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ABSTRACT

Due to the strict management policy and limited space in wireless spectrum, it is very difficult to
overcome the demands of high data rate and bandwidth requirements in the wireless
communication. To deal with this problem effectively, random allocation of the spectrum is
considered, which resulted in the concept of cognitive radio network (CRN). Resource
Allocation and Spectrum sensing in CRN is of high interest, where opportunistic users also
called secondary users (SUs), have to detect the licensed primary user (PU) spectrum and make
use of the vacant. The effects of multipath fading, shadowing and receiver uncertainty lead to
poor spectrum sensing performance of individual users. Cooperative spectrum sensing (CSS) is a
solution to acquire accurate information about the PU channel in the fading and shadowing
environment. CSS enables each user to share its local sensing information with the neighbors to
reach a more precise spectrum sensing decision. The malicious users (MUs) false sensing reports
prevent the fusion center (FC) from taking a precise final decision, hence it can reduce
effectiveness of CSS system. Many detection and suppression schemes are found in the literature

to make the FC decision secure and robust in the presence of these abnormalities.

This dissertation is a contribution to the above mentioned areas. The dissertation is mainly
divided into three parts. In the first part, we have proposed two variants of the Kullback Leibler
(KL) divergence, including simple KL divergence and weighted KL divergence schemes to
prevent the system from always yes, always no, opposite and random opposite categories of MUs
without identification. The final decision made by the FC, using simple KL divergence and
weighted KL divergences schemes is more precise with high detection, less false alarm and low
energy consumption. In the second part, we have proposed heuristic algorithms, including

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based soft and hard fusion
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combination schemes at the FC. In the last part, for efficient detection and mitigation of MUs,
we have proposed statistical techniques. In this section, FC is allowed to take its cooperative
decision normally about the sensing channel, based on the received local decisions of the
cooperative SUs. When enough statistics are collected about the reporting users, Box-whisker’s
plot (BWP) and Hampel’s test (HT) are employed to detect and separate the false sensing data
provided by MUs as abnormal data and is able to further shape the hard and soft fusion decisions

based on the reported data of the normally reporting users.

The effectiveness and reliability of our proposed technigues are demonstrated in the results and
simulations where graphs are plotted for the detection, false alarm, miss-detection and error
probabilities against different types of MUs, total number of cooperative users and signal to

noise ratios (SNRs).

The spectrum sensing responsibility in the presence of various categories of MUs is a
challenging job that is made authentic using KL divergence, GA, PSO and some statistical
techniques in the dissertation. The proposed techniques in the dissertation allow the FC to
estimate the PU channel status accurately so that the SUs are able to make use of the available
spectral holes without any disturbances and interference to the legitimate users. In the industrial
environment, sensors and robot in coordination detect the abnormal behavior of any robot, as the
malfunctioning in such robots due to any reason reduce overall performance of the system.
Therefore, the proposed CSS model can precisely detect faulty sensors and robots in the

industrial environment and it has a centralized performance monitoring mechanism.
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Chapter 1

Introduction

1.1 Background

The recent increase in the wireless communication applications and high data rate demands in
today’s environment is the major reason for spectral shrinkages. Spectrum study carried out at
various times shows that a large number of frequencies are mostly unoccupied. This leads to the
following conclusion: First, it requires a more flexible spectrum management policy of the

spectrum and secondly, a more compatible technology.

Different thoughts regarding the flexible spectrum management policy can be found in the
literature. Several suggestions include allocation of the spectrum resources to different users
dynamically or randomly operating in the same allocated range of frequency. Similarly, to allow
the access of the spectral resources to everyone without any constraint, or to use spectrum
auctioning that allocate spectrum assets for a limited time to the most demanding user. The
literature study recommends that dynamic spectrum allocation is more beneficial as compared to
fixed spectrum allocation. This is in accordance with the recent improvements of the spectrum
policies. Regulatory bodies have started routing to dynamic spectrum allocation instead of fixed

spectrum allocation.

For technology compatibility Gerald Q. Maguire and J. Mitola in 1999 have proposed Cognitive

Radio (CR) [1],[2]. CR is an encouraging solution and highly tempting area for the research



community. CR has the capability to dynamically allocate the available spaces in the primary
user (PU) channel to the secondary users (SUs) at a certain time and at specific geographic
locations. The transmitted signal shape is controlled using different techniques at the transmitter
side to allow both the SU and PU to make use of the same spectrum resources with minimum

disturbances to transmission [3],[4].

1.2 Research Problem

The individual user spectrum detections have many restrictions. The sensing performance is
highly restricted by fading, energy constraints, shadowing and other hidden problems. It is likely
that a SU might inaccurately detect the PU activity. In the cooperative spectrum sensing (CSS),
SU devices located few wavelengths apart experience unlike fading and attenuation effects.
Consequently, the fading is reduced by permitting sensing users to share the detection results and
to cooperatively resolve the licensed spectrum tenancy. All cooperative users conduct their local
spectrum survey and send data to a common receiver that merge individual SU decisions to yield

a final decision of the PU channel [5]-[11].

The involvement of malicious users (MUs) in a CSS reduces the strength of cooperation,
therefore their detection and omission is crucial. Significant research is in progress to immune
the CSS to the MUs attack. The attacker sends inaccurate sensing information to the fusion
center (FC), inducing confusion about the actual spectrum conditions. These attacks are called
spectrum sensing data falsification (SSDF), and the fusion schemes needs protection against

these attacks.

To improve the sensing performance in presence of MUs, different soft and hard fusion
combination schemes are proposed in the literature. These methods can reduce the error
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contribution due to opposite, random opposite, always YES and always NO categories of MUs.

Therefore, they can efficiently utilize the spectrum holes with minimum disturbance to the

licensed PU [12]-[15].

The purpose of this dissertation is to develop an efficient technique for CSS that can minimize

the errors contributed by abnormal users. This will enable FC to establish a global decision about

the PU channel with high detection, low false alarm and minimum level of interference to the

PU.

1.2 Research Methodology

The contributions made by this dissertation are summarized as follows:

1.

In the first part, the Kullback Leibler (KL) divergence [16],[17] method for minimizing
SSDF attack is considered. In the proposed CSS scheme, each user report to FC about the
availability of PU and keep the same evidence in its local database. Based on the KL
divergence value, if the FC acknowledges the user as normal, then the user will send
unified energy information to the FC based on its current and previous sensed
observations. In the second part of this algorithm, another KL divergence algorithm is
proposed where the SU local sensing information is utilized with the average sensing
information provided by all other users in measuring the KL divergence. In this part,
MUs are identified and separated based on the individual SU decisions and the average
sensing information received from all other users. This second KL divergence method
assigns lower weights to the sensing information of MUs, while the normal SUs
information receives higher weights. The proposed scheme is tested in an environment of
always YES, always NO, opposite and random opposite categories of MUs. It gives best

3



detection results as compared to the traditional KL divergence, equal gain combination
(EGC) and maximum gain combination (MGC) schemes [18],[19].

Next, we focus on the use of double sided neighbor distance (DSND) [20] along-with
Genetic Algorithm (GA) for the detection and avoidance of misbehaving users in CSS, so
that to make the FC final decision more authentic. GA uses the DSND algorithm for
detecting misbehaving user and then utilizes crossover and mutation to select reliable
sensing results. The results of the GA are further utilized in the majority voting hard
fusion combination schemes [21],[22]. In the second part, GA use one-to-many neighbor
distance along-with Z-Score (ZS) as a composite fitness function for the identification of
accurate sensing information received from all cooperative users. Simulation results
demonstrate that the proposed scheme has surpassed the traditional majority voting hard
fusion scheme, the equal gain combination (EGC) and maximum gain combination
(MGC) schemes for different numbers of cooperative and MUs. Similarly, the proposed
method also outperform the traditional schemes at different levels of the average signal to
noise ratios (SNRs) [9],[18],[19],[21].[22].

In the third proposed scheme, all SUs send soft energy statistics of the PU channel to the
FC. The fusion center make use of the particle swarm optimization (PSO) to determine
the most suitable energy statistics out of the individual sensing information provided by
all cooperative SUs including normal and malicious [23],[24]. An outlier score is
determined for all particles using PSO fitness function at the FC. Out of the PSO
population, the sensing report with minimum total outlying value is selected as the actual
PU channel status on behalf of all cooperating SUs for a global decision. The global

decision of the licensed user channel is made with PSO based EGC (PSO-EGC), PSO



based MGC (PSO-MGC) and PSO based Majority voting hard fusion combination
schemes (PSO-Hard). Simulation gives high detection, low false alarm and minimum
error results for the PSO based soft and hard fusion schemes.

3. Finally, different techniques to reduce the harmful effects of the false sensing data
reported by various malicious SUs are investigated. In this part, FC takes a global
decision normally based on the local decisions of all cooperative users until the
establishment of enough statistics against these cooperative users. FC combines the
sensing results of the users and isolates abnormal user as outlier from the normal SUs by
taking them out of the hard fusion combination (HFC). Correlation is determined in the
local sensing information of individual users and then Box-whiskers plot (BWP) is used
to designate an abnormal user as malicious [25]-[30]. A modified HFC scheme is
employed in a global decision. Similarly, this part also comprises the investigations for
the performance of OTMSD and ZS algorithms for different number of MUs. Both one to
many sensing distance (OTMSD) and Z-score (ZS) algorithms are able to detect
abnormal user as malicious at the FC and provides more secure detection results in
comparison with traditional soft and hard fusion combination schemes. By detecting and
omitting MUs a more precise and valid decision is formulated by the soft decision fusion

(SDF) schemes at the FC.

1.3 Thesis Organization

The dissertation is organized as follows:

Chapter 1 presents the conceptual design of the whole thesis, stating motivation, problem

identification, statement, and definition with general/specific research questions/objectives and



with utility interests. It presents philosophy and hypothesis of the work and a sequential account
of how the research proceeds gradually onward. Chapter 2 gives Literature Review of
contemporary reported research, which turns out to be critical preparing a ground of why this
research is conducted. The relevant theory and issues of concerns are diagrammatically
highlighted gearing it into becoming a good reason for the justification of thesis title. Chapter 3
gives the methodological details, and Chapter 4 presents details of the proposed algorithm of
forward and feedback mechanism, KL divergence and weighted KL divergence schemes tested
in a CSS. Detection, false alarm and error probabilities are calculated for different ratios of

cooperative users, malicious users and SNR.

In Chapter 5 is first proposed the use of DSND algorithm for the identification of MUs and then
utilized GA to select accurate sensing results out of the sensing information’s reported by all
cooperative users. In the second part, GA is employed to use OTMSD and ZS as a fitness
function to determine accurate sensing data out of the local binary decisions of all cooperative
users. Finally, we collect soft energies at the FC and apply the OTMSD and ZS algorithms on
these energies using PSO. Performance and reliability of the proposed technique is tested and

compared with the traditional schemes in the simulations.

In Chapter 6, we present a new HFC scheme where FC first collect hard binary decisions of the
cooperative users and apply hard fusion schemes based on the reports of all cooperative users.
After the collection of enough sensing reports from all SUs, correlation is applied on the sensing
differences of individual user and the combine sensing reports provided by all other users. SUs
with their correlation results dissimilar to the normal users are categorized as malicious using
BWP are further isolated from the normal SUs in the history log. In the second part of the

chapter, OTMSD and ZS techniques are employed for detection and separation of malicious
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users. The OTMSD and ZS results are followed by the HT to separate malicious activity as

outlier from the normal users.

Chapter 7 concludes the thesis by stating that the research objectives are achieved and

suggestions for further work are given.

1.4 Summary

The spectrum shortage problems indicate that most of the frequency bands are fully or partially
occupied by license users. The idea of CR introduces by Gerald Q. Maguire and J. Mitola allows
the unlicensed users to utilize the licensed user spectrum when they sense the channel free.
Sensing ability of an individual user cannot be fully trusted due to different environmental
effects. CSS has the ability to reduce a single user sensing problems but its performance get
lowers when any of the users work as MU with forwarding false sensing reports to the FC.
Different variations of the soft and hard combination schemes such as MGC, EGC, AND, OR are

available in the literature to reduce the impact of including MUs in the combination.

This chapter gives an idea of dividing the thesis into three parts. First, the use of history based
KL divergence with feedback mechanism along with the weighted KL divergence at the FC is
discussed. Then the use of the GA and PSO heuristic algorithms are discussed that gives
optimum PU detection performance as compared to the traditional soft and hard combinations. In
the last section, the abnormal users are easily categorized as malicious using BWP and HT based

statistical techniques that uses correlations and other sensing stats.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we present necessary details of the existing CR construction. It starts with the
background and motivation to CR technology, then a brief discussion about the CR, its function
and network architecture is given. MUs are considered in the non-cognitive radio networks such
as cloud computing, internet, wireless sensor network (WSN), mobile ad-hoc network (MANET)
and wireless body area network (WBAN). Similarly, cognitive radio network performance is
investigated in the presence of selfish users, byzantine users, jammers, eavesdroppers and
primary user emulation categories of attacks. A discussion is made about the commonly used
spectrum sensing schemes at the SUs. The benefits and strength of using several combination
schemes at the FC are shown in comparison with the sensing decisions made by individual users
under the fading and shadowing environment along-with MU considerations. Some hard and soft
combination schemes such as logical-OR, logical-AND, majority voting, EGC and MGC
schemes are discussed and their effectiveness in detecting spectral opportunity is highlighted.
The impact of including MUs in the FC global decision is shown and the most commonly used
detection schemes are discussed that enable FC to overcome the effects of abnormalities. At last,
the applications of different heuristic techniques at the FC are discussed to get to accurate

spectrum sensing decisions.



2.2 Background

The user demands for higher data rates and services is increasing rapidly over the last few
decades that results in shortage of the spectrum to new services [31]-[33]. In November 2002,
spectrum policy task force (SPTF) of the federal communication commission (FCC) has shown
in their report that in most of the frequency bands, spectrum access is a serious issue as
compared with its physical inadequacy. This is due to the traditional command and control
system that restricts the potential spectrum users to obtain such access. Secondly, the spectrum
resources are either fully or partially occupied most of the time. To encounter these problems,
their recommendations are, to improve the flexibility of spectrum usage, to support and
encourage efficient use of the spectrum and to take all dimensions and related issues of the
spectrum usage into policy. The aim has been to improve both the technical and economic
efficiency of the spectrum management. These recommendations introduce the concept of
dynamic spectrum access (DSA), where the un-licensed user also called SU has the right to use
the temporarily un-usable spectrum of the licensed user. Therefore, CR has been proposed for

efficient use of the spectrum in [34]-[37].

2.3 Cognitive radio

The cognitive word is derived from the Latin word " cognoscere " means "to come to know™" or
to get awareness of something [38]-[40]. The word CR is introduced by J. Mitola, with the idea
of designing a wireless communication system, which is able to provide wireless communication
using dynamic spectrum assignment, in order to improve the performance of the wireless
transmission, as well as to improve frequency spectrum utilization to solve the underutilization

problem of the spectrum [1],[41],[42]. CR is equipped with the features of cognition and re-



configurability, which makes it different from the conventional radio. The ability of cognition
allow CR users to sense and collect information about its surrounding environment transmission
frequency, allocated power, modulation scheme, and bandwidth etc., enabling them thus to find
best available spectrum. In CR, cognitive re-configurability is the ability of the radio to swiftly
adapt to the operational parameters according to environmental information to attain best
operational performance. The platform of software-defined radio (SDR) provides cognitive re-
configurability, which is the basic building block of cognitive radio. The convergence of the
digital radio and computer software has made the SDR a practical reality [1],[3],[43]. To make
best use of the available spectral resources in an opportunistic manner, cognitive radio empowers
opportunistic users to search for the spectrum holes, selecting the most suitable free channel,
sharing its spectrum sensing information with other users, and to make the occupied channel free

for the transmission of the PU, when it is reclaiming the channel.

Cognitive Radio allows to
switch to other Frequency
Bands

Network 1

Network 2‘
Network 3 @

Network 4«("))

@
Network 5 é

Frequency Bands for Networks el

Non Cognitive Radio Time ety

does not allow to switch
to other frequency Bands

Figure 2. 1 Spectrum hand-off in cognitive radio network
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2.4 Functions of Cognitive Radio

The duty cycle of CR is shown in Figure 2. 2, including detection of available spectral holes,
selecting the best frequency bands, coordinating their local spectral information with other users

and to vacate the spectral resources for the primary user when it appears.

2.4.1 Spectrum sensing and analysis

The first step in the dynamic spectrum utilization is the spectrum sensing and analysis. Efficient
spectrum utilization is obtained by the CR with sensing the surrounding environment to adjust
the transmission and receiving parameters, that is transmit power, modulation scheme and
frequency etc. The three different features of the spectrum sensing are the interference

temperature model, detection of spectral holes and CSS using multiple sensing users.

Sensing

Real time wideband monitoring

Radio
Environment

Adaptation

Transition to new operating

Analysis

Rapid characterization of

environment ;
environment

Reasoning
Determine the best response

strategy

Figure 2. 2 Cognitive Radio Operational Cycle

11



2.4.2 Spectrum management and handoff

When unlicensed users have knowledge about the available spectrum holes, spectrum
management and handoff functions enable these opportunistic users to select the best frequency
bands and to hop in the multiple bands according to the time varying channel characteristics to
meet various qualities of service needs. If the licensed user starts its transmission in the vacant
band, SUs must be intelligent enough to direct and shift its activity to other available frequencies
according to capacity of the channel determined by the interference level, noise, channel error

rate, path loss and holding time etc.
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2.4.3 Spectrum allocation and sharing

The DSA allows SUs to share their spectrum resources with other unlicensed users and PUs. But
it is difficult to achieve better spectrum allocation for sharing with increased spectral efficiency.
As the PU has the right to use the spectrum without any restrictions and disturbances, therefore,
interference level due to the transmission of unlicensed users must be limited to a certain
threshold. In the process when multiple users try to access the frequency band of the PU, their

access needs to be coordinated so that to reduce collision and interference.

2.5 Network architecture of Cognitive Radio

The current fixed spectrum assignment is not able to meet with the growing demands of higher
data rate and to accommodate new wireless services. The use of cognitive radio has emerged as a
new wireless communication technology to meet up with challenges of the underutilized
spectrum resources in the most efficient manner. A CR network architecture is divided into a
secondary network with SUs and secondary base station and the primary network with PU and

the primary base station in Figure 2. 3 [43].

Frequency Spectrum hole/Spectrum
opportunity

v

Time

Figure 2. 4 Spectrum holes
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The secondary network both with and without any secondary base station, consists of many SUs,
all trying to detect the occupancy of the PU spectral hole, when there is no activity of the PU.
The secondary base station is serving as a hub for secondary network, having fixed infrastructure
components and coordinating the possession of the PU spectrum holes with SUs, when it is not
in use of the PU in Figure 2. 4.

The secondary base station and users are both equipped with the features of CR. The spectrum
broker manages the transmission of all secondary networks, when large number of secondary
networks tries to make use of the same spectral band. This is done with the help of collecting
information from each secondary network, so that to assign network resources in the most
efficient and fair spectrum sharing manner. The PUs are legal in using the assigned portion of the
spectrum band by taking help of the primary network base station. This provides the authenticity
such that no interference or interruption is received by these licensed users due to the
transmission of secondary network. As the PUs and their base station do not have the properties
of CR, therefore, any secondary base station sharing the licensed spectrum band with the PU
without determining activity of the PU is certainly generating problems in the PU transmission.
It is therefore mandatory for the secondary network to detect immediately the PU activity and to
further direct any secondary transmission to other freely available spectral bands [44],[45].
Efficient utilization of the radio spectrum is characterized by overlay and underlay techniques in
CR. The underlay cognitive radio is able to sense the radio spectrum and communicate over the
vacant channel. Overlay antennas of the CR are using two ports, where one port is narrowband
and frequency reconfigurable, while the other port support UWB. A new kind of antennas with
challenging and counterintuitive evolutionary computation like GA is used to optimize the

antenna geometry for achieving maximum frequency bands with minimum switches [46].
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Cognitive Radio is the wireless architecture representation in which fixed band is not assigned to
the communication system and that search by itself to find a vacant band to operate. It is shown
that the detection performance of an unknown weak signal in a known weak constellation is
similar to the energy detector (ED). The use of the pilot signals is introduced in the presence of

moderate level of noise uncertainty, which produces improved detection results [47].

2.6 Malicious users in Non-Cognitive Networks

The impacts of malicious users on the performance of cloud computing, internet, WSN and

MANET are discussed below.

2.6.1 Cloud Computing

Cloud computing is the type of computing system based on the internet that allows sharing data
and resources, in order to create and to configure an application online in Figure 2. 5. The goal of
mobile cloud computing is to provide services to users of cloud computing conventionally and
efficiently without any limits. Similarly, mobile cloud computing is integrating the mobile
internet and cloud computing, in the provision of diverse types of integrated cloud computing

services [48].

To overcome the abnormality effects in cloud computing, analyses and behavior of the users
traffic is investigated in [49]. At first, whole feature set is constructed by collecting features from
the user traffic that helps in the selection of essential and more accurate features to select and

predict an abnormal user using Naive Bayes classification.
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2.6.2 Distributed Denial of Service attacks on the Internet

A distributed denial of service (DDOS) attacker denies the licensed user entry in to the service
with takeover of the system resources, which leads to congestion in the system. In the intrusion
detection framework, network traffic is divided into three types, that is, suspicious, malicious
and innocent traffic. The normal user causes the innocent traffic, while the malicious traffic is
due to the malicious user. A suspicious traffic is difficult to be categorized as malicious or
normal. The normal incoming traffic is transported to the destination, while the malicious users’
incoming traffic is dropped. However, suspicious users traffic is a challenge to the system and do
not fall precisely into either of the two scenarios of the normal and malicious, therefore, a simple

drop out of the suspicious traffic results in a false positive problem at the system.

Participation of the DDoS users have a major impact to affect the network outage, packet
transmission delay, economic losses, website disruption, and legitimate user obstruction. The
DDoS detection techniques are implemented either at the victim nodes or at many intermediate

routers that run DDoS identification algorithms.
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A network with a single victim node surrounded by a single hop distance is recognized as
protection nodes that form an overlay. The single nodes deployment schemes are not capable
enough to detect DDoS attacks with great reliability, as the network traffic is not aggregate
enough at the intermediate nodes. Instead of designing systems that work in isolation, utilization
of the distributed framework for nodes detection with various systems plugged in and assist to

reach to a better overall detection is proposed in [50],[51].

The security areas of the customer network are expanded to include an internet service provider
network, in order to effectively handle any suspicious traffic. A DDoS category of attack is
discussed [52] that has not only an impact on the QoS of the victim systems, but can also poor
down the QoS of the outsider systems. This distributed detection approach detects the DDoS
attacks with coordination across the internet. The proposed scheme uses a nonparametric
detection technique to improve individual nodes detection precision. Further, a gossip multicast

method swap information is made of the individual nodes to get to the accurate detection results.

A semi supervised clustering scheme for intrusion detection is proposed [53]. In this work, the
network data flows are first divided into three data types such as ICMP flow, TCP flow and UDP
flow according to the network protocols and is next forwarded to the detection agents. The
chances of MUs existence increase with the P2P applications and total users that have a negative
impact on the performance of the P2P network. In [54] outlier mining based malicious node

detection model is proposed for the hybrid P2P networks.

2.6.3 Wireless Sensor Network

Sensor networks have the ability to provide the most feasible/economical solution to challenging

problems like defense, traffic observation, weather/pollution monitoring and in wild life tracking
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system. Sensor networks allow the rapid deployment of low cost intelligent sensors in an
environment of high interest. Along with the process capabilities, wireless sensor network has
the important constraints of large memory and bandwidth requirements. It is mainly deployed in
the particular environment where the exchange of data is through short range radio technology.
Wireless sensor networks have obtained an amazing gratitude and hi-tech progress in recent
times. In spite of the easiness in employment and considerable advantages, protection has always
been a testing subject due to the environment in which the sensing nodes work. To handle the
malicious signals involvement in the wireless sensor network and to keep it secure from viruses
and worms, some strong security mechanisms are required. A susceptible infrared vaccinated
(S1V) model for analyzing the effects of node injection and worms aggressive dynamics in the

wireless sensor network is proposed in [55].

To provide the idea and benefit of the holistic approach to cognition in the sensor network, an
inclusion of learning and analysis is performed in the top and physical layer opportunistic
spectrum access. The pre attack behavior is recognized using emotional ant based centralized
intrusion detection system in [56]. Similarly, the affected sensor nodes can be precisely
recognized in the application independent framework. This model establishes unique properties
of the sensor network with appropriate generalization of the application specific detection
method. Based on the frame, alert reasoning algorithm can easily identify compromised sensor
nodes [57]. An extensive literature review is investigated for the trust and reputation-based
model in both the sensor and ad-hoc networks. Based on the trust establishment mechanism, state
of the art is categorized into two parts, that is, system centric trust model and node centric trust
models. Efficacy of the existing schemes is evaluated based on computation, trust evidence

initialization, weight assignments and propagation [58].
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In the wireless ad-hoc networks, intermediate nodes provide the facility of relay for the nodes to
talk with far-off targets. As wireless nodes are limited by the energy constraints, therefore it may
not be in the nodes interest to admit relay requests all the times. An assumption is made to state

node actions, rigorously determined by the nodes self interest in [59].

2.6.4 Mobile Ad-hoc Network

The advent of intelligent transportation system is on the horizon that leads to safer and more
efficient roadways. The automotive industry has begun the deployment of its first intelligent
vehicle system that consists of technologies such as route guidance, adaptive cruise control
systems, black boxes and night vision systems. Intelligent vehicles get knowledge of the nearby
vehicle dynamics and the presence of any roadway risks through the advance wireless

communication and sensor technologies [60].
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Figure 2. 6 Malicious Users in Mobile Ad-hoc Network

The focus on the fundamental security problem in the MANET as in Figure 2. 6 is to protect
multi hope network connectivity of mobile nodes is proposed in [61]. This has identified security

issues related to the problem, and discusses the security challenges in the design, and review
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state of the art security proposals to protect the mobile ad hoc network link and network layer

operations over the multi-hope wireless channel.

The malicious actions make a threat to the general packet radio services (GPRS) network, mobile
users with GPRS, and the data transferred through the network. The malicious attacks are carried
out by third parties, users or network operators, to exploit the security limitations in the network
[62]. An examination of the pivotal security issues in the 5G network is investigated [63], where
the wireless communications are essentially susceptible to the security breaks. A physical layer
security can safeguard confidentiality of the data with the exploitation of inherent

unpredictability of the communications medium with the disruptive technologies.

2.6.5 Wireless Body Area Network

A wireless body area network which is a type of sensor network as in Figure 2. 7, autonomously
operate to connect a variety of health check sensors and appliances. These sensors and
appliances may be placed either internal or external to human body. The major advantages of the
WBAN are to facilitate patients with the handy applications that can move along with the
patients. The sensors are placed at accessible distance or on patient body communicate with the
local control devices. Local managing devices further talk to the distant targets to share

analytical and therapeutic purpose data [64].
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Figure 2. 7 Wireless Body Area Network

A small size and low cost sensor development system is achieved with the advancement in large
scale and integrated communication technologies, which can be injected into human body for
suitable healthcare applications. Some applications of the wireless sensor network are to provide
an all time supervision of the user and also to avoid the risky state. In case of any emergency
situations, WSN is cable to take appropriate actions to guarantee full safety for the patients [65].
The theory of Internet of Things (10T) enables the possible information discovery about a tagged
person or tagged object by searching internet address or record entry [66]. The security issue and
confidentiality shelter of the WBAN data is a challenging problem, when it is stored either
within the WBAN or in their transmission out of WBAN areas. Investigation of the two
important data security issues is made such as the fine grained distributed access control and

accurate distributed data storage for susceptible and confidential patient therapeutic data [67].

2.7 Malicious Users in Cognitive Network
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The existing spectrum sensing schemes are not reliable to mitigate security attacks. Conventional
security solutions in the non cognitive networks erroneously operate when faced by the new
spectrum sensing attacks. The most considerable features of any WSNSs is the facility to gather
and practice in parallel with the massive amounts of data using tiny and limited power devices.
This may enable their use in target detection, surveillance and monitoring applications. In recent
times, some new ideas have been suggested to make best use of the cognitive WSNs (CWSNs),
to develop knowledge of the environment, and to further make adjustable decisions based on

desired goals [68].

The security issues in cognitive radio mobile ad-hoc network (CR-MANET) are in the greater
interest of the research community. The impact of including malicious users in the CR-MANET
is investigated and its suitability under the SSDF category of malicious users is illustrated. A
consensus based technique for the CR-MANET is discussed to reduce the effects of any SSDF
user in [69]. This shows the design of a wideband autonomous CR scheme for jamming and
interference avoidance. The cognitive anti-jamming stochastic game model is able to avoid the
transmission of other WACRs as well as to predict and evade the dynamic signal of the jammer
that sweeps across the desired spectrum [70]. Similarly, vehicular ad-hoc networks (VANETYS)
can satisfy the demands of high bandwidth requirements in amount of applications to
communicate between vehicles using CR features. An assumption is made in this work to declare
every vehicle as benign and honest in the network. As reduction of security issues in the CR-
MANET is a major issue, therefore, a weighted agreement based sensing scheme is implemented
to look after the sensing practice in the belligerent cognitive radio vehicular ad-hoc network
(CR-VANET) in [71]. Some of the SUs always report existence of the PU transmission, in order

to utilize the spectrum themselves. To protect the system against these challenges, an
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abnormality identification algorithm that measure the suspicious level of the users and to further

utilize these suspicious levels in eliminating the influence of malicious users is presented in [72].

A single suspicious user elimination in CRN is of high interest in most of the literatures. In case
of more than one suspicious users in the network, detection accuracy of the system is degraded
considerably. A generalized extreme studentized deviate and adjust box plot schemes handle

multiple suspicious users efficiently in the collaborative network in [73].

2.7.1 Selfish Users in Cognitive Network

The CR attacks are classified as: sensing attacks, decision attacks and the spectrum mobility
attacks. Similarly, the selfish user attack is studied at various classification standards that
increase to share the spectrum resources. An adaptive attacker can adapt its power and channel
parameters by employing estimation and learning techniques in [74]. The existing cognitive
routing protocols assume the nodes to participate honestly in the packet forwarding. This
assumption is no longer authentic due to lack of a trusted centralized authority in the CRNs. A
cross layer selfish avoidance routing protocol in the presence of selfish nodes in the dynamic

CRNs is proposed in [75].

Various categories of the network attacks such as node masquerading, deliberate packet dropping
and packet mislabeling pose challenge to the quality of service (QoS) provisioning in the CRN.
The existing work focus in the literature is in the medium access control and physical layer of the
CR, however, security threats at the network layer are not being explored well in order to
establish communication between different users [76]. Trusted nodes operate normally in the
CRN by following the network standards and protocols. The selfish nodes fraudulently increase

access to the spectral resources in order to avoid other users access to the channels. Similarly, the
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inspiration for malicious users is to obstruct other users from contacting the resources in several
ways, such as disturbing and degrading the network performance. This can result in significant

reduction of the network performance due to the vulnerabilities of the CR-MAC layer as in [77].

2.7.2 Byzantine Users in Cognitive Network

The Byzantine category of attack is the type of spectrum sensing data falsification (SSDF) attack
in the text. Byzantine user is the key adversary to the success of CRNs. The Byzantine category
of malicious users and the protection schemes against these attacks has gained increasing
awareness in recent times. An abnormality detection approach is proposed to alleviate the
unknown strategy of attackers in CRN [20]. The Byzantine user behavior is classified based on
the attack parameters, and to determine how, who and where the attack is launched. The
increased number of Byzantine users in the network leads data fusion schemes incompetent to
decide accurately and most of the reputation based schemes are incapable to attain the desired

performance gain [78].

The work demonstrates the susceptibility of two specific cognitive networking schemes in the
presence of single Byzantine user. A novel energy well category of attack is discussed against
the Q-routing, in which a Byzantine member can draw traffic meant for a sincere contributor. A
denial of service attack learning algorithm with the single Byzantine participant degrading
network performance for an arbitrary amount of time is investigated in [79]. This technique
includes, measurements involving history trust factors, incentive factors, consistency factors and
active factors. The doubtful users are recognized and take out of the final decision based on the

measured trust factors [80].
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The Adaptive cooperative schemes identify attackers along with their attacking plans to estimate
the credit value of the users and identify any malicious attacker. In order to do this, a novel
ACSS technique is compared with the usual likelihood ratio test and sequential ratio test at
different levels of MUs that allocates an appropriate mutual weight to the users, in order to

improve the system performance [15].

2.7.3 Jammers and Eavesdroppers in Cognitive Network

The PU activity is often eavesdropped by a number of eavesdroppers, therefore, SUs are required
to intelligently interface with these eavesdroppers to minimize their harmful effects and gain
transmission opportunities. In order to assure the highest quality service to the users,

transmission rate of users must be kept higher than a certain level [81].

The CR system physical layer security under multi-eavesdropper system is investigated, that
consists of several SUs transmission to the general cognitive base station (CBS). An optimal and
suboptimal arranging algorithm using round robin system improves the security issues of the

CBS transmissions in the presence of eavesdropping attacks [82].

Little study is met in the literature regarding the general security areas such as the network
reliability in the presence of jamming users. Traditional jamming is targeting frequency band of
operating target radio with malicious signals injection to interfere with the desired signal at the
receiver. The interference history takes the form of the narrowband continuous wave (CW)
jamming, broadband noise jamming, swept CW jamming, narrowband CW jamming or pulsed
jamming. There are various objectives a jammer is searching, i.e., network degradation, herding

and Intermediate denial of service (IDoS) [83].
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The cognitive anti jamming problem in a multi agent environment that is modeled as a general
stochastic game is addressed. This work first introduce action and reward definitions for the
projected stochastic game and then, an optimal and suboptimal anti jamming and hindrance
prevention policies using reinforcement learning (RL) is suggested [84]. The confidential data
need to be accessed by the intended users only rather than any intruder. Similarly, eavesdroppers

using the attacks of jamming and eavesdropping [85] compromise the physical layer security.

2.7.4 Primary User Emulation Attacks in Cognitive Network

The primary user emulation attack (PUEA) is one of the common security attack that
compromise spectrum sensing process. In the PUEA attack, malicious user prevents vacant
spectrum bands by masquerading as the primary user in order to prevent other secondary users
from accessing the spectrum opportunity. Although, test beds exists in the literature, but no
diagnostic models relevant to the various parameters which could cause a PUE attack is studied
in the literature [86]. The sensing information of the different SUs is combine at the fusion center
and the combine weights are optimized so that to maximize detection probability of available

channels with the constraints of required false alarm probability [87].

Most of the previous studies on the PUEA assume that the unique properties of the PU
transmitter and its physical location are known at the SU or at the FC. However, an accurate
strategy which is capable to accurately detect PU, without the prior information is of high
interest. In the study of [12], a new technique called attack aware threshold selection scheme
requires no a prior information about the properties and location of the PU. An always present

attacker leads to wastage of energy resources and must be ignored at the fusion center. The
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PUEA category of MU is disrupting the spectral resources of the PU more hazardously as

compared with the always present attackers in [88].

2.8 Sensing schemes in the literature

Spectrum sensing in CR is a demanding research area these days. The unlicensed opportunistic
access of the unused frequency bands across the licensed radio spectrum is investigated for
increasing the efficiency of the spectrum utilization. As the spectrum access demands protection
of the licensed spectrum operations, therefore, sensing based access is the most reliable and
simple method to allow the unlicensed users to transmit through the free spectrum bands [2] in
Figure 2. 8.

In CRN, SUs are looking out for opportunities to find vacancies in the radio spectrum in order to
utilize the spectrum for communication. When the PU rejoins the spectrum, SU has to terminate
its connectivity, it is therefore difficult to insure QoS for the SUs. In case of the frequent usage
of the channel by PUs, termination probability of SUs is difficult to be ensured. The channel
reservation scheme raises the QoS for SUs, where, it enables the terminated SUs to move to the
reserved channel and keep communication active [89]. KL divergence based sensing method
with the constant false alarm probability in [90] provides reliable sensing results. The detector is
based on the distribution analysis of the incumbent user received signal. A theoretical false alarm
probability will be derived for fixed threshold using Meijer G-function with the product of p

Rayleigh independent random variables.
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Figure 2. 8 Spectrum sensing concept

The statistical modeling of the network traffic is able to predict behavior of the PU with high
performance. In particular, an innovative technique for the detection of an orthogonal frequency
division multiplexing (OFDM) based PU signal is discussed in [91], where performance analysis
is carried out in comparison with conventional spectrum sensing method that exploits the
autocorrelation coefficients. Unlike the conventional method, the strategy is completely blind
and can be applied with no a priori knowledge of any characteristics of the signal of interest. The
new system implementation challenges involved in the design of CRs is the ability to efficiently
sense the spectral environment and to flexibly adapt the transmission parameters in order to
maximize the capacity of the system. The critical design problem in such system is the need to
process multi-gigahertz wide bandwidth and to reliably detect the presence of the PUs. These
requirements put severe limits on the linearity, sensitivity and dynamic ranges in the circuitry of
the RF front ends [92]. The use of multiple antennas for spectrum sensing is considered when
noise and signal of the PU are considered independent complex zero-mean Gaussian random
variables. In the implementation of multiple antennas for spectrum sensing the system get

knowledge of the channel gain, PU signal variance and noise variance [93]. The spectrum
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sensing process has the main objective of providing more spectrum access opportunities to the
cognitive users without making any interference with the licensed users. The transmission
efficiency of the current radio frequency front-ends inevitably decreases due to its inability to do
the sensing and transmission jobs at the same time. In the solution to cope with both the
interference avoidance and spectral efficiency problems, a theoretical framework is built to
optimize the sensing parameters and to maximize the sensing efficiency with the constraint on
interference avoidance [94]. To consider spectrum sensing of the OFDM signals in an AWGN
channel for the completely determined noise and signal power, a vector matrix model setup is
made for the OFDM signal using cyclic prefix and optimal Neyman-Pearson detector. The
optimal detector results are compared with the ED numerically. It is shown that the ED is near
optimal with a gain of 1 dB SNR. To deal with the unknown noise and power of the signal,
results are derived for the generalized likelihood ratio test (GLRT) detector based on the second-
order statistics of the received data. Detection results of the GLRT detector in unknown noise
and signal power are compared with the OFDM based signal detector, producing improved
detection performance with 5dB SNR gain [95].

SUs try to sense the primary channels(l)and make the absence and presence hypothesis

assumption about the channel as follows [6]:

_JHo 2.1
yj(l)_{Hl, hjs(|)+nj(|)} @1

Where H,, is the hypothesis about the availability and H, is the hypothesis for the occupancy of

the PU spectrum by the licensed user. y, (1) is the received signal of the j" user at the 1™ time slot.
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n; (1) is the Additive White Gaussian Noise (AWGN) at the j" receiver. h; is the amplitude of the
channel gain, while s(1) denotes the transmit signal of the PU in the I™ time slot.

As a consequence of H,and H, hypothesis, the observed signal energy at the j" receiver can be

represented as [6]:

Z n (I)‘ o (2.2)

E; ()=
s l‘h s(l)+n, (|)\

GLRT detector for sensing: GLRT detectors have been proposed for multi antenna systems and
for sensing OFDM signals by taking some of the system parameters, such as channel gains, noise
variance, and PU signal variance as the unknown parameters [93],[95],[96].

Matched Filter Detector: When information of the PU signal is known at the SUs, the optimal
detection method is the matched filter detector in Figure 2. 9.

This detector utilizes correlation property to determine, if the known primary and received
signals have any correlation to maximize the SNR. This technique work inappropriately when

transmits signals of the PUs are unknown at the SUs [47].

Set Threshold

A(l)
A/D () Compare with
v(/) Tunable BPF —p» — Correlator —» ;

Converter Threshold

Pilot S|gnal — AD=T) —
Yes No
PU present PU absent

Figure 2. 9 Matched Filter Detector

30



Energy detector: Energy detector is the most common used option due to its simplicity in
Figure 2. 10. In this scheme, the received signal energy is compared with a threshold. If the total
energy is greater than threshold, SU take decision to show the PU signal is present; otherwise, it

declares that the PU is absent [47],[97].
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Figure 2. 10 Energy detector

Feature detector: Cyclo-stationary detector is the one that uses cyclo-stationary features of the
signal for spectrum sensing [97],[98]. It can distinguish both noise and PU signal and is very
helpful in the detection of weak signals under the low SNR, where energy detection and matched
filtering detection are not applicable [29].

In the literature cyclo-stationary feature detection is superior of all due to their ability to
differentiate modulated signal, noise and interference in the presence of low SNR [99]. The
conventional detection solution for spectrum sensing is based on the ED which is completely
blind and characterized by the lowest computational complexity of the decision device.
Therefore, detector sensing performance is often compared with the ED, but unfortunately, in
low SNR regimes and in the presence of noise uncertainty, ED dramatically degrades its

performance [100]. An inappropriate detection of the vacant spaces might generate interference

31



to licensees if misdetection operation is made by the sensing users. To avoid such problems, an
alternate series representation of the Marcum Q-function, for the exact detection probability over
Nakagami fading channels is discussed in [101], where SUs do not interfere with transmission of
the PUs.

The telecommunication signals are often sculptured cyclo-stationary, therefore this problem is
translated to the detection of cyclo-stationary attributes over a cyclic scope of frequencies and

fixed false alarm rates in [97],[98].

2.9 Cooperative spectrum sensing

Cooperative communication in CRN is a new technology that allows distributed sensors in the
wireless network to operate using distributed transmission and signal processing techniques in
Figure 2. 11. In the fading environment, detection of white spaces in the licensed user channel is
a challenging job for the individuals. The quality of received signal is severely degraded due to
path-loss and shadowing in the propagation path from various obstacles. Fading effects due to
the constructive/destructive interference in multipath strongly suffered the received signals. The
effects of fading can be reduced using diversity schemes in which copies of the received signal
are provided to the receiver. Diversity effects are obtained using multiple antenna systems with
more than one antenna installed at the transmitter and receiver sides. However, the cost, size and
weight constraints make the practical implementation of multi antenna wireless terminal very
difficult to insure. Cooperative spectrum sensing guides the sensing process to fight against the
fading effects with improved detection performance. The use of cooperation among individual

sensors has greatly attracted the research community interest in the wireless network [102].
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Figure 2. 11 Cooperative spectrum sensing in a shadowed environment.

CSS design consists of designing cooperative model, selection of spectrum sensing techniques,
control and reporting channels, data fusion schemes, hypothesis test, selection of user, and
knowledge base center as in Figure 2. 12.

e Spectrum sensing techniques are used to monitor PU spectrum band to state its free and
occupied information. Individual users cooperation can highly affect the spectrum
selections.

e The detection performance of cooperative sensing is supported and improved with the
knowledge base. The prior knowledge as well as licensee and unlicensed user locations
are stored in the knowledge base.

¢ Data fusion schemes integrate the shared sensing results to take cooperative decision.

e The control and reporting channels dealt with transferring the sensing data to control
coordinator or to other SUs using limited bandwidth.

e Hypothesis testing is used to state the presence and absence information of the PU. This
testing is made individually by the control coordinator or by each SU to take cooperative
decision.

33



Sensing
Techniques

Hypothesis Cooperation
Testing Models

Cooperative Sensing

Control Knowledge
Channel and Base
Reporting
User
Data Fusion Selection

Figure 2. 12 Elements of CSS

Cooperative spectrum sensing consists of a series of actions with centralized and distributed
sensing responsibilities.

2.9.1 Centralized and Distributed Spectrum Sensing

Centralized cooperative strategy is the most popular of all cooperative schemes. In the
centralized cooperative strategy a central unit, also called FC collect the sensing information
from all cooperative users to take the final decision. Either opportunistic information is broadcast
to all SUs by the central unit or the FC itself controls the SU traffic by managing the vacant
spectrum opportunity in an optimum fashion. The central unit can be an access point (AP) in the
wireless local area network (WLAN) or a base station (BS) in a cellular network. Similarly, in
the ad hoc network any SU can act as master node to coordinate CSS operation. Hence, the
centralized cooperation can take place in both the distributed and centralized network

architecture. The cooperative decision made by the distributed scheme is not relying on the FC
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decision. Instead, all SUs communicate among themselves to converge to a joint global decision

on in an iterative manner. The three basic steps accomplished by the distributed cooperated

algorithms are as follows:

1. Local findings of each user are forwarded to the other users in its neighborhood.

2. Cooperative SUs combine their local sensing information with the sensing information

reported by other SUs to decide the presence and absence of PU based. The shared

sensing results consist of either soft or hard decisions.

3. If the spectrum hole is not identified, SUs forward their combined results to other users in

the next iteration. The process continues until the scheme converges and final decision on

the availability of the spectrum is achieved.

Table 2. 1 Centralized and Distributed Spectrum Sensing comparison

CSS approach

Disadvantages

Centralized spectrum sensing

Advantages
This  scheme is more
bandwidth efficient as

compared with the distributed
scheme under the same
number of cooperative users.

The fusion center becomes
very critical and complex to
take the burden of all
cooperative users.

Distributed spectrum sensing

No requirements of the
backbone infrastructure, that
results in low implementation
cost.

This scheme needs large
control bandwidth to share
information among the

cooperating users.

Each CR finds neighborhood
for information exchange by
itself, which is a challenging
job.

Large sensing duration
resulted due to the iterative
nature of the distributed
algorithm.

A new form of space diversity in the cooperative sensors is realized to overcome the detrimental

effects of the fading channels. The most important challenge for a CR system is the identification
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of licensed users on a wide range of frequency spectrum, at a certain time and specific
geographic locations. The detection process of the license user is made stronger and effective
with CSS in CRN. All cooperative users in [103],[104] make use of equal energy detectors in
spectrum sensing, where received energies of the users are modeled as correlated log-normal
random variables. Cooperative spectrum sensing employing PSO based threshold adapting
technique address the said problem in [10]. The use of iterative property is carried out round
wise in the scheme, where in each round, SUs first selects few primary channels as the
candidates for sensing based on the primary SNR. Then the users selected the same channels
collaboratively form coalitions through coalitional game theory. Multiple games are then played
concurrently over multiple channels in terms of the false alarm and miss detection probabilities.
After generating stable coalitional structure, the best coalition on each channel is chosen to
perform the CSS [105]. The sensitivity requirement in the receiving devices is highly demanded
as any local radio can face deep fading environment. This sensitivity requirement of the
individual nodes is reduced by following a light weight CSS using hard decision schemes. In the
cooperative environment few independent users are almost robust than many of the correlated
users participation. The consideration of failure or adverse nodes can strongly affect the
cooperative scheme gain. Failure sensing nodes, reporting the absence and presence information
of the PU are easily compensated by noting their behavior in [5]. A novel channel assignment
scheme in [106], exploits the channel selection dependence on the signal frequency, attenuation,
communication range and interference levels. This model is considered more realistic compared
to the traditional methods in the mobility pattern of the CR nodes. It adaptively selects the
maximal transmission range of each node over which reliable transmission is possible. An

adaptive random nature scheme in [107] is able to better estimate about the license user spectrum
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and to solve sensing data collection problems in an intelligent manner. This study considered the
environment of un-equal SNR values of the primary signal at the local SUs. A random access
method is used to collect spectrum sensing data of the users at collection time and the length of
collection time is adaptively determined based on the known sensing data. In spectrum sensing
CSS has got special attention, but it has shortcomings in terms of energy consumption and
sensing overhead. The batteries limited life spans allow individual sensors in CSS to make a
balance in the energy consumption of the individual sensors. Different variants of the centralized
cooperative sensing techniques such as fuzzy logic, asynchronous cooperative sensing and
weighted cooperative sensing of the primary transmitter detection are discussed in [108]. A novel
linear combination scheme that requires mean and variance of the individual test statistics in [7]
is tested under the block fading, slow fading and fast fading. This introduced a stochastic
geometry tool to investigate the performance of CSS. String matching algorithms like Smith
Waterman algorithm is widely used in bio-informatics for aligning the biological sequences in
[109], to compare the reports of CR users with each other and to measure the similarity index.
The sensing information of the users with their similarity index below this threshold value is
discarded from the global decision. An energy harvest-based weighed CSS is proposed in [110]-
[112] to decrease energy wastage of the users with increased sensing performance. This
maximizes the spectrum access probability of the users by jointly optimizing the sensing time
and total number of cooperative users. The probabilities of detection and false alarm results are
important for the users to guarantee their usage of the channel. Cooperating spectrum sensing
sets one of the probabilities as target and optimize the other using cooperative schemes. The
derivations in [25],[113] show that in cooperative sensing, not all users participation is

necessary, but the users with high SNR information of the PU signal is important. In the presence
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of large number of cooperative users, the network latency and sensing traffic forwarded to FC
rises quickly. This increase the number of parameters which leads to increase sensing time
along-with collision at the control channel between fusion center and SUs. The work in [6]
proposed the implementation of extended sequential CSS, in which individual SUs reputation
help in efficient collection of local sensing notifications at the FC. A novel Bayesian method in
[14] has increased robustness in the presence of abnormal SUs to artificially reduce or increase
throughput of the radio network [14] .

2.9.2 Combination schemes at the Fusion Center

Combination schemes are employed at the FC to deal with the received sensing notifications of
individual users. The three basic steps to perform fusion combination schemes at the FC are as
below:

1. The fusion center selects a channel or frequency band of interest for sensing and requests
all cooperative users to individually perform the sensing operation.

2. Cooperating users report their local sensing observations using the control channel.

3. The collection center fuses the local sensing observations of all cooperative users to
decide about the presence and absence hypothesis of the PU and also to report back the
same to the individual users.

As in Figure 2. 13, cooperative users sense the PU spectrum individually and reports FC about
the channel condition. Based on the FC local decision and received observations from all other
users, a global decision is obtained about the free and occupied status of the PU spectrum. The

history logs of the users also enable FC to identify an MU. The received energy observations
E; (i) of the j" user in equation (2. 2) are further used in the hard and soft fusion combinations
in the following sections.
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\L User

Figure 2. 13 Cooperative users report collection at the FC

2.9.2.1 Hard Fusion Combination schemes

The three most commonly used hard fusion schemes applied by the FC are the voting rule, OR
and AND rules. The voting rule decides about the PU activity based on the voting of K SUs
decision out of total S cooperative users. If K out of S users decides that a signal is present, then
FC takes a global decision H,. Here S is the total number of cooperative SUs and K is the count
of how many of the SUs have reported PU signal presence. The count K =M /2 is selected as a
special case of the voting rule called the majority decision rule. Similarly, in the majority voting

decision if the PU detection reports are less than K then FC takes the global decision as H,

H, : otherwise

Go (1) {Hl 200 K} 2.3)

In equation (2. 3), G;_,,, (i) is the global decision made by the FC using majority voting scheme.

While applying AND rule by the FC, all the M SUs has to provide a unanimous decision of the
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PU detection, then the FC declares the channel as occupied by the PU and generate a global

decision as H, representing the PU signal, otherwise decision H, is made by the FC as:

GBAND(i){Hl: zj:lyj (b)zM} (2- 4)

H, : otherwise

On following the OR rule procedure by the FC during each sensing interval, if at least one of the

SUs provide local detection information to the FC, then FC decides a global decisionH,,

otherwise decision is made in favour of H,

Gy o i) = {Hl 2%, 0) >1} (2.5)

H, : otherwise

A CSS based on the counting rule is proposed in [27], where optimal sensing parameters of CSS
for minimizing error is derived, and then simple algorithm is proposed to set CSS with the
optimal parameters [21]. A closed form expression for the detection, false alarm and
misdetection probabilities are derived for the AND and OR fusion schemes in [114]. The
literature is following several fusion schemes like majority voting, OR rule and so on, which are
special cases of the general k out of ndecision rule. A dynamic adjustments of the valuek instead
of keeping any fixed value fork in [115]-[117] is able to provide more suitable detection results.
2.9.2.2 Soft Fusion Combination schemes

In the soft decision fusion scheme all users inform FC with their local energy statistic without
any local processing’s. FC further uses soft decision fusion schemes like EGC and MGC to take

global decision that could best fit with the licensed user status.
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The EGC employed by the proposed method is combining the individual statistical information
of all SUs, giving equal weight to each individual SU decision and summed coherently. The

result is compared with the threshold to decide the license user spectrum by the EGC as:

iam}
>

Geoc () = H,: —[ j:1M >y (2.6)

H, : otherwise

In MGC scheme, each receiving signal branch is multiplied with a weighed function proportional
to the branch gain. Branches with strong signals are further amplified while weak signals get
attenuated with these weights. The idea to boost the strong signal components and attenuate the
weak ones as in MGC diversity is exactly the same as that of filtering and signal weighting in the
matched filter receiver. The MGC scheme at the FC assign higher weights to the decision of the

SUs with higher SNR values and low weight to the decision of SUs with low SNR as:

M
) H,: w. xE. (i))>y
GMGC(I): ' ;( : J ) (2' 7)
H, : otherwise
Where w; = n(i)

M -

> n(i)

j=1

An alternate closed form expression for the detection probability over Nakagami channel is
presented in the [118]. Square law combining is proposed, when users of the wireless service
experience Nakagami fading channel and detection results are obtained with closed form
expression of the integral Nakagami parameters [118]. Two simple and computationally efficient

spectrum sensing schemes that enable faster decision at the FC using sequential and order

transmission schemes in the presence of different SNR distribution assumptions are in [119].
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CSS is considering MGC one of the optimal spectrums sensing choice. However, MGC requires
the use of SNR information for better operation, therefore the use of the robust KL divergence
based soft fusion combination in CSS has enabled FC to obtain almost similar performance to
MGC scheme with no requirements of the SNR and no additional steps for the identification of
MUs [16]. An optimal soft combination scheme using relay behavior of the cooperative users
provides space diversity to the spectrum sensing operation. The optimal soft fusion scheme of
the relay observation is derived with the Neyman-Pearson model that maximizes deflection
coefficients of the global test statistics at the FC using instantaneous value of the received PU
signal power at SUs [120].

Although CRN performance has majorly improved with cooperation, but an increase in the total
number of cooperative users is not the best solution, as it can degrade total throughput of the
CRN. A multistage cross entropy (MSCE) algorithm is used to optimize the trade-off between
the global detection probability and achieved throughput [121]. An ED based cooperative
spectrum sensing for CRNs is considered in [122], where Neyman-Pearson criterion is obtained
based on the optimal soft combination schemes to maximize the detection probability with a
given false alarm probability and establish a suitable trade-off in detection performance and
system complexity [22],[122].

2.9.3 Cooperative spectrum sensing schemes against malicious users

Although CSS is providing an efficient solution in CRN spectrum utilization, but the presence of
spectrum falsification type of MUs can degrade its performance. Reliability of the CSS is
seriously compromised with its exposition to the data spectrum falsification attack that sets vital

menace to the reliability of CSS.
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The effects of deterministic falsified category of MUs can be ignored by the FC with following
traditional static threshold based decision mechanism. This static threshold mechanism is unable
to cope with the nature of SSDF users in CSS. A dynamic threshold based strategy help to
defend the CSS against the SSDF attacks in [123] . A novel reputation based cooperative scheme
first detects, and then reject any malicious user, to improve the system performance. Finally, it
compares the results with the well known reputation based methods in a blind or un-blind way
[124],[125]. A novel defense scheme that jointly exploits the cognitive process of sensing and
spectrum access in a close loop manner without any prior information about the number of
attacking users is proposed in [13]. The results obtained are important from two perspectives,
efficient spectrum sensing and identification of MUs. The work in [17] make use of the KL
divergence method to reduce the spectrum falsification effects of MUs. Outlier detection
techniques, such as BWP has its major application in the identification of outlier data
components [126]. A combination of DSND and GA proposed reduce the effect of opposite,
random opposite, always no and yes nature of malicious users and get superior results in
comparison with the simple majority voting and EGC schemes. A traditional static threshold
based decision mechanism that uses trust based secure routing model is able to resist the
forwarding routing attacks in CRN. The monitoring nodes establish trust against the forwarding
nodes and declare the nodes to be malicious based on their trust values. The malicious behavior
of the non-trusted nodes is charged with stricter punishment policy that results in better network
throughput and end-to-end delay performance [127]. An onion-peeling based approach enables
CSS to oppose against multiple un-trusty sensors. A suspicious level is accumulated for all
cooperative users based on their reputation. The users with their suspicious level beyond

threshold are considered malicious and take out of the final decision [128]. It is necessary in CSS
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to detect any abnormal users and to further ignore their sensing reports in spectrum sensing.
Many techniques are based on the bias method, which require enough knowledge of the
attacker's behavior. It is typically seen that the FC has no information of the attacker tactics. The
use of abnormality based approaches in data mining can cope with the unpredictable behavior of
the malicious users [16],[129].

To counteract the data falsification attack of MUs, Tietjen-Moore and Shapiro-Wilk based tests
are suggested in the literature [25]. This work first considers the basic and statistical falsification
attacks from MUs independently, and then proposes a novel SSDF attacks that involve the
cooperation in misbehaved users by masking their results. The total number of MUs is further
estimated using clustering and largest gap methods. In [21] and [130], the PUEA is nearly placed
to the licensed PU and transmit with similar power as that of the PU in a way that it look similar
to it [14],[131].

Evolutionary computing has great applications in the wireless communication. Evolutionary
computing is used in the spectrum sensing, resource allocation and interference mitigation in
CRN. Cooperative spectrum sensing also utilize evolutionary computing, such as GA and PSO to
get to a more realistic decision about the license user activity.

Genetic algorithm enables CSS to produce optimized sensing results in order to increase
bandwidth efficiency and spectrum utilization. A binary GA based soft combination scheme
proposed in [130] produces improved detection results and bandwidth utilization for CSS.
Genetic algorithm is analyzed under the impact of correlated user decisions to minimize the
sensing error based on the Neyman-Pearson criterion in [132]. An effort is made in CRN to
optimize the detection and false alarm probabilities, in order to reduce the error probability of

SUs in centralized network using GA with the aim to keep the error probability minimum and to
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search for the most optimum values of detection and false alarm probabilities. The GA
performance is compared with the differential evolutions and it is obvious that the differential
evolution finds a better solution with less number of evolutions [23]. The multi-parent crossover
based soft decision fusion scheme in [133] using GA is able to reach to the better detection
results as compared to the standard GA and other soft and hard decision fusion schemes.

In [134], a hybridize PSO-OR scheme use the combination of PSO and logical OR hard decision
scheme together with double threshold ED to perform spectrum sensing operation. The FC
received local decisions and energy observations reported by the users. PSO is then employed to
optimize sensing decisions of the fuzzy users. A final global decision is then made by the FC
based on the local decisions provided by all SUs. Similarly, the PSO scheme using MINI-MAX
criterion is investigated in [135], in order to reduce the error probability more accurately
compared with GA using optimized weighting coefficients against cooperative users. The multi
objective hybrid invasive weed based PSO scheme, optimize soft combination in selection of the
threshold and coefficient vector assignment to various users in order to reduce the probability of
error in [136]. An optimal weighted coefficient vector in the soft fusion combination is
determined using PSO to improve detection performance. This scheme has better results in
achieving desired fitness, stability and convergence speed [112]. The major concern in CRN is to
provide protection to the licensee channel against the harmful interference caused by the
spectrum access of SUs. Detection error in the soft combinations is bitterly minimized by using
imperialist competive algorithm in a structurally centralized CRN. The imperialist competive
algorithm enabled CSS to assign optimize weights to the sensing measurements of individual
users that established more optimum results compared with other soft and hard fusion

combination and evolutionary algorithms [8].
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2.10 Summary

The rapid evolutions in wireless communication demand new wireless services in both, the used
and vacant parts of the radio spectrum. The FCC exclusively assigns spectrum bands to various
services. CR is a smart technique that gains knowledge from the environment and adjust its
parameters accordingly. The PUs are free to transmit any time with no restrictions, while the SUs
can utilize the spectrum only when the licensee declares it free. In CRN, sensing the incumbent
user spectrum is vital. An offensive detection on the PU channel due to false alarm reduces the
SUs opportunity to utilize the free spectrum. Similarly, any misdetection in the PU transmission
will produce interference in the transmission of legitimate and opportunistic users. In case of the
frequent usage of the spectrum by the PUs, the termination probability of SUs is not easy to
ensure. The cooperative user devices placed more than a few wavelengths apart experience an
independent fading effect. The doubt to efficiently detect the licensed spectrum possession is
removed by enabling different users to share their local sensing results and make a cooperative
decision. In this dissertation of the Resource Allocation and Spectrum Sensing in Cognitive
Radio Network using Soft Computing and Statistical Techniques, KL divergence, GA, PSO,
correlation and BWP has been employed to protect the CSS against the spectrum falsification
attack (SFA) of the AYMU, ANMU, ROMU and OMU categories of MUs.

In chapter 3, different techniques are investigated for selecting an optimal resource allocation

and spectrum sensing policy in the presence of MU’s.
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Chapter 3

Statistical and Heuristic Algorithms

3.1 Background

In this chapter, we will discuss KL divergence, GA, PSO, BWP and Hampels Test (HT) to detect
abnormal activity of the Always Yes, Always No, Opposite and Random opposite categories of
MUs. KL divergence is the basic equation in the information theory to measure the similarity in
data. KL divergence is the statistical measure that quantifies the closeness of the probability
distribution with a model distribution [137]. However, its intuitive understanding arises from the
likelihood theory, which shows the probability that one observes a set of data given a particular
model is true [138]. This link in the KL divergence and the likelihood arise from the reality in
cases where large number of measurements, possibly infinite are performed [137],[139]. The KL
divergence provides many applications in the field of statistics and information theory to
determine the behaviour of the data [137]. Similarly, in order to judge a model inconsistency, the
KL divergence is the most frequently used information principle [140]-[143]. KL divergence is
also defined as the logarithmic ratio of the probability density functions (PDFs) of the two
models, where one is always considered to be a fitted model and the other model as a reference
model. The expectation is always taken in the KL divergence with respect to the reference
model. KL divergence is suitable for model comparison in the Bayesian framework, typically
involve the integrated likelihood of the competing models [142].

The name heuristic is a Greek word which means ‘to discover’ or ‘to find’ something. It is the

terminology used in the algorithms, to solve a problem more quickly and efficiently as compared
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with the traditional method of algorithm in the exchange of precision and accuracy with more
optimality, completeness and execution time. The optimization problems make good use of the
heuristic algorithms (HA), when the optimal solution is not possible or when it is unrealistic. HA
can be helpful to speed up the process of finding any satisfactory solution. Different researchers
from all over the world have shown their interest in the HA, due to its ease in the perception and
implementation and also helpful act against variations in the environment [144]-[147]. Heuristic
algorithms are based on the concept of biological evolution, that is, Darwin’s theory of
evolution, with the population based searching methods using genetic operators, including
crossover, mutation, inheritance and selection. Further advantages of the HA as compared with
the traditional optimization methods include its broad series of applications, ease of concept,
hybridization, parallelism, ability to solve problems with no solution and their adaptability to the
dynamical changes [148]-[151]. Among the many HA found in the literature, few of them are
listed below.

o Firefly algorithm

e Genetic algorithm

e Cuckoo search algorithm

e Differential algorithm

e Ant colony optimization

e Cultural algorithm

e Particle swarm optimization

e Pattern search algorithm

e Bee colony optimization

e Fire algorithm
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e Backtracking search algorithm

e Evolutionary programming

e Self-organizing migration algorithm
e Harmony search algorithm

e Bat algorithm

In this chapter, we will restrict our discussion to the KL divergence, GA, PSO, BWP and HT.
3.2 Kullback Leibler Divergence

As the KL divergence value between the two probability distribution functions (PDFs) a(x) and

b(x) both normally distributed as follows [152].

K(allb) = [ a(x)log (%) dx 3. 1)

Similarly, the KL divergence for functionsa(x)with mean and variance(ya,aj)and function
b(x) with mean and variance valueS(ub,abz) is further calculated as:

K(allb)=K( s, 4y, 02,07 ) (3.2)

The result in Equation (3. 2) clearly shows that for functionsa(x)andb(x)with similar PDF
occurrence, has “0” KL divergence value. As always Yes and always No MUs are giving
identical energy distribution with similar mean and variance values under both H,and H,as in

Figure 3. 1, therefore the KL divergence has a value 0 for always Yes and always No MU. The
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opposite MU and random opposite MUs are generating dissimilar KL divergence results in

comparison with normal SUs as shown in the energy distribution in Figure 3. 1.

Pr;izju\, HC:;

Figure 3. 1 PDF of the energy distribution reported from the CR users under the absence or
presence hypothesis of the PU signal: (a) normal user, (b) opposite MU, (c) always Yes MU, (d)
always No MU, (e) random opposite MU.

The PDF of the energy distributions received from the normal SU, opposite MU, always Yes
MU, always No MU and random opposite MU are shown for comparison in Figure 3. 1. It is to
be noted that the energy distribution of these MUs is totally different from the normal SU. These

differences in the energy distribution of the SUs are used for the detection of MUs. A normal SU

in Figure 3. 1(a) is shown with positive energy distribution under H, hypothesis and negative

energy distribution under H, hypothesis. The opposite MU has opposite energy distribution to

50



the normal users as in Figure 3. 1(b) under both H,andH,. Always Yes MUs with positive
energy distribution under both H,and H, hypothesis and always No MUs with negative energy
distribution under both H,and H, hypothesis are shown in Figure 3. 1(c)-3.1(d). Random

opposite MU has statistically opposite nature to the normal SUs with probability p and results in

distributions as in Figure 3. 1(e) in both hypotheses.

3.3 Genetic Algorithm

The idea Genetic algorithm was introduced for the first time in 1975 by John. H. Holland in his
work of presenting an easy solution for the natural selection [153],[154]. GA has its major
advantage in the fact that it cannot be struck in the local minima and give suitable result to the
problems that are difficult to dealt with by other methods, or having no mathematical model, or
the problem with complex mathematical model, or when the problem consists of large number of
parameters. Nowadays, various fields of engineering make use of the GA in solving diverse
optimization problems [155]-[158].

GA technigue with its recycling features starts with the randomly generated population having a
fixed number of individuals. The population is the representation of the possible solution to the
problem in the concern environment. All individuals of the population are known as
chromosomes, where each chromosome consists of fixed genes. When the population is formed,
selections of the stochastic operator go for the best solution during each generation. A new set of
individuals called parents is formed with the selected solutions, which will further participate in
the outstanding evolutionary process. The parent chromosomes employ the process of crossover,
mutation and elitism, in order to find the best solution, which further constitute a new set of
individuals labelled as children (offspring’s). This selection of the parents and production of the
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offspring’s continues until the establishment of given number of iterations or when best
individuals are selected. The procedural steps of the GA are depicted in the flow chart diagram in
Figure 3. 2.

Step | Initialization: This is the commonly used step in all HA, as the set of individuals that
contains a possible solution of a problem being solved is mandatory for every HA. Therefore,

this step has no constraint on the size of the individuals that constitute the population.

Step Il Fitness Evaluation: The most important part of HA techniques is the design of the
fitness function, as the performance and result of any algorithm mainly depends on the particular
fitness function, which is specific to a problem. The fitness score is evaluated for all individuals

and are placed in descending order of their fitness.

Step 111 Parent selection and Offspring production: These sorted individuals in the previous
step now became parents in the next generation. The probability to generate children population
is proportional to the fitness of their parents. Single point and multi point crossover are helpful in
this production. Parents with higher fitness score have the opportunity to produce more
children’s. More children will be produced by parent having higher fitness and vice versa. There

are two approaches for doing this:

1. Selecting parents with their probability is inversely related to their fitness and invite them
to bring into being.

2. Selecting roulette wheel method with angle of the sector directly associated with the
fitness, therefore, the sector with a higher angle has more possibility to be successful as a

better parent.

52



Step IV Generating the new population: Children are selected for the next generation by

following three methods such as Generation replacement, Elitism and Survival of the fittest.

(a): Replacement of generation: This step allows the complete replacement of parents by their
children. Although a thorough process for mixing of genes is allowed in the practice, even then
there is no assurance that all of the children will be better candidates as compared with their
parents. Therefore, this will happen in degradation of the fitness due to losing some of the

individuals having best genes.

(b): Elitism: Some of the best individuals from the previous should be retained in this process,

so that to deal with the handicap of generational replacement.

(c): Survival of fitness: In this process, both the children and parents are sorted in descending

order of their fitness results.

Step V Mutation: The process of mutation is the only choice when no development is observed
in fitness of the next generation. In mutation individual genes are selected randomly for a

change.

Step VI Termination criteria: The GA algorithm will automatically come to an end if the
iteration limit is achieved or if the necessary MSE is accomplished. Otherwise, the process will

go back to step Il as in the GA flow-chart diagram of Figure 3. 2.
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Figure 3. 2 GA Flow chart diagram

3.4 Particle Swarm Optimization

Particle swarm optimization is utilized as a tool for optimization of the threshold point in [159].
Different variants of the PSO are used in [160] to find optimal weighting coefficients against

SUs in CSS. PSO with ED having double thresholds for the cooperative SUs is in [161]. An
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efficient PSO with optimized throughput and providing high protection to the legitimate user is

proposed in [162].

PSO is derived from the bird flocking or fish swarming, and was introduced by Eberhart and
Kennedy in 1952. In PSO, individual intelligence as well as collective intelligence is playing a
role in finding an enhanced solution. In the GA, it is likely that every novel group is flourishing
better than the previous generation. Similarly, in the PSO the same group which has been
initially created is likely to become better and better. Each individual establishes his intelligence
and improves it with time. The whole group is expected to improve upon its group intelligence.
Particles in PSO algorithm utilizes its own and neighbor knowledge to update their position and
velocity. The PSO particle exchange information about their best position among each other
during a number of iterations. The procedural steps of the PSO are as below in Figure 3. 3.

Step I Initialization: In this step, PSO population is initialized randomly, consisting all possible
solutions of the specific problem as in the GA. Where each particle is the candidate solution.
Step 11 Fitness Evaluation: In this process, the fitness of each particle is determined according
to the requirements and suitability to the specific environment.

Step 111 Local best and global best: After the determination of fitness functions, global best and
local best particles are determined. As each PSO particle may improve on its own. If a new
version of the particle improves compared with its previous one, it will be taken as the local best.
Similarly, the particle with the best fitness out of the population is selected as the global best.
Step IV Update Velocity: In this step particles velocities are updated, which is directly
proportional to its previous velocity, its distance from the local best and distance from the global

best.
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Figure 3. 3 PSO Flow chart diagram

Step V Update Local and Global best particles:
The Fitness function of the new population is determined and its local best and global best results
are compared with the previous results of the local and global best particles to search for any

improvement in the local best and global best results.
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Step VI Termination Criteria: The PSO algorithm is terminated if required solution is met or
when the maximum number of iterations is achieved. Otherwise, the program goes back to step

3.5 Box-whisker plot and Hampel’s Test

A box-whisker plot and Hampel’s test are the simple ways for the identification of outliers in any
statistical data. Box-whiskers plot is the most commonly and widely used statistical tool for
exploratory data analysis. It’s a useful method invented in 1969 by John W. Tukey an American
mathematician to visualize the data dispersion [26]. Box-whisker plot can instinctively reflect

outliers by dividing data into four equal parts

d=[d, d, .. dy] 3.3)
First, the result is made in ascending order and the median value is identified that divides the
data into upper and lower half using median value. Lower and upper quartile values are
determined from the datad . An outlier in the data using BWP is a dispersal of the data greater
than 1.5 times the box away from either the lower or the upper quartile [163]-[166]. The median

value of vectord is determined as:

2
Med = ,jel2,..,M (3.4)

1 d.(Mj+d.(M+lj , deven
20 'L 2 "2

The first and third quartile values that contain 25" and 75" percentile of the data in equation (3.

dj('\"”j, d odd

3) are denoted as Q; ., and ijper. The inter-quartile value for the range of the upper and lower

quartile values is measured as:
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IQR = ijper _Qiower (3 5)

Similarly, the lower and upper limits are selected to detect MUs as:

I—Iimit = Qtower _15( IQR) (3 6)

Ujimit = Qpper +1.5(1QR) @.7)

After setting all parameters of the BWP, MUs are identified using the following criteria.

j"data if(d.>U. . ord. <L, .
Abnormal =1} ( S i : "m") ,j€l2,..,M (3.8)
0, otherwise

In equation (3. 8), a user is declared malicious if its correlation score is outside the lower and

higher limits of the BWP.

Traditionally, in case of no outlier contamination in the data, location and scatter for the data is
efficiently estimated with the sample mean and variance. HT introduced in 1971 by Hampel has
the ability that it is not susceptible to the quantity and value of outlier. The HT also shows no
limitation to the abundance of the statistical data. Therefore, it is applicable to the data

containing abnormalities in order to search for abnormal contributing data [27]-[30]:

First, the value of deviation rjlfrom the median is determined for all data elements as:

rr =(d} —med (d})) (3.9)
Here med (d;) is the median value of the data in equation (3. 3) d; made by all SU. A data is

declared outlier, when the following condition is satisfied:
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v j", i |rf| = 4.5Med |r| (3. 10)
™ 0, otherwise

Where‘rﬂ is the absolute value of the median deviation and Med ‘rﬂ is the median of the absolute

median deviation results.

3.5 Summary

This chapter focuses on the heuristic and statistical techniques for detecting abnormal sensing
users that misguide other SUs about the licensee activity. It further creates the problem of
improper resource allocation and incorrect spectrum sensing in CRN. The chapter is divided into
three parts. Part | explains the optimal soft combination scheme, that is, KL divergence, that
works on the PDF dissimilarity. The focus in part 1l is on the GA and PSO algorithms with its
flowchart and necessary decision steps. In Part I11, a theoretical and mathematical background of
the BWP and HT methods are highlighted for detecting an abnormal sensing data among the data
provided by all cooperative users. The detected MUs by the BWP and HT are isolated from the
normal sensing users in the hard combination schemes that leads to better resource allocation and

spectrum sensing in CRN in the presence of MUs.
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Chapter 4

Cooperative Spectrum Sensing using Kullback Leibler divergence

4.1 Introduction

In this chapter, we have discussed the KL divergence scheme for MUs detection in CSS. Fading
and shadowing in the communication channel degrades the sensing capability of individual
users. To resolve this issue CSS is suggested. Although the system reliability is improved with
cooperation but the presence of MU in CSS deteriorates the sensing performance. This chapter is
divided into two parts. In part I, we have considered history based forward and feedback KL
divergence method for minimizing SSDF attack. In the proposed CSS scheme, each SU reports
the PU availability to the FC and also keeps the same evidence in its local database. Based on the
KL divergence, if the user is acknowledged normal by the FC, then unified energy information is
reported to the FC based on its current and previous sensed results. This method leads to high
detection probability with optimum transmission energy, thus providing an improvement in
performance. Simulation results show that the proposed KL divergence method has performed
better than the existing EGC, MGC and simple KL divergence schemes in the presence of MUs
at different levels of SNRs, total number of cooperative users and MUs. In part 1, unlike the KL
divergence in part I, where the individual SU sensing information is utilized for measuring the
KL divergence, MUs are identified and separated based on the KL measurements of the
individual SU decision and the average sensing statistics received from all other users. The

proposed KL divergence scheme allocates lower weights to the MUs sensing and higher weights
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to the normal SUs sensing. The proposed method has been tested in the presence of always yes,
always no, opposite and random opposite MUs. Simulations confirm that the proposed KL
divergence scheme performance has exceeded the existing soft combination schemes in

estimating the PU status.

4.2 Data Model

‘m-

é Primary User

g Secondary User

. Malicious User

(((-))) Fusion Center

B

Figure 4. 1 Conventional CSS mechanism.

All SUs in the centralized CSS as in Figure 4. 1 report FC about the existence of PUs with local
spectrum sensing information. FC combines the received sensing notifications from all SUs with

his own sensing results and generates a global decision about the free and the occupied status of

the PU spectrum.

Based on the spectrum sensing information by each SU in a particular band decision between H,

and H, is as follows [6]:
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| Her ni() 4.1
yj(l)_{Hl, hjs(|)+nj(|)} @1

Here H,and H, are the hypothesis about the absence and presence of the PU. y,(1) is the received
signal from the j" SU, n; (1) is the AWGN at the|™ time slot for the j" SU, h; is the channel gain

value between the j" SU and PU and s(l) is the signal transmitted from the PU. According to the

hypothesis H, and H, the received signal energy of the channel by the j" SU user at thei™ sensing

interval is [6]:

Z::isil‘nj (I)‘Z ’ H,
Z:‘j‘l\hjs(l)+nj(l)\2, H,

E,@i) = (4.2)

Where S is representation of the number of samples in thei" sensing interval. The number of

samples is to be considered large enough so that the energy reported by each SU resembles a

Gaussian random variable under both H,and H, hypotheses.

_ 2 _
- N(yO—S,GO—ZS), H, “3)

J
N (=5 (7, +1),07 =25 (1, +1)), H,
Herern; is the SNR value between the j"SU and the PU. (1,,07), (14,07)are the mean and

variance values of the energy under H,and H, hypothesis.

4.3 Proposed history based Kullback Leibler divergence scheme
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e Energy sensing by individual SU

e Store sensed energy locally

o KL distance feedback received from
FC

®
é Primary User

Secondary User

@ Malicious User

(((-))) Fusion Center

Fusion center as legitimate user sense PU
Combine detection results of all SUs.

Generate global decision of primary user existence
Each SU is feedback by its individual KL distance

Figure 4. 2 Proposed CSS mechanism in the presence of MUs.

In the proposed work, the total number of MUs considered is less than the total number of
cooperating SUs. All SUs report FC about the existence of PUs with local spectrum sensing
information and also stores this data locally. FC combines the individual reports and generates a
global decision of the PU spectrum. FC also creates a feedback report for each SU about its
individual detection performance as in Figure 4. 2 by measuring the KL divergence score for
each SU. Before SU reports any sensing information, it compares the detection results feedback
received from the FC with a target value. Based on the feedback from the FC, if the detection
results are achieved on behalf of a user, then this particular user will further participate in the
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sensing process by combining current sensing results with its local history to report a more solid
PU status to FC. SUs not declared as normal will forward their current sensing energy of the PU

channel to the FC, while the confirmed normal user will sense the channel and forward mean

energy of the reports already made under H, and H , hypothesis.

Pseudo code of the proposed method is as below

Fori=1to sensing limit

For j =1to number of SU

IF (XK (i-1)<T,)OR(i=1)

Z;(i)=E;(i). Where E,(i) is current sensing energy

Else

Z;(i)=My;(i)or My; (i) is the average of the reported energy for the j™ SU under

H, and H, Hypothesis.

End If
End of loop
For j =1to number of SU

- - 2
Estimate new values of mean and variances under H, as ( Kt news O'jl_new) and under
) .
Hoas(yjo_new, Ujo_new) based on Z; (i)

The difference of the KL distances for the j™ SU under H,and H,, is measured as
AK ()

Update the KL distance score K (i) for the j"SU as

K; ()= Z.N K;(i—-1)+AK_ (i) and send feedback report of K (i) to the j" SU.
End of Loop
The combine KL divergence is determined as AK; (i) = 3 ,W; x AK ; (i) . WhereW;

is the weighting factor assigned to the j™ SU decision.
IFAK; (i) >0

Gg(i)=1

Else

Gg(i)=0

End If

IFGg(i)=1

Update mean x;; and variance O'J-Zl for the next iteration.
Else

Update mean ;o and variance 01-20 for the next iteration.
End If

64



End sensing limit

4.3.1 Local decision and history maintenance by the SU

In this step, pre-sensing check is done by each SU, before forwarding, local sensing information

to the FC based on its KL distance feedback information received from the FC.
2 ()= E, (i), IF(i=1)OR(ZK,;(i-1)<T,) 4. 4)
M,;(i)or My, (i), Otherwise
Where Y K;(i-1)is the KL distance value received by the j" SU and M, (i), M, (i) are the

mean sample values of all sensing energies reported by the j" SUs under H,and H, hypothesis

based on the history results.

If it is the first time, sensing is done by the j" SU or if the KL divergence satisfaction score is not
achieved by a particular SU then, according to equation (4. 4) the sense energy Z, (i) = E, (i) is

reported by the SU to the FC and stores this energy locally for future implication.

Similarly, if detection results for the j" SU are met by achieving the KL divergence satisfaction
score, then the user is declared as normal. The normal user will search local history and calculate

the mean of all high reporting energies as M (i) and of low energies as M, (i) and will no more

send energy E, (i) to the FC as:

Zj(i)={Mlj(i)0rM0j(i), IF(ZiKJ(i—l)ZTl)} (4.5)
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The normal SUs further forward these mean energy samples to the FC during the current and in

the following sensing intervals according to the observation of the channel to forward decision

M,; or M, to the FC.
4.3.2 KL Divergence at the FC

Based on the energies reported by the j" SU and the previous mean and variance values, new

values of the mean and variances in the i sensing interval are calculated for all SUs at the FC as

follows:

/ujl_new(i) =L Mt Zzzj ()
i . 2
szl_new(l) = Zlo-jzl + Zl(zj (i) _ﬂjl)
,Ujo_new(i) =Mt Zzzj () (4. 6)

. . 2
szo_new(l) = Zlo-jzo + Zl (Zj (I) _lujO)
: k-1 1 . : :
z,and z,are constants withz, = Tand zZ, = o Herekis the effecting level of the received

energy to corresponding mean and variance of SUs PDF.

The KL divergence value for the j" SU is determined as:

K2 () = KL (510, 410051 (0,071 (4.7)

Ko@) = KL ( £4j0_new(@: 01 To_nen (1), 570 (4.8)

66



Where K, (i) is the KL divergence score for the j™ SU under the presence hypothesis and Ko (i)

is the KL divergence for the j" SU under the absence hypothesis. The difference in the PDF

AK (i) for the j™ SU under H,and H , hypothesis is calculated as:

AK () = (K () =Ko (D)) (4.9

The total KL divergence value K, (i) of the j" user is further updated as below:

K; () =X, K, (i —1)+AK_ (i) (4.10)
This updated value of K, (i) is sent by the FC to the j" SU in order to utilize this information

prior to any further reports.

4.3.3 Global decision at the FC

Based on the KL divergence values of all SUs, the global decision G, (i) is made at the FC as

follows:

}WherewJ = ;

1
0,-212,-

2
o

GB(i)—{Hl’ IF (8K, ()= X, W, xAK, (i) <0 11

H,, Otherwise

whereW; is the weighting value assigned to the j" SU for data fusion combination. The lower

weights are assigned by the FC to the reports of SUs with higher variance under the presence
hypothesis before combination. As MUs including always Yes, always No, opposite and random
opposite MUs have a dissimilar K, (i) and K, (i) in comparison with normal SUs, therefore their
contribution in effecting CSS rule is minimized.
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4.3.4 Updating mean and variance for the next iteration

As perfect values of the (s, ,,) and (afo,cszl) for calculating KL divergence is not possible due

to unavailability of exact information about the PU. Therefore, universal decision G (i) value

calculated previously is further taken as an estimate of the PU signal for calculating and updating
mean and variance values, which is used in the next sensing interval for KL divergence value

calculation.
2, ={Z,)H,} ~{Z,®)[Gs () =H,| (4.12)

Zio ={Z;()[Ho} ~{Z,(1)[Gs (i) = H,} (4.13)
Therefore, based on the universal decision results generated by the FC updated values of mean
and variances are calculated. If the global decision G (i) =1, mean and variance ;, and ajzl are

updated as:

My =Dy + DZZj (i)

4.14)
D, . 2 (
szl = Dlajzl +31(Zj (i) —,ujl)
2
Similarly, if G (i) =0, then mean and variance yjo,ajzo are updated for all SUs as:
Hjo =Diljo + D2Zj (i)
(4. 15)

D ) 2
GJ-ZO = ajzo +El(Zj(l)—,uj0)
2
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D, = diland D, = % whered is window size related to the history of the sensing performance

for estimated mean and variance.

A flowchart diagram representing the detail operation of the proposed scheme is shown in Figure

4.3.

N v A
~ e
=
initialize K , (i) < IFAK, (i) > 0
o
)\ Yes No
// \\ No
L IFK,(i)<T,
\
Yes G,(i) =1 Gy(i) =0
Energy = £, (i) Energy = M,_,. orM,; -
S !

AKI..,/(I') = K/I(i) = K,n(i)

\/

K, (i)=Y K ,(i-1)+AK, (i) l

v v

AK, () =3 W,AK, (i) | No_—" N
I—-\llcralions complete
o /
Yes
7

Update u,, and o, ’Updatc Uando’,

v
/ mi [

Figure 4. 3 Flowchart diagram of the history based KL divergence

4.3.5 Simulation results of the history based KL divergence scheme

For simulation purposes parameters setting is made for the Cognitive Radio Network with a total

number of 16, 20 and 24 SUs at different ratios of MUs. Variation in the SNR for the SUs is
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made in a range of -20 dB to -10 dB. The window sized related to the history of the sensing
information is kept as 250 andk (energy affecting mean variance values) is elected as 25. The
sensing time is taken as 1 ms for each SU and the number of samples in a sensing interval is
taken as M = 270. Total sensing iterations N in this simulation is 100, and the maximum number
of MUs considered for comparison are 4, 8 and 10 with equal distributions of always Yes,
always No, opposite and random opposite MUs for comparing the detection performance. The
system was simulated under three different cases. In the first phase 4 MUs are selected in 16, 20
and 24 cooperative SUs with an equal percentage of always Yes, always No, opposite and
random opposite MUs. Similarly, in the second phase, 8 MUs were equally distributed as always
Yes, always No, opposite and random opposite MUs under total 16, 20 and 24 cooperative SUSs.
In the third phase, the MUs are extended to 10 for a total of 16, 20 and 24 SUs to test the
performance. In order to check the performance of the proposed history based KL divergence
scheme in searching for optimized resource allocation and spectrum sensing in CRN in the
presence of MUs using soft computing and statistical techniques, the detection, false alarm and
error results are obtained in Figure 4. 4-Figure 4. 12. The objective of the proposed scheme is to
precisely sense the PU channel in the presence of MUs which is possible with high detection and
low false alarm probabilities, that ultimately leads to a low error probability in sensing the PU
channel. The performance of the proposed methodology is compared with the KL divergence,
maximum gain combination (MGC) and equal gain combination (EGC). Receiver operating
characteristics (ROC) curve is drawn for proposed method, traditional KL [16], MGC and EGC
schemes in Figure 4. 4-Figure 4. 6. Simulation results confirmed that the proposed KL
divergence statistical scheme has superior resource allocation and spectrum sensing results in

CRN than the previous KL, EGC and MGC schemes at different levels of total cooperative and
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MUs. The ROC results collected in these figures show the superiority of the proposed method in
comparison with traditional KL, EGC and MGC schemes. In Figure 4. 4 results plotted between
false alarms and detection probability for a total of 4 MUs when the total number of SUs varies
from 16 to 24. It is clear to see that as the total number of SUs increases in Figure 4. 4, the
detection results of all fusion schemes increases with increasing total number of cooperative SUs
for a given false alarm and fixed number of MUs. Similarly, ROC results are generated for the
proposed and all other fusion schemes i.e. traditional KL, EGC and MGC in Figure 4. 5 and
Figure 4. 6 with total 8 and 10 MUs at different levels of cooperative SUs. By comparing the
results collected in Figure 4. 4-Figure 4. 6 it is noticeable to change predominant increase in the
probability of detection for a given false alarm probability as the total number of cooperative
SUs increases from 16 to 24. The results generated in Figure 4. 4-Figure 4. 6 also shows that as
the number of total MUs were increased from 4 in Figure 4. 4 to 10 in Figure 4. 6 with 16, 20
and 24 total cooperative users, the proposed method is least affected with the increasing number
of MUs in comparison with other soft fusion schemes. In this part of the simulation results, the
proposed method is able to provide higher detection results for a given false alarm at different

concentration levels of the normal and malicious cooperative users.
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Figure 4. 4 Probability of Detection vs. Probability of False Alarm (ROC) curve for (1) 16 total
SUs with 4 MUs (2) 20 total SUs with 4 MUs (3) 24 total SUs with 4 MUs.
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Figure 4. 5 Probability of Detection vs. Probability of False Alarm (ROC) for (1) 16 total SUs
with 8 MUs (2) 20 total SUs with 8 MUs (3) 24 total SUs with 8 MUs.
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Figure 4. 6 Probability of Detection vs. Probability of False Alarm (ROC) for (1) 16 total SUs
with 10 MUs (2) 20 total SUs with 10 MUs (3) 24 total SUs with 10 MUs.

A similar comparison is shown in Figure 4. 7-Figure 4. 9 by drawing the probability of error
against the probability of detection for the proposed, KL [16], MGC and EGC schemes. The
graphical results showed improved detection results for the proposed scheme against traditional
KL, MGC and EGC schemes at all numbers of cooperative and malicious SUs. By inspecting
these results, it can be observed that for the proposed scheme, the error probability in detecting
PU is lowest in comparison with the previous fusion schemes and has less vulnerability to the

increasing MUs.

73



T
Y i
O - -~ ~ -~
09 ‘£~‘:~ -~ /
SRS
~P oS~
S~ ~
-~ -~
g -~

= fe=~ EGC-16-4 S~ N -
-~ MGC-16-4 ~ ::\:i T
- = KL-16-4 ooe
=== Proposed-16-4 RN
—*— EGC-20-4 Somy
5 e
041 —o— MGC-20-4 24 SUs. 4 MUs ‘\} X
—a— KL-20-4 20SUs, 4 MUs ’\‘;\
031 —— Proposed-20-4 s
—fe— EGC-24-4
—— MGC-24-4
0.1} =t K[.-24-4
—— Proposed-24-4 ' . , : :
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of Detection

o = =)
o ~ S
T

/]

!

B,

!’y

Probability of Error
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Figure 4. 8 Probability of Error vs. Probability of Detection for (1) 16 total SUs with 8 MUs (2)
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Figure 4. 9 Probability of Error vs. Probability of Detection for (1) 16 total SUs with 10 MUs (2)
20 total SUs with 10 MUs (3) 24 total SUs with 10 MUs.

Probability of error results for each individual SU is drawn against the varying SNRs from -20
dB to -10 dB in Figure 4. 10-Figure 4. 12. The graphical results showed that with the increasing
average SNR values, the proposed method results showed sophisticated improvements and is
able to reduce the channel sensing error quickly in comparison with all other fusion schemes.
Similarly, it can be seen that for a given average SNR value, the probability of error decrease
even further by varying the total number of cooperative SUs from 16 to 24 in Figure 4. 10-Figure
4. 12. The efficiency in terms of sensing the licensed user channel reduces with an increase in the
total number of MUs from 4 in Figure 4. 10 to 10 in Figure 4. 12 at different level of total SUs.
The graphical results demonstrates that the proposed algorithm is least influenced with

increasing the number of MUs, while EGC has the worst probability of error.
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Figure 4. 10 Probability of Error vs. Signal to Noise Ratio for (1) 16 total SUs with 4 MUs (2)
20 total SUs with 4 MUs (3) 24 total SUs with 4 MUs.

T T ) T T T T T T
-
-~ -~

SESSE- T
- ~‘.~~‘*~

-

- N

0.9
-~k
S e 16SUs, 8MUs

= S YRR X
07| == EGC-16-8 R i
-~ MGC-16-8 RNy

0.6] = oile= KL-16-8
_| ==#= Proposed-16-8
| —*— EGC-20-8
—&— MGC-20-8
—a— K[.-20-8
—— Proposed-20-8
e EGC-24-8
—— MGC-24-8
—— K |.-24-8 20 SUs. 8 MUs
=&— Proposed-24-8
(-)20 -119 -lIH -17 -16 -115 -14 -13 -12 -11 -10
SNR(dB)

Probability of Error
< <
= v

[

24 SUs, 8 MUs

=
to

<

1 1

Figure 4. 11 Probability of Error vs. Signal to Noise Ratio for (1) 16 total SUs with 8 MUs (2)
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Figure 4. 12 Probability of Error vs. Signal to Noise Ratio for (1) 16 total SUs with 10 MUs (2)
20 total SUs with 10 MUs (3) 24 total SUs with 10 MUs.

For energy comparison of the proposed scheme and traditional KL divergence scheme,
simulation results are plotted in Figure 4. 13 among the total average transmitted energy of all
SUs and MUs. In Figure 4. 13 the total number of MUs is increased from 4 to 20 and the average
transmitted energy of all SUs are collected under 20, 25 and 30 total cooperative SUs. It is
obvious from Figure 4. 13 that the proposed scheme is outperforming the traditional KL method
in terms of energy utilization in all three cases when 20, 25 and 30 cooperative SUs participate in
CSS. The energy transmitted by all SUs increases when the number of cooperative SUs is
increased from 20 to 30 for a given total number of MUs. The MUs are selected for energy
comparison with 25% always Yes, 25% always No, 25% opposite and 25% random opposite
MUs. These energy plots display that the proposed scheme results in overall savings of the
transmitting energy for the proposed scheme under all 20, 25 and 30 total cooperative SUs. The
simulation results show effectiveness of the proposed scheme in getting optimized resource

allocation and spectrum sensing in cognitive radio network with malicious users using KL
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divergence statistical technique with higher detection results of the PU, which results in lower

error with optimize transmission energy.
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Figure 4. 13 Energy Transmitted vs. Number of MUs for (1) total 20 SUs (2) total 25 SUs (3)
total 30 SUs.

4.4 Proposed one-to-many relations based KL divergence

The proposed work considers total cooperative users larger in number compared with MUs. All
the cooperative users inform FC with their local spectrum observations of the primary channel.
FC collects and takes its global decision based on the received energy statistics of the reporting
users. Before making any global decision about the licensed user spectrum, FC is able to assign
weights to the local sensing of SU reports with the proposed KL divergence method. The
resultant weights illustrate reliability of the local spectrum sensing information of the individual

cooperating users prior to making any final decision at the FC.
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A pseudo code showing the proposed KL divergence algorithm for the local detection,
determining KL divergence score using one-to-many relationship based energy statistics and

taking global decision based on the received energy and measured weights are as given below:

For i =1to limit
For j=1to SU

- - .th
Local detection E (i) by the j " user
New values of mean and variance(yja(i),al?b(i)) based on E; (i)
Average means and variance values while taking out the j™ user energy statistics.
M - -
Z :uja (I) - ,uja (I)
=1

,uja,(i): _ (M—l) Jdel..,N

(%afb(i)j—afba)

j=1

aj?b, (i)= = iel,..,N

One-to-many relationship based KL divergence
Ky ) = KL (1, 0), 100,07, 0% |

Weights for the j™ user in thei™ interval

[ J c,(i) |

c;(i)= w; (i) = Jiel..,N
K0 ch(i)
j=1

End SUs
M

IFZWj (i)*Ej(i) >&
j=1

Global decision, Gg (i) = H,
Else

Global decision, Gg (i) =H,
End

End limit

4.4.1 Data collection and mean variances adjustments by the FC
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FC receives the individual soft energy information E; (i) in thei" interval from all the j"

cooperating SUs as:

e=[E (i) E,(i) E() .. E, ())].iel...,N (4. 16)
Where M is a row vector containing the soft spectrum sensing data of all M users during thei™

interval. The soft energy report E, (i) has mean and variance(;ﬁ,af)under hypothesis H, and

(14,05 ) under the H; hypothesis.

FC further determines new values of the mean and variance for all users in thei" sensing interval

based on the received energy observations in equation (4. 16) as:

(1) =[ 44 () £10 (1) 1 0)-.- g ()], 1 €1, N (4.17)
N Zl/ujl+ZZEj(i)’ Hl 4 18
g "a(')_{zlu,-wzzE,-(i), Ho} @19

Here x;, (i) is the new value of the mean for the j" SU in thei" sensing interval, which is updated

according to the received energy E (i) and (z,, z,) preselected constants.

Similarly, new variance values are determined and collected based on the received energy E; (i)

as.:

b(i)=[ 0%, &%, %O i €L N (4. 19)
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. 2
215121+21(Ej(|)_/1j1) , H,

. 2
Zlajzo +Zl(Ej(|)_luj0) , Hp

szb (i) = (4. 20)

In the new mean and variance measurements in equation (4. 18) and equation (4. 20) the

constants z, = (k —1)/(k)and z, = (1/k), where the constantkiis the effecting level of the mean

and variance by the received energy E, (i) .
4.4.2 One-to-many relationship based KL divergence measurement

After the collection of mean and variance information on behalf of all M users in thei™ sensing
intervals, FC measures a difference in the mean and variance of the j" user energy statistics with

all other users. The average mean values are measured on behalf of all M SUs based on the new

mean values of equation (4. 18) as:

| [%ﬂja(i)J—ﬂja(i)
Hia ()= (M _1) (4. 21)

The one-to-many difference results of the mean for all M SUs are collected as:

a'(i) :[Ma,(i)yZa.(i)...yMa.(i)],i €l,...,N (4.22)
Similarly, the average variance values are measured on behalf of all M SUs based on the new

variance values of equation (4. 20) as below:
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%ai(i)}—ai(i)

oh(i) = (Fl (4. 23)

(M-1)

b'(i) =[ o4y () 62, (1) 05 (D). 0% (i) i €1, N (4. 24)
Here Hiy (i) is the average mean and U,-Za- (i) is the average variance value of the energy samples

provided by all other users while ignoring the mean and variance results of the j™ user. These

mean and variance values are obtained by excluding the j" user. The result in equation (4. 22)

and equation (4. 24) determines the impact of not including each cooperative user during the
average mean and variance observation measurement. As all MUs including always yes (AY),
always no (AN), always opposite (AO) and random opposite (RO) have dissimilar results of the
mean and variance in comparison with normal SUs, therefore the average results attained against

these users is different from the normal SUs in equation (4. 22) and equation (4. 24).

The KL divergence value for the j" SU is determined between the individual sensing results in

equation (4. 17), equation (4. 19) and the information provided by all other SU information as in

equation (4. 22) and equation (4. 24) as:

K; () = KL (), 1 (), 07, (), 7, () (4. 25)
Where K (i) denotes the KL divergence result in the presence and absence hypothesis of the i

SU in thei™ interval. These KL divergence scores against each SU sensing are modified as:
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c, (i):(%(i)],i el...N,jel..,M (4. 26)

The result in equation (4. 26) is normalized for assigning weights to each SU decision as:

w; (i) = Mcj(i) iel..,N,jel..M (4.27)

2.0

In equation (4. 27) the users with abnormal behavior acquire lower weights in comparison with

normal users.

Table 4.1 shows the weight measurement for the normal and malicious users against various
SNRs. These weights are obtained for the case when one of the four categories of MUs
participates in CSS. In Table 4.1 as the value of SNR increase, the weight assigned to these MUs

decreases while the normal user’s weights increase.

Similarly, Table 4.2 shows the weights for the case when all four categories of MUs participate
in CSS. In Table 4.2, the weight results assigned to each MU along with the average weights
received by all the normal cooperative SUs are. In this case, the different weights received by
these MUs approaches near to zero with increasing SNR while the normal SUs weights increase

with increasing SNR.

Table 4. 1. KL weights assigned by the FC under one category of MU participation.

Weights
SNR (dB)

AY only ANonly AOonly RO only Normal User

-20 0.006757 0.006553 0.016615 0.008775  0.080399
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-19 0.006750 0.006551 0.008679 0.006123  0.080798

-18 0.006745 0.006547 0.008341 0.005763  0.081049

-17 0.006740 0.006544 0.008341 0.005757  0.081110

-16 0.006737 0.006539 0.006206 0.005616  0.081198

-15 0.006731 0.006537 0.006186 0.005537  0.081231

-14 0.006722 0.006532 0.006164 0.005393 0.081266

-13 0.006717 0.006530 0.005722 0.005295  0.081306

-12 0.006715 0.006526 0.005722 0.005290  0.081324

-11 0.006711 0.006525 0.005629 0.004688  0.081428

-10 0.006709 0.006521 0.005629 0.004318  0.081441

-9 0.006706 0.006518 0.005190 0.003863  0.081545

-8 0.006704 0.006516 0.004947 0.003836  0.081636

-7 0.006701 0.006510 0.003674 0.003773  0.081739

-6 0.006692 0.006505 0.001509 0.003198  0.081777

-5 0.006687 0.006502 0.001507 0.001335  0.082069

Table 4. 2. KL weights assigned by the FC when all categories of MUs participate.

Weights
SNR (dB)
1AY 1 AN 1AO 1RO Normal User

-20 0.000682 0.000359 0.001661 0.065425 0.077865
-19 0.000523 0.000331 0.001155 0.012339 0.082344
-18 0.000466 0.000319 0.001085 0.006149 0.082800
-17 0.000379 0.000277 0.001037 0.005841 0.082875
-16 0.000287 0.000212 0.000825 0.005060 0.082967
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-15 0.000229 0.000169 0.000817 0.004495 0.082984
-14 0.000175 0.000159 0.000766 0.004449 0.083008
-13 0.000160 0.000139 0.000645 0.004355 0.083035
-12 0.000137 0.000113 0.000637 0.003774 0.083047
-11 0.000112 0.000080 0.000477 0.002980 0.083048
-10 0.000096 0.000079 0.000469 0.002719 0.083058
-9 0.000095 0.000070 0.000285 0.002563 0.083061
-8 0.000094 0.000069 0.000242 0.002524 0.083136
-7 0.000082 0.000066 0.000222 0.002486 0.083254
-6 0.000055 0.000039 0.000137 0.001171 0.083307
-5 0.000010 0.000008 0.000057 0.000266 0.083694

4.4.3 Global statement by the FC

Grounded on the weighted results measured to guarantee the authenticity sensing information in

equation (4. 27), the global statement G; (i) is declared by the FC as:

G iy=) T FMOTERO2 L

H,, otherwise

N (4. 28)

Wherew; is the weight assigned to the j" user energy in the data fusion at the FC and¢is the

threshold value for the detection of the PU. The lesser weight results are charged by the FC
against the sensing information of a user with malicious behavior, while the normal user sensing
report is assigned a higher weight value. All MUs including AY, AN, AO and RO are easily

identified by the proposed scheme with their KL divergence behavior. The normal SUs have a
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higher KL divergence result because they have less inconsistency from the average of all other
users sensing information. The MUs receive minimum weight because the information provided
by MUs deviates more from the average sensing information provided by all other SUs. It is

therefore noticeable that these MUs get lower weights as compared with normal SUs.

4.4.4 Next iteration mean and variance based on the global statement

Due to the non-availability of the exact information about the PU, perfect values of the means

(2431, 245 )and variances (o4, o, ) for measuring KL divergence are not possible. It is therefore

good to consider the global decisionGg (i) results as an estimate of the primary signal. The

updated mean and variance will be used by the FC in the KL divergence calculation in the next

sensing interval.
E;, ={E;()[H,} ~ {E;()|Gs (i) =H,} (4. 29)

Eo = {E; ()[Ho} = {E;()[Gs () = Hy (4. 30)
The global decision G,(i)=1 at the FC will update mean x,and variance oy, under theH,

hypothesis as follows:

My =By + BZZj (i)

4.31)

B . 2 (

O'jz1 = Blajzl +B—1(Zj (i) —,ujl)
2

Similarly, the decision G (i) =0will update mean Hj0and varianceajzounder the H, hypothesis

for all cooperative users as:
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Hjo = Byatjo + B,E (i)
(4.32)

B . 2
szo = 101'20 +B_1(Ej(|)_:uj0)
2

In equation (4. 32) B, = ﬁ andB, = 7 where z indicate the window size of the sensing history

for the estimated mean and variance.
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Figure 4. 14 Flowchart diagram of the proposed weighted KL divergence scheme.
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The proposed scheme flowchart diagram in Figure 4. 14 illustrates the local detection, KL
divergence measurement based on the weight assignments and global decision establishment by

the FC.

4.4.5 Simulation results of the one to many relations based KL divergence scheme

In order to get simulation results for the CRN parameter settings are made with 10, 16, 20 and 30
total cooperative users. Out of the total cooperative SUs, four users are intentionally selected as
AY, AO, RO and AO nature of MUs. The average SNRs for the simulation are selected as -20
dB to -5 dB for all SUs. The sensing time for each SU is selected as 1 ms containing 270 samples
in each sensing interval. Total sensing intervals for the cooperative users are selected as 200. The
RO users perform malicious acts probabilistically in the intervals 1 to N . The window size (z)
for updating mean and variance is selected as 270. In the study, all 4 categories of MUs i.e. AY,
AN, AO and RO are spread evenly. In order to check the performance of the proposed weighted
KL divergence scheme in determining optimized solution of resource allocation and spectrum
sensing in CRN with MUs using soft computing and statistical techniques the PU activity
detection and false alarm results are collected in Figure 4. 15-Figure 4. 20. The MUs task in CSS
is to minimize the detection probability and maximize the false alarm probability. The proposed
weighted KL divergence scheme can smartly overcome these issues.

The proposed KL divergence performance is compared with traditional KL and EGC schemes in
6 different cases as below.

Case 1: In this case ROC results are drawn between the proposed method, traditional KL and
EGC scheme under various SNR values of -20 dB to -5 dB as displayed in Figure 4. 15. MUs are
selected as AY only in the first part of the comparison in Figure 4. 15. Results are obtained for
all combinations by taking the total number of AY as 1, 2, 3 and 4 subsequently. The results
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illustrate that the KL divergence scheme is more secure against the increasing number of AY
users 1 to 4 and has better detection probability results in comparison with all other schemes. In
Figure 4. 15 when there is only 1 AY user active in CSS the ROC results of all fusion schemes
are less affected, but as the total number of AY users is increased to 3 and 4 the proposed KL
results dominate the traditional KL and EGC schemes by producing a high detection with less
false alarms. The EGC scheme is more affected by the increasing number of AY users because
EGC gives equal weight to the detection performance of normal and AY users. The proposed KL
is able to assign less weight to the AY users in comparison with normal SUs as it is clear from
the average weight value measured against each AY in Table 1. The less weight assigned to the
AY reduces the false data effect of the AY participation in CSS. The harmful effect of the AY
contribution in CSS is further reduced with increasing average SNR by lowering the weight

assignment to them in the global decision.

=08/ /}’3 —&— Proposed
o iy 5 4 Proposed - 2 AY
= 4 Proposed - 3 AY
§ 08 -~ @ Proposed - 4 AY
.g | —s— KL-1AY
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= e B KL - 4 AY
%s =— EGC-1AY
£ o5 —e— EGC -2 AY
¢  EGC-3AY
....... o EGC -4 AY
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Probability of False Alarm (Pf)

Figure 4. 15. Detection vs. False Alarm results with 1, 2, 3 and 4 (AY) malicious users.

Case 2: In this part of the simulation, all parameters are kept similar to case 1 with changing

only the nature of MUs from AY to AN user. Comparison is made between proposed KL,
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traditional KL and EGC scheme by testing the system against increasing number of AY from 1
to 4 as in Figure 4. 16.

Since the proposed KL is treating AY and AN users similar in determining the KL divergence,
therefore using proposed KL divergence the weight that AN user receives is almost equal to the
AY user weights in case 1. The ROC performance of the proposed and all other schemes against
the AN scenario is very similar to case 1, due to the likely behavior of the AN user to that of the
AY user. As it was in case 1, when the numbers of AN user are increased from 1 to 4, the
proposed KL is less affected by this increment in Figure 4. 16. All AN users receive lower
weight while the normal SUs receive higher weights in comparison with AN users, which results
in better performance of the proposed KL scheme. The traditional KL and EGC schemes
performance in detecting the licensed PU channel reduces more quickly in comparison with the
proposed technique as the total AY increases from 1 to 4. The gap in the ROC curves of the
traditional fusion schemes becomes wider for a total of 4 AN users from the one when only 1 AN

user participates in sensing as shown in Figure 4. 16.

il 5 4— Proposed - 1 AN
g |4 o —— Proposed - 2 AN
g i o *  Proposed - 3 AN
B 06l 1 % 9 Proposed - 4 AN
g s=—KL-1AN
2 —a—KL-2AN
o | *  KL-3AN
% 048 —a— KL - 4 AN
g o—EGC-1AN
2 o * EGC-3AN
1 o EGC-4 AN
*—EGC-2AN

! ! |

s ‘ . , \ ‘ ‘
0 0.1 02 03 04 05 06 07 08 08 1

Probability of False Alarm (Pf)

Figure 4. 16 Detection vs. False Alarm results with 1, 2, 3 and 4 (AN) malicious users.
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Case 3: In the third scenario, simulation results are obtained for the increasing number of AO
users from 1 to 4 in Figure 4. 17 with the same parameters in case 1 and case 2. Since the AO
users have its mean and variance results opposite to the average mean and variance values
provided by all other users, therefore, the proposed KL method is able to generate lower
reliability report in terms of weight for the AO user in comparison with normal cooperative
users. The results show that as AO user’s increases to 4 few drops is observed in the ROC curve
of the proposed scheme as compared with the traditional KL and EGC scheme. In comparison
with case 1 and case 2, the traditional soft combination schemes like KL and EGC performance
degrade even more. The existence of AO users results in less correct detection and high false
alarm rate of the PU spectrum for the EGC and KL scheme. Proposed method results in Figure 4.

17 are followed by the KL while EGC has shown its worst performance among all fusions.

_ +— Proposed
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g ¢ Proposed - 4 AQ
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g ~—EGC-1AOD
E * EGC - 2 AO
e EGC-3A0
o— EGC -4 AD

0.1 02 03 04 05 06 07 08 09 1
Probability of False Alarm (Pf)

Figure 4. 17 Detection vs. False Alarm results with 1, 2, 3 and 4 (AO) malicious users.

Case 4: The ROC results in which only RO user participates in CSS are depicted in Figure 4. 18.
The RO user hides its malicious identity by acting probabilistically as AO at randomly selected

sensing intervals in the N total intervals and is difficult to catch with the provided statistics.
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The traditional KL and EGC schemes are not able to handle the RO user information
intelligently and their ROC results degrade severely with the increased number of RO
participations in Figure 4. 18.

The proposed KL scheme is able to identify the RO users when they perform malicious acts
probabilistically and generate better detection and false alarm results in Figure 4. 18 compared
with the traditional KL and EGC schemes. Results show that unlike the traditional EGC and KL
divergence schemes, increasing number of RO users less affects the proposed KL divergence.
All the RO nature users in the proposed CSS receive lesser weights in comparison with weights
obtained by the normal SUs because their malicious behavior is easily caught by the proposed

KL scheme.
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Figure 4. 18. Detection vs. False Alarm results with 1, 2, 3 and 4 (RO) users.

Case 5: In this part of the simulation as in Figure 4. 19, 8 MUs are equally selected in numbers
as AY, AN, AO and RO categories. The simulation is performed against an average signal-to-

noise ratio of -12.5 dB.
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The detection and false alarm probability results are obtained for the proposed, traditional KL
and EGC schemes for a total of 10, 20 and 30 cooperative SUs in Figure 4. 19. The average
signal-to-noise ratio is kept -12.5 dB with total 4 MUs. Figure 4. 19 show that one-to-many
relation based KL divergence scheme has better ROC performance than all other schemes. It is
noticeable that all combination schemes detection performance improves with the increasing
number of total cooperative and fixed MUs. The proposed method ROC results are more precise
and superior to the traditional schemes i.e. KL and EGC schemes at all levels of the total sensing
users.

Case 6: In this case, the number of AY, AO, AN and RO is kept the same. The total number of
participating SUs in CSS is kept fixed at 16 and different ROC results are plotted for the one-to-
many relations based KL divergence and other soft combination schemes at different levels of

the averages signal-to-noise ratios.
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Figure 4. 19. Detection vs. False Alarm results with all MUs and 10, 20, 30 total reporting users.
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Figure 4. 20. Detection vs. False Alarm results with all MUs and different levels of signal-to-
noise ratios (-9.5 dB, -12.5 dB, -15.5 dB).

The simulation results in Figure 4. 20 shows that under fixed malicious and total cooperative
users the ROC performance rises with increasing SNRs for all combination schemes. As the
signal-to-noise ratio increases from -15.5 dB to -9.5 dB, proposed scheme ROC results are more
accurate and precise than the traditional combination schemes at both SNR levels. The proposed
method ROC improvement with increasing signal-to-noise ratio is due to more clear distinction
on the energy distribution of the absence and presence hypothesis information provided by the
normal and MUs. These results also show that the CSS performance improves more with the
increasing signal-to-noise ratio information in case 6 as compared with the increasing number
cooperative users in case 5.

All the above experimental results clarify the fact that by following the proposed one-to-many
relations based KL divergence method an improvement is obvious in the sensing performance at
the FC. This improvement is achieved by raising the detection probability and lowering the false
alarm results leading to a reduction in the error probability of the system. The proposed fusion
combination scheme shows optimum and accurate resource allocation and spectrum sensing
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results in cognitive radio network with malicious users using one to many relationship based KL
divergence statistical technique. The use of the proposed method for calculating weights
following by soft combination scheme makes the proposed CSS results more valid in the
presence of malicious users. The simulation results show that the risk of AY, AN, RO and AO
users with CSS significantly reduces by adopting the proposed scheme. It is clear from the
graphical result that cooperation turns out to be more precise by using the suggested
methodology. The one to many relation based KL divergence is able to generate better resource
allocation and spectrum sensing results in cognitive radio network with malicious users using
one to many relationship based KL divergence statistical technique, by assigning lower weights

to the MUs information and is able to eliminate the effect of MUs in CSS.

4.5 Summary

As MUs mislead other users to access the license user spectrum, it is therefore, mandatory in
CSS to filter the MU sensing information. The KL divergence tool is used to detect MU in CSS
based on the PDF dissimilarity of a normal and MU. The proposed KL divergence scheme in
part | is following a modified pre-sensing check by the users before forwarding the spectrum
information to the FC. SUs with their KL divergence reputation score feedback by the FC
attained, will report PU activity with the sensed energy based on the current and past results from
its local database. Simulations exhibit the proposed scheme’s effectiveness in terms of

sophisticated detection while exercising comparatively less total transmission energy.

In part I, the efficiency degrading effects due to the presence of abnormal users in CSS is
minimized using one-to-many relationship based KL divergence method for the PU detection.

Functionality of the proposed scheme is verified in the presence of AY, AN, AO and RO type
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MUs. FC first receives the individual sensing information of all SUs and then applies the
proposed method for measuring weights against each SU. MUs with abnormal behavior as
compared with normal SUs are given lower weights by the proposed scheme, while the normal
SUs receive higher weights. FC further employs these weights in combining the sensing
information of all SUs in predicting a global decision. The results show that the user with
abnormal behavior has less impact on the global decision as compared to a normal SU decision.
Simulation result reflects the superiority and authenticity of the proposed scheme in producing
more accurate, precise and reliable decisions as compared with EGC and traditional KL fusion

schemes.
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Chapter 5

Malicious user detection using soft computing techniques

5.1 Introduction

In this chapter, we have discussed heuristic techniques such as GA and PSO for determining
optimal cooperative decision in the presence of malicious activity. This chapter is divided into
three parts. In part I, FC apply GA using DSND method to detect abnormal users and then with
the help of crossover and mutation, best fitness is selected. These results are then used in a hard
fusion combination scheme such as logical AND, OR and majority voting to declare final
decision of the PU status. In part 1, GA used one-to-many hamming distance and Z-score outlier
factors in determining suitable PU detection information in the presence of MUs. At last
detection, false alarm and error probabilities of the proposed GA based majority voting hard
decision fusion (GAMV-HDF) scheme is compared with the majority voting hard decision
fusion (MV-HDF), EGC based soft decision fusion (EGC-SDF) and MGC based soft decision
fusion (MGC-SDF) schemes at different levels of the SNRs and cooperative users. In part Ill,
PSO is employed to take global decision at the FC based on the soft energy reports of all
cooperative users. In this part, users send their sensing statistics to the FC for a number of
observations. Simulation results are obtained for the proposed PSO-Hard, PSO-EGC and PSO-
MGC schemes and are compared with the traditional Hard, EGC and MGC schemes. Results
illustrate that the proposed scheme outperformed all other techniques in detection, false alarm

and error probabilities for different number of MUs.
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5.2 Data Model for DSND based GA

5.2.1 Local spectrum decisions

SUs take its local decision by comparing the observed energy of the PU channel with a threshold

in order to send a hard decision “1” or “0” to the FC as

y (i)={1’ " Ef(i)z“} 6.1

0, Otherwise

- - - - - h - - -th -
where E, (i) is the receive energy in thei" sensing interval by the j" SU, y;is the threshold value

set for the j™ SU. If energy of the received signal by the j" SU is greater than the threshold, then

it declares PU existence by forwarding a binary decision “1” to the FC otherwise decision “0” is

forwarded to the FC to state the channel as open of the incumbent authorized user.
The probability of detection P/ and probability of false alarm Pfj of the j" SU are defined as [22]:
P/ =Pr{y;(i)=1]H,} =Pr{E;(i) 2 ;|H,} 5.2

P} =Pr{y, (i) =1H,} =Pr{E, (i) > »,|H,} (. 3)
The probability of detection, probability of false alarm and probability of miss-detection over an

AWGN channel is expressed as

R/ =Q. (V21,.\;) (5.4)
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(x| 5.5

Pl=2__ 2~

I'(K)

Pi=1-P} (5.6)
wherez; is the SNR, K =TW is the time bandwidth product. Q, (.,.) is the generalized Marcum

Q-function, T"()andTI(. ,.) are complete and incomplete gamma functions respectively [21].

Energy Detection

(ED) operation by

SUs, provide single
bit information to FC

Fd v \\‘
% <%> =
|/

DSND Algorithm to find MUs

Identification of accurate
sensing results with GA
followed by Global decision

Crossomr of the PU channel with
+ hard fusion decision
scheme

Mutating sensing data of MUs

v

Global decision at the FC
H, /
/H,
Figure 5. 1 Proposed CSS Model of the DSND based GA scheme

FC collects the spectrum sensing decisions of individual SUs to form a history reporting matrix

consisting individual hard decision of all SUs as below:

99



Yu Yoo o Yim
v - y:21 y;22 yZ:M (5.7)

yNol yNOZ yNOM
WhereY is a population matrix of size N, xM consists of the spectrum sensing information

accumulated in the database of FC by all M SUs in the N, sensing reports, made by normal and

malicious users. The SSDF effects of always yes MU (AYMU), always no MU (ANMU),
opposite MU (OMU) and random opposite MU (ROMU) in CSS is minimized with the

following algorithm.

5.2.2 Genetic Algorithm at the Fusion Centre

The DSND Algorithm utilizes by GA for the detection of abnormalities in the CSS system at the

FC is as below:

5.2.2.1 DSND for catching Malicious Users

Based on the local sensing information received from all SUs in the N, sensing intervals, FC is

able to identify all abnormal SUs i.e. AYMU, ANMU, OMU and ROMU with DSND.

The DSND algorithm is based on the history of SUs reports made to the FC. After the collection
of N, reports from allM SUs as in equation (5. 7), indices K ,and K,are selected such that
K, <K,. The indices K,and K,are chosen such thatM, <K, <<M andM, << K, <M. TheK,

and K, values are the gauges for the detection of MUs in CSS with M total number of MUs out

of total M cooperative SUs. The DSND algorithm is based on comparing the history information

of the users. In case the inter-user distance is greater than a certain limit K, or less than the limit
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K,, then the user is termed as malicious. A user cannot exist which is malicious in both K; and

K,senses. As the method is based on the history of the user reports the more information the

system has about a user the more accurately this algorithm work.

The distance between the reports of the " j" "user and all other users show how many bits are

different in the reports made by the " j" " user with other users. N, shows the total reports made

by all "j"" users.

dy = S|V — Vi wherei €1,...,Nyand j k €1,..,M (5.8)

Where d; is the sum of absolute distance of the ™ j" " user sensing report with all M SUs reports in

thei™ sensing interval.

dy, d, - dy
21 d22 d2M
: Do (5.9)
dy: Ay o dNOM
The distance matrix D shows the distances calculated for all the j" SUs during each sensing

interval. The sorted results of D is used to set the upper and lower limits in equation (5. 10) as

follows:

Limit = u+Cxo” (5.10)
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where 1z is the mean ando?is the variance value measurement of the distance matrix. The
constant consider is10/N,, with N, shows history length of the total reports. Upper and lower

limits are further defined as below:

I = u+10x0? I N, (5.11)

I- = u—10x” I N, (5.12)
After setting upper and lower limits values 1" and I,- from the sorted results of the distance matrix
D and selection of K. and K;' for detecting abnormalities, if K," entry is greater than 1" the user is

declaring malicious in K, sense and if K} entry is less than I,- the user is declared malicious inK,

Sense.

MU — jhuser if (K& > 1 or K3 <1}) (5.13)
0, Otherwise

After identification of any abnormal behavior as above, the sensing data from such abnormalities
is randomly mutated and crossover operation is performed as below, to make the final decision

authentic and error proof.

5.2.2.2 Crossover and Mutation

Reference to the GA population, this work refers to the gathering of SU sensing information
collected for certain sensing intervals, with rows of the population is the representation of the
sensing information reported by all SUs. As fitness function is a representation of the utility of
each chromosome, fit chromosomes are able to pass through heredity, while unhealthy

chromosomes are deceased due to the natural phenomenon of the survival of the fittest.
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The fitness function in this work is selected based on the results in equation (5. 9) as:

F=[FRF F.Fy ] (5. 14)

where each fitness function value is calculated as:
M
F :ijldij (5.15)
The information with minimum total neighbor distances for all users is selected as the best
chromosome. Based on the result of equation (5. 15) the top two chromosomes are selected as
the parent chromosome and crossover operations are done among the rest to determine new

offspring.

Crossover: The crossover exploits the best behaviors of the current chromosomes and mixes
them in a bid to increase their appropriateness. This operator randomly selects a locus and
exchanges the sub-sequences before and after that locus between two parent chromosomes to

build a pair of children. A crossover point is randomly selected in this work.

The fitter chromosomes likely passes to the next generation and the population is sorted in

ascending order of fitness values.

Mutation: The process of mutation represents a random change of the value of the gene, which
shows the change in the sensing data for the selected user. The mutation operation is performed
on the sensing information provided by abnormal users. The reported information of abnormal

detected user is randomly inverted. If the genome bit is 0, it is changed to 1 and vice versa.

After the random mutation and crossover operation, a new population matrix is obtained which

results in a neighbor distance matrix D as follows:
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Therefore, new fitness function values are determined as:

EoyM g (5.17)
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Figure 5. 2 DSND based GA scheme Flowchart
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Fitness values in equation (5. 17) are further sorted in ascending order and the minimum is
selected as the best fitness. Sensing reports inY with similar index to the best fitness is selected
final recommendation of the GA. The recommended sensing information is further utilizes in the

hard fusion combination scheme as in section 3.3 to finalize a unified global decision.

A flow chart diagram with step wise operation is shown in Figure 5. 2.

5.2.2.3 Counting rule as hard decision rule at the FC

The three most commonly used hard fusion combination schemes are the Voting scheme
(majority decision here), OR scheme and AND fusion scheme. After the identification of
abnormal users by the DSND algorithm GA is utilized to make the final decision as free of these

abnormal users and to make the sensing decision more reliable and accurate.

In the voting decision scheme an unanimous decision on the PU existence H, is made if K out of
total M users make a decision of the PU presence. Similarly, if the number of SUs with PU
detection information is less than K then decision is made in favor of H,to declare the license
channel as free. In the proposed work, majority voting scheme is selected with K =M/2as a

special case

v o (M
H,: Zj—lyj(l)z(?j (5. 18)

H,: otherwise

Here M is the total number of SUs reports made to the fusion center.

Cooperative detection and false alarm probabilities of the DSND based GA is represented at the

FC based on the local detection made by individual SUs as follow:
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P, =Pr{Y =1]H,} = Pr{Z'}”_lyj(i) > M|H1}
2 (5. 19)

Mo M
P, =Pr{Y =1]H,} = Pr{zj_lyj (u)z7|H0}

Where P, and P, are the cooperative detection and false alarm probabilities of the majority voting

scheme when DSND based GA mechanism is used to detect the licensed user spectrum.

5.2.3 Simulation Results of the DSND based GA scheme

For simulation purposes, parameters are set for the cognitive radio network with total 10
cooperative users. Out of the total M users in cooperation, 6 users are selected as honest SUs and
4 of the users as AYMU, ANMU, OMU and ROMU. The SNRs varies from -20 dB to 10 dB.
The sensing time is taken as 1 ms and number of samples K in each sensing interval is selected
270. The number of sensing iterations are considered 100 and sensing intervals during which
ROMU act maliciously are selected randomly from 1 to N . Similarly, a crossover locus point is
randomly selected from 1 to (M —1). The crossover and mutation operation is observed for 10
cycles. Performance of the system is verified and checked by keeping the number of OMU,
ROMU, AYMU and ANMU users same. The sensing population size of the GA is selected

N, x M with N is the total number of chromosomes, selected as 16 in this study, which shows
the sensing history information for the M SUs.

Simulation results collected shows the ROC curve of the proposed method along-with EGC and
simple majority voting decision. Probability of detection against probability of false alarm and

probability of miss detection versus probability of false alarm is shown in Figure 5. 3 and Figure

5. 4, respectively. The proposed majority voting with prior identification of MUs using DSND
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followed by crossover and mutation regarding the PU status is giving sophisticated detection
results against EGC and simple majority voting schemes. Probability of detection and probability
of miss detection results in both the cases when MUs are taken into account and the one without
the consideration of these MUs are drawn. In both cases detection and false alarm results of the
proposed scheme is outperforming the simple majority voting and EGC with almost same

probability of false alarm.

10
=
e
c
S
S
2
a3 10%f —©— Proposed with MUs
“5> --=F--= EGC with MUs
= — & Voting without MUs
§ Voting with MUs
o
o
10_2 -2 ‘fl (]
10 10 10

Probability of False Alarm (Pf)

Figure 5. 3 Probability of Detection vs. Probability of False Alarm for the proposed voting,
EGC, voting without MUs and simple voting schemes

Results for the probability of detection and probability of miss-detection are obtained against the
SNRs in Figure 5. 5 and Figure 5. 6, it is clear to see improvement in the detection and miss-
detection results with an increase in SNR. In both Figure 5. 5 and Figure 5. 6 results of the
proposed majority voting scheme are suitable against EGC and simple majority voting scheme

even when MUs are included in majority voting CSS.
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Finally, the probability of error (P,) results vs. SNR is drawn between the simple majority voting,

Proposed DSND based GA and EGC

—O6— Proposed with MUs
""""" EGC with MUs
107°¢ ——k—— Voting without MUs i E
[ Voting with MUs ]

Probability of Miss Detection (Pm)

10" 10
Probability of False Alarm (Pf)

Figure 5. 4 Probability of Miss Detection vs. Probability of False Alarm for the proposed voting,
EGC, voting without MUs and simple voting schemes
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Figure 5. 5 Probability of Detection vs. Signal to Noise Ratio for the proposed voting, EGC,
voting without MUs and simple voting schemes
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Figure 5. 6 Probability of Miss Detection vs. Signal to Noise Ratio for the proposed, EGC,
voting without MUs and simple voting schemes
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Figure 5. 7 Probability of Error vs. Signal to Noise Ratio for the proposed voting, EGC, voting
without MUs and simple voting schemes

The graphical results in Figure 5. 7 shows that the probability of error of the proposed scheme is

below the simple majority voting and EGC schemes at the same level of SNR.
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It is clear from the simulation results that the combination of DSND with GA followed by the
majority voting hard fusion scheme makes the performance of CSS more authentic and valid in

the presence of AYMU, ANMU, ROMU and OMU.

5.3 Data Model for majority voting GA scheme

Model of the proposed CSS is shown in Figure 5. 8. SUs sense the licensed channel and take a
local decision to forward either H, or H, decision to the FC. The rule of FC is divided into two
parts. First, it collects local spectral observations from all SUs and applies GA using one-to-
many hamming distance along with z-score as a total outlier factor for determining the fitness of
all sensing reports. The final sensing selection is made for the sensing report with minimal total
outlier score results at the end of desired iterations. In the second part it uses majority voting
hard decision fusion (MV-HDF) scheme to declare the final status of the PU channel based on

the selection results of the GA.
5.3.1 Local Spectrum Decisions

Based on the hard binary sensing decisions by all users in equation (5. 1), FC collects their local

sensing reports and form a reporting matrix as below:

Y=[y;|iel..N jel..M (5. 20)

WhereY is a population matrix of size N x M containing the hard binary decisions at the FC by
all M users in the N sensing reports of the PU channel. The population is built for both the NSUs
and MUs. Furthermore, GA is used as a tool for minimizing the SSDF effects of MUs and any

imperfections by the normal SU (NSU) in the following section.
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5.3.2 Best sensing report selection using GA

On the basis of all the sensing information of SUs during each sensing interval as above, FC
further utilizes GA for determining the best sensing results out of the local decision reports

provided by all SUs for taking out a global decision.

Energy Detection

\

Energy>Threshold

H,/H,

(N x M) Binary population
reports of the NSUs and MUs

Fitness is determined

—» Iterations achieved Noﬁ
* Yes

Sensing reports with best
Sort fitness in ascending fitness is selected

Best fitness selected as )
Hard fusion scheme based

parent _
on best sensing report
Crossover and production of *
new po;ulation H,/H,
— Mutation

Figure 5. 8 GA based CSS Flowchart.

FC determines absolute differences of the j" user sensing with the average sensing energy
reported by all other SUs based on the result in equation (5. 20). Average of all SU decisions is

calculated by neglecting the j" SU results in thei® sensing interval to find out the impact of not
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including this particular user in the collective sensing result. A similar procedure is followed for

the reports of all M users in the N sensing interval as:

mll m12 mlM
m, m, .. m
A=| 2 2 2m (5. 21)
le mNZ rnNM
(X )y
i | 7Y
where m; ={~—=
! M -1

In equation (5. 21) m;is the average value of energy reports of all other SUs in the i sensing

interval while keeping away the sensing results of the j" SU out of the average measurement.

The PU spectrum reports of the MUs are different from the NSUs, therefore taking these MUs
out during each sensing interval is generating dissimilar averaging results for the OMU, ROMU,

AYMU and ANMU compared with NSUSs.

5.3.2.1 Outlying using One-to-many sensing distance
To figure out how much the individual sensing results of each SU "y"are behaving differently
from the average sensing results "'m" of all other users. Outlying factors are determined for the

sensing reports of SUs based on the one-to-many sensing distances o}(i)for the j" user in thei®"

sensing interval as:

0} () =|y; —my|.iel..,N, jel,..,M (5.22)

Based on the results in equation (5. 22) the outlier score o}(i) of the NSUs and MUs are added to

discover the total one-to-many hamming distance score under each sensing interval as:

112



M . .
o' =Zj:1(o}(|)), jel...M (5. 23)
Whereo' in equation (5. 23) is the total outlier score representing the absolute sum of the

hamming distances of the individual user detection y; with the average detectionm; of all other

SUs.

The calculations in equation (5. 23) are made for all the N intervals and results are collected as:

o'=[o} 0} ... o] (5.24)

Here o' in equation (5. 24) is the outlier score result for all the N sensing intervals. This score is a
measurement of how far the report of each SU is lying away from the average sensing reports
provided by all other SUs by making separable those sensing intervals during which MUs and

the imperfection of the NSU were misguiding the FC’s final decision about the PU channel.

5.3.2.2 Outlying using z-score
Similarly, the other outlier score measurement for each user report is made with the help of the z-

score measurement in comparison with the sensing report received from each SU as:

0(i) = ¢ (‘;())‘ el,...N,jel...M (5. 29)
ol
Where (i) = ZM Yy is the mean value of the sensing reports of all M users in thei" sensing

interval. (i) = is the standard deviation of thei™ interval reports and of(i) is

M \2

\/Zj—l(yij —,u(l))
M

the z-score outlying of the j" user report in thei® interval of the historical formation.
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The result for of(i) in equation (5. 25) shows how much local sensing observation of the j" user

is detached away from the group observations provided by all other users using z-score.

Now for guaranteeing the authenticity of each of thei" reports, a sum of the z-score results for all

intervals is made as:

0? :i(of(i)),i el..,N (5. 26)

=1

—

The total o” score result for all N sensing reports are collected as:

0’ =[0? o .. o2 (5. 27)

As fitness function is the representation for the suitability of each sensing reports, the final
selection of the fitness of each sensing reports from both the NSU and MU reports is determined.
The best selection results having less abnormal behavior on behalf of the NSU and MU users are

calculated.

In order to select the best sensing reports received from the normal and MUs, fitness function is

calculated based on the result in equation (5. 23) and equation (5. 26) as:

f(i)=(of +0) (5. 28)

The result of equation (5. 28) is able to make clear separation between reports under the
predominant impact of MUs and NSU malfunctioning from the one containing less effect of

these abnormalities. The fit chromosomes in equation (5. 28) are allowed to pass through
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heredity, while the unhealthy chromosomes with higher abnormalities deceased due to the

natural phenomenon of the survival of the fittest.

The sensing results inY with the minimum total outlier score in equation (5. 28) are selected as
the best chromosome and considered to be accurate sensing information on behalf of the NSU
and MUs. The top chromosomes based on the fitness results in equation (5. 28) are selected as
the parent chromosomes and crossover operation is performed in the rest to determine new

offsprings.

The crossover operator randomly selects a locus and exchanges the sub-sequences before and
after that locus between two parent chromosomes to build a pair of children. A crossover point is
randomly selected here in this thesis. The fitter chromosomes are more likely to be passed on to

the next generation. The population is then sorted in ascending order of fitness values.

The process of mutation represents a random change in the bit values of the gene. The mutation
operation is performed on the sensing information of the least fit chromosome. Genome bits of

the least fit chromosome are inverted after random selection.

After the random mutation of genome bits and crossover operation, a new population matrixY is
obtained and the same procedure as in equations (5. 22) to (5. 27) is repeated for the
determination of best fitness which results in new values of the fitness function as in equation (5.

28). After achieving the desired iteration criteria, the sensing reports y; (b) with minimum outlier
score in equation (5. 28) is selected for a global decision.
A flowchart diagram with detailed operation of the proposed scheme from local binary decisions

by the SUs following by the data collection at the FC and GA operation for the identification of

best sensing reports selection on behalf of NSUs and MUs is shown in Figure 5. 8.
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5.3.3 Counting rule as Hard decision Rule at the FC

After the selection of best sensing reports y, (b) inY with minimal outlier value as in equation (5.

28), FC applies one of the hard fusion combination schemes to take a global decision of the
primary user status. The three most commonly used hard fusion schemes applied by the FC are

the voting rule, OR and AND rules.

The voting rule decides about the PU activity based on the voting of K SUs decision out of total

M cooperative users. If K out of M users decides that a signal is present, then FC takes a global

decision H,. Here M is the number of cooperative SUs and K is the count of how many of the

SUs have reported PU signal presence. The count K =M /2 is selected as a special case of the
voting rule called the majority decision rule. Similarly, in the majority voting decision if the PU

detection reports are less than K then FC takes the global decision as H,

H, : otherwise

G, (i) -{Hl RACE K} (5.29)

While applying AND rule by the FC, all the M SUs has to provide a unanimous decision of the

PU presence, then the FC declares the channel as occupied by the PU and generate a global

decision as H, representing the PU signal, otherwise decision H, is made by the FC as:

Gy i) -{Hl 2000 '\"} (5.30)

H, : otherwise
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On following the OR rule procedure by the FC during each sensing interval if at least one of the

SUs provide local detection information to the FC, then FC decides a global decisionH,,

otherwise decision is made in favour of H,

G, (i) —{Hl: > LY 0) 21} (5. 31)

H, : otherwise

The results of the cooperative detection and false alarm probability for the voting rule based on

the local detection of all the M SUs is demarcated at the FC as [22]:

P, =Pr{G, (i) =1/H,} = Pr{ZLyj (b) =K IHl}

P, = Pr{Gy () =1|H,} = Pr{zz”zlyj(b) > K|H0}

(5. 32)

Here FC declares a global decision as Gg (i) =1of the PU status if K out of total M SUs are
reporting in favour of H,. The majority voting decision is taken as a special case of the voting

rule with K =M /2. Both OR and AND rules are also special cases of the voting rule with K =1

for the OR and K = M for the AND category of the hard combination schemes.

Similarly, the results of the cooperative detection and false alarm probabilities for the OR and

AND rules are as given below:

Py o zl_HL(l_ Pdvj) (5.33)
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Py ano :HEAA(PM) (5. 34)
H';/lzl(vaJ')

where B, .and P, care the cooperative spectrum detection and false alarm probabilities,

Pf _AND

respectively while applying OR rule, while P, ,,and P, ,,are the detection and false alarm

results, respectively when AND hard fusion scheme is applied. A pseudo code demonstrating a

procedure of the proposed scheme is given below.

For k =1to sensing limit
Fori=1to iterations
For j =1to total SUs

If E;(i) >Threshold
y;(i)=1, hard decision “1”

Else

y;(1)=0, hard decision “0”.
End

End

For j =1to total SUs

M
oo (Zj:1yij)_ Yii
y M -1

0} (i) =|y; ~my|.iel...,N, jeL...M

M,iel,...,N,jel,---,M
o(i)

0%(i) =

End

of=>" (0j@).ieL..N

of =" (0}(i)).iel...N
f(i)=(o; +0f)

Crossover the new population

Randomly mutation of the least fit
End iterations

Best sensing sample Y, (b) out of ¥

M
IDRRACRIN
Global decision Gg (i) =H,
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Else
Global decision G, (i)=H,

End
End sensing limit

5.3.4 Simulation Results of the majority voting GA scheme

For simulation purposes cognitive radio network parameters are set with total M cooperating SUs
including NSUs, MUs and FC. Out of the M users, 4 users are selected as AYMU, ANMU,
OMU and ROMU nature of MUs. Performance of the proposed and other schemes is tested
under various simulation conditions. At first the total number of cooperating SUs is taken as 12
at different average SNR values (-9.5 dB, -13.5 dB, -15.5 dB). In this study MUs were observed
under low and higher SNR values compared with NSUs. In the second part the simulation is
done for the proposed and all other schemes at different ratios of cooperative SUs with 8, 12 and
16. The sensing time is taken as 1 msand the number of samples M in each sensing interval is
270. The total number of sensing iterations is taken as 1000. The sensing intervals during which
ROMU perform a malicious act is selected randomly from 1 to 1000.The crossover points for the
GA is randomly selected from 1 toM . The crossover operation in the chromosomes and the
production of new offspring is observed for 10 cycles. MUs are equally distributed as OMU,
ROMU, AYMU and ANMU. The GA population consists of N =10chromosomes with a total
of M number of SUs in each chromosome. The GA population represents the sensing information

of the M users in the N trials.

The simulation results collected in Figure 5. 9-5. 12 show the ROC curves for the GAMV-HDF,
MV-HDF, EGC-SDF and MGC-SDF schemes. The results collected in Figure 5. 9 and Figure 5.

10 shows that as the average SNR raises from -17.5 dB to -9.5 dB, the ROC curves of all fusion
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schemes enhance. In Figure 5. 9 cooperating users are kept 12 and simulation is done for the
proposed GAMV-HDF, MV-HDF, EGC-SDF and MGC-SDF at different average SNRs. In this
part of the simulation MUs are observed with low SNR values compared with normal
cooperating SUs. The results demonstrate that the proposed scheme has improved ROC results at
all average SNR values. This is followed by the MGC-SDF, EGC-SDF and simple MV-HDF
schemes. The outcomes in Figure 5. 10 shows the ROC results against different average SNR
values for a total of 12 cooperative SUs with malicious behaviour changed for the abnormal SUs.
In this part MUs are taking higher SNR values compared with normal cooperating SUs. In Figure
5. 10 when MUs are having higher SNR values compared with normal cooperating SUs, the
results of the EGC-SDF and MGC-SDF is getting worse among all schemes. The proposed
method has improved performance at all values of SNR in Figure 5. 10 compared with other

combination schemes.

Similarly, Figure 5. 11 and Figure 5. 12 show probability of detection versus probability of false
alarm under -10.5 dB average SNR value. In Figure 5. 11 the system is tested against 8, 12 and
16 cooperative SUs with low SNR by MUs compared with NSUs while in Figure 5. 12 the
system was observed when MUs participate with higher SNR values against the NSUs. It is clear
of the results in Figure 5. 11 and Figure 5. 12 that cooperation has resulted in improved
performance for all fusion schemes with the increased number of cooperative stations from 8 to

16.
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Figure 5. 9. Probability of Detection vs. Probability of False Alarm (ROC) at different SNR
values (-9.5 dB, -13.5 dB, -17.5 dB) with MUs having low SNR compared with NSUs for the
MV-HDF, EGC-SDF, MGC-SDF and GAMV-HDF schemes.
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Figure 5. 10. Probability of Detection vs. Probability of False Alarm at different SNR values (-
9.5dB, -13.5 dB, -17.5 dB) with MUs having high SNR compared with NSUs for the MV-HDF,
EGC-SDF, MGC-SDF and GAMV-HDF schemes.

The proposed GAMV-HDF method in Figure 5. 11 are able to surpass all other schemes in this

low SNR situation of MUs. In case of higher SNR participation from MUs compared with NSUs
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as in Figure 5. 12, ROC results of the MGC-SDF is weak under all 8, 12 and 16 total number of
cooperating SUs cases when MUs taking higher SNR values. The simple MV-HDF is able to
produce improved ROC performance in comparison with EGC-SDF and MGC-SDF schemes in

Figure 5. 12.

Results for the probability of detection are obtained against the varying SNR values in Figure 5.
13 and Figure 5. 14 at different ratios of cooperating SUs. In Figure 5. 13 detection results are
collected when MUs are observed with low SNR and in Figure 5. 14 with higher SNR values for
MUs compared with normal cooperative users. It is good to see development in the detection
results for the proposed GAMV-HDF scheme with increasing SNR in both results. Figure 5. 13
shows that when MUs have a low SNR compared with normal SUs proposed method has better
detection results at all SNRs and all cases of 8, 12 and 16 cooperating users. The proposed
method detection results are followed by the MGC-SDF and EGC-SDF schemes at different
contributions of 8, 12 and 16 cooperating users, while the detection results obtained for the
simple MV-HDF scheme is the lowest of all in Figure 5. 13. In Figure 5. 14 when MUs have
higher SNR values the propose method detection results is less vulnerable. The simple MV-HDF
is able to surpass both the EGC-SDF and MGC-SDF schemes at all values of SNRs and different

ratios of cooperating SUs.

Finally the probability of error results of the PU detection is shown in Figure 5. 15 and Figure 5.
16. The result shows minimum error in the proposed GAMV-HDF scheme against the simple
MV-HDF, EGC-SDF and MGC-SDF schemes. In both Figure 5. 15 and Figure 5. 16 results are
drawn with a total of 8, 12 and 16 users under low SNR observed in Figure 5. 15 and with higher

SNR in Figure 5. 16.
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Figure 5. 11. Probability of Detection vs. Probability of False Alarm at different ratio of
cooperating SUs (8, 12, 16) with MUs having low SNR compared with NSUs for the MV-HDF,
EGC-SDF, MGC-SDF and GAMV-HDF
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Figure 5. 12. Probability of Detection vs. Probability of False Alarm (ROC) at different ratio of
cooperating SUs (8, 12, 16) with MUs having high SNR compared with NSUs for the MV-HDF,
EGC-SDF, MGC-SDF and GAMV-HDF schemes.
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Figure 5. 13. The Probability of Detection vs. Signal to Noise Ratio at different ratio of
cooperative SUs (8, 12, 16) with MUs having low SNR compared with NSUs for the MV-HDF,
EGC-SDF, MGC-SDF and GAMV-HDF schemes.
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Figure 5. 14 The Probability of Detection vs. Signal to Noise Ratio at different ratio of
cooperative SUs (8, 12, 16) with MUs having high SNR compared with SUs for the MV-HDF,
EGC-SDF, MGC-SDF and GAMV-HDF schemes
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Figure 5. 15. Probability of Error vs. Signal to Noise Ratio at different ratio of cooperative SUs

(8, 12, 16) with MUs having low SNR compared with NSUs for the MV-HDF, EGC-SDF,
MGC-SDF and GAMV-HDF schemes.
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Figure 5. 16. Probability of Error vs. Signal to Noise Ratio at different ratio of cooperative SUs

(8, 12, 16) with MUs having high SNR compared with NSUs for the MV-HDF, EGC-SDF,
MGC-SDF and GAMV-HDF schemes.
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The proposed scheme is able to produce less detection error in terms of sensing the licensed user
channel followed by the MGC-SDF scheme in Figure 5. 15. Furthermore, the simple MV-HDF
scheme has resulted in high probability of error in Figure 5. 15. From the results in Figure 5. 16
when MUs have higher SNR values as compared with NSUs, the error probability of the MGC-
SDF and EGC-SDF increases compared with simple MV-HDF and proposed GAMV-HDF
method. The MGC-SDF performance degrades in this case because MGC-SDF is giving higher
preference to the detection of SUs with higher SNR information. As MUs are considered with
higher SNR, therefore MGC-SDF decision about the PU channel is strongly misguided by the
MuUs. Similarly, EGC-SDF performance is also affected by the higher SNR of the MUs because

it is equally considering the reported information of all SUs for a global decision.

It is clear from these simulations that the use of GA followed by the MV-HDF scheme makes the
performance of CSS more authentic and valid in the presence of MUs at various numbers of

cooperating SUs and SNR ratios.

The harmful risk of AYMU, ANMU, ROMU and OMU user participation in CSS is reduced
with the usage of the recommended technique. From the graphical results of the proposed
scheme, simple MV-HDF, EGC-SDF and MGC-SDF schemes it is clear that the cooperation

process turn out to be more solid and systematic by following the proposed methodology.

5.4 Data Model for PSO based scheme

PSO is derived from the bird flocking or fish swarming, and was introduced by Eberhart and
Kenedy in 1952. In PSO, individual intelligence as well as collective intelligence plays a role in
finding an enhanced solution. In the GA, it is likely that every novel group is flourishing better

than the previous generation. Similarly, in the PSO the same group is likely to become better and
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better. In PSO each individual establishes his local intelligence and improves it with time. The
whole group is expected to improve upon its group intelligence. Particles in PSO algorithm
utilizes its own and neighbor knowledge to update their velocity and position. The PSO particle

exchange information about their best position among each other during a number of iterations.

The proposed CSS model using PSO is in Figure 5. 17. In this model SUs senses the licensed PU
channel, and forward their local energy statistics information to the FC for a number of
observations to form a PSO population. FC then applies the PSO method for identifying that
sensing report, which has a better resemblance with the actual status of the PU transmission
activity. The decision center measure the fitness score under all sensing iterations and declare the
minimum total outlying score particle as the actual channel information of the PU for a final
decision. Fusion combination schemes are applied by the FC, based on the selected global best
particle of the population to generate a more accurate and reliable final decision of the PU

channel.

5.4.1 Local Spectrum decisions

FC receives the soft energy reports of all users and form a history matrix consisting energy

statistics observed by each user during the N, sensing intervals as below:

Ell E12 ElM
E, E Eou | . _

E=[E|=| 22 Mliel. Ny jel..,M (5. 35)
EN 1 EN 2 EN M

Where E; is the energy information of the j"SU in thei® interval. Spectrum sensing information

is gathered in the FC database for all M SUs including both normal and malicious users.
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The sensing falsification effects of the MUs as discussed are minimized using the following steps

of the proposed method.
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Figure 5. 17 PSO based CSS Model.

5.4.2 Finding the fitness of particles

After the collection of energy information from all M SUs for the N, sensing intervals as in

equation (5. 35), FC modifies the particle positions to observe the differences in each individual
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sensing report with the reports provided by all other SUs. A new population is formed on behalf

of all users based on the information already collected in equation (5. 35) as below:

El ElIZ ElM
1 | En Ep oo By |, _
E'=[E]= ST T fielNg jet M (5. 36)
|Ev: En Ev |
M
. (Zl(EiJ)_Eijj
Where E; = 1=

Here Ei'j is the average of the individual soft energies reports provided by all other users while

taking out the report of the j" user in this averaging.

5.4.2.1 Outlying using one-to-many sensing distance
In order to determine how much individual sensing reports of each SU is behaving differently

from the average sensing results, an outlying factor is measured based on the one-to-many

sensing distanced (i) for the j" user in thei" sensing particle as:

d;(i) =|E; —Ej|.ieL... Ny, jel...M (5. 37)
Based on the results in equation (5. 37) the outlier scored (i) of the normal SUs and MUs are

added to discover the total one-to-many hamming distance score under each sensing interval

<

d; =3 (d;@))ieL..Ng, jel...M (5.38)

—
Il
4N
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Whered, in equation (5. 38) is the total outlier score representing the absolute sum of the
hamming distances of the one individual SU detection"E; "with the average detection Ei'j of all

other SUs in thei" sensing interval.

The measurement in equation (5. 38) is made for all the N, intervals and results are collected as:

d=[d, d, d,..d, | (5.39)
Hered is the outlier score result for all the N, sensing intervals. This score is a measurement of

how far, the report of each SU is lying away from the average sensing reports provided by all
other SUs by making separate those sensing intervals during which MUs and the imperfection of

the normal SU were misguiding the FC final decision about the PU channel.

5.4.2.2 Outlying using z-score
Similarly, the other outlier score measurement for each user report is made with the help of the z-

score measurement in comparison with the sensing report received from each SU as:

Eij _#(i))

oj(i)=‘( o jiel.. Ny jel,...M (5. 40)

Where u(i) = is the mean and o (i) is the standard deviation of thei" particle in the PSO

)
M

- - - - -th - -th = - -
population. o, (i)is the z-score outlying of the j"report in thei"interval of the historical

information. The result of o, (i) in equation (5. 40) shows how much local sensing observation of
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the j" user is detached away from the group observations provided by all other users using z-

score.

Now for guaranteeing the authenticity of each of thei™ reports, a sum of the z-score results for all

particles is made as:

<

0, =3 (0;()).ieL...Ny, jel...M (5. 41)

|

I
UN

The total z-score of all N, PSO particles of the PSO population are collected as:

0=[0,0,0,..0, ]T (5.42)

As fitness function is the representation for the suitability of each sensing reports, the final
selection of the fitness of each sensing reports from both the normal SU and MU is determined
and the best selection of the sensing results having less abnormal behavior of the cooperative

SUs is calculated.

The suitability criteria for the selection of particles of the PSO according to their fitness values

are declared according to equation (5. 39) and equation (5. 42) as:

f(i)=(d, +0,) (5.43)

The result in equation (5. 43) shows the minimum score of the sensing reports containing fewer
abnormalities in comparison to those reports that are badly affected due to the abnormal behavior

of the MUEs.
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5.4.3 Update Population

The global best position "g" is the particle in E which results in a minimum outlying score

among all particles according to equation (5. 43). Each particle may improve on its own if its
new version improves compared to the previous one. Local best particles of the population are

selectedas P = E.

The positions and velocities of the particles are initially set to zero. The particle velocities are

further updated with individual and collective intelligences as:

Y/

(i+1) ]

=V, +C, xR x(P, —E;)+C, xR, x(g, - E;) (5. 44)
Here C,and C, are the learning acceleration coefficients used to describe individual and social
contributions of each particle, R, and R, are uniformly distributed random numbers in the range
“0” to “1” which present stochastic component to the algorithm.

After calculations of velocities for each particle with the local and global intelligence of the

particles, these velocities are rounded to the two extremes as:
o max (V), V;; > max (V) (5. 45)
T min(v), V; < max (V)

The j" particle position representing the soft energy information at the (i +1)" iteration is updated

with the measured velocities just as:

=E. +V (5. 46)

(i+1)] ij (i+1)]

132



Where E,,; are the reports of the modified population, E; is the initial report of the j" user in

thei™ interval and V

(i+1); are the measured velocities in equation (5. 46).

5.4.4 Update local best and global best

Fitness values for the new population in equation (5. 46) are determined by following the same

procedure as in equation (5. 43).

Fitness values of the novel particles are compared with the fitness values of the previous
population to search for the local best and global best positions to determine any improvements
in the updated energy reports in comparison with earlier energy reports. The local best positions

of the population are updated as:

F’.—{E“ f&)< f(Pi)},iel,...,No (5. 47)

~|P,  otherwise

In equation (5. 47) results of the local best particles are updated by comparing the fitness of the
new population equation (5. 46) to that of the local best particles “ P ” fitness. The local best
particles are updated and take the values of the new population if it gives highest outlying results

according to equation (5. 43) as compared to the newly created population.

Similarly, a search is made to identify new global best particle for the entire population by cross
analysis of the fittest. Fitness of the updated local best particles as in equation (5. 47) is placed
for comparison in order to search for any improvement in the selection of the global best particle

as follows:
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g={P“ f(Pi)<_f(g)},Viel,...,No (5. 48)
g, otherwise

In equation (5. 48), outlying score of each particle from the local best population is compared
with the global best particle determined earlier. If any particle of the local best population has a
fitness function found to be more optimum in comparison with the global best particle with the
minimum outlying score as in equation (5. 43), then global best particle is replaced by that

particle.

Here the new global best particle is selected as “ g™ representing particle with the best fitness

function having minimum outlying results in the current and previous PSO population.

The PSO production of the new population and search of the global best results continues until
the stopping criterion is met. At the end of desired number of iterations, the final global best
particle containing soft energy reports made by all M cooperative SUs is elected for a final

decision by the FC about the PU channel.

5.4.5 Global decision of the licensed channel

Based on the final selection of the global best particle ” g ” as the soft energy reports on behalf of
all M cooperative SUs, FC utilizes soft and hard fusion combination schemes as in section 2 for
declaring a unanimous decision about the license user spectrum. The EGC, MGC and majority

voting hard fusion combination schemes are used as a decision criterion in this section.

The EGC is combining the individual statistical information of all SUs by giving equal weight to
each individual SU decision and summed coherently. The summed is compared with the

threshold to decide the license user spectrum by the EGC as:
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M
o)
EGC={H,: ~= ~>

H,: otherwise

(5. 49)

/4

The cooperative detection and false alarm probabilities Py ... and P; ... made by the EGC

scheme based on the global decision made about the PU spectrum are as:

e
j:
Pd_EGC =Pr M 2 7|H1
(5. 50)
M
s
Pf_EGC =Pr J_M 27/|Ho

In MGC scheme, each receiving signal branch is multiplied with a weighed function proportional
to the branch gain. Branches with strong signal are further amplified while weak signals are
attenuated by these weights. The idea to boost the strong signal component and attenuating weak
components as in MGC diversity is exactly the same as that of filtering and signal weighting in
the matched filter receiver. Similarly, the MGC scheme at the FC is giving higher weights to the
decision of the SUs with higher SNR values and low weight to the decision of SUs with low

SNR values as:

M
MGC =l ,-Z_l(WJXgi)Z7 (5.51)

H,: otherwise
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n(J)
Where w; =

,-22177(])

The cooperative detection and false probabilities of the MGC scheme are measured based on the

soft energy received as:

Pi_mec = {[%(ijgj)27j|Hl}
= (5.52)

P e[ Slo<)27 1

In the count fusion combination schemes, FC counts the total number of SUs with their energy

value greater than the threshold as:

) M
Hl-JZ_l(Q;ZVJ)Zk (5. 53)

H, : otherwise

The three most commonly used HFC schemes are the majority voting, OR and AND fusion
schemes. In the count HFC scheme a unanimous decision on the PU existence is made ifk out of

total M SUs make a decision of the PU detection with their energies larger than a threshold. FC

declares a final decision of the PU channel asH,ifk SUs reported about the PU existence.

Similarly, if the number of SUs with PU detection information is less thank then the decision is

made in favor of H, to declare an idle condition of the license channel. The counting score "k ” is

taken as “1” for the OR fusion rule and “M * for the AND rule. In the study of the proposed

. : . . M .
work, the majority voting scheme is selected with k :?. M is the total number of SUs reports

136



forwarded to FC for PU detection. In the majority voting scheme, if half cooperative users have

decided in favor of H,, global decision is made as H,, otherwise decision is made in favor of H,.

The detection and false alarm probabilities of the majority voting decision based on the best

selection of the PSO at the FC are as follows:

M M
P w =Prixg, 27|Hl
1= (5. 54)

M M
P w =Prixg, 27|HO
j=1

Where P, ,,, and P, ,, are the results of cooperative detection and false alarm probabilities of

the majority voting when PSO is used as a detection mechanism for sensing the licensed user

spectrum.

5.4.6 Simulations Results of the PSO scheme

For simulation purposes, parameter setting is made for the cognitive radio network with total
M =11cooperating SUs. Out of the total M cooperating users 7 of the users are selected as
honest SUs and 4 of them are randomly selected as AYMU, ANMU, OMU and ROMU
malicious users. Variation in the SNR for the SUs is made in the range of -30 dB to -2 dB. The
sensing time is kept aslms for each SU with total K =270samples in each sensing period. The
number of sensing iterations N is considered as 100. Sensing intervals during which ROMU
perform a malicious act is selected randomly from 1 to N . The performance of the system is
verified and checked by distributing equally the MUs as OMU, ROMU, AYMU and ANMU.

The sensing reports of the SUs are accumulated into the PSO population of size N, x M with

total N, number of particles representing sensing information of all M cooperating SUs.
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In the first part of the simulation as in Figure 5. 18, results are drawn to compare the
performance of EGC, MGC and majority voting hard fusion combination schemes. In this part of
the simulation first all the MUs are selected as AYMU and then as ANMU users. From the
simulation results in Figure 5. 18 it is obvious to see an improvement in the detection results of
the PSO based EGC, MGC and majority voting schemes against traditional combination
schemes. The cooperative system performance experienced under all AYMU and all ANMU is
more optimized and suitable for the proposed PSO based soft and hard combination schemes. It
is also observable from the graphical results that the detection response of the CSS in both the
cases when only AYMU and the one with only ANMU users were taken into considerations is

identical. The equal consideration of AYMU and ANMU user situations are similarly treated by

system with almost identical probability of detection (P,) for a given false alarm (P, ). The

graphical results in Figure 5. 18 shows the higher ROC results for the PSO based MGC scheme
followed by the EGC while the majority voting hard fusion combination presented is producing
less detection results compared with other two schemes. It is also obvious from Figure 5. 18 that
both the PSO based soft and hard fusion combination schemes are able to outperform the simple

MGC, EGC and hard fusion combinations for any given value false alarm.

In the second part, authenticity of the system is verified by comparing the results of the proposed
PSO based soft and hard combinations with traditional schemes. In this case, first all MUs were
selected as OMU and then all of them were taken as ROMU. From the simulation results, it is
clear to see that the detection results for MGC scheme is higher compared with its EGC and
majority voting counterparts. The ROC plots of the schemes are shown in Figure 5. 19 for the
traditional fusion schemes and proposed PSO based fusion schemes. The plotted results of all the

three schemes under proposed and traditional method show the reliability of the PSO based
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combination technique against the traditional method. In Figure 5. 19, ROMU is affecting the
cooperative sensing environment more hazardously unlike OMU and show that the ROMU
presence is more dangerous. The proposed scheme is superseding the traditional fusion

combination schemes in both OMU and ROMU considerations.
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Figure 5. 18 Probability of Detection vs. Probability of False Alarm for the Hard, EGC, MGC,
PSO-Hard, PSO-EGC and PSO-MGC schemes in the presence of AYMU and ANMU malicious
users.
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Figure 5. 19 Probability of Detection vs. Probability of False Alarm for the Hard, EGC, MGC,
PSO-Hard, PSO-EGC and PSO-MGC schemes in the presence of OMU and ROMU malicious
users.

In the third part of the simulation results, the performance of the traditional and proposed PSO
based fusion combination schemes is tested when malicious users are distributed equally as

AYMU, ANMU, OMU and ROMU in Figure 5. 20.
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Figure 5. 20 Probability of Detection vs. Probability of False Alarm for the Hard, EGC, MGC,
PSO-Hard, PSO-EGC and PSO-MGC schemes in the presence of AYMU, ANMU, OMU and
ROMU malicious users.

The lower three ROC plots in Figure 5. 20 show the performance of the traditional fusion
schemes under the consideration of all 4 MUs, while the upper three ROC curves show the
results of the PSO fusion combination schemes under the same parameter settings. The plots
show an improvement in the detection performance of the PSO based fusion combination
schemes compared with traditional combination schemes. It is also noticeable that the MGC
fusion combination scheme is giving more sophisticated detection results compared with all

other fusion schemes.
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The performance of the proposed method is further verified by drawing probability of error (P,)

results against average SNR values for the traditional and proposed PSO based fusion
combination schemes in Figure 5. 21. The probability of error results in sensing the licensed user
channel for the proposed scheme are less and with increased SNR values the proposed method

error reduces more quickly as compared to the simple combination schemes.
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Figure 5. 21 Probability of Error vs. Signal to Noise Ratio for the Hard, EGC, MGC, PSO-Hard,
PSO-EGC and PSO-MGC schemes in the presence of AYMU, ANMU, OMU and ROMU
malicious users

It is clear from the simulation results that with the use of PSO algorithm the sensing performance
achieved by the proposed fusion combination schemes is more optimized and accurate in the
presence of MUs. The best sensing report selection of the PSO following by soft and hard fusion
combinations makes the CSS results more authentic and valid in the presence of MUs. The risk
of considering AYMU, ANMU, ROMU and OMU users in CSS is significantly reduced with the

use of the proposed method.
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5.5 Summary

The focus in part |, is to improve the majority voting hard combination scheme using GA in the
presence of abnormalities. DSND algorithm is employed by the GA for the detection of
abnormalities and then applies crossover and mutation operations to provide more verified
information of the PU spectrum to FC. The FC further takes its global decision about the license
spectrum using majority voting hard fusion decision. At the end FC is able to produce reliably
and authentic PU detections in the presence of AYMU, ANMU, ROMU and OMU malicious

users.

The focus in part Il is to improve the performance of CSS using GA. FC is taking sensed
information from all cooperating SUs, including normal and malicious users, and combining
them for a more concrete decision about the licensed user spectrum using MV-HDF with GA.
The decision results of the MV-HDF are shaped more reliable with GA by identifying optimum

sensing results with selection and crossover in the presence of MUs.

Part 111, based on the energy statistics received from all SUs, PSO is able to reduce the effect of
the MUs in authenticating the global decision of the PU existence. FC combines the diversify
sensing reports of all SUs using proposed EGC, MGC and the majority voting decision to take a
global decision of the licensed user spectrum. The PSO scheme is able to overcome the effects of
OMU, ROMU, AYMU and ANMU categories of MUs followed by soft and hard combinations
to decide accurately. Simulation results reflect the superiority and authenticity of the proposed
scheme in producing more accurate and reliable decisions for both soft and hard fusion

combination schemes at the FC.
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Chapter 6

Statistical methods against malicious users in cooperative spectrum

sensing

6.1 Introduction

In this chapter, we employed statistical techniques to detect and evade MU out of the FC global
decision. The chapter is divided into two parts. In part I, the FC collects local binary decisions of
the cooperative SUs until the establishment of enough statistics. Correlations are calculated
between the sensing information of individuals and other SUs. The BWP is used for identifying
MUs and omitting them from the AND-HFC, OR-HFC, and MV-HFC before taking any global
decision of the legitimate user spectrum. In part I1l, OTMSD and ZS measurements are used by
the HT to detect the AYMU, ANMU, OMU and ROMU at the FC. In this part, ROC comparison
is made between the proposed EGC using OTMSD (EGC-OTMSD), EGC using ZS (EGC-ZS),
MGC using OTMSD (MGC-OTMSD) and MGC using ZS (MGC-ZS) with the traditional EGC
and MGC schemes at different historical levels of the reporting users, SNRs and total number of
cooperative users. Results demonstrate effectiveness of the proposed soft combination schemes

in comparison with the traditional combination schemes.

6.2 Proposed Hard Fusion Scheme using Statistical Features

In the proposed CSS, FC collects and combine spectrum sensing decisions of all individual SUs

with its local decision as in equation (5. 20). WhereY is a local decision matrix of size NxM ,
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which represents the sensing energies accumulated at the FC database by all SUs hard decisions.
The value N is the total sensing intervals with m users, including normal, malicious and FC.
Furthermore, correlation is used as a tool for the detection of harmful AO and RO users.
Correlation is a statistical exercise that shows how intense the pair of testers are related to each
other. Correlation ends with value -1when both variables are in the opposite direction from
perfect negative correlation to +1 with a strong correlation.

When all SUs reports FC, the relation in the sensing decision of each SU is made with all other
users, to determine any abnormal SU with its false data collected at the FC. The FC takes a
global decision on the PU status and after enough statistic collection about each SU, it is able to
easily identify and mitigate the effect of both AO and RO categories of MUs in the global

decision by the following steps.

6.2.1 Hard decision before system development

In step first of the detection process FC collects and store spectrum information of the users for
declaring the user as AO, RO and normal. Before the establishment of enough statistics about the
users, FC apply one of the HFC schemes to take a global decision of the primary user status. The
three most commonly used HFC schemes applied by FC are the MV-HFC, OR-HFC and the
AND-HFC.

The Voting rule decides about the PU signal based on the voting of K SUs decisions out of total

M users. If K out of M SUs decides that a signal is present, then FC declares the global decision

H,, where K is the total count of how many of the SUs are in favour of PU presence. Here

K =M/2is selected as a special case of the voting rule called the majority decision rule. If the

PU detection reports at the FC are less than K then FC takes the global decision as H,
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H: XLy ) =K 6.1)
H, : otherwise

While applying AND-HFC rule by the FC, all the M SUs has to deliver a similar conclusion of

the PU activity. The FC is able to declare the channel as occupied by the PU and generate a
global decision H, when all users report PU activity in the given spectrum. Similarly, the decision
H,is made by the FC to state the free condition of the PU spectrum when less than M users
report about the PU activity in the given spectrum:
H,: iy () =M 6. 2)
H, : otherwise
On following the OR-HFC rule procedure by the FC if at least one of the SU provide a local

detection information of the PU to the FC, then FC decides H, otherwise, the decision is made in
favour of Has;
H1 : Z?ﬂzl yj (') >1 (6. 3)
H, : otherwise
Similarly, the results of the cooperative detectionP, ., ,.and false alarm probabilities

P; wv_nec for the MV-HFC rule based on the local detections of all M users is demarcated at the

FC as [22]:

Powv-e =Pr{Y =UH,} =Pr{3 "y, () > K|H,}

Pr{Y, Y, ()= K[H, |

(6. 4)
Pf,MV—HFC = Pr{Y :1|Ho}

Where the global decisionY =1lillustrates that the total detection reports of the M users is
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exceeded K. As OR-HFC and AND-HFC rules are the special cases of the voting rule with
K =1for the OR-HFC and K =M for the AND-HFC category of the HFC. The cooperative
detection and false alarm probabilities of the OR-HFC and AND-HFC rules are determined as

below

Pd,MV—HFC =1-

j:l(l_ dei) (6. 5)

Pf OR-HFC — 1-

Py AnD-HEC :Hl;il(Pd,J) (6. 6)
Pf,AND—HFC = H’;Azl(Pf,j)

Where Py o _yec @Nd P; o ec are the results of the cooperative detection and false alarm

probabilities of the OR-HFC rule, while P, ,\»_-c and P ,o_c are the detection and false alarm

results when AND-HFC is applied.

A detailed operation of the proposed scheme in the form of flowchart diagram representation is
shown in Figure 6. 1. The FC collects local binary decisions of the cooperative SUs until the
establishment of enough statistics about the SUs. Correlation measurements are made in the
sensing information of the individual SUs with the sensing information received on behalf of all
other SUs. The BWP is used for the identification of MUs and is taken out of the AND-HFC,
OR-HFC, and MV-HFC before taking any global decision of the legitimate user spectrum. The
global decision made by the FC is more similar to the actual condition of the PU activity
resulting in maximum utilization of the available spectrum with minimum disturbances for the

PU.
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Figure 6. 1 Flow chart diagram representation of the proposed model.

6.2.2 Statistical Results for the detection of AO and RO Secondary Users

After the collection of spectrum sensing reports from all users by the FC, relation is determined

in the spectrum sensing results of all users to identify abnormal sensing reports of the AO and



In the first step, FC measures differences in the sensing results provided by one user to all other

users for a total of N, sensing intervals. The average sensing measurement is made for all other
SUs while ignoring sensing results provided by the j"SU in thei™interval. The j" user is
neglected to determine the impact of not including this particular user in the combine sensing
result. A similar measurement for all other SUs during each of the N, sensing intervals is made
as:

(ZHa) -y 6.7)

U]

WhereV; is a matrix of size N, x M with M total number of SUs and N, is the total sensing

intervals under which the system is building statistics. VValue for mis calculated as the collective

energy reports of all SUs in thei® sensing interval while ignoring the sensing results of the j" SU.
The result obtained in equation (6. 7) for both the AO and RO users has a different response than
normal SUs due to differences in their sensing information. Taking these MUs out of the average
value in each sensing interval result in different results for MUs against the normal SUs. Now

the difference in the sensing results of each individual SUY; is made with the average sensing

reports m; measured on behalf of all other users as:

AD; =Y, -V (6.8)
Ad, Ad, - Ad,
pp=| Mn A A 6.9)
AdNol AdNOZ AdNOM
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Where AD is a resultant difference matrix of size Ny xM , which shows the difference in the

energy reports of the j" userY;, and the average sensing resultsV; of all other users in thei™

interval.

6.2.2.2 Correlation as similarity tool
The correlation method is applied to the variation results in equation (6. 9) to find a relation in
the users sensing information. Correlation operation is performed between the sensing variations

of each SU with all other SUs as:

_ Zi’il(Adij —H; )(Adik _,Uk)
\/ZiN—l(Adij —H; )2 Zi’il(Adik — My )2

Fadjad, = ag,aq,

jkel...M (6. 10)

In equation (6. 10) Iy 1, @nd Ty, 44 are correlation coefficients of the sensing variations between
the j"and k™ user. The Ad; and Ad, are variants of the j"and k" user samples in thei"sensing

interval, while z; and 1, are mean values of the variation samples for the j"and k™ user sensing

reports in equation (6. 9)

Naapd,  Tadadz -+ Tagad,
r r R
Ad,Ad Ad,Ad Ad,Ad
R = 2Ad; 2 2 ' 2‘ M (6 11)
| Tadyad,  Tadyad, <+ Tadyady, |

All correlation results are collected in matrix R of size M xM , which shows correlation in the
differences of each SU with all other SUs. Total similarity score for each SU is determined by

adding the correlation results of all M SUs as:
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r= [z?jl(rmiml) S (ragn, ) - 2 (Mg, )] (6. 12)

The result of the vector r is alx M matrix, which shows the likeliness results of each SU with all
other SUs. Values that are more negative in equation (6. 12) show dissimilarity of the sensing
information of the user with the other users. The final correlation results make the behavior of all
three categories of SUs dissimilar to each other. Correlation results of the AO and RO users
largely deviate from the normal users and lie as an outlier in the result of equation (6. 12). The
outlier values of MUs are further separated from the normally reporting users by using BWP

method as.

6.2.2.3 BWP for MUs identification

A BWP is a simple way for the identification of outliers in any statistical data. It divides
correlation values in equation (6. 12) into four equal parts. First, the result is made in ascending
order and the median value is identified so that the data is divided into upper and lower half with
the help of the median value. Lower and upper quartile values are calculated. An outlier in
equation (6. 12) is a dispersal of data greater than 1.5 times the box away from either the lower

or the upper quartile. The median value of vector r is determined as:

rj(M +lj, M odd

2
Med = (6. 13)

l T M +r, M+1 , M even
2 2 2
The first and third quartile values that contain 25" and 75™ percentile of the data in equation (6.

12) are denoted asQ} ., and ijper. The inter-quartile value for the range of the upper and lower

quartile values is measured as:

150



Similarly, the settlements of the lower and upper limits for the detection of MUs are below:

3 1
IQR = QUpper - QLower

I—Iimit = Qiower _15(IQR)

UIimit = ijper +15( IQR)

(6. 14)

(6. 15)

(6. 16)

After setting all parameters of the BWP, MUs are identified using the following criteria.

MU:{

Otherwise

", i (= Up or 1 < L,imit)}

(6. 17)

In equation (6. 17), a user is declared malicious if its correlation score is outside the lower and

higher limits of the BWP. Table 6.1-6.3, shows a BWP results of the local sensing information

provided by each SU under different SNR values. The AO and RO user’s present dissimilar

sensing results of the PUs against the normal SUs and are easily identified and separated as MUs

from the normal SUs category using BWP criteria in equation (6. 17).

Table 6. 1. Box plot of correlation result under both AO and RO users

?é\g Min Qb Median Q3 Max IQR t?vr;/]?: LIJ_;I)S?:
-30  -0.1233 0.01559183 0.02097 0.023847 0.025981 0.008255 0.003209  0.03623
28 -0.1241 0.01502566 0.02049 0.022928 0.033197 0.007903 0.003172 0.034782
26 -0.1296 0.01767262 0.02225 0.026410 0.029608 0.008738 0.004566 0.039517
24 -0.1460 0.02419445 0.02566 0.030521 0.031995 0.006327 0.014703 0.040013
22 -0.1515 0.01600466 0.02709 0.031661 0.035777 0.015657 -0.00748 0.055146
20 -0.1768 0.0300924 0.03288 0.033382 0.038434 0.00329 0.025158 0.038317

Table 6. 2. Box plot data of correlation results under AO users only
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SNR . . Lower Upper
(dB)  Min QLower Median  QUpper Max IQR Limit Limit
-30  -0.1187 0.027923 0.029733 0.033575 0.036673 0.005652 0.019445 0.042053
-28 -0.1136  0.024431 0.029003 0.032603 0.038683 0.008172 0.012172 0.044861
-26 -0.1143 0.023746 0.026274 0.033884 0.043767 0.010139 0.008538 0.049092
-24 -0.1354 0.028492 0.035867 0.040777 0.041255 0.012285 0.010063 0.059205
-22 -0.1442  0.03397 0.040021 0.042547 0.045457 0.008577 0.021104 0.055413
-20 -0.1765 0.04133 0.048643 0.052537 0.061966 0.011206 0.024521 0.069346
Table 6. 3. Box plot data of correlation results under RO users only
SNR . 3 Lower Upper
@B) Min  Qwer  Median  Quper Max IQR Limit  Limit
-30  -0.0420 0.004687  0.00771 0.013285 0.020143 0.008598 -0.00821 0.026181
-28 -0.0418 0.006307 0.009428 0.011756 0.016341 0.005449 -0.00187 0.019929
-26 -0.0504 0.003967 0.010962  0.01545 0.021564 0.011483 -0.01326 0.032674
-24  -0.0499 0.01026  0.01173 0.013742 0.018565 0.003482 0.005036 0.018966
-22 -0.0572 0.007603 0.013448 0.017124 0.022818 0.009521 -0.00668 0.031406
-20 -0.0672 0.009589 0.017555 0.019618 0.021469 0.010028 -0.00545  0.03466

6.2.3 New Hard Fusion Decision

The detection results of MUs and system maturity in the N, sensing intervals leads FC to take a

new hard decision in the subsequent sensing intervals.

A new MV-HFC rule based on the sensing results of the normal cooperative users by taking the

detected MUs out of the global decision is given below:

Hl : 2211 Yj(i) 2 KNEW
j=MU

H, : Otherwise
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Where K\, is the new value of the MV-HFC criteria, based on the result of the normal SUs
only. The FC decides in favor of H, based on the normal users with their detections score greater
than K, , otherwise, decision H,is made by the FC.

Similarly, the new AND-HFC rule is restricted to the condition based on the normal SUs reports

as;

H,: ZEA;}MU Y (1) =M ey (6. 19)

H, : Otherwise
The new AND-HFC rule in equation (6. 19) shows thatM ., SUs has to provide PU detection
information to the FC out of the M SUs to decide H,, otherwise decision is made in favor of H,,.
Here M, is the normal SUs participation in the global decision without any RO and AO user.

A new criteria of the OR-HFC scheme after the identification and elimination of MUs at the FC

is below

Ho: Y vy (i)>1
' Z};lmu i) (6. 20)

H, : Otherwise
Similarly, the results of the cooperative detection and false alarm probabilitiesCy ,, . and

C; wv_nrc OF the MV-HFC scheme after taking out MUs is measured as
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Camvorrc = Pr{Y :1|H1} = Pr{Z’L Yi ()= (KNEW )|H1}
J2My (6. 21)

Cf,MV—HFC = PI’{Y :1|H0} = PV{Z% y yj(i) 2 (KNEW )|H0}

1#M
WhereY is the final decision made by the FC regarding the PU spectrum. As the OR rule take

into account the value of K\, =1, hence

M
Cd,OR—HFC =1- q (1_ Pd,j)
=
j=MU (6 22)
M
Cf,OR—HFC =1- H (1_ Pf,j)

j=1
j=MU

The AND rule can be evaluated by setting K¢, =M ew

M

Cd,AND—HFC = H (Pd,i)

!
j=MU (6 23)

M

Cf,AND—HFC = H (Pf,j)

j=L
j=MU

6.2.4 Simulation Results of the Statistical Features based technique

The simulation parameter settings are made for the CRN with total 10 cooperative SUs including
both normal and malicious. Out of the two MUs, one is taken as AO and the other of the RO
nature. The SNR values for simulation vary from -30 dB to -20 dB in Figure 6. 2. Duration of the

sensing time interval is selected as 1 ms which is divided into 270 samples. The system was

simulated for N =1000sensing iterations out of which in the initial N, intervals FC collects

information about each SU and take HFC decisions normally. MUs both AO and RO are

identified in the first N, sensing intervals and then FC applies new criteria to detect PU based on
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the selection results of the normal SUs. The RO user performed performing malicious act
randomly in the N /2 selected sensing intervals. The system was simulated under the conditions
when both AO and RO in equal numbers participate in CSS. In the first part of simulation results
criteria’s for the MUs detection are collected in Figure 6. 2 at different SNR regions. Figure 6. 2
shows the upper and lower limits with the result of the AO and RO users not within the range
while the normal SUs results lie within the upper and lower limitation criteria set by the BWP.
The correlation results of the RO user are closer to the lower limits set by the BWP which is
considered to be more dangerous, while the results of the AO user is very far distant away from
the lower limits set by the BWP. Detection results of these MUs were further used in improving
the detection results of the PU for all three categories of HFC schemes i.e. MV-HFC, OR-HFC

and AND-HFC schemes.
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Figure 6. 2 Correlation results vs. SNR for the RO user, normal user and AO user when both RO
and AO users were taken.
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Figure 6. 3 ROC results for the simple OR-HFC and proposed OR-HFC schemes at history
levels of 200, 350 and 500

ROC curve results are drawn for the OR-HFC scheme in Figure 6. 3 between the simple OR-

HFC and proposed OR-HFC scheme at the different considerations of N, . Graphical results

show better detection results of the proposed OR-HFC compared with simple OR-HFC. In
Figure 6. 3, performance of proposed OR-HFC scheme was compared with OR-HFC by varying

the length of the user history. Results show that as the user reporting history N, increases from

200 to 500 the ROC result performance of the proposed OR-HFC scheme also increases. This
improvement in the detection results of the proposed scheme is achieved due to more
information collected about the nature of MUs at the FC. The experimentation in Figure 6. 4 is
performed by testing the CSS scheme using traditional and proposed MV-HFC schemes to plot
the results for the detection probability against the false alarm probability. In the given MV-HFC
scheme, the total number of SUs is selected as M /2 at the FC, in order to take a global decision
about the PU spectrum. Results collected in Figure 6. 4 show improved ROC performance of the

proposed MV-HFC scheme compared with simple MV-HFC scheme at all levels of the history
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collections at the FC. The proposed MV-HFC scheme is able to take both the MUs out of the

voting rule in the following sensing intervals after their identifications. After the identification of

abnormal SUs, if half of the normally reported users report in favor of H, a global decisionH, is

made, otherwise H, is decided by the FC. By inspecting both the results collected in Figure 6. 3

and Figure 6. 4 it is noticeable that the proposed MV-HFC scheme has better ROC results as
compared with simple OR-HFC, proposed OR-HFC and simple MV-HFC schemes. The
proposed MV-HDF takes global decision based on the majority of the normal SUs after

discarding all the detected MUs.

The final ROC comparison in the detection and false alarm results is made in Figure 6. 5 for the
proposed AND-HFC and simple AND-HFC. A significant improvement in performance is
achieved for the proposed AND-HFC scheme in Figure 6. 5, which follows the proposed method
for the identification and elimination of MUs out of the final AND rule. This improvement in

performance is further made stronger with increasing history N, about the cooperative users.

Figure 6. 6, Figure 6. 7 and Figure 6. 8 compare the error probability results of the OR-HFC,
MV-HFC and AND-HFC rules at different levels of average SNR. In this part of the simulation
the total number of cooperative SUs is kept at 10 in the presence of 2 MUs including both AO
and RO users with varying SNR. The results collected in Figure 6. 6 for the simple OR-HFC and
proposed OR-HFC schemes show a reduction in the error probability of the proposed method
based OR-HFC rule. The proposed OR-HFC scheme allows the FC to produce accurate decision
about the PU activity with minimum error in terms of inaccurate detection of the PU. This
inappropriate detection at the FC is further reduced at the FC as the SNR value increases from -
30 dB to 0 dB. For a given SNR value in Figure 6. 6 these error chances further reduced with
increasing number of reports about the normal and malicious users. The error probability results
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are drawn for the simple MV-HFC and proposed MV-HFC schemes in Figure 6. 7. The results
show better performance for the proposed MV-HFC scheme in comparison with the simple MV-
HFC rule in Figure 6. 7 at all levels of the SNRs and historical information about the cooperative
users. The error probability of the proposed MV-HFC scheme reduces more quickly with
increasing SNR values and all levels of the historical reports about the cooperative users. The
proposed method performance is more improved with increasing history reports of the users

from N, =200to N, =500.

At last, the error probability results are drawn for the proposed AND-HFC and simple AND-
HFC against varying SNR values at different levels of the history reports. The proposed AND-
HFC scheme has the ability to produce improvement in the performance against the simple
AND-HFC all levels of SNR.

The error results collected in Figure 6. 6, Figure 6. 7 and Figure 6. 8 for the OR-HFC, MV-HFC
and AND-HFC confirmed the superiority of the proposed MV-HFC scheme on the given
environment of AO and RO category of MUs in CSS. By inspecting results in Figure 6. 6 to
Figure 6. 8, performance of the proposed MV-HFC as in Figure 6. 6 is followed by an accurate
sensing decision of the proposed OR-HFC scheme in Figure 6. 7, while the AND-HFC scheme
in Figure 6. 8 shows the worst performance in the given environment of CSS against AO and RO
categories of MUs.

Tabular and graphical results declare that the HFC outcomes are improved by using the proposed
method at the FC. MUs are first identified by the proposed scheme and then take out of the
global decision, in order to make the global decision more authentic with accurate decision about

the PU channel.

158



—4— Simple - MV-HFC
—@— Proposed - MV-HFC, NO:ZOO

—A— Proposed - MV-HFC, N0=350
—%— Proposed - MV-HFC, N0=500

0.8

0.7
0.6

0.5

0.4

0.3

Probability of Detection (Pd)

02148

0.1+

| | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of False Alarm (Pf)

Figure 6. 4 ROC results for the simple MV-HFC and Proposed-MV-HFC schemes at different
history levels of 200, 350 and 500
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Figure 6. 5 ROC results for the simple-AND-HFC and proposed-AND-HFC schemes at
different history levels of 200, 350 and 500
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Figure 6. 6 Probability of Error (P,) vs. SNR for the simple-OR-HFC and proposed-OR-HFC
schemes at different history levels of 200, 350 and 500
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Figure 6. 7 Probability of Error (P,) vs. SNR for the simple MV-HFC and proposed-MV-HFC
schemes at different history levels of 200, 350 and 500
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Figure 6. 8 Probability of Error (P,) vs. SNR for the simple AND-HFC and proposed AND-
HFC schemes at different history levels of 200, 350 and 500

The proposed HFC schemes are able to identify response for the detection of MUs and are able
to easily distinguish both AO and RO users from the normal category of cooperative users. The
FC detects and declare a user as malicious based on the BWP when correlation results are less
than the lower or higher than the upper limits. The detection results for the AO user are more
negative as compared with the RO and can be easily caught by the proposed scheme. RO user
behavior is closer to that of the normal user, therefore, great sensitivity care for the detection of
such MUs is demanding. Correlation results of the normal users are always within the limitations

of the BWP under all SNR values.

6.3 Proposed system model of the OTMSD and ZS process at the FC

The flowchart of the proposed CSS model using OTMSD and ZS is shown in Figure 6. 9. In
Figure 6. 9, SUs senses the certified PU channel, and forward their local energy statistics

information to the FC.
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Figure 6. 9 OTMSD and ZS scheme flowchart using HT.

The center takes a global decision taking into considerations the received energy statistics of all
SUs and also stores these energy observations until the establishment of enough information
about each user. The OTMSD and ZS are applied to each user reports to conclude the normal and
abnormal behavior of all cooperative users. The OTMSD and ZS measurement enables FC to

make the results of the normally reporting users separate of all MUs. In this model we are
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considering the number of normally reporting users larger in comparison with MUs, therefore,
based on the OTMSD and ZS results, reported data of the AYMU, ANMU, OMU and ROMU
are easily identified as outlier values. It is further noticeable that the reports of MUs were made
more dissimilar as outlier values when OTMSD based scheme is utilized as compared with ZS.
After the determination of OTMSD and ZS values, outlier data are picked off by following HT.
The detection results of the HT declare the user as MU and a new global decision is made by the
FC, with the combination of normally cooperative users to establish more accurate and reliable

global decision of the PU channel.

A pseudo code of the proposed method is shown below, where each user first performs local
detection. Cooperative user’s score is determined using one-to-many relationship sensing
distance and Z-score algorithms along-with HT for the detection of MUs and finally FC takes

global decision based on the normal user reports:

Fori=1 to sensing limit

For j=1to M

Local detection E, (i) by the j user to the FC
End |

Ifi=N,

---- OTMSD and ZS at the FC---

For j=1to M

[i(Eu)—Eu]

Ei‘j(i): (M _1)

0 =|E; —Ej|.iel...Ny, jel... M

(E; — i)
o (i)

OJ-Z(i)z Jdel..,Ny,jel...M

End |
For j=1toM
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No No

0} = (0j(®). j L. M, 0} =3 (0} (D)), j €L,.. M

i.=1 i=1
End |
--—-Hampel'’s Test to determine MUs in o and o results----
Medians of (0',0” )as(Med(0'), Med (0%))
For j=1toM
The median deviation of r; is determined as (oﬁ —med (01))

The median deviation of r’ is determined as(of —med (02))
OTMSD declares the j" user MU, if‘rﬂ > 4.5Med ‘rﬂ

ZS declares the j™ user MU, if‘rjz‘ > 4.5Med ‘rﬂ

End j

End If
----EGC global decision--------------

M
(% o)
If A2 2> threshold
M-M_,
Global decision, G_g (i) = H,
Else
Global decision, G (i) = H,

End
---MGC global decision-----------

If i (w; x E; (i)) = threshold

=L 5% My,
Global decision, G4 (i) = H,
Else
Global decision, G, (i) = H,
End

End sensing limit

6.3.1 Local Spectrum decisions

The sensing, statistics of all M users are stored at the FC for the N, sensing intervals to get more
information about the nature of participating users. The history reporting matrix is the soft

energy statistics observed by each SU during the N, intervals on behalf of all SUs as below:
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E=[E;|ieLl..Ny jel...M (6.24)
In equation (6. 24), E; is the energy statistic of the j" user during thei"sensing interval. The

sensing information E; is the collection of the normal and MUs observations for the N, intervals.
6.3.2 Outlying using one-to-many sensing distance (OTMSD)

After the collection of energy information of the M users for the N, intervals as in equation (6.

24), FC modifies these energy reports to observe the differences in each individual sensing report
with the reports provided by all other SUs. A new reporting matrix is formed on behalf of all

users based on the information already collected in equation (6. 25) as:

E'=[EY iel...,Ng jel...M (6. 25)
M
g
Where E; = (M -1)

Here Ei'j is the average of the individual soft energies reports provided by all other users while

taking out the report of the j" user in this averaging.

In order to determine how much the individual sensing reports of each SU is behaving differently

from the average sensing results, outlying factors are measured based on the one-to-many

sensing distance o, (i) for the j" user in thei"" sensing particle as:
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0} (i) =|E; —Ey|.ieL... Ny, jel,...M (6. 26)
Based on the results in equation (6. 26) the total outlier scores o} (i) of the j" user are added to
discover the total one-to-many hamming distance score for the j" user in the total N, intervals

N

LS ob(i)) i 6. 27

0, —E(oj(l)), jel...M ( )

Where 0} in equation (6. 27) is the total outlier score representing the sum of the absolute values
J

of the hamming distances of the individual SU soft detection”E; "with the average detection

"E; "of all other SUs in thei" sensing interval.
The measurement in equation (6. 27) is made for all the M cooperative users and the results are
collected as:

o'=[0o} 0; 0} ... 0}, ]T (6.28)

Here o'is the outline score measured on behalf of all the M users in the N, sensing intervals. This
score is a measurement of how far the report of each SU is lying away from the average sensing
reports provided by all other SUs. The result in equation (6. 28) has enabled the FC to discover

the score of malicious and imperfect sensing reports of the normal SU which tries to misguide

the FC final decision about the PU channel.

The HT is not susceptible to the quantity and value of outlier values, similarly it shows no
limitation to the abundance of the statistical data. Therefore, HT is applied to the result of the

OTMSD in equation (6. 28) to search for the false reports of MUs:
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First, the value of deviation rjlfrom the median is determined for all users as:

r= (o} —med (oﬁ)) (6.29)
Here med(o})is the median value of the OTMSD score o} made by all SU. A user is declared

outlier (malicious user), when the following condition is satisfied:

-th - 1

Mo = i, |f‘rj‘24.5Med‘rj‘ (6. 30)
0, otherwise

Where‘rﬂ is the absolute value of the median deviation and Med ‘rﬂ is the median of the absolute

median deviation results.

6.3.3 Outlying using z-score

Similarly, the other outlier score measurement for each user report is made with the help of the

ZS measurement based on the sensing report received from each SU as:

s |(Ey —u(D)
0; (i) = ‘—a(i)

)
M

of all users. ajz(i) is the z-score outlying for the j" report in thei" sensing interval. The result of

jiel.., Ny jel...M (6.31)

Where u(i) = is the mean and o (i) is the standard deviation of thei" energy observations

of(i) in equation (6. 31) shows how much local sensing observation of the j" user is detached
away from the group observations provided by all other users using z-score.
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Now for guaranteeing the authenticity of each of the i" reports, z-score results of the M SUs are

summed for all N, intervals as:

=z
S

0 =3 (0}(i)),j€L...M (6. 32)

LN

The total z-score of all M SUs are collected as:

o’ =[0f o} 0} ... o | (6.33)
The HT scheme is applied to the result of ZS in equation (6. 33) to search for the false reports of
the MUs. Similarly, the value of deviation rf from the median is resolute for all cooperative users

as:

r’ =(of —med (of)) (6. 34)
Here med (of) is the median value of the ZS score oj2 made by all SUs. A user is declared outlier

(malicious user), when the following condition is satisfied.

M- j", if |r’|=4.5Med|r7| (6.35)
" 0, otherwise

Where‘rﬂ is the absolute value of the median deviation and Med ‘rf‘ is the median of the absolute

median deviation results.

The false data provided by all MUs are separated from the normal user data using the OTMSD

and ZS proposed methods.
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6.3.4 Global decision of the licensed channel

The FC combines the soft energy collection reports of all SUs before the identification of any
MU for a global decision about the channel. Various soft and hard combination schemes used by

the FC are EGC, MGC and majority voting as a decision criteria of the channel.

The EGC employed by the proposed method is combining the individual statistical information
of all SUs by giving equal weight to each individual SU decision and summed coherently. The
proposed scheme enables EGC to ignore energy statistics of the identified MU in the
combination. The summation is compared with the threshold to decide the license user spectrum

by the EGC as:

: (—ﬁnu i (i)J (6. 36)
GEGC(I): H, : M — MU 2y '

H,: otherwise
The cooperative detection and false alarm probabilitiesP, ...andP; ... made by the EGC

scheme based on its global decision about the PU spectrum are as:

3 e
j=1, j#MU Z}/|H

Pd_EGC =Pr M —MU

1

(6. 37)

(3 e0]
j=1, j#MU 2]/|H

Pf_EGC =Pr 0
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In MGC scheme, each receiving signal branch is multiplied with a weighed function proportional
to the branch gain. Branches with strong signal are further amplified while weak signals are
attenuated by these weights. The idea to boost the strong signal component and attenuating weak
components as in MGC diversity is exactly the same as that of filtering and signal weighting in
the matched filter receiver. Similarly, the MGC scheme at the FC assign higher weights to the
decision of the SUs with higher SNR values and low weight to the decision of SUs with low

SNR values as:

M

Ho Y (wxE @)y (6. 38)

Guec (1) = =1 j=MU
H,: otherwise

n(1)
Where W; = ——

j2:177(1')

The cooperative detection and false probabilities of the MGC scheme are measured based on the

individual sensing reports as:

Pd_MGC :{(j—lj%‘lvlu (Wj x Ej(i))27J|Hl}
Pf_MGC:{[ % (WjXEj(i))27j|H0}

j=1, j=MU

(6. 39)

6.3.4 Simulations Results of the OTMSD and ZS process

For simulating the Cognitive Radio Network, parameters are set with 10 and 14 total cooperative
SUs. The MUs participating in the CSS are deliberately selected as to the nature of AYMU,

OMU, ROMU and OMU. The system is simulated under the average SNR -30 dB to 9 dB and -

170



36 dB to 3dB. The sensing time for each SU is selected as 1 ms containing 270 samples in each
sensing interval. Total sensing intervals for the cooperative users are selected as 200. The
ROMU users in this work are performing malicious behavior probabilistically in the sensing N

intervals.

The performance of the proposed soft combination scheme is compared with traditional soft

combination schemes like EGC and MGC schemes in 6 different cases as below.

Case 1: In the first case ROC performance of traditional EGC and MGC schemes is compared
with the proposed EGC and MGC using OTMSD and ZS methods for the detection and
avoidance of MUs in the global decision. The total number of cooperative SUs is selected 10 in
the presence of AYMU users only. First, the number of the AYMU user has taken 1 in the total
10 SUs and then the total AYMU user number has increased to 2. Results show that in the
presence of 1 AYMU user out of total M SUs ROC result of the proposed EGC using OTMSD
scheme is for the detection of MUs is the highest of all. The result of the proposed EGC-OTMSD
is followed by the MGC-OTMSD with better ROC performance in comparison with simple EGC
and MGC schemes. The EGC and MGC schemes using ZS method produce high detection and
less false alarm results in comparison with simple EGC and MGC in the presence of 1 AYMU
user. Among the simple EGC and MGC schemes, the EGC performance is dominating the ROC
of the simple EGC in Figure 6. 10 when only 1 AYMU user delivers always yes reports to the
FC. When the number of MUs has increased to 2 in Figure 6. 10 the simple EGC and MGC with
no mechanism of MUs is highly affected by the increasing number of AYMU users. In the
presence of 2 AYMU users in Figure 6. 10, OTMSD based EGC and MGC schemes showed
better detection results with minimum false alarm. The OTMSD based EGC and MGC results

are followed by the soft combination schemes using the ZS method in detecting MUs and taking
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a global decision about the channel. The ROC performance of the traditional EGC and MGC
schemes is getting worse among all with increasing number of MUs. This case also clarifies the
fact that EGC scheme produces suitable PU detection results under both OTMSD and ZS
schemes. The proposed EGC scheme performance using OTMSD and ZS is followed by the
MGC scheme using OTMSD and ZS schemes. The simple EGC and MGC performance is the

lowest of all simulation results under both 1 and 2 AYMU users.

—o— EGC-OTMSD (1 AYMU)
—®— MGC-OTMSD (1 AYMU)
—%— EGC-ZS (1 AYMU)
—*— MGC-ZS (1 AYMU)
—¥— Simple EGC (1 AYMU)
—¥— Simple MGC (1 AYMU)
-+ EGC-OTMSD (2 AYMU)
—%— MGC-OTMSD (2 AYMU)
seedenss EGC-ZS (2 AYMU)
—A— MGC-ZS (2 AYMU)
—&— Simple EGC (2 AYMU)

‘ ‘ —#— Simple MGC (2 AYMU)
0 0.1 0.2 0.3 0.4 0.5 0.6

Probability of False Alarm (Pf)

°
o

Probability of Detection (Pd)

0.5

0.4

Figure 6. 10 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple
MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 AYMU
user only

Case 2: In this part of the simulation, ROC comparison is made between the traditional EGC and
MGC schemes with proposed OTMSD and ZS based EGC and MGC schemes in Figure 6. 11.
The nature of malicious users is considered an ANMU user in this work sending an always free
status of the PU channel to the FC. The system was simulated with detection and false alarm
results obtained in presence of both 1 and 2 ANMU users with a total of 10 cooperative SUs. The
ROC performance of the proposed EGC and MGC schemes using OTMSD and ZS schemes and

simple EGC and MGC schemes in the presence of AYMU is almost similar to that of case 1. In
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the presence of ANMU the first case ROC performance of traditional EGC and MGC schemes
are compared with the soft combination schemes using OTMSD and ZS methods. When there is
1 and 2 ANMU participate in the CSS, the performance of the EGC scheme using OTMSD and
ZS is superior to the MGC scheme using OTMSD and ZS. The result obtained for the EGC-
OTMSD is followed by the MGC-OTMSD under both 1 and 2 ANMU users. The proposed
EGC-OTMSD and MGC-OTMSD are closely matched by the proposed EGC-ZS and MGC-ZS
schemes that use the ZS score for the detection of MUs and to further take final decision based

on the soft energy information of the normally reporting users only.

—e— EGC-OTMSD (1 ANMU)
—o— MGC-OTMSD (1 ANMU)
—— EGC-ZS (1 ANMU)
—— MGC-ZS (1 ANMU)
—¥— Simple EGC (1 ANMU)
—¥— Simple MGC (1 ANMU)
swede EGC-OTMSD (2 ANMU)
—#%— MGC-OTMSD (2 ANMU)
e EGC-ZS (2 ANMU)
—&— MGC-ZS (2 ANMU)
—&— Simple EGC (2 ANMU)
—#— Simple MGC (2 ANMU)

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Probability of False Alarm (Pf)

Probability of Detection (Pd)

Figure 6. 11 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple
MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 ANMU
users only

Case 3: In the third case as in Figure 6. 12 the nature of MUs is changed to OMU which always
negate the actual status of the PU activity. Detection probability results are plotted against the
false alarm probability for the traditional schemes, proposed OTMSD and ZS based schemes in
Figure 6. 12. In Figure 6. 12 the simple EGC has shown better performance in comparison with

simple MGC scheme in the presence of both 1 and 2 OMU category of MUs. The MGC scheme
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following OTMSD and ZS method for the avoidance of MUs in CSS showed improved ROC
results among all with better defense against the activity of the OMU users. MGC-OTMSD and
MGC-ZS results were closely matched by the EGC-MMZ and EGC-ZS schemes during both 1
and 2 OMU user scenario. The result in Figure 6. 12 also shows the effect of OMU users
affecting the performance of simple EGC and MGC schemes in which simple MGC has shown
poor performance in the presence of OMU users unlike the case when AYMU and ANMU user

were participating in CSS.

—e— MGC-OTMSD (1 OMU)
—— MGC-ZS (1 OMU)
—e&— EGC-OTMSD (1 OMU)
—— EGC-ZS (1 OMU)
-+ Simple EGC (1 OMU)
—%— Simple MGC (1 OMU)
—k— MGC-OTMSD (2 OMU)
s EGC-OTMSD (2 OMU)
—&— MGC-ZS (2 OMU)
e EGC-ZS (2 OMU)
—+&— Simple EGC (2 OMU)

‘ ‘ —®— Simple MGC (2 OMU)
0 0.1 0.2 0.3 0.4 0.5 0.6

Probability of False Alarm (Pf)

Probability of Detection (Pd)

Figure 6. 12 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple
MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 OMU users
only

Case 4: Here detection and false alarm results are obtained for the simple soft combination
schemes and proposed OTMSD and ZS based soft fusion combination schemes in the presence
of ROMU category of MUs. Results are obtained for the proposed and traditional soft
combination schemes in Figure 6. 13 under both 1 and 2 ROMU cooperative users. In Figure 6.
13 the OTMSD based MGC has better ROC results among all under both 1 and 2 ROMU user

scenario. The MGC-OTMSD results are followed by the EGC-OTMSD results producing better

174



ROC results in comparison with MGC-ZS and EGC-ZS schemes. Unlike the participation of the
AYMU, ANMU and OMU participation in CSS the simple MGC scheme shows better detection
and minimize false alarm results in comparison with simple EGC schemes under both 1 and 2

ROMU participation in the CSS.

—e— MGC-OTMSD (1 ROMU)
—e— EGC-OTMSD (1 ROMU) |
—— MGC-ZS (1 ROMU)
—o— EGC-ZS (1 ROMU)
—¥— Simple MGC (1 ROMU) ||
=¥+ Simple EGC (1 ROMU)
—k— MGC-OTMSD (2 ROMU) ||
sk EGC-OTMSD (2 ROMU)
—&— MGC-ZS (2 ROMU)
--A-= EGC-ZS (2 ROMU)
—&— Simple MGC (2 ROMU)
—&— Simple EGC (2 ROMU)

1 L 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Probability of False Alarm (Pf)

Probability of Detection (Pd)

Figure 6. 13 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple
MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS schemes with 1 and 2 ROMU
users only

Case 5: In this case, detection and false alarm results are obtained for the proposed and simple
soft combination schemes in the presence of all MUs in Figure 6. 14. In this part of the
simulation the total number of MUs is selected as 4 i.e. AYMU, ANMU, OMU and ROMU
delivering false spectrum reports to the FC among the total of 10 cooperative SUs. ROC results
are obtained first with an average SNR of -10.5 dB and -16.5 dB under a fixed total number of
10 cooperative SUs. At the average SNR of -16.5 dB, MGC showed superior performance to
EGC scheme while using both OTMSD and ZS. Similarly, in Figure 6. 14 at -16.5dB ROC
results of the MGC-MMZ and MGC-ZS are followed by the EGC-MMZ and EGC-ZS. The

simple EGC scheme provides the lowest performance of the ROC among all. When the average
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SNR is increased from -16.5 dB to -10.5 dB results of the proposed MGC-OTMSD and MGC-
ZS schemes degrade in comparison with proposed EGC-OTMSD and EGC-ZS scheme. In
Figure 6. 14 increasing average SNR from -16.5 dB to -10.5 dB results in improving detection

probability and lowering false alarm for the simple EGC scheme in comparison with the simple

MGC scheme.
1 “\\
0.9
E 0.8 i v
5 A —%— MGC-OTMSD (-16.5dB)
g 0.7 " %/ —*— MGC-ZS (-16.50B)
g sy S e S 4w EGC-OTMSD (-16.5dB)
s A/ A e Yy | e A EGC-ZS (-16.5dB)
R e —=— Simple MGC (-16.5dB)
R £ - —&— Simple EGC (-16.5dB)
S 0.5 A . —o6— EGC-OTMSD (-10.5dB)
o v —o— EGC-ZS (-10.5dB)
f —&— MGC-OTMSD (-10.5dB)
0.44 —— MGC-ZS (-10.50B)
! =¥+ Simple EGC (-10.5dB)
—¥— Simple MGC (-10.5dB)

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Probability of False Alarm (Pf)

Figure 6. 14 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple
MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS with all MUs and different
average SNRs (-10.5 dB, -16.5 dB)

Case 6: In Figure 6. 15 a comparison is made for all schemes at different level of cooperative
SUs. The results are plotted for the CSS in the presence of 4 MUs including AYMU, ANMU,
OMU and ROMU. First detection and false alarm comparison in the presence of total 10
cooperative SUs and 4 MUs and then the total number of cooperative SUs are increased to 14.
The ROC results in Figure 6. 15 when total 10 cooperative SUs participate in CSS in the
presence of 4 MUs generate better results for the EGC-OTMSD and EGC-ZS in comparison with
MGC-OTMSD and EGC-ZS. The Simple MGC is able to provide, the better ROC results as

compared with the simple EGC scheme in this part of the simulation. When the number of total
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cooperative SUs was increased to 14 performances of the MGC-OTMSD and MGC-ZS improves
in comparison with EGC-OTMSD and EGC-ZS with increasing number participating users.
Similarly, with increasing number of total cooperative users’ performance of the simple EGC
scheme degrades as compared with a simple MGC scheme which provides an improvement in

the detection performance with a reduced in the false alarm probability.

0.9
gogf o
s iy S A e ¥ EGC-OTMSD (10 SUs)
g 07 seodens EGC-ZS (10 SUS)
z —k— MGC-OTMSD (10 SUs)
5 —&— MGC-ZS (10 SUs)
206 ‘u —+&— Simple EGC (10 SUs)
5 | —=— Simple MGC (10 SUs)
€ 05 —®— MGC-OTMSD (14 SUs)
e —— MGC-ZS (14 SUs)
—e— EGC-OTMSD (14 SUs)
0.4 —— EGC-ZS (14 SUs)
' “eqen Simple EGC (14 SUs)
—¥— Simple MGC (14 SUs)

1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
Probability of False Alarm (Pf)

Figure 6. 15 Probability of Detection vs. Probability of False Alarm for the simple EGC, simple
MGC, EGC-OTMSD, EGC-ZS, MGC-OTMSD and MGC-ZS with all MUs and different
number of cooperative SUs (10, 14)

6.4 Summary

Efficient and on-time detection of MUs in a CSS environment is necessary, in order to avoid FC
to conclude erroneous recommendations regarding the PU spectrum occupancy. The proposed
AND-HFC, OR-HFC and MV-HFC schemes used by the FC take sensing reports from all SUs
and combine them for a more concrete decision in the presence of MUs. Decision results of these

HFC schemes are shaped more reliable by identifying first AO and RO using combination of
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correlation and BWP to declare new criteria for the detection of PUs without consideration of

abnormal users.

This work focuses on improving the functioning of the cooperative spectrum using OTMSD and
ZS methods. Based on the received energy statistics of all users, OTMSD and ZS schemes at the
FC are able to reduce the effect of the MUs in authenticating the FC decision of the PU
existence. FC combines the diversify sensing reports of all SUs using proposed EGC and MGC
decision to take a global decision about the licensed user activity. The OTMSD and ZS are able
to overcome the effects of OMU, ROMU, AYMU and ANMU categories of MUs followed in
the soft and hard combinations to decide accurately. Simulation consequences reflect the
superiority and authenticity of the proposed methodology in producing more accurate and

reliable decisions for the EGC and MGC soft fusion combination schemes in CSS.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Cognitive radio enables SUs to utilize vacant spectral holes of the PUs. SUs have to effectively
detect activity in the license user spectrum to declare the spectrum as free or occupied by the
licensed users. An improper detection of the PU spectrum may result in interference to the PU

transmission by the opportunistic SUs.

The sensing ability of SU is severely reduced in the fading and shadowing environment.
Therefore, it is possible that the decision made by an individual SU may not be able to produce
accurate sensing performance. Few SUs cooperatively sensing and sharing their individual
sensing with a common point, that is, fusion center, leads to best estimation outcomes. CSS
allows more than one receiver few wavelengths apart under different fading environment to
sense the license user spectrum. These cooperative schemes are able to create detection results

with high authenticity in the fading and shadowing environment.

Although CSS can accurately sense compared to an individual SU, but the performance of
cooperation is reduced when MUs in cooperation share false spectrum information with the FC.
Therefore, proper detection and deletion of MU reports at the FC is necessary for improved

performance.
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This dissertation is divided into three parts: In the first part of the dissertation an old technique of
the KL divergence [16],[17],[152] with added analysis is proposed along with a novel one-to-
many relationship based KL divergence to mitigate the effect of MUs at the FC. The proposed
work considered the participation of always yes, always no, opposite and random opposite
categories of MUs in a CSS. PDF of all cooperative users are determined first. The probability
distribution measured based on the received energy of the MUs is not similar to the distribution
of the normally cooperative users. In the first part of the KL divergence method, FC measures
the KL divergence against each user and informs FC about its KL divergence measurements.
Each cooperative user compares the KL divergence score achieved by its sensing performance
with a threshold and report mean samples of the previous reported energies under both the
present and absence hypothesis. In the next section of this part, as the KL divergence
measurement of an individual user is not reliable, therefore, KL divergence is determined based
on the mean and variance results of the one to many relationship based sensing notifications. The
final KL measurement is utilized to assign weights to the SUs reports, which allow MUs to

receive lower weights as compared to the normally cooperative users.

In the second part, heuristic techniques are used, i.e. GA and PSO algorithms [23],[24] as a novel
techniques to make a decision of the PU channel in the presence of MUs. DSND algorithm [20]
is first employed to determine abnormal SUs and minimum mean and z score is used as a fitness
function for identifying accurate spectrum sensing information received from all cooperative
users. Simulation results demonstrate effectiveness of the proposed soft and HFC schemes using
GA and PSO with high detection and minimum false alarm, which results in an overall reduction

in the error probability with improved spectrum sensing in cognitive radio network with
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malicious users using soft computing as compared with the traditional EGC, MGC and MV-HFC

schemes [9],[18],[19],[21],[22].

The impact of MUs in CSS is further reduced in the third part by using a novel statistical
methods for the identification before taking any global decision. In this part, correlation is
determined between the sensing statistics of individual user and the sensing information provided
by all other users. As MUs provide dissimilar sensing data to the FC compared to the normal
users, therefore, the correlation measured against MUs is notified as an outlier in the sensing
information received from all SUs. The outliers are further separated and identified using BWP
and HT methods [25]-[30]. Simulation results shows improved performance for the OTMSD-
MGC, OTMSD-EGC, ZS-EGC, ZS-EGC, logical OR, logical AND and majority voting schemes
with high detection and low false alarms at different levels of MUs, SNRs and history levels of

the participating users [9],[18],[19], [21],[22].

7.2 Future works

Future directions for extending the work are as follows.

1. This study focuses on the spectrum sensing in cognitive radio network with malicious
users using soft computing and statistical techniques, further analysis of the spectrum
resource allocation in the presence of malicious users is not investigated

2. To highlight avenues for further research in the same area this study has limited analysis
of the different fusion schemes in the presence of always Yes, always No, opposite and
random opposite categories of MUs to sense merely one PU spectrum. The proposed

scheme could be further enhanced for sensing more than one PU spectrums with
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introducing PUEA category of MU, resembling behavior of the PU to misguide other
SUs.

. An Adaptable and dynamic threshold adjustment scheme can be utilized for PU detection
instead of keeping static threshold scheme that may give a more optimized result.

Results obtained for the GA and PSO algorithms can be compared with other heuristic
techniques i.e. Differential Evolution (DE), Cuckoo search algorithm, fuzzy logic and
neural computing methods.

Defense of the cluster based CSS in the presence of MUs can also be investigated.
Compressed sensing can be utilized in the future work to reduce the sensing time with
better detection results in the presence of MUs.

. An OFDM based CSS using different number of the orthogonal subcarrier for sensing
and transferring the reports to other SUs and FC can also be investigated. The
employment of OFDM in CSS is useful as each subcarrier in use by the SUs experience

different effects under the fading and shadowing environment.
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