the PSO 

population. ( )jo i is the z-score outlying of the
thj report in the thi interval of the historical 

information. The result of ( )jo i
 
in equation (5. 40) shows how much local sensing observation of 
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the
thj user is detached away from the group observations provided by all other users using z-

score. 

Now for guaranteeing the authenticity of each of the thi reports, a sum of the z-score results for all 

particles is made as: 
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(5. 41) 

The total z-score of all 0N PSO particles of the PSO population are collected as: 

01 2 3 ...
T

No o o o   o

 

(5. 42) 

As fitness function is the representation for the suitability of each sensing reports, the final 

selection of the fitness of each sensing reports from both the normal SU and MU is determined 

and the best selection of the sensing results having less abnormal behavior of the cooperative 

SUs is calculated. 

The suitability criteria for the selection of particles of the PSO according to their fitness values 

are declared according to equation (5. 39) and equation (5. 42) as: 

 ( ) i ii  f d o

 

(5. 43) 

The result in equation (5. 43) shows the minimum score of the sensing reports containing fewer 

abnormalities in comparison to those reports that are badly affected due to the abnormal behavior 

of the MUs. 
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5.4.3 Update Population 

The global best position " "g  is the particle in E which results in a minimum outlying score 

among all particles according to equation (5. 43). Each particle may improve on its own if its 

new version improves compared to the previous one. Local best particles of the population are 

selected as P = E . 

The positions and velocities of the particles are initially set to zero. The particle velocities are 

further updated with individual and collective intelligences as: 

   ( 1) 1 1 2 2i j ij ij ij j ijV V C R P E C R E         g

 

(5. 44) 

Here 1C and 2C are the learning acceleration coefficients used to describe individual and social 

contributions of each particle, 1R  and 2R are uniformly distributed random numbers in the range 

“0” to “1” which present stochastic component to the algorithm. 

After calculations of velocities for each particle with the local and global intelligence of the 

particles, these velocities are rounded to the two extremes as: 
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(5. 45) 

The
thj particle position representing the soft energy information at the ( 1)thi  iteration is updated 

with the measured velocities just as: 

   1 1iji j i j
E E V

 
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(5. 46) 
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Where
( 1)i jE 

are the reports of the modified population, 
ijE is the initial report of the

thj user in 

the thi interval and 
( 1)i jV 

are the measured velocities in equation (5. 46). 

5.4.4 Update local best and global best 

Fitness values for the new population in equation (5. 46) are determined by following the same 

procedure as in equation (5. 43). 

Fitness values of the novel particles are compared with the fitness values of the previous 

population to search for the local best and global best positions to determine any improvements 

in the updated energy reports in comparison with earlier energy reports. The local best positions 

of the population are updated as: 
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(5. 47) 

In equation (5. 47) results of the local best particles are updated by comparing the fitness of the 

new population equation (5. 46) to that of the local best particles “ P ” fitness. The local best 

particles are updated and take the values of the new population if it gives highest outlying results 

according to equation (5. 43) as compared to the newly created population. 

Similarly, a search is made to identify new global best particle for the entire population by cross 

analysis of the fittest. Fitness of the updated local best particles as in equation (5. 47) is placed 

for comparison in order to search for any improvement in the selection of the global best particle 

as follows: 
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(5. 48) 

In equation (5. 48), outlying score of each particle from the local best population is compared 

with the global best particle determined earlier. If any particle of the local best population has a 

fitness function found to be more optimum in comparison with the global best particle with the 

minimum outlying score as in equation (5. 43), then global best particle is replaced by that 

particle. 

Here the new global best particle is selected as “ g ” representing particle with the best fitness 

function having minimum outlying results in the current and previous PSO population. 

The PSO production of the new population and search of the global best results continues until 

the stopping criterion is met. At the end of desired number of iterations, the final global best 

particle containing soft energy reports made by all M cooperative SUs is elected for a final 

decision by the FC about the PU channel. 

5.4.5 Global decision of the licensed channel 

Based on the final selection of the global best particle ” g ” as the soft energy reports on behalf of 

all M cooperative SUs, FC utilizes soft and hard fusion combination schemes as in section 2 for 

declaring a unanimous decision about the license user spectrum. The EGC, MGC and majority 

voting hard fusion combination schemes are used as a decision criterion in this section. 

The EGC is combining the individual statistical information of all SUs by giving equal weight to 

each individual SU decision and summed coherently. The summed is compared with the 

threshold to decide the license user spectrum by the EGC as: 
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(5. 49) 

The cooperative detection and false alarm probabilities
_d EGCP and

_f EGCP made by the EGC 

scheme based on the global decision made about the PU spectrum are as: 
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(5. 50) 

In MGC scheme, each receiving signal branch is multiplied with a weighed function proportional 

to the branch gain. Branches with strong signal are further amplified while weak signals are 

attenuated by these weights. The idea to boost the strong signal component and attenuating weak 

components as in MGC diversity is exactly the same as that of filtering and signal weighting in 

the matched filter receiver. Similarly, the MGC scheme at the FC is giving higher weights to the 

decision of the SUs with higher SNR values and low weight to the decision of SUs with low 

SNR values as: 
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(5. 51) 
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The cooperative detection and false probabilities of the MGC scheme are measured based on the 

soft energy received as: 
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(5. 52) 

In the count fusion combination schemes, FC counts the total number of SUs with their energy 

value greater than the threshold as:  
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(5. 53) 

The three most commonly used HFC schemes are the majority voting, OR and AND fusion 

schemes. In the count HFC scheme a unanimous decision on the PU existence is made if k out of 

total M SUs make a decision of the PU detection with their energies larger than a threshold. FC 

declares a final decision of the PU channel as 1H if k SUs reported about the PU existence. 

Similarly, if the number of SUs with PU detection information is less than k then the decision is 

made in favor of 0H to declare an idle condition of the license channel. The counting score ” k ” is 

taken as “1” for the OR fusion rule and “ M ” for the AND rule. In the study of the proposed 

work, the majority voting scheme is selected with
2

M
k  . M is the total number of SUs reports 
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forwarded to FC for PU detection. In the majority voting scheme, if half cooperative users have 

decided in favor of 1H , global decision is made as 1H , otherwise decision is made in favor of 0H . 

The detection and false alarm probabilities of the majority voting decision based on the best 

selection of the PSO at the FC are as follows: 

_ 1
1

_ 0
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(5. 54) 

Where
_d MVP and

_f MVP are the results of cooperative detection and false alarm probabilities of 

the majority voting when PSO is used as a detection mechanism for sensing the licensed user 

spectrum. 

5.4.6 Simulations Results of the PSO scheme  

For simulation purposes, parameter setting is made for the cognitive radio network with total

11M  cooperating SUs. Out of the total M cooperating users 7 of the users are selected as 

honest SUs and 4 of them are randomly selected as AYMU, ANMU, OMU and ROMU 

malicious users. Variation in the SNR for the SUs is made in the range of -30 dB to -2 dB. The 

sensing time is kept as1ms for each SU with total 270K  samples in each sensing period. The 

number of sensing iterations N is considered as 100. Sensing intervals during which ROMU 

perform a malicious act is selected randomly from 1 to N . The performance of the system is 

verified and checked by distributing equally the MUs as OMU, ROMU, AYMU and ANMU. 

The sensing reports of the SUs are accumulated into the PSO population of size 0N M with 

total 0N number of particles representing sensing information of all M cooperating SUs.  
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In the first part of the simulation as in Figure 5. 18, results are drawn to compare the 

performance of EGC, MGC and majority voting hard fusion combination schemes. In this part of 

the simulation first all the MUs are selected as AYMU and then as ANMU users. From the 

simulation results in Figure 5. 18 it is obvious to see an improvement in the detection results of 

the PSO based EGC, MGC and majority voting schemes against traditional combination 

schemes. The cooperative system performance experienced under all AYMU and all ANMU is 

more optimized and suitable for the proposed PSO based soft and hard combination schemes. It 

is also observable from the graphical results that the detection response of the CSS in both the 

cases when only AYMU and the one with only ANMU users were taken into considerations is 

identical. The equal consideration of AYMU and ANMU user situations are similarly treated by 

system with almost identical probability of detection ( dP ) for a given false alarm (
fP ). The 

graphical results in Figure 5. 18 shows the higher ROC results for the PSO based MGC scheme 

followed by the EGC while the majority voting hard fusion combination presented is producing 

less detection results compared with other two schemes. It is also obvious from Figure 5. 18 that 

both the PSO based soft and hard fusion combination schemes are able to outperform the simple 

MGC, EGC and hard fusion combinations for any given value false alarm.  

In the second part, authenticity of the system is verified by comparing the results of the proposed 

PSO based soft and hard combinations with traditional schemes. In this case, first all MUs were 

selected as OMU and then all of them were taken as ROMU. From the simulation results, it is 

clear to see that the detection results for MGC scheme is higher compared with its EGC and 

majority voting counterparts. The ROC plots of the schemes are shown in Figure 5. 19 for the 

traditional fusion schemes and proposed PSO based fusion schemes. The plotted results of all the 

three schemes under proposed and traditional method show the reliability of the PSO based 
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combination technique against the traditional method. In Figure 5. 19, ROMU is affecting the 

cooperative sensing environment more hazardously unlike OMU and show that the ROMU 

presence is more dangerous. The proposed scheme is superseding the traditional fusion 

combination schemes in both OMU and ROMU considerations. 

 

Figure 5. 18 Probability of Detection vs. Probability of False Alarm for the Hard, EGC, MGC, 

PSO-Hard, PSO-EGC and PSO-MGC schemes in the presence of AYMU and ANMU malicious 

users. 
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Figure 5. 19 Probability of Detection vs. Probability of False Alarm for the Hard, EGC, MGC, 

PSO-Hard, PSO-EGC and PSO-MGC schemes in the presence of OMU and ROMU malicious 

users. 

In the third part of the simulation results, the performance of the traditional and proposed PSO 

based fusion combination schemes is tested when malicious users are distributed equally as 

AYMU, ANMU, OMU and ROMU in Figure 5. 20. 

 

Figure 5. 20 Probability of Detection vs. Probability of False Alarm for the Hard, EGC, MGC, 

PSO-Hard, PSO-EGC and PSO-MGC schemes in the presence of AYMU, ANMU, OMU and 

ROMU malicious users. 

The lower three ROC plots in Figure 5. 20 show the performance of the traditional fusion 

schemes under the consideration of all 4 MUs, while the upper three ROC curves show the 

results of the PSO fusion combination schemes under the same parameter settings. The plots 

show an improvement in the detection performance of the PSO based fusion combination 

schemes compared with traditional combination schemes. It is also noticeable that the MGC 

fusion combination scheme is giving more sophisticated detection results compared with all 

other fusion schemes.  
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The performance of the proposed method is further verified by drawing probability of error ( eP ) 

results against average SNR values for the traditional and proposed PSO based fusion 

combination schemes in Figure 5. 21. The probability of error results in sensing the licensed user 

channel for the proposed scheme are less and with increased SNR values the proposed method 

error reduces more quickly as compared to the simple combination schemes. 

 

Figure 5. 21 Probability of Error vs. Signal to Noise Ratio for the Hard, EGC, MGC, PSO-Hard, 

PSO-EGC and PSO-MGC schemes in the presence of AYMU, ANMU, OMU and ROMU 

malicious users 

It is clear from the simulation results that with the use of PSO algorithm the sensing performance 

achieved by the proposed fusion combination schemes is more optimized and accurate in the 

presence of MUs. The best sensing report selection of the PSO following by soft and hard fusion 

combinations makes the CSS results more authentic and valid in the presence of MUs. The risk 

of considering AYMU, ANMU, ROMU and OMU users in CSS is significantly reduced with the 

use of the proposed method. 
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5.5 Summary 

The focus in part I, is to improve the majority voting hard combination scheme using GA in the 

presence of abnormalities. DSND algorithm is employed by the GA for the detection of 

abnormalities and then applies crossover and mutation operations to provide more verified 

information of the PU spectrum to FC. The FC further takes its global decision about the license 

spectrum using majority voting hard fusion decision. At the end FC is able to produce reliably 

and authentic PU detections in the presence of AYMU, ANMU, ROMU and OMU malicious 

users. 

The focus in part II is to improve the performance of CSS using GA. FC is taking sensed 

information from all cooperating SUs, including normal and malicious users, and combining 

them for a more concrete decision about the licensed user spectrum using MV-HDF with GA. 

The decision results of the MV-HDF are shaped more reliable with GA by identifying optimum 

sensing results with selection and crossover in the presence of MUs. 

Part III, based on the energy statistics received from all SUs, PSO is able to reduce the effect of 

the MUs in authenticating the global decision of the PU existence. FC combines the diversify 

sensing reports of all SUs using proposed EGC, MGC and the majority voting decision to take a 

global decision of the licensed user spectrum. The PSO scheme is able to overcome the effects of 

OMU, ROMU, AYMU and ANMU categories of MUs followed by soft and hard combinations 

to decide accurately. Simulation results reflect the superiority and authenticity of the proposed 

scheme in producing more accurate and reliable decisions for both soft and hard fusion 

combination schemes at the FC. 
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Chapter 6 

Statistical methods against malicious users in cooperative spectrum 

sensing 

 

6.1 Introduction 

In this chapter, we employed statistical techniques to detect and evade MU out of the FC global 

decision. The chapter is divided into two parts. In part I, the FC collects local binary decisions of 

the cooperative SUs until the establishment of enough statistics. Correlations are calculated 

between the sensing information of individuals and other SUs. The BWP is used for identifying 

MUs and omitting them from the AND-HFC, OR-HFC, and MV-HFC before taking any global 

decision of the legitimate user spectrum. In part II, OTMSD and ZS measurements are used by 

the HT to detect the AYMU, ANMU, OMU and ROMU at the FC. In this part, ROC comparison 

is made between the proposed EGC using OTMSD (EGC-OTMSD), EGC using ZS (EGC-ZS), 

MGC using OTMSD (MGC-OTMSD) and MGC using ZS (MGC-ZS) with the traditional EGC 

and MGC schemes at different historical levels of the reporting users, SNRs and total number of 

cooperative users. Results demonstrate effectiveness of the proposed soft combination schemes 

in comparison with the traditional combination schemes. 

6.2 Proposed Hard Fusion Scheme using Statistical Features 

In the proposed CSS, FC collects and combine spectrum sensing decisions of all individual SUs 

with its local decision as in equation (5. 20). WhereY is a local decision matrix of size N M , 
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which represents the sensing energies accumulated at the FC database by all SUs hard decisions. 

The value N is the total sensing intervals with M users, including normal, malicious and FC. 

Furthermore, correlation is used as a tool for the detection of harmful AO and RO users. 

Correlation is a statistical exercise that shows how intense the pair of testers are related to each 

other. Correlation ends with value 1 when both variables are in the opposite direction from 

perfect negative correlation to 1 with a strong correlation.  

When all SUs reports FC, the relation in the sensing decision of each SU is made with all other 

users, to determine any abnormal SU with its false data collected at the FC. The FC takes a 

global decision on the PU status and after enough statistic collection about each SU, it is able to 

easily identify and mitigate the effect of both AO and RO categories of MUs in the global 

decision by the following steps. 

6.2.1 Hard decision before system development 

In step first of the detection process FC collects and store spectrum information of the users for 

declaring the user as AO, RO and normal. Before the establishment of enough statistics about the 

users, FC apply one of the HFC schemes to take a global decision of the primary user status. The 

three most commonly used HFC schemes applied by FC are the MV-HFC, OR-HFC and the 

AND-HFC. 

The Voting rule decides about the PU signal based on the voting of K SUs decisions out of total

M users. If K out of M SUs decides that a signal is present, then FC declares the global decision

1H , where K  is the total count of how many of the SUs are in favour of PU presence. Here 

/ 2K M is selected as a special case of the voting rule called the majority decision rule. If the 

PU detection reports at the FC are less than K then FC takes the global decision as 0H  
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(6. 1) 

While applying AND-HFC rule by the FC, all the M SUs has to deliver a similar conclusion of 

the PU activity. The FC is able to declare the channel as occupied by the PU and generate a 

global decision 1H when all users report PU activity in the given spectrum. Similarly, the decision

0H is made by the FC to state the free condition of the PU spectrum when less than M users 

report about the PU activity in the given spectrum: 
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(6. 2) 

On following the OR-HFC rule procedure by the FC if at least one of the SU provide a local 

detection information of the PU to the FC, then FC decides 1H otherwise, the decision is made in 

favour of 0H as;  
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 (6. 3) 

Similarly, the results of the cooperative detection
,d MV HFCP 

and false alarm probabilities

,f MV HFCP 
for the MV-HFC rule based on the local detections of all M users is demarcated at the 

FC as  [22]: 
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(6. 4) 

Where the global decision 1Y  illustrates that the total detection reports of the M users is 
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exceeded K . As OR-HFC and AND-HFC rules are the special cases of the voting rule with 

1K  for the OR-HFC and K M for the AND-HFC category of the HFC. The cooperative 

detection and false alarm probabilities of the OR-HFC and AND-HFC rules are determined as 

below 

 
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(6. 6) 

Where
,d OR HFCP 

and
,f OR HFCP 

are the results of the cooperative detection and false alarm 

probabilities of the OR-HFC rule, while
,d AND HFCP 

and
,f AND HFCP 

are the detection and false alarm 

results when AND-HFC is applied. 

A detailed operation of the proposed scheme in the form of flowchart diagram representation is 

shown in Figure 6. 1. The FC collects local binary decisions of the cooperative SUs until the 

establishment of enough statistics about the SUs. Correlation measurements are made in the 

sensing information of the individual SUs with the sensing information received on behalf of all 

other SUs. The BWP is used for the identification of MUs and is taken out of the AND-HFC, 

OR-HFC, and MV-HFC before taking any global decision of the legitimate user spectrum. The 

global decision made by the FC is more similar to the actual condition of the PU activity 

resulting in maximum utilization of the available spectrum with minimum disturbances for the 

PU. 
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Figure 6. 1 Flow chart diagram representation of the proposed model. 

 

6.2.2 Statistical Results for the detection of AO and RO Secondary Users 

After the collection of spectrum sensing reports from all users by the FC, relation is determined 

in the spectrum sensing results of all users to identify abnormal sensing reports of the AO and 

RO users at the FC using the following steps. 

6.2.2.1 Variation in the sensing intervals 
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In the first step, FC measures differences in the sensing results provided by one user to all other 

users for a total of 0N sensing intervals. The average sensing measurement is made for all other 

SUs while ignoring sensing results provided by the
thj SU in the thi interval. The

thj user is 

neglected to determine the impact of not including this particular user in the combine sensing 

result. A similar measurement for all other SUs during each of the 0N sensing intervals is made 

as: 
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(6. 7) 

Where
ijV is a matrix of size 0N M with M total number of SUs and 0N is the total sensing 

intervals under which the system is building statistics. Value for
ijm is calculated as the collective 

energy reports of all SUs in the thi sensing interval while ignoring the sensing results of the
thj SU. 

The result obtained in equation (6. 7) for both the AO and RO users has a different response than 

normal SUs due to differences in their sensing information. Taking these MUs out of the average 

value in each sensing interval result in different results for MUs against the normal SUs. Now 

the difference in the sensing results of each individual SU
ijY is made with the average sensing 

reports
ijm measured on behalf of all other users as: 

ij ij ijD Y V  
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(6. 9) 
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WhereD  is a resultant difference matrix of size 0N M , which shows the difference in the 

energy reports of the
thj user

ijY , and the average sensing results
ijV of all other users in the thi

interval. 

6.2.2.2  Correlation as similarity tool 

The correlation method is applied to the variation results in equation (6. 9) to find a relation in 

the users sensing information. Correlation operation is performed between the sensing variations 

of each SU with all other SUs as: 
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(6. 10) 

In equation (6. 10) 
j kd dr  and

k jd dr  are correlation coefficients of the sensing variations between 

the
thj and thk user. The

ijd and ikd are variants of the
thj and thk user samples in the thi sensing 

interval, while
j and k are mean values of the variation samples for the

thj and thk user sensing 

reports in equation (6. 9) 
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(6. 11) 

All correlation results are collected in matrix R of size M M , which shows correlation in the 

differences of each SU with all other SUs. Total similarity score for each SU is determined by 

adding the correlation results of all M SUs as: 
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(6. 12) 

The result of the vector r is a1 M matrix, which shows the likeliness results of each SU with all 

other SUs. Values that are more negative in equation (6. 12) show dissimilarity of the sensing 

information of the user with the other users. The final correlation results make the behavior of all 

three categories of SUs dissimilar to each other. Correlation results of the AO and RO users 

largely deviate from the normal users and lie as an outlier in the result of equation (6. 12). The 

outlier values of MUs are further separated from the normally reporting users by using BWP 

method as. 

6.2.2.3 BWP for MUs identification 

A BWP is a simple way for the identification of outliers in any statistical data. It divides 

correlation values in equation (6. 12) into four equal parts. First, the result is made in ascending 

order and the median value is identified so that the data is divided into upper and lower half with 

the help of the median value. Lower and upper quartile values are calculated. An outlier in 

equation (6. 12) is a dispersal of data greater than 1.5 times the box away from either the lower 

or the upper quartile. The median value of vector r is determined as: 
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(6. 13) 

The first and third quartile values that contain 25
th

 and 75
th

 percentile of the data in equation (6. 

12) are denoted as 1

LowerQ and
3

UpperQ . The inter-quartile value for the range of the upper and lower 

quartile values is measured as: 
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(6. 14) 

Similarly, the settlements of the lower and upper limits for the detection of MUs are below: 

1

lim 1.5( )it LowerL Q IQR 
 

(6. 15) 
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(6. 16) 

After setting all parameters of the BWP, MUs are identified using the following criteria. 
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(6. 17) 

In equation (6. 17), a user is declared malicious if its correlation score is outside the lower and 

higher limits of the BWP. Table 6.1-6.3, shows a BWP results of the local sensing information 

provided  by each SU under different SNR values. The AO and RO user‟s present dissimilar 

sensing results of the PUs against the normal SUs and are easily identified and separated as MUs 

from the normal SUs category using BWP criteria in equation (6. 17). 

Table 6. 1. Box plot of correlation result under both AO and RO users 

SNR 

(dB) 

Min 1

LowerQ  Median 3

UpperQ  Max IQR Lower 

Limit 

Upper 

Limit 

-30 -0.1233 0.01559183 0.02097 0.023847 0.025981 0.008255 0.003209 0.03623 

-28 -0.1241 0.01502566 0.02049 0.022928 0.033197 0.007903 0.003172 0.034782 

-26 -0.1296 0.01767262 0.02225 0.026410 0.029608 0.008738 0.004566 0.039517 

-24 -0.1460 0.02419445 0.02566 0.030521 0.031995 0.006327 0.014703 0.040013 

-22 -0.1515 0.01600466 0.02709 0.031661 0.035777 0.015657 -0.00748 0.055146 

-20 -0.1768 0.0300924 0.03288 0.033382 0.038434 0.00329 0.025158 0.038317 

 

Table 6. 2. Box plot data of correlation results under AO users only 
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SNR 

(dB) Min 
1

LowerQ  Median 
3

UpperQ  Max IQR 

Lower 

Limit 

Upper 

Limit 

-30 -0.1187 0.027923 0.029733 0.033575 0.036673 0.005652 0.019445 0.042053 

-28 -0.1136 0.024431 0.029003 0.032603 0.038683 0.008172 0.012172 0.044861 

-26 -0.1143 0.023746 0.026274 0.033884 0.043767 0.010139 0.008538 0.049092 

-24 -0.1354 0.028492 0.035867 0.040777 0.041255 0.012285 0.010063 0.059205 

-22 -0.1442 0.03397 0.040021 0.042547 0.045457 0.008577 0.021104 0.055413 

-20 -0.1765 0.04133 0.048643 0.052537 0.061966 0.011206 0.024521 0.069346 

 

Table 6. 3. Box plot data of correlation results under RO users only 

SNR 

(dB) Min 
1

LowerQ  Median 
3

UpperQ  Max IQR 

Lower 

Limit 

Upper 

Limit 

-30 -0.0420 0.004687 0.00771 0.013285 0.020143 0.008598 -0.00821 0.026181 

-28 -0.0418 0.006307 0.009428 0.011756 0.016341 0.005449 -0.00187 0.019929 

-26 -0.0504 0.003967 0.010962 0.01545 0.021564 0.011483 -0.01326 0.032674 

-24 -0.0499 0.01026 0.01173 0.013742 0.018565 0.003482 0.005036 0.018966 

-22 -0.0572 0.007603 0.013448 0.017124 0.022818 0.009521 -0.00668 0.031406 

-20 -0.0672 0.009589 0.017555 0.019618 0.021469 0.010028 -0.00545 0.03466 

 

6.2.3 New Hard Fusion Decision 

The detection results of MUs and system maturity in the 0N sensing intervals leads FC to take a 

new hard decision in the subsequent sensing intervals.  

A new MV-HFC rule based on the sensing results of the normal cooperative users by taking the 

detected MUs out of the global decision is given below: 

11

0

: ( )

:

M

j j NEW
j MU

H y i K

H Otherwise






 
(6. 18) 
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Where NEWK is the new value of the MV-HFC criteria, based on the result of the normal SUs 

only. The FC decides in favor of 1H based on the normal users with their detections score greater 

than NEWK , otherwise, decision 0H is made by the FC.  

Similarly, the new AND-HFC rule is restricted to the condition based on the normal SUs reports 

as; 

11

0

: ( )

:

M

j j NEW
j MU

H y i M

H Otherwise






 
(6. 19) 

The new AND-HFC rule in equation (6. 19) shows that NEWM SUs has to provide PU detection 

information to the FC out of the M SUs to decide 1H , otherwise decision is made in favor of 0H . 

Here NEWM is the normal SUs participation in the global decision without any RO and AO user. 

A new criteria of the OR-HFC scheme after the identification and elimination of MUs at the FC 

is below 

11

0

: ( ) 1

:

M

j j
j MU

H y i

H Otherwise






 
(6. 20) 

Similarly, the results of the cooperative detection and false alarm probabilities
,d MV HFCC 

and

,f MV HFCC 
of the MV-HFC scheme after taking out MUs is measured as 
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 
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 
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


 

(6. 21) 

WhereY is the final decision made by the FC regarding the PU spectrum. As the OR rule take 

into account the value of 1NEWK  , hence 

 

 

, ,
1

, ,
1

1 1

1 1

M

d OR HFC d j
j

j MU

M

f OR HFC f j
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C P

C P


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
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  

  




 

(6. 22) 

The AND rule can be evaluated by setting NEW NEWK M  

 

 

, ,
1

, ,
1

M

d AND HFC d j
j

j MU

M

f AND HFC f j
j

j MU

C P

C P

















 

(6. 23) 

6.2.4 Simulation Results of the Statistical Features based technique 

The simulation parameter settings are made for the CRN with total 10 cooperative SUs including 

both normal and malicious. Out of the two MUs, one is taken as AO and the other of the RO 

nature. The SNR values for simulation vary from -30 dB to -20 dB in Figure 6. 2. Duration of the 

sensing time interval is selected as 1 ms which is divided into 270 samples. The system was 

simulated for 1000N  sensing iterations out of which in the initial 0N intervals FC collects 

information about each SU and take HFC decisions normally. MUs both AO and RO are 

identified in the first 0N sensing intervals and then FC applies new criteria to detect PU based on 
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the selection results of the normal SUs. The RO user performed performing malicious act 

randomly in the / 2N selected sensing intervals. The system was simulated under the conditions 

when both AO and RO in equal numbers participate in CSS. In the first part of simulation results 

criteria‟s for the MUs detection are collected in Figure 6. 2 at different SNR regions. Figure 6. 2 

shows the upper and lower limits with the result of the AO and RO users not within the range 

while the normal SUs results lie within the upper and lower limitation criteria set by the BWP. 

The correlation results of the RO user are closer to the lower limits set by the BWP which is 

considered to be more dangerous, while the results of the AO user is very far distant away from 

the lower limits set by the BWP. Detection results of these MUs were further used in improving 

the detection results of the PU for all three categories of HFC schemes i.e. MV-HFC, OR-HFC 

and AND-HFC schemes. 

 

Figure 6. 2 Correlation results vs. SNR for the RO user, normal user and AO user when both RO 

and AO users were taken. 
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Figure 6. 3 ROC results for the simple OR-HFC and proposed OR-HFC schemes at history 

levels of 200, 350 and 500 

ROC curve results are drawn for the OR-HFC scheme in Figure 6. 3 between the simple OR-

HFC and proposed OR-HFC scheme at the different considerations of 0N . Graphical results 

show better detection results of the proposed OR-HFC compared with simple OR-HFC. In 

Figure 6. 3, performance of proposed OR-HFC scheme was compared with OR-HFC by varying 

the length of the user history. Results show that as the user reporting history 0N increases from 

200 to 500 the ROC result performance of the proposed OR-HFC scheme also increases. This 

improvement in the detection results of the proposed scheme is achieved due to more 

information collected about the nature of MUs at the FC. The experimentation in Figure 6. 4 is 

performed by testing the CSS scheme using traditional and proposed MV-HFC schemes to plot 

the results for the detection probability against the false alarm probability. In the given MV-HFC 

scheme, the total number of SUs is selected as / 2M at the FC, in order to take a global decision 

about the PU spectrum. Results collected in Figure 6. 4 show improved ROC performance of the 

proposed MV-HFC scheme compared with simple MV-HFC scheme at all levels of the history 
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collections at the FC. The proposed MV-HFC scheme is able to take both the MUs out of the 

voting rule in the following sensing intervals after their identifications. After the identification of 

abnormal SUs, if half of the normally reported users report in favor of 1H a global decision 1H
 
is 

made, otherwise 0H is decided by the FC. By inspecting both the results collected in Figure 6. 3 

and Figure 6. 4 it is noticeable that the proposed MV-HFC scheme has better ROC results as 

compared with simple OR-HFC, proposed OR-HFC and simple MV-HFC schemes. The 

proposed MV-HDF takes global decision based on the majority of the normal SUs after 

discarding all the detected MUs.  

The final ROC comparison in the detection and false alarm results is made in Figure 6. 5 for the 

proposed AND-HFC and simple AND-HFC. A significant improvement in performance is 

achieved for the proposed AND-HFC scheme in Figure 6. 5, which follows the proposed method 

for the identification and elimination of MUs out of the final AND rule. This improvement in 

performance is further made stronger with increasing history 0N about the cooperative users. 

Figure 6. 6, Figure 6. 7 and Figure 6. 8 compare the error probability results of the OR-HFC, 

MV-HFC and AND-HFC rules at different levels of average SNR. In this part of the simulation 

the total number of cooperative SUs is kept at 10 in the presence of 2 MUs including both AO 

and RO users with varying SNR. The results collected in Figure 6. 6 for the simple OR-HFC and 

proposed OR-HFC schemes show a reduction in the error probability of the proposed method 

based OR-HFC rule. The proposed OR-HFC scheme allows the FC to produce accurate decision 

about the PU activity with minimum error in terms of inaccurate detection of the PU. This 

inappropriate detection at the FC is further reduced at the FC as the SNR value increases from -

30 dB to 0 dB. For a given SNR value in Figure 6. 6 these error chances further reduced with 

increasing number of reports about the normal and malicious users. The error probability results 
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are drawn for the simple MV-HFC and proposed MV-HFC schemes in Figure 6. 7. The results 

show better performance for the proposed MV-HFC scheme in comparison with the simple MV-

HFC rule in Figure 6. 7 at all levels of the SNRs and historical information about the cooperative 

users. The error probability of the proposed MV-HFC scheme reduces more quickly with 

increasing SNR values and all levels of the historical reports about the cooperative users. The 

proposed method performance is more improved with increasing history reports of the users 

from 0 200N  to 0 500N  .  

 At last, the error probability results are drawn for the proposed AND-HFC and simple AND-

HFC against varying SNR values at different levels of the history reports. The proposed AND-

HFC scheme has the ability to produce improvement in the performance against the simple 

AND-HFC all levels of SNR. 

The error results collected in Figure 6. 6, Figure 6. 7 and Figure 6. 8 for the OR-HFC, MV-HFC 

and AND-HFC confirmed the superiority of the proposed MV-HFC scheme on the given 

environment of AO and RO category of MUs in CSS. By inspecting results in Figure 6. 6 to 

Figure 6. 8, performance of the proposed MV-HFC as in Figure 6. 6 is followed by an accurate 

sensing decision of the proposed OR-HFC scheme in Figure 6. 7, while the AND-HFC scheme 

in Figure 6. 8 shows the worst performance in the given environment of CSS against AO and RO 

categories of MUs.  

Tabular and graphical results declare that the HFC outcomes are improved by using the proposed 

method at the FC. MUs are first identified by the proposed scheme and then take out of the 

global decision, in order to make the global decision more authentic with accurate decision about 

the PU channel. 
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Figure 6. 4 ROC results for the simple MV-HFC and Proposed-MV-HFC schemes at different 

history levels of 200, 350 and 500 

 

 

Figure 6. 5 ROC results for the simple-AND-HFC and proposed-AND-HFC schemes at 

different history levels of 200, 350 and 500 
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Figure 6. 6 Probability of Error ( eP ) vs. SNR for the simple-OR-HFC and proposed-OR-HFC 

schemes at different history levels of 200, 350 and 500 

 

 

Figure 6. 7 Probability of Error ( eP ) vs. SNR for the simple MV-HFC and proposed-MV-HFC 

schemes at different history levels of 200, 350 and 500  
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Figure 6. 8 Probability of Error ( eP ) vs. SNR for the simple AND-HFC and proposed AND-

HFC schemes at different history levels of 200, 350 and 500 

 

The proposed HFC schemes are able to identify response for the detection of MUs and are able 

to easily distinguish both AO and RO users from the normal category of cooperative users. The 

FC detects and declare a user as malicious based on the BWP when correlation results are less 

than the lower or higher than the upper limits. The detection results for the AO user are more 

negative as compared with the RO and can be easily caught by the proposed scheme. RO user 

behavior is closer to that of the normal user, therefore, great sensitivity care for the detection of 

such MUs is demanding. Correlation results of the normal users are always within the limitations 

of the BWP under all SNR values. 

6.3 Proposed system model of the OTMSD and ZS process at the FC 

The flowchart of the proposed CSS model using OTMSD and ZS is shown in Figure 6. 9. In 

Figure 6. 9, SUs senses the certified PU channel, and forward their local energy statistics 

information to the FC. 
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Figure 6. 9 OTMSD and ZS scheme flowchart using HT. 

The center takes a global decision taking into considerations the received energy statistics of all 

SUs and also stores these energy observations until the establishment of enough information 

about each user. The OTMSD and ZS are applied to each user reports to conclude the normal and 

abnormal behavior of all cooperative users. The OTMSD and ZS measurement enables FC to 

make the results of the normally reporting users separate of all MUs. In this model we are 
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considering the number of normally reporting users larger in comparison with MUs, therefore, 

based on the OTMSD and ZS results, reported data of the AYMU, ANMU, OMU and ROMU 

are easily identified as outlier values. It is further noticeable that the reports of MUs were made 

more dissimilar as outlier values when OTMSD based scheme is utilized as compared with ZS. 

After the determination of OTMSD and ZS values, outlier data are picked off by following HT. 

The detection results of the HT declare the user as MU and a new global decision is made by the 

FC, with the combination of normally cooperative users to establish more accurate and reliable 

global decision of the PU channel. 

A pseudo code of the proposed method is shown below, where each user first performs local 

detection. Cooperative user‟s score is determined using one-to-many relationship sensing 

distance and Z-score algorithms along-with HT for the detection of MUs and finally FC takes 

global decision based on the normal user reports: 

For 1i   to sensing limit 

For 1j  to M  

Local detection ( )jE i by the
thj user to the FC 

End j  

If 
0i N  

---- OTMSD and ZS at the FC--- 

For 1j  to M  

 
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End j  

For 1j  to M  
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 
0

1 1

1

( ) , 1,..., ,
N

j j

i

o o i j M


   
0

2 2

1

( ) , 1,...,
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j j

i

o o i j M


   

End j  

----Hampel’s Test to determine MUs in 1
o and 2

o results---- 

Medians of  1 2,o o as  1 2( ), ( )Med Medo o  
 

For 1j  to M  

The median deviation of 1

jr is determined as  1 1( )jo med o
 

The median deviation of 2

jr is determined as  2 2( )jo med o
 

OTMSD declares the
thj user MU, if

1 14.5j jr Med r  
 

ZS declares the
thj user MU, if

2 24.5j jr Med r  
 

End j
 

End If 
----EGC global decision-------------- 

If  
1,

( )
mu

M

j

j j M

mu

E i

threshold
M M

 

 
  
 






  
Global decision,

1( )EGCG i H   

Else 

Global decision,
0( )EGCG i H   

End 

---MGC global decision----------- 

If  
1,

( )
mu

M

j j

j j M

w E i threshold
 

 

 Global decision,
1( )MGCG i H   

Else 

Global decision,
0( )MGCG i H   

End 

End sensing limit 

 

6.3.1 Local Spectrum decisions 

The sensing, statistics of all M users are stored at the FC for the 0N sensing intervals to get more 

information about the nature of participating users. The history reporting matrix is the soft 

energy statistics observed by each SU during the 0N intervals on behalf of all SUs as below: 
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0, 1,..., , 1,...,ijE E i N j M      
(6. 24) 

In equation (6. 24),
ijE is the energy statistic of the

thj user during the thi sensing interval. The 

sensing information
ijE is the collection of the normal and MUs observations for the 0N intervals.  

6.3.2 Outlying using one-to-many sensing distance (OTMSD)  

After the collection of energy information of the M users for the 0N intervals as in equation (6. 

24), FC modifies these energy reports to observe the differences in each individual sensing report 

with the reports provided by all other SUs. A new reporting matrix is formed on behalf of all 

users based on the information already collected in equation (6. 25) as: 

0' ' , 1,..., , 1,...,ijE E i N j M      
(6. 25) 

                                   Where 
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Here ijE '
is the average of the individual soft energies reports provided by all other users while 

taking out the report of the
thj user in this averaging. 

In order to determine how much the individual sensing reports of each SU is behaving differently 

from the average sensing results, outlying factors are measured based on the one-to-many 

sensing distance 1 ( )j io for the
thj user in the thi sensing particle as: 
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1 '

0( ) , 1,..., , 1,...,j ij iji E E i N j M   o
 

(6. 26) 

Based on the results in equation (6. 26) the total outlier scores
1 ( )j io of the

thj user are added to 

discover the total one-to-many hamming distance score for the
thj user in the total 0N intervals 

 
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1 1

1

( ) , 1,...,
N

j j
i

i j M


 o o
 

(6. 27) 

Where
1

jo in equation (6. 27) is the total outlier score representing the sum of the absolute values 

of the hamming distances of the individual SU soft detection" "ijE with the average detection

" "ijE'
of all other SUs in the thi sensing interval. 

The measurement in equation (6. 27) is made for all the M cooperative users and the results are 

collected as: 

1 1 1 1 1

1 2 3 ...
T

M
   o o o o o

 
(6. 28) 

Here 1
o is the outline score measured on behalf of all the M users in the 0N sensing intervals. This 

score is a measurement of how far the report of each SU is lying away from the average sensing 

reports provided by all other SUs. The result in equation (6. 28) has enabled the FC to discover 

the score of malicious and imperfect sensing reports of the normal SU which tries to misguide 

the FC final decision about the PU channel.  

The HT is not susceptible to the quantity and value of outlier values, similarly it shows no 

limitation to the abundance of the statistical data. Therefore, HT is applied to the result of the 

OTMSD in equation (6. 28) to search for the false reports of MUs: 
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First, the value of deviation
1

jr from the median is determined for all users as: 

  1 1 1

j j jr med o o
 

(6. 29) 

Here
1( )jmed o is the median value of the OTMSD score

1

jo made by all SU. A user is declared 

outlier (malicious user), when the following condition is satisfied: 
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(6. 30) 

Where 1

jr is the absolute value of the median deviation and 1

jMed r is the median of the absolute 

median deviation results. 

6.3.3 Outlying using z-score 

Similarly, the other outlier score measurement for each user report is made with the help of the 

ZS measurement based on the sensing report received from each SU as: 
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(6. 31) 
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ij
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E
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M




 
 
 


is the mean and ( )i is the standard deviation of the thi energy observations 

of all users.
2 ( )j i is the z-score outlying for the

thj report in the thi sensing interval. The result of

2 ( )jo i in equation (6. 31) shows how much local sensing observation of the
thj user is detached 

away from the group observations provided by all other users using z-score. 
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Now for guaranteeing the authenticity of each of the thi reports, z-score results of the M SUs are 

summed for all 0N intervals as: 

 
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2 2

1

( ) , 1,...,
N

j j
i

i j M


 o o
 

(6. 32) 

The total z-score of all M SUs are collected as: 

2 2 2 2 2

1 2 3 ... M
   o o o o o

 
(6. 33) 

The HT scheme is applied to the result of ZS in equation (6. 33) to search for the false reports of 

the MUs. Similarly, the value of deviation
2

jr from the median is resolute for all cooperative users 

as: 

  2 2 2

j j jr o med o 
 

(6. 34) 

Here
2( )jmed o  is the median value of the ZS score

2

jo made by all SUs. A user is declared outlier 

(malicious user), when the following condition is satisfied. 

2 2, 4.5
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th

j j

mu

j if r Med r
M

otherwise

  
  
  

 
(6. 35) 

Where 2

jr is the absolute value of the median deviation and 2

jMed r  is the median of the absolute 

median deviation results. 

The false data provided by all MUs are separated from the normal user data using the OTMSD 

and ZS proposed methods. 
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6.3.4 Global decision of the licensed channel 

The FC combines the soft energy collection reports of all SUs before the identification of any 

MU for a global decision about the channel. Various soft and hard combination schemes used by 

the FC are EGC, MGC and majority voting as a decision criteria of the channel.   

The EGC employed by the proposed method is combining the individual statistical information 

of all SUs by giving equal weight to each individual SU decision and summed coherently. The 

proposed scheme enables EGC to ignore energy statistics of the identified MU in the 

combination. The summation is compared with the threshold to decide the license user spectrum 

by the EGC as: 
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(6. 36) 

The cooperative detection and false alarm probabilities
_d EGCP and

_f EGCP made by the EGC 

scheme based on its global decision about the PU spectrum are as: 
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(6. 37) 
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In MGC scheme, each receiving signal branch is multiplied with a weighed function proportional 

to the branch gain. Branches with strong signal are further amplified while weak signals are 

attenuated by these weights. The idea to boost the strong signal component and attenuating weak 

components as in MGC diversity is exactly the same as that of filtering and signal weighting in 

the matched filter receiver. Similarly, the MGC scheme at the FC assign higher weights to the 

decision of the SUs with higher SNR values and low weight to the decision of SUs with low 

SNR values as: 
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                                              Where 
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The cooperative detection and false probabilities of the MGC scheme are measured based on the 

individual sensing reports as: 
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(6. 39) 

6.3.4 Simulations Results of the OTMSD and ZS process  

For simulating the Cognitive Radio Network, parameters are set with 10 and 14 total cooperative 

SUs. The MUs participating in the CSS are deliberately selected as to the nature of AYMU, 

OMU, ROMU and OMU. The system is simulated under the average SNR -30 dB to 9 dB and -
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36 dB to 3dB. The sensing time for each SU is selected as 1 ms containing 270 samples in each 

sensing interval. Total sensing intervals for the cooperative users are selected as 200. The 

ROMU users in this work are performing malicious behavior probabilistically in the sensing N

intervals. 

The performance of the proposed soft combination scheme is compared with traditional soft 

combination schemes like EGC and MGC schemes in 6 different cases as below. 

Case 1: In the first case ROC performance of traditional EGC and MGC schemes is compared 

with the proposed EGC and MGC using OTMSD and ZS methods for the detection and 

avoidance of MUs in the global decision. The total number of cooperative SUs is selected 10 in 

the presence of AYMU users only. First, the number of the AYMU user has taken 1 in the total 

10 SUs and then the total AYMU user number has increased to 2. Results show that in the 

presence of 1 AYMU user out of total M SUs ROC result of the proposed EGC using OTMSD 

scheme is for the detection of MUs is the highest of all. The result of the proposed EGC-OTMSD 

is followed by the MGC-OTMSD with better ROC performance in comparison with simple EGC 

and MGC schemes. The EGC and MGC schemes using ZS method produce high detection and 

less false alarm results in comparison with simple EGC and MGC in the presence of 1 AYMU 

user. Among the simple EGC and MGC schemes, the EGC performance is dominating the ROC 

of the simple EGC in Figure 6. 10 when only 1 AYMU user delivers always yes reports to the 

FC. When the number of MUs has increased to 2 in Figure 6. 10 the simple EGC and MGC with 

no mechanism of MUs is highly affected by the increasing number of AYMU users. In the 

presence of 2 AYMU users in Figure 6. 10, OTMSD based EGC and MGC schemes showed 

better detection results with minimum false alarm. The OTMSD based EGC and MGC results 

are followed by the soft combination schemes using the ZS method in detecting MUs and taking 
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a global decision about the channel. The ROC performance of the traditional EGC and MGC 

schemes is getting worse among all with increasing number of MUs. This case also clarifies the 

fact that EGC scheme produces suitable PU detection results under both OTMSD and ZS 

schemes. The proposed EGC scheme performance using OTMSD and ZS is followed by the 

MGC scheme using OTMSD and ZS schemes. The simple EGC and MGC performance is the 

lowest of all simulation results under both 1 and 2 AYMU users.  

 

Figure 6. 10 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple 

MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 AYMU 

user only 

Case 2: In this part of the simulation, ROC comparison is made between the traditional EGC and 

MGC schemes with proposed OTMSD and ZS based EGC and MGC schemes in Figure 6. 11. 

The nature of malicious users is considered an ANMU user in this work sending an always free 

status of the PU channel to the FC. The system was simulated with detection and false alarm 

results obtained in presence of both 1 and 2 ANMU users with a total of 10 cooperative SUs. The 

ROC performance of the proposed EGC and MGC schemes using OTMSD and ZS schemes and 

simple EGC and MGC schemes in the presence of AYMU is almost similar to that of case 1. In 
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the presence of ANMU the first case ROC performance of traditional EGC and MGC schemes 

are compared with the soft combination schemes using OTMSD and ZS methods. When there is 

1 and 2 ANMU participate in the CSS, the performance of the EGC scheme using OTMSD and 

ZS is superior to the MGC scheme using OTMSD and ZS. The result obtained for the EGC-

OTMSD is followed by the MGC-OTMSD under both 1 and 2 ANMU users. The proposed 

EGC-OTMSD and MGC-OTMSD are closely matched by the proposed EGC-ZS and MGC-ZS 

schemes that use the ZS score for the detection of MUs and to further take final decision based 

on the soft energy information of the normally reporting users only. 

 

Figure 6. 11 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple 

MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 ANMU 

users only 

Case 3: In the third case as in Figure 6. 12 the nature of MUs is changed to OMU which always 

negate the actual status of the PU activity. Detection probability results are plotted against the 

false alarm probability for the traditional schemes, proposed OTMSD and ZS based schemes in 

Figure 6. 12. In Figure 6. 12 the simple EGC has shown better performance in comparison with 

simple MGC scheme in the presence of both 1 and 2 OMU category of MUs. The MGC scheme 
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following OTMSD and ZS method for the avoidance of MUs in CSS showed improved ROC 

results among all with better defense against the activity of the OMU users. MGC-OTMSD and 

MGC-ZS results were closely matched by the EGC-MMZ and EGC-ZS schemes during both 1 

and 2 OMU user scenario. The result in Figure 6. 12 also shows the effect of OMU users 

affecting the performance of simple EGC and MGC schemes in which simple MGC has shown 

poor performance in the presence of OMU users unlike the case when AYMU and ANMU user 

were participating in CSS.   

 

Figure 6. 12 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple 

MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 OMU users 

only 

Case 4: Here detection and false alarm results are obtained for the simple soft combination 

schemes and proposed OTMSD and ZS based soft fusion combination schemes in the presence 

of ROMU category of MUs. Results are obtained for the proposed and traditional soft 

combination schemes in Figure 6. 13 under both 1 and 2 ROMU cooperative users. In Figure 6. 

13 the OTMSD based MGC has better ROC results among all under both 1 and 2 ROMU user 

scenario. The MGC-OTMSD results are followed by the EGC-OTMSD results producing better 
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ROC results in comparison with MGC-ZS and EGC-ZS schemes. Unlike the participation of the 

AYMU, ANMU and OMU participation in CSS the simple MGC scheme shows better detection 

and minimize false alarm results in comparison with simple EGC schemes under both 1 and 2 

ROMU participation in the CSS.  

 

Figure 6. 13 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple 

MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 ROMU 

users only 

Case 5: In this case, detection and false alarm results are obtained for the proposed and simple 

soft combination schemes in the presence of all MUs in Figure 6. 14. In this part of the 

simulation the total number of MUs is selected as 4 i.e. AYMU, ANMU, OMU and ROMU 

delivering false spectrum reports to the FC among the total of 10 cooperative SUs. ROC results 

are obtained first with an average SNR of -10.5 dB and -16.5 dB under a fixed total number of 

10 cooperative SUs. At the average SNR of -16.5 dB, MGC showed superior performance to 

EGC scheme while using both OTMSD and ZS. Similarly, in Figure 6. 14 at -16.5dB ROC 

results of the MGC-MMZ and MGC-ZS are followed by the EGC-MMZ and EGC-ZS. The 

simple EGC scheme provides the lowest performance of the ROC among all. When the average 
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SNR is increased from -16.5 dB to -10.5 dB results of the proposed MGC-OTMSD and MGC-

ZS schemes degrade in comparison with proposed EGC-OTMSD and EGC-ZS scheme. In 

Figure 6. 14 increasing average SNR from -16.5 dB to -10.5 dB results in improving detection 

probability and lowering false alarm for the simple EGC scheme in comparison with the simple 

MGC scheme. 

 

Figure 6. 14 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple 

MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS with all MUs and different 

average SNRs (-10.5 dB, -16.5 dB) 

Case 6: In Figure 6. 15 a comparison is made for all schemes at different level of cooperative 

SUs. The results are plotted for the CSS in the presence of 4 MUs including AYMU, ANMU, 

OMU and ROMU. First detection and false alarm comparison in the presence of total 10 

cooperative SUs and 4 MUs and then the total number of cooperative SUs are increased to 14. 

The ROC results in Figure 6. 15 when total 10 cooperative SUs participate in CSS in the 

presence of 4 MUs generate better results for the EGC-OTMSD and EGC-ZS in comparison with 

MGC-OTMSD and EGC-ZS. The Simple MGC is able to provide, the better ROC results as 

compared with the simple EGC scheme in this part of the simulation. When the number of total 
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cooperative SUs was increased to 14 performances of the MGC-OTMSD and MGC-ZS improves 

in comparison with EGC-OTMSD and EGC-ZS with increasing number participating users. 

Similarly, with increasing number of total cooperative users‟ performance of the simple EGC 

scheme degrades as compared with a simple MGC scheme which provides an improvement in 

the detection performance with a reduced in the false alarm probability.  

 

Figure 6. 15 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple 

MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS with all MUs and different 

number of cooperative SUs (10, 14) 

6.4 Summary 

Efficient and on-time detection of MUs in a CSS environment is necessary, in order to avoid FC 

to conclude erroneous recommendations regarding the PU spectrum occupancy. The proposed 

AND-HFC, OR-HFC and MV-HFC schemes used by the FC take sensing reports from all SUs 

and combine them for a more concrete decision in the presence of MUs. Decision results of these 

HFC schemes are shaped more reliable by identifying first AO and RO using combination of 
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correlation and BWP to declare new criteria for the detection of PUs without consideration of 

abnormal users. 

This work focuses on improving the functioning of the cooperative spectrum using OTMSD and 

ZS methods. Based on the received energy statistics of all users, OTMSD and ZS schemes at the 

FC are able to reduce the effect of the MUs in authenticating the FC decision of the PU 

existence. FC combines the diversify sensing reports of all SUs using proposed EGC and MGC 

decision to take a global decision about the licensed user activity. The OTMSD and ZS are able 

to overcome the effects of OMU, ROMU, AYMU and ANMU categories of MUs followed in 

the soft and hard combinations to decide accurately. Simulation consequences reflect the 

superiority and authenticity of the proposed methodology in producing more accurate and 

reliable decisions for the EGC and MGC soft fusion combination schemes in CSS. 
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Chapter 7 

Conclusion and Future Work 

 

7.1 Conclusion 

Cognitive radio enables SUs to utilize vacant spectral holes of the PUs. SUs have to effectively 

detect activity in the license user spectrum to declare the spectrum as free or occupied by the 

licensed users. An improper detection of the PU spectrum may result in interference to the PU 

transmission by the opportunistic SUs. 

The sensing ability of SU is severely reduced in the fading and shadowing environment. 

Therefore, it is possible that the decision made by an individual SU may not be able to produce 

accurate sensing performance. Few SUs cooperatively sensing and sharing their individual 

sensing with a common point, that is, fusion center, leads to best estimation outcomes. CSS 

allows more than one receiver few wavelengths apart under different fading environment to 

sense the license user spectrum. These cooperative schemes are able to create detection results 

with high authenticity in the fading and shadowing environment. 

Although CSS can accurately sense compared to an individual SU, but the performance of 

cooperation is reduced when MUs in cooperation share false spectrum information with the FC. 

Therefore, proper detection and deletion of MU reports at the FC is necessary for improved 

performance. 
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This dissertation is divided into three parts: In the first part of the dissertation an old technique of 

the KL divergence ‎[16],‎[17],‎[152] with added analysis is proposed along with a novel one-to-

many relationship based KL divergence to mitigate the effect of MUs at the FC. The proposed 

work considered the participation of always yes, always no, opposite and random opposite 

categories of MUs in a CSS. PDF of all cooperative users are determined first. The probability 

distribution measured based on the received energy of the MUs is not similar to the distribution 

of the normally cooperative users. In the first part of the KL divergence method, FC measures 

the KL divergence against each user and informs FC about its KL divergence measurements. 

Each cooperative user compares the KL divergence score achieved by its sensing performance 

with a threshold and report mean samples of the previous reported energies under both the 

present and absence hypothesis. In the next section of this part, as the KL divergence 

measurement of an individual user is not reliable, therefore, KL divergence is determined based 

on the mean and variance results of the one to many relationship based sensing notifications. The 

final KL measurement is utilized to assign weights to the SUs reports, which allow MUs to 

receive lower weights as compared to the normally cooperative users. 

In the second part, heuristic techniques are used, i.e. GA and PSO algorithms  [23], [24] as a novel 

techniques to make a decision of the PU channel in the presence of MUs. DSND algorithm  [20] 

is first employed to determine abnormal SUs and minimum mean and z score is used as a fitness 

function for identifying accurate spectrum sensing information received from all cooperative 

users. Simulation results demonstrate effectiveness of the proposed soft and HFC schemes using 

GA and PSO with high detection and minimum false alarm, which results in an overall reduction 

in the error probability with improved spectrum sensing in cognitive radio network with 
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malicious users using soft computing as compared with the traditional EGC, MGC and MV-HFC 

schemes  [9], [18], [19], [21], [22]. 

The impact of MUs in CSS is further reduced in the third part by using a novel statistical 

methods for the identification before taking any global decision. In this part, correlation is 

determined between the sensing statistics of individual user and the sensing information provided 

by all other users. As MUs provide dissimilar sensing data to the FC compared to the normal 

users, therefore, the correlation measured against MUs is notified as an outlier in the sensing 

information received from all SUs. The outliers are further separated and identified using BWP 

and HT methods  [25]- [30]. Simulation results shows improved performance for the OTMSD-

MGC, OTMSD-EGC, ZS-EGC, ZS-EGC, logical OR, logical AND and majority voting schemes 

with high detection and low false alarms at different levels of MUs, SNRs and history levels of 

the participating users  [9], [18], [19],  [21], [22].  

7.2 Future works 

Future directions for extending the work are as follows. 

1. This study focuses on the spectrum sensing in cognitive radio network with malicious 

users using soft computing and statistical techniques, further analysis of the spectrum 

resource allocation in the presence of malicious users is not investigated 

2. To highlight avenues for further research in the same area this study has limited analysis 

of the different fusion schemes in the presence of always Yes, always No, opposite and 

random opposite categories of MUs to sense merely one PU spectrum. The proposed 

scheme could be further enhanced for sensing more than one PU spectrums with 
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introducing PUEA category of MU, resembling behavior of the PU to misguide other 

SUs.  

3. An Adaptable and dynamic threshold adjustment scheme can be utilized for PU detection 

instead of keeping static threshold scheme that may give a more optimized result. 

4. Results obtained for the GA and PSO algorithms can be compared with other heuristic 

techniques i.e. Differential Evolution (DE), Cuckoo search algorithm, fuzzy logic and 

neural computing methods. 

5. Defense of the cluster based CSS in the presence of MUs can also be investigated. 

Compressed sensing can be utilized in the future work to reduce the sensing time with 

better detection results in the presence of MUs. 

6. An OFDM based CSS using different number of the orthogonal subcarrier for sensing 

and transferring the reports to other SUs and FC can also be investigated. The 

employment of OFDM in CSS is useful as each subcarrier in use by the SUs experience 

different effects under the fading and shadowing environment. 
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