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Preface
In fluid mechanics, peristaltic flows gain considerable attention in the last couple of
decades because of its numerous applications not only in biomedical science but also
in the manufacturing industry. Peristaltic motion is kind of the fluid transportation
which occurred due to the contraction and expansion of the progressive wave along
the tube/channel occupying the fluid. In large number of physiological circumstances,
the body uses a peristaltic mechanism to push or blend the innards of the tube, like in
gastrointestinal tract, ureter, bile duct, esophagus and some other glandular ducts.
Peristaltic pumping has valuable advantages in the manufacturing the biomedical
devices that includes heart-lung machine in which the critical part of maintaining the
pumping of the blood is performed on the principles of peristaltic pumping and
similarly in many other devices. The peristaltic mechanism also involves in plant
physiology and in various other pumping situations where it is necessary to avoid the
interaction of internal moving parts like pistons etc. It is noted through literature
survey that lubrication theory is widely used in the study of peristaltic flows which
buried important features. It is therefore, the main objective of this dissertation is to
study the peristaltic flows in different physical situations for different types of fluid
passing through the channel or tube without using the assumptions of lubrication
theory that are long wavelength and low Reynolds number assumption. By ignoring
these assumptions, the results presented are valid for all wavelengths and non-zero
moderate values of Reynolds number. The stream-vorticity function formulation is
adopted to simulate in terms of modeled nonlinear partial differential equations by
using finite element method based on Galerkin’s residual technique to obtain the
numerical results. The contribution of inertial forces along with other participated
parameters in the modelled governing equation are presented through the contours of
streamlines, vorticity, isothermal lines wherever, graphs of longitudinal velocity,

pressure rise per wavelength and temperature distribution wherever.

Broadly, the thesis compose of three parts in which first part contains some basic
definitions and preliminaries given in chapter one which can help the readers to
understand the succeeding parts of the thesis. The second part contains the peristaltic
flows passing through the channel in the different flow situation for Newtonian/non-
Newtonian fluids that occupies next four chapters. The third part contains last four

chapters in which the peristaltic flows passing through the tube in different flow



situation for Newtonian and non-Newtonian fluids. The main objective of each

chapter is as follow:

Chapter two describes the peristaltic motion through a porous saturated channel under
the influence of applied magnetic field of uniform strength. The modelled equations
are solved by using the finite element method after converting into stream vorticity
formulation. The results are presented without applying the lubrication theory and
compared with existing literature. The obtained results are presented graphically for
different values of Reynolds number, porosity parameter, Hartmann number and other
participated parameters. It is noted that the streamlines are highly affected by the
change in Reynolds number and Hartmann number. The diffusion of vorticity from
the boundaries to the center of the channel increases with increasing both the
permeability of the porous medium through permeability parameter and Reynolds
number while an opposite trend is noted with increasing Hartmann number.
Moreover, the pressure rise per wavelength in pumping region also decreases by
increasing both permeability of the porous medium and strength of the magnetic field.
These results are published in Journal of Porous Media, 20(9) (2017), 841-857.

In chapter three, mixed convective heat transfer analysis is presented in the study of
peristaltic flow passing through the vertical channel. Mathematical modeling of
governing equations are presented in which heat generation term is introduced in the
energy equation. The set of nonlinear partial differential equations are exposed to
Galerkin’s formulated finite element method to present the numerical results. The
assumptions of long wavelength and low Reynolds number are neglected to present
the role of inertial forces in the heat transfer analysis of peristaltic flow. The obtained
results for different values of Reynolds number, Grashof number and other
participated parameters. It is noted that variation in Prandlt number and heat
generation parameter effects the isothermal lines. Increase in heat generation reduces
the velocity near the central region and improves the velocity in the vicinity of
peristaltic wall. Heat generation is also responsible to enhance the size of bolus and
curvature effect on isothermal lines and to drop the pressure in the flow region.
Increase in time mean flow rate supports the enhancement of velocity, temperature
and size of bolus while increase in wave number increases the size of bolus, reduces
curvature effect of isotherms and rises the pressure. These results are published in

Journal of Applied Fluid Mechanics, 10(6) (2017), 1813-1827.



Since previous both chapters cover the study of peristaltic flow of Newtonian fluid
under different physical conditions, therefore chapter four contains the mathematical
modeling and simulation of peristaltic flow of non-Newtonian fluid. In this chapter,
Casson fluid is consider in peristaltic motion under the impact of applied magnetic
field. Governing equation are modeled without applying the assumptions of
lubrication theory which arrives to set of nonlinear partial differential equations.
Galerkin‘s formulated finite element method is applied after discretizing the domain
into mesh of quadratic triangular elements. It is noted that the Casson fluid parameter
upsurge the curvature effects and flow is observed slower for Casson fluid as
compared to that of Newtonian fluid. The increasing values of Hartmann and
Reynolds numbers cause increase in volume of the bolus while increase in velocity is
noted near the center of the channel and opposite behavior is observed near the
peristaltic wall. These observations are published in the journal, Nonlinear
Engineering — Modeling and Application, DOI: 10.1515/nleng-2017-0098.

Chapter five is dedicated to study the behavior of contours of streamlines and
curvature effects in the peristaltic motion of micropolar fluid passing through the
porous saturated medium under the influence of magnetic field. Finite element
method is implemented to the governing equations that are modeled by dropping the
assumptions of theory of lubrication i.e. long wavelength and low Reynolds number
which arrives to a coupled nonlinear partial differential equations. To ensure the
accuracy of the developed code, obtained results are compared with the results
available in the literature and found in excellent agreement. It is concluded that at low
Reynolds number, the trapped bolus are symmetrical while increasing Reynolds
number magnifying the size of the boluses, increases the pressure rise per wavelength
and reduces the velocity. Peristalsis mixing can be enhanced by increasing Hartmann
number while it reduces by increasing permeability of the porous medium in the
peristaltic transportation of the micropolar fluid. Increasing micropolar parameter
supports the pressure rise per wave length and it is noted greater as compared to that
of Newtonian case in pumping region while its behavior is opposite in augmented
region and enhancing the coupling parameter gives improved pumping performance.

These findings were published in AIP Advances, §, 015319 (2018).

In chapter six, the investigation of peristaltic transportation through the tube filled

with porous medium under the influence of magnetic field is presented. The



governing equations for the peristaltic flow in tube are modelled in axisymmetric
coordinates by dropping the assumptions of lubrication theory. The modified
Laplacian operator is appeared in stream vorticity formulation. The effects of
moderate values of Reynolds number, wave number, porosity parameter and time
mean flow rate on the streamlines, velocity and pressure rise per wavelength are
presented graphically. The obtained results evaluated by developed code is compared
with the available results in literature to ensure the validation. Circulation of trapped
bolus increases with magnification in the Reynolds and Hartmann numbers. The
increase in velocity and consequently decrease in pressure in the central part of the
tube is predicted by increasing the the permeability of the porous medium. The
material given in this chapter are submitted for publication after revision in the

journal AIP Advances.

Chapter seven contains comprehensive study of peristaltic flow passing through
vertical channel to incorporate the buoyancy forces to analyze the heat transfer
analysis through mixed convection in presence of heat generation parameter. The
governing equations contains energy equation which includes heat generation
parameter. The assumptions of lubrication theory are dropped in mathematical
modelling the constitutive equations which arrives the model to set of nonlinear
partial differential equations. The present model can be deduce to creeping flow to get
the result of long wavelength. Galerkin’s formulated finite element method is
incorporated to solve the modeled equations and obtain numerical results that are
presented in the form of contours of streamlines and isothermal lines, velocity and
temperature profiles for variation of different involved parameters. It is observed that
circulation of bolus increases by increasing the values of the wave and Reynolds
numbers. Furthermore, Isothermal lines are symmetric at low time mean flow rates
and saturation is observed in the lower part is reported by increasing rate of time
mean flow. At the center of the tube, increasing value of Reynolds number decreases
the fongitudinal velocity while increases the temperature but increasing wave number
enhances the velocity and reduces the temperature. The decrease in velocity is noted
at center due to increasing values of Grashof number, Prandtl number and heat
generation parameter, while the slight increase is also observed far away from the
center. The decrease in temperature is noted for increasing values of Grashof number

while, Prandtl number, heat generation and time-mean flow rate supported the



enhancement in temperature. Pressure rise per wavelength can be enhanced by
increasing both the Reynolds and Grashof numbers. These results are published in

Communications in Theoretical Physics 69(4) (2018), 449-460.

In chapter eight, peristaltic flow of a blood flow model is investigated by considering
Casson fluid as a blood passing through the tube since it is widely shown that blood
behaves similar to Casson fluid in narrow arteries. The magnetic field is applied
perpendicular to the flow with uniform strength to predict the effect of
electromagnetic forces on the blood flow model. The governing equations for blood
flow model of Casson fluid are formulated to a system of nonlinear coupled partial
differential equations, which are exposed to Galerkin’s finite element method. The
assumptions of lubrication theory are neglected, due to which the effects of moderate
Reynolds number and wave number along with other parameters are presented. It is
observed that velocity of the fluid is an increasing function of both Reynolds number
and strength of applied magnetic field. The contours of streamlines, graphs of
longitudinal velocity and pressure rise per wavelength are also plotted for different
values of Casson fluid parameter and wave number. The dominant inertial forces
caused by the increase in Reynolds number increases the magnitude, number of
trapped boluses and vorticity exhibit the generation of the flow field in the narrow
part of the tube in this case. These results are accepted for publication in Journal of
Quality Measurement and Analysis 14(1) (2018), 101-113.

Chapter nine deals with the peristaitic transportation of micropolar fluid passing
through the saturated porous medium under the influence of applied magnetic field.
The flow problem is modelled without applying the long wavelength and low
Reynolds number approximation that makes the governing equations as a set of
nonlinear partial differential equations. The domain is discretize intc mesh of
quadratic six nodal triangular elements and finite element method is implemented to
obtained numerical result. The obtained results are presented by plotting the graphs of
longitudinal velocity, pressure rise per wavelength, contours of streamlines, vorticity
andmicrorotation and discuss in detail. It is found that peristaltic mixing is supported
by Reynolds number and permeability parameter of porous medium while Hartmann
number reduces the number and size of the bolus. The pressure rise per wavelength

for micropolar fluid is noted greater as compared to that of Newtonian fluid. These



contents given in ninth chapter has been submitted for possible publication in

European International Journal of Science and Technology.
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Nomenclature

b=

=~ =

Z 3 X - xR X ™=~

Unknown nodal vector

Half width of the channel

Wave amplitude

Magnetic field parameter

Magnetic field vector

Infinitesimal modification in Magnetic field
Velocity of wave train lab frame

Specific heat at constant pressure

Modified Laplacian

Electric field

Infinitesimal modification in electric field

Global forcing vector

Lorentz force

Forcing Function

Microrotation vector

Grashof number

Acceleration caused by the gravity

Wave in lab frame

Wave in wave frame

Current density

Microgyration parameter in dimensional form
Microgyration parameter in non-dimensional form
Infinitesimal modification in current density
Permeability of porous medium in dimensional form
Permeability of porous medium in non-dimensional form
Global stiffness matrix

Differential operator

Hartmann Number

Micropolar parameter

Coupling parameter



u,v

Wy, Wy, W3

x*;y*

Interpolation shape function

Behavior index

Dimensional pressure in wave frame

Prandtl number

Pressure in lab frame

Yield stress

Pressure in dimensionless form in wave frame
Pressure rise per wavelength

Heat generation in dimensional form

Time mean flow rate in dimensional form

Time mean flow rate in non-dimensional form
Flow rate in non-dimensional form

Flow rate in dimensional form

Axial component in fixed frame

Reynolds number

Magnetic Reynolds number

Non-dimensional radial component in wave frame
Radial coordinate in dimensional form in wave frame
Temperature of the fluid in dimensional form
Temperature of the fluid

Temperature at the wall

Time dependent variable

Nodal variable

Approximate nodal variable

Component of velocity in x* direction in wave frame
Component of velocity in X direction in lab frame
Component of velocity in y* direction in wave frame
Component of velocity in Y direction in lab frame
Velocity vector

Dimensionless velocity components

Weight function

Weight functions

Dimensional rectangular coordinates in wave frame



XY

Dimensional rectangular coordinates in lab frame

X,y Non- dimensional coordinates in wave frame
z Non-dimensional axial component in wave frame
Z Axial component in fixed frame
z* Dimensional axial coordinate in wave frame of reference
Greek symbols
Inclined angle of channel with horizontal
Heat generation parameter
Br Coefficient of thermal expansion
ap.v Coefficients of spin gradient viscosity for micropolar fluids
Residual error
&y Error in approximate stream function
£, Error in approximate vorticity function
£ Error in approximate temperature function
£l Domain of the area integral
K Thermal conductivity
K Coefficient of vortex viscosity
K Consistency index
r Domain of the line integral
n Dimensionless wave in wave frame
n Dimensional wave in wave frame
A Wave length in lab frame
¢ Amplitude ratio
Y Stream function in non-dimensionl form
Y Stream function in dimensional form
Yy Element nodal approximation of stream function
& Wave Number
g Dimensionless temperature
Gy Element nodal approximation of temperature function
T, Critical value of the 7 based on non-Newtonian modal
u Dynamic viscosity
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Casson parameter

v Kinematic viscosity
o Density
o Electrical conductivity

w Non-dimensionl vorticity

Wy Element nodal approximation of vorticity function

Tyx Shear stress

Subscript symbols
(ele) Restriction to the relevant variable/function to the element

k Index of the node



Chapter 1

Preliminaries

This chapter is devoted to discuss some basic definitions, concepts and equations also
discussed by (Fox et al. (2003); White (2003)) which helps the readers for
understanding the details in succeeding chapters. The governing equations representing

the conservation of mass, momentum and energy conservation are also presented.

1.1 Fluid Mechanics

The branch of engineering or applied mechanics that examines the nature and properties
of fluids both in motion and at rest. It simply deals with the study of gases, liquids and
plasmas. Broadly speaking, it can be allocated to categories:

1.1.1  Fluid kinematics

1.1.2 Fluid dynamics

1.1.1 Fluid kinematics

When the fluid motion is considered in the absence of applied forces, we call it as fluid

kinematics.
1.1.2 Fluid dynamics

In contrast to the fluid kinematics, when the effect of forces are incorporated to discuss
the fluid motion, the study is treated as fluid dynamics. Fluid dynamics can also be
further divided into two brand namely

(a) Fluid statics
(b) Fluid kinetics
(a) Fluid statics

When the effect of forces are considered on the fluid that is either static or stationary,
the branch which deals with this phenomenon is called fluid statics.

(b) Fluid kinetics

If the effect of forces is also considered on the fluid which is in motion, the branch

dealing with such phenomenon is called fluid Kinetics.

1.2 Types of Fluids

Fluids are broadly categorized into two major groups
1.2.1 Ideal fluids



1.2.2  Real fluids
1.2.1 Ideal fluids

Fluids having no viscosity fall in the category of ideal fluids. In this case fluid offers

no resistance to the applied shear stress.

1.2.2 Real fluids

All real fluids have some non-zero value of viscosity, and offers resistance to the flow.
Real fluids are further divided into two main classes.

(a) Newtonian Fluids

(b) Non-Newtonian Fluids

(a) Newtonian Fluids
The fluids relates two quantities i.e. shear stress and deformation rate in the direct

relation with linearly proportional are called Newtonian fluids. Mathematically,

d
ryxzuﬁ, (1.1)

gives the relation between shear stress and deformation rate for Newtonian fluids.

(b) Non-Newtonian Fluids

Fluids that do not obey relates two quantities i.e. shear stress and deformation rate in
the direct relation with linearly proportional, thus violated the Newton's law of viscosity
given in Eq. (1.1) are non-Newtonian fluids. For non-Newtonian, fluids shear stress and

rate of deformation obeys power law model

Ty = 1 (2), (12)

dy
in which k is the consistency index where as he symbol n is the behavior index. Eq.

(1.2) can also be written as

Tyx =1 (3—:), (1.3)
where
n=x(2) (14)

is the apparent viscosity. The numerical values of the apparent viscosities of most of
the non-Newtonian fluids are relatively high when compared to the viscosity of water.
Paint is an example of non-Newtonian fluid having a shear dependent viscosity and
become less viscous when the applied shear stress is increased. Casson fluid and

Micropolar are the other examples of non-Newtonian fluids.



1.3 Peristaltic Flow

The circumferential progressive wave of either contraction or/and expansion generated
laterally to the channel/tube is known as a mechanism of peristalsis. Peristalsis can be
found in several organisms, in a variety of organs and in a number of industrial
processes. Peristalsis is now getting more interest by engineers, scientists as well as the
researchers of biomedical sciences due to its vast applications. Physiologists considered
peristalsis as one of the key mechanism of the fluid transportation in biological
structures. It includes transportation/movement of urine in a body, movement of chime,
transportation of spermatozoa in the cervical canal, vasomotion in small blood vessels
and in the movement of lymph in the lymphatic vessels. The study of peristaltic flows
give more effective mechanism for transportation in a sanitary fluid, industrial
peristaltic pumping and in preparation of medical devices. In the printing industry,
transporting of viscous fluids in mechanical roller pump and shifting of noxious fluids
are good examples of peristaltic flows. Now a days, many medical devices are
manufactured on the basis of peristaltic mechanism to transport fluid without moving

internal machinery parts such as heart-lung machine and dialysis system etc.

1.3.1 Pumping Regions

The peristaltic flow is discretized into four types of flow regions or quadrants known
as adverse pressure if pressure rise APy > 0 while pressure rise AP < 0 is for

favorable pressure gradient. These regions are characterized on the basis of pressure

difference with the time mean flow rate.

(a) Peristaltic pumping
The quadrant I corresponds to the flow in which time mean flow is positive with adverse
pressure is known as peristaltic/positive pumping quadrant.

(b) Retrograde pumping
The quadrant II corresponds to the flow in which time mean flow is negative with
adverse pressure is known as retrograde/backward pumping quadrant.

(c) Co-pumping
The quadrant IIl corresponds to the flow in which time mean flow is negative

with AP; < 0, is known as co- pumping quadrant.
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(d) Augmented pumping
The quadrant IV corresponds to the flow in which time mean flow is positive
with AP; < 0, is known as augmented pumping quadrant. Furthermore, in quadrant 1V,

the free pumping region exist when AP; = 0 with @ > 0.

1.3.2 Trapping phenomena

Trapping is one of the important physical phenomena in peristalsis. It depends on the
formation of contours of streamlines. Sometimes, streamlines are not moving on the
path similar to that of the peristaltic wall rather splits and moves in circular trajectories
thus encloses a bolus of fluid in closed streamlines and circulating region arises. The
trapped bolus and their movement along with the wave in the flow exhibit the trapping

phenomenon for the peristaltic flow.

1.4 Dimensionless Parameters

This section is dedicated for understanding and definitions of some basic parameters

involves in the flow of the fluids (Newtonian/non-Newtonian).

(a) Reynolds number
It is the ratio that corresponds to the inertial forces over the forces causes by viscosity
of the fluid that known as Reynolds number. The low Reynolds number corresponds to
the creeping flow while significantly high values of Reynolds number corresponds to
the turbulence of the flow. In fact, Reynolds number at nonzero range predicts the
dominance of the inertial forces depending upon the considered values and thus the

nature of the fluid that whether it is laminar or turbulent.

(b) Wave number
The ratio that corresponds to the width of the channeltube over the length of the wave
is known as wave number.

(c) Amplitude ratio
The ratio that corresponds the relation between the amplitude of the wave in peristaltic
motion and the radius of the channel/tube in which fluid is flowing is known as
amplitude ratio.

(d) Hartmann number

The Hartmann number corresponds to the ratio of electromagnetic forces to viscous

forces. It predicts the performance of magnetic field on the profile of the longitudinal
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velocity of the fluid that takes apart in the shape of Lorentz force in the modelled
governing equations.

(e) Prandtl number
Prandtl number involves the phenomena where heat transfer between the moving fluid

and boundary of the channel/tube or surface on which fluid is moving is taken into

account. It is the ratio of the rate of viscous diffusion to the rate of thermal diffusion.
() Grashof number

Grashof number Gr is the ratio of the buoyancy forces that appears due to gravitational
force to the viscous forces and arises in the study of the fluid dynamics where heat
transfer is takes place by convection mechanism.

(g) Casson fluid parameter
It is the parameter which involves in the momentum equation in the model of Casson
fluid. The viscosity of the Casson fluid is zero at an infinite shear rate and infinite at
zero shear rate. The viscosity of the Casson fluid in any flow situation can be organized

by setting the strength of Casson fluid parameter in different ranges. The relation of
Casson fluid parameter { and viscosityu is { = um where . is the critical value
of the 7t (in case of Casson fluid 7= must be greater than 7.} and p,, represents the yield
stress as mentioned by Animasaun et al. (2015).

(h} Porosity parameter

The coefficient is the porosity parameter which is not dependent of the nature and
behavior of the fluid but it totally depends upon the medium of the geometry. It is also
identified as intrinsic permeability of the medium or simpy specific permeability. It is

called permeability in a single phase flow.
(i) Heat generation parameter

Heat generation parameter is defined as the amount of heat flux entering to the system.
(i) Micropolar parameter

Micropolar parameter describes the spin of the micro particles contained in the

micropolar fluids.
(k) Coupling number
Coupling number is a non-dimensional parameter that relates or couples the equations

of the linear momentum with the angular momentum to exhibits the microrotational
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effects of the particles contained in micropolar fluids as mentioned by Chetti (2011).

The value of the coupling number ranges from 0 to 1

1.5 Mechanisms of Heat Transfer

Heat is form of energy which is defined as the total amount of Kinetic energy of the
molecules of the system and can be transferred form one system to another depending
upon the temperature difference of the systems. Broadly, heat is transferred in following

three different ways from a system at high temperature to a system at low temperature.
1.5.1 Conduction

In this mode of heat transfer energy is transmitted between the bodies in direct contact.
The heat transfer takes place due to temperature difference and it flows from a high
temperature region to low temperature region until both regions become at same

temperature.

1.5.2 Convection
Convection is the process in which heat moves through a gas or a liquid. In other words,
the mode of heat transfer in liquids and gases is known as convection. Transfer of heat
through convection is categorized in three different types, each one is explained below.
(a) Natural convection
Natural convection or free convection is mechanism of energy transfer that involves fluid
motion due to density variation in fluid caused by temperature gradient.
(b) Forced convection
This mode of energy transmission involves fluid motion caused by some external agent e.g.
fan or pumps. Forced convection may happen by natural means. For example, fluid radiator,
heating and cooling of body-parts caused by blood circulation etc. are examples of forced
convection.
(c) Mixed convection
There are the situations when both the above defined mechanism of natural and forced
convection occurs together to cause the transfer of heat, In this phenomenon pressure forces

and as well as buoyant forces takes a part.

1.5.3 Radiation

The mechanism that depends upon the heat transfer by electromagnetic waves occurred

in the thermal band of any electromagnetic spectrum. Heat transfer due to radiation is
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independent to medium i.e. it requires no medium and heat can be exchange through
vacuum,.

In this thesis, mixed convection mode of heat transfer is analyzed in peristaltic flow
passing through vertical channel and tube considering of heat generation phenomenon.
The analysis is made by incorporating the additional energy equation in the set of
governing equations that describes the flow as well as the heat transfer characteristics
of the model. The term representing the heat generation is takes apart in the energy

equation.

1.6 Porous Medium

In the recent years, scientist, researchers and biologist show deep interest in the flows
passing through the porous saturated medium due to its vast application in the
transportation of toxic fluids industry, in geophysical situations, in transportation of the
biological fluids in the human body and plants and in the extraction of oil at onshore
and offshore oil rigs. Porous medium consists of small tiny holes spreads in the whole
matter for example loaf of bakery bread and beach sand, in human body gallbladder,
kidney lungs etc. The flows through a porous medium are of great interest by many
researchers in all time in fluid mechanics Ramirez et al. (2014); Basser (2017); Hayat
(2017). Darcy investigated unidirectional flow in a uniform medium on steady state into
the hydrology of the water supply which gives the direct proportional relation between
the rate of flow and pressure difference as mentioned by Neil et al. (2006). When
Reynolds number ranges between 1 to 10 inertial term takes additional part in the
Darcy’s equation due to the presence of significant amount of inertial forces which is
known as Forchheimer term and known as Darcy Forchheimer modal. Brinkman also
modified Darcy model by just not adding an additional term but he relates the purity
and permeability by a self-consistent procedure for large values of porosity. Some of
the authors practice to incorporate the Laplacian term to make a “Brinkman-
Forchheimer” modal. But this modal gain less confidence by the research as Brinkman
model is valid only for high value of porosity but there exist uncertainty about the
Forchheimer at high porosity values. Although, by applying formal averaging, one can
derive the Brinkman-Forchheimer equation for a closure that involves the material of

empirical type which consequently causes loss of facts.
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1.7 Magnetohydrodynamics (MHD)

Flows through magnetic fields grabbed considerable attentions of the researchers and
scientists due to its diversified applications in geophysics, astrophysics and solar
structures etc. Metallurgy and power engineering fields are based on hydromagnetic
flows. Tt is found that magnetic field is capable of controlling the thickening of fluid’s
viscosity (blood viscosity). The magnetic field also reduces the speed of flow particles
and due to this characteristic, fluid velocity can be managed. MHD is also very useful
in diagnoses and treatment of hypothermia, intestinal disorders, tumors, MRI and in
many other health issues. Many researchers carried out their research work to address
in such kind of flow problems like (Sajid et al. (2015); Yaqing and Guo (2017)).

The interaction of magnetic field and fluid flow is dealt in the branch of science known
as magnetohydrodynamics. To discourse the properties of applied magnetic field on the
fluid flow, the fluid must be electrically conducting. Let Eq, Jo and By represents the
electric field, current density and magnetic field which would exist in a given situation
if ¥V = 0. Due to fluid motion, Eq, Jo and By are influenced and have infinitesimal
modifications e, j and b respectively and the resulting electric field becomes E=E;+
e, current density becomes J = Jo + j and magnetic field becomes B = By + b. These

quantities are governed by

VxEy =0, (1.5)
Jo = 0Ey, (1.6)

ab
Vxe=-—=, (1.7)
j = o(e+VxBy), (1.8)

where we have neglected the second order term ¥ X b. Now Faraday’s equation gives
evub as given in Davidson (2001) and so perturbation in the electric field and its effects

may also be neglected in Eq. (1.7). Therefore

]=]0+j=U(Eo+VXBD) (19)
and leading order term in the Lorentz force (per unit volume) is
F=]xB, (1.10)

Eqs. (1.9) and (1.10) are all that we require evaluating the Lorentz force in low-Re,,
MHD. There is no need to calculate b as it does not appear in the Lorentz force. Also,

electric field is negligible in comparison to the current density.
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1.8 Flow Equations

To study the fluid flow one needs the laws of conservation of mass along with
conservation of momentum, first law of thermodynamics and second law of
thermodynamics. Not all laws are necessary in all situations. However, the continuity
and momentum equations of motion are the basic laws which are there always when we
study any flow phenomena.

1.8.1 Continuity Equation

In differential form the continuity equation is as follows
V.(oV)+Z =0, (1.11)
For incompressible assumption, when density of the fluid is kept constant then Eq.
(1.11) reduces to
vv=0 (1.12)
1.8.2 Momentum Equation
The general form of equation of fluid motion by dropping the body forces caused by
any situation is given by
p(";—':+(V.V)V) = V.1, (1.13)
where T is the Cauchy stress tensor.

1.8.3 Energy Equation

The analysis of transfer of heat with in the fluid is completely studied by incorporating |
energy equation to governing equation which is resultant by using first law of
thermodynamics under the statement that energy cannot be destroyed nor created.
Energy equation in Newtonian and non-Newtonian fluids can be written in vector form

as
ar 1
p(a+(V.V)T)_aV.VT+p—C:r.W, (1.14)
where T is the temperature, pc, is the heat capacity and a is the thermal diffusivity.

1.8.4 Microrotaion Equation
This equation describes the microrotation of the particles in the flow of micropolar fluid
and can be written as
pJ" (V. VG™) = —2RG* = F(I X VX G) + KU x V" +(a+ B+
7) V(V.6"), (1.15)
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where G* is the microrotation vector, J* symbolizes the microgyration parameter, ,
and y are the coefficients of spin gradient viscosity and & characterizes the coefficient
of vortex viscosity. The material constraints &, K, @, £ and ¥ must satisfies the following

relations defined by Eringen (1966) given by
Qu+R=20, 820 3@+f+7=0, 7|8l (1.16)

1.9 Method of Solution

Since, the governing equation representing the flow models in the succeeding all
chapters are nonlinear with relatively complicated physical domain, it is therefore
required to choose the highly accurate numerical scheme. Equations introduced by
Navier-Stokes are known to be fundamentals of fluid dynamics. The investigations,
discussed above in this dissertation are extensions of Navier-Stokes equations applied
to model the heat transfer flows through the peristaltic boundaries of different
geometries. Since these equations are highly nonlinear and obtaining analytic solution
is very complicated and rarely possible. Therefore, we need to adopt some numerical
approach. In most of situations, the governing equations are numerically challenging
and must be solved by a stable numerical approach converging to physically significant
solution. Hence, numerical solution of these systems is significant feature of modern
research.

At present, there are many approaches which are in used by different researchers of this
area to solve these modeled equations, such as finite difference, finite volume or by
using finite element methods. All these methods have been used for computation of
results for linear/nonlinear ordinary/partial differential equations. It is seen that the
finite element method is emerged as a valuable and fast convergent tool for the solution
of Navier-Stokes equations especially where complex geometry or complex boundary
conditions are involved as compare to other analytical and numerical method. So the
choice of the numerical technique is very important part in the simulation of peristaltic
models. Besides other available techniques, on the basis of more advantages, we will

adopt Finite Element Method which is explained in the following subsection.

1.9.1 Finite Element Method (FEM)

FEM is a computational scheme to solve ordinary and partial differential equations for
many problems of science and engineering. This numerical approach is more reliable
which can be justified. The advantages and disadvantages of this method in contrast of

finite difference and with finite volume methods are as: The basic fact of finite
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difference method is that it very easy to apply and in programming for the domain
which can be divided in number of rectangles of equal dimensions. But, it has major
disadvantages as it is difficult where the boundary of the domain is curved. For
example, in our thesis where the geometry contains peristaltic walls, secondly it has
difficult stability and convergence analysis and lastly, it is very difficult in mesh
adaptations, which are required in proposed study. Finite Volume methods are based
on the physical conservation laws of the system to be studied. It is problematic on the
unstructured meshed and its stability and convergence analysis are difficult as for finite
difference scheme. Comparatively, finite element method is high in accuracy and
provides easy treatment for the complex geometries and boundary conditions as given

in (Reddy (2014): Logan (2002)). So it can handle present model more efficiently and

accurately.
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Figure 1.1: Flow chart of the procedure of finite element method

In finite element method, considered domain may be assumed as an assemblage of
simple geometrical shapes, known as elements, against these elements we introduce
approximation functions also called shape functions or interpolation functions. The
finite element method is a piecewise (or element-wise) application of the variational
and weighted-residual methods. For a given BVP, it is possible to develop different
finite element approximations (or finite element models), depending on the choice of a

particular variational and weighted-residual formulation. Galerkin weighted residual
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technique of FEM has been extensively used by researchers to solve this type of
research problems and we would use this technique to carry out solution.
In general, the following steps offered in the flow chart given in Figure 1.1 are
commonly implemented to get a solution using FEM
To demonstrate the method, we considered the differential equation as
Lu—f=0 (1.17)
Domain of above problem is Q, L is differential operator, f is a given function and u is
dependent function. We approximate u as
u=x =YL i, (1.18)
where 1; are interpolating function and u; corresponds to unknown variable for each
node. Incorporation of i in (1.17) does not satisfy the equation identically, rather we
have the following equation
Li—f=¢ (1.19)
where € # 0 shows residue which appears as solution is approximate instead of exact.
In weighted residual scheme n unknowns u; are determined in such a way that
residual € is minimized all over the domain. To accomplish this task we introduce
weighted average of residual which must become zero all over domain . If we select
n weight functions W; and following equation
fﬂ]/V[-ed.Q =0, (1.20)
is essential to hold throughout the domain  against every weight function (i.e. € must
be perpendicular to span of W;), then residual € becomes zero in some average sense.
After specifying weight functions we are left with a system of n equations to be solved
simultaneously against nodal variables.
Various weighted-residual schemes differ mainly by choice of weight function.
Generally, derivation of finite-element equations involve Galerkin's scheme. In
Galerkin approach, weight functions are identical to that of approximation functions,
ie. W, =y, fori=12,...,n Therefore following equation holds in Galerkin's
approach
Jpa—fde=0i=12..n (121)
The left side of expression (1.21) may be assumed as summation of expressions leading
the behavior of Eq. (1.17) against each element. We may approximate » against an

individual element as
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lete) = E?ﬂwi(ele)ui(ete)J (1.22)
Here index fele) corresponds to a particular element and » is number of nodes on that

element. The left side of expression (1.21) may be expressed as summation in following

form

[ etey 9@ (LY — fE10) d() = 0; i=12...n  (123)

Similar expression may be obtained for every element of the domain and included to
an assembly. This assemblage of local elements results into a global system of nonlinear
algebraic equations. Procedure of assembling the local expressions does not involve
spurious contributions until the interpolating expressions ; fulfill compatibility
condition explained above.

The modeled equations of problems related to peristaltic flow discussed in this thesis
consists of nonlinear partial differential equations which are simulated by finite element
method. The codes are developed in MATLAB to solve the governing equations subject
to some boundary conditions. Algorithm to develop the codes is explained by (Abaid
(2016); Bang and Kwon (2000); Jiajan (2010)).

1.10 Literature Review

Peristalsis is a phenomenon in which transportation of the fluid is caused by the
progressive transverse waves generated by flexible boundary walls of the channel or
tube’s. This type of flow occurs in the human body like the motion of chyme through
the digestive (gastrointestinal) tract, transportation of urine passing through the ureter
and the swallowed food passing through the esophagus, etc. Peristaltic pumping is also
very helpful in designing many biomedical devices like a heart-lung machine to
maintain the circulation of the blood during critical operations. The mechanism of
peristalsis also involves in plant physiology. In spite of the practical significance of
peristalsis, the topic has been initially discussed by Latham (1966) in his dissertation.
One year later, Burns and Parks (1967) studied the peristaltic motion through axially
symmetric pipes and channel with the implementation of the assumption that Reynolds
number is small and studied two extreme cases of peristaltic motion in the absence of
pressure gradient and flow under the influence of pressure with fixed and sinusoidal
moving walls. Shapiro et al. (1969} extended the idea of peristaltic motion by
considering different assumptions. The most famous assumptions are long wavelength

along with low Reynolds number assumptions and such investigation are limited to
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physiological peristaltic flows because in such flows, the value of Reynolds number is
engaged with very small values. The flow of chyme in a small intestine is a prominent
example of such flows where the wavelength of peristaltic wave is approximately very
large (0.125cm) as compared to the radius of the tube (0.008 cm). Fung and Yih (1968)
and several other authors investigated the peristaltic motion under various simplifying
assumptions. The most common of these are long wavelength along with low Reynolds
number assumptions. The applicability of such assumptions is only limited to
physiological peristaltic flows. This is because the Reynolds number characterizing
such flows is very less in number. Moreover, in such flows, the wavelength of peristaltic
waves is quite large in contrast with the radius of the organ. A typical example of such
a flow is found in small intestine. Zien and Ostrach (1970) presented the result in a
narrow range and in accordance of Reynolds number the reflux phenomenon does not
change the whole situation in the flow. It has been reported by Lew ct al. (1971) that
Reynolds number in such type of flow is small less than unity. Yin and Fung (1971)
gives the comparison of the theoretical and available experimental results of peristaltic
transport. These result shows good agreement of the theoretical results with the
experimental results and includes the influence of peristaltic reflux. Jaffrin (1973)
investigated the peristaltic flow in a two-dimensional tube using perturbation method.
Manton (1975) studied the peristaltic pumping at low Reynolds number and specific
for long wavelength and concluded that reflux arises independent of the shape of the
wave in the presence of adverse mean pressure gradient. Two dimensional peristaltic
flow with solid particle between two flexible vertical walls that are submerged in a
towing tank filled with biological fluid in a laboratory was studied by Hung and Brown
(1976) using experimental approach. Later Brown and Hung (1977) gave the
comparison of experimental and computational results for two dimensional peristaltic
flows, They implemented finite difference method to solve the Navier-Stokes equations
for peristaltic motion for finite wall-wave curvature. The finite bending as well as
contraction of waves in the peristaltic motion of incompressible waves was investigated
by Wilson and Panton (1979). They obtained the results of lateral bending and complex
wave motion by using the perturbation method. Shukla et al. (1980) investigated the
peristaltic flow by considering the bio-fluid in which characteristics of peripheral
viscosity is taken into account. It is shown that fractional force and viscosity caused by
the peripheral layer have direct relation and flow flux have inverse relation with the

viscosity caused by the peripheral layer. Shukla and Gupta (1982) investigated the
21



peristaltic transport of non-Newtonian fluid passing through tube by considering
peripheral layer, the power-law fluid is assumed consistent to show the results for
pseudoplastic nature of the fluid. Srivastava and Srivastava (1982) investigated the
peristaltic transport of physiological fluid assuming the two-layered model under long
wavelength assumption. In their study, the comparison of the obtained results to the
results without peripheral layer is included which exhibits that in case of peripheral
layer case, the magnitude of rise in the pressure is low as compare to the case of flow
without peripheral layer effects.

The first comprehensive investigation in two-dimensional peristaltic flow in the
channel is provided by Takabatake and Ayukawa (1982). They solved the Navier-
Stokes equation by using finite difference method that equipped with upwind
successive over relaxation famously known as SOR method and presented the obtained
results for moderate Reynolds number and compare their results with those of the
perturbation analysis of Zein and Ostrach (1971) and Jaffrin (1973). Bohme and
Friedrich (1983) investigated the viscoelastic fluid in the peristaltic flow generated by
infinite sinusoidal wave train by neglecting the inertia which reflects low Reynolds
number and considered constant pressure over the cross-section. Longuet-Higgins
(1983) investigated the peristaltic pumping in the water waves and calculated the
streaming caused by the gravity waves in which they considered that one side of the
fluid is rigid while other is flexible. The study given by Shapiro et al. (1969) was
extended by Brasseur et al. (1987) and gave detail investigation of the effects caused
by the peripheral layer with diverse viscosity on the mechanism of peristaltic pumping
of Newtonian fluid and phenomena of reflux. The boundary integral method is used to
investigate the peristaltic flow under the assumption of creeping flow introduced by
Pozrikidis (1987). Takabatake et al. (1988) studied peristaltic transpiration in tube
numerically by using finite difference method and concluded that the peristaltic mixing
is greater in the tube as compared to that of the channel. Finite element analysis of
peristaltic transportation was provided by Takabatake et al. (1990) in which they
clarified that when wall slope becomes high, it significantly strengthens the rising
ability of the pressure at zero time-mean flow rate. Siddiquiand Schwarz (1994) studied
the second-order fluid passing through a tube. Peristaltic pumping of the fluid
containing solid particles was investigated by Fauci (1992) and concluded the results
based on the effects of velocity for a situation in which diameter of the particles

becomes equal to the channel width. Kumar and Naidu (1995) studied the two-
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dimensional peristaltic flow under the influence of magnetic field by converting
governing equations in the stream-vorticity formulation. Unlike earlier studies, they
claimed that their solution is well convergent at high values of Reynolds number even
up to 100 but they did not give any comparison of their solution with Takabatake et al.
(1990). The peripheral layer viscosity and frictional force was investigated by Usha
and Rao (1995) for peristaltic transport of bio fluid passing in elliptic cross sectional
pipe with the help of elliptic cylindrical coordinate system. Rao and Usha (1995) also
provided the study about the peristaltic transport in a circular tube in pumping and co-
pumping regions for immiscible viscous fluids. Misra and Pandey (1995) analyzed the
peristaltic mechanism of viscous incompressible fluid passing through the tapered tube.
The nonlinear convective acceleration is considered to study the problem by using
perturbation method.

Hayat et al. (2006) studied the behavior of Jeffery fluid endoscopic effect in peristaltic
transport in the section between the two uniform concentric tubes. The analytical results
for velocity and axial pressure gradient are provided while numerical integration is
incorporated to study the frictional force and pressure on the outer and inner tube. A
generalized approach to study the non-Newtonian behavior of power-law fluid in
peristaltic transport is presented by Ikbal et al. (2008). The flow is assumed to be two
dimensional unsteady which allows both the radial as well as the axial components of
the velocity to take part in the motion of the fluid. Hariharan et al. (2008) examined the
peristaltic mechanism in a diverging tube through which non-Newtonian fluid is
passing. They considered Bingham fluid and power-law fluid passing through a
diverging tube where walls of the tube obeys the various wave forms such as sinusoidal,
multi-sinusoidal, square and trapezoidal waves. Pandey and Chaube (2010)
premeditated the motion of incompressible viscoelastic fluid through a tube generated
by peristalsis. Perturbation method is employed to governing equations that are
modelled under the assumption of low Reynolds number along with long wavelength.
Nadeem and Akram (2010) used the perturbation method to investigate the peristaltic
motion of Williamson mode! passing through the axisymmetric channel and concluded
that for small values of Williamson parameter, fluid shows Newtonian fluid nature and
for high values of Williamson parameter, pressure curves become nonlinear.
Dharmendra (2011) investigated peristaltic motion of Maxwell fluid passing in uniform
tube to study the application towards endoscopy. He used homotopy perturbation

method and variation iterative scheme by assuming inner tube to be inflexible while
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outer tube is flexible. The one of the important outcome form his investigation is that
in case of pressure and frictional force, the effects of all the parameters in involved are
entirely opposite. Hayat et al. (2011) considered compliant walls to invstigate the
peristaltic motion of incompressible viscous fluid under the assumptions of long
wavelength along with low Reynolds number. The expression for the velocity,
temperature, stream function are also included in their investigation and are analyzed
through the graphs with detailed discussion. Gad (2014) also considered complaint
walls to investigate the halt current effects on the peristaltic mechanism and found mean
flow reversal at the central region and near the wall of the channel. Akbar and Nadeem
(2014) gave the exact solution for the study of biviscosity fluid for a peristaltic flow in
an endoscope to predict that increasing values of biviscosity coefficient and
strengthening magnetic field increase the pressure in all the pumping regions. Abbas
et al. (2016) explored the three dimensional peristaltic flow in a non- uniform channel
with the flexible walls containing hyperbolic tangent fluid. In their study, the inertial
effects are neglected by means of assumption of the lubrication theory. Peristaltic flows
for different physical flow situation with different types of fluids were investigated by
the researcher in last couple of years Tripathi et al. (2017); Zahir et al. (2017); Longo
et al. (2017); Poursharifi and K. Sadeghy (2017); Hayat et al. (2017); Akram et al.
(2017) and Fusi and A. Farina (2017). The Galileo transformation is used by Moradi
et al. (2017) to convert the unsteady physical form the steady one to investigate the
peristaltic annular flow.

Recently scientists, researchers and biologists show deep interest in the study of the
problems of fluid flow through the porous medium due to its extensive range of
applications in industry including geophysical and biological transportation of fluid in
the human body and plants, extraction of oils from underground oil reservoirs discussed
in Allen (1984) and Alien et al. (1988). Few examples of porous medium are beach
sand and a loaf of bakery bread. This type of flow attains considerable attention in the
literature Vafai, and R. Thiyagaraja (1987) and Whitaker (1986). Porous medium
basically consists of small tiny holes which are distributed in the whole matter.
Examples of the porous medium in the human body are gallbladder, human lung, and
kidneys. Darcy’s law plays a vital role for the researchers to study the porosity in
different flow phenomenon. Hill and Strahgan (2009) studied the Poiseuille flow
passing through a highly porous saturated medium by considering the Darcy-Brinkman

equations. Ervin et al. (2016) presented the model and numerical solution for
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generalized Newtonian fluid flowing through the porous saturated medium. Peristaltic
flow of the pulsatile fluid passing through the porous medium was considered and
analyzed by Afifi and Gad (2003). The frequency of the traveling wave is assumed
equivalent to the pressure gradient to elaborate the solution of the Navier-Stokes
equations by using perturbation method. Rao and Mishra (2004) investigated peristaltic
transportation by applying Beavers-Joseph slip boundary condition on power-law fluid
passing through the axisymmetric porous tube. They concluded that negative time mean
flow occurs in free pumping region in both cases of shear thinning and shear thickening
fluid for the contraction and as well as expansion of the straight section dominated
(SSD) wave. Mishra and Rao (2005) studied the model for a flow passing through the
gastrointestinal tract in which peristaltic flow with a porous peripheral layer is
investigated in a channel by Darcy and Brinkman equation. It is concluded that for
greater pressure in two layered model, peristalsis acts as a pump where as in peripheral
layered model peristalsis acts as a pump at low pressure.

Hall effects are studied by Hayat et al. (2007) in the peristaltic transportation of
Maxwell fluid through a uniform porous medium. Modified Darcy model is
incorporated in governing equation and solve them for the small amplitude ratio.
Asymmetric channel was considered by Elshehawey et al (2006) to analyze the
peristaltic motion in wave frame of through a porous filled medium. Adomian
decomposition method is used to find the stream function explicitly which exhibits that
velocity of the fluid is related to permeability parameter by direct relation. Heat transfer
mechanism in peristaltic flow passing through a vertical annulus saturated with porous
medium by applying the assumptions of long wavelength approximation is studied by
Vajarvelu et al. (2007) and found that by increasing the free convection parameter about
1 to 2 percent, the mean flux increases by 10 to 12 percent and heat transfer through the
peristaltic wall is highly dependent on the amplitude ratio of the peristaltic wave.
Nonlinear peristaltic transport through inclined axisymmetric channel filled with
porous medium was investigated by Kothandapani and Srinivas (2008). They studied
the flow by considering the Newtonian fluid in wave frame of reference that moves
with the similar speed as of the velocity of the wave. The effects of the partial slip
condition on the peristaltic motion through a porous saturated medium was investigated
by Hayat et al. (2008). Adomian decomposition method is implemented to solve the
governing equation to obtain the solution in terms of stream function for axial velocity

whereas numerical integration is implemented for pumping and trapping phenomenon.
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Heat transfer effects for the peristaltic flow of conducting fluid passing through the
porous medium was investigated by Hayat et al. (2009). In their investigation, the
magnetohydrodynamic effects were also taken in asymmetrical channel. Heat transfer
analysis for peristaltic motion of a Newtonian fluid passing through the asymmetric
vertical channel filled with porous medium was presented by Srinivas and Gayathri
(2009). The problem is expressed in the wave frame under the assumptions of long
wavelength along with low Reynolds number. Abd elmabound and Mekheimer (2011)
studied the second order fluid in peristaltic flow thorough a porous filled channel with
harmonically undulating extensible walls. Numerical results are formulated to examine
the effects of the pressure rise per wavelength and frictional force. Heat transfer effects
in the transport of Jeffery fluid passing in the vertical stratum by means of peristalsis
was investigated by Vajravelu et al. (2011) by using perturbation technique. They
noticed that the strong effects of the wall deformation parameter and Jeffery number
appeared on the trapping bolus. [n one more study, Vajravelu et al. (2012) extended
the model of peristaltic transporation through a symmetric channel for a Williamson
fluid. The exact solution for this model becomes singular, hence spate perturbation
solution is formulated to bring out qualitative features of the model. Dharmendra (2013)
presented the heat flow analysis of the peristalsis through a channel of finite length
filled porous medium and deduced that peristaltic heat flow can be enhanced by
increaseing the values of Grashof number and thermal conductivity. The peristaltic
flows through porous medium gains considerable attention in the last few years by
Tripathi and Bég (2014); Tripathi et al. (2015); Sankad and Nagathan (2015); Sankad
and Patil (2015); Babu et al. (2015); Sankad and Nagathan (2016); Ramesh and
Devakar (2017) and Hayat et al. (2017). The study related to peristaltic transportation
of blood passing through the porous filled micro vessels was given by Ranjit et al.
(2018). The mathematical model considered in their investigation is suitable to analyze
the joule heating and zeta potential is also taken in account in existence of magnetic
field. The porous medium is anatyzed with the help of Darcy law and Debye-Huckel
approximation is used. The finding of this investigations improves the medical
therapies to modulate the blood flow and hence casuses to reduce the pain in the human
body.

Flows through magnetic ficlds grabbed considerable attention by the researchers and
scientists due to its diversified applications in geophysics, astrophysics and solar

structures etc. Metallurgy and power engineering fields based on hydromagnetic flows.
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It is found that magnetic field is capable of controlling the thickening of fluid’s viscosity
(blood viscosity). The magnetic ficld reduces the speed of flow particles and due to this
characteristic, fluid velocity can be managed. MHD is also very useful in diagnosing
and treatment of hypothermia, intestinal disorders, tumors, MRI and in many other
health issues. El-Shehawey (2002) studied the peristaltic motion propagated by
sinusoidal wave in the channel with pours walls in which incompressible viscous fluid
is filled under the impact of externally applied magnetic field. Naby et al. (2006)
presented the studied phenomena of peristaltic motion of Newtonian and Carreau fluid
passing through the channel under uniform magnetic field. It is noted that due to
increase in Hartmann number that corresponds to strong magnetic field, the pressure
rise and friction force increases for both Newtonian and Carreau fluid for certain rates
of the time mean flow. Eldabe et al. (2007) considered biviscosity fluid in the peristaltic
motion passing through the non-uniform magnetic field with the effects of induced
magnetic field. Ebaid et al. (2008) analytically and numerically investigated the
properties of magnetic field along with the condition of wall slip on the peristaitic
motion passing through the asymmetric channel. Srinivas and Kothandapani (2009)
studied the MHD peristaltic flow for heat and mass transfer in which porous medium
with compliant walls are also considered. They provided analytical solutien in the form
of stream function of modelled governing equation under the assumptions of lubrication
theory. Srinivas et al. (2009) extended the work given in (2009) by incorporating the
effects of slip conditions on the same flow model with elastic wall properties. It has
been found by them that increasing Knudsen number enhances the appearance of the
trapped bolus. Yildirim and Sezer (2010) investigated the peristaltic flow under the
influence of the magnetic field in an asymmetrical channel with partial slip. Homotopy
perturbation method is implemented to sort out the solution of the governing equation
that are simplified by applying the assumptions of long wavelength with low Reynolds
number. Hayat et al. (2010) examined the peristaltic flow of fourth grade type fluid
passing through asymmetrical channel that is inclined a certain angle under the impact
of inclined magnetic field. They concluded that the increase in strength of magnetic
field enhances the velocity of the fluid. Vajravelu et al. (2013) provided the study about
the MHD peristaltic transport of a Carreau fluid passing through channel with velocity
slip condition. The effects of temperature and concentration jump conditions are also

analyzed in their study.
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Ramesh and Devakar (2015) investigated the magnetohydrodynamics peristaltic
transport of couple stress fluid for analysis of heat transfer passing through the porous
symmetrical inclined channel. The flow model is formulated under the assumptions of
long wave length along with low Reynolds number and exact solution is provided for
stream function, pressure gradient and heat transfer analysis. Peristaltic motion under
the effect of radially varying magnetic field of a Jeffry fluid passing through a tube with
an endoscope is provided by Abd-Alla et al. (2015). Zeeshan et al. (2015) explored the
two phase unidirectional flow analytical in a symmetric channel under the inducement
of magnetic field. The flow model is solved by using homotopy perturbation method
and found that due to quasi-statically unstableness void fraction bubbles rapidly
approaches to zero and increasing Lorentz force decreases the velocity while weber
number and power law index support the velocity. Now a days, due to diverse
application in the industry and bio medical science, peristaltic flows under the
inducement of the magnetic field gains considerable attention and studied extensively
Shit and Roy (2014); Hayat et al. (2018); Kothandapani and Srinivas (2018); Hussain
et al. (2018); Khan et al.(2018) and Misra et al. 2016). Kothandapani et al. (2016)
inspected the peristaltic flow of fourth grade fluid under the influence of magnetic field
in an asymmetrical channel and found that axial velocity decreases with upsurge in
Hartmann number and pressure rise in case of fourth grade fluid is higher than that of
Newtonian fluid.

Heat transfer analysis on peristaltic motion in different physical situations attains a
considerable attention due to its numerous applications on the industrial scale. Tt
includes transportation of different toxic fluids in which temperature of the fluid is vital
rule. Researchers and scientists continuously improving the literature to enhance the
efficiency of the peristaltic transportation in such type of processes.
Radhakrishnamacharya and Srinivasulu (2007) provided the study about peristaltic
transport in which heat transfer and effects of wall properties are analyzed. Perturbation
method is used to solve the governing equations and predicts that increase in elastic
tension as well as participated mass characterizing parameters enhances the heat
transfer phenomena. Srinivas and Kothandapani (2008) investigated the heat transfer
phenomena of peristaltic flow passing through the asymmetric channel with different
amplitudes and phase. The effects of applied magnetic fields are also discussed through
the involvement in the governing equation through Lorentz force. Mehkheimer and Abd

Elmaboud (2008) considered the peristaltic flow in the vertical annulus to examine the
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heat transfer and effects of magnetic field in peristaltic flow of Newtonian fluid to study
its application in an endoscope. Kothandapani and Srinivas (2008) considered porous
medium in the peristaltic flow to analyze the heat transfer phenomena on under the
inducement of applied magnetic field. Assumptions of lubrication theory are
implemented to the flow model and concluded that heat transfer can be enhanced by
increasing the permeability parameter while strengthening of magnetic field reduces
the heat transfer ability. Hayat et al. (2009) studied the heat transfer phenomena for
electrically conducting fluid in peristaltic flow through a porous saturated medium. It
is noted that behavior of hydromagntic fluid in the vicinity of the peristaltic wall and in
the neighbor of center of the channe! is entirely different and heat transfer is noted much
greater in the case of MHD flow as compared to that of hydrodynamic flow. Curved
channel was considered by Ali et al. (2010) to investigate the heat transfer mechanism
in peristaltic flow. The flow is numerically stimulated by shooting method equipped
with Runge-Kutta algorithm and gave interesting result that heat transferred in curved
channel is lesser in magnitude as compared to that of flow in the straight channel,
Muthuraj and Srinivas (2010) explored he effects of heat transfer through mixed
convective mechanism in a wavy channel oriented vertically in which thermal waves
are travelling through the porous medium.

Hayat et al. (2010) provided the effects on the peristalsis due to heat transfer and slip
condition on the flow propagated in various wave forms under the assumptions of low
Reynolds number along with long wavelength. The effects of inducement of magnetic
ficld on the flow model also included which leads to the finding that the effect of the
magnetic field in the augmented and retrograde pumping regions is opposite. Hayat and
Hina (2010) considered the Maxwell fluid in the peristaltic flow under the inducement
of magnetic field to analyze the transfer of heat and mass along with the wall properties.
Fourth grade fluid was considered to discuss the mechanism of heat transmission with
induced magnetic field by Hayat et al. (2010). The assumptions of low Reynolds
number, long wavelength with low Deborah number are implemented in their
investigation to observe the effects of induced magnetic field and current density on the
flow. Srinivas et al. (2011) examined the heat transfer mechanism through mixed
convection in the peristaltic flow passing through the asymmetric channel. The effects
of chemical reaction in mixed convective heat transfer on peristaltic motion through
vertical asymmetrical channel filled with porous material was investigated by Srinivas

and Muthuraj (2011). Perturbation solution is found to understand the mechanism of
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heat transfer in presence of magnetic field on Carreau fluid transported by peristaltic
transportation of by Hayat et al. (2011) for small values of Weissenberg number. Hayat
et al. (2011) further provided the study considering the curved channel to analyze the
heat and mass transfer with wall properties for third grade fluid. They concluded that
heat transfer is noticed much faster in planner channel as compared to the curved
channel but maximum value of temperature and mass concentration is higher in flow
passing through curved channel as equated to that of flow in straight channel. Saleem
and Haider (2014) studied the peristaltic transport of creeping flow of non-Newtonian
fluid to analyze the mechanism of heat and mass transfer. They claimed that the results
are similar to the case of viscous fluid up to first order in creeping flow while afterwards
for second order, the results matches with the results for Maxwell fluid and temperature
profile can be enhanced by increasing the Weissenberg and Brickman numbers. The
Burgers fluid which is non-Newtonian fluid categorized as rate type fluid was
considered by Javed et al. (2014) in peristaltic motion to study the heat transfer
mechanism in a channel with compliant walls. It was concluded in their study that heat
transfer can be enhanced by increasing the elastic parameters involved in the flow
model. Abd-Alla et al. (2014) investigated the rotational effect and initial stress effects
on the transfer of heat in peristaltic flow of fourth order fluid under the impact of
applied magnetic field. Heat transfer mechanism is widely investigated by Mustafa et
al (2014); Hameed et al. (2015); Muthuraj et al. {2016); Ramesh (2016); Hayat et al.
(2016) and Hayat et al. (2017) in the study of the peristaltic fluid in different flow
situations for numerous fluids to utilize the benefits in transporting of fluid on different
levels. Mixed convection heat transfer and effects of shear thickening and shear
thinning was investigated by Tanveer etal. (2017) in a peristaltic transportation of Sisko
fluid passing through a curved channel. They concluded that increase in curvature
causes decease in velocity and temperature distribution of the fluid and concentration
of homogeneous and heterogeneous reaction are reverse to each other.

The plasma shows the Newtonian fluid behavior while blood shows non-Newtonian
behavior is reported by Johnston et al. (2004). At low shear rates, blood shows non-
Newtonian behavior in small arteries but in large arteries at high shear rates, it performs
as Newtonian is reported by Rathod and Tanveer (2009). When blood flows through
narrow arteries at a low shear rate, it behaves like a Casson fluid reported by Srivastava
and Srivastava (1984); Sankar (2009) and Nagarani et al. (2006). In narrow arteries

with a diameter of 130 - 1000 gm, Casson fluid is useful to consider it as a blood flow
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model Merrill et al. (1965) and Merrill et al. {2013). But on reviewing the literature, it
is evident that no hard effort has been made to present the study about the transport of
the fluid of non-Newtonian category in case of a small amplitude of wave before Raju
and Deventhan (1972). Srivastava and Srivastava (1965) investigated blood
transportation by ignoring peripheral layer which allows blood to behave as single
layered Casson fluid. Later, Srivastava (1987) presented the study for the axisymmetric
flow of Casson fluid passing in a circular tube. Das and Batara (1993) investigated the
fully developed model of Casson fluid for steady flow passing through the tube at low
Dean Number. Perturbation method is implemented to peristaltic flow model of
physiological fluids when Casson fluid is considered in channel by Mernone et al.
(2002). Effects of inclined channel and its width size significantly effects the motion of
the fluid in peristaltic flow of Casson fluid was concluded by Nagarani (2010). Kumari
etal. (2011) extended the work of Nagarani (2010) by incorporating the magnetic field
to the flow model to analyze and presened the study about the peristaltic motion of
Casson fluid in a channel inclined at some angle. The permeable walls of the channel
of different wave forms was considered in the investigation of peristaltic motion of a
Casson fluid by Srinivas et al. (2014). It was concluded that increase in yield stress
behavior of Casson fluid causes decrease in the flux at a given pressure difference.

The magnetic effects in the study of peristaltic motion of Casson fluid passing through
the asymmetrical channe! was investigated by Akbar (2015) to enhance the utilization
of this type of low model in the refinement of crude oil. It was concluded that
dominance of the electromagnetic forces in comparison to viscous forces reduces the
size and number of the bolus. Implementation of magnetic field was also considered in
metachronal beating of cilia of Casson fluid is presented in literature by Akbar and
Khan et al. (2015). Exact solutions of the governing equations that are modelled by
applying the assumptions of lubrication theory were calculated to observe the
qualitatively same behavior of velocity for Newtonian and Casson fluid but
quantitatively velocities are different as velocity of the Casson fluid is lesser than the
velocity of the Newtonian fluid. To analyze the magnetic effects on the bio fluids in
different flow models and curved channels are also studied by Shit et al. (2016); Ali et
al. (2016). Heat transfer analysis in the metachronal wave for beating cilia equipped
with thermal diffusivity/conductivity and velocity slip effects for Casson fluid flowing
in elliptic trajectories under the impact of magnetic field was investigated by Akbar et

al. (2016). It was noticed that raise of temperature can be controlled by both Casson
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fluid parameter and applying strength of magnetic field. Casson fluid parameter also
enhances the size and number of bolus in trapping phenomenon and decrease in
pressure rise per wavelength is noticed for increasing the electromagnetic forces but it
enharces by the greater cilia length.

The concept of micropolar fluids was introduced by Eringen (1966) and studied the
individual substructure effects on the flow by suspensions of concentrated rigid
neutrally buoyant particles in the viscous fluid. However, such type of fluids backing
the couple stresses as well as body couples thus exhibits the microinertial and
microrotational effects. The microrotation vector in the flow of micropolar fluid model
is a basically independent kinematic vector that reveals the microrotation of the
particles. However, more detail of the theory of microrotation of the particles in the
fluids was discussed in Ariman (1973) and Ariman et al. (1974). The peristaltic
transportation of a micropolar fluid transmiting through flexible walls of the tube was
provided by Devi and Devanathan (1975) with small amplitude of the sinusoidal wave.
Srinivasacharya et al. (2003) examined the behavior of micropolar fluid in a peristaltic
flow passing through tube and predict that for micropolar fluid, peristalsis acts as a
pump and rise in pressure is noted as compare to that of Newtonian fluid and for free
pumping in peristaltic motion of micropolar fluid, pumping flux is very small for both
Newtonian and micropolar fluid. Hayat et al. (2003) formulated the exact solution for
parasitic motion in different wave form of a channel that contains the micropolar fluid.
It is observed that for low adverse pressure gradient, retrograde pumping exists in case
of triangular waves and multi sinusoidal waves in comparison to the case of other wave
forms such as square wave, sinusoidal wave and trapezoidal wave. The effect of the
endoscope through concentric tubes was studied by Hayat and Al (2008). They
considered the peristaltic motion of micropolar fluid caused by moving outer wall while
assuming inner wall fixed. Ali and Hayat (2008) modeled the problem in which
micropolar fluid is considered in peristaltic motion passing through the tube and exact
solution is formulated and expression for shear stress is also provided. It was concluded
by them that in symmetric channel, shear stress at both peristaltic walls increase with
increase in coupling parameter while in asymmetric channel shear stress increase in the
one wavelength and exhibits opposite behavior in other. Muthu et al. (2008) studied the
impact of the wall properties for transportation of micropolar fluid in the peristaltic
mechansim passing through the concentric circular cylindrical tubes. Finite difference

technique is applied to examine the viscoelastic or elastic wall properties to the
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governing model under the assumptions of long wavelength and low Reynolds number.
Peristaltic motion of micropolar fluid through a tube was also studied by Wang ¢t al.
(2011). They compared the peristaltic pumping and free pumping flux for Newtonian
and non-Newtonian fluids. It is noticed that the lubrication theory was widely used to
study the peristaltic motion of the micropolar fluid. Pandey and Chaube (2011)
investigated the peristaltic motion through porous medium in which they assumed
micropolar fluid passing through the channel in presence of magnetic field. It is
observed through the analysis given by them that magnetic forces enhances the
peristaltic pumping while porous medium causes the reduction in peristaltic pumping.
This work is extended by Abd-Alla et al. (2013) by investigating rotational effects in
the peristaltic transportation of the non-Newtonian micropolar fluid through a channel
saturated with porous medium under the influence of externally applied uniform
magnetic field. The results shows that rotation, magnetic field and micropolar
parameters significantly affects the peristaltic pumping. Abou-zeid (2016} used
homotopy perturbation method to study the thermal diffusion and viscous dissipation
in peristaltic flow of micropolar nanofluid. Hayat et al. (2016) investigated the
peristaltic transportation of micropolar fluid passing through the curved channel
equipped with Newtonian heating to study the effects of heat source/sink and
homogeneous-heterogeneous reactions. Coupled equation are formulated to present the
flow model by applying the assumptions of long wavelength along with low Reynolds
number. Abdelsalam and Vafai (2017) provided the study about the peristaltic flow in
a microfluidic channel occupied with compressible fluid to investigate the effects of
rheological properties and inducement of magnetic field. The key observation of the
investigation that arise is that the suppression effect of retardation time significantly
reduces the flow and reverse flow is occurred due to acoustic streaming quadratic
effects.

It is noted by reviewing the literature that peristaltic motion of Newtonian/non-
Newtonian fluids in tube/channel for different physical situation were studied by using
the assumptions of lubrication theory which vanishes the contribution of inertial forces
and not valid for all wavelengths. But this is not the case in the flows related to
engineering field such as transport of blood, slurries and corrosive fluids by means of
peristaltic pumps. In such flows, there arise a need to analyze peristaltic flow at
moderate Reynolds number The investigation involves the mathematical modeling and

numerical solution of peristaltic transportation passing through a channel without
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incorporating long wavelength with low Reynolds number are investigated and
presented by Hamid et al. (2017) and Javed et al. (2017). Finite element technique based
on Galerkin’s formulation defined in Kwon and Bang (1991) and Ferreira (2009) is
implemented to numerically simulate the governing set of nonlinear partial differential
equations that presents the effect of inertial forces in shape of graphs of longitudinal
velocity, pressure rise per wavelength and contours of streamlines for moderate
Reynolds number and other pertinent parameters along with the detailed discussion is

made in every chapter of this thesis.
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Chapter 2

Hydromagnetic Peristaltic Flow in a Porous-

Saturated Channel

Main goal of this chapter is to provide the mathematical modelling and simulation of
the complete set of Navier-Stokes equations that presents the peristaltic transport of
Newtonian fluid passing through the channel saturated by the uniformly distributed
porous medium that is placed in the influence of externally applied magnetic field by
uniform source. The problem is modeled in term of system that contains nonlinear
partial differential equations. Equations are modeled without incorporating famous
assumptions of lubrication theory which gives the liberty to set nonzero moderate
values of Reynolds number. Galerkin’s Formulated finite element method is
implemented to find out the solution of the governing equations numerically. The
obtained numerical results are established in decent agreement with the results available
in the literature. The obtained results are presented graphically along with detail

discussion is provided.

2.1 Problem Formulation

Consider an electrically conducting fluid in a two dimensional flow of through a
channel filled with porous medium of uniformly distributed pores throughout the
surface. All the thermo-physical properties own by the fluid are assumed to be constant
and flow is considered to be unsteady. A uniform magnetic field of strength B, is
implemented orthogonally to the flow direction. The properties and effects of induced
magnetic field on the flow are neglected by assuming a small magnetic Reynolds
number. It is supposed that a continuous wave is travelling periodically on the walls of
the peristaltic channel. The flow is assumed in the direction of x —axis and y —axis is
taken perpendicular to the direction of the flow. The flow is assumed to be symmetric
about x —axis called the axis of symmetry. In the fixed frame, the movement of the

boundary obeys the relation given in Eq. (2.1) as follows

H(X,t) = a— b cos [Z5=)] 2.1)
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where ¢ corresponds to the wave speed, a symbolized half width of the channel, b
represents amplitude and 4 corresponds to the wavelength. The schematic diagram of

the considered flow model is presented in Figure 2.1.

=
-

Figure 2.1: Geometry of the peristaltic channel flow

Firstly, we transform the equations that govern the flow model of two-dimensional flow
passing through porous medium for a viscous fluid with inducement of a transverse
magnetic field along with suitable boundary conditions on the present flow situation
under investigation in the wave frame of reference (x*,y™) which is connected to fixed

frame (X,Y) by the Galileans transformations given as

u*=U—C, x*ZX—Ct, ‘U*=V, y‘=Y. (22)

The problem in the wave frame takes the form
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For further analysis, we must make governing equations dimensionless by

incorporating dimensionless variables defined as

PR S S AV A
a_ﬂ.”d) a;u_crv_cax_ljy a:
2 * * * * .
4 ey 0D @ @ (2.8)
P =3P (").n = a 'q_ch'l’b_ca'a)_c/a

Defining the stream function ¥ through the usually velocity-stream function relation

_W - g

u=3Y o (2.9)

After eliminating the pressure terms, Egs. (2.3) — (2.7) in terms of vorticity @ and
stream function 1 can be written as

2 2
2u+ﬂ:_

axz oy W (2.10)
(2.11)

where Re = aca/v is Reynolds number, K = k/a? is the permeability allows by the
porous medium, @ = a/A is wave numberand M = \Jo/uB,a corresponds he magnetic

parameter known as Hartmann number. The boundary conditions (2.7) take the form

a2y _ W _

3 = 0, ==0 at y=0

ay _ ayp _ , _ ’ (2.12)
ol 1, e 2npsin2mx, at y =n(x)

where n(x) = 1 — ¢cos(2nx)

The augmented constraints on introduced stream function 1 defined by = 0 at y =
0 while at y = n(x), ¥ = q as given by Lew et al. (1971) which are in consequence of
the prescription constant rate of flow g(= ¢*/aC) in fixed frame at every cross-section.
The dimensionless rate of flow in both frames are related by @ = q + 1, where
Q(= Q*/aC) represents the time mean flow rate considered in moving frame. For slow
flow rate the equations under the assumption of lubrication theory can be reduced which
are presented by Takabatake et al. (1990).

2.2 Numerical Analysis

In order to solve the considered model numerically, the governing equations presented

in Eqs. (2.10) and (2.11) with the boundary conditions contained by Eq. (2.12) are
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numerically solved by using Galerkin weighted residual finite element method in the
limited region of L(say) amount of waves that travels in a moving frame equipped with
the two end sections in which we have assumed one is to be fixed while other is
considered as moving wall. Continuity of flow allows as to compute the solution of
governing system of equations as the approach of wave by wave taking single wave at
a time, then interchanges to second and so on in the similar passion. In all such
simulation cases, fast, less costly, highly convergent results have been achieved in about
2 — 4 number of iterations. For the computation purpose, the domain is discretized into
non-uniform mesh of six nodal quadratic triangle elements with the help of built-in
pdetool in MATLAB. The stream function and vorticity function given in the governing

equations is approximated by

P = Tho1 N, 0 = oy Newy, (2.13)

where 1, and w; are nodal approximation of i and w at each element. The value ofthe
upper limit in summation is taken n = 6 in our case as we incorporated quadratic six
nodal triangular elements. The Galerkin weighted residual approach followed by finite

element method is applied to the governing Eq. (2.10) and (2.11) given as

fowr (@ 2”’+a“°+w)dn—0

Wow _pdw _.( 2 ¥w *’2_“’)_ 25 )
fﬂwz (Re(ay ax  dx ay) @ 6x2+6x2 M ay? =0,

(2.14)
(2.15)

in above equations wy and w; are weight function and Q is the domain of the problem.

After simplifying Egs. (2.14) and (2.15), we obtain,

L DR i = [t @16

@_6_2_61}'}6&1 zawza_w awz dw
fﬂ Rewz (ay ax ax ay) df — f ( dx dx oy dy ay) dfl +

M2 [ 2240 + 2 [ wowdQ = fw, 5 24T + M2 [Lw, SEdr,

a2y ay (2.17)

Upon introducing Eq. (2.13) into Egs. (2.16) and (2.17) and considering the discretized

domain, we have
~ Y Bfiw; + T AL = SK (2.18)
T AL w; + Re X, G i + M2 X DR + %E:’ BE w; = M2SK, (2.19)

where
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e __ 2 9Ny ON; 6_N,£%)
ki 'rﬂe (a dx ax + dy dy df

B = [, NiN; dQ

[ (e _omom

Chiy = foe M (5 52 = 5050 40 1. (2.20)
ANy ON;

Dy = fnea—;;;dwdw

SK* = [ NSidrl

The global system turns in the matrix form can be written as

KA=F,

(2.21)
in which
K = {_eBE:- 1/K B Riice w-+M2De]’A" B :b)k]
ki ki kij @i ki k
_ [S,’{e ] (2.22)
M2SK ]

The obtained system of non-linear algebraic residual Eq. (2.21) for final solution is
further exposed to Newton-Raphson method. This iterative process is iterated till the

convergence criteria is achieved i.e. error between two iteration is 10714,

2.3 Analysis of the Pressure

Periodicity of the flow yields that the pressure and stress fields are only computed in
the central region of the discretized domain that occupies only single wavelength. It is
convenient to reduced pressure gradient from governing Navier-Stokes equations in

dimensionless form

W pe(LY_ T te_pr(yq)-L(i1) )

(Ly2e_ o vy o _ 10

ay ax ax Kay'

= Rea 3x? dy dxady éx

o (2.24)

In the wave frame at center line y = 0, pressure-rise per wavelength is expressed as

_ Adp
Apy = [y 2 dx. (2.25)
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2.4 Validation

In this section, a comparison of the numerical results based on our code with the results
of Jaffrin (1973), Takabatake et al. (1990) and Kumar and Naidu (1995) are sought. To
this end, the curves of pressure rise per wavelength based on our solution is compared
with the corresponding pressure rise per wavelength curves obtained through the
solution of Jaffrin (1973); Takabatake et al. (1990) and Kumar and Naidu (1995) in
Figures 2.2-2.4. It is observed that our results in the limiting case (M = 0 J1/K=10)
are in close agreement with corresponding result of Jaffrin (1973) and Kumar and Naidu
(1995). The solution of Jaffrin (1973) is purely analytical and therefore it serves as a
benchmark solution in the comparison. The solution of Takabatake et al. (1990) shows
large deviation from the solution of Jaffrin (1973) and therefore it also deviates from
our solution. With this validation, the confidence is therefore very high on the present

FEM computations and therefore our analysis presented here is valid and valuable.

2.5 Results and Discussion

In this division, solution obtained by computations of the developed governing problem
are presented through plots of velocity, contours of streamlines, and pressure rise per
wavelength against involved parameters including Hartmann number M, Reynolds

number Re, wave number a volume flow rate @ and amplitude ratio ¢.

2.5.1 Velocity field

At a cross-section x = 0, the profiles of longitudinal velocity for several values of
volume flow rate, Hartmann number, wave number, Reynolds number, permeability
parameter and amplitude ratio are shown through Figures 2.5-2.9. It is perceived that
longitudinal velocity upsurges with increasing the rate of volume flow over the whole
cross-section. In contrast, the longitudinal velocity component decreases near the
channel center y = 0 while it shows converse trend in the vicinity of the channel wall
with increasing either of Reynolds number, wave number or permeability parameter.
Moreover, the effects of increasing Hartmann number and amplitude ratio is to
accelerate the flow near the channel center y = 0. It is further noted that for large values
of Reynolds number, the longitudinal velocity achieves its maximum before the central
plane y = 0. This observation is perhaps not reported in earlier studies and it may be

attributed to strong inertial effects induced for large values of Reynolds number.
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Moreover, long wavelength along with low Reynolds number theory is not able to
predict such non-linear effects. The increase in the longitudinal velocity due to upsurge
in the strength of the applied magnetic field is attributed to fact that magnetic body
force excites the bulk motion due to peristalsis resulting in the flow acceleration near
the channe! center y = 0. This fact can also be verified by the examination of Eq. (2.23)
which shows that the magnitude of magnetic force is direct proportional to the flow
velocity. It is further noted from Eq. (2.23) that magnitude of resistance to flow offered
by porous medium is inversely proportional to the longitudinal flow velocity. It is
because of this fact that longitudinal flow velocity decrease with increasing the
permeability parameter in vicinity ofthe channel center y = 0. To preserve the assumed
flow rate, the flow velocity of the channel will upsurge. The decrease in longitudinal
velocity near the channel center y = 0 with increasing Reynolds number is justified on
the following grounds. Since Reynolds number is defined as the ratio of inertial forces
over to the viscous force, higher values of Reynolds number corresponds to the situation
of stronger inertial effects or compared to the viscous effects near the channel wall. In
such circumstances, the flow accelerates near the solid wall to preserve the given flow
rate, the flow velocity decreases, resulting in the flow deceleration near the channel

center.

2.5.2 Trapping and vorticity

The contours of streamlines for presentation of the trapping phenomenon are shown in
Figures 2.10-2.14 for various values of time mean flow rate @, permeability of porous
medium K, Hartmann number M, wave number @, Reynolds number Re and amplitude
ratio ¢. Figure 2.10 Shows that trapped bolus of fluid exists in the central region of
the channel for lesser time mean flow rate Q. Moreover, trapped bolus moves toward
the boundary wall with increasing time mean flow rate Q. These observations are in
accordance with that of previous available studies based on lubrication approximation.
The effect of Reynolds number on the trapping phenomenon can be detected through
Figure 2.11. This figure clearly indicates non-trivial effect of increasing Reynolds
number on trapping phenomenon. It is perceived that the circulation of trapped bolus
increases with increasing Reynolds number. Again this is because of smaller viscous
effect in comparison with the inertial effects. The effect of Hartmann number on
trapping are elucidated in Figure 2.12. It is seen that the introduction of Lorentz force

due to magnetic ficld causes a rise in the circulation of the trapped belus of fluid. This
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fact is strikingly different from what we observed from previous available studies based
on lubrication approximation given in Takabatake et al. (1990); Fauci (1992) and
Kumar and Naidu (19953). It is reported that Lorentz force due to magnetic field reduces
the circulation of the trapped bolus of field. The effect of permeability parameter on
trapped bolus of fluid can be observed through Figure 2.13. This figure reveals that
peristaltic mixing due to circulation is also extensively dependent on the permeability
parameter. In fact, much greater peristaltic mixing is realized in non-porous channel
than that of porous-saturated channel. The contours of vorticity in wave frame for
various values of permeability parameter are revealed through Figure 2.14-2.16. It is
observed that vorticity is maximum near the peristaltic wall and it decreases by going
towards the central region of the channel. For the lesser values of permeability
parameter, the vorticity lines are analogous in form or shape to that of peristaltically
moved boundary wall and lines of extreme vorticity are clustered in the vicinity of
dilating part of the channel. However, the lines of maximum vorticity penetrate toward
the center of the channel due to upsurge in permeability parameter. The effect of
Reynolds number on vorticity are analogous to that of effects of permeability
parameter. In contrast, the lines of maximum vorticity shifted toward the dilating part

of the channel with increasing Hartmann number.

2.5.3  Pressure distribution

Figures 2.17-2.22 are displayed to illustrate the variation in the graphs of pressure rise
per wavelength AP, for numerous values of involved parameters. Figure 2.17
demonstrates the relationship between pressure rise per wavelength with the flow rate
for different range of values of Reynolds number. Here, it is noted that for a fixed value
of prescribed rate of flow Q, AP, increases with aggregated Reynolds number. The
effects of electromagnetic forces that represents by Hartmann number on pressure rise
per wavelength AP, in region of peristaltic pumping for a static value of flow rate are
similar to the effects of Reynolds number as shown in Figure 2.18. On the other side,
in the same region for a static value of flow rate, the behavior of pressure rise per
wavelength AP, is decreasing with increasing the permeability of the saturated porous
medium as shown in Figure 2.19.The influence prescribed by wave number « on 4P,
is shown in Figure 2.20. This figure indicates that the effect of @ on 4P, are analogous

to the effect of the parameters Re and M. The plot of 4P; versus 1/K for a specific
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Figure 2.2: Comparison of pressure rise per wavelength with that of Jaffrin (1973)

and Takabatake et al. (1990)
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Figure 2.3: Pressure distribution for various values of the parameter Re along with

the comparison with the available results of Jaffrin (1973)
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Figure 2.4: Pressure distribution for various values of the parameter Re along with

the comparison with the available results of Kumar and Naidu (1995)
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Figure 2.5: Graphs of longitudinal velocity distribution for various values of the

parameter M against fixed values of other parameters
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Figure 2.6: Graphs of longitudinal velocity distribution for various values of the

parameter a against fixed values of other parameters
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Figure 2.7: Graphs of longitudinal velocity distribution for various values of the

parameter Re against fixed values of other parameters
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Figure 2.8: Graphs of longitudinal velocity distribution for various values of the

parameter K against fixed values of other parameters
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Figure 2.9: Graphs of longitudinal velocity distribution for various values of the

parameter @ against fixed values of other parameters

values of flow rate belonging to co-pumping region where @ > 0& 4P, < 0) is
shown through Figures 2.21 and 2.22 for different values of Re and M, respectively.
It is observed that for this value of flow rate, AP, is negative against all the considered
values of 1/K, M and Re which shows that the pressure supports the flow due to
peristalsis. Moreover, the magnitude of backing provided by the pressure increases
with an increase in both Reynolds number and Hartmann number. while it decreases

with increase in the permeability of the porous medium.
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Figure 2.10: Variation of streamlines for various values of Q against Re = 1.0, M =

20,a =0.2,¢ =0.6and K = 1 in wave frame
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Figure 2.11: Variation of streamlines for various values of Re against Q = 1L.O,M =

2.0, =0.2,¢ = 0.6and K = 1 in wave frame
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Figure 2.12: Variation of streamlines for various values of M against Re = 1.0,¢ =

1.0, = 0.2,¢p = 0.6 and K = 1 in wave frame
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Figure 2.13: Variation of streamlines for various values of K against Re = 1.0,Q =

1.0,a = 0.2,¢ = 0.6 and M = 2.0 in wave frame
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Figure 2.14: Variation of vorticity for various values of K against Re = 10,Q =

1.0,M =20,a =05and ¢ = 0.6
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Figure 2.15: Variation of vorticity for various values of M against Re = 10,Q =

1.0,a =05¢=06and K =1
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Figure 2.16: Variation of vorticity for various values of Re against @ = 1.0,a =

05,M=20¢=06andK =1
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Figure 2.17: Pressure distribution for various values for Re
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Figure 2.18: Pressure distribution for various values for M
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Figure 2.19: Pressure distribution for various values for K
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Figure 2.20: Pressure distribution for various values for a
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Figure 2.21: Pressure distribution for various values against 1/K at different Re
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Figure 2.22: Pressure distribution for various values against 1/K at different M
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2.6 Conclusions

The numerical study about the flow of Newtonian fluid passing through the channel
under the inducement of applied magnetic field induced by progressive movement of
the peristaltic waves is presented using finite element method. The obtained numerical
results are compared with previous available results and an excellent correlation is
achieved. The computations are carried out to obtain stream function and vorticity for
arbitrary finite values of Reynolds number and wave number. The calculations of
longitudinal velocity as well as pressure rise per wavelength are based on the post-
processing of the results. It is found that the results obtained without employing long
wavelength along with low Reynolds number assumptions are significantly different
from that of based on long wavelength along with low Reynolds number assumptions.
The obtained numerical results indicate that longitudinal velocity in vicinity of the
central part of the channel y = 0 falls with increasing both Reynolds number and wave
number. Moreover, for greater values of Reynolds number it achieves maximum value
before the y = 0. The circulation of trapped bolus increases with increasing the
Reynolds number. Most importantly, it is found different to that of previous results
based on long wavelength along with low Reynolds numbers. The diffusion of vorticity
from the boundaries to the channel center increases with increasing the permeability of
the porous medium against the permeability parameter and Reynolds number while an
opposite trend is noted with increasing Hartmann number. The inclusion of inertial in
the force balance results in the reduction of pressure rise per wavelength in the pumping

region.
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Chapter 3

Mixed Convective Peristaltic Flow in a Vertical

Channel

In this chapter, mixed convective heat transfer analysis is presented in the study of
peristaltic flow passing through the vertical channel. Mathematical modeling of
governing equations are presented in which heat generation term is introduced in the
energy equation. The set of nonlinear partial differential equations are exposed to
Galerkin’s formulated finite element method to obtain the numerical results. The
assumptions of long wavelength and low Reynolds number are neglected to present the
role of inertial forces in the heat transfer analysis of peristaltic flow. The results
obtained are validated with available results in literature and presented through graphs

with different suitable ranges of the parameters involved in the modelled equations.

3.1 Problem Formulation

Consider the motion of Newtonian fluid through a vertical channel having inner width
size 2d. The flow is assumed in such a way that the propagation of waves is along the
x —axis with velocity ¢ and y —axis is taken normal to the channel. The peristaltic wall
of channel is assumed to have some temperature T; and follows the sinusoidal wave
shape represented by Eg. (2.1). The coordinates of velocity, pressure and temperature
in fixed and moving frame of reference are related by set of expression given in Eq.

(2.2) and Eq. (3.1)
p=p, T"=T, (3.1)

In fixed frame of reference, the continuity, momentum and energy equations for the

assumed problem are

ey av

xTw =0 (3.2)
v 9u N _ _ % oy | otu -
p(ac +Uax+Vay)_ ax+“(ax2+aY2)+pgﬁT(T To), (3.3)
Cld Cid vy _ _9» v 8
P (at + Uax +V ay) T oy tH (ax2 * aYZ)' 3.4
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au ar aT\ _ . (9T  @T
pey (Gr+ U +V5) =x G+t (3.5)

in which p is the viscosity p is the density, g is the acceleration caused by gravity, Br is
thermal expansion coefficient, ¢, is specific heat at constant pressure, Kk* is the thermal

conductivity and Qg represents constant heat generation within the flow domain.

/.

N/

Figure 3.1: The geometry of considered two-dimensional peristaltic channel.

The boundary conditions that are imposes on the problem are

- 8y _ ar _ -
— o = =
v=0 v=%,6 T=T, a Y=H 57)

Equations that govern the flow in wave frame are as follows

tee=0 (3.8)

(v i) =-+u (C5+25) +09BrT =T (39
p(“'%+”'%)=_%+“(%+%)’ (3.10)
pr(u‘%+v’§§)=x'(§%+%)+<?o- G.11)

The configuration of the considered peristaltic wall can be written as given in Eq. (2.6}
and the condition of no slip and the symmetry condition on y* = 0& y =n(x")

respectively can be specified by

60



du’ ar’

vt =10, a—y,=0, 5:=0 at y* =0, (3.12)
u'=—¢ vV = -zibc sin (ZT'), T* =T, at y =n"). (3.13)

Defining new variables along with defined in Eq. (2.8)
Re=5vga,,8=K,Z‘,’fm,ﬂ=ﬁ,6r=w%ﬂ,ﬁ=i—? (3.14)

in Eqs. (3.8) — (3.11), we get the new form

2%+%='“" (3.15)
Re(%%-i—ii—j):VZw—Gr%, (3.16)
Repr(%%%%‘%%) =V +p (3.17)

where Gr symbolized Grashof number, f symbolized heat generation parameter and
Pr symbolized Prandtl number. The boundary conditions defines in the form of Y(x, y)

are as follows

—g L¥_o W %6 _ -
Y =0, ayz'o' 5 = 0 ay—O at y=0,
p=q L=-1 L=znpsinznx, 9=1 a g=nwx 19
where
W g™ 2_ 29 L&
u=3v= Qo W= A ayand\?—cx Fredaew (3.19)

3.2 Numerical Analysis

In the previous sections we have modeled the governing equations which are valid for
non-zero Reynolds and wave numbers and cannot be transformed to ordinary
differential equations. Finite element method has been preferred to other methods due
to its several advantages to obtain the solution of nonlinear system of partial differential
equations. The foremost advantage of finite element method is that it works with non-
uniform mesh which results in more accurate numerical approximations in particular
when you are dealing with complex geometries and irregular boundary conditions. It
provides the user liberty to choose the shape functions and types of elements according
to the problem. This approach returns more accurate solutions with less computational

cost. To deal with the partial differential equations, finite element method of Gelerkin’s
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approach is applied to solve Eqgs. (3.15)-(3.17) subject to the boundary conditions (3.18)
in any finite region of L(say) number of waves in a refrernce of wave frame having two
end sections with one fixed while the other one is moving boundary. In all the cases,
the computed results are highly convergent and satisfy the tolerance of &y = &, =
10~'*and g, = 10713, The numerical computations are made by using non-uniform
meshing of quadratic elements with the help of pdetool available in MATLAB. The
stream function, vorticity and temperature functions are approximated by function
given in Eq. (2.13) and Eq. (3.20)

6 = Xi=1NiOr, (3.20)

in which 8, are element nodal approximation of 8. The Galerkin finite element is

endorsed to governing Egs. (3.15) - (3.17) as follows

2 2
fnwl(azz—;‘i—’+a—j§+w)dﬂz 0,

(3.21)
dpdw P dw Pw 2w ag _
Jowa (Re (3252 - )= (@25 + ayz) +Gr 6y) dr =0, (322
0pos _awa8) _ (220 20} _ -
J-QW3 (REP 6—y dx - ax 6y) (a ax? + 6y2) ﬂ) df = 0’ (3.23)

in equations w,, w, and w; are symbolized the weight functions and £ is the integral

domain. After simplifying Egs. (3.21)t0 (3 23), we obtain

f( Jm:a;wwﬂ [ wiwdQ = fwwdr

Ipdw ayp 6w) ( 2 dwz dw sz &w)
J-ﬂ Rewz (ay dx dx dy df + f dx ax dy dy ag +

(3.24)

ad dw
Gr '[Q W ‘adﬂ. = ff Ws —-dF, (325)

aypas 3y ab 29wz 86 | Ow; 6 =
IQREPrW3 (ayax axay)dn+fn(a x ox T oy oy ay)dn jw3ﬁdﬂ

a
Jpwa5dl. (3.26)
By considering the discretized domain, we put Eqgs. (2.13) and (3.20) in (3.24)-(3.26)
to get
— X BLw + T AL = SK (3.27)
Y A% w; + Re X Cfiy iwi + GT¥Blﬁ19t = SK°, (3.28)
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YiAL0; + RePr X Gy i = Sk + ps¥,

(3.29)
where
2 aNk aN[ aNk 9_& 3
Iﬂe( ax 6x ay 6y)dﬂ
kL = Ine NkNi ds
— dN;
Blit - fne Nk?;d‘ﬂ'
e _ aNi ON; 9N 3N
Ckij - fﬂe Nic (By ax dx 6y)dﬂ [ (3.30)
3Ny, 8N;
Dkl = jne ayk l ll)d
SK* = [ NiSydl
§* = [ Nydl )
The global system takes the following form of matrix
KA =F, (3.31)
where
=B A 0 Wy Sk
KU' = ?(i Reclfijwi GTBl.leC! .,Ak = [lpk], F=]0 ! (3 32)
Ox SK* + BS*° '

0 REPFCEU Bi Aii

The obtained system of non-linear algebraic residual Eq. (3.31) are solved using
Newton-Raphson method. The process s iterated until the convergence condition is

achieved i.e. error between two iteration is 10714,

3.3 Analysis of the Pressure

Periodicity of the flow yields that the pressure and stress fields are only computed in
the central region of the domain that occupies only one wavelength. It is convenient to
reduced pressure gradient from governing Navier-Stokes equations in dimensionless
form

0P _ pe(PYay_ O v

dw
- C\Gyzax  axoy 6y) il Gré. (3.33)
0 _ pooz (02U _ Y W) _ 00
ay Rea (6x2 dy axady 6x) X5 (3.34)
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3.4 Validation

A comparison for validation of the obtained numerical results with the analytical results
of Srinivas et al. (2011) in the special case are presented in Figure 3.2. It is observed
that our results in the limiting case (Re = 0,a = 0) are in close agreement with
corresponding result of Srinivas et al. (2011). The solution given in the Srinivas et al.

(2011) is analytical approximation computed by perturbation method.

3.5 Results and Discussion

This section presents to analyze the results of the modeled problem in terms of velocity
distribution, heat characteristics, trapping phenomenon and rise in pressure against

different involved flow parameters.

3.5.1 Velocity field and temperature characteristics

The graphs of longitudinal velocity u and the temperature profile 8 are presented in the
Figures 3.3 — 3.6 to see the effects of Reynolds number Re, time mean flow rate @,
Grashof number Gr and heat generation parameter B. From these figures, it is detected
that both longitudinal velocity and temperature profile achieve maximum in the vicinity
of the center of the channel. Moreover, parabolic behavior by velocity and temperature
graphs is observed in all the cases. In Figure 3.3(a), we observe the effect of Reynolds
number Re on velocity distribution. We see that near the center of the channel, increase
in Re causes decrease in velocity while an opposite attitude is perceived at the wall. So,
it predicts the dominance of inertial effects to viscous forces in the center of the channel
causes decrease in velocity of the fluid while in the region of the wall dominance of
inertial forces enhances the velocity. Figure 3.3(b) illustrates that an increase in Re
rises the temperature over the whole cross-section. This observation is not reported in
earlier studies and it is indorsed to strong inertial effects induced for non-zero large
values of Reynolds number. Moreover, assumptions of long wavelength along with the
low Reynolds number theory is not able to predict such non-linear effect. Figures
3.4(a) and 3.4(b) show the outcome of time mean flow rate Q on velocity distribution
and temperature profile, respectively. Both figures show that the rise in volume flow
rate @ enhances longitudinal velocity and temperature profile. Figure 3.5(a) presents
the outcome of Grashof number Gr on longnitudanl velocity profile. We see that the

behavior of velocity due to Grashof number Gr at the wall and near the center is
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different. In the region 0 < y < 0.2, we observe that dominance of buoyancy forces
reduces the velocity but after this region y = 0.2, increase in velocity is observed at the
same Gr. Figure 3.5(b) exhibits the decreasing behavior in temperature distribution by
enhancing Gr in the whole domain. As increase in Grashof number corresponds to
enhance the buoyancy forces caused by temperature difference, due to which its effect
appear at the center of the channel and so causes the decrease in temperature rise. In
Figure 3.6(a), we observe that for the velocity distribution, heat generation parameter
8 exhibits same behavior as that of Grashof number but in Figure 3.6(b} temperature
increases due to increase in the heat generation parameter B, which is quite natural.
Hence, Grashof number Gr also helps to control the heat in the fluid flow with heat
generation parameter and its effects are opposite to the effect of heat generation

parameter f3.

3.5.2 Trapping and vorticity

The behavior of streamlines in wave frame for stationary wall is mostly similar as that
of wall but sometime situation arises that pattern of streamlines get split and encloses a
bolus of fluid particles in circular closed streamlines formed so that circular region is
created. On the other hand, in the fixed frame, the waves trapped the fluid bolus with
speed of wave. To examine the variation of streamlines, we plotted contours of
streamlines for different values of the parameter involved as shown in Figures 3.7 -
3.11. Figure 3.7 shows the behavior of streamlines with variation of Reynolds
number Re. It is observed that size of bolus magnifies with the increase in Reynolds
number and as far as the number of bolus are concern, We observe that number of
boluses also increases with increase in Re. It is owing to the fact that increase in inertial
effects causes rise in velocity profile of the fluid, so the solution surface attains more
height. Figure 3.8 shows the variation of streamlines for diverse values of Grashof
number Gr. It is noticed that the trapped bolus exists near the central region of the
channel for smaller values of Grashof number. Moreover, it moves in lower region of
the boundary wall with increase in Grashof number as shown in Figure 3.8. Figure 3.9
provides the behavior of heat generation parameter § on streamlines. From this figure,
we observe the increase in the size of bolus due to increase in heat generation
parameter 3. Figure 3.10 shows increase in the size of trapped bolus with increase in
wave number a. It is also observed that for small @, the boluses are trapped near the

wall but when we increase the wave number &, the bolus moves towards the central
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part of the region. Figure 3.11 illustrates the consequence of time mean flow rate Q on
the streamlines. We observed a rapid upsurge in the number and size of bolus with small

increase in the flow rate Q.

In Figures 3.12 - 3.17, we plotted the isothermal lines for different flow parameters. In
Figure 3.12, we observed that by increasing Reynolds number, isothermal lines shows
enhanced curvature effects and formation of bolus appears where complete bolus is
developed in the central region for Re = 12. Figure 3.13 shows that increase in
Grashof number increases curvature effects near central wall and observed same
smoothness of curvature near the peristaltic wall in all cases. Figure 3.14 exhibits the
effect of increasing heat generation parameter § on isothermal lines. It is observed that
isothermal lines congregated at central wall and move towards the wall channel.
Variation in isothermal lines for different values of Prandti number Pr may be seen in
Figure 3.15. We can see that more curvature effect in central region with more number
of bolus due to increase in the value of Pr. Figure 3.16 shows decrease in curvature of
isothermal lines with increase in the wave number a. In Figure 3.17, we see the effect
of time mean flow rate Q on isothermal lines which displays that upsurge in this factor
causes the bending of the isothermal lines in the vicinity of central part of the channel
towards upper region. The effects of different values of the Reynolds number Re on
graphs of vorticity are displayed in Figure 3.18. It can be distinguished from the figure
that vorticity is created at the peristaltic wall then it disperses towards the central region

of the channel with increase in the values of Reynolds number.

3.5.3 Pressure distribution

The pressure rise per wave length has been plotted through Figures 3.19 —3.24 against
time mean flow rate for different range of values of involved parameters. There are
following four types of flow region. When the flow is in regions AP, > 0and Q >0
which represents the quadrant 1 then it corresponds to Peristaltic/Positive pumping.
When the flow is in regions AP, > 0 and @ <0 which represents quadrant Il then it
corresponds to Retrograde/Backward pumping. When the flow is in regions AP, <
0 and @ <0 which represents quadrant I11 then it corresponds to co-pumping. When the
flow is in regions AP, < 0 and @ <0 which represents quadrant IV then it corresponds
to augmented pumping region. Also when the flow is in regions APy = 0and Q >0

which means, in quadrant IV then it is free pumping region. Pressure gradient is known
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as adverse pressure if AP; > 0 and favorable pressure if AP, < 0. In Figure 3.19, the
influence of Reynolds number Re on pressure rise per wave length has been shown.
We noticed that the increase in Re causes increase in the pressure due to the dominance
of inertial forces over viscous forces. It is owing to the fact that when we rise the
strength of Re, it enhances the inertial effects as compared to viscous effects. hence
more pressure is required to maintain the flow in the channel. We further observed that
when time mean flow rate approaches to 1. all the lines coincide which reflects the same
amount of pressure at that point. It is observed through Figures 3.20-3.22 that increase
in Prandtl number Pr. Grashof number Gr and heat generation parameter 8 drops
pressure rise per wave length but in the case of amplitude ratio ¢ and wave number .

opposite behavior is seen in Figure 3.23 and 3.24 respectively.

Re=a=0,¢=0.5,B=0.3,Gr=0.5

2.5’_ H T — T Ii
: Q=1.5 1 Present §

I | Srinivasetal (2011)

u

0 0.1 0.2 0.3 0.4 0.5
y

Figure 3.2: Comparison of computed velocity profile with that of Srinivas et al.

(2011).
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Figure 3.3: Graphs of longitudinal velocity (a) and temperature distribution (b) for

various vatues of Re when other parameters are fixed
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Figure 3.4: Graphs of longitudinal velocity (a) and temperature distribution (b} for

various values of Q when other parameters are fixed
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Figure 3.5: Graphs of longitudinal velocity distribution (a) and temperature profile

(b) for various values of Gr when other parameters are fixed
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Figure 3.6: Graphs of longitudinal velocity distribution (a) and temperature profile

(b) for various values of § when other parameters are fixed
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Figure 3.7: Variation of the streamlines for various values of Re against fixed values
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reference
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(c)

Figure 3.8: Variation of the streamlines for various values of Gr against fixed values
of Re=6,a =03, ¢=06,0=12,Pr=07and § =03 in wave frame of

reference
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Figure 3.9: Variation of the streamlines for various values of £ against fixed values

of Re=6a=03¢=060=12G =05and Pr =07 in wave frame of

reference
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Figure 3.10: Variation of the streamlines for various values of a against fixed values
of Re =6, =060 =12,6r=05Pr=07andf =03 in wave frame of
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Figure 3.11: Variation of the streamlines for various values of @ with fixed values
ofRe =6,a=03,¢ =06,Gr=05Pr=07and =03 in wave frame of

refrence
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(c)

Figure 3.12: Variation of the isothermal lines for various values of Re against fixed

valuesofa = 03,¢ = 0.6, =12,6r =05Pr = 0.7 and g = 0.3 in wave frame

of reference
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(c)

Figure 3.13: Variation of the isothermal lines for various values of Gr against fixed
values of Re = 6,a = 0.3, =06,¢ =1.2,Pr =07 and 8 = 0.3 in wave frame

of reference
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Figure 3.14: Variation of the isotherma! lines for various values of § against fixed

values of Re = 6, = 0.3,¢ = 0.6,Q = 1.2,Gr = 0.5and Pr = 0.7 in wave frame

of reference
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Figure 3.15: Variation of the isotherma! lines for various values of Pr against fixed
values of Re = 6,4 =0.3,¢ = 0.6,@ = 1.2, Pr = 0.7 and § = 0.3 in wave frame

of reference
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(a)

(b)

(c)

Figure 3.16: Variation of the isothermal lines for various values of a against fixed
values of Re = 6, ¢ = 0.6,3 = 1.2,6r = 0.5,Pr = 0.7 and § = 0.3 in wave frame

of reference
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Figure 3.17: Variation of the isothermal lines for various values of Q against fixed
values of Re = 6, = 0.3, ¢ = 0.6, Gr = 0.5, Pr = 0.7 and § = 0.3 in wave frame

of reference
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Figure 3.18: Vorticity for various values of Re against fixed values of @ = 0.3,¢ =

0.6,Q = 1.2,6r = 0.5, Pr = 0.7 and § = 0.3 in wave frame of reference
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Figure 3.19: Pressure rise per wave length for various values of Re against fixed

values of the other parameters
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Figure 3.20: Pressure rise per wave length for various values of Pr against fixed

values of the other parameters
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Figure 3.21: Pressure rise per wave length for various values of Gr against fixed

values of the other parameters
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Figure 3.22: Pressure rise per wave length for various values of B with fixed values

of other parameters
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Figure 3.23: Pressure rise per wave length for various values of a against fixed

values of the other parameters
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Figure 3.24: Pressure rise per wave length for various values of ¢ against fixed

values of the other parameters
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3.6 Conclusions

The heat transfer analysis in the mechanism of peristaltic flow through the vertical
channel has been presented numerically. The governing equations are modeled in the
absence of long wave length approximation which allows us to observe the effects of
all the parameters with moderate values. The numerical solutions for stream function,
pressure rise per length as well as temperature profile are found. The effects of involved
parameters on the velocity, heat transfer, and the trapping due to the peristaltic wall are
discussed in detail. From the analysis, the main outcomes for different flow
characteristics are summarized. Increase in heat generation reduces the velocity near
the central region and improves the velocity in neighbor of peristaltic wall. It also
enhances the size of bolus and curvature effect on isothermal lines and drops the
pressure. Increase in the Grashof number causes fall in velocity near the central region
and rises the velocity neighbor of peristaltic wall and consequently pressure drops
appeared. Increase in time mean flow rate supports the enhancement of velocity,
temperature and size of bolus. Escalation in wave number enhances the volume of the

bolus, reduces curvature effect of isotherms and rises the pressure.
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Chapter 4

Hydromagnetic Peristaltic Transport of Casson

Fluid through a Channel

The modeling and simulation presented in this chapter is about the peristaltic flow of a
Casson fluid passing through a channel with the inducement of applied magnetic field
in the moving frame of reference by constant velocity along with the wave. The
developed mathematical model is presented by a set of partial differential equations. A
numerica! algorithm based on finite element method with Galerkin weighted residual
technique is implemented to evaluate the numerical solution of the modeled governing
partial differential equations in the stream-vorticity formulation. The obtained results
are independent of low Reynolds number and long wavelength assumptions, so the
effects of non-zero moderate Reynolds number are presented. Comparison of the
obtained results in present analysis with the available results in limiting case in the
literature is included as well and good agreement is found. The expression for the
pressure is also calculated implicitly and discussed through graphs. Computed solutions
are presented by the contours of streamlines and graphs of vorticity. Longitudinal
velocity profile and pressure distribution against variation of various involved
parameters are also presented through graphs. The results obtained illustrates that the
strength of circular movement for stream function enhances by magnifying the values
of the parameters Reynolds and Hartmann numbers. Enhancement in longitudinal
velocity is noted by increasing the Reynolds number and Casson parameter while

increasing Hartmann number reduces the longitudinal velocity.

4.1 Problem Formulation

The unsteady two-dimensional incompressible peristaltic flow of Casson fluid is
considered passing through the channe! of infinite length and of width 2a. The fluid is
assumed electrically conducting under the influence of applied uniform magnetic field
with strength B perpendicular to the flow. We have considered the problem in which B
influences V via the Lorentz force. To ensure that B remains unaffected by V, we must
restrict ourselves to low magnetic Reynolds numbers. The flow is along horizontal x-

axis where y-axis is considered perpendicular to the flow where it is further assumed
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that x-axis is along the central line of the channel as shown in Figure 2.1. 1t is assumed
that a wave with speed ¢ propagates in the x —direction such that the wall of the channel
obeys the relation defined in Eq. (2.1). The equations that governs the motion of
unsteady peristaltic flow of Casson fluid in the inducement of applied uniform magnetic

fields in component form in fixed frame can be written as

WW_y, @.1)

(% + v v = —5§+#(§+1) (a;+m)—aBgu, (4.2)

av av avy _  dp aty 9
p(Grug+vy)=-5+u( +1) (55 + 572) (4.3)
Introducing the well-known transformations given in Eq. (2.2) and (3.1). The equations

that describe the flow in the moving frame are

Ly, (4.4)
P(u'%:_:+v*g_;‘:)=_§+“(e;+1)(a ‘2+02 ) oBf(w +c)  (43)
) - ZeG ) e

wherep, {, 6, p", 4 and Byrepresents  density, material parameter, electrical
conductivity, pressure, the coefficient of viscosity and strength of the applied magnetic
field respectively. The wall movement in transformed variables is represented in Eq.

(2.6). The appropriate boundary conditions are

zu =0, v" =0, at y* =0,
Y . 4.7)
u, = —¢ U‘ — _ZT!bC Sin (2_71'{_) at y- — n(xt)
! A a

To present the theoretical analysis in terms of normalized quantities, dimensionless
variables involved are given in Eq. (2.8). In terms of those normalized variables, after
eliminating pressure gradient term by cross differentiation, the boundary value problem

takes the following form

2 8w, Y _
P + e = w, (4.8)
Wow ey _ (1 2 22y
Re(ayax axay)-((+1)v w+ M2 (4.9)
‘;27“2“:0, %:0, at y=0,
o (4.10)

9 _ ; —
3y 1, o 2ngsin2nx, at y = n(x)

where
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oy ay v du

u=a—, aa—w aa-’a (4.1])
2 o2 3? =2 Re =
Ve= 6_ 6y2’¢ I = a M= Boa (4]2)

4.2 Numerical Analysis

The flow problem defined in Eqgs. (4.8) and (4.9) subject to the boundary conditions
given in (4.10) is solved numerically. Galerkin’s variational finite element method
based on technique is implemented to one part of moving wave which is considered to

be our domain. Highly convergent results with tolerance &y, = &, = 107'%, have been

obtained in 2 — 4 number of iterations in all cases considering non-uniform mesh of
quadratic triangular elements with six nodes using pedtool in MATLAB. The
approximation of stream function and vorticity is given in Eq. (2.13). The weak form

of the governing equation gives

IRAC 2”+3'f+m)dwdm_o (4.13)
Jawe (Re (2222 - 2%) - (Lo ) (a2 52+ 55) -
M? %) dypdw =0, (4.14)

where w; and w,are the weight functions. After simplification of Eq. (4.13) and (4.14),

we obtain,

awy 9y | dwy O oy
fﬂ(az ;1 af+ ;;1 ay) dQ + [ wiwdll = fwl =dr, (4.15)

In Rew; (%z—j - %3—;’) an + (E + 1) fn (az %%{;i + a‘;;f ‘;“’) dn +

M? jna;;z 3‘;’dn ( +1) [wn 5 dl + M2 fow 22 ar. 4.16)
Introducing Eq. (2.13) into Egs. (4.15) and (4.16) and considering the discretized
domain, simplified form of the governing equations in terms of system of algebraic
equations is given by

— T Bfw; + Ti A% ¥ = SE (4.17)
G + 1) T ALw; + Re i Cfy i + M2E, DEh = MPSE5, (418)

where
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e L[ (g2 M, MEINY o
ki —Iﬂe (a dx dx + ay 6y)dn'
Bzi = IneNkNi dQ
e L[y (2230
Ckij - fﬂe Ny (6y ox ax By) aa . (4.19)
dNyg dN;
Dy = fne?fa—yd‘#dw
SK* = [ NiSidl )

The global system is formulated and presented in matrix form defined as
KA =F, (4.20)
where
—Bg; ki w Ske
K;; = =[G r= ] @
TG+ 1)4k ReChot MZD&]'A" blF [Mzs::"] @
The non-linear algebraic system given in Eq. (4.20) is solved by using Newton’s

Raphson method iteratively to obtained desired accuracy.

4.3 Analysis of the Pressure

As Periodicity of the flow yields that the pressure and stress fields are only computed
in the central region of the domain that occupies only one wavelength. It is convenient

to reduced pressure gradient from governing Navier-Stokes equations in dimensionless

form
or _ Pypoy 9% oW\ _ a2 (S - )9
ax Re (6y2 dx dxady ay) M (By + 1) (1 + {) ay’ (4.22)
9P _ 2 (93w By 1)ouw
dy Rea (ax2 3y Oxdy 6x) « (1 + {) ax’ (4.23)

4.4 Validation

The numerical results obtained through present computations are validated against the
results of Mehkeimer (2003), Jaffrin (1973) and Takabatake and Ayukawa (1982). The
solution of Jaffrin (1973) is approximate and only valid for small values of wave
number and Reynolds number. The comparison of the obtained velocity with the results
of Mehkeimer (2003) is shown in Figure 4.1. It shows that our result is good agreement
with that of Mekheimer’s (2003). The comparison of pressure rise per wavelength based
on the present FEM solution with results of Jaffrin (1973) and Takabatake and
Ayukawa (1982) is plotted against flow rate in the fixed frame in Figure 4.2. It can be
observed that our results are in excellent agreement with the Jaffrin (1973) results. The

pressure-flow rate curves predicted by the FEM solution of Takabatake and Ayukawa
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(1982) shows a significant deviation from the corresponding curve based on Jaffrin
(1973) solution.

4.5 Result and Discussion

The numerical scheme discussed in the section 4.2 is implemented to obtain contours
of streamlines, vorticity, graphs of longitudinal velocity and pressure distribution.
Influence of amplitude ratio ¢, Reynolds number Re, volume flow rate @, Cason fluid
parameter {, the Hartmann number M and the wave number a on the quantities of the

interest are presented graphically and discussed in detail.

4.5.1 Velocity field

Figures 4.3- 4.6 are presented to analyze the influence of the involved parameters in
the modeled equation on the velocity field at cross-section x = 0 for the case of
Newtonian and non-Newtonian fluid. Figure 4.3 shows that the upsurge in time mean
flow rate Q enhances the velocity of the fluid in the whole region of the channel. The
effects of Casson fluid parameter { on the velocity field are presented in Figure 44. 1t
is observed that velocity field increases in the central part of the channel by enhancing
the casson fluid parameter while decrease is noted in the region near the walls of the
channel. The comparison of the velocity profile of Newtonian and non-Newtonian
Casson fluid for diverse values of Hartmann number M and Reynolds number Re are
presented in Figures 4.5 and 4.6. These figures show that the behavior of velocity for
Newtonian and non-Newtonian Casson fluids in the central part of the channel and near
in the peristaltic walls of the channel are entirely different. The increase in Hartmann
number reflects the dominance of electromagnetic forces on viscous forces causing
decrease in the velocity field in central region of the channel and increases the
longitudinal velocity in region near the wall of the channel for both Newtonian and non-
Newtonian fluid case. It can also be seen from Figure 4.5(a) that the flow becomes
reversed near the wall for M > 5 but for Casson fluid, no such flow reversal is observed
up to M = 7. Moreover, the flow is slower for Non-Newtonian Casson fluid because of
stronger viscous effect in comparison to Newtonian fluid. The opposite behavior is
reported by increasing the Reynolds number in Figure 4.6. Here flow is positive near
the wall up to Re =15 but for the greater value of Reynolds number flow reversal is
again observed near the wall. On contrary, for Casson fluid, no such flow reversal is

observed up to Re = 20.
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4.5.2 Trapping and vorticity

The formulation of a circulating bolus of fluid in the closed streamlines in the wave
frame of the reference is known as trapping. The viscosity of the Casson fluid depends
on the Casson fluid parameter and fluid becomes more viscous and becomes thicker as
we increase the value of the Casson fluid parameter. The behavior of streamlines against
Casson fluid parameter { is observed in Figure 4.7. The figure indicates that the volume
of the trapping bolus increases by increasing the value of Casson fluid parameter.
Furthermore, with the increasing values of Casson fluid parameters, the bolus
marginally move towards center of the channel and the interface streamlines appear
below the wall. The influence of Reynolds number on the behavior of streamlines are
shown in Figure 4.8. Since Reynolds number corresponds to the ratio of the inertial
forces over the forces caused by viscosity of the fluid, so the non-zero Reynolds number
provided the effect of inertial forces on the considered flow model. For the larger value
of Reynolds number which indicated the dominance of the inertial forces over viscous
forces, the volume of bolus increase and bolus moves to the left side of the channel and
more curvature effects of streamlines are noticed on the right side of the center of the
channel. Figure 4.9 shows the effects of Hartmann number on streamlines which shows
opposite behavior as in the case of Reynolds number. Hartmann number shows the
influence of the applied magnetic field on the flow modeled. As Hartmann number is
representative of electromagnetic force cause by the applied magnetic field defined as
the ratio of the electromagnetic force caused by the magnetic field to the viscous force,
so by enhancing the values of Hartmann number reflected to the strong magnetic field
which causes the resistance in the flow of the fluid so the trapped bolus formed shrinks
which can be observed from Figure 4.9. Figure 4.10 exhibits the effects of different
values of wave number on the behavior of the streamlines. These effects are presented
first time for the study of peristaltic flow of Casson fluid, as in earlier studies the use of
[ubrication theory is widely used which was not able to predict such effects. Since wave
number corresponds to the ratio between the half width of the channel and the length
of the wave in motion, so by enhancing values of the wave number considerably effects
the flow of Casson fluid in Peristaltic motion which can be noticed by magnifying the
volume of the trapped bolus through Figure 4.10. The vorticity field for various values
of Casson fluid parameter y is presented in Figure 4.11. For small value of { the

curvature effects is dominant in middle part of the channel as the fluid is less viscous
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and it penetrates to right side for large value for y when the fluid is comparatively
thicker. Moreover, the curvature effect is also dominant near the crest regions which
means that the rotation of the fluid particles near the wall compared to the center of the
channel is fast for large value of Casson fluid in comparison with that of Newtonian
fluid.

4.5.2 Pressure distribution

The purpose of this subsection is to examine the important phenomena of pressure rise
per wavelength in peristaltic transportation. Usually, three ranges of pumping in
peristalsis are possible, for AP > 0 corresponds to augmented pumping region while
AP = Q is the free pumping region and AP < 0 is the co-pumping region. The pressure
rise is plotted against time mean flow rate to see the effects of change in values of
different involved parameters in Figure 4.12. Figure 4.12 reveals the effect of
Reynolds number Re on pressure rise per wavelength. It is observed that for large
values of Reynolds number which enhances the dominance of the inertial forces gives
rise in pressure. Furthermore, pressure rise per wavelength shows non-linear behavior
which is mainly caused by strong inertial forces. It is also noted that dominance of
inertia! forces to viscous forces causes augmentation in a rise in pressure and this fact
is not yet reported. On the other hand, the increase in pressure rise is noticed with
growing values of the Hartmann number M as shown in Figure 4.13. So, one way to
control the pressure rise of peristaltic motion of Casson fluid in terms of blood flow
model is by enhancing the strength of applied magnetic field, this fact is widely used in
MRI and other bio medical treatments. Furthermore, increasing wave number a shows
analogous behavior as of Reynolds number presented in Figure 4.14. The free pumping
in this case is reported at @ = 0.4. The decrease in pressure rise in the pumping region
is noticed through Figure 4.15 due to increase in Casson fluid parametery, because of
rise in viscosity, flow becomes slow and the pressure rise decreases. Figure 4.15 also
shows that in the augmented region—1 < Q < 0.3 pressure rise gives opposite result as
compared to that of pumping region 0.3 < @ <I. Free pumping corresponds to AP =
0at@ =0.3.
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Figure 4.1: Comparison of computed velocity profile (solid line) of a sinusoidal wave
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Figure 4.7: Variation of streamlines against different values of { in wave frame at Re =
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Figure 4.9: Variation of streamlines against different values of M in wave frame at
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Figure 4.10: Variation of streamlines against different values of & in wave frame at
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4.6 Conclusions

The numerica! simulation of hydromagnetic peristaltic flow of a Casson fluid through
a channel is studied without employing the famous hypothesis of lubrication theory
which gives us the chance to present the effects of all the involved parameters including
Reynolds number at moderate values. The numerical results are presented through
graphs and detailed discussion of the velocity profile, the contours of streamlines,
vorticity and pressure rise per wavelength. [t is observed that increase in Casson fluid
parameter causes increase the volume of the bolus and slight movement towards center
of the channel, increases in the velocity near the central region of the channel and
decreases in the region of peristaltic wall. As far as the effect of Casson fluid parameter
on vorticity is concern, more curvature effects are noted in central part for small values
of Casson fluid parameter, and for large values of Casson fluid parameter more
curvature effects in crest region are noted. The increasing values of Hartmann and
Reynolds numbers causes increase in volume of the bolus while increase in velocity is
noted near the center of the channel and opposite behavior is observed near the
peristaltic wall. Comparison of Newtonian with the non-Newtonian Casson fluid is
offered by plotting different graphs and found that the flow is comparatively slower in
the case of the non-Newtonian Casson fluid with that of Newtonian fluid.

Unlike the earlier studies, the effects of dominant inertial forces in the study of the
peristaltic flow of Casson fluid are discussed by setting moderate values of Reynolds
number in the presence of non-zero wave number, which was neglected yet due to
imposition of the long wavelength and low Reynolds approximations in most studies.
First time in literature, the solution of the full form Navier-Stokes equations for the
peristaltic motion of Casson fluid is provided. Hence, it is hoped that present study will
serve as a benchmark for further research on peristaltic flows of non-Newtonian fluids

without applying assumption of jubrication theory.
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Chapter 5

Hydromagnetic Peristaltic Flow of Micropolar
Fluid through a Channel

The analysis given in the current chapter is about the MHD flow of micropolar fluid
induced by peristaltic waves passing through the porous saturated channel at large
Reynolds number. The flow model is formulated without considering the assumptions
of lubrication theory which yields the governing equations into a non-linear set of
coupled partial differential equations which allows studying the peristaltic mechanism
at non-zero Reynolds and wave numbers. To certify the correctness of the developed
code, obtained outcomes are compared with the results presented in the literature and
found in excellent covenant. The influence of other involved parameters on velocity,
stream function and microrotation are discussed through graphs plotted by using
Galerkin’s finite element method. Besides that, the phenomena of pumping and
trapping are also analyzed in the later part of the chapter. It is found that the peristalsis
mixing can be enhanced by increasing Hartmann number while it reduces by increasing

permeability of the porous medium.

5.1 Problem Formulation

Consider an unsteady two-dimensional peristaltic flow of micropolar fluid passing
through a channel of width 2a with speed ¢ occupied with porous-saturated medium.
The fluid is assumed to be electrically conducting and uniform magnetic field is applied
normal to the direction of the flow with strength Bo. The flow is assumed along x-axis
while the y-axis is considered orthogonal to the flow. Here, due to small conductivity
of fluid, the low R,,-approximation is assumed which allows to neglect induced
magnetic field in comparison of applied magnetic field. The symmetry of the flow is
about x-axis which is shown in Figure 2.1.Movement of the flexible boundary walls in
the fixed frame of reference (X, Y) obeys the relation given in Eq. (2.1). For peristaltic
flow of electrically conducting micropolar fluid under the inducement of the magnetic
field passing through the porous saturated channel, the laws that conserved the mass,

linear momentum and angular momentum are expressed as
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vV =0, (5.1)
p(V*.VV*) = —VP + (u+K) VIV +RYXG +JxB -—% Ve, (5.2)
pJ (V'.V6") = —2kG" —F(YX VX G") + RV X V" + (a+B+
7) V(V.6%), (5.3)
where V*is the velocity vector define as V™ = (u",v", 0}, G* is the microrotation
vector defined as G* = (0,0, g").J corresponds to the current density, B isthe applied
magnetic field defined as B = (0, By, 0), p corresponds to the fluid density, p*
symbolized the pressure of the fluid, J* symbolized the microgyration parameter, 4
represents classical viscosity coefficient, k represents the permeability of porous
medium, & and 7 are the coefficients of spin gradient viscosity and ¥ characterizes
the coefficient of vortex viscosity. The material constraints i, K @ f andy must
satisfies the following relations Eringen (1966) given in Eq. (1.16). Here, it is required
to solve the considered problem in wave frame of reference (x*,y"). The wave frame
and fixed frame (X, Y) are connected by the relations given in Eqs. (2.2) and (3.1), the
Egs. (5.1) to (5.3) govern the two-dimensional micropolar fluid flow through a uniform
porous saturated medium subject to transverse uniform magnetic field in the wave
frame that vields following simplified equations
gus | ov'

ey 0, (5.4

au’ . . g% | 8* 2
p(u"l+v‘a—u‘)=—§p—+(,u+x)(?1f2-+-a%)+x—g——

dax* ady dx* dy ay*
2 H »
(O’Bo +E) (u + C) (5.5)
Lov Loty _ _adpt v P?vy _ 8g°
p (u ax* + dy ) - ay* + (H + K) (c’ix*2 + ay*z) dx*
T
=(v" +0), (5.6)
o, 208" L 238N L oot a’g' 3% gt _ 3w
0'] (u dx* +v By') - ZK'g Ty (Bx*2 + By‘z) T dx* By')’ (5'7)
with appropriate boundary conditions
‘Zl:=0, v =0, g =0 aty =0,
7 2nbe 2mx* i (5'8)
w=c vV=- sin( ; ) g =0 aty” =n(x")
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where n(x*) represents the restriction in the wave frame of the moveable boundary
wall, which takes the form given in Eq. (2.6). To make the above model dimensionless,

dimensionless variables given in Eq. (2.8), (3.14) and (5.9) are incorporated into each

equation

g’ i’ k" ca o
g=7J=7.K=:21Re=7“vM=f;Boa- (5.9)

a

where K symobolized the permeability of the porous medium. Eliminating pressure
gradient terms by cross differentiation, and by inserting the stream function along with
vorticity defined by the relations given in Eq. (4.11), governing equations for the
considered flow in Y — @ formulation takes the form

2.62_11’_1_62_1’0.—_.

L i=o, (5.10)

F4
Re (232 _2L%) = (V0 - NV2g) + M-, (1D

dy ox ax dy 1-N k
LN\ (2908 _2939) ) g 4+ 2N
RE]( N )(ay Ix Bx By) =w-2g+ m? Vg, (5.12)
The boundary conditions take the form given as
N _o, i‘%: , g=0 aty=0,
g; ";{p (5.13)
5;:2n¢>51n2nx, ;};=-1, g=90 aty = n(x)

where N =r/(u+x) is the coupling number ranges from 0 tol, m? =

2 2
a’k (2u + rc)/(y(_u + K)) symbolizes the micropolar parameter and V2= -{;—2 + -:?.

5.2 Numerical Analysis

To get the numerical solution, governing Eqs. (5.10) - (5.12) subject to boundary
conditions (5.13) are exposed to finite element method expressed by Kwon and Bang
(1991) and Ferreira (2009). It is a very effective technique used to solve nonlinear
equations by involving relatively low investment and rapid convergence. The quality
of approximation of finite element method is also very high as compared to other
methods. The most attractive and reasonable advantage to use this method is the ability
to handle the complex geometries by discretizing the domain into a mesh of
triangular/rectangular shape by which solution of the system can be simulated at any
point or region of the domain. So. the domain is discretized into a non-uniform mesh
of six nodal quadratic triangular elements with the help of pdetool in MATLAB. Once
solution matrix on each trianguiar mesh is obtained, they are assembled into a global

system of matrices. First, finite element method is exposed to governing equations to
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transform them into a system contains the set of nonlinear algebraic equations which is
then cracked by Newton-Raphson method. The technique of the method implemented
to the problem is as follows:

The dependent variables involved in governing Eqs. (5.10) - (5.12) are approximated
by the function given in Egs. (2.13) and (5.14)

g = k=1 MW (5.14)
where Y, @ and wy are nodal element approximation of stream function i, vorticity
w and microrotation w respectively. In our situation, we considered quadratic
triangular elements which corresponds ton = 6. After applying Galerkin's finite

element method to Egs. (5.10) to (5.12), we get

[, wi(e 2"’"’+%2;’ﬁi+w)dﬂ=0, (5.15)

f, wa(Re (222 - 2220) _ L (2 2 Sy 4 (o S84 58) -
Mz%%+iw) dn = 0, (5.16)

o s (52) (220 2228) - 29 S (54 ) Jan -
0, (5.17)

where wy,w, and w; represents the weight functions and dfl = 2nrdrdz. Upon

simplification of Egs. (5.15) to (5.17), we get

IR (a2%2%+a;1‘;‘£)dn f, wwd = J w22 dr, (5.18)
e e (22 2258) a1 I (2 55 e
—f}-v-fn (aza—;fz—i-+a;;22g) dQ+M2_[ (3;2 Z“;) n+%jn wowd =
j wzaa“’dr le wzagdl"+M2f Wzawdl" (5.19)

=N ?i?i_ﬂ"’_ﬂ) =N 2 83 99 i‘ﬁ?ﬂ)
Re]( N )fn W3(6y6x 3x ay dsl + m? jﬂ (a Ax ax+ 3y 9y dfl +

2=-N d
2 fn wagd€l — fﬂ wawdfl = ;z—fr W3-a'%dl", (5.20)

where £ is the area integral for each six nodal element and I represents the line integral
on each six nodal element. After putting Eqs. (2.13) and (5.14)) into Eqs. (5.23)-(5.25)

with assuming the discretized domain, one can get

Y ACp; — T Bhw; = SK, (5.21)
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1
Re T; CE i + T Do Afwi + M2 i Dy — _"lfNZiAiigi +
Ly =t gk N gke ¢
X BE = oy SK S MIST (522)

2-N 1-N N e
— LA gi + Ref (—N“) Y Ceig: + 22iBRigi — Li Bauw: = sk, (523)
where

e _ 2 aNyg ON| INg aNi) “
L= qc—t— 4 —=—
ki 'rﬂe( dx ax + dy 3y as,

Bii = .rg_e NkNian

’ L (5.24)
@Ny ON

Dzi = fn (_a;k——a}ﬁ) df
Sk = [ N,dl

sk = I N, S,dl’, wherez=1,2 )

After assembly procedure, obtained resulting system (global) in the matrix arrangement

is expressed as follows

KA=F, (5.25)
where the individual matrices are as follows
—B% &i 0
1 e e 2ne 1 e N e
KU — :'!G ki Re Ckijwi + M Dki + EBk[' _1_—-N— ki ,
2-N
—Bji Re] Cgijwi — AR + 2B
ke (5.26)
Wy Sn
1 € N e e
Ay = [w]‘f’k = | SK oy Sk T ML
w 2—N e
' "z S

Eq. (5.25) represents the system of nonlinear algebraic equations which are solved by
Newton-Raphson method. The procedure is iterated until the convergence condition

described in previous chapter is achieved.

5.3 Analysis of the Pressure

As Periodicity of the flow yields that the pressure and stress fields are only computed
in the central region of the domain that occupies only one wavelength. It is convenient
to reduced pressure gradient from poverning Navier-Stokes equations in dimensionless

form
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G _ po (Do _ LYoy Adu, N0 (%)

dy? ax  Oxdy dy 1-Ndy 1-Ndy ay
12,4
K (ay +1), (5.27)
0p _ .3 (azw oy A%y aw) 3 1 3w 2 N 3g 1{dyp
—_ = el—— — —— ———— — _ | —
dy R dx2 3y  Oxdy 0x ta 1-N 3y a 1-Ndx K (ax + 1)' (5'28)

In the wave frame of reference at the center of the channel (y = 0), the computation of

the pressure rise per wavelength is given in Egq. (2.25) and friction factor takes place by
the relation

Fy = f; -hZdx, (5.29)

5.4 Validation

In this section, we validated the computed numerical results by comparing it graphically
with the results of Hayat et al. (2007) in limiting case after applying assumptions of
lubrication theory in our model! at the cross-section x = 0 of the channel and setting
other values of time-mean flow rate ¢ = 1.0 and @ = 1.4. The solution of Hayat et al.
(2007) is purely analytical and therefore it serves as a benchmark solution in this
comparison. To this end, the curves of velocity based on computed solution are
compared with the corresponding velocity curves obtained through the solution of
Hayat et al. (2007) as shown in Figure 5.1. 1t is observed that the computed results for
the limiting case (M = 0,1/K = 0) are in close agreement with corresponding result
of Hayat et al. (2007) and hence the solution computed is correct and the analysis

presented is valid.

55 Results and Discussion

In this segment, we presented the obtained results through graphs of longitudinal
velocity, pressure distribution, contours of streamlines, vorticity and microrotation for
the peristaltic flow of micropolar fluid. First time in the literature, the influences of
magnetic field and porosity parameter on the peristaltic flow of micropolar fluid at non-
zero moderate Reynolds number are discussed by setting suitable values of the
participating parameters through the plotted graph.

5.5.1 Velocity profile

The longitudinal velocity profile is plotted at the x =0 cross-section of the channel
with variations of participating parameters i.e. Reynolds number Re, wave number a,
Hartmann number M, porosity parameter K, micropolar parameter m and coupling

parameter N through Figures 5.2 - 57 It is noted form the figures of longitudinal
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velocity that the behavior of velocity in the central part of the channel and in vicinity
of the peristaltic walls entirely opposite. The longitudinal velocity for variation of
Reynolds number i.e. Re = 1,5, 10 and 20 is plotted with fixed valuesofa = 0.1, ¢ =
05N=02m=2]=01,M=20,0=14 and K =05 in Figure 5.2. The
decrease in velocity is noticed with increase in Reynolds number in vicinity of the
center of the channel while reverse behavior is observed in the neighbor of peristaltic
wall. It predicts that the dominance of inertial forces to the viscous forces accelerates
the velocity of the fluid near the walls of the channel, however, enhancement of inertial
forces causes resistance to the flow in central part of the channel. These observations
are attributed to strong inertial forces that perhaps is not predicted in earlier studies
available in literature. Wave number « is basically the ratio of the half of the width of
the channel to the wavelength. As mention above that in the present study, we are
dropping the assumptions of low Reynolds number along with long wavelength, so it
allows us to study the effects of wave number on the velocity of the fluid. Thus, the
current study is valid for both long and short wavelength. To observe the variation of
wave number @ = 0.1,0.3, 0.7 and 0.9 the longitudinal velocity is plotted in Figure 5.3
at stable values of other parameters Re = 0.5,¢ =05, N = 02m=2]=01M=
2.0,0 = 1.4 and K = 0.5. Itexhibits the same behavior as that of the Reynolds number
on the longitudinal velocity. The effects offered by the porous medium on the velocity
profile are presented in Figure 5.4 by plotting longitudinal velocity for numerous
values of the parameter representing permeability of porous medium K =
0.01,0.05, 0.1 and 0.5 with fixed values of Re =05,2a=01,¢=05N=02m=
2,/]=01L,M=20 andQ= 1.4. Tt is noted that at the center of the channel,
longitudinal flow velocity is in the direct proportional relation to the permeability of
porous medium and inverse proportional relation to it near the walls of the channel. The
resistance to flow provided by the magnetic field is presented in the Figure 5.5 by
plotting the longitudinal velocity for numerous vatues of Hartmann number M = 1,3,5
and 7 at fixed values of Re = 0.5, = 0.1, ¢ = 05,N=02m=2]=010= 1.4
and K = 0.5. The increase in the strength of the magnetic field is attributed to the fact
that magnetic body force retard the bu ik motion of micropotar fluid due to peristalsis,
resulting resistance in the flow near the central region of the channel. Figures 5.6 and
5.7 are plotted to examine and analyzed the effects of the micropolar and coupling

parameters respectively. In both figures, small effects are noticed for the variation of
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both parameters. Figure 5.6 is plotted for variation of micropolar parameter at m =
1,3,5 and 7 with fixed values of Re = 0.5, = 0.01,¢ = 0.5, N = 0.2,]=01M=
2.0,0 = 1.4 and K = 0.5. The slight decrease in velocity is noted by increasing
micropolar parameter at the center of the channel, while in region of the peristaltic wall,
enhancing the values of the micropolar parameter accelerates the velocity. The effects
of coupling number are opposite to that of effects of micropolar parameter. In the
Figure 5.7, the variation of the coupling number is presented by plotting longitudinal
velocity for N = 0.2,0.4,0.6 and 0.8 with fixed values of Re = 0.5,a = 0.01,¢ =
05m=2]=01,M=20Q=14 andK = 0.5 which revels the fact that by
escalation of the coupling number, the longitudinal velocity rises near the center of
channel, but declines in the vicinity of the moving wall due to the static value of the

flux rate is noted.

5.5.2 Trapping phenomena, vorticity and microrotation

Trapping is one of the important physical phenomenon in peristalsis. It depends on the
formation of contours of streamlines. Sometimes, streamlines are not moving on the
same path similar to that of the peristaltic wall rather splits and encloses a bolus of fluid
in closed streamlines and thus circulating region arises. These trapped bolus and their
movement along with the wave in the flow exhibit the trapping phenomenon for the
peristaltic flow. The trapping phenomenon, vorticity along with microrotation for
peristaltic transportation of non-Newtonian micropolar fluid beneath the influence of
applied uniform magnetic field in the porous saturated channel for variation of
participating parameters are presented in Figures 5.8 — 5.10. The effects of moderate
Reynolds number on trapping phenomena, vorticity and microrotation of the flow is
presented in Figure5.8. The slight increase in the size of the bolus is noted by
increasing Reynolds number with the tendency to move towards the central region of
the channel. The vorticity generated at the peristaltic wall and disturbed in the central
part of the crest region of the peristaltic wave due to increase in the Reynolds number.
The microrotation of the micropolar particles is observed almost symmetric for low
Reynolds number while the increase in Reynolds number declines the microrotation of
the particles. Figure5.9 contains graphs of streamlines, vorticity and microrotation
under the influence of applied magnetic field. Increase in the Hartmann number M
reflects effects of enhancement in the strength of the magnetic field on peristaltic

motion which increases the body force in the shape of the Lorentz force. It is noted
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from the figure that peristaltic flow of the micropolar fluid is much affected by
increasing the strength of magnetic field. The circulation of streamlines is weaken by
increasing Hartmann number as the volume of trapping bolus shrinks and decreases in
a number of boluses is noted, is consequent bolus formation can be controlled by
regulating the strength of externally applied magnetic field. More vorticity lines
generate at the peristaltic wall by enhancing the magnetic field with the tendency to
cluster in the region of the peristaltic wall is observed. The strength of micro- rotations
is noticed to decline with an escalation in the strength of magnetic field. The effects of
the permeability of porous medium K on the fluid flow are presented in Figure 5.10.
The permeability parameter K is not dependent on the nature of the fluid but only
depends on the nature of the porous medium. It has been observed that amplification of
permeability of porous medium augmented the strength of streamlines circulation that
increases the number of the trapped boluses and magnified the size of the bolus. The
circulation of the micropolar fluid has been noted in the vicinity of the peristaltic wall,
but as we increase the permeability of porous medium, the fewer vorticity lines are
noted moving towards the center of the channel which is also evident from the
enhancement in the flow of the fluid. The strength of microrotation of the fluid particles
escalates with an increase in the permeability allows by the uniform porous medium.
$.5.3 Pressure distribution and friction force

The pressure rise per wavelength on central line y = 0 is plotted against time-mean
flow rate through Figures 5.11-5.16 t0 examine the effects of participating parameters
in suitable ranges which involves the numerical integration of pressure gradient and
Figures 5.17 and 5.18 presents the effects of friction force. Usually, the flow is
discretized into four types of flow regions/quadrants and is known as adverse pressure
if AP, > 0 while AP, <0 is for favorable pressure gradient. The quadrant 1
corresponds to the flow in which time mean flow is positive with adverse pressure is
known as peristaltic/positive pumping quadrant. The quadrant II corresponds t0 the
flow in which time mean flow is negative with adverse pressure is known as
retrograde/backward pumping quadrant. The quadrant [Tl corresponds to the flow in
which time mean flow is positive with APy <0, and is known as co- pumping. The
quadrant 1V corresponds to the flow in which time mean flow is negative with AP; <
0, and known as augmented pumping quadrant. Furthermore, in quadrant 1V, the free

pumping region exist when AP, = 0 with @ > 0. Here, we discuss the pressure rise per
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wavelength for peristaltic in augmented region which are of most interest in engineering
and has vast applications including biomedical sciences. The pressure rise per
wavelength for numerous values of Reynolds number is plotted in Figure 5.11. It
reveals that pressure rise is increasing function of the dominant inertial forces induced
by enhancing the Reynolds number in the region of peristaltic pumping while it is
decreasing function of Re in the augmented region. Furthermore. it is noted that the
behavior in the graph of pressure rise per wavelength is linear for small values of
Reynolds number and nonlinear concave shape is observed for large values of Reyno lds
number. The wave number exhibits the same behavior as that of Reynolds number in
both peristaltic pumping and augmented region as shown in Figure 5.12. Figure 5.13
displays the characteristics of porous medium on the pressure rise per wavelength. In
contrast to the effects of Hartmann number. the increasing values of permeability
parameter diminishes the pressure rise in the peristaltic pumping region which can be
interpreted in such a way that if the medium becomes more porous that enhances the
flow rate by which it can be desisted by low pressure applied against it. The pressure

rise per wavelength for different values of Hartmann number is plotted in Figure 5.14.
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Figure 5.1: Comparison of computed results with that of Havat et al. (2007) for

longitudinal velocity.
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Figure 5.2: Velocity profile for variation of Reynolds number Re and values of other

parameters are fixed
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Figure 5.3: Velocity profile for variation of wave number @ and values of other

parameters are fixed

117



Re=5,0=0.1,6=0.5,N=0.2,m=2,J=0.1M=2,0=1.4

157 gT - T
] L —
0.5 ]
= & :
o k=001
| - - K=0.05] )
-05 r- - 'K=0.] ;
—K=0.5
"y L
-0.5 0 0.5
y

Figure 5.4: Velocity profile for variation of permeability of porous medium K and

values of other parameters are fixed
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Figure 5.5: Velocity profile for variation of Hartmann number M and values of other

parameters are fixed
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Figure 5.6: Velocity profile for variation of micropolar parameter m and values of

other parameters are fixed
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Figure 5.7: Velocity profile for variation of coupling number N and values of other

parameters are fixed
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Streamlines Vorticity Microrotation

Figure 5.8: Streamlines, vorticity and microrotation for various values of Revnolds
number Re and values of other parameters are fixedata = 0.5,¢ =04, m =2, N =

05 M =2,K=05andQ =1.2



Streamlines Vorticity Microrotation

Figure 5.9 Streamlines, vorticity and microrotation for various values of Hartmann
number M and values of other parameters are fixed atRe = 10,a = 0.5,¢ =

04m=2,N=05K=05and@ =12
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E=00

Figure 5.10: Streamlines, vorticity and microrotation for various values of porosity
parameter K and values of other parameters are fixed atRe = 10,0 = 0.5,¢ =

0 4m=2N=05M=2andQ =12
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Figure 5.11: Pressure rise per wavelength for variation of Reynolds number Re and

values of other parameters are fixed
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Figure 5.12: Pressure rise per wavelength for variation of wave number a and values

of other parameters are fixed
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Figure 5.13: Pressure rise per wavelength for variation of permeability parameter K

and values of other parameters are fixed
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Figure 5.14: Pressure rise per wavelength for variation of Hartmann number and

values of other parameters are fixed
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Figure 5.15: Pressure rise per wavelength for variation of micropolar parameter m

and values of other parameters are fixed
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Figure 5.16: Pressure rise per wavelength for variation of coupling number N and

values of other parameters are fixed
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Figure 5.17: Friction force for variation of permeability parameter K and values of

other parameters are fixed
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Figure 5.18: Friction force for variation of Hartmann number M and values of other

parameters are fixed



It exhibits that in the region of peristaltic pumping, increase in magnetic body force
enhances the pressure rise per wavelength and reduces pressure rise in the augmented
region. So the strength of the magnetic force is one way to control the pressure rise in
both regions. In Figure 5.15, the pressure rise per wavelength is plotted to examine the
attitudes of micropolar parameter m. It is noted that increasing m causes increase in
pressure rise per wave length which is greater as compared to that of Newtonian case
in pumping region while its behavior is opposite in augmented region. Figure 5.16 is
constructed to see the effects of coupling number N on pressure rise per wavelength. It
is noted that pressure upsurges with accumulating coupling number N and curve
representing the trades of Newtonian fluid lies lower the curves corresponds to
micropolar fluid in the peristaltic pumping region which reveals that enhancing the
coupling parameter gives improved pumping performance. Moreover, increase in
coupling parameter decreases the pressure rise in the augmented region. Figures 5.17
and 5.18 are plotted to examine the characteristics of the friction force in a porous
medium and magnetic field. Figure 5.17 shows that increase in the values of
permeability of porous medium decreases the friction force for large values of time
mean flow. It is aiso noted that for large values of time mean flow, friction force
increases rapidly. However, it is noted from Figure 5.18 that the behavior of Hartmann

number is opposite as compared to that of permeability parameter.

5.6 Conclusions

In this chapter, the peristaltic transportation of micropolar fluid is carried out for non-
zero moderate Reynolds number to examine the effects of the flow in the porous
saturated channel beneath the impact of transverse uniform magnetic field applied
perpendicular to the flow. In the present study, the assumptions of long wavelength
along with low Reynolds number is not considered due to which the effect of inertial
forces on the peristaltic mechanism for the motion of non-Newtonian in a porous
uniformly saturated medium is presented for the first time in literature. By neglecting
above assumptions, the governing equations for the flow model are presented by the set
of coupled nonlinear partial differential equations. Modelled equations are exposed to
Galerkin weighted residual finite element technique. Comparison of obtained numerical
outcomes with the available literature results in limiting case by plotting graph of
velocity for altered values of time-mean flow and found in excellent agreement.

Computed results are presented through the graphs of velocity, streamlines circulation,
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vorticity, microrotations and pressure rise per wavelength. It is concluded that at low
Reynolds number, the trapped bolus are symmetrical while increasing Reynolds
number magnifying the size of the boluses, increases the pressure rise per wavelength
and reduces the velocity. Increasing values of wave number exhibit the same behavior
as that of Reynolds number for velocity and pressure profile of the fluid. The rise in
strength of magnetic field reduces velocity, the volume and number of trapped bolus.
The increase in permeability allows by the porous medium give rise the velocity of the
fluid and reduces the pressure in the peristaltic pumping region while increases pressure
in augmenting region. Furthermore, the size as well as number of bolus increases by
increasing the permeability of porous medium.

Unlike the earlier studies, the effects of dominant inertial forces in the study of the
peristaitic flow of micropolar fluid are discussed by setting non-zero moderate values
of Reynolds number in the presence of non-zero wave number, which is neglected yet
by imposing the long wavelength along with low Reynolds approximations. First time
in literature, the solution of the full form of Navier-Stokes equations for the peristaltic
motion of non-Newtonian fluid (micropolar fluid) under the influence of magnetic field
in a porous medium is provided. Hence, it is hoped that present study serves as a
benchmark for further research on peristaltic flows of non-Newtonian fluids without

applying assumption of lubrication theory.
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Chapter 6

Hydromagnetic Peristaltic Flow through a

Porous-Saturated Tube

The main objective of the current chapter is to investigate nonlinear peristaltic flow
passing through the tube filled with homogeneous porous medium under the inducment
of the externally applied uniform magnetic field numerically without applying
assumptions of lubrication theory. The Galerkin’s variational approach is used to apply
the finite element method to find numerical solution of the modeled governing system
of nonlinear partial differential equations. The results are obtained without imposing
the assumptions of long wavelengih along with the low Reynolds number on modeled
equations. Consequently, we obtained the results which are valid for moderate values
of wave and Reynolds numbers. The effects of these parameters including Hartmann
number, time mean flow rate parameter on longitudinal velocity profile as well as on
pressure distribution are presented through graphs. The contours of streamlines are also
included and discussed in detail. Linear behavior of pressure is observed for small
Reynolds number while for large values of Reynolds number pressure rise per
wavelength is observed as nonlinear. It is observed through analysis that peristaltic
mixing due to circulation is highly dependent on permeability parameter. Greater
peristaltic mixing is noticed in the non-porous tube as compared to that of porous-
saturated tube. The obtained numerical outcomes are compared with available

analytical results in the literature which establish an excellent agreement.

6.1 Problem Formulation

Let us consider a two dimensional electrically conducting peristaltic flow of Newtonian
fluid passing through a tube of width 2a saturated with a porous medium with speed c.
The magnetic field B having uniform magnitude B, is applied orthogonal to the
orientation of the flow. Here, due to small conductivity of fluid and to ensure that B is
unaffected by the velocity of the fluid, we must restrict ourselves to low magnetic
Reynolds numbers Ry, and low R,,-approximation allows to neglect induced magnetic
field caused by an applied magnetic field. We consider constant thermo-physical

properties of the fluid of unsteady peristaltic flow. The flow caused by peristaltic walls
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of the tube is considered along the z —direction and r —coordinate assumed in the
radial direction. The symmetry of the flow is about z — axis and schematic diagram

that explains the geometry of the considered problem is displayed in Figure 6.1.
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8

Figure 6.1: Geometrical flow diagram

In fixed frame geometry of peristaltic boundary/wall of the tube obeys Eq. (6.1).
H(Z,t)=a—Dbcos [ZL(ZI_C—”] (6.1)

where A, b and h are the representatives of wave length, wave amplitude and mean
distance from the central axis to the peristaltic wall respectively. Darcy law relates the
pressure drop and velocity of Newtonian fluid. Darcy law hold at low speed in an
unbounded porous saturated medium states that the induced pressure drop is due to the
frictional drag have direct relation to the fluid velocity. The inducement of applied
magnetic field in terms of the Lorentz force are discussed and presented in governing

equations. In the fixed frame, the governing equation that describes the flow are as

follows
(B U < i () B i, (69
PGrewirvi) = mralta) e o

The suitable boundary conditions applied on for the considered flow are given as

aw
U=0, H'—O at R=10, (6.5)

W =0, U=‘;—f at R=H. (6.6)
The symmetry of the flow is along the no-slip wall corresponds the boundary conditions
defined in Eqs. (6.5) and (6.6) imposed on Ul at R = 0 and R = H, whereas, the equality

of normal velocity of fluid at the wall to normal velocity of wall refers to boundary
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condition defined in Eqs. (6.5) and (6.6) on W as W = dH /ot at R = H. The zero
transvers velocity at the center corresponds the boundary condition W = 0 at R=0.
The set of transformation that relates two frames, the lab and wave frame is

r"=R w'=W-=¢, z2=Z—-ct, u'=U, 6.7)
where Z, R and z*, 7" represents the velocity coordinates in the fixed frame of reference
and moving frame of reference respectively and p* = P. The associated boundary
conditions for the flow at center and wall of the tube are given by

Y =0 atr*=0, Y =g atr=n(z"), (6.8)

in which " and q are representatives of the stream function and flow rate in the wave
frame of reerfernce respectively where the relation by which g” can be connected with
the time mean flow in lab frame Q" given by the expression ¢* = Q" — cH*(1 +
$2/2). Implanting the following dimensionless variables to the system of equations

a® e =% p=2g=5
JP_;‘:EP (Z)na_ a J¢ - a.l - ] (6.9)

:—.w_‘szan ) n:%"hzh(z‘)’]{ 2%’R€=%Q,M:,fo‘/”Boa_

a

And eliminating the pressure gradient term by performing cross differentiation and then

using the relations
u=—20y/0z and w = =/ dr (6.10)
in the governing equations, we get stream-vorticity form of equations as follows

a_zﬂ+i(1ﬂ) = —w, (6.11)

r 8z  &r \rdr
W a(wy_ 8¢ fuy)_lp2 28 (1o¥y 1
Re(ar az(r) dz 6r(r))—rD (rw)+M Br(r 6r) Kw' (6'12)
- o (D7) | 2 g0t P18
where a modified form of Laplacian (D?)} is defined as D* = a 257 + preRaberwt

Simplified form of the boundary conditions is given as

= 8 (1o _ 19 _ -
¥ =0, Br(rar)—o' raz a r=0 (6.13)
Y=gq, 1% - g, 1 2ngpsin2nz at v =n(z)

r ar r oz

where n(z) = 1 — ¢cos(2nz)

At the central line of the tube z = 0, pressure rise per wavelength in wave frame is
given by
ia
Apy = f, a—zdz. (6.14)
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dp . . . . . .
where gt directly determined through non-dimensional Navier-Stokes equation.

6.2 Numerical Analysis

In this analysis, the modeled equations are not exposed to assumptions of long
wavelength along with low Reynolds number due to which nonlinearity retained in the
governing set of partial differential equations. To handle such type of high nonlinear
system of partial differential equation, we required highly accurate and robust
technique. For this purpose, the modeled Eqs. (6.11) and (6.12) along with the boundary
conditions given in Eq. (6.13) are exposed to Galerkin’s finite element technique. In
this technique, the whole domain is discretized into a mesh of non-uniform quadratic
triangular elements by using the pdetool. First, we discretize the problem on each
triangular element and then assemble it to the global system and solve by the Newton-
Raphson method by using MATLAB 2010a. In all the formulation, tolerance rate of
1071* has been achieved in 3 to 5 number of iteration steps. The approximation of

stream function and vorticity is given by
Y =Tha N, @ = XRoq New, {6.15)
where ¥, and w,, are the nodal element approximation of i and w respectively. After

applying Galerkin’s finite element approach to Egs. (6.11) and (6.12), we get

fn "1 (: ‘?32;f tar (1 aw) w) =0, (6.16)

rdr
2y 2 W3 (oY) _ g2l (108) 1,
f Wz(Re(araz() Bzar(r)) M ar(rar)+Kw
(6.17)
%Dz(rw)) di =0,

where w;, and w, represents the weight functions and dQ = 2ardrdz. Upon

simplification of Egs. (6.16} and (6.17), we get

@ awiay | aw (139 _ o

J.ﬂ (r é)z1 dz + ar (r Br) Wlw) af = fl" W1 an dr, (6.18)
ayp o dy @ dwy 1 3(rw)

'f sze(araz() azar( )) Q+Iﬂ (E-; or +

T2 2090 4 + M2 [, (2222)da + - [, wywd = (6.19)

g 2 %
fr L) andr+M fl.. Wo andl",
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where dI' = wrdrdz. After discretizing the domain and introduction the approximation

(6.15) in Eqs. (6.18) and (6.19), we get
— 3Bl + T AL = SK, (6.20)

1 e
Re 3 Cfjiw; + X Afyw; + M2 X Dy + ;Zi Bfiw; = M2SY, (6.21)

where
SK* = [ NiSidl )
Bf; = fne N NdQ - 622)
Iy 1 ()32 ()
D = fn (%:Tk%%) dfl J

The obtained global system of matrices is defined as
KA =F, {6.23)

where
—By; ki W Sk
Ky = [ e +1/KBS ReClw +M*DE| 3™ [wk]’F" " |meskey (624)

6.3 Validation

In this section, comparison of the obtained numerical results is made graphically with
the finding of Shapiro et al. (1969) and Manton (1975) for limiting case. The solution
of Shapiro et al. (1969) is purely analytical and therefore it serves as a benchmark
solution in this comparison. To this end, the curves of pressure rise per wavelength
based on our solution are compared with the corresponding pressure rise per
wavelength curves obtained through the solution of Shapiro et al. (1969) as shown in
Figure 6.2. It is observed that our results for the limiting case (M = 0,1/K = 0) are in
close agreement with corresponding result of Shapiro et al. (1969) by considering long
wavelength along with low Reynolds number assumptions also. The presented graphs
of longitudinal velocity are drawn for non-zero/moderate Reynolds number along with
wave number to compare the results with the existing results of Manton (1975) as

shown in Figure 6.3,
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6.4 Results and Discussion

The above discussed numerical scheme is implemented to obtain the solution which is
represented by contours of streamlines, curves of the velocity profile and pressure
distribution. The effects of involved parameters such as porosity parameter K, volume
mean flow rate ¢, Reynolds number Re, wave number a and Hartmann number M are
discussed through graphs.

6.4.1 Velocity profile

This section is dedicated to detail discussion on the velocity profile of the flow for a
variation of different parameter in cross section z = 0 of the tube. Figure 6.4 reveals
that at the center of the tube velocity increases by increasing the permeability parameter
representing porous medium, but opposite behavior is noted in the region near the
peristaltic wall. Figure 6.5 displays the impact of Hartmann numbers on velocity
profile and it is noticed that the velocity decreases near central region and increases in
the vicinity of the peristaltic wall due to increase in Hartmann number. In Figures 6.6
and 6.7 longitudinal velocities are presented for a variation of Reynolds number Re and
wave number a respectively at two different values of permeable parameter symbolized
by K. It is observed that at both values of permeable parameter K the graph of
longitudinal velocity is concave down and decreasing function of y Figure 6.6 shows
that at the center of the tube, velocity is increasing function of Reynolds number and in
the region near the wall of tube, velocity decreases by enhancing the Reynolds number.
The opposite behavior is noticed for wave number as shown in Figure 6.7. This
observation is perhaps not reported in earlier studies, and it may be attributed to strong
inertial effects induced due to large values of the Reynolds number. Since, long
wavelength along with low Reynolds number theory is not able to predict such non-
linear effects. In the case of volume flow rate, velocity upsurges with the increase in
the volume flow rate in entire region of the peristlatic tube as shown in Figure 6.8.
6.4.2 Trapping phenomenon

To examine the trajectory of the flow field, trapping is very important and informative
phenomenon based on the formation of bolus by internal circulation of streamlines,
Figure 6.9 exhibits the variation of pattern of streamlines for different values of
Hartmann number. At low Hartmann number, it is noted that trapped boluses are formed
at crest portion in the central region. Accumulating Hartmann number enforced the

development of the bolus immediate to the wall along with decreased the number of
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boluses and condensed size of the bolus. Figure 6.10 shows the streamlines for
variation in permeability of porous medium. This figure reveals that peristaltic mixing
due to circulation is also largely dependent on the permeability parameter. In fact, much
greater peristaltic mixing is realized in the non-porous tube as compared to that of
porous-saturated tube. The behavior of Reynolds number on trapping phenomenon can
be observed in Figure 6.11. This figure clearly indicates the non-trivial effect of
increasing Reynolds number on trapping. It reveals that circulation of trapped bolus
magnifies with increasing values of Reynolds number. It is noticed that for small
Reynolds number such that Re = 1 trapped bolus appears very close to peristaltic wall
and moves towards central region for higher values of Re. Streamlines near the central
part of tube show more concavity for small Reynolds number as compared to that of
large Reynolds number. It also shows that size and number of bolus increases by
enhancing the Reynolds number. Figure 6.12 shows the effects of variation of volume
mean flow rate @, which exhibits that for small values of @, the trapped bolus formed
in the whole region while increasing its value cause smooth streamlines and becomes
parallel to central line in the central region of the tube, so increasing volume flow rate

assist the velocity of the fluid and corresponds to improve stability.

6.4.3 Pressure distribution

In this section, a detailed discussion is made regarding the behavior of pressure in
peristaltic motion for different values of parameters through graphs plotted against
volume flow rate Q. Figure 6.13 shows the pressure rise per wavelength for numerous
numerical values of permeability of porous medium. It is noted that pressure rise shows
linear behavior against @ and for all values of permeability parameter attributes
increasing pressure in positive pumping region while decreasing in augmented region.
Figure 6.14 shows opposite behavior in case of Hartmann number. In other words, by
increasing the Lorentz force enforced by increasing magnetic field, pressure rise per
wavelength shrinkages in the region of positive pumping region and increases in
augmented pumping region. Figure 6.15 exhibits the effects of Reynolds number on
pressure rise per wavelength. This observation is not yet been discussed with non-zero
values of Reynolds number, the linear behavior is observed for Re = 1 and for greater
values, pressure attributes nonlinear concave up and increasing attitude against Q.
Figure 6.16 is plotted to examine the influence of wave number on pressure rise per

wavelength which is offered first time in literature for peristaltic flow. It reveals that

135



Re=0.01,0=0.01, M=0,1/K=0

L

e Shapiro et al. (1969)
—— Present

i

| | |
0 0.2 0.4 0.6 0.8 I
0

Figure 6.2: Results of Shapiro et al. (1969) in comparison with present results for
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Figure 6.3: Results of Manton (1975) in comparison with present results for

longitudinal velocity
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Figure 6.4: Graphs of longitudinal velocity distribution for various values of the

parameter K against fixed values of other parameters
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Figure 6.5: Graphs of longitudinal velocity distribution for various values of the

parameter M against fixed values of other parameters
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Figure 6.6: Graphs of longitudinal velocity distribution for various values of the
parameter Re for K = 0.5 (solid line) and K = 0.05 (dotted line) against fixed values

of other parameters
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Figure 6.7: Graphs of longitudinal velocity distribution for various values of the

parameter & for K = 0.5 (solid line) and K = 0.05 {dotted line} against fixed values

of other parameters
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Figure 6.8: Graphs of longitudinal velocity distribution for various values of the

parameter Q against fixed values of other parameters

pressure is decreasing for @ in the interval [0,1.1] and increasing for @ in the
interval [1.1, 1.5). The pressure rise per wavelength is also plotted against 1/K in
Figures 6.17 and 6.18 for several values of Reynolds and Hartmann numbers
respectively. The graphs for behavior of pressure rise per wavelength versus 1/K for
fixed value of flow rate corresponds to co-pumping region i.e. @ > 0and 4P, <0 as
show in Figures 6.17 and 6.18 for numerous values of the involved paramters Re and
M respectively. It reveals that for this value of flow rate. 4P; is negative for all the
considered values of 1/K, M and Re. Moreover. the magnitude of assistance provided
by the pressure increases by decreasing Reynolds number and opposite behavior is
observed for Hartmann number while it enhances with increases in the permeability of

the porous medium.
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Figure 6.9: Contours of streamlines for M = 1.0, 2.0 and 3.0 at fixed values of other

parameters as Re =5, a = 0.2, ¢ = 0.4, K = 0.1and @ = 1.2 in wave frame.
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Figure 6.10: Contours of streamlines for K = 0.1, 0.5 and 1.0 at fixed values of other

parametersas Re =5, = 0.2, ¢ =04 M = 2.0,Q = 1.2 in wave frame
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Figure 6.11: Contours of streamlines for Re = 1, 5 and 10 at fixed values of other

parametersas @ = 0.2,¢p = 0.4, K = 0.1,M = 2.0,¢ = 1.2 in wave frame
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Figure 6.12: Contours of streamlines for ¢ = 1.0, 1.5 and 2.0 at fixed values of other

parameters as Re = 5, = 0.2,¢p = 0.4, K = 0.1, M = 2.0 in wave frame
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Figure 6.13: Graphs of pressure distribution for several values of K at fixed values

of other parameters
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Figure 6.14: Graphs of pressure distribution at several values of M and fixed values

of other parameter
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Figure 6.15: Graphs of pressure distribution for several values of Re at fixed values

of other parameters
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Figure 6.16: Graph of pressure distribution for several values of a at fixed values of

other parameters
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Figure 6.17: Graphs of pressure distribution against 1/K for several values of Re at

fixed values of other parameters
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Figure 6.18: Graph of pressure distribution for against 1/K for several values of M

at fixed values of other parameters
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6.5 Conclusions

The numerical analysis of the flow brought by peristaltic waves of a Newtonian fluid
passes through the porous medium is presented by using finite element method. The
computations are carried out without considering the lubrication theory which allows
us to present the stream function and vorticity for arbitrary non-zero values of wave
number and Reynolds number which have not been reported yet. The calculations of
longitudinal velocity or pressure rise per wavelength are based on the post-processing
of the results. The results indicate that the longitudinal velocity at center of the tube
increases with increasing both Reynolds number and Hartmann number. Circulation of
trapped bolus increases with magnification in the Reynolds and Hartmann numbers.
The increase in velocity and consequently decrease in pressure in the central part of the
tube is predicted by increasing the the permeability of the porous medium. The
numerical results obtained here are also compared with available results and an
excellent correlation is achieved. It is hoped that the present study will stimulate further
rescarch on peristaltic flows of non-Newtonian fluid without using lubrication

approximations and serve as a benchmark for future communications.
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Chapter 7

Mixed Convective Peristaltic Flow through a

Vertical Tube

This chapter contains comprehensive study of peristaltic flow passing through vertical
channel to incorporate the buoyancy forces to analyze the heat transfer analysis through
mixed convection in presence of heat generation parameter. The governing equations
contains energy equation which includes heat generation parameter. The assumptions
of lubrication theory are dropped in mathematical modelling the constitutive equations
which arrives the model to set of nonlinear partial differential equations. The present
model can be deduce to creeping flow to get the resuit of long wavelength. Galerkin’s
formulated finite element method is incorporated to solve the modeled equations and
obtain numerical results which are presented through the graphs of different quantities
for various values of he participated parameters. It is observed that circulation of bolus
increases by increasing the values of the wave and Reynolds numbers. Furthermore,
Isothermal lines are symmetric at low time mean flow rates and saturation is observed
in the lower part is reported by increasing rate of time mean flow. The decrease in
velocity is noted at center due to increasing values of Grashef number, Prandtl number
and heat generation parameter, while the slight increase is also observed far away from
the center. The decrease in temperature is noted for increasing values of Grashof
number while, Prandtl number, heat generation and time-mean flow rate supported the

enhancement in temperature.

7.1 Problem Formulation

The motion of the Newtonian fluid is consider through a vertical tube having inner
width of size 2a. The flow is assumed in such a way that the propagation of waves is
along the z —axis with velocity ¢ and 7 is normal to the tube. The temperature of the
peristaltic wall of the channel is assumed at some temperature T, which follows or
obeys sinusoidal wave shape given in Eq. (6.1). The schematic flow diagram is
presented in Figure 7.1. The partial differential equations correspond to considered

model of peristaltic flow in a fixed frame are
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p(ErvLewD)=n (GE+i%+ 50+ O (74)

in which y is viscosity, p is density, g is acceleration due to gravity, fr symbolized
coefficient of thermal expansion,x® corresponds thermal conductivity and @

represents the constant heat generation within the flow domain.

g
K

Figure 7.1: Geometry of the peristaltic flow in the tube

The boundary conditions that imposes on the flow problem are
aw ar

U=20, E=0, E=0 at R=0, (7.5)
W=0 U=2, T=T, at R=H. (1.6)

The conversion between lab frame and wave frame may be made through following

relations given in Eqs. (6.7) and (7.7)
pr=P, T'=T. (7.7
The following boundary condition are suitable for moving frame
Y'=0 at r*=0andyp"=q" at r=n{z") (7.8)

Here, stream function is represented by ¥~ in the dimensionless form. I[nserting

dimensionless variables defined in Eqs. (6.9) and (7.9) to the system,

T =T a? af(Ty-Ti
— 0’B= o 'Grng B(T D),PI‘=E£.
T-To K* (T, ~To) He K"

(7.9)
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And after eliminating the terms representing pressure gradient from governing
equations the combined equation of momentum and temperature equation in the form

of stream function ¥ and vorticity @ by introducing Eq. (6.10) becomes

a_zﬂJri(&a_w) = —w, (7.10)

r 3z2 dr \r or
o fuy _d¢d (e} _lp2 L
Re (ar 52(7’) dz Br(r)) - rD (rw) Gr ar’ (7]1)
1(2w30 _ 3 9) _ e
Re Prr(ar dz dz ar) =V +ﬁ’ (7-]2)

g 1é 2 . . .
where V2= a252—2+;5;(r ;) and modified Laplacian operator( D?) is define

82 a3 14 . .
as D? = a26?+ =75 The boundary conditions for considered flow problem

become

- B (1ovy _ 13y _ 26
¥=0 Br(rar)_o' raz_o' ;=0 at r=20 (7.13)
Y=4q, %%'f=—1, %%=2n¢sin2n2, g=1 at r=n(z)

7.2 Numerical Analysis

In this section, we presented the numerical solution of Egs. (7.10) to (7.12) under the
constraints of boundary conditions given in (7.13). By neglecting the assumption of
long wavelength along with the low Reynolds number, we arrive to a system of the
nonlinear partial differential equations equipped along with the complex geometry of
peristaitic tube. Thus, we need an efficient and rapid convergent technique to control
such type of complicated problem. So the method based on Galerkin’s weighted
residual technique used in finite element method is implemented by discretizing the
domain in a subdomain of six nodal quadratic triangular elements to get the highly
convergent results with a tolerance of 107** which is achieved in a maximum 4 — 6
number of iterations. The stream function, vorticity and temperature are approximated

by using Eq. (6.15) and following equation
g = 22=1 Nka, (714)

where 8 are nodal approximation of 8. The Galerkin based finite element method is

applied to Egs. (7.10) to (7.12) gives as

fowi (E22+2(2%) 1 w)an=o, (7.15)

r 9z  Or \r dr
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J, w2 Re (‘;‘f;z( ) %%%(ﬂ) 1p2(rw) + Gr 2)da =0, (7.16)

(629 198 a 6 8 )

ar? rar r 922 +ﬁ (7_17)

where w,, w, and wy corresponds weight functions and dQ = 2nrdrdz. Simplifying

the Egs. (7.15) to (7.17), we get

afdw, 8y  dw, 1Y _ ayp
o (55250 + 5 (23 - waw)da = [ wigiar, (7.1%)

e (B2(2) - 22(2)) a1, (2752

dwz 3(rw) 6(
ot ow Tw)dﬂ-’rGl‘f Wza dl = I "")dl“ (7.19)

r 6z
apos oy ae dws 96 a8
Repr fy w2 (22 -2 a0 s [, (325 dn-f, (w130 an +
dw, 98 26
@ fy (53)an= Sy wopan = J; wadiar 20

where dT' = mrdrdz. Introducing Egs. (6.15) and (7.14) into Eqs. (7.18) to (7.20) and

considering the discretized domain, we have

— 3B + T AL = S, (7.21)
Re T, Cyiw; + X Afw; + Gr X Byt = S (7.22)
Re Pr¥, Cjwib; + TiA'5:0; = SK* + BS*, (7.23)

where

2
o= (TN Oy (100 )
k‘_'rﬂe(r dz 9z + 8r \r or df

e __ 2 ONg ONp | ONg aN)
Ak‘_fﬂe(a 3z 0z t o ar oar dt

Bfi = Jqe NiN:dQ
B/ = Jpe N 52 dO

: ong 0 (N) 3N 8 (%
Ck” f Nk(ar Bz( ) 9z ar(r))dn

SK* = [ NiSidl and $*° = [ NedT' )

> (7.24)

After assembly procedure, obtained resulting system (global) in the matrix arrangement

is expressed as follows
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KA =F, (7.25)

in which
—Bg; At 0 wy Sk
Ky =| A% ReCijur GrBiy) A, = [%],Fk = s | (725
0  ReCip: AT Bk k¥ | pok?

Pressure rise per wavelength plays vital role in the peristaltic flow. In order to determine
the pressure within a tube, it is sufficient to determine it at the middle portion of the

wave. Rise in pressure per wavelength is given by Eq. (6.14).

7.3 Validation

This section is dedicated for authentication of our own built MATLAB code of finite
element method which gives the numerical solution of modeled system of nonlinear
partial differential equations. Mekheimer and Abd elmaboud (2008) gave results for the
analysis of heat transfer during the peristaltic transport in the vertical tube by using
assumptions of lubrication theory. These results are purely analytical and hence
considered to be a benchmark solution in this comparison. The obtained results of
pressure distribution are compared with the results of Mekheimer and Abd elmaboud
(2008) in limiting case and are shown in Figure 7.2(a). The graphs presented in Figure
7.2(a) exhibits good agreement of our results under assumptions of long wavelength
along with low Reynolds number (for Re = 0,a = 0) with corresponding results of
Mekheimer and Abd elmaboud (2008). The graphs of longitudinal velocity are also
plotted in limiting case of obtained results to compare with the results of Hameed et al.
(2015) in Figure 7.2(b). Figure 7.2(b) shows good agreement of obtained numerical
results with results that of Hameed et al. (2015) considering long wavelength along with

low Reynolds number assumptions.

7.4 Results and Discussion

For the moderate finite values of Reynolds number, a theoretical analysis of the
peristaltic flow is extremely difficult because of the nonlinearity in the modeled
equations which occurs by the interaction of moving wall and the flow field. The effects
of Reynolds number along with other parameters of interest involved in the modeled

equation are studied by plotting the velocity distribution, temperature profile, and
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pressure rise per wavelength. The contours of streamlines and vorticity are plotted and

the detailed discussion is provided in next subsections.

7.4.1 Velocity profile

To analyze the behavior of the velocity, longitudinal velocity is plotted at cross-section
z = 0 for various values of participating parameters such as Reynolds number Re, wave
number @, Grashof number Gr, Prandtl number Pr, heat generation parameter 8 and
volume flow rate Q. In Figure 7.3, we presented the effects of Reynolds number Re on
velocity distribution. We see that near the center of the tube, increase in Re causes a
decrease in velocity while an opposite behavior is observed at the wall. It predicts that
dominant inertial effects in the center of the tube causes decrease in velocity of the
fluid, while near the wall, increase in inertial forces enhances the velocity. The same
but clearer trend is observed for the velocity by varying the wave number at fixed values
of other parameters as shown in Figure 7.4. It is also observed that for large values of
wave number, the velocity attains its maximum value before entering in the region
of 7 = 0. It is also interesting to note that longitudinal velocity is less sensitive to the
values of Reynolds number in the range 0.2 <7 < 0.4. Similarly, longitudinal velocity
varies slowly with wave number in this range and after this range rapid change is
observed. In Figure 7.5, we obsérved that the longitudinal velocity rises in the vicinity
of the peristaltic wall by enhancing Grashof number and it drops in neighbor of the
center of the tube. It is noted from Figures 7.6 - 7.8 that velocity profile becomes
concave shaped against Reynolds number, Prandtl number and Grashof number. It is
also observed that for Grashof number, change in velocity behavior is much faster in
comparison with that of Reynolds number and Prandtl number. It concludes that due to
increase in the temperature, the velocity of the fluid decreases and consequently more
resistance appears in the flow field. We observed that when time-mean flow rate @ <
1, the velocity profile becomes negative and fluid particle at 7 = 0 moves towards
opposite direction of the flow field. When time-mean flow rate @ > 1, the flow
becomes positive and fluid particle moves in the direction of the flow field. It concludes

that the particle moves along the direction of the flow field when @ > 1.
7.4.2 Temperature distribution
Figures 7. 9 to7.14 shows the physical effects of all embedded parameters on

temperature profile. The effects of Reynolds number Re are presented for temperature

distribution in the Figure 7.9, as long wavelength with the low Reynolds number theory
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is not able to predict such non-linear effect. It shows strong inertial effects induced by
large values of Reynolds number in whole region of the tube. The opposite behavior is
observed for variation of wave number a as presented in Figure 7.10. Figure 7.11
shows that increase in Grashof number Gr by increasing buoyancy forces as compared
to viscous forces has important role in reducing the temperature of the fluid within the
tube. Figure 7. 12 shows that temperature of the fluid can be enhanced by increasing
the Prandtl number. The temperature increases when the convective heat transfer is
enhanced which is evident from the Figure 7.13. Figure 7.14 shows that the upsurge
in time-mean flow rate encourages the rise of internal energy of the considered fluid
and consequently increase in temperature is noted.

7.4.3 Trapping phenomena

The phenomena based on the circulation of the streamlines is known as trapping.
Trapping is an interesting mechanism for peristaltic flows to discuss the flow properties
under the influence of parameters involved in the model. We discussed this
phenomenon through Figures 7.15 to 7.18. Figure 7.15 shows the effects of various
values of rate of time mean flow on the fluid flow. It has been observed that
augmentation in the time mean flow rate causes reduction in size of the bolus. This is
due to the increase of smoothness in the movement of the fluid in the central region of
the tube. Figure 7.16 shows that due to increase in Reynolds number, the flow becomes
smoother in the central region. Furthermore, increase in the number of the trapped
boluses is noted with a cluster of bolus showing tendency to move towards upper region
of the crest. The same behavior is observed in case of wave number @ as shown in
Figure 7.17. It also reflects that we can control the smoothness of the movement of the
fluid in central part of the tube by enhancing wave number. In Figure 7.18, we have
increase the Grashof number Gr from 0.1 to 0.9 (where vanishing buoyancy effects
corresponds to the Newtonian case as reported by Shapiro et. al. (1969)) where it is the
point to be noted that magnitude of the trapped bolus reduces and it moves in region
near the wall of tube.

7.4.4  Isothermal lines

[sothermal lines are representation of the temperature distribution in a flow field. The
sketches of isothermal lines for different parameters are presented through Figures 7.19
to 7.23. Figure 7.19 presents the isothermal lines for time-mean flow rate ¢ = 1.2

and @ = 1.8. We observed the symmetric behavior for smaller values of Q while
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Figure 7.2(a): Comparison of pressure distribution for present numerical results with

analytical results of Mekheimer and Abd elmaboud (2008)
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Figure 7.2(b): Comparison of longitudinal velocity for present numerical results

with analytical results of Hameed et al. (2015)
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Figure 7.3: Graphs of longitudinal velocity for various values of the parameter

Reynolds number Re
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Figure 7.4: Graphs of longitudinal velocity for various values of the parameter wave

number a
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Figure 7.5: Graphs of longitudinal velocity for various values of the parameter

Grashof number Gr
Re=3,0=0.1,6=0.6,Gr=0.5,3=0.3,0=1.4

]5 T T T ¥ T T T
Pr=0.7
] ‘ - - Pr=1.2‘
] |- ==Pr=135
—Pr=2.0
0.5+ .

-
0r i
-05r .
-] . . -

0 005 01 015 02 025 03 035 04

r

Figure 7.6: Graphs of longitudinal velocity for various values of the parameter

Prandt|l number Pr
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Figure 7.7: Graphs of longitudina) velocity for various values of the parameter heat

generation parameter f§
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Figure 7.8 Graphs of longitudinal velocity for various values of the parameter time-

mean flow rate Q
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Figure 7.9: Graphs of temperawre profile for various values of the parameter

Reynolds number Re at fixed values of other parameters
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Figure 7.10: Graphs of temperature profile for various values of the paramter wave

number a at fixed values of other parameters
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Figure 7.11: Graphs of temperature profile for various values of the paramter

Grashof number Gr at fixed values of other parameters
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Figure 7.12: Graphs of temperature profile for various values of the parameter

Prandt! number Pr at fixed values of other parameters
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Figure 7.13: Graphs of temperature profile for various values of the paramter heat

generation parameter § at fixed values of other parameters
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Figure 7.14: Graphs of temperature profile for various values of the parameter time-

mean flow rate Q at fixed values of other parameters
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Figure 7.15: Streamlines for various values of the parameter time-mean flow rate
at fixed values of other parameters Re =1,a =01,¢ =0.6,Pr =07, =
0.3,6r =05
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Figure 7.16: Streamlines for various values of Reynolds numbers Re at fixed values

of other parametersa = 0.1,¢¢ = 0.6, Pr = 0.7, =03, 6r =05,¢ =14

164



()

0.8}

0.6}

0.4}

0.2t

(b)
Figure 7.17: Streamline for various values of wave numbers «a at fixed values of

other parameters Re = 1.0,¢¢ = 0.6,Pr = 0.7, = 0.3,.6r =0.5and @ = 1.4
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Figure 7.18: Streamline for various values of the parameter Grashof number Gr at
fixed values of other parameters Re=10,a=0.1,¢=06Pr =070 =
03,6r=05and Q@ =14
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Figure 7.19: Isothermal lines for various values of time-mean flow rate @ at fixed

values of other parameters Re = 1,a =0.1,¢ =0.6,Pr = 0.7, = 0.3and Gr =
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Figure 7.20: Isothermal lines for various values of Reynolds numbers Re at fixed
values of other parameters @ = 0.1,¢ = 0.6,Pr = 0.7, =03,6r =05and @ =
1.4
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Figure 7.21: Isothermal lines for various values of wave number a at fixed values of

other parameter sRe = 1.0,¢ = 0.6,Pr = 0.7, = 0.3,6r =05and ¢ = 1.4
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Figure 7.22: Isothermal lines for various values of the parameter Grashof number

Gr at fixed values of other parameters Re = 1.0,a = 0.1, ¢ =0.6,Pr =076 =
03,6r=05and@ =14
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Figure 7.23: Isothermal lines for various values of Prandtl numbers Pr at fixed

values of other parameters Re = 1.0, =0.1,¢ = 0.6, = 0.3,6r = 05and ¢ =
14
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Figure 7.24: Pressure rise against time-mean flow rate Q for various values of

Reynolds number Re at fixed values of other parameters
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Figure 7.25: Pressure rise against time-mean flow rate Q for various values of the

parameter wave number a at fixed values of other parameters
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Figure 7.26: Pressure rise against time-mean flow rate Q for various values of the

parameter heat generation parameter § at fixed values of other parameters
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Figure 7.27: Pressure rise against time-mean flow rate Q for various values of the

parameter f Grashof number Gr at fixed values of other parameters
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that most rapid and remarkable increase in pressure rise is observed with the increase

in Grashof number as compared to that of increase in heat generation.

7.5 Conclusions

The numerical results of streamlines and temperature distribution for mixed convective
peristaltic flow passing through the vertical tube are studied and shown graphically with
a suitable set of values of involved parameters by using finite element method. The key
findings of this study are as follows: At the center of the tube, increasing values of
Reynolds number decreases the magnitude of velocity while upsurges the temperature
but increasing wave number enhances the velocity and reduces the temperature. The
decrease in velocity is noted at center for increasing values of Grashof number, Prandtl
number and heat generation parameter, while the slight increase is also observed for
away from the center. For values of time-mean flow less than 1, velocity profile
becomes negative atz = 0 cross section and for values greater than 1 it becomes
positive. The decrease in temperature is noted for increasing values of Grashof number
while Prandt! number, heat generation and time-mean flow rate supported in enhancing
the temperature. Pressure rise per wavelength can be enhanced by increasing the both
Reynolds number and Grashof number. Also, a decrease in pressure rise is observed by
increasing values of wave number and heat generation parameter. Increase in size and
number of boluses for contours of streamlines is noted for large Reynolds number and
wave number while disturbance is reported for increasing Grashof number. By
increasing Reynolds number, isothermal lines move along peristaltic wall and
concentration in a lower part of the center of tube increases. The symmetry of
isothermal lines are disturbed and saturation in the lower part is reported by increasing
time-mean flow rate. Also, isotherms are generated on peristaltic wall and moves
towards the center of the tube by increasing wave number, Grashof number and Prandtl

number.
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Chapter 8

Hydromagnetic Peristaltic Transport of Casson

Fluid through a Tube

The effect of the non-zero/moderate Reynolds number on the flow by nonlinear
peristaltic mechanism of a blood flow through narrow arteries, where blood flow
behaves similarly to Casson fluid flow under the externally applied magnetic field with
uniform strength is investigated numerically in this chapter. The governing equations
for blood flow model of Casson fluid are formulated to form a system of nonlinear
coupled partial differential equations, which are exposed to Galerkin’s finite element
method. The assumptions of lubrication theory are neglected, due to which the effects
of moderate Reynolds number and wave number along with other parameters are
presented. To ensure the accuracy of developed code, obtained results are compared to
that of results available in the literature and found in excellent matching. The analysis
shows that increasing Reynolds and Hartmann numbers enhance the velocity of the
fluid. One of the findings of this study is the nonlinear behavior of pressure rise for
large values of Reynolds and Hartmann numbers. Increasing wave number enhances
the pressure rise in the peristaltic pumping region. In this chapter, we discussed the
effect of Casson fluid parameter and time mean flow through graphs of velocity,

pressure rise and contours of streamlines.

8.1 Problem Formulation

Consider the flow problem of peristaltic transport of an electrically conducting Casson
fluid motion of blood flow passing through a horizontal tube of width 2a with speed c.
Peristaltic tube is subject to the influence of applied magnetic field of uniform
strength B, perpendicular/orthogonal to the direction of the flow. Here, due to small
conductivity of fluid, the low magnetic Reynolds number R,-approximation is
assumed which allows to neglect induced magnetic field caused by applied magnetic
field. Unsteady flow is considered with constant thermo-physical properties in which
flow is caused by peristaltic walls along z —direction and r —direction is taken along

radial direction. The symmetry of the peristaltic flow is about z-direction and schematic
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diagram of the flow is presented in Figure 6.1. The peristaltic walls of tube moves and
follows the relation given in Eq. (6.1). The governing equations that describe the flow
of Casson fluid in a tube under the inducement of magnetic effects appeared through

Lorentz force term are partial differential equations as follows

aw | 18(RU) _

8z R R 0, (8.1)

(3w 03) - =B () o, e

Wy Y 2 1) 9 (19EU)) | 2%
p(at+Waz+UaR)— aR+‘u(1+c)aR(R aR)+BZ7-' (8.3)
The suitable boundary conditions that assist the discussed flow are

aw

U=0, ==0, at R=0,
o (8.4)
U==, W=0 at R=H

The defined boundary conditions in Eq. (8.4) on Z—t at R = 0 corresponds to symmetry

of flow and at R = H, W = 0 corresponds to no-slip of the wall. While the defined
boundary conditicn on U at R = HasU = dH / 0t reflects that the velocity of fluid is
equal to the velocity of the wall. At center of the tube, transverse velocity is zero so that
we have boundary condition at R = 0 as U = 0. The conversion relation between the
lab and wave frame of reference are given in Eqs. (6.7) and (7.7). After incorporating

these transformations in Eqs. (8.1) to (8.3), we get

13w | aw
e 5 =0 (8.5)
W ety o DL 8 (0w Pw
p(w 3 + ar‘)" az’+‘u(1+c)r'ar' (r ar') az*2 (8.6)
oBE(w" + c),
ow e 1)L (Lo, o
,O(W az‘+u ar') - 6r‘+p(1+()6r‘(r' ar* +az‘2' (8'7)

The associated boundary conditions for the flow at center and wall of the tube are given
in Eq. (6.8). Introducing the dimensionless variables defined in Eqs. (6.9) and (7.9) to
above system of equations and after eliminating pressure gradient term by cross
differentiation, and upon introducing the relations given in Eq. (6.10) the governing

equations for the considered flow formulation are as follows

aja_zzh,i(l%) = —w, (8.8)

r 3z2 dr \r or
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(220 -22E) = (i w2 (8)

where Re is Reynolds number and M is Hartmann number. Modified form of Laplacian

: a2 | 3 ..
(D¥)is defined as D* = a® —+ S5 — %a— and boundary conditions on the system

modeled yield the form as

Lo d(1y_, 13 _ _

Y =0, Br(rar)—o’ raz_o at r=0 8.10
18y 13y _ . - @10

w=gq ¥=_q 1® =~ 2npsin2nz at 7 =n(2)

r or r oz

At the center of the tube z = 0, pressure rise per wavelength is defined in wave frame

is given in Eq. (6.14)
8.2 Numerical Analysis

In the present analysis, the governing equations are obtained by dropping the
assumptions of lubrication theory ie. long wavelength along with low Reynolds
number assumptions. So, we obtained coupled partial differential equations which are
solved numerically by using finite element method based on Galerkin’s formulation.
We discretize the considered domain into a mesh of triangular elements contains six
nodes per element. The solution on each triangular element is found and assembled to
form a global system. Finally, the solution has been obtained by using the Newton-
Raphson method. In all cases, highly convergent results are obtained by our own built
MATLAB code with a tolerance of 107** in 3 — 5 number of iterations.

The stream function ¥ and vorticity w is approximated by the approximation given in

Eq. (6.15). Galerkin’s finite element approach turns Eqs. (8.8) and (8.9) as

[w (E22+2(3%) 1 w)an=0, (8.11)

r or
o we(Re(22(8) - 22(9) - 263 - (4

1y 1

-)=D?(rw) |d = 0,
4) r ( )) (8.12)
in which w, and w, are weight functions and df) = 2mrdrdz. Simplification of Eqs.

(8.11) and (8.12) yields

atdw, 0y  dw, (109 _ 3y
o (G e+ 52 (o) - ww)da = [y wigdr (13
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Iy e (35 (2) -5 an e, (52180 +

1 Bwp 19(rw) | a?dw, d(rw) 2 ay
(1+E)fn (a_rzF L azz az )dQ M f W25, dr +

1 a(rw)
(”E)fr wy = dr (8.14)

where dl' is defined as dT' = mrdrdz. Introducing approximations defined in Eq.

(6.15) into Eqgs. (8.13) and (8.14), we get

— T Bfiw, + T ALY = 8K, (8.15)

Re T, Gy, + (1 +3) iAo + M2 S, D = M2SKT. (8.16)

where

ANy ON; . Ny (1N )
fﬂe(r 3z dz +?(r Br))da
B = [ e NiN;dQ
aN; @ (N; GNj @ (N
Cij = o Nk(ar =) —7}5:(?)) dq
- 3Nk 19Ny
Dﬁf _fn (67‘ r ar)dQ

SK* = [ NeSidrl J

v

(8.17)

After assembly procedure, obtained resulting system (global) in the matrix arrangement
is expressed as follows
KA=F, (8.18)
where
=B ki

ke
(1 +E)Ak[ ReCkijw[' +M Dki lpk MZS,.’f
8.3 Validation

This section is dedicated for authentication of our own build MATLAB code of finite
element method which gives the numerical solution of the modeled system of nonlinear
partial differential equations. Shapiro et al. (1969) presented results of peristaltic
transport by applying lubrication theory. These results are purely analytical and hence
considered to be a benchmark solution in this comparison. The obtained results of
pressure distribution are compared with the pioneer results given by Shapiro et al.

(1969) by plotting both results in Figure 8.1. The graphs presented in Figure 8.1
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exhibits good agreement for M = 0,1/ = 0 under assumption of long wavelength

along with low Reynolds number with corresponding results of Shapiro et al. (1969).

8.4 Results and Discussion

The implemented numerical scheme discussed in the previous section is implemented
using MATLAB to obtain the graphs of velocity, pressure, contours of streamlines and
vorticity. Influence of involved parameters like Reynolds number Re, amplitude
ratio ¢, wave number @, Hartmann number M, volume flow rate @ and Casson fluid
parameter { on the quantities of the interest are presented graphically and discussed in

detail in the following subsections.

8.4.1 Velocity profile

In this subsection, the behavior of longitudinal velocity at cross-sectionz =0 is
analyzed and discussed after plotting the graphs against Reynolds number Re, wave
number a, Casson fluid parameter {, Hartmann number M and time mean flow rate Q.
In Figure 8.2, the effects of numerous values of Hartmann number on the behavior of
velocity for various values of Reynolds number is presented by plotting velocity profile
against Reynolds number Re. We observe that increasing the Hartmann number
enhances the velocity independent of the choice of the Reynolds number. It is also
observed that maximum value is achieved at Re = 99 and solution remains smooth for
large values of Reynolds number. The velocity field presented in Figures 8.3 to 8.7
exhibits that behavior of velocity in the central region of the tube and around the vicinity
of peristaltic wall is not similar for cases of different Reynolds number Re Hartmann
number M, wave number @ and Casson fluid parameter {. The longitudinal velocity
field increases near the wall of tube by increasing either Hartmann number or Casson
fluid parameter { and decreases in the central part of the tube. The wave number
shows same behavior as that of Casson fluid parameter {. Figures 8.3 to 8,7 shows the
behavior of velocity field by variations Reynolds number Re, wave number a, Casson
fluid ¢, Hartmann number and rate of time mean flow Q. The prominent effects are
noticed in the central region of the tube which shows the increase in velocity field by
increasing the Reynolds number and time mean flow rate and opposite behavior is
observed near wall of the tube. These effects are attributed to strong inertial force
induced by high Reynolds number and reported first time as lubrication theory is not

virtuous enough to report such effects. The opposite behavior is noted for wave number
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parameter @ and Casson fluid parameter { as shown in Figure 8.4 and 8.5. The increase
in Hartmann number M reflects the dominance of electromagnetic forces over the
viscous forces which cause decrease in the velocity field in central region of the tube
and increases the velocity in region near the wall of the channel for non-Newtonian
Casson fluid as shown in Figure 8.6. It is perceived from the graph that the behavior of
the longitudinal velocity is same at the whole cross-section of the tube for time mean
flow rate Q as shown in Figure 8.7. The increase in time-mean flow rate increases the

longitudinal velocity of the fluid.

8.4.2 Trapping phenomenon and vorticity

Another important phenomenon of peristaltic motion is known as trapping which is
mainly due to establishment of bolus by internal circulation of streamlines. The trapping
phenomena for variation of different parameters involved is presented through Figures
8.8 to 8.11. Figure 8.8 displays the contours of streamlines for various values of
Reynolds number ata =0.3,¢ =05M =20,{=050Q=12. It shows that
increase in Reynolds number magnifies the size of bolus as well as increases the number
of boluses. In other words, the cluster of bolus can be shifted on right side of the tube
by enhancing the inertial forces, therefore by increase in Reynolds number. Figure 8.9
shows the change of behavior of streamlines for different values of Casson fluid
parameter { withRe =5, = 0.1,¢ = 0.5M = 2.0,Q = 1.2. The increase in number
and size of bolus is noted as a result of increasing Casson fluid parameter. The influence
of Hartmann number M on the streamlines are presented by plotting contours in Figure
8.10 with fixed values of the parameters as Re = 5.0,a = 0.3,¢ = 0.5,{ = 050 =
1.2. The opposite behavior is noticed as that of Casson fluid parameter. The contours
of streamlines for various values of time mean flow rate @ are presented in Figure 8.11
with fixed values of other involved parameters i.e. Re = 5.0,a =0.3,¢ =05 M =
2.0,{ = 0.5. Figure 8.11 exhibits that the flow is generated and moves along the
peristaltic wall for @ < 1 and streamlines of almost same trajectory of peristaltic wall
are appeared, while for @ = 1 formation of bolus are found in crest region of the tube
shows circulatory motion of the fluid and some streamlines still moves along the wall
and obey the same path in the vicinity of the peristaltic wall. The flow becomes smooth
in the central region of the tube for @ > 1 and increase in number of bolus is noted. The
contours of vorticity for Re are presented in Figure 8.12 which exhibits that flow

generates on the center of the tube and finished on the peristaltic wall.
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corresponds to augmented pumping region while AP = 0 is the free pumping region
and AP < 0 is the co-pumping region. We have presented only first one which is of
most interest for engineering and is vastly applicable in bio-medical sciences. The
pressure rise per wavelength in peristaitic highly dependent on the applied magnetic
field. So, one way to control the pressure rise of peristaltic motion of Casson fluid of
blood flow by varying the strength of the applied magnetic field, this fact is widely used
in MRI and other bio medical treatments. Figure 8.16 exhibits that in the region of
augmented pumping 0.7 < @ < 1, pressure rise shows opposite behavior as compared
to that of pumping region corresponding to interval 0 < @ < 0.7. Free pumping

corresponds to the relation AP = 0 at @ = 0.7.

8.5 Conclusions

The effects of Reynolds number on peristaltic transportation of non-Newtonian
behavior of blood has been investigated by considering blood as a Casson fluid. The
governing equations modeled by dropping the long wavelength along with low
Reynolds number assumptions which allow us to predict the features of peristaltic
motion for moderate values of Reynolds number and wave number. The flow is
subjected to the external uniform magnetic field to observe the effect of Hartmann
number in different situations. Finite element method is used to solve modeled set of
coupled partial differential equations. The investigation reveals that the velocity gains
opposite behavior at the central region of the tube and near the wall. It is concluded that
increasing values of Reynolds number enhances velocity at the center of the tube, while
opposite behavior is observed for increasing wave number. Similarly opposite behavior
is observed in case of Casson fluid parameter and Hartmann number. Unlike other
parameters, time mean flow rate effects the velocity with the same attitude throughout
the entire region.

Pressure rise per wavelength is decreased by increasing Casson flow parameter.
Opposite effects are noticed for Reynolds and wave numbers while for high values of
Reynolds number, pressure rise per wavelength exhibits nonlinear behavior. The
increasing values of Hartman number ensure strengthening of electromagnetic forces
as compared to viscous forces that cause the reduction in volume as well as number of
trapping boluses. The rise in Casson flow parameter enhances the thickness of fluid and
causes reduction in size and number of the bolus. The dominant inertial forces caused

by an upsurge in Reynolds number increases the magnitude and number of trapped
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boluses and vorticity exhibit the generation of the flow field in the narrow part of the
tube in this case. It is hoped that present study will serve as a benchmark for further
research on peristaltic flows of non-Newtonian fluids without applying assumption of

lubrication theory.
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Chapter 9

Hydromagnetic Peristaltic Flow of Micropolar
Fluid through a Tube

In this chapter, modeling and simulation of peristaltic flow mode!l of micropolar fluid
passing through a uniformly saturated porous medium situated in a tube placed in the
magnetic field are presented. In modeling of governing equation, the long wavelength
along with low Reynolds number assumptions are not incorporated that allows to
present the results that are valid for moderate Reynolds number and non-zero wave
number and are modeled in terms of nonlinear partial differential equations. Finite
element method based on Galerkin’s weighted residual technique is implemented to the
model to obtained numerical results of nonlinear partial differential equations. The
obtained numerical results are presented by plotting the graphs of longitudinal velocity,
pressure rise per wavelength, contours of streamlines, vorticity and microrotation and
are discussed in detail. Comparison between obtained results and existing results in the
literature is made which are found in good agreement. 1t is found that peristaitic mixing
is supported by Reynolds number and permeability parameter of porous medium while
Hartmann number reduces the number and size of the boluses. The pressure rise per
wavelength for the considered model of micropolar fluid is better as compared to that

of the case of Newtonian fluid.

9.1 Problem Formulation

Consider an unsteady electrically conducting two-dimensional peristaltic flow of
micropolar fluid passing through a porous saturated tube of width 2a with speed c. The
flow is caused by movement of peristaltic walls of the tube in the z —direction and
uniform magnetic field of strength B, is applied perpendicular to the direction of the
fluid. Due to small conductivity of considered fluid and to ensure that applied magnetic
field is unaltered by the velocity of the fluid, we are restricted to low magnetic Reynolds
number R, . So induced magnetic tield is ignored by assuming low R,,-approximation.
The flow is symmetric about 7 = 0 and flow geometry is shown in Figure 6.1. The

flow is caused by sinusoidal propagation of the walls of the tube that obeys the relation
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given in Eq. (6.1). The equations that governs the peristaltic flow of micropolar fluid in
porous saturated tube under the influence of magnetic field are given as
V.V =0, (9.1
p(V*. V) = —VP +(u+RK) VAV + RV X G" +] x B —% v, (9.2)
o) (V*.V6*) = —2RG" —F(VX VX ") + RIXV* +(a@+f +
7) V.6,

where V*is the velocity vector defined by V* = (w*,0,u"), 6" is the microrotation

(9.3)

vector defined by 6* = (0, g",0), J is the current density, B is the applied magnetic
field defined by B = (0,B,,0), p is the fluid density, p* symbolized the pressure of
the fluid, J* symbolized the microgyration parameter, i represents classical viscosity
coefficient, k represents the permeability of porous medium, @, f and ¥ are the
coefficients of spin gradient viscosity and & characterizes the coefficient of vortex
viscosity. The material constraints {4, K, &, g and¥ must satisfiyes the following
relations Eringen (1966) given in Eq. (1.16). To solve the considered problem in wave
frame, the flow equation can be transformed from lab frame to moving frame by using
following transformations given in Eqgs. (6.7) and (7.7).

Egs. (9.1) to (9.3) that govern the two-dimensional micropolar fiuid flow through a
uniformly saturated porous medium subject to transverse magnetic field in the wave

frame yields following lequations

18 oy 1%
== (u)+5:=0, (9.4)

rrar’

awy _ o' (B2 (L) 4 20y 422
p(w oz T ¥ ar*)_ az*+(“+K) P\ o) Yot ) T

9.5)
(aB?, + -E) (w* +¢),
Lou LBy o 9 (10 ) o P o290
P (W dz* tu ar‘) - ar + (].l + K) (ar (r* ar* (T u )) + 62‘2) Kar‘
(9.6)
(),
(089" LN _ o . (9% 3¢ 139" 4
CT] (W az* tu ar‘) - ZK‘g 4 (ar‘z 9zt * r* ar* r'z) +
9.7)
(L -2
azs At/
The suitable boundary conditions for the considered flow problem are given as
M =0, u'=0 g =0 atr =0
or 2rbe . (2nz* ' (9'8)
w'=—c u'=-— sm( > ) g =0 atr =n(z")
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Introducing the dimensionless variables defined in Eqgs. (6.9) and (9.9) to the system of
equations

g=L7=5% ©9)

c a?

and after eliminating the pressure gradient term by cross differentiation and then using
the relation given in Eq. (6.10), the governing equations stream-vorticity form in

becomes

a_’fiz_w+i(16_'£) = —w, (9.10)

r 8z%  8r \r or

Re (3_4’._3_(2) _Ei(e)) - L(%DZ(W) ~Ype (rg)) +

or dz \r dz dr \r 1-N
20 (12w _ 1
ML (23h) - o ©.11)
1N (3009 _ 00O\ | g 4 2N
Re] N r\dz or ar az)_.w zg+ erD g. (912)

The boundary conditions become

9 (18P 1 By
(Y=, -=+==0, w=0 on r=20
fggj a”) - . (9.13)
-r-;:—l, ;£=2n'qbsm2nz, w=0 on r=n(z)
2
where D? = a? > + & _ 19 is modified Laplacian operator, coupling number is

azz | 9r2  rar
defined as N = k/(u + ) that ranges between 0 to 1 ie. (0 <N < 1), and m? =
a?k(2u + k) /(y (1 + ) ) is the micropolar parameter. The flow rate in wave frame of
reference is related to time-mean flow rate in lab frame of reference by the
expression ¢* = Q% — cH*(1 + $%/2) At the central line of the tubez = 0, rise in

pressure per wavelength in wave frame is given in Eq. (6.14)

9.2 Numerical Analysis

In this particular section, the solution of Eqs. (9.10) to (9.12) subject to boundary
conditions given in Eq. (9.13) is formulated. In the above presented modeling by
dropping the assumptions of lubrication theory, we have arrived again at a system of
coupled nonlinear partial differential equations along with the complex geometry. Thus,
an efficient fast converging technique is required that can handle the curved geometry
and nonlinearity of the equations. Galerkin’s weighted residual finite element method
is incorporated after discretizing the considered whole domain of the problem into a

mesh of six nodal triangular elements which gives highly convergent result with
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tolerance of 10~1* in maximum 6 to 8 number of iterations. The approximation of
stream function and vorticity is given in Eq. (6.15) and approximation of microrotation
function is given by

g = Xk=1NeGr (9.14)
where g, are the nodal element approximation of g. In our situation, we considered
quadratic triangular elements withn = 6. After applying Galerkin’s finite element

scheme to Egs. (9.10) to (9.12) takes the following form

fowi (55542 (5) +w)an=0, (9.15)

v e (22(2) ~222(9) - 5 ({5700 + 2120
M5 (250) +@da =0, (9.16)
fows(Rey R (B2 202 _ o 429 -EFiD?%g)da=0,  O17)

where wy,w, and w; represents the weight functions and df) = 2Znrdrdz. Upon

simplification of Egs. (9.15) to (9.17), we get

a? dw, &Y | dw, 10y _ ay
fo (5525452 (250) ~wiw) d = [ wyShar, ©-18)

o weke (35 (2) - Srm () dn v 5 fy (5215524

a aw;, a(rcu) dwy 1d(rg) , a? 6w2 a(rg)
r 9z )dQ+ J—n ('Er_; or T 7 5z oz )dﬂ+

()00, w5,
[ w,2dr + M2 [ w,Star, (9.19)
e ) w2 s

where dI' = nrdrdz. After discretizing the domain and introducing the approximation

given in Eqs. (6.14) and (9.14) in Eqs. (9.18) to (9.20), we get
— 2B + LAl = SE (921
Re X Ciijhiw; + tEiAiiwi - %Ei kWi + MEE Dy +

1 1 e N e e
“ZiBii = 5 Sh, + 1555, + MEST, (9.22)
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— ZiBfjw; + Re ] -—

Xi Ceij¥i g +:;—f A5G+ 22 Brigi =
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m2

Sk (9.23)
where
e (T 080
B = [qe NeNidQ
Céyy = Jo N (%’::_z(%) "%;T(NT)) df
k=g (aa%%a%) da

SK' = [ NySidl' where t = 1,2 J

I

(9.24)

After assembly procedure, obtained resulting system (global) in the matrix arrangement

is expressed as follows

ka=F. (9.25)
where
[ —B ki 0
1 1 N
Ky = |7 Al ReCljoi+ M2DG +1BE  —35 A% |,
N 2-N
- Re] 5 Cij 9 — Ay + 2B
(9.26)
ke
[ W 1 . A‘?‘n . )
A = ||, Fe = |35SK H 3 Sh, HMESE L
-Gk ﬂske
m2 "™

Eq. (9.25) represents the system of nonlinear algebraic equations which is solved by
Newton-Raphson method. The procedure is iterated until the convergence condition is

achieved.

9.3 Validation

In this section, a comparison of obtained results with the existing results available in
literature is made by plotting the curves for longitudinal velocity. For this purpose, the
computations of obtained results are made by applying the assumption of lubrication
theory in limiting case (1/K = 0) and setting ¢ = F/2m to compare with results of
Wang et al. (2011). Graph of velocity of is drawn by putting F =0 and F =1 it

transformq as ¢ = 1/m and g = 0 and compared them with results of Wang et al.
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(2011) in Figure 9.1 and found in close agreement, hence, the solution computed is

correct and the presented analysis is valid.

9.4 Results and Discussion

In this particular section, the results are obtained by implementing the above discussed
numerical scheme to governing equations and shown in the arrangement of graphs that
presents the effect variations of participated parameters in the governing equations such
as Reynolds number Re, wave number a, permeability parameter of porous medium K,
Hartmann number M, micropolar parameterm and coupling number N on the

considered peristaltic flow problem and discussed in detail.

9.4.1 Velocity profile

The longitudinal velocity profile is plotted at z = 0 to analyze the participation of
different participating parameter on the flow and shown through Figures 9.2-9.7. It is
observed from these figures that behavior of longitudinal velocity adjacent the walls of
the tube and in the central region of the tube is entirely opposite. The effects of
Reynolds number on longitudinal velocity are plotted for Re = 1,5,10 and 20 with
fixed values of a =04, ¢ =04N=02m=1,/=01,M=2,Q=14and K =
0.5 in Figure 9.2. It is noted that by increasing the Reynolds number that consequently
enhances the dominance of inertial forces over viscous forces, increases the velocity of
the fluid in the vicinity of central region of the tube. In the region near the wall, increase
in Reynolds number reduces the velocity of the fluid. These results are new in the
literature for peristaltic flow of micropolar fluid in a tube. In Figure 9.3 graph of the
longitudinal velocity are presented for different values of wave number a =
0.3,0.5,0.7 and 0.9 withfixed Re =5,¢ =04 N=02m=1]=01M=2,Q =
1.4 and K = 0.5. Tt exhibits that wave number shows opposite behavior as that in case
of Reynolds number on longitudinal velocity. Figure 9.4 shows the effect of numerous
values of permeability of porous medium K = 0.01, 0.05, 0.1 and 0.5 where Re =
5a=04,¢=04N=02m=1j=01,M=2and@ =14 on longitudinal
velocity. It reveals that increasing values of permeability parameter assists the flow in
the central region of the tube while it resist the flow of the fluid near the wall. Effects
of variation of Hartmann number on the velocity is plotted in Figure 9.5 forM =1,3,5
and 7 with Re =5,a =04,¢=04N=02,m=1,/=01,Q¢=14and K =0.5.
It shows that increase in Hartmann number produces resistance against the flow in the

region near the central line of the tube causing the decrease in the velocity due to the
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fact that increase in Hartmann number strengthens the magnetic field that causes the
resistance in the bulk motion of the micropolar fluid in the central part of the tube.
Figure 9.6 shows the graph of longitudinal velocity for different values of micropolar
parameter m = 2,4 and6 with Re=5a=04,¢=04N=02/=01M=
2,0 = 1.4 and K = 0.5 and for Newtonian and non-Newtonian case. It reveals that
longitudinal velocity for Newtonian fluid is greater in the central region as compared
to that of non-Newtonian fluid and increasing values of micropolar parameter decreases
the velocity in the central part of the tube while opposite effects are noted in the section
near the wall. The effects of coupling parameter on longitudinal velocity are shown in
Figure 9.7 by plotting graphs for N = 0.2,0.4,0.6 and 0.8 withRe =5,a =04,¢ =
04m=1]=01,M=20 =14 and K = 0.5. The variation in case of coupling
number is negligible as compared to that of micropolar parameter but exhibits the
qualitatively same behavior in the central region and near the peristaltic wall of the

tube.

9.4.2 Trapping phenomena, vorticity and microrotation

The movement of the walls of the tube in peristalsis generates the streamlines that move
along the wave and sometimes these streamlines do not follow the same path but split
and move in circular path, hence forms the bolus. Trapping phenomenon in the
peristaltic motion includes the behavior of streamlines and trapping bolus. Figures 9.8
to 9.10 exhibits the behavior of the streamlines along with vorticity that describes the
local spinning of the fluid and microrotation of the particles for participation of various
values of the prominent parameters involved in present considered model. Figure 9.8
shows the behavior of contours of streamlines, vorticity and microrotation for variation
of Reynolds number while keeping other parameters fixed at some suitable values. It
reveals that increase in Reynolds number magnifies the size of bolus and increases the
number of trapping boluses due to fact that as we increase the Reynolds number, inertial
forces become dominant over the viscous forces and assist the velocity which increase
both the size and number of the trapped boluses. The vorticity generates at the central
region of the crest part of the wave and tendency to moves at the peristaltic walls of the
tube with increasing values of Reynolds number which reveals that for large values of
Reynolds number the fluid clustered at the peristaltic walls exhibits more rotational
velocity as compared to the central region. The microrotation of the micropolar particles

attributes symmetrical behavior for low Reynolds number while for large values of
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Reynolds number symmetry is lost and microrotation of the micropolar particles move
towards the right side of the tube in trough part of the wave. The behavior of the
streamlines, vorticity and microrotation for various values of the Hartmann number are
presented in Figure 9.9 which revels that increasing values of the Hartmann number
decreases the number as well as the size of the bolus. This is due to the fact that increase
in Hartmann causes enhancement in the strength of the magnetic field which causes
resistance against the flow of the fluid which reduces the height of the flow pattern and
thus reduces the number and size of the bolus. The vorticity lines show that strong
electromagnetic forces push the vorticity lines towards the peristaltic wall and exhibits
the same path as that of the peristaltic walls of the tube. The physical characteristic of
microrotation of the micropolar particles decreases by increasing Hartmann number.
Figure 9.10 includes the contours of streamlines, vorticity and microrotation for diverse
values of permeability of porous medium. The behavior for increasing values of
permeability of porous medium on streamlines, vorticity and microrotation of the
micropolar particles are opposite as compared to the case of Hartmann number.
Increasing values of porosity parameter magnifies the size of the bolus and increases
the number of the trapped boluses. It is due to the fact that increasing permeability
parameter permits rapid movement of the fluid that passes through the tube which
consequently enhances the height of the flow field that made a reason for the increase
in volume as well as number of the bolus. The increase in the permeability of the porous
parameter enhances the vorticity lines in the central part of the tube and with increase
in permeability of porous medium, vorticity lines generated at the peristaltic walls of
the tube and are clustered in the central part of the tube. Furthermore, it is also noted
that microrotation of the micropolar particles also enhances by the upsurge in the values
of the permeability of the porous medium.

9.4.3 Pressure distribution

The pressure rise per wavelength on central line r = 0 is plotted against time mean flow
rate to examine the effects of participating parameters involved in the governing
equations on the pressure distribution for the considered modeled through Figures 9.11
t0 9.16. In general, pumping mechanism in peristaltic flow is studied in three ranges of
AP i.e. if AP > 0, then that region is known as augmented pumping region while
for AP < 0 is the co-pumping region and AP = 0 is the free pumping region. In most

of the engineering and biomedical situations, researchers are interested in the results
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K =010305 and 0.7 with fixed Re=1,a=04¢=06N=04m=1/=
0.1 and M = 2 is shown in Figure 9.13. It reveals that enhancement the porous medium
permeability trades increases the pressure rise per wavelength. Furthermore, for greater
values of permeability parameter, comparatively less variation in the pressure is
observed as compared to small values of permeability parameter. Figure 9.14 is
displayed to observe the variation of Hartmann number M = 0,1,2 and 3 with fixed
values of Re = 1,a = 04,¢ = 06,N=04m =1,/ =01 and K = 0.5 on pressure
rise per wavelength. It is observed that increase in strength of electromagnetic forces
due to increase in Hartmann number assist the pressure rise per wavelength. Figure
9.15 and 9.16 present the effects of variation of micropolar parameter and coupling
number on the pressure rise per wavelength respectively. In both figures, results for
Newtonian fluid are also included to compare with the pressure rise per wavelength for
non-Newtonian micropolar fluid. It is noted that pressure rise per wave length exhibits
the direct relation with the micropolar parameter and coupling number. Furthermore, it
is perceived through graphs that pressure rise per wavelength is greater for micropolar

fluid as compared to that of Newtonian fluid.

9.5 Conclusions

Tn this chapter, the peristaltic transportation of micropolar fluid passing through a
porous medium is carried out for non-zero moderate Reynolds number in presence of
an applied magnetic field. The numerical solution of a set of governing partial
differential equation subject to the suitable boundary conditions is obtained by using
finite element method equipped with Galerkin formulation. The current investigation is
carried out without using the conventional assumptions of long wavelength and low
Reynolds number which allows predicting the behavior of peristaltic motion of
micropolar fluid in a tube for moderate Reynolds number. It is prominent that increase
in Reynolds number assists the peristaltic flow in the central part of the tube while
opposes the flow near the peristaltic wall of the tube and enhances the pressure rise per
wavelength. Increasing Hartmann number is contributed by the Lorentz force
diminutions the velocity in the central part of the tube and upsurges in the vicinity of
the peristaltic tube and increases the pressure rise per wavelength. The rise in the
permeability of the porous medium increases the velocity in the central part of the tube
and support the pressure rise per wavelength. The peristaltic mixing is increased by

increasing Reynolds number and permeability of porous medium, as an increase in
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volume as well as number of the trapped bolus is noted. The presence of trapping bolus
and its position highly depends on the Hartmann number. It is shown that for micropolar
fluid in peristalsis supports the pressure rise as compared to that of Newtonian fluid. It
is hoped that this investigation will encourage the researchers and will be considered as
a benchmark to explore the neglected features of the peristaltic motion of micropolar

fluid passing through the tube.
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