
Similar and Non-Similar Flows of Nanofluid
with Heat and Mass Transfer

By

Muhammad Saleem Iqbal
Reg. No. 09-FBAS/PHDMA/S12

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences

International Islamic University, Islamabad
Pakistan

2018



Similar and Non-Similar Flows of Nanofluid
with Heat and Mass Transfer

By

Muhammad Saleem Iqbal

Supervised By

Dr. Ahmer Mehmood

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences

International Islamic University, Islamabad
Pakistan

2018



Similar and Non-Similar Flows of Nanofluid
with Heat and Mass Transfer

A dissertation

submitted in the partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS

Submitted By

Muhammad Saleem Iqbal

Supervised By

Dr. Ahmer Mehmood

Department of Mathematics and Statistics
Faculty of Basic and Applied Sciences

International Islamic University, Islamabad
Pakistan

2018



Author’s Declaration 
 

 

 

I, Muhammad Saleem Iqbal Reg. No. 9-FBAS/PHDMA/S12 hereby 

state that my Ph.D. thesis titled: Similar and Non-similar Flows of Nonfluid 

with Heat and Mass Transfer is my own work and has not been submitted 

previously by me for taking any degree from this university, International 

Islamic University, Sector H-10, Islamabad, Pakistan or anywhere else in the 

country/world. 

At any time if my statement is found to be incorrect even after my 

Graduation the university has the right to withdraw my Ph.D. degree. 

 

 

 

 

Name of Student: (Muhammad Saleem Iqbal) 

Reg. No. 9-FBAS/PHDMA/S12 

Dated: 01/08/2018 

  



Plagiarism Undertaking 
 

 

 

I solemnly declare that research work presented in the thesis titled: 

Similar and Non-similar Flows of Nonfluid with Heat and Mass Transfer is 

solely my research work with no significant contribution from any other person. 

Small contribution/help wherever taken has been duly acknowledged and that 

complete thesis has been written by me. 

I understand the zero tolerance policy of the HEC and University, 

International Islamic University, Sector H-10, Islamabad, Pakistan towards 

plagiarism. Therefore, I as an Author of the above titled thesis declare that no 

portion of my thesis has been plagiarized and any material used as reference is 

properly referred/cited. 

I undertake that if I am found guilty of any formal plagiarism in the above 

titled thesis even after award of Ph.D. degree, the university reserves the rights 

to withdraw/revoke my Ph.D. degree and that HEC and the University has the 

right to publish my name on the HEC/University Website on which names of 

students are placed who submitted plagiarized thesis. 

 

 

 

 

Student/Author Signature: ___________________________ 

Name: (Muhammad Saleem Iqbal) 

  



Certificate of Approval 
 

This is to certify that the research work presented in this thesis, entitled: 

Similar and Non-similar Flows of Nonfluid with Heat and Mass Transfer 

was conducted by Mr. Muhammad Saleem Iqbal, Reg. No. 9-

FBAS/PHDMA/S12 under the supervision of Dr. Ahmer Mehmood no part of 

this thesis has been submitted anywhere else for any other degree. This thesis is 

submitted to the Department of Mathematics & Statistics, FBAS, IIU, 

Islamabad in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Mathematics, Department of Mathematics & Statistics, 

Faculty of Basic & Applied Science, International Islamic University, Sector 

H-10, Islamabad, Pakistan. 

 

Student Name: Muhammad Saleem Iqbal   Signature: 

______________ 

 

Examination Committee: 
 

a) External Examiner 1: 

 Name/Designation/Office Address Signature: ______________ 

b) External Examiner 2: 

 Name/Designation/Office Address) Signature: ______________ 

 

c) Internal Examiner: 

 Name/Designation/Office Address) Signature: ______________ 

 

Supervisor Name:      

 Dr. Ahmer Mehmood   Signature: ______________ 

 

 

Name of Dean/HOD:     

 Prof. Dr. Muhammad Sajid, T.I  Signature: ______________

 

Prof. Dr. Muhammad Ayub 

Professor of Mathematics, 

Department of Mathematics, 

QAU, Islamabad 
 

Prof. Dr. Mazhar Hussain 

Professor of Mathematics, 

National University of Computer & Emerging Sciences, 

Islamabad, Pakistan. 
 

Prof. Dr. Muhammad Sajid T.I 

Professor 
 



My Life 

may not be going the way 

I planned 

it, but it is going 

Exactly 
the way 

ALLAH 
planned it 

 



Acknowledgement 

First and foremost, I am grateful to Almighty Allah the most merciful and the most 

beneficent creator who has enabled me to perform this research work. I offer my humblest 

and sincerest thanks to the Holy Prophet Hazrat Muhammad Mustafa (SAW) who is 

forever a torch of guidance and knowledge for humanity. 

It is a great pleasure to acknowledge my supervisor Dr. Ahmer Mehmood for his valuable 

suggestions and guidance during the Ph.D. research work, his experience, tremendous 

cooperation and valuable comments enabled me to complete my dissertation successfully. 

I would appreciate the painstaking attitude of my supervisor. He does not forward any draft 

unless he himself is satisfied with its standard which indicates his professional approach 

and sincerity to the subject. 

I would like to express my gratitude and special thanks to the Chairman Department of 

Mathematics Prof. Dr. Muhammad Sajid (T.I) for his favorable response and valuable 

suggestions during the whole study. I express my sincere thanks to external examiners 

Prof. Dr. Muhammad Ayub and Prof. Dr. Mazhar Hussain for valuable comments and 

encouragement. 

I am thankful to the faculty and staff of Mathematics Department for the co-operation 

during study. I would also express my sincere appreciation for help received from Prof. 

Dr. Tariq Javed and Prof. Dr. Nasir Ali. 

I am grateful to all my research colleagues including ‘Dr. Irfan Mustafa, Dr. Abid 

Majeed, Dr. Abuzar Ghaffri, Dr. Bilal Ahmed, Dr. Muhammad Asif Javed Rana, Dr. 

Mubashir Nazeer, Dr. Raja Ziafat Mehmood, Mr. Muhammad Arshad Siddiqui, Mr. 

Abdul Haleem Hamid, Hafiz Muhammad Atif, Mr. Muhammad Usman, Mr. Sajid 

Khan, Mr. Ghulam Dastgir Tabassum, Mr. Iqrar Raza, Mr. Muhammad Awais, Mr. 

Babar shah, for their encouragement and helping in all affairs especially in my research 

work. I am thankful to the staff of the ICB G-6/3 Islamabad, for their cooperation during 

the time of research. I pay gratitude to my cousin Prof. Dr. Muhammad Iqbal (late) and 

my PhD fellow Prof. Dr. Hussain Ahmed (late). 

I express my devoted affection to all my family members for creating a delightful 

atmosphere and excusing me from family duties in order to complete the research. 



Nomenclature 

𝐵0 Magnetic field strength 

𝐶 Concentration of fluid 

𝑐𝑝 Specific heat at constant pressure 

𝐶𝑓 , 𝐶𝑓𝑥 Local skin friction coefficient 

𝐶𝑓𝑎𝑣𝑔
 Average skin friction coefficient 

𝐷𝐵 Brownian diffusion coefficient 

𝐷𝑚 Mass diffusivity 

𝐷𝑇  Thermophoretic diffusion coefficient 

𝑑, 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5 Material parameters 

𝑓 Dimensionless stream function 

𝑔 Acceleration due to gravity 

𝐻 Heat source/sink parameter 

𝑙 Reference length 

𝐿𝑒 Lewis number 

𝑀 Magnetic parameter 

𝑚 Temperature /Concentration Power-law index 

𝑁𝑏 Brownian motion parameter 

𝑁𝑡  Thermophoresis parameter 

𝑛̂ Unit normal to the wavy surface 

𝑁𝑢, 𝑁𝑢𝑥 Local Nusselt number 

𝑁𝑢𝑎𝑣𝑔 Average Nusselt number 

𝑝 Pressure 

𝑃𝑟 Prandtl number 

𝑄 Uniform heat sink/source 

𝑞𝑟 Radiative heat flux 

𝑞𝑤 Surface heat flux 

𝑟 Radius of the cone 

𝑅𝑑 Radiation parameter 



𝑅𝑒, 𝑅𝑒𝑥  Reynolds number 

𝑆 Sinusoidal wavy function 

𝑆ℎ, 𝑆ℎ𝑥 Sherwood Nusselt number 

𝑇 Fluid temperature 

𝑇𝑤  Temperature at the surface 

𝑇∞ Ambient fluid temperature 

𝑡̂ Unit vector normal to the wavy surface 

𝑢 Velocity component along  𝑥-direction 

𝑈 Free stream velocity 

𝑢𝑐  Reference velocity 

𝑣 Velocity component along  𝑦-direction 

𝑽 Velocity vector 

Greek symbols  

𝛼̅ Amplitude 

𝛼 Ratio of the wavy amplitude to the wave length 

𝛼∗ Thermal diffusivity 

𝛽 Thermal expansion coefficient 

𝛾 Cone half angle 

𝛿 Boundary layer thickness 

𝜂, 𝜉 Dimensionless variables 

𝜃, 𝜃∗ Dimensionless temperature 

𝜅 Thermal conductivity of fluid 

𝜇 Dynamic viscosity 

𝜈 Kinematic viscosity 

𝜌  Density 

𝜎 Sinusoidal wavy surface 

𝜎∗ Electrical conductivity 

𝜏∗
 Ratio of heat capacity of nanoparticle to the base fluid 

𝜏𝑤  Surface shear stress 

𝜑, 𝜑∗
 Dimensionless concentration 



𝜙 Concentration of nanoparticle 

𝜓 Stream function 

ω Wavy parameter 

Subscripts  

𝑓 Base fluid 

𝑛𝑓 Nanofluid 

𝑝 Nanoparticle 

𝑤 Condition at the surface 

∞ Condition at the Infinity 

𝜂, 𝜉 Partial derivatives 

Superscript  

′ Ordinary derivative w.r.t 𝜂 

 



Preface 

Nanofluids own upgraded thermal properties, especially, higher thermal conductivity and 

increased convective heat transfer coefficient as compared to their respective base fluid. 

Nanofluids are therefore a novel class of fluids designed by dispersing nanometer-sized 

material particles (nanoparticles, nanofibers, nanotubes, nanowires, nano rods, nano 

sheets) in the base fluids. They may also be regarded as nanoscale colloidal suspensions 

containing condensed nanomaterials. They are two-phase systems with one phase (solid 

phase) into another (liquid phase). Nanofluids have also been found to exhibit enhanced 

thermal diffusivity and viscosity compared to those of base fluids like oil or water etc. In 

many engineering simulations, including computational fluid dynamics, a nanofluid can be 

assumed to be single-phase fluid. In the course of mathematical modeling of their 

convective transport the classical theory of single-phase fluids is usually applied, where 

the physical properties of the nanofluid are taken as the functions of properties of both the 

constituents and their concentration. 

In the boundary layer flows the concept of self-similarity is of particular importance. For 

the self-similar flows the governing boundary layer equations, do reduce to ordinary 

differential equations; thus providing a great facility towards their solution. Particular to 

the two-dimensional flows the self-similarity is directly associated to the particular forms 

of the reference velocities; the surface texture and the imposed boundary conditions. In this 

dissertation the conditions of self-similarity for a two-dimensional convective heat and 

mass transfer flow problems have been determined. In view of the obtained criteria of self-

similar and non-similar solutions have been discussed. By utilizing the famous 

mathematical nanofluid models namely, the Buongiorno model and the Tiwari and Das 

model attempts have been made to analyze the heat and mass transfer characteristics along 

horizontal/vertical flat or non-flat surfaces. Comparisons have been made by calculating 

the average heat and mass transfer rates for the nanofluid and the pure fluid. These analyses 

are carried out numerically by the utilization of implicit finite difference schemes. 

Chapter one covers important information of nanofluid models, heat transfer modes, 

characteristics of dimensionless parameters, and literature review on self-similar and non-

similar flows of nanofluid with heat and mass transfer. In Chapter two laminar, 

incompressible, boundary-layer flow over a vertical flat plate for variable surface 



temperature (VWT) and variable heat flux (VHF) cases has been investigated. The general 

form of boundary layer equations, for the Buongiorno nanofluid model, are modeled, which 

are equally valid for self-similar and non-similar flows. The power-law form of the variable 

wall temperature, for which the flow is self-similar, is derived by utilizing the conditions 

of self-similarity. Sherwood number and Nusselt number are calculated numerically for 

different values of Brownian motion and thermophoresis parameters. The contents of this 

chapter are submitted to Canadian Journal of Physics. 

Chapter three contains the analysis of nanofluid flow along a circular cone with heat and 

mass transfer. Buongiorno transport model for nanofluid has been used to model the 

transport equations. These equation together with boundary data are solved using an 

explicit finite difference scheme. Effects of thermophoresis and Brownian motion are 

studied in detail. Important physical quantities of interest have been investigated 

graphically in the form of heat and mass transfer rates. Thermophoresis and Brownian 

motion play vital role in the improvement of heat and mass transfer phenomena.  

The investigation on heat transfer in the MHD boundary layer flow over the moving wavy 

plate is considered in Chapter four. Due to the presence of metallic nanoparticles in the 

fluid and enhanced surface area of the plate as a consequence of non-flat surface texture, 

an increase in the convective heat transfer rate is expected. However, the calculation of 

these enhanced rates of heat transfer is not straightforward because the convection 

phenomena becomes more complicated due the motion of nanoparticle in the base fluid 

and also due to the waviness of the plate surface. The contribution of nanoparticles towards 

convective heat transfer is many fold which requires a suitable model in order to capture 

the correct physics. Famous Tiwari and Das model has been utilized in the current study. 

Percent increase in the average rate of heat transfer is calculated for the nanoparticles of 

different metals, such as  𝑀𝑊𝐶𝑁𝑇, 𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  and 𝐴𝑔. The trend of velocity 

profile, Nusselt number and coefficient of skin friction under applied magnetic field has 

been shown with the help of graphs. The concentration of the nanoparticles has been 

limited up to 10%. The contents of this chapter have been published in Zeitschrift für 

Naturforschung A, 71(7) (2016) 583-593. 

 



Chapter five contains the study of heat transfer characteristics in natural convection flow 

of water-based nanofluid near a vertical rough wall. The analysis considers five different 

nanoparticles, namely, silver (𝐴𝑔), copper (𝐶𝑢), alumina ( 𝐴𝑙2𝑂3), magnetite (𝐹𝑒3𝑂4) and 

silica (𝑆𝑖𝑂2). The concentration has been limited between 0 − 10% for all types of 

nanoparticle. The governing equations are modeled using the Boussinesq approximation 

where the Tiwari and Das model is utilized to represent the nanofluid. The analysis 

examines the effects of nanoparticle volume fraction, the type of nanoparticle and the wavy 

surface geometry parameter on the skin friction coefficient and the Nusselt number. It is 

noticed that Nusselt number for considered nanofluid can be enhanced via an appropriate 

tuning of the wavy surface geometry parameter along with the adjustment of nanoparticle 

concentration. The concluded results of this chapter are presented in an article which was 

published in Thermal Science, DOI:10.2298/TSCI151008122M. 

Chapter six considers the effects of heat generation/absorption and nanoparticle on natural 

convection heat transfer phenomena along vertical wavy surface. Transport equations have 

been solved numerically by an accurate implicit finite difference scheme. The skin friction 

coefficient and the Nusselt number are plotted under the variation of several parameters 

for two types of nanoparticles namely, alumina (A𝑙2𝑂3) and magnetite (F𝑒3𝑂4). The impact 

of nanoparticle concentration on flow and heat transfer process has been studied in detail. 

For heat generation/absorption case percent change in the average skin friction coefficient 

and the average Nusselt number for two types of nanoparticles is calculated. The article 

published in Journal of Molecular Liquids, 222 (2016) 1326-1331, contains the contents 

of this chapter.  

In Chapter seven, the problem of natural convective heat transfer of water-based nanofluid 

along wavy cone surface is investigated numerically. Analysis is performed to study the 

heat transfer augmentation due to five different types of nanoparticles, namely, alumina 

(𝐴𝑙2𝑂3), copper (𝐶𝑢), silver (𝐴𝑔), copper oxide (𝐶𝑢𝑂) and titania (𝑇𝑖𝑂2). Famous Tiwari 

and Das model of nanofluid has been utilized in this study. The effects of cone half angle 

𝛾 and amplitude of the waviness  𝛼 on the Nusselt number (𝑁𝑢) and the skin friction 

coefficient (𝐶𝑓) are studied. These results are the part of an article which has been published 

in the Journal of Molecular Liquids, 223 (2016) 1178-1184. 
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Chapter 1 

Introduction and preliminaries 

This chapter includes two major topics, namely, the introduction and the preliminaries as 

is reflected in the chapter title. The introduction contains a brief literature review and the 

background of the problems debated in this thesis. For a better understanding and the 

convenience of the reader some basics of fluid mechanics, and its fundamental laws; 

nanofluid and their thermophysical properties and some important definitions are included 

among the preliminaries. 

 

1.1 Introduction 

Passive techniques towards the enhancement of convective heat transfer processes have 

fascinated the numerous investigators and scientists in the most recent couple of decades 

because of the way that both science and technology are being attracted to passive energy 

storage systems, such as the cooling of fuel rods in nuclear reactor and the design of solar 

collectors. In particular, for low power level equipment it might be a substantial cooling 

mechanism and in such situations the heat exchanger’s surface area may be increased for 

the augmentation of heat transfer rates. It also appears in the design of material processing, 

thermal insulation and geothermal systems. It has been found that free convection can 

induce the thermal stresses which cause serious structural destruction in the piping systems 

of nuclear reactors. Natural convection flow occurs due to the buoyancy force caused by 

temperature difference between the solid surface and the ambient fluid. The free convection 

flows happen frequently in natural and in engineering phenomena. For example, the 

buoyant flow occurs from heat rejection to the atmosphere, heating and cooling of rooms 

and buildings, flow driven by temperature and salinity differences in oceans, and flows 

generated by fire. In weather systems convection cells formed from air raise above from 

the heated land or water etc., in natural processes. The cooling of molten metals and fluid 

flows around shrouded heat-dissipation fins and solar ponds are also the examples of 

natural convection applications in engineering processes. Furthermore, the natural 
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convection also takes place in various phenomena such as fire engineering, combustion 

modeling, nuclear reactor cooling, heat exchangers, petroleum reservoirs etc. 

The study of heat transfer in natural convection flows belongs to an important class of 

boundary layer flows. The quantity of heat transferred (to or from the fluid) is highly 

dependent upon the flow character and surface texture of the bounding surface. Examples 

can be given of heat transfer devices like heat exchangers and radiators etc., where the heat 

transferring surface is made intentionally rough and irregular in order to enhance the heat 

transfer rates. The waviness and the increased surface area affect the heat transfer process 

significantly because of the increased conduction and convection. Moreover, the 

consideration of nanofluid also contributes significantly towards heat transfer enhancement 

as a consequence of its enhanced material properties. Buoyancy driven convective flows 

over heated or cooled bodies have been investigated for many years. A detailed account on 

these flows can be found in [1-6]. The free convection flow problems produced by a 

heated/cooled vertical plate offer one of the most fundamental situations of natural 

convection heat transfer phenomena and thus is of substantial practical and theoretical 

importance. The boundary layer natural convection flow over the surface placed vertically 

is possibly the first flow problem in which buoyancy force is the main source to drive the 

flow, which has been examined since long. After the leading work of Schmidt and 

Beckmann [7], Ostrach [8], Schetz and Eichhorn [9], their experimental and theoretical 

results have been developed, regularly refined and enhanced. Some recent works related to 

natural convection flows with different geometries and various boundary conditions can be 

seen in [1, 4, 10-26]. 

Expedition of heat transfer processes had been a topic of interest for researchers and 

scientists since the very first studies on the heat transfer phenomenon. More than a century 

ago, some scientists had been using the idea of suspending solid micrometer sized metallic 

particles and other highly conductive materials in the fluids. Extensive experimental and 

theoretical studies were carried out to investigate the heat transfer enhancement. In 1881 

Maxwell [27] presented the foremost models for solid-liquid mixture of micro/millimeter 

particles but the drawbacks of these micro/millimeter particles were the rapid 

sedimentation, erosion, high pressure drop and clogging. Consequently, such an intelligent 
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idea was impossible to be accommodated in the practical applications convective transport 

phenomenon. This idea of mixing metallic particles to the fluid could be of any success if 

one could avoid the sedimentation and clogging etc. issues of the metallic particles in the 

base fluid. This can, however, be done if the size of the additive particles is of nanoscale. 

During the last decade of the nineteenth century Masuda et al. [28] and Choi et al. [29] 

attract the scientists towards the nanofluid. They showed that the nanoparticles are strong 

agents to enhance the thermal conductivity of ordinary fluids. At Argonne National Lab., 

Choi et al. [29] developed the innovative idea of nanofluids. These nanofluids were 

prepared by scattering nanometer-sized material particles in ordinary base fluids. Since the 

size of the particles was 1000 times smaller than the particles utilized before, hence, issues 

of clogging and erosion were diminished. Because of the higher surface region to volume 

proportions of nanofluids, they were anticipated to indicate higher thermal conductivities 

[30]. Low pressure drop and stability were extra alluring characteristics of the nanofluids. 

Once the experimentation proved the utility of the nanoparticles the next task was the 

development of the mathematical nanofluid model so that further exploration could be done 

in theory. In this regards there exist two types of models in literature, namely, homogenous 

and the non-homogenous nanofluid models. Among these two major classes of theoretical 

models the homogenous models have a greater acceptability because of their simple nature. 

The most famous available homogenous models of nanofluid are Buongiorno [31] and 

Tiwari & Das [32] models. In the Buongiorno nanofluid model, the basic transport 

equations for fluid flow and heat transfer are appended with a transport equation for 

nanoparticle concentration. Buongiorno distinguished the succeeding dominating 

phenomena: Brownian diffusion (stochastic motion of nanoparticles), thermophoresis 

(particle diffusion due to the temperature gradient) and the Brownian motion; while the 

Tiwari and Das [32] model focuses upon the thermophysical properties of the nanoparticles 

[33-34]. For the description of physical properties of nanofluid, different mathematical 

relations are used. However, the majority of the researchers involved in the research of heat 

and mass transfer prefer to use the Buongiorno [31] and the Tiwari and Das [32] models 

for the theoretical investigations in various flow geometries. The implementation of these 

nanofluid models in different flow situation have been discussed in many in last few 

decades, some famous studies are [35-43]. 
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During the past few decades, a lot of work has been done on convective flow along vertical 

stretching surface with variable surface temperature. Vajravelu and Nayfeh [44] 

investigated natural convection along the stretching surface placed in vertical direction 

with VWT case. Vajravelu [45] considered convective flow near infinite porous vertical 

stretching plate with VWT case in the presence of suction/blowing. It was noticed that heat 

transfer rate is reduced with the increase of exponent of variable surface temperature. 

Vajravelu and Soewono [46] studied the combined free and forced convection flow of 

second order fluid with linearly varying surface temperature and observed that Nusselt 

number decreases with the increase of index parameter m. Fan et al. [47] studied free 

convective flow along vertical stretching surface with variable surface temperature and 

found that Nusselt number increases with the increase of index parameter m. Devi and 

Thiyagarajan [48] considered power-law temperature profile to investigate MHD the flow 

and heat transfer phenomenon over a stretching sheet. Ali and Yousef [49] investigated 

mixed convection through moving vertical surface by considering power-law surface 

temperature and wall suction/injection. Javaherdeh et al. [50] studied convective flow 

along vertical surface placed in a porous medium. They also assumed that the surface is 

moving and has variable temperature. They found that the increase in the power-law index 

for wall variable temperature or wall variable concentration is seen to increase the 

temperature and concentration gradients on the surface. Mehrizi et al. [51] investigated free 

convection flow in boundary layer regime over the horizontal wall of variable temperature 

and established that the temperature gradient at the surface and exponent of variable 

temperature values have a direct relationship. 

Uddin et al. [52] discussed natural convective flow along vertical plate in nanofluid. They 

used Buongiorno model and studied the Brownian motion of nanoparticles and 

thermophoresis effects. They found the mass transfer rate as increasing function of 

convective heat transfer parameter and Lewis number, while it is decreasing function of 

thermophoresis parameter. Qasim et al. [53] studied heat and mass transfer in nanofluid 

over an unsteady stretching sheet and concluded that the nanofluid parameters reduce the 

heat transfer rate. Uddin et al. [54] numerically investigated the MHD flow of a nanofluid 

with thermal and mass convective boundary conditions and showed that the surface slip 

causes to decrease the skin friction whereas it enhances the local Nusselt number. 
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Ghalambaz et al. [55] utilized the combined similarity and numerical approach to 

investigate the natural convection nanofluid flow over a heated vertical plate in a porous 

medium and observed that the Brownian motion parameter increases the velocity and 

temperature profile. Ramzan and Yousaf [56] considered three-dimensional viscoelastic 

nanofluid flow with Newtonian heating and noticed that concentration and temperature 

profiles are decreasing and increasing functions of the Brownian motion parameter 

respectively. Das et al. [57] studied thermophoresis and Brownian effects on stretched 

surface and observed that the mass transfer is increasing function of thermophoretic 

parameter whereas the effect is reversed for Brownian motion parameter. Khan et al. [58] 

discussed double diffusive free convective nanofluid flow along the vertical plate with 

thermal and momentum boundary conditions and found that the Nusselt number and the 

Sherwood number decrease with thermal slip condition. In view of these studies it could 

be concluded that the nanofluid enhances the heat transfer rate in convective flows which 

have numerous applications in engineering and industry. Due to this importance, the study 

of natural convection flow of nanofluid past a vertical plate with variable surface is 

included in Chapter 2. 

Self- similar solutions for natural convection flows over vertical cone have received much 

attention from many researchers and scientists. Hering and Grosh [59] and Hering [60] 

studied the natural convection phenomenon in the vertical cone and found the similarity 

solution. Roy [61] investigated the solution for the large Prandtl number in natural 

convection from the vertical cone. Vajravelu and Nayfeh [62] investigated heat transfer 

phenomenon along a cone and wedge surface and concluded that the flow and heat transfer 

characteristic have smaller values at the cone surface as compared to the wedge surface. 

Kafoussias [63] discussed mass transfer flow in free convection along vertical isothermal 

cone and analyzed that heat and mass transfer is strongly effected by bouncy parameter 

and Schmidt number. Yih [64] studied free convection flow over isothermal truncated cone 

in the presence of thermal radiation and observed that radiation plays vital role in the 

enhancement of heat transfer rate. Behrang et al. [65] considered free convection of 

Darcian fluid over a vertical cone in porous medium and established that numerical values 

of Nusselt number obtained by analytical solution show remarkable accuracy when 

compared with those computed numerically. Cheng [66] discussed natural convection flow 
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from non-isothermal permeable vertical cone in Newtonian fluid with suction and variable 

properties and noted that Nusselt number rises with increase of suction and viscosity 

variation parameter. Duwari et al. [67] considered MHD mixed convection flow over a 

cone embedded in a porous medium and observed that the Nusselt number increases with 

the increase of cone angle. Elbashbeshy et al. [68] examined natural convection from a 

vertical circular cone with pressure work and variable heat flux in the presence of heat 

generation source. They observed that the skin friction increases and the Nusselt number 

reduces with the increment in the heat generation parameter. Braun et al. [69] studied free 

convection similarity flows of bodies with closed lower ends and observed that body shape 

parameter enhances the heat transfer. Grosan [70] examined free convection flow over a 

vertical cone surrounded by a viscoelastic fluid with heat source in porous medium. 

Chamkha et al. [71] discussed the effects of combined chemical reactions and pressure 

work in natural convection flows and concluded that the Nusselt number reduces with the 

increase of heat generation, chemical reaction parameter and Schmidt number. Sohouli et 

al. [72] studied free convection of Darcian fluid along vertical cone embedded in porous 

medium analytically. 

The study of nanofluids over the cone have attracted many researchers in last few decades. 

Mahdy [73] was among the few researchers who paid their attention to investigate the flow 

along the cone placed in the vertical direction having vertex at origin. Mahdy [73] 

considered gyro-tactic microorganisms in porous medium and noticed that the Sherwood 

number enhances and Nusselt number reduces with an increase in thermophoresis and 

Brownian motion parameters. Behseresht et al. [74] investigated convective flow in the 

presence of nanoparticles along cone placed in the vertical direction in porous medium. 

They noticed that heat transfer due to migration of nanoparticles is negligible in 

comparison to convection and heat conduction phenomena. Noghrehabadi et al. [75] 

considered isothermal cone placed vertically in non-Darcy porous medium and noticed that 

the increase in the non-Darcy parameter would reduce the heat and mass transfer rates. 

Keshtkar and Hadizadeh [76] investigated boundary layer nanofluid flow along a vertical 

cone in porous medium. Considering porous medium Fauzi et al. [77] studied mixed 

convection in nanofluid flow over a cone and noticed that in forced convection and the 

assisting flow the Nusselt number enhances as the concentration of nanoparticle intensifies. 
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The study of natural convection flow over a vertical cone has been the area of interest for 

many researchers due to dynamic importance of nanofluids. Important studied published 

in last decades have achieved much attention of the researchers, few of them are [78-88] 

Chapter 3 is aimed to study the natural convection flow of nanofluid over a circular cone 

using Buongiorno model. 

Heat transfer enhancement through irregular surface shapes is a topic of fundamental 

importance in the studies of heat transfer processes. In practice, the surface irregularities 

occur frequently in several manufacturing and engineering mechanisms. The working body 

surface is sometimes intentionally roughened to enhance heat and mass transfer as a 

consequence of enhanced convection phenomena. Flat plate solar collectors and flat plate 

condensers in refrigerators are examples where the roughening elements are intentionally 

placed on a uniform body surface. The presence of roughing elements disturbs the flow 

which in turn expedites the convective mixing of the fluid. Consequently, the rate of heat 

transfer is increased. The gain in convective heat transfer rate as a result of increased 

surface area is usually not simple because of enhanced conduction between the fluid and 

the solid surface. Enhanced surface area also contributes towards increased vorticity 

transport which in turn results in increased rate of heat transfer. Keeping this fact in mind 

the idea of surface roughening came in reality in order to establish enhanced vorticity 

transport to get the heat transfer augmentation. Mathematical handling of irregular rough 

surfaces is far more difficult as compared to the regular rough surfaces. In this way a 

smooth wavy roughness of the flat plate is quite easy to model due to its differentiable 

nature. Moreover, the wavy surface contributes towards symmetry breaking where the 

scaling symmetry does not leave the governing system (equations and the boundary 

conditions) invariant as it does for the flat plate case. Consequently, the self-similar 

solution does not persist anymore and the flow becomes completely non-similar. Rees and 

Pop [89-90] investigated free convective boundary layer flow and heat transfer due to a 

moving wavy horizontal plate. Hossain and Pop [91] studied the MHD effects on 

momentum and thermal boundary layer over a moving wavy plate. Narayana et al. [92] 

considered horizontal wavy surface to investigate cross-diffusion and double diffusive 

effects in porous regime. More information about flow and heat transfer along wavy texture 

can be seen in published studies [93-106]. 
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In several practical applications, the fluids are assumed to be electrically conducting and 

their interaction with the applied magnetic field gives rise to the study of 

magnetohydrodynamics. Such situations frequently occur in the cooling of nuclear reactor, 

electromagnetic casting and ship propulsion etc. Based on these interesting applications 

the field of magnetohydrodynamics is an active area of research. Chamkha and Ahmed 

[107-108] studied time dependent hydromagnetic effects and chemical reaction of species 

in convective flow near stagnation point region. Sheremet et al. [109] analyzed time 

dependent hydromagnetic effects in a wavy-walled cavity using Buongiorno's 

mathematical model. Mahdy and Ahmed [110] investigated Soret and Dufour effects on 

thermo solutal Marangoni boundary layer magnetohydrodynamics flow along a vertical 

flat plate. In all above mentioned studies, the authors considered pure fluid for the 

computation of increased rate of heat transfer due to the wavy surface. Further increase in 

the rate of heat transfer is expected if one considers nanofluid instead of pure fluid over a 

wavy plate. Based on this motivation Chapter 4 is aimed to study the hydromagnetic flow 

and heat transfer in nanofluids over moving wavy surface.  

Free convection flow over vertical plate was first studied by Pohlhausen [111] who 

analyzed the steady free convection flow of a viscous incompressible fluid past a semi-

infinite vertical plate by using an integral method. Ostrach [112] presented the similarity 

solution of natural convection flow along vertical isothermal plate. The flow over vertical 

rough wavy surface was first initiated by Yao [113]. He numerically simulated the problem 

by means of finite difference method. Before employing the numerical scheme he first 

reduced the problem of wavy surface to a relatively simple form through a coordinate 

transformation. Moulic and Yao [114] extended the work of Yao [113] by assuming the 

free stream velocity and concluded that heat transfer rate in case of flat surface is higher 

than the wavy surface. Rees and Pop [115] studied fluid flow and heat transfer over a 

horizontal surface with sinusoidal texture where the medium of the flow is assumed to be 

a Darcy porous medium. They use the Keller-box scheme to perform the computational 

task. Hossain and Rees [116] considered the isothermal surface of wavy texture placed in 

vertical direction and analyzed the heat and mass transfer phenomena. Cheng [117] 

considered the convective heat transfer in the porous regime along the vertical surface of 

wavy texture. Gorla and Kumari [118] studied free convection phenomena near a vertical 
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wavy plate in a nanofluid. Ahmed et al. [119] studied natural convection flow along the 

wavy surface in porous regime by assuming local thermal non-equilibrium condition. The 

transfer of heat in solid and fluid phase is modeled by separate equations. Intensification 

of surface roughness enhances the effective heat transfer rate without increasing the overall 

volume of the equipment significantly. Rough surfaces for example, fins; non-flat surfaces 

and micro channels have been found to increase heat transfer rates considerably. Keeping 

this fact in view heat transfer analysis of natural convection flow of nanofluid along a 

vertical wavy surface has been investigated and the details of this study are included in 

Chapter 5. 

The real heat transfer processes associated with the change of some form of energy into 

thermal energy have the possibility of involving internal heat generation/absorption. Heat 

transfer and fluid flow phenomena with heat generation/absorption are associated with 

large temperature gradients which is frequently met in several engineering and thermal 

processes such as, in the combustion chamber, thermal control of space ships, casting or 

blading of gas turbines and spent fuel storage [120], post-accident heat removal [121], 

engine cooling system and insulation of buildings etc. Vajravelu and Hadjinicolaou [122] 

considered an internal heat source over a stretching surface. Molla et al. [123] studied 

magneto hydrodynamic free convection flow on a sphere under the influence of heat 

source. Alam et al. [124] investigated hydromagnetic convective flow over a sphere. 

Mamun et al. [125] analyzed the heat source effects along a vertical plate. Mamun et al. 

[126] discussed the impact of viscous dissipation and heat source on heat transfer over a 

vertical plate. Mansoor and Ahmed [1279] explored natural convection in porous triangular 

enclosure using nanofluid and heat generation. Molla et al. [128] used isothermal wavy 

surface and heat generation effects to examine the heat transfer phenomena. Hady et al. 

[129] studied MHD natural convective flow through a vertical wavy sheet by considering 

heat source. Alim et al. [130] analyzed natural convective flow through a vertical wavy 

sheet by taking into account the viscosity depending upon temperature and heat source. 

Parveen and Alim [131-132] discussed MHD natural convective flow through a vertical 

wavy sheet with heat source/sink, joule heating, viscosity depending upon temperature and 

temperature dependent thermal conductivity. Kabir et al. [133] discussed heat source 

impact on MHD free convection flow along a heated vertical wavy plate. Saddiqa et al. 
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[134] studied the radiation effects on natural convection flow along vertical wavy surface. 

Natural convection flow occurs in many practical phenomena caused by heat source/sink. 

The importance of heat source/sink is more significant in those flows where the chemical 

reaction occurs. Due to heat generation/absorption changes occur in temperature 

distribution, particle decomposition rate in semiconductor products and nuclear reactors. 

Some studies about heat generation/absorption can be seen in published articles [135-147]. 

Due to this fundamental importance Chapter 6 is optimized with the inclusion of heat 

generation/absorption in nanofluid flow over a vertical wavy surface. 

Convective heat transfer phenomena over a cone is applicable in various designs of thermal 

equipment like heat exchangers, geothermal reservoirs, nuclear reactor cooling, solar 

energy plants, design of space crafts, drying dehydration process in chemical and food 

process and steam generators etc. Heat and mass transfer augmentation has evolved into 

an important component of thermal sciences and engineering. This poses a great challenge 

for choosing appropriate design and application information to achieve the industrial and 

technology goals. Regarding the cone geometry the phenomena of natural convection heat 

transfer over vertical cone has been studied by several researchers and scientists. Merk and 

Prins [148-149] discussed natural convection flow along a cone for pure fluid. Roy [150] 

investigated natural convection over an isothermal cone. Lin [151] discussed the heat 

transfer due to uniform surface heat flux from a vertical cone. Alamgir [152] investigated 

free heat transfer characteristics from vertical cone using approximate technique. Pop et al. 

[153] paid their attention to analyze the effects of compressibility in convective flow over 

the vertical cone. Yih [154] analyzed free convection along a vertical cone in porous 

medium under uniform mass flux. Cheng [155] examined the effects of variable wall 

temperature in free convection flow of a micro-polar fluid over a vertical permeable cone. 

Hossain and Paul [156-157] discussed the non-uniform wall temperature and uniform heat 

flux along the vertical cone of circular type. Cheng [158] discussed free convection heat 

transfer from a non-isothermal permeable cone with suction. Pullepu [159] explained 

uniform heat flux case for unsteady convective flow over vertical cone. 

Most of the authors in the above mentioned studies have considered the circular cone with 

uniform surface texture to study the flow and heat transfer characteristics but very little 

attention has been given to the cone having non-uniform surface texture. Pop and Na [160-
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162] discussed the natural convection flow along a vertical frustum of a wavy cone in 

porous medium. Cheng [163] investigated heat and mass transfer phenomena in natural 

convection along wavy cone in porous media. Considering viscosity dependent 

temperature Hossain et al. [164] examined free convection flow over a vertical wavy cone. 

Taking viscosity as an exponential function of temperature into account, Rahman et al. 

[165] discussed free convection flow beside the vertical wavy cone. Since the irregular 

surface shape changes the flow pattern and hence the heat transfer rate. Therefore the wavy 

shaped surface occurs frequently in many industrial processes. Because of this reason, the 

investigation of natural convection flow of nanofluid over a wavy cone has been included 

in Chapter 7. 

 

1.2 Preliminaries  

In this section some fundamental knowledge, necessary for the subsequent chapters, has 

been presented. It includes basic definitions and terminologies; the dimensionless numbers 

of physical importance and the governing equations. 

 Fluid 

There are three states of matter namely, solid, liquid and gas, among which the liquid and 

gas both are fluids. A fluid is a substance (gas or liquid) which modifies its shape 

continuously under the action of external forces or any material that flows continuously is 

known as fluid. Due to the fact that a fluid can’t withstand deformation pressure, it moves 

or flows under the action of the force and its shape changes continuously as long as the 

force is implemented. It can easily be seen that the fluid flow is a universal phenomenon 

which occurs frequently in our everyday life. On the other hand a solid can resist a 

deforming force as long as at rest, while the force may produce some displacement 

however, the solid does not move indefinitely [6, 166]. 

To the ancient Greeks, the four fundamental elements are earth, air, fire, and water; among 

these three, air, fire and water, are fluids. Fluids have been further sub-categorized into 

ideal and viscous fluids. In ideal or inviscid fluids the most effective internal force is the 

pressure, which acts in such a way that the fluid flows from high stress to low. In 

Newtonian fluids the viscosity is independent of shear rate, means that the viscosity is 
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constant at given temperature and pressure. Moreover, these are the fluids which obey 

Newton's law of viscosity which states that the shear stress is directly and linearly related 

to the shear rate. 

 

 Fluid mechanics 

Fluid mechanics is concerned with the understanding, prediction, and controlling the 

behavior of a fluids [6, 166]. Fluid mechanics is one of the engineering sciences that forms 

the basis for all forms of engineering [167]. This subject branches out into various 

specialties such as aerodynamics, hydraulic engineering, marine engineering, gas 

dynamics, and manufacturing processes. It includes the statics, kinematics and dynamics 

of fluids. Fluid mechanics studies the dynamic properties (e.g. motion) of fluid. In other 

words, fluid mechanics is the study of the nature of fluids under the action of applied forces. 

Generally, we are interested in finding the force required to move a fluid through a device, 

or the force required to move a solid body through a fluid. The speed of the resulting 

motion, pressure, density and temperature variations within the fluid is also of extremely 

great interest. 

 

 Heat transfer phenomenon 

Heat transfer processes assume a key part in many natural, industrial and biological 

systems. Heat transfer is actually the transition of energy in accordance with the provided 

temperature differences. Conduction, convection and radiation are the three modes of heat 

transfer as shown in Fig. 1.1. Conductive heat transfer takes place in solids via molecular 

energetic movement due to the temperature gradient within a medium. Radiative heat 

transfer is the interchange of thermal energy between two or more bodies by 

electromagnetic waves. Interestingly, it does not require any medium. Convective heat 

transfer is the shift of energy through liquids and gases or fluids in general moving near 

the surface. Heat transfer due to convection can further be subdivided into three major 

types namely; forced convection, natural convection and mixed convection. In forced 

convention process the fluid movement is due to external source like fan; suction devices 

and pump etc. In many cases, only natural buoyancy forces are accountable for fluid motion 
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when the fluid is heated and this phenomenon is called natural or free convection. Natural 

convection flow is caused by density variance in different sections of the fluid. This density 

change, along with the influence of the gravity, generates a buoyancy force, due to which 

the heavier fluid travels downwards and the lighter fluid moves upwards, generating 

buoyancy driven flow. The density variance in natural convection flows may result from a 

temperature variance or from the changes in the concentration of chemical species. The 

most common buoyant flows may be seen as air flows around our rooms and other 

engineering applications [30,168]. When these two phenomena of heat transfer (forced and 

natural convection) are occurring at the same time the situation is commonly known as 

mixed convection. 

Heat transfer is most important phenomenon where the involvement of fluid plays a crucial 

role to expedite this process. Inclusion of solid nanoparticles in the base fluid is another 

important source to enhance the heat transfer rate. The mixture of nanoparticles and the 

base fluid is known as nanofluid. The details of nanofluid are presented in the next section. 

Figure 1.1: Modes of Heat Transfer (Image Source: Study Channel Website). 

 

 Nanofluid 

Convective heat transfer process can be improved by modifying the flow geometry, 

adjusting the boundary conditions or enhancing the thermal conductivity of the base fluid. 

In 1881, Maxwell [27] succeeded in exploring that the heat transfer rate can be augmented 

by mixing micro sized particles in the base fluid. After Maxwell, it was observed that 

although the addition of micro sized material particles in the base fluid do result in some 

enhancement in the rate of heat transfer but the issues of clogging; rapid sedimentation; 
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erosion, and high pressure drop, produced due to these particles, retained the technology 

away from the practical usage of this strategy for a long time. 

Table 1.1: Potential usage of the nanomaterials [169]. 

Nanomaterial General applications 

𝐴𝑔 Microelectronic industry, antibacterial and disinfecting agent, anti-

corrosive coating, catalysis. 

 

𝐴𝑙, 𝐴𝑙2𝑂3 

Heat transfer fluid, catalyst support, water-proof material, 

antibacterial and disinfecting agent, transparent conductive and 

optical coating, wear-resistant additive, cosmetic filler. 

𝐶𝑢, 𝐶𝑢𝑂 Superconductors, antibacterial and disinfecting agent, catalysis, gas 

sensors, thermo-electronics, microelectronic industry. 

𝐹𝑒, 𝐹𝑒2𝑂3, 

 𝐹𝑒3𝑂4 

Biomedical applications, environment remediation, magnetic data 

storage, semiconductor, microwave devices. 

𝑇𝑖𝑂2  Solar cells, photo-catalysis, antibacterial and disinfecting agent, 

cosmetics, air purification, semiconductors, UV resistors, 

astronautics. 

 𝑆𝑖𝑂2 Construction industry, production of glass, sensitive optical fiber, 

ceramics, food and pharmaceutical applications. 

 

𝑆𝑊𝐶𝑁𝑇, 

 𝑀𝑊𝐶𝑁𝑇 

Supercapacitor, catalysts, energy conversion, sensors, 

electromagnetic-wave absorption and shielding, lithium-battery 

anodes, nanotube composites (by filling or coating), nanolithography, 

nano-electrodes, drug delivery, hydrogen storage. 

 

Masuda et al. [28] firstly conveyed that addition of nanoparticles enhances thermal 

conductivity of the base fluid. In 1995, while working at the Argonne National Laboratory 

in U.S.A, Choi [29] introduced the term nanofluid. Nanofluid is a suspension of solid 

nanoparticles (of size 1-100 nm diameter) in conventional liquids like water, oil or ethylene 

glycol etc. Nanofluids improved the heat transfer phenomena that made them potentially 

supportive in various applications of heat transfer including fuel cells, microelectronics, 

hybrid powered engines and pharmaceutical processes. Nanofluids show improved 

convective heat transfer coefficient and thermal conductivity in comparison to the pure 

https://en.wikipedia.org/wiki/Glass
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fluid. Nanofluid can be made from various combinations of nanoparticles and base fluid. 

Particles can be of different types such as, metals, non-metals, metallic oxides and non- 

metallic oxides etc. The common base fluids are water, ethylene glycol and oil. In 

industries, commonly used nanoparticles are 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4, 𝑇𝑖𝑂2, 𝐶𝑢𝑂, 𝑆𝑖𝑂2 in compound 

form and 𝐴𝑔, 𝐴𝑢, 𝐶𝑢, 𝐹𝑒 in elemental form.  

Some important applications of nanomaterials are given in Table 1.1. The heat transfer rate 

of nanofluid depends upon the thermophysical properties of the nanoparticles. Physical 

properties of the nanoparticles are viscosity, density, specific heat, thermal diffusivity and 

thermal conductivity etc. The numerical values of these properties vary with the change of 

nanoparticle material and the base fluid. The scientists and researchers use well known 

predictive correlations for the material properties of the nanofluids. Therefore, the 

thermophysical properties of nanoparticles and base fluid have been discussed in detail in 

the next section. 

 

 Thermophysical properties of nanofluid 

Thermophysical properties of nanofluid strongly affect the solution of the considered flow 

problems. There are different types of models for the description of thermophysical 

properties of nanofluid which are derived by various scientist. Thermophysical properties 

such as thermal conductivity, electrical conductivity, density, viscosity and specific heat 

are calculated by employing the formulas 170-172, which are adopted as empirical relation 

among the base fluid and nanoparticles. 

 Density 

Using the physical principle of the mixture law the density of nanofluid may be calculated 

analytically. Using this law measuring weight and volume of amalgamation density of 

nanofluid can be determined. The particle volume fraction 𝜙 can be assessed by knowing 

the densities of both components and nanofluid density can be described as (see [170-172]) 

 𝜌𝑛𝑓 = (1 − 𝜙)𝜌𝑓 + 𝜙𝜌𝑝. (1.1) 
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 Specific heat 

The amount of heat to raise the temperature of one Kg mass of a substance by one Kelvin 

is known as Specific heat capacity. Specific heat of nanofluid depends upon simple mixing 

theory [170-172] in convective heat transfer nanofluid flows and is written as 

  (𝜌c𝑝)𝑛𝑓 =
(1 − 𝜙)(𝜌c𝑝)𝑓 + 𝜙(𝜌c𝑝)𝑝. (1.2) 

 

 Thermal conductivity 

In 1873, Maxwell [27] established that thermal conductivity of a liquid is increased by the 

addition of solid particles in the liquid and introduced a classical relation between the 

thermal conductivity of nanoparticle and the base fluid, described as 

 𝜅𝑛𝑓

𝜅𝑓
=  

(𝜅𝑝 + 2𝜅𝑓) − 2𝜙(𝜅𝑓 − 𝜅𝑝)

(𝜅𝑝 + 2𝜅𝑓) + 𝜙(𝜅𝑓 − 𝜅𝑝)
. (1.3) 

 

 Effective electrical conductivity 

The electrical conductivity of nanofluid enhances with a rise in concentration and 

temperature of the particle. Electrical conductivity is observed to be higher for smaller 

sized particles in nanofluid by fixing concentration of nanoparticles. Effective electric 

conductivity of nanofluid presented by Maxwell [170-172] is given as 

 

 σ𝑛𝑓

σ𝑓
=  1 + 

3((σ𝑝/σ𝑓) − 1)𝜙

((σ𝑝/σ𝑓) + 2) + 𝜙((σ𝑝/σ𝑓) − 1)
 . (1.4) 

 

 Thermal diffusivity 

It is the measure of speed of carrying heat away from the hot body. Mathematically, it is 

the ratio of thermal conductivity to the volumetric heat capacity. The thermal diffusivity of 

nanofluid in convective heat transfer phenomena is written as (due to [170-172]) 

 𝛼𝑛𝑓
∗ = 

κ𝑛𝑓

(𝜌c𝑝)𝑛𝑓

 .  (1.5) 
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 Viscosity 

Engineers and scientists utilize different models for effective dynamic viscosity of 

nanofluid which is a function of solid volume fraction. Einstein [174-176] determined the 

effective viscosity of a suspension of spherical solid particles as a function of low volume 

fraction (less than 2%). Later-on, Brinkman [177] presented a new relation by modifying 

the Einstein’s equation of viscosity correlation with particle volume fraction less than 4%. 

Viscosity of the nanofluid can be computed by the simple mixture theory [170-172] and is 

expressed as 

 𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5
  . (1.6) 

 

The thermophysical properties of the different nanoparticles and the base fluids used in this 

dissertation are presented in Table 1.2. 

Table 1.2: Thermophysical properties of different nanoparticles and water. 

     Properties 

 

Nano- 

particle 

Density 

𝜌(𝐾𝑔/𝑚3) 

Specific 

heat 

𝑐𝑝(𝐽/𝐾𝑔𝐾) 

Thermal 

conductivity 

𝜅(𝑊/𝑚𝐾) 

Thermal 

expansion 

𝛽 × 10−5(1/𝐾) 

Electrical 

conductivity 

𝜎(𝑆/𝑚) 

Fluid (water) 997.1 4179 0.613 21.0 0.05 

𝐴𝑔 10500 235 429 1.89 6.3 × 107 

𝐴𝑢 19320 128 318 0.01416 4.10 × 107 

𝐴𝑙2𝑂3 3970 765 40 0.85 3.5 × 107 

𝐶𝑢 8954 383.1 386 1.67 5.96 × 107 

𝐶𝑢𝑂 6500 535.6 20 1.80 − 

𝐹𝑒3𝑂4 5180 670 9.7 0.5 2.5 × 103 

𝑆𝑖𝑂2 2200 703 1.2 0.056 − 

𝑇𝑖𝑂2 4250 686.2 8.9538 0.90 0.26 × 107 

𝑆𝑊𝐶𝑁𝑇 2600 425 6600 − 1 × 104 

𝑀𝑊𝐶𝑁𝑇 1600 796 3000 − 1 × 105 

 



22 
 

 Governing equations 

The basic governing equations for the nanofluid flow are the same as they are for the pure 

fluid, that is, the laws of conservation of mass, momentum and energy. However, the 

consideration of nanofluid does modifies these laws to some extent. Since we intend to use 

the two famous nanofluid models, namely, Buongiorno model and Tiwari and Das mod. 

Therefore, the modification in the governing laws shall be mentioned with regard to these 

two models. 

1.2.6.1 Equation of continuity 

Principle of conservation of mass for fluid flow is commonly known as the continuity 

equation, which in vector notation is given as follows 

 1

𝜌𝑓

𝜕𝜌𝑓

𝜕𝑡
+ 𝛻. 𝑽 = 0. (1.7) 

The above equation is valid pure fluid and Buongiorno model, for Tiwari and Das model, 

𝜌𝑓 has been replaced by 𝜌𝑛𝑓. For an incompressible fluid the density is constant due to 

which the equation of continuity (1.7) simplifies to 

 𝛻. 𝑽 = 0. (1.8) 

 

1.2.6.2 Momentum equation 

For an incompressible viscous fluid the law of conservation of linear momentum reads as 

 𝜕𝑽

𝜕𝑡
+ (𝑽. 𝛻)𝑽 = −

1

𝜌𝑓
𝛻𝑝 + 𝜈𝑓𝛻

2𝑽 +
1

𝜌𝑓
𝒃, (1.9) 

 

where 𝒃 denotes the body forces, V is velocity vector, ∇ is the vector operator. The Eq. 

(1.9) is valid for pure fluid and Buongiorno model, for Tiwari and Das model, 𝜌𝑓 , 𝜈𝑓 have 

been replaced by 𝜌𝑛𝑓, 𝜈𝑛𝑓 respectively. 

In view of the problems considered in this dissertation the expected body forces are the 

bouncy force or magnetic force. 
𝜕

𝜕𝑡
 represents local time derivative and 𝑽. 𝛻 denotes 

convective derivative. The bouncy force is given by  

 𝒃𝑏𝑜𝑢=𝒈𝛽(𝑇 − 𝑇∞), (1.10) 

where 𝒈 denotes the gravitational acceleration The magnetic body force caused due to the 

application of wall-normal magnetic field and is calculated as 
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 𝒃𝑀𝑎𝑔=𝑱 × 𝑩, (1.11) 

where (𝑱 × 𝑩) is the Lorentz force, 𝑩 is the applied magnetic field and 𝑱 is the current 

charge density.From Ohm’s law: 

 𝑱 = 𝜎(𝑬 + 𝑽 × 𝑩), (1.12) 

and due to the  Maxwell’s equations  

 𝛻.𝑩 = 0, 𝛻. 𝑬 =
𝜌𝑓

𝜖0
, 𝛻 × 𝑩 = 𝜇0 𝑱, 𝛻 × 𝑬 = 0, (1.13) 

where σ is the electrical conductivity, 𝑬 is the electric field, 𝜇0  denotes the magnetic 

permeability and 𝜖0 is the permittivity of free space. It is assumed that the magnetic 

Reynold number is so small such that the induced magnetic field can be ignored. In the 

present dissertation applied electric field 𝑬 is zero (𝑬 = 𝟎) and constant magnetic field of 

strength 𝐵0 is applied perpendicular to the surface (𝑩 = (0, 𝐵0, 0)) (see for instance [27]). 

1.2.6.3 Energy equation 

For a viscous incompressible fluid having constant fluid conductivity, zero internal heat 

generation and negligible viscous dissipation effect, the energy equation (law of 

conservation of energy) is given as 

 𝜕𝑇

𝜕𝑡
+ 𝑽. 𝛻𝑇 = 𝛼𝑓

∗𝛻2𝑇. (1.14) 

The Eq. (1.14) is valid for pure fluid, for Tiwari and Das model, 𝛼𝑓
∗ has been replaced by 

𝛼𝑛𝑓
∗ .For the Buongiorno model [31] which utilizes the Brownian motion and 

thermophoresis effects in the fluid flow, the energy equation is written as 

 𝜕𝑇

𝜕𝑡
+ 𝑽. 𝛻𝑇 = 𝛼𝑓

∗𝛻2𝑇 + 𝜏∗ (𝐷𝑇
𝛻𝑇. 𝛻𝑇

𝑇∞
+𝐷𝐵𝛻𝐶. 𝛻𝑇). (1.15) 

where 𝐷𝑇 , 𝐷𝐵  and 𝜏
∗ are the thermophoretic diffusion coefficient; the Brownian diffusion 

coefficient and the ratio of heat capacity of a nanoparticle to the base fluid, respectively. 

 

1.2.6.4 Concentration equation 

Usually, the convective processes ‘usually’ and ‘often’ go along with the mass transfer. 

Therefore, by the transport of materials that act as components (constituents, species) in 

the fluid mixture. In mathematical formulation this phenomena can be written as 

 𝜕𝐶

𝜕𝑡
+ 𝑽. 𝛻C = 𝐷𝑚𝛻

2C, (1.16) 
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and in view of Buongiorno nanofluid model [31] eq.(1.16) modifies as 

 𝜕𝐶

𝜕𝑡
+ 𝑽. 𝛻𝐶 = 𝐷𝐵𝛻

2𝐶 + (
𝐷𝑇
𝑇∞
)𝛻2𝑇. (1.17) 

Equations (1.16) and (1.17) show that the concentration C occupies the place of 

temperature, while, the mass diffusivity 𝐷𝑚 replaces the thermal diffusivity 𝛼𝑓
∗ where 𝛼𝑓

∗ =

κ𝑓 (𝜌c𝑝)𝑓
⁄  in the energy equation. The above equations are in general form where 𝐶 

denotes the fluid concentration for mass transfer. The subscript ∞ denotes the values in the 

ambient fluid. 

 

 Wavy surface 

In majority of the chapters of this dissertation we shall be considering the viscous boundary 

layers formed upon a wavy surface. Interestingly, for every such wavy surface the flow is 

essentially non-similar in nature. For example a non-flat wavy sheet extended in 

𝑥 −directions is defined as  

 
𝑦̅ = 𝑆̅(𝑥̅) = 𝛼̅𝑠𝑖𝑛 (

𝜋𝑥̅

𝑙
), (1.18) 

where 𝑙 is the wave length and 𝛼̅ is the fixed amplitude . This wavy surface is assumed to 

be semi-infinite starting from 𝑥 in the 𝑥𝑧 −plane and is assumed to be surrounded by the 

ambient nanofluid. The schematic of the wavy surfaces considered in the subsequent 

chapters has been shown in Figure 1.2. 

 

 

 

 

 

 Figure 1.2: Schematic of the wavy surfaces considered in this dissertation.  
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 Heat source/sink 

Volumetric heat source/sink 𝑞∗(𝑊/𝑚3) can be written as  

 
𝑞∗ = {

𝑄(𝑇 − 𝑇∞)     𝑇 ≥ 𝑇∞ 
 0                     𝑇 < 𝑇∞ ,

 (1.19) 

while the constant 𝑄 ≷ 0 represents the heat source/sink. 

 

 Skin friction coefficient 

The coefficient of skin friction at the wavy surface in two-dimensional flow is defined as 

 𝐶𝑓𝑥 =
𝜏𝑤
𝜌𝑓𝑈2

 , (1.20) 

where 𝜏𝑤 is the wall shear stress which is given by 

 𝜏𝑤 = 𝜇𝑓(𝛻𝑢 ̅. 𝑛̂)𝑦̅=0, (1.21) 

where 𝑛̂ = (𝑛𝑥, 𝑛𝑦  ) = (−
𝑆𝜉

𝜔
 ,
1

𝜔
) is the unit vector normal to the wavy surface and 𝜔 =

√1 + 𝑆𝜉
2 is the wavy parameter. The coefficient of skin friction for the case of flat plate 

takes the form 

 𝐶𝑓𝑥 = 𝜇𝑓(𝛻𝑢 ̅)𝑦=0 𝜌𝑓𝑈
2⁄ . (1.22) 

 

 Nusselt number 

Dimensionless heat transfer coefficient is known as Nusselt number which is an important 

physical parameter in the process of convective heat transfer. It is the ratio of convective 

to conductive heat transfer in the fluid. In convective heat transfer phenomena the heat 

transfer rate is described as 

 
𝑁𝑢𝑥 =

𝑥̅𝑞𝑤
𝜅𝑓(𝑇𝑤 − 𝑇∞)

 , (1.23) 

where 𝑞𝑤 is the wall heat flux and is calculated as  

 𝑞𝑤 = −𝜅𝑓(𝛻𝑇. 𝑛̂)𝑦̅=0 . (1.24) 

The Nusselt number for the flat surface is defined as 

 𝑁𝑢𝑥 = −(𝛻𝑇)𝑦̅=0 (𝑇𝑤 − 𝑇∞)⁄ . (1.25) 
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 Sherwood number 

The local Sherwood number is a measure of the rate of convective mass transfer. It is the 

ratio of the convective to diffusive mass transfer can be describe as 

 
𝑆ℎ𝑥 =

𝑥̅𝑞𝑚
𝐷𝐵(𝐶𝑤 − 𝐶∞)

 , (1.26) 

where 𝑞𝑚 is the wall mass flux which is given by 

 𝑞𝑚 = −𝐷𝐵(𝛻𝐶. 𝑛̂)𝑦̅=0 . (1.27) 

The Sherwood number for the flat surface is given by 

 𝑆ℎ𝑥 = −(𝛻𝐶)𝑦̅=0 (𝐶𝑤 − 𝐶∞)⁄ . (1.28) 

 

 Reynolds number 

The Reynolds number, named after the famous British fluid dynamicist of the late 

nineteenth century, Osborne Reynolds is the ratio of inertial forces to viscous forces in a 

flow, i.e. 

 
𝑅𝑒 =

𝑈𝑙

𝜈𝑓
 , (1.29) 

where 𝑈 represents the reference velocity 𝑙 represents the characteristic length, and 𝜈𝑓 is 

dynamic viscosity. The Reynolds number is used to characterize the flow as laminar or 

turbulent. 

 

 Prandtl number 

Prandtl number (𝑃𝑟), named after a German scientist, Ludwig Prandtl, who has a dominant 

role in the research on viscous flow in the first half of 20th century. 𝑃𝑟 is the ratio of the 

coefficient of diffusion of momentum to the coefficient of diffusion of heat, that is  

 
𝑃𝑟 =

𝜈𝑓

𝛼𝑓
∗ =

𝜇𝑓𝑐𝑝

𝜅𝑓
=

𝜇𝑓 𝜌𝑓⁄

𝜅𝑓 (𝜌𝑐𝑝)𝑓
⁄

, (1.30) 

where 𝛼𝑓
∗ is the thermal diffusivity. For gases 𝑃𝑟 ∽ 0.7; for liquids such as water, 𝑃𝑟 ∽

7.0 and for liquid metals, 𝑃𝑟 << 1. 
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 Grashof number 

The dimensionless number which arises from the ratio of the buoyancy to the viscous 

forces is known as Grashof number. It is frequently used in the study of natural or mixed 

convection flows. Mathematically, 

 
𝐺𝑟 =

𝑔𝛽Δ𝑇𝑙3

𝜈𝑓
2 , (1.31) 

where 𝛽 is the coefficient of the volumetric change, Δ𝑇 is the temperature difference, 𝜈𝑓 is 

kinematic viscosity of fluid and 𝑙 is characteristic length. 

 

 Lewis number 

For the combined studies of heat and mass transfer Lewis number is an important physical 

quantity. It is a ratio between the characteristic lengths of diffusion of heat and diffusion 

of mass. Lewis number is also regarded as the ratio of thermal diffusivity to the mass 

diffusivity and is defined as  

 
𝐿𝑒 =

𝛼𝑓
∗

𝐷𝑚
 , (1.32) 

where 𝐷𝑚 is the mass diffusivity. 

 

 Thermophoresis 

Thermophoresis is related to temperature gradient. Solid particles suspended in a fluid exert 

a force in the direction opposite to the existing temperature gradient. This phenomena is 

termed as thermophoresis. Heat transfer is the transfer of thermal energy from one place to 

the other. The fundamental requirement for heat transfer is the existence of temperature 

difference. The transfer of energy in the form of heat always occurs from the higher 

temperature region to the lower temperature region until both regions reach the same 

temperature. 

Figure 1.3: Schematic of the thermophoresis phenomenon. 
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 Brownian motion 

The random movement of particles suspended in a liquid (gas) due to the collisions of 

surrounding molecules in the base fluid is called Brownian motion. It is recognized that 

the strength of these disordered motions increases with temperature. The increase in 

temperature affects thermal conductivity and due to Brownian motion, diffusion of small 

particles will occur which is governed by Fick’s law. Therefore, the Brownian motion is 

an important feature in the thermal augmentation of nanofluid. 

 

 

Figure 1.4: Brownian motion of the molecules causes the migration of particles to the 

colder region of the system. 

 

 Self-similar and non-similar flows 

The boundary layer flows have mainly been divided into two categories, namely, the self-

similar and non-similar flows. Self-similar solutions have intensively been studied in fluid 

mechanics. A similarity solution in boundary layer flows make it easier to solve the 

momentum and energy equations by transforming them to ordinary differential equations, 

but when such type of similarity does not exist, one had ultimately to determine the solution 

of the nonlinear partial differential equations (PDEs). Generally, it is tough to solve the 

nonlinear PDEs for this type of flow problems. The physical situations where it is 

impossible to find the self-similar solutions; the flows are designated as non-similar flows. 

The principle of similarity states that the solution is invariant after scaling of the dependent 

and independent variables. Therefore, the existence of self-similar solution immediately 

implies the absence of characteristic length (s) in certain direction (s). All the invariant 

solutions of a PDE can be found with the help of the theory of Lie Groups. Without basic 

sound knowledge of algebra it is difficult to find those solutions, but its weak form “the 



29 
 

scaling group of transformation” is a very useful and powerful tool to explore the self-

similarity. By applying such transformations, the new stretched and scaled variables do not 

change the associated physics. The fact that this one-parameter family of transformations 

maintains the invariance of the governing PDE’s divulges the existence of self-similarity. 

 

 Solution methodology 

Researchers and scientists are more interested in solving systems of nonlinear differential 

equations related to physical problems. In the field of engineering and technological 

industries, we come up with highly nonlinear partial differential equations that cannot be 

tackled analytically. However, noteworthy progress has been done in constructing new and 

advanced techniques for solving the nonlinear differential equations, particularly in the 

fields of fluid mechanics, finance, biology, chemistry, aerospace engineering and control 

engineering. In 1970, Keller [178] constructed a scheme for slow speed aerodynamic 

boundary layer flows. This scheme is used in various industrial and physical fluid dynamics 

problems. The essential basic phases in Keller-box scheme [179-185] are described as: 

Step I. Reduction of higher order differential equations into first order. 

Step II. Reduced first order differential equations are transformed to a system 

nonlinear 

Step III. The system of nonlinear difference algebraic equations are linearized using 

Newton’s method. 

Step IV. Linearized algebraic equations are solved by means of block tri-diagonal 

algorithm. 

The obtained numerical values are strongly influenced by the number of mesh points in x- 

direction and y-direction. The mesh points are suitably taken to fulfill the suggested 

boundary conditions asymptotically. Mesh independence must be done while computing 

the solution. The computer program of the algorithm is developed in “MATLAB” software. 

This technique validates outstanding stability, convergence and reliability as explained by 

Keller (1970). This algorithm is unconditionally stable and has second order convergence. 

We have used this technique (Keller-box method) for the problems discussed in Chapters 

2 to 7. The detailed procedure of this method for ODE’s is explained in Chapter 2 and for 

PDE’s in Chapter 4.  
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Chapter 2 

Self-similar natural convection flow of nanofluid 

past a vertical plate 

In the study of natural convection flow past a vertical plate there arises an important 

question that for what kind of wall temperature or the wall heat flux the flow will be self-

similar or non-similar? Keeping this question in mind the laminar, incompressible, 

boundary-layer flow over a vertical flat plate for variable surface temperature (VWT) and 

variable heat flux (VHF) cases has been considered in this chapter. The general form of the 

boundary layer equations, for the Buongiorno nanofluid model is developed, which is 

equally valid for self-similar and non-similar flows. The power-law form of the variable 

wall temperature and variable wall heat flux, for which the flow is self-similar, is derived 

by utilizing the conditions of self-similarity. The obtained ordinary differential equations 

are solved by employing the Keller-box method. The solution procedure for the integration 

of obtained ordinary differential equations is elaborated in detail in this chapter. The 

Sherwood number and the Nusselt number are calculated for different values of the 

Brownian motion parameter and thermophoresis parameter. It is observed that the heat 

transfer rate decreases and mass transfer rate increases with the increase of Brownian 

motion and thermophoresis parameters respectively, provided the Lewis number and the 

Prandtl number are kept fixed. The power-law index m influences the heat and mass 

transfer rates significantly. 

 

2.1 Problem formulation 

2.1.1 Buongiorno convective transport model 

There are two famous homogenous nanofluid models, namely, Buongiorno model [31] and 

Tiwari & Das model [32] for the modeling of nanofluid flow problems. In the presence of 

temperature gradient, the thermophoresis force produces a concentration gradient of 

nanoparticles in the base fluid. According to Buongiorno, Brownian diffusion and 



31 
 

thermophoresis were found to be important for nanoparticle transport mechanism. 

Therefore, the steady state transport equations for an incompressible nanofluid model 

which includes the effects of Brownian motion and thermophoresis are described as 

 ∇.V = 0, (2.1) 

 𝜌𝑓(V.∇ )V = −∇p+ 𝜇𝑓∇
  2V+ 𝒈𝛽𝜌𝑓(𝑇 − 𝑇∞), (2.2) 

 
V.∇ T = 𝛼𝑓

∗𝛻2𝑇 + 𝜏∗[𝐷𝐵(𝛻𝑇. 𝛻𝐶) +
𝐷𝑇
𝑇∞
(𝛻𝑇. 𝛻𝑇)], (2.3) 

 
V.∇ C = 𝐷𝐵𝛻

2𝐶 +
𝐷𝑇
𝑇∞
𝛻2𝑇, (2.4) 

where 𝑝 is pressure and V (𝑢̅, 𝑣̅) is the velocity vector whose components 𝑢̅ and 𝑣̅ are along 

𝑥̅ − and 𝑦̅ − directions, respectively. 

 

2.1.2 Flow assumptions 

Consider a steady, two-dimensional boundary layer flow of incompressible nanofluid 

along vertical heated surface as shown in Fig. 2.1. Two types of the boundary conditions 

for the heated wall have been considered, namely, VWT (variable wall temperature) and 

VHF (variable heat flux) (See for instance [186]) described as 

 

 

Figure 2.1: Schematic diagram and coordinate system. 
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VWT case 

 𝑢̅ = 0, 𝑇 = 𝑇∞,   𝐶 = 𝐶∞,                                      𝑎𝑡  𝑥̅ = 0, 𝑦̅ ≠ 0,

𝑢̅  = 0,  𝑣̅  = 𝑣𝑤  (𝑥̅), 𝑇 = 𝑇𝑤 (𝑥̅ ), 𝐶 = 𝐶𝑤(𝑥̅ )    𝑎𝑡  𝑥̅  > 0, 𝑦 = 0,
𝑢̅ → 0 ,  𝑝̅ → 𝑝∞ , 𝑇 → 𝑇∞,   𝐶 → 𝐶∞ ,         𝑎𝑡  𝑥̅ > 0, 𝑦̅ → ∞,

} (2.5a) 

VHF case 

 𝑢̅ = 0, 𝑇 = 𝑇∞,   𝐶 = 𝐶∞,                                      𝑎𝑡  𝑥̅ = 0, 𝑦̅ ≠ 0,

𝑢̅  = 0,
𝜕𝑇

𝜕𝑦̅
= −

𝑞𝑤
𝜅
 ,

𝜕𝐶

𝜕𝑦̅
= −

𝑞𝑚
𝐷𝐵

                          𝑎𝑡  𝑥̅  > 0, 𝑦 = 0,

𝑢̅ → 0, 𝑝̅ → 𝑝∞ , 𝑇 → 𝑇∞,   𝐶 → 𝐶∞          𝑎𝑡  𝑥̅ > 0, 𝑦̅ → ∞. }
 

 

 (2.5b) 

 

2.1.3 Governing equations 

Case I (VWT) 

Incorporating the above stated suppositions in Section 2.1.2; and the Boussinesq 

approximation the constitutive equations for Buongiorno nanofluid model for VWT case 

[186] can be represented in differential form as 

 𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0, (2.6) 

 

 
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣 

𝜕2𝑢

𝜕𝑦2
+ 𝜃∗, (2.7) 

 

 
𝑢
𝜕𝜃∗

𝜕𝑥
+ 𝑣

𝜕𝜃∗

𝜕𝑦
=
1

𝑃𝑟

𝜕2𝜃∗

𝜕𝑦2
+ 𝑁𝑡 (

𝜕𝜃∗

𝜕𝑦
)
2

+ 𝑁𝑏
𝜕𝜃∗

𝜕𝑦

𝜕𝐶

𝜕𝑦
, (2.8) 

 

 
𝑢
𝜕𝜑∗

𝜕𝑥
+ 𝑣

𝜕𝜑∗

𝜕𝑦
=
1

𝐿𝑒
(
𝑁𝑡

𝑁𝑏

𝜕2𝜃∗

𝜕𝑦2
+
𝜕2𝜑∗

𝜕𝑦2
), (2.9) 

where 

 

𝑃𝑟 =
𝜈𝑓

𝛼𝑓
∗  , 𝐿𝑒 =

𝜈𝑓

𝐷𝐵
 , 𝐺𝑟 =

𝑔𝛽(𝑇𝑤 − 𝑇∞)𝑙
3

𝜈𝑓
2 ,    𝜏∗  =

(𝜌𝑐𝑝)𝑝

(𝜌𝑐𝑝)𝑓

, 

𝑁𝑡 =
𝜏∗𝐷𝑇(𝐶𝑤 − 𝐶∞)

𝑇∞𝜈𝑓
 , 𝑁𝑏 =   

𝜏∗𝐷𝐵(𝑇𝑤 − 𝑇∞)

𝜈𝑓
, 

(2.10) 
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are the Prandtl number, Lewis number, Grashof number, ratio of heat capacity of a 

nanoparticle to the base fluid, thermophoresis parameter and Brownian motion parameter, 

respectively. The dimensionless variables utilized to obtain the system (2.6) – (2.9) are 

defined as 

 
𝑥 =

𝑥̅

𝑙
 , 𝑦 =

𝑦̅

𝑙
𝐺𝑟

1
4 , 𝑢 =

𝑢 ̅

𝑢𝑐
 ,  𝑢𝑐  = 𝐺𝑟

1
2
𝜈𝑓

𝑙
   𝑣 = 𝐺𝑟−

1
4
𝑣 ̅

𝑢𝑐
,  

𝑝 =
𝑙2

𝜈𝑓
2𝜌𝑓

𝐺𝑟−
1
4 𝑝 ̅, 𝜃∗ =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

,   𝜑∗ =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

 .   

(2.11) 

 

In order to satisfy the equation of continuity identically, we define the stream function 𝜓 

such that 𝑢 =
𝜕𝜓

𝜕𝑥
, 𝑣 = −

𝜕𝜓

𝜕𝑦
 and introduce the transformations 

 
𝜉 = 𝑥, 𝜂 = 𝑇𝑤(𝑥)

1/4𝜉−
1
4𝑦 , 𝜃(𝜉, 𝜂) = 𝑇𝑤(𝑥) 𝜃

∗,

𝜑(𝜉, 𝜂 ) = 𝐶𝑤(𝑥)𝜑
∗, 𝜓(𝜉, 𝜂) = 𝑇𝑤(𝑥)

1
4𝜉

3
4𝑓(𝜉, 𝜂) , 

(2.12) 

due to which the governing system (2.6) – (2.9) transforms to  

 
𝑓′′′ +

1

4
(3 + 𝑃(𝑥))𝑓𝑓′′ +

1

2
(1 + 𝑃(𝑥))𝑓′

2
+ 𝜃 = 𝜉 (𝑓′

𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
), (2.13) 

1

𝑃𝑟
𝜃′′ +

1

4
(3 + 𝑃(𝑥))𝑓𝜃′ − 𝑃(𝑥)𝑓′𝜃 + (𝑁𝑏𝜃′𝜑′ + 𝑁𝑡𝜃′

2
) 

= 𝜉 (𝑓′
𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
), 

(2.14) 

 1

𝐿𝑒
(𝜑′′ +

𝑁𝑏

𝑁𝑡
𝜃′′) +

1

4
(3 + 𝑃(𝑥))𝑓𝜑′ − 𝑃(𝑥)𝑓′𝜑 = 𝜉 (𝑓′

𝜕𝜑

𝜕𝜉
− 𝜑′

𝜕𝑓

𝜕𝜉
), (2.15) 

subject to the boundary conditions (due to Eq. (2.5a)) 

 
𝜉
𝜕𝑓(𝜉, 0)

𝜕𝜉
+
1

4
(3 + 𝑃(𝑥))𝑓(𝜉, 0) = −𝑀(𝑥) 

𝑓′(𝜉, 0) =  0, 𝜑(𝜉, 0) = 1, 𝜃(𝜉, 0) =1, 

𝑓′(𝜉,∞) = 0, 𝜑(𝜉 , ∞) = 0, 𝜃(𝜉 ,∞) = 0, 

(2.16) 

here 𝑃(𝑥) =
𝑥

𝑇𝑤(𝑥)

𝑑𝑇𝑤(𝑥)

𝑑𝑥
, 𝑀(𝑥) = 𝑣𝑤(𝑥) (

𝑥

𝑇𝑤(𝑥)
)

1

4
 and the “ ' ” denotes ordinary derivative 

with respect to 𝜂. 
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The system (2.13) – (2.16) is in the general form which is equally valid for self-similar and 

non-similar flows. When the coefficient of the terms on left hand side are pure constants 

the situation refers to self-similar flow; otherwise it will be non-similar in nature. The 

function 𝑃(𝑥) could be a pure constant if the wall temperature follows the power-law form 

that is 𝑇𝑤(𝑥) = 𝑥𝑚. For an impermeable surface, as in the present case, the function 𝑀(𝑥) 

becomes zero; hence a pure constant. In view of this reasoning the self-similar form of the 

system (2.13) – (2.16) reads as: 

 
𝑓′′′ +

(𝑚 + 3)

4
𝑓𝑓′′ +

(𝑚 + 1)

2
𝑓′
2
+ 𝜃 = 0, (2.17) 

 1

𝑃𝑟
𝜃′′ +

1

4
(3 + 𝑚)𝑓𝜃′ −𝑚𝑓′𝜃 + (𝑁𝑡𝜃′

2
+𝑁𝑏𝜃′𝜑′) = 0, (2.18) 

 1

𝐿𝑒
(𝜑′′ +

𝑁𝑏

𝑁𝑡
𝜃′′) +

1

4
(3 + 𝑚)𝑓𝜑′ −𝑚𝑓′𝜑 = 0, (2.19) 

with boundary conditions  

 𝑓(0) = 0, 𝑓′(0) = 0, 𝜃(0) = 1,   𝜑(0) = 1,    

 𝑓′ (∞) = 0, 𝜃(∞) = 0, 𝜑(∞) = 0, 
(2.20) 

here 𝑚 is the power-law index. The quantities of physical nature such as the coefficient of 

skin friction, the Nusselt number and the Sherwood number defined in Eqs. (1.22), (1.25) 

and (1.28) respectively, take the following form (for the self-similar flow) in view of Eqs. 

(2.11) and (2.12): 

 
𝐶𝑓 = 𝐶𝑓𝑥(𝐺𝑟 𝑥3𝑚+1⁄ )

1
4 = 𝑓′′(0), 

  𝑁𝑢 = 𝑁𝑢𝑥(𝐺𝑟 𝑥
5𝑚−1)−

1
4/𝑙2 = −𝜃 ′(0), 

𝑆ℎ = 𝑆ℎ𝑥(𝐺𝑟 𝑥
5𝑚−1)−

1
4/𝑙2 = −𝜑 ′(0). 

(2.21) 

 

Case II (VHF) 

Analogous to case I, dimensionless transformations for the VHF case (in view of the WVT 

case) read as 

 
𝑥 =

𝑥̅

𝑙
 , 𝑦 =

𝑦̅

𝑙
𝐺𝑟

1
5 , 𝑢 =

𝑢 ̅

𝑢𝑐
 , 𝑢𝑐  = 𝐺𝑟

2
5
𝜈𝑓

𝑙
 , 𝑣 = 𝐺𝑟−

1
5
𝑣 ̅

𝑢𝑐
, (2.22) 
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    𝑝 =

𝑙2

𝜈𝑓
2𝜌𝑓

𝐺𝑟−
1
5 𝑝 ̅, 𝜃(𝜉, 𝜂) = 𝐺𝑟

1
5𝜅
(𝑇 − 𝑇∞)

𝑞𝑤 𝑙
𝑞𝑤(𝑥)

4
5, 

𝜑(𝜉, 𝜂)𝑞𝑤(𝑥)
4
5 = 𝐺𝑟

1
5𝜅
(𝐶 − 𝐶∞)

𝑞𝑤 𝑙
, 𝐺𝑟 =

𝑔𝛽𝑞𝑤𝑙
4

𝜅 𝜈2
. 

Accordingly the transformations (2.12) modify in this case as 

 
𝜉 = 𝑥, 𝜓(𝜉, 𝜂) = 𝑞𝑤(𝑥)

1/5𝜉
3
4𝑓(𝜉, 𝜂) , 𝜂 = 𝑞𝑤(𝑥)

1/5𝜉−
1
4𝑦,  (2.23) 

due to which the governing system for Buongiorno nanofluid model in terms of 

dimensionless variables comes out of the form 

 
𝑓′′′ +

1

5
(4 + 𝑄(𝑥))𝑓𝑓′′ +

1

5
(3 + 2𝑄(𝑥))𝑓′

2
+ 𝜃 = 𝜉 (𝑓′

𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
), (2.24) 

1

𝑃𝑟
𝜃′′ +

1

5
(4 + 𝑄(𝑥))𝑓𝜃′ −

1

5
(1 + 4𝑄(𝑥))𝑓′𝜃 + (𝑁𝑏𝜃′𝜑′ + 𝑁𝑡𝜃′

2
)

= 𝜉 (𝑓′
𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
), 

(2.25) 

1

𝐿𝑒
(𝜑′′ +

𝑁𝑏

𝑁𝑡
𝜃′′) +

1

5
(4 + 𝑄(𝑥))𝑓𝜑′ −

1

5
(1 + 4𝑄(𝑥))𝑓′𝜑

= 𝜉 (𝑓′
𝜕𝜑

𝜕𝜉
− 𝜑′

𝜕𝑓

𝜕𝜉
), 

(2.26) 

with the following boundary conditions (due to Eq. (2.5b)) 

 𝜉   
𝜕𝑓(𝜉,0)

𝜕𝜉
 +

1

5
(4 + 𝑄(𝑥))𝑓(𝜉, 0) = −𝑁(𝑥), 

 𝑓′(𝜉, 0) =  0,  𝜑′(𝜉, 0) + 1 = 0, 𝜃′(𝜉, 0) + 1 = 0, 

 𝑓′(𝜉,∞) = 0, 𝜑(𝜉 , ∞) = 0, 𝜃(𝜉 ,∞) = 0, 

(2.27) 

where  

𝑄(𝑥) =
𝑥

𝑞𝑤(𝑥)

𝑑𝑞𝑤(𝑥)

𝑑𝑥
, 𝑁(𝑥) =  𝑣𝑤(𝑥) (

𝑥

𝑞𝑤(𝑥)
)
1/5

. 

Again, the system (2.24) – (2.27) is equally valid for the self-similar and non-similar flows, 

in general. The similarity can be ensured for the cases when the coefficients of the terms 

on the left hand side of Eqs. (2.24) – (2.26) become pure constants. This restriction results 

in the power- law form of the wall heat flux function. The absence of any normal wall 
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velocity makes the function 𝑁(𝑥) identically equal to zero. Under these restrictions, the 

self-similar form of the system (2.24) – (2.27) read as  

 
𝑓′′′ +

1

5
(4 +𝑚)𝑓𝑓′′ +

1

5
(3 + 2𝑚)𝑓′

2
+ 𝜃 = 0, (2.28) 

 1

𝑃𝑟
𝜃′′ +

1

5
(4 + 𝑚)𝑓𝜃′ −

1

5
(1 + 4𝑚)𝑓′𝜃 + (𝑁𝑏𝜃′𝜑′ + 𝑁𝑡𝜃′

2
) = 0, (2.29) 

 1

𝐿𝑒
(𝜑′′ +

𝑁𝑏

𝑁𝑡
𝜃′′) +

1

5
(4 + 𝑚)𝑓𝜑′ −

1

5
(1 + 4𝑚)𝑓′𝜑 = 0, (2.30) 

where 𝑚 is the power-law index, 𝑁𝑏 and 𝑁𝑡 represent Brownian motion parameter and 

thermophoresis parameter respectively. In this way the boundary conditions (2.27) modify 

as 

 𝑓(0) = 0, 𝑓′(0) = 0, 𝜑′(0) = −1,     𝜃′(0) = −1,    

 𝑓′(∞) = 0, 𝜑(∞) = 0, 𝜃(∞) = 0. 
(2.31) 

Similar to the previous case the physical quantities such as the skin friction, the Nusselt 

number, and the Sherwood number, defined in equations (1.22), (1.25) and (1.28), 

transform as (due to Eq. (2.22 and (2.23)) 

 
𝐶𝑓 = 𝐶𝑓𝑥(𝐺𝑟 𝑥3𝑚+1⁄ )

1
4 = 𝑓′′(0), 

  𝑁𝑢 = 𝑁𝑢𝑥(𝐺𝑟 𝑥
5𝑚+3)−

1
4/𝑙2 = −𝜃 ′(0), 

𝑆ℎ = 𝑆ℎ𝑥(𝐺𝑟 𝑥
5𝑚+3)−

1
4/𝑙2 = −𝜑 ′(0). 

(2.32) 

 

2.2 Numerical scheme 

The solution of nonlinear system of PDE’s (2.17) – (2.19) under the constraints (2.20) is 

obtained by the second order finite difference scheme [178-185] commonly known as the 

Keller-box scheme. The governing equations for the VHF case are also solved by the 

Keller-box technique but the details of the procedure are given only for VWT case. 

According to this scheme the differential equations (2.17) – (2.19) are firstly converted into 

form of first order by introducing new variables 𝕦, 𝕧, 𝕢  and 𝕡 such as 

 𝑓′ = 𝕦,𝕦′ = 𝕧, 𝜃′ = 𝕢,   and 𝜑′ = 𝕡. (2.33) 

The independent variable 𝜂 is discretized as 

 𝜂𝑗 = 𝜂𝑗−1 + ∆𝜂  where    𝜂0 = 0, 𝜂𝐽 = 𝜂∞,     ;  𝑗 = 1,2, … , 𝐽 − 1, (2.34) 
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here ∆𝜂 = ℎ is the constant step size and 𝑗 represents the positive integer. The derivatives 

w.r.t. 𝜂 are reduced to the difference equations using central difference formula and 

functions are changed by their mean values at 𝜂𝑗−1/2. After this process the obtained 

difference equations look like: 

 
(
1

ℎ
) [{{(𝕧𝑗 − 𝕧𝑗−1)}] +

1

4
(3 + 𝑚) (

1

4
) {((𝑓𝑗 + 𝑓𝑗−1)(𝕧𝑗 + 𝕧𝑗−1))}] 

−
1

2
(1 +𝑚) (

1

4
) {((𝕦𝑗 + 𝕦𝑗−1)

2)}] + (
1

2
) [{{(𝜃𝑗 + 𝜃𝑗−1)} = 0, 

(2.35) 

 
(
1

ℎ 𝑃𝑟
) [{{(𝕢𝑗 − 𝕢𝑗−1)}] +

1

4
(3 + 𝑚) (

1

4
) {((𝑓𝑗 + 𝑓𝑗−1)(𝕢𝑗 + 𝕢𝑗−1))}] 

−𝑚(
1

4
) {((𝕦𝑗 + 𝕦𝑗−1)(𝜃𝑗 + 𝜃𝑗−1))}] 

+𝑁𝑏 (
1

4
) {((𝕢𝑗 + 𝕢𝑗−1)(𝕡𝑗 + 𝕡𝑗−1))}] 

+𝑁𝑡 (
1

4
) + {((𝕢𝑗 + 𝕢𝑗−1)

2)}] = 0, 

(2.36) 

 

(
1

ℎ 𝐿𝑒
) [(𝕡𝑗 − 𝕡𝑗−1) +

𝑁𝑡

𝑁𝑏
(𝕢𝑗 − 𝕢𝑗−1)] 

+
(3 +𝑚)

16
{((𝑓𝑗 + 𝑓𝑗−1)(𝕡𝑗 + 𝕡𝑗−1))}] 

−𝑚(
1

4
) {((𝕦𝑗 + 𝕦𝑗−1)(𝜑𝑗 + 𝜑𝑗−1))}] = 0. 

(2.37) 

Accordingly the boundary conditions are also discretized which finally take the form  

 2

ℎ
(𝑓𝑗 − 𝑓𝑗−1) − 𝕦𝑗 − 𝕦𝑗−1 = 0 ,   

2

ℎ
(𝕦𝑗 − 𝕦𝑗−1) − 𝕧𝑗 − 𝕧𝑗−1 = 0,  

2

ℎ
(𝜃𝑗 − 𝜃𝑗−1) − 𝕢𝑗 − 𝕢𝑗−1 = 0,   

2

ℎ
(𝜑𝑗 −𝜑𝑗−1) − 𝕡𝑗 − 𝕡𝑗−1 = 0 . 

(2.38) 

The obtained equations (2.35) – (2.37) are non-linear algebraic equations. To solve these 

equations, we first reduced them to linear form by using Newton’s method in this scheme 
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unknown function is replaced by sum of known (𝑓𝑗
(𝑖)
) and unknown (𝛿𝑓𝑗

(𝑖)
) function such 

as 𝑓𝑗
𝑖+1 at (𝑖 + 1)𝑡ℎ iterates can be written as  

 𝑓𝑗
𝑖+1 = 𝑓𝑗

(𝑖) + 𝛿𝑓𝑗
(𝑖), (2.39) 

also other variable are replaced in the similar fashion. Further during the linearization 

process the 𝛿𝑓𝑗
(𝑖)2

 and higher order terms are neglected. Same for the case of other variables 

 𝛿𝕦𝑗
(𝑖), 𝛿𝕧𝑗

(𝑖), 𝛿𝜃𝑗
(𝑖), 𝛿𝕢𝑗

(𝑖), 𝛿𝜑𝑗
(𝑖)  and 𝛿𝕡𝑗

(𝑖)
, is adopted and the following system of linear 

algebraic equations is obtained: 

 
𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 −

∆𝜂(𝛿𝕦𝑗 + 𝛿𝕦𝑗−1)

2
= (𝑟11)𝑗,  

 (𝑠11)𝑗𝛿𝑓𝑗−1 + (𝑠12)𝑗𝛿𝑓𝑗 + (𝑠13)𝑗𝛿𝕦𝑗−1 + (𝑠14)𝑗𝛿𝕦𝑗 + (𝑠15)𝑗𝛿𝕧𝑗−1 + (𝑠16)𝑗𝛿𝕧𝑗 

+(𝑠17)𝑗𝛿𝜃𝑗−1 + (𝑠18)𝑗𝛿𝜃𝑗 = (𝑟12)𝑗, 
 

 (𝑠21)𝑗𝛿𝜃𝑗−1 + (𝑠22)𝑗𝛿𝜃𝑗 + (𝑠23)𝑗𝛿𝕢𝑗−1 + (𝑠24)𝑗𝛿𝕢𝑗 + (𝑠25)𝑗𝛿𝜑𝑗−1 + (𝑠26)𝑗𝛿𝜑𝑗

+ (𝑠27)𝑗𝛿𝕡𝑗−1 + (𝑠28)𝑗𝛿𝕡𝑗 = (𝑟13)𝑗, 
 

 (𝑠31)𝑗𝛿𝜃𝑗−1 + (𝑠32)𝑗𝛿𝜃𝑗 + (𝑠33)𝑗𝛿𝕢𝑗−1 + (𝑠34)𝑗𝛿𝕢𝑗 + (𝑠35)𝑗𝛿𝜑𝑗−1 + (𝑠36)𝑗𝛿𝜑𝑗

+ (𝑠37)𝑗𝛿𝕡𝑗−1 + (𝑠38)𝑗𝛿𝕡𝑗 = (𝑟14)𝑗, 
 

 𝛿𝕦𝑗 − 𝛿𝕦𝑗−1 −
ℎ

2
(𝛿𝕧𝑗 + 𝛿𝕧𝑗−1) = (𝑟15)𝑗, 𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 −

ℎ

2
(𝛿𝕢𝑗 + 𝛿𝕢𝑗−1) = (𝑟16)𝑗,  

 
𝛿𝜑𝑗 − 𝛿𝜑𝑗−1 −

ℎ

2
(𝛿𝕡𝑗 + 𝛿𝕡𝑗−1) = (𝑟17)𝑗.  

The boundary conditions also undergo the same procedure and finally appear in the form 

𝛿𝑓0 = 𝛿𝕡0 =  𝛿𝜃0 = 𝛿𝜑0 = 0,  

𝛿𝕡𝐽 = 𝛿𝕢𝐽 = 𝛿𝑠𝐽 =  𝛿𝜃𝐽 = 𝛿𝜑𝐽 = 0. 

Before iterating the numerical procedure, the linearized system of algebraic equations are 

written in matrix for under the given constraints.  

Coefficients of momentum equation: 

The coefficients of unknown functions 𝛿𝑓𝑗−1, 𝛿𝕦𝑗−1, 𝛿𝕧𝑗−1, 𝛿𝜃𝑗−1, 𝛿𝕢𝑗−1, 𝛿𝜑𝑗−1 and 

𝛿𝕡𝑗−1 and the non-homogeneous parts are written as 

 coefficient of 𝛿𝑓𝑗−1: 

(𝑠11)𝑗  =  
1

16
(3 + 𝑚){((𝕧𝑗 + 𝕧𝑗−1))}, 
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 coefficient of 𝛿𝑓𝑗: 

(𝑠12)𝑗  =  
1

16
(3 + 𝑚){((𝕧𝑗 + 𝕧𝑗−1))}, 

 

 coefficient of 𝛿𝕦𝑗−1: 

(𝑠13)𝑗  =  −
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1), 

 

 coefficient of 𝛿𝕦𝑗: 

(𝑠14)𝑗  =  −
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1), 

 

 coefficient of 𝛿𝕧𝑗−1: 

(𝑠15)𝑗  =  −
1

ℎ
+
1

16
(3 + 𝑚)(𝑓𝑗 + 𝑓𝑗−1), 

 

 coefficient of 𝛿𝕧𝑗: 

(𝑠16)𝑗  =  
1

ℎ
+
1

16
(3 + 𝑚)(𝑓𝑗 + 𝑓𝑗−1), 

 

 coefficient of 𝛿𝜃𝑗−1: 

(𝑠17)𝑗  =  
1

2
, 

 

 coefficient of 𝛿𝜃𝑗: 

(𝑠18)𝑗  =  
1

2
. 

 

Coefficients of energy equation: 

 coefficient of 𝛿𝜃𝑗−1: 

(𝑠19)𝑗  = −
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1), 

 

 coefficient of 𝛿𝜃𝑗: 

(𝑠20)𝑗  = −
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1), 

 

 coefficient of 𝛿𝕢𝑗−1: 

(𝑠21)𝑗  = −
1

𝑃𝑟 ℎ
+
1

16
(3 +𝑚)(𝑓𝑗 + 𝑓𝑗−1) +

𝑁𝑡

2
(𝕢𝑗 + 𝕢𝑗−1), 

 

 coefficient of 𝛿𝕢𝑗: 

(𝑠22)𝑗  =
1

𝑃𝑟 ℎ
+
1

16
(3 + 𝑚)(𝑓𝑗 + 𝑓𝑗−1) +

𝑁𝑡

2
(𝕢𝑗 + 𝕢𝑗−1), 
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 coefficient of 𝛿𝕡𝑗−1: 

(𝑠23)𝑗  =  
𝑁𝑏

4
(𝕢𝑗 + 𝕢𝑗−1), 

 

 coefficient of 𝛿𝕡𝑗: 

(𝑠24)𝑗  =  
𝑁𝑏

4
(𝕢𝑗 + 𝕢𝑗−1). 

 

 

Coefficients of concentration equation: 

 coefficient of 𝛿𝕢𝑗−1: 

(𝑠25)𝑗  = −
𝑁𝑡

𝑁𝑏  𝐿𝑒 ℎ
, 

 

 coefficient of 𝛿𝕢𝑗: 

(𝑠26)𝑗  = −
𝑁𝑡

𝑁𝑏  𝐿𝑒 ℎ
, 

 

 coefficient of 𝛿𝜑𝑗−1: 

(𝑠27)𝑗  = −
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1) 

 

 coefficient of 𝛿𝜑𝑗: 

(𝑠28)𝑗  = −
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1), 

 

 coefficient of 𝛿𝕡𝑗−1: 

(𝑠29)𝑗  =  −
1

  𝐿𝑒 ℎ
+
1

16
(3 + 𝑚)(𝑓𝑗 + 𝑓𝑗−1), 

 

 coefficient of 𝛿𝕡𝑗: 

(𝑠30)𝑗  =  
1

  𝐿𝑒 ℎ
+
1

16
(3 + 𝑚)(𝑓𝑗 + 𝑓𝑗−1). 

 

 

The non-homogeneous terms: 

 
(𝑟11)𝑗 = 𝑓𝑗 − 𝑓𝑗−1 −

ℎ

2
(𝕦𝑗 + 𝕦𝑗−1),  

 
(𝑟21)𝑗 = −

1

ℎ
(𝕧𝑗 + 𝕧𝑗−1) −

(3 + 𝑚)

16
(𝑓𝑗 + 𝑓𝑗−1)(𝕧𝑗 + 𝕧𝑗−1) 

+
(1 +𝑚)

8
(𝕦𝑗 + 𝕦𝑗−1 )

2
−
1

2
(𝜃𝑗 + 𝜃𝑗−1 ), 

 



41 
 

 
(𝑟31)𝑗 = −

1

Pr ℎ
(𝕢𝑗 + 𝕢𝑗−1) −

(3 + 𝑚)

16
(𝑓𝑗 + 𝑓𝑗−1)(𝕢𝑗 + 𝕢𝑗−1) 

+
𝑚

4
(𝕦𝑗 + 𝕦𝑗−1)(𝜃𝑗 + 𝜃𝑗−1) −

𝑁𝑏

4
(𝕢𝑗 + 𝕢𝑗−1)(𝕡𝑗 + 𝕡𝑗−1) −

𝑁𝑡

4
(𝕦𝑗 + 𝕦𝑗−1 )

2
, 

 

 
(𝑟41)𝑗 = −

1

  𝐿𝑒 ℎ
((𝕡𝑗 − 𝕡𝑗−1) +

𝑁𝑡

𝑁𝑏  
(𝕢𝑗 − 𝕢𝑗−1))

−
(3 + 𝑚)

16
(𝑓𝑗 + 𝑓𝑗−1)(𝕡𝑗 + 𝕡𝑗−1) +

𝑚

4
(𝕦𝑗 + 𝕦𝑗−1)(𝜑𝑗 + 𝜑𝑗−1), 

 

 
(𝑟51)𝑗 = 𝛿𝕦𝑗 − 𝛿𝕦𝑗−1 −

∆𝜂

2
(𝛿𝕧𝑗 + 𝛿𝕧𝑗−1),  

 
(𝑟61)𝑗 = 𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 −

∆𝜂

2
(𝛿𝕢𝑗 + 𝛿𝕢𝑗−1),  

 
(𝑟71)𝑗 = 𝛿𝜑𝑗 − 𝛿𝜑𝑗−1 −

∆𝜂

2
(𝛿𝕡𝑗 + 𝛿𝕡𝑗−1).  

Block-tridiagonal elimination technique is used to solve the obtained matrix vector form 

for which the algorithm is written in Matlab software. The results are displayed through 

graphs and tables for different parameters. Comparison of the computed numerical values 

of  𝑓′′(0) and −𝜃′(0) with the already available results is presented in Table 2.1. These 

results are in perfect agreement with those of Pop and Ingham [161] which guarantees the 

accuracy of the present solution. 

 

2.3 Results and discussion 

Following the above explained procedure numerical computations were performed for 

several combinations of the values of pertinent parameters namely, the Prandtl number 

(𝑃𝑟 ), the power-law index (𝑚), the Brownian motion parameter (𝑁𝑏), the Lewis number 

(𝐿𝑒), and the thermophoresis parameter (𝑁𝑡). Graphical representation of velocity, 

temperature, concentration, skin friction, Nusselt number, and the Sherwood number have 

been displayed for different parameters. 

Figures 2.2 and 2.3 depict the velocity distribution for various values of 𝑁𝑏 and 𝑁𝑡. It is 

noticed that the velocity enhances with the increment in the values of 𝑁𝑏 and 𝑁𝑡. 

Reduction in the velocity profiles is observed for increasing the power-law index 𝑚. 

Figures 2.4 – 2.7 show the influence of 𝑁𝑡 and 𝑁𝑏 on temperature and concentration 

distributions. It is noticed that the temperature distribution enhances with the rise of the 𝑁𝑡 
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and 𝑁𝑏 while concentration distribution reduces with the increase of 𝑁𝑡 and 𝑁𝑏. Reduction 

of these profiles is seen for increasing values of the power-law index 𝑚. Because 𝑁𝑡 and 

𝑁𝑏 lead to the thickening of the thermal boundary layer while thinning the concentration 

boundary layer.  

 

Table 2.1: Comparison of 𝐶𝑓 and 𝑁𝑢  data for different 𝑚 when  𝑁𝑡 = 𝑁𝑏 = 0, 𝑃𝑟 = 1.0. 

 

𝑚 𝐶𝑓 𝑁𝑢 

 Present [186] Present [186] 

1.0 1.009694 1.0097 1.514716 1.5148 

1.25 0.959708 0.9597 1.466989 1.4671 

1.5 0.917387 0.9174 1.426671 1.4628 

1.75 0.880924 0.8809 1.391951 1.3920 

2.0 0.849057 0.8491 1.361583 1.3617 

2.25 0.820879 0.8209 1.334685 1.3347 

2.5 0.795715 0.7957 1.310607 1.3106 

2.75 0.773054 0.7729 1.288859 1.2897 

3.0 0.752497 0.7524 1.269066 1.2699 

3.25 0.733731 0.7336 1.250933 1.2517 

3.5 0.716504 0.7164 1.234225 1.2349 

3.75 0.700613 0.7005 1.218752 1.2194 

4.0 0.685889 0.6858 1.204358 1.2050 

4.25 0.672193 0.6721 1.190914 1.1915 

4.5 0.659408 0.6594 1.178312 1.1789 

41.75 0.647434 0.6474 1.166462 1.1670 

5.0 0.636188 0.6361 1.155285 1.1558 
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Moreover, thermal and concentration distributions decrease when the power-law index is 

increased. Figures 2.8 & 2.9 depict heat and mass transfer rate versus 𝑁𝑡 and 𝑁𝑏 at two 

values of the power-law index 𝑚. Figure 2.8 shows that the Nusselt number decreases with 

the increase in the values of 𝑁𝑏 and 𝑁𝑡. However, it rises for increasing values of of 𝑚. 

Figure 2.9 illustrates that Sherwood number rises with the increase of 𝑁𝑡 and 𝑁𝑏; and is 

also observed to be as an increasing function of 𝑚. Figures 2.10 – 2.12 depict the influence 

of 𝑁𝑡 and 𝑁𝑏 versus power-law index 𝑚 on skin friction, Nusselt number and Sherwood 

number, respectively.  

Figure 2.10 reveals that the skin friction increases with the increment in 𝑁𝑏 and 𝑁𝑡 

however, skin friction reduces as 𝑚 is increased. Figure 2.11 illustrates that the Nusselt 

number decreases with the increase in 𝑁𝑏 and 𝑁𝑡. Also the Nusselt number increases as 

𝑚 increases. Figure 2.12 predicts that the Sherwood number enhances with the increase of 

𝑁𝑏 and 𝑁𝑡 where an increasing trend can also be seen for the power-law index 𝑚. 

Corresponding to these graphs some numerical values have also been written in Table 2.2. 

For the VHF case, influence of 𝑁𝑡 and 𝑁𝑏  on velocity, temperature and concentration 

distributions are depicted in Figs. 2.13 to 2.18. Figures 2.13 and 2.14 demonstrate the 

impact of 𝑁𝑡 and 𝑁𝑏 on velocity profiles. It is noticed that velocity increases with the 

increase of 𝑁𝑡 and 𝑁𝑏. Figures 2.15 and 2.16 illustrate the effect of 𝑁𝑡 and 𝑁𝑏 on 

temperature profiles. It is seen that temperature profile rises with the increase of 𝑁𝑡 and 𝑁𝑏 

near the plate and decreases gradually as one moves away from the plate. Variation of 

concentration distribution due to the change in 𝑁𝑡 and 𝑁𝑏 is recorded in Figs. 2.17 and 

2.18. Figure 2.17 depicts that concentration distribution reduces adjacent to the plate 

surface as one increases 𝑁𝑡 and enhances subsequently as one moves to the upper part of 

the concentration boundary layer on increasing 𝑁𝑡. Figure 2.18 shows that concentration 

distribution reduces by incrementing 𝑁𝑏. From these figures it is also observed that overall 

depreciation of these profiles is noted for increasing values of the power-law index 𝑚. 
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Figure 2.2: Velocity graphs for different 𝑁𝑡 and 𝑚. 

 

 

Figure 2.3: Variation in velocity profile corresponding to different 𝑚 and 𝑁𝑏 . 
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Figure 2.4: Effect of varying 𝑁𝑡 and 𝑚 on temperature profile. 

 

 

Figure 2.5: Temperature profile plotted against different 𝑁𝑏 and 𝑚. 
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Figure 2.6: Effect of varying 𝑁𝑡 and 𝑚 on concentration profile. 

 

 

Figure 2.7: Concentration distribution for different 𝑚 and 𝑁𝑏. 
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Figure 2.8: Nusselt number graph versus 𝑁𝑡 and 𝑚. 

 

 

Figure 2.9: Sherwood number plotted against 𝑁𝑏 and 𝑚 for different 𝑁𝑡. 
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Figure 2.10: Skin friction graph against m for different 𝑁𝑡 𝑎𝑛𝑑 𝑁𝑏. 

 

 

Figure 2.11: Nusselt number plotted against 𝑚 for different 𝑁𝑏 and 𝑁𝑡. 
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Figure 2.12: Variation of Sherwood number at different 𝑁𝑡 and 𝑁𝑏 against 𝑚. 

 

 

Figure 2.13: Velocity graph plotted against different 𝑁𝑡 and 𝑚. 
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Figure 2.14: Velocity profile for different 𝑁𝑏. 

 

 

Figure 2.15: Temperature graph for different 𝑁𝑡. 
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Figure 2.16: Temperature profile plotted for different 𝑁𝑏 and 𝑚. 

 

 

Figure 2.17: Effect of 𝑁𝑡 and 𝑁𝑏 on concentration distribution. 
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Figure 2.18: Variation of concentration profile for different 𝑁𝑏 and 𝑚 . 

 

Table 2.2: 𝑁𝑢 and 𝑆ℎ  data for different 𝑁𝑡 and 𝑁𝑏 at fixed 𝐿𝑒 = 10, and 𝑃𝑟 = 7.0. 

𝑚 = 0 

𝑁𝑡

/𝑁𝑏 
0.1 0.2 0.3 0.4 0.5 

 𝑁𝑢  𝑆ℎ 𝑁𝑢 𝑆ℎ 𝑁𝑢  𝑆ℎ 𝑁𝑢 𝑆ℎ 𝑁𝑢  𝑆ℎ 

0.1 0.40469 0.9286 0.3207 1.0707 0.25745 1.2656 0.2098 1.4771 0.17367 1.6847 

0.2 
0.2636

0 
1.0064 0.2071 1.1136 0.16525 1.2298 0.1341 1.3441 0.11066 1.4508 

0.3 0.16513 1.0317 0.1289 1.1176 0.10207 1.2020 0.0829 1.2809 0.06827 1.3525 

0.4 0.09997 1.0439 0.0777 11142 0.06164 1.1799 0.0498 1.2398 0.04093 1.2935 

0.5 0.05881 1.0511 0.0456 1.1095 0.03612 1.1629 0.0291 1.2108 0.02399 1.2254 

𝑚 = 2 

0.1 0.77394 1.4816 0.6557 1.6338 0.5622 1.8732 0.4952 2.1540 0.44027 2.4503 

0.2 0.56728 1.6230 0.4848 1.7572 0.4219 1.9125 0.3734 2.0747 0.33517 2.2363 

0.3 0.41380 1.6726 0.3579 1.7883 0.31525 1.9079 0.2821 2.0260 0.25592 2.1403 

0.4 0.30257 1.6989 0.2654 1.7986 0.23691 1.8962 0.2146 1.9899 0.19677 2.0790 

0.5 0.22322 1.7160 0.1988 1.8022 0.17990 1.8844 0.1649 1.9620 0.15286 2.0352 
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2.4 Conclusion 

In this chapter, mathematical formulation has been presented for self-similar flow and heat 

and mass transfer in incompressible nanofluid flow over a vertical plate. Numerical 

procedure has been explained in detail. The cases of VWT and VHF has been discussed in 

detail. The effects of physical parameters like skin friction coefficient, Nusselt number and 

Sherwood number have been displayed graphically and discussed in detail. The main 

outcomes of this study are: 

 Temperature enhances by strengthening the thermophoresis 𝑁𝑡 and Brownian 

motion 𝑁𝑏 effects. 

 Nusselt number reduces by increasing 𝑁𝑏 and 𝑁𝑡 parameters. 

 Sherwood number rises by incrementing 𝑁𝑏 and 𝑁𝑡 parameters. 

 Sherwood number and Nusselt number enhance by increasing the power-law index. 
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Chapter 3 

Self-similar natural convection flow of nanofluid 

past a circular cone  

In continuation of the previous chapter, self-similar natural convection flow of nanofluid 

along a circular cone is considered here. Buongiorno transport model for nanofluid has 

been utilized in the development of transport equations. Using the proper similarity 

transformations the constitutive equations are converted to the ordinary differential 

equations. These equations with the boundary data are then solved numerically. Effects of 

thermophoresis and Brownian motion on the transport phenomena are studied thoroughly. 

Physical quantities such as skin friction coefficient and Nusselt number are investigated 

and shown graphically in the presence of heat and mass transfer phenomena. It is observed 

that Brownian motion and thermophoresis play a vital role in the improvement of heat and 

mass transfer rates. Results for friction factor and Nusselt number in the absence of 

thermophoresis and Brownian motion parameter are compared with the published data for 

pure fluid and are observed to be in good agreement. 

 

3.1 Problem formulation 

Consider a two-dimensional steady, natural convection, incompressible, viscous flow past 

a vertical circular cone. The radius of the cone is denoted by 𝑟̅ and the internal half angle 

of the cone is denoted by 𝛾. The surface of the cone is maintained at a constant temperature 

𝑇𝑤 and a constant concentration 𝐶𝑤 whereas, the constant ambient temperature is 

symbolized by 𝑇∞ and the ambient concentration by 𝐶∞. It is further assumed that the wall 

values of the temperature and concentration functions are greater than the ambient values, 

that is 𝑇𝑤 > 𝑇∞, 𝐶𝑤 > 𝐶∞ which cause the bouncy effects. The flow is developed along the 

cone surface in the upward direction. The x −axis is taken along the surface of the cone 

and the y −axis is taken orthogonal to it as depicted in Fig. 3.1. 
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Figure 3.1: Cone geometry and coordinate system. 

Brownian motion and the thermophoresis effects of nanoparticle are considered which 

are modelled due to the famous and widely acceptable Buongiorno nanofluid model. 

According to the Buongiorno mathematical model [31] the mass, momentum, 

concentration and energy conservation laws after the consideration of above 

assumptions, respectively read as: 

 𝜕(𝑟̅𝑢̅)

𝜕𝑥̅
+
𝜕(𝑟̅𝑣̅)

𝜕𝑦̅
= 0, (3.1) 

 
𝑢̅
𝜕𝑢̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦̅
= 𝜈 

𝜕2𝑢̅

𝜕𝑦̅2
+ 𝒈𝛽(𝑇 − 𝑇∞), (3.2) 

 
𝑢̅
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇

𝜕𝑦̅
= 𝛼∗𝑓

𝜕2𝑇

𝜕𝑦̅2
+ 𝜏∗ (

𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑦̅
)
2

+𝐷𝐵
𝜕𝑇

𝜕𝑦̅

𝜕𝐶

𝜕𝑦̅
), (3.3) 

 
𝑢̅
𝜕𝐶

𝜕𝑥̅
+ 𝑣̅

𝜕𝐶

𝜕𝑦̅
=
𝐷𝑇
𝑇∞

𝜕2𝑇

𝜕𝑦̅2
+ 𝐷𝐵

𝜕2𝑇

𝜕𝑦̅2
 . (3.4) 

The local radius 𝑟̅ of the cone body is defined by the relation 𝑟̅(𝑥̅) = 𝑥̅𝑠𝑖𝑛𝛾, as shown in 

Fig. 3.1. The appropriate boundary conditions are written as  

 𝑦̅ = 0:  𝑢̅ = 0, 𝑣̅ = 0, 𝐶 = 𝐶𝑤, 𝑇 = 𝑇𝑤,  

𝑦̅ → ∞:  𝑢̅ → 0,    𝐶 → 𝐶∞, 𝑇 → 𝑇∞  . 
(3.5) 

In accordance with the cone geometry which involves circular symmetry we relate the 

stream function with the velocity components as  𝑟̅𝑣̅ = −𝜕𝜓/𝜕𝑥̅ , 𝑟̅𝑢̅ = 𝜕𝜓/𝜕𝑦̅, which 
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satisfy the continuity equation identically. In order to normalize the system, we utilize the 

suitable set of variables (see [62]), given by 

 
𝜉 = 𝑥 =

𝑥̅

𝑙
 , 𝑟 =

𝑟̅

𝑙
 =  𝜉 𝑠𝑖𝑛𝛾, 𝜂 = 𝜉−

1
4
𝑦̅

𝑙
𝐺𝑟

1
4 , 𝑣 =

𝜌𝑓𝑙

𝜇𝑓
𝐺𝑟−

1
4(𝑣̅), 

 𝑢 =
𝜌𝑓𝑙

𝜇𝑓
𝐺𝑟−

1
2 𝑢 ̅, 𝑃𝑟 =

𝜈𝑓

𝛼∗𝑓
 ,   𝜑(𝜂) =

𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

 ,   

     𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

 , 𝜓(𝜂) = 𝜉
3
4𝑓(𝜂), 

(3.6) 

which transforms the system (3.2) – (3.5) to the form 

 
𝑓′′′ +

7

4
𝑓𝑓′′ −

1

2
𝑓′
2
 + 𝜃 = 0, (3.7) 

 1

𝑃𝑟
𝜃′′ +

7

4
𝑓𝜃′ + 𝑁𝑏𝜃′𝜑′ + 𝑁𝑡𝜑′

2
= 0, (3.8) 

 1

𝐿𝑒
(𝜑′′ +

𝑁𝑡

𝑁𝑏
 𝜃′′) +

7

4
𝑓𝜑′+= 0. (3.9) 

 𝑓(0) = 0,  𝑓′(0) = 0,   𝜑(0) = 1, 𝜃(0) = 1, 

𝑓′(∞) → 0, 𝜑(∞) → 0, 𝜃(∞) → 0  . 
(3.10) 

Physical quantities are the wall shear stress, the surface heat flux and the surface mass flux 

which are used in the calculation of local skin friction coefficient, local Nusselt number 

and local Sherwood number as defined in equations (1.22), (1.25) & (1.28) respectively. 

Incorporating the non-dimensional transformations (3.6) the expressions for the coefficient 

of skin friction, the Nusselt number and the Sherwood number in dimensionless form, 

respectively, given by 

 
𝐶𝑓 = 𝐶𝑓𝑥(𝐺𝑟/𝑥)

1
4 = 𝑓′′(0), 𝑁𝑢 = −𝑁𝑢𝑥(𝐺𝑟𝑥

3)−
1
4 = −𝜃′(0),   

𝑆ℎ = −𝑆ℎ𝑥(𝐺𝑟𝑥
3)−

1
4 = −𝜑′(0), 

(3.11) 

where 𝐺𝑟 denotes the Grashof number. 

 

3.2 Numerical scheme 

The self-similar equations of natural convection flow along the vertical circular cone has 

been solved numerically by employing the Keller-box method which has already been 

explained in the previous chapter. The present results of skin friction coefficient 
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𝐶𝑓𝑥(𝐺𝑟/𝑥)
1

4 and heat transfer rate 𝑁𝑢𝑥(𝐺𝑟𝑥
3)−1/4 have been compared with the available 

results of Hearing [60], Roy [61], Yih [64], Pop and Na [160-161] and Singh et al. [187] 

in Table 3.1. An excellent agreement is achieved, which authenticates our solution and 

allows for the further analysis. 

Table 3.1: Comparison of numerical values of 𝑓′′(0, 0) and −𝜃′(0, 0) for  𝑁𝑡 = 𝑁𝑏 = 0. 

𝑃𝑟 𝑓′′(0, 0) −𝜃′(0, 0) 

 present 

P
o

p
 a

n
d
 N

a 
[1

6
0

-1
6
1

] 

S
in

g
h
 e

t 
al

. 
[1

8
7

] 
Hering 

[60] 

Roy 

[61] 

Yih 

[64] 

Present Pop and 

Na [160-

161] 

S
in

g
h
 e

t 
al

.[
1

8
7

] 

Yih 

[64] 

Hering 

[60] 

Roy 

[61] 

0.0001 1.452616 −
 

−
 − − 1.6006 0.033845 − −
 0.0079 − − 

0.001 1.440436 −
 

−
 1.5166 − 1.5135 0.038402 − −
 0.0246 0.0247 − 

0.01 1.348483 −
 

−
 1.3550 − 1.3551 0.075460 0.07493 −
 0.0749 0.0748 − 

0.1 1.095916 −
 

−
 1.0960 − 1.0960 0.211345 − −
 0.2116 0.2113 − 

0.7 0.819591 

0
.8
1
9
5
9

 

0
.8
1
9
5
9

 

− − − 0.451095 0.45101 

0
.4
5
1
0
9

 

− − − 

1 0.769428 −
 

−
 0.7694 0.8600 0.7699 0.510399 0.51039 −
 0.5109 0.5104 0.5275 

10 0.487697 −
 

−
 − 0.4899 0.4877 1.033989 1.03397 −
 1.0339 − 1.0354 

100 0.289635 −
 

−
 − 0.2897 0.2896 1.922854 1.92197 −
 1.9226 − 1.9229 

1000 0.166145 

−
 

−
 − 0.1661 0.1661 3.470171 3.470882 

−
 3.469

6 

− 3.4700 

10000 0.094042 

−
 

−
 − 0.0940 0.0940

0 

6.2100679 6.204813 

−
 6.1984 − 6.1998 

 

3.3 Results and discussion 

The graphical presentation of the dimensionless temperature 𝜃(𝜂), and nanoparticle 

concentration 𝜑(𝜂) in addition to the local Sherwood number 𝑆ℎ = −𝜑′(0) and local 

Nusselt number 𝑁𝑢 = −𝜃′(0) has been made in this section. The influence of involved 

parameters on the graphs of above named quantities have been discussed in detail. Some 

numerical values of 𝑆ℎ and 𝑁𝑢 against various values of parameters 𝑁𝑏, 𝐿𝑒, 𝑁𝑡 and 𝑃𝑟 

have been displayed in Tables 3.2 and 3.3. 
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Figures 3.2 and 3.3 depict the influence of 𝑁𝑏 and  𝑁𝑡 on 𝜃(𝜂) and 𝜑(𝜂) distributions. 

These figures show that an increase in the values of the parameters 𝑁𝑏 and 𝑁𝑡 enhances 

the 𝜃(𝜂) profile whereas, 𝑁𝑡 causes to increase and 𝑁𝑏 results in a decrease in the 𝜑(𝜂) 

distribution. Figures 3.4 and 3.5 illustrate the impact of 𝑃𝑟 and 𝐿𝑒 on temperature and 

concentration profiles. Figure 3.4 shows that the temperature reduces while concentration 

enhances by strengthening the 𝑃𝑟. Figure 3.5 depicts that both the temperature and the 

concentration boundary layers reduces due to the increase in 𝐿𝑒 number values where the 

decrease in concentration profile is more prominent as compared to temperature profile. 

𝑁𝑢 and 𝑆ℎ are plotted against 𝑁𝑏 by varying 𝑁𝑡, 𝑃𝑟 and 𝐿𝑒 in Figs. 3.6 and 3.7. Figure 

3.6 shows that 𝑁𝑢 decreases with the increase of 𝑁𝑡, 𝑃𝑟 and 𝐿𝑒. Figure 3.7 reveals that 𝑆ℎ 

rises with the increase of 𝑁𝑡, 𝑃𝑟 and 𝐿𝑒 and this increase becomes linear with the increase 

of 𝑁𝑏 parameter whereas, this increase is more prominent in the case of 𝑁𝑡 and 𝐿𝑒. This is 

due to the reason that an increase in 𝐿𝑒 is equivalent to a decrease in Brownian diffusion, 

due to which 𝜑(𝜂) profile reduces and 𝜑′(0) increases. Incrementing the 𝑃𝑟 values results 

in the reduction of thermal diffusivity, consequently 𝜑(𝜂) distribution reduces and 𝜑′(0) 

enhances. The coefficient of skin friction 𝐶𝑓 is plotted against 𝑁𝑏 for variation of 𝑁𝑡, 𝑃𝑟 

and 𝐿𝑒 in Fig. 3.8. Figure 3.8 depicts that 𝐶𝑓 increases with the increase of 𝑁𝑡 and 𝑃𝑟 but  

reduces as  𝐿𝑒 increases. 

Tables 3.2 and 3.3 are constructed for the results of 𝑁𝑢 and 𝑆ℎ for different values of 𝑁𝑡, 

𝑁𝑏, 𝑃𝑟 and 𝐿𝑒. Table 2.2 reveals that 𝑁𝑢 reduces with the increase of  𝑁𝑡 and 𝑁𝑏 where 

on the other hand 𝑆ℎ rises with the increase of 𝑁𝑡 and 𝑁𝑏. It is further observed from Table 

3.2 that 𝑆ℎ decreases for higher values of 𝑁𝑡 and 𝑁𝑏. Table 3.3 provides numerical results 

for the impact of 𝑃𝑟 and 𝐿𝑒 on heat transfer rate 𝑁𝑢 and mass transfer rate 𝑆ℎ. It is noted 

that 𝑁𝑢 is decreased and 𝑆ℎ is increased due to an increase in 𝑃𝑟 and 𝐿𝑒 values. 
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Table 3.2: 𝑁𝑢 and 𝑆ℎ  data for different 𝑁𝑡 and 𝑁𝑏 when 𝐿𝑒 = 10, 𝑃𝑟 = 7.0. 

𝑁𝑡

/𝑁𝑏 

0.1 0.2 0.3 0.4 0.5 

 𝑆ℎ 𝑁𝑢  𝑆ℎ 𝑁𝑢 𝑆ℎ 𝑁𝑢  𝑆ℎ 𝑁𝑢 𝑆ℎ 𝑁𝑢  

0.1 1.1670 0.50734 1.3499 0.40194 1.5996 0.32264 1.8701 0.26289 2.1357 0.21761 

0.2 1.2632 0.33067 1.4005 0.25969 1.5492 0.20718 1.6955 0.16808 1.8322 0.13876 

0.3 1.2950 0.20722 1.4048 0.16176 1.5128 0.12852 1.6134 0.10396 1.7061 0.08559 

0.4 1.3104 0.12550 1.4003 0.09597 1.4846 0.07733 1.5615 0.06243 1.6307 0.05133 

0.5 1.3196 0.07357 1.3945 0.05730 1.4630 0.04533 1.5247 0.036558 1.5801 0.03003 

 

 

 

Figure 3.2: Influence of 𝑁𝑏 and 𝑁𝑡 on temperature distribution. 
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Figure 3.3: Concentration distribution at various 𝑁𝑡 and 𝑁𝑏 values. 

 

 

Figure 3.4: Influence of 𝑃𝑟 on temperature and concentration profiles. 
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Figure 3.5: Variation of temperature and concentration profiles due to 𝐿𝑒 . 

 

 

Figure 3.6: Plot of Nusselt number against 𝑁𝑏  for different 𝑁𝑡, 𝑃𝑟 and 𝐿𝑒. 
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Figure 3.7: Sherwood number plotted against 𝑁𝑏 for different 𝑁𝑡, 𝑃𝑟 and 𝐿𝑒. 

 

 

Figure 3.8: Skin friction coefficient plotted against 𝑁𝑏 for different 𝑁𝑡, 𝑃𝑟 and 𝐿𝑒. 
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Table 3.3: 𝑁𝑢 and 𝑆ℎ  data for different 𝑃𝑟 𝑎𝑛𝑑 𝐿𝑒 when 𝑁𝑡 = 𝑁𝑏 = 0.1. 

𝑃𝑟/𝐿𝑒 7.0 10.0 15.0 

 𝑁𝑢  𝑆ℎ 𝑁𝑢 𝑆ℎ 𝑁𝑢  𝑆ℎ 

10 0.50734 1.1670 0.45482 1.2020 0.36552 1.2712 

20 0.46481 1.6088 0.39824 1.6747 0.29638 1.7318 

30 0.44529 1.8931 0.37278 1.9401 0.26661 1.0171 

 

3.4 Conclusion 

In this chapter, natural convection flow along a vertical circular cone is investigated 

theoretically considering the Brownian motion and thermophoresis effects of 

nanoparticles. Implicit finite difference technique is used to solve the transformed ordinary 

differential equations together with the assumed boundary conditions. Computational 

outcomes are displayed for important quantities of physical nature, such as, Sherwood and 

Nusselt numbers. An increase in the values of Brownian motion and thermophoresis 

parameters result in the increase of local Sherwood number, but the decrease is observed 

for the Nusselt number. Further reduction in heat transfer rate is noted by increasing the 

values of Prandtl and Lewis numbers whereas, enhancement in the Sherwood number is 

observed by incrementing the Prandtl and Lewis numbers. 
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Chapter 4 

Heat transfer analysis of non-similar MHD 

nanofluid flow along moving wavy surface  

The study of heat transfer analysis in hydromagnetic boundary layer flow near the wavy 

rough plate is carried out in this chapter. Due to the presence of metallic nanoparticle in 

the fluid and the enhanced surface area of the plate, as a consequence of surface texture, 

an increase in heat transfer rate is expected. However, the calculation of this enhancement 

is not any straightforward because the convection phenomena becomes more complicated 

due to the motion of nanoparticle in the base fluid and also due to the waviness of the plate 

surface. The contribution of nanoparticle towards convective heat transfer is manifold 

which requires a suitable model in order to capture the correct physics. Famous Tiwari and 

Das model has been utilized in the current study. The wavy nature of the boundary surface 

makes the flow non-similar in nature. Such a non-similar flow can also be handled by the 

famous Keller-box scheme. For the self-similar flow the procedure has already been 

explained in Ch. 2 which requires certain modifications (for non-similar flows) that have 

been explained in the current chapter. Percent increase in the rate of heat transfer is 

calculated for the nanoparticle of different metals, such as  𝑀𝑊𝐶𝑁𝑇, 𝑆𝑊𝐶𝑁𝑇,

𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  and 𝐴𝑔. Appreciable increase in the rate of heat transfer is observed which 

is  24% at the most for 𝐴𝑙2𝑂3 nanoparticle. The effects of applied magnetic field on the 

velocity profile, skin friction coefficient and Nusselt number have also been presented 

through graphs. Throughout this analysis the concentration of the nanoparticle has been 

limited up to 10%. 

 

4.1 Problem formulation 

Consider a non-flat wavy sheet extended in 𝑥̅ − and 𝑧̅ −directions whose surface is 

described by the function defined in Eq. (1.18). The wavy surface starts from the line 𝑥 =
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0 in the 𝑥𝑧 −plane and is assumed to be surrounded by the ambient nanofluid. The 

schematic diagram of the coordinate system and wavy plate is shown in Fig. 4.1. 

 

 

Figure 4.1: Physical model and coordinate system. 

 

Because of the wavy plate surface and the location of 𝑥̅ −axis it is reasonable to investigate 

the convection phenomena in the domain  𝑦̅ ≥ 𝑆̅(𝑥̅). Furthermore, the plate surface follows 

the same texture in 𝑧̅ −direction. Therefore, the flow can be taken independent of 𝑧̅ −axis 

as does for the flat plate in two-dimensional flow. Therefore the assumed flow is two-

dimensional in nature and due to wavy surface of the plate the velocity varies continuously 

with the variable ‘𝑥̅’ which makes the flow non-similar. In this way the domain of 𝑥̅ (𝑥̅ ≥

0) is of fundamental importance. The flow is assumed to be caused due to the uniform 

motion of the wavy plate in positive 𝑥̅ −direction. Along the 𝑦̅ −direction a uniform 

magnetic field of strength 𝐵0 is applied and further it is assumed that the magnetic 

Reynolds number to be very small so that the induced magnetic field can be ignored. 

The study of convective transport in nanofluid requires a suitable model that can 

successfully capture the contribution of nanoparticle in flow and heat transfer phenomena. 

The aforementioned Tiwari and Das model [32] considers the improved material properties 

of the nanofluid. Practically, the nanoparticles contribute during the convective phenomena 
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in two ways: first by changing the material properties of the base fluid and secondly 

through their Brownian motion within the base fluid. 

 

Since (as mentioned above) the ambient fluid is assumed to be nanofluid described by the 

Tiwari and Das model. According to this model the mass, momentum and energy 

conservation laws in vector form read as 

 

 𝛻. 𝑽 = 0, (4.1) 

 
(𝑽. 𝛻 )𝑽 = −(1/𝜌𝑛𝑓 )𝛻𝑝 + 𝜈𝑛𝑓𝛻

  2𝑽 −
𝜎𝑛𝑓
∗ 𝐵0

2

𝜌𝑛𝑓
𝑽, (4.2) 

 𝑽. 𝛻 𝑇 = 𝛼∗𝑛𝑓𝛻
2𝑇. (4.3) 

For two-dimensional flow the above mass, momentum and energy conservation laws in 

component form are written as 

 𝜕𝑢̅

𝜕𝑥̅
+
𝜕𝑣̅

𝜕𝑦̅
= 0, (4.4) 

 
𝑢̅
𝜕𝑢̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑥̅
+ 𝜈𝑛𝑓𝛻

2𝑢̅ −
𝜎𝑛𝑓
∗ 𝐵0

2

𝜌𝑛𝑓
𝑢̅, (4.5) 

 
𝑢̅
𝜕𝑣̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑦̅
+ 𝜈𝑛𝑓𝛻

2𝑣̅, (4.6) 

 
𝑢̅
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇

𝜕𝑦̅
= 𝛼𝑛𝑓

∗ 𝛻2𝑇, (4.7) 

where 𝜌𝑛𝑓 denotes the density, 𝛼𝑛𝑓
∗  the thermal diffusivity, 𝜎𝑛𝑓

∗  the effective electric 

conductivity of the nanofluid [163] and 𝐵0 the strength of uniform magnetic field. The 

subscripts “𝑓”, “𝑛𝑓” and “𝑝” refer to pure fluid, nanofluid and nanoparticle, respectively. 

The relations for 𝜇𝑛𝑓, 𝜌𝑛𝑓, 𝜎𝑛𝑓
∗ , 𝛼𝑛𝑓

∗  and (𝜌𝑐𝑝)𝑛𝑓 are described in Sec. 1.5.  

The wavy plate is assumed to be moving with uniform velocity in 𝑥̅ −direction. Keeping 

in view the flow schematic and the associated coordinate system, along with the assumed 

flow conditions, the resultant velocities along the wavy surface and along the normal to the 

wavy surface are 𝑢̅𝑡𝑦̅̅ + 𝑣̅𝑡𝑥̅̅ and 𝑢̅𝑡𝑦̅̅ − 𝑣̅𝑡𝑥̅̅ , respectively. The appropriate boundary 

conditions for the velocity components and temperature function are described as (see for 

instance [91]) 
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 𝑦̅ = 𝑆̅(𝑥̅):  𝑢̅𝑡𝑦̅̅ − 𝑣̅𝑡𝑥̅̅ = 0, 𝑢̅𝑡𝑦̅̅ + 𝑣̅𝑡𝑥̅̅ = 𝑈, 𝑇 = 𝑇𝑤, for all   𝑥̅ > 0, 

𝑦̅ → ∞:  𝑢̅ = 𝑣̅ = 0, 𝑝̅ = 𝑝∞, 𝑇 = 𝑇∞,    for all   𝑥̅ > 0, 
(4.8a) 

where 𝑡̂ = (𝑡̂𝑥 , 𝑡̂𝑦  ) = (
1

𝜔
 ,
𝑆̅𝑥

𝜔
) is unit vector tangent to the wavy surface, for further details 

the reader is referred to follow [91]. Since the boundary layer starts to develop at 𝑥̅ > 0, 

therefore at the leading edge 𝑥̅ = 0, the ambient flow conditions are assumed to be valid 

which are given as 

 𝑥̅ = 0: 𝑝̅ = 𝑝∞, 𝑇 = 𝑇∞ , for all  𝑦̅ ≠ 0 . (4.8b) 

In this case the characteristic length is the wave length ‘𝑙’ and the reference velocity is the 

plate velocity 𝑈. All the lengths are non-dimensionalized by ‘𝑙’ and all the velocities are 

non-dimensionalized by the reference velocity  𝑈. Temperature difference 𝑇𝑤 − 𝑇∞ is used 

to non-dimensionalize the temperature function. Let us introduce the following 

dimensionless variables: 

 
𝑥 =

𝑥̅

𝑙
 , 𝑢 =

𝑢̅

𝑈
 , 𝑆 =

𝑆̅(𝑥̅)

𝑙
, 𝑦 =

√𝑅𝑒(𝑦̅ − 𝑆̅(𝑥̅))

𝑙
, 𝑣 =

√𝑅𝑒(𝑣̅ − 𝑆𝜉𝑢̅)

𝑈
, 

 𝜃(𝜉 , 𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

 , 𝑝 =
𝑝̅

𝜌𝑓𝑈2
 , 

(4.9) 

due to which the equations (4.5) – (4.7) after certain manipulation, in dimensionless form 

read as 

 

 
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+
𝜔𝜉

𝜔
𝑢2 =

𝜔2

𝑑1

𝜕2𝑢

𝜕𝑦2
−
𝑀𝑑4
𝜔2𝑑2

𝑢, (4.10) 

 
𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=
𝑑𝜔2

𝑑3𝑃𝑟

𝜕2𝜃

𝜕𝑦2
 . (4.11) 

In the problem under consideration, the inviscid flow field is at rest. The surface 

undulations are assumed to be small such that 𝛼 ≪ 𝛿 where 𝛿 denotes the boundary layer 

thickness. This leads to the assumption that variations in pressure along 𝑥 −direction may 

be ignored which leads to the assumption that 𝜕𝑝/𝜕𝑥 = 0. On this basis the elimination of 

𝜕𝑝/𝜕𝑦  between (4.5) and (4.6) results in Eq. (4.10). To get the system (4.10) – (4.11) in a 

further convenient form, we introduce the following transformations  
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 𝜉 = 𝑥,   𝜓(𝜉 , 𝜂) = √𝜉𝑓(𝜉 , 𝜂) , 𝜂 =
𝑦

𝜔√𝜉
 ,   𝜃 = 𝜃(𝜉 , 𝜂) , (4.12) 

where continuity equation is identically satisfied by 𝜓 the stream-function. In this way the 

governing equations under the boundary layer assumptions read as 

 1

𝑑1
𝑓′′′ +

1

2
 𝑓𝑓′′ − 2

𝜔𝜉

𝜔
𝑓′
2
−
𝑀𝑑4𝜉

𝑑2
𝑓′ = 𝜉 [𝑓′

𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
], (4.13) 

 𝑑

𝑑3𝑃𝑟
𝜃′′ +

1

2
 𝑓𝜃′ = 𝜉 [𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
], (4.14) 

in which the variables 𝜂 and 𝑓 are being stretched by √𝜉 in order to facilitate the numerical 

computations. Here 𝑅𝑒 = 𝑈𝑙/𝜈𝑓 denotes the Reynolds number, 𝑀 = 𝜎𝑓𝐵0
2/𝜌𝑓𝑈 is the 

magnetic parameter, and 𝑃𝑟 is the Prandtl number. The subscript 𝜉 denotes derivative w. 

r. t 𝜉. The parameter 𝜔 = √1 + 𝑆𝜉
2 and 𝜔𝜉 = 𝑑𝜔/𝑑𝜉 denotes the wavy contribution in the 

governing equations. The material parameters 𝑑 , 𝑑1, 𝑑2 , 𝑑3, and 𝑑4 are defined as (see for 

instance [170-173]) 

 𝑑 =
κ𝑛𝑓

κ𝑓
 , 𝑑1 = [1 − 𝜙 + 𝜙 (

𝜌𝑝
𝜌𝑓⁄ )] (1 − 𝜙)2.5, 

  𝑑2 = [1 − 𝜙 + 𝜙 (
𝜌𝑝

𝜌𝑓⁄ )] , 𝑑3 = [1 − 𝜙 + 𝜙 ((𝜌𝑐𝑝)𝑝/(𝜌𝑐𝑝)𝑓 )], 

𝑑4 = 1 + (
3 ((𝜎

𝑝
∗
/𝜎𝑓

∗) − 1)𝜙

((𝜎𝑝
∗/𝜎𝑓

∗) + 2) − 𝜙 ((𝜎
𝑝
∗
/𝜎𝑓

∗) − 1)
) . 

(4.15) 

In view of Eqs. (4.9) & (4.12), the boundary conditions (4.8a) (in dimensionless form) 

read as  

 𝑓(𝜉 ,0) = 0, 𝑓′(𝜉 ,0) − 𝜔 = 0, 𝜃(𝜉 ,0) − 1 = 0,   

 𝑓′(𝜉 ,∞) = 0, 𝜃(𝜉 ,∞) = 0. 
(4.16) 

The physical quantities of interest such as the local skin friction coefficient and local 

Nusselt number are defined in Eqs. (1.20) and (1.23). After using Eqs. (4.9) and (4.12) in 

Eqs. (1.21) & (1.23), the skin friction coefficient and local Nusselt number come out of the 

form 



69 
 

 

𝐶𝑓 = 𝐶𝑓𝑥𝑅𝑒
1
2 =

𝑥−
3
2

𝜔
3
2(1 − 𝜙)2.5

 𝑓′′(𝜉 ,0), 

   𝑁𝑢 = 𝑁𝑢𝑥𝑅𝑒
−
1
2 = −

𝑥
1
2

𝜔
1
2

𝑑𝜃′(𝜉 ,0), 

(4.17) 

respectively. Due to non-similar nature of the solution the mean values of these quantities 

are therefore preferred which are defined as 

 

 

𝐶𝑓𝑎𝑣𝑔
=
1

𝕊
∫

𝑥−
3
2𝜔−

1
2

(1 − 𝜙)2.5
 𝑓′′(𝜉 ,0)𝑑𝜉,

𝜉

0

 

 𝑁𝑢𝑎𝑣𝑔 = −
1

𝕊
∫ 𝑑𝑥

1
2𝜔

1
2𝜃′(𝜉 ,0)𝑑𝜉,

𝜉

0

 

(4.18) 

where 𝕊 = ∫ 𝜔
𝜉

0
𝑑𝜉 is the surface area of the wavy sheet over a unit dimension measured 

along the 𝑧 −coordinate. The average skin friction 𝐶𝑓𝑎𝑣𝑔
 and average Nusselt number 

𝑁𝑢𝑎𝑣𝑔 in Eq. (4.18) have been evaluated numerically. 

 

4.2 Solution methodology 

The governing non-similar equations (4.13) and (4.14) under the constraints (4.16) are 

solved by a second order finite difference scheme [178-185]. According to this procedure 

the partial differential equations (4.13) and (4.14) are first reduced to a system of first order 

differential equations as 

 𝑓′ = 𝕦,𝕦′ = 𝕧, 𝜃′ = 𝕢.     
(4.19) 

In this way differential equations (4.13) and 4.14) are rewritten as 

 1

𝑑1
𝕧′ +

1

2
 𝑓𝕧 − 2

𝜔𝜉

𝜔
𝕦2 −

𝑀𝑑4𝜉

𝑑2
𝕦 = 𝜉 [𝕦

𝜕𝕦

𝜕𝜉
− 𝕦

𝜕𝑓

𝜕𝜉
], (4.20) 

 

 𝑑

𝑑3𝑃𝑟
𝕢′ +

1

2
 𝑓𝕢 = 𝜉 [𝕦

𝜕𝜃

𝜕𝜉
− 𝕢

𝜕𝑓

𝜕𝜉
], (4.21) 

under the constraints 
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 𝑓(0, 𝜉) = 0, 𝕦(0, 𝜉) − 1 = 0, 𝜃(0, 𝜉) − 1 = 0, 

𝑓(∞, 𝜉) = 0,    𝜃(∞, 𝜉) = 0. 
(4.22) 

The uniform net in the (𝜉, 𝜂) plane is described as 

  𝜂𝑙 = 𝜂𝑙−1 + ∆𝜂, 𝜂0 = 0, 𝜂𝑙 = 𝜂∞, 𝑙 = 1,2, … , 𝐿 − 1, 

 𝜉𝑛 = 𝜉𝑛−1 + ∆𝜉, 𝜉0 = 0, 𝑛 = 1,2, …, 
(4.23) 

where 𝑙 and 𝑛 represents the position of grid points along 𝜂 and 𝜉-directions. The step size 

along 𝜉 is ∆𝜉 = 𝑘 and along 𝜂 is, ∆𝜂 = ℎ.The unknown functions 𝑓, 𝕦, 𝕧, 𝜃, and 𝕢 are 

replaced by the mean values and their derivatives with central differences given by 

𝜕

𝜕𝜉
(𝑓𝑙

𝑛−1/2
) =

(𝑓𝑙
𝑛 − 𝑓𝑙

𝑛−1)

𝑘
,   
𝜕

𝜕𝜉
(𝑓𝑙−1/2

𝑛 ) =
(𝑓𝑙

𝑛 − 𝑓𝑙−1
𝑛 )

ℎ
,   

and 

   𝑓𝑙−1/2
𝑛 =

(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )

2
, 𝑓𝑙

𝑛−1/2
=
(𝑓𝑙

𝑛 + 𝑓𝑙
𝑛−1)

2
. 

In view of the above relations, the non-linear PDE’s can be read as  

(
1

2ℎ𝑑1
) (𝕧𝑙

𝑛 − 𝕧𝑙−1
𝑛 ) +

1

16
(𝕧𝑙

𝑛 − 𝕧𝑙−1
𝑛 )(𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 ) − 𝜉 (

𝜔𝜉

4𝜔
) [(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 )2] 

−𝜉 (
𝑀𝑑4
4𝑑2

) [(𝕦𝑙
𝑛 + 𝕦𝑙−1

𝑛 )] − (
1

8𝑘
) 𝜉𝑛−

1
2 

{
(𝕦𝑙

𝑛 + 𝕦𝑗−1
𝑛 )

2
− (𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 )(𝕧𝑙

𝑛 + 𝕧𝑙−1
𝑛 )

+(𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)(𝕧𝑙
𝑛 + 𝕧𝑙−1

𝑛 ) − (𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )(𝕧𝑙
𝑛−1 + 𝕧𝑙−1

𝑛−1)
} = 𝑟

𝑙−
1
2

𝑛−1 , 

(4.24) 

((
𝑑

ℎ𝑑3𝑃𝑟
) +

1

4
(
𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛

2
))(

𝕢𝑙
𝑛 + 𝕢𝑙−1

𝑛

2
) 

−
𝜉𝑛−

1
2

8𝑘
[

(𝜃𝑙
𝑛 + 𝜃𝑙−1

𝑛 )(𝕦𝑙
𝑛 + 𝕦𝑙−1

𝑛 + 𝕦𝑙
𝑛−1 + 𝕦𝑙−1

𝑛−1)

−((𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 ) − (𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1))(𝕢𝑙
𝑛 + 𝕢𝑙−1

𝑛 )
] = 𝑚

𝑙−
1
2

𝑛−1 , 

(4.25) 

 

 
𝑓𝑙
𝑛 − 𝑓𝑙−1

𝑛 =
ℎ

2
(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ), (4.26) 

 
𝕦𝑙
𝑛 − 𝕦𝑙−1

𝑛 =
ℎ

2
(𝕧𝑙

𝑛 + 𝕧𝑙−1
𝑛 ), (4.27) 

 
𝜃𝑙
𝑛 − 𝜃𝑙−1

𝑛 =
ℎ

2
(𝕢𝑙

𝑛 + 𝕢𝑙−1
𝑛 ), (4.28) 

where 
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𝑟
𝑙−
1
2

𝑛−1 = −(
1

2𝑑1ℎ
) [(𝕧𝑙

𝑛−1 − 𝕧𝑙−1
𝑛−1)] − (

1

16
) [(𝑓𝑙

𝑛−1 + 𝑓𝑙−1
𝑛−1)(𝕧𝑙

𝑛−1 + 𝕧𝑙−1
𝑛−1)] 

+𝜉 (
𝜎𝜉

4𝜎
) [(𝕦𝑙

𝑛−1 + 𝕦𝑙−1
𝑛−1)2] + 𝜉 (

𝑀𝑑4
4𝑑2

) [(𝕦𝑙
𝑛−1 + 𝕦𝑙−1

𝑛−1)] + (
𝜉𝑛−

1
2

8𝑘
) 

([−(𝕦𝑙
𝑛−1 + 𝕦𝑙−1

𝑛−1)2] + [(𝕧𝑙
𝑛−1 − 𝕧𝑙−1

𝑛−1)][(𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)]), 

(4.29) 

𝑚
𝑙−
1
2

𝑛−1 = (
1

2𝑃𝑟ℎ
) [(𝕢𝑙

𝑛−1 − 𝕢𝑙−1
𝑛−1)] + (

1

16
) [(𝑓𝑙

𝑛−1 + 𝑓𝑙−1
𝑛−1)(𝕢𝑙

𝑛−1 + 𝕢𝑙−1
𝑛−1)] 

−𝜉 (
1

8𝑘
) (
[{−(𝜃𝑙

𝑛−1 + 𝜃𝑙−1
𝑛−1)}{(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ) + (𝕦𝑙

𝑛−1 + 𝕦𝑙−1
𝑛−1)}] −

[{(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 ) − (𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)}(𝕢𝑙
𝑛−1 + 𝕢𝑙−1

𝑛−1)]
). 

(4.30) 

 

The boundary conditions (4.22) written as 

 𝑓0
𝑛 = 0, 𝕦0

𝑛 = 1, 𝜃0
𝑛 = 1, 𝕦𝐿

𝑛 = 𝜃𝐿
𝑛 = 0. (4.31) 

These obtained equations (4.24) and (4.25) are non-linear algebraic equations. To solve 

these equations, we first reduced them to linear form by using Newton’s method in this 

scheme unknown function is replaced by sum of known (𝑓𝑙
(𝑖)) and unknown (𝛿𝑓𝑙

(𝑖)) 

function such as 𝑓𝑙
𝑖+1 at (𝑖 + 1)𝑡ℎ iterates can be written as  

 (𝑓𝑙
𝑛)(𝑖+1) = (𝑓𝑙

𝑛)(𝑖) + (𝛿𝑓𝑙
𝑛)(𝑖), (4.32) 

also other variable are replaced in the similar fashion. Further during the linearization 

process the 𝛿𝑓𝑙
(𝑖)2

 and higher order terms are neglected. Same for the case of other variables 

 𝛿𝕦𝑙
(𝑖), 𝛿𝕧𝑙

(𝑖), 𝛿𝜃𝑙
(𝑖), 𝛿𝕢𝑙

(𝑖), 𝛿𝜑𝑙
(𝑖)  and 𝛿𝕡𝑙

(𝑖)
, is adopted and the following system of linear 

algebraic equations is obtained: 

𝛿𝑓𝑙
𝑛 − 𝛿𝑓𝑙−1

𝑛 −
h

2
(𝛿𝕦𝑙

𝑛 + 𝛿𝕦𝑙−1
𝑛 ) = (𝑟11)𝑙, 

(𝑠11)𝑙𝛿𝑓𝑙−1
𝑛 + (𝑠12)𝑙𝛿𝑓𝑙

𝑛 + (𝑠13)𝑙𝛿𝕦𝑙−1
𝑛 + (𝑠14)𝑙𝛿𝕦𝑙

𝑛 + (𝑠15)𝑙𝛿𝕢𝑙−1
𝑛 + (𝑠16)𝑙𝛿𝕢𝑙

𝑛

= (𝑟12)𝑙, 

(𝑠21)𝑙𝛿𝜃𝑙−1
𝑛 + (𝑠22)𝑙𝛿𝜃𝑙

𝑛 + (𝑠23)𝑙𝛿𝕢𝑙−1
𝑛 + (𝑠24)𝑙𝛿𝕢𝑙

𝑛 = (𝑟13)𝑙, 

𝛿𝕦𝑙
𝑛 − 𝛿𝕦𝑙−1

𝑛 −
ℎ

2
(𝛿𝕧𝑙

𝑛 + 𝛿𝕧𝑙−1
𝑛 ) = (𝑟14)𝑙, 

𝛿𝜃𝑙
𝑛 − 𝛿𝜃𝑙−1

𝑛 −
ℎ

2
(𝛿𝕢𝑙

𝑛 + 𝛿𝕢𝑙−1
𝑛 ) = (𝑟15)𝑙, 

where the boundary conditions (4.31) written as  
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𝛿𝑓0
𝑛 = 0, 𝛿𝕦0

𝑛 = 1, 𝛿𝜃0
𝑛 = 1, 𝛿𝕦𝐿

𝑛 = 𝛿𝜃𝐿
𝑛 = 0. 

The obtained linear algebraic system under the given constraints is written in matrix 

form. The non-homogeneous part and coefficient matrix containing the coefficients of 

𝛿𝑓𝑙−1, 𝛿𝕦𝑙−1, 𝛿𝕧𝑙−1, 𝛿𝜃𝑙−1, 𝛿𝕢𝑙−1, 𝛿𝜑𝑙−1 and 𝛿𝕡𝑙−1 are written as 

 

Coefficients of momentum equation 

Coefficient of 𝛿𝑓𝑙−1
𝑛 : 

(𝑠11)𝑙 = 
1

16
(𝕧𝑙

𝑛 + 𝕧𝑙−1
𝑛 ) +

𝜉𝑛−
1
2

8k
[(𝕧𝑙

𝑛 + 𝕧𝑙−1
𝑛 ) + (𝕧𝑙

𝑛−1 + 𝕧𝑙−1
𝑛−1)], 

Coefficient of 𝛿𝑓𝑙
𝑛: 

(𝑠12)𝑙 =
1

16
(𝕧𝑙

𝑛 + 𝕧𝑙−1
𝑛 ) +

𝜉𝑛−
1
2

8k
[(𝕧𝑙

𝑛 + 𝕧𝑙−1
𝑛 ) + (𝕧𝑙

𝑛−1 + 𝕧𝑙−1
𝑛−1)], 

Coefficient of 𝛿𝕦𝑙−1
𝑛 : 

(𝑠13)𝑙 = −𝜉
𝜎𝜉

2𝜎
(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ) −

𝜉𝑛−
1
2

4k
(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ), 

Coefficient of 𝛿𝕦𝑙
𝑛: 

(𝑠14)𝑙 = −𝜉
𝜎𝜉

2𝜎
(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ) −

𝜉𝑛−
1
2

4k
(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ), 

Coefficient of 𝛿𝕧𝑙−1
𝑛 : 

(𝑠15)𝑙 = −(
1

2𝑑1ℎ
) +

(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )

8
+ 𝜉𝑛−

1
2
[(𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 ) + (𝑓𝑙

𝑛−1 + 𝑓𝑙−1
𝑛−1)]

8k
, 

Coefficient of 𝛿𝕧𝑙
𝑛: 

(𝑠16)𝑙 = (
1

2𝑑1ℎ
) +

(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )

8
+ 𝜉𝑛−

1
2
[(𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 ) + (𝑓𝑙

𝑛−1 + 𝑓𝑙−1
𝑛−1)]

8k
, 

 

Coefficients of energy equation 

Coefficient of 𝛿𝜃𝑙−1
𝑛 : 

(𝑠21)𝑙 = −𝜉𝑛−
1
2
[𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 + 𝕦𝑙

𝑛−1 + 𝕦𝑙−1
𝑛−1]

8k
, 

Coefficient of 𝛿𝜃𝑙
𝑛: 

(𝑠22)𝑙 = −𝜉𝑛−
1
2
[𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 + 𝕦𝑙

𝑛−1 + 𝕦𝑙−1
𝑛−1]

8k
, 
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Coefficient of 𝛿𝕢𝑙−1
𝑛 : 

(𝑠23)𝑙 = −(
1

2𝑃𝑟ℎ
) +

(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )

16
+ 𝜉𝑛−

1
2
[(𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 ) − (𝑓𝑙

𝑛−1 + 𝑓𝑙−1
𝑛−1)]

8k
, 

Coefficient of 𝛿𝕢𝑙
𝑛: 

(𝑠24)𝑙 = (
1

2𝑃𝑟ℎ
) +

1

16
(𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 ) + 𝜉𝑛−

1
2
[(𝑓𝑙

𝑛 + 𝑓𝑙−1
𝑛 ) − (𝑓𝑙

𝑛−1 + 𝑓𝑙−1
𝑛−1)]

8k
, 

 

The non-homogeneous terms 

(𝑟11)𝒍 = (𝑓𝑙−1
𝑛 − 𝑓𝑙

𝑛) +
h

2
 (𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ), 

(𝑟12)𝒍 = 𝑟
𝑙−
1
2

𝑛−1 = −(
1

2𝑑1ℎ
) [(𝕧𝑙

𝑛 − 𝕧𝑙−1
𝑛 ) + (𝕧𝑙

𝑛−1 − 𝕧𝑙−1
𝑛−1)] − (

1

16
) + 

[(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )(𝕧𝑙
𝑛 + 𝕧𝑙−1

𝑛 ) + (𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)(𝕧𝑙
𝑛−1 + 𝕧𝑙−1

𝑛−1)] 

+𝜉 (
𝜔𝜉

4𝜔
) [(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 )2+(𝕦𝑙

𝑛−1 + 𝕦𝑙−1
𝑛−1)2] + 

𝜉 (
𝑀𝑑4
4𝑑2

) [(𝕦𝑙
𝑛 + 𝕦𝑙−1

𝑛 ) + (𝕦𝑙
𝑛−1 + 𝕦𝑙−1

𝑛−1)] 

+𝜉 (
1

8𝑘
) (

[(𝕦𝑙
𝑛 + 𝕦𝑙−1

𝑛 )2+(𝕦𝑙
𝑛−1 + 𝕦𝑙−1

𝑛−1)2] +

[(𝕧𝑙
𝑛 − 𝕧𝑙−1

𝑛 ) + (𝕧𝑙
𝑛−1 − 𝕧𝑙−1

𝑛−1)][(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 ) − (𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)]
), 

(𝑟13)𝒍 = −(
1

2𝑃𝑟ℎ
) [{(𝕢𝑙

𝑛 − 𝕢𝑙−1
𝑛 ) + (𝕢𝑙

𝑛−1 − 𝕢𝑙−1
𝑛−1)] − (

1

16
) + 

[(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 )(𝕢𝑙
𝑛 + 𝕢𝑙−1

𝑛 ) + (𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)(𝕢𝑙
𝑛−1 + 𝕢𝑙−1

𝑛−1)] 

+𝜉 (
1

8𝑘
) ([{(𝕦𝑙

𝑛 + 𝕦𝑙−1
𝑛 ) + (𝕦𝑙

𝑛−1 + 𝕦𝑙−1
𝑛−1)} ∗ {(𝑇𝑙

𝑛 + 𝑇𝑙−1
𝑛 ) − (𝑇𝑙

𝑛−1 + 𝑇𝑙−1
𝑛−1)}]

− [{(𝑓𝑙
𝑛 + 𝑓𝑙−1

𝑛 ) − (𝑓𝑙
𝑛−1 + 𝑓𝑙−1

𝑛−1)}{(𝕢𝑙
𝑛 + 𝕢𝑙−1

𝑛 ) + (𝕢𝑙
𝑛−1 + 𝕢𝑙−1

𝑛−1)}]). 

The whole system can simply be written in matrix form, as 

 𝐴̅𝛿̅ = 𝑟̅, (4.33) 

 

where 
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𝐴̅ =

[
 
 
 
 
 
 
 
 
𝐶0 𝐷0
𝐵1 𝐶1 𝐷1

𝐵2 𝐶2 𝐷2
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

𝐵𝐿−1 𝐶𝐿−1 𝐷𝐿−1
𝐵𝐿 𝐶𝐿 ]

 
 
 
 
 
 
 
 

, 𝛿̅ =

[
 
 
 
 
 
 
 
𝛿0
𝛿1
𝛿2
⋮
⋮
⋮

𝛿𝐿−1
𝛿𝐿 ]

 
 
 
 
 
 
 

, 𝑟̅ =

[
 
 
 
 
 
 
 
𝑟0
𝑟1
𝑟2
⋮
⋮
⋮

𝑟𝐿−1
𝑟𝐿 ]
 
 
 
 
 
 
 

 , (4.34) 

 

and 

𝐶0 =

[
 
 
 
 
1
0 1
0 0 0

−1 −ℎ 2⁄ 0

0 −1 −ℎ 2⁄ ]
 
 
 
 

,𝐷𝑗 =

[
 
 
 
 
0
0 0
0 0 0

1 −ℎ 2⁄ 0

0 1 −ℎ 2⁄ ]
 
 
 
 

;   

 𝑙 = 0,1, . . 𝐿 − 1, 

𝐵𝑙 =

[
 
 
 
 
−1 −ℎ 2⁄ 0 0 0
 (𝑠11)𝑙 (𝑠13)𝑙 (𝑠15)𝑙 0 0

0 0 0 (𝑠21)𝑙 (𝑠23)𝑙

]
 
 
 
 

;    𝑙 = 1,2, …𝐿, 

𝐶𝑗 =

[
 
 
 
 

1 −ℎ 2⁄ 0
 (𝑠12)𝑙 (𝑠14)𝑙 (𝑠16)𝑙 0 0

0 0 0 (𝑠22)𝑙 (𝑠24)𝑙
−1 −ℎ 2⁄ 0 0

−1 −ℎ 2⁄ ]
 
 
 
 

;  𝑙 = 1,2, … 𝐿 − 1, 

𝐶𝐽 =

[
 
 
 
 

1 −ℎ 2⁄ 0

 (𝑠12)𝑙 (𝑠14)𝑙 (𝑠16)𝑙 0

0 0 0 (𝑠22)𝑙 (𝑠24)𝑙
1 0 0 0

0 1 0 ]
 
 
 
 

 , 

𝑟0 =

[
 
 
 
 
0
0
0

(𝑟14)1
(𝑟15)1]

 
 
 
 

 , 𝑟𝑗 =

[
 
 
 
 
(𝑟11)𝑙
(𝑟12)𝑙
(𝑟13)𝑙
(𝑟14)𝑙+1
(𝑟15)𝑙+1]

 
 
 
 

  , 𝑟𝐽 =

[
 
 
 
 
(𝑟11)𝐿
(𝑟12)𝐿
(𝑟13)𝐿
0
0 ]

 
 
 
 

, 
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𝛿𝑗 =

[
 
 
 
 
 
𝛿𝑓𝑙

𝑛

𝛿𝕦𝑙
𝑛

𝛿𝕧𝑙
𝑛

𝛿𝜃𝑙
𝑛

𝛿𝕢𝑙
𝑛]
 
 
 
 
 

; 𝑙 = 0,1,2, … , 𝐿; 𝑛 = 0,1, … ,𝑁. 

The obtained coefficient matrix is tri-diagonal which is solved by block tri-diagonal 

algorithm, using forward and the backward sweep. The grid independence of the present 

numerical solution has also been verified by making several runs for different step sizes of 

 𝜂 and 𝜉. It is observed that the numerical solution does not change when ∆𝜂 < 0.005 and 

∆𝜉 < 0.005. Finally, the present solution has been calculated by choosing ∆𝜂 = 0.005 and 

∆𝜉 = 0.005. Table 4.1 contains a grid independent test for the present problem. 

In order to investigate the accuracy and validity of the present results, a comparison with 

the data available in literature has been made. It is clear from Table 4.2 that the numerical 

values of the skin friction coefficient 𝐶𝑓 and local Nusselt number 𝑁𝑢 for 𝑃𝑟 = 0.7 (with 

𝑀 = 𝛼 = 0.0) are in excellent agreement with the result published by Rees and Pop [90] 

and Hossain and Pop [91]. Another comparison of the present results for the values of 

𝑓′′(𝜉 ,0) with those published by Chaim [189] is given in Table 4.3. Again an excellent 

agreement is observed which authenticates the present numerical procedure. 

 

Table 4.1: Gird independence test for pure fluid (𝜙 = 0.0) when 𝛼 = 0.2,𝑀 = 0.5. 

No of grid points in 

𝜂 direction and 𝜂∞ = 15. 

No of grid points in 

 𝜉 −direction and 𝜉 = 2. 

−𝐶𝑓 𝑁𝑢 

100 10 0.60881 1.7097 

300 20 0.54728 1.7150 

600 50 0.51177 1.7193 

1000 100 0.50023 1.7205 

1500 200 0.49450 1.7212 

2000 400 0.49461 1.7215 

3000 400 0.49461 1.7215 
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Table 4.2:.Comparison of 𝐶𝑓 and 𝑁𝑢 with already published data when 𝑃𝑟 = 0.7,𝑀 =

𝛼 = 0.0. 

 Present Rees and Pop [90] Hossain and Pop [91] 

𝐶𝑓 −0.44375 −0.4438 −0.4439 

𝑁𝑢 −0.34924 −0.3492 −0.3509 

 

Table 4.3: Comparison of 𝑓′′(𝜉, 0) when 𝑃𝑟 = 0.7,𝑀 = 0.5, 𝛼 = 0.0. 

 Present Chaim [189] 

𝜉 𝑓′′(𝜉, 0) 𝑓′′(𝜉, 0) 

0.0 −0.443748 −0.343751 

0.1 −0.478389 −0.47696 

0.5 −0.605687 −0.604488 

1.0 −0.751703 −0.752938 

 

4.3 Results and discussion 

In most of the part of this section we take 𝑃𝑟 = 7.0, 𝑀 = 0.5, 𝛼 = 0.2, and  𝜙 = 0.1, 

otherwise mentioned. In graphical representations, solid lines correspond to the solution at 

𝜉 = 0.5 (crest), broken lines at 𝜉 = 1.0 (node), and the dotted lines at 𝜉 = 1.5 (trough). It 

is observed that these quantities vary periodically in the direction of 𝜉 when 𝛼 ≠ 0 (wavy 

surface) and wavy effects become more pronounced when the values of 𝛼 are increased. 

Velocity graphs are plotted in Figs. 4.2 and 4.3 against  𝜂 for different values of  𝑀 and 𝛼, 

respectively. Figure 4.2 shows that velocity decreases by increasing the magnetic field 

strength which in turns reduces the boundary layer thickness. This is a well-known effect 

of the magnetic field on the boundary layer flow. Due to the reason that the applied 

magnetic field generates the Lorentz force which acts as a retarding force due to which the 

momentum boundary layer thickness decrease. Figure 4.2 also depicts that the velocity is 

maximum at the crest and minimum at trough. Figure 4.3 highlights the impact of 

amplitude to wavelength ratio parameter 𝛼 on velocity profile at crest; node and trough 

locations on the wavy surface. Clearly, the velocity increases by increasing the values of 𝛼 

which highlights the role of surface undulation height towards enhanced convective 
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phenomena. The velocity character at different values of  𝜉 is the same as it was in previous 

Fig. 4.2. The effect of  𝛼 on temperature profile is shown in Fig. 4.4. It is seen that the 

variation in 𝛼 does not bring significant change in the temperature profile, however, the 

temperature is observed to be minimum at crest and maximum at the node. This is because 

of the slow convection in the trough region as depicted in Fig. 4.2. The effect of 

concentration parameter  𝜙 on velocity and temperature profiles is shown in Figs. 4.5 and 

4.6, respectively. Clearly, by increasing the concentration of nanoparticle the velocity 

decreases and temperature increases. This is an obvious consequence of the enhanced 

gravity of the nanofluid because of the increased density. The 𝐶𝑓 and 𝑁𝑢  are plotted in 

Figs. 4.7 and 4.8 respectively at different amplitude (𝛼) . It judged that at different 

amplitude (𝛼), 𝑁𝑢 decreases and 𝐶𝑓 increases. This fact can simply be understood from 

Figs. 4.3 and 4.4 where the velocity and temperature increases by increasing the values 

of 𝛼. It is seen that at crest position the velocity is maximum and at trough it is minimum. 

The current analysis has been carried out for five different types of nanoparticles, namely, 

alumina ( 𝐴𝑙2𝑂3), silver ( 𝐴𝑔), single wall carbon nanotube ( 𝑆𝑊𝐶𝑁𝑇), multiple wall 

carbon nanotube (𝑀𝑊𝐶𝑁𝑇) and titanium oxide (𝑇𝑖𝑂2). Table 1.2 shows the 

thermophysical properties of water and the chosen five elements 𝑀𝑊𝐶𝑁𝑇,

𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  𝐴𝑔. The Prandtl number of the base fluid (water) is taken as 7.0. 

This analysis aims to investigate the effects of different nanoparticle on 𝐶𝑓 and 𝑁𝑢 on a 

continuous moving wavy surface in a quiescent electrically conducting fluid with a 

constant transverse magnetic field. To compare the 𝐶𝑓 and 𝑁𝑢 for different nanoparticles, 

base liquid is considered to be water. It is worth mentioning that this study reduces the 

governing equations (4.8) – (4.9) to those of a viscous or regular fluid when  𝜙 = 0. The 

𝐶𝑓 and 𝑁𝑢 are plotted against the solid volume fraction 𝜙 and wavy amplitude 𝛼 for 

different type of nanoparticles (𝑀𝑊𝐶𝑁𝑇, 𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2, 𝐴𝑔) in Figs. 4.9 – 4.12. 

The effect of solid volume fraction 𝜙 and wavy amplitude 𝛼 on the 𝐶𝑓 are shown in Figs. 

4.9 and 4.10. Clearly, the 𝐶𝑓 decreases by increasing 𝜙 and increases for increasing values 

of 𝛼, in both cases the magnitude of 𝐶𝑓 is maximum for 𝐴𝑔  and minimum for 𝑀𝑊𝐶𝑁𝑇. 

The effect of solid volume fraction  𝜙 and wavy amplitude 𝛼 on the 𝑁𝑢 are shown in Figs. 

4.11 and 4.12. In both cases 𝑁𝑢 is maximum for  𝐴𝑙2𝑂3 and minimum for  𝑆𝑊𝐶𝑁𝑇 having 
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increasing behavior against the solid volume fraction  𝜙, but opposite behavior against 

wavy amplitude 𝛼. It is worth mentioning that according to Eq. (4.15) the 𝑁𝑢 is a product 

of the temperature gradient and the thermal conductivity ratio. Increasing  𝜙 leads to an 

increase in the thermal conductivity ratio which in turn increases the Nusselt number . 

Figure 4.12 depicts that the 𝑁𝑢  decrease by increasing the parameter 𝛼, reason behind this 

is the increase of temperature due to increase of amplitude (𝛼). Stream lines and isotherms 

are plotted in Figs. 4.13 and 4.14, respectively. The wavy pattern can easily be seen in the 

stream lines and the isotherm graphs. 

Numerical values of 𝐶𝑓 and 𝑁𝑢  for different values of 𝛼 and 𝜙 when 𝑃𝑟 = 7.0,𝑀 = 0.5  

for alumina ( 𝐴𝑙2𝑂3) on the wavy surface at 𝑥 = 0.5, 𝑥 = 1.0  and 𝑥 = 1.5 are presented 

in Table 4.4. It is observed that the 𝑁𝑢 decreases with the increase of 𝛼 and increases with 

the increase of 𝜙, on the other hand opposite behavior is seen in the case of 𝐶𝑓. 

Percent increase in the magnitude of the 𝐶𝑓 and 𝑁𝑢 is calculated in Table 4.5 at three 

different locations: crest, node and trough on the wavy surface. It is observed that at crest 

the 𝐶𝑓 increases by increasing the wavy amplitude at fixed concentration of nanoparticle 

whereas the 𝑁𝑢  decreases. Similarly for a fixed value of 𝛼 the 𝐶𝑓 increases by increasing 

the nanoparticle concentration, the behavior of 𝑁𝑢 is little bit reverse as it can be seen from 

Table 4.5. The similar behavior is followed by the 𝐶𝑓 and 𝑁𝑢 at the node and trough 

locations, however with different numerical values. The nature of nanoparticle has 

fundamental role in enhancing the convective heat transfer phenomena. Table 4.6 shows 

percent change in 𝐶𝑓 and 𝑁𝑢  for different nanoparticle (𝑀𝑊𝐶𝑁𝑇,

𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  𝐴𝑔) when 𝑃𝑟 = 7.0,𝑀 = 0.5, 𝛼 = 0.2, 𝜙 = 0.1 , in comparison to 

the cases of pure fluid flow past a flat plate and the pure fluid flow past a wavy plate pure 

flat and wavy plate. It is observed that maximum increase of about 47.3% in magnitude of 

𝐶𝑓 is obtained for  𝐴𝑔 with 10% concentration in the base fluid and minimum increase of 

about 27.2% in the value of 𝐶𝑓 is obtained for  𝑆𝑊𝐶𝑁𝑇 with 10% concentration when the 

present results are compared with the value 𝑓′′(0.5,0) = 0.87458 at 𝛼 = 0.2 and 𝜙 = 0.0. 

On the other hand maximum gain of 10.8% in 𝑁𝑢 is obtained for 𝐴𝑙2𝑂3 and minimum of 

8.1% for 𝐴𝑔 with 10% concentration in the base fluid when the present results are 

compared with 𝑁𝑢 = 0.90201 at 𝛼 = 0.2 and 𝜙 = 0.0. The percent increase in magnitude 
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of 𝐶𝑓 and 𝑁𝑢 is also calculated in comparison to 𝑓′′( 0) = 0.8539 and 𝑁𝑢 = 0.9531 at 

𝛼 = 0.0 and 𝜙 = 0.0. A maximum of 50.8% and 4.8% increase in 𝐶𝑓 and 𝑁𝑢 is obtained 

and a minimum of 27.6% and 2.3% increase in 𝐶𝑓 and 𝑁𝑢 is obtained, respectively. 

Through this Table it is easy to identify the role of surface roughness and of nanofluid 

towards heat transfer enhancement. This study reveals that 𝐴𝑙2𝑂3 nanoparticle have the 

capacity to produce a coolant (nanofluid) with higher rate of heat transfer. 

Numerical values of magnitude of 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 for different nanoparticle (𝑀𝑊𝐶𝑁𝑇,

𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  𝐴𝑔) when 𝑃𝑟 = 7.0,𝑀 = 0.5, 𝛼 = 0.2, 𝜙 = 0.1 are tabulated in 

Tables 4.7 and 4.8. It is observed that the 𝑁𝑢𝑎𝑣𝑔 and magnitude of 𝐶𝑓𝑎𝑣𝑔
 increases with 

the increase of number of waves 𝑛. 

Table 4.9 shows percent change in magnitude of 𝐶𝑓𝑎𝑣𝑔
 for different nanoparticle 

(𝑀𝑊𝐶𝑁𝑇, 𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  𝐴𝑔) when 𝑃𝑟 = 7.0,𝑀 = 0.5, 𝛼 = 0.2, 𝜙 = 0.1 , in 

comparison to the cases of pure fluid flow past a flat plate and the pure fluid flow past a 

wavy plate. It is observed that maximum increase of about 51.9% in magnitude of 𝐶𝑓𝑎𝑣𝑔
 

is obtained for  𝐴𝑔 with 10% concentration in the base fluid and minimum increase of 

about 17.48% in the value of 𝐶𝑓𝑎𝑣𝑔
 is obtained for  𝑀𝑊𝐶𝑁𝑇 with 10% concentration 

when the present results are compared with the value 𝐶𝑓𝑎𝑣𝑔
= 0.69938 at 𝛼 = 0.2 and 

𝜙 = 0.0 for one wave length. It is also noted that percentage in decrease in 𝐶𝑓𝑎𝑣𝑔
 remains 

almost the same by increasing number of waves. On the other hand maximum reduction of 

151.27% in 𝐶𝑓𝑎𝑣𝑔
 is obtained for 𝐴𝑔 and minimum of 85.18% for 𝑀𝑊𝐶𝑁𝑇 with 10% 

concentration in the base fluid when the present results are compared with 𝐶𝑓𝑎𝑣𝑔
= 0.4437 

at 𝛼 = 0.0 and 𝜙 = 0.0 for one wave length. Furthermore, the Tables reveal that the rise 

in magnitude of 𝐶𝑓𝑎𝑣𝑔
 increases by increasing the number of waves. Also percent change 

in 𝑁𝑢𝑎𝑣𝑔 for different nanoparticle in comparison to the cases of pure fluid flow past a flat 

plate and the pure fluid flow past a wavy plate is listed in Table 4.10. It is observed that 

maximum gain of about 10.52% in 𝑁𝑢𝑎𝑣𝑔 is obtained for 𝐴𝑙2𝑂3 and minimum of 8.9% 

for  𝑇𝑖𝑂2 with 10% concentration in the base fluid when the present results are compared 

with 𝑁𝑢𝑎𝑣𝑔 = 1.5597 at 𝛼 = 0.2 and 𝜙 = 0.0 for one wave length. The Table 4.10 also  
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Table 4.4: Values of 𝐶𝑓 and 𝑁𝑢 for different values of 𝛼  and  𝜙  when  𝑃𝑟 = 7.0,𝑀 =

0.5  for alumina (𝐴𝑙2𝑂3). 
𝜉 𝜙 𝛼  −𝐶𝑓 𝑁𝑢 

 

 

0.5 (Crest) 

 

0.1 

0.0 1.1175 1.0575 

0.1 1.1243 1.0415 

0.0  

0.2 

0.87458 0.90201 

0.05 1.0014 0.9503 

 

0.1 

1.1440 0.9914 

 

 

1.0 (Node) 

0.0 0.9856 1.4446 

0.1 0.89303 1.4385 

0.0  

0.2 

0.52946 1.2823 

0.05 0.60696 1.3505 

0.1 0.69547 1.4188 

 

 

1.5 (Trough) 

 

0.1 

0.0 0.95052 1.7091 

0.1 0.96164 1.6845 

0.0  

0.2 

0.75731 1.4777 

0.05 0.86805 1.5482 

0.1 0.99431 1.6182 

 

Table 4.5: Percent increase in magnitude of 𝐶𝑓 and 𝑁𝑢 for alumina (𝐴𝑙2𝑂3) in comparison 

to pure fluid (𝜙 = 0) and flat plate case 𝛼 = 0 when  𝑃𝑟 = 7.0,𝑀 = 0.5.  

𝜉 𝛼  𝜙 % increase in magnitude of 

𝐶𝑓 

% increase in 𝑁𝑢 

 

 

0.5 (Crest) 

0.0  

0.1 

30.9 10.6 

0.1 30.9 10.9 

 

0.2 

0.0 0.0 0.0 

0.05 14.5 5.4 

 

0.1 

30.8 10.8 

 

 

1.0 (Node) 

0.0 31.3 10.3 

0.1 31.3 10.4 

 

0.2 

0.0 0.0 0.0 

0.05 14.6 5.3 

 

0.1 

31.4 10.6 

 

 

1.5 (Trough) 

0.0 31.5 9.5 

0.1 31.4 9.5 

 

0.2 

0.0 0.0 0.0 

0.05 14.6 4.8 

0.1 31.3 91.5 
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predicts that percentage in increase in 𝑁𝑢𝑎𝑣𝑔 remains almost the same by increasing 

number of waves. On the other hand maximum increase of 24.92% in 𝑁𝑢𝑎𝑣𝑔 is obtained 

for 𝐴𝑙2𝑂3 and minimum of 20.65% for 𝐴𝑔 with 10% concentration in the base fluid when 

the present results are compared with 𝑁𝑢𝑎𝑣𝑔 = 1.3871 at 𝛼 = 0.0 and 𝜙 = 0.0 for one 

wave length.  

Furthermore, the Table reveals that enhancement in 𝑁𝑢𝑎𝑣𝑔 increases by increasing number 

of waves. Through this Table it is easy to identify the role of surface roughness and of 

nanofluid towards heat transfer enhancement. This study reveals that 𝐴𝑙2𝑂3 nanoparticle 

have the capacity to produce a coolant (nanofluid) with higher rate of heat transfer. 

 

Table 4.6: Percent change in 𝐶𝑓 and 𝑁𝑢 for different nanoparticle when  𝑀 = 0.0, 𝑃𝑟 =

7.0, 𝛼 = 0.2, 𝜙 = 0.1. 
 

 

𝜉 

 

Nano 

particle 

material 

% increase in magnitude of 𝐶𝑓 % increase in  𝑁𝑢 

Versus 

𝑓′′( 0) = 0.8539 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝑓′′(0.5,0) = 0.87458 

at 𝛼 = 0.2, 𝜙 = 0.0 

Versus 

𝑁𝑢 = 0.9531 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝑁𝑢 = 0.90201 

at 𝛼 = 0.2, 𝜙 = 0.0 

 

 

0.5 

𝐴𝑙2𝑂3 34.0 30.8 4.8 10.8 

𝐴𝑔 50.8 47.3 2.3 8.1 

 𝑇𝑖𝑂2 34.7 31.5 2.9 8.7 

𝑆𝑊𝐶𝑁𝑇 30.3 27.2 2.9 8.7 

𝑀𝑊𝐶𝑁𝑇 27.6 24.6 3.5 9.4 

 

Table 4.7: Numerical values of 𝐶𝑓𝑎𝑣𝑔
 for different nanoparticle for different waves when 

 𝑀 = 0.0, 𝑃𝑟 = 7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 . 
Nano 

particle 

material 

𝐶𝑓𝑎𝑣𝑔
 

𝑛 = 1 𝑛 = 2 𝑛 = 3 

𝐴𝑙2𝑂3 0.90902 1.7168 2.4703 

𝐶𝑢 1.0691 2.0197 2.9057 

𝐴𝑔 1.11490 2.1058 3.0302 

𝑇𝑖𝑂2 0.91877 2.7353 2.4969 

𝑆𝑊𝐶𝑁𝑇 0.85959 1.6234 2.3360 

𝑀𝑊𝐶𝑁𝑇 0.82164 1.5517 2.2328 
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Table 4.8: Numerical values of 𝑁𝑢𝑎𝑣𝑔 for different nanoparticle for different waves when 

 𝑀 = 0.0, 𝑃𝑟 = 7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 . 
Nano particle material 𝑁𝑢𝑎𝑣𝑔 

𝑛 = 1 𝑛 = 2 𝑛 = 3 

𝐴𝑙2𝑂3 1.7328 2.0562 2.2869 

𝐶𝑢 1.7092 2.0197 2.2428 

𝐴𝑔 1.6736 1.9748 2.1916 

𝑇𝑖𝑂2 1.6992 2.0166 2.2431 

𝑆𝑊𝐶𝑁𝑇 1.7072 2.0270 2.2551 

𝑀𝑊𝐶𝑁𝑇 1.7212 2.0460 2.2771 

 

Table 4.9: Percent change in magnitude of 𝐶𝑓𝑎𝑣𝑔
 for different nanoparticles when  𝑀 =

0.0, 𝑃𝑟 = 7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 . 
 

Nano 

particle 

material 

% increase in magnitude of 𝐶𝑓𝑎𝑣𝑔
 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.4437 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.69938 

at 𝛼 = 0.2, 𝜙 = 0.0 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 1.3209 

at 𝛼 = 0.2, 𝜙 = 0.0 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 1.9006 

at 𝛼 = 0.2, 𝜙 = 0.0 
 

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 1 𝑛 = 2 𝑛 = 3 

𝐴𝑙2𝑂3 104.87 225.38 456.77 29.98 29.97 29.98 

𝐶𝑢 140.95 355.10 554.87 5.28 5.28 5.28 

𝐴𝑔 151.27 374.60 582.94 59.41 59.42 59.43 

𝑇𝑖𝑂2 107.07 291.10 462.75 31.37 31.37 31.37 

𝑆𝑊𝐶𝑁𝑇 93.73 265.88 426.48 22.91 22.90 22.90 

𝑀𝑊𝐶𝑁𝑇 85.18 249.72 403.22 17.48 17.47 17.47 

 

Table 4.10: Percent change in magnitude of 𝑁𝑢𝑎𝑣𝑔for different nanoparticles when  𝑀 =

0.0, 𝑃𝑟 = 7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 . 
 

Nano 

particle 

material 

% increase in 𝑁𝑢𝑎𝑣𝑔 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 1.3871 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 1.5597 

at 𝛼 = 0.2, 𝜙 =

0.0 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 1.8573 

at 𝛼 = 0.2, 𝜙 =

0.0 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 2.0686 

at 𝛼 = 0.2, 𝜙 =

0.0 
 

𝑛

= 1 

𝑛 = 2 𝑛 = 3 𝑛 = 1 𝑛 = 2 𝑛 = 3 

𝐴𝑙2𝑂3 24.92 48.24 64.87 10.52 10.70 10.60 

𝐶𝑢 23.22 45.60 614.69 9.58 8.74 8.42 

𝐴𝑔 20.65 42.37 58.00 7.30 6.3 5.9 

𝑇𝑖𝑂2 22.50 45.38 61.71 8.90 8.58 8.43 

𝑆𝑊𝐶𝑁𝑇 23.08 46.13 62.58 9.5 9.1 9.1 

𝑀𝑊𝐶𝑁𝑇 24.09 47.50 64.16 10.35 10.16 10.10 
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Figure 4.2: Effect of magnetic field on velocity profile. 

 

 

Figure 4.3: Effect of amplitude to wavelength ratio α on velocity profile. 
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Figure 4.4: Temperature profile for different values of α. 

 

 

Figure 4.5: The effect of volume fraction parameter 𝜙 on velocity profile. 
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Figure 4.6: The effect of  𝜙 on temperature profile. 

 

 

Figure 4.7: Skin friction plotted against ξ for different α. 
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Figure 4.8: Nusselt number graph for different α. 

 

 

Figure 4.9: Skin-friction plotted against 𝜙 for different nanoparticle. 
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Figure 4.10: Skin friction behavior for different nanoparticle against  𝛼. 

 

 

Figure 4.11: Nusselt number behavior against 𝜙 for different nanoparticle. 
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Figure 4.12: Nusselt number plotted against 𝛼 for different nanoparticle. 

 

 

Figure 4.13: Stream function plotted at α = 0.2. 
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Figure 4.14: Isotherms plotted at α = 0.2. 

 

4.4 Conclusion 

In this chapter, heat transfer enhancement due to nanofluid and surface texture of the 

moving rough plate has been computed. Governing non-similar equations have been solved 

numerically. The accuracy and validity of numerical procedure is ensured with published 

results. It is observed that the velocity and temperature grow within the boundary layer by 

increasing the parameter 𝛼. Consequently, the skin friction increases and Nusselt number 

decreases by increasing the values of  𝛼. It is noted that the skin friction increases by 

increasing the solid volume fraction of nanoparticle. Similar trend of Nusselt number is 

noted for increasing values of 𝜙, this observation highlights the fact that by increasing the 

nanoparticle concentration the momentum and thermal transport is also enhanced and 

provides the reason for recommending the nanofluid as a preferred coolant. Nanoparticle 

of five different metals are used and percent increase in the rate of heat transfer is 

calculated. Maximum gain of about 10.8% is obtained for  𝐴𝑙2𝑂3 nanoparticle with 10% 

concentration and minimum of 8.1% increase is noted for  𝐴𝑔 with 10% concentration in 

the nanofluid. For average rate of heat transfer maximum gain of about 10.52% is obtained 

for  𝐴𝑙2𝑂3 nanoparticle with 10% concentration and minimum of 7.3% increase is noted 
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for  𝐴𝑔 with 10% concentration in the nanofluid for one wavelength. Our study reveals 

that the Alumina (𝐴𝑙2𝑂3) forms good coolant in comparison to the other four nanoparticles. 

  



91 
 

Chapter 5 

Heat transfer analysis in non-similar natural 

convection flow of nanofluid along a vertical wavy 

surface  

Heat transfer characteristic in natural convection flow of water-based nanofluid near a 

vertical rough wall is presented in this chapter. The analysis considers five different 

nanoparticles, namely, silver (𝐴𝑔), copper (𝐶𝑢), alumina ( 𝐴𝑙2𝑂3), magnetite (𝐹𝑒3𝑂4) and 

silica (𝑆𝑖𝑂2). The concentration has been limited to the range 0 − 10% for all types of 

nanoparticles. The governing equations are modeled using the Boussinesq approximation 

where by the Tiwari and Das model is utilized to represent the nanofluid. The analysis 

examines the effects of nanoparticle volume fraction, type of nanoparticle and the wavy 

surface geometry parameter on the skin friction and Nusselt number. It is observed that for 

a given nanofluid the skin friction and Nusselt number can be maximized via an appropriate 

tuning of the wavy surface geometry parameter along with the selection of suitable 

nanoparticle. Particular to this study copper (𝐶𝑢) is observed to be more productive towards 

the flow and heat transfer enhancement. In total the metallic oxides are found to be less 

beneficial as compared to the pure metals. 

5.1 Formulation of the problem 

Consider a non-flat vertical surface with transverse undulations following the sinusoidal 

patterns. The surface texture of the vertical wavy surface is depicted in Fig. 5.1 and 

described in equation (1.18). The origin of the coordinate system lies on the leading edge 

of the vertical surface as shown in Fig. 5.1. It is assumed that the surface temperature of 

the vertical wavy surface 𝑇𝑤 is uniform and 𝑇𝑤 > 𝑇∞, where 𝑇∞ denotes the ambient 

temperature. The flow is assumed to be caused due to temperature difference between the 

wavy plate and the ambient fluid. Accordingly the flow is steady and two-dimensional in 

nature. The study of convective transport in nanofluid requires a suitable model that can 

successfully capture the contribution of nanoparticle in the flow and heat transfer 



92 
 

phenomena. The aforementioned Tiwari and Das model [32] considers the improved 

material properties of the nanofluid. 

 

 

Figure 5.1: Physical model and coordinate system. 

 

According to this model the two-dimensional mass; momentum and energy conservation 

laws with the consideration of Boussinesq approximation are furnished as 

 𝜕𝑢̅

𝜕𝑥̅
+
𝜕𝑣̅

𝜕𝑦̅
= 0, (5.1) 

 
𝑢̅
𝜕𝑢̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑥̅
+ 𝜈𝑛𝑓𝛻

2𝑢̅ +
1

𝜌𝑛𝑓
𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇∞), (5.2) 

 
𝑢̅
𝜕𝑣̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑦̅
+ 𝜈𝑛𝑓𝛻

2𝑣̅, (5.3) 

 
𝑢̅
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇

𝜕𝑦̅
= 𝛼𝑛𝑓

∗ 𝛻2𝑇. (5.4) 

According to the coordinate system along with the assumed flow conditions, the 

appropriate boundary conditions for the velocity components and temperature function are 

described as 
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 𝑦̅ = 𝑆̅(𝑥̅): 𝑢̅ = 0, 𝑣̅ = 0, 𝑇 = 𝑇𝑤 ,
𝑦̅ → ∞: 𝑢̅ = 0, 𝑝̅ = 𝑝∞, 𝑇 = 𝑇∞ .

} (5.5a) 

Since the boundary layer starts to develop at 𝑥̅ > 0 therefore at the leading edge 𝑥̅ = 0 the 

ambient flow conditions are assumed to be valid which are given by 

 𝑥̅ = 0, 𝑝̅ = 𝑝∞, 𝑇 = 𝑇∞ , for all   𝑦̅ ≠ 0 . (5.5b) 

Let us introduce dimensionless variables of the form 

𝜉 = 𝑥 =
𝑥̅

𝑙
 , 𝑦 =

𝑦̅ − 𝑆̅(𝑥̅)

𝑙
𝐺𝑟

1
4 , 𝑢 =

𝜌𝑓𝑙

𝜇𝑓
𝐺𝑟−

1
2 𝑢 ̅ , 𝑣 =

𝜌𝑓𝑙

𝜇𝑓
𝐺𝑟−

1
4(𝑣̅ − 𝑆𝜉𝑢̅),

𝑆 =
𝑆̅(𝑥̅)

𝑙
, 𝜃(𝜉 , 𝜂) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

 , 

(5.6) 

here 𝐺𝑟 is the Grashof number. Using the argument that the pressure gradient along 𝑥̅ −axis 

is zero while eliminating 𝜕𝑝̅/𝜕𝑦̅ from Eqs. (5.2) and (5.3), Eqs. (5.2) – (5.4) in non-

dimensionalized come out of the form 

 
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+
𝜔𝜉

𝜔
𝑢2 =

𝜔2

𝑑1

𝜕2𝑢

𝜕𝑦2
+

𝑑5
𝜔2𝑑2

𝜃, (5.7) 

 
𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=
𝑑𝜔2

𝑑3𝑃𝑟

𝜕2𝜃

𝜕𝑦2
 . (5.8) 

In order to re-cast the system (5.7) − (5.8) in to more convenient form we introduce the 

following new variables; 

 
𝜉 = 𝑥, 𝜓(𝜉 , 𝜂) = 𝜉

3
4𝑓(𝜉 , 𝜂)  , 𝜂 = 𝜉−

1
4𝑦  , 𝜃 = 𝜃(𝜉 , 𝜂) , (5.9) 

due to which the Eqs. (5.7) & (5.8) are transformed as 

 𝜔2

𝑑1
𝑓′′′ +

3

4
 𝑓𝑓′′ −

1

2
𝑓′2 +

𝑑5
𝑑2
𝜃 = 𝜉 [𝑓′

𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
], (5.10) 

 𝑑𝜔2

𝑑3𝑃𝑟
𝜃′′ +

3

4
 𝑓𝜃′ = 𝜉 [𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
]. (5.11) 

The material parameters 𝑑 , 𝑑1, 𝑑2 , 𝑑3 are given in Eq. (4.11) and 𝑑5 is given by 

 
  𝑑5 = [1 − 𝜙 + 𝜙 (

(𝜌𝛽)𝑝
(𝜌𝛽)𝑓
⁄ )] . (5.12) 

Following Eq. (5.9), the boundary conditions in dimensionless form are described as 

 𝑓(𝜉 ,0) = 0, 𝑓′(𝜉 ,0) = 0, 𝜃(𝜉 ,0) − 1 = 0,   

 𝑓′(𝜉 ,∞) = 0, 𝜃(𝜉 , ∞) = 0. 
(5.13) 
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The local skin friction coefficient the local Nusselt number are defined in equations (1.20) 

and (1.23). After using equation (5.6) in equations (1.20) and (1.23), the local skin friction 

coefficient and local Nusselt number take the form 

 

𝐶𝑓 = 𝐶𝑓𝑥 (
𝐺𝑟

𝑥
)

1
4
=

𝜔

(1 − 𝜙)2.5
 𝑓′′(𝜉 ,0), 

  𝑁𝑢 = 𝑁𝑢𝑥(𝐺𝑟𝑥
3)−1/4 = −𝜔𝑑𝜃′(𝜉 ,0). 

(5.14) 

The mean values of the these quantities are respectively defined as 

 

𝐶𝑓𝑎𝑣𝑔
=
1

𝕊
∫

𝑥
1
4𝜔2

(1 − 𝜙)2.5
 𝑓′′(𝜉 ,0)𝑑𝜉

𝜉

0

, 

𝑁𝑢𝑎𝑣𝑔 = −
1

𝕊
∫ 𝑑𝑥

3
4𝜔2𝜃′(𝜉 ,0)𝑑𝜉

𝜉

0

. 

(5.15) 

 

5.2 Numerical procedure 

The governing non-similar equations (5.10) – (5.11) subject to the boundary conditions 

(5.13) are solved numerically using an implicit finite difference scheme known as Keller-

box method [178-185]. The details of this scheme have already been explained in Chapter 

4. In order to validate the solution procedure for the current problem, already existing 

results by Alim et al. [130], Kabir et al. [133] and Hossain et al. [190] have been 

reproduced. A comparison between the present results and already existing data is given in 

Table 5.1 where the results are in excellent agreement. This authenticates our present 

solution scheme and allows its utilization in the solution of current equations. 

5.3 Results and discussion 

The effects of nanoparticle volume fraction and wavy amplitude on the velocity and 

temperature profiles of the 𝐶𝑢 water nanofluid are plotted in Figs. 5.2 and 5.3 for different 

values of 𝛼 and 𝜙. From Fig. 5.2 it is observed that the velocity increases at crest and 

trough locations on the wavy surface but decreases at node. This fact is due to the increase 

in values of 𝛼 which highlights the role of surface undulation towards enhanced 

convection. Figure 5.3 displays the influence of various values of the nanoparticle volume 
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fraction 𝜙 on velocity and temperature profiles. It can be seen from Fig. 5.3 that the velocity 

profile decreases at crest, node and trough locations on the wavy surface on increasing 𝜙 

but velocity is minimum at node as compared to crest and trough. The temperature profiles 

under the influence of same values of  𝛼 (= 0.0, 0.1, 0.2) and 𝜙 (= 0.0, 0.05, 0.1) are also 

plotted in Figs. 5.2 and 5.3, respectively. The effect of 𝛼 on temperature profile is shown 

in Fig. 5.2. It is seen that variation in  𝛼 does not bring significant change in the temperature 

profile at crest and trough positions but an increase at the node. Figure 5.3 shows the 

influence of various values of the nanoparticle volume fractions 𝜙 on temperature 

distribution. It is seen that by increasing 𝜙, thickness of thermal boundary layer enhances. 

Since the 𝐶𝑢 has high thermal conductivity therefore the maximum increase in thickness 

is observed for 𝐶𝑢-water nanofluid. Figures 5.4 and 5.5 depict the variation of the 

𝐶𝑓 and 𝑁𝑢 with an increasing values of wavy amplitude  𝛼 for 𝐶𝑢-water nanoparticle. An 

increase in 𝛼 results in increasing the wavy amplitude of the curves which further grows 

downstream keeping the wavelengths constant in both graphs. The variation of 𝐶𝑓 and 𝑁𝑢 

with 𝜙 is shown in Figs. 5.6 and 5.7, respectively. Evidently the volume fraction parameter 

does not effect the 𝐶𝑓 significantly as compared to the 𝑁𝑢. This fact highlights the direct 

impact of nanoparticle concentration on the heat transfer rate. 

The current analysis has been carried out for five different types of nanoparticles, namely, 

silver ( 𝐴𝑔), copper (𝐶𝑢), alumina ( 𝐴𝑙2𝑂3), magnetite (𝐹𝑒3𝑂4) and silica (𝑆𝑖𝑂2). Table 

1.2 shows the thermophysical properties of water and the said five 

elements  𝐴𝑔, 𝐶𝑢, 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4 and 𝑆𝑖𝑂2. Here we investigate the effects of different 

nanoparticles on 𝐶𝑓  and 𝑁𝑢. It is worth mentioning here that this study reduces the 

governing Eqs. (5.10) – (5.11) to those of a pure or regular fluid for 𝜙 = 0. The 𝐶𝑓 and 𝑁𝑢 

are plotted against the solid volume fraction 𝜙 and wavy amplitude 𝛼 for different types of 

nanoparticles ( 𝐴𝑔, 𝐶𝑢, 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4, 𝑆𝑖𝑂2) in Figs. 5.8 – 5.11. Figures 5.8 and 5.9 

illustrate the variations of the 𝐶𝑓 and 𝑁𝑢 with nanoparticle volume fraction parameter 𝜙. 

These figures show that these quantities increase almost linearly with 𝜙 and maximum 

increase in 𝐶𝑓 is observed for silver (𝐴𝑔) and in 𝑁𝑢 for copper (𝐶𝑢). This shows that the 

presence of the nanoparticles in the base fluid increases the effective thermal conductivity 

of the fluid quite appreciably which consequently enhances the heat transfer characteristics 
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as seen in these figures. Similarly the variation in 𝐶𝑓 and 𝑁𝑢 against wavy amplitude is 

shown in Figs. 5.10 and 5.11 for different nanoparticles. Clearly, the variation due to these 

parameters is almost linear but the nature of nanoparticle does matter. Maximum increase 

in skin friction is observed for silver (𝐴𝑔) and in 𝑁𝑢 for copper (𝐶𝑢). It is worth mentioning 

that according to Eq. (5.14) the Nusselt number is a product of the temperature gradient 

and the thermal conductivity ratio (conductivity of the nanofluid to the conductivity of the 

base fluid). Increasing  𝜙 leads to an increase in the thermal conductivity ratio which in 

turn increases the Nusselt number. Isotherms are plotted for some values of 𝛼  (=

0.0, 0.1, 0.2) and 𝜙 (= 0.0, 0.05, 0.1 in Figs. 5.12 and 5.13 respectively. The wavy pattern 

can easily be seen in the isotherm graphs. 

Numerical data of 𝐶𝑓 and 𝑁𝑢 for different values of 𝛼 and 𝜙 when 𝑃𝑟 = 7.0 for copper 

(𝐶𝑢) at the locations 𝑥 = 0.5, 𝑥 = 1.0 and 𝑥 = 1.5 are presented in Table 5.2. It is 

observed that both 𝐶𝑓 and 𝑁𝑢 increase with the increase of 𝜙 and the 𝐶𝑓 increases and 𝑁𝑢 

decreases with the increase of 𝛼. Table 5.3 shows percent change in 𝐶𝑓 and 𝑁𝑢 for copper 

(𝐶𝑢) nanoparticle for different values of  𝛼 and 𝜙 when 𝑃𝑟 = 7.0 in comparison to wavy 

and flat vertical plate situations at three different locations; crest, node and trough on the 

vertical wavy surface. It is observed that at crest 𝐶𝑓 increases and 𝑁𝑢 decreases by 

increasing the wavy amplitude at fixed concentration of nanoparticle. Similarly for a fixed 

value of 𝛼 both 𝐶𝑓  and 𝑁𝑢 increase by increasing the nanoparticle concentration. The 

similar behavior is followed by the 𝐶𝑓 and 𝑁𝑢 at the trough location but at the node both 

𝐶𝑓 and 𝑁𝑢 increase with the increase of wavy amplitude and concentration of nanoparticle. 

The nature of nanoparticle has a fundamental role in enhancing the convective heat transfer 

phenomena. Nanoparticle of five different materials ( 𝐴𝑔, 𝐶𝑢, 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4, 𝑆𝑖𝑂2) 

including two metals and three oxides have been considered in Table 5.4 towards the 

calculation of percent increase in the magnitude of 𝐶𝑓 and 𝑁𝑢. It is observed that maximum 

increase due to metals of about 10.9% in 𝐶𝑓 is obtained for 𝐴𝑔 with 10% concentration in 

the base fluid and minimum increase in metals of about 8.9% in the value of 𝐶𝑓 is obtained 

for 𝐶𝑢 with 10% concentration when the present results are compared with the 

value 𝑓′′(0.5,0) = 0.6460 at 𝛼 = 0.2 and 𝜙 = 0.0. Similarly for oxides, maximum 

increase of about 6.1% in 𝐶𝑓 is obtained for  𝐴𝑙2𝑂3 with 10% concentration in the base 
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fluid and minimum increase of about 2.2 % in the value of 𝐶𝑓 is obtained for  𝑆𝑖𝑂2 with 

the same concentration. On the other hand for metals, maximum gain in metal of about 

11.1% in 𝑁𝑢 is obtained for 𝐶𝑢 and minimum of 10.3% for 𝐴𝑔 with 10% concentration 

in the base fluid when the present results are compared with 𝑁𝑢 = 0.7337 at 𝛼 = 0.2 and 

𝜙 = 0.0. Similarly, for oxides, maximum increase of about 10.2% in Nusselt number is 

obtained for 𝐴𝑙2𝑂3 with 10% concentration in the base fluid and minimum decrease of 

about 5.2% in the value of Nusselt number is obtained for 𝑆𝑖𝑂2 with same concentration. 

The percent increase in skin friction and Nusselt number is also calculated in comparison 

to𝑓′′(0) = 0.6375 and 𝑁𝑢 = 0.7455 at 𝛼 = 0.0 and 𝜙 = 0.0. For metals, maximum of 

12.2% and 9.3% increase in 𝐶𝑓 and 𝑁𝑢 is obtained and a minimum of 1.6% and 3.3% 

increase in 𝐶𝑓 and 𝑁𝑢 is obtained, respectively. Similarly for oxides, maximum of 7.6% 

and 8.5% increase in 𝐶𝑓 and 𝑁𝑢 is obtained and a minimum of 3.6% increase in 𝐶𝑓 and 

6.7% decrease in 𝑁𝑢 is obtained, respectively. Through Table 5.4 it is easy to identify the 

role of surface roughness and of nanofluid towards heat transfer enhancement. 

Numerical values of 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 for five different materials 

( 𝐴𝑔, 𝐶𝑢, 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4, 𝑆𝑖𝑂2) including two metals and three oxides are presented in Table 

5.5. Table 5.6 shows percent change in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 of five different materials 

( 𝐴𝑔, 𝐶𝑢, 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4, 𝑆𝑖𝑂2) in comparison to wavy and flat vertical plate when  𝑃𝑟 =

7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0. It is observed that maximum increase due to metals of 

about 11% in 𝐶𝑓𝑎𝑣𝑔
 is obtained for 𝐴𝑔 with 10% concentration in the base fluid and 

minimum increase due to metals of about 0.6% in the value of 𝐶𝑓𝑎𝑣𝑔
 is obtained for 𝐴𝑢 

with 10% concentration when the present results are compared with the value 𝐶𝑓𝑎𝑣𝑔
=

0.4560 at 𝛼 = 0.2, 𝜙 = 0.0. Similarly for oxides, maximum increase of about 6.2% in 

𝐶𝑓𝑎𝑣𝑔
 is obtained for  𝐴𝑙2𝑂3 with 10% concentration in the base fluid and minimum 

increase of about 2.2 % in the value of 𝐶𝑓𝑎𝑣𝑔
 is obtained for  𝑆𝑖𝑂2 with same concentration. 

On the other hand for metals, maximum gain due to metals of about 11.3% in 𝑁𝑢𝑎𝑣𝑔is 

obtained for 𝐶𝑢 and minimum of 5.3% for 𝐴𝑔 with 10% concentration in the base fluid 

when the present results are compared with 𝑁𝑢𝑎𝑣𝑔 = 0.6469 at 𝛼 = 0.2, 𝜙 = 0.0  .  
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Table 5.1: Comparison of present results with existing data at 𝛼 = 0. 

 

 

 𝑃𝑟 

𝑓′′(0,0) −𝜃′(0,0) 

Present Hossain 

et al. 

[190] 

Alim et 

al. 

[130] 

Kabir et 

al. [133] 

Present Hossain 

et al. 

[190] 

Alim et 

al. [130] 

Kabir et 

al. 

[133] 

1 0.9082 0.9080 0.90814 0.90813 0.4010 0.401 0.40101 0.40102 

10 0.5928 0.5910 0.59269 0.59270 0.8268 0.825 0.82663 0.82662 

25 0.4876 0.4850 0.48733 0.48732 1.0690 1.066 1.06847 1.06848 

50 0.4176 0.4850 0.41727 0.41728 1.2896 1.066 1.28879 1.28878 

100 0.3559 0.3520 0.35559 0.35558 1.5495 1.542 1.54827 1.54828 

 

Table 5.2: Variation in 𝐶𝑓 and 𝑁𝑢 for different values of 𝛼 and 𝜙 when 𝑃𝑟 = 7.0 for 

copper (𝐶𝑢). 

𝜉 𝜙 𝛼 𝐶𝑓 𝑁𝑢 

 

 

0.5 (Crest) 

0.1 0.0 0.6945 0.8286 

0.1 0.6969 0.8250 

0.0  

0.2 

0.6460 0.7337 

0.05 0.6729 0.7746 

 

0.1 

0.7035 0.8151 

 

 

1.0 (Node) 

0.0 0.6945 0.8286 

0.1 0.6435 0.8135 

0.0  

0.2 

0.4914 0.6971 

0.05 0.5121 0.7365 

0.1 0.5358 0.7756 

 

 

1.5 (Trough) 

0.1 0.0 0.6945 0.8286 

0.1 0.6959 0.8239 

0.0  

0.2 

0.6437 0.7312 

0.05 0.6698 0.7713 

0.1 0.66975 0.8111 
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Table 5.3: Percent increase in 𝐶𝑓 and 𝑁𝑢 for copper (𝐶𝑢) in comparison to pure fluid 

(𝜙 = 0) with wavy (𝛼 ≠ 0) and flat plate (𝛼 = 0) case when 𝑃𝑟 = 7.0.  

 

 

𝜉 

 

 

𝛼  

 

 

𝜙  

% increase in 𝐶𝑓 % increase in 𝑁𝑢 

Versus  

wavy plate 

at 𝜙 = 0.0 

Versus  

flat plate 

at 𝜙 = 0.0 

Versus  

wavy plate 

at 𝜙 = 0.0 

Versus  

flat plate 

at 𝜙 = 0.0 

 

 

0.5 (Crest) 

0.0 0.1 − 1.9 − 11.1 

0.1 8.9 9.3 11.1 10.7 

 

0.2 

0.0 0.0 1.3 0.0 −1.6 

0.05 4.1 5.6 5.6 3.9 

 

0.1 

8.9 10.3 11.1 9.3 

 

 

1.0 (Node) 

0.0 − 1.9 − 11.1 

0.1 8.7 0.9 11.1 9.1 

 

0.2 

0.0 0.0 −22.9 0.0 −6.5 

0.05 4.2 −10.2 5.6 −1.2 

 

0.1 

9.0 −15.9 11.2 4.0 

 

 

1.5 (Trough) 

0.0 − 1.9 − 11.1 

0.1 8.9 9.1 11.1 10.5 

 

0.2 

0.0 0.0 −0.4 0.0 −1.9 

0.05 4.0 5.0 5.4 3.4 

0.1 8.7 9.8 10.9 8.8 

 

Table 5.4: Percent change in 𝐶𝑓 and 𝑁𝑢 for different nanoparticle when  𝑃𝑟 = 7.0, 𝛼 =

0.2, 𝜙 = 0.2. 

 

 

ξ  

 

Nano 

particle 

material 

% increase in 𝐶𝑓 % increase in 𝑁𝑢  

Versus  

𝑓′′(0) = 0.6375 

at 𝛼 = 𝜙 = 0.0 

Versus  

𝑓′′(0.5,0) = 0.6460 

at 𝛼 = 0.2, 𝜙 = 0.0 

Versus  

𝑁𝑢 = 0.7455 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝑁𝑢 = 0.7337  

at 𝛼 = 0.2, 𝜙 = 0.0 

 

 

 

0.5 

𝐴𝑢  1.6 0.2 3.3 5.0 

𝐴𝑔  12.2 10.8 8.6 10.3 

𝐶𝑢  10.3 8.9 9.3 11.1 

𝐹𝑒3𝑂4  5.8 4.4 5.6 7.3 

𝐴𝑙2𝑂3 7.6 6.1 8.5 10.2 

𝑆𝑖𝑂2 3.6 2.2 −6.7 −5.2 
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Figure 5.2: The effect of α on velocity and temperature profile. 

 

 

Figure 5.3: The effect of 𝜙 on velocity and temperature profile. 
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Figure 5.4: Skin friction coefficient plotted for different value of 𝜙. 

 

 

Figure 5.5: Nusselt number plotted against 𝜉 for different values of 𝜙. 
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Figure 5.6: Wall skin friction coefficient plotted for different values of 𝛼. 

 

 

Figure 5.7: Nusselt number graph for different values of 𝛼. 
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Figure 5.8: Variation in skin friction coefficient due to 𝜙 for different nanoparticles. 

 

 

Figure 5.9: Variation of Nusselt number due to 𝜙 for different nanoparticles. 
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Figure 5.10: Variation of skin friction due to 𝛼 for different nanoparticles. 

 

 

Figure 5.11: Plot of Nusselt number against 𝛼 for different nanoparticles. 
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Figure 5.12: Isotherms plotted at different 𝛼. 

 

 

Figure 5.13: Effect of different 𝜙 on isotherms. 
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Similarly for oxides, maximum increase of about 10.3% in 𝑁𝑢𝑎𝑣𝑔 is obtained for 𝐴𝑙2𝑂3 

with 10% concentration in the base fluid and minimum decrease of about 5.2% in the value 

of 𝑁𝑢𝑎𝑣𝑔 is obtained for 𝑆𝑖𝑂2 with same concentration. The percent increase in 𝐶𝑓𝑎𝑣𝑔
 and 

𝑁𝑢𝑎𝑣𝑔 is also calculated in comparison to 𝐶𝑓𝑎𝑣𝑔
= 0.6375, 𝑁𝑢𝑎𝑣𝑔 = 0.7455 at 𝛼 = 𝜙 =

0.0. For metals, maximum of 10.8% and 11.1% increase in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 is obtained 

and a minimum of 0.3% and 5.1% increase in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 is obtained, respectively. 

Similarly for oxides, maximum of 6.2% and 10.3% increase in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 is 

obtained and a minimum of 2.2% increase in 𝐶𝑓𝑎𝑣𝑔
and 5.2% decrease in 𝑁𝑢𝑎𝑣𝑔 is 

obtained, respectively. Through Table 5.6 it is easy to identify the role of surface roughness 

and of nanofluid towards heat transfer enhancement. 

Table 5.5: Numerical values of 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 for different nanoparticle when   𝑃𝑟 =

7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 . 

Nano particle material 𝐶𝑓𝑎𝑣𝑔
 𝑁𝑢𝑎𝑣𝑔 

𝐶𝑢 0.4973 0.7199 

𝐴𝑢 0.4588 0.6816 

𝐴𝑔 0.5061 0.7155 

𝐴𝑙2𝑂3 0.4845 0.7138 

𝐹𝑒3𝑂4 0.4765 0.6951 

𝑆𝑖𝑂2 0.4662 0.6130 

 

Table 5.6: Percent change in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔for different nanoparticles when  𝑃𝑟 = 7.0,

𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 . 

 

Nano 

particle 

material 

% increase in 𝐶𝑓𝑎𝑣𝑔
 % increase in 𝑁𝑢𝑎𝑣𝑔  

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.6375 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.4560 

at 𝛼 = 0.2, 𝜙 = 0.0 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 0.7455 

at 𝛼 = 𝜙 = 0.0 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 0.6469 

at 𝛼 = 0.2, 𝜙 = 0.0 

𝐴𝑢 0.3 0.6 5.1 5.3 

𝐴𝑔 10.8 11.0 10.4 10.6 

𝐶𝑢 8.9 9.1 11.1 11.3 

𝐹𝑒3𝑂4 4.4 4.5 7.4 7.5 

𝐴𝑙2𝑂3 6.2 6.2 10.3 10.3 

𝑆𝑖𝑂2 2.2 2.2 −5.2 −5.2 
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5.4 Conclusion 

Present chapter investigates the natural convection flow of nanofluid for five different 

types of nanoparticles, namely, copper (𝐶𝑢), silver (𝐴𝑔), alumina (𝐴𝑙2𝑂3), 

magnetite (𝐹𝑒3𝑂4) and silica (𝑆𝑖𝑂2) with a valid range of nanoparticle concentration (0 −

10%) by taking water as base fluid. An excellent agreement between the present results 

and already published data proves the validity of present results. Our analysis reveals that: 

 The skin friction increases and the Nusselt number decreases by increasing the 

values of wavy amplitude 𝛼. 

 An increase in concentration of nanoparticles in the base fluid produces an 

increase in the skin friction coefficient and the local Nusselt number. 

 Maximum increase in skin friction of about 10.9% for 𝐴𝑔 and in local Nusselt 

number of about 11.1% is obtained for 𝐶𝑢 with 10% concentration. 

 Minimum increase in skin friction of about 2.2% and decrease in local Nusselt 

number of about 5.2% is observed for 𝑆𝑖𝑂2 with 10% concentration. 

 Maximum increase in average skin friction of about 11.0% for 𝐴𝑔 and in average 

Nusselt number of about 11.3% is obtained for 𝐶𝑢 with 10% concentration. 
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Chapter 6 

Effect of heat generation/absorption on non-

similar natural convection nanofluid flow along a 

vertical wavy surface 

This chapter is the extension of problem in previous chapter towards the investigation of 

heat generation/absorption effect on natural convection heat transfer from a vertical wavy 

surface. Transport equations have been solved numerically by the same implicit finite 

difference scheme as utilized in the previous chapters. The result in the form of Nusselt 

number and skin friction coefficient are calculated and presented through graphs against 

the dimensionless constants for two types of nanoparticles, namely, alumina (A𝑙2𝑂3) and 

magnetite (F𝑒3𝑂4). The impact of nanoparticle concentration on flow and heat transfer 

process in the problem under investigation has been studied in detail. The results indicate 

that A𝑙2𝑂3-water nanofluid exhibits higher skin friction and the heat transfer rate in 

comparison to F𝑒3𝑂4 water based nanofluid. The influence of heat generation / absorption 

parameter is to decrease / increase (respectively) the heat transfer rate and increase / 

decrease (respectively) the skin friction coefficient. For heat generation / absorption cases 

percent change in the skin friction and Nusselt number for two nanoparticles is shown in 

tabular form where comparison to the flat plate (pure fluid) and wavy surface (pure fluid) 

cases has also been made. The present results have been validated by producing the results 

available in literature where a very good agreement is obtained. 

 

6.1 Mathematical formulation 

Similar to the previous chapter the two-dimensional incompressible, steady, natural 

convective flow of nanofluid along vertically fixed wavy plate has been considered. The 

configuration of the wavy sheet is described by the sinusoidal function described in Eq. 

(1.18) as already shown in Figure 5.1. It is assumed that all material properties of the fluid 
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are constant except the density which varies with temperature.  The wall temperature is 

denoted by Tw where T∞ denotes the ambient temperature such that 𝑇𝑤> 𝑇∞. Temperature 

dependent heat generation / absorption is described as 𝑄(T- 𝑇∞)   with T≥ 𝑇∞; the amount 

generated / absorbed per unit volume and 𝑄 ≷ 0 is the heat generation / absorption 

constant. Due to the presence of temperature gradient near the wavy surface the flow is 

driven by the bouncy force. In view of the above flow assumptions the appropriate 

boundary conditions read as: 

 𝑦̅ = 𝑆̅(𝑥̅): 𝑢̅ = 0, 𝑣̅ = 0, 𝑇 = 𝑇𝑤 ,     for all    x̅ >0, 

𝑦̅ → ∞: 𝑢̅ = 0, 𝑝̅ = 𝑝∞, 𝑇 = 𝑇∞ ,      for all    x̅ >0. 
(6.1) 

 

6.1.1 Nanofluid: thermo-physical properties 

The material properties such as density, effective dynamic viscosity, heat capacity, thermal 

expansion coefficient, effective thermal conductivity of pure fluid and nanoparticles are 

given in Table 1.2. In this chapter, we consider the alumina and magnetite nanoparticles. 

Alumina is the strongest and stiffest of the oxide ceramics and widely used material in 

engineering ceramics. Alumina has a relatively high thermal conductivity in ceramic. It has 

acceptable price therefore, its cost is less in fabricating alumina shapes. Magnetite is 

normal and one of the three common natural oxides of iron. It has great significance such 

as, magnetic recording media, high density digital recording disc, in drug delivery system, 

cancer therapy and medical diagnostic etc. 

Based on theoretical and experimental findings, there are several different expressions for 

the calculation of the thermo-physical properties of the nanofluid given in Sec. 1.2.5 which 

have been utilized in the present analysis. 

 

6.1.2 Governing equations 

According to the flow assumptions discussed in Sec. 6.1 the flow is two-dimensional and 

steady in nature. The base fluid is assumed to be water at normal temperature which allows 

the utilization of boundary layer assumptions. The convective transport of the nanoparticles 

has been described by the famous Tiwari and Das model [32]. According to this model the 

mass, momentum and energy conservation laws read as 
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 𝜕𝑢̅

𝜕𝑥̅
+
𝜕𝑣̅

𝜕𝑦̅
= 0, (6.2) 

 
𝑢̅
𝜕𝑢̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑥̅
+ 𝜈𝑛𝑓𝛻

2𝑢̅ +
1

𝜌𝑛𝑓
𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇∞), (6.3) 

 
𝑢̅
𝜕𝑣̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑦̅
+ 𝜈𝑛𝑓𝛻

2𝑣̅,  (6.4) 

 
𝑢̅
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇

𝜕𝑦̅
= 𝛼𝑛𝑓

∗ 𝛻2𝑇+(1/ (𝜌𝑐𝑝)𝑛𝑓)𝑄(𝑇 − 𝑇∞), (6.5) 

where  ∇  2 is the Laplacian operator, u̅ and v̅ represent components of the velocity 

vector,  ρ represents the density, 𝑐𝑝 represents the specific heat,   𝛽 represents the thermal 

expansion coefficient, 𝛼 is thermal diffusivity and subscripts “𝑓”, “𝑛𝑓” and “𝑝” refer to 

fluid, nanofluid and nanoparticle, respectively. 

To transform the transport equations to the dimensionless form where the domain of 

interest is, 0 ≤ 𝑦<∞;  𝑥> 0. We utilize the same variables and parameters defined in 

equation (5.7). Thus, eliminating the term 𝜕𝑝̅/𝜕𝑦̅ by using the same argument as in 

Chapters 4 and 5 from equation (6.3). The system (6.2) – (6.4) in non-dimensionalized 

form reads as 

 
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+
𝜔𝜉

𝜔
𝑢2 =

𝜔2

𝑑1

𝜕2𝑢

𝜕𝑦2
+

𝑑5
𝜔2𝑑2

𝜃, (6.6) 

 
𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
=
𝑑𝜔2

𝑑3𝑃𝑟

𝜕2𝜃

𝜕𝑦2
+
𝐻

𝑑3
𝜃, (6.7) 

where 𝐻 = 𝑄𝑙2/𝜇𝑓 𝐺𝑟
1

2(𝜌𝑐𝑝)𝑓 is the heat generation/absorption parameter. Now we use 

the transformations given in equation (5.9) to render the governing equations to a more 

convenient form. In this way the governing equations in dimensionless form transform to 

the following non-linear partial differential equations  

 𝜔2

𝑑1
𝑓′′′ +

3

4
 𝑓𝑓′′ − 𝜉(

1

2
+
𝜔𝜉

𝜔
)𝑓′2 +

𝑑5
𝜔2𝑑2

𝜃 = 𝜉 [𝑓′
𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
], (6.8) 

 𝑑𝜔2

𝑑3𝑃𝑟
𝜃′′ +

3

4
 𝑓𝜃′ + 𝜉1/2

𝐻

𝑑3
𝜃 = 𝜉 [𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
], (6.9) 

where 𝐻 ≷ 0 is the heat source/sink parameter. Boundary conditions in non-dimensional 

form read as 
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𝑓(𝜉 ,0) = 0,   𝑓′(𝜉 ,0) = 0, 𝜃(𝜉 ,0) = 1,

 𝑓′(𝜉 ,∞) = 0, 𝜃(𝜉 , ∞) = 0.  
} (6.10) 

The surface shear stress in terms of local friction factor, the local heat transfer rate in term 

of Nusselt number, average skin friction coefficient and average Nusselt number have been 

defined in the similar manner as did in Chapter 5. 

 

6.2 Computational procedure and validation of results 

The governing equations (6.8) – (6.10) which are non-similar in nature have been 

integrated through a finite difference scheme which is commonly referred as the Keller-

box scheme. The detailed procedure of this method is presented in Chapter 4. For solving 

the system (6.8) – (6.10) the same procedure has been followed. It is well established that 

this technique gives quite exact results for boundary layer equations. The value  𝜂∞ = 20 

is taken sufficiently large for the convergence of solution. A uniform grid having step size 

∆𝜂 = ∆𝜉 = 0.005 is utilized. Also, for the accuracy of solution the difference between the 

current and the previous iteration was fixed at 10−5 in order to stop the iteration process. 

For the validation of present solution computed data is compared with the already 

published results present in the open literature and is displayed in Tables 6.1, 6.2 and 6.3. 

The calculated values of Cf, 𝑁𝑢, 𝑓′′(0, 0), and   θ'(0, 0) are compared with those of Alim 

et al. [112], Kabir et al. [115] and Hossain et al. [165]. It is obvious from these Tables that 

the values of Cf, 𝑁𝑢, 𝑓′′(0, 0), and   θ'(0, 0) are very well matched with the already 

existing results. 

 

Table 6.1: Comparison of Cf and 𝑁𝑢 values when 𝜙 = 0, 𝛼 = 0.2, 𝐻 = 0.0, 𝜉 = 2.0. 

 

𝑃𝑟 

Cf Nu 

present Alim et al.[130] Present Alim et al.[130] 

0.72 0.74643 0.74641 0.33683 0.33715 

1.5 0.66054 0.6690 0.43354 0.43391 

3.0 0.58201 0.58220 0.54120 0.54159 

4.5 0.53822 0.53827 0.61241 0.61277 

7.0 0.49270 0.49260 0.69782 0.69810 
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Table 6.2: Comparison of values Cf and 𝑁𝑢 when   𝜙 = 0, 𝛼 = 0.2, 𝐻 = 0.5, 𝜉 = 2.0. 

 

𝑃𝑟 

Cf 𝑁𝑢 
present Alim et al.[130] Present Alim et al.[130] 

0.72 0.96720 0.96548 −0.31579 −0.31624 

1.5 0.92711 0.92773 −0.62468 −0.62799 

3.0 0.90460 0.90585 −1.2180 −1.22414 

4.5 0.90353 0.90512 −1.8157 −1.82501 

7.0 0.91563 0.91769 −2.8271 −2.84207 

Table 6.3: Comparison of 𝑓′′(0, 0) and −𝜃′ (0, 0) values when  𝜙 = 0, 𝛼 = 0.2, 𝐻 =  0. 

 

𝑃𝑟 

f''(0,0) −𝜃′(0,0) 

Present Hossain 

et al. 

[165] 

Alim et 

al. 

[112] 

Kabir et 

al. [115] 

Present Hossain  

et al. 

[165] 

Alim et 

al. 

[112] 

Kabir 

et al. 

[115] 

1 0.9082 0.908 0.90814 0.90813 0.4010 0.401 0.40101 0.40102 

10 0.5928 0.591 0.59269 0.59270 0.8268 0.825 0.82663 0.82662 

25 0.4876 0.485 0.48733 0.48732 1.0690 1.066 1.06847 1.06848 

50 0.4176 0.485 0.41727 0.41728 1.2896 1.066 1.28879 1.28878 

100 0.3559 0.352 0.35559 0.35558 1.5495 1.542 1.54827 1.54828 

 

6.3 Results and discussion 

In this section we have analyzed the effects of heat source/sink (𝐻 ≷ 0) parameter; 

waviness parameter (𝛼) and nanoparticle concentration (𝜙) on the free convection flow of 

nanofluid over a vertical wavy surface. The physical parameters of primary interest are the 

skin friction (𝐶𝑓) and the Nusselt number (𝑁𝑢). These quantities are obtained and shown 

in Eq. (5.15). The computations are carried out for two kinds of nanoparticles assuming 

water as base fluid; range of nanoparticle concentration (𝜙) is taken from 0 to 0.1. The 

nanoparticles used in this study are alumina (A𝑙2𝑂3) and magnetite (F𝑒3𝑂4). The 

distributions of the 𝐶𝑓 and 𝑁𝑢 in the case of A𝑙2𝑂3-water and F𝑒3𝑂4-water are plotted in 

Figs. 6.2 to 6.10. Numerical values of 𝐶𝑓 and 𝑁𝑢 are tabulated in Tables 6.4 and 6.5 for 

heat generation/absorption parameter 𝐻(≷ 0). 

The influence of heat source/sink (𝐻 ≷ 0); waviness parameter (𝛼), and nanoparticle 

concentration (𝜙) on 𝐶𝑓 and 𝑁𝑢 are presented in Figs. 6.2 to 6.6 for two nanoparticles 

alumina and magnetite. The Figs. 6.2 and 6.3 illustrate the behavior of heat source/sink 

parameter, (𝐻 ≷ 0), on the 𝐶𝑓 and 𝑁𝑢. Decrease in 𝑁𝑢 and increase in 𝐶𝑓 is observed by 
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increase in the value of heat source (𝐻 > 0), whereas the inverse behavior is captured for 

the value of heat absorption (𝐻 < 0). Because the increase in heat source (𝐻 > 0) enhances 

temperature inside the boundary layer which results in decrease in 𝑁𝑢 and the increase in 

heat absorption (𝐻 < 0) forms a layer of cold fluid near the heated surface which results 

in increase in 𝑁𝑢. It is noted that for the case of alumina more increment in the values of 

𝐶𝑓 and 𝑁𝑢 are attained as compared to magnetite. The Fig. 6.4 illustrates the effects of 

wavy amplitude on 𝐶𝑓 in the presence of heat generation/absorption (𝐻 = ±2). It is 

observed that 𝐶𝑓 decreases with the increase of waviness parameter. Effects of nanoparticle 

concentration on 𝐶𝑓  and 𝑁𝑢 in the presence of heat generation / absorption (𝐻 = ±2) are 

shown in Figs. 6.5 and 6.6. It is noted from these graphs that as the nanoparticle 

concentration increases, the viscous force of the nanofluid increases. Rate of flow is 

decreased due to more resistive fluid and 𝐶𝑓 is increased. Also, it is noted that the heat 

transfer rate reduces with the increment in the nanoparticles concentration at heat source 

(𝐻 = +2) whereas, heat transfer rate rises with the increment in the nanoparticles 

concentration in the heat absorption situation (𝐻 = −2). Obviously, the 𝑁𝑢 is higher in 

case of A𝑙2𝑂3-nanoparticle as compared to F𝑒3𝑂4-nanoparticle. 

Dimensionless 𝐶𝑓 and 𝑁𝑢 as a function of wavy amplitude, nanoparticle concentration, 

and heat generation parameter for two nanoparticles alumina and magnetite water based 

nanofluid are plotted in Figs. 6.7 to 6.10 at fixed 𝜉 = 0.5 and 𝑃𝑟 = 7.0. Figure 6.7 

illustrates the variation in the 𝑁𝑢 as function of waviness parameter 𝛼 for the said two 

nanoparticles. Upon increasing the values of waviness parameter the 𝑁𝑢 decreases and is 

greater for alumina nanoparticle as compared to magnetite nanoparticle. Figure 6.8 depicts 

the variation in the 𝑁𝑢 as a function of nanoparticle concentration for two nanoparticles. 

Here, we see that the 𝑁𝑢 rises for denser concentration of the nanoparticles. Figures 6.9 

and 6.10 show the behavior of 𝐶𝑓 and 𝑁𝑢 as function of heat generation/absorption (𝐻 ≷

0) parameter. From these Figures it is observed that 𝐶𝑓 increases and 𝑁𝑢 decreases with 

increasing the heat source parameter (𝐻 > 0) whereas 𝐶𝑓 decreases and 𝑁𝑢 increases with 

increasing the heat absorption parameter (𝐻 < 0) . Also, these Figures reveal that A𝑙2𝑂3-

nanoparticles exhibits better enhancement as compared to F𝑒3𝑂4-nanoparticle.  
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In Tables 6.4 and 6.5 percent change in 𝐶𝑓 and 𝑁𝑢 are calculated for heat 

generation/absorption (𝐻 ≷ 0) at different positions, i.e. 𝜉 = 0.5 , 𝜉 = 1.0, 𝜉 =

1.5  and 𝜉 = 2.0   on the wavy surface by comparing the values with flat plate (pure fluid) 

and wavy surface (pure fluid) results. Table 6.4 reveals that the overall maximum increase 

in 𝐶𝑓 and decrease in 𝑁𝑢 is found in comparison to flat surface (pure fluid). In comparison 

to flat surface maximum increase in 𝐶𝑓 is 34.4% for alumina nanoparticle at 𝜉 = 1.5  and 

highest decrease in 𝑁𝑢 is 169.6% for magnetite nanoparticle at 𝜉 = 2.0. Also, in 

comparison to (pure fluid) wavy surface highest increase in 𝐶𝑓 is 8.3% for alumina 

nanoparticle at 𝜉 = 2.0 and highest decrease in 𝑁𝑢 is 89.1% for magnetite nanoparticle at 

𝜉 = 1.5. Table 6.5 shows that the overall maximum decrease in 𝐶𝑓 and increase in 𝑁𝑢 is 

found in comparison to flat surface (pure fluid). In comparison to flat surface highest 

decrease in 𝐶𝑓 is 36.4% for magnetite nanoparticle at 𝜉 = 2.0  and highest increase in 𝑁𝑢 

is 119.9% for alumina nanoparticle at 𝜉 = 2.0. Also, in comparison to (pure fluid) wavy 

surface highest increase in 𝐶𝑓 is 5.4% for alumina nanoparticle at 𝜉 = 0.5 and highest 

increase in 𝑁𝑢 is 14.3% for alumina nanoparticle at 𝜉 = 2.0. 

Table 6.4: Percent change in Cf and 𝑁𝑢 for different nanoparticles when 𝑃𝑟 = 7.0,  

 𝛼 = 0.2, 𝜙 = 0.1, 𝐻 = 0.2, 𝜉 = 1.0. 

 

 

 

ξ 

 

 

Nano 

particle 

material 

% increase in Cf % increase in Nu 

Versus 

𝑓′′(0,0) = 0.6375, 

𝑓′′(0,0) = 0.6375, 

at  α = ϕ = 0.0, 

H = 0.0. 

Versus 

𝑓′′(0.5,0) = 0.7279, 

𝑓′′(1.0,0) = 0.5840, 

𝑓′′(1.5,0) = 0.7948, 

𝑓′′(2.0,0) = 0.6309, 

 

at  α = 0.2, ϕ = 0.0, 

H = 0.2. 

Versus 

𝑁𝑢(0,0) = 0.7455, 

at  α = ϕ = 0.0, 

H = 0.0. 

Versus 

𝑁𝑢(0.5,0) = 0.2651, 

𝑁𝑢(1.0,0) =  0.0024, 

𝑁𝑢(1.5,0) = −0.1575 

𝑁𝑢(2.0,0) = −0.3427, 

 

at  α = 0.2, ϕ = 0.0, 

H = 0.2. 

0.5 𝐴𝑙2𝑂3 22.2 7.1 −67.6 −8.8 

𝐹𝑒3𝑂4 20.5 5.6 −70.0 −15.7 

1.0 𝐴𝑙2𝑂3 −17.2 7.6 −110.8 −32.4 

𝐹𝑒3𝑂4 −2.8 6.0 −113.0 −39.2 

1.5 𝐴𝑙2𝑂3 34.3 7.8 −137.6 −77.8 

𝐹𝑒3𝑂4 32.6 6.3 −140.0 −89.1 

2.0 𝐴𝑙2𝑂3 8.1 8.3 −167.4 −46.6 

𝐹𝑒3𝑂4 5.9 7.0 −169.6 −51.4 
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Table 6.5: Percent change in Cf and Nu for different nanoparticle when 𝑃𝑟 = 7.0,  

 𝛼 = 0.2, 𝜙 = 0.1, 𝐻 = −0.2, 𝜉 = 1.0. 

 

 

 

𝜉 

 

 

Nano 

particle 

material 

% increase in Cf % increase in Nu 

Versus 

𝑓′′(0,0) = 0.6375, 

at  α = ϕ = 0.0, 

H = 0.0. 

Versus 

𝑓′′(0.5,0) = 0.5768, 

𝑓′′(1.0,0) = 0.4175, 

𝑓′′(1.5,0) = 0.5302, 

𝑓′′(2.0,0) = 0.3934, 

 

at  α = 0.2, ϕ = 0.0, 

H = − 0.2. 

Versus 

𝑁𝑢(0,0) = 0.7455, 

at  α = ϕ = 0.0, 

H = 0.0. 

Versus 

𝑁𝑢(0.5,0) = 0.1.1259, 

𝑁𝑢(1.0,0) = −1.2456, 

𝑁𝑢(1.5,0) = −1.3806 

𝑁𝑢(2.0,0) = −1.4340, 

 

at  α = 0.2, ϕ = 0.0, 

H = − 0.2. 

0.5 𝐴𝑙2𝑂3 −4.5 5.4 71.0 13.2 

𝐹𝑒3𝑂4 −6.3 3.5 67.6 11.0 

1.0 𝐴𝑙2𝑂3 −31.0 5.3 90.0 13.7 

𝐹𝑒3𝑂4 −32.3 3.3 86.3 11.6 

1.5 𝐴𝑙2𝑂3 −12.6 5.0 111.1 14.0 

𝐹𝑒3𝑂4 −14.3 3.0 107.2 11.9 

2.0 𝐴𝑙2𝑂3 −35.1 5.0 119.9 14.3 

𝐹𝑒3𝑂4 −36.4 3.0 115.9 12.2 

 

Numerical values of 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 are tabulated in Table 6.6 and the Table 6.7 while 

Table 6.8 shows percent change in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 for 𝐴𝑙2𝑂3 and 𝐹𝑒3𝑂4 nanoparticles 

when 𝑃𝑟 = 7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0 , in comparison to pure flat and wavy plate for 

heat generation absorption parameter (𝐻 ≷ 0). Table 6.7 reveals that the overall maximum 

increase of about 5.3% in 𝐶𝑓𝑎𝑣𝑔
 is obtained for 𝐴𝑙2𝑂3   with 10% concentration in the base 

fluid and minimum increase of about 3.3% in the value of average skin friction is obtained 

for 𝐹𝑒3𝑂4 with 10% concentration when the present results are compared with the value 

𝐶𝑓𝑎𝑣𝑔
= 0.3876 at 𝛼 = 0.2, 𝐻 = −0.2 and 𝜙 = 0.0. On the other hand maximum increase 

of 76.3% in 𝐶𝑓𝑎𝑣𝑔
  is obtained for 𝐴𝑙2𝑂3 and minimum of 73% for 𝐹𝑒3𝑂4 with 10% 
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concentration in the base fluid when the present results are compared with 

𝑁𝑢𝑎𝑣𝑔 =  1.1537, at   𝛼 = 0.2, 𝜙 = 0.0, 𝐻 = −0.2. Table 6.8 shows that an overall 

increase in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 is found in comparison to wavy surface (pure fluid) and flat 

surface (pure fluid). In comparison to wavy surface highest increase in 𝐶𝑓𝑎𝑣𝑔
 is 7.8% and 

highest increase in 𝑁𝑢𝑎𝑣𝑔 is 46.2% for alumina nanoparticle at 𝐻 = 0.2. Also, in 

comparison to (pure fluid) flat surface highest decrease in 𝐶𝑓𝑎𝑣𝑔
 is 22.9% and highest 

increase in 𝑁𝑢𝑎𝑣𝑔 is 2.06% for magnetite nanoparticle at 𝐻 = 2.0. 

 

 

Figure 6.2: Heat generation/absorption effects on skin friction. 
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Figure 6.3: Heat generation/absorption effects on Nusselt number. 

 

 

Figure 6.4: Effect of 𝛼 on 𝐶𝑓. 
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Figure 6.5: Graph of 𝐶𝑓 influenced by ϕ. 

 

 

Figure 6.6: Impact of ϕ on Nusselt number. 
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Figure 6.7: Variation of Nusselt number against α. 

 

 

Figure 6.8: Nusselt Number variation against  ϕ. 
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Figure 6.9: 𝐶𝑓versus H. 

 

 

Figure 6.10: Nusselt number behavior against H. 
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Table 6.6: Numerical values of 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 for different nanoparticles when 𝑃𝑟 =

7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0. 

Nanoparticle 

material 

𝐶𝑓𝑎𝑣𝑔
 𝑁𝑢𝑎𝑣𝑔 𝐶𝑓𝑎𝑣𝑔

 𝑁𝑢𝑎𝑣𝑔 

 at  H = −0.2. at  H =  0.2. 

𝐴𝑙2𝑂3  0.4082 1.3143 0.5843 −0.0744 

𝐹𝑒3𝑂4 0.4005 1.2897 0.5751 −0.0897 

 

Table 6.7: Percent change in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔for different nanoparticles when 𝑃𝑟 = 7.0,

𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0,H = −0.2 . 

 

 

Nano 

particle 

material 

% increase in 𝐶𝑓𝑎𝑣𝑔
 % increase in 𝑁𝑢𝑎𝑣𝑔 

Versus 

𝐶𝑓𝑎𝑣𝑔

= 0.6375, 

at  α = ϕ = 0.0, 

H = 0.0. 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.3876, 

at  α = 0.2, ϕ

= 0.0, 

H = −0.2. 

Versus 

𝑁𝑢𝑎𝑣𝑔

= 0.7455, 

at  α = ϕ = 0.0, 

H = 0.0. 

Versus 

𝑁𝑢𝑎𝑣𝑔 = 1.1537, 

at  α = 0.2, ϕ

= 0.0, 

H = −0.2. 

𝐴𝑙2𝑂3 −36.0 5.3 76.3 13.9 

𝐹𝑒3𝑂4 −37.2 3.3 73.0 11.8 

 

Table 6.8: Percent change in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔for different nanoparticles when 𝑃𝑟 = 7.0,

𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0, H = 0.2. 

 

 

Nano 

particle 

material 

% increase in 𝐶𝑓𝑎𝑣𝑔
 % increase in 𝑁𝑢𝑎𝑣𝑔 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.7463, 

at  α = ϕ = 0.0, 

H = 0.2. 

Versus 

𝐶𝑓𝑎𝑣𝑔
= 0.5420, 

at  α = 0.2, ϕ

= 0.0, 

H = 0.2. 

Versus 

𝑁𝑢𝑎𝑣𝑔

= 0.0846, 

at  α = ϕ

= 0.0, 

H = 0.2. 

Versus 

𝑁𝑢𝑎𝑣𝑔 = −0.0019, 

at  α = 0.2, ϕ

= 0.0, 

H = 0.2. 

𝐴𝑙2𝑂3 −21.7 7.8 −1.8 38.1 

𝐹𝑒3𝑂4 −22.9 6.1 −2.06 46.2 
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6.4 Concluding remarks 

In this chapter, the impact of heat generation/absorption for two types of nanoparticles on 

natural convection boundary layer flow along vertical wavy surface has been investigated. 

For this problem the Tiwari and Das model which includes the nanoparticle concentration, 

viscosity and thermal conductivity has been adapted. Natural convective flow and heat 

transfer along the vertical wavy surface in nanofluid containing two types of nanoparticles, 

namely, alumina (𝐴𝑙2𝑂3) and magnetite (𝐹𝑒3𝑂4) have been studied. Influence of emerging 

parameters such as, nanoparticle volume fraction (ϕ), heat generation/absorption (𝐻 ≷ 0) 

and wavy amplitude (α) on Nusselt number (𝑁𝑢) and skin friction coefficient (𝐶𝑓) for both 

the nanofluids have been examined. The important results of the current study are 

summarized as follows: 

 𝐶𝑓 is an increasing/decreasing function of heat generation/absorption parameter 

and the local Nusselt number is decreasing/increasing function of heat 

generation/absorption parameter, respectively. 

 Nu increases and 𝐶𝑓 decreases with increasing amplitude of wavy surface for 

fixed value of heat absorption parameter. 

 On increasing nanoparticle concentration the Cf and Nu increase for heat 

absorption parameter. 

 Cf and Nu are observed higher for Alumina in comparison to Magnetite 

nanoparticle. 

 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 are observed higher for Alumina in comparison to Magnetite 

nanoparticle. 

 Highest increase in 𝑁𝑢𝑎𝑣𝑔 is 46.2% for alumina nanoparticle at 𝐻 = 0.2. 
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Chapter 7 

Heat transfer phenomena in natural convection 

flow of nanofluid past a vertical wavy cone 

The problem of natural convective heat transfer phenomenon due to water-based nanofluid 

from a wavy cone is investigated in this chapter. Analysis is performed to study the heat 

transfer augmentation due to five types of nanoparticles, namely, alumina (𝐴𝑙2𝑂3), copper 

(𝐶𝑢), silver (𝐴𝑔), copper oxide (𝐶𝑢𝑂) and titania (𝑇𝑖𝑂2). The flow has been assumed to be 

steady and fluid properties have been supposed to be constant except for the density 

depending upon temperature giving rise to the buoyancy force. Famous Tiwari and Das 

model of nanofluid has been utilized in this study. The effects of cone half angle 𝛾 and 

amplitude of the waviness  𝛼 on the Nusselt number (𝑁𝑢) and skin friction coefficient (𝐶𝑓) 

are studied. A comparison is made with the case of pure fluid flow past a wavy cone at 

different values of 𝛼. It has been observed that the 𝑇𝑖𝑂2-nanoparticles have happened to 

show the maximum cooling performance and 𝐶𝑢-nanoparticle appeared to have maximum 

heating performance in this study. The results shown in this research could serve as a 

reasonable source of reference for taming the natural convection heat transfer enhancement 

along wavy cone. Present results are matched with the already published work for pure 

fluid and are shown to be in good agreement. 

 

7.1 Mathematical formulation 

Consider the natural convection flow adjacent to a vertical cone with transverse wavy 

surface having constant temperature 𝑇𝑤 where the constant ambient temperature is denoted 

by 𝑇∞. It is supposed that the cone surface is hotter than the ambient fluid, i.e. (𝑇𝑤 > 𝑇∞). 

The coordinate system is selected in such a way that 𝑥̅ −axis runs from the apex of the non-

wavy cone and the 𝑦̅ −axis is measured normally out word as depicted in Fig. 7.1. The 

density of fluid depends upon temperature while other properties are supposed to be 

constant. Different empirical mathematical models are available for the modeling of 
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nanofluid based on the homogeneous distribution of the nanoparticle, see for instance 

Sec.1.5. The most popular models are due to Buongiorno [31] and Tiwari and Das [32]. 

Because of mathematical convenience the Tiwari and Das model is preferred by most of 

the researchers dealing with nanofluids. In this model only the volume fraction, the particle 

dimensions and the material properties are important.  

 

Figure 7.1: Flow geometry and coordinate system. 

This improved density of the nanofluid plays important role in the free convection flow 

which is mainly established due to the gravitational body force. Because of the absence of 

circular component of velocity the flow is essentially two-dimensional. According to the 

Tiwari and Das Model [32] the mass, momentum and energy conservation laws after the 

consideration of above assumptions read as: 

Mass 

 𝜕(𝑟̅𝑢̅)

𝜕𝑥̅
+
𝜕(𝑟̅𝑣̅)

𝜕𝑦̅
= 0, (7.1) 

Momentum  
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𝑢̅
𝜕𝑢̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑥̅
+ 𝜈𝑛𝑓𝛻

2𝑢̅ +
1

𝜌𝑛𝑓
𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇∞)𝑐𝑜𝑠𝛾, (7.2) 

 
𝑢̅
𝜕𝑣̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦̅
= −

1

𝜌𝑛𝑓

𝜕𝑝̅

𝜕𝑦̅
+ 𝜈𝑛𝑓𝛻

2𝑣̅ −
1

𝜌𝑛𝑓
𝑔(𝜌𝛽)𝑛𝑓(𝑇 − 𝑇∞)𝑠𝑖𝑛𝛾, (7.3) 

Energy 

 
𝑢̅
𝜕𝑇

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇

𝜕𝑦̅
= 𝛼𝑛𝑓

∗ 𝛻2𝑇, (7.4) 

where 𝛾 is cone half angle. The local radius 𝑟̅ of the corresponding cone flat surface is 

described as 𝑟̅(𝑥̅) = 𝑥̅𝑠𝑖𝑛𝛾 and the sinusoidal wavy surface is shown in Fig. 7.1. 

The applicable boundary conditions in the perspective of the flow assumptions read as  

 𝑦̅ = 𝑆̅(𝑥̅): 𝑢̅ = 0, 𝑣̅ = 0, 𝑇 = 𝑇𝑤 , 

𝑦̅ → ∞: 𝑢̅ = 0, 𝑝̅ = 𝑝∞, 𝑇 = 𝑇∞ . 
(7.5) 

In accordance with the cone geometry we use stream function related to the velocity 

components as  𝑟𝑣 = −𝜕𝜓/𝜕𝑥 , 𝑟𝑢 = 𝜕𝜓/𝜕𝑦, due to which the equation of continuity is 

satisfied identically. In order to normalize the system, we utilize the suitable set of new 

variables given by 

𝜉 = 𝑥 =
𝑥̅

𝑙
 , 𝑦 =

𝑦̅

𝑙
, 𝑟 =

𝑟̅

𝑙
=  𝜉 𝑠𝑖𝑛𝛾, 𝜂 = 𝜉−

1
4
𝑦̅ − 𝑆̅(𝑥̅)

𝑙
𝐺𝑟

1
4 , 𝑢 =

𝜌𝑓 𝑙

𝜇𝑓
𝐺𝑟−

1
2 𝑢 ̅ , 

  𝑣 =
𝜌𝑓 𝑙

𝜇𝑓
𝐺𝑟−

1
4(𝑣̅ − 𝑆𝜉𝑢̅), 𝑆 =

𝑆̅(𝑥̅)

𝑙
, 𝜃(𝜉 , 𝜂) =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

 , 

𝜓(𝜉 , 𝜂) = 𝜉
3
4𝑓(𝜉 , 𝜂), 𝑝 =

𝑙2

𝜈2𝜌𝑓
𝐺𝑟−

1
4 𝑝 ̅, 𝐺𝑟 =

𝑔𝛽𝑓(𝑇𝑤 − 𝑇∞)𝑙
3

𝜈𝑓
2 , 

(7.6) 

which transform the system (7.2) – (7.5) to the following form 

 

ω2

d1
𝑓′′′ +

7

4
 𝑓𝑓′′ − (

1

2
+
ω𝜉

ω
𝜉)𝑓′2 +

d5(1 − 𝜔𝜉𝑇𝑎𝑛𝜉)

d2ω2
𝜃 = 𝜉 [𝑓′

𝜕𝑓′

𝜕𝜉
− 𝑓′′

𝜕𝑓

𝜕𝜉
], (7.7) 

 dω2

d3𝑃𝑟
𝜃′′ +

7

4
 𝑓𝜃′ = 𝜉 [𝑓′

𝜕𝜃

𝜕𝜉
− 𝜃′

𝜕𝑓

𝜕𝜉
], (7.8) 

 𝑓(𝜉 ,0) =  𝑓′(𝜉 ,0)  =   𝜃(𝜉 ,0) − 1 = 0,

𝑓′(𝜉 ,∞) =   𝜃(𝜉 , ∞) = 0.
 

} (7.9) 

Here d , d1, d2 , d3 and d5 are the material parameters given in equations (4.15) and 

(5.13), 𝐺𝑟 is the Grashof number, ω is wavy contribution and 𝑃𝑟 is the Prandtl number. 
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The wall shear stress  and the surface heat flux are the physical quantities of interest which 

are necessarily required for the determination of local skin friction coefficient  and the local 

Nusselt number. In view of the non-dimensional transformations (7.6), their final 

expressions read as: 

𝐶𝑓 = 𝐶𝑓𝑥 (
𝐺𝑟

𝑥
)

1
4
=

ω

(1 − 𝜙)2.5
 𝑓′′(𝜉 ,0),

 𝑁𝑢 = 𝑁𝑢𝑥(𝐺𝑟𝑥
3)−1/4 = −ω𝑑𝜃′(𝜉 ,0).

} (7.10) 

The average skin friction and average Nusselt have been described as 

 
𝐶𝑓𝑎𝑣𝑔

=
1

𝕊
∫

𝑥
1
4𝜔2

(1−𝜙)2.5
 𝑓′′(𝜉 ,0)𝑑𝜉

𝜉

0
, 

𝑁𝑢𝑎𝑣𝑔 = −
1

𝕊
∫ 𝑑𝑥

3
4𝜔2𝜃′(𝜉 ,0)𝑑𝜉.

𝜉

0

 

(7.11) 

 

7.2 Solution procedure 

Using implicit finite difference numerical scheme as discussed in Chapter 4, the transport 

equations (7.7) and (7.8) together with the boundary conditions (7.9) have been solved by 

this procedure. The solution was supposed to have converged and the iterative process was 

stopped when the comparative difference between the current and the previous iterations 

reached 10−5. 

In order to validate the precision of the current technique, we have matched our outcomes 

with those of Hearing [60], Roy [61], Yih [64], Pop and Na [160-161] and Singh et al. 

[187] for the skin friction coefficient 𝐶𝑓𝑥(𝐺𝑟/𝑥)
1

4 and local Nusselt number 

𝑁𝑢𝑥(𝐺𝑟𝑥
3)−1/4 in Table 3.1. The comparisons are found to be a superb match in all the 

above cases. After ensuring the accuracy of the current procedure we have employed it to 

the current problem. 

 

7.3 Results and discussion 

In this analysis we have shown the effects of amplitude of wavy surface, nanoparticle 

concentration, and cone half angle on the natural convection flow of nanofluid past a 
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vertical wavy cone. The skin friction coefficient (𝐶𝑓) and the Nusselt number (𝑁𝑢) are the 

important physical quantities that are necessary to be examined. The 𝐶𝑓 and 𝑁𝑢 plots are 

shown in Figs. 7.2 – 7.7 when 𝐶𝑢-water based nanofluid is considered. Nanoparticle 

concentration 𝜙 varies from 0 – 10 % and wavy amplitude 𝛼 varies from 0 to 0.2, the values 

of the cone half angle 𝛾 are taken 𝜋/12, 𝜋/6 and 𝜋/4 for fixed Prandtl number (𝑃𝑟 = 7.0). 

The computation is performed for different values of the wavy amplitude 𝛼, nanoparticle 

concentration parameter 𝜙 and the cone inclination half angle 𝛾. We used five different 

nanoparticles viz. alumina (𝐴𝑙2𝑂3), silver (𝐴𝑔), copper (𝐶𝑢), copper oxide (𝐶𝑢𝑂), and 

titania (𝑇𝑖𝑂2). Figures 7.2 – 7.7 illustrate the change in 𝐶𝑓 and 𝑁𝑢 for increasing values of 

wavy amplitude 𝛼, nanoparticle concentration parameter 𝜙 and the cone inclination half 

angle 𝛾 for 𝐶𝑢 -water nanofluid. These Figures show that 𝐶𝑓 and 𝑁𝑢 enhance with the 

increase of nanoparticle concentration parameter 𝜙 and cone inclination angle 𝛾 whereas a 

decrease is depicted with an increase of wavy amplitude 𝛼. Figures 7.8 – 7.13 depict the 

variation of the 𝐶𝑓 and 𝑁𝑢 with the variation of wavy amplitude 𝛼, nanoparticle volume 

fraction parameter 𝜙 and cone inclination angle 𝛾 for the selected types of the nanoparticle. 

From these Figures it is clear that the 𝑁𝑢 enhances with the increase of wavy amplitude 𝛼; 

nanoparticle concentration parameter 𝜙 and cone inclination half angle 𝛾. The 𝐶𝑓 enhances 

with the increase of nanoparticle concentration parameter 𝜙 whereas decreases with the 

increase of wavy amplitude 𝛼 and cone inclination angle 𝛾. Also it is noted that 𝑁𝑢 is 

maximum in the case of 𝐶𝑢-nanoparticle whereas 𝐶𝑓 is maximum for 𝐴𝑔-nanoparticle; 𝐶𝑓 

and 𝑁𝑢 are minimum for 𝑇𝑖𝑂2-nanoparticle. Isotherms are plotted for some values of 𝛼 

(𝛼 = 0.0, 0.1, 0.2) and 𝜙 (𝜙 = 0.0, 0.05, 0.1) and  𝛾 (𝛾 = 𝜋/12, 𝜋/6, 𝜋/4) in Figs. 

7.14 - 7.16. The wavy pattern is prominent and the figures indicate that with the increase 

of these parameters the thermal boundary layer thickness increases. 

Thermo-physical properties of the five nanoparticles 𝐶𝑢, 𝐶𝑢𝑂, 𝐴𝑙2𝑂3, 𝐴𝑔 , 𝑇𝑖𝑂2 and water 

are shown in Table 1.2. The results of 𝐶𝑓 and 𝑁𝑢 are tabulated in Table 7.1. The values are 

reported for the selected values of 𝛼, 𝜙 and 𝛾 when 𝑃𝑟 = 7.0 for copper (𝐶𝑢) nanoparticle 

along vertical wavy cone surface at 𝑥 = 0.5, 𝑥 = 1.0 and 𝑥 = 1.5. It is observed that 𝑁𝑢 

enhances with the increase of  𝛼, 𝜙 and 𝛾 whereas 𝐶𝑓 reduces with the increase of 𝛼 and 𝛾 

at crest location and similar behavior is observed at node and trough locations. 
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The main objective of adding nanoparticles to the classical fluids is to enhance the rate of 

heat transfer for such fluids, so it is necessary to identify the particular nanoparticle which 

can be used to achieve the maximum heat transfer rate. Numerical values of average skin 

friction and average rate of heat transfer for different nanoparticles (𝐶𝑢, 𝐶𝑢𝑂, 𝐴𝑔,

𝐴𝑙2𝑂3, 𝑇𝑖𝑂2 ) when 𝑃𝑟 = 7.0, 

Table 7.1: 𝐶𝑓 and  𝑁𝑢 data for different 𝛼, 𝜙 and 𝛾 at 𝑃𝑟 = 7.0 for copper (𝐶𝑢) 

nanoparticle. 

𝜉 𝜙 𝛼 𝛾 𝐶𝑓  𝑁𝑢 

 

 

 

0.5 
(Crest) 

0.1 
 

0.0  

𝜋/4 
 

0.5766 1.0246 

0.1 0.5669 1.0477 

0.0  

 

 

0.2 
 

0.5100 0.5957 

0.05 0.5321 0.9996 

 

 

 

0.1 
 

0 0.5812 1.0347 

𝜋/12 0.5753 1.0383 

𝜋/6 0.5681 1.0434 

𝜋/4 0.5572 1.0530 

 

 

 

1.0 
(Node) 

0.0  

𝜋/4 

0.5766 1.0246 

0.1 0.6474 1.1049 

0.0  

 

 

0.2 
 

0.5693 1.0007 

0.05 0.5947 1.0592 

 

 

0.1 
 

0 0.4438 0.9718 

𝜋/12 0.4946 1.0156 

𝜋/6 0.5506 1.0611 

𝜋/4 0.6233 1.1167 

 

 

 

1.5 
(Trough) 

 

0.0  

𝜋/4 
 

 

0.5766 1.0246 

0.1 0.5949 1.0382 

0.0  

 

 

0.2 
 

0.5582 0.9156 

0.05 0.5857 0.9720 

 

 

0.1 
 

0 0.5834 1.0252 

𝜋/12 0.5926 1.0251 

𝜋/6 0.6027 1.0257 

𝜋/4 0.6160 1.0275 

 

 𝛾 = 𝜋 4⁄ , 𝛼 = 0.2, 𝜙 = 0.1, 𝜉 = 1.0  are presented in Table 7.2 and calculations of 

percent increase in the magnitude of average skin friction and the average Nusselt number 

for five different materials (𝐶𝑢, 𝐶𝑢𝑂, 𝐴𝑔, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2 ) have been shown in Tables 7.3 

and 7.4. It is observed that maximum increase of about 12% in average skin friction is 

obtained for 𝐴𝑔 with 10% concentration in the base fluid when compared with the value 
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𝐶𝑓𝑎𝑣𝑔
= 0.5260 at 𝛼 = 0.0, 𝜙 = 0.0, 𝛾 = 𝜋 4⁄  and minimum increase of about 5.8% in 

the value of average skin friction is obtained for 𝑇𝑖𝑂2  with 10% concentration when the 

present results are compared with the value 𝐶𝑓𝑎𝑣𝑔
= 0.5284 at 𝛼 = 0.0, 𝜙 = 0.2, 𝛾 =

𝜋 4⁄ . On the other hand maximum gain of about 39% in average Nusselt number is 

obtained for 𝐶𝑢 with 10% concentration when the present results are compared with the 

value 𝑁𝑢𝑎𝑣𝑔 = 0.7455 at 𝛼 = 𝜙 = 0.0, 𝛾 = 𝜋 2⁄  and minimum increase of about 6.8% in 

the value of Nusselt number is obtained for 𝑇𝑖𝑂2 with 10% concentration when the present 

results are compared with the value 𝑁𝑢𝑎𝑣𝑔 = 0.9341 at 𝛼 = 0.0, 𝜙 = 0.0, 𝛾 = 𝜋 4⁄ . The 

percent increase in average skin friction and average Nusselt number for nanofluid is higher 

in case of smaller amplitude when compared with the pure fluid results. Overall, it is 

observed that the nanofluid has a great capacity to serve as the best coolant as compared to 

the pure fluid. 

Table 7.2: Numerical values of 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔 for different nanoparticle when   𝑃𝑟 =

7.0, 𝛼 = 0.2, 𝛾 = 𝜋 4⁄ , 𝜙 = 0.1, 𝜉 = 1.0 . 

Nano particle 

material 

𝐶𝑓𝑎𝑣𝑔
 𝑁𝑢𝑎𝑣𝑔 

𝐶𝑢 0.5785 1.0364 

𝐶𝑢𝑂 0.5731 1.0236 

𝐴𝑔 0.5892 1.0306 

𝐴𝑙2𝑂3  0.5625 1.0262 

𝑇𝑖𝑂2 0.5589 0.9978 
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Figure 7.2: Effect of 𝛼 on skin friction profile. 

 

 

Figure 7.3: Nusselt number plotted against 𝜉 for various 𝛼. 
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Figure 7.4: Influence of 𝜙 on skin friction coefficient. 

 

 

Figure 7.5: Variation of Nusselt number due to 𝜙. 
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Figure 7.6: Change in skin friction for different 𝛾. 

 

 

Figure 7.7: Nusselt number graph for different 𝛾. 
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Figure 7.8: Behavior of skin friction coefficient against 𝜙 for different nanoparticles. 

 

 

Figure 7.9: Nusselt number profile against 𝜙 for different nanoparticles. 
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Figure 7.10: The effect of 𝛼 on skin friction coefficient for different nanoparticles. 

 

 

Figure 7.11: Nusselt number against 𝛼 for different nanoparticles. 
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Figure 7.12: The effect of 𝛾 on 𝐶𝑓 for different nanoparticles. 

 

 

Figure 7.13: Change in Nusselt number against 𝛾 for different nanoparticles. 
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Figure 7.14: Isotherms plotted at various 𝛼 (= 0.0, 0.1, 0.2). 

 

 

Figure 7.15: Effect of different 𝜙 (= 0.0, 0.05, 0.1) on isotherms. 
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Figure 7.16: Isotherms at various values of 𝛾 (= 0, 𝜋/12, 𝜋/6, 𝜋/4). 

 

 

Table 7.3: Percent change in 𝐶𝑓𝑎𝑣𝑔
 and 𝑁𝑢𝑎𝑣𝑔for different nanoparticles when  𝑃𝑟 =

7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝛾 = 𝜋 4⁄ , 𝜉 = 1.0 . 

 

Nano 

particle 

material 

  % increase in 𝐶𝑓𝑎𝑣𝑔
 

Versus  

𝐶𝑓𝑎𝑣𝑔
= 0.6375 

at 𝛼 = 𝜙 = 0.0, 

 𝛾 = 0. 

Versus  

𝐶𝑓𝑎𝑣𝑔
= 0.5260 

at 𝛼 = 𝜙 = 0.0,   

𝛾 = 𝜋 4⁄ . 

Versus  

𝐶𝑓𝑎𝑣𝑔
= 0.5284 

at 𝛼 = 0.2, 𝜙 = 0.0, 

𝛾 = 𝜋 4⁄ . 

 𝐶𝑢  −9.2 10.0 9.5 

𝐶𝑢𝑂 −10.1 9.0 8.5 

𝐴𝑔 −7.6 12.0 11.5 

𝐴𝑙2𝑂3 −11.8 6.9 6.4 

𝑇𝑖𝑂2 −12.3 6.2 5.8 
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Table 7.4: Percent change in average Nusselt number 𝑁𝑢𝑎𝑣𝑔 for different nanoparticles 

when  𝑃𝑟 = 7.0, 𝛼 = 0.2, 𝜙 = 0.1, 𝛾 = 𝜋 4⁄ , 𝜉 = 1.0 . 

 

Nano 

particle 

material 

% increase in 𝑁𝑢𝑎𝑣𝑔 

Versus  

𝑁𝑢𝑎𝑣𝑔 = 0.7455 

at 𝛼 = 𝜙 = 0.0, 

 𝛾 = 0. 

Versus  

𝑁𝑢𝑎𝑣𝑔 = 0.9341 

at 𝛼 = 0.0, 𝜙 = 0.0, 

𝛾 = 𝜋 4⁄ . 

Versus  

𝑁𝑢𝑎𝑣𝑔 = 0.9291 

at 𝛼 = 0.2, 𝜙 = 0.0, 

𝛾 = 𝜋 4⁄ . 

 𝐶𝑢  39.0 11.0 11.5 

𝐶𝑢𝑂 37.3 9.6 10.1 

𝐴𝑔 38.2 10.3 10.9 

𝐴𝑙2𝑂3 37.7 9.6 10.4 

𝑇𝑖𝑂2 33.8 6.8 7.3 

 

7.4 Concluding remarks 

Heat transfer phenomenon in natural convection flow past a wavy cone has been 

investigated in this chapter for base fluid water and five nanoparticles, namely, alumina 

(𝐴𝑙2𝑂3), copper (𝐶𝑢), copper oxide (𝐶𝑢𝑂), silver (𝐴𝑔), and titania (𝑇𝑖𝑂2). The non-linear 

transport equations have been solved numerically and the accuracy of the solution scheme 

has been shown by giving comparison with the already existing data. Results show that 

heat transfer rate is significantly increased by the addition of nanoparticles with respect to 

the base liquid and heat transfer enhancement is observed to be more prominent with the 

increase of the nanoparticle concentration. It is shown that Nusselt number is maximum in 

the case of 𝐶𝑢-nanoparticle and decreases, successively, for 𝐴𝑔-nanoparticle, 𝐴𝑙2𝑂3-

nanoparticle, 𝐶𝑢𝑂-nanoparticle and 𝑇𝑖𝑂2-nanoparticle. Maximum gain of about 39% in 

average Nusselt number is obtained for 𝐶𝑢 with 10% concentration. Furthermore, it is 

concluded that the nanofluid serves as a very useful fluid in the expeditions of cooling and 

heating processes. 
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Chapter 8 

Conclusion and future work 

In this dissertation, we studied similar and non-similar flows of nanofluid with heat and 

mass transfer. The contribution of nanoparticle towards convective heat transfer 

enhancement is manifold which requires a suitable model in order to capture the correct 

physics. There are several empirical and semi-empirical nanofluid models available in the 

literature. Among these the most popular models are those proposed by Buongiorno and 

Tiwari and Das. In the Buongiorno nanofluid model, the basic transport equations for fluid 

flow and heat transfer are appended with a transport equation for nanoparticle 

concentration. Buongiorno distinguished the succeeding dominating phenomena: the 

Brownian diffusion (stochastic motion of nanoparticles), thermophoresis (particle 

diffusion due to the temperature gradient) and the Brownian motion; while the Tiwari and 

Das model focuses upon the modified thermophysical properties of the nanofluid. 

This study is mainly divided into two types of flows, namely, self-similar flows (Chapters 

2 and 3) and non-similar flows (Chapters 4 to 7). The laminar incompressible self-similar 

flows of nanofluid have been considered for the plate and cone geometries subjected to 

natural convective phenomenon. For the plate geometry two cases, namely, the VWT and 

VHF, by considering the power-law form of the variable wall temperature, have been 

investigated. The non-similar flows include the study of forced and natural convection 

flows of nanofluid past the surfaces involving wavy texture. The steady MHD boundary 

layer nanofluid flow and heat transfer over the moving wavy plate is examined for different 

nanoparticles namely, 𝑀𝑊𝐶𝑁𝑇, 𝑆𝑊𝐶𝑁𝑇, 𝐴𝑙2𝑂3, 𝑇𝑖𝑂2  and 𝐴𝑔. Heat transfer analysis 

of natural convection flow of nanofluid along a vertical wavy surface has been investigated 

for five different nanoparticles, namely, silver (𝐴𝑔), copper (𝐶𝑢), alumina ( 𝐴𝑙2𝑂3), 

magnetite (𝐹𝑒3𝑂4) and silica (𝑆𝑖𝑂2). The influence of heat generation/absorption in 

nanofluid flow over a vertical wavy surface for two types of nanoparticles namely, alumina 

(𝐴𝑙2𝑂3) and magnetite (𝐹𝑒3𝑂4) is also investigated. The problem of natural convective heat 

transfer of water-based nanofluid along wavy cone surface is studied numerically for five 
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different types of nanoparticles, namely, alumina (𝐴𝑙2𝑂3), copper (𝐶𝑢), silver (𝐴𝑔), copper 

oxide (𝐶𝑢𝑂) and titania (𝑇𝑖𝑂2). 

After the utilization of suitable transformations, the constitutive equations of these models 

are transformed into dimensionless ordinary differential equations for the case of self-

similar flows and to the partial differential equations for the case of non-similar flows and 

results were obtained by employing the implicit finite difference numerical scheme (Keller-

box method). Findings of these studies are dependent upon the dimensionless parameters. 

These dimensionless parameters provide the trend of variation of different physical 

quantities like temperature, velocity, skin friction coefficient, local Nusselt number and 

Sherwood number. The results in the absence of different nanoparticle (𝑀𝑊𝐶𝑁𝑇,

𝑆𝑊𝐶𝑁𝑇, 𝐶𝑢, 𝐶𝑢𝑂, 𝐴𝑙2𝑂3, 𝐹𝑒3𝑂4, 𝑇𝑖𝑂2, 𝑆𝑖𝑂2  and 𝐴𝑔 considered in this analysis) are 

also calculated and a comparison of the results with the absence and presence of 

nanoparticles is made. It is noted that the skin friction 𝐶𝑓 increases with the increment in 

Brownian motion parameter 𝑁𝑏, Prandtl number 𝑃𝑟, wavy amplitude 𝛼, concentration 

of nanoparticles 𝜑 and  thermophoresis  parameter 𝑁𝑡. However, skin friction reduces 

as power-law index 𝑚 and Lewis number 𝐿𝑒 are increased. Also skin friction coefficient 

is an increasing/decreasing function of heat generation/absorption parameter. It is observed 

that the skin friction coefficient is maximum in the case of 𝐴𝑔-nanoparticle. For non-flat 

surface, the percent increase in average skin friction coefficient for nanofluid is higher 

when compared with the pure fluid results and flat plate results. Moreover, local Nusselt 

number enhances by increasing the values of concentration of nanoparticles and the cone 

half angle while it reduces as Brownian motion 

parameter, thermophoresis  parameter and wavy amplitude are increased whereas, local 

Nusselt number is decreasing/increasing function of heat generation/absorption parameter. 

It is shown that local Nusselt number is maximum in the case of 𝐶𝑢-nanoparticle. For non-

flat surface, the percent increase in average Nusselt number for nanofluid is higher when 

compared with the pure fluid and flat plate results. Sherwood number rises by incrementing 

𝑁𝑏 and 𝑁𝑡 parameters. Also Sherwood number enhances by increasing the power-law 

index, Prandtl and Lewis numbers. 
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Overall, it is observed that the nanofluid has a great capacity to serve as the best coolant as 

compared to the pure fluid. Furthermore, it is concluded that the nanofluid serves as very 

useful fluid in the expeditions of cooling and heating processes. 

Based on these investigations, there are a number of possibilities of research that still needs 

to be performed, both in terms of theoretical and simulation studies. The steady natural and 

forced convection flow problems discussed in this dissertation can be extended for the 

unsteady state problems. Moreover, the study of the non-homogenous nanofluid models in 

current flow problems would also be a very useful extension of the present work and results 

in higher values of heat transfer enhancement. Furthermore, different shape factors of 

nanoparticles and performance of nanoparticles in different types of base fluids would also 

be a very useful extension of the present work. 
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