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Preface 

 

Recently the researchers and scientists are interested to explore the characteristics of fluid 

flow in the presence of heat transfer. This is due to its rapid advancements and 

developments in the technological and industrial processes. In fact the investigators are 

interested to enhance the efficiency of various machnies by increasing the rate of heat 

transfer and quality of the final products with desired characcteristics through rate of 

cooling. The combined effects of heat and mass transfer are further significant in many 

natural, biological, geophysical and industrial processes. Such phenomena include 

designing of many chemical processing equipment, distribution of temperature and 

moisture over agricultural fields, formation and dispersion of fog, damaging of crops due 

to freezing, environmental pollution, grooves of fluid trees, drying of porous solids, 

geothermal reservoirs, packed bed catalytic reactors, enhanced oil recovery, underground 

energy transport and thermal insulation. Inspired by such practical applications, the 

present thesis is devoted to analyze the nonlinear flows problems with heat transfer. This 

thesis is structured as follows. 

Chapter one just includes basic concepts and fundamental equations. 

Chapter two addresses the magnetohydrodynamic (MHD) flow of Powell-Eyring 

nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding 

thermophoresis and Brownian motion are taken into consideration. Powell-Eyring fluid is 

electrically conducted subject to non-uniform applied magnetic field. Assumptions of 

small magnetic Reynolds number and boundary layer approximation are employed in the 



mathematical development. Zero nanoparticles mass flux condition at the sheet is 

selected. Adequate transformations yield nonlinear ordinary differential systems. The 

developed nonlinear systems have been computed through the homotopic approach. 

Effects of different pertinent parameters on velocity, temperature and concentration fields 

are studied and analyzed. Further numerical data of skin friction and heat transfer rate is 

also tabulated and interpreted. The contents of this chapter have been published in 

“Results in Physics, 7 (2017) 535–543”. 

Chapter three investigates the magnetohydrodynamic (MHD) stagnation point flow of 

Jeffrey material towards a nonlinear stretching surface with variable thickness. Heat 

transfer characteristics are examined through the melting process, viscous dissipation and 

internal heat generation. A nonuniform applied magnetic field is considered. Boundary-

layer and low magnetic Reynolds number approximations are employed in the problem 

formulation. Both the momentum and energy equations are converted into the non-linear 

ordinary differential system using appropriate transformations. Convergent solutions for 

resulting problems are computed. Behaviors of various parameters on velocity and 

temperature distributions are examined. Heat transfer rate is also computed and analyzed. 

These observations have been published in “International Journal of Thermal 

Sciences, 132 (2018) 344-354”. 

Chapter four extends the analysis of previous chapter for second grade nanofluid flow 

with mixed convection and internal heat generation. Novel features regarding Brownian 

motion and thermophoresis are present. Boundary-layer approximation is employed in 

the problem formulation. Momentum, energy and concentration equations are converted 

into the non-linear ordinary differential system through the appropriate transformations. 



Convergent solutions for resulting problem are computed. Temperature and concentration 

are investigated. The skin friction coefficient and heat and mass transfer rates are also 

analyzed. Our results indicate that the temperature and concentration distributions are 

enhanced for larger values of thermophoresis parameter. The contents of this chapter 

have been published in “Results in Physics, 7 (2017) 2821-2830”. 

Darcy-Forchheimer flow of viscous fluid caused by a curved stretching sheet have been 

discussed in chapter five. Flow for porous space is characterized by Darcy-Forchheimer 

relation. Concept of homogeneous and heterogeneous reactions is also utilized. Heat 

transfer for Cattaneo--Christov theory characterizing the feature of thermal relaxation is 

incorporated. Nonlinear differential systems are derived. Shooting algorithm is employed 

to construct the solutions for the resulting nonlinear system. The characteristics of 

various sundry parameters are discussed. Skin friction and local Nusselt number are 

numerically described. The conclusions have been published in “Results in Physics, 7 

(2017) 2886-2892”. 

In chapter six, the work of chapter five is extended to viscous nanofluid flow due to a 

curved stretching surface. Convective heat and mass boundary conditions are discussed. 

Flow in porous medium is characterized by Darcy-Forchheimer relation. Attributes of 

Brownian diffusion and thermophoresis are incorporated. Boundary layer assumption is 

employed in the mathematical development. The system of ordinary differential 

equations is developed by mean of suitable variables. Shooting algorithm is employed to 

construct the numerical solutions of resulting nonlinear systems. The skin friction 

coefficient and local Nusselt and Sherwood numbers have been analyzed. These contents 



are accepted for publication in “International Journal of Numerical Methods for 

Heat and Fluid Flow”. 

In chapter seven, the work of chapter six is extended for magnetohydrodynamic (MHD) 

flow of micropolar fluid due to a curved stretching surface. Homogeneous-heterogeneous 

reactions are taken into consideration. Heat transfer process is explored through heat 

generation/absorption effects. Micropolar liquid is electrically conducted subject to 

uniform applied magnetic field. Small magnetic Reynolds number assumption is 

employed in the mathematical treatment. The reduction of partial differential system to 

nonlinear ordinary differential system has been made by employing suitable variables. 

The obtained nonlinear systems have been computed. The surface drag and couple stress 

coefficients and local Nusselt number are described by numerical data. The contents of 

this chapter have been published in “Journal of Molecular Liquids 240 (2017) 209–

220”. 

Chapter eight extended the idea of chapter seven by considering magnetohydrodynamic 

(MHD) flow of Jeffrey nanomaterial due to a curved stretchable surface. Novel features 

regarding thermophoresis and Brownian motion are considered. Heat transfer process is 

explored through heat generation/absorption effects. Jeffrey liquid is electrically 

conducted subject to uniform applied magnetic field. Boundary layer and low magnetic 

Reynolds number assumptions are employed. The obtained nonlinear systems are solved. 

The characteristics of various sundry parameters are studied through plots and numerical 

data. Moreover the physical quantities such as skin friction coefficient and local Nusselt 

number are described by numerical data. These findings have been submitted for 

publication in “International Journal of Heat and Mass Transfer”. 



The objective of chapter nine is to provide a treatment of viscous fluid flow induced by 

nonlinear curved stretching sheet. Concept of homogeneous and heterogeneous reactions 

has been utilized. Heat transfer process is explored through convective heating 

mechanism. The obtained nonlinear system of equations has been computed and solutions 

are examined graphically. Surface drag force and local Nusselt number are numerically 

discussed. Such contents are submitted for publication in “Applied Mathematics and 

Mechanics”. 

Chapter ten provides a numerical simulation for boundary-layer flow of viscous fluid 

bounded by nonlinear curved stretchable surface. Convective conditions of heat and mass 

transfer are employed at the curved nonlinear stretchable surface. Heat 

generation/absorption and chemical reaction effects are accounted. Nonlinear ordinary 

differential systems are computed by shooting algorithm. The characteristics of various 

sundry parameters are explored. Further the skin friction coefficient and local Nusselt and 

Sherwood numbers are tabulated numerically. The contents of present chapter have 

been published in “Results in Physics, 7 (2017) 2601-2606”. 
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Nomenclature

 ratio parameter of free stream and stretching velocities

A∗1 first Rivlin-Ericksen tensor

A∗2 second Rivilin-Erickson tensor

1 and 1 chemical species of homogeneous and heterogeneous reactions

0 dimensional constant

1 positive constant for stretching surface

∗ constant for variable thickness

 and  chemical species concentrations

0 magnetic field strength

∗1() non-uniform magnetic field

∗2() non-uniform magnetic field for variable thickness

b body force

,  and  components of body force

 concentration

  surface concentrations

 concentration of convective mass stretching surface

 drag coefficient

1 couple stress coefficient

∞ ambient fluid concentration

∗ and ∗ material constants for Powell-Eyring fluid

1  2 Skin friction coefficients for Cartesian coordinates

1
 2  3

Skin friction coefficients for Curvilinear coordinates

∗ ( = 1− 45) arbitrary constants

 specific heat

 solid surface’s heat capacity

() effective heat capacity of nanoparticles

5



 Brownian diffusion coefficient

 mass diffusivity

 thermophoretic diffusion coefficient

1 and 1 chemical species diffusion coefficients

 Eckert number


³
= 


√
1

´
porous medium variable inertia coefficient

 inertia coefficient

1 1 ̂  ̂ ̂ () and Φ unknown functions

 0 dimensionless velocity

1 and 1 continuous functions

∗̂ 
∗
̂ 

∗
̂ and ∗̂ special solutions

̂ ̂ ̂ and ̂ general solutions

0  0 ( = 1− 3)  0 ( = 1− 4)  01 and 0() initial approximations/guesses

g gravitational acceleration

 homotopy mapping

 heat transfer coefficient

~ ~ ~ ~ and ~ auxiliary parameters

  dimensionless concentrations

I identity tensor

j mass flux

 micro-inertia per unit mass.

1  2 wall mass flux for Curvilinear coordinates

 permeability of porous medium

∗ material parameter

 and Λ parameters for Powell-Eyring fluid

 dimensionless curvature parameter

1 homogeneous reaction parameter

2 heterogeneous reaction parameter
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 mass transfer coefficient

 vortex viscosity

 and  rate constants

L (=∇V) velocity gradient

 Lewis number

 magnetic parameter

 melting parameter

M couple stress tensor

0 constant (for concentration of microelements)

 power-law index/shape parameter

 micro-rotation

 buoyancy ratio variable

 Brownian motion variable

 thermophoresis variable

1  2  3 local Nusselt numbers

 local Nusselt number for Curvilinear coordinates

 () dimensionless pressure

 nondimensionless pressure

̆ embedding parameter

Pr Prandtl number

0 () heat absorption/generation coefficient for variable thickness

0 heat absorption/generation coefficient

q (= −∇ ) heat flux

1  2 wall heat fluxes

 wall heat flux for Curvilinear coordinates

 radius of curved stretchable surface

 rate of chemical reaction
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Re1 Re2 Re1 Re2 local Reynolds numbers

 radiative heating

  Curvilinear coordinate axes

S extra stress tensor

S stress tensor for Jeffrey fluid

S2 stress tensor for second grade fluid

 Schmidt number

1 Sherwood number

1  2 Sherwood numbers for Curvilinear coordinates

        and  components of extra stress tensor for Jeffrey fluid

 temperature

 temperature of convective heat stretching surface

 temperature of the stretching surface

 melting temperature

0 constant temperature

∞ ambient/free stream fluid temperature

 time

∗ unit interval

∇ temperature gradient

 material time derivative




partial derivative with respect to time

 surface stretching velocity

 free stream velocity

 stretching velocity

  and  velocity components

0() initial guess

() and Φ unknown functions

V fluid vector velocity

 and  topological spaces
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  and  Cartesian coordinate axes

 surface thickness parameter

1 and ∗2 normal stress moduli for second grade fluid

∗1 (= () ) thermal diffusivity

2 local second grade parameter

   and  spin viscosities

 coefficient of concentration expansion

 Deborah number

 coefficient of thermal expansion

 dimensionless thermal relaxation variable

 concentration Biot number

 spin gradient viscosity

 thermal Biot number

 heat generation/absorption parameter

1 ratio of diffusion coefficients

 porosity parameter

1 relaxation to retardation times’ ratio parameter

2 retardation time

∗ latent heat of fluid

∗1 bulk viscosity

 Grashof number

 relaxation time of heat flux

τ Cauchy stress tensor

τ 1 stress tensor for Micropolar fluid

τ  stress tensor for Powell-Eyring fluid

1  2 wall shear stress
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 1   2 wall shear stress for Curvilinear coordinates

 heat ratio parameter

∆

̂ residual error of dimensionless velocity

∆
̂ residual error of dimensionless temperature

∆

̂ residual error of dimensionless concentration

L L1  L1  L1  L1 and L2 auxiliary linear operators

N  N ( = 1− 6)  N
( = 1− 5) and N1 non-linear operators

R̃̂

 R̃̂


( = 1− 6)  R̃̂


( = 1− 5) and R̃̂

1
th order non-linear operators

  and  normal stresses

      and   shear stresses

 dimensionless temperature

 dimensionless concentration

 dynamic viscosity

 density of fluid

 kinematic viscosity

 electrical conductivity

ω vorticity vector

() fluid heat capacity

 vortex viscosity

Ω angular velocity

² third rank tensor

 small constant

 trace of a matrix

∇ Del operator

  dimensionless variables
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Chapter 1

Some related review and equations

1.1 Introduction

This chapter intends to include literature survey, fluid models and equations useful for the

analyses of next chapters.

1.2 Review

The analysis of boundary-layer flow over a stretchable boundary has various applications in

metallurgical, industrial, engineering and manufacturing processes. Such applications involve

crystal growing, plastic sheets extrusion and fibers, glass blowing, annealing and tinning of cop-

per wire, drawing and paper production. Sakiadis [1] initiated axisymmetric two-dimensional

(2-D) boundary layer flow over continuous solid surfaces. Then Crane [2] considered flow past

a linearly stretchable surface and developed a closed form solution. There is no doubt that

much attention in the past has been devoted to the flow caused by linear stretching velocity.

However this consideration is not realistic in plastic industry. Hence some researchers studied

the flow problem of nonlinear stretching surface. Gupta and Gupta [3] was the first who pro-

posed that the phenomena of stretching for a surface may not necessarily be linear. Later on,

flow over a non-linear heated stretching sheet is studied by Vajravelu [4]. Cortell [5] extended

the work of [4] by considering prescribed surface temperature and constant surface temperature

conditions. Prasad et al. [6] studied mixed convective flow over a non-linear stretchable surface
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with non-uniform fluid characteristics. Yazdi et al. [7] investigated the slip flow by a nonlinear

permeable stretched surface with chemical reaction. Mustafa et. al [8] studied axisymmetric

nanofluid flow. Hayat et al. [9] investigated MHD flow of second grade nanomaterial. Numer-

ous struggles have been made in this vision through different theoretical and physical aspects

but all these investigations are carried out by considering linear and non-linear stretching of

surfaces whereas the fluid flow over curved stretching surface has been rarely investigated. In-

vestigation for fluid flow regarding curved stretching surface was first introduced by Sajid et al.

[10]. The applications of fluid flow over a curved stretchable surface are curving jaws present

in stretching assembling machines. Rosca et al. [11] presented time-dependent flow past a per-

meable curved shrinking/stretching sheet. Micropolar fluid flow with radiation over a curved

stretchable surface is examined by Naveed et al. [12] Few recent attempts on flow by curved

stretching surface can be seen in the studies [13 − 15] All these investigations are related to
curved linear stretching surface whereas Sanni et al. [16] recently considered viscous fluid flow

past a nonlinearly stretching curved sheet.

Flow caused by stretching surface of variable thickness has many technological applications.

However much attention has not been paid to this concept of variable thickness of surface. Few

studies have been presented in this direction. Fang et al. [17] analyzed flow over a linearly

stretchable surface of variable thickness. Viscous fluid flow due to nonlinear stretchable sheet

of variable thickness and slip velocity is analyzed by Khader and Megahed [18]. Subhashini

et al. [19] considered the stretching sheet with variable thickness and find the dual solutions

for thermal diffusive flow. Abdel-Wahed et al. [20] examined the viscous nanofluid flow due

to a moving sheet having variable thickness. Hayat et al. [21] examined the homogenous-

hetrogenous nanofluid flow reactions by a stretched surface of variable thickness. Few latest

struggles on variable thickness of surface can be viewed in the studies [22− 24]
Non-Newtonian fluids are regarded very prominent for applications in chemical and petro-

leum industries, biological sciences and geophysics. The flow of non-Newtonian fluids due to

stretching surface occurs in several industrial processes, for example, drawing of plastic films,

polymer extrusion, oil recovery, food processing, paper production and numerous others. The

well-known Navier-Stokes expressions are not appropriate to describe the flow behavior of non-

Newtonian materials. However various constitutive relations of non-Newtonian materials are
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proposed in the literature due to their versatile nature. Such materials are categorized as differ-

ential, integral and rate types. The fluid’s class having nonsymmetric stress tensor with polar

fluids characteristics are named as micropolar fluids. These are the fluids with microstructure

and deals with micro-rotation of suspended particles. Micropolar fluid theory was firstly sug-

gested by Eringen [25 and 26] He pointed out that one cannot elaborate the impacts of local

rotational inertia and couple stresses by classical Navier-Stokes relations. Further mathematical

modeling for theory of lubrication and theory of porous media about micropolar fluid equations

is derived by Lukaszewiez [27] and Eringen [28] Micropolar fluids may physically show fluids

containing randomly oriented (or spherical) or rigid particles suspended in a viscous medium,

where the deformity of fluid particles is negligible. It is affected and not much intricate for

both physicists and engineers who apply it and mathematicians who study its theory. The

applications of micropolar fluids include animal blood, suspension of particles, paints, liquid

crystals, theory of lubrication, turbulent shear flows and theory of porous media. Nazar et al.

[29] examined free convected micropolar boundary layer fluid flow with uniform surface heat

flux. Srinivasacharya and Reddy [30] examined natural convection flow of doubly stratified

non-Darcy micropolar fluid. Impact of thermal radiation in unsteady magnetohydrodynamic

flow of micropolar fluid is explored by Hayat and Qasim [31]. Rashidi et al. [32] provided an

analytic solution for micropolar fluid flow with porous medium and radiation effects. Cao et

al. [33] performed a Lie group analysis to study the flow of micropolar fluid. Waqas et al. [34]

investigated the magnetohydrodynamic (MHD) micropolar fluid flow induced by a nonlinear

stretchable surface with mixed convection. Recently Turkyilmazoglu [35] studied magnetohy-

drodynamic flow of micropolar fluid due to a porous heated/cooled deformable plate. The

Powell-Eyring fluid model [36− 41] is derived from kinetic theory of gases instead of empirical

relation as in the case of the power-law model. Ketchup, human blood, toothpaste, etc. are

the examples of Powell-Eyring fluid. The features of both relaxation and retardation times are

elaborated by Jeffrey fluid model [42−46] which is a category of rate type fluids. Second grade
fluid model [47− 51] illustrates the effects of normal stress.

Alternative form of fluids that are composition of convectional base liquids and nanometer

sized particles are termed as nanofluids. Nanoparticles utilized in the nanomaterials are ba-

sically made of metals (Ag, Cu, Al) or nonmetals (carbon nanotubes, graphite) and the base
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liquids include ethylene glycol, water or oil. Suspension of nanoparticles in the base liquids

greatly varies the heat transfer characteristics and transport property. To obtain prominent

thermal conductivity enhancement in the nanofluids, the studies have been processed both

theoretically and experimentally. Applications of nanofluids in technology and engineering are

nuclear reactor, vehicle cooling, vehicle thermal management, heat exchanger, cooling of elec-

tronic devices and many others. Moreover magneto nanofluids (MNFs) are useful in removal

of blockage in arteries, wound treatment, cancer therapy, hyperthermia and resonance visual-

ization. Further the nanomaterials enhances the heat transfer rate of computers, microchips in

microelectronics, fuel cells, biomedicine, transportation, food processing etc. The pioneer in-

vestigation regarding enhancement of thermal properties of base liquid through the suspension

of nanoparticles was presented by Choi [52] Later the development of mathematical relation-

ship of nanofluid with Brownian diffusion and thermophoresis is presented by Buongiorno [53].

Turkyilmazoglu [54] derived the exact analytical solutions for MHD slip flow of nanofluids by

considering heat and mass transfer characteristics. Further relevant attempts on nanofluid flows

can be quoted through the analysis [55− 78] and various studies therein.
The convective heat and mass transfer analysis has drawn the attention of many recent

researchers. Choi and Kim [79] studied natural convective condition for initial cooling in heat

and mass transfer of cryogenic surface. Thermal diffusion and Soret effects in two-dimensional

Hartmann viscous fluid flow is examined by Zueco et al. [80] Shirvan et al. [81] considered

porous solar cavity for combined heat transfer and derived the numerical solution. EHD forced

convective nanofluid flow with electric field dependent viscosity is explored by Sheikholeslami

et al. [82] Hayat et al. [83] addressed three-dimensional nanofluid flow due to convectively

heated nonlinear stretchable surface with magnetohydrodynamic effects. Ramanaiah et al. [84]

analyzed Sisko nanofluid flow due to nonlinear stretchable sheet with thermal radiation and

convectively heat and mass transfer conditions. Second grade fluid flow due to convectively

heated stretchable sheet is investigated by Das et al. [85]

Heat transfer via Cattaneo-Christov heat flux phenomenon has numerous applications in

biomedical, engineering and industry which was initially explored by Fourier [86]. According to

his model, the medium under consideration is instantaneously observe the initial disturbance

which was not be compatible with the reality hence termed as “paradox of heat conduction”.
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To overcome such limitation, Cattaneo [87] changed this law by adding thermal relaxation time.

Christov [88] further changed the Cattaneo theory [87] by the replacement of time derivative

with upper-convected Oldroyd derivative. Ciarletta and Straughan [89] provided stability and

uniqueness for Cattaneo-Christov heat flux. Later, incompressible flow with Cattaneo-Christov

model via heat conduction is analyzed by Tibullo and Zampoli [90]. Han et al. [91] studied

Cattaneo-Christov heat flux for coupled viscoelastic fluid flow. Cattaneo-Christov heat flux and

variable thermal conductivity in boundary layer flow past a variable thickness sheet is analyzed

by Hayat et al. [92] Liu et al. [93] investigated fractional Cattaneo-Christov heat flux theory

for anomalous convection diffusion. Recently Hayat et al. [94] examined the three dimensional

Jeffrey fluid flow having the effects of Cattaneo-Christov heat flux.

In operations heat generation or absorption effects are quite dominant which involve under-

ground disposal of radioactive waste material, heat removal from nuclear fuel debris, storage of

food stuffs, disassociating fluids in packed-bed reactors and many others. During manufacturing

processes, it is obvious that for controlling the heat transfer rate heat absorption/generation

play a prominent role. Analytical solutions for the effects of first order chemical reaction and

heat absorption/generation in a micropolar fluid flow is examined by Magyari and Chamkha

[95]. Saleem and El-Aziz [96] considered the phenomenons of Hall current and heat sink/source

in viscous fluid flow past a moving surface with chemical reaction. Chen [97] analyzed two

types of viscoelastic fluids flow past a stretchable surface having magnetohydrodynamics, in-

ternal heat generation and viscous dissipation by deriving analytical solution. Chen [98] in

another investigation presented the MHD power law fluid flow past a stretchable surface with

internal heat absorption/generation and mixed convection. Siddiqa et al. [99] examined nat-

ural convective flow with temperature dependent viscosity over an inclined flat surface with

heat source. Van Gorder and Vajravelu [100] examined MHD convective flow past a stretchable

sheet with heat sink/source and injection/suction. Numerical solutions for the flow of nanofluid

was constructed by Rana and Bhargava [101]. Alsaedi et al. [102] derived the series solutions

for the stagnation point nanofluid flow with heat sink/source. Noor et al. [103] considered

numerical solutions for MHD flow of viscous fluid subject to Joule heating, thermophoresis and

heat sink/source. Turkyilmazoglu and Pop [104] analyzed heat generation and soret effects for

an electrically conducting fluid flow past a permeable sheet.
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Heat transfer with melting effect has received much interest in the field of silicon wafer

process, magma solidification and melting of permafrost [105]. Thus Tien and Yen [106] per-

formed an analysis to analyze the behavior between the fluid and melting body through forced

convection heat transfer. Later on non-time dependent laminar flow past a flat surface with

melting heat transfer is studied by Epstein and Cho [107]. Melting effect in mixed convective

flow saturating porous medium is studied by Cheng and Lin [108]. Yacob et al. [109] analyzed

the micropolar fluid flow over shrinking/stretching surface with melting heat transfer. Few

other studies in this direction can be seen through the attempts [110− 114]
Homogeneous-heterogeneous reactions occur in abundant chemical reacting processes. These

processes include biochemical systems which contain homogeneous-heterogeneous reactions.

Complex relation occurs between homogeneous and heterogeneous reactions. In the presence of

a catalyst, these reactions have tendency to proceed rapidly whereas in the absence of it they

proceed even very slowly or not all together. Some common applications of chemical reactions

are ceramics and polymer production, fog dispersion and formation, food processing, hydromet-

allurgical industry and numerous others. Homogeneous-heterogeneous reactions in viscous fluid

flow is examined by Merkin [115]. Chaudhary and Merkin [116] analyzed boundary layer flow

for different diffusivities of reactant and autocatalyst in an isothermal model for homogeneous—

heterogeneous reactions. Bachok et al. [117] addressed homogeneous—heterogeneous reactions

in stagnation-point flow towards a stretchable sheet. Homogeneous-heterogeneous reactions in

nanofluid flow past a porous stretchable surface is investigated by Kameswaran et al. [118].

Melting heat transfer and heterogeneous-homogeneous reactions in nanofluid flow is considered

by Hayat et al. [119] Some recent investigations on homogeneous—heterogeneous reactions can

be quoted through the analysis [120− 124] and several studies therein.
Fluid flow saturating porous media has abundant applications in environmental and in-

dustrial systems such as heat exchanger design, catalytic reactors, geothermal energy systems

and geophysics. The classical Darcy model is later extended to non-Darcian model which in-

corporates inertia and boundary features. Particularly the flows in porous media are much

favorable in fermentation process, grain storage, ground water pollution, movement of water in

reservoirs, crude oil production, ground water systems, beds of fossil fuels, recovery systems,

nuclear waste disposal, energy storage units, petroleum resources, solar receivers and several
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others. The classical Darcy’s law is insufficient when inertia and boundary features are taken

into account at high flow rate. Forchheimer [125] incorporated a square velocity factor in Dar-

cian velocity to analyzed the inertia and boundary features. This factor is always valid for large

Reynolds number. Then Muskat [126] called this factor as “Forchheimer term”. Federico et al.

[127] considered vertical graded porous media in radial gravity currents for both Newtonian and

power-law fluids. Stream wise Darcy-Brinkman-Forchheimer model for MHD fluid flow and heat

transfer is explored by Rashidi et al. [128] Hayat et al. [129] considered Darcy-Forchheimer

flow with Cattaneo-Christov heat flux and variable thermal conductivity. Darcy-Forchheimer

flow of viscoelastic nanofluids due to nonlinear stretching boundary is also explored by Hayat et

al. [130] Recently Kang et al. [131] considered Neumann boundary conditions for generalized

Darcy-Forchheimer model by employing block-centered finite difference method.

1.3 Basic laws

1.3.1 Mass conservation law

The continuity equation or mass conservation law states that the mass can neither be destroyed

nor created. Mathematically




+∇ · ¡V¢ = 0 (1.1)

For the case of incompressible fluid Eq. (11) can takes the form:

∇ ·V = 0 (1.2)

In Cartesian coordinates for two dimensional flow one has




+




= 0 (1.3)

whereas for curved geometry




(( +) ) +




= 0 (1.4)
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1.3.2 Linear momentum conservation law

This law declares that the total linear momentum of a system remains conserved. Mathemati-

cally it can be expressed by Newton’s second law as


V


=∇ · τ+b (1.5)

where first term on right hand side of Eq. (15) represents surface forces and second term

represents body forces while left hand side is the inertial forces per unit volume. τ = −pI+ S
is the Cauchy stress tensor for the case of incompressible flow. Generally, Cauchy stress tensor

and velocity are

τ =

⎡⎢⎢⎢⎣
  

  

    

⎤⎥⎥⎥⎦  (1.6)

V = [(   ) (   ) (   )] (1.7)

Eq. (15) in component form can be written as



µ




+ 




+ 




+





¶
=

 ()


+

 ()


+

 ()


+  (1.8)



µ




+ 




+ 




+





¶
=

 ()


+

 ()


+

 ()


+  (1.9)



µ




+ 




+ 




+





¶
=

 ( )


+

 ( )


+

 ()


+  (1.10)

For two-dimensional flow the above equations become



µ




+ 




+





¶
=

 ()


+

 ()


+  (1.11)



µ




+ 




+





¶
=

 ()


+

 ()


+  (1.12)
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However for curved geometry in two-dimension, the velocity field is given by

V = [( + ) ( + ) 0] (1.13)

and the momentum equations under boundary layer approximation in component form are

1

 +
2 =

1






 (1.14)





+



 +




+

1

 +
 = − 1





 +





+

µ
2

2
+

1

 +




− 1

( +)2


¶
 (1.15)

where 
³
= 



´
represents the kinematic viscosity. Moreover it is noticed that for the case of

curved surface pressure is no longer consistent within the boundary layer.

1.3.3 Energy conservation law

Energy conservation law states that total energy of the system remains conserved. Mathemat-

ically first law of thermodynamics elaborates the heat transfer equation and is given as





= τ · L+  −∇ · q (1.16)

Left hand side of Eq. (116) represents internal energy while on right hand side first term

depicts viscous dissipation whereas the last two terms represent radiative and thermal heat

fluxes respectively. Thermal heat flux is expressed by Fourier’s law of heat conduction. In

absence of radiative heating above equation takes the following form





= τ ·∇V+∇2 (1.17)
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1.3.4 Mass transport equation

It elaborates that the total concentration of the system under consideration remains conserved.

Fick’s first law is given as

j = −∇ (1.18)

where j denotes the mass flux,  the mass diffusivity and  the concentration of species.

Fick’s second law is given as




= −∇j (1.19)

Now by inserting Eq. (118) into Eq. (119), equation of mass transport is given as




= ∇2 (1.20)

1.4 Mathematical description of some fluid models

Current dissertation is focused for the analysis of boundary layer flows of incompressible viscous,

Micropolar, Powell-Eyring, Jeffrey and Second grade fluid models. Therefore we explain the

mathematically models of these fluids briefly.

1.4.1 Viscous fluid

Shear stress and rate of deformation is directly and linearly proportional to each other, which is

the Newton’s law of viscosity that obeyed by viscous fluids. Extra stress tensor for such fluids

is given as:

S = A∗1 (1.21)

Mathematical expression for first Rivlin-Ericksen A∗1 is

A∗1 = gradV+(gradV)
   (1.22)

In Cartesian coordinates, gradient of velocity vector V =[ (  )   (  )   (  )]
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is given as:

gradV =

⎡⎢⎢⎢⎣



























⎤⎥⎥⎥⎦  (1.23)

1.4.2 Micropolar fluid

These fluids [25 − 35] exhibit the micro-inertia and micro-rotational effects. The extra stress
tensor τ 1 and couple stress tensor M are defined as

τ 1 = 2
∗
1 (A

∗
1) I+A

∗
1+2² (ω −Ω)  (1.24)

M =  (∇Ω) I+  (∇Ω)


+ ∇Ω (1.25)

where ∗1 denotes the bulk viscosity,  the vortex viscosity,  the trace of the matrix, ² the

third rank tensor with Levi-Civita symbol, ω
¡
= 1

2
(∇×V)¢ the vorticity vector, Ω the angular

velocity,    and  are the spin viscosities. The basic equations for Micropolar fluid are


V


=∇ · τ 1+b (1.26)

and


Ω


=∇ ·M+ ² (1.27)

where  denotes the micro-inertia per unit mass.

1.4.3 Powell-Eyring fluid

Mathematical expression for extra stress tensor of Powell-Eyring fluid [36− 41] is:

τ  = 



+
1

∗
sinh−1

µ
1

∗




¶
 (1.28)

in which ∗ and ∗ stands for material constants. Powell-Eyring fluid obeys the following

conditions

sinh−1
µ
1

∗




¶
=̃
1

∗



− 1
6

µ
1

∗




¶3


¯̄̄̄
1

∗




¯̄̄̄
¿ 1 (1.29)
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1.4.4 Jeffrey fluid

The category of non-Newtonian fluid model which belongs to the class of rate type fluids and

describes the features of both relaxation and retardation times is Jeffrey fluid. Instead of time

derivative here substantive derivative is used. Mathematical expression for extra stress tensor

of Jeffrey fluid [42− 46] can be presented as:

S =


1 + 1

µ
A∗1 + 2

A∗1


¶
 (1.30)

Moreover in scalar form this extra stress tensor S takes the form

 =


1 + 1

µ
2



+ 2

µ


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
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2

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¶
 (1.31)

 =


1 + 1

µ
2

µ
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
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

¶µ
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
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
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
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¶
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µ
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
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
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¶¶
=  (1.32)
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µ
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µ
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¶µ
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
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
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¶
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µ
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
+





¶¶
=  (1.33)

 =


1 + 1

µ
2



+ 2

µ




+ 




+ 





¶
2




¶
 (1.34)

 =
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µ
2

µ
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
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¶µ
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


+ 


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µ



+





¶¶
=  (1.35)

 =


1 + 1

µ
2



+ 2

µ




+ 




+





¶
2
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¶
 (1.36)

The momentum conservation law for a Jeffrey fluid model yields



µ




+ 




+ 


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¶
=




 +




 +




 (1.37)



µ




+ 




+ 





¶
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


 +




 +




 (1.38)



µ




+ 




+ 





¶
=




 +




 +




 (1.39)

here the body forces and pressure gradient are neglected. Now by incorporating the expressions

of         and  into Eqs. (137)− (139) and subsequently by
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applying the boundary layer approximations we ultimately obtain





+ 




+ 


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⎞⎠  (1.40)
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

2
2
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⎞⎠  (1.41)

Two-dimensional boundary layer Jeffrey fluid flow can be presented by the equation
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(1.42)

and in curved geometry it can be expressed as
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1.4.5 Second grade fluid

Second grade fluid model [47− 51] having extra stress tensor S2 is expressed as

S2 = A∗1 + 1A
∗
2 + 2 (A

∗
1)
2 (1.44)

where 1 and ∗2 are the normal stress moduli and A
∗
2 the second Rivilin-Erickson tensor is

A∗2 =
A∗1


+A∗1L+ L
 A∗1 (1.45)

Moreover second grade fluid model obey the following conditions

 ≥ 0 1 ≥ 0 1 + 2 = 0 (1.46)
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for the thermodynamic stability. Two-dimensional boundary layer equation for second grade

fluid in Cartesian coordinate system is





+ 




= 

2

2
+

1



⎛⎝  3
2

+ 


2
2

+


2
2

+  
3

3

⎞⎠  (1.47)

1.5 Methodologies

1.5.1 Homotopy

In topology if one function can be transformed continuously into the other then such functions

are called homotopic.

Definition

Let 1 and 1 be two continuous functions and  and  be two topological spaces, then a

homotopy between 1 and 1 from  to  is defined to be continuous function

 :  ∗ ∗ →  (1.48)

from the product of  with the unit interval ∗ ∈ [0 1] to  such that for all point  in  and

 ( 0) = 1 ()   ( 1) = 1 ()  (1.49)

The map  is called a homotopy between 1 and 1. Any function 1 which is homotopic to

1 can be written as

1 ' 1 (1.50)

We think of a homotopy as a continuous one parameter family of maps from  to  . If we

consider the parameter ∗ as representing time, at time ∗ = 0, we have the map 1 and as 
∗

varies the map  varies continuously so that at ∗ = 1 we have the map 1
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Homotopy analysis method (HAM)

In order to solve various types of nonlinear problems analytically, Liao proposed a general

method namely the homotopy analysis method (HAM) [132 134 61 46]. To present funda-

mental idea of HAM, we assume the following differential equation:

N [ ()] = 0 (1.51)

In above equation  indicates an independent variable. Liao [132] constructs the following

zeroth-order deformation equation

(1− ̆)L[Φ (; ̆)− 0()] = ̆N [Φ (; ̆)] (1.52)

where ̆ ∈ [0 1] and ~(6= 0) are the embedding and auxiliary parameters respectively. It is

obvious that when ̆ = 0 and ̆ = 1 the following holds

Φ (; 0) = 0() Φ (; 1) = () (1.53)

respectively. When ̆ varies such that it starts from 0 and ends at 1, Φ (; ̆) varies from 0()

to (). Now by Taylor series expansion

Φ (; ̆) = 0() +

∞X
=1

()̆
 (1.54)

() =
1

!

Φ( ̆)

̆

¯̄̄̄
̆=0

 (1.55)

where the term on the right hand side of above equation can be evaluated by differentiating

the zeroth-order deformation Eq. (153) −times with respect to ̆ and then dividing them by

! and hence setting ̆ = 0.

If the appropriate values of 0() L and ~ are chosen so that the series (155) converges at
̆ = 1, one obtains

() = 0() +

∞X
=1

() (1.56)

which must be the solution of the original non-linear problem (152) 

25



1.5.2 Shooting technique

This technique is employed using software Mathematica with Wolfram Language function using

a built-in tool named as NDSolve. NDSolve generate solutions in terms of interpolating func-

tion objects. This tool/command has huge potential for solving nonlinear partial differential

equations.
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Chapter 2

On MHD nonlinear stretching flow

of Powell-Eyring nanomaterial

This chapter describes flow of Powell-Eyring nanomaterial bounded by a nonlinear stretching

surface. Novel features regarding thermophoresis and Brownian motion are taken into consider-

ation. Powell-Eyring fluid is electrically conducted subject to applied magnetic field. Assump-

tions of small magnetic Reynolds number and boundary layer approximation are utilized in

the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected.

Adequate transformation yield nonlinear ordinary differential systems. The developed nonlin-

ear problems are computed through the homotopic approach. Influence of numerous effective

variables on velocity, temperature and concentration are studied. Further numerical data of

skin friction and heat transfer rate is also tabulated and interpreted.

2.1 Formulation

Let us consider two dimensional (2D) magnetohydrodynamic flow of Powell-Eyring nanomater-

ial. The flow is due to nonlinear stretchable surface. Features of thermophoresis and Brownian

motion are taken into consideration. The − and −axes are taken parallel and transverse to
the stretching surface. The sheet at  = 0 is stretching along the −direction with velocity
() = 1

 where 1 and  are positive constants. Powell-Eyring fluid is electrically con-

ducting subject to non-uniform magnetic field in −direction (see Fig. 21). Induced magnetic
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field for low magnetic Reynolds number is omitted.

Fig. 21 Geometry of the problem.

The boundary layer expressions for two-dimensional (2D) magnetohydrodynamic flow of Powell-

Eyring nanofluid are [39 9] :


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+


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= 0 (2.1)
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



+ 




= 

2

2
+
()

()

Ã
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∞
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¶2
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 (2.3)





+ 




=



∞

µ
2

2

¶
+

µ
2

2

¶
 (2.4)

Here ∗1() = 0
−1
2 represents the non-uniform magnetic field. The associated boundary

conditions are [59 9] :

 = () = 1
  = 0  =  




+



∞



= 0 at  = 0 (2.5)

→ 0  → ∞  → ∞ as  →∞ (2.6)
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Introducing the suitable transformations

 = 1
 0()  = −

³
1(+1)

2

´12

−1
2

³
 + −1

+1
 0
´

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
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−∞  () = −∞
∞ .

⎫⎪⎬⎪⎭ (2.7)

Eq. (21) is vanishes symmetrically while Eqs. (22)− (26) yield

(1 +)  000 +  00 −
µ
+ 1

2

¶
Λ 00

2

 000 −
µ
2
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µ
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¶
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00 +Pr
³
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02
´
= 0 (2.9)

00 + Pr 0 +




00 = 0 (2.10)

 = 0  0 = 1  = 1 
0 +

0 = 0 at  = 0

 0 → 0  → 0 → 0 as  →∞

⎫⎬⎭ (2.11)

The parameters appearing in Eqs. (28)− (211) are defined by
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

⎫⎬⎭ (2.12)

Expression of coefficient of skin friction and local Nusselt number are
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in which wall shear stress (1) and heat flux (1) satisfy
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In dimensionless variables
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where Re1 =  stands for local Reynolds number.

2.2 Homotopy analysis solutions

The appropriate primary approximations
¡
01  01  01

¢
in homotopic solutions are defined as

01() = 1− exp(−) 01() = exp(−) 01() = −




exp(−) (2.16)

and auxiliary linear operators
¡L1  L1  L1¢ are

L1 =
3

3
− 


 L1 =

2

2
−  L1 =

2

2
−  (2.17)

The above auxiliary linear operators satisfy the following characteristics:

L1 [∗1 + ∗2 exp() +∗3 exp(−)] = 0 L1 [∗4 exp() +∗5 exp(−)] = 0
L1 [∗6 exp() + ∗7 exp(−)] = 0

⎫⎬⎭ (2.18)

in which ∗ ( = 1− 7) elucidate the random constants.

2.2.1 Deformation problems at zeroth-order

(1− ̆)L1
h
̂( ̆)− 01()

i
= ̆~N1 [̂( ̆)] (2.19)

(1− ̆)L1
h
̂( ̆)− 01()

i
= ̆~N1 [̂( ̆) ̂( ̆) ̂( ̆)] (2.20)

(1− ̆)L1
h
̂( ̆)− 01()

i
= ̆~N1

[̂( ̆) ̂( ̆) ̂( ̆)] (2.21)

̂(0 ̆) = 0 ̂(0 ̆) = 1 ̂ 0(0 ̆) = 1 ̂
0
(0 ̆) +̂

0
(0 ̆) = 0

̂ 0(∞ ̆) = 0 ̂(∞ ̆) = 0 ̂(∞ ̆) = 0

⎫⎬⎭ (2.22)

N1

h
̂( ̆)

i
= (1 +)

3̂

3
+ ̆

2̂

2
−
µ
+ 1

2

¶
Λ

Ã
2̂

2

!2
3̂

3

−
µ
2

+ 1

¶Ã
̂



!2
−
µ

2

+ 1

¶
2̂


 (2.23)
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N1

h
̂( ̆) ̂( ̆) ̂( ̆)

i
=

2̂

2
+Pr

⎛⎝̂
̂


+

̂



̂


+

Ã
̂



!2⎞⎠  (2.24)

N1

h
̂( ̆) ̂( ̆) ̂( ̆)

i
=

2̂

2
+ Pr ̂

̂


+





2̂

2
 (2.25)

Setting ̆ = 0 and ̆ = 1 one obtains

̂( 0) = 01() ̂( 1) = () (2.26)

̂( 0) = 01() ̂( 1) = () (2.27)

̂( 0) = 01() ̂( 1) = () (2.28)

When ̆ changes from 0 to 1 then ̂( ̆) ̂( ̆) and ̂( ̆) display alteration from primary

approximations 01() 01() and 01() to desired ultimate solutions () () and ().

2.2.2 Deformation problems at ̂th-order

L1 [̂()− ̂̂−1()] = ~R̃̂
1
() (2.29)

L1 [̂()− ̂̂−1()] = ~R̃̂
1
() (2.30)

L1
£
̂()− ̂̂−1()

¤
= ~R̃̂

1
() (2.31)

̂(0) = ̂(0) =  0̂(0) = 0 
0
̂(0) +

0
̂(0) = 0

 0̂(∞) = ̂(∞) = ̂(∞) = 0

⎫⎬⎭ (2.32)

R̃̂
1
() = (1 +)  000̂−1 +

̂−1X
̂=0

³

̂−1−̂

00
̂

´
−
µ
+ 1

2

¶
Λ

̂−X
̂=0

 000
̂−1−̂

̂X
=0

 00
̂−

00


−
µ
2

+ 1

¶ ̂−1X
̂=0

³
 0
̂−1−̂

0
̂

´
−
µ

2

+ 1

¶
2 0̂−1 (2.33)

R̃̂
1
() = 00̂−1 +Pr

⎛⎝̂−1X
̂=0


̂−1−̂

0
̂
+

̂−1X
̂=0

0
̂−1−̂

0
̂
+

̂−1X
̂=0

0
̂−1−̂

0
̂

⎞⎠  (2.34)
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R̃̂
1
() = 00̂−1 + Pr

̂−1X
̂=0


̂−1−̂

0
̂
+





00̂−1 (2.35)

χ̂=

⎧⎨⎩ 0 ̂ ≤ 1
1 ̂  1

(2.36)

The following expressions are derived via Taylor’s series expansion:

̂( ̆) = 01() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆=0

 (2.37)

̂( ̆) = 01() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆=0

 (2.38)

̂( ̆) = 01() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆=0

 (2.39)

The convergence regarding Eqs. (237)− (239) is solidly based upon the suitable selections of
~  ~ and ~. Choosing suitable values of ~  ~ and ~ so that Eqs. (237)− (239) converge
at ̆ = 1 then

() = 01() +

∞X
̂=1

̂() (2.40)

() = 01() +

∞X
̂=1

̂() (2.41)

() = 01() +

∞X
̂=1

̂() (2.42)

In terms of special solutions (∗̂ 
∗
̂ 

∗
̂) the general solutions (̂ ̂ ̂) of the Eqs.

(229)− (231) are defined by the following expressions:

̂() = ∗̂() +∗1 + ∗2 exp() + ∗3 exp(−) (2.43)

̂() = ∗̂() + ∗4 exp() +∗5 exp(−) (2.44)

̂() = ∗̂() + ∗6 exp() +∗7 exp(−) (2.45)
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in which ∗ ( = 1− 7) through the boundary conditions (232) are given by

∗2 = ∗4 = ∗6 = 0 
∗
3 =

∗̂()


¯̄̄̄
=0

 ∗1 = −∗3 − ∗̂(0) (2.46)

∗5 = −∗̂(0) ∗7 =
∗̂()


¯̄̄̄
=0

+




Ã
−∗5 +

∗̂()


¯̄̄̄
=0

!
 (2.47)

2.2.3 Convergence analysis

Here the homotopic solutions (240)− (242) contain the nonzero auxiliary variables ~  ~ and
~. Such auxiliary variables play a significant role to tune and govern the region of conver-

gence. For appropriate auxiliary variables, the ~−curves are sketched at 25th order of defor-
mations. Fig. 22 displays that the convergence zone lies within the ranges −18 ≤ ~ ≤ −01
−175 ≤ ~ ≤ −015 and −17 ≤ ~ ≤ −02 The residual errors of velocity, temperature and
concentration distributions are given by

∆

̂ =

Z 1

0

h
R̃̂

1
( ~ )

i2
 (2.48)

∆
̂ =

Z 1

0

h
R̃̂
1
( ~)

i2
 (2.49)

∆

̂ =

Z 1

0

h
R̃̂
1
( ~)

i2
 (2.50)

For suitable ranges of ~ the ~−curves for the residual errors of velocity, temperature and
concentration distributions have been sketched in Figs. 23−25 It is observed that the correct
results up to fifth decimal place are deduced through selection of ~ in this range. HAM solutions
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convergence via Table 21 is satisfactorily achieved by considering 20th orders of approximation.
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Fig. 22 The ~− curves for  ()   () and  ().
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Table 2.1. Homotopic solutions convergence when  = Λ = = 01  = Pr = 12  = 02

 = 10 and  = 03.

Order of approximations − 00(0) −0 (0) 0 (0)

1 098485 070000 046667

5 098476 064522 043015

10 098475 064301 042867

15 098475 064292 042862

20 098475 064294 042863

25 098475 064294 042863

30 098475 064294 042863

35 098475 064294 042863

2.3 Discussion

Current portion has been organized to explore the impacts of several effective parameters includ-

ing magnetic parameter  fluid parameter  thermophoresis parameter  Prandtl number

Pr Brownian motion parameter  Lewis number  and power-law index  on velocity 
0 (),

temperature  () and concentration  () distributions. Fig. 26 depicts the impact of fluid

parameter  on velocity distribution  0 (). Both velocity field and momentum layer thickness

have been increased for . Behavior of  on velocity distribution  0 () is presented in Fig.

27. Here both velocity and momentum boundary layer thickness decay for  Fig. 28 shows

influence of power-law index  for velocity  0 (). By increasing  both the velocity and momen-

tum boundary layer thickness have been reduced. Here  = 1 corresponds to linear stretching

surface case and  6= 1 for nonlinear stretching surface. The impacts of fluid parameter  mag-

netic parameter  thermophoresis parameter  Prandtl number Pr and power-law index 

for temperature  () have been displayed in the Figs. 29 − 213 respectively. It is observed
that by increasing magnetic parameter  thermophoresis parameter  and power-law index

 both the temperature and related layer thickness are higher whereas reverse trend is noticed

for fluid parameter  and Prandtl number Pr. It is a valuable fact to mention here that the

properties of liquid metals are characterized by small values of Prandtl number (Pr  1), which
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have larger thermal conductivity but smaller viscosity, whereas higher values of Prandtl number

(Pr  1) associate with high-viscosity oils. Particularly Prandtl number Pr = 072 10 and 62

are associated to air, electrolyte solution such as salt water and water respectively. Moreover

it is also observed that  portrays the strength of thermophoresis effects. Higher  leads

to more strength to thermophoresis. Impacts of concentration field  () via material variable

 magnetic  thermophoresis  Brownian motion  Lewis number  Prandtl number

Pr and power-law index  are displayed in the Figs. 214− 220. Concentration field through
these sketches enhances for larger magnetic parameter  thermophoresis parameter  and

power-law index  whereas reverse trend is observed for fluid parameter  Brownian motion

parameter  Lewis number  and Prandtl number Pr  Table 22 depicts the numerical data

of skin friction coefficient for several effective parameters Λ  and  Skin friction coefficient

is higher for larger   and  while the reverse behavior is noticed through  Table 23 is

presented to analyze the numerical data of local Nusselt numbers via different parameters. Here

local Nusselt number increases for larger fluid parameter  Prandtl number Pr and power-law

index  whereas opposite result holds for magnetic parameter  thermophoresis parameter

 and Lewis number  There is no significant change of  on local Nusselt number.

L=M = 0.1, Pr = n = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.
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Fig. 26. Plots of  0 () for 
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K =L = 0.1, Pr = n = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.
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Fig. 27. Plots of  0 () for 

K =L = M = 0.1, Pr = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.
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Fig. 28. Plots of  0 () for 
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L=M = 0.1, Pr = n = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.
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Fig. 29. Plots of  () for 
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Fig. 210. Plots of  () for 
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K =L = M = 0.1, Pr = n = 1.2, Nb = 0.3, Le = 1.0.
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Fig. 211. Plots of  () for 
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Fig. 212. Plots of  () for Pr 
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K =L = M = 0.1, Pr = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.
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Fig. 213. Plots of  () for 
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Fig. 214. Plots of  () for 
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Fig. 215. Plots of  () for 

K =L = M = 0.1, Pr = n = 1.2, Nb = 0.3, Le = 1.0.
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Fig. 216. Plots of  () for 
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Fig. 217. Plots of  () for 
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Fig. 218. Plots of  () for 
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K =L = M = 0.1, n = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.

Pr = 0.7, 1.0, 1.3, 1.6

2 4 6 8 10 12
z

-0.2

-0.1

0.1

fz 

Fig. 219. Plots of  () for Pr 

K =L = M = 0.1, Pr = 1.2, Nt = 0.2, Nb = 0.3, Le = 1.0.

n = 0.0, 0.2, 0.6, 1.8

2 4 6 8
z

-0.2

-0.1

0.1

fz 

Fig. 220. Plots of  () for 
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Table 2.2. Skin friction for  Λ  and .

 Λ   −Re12 

00 01 01 12 10832

01 11324

02 11802

01 00 01 12 11361

02 11288

04 11214

01 01 00 12 11276

01 11324

02 11468

01 01 01 08 09629

10 10511

12 11324
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Table 2.3. Numerical data of local Nusselt number for      Pr and  when

Λ = 01.

     Pr  −Re−12 

00 01 02 03 10 12 12 06638

01 06742

02 06836

01 00 02 03 10 12 12 06753

01 06743

02 06715

01 01 01 03 10 12 12 06848

02 06743

03 06639

01 01 02 01 10 12 12 06743

02 06743

03 06743

01 01 02 03 00 12 12 06951

05 06824

10 06743

01 01 02 03 10 08 12 05177

10 06001

12 06743

01 01 02 03 10 12 08 06172

10 06463

12 06743
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2.4 Conclusions

Flow of Powell-Eyring nanomaterial due to nonlinear stretching velocity and magnetic field is

discussed. Main observations of presented analysis are:

• Through larger  increasing behavior of velocity field and decaying behavior of temper-

ature and concentration are noted.

• Impact of magnetic parameter  on temperature and concentration fields is reverse to

that of velocity field.

• Temperature and concentration fields through Prandtl number Pr are qualitatively simi-
lar.

• Larger Lewis number  show decay in concentration field and corresponding layer thick-
ness.

• Behaviors of  and  on concentration field are different.

• Skin friction coefficient is higher through larger   and  while the reverse trend is

noticed through Λ

• At the surface the rate of heat transfer is lower for higher  and 
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Chapter 3

Outcome of melting heat and

internal heat generation in

stagnation point Jeffrey fluid flow

Current chapter investigates the magnetohydrodynamic (MHD) stagnation point flow of Jeffrey

material. Flow is caused due to a nonlinear stretchable surface of variable surface thickness.

Heat transfer characteristics are examined through the melting process, viscous dissipation and

internal heat generation. A nonuniform applied magnetic field is considered. Boundary-layer

and low magnetic Reynolds number approximations are employed in the problem formulation.

Both the momentum and energy equations are converted into the non-linear ordinary differential

system using appropriate transformations. Convergent solutions for resulting problems are

computed. Velocity and temperature profiles have been studied in detail. Further the heat

transfer rate is also computed and analyzed.

3.1 Formulation

Here stagnation point Jeffrey fluid flow is considered which is generated by a non-linear stretch-

ing sheet. The − and −axes are along and perpendicular to the stretchable sheet. A variable
magnetic field of strength 0 is injected in the − direction (see Fig. 31). We assume that
the surface has variable thickness. The surface is at  =  (+ ∗)

1−
2  where  is taken as an
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extremely small constant so that the surface is almost very thin, ∗ is a constant and shape

parameter is represented by  which has a great significance in the present problem. It is obvi-

ous that our problem is valid only for  6= 1 For  = 1, the surface is not of variable thickness.
Moreover, melting heat transfer effects are also taken into consideration. The temperature

of melting sheet is considered to be  while free stream temperature is ∞ ( )  Here 0

denotes the constant temperature of the solid medium far from the interface such that 0  .

Fig. 31 : Geometry of the problem.

The flow equations for Jeffrey fluid satisfy




+




= 0 (3.1)





+ 




= 




+



1 + 1

⎛⎝2

2
+ 2

⎛⎝ 


2


+  3
2

−


2
2

+  
3

3

⎞⎠⎞⎠
− (

∗
2())

2


(− )  (3.2)
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



+ 




= ∗1

2

2
+



 (1 + 1)

⎛⎝µ


¶2
+ 2

⎛⎝ 


2


+ 


2
2

⎞⎠⎞⎠
+

0


( − )  (3.3)

The boundary conditions are

 ( ) =  ( ) = 0 (+ ∗)   ( ) = 0

 ( ) =  at  =  (+ ∗)
1−
2 



³



´
=(+∗)

1−
2
=  [∗ +  ( − 0)] 

³
  (+ ∗)

1−
2

´


 ( ) =  ( )→ ∞ (+ ∗)   ( )→ ∞ as  →∞

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)

In above expressions ∗2() = 0 (+ ∗)
−1
2 the nonuniform magnetic field and 0 () =

1 (+ ∗)−1 the heat generation coefficient. Moreover the boundary conditions for heat

transport phenomena depicts that the sensible heat required to increase the temperature of

the solid 0 to its melting temperature  plus the heat due to melting is equal to the heat

conduction of the melting surface. The velocity components and transformations are considered

in the forms:

 = 

  = −


  =

q¡
+1
2

¢
0 (+ ∗)−1

 =

r³
2
+1

´
0 (+ ∗)+11 ()  1 () = −

∞− 

⎫⎪⎬⎪⎭ (3.5)

in which  denotes the stream function. Now Eq. (31) is automatically satisfied and Eqs.

(32)− (34) become

 0001 + (1 + 1)

⎛⎝ 1
00
1 +

2
+1

¡
2 +−  021

¢
−
³

2
+1

´
 01

⎞⎠+ 

⎛⎝ ¡
3−1
2

¢
 0021 + (− 1) 01 0001
− ¡+1

2

¢
1


1

⎞⎠ = 0

(3.6)

001 +Pr1
0
1 +

Pr

1 + 1

⎛⎝ 0021 + 

⎛⎝ ¡
3−1
2

¢
 01

002
1

− ¡+1
2

¢
1

00
1 

000
1

⎞⎠⎞⎠+Pr µ 2

+ 1

¶
1 = 0 (3.7)

 01 () = 1 01 () + Pr
h
1 () + 

³
−1
+1

´i
= 0 1() = 0

 01 (∞)→  1 (∞)→ 1

⎫⎬⎭ (3.8)
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where  = ∞
0

represents the ratio parameter of free stream velocity and stretching velocity,

 =
20
0

the magnetic parameter,  = 20 (+ ∗)−1 the local Deborah number, Pr = 
∗1

the Prandtl number,  =
2

(∞−) the Eckert number,  =
1

0 
the heat generation

parameter, =
(∞−)

∗+(−0) the melting parameter which is a combination of Stefan numbers
(−0)

∗ and
 (∞−)

∗ for the solid and liquid phases respectively,  = 

q¡
+1
2

¢
0

the

surface thickness parameter and  =  = 

q¡
+1
2

¢
0

indicates the plate surface. Moreover

the domain of Eqs. (36) − (38) is [∞[ and to facilitate the computation we transform the

domain to [0∞[ by defining 1 () = 1 ( − ) =  () and 1 () = 1 ( − ) =  ()  Hence

Eqs. (36)− (38) yield

 000 + (1 + 1)

⎛⎝  00 + 2
+1

¡
2 +−  02

¢
−
³

2
+1

´
 0

⎞⎠+ 

⎛⎝ ¡
3−1
2

¢
 002 + (− 1)  0 000

− ¡+1
2

¢
 

⎞⎠ = 0

(3.9)

00 +Pr 0 +
Pr

1 + 1

⎛⎝ 002 + 

⎛⎝ ¡
3−1
2

¢
 0 002

− ¡+1
2

¢
 00 000

⎞⎠⎞⎠+Pr µ 2

+ 1

¶
 = 0 (3.10)

 0 (0) = 1 0 (0) + Pr
h
 (0) + 

³
−1
+1

´i
= 0 (0) = 0

 0 (∞)→   (∞)→ 1

⎫⎬⎭ (3.11)

Local Nusselt number is defined by

2 =
(+ ∗) 2
 (∞ − )

 (3.12)

where 2 denotes the surface heat flux given by

2 = −
µ




¶
=(+∗)

1−
2

 (3.13)

Local Nusselt number in non-dimensional scale is given by

2
p
2 = −

r
+ 1

2
0 (0)  (3.14)

where 2 =
(+

∗)


=
0(+

∗)+1


represents the local Reynolds number.
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3.2 Homotopy solutions

Here

02() =  + (1−)
³
1− −

´
− 

Pr
− 

µ
− 1
+ 1

¶
 02() = 1− −  (3.15)

L1 =
3

3
− 


 L1 =

2

2
−  (3.16)

These above linear operators (L1 L1) satisfy

L1
h
∗8 + ∗9

 + ∗10
−
i
= 0 L1

h
∗11

 + ∗12
−
i
= 0 (3.17)

in which ∗ ( = 8− 12) are the random constants.

3.2.1 Deformation problems at zeroth-order

(1− ̆)L1
h
̂( ̆)− 02()

i
= ̆~N2 [̂( ̆)] (3.18)

(1− ̆)L1
h
̂( ̆)− 02()

i
= ̆~N2 [̂( ̆) ̂( ̆)] (3.19)

̂(0 ̆) = 1 ̂(0 ̆) = 0


³
̂ (0 ) + 

³
−1
+1

´´
+̂

0
(0 ) = 0

̂ 0(∞ ̆) =  ̂(∞ ̆) = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.20)
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3

− ¡+1
2

¢
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4

⎞⎠  (3.21)
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N2

h
̂( ̆) ̂( ̆)

i
=
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2
+Pr ̂
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+
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2
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+Pr 

µ
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+ 1

¶
̂ (3.22)

For ̆ = 0 and ̆ = 1 one obtains

̂( 0) = 02() ̂( 1) = () (3.23)

̂( 0) = 02() ̂( 1) = () (3.24)

when ̆ changes from 0 to 1 then ̂( ̆) and ̂( ̆) display alteration from primary approxi-

mations 02() and 02() to desired ultimate solutions () and ()

3.2.2 Deformation problems at ̂th-order

L1 [̂()− ̂̂−1()] = ~R̃̂
2
() (3.25)

L1 [̂()− ̂̂−1()] = ~R̃̂
2
() (3.26)
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³
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´´
= ̂ (0) = 0
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⎫⎬⎭ (3.27)

R̃̂
2
() =  000̂−1 + (1 + 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

̂−1P̂
=0

³

̂−1−̂

00
̂

´
+ 2

+1

Ã
2 +−

̂−1P̂
=0

³
 0
̂−1−̂

0
̂

´!
−
³

2
+1

´
 0̂−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝
¡
3−1
2

¢ ̂−1P̂
=0

³
 00
̂−1−̂

00
̂

´
+ (− 1)

̂−1P̂
=0

³
 0
̂−1−̂

000
̂

´
− ¡+1

2

¢ ̂−1P̂
=0

³

̂−1−̂

0000
̂

´
⎞⎟⎟⎟⎠  (3.28)
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+Pr 

µ
2

+ 1

¶
̂−1 (3.31)

The following expressions are derived via Taylor’s series expansion:

̂( ̆) = 02() +

∞X
=1

()̆
 () =

1

!

̂( ̆)

̆

¯̄̄̄
¯
̆=0

 (3.32)

̂( ̆) = 02() +

∞X
=1

()̆
 () =

1

!

̂( ̆)

̆

¯̄̄̄
¯
̆=0

 (3.33)

The convergence regarding Eqs. (332) and (333) is solidly based upon the suitable selections

of ~ and ~. Choosing suitable values of ~ and ~ so that Eqs. (332) and (333) converge at

̆ = 1 then

() = 02() +

∞X
̂=1

̂() (3.34)

() = 02() +

∞X
̂=1

̂() (3.35)

In terms of special solutions (∗̂ 
∗
̂) the general solutions (̂ ̂) of the Eqs. (325) and

(326) are defined by the following expressions:

̂() = ∗̂() + ∗8 + ∗9 exp() + ∗10 exp(−) (3.36)

̂() = ∗̂() +∗11 exp() +∗12 exp(−) (3.37)
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in which ∗ ( = 8− 12) through the boundary conditions (327) are given by

∗9 = ∗11 = 0 
∗
10 =

∗̂()


¯̄̄̄
=0

 ∗12 = −∗̂(0)

∗8 = −∗10 − ∗̂(0)−


Pr

Ã
∗̂()


¯̄̄̄
=0

− ∗12

!
 (3.38)

3.2.3 Convergence

Clearly homotopic solutions contain nonzero auxiliary variables ~ and ~. Such auxiliary

variables can tune and restrict convergence of obtained series results. To get the acceptable

values, the ~− curves at 13th order of approximations are plotted. Figs. 32 and 33 clearly
indicate that the convergence zone lies within the ranges −155 ≤ ~ ≤ −04 and −145 ≤ ~ ≤
−045. Table 31 ensures that 16th order of deformations are enough for meaningful solutions.

b = 0.4 , l1 = Pr = 1.2 , A = M = d = 0.1 , Ec = Me = 0.2 , n = a = 0.5

-1.5 -1.0 -0.5
z

-2.0

-1.5

-1.0

-0.5

0.0

f ''0

Fig. 32 ~−curve for  () 
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b = 0.4 , l1 = Pr = 1.2 , A = M = d = 0.1 , Ec = Me = 0.2 , n = a = 0.5

-1.5 -1.0 -0.5
z

-0.5

0.0

0.5

1.0

1.5

q '0

Fig. 33 ~−curve for  () 
Table 3.1. Convergence of HAM solutions when 1 = Pr = 12  =  =  = 01  =

 = 02  =  = 05 and  = 04.

Order of approximations −  00(0) 0(0)

1 11193 06053

5 12341 05416

10 12448 05289

16 12469 05281

25 12469 05281

35 12469 05281

50 12469 05281

3.3 Discussion

Here effects of several pertinent parameters like ratio parameter  ratio of relaxation to retar-

dation times 1 local Deborah number  magnetic parameter  Prandtl number Pr Eckert

number  heat generation parameter  melting parameter  surface thickness parameter

 and shape parameter  on velocity  0 () and temperature  (). Fig. 34 shows the impact

of ratio parameter  on velocity distribution. Here   1 corresponds to the fact that free

stream velocity is less than the stretching velocity whereas   1 corresponds to the reverse
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phenomenon. Both velocity distribution and the momentum boundary layer are increased for

higher  (when   1) whereas for   1 the velocity distribution increases and opposite

trend is noticed in momentum boundary layer. Boundary layer vanishes for  = 1 Fig. 35

depicts the behavior of ratio of relaxation to retardation times 1 on velocity. Both the velocity

and momentum layer are reduced for increasing values of 1 Fig. 36 displays the influence of

local Deborah number  on velocity distribution. Velocity and associated layer thickness are

enhanced for higher  Impact of magnetic parameter  on velocity profile is sketched in Fig.

37 Both the velocity and momentum layer are decreasing functions of magnetic parameter. In

fact more resistance is offered by the magnetic field to the fluid flow which results in the decay of

velocity. Influence of surface thickness variable  on velocity distribution is shown in Fig. 38

Increasing values of  lead to higher velocity distribution. Effect of shape variable  on velocity

distribution is depicted in Fig. 39 It is noted that larger  lead to more velocity distribution

and momentum layer thickness. Especially analysis is based on the shape parameter  that is

associated with the type of motion, namely, the shape of surface and the nature of boundary

layer. For  = 1, the analysis reduces to the flat surface with constant thickness whereas for

  1 the behavior of surface transformed to increasing thickness with convex outer shape and

for   1 the behavior of surface changes to decreasing thickness with concave outer shape.

Further, the type of motion can also be controlled by the shape parameter . For  = 0 the

motion becomes linear with constant velocity. If   1 the motion behaves as a decelerated

motion and accelerated motion for   1. Fig. 310 presents the influence of ratio variable 

on temperature distribution. Here temperature distribution is an increasing function of ratio

parameter. Figs. 311− 313 show the behaviors of ratio of relaxation to retardation times 1,
local Deborah number  and magnetic parameter  on temperature respectively. Tempera-

ture and related layer thickness are reducing functions of 1  and  Fig. 314 elaborates

the characteristics of Prandtl number Pr on temperature. Higher Prandtl number Pr lead to

stronger temperature. Effect of Eckert number  on temperature profile is sketched in Fig.

315 Temperature is larger for increasing values of Eckert number. In fact more heat is pro-

duced due to viscous forces between the fluid particles and thus the temperature distribution

enhances. Impact of heat generation variable  on temperature profile is displayed in Fig. 316

Here temperature profile enhances for increasing values of heat generation parameter. Fig. 317
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depicts the influence of melting parameter  on temperature profile. Temperature profile re-

duces with an increase in the values of melting paramter. Table 32 is generated to validate the

current analysis with the earlier published outcomes in a limiting sense. Here current HAM

solutions have nice resemblance with the previous numerical solutions by Sharma and Singh

[36] in a limiting sense. Effects of 1    Pr   and  on the local Nusselt number

are presented in Table 33 The local Nusselt number is higher for    Pr and  while the

reverse trend is noticed through 1  and 

b = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3

A = 0.4, 0.6 , 0.8 , 1.0, 1.2, 1.4, 1.6

0.5 1.0 1.5 2.0 2.5 3.0
z
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0.8

1.0
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1.4

1.6

f 'z 

Fig. 34 Plots of  0 () for 
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b = A = M = d = 0.1, Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3

l1 = 0.0, 0.3, 0.6 , 1.0

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

f 'z 

Fig. 35 Plots of  0 () for 1

A = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5, n = 1.3

b = 0.0, 0.2, 0.4, 0.6
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0.4
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0.8

1.0

f 'z 

Fig. 36 Plots of  0 () for 
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b = A = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3

M = 0.1, 0.5 , 0.9, 1.3
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Fig. 37. Plots of  0 () for 

b = A = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = 0.5, n = 1.3
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Fig. 38 Plots of  0 () for 
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b = A = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5

n = 0.0, 0.5, 1.0, 2.0
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Fig. 39 Plots of  0 () for 

b = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3
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Fig. 310 Plots of  () for 
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b = A = M = d = 0.1, Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3

l1 = 0.0, 0.3 , 0.7 , 1.0
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Fig. 311 Plots of  () for 1

A = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5, n = 1.3
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Fig. 312 Plots of  () for 
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b = A = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3

M = 0.0, 0.7 , 1.5 , 3.0
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Fig. 313 Plots of  () for 

b = A = M = d = 0.1, l1 = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3
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Fig. 314 Plots of  () for Pr 
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b = A = M = d = 0.1, l1 = 1.2, Pr = 0.2, Me = a = 0.5 , n = 1.3

Ec = 0.0, 0.6 , 1.2, 1.8
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Fig. 315 Plots of  () for 

b = A = M = 0.1, l1 = Pr = 1.2, Ec = 0.2, Me = a = 0.5 , n = 1.3
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Fig. 316 Plots of  () for 
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b = A = M = d = 0.1, l1 = Pr = 1.2, Ec = 0.2, a = 0.5 , n = 1.3

Me = 0.1, 0.6 , 1.2 , 1.8
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Fig. 317 Plots of  () for 

Table 3.2. Comparative values of − 00 (0) via  when  = 1 and  =  = 1 = = = 0

 HAM Numerical [133]

01 096939 0969386

02 091811 09181069

05 066726 0667263
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Table 3.3. Numerical data for local Nusselt number when  = 05 and  = 13

1    Pr    2
p
2

11 01 01 01 12 01 01 05 05307

12 05281

13 05258

12 01 01 01 12 01 01 05 05281

02 05363

03 05473

12 01 01 01 12 01 01 05 05281

03 05200

05 05122

12 01 01 01 12 01 01 05 05281

03 05329

05 05395

12 01 01 01 12 01 01 05 05281

14 05718

16 06105

12 01 01 01 12 01 01 05 05281

03 05685

05 06075

12 01 01 01 12 01 01 05 05281

02 05787

03 06575

12 01 01 01 12 01 01 04 05522

07 04865

10 04365
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3.4 Conclusions

Combined characteristics of melting heat and internal heat generation in stagnation point flow of

Jeffrey material towards a nonlinear stretchable surface of variable surface thickness is studied.

Main observations are

• Larger Deborah number  elucidates an increase in velocity field while opposite trend is
noticed for temperature.

• Larger values of 1 leads to lower velocity and temperature distributions.

• Melting parameter  indicates decreasing behavior for temperature distribution.

• Temperature distribution is an increasing function of heat generation parameter .

• Local Nusselt number reduces for melting parameter while reverse trend is seen for heat
generation parameter.
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Chapter 4

Stagnation-point second grade

nanofluid flow over a nonlinear

stretchable surface of variable

thickness with melting heat process

Ongoing chapter addresses mixed convection stagnation point second grade nanofluid flow along

with melting heat phenomena. Novel features regarding Brownian motion and thermophoresis

are incorporated. Boundary-layer approximation is employed in the problem formulation. Mo-

mentum, energy and concentration equations are converted into the non-linear ordinary dif-

ferential system through the appropriate transformations. Convergent solutions for resulting

problem are computed. Behaviors of various sundry variables on temperature and concentra-

tion are studied in detail. The skin friction coefficient and heat and mass transfer rates are

also computed and analyzed. Our results indicate that the temperature and concentration have

been increased for larger thermophoresis parameter.
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4.1 Formulation

Here the steady stagnation point flow of second grade nanomaterial is considered. The flow

is caused by a non-linear stretched surface. The − and −axes are chosen along and per-
pendicular to the stretched surface. Mixed convection, Brownian motion and thermophoresis

effects have been included. We assume that the surface has variable thickness. The surface is

at  =  (+ ∗)
1−
2  where  is taken as an extremely small constant so that the surface is

almost very thin, ∗ is a constant and shape parameter is represented by  which has a great

significance in the present flow. Clearly our problem holds only for  6= 1 For  = 1, the

surface is not of variable thickness. Moreover melting heat transfer effect is also accounted.

The temperature of melting sheet is assumed to be  while the temperature in free stream is

∞ ( ) (see Fig. 41). Here 0 denotes the constant temperature of the solid medium far

from the interface such that 0  . The flow is governed by [9 20] :

Fig. 41 Flow configuration.
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The subjected boundary conditions are [20 109] :

 =  = 0 (+ ∗)   = 0  =   =  at  =  (+ ∗)
1−
2 



³



´
=(+∗)

1−
2
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³
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2

´
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⎫⎪⎬⎪⎭ (4.5)

→  = ∞ (+ ∗)   → ∞  → ∞ as  →∞ (4.6)

in which 
³
=

()
()

´
the ratio of heat capacity of the nanoparticles to the heat capacity of the

fluid. The velocity components and transformations are considered in the forms:
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Now Eq. (41) is automatically verified and Eqs. (42)− (46) become
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0
1
0
1 +

02
1

´
= 0 (4.9)

001 + Pr1
0
1 +





001 = 0 (4.10)
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 01 () = 1 01 () + 
h
1 () + 

³
−1
+1

´i
= 0 1() = 0 1() = 0

 01 (∞)→  1 (∞)→ 1 1 (∞)→ 1

⎫⎬⎭ (4.11)

where  =


Re22
the Grashof number,  =

(∞−)
(∞−) the buoyancy ratio parameter,

2 =
01(+)

−1


the local second grade parameter  =

(∞−)


the Brownian motion

parameter,  =
∗1


the Lewis number and  =
 (∞−)

∞
the thermophoresis parameter.

Moreover the domain of Eqs. (48) − (411) is [∞[ and to facilitate the computation we
transform the domain to [0∞[ by defining

1 () = 1 ( − ) =  () 

1 () = 1 ( − ) =  () 

1 () = 1 ( − ) =  () 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.12)

Hence Eqs. (48)− (411) yield

 000 +  00 +
³
2
+1

´ ¡
2 −  02

¢
+ 2

+1
 ( +)

+2

⎛⎝ (3− 1)  0 000−¡
3−1
2

¢
 002 − ¡+1

2

¢
 

⎞⎠ = 0
(4.13)

00 +Pr
³
0 +

00 +
02
´
= 0 (4.14)

00 + Pr 0 +




00 = 0 (4.15)

 0 (0) = 1 0 (0) + Pr
³
 (0) + 

³
−1
+1

´´
= 0 (0) = 0 (0) = 0

 0 (∞)→   (∞)→ 1  (∞)→ 1

⎫⎬⎭ (4.16)

Expressions of skin friction coefficient and local Sherwood and Nusselt numbers are

2
=

2


2


 1 =
(+ ∗) 1

 (∞ − )
 2 =

(+ ∗) 2
 (∞ − )

 (4.17)
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in which 2 denotes the wall shear stress, 1 the wall mass flux and 2 the wall heat flux.

These are

2 =
³


+ 2

³
 2


+ 2




+  

2
2

´´
=(+∗)

1−
2



1 = −

³



´
=(+∗)

1−
2



2 = −
³



´
=(+∗)

1−
2



⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.18)

The related dimensionless definitions are

p
22

=
q

+1
2

¡
 00 (0) + 2

¡¡
7−1
2

¢
 0 (0)  00 (0)− ¡+1

2

¢
 (0)  000 (0)

¢¢


1
p
2 = −

q
+1
2
0 (0) 

2
p
2 = −

q
+1
2
0 (0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.19)

4.2 Homotopic solutions

Our objective now is to calculate the local similar solutions via homotopy analysis method

(HAM). The appropriate initial assumptions
¡
02  02  02

¢
and the corresponding auxiliary

operators
¡L1  L1  L1¢ are

02() =  + (1−)
¡
1− −

¢− 
Pr
− 

³
−1
+1

´


02() = 1− −  02() = 1− − 

⎫⎬⎭ (4.20)

L1 =  000 −  0 L1 = 00 −  L1 = 00 −  (4.21)

The linear operators have properties

L1
£
∗13 +∗14

 + ∗15
−¤ = 0

L1
£
∗16

 + ∗17
−¤ = 0

L1
£
∗18

 + ∗19
−¤ = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.22)

Here ∗ ( = 13− 19) denote the random constants.

4.2.1 Deformation problems at zeroth-order

(1− ̆)L1
h
̂ ( ̆)− 02 ()

i
= ̆~N3

h
̂( ̆) ̂( ̆) ̂( ̆)

i
 (4.23)
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(1− ̆)L1
h
̂ ( ̆)− 02 ()

i
= ̆~N3

h
̂( ̆) ̂( ̆) ̂( ̆)

i
 (4.24)

(1− ̆)L1
h
̂ ( ̆)− 02 ()

i
= ̆~N2

h
̂( ̆) ̂( ̆) ̂( ̆)

i
 (4.25)

̂ 0 (0 ̆) = 1 ̂ (0 ̆) = 0 ̂ (0 ̆) = 0

 ̂
0
(0 ̆) + Pr

³
̂ (0 ̆) + 

³
−1
+1

´´
= 0

⎫⎬⎭ (4.26)

̂ 0 (∞ ̆) =  ̂ (∞ ̆) = 1 ̂ (∞ ̆) = 1 (4.27)

N3

h
̂( ̆) ̂( ̆) ̂( ̆)

i
=

3̂

3
+

̂



2̂

2
+

2

+ 1

Ã
2 − ̂



̂



!
+
2

+ 1


³
̂ +̂

´
+2

⎛⎝ (3− 1) ̂


3̂

3
−¡

3−1
2

¢
2̂

2
2̂

2
− ¡+1

2

¢
̂ 4̂

4

⎞⎠  (4.28)

N3

h
̂( ̆) ̂( ̆) ̂( ̆)

i
=

2̂

2
+Pr

⎛⎝̂
̂


+

̂



̂


+

Ã
̂



!2⎞⎠  (4.29)

N2

h
̂( ̆) ̂( ̆) ̂( ̆)

i
=

2̂

2
+ Pr ̂

̂


+





2̂

2
 (4.30)

Setting ̆ = 0 and ̆ = 1 one obtains

̂( 0) = 02() ̂( 1) = () (4.31)

̂( 0) = 02() ̂( 1) = () (4.32)

̂( 0) = 02() ̂( 1) = () (4.33)

When ̆ changes from 0 to 1 then ̂( ̆) ̂( ̆) and ̂( ̆) vary from primary approximations

02() 02() and 02() to desired ultimate results () () and ().

4.2.2 Deformation problems at ̂th-order

L1 [̂ ()− ̂̂−1 ()] = ~R̂
3
() (4.34)

73



L1 [̂ ()− ̂̂−1 ()] = ~R̂
3() (4.35)

L1
£
̂ ()− ̂̂−1 ()

¤
= ~R̂

2
() (4.36)

 0̂ (0) = 

µ
̂ (0) + 

µ
− 1
+ 1

¶¶
+0̂ (0) = ̂ (0) = ̂ (0) = 0 (4.37)

 0̂ (∞) = ̂ (∞) = ̂ (∞) = 0 (4.38)

R̂
3
() =  000̂−1 +

̂−1X
̂=0

 0
̂−1−̂

00
̂
+

2

+ 1

Ã
2 −

̂−1X
=0

 0
̂−1−̂

0
̂

!

+
2

+ 1

¡
̂−1 +̂−1

¢
+2

⎛⎝ (3− 1)P̂−1
̂=0

 0
̂−1−̂

000
̂
−¡

3−1
2

¢P̂−1
̂=0

 00
̂−1−̂

00
̂
− ¡+1

2

¢P̂−1
̂=0


̂−1−̂

()

̂

⎞⎠  (4.39)

R̂
3
() = 00̂−1 +Pr

⎛⎝̂−1X
̂=0


̂−1−̂

0
̂
+

̂−1X
̂=0

0
̂−1−̂

0
̂
+

̂−1X
̂=0

0
̂−1−̂

0
̂

⎞⎠  (4.40)

R̂
2
() = 00̂−1 + Pr

̂−1X
̂=0


̂−1−̂

0
̂
+





00̂−1 (4.41)

The following expressions are derived via Taylor’s series expansion:

̂( ̆) = 02() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆=0

 (4.42)

̂( ̆) = 02() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆=0

 (4.43)

̂( ̆) = 02() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆=0

 (4.44)

The convergence regarding Eqs. (442)− (444) solidly depends on suitable values of ~  ~ and
~. Choosing appropriate ~  ~ and ~ so that Eqs. (442)− (444) converge at ̆ = 1 then

 () = 02() +

∞X
̂=1

̂() (4.45)
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() = 02() +

∞X
̂=1

̂() (4.46)

() = 02() +

∞X
̂=1

̂() (4.47)

In terms of special solutions (∗̂ 
∗
̂ 

∗
̂) the general solutions (̂ ̂ ̂) of the Eqs. (434)−

(436) are defined by the following expressions:

̂ () = ∗̂ () +∗13 + ∗14 exp() + ∗15 exp(−) (4.48)

̂ () = ∗̂ () + ∗16 exp() + ∗17 exp(−) (4.49)

̂ () = ∗̂ () + ∗18 exp() + ∗19 exp(−) (4.50)

in which ∗ ( = 13− 19) through the boundary conditions (437) and (438) are given by

∗14 = ∗16 = ∗18 = 0 
∗
15 =

∗̂()


¯̄̄̄
=0

 ∗17 = −∗̂(0)

∗13 = −∗15 − ∗̂(0)−


Pr

Ã
∗̂()


¯̄̄̄
=0

− ∗17

!
 ∗19 = −∗̂(0) (4.51)

4.2.3 Convergence analysis

No doubt the homotopic solutions (445) − (447) have the nonzero auxiliary variables ~ 
~ and ~. These variables are important to tune and govern the convergence of obtained

approximate homotopic expressions. For meaningful values of such variables, we have drawn

the ~− curves at 16th order of deformations. Fig. 42 indicates that the convergence region
satisfies −175 ≤ ~ ≤ −05 −19 ≤ ~ ≤ −03 and −185 ≤ ~ ≤ −04 Table 41 depicts that
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the 35th order of deformation is sufficient for convergent solutions.

f '' 0

f ' 0

q ' 0
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-0.5

0.0

0.5

1.0

1.5

Ñ f , Ñq , Ñf

f
''

0
,q

'0
,
f

'
0

A = lG = Nr = a2 = Nb = Me = n = a = 0.1, Nt = 0.01 , Pr = Le = 1

Fig. 42 The ~−plots for   and .

Table 4.1. HAM solutions convergence when  =  =  = 2 =  = =  =  = 01

 = 001 and  = Pr = 10.

Order of approximations  00(0) 0 (0) 0 (0)

1 −0743 0752 0728

5 −0730 0671 0617

10 −0749 0661 0596

15 −0762 0658 0588

20 −0772 0655 0583

25 −0782 0653 0579

30 −0786 0651 0576

35 −0791 0649 0574

40 −0791 0649 0574

50 −0791 0649 0574
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4.3 Interpretation

This portion organizes effects of several pertinent parameters like ratio parameter  Grashof

number  buoyancy ratio parameter , local second grade parameter 2, thermophoresis

parameter , Brownian motion parameter  Lewis number , Prandtl number Pr melting

parameter , shape parameter  and surface thickness parameter  on temperature  ()

and concentration  () distributions. Fig. 43 presents the influence of ratio parameter  on

temperature profile. Here temperature distribution is an increasing function of ratio parameter

while the thermal layer thickness decreases. Note that   1 corresponds to the fact that

the free stream velocity is less than the stretching velocity whereas   1 corresponds to the

reverse phenomenon. For  = 1 boundary layer vanishes as both velocities (free stream velocity

and stretching velocity) balanced each other. Fig. 44 depicts the behavior of Grashof number

 on temperature  ()  Temperature decreases whereas thermal layer thickness enhances for

increasing values of  Fig. 45 displays the behavior of buoyancy ratio parameter  on

temperature distribution. Here temperature decreases and associated layer thickness enhances

via Effect of local second grade variable 2 on temperature distribution is plotted in Fig. 46

Temperature decreases and related layer thickness enhances for local second grade parameter

2. Figs. 47 − 412 show the behaviors of thermophoresis parameter , Brownian motion

parameter  Prandtl number Pr melting parameter , shape parameter  and surface

thickness parameter  on temperature respectively. Temperature enhances and thermal layer

thickness reduces by increasing values of   and Pr whereas temperature decreases and

thermal layer thickness increases by increasing values of   and  Here especially the

analysis is based on the shape parameter  that is associated with the type of motion, namely,

the shape of surface and the nature of boundary layer. For  = 1, the analysis reduces to the

flat surface with constant thickness whereas for   1 the behavior of surface transformed to

increasing thickness with convex outer shape and for   1 the behavior of surface changes

to decreasing thickness with concave outer shape. Further, the type of motion can also be

controlled by the shape parameter . For  = 0 the motion becomes linear with constant

velocity. If   1 the motion behaves as a decelerated motion and accelerated motion for

  1. It is a valuable fact to focus here that the properties of liquid metals are characterized

by small values of Prandtl number (Pr  1), which have larger thermal conductivity but smaller
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viscosity, whereas higher values of Prandtl number (Pr  1) associate with high-viscosity oils.

Particularly Prandtl number Pr = 072 10 and 62 associate to electrolyte solution, air such

as water and salt water respectively. In heat transfer, Prandtl number is used to control the

thicknesses of momentum and thermal boundary layers. Further it is also observed that  and

 portray the vitalities of thermophoresis and Brownian motion phenomenons respectively.

The higher the values of  and , the larger will be the vitality of the corresponding effects.

Larger  gives stronger thermophoretic force which encourages the nanoparticles to move from

hot to cold areas. Ultimately the temperature and thermal layer are increased. In addition,

larger Brownian motion parameter has higher Brownian diffusion coefficient and smaller viscous

force. It increases temperature and thermal layer thickness. The change in concentration

field  () for several values of ratio parameter  dimensionless second grade parameter 2,

thermophoresis parameter , Brownian motion parameter  Lewis number , Prandtl

number Pr melting parameter , shape parameter  and surface thickness parameter  are

displayed in the Figs. 413− 421 respectively. It is observed that by increasing 2  and Pr

the concentration field  () decreases while it increases by increasing      and

. There is low concentration gradient and more concentration for larger  Table 42 depicts

skin friction coefficient for several effective parameters    2 and  Skin friction

coefficient is higher for   and 2 while the reverse trend is noticed through  and 

Table 43 is generated to analyze the numerical data of local Nusselt and Sherwood numbers

for distinct values of embedding parameters. Here it is examined that local Nusselt number

reduces for larger buoyancy ratio parameter , local second grade parameter 2 Lewis number

 and melting parameter  whereas opposite trend is seen for ratio parameter  Grashof

number  thermophoresis parameter  and Brownian motion parameter . However the

local Nusselt number enhances for Prandtl number Pr  A larger Prandtl number containing

higher convection in contrast to pure conduction and effective in transmitting energy through

unit area. Hence local Nusselt number enhances for Prandtl number. Further local Sherwood

number is higher for    and  while the reverse trend is noticed through  2 
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Pr and 

lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n= 1.3.

A = 0.1, 1.5, 3.0, 4.5

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 43 Plots of  () for 

A = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n= 1.3.

lG = 0.1, 2.5, 5.0, 7.5

1 2 3 4 5 6 7
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 44 Plots of  () for 
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A= 1.2, lG = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n = 1.3.

Nr = 0.0, 5.0, 10.0, 15.0

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 45 Plots of  () for 

A= 1.2, lG = Nr = Nt = Nb = Le = 0.1,

Me= a = 0.5, n = 1.3.

a2 = 0.0, 2.5, 5.0, 7.5

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 46 Plots of  () for 2
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A= 1.2, lG = Nr = a2 = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n = 1.3.

Nt = 0.1, 1.5, 3.0, 4.5

1 2 3 4
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 47 Plots of  () for 

A= 1.2, lG = Nr = a2 = Nt = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n = 1.3.

Nb = 0.1, 1.2, 2.3, 3.5

1 2 3 4
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 48 Plots of  () for 
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A = 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1,

Me= a = 0.5, n = 1.3.

Pr = 0.8, 1.2, 2.0, 3.0

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 49 Plots of  () for Pr 

A = 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

a = 0.5, n = 1.3.

Me = 0.0, 0.4, 0.8, 1.2

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 410 Plots of  () for 
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A= 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= 0.5, n = 1.3.

a = 0.0, 2.0, 4.0, 6.0

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 411 Plots of  () for 

A = 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5.

n = 0.0 , 0.4, 1.0, 2.5

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 412 Plots of  () for 
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lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n= 1.3.

A = 0.1, 1.5, 3.0, 4.5

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 413 Plots of  () for 

A = 1.2, lG = Nr = Nt = Nb = Le = 0.1,

Me= a = 0.5, n= 1.3.

a2 = 00.0, 10.0, 15.0, 20.0

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 414 Plots of  () for 2
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A= 1.2, lG = Nr = a2 = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5, n= 1.3.

Nt = 0.06, 0.08, 0.13, 0.30

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 415 Plots of  () for 

A= 1.2, lG = Nr = a2 = Nt = Le = 0.1,

Me= a = 0.5, n= 1.3.

Nb = 0.01, 0.07 , 0.13, 0.18

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 416 Plots of  () for 
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A = 1.2, lG = Nr = a2 = Nt = Nb = 0.1, Pr = 1.0,

Me= a = 0.5, n= 1.3.

Le = 0.5, 1.0, 1.5, 2.0

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 417 Plots of  () for 

A= 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1,

Me= a = 0.5, n = 1.3.

Pr = 0.8, 1.2, 1.8, 2.4

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 418 Plots of  () for Pr 
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A = 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

a = 0.5, n = 1.3.

Me = 0.0, 0.3, 0.8, 1.4

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 419 Plots of  () for 

A = 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= 0.5, n= 1.3.

a = 0.0, 2.0, 4.0, 6.0

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 420 Plots of  () for 
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A= 1.2, lG = Nr = a2 = Nt = Nb = Le = 0.1, Pr = 1.0,

Me= a = 0.5.

n = 0.0, 0.4, 1.0, 2.5

1 2 3 4 5
z

0.2

0.4

0.6

0.8

1.0

f z 

Fig. 421 Plots of  () for 

Table 4.2. Computed values of 2
when  =  = 01  = Pr = 10  = 001 and

 = 09.

   2  −2

00 01 01 01 01 1270

01 1256

02 1250

01 00 01 01 01 1258

02 1263

04 1268

01 01 00 01 01 1253

03 1255

06 1261

01 01 01 00 01 0916

01 1257

02 1621

01 01 01 01 00 1311

02 1214

04 1141
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Table 4.3. Numerical data for local Nusselt and Sherwood numbers through pertinent para-

meters when  = 01 and  = 09

   2    Pr  −2 −2
00 01 01 01 001 01 10 10 01 0555 0491

01 0568 0509

02 0573 0513

01 00 01 01 001 01 10 10 01 0563 0504

02 0566 0505

04 0569 0506

01 01 00 01 001 01 10 10 01 0568 0512

03 0566 0510

06 0565 0505

01 01 01 00 001 01 10 10 01 0583 0522

01 0568 0510

02 0550 0493

01 01 01 01 00 01 10 10 01 0563 0537

01 0580 0220

02 0583 0011

01 01 01 01 001 01 10 10 01 0580 0224

03 0644 0407

05 0711 0441

01 01 01 01 001 01 00 10 01 0566 0266

05 0565 0380

10 0564 0506

01 01 01 01 001 01 10 09 01 0532 0509

10 0565 0506

11 0598 0504

01 01 01 01 001 01 10 10 00 0598 0535

02 0535 0482

04 0489 0443
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4.4 Conclusions

Melting heat and mixed convection in stagnation point second grade nanofluid flow towards a

nonlinear stretchable surface of variable surface thickness are investigated. Main results are:

• An increment in both Grashof number  and buoyancy ratio parameter  elucidate a

decreasing behavior for temperature field while dual behavior is noticed for concentration

field.

• Increasing trend is noticed for both temperature and concentration distributions for larger
 while opposite trend is seen for Brownian motion parameter .

• Larger values of shape parameter  illustrates opposite trend for temperature and con-
centration fields.

• Melting parameter  indicates decreasing trend for temperature distribution while op-

posite trend is noticed for concentration field.

• The skin friction coefficient is higher for   and 2 while the reverse trend is seen for

 and 

• Local Nusselt number reduces for larger buoyancy ratio parameter , second grade para-

meter 2 Lewis number  and melting parameter whereas opposite trend is observed

for ratio parameter  Grashof number  thermophoresis parameter , Brownian mo-

tion parameter  and Prandtl number Pr 

• Local Sherwood number is higher for    and  while the reverse trend is noticed

for  2  Pr and 
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Chapter 5

Numerical study for

Darcy-Forchheimer flow due to a

curved stretching surface with

homogeneous-heterogeneous

reactions and Cattaneo-Christov

heat flux

The current chapter investigates Darcy-Forchheimer flow generated by curved stretchable sur-

face. Flow for porous space is illustrated by Darcy-Forchheimer relation. Concept of homoge-

neous and heterogeneous reactions is also utilized. Heat transfer for Cattaneo—Christov theory

characterizing the feature of thermal relaxation is incorporated. Nonlinear differential systems

are derived. Shooting algorithm is employed to construct the solutions for the resulting non-

linear system. The characteristics of various sundry parameters are studied and discussed.

Numerical data of skin friction and local Nusselt number is prepared.
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5.1 Formulation

Two-dimensional (2D) flow by a curved stretchable sheet (coiled in a circle having radius  with

linear stretching velocity  = ) is addressed. The distance  of curved stretchable surface

from the origin determines the shape of curved surface (see Fig. 51). Flow in porous medium

is characterized by Darcy-Forchheimer relation. Moreover heat transfer via Cattaneo—Christov

theory characterizing the feature of thermal relaxation is examined. Further homogeneous and

heterogeneous reactions with two chemical species 1 and 1 respectively are also taken into

account. For cubic autocatalysis, the homogenous reaction is

Fig. 51 Physical model.

1 + 21 → 31 rate = 
2 (5.1)

whereas heterogeneous reaction on catalyst surface is

1 → 1 rate =  (5.2)

in which  and  are the concentrations of chemical species 1 and 1 respectively and rate

constants are defined by  and  Equations governing the flow are




(( +) ) +




= 0 (5.3)

1

 +
2 =

1






 (5.4)
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



+



 +




+

1

 +
 = − 1





 +





+

µ
2

2
+

1

 +




− 1

( +)2


¶
−2 − 


 (5.5)



µ




+



 +





¶
= −∇q (5.6)





+



 +




= 1

µ
2

2
+

1

 +





¶
− 

2 (5.7)





+



 +




= 1

µ
2

2
+

1

 +





¶
+ 

2 (5.8)

with the boundary conditions

 =  () = 1  = 0  =  1




=  1




= − at  = 0 (5.9)

→ 0



→ 0  → ∞ → 0 → 0 as  →∞ (5.10)

Here 
³
= 


√
1

´
the porous medium variable inertia coefficient,  the drag coefficient,  the

permeability of porous medium, 1 and 1 the diffusion coefficients of chemical species 1

and 1 respectively, 0  0 the dimensional constant and q the heat flux whose mathematical

expression as per Cattaneo-Christov theory is

q+  (V∇q− q∇V+ (∇V)q) = −∇ (5.11)

where  the relaxation time of heat flux. By considering incompressible fluid (∇V = 0)  Eq.

(511) yields

q+  (V∇q− q∇V) = −∇ (5.12)
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Then the temperature equation becomes





+



 +




=
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Ã
2

2
+

1

 +




+

µ


 +

¶2
2

2

!

−

⎛⎜⎜⎜⎜⎝
2 
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+ 2
³


+
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+
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 

+ 

+



´



+

µ


+
 

+ 

³


+

´2



¶


+ 2 

+
 2



⎞⎟⎟⎟⎟⎠ (5.13)

Moreover for the case of curved surface, pressure is no longer consistent within the boundary

layer. Using the following transformations

 = 1
0 ()   = − 

+

√
1 ()   =

p
1



 = 
2
1
2 ()   =

p
1

  () = −∞

−∞   = 0 ()   = 0 () 

⎫⎬⎭ (5.14)

Eq. (53) is symmetrically verified and Eqs. (54)− (513) yield




=

 0
2

 + 
 (5.15)

2

 + 
 =  000+

1

 + 
 00− 1

( + )2
 0+



 + 
 00− 

 + 
 0
2

+


( + )2
 0− 02− 0 (5.16)

1

Pr

µ
00 +

0

 + 

¶
− 

µ
2

( + )2

¡
200 +  00

¢− 220
¶
+



 + 
0 = 0 (5.17)

1



µ
00 +

0

 + 

¶
+



 + 
0 − 1

2 = 0 (5.18)





µ
00 +

0

 + 

¶
+



 + 
0 + 1

2 = 0 (5.19)

 = 0  0 = 1  = 1 0 = 2 1
0 = −2 at  = 0

 0 → 0  00 → 0  → 0 → 1 → 0 as  →∞

⎫⎬⎭ (5.20)

where  stands for dimensionless curvature parameter,  for inertia coefficient,  for porosity

parameter,  for dimensionless thermal relaxation parameter,  for Schmidt number, 1 for

intensity of homogeneous reaction, 2 for intensity of heterogeneous reaction and 1 for ratio of
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diffusion coefficients. These parameters can be expressed as follows:

 = 
p

1

  = 

1
  =

√


  = 1

 = 
1

 1 =
20
1

 2 =

1

q

1
 1 =

1

1


⎫⎪⎬⎪⎭ (5.21)

Now eliminating pressure  from Eqs. (515) and (516), we get

  +
2 000

 + 
−  00

( + )2
+

 0

( + )3
+



( + )

¡
 000 −  0 00

¢
+



( + )2

³
 00 −  0

2
´

− 

( + )3
 0 − 

Ã
2 0 00 +

 0
2

 + 

!
− 

µ
 00 +

 0

 + 

¶
= 0 (5.22)

Pressure  can be calculated from Eq. (516) as

 =
 + 

2

⎛⎝  000 + 1
+

 00 − 1

(+)2
 0 + 

+
 00

− 
+

 0
2
+ 

(+)2
 0 − 

02 −  0

⎞⎠  (5.23)

When 1 = 1 then 1 = 1 and thus

 () +  () = 1 (5.24)

Now Eqs. (518) and (519) yield

1



µ
00 +

0

 + 

¶
+



 + 
0 − 1 (1− )2 = 0 (5.25)

with the boundary conditions

0 (0) = 2 (0)   (∞)→ 1 (5.26)

Definitions of 1
and  are

1
=

 1


2


  =


 ( − ∞)
 (5.27)

95



in which ( 1) stands for wall shear stress and () for wall heat flux which are given by

 1 = 
³


− 

+

´¯̄̄
=0



 = −
¡



¢¯̄
=0



⎫⎬⎭ (5.28)

In non-dimensional coordinates

1
12
1 =  00(0)− 1


 0(0)


−12
1 = −0 (0) 

⎫⎬⎭ (5.29)

where Re1 =
1

2


stands for local Reynolds number.

5.2 Discussion

The system of Eqs. (517) (522) and (525) subject to (520) and (526) are computed numer-

ically by shooting method. Main interest here is to examine the velocity  0 (), temperature

 () and concentration  () profiles for several influential variables like dimensionless radius of

curvature parameter  inertia coefficient  porosity parameter  Prandtl number Pr thermal

relaxation parameter  Schmidt number  and strength of homogeneous reaction 1. Effects

of curvature parameter , inertia coefficient  and porosity parameter  on dimensionless ve-

locity distribution  0 () are presented in the Figs. 52 − 54 respectively. Fig. 52 elucidates
the impact of dimensionless radius of curvature  on velocity distribution  0 (). Both velocity

and momentum layer thickness are higher when curvature parameter  is increased. Variation

of inertia coefficient  on velocity  0 () is displayed in Fig. 53 Larger inertia coefficient 

shows a decay in velocity  0 () and momentum layer thickness. Fig. 54 elaborates the influ-

ence of porosity parameter  on velocity  0 (). Larger porosity parameter  shows a reduction

in velocity field  0 () and related layer thickness. Impacts of curvature parameter , inertia

coefficient  porosity parameter  Prandtl number Pr and thermal relaxation parameter  on

dimensionless temperature profile  () are displayed in the Figs. 55−59 respectively. Fig. 55
elucidates the variation of dimensionless radius of curvature parameter  on temperature profile

 ()  Both temperature  () and thermal layer thickness are increased for larger curvature 

Fig. 56 elaborates the influence of inertia coefficient  on temperature  (). Larger inertia
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coefficient  shows an increment in temperature  () and related layer thickness. Outcome of

porosity parameter  on temperature  () is displayed in Fig. 57 Larger porosity parameter 

shows more temperature  () and thermal layer thickness. Existence of porous media opposes

the fluid flow which ultimately enhances temperature  () and corresponding layer thickness.

Fig. 58 depicts the effect of Prandtl number Pr on temperature profile  ()  Clearly both

temperature and thermal layer thickness are lower for larger Pr. Fig. 59 shows the variation

of thermal relaxation parameter  on temperature  (). Larger thermal relaxation parameter

 shows a reduction in temperature field and related layer thickness. Contributions of dimen-

sionless radius of curvature parameter  inertia coefficient  porosity parameter  Schmidt

number  and strength of homogeneous reaction 1 on dimensionless concentration profile

 () are presented in the Figs. 510 − 514 respectively. Fig. 510 elucidates the impact of
dimensionless radius of curvature parameter  on concentration  ()  It is noted that concen-

tration  () is reduced via . Variation in  () for different inertia coefficient  is illustrated

in Fig. 511. Larger values of  correspond to higher concentration  ()  Effects of poros-

ity parameter  on concentration  () is displayed in Fig. 512 Larger porosity parameter 

causes an enhancement in concentration  (). Fig. 513 shows the impact of Schmidt number

 on concentration  (). Larger Schmidt number  shows an enhancement in concentration

 (). Impact of 1 on concentration  () is shown in Fig. 514. Concentration  () is reduced

for higher strength of homogeneous reaction 1 Table 51 elucidates the numerical data of

skin friction coefficient for numerous values of curvature parameter  inertia coefficient  and

porosity parameter  It is examined that skin friction coefficient is enhanced for larger  and

 while reverse trend is noticed for  Table 52 is displayed to analyze the numerical data of

local Nusselt number for curvature parameter  inertia coefficient  porosity parameter 

Prandtl number Pr and thermal relaxation variable  Clearly local Nusselt number is increased

for higher Prandtl number Pr and thermal relaxation  whereas the opposite trend is seen via
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curvature parameter  inertia coefficient  and porosity parameter 

l = Fr = g = 0.1 , Pr = Sc = 1.0 , k1 = k2 = 0.5

k = 0.2, 0.5 , 0.8 , 1.4

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f 'z 

Fig. 52. Plots of  0 () for 

k = 0.9, l = g = 0.1, Pr = Sc = 1.0, k1 = k2 = 0.5

Fr = 0.0, 0.2, 0.5 , 0.9

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f 'z 

Fig. 53. Plots of  0 () for 
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k = 0.9, Fr = g = 0.1, Pr = Sc = 1.0, k1 = k2 = 0.5

l = 0.0, 0.2, 0.5 , 0.8

1 2 3 4 5 6
z

0.2

0.4

0.6

0.8

1.0

f 'z 

Fig. 54. Plots of  0 () for 

l = Fr = 0.1 , g = 0.01, Pr = Sc = k1 = k2 = 0.5

k = 0.1 , 0.2 , 0.4, 0.7

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 55. Plots of  () for 
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k = 0.9 , l = 0.1 , g = 0.01 , Pr = Sc = k1 = k2 = 0.5

Fr = 0.0 , 4.0 , 5.0 , 7.0

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 56. Plots of  () for 

k = 0.9, Fr = 0.1, g = 0.01, Pr = Sc = k1 = k2 = 0.5

l = 0.0 , 0.4, 1.2, 1.5

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 57. Plots of  () for 
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k = 0.9 , l = Fr = 0.1, g = 0.01, Sc = k1 = k2 = 0.5

Pr = 0.5 , 0.8, 1.1 , 1.4

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 58. Plots of  () for 

k = 0.9, l = Fr = 0.1 , Pr = Sc = k1 = k2 = 0.5

g = 0.0 , 0.2 , 0.4, 0.6

2 4 6 8 10
z

0.2

0.4

0.6

0.8

1.0

q z 

Fig. 59. Plots of  () for 
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l = Fr = 0.1 , g = 0.01 , k1 = 0.2 , Pr = Sc = k2 = 0.5

k = 0.3 , 0.4 , 0.5 , 0.7

5 10 15
z
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0.7

0.8

0.9

1.0

fz 

Fig. 510. Plots of  () for 

k = 0.9 , l = 0.1 , g = 0.01 , k1 = 0.2 , Pr = Sc = k2 = 0.5

Fr = 0.00 , 0.10 , 0.15 , 0.20

5 10 15
z

0.5

0.6

0.7

0.8

0.9

1.0

fz 

Fig. 511. Plots of  () for 
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k = 0.9, Fr = 0.1, g = 0.01, k1 = 0.2, Pr = Sc = k2 = 0.5

l = 0.00 , 0.10, 0.15 , 0.20

5 10 15
z

0.5

0.6

0.7

0.8

0.9

1.0

f z 

Fig. 512. Plots of  () for 

k = 0.9, l = Fr = 0.1, g = 0.01, k1 = 0.2, Pr = k2 = 0.5

Sc = 0.4, 0.7 , 1.0 , 1.7

5 10 15
z
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0.9

1.0

f z 

Fig. 513. Plots of  () for 
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k = 0.9, l = Fr = 0.1, g = 0.01, Pr = Sc = k2 = 0.5

k1 = 0.00, 0.05 , 0.20, 0.35

5 10 15
z

0.6

0.7

0.8

0.9

1.0

f z 

Fig. 514. Plots of  () for 1

Table 5.1. Numerical data of skin friction coefficient for varying values of   and 

   −1
12
1

07 01 01 320889

08 288705

09 264211

09 00 01 260608

01 264211

02 267674

09 01 00 257554

01 264211

02 270364
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Table 5.2. Numerical data of local Nusselt number for varying     and  when

 = 1 = 2 = 05

     −
−12
1

07 01 01 05 001 0654355

09 0592607

11 0553641

09 00 01 05 001 0595138

02 0590294

04 0586189

09 01 00 05 001 0603132

02 0584795

04 0579865

09 01 01 08 001 0683539

10 0744031

12 0803885

09 01 01 10 00 0589278

01 0621643

02 0651962
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5.3 Conclusions

Darcy-Forchheimer flow by a curved stretching surface with homogeneous and heterogeneous

reactions and Cattaneo-Christov heat flux is addressed. Main observations of presented research

are listed below.

• Velocity  0 () is enhanced for curvature parameter  whereas reverse trend is noticed for
porosity parameter  and inertia coefficient 

• Larger curvature parameter  inertia coefficient  and porosity parameter  produce
higher temperature field  () while reverse trend is seen for Prandtl number Pr and

thermal relaxation parameter 

• Concentration field  () is higher for larger inertia coefficient  porosity parameter

 and Schmidt number . However opposite behavior of  () is found for curvature

parameter  and strength of homogeneous reaction 1

• Skin friction coefficient is enhanced for larger  and  while reverse trend is noticed for



• Local Nusselt number is enhanced for larger Prandtl number Pr and thermal relaxation
parameter  whereas opposite trend is seen via curvature parameter  inertia coefficient

 and porosity parameter 

106



Chapter 6

Numerical study for

Darcy-Forchheimer nanofluid flow

due to curved stretchable sheet with

convective heat and mass conditions

This chapter addresses Darcy-Forchheimer flow of viscous nanofluid. Flow induced by a curved

stretchable sheet. Flow for porous space is illustrated by Darcy-Forchheimer relation. At-

tributes of Brownian diffusion and thermophoresis are incorporated. Convective conditions

are employed at the curved stretchable sheet. Boundary layer assumption is employed in the

mathematical development. The system of ordinary differential equations is developed by mean

of suitable variables. Shooting algorithm is employed to construct the numerical solutions of

resulting nonlinear systems. The characteristics of various sundry parameters are examined

and discussed. Physical quantities of interest are examined.

6.1 Formulation

Ongoing consideration is the steady viscous nanofluid flow by a curved stretchable sheet. The

curved stretchable sheet is coiled in a circle having radius  with linear stretching velocity  =
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 The  and − directions are perpendicular to each other. The distance  of the stretchable
curved sheet from the origin determines the shape of the curved surface, i.e., for higher value of

 (→∞) the surface tends to flat. Flow for porous space is illustrated by Darcy-Forchheimer
relation. Influences of Brownian diffusion and thermophoresis are incorporated. Moreover

convective mass and heat boundary conditions are also employed at the curved stretchable

surface. Surface is heated through the hot fluid having temperature  and concentration 

that give heat and mass transfer coefficients  and  respectively. The governing boundary-

layer expressions are




(( +) ) +




= 0 (6.1)
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with the boundary conditions

 =  () = 1  = 0 − 



=  ( −  )  −




=  ( − ) at  = 0 (6.6)

→ 0



→ 0  → ∞  → ∞ as  →∞ (6.7)
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For the case of curved surface, the pressure is no longer consistent within the boundary layer.

Using the following transformations

 = 1
0 ()   = − 

+

√
1 ()   =

p
1



 = 
2
1
2 ()   () = −∞

−∞   () = −∞
−∞ 

⎫⎬⎭ (6.8)

Eq. (61) is symmetrically verified and Eqs. (62)− (67) give




=

 0
2

 + 
 (6.9)

2

 + 
 =  000+

1

 + 
 00− 1

( + )2
 0+



 + 
 00− 

 + 
 0
2

+


( + )2
 0− 0− 02  (6.10)

00 +
0

 + 
+Pr

µ


 + 
0 +

02 +
00
¶
= 0 (6.11)

00 +
1

 + 
0 +



 + 
0 +





µ
00 +

1

 + 
0
¶
= 0 (6.12)

 = 0  0 = 1 0 = − (1− )  0 = − (1− ) at  = 0

 0 → 0  00 → 0  → 0 → 0 as  →∞

⎫⎬⎭ (6.13)

Here thermophoresis parameter, Brownian motion parameter,  the thermal Biot number

and  the concentration Biot number. These dimensionless parameters can be expressed as

follows:

 =
 (−∞)

∞
  =

(−∞)




 =



q

1
  =




q

1


⎫⎬⎭ (6.14)

Now eliminating pressure  from Eqs. (69) and (610), we get

 +
2 000

 + 
−  00

( + )2
+

 0

( + )3
+



( + )

¡
 000 −  0 00

¢
+



( + )2

³
 00 −  0

2
´
− 

( + )3
 0

−
µ
 00 +

 0

 + 

¶
− 

Ã
2 0 00 +

 0
2

 + 

!
= 0 (6.15)
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Pressure  can be calculated from Eq. (610) as

 =
 + 

2

⎛⎝  000 + 1
+

 00 − 1

(+)2
 0 + 

+
 00

− 
+

 0
2
+ 

(+)2
 0 −  0 − 

02

⎞⎠  (6.16)

Skin friction and local Nusselt and Sherwood numbers can be given by

1
=

 1


2


  =


 ( − ∞)
 1 =

1
 ( − ∞)

 (6.17)

Here  1 stands for wall shear stress,  for wall heat flux and 1 for wall mass flux. We can

write

 1 = 
³


− 

+

´¯̄̄
=0



 = −
¡



¢¯̄
=0



1 = −

¡



¢¯̄
=0



⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.18)

Dimensionless skin friction coefficient and local Nusselt and Sherwood numbers are

1


12
1 =  00(0)− 1


 0(0)


−12
1 = −0 (0) 

1
−12
1 = −0 (0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.19)

6.2 Numerical results

The systems of Eqs. (611) − (613) and (615) are numerically solved by employing shooting
technique. Main interest here is to examine velocity  0 (), temperature  () and concentration

 () profiles for several influential variables like dimensionless radius of curvature parameter

 porosity parameter  Prandtl number Pr inertia coefficient  thermophoresis parameter

 Brownian motion parameter  Schmidt number , thermal Biot number  and concen-

tration Biot number . Effects of curvature parameter , porosity parameter  and inertia

coefficient  on velocity distribution  0 () are presented in the Figs. 61 − 63 respectively.
Fig. 61 elucidates the impact of dimensionless radius of curvature  on velocity distribution

 0 (). Both velocity and related layer thickness are higher for larger curvature parameter .

Variation of porosity parameter  on velocity  0 () is displayed in Fig. 62 Larger porosity
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parameter  shows a reduction in velocity  0 () and momentum layer thickness. Fig. 63 elab-

orates the effect of inertia coefficient  on velocity 
0 (). Larger inertia coefficient  shows a

lower velocity field  0 () as well as momentum layer thickness. Impacts of curvature parameter

, porosity parameter  inertia coefficient  Prandtl number Pr thermophoresis parameter

 Brownian motion parameter  and thermal Biot number  on dimensionless temperature

profile  () are displayed in the Figs. 64− 610 respectively. Fig. 64 elucidates the variation
of dimensionless radius of curvature parameter  on temperature profile  ()  Both temper-

ature  () and corresponding layer thickness are increased for larger curvature parameter 

Variation of porosity parameter  on temperature  () is displayed in Fig. 65 Larger porosity

parameter  shows an increment in temperature  () and related layer thickness. Fig. 66

elaborates the influence of inertia coefficient  on temperature  (). Larger inertia coefficient

 give rise to enhance in temperature  () and related layer thickness. Fig. 67 depicts the

impact of Prandtl number Pr on temperature distribution  ()  Clearly both temperature and

thermal layer thickness are lower for larger Pr. Fig. 68 shows the variation of thermophoresis

parameter  on temperature  (). Larger thermophoresis parameter  shows an enhance in

temperature field and related thermal layer thickness. Influence of Brownian motion variable 

on temperature profile  () is displayed in Fig. 69. Both temperature  () and corresponding

layer thickness are higher for larger  Variation of thermal Biot number  on temperature

profile  () is presented in Fig. 610. For larger thermal Biot number  both temperature

 () and associated layer thickness are enhanced. Contributions of curvature parameter ,

porosity parameter  inertia coefficient  Schmidt number  thermophoresis parameter 

Brownian motion parameter  and concentration Biot number  on dimensionless concentra-

tion profile  () are presented in the Figs. 611 − 617 respectively. Fig. 611 elucidates the
impact of dimensionless radius of curvature parameter  on concentration  ()  It is noted that

concentration  () is enhanced for larger curvature parameter . Effect of porosity parameter

 on concentration  () is displayed in Fig. 612 Larger porosity parameter  causes an en-

hancement in concentration  (). Variation in concentration  () for distinct values of inertia

coefficient  is illustrated in Fig. 613. Larger values of  correspond to higher concentration

 ()  Fig. 614 illustrates the influence of Schmidt number  on concentration  (). Higher

Schmidt number  shows a decay in concentration  (). Impact of thermophoresis parameter
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 on concentration  () is shown in Fig. 615. Concentration  () is enhanced for higher

thermophoresis parameter  Fig. 616 elaborates the influence of Brownian motion variable

 on concentration  (). Larger Brownian motion variable  depicts a reduction in concen-

tration field  (). Impact of concentration Biot number  on concentration  () is sketched in

Fig. 617. For larger concentration Biot number  the concentration  () is enhanced. Table

61 elucidates the numerical data of skin friction coefficient for numerous values of curvature

parameter  porosity parameter  and inertia coefficient  It is examined that skin friction

coefficient is enhanced for larger  and  while reverse trend is noticed for  Table 62 is

displayed to analyze the numerical data of local Nusselt number for distinct values of curvature

parameter  porosity parameter  Prandtl number Pr inertia coefficient  thermal Biot

number  Brownian motion parameter  and thermophoresis parameter  Local Nusselt

number is increased for higher Prandtl number Pr and thermal Biot number  whereas the

opposite trend is seen via curvature parameter  porosity parameter  inertia coefficient 

thermophoresis parameter  and Brownian motion parameter  Table 63 describes the nu-

merical data of local Sherwood number for curvature parameter  porosity parameter  inertia

coefficient  Schmidt number , thermophoresis parameter  Brownian motion parameter

 and concentration Biot number  It is seen that local Sherwood number is enhanced via

Schmidt number ,  and concentration Biot number  while reverse trend is noticed for cur-

vature parameter  porosity parameter  inertia coefficient  and thermophoresis parameter
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Fig. 61. Plots of  0 () for 

k = 0.9 , Fr = Nt = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 62. Plots of  0 () for 
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Fig. 63. Plots of  0 () for 
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Fig. 64. Plots of  () for 
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k = 0.9, Fr = Nt = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3

l = 0.0, 0.2, 0.4, 0.7

0 2 4 6 8
z

0.05

0.10

0.15

0.20

0.25

0.30

q z 

Fig. 65. Plots of  () for 

k = 0.9, l = Nt = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 66. Plots of  () for 
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k = 0.9, l = Fr = Nt = 0.1, Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 67. Plots of  () for 
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Fig. 68. Plots of  () for 
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Fig. 69. Plots of  () for 
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Fig. 610. Plots of  () for 
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l = Fr = Nt = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 611. Plots of  () for 

k = 0.9, Fr = Nt = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 612. Plots of  () for 

118



k = 0.9, l = Nt = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 613. Plots of  () for 
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Fig. 614. Plots of  () for 
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k = 0.9, l = Fr = 0.1, Pr = Sc = 1.0, Nb = gt = gc = 0.3
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Fig. 615. Plots of  () for 

k = 0.9, l = Fr = Nt = 0.1, Pr = Sc = 1.0, gt = gc = 0.3
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Fig. 616. Plots of  () for 
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Fig. 617. Plots of  () for 

Table 6.1. Numerical data of skin friction coefficient for distinct values of   and .

   −1
12
1

07 01 01 316892

08 284704

09 260252

09 00 01 252094

01 260252

02 267420

09 01 00 256300

01 260252

02 264013
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Table 6.2. Numerical data of local Nusselt number for       and  when

 = 03 and  = 10

       −
−12
1

07 01 01 10 01 03 03 0215569

09 0211194

11 0208271

09 00 01 10 01 03 03 0212310

02 0210257

04 0208745

09 01 00 10 01 03 03 0211520

03 0210605

06 0209840

09 01 01 10 01 03 03 0211194

20 0226898

30 0236688

09 01 01 10 01 03 03 0211194

03 0209241

05 0207238

09 01 01 10 01 01 03 0212986

05 0209364

09 0205587

09 01 01 10 01 03 02 0156347

03 0211194

04 0255999
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Table 6.3. Local Sherwood number for distinct       and  when  = 10

and  = 03

       −1−121

07 01 01 10 01 03 03 0213683

09 0208197

11 0204364

09 00 01 10 01 03 03 0209099

02 0207453

04 0206278

09 01 00 10 01 03 03 0208455

03 0207734

06 0207139

09 01 01 10 01 03 03 0208197

20 0226932

30 0238458

09 01 01 10 01 03 03 0208197

03 0196394

05 0186509

09 01 01 10 01 01 03 0193746

05 0211093

09 0213033

09 01 01 10 01 03 02 0142562

03 0208197

04 0253753

6.3 Conclusions

Darcy-Forchheimer nanofluid flow due to a curved stretchable sheet is explored. Convective

heat and mass conditions are addressed. Flow in porous medium is characterized by Darcy-

Forchheimer relation. Impacts of Brownian diffusion and thermophoresis are also taken into

account. Main observations of presented research are listed below.
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• Velocity distribution  0 () is enhanced for higher values of curvature parameter  whereas
reverse trend is noticed for porosity parameter  and inertia coefficient 

• Larger curvature parameter  porosity parameter  thermal Biot number  inertia
coefficient  thermophoresis parameter  and Brownian motion parameter  show

higher temperature field  () while reverse trend is seen for Prandtl number Pr 

• Concentration field  () is higher for larger curvature parameter  porosity parameter

 inertia coefficient  thermophoresis parameter  and concentration Biot number .

However opposite trend is found for Schmidt number  and Brownian motion parameter



• Skin friction coefficient is enhanced for larger  and  while reverse trend is noticed for



• Local Nusselt number is enhanced for higher Prandtl number Pr and thermal Biot number
 whereas the opposite trend is seen via curvature parameter  porosity parameter 

inertia coefficient  Brownian motion parameter  and thermophoresis parameter .

• Local Sherwood number is enhanced for Schmidt number , Brownian motion parame-
ter  and concentration Biot number  while reverse trend is noticed for curvature

parameter  porosity parameter  inertia coefficient  and thermophoresis parameter


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Chapter 7

Homogeneous-heterogeneous

reactions in MHD micropolar fluid

flow by a curved stretchable sheet

with heat generation/absorption

The purpose of present chapter is to provide analysis of magnetohydrodynamic (MHD) flow of

micropolar fluid by curved stretchable sheet. Homogeneous-heterogeneous reactions are taken

into consideration. Heat transfer process is explored through heat generation/absorption effects.

Micropolar liquid is electrically conducted subject to uniform applied magnetic field. Boundary

layer approximation and small magnetic Reynolds number assumptions are employed in the

mathematical development. The reduction of partial differential system to nonlinear ordinary

differential system has been made by employing suitable variables. The obtained nonlinear

systems have been computed and analyzed. The characteristics of various sundry parameters

are studied through graphically and numerically. Moreover the physical quantities like surface

drag and couple stress coefficients and local Nusselt number are described by numerical data.
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7.1 Formulation

An incompressible 2D flow of micropolar fluid is examined. The concept of curvature is em-

ployed. Magnetic field of strength 0 is injected in the radial axis (see Fig. 71). Induced

magnetic field is neglected due to low magnetic Reynolds number assumption. Heat gen-

eration/absorption effects are present. Further homogeneous-heterogeneous reactions of two

chemical species 1 and 1 are considered. Homogeneous reaction for cubic autocatalysis is

given by

1 + 21 → 31 rate = 
2 (7.1)

whereas the heterogeneous reaction on the catalyst surface is

1 → 1 rate =  (7.2)

in which the chemical species 1 and 1 have concentrations  and  respectively and rate

constants are defined by  and  The governing boundary layer expressions for present flow

are [10 35] :

Fig. 71 Geometry of the problem.
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
(( +) ) +




= 0 (7.3)

1

 +
2 =

1






 (7.4)





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

 +




+

1

 +
 = −1





 +





+

µ
 +




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2

2
+

1

 +
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− 


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 (7.5)





+



 +




=




µ
2

2
+

1

 +





¶
− 

 

µ
2 +




+

1

 +


¶
 (7.6)



µ




+



 +





¶
= 

µ
2

2
+

1

 +





¶
+0 ( − ∞)  (7.7)





+



 +




= 1

µ
2

2
+

1

 +





¶
− 

2 (7.8)





+



 +




= 1

µ
2

2
+

1

 +





¶
+ 

2 (7.9)

with the boundary conditions

 =  () = 1  = 0  = −0



  =  1




=  1




= − at  = 0

(7.10)

→ 0



→ 0  → 0  → ∞ → 0 → 0   →∞ (7.11)

Here  and  represent the directions of the velocity components  and  respectively,  the

vortex viscosity,  the micro-rotation in the − plane,  the spin gradient viscosity, 0

the heat generation/absorption coefficient and 0 (0 ≤ 0 ≤ 1) the constant. Here 0 = 0

represents strong concentration of microelements and 0 =
1
2
is for weak concentration of

microelements. Moreover for a curved surface pressure is no longer constant inside the boundary

layer. We further simplified the above expressions by invoking a linear relationship between
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micro-inertial per unit mass  and spin gradient viscosity  given by

 =
³
+



2

´
 (7.12)

Using the following transformations

 = 1
0 ()   = − 

+

√
1 ()   = 1

p
1

 ()   =

p
1



 = 
2
1
2 ()   () = −∞

−∞   = 0 ()   = 0 () 

⎫⎬⎭ (7.13)

Now Eq. (73) is symmetrically verified and Eqs. (74)− (712) yield




=

 0
2

 + 
 (7.14)

2

 + 
 = (1 +∗)

µ
 000 +

 00

 + 
−  0

( + )2

¶
− 

 + 
 0
2

+


 + 
 00 +



( + )2
 0 −∗0 −2 0 (7.15)

µ
1 +

∗

2

¶µ
00 +

0

 + 

¶
+



 + 
0 − 

 + 
 0 −∗

µ
2 +  00 +

 0

 + 

¶
= 0 (7.16)

1

Pr

µ
00 +

0

 + 

¶
+



 + 
0 +  = 0 (7.17)

1



µ
00 +

0

 + 

¶
+



 + 
0 − 1

2 = 0 (7.18)

1



µ
00 +

0

 + 

¶
+



 + 
0 + 1

2 = 0 (7.19)

 = 0  0 = 1  = −0
00  = 1 0 = 2 1

0 = −2 at  = 0

 0 → 0  00 → 0  → 0  → 0 → 1 → 0 as  →∞

⎫⎬⎭ (7.20)

where ∗ ¡= 


¢
stands for material parameter.

Now eliminating pressure  from Eqs. (714) and (715), we get

  +
2 000

 + 
−  00

( + )2
+

 0

( + )3
− 

 + 

¡
 0 00 −  000

¢
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− 

( + )2

³
 0
2 −  00

´
− 

( + )3
 0 −2

µ
 00 +

 0

 + 

¶
= 0 (7.21)

Pressure  can be calculated from Eq. (715) as

 =
 + 

2

⎛⎝ (1 +∗)
³
 000 +  00

+
−  0

(+)2

´
− 

+
 0
2

+ 
+

 00 + 

(+)2
 0 −∗0 −2 0

⎞⎠  (7.22)

When 1 = 1 then 1 = 1 and thus

 () +  () = 1 (7.23)

Now Eqs. (718) and (719) yield

1



µ
00 +

0

 + 

¶
+



 + 
0 − 1 (1− )2 = 0 (7.24)

with the boundary conditions

0 (0) = 2 (0)   (∞)→ 1 (7.25)

The dimensionless expressions of skin friction and couple stress coefficients and local Nusselt

number are given by

2
12
1 = (1 +∗)

³
 00(0)−  0(0)



´


11 =
¡
1 + ∗

2

¢
0(0)


−12
1 = −0 (0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.26)

Here the results are obtained for strong concentration of microelements (0 = 0) case only.
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7.2 Solutions

The appropriate initial guesses
¡
03  01  01  03

¢
in homotopic solutions are defined by

03() = exp(−)− exp(−2)
01() = 0 exp(−)
01() = exp(−)

03() = 1− 1
2
exp(−2)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.27)

and auxiliary linear operators
¡L2  L1  L1  L1¢ are

L2 =
4

4
− 5

2

2
+ 4




 L1 =

2

2
−  L1 =

2

2
−  L1 =

2

2
−  (7.28)

The operators satisfy

L2 [∗20 exp() +∗21 exp(−) + ∗22 exp(2) + ∗23 exp(−2)] = 0
L1 [∗24 exp() + ∗25 exp(−)] = 0
L1 [∗26 exp() + ∗27 exp(−)] = 0
L1 [∗28 exp() + ∗29 exp(−)] = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.29)

where ∗ ( = 20− 29) elucidate the arbitrary constants.

7.2.1 Deformation problems at zeroth-order

(1− ̆)L2
h
̂( ̆)− 03()

i
= ̆~N4 [̂( ̆)] (7.30)

(1− ̆)L1 [̂( ̆)− 01()] = ̆~N1 [̂( ̆) ̂( ̆)] (7.31)

(1− ̆)L1
h
̂( ̆)− 01()

i
= ̆~N4 [̂( ̆) ̂( ̆)] (7.32)

(1− ̆)L1
h
̂( ̆)− 03()

i
= ̆~N3

[̂( ̆) ̂( ̆)] (7.33)

̂(0 ̆) = 0 ̂(0 ̆) = 0 ̂ 0(0 ̆) = 1 ̂(0 ̆) = 1 ̂
0
(0 ̆) = 2̂(0 ̆)

̂ 0(∞ ̆) = 0 ̂(∞ ̆) = 0 ̂ 00(∞ ̆) = 0 ̂(∞ ̆) = 0 ̂(∞ ̆) = 1

⎫⎬⎭ (7.34)
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N4
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N3

h
̂( ̆) ̂( ̆)

i
=
1



Ã
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2
+

1
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!
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̂


− 1̂

³
1− ̂

´2
 (7.38)

Setting ̆ = 0 and ̆ = 1 one obtains

̂( 0) = 03() ̂( 1) = () (7.39)

̂( 0) = 01() ̂( 1) = () (7.40)

̂( 0) = 01() ̂( 1) = () (7.41)

̂( 0) = 03() ̂( 1) = () (7.42)

when ̆ changes from 0 to 1 then ̂( ̆) ̂( ̆) ̂( ̆) and ̂( ̆) display alteration from

primary approximations 03() 01() 01() and 03() to desired ultimate solutions ()

() () and ().

7.2.2 Deformation problems at ̂th-order

L2 [̂()− ̂̂−1()] = ~R̃̂
4
() (7.43)

L1 [̂()− ̂̂−1()] = ~R̃̂
1
() (7.44)
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L1 [̂()− ̂̂−1()] = ~R̃̂
4
() (7.45)

L1
£
̂()− ̂̂−1()

¤
= ~R̃̂

3
() (7.46)

̂(0) = ̂(0) =  0̂(0) = ̂(0) = 0̂(0)− 2̂(0) = 0

 0̂(∞) = ̂(∞) =  00̂(∞) = ̂(∞) = ̂(∞) = 0

⎫⎬⎭ (7.47)
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The following expressions are derived via Taylor’s series expansion:

̂( ̆) = 03() +

∞X
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̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0
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̂( ̆) = 01() +
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̂( ̆) = 03() +

∞X
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The convergence regarding Eqs. (752)− (755) is solidly based upon the suitable selections of
~  ~ ~ and ~. Choosing suitable values of ~  ~ ~ and ~ so that Eqs. (752) − (755)
converge at ̆ = 1 then

() = 03() +

∞X
̂=1

̂() (7.56)

() = 01() +

∞X
̂=1

̂() (7.57)

() = 01() +

∞X
̂=1

̂() (7.58)

() = 03() +

∞X
̂=1

̂() (7.59)

In terms of special solutions (∗̂ 
∗
̂ 

∗
̂ 

∗
̂) the general solutions (̂ ̂ ̂ ̂) of the

Eqs. (743)− (746) are defined by the following expressions:

̂() = ∗̂() + ∗20 exp() + ∗21 exp(−) + ∗22 exp(2) + ∗23 exp(−2) (7.60)

̂() = ∗̂() + ∗24 exp() + ∗25 exp(−) (7.61)

̂() = ∗̂() +∗26 exp() +∗27 exp(−) (7.62)

̂() = ∗̂() + ∗28 exp() +∗29 exp(−) (7.63)
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in which ∗ ( = 20− 29) through the boundary conditions (747) are given by

∗20 = ∗22 = ∗24 = ∗26 = ∗28 = 0 
∗
23 =

∗̂()


¯̄̄̄
 = 0

+ ∗̂(0) 
∗
21 = −∗23− ∗̂(0) (7.64)

∗25 = −∗̂(0) ∗27 = −∗̂(0) ∗29 =
1

1 + 2

Ã
∗̂()


¯̄̄̄
 = 0

− 2
∗
̂(0)

!
 (7.65)

7.2.3 Convergence analysis

Here the homotopic solutions involve nonzero auxiliary parameters ~  ~ ~ and ~. Such

auxiliary variables have significant role to tune and govern the convergence of obtained results.

To get the acceptable values of such parameters, the ~−curves at 20th order of deformations are
sketched. Fig. 72 shows that the convergence zone lies inside the ranges −14 ≤ ~ ≤ −01
−15 ≤ ~ ≤ −01 −17 ≤ ~ ≤ −05 and −18 ≤ ~ ≤ 02 for strong concentration of

microelements (0 = 0) case. Table 71 indicates that the 10th order of deformation is sufficient

for convergent results.
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Fig. 72. The ~−plots for  ()   ()   () and  ().
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Table 7.1. Homotopic solutions convergence when  = 2 = 05 1 = 07  = 09 ∗ = 01

 =  = 20 and  = 002.

Order of approximations − 00(0) 0 (0) −0 (0) 0 (0)

1 29932 00587 10472 02521

5 30023 00745 11415 02537

10 30032 00730 11571 02537

15 30032 00730 11571 02537

20 30032 00730 11571 02537

25 30032 00730 11571 02537

30 30032 00730 11571 02537

7.3 Discussion

This portion has been organized to explore the impacts of several effective parameters including

dimensionless radius of curvature parameter  material parameter ∗ magnetic parameter

Prandtl number Pr heat absorption/generation parameter  Schmidt parameter , intensity

of homogeneous reaction 1 and intensity of heterogeneous reaction 2 on  0 (),  ()   ()

and  ()  Here the results are obtained for strong concentration of microelements (0 = 0)

case only. Influences of curvature  and magnetic  parameters on velocity distribution  0 ()

are presented in the Figs. 73 and 74 respectively. Fig. 73 elucidates the impact of dimen-

sionless radius of curvature parameter  on velocity distribution  0 (). Both velocity field and

momentum layer thickness are enhanced for larger curvature parameter . Impact of magnetic

parameter  on velocity  0 () is sketched in Fig. 74. Here both velocity and momentum

layer thickness are lower for larger Effects of curvature parameter , magnetic parameter

and material parameter ∗ on micro-rotation profile  () are displayed in the Figs. 75− 77
respectively. Fig. 75 depicts the variation of dimensionless radius of curvature parameter  on

micro-rotation profile  (). By enlarging radius of curvature parameter  the micro-rotation

field enhances. Influence of magnetic parameter  on micro-rotation profile  () is sketched

in Fig. 76. By increasing magnetic parameter  the micro-rotation field decreases. Fig. 77

depicts the effect of material parameter ∗ on micro-rotation profile  (). Larger material pa-
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rameter ∗ leads to higher micro-rotation field. Behaviors of curvature parameter  magnetic

parameter  Prandtl number Pr and heat absorption/generation parameter  on dimension-

less temperature profile  () are presented in the Figs. 78− 711 respectively. Fig. 78 depicts
variation of curvature parameter  on temperature  (). Both temperature field and related

layer thickness are enhanced for larger curvature parameter . Influence of magnetic parameter

 on temperature profile  () is plotted in Fig. 79. It is noticed that both temperature and

corresponding layer thickness are larger when  is enhanced. Fig. 710 elucidates the effect

of Prandtl number Pr on temperature  (). Larger Prandtl number Pr show a decay in tem-

perature field and thermal layer thickness. Influence of heat generation/absorption variable 

on temperature distribution  () is shown in Fig. 711. Here temperature and related layer

thickness are larger for higher  ( 0) whereas opposite trend is observed for larger  ( 0)  Ef-

fects of dimensionless curvature parameter  magnetic parameter strength of homogeneous

reaction 1 Schmidt parameter  and strength of heterogeneous reaction 2 on dimensionless

concentration profile  () are presented in the Figs. 712−716 respectively. By enhancing cur-
vature parameter  magnetic parameter  strength of homogeneous reaction 1 and Schmidt

parameter  the concentration distribution  () reduces while reverse behavior is seen for

strength of heterogeneous reaction 2. It is noticed that the strength of homogeneous reaction

1 and strength of heterogeneous reaction 2 have opposite impacts on concentration distribu-

tion  (). Table 72 elucidates numerical data for skin friction and couple stress coefficients for

distinct values of curvature parameter  magnetic parameter  and material parameter ∗.

It is examined that skin friction and couple stress coefficients are enhanced for larger magnetic

 and material ∗ parameters while the reverse trend is noticed through curvature parameter

 Table 73 validates the current outcomes with the earlier published observations in a limiting

sense. By this Table, we have examined that the current HAM solution has nice resemblance

with the earlier numerical solution by Sajid et al. [26] in a limiting sense. Further Table 74 is

displayed to analyze the numerical data for local Nusselt number for distinct values of curvature

parameter  magnetic parameter Pr and  when 1 = 07 2 = 05 
∗ = 01 and  = 20

It is examined that local Nusselt number is higher for larger material parameter∗ and Prandtl

number Pr whereas opposite trend is seen for curvature  and heat generation/absorption 
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parameters.
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Fig. 73. Plots of  0 () for 

k= k2 = 0.5 , K* = 0.1, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 74. Plots of  0 () for 
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k2 = 0.5 , M = 0.9, K* = 0.1, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 75. Plots of  () for 

k = k2 = 0.5 , K* = 0.1, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 76. Plots of  () for 
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k = k2 = 0.5 , M = 0.9, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 77. Plots of  () for 

k2 = 0.5, M = 0.9, K* = 0.1, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 78. Plots of  () for 
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k= k2 = 0.5 , K* = 0.1, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 79. Plots of  () for 

k= k2 = 0.5 , M = 0.9, K* = 0.1, d = 0.02, k1 = 0.7 , Sc = 2.0.
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Fig. 710. Plots of  () for Pr 
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k= k2 = 0.5 , M = 0.9, K* = 0.1, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 711. Plots of  () for 
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Fig. 712. Plots of  () for 
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k= k2 = 0.5 , K* = 0.1, d = 0.02,

k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 713. Plots of  () for 

k= k2 = 0.5 , M = 0.9, K* = 0.1, d = 0.02,

Pr = Sc = 2.0.
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Fig. 714. Plots of  () for 1
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k= k2 = 0.5 , M = 0.9, K* = 0.1, d = 0.02,

k1 = 0.7 , Pr = 2.0.
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Fig. 715. Plots of  () for 

k= 0.5 , M = 0.9, K* = 0.1, d = 0.02, k1 = 0.7 , Pr = Sc = 2.0.
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Fig. 716. Plots of  () for 2
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Table 7.2. Numerical data for skin friction and couple stress coefficients for distinct values of

  and ∗

  ∗ −2
12
1 1

03 09 01 7405 0075

04 6317 0077

05 5504 0078

05 00 01 5167 0074

05 5289 0075

10 5569 0078

05 09 005 5252 0041

010 5502 0077

015 5753 0110

Table 7.3. Comparative values of −2
12
1 for varying  when ∗ = = 0 = 0

 −2
12
1

HAM Numerical [10]

5 07577 075763

10 08735 087349

20 09357 093561
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Table 7.4. Numerical data for local Nusselt number for   Pr and  when 1 = 07

2 = 05 
∗ = 01 and  = 20

  Pr  
−12
1

03 09 20 002 1399

04 1255

05 1158

05 00 20 002 1163

05 1160

10 1153

05 09 10 002 1023

20 1155

30 1207

05 09 20 000 1192

004 1117

008 1037

7.4 Conclusions

Hydromagnetic flow of micropolar fluid due to a curved stretchable surface with homogeneous-

heterogeneous reactions and heat generation/absorption are investigated. Main observations of

presented research are listed below.

• Velocity distribution  0 () shows reverse trend for curvature  and magnetic  parame-

ters.

• Micro-rotation profile  () enhances for larger curvature  and material ∗ parameters

whereas opposite behavior is seen for magnetic paramter 

• Temperature field  () is higher for larger curvature  and magnetic parameters while

opposite trend is seen for Prandtl number Pr 

• Effects of homogeneous 1 and heterogeneous 2 reaction parameters on concentration
field  () are entirely reverse.

145



• Skin friction coefficient enlarges for higher magnetic and material ∗ parameters while

reverse trend is noticed through curvature parameter 

• Couple stress coefficient enhances for larger curvature  magnetic  and material ∗

parameters

• Local Nusselt number is enhanced for larger material parameter ∗ and Prandtl num-

ber Pr whereas opposite trend is seen for curvature  and heat generation/absorption 

parameters
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Chapter 8

Flow of Jeffrey nanofluid subject to

MHD and heat

generation/absorption

Current chapter investigates magnetohydrodynamic (MHD) flow of Jeffrey nanomaterial. Flow

is due to a curved stretchable sheet. Novel features regarding thermophoresis and Brownian

motion are considered. Heat transfer process is explored through heat generation/absorption

effects. Jeffrey liquid is electrically conducted subject to uniform applied magnetic field. Bound-

ary layer concept employed in mathematical development. The reduction of partial differential

system to nonlinear ordinary differential system has been made by employing suitable variables.

The obtained nonlinear systems have been computed and analyzed. The characteristics of var-

ious sundry parameters are studied through plots and numerical data. Moreover the physical

quantities are numerically examined.

8.1 Formulation

Two-dimensional magnetohydrodynamic flow of Jeffrey nanomaterial fluid over a curved stretch-

able surface is examined. The curved stretchable sheet is coiled in a circle having radius  with

stretching velocity  =  and is taken in the −direction. Brownian motion and thermophore-
sis effects are incorporated. Magnetic field (of strength 0) is injected in radial direction.
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There is no Hall current and electric field. Heat transfer process is explored through heat

generation/absorption. The related expressions are




(( +) ) +




= 0 (8.1)

1

 +
2 =

1






 (8.2)
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


+



 +




+

1

 +
 = − 1




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
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2
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3
3

+ 
+




2


+ 
+

 3
2

+ 1
+

 
2
2
− 

(+)2





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
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+ 1
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
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2
0


 (8.3)





+



 +




=



()

µ
2

2
+

1

 +





¶
+

Ã


µ








¶
+



∞

µ




¶2!
+

0

()
( − ∞)  (8.4)





+



 +




= 

µ
2

2
+

1

 +





¶
+



∞

µ
2

2
+

1

 +





¶
 (8.5)

with the boundary conditions

 =  = 1  = 0  =   =  at  = 0 (8.6)

→ 0



→ 0  → ∞  → ∞ as →∞ (8.7)
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Selecting

 = 1
0 ()   = − 

+

√
1 ()   =

p
1



 = 
2
1
2 ()   () = −∞

−∞   () = −∞
−∞ 

⎫⎬⎭ (8.8)

Expression (81) is identically verified and Eqs. (82)− (87) yield




=

 0
2

 + 
 (8.9)

2
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2
´
+ 

(+)4
 0
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⎞⎟⎟⎟⎠  (8.10)

00 +
0

 + 
+Pr

µ


 + 
0 +

02 +
00 + 

¶
= 0 (8.11)

00 +
1

 + 
0 +



 + 
0 +





µ
00 +

1

 + 
0
¶
= 0 (8.12)

 = 0  0 = 1  = 1  = 1 at  = 0

 0 → 0  00 → 0  → 0 → 0 as  →∞

⎫⎬⎭ (8.13)

The parameters appearing in above equations can be expressed as follows:

 = 
p

1

 2 =

20
1

 Pr = 
∗1
  =

(−∞)




 = 12  =
 (−∞)

∞
  = 0

1()
  = 




⎫⎬⎭ (8.14)
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Now eliminating pressure  from Eqs. (89) and (810), we get

  +
2

 + 
 000 − 1
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Pressure  is given by
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Physical quantities are

3
=

 2
1
2


2


  =
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 ( − ∞)
 (8.17)

Here  2 and  stands for surface shear stress and heat flux respectively. These are
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(8.18)

Dimensionless variables give

1
2
3 (1)

12 = 1
1+1

³
 00 (0)− 1


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³
 0 (0)  00 (0)− 1
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( 0 (0))2

´´

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−12 = −0 (0) 

⎫⎬⎭ (8.19)
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8.2 Solutions

The appropriate initial guesses
¡
03  01  04

¢
in homotopic solutions are defined by

03() = exp(−)− exp(−2)
01() = exp(−)
04() = exp(−)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.20)

and auxiliary linear operators
¡L2  L1  L1¢ are

L2 = 4

4
− 52

2
+ 4 




L1 = 2
2
− 

L1 = 2

2
− 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.21)

The above operators satisfy the following relations:

L2 [∗30 exp() +∗31 exp(−) + ∗32 exp(2) + ∗33 exp(−2)] = 0
L1 [∗34 exp() + ∗35 exp(−)] = 0
L1 [∗36 exp() + ∗37 exp(−)] = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (8.22)

where ∗ ( = 30− 37) elucidate the arbitrary constants.

8.2.1 Deformation problems at zeroth-order

(1− ̆)L2
h
̂( ̆)− 03()

i
= ̆~N5 [̂( ̆)] (8.23)

(1− ̆)L1
h
̂( ̆)− 01()

i
= ̆~N5 [̂( ̆) ̂( ̆) ̂( ̆)] (8.24)

(1− ̆)L1
h
̂( ̆)− 04()

i
= ̆~N4

[̂( ̆) ̂( ̆) ̂( ̆)] (8.25)

̂(0 ̆) = 0 ̂ 0(∞ ̆) = 0 ̂ 0(0 ̆) = 1 ̂ 00(∞ ̆) = 0

̂(0 ̆) = 1 ̂(∞ ̆) = 0 ̂(0 ̆) = 1 ̂(∞ ̆) = 0

⎫⎬⎭ (8.26)
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 (8.29)

Setting ̆ = 0 and ̆ = 1 one obtains

̂( 0) = 03() ̂( 1) = () (8.30)

̂( 0) = 01() ̂( 1) = () (8.31)

̂( 0) = 04() ̂( 1) = () (8.32)

When ̆ changes from 0 to 1 then ̂( ̆) ̂( ̆) and ̂( ̆) display alteration from primary

approximations 03() 01() and 04() to desired ultimate solutions () () and ().

8.2.2 Deformation problems at ̂th-order

L2 [̂()− ̂̂−1()] = ~R̃̂
5
() (8.33)

L1 [̂()− ̂̂−1()] = ~R̃̂
5
() (8.34)

L1
£
̂()− ̂̂−1()

¤
= ~R̃̂

4
() (8.35)
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̂(0) = ̂(0) = ̂(∞) = ̂(0) = ̂(∞) = 0
 0̂(0) =  0̂(∞) =  00̂(∞) = 0

⎫⎬⎭ (8.36)
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The following expressions are derived via Taylor’s series expansion:

̂( ̆) = 03() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0

 (8.40)

̂( ̆) = 01() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0

 (8.41)
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̂( ̆) = 04() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0

 (8.42)

The convergence concerning Eqs. (840) − (842) firmly depend for appropriate choices of ~ 
~ and ~. Choosing appropriate values of ~  ~ and ~ so that Eqs. (840)− (842) converge
at ̆ = 1 then

() = 03() +

∞X
̂=1

̂() (8.43)

() = 01() +

∞X
̂=1

̂() (8.44)

() = 04() +

∞X
̂=1

̂() (8.45)

In terms of special solutions (∗̂ 
∗
̂ 

∗
̂) the general solutions (̂ ̂ ̂) of the Eqs.

(833)− (835) are defined by the following expressions:

̂() = ∗̂() + ∗30 exp() + ∗31 exp(−) + ∗32 exp(2) + ∗33 exp(−2) (8.46)

̂() = ∗̂() +∗34 exp() +∗35 exp(−) (8.47)

̂() = ∗̂() + ∗36 exp() +∗37 exp(−) (8.48)

in which the constants ∗ ( = 30− 37) through the boundary conditions (836) are given by

∗30 = ∗32 = ∗34 = ∗36 = 0

∗33 =
∗

̂
()



¯̄̄
 = 0

+ ∗̂(0) 
∗
31 = −∗33 − ∗̂(0)

∗35 = − ∗̂(0) 
∗
37 = − ∗̂(0)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8.49)

8.2.3 Convergence analysis

The derived homotopic solutions contain nonzero auxiliary parameters ~  ~ and ~. Such

auxiliary variables have significant role to tune and govern the convergence of obtained homo-

topic results. To get the acceptable values of such parameters, the ~− curves at 20th order
of deformations are tabulated. Fig. 81 shows the appropriate ranges as −15 ≤ ~ ≤ 00

−17 ≤ ~ ≤ −05 and −16 ≤ ~ ≤ −02 Table 81 indicates that the 10th order of deforma-
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tion is sufficient for convergent approximate solutions.
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k = 0.1, b = l1 = d = 0.01 , M = 0.1, Pr = Sc = 2.0, Nt = 0.05 , Nb = 0.3

Fig. 81 : ~−plots of  ()   () and  () 

Table 8.1. Solutions convergence when  = 01  = 1 =  = 001  = 01 Pr =  = 20

 = 005 and  = 03.

Order of approximations − 00(0) −0 (0) 0 (0)

1 29912 10461 02519

5 30028 11418 02532

10 30034 11573 02538

15 30034 11573 02538

20 30034 11573 02538

8.3 Discussion

This portion has been organized to explore the effects of several effective parameters including

dimensionless radius of curvature parameter  Deborah number  the ratio of relaxation

to retardation times 1 Prandtl number Pr magnetic variable  Brownian motion variable

, thermophoresis variable  heat generation/absorption  and Schmidt parameter  on

dimensionless velocity  0 (), temperature  () and concentration  () profiles. Effects of

curvature parameter , Deborah number  ratio of relaxation to retardation times 1 and

155



magnetic parameter  on velocity distribution  0 () are presented in the Figs. 82 − 85
respectively. Fig. 82 elucidates the impact of dimensionless radius of curvature parameter

 on velocity distribution  0 (). Velocity and associated layer thickness are enhanced for

higher curvature parameter . Variation of Deborah number  on velocity  0 () is sketched

in Fig. 83 Larger Deborah number  causes an increment in the velocity field  0 () and

corresponding layer thickness. Fig. 84 depicts the effect of ratio of relaxation to retardation

times 1 on velocity distribution  0 ()  An increment in 1 ultimately give rise in relaxation

time that depicts that the material require much more time to come in equilibrium system from

perturbed system and hence the fluid velocity. Variation of  on velocity  0 () is displayed

in Fig. 85. An increase in the magnitude of magnetic paramter generates a resistive force

and ultimately velocity field reduces. Effects of curvature parameter , magnetic parameter ,

Prandtl number Pr thermophoresis parameter  Brownian motion parameter  and heat

generation/absorption variable  on dimensionless temperature profile  () are displayed in the

Figs. 86− 811 respectively. Fig. 86 elucidates variation of dimensionless radius of curvature
parameter  on  ()  Both temperature  () and associated layer thickness are enhanced for

higher curvature parameter  Impact of magnetic variable  on temperature profile  () is

displayed in Fig. 87. Clearly both temperature and corresponding layer thickness are higher

for bigger  . Fig. 88 shows variation of Prandtl number Pr on temperature  (). Larger

Prandtl number Pr shows a reduction in temperature field and related layer thickness. Influence

of  on  () is sketched in Fig. 89. By increasing thermophoresis parameter  both

temperature distribution  () and related layer thickness are enhanced. Fig. 810 elucidates

the impacts of  on  ()  Both temperature and associated layer thickness are greater for

bigger Brownian motion variable  Influence of heat generation/absorption variable  on

temperature profile  () is shown in Fig. 811. Here temperature and corresponding layer

thickness are enhanced for higher  ( 0) whereas opposite trend is observed for larger  ( 0) 

Contributions of curvature parameter , magnetic parameter , thermophoresis parameter 

Brownian motion  and Schmidt parameter  on  () are presented in Figs. 812 − 816
respectively. By enhancing curvature parameter  magnetic parameter  and thermophoresis

parameter  the concentration distribution  () is increased while reverse behavior is seen

for Brownian motion parameter  and Schmidt parameter . Table 82 elucidates numerical
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data for skin friction through   1 and  It is examined that skin friction is enhanced for

larger  and  while the reverse trend is noticed through  and 1 Table 83 is displayed to

analyze the numerical data for local Nusselt number for distinct  Pr   and  Clearly

local Nusselt number is lower for higher curvature parameter  Prandtl number Pr Brownian

motion  and thermophoresis  paramters

b = l1 = d = 0.01, M = 0.1, Pr = Sc = 2.0,

Nt = 0.05, Nb = 0.3 .

k= 0.1, 0.3, 0.5 , 0.7 .
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z
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0.4
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0.8

1.0

f 'z 

Fig. 82. Plots of  0 () for 

k = l1 = 0.5, M = 0.3, Pr = Sc= 2.0, d = 0.01,

Nt = 0.05, Nb = 0.3.

b = 0.0, 1.0, 2.0, 3.0.

2 4 6 8
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Fig. 83. Plots of  0 () for 
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k = 0.7 , b = 0.9, M = 0.3, Pr = Sc = 2.0, d = 0.01,

Nt = 0.05, Nb = 0.3.

l1 = 0.0, 2.0, 4.0, 6.0.
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Fig. 84. Plots of  0 () for 1

k = 0.7 , b = 0.9, l1 = 0.5, Pr = Sc = 2.0, d = 0.01,

M = 0.0, 0.5, 1.5, 2.5.

Nt = 0.05, Nb = 0.3.
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Fig. 85. Plots of  0 () for 
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b = l1 = d = 0.01, M = 0.1, Pr = Sc = 2.0,

Nt = 0.05, Nb = 0.3.

k= 0.1, 0.4, 0.8, 1.0.
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Fig. 86. Plots of  () for 

k = 0.7 , b = 0.9, l1 = 0.5, Pr = Sc = 2.0, d = 0.01,

Nt = 0.05, Nb = 0.3.

M = 0.0, 1.5, 3.0, 4.5.
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Fig. 87. Plots of  () for 
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k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Sc = 2.0, d = 0.01,

Nt = 0.05 , Nb = 0.3 .

Pr = 0.5 , 0.8, 1.5 , 3.0.
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Fig. 88. Plots of  () for Pr 

k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Pr = Sc = 2.0,

d = 0.01, Nb = 0.3.

Nt = 0.0, 0.5 , 1.0, 1.5 .
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Fig. 89. Plots of  () for 
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k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Pr = Sc = 2.0,

d = 0.01, Nt = 0.05 .

Nb = 0.0, 0.5 , 1.0, 1.5 .
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Fig. 810. Plots of  () for 

k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Pr = Sc = 2.0,

Nt = 0.05 , Nb = 0.3.

d = 0.00, 0.35 , 0.70, 1.05

d = 0.00, -0.35 ,
-0.70, -1.05 .
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Fig. 811. Plots of  () for 
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b = l1 = d = 0.01, M = 0.1, Pr = Sc = 2.0,

Nt = 0.05 , Nb = 0.3.

k= 0.1, 0.3, 0.6 , 0.9.
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Fig. 812. Plots of  () for 

k = 0.7 , b = 0.9, l1 = 0.5, Pr = Sc = 2.0, d = 0.01,

Nt = 0.05, Nb = 0.3.

M = 0.0, 1.0, 2.0, 3.0.
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Fig. 813. Plots of  () for 
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k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Pr = Sc = 2.0,

d = 0.01, Nb = 0.3.

Nt = 0.0, 0.5 , 1.0, 1.5 .
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Fig. 814. Plots of  () for 

k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Pr = Sc = 2.0,

d = 0.01, Nt = 0.05 .

Nb = 0.04, 0.07 , 0.15 , 2.0.
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Fig. 815. Plots of  () for 
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k= 0.7 , b = 0.9, l1 = 0.5 , M = 0.3, Pr = 2.0, d = 0.02,

Nt = 0.05 , Nb = 0.3.

Sc= 0.0, 2.0, 4.0, 6.0.
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Fig. 816. Plots of  () for 

Table 8.2. Numerical data of skin friction coefficient for distinct values of   1 and 

  1  −1
2
3 (1)

12

01 01 01 01 120182

02 74196

03 58319

01 01 01 01 120182

03 127076

05 133944

01 01 01 01 120182

02 110170

03 101699

01 01 01 01 120182

04 120267

07 120351
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Table 8.3. Numerical data of local Nusselt number for distinct values of   Pr  and 

when  = 1 = = 01 and  = 20

 Pr    
−12
1

01 20 005 03 001 13762

02 12099

03 10807

01 10 005 03 001 17834

20 13762

30 12067

01 20 005 03 001 13762

010 13476

015 13196

01 20 005 03 001 13762

07 11508

11 09457

01 20 005 03 001 13762

002 13561

003 13357

8.4 Conclusions

Hydromagnetic flow of Jeffrey nanomaterial due to a curved stretchable surface with heat

generation/absorption is investigated. Main observations of presented research are listed below.

• Velocity distribution  0 () is enhanced for higher values of  and  whereas reverse trend
is seen for 1 and 

• Larger thermophoresis  and Brownian motion  parameters show higher temperature

field  () while opposite behavior is seen for Prandtl number Pr 

• Concentration field  () is higher for larger curvature , magnetic and thermophoresis

 parameters whereas opposite trend is observed for Brownian motion parameter  and
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Schmidt number 

• Skin friction is enhanced via  and  while the reverse trend is noticed through  and

1

• Local Nusselt number is lowered for higher curvature parameter  Prandtl number Pr
Brownian motion  and thermophoresis  paramters.
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Chapter 9

Flow due to a convectively heated

nonlinear curved stretchable surface

having homogeneous-heterogeneous

reactions

The objective of current chapter is to provide a treatment of viscous fluid flow induced by

nonlinear curved stretchable surface. Concept of homogeneous and heterogeneous reactions

has been utilized. Heat transfer process is explored through convective heating mechanism.

Boundary layer approximation is employed in the mathematical development. The reduction of

partial differential system to nonlinear ordinary differential system has been made by employing

suitable variables. The obtained nonlinear system of equations has been solved and analyzed.

The characteristics of various sundry parameters are examined and discussed graphically. Fur-

ther the physical quantities like surface drag force and local Nusselt number are computed

numerically.
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9.1 Formulation

Ongoing formulation examine the two-dimensional (2D) flow of viscous fluid by a nonlinear

curved stretchable sheet which is coiled in a circle having radius . The curved surface is

stretchable with non-linear velocity ( () = 1
) along the arc length direction. The dis-

tance  of the stretching curved surface from the origin determines the shape of curved surface

i.e., for higher value of  (→∞) the surface tends to flat. The surface of stretching curved sheet
is warmed by convection from a heated fluid at temperature  which yields a convective heat

transfer coefficient   Further two chemical species 1 and 1 for homogeneous and heteroge-

neous reactions respectively are taken into account. For cubic autocatalysis, the homogeneous

reaction is given by

1 + 21 → 31 rate = 
2 (9.1)

whereas the heterogeneous reaction on the catalyst surface is

1 → 1 rate =  (9.2)

The boundary layer equations governing the current flow are




(( +) ) +




= 0 (9.3)

1

 +
2 =

1






 (9.4)





+



 +




+

1

 +
 = − 1





 +





+

µ
2

2
+

1

 +




− 1

( +)2


¶
 (9.5)



µ




+



 +





¶
= 

µ
1

 +




+

2

2

¶
 (9.6)





+



 +




= 1

µ
1

 +




+

2

2

¶
− 

2 (9.7)
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



+



 +




= 1

µ
1

 +




+

2

2

¶
+ 

2 (9.8)

with the boundary conditions

 =  () = 1
  = 0 − 



=  ( −  ) 




=  



= −

⎫⎬⎭ at  = 0 (9.9)

→ 0



→ 0  → ∞ → 0 → 0 as  →∞ (9.10)

Here  the power-law stretching index ( = 1 corresponds to linear stretching,  6= 1 correspond
to non-linear stretching whereas  = 0 gives linear stretching surface). Moreover for the case of

curved surface pressure is no longer consistent within the boundary layer. Using the following

transformations

 = 1
 0 ()   = − 

+

√
1−1

¡
+1
2
 () + −1

2
 0 ()

¢
  =

q
1−1




 = 
2
1
2 ()   =

q
1−1


  () = −∞

−∞   = 0 ()   = 0 () 

⎫⎬⎭
(9.11)

Eq. (93) is symmetrically verified and Eqs. (94)− (910) yield




=

 0
2

 + 
 (9.12)

2

 + 
 +

(− 1) 
2 ( + )




=  000 +

 00

 + 
−  0

( + )2
−
µ
2 + (+ 1) 

2 ( + )2

¶
 0

2

+
(+ 1) 

2 ( + )
 00 +

(+ 1) 

2 ( + )2
 0 (9.13)

1

Pr

µ
00 +

0

 + 

¶
+



 + 

µ
+ 1

2

¶
0 = 0 (9.14)

1



µ
00 +

0

 + 

¶
+



 + 

µ
+ 1

2

¶
0 − 1

2 = 0 (9.15)

1



µ
00 +

0

 + 

¶
+



 + 

µ
+ 1

2

¶
0 + 1

2 = 0 (9.16)
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 = 0  0 = 1 0 = − (1− )  0 = 2 1
0 = −2 at  = 0

 0 → 0  00 → 0  → 0 → 1 → 0 as  →∞

⎫⎬⎭ (9.17)

where  stands for dimensionless curvature parameter, 1 for strength of homogeneous reaction,

2 for strength of heterogeneous reaction and  for Biot number and. These parameters can

be expressed as follows:

 = 

r
1−1


 1 =

20

1−1
 2 =



1

r


1−1
  =





r


1−1
 (9.18)

Now eliminating pressure  from equations (912) and (913), we get

  +
2 000

 + 
−  00

( + )2
+

 0

( + )3
+
(+ 1) 

2 ( + )
 000 +

(+ 1) 

2 ( + )2
 00 − (+ 1) 

2 ( + )3
 0

− (3− 1)
2 ( + )2

 0
2 − (3− 1)

2 ( + )
 0 00 = 0 (9.19)

Pressure  can be calculated from Eq. (913) as

 =
 + 

2

⎛⎝  000 +  00
+
−  0

(+)2
−
³
2+(+1)

2
+
¡
−1
2

¢

´



(+)2
 0
2

+
(+1)

2(+)
 00 + (+1)

2(+)2
 0

⎞⎠  (9.20)

When 1 = 1 then 1 = 1 and so

 () +  () = 1 (9.21)

Now Eqs. (915) and (916) yield

1



µ
00 +

0

 + 

¶
+



 + 

µ
+ 1

2

¶
0 − 1 (1− )2 = 0 (9.22)

with the boundary conditions

0 (0) = 2 (0)   (∞)→ 1 (9.23)
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The definitions of surface drag and heat transfer rate are

1
=

 1


2


  =


 ( − ∞)
 (9.24)

with

 1 = 
³


− 

+

´¯̄̄
=0



 = −
¡



¢¯̄
=0



⎫⎬⎭ (9.25)

Expressions of skin friction coefficient and local Nusselt number are

1
12
2 =  00(0)− 1


 0(0)


−12
2 = −0 (0) 

⎫⎬⎭ (9.26)

where Re2 =
1

+1


stands for local Reynolds number.

9.2 Solutions

Initial approximations
¡
03  03  03

¢
for homotopic solutions are defined by

03() = exp(−)− exp(−2)
03() =

³

1+

´
exp(−)

03() = 1− 1
2
exp(−2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9.27)

and auxiliary linear operators
¡L2  L1  L1¢ are

L2 =
4

4
− 5

2

2
+ 4




 L1 =

2

2
−  L1 =

2

2
−  (9.28)

The above operators satisfy the following relations:

L2 [∗38 exp() +∗39 exp(−) + ∗40 exp(2) + ∗41 exp(−2)] = 0
L1 [∗42 exp() + ∗43 exp(−)] = 0
L1 [∗44 exp() + ∗45 exp(−)] = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9.29)

in which ∗ ( = 38− 45) elucidate the arbitrary constants.
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9.2.1 Deformation problems at zeroth-order

(1− ̆)L2
h
̂( ̆)− 03()

i
= ̆~N6 [̂( ̆)] (9.30)

(1− ̆)L1
h
̂( ̆)− 03()

i
= ̆~N6 [̂( ̆) ̂( ̆)] (9.31)

(1− ̆)L1
h
̂( ̆)− 03()

i
= ̆~N5

[̂( ̆) ̂( ̆)] (9.32)

̂(0 ̆) = 0 ̂
0
(0 ̆) = −

³
1− ̂(0 ̆)

´
 ̂ 0(0 ̆) = 1 ̂

0
(0 ̆) = 2̂(0 ̆)

̂ 0(∞ ̆) = 0 ̂(∞ ̆) = 0 ̂ 00(∞ ̆) = 0 ̂(∞ ̆) = 1

⎫⎬⎭ (9.33)

N6

h
̂( ̆)
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=
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4
+
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2

 + 
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 + 
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2
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µ
1

 + 

¶3
̂



+
(+ 1) 

2 ( + )
̂
3̂

3
+
(+ 1) 

2 ( + )2
̂
2̂

2
− (+ 1) 

2 ( + )3
̂
̂



− (3− 1)
2 ( + )2


̂



̂


− (3− 1)
2 ( + )


̂



2̂

2
 (9.34)

N6

h
̂( ̆) ̂( ̆)

i
=

2̂

2
+

1

 + 

̂


+Pr



 + 

µ
+ 1

2

¶
̂
̂


 (9.35)

N5

h
̂( ̆) ̂( ̆)

i
=

2̂

2
+

1

 + 

̂


+ 



 + 

µ
+ 1

2

¶
̂
̂



−1̂
³
1− ̂

´2
 (9.36)

Setting ̆ = 0 and ̆ = 1 one obtains

̂( 0) = 03() ̂( 1) = () (9.37)

̂( 0) = 03() ̂( 1) = () (9.38)

̂( 0) = 03() ̂( 1) = () (9.39)

When ̆ varies from 0 to 1 then ̂( ̆) ̂( ̆) and ̂( ̆) display alteration from primary

approximations 03() 03() and 03() to desired ultimate solutions () () and ().
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9.2.2 Deformation problems at ̂th-order

L6 [̂()− ̂̂−1()] = ~R̃̂
6
() (9.40)

L6 [̂()− ̂̂−1()] = ~R̃̂
6
() (9.41)

L5
£
̂()− ̂̂−1()

¤
= ~R̃̂

5
() (9.42)

0̂(0)− ̂(0) = 0 ̂(0) =  0̂(0) = 0 
0
̂(0)− 2̂(0) = 0

 0̂(∞) = ̂(∞) =  00̂(∞) = ̂(∞) = 0

⎫⎬⎭ (9.43)
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 + 

¶3
 0̂−1 +

(+ 1) 

2 ( + )

⎛⎝̂−1X
̂=0

³

̂−1−̂

000
̂

´⎞⎠
+
(+ 1) 

2 ( + )2

⎛⎝̂−1X
̂=0

³

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

Ã
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¡
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

Ã
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=0

³
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 (9.44)

R̃̂
6
() = 00̂−1 +

1

 + 
0̂−1 +Pr



 + 

µ
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2

¶⎛⎝̂−1X
̂=0


̂−1−̂

0
̂

⎞⎠  (9.45)

R̃̂
5
() = 00̂−1 +

1

 + 
0̂−1 + 



 + 

µ
+ 1

2

¶⎛⎝̂−1X
̂=0


̂−1−̂

0
̂

⎞⎠
−1

⎛⎝̂−X
̂=0


̂−1−̂

̂X
=0

³
1− 

̂−
´
(1− )

⎞⎠  (9.46)

The following expressions are derived via Taylor’s series expansion:

̂( ̆) = 03() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0

 (9.47)
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̂( ̆) = 03() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0

 (9.48)

̂( ̆) = 03() +

∞X
̂=1

̂()̆
̂ ̂() =

1

̂!

̂̂( ̆)

̆̂

¯̄̄̄
¯
̆ = 0

 (9.49)

The convergence regarding Eqs. (947) − (949) is strongly based upon the suitable choices of
~  ~ and ~. Choosing adequate values of ~  ~ and ~ so that Eqs. (947)− (949) converge
at ̆ = 1 then

() = 03() +

∞X
̂=1

̂() (9.50)

() = 03() +

∞X
̂=1

̂() (9.51)

() = 03() +

∞X
̂=1

̂() (9.52)

In terms of special solutions (∗̂ 
∗
̂ 

∗
̂) the general solutions (̂ ̂ ̂) of the Eqs.

(940)− (942) are defined by the following expressions:

̂() = ∗̂() + ∗38 exp() + ∗39 exp(−) + ∗40 exp(2) + ∗41 exp(−2) (9.53)

̂() = ∗̂() +∗42 exp() +∗43 exp(−) (9.54)

̂() = ∗̂() + ∗44 exp() +∗45 exp(−) (9.55)

in which the constants ∗ ( = 38− 45) through the boundary conditions (943) are given by

∗38 = ∗40 = ∗42 = ∗44 = 0 
∗
41 =

∗̂()


¯̄̄̄
 = 0

+ ∗̂(0) 
∗
39 = −∗41 − ∗̂(0) (9.56)

∗43 =
1

1 + 

Ã
∗̂(0)


¯̄̄̄
 = 0

− ∗̂(0)

!
 ∗45 =

1

1 + 2

Ã
∗̂()


¯̄̄̄
 = 0

− 2
∗
̂(0)

!
 (9.57)

9.2.3 Convergence analysis

The nonzero auxiliary parameters ~  ~ and ~ have significant role to define convergence

region. For acceptable values of such parameters, we have mapped out ~− curves at 20th
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order of deformations. Fig. 91 indicates that the convergence zone lies inside the values

−15 ≤ ~ ≤ −06 −17 ≤ ~ ≤ −03 and −14 ≤ ~ ≤ −05 Table 91 indicates that 20th
order of deformation is enough for convergent approximate solutions.

f '' 0

q ' 0

f ' 0

-2.0 -1.5 -1.0 -0.5 0.0 0.5
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-1.0

-0.5

0.0

0.5

1.0

Ñ f , Ñq , Ñf

f
''

0
,q

'
0

,f
'0



k = k2 = 0.5 , n = 1.1, Pr = Sc = 4.0, k1 = 0.7 , gt = 0.3

Fig. 91: ~−plots of  ()   () and  ().

Table 9.1. Convergence of series solutions when  = 2 = 05  = 11  =  = 40

1 = 07 and  = 03.

Order of approximations −  00(0) − 0 (0) 0 (0)

1 11193 07433 00147

5 12341 07622 00134

10 12448 07721 00122

15 12469 07866 00118

20 12469 07910 00111

25 12469 07910 00111

30 12469 07910 00111

9.3 Discussion

This portion has been organized to explore the impact of several effective parameters including

dimensionless radius of curvature parameter  power law stretching index  Prandtl num-
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ber Pr Biot number , magnitude of homogeneous reaction 1, magnitude of heterogeneous

reaction 2 and Schmidt number  on dimensionless velocity  0 (), temperature  () and

concentration  () profiles. Influences of  and  on  0 () are presented in Figs. 92 and 93

respectively. Fig. 92 elucidates impact of dimensionless radius of curvature parameter  on

velocity distribution  0 (). Both velocity field and momentum layer thickness are higher for

larger curvature parameter . Behavior of power law stretching index  on velocity  0 () is

displayed in Fig. 93. An enhancement is seen for larger stretching index  for both velocity

and momentum layer thickness. It is vital here to mention that  = 1 relates to linear stretch-

ing,  6= 1 for non-linear stretching whereas  = 0 is for non-stretching surface. Behaviors of
curvature parameter  power law stretching index  Prandtl number Pr and Biot number 

on dimensionless temperature profile  () are presented in Figs. 94−97 respectively. Fig. 94
elucidates the impact of curvature parameter  on  (). Note that  and corresponding layer

thickness are enhanced for greater curvature parameter . Behavior of power law stretching

index  on temperature distribution  () is presented in Fig. 95. It is noticed that both tem-

perature and associated layer thickness are reduced when  enhances Fig. 96 displays Prandtl

number Pr variation on temperature  (). Larger Prandtl number Pr decrease temperature

field and thermal layer thickness. Outcome of Biot number  on temperature distribution  ()

is displayed in Fig. 97. Temperature  () and related layer thickness are larger when  in-

creases. Impacts of dimensionless curvature parameter  strength of homogeneous reaction 1

Schmidt number  and strength of heterogeneous reaction 2 on dimensionless concentration

profile  () are presented in Figs. 98− 911 respectively. By enhancing curvature parameter
 strength of homogeneous reaction 1 and Schmidt number  the concentration distribution

 () reduces while reverse behavior is seen for strength of heterogeneous reaction 2. It is no-

ticed that, magnitude of homogeneous reaction 1 and magnitude of heterogeneous reaction 2

have opposite effects on concentration distribution  (). Table 92 elucidates numerical data of

skin friction coefficient via curvature parameter  and power-law index . Skin friction coeffi-

cient reduces for larger curvature parameter  and power-law index  Table 93 is organized to

analyze the numerical data of local Nusselt number for curvature parameter  Prandtl number

Pr and Biot number  It is observed that local Nusselt number is higher for larger Prandtl
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(Pr) and Biot () numbers whereas reverse trend is seen for curvature paramter 

k= 0.1, 0.3, 0.5 , 0.7 .

n= 1.5 , Pr = Sc = 4.0, k1 = 0.7 , k2 = 0.5 , gt = 0.3.
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z
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0.4

0.6

0.8

1.0

f 'z 

Fig. 92. Plots of  0 () for 

n= 0.0, 0.5 , 1.0, 1.5 .

k = k2 = 0.5 , Pr = Sc = 4.0, k1 = 0.7 , gt = 0.3.
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Fig. 93. Plots of  0 () for 
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n= 1.5 , Pr = Sc = 1.0, k1 = 0.3, k2 = 0.3, gt = 0.3.

k= 0.3, 0.4, 0.5 , 0.6 .

1 2 3 4 5 6
z
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0.10

0.15

0.20

q z 

Fig. 94. Plots of  () for 

n= 0.0, 1.0, 2.0, 3.0.

k = k2 = 0.5 , Pr = Sc = 4.0, k1 = 0.7 , gt = 0.3.
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Fig. 95. Plots of  () for 
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k = k2 = 0.5 , n = 1.5 , Sc = 4.0, k1 = 0.7 , gt = 0.3.

Pr = 0.5 , 0.7 , 1.0, 4.0 .
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q z 

Fig. 96. Plots of  () for 

k = k2 = 0.5, n = 1.5, Pr = Sc = 4.0, k1 = 0.7 .
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z

0.1

0.2

0.3

0.4

0.5

q z 

Fig. 97. Plots of  () for 
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k= 0.1, 0.4, 0.8 , 1.2 .

n= 1.5 , Pr = Sc = 4.0, k1 = 0.7 , k2 = 0.5 , gt = 0.3.
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Fig. 98. Plots of  () for 

k = k2 = 0.5, n = 1.5, Pr = Sc = 4.0, gt = 0.3.

k1 = 0.0, 0.4, 0.8, 1.2.
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Fig. 99. Plots of  () for 1
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k = k2 = 0.5, n = 1.5, Pr = 4.0, k1 = 0.7 , gt = 0.3.

Sc = 0.8, 1.5, 3.0, 10.0.
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Fig. 910. Plots of  () for 

k = 0.5, n = 1.5, Pr = Sc = 4.0, k1 = 0.7 , gt = 0.3.

k2 = 0.5, 0.6, 0.8, 1.1.
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Fig. 911. Plots of  () for 2
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Table 9.2. Variations of  and  on skin friction coefficient.

  − 1
12
2

03 11 67480

04 54531

05 44423

05 09 47160

10 47134

11 47107

Table 9.3. Local Nusselt number for   and  when  = 11 1 = 07 2 = 05 and

 = 40

   
−12
2

03 40 03 02469

04 02454

05 02443

05 30 03 02432

60 02452

90 02455

05 40 02 01737

03 02443

04 03067

9.4 Conclusions

Flow for homogeneous-heterogeneous reactions and convective condition is investigated. Main

observations of presented research are listed below.

• Velocity distribution  0 () is enhanced for larger  and .

• Larger curvature parameter  and Prandtl number Pr show decay in temperature field
 () while opposite trend is noticed for Biot number 

182



• Influences of homogeneous 1 and heterogeneous 2 parameters on concentration field
 () are quite reverse.

• Concentration field  () is reduced for higher curvature  and Schmidt number 

• Skin friction coefficient is lowered for larger curvature parameter  and power-law index


• Local Nusselt number is enhanced for higher Prandtl Pr and Biot  numbers
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Chapter 10

Numerical study for nonlinear

curved stretching sheet flow subject

to convective conditions

This chapter provides a numerical simulation for boundary-layer flow of viscous fluid bounded

by nonlinear curved stretchable surface. Convective conditions of heat and mass transfer have

been employed at the curved nonlinear stretchable surface. Moreover heat and mass trans-

fer attributes have been explored through chemical reaction and heat absorption/generation.

Boundary layer expressions are reduced to nonlinear ordinary differential system. Shooting

algorithm is employed to construct the solutions for the resulting nonlinear system. The char-

acteristics of various sundry parameters are studied. Moreover the skin friction coefficient and

local Sherwood and Nusselt numbers are tabulated.

10.1 Formulation

We consider flow of viscous fluid by curved stretchable surface with nonlinear velocity. The

curved stretchable surface is coiled in a circle having radius  Heat and mass transfer character-

istics are explored via chemical reaction and heat absorption/generation. Nonlinear stretchable

sheet has convective heat and mass conditions. Surface is heated through hot fluid having

temperature  and concentration  that give heat and mass transfer coefficents  and 
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respectively. The boundary-layer expressions can be put into the forms:




(( +) ) +




= 0 (10.1)
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

µ




+



 +





¶
= 

µ
2

2
+

1

 +


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



+



 +




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2
+

1

 +





¶
− ( − ∞)  (10.5)

with the boundary conditions

 =  () = 1
  = 0 − 


=  ( −  )  −




=  ( − ) at  = 0 (10.6)

→ 0



→ 0  → ∞  → ∞ as  →∞ (10.7)

Here  the rate of chemical reaction. Moreover for the case of curved surface pressure is no

longer consistent within the boundary layer. Using the following transformations

 = 1
 0 ()   = − 

+

√
1−1
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2
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¢
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2
1
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q
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
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−∞   () = −∞
−∞ 

⎫⎬⎭ (10.8)

Eq. (101) is identically verified and Eqs. (102)− (107) yield




=

 0
2

 + 
 (10.9)
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 = 0  0 = 1 0 = − (1− )  0 = − (1− ) at  = 0

 0 → 0  00 → 0  → 0 → 0 as  →∞

⎫⎬⎭ (10.13)

in which  stands for heat generation/absorption parameter, ∗ for chemical reaction parameter,

 for Schmidt number,  for thermal Biot number and  for concentration Biot number.

These parameters are
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Elimination of pressure from Eqs. (109) and (1010) gives
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Pressure  can be calculated from Eq. (1010) as
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´



(+)2
 0
2

+
(+1)

2(+)
 00 + (+1)

2(+)2
 0

⎞⎠  (10.16)

The relations for skin friction coefficient and local Nusselt and Sherwood numbers are

1
=

 1


2


  =


 ( − ∞)
 2 =

2
 ( − ∞)

 (10.17)
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Here  1 stands for wall shear stress,  for wall heat flux and 2 for wall mass flux which

are expressed by

 1 = 
³


− 

+

´¯̄̄
=0



 = −
¡



¢¯̄
=0



2 = −

¡



¢¯̄
=0



⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.18)

Dimensionless forms of skin friction coefficient and local Nusselt and Sherwood numbers are

1
12
2 =  00(0)− 1


 0(0)


−12
2 = −0 (0) 

2
−12
2 = −0 (0) 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10.19)

10.2 Analysis

The systems consisting of Eqs. (1011) (1012)  (1013) and (115) are numerically computed by

shooting technique. Main interest here is to examine the velocity  0 (), temperature  () and

concentration  () profiles for several influential variables like dimensionless radius of curva-

ture parameter  power-law stretching index  Prandtl number Pr heat absorption/generation

variable  Schmidt number  chemical reaction parameter ∗ , thermal Biot number  and

concentration Biot number . Effects of curvature parameter  and power-law stretching index

 on velocity distribution  0 () are presented in the Figs. 101 and 102 respectively. Fig. 101

elucidates the impact of dimensionless radius of curvature  on velocity distribution  0 (). Both

velocity and momentum layer thickness are higher for larger curvature parameter . Variation

of power-law stretching index  on velocity  0 () is displayed in Fig. 102 Larger power-law

stretching index  show decay in velocity  0 () and momentum layer thickness. Effects of curva-

ture parameter , power-law stretching index  Prandtl number Pr heat generation/absorption

variable  and thermal Biot number  on dimensionless temperature profile  () are displayed

in the Figs. 103− 107 respectively. Fig. 103 elucidates the variation of dimensionless radius
of curvature parameter  on temperature profile  ()  Both temperature  () and thermal

layer thickness are enhanced for higher curvature  Impact of power-law stretching index  on

temperature distribution  () is plotted in Fig. 104. Clearly both temperature and thermal

layer thickness are lower for higher . Fig. 105 shows variation of Prandtl number Pr on tem-
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perature  (). Larger Prandtl number Pr shows a decay in temperature field and related layer

thickness. Impact of heat absorption/generation variable  on temperature  () is displayed in

Fig. 106. Here temperature  () and corresponding layer thickness are enhanced for higher 

( 0) whereas opposite trend is observed for larger  ( 0)  Influence of thermal Biot number

 on temperature profile  () is sketched in Fig. 107. For higher thermal Biot number 

both temperature  () and related layer thickness are enhanced. Contributions of curvature

parameter , power-law stretching index  Schmidt number  chemical reaction parameter

∗ and concentration Biot number  on dimensionless concentration profile  () are presented

in the Figs. 108−1012 respectively. Fig. 108 elucidates the impact of dimensionless radius of
curvature parameter  on concentration  ()  It is noted that concentration  () is enhanced

for larger curvature parameter . Variation of power-law stretching index  on concentration

 () is displayed in Fig. 109 Larger power-law stretching index  causes a reduction in con-

centration  (). Fig. 1010 shows the impact of Schmidt number  on concentration  ().

Larger Schmidt number  show a decay in concentration  (). Plots of  () via ∗ are given

in Fig. 1011. Concentration  () is reduced for higher ∗ ( 0) whereas opposite trend is

observed for larger ∗ ( 0)  Impact of concentration Biot number  on concentration  ()

is sketched in Fig. 1012. For larger concentration Biot number  the concentration  () is

enhanced. Table 101 elucidates the numerical data of skin friction coefficient for distinct values

of curvature  and power-law stretching index  It is examined that skin friction coefficient is

enhanced for larger  while reverse trend is noticed for  Table 102 is displayed to analyze the

numerical data of local Nusselt number for distinct values of curvature parameter  power-law

stretching index  Prandtl number  heat generation/absorption variable  and thermal Biot

number  Here local Nusselt number is increased for higher curvature parameter  power-law

stretching index  Prandtl number Pr and thermal Biot number  whereas the opposite trend

is seen via heat generation variable  ( 0)  Table 103 describes the numerical data of local

Sherwood number for curvature  power-law stretching index  chemical reaction parameter

∗  Schmidt number  and concentration Biot number  Clearly local Sherwood number is

increased for larger power-law stretching index  Schmidt number  chemical reaction para-

meter ∗ ( 0) and concentration Biot number  while reverse trend is noticed for curvature
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parameter 

n = 1.2, Pr = Sc = 2.0, d = 0.1, Rc
* = 0.3, gt = gc = 0.5

k= 0.2, 0.4, 0.6 , 1.0.

2 4 6 8 10 12
z

0.2

0.4

0.6

0.8

1.0

f 'z 

Fig. 101. Plots of  0 () for 

n = 0.0, 0.5, 1.0, 2.0.

k = 0.9, Pr = Sc = 2.0, d = 0.1, Rc
* = 0.3, gt = gc = 0.5.

2 4 6 8 10 12
z

0.2
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1.0

f 'z 

Fig. 102. Plots of  0 () for 
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n = 1.2, Pr = Sc = 1.0, d = 0.1, Rc
* = 0.1, gt = gc = 0.3.

k = 0.3, 0.4, 0.5, 0.6.
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0.20

0.25

0.30
q z 

Fig. 103. Plots of  () for 

k = 0.9, Pr = Sc = 2.0, d = 0.1, Rc
* = 0.3, gt = gc = 0.5.

n = 0.0, 0.5, 1.0, 2.0.
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Fig. 104. Plots of  () for 
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k = 0.9, n = 1.2, Sc = 2.0, d = 0.1, Rc
* = 0.3, gt = gc = 0.5.

Pr = 2.0, 3.0, 4.0, 5.0.

0 1 2 3 4 5
z

0.1

0.2

0.3

0.4
q z 

Fig. 105. Plots of  () for 

k = 0.9, n = 1.2, Pr = Sc = 2.0, Rc
* = 0.3, gt = gc = 0.5.

d = 0.00, 0.04, 0.08, 0.10.

d = 0.00, -0.07,

-0.20, -0.40.

0 1 2 3 4 5
z

0.1

0.2

0.3

0.4
q z 

Fig. 106. Plots of  () for 
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k = 0.9 , n = 1.2 , Pr = Sc = 2.0 , d = 0.1 , Rc
* = 0.3 , gc = 0.5 .

gt = 0.3 , 0.5 , 0.7 , 0.9 .

0 1 2 3 4 5
z

0.1

0.2

0.3

0.4

0.5

q z 

Fig. 107. Plots of  () for 

n = 1.2, Pr = Sc = 2.0, d = 0.1, Rc
* = 0.3, gt = gc = 0.5.

k = 0.3, 0.5, 0.8, 1.3.
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z
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0.15

0.20

0.25

f z 

Fig. 108. Plots of  () for 
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k = 0.9 , Pr = Sc = 2.0 , d = 0.1 , Rc
* = 0.3 , gt = gc = 0.5 .

n = 0.0 , 0.5 , 1.0 , 2.0 .
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f z 

Fig. 109. Plots of  () for 

k = 0.9, n = 1.2, Pr = 2.0, d = 0.1, Rc
* = 0.3, gt = gc = 0.5.

Sc = 2.0, 3.0, 4.0, 5.0.
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Fig. 1010. Plots of  () for 
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k = 0.9 , n = 1.2 , Pr = Sc = 2.0 , d = 0.1 , gt = gc = 0.5 .

Rc
* = 0.0 , 0.1 ,

Rc
* = 0.00 , - 0.04 , -0.08 , - 0.12 .

0.3 , 0.6 .
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z
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Fig. 1011. Plots of  () for ∗ 

k = 0.9 , n = 1.2 , Pr = Sc = 2.0 , d = 0.1 , Rc
* = 0.3 , gt = 0.5 .

gc = 0.3 , 0.5 , 0.7 , 0.9 .
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z
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fz 

Fig. 1012. Plots of  () for 
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Table 10.1. Numerical data of skin friction coefficient for distinct values of  and .

  −1
12
2

07 12 301252

08 268941

09 244795

09 05 235078

10 241760

15 257099

Table 10.2. Numerical data of local Nusselt number for distinct values of     and 

when  = 20  = 05 and ∗ = 03

     −
−12
2

07 12 20 010 05 0320250

10 0326890

13 0329249

09 05 20 010 05 0259056

10 0312047

20 0358824

09 12 20 010 05 0325390

40 0363273

60 0390522

09 12 20 000 05 0348027

001 0345153

002 0341351

09 12 20 010 04 0279858

05 0325390

06 0364750
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Table 10.3. Local Sherwood number for distinct values of    
∗
 and  when  = 20

 = 01 and  = 05

   ∗  −2−122

07 12 20 03 05 0383966

10 0377471

13 0373538

09 05 20 03 05 0372970

10 0377548

20 0385298

09 12 20 03 05 0379238

40 0404760

60 0418212

09 12 20 00 05 0345022

02 0372093

04 0384874

09 12 20 03 04 0318789

05 0379238

06 0434103

10.3 Conclusions

Viscous fluid flow due to a nonlinear curved stretchable surface with convective heat and mass

conditions is addressed. Chemical reaction and heat absorption/generation effects are also

considered. Main observations of presented research are listed below.

• Velocity distribution  0 () is enhanced for higher values of  whereas reverse trend is

noticed for 

• Larger power-law stretching index , Prandtl number Pr and heat variable  ( 0) show
lower temperature field  () while opposite trend is seen for curvature parameter ,

thermal Biot number  and heat variable  ( 0) 

• Concentration field  () is higher for larger curvature parameter , chemical reaction
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parameter ∗ ( 0) and concentration Biot number . However opposite behavior of

 () is found for power-law stretching index  chemical reaction parameter ∗ ( 0)

and Schmidt number 

• Skin friction coefficient for  and  has opposite impact.

• Local Nusselt number is enhanced for larger curvature parameter  power-law stretching
index  Prandtl number Pr and thermal Biot number  The parameter  ( 0) on local

Nusselt number has opposite influence when compared with 

• Local Sherwood number is increasing function of power-law stretching index  Schmidt

number chemical reaction parameter ∗ ( 0) and concentration Biot number 

Further effects of  and  on local Sherwood number are quite reverse.
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