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Preface

In 1922. thc Polish mathematician Stefan Banach established a significant fixed point theo

rem krrorvn as the "Banach Contraction Principle" (BCP) rvhich is onc of the ruost promiuent

rcsults of analysis and considered to be thc main source of metric fixed point theor),' It is ttlc

most rvidely applied fixed point result in many branchcs of mathematics becartse it rc(lttilcs thc

structure of complete melric space \\'ith a colltractive condition on the mal) \'hich is easY lo

test ill tlis setting. Thc BaDach Co[traction PrincipJe has becn expanded in narn rliflercrtt

(lirecl ions. Irr fzrct. therc is a huge amount of Iiterature dcalirrg rvith oxtensiortsT'genctaliztrt ions

of this i[rportant theorem.

A nu.rltivahred functioD is the orre $.hich takes values as a set. [n the la^st fortl']'cars. tlte

theor), of multivalued functions ha-s progtessed in a numbcr of u'ays. In 1969. the s)'stematic

studr of Banach type fi-xed theorems involving multiralued mappings began rvith thc rvork of

Nadlcr [78], who investigated that a muLtivalued contractiwe mapping of a completc metric

space X into the family of closed bounded subsets of X has a 6xed point

The studv of rnctric spaces provcd a most important tool for many fields both in pure and

applicd scicnces such as biolog-v. mediciue, physics and computer science (sce 162] 1971) Somc

gencralizations of a metric space havc been suggested by some rvriters. such as rct langul:rr

rnetric spaces, semi metric spaces. pseudo metric spaces. probabilistic mctric spaces. fuzzr'

metric spaces. quasi metric spaces, qttasi semi metric spaces. D-metric spaces' and conc ntctric

spaccs (sce [3, 35. 40. 89, 90]) . Brarrciari [28] brought forrvard the idea of a genernlize(l nletlic

space replacirrg the triangle inequalitl' by a rectangular t1'pe ineqrralitl,. Branciari ach'ancecl

Ilarrach's contraction principle in suclt spaces.

Lr 199.1. \latthe$.s [65] inrrodrrccd parlial metric spaces and got differcrrt fixed poirrt thrtr

rerns. Actually. he cxpressed that thc BCP can be gencralized to thc partial Inetlic colrtcxt fol

;rpplicat ions irt program verificat iort.

Rornaguera [91] irtroduced the i<lea of 0-cauch1, sequences and G.cornplete partial mcllic

spaccs an{ proved sornc characterizations of partial metric spaces irr terrns of complctelress aDd

Gcompletencss.

N{ustafa and Sims [69] introduced the G metric spaces as a gcneralizatiorr of the notion of



mcl.ric spaccs. \lustafa and Sims acquired somo fixecl point thcolclls for mappings satisfvitrg

dilli:renl conlractive conditions for rrrore fixed point rcsttlts ou C-rr,'tri(':'p.l.i'i:r. U9-;U I

Li 201,1, Agtrajani ct al.l91 presertcd rhe notion of Gb n]etric spaces aDd provt'tl tltat tlto cla-ss

of Cb nretri( spaces is pra( ticalll' greatcr than that of C,'-ruct ric sparcs given irr 61)

In 2012. \l'ardon ski [103] introduccd a nerv t)'pe of contraction r:allccl F contractior ar(l

proved a neu'flxed point tlteorem conccrning a contraction. \\hrdos'ski gcneralized thc BCP.

Aftenvards Secelcan [96] pror.ed fixed poiDt theorems consisting of F-contractiors b]' Itcratcd

furction systcns. Piri et al.l84l pror.ed a fi-xed point result for .E Suzuki contractiolrs for somc

uezrker couditions on the self map rvhich gencralizes the rcsult of !tr'ardorvski. Latel on. Acar et

al. [8] introduced the idea oI gencralizcd multivalued I'-contraction mappings. Altun et al. i71

cxtcnded multiralucd mappings rvith d-distance and established Iixed point resrrlts ttt contplctt'

uretric space. Sgoi et al, [98] developed 6xed point theorcms for multivalued ,l'-(t)ntractiorrs

arrd achicved the solutiol of a felg functional and integral equations. rvhich rva-s a suitablc

genr:ralization of sevcral multivalucd fixed point theorcms including l\adler's. Larcll Ahrnad ct

al. [12. 18. ,16] rcvised the concept of F-contractioD to attain some fixed point, alrd coln[Ior1

lixed point rcsults in the discourse of complete firetlic spaccs.

This disscrtation corrsists of livc chapters. Each chaptcr bcgins rr'ith a brief irrtrodttctiou

rvhich acts as a summer) to the matcrial thcre in.

Chaptcr 1 is an orcn-ierv airrted at explaining the terminoloS]' to be usccl to rccall basic

dcfilitions and facts.

Chapter 2 is focused to the ne\ concepts called (g - ,F) contractions and generalizecl

\lizoguchi Takahashi contractions for complete G-metric spaces and developed solne nev co-

incidence points and common fixcd point results, Also, we prove some fixed point theorcrns of

"/S - G-contraction in the setting of generalizcd metric spaces, and to prove somc fixcd poirrt

resrrlts on Gt-complete metric space for a ncrv contraction. \Iost of these theorems trre allead-r

knourr from the literature, rve includc nerv alternativc proofs aud some gcneral investigatiolrs

rcgardirrg the undcrlying spaces.

Chapter 3 is devoted to single arrd multivalued F-corrtrix tion mapl)ings. \\i'inltodrrrc

thc idea of gcneralized F-contraction and establish several [e\\' fixccl point theorerls fol silg)r'

anrl multivalued mappings in the settlng oI completc r[etric spaccs- \\'e cxtenrl tlio concopt o[



firzz,v fixed points to common o-fuzz), fixed point of generalized I-contractiotr in the settinB o[

courplett, mctric spaces. our results unify and gencralize diflerent knorvn compalable resr ts

fiom tllc current litcrature.

Chaptcr 4 is dewoted to introduce F rational cycljc contraction on partial metric spa(:('s

and to prescnt ncrv fixcd point rcsults for such c1'clic corrtractiol in 0-comp)cte partlirl Inolli(

spaces. \\ie establish a corumon fixcd poirrt theorern for a pair ol rnultivalued f' '[ plrxtrrrittal

mappings satisfying Ciric-rvardorvski t]'pe contraction in parlial Ilrt-'tric spates. \\o dis<rrss

.tpplicatiors of our theorcm arrd oblain the cxisterrcc and uniqueDcss o[ cottutloll sl)ltttjort ol

sYstern oI intcgral equations.

Chapter 5 is focused on the cotcel)t of Hausdorff metric on the farnih' ol tr]oscrl lrortrttlr'rl

subsets of a dualistic partial rnetric spacc (DP\ls) and cstablishcs a comnton frxcd poittr theoL('ru

of a pair of nrultir.alucd mappings satisfi'ing \lizoguchi and Takahashi s contractjle corrditiott.

Furthermore. we apply the concept of dislocated mctric spa(:es to obtain theotcrtrs asscrtillg

I he exist arlcc of common fixed points for a pail of map purgs sat isf)'ing ne$ gcrteral izct l rat tot lal

contractions in such spaces.

I l\-ould like to express my sincere gratitude to my supen'isor Prof. Dr. }luhamnr.rd Arslrad

s.ithout s,hose sincere piece of adr.ice and raluable guidance this thcsis could nevel havc becolrre

a reality. The faculty at International Islamic univcrsity, Islamabad. Pakistan, in gcrreral and

the Departmcnt of \Iathematics in particular has bcen of great encouragelnerlt alld supPort

to me during my Ph.D. studies for rvhich I am thankful. Finally, I thanl my famill'for their

zrflection and support throughout Iny research.

Sarni Ullah Kharr.



Chapter 1

Preliminaries

l'he ainr of this chapter is to present some basic concepts and to cxplain thc tetminoloB]' rrsed

tlrroughout this thcsis. Some previously knorvn results are given rvithout proof. Scttion Ll ts

coucerncd rvith the introduction of single valued aud multivalucd contractions. Sr:t tion 1.2 i.

duvote<l to thc introductory material on the notions of G-metric and Gb tllctric spaccs Ll

St,ction 1.3. \\'c prcsent the concepl of cI.lic contraction zrrd \[izogrrlti Takirhirs]r ftrttrttt,rt.

Scction 1.1dcals rrith tltr.brstt corrcr.pts o[single aurl [rultiralucrl l cor)llacli()lI ttt:tPpirtg:.

1.1 Some basic concepts

'l'hc contraction mappings arc a special t.l-'pe of uniformly continllous functiorrs dtrfined on a

lretric spaces. Fixcd point (FP) results for such rnappings play an important role in anall'sis

zrnd applied nrathcmatics.

1.1.1 Definition [4]

Suppose that a set X (nonempty). .9 and T: X 
- 

X. Then z e X is called

(i) FP if image 7:r coincides t'ith r (i.e..7l : r):

(ii) common FP of the pair (S. ?) if Sr - Tr - r:

(iii) coincidencc point of the pair (-9, T) if Sr: Tq
(iv) poirrt of coincidence of the pair (,5. 7) for somc g € X s-t. z - SU : Ta.



t.L.2 Definition

Suppose that ()(,d) is a metric space. A mapping T: X " X is called

(i) Banach contractior, if there is a positive real number 0 < r < 1, s.t, V r,y € X.

d(Tt.Ta) < rd(r.y):

(ii) Edclstein coltraction, whene!'er

d(Tr.Ty) < d(r,y) for r I a. t.tt e X:

(iii) non expansive rvhenevet

d(Tr.Tu) < d(r.y).V r'.s t I:

(ir ) expansivc rvhenerct

dQr.:fy) 2 nd(r, g), Y t,g e X rvherc t7 > 1:

(r,) Ciric type whcnever

d(Tr.:ty) 1 M(r,a).

.u (/. y ) maxld I x. ! t. dt.r. T r t. d(s.T a t. 
d!' T!)-:!!f!\ 

t

*,here

1.1.3 Definition

Suppose that X is a nonempty set and 2x be the collectio! of all nonenptv subsets oI X. -I'hcn

7':X --+ 2-Y is called multir'alucd mtrpping. Apoilt r€Xissaid to bc

(i) FP of f ilre Tr
(ii) coincidencc poirrt of a pair of multivalued mappings (T.S) if Tt:t St I A:

(iii) cornrnon FP of the pair (7. S) rf t e Tr ) St.

Suppose that (X, d) be a metric spacc

CB(X) - the group of nonempty closed and bounded subset of X:



CL(X) : the group of all nonempty closed subsets of X;

K(f() : the family of all nonempty compact subsets of X.

!-or any ,4. B in CB(X), define

d(A'B)- inf{d(z v) :xe A ve B\'

This definition fails to discriminate srrfficicntly betlccn sets. \\c uould like the distant'e

bct\Leen two scts to be zero only if thc trvo sets are the same. both in shape anci position. For

this purpose, thc following concept is useful (cf., [57]).

1.1.4 Definition

Suppose that (X.d) is a metric space. For A,B € CB(X) and d- > 0 the sets N(d. -4) and '8,1.3

are defincd a^s follorvs:

.V(d.A) lrcX:d(r.A) r a).

E^.ts : lii: .4 ! ,\'(d, B). B q N(it. -4))'

rvhcred(r.A)-irn\d@.y):yc. AjThedistarrcefunctionIlonCB(-{)irrdttcc<lLrrr]rs

defined as

H(A, B) : inf E'1,3,

rvhich is knotrt as Hausdorff metric on -{.

1.1.5 Lemma [78]

Suppose that (X.d) is a metric space lf A,B e CB(X). then for r > 0. e € A there cxisrs

b L B s.l .. dlo.b1 < H(A. B) t r'.



1.1.6 Delinition [78]

A rnapping T : X 
- 

CB(X) is said to be a rnultiralued contraction if thcre exrsts a corstanl

r. 0 ! r < 1. s.t, V r,g e X.

H(Tr.Ty) < rd(r.9\.

Nadlcr [78] gcneralized BCP to rnultivalued mappings and proved t]re follorving irnport;rnl

FP result for multivalued contractions.

7.1.7 Thcorem [78]

Suppose tlrirt (-Y.d) is a complctc Illetric spacc artd ?: .{ 
- 

Cts(-Y) ir multi-r'irltto<l cotttlrrt-

tion. Then 7 has a FP.

1.2 Relevant results on G-metric and Gi,-metric spaccs

Nlustafa arrd Sims 169] defined thc C metric as fallorvs:

1.2.1 Definition

suppose that x is a noncmpty sct. G : X x X x X - lR+ bc a function satisfl-ing the follos'irrg

properties

rcl) C(-r.y.:) - 0 if r - Y = :.

(G2) 0 < G(r.r.y)Y r.y e X u'ith r I y.

(G3) G(r.r.y) < G (r, g, z) Y ...y,2 ( X tv\th y / :.

G\ G(r.a.z):G(t.z.y)-G(A.z.t): ' (syrnmctrf in all three varizrbltrs).

(C5) G (r. y. :) < G (r. a. a) + G (a.u. :) V r:. y.:. a a X (reclarrg,lc itteqrtalttr')

't-he1 thc functirirr C is callcd a gcnerzrlizr:d otetric. oL a G otott'ic on -Y. :rtlrl tlic p,rrr

(.Y. G) is t alled a G - metr ic space.

1.2.2 Dcfinition [69]

SLrppose that (X.G) is a G-Dtetric space. and tet (2") bc a sequelice of points o[ -{. rre sal

t titrt (r.,) is G convcrgent to r € X if lirn^.^-*G(r.t".t^):0. i.e.. for anl e > 0. rhcrc



cxistsN€Ns.t, G(z,r,.z-) < e. V, n, m > N. We call r the limit of the sequencc and rvritc

rn+rorlin4-.-j;,-x

1.2.3 Proposition [69]

Assruuc that (X, G) is a G-srctric space. Thc follorving stateruexts alc counterpart:

(t) (r") ls G convergent to r.

(2) G Q,,. r".r\ - 0 as n - +cc.

(3) G(r".z.z) - 0 as n - +oo.

(4) G (t".r^,r) - 0 as n,m - +oc.

1.2.4 Definition [69]

Supposc that (.Y.G) is a G-metric space. A sequence (2") is called a G-Cauchv sequence (C-

scq) ifforanl'e > 0. there is rY € Ns.t. G(.r".r-.11) < e V n. nt. I /,\-. i.e.. G (.r,,..r',,,. .r'r ) ,0

.rs rr. n?. I - +F.

r.2.5 Definition [69]

-A. G mctric space (X. G) is callcd G-cornpletc if o'er1' G C-seq is G-corl'ergout il i.Y. (;t

F}-err' G-mctric orr -K dcfirres a rretric d6; on -Y girrD lrv

tl1; (t. y) - C lr.y. y) t G (y. r. .r) . vJ.!e-Y. (1.1)

1.2.6 Example [69]

Supl)osc that (.{.d) is a nretric spacc. The function G: X x -Y x.X - [0.+x), defined br.

C ^(t. Y, z) : mur\d(r, y), d(y. z). d(2. r) l.

or

G 
"(t.11. 

:) : cl(t. v) + d(a. .) + d(.. r).

V x. !. z € X. is a G-metric on X.



I.2.7 Corollary [69])

Assumc that (X. d) is a metric spacc. then (X, d) is complete metric space if and orny if (-Y G,,,)

( (.Y. G") ) is complcte G-metric space.

1.2.8 Corollary [69]

A G-mctric space (X. G) is continuous on its three rariables.

Reccntll,. Aghajani et al. [9] introduccd the concept of Gb rnctric spaces as fallorvs:

L.2.9 Definition [9]

Plcsume th2rt X is a nortempty set and s 2 1 be a given real munber' Supposo rhat G1, :

X x X x d - IR+ is a futtctiort satisff irrg the follorving proPerties:

(G61) C1 (r. Y.:) -Q)f a:Y = 1.

(C62) 0 < G6(r.x.y) V r.y e.{ u'ith r 7 y.

(G63) G6 (r..r. y) 1 Ct, (:r. u.:) V .r.9.: € .Y rvith g ; :.

|G1,4) G1,(t.y.z): Gt(pb'a, rl). s'here p is a permutatior of r'y : (svmnrettr 1'

(G65)C6(r.y.z) < s(G6(r.a.o) +C1,@.y.2))Y t.y-z.a € X (rectangle inequalitl'). 'I'herr

thc functiou G6 is called a generalized Lmetric. or. a G6-metric on X. and the pair (X. G) is

callcd a G6- rnetric space.

It is cleared that the cldss of Gt-mctric spaces is effcctivell, Iarger than that o[ G-lnetli(

spaces given in [69]. Indeed, each G-metric space is a G6-metric spacc rvith s = 1

t.z.to Dcfinition [9]

A G6-metric spacc is said to be syrnmetric if Gb(x.y.g) : Gt(A. r. t) V r. y { -Y.

1.2.17 Proposition [9]

Supposo that -Y be a G6-I]rcrri( spzt(e. Thct for elch -r:.y.:.n a -Y ir follorr s rlt,rtr

(1) if G6 (r.9.:) - 0 thcn r - lt : ..

(2) C,, (.r.. y.:) ( s (C6 (;r. r. y) + G6 (.r. r. :)) .

(3) G6 (r. y. y) (2sG6(y.r.t).



(.1) Cf (r. s. :) S s (Gr (r. a. : ) + C6 @. y. :)) .

1.2.72 Definition [9]

Suppose that (X.Gi,) is a Gb nretric space. and (r.) be a scquerrce in -Y. \\'c sar that (.r,,) is

G6 corrvergent toz € X it 1im".,,,-*Gt(t.r".t,"):0. i.e., for anY e > 0. therc t:xisrs I a N

s.t. G6 (r. :r.,. r,,,) < e , V. n. nr > N. \\-e cnll r the Iinrit of the scquence art(l wt itc r,, .. or

1.2.13 Proposition [9]

Assurnc that (X. G6) is a Gb-mctric space. The following statemelts are counterpart:

(t) (r,,) is Gb convergcnt to r,

(2) G6 (r,.:c,,. r) - 0 as z - +1.
(3) G6 (r.,. z. r) - 0 as n - +cc.

(4) G6 (r". r-, r) - 0 as n, m - +cc.

1.2.14 Definition [9]

i\sstuue that X is a Gi,-metric space. A sequence (r,) is called a C6-C-seq if for trnr r > 0.

thereis-\'e N s.t. G6(r,.r,,,.rt) <(Y n. n.l / -\. i.c.. Gr,(r,,.r.,.2r) - 0 as tr. m. 1 - -r

1.3 Relevant results in dislocated metric spaces

1.3.1 Dcfinition [42]

Suppose that )( is a noncmpty set- A mapping dq: X x.Y -- '0.rc) is called a dislot'atcrl

rnetric (or simply d7-metric) if the follorving conditions hold:

(r) itdi u.A) - 0. then j l:
(2) d1(j.k): dt(k.j);

(3) dr(j. A) < dt(j. L) + dt1. k). 7. A. I e X.

Thcn 11 is callcd a dislocated metric on X. and the pair (-Y. r11) is callccl disloraterl trl'tt ic

spacc or d1 netric space.

10



1.3.2 Dxamplc

lf .Y - R+ U {0}. thcn dt0.k) - j -r A defines a dislocatcd nrclric on -Y.

r.3.3 Definition [42]

A scquence \j"l rt d1 metric space is r:alled C-scq if for gir.en : > 0. therc corrcspontls n6 € -\'

s.l. V n. m ) ns . we have d1 (j,",j") < e.

1.3.4 Definition [42]

A scquence {j"} in d7 rnctric spacc convcrges with respect to d1 if there exists .l € -Y s.t.

dt(i"-l) - 0 as n - x. In this ca^se. j is called limit of {i"} and \c l\'rite i, -.. j.

Evcry mctric space is a dislocated metric space, but thc co[,ersc may rlot be tlrle.

l 3.5 Example

Srfppose that -Y - /l and d1 :XxX - I0.:c) dclined bldrU.A) j'l; Y7.At.{.

Note that d7 is zr dislocated metric. but not n metric sincc d7 (1.1) : 2 > 0.

1.3.6 Definition [42]

A dr metric space (X. d1) is called colnplete if everl' C-seq in X convergcs to a poirlt in X.

1.3.7 Example

Assulre ttrat ](: [0. 1] and d1 (i.A) : rnax{i,t}. then the pair (X.d1) is a dislo<atcd mctric

space. but it is not a mctric space.

1.3.8 Definition [42]

Supposc that (X.d1) is a dislocated ntetric space. A mapping I: -Y - -Y is called contrircl ion

if thcre cxists 0 < l < 1 s.t-

d(r0).1 :k))!.\d17.L'). v j.,(..\ srth;:i

11



1.3.9 Definition [80]

Suppose that X is a nonempty set. srqrpose that the mapPing D:X xX -lR strtrsfics:

7. :x - y e D (r,t) = D (y,y) : D (t.Y\ :

2. D(t.r)< D(r.a) Vr.y€X:

3. D(x.Y)- D(u.r) V:r:.Y e Xr

1. D(t.z) ! D(..y)- D(y.z\ D(a.a).Y r.t)..€ -Y.

Thcn D is called a dualistic partral metric orr X. antl (X. D) is ctrlled a DP\IS'

Notc that if 1R is replaccd by IR+ thtn D is knorvn as partial mctric on X. Ib make zr diffcrencc

bet\-ccn partial rnetric and dualistic partial metric. I'e discuss an example Suppose that us

dcfirre D: X x _Y - R bv D(c.?) = l.Iaxlr,u\. Norv if x: R. then D is dualistic partial

Inctric but nor partial metric on X. for if z= 1andg: 3 then '4'1ar1 1-3i -1 -
D (.r:. y) rvhich is not possible in partial metric. Each dualistic partial metric D on -x 8(:nclates

ar0topologyr(D) onX rvhich has a ba-se topology of open D-balls \Bp(r'z): r e 'Y '>0)
and 82(2.:) - {y€X: D(r.y) <:+D(r.r)} From this fact it folkrrvs that t1 sequencc

(r,), in a DP\IS converges to a point r e X if and only if D(r'r) :lim"--D@r").

1.3.10 Definition

Presunre that -Y is a noncmpt)'sct. Srrppose lhat thc nrapping d: 'Y x -Y ' lR+ szitislics:

l. dQ.y): rl(y.t):0 <+ z:9. V r.Y € I.

2. d(r. z) | d(r.y) + d(y.z) Vz.s.:€X.

Thc pair (X. d) is callcd quasi mctric space.

Each quasi mctric d on X generates a ro topolog)- r (d) on X rvhich has a base topologl'of

open tl balls \86@,e) . :x € X, € >0) and By(r,e)= \v e X:d(r.g)<t\'
f loreo'er if d is quasi netric thcrr d" (x'y\ = ma-x {d (r' y) d (y' ')} is a metric ott '{'
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Suppose that us define modulus of a dualistic partial netr-ic bl'

1.3.11 Lemma [82]

It (X. D) is a DPIIIS, then the function do: X x X - lR+ dcfined bv

doQ,y):D(r,y) D(r.r).

Y r.y€X, is a quasi metric on X st, z(D):r(dp) Now if d, is quasi metric on '{ then

a"o@,u) - max{d, (2. g) ,do@'")) dcfines a metric on X'

t.3.12 Lemma [82]

(i) The scquelce {2,| in DP\{S (X.D) converges to a point r if aud onlf if D(r'r) -
lirl"-- D (r.. z) .

(ii) The sequcnce {r, } iu DPNIS is called C seq if lim,,,'-- D (r., r", ) exists'

(iii) The DPN{S is complete if arrd onll- if the mctric (X. d;) i" complete alld furt}ter

Iirn,-- rli (r,. z) : 0 if and only if D(z'r) - 1tu,--D(r,,z) - Iim",--- Dlt" z-') '

A subsct o of X is called closed in (X. D) if it is closed with respect to z (D) o is callcd

bourrdcd in (X.D)iIthereexistrs€XandM>0s.t, a€ BD@o'M) Va € o' ie,

D(:;o.a) < D(rs,rs) !MY a€a.

suppose that c BD 6) is the collection of all nonempty, closed and bounded subscts of x

with respcct to the dua-Iistic partail metric D For q e CBD 6). we define

D (r, n) - ifise. D (r''Y) '

For o,3 € CBD (X).

6 n @. fl) - sup... D (o, 3) ,

ti; (3. n) - suP6.3 D (b o) .

H n @.1) - max {lip (n, 5) . rip (il. o)f '

Note tlrat D('t.,o) - 0 + di(e.o) - Q, rvhcre d"oQ.a):\nfuq^dlO.a).

( oU.al it Dlx.y) ' t):
\D (,. c)l -' (

I Dtr.st it D(r.y) < 0.
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1.3.13 Proposition [21]

Suppose that (X,D) is a partial metric space (PN{S). For any o, 3. C e CBD (-X).le havc

(i) d-p (o.ri) : suP{D(o.a) : o € o} :

(ii) iip (o. o) < 5p (o. 
'3) 

:

(;,,) iin(,,.J) - 0 ,n J:

(zu) rip (cr. J) < dp (o. C) +.t, (C. ^i) - inf"66 D (c, r:) .

1.3.14 Proposition [21]

Suppose that (X. D) is a P\lS. L-or attl rr. J. C € CBD (X). ue have

(i) Ilp (o. o) < Hp(a.P):

(it) Ho@,4) < Ho(B,ct);

(iii) Hp(a.B) < Hp(a,C) + HD(C.3) - inf"66 D (c. c) .

1.3.15 Remark [21]

Suppose that (-](. r) is a PN{S and n bc any ronempty set in (X. r) . t[ren o € o iff

D(a.o): P(a.q1 .

\vhcre d denotes the clouser of o rvith respect to partial metric D. Note that <r is ckrsed in

(.{. D) itr a: o

1.3. f 6 Lemma

Suppose tllat tr ald J arc noncnlptJ. closed and bounde(l srrbscts of a DP\IS (-Y. D1 ztrril

0 < h € R. I'hen forcveD'o€ o, therc exists b€ 3 s.t. D(a.b) < Hokr,3)+h

Proof: \\'e argue b1'contradictioll. Supposc there cxists h > 0. s.t. for anl'D € J lre havc

D (a,b) > Hp (a. 0) + h.

'l'hen.

D(a.3)= nrf {D(o.b) . b€ 3l> H71(cr.3) i h > dp (o. J) -h.

slrich is a contradictior. Hence, there exists b € J s.t. D (o,6) < Hp(u.3)+h.

74



1.3.17 Dcfinition [33]

A furx:tion,p: [0.+cc) - [0, 1) is said to be il17 function if it satislics \lizogrttlti anrl

Takahaslri's colditiorrs (i.c.. Iim sup, ..-;(r) < 1V 9€ (1.+3() ).

1.3.18 Proposition [33]

Supposc that ,p : [0. +oo) 
- [0, 1) is a function. Then the fol]orving statements are couuterpart'

1. p is an,\fZ furction.

2. l-or each p e [0.cc). there occur rll) e [0.t1 .r,d rf;] > 0 s.t.,:(s) 1rl,l' v t c

/ (1)\
\e !1 .a )'

3. For car:h 9 e i0.x). there occru .1,2) e [0.r) ond.!') > 0 st. ;(s) < '!2' v -.:
( o. u r ,1.2)\ .

.1. For each g e [0,oc). there occur .!3) e [0. 1) and 6!3) ;' 0 s.t.;(s) < .13) v , e

l.-'o+e; ; '

5. lbr each p e [0.c<). thcre occur.11) e 10. l) ancl 5!a) ; 0 st. ;(s) ! '],1 
.'' '' "

/ (.1)\

\! e r:o /
6. For an1' uonincrea-sing sequer)ce ir,)^.^' in 10.:r) rve harr' 0 ! sup,,u.1 

'. 
(x,' ) < 1

7.;isafttrt<tionofcolrtlirctivelactor'31, ie.. for aIt-v strictll dt'creasingsoqtrento{'t,,},,...

irr [0. oc), s'e havc 0 1! sup,,.- p (r,,) < 1.

I.4 Single ralued and multivalued F-contraction mappings

\\hrdorvski defined the -F-contraction as follorvs:

1.4.1 Definition [103]

supposethat(X.d)isamctricspace.AmappingJ:x-Xissaidtobean-Fcorltlactiolrif

thercexistsi>0s.t.

Vr.y€X. d(,1t.Ju) >0+7+ FQI(lt.Jy)) < t'1d(r.e)). (l'l)

shcre I' : R+ - R is a fitnction satisfi'ing the follorving conditiorts:
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(F1) ,F is strictly increasing, i.e. V z.g € IR-; s.t, o < y. I'(c) < F(y):

(F2) for each sequencc {o,)p, of positir'e numbers. lirn,-"o o, : 0 if and onl)' jf

lim"-- l'(o") : -5s;
(F3) thcre exists t € (0. 1) s.t. limo - 0+oka(c)) - 0.

Alturr et al.[14] modified the above dcfiaition b1' adding a general condition (Fl) rr ]rich is

giveu in this rvar':

(l-l) r(n)f .{) : inf F(.4) v I . (0. :-) rvith inf A > 0.

\\'c represcnt the sct of all litnctions -F : ]R+ - 1R satisfving (7r1) - (,Fl) coltclitiotrs ll I itt

Sect ion J.f .

1.4.2 Example [103]

Thc famill, of f is not ernpty.

1) r(r) - ln(z): z > 0.

2) F(r) - r + In(z); r > 0

3) F(r) = ln(r2 + r);r > 0.

a) r(z) - j:r > 0.

1.4.3 Remark

Fronr (F1) and (1.1) it is easy to conclude that evcry -F-contraction is necessarilY Contitltlous.

\\irdorvski [103] stated a modified vcrsion of thc Bantrch contractiorr prittctple irs ftrllo$s.

1.4.4 Theorem

Assurnc thzrt (-Y. d) is a completc I[etric space and ]et J : X - X bc an F-contractiort. TheIt

-/ has a unique FP r- € X and for ercrl'r € X the sequetlcc {J''.),.s convcrges to r''.

1.4.5 Thcorem [84]

Suppose that ,./ is a self-mapping of a complete metric space X into itself. Suppose ,/i is ir

cortrnuous mapping satisfying (,81) and (F2). Also there exists r > 0 s.t.

Yr.y e X. d(Jr.Jy) > 0 +r+ F (l(Jr.Jy)) 5 F(d(r.y)),
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Then J has a unique FP :r* € X and for er-ery:r0 € X the sequence {J" rli=t convelgcs lo.rr".

Acar et al. l8l introduced the concept of generalized multivalued -F-contraclion rnappings

and cstablished a FP result. rvhich rvas a proper generalization of some rnultivahred FP thcolclts

including Nadler's.

t.4.6 Definition [8]

Presume that (X. d) is a metric spacc and J : X 
- 

CB(X) be a mapping Thcn -/ is said to

be a gcneralized multiralued F-corttraction if .F, € F arrd there exists r > 0 s.t.

r.y € X, H(Jr,Jy) > 0....> r + F(H(Jr. Jy)) ! F(M(r,y)).

whcre

xI (r, y) -ma-x{d(r, y). D( r, J r ). D \y, J aJ. }1, t,. t il + D (a. J r))1.

L.4.7 Theorem [8]

Suppose that (X.d) be a complcte rrretric space and J: X - /L(-Y) be a geDcralizertl uJti

valucd 1r-contraction- If J or F is continuous. then J has a FP il -tr.
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Chapter 2

Fixed Point Results in Generalized

Metric Spaces

In 2006, Ilustafa and Siros 169] introduced the concept of G-metric space and Prove sornc

rcults. Kaervcharoen. [55] proved thc common FP results for four rnappings in G rrtetric

spacc. Sirnilarly Nashine 179] established couplcd common FP rcsults in ordered G metlic

space. Samet et al. 194] ga1'e some remarks on G-metric space. Furtherrnore G-rnctric spircc

is improved form of D-metric space and 2-metric space. Because D-metric space attcl 2-metric

space are both discontinuous metric spaces but G-metric spacc is continuous. Eor rnorc derails

in this direction, t'e refer the readcr to 122, 38, 70, 81, 105]

In 2012, Tahat et al. 11021 utilized the concept of G-metric spaces and obtained point of

coincicience and cornmon FPs of a hybrid pair of single-valued and multi-r.alued rlappings. In

201,1. Aghajani et aI. [9] introduced the concept of Gb metric spaces and proYcd t]r.rt thc class

of Ga netric spaces is eflcctir.elv lnrger than that of G uetric sparc' giren in ti9 '

In lhis chaptcr. ir is impossible to coYer all tlie kDou'n extensiorls/ gcreraliza t irins of llttr

Barrach Conrraction Principle. Ho$,er.er. an eficrrt ha^s beeD matle to preseLt soltrP extorsirrrls

ol rhe Banach CoDtraction Principlc and explorc the FP and comllori FP results in G IIetIic

spaccs aud cb metric spaces. we continue these invcstigations to explore the FP and commo[

FP rcsults in generalized rDetric spaces. Il Section 2.1, we define new notions callcd (9 - -F)

coDtractiols to prove coincidence and common FP resu]ts in G metric spaces with aPplication.

18



In Section 2.2. rve generalizcd thc concept of \lizoguchi Takalrzshi ContIa(itiotls fol Iorttplcte

G metric spaces and cstablishcd sorlle IlelY coincidcll(€' I)()illIs itll(l (()II)lll()lL I P l('slllls' IIr

Section 2.3. \'e introduce the uotiorr o[,-/S G-corrtraction an(l l)ro\t sotttc ["P llre()retlls ill

thc sctting of geueralizecl metric spaces. Section 2.-1 is <lcrrrtcd to sonx' FP rcsttlls ott (,'r,

r'olnplclo ntotri( sl)ar'e [t t solnp nc* (1]rrl ra( tiotI.

2.1 Common FP results in G-metric spaces with application

Results given in this section havc been published in [73].

The follorving lemrnas of [102] are.'ery crucial to prove our main results.

2.1.1 Lemma

Suppose that (X.G) is a G metric space and A,B € CB(X)- ThoIr for ctrclt u 
' 

--l rre lta[c

G (a. B. B) 1 Hc; (.1. B. B) .

2.1.2 Lemrna

Assrulc that (x.G) isaG nrctric spacc. If A.B e cu(.x) zurrl a € --1. tltt'Il iirr tat'L'> u.

there occurs i, € B s.t.

G(a.b.b) ! IIc 6. B. B) - t-

2.I.3 Proposition([54])

Suppose that X is a given non emptY sct. Assume that 9: X -....-Xand?: X -2Y ale

rveakll' compatible mappings. If g and I have a unique point of coincidencc u - gr € Tr' rhcrt

u is the uniquc common l-P o[ 9 and ?

Lr this rval'. t'e definc the notion of (9-f) contraction.

2.1.4 Definition

Presurrre that (X.C) is a G-metric slracc supposc that 7 : -Y - Cll lX) atrtl 1:-Y - 'Y'

Therr thc nrapping ? is said to be (rl-f-) contractiorl iI there cxjst sontc l'€ f alld d (ronslallt
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r > 0 s.t.

HG (Tr.Tg,T z) > 0 =..+ 2r + F lH6 (Tt.Ts.T z)) < F(G(sr,sY.s.)) (2 1)

Vr.y.:e.Y.

2.L.5 Thcorem

Suppose lltat (X,G) is a G-Inct ric space. SupposettratT:X 
-CB(X) 

and-q:'\ - -Y bc

a (g-F) contraction. If for any I € x. Tr c g(X) and 9(-{) rs a G cornpletc sttlrspract- of -Y.

tlren.q and ? have a point of coincidelrce in ,X. Furthermorc. if se assume that qp € Tp attcl

gq € Iq implr- C (sq, sp. gp) < Ha; (Tq.Tp.Tp). thct

(i) 9 and '-1'ltave a uniquc point of coincidence:

(ii) Furthcrruorc. g aDd'1'ar.c Ncakll, compat ible. thcn g ald I have a unique cottttrrott FP.

Proof. Suppose that x0 be an crratic point of X. Since the rangc of 9 contailrs thc range

of I. thcrc occurs a point rl in X s t. gr1 € Tro.lf g't1 - gxs. then x0 is a coincitlettce point

of g and',1-and the proof is complete, so \!€ assume that 916 I qrt Also if -1"16 : ll'3't'

then ,[t is a coincidencc point of g antl 7. So we assumc that I:rs f Tr1' s]riclr givcs that

HG (Tr1t,.T^.Trr) > 0. Now from (2.1) 1!'e have

2r + F llc (Tr'n.Tt1-Tt1)) < F (C (gq' gr \' grt)) '

Si[ce I' is contirruous frout the right. ttrere occurs a real nulullcr h > 1 s t'

F (hHr: (Tro.Trt frr)) < F (Hc; (Tto T rt ''l-'r I )) - ;'

As qll €'frg so by Lenlrna 2.1.1. se hatc

G(oq.Tr1.Tx) S Hr;(Tq Ttt.Ttl) < hH6; (7'16 Ir1 ?r1)'

'n.hcre/r)l.NorvfromG(gx1.7'ry.Tx)<hHa;(Tz,s.Tq.Tz1)andLemma2ll'scdeduce
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that thcrc cxists 12 € X rvith gr2 € 7'rt s.t.

C (gt1. qt 2. qt 2) ! hHc (T4.7):1.Tt1) . (2.3 )

Consequentll'. $'e get

F(G (g1.s:r2. gt2)) ! F(hH6 Qts. Tr1. ?:r1)) < F(H6(Tq Tt1 7r1)) + 7 (2 1)

rvhich implics that

2r + F(G (sq, gr2.9r2)) < 2r + F(H5 (7ro.Trr.Trr)) +r

< F(G (gh- 7rt' sr1)) +r'

Thus

r i F(G (gr1. gt2. sr2)) < F(G (gxo'su,sr)))

Contiluilg in this process. rve catt tlt'lirre a scquclce {qr,,} : 'Y s.t i,/r',, 1l i f'r'" *.irir 17r" '

q.1:t1+1. Ttr, f 7-r,11. and

'r + F(C(gr,,.q.t,,-r.9r.-r)) < FlGiqr, 1 grn t1t,,))

V ?l € Nu {0}. Thercforc

F(G(sx^.9r^..1.9r"-r)) { F(G (sx,,). sr". sL,)) - r

< F(C (sh z,9t^-t.9r,'t)) 2r

< F(C (9q)'gr'\'gl1)) ttr (2'5)
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V zr € N. Silce F e ?.by taking the limit as n - oc in (2.5). s'e have

lim F(C(gq,.gt,+r.grn+l)): x Therefore bv (F2) -lim-G(grn'(tr,,+r'gx,,+1) -o'
(2 6)

\os' from (l'3). thcrc cxists 0 < A < 1 s.t.

,!111G(vr"'9r,,+r.9r,+r)lir'(G(scn'!t,,11 s:t,,-1)):0' (2i)

Br'(2.5). rvc have

lC (gr,. gr,+t. gt:.*r)lk F(C (!tr^. (tr:,11. 92,11) )- [G (gz.n 11tn-1. st n1I )]rl. (G (grr' qlr ' qr i ))

! lC (gt:,,. gr,+t.92,+1)]r[F(G (qro.9tr.9xi) tLr FIC](gq Gt'qtr))"

t,r CltJ.t,,.!.r.. 1.Y.-rn.1t( 0.

Jhcrcforr:.

lG (gr^. gr^a1, gr 
^+t))k 

F (G (gr., gt.+r, 9t n+)) + nr lG (gr,' gr,*r ' gr''+r )]t

< lG (sr,,, srp1,gr.+r )l*F(G (9r o.9rt.9h)) (2 8)

l3r' taking the liruit as 71 - cc in (2.8) arrd applying (2 6) and (2 7) ue have

,l\*"lG (g,,,. g',+r. 9r"+r )]k : 0 (2'9 )

It follorvs lrom (2.8) that tllere exists nr € .\- s.t.

niG(gr,..gt',.-1.gr,,,11);ft ! I. for all n > rr1. (2.r0)

I
Clgt,,,gt,,.,1.gt,,*,)] 5 i. for all n > n1. (2'll)

nr

Str
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-\orv lr-c prove that {92"} is a G-C-scq. For m > n ) n1 s'e have

m-l

G lgt,. gr^. gr.,) < | C 1sr,. gr,+r.9r,-r )

m1,
< \- L-t'. r.l r,- /-.!:/, !

t\ .li

Sincc0<Aa1, i I con.,erges. Thcrefore. G(gr,-gt-,.fl-) 
- 

0 tr-s m.rt ':r'.llttrs
i=) rr

{-qr"} is a G-C-seq in complcte subspacc g (X). so thcre exists g € 9(X)s.1.

lim G(gr,..gt,,.q) - lim G(sr",q,S) - 0. (2. 13 )

Since g € g(X). there existsp€ X s.t, q-9p. Hence from (2.13). rve have

lin G (sr^. sx.. gp) - lim G (gh. Sp. sp) - 0

\or rvc rvill pro\c that Sp eTp.Suppose that there exists an incrcasirtg scqttcttct'{n1} st'

gr,,* € TpV A € N. since Ip is closcd and gr,n -- gp. $€ get gp € Tp arrd' the proof is cotnplcte'

So n'e trssrrnrc tllat thcrc exists no € .\ s.t. 9r"-1 (TpY n > n0. SiII(c '/r,,-t t 
'1 r,, '1 t,, + T1t

V n ) rro and so sc ltave

HGQ'r,,.Tp.7'p) ) 0 for all n ) z16 (2 ll)

\erv irs gr,, t 1 Q'f t:,,. so b1' [,etrula 2.1.1. se have

G (sr,a1.TP.TP) < H6(T4.TP TP)'

As lt is strir:tly ircreasing. so by (2.i4), above inequality and (2 1). 'vc 
get

F(G (gr^+t.Tp.Tp)) < 2r + F(G (sh*t.Tp.Tp))

< 2r + F(H6;(TI".TP.TP))

< F(G(sh ' sP sP))



Silce l' is irrcleasirrg. rre hart

G (sr"a1,Tp.Tp) < G(sh. sp. sp). (2. 15 )

pr.rtting n - cc in previous incquality and using the fact that the function G is contimtous ort

its tltree variables. we get G(gp.Tp.Tp:) = $. Since ?p is closed \r'e obtain that 9P € llp T]rat

is. p is a coincidcnce point of ? and g. HeDce g and ? have a poirtt of coincidencc ir" \\'e $'ill

prove the uniqueness of a point of coincideuce of 9 and ?. For this rve supposc on t hc (rolltlall'

tlrat u,* is another point of coincideuce of g and ?. i.e.. there exists anothel coincidcncc poiDt

q of g aul T s.t. u,* = gq e Tq s'\lh gp * gq and Tp I ?g Othenvise p arrd q rvill not bo

coincidcncc points. Then II4; (Tq-Tp.T7.l ) 0. Thus. \'e ha, c tltc folloNing assrtrrrl)1iorr tllitt

C (ttq. ttp. ltp) ! Ilc (Tq Tp'7'p)

Sincc l. is int:reasing. by abovc inequa.litl' an<l (2.1). se get

rr hich furthcr implies that

2r + F(G (gq, gp, gp)) 2r + F(Hc Qq.rp.Tp))

F(G (srt, gp. sp) .

F(G (sc1. sp. sp) - 2r

F(c \!tq, gp. sp) .

F(c (ss, gp. sp))

Since F is strictly increasing, we gct

c (sq. np. gP) < G (s't. 9P' 9P) '

shich is n contradiction. tlcncc ap - qq trnd 7'7-r - Iq. Herrce

coincrdertct'. Stlppose thal g ztltd f are s'eaklr r:ontpatiblc Bl

got t]ral r./ ,rrrd T have tr ttrti<1ttc conrrtrort l'P r

17.urd f have a rtrritlLtt' point ol

appll irrg Propositiorr 2.1..1. lc
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2,1.6 Corollary

r\ssume that (X.G) is a completc G -rnetric space on,Y. and let T..Y 
- 

CB(-\). lf lfrer('

occur a Itlction F e f and a colstaut r > 0 s.t. V r.y.. € X

H6; (Tt.7'y.T:) > 0 :> 2T - F lHc iT:t:. tu.7'.)) < I' \C lx.U .))

V r.9. : e -X. thcrr 7' has a F-P irr -{.

Proof- lt follorvs by taking 9 the identity on X in Theorem 2.1.5.

2.1.7 Example [73]

Suppose that X: [0. 1]. De6.nc tttapping T: X 
- 

CA(X) bv ?e - [0. fr] trnd defirrc

s:X -,Ybyg(r) 
: f;.DefineaG metriconX byG(t.y.z): r rt+ lu :+ x :

'l'hen

(t) s (X) is a G complete subsptrcc of X.

(2) g and ? are rveak)y compatible:

(3) 
"r!e(x) 

:

(4) ? is tr (9 -.F) contraction rvhcre .E(o) = ln(o) and t . (0. fr, (,ft))
Proof. The prool of (1). (2) altl (3) are clt:at. \\'e rvill prove (1).

\\'e ltar.r' 116; (r. y) - C(.r:.y..Ul C(y..r'..t ) -1 .t ! n t-!1 a.\" Toprov'(l)' ler 'r' r/'

: € I. lf J: y -::0 then Tt: - Tll - ?::0 artd II6(Tr"1'y'1':) - 0 tlttts *e ru;rl

prcsurle lltat r. y and: are uot trll zcro. \\-itltorrt loss of gcneralitr' \\'(' iLssurnc lllitt '' < , < :

-I'hcn

H6;(rt.ry.rz) rlc ([0,;] , tt #] lt,rr-ll)

[ "uoo... i c (o. fo. &] [o ,'. ] ) 'l

,,,n* { .upo-.. * C (b. [0. 211 lu ;l f I

[ .,,r0-.-- G(, lo.il tu *]) ,]

(2. 16 )



Sirrcc r < y < .. [0..rro] i l0 *'] i 10.;] *hich gires

* ([o ,,a] lo *'l) =,. ([0.#] t,';l) :," ([o *t] [' ;]) :'
Norv for each 0 ( o ( fi *'e havc

"(" t'#l [r,*.])-a.(. [0, *))*0.(t, *] [o',,'])*a"(" [o ,t])-o

,A.lso. for each 0 ( b ( fi lc hale

"('[o *a] ['*']) 
: i'tt;,|l;(t'*l 

[n *])**'('i' "l)
lru 7,rr,z*,

t t ll l^:'l \ 1q Jr'

o.'our, " 
(, lo ,<l . l{) .:ll.) - :s

(c!;rvehavc

#l) : ," (" [0,*]) . * (t, ;l [0,,,t]) * * (' t' #l)
I o. iro!r! /r:

1 +-4. ir;,"'k'
[" 1,8 E.r!,!,!i

\lorcover. for each 0

/ t .r! l t
G(c,l0 251.10,

l'hich irnplics that

stich implies that
t t -rll ul\ 8z 4!! -1r

-s,r9. 
G(" l0 r;l LU;l) ..ll

U-<, : -
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'I'lrrrs rve dcduce that

H6lr.r.Tv.T:) - -^*{0.'ts:-'1r 
8:-1q tr}

8: 49-1t
!it

8: 8z

25
8

t5-
32 l3: 3.rl
-t--l75 1+ I
:\2

- * lg: grl
/D

< l.\,st-gy ' gc g: - 'Jr' !')rJ

- llG Ior. ou. ct:\ .

75

'I'herefore.
75

,rHc 
(Tt.Tu.Tz\ < G (sr-g! s:)

Bl using ,F(o) : In (o) $'c 8ct

/'E\

I" ( : ) ' ln\Hc (Tt 'Tu'7-:)) 5 lrr (C (er' cv' e:)) '

\.)i./

Tlrrrs. \' .r. y. : 
= 

-Y s'ith ttclTr.Tll-1':) > 0 \\<' IraYe

2r + I- (Hc (Tr.Ts.Tz)) < F (C (gr.ga.9'))'*'here O t " "' (\re)

Ilence. T is a (g - F) contraction. On the other hand it is clear that z - 0 is the onll'

coincitlerrce point and all other hypothesis of Theorem 2.1.5 are satisficd. So thc mappirrgs 7'

and g havc a unique common FP rvhich is u : 0 r

Norv. u,c will use corollary 2.1.6 to show that there is a solution to thc follo$ rng inloBral

cquatior:

(2. 17 )
"@- l" I/(p, s)K(s, u(s))ds: ee io.bl.
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Assumc that -X: (C[o.01.R) dcnot.' t]re sct o[ aII corlrinuotls filrcll()ns fiotl tr.1' t" 
'?-

Dcfine a rtrtrppittg J: -Y - -Y bl

tr1e1 = 
l"u 

u 10, ")1( 
(s. u(s))ds; 12 e la.h)

(2.18 )

2.1.8 I'heorem

Corrsider (2.17) and suPPose:

l. H : l.a- b) x [o, b] - [0. oc) is a continuor$ function.

2. K : lo.. b) x IR. - R rvhcre 1( is continuous mapping'

3. maxo.1o,61 J!HQ,s)d.s < e 2'.for some r e (0,cc),

-1. V u(s). r'(s) € X; s € [4. b] ive have

l((s.u(s)) l((s.u(s))l < u(s) ?'(s) ( 2.19 )

Thon (2.17) has a solution

Proof. Presurrte that X and J be ns defincd above For all u t' u'€ X rlefirte tlx'C-D)ctric

onXby
Glu,u.u) - d(u, r,) 1d(u. u') + d(u,u) (2 20)

rvl rere

d(u. -'-) - suP u(9) u(P)l'
e€la'b)

Ckrarly that (X. G) is a complete G-rnetric spacc, since (X' d) is a complctc mcl ric space' I

Norv. Assume that u(g). u(p) € X, then from Definition 2 18 (3) artd (4) ue har c
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Ju(p) - Jr"(s)l

sup Ju(0) - Ji (9) < "-2' sup u(9) - r'(qr,'

scto.al s'h'al

sup rJu(g) J u'lgl,1e-2' sup tr'(pr - r'r(g)l
pe.".al e( o 

'l

sup lJu(p) - /"'(s)l < e-2' sup u(s) "'(s)jp€l;.bl P€[o b]

(2.22) a:r,d (2.23) rve ha''e

- | l"' oO. l"(s u(s))-1((s r(s))lds]

5 / a(e, s)l.n(s. u(s)) K(s. u(s) ds

, 
["0 

n,n."ru(s) - u(s)ids

< /b 
H1p. r;,".,p ,1"1 i (s) r1"

- 
,lli'],, 't'r ''\e1 ["" 

rtle 't'L'

< , '' sup u(g) I (g)
ara r.bl

Llcncc.

Similarll'. wc have

:rnd

Thr:refore. from (2 21),

Proof.

(2.2l )

/r rr\

(2.23 )

J
1
a
c.

t\
s...

sup Ju(-o) J,-(e)l +
.,€[a,],]

< e-2' I sup iu(s,1
e€La,rl

srrp Jr'(ql Jttlul sttp. Jtt\ot 'l trtnt

-u. ta,bj et ''r,
r'(-o)l+ strp j.,(s) -.,(s) i sup u(9) ir(g) I

pel",a] s€io t'l

rriich intpltcs

Thus.

G(J\L.JL.Ju') Se - Glu.u.u'l' r,,1\

! 2r + ln(G(u. u. u'))

29
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rlld so,

2r - b(G(.1r. J t;.,/u)) 5 Il(G( rr. t . tr')).

\on'. Tve obscn'e that 2, + F(G(Ju.Jt'.Ju')) < F(G(u.r'. u')) is satisfied for F(o) - ln(o) r'

n € x. 'I'herefore. all conditions of Corollarl. 2.1.6 are satisfied. As a rcsult of colollarl' 2.1.6

the rlappirrts J has a FP in X rvhich is a solution of (2 17) . r

TIre follos'ing example illustrates the validity of Tlteorem 2 1 8'

2.L.9 Example

'Ihe follorving intcgral equation has a solution in X : (C[1n(2).In(3)] R)

'ln(3 
r

4d - I cosh(sg) u(s)dsr s e [1n(2).ln(3)] (? 25)
.) t"p1

Proof. Suppose that J : X - .Y lx' defincd as 'l"f-rll - J,lli!1 "s/r(su) 
r/r'')ri' '' -

'ln(2).Iu(3)j. Bl specifving I/(O.s) -cosh(sp). l((s p) - grtrncl I) lfi in-fh""t""' 21: rrt'

g..et that: !
l. the fttrtctiort II(o.s) is cotrtirruous on [ln(2).ln(3)] x lln(2) ln(3)]'

2. K(s.p) is continuous on [ln(2).ln(3)1 x R V s € iln(2) ln(3)]'

3.

rln(3) sinh(ln(3e)) sinh(i nll"\\
ma-\ I coshl s ot,1s Ina-\

x tr'Dl.r,,t:ll ,lr',2; e( lin(2) lnr3rl I
3s 3e 2e+2!

- maxpeU"ilJj"tell 2P

< 0.7

< " 
2",

1. V u(s). r'(s) € X it is clcarlv that condition (4) in Theorem 2 1't'l is satisficd'

'I'hcrcforc. all thc conditions of'Ihcorcm 2.1-8 are satisfied, heuce the mappilg ./ has rr l-P

in -Y. s'hiclr is a solution to eqttation (2 25)
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2.2 Generalized Mizoguchi-Takahashi's contractiorrs

Irr 2012. Tahat et al. [102] utilized the concept of G-metric spaces and obtaiued point of

coiucidence and common FPs of a hybrid pair of sirrgle-r,alued and multi-valued mappings.

They proved the following FP theorcm as a main result

2.2.1 Theorem [102]

AssurLc that (-X.G) is a G metric space trnd ler 7': .\ 
- 

CBI,X) be a tlulri-r alrterl rrappirtg

ardg:X-X a self mapping. Assumc that there exists a function a: [0 +x)- [0 1]

sntisfying

lim sup o(r) < 1

forer.'cryt>0s.t,

H6 (Tr,Ty.Tz) < a(C (w, sy, sz))C (st. sv. sz'1 (2.26)

V :t:.y.. a X. II for any x: ( X' Tr a 9 (X) and I (X) is a G-completc subspace of -Y therr

g and T lrar-c a point of coincidencc in X. Furthermore. if rve assurne that gp € Tp a]ocl gq e Tq

intply G (g(t, gp, gp) < H6 (Tq.Tp.Tp) ,thet

(i) 9 and ? have a r.rniquc point of coincidence;

(ii) Furthcrmorc, if I and T are n'cakly corupatible then I and I hate a uiquc contnlori

FP,

RcceDtl)'. Jawahernia ct al. 151] gcneralized thc above function bv introducilrg tlte rtotion ol

geueraliz-ed \Iizoguchi I'akahashi function in such a rva1"

2.2.2 Definition [51]

A furction a: Rx R -, fi is called a generalized N{izoguchi-Takahashi function (strortll"

gencralized llf?-function) if the follorving conditions hold:

(a1) 0 < n(z.u) < 1Vu,u>0r
(o2) for any bounded sequence (u,) c (0,+oo) and any non-increasing sequcnce (ir') c
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(0. +cc). rve har.e

,,lir.l 
sup o (tr.. r'" ) < I

Consonerlt rvith Javaherlia ct al l51]' rvc signify b1' A tlte sct of all fturctiorrs ct : R x R -' ll

satisff ing the conditions (or) ("2).

The basic aim of this section is to generalize the results of Taltat et al.i102] b1' utilizing

the notion o[ generalized llizoguchi Takahashi function. No$, nrc givc the mail rosrrlt oI thjs

scction.

2.2.3 Theorem [73]

Supposc tl)at (X.G) be aG metric space and let T: X 
- 

C-B(X) bc a multi-r'alttcd rnappirrg

andg: X - X a self urapping. lf for any x e X. Tr ! 9(X) arrd g(X) is rr C corlplcto

subspacc of ,{ and thcre exist rr € -\ s.t.

II r; (T r.'lu.T:) 1 o( H c; Q'r.T u. T -.) . G (.q t. g y. q:))() lr1 r. gv. q: ) ll:lir

v r. g. a €,Y. Then g arrd I havc a poilt o[ roincidencr. in .Y FuttLettttorc. iI \'(' irssllllte tllill

qt* €Tt' rrrrd gi € ?'i inrplics C (o:i.or'.0r") 1 Hc ('t.i.'l t'.7'r'' ) thelr

(i) .q rrrtrl'I have a unique poirlt ol coincidence.

(ii) Furthcrmorc, if I and ? arc rveakly compatible, then 9 and 'I have a uniqtrc comlrrorr

trP.

Proof. Suppose that zg bc an arbitrary point of X. Thcn by the gi\€n assurrlptions therc

occurs a poirlt:r1 inX s.t, gr1 €T:xo. If g\: gro, then we have nothing to provt: and 'r:6 is

tlrc requirod point. So rve assumc that 926 I gr1, then G (g4.gt1.gr1) ) 0 \oN if

Ilc (Txo,Ttt.T:tt) : 0,

thcn from (2.27). rvc get a contradiction to the fact that gro + grr. 'Ihrrs H6; lTro T rl'T r1) "
0. From tlur incquality (2.27). rve havc

U6;l'l'q;.T11.Ttr)So(i/r;(7-r0.fr1.Ir1) .G(glr'gr1.gr1)) G(grn.gtl-g't1) '
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(, ( - 
r) Hc(rro.rr,.rr,r

\ y/n tH6 \T4.Tr1.Tt1).C (gq.9r1 g"t1\\ J

Thcn by Lcmma 2.1.2 arld the inequality (2.28), we have

(2.28)

G (gt1. gr2. gq) { H5; (T:rn.Tr1. ?21) + e1

Since ?r1 C 9 (X), there exists a point 12 in X s.t. g.r2 € T:xr' lf 11t1 - gt2 -lhcn 11

rcquired poirrt. So se assrune that grr+ 9r2. then G(gr1.gt2'gr2) >0 -\os if

is the

H6 (Tx1.Tt2,Tr'2) : Q.

ther from the inequality (2.27), we get a contradiction to the fact l]I-:at grr+ gr2 Thus'

H6 (TtyTr.2,T4) > 0

liorn thc inequality (2.27), rve have

Hs (Tr1.Tr2,Tr) < o (Hc (Tq,Ttz.Tx).C (gq.gr2. gt2)) G (qtr' grt' gtz\ ' (2'30)

Take

ar- ( Hc(7'rt.Trz.Trz). (2.31)

'Ihen bl Lemma 2.1.2 and ilequalitl' (2.31). u'e get

G (gr2, gq, grt) < IIa; (Tr;T t2,Tr2) + a2

By repeating the above process, \€ can construct a sequence {9r1} s.t. gr511 € T:t4

,)

(2.32)

. rvhere

Hc (Tq.Tr1,Tx1)
; UI c-@;;Ti;X,l) . c ( s q lt r 1. w 1))

;@;@;J;;.r,r) x (sx)l sr2. stt:2))

Ha; (Tr1,T12,Tr2)
ilUc, (f rt.Trz.f 12).C \g.r t. gx2. gx2

Take



nlfch shoq.s that {I{6 (?r1 1.Tts-Trp)} is a bounded sequerrcc. 81 (n2). r,,-c har.e

lim sun o(I1c (Tts yTtp.Trp),C (gr,p_1.grs,7rp)) < l. (2.Ji)

-\o* *'e claim that d:0. suppose d > 0. then by (2.36), (2.37) and taking the limsup on both

sitles of (2.35) rve get

J s r/^li-_r,,not 
ac trrffi a . a.

So. this contradictiou implies that

lirrr r11. = inf di - 0.
{ 

-:!: 
/. €.\

'l hcleforc.

r!1G {r''* r'utt .4rt.t) = *inf 
G(916.9r1-1.9rr'-r) - 0

Norv rve pror-e that {926 } is a C-seq in X. For each l; € N. Iet

t2.3r r

(2.39)

.G (grs-1. grs. gr e)).

Then qk € (0. 1). V A € N. 85.(2.3b). s'c hare

C (grk. grk+t. gr*+t) 1 qrG (gt,* t.9r*.1xt) (2.40)

V A € N. From (2.37). we have liml-_- supgi < 1. so therc exist c € i0. l) aud ,/,:0 € :\* s.l.
q1 <cVACNwithA-),(-s.Sinceqr.€(0. 1) VteNrrnd.r€ [0. 1).fronr (2..10) [or.t.) 111. rre,

conchrdc that

C ( q:t y. g.L s -1. 
gr 1, t) I q*G(gtL t.qjk.q:t.A-l

! q*q*_tG(gtt 2.ttrh t.g.Lt .t)

s.



I qrq* t qac (gu. gq. qrt)

< .t tn-lG(qro,lrxt.gxt).

Suppose thirt )a = +G(.qr0.9rr.9rr): A e N. For A € l\* R'ith A l A6 a.d a posrti\'('

zrrbitrary number rn, then frorn the last inequality and (G5), u.e havc

k+m 1

C(grk,grk+m.gru*-) < ! G (gri, gr41. gr"*1) ! )p. (2.41)

Fk

Since c € i0. 1). as a result. linrp.."" )^. = 0. Hence lim*-- G (gr*. grk+m. grk+m) - 0. 'lhrrs

the sequerce {9r1} is G-Cauchy in the complete subspace 9(X). Thrrs therc exisls.x' a q(X)

s.t. frorn Proposition 1.2.3. *'e have

*t- G (r,*. r,u.,') - -,ll " 
(4"u.,',,') : o

Since r' € 9(.{). therc exists i'€ X s.t. r'= 9r:". Thus from (2.12). se have

(2 12)

[r"]-C 
(Otu.grr.tr-) : lim G (Urr.9rt. gx') - 0.

\\'c claim that 9r'€ 7.r'. From (2.27) and (2..13). rve have

(2 .13 i

linr G (9:r'6-1.Ir..Ir-) < l\n LI6 (Trp.Tr'.Tr')
/, -.. k-r

< linr o(I/6 (?rs 1.Trt.T:r'),G (grp. 9r*. 9x'))C (gt:1,. g:r.. q:x')
f,-a

:0.

Ilencc. G(9r..?r..7r.) :0. i.e..9r. € ?z*. Thus 7 and g ha'c a poirrt of coirtcjdenct .r'.

-\ou rre prote that this point of coirrcidence is unique. \\'e suppose on the cortrarJ that t lrcle
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o(icurs auothcr i s.t. 9i € Ti bnl gi I gr'.Bs' (2.27) and this assumption. rve have

G (si. sr- . sx') < H6 (Ti.Tx' .7't-)

< o(Hc (Ti.Tt:- .Tr-) . G (!ti. sr' . sx"))G (gi. sr*. sr- t

-\s H6 (f i,Tr'.Tr') > 0 aud G (gi. rrc., gr') > 0, so

o (H6 ( f.r'. 1".r'.f/').G(9i.qr'.9x')). l.

'['hus $'e get

C lqi. !lr'' . !lx' ) < C :gi. gr' . gt' 1 .

rvlriclr is a contradiction to the fact that gi + 9z*. Tlrrs qi - gtj. [n vies of

H 6 (f i, T r. . T r') 
-< "(IIc 

(T i. T r-. T r.' ) . C (si. sr' . sr- )) G (g i. q t. . qt' ) - O

rrc har-e Zi : 7r'. Thus, T artd g have a uniquc point of coincidence. Assume that g alrd T

arc u'cakly compatible. By applfiug Propositiorr 2.1.3, rve obtain that 9 and T hare a uniqutr

cornmon F-P. I

2.2.4 Remark

I'heorenr 2.2.1 follorvs from Thcorcru 2.2.3 by taking o(u. r ) : ;(u).

2.2,5 Rernark

Corollan' 2.2.4 of Il02] can be obtrined bl taking a(rr. r') - p in Renralk 2.2.1.

2.2.6 Theorem

Assume that (X, G) is a C-metric space and let 7 : X -...* CB (-Y) be a nrtlti-r alttt'd trtzrplrirtg

rrrrd g: X - X a self rnapping. If tbr any t: € X. Tr ! 9(I) and 9(X) is tr C conrpleto

subspace of X s- t.

Hc (Tr.Ta.Tz) < ;(C (sr. s!). s.))
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'l t.y.: e -Y. s'here;: f0.rc) - 10. 1) is a function s.t.;(r') < t alrcl linsttp, .,, 1't t t

Thcrr g rrncl ?'havc a point o[coincidcttcc irt ,Y. Furl]tcrrlore. i[\e assuntt'thal q.]' :: 7 l' ;tlrrl

gt t 1-.i' impll C(9i.9.r'.rrr. 1< 111; (7-i,7r'-.Ir'). thorr

(i) 9 and 7' htrve a ttniquc poirrt o[ coint:idenr:c.

(ii) Frrrthrlrmorc. if g and ? are rvcakll, compatible. tlreD g and 7 ha|e zr rtnique c(nlllro

l-P.

Proof. Take n (u. t') - t# irr Theorem 2.2.3- :

Jalahernia ct al- [51] also introduccd the concept of rveak I s c. in the follou'ing, s'a1'

2.2.7 Definition

-\ functiol o : [0. c<) - [0, co) is said to be weak l.s.c. function if for each boundr:d sequence

{u, } c (0. +co). *e have

,l,t1 inf O("") > O.

Corrsistent rvith Jzrvahcrnia ct al. [51]. rve denote b1' F. ttre sct of all functions o : i0. -:: ) '

r0. \ ) salisI ints tlte a[.,ove cunditiotr.

2.2.A 'f hcorcm

.A.ssr.rme tlrar (_t.G) isaG metrir: spacc and Iet T:-Y 
- 

CB (X) be a multi-ralrtcd rtappittg

ancl g: ,{ - X a self mapping. If for anl r e X. Tr e 9(X) and g(X) is a G-completc

subspacc of -Y s.t.

H6 (Tr.Ty,Tz) < G (W,sa,gz) o(G (sr. ss.sz'))

v x.y.: e X. rvhere o: 10.:c) - iO.rc) is s.t. p(0) : O, p(r) < t and o € F. fhelr 9 ancl

f have :r point of coincideltcc in X. Irurthcrmore. i[ s'e assumc that 9r" € 7'r* zrlrd g:i € 7'.i

irrrplr- G (9i.9r.. gr-) < H6; (Ti.Tx-.7.2") . then

(i) 9 aod T have a uniquc point o[ coirtcidence.

(ii) Frrrthcrmore. if g and I are rvcakly cornpatible. thcn g and 7 have a ruti(lttc cortlrl]()rl

FP-
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Proof. Define o(u.r,) : 1 + V u.r' > 0. For each boulded scquence {ir,.} : 10. -:':1.

s'c ha'c liru,,-"o inf o(u,) > 0. So lim,-- inf {j > 0. Thus

,lim ,,,Pil i3, = I lim inr !(!) . rt

This shorvs tlrat rr € A. AIso

H6 (Tr,Ty,T z) < ct(H5; (Tr'.79.T z) .G (gx. gy. gz))C (gt. rtv. g:) .

l-lus lr,y Thcorem 2.2.1. u'e gct 9 irnd 'l halc a unicltte colltntolt FP. r

2.3 Fixed point results for new contraction in G metric space

Jldi nrld Sarlet l53l iutroduced il [e\\' tYpc of cor]tractiol) rrttich iltvolYes tlre follo\irrg ser ol

all functions u : (0, co) - (1, co) satisfying the conditions:

(ur) u is nondecreasiugl

(r..,2) for each sequencc {t"} q (0. c.), lim"-- rl (r") = 1 if and onlv if lim,,*.. t" - 0;

(r,r) therc occru r € (0. 1) and I e (0. co] s.t, lim6-s* 't'\l-r - L.

-Ib be colsonent with Jleli and Samet [53], rve signfl'by f tLe set of all funcl tons u :

(0. x) - (1..E) satisfi'ing the conditions (",)-(lrs).

Also, they cstablished the follorving result as a gcneralization of Banach Corrtla(rtioll Prirl

ciplc.

2.3,1 Theorem [53]

Suppose that (X.d) is a completc mctric space and /: X - X be a rnapping' -Assunte that

thcrc occur -- € !I/ ald fr e (0. 1) s.t.

:x.u € X. ,l(lr. f a\ I0....> p kt(1,. f v)\ 5 ir'(,./ (r. v))la

Thcrr / has a uniquc IrP.

lu 2015. Hussain et al. 148] moclified the aboye family of functions and provcrl a f'P tltcorem
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as a gerreralization of [53]. Thel' crtstomized the famill'of fitnctions r, : [0 x) - 
'1. 

,': ) to bo

a-s follorvs:

(ur) r,t is rronrlecreasing and u (r) : I if and only .if t - 0:

(ra2) for cach sequcncc it") ! (0. cc). lim,,-- u (r,,) : 1 if arrd only iI lim,, .- 1,, - l):

(tr3) thert: occrr r € (0. 1) ancl Z e (0. xl s.t. lirn, -s- {}l L:

(pa) u (u + r') < u (u) .r-'(u) V u. r. > 0.

To bc colrsoneDt Nitlt Htsszrin cr al. [18]. \'e sigrrifl'lrr'{r the sct o[all frrnctiorr,, r : tl. -r- )

,1.::) satisf],ing the conditions ("r) (.,1) Eor more rletails in lhis dtrection. \\e (lireclo(l th('

reirder ro [11. 13. 17].

In this scction. \'e introduce a ncw contraction called "/S-G-contract ion and provc sonte FP

rcsrrlts of such contraction in thc settinB of G-metric spaces. The follorving results llavc bectr

published in [50].

2.3.2 Definition

Assume that (X.G) is a G-metric space. and let 9: X - X be a sclf mapPing. Thcn 17 is saitl

to tre a .,/S-G contraction rvherrever thcre occur a function u € V and positiYe leal nuttlbcr"

r'1.r'2.r'3.r{ s'it}r 0 ! 11 +3r'2 t 13r 2r4 < 1 s.t.

L' (G (qa. sb. sc)) { [u (G (a. b c))]" lv (C (a rta rtc))'," :.t (C] (b' qb' gc))'t'

x [r-'(G(rr.9b.9b) + G (b. sa. sa))t''^ . (2 11)

Va.[r.ceX.

2.3,3 Theorem

Plcsune that (X.G) be a complete G-metric space and g. X - X be a -/S-G-contraction

I'hen g has a uaique FP.

Proof. Suppose that a6 € X be an crratic point. For @0 € X. we define thc seqrlence {on I

by on = g"os - 9a- 1.If there exists n0 € N s.t. ono : ono+l. then o.o is a FP of9. and sc

h:rve nothirrg to provc. Thus. rve suppose that a, I a,+t-i.a.. G(ga" r.gaa,gon) > 0 V n € \-

.10



s. t.
t (Cfu,,.'t,, 1.d".1)) | , ,,-lG(",-"1;.*,)l' - L : ur'

V n > 116. 'ftris gir.es that

Vn>no.So

c (G(o,. r.rr".a,)) lra S,_!_5,.
[G (a.. o,-r. a, . r)]' 2

n(G (a..an11.a^a1))' ! A1z[r2 (G (an, o.n+1. on+tl) 1].

u helc -,11 - ;f,.
Norv for Z = cc, Iet Bz > 0 be an arbitrary number. From thc definitiorr of thc limit thcrc

occrusr.r€Ns-t.

u (G (c,. o,, -r.o,+r)) I > Bt
(, (ll,,.,r,,+r.4,,-l ) '

Vn>n1. Then

n(G (a,.o,,*1.a^11))' < A2niu(G(n,,.oa-1.o.,-1 )) 1'

s'hcre,42 : fr. fnus, in both cases. there cxist ,4 : max(.'lr. Az) ) 0 and rt* - max{n0. n l} a

N s.t.

n(C (a,,. an.1. a,,11))' ! An[r2(G(4,,4"+r.o"+r)) - 1] for all zr ] n'

Hent:e

n(C (a..a,a:.a.1r ))" <.4n [[r(G(oo,or.or)tJ"" 1]
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.Nherc. .r - -t{+-2i'r But.

I .',l
lim n llp(C(do.or.or))" -I

L'

llv (c (ou.,,. o,))1"" 1l

I /n

o" ln(o) lrr(q (G (a6. a1. a1))) 
flu {G (or. 

",. 
o, ))1" 

']

- lim
- | 1n-

- lim

- liur

,lirrr -nr,r' lni.r ) ln1 L rC in6. 41. o1 11 t 
11u,G 

tor..r1.,,1 rr "' 
I

-n'ztn(o)t,r("- (G (oo. or. or ))) [iu 
(C (,.,0. ar. or ))l'" ]

o'1

: I* + x lim- 1n(n) ln(1, (G (os. ar. ar))) [lu(Gt.o..r.or))i""],-- Oi

- 0 x In(o)ln(u (C (os. a1. o1)))

- 0 (rvhcre or - 1/o).

stich iruplics that lim,-- n(G (o,. a,11.4,11))' - 0. thus there occurs n2 € N s t.

1
Q (,1,,.r1,,t1.a"-1) 1 

-.

V rr > rr2. -\orv. for m > 7] > rr2. \\e hilre

,, I ,,. ll Jf
Gru,..o,n.a,n1t f Crr,.a,,r.o,.r)\ )-.- - L-- 1, -, "

Sirrcc 0 <, < 1. IEr] is convergent and hence G(a^'Q-.a",) - 0 as m.rt - cc Thus

rvc proved that {4.} is a G-C-seq. Completeness of (X.G) ensrues that therc occurs a' € -Y

s.t. on i o* as n - oo.

\orv s'e shall sho\\ that a" is a FP of 9. Using (G5) rvc get that

C(a' . a.. ga') ! G (u* . a. . a,a1) * G(a,41. a,,-1. ga*)

: C (a- . a. , a.+r) i C(go,. ga". ga' ) (2.45)
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all(l

G (a^.a^q. sa') ! (G (a..a^n.ct*)) + (G (a'.a'. sa'1) (:-16)

arrd hencc by the properties of U we get that

r.L(G(,r'.o'.sa')) ! u,(G(tr-. a'. n,,1 t))v(G(ga". rJa". go')). {2.17)

ri,(G(a,,.o,11.atr'))<p(G(o",4"+1,o'))r"(G(n' a'.9a')) (l.rs)

Thus.

lu(C (a^.tt.+t. ga.))]"*" <,t,(G(4,.a,*1.n'))]"*" l"(G(r'.o .g'i11.'z*'' ll l(r1

Ilul. bt'using (2.11). (ua) and (2.'19). tvo }ta.c

t' (G (n,.p1. an' 1. q a')) - t lG lga".ga,,.ga.))

5 ls,(!(o,.o,.rt.))1" It (G(n,,,r,*1.ac'))i"

x lu (G (o,. a"11. qa"))1"

x lu (G (a". o,+r. o,+r) + G (a". o,,*r. a"+r))]"'

: lu (G (a^, a-, a' ))1" [u (G (a". o"* t, sa. )))"-"

x [u (G (a.. o,11.4,,*1))]2"

< lt-, (G (a.. a,. a'))1" [u(G (o,. c,+,. o'))]"*"'

lat(G (a. .a-. ga'\)1"*" lv (G (o,,.u.+r. o, * r))12''

(2. r0 )

\o\'. substituting (2.50) in (2.a7) \\'e gct that

t'(C(a".a..cta')) ( u(G(a-.o".n,*1))[i-(G(a,,.a. u'1)1'r it (G(n,,.0,,-1 .1'))1"-rt

[u,(G (a-. ot.9o- )))ut" lrp (C (o..,,,,*r. ,r,* r ))]2"

(2 51)
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Hcrrce.

I < lu(G(o-. a-, oa'))11'z-': S r,(G(n'. a', a,+r)) [r,, (G (o". o". a'))]"

Ir,(G (c,,. o.11. a-))1"*" It- (G (o,. o,*r. o,, r )).r''

(:2.52 )

B1' takilg thc lirnit as n - 'x antl using (u2). Propositiorl 1 2 3 and the ('orrY('rgooce ol'rr,'

ro o'il the 
^borc 

ecluation $'e get that

t 2.53 )L(ufo.o .9o ))= L

nlrich irnplies by (rpr) that G(a',a'.oa') - 0 and so ga' =a'. Thus. a" is a FP oIg'

Finalll'to shorv the uniqueness. a-ssrure that there occur at f a' s-t. o' : ga' . Bl (G).

G(a' . a' . a-) : G(ga',ga',ga*) > 0.

T)rus. b1 (2.1.1) rve gct

r-(G(a'.a'.o-)) - t(G(rta'.so' ga')) SlvG(a' "' 'f )1" ltlGt,u''urt ua't)1.''

x lc (C (a' . lJrr' . sa' ))] " [., (C(.'..io' . qo' .) - G I a' . qu' . s,i, t] "

- [u(G(o'.a'.o'))]'' fr-(G(o'.tr'.o-1)]" lL'(C(o'.o' a')1]''

x [u (G(o', a'. a') + C(a'.a'.a')))'^ .

- lu(C (a'. a' . a-))l''+"+'" .

rvlrich Icaris to a contradiction becausc 11 + 12 + 13 < 1. Therefore. g has a unitlue FP. I
The foilorving rcsult is a direct consequence of Theorem 2.3 3 b1 r aki rrg i-' (l) - r' t irr ( l''l'l) '
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2.3.4 Corollary

Assrrrne that (X,G) is a complete G-metric space and g:X 'X be amapping SuPpose that

there occur positive real numbers 11. 12. 13, r4 vith 0 ! rt + 3rz + 13 + 2r'1 < 1 s t'

JC rt-,,1 ,rr/c(€.gt,sr\ -,rr/c6g^ g'JJ c bq, s1, s") < ,,

+14 (2 s,1)

V €,1, c € X. Then I has a unique FP

2-3.5 Remark

Note that condition (2.54) is equivalent to

G(gt,rn,gc) <,?c({.^i.c) +rlc(1.s1'qc| +ric(^ s^' s(:)

+ rl [C (6. e ,.. q'.; + G (-,. s,€, s€)]

2,,r21/Ct1-iCt;95.g, r- .lIrrr\ Cttt-"Cr 
-1 '

+2rrrn@
+ 2,24J fl{ s1, s") G (131, s")

+2rrrn@
+2rzr+@

Next' in'ic*'of Remark 2 35 and by takhg 12-13- r+ - 0 in Corollarl'2 3'1 u'e obtain

the follorving corollarY.

2.3.6 CorollarY

Prcsurnc that (X.G) is a completc G-metric spacc and g: X + X be a rnappirg Supposc lhat

thore occurs positive real nunlbers 0 < 11 < 1. s t.

G (s€, g-,, g.) < ric ((. ^,. c)

V {.1, c e X. Then t has a unique FP.

(2.55 )

J-c (e ,n n) + c v',s€,so
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Firrally, by taking ?y' (l) : eW itt (2.44), ive get the follos'ing corollary.

2.3,7 Corollary

Assuure that (X.G) is a complete G-metric space and g:X - X bc amapping. S(tppose thal

lll(lrc occru positivelealnuntberst1.r'2.13.r1 rvith 0 { r'1 -f,1, - r'3 -2r'i < 1. s.t.

;,E 11.14 -r,2 (c (q s{ sr) - ,r'f c 1^. s^,- s,t

+ 14

V €,1. c € X. Thcn 9 has a unique FP.

2.3.8 Remark

tsr'specifying rr:0 for somc i € {1.2.3.4} in Remark 2.3.5 and Corollary 2 3 7 rr-e can get

seleral rcsults.

2.3.9 Example

Suppose that .K - [0. cc) and the G-mctric G^(€, ^: . c) : mar({ l{ ^r . 1 . . ]€ c' }' Defirro

q:X-Xb1'9(e):farrdu(r) : e'i. Then clearll all the conditions of Theorcm 233 alc

szrtisfied rvith r, - f,"; i - 1,2,3. 4, and r : 0 is a unique FP of I

2.4 Fixcd point results in G7,-metric spaces

lIl this sectiorr. usin€! the concept of C/,-rlletrir:spaceshichNastrttt',,lttcnrlbYAglr,riarti nt a1. !l

\r, establish sorre reN FP results in tlris sctring. Ahnrad et al. ll srrrdicrl .lS (r)ritrilcln)r)

irrrd considered a !e\r ser o[ real functjons. say. o. 'Ihe1-repltLccd condition (c1) lI'arrothct

rrrrrditiort callod (ru3).

Applying this condition rve can ha\-e a ue\r' range oI functions. Thus. consistent rvith Ahnrtrd

ct at. [11] r,e denote by O thc set of all functions d : lo.oc) - [1.co) satisff ing thc follorvirrg

r:orrditions:

(u1): d is rtondecreasing and O (l) : 1 if and onlf if t: 0:

(: (s{, q1. s() ! 11

G l€. n.. !t^t) + G (r'. c€. g€)
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(u2): for each sequence {t"} ! (0, oc). lirn,-- a (t,') = 1 if and onlt- if lirn,,- - 1,, '' 0:

(qr3): 0 is continuous.

2.4.1 Example [11]

Sr.rpposc (Irat 0t() - e"n.0,21t): e"'t''.030): et. d1 (t) - 6e551rlnd d5(l)- l Li(lI l)v

I > 0. Tlrcrr 01.02.03,0a.0'o e {1.

2.4.2 Remark [11]

Notc lhat the conditions (0s) and (O3) are independent of each other' Indeed. for p ) 1'

d(r) - etr.atisfies the conditions (u'1) and (U2) but it does not satisf).(u3). rvhile il satisfies

tlre condirion (O3). Therefore fl f V. Again, for a > 1, m € (0,:), 0(t) - r+t^(1+ [t]). *']rerc

itl denotes the integal part of t. satisfies the conditions (u1) and (u2) but it does nol satisfr'

(O3). rvhile it satisfies the condition (t,r) for anv r € (:,1). Therefore ![ I Cl AIso i[ rve take

0(.t) - a"/i. therr 0 e t[ and I e Q. Therefore V n A + A.

2.4.3 Definition [10]

Presurnc that q. X - -Y ando: X r-{x-X + iO.:x)TheIr I is callcd n-adruissil-'lc if t

?r. u.?r'€ X rvitlt o(tr.r,. u) ) i. (}(gu.r7t.qu') ) 1

2.4.4 Definition

presurnc that g: x - x ando:xx.{xX - [0.:c). Then g is callcd rectarrgular-o adr[issiblc

if

1. 9 is cr-admissible,

2. a(u.c.c) ) 1 and o(c.r'.ra) > 1 imply that ct(u,c.u) ) 1

l'hcre u. r-r. u'. c € X.
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2.4.5 Lernma

Assume that g is a rectangular q-admissible mapping. Suppose that there occurs n6 € X s t'

a(es. gan,gas) ) 1. Define the sequcnce an - g"an. Thert

a(a^.a.,a*) > 1. for all m.a € N rvith m < n'

Proof. StLppose that o,, - g" as a\d assume that rL = nt+ k for some integer A 2 l Since

a(ao. gas. gas) ) 1 and g is o-admissible

a(a1, a2, a2) - a(a1, gor, gal) : q(gao, g2ao, 92 ao) >- I

Continue in tlris process we get that o(an,a^11,a*a1) 2 l Similarll'*'e have

o(a^a1. a^12, o^a2) /7

lrencc by rectangular o-admissible lr have a(o-. a- +2,am+2) )l now repeating the same

process \!-e get that o(a-.cr,,a.) - a(a^'a*+t. o*+*) ) 1. r

Norv. r'e ate ready to state our main theorem of this section rvhich has been published in

l50l

2.4.6 Theorem

Assumethat(X.G6)beaG6courpletemetricspaceNiths>1'supposettrat'i:Xx-Yr-Y-

(0.rc) and I be a rectangular n admissible mapping' ''\ssume that there occtu 0 e O anrl

r c (0. 1) s.t.

ficolu.su.s,1! G6(u, t"u) -= a(u."-.u)0 (s2G6(su'st'sul) < I0(u(u r''u'));'

(2.56 )
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V u. r.. a,, € X with at least t\r'o of qu. ori alrd 91, are not cqual. Nhcre

/1 t", .,,.,\ CLtr-gu-qutGLtu.gx.gut tCLtr.Y.qu\Ct(o.gotu)U6ru. t. u'. 

-1. 
"leilr,Ju.su ).cLtr.s,.su))

\[ (u.u.u)
C.\L,s u -s u )G b\r.su.su')-Gb(, .y,.qu )C, 1,.9u.9x\

1+Gtr(u,or,aL)+Ch(t.s!,eL')

AIso, suppose tllat the following assertiols hold:

(i) therc occurs o.0 € X s.t, a (ao, gao, gon) 2 7;

(riri) for any convergence sequcnce \a.j to a with o(4,.4,a1 o,+1) > 1 V n € NU {0} u'e

hzrvc n (a,, a. o) > 1V n € Nu {0}.

ThenghasaFP.

(iii) N{oreover, ifV u,u € Fir(g), a(u,u,u) } 1, then the FP is unique whcre Fir(g): {u:

qu - u).

Proof. Assume that o0 € X bc s.t, a(ao.ga6-gao) ) 1. Define a scquencc {o.,} bv a,,

g"a6Y n € N. Since g is an o-adruissible nrapping and o(a6 a1 a1) - rr(o0 9d0 9ir0) > I'

rvc deducc tlrat n(rz1.a2 o2) - a(goo'gat'gat) 2 l Continuing this Process \\'e gcl tltar

o(a,.au11.n.11)>1V??€NU{0} \\'ithout loss of gencralitl'. 1\'e assume that rz,, f a',+r V

n € N U {0). \\'c s}rall proceed in proving the theorem using the follorving two steps'

Step 1: \Vc shall sho*' that lin,,-- Ga (an11, an' an) - 0'

I:-*i

,19



Norl',

)

--".{

Ct @. t, a". a,,) ,

. Chto ^ -,o", r,o, , r)
ULlaat.an.aalffi

Co(o. r.or .ry1t!-U b \an. t.on.0nt r.GG; r6.l
(2.57\

But. from (G63). u'e hawe G6 (o,-1. a,+1.4a+1) ! Gt(a^.1.a^,ct.11) and so

G 6 (a-,1- a,,11- an11) <1
f + 

" ;C6 i""-r, o" , a*+'r) l Gt(a.,,)n+r, a"+r)]

and also
G6 (.an-1. ana1. anal) < 1.

I +G1'(a^ I'on+l.on+1) iG6(a^'a" a"a)

Tlrcrefore. \,1 (o.,,t,a..a^) - Ga@, t-a..a").

Sincecr(a,.o.,11.a.+r) 2lforcachn € N and #G6 (o, -1.9an r'9an r) < Ga(4,, \'o'n (rt.) '

50
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as a rcsult by (2.56) we have

0 (G6 @,. a,*1. a,, t r)) - A(Golgtt"-r.9a^.9a"))

S o(a, r.o,,a,) e (s2Cbkla,-1.ga,.sd"))

< [d (rI (o"-1. a..4,,))]'

: l0 (G6(a- r,a^,a.)))'

< 0 (C6(a- t,a",a")) .

Therefore. rr'e have

t < 0 (G6@,. a,,..r. a,+t)) 5 l0 (&(a. r.o,,a.))l' < "' <10(Gt'(as,a1 o1))l'" '

Taking limit as n - co, we gct

lim 0 (G1,(a,,.a".,r, o"+r )) - 1

This givcs us. by (02),

Liru G6 (a,, a,11.0"+t) = 0

But G6 (a,11 . o.,. a,,) I 2 s G t Qt',. a,,+ r, a,-r ), therefore

(2,58)

(2.5e)

lim Gr (rz,+r. o". o") : 0 (2 60)

Step 2: \!'e shall prove that the sequence {o,} is a G6-C-seq Suppose on the contra4-

that {o, i is not a C6 C-seq. 'Iheu thcre occurs s > 0 for rvhich *'e can find t*-o subsequcnces

{a-. } and {o".} of {4"} s.t, rr; is the smallest index {or *'hich

nt ) mi ) i and C6 (a-,. a^,.4,, ) ) e. (2.61)

This meaDs that

C 1, (a,,,. an,-1. a,,, 1) < .. (2.62 )
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81'usirrg (2.61) and (G65), u'c get

e I G6(a^.,an,.a^,) < sGt(a^".a-,+1,4m"+1) 1 sC6(a^,*1-a., ct,,,) '

1'aking the uppcr limit as i - oc aud using (2 60), rve get

! 5 lim sup G6 (o *,+t, an,,an;) .

S z--

\orir'e lhal fruro (2.58) arrd (d1). *o g"t

(2.63)

and
1^

; oub

Then from (G65) and

Gr (a-,n, o-.o 11. o-,o

C 6 (an. an-1- u,,1.1) S Gt,(a" 1.on.on) for all n e N 12'61)

Suppose that thcre occurs io € N s.t.

I ^r \ ^/ \
*"2Ga (o-'" gtt- 

"'g"^,") 
> Ub\an'o oa'o-t'dn'o .| 

)

(a^,"+t,9a^,,+t'go-,+1) > Ga (o-.0tl,',." ,'"'." 1)

(2.64), rve havc

,\." l"'(o-" o''o r'"', r) r ca(a', rom'o'r'
't - 

t

< " I co (",,,".,,r,o 1.on,o t) +2,G,,(,,,,"*'.n,,"

< " | #c,, (o.,.".so^,..so-,") " #"0 (o^.u*,.n'

: 
[*",(o,,,,,,o*."*,,o,.."*,) 

* icu (o-,"*, o-."

I 2 ^/ \< (r, - 5)Ca \o-,"'n",," t'a",'o t )

< Gr (o,,,,.o-,"*r,o-"+r) ,( since s > 1),

,,r,"-r) 
_l

l
,""r') ]

-."*,.St,,,"',) I

-r' t,,,",r)l

(2 65)
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Nhich is a contradiction. Hence, either

l^
fiCt'la,",,oa^,.ga",,) 

< CL(a-,.an, r.an, t)

OI

1,^
f.zC t la-,+t,0a.,,+1.9an.+t) 1Gt,(a",,+t tt'", t a", t) '

holds V i € N. First supposc that

1^
1"zCt\o-,.0o.,,. go-,\ lGtkt-,.on, r.on, r). (2.66)

l-rom the definition ol ![ (u.a.u) and using (2.60) and (2 62), t'e have

G6 (a,,,r. an,-1,a-, 1) .

Cb

Gt,

I -s[Cr,(a-,.9o.,,.ea", r J-Uulo,,, t 90\, t.eo^, 
.1

I t C6 (a"., ,sa,., - r .ea',, 1)+G6(a'., t so,\,.sa., t

G6 (a^,, a^. y,a,,,-1) ,

+1,o,.!,+r )Gr,ld,n,,o,, 614,. 1,o,,.or,lL',
1+sLc,(o,".,a,",+1,a,,.)+c t,\a., 1.o,.,.a,,,

.a,,,. - t.o,,,. -t )c r,(a,,,,,.,,,.",,,\+c,,(",, t n ",.o,, )C t.

1+l(;114,,,,,a,,,,d,,.

Note that. 7rr? / rri 1, as others'ise Gt, (a*,, a,,,-1.a,,,,r ) : 0 and so. by (2.66)

G L (o 
^., 

a*^11.a,n r+t) = G t (o,.,, ga*t,g a-,) - 0

rvhich contradicts our assumption lhat Q, I analY n € N. Hence, a(a^,.an, r,4", l) 21'

Based on the assumption (2.66), (Ar), a (a*,,an, r,o,, t) 2 1. (2.56). (2.63) and ttre above

Iim sup

- Lim s

- Iiru s

sup [""

1"

!.
Ir

1.4r, 1)(a-,.

max ,

max

tlul (

sup n

sup n



inequality, !,,€ obtain that

,("' 
"i) 

a c(o-,.o,,-r.an,,)e ("2 1i--'uocoio,",,, o',.o',1)

a lo-,. an, t.o., t)0(r'..tirn,upCotgo-,'9o,.-, 9',,',t)

< [, (,,* sup,r\11o-,.4,, ,r, - ,)]' < lot:t''L \,-- /)

rvhich implies that 0 (se) < l0 (t)l', a contradictiou. Norv suppose that

#ro@^,*r.0o,,,+r,9om,+r) 
!G1,(a*,1 a"' 1a,, ) (2 67)

holds V I € N. Further. from (2 61) artd usirrg (Ga5). sc get

e ! G 6 (a-,. a,,.a,, ) < sCu (a-,. o-, +2. arn,+2) i sG 1, (a,,,, -'2 a,,'' a", )'

1 s2G6 (a,^,. a^,,1, o,,.+r) + 
"2G,']on ,'1 o-,*2'o"''*21

I sG1' (a,,,a2,an,, a',) '

Taking the upper limit as i - m, and using (2 60), we get

i < lim suP Ga (a ,n,+2, an,, qn,) (2 68)
s rrcrc

Also. {rorn (G65) . rve get

G6(a^,'4,a,, r,o,, r) I sG6 (a,n"a1' a,'.. on )+ sGa(4,,'o", r a", r)'

Taking the upper limit as i - oc, and using (2.60) and (2 62) u'e get

lim sup G6 (a^,+.t,an. 1,an, 1) ! st (:f '69)
t-co

From tlre definition of M(.u.u,u) and using (2.60) and (2 69) *'e have



lim,-- sup

Iim sup max

< s:.

Notc I lri1t. n\ | I / rt; 1. a^s othcr\\-ise

G1,la-,11,an, 1,o", t) = 0

and so. by (2.67), G6 @-,y1, a^;+2,a-,+2) = G6 (a,,,4, ga^.+t.9an,,+r) - 0 which contradicts

our assnmption that a. I an+l V n € .\:. Hcnce. o(o-,11.4,, 1 o". I)> 1'

Based orr the assumption (2.67). (6r). o (a,n,1y. an,-1.an -,) > 1. (2 68). (2.56) and tlx'

above inequality we obtain that

e("' .) : n,om ,r.o,,, 1,t,,, ltLt (.' ,,aX"r,,"0,,,'. .,',, ". )

-,rldn,..r.on, 1.,r,,, lta(s2.,lin, s'r1'C bttttl,, .t't)t),t t'tttt' )

s fa ( ti,,, sup.11 (,r,,,,-r.Gn, ,,r, ,))l < {./r5:-,' .t \,-. /)

tr contradiction, Thcrefore. iu all cascs {o, } is a G6-C-seq. thus b-\' Gb-conlpletcness of '{ r'icltls

t hat { a, } is GL-convergent to a point o' € X Arr itrgurnent similar to that in (2 65) \e gr:t

cither
1

uzGub,'oo.'oa") 
< Gr' (o"' r" a')

or

fiC06,,*r. no.*r, sa.+t) ! G6@-*1.a".a')

lrolds V ,1' € N. First, supposc that

Sc u @,,. 0o,,. no,,) < G 6 (a,. a'. o" ) .

aor,+1. dn, l.an,n/(

t,
1'

-r):

G6(a^;1. a,,, 1.a",-1) .

1+s
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-\orr .

G, (on. a

-'11 (o", o'. o')

So. lim.,-- .lI1 (n,,. o. Hencc from (2.56) and assertion (ri) of thc theolcm.

I < 0(C6@a,,ga',9a-)) < 0 (s2C6(ga..(ta..ga-))

< 
^l4n. 

u'. d' ltt l.!C b t q,t,.. !l')' !J't' t )

< id (-1I (rl,,. n-. a")) '

V rr e N. laking thc limit as n - x. irt the above ineqrtalitr' 1\'e get l lrrrt

Iim 0(Ctk)o,'.gtl'.Sa.)) - I.

This implies br'(Or) that

lirtr G6 (9o". go'. ga-) =0.

Hcrrce, go* = Iim,-.o 9a, = Iifllr-oc.rr+r : a'. Thus, u'e dcduce that 90' - o-

Norv if
I^

i2Go lo,tr. ou"*r.94,+r ) { C6(a,,11.a".a')

holds. then by repcating the same process as above we can get gar : o'. Thereforc. a' is a FP

ol q.

\os to pror.c uniquertess, supposc thcre occur lr.t'e -Fir(g) 'r'irh u I l. ie. u - r/rr an'l

r'- qu. Thercforo b1 (iii). a(u. r'. t') ) 1 and so. bl' (2 56) artd (C12) ue hare

O = l-C(r,.gr. gu) ! G(u. r.,. r')

s c ttar.) :0.ta

: ma-x

T+G,,1",-s"..e;' +G,J.',r ",,.g'' t
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irrrd

0(G6(u.u. r,)) ! a(u. u. u)0(s2c 6(gu. gT .w))

J id(.1.1(u. r.,. u ))1"

- Ill(Gr(u. r.. r') )l'

< 0(G6(u. r. u)).

'l lrrrs thc contradict.ion inrplies that the FP is uniquc. r

2,4.7 Theorem

Assume that (X. G6) is a G, complcte mctric spacc rvith .s > 1. Supposc that a : -Y r .Y r -Y '
(0.:c) and g be a rectarrgular o-adrnissible mappirrg. Suppose that therc occllr 0 e O and

r e (0. 1) s.t.

1

jrGo\".0".0"\ 5 Gr,(rr.t'. u) + <i (u.u.u:)0 (s2Gt'(gu. gt. gu)) ! ld (.11 (rr. r' u )) '
(2 70)

V r.g.: ( -Y $'ith at lcast t*,o ol gt.gy ar d 9: ale not eqrtal $'Iterc

( Ct tu.au.au)Ct,\t.tlt.tlu ) Ct'\'t..)u.')"1C1.,r ''1' '1"')
.\,1 (rr.r'.,r') . nra-rlcr(a.,.x ). ' 

i a;i;;';. ;;: , - t . C,r,,.ttt.,t,t l

AIso. srqrposc that the follorvirrg asser(ions hold:

(i) thcre occurs oo € -{ s.t. a(a11.ga6.gan)/1:

(ii) for any con\.ergent sequerrce {4,} toorvitho(4,.o,-1.o,+r)>lVn=)i'{0} *e

have o (a.,.o.a) > 1 V rl € Nu {0f .

1'hcn .g has a FP.

(izi) Nloreover. if V u.u e Fzx(g). a(u.u.u) ) 1, thcrt the FP is unique u'hcre Fit(o) :

lu:gu-ul.
Proof. Suppose that o0 € -{ be s.t. o(a6.ga6.gas) } 1. Define a seqLterrrre {a,,} br'

tt,, - g"as V n € N. Since g is arr o-admissible mapping and o (a0.a1.o1) - o (.r.0.9(r0.9o0) > 1.

rve deduce that o(a1.42.a2) - o(goa.ga1.ga1) ) 1. Continuing this process \\e gcl l[at

a(an,a,a1.an11)>1Vn€NU{0}.Withoutlossofgcrrera}ity.assurllcthala,,fa,,,lV
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n € NU {0}. \\'e shall shorv that lim,--Gr(an+t.on.an) = 0. ^\os.

II (a. t, cL". a")
I

*---l Gotr^-t.r, o,1. Go("" 
' 

g''-r'e-q' - 
' Lo-t'lg" g" g' 

\
'"* ) ctp,. t.so,, t.so,,-ttct,to,,.sa,..so,,) (

\ I r Ga(qa,,_r.go..sa,.) )
t , Grto,, '...,.,c,r.,,.",,.'..,,.'' 

'l
...- ) G6(a" r.o,,.an).ffi (
lnax 

1 c,r, r.u,...,,,(-,,ro,,.o,.-r.a,, rr (
[ 

-r-cr(d,,..,,,rr...r) 

)

(2.7 r )

sir.". ,if,i;,--"-",@ < t und ffi-a;-,,.,,r!"rl < t.

\I (a. 1.a^.a,) - mrrx{Ct (4, r.a,, on) 'GLIL,' (1,+r'4,+t)}'

If max{C1,(n,, 1.a,,.on).G1'(o,'.a,-r.u,'. r)} -CLkt,'.c",-t " -t) rhcltsiuceo lrt,, t'a','a',t >

l for ezrclr n € N. +Gb(o"-t,gan 1.gtt,,-t) !G1,(a,, 1-a,,.t1,') and so lrr' (2.i0).lt'[arr:

0 (C t kL^. a,*t. q^"r)) - A (Gt (7a"-t. 9a-. 9a"))

! tr (a, 1,a,,a") 0 (s2G6Qa^ 1.qa,,.ga^1)

5 [0l\I (a" r. o". o"))]'

: l0 (G6 (a^,a"aL a"+r ))l'

< 0 (Go@.. a,*t. q,-1)) (2.72)

s'Iich is ir corrtradiction since r € (0. 1). Thus. M (a" r.a".a") = Gt,@" t.a".a")

Thc rest of thc proof is thc samc as in the proof of Theorcm 2.1.6. I

Analogously. \\'c can prove the follou rng thcoreln.

2.4,8 'fhcorent

Supposc that (X.G;) isacompleteG6- metric spacc s'ith s > 1. Suppose that o: -Yr-Yx-Y -

(0.cc) and q be a rectangular o-admissible mapping. SuPpose that tltere occttr(/ € O arr(l
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r e (0. 1) s.t.

{co6.s,.su1 <G6(u,u.u) '-'+ a(u.u.w)a (s2c6 (su' su. swl) < t0(n1 (u.rr' u'))1'

V u. r,.1.' € X uith at least t*-o of gu. 9c and gu arc not equal. l'here

,\lso. pLcsunrc that the follou'ing asscrtiotts ltold:

(i) there occurs ao € X s-t, o (a6.946.9a6) ) 1:

(ii) lbr arr1.convergent sequcnce {a,} to o *'ith o(n,.4,,11.4,*,) > 1 V n e Nrl 10}.

havc o(an.a.o) > 1V n e Nu {0}.

Tht:n g has tr FP:

(irii) rnoreover, if V z,r € Fir(g). a(u,u.u) ) 1. thcn the FP is unique *herc Fix(g) -

{u.: gu - tL} .

\ou'. rve gir-e an cxamplc to supPort Theorem 2.4.6.

2.4.9 Example

.\ssunethatX-[0.:c)andG6:Xx-{x.Y-.RisaG6-metricspacedefinedb',G1,lrr'r"u)

(u L'- t 11 - u u')2. Clcarlr' (-Y. G1,) is a corlpletc GD-lr)etri( spirte rritlt '' l' '\1s"

Ietr-ianddelinc11 :X -X. o:-Y x.Y x.t --l?and0:10.::) - [1.:-) bl

sQ) -

o(u. u. ri.') :

f . if r e i0. 1l

12. otheru ise.

f. ifu. u. u' e 10. 1l

0- othenvise.

t

t
ard 0(t) - et .

Assurne tlrat fiG1,(u, ou. gu) { G1,(u."-.u). If one of u.u.u- f 0.1]. then n(rr.r'.u') : 0

arrrl so. thc conclusion of (2.a.6) is satislied. II u."-.u € 10. 11. thcrr gu.gL-.Q1t'a 10. 1i an(l

( ^ . o, tr.ou.,rr, c,,r'.qr.,1t

\l t,t . u't ,',^* 1 t'"' 
1'u'l l''ct\tu-'ffi;"':*s' e'-

I Chlu.at.at)(;L\L .u'(ffi



(r(u. u. u) ) 1 rtith gu + gx + gtu. Hence.

a(u, u.u'')0(4G6(su. su. sw)): "r(l(1" 
' + N-L'l+ u L ))r

- e*( "-' + ' ul+ u-u )'?

!s(3/;)(" 
!+!-L+!-u)'?

( 
"t "-at. n.,' r,-.'r'1 i

\'/
/"c01,,, , r) 3

\./
: (d(G6(u, u, t'))) 3

Thus all the conditions of Theorem 2.4.6 are satisfied and z : 0 is the unique F-P of 9'

2.4.1O Corollary

Presrture thitt (X.Cr,) is zr complete G6 lnetric space rvith s ) l Suppose that a: Yr'YxX

(0.x) and./ be a rcctangular o-adnlissiblc rl)appillS Suppose that thcre oc('ru ll r (l;rrr<l

r. d. rl. ^, € (0. 1) uith d+.J--^. < 1 s.l.

1

!=G o fu . qu. gr) < G6 (u. u. u') ."'+ o (u. u. u) 0 (s2 G6 (gu' gt' g u1)
J')'

I / .^ ,G6lu.gu.gu)Ct,lu.gu.gw) , .Gt\u'uu'9u)C61t'o'"g'r'r\ I'
< 

La 
(d-cb(u.t.n) rJ t -cbkrru,) ' | -cb\r*s,\r"t ))

V u. r,. tr € -Y *'ith at lcast t\\-o of gL.91 and 9t'. are not equal AIso. suppose that the follou irlg

a-ssert ions hold:

(t) tlrere occurs a0 € -Y s.t, o 1a11. gou. gao) /1:
(ii) for an1 convergent sequence lo,,) too*-ith o (on.a,*1.u,'r) 21 Vn e ''r- - {0} l'"

hatc o(a.,.o.o) > 1Vrl € Nu {0}.

Thcrr 17 lras a FP:

(iii) morcover. if v u. u € l-iz(g) implics ri(u..-. c) > 1. llrcn the FP is ttnitlrte Nhcto

Fit\g1 : \tt: gu - ul .
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2.4,1I Corollary

Presrune that ()(,Gr) is a complete Gb-metric space with s > 1. Supposc that o: {xXxX '

(0, c<,) and g be a rectangular o-adurissible mapping. Suppose that there occtrr 6 e (2 arrrl

r, a-.0.r e (0, 1) rvith a- + 0 + r < t s.t.

4@,gu.
)+Go(

,gu)*Gr

v u.u.w € x r-ith at least two ol gu,gu and.9u'are rot equal. Also. suppose that the follorving

msertions hold:

(i) there occurs o.0 € X s.t. a (as, ga6. gas) 2 l;

(ii) for any convergert sequence {o,} too wilh a (an,an+'tt o,+1) > 1,Vne Nu{0} 
've

have o (n,.a.a) > 1 V n e NU {0}.

TherrghasaFP:

(iii) rrroreover. ifV z. r., e Fir(g). a(u.u.tt) 2 1. then the FP is unique rvhere I'itl!))

\u:gu-u\.

fiCu0,.o',r.ou) 
< Gt (u.u.u,)

. 
[, 

('"""
. u. u,) + J

^ G1,\u.qu

;1.

("'

.9' )
l+r
9:-lI

)0

.9t

(r
,5(

'11)

)Gt
+c

u.

I
.s

. qr'.4r'))

.su)+Cr,lt.st.su)Gt

C6fuu

cr,\".gt
t,(

C
+Gr.

en)(lv
,)
g-{
9u

u,9
,1. )l

)l
u)

61



Chapter 3

Fixed Point and htzzy Fixed Point

Results for F-Contraction

In 2012. \\'arrto\.ski [103] intr.oduccd a ne\\' tr'pe of contraction call0(l F contlactior) atrcl pror od

a ncu FP tlteorcm concernitlg F contractiorr. He gcneralizcd the BCP in a dilli:r'cltt zrspcct

frorn the rvcll-knog.rr tesults frorn the literaturc. Aftert'ards. Secclcrin [96] proved FI) llteoreu''

corxisting of F-contractions by Iterated flulction systems Piri et al' [84] proved a IfP result

for F Srrzuki contractions for sornc $eaker conditions on the self rnap of a corlrplclc rletric

space rvhich generalizes tlle result of \\hrdorvski Lately Acar ct al [8 introduccd llte concept

of generalizcd rnultiralued F-contraction mappings Furttrer Altun et al lTJ cxterrded urulti-

ralucd mappings with d distance and established FP results in complete metric spacc Sgroi ct

al. fg8] cstablished FP theorcms for multiralued .E-contlactions and obtained thc solution o{

ccrlairr fitnctional and integral equations. rvhich s'as a propcr g,eneralization of somc multiral

ued FP tlteorcms iucluding Nadler's. Recentll'Ahmad et al [12 18' 46] recallcd thc corrcept oI

FcontractiontoobtainsomeFP,andcommonFPresultsintllccontextofcontllletenetric

sPaces.

In 1gii1. Hcilpern [41] uscd the concept o[ fuzzy set to introclttcc,r tlass ol fitzzv rrraplrirrgs.

Nhich is a Bellcralization o[ thc set-r.alucd nrapping. and proYc<l a [iP theorell for l\rzzI t.rrrtrac-

tion rualtpiDgs in metric lincar sp,rce. Ii is rrorrlt noting tltat thtr resttlt annourtcr'<l lrr' Ileilpcrrl

[,11] is a lirzzY extension ol the Banach cor)traction principlc. Subsccluentlr'. scrt'tal othct au
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thors have studied occurence of FPs of fuzzy mappings. for examples. Azam et al. i23. 24]. Bosc

et al. [27]. chang et al. 129]. cho et al. [31], Qiu et al. 1851, Rashnarr et a]. [86]. S]ri-sherrg

Iee]

In 1969, Nadler 178], introduced a study of FP theorems inrrclving multir.alued mappirrgs

arrd proved that evelv multivalued cofltraction on a cornplete metric spacc has a EP [-isler 3i

obtained different type of multivalued EP theorems dcfining a distance bet$cert tNo )roulcle<l

subsets of a rnetric space. Then a lot of gencralization of multivalttcd rrtappirlgs har-e boctt gir en

in the literaturc.

A fuzzy set in X is a frrlction rvith domain X and values in [0 1]- 1-{ is the group oI all

fuzzy sets iD -{. If A is a fuzzy set and r € x. then the function Nhose value is ,-1(r) is called

thc grade o1 membership of r in A. The o -level set of A is denoted by lA]. and is deliried a^s

follor,;s:

l-Al" : {, : A(r) > cri if o e (0. 1l

lAlo:G:,4(r)>0]

Herc B denotes the closure of thc set B. Suppose that f(X) be the group of all fuzzy sets

in a rnetric spacc X. For A,B € 3(X), A C B means A(r) < B ('lc) for each z € 'X \\Ie signify

lbe fnzzy set 11,1 by {r} u-nless and until it is stated. rvhere 11,1 is the characteristic furtctior

of thc crisp set A. If therc occurs an o e 10. 1] s.t. I,1]" IB]" € CB(-Y) thcn dcllne

p^tA.Bt _ 
,,..ol!.["" u "d('.s\.

D"(A.B): n(tAl" . t8l")

If [A]", [B]" e CB(X) for each o € 10, 11. then define

p(A, B) - supp.(A, B),

d*(A. B): sup D"(-4. B).

\\'c write p(:r. B) irstcad of p({r}, B) A fuzzy set A in a mctric lincar space y is said to be
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aD approxirnitle qualtitl.iff _.1]. is corrrPact and con\ox ill l' for orrch o € 0. 1' ;rrr,l-sr1r.li.r )

1.The collcction of all approximatc (luarrrities in !' is delc,tccl bI lt'(l') SrtPPo.t' t[at -\ bo

an irrtritrarl.scr. )' bc a netric spircc. A nrapping r is callql fuzzr tuappirlg il 7 is tr lrlilPpirlB

from X into ?(Y). A fuzzy mapping f is a ftzzy subset olr ,{ x }' rvith mcmberslttp hulctiotr

I(r)(E). The function ?(z)(y) is the grade of membership of g in 7(r)

In this chapter, u'e continue thc study of generalized F contraction for sirrgle valued ald

rnultivalued mapping in complete metric spaces. In Section 3 l rve extend the colrccPt of F-

contraction into gencralized r-contraction for single valued mapping ln Section 3 2 rvc discuss

this concept for multivalued mappings Section 3.3 deals *.ith the application of FP tlteorcnr

rvhich rvas provcd in the prcvious section to Volterra typc integ.ral equation lll Strtion 3 J'

rve establish sorne common o-fuzzy FP thcorems for generalized F-contractiolr in t hr: setting of

cornpletc n:etric sPaces-

3.1 Fixed point results for single valued mappings

Thc results given in this sectiorr have been published in 161]'

3.1.1 Definition

Supposc that (X,d) is a metric spacc A mapping J: X - X is said to be gcrterzrlized

F contraction i[ there occurs r > 0 s t'

vr.9 € X. d.(Jt.Jv) > 0 + r + r (d(Jr' Ja)) < F(-\1(r'v))'

t'here

( / att'Ju) -.d\a:!!-) ,,...r,.}-\lt.r.a) - ma-r{d(r.ut.,1(r.Jt)-d(!).Jv\' (a,-fr- atr.", st -t) ' 
)

\\'e ricrrote bv / . the sct of all functions satisfying thc conditions fronr (-l"1) - (l:t).

(3 1)
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3.I.2 Theorem

Presumc that (X. d) be a cotnplete metric space and J ' X 
- 

X be gcneralized -F c()ntraction

If J or ,F is continuous. ttten "/ has a FP in X

Proof. Suppose that .16 in X. $€ construct a sequence {2,}[, s t rt: Jro t.' - ']tt -

J2ro. Contirruing this process :rnll - Jrn: J"+rto, V n e N' If there occrtrs r'l 
' 

\ sl'

rt(r,.Jr") - 0. therc is nothing to prove and the proofis complctr:' So s'c assurttc tltar

t1(.1r,;. Jr.) : d@"' Jt") ) 0 Vn € N

Norv for artl' 7r € N. 1\'e have

(3.2 )

r + F (d(J:t, r.Jr.)) < ,E(-1{(r,, 1.r,,))

Thereforc

Norr'

F(rl(r..r,,*1)) - F(rl(Jr^-t.Jr")) l.F(r.l(r,, r'r,,)) -; (33)

). o

T)

).c

i)

r, x

,)
i

r" )

,,)
)+l

rn"

l+l

ir,,
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lll
d(,
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I
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(r,,,
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{
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d(r,,. r^

d(r" r.

d(x,,. r,,

,l(r" -t.
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ll t ,, -t.

I
I

\
I

r).

r")

,).

r")

:,, )

+\)

rn

+l/

xn

..In

So. n c ltave

lr(ri(r,.r,11)) - F (rl(Jt,. r./r,)) 5 F(max{d(r,-1 r") d(r'' r'-1)}) r'
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Irr rho case l.I(2, 1..r:,,) - d(r,,. r.+r) is inrpossible.

rvlich is a contradictiou. Others'ise. in orhcr casc

1I(r"-1. r") - ma-\ {d(rc,-r,.""). d(r". r"*1 ) } - r1(r,' t. t").

Thrrs from (3.3). rve have

-E (d(r".2,,11)) < F (d@" 1.r")) ', .

Coutinuing this process, ive gct

I(d(r,,.r"11)) ! r(d(r,, 1.r,)) 'r

= F (d(J r" 2. Jr,, r )) r

< F(rl(r, 2..r, 1)) 2;

: F (d(Jt,,:. J.r" t)) '2;

S F (d(2, 3.2"-:))) 3r

:

< .F (d(r6, 11)) nr.

l'his rmplies that

I,(d(r,.r,,11)) < ,E(d(r6.r;)) rLr. (34)

Fionr (3.4). we obtain lim"-- F' (d(r", r"+r)) = co,

\\'hich togcther \yith (F2) gives lim,-- d(r", r",r) : 0. i.e..

Iim d(r". z.*1) : Q (3 5)
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t-rom (.P3), there occurs k € (0, 1) s.t.

jg ({a{,,',,*,;;a r 1a12,' r,+r))) : o

From (3.4). the following holds V n e N,

(3.6 )

(d(2.,.2,..1))r (F @(r^.r,,a1)) F (rl(zs. 11))) < (d(2,. r,'11))k ir'r 5. 0' (3'7)

81'using (3.5), (3.6) and lctting n - >: in (3.7). rve har-c

? l.\

,.lim (,, 
rrlrr, r,.,,") 0. 3''

\\'e observc trhat from (3.8). then theLe occurs tzl e N s'r. n(d(r,, r,-1))a '< 1 
' 

rr > nl

I
dlrn. t, . 1) 5 -1, Vn2nl (39)

To prove that {2,} is a C-seq. Consider m,n € N st rn > n } nl Then bl' the triarLgle

inequality and from (3-9). rve havc

cL(t.. t^) < d(x,,t.+) + d(t.11,r.*2) + d(r,,+2 r,+3) + " (3 10)

+d(x^ t' r''")
,,,_;

-\- z_t1\xi.xL.l)
i:n

< \-,\ 1,0\xi. J t. t )

. \- l-.
: 1_ ,!,

l'hcspriesf .l- laisconr.orgenr.Bylakinglimita.n '.. in tJ.l0t. rreltavo lim,.., - dlr, 'r',,,1

0. Hcnce {2,,} is a C-seq. Since X is a complete metric space there occurs r* € X s t'

Iim,,-- r,, - r*. Norv if "I is continuous Then we have z* - lim,-- z'11 : lin"-n Jr" -

J (lirl"--- r") - -Iz* and so z* is a FP of J

Norv, suppose F is continuous. In this case, we claim that r* : Jr* Assunte the contrar)"
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i.c.. rt I -/J*. In this casc. thcrc occurs an ?o € N- and a sttbst:qrrence [:n,,r ] of {r"} st'

d(Jr^r.Jr') )0Vrr.6)ns.(Oth(xNise there occur nr € N s1.:t,': Jr' v[]n1 s']riclr

irrrlrlies thzrt rn - Jt:'. 'I'his ts zr corllradictiol. since r. f J.r'). Sirrcc dlJt,'r"]:'-) > 0't

nt > no. from (3.1). rve havc

r +' F (d(r,^11. Jr')) = z t' F (d(Jx"r. Jr')) . (3'lll

< F (.I1(r.^. r-)).

| [ ae,r.r').d(-ri,.-r,,^.rr.,l{r'.Jr'r. ]\o \"''t (#+t',nH--')a"" t' l)
'laking the limit k - :r artd using the continuity of F rvo hayc r + F ldlx- 'lr^)) {

1"(rl(-u-.Jr-)). rvhich is a corltradiction- 'Ihcrefore our claim is tnre ic t' - Jt*' t

3.1.3 Example

Assumc that -{ - i0.1]. f)eliltc l rnapping. J : X - X br'.

f +. irx€ u 1).
.lr - | '

I f it,,-'

Sinct:. J is rot coDlillltotls. .,/ is llot il F-colltraciiolr bl Rerllark I l3'

f-or r e {0. 1) and y - 1. rr'e ltavc

,1,r.r r, , (j l) - li ll I ,'
arrd

,,,o,{r,r. t).d(-r.Jx).d(1../rr ( 
dtr'Jll d\1 Jt).);,,.,r}' arl lt' -3

t "" \dt'.J') -Ll{l'Jll ' l/- ) J

\o\. b1, choosing. fl(o) - Ino,o € (0.+cc) and r - ln3. lr'c see that J is a gcrteraltzcrl

,l corrtr?iction.

Reccntlr.. Piri and Kunram [84] gcneralizcd the result of \\'ardo$'ski 11031 b]' r'eplating t]rc



cooditions (F2) and (F3) * ith thc follos'ing onc:

(F2') lnI F: -:r.
(fl3') F is continuous on (0, oo) .

Here f denotcs the family of all frurctiorx fl : IR1 - JR which satisfy conditions (F1) (F2)

o.,a /ft') .

3.L.4 Definition [18]

Assurnc thal (X.d) is amctric spacc and J: X - X be a self trtapping thcn J is saicl lcr be

gerreralizccl /r contractiorr of rational t1pe,4 rI tl)ere occlus r > l) s't'

Vr.ye X. tl(Jr.Jy) >0+7+ FldlJt.Jp)) ! F ('11(r' v)) '

rrhele

(. / d,rt.Jut_,h!),Jr) _)r,r.r,)..11("". u) - ma-\ 
td(r. 

e). d(x. J.t t. Ll(s. J v). 
\aO -l r; aru. I y 1 - t J' . .' 

)

l-: R1 - llt is a mapping satisfying thc following conditiorts:

(F1) .l7 is strictl,v incrcasing. i.c. V r. y € ]R+ s t. e < y. F(r) < /t(y):

(F2) for cach sequcnce {o,,}}, of positive numbers lirD,-- o', :0 iff

lim,, -- F(o") - - 591

(F3') /r is continuous on (0, c,o).

\\'e dcnote by f, the set ol all fturctions satisfying the conditions (F1)-(F3')

l'he follorving theorcrn is a dircct consequence of Thcorent 31'2 shich has bccrr pLtblisheil

il i18] bl using Piri techniqrre.

3.1.5 'l'heorem [18]

Assunrt' tlrzrt (X. d) is a colllPlete metric spacc and J : -Y - 'Y l)c getreralized 'l: ( orltliictioll

of rational tl?c then J has a FP in X
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3.2 Fixed point results for multiralued mappings

ln this scctiol. we present a FP t]reoreur for multivalued mappings rvith ri-distance rtsillg \\'ar

dorrski . t|cltniqrtn r,,n conrPlelt' nrotrir sl):tl t-s.

3.2.1 'I'hcorem

Suppose that J X - B(X) is a multivalued generalized F-contraction orl a conPlcte metric

space X. Suppose F € f, and there occrus , > 0 s.t.

Vz,e eX rvith min{d-(Jr, Jv)d(r,u)} > 0+ r+ F(d(Jt'Js))1F(\'l(r'u)l (3 12)

s'here

I - / Dlx'J!)t ' Dta Jr') \a,r. rr} ..11(r.ql- rnrx 
fd(r.ur. 

D\x.J"(t. D(e.Jy\.\Axh; asJil. |)"," , 
J

If i' is continuous irnd Jr is closed V r € X. then J has a FP in -('

Proof. Supposc that :r0 € -Y be art erratic poilrt and dcfitie a sc(lrlcnce ]r"'i irr -\:t'

it:tr+t e J:Lt1.V n > 0. If thete occurs Ir0 € NU{0f for rvhich r,,u - J,.,1' thert r'",, i' a Fl']'rl

J arrcl so llte pr-oof ls conPlel(l(I. Thtts. assrune thal for olctr rrtt 
' 

\ ]t')) r'" r'" I Str

d(r.,.r,,. 1)> 0 arrd d(Jr,, r"/r,) >0 ! Ir 
' 

\ l3'l'i)

Theu from (3.13). ive havc

r ! F(d@..t.11)) <r*F(5(-/z"t'Jr,)) < I(-\1(2,-1 r"))' (3 1-1)

Nos'

u). D(x,,-r.
r ,J,,, )+r(r,..

r.J.,. r )+D(r"

). d(2". z"+r )

,1lr 
"- t.

I ot."
\DI,-

Tn-l.In

/(
F (-1I(r,, r. r, )) - F [ -.* {

\l
< -F (ma-x id(

Jr"
J t^ r)

))

D(., /., ). \\
dtr"-t. r,,l J )

r ).

r)
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Wc have

F Q)@^, r-',1)) : F (d.(J r. t, J u)) < F (ma-x {d(r. 1,x"),d(r",ta1)}) r,

In the ceuse M(r^-r,u) - d(r-, r.+'r) is impossible.

lr(d(r,.2,1t)): F(d(Jq-rJr")) <F(d(2" r"11)) r < F (d(x"'t"+t))

rvhich is a contradiction. Otherwise in othcr case

M(t- 1,r^) - max{d(r, r.r,),d(r, c,+r)} - d('t"-t,t")

I'hus from (3.14). rvc have

-E (d(r". r"*1)) 1F(d@" r.r")) -r'

Contimring this proccss, *-e gct

F (t1(r^,4,.a)) 1 F (dk. t,u)) - "
< F (d(t," 2,q 1)) 2r

< F (r)(t,'-3, r" 2)) 3r

:

< F (d(zs, u1)) nr.

This implies that

F (d(r". t',a1)) < F (d'(x6, t1)) - n.r- (3'15)

From (3.15). $e obtain liDr,-- F (ri(r,.2,11)): coandimposing(F2)giveslim,,--d(r,,..r,,-r)

0. i.e..

,]1m 
d(2".2,. r) - o (3 16)

77



Erorn (,E3). there occurs A e (0. 1) s.t.

I,: ((a(,,.,.*,))t r 1a1r,. r,*,;;) : o

Frorn (3.l5), the follo*'ing holds V n e N,

(3.17 )

(d(:r,.r.,-1))^(F(d(e..r,..1)) .i"(d(ro.rt))) < (d(r,,'r,*1))*'rr ! 0' (3 l|i)

I31'using (3.16), (3.17) and letting 2 - ^. in (3 18) sc have

Jim- (n (a(2,, r,+'))*) = o (3.1e )

\\:e obscrve that from (3.19), then thcrc occurs n1 € N, st. n (d(r, r,.'1))k ( 1V rr' ) n1'

ld(r,.r,,-;1)5I v"> "1. 
(320)

-\or,; s'e provc that {2,} isaC-seq Consider m n€Nst'rn>n}nl Thcn by thc trianglo

irrequalitl' arrd from (3.20). se have

d(r,,.r-) < d(r,.r,,-r)-d(:r,.'1 r,-2) tr/(r"'u r''-:)* " (3'21)

+ d(r", r'r-)
ml

- \- r/t.r.. r,- , )1-',
i:tt

r\-
,-dl x,. {t 1 t )

,J
. \-1..- 1- .)

-thcseries!f,,-|i"con.crgent.81.takinglimitas2-:.,in(3.21).ri'chaveliur,.,'-:.d(t,, 't"'1 -

0. Herrcc {r.} is a C-seq. Sirrce (X.d) is a complete mctric spacc the scquence {r'' ) convclg'es

lc) some point r* € X s.t. linr,,--r, : i'' Norv suppose tllat F is continuous lrr t]ris caso

rvc clainr x' € Jf. Supposc contrary that z'e Jr'' In this case thcrc occur 14; c N attd a

subscqucnce {r,.} s.t. D(r.^+r..rr-) ) 0 V n1- } n6'(On the othcr hartd' there o('('tus nl 
' 

:il
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s.t. xn € Jr* Y n/n1. this implies that r. € J:r*. rvtrich is a contradiction. Sintr'.r- ( J.r'").

Sincc D(r,,,11. -/r') > 0 V n1 > n0. \vc obtain

r+F(D(r.,11.Jx.))

r + F (6(J r,, 
^. 

J r- ))

F (,11(2"^ , r.))

- ( | ,ttr^..",'t.d1r,..xnr.:).Dtx' J,'). \\I Im&\ 1 | D\r,,k.r r' | +dtr'.r,,,
\ ( \ d(".,..-,,r-ir-c.=+ ) a'' ".' r t ) )

(3 22)

Sirce -F is continuous. taking the linit as f - :o iu (3.22). rve obtain

r + F (D(t'- Jr-)) < F (D(r". .rr.)) .

rvhich is a contradiction. Thereforc. rrc havc .r' € Jr* Hetlcc z' is a FP of J r

(3.23)

3.3 Application to integral equation

ln this sccti<xr. \,e discuss the application of FP theorem rvhich rves provcd in tlte previotts

scction to thc follorving Volterra type integral equation.

(3.24 )

fr-,r g e [0, o], rvhere a > 0. We find thc solution of (3.24). Supposc that C([0 o1. R) bc tlx'

space of all continuous functions defincd on [0. o]. For u e C([0. oi. R). dcfirre suprcmttm not'ttt

ir-s: 1 - - sup {u(g)e '(o)e1. rv|cre i > 0 is taken arbitrarl'. Suplxrse that C'( 0.rr.F') b,'

ec i0 o;

errdorred rvit h the melric

d,(u. t) suu u(g) r'(Q) ( ' -e .
-o€[0.o]

( .J.li r

V u. r € C([0. o1. R). \\'ith thesc serting C(:0. a]. R. i ,) bccomes ir Banacll spat,o.

Norv rve prove the foltorving theorcn to ensure the occurerrcc of solution of intcgral equatilrtl.

ulp) - I I((-,. s. u(s))d.5 + /(p).
0



For nore details on such applications. rvc refer the readers to [20. 83].

3.3.1 Theorem

Assurrre thc follorving conclitiolts arc sntis6etl:

(i) 1{::0.a] x i0.al xR-Rald I ,t).a) - R arc contirtttous:

(ii) Delinc

Ju(e) -

Suppose therc occurs r > 1. s.t,

lK(p. s. u) - K(p s. r) < te-'lM(u'u))

V p.s e [0.o] and z.u € C([0,4],lR), wiere

lI(u. u) : rlax{lu(e) - u(s)l 
' lr(o) -/u(s) r"(p) J"(s) '

Thcn inte$al equation givcn in (3.24) has a solution'

Proof. 81'assumPtion (i i)

jJz(p) - Ju(s)

p

/ lrr u. s. rr (s ))ds t /(u)..l-
0

g

- / 'A tr. ". 
rr(s ) A (1. s. r (s17) 

'i 't-
0

< I re 'll)l(,,. 1')16 ")e"r.Is-l
0

I

< I ,e ' J.11(u. r')l "e'"ds-.t
0

ef
< re '1,11(u. r')l' / e''ds
-.t

0

I
< r c-' llltl (u. u\l ,-e'e

T

< e " \ \l (u. u) l"e"P.
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This implies

'l hat is.

t lrich fu-rther implies

J"(p) Jt(p)le "'p< c-"lII(u.u)1.

lJ"(d Ju(p) l" 1e-'l\[(u.u)1".

r + ln lJu(s) Jr(p)ll, < ln !.t{(u. t')ll'

So all the couditions of Theorem 3.1.2 are satisfcd Hence integral equations givelr in (3 21)

has a unique solution. I

3.4 F\tzzy FP results for generalized contractions

Lr this ser:tion. rvc establish somc corulDolt o-fuzzy FP ttreoteuts for gctlcralizcd l-contrtrctiorl

in 1ho sclting of corrtpletc mctric sp.rces lrr tltis rva.t" se uni[" gcncralizc and corrplernetrt

yariorrs knorvn comparablc results in the literature. \\'e also provicle an example t() sho\r tlle

significancc of the in'estigation of our rcsults As applications of our main results se derite

some nulti-valued FP thcorems from our ftnzy FP theorems'

For thc sake of convelience. \'e first state some known results for subsequent use irr out

nrain results.

3.4.I Lemma

.\ssunre that (X. d) is a metric space and r1 B e C B(X)' then for each o € ,,1'

d(a. B) < H(A. B).

:1.4.2 Lcmma [19]

Suplrose that !'is a metric lirrear space. J: X - ll'-(L') be a firzzv rnappirtg altd re € l'' Tllen

thcrr: occurs 11 € V' s.t. {rr} c "/(ro)'

Norv uc statc our rnain tlteorcm of this scction'
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:r.4.3 Theorem

l)resume that (X. d) is a complete metric space and lct S. J be fuzzy mappings frorrr .Y irrto f (.Y )

arrd for each r € -X. there occur o5(z).o7(r) € (0. 1] s.t [Sr'",1,1 i-Ju).",t,, arc noner])ptl

r'losed borrnded subscts of ,{. I[ tht:rc occtu some .1' € f ruxl i > 0 s t.

i",ul",r.r)) s r(-\r( r. e ))

. rvhere

(3.26 )

V r. 9 € -Y rvith

.\r(r. y) - In.., 
{, 1,, 11 )1a (,. 1t ut.,,.,) + a (u.

Then thcre occurs some u e [Su]""1,1 n [Ju]",1.y

Proof. Suppose that :r0 be an erratic point in X. theu by hypottrescs there occuts n5(20) e

i0. 1] s.t. [5z6],,",,0) is a noncmpt) closed bounded subset of X' For convcnierrcc $e dcnote

os(rs) by o1. Suppose that zr € lsro]"rf.") For this rl therc occurs o7(c1) e (0 1] s t'

Urr,",t.,t is a nonempty. closcd and boundcd subset of X By Lenurra 3 4 1 ( ,F1) and (3 26)'

lr hate

tf urax {d(ro. 
r1), r?

d(zs. r1). 'Ihe n

r + F (H ([s,,]".,., .

a (is,]..,1.y . [.ru],,,r-,) , o

1sr1,,,,1)l)
(3.27 )

. a (,. 1s,1",,,,) . a (u.ltd.,at)

, + r (a (ls,o).,r-r. U,,l^,,,,,))

I(11(rs. r1))

/ [ ,l1,n.11r.,i (ro.{Sror"r,"" ) '(.,' ",",'. ) \\o 
\"'^* 1 1ra (,,.1-',, ",,,,,) 'r (', ',s.,i,I.,-,,, )l I )

z. (-n* {airo. 
r'; a(r,.t",rr1",1,,y)}) (328)

r",r)) - a (,,, ["r,,].,r,,,) . then frotn (3 28) rve gct

/\r t r(d (xr.l.-/rrj",r,,r,) S

s

(r1, [Jr1]" ,

shich is a contradiction. So,

, + r (a(,,,1-,,'1.,,.,,)) < r'(a (",. [.r,']",r.,r)) '

,,ra* 
{a(rs. 

11 ). a (r,, 1"'r,1",,,,,) } -

t.rr,l.,t.,l)) <, + i' (a (,,, (3 2e)lr(d(rs. er ).



From ( F4). rvc knou'that

r (a (,,. I.r.,.",r.,,)) :,.rr,'fl 
,,,,, 

.rr(ri(rr. u) )

'fhus frorr (3.29). rve get

r + inf F(d(r1,v)) < [F(d(rs'rr)]' (3 30)
velJrrl.,r,rr

Thcn. front (3.30). there occurs 12 e [J.r:].r,,., s.t,

r + F(d(q.4)) < [r(d(r6, r1)] (3.31)

For this 12 there occu-rs as(22) e (0. l] s t. [Sr2].-.1,r1 is a noncmptl' closed bounded subsct of

-{. Bv LcInma 3.'1.1. (F1) and (3.26). st havc

, - r (a(,, 1s,.,1",,,,,)) : ;,;i1;,j:'.:];I;, l":;i", 
)

: ., [: i 
:,,, 

r,,,q,0,f,,",,,,, ).1; i ; ],l l;;, 
j 

": L ;1,, ) )

: :[::l::::]:[;: il;;]:::::tlll 332

ttnrrx{ri(r1.12).a(rz.[sr:z]",,,,,)]:,(rr.[s'r].'r*r) thenfrorrr(332) rvegct

' + r [a (,r.ls,r]^.r.,r)] < rla(o.[s',]",r,,r)] ,

*hich is a contradiction. So. ro.*{d1,,.'r; a('z [S'zJ".r*1) ]:d('r''z; rn"n

, ' rla(,r.1s.r1.,r.,,)l { Frl(rr"rz) (3 3J)



f t \lr l/ (rz. lsr:],,.,,,,) | - ,^irrf Frtttrt. stt\'
L \ yrcl5J, -.,, r,

Ihus

r + iof -E(d(r2.91)1 < F(d(r1 r2)) 13'3'1)
cr.lS.:l s,,:.

Tlren. from (3.34). there occnrs r'3 e l5z2]",,',, s.t.

r + I(d(r2. z3)) 5 .F(d(rr..r'z) (.l.Ji)

So. continuirrg recursirell.. rve obtairr a scqucncc {r,,} in -Y s.t. r12r. l € [Sr'2,',^.(..,,,, ttr)'l

r.2,1 2 € 1J12,111..,(,r-r,) and

Erom (,F4). rr-e knorv that

(3.3rj )

r + F(d(r^. t.,,1)) < F(rl(r" 1. r, )
(3.38 )

'l'helelore

F(ri(2,,.r"-1)) < F(d(r, r'2,)) - r <.F(d(r' 'r'r"-r)) 2r

< ... < -F (d(rs. rr)) - i,7 (3 J9)

Suppose thatting n - cr:r in abo.c incquality, rve obtain )9- F (d('", '"*t;; - rc that

togcther \\'itll (F2) gives

Iirn d(2.. r,11) : 0.

r + F (d(r2n+r. r2.a2)) < F (d(x2"' r2"*1)

arrd

r i F (d.(tz^+z. tz,+i) < F (d(xz.+t' st^+z) (3'37)

V n € N. From (3.36) and (3.37). rve have
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-\txv br' (1"3). there occurs h e (0. l) s.t.

,lim ld(e:,.r,11)lhf (d(r,,.x,,rr)) - 0

From (3.39) rvc have

[d(r,, ir,+r )]hr (d(r,, r,+r )) ld(h. r^+t)lh F (d(ro, ',+ r ))

.- -rrr[d(-c,. r,. 1)]'' 1 0.

()rr taking linrit as rr - >. we obtaitt

J$_,,[d(,,.,,*, ;lh - 0.

Ilentr: filr nirl(.r,.r.*r) :0 and therc occtus nr €Nst n'ld(J,, r,,*r)< IV7r )rrl Sr)*e

hrl'e
1

drtn.t.,,.,,. ,fr 
rjt Io

V n / n1. NorT' consider rn.2 € N s.t. nr > r, ) n1. ue have

d(r,.r^) ( r.l(c..r.r1)I'd(::,11.r,-2) + td(r- 1'r"')

. i_,: 1- ;t t,'

81'the convcrgence of the scries D:, #, u'e get d (2,, o-) - 0 as n m - rc' Therelore {r' }

is a C-scq in X. Thc completeness of (X. d) ensurcs that there occurs u € X s t" lim"-- z" - u'

Norv. n'e provc that u € U?]"/(,, We suppose otr the contrary tha't u I lJu),,r)' thcn there

occur a 116 € N and a subscquence {2,^ } of {r,} s.t. d(r2,..'1 [Ju]",1"1) )0Vn7']n0 Since
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d(:r2,^.,1. [Ju].,1"y) > 0 V nr 2 n0, by Lemma 3.4.1. ( f1) and (3.26), rve have

r + Fld!2,,^+\.i.r,l".,r,r)l < r + F 
[411s,r,-1".,,,,,^, 

. [,1"J",1,1)]

= ifil;;ilj(1;:':;1_";i;; 
J.,lt.. :1"", 

, 
))

' , (,,,,,t { '1"'"tt.t'dtx2n''t:" 't d("' t" ' 1 I)
\ t i'u(',,.. L,^,"') ,t1,,.,:,.. ))

rrltich further inrplies that

r1a1,,"..;. Jur^,,,, 1 . . (.,",.{ ";;i:j::;;:,': j : if.,:^: ;" ' }) r

. o,/ 
( drrr^,.u).dtr2n,.rzn' t).d(,.1.1r1",,,, ) \\('^- 1 jta(,,", tr, ^,,,,) ,,)...,,,.,, l)

Sirrce F is strictly increasing, rve have

cr(r2,,^.r.Ju,or,,,,)< m [ 'Lt*"''u)'d(x2n''x2n^ 'r'd(u '"/'' ',,' ) ]* 
I ild(n,,,.ru1",,,,) . dr,,.,,^..,t I

Supposc thatting n - rc. s-c llaYe

d\u.',,1 i]., r,, ) < d( u. lJ u) 
", 1,,1).

rrlriclr is possible only if u e IJ").,Ot. Similarll.. one can ea-sih, prove that tr e [Su].,.,,, . Thrrs

r e fSul".,,, nlJul.,r",. t
The follosing theorpm is a direct corrsequoncc.

3.4.4 'fheorern

Supposc that (X, d) is a complete mctric space and let S be fuzzl' mapping frorn ,Y ilto f(X)
and for cach r € X. therc occur os(r),<rs(r) € (0, 1l s.t. [Srj..,,, . lSy]"rtyt arc nonernptv



(:loscd boundcd subsets of X. If rherc occur some F e f aljld. r > 0 s.t.

, + r ln ([s,]",,"1 , tsrl",r,,)) ! r(:u(r. y))

v r.ttc x *irh H (lsrl."(,,. [syl".i,,) ) 0 . whore

(, 'L).\!tr.st max{,/tr.y).,,l(r. Sr1,,,,,) .,i(v.[Svl".ir,) .ila(r. SyJ"*,r,; ,i(u. S,J".,, ) ]

Ihen thcre occurs sorne u e [Sz]".1,y.

3.4.5 Corollary

l)resumc that (X. d) be a courpletc metric space and let -E G:X -- CB(X) be nrultivahted

rnappings. If therc occur somc F € F and 7 > 0 s.t.

r + F(H (Fr.Gy)) < r(-It/(e. Y))

V r. u € ,Y *ith l1(f'2. Gy) > 0 , rvherc

(t)
.\llr.g) -. mn* 

{,.{ir.vr 
.,lyL.Fr1.d19.C!)t.l,l rt.Ggt ,l tu Ft t.}.

Thcrr there occurs some u € Fu i Gu.

Proof. Consider a mapping o X - [0, 1] andapairof fuzzy mappings.9.J:.Y - f(X)
tlcfiucd by

I o(r). if t e .Fr.s(r)(t) (

I o. lttErr
arrd

I o(r). if t e Gr.
/(r)(,) = (

I o, irteGr.
'l hor

LSr,"r"r - {t : ^S(r)(t) } o(r)} - Fr and lJ"'t.at: {, : ./(r)(l) } n(.r)} Gt.
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Thrrs. Thcorern 3.4.4 can be applied to obtain u € X s.t.

u € f.9ul"s(,) n [Ju].,1"y : FunGu.

T

3.4.6 Corollary

Assrure that (X. d) is a colnplcte metric spacc and Iet F : -Y - CB(-Y) bc mtrltivaltted trrap-

pings. If therc occur sorue a € / al(lr>0s.t.

r + [(H (Fx. Fs)) ! .lr(,11(r. e)

V r.g € Xsithll(-Fr,Fy) ) 0. rvherc

(t_)
.11(r. y) - maxld{r.s).drr.Fr).d(y. F u). rV(t. Fv) td(v.Fr)l}.

Thcn Iherc o(curs sonlc u C Fu.

3.4.7 Corollary

Assurnc that (X. d) is a complete rretric lincar space and let S. -/ : X - lt-(-Y) be Irrzzv

mappings. If there occur some F € F andr>0s.t.

r + F(d- (s(r), J(Y))) 5 r(11(r. Y))

V r. y € X r.ith d- (S(z). /(9)) > 0. rvht:re

(-l)
.\l t -t. 9 t . tua\ 

tp{x.y).pr.r. 
Strtr . p\g. J \!1\. ., P r r. J t u,t lru. 5t.rt, 

}

lhen thcre occurs some ?1 € X s.t. {u} c S(u) and {u} c J(u)

Proof. Suppose that r € X, then by Lemma 3.4.1 there occurs y € X s.t. y e lSz]1.

Sinrilarll'. ,r.e can find r € X s.t. ze lJr\. It follows that for each e e X, [.9r]"1'1. ['/r],,1.1 arc

noncmpty closed bounded subsets of X. As o(r) : o(g) : 1, by the definition of a d--utetric
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lor fttzzl' sets. s'e har.e

ir (sr ",,, )aj,,p,) 
-< 

d-rS(,). Jryrr

V r.y € X. It implies that

r t r (a(ls,l",,,.tryl"r"r)) < .(d-(s(r).r(y)))

. l. (-"-- t o,,.o,.ptr.st.rtr ,,r."r,r,, \\l-- 
L' \"'* \ lr'"'r" ' Pta str.tt I ))

V ir.9 € x. Sincc [Sc]r c [So]. for each o e (0. 11. d(r, l.Srl.) < d(r.fSrlr) for each a e (0. ll.

It implics that p(2. S(r)) < d(r. [Sr],). Similarly, p@. J(r)) < d(r. [Jr],). This further implies

that V r.g € X.

r' t'tH ([Sr, .lJyl,))< r (rn* {arr.uf 
.d1r. lSrl, t.11(!).lJr ,t.'Ulrrt. t, tt a Lt ts. r.],, 

})

Norv. by Thcorem 3.4.3. u,e obtain u € X s.t. u e [Sr]1n[Ju]r, i.c.. {u} c.r(u) and {rr} c 5(u).

I

In thc follo*'ing. rle suppose that i (for dctails. sce l9J. 99]) is the set \ahre(l rrr.rpping

indtrcecl b1' fuzzl' mappirrgs -/: -Y ' f(-Y). i.e..

i, {u, Jtr)tr) -,,,t*Jrr)(t)}.I r=r )

3.4.8 Corollary

-{ssumc that (X. d) is a complete metric space and let S. / : X - f (X) be fuzzr mappings s.t.

V x € X. 3(r), i(r) are nonempty closed bounded subsets of X- II there occur sorne F € f
arrdr>0s.t.

, + r (a (Sr,r, jtur)) < F(.4/(r. y))

/^ ^ \v.l.u X *ith I1 (5(r)."/(y)J t0.th"r"

.\1{r.y) - -,'*{,ir,.y; .a(.5r,r) a(a.itul). j,,t(,.jrv,) ,i(u.3r,r) 
}t
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'I'hen thcre occurs a point r* € X s.t. S(2.)(2.) ) S(r-)(r) and J(r.)(r") > J(r')(r) r'

r€)(.
Proof. 81' Corollary 3,4.5. there occurs r* € X s.t. c* e 3f air'. Then b1' Lemma 3..1.2.

st havc

,s(z')(z') 2 ,s(z-)(z) and J(r-)(r') 2 J(t')(r)

Vx€X. r

3.4.9 Example

Supposc that X - {1.2.3}.11).12}.13} be crisp sets and 11 : -Y x -Y - R bo thc rnctrir tl'firiecl

b1'

,,rr,-{
0ifr-y.

fitrTyandz.s€X 11)

fiitr7y andr.s€X {2}

lilrly andr.s€X {3}

'I'Iren (X.d) is a complete metric space. Supposc that -F(t) : ln(r) € F for t > 0. Dcfine a pair

oI mappings S:X - f(X) as follorvs:

aud

[1ir,-r
s( l )(t) - s(2)r) srsrf ,, { i, ir r - 2

I o't, 3

[ 3 ir, -- r

J(l)(tr J(3)(/) - I lirr -'.1
I

[ 0lf i 3

I oit.,-t
IJ(2)(/)- ( 1ir/ :

[ 1',,:,,.
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Thcrr. for o(r) - I .s'e have

[Sr]"r,r - {r: S(r)(t) : o(r)} - {l } .

-Ihen

u(tsr, ,.r./ur ,.) -[ 
o"l ]'lr])= 0if a /2

\( Lo\r,' , ,ot|t)./ 
[ Al{r}.]S}r ,si f u_2.

Nou' rr'c lrar.c the follorving three cascs:

Case 1: If r: 1. 9 = 2. therr

/\5
H ([sx ",(", 

.lJa)^,o,) = r?- 
, o

arrd

(,
,,,n* 

{,i 1,. e1 ,1 (. ts.1,,,(")) .a (u.itu)^,1,). }i, (,. Ur),,,,,,) + a (u. Is,,].,.,, ) } - r

'l'hcrr thcre occrus some , € (0. lr,(+)] s.t, the incqualitrcs (3.26) arrd (3.27) arc strrisficd.

Casc 2: lf r -2. g = 2. then again

trn<l

,,,o.* {r,,.r, a (,. s,1,,,,,,) .a (v.,rul",1,r) . }1a (.. .rrl^,,, ) - a (u. ts,..,, ):} r

l'hen there occurs some ? € (0. ln(+)l s.t. the inequalitics (3.26) and (3.27) arc sarislied

Casc 3: If r 3. g - 2. tlrcn agairr

H (ls,l",(,) .lryl.,r,r) - ,r! , o

lJr'^r,, - 1t:,,llr){/) ,rrrl- [{l}itr r J

\ 1rt,t,=,

iutd
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and

D,a\{d(x.r),d(..ts,t",,",) ,a(u,lta).,1,),'Ufa(,,V01.,,.,)+d(y,ls,l",(.))l}:l+

Then therc occurs sorre r e (0. h(f)] s-t, the inequalities (3.26) and (3.27) are satisfied.

Ilcnce all the conditions of Theorcrn 3.4.3 are satisfied to obtain 1 € [S1]3 n [-I1]!.
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Chapter 4

Fixed Point Results In Partial

Metric Spaces

ln 1994, \Iatthovs [65] introduced thc notion of partial Inetric spaccs (PNIS) and obtained

r-arious FP theorcms. In fact, hc shoucd that the BCP can bc generaLized to the partizrl lflctric

contcxt for applications in program vcri6cation. Since then. rnanl' reserachers Ilave investigatcd

various rcsrrlts and gencralizatiols in context of P\IS.

Lzrtcr on. Romaguera [91] introduced the notions of 0-C-seqs and O-complcte P\lSs and

provcrl some char acterizations of P\{S in terrDS of conrpleteness artd 0-complctentrss

Iu this chaptcr. rc continuc thcse investigations and explore the FP and comnton FP resttlts

in P\lSs. In Section 4.1. l'c gitc a bricf introduction of P\lSs. In Section 4.2. \'c intloduce iln

-1.- rationa] c1'clic contraction on P\ISs and present ne$,FP results for such cyclic colltractioll

rn 0-complcte PN{Ss. Section 4.3 is deloted to a common FP theorem for a pair of rnultivaltretl

li V-proximilal mappings satisfying Ciric-rvardorvski type contractior in P\ISs. Examplcs

rue constructcd to illustratc these rcsult. In Section ,1.4, applications to sJ'steln of integral

cquatiolls are prcsentcd to sho\v the usability of our results.

In the sequel. R. R+. N. and N+ rvill reprcsent the set of all real nurnbers. nort-ncgative rcal

numbcrs. natural numbers and positivc intcgers.
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4.1 Introduction

Eirst we recall some definitions and properties of PMSs.

4.1.r Definition [65]

A partial metric on a noncmpty set X is a function p: X xX - [l+(R+ stands for rronnegative

s.t. V:u.y,: € X :

(Pr) x - y <+ p(r,x): p@,a) - p(r,a) |

(P2) p(r.r) < p@,a);

(P3) p (r. y) - p (y. r):

@4 pG.a) < p(r.:) + p(z.y) p(z.z)

A P\lS is a pair (I. p) s.t. X is a notempty sct arrd 2 is a partial metrt( on .Y

It is ck:ar that. if p(r:.y) : 0. then irom (P1) and (P2) 1 - y Brrt i[ 1 - u. 2(r.y) mar

not bc 0. AIso. every metric space is a P\lS. s'ith zero self distance.

4.1.2 Example [65]

I{p: lR+ x lR+ - lR+ is defined by p (r. y) - ma-x{r.y). V z.y e lR+. then (R+.p) is a P\IS

For more examples of PN{Ss. we rcfer the reader to [21] and the references thcrein

Each partial metric p on X gcnerates a 76 topology r (p) on X which has a ba^se topologl'

o[ opcn p-balls lBr@,e): rx € X. r > 0] and Bp(r.t) - {9 e X: p(r.y) <.+?.,(x.u)}.

A mappilg | : X - X is contirruous if and onlv if. rvhenevcr a scque[cc {r,} in X

conr.erging rvith rcspect to r (p) to a point r € X, the sequence {/r,} converges rvit}r rcspect

tor(p) to/reX.
Suppose that (X.p) be a P\{S.

(ii) A sequencc {r,} in P)\IS (X.p) converges to a point r e X if and onlf i[p(:l .r:) -
Iirrr,, -- p (r,,. z) .

(i I ) A sequcnce {2,, } in P\lS (X. 2) is callcd C-scq if t}rere occurs (and is linitc) lirn,, ,, ,- P (:r,, . r,,, )

Thc spacc (X, p) is said to be conrplete if every C-seq {2"} in X con'etgcs. r'itlt rcspect ttr

7 Q)) . ro ir poirt r € -{ s.t. p(r.r) - Iim".,,,--2(r".2",).
(iii) A sequence {r"} in PN{S (X.p) is called 0-Cauchy if lim".',,-"" p (2".r,,, ) : 0. The
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st)acc (X. p) is said to be 0-complete if evcry GC-seq in X converges (in r (p)) to a point x € -Y

s.t. p (r. c) - 0.

4.1.3 Lcmma

I)rcsurnc that (.X.p) is a P\IS.

(a) [5.56] Ifp(2,.:) - plz.z):0 tu n + oc. then p(1".y) - p(:.y) asn -xforeac'lt
!.t a x.

(b) 191] If (X. p) is complete. then it is 0 complete.

It is casy to sce that every closed subset of a 0-contplcte PNIS is O-completc. l he follorvittg

examplc shou's that the conversc itssertion of (b) need not hold

4.L.4 Exampte [91]

Thc spacc x - [0. +rc) n Q rvith thc partial metric p(r.y) = max1n,9] is 0-completc. but is

rrot complcte. \loreover. the scqucnce {r, } *'ith r, : 1 for each n € N is a C-seq irr (x p) '

I)ut it is not a 0-C-seq.

4.1.5 Definition [52]

l)resume that (X,d) is a metric spacc rind /: x - x be a mapping. Then it is said that /
srrtislies the orbital condition if therc occurs a constant A € (0. 1) s.t

dl fr. f2r\ < k dtt. frl. (-1.I )

V.r€.Y.

4.1.6 Theorem [6]

Sr4rpose that (X.p) isa0 complete P\lS and J:X 'X be continuous st,

p (J,. l2t) < k p@. f r) (1.2)

holds V:r € X. rvhcre,t € (0. 1). Thcn thcre occurs : € X s t. p(:. z) - 0 and p(/: :) -
p(f z, fz).
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4.1.7 Definition [52]

Srrpposc that (X,p) isaPI\ISand f :X-X be a mapping rvith FP set Fit(f)I R Then/

Iras propcrtv (P) if Fzc(/") - Fir(f). for each n € N

4.1.8 Lemma [52]

Prcsume that (X.p) is a PN{S. /: X'- X be a self map s.t, Fix (/) I o Thcn I has the

propcrty (P) if (4.2) holds for some [ € (0. 1) andeither(i)Vr€.{.orQi)YrlJt.

Onc of the remarkablc generalizations of BCP rvas reported by Kirk ct al 162] \'ia c\'(rlic

contractiorr.

4.1.9 'I'heorern [62]

Sllppose that {,'1, }il, is a uonempty closed subset of a co[lp]ete metric space (X- d) arrd suppose

J : t-t!.,A, - UiirA; is a mapping satisfving the follorving condirions:

(l) /(,1,)!.'1,11 for I S i 5 m. t'here 4,,n1 : 1,.

(2) 11(f4 f11)<vkt(t,v)), for all r e A;, a€ A;a1; i€ {t.2. ,rn}.

rvherc Am+r - .4r and e., : [0, 1) * i0. 1) is a function, upper scmi-contirruous from the right

and 0 < ?(r) < I for t > 0. Then. / has a FP z e n!rA,.

4.1.10 Definition [25]

Assumc that ( bc a nonempty set and lct x € x. An element ys e l( is called a bcst approxi-

nratiorr in 1i if

dQ,K) - d1(r.ys). rvhere d(r,K) = ]p*d(,.y)

If cach r € _{ has at le&st one best approximation in K. then I{ is callcd u proxirttinal set.

4.1.17 Definition [25]

l'lrc funcr ion H1, : P(X\ x P(X) - fir. dcfined b1'

Hp(A. ts) - rrl&\{supp(o. B). supp(,4.6) }
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is called a partial Hausdorff metric on P(X)

4.L.12 Lemma [25]

Presune that (P(X),H,) be a partially Hausdorff metric spacc on P(X)' lI v A B e P(X)

and for each a €,4 there occrus bo € B satisfi.es d1(a.B) - d1(a.b.) then Hp(A'B) > d1(a b.)'

4.2 Fixed point of F-rational cyclic mappings on O-complete

PMS

The results given in this section have been presented in 172]'

Supposc that (X.p) be a PN{S, through out of this section we mean by A, be the set of all

nonernpt)' closcd subsets of X.

4.2.L Definition

Assume that (X.p) is a PNIS, yt € L, lor i-7,2, ,m, E:U\-rV where m € N A

nrappingf:E-EiscalledanF-rationalcycliccontractionifthereoccur-F€Fand)€lR+

s.t.

1 I (V;) 9V+t.i - 1.2,...,m. rvhcre Y-11 - V1,

2. forr€V;.lt el't+r.i-7,2-....rn, rvittrp(/z /y) > 0, rve hare

rvhere

l + F (P (/u. fe)) I F (]7r Q'Y')) '

11r @.y) : ap(r,y) + br' @, f r) + cp(v, fa) + dplr,lv) + ep(v' f r)

. ,pQ, f r).pla.la)+L r+pla'

(4 3)

(4 4)

and

a.b-c,rj.e,12 0 rvith a+b+c+d'+e+l<7' (4 5)

Thc rnain result of this section is the following'
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4.2.2 Theorem

Assurne that (X. p) be a O-cornpletc PN{S. yi € Ar; i - 1. 2. . . . m u'here m € N and E- :

Ui1Yi. Supposc that /: E - -E is an F-rational cyclic contraction. Then.

1. / has a unique FP: € -E;

2. p(:- z) - 0 and z € n-ar Yi;

3. for any r0 € -8. thc sequelce x.: f"xx- converges to : in topology r(p).

Proof, Suppose that r0 € -E be an crratic point. Then there occurs i6 s,t. z0 € Y,o. so

thcre is ;r:1 € l4o+t $,here \ - fxs. Continue in this process we call construct a scqucnce

+, - fr,,-t - fnts €V,+". If rn= rn*t for some for n € N. then r, is a FP of / From

noN or a-ssrune that :r" I r,11, V n e N arrd let p. : p(x",r41), so p. ) 0 V rr € N. Since

f : E - E is an F-rational cyclic contractions. from (4.3) and (a.1) \\€ have that

Sirrcc p(2" r.r,+r) S p(r,, y. r^)+p(r,. r^-,)-p(r,. r,). ,E is strictly increasinS and zGfifi1ff,jd <

p Q". r.+t\. the above inequality bccomcs

A+ F (p") < F((a+b+d)p" t+(c+d+t)p"+ (c - d)p@",4)) (1 6)

Since .l > 0.

F (p") 5 A + F (p") 1 F ((a +b + d)p" 1+ (c+ d+ t)p- + (e - d)p(x".r,,)).

Ilut, l' is strictlv increasing. so \ve deducc that

p" < (a + b + d)p,,,1 + k+ d+ t)p" + (e d)p(r",r,,)). (-1.i )

Bl svuurctr)' of 2 (e,,11 , r" ) : p(r".r,11). and using similar argumerrt a^s abor,e one can

cp+

r+r(p") - I + F (p (2". r,+r))

: )+F(.pffr"-1.fr,,))

^ | up,r^ r..r,,r bp(r,,-r..{nr.'I
\ 'cP(t,.r,'\'

(r"

1r,(-

(r,, r.r,,*,) 

)

:Ln+l

) pl'"
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dcducc t hat

l+ F(P(2,11.2,)) : ,l +F(P(J4-ft"-1))

S f ((o 1c+e)p. r + (b+e +l)p"+(d- e)p(x,,'t,,))'

'I hus.

F(p") 5 )+F(p") S F ((a+ c+ e)p.-r + (6+e + l)p" + ld c\p(t".t,,))'

s )rich irlplies that

p. l la r c+ e)p, 1t (b * e -r t)p"'r ld e)Pll^ :L:n) ( 1 8)

Irlding up. equations (4.7) and (4.8) rvc get P. ! 3p,-t. rvhcre J : ;*#+k < 1. rthich

is a consequencc of 14.5). Hcnco.

P, < P,-1, Vn €N (4 e)

Using property(P2) of partial metric. equations (4.6), (4.9) and the property of strictly incrcas-

irrg of I rve get

.\ +r(p") { fl((o +b:d)p,,_1 +G+d+t)p"+(e _d)pe".4))

! f ((a+ b+d)p"-1+ (c+d+l)p,-, + (" d)p" ,)

= f ((o+ll+c+ d+e+l)p"-1)

< F(P" t)

Ht:ncc. .\* F(p,) < l'(p"-:) V n e N. This implics

r(p") Sr(p"-r)-I<. 5 r(po) -rr.\, Vrr€N (1 10)

trncl so limn-1-F (p") - ,'c. Bl- the Property (F2), rve gct that ptr - 0 as n - *:c'

Norv, by (F3) there occurs t € (0. 1) s.t, Iim,-1-pffl (p") : 0



Bv (a.10). thc follorving holds V ? € N :

pl,F (p") pl,F (rh) < nApf; < 0

Suppose thattirg n - +cc in (4.11) rve deduce that

,I1;"ir" -,Ii-o("rl): o

lim.-1*npf; : g. (4.12\

By using the continuous function 9(;c) : ;rl: r e (0. cc), we get that

(4.11)

(4.13 )

Norr'. lry using the limit comparison test with a. = p,, b^: n i and cquation (4.12) rvc cnsure
+6

that thc series ! p, is convergcnt. This implies that {r") is a O-C-seq. Sincc E is closed irr
:1

a 0-conrplcte pilrtial mctric (X,p) . E is also 0-complcte and there ocLurs : € I - L-11rl, s.t.

(1. 1l )

\oticc that the iterativc sequence .{r" } has an infinite number of tcrms in lzi for each i - '1. .... m.

Hence. there is a subscquence of {r" } in each I{, i - \, ...,m, which converges to .z. Using that

each i'i. i: 1..... m. is closed. *c concludc that z € apr/i.
\['e shall prove that z is a FP of l. Using the triangle inequality (P4) of P]!IS and (4.4) (

n'hich is possible since : belongs to each V.) to obtain

p (2. l:) < pG.q+t)ip(s,a1.Jz) p(r,+r.r,+r)

< p(2.r"+t) + p(fx", fz)

< p(:.s"+r) + ap @". z) + bp (r". r"+t) + cp (2. f z) + d.p (r". f z)

iep(r^*1..,*,4i?**4 (415)

Lrsing Leruma 1.].3 part (o) and pa^ssing to the Iirnit $'hen rr - t iI (.1.15) \\'e ol)tain llrat

(1 c - d)p (:. /:) < 0.
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and hclce

p (", J,) :0. (4.16)

Norv by using triangle inequality (P4), (4.14) and (4.16) we deduce that p(fz,Jz) - 0. Ttrere-

fore, by (P1) rve get f(z) : z.

Firrally, rve will prove the uniqueness. Iet u be another FP of / in E. with p (u. z) I 0. By

thc cyclic character of /, rve have u- z e ni!1V. Since / is ar F-rational cyclic contraction and

using the property (P2) of partial metric. u'e lrave

\+ F (p(u.z)) - A+ F (p(fu. fz))

. ,( op\u.rt- bp\tr.u), cp(:.?) 1 dp\u..t, "O,r.,, \
-t 

P\u 'l ' 1'P\z'!: ) I
\ t.p(u.21 /

< F(("+ b + c + d.+ e)p(u,z)),

rvhich is a contradiction deduced ftom the strictly increasing property of -F and being o. +

b+ c+d+e < 1. hence z: u. Thus z is a unique FP of /. r
By taking I(n) - a 11r1"; in Theorem 4.2.2 we get the follorving corollarv.

4.2.3 Corollary

Suppose tlrat (X,p) is a 0-complete PNIS. % € Lo; i = ),,2, ,m rvhcre rn € N and.E:

uf,4. Suppose that f : E - .E and the following conditions hold:

1 /(I{) q V+yi:1,2,.... m, rvhcre V^+t : Vt,

2. thcrcoccurs)>0s.t lor r eVi, A €V;+t, i: 1.2, ...,m, *ith p(Jt.fa) >0. rve have

) + 1rr (p ( / z, /y ) ) < ( "r' i'' u ) 

::ff i:i ;,-^yri !;J,)i,in 

a, r u t 

)
. I opv, +-bplr.lr) , cp(!.\il. dp1r./9) \- /n 

I l ep(y. Jr\ rt'{i;\1tijl't )

rvlrere a. b, c, d. e,l ) 0 and a* b+c+d+ e *l < 1. Then,

1. / has a ulique FP z e E;



2. p(2. z) - 0 and z € aitYrr

3. for al1'r0 € E. the scquence rcn- J"x6, converges to: in topology r(p)

Bl takirrg i-(" ) = -] rn Theorerrr ,1.2-2 s'e gct thc follon'ing corollarl

4.2.4 Corollary

Srrppose that (X.p) is a 0-complete PN{S. % € Lp;i= 1,2, ,m whcre rn € N and-E-

.-,i'l,lt. Suppose that /: E - E and the follorving conditions hold:

L lM) e V;11,i- 1.2.....m, u'here V-*1 : tr2,,

2. thcre occurs l > 0 s.t. for r € 14. rt €V+t, i:1,2,...-m. with p(/ir./9) ) 0. rle have

l+
ap(r.y) + bp@, fr) + cp(a, fa) + dp(r. Jy) + ep(y. ft)

,r'lrcre n.b.c.d.e.l ) 0 trnd o1i.r+ c+d + e *l < 1. Thcn.

1. / htrs a uniquc FP: € E:

2. ,p{--.:) 0 tnd:. 'alI;:
3. for anl z6 € E. the sequcnce rn: 1"4, convcrges to: in topolog)'7(2)'

4.2.5 Example

Presume that X - IR is equipped rvith thc usual partial metric p(:r'a)- max{ r. y} Then.

clcarly (X.2) is 0-complete. Suppose V1 - t0,;] , vr: [+,0] . v'. : [0,,ar], V, - [fr.0] ana

D-r!=J.Definc/:E-Es.t..fr:f Vre E.It is clear that f (Vi) cV+t

Take .\ : ln(4). a : ] and l, : c : d - e : I : +. Suppose that r € y. and y € li+r s.t.

1

\/p\lx.Ja)
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citherrl0orgl0,then

p(f r. f il: -'..{l+ ,l+l}
= ]rua*{ 

rl,lyl}
I

- 8P(r, Y)

- (nltlsoa,ot (4 17)

\o\ lake la for both sides of (4.17) \€ get

tn(p(fr. fy)) = r"ttlltilrt, ,ll

= tn(4)r ln(]p(r,y))

s In(a)+r,,(]ri,.u)+ fr(,'/,) + 
f,o(u. lil + f,nQ'fu)

I t Plr, J r)P(s. I s) 1Lua\s'l'r)t i t rrt-Ol )

Helcc,

tn$) + F (P@, aD ! F (17 1 @. e))'

'l'herefore. a]l the conditions of Theorem 4.2.2 are satisfied and we deduce that / has a unique

FP : : 0 € nL, v.i and P(2.:) : 0 holds true'

4.3 ei"i6-W.rdowski type generalized multiralued maps in PMS

hr this scction. we prove common FP theorcm for a pair of multivalued 'F ilr proxirninal

nappings satisf-ving Ciri6-\\'ardorvski tvpc contraction in P\lS

Supposc that (X.p) bc a P\IS. 16 € X ald S.?: X -' P(X) be the ntrrltifunctit.rus trtt -{'

Sul)posc that.rl €,516 bc arr elcruenl s.t. p(zs.516): P(rs'21) Supposc that :r2 € fxl bc

s.t. p(rr. frl) - p(r1.4). Supposc that rJ € Sr2 bc s t. p(r2 Sx2) - p(4' 4) Contintring

tlris proccss. \r'c construct a Sequencc r^ of points in ,X s.t, r2,*1 € Sr2n and t2n-2 € 7:t2,,11-

rvherc n : 0. 1.2..... AIso p(rz,.Szz,,) : p(rzn,r2-11)' p(t2,,a1,Tx2.11) : p(:r2n i1, t2''4) '

\\Ie dcrrotc this iterative sequence by {TS(r.)}. \Ve sav that {"S(r")) is a sequence tn X
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generated bl' J0.

Suppose that Q bc thc set of functions 9r : [0, oo) - [0, oo) s.t.

1. .,: is upper semi-corrtinuous;

2. p (t) < t. for each t > 0.

Suppose that ip signih' the set of all decreasing functions p : (0.:c) - (0. oc).

\\'e begin rvith the follos'ing defi.nition.

4.3.1 Definition

Assurne that (X.p) is a complete P\IS. The mappings S.7 : X - P(X) are said to be a pzrir

of Ciric-Wardo*ski type generalized multivalued I, - V-proximinal contlaction, iI there occur

u € Q arrd p € iD s.t, Y x.y € X ivith p(?o,7y) > 0.

p (p@,u)) + F(Hr(Sr,Ty)) ! F (,1,(LI (x.y))) (.1 18)

rvherel-€Apandr)0.and

.\t1t.t111 -.* {p(,.y). 4!:9!)1)!Jut .p\x sx) pts'Ta) .pr.r.srt.pry.Tst} ,.,.,s,"'*' l''- " l p('r'.,') l-p(5: rvr )

Thc follorving thcorcm is onc of our mairr rcsults.

4.3.2 Thcorem

Suppose that (X,p) is a PN{S and S.T : X - P(X) are said to be a pair of multivalued

mappiugs s.t.

( I ). (S. I) are pair of conliouous mappings.

(2). (S.f) are pair of Ciri6-\\rardos'ski type generalized multilalued F V-proximilal

cortract.i(xl .

-t'hen the pair (S. 
") 

has a common FP u in X and p(u. u) : 0

Proof: \Ye begin rvith the follo*'ing obscrvation:

If. 1I1(y. r) - 0. then clearly z : y is a common FP of (5.7).and there is nothing to prove

and our proofis complete. In ordered to find common FP of both S and T for thc situation rvltelt

-11(y.r) > 0 V z.y € X rvitlt.r f g. \\'e construct an iterative sequencc {7-S(;r,)} generate<l bl
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\I(r2;,r2i*1) : ^^, t 
pr,,,.,2,,, t. tul*ili;lr-,,",,ii;i'3lj:+;;, ];:,,,' J

t pft2,. Sr2,). p(r2;+t.Trz,-i )

^^* t 
t\,r,.,r,.,r. 4^fi;#Ti;#a r'', 

i',il;j,1',11'.,11., l
t pl r2t- x2t.) J. pl x2t . t.-t'tt.2) J

max.{p(r2;, 12;11) , p(:4;+r, tz;+z)l .

l[ for some i € N', -lrf(rc2,. r2,+t) - p(n2,+r, r2,+z), thert taking (4.20) into account. \\'e get thil

r0. Then from contractive condition (4.18) and Lemma 4.1.8, we get

p (p (cz;+t, r:2,+z)) + F(HpQ12,.Trz,*, )) < F (O(M (r2;. r2;a))7

V i € NU {0}. rvhcre

t' (p(r2,4.12;12)) + F(Ho(S4,,Tez;+: )) 5 F (g(lul (r2,a y, t2i12))) .

On using the property of @ and from (,F'1) , rve get

;- (p (12;11. r2i12)) + F(Hp(Sr2i.Trz,+r )) < F (p(r2,41. r2.,,2))

V r € N U {0}. Since, $ (p (x:2i+r, r2i+2)) > 0, ivhich give contradiction, yielding thcreby

l[ (t2;a1. r2i12) - p(z2i+t,xz,+z). Vi € N+.

'l'lrelcforc frour (4.20) and b1, the propertl, of ,F, d arrd r.r. rve get

F (p(t:2i11. .t:2ia2)) < F (k (p(r2i. r2,.,1))) u,(p(r2,. x2,a1))

< F (o (p(q,, x2,*1))) .

F (p(r2i',1, r2;a2)) < F (p(r2;,r2;s1)).

It follo*'s ftom thc above iuequality and property of (.Fl) that

(4.20)

(,1.21)
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p(rz;+t, tzi+z) < P(rz;, rz;+t) Vi€N+.

l'hus {p(r2.-1, 12,12)} is a decreasing sequence of positive real nurnbers Consequentell' liout

(4.21). l'e have

F (p (r2;a1. r2;a2)) < F (p(r2i, r2i+t)) - { (p(rz;, ra+t))

< F (p(rz;-t, ur)) ,1, @@z;-r, rzt)) ,t, (p(rzt, rzi*t)) .

As U is a dccreasing fulction, we get

F (p (x2;a1, r2a2)) < F (P@z;-t rz;)) - 2ty (p(t2i 1' 4;)) .

Repeating the saune process. wc get

F (p (r2,a1. r2;a2)) <f (p(r6,11)) rul',(p(to.r1)).

Sincc ,E e A1 . letting the limit as i + oc in (4.22) we must have

(.4.22)

lim F (p(t2;a1,r2i+2)) : oa <+ Iimp(22,.'1,rzi*z)-0 (4 23)

Furthcr, by (P2) we havc the follou,ing equaLity

lim p (r4, r;) - Q. (4 24)

Next. 'we rvill show that {2.}p, is a C-seq ir X. Suppose, to cortrary that' {z;}p, is not a

C seq in a completc PMS (-)(.p). Then there exisit s > 0 and trvo sub-sequences {r;1s1} and

{r;1r1} of {r;}p, s.t, i (k) > j (h) > t and

n (tig.1, r,1p1) > e,

rvhich yields

I (z;1r,y' z;1ty 1) < e
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Applf ing the property (P4) and inequality (,1.25) . r-e get

: ! p (rip4,r4r1) < p(c.71*1,2;16)+1) +p(rj(k)+1,2(r)) p(rj(*)*r,rr(*)r,)

5 r (x i61. r ip"1+r) + P (t i61..t, t rluy) + a (rr'1*1' r,1*y) - r (r;1t1, z11ry)

< 2p (ria1,ri61*r) + I (r;111. ,,1*,)

< 2p(rj$),rj$)*,) + P (r;1u;. r,1u1-r) +p(ru,o, r,r;(tt) -r(r.1*y r.r4ty r)

< 2p (r i p"1, t i1*1*,) + a (r;11;. r,1u;-, ) + i, (r4ry,, r4*r)

1 2p (r ig,',, t i1x1*, ) +. + p (r;rrl r, t.(,t)) ,

l'hich on rnaking A - cc. yiclds

J9-p (r;tul' rntol) : t.

I'urthermore. from (P,l). (4.23) , (4.24) and (4.26) , lve car get

ol$- I (rr1oy, r,1*y*r) - t.

ol$- a (r;10;*,' rr(k)) - €'

and

*l$-p (r;1r1*r, ,i1o;*, ) :t. (12t-)

Also frorn (4.24) there occurs a natural number ig € N s.t,

P (r.1r';. z;161*t ) : ; 'na i' 
(';1u1 'r1*1-,) - 1'

V i. A > i9. N-oN we claim that

n (Tt4r1.Tr,61) - p (r,1ry11. z;11y11) > 0.

(4 26)

(4.28 )
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Suppose on contrary that, p (rl(r)+t, rr(r)+r) : 0. Theu

e ! p (r,61,'t'i1r1) <l(z;1s1.r;1p)+r) +l(2,10,*r.'71r1) - P (r,1r1*r' u,111*r )

5 p (r,1s;. ,;17,1*, ) +r(r,16y*,.rr,t)+r) *2(z;(*)+r'r.r(rt) p (rr1*11'r'r;1t;r r)

< P (t;11"1, r"p"1*, ) +r, (r,i11*r. ,-,r)+1) +p (';(t)+r,'i(t))
ET:< 4+o+ 4:r'

rvhich yieltls a contradiction. thus (4.28) holds. Then it follows from the contractive condition

(4.18) and the property of u th&t

u (r (rar;,,i1rt)) + F (Ho @"61ar,l,tol*,)) : d (r (rar'1' z161)) + -E (fl' (sz;111' 7z'111))

< F(,i,(M (z;1s;,ri(,t)))). i.e.. (429)

F (Ho (n;11"1*r. r,(r)+r)) < r (o (,vr (r;11y'r; (t)))) '

By the dcfinition ol M (r.y), (2.9), (2 10) and after repeating the same process' we get

/jX.Lf (r;111,2;6;) : e (4 30)

Puttirg Lr - oc in (4.29) ard takiog into account (423), (4'26), (427) (430) propertv

( r,g') "ra 
uDDcr semi continuity of q, rve find that I (e) < lt (o (s)) ! -ll (e) . ri'hich gi'es a

\,/
contradiction. Thus. s-e conclude that

' 
1T- P ('t' "i) 

: o'

i.c.. the sequcnce {",S(z;)}pr is a 0-C-seq Therefore, the O-completeness of X ensures ttrat

there occurs a poirt u e X s.t. {"S(z;)} -r u. i e,,

Iim p(u, r;) : [. (4.31)
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Norv,

F(p(u,Tu)) < F(p(u.:t2;ay) i p(r2;a1,Tu))

< F(p(u,:12;11) + Ho(Sr2;,Tu)) by Lemma 4.1.12

< F(p(u, r2;1)) + F(Ho(Sr2;,Tu)). (4.32)

Bv using inequality (4.18), *'e have

lt (p(u,Tu)) + F(Ho(Sr2i,Tu) < F($M(r2;.u)) (4.33)

rn-here,

.\l\r2;.u) ^^^! 
o\"''ut'4i1"9!'J'E]!''r'''''i:;idj,:i';1" I

I Pt"''Sx2i 't'lu Tul )

| 0t,,,,.).*#i#?,,ot+i,;;jl*:I,, \: ,"ax t ,'r"""'li,*,i,ro,i';" l
Taking Jimit i - oo, and by using (4.31), we get

p(r2i,u) : p(u,Tu).

It follows from ttre above inequality that

(4.34)

F(p(Tu,Tu)) { F (! (p (u,:tu))) - 'i,(p 
("'")) 

'

*'hich implies that

p(u.Tu.) < p(u,Tu).

Ihat is a contradiction, hetce p(Tu Tu) : p(u'Tu) - 0 or u € Tu Similarlv by using (4 31)'

Lemma 4.1.12 and the inequality

r! (p (u, Su)) + F(p(Su,u)) < F(p(Su,22"a2) + p(r2"a2, Su))
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'\\'e caD sho\r that p(Su, z) : 0 or u € Su. Hence the pair (S' ?) has a common FP u in (X. p)'

Norv.

p(u. ") 
< P(u.Tu) + P(Tu. u) < 0.

'fhis implics that p(u, z) : Q.

.1.3.3 Dxample

Presume that X: R is equippcd $'ith a usual partiirl metric P@.u) - rnax{(r ':v )f It is

obvious that (X.p) is 0 complctc P\lS Dehne the mappings S.7 : X - P(-Y) as follos's:

tr 1 l ll 2 l
srr) -- [i...;r] and rrr) - 

L5x 5r] v r r x

'l'hcn S, ? is a pair of continuous mappings. De6.ne the function F: R+'R by F(r) :h(r)

and for r - 2 and I : 3. we have

(nP(s(2) 
"(3))). {,([3'i] t; 3])] : il

Dcfinc 1, : (0. oc) - (0. cc) by ,l (r) - 5o(,+1)L and let Q : {0. cc) - [0 rc) be given br

o(t) - *# It is casy to see that S.T is a Cirit-\\'ardo..,ski r1'pe gcncralized tttrtltir-trlttorl

I' V proximinal contraction on ,Y. In short t'e proceed as follorvs:

L.H.S: u (p (r, y))+r(fl,(s r.rs)) = mr,i+l +r (*) : #+r+l'c(1 8) - fi+oznssz -
0.26666.

R.H.S:I (r,r (,[I (2, Y))) rvhcre

( pQ.St1 p\a.T!) p(r"9r) p(v'I!) ^ - .l.t1(x.y))max{r(r.u).ffi..pG.5I).p\a.la)|.

Norv for r - 2 and y - 3. rve have

104



( pQ,st,*'* 
t
( pQ,s),

-^" 
t
r 810

max 
t5' 5' 7'

p(2,S(2)).p(3,7(3)) p(2,S(2)).p(3,7(3))

M(2,3) - 1+p@jr,l+p(s1rl7(3)r'
e(2, s(z)), p(3, z(3))

e(r,l;,il).P(3,13,:l)) P(2,t;,"41).P(3,1;,:t+i(2, ,,.{r(1?l*Il?-l

p(2,1?,tD,PQ,I?,,2)

24 8 181

7'i'T l- "

Thus.

In(p(2.3)) - ln(5) - 1.60e4.

Hence

0.2666 < 1.6094.

Hence all thc hypothesis of Thcorem 4.3.2 are satisfied. So (S,7) has a common FP.

4.3.4 Corollary

Suppose that (X,p) is a complete PN{S. The mappings S, ? : X r P()() be a pair of multiralued

-E V proximinal contractiou. if there occur ty' € i[ andp € iDs.t,Vz.y eXwirhp(Tr-Tg)>

0.

,t @ @,y)) + F(H,(Sr,Ty)) ! F (( (M (r,y)))

rvhcrcF€Apandr)0,and

.\tv. ) . *u* {p1r. p(x sx) plv'Tv) p\x'sx) p(a'Ts).p1r. 
sr1} .

Thcn the pair (S,7) has a common FP u in X and p(u, u) : Q.

4.3.5 Corollary

Supposc that (X.p) be a PN{S and S.T : X - P(X) are said to be a pair of multiralued

nappitrgs s.t.

(1). (S, 
") 

is a pair of upper semi-continuous mappings,
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(2). (S, Z) is a pair of Ciric-Wardorvski type generalized multivalued F - V-proximinal

contraction.

Tlren thc pair (S,7) have a common FP u in X aod p(u,u) - 0.

4.4 Applications to system of integral equations

In this scction applicatiorrs to system of integral equations are presented to shol. thc usabilitr'

of our previous results.

Consider the integral equation

u(t) - h(u(t)) + [ Hg,r)(qr,u(r11 dr, for all f e [0, 1], (4.35)
Jo

u'here, (: {0. 1] xR +lR, I{: [0,t] x [0. 1] - IR ana h: IR---r [0.cc) are functions (see [72]).

Presumc that X - C([0, 1]) be the set of aLl real coutinuous functions on [0. 1], endorved

with thc partial metric

p(u.u) - max{ sup lu(l) , sup u(t) }, for all u,u € X.
t€Jo,rl r€[0,r]

Clearly. (X,2) is a 0-complete PN{S.

Suppose that K.tt e X. rc6,4s € 1R s.t. V , € [0, 1] rr'e have

rcs < r(t) <n(t)<qo. (,1.36)

(4.37)K(,) < h(u(r)) + 
lo 

HO,r)eO,\O)) dr,

and

,7(r) > h(u(r)) + [ ng,lqg, x1r1) ar. (4.38)
Jo

Assume that r € [0. 1], ((r,.) and h(.) be decreasing functions, i.e,,

ic.y € IR.z ) y implies ((r,t) !((r,y). (4.3e)

106



and

Assurne that.

h(t) ! h(y)

fl

,ti3ii,/n 't' "''s < e-^ for some '\ c (0 r)

(4 40)

(4.41)

and

sup l((r.u(r))l < sup lu(r) . (4.12)
.€[0.1] r€[0.1]

Dofinn a mapping / : X - X b1'

/("(t)) = h(u(t)) t 
Jo 

ult''lct' u(r))dr: t € 0 11 (l '13)

Also. suppose that V r.y € lR l\'ith (r ! 40 and g > l(0) or (r ) x6 and y ( r73) rve have'

n(u(r)) S ]e-) max{sup1.1s.r; lu(l) . sultelo,r; /("(t)) } (4 44)

4.4.1 Theorem [72]

Under tho assu[ptions (1.36)-(4.44), the integral equation (4 35) has a solution : s t : €

C(i0. 1l) 1.ith n(t) ! z(t) < ?(r) v , € I0. 11.

Proof. Define the closed subsets of X, L/r and U:z by

Li.y-{u€X:u<q}

aud

Lr2:{ueX:uln}.

Also defirte the nappirB f : U1t-) L'2 + LIIJ L:2 by

l@U)):/r(u(l)) + [' ,6,1111,.u\r)) dr' for atl t e [0 1]'
./o
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No\\' $'c provc that.

f (Ut) e Uz and f (U2) c U1.

Srrppose.u€Uy,i.e,,

u(r) < a(r). for all r e [0. 1l

Using corditiorr (4.39) and (4.40) rvc obtain that

(,1..15 )

((r, u(r)) 2 ((t, ?(')), for all r e [0. 1]

h(u(r)) 2 h(4(r)). for all r e [0. 1]'

'I'he abor,c irrcqualities with condition (4 37) imply that

ft ft --
Ittlt)) ' nruU\) - 

Jo 
H(r.r)((r. ulr)) (lr > h(4(l))- 

Jo 
nU.-tll.- nt'))dr -- 'lltt > K(t\'

V I € f0. 1]. Then p'e have f (u(t)) € Lr2. Similarlv' Iet u € U2. ie.'

u(r) > rc(r). for all r e [0. 1].

Using condition (4.39) ancl (4.40) *'c obtain that ((r.u(r)) 5 ((r'x(r))' for all r e tt l'

and

h(u(r)) t /r(ru(r)). for all r e [0 1]'

'l'hc above incqualities u'ith conditiorr (4 38) iurply that

rtt

Ilult)) /r1u1i,1.1 r / H(t.r)((r. utr)) dr <,t(A(t)) + / H1t.rt(1r't1r1) dr,i(/) < 4t/)'
Jo Jo

V I € I0. 1]. Then $'e have J fu(t)) e U1. AIso. rve deduce that (4 45) holds
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Suppose that z € Ur and I € LI2. Then from (4'43)' V t e [0' 1], n'e have

Ll(,(t))l : lh(,r(t)) + 
lo' 

u1t.,1q1,."1,11 a,1

< lh(r(t))l +l 
Io 

H(t,r)CO,x(r)) drl

5 rr(r(r)) * lo' 
,U.nr((r. r(r))l dr

{ h(z(t )) I * | o' 
V lr,,)1,,^*{.1,,0p,r, l( (,.,(.)) l, 

.s1y, 
l((r, u(") ) I )'lr

< h(r(,))l + ,l^*,/'a{,, 
"; P(t.Y)dr

! lir.(z(i))l+ |, 
lp(,.Y1

<f," \p(r, f')+ |e 
rp(r.Y)

-" ^(lre@ f,)+|r(,,u))

Thus.

,,,p,l/(,(t))l 
5 e l(]p(r. /r) + ]r(' v))

Similarly, u'c trave

,,,p,1/(E(t)) 
< "-'(lp(v, /v) + ]r(,.u))'

Ilcnce. frorn (4.46) and (4 47) 
've 

ha''e

,,"*{,llll,t l,f (,(,))1,,,,,p 
1 

/(v(t))l } <''(ip('' v) + }r('' /') + }r(v /v))

<" ^(ip(,,s)+|z(,./,) +!n@ fa)

+f,n,,, til +f,ri' f r))

Tlrercfore.

p(t,. fv)s " ^(ip(, c) * |r(,'/') +f,cru, fu) +f,,l'.' fu)+ |r(u'l'))

(4.46 )

(4.1i )
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and so,

tn(p(t t, f y))< .r + r, ( jr{,, 0 + !rp@. I 4 + 
lrnr,' 

f a) + !nG, f 0+ }r(v. /'))

rvlrich implies that .\ + ,F(p(/r, / y)) 1F(11t@,v)) is satisfied for -E(<r): ln(a) Vo€Xl'ith

o.:b- c- 1l: s- | and l:0. Hencc. all conditions of Theorem 4 2'2 hold and / has a FP

z s.t, .z € C([0, 1])with n<z(t)<?Vr€ [0, 1]]. Thatis,z e U11LI2 is a solution to (4 35)'

I

Next v'e rvill discuss the applicatiou of Theorem 4.3.2 in form of following Volterra type

intcgral equatiols
t

ult\ -- I Ktft.s,u(s))ds + /(t).'.t
0

(4 48)

(.1.4e)

V , € 10. 11. \Ve find the solution of (4 48) and (4 49)' Suppose that X - C([0 1]) be the set

oI all rcal continuous lurctions or 10, 11. endot'ed with the complete PNISs EoT z € C([0 1] R)'

dcfine supreurum norm as:

rvhere r > 0 is taken arbitrary. Then

r')
P,@'u'1 ' ma-* i sup.ll lu(/) u(/)le-"1 - \, -'-* 

I,.-eit 
, ^, )

V u.t, e C([0, 1].lR). With these setting, C([0, 1],lR, I ll") bec"mes a complete P\{S'

Norv we prove the following theorem to guarantee the occrrrence of solution of integral

cquations.

4.4.2 Theorem

Assume thc follo.,r'ing conditious are satisfied:

T| ..u(t): I K2(t.s. u(s))dr + 9(t)
0

max llu, ull, : -"* 
{,:;0",*,,r,, 

(r)}"-"n' 
},
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(i) K1.1{2: [0.1] x [0. 1] xIR ,R and/.s: [0,i] - iR are continuousr

(ii) Definc

Srrpposc therc occurs r > I' s t,

ma-x lI(1(r"s u) l(2(t s u)l < rc 'lM@'t)'1

V t.s € [0. 1] and u.u € C([0. 1],R), Nhcre

I max, r.{ / ).,rr ir . 4?#",4d1",;f@.'* "ii';ii*is,il}l ili ""' }
111., t) - max 

I nrax u(t).su(t), max'u(l) ri lf)t )

Then integral equations (4 48) and (4 49) have a solution'

Proof. BY assumPtion (ii)

f ._
Su(l) - /xr(t.r.utst)ds- /(l)'

0

t
f ._

Tt lt) . I K2tt. 
". 

i (s r)d, g(l)

0

f .-
maxrSu(/),7nu(l)1 - / ma-r'K1(l s u(s) K2(t's' r'(s)))lds

.t
0

t

< [ e' '\lM(u r')]c ")e'"dj'J
0

L

- [ .,-- ].L(u.t r.,r-"ls-t o,

t rP-''1,{I(u Y1t, I e"'ds
tt

< re-''lM lu ' u7t'! e't

< e-" llM (u'r:)ll"e't '
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This irnplics

max lSu(/). ?r(t) e 'r S €-'lllU(u rr) '

'l'hat is

max lSu(t). Tl(i)ll, ! e-" t.t/(u. r)ll''

s hich further imPlies

r + h{max llsu(t),7u(t) l'} ! In | 'a{(u' u)l 
"

So all the conditions of Theorem .1.3.2 are satisfied. Hence integral equations giYen in (4 48)

and (1.49) hara a unique common solution !
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Chapter 5

Common Fixed Point Results in

Dislocated Metric SPaces

In 1994, \Iatthews 165l intoduced the concept of PMSs and obtained various FP theorems ln

particular, he established the precise rclationship betweeu PMSs and the secalled t'eightable

quasi-mctric spaccs. and proved a partial metric generalization of Banach's coltraction map-

ping theorem. Later on, Neill iu [80] introduced the corcept of dualistic PMSs (DPMS) bv

extending the range R+ ----n R. IIe developed several conlections between partial metrics and

the topological aspects of domain theory' In 2004, Oltra et at [82] established Banach FP the-

orem for complete DPN{S. Recently many authors developed some FP theorems using complete

DPN{S for Banach's contraction principle and partial order respectively'

Hitzler and Scda [42] introduced the concept of dislocated topologies and named thcir cor-

resporLding gcneralized metric a dislocated metric They have also established a FP theorclr

irr complete dislocated mctric spaccs to generalize the celebrated Ranach contraction principle

The notiorr oI dislocated topologies has useful applications in the context of logic programming

sernantics (sec [43]).

In this chapter, rve continue thcse inquaries to firrd FP and common FP results in DPNIS

and dislocated metric spaces ln Scction 5' 1, wc use the notion of Hausdorfi metric on the fa'mily

of close<l bounded subsets of a dualistic PNIS (DPMS) and establish a common FP theoreru of

a pair of multivalued mappings satisfying Mizoguchi and Takaha-shi's contractive conditions ln
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Section 5.2. rve rrse the concept of dislocated metric spaces and obtain theorems asserting thc

occurance of common FPs for a pair of maPpings satisfl,rng nert generalized rational contlilct i()Irs

iu such spaces. In Section 5.4. applications to systcm of integral equations are plesellted to

shos, the rrsability of our previous result

5.1 Common FP results in dualistic partial metric space (DPMS)

The results presented in this section have been published in i59]'

\lizoguchi and Takahashi proved the followiug theorem ou complete metric spaces in [67]'

5.f.1 Theorem

Supposc that (X,d) is a complete mctric space and let the mapping S : X - CA(X) be a

ruultivalued rnap and rp : 10, +cc) - I0' 1) be an MJ-function Assume that

H (Sr, Sa) l tc(d(r,u))d(r,a) (5.1 )

V r. y e X. Then S has a FP in X'

\\'e usc the notion of }Iausdorfi metric on the familv of closcd bounded subscts o[ a dualistic

pirrtial mctric space and establish a conlnlon FP theorem of a pair of multivalued mappitrgs

strtisfS'ing \l'I-function Follorving is our main result

5.L.2 Theorem [59]

Presrure that (X. D) be a complete DP\IS S, 'i I X ' CBD(X) be multivalued mappings and

,; , [0. +oo) -, [0, 1) be an .Lf J-frurction Assume that

H1I$r'JY)!\'(D@'il)DO'v) (52)

\/ t. y e X. then therc occurs z € X s-t. .? € Szattd'z4.- Jz

Proof. Suppose that :Do € X and :l]1 e Srs If D Gs'ri: 0 then 'o - 11 and

H o(Sxo, J xr) < ,p (D (rs, rr))D (;c6 11)=Q
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I

'Ihus. Srs = Jrr. rvhich imPlies that

rr -r0€ Sl,n:lrr:J.Lo,andrvefinish Assume that D(:rs 11) >0 By Lemma 1316'

1{c can take r.2 € J:\ s.l,

'D(rr'rz)r'&19O4I@

lf D (r1.q) - 0. then rt - t2 and

LIp(Jq, Sq) < '2(D(q'q))D(t1,12) =0'

arrd so .,/r1 = Srz Ttrat ts. e;2 - 11 a Jxt - Sr'2: S:r'z and rvc firrishcd

Assrr rethat D(rt,r') > 0 Again Bv Lemma 1316 rvecantakc13 € Sr2 sr'

H t,(J tr Srz) ' Dltl't2)'D1t2.4t,1 
- - -;-

(5 4)

B1'repeating this process. r"-e can construct a sequence r' of points in X and a seqrlencc

.-1,, of elemcnts in CBD (X) s t'

r1;r e A1 :
Sti, I -- 2k,k > 0

Jr1, i:2f +1. k>0

2

D (ri,ri1t\ > 0

(5 3)

(5 5)

(5 6)

each j ) 0. \os' for

and

lD (rr. r;11)l <

rvith j ) 0. along rvith the assurlPtion that for
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j : 2k + 1, rl'e have

D (ri, tial)l

SinrilarlY lor j : 2k + 2' rve obtarn

2

Hn(Sr:lt , J tzt.t) - ,D{126 r21 '1)l
2

.? (D(:zx, rz*+t)) (D(:rzx. tz*+t) + \D (r*- tz*+t)l
2

( ;!Y--v:'t!) 1, i.,,.,,,\rt-\-
D (r, t, r.i) .

5

2

(;tD(rt t.t,)t ' t) 1oir.,_,.rrt
\2)
D lri 1.r,1).

It follorvs that the sequencc {D(r" r,11)i is decreasing and corrvcrges to a nonrregallYo

rezrl number t 2 0 Define afunctionu: [0 r) _- [0' 1) as follo*s:

'I'hen

Iirl suP 9 (() < 1.

<-t+

Using Proposition 1.3.18. for t ) 0 rve canfind d- (t) >0')1 (l st t { r ( d (l)tr implics

r,(r)<lrandthereoccursanaturalnumberNst't<D(r''r:'*t)<d(t)+t\1'hencver
n > N. Hence

u (D (z' r"11)) < )1' rvhcner"er n > N

II e (J :.2'11. 5r21,+z) + lD l1:: lj!]
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Then for rr = 1.2.3. .'

/:tDtx^ t. x^)l t) 
1A1r,-,.r"lrD(r".r"-r)l ..(r'- 2 )

! $(D@^ 1,q))lD(t" 1,r")

5 -'- {oi\,., ( D (x. 1,q))"1,} la (r, ' 
z';1

.- [,,,'*{uku(D(r,-r.r,)).,1,}l" D,.,-r'',,'- L l.n I ))

s [-*{d*utD(r,-r'"))'^'}] lDrro xr)l'

Put rnax{ma-x;\:ru(D(r,-r.,,)).1,}: O thcn O < 1'

D (2,. r,+r)l < A" lD (rs' rl)l (5 7)

AIso rve can deduce frotn the contraction that

lD (r,. /, )' 1 2Q" I tD 1rs. .r1 I
(5 8)

To provc that {r,} is a C-seq in (X. D) wc rvill prove that {r"} is a C-seq ln (X' ai) '

since 
do(r.v) -- D (r,9) D \a.r) '

clr(t,'t,+) : D (t^'t^+t) - D(t"'r")'

rloG^.x^+t) + D (r, r,) = D(r' r"+r)

< lD (2". r,11)l'

B1 (5.7). rve have

do (r,,. r,,a1) + D(r..t,,) < Q" lD(r0 11) '

tlr(t.,r,a) < O" JD (rs, 11)l - D @"'t")

< o" lD (26 r1)l +lD(r"'r-)l
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By using (5.8), we havc

'I'his implics t hat

4@-.r*r) < O" D(16.21) + 2O'-1 lD(i00 rI) '

dp (r,. r,*r) < Q" (3 2',:) lD (rs 11) '

dp (x^+t, r,+z\ < o"+1 (3 2;) lD(;re'r1)j

and

(5 9)

(5.10)

Contirruing in the saune way, t'c havc

dp(:r,+r t'r,+r) < on+1-1 (3 - 2':) lD(os'11) (5 1i)

Norv using the triangular inequality and equations (5'10)-(5'11)' we have

do(r^,r-,,^,) ! do@^,r,a) i 4(r-+r't^+z) * *dp(r'1r r''"+r)

< O" (3 2p)lD(rs,r1)l +O"+r(3- 2p) D(ro rr)l+ +

^,+r-r 
(3 2;) lD (rs. e1)

, Y . (3. 2;r Dtrs.rlt- 1-Q'

Siruilarll'. rvc can conclude that

dp\rn",' r,,) a ,l- t' - 2;) D (/o rr )

Now taking limit as n - oo of last two inequalities' \'e obtain that

,lim d, (r, r,1-r) : 0 : hm. d, (z'+"' r")

This implies

,lirl d; (r", r"+") - 0

'I'his irnplics that {r.) is a C-seq in (X' d;)' Since (X' d;) is a cornplete nletric space' there
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occlll's : e X s.t. r, +: ils 7I - cc i e..

)\Ldi@", ") - o

Now from Lcmma 1.3.12. rve havc lim,-- di (r", z) : 0 itr

D lz. z) tirn D (r,. z) - lim D (r". r,,)'

lim c'1, tr" r-) - 0'

lim iD (r,,. z-) D (2,. r")l = 0'

linr Dtr,,.r-) - liru D(r, r,)'

But (5.8) inrplies that

liur D (r". r,,) = 0.

It follos's directly that

lim D (2", o-) = 0.

This implies that

D(2..t- Ijnr D{r,,2) lim D(r,.r.) - 0 (5 12)

\orv. bv (5.12) . p'e have

d.r(z.Jz) = D(z.Jz)- D(z.z)

= D(2.Jz). (;13)

D(:.Jz)>0.

Norv frour (Py 31a) and (5 2), u'e get

So

So
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D (Sz, z) < D (S z, r2.p) i D (r2*p, z) - D (r2,a2' x2-',2)

D (4^a2. S z) + D (r2^a2, z) ) lD (e2a1 :c2a2)l

sup D (u. .9:) i D (rz^+2, z) 'l lD (r2a2' c,2.12)

6p (J4*a1. S:) + D (r2^,,2' z) i D (x2,',2' t2.12)l

H p (J q.*1. S z) - D (x'2,,*2. z) - \'D (rz"*z rz,.-t)',

9 (D (r2a1, z)) D (rz^+t, z) -f D (12,12' z) I D (r'2na2' r2"'2)

D(.r.t,rr.:) t D(x2,*2.2) + lD(12,12 r2,-2) '

Taking limit as n + ro. \1e gct

D(Sz.z)-9. (5,11)

Thus frour (5.12) and (5.14). ne gct

D(z.z)- D (Sz. z) '

Thus by Remark 1.3 15. rr'e get that ': € Sz It follolus similarly that z € Jz This cornpletes

tlre proof of the theorem'

5.1.3 ExamPle

l)r'csume thal ,{:lR.and Dlr.v)-- } l' - ul- } '"u'*{ 
r'v} Y r'v € X' Note that if d'isquasi

nrctriconx.therd;(r,v):ma-\{dp(x,y)'dp(v,o)}ismctriconX Hence' di(e v) : r-y\

and so (X. d;) is a complete metric space Also define mappings S' J : X 
- 

C'BD (X) b)'

Sr: l] (0, i), Ja:B(0,i)

11" (r@r,u{o-S) : -"* [;. i] u"a

r J JI
Ho\Sr.Jy) - toax [1, g]

I< - ma-x {r. y} < AD (r. v) '
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Thercfore. for p(l) - fi. all thc corrditions of Thcorem 5.1 2 are satisfied Also it is

clcar that V .r e X. the set Sr and Jr are bouuded and closed rvith respcct to the topologv

r(D) -r(do) Hence. we can shorv that (5 2) holds V r'y € X ic '

HoQt.ru)- ,, (o.ti i]) : i
Norv\{'ededucctlreresultforsingle-r,aluedsel{-mappingsfromTheorem5.l.2.

5.1.4 Theorem

Assrrrue that (X, d) is a complete DPI!'IS' S' J : X - X be two self mappings arrd 'p :

I0. lx) - [0. 1) be an r\IJ function Assume that

D(Sr, Jv) ! e @ Q.Y)) D lt,Y)

Vr. y€L Then S ald J have a comrnon FP

5.1.5 CorollarY

Suppose that (X d) is a complete DP\IS' S' 'i I X ' C BD (X) be multivalued mappings

satisff ing the following condition

H n(Sr. Js) < kD (x,Y)

V/.y€X.andAe[0. 1). then S and J have a common FP'

5.2 Common FPs of generalized rational contractive mappings

Ilr this sectiorl. rve *'ill prove the occttrcnce of comrnon FPs of tso self mappings irrr-olving

rltiorral exprcssions in dislocated metric space

Results givetr in this sectio! have bttrr published irr [60]
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5.2.1 Theorem

Assr.ure that (X. d) is a complete dislocated metric space and let the mappings S'T : X -'

X satisf.y:

d,L Si) d/(A"IA) drU IA) dr(/r'Sj)
lttSj.TA') ! o1 J1t1.t\- or-iii) 'o3 - ,t, ,i,-

(5.15)

V j.A €,Y. rlhetc a1.o2.ct3.o,1 arc nonnegative rcals tith ar+02-a3-a4 ( l ThenS f have

a uniquc common FP.

Proof: Suppose that js be an erratic point irl X and define lr - sjo and jz - T jt s't'

dt ut . jt) - dr (s jo.T j) .

Thcn

' dr Uo Sio) di (ir'Iirl , odtUo'Tit) 
dt\ir'Sio\

,tr(Lt.jzl < ait(jo.Jt)+a2- ltljo.i)) d,t,n.sr,

dL Oo. S jo) dt (j1.TJ)

dt Uo' it) dt 0t' iz)alAlioj) + d tJo.rr) + dr (jt' il)

< at,tt (io. jt)+a'Llt lJ1 J2J*"tffi#ffi

As (olr'ing to triangrtlar inequality).

d\to.ittdr\ir't.:\
dt(ir.iz) < atdtuo. jr) ' ozJt(jr'iz\ ' onit.k..i)i,ljo. jn'

rvhcrc

rit (it, j) < dL (jY jo) + dL Uo' jz) '

"ni,1i:t;1 * a,11s1 n o1*. tr,
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drtit.Lz) ' ("+) tdttio'tr)

< ldi (io. ir) .

rvhcre ): ffi. Similarlr', by repcating the same process for

,lt Oz- jil = d1(711'Sj2) - dtGj1Tj1)

\\€ get

Jdt \iz, is) < 'r'la' (io i')l '

ConseqncntlY. $.e get

Vlt Uz.+t.in+z)1 < \dt 02"' iz"+t)

< \2dt (iz,-r' jz")

< A2"-r dt ( jo jr .\ .

Hencc for an)' m > n.

dtU-'i*) < dL(j^,t'+)+dLU'+t'i-+z)i " ldL0^t'i^)

. ()" * ln+I + +A- ') dtUo,it)
A. frd,(jo'r,)'

drt),.i^). t- jd,(io t tJ

- 
0. as ttt-n + 

'L'

This iruplies that (j,) is a C-seq Since X is complete' thelc occlrrs u € X s't -7" - u' It
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follorvs tlrat u : Su. otherq'ise d.(u' Su) = z > 0 and r-e rvould then have

dt fu. Su) < d1 (t. j2a2) + dt ljz"+z' Su)

rltfu.Stt) ! dr (u, jz.+z) + d1(T j2,,',1, Su)

tlr (u. Su\ 1 dt @, jz^*z) + dt (Su'T jz"+t)

r/1 (u.5rr) < dt Iu. jz.+z) 1a1d1(u- j'2,,*1) + a2
tlt @. Su) .dt ljz"+r.'t )'2"+t)

th lu' iz"+r)

o,LeJfif]fi@n"o dtO.T j;il + A t*r,+r) - rlr (jz,*r'sr')
d1(u. Su\ d1 (72^*r.T n". t)

dt I u- jz^.2) + ol,t\u. j2n , 11 ' 
or@'

dr fu. iz"+t)

dtlu. jn,z).d1 (j2..1.Su) ^ d1(u Su)dt l)2n'1 j.2"-2 
="t"ffi -otitn1r*;'di;;*,.1 '.^r2n l su)

This imPlies that

: 1 rtt'.,,j2,+z)+o1 lrrl (u.j2,11)r *'r4ffifil! * "q!41t#jL:9 
*

zdt (iz^+t' iz"+z)"nffi'
rvlriclt on making n - :c givesriseto d1@'Sv) - 0 rvhich is a contradiction so that u: Sx'

Similarll'. one catt shov'that u - ?u and its uniqueness'

5.2.2 ExamPle

Suppose that -Y = 10. 1] be a dislocatc metirc space d1 :XxX-Xdefinedbl

il:rt\j.k\-;+n

Sr.rppose that S:X 'X be dclirtctl by

sj: !2j\ t
I3 J ''
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.\rrd 7' : X -' X is defiIred by

Tk-

NoTv
, 2A

dr(sj.sA-): i * r
Take j - ] and t : ] then u'e have

{10} '.,

i2kl25d/(si.st')-i, l--a, s 18
:0.2070.

Norv by using thc contractive conditiol rr'e have

dt(j.rk).dt(k.sj) +

.\sgiven tltat or t a2-a3ta1 < 1. Selectal =] o2-irr3-] anrlo1 - l' thel clcarl'

a7 + a2 + a3 + an < 7. Nou' putting 1 : ] and A : i rve BCt

d, ir. S i) .d, (A'. IA)
r1r{5i. It') S ot dr(i.A'\+ozfif t dJ

dt (t. S j) rLt (k.Tk)
on dli,rk') + d,G,ti) + du (ksi)'

dt (i. k\

0.207 < 0.1387+0.0972+0.2266+0.009044.

0.207 < 0.47 i5.

llencc. all the contractive conditions of Theorem 5 2 1 are satisfied'

5.2.3 CorollarY

Presune that (X, dr) is a complctc dislocated metric space and let the mappings S I : 'Y -

X satisfr':

5 - rr I, rtl-itt*,3) ,rtil6l'f-q:--o)-l
ta . jio. o)-A TtF. 'B--.T_l) . i

l 2\,/lI ,l l',1 2\(, -r 6J.\b r 0/I I I, I(j-e).(6 l;), l(a+01*\d- 6'-'- , ='4'b"6 e' ,jir- o)-A'-iJ,T.'B--.T_l) . iq:7,r{}.' jr_ri_ i)

dtF j.rk) < Ol

a3

di u. si).di (4. ra)
d/(J.Ii) L o2- 

-,1,\J.r)
dt o. s j) dt (k.Tk)

,tt WknanA + aGSil
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V j./i € X. $'here o1,42,o3 are nonnegative reals with ar+q2+ a3 < l Then S I havc a

unique common FP.

Proof: By putting a3 :0 iIr Theorem 5 2 1, *'e get the rcquired result

5.2.4 Theorem

Supposc that (X.d1) is a completc dislocatcd metric space arrd let the mappings S ?: -Y '

X satisfl':
dt (t, s (j)) dL (e. 7 (t ))

dr(S(j)."(k)) < a d1Q.k)+b 1+dru.A)

Y j.l; € X. rvhcrc a.b are nonnegative reals with a) b ll Then '9 T havc a uticlttc r:orttltton

FP,

Proof: Suppose that js be an crratic point inX artd dcfirre.lr: S(jo) and j2 - 71i'It t'

dL0t, jz): dr (s(jo) T(j1)).

Thert

1'his implies that

Sirrrilarly,

dt (tt. iz)
. dL ljo, s (joD dt ur. I (ir ))

< adtlJo.Jt),b-- 1_ d,lJ.N,dt
dt\
(io

(-
\11

dr (.i0, ir ) \
+ r)t lio..ir) )

. & lio. it ),\ \i t. iz\< a Qo.Jr) | D-;-. -i,- -

\tr. iz)

+

!
r(

)

).

l-
ir)
d1

jz)

jz)

+

I,

tl

1

(i

(i

adr (jo, jt) + bdl

ad1(jo, j1) + bd1

tt)

| + d, (t". i)

(*),,,^,,,
trdr (.ro,l r ) .

dt(jz,tz) - dL(jt,rz): dr (S(jr) ,7 (jr)) ,

s (5.16)
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d t \ S t j 2) .T I j t1 1'- uri1 r t r. r,, - oo" " 
ti' !'),t 

l''',i' " "t
,dL\J2'htL)tlJt ttt< tttltlJt.Jtl'o- | _ &\Ii)

< o,tt (iz. irt t bdt tiz.n) (J+#)
dt 02, ji < adL(jt,jz) +bdLO2, j3) '

This implics that

4 (iz, iz)

Consequcntl-v. l'e get

dr(i"'i,+t) rdr (i" r.j")

^2 

dt (j^-2, j"-1)

:

l"di (io,ir)'

To provc that {j,} is a C-seq, rvc ltave for any m > 7r'

dt0^,i^) < dL(i,'i.+) +dtU'+t'i-+z) i " i rllli^ t t")

< \^dLUo.jr) + t'+rdr (jo,jr)+ . +

)--1dl (io,ir)

! (.1'+ )n+1 + + A- 1)dr Uo jl)

- f tr-)r,,r0.r,,
- \r- ^,/
- Oas rtl. n+"x)-

(r1)'""'"'
A.^dr (jo.j1)

x2d, (io, ir) .
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IIcncc {j,,} is a C-seq. Since X is complete' for an1'u € X st' j" - u ald supPose

A - & @, Su) . Tlterefore rvc have

(u. Su) dt (", jz^+z) + dt Uz,'+2. Su)

dt (u.jz^+z) + dt (T (jz"+t) . su)

dL (u. jz,+ + d1 $u.T (j2"11))

< dttiz..2.u) arl1{ ir.j2,,1) -oo''" 
ti''t,,t,tiX:.t,1;.1 

,',1'" "'

0 r,\\it.t. j.t,,,:)
a < dt\u. jt,-t) -ad1(u j2"' r)- t,-l . d[t;:f

Putting n - oo , and j. -) u we get,

(1 - b)0

(1 b)

0

o d1(t. u) + b

a d1(u.u).

0,

0,

d1 (u, Su) : Q.

dt @. Su) d @.Tt:)
r + d1@,u)

which implies that u = Su It follorvs similarly that u: Tu No\\'' \1'e shorv that S and I

have a utrique comnton FP. For this, assume that u in X is a second comrnon FP of S and I

Iher

d1 (rr.t): &(Su.T"")

s
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l his implics that

(1 o) rl1 (r.") <

r a*
d1@.t) :

Ihis iruplics that tr: u, completing the proof of thc theorcm'

0.

0.

0.

| 
"u 

r, 1r.,, i 1,11 or + s (t) .

l"o 
rr1r,,. i(r)) rlr + h (t) .

5.3 Existence of a common solution for a system of integral

equations

lrl this scctior). s'c shorv that 'I'hcorem 52'4 can be applied to thc occurance of a contntort

solution of the s]'stcm of thc integral equations

5.3.1 Theorem [60]

Pl.esuntethatx-C([o.b].R).s'hereb>a20andrl1:.Xx-Y-./?bedcfirredllr

d.t I t.kl: nrax 1j (i) - ir (t) l-
i€ Ld,bi

Ji oz"""" "

Cortsider the follorving s1'stem of intcgral equations:

i (r)

i (t)

rvhcre. -{ =Clo.b).t€[a.b] cEand j 9.h€X'

Sr.rppose that 41. ft2 : la. b] x [o' b] x /? + Il are continuorrs and s t'

r, (r\ : 
l"o 

u, (t.r. j (r)) dr

(5.17 )

(5. 18 )
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and ft
c; lt) - I kz lt,r. j (r)l d.r

Vj€XandVte[a.b] . Then thc occurence of a solution to

occurcnce of courmon FP of S aud I'

Considcr

(5.1e)

(5.17) is equaivalent to the

and

i4 (t) G*(t) +g(t) - h(,)ll- Jt t4"'"' '" S A(:'t) (t) +BU A) (t) '

s herc

-{ii. Itlt) J(/) A{/) Jc \ I ct't'"

ThcIr the s1rstcm of intcgral cquations (5 18) and (5'19) has a unique cornmon solutiotr'

Proof: It is easily to check that (X d1) is a dislocated metric space Defirre trvo mappings

S.I:XxX-X by Sj:\+g atrd I, =G, +h Thcn

a(s(:),"(r)) =,Effi, lar (t) - Gk(,) +e(t) - h(i)l - v/i 1o:"*"'

au,s(r)) :,?,xI,t o, (i) +e(t) -r(r)ll- r/i E""o'' "'

and

d (h. r (a)) : 
ElI, l"* 

(t) + h (t) - A'(t)ll'\/T + d"-" "

Thus by Ttreorem 5.2.4, t'e get S zrnd ? havc a common FP' Tlrus thero oc cur-s a tttique

point r,€ X s.t. u: Su -7"- Norv c hare

j-s(.j)-Ft+s
an<1

j:T(t) C,+h.
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lc 
f)

Lft) - I /ir (r.r.i{r))/r'9(r)'

;rttd 
tb

iU) lt2 lr'r'i(r))dr- h{/r'

Thereforc. we can concludc that the sl stem of integral equations (5.17 ) has a rrniqLtc corrtrnorl

t-P.
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