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Preface

Recently the researchers and scientists are interested to explore the characteristics of fluid
flow in the presence of heat transfer. This is due to its rapid advancements and
developments in the technological and industrial processes. In fact the investigators are
interested to enhance the efficiency of various machnies by increasing the rate of heat
transfer and quality of the final products with desired characcteristics through rate of
cooling. The combined effects of heat and mass transfer are further significant in many
natural, biological, geophysical and industrial processes. Such phenomena include
designing of many chemical processing equipment, distribution of temperature and
moisture over agricultural fields, formation and dispersion of fog, damaging of crops due
to freezing, environmental pollution, grooves of fluid trees, drying of porous solids,
geothermal reservoirs, packed bed catalytic reactors, enhanced oil recovery, underground
energy transport and thermal insulation. Inspired by such practical applications, the
present thesis is devoted to analyze the nonlinear flows problems with heat transfer. This
thesis is structured as follows.

Chapter one just includes basic concepts and fundamental equations.

Chapter two addresses the magnetohydrodynamic (MHD) flow of Powell-Eyring
nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding
thermophoresis and Brownian motion are taken into consideration. Powell-Eyring fluid is
electrically conducted subject to non-uniform applied magnetic field. Assumptions of

small magnetic Reynolds number and boundary layer approximation are employed in the



mathematical development. Zero nanoparticles mass flux condition at the sheet is
selected. Adequate transformations yield nonlinear ordinary differential systems. The
developed nonlinear systems have been computed through the homotopic approach.
Effects of different pertinent parameters on velocity, temperature and concentration fields
are studied and analyzed. Further numerical data of skin friction and heat transfer rate is
also tabulated and interpreted. The contents of this chapter have been published in
“Results in Physics, 7 (2017) 535-543”.

Chapter three investigates the magnetohydrodynamic (MHD) stagnation point flow of
Jeffrey material towards a nonlinear stretching surface with variable thickness. Heat
transfer characteristics are examined through the melting process, viscous dissipation and
internal heat generation. A nonuniform applied magnetic field is considered. Boundary-
layer and low magnetic Reynolds number approximations are employed in the problem
formulation. Both the momentum and energy equations are converted into the non-linear
ordinary differential system using appropriate transformations. Convergent solutions for
resulting problems are computed. Behaviors of various parameters on velocity and
temperature distributions are examined. Heat transfer rate is also computed and analyzed.
These observations have been published in “International Journal of Thermal
Sciences, 132 (2018) 344-354”.

Chapter four extends the analysis of previous chapter for second grade nanofluid flow
with mixed convection and internal heat generation. Novel features regarding Brownian
motion and thermophoresis are present. Boundary-layer approximation is employed in
the problem formulation. Momentum, energy and concentration equations are converted

into the non-linear ordinary differential system through the appropriate transformations.



Convergent solutions for resulting problem are computed. Temperature and concentration
are investigated. The skin friction coefficient and heat and mass transfer rates are also
analyzed. Our results indicate that the temperature and concentration distributions are
enhanced for larger values of thermophoresis parameter. The contents of this chapter
have been published in “Results in Physics, 7 (2017) 2821-2830”.

Darcy-Forchheimer flow of viscous fluid caused by a curved stretching sheet have been
discussed in chapter five. Flow for porous space is characterized by Darcy-Forchheimer
relation. Concept of homogeneous and heterogeneous reactions is also utilized. Heat
transfer for Cattaneo--Christov theory characterizing the feature of thermal relaxation is
incorporated. Nonlinear differential systems are derived. Shooting algorithm is employed
to construct the solutions for the resulting nonlinear system. The characteristics of
various sundry parameters are discussed. Skin friction and local Nusselt number are
numerically described. The conclusions have been published in “Results in Physics, 7
(2017) 2886-2892”.

In chapter six, the work of chapter five is extended to viscous nanofluid flow due to a
curved stretching surface. Convective heat and mass boundary conditions are discussed.
Flow in porous medium is characterized by Darcy-Forchheimer relation. Attributes of
Brownian diffusion and thermophoresis are incorporated. Boundary layer assumption is
employed in the mathematical development. The system of ordinary differential
equations is developed by mean of suitable variables. Shooting algorithm is employed to
construct the numerical solutions of resulting nonlinear systems. The skin friction

coefficient and local Nusselt and Sherwood numbers have been analyzed. These contents



are accepted for publication in “International Journal of Numerical Methods for
Heat and Fluid Flow”.

In chapter seven, the work of chapter six is extended for magnetohydrodynamic (MHD)
flow of micropolar fluid due to a curved stretching surface. Homogeneous-heterogeneous
reactions are taken into consideration. Heat transfer process is explored through heat
generation/absorption effects. Micropolar liquid is electrically conducted subject to
uniform applied magnetic field. Small magnetic Reynolds number assumption is
employed in the mathematical treatment. The reduction of partial differential system to
nonlinear ordinary differential system has been made by employing suitable variables.
The obtained nonlinear systems have been computed. The surface drag and couple stress
coefficients and local Nusselt number are described by numerical data. The contents of
this chapter have been published in “Journal of Molecular Liquids 240 (2017) 209-
220”.

Chapter eight extended the idea of chapter seven by considering magnetohydrodynamic
(MHD) flow of Jeffrey nanomaterial due to a curved stretchable surface. Novel features
regarding thermophoresis and Brownian motion are considered. Heat transfer process is
explored through heat generation/absorption effects. Jeffrey liquid is electrically
conducted subject to uniform applied magnetic field. Boundary layer and low magnetic
Reynolds number assumptions are employed. The obtained nonlinear systems are solved.
The characteristics of various sundry parameters are studied through plots and numerical
data. Moreover the physical quantities such as skin friction coefficient and local Nusselt
number are described by numerical data. These findings have been submitted for

publication in “International Journal of Heat and Mass Transfer”.



The objective of chapter nine is to provide a treatment of viscous fluid flow induced by
nonlinear curved stretching sheet. Concept of homogeneous and heterogeneous reactions
has been utilized. Heat transfer process is explored through convective heating
mechanism. The obtained nonlinear system of equations has been computed and solutions
are examined graphically. Surface drag force and local Nusselt number are numerically
discussed. Such contents are submitted for publication in “Applied Mathematics and
Mechanics”.

Chapter ten provides a numerical simulation for boundary-layer flow of viscous fluid
bounded by nonlinear curved stretchable surface. Convective conditions of heat and mass
transfer are employed at the curved nonlinear stretchable surface. Heat
generation/absorption and chemical reaction effects are accounted. Nonlinear ordinary
differential systems are computed by shooting algorithm. The characteristics of various
sundry parameters are explored. Further the skin friction coefficient and local Nusselt and
Sherwood numbers are tabulated numerically. The contents of present chapter have

been published in “Results in Physics, 7 (2017) 2601-2606”.
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Nomenclature

ratio parameter of free stream and stretching velocities

Al first Rivlin-Ericksen tensor

A3 second Rivilin-Erickson tensor

Aq and By chemical species of homogeneous and heterogeneous reactions
ap dimensional constant

a1 positive constant for stretching surface

a* constant for variable thickness

a and b chemical species concentrations

By magnetic field strength

Bj(x) non-uniform magnetic field

B;(x) non-uniform magnetic field for variable thickness

b body force

bz, by and b, components of body force

C concentration

Cim, Cy surface concentrations

Cy concentration of convective mass stretching surface
Cp drag coefficient

Cm, couple stress coefficient

Cxo ambient fluid concentration

C* and * material constants for Powell-Eyring fluid

Ctuyy Cra, Skin friction coefficients for Cartesian coordinates
Ct,, s Cfy: Cy,, | Skin friction coefficients for Curvilinear coordinates
Cr (i =1—45) | arbitrary constants

Cp specific heat

Cs solid surface’s heat capacity

(pc) » effective heat capacity of nanoparticles




Dp Brownian diffusion coefficient

Dy, mass diffusivity

Dy thermophoretic diffusion coefficient

Dy, and Dp, chemical species diffusion coefficients

Fec Eckert number

F (: " C;ﬁ> porous medium variable inertia coefficient
E, inertia coefficient

F1,01, 1,0, 9, u(y) and ® unknown functions

1 dimensionless velocity

f1 and g1 continuous functions

* * * *
o 05 Oy and g,

special solutions

f?’h7 eﬁ’w ¢Th and 9m

general solutions

f0¢700¢ (Z =1 _3> 7¢07; (Z =1 _4> 7901 and uO(y>

initial approximations/guesses

g gravitational acceleration

H homotopy mapping

hy heat transfer coefficient

h, by, hy, hp and hy auxiliary parameters

o, h dimensionless concentrations

I identity tensor

j mass flux

j micro-inertia per unit mass.

Jwy s Jws wall mass flux for Curvilinear coordinates
K, permeability of porous medium
K* material parameter

K and A parameters for Powell-Eyring fluid
k dimensionless curvature parameter
k1 homogeneous reaction parameter
ko heterogeneous reaction parameter




mass transfer coefficient

ky vortex viscosity

k. and kg rate constants

L(=VV) velocity gradient

Le Lewis number

M magnetic parameter

Me melting parameter

M couple stress tensor

mo constant (for concentration of microelements)
n power-law index/shape parameter
N micro-rotation

N, buoyancy ratio variable

Ny Brownian motion variable

Ny thermophoresis variable

Nug,, Nug,, Nug,

local Nusselt numbers

Nug local Nusselt number for Curvilinear coordinates
P () dimensionless pressure

P nondimensionless pressure

P embedding parameter

Pr Prandt]l number

Qo (x) heat absorption/generation coefficient for variable thickness
Qo heat absorption/generation coefficient
q(=—k;VT) heat flux

Gy > GQwsy wall heat fluxes

Gw, wall heat flux for Curvilinear coordinates

R radius of curved stretchable surface

R, rate of chemical reaction




Reg,, Rey,, Res, , Res,

local Reynolds numbers

Th radiative heating

] Curvilinear coordinate axes

S extra stress tensor

Sy stress tensor for Jeffrey fluid

So stress tensor for second grade fluid

Sc Schmidt number

Shy, Sherwood number

Shs,, Shs, Sherwood numbers for Curvilinear coordinates

Sezs Szya Szz, Sy:m Syy> Syz> Sz Szy and S,

components of extra stress tensor for Jeffrey fluid

temperature

Ty temperature of convective heat stretching surface
Ty temperature of the stretching surface
T melting temperature

To constant temperature

T ambient /free stream fluid temperature
t time

t* unit interval

vT temperature gradient

d/dt material time derivative

% partial derivative with respect to time
Uy surface stretching velocity

Ue free stream velocity

Uy stretching velocity

u, v and w velocity components

uo(y) initial guess

u(y) and ® unknown functions

A% fluid vector velocity

XandY topological spaces




x, y and z

Cartesian coordinate axes

(07

surface thickness parameter

a1 and o5

normal stress moduli for second grade fluid

of (=kys/(pc)y)

thermal diffusivity

a2

local second grade parameter

ay, B, and v, | spin viscosities

B, coeflicient of concentration expansion
I} Deborah number

By coefficient of thermal expansion

0 dimensionless thermal relaxation variable
Ye concentration Biot number

Yo spin gradient viscosity

V¢ thermal Biot number

) heat generation/absorption parameter
01 ratio of diffusion coefficients

A porosity parameter

Al relaxation to retardation times’ ratio parameter
A9 retardation time

A* latent heat of fluid

Al bulk viscosity

pYe Grashof number

At relaxation time of heat flux

T Cauchy stress tensor

T1 stress tensor for Micropolar fluid

Tij stress tensor for Powell-Eyring fluid
Tw; s Tws wall shear stress




Trsys Trso wall shear stress for Curvilinear coordinates
T heat ratio parameter

Af% residual error of dimensionless velocity

AT"% residual error of dimensionless temperature
A® residual error of dimensionless concentration

L, Lys, Lo, £¢1, Ly, and Ly,

auxiliary linear operators

Ny Ny, (i =1—-6), Ny, (i =1—5) and Ny,

non-linear operators

R, Ry (i =1—6), R (i = 1 - 5) and Rj!

mth order non-linear operators

Ogzy Oyy and 0,

normal stresses

Tay, Tazy Tyzy Tyzy Tzx and Ty

shear stresses

0 dimensionless temperature
¢ dimensionless concentration
I dynamic viscosity

Py density of fluid

v kinematic viscosity

o electrical conductivity

w vorticity vector

(pc) ¢ fluid heat capacity

K vortex viscosity

Q angular velocity

€ third rank tensor

€ small constant

tr trace of a matrix

\Y% Del operator

¢,n dimensionless variables
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Chapter 1

Some related review and equations

1.1 Introduction

This chapter intends to include literature survey, fluid models and equations useful for the

analyses of next chapters.

1.2 Review

The analysis of boundary-layer flow over a stretchable boundary has various applications in
metallurgical, industrial, engineering and manufacturing processes. Such applications involve
crystal growing, plastic sheets extrusion and fibers, glass blowing, annealing and tinning of cop-
per wire, drawing and paper production. Sakiadis [1] initiated axisymmetric two-dimensional
(2-D) boundary layer flow over continuous solid surfaces. Then Crane [2] considered flow past
a linearly stretchable surface and developed a closed form solution. There is no doubt that
much attention in the past has been devoted to the flow caused by linear stretching velocity.
However this consideration is not realistic in plastic industry. Hence some researchers studied
the flow problem of nonlinear stretching surface. Gupta and Gupta [3] was the first who pro-
posed that the phenomena of stretching for a surface may not necessarily be linear. Later on,
flow over a non-linear heated stretching sheet is studied by Vajravelu [4]. Cortell [5] extended
the work of [4] by considering prescribed surface temperature and constant surface temperature

conditions. Prasad et al. [6] studied mixed convective flow over a non-linear stretchable surface
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with non-uniform fluid characteristics. Yazdi et al. [7] investigated the slip flow by a nonlinear
permeable stretched surface with chemical reaction. Mustafa et. al [8] studied axisymmetric
nanofluid flow. Hayat et al. [9] investigated MHD flow of second grade nanomaterial. Numer-
ous struggles have been made in this vision through different theoretical and physical aspects
but all these investigations are carried out by considering linear and non-linear stretching of
surfaces whereas the fluid flow over curved stretching surface has been rarely investigated. In-
vestigation for fluid flow regarding curved stretching surface was first introduced by Sajid et al.
[10]. The applications of fluid flow over a curved stretchable surface are curving jaws present
in stretching assembling machines. Rosca et al. [11] presented time-dependent flow past a per-
meable curved shrinking/stretching sheet. Micropolar fluid flow with radiation over a curved
stretchable surface is examined by Naveed et al. [12]. Few recent attempts on flow by curved
stretching surface can be seen in the studies [13 — 15]. All these investigations are related to
curved linear stretching surface whereas Sanni et al. [16] recently considered viscous fluid flow
past a nonlinearly stretching curved sheet.

Flow caused by stretching surface of variable thickness has many technological applications.
However much attention has not been paid to this concept of variable thickness of surface. Few
studies have been presented in this direction. Fang et al. [17] analyzed flow over a linearly
stretchable surface of variable thickness. Viscous fluid flow due to nonlinear stretchable sheet
of variable thickness and slip velocity is analyzed by Khader and Megahed [18]. Subhashini
et al. [19] considered the stretching sheet with variable thickness and find the dual solutions
for thermal diffusive flow. Abdel-Wahed et al. [20] examined the viscous nanofluid flow due
to a moving sheet having variable thickness. Hayat et al. [21] examined the homogenous-
hetrogenous nanofluid flow reactions by a stretched surface of variable thickness. Few latest
struggles on variable thickness of surface can be viewed in the studies [22 — 24].

Non-Newtonian fluids are regarded very prominent for applications in chemical and petro-
leum industries, biological sciences and geophysics. The flow of non-Newtonian fluids due to
stretching surface occurs in several industrial processes, for example, drawing of plastic films,
polymer extrusion, oil recovery, food processing, paper production and numerous others. The
well-known Navier-Stokes expressions are not appropriate to describe the flow behavior of non-

Newtonian materials. However various constitutive relations of non-Newtonian materials are
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proposed in the literature due to their versatile nature. Such materials are categorized as differ-
ential, integral and rate types. The fluid’s class having nonsymmetric stress tensor with polar
fluids characteristics are named as micropolar fluids. These are the fluids with microstructure
and deals with micro-rotation of suspended particles. Micropolar fluid theory was firstly sug-
gested by Eringen [25 and 26]. He pointed out that one cannot elaborate the impacts of local
rotational inertia and couple stresses by classical Navier-Stokes relations. Further mathematical
modeling for theory of lubrication and theory of porous media about micropolar fluid equations
is derived by Lukaszewiez [27] and Eringen [28]. Micropolar fluids may physically show fluids
containing randomly oriented (or spherical) or rigid particles suspended in a viscous medium,
where the deformity of fluid particles is negligible. It is affected and not much intricate for
both physicists and engineers who apply it and mathematicians who study its theory. The
applications of micropolar fluids include animal blood, suspension of particles, paints, liquid
crystals, theory of lubrication, turbulent shear flows and theory of porous media. Nazar et al.
[29] examined free convected micropolar boundary layer fluid flow with uniform surface heat
flux. Srinivasacharya and Reddy [30] examined natural convection flow of doubly stratified
non-Darcy micropolar fluid. Impact of thermal radiation in unsteady magnetohydrodynamic
flow of micropolar fluid is explored by Hayat and Qasim [31]. Rashidi et al. [32] provided an
analytic solution for micropolar fluid flow with porous medium and radiation effects. Cao et
al. [33] performed a Lie group analysis to study the flow of micropolar fluid. Waqas et al. [34]
investigated the magnetohydrodynamic (MHD) micropolar fluid flow induced by a nonlinear
stretchable surface with mixed convection. Recently Turkyilmazoglu [35] studied magnetohy-
drodynamic flow of micropolar fluid due to a porous heated/cooled deformable plate. The
Powell-Eyring fluid model [36 — 41] is derived from kinetic theory of gases instead of empirical
relation as in the case of the power-law model. Ketchup, human blood, toothpaste, etc. are
the examples of Powell-Eyring fluid. The features of both relaxation and retardation times are
elaborated by Jeffrey fluid model [42 — 46] which is a category of rate type fluids. Second grade
fluid model [47 — 51] illustrates the effects of normal stress.

Alternative form of fluids that are composition of convectional base liquids and nanometer
sized particles are termed as nanofluids. Nanoparticles utilized in the nanomaterials are ba-

sically made of metals (Ag, Cu, Al) or nonmetals (carbon nanotubes, graphite) and the base
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liquids include ethylene glycol, water or oil. Suspension of nanoparticles in the base liquids
greatly varies the heat transfer characteristics and transport property. To obtain prominent
thermal conductivity enhancement in the nanofluids, the studies have been processed both
theoretically and experimentally. Applications of nanofluids in technology and engineering are
nuclear reactor, vehicle cooling, vehicle thermal management, heat exchanger, cooling of elec-
tronic devices and many others. Moreover magneto nanofluids (MNFs) are useful in removal
of blockage in arteries, wound treatment, cancer therapy, hyperthermia and resonance visual-
ization. Further the nanomaterials enhances the heat transfer rate of computers, microchips in
microelectronics, fuel cells, biomedicine, transportation, food processing etc. The pioneer in-
vestigation regarding enhancement of thermal properties of base liquid through the suspension
of nanoparticles was presented by Choi [52]. Later the development of mathematical relation-
ship of nanofluid with Brownian diffusion and thermophoresis is presented by Buongiorno [53].
Turkyilmazoglu [54] derived the exact analytical solutions for MHD slip flow of nanofluids by
considering heat and mass transfer characteristics. Further relevant attempts on nanofluid flows
can be quoted through the analysis [55 — 78] and various studies therein.

The convective heat and mass transfer analysis has drawn the attention of many recent
researchers. Choi and Kim [79] studied natural convective condition for initial cooling in heat
and mass transfer of cryogenic surface. Thermal diffusion and Soret effects in two-dimensional
Hartmann viscous fluid flow is examined by Zueco et al. [80]. Shirvan et al. [81] considered
porous solar cavity for combined heat transfer and derived the numerical solution. EHD forced
convective nanofluid flow with electric field dependent viscosity is explored by Sheikholeslami
et al. [82]. Hayat et al. [83] addressed three-dimensional nanofluid flow due to convectively
heated nonlinear stretchable surface with magnetohydrodynamic effects. Ramanaiah et al. [84]
analyzed Sisko nanofluid flow due to nonlinear stretchable sheet with thermal radiation and
convectively heat and mass transfer conditions. Second grade fluid flow due to convectively
heated stretchable sheet is investigated by Das et al. [85].

Heat transfer via Cattaneo-Christov heat flux phenomenon has numerous applications in
biomedical, engineering and industry which was initially explored by Fourier [86]. According to
his model, the medium under consideration is instantaneously observe the initial disturbance

which was not be compatible with the reality hence termed as “paradox of heat conduction”.
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To overcome such limitation, Cattaneo [87] changed this law by adding thermal relaxation time.
Christov [88] further changed the Cattaneo theory [87] by the replacement of time derivative
with upper-convected Oldroyd derivative. Ciarletta and Straughan [89] provided stability and
uniqueness for Cattaneo-Christov heat flux. Later, incompressible flow with Cattaneo-Christov
model via heat conduction is analyzed by Tibullo and Zampoli [90]. Han et al. [91] studied
Cattaneo-Christov heat flux for coupled viscoelastic fluid flow. Cattaneo-Christov heat flux and
variable thermal conductivity in boundary layer flow past a variable thickness sheet is analyzed
by Hayat et al. [92]. Liu et al. [93] investigated fractional Cattaneo-Christov heat flux theory
for anomalous convection diffusion. Recently Hayat et al. [94] examined the three dimensional
Jeffrey fluid flow having the effects of Cattaneo-Christov heat flux.

In operations heat generation or absorption effects are quite dominant which involve under-
ground disposal of radioactive waste material, heat removal from nuclear fuel debris, storage of
food stuffs, disassociating fluids in packed-bed reactors and many others. During manufacturing
processes, it is obvious that for controlling the heat transfer rate heat absorption/generation
play a prominent role. Analytical solutions for the effects of first order chemical reaction and
heat absorption/generation in a micropolar fluid flow is examined by Magyari and Chamkha
[95]. Saleem and El-Aziz [96] considered the phenomenons of Hall current and heat sink/source
in viscous fluid flow past a moving surface with chemical reaction. Chen [97] analyzed two
types of viscoelastic fluids flow past a stretchable surface having magnetohydrodynamics, in-
ternal heat generation and viscous dissipation by deriving analytical solution. Chen [98] in
another investigation presented the MHD power law fluid flow past a stretchable surface with
internal heat absorption/generation and mixed convection. Siddiga et al. [99] examined nat-
ural convective flow with temperature dependent viscosity over an inclined flat surface with
heat source. Van Gorder and Vajravelu [100] examined MHD convective flow past a stretchable
sheet with heat sink/source and injection/suction. Numerical solutions for the flow of nanofluid
was constructed by Rana and Bhargava [101]. Alsaedi et al. [102] derived the series solutions
for the stagnation point nanofluid flow with heat sink/source. Noor et al. [103] considered
numerical solutions for MHD flow of viscous fluid subject to Joule heating, thermophoresis and
heat sink/source. Turkyilmazoglu and Pop [104] analyzed heat generation and soret effects for

an electrically conducting fluid flow past a permeable sheet.
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Heat transfer with melting effect has received much interest in the field of silicon wafer
process, magma solidification and melting of permafrost [105]. Thus Tien and Yen [106] per-
formed an analysis to analyze the behavior between the fluid and melting body through forced
convection heat transfer. Later on non-time dependent laminar flow past a flat surface with
melting heat transfer is studied by Epstein and Cho [107]. Melting effect in mixed convective
flow saturating porous medium is studied by Cheng and Lin [108]. Yacob et al. [109] analyzed
the micropolar fluid flow over shrinking/stretching surface with melting heat transfer. Few
other studies in this direction can be seen through the attempts [110 — 114].

Homogeneous-heterogeneous reactions occur in abundant chemical reacting processes. These
processes include biochemical systems which contain homogeneous-heterogeneous reactions.
Complex relation occurs between homogeneous and heterogeneous reactions. In the presence of
a catalyst, these reactions have tendency to proceed rapidly whereas in the absence of it they
proceed even very slowly or not all together. Some common applications of chemical reactions
are ceramics and polymer production, fog dispersion and formation, food processing, hydromet-
allurgical industry and numerous others. Homogeneous-heterogeneous reactions in viscous fluid
flow is examined by Merkin [115]. Chaudhary and Merkin [116] analyzed boundary layer flow
for different diffusivities of reactant and autocatalyst in an isothermal model for homogeneous—
heterogeneous reactions. Bachok et al. [117] addressed homogeneous—heterogeneous reactions
in stagnation-point flow towards a stretchable sheet. Homogeneous-heterogeneous reactions in
nanofluid flow past a porous stretchable surface is investigated by Kameswaran et al. [118].
Melting heat transfer and heterogeneous-homogeneous reactions in nanofluid flow is considered
by Hayat et al. [119]. Some recent investigations on homogeneous-heterogeneous reactions can
be quoted through the analysis [120 — 124] and several studies therein.

Fluid flow saturating porous media has abundant applications in environmental and in-
dustrial systems such as heat exchanger design, catalytic reactors, geothermal energy systems
and geophysics. The classical Darcy model is later extended to non-Darcian model which in-
corporates inertia and boundary features. Particularly the flows in porous media are much
favorable in fermentation process, grain storage, ground water pollution, movement of water in
reservoirs, crude oil production, ground water systems, beds of fossil fuels, recovery systems,

nuclear waste disposal, energy storage units, petroleum resources, solar receivers and several
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others. The classical Darcy’s law is insufficient when inertia and boundary features are taken
into account at high flow rate. Forchheimer [125] incorporated a square velocity factor in Dar-
cian velocity to analyzed the inertia and boundary features. This factor is always valid for large
Reynolds number. Then Muskat [126] called this factor as “Forchheimer term”. Federico et al.
[127] considered vertical graded porous media in radial gravity currents for both Newtonian and
power-law fluids. Stream wise Darcy-Brinkman-Forchheimer model for MHD fluid flow and heat
transfer is explored by Rashidi et al. [128]. Hayat et al. [129] considered Darcy-Forchheimer
flow with Cattaneo-Christov heat flux and variable thermal conductivity. Darcy-Forchheimer
flow of viscoelastic nanofluids due to nonlinear stretching boundary is also explored by Hayat et
al. [130]. Recently Kang et al. [131] considered Neumann boundary conditions for generalized

Darcy-Forchheimer model by employing block-centered finite difference method.

1.3 Basic laws

1.3.1 Mass conservation law
The continuity equation or mass conservation law states that the mass can neither be destroyed

nor created. Mathematically

= TV (V) =0, (1.1)

For the case of incompressible fluid Eq. (1.1) can takes the form:

V-V =0. (1.2)

In Cartesian coordinates for two dimensional flow one has

ou Ov
— —_— 1.
I + ay 0, (1.3)
whereas for curved geometry
9+ Ryw)+ RZ =0 (1.4)
or " v Os e :
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1.3.2 Linear momentum conservation law

This law declares that the total linear momentum of a system remains conserved. Mathemati-

cally it can be expressed by Newton’s second law as

av

(L.5)

where first term on right hand side of Eq. (1.5) represents surface forces and second term

represents body forces while left hand side is the inertial forces per unit volume. 7 = —pI+ S

is the Cauchy stress tensor for the case of incompressible flow. Generally, Cauchy stress tensor

and velocity are

V = [u(z,y, z,t),v(x,y, 2, t), w(x,y, z,t)].

Eq. (1.5) in component form can be written as

ou _._v% tw ou 4 o ou\  0(o) n 0 (Tay) n O (Taz)
Pr\"ox 9z ot) ~ oz ay 0z
81} u 81} ov\  0(1ye) , O(oyy)  0(7y2)
Pt <“ Yot 6t> = T oy 1 o-
8_“1 8_w i a_w + a_w _ 0(T22) + 0 (72y) + 0(022)
Pr\"ar Ty TV T ) T e dy 0z
For two-dimensional flow the above equations become
ou Ou  Ou\  0(0ze) | O(Tay)
Py (“axﬂ’ay + 875) = Ton + 3y + pyba,
Jv dv  Ov\  O(1ye) | O(oyy)
Pf <ua —|—vay+ 8t> = O + oy + pyrby,

18

(1.11)

(1.12)



However for curved geometry in two-dimension, the velocity field is given by
V =[u(r+ R,s),v(r + R, s),0] (1.13)

and the momentum equations under boundary layer approximation in component form are

1 5 10p

—_—ut = —— 1.14
r+ R psOr’ (1.14)

v%—i— R u%—i— 1 1 R Op
or r+R 0s

r+R T pr+ROs

9%u 1 Ou 1
v <a_ TR <T+R>2“> o (L19)

where v <: -p'“?) represents the kinematic viscosity. Moreover it is noticed that for the case of

curved surface pressure is no longer consistent within the boundary layer.

1.3.3 Energy conservation law

Energy conservation law states that total energy of the system remains conserved. Mathemat-

ically first law of thermodynamics elaborates the heat transfer equation and is given as

ar
ey =7-L+prp,—V-q. (1.16)

Left hand side of Eq. (1.16) represents internal energy while on right hand side first term
depicts viscous dissipation whereas the last two terms represent radiative and thermal heat
fluxes respectively. Thermal heat flux is expressed by Fourier’s law of heat conduction. In

absence of radiative heating above equation takes the following form

drl’
pep o =T VV+k;V2T. (1.17)
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1.3.4 Mass transport equation

It elaborates that the total concentration of the system under consideration remains conserved.
Fick’s first law is given as

j=-DnVC, (1.18)

where j denotes the mass flux, D,, the mass diffusivity and C the concentration of species.
Fick’s second law is given as
ac

—r=-Vi (1.19)

Now by inserting Eq. (1.18) into Eq. (1.19), equation of mass transport is given as

dC
— =D,,V3C. 1.2
7 veC (1.20)

1.4 Mathematical description of some fluid models

Current dissertation is focused for the analysis of boundary layer flows of incompressible viscous,
Micropolar, Powell-Eyring, Jeffrey and Second grade fluid models. Therefore we explain the

mathematically models of these fluids briefly.

1.4.1 Viscous fluid

Shear stress and rate of deformation is directly and linearly proportional to each other, which is
the Newton’s law of viscosity that obeyed by viscous fluids. Extra stress tensor for such fluids
is given as:

S = uAL. (1.21)

Mathematical expression for first Rivlin-Ericksen A7 is
A7 = grad V+ (grad V)Tt . (1.22)

In Cartesian coordinates, gradient of velocity vector V =[u (z,u, z),v (z,u, 2) ,w (z,u, 2)]
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is given as:

Ou  Ou Ou
ox oy 0z
— v v v
gradV = | &u &% | (1.23)
dw Odw dw
dr Oy Oz

1.4.2 Micropolar fluid

These fluids [25 — 35] exhibit the micro-inertia and micro-rotational effects. The extra stress

tensor 71 and couple stress tensor M are defined as
71 = 2A] (trA7) I+pAT+2ke. (w — Q) (1.24)

M =, (V.Q) I+ 3, (V)" +~, Ve, (1.25)

where A\] denotes the bulk viscosity, k, the vortex viscosity, ¢r the trace of the matrix, € the
third rank tensor with Levi-Civita symbol, w (: % (V x V)) the vorticity vector, €2 the angular

velocity, ay, B, and 7, are the spin viscosities. The basic equations for Micropolar fluid are

av
and
.dQ2
pij:V-M—i-e, (1.27)

where j denotes the micro-inertia per unit mass.

1.4.3 Powell-Eyring fluid

Mathematical expression for extra stress tensor of Powell-Eyring fluid [36 — 41] is:

T = gy T S <C* ax) ’ 12

in which #* and C* stands for material constants. Powell-Eyring fluid obeys the following

sinh ! i@ui liaui_l i@ui ’ iaui
> Cx 8$j _C* 8l‘j 6 C* 8.’L'j ’ C* 83@-

conditions

< 1. (1.29)
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1.4.4 Jeffrey fluid

The category of non-Newtonian fluid model which belongs to the class of rate type fluids and

describes the features of both relaxation and retardation times is Jeffrey fluid. Instead of time

derivative here substantive derivative is used. Mathematical expression for extra stress tensor

of Jeffrey fluid [42 — 46] can be presented as:

K « oy dA7
SJ—1+>\1< 1+>\2 dt)

Moreover in scalar form this extra stress tensor S takes the form

__# (H0u LR L DAL
Sm_1+)\1 <2ax+)\2<uﬁx+v8y+w82 2 z)’

o= (g (242 (W 0L 0 D) (22 22)) s
T T P \02 oy Yo U@y Yoz 0z Oy -

< ou ou 6u> 0 0 0
— + — Sacza

Ov ov ov 0 0 0
Pr <U—x + U—y + w_z> = _xSy:c + a_ysyy + &Sym

ow ow ow 0 0 0

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

here the body forces and pressure gradient are neglected. Now by incorporating the expressions

of Sgx, Syys Szz, Say, Syzs Szz, Szz, Sy and Sy into Egs. (1.37) — (1.39) and subsequently by
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applying the boundary layer approximations we ultimately obtain

B3 Bu Bu
0 o O Usns + Va5 + WiH3 0?2
T e vl TN G I IR
x z z
Y ' +5 gz + 92 0g0z T 9z 0t
o Uy + vty +wds 9%v
U= + UVt W = 2 o v i +53 (1.41)
Oz oy 0z 14+ M L Ou PP | v 0% dw o 072
0z 0xdz 0z 0yoz 0z 0z2
Two-dimensional boundary layer Jeffrey fluid flow can be presented by the equation
ou n v@u v 0%u L Pu . Uﬁgu ou 0%u . ou 0%u (1.42)
U— —=—| = U———s — = .
Ox Oy 1+ X \ Oy? 2 Ox0y? oy? Oz 0y? 0Oy 0xdy
and in curved geometry it can be expressed as
2
ou R ou 1 1 R dp v % + g o
v— + u— + uw = —— -+
or r+R 0s r+R ,ofr—i-R@s 14+ M 1 .
(r+R)?
2 3
oot t oG
R_9u 0?2 R_, 9
v | TR vsor T TR B0 (1.43)
r+R " Or? (r4+R)? Or 0s
1 ovo 1 o)
_r+Ra_:a_§f + (T+R)2u8_:
1.4.5 Second grade fluid
Second grade fluid model [47 — 51] having extra stress tensor Sy is expressed as
Sy = A} + Al + ap (A})? (1.44)

where a1 and o are the normal stress moduli and A3 the second Rivilin-Erickson tensor is

dA*

— + AL+ LT AL (1.45)

Aj =

Moreover second grade fluid model obey the following conditions

>0 a1>0, a;+as =0, (1.46)
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for the thermodynamic stability. Two-dimensional boundary layer equation for second grade

fluid in Cartesian coordinate system is

3 2
du 0 0? uglsty + 5408
ua—“ + va—“’ - ufa—;” + 2 oy TR (1.47)
€T u 0%u u
Yo P e TG

1.5 Methodologies

1.5.1 Homotopy

In topology if one function can be transformed continuously into the other then such functions

are called homotopic.

Definition

Let f1 and g1 be two continuous functions and X and Y be two topological spaces, then a

homotopy between fi; and g7 from X to Y is defined to be continuous function
H: Xt =Y, (1.48)
from the product of X with the unit interval ¢* € [0, 1] to Y such that for all point = in X and
H(z,0) = fi(z), H(z,1) = g1 (z). (1.49)

The map H is called a homotopy between f; and g;. Any function f; which is homotopic to

g1 can be written as

fi~g. (1.50)

We think of a homotopy as a continuous one parameter family of maps from X to Y. If we
consider the parameter t* as representing time, at time t* = 0, we have the map f; and as t*

varies the map H varies continuously so that at t* = 1 we have the map g;.
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Homotopy analysis method (HAM)

In order to solve various types of nonlinear problems analytically, Liao proposed a general
method namely the homotopy analysis method (HAM) [132, 134, 61, 46]. To present funda-

mental idea of HAM, we assume the following differential equation:

Nu(y)] =0, (1.51)

In above equation y indicates an independent variable. Liao [132] constructs the following

zeroth-order deformation equation

(1= p) L[® (y;p) — uo(y)] = PN® (y; )], (1.52)

where p € [0,1] and Ai(# 0) are the embedding and auxiliary parameters respectively. It is

obvious that when p = 0 and p = 1, the following holds

® (y;0) = uo(y), P (y;1) = u(y), (1.53)

respectively. When p varies such that it starts from 0 and ends at 1, ® (y;p) varies from ug(y)

to u(y). Now by Taylor series expansion

® (y; ) = wo(y) + Y wi(y)iF, (1.54)
=1
wily) = Z—ﬁ%ﬁp)'w (1.55)

where the term on the right hand side of above equation can be evaluated by differentiating
the zeroth-order deformation Eq. (1.53) i—times with respect to p and then dividing them by
! and hence setting p = 0.

If the appropriate values of ug(y), £ and A are chosen so that the series (1.55) converges at
p = 1, one obtains

[e.9]

u(y) = uo(y) + Y uily), (1.56)

1=1

which must be the solution of the original non-linear problem (1.52).

25



1.5.2 Shooting technique

This technique is employed using software Mathematica with Wolfram Language function using
a built-in tool named as NDSolve. NDSolve generate solutions in terms of interpolating func-

tion objects. This tool/command has huge potential for solving nonlinear partial differential

equations.
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Chapter 2

On MHD nonlinear stretching flow

of Powell-Eyring nanomaterial

This chapter describes flow of Powell-Eyring nanomaterial bounded by a nonlinear stretching
surface. Novel features regarding thermophoresis and Brownian motion are taken into consider-
ation. Powell-Eyring fluid is electrically conducted subject to applied magnetic field. Assump-
tions of small magnetic Reynolds number and boundary layer approximation are utilized in
the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected.
Adequate transformation yield nonlinear ordinary differential systems. The developed nonlin-
ear problems are computed through the homotopic approach. Influence of numerous effective
variables on velocity, temperature and concentration are studied. Further numerical data of

skin friction and heat transfer rate is also tabulated and interpreted.

2.1 Formulation

Let us consider two dimensional (2D) magnetohydrodynamic flow of Powell-Eyring nanomater-
ial. The flow is due to nonlinear stretchable surface. Features of thermophoresis and Brownian
motion are taken into consideration. The x— and y—axes are taken parallel and transverse to
the stretching surface. The sheet at y = 0 is stretching along the x—direction with velocity
uy(z) = a1x™ where a1 and n are positive constants. Powell-Eyring fluid is electrically con-

ducting subject to non-uniform magnetic field in y—direction (see Fig. 2.1). Induced magnetic
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field for low magnetic Reynolds number is omitted.

Stretching force

Fig. 2.1. Geometry of the problem.

The boundary layer expressions for two-dimensional (2D) magnetohydrodynamic flow of Powell-

Eyring nanofluid are [39,9] :

% + Z_Z =0, (2.1)
LS (B (). e

Here Bj(z) = Boz"T represents the non-uniform magnetic field. The associated boundary

conditions are [59,9] :

oC  DpoT
U= uy(x) =a1z", v=0, T =Ty, DBa—y+T—::8—y=0aty:0, (2.5)
u—0, T—oTy, C—Cx asy— oco. (2.6)
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Introducing the suitable transformations

u=az"f'(¢), v=-— (—aly(;+l)>l/2 = (f + n+1§f>
¢= (2} Pty 0(0) = A= o(c) = OoC=.

oo

(2.7)

Eq. (2.1) is vanishes symmetrically while Egs. (2.2) — (2.6) yield

(1+K)fm—|—ff”— (n;_1>KAf”2f”/— < 2n >f/2 _( 2 )Mgf/:(], (2.8)

n+1 n+1
0 + Pr ( FO+ NS+ Nt9’2) —0, (2.9)
N,
¢" + LePr f¢ + —£0" =0, (2.10)
Ny
f=0, f/=1, 6=1, Ny¢' + N’ =0 at ¢ =0, 2.11)
f'—0, 6 -0, ¢ —0 as ( — oco. '
The parameters appearing in Egs. (2.8) — (2.11) are defined by
_ 1 2 _ _ v
K= nB1C*” A= 21/1‘0*27 M Pfal Pr= at’ (2 12)
N, — (pe), D1 (Tw—Ts0) N — (pc), DpCoo _ar :
[ 2 (pc)fl/TOo ’ b — (pc)fy ’ €= Dp-
Expression of coefficient of skin friction and local Nusselt number are
Tw Tqw
Cy = 5 Nugy = e, 2.13
Jou Py w ' kf (Tw - Too) ( )
in which wall shear stress (7,,) and heat flux (g, ) satisfy
3
du 1 du
o= () -t (8))]
B Yy 68*C Yy 0 (2.14)
- _ or
Gun kf < %y ) ’y—o
In dimensionless variables
Re1/2 Clay = /n_+1 <(1 + K)f"(0) — —(L)KAf//?’( )> -_

2
Rxl/gNU:ml: /n—‘rlgl( )
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where Rey, = uyx/v stands for local Reynolds number.

2.2 Homotopy analysis solutions

The appropriate primary approximations ( foy, 6o, ¢01) in homotopic solutions are defined as

fo,(€) = 1 —exp(=(), bo, (¢) = exp(—=C), ¢y, (¢) = =5 exp(—()

and auxiliary linear operators (E 1> Loy £¢1) are

ef df P _ &

T T

The above auxiliary linear operators satisfy the following characteristics:

Ly, [CF + C3exp(¢) + C5 exp(—()] = 0, Ly, [C] exp(() + C exp(—()]

Ly, [Cg exp(C) + C5 exp(—()] = 0,

in which C} (i =1 —7) elucidate the random constants.

2.2.1 Deformation problems at zeroth-order

(L =9)Ls, [FG5) = for (O] = PN F(C D),

(1= 9)La, [BCH) —00,(Q)] = NG A1), 0G0, S(Cp),
(1= )L, [G(.5) = 00, (Q)] = RN, [F(C.0), 0(C.0).

Ny [Fen)] = (1+K)ﬁ+fﬁ—(”“>fm<
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(2.17)

(2.18)

(2.19)
(2.20)

(2.21)

(2.22)

(2.23)



AN 2
. . 20 0 0
No, [f(C,ﬁ),G(C,p) (¢, p)] ZC2 +Pr (ff?C +Nb§_§‘g—? + N (%) ) : (2.24)

AN B A N 82¢ 8¢> Nt820
Ny [F(2. 00| = 55+ LePrige+ Fom (2.25)
Setting p = 0 and p = 1 one obtains
F(6,0) = fo,(Q), F(¢,1) = f(Q), (2.26)
0(¢,0) = 00,(C), B(¢, 1) =0(C), (2.27)

When p changes from 0 to 1 then f ¢, p), é(C ,p) and &(C ,p) display alteration from primary

approximations fo, (¢), 0o, (¢) and ¢, (¢) to desired ultimate solutions f(¢), 6(¢) and ¢(().

2.2.2 Deformation problems at mth-order

Ly, [£an(Q) = X fm-1 (O] = AR (C), (2.29)
Lo, 10(¢) — Xmbm-1(Q)] = ARG (), (2.30)
Ly, [62(0) = xinm—1(Q)] = ARE(Q), (2.31)
Fin(0) = 0,5,(0) = f4(0) = 0, Nyoprz,(0) + Ni,;,(0) =0, 0.32)
f5(00) = 03 (00) = ¢y3,(c0) =0,
- m—1 na 1 m—I k
REQ) = O+ K)o+ (Faa ] - < 5 ) KA o i D T
k=0 k=0 =0
m—1 9
S ()

k=0

k=0 k=0

m—1
RE(C) = 01, 1+Pr(me i +Nb29’ Y +Nt20’ i ;) (2.34)
k=0
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i (Q) = b 1+LePerm i, +N O, (2.35)
k=0

0, m <1,
X = (2.36)
1, m>1,

The following expressions are derived via Taylor’s series expansion:

f(Cp f01 +me I ): ﬂi,%(g;p) ) (237)
p=0

0 = 00,(0)+ Y 0O, 0a(6) = D) (2.39)
m=1 ) =0

B¢, D) = ¢, (O) + Z G (D", 64 (C) = %% (2.39)
p=0

The convergence regarding Eqs. (2.37) — (2.39) is solidly based upon the suitable selections of
his, hg and hg. Choosing suitable values of iy, hg and hg so that Egs. (2.37) — (2.39) converge

at p =1 then .
FQ) = fo, () + D fal0), (2.40)

m=1
0(¢) = 60,(Q) + Y _ 0m(Q), (2.41)

m=1
$(C) = ¢, (¢) + Z (e (2.42)

In terms of special solutions (f%,65,,#},), the general solutions (fy,, 0, ¢ys) of the Egs.
(2.29) — (2.31) are defined by the following expressions:

fin(Q) = F3(C) + €7 + G5 exp(() + C3 exp(=(), (2.43)
0 (C) = 07,(¢) + C exp(€) + C5 exp(—(), (2.44)
$in(C) = 95 (€) + Cg exp(¢) + C7 exp(=(), (2.45)
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in which Cf (i =1 — 7) through the boundary conditions (2.32) are given by

of*
GG=ci=ci=0, ;=% géo 'C_O, O7 = —C5 — f3,0), (2.46)
Od% N, 06*,
Cs = ~03,0), €5 = 2 ‘C_O 2 (—c;; + 2l 'C_O> . (2.47)

2.2.3 Convergence analysis

Here the homotopic solutions (2.40) — (2.42) contain the nonzero auxiliary variables A, iy and
hg. Such auxiliary variables play a significant role to tune and govern the region of conver-
gence. For appropriate auxiliary variables, the h—curves are sketched at 25th order of defor-
mations. Fig. 2.2 displays that the convergence zone lies within the ranges —1.8 < hy < —0.1,
—1.75 < hp < —0.15 and —1.7 < hy < —0.2. The residual errors of velocity, temperature and

concentration distributions are given by

1 [~ A

AfnZ/O R (C,hf)rdc, (2.48)
1

A= [ R o] ac, 2.19)
1 [~ ~

af = [ [RE @] (2.50)

For suitable ranges of ki, the Ai—curves for the residual errors of velocity, temperature and
concentration distributions have been sketched in Figs. 2.3 —2.5. It is observed that the correct

results up to fifth decimal place are deduced through selection of 7 in this range. HAM solutions
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convergence via Table 2.1 is satisfactorily achieved by considering 20th orders of approximation.

1.0 y
)
, ]
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- 00f
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- -10- "‘ 1
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Fig. 2.2. The i— curves for f ({), 0 (¢) and ¢ (¢).
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Fig. 2.3. hy—curve for the residual error Afn.
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Fig. 2.4. hg—curve for the residual error Afh.
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Fig. 2.5. hg—curve for the residual error Agl.
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Table 2.1. Homotopic solutions convergence when K = A =M =0.1,n=Pr=1.2, N, =0.2,
Le =1.0 and N, = 0.3.

Order of approximations | —f”(0) | —0"(0) | ¢’ (0)

1 0.98485 | 0.70000 | 0.46667
5 0.98476 | 0.64522 | 0.43015
10 0.98475 | 0.64301 | 0.42867
15 0.98475 | 0.64292 | 0.42862
20 0.98475 | 0.64294 | 0.42863
25 0.98475 | 0.64294 | 0.42863
30 0.98475 | 0.64294 | 0.42863
35 0.98475 | 0.64294 | 0.42863

2.3 Discussion

Current portion has been organized to explore the impacts of several effective parameters includ-
ing magnetic parameter M, fluid parameter K, thermophoresis parameter V¢, Prandtl number
Pr, Brownian motion parameter Ny, Lewis number Le and power-law index n on velocity [’ (¢),
temperature 6 () and concentration ¢ (¢) distributions. Fig. 2.6 depicts the impact of fluid
parameter K on velocity distribution f’({). Both velocity field and momentum layer thickness
have been increased for K. Behavior of M on velocity distribution f’(() is presented in Fig.
2.7. Here both velocity and momentum boundary layer thickness decay for M. Fig. 2.8 shows
influence of power-law index n for velocity f’ (¢). By increasing n, both the velocity and momen-
tum boundary layer thickness have been reduced. Here n = 1 corresponds to linear stretching
surface case and n # 1 for nonlinear stretching surface. The impacts of fluid parameter K, mag-
netic parameter M, thermophoresis parameter N;, Prandtl number Pr and power-law index n
for temperature 0 (¢) have been displayed in the Figs. 2.9 — 2.13 respectively. It is observed
that by increasing magnetic parameter M, thermophoresis parameter N; and power-law index
n, both the temperature and related layer thickness are higher whereas reverse trend is noticed
for fluid parameter K and Prandtl number Pr. It is a valuable fact to mention here that the

properties of liquid metals are characterized by small values of Prandtl number (Pr < 1), which
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have larger thermal conductivity but smaller viscosity, whereas higher values of Prandtl number
(Pr > 1) associate with high-viscosity oils. Particularly Prandtl number Pr = 0.72, 1.0 and 6.2
are associated to air, electrolyte solution such as salt water and water respectively. Moreover
it is also observed that IV; portrays the strength of thermophoresis effects. Higher N; leads
to more strength to thermophoresis. Impacts of concentration field ¢ () via material variable
K, magnetic M, thermophoresis Ny, Brownian motion N, Lewis number Le, Prandtl number
Pr and power-law index n are displayed in the Figs. 2.14 — 2.20. Concentration field through
these sketches enhances for larger magnetic parameter M, thermophoresis parameter NV; and
power-law index n whereas reverse trend is observed for fluid parameter K, Brownian motion
parameter Ny, Lewis number Le and Prandtl number Pr. Table 2.2 depicts the numerical data
of skin friction coefficient for several effective parameters K, A, M and n. Skin friction coefficient
is higher for larger K, M and n while the reverse behavior is noticed through n. Table 2.3 is
presented to analyze the numerical data of local Nusselt numbers via different parameters. Here
local Nusselt number increases for larger fluid parameter K, Prandtl number Pr and power-law
index n whereas opposite result holds for magnetic parameter M, thermophoresis parameter

N; and Lewis number Le. There is no significant change of N, on local Nusselt number.

A=M=0.1, Pr=n=12, Ny =0.2, N, =0.3, Le = 1.0.

K=10.0,0.3,0.6,0.9

Fig. 2.6. Plots of f’(¢) for K.
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K=A=0.1, Pr=n=12, Nt =0.2, Np=0.3, Le = 1.0.

4 M = 0.0, 0.4, 0.7, 0.9
02F
00F

2 3 4 5 7 {

Fig. 2.7. Plots of f'(¢) for M.
1)
1.0
08 K=A=M=0.1, Pr=12, N; =0.2, N, = 0.3, Le = 1.0.
0.6
n=10.0,0.3, 1.0, 2.0
04
0.2
0.0
; : ; : =4

Fig. 2.8. Plots of f/(¢) for n.
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A=M =0.1, Pr=n=12, N;=0.2, N, =0.3, Le = 1.0.

K=10.0,0.3,0.7,1.2

Fig. 2.9. Plots of 6 (¢) for K.

K=A=0.1, Pr=n=12, Nt =0.2, Npb = 0.3, Le = 1.0.

08

M=10.0, 0.6, 0.9, 1.3

04

02

Fig. 2.10. Plots of 6 (¢) for M.
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K=A=M=0.1, r=n=12 Np=0.3, Le =1.0.

N¢=10.1, 0.6, 1.2, 1.8

04

Fig. 2.11. Plots of 6 (¢) for N;.

K=A=M=0.1, n=12, Ny =0.2, N, =0.3, Le = 1.0.

Pr=10.7,1.0,1.3, 1.6

Fig. 2.12. Plots of 6 (¢) for Pr.
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1.0
08 K=A=M=0.1, Pr=12, Nt =0.2, Np = 0.3, Le = 1.0.
0.6
04
n=0.0, 0.2, 0.6, 1.8
02
0.0 ki
: : : : : =g
Fig. 2.13. Plots of 6 (¢) for n.
#&)
K=0.0,0.3,0.6, 0.9
0.1
0.0
: ¢

A=M=0.1, Pr=n=12, N; =0.2, N, =0.3, Le = 1.0.

Fig. 2.14. Plots of ¢ (¢) for K.
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9]

4T N, M =0.0,0.5, 0.8, 1.0
01 o
i
00 ¢ =
-0.1
K=A=0.1, Pr=n=12, Ny =0.2, Ny, =0.3, Le = 1.0.
=02
2 4 6 3 10 {
Fig. 2.15. Plots of ¢ (¢) for M.
A4)
Ny =0.1,0.4,0.7, 1.0
— ¢

K=A=M=0.1, Pr=n=12 Np=0.3, Le = 1.0.

“1obf

Fig. 2.16. Plots of ¢ (¢) for Ny.
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Ny = 0.4, 0.6, 0.9, 1.3
—005 |
K=A=M=0.1, Pr=n=12 N;=0.2, Le=1.0.

-0.10

-0.15

Fig. 2.17. Plots of ¢ (¢) for Ny

Le=09, 1.1, 1.3, 1.5

00
H]

]
K=A=M=01,Pr=n=12, N;=0.2, Np=0.3

-,

=VGiTy

Fig. 2.18. Plots of ¢ (¢) for Le.
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9]

0.1

K=A=M=0.1, n=12, N; =0.2, N, =0.3, Le = 1.0.

Fig. 2.19. Plots of ¢ (¢) for Pr.

n=20.0,0.2, 0.6, 1.8

=01

K=A=M=0.1, Pr=12, Ny =0.2, Np = 0.3, Le = 1.0.

Fig. 2.20. Plots of ¢ (¢) for n.
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Table 2.2. Skin friction for K, A, M and n.

K

— Reglc/2 Ctr

0.0

1.2

1.0832

0.1

1.1324

0.2

1.1802

0.1

0.0

0.1

1.2

1.1361

0.2

1.1288

0.4

1.1214

0.1

0.1

0.0

1.2

1.1276

0.1

1.1324

0.2

1.1468

0.1

0.1

0.1

0.8

0.9629

1.0

1.0511

1.2

1.1324
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Table 2.3. Numerical data of local Nusselt number for K, M, N;, Ny, Le, Pr and n when
A=0.1.

K |M|N | N, | Le |Pr |n | =Re;?Nu,
00/01]02]03]10]12]12]0.6638

0.1 0.6742
0.2 0.6836
01100(02]03]10|12]| 12| 0.6753
0.1 0.6743

0.2 0.6715
01701(01(103]10]1.2]|1.2] 0.6848
0.2 0.6743

0.3 0.6639

01701(02|01]10]12]|1.2]0.6743

0.2 0.6743
0.3 0.6743
01(01(02]03]00]1.2]1.2]0.6951
0.5 0.6824
1.0 0.6743
01701(02(03|10]08]1.2]0.5177
1.0 0.6001

1.2 0.6743
01701(102]03]|10]|1.2]0.8]0.6172
1.0 | 0.6463

1.2 ] 0.6743
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Conclusions

Flow of Powell-Eyring nanomaterial due to nonlinear stretching velocity and magnetic field is

discussed. Main observations of presented analysis are:

Through larger K, increasing behavior of velocity field and decaying behavior of temper-

ature and concentration are noted.

Impact of magnetic parameter M on temperature and concentration fields is reverse to

that of velocity field.

Temperature and concentration fields through Prandtl number Pr are qualitatively simi-

lar.

Larger Lewis number Le show decay in concentration field and corresponding layer thick-

ness.
Behaviors of N, and N; on concentration field are different.

Skin friction coefficient is higher through larger K, M and n while the reverse trend is

noticed through A.

At the surface the rate of heat transfer is lower for higher M and Nj.

47



Chapter 3

Outcome of melting heat and
internal heat generation in

stagnation point Jeffrey fluid flow

Current chapter investigates the magnetohydrodynamic (MHD) stagnation point flow of Jeffrey
material. Flow is caused due to a nonlinear stretchable surface of variable surface thickness.
Heat transfer characteristics are examined through the melting process, viscous dissipation and
internal heat generation. A nonuniform applied magnetic field is considered. Boundary-layer
and low magnetic Reynolds number approximations are employed in the problem formulation.
Both the momentum and energy equations are converted into the non-linear ordinary differential
system using appropriate transformations. Convergent solutions for resulting problems are
computed. Velocity and temperature profiles have been studied in detail. Further the heat

transfer rate is also computed and analyzed.

3.1 Formulation

Here stagnation point Jeffrey fluid flow is considered which is generated by a non-linear stretch-
ing sheet. The x— and y—axes are along and perpendicular to the stretchable sheet. A variable
magnetic field of strength By is injected in the y— direction (see Fig. 3.1). We assume that

1—n
the surface has variable thickness. The surface is at y = ¢ (z +a*) 2 , where ¢ is taken as an
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extremely small constant so that the surface is almost very thin, a* is a constant and shape

parameter is represented by n which has a great significance in the present problem. It is obvi-

ous that our problem is valid only for n # 1. For n = 1, the surface is not of variable thickness.

Moreover, melting heat transfer effects are also taken into consideration. The temperature

of melting sheet is considered to be T}, while free stream temperature is Too (> T},) . Here Tj

denotes the constant temperature of the solid medium far from the interface such that Ty < T5,.

NSONNN N

Slit

Uu—-U, =Uyp(x+a )", T—>Tg,

AAA

B(x)

Variable sheet thickness —> X

SONNN

u=U,x) =Uyx+a )" v=0T=T,,,

ar o
kg (*) = PR+ (T —Tolv(x, e(x +a) )

oy

y=g(x+a’) 2

Fig. 3.1 : Geometry of the problem.

The flow equations for Jeffrey fluid satisfy

ou Ov

% + 8_y =0, (3.1)
du H%u 3u
% v @ + o By 920y T Uouay?
¢ 2 U 21L 3’LL
de 14+ X | Oy _%g_yQJrvg_?ﬁ
Bi(x))?
7 B@) (), (3.2)
Pr
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ar  aT 82T o\ 2 ude Lu
“oe TUay T gt (/1L+/\) <a_u> ] B
Y Y PCp 1 Y +ugSh
Lo (T —Tp). (3.3)
PfCp

The boundary conditions are

u(w,y) =Uy (.’L‘,y) =0y (ZL‘ 4 a*)n’ (.’L‘ y) 0,
T(r,y) =T at y=c(z+a*) 7,
K =p[A\* T, — T 152
f( >y €(x+a*)1_2£_p[ +¢s (T — o)]v(a:,s(:c+a) )

u($7y):Ue(:nay)—}Uoo(l’_Fa*)nv T(:r,y)—> oo as Yy — 0.

In above expressions Bj(z) = By (z —Fa*)nTi1 the nonuniform magnetic field and Qo (z) =
Q1 (z +a*)"! the heat generation coefficient. Moreover the boundary conditions for heat
transport phenomena depicts that the sensible heat required to increase the temperature of
the solid Ty to its melting temperature 1;, plus the heat due to melting is equal to the heat
conduction of the melting surface. The velocity components and transformations are considered

in the forms:

— @E , = \/(n——H) Uy (af + a*)n_ly,
b= \/ % (2 + 0™ F Q) 61 (C) = 7T,

(3.5)

in which 1 denotes the stream function. Now Eq. (3.1) is automatically satisfied and Eqgs.
(3.2) — (3.4) become

F F// AQ 1+ MA— F/Q 3n—1 F//Q +(n—-1 FIEM
- (nﬂ) ME ~ () R
(3.6)
PrE F1F1/2 92
00 +Prig, + ——= [ FI2 43 (5 +Pr5< )91_0 (3.7)
b ~ () B !
/ _ /
F/(a) =1, Me#, () + Pr [Fl( )+ a (nﬂ)} =0, 01(a) =0, .

F{ (00) — A, 01 (00) — 1,



where A = %ﬁl represents the ratio parameter of free stream velocity and stretching velocity,

M = the magnetic parameter, 5 = \oUp (x 4+ a*)"™ ! the local Deborah number, Pr = ail
the Prandtl number, Fc¢ = #@TM) the Eckert number, § = Uocg;cp the heat generation

cp(Too—Tm)
N tcs(Tr—T0)

cs(Trm—To) cr(Teo —Tm)
= and N

parameter, Me = the melting parameter which is a combination of Stefan numbers

for the solid and liquid phases respectively, a = ¢ (”—H) Y the

surface thickness parameter and n = a = ¢ (”H) indicates the plate surface. Moreover
the domain of Egs. (3.6) — (3.8) is [, 0o[ and to facilitate the computation we transform the
domain to [0, co[ by defining Fy (n) = F1 (( —a) = f({) and 61 (n) = 61 (( —a) =60 (¢) . Hence
Egs. (3.6) — (3.8) yield

ff// 5 A2 LT MA— f/2 3n—1 112 +(n—1 1 g
f,,/+(1+)\1) +1( , ) +B ( 2 )f +1( )ff :0,
n %
_(n+1> My - (%) 11
(3.9)
3n—1 "2
6”—|—Prf9’+1Pr—E)\c f?+8 (57) £ +Pr5< 2 )6—0 (3.10)
+ A\ _(%)ff”f”/ n-+1
/ _ / n—1 _ —
£1(0) =1, Me#' (0) + Pr [f 0) +a (n“)} —0, 0(0) =0, )
I (00) = A, 0(0) — 1.
Local Nusselt number is defined by
(z 4 a%) qu,
Nug, = ——— 2dws 3.12
where ¢, denotes the surface heat flux given by
oT
Qu, = —k <—> . 3.13
2 f ay y:€(1.+a*)l_Tn ( )

Local Nusselt number in non-dimensional scale is given by

Ny, //Remy = —1| 2 + Lo (0, (3.14)

* *\n+1
where Re;, = Uw(xja ) — UO(HE ) represents the local Reynolds number.
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3.2 Homotopy solutions

Here

Me n—1
— _ _e ¢ = _ —1_¢¢
foulQ) = AC+ (1= A) (1— ™) = 7 a<n+1>, Bo,(¢) =1 — e, (3.15)
Bfdf d20
_af 4 av 3.16
fl dC3 dC? dCQ 0 ( )
These above linear operators (Ly,, Lg,) satisfy
Ly |Cs+ e + C{oeﬂ =0, Lo, [Cﬁe@“ +Che S| =0, (3.17)
in which C} (i = 8 — 12) are the random constants.
3.2.1 Deformation problems at zeroth-order
(L =9)Lp, [FCH) = fou Q)] = RNGIFC D), (3.18)
(1= 9L, [0, = 60.(0)] = BN, [F(C,B), 0P, (3.19)
F(0.) =1, 6(0,5) =0,
Pr (f 0,p) + « Z—L) + Mef' (0,p) =0, (3.20)
f'(00,p) = 4, b(o0,p) = 1,
N [fen] = TLvasa figk () vt
2 y P = 3 A\ 2
4 a¢? ' +-2n <A2 +MA - (%g) >
A\ 2 A n
Bn_ty (2] —1) 2%
+5 ( 2 )< C2> +(n Al) ¢ a¢? ’ (3.21)
_(mtl) £OU
(%3) f e
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A R 20 Y
./\/’92 f(Cvﬁ):e(Cvﬁ) = @—Fprf@

o M aC
Pr Be ((82f>2 5( ("5) £k 5k ))
- o\ 2
1+ |\ ac? — () 8t (d—gé)
+Prd (%) o (3.22)

For p = 0 and p = 1 one obtains

£(C,0) = f0,(Q), f(¢,1) = £(Q), (3.23)

0(¢,0) = 00,(¢), B(¢, 1) = 0(C), (3.24)

when p changes from 0 to 1 then f (¢,p) and 9(@“ ,p) display alteration from primary approxi-
mations fp,(¢) and 6y, (¢) to desired ultimate solutions f(¢) and 0(().

3.2.2 Deformation problems at mth-order

L, [fa(Q) = X fi1()] = ARTL(C),

(3.25)
Lo, 10:2(C) = xbin-1(C)] = R (C), (3.26)
fin (0) = Me 0, 0) + Pr (f (0) + (23) ) = 0 (0) = 0, } (3.27)
fh(00) = 01,(00) =0,
&, (et
REQ = B0 | o (A2+MA (i)
=
()
('S (foaali) + 0 0'E (fia)
8 izo o k=0 . (3.28)
() S (faereifl’)
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m—1
Rp:(() = 0 4 +Pr (Z fm_l_,;9§;> (3.29)

m—1
(251) 1520 () X

B = -

PI‘EC m—1 ke
Tn - (%) X (fm—l—l}> PO (3.30)

k=0 =

m—1

1" "

+ = Faaoii
prs (2 Vo, )

n+ 1 m—1; .

The following expressions are derived via Taylor’s series expansion:

=0
0(¢,p) = 00,(¢) + Ze (P, Om(C) = é!% (3.33)
=0

The convergence regarding Eqgs. (3.32) and (3.33) is solidly based upon the suitable selections
of hy and hy. Choosing suitable values of Ay and hy so that Eqs. (3.32) and (3.33) converge at
p =1 then

F(Q) = fou () + Z FinlC (3.34)

0(¢) = 00,(C) + Z 0:3, (3.35)

In terms of special solutions (f%, 07, ), the general solutions (fy,,0;) of the Egs. (3.25) and

m’ 7 m

(3.26) are defined by the following expressions:
fin(€) = f5,(0) + C5 + Cg exp(C) + Cig exp(—(), (3.36)

0,(¢) = 0%,(C) + C7y exp() + Cip exp(—(), (3.37)

54



in which Cf (i = 8 — 12) through the boundary conditions (3.27) are given by

Cg = Cn =0, CIO = —8C( )‘ ) 012 = —Hm(O),
¢=0
f e oy Me [005,(C) .
€5 = ~Cig— Fa(0) - M ( 29 c) (3.38)

3.2.3 Convergence

Clearly homotopic solutions contain nonzero auxiliary variables iy and hy. Such auxiliary
variables can tune and restrict convergence of obtained series results. To get the acceptable
values, the i— curves at 13th order of approximations are plotted. Figs. 3.2 and 3.3 clearly
indicate that the convergence zone lies within the ranges —1.55 < Iy < —0.4 and —1.45 < hiy <
—0.45. Table 3.1 ensures that 16th order of deformations are enough for meaningful solutions.
£(0)
00

=044 =Pr=12,A=M=6=01,Ec=Me=02,n=e=05

Fig. 3.2. hy—curve for f ().
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4'(0)

p=04 4 =Pr=12,A=M=4=01,Ec =Me =02,n =¢e=05

Fig. 3.3. hp—curve for 6 (¢) .
Table 3.1. Convergence of HAM solutions when \y = Pr =12, A= M =§ = 0.1, Ec =
Me=02,n=a=0.5and 8 =04.

Order of approximations | — f”(0) | '(0)

1 1.1193 0.6053
) 1.2341 0.5416
10 1.2448 0.5289
16 1.2469 0.5281
25 1.2469 0.5281
35 1.2469 0.5281
50 1.2469 0.5281

3.3 Discussion

Here effects of several pertinent parameters like ratio parameter A, ratio of relaxation to retar-
dation times A1, local Deborah number 5, magnetic parameter M, Prandtl number Pr, Eckert
number Fc, heat generation parameter §, melting parameter Me, surface thickness parameter
a and shape parameter n on velocity f’ (¢) and temperature 6 (¢). Fig. 3.4 shows the impact
of ratio parameter A on velocity distribution. Here A < 1 corresponds to the fact that free

stream velocity is less than the stretching velocity whereas A > 1 corresponds to the reverse
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phenomenon. Both velocity distribution and the momentum boundary layer are increased for
higher A (when A < 1) whereas for A > 1 the velocity distribution increases and opposite
trend is noticed in momentum boundary layer. Boundary layer vanishes for A = 1. Fig. 3.5
depicts the behavior of ratio of relaxation to retardation times A; on velocity. Both the velocity
and momentum layer are reduced for increasing values of A;. Fig. 3.6 displays the influence of
local Deborah number 5 on velocity distribution. Velocity and associated layer thickness are
enhanced for higher 5. Impact of magnetic parameter M on velocity profile is sketched in Fig.
3.7. Both the velocity and momentum layer are decreasing functions of magnetic parameter. In
fact more resistance is offered by the magnetic field to the fluid flow which results in the decay of
velocity. Influence of surface thickness variable a on velocity distribution is shown in Fig. 3.8.
Increasing values of « lead to higher velocity distribution. Effect of shape variable n on velocity
distribution is depicted in Fig. 3.9. It is noted that larger n lead to more velocity distribution
and momentum layer thickness. Especially analysis is based on the shape parameter n that is
associated with the type of motion, namely, the shape of surface and the nature of boundary
layer. For n = 1, the analysis reduces to the flat surface with constant thickness whereas for
n < 1 the behavior of surface transformed to increasing thickness with convex outer shape and
for n > 1 the behavior of surface changes to decreasing thickness with concave outer shape.
Further, the type of motion can also be controlled by the shape parameter n. For n = 0 the
motion becomes linear with constant velocity. If n < 1 the motion behaves as a decelerated
motion and accelerated motion for n > 1. Fig. 3.10 presents the influence of ratio variable A
on temperature distribution. Here temperature distribution is an increasing function of ratio
parameter. Figs. 3.11 — 3.13 show the behaviors of ratio of relaxation to retardation times Aj,
local Deborah number 5 and magnetic parameter M on temperature respectively. Tempera-
ture and related layer thickness are reducing functions of A1, § and M. Fig. 3.14 elaborates
the characteristics of Prandtl number Pr on temperature. Higher Prandtl number Pr lead to
stronger temperature. Effect of Eckert number Ec on temperature profile is sketched in Fig.
3.15. Temperature is larger for increasing values of Eckert number. In fact more heat is pro-
duced due to viscous forces between the fluid particles and thus the temperature distribution
enhances. Impact of heat generation variable § on temperature profile is displayed in Fig. 3.16.

Here temperature profile enhances for increasing values of heat generation parameter. Fig. 3.17
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depicts the influence of melting parameter Me on temperature profile. Temperature profile re-
duces with an increase in the values of melting paramter. Table 3.2 is generated to validate the
current analysis with the earlier published outcomes in a limiting sense. Here current HAM
solutions have nice resemblance with the previous numerical solutions by Sharma and Singh
[36] in a limiting sense. Effects of A1, A, M, 3, Pr, Me, Ec and ¢ on the local Nusselt number
are presented in Table 3.3. The local Nusselt number is higher for A, 3, Ec, Pr and ¢ while the

reverse trend is noticed through A, M and Me.

1.6 A =04,606,08,1.0,12, 14,16

0.4

B=M=06=014 =Pr =12 Ec =02, Me =@ =05,n =13
0.2

05 1.0 1.5 20 25 3.0 {

Fig. 3.4. Plots of f’(¢) for A.
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0.8

0.6

B=A=M=6=01Pr =12 Ec=02, Me =2=05n=13

A4 =0.0,03,06, 1.0

0.4
0.2

1 2 3 4 5 [

Fig. 3.5. Plots of f’(¢) for ;.
')
1.0
A=M=4=014=Pr =12 Ec =02 Me =2 =05n=13
0.8
0.6
B =00,02 04,06

04
0.2

1 2 3 4 5 'Y

Fig. 3.6. Plots of f'(¢) for 5.
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Bp=A=06=014 =Pr=12 Ec =02, Me =2=05n=13

M =0.1,05, 009, 1.3

0.8

0.6

0.4

0.2

Fig. 3.7. Plots of f’(¢) for M.

=
I
>
nh
<
nh

6 =01 4 =Pr =12 Ec =02, Me = 05, n =13

@ =00,08, 1.6, 24

1 2 3 4 5

Fig. 3.8. Plots of f/(¢) for a.
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B=A=M=4=014=Pr=12 Ec=02 Me=& =05

0.8
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1.0
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0.6 R
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Fig. 3.10. Plots of 6 (¢) for A.
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Fig. 3.11. Plots of 6 () for A;.
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Fig. 3.12. Plots of 6 (¢) for .
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Fig. 3.14. Plots of 0 (¢) for Pr.
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Fig. 3.17. Plots of 6 (¢) for Me.
Table 3.2. Comparative values of —f” (0) via A whenn =1and a=8=XA\ =M = Me = 0.

A | HAM Numerical [133]

0.1 | 0.96939 | 0.969386

0.2 | 0.91811 | 0.9181069

0.5 | 0.66726 | 0.667263
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Table 3.3. Numerical data for local Nusselt number when o« = 0.5 and n = 1.3.

M |A | M| B |Pr|Ec|d | Me| Nuy,/+/Reg,
1.1{01]01(01]12]0.1|0.1]0.5 |0.5307
1.2 0.5281

1.3 0.5258

1.2(01)01(01}12]01|01]0.5 |0.5281

0.2 0.5363

0.3 0.5473

1.2101]01(01(12(01|01|05 |0.5281

0.3 0.5200

0.5 0.5122

1.2101(01(01(12(01|01|05 |0.5281

0.3 0.5329

0.5 0.5395

1.2101]01(01(12(01|01|05 |0.5281

1.4 0.5718

1.6 0.6105

1.2101]01(01(12(01|01|05 |0.5281

0.3 0.5685

0.5 0.6075

1.2101(01(01(12(01|01|05 |0.5281

0.2 0.5787

0.3 0.6575

1.2101(01(01]12[01|0.1|04 |0.5522

0.7 | 0.4865

1.0 | 0.4365
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3.4 Conclusions

Combined characteristics of melting heat and internal heat generation in stagnation point flow of
Jeffrey material towards a nonlinear stretchable surface of variable surface thickness is studied.

Main observations are

e Larger Deborah number S elucidates an increase in velocity field while opposite trend is

noticed for temperature.
e Larger values of A\; leads to lower velocity and temperature distributions.
e Melting parameter Me indicates decreasing behavior for temperature distribution.
e Temperature distribution is an increasing function of heat generation parameter §.

e Local Nusselt number reduces for melting parameter while reverse trend is seen for heat

generation parameter.
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Chapter 4

Stagnation-point second grade
nanofluid low over a nonlinear
stretchable surface of variable

thickness with melting heat process

Ongoing chapter addresses mixed convection stagnation point second grade nanofluid flow along
with melting heat phenomena. Novel features regarding Brownian motion and thermophoresis
are incorporated. Boundary-layer approximation is employed in the problem formulation. Mo-
mentum, energy and concentration equations are converted into the non-linear ordinary dif-
ferential system through the appropriate transformations. Convergent solutions for resulting
problem are computed. Behaviors of various sundry variables on temperature and concentra-
tion are studied in detail. The skin friction coefficient and heat and mass transfer rates are
also computed and analyzed. Our results indicate that the temperature and concentration have

been increased for larger thermophoresis parameter.
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4.1 Formulation

Here the steady stagnation point flow of second grade nanomaterial is considered. The flow
is caused by a non-linear stretched surface. The x— and y—axes are chosen along and per-
pendicular to the stretched surface. Mixed convection, Brownian motion and thermophoresis
effects have been included. We assume that the surface has variable thickness. The surface is
at y = e(x+ a*)l_Tn , where ¢ is taken as an extremely small constant so that the surface is
almost very thin, a* is a constant and shape parameter is represented by n which has a great
significance in the present flow. Clearly our problem holds only for n # 1. For n = 1, the
surface is not of variable thickness. Moreover melting heat transfer effect is also accounted.
The temperature of melting sheet is assumed to be T;,, while the temperature in free stream is

Too (> T1) (see Fig. 4.1). Here Ty denotes the constant temperature of the solid medium far

from the interface such that Ty < T},. The flow is governed by [9, 20] :

—_—>
1-n

—
o~
—
3 *
5]
+
g B
\ =
[
B 2
s =
3 [1 B~
=~ h a |
2" E
4 e
- 8 &
g = + 3
*U A \E *
+ 2 3
= @ <
\é a [l "
S g =
I ﬁ = Ip
= A = f
s = 3
2 Il %
T 1) = :ﬁz
3 = S
z 0~
= |4 LS
3] ~——
E =
>
> —

Slit

Fig. 4.1. Flow configuration.
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ou Ov

PBu Au H%v

u? +v% = Ue%+y%+ﬂ “é{?@f@@

& y & e\ +5i58 oG
+86; (T' = Tm) + 8B (C = Cn), (4.2)

or T 9T Dy (0T\? oC dT

— ftv—-=al55 — = — 4.
u8x+vay a18y2+T<Too <8y> +DB<8y 89))’ “3)
oC oC  Dr 0T 0*C

The subjected boundary conditions are [20,109] :

1—n

u=U,=Up(x+a*)", v=0, T=T, C=C, at y=c(x+a*) 2 ,

_ 4.5)

orT o * . N . (

ki (%>yza<z+a*>71*" = pp W s (T = To)l v (w2 0+ 0) 5
u—U=Ux(xz+a")", T—-Tyw C—Cx as y— oo, (4.6)

in which 7 <: Ezgi ) the ratio of heat capacity of the nanoparticles to the heat capacity of the

fluid. The velocity components and transformations are considered in the forms:

u=32 v=-3 n=\/(5) Uy (z+a")"y,

y
(4.7)
Y= <n2_Jlr/1> Uo (z + a*)n—HFI (€), 01(Q) = TZOiTTmﬂ ¢1 () = CCO'(;CC;T-
Now Eq. (4.1) is automatically verified and Eqgs. (4.2) — (4.6) become
B+ B F + () (42 = FP) + 535006 (01 + Vo)
3n — 1) FIF/"— (4.8)
o 3 1( " 1 ‘ =0
(57) 17 = (57) Ay
! 4 Pr (F19’1 + N, + Nte’f) =0, (4.9)
N,
Y+ LePr Fi ¢, + FZ@’{ =0, (4.10)
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F{ (o) =1, Meb) (a)+ Pr {Fl (a) +a (Z—H)} =0, 01(a) =0, ¢1(a) =0,

(4.11)
Fi(o0) = A, 01(0) =1, ¢;(o0) =1,
where A\g = R%%ct the Grashof number, N, = %t((%‘::g:)) the buoyancy ratio parameter,

n—1
Qg = UOL(:C:“L the local second grade parameter, N, = MM the Brownian motion
parameter, Le = g—i the Lewis number and N; = % the thermophoresis parameter.
Moreover the domain of Egs. (4.8) — (4.11) is [, 00| and to facilitate the computation we

transform the domain to [0, co[ by defining

f
01(n) =01 (¢—a)=0(), (4.12)
¢

Hence Eqs. (4.8) — (4.11) yield

"+ (f—fl) (A2 = ) + 2526 (0 + N,9)

_ 1pm_ 4.13
o (Bn—1)f'f o (4.13)

() 7 = (25 15

0" + Pr ( FO+ NW'o + Nte'z) =0, (4.14)
17 / Ny "
¢+ LePr fo' + —0" =0, (4.15)
Ny
/ = / u e = =
F1(0) =1, Me#' (0) + Pr (f 0) +a (n+1)> 0, 6(0) = 0, $(0) = 0, w1
f(00) = A, 0(c0) = 1, ¢(c0) — 1,
Expressions of skin friction coefficient and local Sherwood and Nusselt numbers are
Twsy (z +a") Jun (T + a*) Gu,
Cf:l;2 pr1%7 S 1 DB (Coo o Cm)7 u:cz kf (Too _ Tm), ( 7)
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in which 7, denotes the wall shear stress, j,,, the wall mass flux and g, the wall heat flux.

These are
_ o] Ou 9 9?2
rur = (1B + o ( 535+ 255+ 058)) e
—_D ( ) L 41
J B Iy y:s(era*)lT ( 8)

S T
qw2 - kf <8y>y:5(x+a*)1_7n

The related dimensionless definitions are

VRew, Oy, = /25 (£7(0) + a2 ((51) f1(0) £ (0) = (%5) £ (0) £ (0)))
Sha, [/ Rez, = n+1¢ (0), (4.19)
Nua, | /Remy = — /2526 (0).

4.2 Homotopic solutions

Our objective now is to calculate the local similar solutions via homotopy analysis method
(HAM). The appropriate initial assumptions ( foys B0y, ¢02) and the corresponding auxiliary
operators (['fu Lo, , £¢1) are

Jou(Q) = AC+ (1= A) (1= ) = e — o (21),

(4.20)
002(C) =1- e_ca gbOg(C) =1- e_C>
Ly =f"=Ff, Lo=0"—0, Ly =¢" —0. (4.21)

The linear operators have properties

Lo, [C’i‘GeC + C’i‘}e‘c] =0, (4.22)
£¢1 [Ci‘SeC + Cfgeic] - 0

Here Cf (i = 13 — 19) denote the random constants.

4.2.1 Deformation problems at zeroth-order

(=) L, [£(G) = fo (O] = g, [£(C), 0 0), 0(C.9)] (4:23)
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(1= 5) Loy [0(6) = 00, (Q)] = BNy, [£C ), 0C,9), $(C.0)] (4:24)
(=) Lo, [0 (1) = b0, Q)] = Ny, [F(C9), B 3), ()] (4.25)
/ (A?,ﬁ)zl, 9(0:15) =0, ¢(0,p)=0, (4.26)
Me 8 (0,) + Pr (f(o,ﬁ)+a<g—*})) —0,
fl(0o,p) = A, 0(c0,p) =1, ¢(c0,p)=1, (4.27)
o e o] OBF  0f0*f | 2n , Ofof
Ny, [f(C,p% 0(¢,p), ¢(C,p)} = 8§3 +a—€a—gg+ ) (A _6’_C8_C>
T 1)‘G ( )
83
For ( ( n— 1) ¢ o o ) , (4.28)
(1) 2L, (= 21)f8—<§
o 9% 90 0 20\’
NP 9% a¢> N, 9%
Ny [F€9), 8¢, 96.0)] = 5oz + LePr f52 + T (4:30)
Setting p = 0 and p = 1 one obtains
£(¢,0) = fo,(©)s F(¢1) = £(0), (4.31)
6(¢,0) = 00,(¢), 0(¢,1) =6(C), (4.32)
3(C,0) = ¢0,(0), B¢, 1) = B(C). (4.33)
When § changes from 0 to 1 then f(¢,#), 0(¢, ) and ¢(C, p) vary from primary approximations

J0,(€), 00,(¢) and ¢, (¢) to desired ultimate results f(¢),

0(¢) and ¢(C).

4.2.2 Deformation problems at /mth-order

L [fm (€)= XS
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(4.34)



Lo1 [0 (C) = X1 (C)] = TigRE(C), (4.35)

Loy 6 (O) = X1 (Q)] = hgRE, (O), (4.36)

/ n—1 /
Fin @ = Pr (£ 0) 40 (527 ) ) 4 Met 0 = 6 ) =0 0 =0, (430
fin (00) = ;0 (50) = 6,3, (o) =0, (4.38)

m—1
n
RO = s S (- )
k=0
1)\0 (9m71 + Nybs 1)

- m—1 g "
+a2( - (13n Do f 11 kJ; 1 )7 (4.39)
(nT_) ZZL 0 f,/?; 1— kf” (n+ )Zk =0 fm 1- lcf

m—1 m—1 m—1
RZ;(C)H%I—l—Pr( Faa i T No D0 G+ N DO ;) (4.40)

k=0 k=0

RE(C) = ¢ 1+LePerm i AL (4.41)
k=0

The following expressions are derived via Taylor’s series expansion:

. [e ] . am r 9
FCD) = IO+ 3 5O, 1a(0) = Tl (1.42)
m=1 ’ p=0
wi(c.
0(C.P) = 00,(¢ +Ze (OP™, 0 (C) = %a 8;5;;*’) : (4.43)
=0
. OMG(C. B
BC.5) = doy(O) + Z% 6310 = e t) (4.41)
p=0

The convergence regarding Eqs. (4.42) — (4.44) solidly depends on suitable values of iy, fig and
hiy. Choosing appropriate ¢, fig and hig so that Egs. (4.42) — (4.44) converge at p = 1 then
o0

F©) = fo,(Q)+ ) fanl0), (4.45)

m=1
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oo

0(¢) = 00,() + Y _ 0m(C), (4.46)
m=1

$(C) = 60,(Q) + D dm(Q)- (4.47)
m=1

In terms of special solutions (f},, 05,, ), ), the general solutions ( fy,, 0., ¢,) of the Egs. (4.34)—
(4.36) are defined by the following expressions:

fin (Q) = f7, (Q) + Ci3 + Cigexp(¢) + Cf5 exp(—(), (4.48)
O (C) = 05, (¢) + Cig exp(C) + Ci7 exp(—(¢), (4.49)
b, (C) = b5, () + Cigexp(() + Cig exp(—(), (4.50)

in which C} (i = 13 — 19) through the boundary conditions (4.37) and (4.38) are given by

Cis = Cig=Ci3=0, Cj5= ( )‘ , Ot = —05,(0),
9 oo
. . . Me [ 067, (¢ N N %
Ci3 = —Cf5— f3(0) — Pr ( 8C( )'gzo - 017) , Clo = —¢3,(0). (4.51)

4.2.3 Convergence analysis

No doubt the homotopic solutions (4.45) — (4.47) have the nonzero auxiliary variables Ay,
hg and hg. These variables are important to tune and govern the convergence of obtained
approximate homotopic expressions. For meaningful values of such variables, we have drawn
the h— curves at 16th order of deformations. Fig. 4.2 indicates that the convergence region

satisfies —1.75 < hy < —0.5, —1.9 < hyp < —0.3 and —1.85 < Ay < —0.4. Table 4.1 depicts that
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the 35th order of deformation is sufficient for convergent solutions.

A=A =N=z=avn=Np=Me=n=e¢ =01, N=001,Pr=Le=1

f"©0),0'0),4"' 0

-15 -1.0 =05 0.0

hfahﬂah¢

Fig. 4.2. The h—plots for f, 8 and ¢.

Table 4.1. HAM solutions convergence when A = A\g =N, =as = Ny = Me=n=a =0.1,
N; =0.01 and Le = Pr = 1.0.

Order of approximations | f”(0) | 6'(0) | ¢’ (0)
1 —0.743 | 0.752 | 0.728
) —0.730 | 0.671 | 0.617
10 —0.749 | 0.661 | 0.596
15 —0.762 | 0.658 | 0.588
20 —0.772 | 0.655 | 0.583
25 —0.782 | 0.653 | 0.579
30 —0.786 | 0.651 | 0.576
35 —0.791 | 0.649 | 0.574
40 —0.791 | 0.649 | 0.574
50 —0.791 | 0.649 | 0.574
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4.3 Interpretation

This portion organizes effects of several pertinent parameters like ratio parameter A, Grashof
number Ag, buoyancy ratio parameter N,, local second grade parameter as, thermophoresis
parameter Ny, Brownian motion parameter N, Lewis number Le, Prandtl number Pr, melting
parameter Me, shape parameter n and surface thickness parameter a on temperature 6 (n)
and concentration ¢ (n) distributions. Fig. 4.3 presents the influence of ratio parameter A on
temperature profile. Here temperature distribution is an increasing function of ratio parameter
while the thermal layer thickness decreases. Note that A < 1 corresponds to the fact that
the free stream velocity is less than the stretching velocity whereas A > 1 corresponds to the
reverse phenomenon. For A = 1 boundary layer vanishes as both velocities (free stream velocity
and stretching velocity) balanced each other. Fig. 4.4 depicts the behavior of Grashof number
Ag on temperature 6 (1) . Temperature decreases whereas thermal layer thickness enhances for
increasing values of Ag. Fig. 4.5 displays the behavior of buoyancy ratio parameter N, on
temperature distribution. Here temperature decreases and associated layer thickness enhances
via N,.. Effect of local second grade variable as on temperature distribution is plotted in Fig. 4.6.
Temperature decreases and related layer thickness enhances for local second grade parameter
9. Figs. 4.7 — 4.12 show the behaviors of thermophoresis parameter Ny, Brownian motion
parameter Np, Prandtl number Pr, melting parameter Me, shape parameter n and surface
thickness parameter o on temperature respectively. Temperature enhances and thermal layer
thickness reduces by increasing values of N;, N, and Pr whereas temperature decreases and
thermal layer thickness increases by increasing values of Me, n and «. Here especially the
analysis is based on the shape parameter n that is associated with the type of motion, namely,
the shape of surface and the nature of boundary layer. For n = 1, the analysis reduces to the
flat surface with constant thickness whereas for n < 1 the behavior of surface transformed to
increasing thickness with convex outer shape and for n > 1 the behavior of surface changes
to decreasing thickness with concave outer shape. Further, the type of motion can also be
controlled by the shape parameter n. For n = 0 the motion becomes linear with constant
velocity. If n < 1 the motion behaves as a decelerated motion and accelerated motion for
n > 1. It is a valuable fact to focus here that the properties of liquid metals are characterized

by small values of Prandtl number (Pr < 1), which have larger thermal conductivity but smaller
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viscosity, whereas higher values of Prandtl number (Pr > 1) associate with high-viscosity oils.
Particularly Prandtl number Pr = 0.72, 1.0 and 6.2 associate to electrolyte solution, air such
as water and salt water respectively. In heat transfer, Prandtl number is used to control the
thicknesses of momentum and thermal boundary layers. Further it is also observed that V; and
Ny portray the vitalities of thermophoresis and Brownian motion phenomenons respectively.
The higher the values of N, and Ny, the larger will be the vitality of the corresponding effects.
Larger NV, gives stronger thermophoretic force which encourages the nanoparticles to move from
hot to cold areas. Ultimately the temperature and thermal layer are increased. In addition,
larger Brownian motion parameter has higher Brownian diffusion coefficient and smaller viscous
force. It increases temperature and thermal layer thickness. The change in concentration
field ¢ (n) for several values of ratio parameter A, dimensionless second grade parameter oo,
thermophoresis parameter N;, Brownian motion parameter N, Lewis number Le, Prandtl
number Pr, melting parameter Me, shape parameter n and surface thickness parameter « are
displayed in the Figs. 4.13 — 4.21 respectively. It is observed that by increasing a9, Ny and Pr
the concentration field ¢ (n) decreases while it increases by increasing A, Ny, Le, Me, n and
a. There is low concentration gradient and more concentration for larger V. Table 4.2 depicts
skin friction coefficient for several effective parameters A, Ag, N, as and Me. Skin friction
coefficient is higher for Ag, N, and ao while the reverse trend is noticed through A and Me.
Table 4.3 is generated to analyze the numerical data of local Nusselt and Sherwood numbers
for distinct values of embedding parameters. Here it is examined that local Nusselt number
reduces for larger buoyancy ratio parameter IV, local second grade parameter aa, Lewis number
Le and melting parameter Me whereas opposite trend is seen for ratio parameter A, Grashof
number Ag, thermophoresis parameter Ny and Brownian motion parameter N,. However the
local Nusselt number enhances for Prandtl number Pr. A larger Prandtl number containing
higher convection in contrast to pure conduction and effective in transmitting energy through
unit area. Hence local Nusselt number enhances for Prandtl number. Further local Sherwood

number is higher for A, A\., Ny, and Le while the reverse trend is noticed through N, ag, N,
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Fig. 4.4. Plots of 0 (¢) for Ag.
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Fig. 4.6. Plots of 0 (¢) for as.
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Fig. 4.7. Plots of 6 (¢) for V.
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Fig. 4.8. Plots of 0 (¢) for Ny.
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Fig. 4.14. Plots of ¢ (¢) for as.
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Fig. 4.19. Plots of ¢ (¢) for Me.

#&)

1.0

0.8

A=12, Ag=N; =& =Ny =N, =Le =0.1, Pr =10,

Me =05, n=1.3.
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Table 4.2. Computed values of Cy,  when Ny = a = 0.1, Le = Pr = 1.0, N; = 0.01 and
n =0.9.

A | dg | N | ag | Me —C'fm2
00(01]01]0.1]0.1 |1.270
0.1 1.256
0.2 1.250
0.110.0]01]0.1]0.1 |1.258
0.2 1.263
0.4 1.268
0.1/01]00]01]0.1 |1.253
0.3 1.255

0.6 1.261
0.1101]01]0.01]0.1 |0.916
0.1 1.257

0.2 1.621
0.1101]01]0.10.0 |1.311
0.2 | 1.214

0.4 | 1.141
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Table 4.3. Numerical data for local Nusselt and Sherwood numbers through pertinent para-

meters when a = 0.1 and n = 0.9.

A | Ag | No | ag | Ny Ny | Le | Pr | Me | —Nug, | —Shy,

00(01(01(01]001|01]1.0]10|0.1 |0.55 0.491

0.1 0.568 0.509

0.2 0.573 0.513

01700|01(01]001]01}10]|1.0]0.1 [0.563 0.504

0.2 0.566 0.505

0.4 0.569 0.506

01(01)00(01]001]01]10]|1.0]0.1 [0.568 0.512

0.3 0.566 0.510

0.6 0.565 0.505

01(01(101(00]001]01]10]|1.0]0.1 [0.583 0.522

0.1 0.568 0.510

0.2 0.550 0.493
01(01(01|01)00 (01|10])10]0.1 |0.563 0.537
0.1 0.580 0.220

0.2 0.583 0.011
01(01(01|01)001(01|10]10]0.1 |0.580 0.224
0.3 0.644 0.407

0.5 0.711 0.441
01(01({01(01)001]01|0.0](10]0.1 | 0.566 0.266
0.5 0.565 0.380

1.0 0.564 0.506
01({01(01]01]001(01|10]09]0.1 |0.532 0.509
1.0 0.565 0.506

1.1 0.598 0.504

01(01(01|01)001(01|10]10]0.0]0.598 0.535

0.2 | 0.535 0.482

0.4 | 0.489 0.443
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4.4 Conclusions

Melting heat and mixed convection in stagnation point second grade nanofluid flow towards a

nonlinear stretchable surface of variable surface thickness are investigated. Main results are:

e An increment in both Grashof number A\g and buoyancy ratio parameter N, elucidate a
decreasing behavior for temperature field while dual behavior is noticed for concentration

field.

e Increasing trend is noticed for both temperature and concentration distributions for larger

N; while opposite trend is seen for Brownian motion parameter Np.

e Larger values of shape parameter n illustrates opposite trend for temperature and con-

centration fields.

e Melting parameter Me indicates decreasing trend for temperature distribution while op-

posite trend is noticed for concentration field.

e The skin friction coefficient is higher for A\g, N, and as while the reverse trend is seen for

A and Me.

e Local Nusselt number reduces for larger buoyancy ratio parameter N, second grade para-
meter ag, Lewis number Le and melting parameter Me whereas opposite trend is observed
for ratio parameter A, Grashof number A¢g, thermophoresis parameter Ny, Brownian mo-

tion parameter Ny and Prandtl number Pr.

e Local Sherwood number is higher for A, Ag, Ny and Le while the reverse trend is noticed

for N, ag, Ny, Pr and Me.
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Chapter 5

Numerical study for
Darcy-Forchheimer flow due to a
curved stretching surface with
homogeneous-heterogeneous
reactions and Cattaneo-Christov

heat flux

The current chapter investigates Darcy-Forchheimer flow generated by curved stretchable sur-
face. Flow for porous space is illustrated by Darcy-Forchheimer relation. Concept of homoge-
neous and heterogeneous reactions is also utilized. Heat transfer for Cattaneo—Christov theory
characterizing the feature of thermal relaxation is incorporated. Nonlinear differential systems
are derived. Shooting algorithm is employed to construct the solutions for the resulting non-
linear system. The characteristics of various sundry parameters are studied and discussed.

Numerical data of skin friction and local Nusselt number is prepared.
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5.1 Formulation

Two-dimensional (2D) flow by a curved stretchable sheet (coiled in a circle having radius R with
linear stretching velocity u = wu,,) is addressed. The distance R of curved stretchable surface
from the origin determines the shape of curved surface (see Fig. 5.1). Flow in porous medium
is characterized by Darcy-Forchheimer relation. Moreover heat transfer via Cattaneo—Christov
theory characterizing the feature of thermal relaxation is examined. Further homogeneous and
heterogeneous reactions with two chemical species A; and Bj respectively are also taken into

account. For cubic autocatalysis, the homogenous reaction is

O
Fig. 5.1. Physical model.
Ay + 2By — 3By, rate = k.ab?, (5.1)

whereas heterogeneous reaction on catalyst surface is
Ay — By, rate = k,a, (5.2)

in which a and b are the concentrations of chemical species A1 and B respectively and rate

constants are defined by k. and ks. Equations governing the flow are

0 ou
o ((r+ R)v) —i—R% =0, (5.3)
1 5, 1 @

r—l—Ru _p_f@r’
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U%—F—R u@—i- ! Uy = L R %
or r+R 0s r+R N

_p_fr +ROs
+v @ + ! % - ! U
ot r4+ROr (r+R)?
P22
Fu Kpu, (5.5)
oT R OT
da R Oa 0%a 1 Oa
= — =Dy, | =— 4+ ——=) — keab? :
Yor T R"s A1<8r2+r+R8r> keal”, (5.7)
ob R 0b b 1 0b 9
Var TrrRYes - D <W+T+RE> keab™, (5:8)
with the boundary conditions
Oa ob
U=1Uy(s) =ars, v=0, T =T,, DAlE = ksa, DBIE = —ksaatr =0, (5.9)
ou
u— 0, E—>0, T— Ty, a—ay, b—0as r— oo. (5.10)

Here F (z %) the porous medium variable inertia coefficient, Cj, the drag coefficient, K, the
permeability of porous medium, D4, and Dp, the diffusion coefficients of chemical species A;
and Bj respectively, ag > 0 the dimensional constant and q the heat flux whose mathematical

expression as per Cattaneo-Christov theory is
q+ X (V.Vq—q.VV +(V.V)q) = —k;VT, (5.11)

where \; the relaxation time of heat flux. By considering incompressible fluid (V.V =0), Eq.
(5.11) yields
q+ X (V.Vq—qVV)=—kVT. (5.12)
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Then the temperature equation becomes

or R T ky (0T 1 T R \?&T
V—+ ——=u— = >+ -+ —
or r+R 0s prep \ Or r+ R Or r+R) Os
9*T R \? T
v? oz T u’ T+R> 0s?
Ov R _,0v) oT
N + (UE + T+Ru%> ¥ (5.13)

R _,,0u R Ju |\ oT R 82T
+ <r+RU% Tu (r+R> %) 75 T 2R G5s

Moreover for the case of curved surface, pressure is no longer consistent within the boundary

layer. Using the following transformations

u:alsf’(C), U:_WRR\/CH_UJC(C)’ ¢= %T’

(5.14)
p=psais?P((), k=\/ZR, 0(()=+=, a=ap((), b=aoh((),
Eq. (5.3) is symmetrically verified and Egs. (5.4) — (5.13) yield
or  f°
8—C = —C e (5.15)
2k 7 1 7 1 / k 7 k 2 k r 2y ogl
= e e e e R M 619
i ((9// + 9_/) —y ( k2 (f29” + ff/gl) _ k2f29’> + _fel -0 (5 17)
Pr C+k (C+k)? C+k ’ ‘
1 1" (ﬁl k / 2 _
§<¢ +<+k>+<+kf¢—k1¢h =0, (5.18)
0 " W k / 2 _
2 <h +C+/€> gl =0, (5.19)
f = 07 .f, =4 0= 17 ¢/ = k2¢> 61hl = _k2¢ at C = 07 (520)

ff—0, f"—0, 6—0, ¢—1, h—0 as (— oo,

where k stands for dimensionless curvature parameter, F;. for inertia coefficient, A for porosity
parameter, v for dimensionless thermal relaxation parameter, Sc for Schmidt number, k; for

intensity of homogeneous reaction, ks for intensity of heterogeneous reaction and §; for ratio of
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diffusion coefficients. These parameters can be expressed as follows:

a v _ _C _
k:R\/Tl, )\:K_al’ Fr— \/Ib{_pj V—al)‘tv
Se— Jy = ke g, — N

DA1 ap ’ DA1 a1

Now eliminating pressure P from Eqs. (5.15) and (5.16), we get

v + 2fll/ f/l f‘/ k

A T S AT S AR Yy

(fFf"=1f )+(C+k‘)2

" f/2 " I B
NETil (ff +¢+k> (e ge) -0

Pressure P can be calculated from Eq. (5.16) as

P

C—l—k( fm‘i‘ngkf”_ <+1]€2j:/_i_CTkkff// )
9k 2 2 )
C+k‘f’ (C+I€)2ff, Ffl _)\f,

When Dy, = Dp, then §; =1 and thus

¢ Q) +h(¢) =1

Now Egs. (5.18) and (5.19) yield

1 " QZ)/ 2
§<¢ +C+/€> C+/€f¢ k1g (1 —9)" =0,

with the boundary conditions
¢'(0) = k29 (0), ¢ (00) — 1.
Definitions of Cy, and Nus are

-
Cy,, = Tsl2 , Nug =
pfuw
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(5.22)
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(5.25)

(5.26)
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in which (7,s,) stands for wall shear stress and (q,,.) for wall heat flux which are given by

Y

Trsy = M (% - r«tR) r—0 (528)
Qu, = _kf ((?d_zj)}r:[)'

In non-dimensional coordinates

Cray Resl® = 17(0) = 1 1/(0),

(5.29)
NugRe;"/* = —0/ (0),

where Reg, = ﬂ;j stands for local Reynolds number.

5.2 Discussion

The system of Eqgs. (5.17), (5.22) and (5.25) subject to (5.20) and (5.26) are computed numer-
ically by shooting method. Main interest here is to examine the velocity f’((), temperature
6 (¢) and concentration ¢ (¢) profiles for several influential variables like dimensionless radius of
curvature parameter k, inertia coefficient F,., porosity parameter A, Prandtl number Pr, thermal
relaxation parameter v, Schmidt number Sc and strength of homogeneous reaction k. Effects
of curvature parameter k, inertia coefficient F;. and porosity parameter A\ on dimensionless ve-
locity distribution f’ () are presented in the Figs. 5.2 — 5.4 respectively. Fig. 5.2 elucidates
the impact of dimensionless radius of curvature k on velocity distribution f’({). Both velocity
and momentum layer thickness are higher when curvature parameter k is increased. Variation
of inertia coefficient F,. on velocity f’(() is displayed in Fig. 5.3. Larger inertia coefficient F
shows a decay in velocity f’(¢) and momentum layer thickness. Fig. 5.4 elaborates the influ-
ence of porosity parameter A on velocity f’ (¢). Larger porosity parameter A shows a reduction
in velocity field f’'({) and related layer thickness. Impacts of curvature parameter k, inertia
coefficient F)., porosity parameter A, Prandtl number Pr and thermal relaxation parameter + on
dimensionless temperature profile § ({) are displayed in the Figs. 5.5—5.9 respectively. Fig. 5.5
elucidates the variation of dimensionless radius of curvature parameter k£ on temperature profile
0 (¢) . Both temperature 0 (¢) and thermal layer thickness are increased for larger curvature k.

Fig. 5.6 elaborates the influence of inertia coefficient F, on temperature 6 (¢). Larger inertia
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coefficient F, shows an increment in temperature 6 () and related layer thickness. Outcome of
porosity parameter A\ on temperature 6 (¢) is displayed in Fig. 5.7. Larger porosity parameter A
shows more temperature 6 (¢) and thermal layer thickness. Existence of porous media opposes
the fluid flow which ultimately enhances temperature 6 (¢) and corresponding layer thickness.
Fig. 5.8 depicts the effect of Prandtl number Pr on temperature profile 6 (¢). Clearly both
temperature and thermal layer thickness are lower for larger Pr. Fig. 5.9 shows the variation
of thermal relaxation parameter v on temperature 6 (). Larger thermal relaxation parameter
~ shows a reduction in temperature field and related layer thickness. Contributions of dimen-
sionless radius of curvature parameter k, inertia coefficient F;., porosity parameter A, Schmidt
number Sc and strength of homogeneous reaction k; on dimensionless concentration profile
¢ (¢) are presented in the Figs. 5.10 — 5.14 respectively. Fig. 5.10 elucidates the impact of
dimensionless radius of curvature parameter k£ on concentration ¢ (¢) . It is noted that concen-
tration ¢ (¢) is reduced via k. Variation in ¢ (¢) for different inertia coefficient F, is illustrated
in Fig. 5.11. Larger values of F, correspond to higher concentration ¢ (¢). Effects of poros-
ity parameter A on concentration ¢ (¢) is displayed in Fig. 5.12. Larger porosity parameter A
causes an enhancement in concentration ¢ (¢). Fig. 5.13 shows the impact of Schmidt number
Sc on concentration ¢ (). Larger Schmidt number Sc shows an enhancement in concentration
¢ (¢). Impact of k1 on concentration ¢ (¢) is shown in Fig. 5.14. Concentration ¢ ({) is reduced
for higher strength of homogeneous reaction k;. Table 5.1 elucidates the numerical data of
skin friction coefficient for numerous values of curvature parameter k, inertia coefficient F;. and
porosity parameter \. It is examined that skin friction coefficient is enhanced for larger F. and
A while reverse trend is noticed for k. Table 5.2 is displayed to analyze the numerical data of
local Nusselt number for curvature parameter k, inertia coefficient F)., porosity parameter A,
Prandt]l number Pr and thermal relaxation variable . Clearly local Nusselt number is increased

for higher Prandtl number Pr and thermal relaxation v whereas the opposite trend is seen via

97



curvature parameter k, inertia coefficient F;. and porosity parameter .

A=F =py=01Pr =S =10,k =k, =05

k =02,05, 08, 14

Fig. 5.2. Plots of f'(¢) for k.

k=09 4= =01, Pr =Sc =10,k =k =05

0.8

0.6

Fr =0.0,02,05,09

0.4

0.2

Fig. 5.3. Plots of f’(¢) for F.
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k =0.9, Fr =y =01, Pr =S¢ =10, ki =k, =05

0.8

0.6

0.4

A =00,0205,08

0.2

0.8

0.6

04

02

- g
Fig. 5.4. Plots of f/(¢) for \.
(&)
1.0
A =F =01 =001, Pr=Sc =Kk =k, =05
k =01,02, 04,07
2 4 6 8 0 {

Fig. 5.5. Plots of 6 (¢) for k.
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k=09, 4=01, =001, Pr=Sc =k =k, =05

F, =00, 40, 50, 7.0

Fig. 5.6. Plots of 6 (¢) for F,.
(<)

=09, / =01, » =001, Pr = Sc :k1 :kz =05

A =00, 04,12, 15

Fig. 5.7. Plots of 6 (¢) for A.
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08

0.6

04

02

k=09 4d=F =01 » =001 5 =k =k =05

Pr =05,08 1.1, 14

4 6 10 {
Fig. 5.8. Plots of 6 (¢) for Pr.
4)
=09, A=F =01,Pr=Sc=ki =ky =05
08
0.6
y=00,02,04,06
04
02
4 6 10 {

Fig. 5.9. Plots of 6 (¢) for ~.
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k =03, 04,05, 07

A=F =01, =001,k =02 Pr=5S =k =05

#44)

1.0

Fr =0.00, 0.10, 0.15, 0.20

k=09, 4=01, =001k =02, Pr=Sc=ky =05

Fig. 5.11. Plots of ¢ (¢) for F;.
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A =0.00, 0.10, 0.15, 0.20

k =09, Fr =01, y =001, k1 =02, Pr =Sc = kz =05

Sc =04, 07, 10, 1.7

k=09, 4d=F =01, » =001,k =02, Pr =k, =05

Fig. 5.13. Plots of ¢ (¢) for Sec.
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Tt
g
77 £V

ki =000, 0.05, 0.20, 0.35

os| [ k=09 4=F =01, » =001, Pr =Sc =k, =05

5 10 15 {

Fig. 5.14. Plots of ¢ (¢) for k.

Table 5.1. Numerical data of skin friction coefficient for varying values of k, F, and .

k| B | A | —Cjs Re?
0.7 0.1 0.1 | 3.20889
0.8 2.88705
0.9 2.64211
0.9 | 0.0 | 0.1 | 2.60608
0.1 2.64211

0.2 2.67674
091]0.10.0[257554
0.1 | 2.64211

0.2 | 2.70364
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Table 5.2. Numerical data of local Nusselt number for varying k, F,., A\, Pr and $ when
Sc = k‘l = k‘Q =0.5.

k| F | A | Pr|y | —NugRe;"?
0.7]0.1]0.1 |05 |0.01|0.654355
0.9 0.592607
1.1 0.553641
0.9 000105 |0.01|0.595138
0.2 0.590294
0.4 0.586189
0.9]0.1 0.0/ 05 |0.01|0.603132
0.2 0.584795
0.4 0.579865
0.9]0.1|0.1]08|0.01 | 0.683539
1.0 0.744031
1.2 0.803885
09]01|0.1]1.0/00 |0.58278
0.1 | 0.621643
0.2 | 0.651962
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5.3 Conclusions

Darcy-Forchheimer flow by a curved stretching surface with homogeneous and heterogeneous
reactions and Cattaneo-Christov heat flux is addressed. Main observations of presented research

are listed below.

e Velocity f’(¢) is enhanced for curvature parameter k whereas reverse trend is noticed for

porosity parameter A and inertia coefficient F..

e Larger curvature parameter k, inertia coefficient F, and porosity parameter A produce
higher temperature field 6 ({) while reverse trend is seen for Prandtl number Pr and

thermal relaxation parameter ~.

e Concentration field ¢ (¢) is higher for larger inertia coefficient F,, porosity parameter
A and Schmidt number Sc. However opposite behavior of ¢ () is found for curvature

parameter k£ and strength of homogeneous reaction k.

e Skin friction coefficient is enhanced for larger F, and A while reverse trend is noticed for

k.

e Local Nusselt number is enhanced for larger Prandtl number Pr and thermal relaxation
parameter v whereas opposite trend is seen via curvature parameter k, inertia coefficient

F,. and porosity parameter .
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Chapter 6

Numerical study for
Darcy-Forchheimer nanofluid flow
due to curved stretchable sheet with

convective heat and mass conditions

This chapter addresses Darcy-Forchheimer flow of viscous nanofluid. Flow induced by a curved
stretchable sheet. Flow for porous space is illustrated by Darcy-Forchheimer relation. At-
tributes of Brownian diffusion and thermophoresis are incorporated. Convective conditions
are employed at the curved stretchable sheet. Boundary layer assumption is employed in the
mathematical development. The system of ordinary differential equations is developed by mean
of suitable variables. Shooting algorithm is employed to construct the numerical solutions of
resulting nonlinear systems. The characteristics of various sundry parameters are examined

and discussed. Physical quantities of interest are examined.

6.1 Formulation

Ongoing consideration is the steady viscous nanofluid flow by a curved stretchable sheet. The

curved stretchable sheet is coiled in a circle having radius R with linear stretching velocity u =
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Uy-. The s and r— directions are perpendicular to each other. The distance R of the stretchable
curved sheet from the origin determines the shape of the curved surface, i.e., for higher value of
R (— o0) the surface tends to flat. Flow for porous space is illustrated by Darcy-Forchheimer
relation. Influences of Brownian diffusion and thermophoresis are incorporated. Moreover
convective mass and heat boundary conditions are also employed at the curved stretchable
surface. Surface is heated through the hot fluid having temperature T and concentration C'
that give heat and mass transfer coefficients hy and k,, respectively. The governing boundary-

layer expressions are

0 ou
E((T—FR)U)—FR% =0, (6.1)
L 210 (6.2)

r+ R _p_fg7

v@—i-iu%—i- = u = —i il @
ar r+R 0s r+R N psr+ ROIs
(P, 1 o
“\or2 T ¥ Ror (r+R)2u
AR
Kpu Fu?, (6.3)
or R 0T ki (0T 1 ar
Vo o = + L
or  r+R 0s (pc)y \Or? ~ r+ROr
9C T\  Dr (9T\?
+7 (DB <W§> +§ <§> ), (6.4)
oC R 0C Dy (0°T 1 ar 9?C 1 oC
W+—T+R“a—§<w+—r+35> DB<W+—T+RW>> (6.5)
with the boundary conditions
U= Uy (s) =ars, v=0, —kf(?)—z—hf(Tf—T), —DB%—km(Cf—C) at r =0, (6.6)
ou
u — 0, a——>(), T Ty, C—Cx as r— oo. (6.7)
T
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For the case of curved surface, the pressure is no longer consistent within the boundary layer.

Using the following transformations

u=asf (), v=—LL /@l (Q), ¢=./5r, } 65)
=paisP(C), 0(C)=7=F>, ¢()= g;;—%o;
Eq. (6.1) is symmetrically verified and Eqs. (6.2) — (6.7) give
oP  f”
LRy Ny (Fan R L Ly =M =Ff”, (6.10)
C+k C+E" (C+k)? C+/€ C+k (C k)2 '
0" + o T Pr (C+kf0’+Nt9’ +Nb9¢> (6.11)
11 1 4 k & " _
¢+C+ ¢+ C+ka¢> +N(9 +C+k0>_0’ (6.12)
[=0. =1 0=-%(1-0), ¢=-(1-9) at co,} 6.1
f’—>()7 f”—>0, 0—0, ¢—0, as (— oo.

Here N; thermophoresis parameter, N, Brownian motion parameter, v, the thermal Biot number

and v, the concentration Biot number. These dimensionless parameters can be expressed as

follows:
N, = D7 (Tf—Too) N, = 7D (Cr—Coo)
T;j” ’ e (6.14)
Y = kj: y Ve = DB \/Z
Now eliminating pressure P from Egs. (6.9) and (6.10), we get
iv 2" . f’ f! k m__ gl el k 1 pr?
P e e @ U g U )
7 f, 1/ f/2
<f —i—(: k:) (ff +C+k> 0. (6.15)
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Pressure P can be calculated from Eq. (6.10) as

_ C—i—kﬁ f,”“‘Clef”_ (<+1k)2f/+CTkkff//

P (6.16)
RN Y i e APV Ay ¥
Skin friction and local Nusselt and Sherwood numbers can be given by
Trs Squ S Jw
C — 1 N — T S Sh ) S— . 617
T pyuz,’ s ki (Tw —Too)’ 1 Dp(Cy — Cx) (6.17)

Here 7,5, stands for wall shear stress, ¢, for wall heat flux and j,,, for wall mass flux. We can

write
Trss = H (% B TﬁR) r=0"
dor = =ty ()] s 615)
Jw = —Dp (%_g)}r—o

Dimensionless skin friction coefficient and local Nusselt and Sherwood numbers are

Cy,, Resl? —f”( )—%f( )
NusRes1 =-0'(0), (6.19)
Shisesl = ( )

6.2 Numerical results

The systems of Eqs. (6.11) — (6.13) and (6.15) are numerically solved by employing shooting
technique. Main interest here is to examine velocity f’ ({), temperature 0 (¢) and concentration
¢ (¢) profiles for several influential variables like dimensionless radius of curvature parameter
k, porosity parameter A, Prandtl number Pr, inertia coefficient F;., thermophoresis parameter
N¢, Brownian motion parameter NV, Schmidt number Se¢, thermal Biot number v, and concen-
tration Biot number .. Effects of curvature parameter k, porosity parameter A\ and inertia
coefficient F,. on velocity distribution f’(¢) are presented in the Figs. 6.1 — 6.3 respectively.
Fig. 6.1 elucidates the impact of dimensionless radius of curvature k on velocity distribution
1 (¢). Both velocity and related layer thickness are higher for larger curvature parameter k.

Variation of porosity parameter A on velocity f’(() is displayed in Fig. 6.2. Larger porosity
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parameter A shows a reduction in velocity f’ (¢) and momentum layer thickness. Fig. 6.3 elab-
orates the effect of inertia coefficient F). on velocity f’ (). Larger inertia coefficient F, shows a
lower velocity field f (¢) as well as momentum layer thickness. Impacts of curvature parameter
k, porosity parameter A, inertia coefficient F)., Prandtl number Pr, thermophoresis parameter
Nt, Brownian motion parameter N, and thermal Biot number «, on dimensionless temperature
profile 6 (¢) are displayed in the Figs. 6.4 — 6.10 respectively. Fig. 6.4 elucidates the variation
of dimensionless radius of curvature parameter k on temperature profile 6 (¢). Both temper-
ature 6 (¢) and corresponding layer thickness are increased for larger curvature parameter k.
Variation of porosity parameter A on temperature 6 (¢) is displayed in Fig. 6.5. Larger porosity
parameter A shows an increment in temperature 6 (¢) and related layer thickness. Fig. 6.6
elaborates the influence of inertia coefficient F, on temperature 0 (¢). Larger inertia coefficient
F, give rise to enhance in temperature 6 ({) and related layer thickness. Fig. 6.7 depicts the
impact of Prandtl number Pr on temperature distribution 6 (¢) . Clearly both temperature and
thermal layer thickness are lower for larger Pr. Fig. 6.8 shows the variation of thermophoresis
parameter N; on temperature 6 (¢). Larger thermophoresis parameter N; shows an enhance in
temperature field and related thermal layer thickness. Influence of Brownian motion variable Ny
on temperature profile 6 (¢) is displayed in Fig. 6.9. Both temperature 6 (¢) and corresponding
layer thickness are higher for larger IVp. Variation of thermal Biot number «, on temperature
profile 0 (¢) is presented in Fig. 6.10. For larger thermal Biot number ~,, both temperature
0 (¢) and associated layer thickness are enhanced. Contributions of curvature parameter k,
porosity parameter A, inertia coefficient F)., Schmidt number Sc, thermophoresis parameter N,
Brownian motion parameter /N, and concentration Biot number 7, on dimensionless concentra-
tion profile ¢ (¢) are presented in the Figs. 6.11 — 6.17 respectively. Fig. 6.11 elucidates the
impact of dimensionless radius of curvature parameter k on concentration ¢ (¢) . It is noted that
concentration ¢ (¢) is enhanced for larger curvature parameter k. Effect of porosity parameter
A on concentration ¢ (¢) is displayed in Fig. 6.12. Larger porosity parameter \ causes an en-
hancement in concentration ¢ (¢). Variation in concentration ¢ (¢) for distinct values of inertia
coeflicient F; is illustrated in Fig. 6.13. Larger values of F). correspond to higher concentration
¢ (¢). Fig. 6.14 illustrates the influence of Schmidt number Sc on concentration ¢ (¢). Higher

Schmidt number Sc shows a decay in concentration ¢ (¢). Impact of thermophoresis parameter
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N¢ on concentration ¢ (¢) is shown in Fig. 6.15. Concentration ¢ (¢) is enhanced for higher
thermophoresis parameter ;. Fig. 6.16 elaborates the influence of Brownian motion variable
Ny on concentration ¢ (¢). Larger Brownian motion variable IV, depicts a reduction in concen-
tration field ¢ (¢). Impact of concentration Biot number «,. on concentration ¢ (¢) is sketched in
Fig. 6.17. For larger concentration Biot number ~,, the concentration ¢ (¢) is enhanced. Table
6.1 elucidates the numerical data of skin friction coefficient for numerous values of curvature
parameter k, porosity parameter A and inertia coefficient F.. It is examined that skin friction
coefficient is enhanced for larger A and F, while reverse trend is noticed for k. Table 6.2 is
displayed to analyze the numerical data of local Nusselt number for distinct values of curvature
parameter k, porosity parameter A, Prandtl number Pr, inertia coefficient F)., thermal Biot
number v,, Brownian motion parameter N, and thermophoresis parameter N¢. Local Nusselt
number is increased for higher Prandtl number Pr and thermal Biot number v, whereas the
opposite trend is seen via curvature parameter k, porosity parameter A, inertia coefficient F}.,
thermophoresis parameter N; and Brownian motion parameter Np. Table 6.3 describes the nu-
merical data of local Sherwood number for curvature parameter k, porosity parameter A, inertia
coeflicient F., Schmidt number Sc¢, thermophoresis parameter N;, Brownian motion parameter
Ny and concentration Biot number «,. It is seen that local Sherwood number is enhanced via
Schmidt number S¢, N}, and concentration Biot number «y, while reverse trend is noticed for cur-

vature parameter k, porosity parameter A, inertia coefficient F, and thermophoresis parameter
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Nt.

A=F =N =01 Pr=S =10, Ny =2 = =03

k=02 04,07, 12

Fig. 6.1. Plots of f’(¢) for k.

k=09 F =N =01, Pr=Sc =10, Ny =1 = =03

A=00,02,05,08

2 4 6

Fig. 6.2. Plots of f/(¢) for \.
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k=08, 4=N =01, Pr=5c=10 Np=s=p=03

0.8

0.6

0.4

Fr =0.0,02,05,09

0.2

Fig. 6.3. Plots of f’(¢) for F,.

A=F =N =01, Pr =S =10, Np =t =% =03

025 1%

k=02,03,04,0.6

Fig. 6.4. Plots of 6 (¢) for k.
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kK =09, F, =Ny =0.1,Pr =S¢ =10, Np = 1 = » =03

0.20

A =00,02, 04,07

0.15

Fig. 6.5. Plots of 6 (¢) for A.
()

K =09, 4 =N =01,Pr =Sc =10, Np =1 = =03

0.15

Fr =00,03,06, 1.1

Fig. 6.6. Plots of 6 (¢) for F,.
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0.30

K=09,2=F =N =01, Sc =10, Ny =t = » =03
0.25

Pr =10, 2.0, 3.0, 4.0

Fig. 6.7. Plots of 6 (¢) for Pr.

k=09,A =F =01, Pr =Sc =10, Ny = = =03

Ny =0.1,0.6,1.2, 1.8

Fig. 6.8. Plots of 6 (¢) for N.
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()

K=09A=F =N =01 Pr =Sc =10, 1 = =03

Np =0.2,08, 1.4, 2.0

Fig. 6.9. Plots of 6 ({) for Np.
w

k=092 =F =Ny =01, Pr =Sc =1.0, Np = ¢t =03

21 =03,04,06,09

Fig. 6.10. Plots of 6 (¢) for ~,.
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A=F =Nt =01 Pr=Sc =10, Npb =20 =0 =03

k=02,03,04, 06

Fig. 6.11. Plots of ¢ (¢) for k.

4

0.30 K =09, Fr =Nt =0.1,Pr =Sc =10, Np =t = » =03

0.20

A =0.0,02,04,07

0.05

Fig. 6.12. Plots of ¢ (¢) for A.
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0.30

K =09, 4 =N =01, Pr=S =10, Ny = 4t = » =03

0.25

0.20

Fr =00,03,06, 10

Fig. 6.13. Plots of ¢ (¢) for F,.
2)

0.30
K=09,A =F =Ny =01, Pr =10, N, =1 = % =03

Sc = 1.0, 2.0, 3.0, 4.0

Fig. 6.14. Plots of ¢ (¢) for Sc.
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k=09, =F =01 Pr=Sc =10, Np = =% =03

N; = 0.1, 0.2, 0.3, 0.4

Fig. 6.15. Plots of ¢ (¢) for Ny.
ﬁ({)

k=09, =F =Ny =01, Pr =Sc =10, 1 = » =03

Np =0.1,02, 05, 2.0

=
nnnnnmnnn?nn'lnn-.

0 2 4 6 8 10

Fig. 6.16. Plots of ¢ (¢) for N.
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k=09, =F =N{ =01, Pr =Sc =10, Np = =03

Y Y =03,04, 06,09

Fig. 6.17. Plots of ¢ (¢) for 7,.

Table 6.1. Numerical data of skin friction coefficient for distinct values of k, A\ and Fi..

k| A | B | —Cys Re?
0.7 0.1 0.1 | 316892
0.8 2.84704
0.9 2.60252
0.9 | 0.0 | 0.1 | 2.52094
0.1 2.60252

0.2 2.67420
0.9(0.1]|0.0] 2.56300
0.1 | 2.60252

0.2 | 2.64013
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Table 6.2. Numerical data of local Nusselt number for k, Pr, F., v;, N¢, A and N, when
Y. = 0.3 and Sc = 1.0.

k |Xx |F | Pr| N | Ny |, | —NusRe;"?
0.7]01]01|1.0/01]03]0.3]0.215569

0.9 0.211194
1.1 0.208271
09]100(01]1.0]0.1]0.3]0.3|0.212310
0.2 0.210257
0.4 0.208745

09(01(00]1.0]01]03]0.3]{0.211520

0.3 0.210605

0.6 0.209840
09(01(01]110]01]03]0.3]0.211194
2.0 0.226898

3.0 0.236688
09(01(01]110]01]03]0.3]0.211194
0.3 0.209241

0.5 0.207238

09(01(01]1.0]0110.1]0.3]{0.212986

0.5 0.209364

0.9 0.205587

09(01(01]10]01]03]0.2]0.156347

0.3 ] 0.211194

0.4 | 0.255999
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Table 6.3. Local Sherwood number for distinct k, A, F,., Sc, N¢, Np and v, when Pr = 1.0

and v, = 0.3.

E |X | E | Sc| N, | Ny |, | —Shs Res"?
0.7]01]01]1.0]0.1]03]|0.3]0.213683
0.9 0.208197
1.1 0.204364
0.9]00]01]1.0]0.1]0.3]|0.3 ] 0.209099
0.2 0.207453
0.4 0.206278
0.9]01]00]1.0]0.1]0.3]|0.3]0.208455
0.3 0.207734
0.6 0.207139
09]01]01[1.0]01]03]03]0.208197
2.0 0.226932
3.0 0.238458
09]01]01[1.0]01][03]03]0.208197
0.3 0.196394
0.5 0.186509
00]01]01]1.0]0.1]01]03]0.193746
0.5 0.211093
0.9 0.213033
00]01]01]1.0]0.1]03]02]0.142562
0.3 | 0.208197
0.4 | 0.253753

6.3 Conclusions

Darcy-Forchheimer nanofluid flow due to a curved stretchable sheet is explored. Convective
heat and mass conditions are addressed. Flow in porous medium is characterized by Darcy-
Forchheimer relation. Impacts of Brownian diffusion and thermophoresis are also taken into

account. Main observations of presented research are listed below.
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Velocity distribution f’ (¢) is enhanced for higher values of curvature parameter k whereas

reverse trend is noticed for porosity parameter \ and inertia coefficient F..

Larger curvature parameter k, porosity parameter A, thermal Biot number -, inertia
coefficient F., thermophoresis parameter N; and Brownian motion parameter N, show

higher temperature field 0 (¢) while reverse trend is seen for Prandtl number Pr.

Concentration field ¢ (¢) is higher for larger curvature parameter k, porosity parameter
A, inertia coefficient F;., thermophoresis parameter N; and concentration Biot number 7.

However opposite trend is found for Schmidt number Sc¢ and Brownian motion parameter

Ny,

Skin friction coefficient is enhanced for larger A and F,. while reverse trend is noticed for

k.

Local Nusselt number is enhanced for higher Prandtl number Pr and thermal Biot number
v, whereas the opposite trend is seen via curvature parameter k, porosity parameter A,

inertia coefficient F)., Brownian motion parameter N, and thermophoresis parameter N;.

Local Sherwood number is enhanced for Schmidt number S¢, Brownian motion parame-
ter N, and concentration Biot number 7, while reverse trend is noticed for curvature
parameter k, porosity parameter A, inertia coefficient F, and thermophoresis parameter

Ni.
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Chapter 7

Homogeneous-heterogeneous
reactions in MHD micropolar fluid
flow by a curved stretchable sheet

with heat generation/absorption

The purpose of present chapter is to provide analysis of magnetohydrodynamic (MHD) flow of
micropolar fluid by curved stretchable sheet. Homogeneous-heterogeneous reactions are taken
into consideration. Heat transfer process is explored through heat generation/absorption effects.
Micropolar liquid is electrically conducted subject to uniform applied magnetic field. Boundary
layer approximation and small magnetic Reynolds number assumptions are employed in the
mathematical development. The reduction of partial differential system to nonlinear ordinary
differential system has been made by employing suitable variables. The obtained nonlinear
systems have been computed and analyzed. The characteristics of various sundry parameters
are studied through graphically and numerically. Moreover the physical quantities like surface

drag and couple stress coefficients and local Nusselt number are described by numerical data.
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7.1 Formulation

An incompressible 2D flow of micropolar fluid is examined. The concept of curvature is em-
ployed. Magnetic field of strength By is injected in the radial axis (see Fig. 7.1). Induced
magnetic field is neglected due to low magnetic Reynolds number assumption. Heat gen-
eration/absorption effects are present. Further homogeneous-heterogeneous reactions of two
chemical species A; and Bj are considered. Homogeneous reaction for cubic autocatalysis is
given by

A1+ 2By — 3By, rate = keab?, (7.1)

whereas the heterogeneous reaction on the catalyst surface is
A1 — By, rate = ksa, (7.2)

in which the chemical species A; and By have concentrations a and b respectively and rate
constants are defined by k. and ks;. The governing boundary layer expressions for present flow

are [10,35] :

S, U

O

Fig. 7.1. Geometry of the problem.
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0 ou
1 5, 10p

- 4
r+ R psor’ (7.4)

v%—i-—R U%—F ! u = —1 It @
or r+R 0s r+R ~ pr+ROs
+ V—i-i @—F ! %— 1 U
Py o2 r+ROr (r+R)?
2
KON _oB}, -
Py Or py
ON R ON v, [(0°N 1 ON K ou 1
- — = — | - — 2N+ — + —— )
U8T+T+Ru85 pfj<8r2+r+R8r> pfj< +8r+r+Ru>’ (7.6)
oT R 0T 0T 1 0T
— — )=k (o5 + —== T-T .
pfcp<”8r+r+R”as> kf<6r2+r+R8r>+Q0( ) (7.7)
da R Oa 0%a 1 Oa
_ - u—=2D -7 et _kc b2 )
08T+T+Ru85 A1<8r2+T+R8r> a5 (7-8)
ob R 0b 0%b 1 0b 9
Ly <ﬁ+r+m> keab”, (7.9)
with the boundary conditions
ou da ob
U= Uy (s) = ars, v =0, N:_mOE’ T ="T,, DAIE = ksa, DBIE = —ksaat r =0,
(7.10)
u — 0, %HO, N—-0, T—>Ty, a—a, b—0 as r— oco. (7.11)

Here s and r represent the directions of the velocity components v and v respectively, « the
vortex viscosity, N the micro-rotation in the rs— plane, v, the spin gradient viscosity, Qo
the heat generation/absorption coefficient and mg (0 < mg < 1) the constant. Here mg = 0
represents strong concentration of microelements and mg = % is for weak concentration of

microelements. Moreover for a curved surface pressure is no longer constant inside the boundary

layer. We further simplified the above expressions by invoking a linear relationship between
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micro-inertial per unit mass j and spin gradient viscosity v, given by

Vs = (u + g) J- (7.12)

Using the following transformations

u:alsf, (C)? v = _HLR\/alvf (C)? N =as %g (C)a C: %Tv (7 13)
p=psais*P(C), 0(C)=1=f a=ap((), b=aoh(().
Now Eq. (7.3) is symmetrically verified and Egs. (7.4) — (7.12) yield
or  f”
e (7.14)
2k _ * 1" f” - f/ . k 12
c+kP"<1+K)(f'+c+k @+%f> i
// o 2
+—§+kff ot k)gff — M*f, (7.15)
K* ko ; A A
(B (e ) s oy oy (s L) 0 s
1 " ¢’ ko, B
P—<c9 C+k)+C+kf9 + 060 =0, (7.17)
L <¢” + id ) o' —kigh? =0 (7.18)
Sc C+k g+/<; ! ’ ‘
01 " 3 / 2
EZQL+C+k> €+kﬂ1+mwl—0 (7.19)

f = 07 fl = 17 g = _mOf,,a 0= 17 ¢I = k2¢7 51h, = _k2¢ at C = Ov (7 20)
fl=0, f1=0, g—0, 60, ¢6—1, h—0 as (— oo, '

where K* (: %) stands for material parameter.

Now eliminating pressure P from Eqs. (7.14) and (7.15), we get

i + 2f/// f/l f'/ k

P TG

(f/f// _ ff///)
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k k
(C+k)? (C+k)?°

Pressure P can be calculated from Eq. (7.15) as

(£~ 1£") - - M2 (f”+ r ) _o. (7.21)

C+k

% f” f/ k 2
PC+k<(1+K)<fII,+C+k(c+k)2><+kf, ) (7.22)
2k k k * 2 ' '
+mff”+(§+k)sz/—K g —M=f

When D4, = Dp, then §; =1 and thus

SO +h(Q)=1. (7.23)
Now Egs. (7.18) and (7.19) yield
1 1 ¢/ k / 2
§<¢ +§+k>+§+k‘f¢_kl¢(1_¢) =0, (7.24)
with the boundary conditions
¢ (0) = k20 (0), (o0) — 1. (7.25)

The dimensionless expressions of skin friction and couple stress coefficients and local Nusselt
number are given by
CroRedl = (14 K7) (f1(0) - £2),
Cony Res, = (1+£5) ¢/(0), (7.26)
NugRes,'”” = -6 (0),

Here the results are obtained for strong concentration of microelements (mg = 0) case only.
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7.2 Solutions

The appropriate initial guesses ( foss 901,901,(/503) in homotopic solutions are defined by

Jou(€) = exp(—¢) — exp(~20), |
90, (€) = mo exp(—(),
00, (¢) = exp(—C),
60,(C) = 1 — S exp(—kaC), |

and auxiliary linear operators (EfQ, Ly, Loy, £¢1) are

d*f d*f df d%g d*0 d%¢
‘CfZ dC4 5d<-2 + dC ‘Cgl dC2 9, [’91 d<-2 ’ 1 dC2 ¢
The operators satisfy
Ly, [C3 exp(C) + O3y exp(—=() + T35 exp(2() + C33 exp(—2()] = 0,

Ly, [C54exp(() + Cs5 exp(—¢
Ly, [C36exp(¢) + C37 exp(—C
Ly, [C3gexp(() + Cog exp(—(

)] =0,
)] =0,
]=0,

where CF (i = 20 — 29) elucidate the arbitrary constants.

7.2.1 Deformation problems at zeroth-order
A =P)Lp [ D) = fou(Q)| = BhsNGIFC. 9,
(1=P)Lg, [9(C, P) = 90,(0)) = PgNou [£(C. 1), 9(C, D)),
(L= 9)La, [B(C. ) = 00,(0)] = hoNG,[F(C. ). B(C. B,
(L=D)Lo, [$(C. B) = 60,(Q)| = PhoNG, [F(C, 1), B, D),

£O, By =0, 40, p)=0, FO,p)=1, 00, H)=1, (0, p)=kad(0, P)
fl(oo, p) =0, g(oo, p) =0, f'(c0, p) =0, 0O(c0, p) =0, (o0, p) =1,
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(7.28)

(7.29)

(7.30)
(7.31)
(7.32)

(7.33)

} (7.34)



s O 2\ &f 1 an 1 of
Nf4 [f(C> p)] = 0_C4+<C+—/€>3_C3_<C+k> 8(2 ( k) e
() of ) ] > 8faf P
C+k)\acacz o ao; 84“2

k f ?f
() i ( o +<—a—> (7

e B, alc. B g 1 9§

O " 0*f 1 of
C+k<f_<_ 8_C> K ( +8—<2+<—8_C) (7.36)

920 1 90 90
—t —— 4+ Pr— P 59 7.37
o texRac T C+kf8§+ r (7.37)

a1 1 [P 1 99 ko ;00 2
N¢3[f(c,p), ¢(<’p)]_§<a_g2+g+—ka_§> u—kfa_g_kld’(l_d’)' (7.38)

No [£¢, 9, b¢, )] =

Setting p = 0 and p = 1 one obtains

£(¢, 0) = fo,(0), F(¢, 1) = £(0), (7.39)
9(¢, 0) = g0,(Q), 4(¢, 1) = g(0), (7.40)
0(¢, 0) =00, (¢), O(¢, 1) =0(C), (7.41)
6, 0) = ¢g,(C), d(¢, 1) = (Q), (7.42)

when p changes from 0 to 1 then f((,f)), (¢, p), 9({,]5) and (25((,]5) display alteration from
primary approximations fo,(¢), go,(¢), 0o, (¢) and ¢, (¢) to desired ultimate solutions f(¢),

9(¢), 8(¢) and $(().

7.2.2 Deformation problems at mth-order
L, Q) = X1 (O] = BRE(Q), (7.43)

Ly, [92(0) = Xingm-1(Q)] = By Ry (<), (7.44)
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Lo, [6(C) = Xibm-1(C)] = ReR. (), (7.45)

Ly (05 ) = xnm_1(Q)] = hﬂ@(é% (7.46)
F(0) = 9 (0) = ££,(0) = 0(0) = ¢, (0) — kas,(0) =0, } -
[l (00) = gm(00) = f;,(00) = 0,3,(00) = ¢3,(00) = 0,
> 17 mnt 2 " 1 2 /] 1 s /
REQC) = fila+ (m) Jin—1— <ﬂ> Ji—1 T (CJr—k> Ji—1
. 1 -1
(k) (£ o) £ (ar)
=0 =0
k; s ! ! = 1!
) (BB
( k >““_< ) _ 1
- Fo i nfi) — M? <f7/;/1—1 + —fr/h—1> ) (7.48)
(CH+k)*) g VR C+k
Ruo = (1+ 7) (s + <+kg;n_l)
<+]€ (me 1— kgk_ ng 1— kfk)
—-K* (2gm 1+ g+ Cikf’/” 1) (7.49)
-1
REL(C) = 0% C - kg;n L+ PrC k - (Z fmlfg%) +Pré0s_1, (7.50)
k=0
DM 1 11 k s ’
R (C) = e <¢m 1+m¢m 1) Tk (Z fml,;qﬁ,;)
=0
(Z¢m 1- kZ( ~ z) ¢z))7 (7.51)
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The following expressions are derived via Taylor’s series expansion:

1 0™f(¢, p)

F(¢ D) = fos(O) + Z OB, Q) = o550 - (7.52)

9(¢; D) = 90,(C +ng O™, gm(Q) = %%ﬁ_o, (7.53)

0(C, B) = 0o, (C) + Za (OF™, 0(C) = ﬂila g;i; pl (7.54)
5=

A(C, D) = ¢, (C) + Z G (OF™, 6, (C) = RIALI() (7.55)

m!  opm 3
p=0

The convergence regarding Eqgs. (7.52) — (7.55) is solidly based upon the suitable selections of
h¢, hg, hy and hg. Choosing suitable values of iy, hg, hy and Ry so that Egs. (7.52) — (7.55)

converge at p = 1 then

F(Q) = fo,(¢) + Z fn(¢ (7.56)
= g0, (¢) + Z g (¢ (7.57)
=00, (C) + Z 0,5, (7.58)

$(C) = o, (C) + Z B (). (7.59)

In terms of special solutions (f%, g%, 65,, ¢5,), the general solutions (fy,, g, O, ¢,) Of the

Eqgs. (7.43) — (7.46) are defined by the following expressions:

Fa(Q) = F1(Q) + T3 exp(C) + Cy exp(—() + C3y exp(2¢) + C35 exp(—2(), (7.60)
9m(C) = g5,(C) + C34exp(C) + Ci5 exp(—(), (7.61)
0,(¢) = 0%,(C) + Csg exp(() + C7 exp(—(), (7.62)
0 (C) = 95, (C) + Cgexp(C) + Cig exp(—(), (7.63)
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in which Cf (i = 20 — 29) through the boundary conditions (7.47) are given by

Cyo=Cp = Cgy = Ch =C =0, Cy3 = %‘ + [7(0), €31 = —C33— f5(0), (7.64)
¢=0
C35 = —95(0), C37 = —05,(0), C39 = 1+ ko ( 34( )‘ - k2¢m(0)> . (7.65)
¢=0

7.2.3 Convergence analysis

Here the homotopic solutions involve nonzero auxiliary parameters Ay, iy, hg and hg. Such
auxiliary variables have significant role to tune and govern the convergence of obtained results.
To get the acceptable values of such parameters, the hA—curves at 20th order of deformations are

sketched. Fig. 7.2 shows that the convergence zone lies inside the ranges —1.4 < hy < —0.1,
—-1.5 < hy < =01, =1.7 < hp < —0.5 and —1.8 < Ay < 0.2 for strong concentration of

microelements (mg = 0) case. Table 7.1 indicates that the 10th order of deformation is sufficient

for convergent results.

k=k;=05M =09,K"=0.1,4 =002,k =0.7, Pr =Sc = 2.0

s, '
"\' é (0) ..................
S Sty lpbipmg g
S e -
: o
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Fig. 7.2. The h—plots for f({), g (¢), 0(¢) and ¢ (¢).
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Table 7.1. Homotopic solutions convergence when k = ko = 0.5, k; = 0.7, M = 0.9, K* = 0.1,
Pr=_5c=2.0and 6 = 0.02.

Order of approximations | —f”(0) | ¢’ (0) | —6'(0) | ¢’ (0)

1 2.9932 | 0.0587 | 1.0472 | 0.2521
) 3.0023 | 0.0745 | 1.1415 | 0.2537
10 3.0032 | 0.0730 | 1.1571 | 0.2537
15 3.0032 | 0.0730 | 1.1571 | 0.2537
20 3.0032 | 0.0730 | 1.1571 | 0.2537
25 3.0032 | 0.0730 | 1.1571 | 0.2537
30 3.0032 | 0.0730 | 1.1571 | 0.2537

7.3 Discussion

This portion has been organized to explore the impacts of several effective parameters including
dimensionless radius of curvature parameter k, material parameter K*, magnetic parameter M,
Prandtl number Pr, heat absorption/generation parameter ¢, Schmidt parameter Se, intensity
of homogeneous reaction k; and intensity of heterogeneous reaction ko on f/(¢), g(¢), 6(¢)
and ¢ (¢). Here the results are obtained for strong concentration of microelements (mg = 0)
case only. Influences of curvature k and magnetic M parameters on velocity distribution f’(¢)
are presented in the Figs. 7.3 and 7.4 respectively. Fig. 7.3 elucidates the impact of dimen-
sionless radius of curvature parameter k on velocity distribution f’(¢). Both velocity field and
momentum layer thickness are enhanced for larger curvature parameter k. Impact of magnetic
parameter M on velocity f’(¢) is sketched in Fig. 7.4. Here both velocity and momentum
layer thickness are lower for larger M. Effects of curvature parameter k, magnetic parameter M
and material parameter K* on micro-rotation profile g ({) are displayed in the Figs. 7.5 — 7.7
respectively. Fig. 7.5 depicts the variation of dimensionless radius of curvature parameter k on
micro-rotation profile g ({). By enlarging radius of curvature parameter k, the micro-rotation
field enhances. Influence of magnetic parameter M on micro-rotation profile g (¢) is sketched
in Fig. 7.6. By increasing magnetic parameter M, the micro-rotation field decreases. Fig. 7.7

depicts the effect of material parameter K* on micro-rotation profile g (¢). Larger material pa-
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rameter K* leads to higher micro-rotation field. Behaviors of curvature parameter k, magnetic
parameter M, Prandtl number Pr and heat absorption/generation parameter ¢ on dimension-
less temperature profile 6 (¢) are presented in the Figs. 7.8 — 7.11 respectively. Fig. 7.8 depicts
variation of curvature parameter k on temperature 6 (¢). Both temperature field and related
layer thickness are enhanced for larger curvature parameter k. Influence of magnetic parameter
M on temperature profile 0 (¢) is plotted in Fig. 7.9. It is noticed that both temperature and
corresponding layer thickness are larger when M is enhanced. Fig. 7.10 elucidates the effect
of Prandtl number Pr on temperature 6 (¢). Larger Prandtl number Pr show a decay in tem-
perature field and thermal layer thickness. Influence of heat generation/absorption variable §
on temperature distribution 6 (¢) is shown in Fig. 7.11. Here temperature and related layer
thickness are larger for higher ¢ (> 0) whereas opposite trend is observed for larger ¢ (< 0) . Ef-
fects of dimensionless curvature parameter k, magnetic parameter M, strength of homogeneous
reaction ki1, Schmidt parameter Sc and strength of heterogeneous reaction ke on dimensionless
concentration profile ¢ ({) are presented in the Figs. 7.12—7.16 respectively. By enhancing cur-
vature parameter k, magnetic parameter M, strength of homogeneous reaction k1 and Schmidt
parameter Sc, the concentration distribution ¢ (¢) reduces while reverse behavior is seen for
strength of heterogeneous reaction ks. It is noticed that the strength of homogeneous reaction
k1 and strength of heterogeneous reaction ke have opposite impacts on concentration distribu-
tion ¢ (¢). Table 7.2 elucidates numerical data for skin friction and couple stress coefficients for
distinct values of curvature parameter k, magnetic parameter M and material parameter K*.
It is examined that skin friction and couple stress coefficients are enhanced for larger magnetic
M and material K* parameters while the reverse trend is noticed through curvature parameter
k. Table 7.3 validates the current outcomes with the earlier published observations in a limiting
sense. By this Table, we have examined that the current HAM solution has nice resemblance
with the earlier numerical solution by Sajid et al. [26] in a limiting sense. Further Table 7.4 is
displayed to analyze the numerical data for local Nusselt number for distinct values of curvature
parameter k, magnetic parameter M, Pr and § when k; = 0.7, ko = 0.5, K* = 0.1 and Sc = 2.0.
It is examined that local Nusselt number is higher for larger material parameter K* and Prandtl

number Pr whereas opposite trend is seen for curvature k and heat generation/absorption §
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parameters.
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ky =05, M =09, K*=0.1, § =0.02, ky =0.7, Pr =Sc =2.0.

k=01,03,05,07

0.8

0.6

04f 3

Fig. 7.3. Plots of f'(¢) for k.

k =k, =05, K* =0.1, § =0.02, k; =0.7, Pr =Sc =2.0.

M =0.0, 0.7, 1.4, 2.1

Fig. 7.4. Plots of f'(¢) for M.
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Fig. 7.5. Plots of ¢ (¢) for k.

M =0.0, 0.7, 14, 2.1
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Fig. 7.6. Plots of g (¢) for M.

138



0.030

0.025

0.020

0.015

0.010

A gy,

k =k, =05, M =0.9, 4 =0.02, k; =0.7, Pr =Sc =2.0.

K* =0.05, 0.10, 0.15, 0.20

Z

Fig. 7.7. Plots of g (¢) for K.

Ky =05, M =09, K* =0.1, 4 =0.02, kK; =0.7, Pr = Sc =2.0.

k=0.1,03,06, 1.2

Fig. 7.8. Plots of 6 (¢) for k.

139



4()

L0
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Fig. 7.9. Plots of 0 (¢) for M.
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Fig. 7.10. Plots of 6 (¢) for Pr.
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k=K, =05, M =09, K* =0.1, k; =0.7, Pr =Sc =2.0.

6 =0.00, 0.15, 0.30, 0.45
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1 2 3 4 5 6 7 ..[
Fig. 7.11. Plots of 6 (¢) for 9.
v
1.0}
0.9
kK, =05, M =0.9, K* =0.1, 5 =0.02,
ki =0.7, Pr = Sc = 2.0.
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; : : i 4

Fig. 7.12. Plots of ¢ (¢) for k.
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Fig. 7.13. Plots of ¢ (¢) for M.

k=ky, =05, M =09, K* =0.1, 4 =0.02,
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Fig. 7.14. Plots of ¢ (¢) for k.
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Fig. 7.16. Plots of ¢ (¢) for ks.
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Table 7.2. Numerical data for skin friction and couple stress coefficients for distinct values of

k, M and K*.

k| M | K* | —CysyRer!? | CinRes,
0.3]09 0.1 |7.405 0.075
0.4 6.317 0.077
0.5 5.504 0.078
05[00/]01 |5.167 0.074
0.5 5.289 0.075

1.0 5.569 0.078

0.5 | 0.9 ] 0.05 | 5.252 0.041
0.10 | 5.502 0.077

0.15 | 5.753 0.110

Table 7.3. Comparative values of —C'f32Re;1/2 for varying k when K* = M = mg = 0.

k| —CjyyRer!?

HAM | Numerical [10]
5 | 0.7577 | 0.75763
10 | 0.8735 | 0.87349
20 | 0.9357 | 0.93561
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Table 7.4. Numerical data for local Nusselt number for k, M, Pr and § when k; = 0.7,
ko = 0.5, K* =0.1 and Sc = 2.0.

k | M |Pr|6 | NusRe;"?
0.3]0.9 | 2.0 |0.02] 1.399
0.4 1.255
0.5 1.158
0.5]100(201|0.02]1.163
0.5 1.160
1.0 1.153
0.5109(1.01(0.02]1.023
2.0 1.155
3.0 1.207
05109201 0.00]| 1.192
0.04 | 1.117
0.08 | 1.037

7.4 Conclusions

Hydromagnetic flow of micropolar fluid due to a curved stretchable surface with homogeneous-
heterogeneous reactions and heat generation/absorption are investigated. Main observations of

presented research are listed below.

e Velocity distribution f’ (¢) shows reverse trend for curvature k and magnetic M parame-

ters.

e Micro-rotation profile g (¢) enhances for larger curvature k& and material K* parameters

whereas opposite behavior is seen for magnetic paramter M.

e Temperature field 6 (¢) is higher for larger curvature k£ and magnetic M parameters while

opposite trend is seen for Prandtl number Pr.

e Effects of homogeneous ki and heterogeneous ks reaction parameters on concentration

field ¢ (¢) are entirely reverse.
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e Skin friction coefficient enlarges for higher magnetic M and material K* parameters while

reverse trend is noticed through curvature parameter k.

e Couple stress coefficient enhances for larger curvature k£, magnetic M and material K*

parameters.

e Local Nusselt number is enhanced for larger material parameter K* and Prandtl num-
ber Pr whereas opposite trend is seen for curvature k£ and heat generation/absorption §

parameters.
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Chapter 8

Flow of Jeffrey nanofluid subject to
MHD and heat

generation/absorption

Current chapter investigates magnetohydrodynamic (MHD) flow of Jeffrey nanomaterial. Flow
is due to a curved stretchable sheet. Novel features regarding thermophoresis and Brownian
motion are considered. Heat transfer process is explored through heat generation/absorption
effects. Jeffrey liquid is electrically conducted subject to uniform applied magnetic field. Bound-
ary layer concept employed in mathematical development. The reduction of partial differential
system to nonlinear ordinary differential system has been made by employing suitable variables.
The obtained nonlinear systems have been computed and analyzed. The characteristics of var-
ious sundry parameters are studied through plots and numerical data. Moreover the physical

quantities are numerically examined.

8.1 Formulation

Two-dimensional magnetohydrodynamic flow of Jeffrey nanomaterial fluid over a curved stretch-
able surface is examined. The curved stretchable sheet is coiled in a circle having radius R with
stretching velocity © = wu,, and is taken in the s—direction. Brownian motion and thermophore-

sis effects are incorporated. Magnetic field (of strength By) is injected in radial direction.
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There is no Hall current and electric field. Heat transfer process is explored through heat

generation/absorption. The related expressions are

o0 ou
g((T—FR)'D)—FR%—O,
1 5 10p

r—l—Ru _p_fg’

v@—i-iu@—k ! u = —i h @
or r+R 0s r+R N psr+ ROs
02 1 0 1
a_rg + r+R8_q7f B (T+R)2u
v 9%u 23u
oo TV
v R_Ou 9%u R B3
1+ N T7FR or 9s0r T 7+ RY3sor?
+A2 )
4L p%u _ R _OJudu
r+R" Or? (r+R)? Or Os
1 Ovdu 1 v
“rRoror T +R)2 Yor
B2
_2=0,
Ps
or R oT ky (0°T 1 or
V—+——u— = + —-—
or  r+R 0s (pc)p \Or2  r+Ror
oC aT\ . Dr (9T\?
Dp | — == i Bl
+T< B<3r 8r>+Too <0T> )
+ QO (T_TOO)7
(Pc)f
oC R oC 0?C 1 oC Dy (0T 1 orT
V—— + u——=Dp| 55+ 55~ — \az T )
or r+R O0s or r—+ R Or T \ Or r+ R Or

with the boundary conditions
U=Uy=a18, v=0,T=T, C=C, at r=0,

u — 0, —u—>0, T—Ty, C—Cyx as 1 — 00.

or
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Selecting
u=asf (). v=—dR/amns (). <= } .
p=psais?P(Q), 0() =g o) =5
Expression (8.1) is identically verified and Eqgs. (8.2) — (8.7) yield

72

OP f
9c T + Kk 8.9
oC C+k (8.9)
2k Lk )
—P — - n __ / _
C+k C+kff C—i—kf +<C k)gff f
1
1 "+ owl” = el
k_pn? k iv
"y 12 k ,
9/
'+ Pr( s f0+ Nt + Nyt +59> =0, 8.11
Crk << 0N NG (8.11)
't Scfé' + — (9” ! 6’) =0 (8.12)
— 07 / — 1, 9 = ].7 = 1 at — 07
' ! ’ ‘ (8.13)
ff—0, f'—0, 6—0 ¢—0 as (— oo.
The parameters appearing in above equations can be expressed as follows:
= fvy/ 2 =X _ DB(Cw=Ccx)
b= RS M= awf Pr*a;*’Nb* = } (8.14)
TD7(Tw—Teo v
B =a1hrs, Ni = T(Toou )’ 0= a18706)f7 Sc = Dg*
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Now eliminating pressure P from Eqgs. (8.9) and (8.10), we get

2 1

fiv + f/// o f// + f
CHET (C+k) <<+k:>3
k v v
+I8 m(Qf”fm_ff _f/f )
2
— e (P 43187 + i (77 +£5") - s f
e (P17 =117+ 1=
(4N ( i 2<+k : )\ (8.15)
/ 1!
gl =M (4 S
Pressure P is given by
1 2 1
P - - "o opl /
NS e
C+k f/// f// N 2k(g}+k) f/
2 .
1 1 fl/ _ ffw
+1 e 2 1( ) ) , gk g (8.16)
| g (117 17) | SR
ik)3 ff/
Physical quantities are
Trs Squ
Cy,. = 2 Nug = —————. 8.17
fs3 %pfu%} ks (T — Too) ( )
Here 7,5, and ¢, stands for surface shear stress and heat flux respectively. These are
% - r+1Ru
— R 0w R 0u u
Trso 1+ W ( r+Ru85617" 8(T+R)2u65 +U8T2 ) ’ (818)
A e ) )]
Gw, _kf ( )}r =0" )

Dimensionless variables give

LCros (Res)'” = b (£7(0) = 15 (0) + B (1 (0) " (0) = 2 (/' (0))%) ),
Nusg (ReSl)_l/2 =
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8.2 Solutions

The appropriate initial guesses ( foss 60,5 &g 4) in homotopic solutions are defined by

Jo5(¢) = exp(—¢) — exp(—2(),
901 (C) = exp(—{), (820)
¢, (C) = exp(=(),

and auxiliary linear operators (E far Loy, £¢1) are

Efz _dy 5d2—f +4ﬁ

T odact T Tagt T Tdg
Ly, = gicg -0, (8.21)
d2

The above operators satisfy the following relations:

Ly, [C3yexp(¢) + C31 exp(—() + Ciy exp(2¢) + C33 exp(—2(¢)] = 0,

Ly, [C34exp(C) + C35 exp(—¢)] = 0, (822)
Lo, [Ciexp(¢) + Cr exn(—0)] =0,
where C (i = 30 — 37) elucidate the arbitrary constants.
8.2.1 Deformation problems at zeroth-order
A =P)Lp [ D) = for Q)| = BhsNFIF(C. 9, (8:23)
(=)L, [0(C, D)~ 00,(0)] = oG F(C. 5, 0(C, 1), B(C, D, (8:24)
(1=9)Ls, [9(C, B) = 60,(Q)] = PhoNy, [F(C, 7). 0, 7). 6(C, B, (8.25)
fO. 9 =0, Jloo ) =0 FO.p=1. f'(oo5)=0 } 526
00, p) =1, 000, ) =0, (0, p) =1, (c0, ) =0,
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Setting p = 0 and p = 1 one obtains

FC0) = fo, Q). F(C 1) = F(O),
0(C, 0) =00,(C), (¢, 1) =0(C),
B¢, 0) = ,(Q), B¢, 1) = o(Q).

When p changes from 0 to 1 then f((,ﬁ),

approximations fo,(¢), 0o, (¢) and ¢, (¢) to desired ultimate solutions f(¢),

8.2.2 Deformation problems at mth-order

L, [fa(C) = X fm-1(Q)] = Ry RE(Q),
Lo, [02() — xmbm-1(0)] = heRGL(Q),
Ly, [60(0) = Xinbm-1(Q)] = DR (),
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The following expressions are derived via Taylor’s series expansion
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HC. 7) = dn,(C +Z¢m 7, 600 = e (8.42)

m!
p=0

The convergence concerning Eqgs. (8.40) — (8.42) firmly depend for appropriate choices of hy,
hg and hg. Choosing appropriate values of iy, hg and hy so that Egs. (8.40) — (8.42) converge

at p =1 then
f( f03 + Z fm (843)
0(¢) = 0o, (¢) + Z 0.5 (8.44)
$(C) = o, (C) + Z (e (8.45)

In terms of special solutions (f}, 0%, ¢5,), the general solutions (fy, 0, ¢3) of the Egs.

(8.33) — (8.35) are defined by the following expressions:

FaQ) = F(Q) + Cig exp(C) + Cy exp(—() + Cp exp(2¢) + Cjs exp(—2(), (8.46)
0, (C) = 055,(C) + Ci4exp(C) + Cis exp(—(), (8.47)
0, (C) = ¢5,(¢) + Cigexp(C) + Ci7 exp(—(), (8.48)

in which the constants C (i = 30 — 37) through the boundary conditions (8.36) are given by

C§0 - C§2 - C§4 - C§6 =0

* ofz, * * * *
C33 = fag(o c=0 + f3(0), €35 = —C33 — f3(0), (8.49)

C35 = — 05(0), C37 = — ¢5,(0).

8.2.3 Convergence analysis

The derived homotopic solutions contain nonzero auxiliary parameters hy, hy and hy. Such
auxiliary variables have significant role to tune and govern the convergence of obtained homo-
topic results. To get the acceptable values of such parameters, the A— curves at 20th order
of deformations are tabulated. Fig. 8.1 shows the appropriate ranges as —1.5 < hy < 0.0,
—1.7 < hy < 0.5 and —1.6 < hy < —0.2. Table 8.1 indicates that the 10th order of deforma-
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tion is sufficient for convergent approximate solutions.

k=01, =4=06=001,M =01,Pr =Sc =20, N; =0.05, N, =0.3

¢'(0)

0,8 0),4' 0
1

f1(0)

-1.0 =05 0.0

ﬁfyﬁﬁv/%

Fig. 8.1: h—plots of f(¢), 6 (¢) and ¢ (().

Table 8.1. Solutions convergence when k£ = 0.1, 5 = Ay =6 = 0.01, M = 0.1, Pr = Sc = 2.0,

N; = 0.05 and N, = 0.3.

Order of approximations | —f”(0) | —6' (0) | ¢’ (0)

1 2.9912 | 1.0461 | 0.2519
) 3.0028 | 1.1418 | 0.2532
10 3.0034 | 1.1573 | 0.2538
15 3.0034 | 1.1573 | 0.2538
20 3.0034 | 1.1573 | 0.2538

8.3 Discussion

This portion has been organized to explore the effects of several effective parameters including
dimensionless radius of curvature parameter k, Deborah number 3, the ratio of relaxation
to retardation times A1, Prandtl number Pr, magnetic variable M, Brownian motion variable
Ny, thermophoresis variable Ny, heat generation/absorption ¢ and Schmidt parameter Sc on
dimensionless velocity f’(¢), temperature 6 (¢) and concentration ¢ () profiles. Effects of

curvature parameter k, Deborah number [, ratio of relaxation to retardation times A; and
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magnetic parameter M on velocity distribution f’({) are presented in the Figs. 8.2 — 8.5
respectively. Fig. 8.2 elucidates the impact of dimensionless radius of curvature parameter
k on velocity distribution f’({). Velocity and associated layer thickness are enhanced for
higher curvature parameter k. Variation of Deborah number 8 on velocity f’({) is sketched
in Fig. 8.3. Larger Deborah number 3 causes an increment in the velocity field f’(¢) and
corresponding layer thickness. Fig. 8.4 depicts the effect of ratio of relaxation to retardation
times A1 on velocity distribution f’({). An increment in \; ultimately give rise in relaxation
time that depicts that the material require much more time to come in equilibrium system from
perturbed system and hence the fluid velocity. Variation of M on velocity f’({) is displayed
in Fig. 8.5. An increase in the magnitude of magnetic paramter generates a resistive force
and ultimately velocity field reduces. Effects of curvature parameter k, magnetic parameter M,
Prandtl number Pr, thermophoresis parameter N;, Brownian motion parameter N, and heat
generation/absorption variable § on dimensionless temperature profile 6 (¢) are displayed in the
Figs. 8.6 — 8.11 respectively. Fig. 8.6 elucidates variation of dimensionless radius of curvature
parameter k£ on 6 (¢). Both temperature 6 (¢) and associated layer thickness are enhanced for
higher curvature parameter k. Impact of magnetic variable M on temperature profile 6 ({) is
displayed in Fig. 8.7. Clearly both temperature and corresponding layer thickness are higher
for bigger M. Fig. 8.8 shows variation of Prandtl number Pr on temperature 6 (¢). Larger
Prandtl number Pr shows a reduction in temperature field and related layer thickness. Influence
of Ny on 0(¢) is sketched in Fig. 8.9. By increasing thermophoresis parameter Ny, both
temperature distribution 6 () and related layer thickness are enhanced. Fig. 8.10 elucidates
the impacts of N on 0 (). Both temperature and associated layer thickness are greater for
bigger Brownian motion variable Nj. Influence of heat generation/absorption variable § on
temperature profile 6 (¢) is shown in Fig. 8.11. Here temperature and corresponding layer
thickness are enhanced for higher § (> 0) whereas opposite trend is observed for larger ¢ (< 0) .
Contributions of curvature parameter k, magnetic parameter M, thermophoresis parameter N,
Brownian motion N, and Schmidt parameter Sc on ¢ ({) are presented in Figs. 8.12 — 8.16
respectively. By enhancing curvature parameter k, magnetic parameter M and thermophoresis
parameter Ny, the concentration distribution ¢ (¢) is increased while reverse behavior is seen

for Brownian motion parameter N and Schmidt parameter Sc. Table 8.2 elucidates numerical
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data for skin friction through k, 8, A1 and M. It is examined that skin friction is enhanced for
larger 8 and M while the reverse trend is noticed through k and A;. Table 8.3 is displayed to
analyze the numerical data for local Nusselt number for distinct k, Pr, §, N, and N;. Clearly
local Nusselt number is lower for higher curvature parameter k, Prandtl number Pr, Brownian

motion Np and thermophoresis IV; paramters.
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p=4=0=001,M=01, Pr=Sc =20,

08 N; =0.05, N =0.3.

0.6

0.4
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0.2

0.0

Fig. 8.2. Plots of f'(¢) for k.

K=4 =05 M =03, Pr=Sc =20, § =0.01,

08 N; =0.05, Np =0.3.

0.6

04

£ =00, 1.0, 2.0, 3.0.
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0.0

Fig. 8.3. Plots of f’(¢) for .
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0.2
0.0
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Fig. 8.4. Plots of f/(¢) for A;.
f'(¢)
1.0
k=07, #=09, 4 =05, Pr=Sc =20, § =0.01,
Nt =0.05, Np =0.3.
M =0.0, 0.5, 1.5, 2.5.
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Fig. 8.5. Plots of f/(¢) for M.
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Fig. 8.6. Plots of 6 (¢) for k.

k=07, # =09, 4 =05, Pr=Sc =20, ¢ =0.01,

0.8 Nt =0.05, N, =0.3.
0.6
M =00, 15, 3.0, 45.
0.4
0.2

Fig. 8.7. Plots of 0 (¢) for M.
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Fig. 8.9. Plots of 6 (¢) for Ny.
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Fig. 8.10. Plots of 0 (¢) for Ny.
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Fig. 8.11. Plots of 6 (¢) for 4.
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Fig. 8.12. Plots of ¢ (¢) for k.
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Fig. 8.13. Plots of ¢ (¢) for M.
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1.0

k=07, £=09, 4 =05 M=03, Pr=Sc =2.0,

¢ =0.01, Np =0.3.
0.8
0.6
N{ =0.0, 0.5, 1.0, 1.5.
0.4
0.2
T iuu g,
2 3 4 5 7 '
Fig. 8.14. Plots of ¢ (¢) for Ny.

4
1.0

k=07, #=09, 44 =05, M =0.3, Pr =Sc = 2.0,
0.8 ¢ =0.01, Ny =0.05.
0.6

Np =0.04, 0.07, 0.15, 2.0.
0.4
0.2

2 3 4 5 7 {

Fig. 8.15. Plots of ¢ (¢) for N.
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k=07, £ =09, 4 =05 M=03, Pr=20, 4 =0.02,

3\
08l 3 N¢ =0.05, N, =0.3.

0.6

Sc=0.0, 2.0, 4.0, 6.0.

0.4

0.2

Fig. 8.16. Plots of ¢ (¢) for Sec.

Table 8.2. Numerical data of skin friction coefficient for distinct values of k, 5, A1 and M.

k|8 | M | M| —3Cs, (Resy)'?
0.1]0.1]01]0.1|12.0182
0.2 7.4196
0.3 5.8319
0.1]0.1]01]0.1|12.0182
0.3 12.7076
0.5 13.3944
0.1]0.1]01]0.1|12.0182
0.2 11.0170
0.3 10.1699
0.1]0.1]0.1]0.1|12.0182
0.4 | 12.0267

0.7 | 12.0351
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Table 8.3. Numerical data of local Nusselt number for distinct values of &, Ny, Pr, Ny and 0
when =X = M = 0.1 and Sc = 2.0.

kE |Pr| N, | Ny |6 | NugRes,'?
0.1]20]005]03|0.01 | 1.3762
0.2 1.2099
0.3 1.0807
0.1]1.0]0.05|0.3|0.01]| 17834
2.0 1.3762
3.0 1.2067
0.1]2.00.05|0.3]0.01|1.3762
0.10 1.3476
0.15 1.3196
0.1]2.00.05|0.3]0.01|1.3762
0.7 1.1508
1.1 0.9457
0.1]2.00.05|0.3]0.01|1.3762
0.02 | 1.3561
0.03 | 1.3357

8.4 Conclusions

Hydromagnetic flow of Jeffrey nanomaterial due to a curved stretchable surface with heat

generation/absorption is investigated. Main observations of presented research are listed below.

e Velocity distribution f’(¢) is enhanced for higher values of k and /3 whereas reverse trend

is seen for A\ and M.

e Larger thermophoresis /Ny and Brownian motion N, parameters show higher temperature

field 6 (¢) while opposite behavior is seen for Prandtl number Pr.

e Concentration field ¢ (¢) is higher for larger curvature k, magnetic M and thermophoresis

N; parameters whereas opposite trend is observed for Brownian motion parameter N, and
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Schmidt number Se.

e Skin friction is enhanced via 8 and M while the reverse trend is noticed through k& and

Al

e Local Nusselt number is lowered for higher curvature parameter k, Prandtl number Pr,

Brownian motion N, and thermophoresis IV; paramters.
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Chapter 9

Flow due to a convectively heated
nonlinear curved stretchable surface
having homogeneous-heterogeneous

reactions

The objective of current chapter is to provide a treatment of viscous fluid flow induced by
nonlinear curved stretchable surface. Concept of homogeneous and heterogeneous reactions
has been utilized. Heat transfer process is explored through convective heating mechanism.
Boundary layer approximation is employed in the mathematical development. The reduction of
partial differential system to nonlinear ordinary differential system has been made by employing
suitable variables. The obtained nonlinear system of equations has been solved and analyzed.
The characteristics of various sundry parameters are examined and discussed graphically. Fur-
ther the physical quantities like surface drag force and local Nusselt number are computed

numerically.
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9.1 Formulation

Ongoing formulation examine the two-dimensional (2D) flow of viscous fluid by a nonlinear

curved stretchable sheet which is coiled in a circle having radius R. The curved surface is

stretchable with non-linear velocity (u, (s) = a1s™) along the arc length direction. The dis-

tance R of the stretching curved surface from the origin determines the shape of curved surface

i.e., for higher value of R (— oco) the surface tends to flat. The surface of stretching curved sheet

is warmed by convection from a heated fluid at temperature 7'y which yields a convective heat

transfer coefficient hy. Further two chemical species A; and B; for homogeneous and heteroge-

neous reactions respectively are taken into account. For cubic autocatalysis, the homogeneous

reaction is given by

Ai + 2B, — 3By, rate = keab?,

whereas the heterogeneous reaction on the catalyst surface is

Ay — By, rate = ksa,

The boundary layer equations governing the current flow are

0 ou
E((r—i—R)v)—i—R%—O,
1 5, 10dp

r—i—Ru _p_fg7

v%—i-iu%—i- = w = —i i @
or r+R 0s r+R N prr+ ROs

<82u 1 Ou
+v + -

2 TTr RO TR

or . R_OT\ (1 or 0T
Pscr U@r 7“+Ru83 TY\YTRor T o2

2
v@ N R Oa D < 1 Oa N 0 a)  kab?,

or " r+R0s "+ Ror o2
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R b 1o P
or "r+R9s B

_ 1 o6 0% 2
r+ Ror + 8r2>  keab’, (08)

with the boundary conditions

U=y (s) =a1s", v=0, —k;ZL =h;(T; —T),
() = ror =he =10 L (9.9)
DA% = ksa, DB% = —ksa
ou
u — 0, a—HO, T— Ty, a—ay, b—0as r— oo. (9.10)
r

Here n the power-law stretching index (n = 1 corresponds to linear stretching, n # 1 correspond
to non-linear stretching whereas n = 0 gives linear stretching surface). Moreover for the case of
curved surface pressure is no longer consistent within the boundary layer. Using the following

transformations

u=as"f ((), v= g VawsT (5 () + 27 S(0) . C= /15
p:Pfa%g?nP(C): k= a1s;“‘_R, Q(C):%&, a=app(C), b=aph(().

(9.11)
Eq. (9.3) is symmetrically verified and Egs. (9.4) — (9.10) yield
oP  f”
s (9.12)
2nk (n—1)CkoP " 1 f <2nk+(n+1)§> 2
P - — — k
Tk 20Tk & U (C+Fk)? 2(¢+k)? I
n+1k .., m+1)k .,
9.13
S et (9.13)
1 " 74 k n+1 ;o
ﬁ<9 +<+k>+g+k< : )fe—o, (9.14)
1 1" d), k n+1 / 2 _
§(¢ +<+k>+c+k< : >f¢—k:1¢h —0, (9.15)
01 " W k n+1 / 2 _
§<h +C+k‘)+c+k< 5 >fh + ki1ph® =0, (9.16)
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f=0, f'=1, 0=—1-0), ¢ =ko, 6N =—kod at (=0, (9.17)
ff—0, f'"—0, 6—0, ¢—1, h—0 as (— oo,

where k stands for dimensionless curvature parameter, k; for strength of homogeneous reaction,
ko for strength of heterogeneous reaction and 7, for Biot number and. These parameters can

be expressed as follows:

aps"1 adk. ks v hy v
k=R kg = Ve g v = . 9.18
v VT g1 2 Dy, \ agsn1 e kg \ apsn—t (9.18)

Now eliminating pressure P from equations (9.12) and (9.13), we get

w o 2" f (nt+ Dk o  (+DE . (n+DE
T T T A T
Bn—-1) .2 (Bn—-1) I
——7kf — k 9.19
2(C+l<:)2f (§+I<:)ff (9.19)
Pressure P can be calculated from Eq. (9.13) as
etk ( m “”'“ N (Cf;@ B <2nk+(2n+1)< + () C) (cfk)szQ ) (9.20)
2 k TL l/ n !/ ' ’
g S I+ s g
When D4, = Dp, then §; =1 and so
P (O +h(C) =1 (9.21)
Now Egs. (9.15) and (9.16) yield
1 1 ¢ k n+1 / 2 _
g (7 2) g () s -mea -2 = (9:22)
with the boundary conditions
¢ (0) = ka6 (0), 6 (o) — L. (9.23)
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The definitions of surface drag and heat transfer rate are

Trs SQw
Cpo= 5 Nyy= S
fbl pfu%U s kf (T’LU _TOO)

with

Trsi = (2—? B TﬁR)‘r:O’
Qu, = _kf (%_f)}rzo‘

Expressions of skin friction coefficient and local Nusselt number are

Cfiseiz/z = f”(O) - %f’(O),
]\fusRes_zl/2 = —6'(0),

alsn+1

where Re;, = #°— stands for local Reynolds number.

9.2 Solutions

Initial approximations ( foss Bos, (b03) for homotopic solutions are defined by

foa(€) = exp(—€) — exp(~2C),
00:() = (757 ) exp(=C),

and auxiliary linear operators (EfZ, Lo, , £¢1) are

df o Rf df 20
= — 5= 4= - —
fo dC4 5 d<2 + d(’ Eol d<2 9’ £¢1

The above operators satisfy the following relations:

Ly, [C3gexp(C) + Cg exp(—() + Cp exp(2() + CF; exp(—2()]

Ly, [Chyexp(() + Cizexp(—
Ly, [Ciyexp(C) + Cjs exp(—

in which Cf (i = 38 — 45) elucidate the arbitrary constants.
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(9.26)

(9.27)

(9.28)

(9.29)



9.2.1 Deformation problems at zeroth-order
(1L =D)Lp [FC ) = foaQ)] = BRNGIFC D,
(L= 5)Loy [0(C, B) = 00,()] = hoNGa [F (. B), O(C, D,

(L= P)Lo, [$(C. ) = 60,(Q)| = PhaNG, [F(C 1), $(C. B,

0, ) =0, 80, 5) == (1-00, ), (0. 5)=1, &0, )= ka0(0, p)

fl(oo, §) =0, B(co, p) =0, f'(co, p) =0, ¢(o0, p)=1,

RS B L 2\ &Bf 1 \?0%f 1 \°of
wifie ] - S+ () o~ () e (59) &

(n+1)k f (n+1)k ,0°f (n+1)k ,0f

2(<+k)f6c3+2(g+k)2 6_@_2(<+k)3f8_<
(3n — 1) ka_fa_f_(3n—1)ka_fﬁ
2(C+k)? 0CI¢C  2(C+k) 9¢ac*

a1 D% 1 06 ko (n+1\ ,00
Noe [f(@ p), 0(C, p)] = 8_C2+C+—k3_C+PrC+—k (T) f8—<7
a1 9% 1 9¢ ko (n4+1\ ;00
No, [f(C, p), #(C, p)} = 8_@+m8_C+SCC+—k( 5 )fa_g

hiSed (1 (;)2.

Setting p = 0 and p = 1 one obtains

f(Cv O):f03(C)7 f(Cv 1):f(<)>

0(¢, 0) =00,(C), (¢, 1) =0(C),

~ ~

(9.30)
(9.31)

(9.32)

(9.33)

(9.34)

(9.35)

(9.36)

(9.37)

(9.38)

(9.39)

When § varies from 0 to 1 then f(¢,5), 0(¢,p) and ¢(¢,p) display alteration from primary
approximations fo;(¢), 6o, (¢) and ¢, (¢) to desired ultimate solutions f(¢), 6(¢) and ¢(().
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9.2.2 Deformation problems at /mth-order

Lo Q) = X Smn-1(Q)] = iy RE(Q), (9.40)
Lo [05(C) = xinfim—1(0)] = hoRize (<), (9-41)
L. [65.(0) = xnPm1(Q)] = h¢7~3$5(0, (9.42)

07,(0) = 7051(0) = 0, f(0) = f},(0) = 0, ¢7;,(0) — k2¢y,(0) = 0, } (9.43)

fra(00) = 0 (00) = f1;,(00) = ¢y, (00) =0,

ﬁm _ " 2 7 1 2 "
1B = fait (H—k> fin—1— <m) Jin—1
) N

k=0 —
— (3n _ 1) = ! / _ (3n - 1) = / "
2(¢+ k)2k 2 (f1-tt) 20T k:)k 2 (fm_l_,%fk>> , (9.44)
ko(n+1) (&
Ree(C) = 0,1 + = 01+ TR ( 5 ) ( fmlk%) : (9.45)
k=0

—I k
—k1Sc (Z G 1 i Z (1 — ¢,;_l) (1- cbl)) ; (9.46)

The following expressions are derived via Taylor’s series expansion:

N

PG 9 = O+ 3 Sl O™, ) = — 2T D)
m=1

m!  opm

, (9.47)

p=0
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: ", p
0. ) = 00,(C) + Z a0, 0lc) = = B D (9.48)
5=0
. o0 . 1 8mA o
56 1) =000+ Y a4 = i D) (9.49)
m=1 ) 5=0

The convergence regarding Eqs. (9.47) — (9.49) is strongly based upon the suitable choices of
h¢, hg and hy. Choosing adequate values of fif, hg and hy so that Eqgs. (9.47) — (9.49) converge
at p =1 then

[ee)

F(O) = fos () + D fml0), (9.50)
0(¢) = 00,() + Y _ 0m(C), (9.51)

A(C) = o, (O) + D dm(€)- (9.52)

In terms of special solutions (f%, 05, ¢r,), the general solutions (fy,, 0, ¢z) of the Egs.

(9.40) — (9.42) are defined by the following expressions:

fa(Q) = f7,(¢) + C35 exp(C) + C3g exp(—(¢) + Clgexp(2¢) + Cj; exp(—2(), (9.53)
01 (C) = 05%,(C) + Craexp(¢) + Ciz exp(—(), (9.54)
¢ () = 07, (C) + Ciyexp(C) + Cis exp(—¢), (9.55)

in which the constants C (i = 38 — 45) through the boundary conditions (9.43) are given by

8]%(6)'
aC | _y

1 [ 0905(0) o .1 (0950 I
Ciz = 1+’y< ¢ ‘C:o 79m(0)>, Cis = Ty ( ac '(:0 kggbm(())). (9.57)

9.2.3 Convergence analysis

Cig=Cl=Clh=Cy=0,Cj =

+/3(0), C39 = —=Ciy — f5,(0),  (9.56)

The nonzero auxiliary parameters iy, hyp and hy have significant role to define convergence

region. For acceptable values of such parameters, we have mapped out hA— curves at 20th
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order of deformations. Fig. 9.1 indicates that the convergence zone lies inside the values

—1.5 < hy < -0.6, =1.7 < hy < —0.3 and —1.4 < hy < —0.5. Table 9.1 indicates that 20th

order of deformation is enough for convergent approximate solutions.

k =k, =05,n=11,Pr=Sc =40,k; =07, 1 =03

$'(0)

T
]
1
1
]
1
1
]
'
\
1
\
1
[
\
]
'
\
\

0,8 0),¢"' 0
|

6'(0)

£ (0)

Fig. 9.1: h—plots of f(¢), 6 (¢) and ¢ ({).

Table 9.1. Convergence of series solutions when &k = ko = 0.5, n = 1.1, Pr = Sc = 4.0,
k1 = 0.7 and v, = 0.3.

Order of approximations | — f”(0) | — 6" (0) | ¢’ (0)

1 1.1193 0.7433 | 0.0147
) 1.2341 0.7622 | 0.0134
10 1.2448 0.7721 | 0.0122
15 1.2469 0.7866 | 0.0118
20 1.2469 0.7910 | 0.0111

25 1.2469 0.7910 | 0.0111
30 1.2469 0.7910 | 0.0111

9.3 Discussion

This portion has been organized to explore the impact of several effective parameters including

dimensionless radius of curvature parameter k, power law stretching index n, Prandtl num-
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ber Pr, Biot number v,, magnitude of homogeneous reaction ki, magnitude of heterogeneous
reaction kg and Schmidt number Sc on dimensionless velocity f’(¢), temperature 6 (¢) and
concentration ¢ (¢) profiles. Influences of k£ and n on f’({) are presented in Figs. 9.2 and 9.3
respectively. Fig. 9.2 elucidates impact of dimensionless radius of curvature parameter k on
velocity distribution f/(¢). Both velocity field and momentum layer thickness are higher for
larger curvature parameter k. Behavior of power law stretching index n on velocity f(¢) is
displayed in Fig. 9.3. An enhancement is seen for larger stretching index n for both velocity
and momentum layer thickness. It is vital here to mention that n = 1 relates to linear stretch-
ing, n # 1 for non-linear stretching whereas n = 0 is for non-stretching surface. Behaviors of
curvature parameter k, power law stretching index n, Prandtl number Pr and Biot number -,
on dimensionless temperature profile 6 (¢) are presented in Figs. 9.4 — 9.7 respectively. Fig. 9.4
elucidates the impact of curvature parameter k on 6 (¢). Note that 6 and corresponding layer
thickness are enhanced for greater curvature parameter k. Behavior of power law stretching
index n on temperature distribution 6 (¢) is presented in Fig. 9.5. It is noticed that both tem-
perature and associated layer thickness are reduced when n enhances. Fig. 9.6 displays Prandtl
number Pr variation on temperature 0 (¢). Larger Prandtl number Pr decrease temperature
field and thermal layer thickness. Outcome of Biot number ~y, on temperature distribution 6 (¢)
is displayed in Fig. 9.7. Temperature 6 (¢) and related layer thickness are larger when -, in-
creases. Impacts of dimensionless curvature parameter k, strength of homogeneous reaction ki,
Schmidt number Sc and strength of heterogeneous reaction ks on dimensionless concentration
profile ¢ (¢) are presented in Figs. 9.8 — 9.11 respectively. By enhancing curvature parameter
k, strength of homogeneous reaction k1 and Schmidt number Sec, the concentration distribution
¢ () reduces while reverse behavior is seen for strength of heterogeneous reaction ka. It is no-
ticed that, magnitude of homogeneous reaction k1 and magnitude of heterogeneous reaction ko
have opposite effects on concentration distribution ¢ (¢). Table 9.2 elucidates numerical data of
skin friction coefficient via curvature parameter k and power-law index n. Skin friction coeffi-
cient reduces for larger curvature parameter k£ and power-law index n. Table 9.3 is organized to
analyze the numerical data of local Nusselt number for curvature parameter k, Prandtl number

Pr and Biot number ~,. It is observed that local Nusselt number is higher for larger Prandtl
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(Pr) and Biot (;) numbers whereas reverse trend is seen for curvature paramter k.

(&)
1.0
n=15, Pr=Sc =4.0, k; =0.7, kp =0.5, y; =0.3.
0.8
0.6
0.4
k=0.1,0.3,05,0.7.
0.2
0.0
1 2 3 4 5 6 7 ¢
Fig. 9.2. Plots of f'(¢) for k.
f'(¢)
1.0
k =k, =0.5, Pr =Sc =4.0, ky =0.7,  =0.3.
1 2 3 4 5 6 7 '

Fig. 9.3. Plots of f/(¢) for n.
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n=15, Pr=Sc=10,k; =0.3, ko =0.3, y; =0.3.

k=03,04,0.5, 0.6.

0.10
0.05

1 2 3 4 5 6 [

Fig. 9.4. Plots of 6 (¢) for k.
(&)
020 k =k, =05, Pr =Sc =4.0, k; =0.7, 1 =0.3.
n=0.0, 1.0, 2.0, 3.0.
1 2 3 4 5 6 '

Fig. 9.5. Plots of 6 (¢) for n.
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7<)

0.25

k=ky =05,n=15, Sc =40, k; =0.7, y; =0.3.

0.20

Pr=05, 0.7, 1.0, 4.0.

0.15
0.10
0.05
1 2 3 PR 5
Fig. 9.6. Plots of 6 (¢) for Pr.
4({)

0.5
E k=k, =05, n=15, Pr=5c =40, kj =0.7.

¥t =05, 0.7, 0.9,

Fig. 9.7. Plots of 0 (¢) for ~,.
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4)

#)

045

Fig. 9.9. Plots of ¢ (¢) for k.
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<)

1.0

0.9

k=ky, =05, n=15, Pr =4.0,

ki =0.7, y1 =0.3.

1
0.6 i

0.5

0.6, 0.8, 1.1.

k=05,n=15, Pr=Sc =40, ky =0.7, 9 =0.3.

4 6 8 10

Fig. 9.11. Plots of ¢ (¢) for ks.
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Table 9.2. Variations of k and n on skin friction coefficient.

E |n |- C’fise;f
0.3 | 1.1 | 6.7480
0.4 5.4531
0.5 4.4423
0.5 0.9 | 4.7160
1.0 | 4.7134
1.1 | 4.7107

Table 9.3. Local Nusselt number for k£, Pr and 7, when n = 1.1, k; = 0.7, k2 = 0.5 and
Sc =4.0.

kE | Pr|~ NusRes_21/2
0.3 4.0 0.3 | 0.2469
0.4 0.2454
0.5 0.2443
0.5]3.0]0.3]|0.2432
6.0 0.2452
9.0 0.2455
0.5]4.0]0.2]0.1737
0.3 | 0.2443
0.4 | 0.3067

9.4 Conclusions

Flow for homogeneous-heterogeneous reactions and convective condition is investigated. Main

observations of presented research are listed below.

e Velocity distribution f/(¢) is enhanced for larger k and n.

e Larger curvature parameter & and Prandtl number Pr show decay in temperature field

6 (¢) while opposite trend is noticed for Biot number ~,.
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e Influences of homogeneous ki and heterogeneous ks parameters on concentration field

o (C ) are quite reverse.

Concentration field ¢ (¢) is reduced for higher curvature k and Schmidt number Se.

Skin friction coefficient is lowered for larger curvature parameter k and power-law index

n.

e Local Nusselt number is enhanced for higher Prandtl Pr and Biot 7; numbers.
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Chapter 10

Numerical study for nonlinear
curved stretching sheet flow subject

to convective conditions

This chapter provides a numerical simulation for boundary-layer flow of viscous fluid bounded
by nonlinear curved stretchable surface. Convective conditions of heat and mass transfer have
been employed at the curved nonlinear stretchable surface. Moreover heat and mass trans-
fer attributes have been explored through chemical reaction and heat absorption/generation.
Boundary layer expressions are reduced to nonlinear ordinary differential system. Shooting
algorithm is employed to construct the solutions for the resulting nonlinear system. The char-
acteristics of various sundry parameters are studied. Moreover the skin friction coefficient and

local Sherwood and Nusselt numbers are tabulated.

10.1 Formulation

We consider flow of viscous fluid by curved stretchable surface with nonlinear velocity. The
curved stretchable surface is coiled in a circle having radius R. Heat and mass transfer character-
istics are explored via chemical reaction and heat absorption/generation. Nonlinear stretchable
sheet has convective heat and mass conditions. Surface is heated through hot fluid having

temperature Ty and concentration C that give heat and mass transfer coefficents hy and &,
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respectively. The boundary-layer expressions can be put into the forms:

gy -+ Ryv)+ R =0 (10.1)
T i Ru2 - pif%’ (10.2)
ou R Ou 1 | R op
UE+7“—|——RUJ$+1”+—RUU - _p_fr+R$
v <%+ riR% C(r :R)QU>, (10.3)

or R 0T o0*T 1 oT
pycr <”E * ﬁ“?) =k (W * H—RE) TQIT—Tw),  (104)

or r+R 0s "\ or2 r+ROr

>—RAC—QQ, (10.5)

with the boundary conditions

T
U= Uy ($) =a18", v=0, —kfaa—r—hf(Tf—T), —Dmaa—(:—km(Cf—C) at =0, (10.6)
ou
u — 0, 8——>(), T Ty, C—Cx as r— oo. (10.7)
T

Here R, the rate of chemical reaction. Moreover for the case of curved surface pressure is no

longer consistent within the boundary layer. Using the following transformations

w=ars"f (Q), v = Vaos T (B (O + 552 (), ¢ = } 08
0

p=padsP Q). k=y/E=R 000 = Fp, 0(0) = &5
Eq. (10.1) is identically verified and Egs. (10.2) — (10.7) yield

oP _ f”
s (10.9)
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2nk (n—l)Cka_P " f’ . f! . an+(n+1)C> /2
Crh 2w oc — D TR T < 2 m? )M
(n+1)k "y (n+Dk ..,
ety o (10.10)
1 " 74 k n+1 ; B
ﬁ<19 +C+k‘>+C+k‘< . )fe 60 =0, (10.11)
1/, ¢ k' (n+1 B

(10.13)

f:07 f/:17 9,:_775(1_9)7 ¢/:_70(1_¢) at CZO,
f/_>07 f”_>07 9_>07 (b_>07 as C_>OO7

in which § stands for heat generation/absorption parameter, R’ for chemical reaction parameter,
Sc for Schmidt number, v, for thermal Biot number and «, for concentration Biot number.

These parameters are

§=—8  pRr— B
alprpSn_ 9 C alsn—l Y
hf _ ) _ (10.14)
SC— m’ 'Yt alsn717 ’Yc = Do, alsnfl‘

Elimination of pressure from Egs. (10.9) and (10.10) gives

7 2f”/ _ f” f, (n + 1) k " ( ) /s (n + 1)
Y (g+k)2+(g+k)3+2(<+k)ff " (C+k)2ff (C+k:)3ff
_(Sn_ ) (n_l) "
2(C+k)2 (C—i—k)kf = (10.15)

Pressure P can be calculated from Eq. (10.10) as

mo " f(2nk+(n+1)C n—1 k 2
= ¢+ ( U CHk (C+R)? ( 2 + ( )C) (C+/€)2f ) ] (10.16)
2nk (n (n+1)
" +SES T+ 2!
The relations for skin friction coefficient and local Nusselt and Sherwood numbers are

Trs Sqw S,jw
Cy =—"12L Nus= ———F——, Shs, = 2 . 10.17
fsl pfu%;’ U kf (Tw _ Too) 2 Dm (C’u) _ Coo) ( )
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Here 7,5, stands for wall shear stress, ¢, for wall heat flux and j,, for wall mass flux which

are expressed by

Gu, = —kj (B—T)}r:m (10.18)
Jws = —Dm ( )‘7‘ 0"

Dimensionless forms of skin friction coefficient and local Nusselt and Sherwood numbers are

CroyRes)” = f”( ) - %f( )
NusResz = ( ) (1019)
ShS2R€S2 = ( )

10.2 Analysis

The systems consisting of Eqs. (10.11), (10.12), (10.13) and (1.15) are numerically computed by
shooting technique. Main interest here is to examine the velocity f’(¢), temperature 6 (¢) and
concentration ¢ ({) profiles for several influential variables like dimensionless radius of curva-
ture parameter k, power-law stretching index n, Prandtl number Pr, heat absorption/generation
variable §, Schmidt number Se¢, chemical reaction parameter R}, thermal Biot number v, and
concentration Biot number v,.. Effects of curvature parameter k and power-law stretching index
n on velocity distribution f’ () are presented in the Figs. 10.1 and 10.2 respectively. Fig. 10.1
elucidates the impact of dimensionless radius of curvature k on velocity distribution f’ (¢). Both
velocity and momentum layer thickness are higher for larger curvature parameter k. Variation
of power-law stretching index n on velocity f’(¢) is displayed in Fig. 10.2. Larger power-law
stretching index n show decay in velocity f’ (¢) and momentum layer thickness. Effects of curva-
ture parameter k, power-law stretching index n, Prandtl number Pr, heat generation/absorption
variable § and thermal Biot number v, on dimensionless temperature profile 6 ({) are displayed
in the Figs. 10.3 — 10.7 respectively. Fig. 10.3 elucidates the variation of dimensionless radius
of curvature parameter k on temperature profile 6 (¢). Both temperature 6 ({) and thermal
layer thickness are enhanced for higher curvature k. Impact of power-law stretching index n on
temperature distribution 6 (¢) is plotted in Fig. 10.4. Clearly both temperature and thermal

layer thickness are lower for higher n. Fig. 10.5 shows variation of Prandtl number Pr on tem-

187



perature 6 (¢). Larger Prandtl number Pr shows a decay in temperature field and related layer
thickness. Impact of heat absorption/generation variable ¢ on temperature 6 (¢) is displayed in
Fig. 10.6. Here temperature 0 (¢) and corresponding layer thickness are enhanced for higher §
(> 0) whereas opposite trend is observed for larger 6 (< 0). Influence of thermal Biot number
v, on temperature profile 6 (¢) is sketched in Fig. 10.7. For higher thermal Biot number 7,
both temperature 6 (¢) and related layer thickness are enhanced. Contributions of curvature
parameter k, power-law stretching index n, Schmidt number Se¢, chemical reaction parameter
R and concentration Biot number «y, on dimensionless concentration profile ¢ (¢) are presented
in the Figs. 10.8 — 10.12 respectively. Fig. 10.8 elucidates the impact of dimensionless radius of
curvature parameter k on concentration ¢ (¢) . It is noted that concentration ¢ ({) is enhanced
for larger curvature parameter k. Variation of power-law stretching index n on concentration
¢ (¢) is displayed in Fig. 10.9. Larger power-law stretching index n causes a reduction in con-
centration ¢ (¢). Fig. 10.10 shows the impact of Schmidt number Sc on concentration ¢ (¢).
Larger Schmidt number Sc show a decay in concentration ¢ (¢). Plots of ¢ ({) via R} are given
in Fig. 10.11. Concentration ¢ (¢) is reduced for higher R} (> 0) whereas opposite trend is
observed for larger R} (< 0). Impact of concentration Biot number v, on concentration ¢ (¢)
is sketched in Fig. 10.12. For larger concentration Biot number ., the concentration ¢ (¢) is
enhanced. Table 10.1 elucidates the numerical data of skin friction coefficient for distinct values
of curvature k and power-law stretching index n. It is examined that skin friction coefficient is
enhanced for larger n while reverse trend is noticed for k. Table 10.2 is displayed to analyze the
numerical data of local Nusselt number for distinct values of curvature parameter k, power-law
stretching index n, Prandtl number Pr, heat generation/absorption variable § and thermal Biot
number ;. Here local Nusselt number is increased for higher curvature parameter k, power-law
stretching index n, Prandtl number Pr and thermal Biot number v, whereas the opposite trend
is seen via heat generation variable § (> 0). Table 10.3 describes the numerical data of local
Sherwood number for curvature k, power-law stretching index n, chemical reaction parameter
R}, Schmidt number Sc and concentration Biot number ,. Clearly local Sherwood number is
increased for larger power-law stretching index n, Schmidt number Se¢, chemical reaction para-

meter R} (> 0) and concentration Biot number v, while reverse trend is noticed for curvature
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parameter k.

k=0.2,04,06, 10.

n=12Pr=S =204 =01 R =03, t=2=05

2 4 6 8 10 12 ¢
Fig. 10.1. Plots of f’(¢) for k.
')
n
=09, Pr=S =206 =01 R; =03, 1 = =05
08}
06t
04}
n =0.0,05, 1.0, 2.0.
02t
10 5 <

Fig. 10.2. Plots of f’(¢) for n.
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n=12Pr=5 =10 6 =0.1, R} =0.1, s = % = 03
025
" =03, 04, 05, 06,
0.15
0.10
0.05

Fig. 10.3. Plots of 6 (¢) for k.
&)

K =009, Pr=Sc=204 =01 R =03 s =y =05

n =0.0,05, 10, 2.0.

Fig. 10.4. Plots of 6 (¢) for n.
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k =09, n=12 Sc =20, ¢ =01, R =03, 4 = ¢ =05,

Pr =20, 3.0, 4.0, 5.0.

Fig. 10.5. Plots of 6 (¢) for Pr.

K =09,n=12Pr=5c=20R =03 = =05

¢ = 0.00, 0.04, 0.08, 0.10.

6 = 0.00, -0.07,
-0.20. -0.40.

Fig. 10.6. Plots of 6 (¢) for 9.
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=09,n=12,Pr =S¢ =20, =01, R =03, ¢ = 05.

04

7 =03,05,07,09.

Fig. 10.7. Plots of 6 (¢) for -,.

n=12Pr =S =20,0 =01, Ry =03, 71 = =05.

k=03, 05, 08, 13.

Fig. 10.8. Plots of ¢ (¢) for k.
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=09, Pr=Sc=20,6=01R =03, y = =05

020

n=100,05, 10, 20.

Fig. 10.9. Plots of ¢ (¢) for n.

k =09, n =12, Pr =20, & =01, R} =03, » = = 05.

Sc =20, 30, 40, 50.

Fig. 10.10. Plots of ¢ (¢) for Se.
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k=09,n=12 Pr=5c=20,6 =01, 5 = =05.

R¢ =0.00, -0.04, -0.08, -0.12.

R: =00, 0.1,
0.3, 06.

Fig. 10.11. Plots of ¢ (¢) for R}.

=09,n=12, Pr =Sc =20, =01, Rf =03, »4 =05.

7 =03,05,07, 09.

Fig. 10.12. Plots of ¢ (¢) for ..
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Table 10.1. Numerical data of skin friction coefficient for distinct values of £ and n.

k |n —Cfiseif

0.7 1.2 | 3.01252

0.8 2.68941

0.9 2.44795

0.91 0.5 | 2.35078

1.0 | 2.41760

1.5 | 2.57099

Table 10.2. Numerical data of local Nusselt number for distinct values of k, v;, n, 6 and Pr

when Sc = 2.0, v, = 0.5 and R} = 0.3.

k |n |Pr|é Ve —NusRe;;/z
0.7 12120 0.10 | 0.5 | 0.320250
1.0 0.326890
1.3 0.329249
0910520 0.10 | 0.5 | 0.259056
1.0 0.312047
2.0 0.358824
0912120 0.10 | 0.5 | 0.325390
4.0 0.363273
6.0 0.390522
0.9]1.2]20]0.00]| 0.5 ]| 0.348027
0.01 0.345153
0.02 0.341351
091220 0.10 | 0.4 | 0.279858
0.5 | 0.325390
0.6 | 0.364750

195



Table 10.3. Local Sherwood number for distinct values of k, v, n, R and Sc when Pr = 2.0,
0 =0.1 and v, = 0.5.

kE |n | Sc|R:|v | —Shs, Res_zl/2
0.71.2]20]03]|0.5] 0.383966
1.0 0.377471
1.3 0.373538
09(05]20]03]|0.5]0.372970
1.0 0.377548
2.0 0.385298
09 (1.2]20]03|0.5]0.379238
4.0 0.404760
6.0 0.418212
09(12)20)0.0]0.5] 0.345022
0.2 0.372093
0.4 0.384874
09(12]20]03|04]0.318789
0.5 | 0.379238
0.6 | 0.434103

10.3 Conclusions

Viscous fluid flow due to a nonlinear curved stretchable surface with convective heat and mass
conditions is addressed. Chemical reaction and heat absorption/generation effects are also

considered. Main observations of presented research are listed below.

e Velocity distribution f’(¢) is enhanced for higher values of k whereas reverse trend is

noticed for n.

e Larger power-law stretching index n, Prandtl number Pr and heat variable § (< 0) show
lower temperature field 6 (¢) while opposite trend is seen for curvature parameter k,

thermal Biot number v, and heat variable 6 (> 0).
e Concentration field ¢ (¢) is higher for larger curvature parameter k, chemical reaction
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parameter R’ (< 0) and concentration Biot number .. However opposite behavior of
¢ (¢) is found for power-law stretching index n, chemical reaction parameter R} (> 0)

and Schmidt number Sc.
Skin friction coefficient for & and n has opposite impact.

Local Nusselt number is enhanced for larger curvature parameter k, power-law stretching
index n, Prandtl number Pr and thermal Biot number ~,. The parameter ¢ (> 0) on local

Nusselt number has opposite influence when compared with k.

Local Sherwood number is increasing function of power-law stretching index n, Schmidt
number Sc,chemical reaction parameter R’ (> 0) and concentration Biot number 7,.

Further effects of k and n on local Sherwood number are quite reverse.
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