Existence and Uniqueness of Solutions
for Nonlinear Functional Equations

Sami Ullah Khan
43-FBAS/PHDMA/F14

Department of Mathematics & Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2018



E L

. A TR
; D, p— :
Accession N _Li.& :7_/_‘2‘, P

LhO
)5 3b2
SAL

Nonlineas f ancHora "’M'(Efﬁ {
'\,Jm f"l;:/&‘ﬂ { PR '.‘r{.;fsw
1%
_ , . ,
Flrﬁ(CJ PO'W% 5o lren e L(L-Es@ ¢ ’.‘«'Vf@t?“ <

FUJS)J (r}((»"(‘! ;)f}!’r\.{s



Existence and Uniqueness of Solutions
for Nonlinear Functional Equations

Sami Ullah Khan
43-FBAS/PHDMA/F14

Supervised By

Prof. Dr. Muhammad Arshad

Department of Mathematics & Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2018



Existence and Uniqueness of Solutions
for Nonlinear Functional Equations

Sami Ullah Khan
43-FBAS/PHDMA/F14

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN
MATHEMATICS AT THE DEPARTMENT OF MATHEMATICS AND
STATISTICS, FACULTY OF BASIC AND APPLIED SCIENCES,
INTERNATIONAL ISLAMIC UNIVERSITY, ISLAMABAD.

Supervised By:
Prof. Dr. Muhammad Arshad

Department of Mathematics & Statistics
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad
Pakistan
2018



Author’s Declaration

L. Sami Ullah Khan Reg. No. 43-FBAS/PHDMA/F14 herebv state that
my Ph.D. thesis titled: Existence and Uniqueness of Solutions for Nonlinear
Functional Equations is my own work and has not been submitted previousiy
by me for taking any degree from this universitv. International Islamic
University, Sector H-10, Islamabad, Pakistan or anvwhere else in the
country world,

At any tume 1f my statement is found to be incorrect even after my

Graduation the university has the right to withdraw my Ph.D. degree.

C

Name ot Student: (Sami Ullah Khan)
Reg. No. 43-FBAS/PHDMA/F 14
Dated: 11/05/2018



Certificate of Approval

This is 1o certify that the research work presented in this thesis. entited:
Lxistence and Uniqueness of Sotutions for Nonlinear Functional Equations
was conducted by Mr. Sami Ullah Khan, Reg. Noo 43-FBAS/PHDMA/F 14
under the supervision of Prof. Dr. Muhammad Arshad no part of this thesis
has been submitted anywhere ¢lse for any other degree. This thesis is submitted
to the Department of Mathematics & Statistics, FBAS, HU, Islamabad in
partial fulfiliment of the requirements for the degree of Doctor of Philosophy
in Mathematics, Department of Mathematics & Statistics, Faculty of Basic
& Applied Science, International  Islamic  University, Sector H-10,

[slamabad, Pakistan,

Student Name: Sami Ullah Khan Signatures:

Examination Committee:

i) External Examiner I: ﬁ’/
Name/Designation/Office Address Signatures: ,/ 7

Prof. Dr. Akbar Azam

Protessor ol Mathematics,

Dcpartment of Mathematics,

COMSATS. II'T. Park Road. Chak Shahzad. Islamabad.

b) External Examiner 2:
Name/Designation/Ottice Address) Signatures:

Prof. Dr. Tayvyvab Kamran
Department of Mathematios.

QAL Islamubad. )
c) Internal Examiner: Ly
Name/Designation/Office Address) Signatures: -

Dr. Maliha Rashid
Assistant Professor

Supervisor Name: Signatures: k \ F\j@; ) 6\

Prof. Dr. Muhammad Arshad

Name of Dean/HOD: Signatures:
Prof. Dr. Muhammad Sajid, T.1




Plagiarism Undertaking

[ solemnly declare that research work presented in the thesis titled:
Existence and Uniqueness of Solutions for Nonlinear Functional Equations
1s solely my rescarch work with no significant contribution from any other
person. Small contribution/help wherever taken has been duly acknowledged
and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and University.
International Islamie University, Sector H-10, Islamabad, Pakistan towards
plagiarism. Theretore. I as an Author of the above titled thesis declare that no
portion of my thesis has been plagiarized and any material used as reference is
properly reterred/cited.

[ undertake that it [ am tound guilty of any tormal plagiarism in the
above ttled thesis even atier award of Ph.D. degree. the university reserves the
rights to withdraw/revoke my Ph.D. degree and that HEC and the University
has the right to publish my name on the HEC/University Website on which

names of students are placed who submitted plagiarized thesis.

Student/Author Signature:




ACKNOWLEDGEMENTS

First and foremost, all praise to “Allah’, lord of the world, the almighty, who gave
me the courage and patience to accomplish this task, and peace be upon His
beloved apostle Muhammad (PBUH). May Allah guide us and the whole humanity
to the right path.

I would like to express my sincere gratitude to my kind nature supervisor Prof. Dr.
Muhammad Arshad. Without his sincere piece of advice and valued guidance, this
thesis could never have become a reality.

[ also would like to express my sincere thanks to Dr. Jamshaid Ahmad, Assistant
Prof, Department of Mathematics, University of Jeddha, SA, for his generous
assistance and invaluable comments throughout the entire Ph.D. Program. I am
indeed grateful to the Chairman Department of Mathematics International Islamic
University, Islamabad, Pakistan, for his selfless cooperation throughout my research
work. The faculty at International Islamic University, Islamabad, Pakistan. in
general and the Department of Mathematics in particular remained encouraging and
supportive during my Ph.D. studies for which [ am grateful.

In performing this research and writing this thesis, [ received grate deal of help
from many people in various ways; I am deeply indebted all of them. [ greatly
acknowledge the cooperation of Dr. Abdullah Sheaib (RIU), Dr. Kifayat Ullah
(USTB), Dr. Aftab Hussain (KFUEIT), Dr. Gauhar Rahman (ITUI), Eskandar
Ameer (1IUI), Muhammad Nazam (IIUI), Latif ur Rehman (IIUI)}, Awais Asif
(IIUT), Tahir Resham (ITUT} and Qaisar Khan (11U1).

Finally, my appreciation extends to my father, Mr. Muhammad Alam Khan, Ex.
Add. Registrar, Gomal University, my mother, brother, sisters and wife for their

patience and inspiration during the course of this work.

viii



List of Publications

The list of the research articles, deduced from the work presented in this thesis,

published in the international journals of ISI/ non ISI ranking, 1s given below.

1. Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad and M. Jaradat, Common
fixed point for multivalued mappings in G-metric spaces with applications.
J. Nonlinear Sci. Appl., 10 (2017), 2550-2564.

2. M.M.M. Jaradat, Z. Mustafa, S. U. Khan, M. Arshad and J. Ahmad, Some
fixed point results on G-metric and Gb-metric spaces, Demonstr. Math.
50(2017), 190-207.

3. Z. Mustafa, S. U, Khan, M. Jaradat, M. Arshad and H. Jaradat, Fixed point
results of F-rational cyclic contractive mappings on O-complete partial
metric spaces, (preprint).

4. S. U. Khan and M. Arshad, Fixed points of multi valued mappings in
dualistic partial metric spaces, Bull. Math. Anal. Appl. 8 (2016), 49-38.

5. S. U. Khan, M. Arshad, A. Hussain and M. Nazam, Two new types of fixed
point theorems for F-contraction. J. Adv. Stud. Topology 7 (2016), 251-
260.

6. S. U. Khan, M. Arshad, T. Rasham and A. Shoaib, Some new common
fixed points of generalized rational contractive mappings in dislocated
metric spaces with application, Honam Math. J. 39 (2017), 161-174.

7. M. Arshad, S. U. Khan and J. Ahmad, Fixed point results for F-contractions
involving some new rational expressions, JP J. Fixed Point Theory Appl.
11 (2016), 79-97.

8. 8. U. Khan, J. Ahmad, M. Arshad and M. Zhenhua, Some new fuzzy fixed

point resuits for generalized contractions, (preprint).

ix



DEDICATED T0....

My parents, family, wife, teachers and friends

for supporting and encouraging me.

vii



CONTENTS

Preface

1 Preliminaries

1.1 Some basic concepts

1.2 Relevant results on G-metric and Gb-metric spaces

1.3 Relevant results in dislocated metric spaces

1.4 Single-valued and multivalued F-contraction mappings

2 Fixed Points Results in Generalized Metric

Spaces

2.1 Common fixed point results in G-metric spaces with application
2.2 Generalized Mizoguchi-Takahashi’s contractions
2.3 Fixed point results for new contraction in G-metric spaces

2.4 Fixed point results in Gb-metric spaces

3 Fixed Point and Fuzzy Fixed Point Results for

F-Contraction

10

18

19
31
39

46

62



3.1 Fixed point results for single valued mappings
3.2 Fixed point results for multi valued mappings

3.3 Application to integral equation

3.4 Fuzzy fixed point results for generalized contraction

4 Fixed Point Results in Partial Metric Spaces

4.] Introduction

4.2 Fixed point of F-rational cyclic mappings on O-complete partial metric

spaces

4.3 Ciric-Wardowski type generalized multivalued maps in partial metric

spaces

4.4 Application to system of integral equations

5 Common Fixed Point Results in Dislocated Metric

Spaces

5.1 Common fixed point results in dualistic partial metric spaces
5.2 Common fixed points of generalized rational contractive mappings

5.3 Existence of a common solution for a system of integrai equations

Bibliography

Xi

64
70
73

75
87

88

9N

97

106

113

114
121

129

132



Preface

In 1922. the Polish mathematician Stefan Banach established a significant fixed point theo-
rem known as the “Banach Contraction Principle” (BCP} which is one of the most prominent
results of analysis and considered to be the main source of metric fixed point theory. It is the
most widely applied fixed point result in many branches of mathematics because it requires the
structure of complete metric space with a contractive condition on the map which is easv to
test in this setting. The Banach Contraction Principle has been expanded in many different
directions. In fact, there is a huge amount of literature dealing with cxtensions/generalizations
of this important theorem.

A multivalued function is the one which takes values as a set. In the last forty vears. the
theory of multivalued functions has progressed in a number of ways. In 1969. the systematic
study of Banach type fixed theorems involving multivalued mappings began with the work of
Nadler [78], who investigated that a multivalued contractive mapping of a complete metric
space X into the family of closed bounded subsets of X has a fixed point.

The study of metric spaces proved a most important tool for many fields both in pure and
applied sciences such as biology, medicine, physics and computer science (see (62]. [971). Some
gencralizations of a metric space have been suggested by some writers. such as rectangular
metric spaces, semi metric spaces, pseudo metric spaces, probabilistic metric spaces, fuzzy
metric spaces, quasi metric spaces, quasi semi metric spaces, D-metric spaces, and cone metric
spaces (sce [3, 35, 40, 89, 90]) . Branciari [28] brought forward the idea of a generalized metric
space replacing the triangle inequality by a rectangular type inequality. Branciari advanced
Banach’s contraction principle in such spaces.

In 1994, Matthews [65] introduced partial metric spaces and got different fixed point theo-
rems. Actually, he expressed that the BCP can be generalized to the partial metric context for
applications in program verification.

Romaguera [91] introduced the idea of 0-Cauchy sequences and 0-complete partial metric
spaces and proved some characterizations of partial metric spaces in terms of completeness and
{}-completeness.

Mustafa and Sims [69] introduced the G—metric spaces as a generalization of the notion of



metric spaces. Mustafa and Sims acquired some fixed point theorems for mappings satisfving
different contractive conditions for more fixed point results on G-metric space (see 64 - 76 )
In 2014, Aghajani et al.[9] presented the notion of G, —metric spaces and proved thar the class
of Gy—metric spaces is practically greater than that of G-nietric spaces given in 69 .

In 2012, Wardowski [103] introduced a new type of contraction called F—contraction and
proved a new fixed point theorem concerning F—contraction. Wardowski generalized the BCP.
Afterwards Secelean [96] proved fixed point theorems consisting of F'—contractions by Iterated
function systems. Piri et al.[84] proved a fixed point result for F'—Suzuki contractions for some
weaker conditions on the sell map which generalizes the result of Wardowski. Later on, Acar et
al. [8] introduced the idea of generalized multivalued F'—contraction mappings. Altun et al. |7,
extended multivalued mappings with é—distance and established fixed point results in complete
metric space. Sgroi et al. [98] developed fixed point theorems for multivalued F'—contractiots
and achieved the solution of a few functional and integral equations. which was a suitable
generalization of several multivalued fixed point theorems including Nadler's. Lately Ahmad et
al. {12, 18. 46] revised the concept of F--contraction to attain some fixed point. and common
fixed point results in the discourse of complete metric spaces.

This dissertation comnsists of five chapters. Each chapter begins with a brief introduction
which acts as a summery te the material there in.

Chapter 1 is an overview aimed at explaining the terminology to be used to recall basic
definitions and facts.

Chapter 2 is focused to the new concepts called (g — F) contractions and generalized
Mizoguchi-Takahashi contractions for complete G—metric spaces and developed some new co-
incidence points and common fixed point results. Also, we prove some fixed point theorems of
JS — G—-contraction in the setting of generalized metric spaces, and to prove some fixed point
results on Gy-complete metric space for a new contraction. Most of these theorems are already
known from the literature, we include new alternative proofs and some general investigations
regarding the underlying spaces.

Chapter 3 is devoted to single and multivalued F-contraction mappings. e introduce
the idea of generalized F-contraction and establish several new fixed point theorems for single

and multivalued mappings in the setting of complete metric spaces. We extend the concept of



fuzzy fixed points to common a-fuzzy fixed point of generalized F-contraction in the setting of
complete metric spaces. Qur results unify and generalize different known comparable results
from the current literature.

Chapter 4 is devoted to introduce F—rational cyclic contraction on partial metric spaces
and to present new fixed point results for such cyclic contraction in (-complete partial metric
spaces. We establish a common fixed point theorem for a pair of multivalued £ —¥— proximinal
mappings satisfying Ciric-wardowski type contraction in partial metric spaces. We discuss
applications of our theorem and obtain the existence and uniquencss ol comuon solution of
systemn of mtegral equations.

Chapter 5 is focused on the concept of Hausdorff metric on the family of closed bounded
subsets of a dualistic partial metric space {DPMS) and establishes a common fixed point theorcm
of a pair of multivalued mappings satisfying Mizoguchi and Takahashi’s contractive conditions,
Furthermore. we apply the concept of dislocated metric spaces to obtain theorems asserting
the existance of common fixed points for a pair of mappings satisfying new generalized rational
contractions in such spaces.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Muhammad Arshad
without whose sincere piece of advice and valuable guidance this thesis could never have become
a reality. The faculty at International Islamic University, Islamabad, Pakistan, in general and
the Department of Mathematics in particular has been of great encouragement and support
to me during my Ph.D. studies for which I am thankful. Finally, I thank my family for their
affection and support throughout my research.

Sami Ullah Khan.



Chapter 1

Preliminaries

The aim of this chapter is to present some basic concepts and to explain the terminology used
throughout this thesis. Some previously known results are given without proof. Section 1.1 is
concerned with the introduction of single valued and multivalued contractions. Section 1.2 ix
devoted to the introductory material on the notions of G—metric and Gy—tnetric spaces. In
Section 1.3. we present the concept of cyclic contraction and Mizoguchi -Takahashi fonetion,

Section 1.4 deals with the basic conceprs of single and multivalued £-contraction mappings.

1.1 Some basic concepts

The contraction mappings are a special tvpe of uniformly continucus functions defined on a
metric spaces. Fixed point (FP) results for such mappings play an important role in analysis

and applied mathematics.

1.1.1 Definition [4]

Suppose that a set X (nonempty), S and T : X — X. Then 2 € X is called
(i) FP if image Tx coincides with x (i.e. Tx = z):

(ii) common FP of the pair (5. T) if Sz =Tz = z;

(iii} coincidence point of the pair (8, 7) if So = Tx;

(

iv} point of coincidence of the pair (8, T) for some y € X s.t, z = Sy =Ty.



1.1.2 Definition

Suppose that (X, d) is a metric space. A mapping T : X — X is called

(i) Banach contraction, if there is a positive real number 0 < r <1, s.t, VaxycX,

d(Tz, Ty) < rd(z.y):

(i) Edelstein contraction, whenever

d(Tz, Ty) < d(z,y) forz £y, z.y € X,

(1ii} non-expansive whenever

d{Tr.Ty) <d(z.y) VryelX:

(1v) expansive whenever

d{Tz,Ty) > nd(z,y), ¥ z,y € X where 7 > L:

(v) Ciric type whenever

d{Tz,Ty) < M(x,y).

where

d(z, Ty} + d(y, Tx) }
> .

M{z.y) = max{d(zx.y).d(z. Tx).d(y.Ty),

1.1.3 Definition

Suppose that X is a nonempty set and 23X he the collection of all nonempty subsets of X. Then
T - X — 2% is called multivalued mapping. A point x € X is said to be

()FPofT if r € T

(ii) coincidence point of a pair of multivalued mappings (T.5) if Tz N Sz £ W

{iii) common FP of the pair (7. §) if x € Tz N Sz.

Suppose that (X, d) be a metric space

CB(X) = the group of nonempty closed and bounded subset of X:



CL{X) = the group of all nonempty closed subsets of X;
K(X) = the family of all nonempty compact subsets of X.
For any A, B in CB(X), define

d(A.B) = inf{d(z.y):x € A, y € B}.

This definition fails to discriminate sufficiently between sets. We would like the distance
between two scts to be zero only if the two sets are the same. both in shape and position. For

this purpose, the following concept is useful (cf., [67]).

1.1.4 Definition

Suppose that (X, d) is a metric space. For A, B € CB(X) and & > 0 the sets N{3, A) and E.\ g

are defined as follows:

N A) = {z € X - d(z. A) < 8).

Eap={0: AC N(5,B).BC N(3.A)}

where d{z.A) = inf{d(z.y) : y € A}. The distance function H on CB(X) induced by d is
defined as
H(AB) = inf EA,,B3

which is known as Hausdorff metric on X.

1.1.5 Lemma [78]

Suppose that (X, d) is a metric space. If A, B € CB(X), then for r > 0, a € A there exists
bc Bst, dla,b) < HA B)+r



1.1.6 Definition [78]

A mapping T : X — CB(X) is said to be a multivalued contraction if there exists a consrant
r0<r<l, st,Vzye X,
H(Tz,Ty) < rd(z.y).

Nadler [78] generalized BCP to multivalued mappings and proved the following important

FP result for multivalued contractions.

1.1.7 Theorem [78]

Suppose that (X.d) is a complete metric space and 7' : X — CB(.X) a multi-valned contrac-

tion. Then T has a FP.

1.2 Relevant results on ¢—metric and G,—metric spaces

Mustafa and Sims [69] defined the G —metric as fallows:

1.2.1 Definition

Suppose that X is a nonempty set, G : X x X x X — RT be a function satisfying the following
properties

(G Gz y.2)=0ifa=y=1z

(G2)0< G{x,z.y)Vz.yec X withz#y.

(G3) Giz,z,y) <G(r,y,z)Viy z€ X withy # =,

(G4) G{z.y.2) = G{a.2,9) = G{y.z.z) = -+ (symmetry in all three variables}.

(G5YG (e y.2) <G {r.a.a)+Glay. z) ¥V ry z.a € X (rectangle inequality).

Then the function G is called a generalized metric. or. a G—metric on .. anpd the par

(X.G) is called a G -metric space.

1.2.2 Definition [69]

Suppose that (X.G) is a G-metric space, and let {x,) be a sequence of points of X. we sayv

that (z,) is G—convergent to T € X if litn, mewnc G (2, 2n. T} = 0, i.e.. for any € > 0. there



exists N € Ns.t, G(2,2n,Tm) <€ ¥V, n,m > N. We call x the limit of the sequence and write

In — X OT liMy ey = T,

1.2.3 Proposition [69]

Assume that (X, G) is a G-metric space, The following statenents arc counterpart:

(1
9

) (zg) is G—convergent to z,
(2) G(zn.20,2) = 0 as n — +20.
(3) Glxp,x.z) = 0as n — +o0,
(4) G

(Tn,Tm,z} = 0asn,m — +oc.

1.2.4 Definition [69]

Suppose that (X, G) is a G-metric space. A sequence (x,) is called a G—Cauchy sequence (C-
seq) if for any € > 0. thereis N € Nst. G{zp. Zm- ) <evVn.m ! > Noie. Gy amoai) -+ 0

asn.m. ! — +oc.

1.2.5 Definition [69]

A G—metric space (X.G) is called G—complete if every G ~C-seq is G —convergent in {(X. ().

Every G-metric on X defines a metric d¢; on X given by
do{r. y)=Glz.y.y) +Gly.z.x). vrye X, (1.1}

1.2.6 Example [69]

Suppose that (X.d) is a metric space. The function G : X x X x X — [0, +x). defined by
Gm(z,y, 2) = max{d(z,y), d(y. 2). d(z, )},

or

Goz.y.2)=d(z.y) +dly. 2) + d(z. x).

Vz.yzxzelX,isaG-metricon X.



1.2.7 Corollary [69])

Assume that (X, d) is a metric space, then (X, d) is complete metric space if and only if {X. G}

{ {X.G,) ) is complete G-metric space.
1.2.8 Corollary [69]
A G-metric space (X, G) is continuous on its three variables.

Recently. Aghajani et al. [9] introduced the concept of G,—metric spaces as fallows:

1.2.9 Definition [9]

Presume that X is a nonempty set and s > 1 be a given real number. Suppose that G, :

X x X x X — R* is a function satisfying the following properties:

(Gel) Gy{z.y.z)=0ifz =y = =.

(Gp2) 0 < Gy (z,z.y) Vx.y € X withx # p.

(G3) Go(xow.y) < Gplay 2y Vry s € X withy £ =

(Gp4) Gy {z.y.2) = Gy (p{z,y, z}). where p is a permutation of . y. z (symmetry).
(Gph) Gy (T Y. z:) <s (G’b (x.a.a) + Gyla.y.z)) ¥V z.y. 2.a € X {rectangle inequality). Then

the function G is called a generalized b-metric, or. a Gy-metric on X. and the pair (X.G) s

called a (5}~ metric space.

It is cleared that the class of G-metric spaces is effectively larger than that of G-metric

spaces given in [69]. Indeed, each G-metric space is a Gy-metric space with s = 1.

1.2.10 Definition [9]

A Gp-metric space is said to be symmetric if Gy (2. y.y) = Gy (y.z.2) V2.5 € .X.

1.2.11 Proposition [9]

Suppose that X be a Gg-metric space. Then for each x.y.z.a ¢ X it follows that:
(Vif Gy (£.y.2)=0thenx =y = =
(2 Gy(z.y.2) <s(Gy(z.x.y)+ G lz.2.2)).
(3) Gy (z.y.y) < 25Gy (y.2. 7).



(4) Gy (w.y.2) < s{Gy(z.a,2)+ Cpla.y, z)).

1.2.12 Definition [9]

Suppose that (X.G}) is a Gy-mietric space. and {z,) be a sequence in X, We sayv that (r,} 1
Gy —convergent to € X if limy yncoe Gp (€, Tn, T ) = 0. L, for any € > 0. there exists V ¢ Iy
s, Gp(2.2h.2,) <€, ¥, n,m > N. We call z the limit of the sequence and write 1, — 2 or

limp—se®n = .

1.2.13 Proposition [9]

Assume that (X, Gy) is a Gy-metric space. The following statements are counterpart:
(1) (zn) is Gy—convergent to x,
(2) Gp{zp.Tn.x) > 0asn — +x.
(3) Gy (zn. 7.7} — 0 as n — 4+,
(4)

1) Gy (2n. Tm.z) — 0 as n,m — +oc.

1.2.14 Definition [9]

Assume that X is a Gp-metric space. A sequence (x,) is called a G;—C-seq if for any ¢ > 0,

thereis N e Nst, Gplr,. rm.o) <eVnom Il > Nole. Gy (2. 1. ;y) — 0asnomod — =~

1.3 Relevant results in dislocated metric spaces

1.3.1 Definition [42]

Suppose that X is a noncmpty set. A mapping d; : X x X — 0.x) is called a dislocated
metric (or simply d;-metric) if the following conditions hold:

(1Y if di(j.k) =0, then 7 = k;

(2) di{7. k) = di(k. 5);

(3) di{g. k) < dy(7, ) +di(LR), 5.1 € X.

Then d; is called a dislocated metric on X, and the pair (X d;} ts called dislocated merric

space or d; metric space.

10



1.3.2 Example

If X = R* U {0}. then d) (5. k) = j + k defines a dislocated metric on X,

1.3.3 Definition [42]

A sequence {J,} in dy—metric space is called C-seq if for given £ > 0. there corresponds ng € .V
s.t. ¥ n.m > ng . we have d; (j;n. Jn) < €.

1.3.4 Definition [42]

A scquence {j,} in d;—metric space converges with respect to d; if there exists j € X st
d; (jn.j) — 0 as n — oo, In this case. j is called limit of {j,} and we write j, — j.

Every metric space is a dislocated metric space, but the converse may not be true.

1.3.5 Example

Suppose that X = Rand d; : X x X — [0.x) defined by dy(j. k) = 'ji+ k¥ j ke X,

Note that ; is a dislocated metric, but not a metric since d; (1.1) = 2 > 0.

1.3.6 Definition [42]

A d;—metric space (X, d;) is called complete if every C-seq in X converges to a point in X.

1.3.7 Example

Assume that X = [0.1] and d; (7. k) = max{j. k}. then the pair (X.d;} is a dislocated metric

space. but it 1s not a metric space.

1.3.8 Definition [42]

Suppose that (X, d)) is a dislocated metric space. A mapping T : X — X is called contraction

if there exists 0 < A < 1 s.t.

AT (). T (k) < Adj. k). v j ke XN withj =k

11



1.3.9 Definition [80]

Suppose that X is a nonempty set. Suppose that the mapping D : X x X — R. satishies:

1. z=y& D{z,z)=D(y,y) = D(x.y);

[

Diz.x}< D{z,y)Vr,yeX:
3 Dixy)=D(y.z)vVryeX:
4. Dle.z) < D(zoyy+~D{y.z) - Diy.y). Vry.z € X,

Then D is called a dualistic partial metric on X. and (X. D) is called a DPMIS.

Note that if R is replaced by R then D is known as partial metric on X. To make a difference
between partial metric and dualistic partial metric, we discuss an example. Suppose that us
define D : X x X — R by D(z.y) = Mar{z,y}. Now if X = R, then D is dualistic partial
metric but nor partial metric on X, for if z = —1 and y = —3 then Max{—1. -3 =-1=
D {x.y) which is not possible in partial metric. Each dualistic partial metric [ on X generates
a 7 topology 7 (D) on X which has a base topology of open D—balls {Bp(z.5) :z € X.= >0}
and Bp (z.2) = {y € X : D(=z.y) < £ + D(x.z)}. From this fact it follows that a sequence

(r,), in a DPMS converges to a point & € X ifand only if D(z.2) =lim,_.sc D{z. 24}

1.3.10 Definition
Presume that X is a nonempty set. Suppose that the mapping d : X x X — R*. satisfies:
l.dz.y) =d(y.z) =0 z=y VzI.yeX:

2. d(z.z) <d(z,y)+d{y.z) Yr.y.z: € X,
The pair (X.d) is called quasi metric space.
Each quasi metric d on X generates a 7g topology 7 (d) on X which has a base topology of

open d—balis {By(z,¢):z € X, e >0} and By(z,e) ={y € X : d(z,y) <z}

Moreover if d is quasi metric, then d° (z.y) = max {d(z.y) .d(y. z}} is a metric on X.

12



Suppose that us define modulus of a dualistic partial metric by

Diz.y) U D{z.y) >k
—D(z,y) U D(z,y) <0

[D(z,y)| =

1.3.11 Lemma [82]

If (X, D) is a DPMS, then the function dj, : X x X — R* defined by
dp(.r,y) = D(I,y) - D("E~$) .

¥,y € X, is a quasi metric on X s.t, 7 (D) = 7 (dp). Now if dy is quasi metric on X then

d5 (z.y) = max{dp (z.y) .dp (y, =)} defines a metric on X.

1.3.12 Lemma [82]

(1) The sequence {z,} in DPMS (X, D) converges to a point x if and only if D(r.2) =
limp oo D (x,. 7).

(it} The sequence {z,} in DPMS is called C-seq if limy moe D (. &m ) exists.

(i4¢) The DPMS is complete if and only if the metric (X.d$) is complete and further
limn oo d; (zn.x) = 0 if and only if D {(z,7) = limp 00 D (Zn, ) = liMp,m—oo Di(zp, Tm)-

A subset @ of X is called closed in (X, D) if it is closed with respect to 7 (D). o is called
bounded in (X, D) if there exist zg € X and M > 0s.t,a € fp (zo,M)Vaca,ie,

D(xg,0) < D(zg,z0) + MVaca

Suppose that CBP (X) is the collection of all nonempty, closed and bounded subsets of X
with respéct to the dualistic partail metric D. For o € CBP (X)), we define

D{x,a) =infyea D(2. 7).

For a,3 € CBP (X)),

8p (a. 8) = supye, P (a, 3),

3p (B.a) = supyes D (b.a),

Hp(a.3)=max{ép{a,8).6p(3. a)}.

Note that D (z,0) = 0 = d; (x.a) = 0, where dj, {r.a) = inf e, d} (z.y).

13



1.3.13 Proposition [21]

Suppose that (X, D) is a partial metric space (PMS). For any a, J, C € CBP (X). we have
(iYdp (e,a) =sup{D(a.a):a € a}:
(i) 6p (e a) < dp (a. 3):
(itt) dpla, ) =0= a C 3

(iv) dp (0, 3) < dp (e, C)+ép(C.3) —infeee D (e, ).

1.3.11  Proposition [21]

Suppose that {X. D) is a PAMS. For any a. 3. C € CB” (X). we have
(i) Hp(a.a) < Hp(a.B):
(#) Hp (o, 8) < Hp (8, a);
(#11) Hp (@.3) £ Hp(a,C) + Hp (C. 3) — infeec D (¢, ¢}

1.3.15 Remark [21]

Suppose that (X, D) is a PMS and a be any nonempty set in (X. D). then ¢ € @ iff

Dia,a} = D(a,a},

where @ denotes the clouser of a with respect to partial metric D. Note that o is closed in
(X.Dniff a = a.
1.3.16 Lemma

Suppose that o and 3 are nonempty. closed and bounded subsets of a DPAS (X. D} and
0 <« h € R. Then for every a € a, there exists b € 3 s.t. D(a.b) < Hpla,3) +h

Proof: We argue by contradiction. Suppose there exists h > 0. s.t. for any b € 3 we have
D(a,b) > Hp (o, 8) + k.

Then.

D{a.3) = inf {D(a.b). b€ 3} > Hp(a.3) +h > 6p(a.3) + k.

which is a contradiction. Hence, there exists b € 3 s.t, D{a.b) < Hp (a..3) + k.
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1.3.17 Definition [33]

A function ¢ : 0. +o0) — [0,1} is said to be MT—function if it satisfies Mizoguchi and
Takahashi’s conditions (i.e.. lim sup, ,- s{r} <1V o€ 0.4} )

1.3.18 Proposition [33]

Suppose that ¢ : [0, +o00) — [0, 1) is a function. Then the following statements are counterpart.

1. v is an M T —function.

2. For each ¢ € [0.ox), there occur ré” € [0,1) and 5&1) >0st o5 < vsc
(00 ).
3. For each ¢ € [0.x). there occur rf) € [0.1) and 592) > 0 st o g(s) < rf) Y os €
(Q. o -+ Egz)) .
. (3} (3) ale (3 -
4. For each p € [0,0c), there occur 7o’ € [0,1) and g5 > 0 st. 2(s) < 1y Vs €
(9,9+e§3))-
- _ (4) (1 . “n
5. For each o € [0.oc). there oceur rg € [0.1) and 55 > 0 site 2ls) < vy Vo5 o
(00 9)
2071 -9 :

6. For any nonincreasing sequence {I,}, . 10 [0.5). we have 0 < sup,ey {rn) < 1.
7. - is a function of contractive factor 34, i.e.. for any strictly decreasing sequence {rntoey

in {0, 2c), we have § <sup,y ¢ (x,) < L
1.4 Single valued and multivalued F-contraction mappings
Wardowski defined the F-contraction as follows:

1.4.1 Definition [103]

Suppose that (X.d) is a metric space. A mapping J: X — X is said to be an F-contraction if

there exists 7 > 0 s.t,
Veye X, diJz. Jy) > 0= 71+ F{d{Jz. Jy)) < Fldiz.y)]. (1.1

where £ : R, — R is a function satisfying the following conditions:
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(F1) F is strictly increasing, i.e. V o,y € Ry sit, x <y, F(z} < F(y):

(F2) for each sequence {a,}32, of positive numbers. limg. .o @, = 0 if and only if

lim, o Fla,) = —oo;

(F3) there exists k € (0.1) s.t. ima — 0Ta*F(a) = 0.

Altun et al.[14] modified the above definition by adding a general condition (F'1) which is
given in this way:

(F14) F{inf 4) = inf F(A) v A C (0.o¢) with inf A > 0.

We represent the set of all functions F : RT — R satisfying {F1) - (F4) conditicns by § in

Section 3.4.

1.4.2 Example [103]

The family of F is not empty.
1) F{z) =In(z):z > 0.
2) F{z) = z +1In{z);z > 0.
3) Fiz) =In{x® + z);z > 0.
)

4 F(:c):\_/—%:x>0.

1.4.3 Remark

From (F1) and {1.1) it is easy to conclude that every F-contraction is necessarily continuous.

Wardowski [103] stated a modified version of the Banach contraction principle as follows.

1.4.4 Theorem

Assume that (X.d) is a complete metric space and let J: X — X be an F-contraction. Then

J has a unique FP r* € X and for every o € X the sequence {J"x},ey converges to 17,

1.4.5 Thecorem [84]

Suppose that J is a self-mapping of a complete metric space X into itself. Suppose Fis a

continuous mapping satisfying (1) and (F'2). Also there exists 7 > 0 s.t,

ve,ye X. d(Jx. Jy) > 0= 7+ F(d(Jz,Jy)) < Fld(z.y}),
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Then J has a unique FP z* € X and for every zp € X the sequence {./"z}37; converges 1o 1"
Acar et al. [8] introduced the concept of generalized multivalued F-contraction mappings
and established a FP result. which was a proper generalization of some multivalued FP theorems

including Nadler’s.

1.4.6 Definition [8]

Presume that (X, d) is a metric space and J : X — CB(X) be a mapping. Then J is said to

be a generalized multivalued F-contraction if ¥’ € £ and there exists 7 > 0 s.t,
vy e X, HJz, Jy) > 0= 7+ F(H(Jx, Jy)) < F(M(z,y)).

where

M(z,y) — max{d(z,). D(z, J2). Dly, Jv), 5Dz Jy) + Dlw. o)}

1.4.7 Theorem [8]

Suppose that (X.d) be a complete metric space and J : X — K{.X} be a genceralized mulu-

valued F-contraction. If J or F is continuous, then J has a FP in X
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Chapter 2

Fixed Point Results in Generalized

Metric Spaces

In 2006, Mustafa and Sims [69] introduced the concept of G-metric space and prove some
reults. Kaewcharoen. [55] proved the common FP results for four mappings in G-metric
space. Similarly Nashine [79] established coupled common FP results in ordered G-metric
space. Samet et al. [94] gave some remarks on G-metric space. Furthermore G-metric space
is improved form of D-metric space and 2-metric space. Because D-metric space and 2-metric
space are both discontinuous metric spaces but G-metric space is continuous. For more details
in this direction, we refer the reader to [22, 38, 70, 81, 105].

In 2012, Tahat et al. [102] utilized the concept of G-metric spaces and obtained point of
coincidence and common FPs of a hybrid pair of single-valued and multi-valued mappings. In
92014, Aghajani et al. [9] introduced the concept of Gy —metric spaces and proved that the class
of G, —metric spaces is effectively larger than that of G-metric spaces given in 69 .

In this chapter, it is impossible to cover all the known extensions/ generalizations of the
Banach Contraction Principle. However. an effort has been made to present some extensions
of the Banach Contraction Principle and explore the FP and common FP results in & —metric
spaces and G,—metric spaces. We continue these investigations to explore the FP and common
FP results in generalized metric spaces. In Section 2.1, we define new notions called (g — F)

contractions to prove coincidence and common FP results in G—metric spaces with application.
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In Section 2.2. we generalized the concept of Mizoguchi-Takahashi Contractions for complete
G—metric spaces and established some new coincidence points and common FP oresulis. In
Section 2.3. we introduce the notion of J§ — G —coutraction and prove some I'P theorems in
the setting of generalized metric spaces. Section 2.4 is devoted to some FP results on G-

complete metric space for some new contraction.

2.1 Common FP results in G—metric spaces with application

Results given in this section have been published in [73].
The following lemmas of [102] are very crucial to prove our main results.
2.1.1 Lemma

Suppose that (X.G) is a G—metric space and 4, B ¢ CB(X). Then for each ¢ € A. we have
Gla.B.B)< H;(A.B.B).

2.1.2 Lemma

Assume that (X.G) is a G—metric space. If A.B € CB(X) and a € A. then for each = > U
there occurs b € B s.t.

Gla.b.b) < He(A.B.B) ~e.

2.1.3 Proposition([54])

Suppose that X is a given non empty set. Assume that g: X — Xand T: X — 2% are
weakly compatible mappings. If g and T have a unique point of coincidence w = gz € Tur. then
w is the unique common FP of g and T

In this way, we define the notion of (g-F’)} contraction.

2.1.4 Definition

Presume that (X.G) is a G-metric space. Suppose that T X — CB{X)andg: X - X,

Then the mapping T is said to be (¢-F) contraction if there exist some F € F and a constant
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7> 0s.t,

Ho(Tz,Ty,Tz) > 0== 27+ F(Hg(Tx.Ty.Tz)) < F(G{(9z,9y.92)} (2.1)

Virey e X

2.1.5 Theorem

Suppose that (X, G) is a G-metric space. Suppose that T: X — CB({X)andg: X — X be

a (g-F) contraction. If for any z € X. Tx C ¢(X) and g(X) is a G-complete subspace of Y.

then ¢ and T have a point of coincidence in X. Furthermore. if we assume that gp € Tp and

gq € Tq imply G {gq.gp.gp) < Hg(Tq.Tp.Tp). then

(i) g and T have a unique point of coincidence:

(ii) Furthermore. g and T are weakly compatible, then g and T have a unique conmon FP.
Proof. Suppose that zg be an erratic point of X. Since the range of g confains the range

of T. there occurs a point ;1 in X s.t. gz € Txg. If g1 = gzo. then rp is a coincidence point

of g and T and the proof is complete, so we assume that gro # gx;. Also if Ty = Try.

then z; is a coincidence point of g and T. So we assume that T'rgp # Tuxy, which gives that

Hg (Tzo.Tx1.Tr1) > 0. Now from (2.1) we have

(B
]

97 + F(Hg (Tzo. Tz1. T2y }) < F (G (g0, gT1.971)) - (f

Since F is contimous from the right. there occurs a real number & > 1 s.t.

F{tHg (Trg. Txy. Tx1}) < F(Ho(Try. Tup Ty —7.

As gz € Txy so by Lemma 2.1.1. we have

Ggz1.Tx,.Tx1) € He (Txo. Txy. Tzy) < hHg (Tzyg. Txy1. Tzp).

where k > 1. Now from G (g1, Tz1, Tz1) < hHe (Tzo, Tz, Txy) and Lemma 2.1.1. we deduce



that there exists o0 € X with gxg € Ty s.t.

G (gxy.yra.gaa) < hHg (Trg. Ty Txy ). (2.3}

Consequently. we get

F(G (gz1. 922, gx2)) € F(hHg (Tzo, TT1. T11)) < F(Hg (Txo. Ty . Tx1)) + T, (2.4)

which implies that

A

27 + F(G (gx1, gr2. gT2)) 27 + F(Hg (Tzo. Tz, Tx1)) + 7

IA

F(G (gze. gz1,g21)) + 7

Thus
1+ F(G (gz1. g2, g72)) < F(G (gz0. 971. 9T1)).

Continuing in this process, we can define a sequence {gr,} = X s.t.gr,,1 € Ty, with gr, -

gtns1. Txy # Txnyr. and

T+ F(G (Q'-'rn-g-fn-.{.g-rnfl)) < FG (.Q'-l'n—l-g-;':n-.fl-"ru]}

v n € NuU {0}. Therefore

[

F(G (gIn~g$n—+—l-gIn+l)) F(G (Q-Tn—l.-gxn-gxn)) -7

< F(G (91'1172? gIn—l-gIn—l)) — 27
<
< F(G(gxg.gx1.gxi)) — 0T (2.5}



V n € N, Since F € F, by taking the limit as n — oc in (2.5), we have

lim G (gzn.gTne1.gTn+1) =10

(2.6)

lim F(G (9T, 9Tni1.9Tn1)) = —o¢ Therefore by (F2)

no—
Now from (F3), there exists 0 < &k < 1 s.t,

hl.nw[G (gInsgIn+l-QIn+l)]kF(G {(9Tn. gTns1. §Tn-1)) = 4.

n

By (2.5). we have

(G (g2n. gZnt1, 9Tt IFF(G (9Tn- gTn1. 9Tn+1))— (G (9Tn. GTnat. gLns1)| F(G (gro. gy gai))

< IC (g2 9Zn1. 92nr1)* [F(G (gzo. gz1. g71)) — nT — FlG (gro. yr1.971))

L

. _’\,
nt (G0 Tyl Gdnt1 Bt <0

Therefore,

[G (gxn-gIn+1*g$n+l)]kF(G (gIm 9Ln4i, GZns1)) T 0T [G(Q’In- gLnyy, g-rn+1)] -
(2.8)

< (G (§Zns 9Tnt1, 92011 )] F(G (gz0. g71. 971)).

By taking the limit as n —— oc in (2.8) and applying (2.6) and (2.7). we have

lim n{G (g;r”,g:cn“,gxnﬂ)]k ={. (2.9
n——0oC
It follows from (2.8) that there exists n; € .V s.t,
| : 2o )i ¥ 2.10
nllG (QIn-gﬂ 1?+1-91'n+l)) é 1: for all n > L (2 )
(2.11)

for all n > n;.

1

So
G (9%, §Tni1-9Tnr1)] € —
n

|

22



Now we prove that {gz,} is a G-C-seq. For m > n > n1 we have

-1

3

[A

G (g gisr. gTi-1)

b 1
<Y (2.12)

1=1 s

GigTn, gTm-9Tm)}

bl

IA
12
,.H| —

7|._-

>
Since 0 < k < 1, 5 X converges. Therefore. G (g2, §Tm. 92 m) — 0 as m.n - . Thus
i=] tt

{ga} is a G-C-seq in complete subspace g (X}, so there exists g € g (X)) s.t

lim G (gxn.gTn.q) = hm G(gra,q,q9) = 0. (2.13)

ool n—oc

Since g € g (X), there exists p € X s.t. ¢ = gp. Hence from (2.13), we have

lim G (gTn.gTn.gp) = lim G(gzn.gp.gp) = 0.

o — n—oc

Now we will prove that gp € Tp. Suppose that there exists an increasing sequence {ng} st
gx,, € Tp¥k € N, since Tpis closed and gan, — gp. we get gp € Tpand the proof is complete.
So we assume that there exists ng € N s.t. gz,.1 ¢ TpV¥ n > ng. Since gry, .1 < Ty, Tr, «Tp

V1 > ng and so we have

He(Tz,. Tp.Tp) > 0 for all n > ng. {2.14)

Now as a4 ¢ T, 50 by Lemma 2.1.1. we have
G (gxn41.Tp. Tp) < Ho(Tzn. Tp. Tp).

As F is strictly increasing. so by (2.14), above inequality and (2.1}, we get

F(G(g2n1. Tp.Tp)) < 27+ F(G(gzney.Tp.Tp))
< 27+ F(Hg(Txz,.Tp. Tp))
< F(G(gzn.gp.gp)).



Since F is increasing. we have

G (gzn+1.Tp.Tp) < G(gzn. gp. 9p). (2.15)

putting n — oc in previous inequality and using the fact that the function G 1s continuous on
its three variables. we get G(gp. Tp. Tp) = 0. Since T'p is closed. we obtain that gp € Tp. That
is. p is a coincidence point of T and g. Hence g and T have a point of coincidence w. We will
prove the uniqueness of a point of coincidence of g and T. For this we suppose on the contrary
that w* is another point of coincidence of g and T, i.e, there exists another coincidence point
gof gand T s.t, w* = gq € Tq with gp # gg and Tp # Tyq . Otherwise p and ¢ will not be

coincidence points. Then He (Tq. Tp. Tp) > 0. Thus. we have the foliowing assumption that

GClyq.gp gp) < Ho (Tq. Tp.Tp).

Since £ is increasing, by above inequality and (2.1). we get

27 + F(G(gq.9p,9p)) < 27+ F(Hg(Tq.Tp.Tp))

1A

F(G{gq.9p.9p) -

which further implies that

F(G(gq,gp.gp)) < F(G(gq.9p.gp) — 27

< F(G{gq.9p.9p}-

Since F is strictly increasing, we get

G (gg.gp.gr) < G (gq. gp.gp) -

whicli is a contradietion. Hence gp = gg and Tp = Tg. Hence g and T have a nnique point ol
coincidence. Suppose that g and T are weakly compatible. By applying Proposition 2.1.3. we

get that ¢ and T have a unigue common FP. ®
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2.1.6 Corollary

Assume that (X.G) is a complete G—-metric space on X. and let T : X — CB(.\'}. If there

occur a function F € F and a coustant 7 > 0st. Vr.y.z € X
He (Tx Ty T2)> 0= 27+~ F(Hg(Te.Ty.Tz)) < F(Glr.y 2]

¥V a.y,: € X, then 1 has a FP in X.

Proof. It follows by taking g the identity on X in Theorem 2.1.5.

2.1.7 Example [73]

Suppose that X = [0,1]. Define mapping T : X — CB(X) by Tz = [0. %] and define
g: X — Xbyg{z)= 3‘” .Definea G—metricon X by G(z.y.z) =z —y|+ jy —=l+ |z — =
Then

(1) g (X} is a G—complete subspace of X:

(2) g and T are weakly compatible:

(3) Tx € g(X);

(4) T is a (g — F) contraction where F{a) = In(a) and 7 € (0. In ( -3%)) .

Proof. The proof of {1),(2) and (3) are clear. We will prove {(1).

We have de (z.y) = G{r.y.y)~ Cly.a.n) = +lao—y vr.y = X To prove (1. let o, 4.
ceX. Hor=y=:=0thenTe =Ty =Tz =0and Hg(Tz. Ty.Tz) = 0. thas we may
presume that r. y and = are not all zero. Withont loss of generality we assume that r <y < =

Then

13 o
| S
S

Hg(Tz.Ty.Tz) = Hg (:0, i] , [0, i] ‘ {0

25 25
SUPp<a< G( [0= ﬁyﬁ] ’ [O %])
= max 5up0<b<i G (b [ —%] [U %]) (216}

Elh
i
—
e
b
25
=

SUPpccs 2 G (c. [0.;



Since x < y < =. [0 =1 € 0.4

io(0.5) 0 4]) = (02].0.5]) = (o 5] ) -

Now for each 0 < @ £  we have

G (a.f0. -2%] , [0235]) = dg (a. [0, %"g]) +dg ([0%} lo. 2‘—5]) +dg (a. 0. ZD -0

Also, for each 0 < b < £ we have
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which implies that

\lorcover. for each 0 < ¢ < 3 we have

clelogl g = wlelog]) e

which implies that
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Thus we deduce that

Hg (Tz,Ty.Tz) = max {0, dy 4z & —dy - 4"]:}

25 25
8z —dy-du
N 25
< 8z — 8z
25
8 .
= = |z -7
25
B
B 'in_ ‘
- 7B gz — gx|
32 . ‘
< %(‘.gr—gylﬂgyfgﬁ+|.w:*g:;)
32
= —G LY. g2).
7 (9z.9y.92)

Therefore,

75
ﬁﬂc (Tz,Ty.Tz) < G(gr.gy-9z].

By using Fa) = In(a} we get

In (;—5)) +In{Hg (Ta.Ty.Tz)) < (G (gx.gy-92)) -

Thus. ¥ r. y. = ¢ X with He (T Ty. T2 > 0 we have

Tr
I+ F(Hg (Tx. Ty, Tz)) < F{G{gz.gy.g2)). where 0 <7 < 1n (\f 3%) )

Hence. T is a (g — F) contraction. On the other hand it is clear that z = 0 is the only
coincidence point and all other hypothesis of Theorem 9.1.5 are satisfied. So the mappings T’
and g have a unique common FP whichisu=0. =

Now. we will use Corollary 2.1.6 to show that there is a solution to the following integral

equation:

b
u(g)f—/ H(o,5)K(s,u(s))ds: o€ ja.b. (2.17)

b3
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Assume that X = (C[a.b]. R) denote the set of all continuous functions from a. b to &.

Define a mapping J: X — X by
b
Ju(o) =/ Hg, s)K(s.u(s))ds: o€ [a.b). (2.18)

2.1.8 Theorem

Consider {2.17) and suppose:

1. H:la.b] x [a,8] — {0, o¢) is a continuous function,

IR

. K :]a.b] x R — R where K is continuous mapping.

MAaX ¢ o,b] f: H(g, s)ds < e %" for some 7 € (0, o¢),

e

.V u{s).v(s) € X: s € [a,b] we have
|K(s.u(s)) — K{s.v(s))] < [uls) — v{s)I. (2.19)

Then {2.17) has a solution.
Proof. Presume that X and J be as defined above. For all w.v.w € X define the {-metric
on X by
Glu, v, w) = d(u,v) + d(v.w) + d{u, w) {2.20)

where

dlu.v) = sup [u(e) - v(o)l
g€ |a,b]

Clearly that {X, G} is a complete G-metric space, since (X.d) is a complete metric space. ®

Now. Assume that u{g), v(¢) € X, then from Definition 2.18. (3) and (4) we have
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I

| Ju(e) — Ju(o}l

o

b
f H(o.s)[K(s.u(s)) — K(s. v(s))]ds‘

I/

N
f H(o.s)| K(s.u(s)) — K5, v(s)lds
b

H(p.s)|u(s) — vis)ids
b

[A

(A

/ H{o.s) sup |u(s)— v(s)ds

s€ia.b)

b
= sup |u(o)— zf(g)![ H{o. s)ds

ocia.b)
< e sup [u{o) — v(e}
o2 a.b
Hence,
sup |Ju(g) - Ju(e)| < e7*" sup |u{e) — v(o}l: (2.21)
oc|a.b] eclab]
Similarly, we have
sup |Jv(e) — Jw(o)| < e~ sup jv(o) — w(o)l {2.22)
o€ [a,b] oca.b]
and
sup |Ju(o) — Ju(o) < e* sup |u(o) —wlo) (2.23)
o [a.b) o<lab]
C\l Therefore. from (2.21), (2.22) and (2.23) we have
-"‘—-_
Proof.
<
0, . |
sup Ju(o) — Ju(o}l + sup [Jv(e) - Ju{o)l + sup Juig) - Juwlo)
! Q& e€ad] o€ ja.b] egial;
\\ < e 2 [ sup tu(e} - v(o) + sup fv{e) —w(e)i+ sup u(o) —w(o) |
o€fa.b] 0€a,b] oEjab]
which implies
G{Ju. Ju. Jw) < e TG (u. v, w). (2.24)

Thus.
In(G(Ju. Ju, Jw)) < =27 +In(G{u.,v.w))
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and so0,

27 + In(G{Ju. Jv. Jw)) < In(Glu. v wh)

Now. we observe that 27 + F(G(Ju. Jv. Jw)) € F(G(u.v.w)) is satisfied for Flo) = Inta) ¥
a € X. Therefore, all conditions of Corollary 2.1.6 are satisfied. As a result of Corollary 2.1.6
the mapping J has a FP in X which is a solution of (2.17}. =

The following example illustrates the validity of Theorem 2.1.8.

2.1.9 Example

The following integral equation has a solution in X = (Cln(2). In{3).. R).

In{3)
u(o) = / cosh(sg) u(s)ds: o € [In(2}.In(3)]. (2.25)
In(2)

Proof. Suppose that J : X — X be defined as Ju(o) = ji]:’((._?)) cosh(so) u(s)ds: o =
n(2).1n(3}]. By specifying H(g.s) = cosh{so). K(s.p)= pgand 7 > llﬁ in Theorem 215 we
get that: =

I. the function H(o. s) is continuous on [In(2). In{3}] x [In{2).In(3)}.

2. K{s. ) is continuous on [In(2).In(3)] x RV s € In(2). In(3);.

3.
In{3} sinh{In(32)) — sinh{in{2¢))
max / cosh(sp)ds = max -
o€(ln(2).1u(3)] J1n(2) 0€{In(2),In(3)]
330 —20427¢
= max
e¢[ln(2),In(3)) 29

< 07
S e—2'r

ki

4. ¥ u(s). v(s) € X it is clearly that condition (4) in Theorem 2.1.8 is satisfied.
Therefore. all the conditions of Theorem 2.1.8 are satisfied, hence the mapping ./ has a FP

in X. which is a solution to equation (2.25}.
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2.2 Generalized Mizoguchi-Takahashi’s contractions

In 2012, Tahat et al. [102] utilized the concept of G-metric spaces and obtained point of
coincidence and common FPs of a hybrid pair of single-valued and multi-valued mappings.

They proved the following FP theorem as a main result.

2.2.1 Theorem [102]

Assume that (X.G) is a G—metric space and let 1" : X — CB{X} be a mulu-valued nmappiug
and ¢ : X — X a self mapping. Assume that there exists a function a : 0.+ x) — [0.1)
satisfying

lim supe(r) <1

r—{T

for every t > 0 s.t,
He (Txz, Ty, Tz) < oG (gx. 9y, 92))G (97, 9¥. 97) (2.26)

Vay.z¢ X Hforany z € X, Tx C g{X) and g(X) is a G--complete subspace of X, then
g and T have a point of coincidence in X. Furthermore. if we assume that gp € Tpand gg € Ty
imply G (gq,gp. gp) < Hg (Tq, Tp, Tp) then

(i) g and T have a unique point of coincidence;

(ii) Furthermore, if g and 7" are weakly compatible, then g and T have a unique common
FP.

Recently. Javahernia et al. [51] generalized the above function by introducing the notion of

generalized Mizoguchi-Takahashi function in such a way.

2.2.2 Definition [51]

A function a : R x R — R is called a generalized Mizoguchi-Takahashi function (shortly,
pencralized MT-function) if the following conditions hold:
(a1) 0 < afu,v) <1V uv>0

(ag) for any bounded sequence (u,) C (0, +oo} and any non-increasing sequence {vn) C
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{0. 42}, we have

lim supa(u,.ty) < 1.

Fl—* 22

Consonent with Javahernia et al. [51], we signify by A the set of all functions a : Rx R - ?
satisfying the conditions (a;}-(az).

The basic aim of this section is to generalize the results of Tahat et al.[102] by utilizing
the notion of generalized Mizoguchi-Takahashi function. Now we give the main result of this

section.

2.2.3 Theorem [73]

Suppose that (X, G) be a G—metric space and let 7 : X — CB (X)) be a multi-valued mapping
and g : X — X a self mapping. If for any z € X, Tz C g(X) and y(X) is a G—complete

subspace of X and there exist a € A s.t.

[}
LN
|

He (Tr. Ty. T2 < a(He (Te. Ty. T2y Glgr. gy g=0G (g gy g2) (2.

v o.y.2 € X. Then ¢ and T have a point of coincidence in Y. Furthermore. if we assune tha
gr* € Ta* and ¢& € T'# implies G (g&. gz™. g&*) € Hg (T Tr™. Ta"). then

(i) g and T have a unigue point of coincidence.

(i) Furthermore, if g and T are weakly compatible, then g and T have a unigue common
F12.

Proof. Suppose that zg be an arbitrary point of X. Then by the given assumptions. there
oceurs a point zy in X s.t, gr; € Txg. If gz, = gz, then we have nothing to prove and xy is

the required point. So we assume that grg # gz1, then G (gxo. gr1,gr1) > 0. Now il

f'fc (Ti:g, TSC]_.TIl) = 0,

then from (2.27). we get a contradiction to the fact that grg # gz, Thus He (Toy. Ty T >

0. From the inequality {2.27). we have

He (Txp.Try . Try) < a(Hg (Tzg. Tz Txy) .G (goo. g1 g11) GgTe. g01-900)



Take

1
1= — 1) Hg (Txg,Tx7.Txz1). (2.28)
(\/ﬂ (Hg (T, Tz1, Tx1) . G (gz0, 921, 971)) )
Then by Lemma 2.1.2 and the inequality (2.28), we have
G(gr1.gz9,972) < He(Tzo.Tz1,Tm)+ &
_ HG (TI(}.,T.Tl,TIL']) (.,) )9)

\/a (He (Tzg, Tzy. Tx1) . G (gro. gx1. gry))

Since T'x; € g{X), there exists a point Tz in X s.t, gTa € Tzx:. If gz, — gz2. Then &) s the

required point. So we assume that gx, # gza. then G {gzy. yz2, gT2) > 0. Now if
Heg (Txy, Tze, Txg) = 0.
then from the inequality (2.27), we get a contradiction to the fact that gz, # gra. Thus,
He (Tzy, Txe, Tzy) > 0.
From the inequality (2.27), we have
He (Tx). Txo, T22) < a(Hg (Tz1, T22. Tx2) . G (gz).gz0.9z2)) G (gx1. 9T, gaa) . (2.30)

Take

1 ) o
€o= — 1| He (Tx7. Txa. Txa). {2.31)
Va(He (To1, Tz. Txg) G (921. 972, 922})

Then by Lemma 2.1.2 and inequality (2.31), we get

G (gxa, 973,923) < He(Tz1,Txe,Tz2) + €2

_ HG (T:L'l,T.TQ,TSL'z) (9 32)
'\/E(HG (Tll':l, T$21 TEQ) [ G (gl‘ln qrz, 912))

By repeating the above process, we can construct a sequence {gzy} s.t, 9Tr41 € Tz, where
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which shows that {Hg (T'xg_;, Tzy. Txg)} is a bounded sequence. By (ag). we have
lim supa{Hg (Tzi—1. Txe. Trr) , G (gop_1, gzi, gzi)) < 1. (2.37)

Now we claim that d = 0. Suppose d > 0. then by (2.36}, {2.37) and taking the limsup on both

sides of (2.35) we get

d < \/klim supa{Hg (Txi—y, Tag, Tar) . G (92k—1, g2k, gx2)) d < d.
— 00

So. this contradiction implies that

lim dy, = inf di = Q. {2.38;
k—oc ke N
Therefore.
im G (g g7e41. 920 01) = inf G g2k, 91 9Tk01) = 0. (2.39)
k—oc keN

Now we prove that {gz,} is a C-seq in X. For each k € N, et

gr = \/a(HG (Txp1. Ty, Txy) .G (grie—1. 9Ti. gTi)).
Then g, € (0.1), ¥ & € N. By (2.35). we have

G 9zi, gThv1- 9Tk 1) < G {gzi_1. gTs. 91) (2.40)

¥V k€ N. From (2.37), we have limj . supgr < 1. so there exist ¢ € 0.1) and kg € N s.1.
g < c¥V k< Nwithk > kg Since g, € (0. 1)¥ ke Nand ce[0.1). from (2.40) for & > kg we

conclude that

Glgre.grior.gi) < qeGlgay ). gog. gag)d

[~

e G (9Th_2. 9T5 1. gLy—y)

{FAN
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[FAN

Grgr-1 - Gio G {97y, g1, 971)

< &G gxy, g1, 911)

Suppose that Ay = %G(‘qxu.g.ﬁl.gxl): ke N For k ¢ N with & > ky and a positive
arbitrary number m, then from the last inequality and (G3), we have

k+m—1
G (9T, OThim: GThpm) S Y G (976, 97041, 9Z11) € M (2.41)

i=k
Since ¢ € [0.1), as a result, limy . Ay = 0. Hence limy_.« G (924 §Zh+m- 9Fkym) — 0. Thus
the sequence {gz;} is G-Cauchy in the complete subspace g{X). Thus there exists o€ g(X)

s.t. from Propesition 1.2.3, we have

lim &G (gzk.g;r:;..z') = lim G (g:}:k,:c’,;n’) =0 (2.42)
k—oe k—o<
Since r & g(X). there exists z* € X s.t. ¢ = gz*. Thus from (2.42). we have
lim G (gxy.gri.gz™) = lim G (gz.gr*. gx*) =0. (2.43)
k—oc k—oc

We claim that gz* € T'r”. From (2.27) and {2.43). we have

limi G{gri,.Tx*.Tx") im Ho(Tap. Tx*.Tz*)

ko —oc k—oc

[A

A

I\‘lim a(Ho{Tzp . Tz*, Tz*), G (gzp. gz*. gr*))G (gap. gr™. g™ )

0.

*

lence, G{gr*.Tz*.Tz*) = 0, i.e. gr* € Tz*. Thus T and g have a point of coincidence r*.

Now we prove that this point of coincidence is unigque. We suppose on the contrary thar there
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occurs another 7 s.t, gf € TZ but gf +# g2*. By (2.27) and this assumption, we have

A

Glgi,gr'.g1") Ho (T:3. Tz, Tz

1A

a(Hg (TE.Tx*.Tx") .G (g3.gz*. 9z"))G (gf. g g™ ).
As Ho (T2, Tx*. Tx™) > 0 and G (g.gz", gx*) > 0, so
a(He(T2.Tx".Tr™) .G (gi. gx7. gx")) < L.
Thus we get
Ggt.gu, ge™) < Glygk.gx*, gz”).

which is a contradiction to the fact that g2 # gz*. Thus ¢ = gx*. In view of
Ho (T2, T2 T2") < alHg (T:.Tx*, Tx*) . G{gt.gz". gx")) G (y3.91" . ¢gx") = 0

we have T3 = Tx*. Thus, T and ¢ have a unique point of coincidence. Assume that g and T
are weakly compatible. By applying Proposition 2.1.3, we obtain that ¢ and T have a unique

common FP. m

2.2.4 Remark

Theorem 2.2.1 follows from Theorem 2.2.3 by taking a(u,v) = 2(v).

2.2.5 Remark

Corollary 2.2.4 of [102] can be obtained by taking a(u.v) = g in Remark 2.2.4.

2.2.6 Theorem

Assume that (X, G} is a G—metric space and let T : X — C'B (.X') be a multi-valued mapping
and g : X — X a self mapping. If for any z € X, Tz C ¢{X) and g(X) is a G—complete
subspace of X s.t,

Ho(Tz. Ty. Tz) < 2(G(gz.gy. 92))



¥ ay.z € X, where @ [0.o¢) — [0.1) s a function s.t. (v} < ¢ and hmsup,_,,. = - < |
Then g and 7" have a point of coincidence in X, Furthermore. if we assume that g™ = 07 ad
gr € Tiimply G{gi.gr7.gx*) < He (T'e. Tr*. Tx™). then

(i) ¢ and T have a unigue point of coincidence.

(i) Furthermore, if g and T are weakly compatible. then ¢ and T" have a unique comion
FP.

Proof. Take a{u.v) = ‘Jiv) in Theorem 2.2.3. =

Javahernia et al. [51] also introduced the concept of weak Ls.c. in the following way.

2.2.7 Definition

A function o : [0, 00) — [0,00) is said to be weak Ls.c. function if for each bounded sequence

lup} C (0. +00), we have

lim inf ¢(u,) > 0.

i—0C

Consistent with Javahernia et al. {51]. we denote by £, the set of all functions o 10.x) -

10, >¢) satisfying the above condition.

2.2.8 Theorem

Assume that {X.G) is a G—metric space and let T: X — CB(X) be a multi-valued mapping
and g : X — X a self mapping. If for any z € X, Tz C ¢g{X) and ¢(X)} is a (G —complete

subspace of X s.t,

He (Tz, Ty, Tz) < G{gz, 9y, 92) — o{G {gx. gy, 9%))

¥ r.y.z € X. where ¢ : [0.%) — [0.%) is s.t. ©(0) =0, ¢(v) < v and ¢ € F. Then g and
T have a point of coincidence in X. Furthermore, if we assume that gz* € T'z” and gr € T'x
imply G {g&.gx*. gx*) < Hg (T2, Tz*.Tx") ., then

(1) g and T have a unique point of coincidence,

(ii) Furthermore, if g and T are weakly compatible. then g and T have a unique common

FP.
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Proof. Define a(u,v) =1 - %u) ¥ u.v > 0. For each bounded sequence {u,} < (0. —x).

we have limy, _ o inf ¢{uy,) > 0. So lim,— o inf @ > (). Thus

o L e PlUy
lim sup(1 — {u")} =1-— lim me
n—oc Uy o Un

< 0.

This shows that a € A. Also
He(Tz,Ty,Tz) < a(Hg (Tz. Ty, T2) .G (gr, gy. 92))G (gz. gy. 95) -

Thus by Theorem 2.2.1. we get g and 7° have a unique common FP. »

2.3 Fixed point results for new contraction in G —metric space

Jleli and Samet [53] introduced a new type of contraction which involves the following set of
all functions » : (0, 00) — (1, 00} satisfying the conditions:

(w;) v is nondecreasing;

(1) for each sequence {t,} € (0, 00), liMp_oo ¥ {tn) = 1 if and only if limy,oc tn = 0;

(173) there occur r € (0.1} and L € (0. 2¢] s.t, lim;_p~ T”)(?r_l =1L.

To be consonent with Jleli and Samet [53], we signify by F~ the set of all functions v :
(0. ) — (1.:x) satisfying the conditions (¥)-(v3)-

Also, they established the following result as a generalization of Banach Contraction Prin-
ciple.
2.3.1 Theorem [53]

Suppose that (X.d) is a complete metric space and f: X — X be a mapping. Assume that

there occur w € W and k € (0.1) s.t,
ry€ X, d(fz. fy) # 0= v (d(fz. fy)) < v (d{zy))]"

Then f has a unique FP.

In 2013. Hussain et al. [48] modified the above family of functions and proved a P theorem
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as a generalization of [53]. They customized the family of functions v~ : [0. %) — ‘. x) to be

as follows:

(1) ¥ is nondecreasing and v (¢) = 1 if and only if ¢ = 0
(1) for each sequence {t,} C (0.0c). liMpouoe ¥ (£) = 1 if and only if limy,_.c £, = (%
{(w3) therc occur 7 € (0.1) and L € (0. x| s.t. fin, - 5—1)—_—1 =L

(wy) vlu+v) <vp(u)wiv)vuuv>0.

To be consonent with Hussain et al. [48]. we signifv by ¥ the set of all functious v = 0. x) -
'1. ) satisfying the conditions (v}~ (v} For more details in this direction. we directed the
reader 10 [11. 13, 17].

In this section. we introduce a now contraction called JS-G-contraction and prove some I'P
results of such contraction in the setting of G-metric spaces. The following results have been

published in [50].

2.3.2 Definition

Assume that (X, G) is a G-metric space. and let g : X — X be a self mapping. Theu g is said
to be a JS-G-contraction whenever there occur a function ¥r € ¥ and positive real numbers

ri.12, 3,73 with O < ry +3ry + 73+ 2ry < 1 5.4,

v (G (ga. gb.ge)) < [ (G (a.b.e))]” [ (G (0. ga. ge))™ ' (G (b gb.gen!™

x [v (G (a. gb. gb) + G (b. ga. ga))]™ . (2.44)

Vubce X.

2.3.3 Theorem

Presume that (X.G) be a complete G-metric space and g : X — X be a JS-G-contraction.
Then ¢ has a unique FP.

Proof. Suppose that ag € X be an erratic point. For ag € X. we define the sequence {a,}
by an = g"ag = gan—_). If there exists ng € N s.t, @ny = @ng+1. then any is a FP of g, and we

have nothing to prove. Thus. we suppose that a, # @n41- e G(g0n_1.90,.90,) >0V n € N
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5.t
v (G (an Slngl. (J.,,+1)) -1

kG (un-an+l~an+l)]r

- L < B
¥ n > ng. This gives that

v (G (an1.a,.an)) — 1

L
> L - B = - = B .
[G (an:an+],an+1)]r - 1 : 1

2

¥ n > ng. So
R(G (anaan-i-l'an-é—l))r < Aln[w (G (an‘an-f—l:aﬂ-#l)) - 1]

where A == o
Now for L = o, let Bs > 0 be an arbitrary number. From the definition of the limit there

occurs n; € N os.t,

w(G((ln.arlrl‘a"+]}) -1

> B,
- g < 132
‘G lan-a?r-#l-anfl)jr

¥ n > ni. Then

H(G (an'a11+1'an+l})r < AZ”IL" (G (an-an-r—ban—r—l H— 1

where A2 = 731; Thus, in both cases. there exist A = max{4;, A2} > 0 and n, = max{ng.n RS
N s,

(G (an, angrsan1 )" < AnfY (G {a@n, @ng1.0n41)) — 1] foralln > mn,.
Hence

7(G (@n, @ne1eans1)) < An |[w (G (ag, a1 )} — 1] .
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. _ rytra+r
where, a = —-i——“‘—l_zrrrs_m. But,

i

lim n [[w(G(ao.a;.m))]“l - 1}

{[t’ (G (ap.ar.a1))]" — 1]

- nlE];'c 1/n )
a™In(e) In(v (G {ag. a1. 1)) [{u(c:(au.m.am}“”]
= lim -
n—x —1/?’12

— lim —nfa™In(a)ln(w (G (ag, a1.a1))) ﬁu (c(au.al.u,”)]“"}

n—o0

-n?ln(o) In(v (G (ag. a1, a1))) {Eu (G(au.al.aml“"]

= lim

n—0oo a’ll
—n? B
= nan;.g pealie nli_.nz}cln(a) in(v (G (ag.a1.a1))) [[U(G (ag.aj.a1))]" }
1

=0 x Iln(a)In{w (G (ag. a1.a1)})

=0 (where a; = 1/a).

which implies that lim,_.oc 7{G (@n.@n+1.an41))" = 0. thus there occurs ny € N s.t.

1

G(uu-“n*l-an—‘—l) E 1r

n

¥ n > ny Now, for m > n > ny. we have

m—1 mi—1

~ 1 1
G(a,,.am.am) < Z G(ui-al+l-f1f+1) < z T < ZT
=n i=n i

=1 !

Since 0 < r < 1. Y2, il is convergent and hence G {(an, @m.am) — 0 as m.n — o. Thus.
T
we proved that {a,} is a G-C-seq. Completeness of (X, G) ensures that there occurs a* € .X
s.t, a, — a* as n — oo,

Now we shall show that a* is a FP of g. Using (G5) we get that

Gla".a* ya") < Ga".a" anq1) + Glani1,8nr1.907)

= G(a”.a",ans1) + Glgan, gan. ga”) (2.45)



and

G (an.Gny1.90%) < (G (an.any1.0")) + (G (a".a". ga”)) (2.46)

and hence by the properties of ¥ we get that

W(G(a.a”, ga}) < ¢(Gla", 0"y e1)}E{Clgan. gan. ga*)). (2.47)
(G (aneans1, 907)) < V(G (@n,ns1.0")W(G (" a” ga™)). (2.98)
Thus.
(G (@ nsts ga™ ) < (G (. ne1. )T G et aT gat T (2.00)
But. by using (2.44). (v} and (2.19) . we have
V(G (dni1. Ane1-9a)) = v{G{gan. ga,.ga™})
< (G (. @n. D7 (G (@ anyr. g™
x (G (an. @nar. ga"))|"
x [U{G (@n-n+1.0ns1) + G (an. a1 ns1))]”
= [¢ (G (an, an,a" )] [¢ (G (an, ans1,907))]" 7
X [ (G (an. Gny1s )
< [ (G (an amr @) (G (an. aner @™
(G (" 0", ga D7 [W(C (. tngr- aue )
{2.50)

Now. substituting (2.50) in (2.47) we get thar

{Gla*.a*. ga®)) < v(Gla*.a" an ) [L(G{an. an. ™)) 10(G (an. an-1. aty)iemn

[w(G (a*. am.ga*))]r'z+r3 [U/‘ (C (an~(<’-n+1- Anay -))12” ]
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Hence.

1< [w(Gla®,a", ga™))]' 7 < v(G(a*.a%,ant1)) [V (G (@n.an. a*)]"

[U(G (an.- Ap4l. at))}l"g+r3 {I,',' (G (an Ont1. an—r-l))_

{2.52)

By taking the limit as n — ¢ and using (v5). Proposition 1.2.3 and the convergence of o,

to @™ in the above equation we get that

w(Gla®.d",ga%)) =1 (2.53)

which implies by (v) that G(a*,a",ga”) = 0 and so ge® = a”. Thus, a* is a FP of g.

Finally to show the uniqueness, assume that there occur o’ # a* s.t. a' = ga'. By (G2).
G(d'.d',a") = G(gd', gd, ga™) > 0.
Thus. by {2.44) we get

v(Gla'.d . a™)) = v{Glga'. gu'. ga*)) < [L‘G(a'.a’.u‘)]r] [c{Gla' . ga'. ya S
x [L'(G(a’.gu'. ga'))] = [L: (Gla'. ga'.ga’) ~ Gld' gu'. gu’ 'w "

- U(G(a’.a"a*))] r] [L'(C(a".u'.a,'))]r2 {L.'(C(a'.a'.(1'],‘1}”

[
x [ (Gld.d'.a') + Gla'.d'.a"))]™ .

= [@(G(a’. ™))

which leads to a contradiction because r| + 72 + r3 < 1. Therefore. g has a unique FP. =

The following result is a direct consequence of Theorem 2.3.3 by taking v (¢) = ev'in (2.44).
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2.3.4 Corollary

Assume that (X, G) is a complete G-metric space and g : X — X be a mapping. Suppose that

there occur positive real numbers v, 12,73, 74 with 0 < 7|+ 3rg + 73 + 2rg < 1 5.1,

VG (98, 97, 90) < 1V G (§,7.¢) + 72/ G (€, 96, 9¢) + 13/ G (v, 9% 9¢)

+ra/G (€ 97v.97) + G (7, 68, 98) (2.54)

¥ £€,~,¢ € X. Then g has a unique FP.

2.3.5 Remark

Note that condition (2.54) is equivalent to

G (g€. g7, g¢) < TIG (€, 7.¢) + 735G (€. €. gc) + 3G (7. 97 ge)
+ 3G (€97 97) + G (7. 96, 96))
+ 2rra/G (€, 7. €) G (€ g€, ge) + 21753/ G (€. 7. ) G (. g )
+2r174/G (6,7.¢) [G (€. 97, 97) + G (7. 96 g€)]
+ 2ror3y/G (€. g€, 90) G (7,97, 9¢)
+ 2rara/G (€, 9, 90) [G (€, 97, 97) + G (7, 96, 96)]
+ 2rarg /G (.97, 90) [G (€, 97, 97) + G (v, 96, 96)].

Next, in view of Remark 2.3.5 and by taking rs = rg =ry=01in Corollary 2.3.4, we obtain

the following corollary.

2.3.6 Corollary

Presume that {X.G) is a complete G-metric space and g : X — X be a mapping. Suppose that

there occurs positive real numbers 0 < r; < L. s.t.
G (g€, g7, 9¢) < TiG (£, (2.55)

v £, 7, ¢ € X. Then ¢ has a unique FP.
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Finally, by taking ¢ () = € Ve in (2.44), we get the following corollary.

2.3.7 Corollary

Assume that (X, G) is a complete G-metric space and ¢ : X — X be a mapping. Suppose that

there oceur positive real numbers vy rgorg with 0 < rp +3m — 3 = 2rg < 1L st

VG gE g ge) < 11 /G &~ c) + ra /T (€ g€ ge) + 13 /G (7. g7 yc)
+ /G (€. 97 . g7) + G (7. 9€. 4€)

v £,v,¢ € X. Then g has a unique FP.

2.3.8 Remark

By specifying r; = 0 for some i € {1.2,3.4} in Remark 2.3.5 and Corollary 2.3.7. we can get

soveral results.

2.3.9 Example

Suppose that X = [0,0¢) and the G-metric Gr(€,~.¢) = max{l{ —~l. |y —c|. 1§ - ¢}t Define
g: X - X byg(z)= g and v(i) = eVl Then clearly all the conditions of Theorem 2.3.3 are

satisfied with r; = %; 1=1,2,3,4, and = = 0 is a unique FP of ¢.

2.4 Fixed point results in (G,-metric spaces

In this section. using the concept of Gj-metric space which was introduced by Aghajani et al.
we establish some new FP results in this setting. Ahmad et al. 117 studied JS-contraction
and considered a new set of real functions. say, 2. They replaced condition {¢3) by another
condition called (3).

Applying this condition we can have a new range of functions. Thus, consistent with Ahmad
ot al. [11] we denote by €2 the set of all functions 8 : [0.oc) — [1.oc} satisfying the following,
conditions:

(v1): 8 is nondecreasing and © () = 1 if and only if { = O
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(u5): for each sequence {t,} € (0, o), limy o 0 (t.) = 1if and only if limy_.oc £, = O

{(14): 0 is continuous.

2.4.1 Example [11]

Suppose that 8,(t) = ¢Vi. #a(t) = V1. 03(t) = €', 83 (t) = cosht and 85 (1) — 1 ~In{l + ;¥
t > 0. Then 01, 6. 83, 04, 05 € €0,

2.4.2 Remark [11]

Note that the conditions (¥3) and (©3) are independent of each other. Indeed, for p > 1.
g(t) = e'satisfies the conditions () and (125) but it does not satisfy (w3). while it satisfies
the condition (©3). Therefore & ¢ ¥. Again, for a > 1, m € (0, L), 6(t) =1+t (1 +[t]). where
't! denotes the integral part of t, satisfies the conditions (w,) and (15} but it does not satisfy
(©3), while it satisfies the condition (y3) for any 7 € {é, 1). Therefore ¥ & Q. Also. if we take

8(t) = ¢Vt then 6 € ¥ and 6 € . Therefore ¥ N # ¥,

2.4.3 Definition [10]

Presume that g : X — X anda: X x X x X — 0.} Then g is called a-admissible if ¥

w.ov w € X with ale.v.w) > 1, algu, gv.gw) 2 1.

2.4.4 Definition

Presumethat g: X — X and a: X x X x X — [0.). Then g s called rectangular-a-admissible
if

1. g is a-admissible,

2. a{u.c.¢) > 1 and a(c.v.w) > 1 imply that a(v,v,w) = 1

where v.v.uw.c € X.
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2.4.5 Lemma

Assume that ¢ is a rectangular o-admissible mapping. Suppose that there occurs ap € X s.t,

a{ag. gag, gag) > 1. Define the sequence a, = g"ap. Then
a(am, @n. @) > 1, foralmn e N with m < n.

Proof. Suppose that a, = g"ag and assume that n = m + k for some integer & > 1. Since

a{ag., gag. geo) > 1 and g is a-admissible
alay, az,az) = afa1. goy, ge1) = a(gao,ggao,ggao) > 1.
Continue in this process we get that a(@m, Gm1, @m+1) > 1. Similarly we have
{1, G2, @maz) 2 1

hence by rectangular a—-admissible we have a(am, @m+2. Umyz) > 1, now repeating the same
process we get that a{a@m. @n,an) = @(am, Qriks Gmtk) > 1. B
Now, we are ready to state our main theorem of this section which has been published in

150].

2.4.6 Theorem

Assume that (X.G}) be a Gy-complete metric space with s > 1. Suppose that a : X x X x X —

(0.) and ¢ be a rectangular a-admissible mapping. Assume that there occur & ¢ € and

rC (0,1) s.t.

%Q—Gb (u, g, gu) < Gy (w, v, w) == a{u,v,w)t (ssz (gu, gv. gw)) < [0 (M (u,v. w)y’
(2.56)
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¥ ou,v.w € X with at least two of gu, gv and gw are not equal, where

R Gy (u,9u,9u)Gy (u,gv,gw)+Co v, gv. gw) Gy (v, gu.gu}
Gy (U, Uy 'w) ! 145[G, (u, gu, gw )+ Gy (v.gv.gw)] :

M (u, v, w) = max

Gy (,g1,9u) Gy (u,gv,9w)+ G (v.gr,gw) G (v, gu. gu)
1+G (u,gv.gw)+ Gy {v,gugiw)

Also, suppose that the following assertions hold:

(i) there occurs ag € X s.t, a(ag, gao, 9a0) > 1;

(#1) for any convergence sequence {a,} to a with o (an, Gnil.0ne1) > 1V € NU{0}, we
have a (u,,a,a) > 1 ¥ ne NU{0}.

Then g has a FP.

(iii) Moreover, if ¥ u,v € Fiz(g), a(u,v,v) > 1, then the FP is unique where Fiz(g) = {u:
gu — u}.

Proof. Assume that ap € X be s.t, a(ag. gao. gag) > 1. Define a scquence la,} by a, —
g"ag ¥ n € N, Since g is an a-admissible mapping and o (ag. ay.a1) = alag.gag. gug} > L.
we deduce that a(a;.ag.a2) = a(gag.gar,ge;) > 1. Continuing this process. we get thart
6 (@nyny1y ety > 1V n € NU {0} Without loss of generality, we assume that a, / any1 ¥
n € NU {0}. We shall proceed in proving the theorem using the following two steps.

Step 1: We shall show that lim,_,oc Gb (@ni1,@n. @n) = 0.
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Now,

M (an.—le Qn, a’n)

4

Gb (an—l’ Qn, aﬂ) 3

_ Giltn 1,00 —1:9% - 1)Gu{0n 1,005,901} +Gp{0n 900,90, )G (a0 gar 1,000 1)

= max \
1H5[Cp{an —1,96n —1,9%n ) +Cb{Gn 900,080 )]

Golen 1,900 1,000-1)Gb(an 1,982,985 )+Gs(2n,90n 525 )G (01,900 1,980 1)
\ 1+Gy, (au— 1.90y Gy, ) +Gb(an sQ8n—1 ;gan)

Gy (an—ls An, an) :

— max Gh(ﬂn—l sl ,an )Gh(an — L@ +1,8n41 )+Ch (‘ln,ﬂ»n F1.8n+1 JLEN TN TN )

T+s[Gilay—1-an @1 ) TGL(en a0 102011 )

Ciiln—1.20,0:)Cp (80— 1,254 1,8nt 1)+ Crla, 0001, 8ur1 )00 @ 2]
1+Gb(a,171|ﬂ"+1,ﬂn+1 )+Gh(‘1h W ;ﬂn-rl)

Gb (an_],an, a‘n) )

s Gylan—1,0n51,8n41}
- max Gb (an_l’ n, an) ]+S[Gb(ﬂn—1@nsan'+1)+cb(an,ﬂ-n+1|ﬂ-n+1)] !

Gp{tn—1,0n+1 layl)
1@n41@n41)+Gu(an,0n 80 1)

Gb (anflz Gn, an) I+Colan

(2.57}
But, from (Gy3), we have G, (@n—-1-An+1-nt1) < Gy (Gp-1.an, Gn+1). and so

Gy (anélr aTL+17aﬂ+1) <1
1+s [Gb (an—l: Qps an+l) + Gy (ans On+1, an+1)] -

and also

Gp (@n—1,8n+1: Cny1) <1
1+ G (ﬁ:n,] : a‘n+l-an+1) + Gy (an: Qn,Qnst)

Therefore, M {@n_1,n, @n) = Gp{@n_1.an.an).

Since a (@n. tnp1. Gnyy) 2> 1 foreachn € Nand B—ing (an-1.9@n—1.9an—1) < Gy (an_1. 0.0}
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as a result by (2.56) we have

8{Gy (an, anr1. @ns1)) = 0 (Gy{g@n-1. gan- gar))
< {an 1,0n,an) 0 (°Ci (gn-1. 901 90r))
< 18 (M (enor.an.an))]
= [0(Gy (an—1, . @n))]

< 0(Gy{an-1,an, an)}. (2.58)
Therefore, we have
1 < 0(Gy(@n: ny1.ane1) < 0(Gpanr.an,a))]” < - <4 (Gy (ap, a1.a1))]" .
Taking limit as n — oo, we get

].]m 0 (Gb (an- an-}-l: an+1)) = 1

n—oc

This gives us. by (62),

lim Gb (an,anﬂ.anﬂ) =0. ('2.&9)
n—oc

But Gy (@nq1.ansn )} < 25Gh (@n, ny: Gn41). therefore

Hm Gy (@ni1:8n.0n) = 0. {2.60)

n—2C

Step 2: We shall prove that the sequence {a,} is a Gp—C-seq. Suppose on the contrary
that {an} is not a Gp—C-seq. Then there occurs € > 0 for which we can find two subsequences

{am,} and {an,} of {an} s.t, n; is the smallest index for which
n; > m; > and Gy (@m,, @n,+ @n,) = €. {2.61)

This means that

m
I~
(o]
2]

Gb (am,- Qn;—1: a-n,fl) <

al



By using {2.61) and {G}5), we get

e =Gy (amla Qny s an,) < 8 (am.- y O +-1 amz+1) + sGy (am,-+1- £ Qp, )

Taking the upper limit as ¢ — oo and using (2.60), we get

o:im

hm sup Gp {@m,+1; Ong, Gn, ) - (2.63)

Notice that from (2.58) and (£}, we get

Go(@n. @1 tnsn) € Gy l@n_1.n.an) foralln e N {2.64)

Suppose that there oceurs ip € N s.f,

352

and
1

3s

1
— G (am‘O s G0m,, . gamlu) > Gy (amm s Ony—1: an-gogl)

ﬁQGb (ﬂfm‘0+1agam.iu+1~gam;0+l) > Gy (amioﬂ,amuﬂﬂn‘u—l) .

Then from (G35) and (2.64), we have

Gb ((Lm‘ﬂ 3 am.;0+1: ami0+l)

<5 Gb (a'mio y amofls angu—l) + Gb (aﬂio—l* amw +1» a171;0+])

<8 [ b (amm-an;ofl-.an,o—l) + 25Gy, (am,o—H-an.,-ufl-ﬂ'n,o—i) ]
1 2
<5 [ @Gb (amio_-gam,-u-gam,o) + ?%Gb (am;0+l-gﬂr71.f,+l-.qam._n*]’) }
} 2
= g‘ ( lmluxamloJrl: am,-D+l) + ng (am,o-H Omy +2: arn;n+2)
2
( 5 )Gb (am;0 » a'mlg +1: am.o+l)
< Gy (amin,amioﬂ,amioﬂ) , ( since 5 > 1), (2.65)
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which is a contradiction. Hence, either

1 .
S?Gb (am-,: gam,—-gam,) < Gy (am,- an,—l.an,—IJ
or
1
3?611 (am,-+1: G +1 -gam,—H) < Gy (anz;+1: Qn,—1.2n,— 1) -

holds ¥V ¢ € N, First suppose that
1 5 A
@Gb (am‘-y G, , gami) <Gy (amu an.-fl}antAl) . (-‘66)

From the definition of M (u,v,w) and using (2.60) and (2.62), we have

hIIl sup M (ami . amfl,anlfl)

11— D0
7
Gy (@m;, Gny-1,0n,-1) -
i Go{am;.9m,;,90m; JCi (@m ,9an, ~1,90n; 1)+ G (@, —1.9an,-1,90n; -1 )Co{aw,~1.9am,-gam;)
= IHIEC sup max 4 1+s Gb(ami,gami,ganﬁl)+Gb(a“‘_1,gan‘,],ganl,l)]
Gylam. ,gam. \9em; )Gu{am; 98n;—1,9an, -1 )+Gr(an; —1,98n, - 1,84n; -1 Gelan, -1.90m,; ,yam,-)
2z t T 1 1 T .
L ].+[Gb(&m,—;gani—lugﬂ-ﬂ,'—l)+Gb(a"i*1'ga‘“:'ga"i_lﬂ

Gb (a'mn an-gfl,a‘ﬂq—l) i
Gb(am‘ e T I | )G;,(aml,a,.,. G, )+G¢, (an‘ —1.8n, .Qn, )G,, (a,. i LG ] B - 1)
]+s[G,,(ami,a,ni+1,a,.1)+c|,{au]_1.au,.a,,}.)]
G,,(a,,,l A s | )G,,(am B )+G;,(a,4,7 14, 2, )C,,(a,,,q g1 )

= 7
\ 1+HGu (@m0 @, J TG {an, —1am,  1ax, )]

= lim sup max
—0G

< e.

Note that, m; # n; — 1, as otherwise Gy, (@, , Gn,~1,8n,—1) = 0 and so, by (2.66)

Gy (G, am,‘+l‘aml‘+1) =Gy (amn gam{,gami) =0

which contradicts our assumption that a, # a,4+1 ¥ n € N. Hence, o (@m,; @n,—1,8n,—1) = 1.

Based on the assumption (2.66), (61), @ (Gm;,an;—1,8n,—1) = 1, (2.56), (2.63) and the above
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inequality, we obtain that

1T— 00

£
g (52.;) < al@m,, Gn—1,8n;—1) 0 (32. lim sup Gy (amiH,an”an{))
= a (@m;s an;—1.0n,-1) 0 (82'ilin§o sup G (gam‘.,ganl_l,gam%))

< [9 (hm sup M (ami,anillanl_l))]r < e .

1—00

which implies that 6 (s€) < [6(¢)]", a contradiction. Now suppose that

1 q
345-_26»5 (amd—] ) gan1,+lngam.+l) < Gb (am,+1 . an,fl.an,—l) (26‘ )

holds V ¢ € N. Further. from (2.61} and using (G5). we get
£ < Gb (amlr an,.an.,-) < SGb {ami‘ s Gm, 2. arn,+'2) + SGE} (am,—é-Q- p, . Qp, ) .

. 2
S Ssz (ami s B+ 1 aml+l) + 8 Gb (am,A—I- A, +2- am,‘+'2)

+ SGb (aﬂl‘+25 An;y a’n,') .

Taking the upper limit as 7 — oo, and using (2.60}, we get

Z‘ < hm sup Gb (ami+29 On, ani) ' (268)

11— 00

Also, from {Gp5), we get
Gy (@mi+1; l5]"71.‘71,‘17'1.—1) < 8G) (Umit12 G, an,-) + 5Gy {an,. an,-fl.an,—l) -
Taking the upper limit as i — oc, and using (2.60) and (2.62). we get

lim sup G {@m,+1: @ny—1,Gn, 1) < SE. (2.69)
T—+ 00

From the definition of M {u,v,w) and using (2.60) and (2.69). we have
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lim, oc sup M (am,+1-@n,—1.8n,-1) =

Go (Am,+1-@n,—1.0n; 1) -

. Cultn, 41480 4208 12 )G (@ o100 a0, JFCu{an, S1n a0, J0u{an, 1, o200 2)
1 . : . ' . ifn; i O ) . ‘
1m sup max S - 1 - -
imvac 151Gy (an, c1:0m, -2.00, }4Go(an, - 1an, 0, )

Golam,+1,0m,~2,0m, 120 (8m,  1:8n, 80, J+Ch{en, -1.80, an; G {an, 1, 2.0, -2)

1+[Gﬁ(ﬂ,“, w1l ,ﬂ,.')+GQ,(U,,: 1., 22, H

[/

EE
Note that, m; + 15 n; — 1. as otherwise
Gb (aTﬂ,'+11 an,—l,ani—]) =0

and so. by (2.67), Gb (@m, 11, Ty +2, @, +2) = Gb (@mi+15 9@m,+1.98m;+1) = 0 which contradicts
our assumption that a, # a,4+1 ¥V n € N. Hence, o (Gm,41: Ony—1,8n—1) > L1

Based on the assumption (2.67). (f1). @ {@m,+1,8n,~1.6n,—1) > 1. {2.68). (2.56) and the
above inequality we obtain that

] (52.

1=

2 ..
) <a (amyrl-an,»],“n,—l)() (SH- lim sup Golan, 1200, 00, J)

w |

2 ,
= (Qm,41.Gn,—1.an,-1)9 (s Clim sup G, (gu,,m1._qu,,,_1._qu,h1))
(B

[ A

|:9 (.lim sup A/ (a,niﬂ.an‘]‘anl_l))} < i {s2)]”.

T OC

a contradiction. Therefore, in all cases {a,} is a Gy-C-seq. thus by Gy-completeness of X vields

that {a,} is Gj-convergent to a point a* € X. An argument similar to that in (2.65). we get

either
1 x -
ﬁcb(an-gawgan) < Gb (aan . a )
or
1 * *
‘?;s_QGb (@nt1: gant1, 90n+1) < Gp(any1.a”,a7)

holds ¥ n € N. First, suppose that

1
ﬁcb (an,-gan s ga'n) E Gb (an .a, (l*) .
352
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Now,

+ sy Gulan,g8.,90n)Gilan,ga”,ga”)+Gsla” .ga” ,ga" )G y(a” ga. gun)
Gb (a”' a.a ) ! 1+S[G;,(a,,,ga..‘ga'}+Gb(a’.ga'.ga‘)] .

M(an,a”,a") = max

Grlay.gan.gan)Gu{an.ga" . ga" }+Gy{a’.ge”.gu” )Gyia" .gan.9a. )
1+H1Gy(an,go".ga" 1 +Gy{a* ga. ga" )]

So. limy, o M (a,.a%,a*) = 0. Hence from (2.56) and assertion (it} of the theorem, we have

1 < 6(Gy (gan, ga*.ga*)) < 0 (s*Gy (gan. ga™. ga*))

< alug.a”.a" ) (SEGQ, (gean. ga™. gu”))

[

(M (a,.a*.a®))
¥ n € N. Taking the limit as n — >c. in the above inequality we get that

lim # (G, (ga..ga".ga*)) = 1.

o

This implies by (€,) that
lim Gy (gan, ga™. ga™) = (.
n—0C

Hence, ga* = lim,_.co g8n = liMy,_00 @ny1 = a*. Thus, we deduce that ga™ = a”.

Now if
1 « =
@Gb (@ns1:gan+1-90n+1) < Gplagsr.a.a).
holds, then by repeating the same process as above we can get ga* = a*. Therefore. o” is a FP
of ¢.

Now to prove uniqueness, suppose there oceur w, v € Fix(g) with w # v. Le. u = yu and

v = gu. Therefore by (iii). a(u,2. v} > 1 and so. by {2.56) and (Gy2) we have

! Glu. gu.gu) < Glu.v. )

0= 352
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and

8(Gplu. v.v)) < alu.v,v)8(s*Gylgu, gu. gv))

i

BM (uov.))]”
= [8(Gplu. v )"
< H{Gy(u. v ).

Thus the contradiction implies that the FP is unique. =

2.4.7 Theorem

Assume that (X, Gy) is a Gy-complete metric space with s > 1. Suppose that a : X x X x X' -
(0.x) and g be a rectangular a-admissible mapping. Suppose that there occur ¢ € Q and
re (0.1) s.t,
1 .
3—2Gb (u.gu.gu) < Gy (w.v,w) = a (wv,w)d (s*Gy(gu. gv.guw)) < (6 (M (u.v.w))]
5
(2.70)

Voo, y. 2 € X with at least two of gz. gy and g2 are not equal where

Gy (u.gu. gu) Gy (v.gv.gw) Gylu.gu.gu)Gylr gr.guw) }

Af{u.v.w) =max¢ G . —
(u, v.w) md‘({ bl v ) 1+ Gpluvow) 1+ Gulgu.gr. yu)

Also. suppose that the following assertions hold:

(i) there occurs ag € X s.t, o (ap. gag. gag) = 1t

(#) for any convergent sequence {a,} to @ with a (@n,@pi1,any1) 2 1V 0 € N U {0} we
have o (a,,a.a) > 1 ¥ n € NU{0}.
Then g has a FP.

(iii) Moreover, if ¥ u.v € Fiz(g), a(u.v.v) > 1, then the FP is unique where Fix(g) =
{u:gu = u}.

Proof. Suppose that ay € X be s.t. a(ag.gag.gag) > 1. Define a sequence {a,} by
a, = ¢"ap ¥V n € N. Since g is an a-admissible mapping and a (ap, a1, a;} = a (ag. gug. gao) 2 1.
we deduce that a(aj,az.az) = a(gag.ga;.ga;) > 1. Continuing this process, we get that

a(Gn, ny 1, 0ot} = 1V n € NU {0}. Without loss of generality, assume that a, # a,.; V
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n € NU {0}. We shall show that lim,_.oc Gy (@ny1.6n.an) = 0. Now.

M (an—1,0n,22)

Gpl@n—1.98n 1,980 -1)Gp{an.9an.9an)
1+Gh(ﬂn—lsﬂnnaﬂ) *

Gb (an—l-an~an) .

= max
Gula, 1,980 1,920 - 1)Gu{8n, 98,900 )
14+Gy (Qan —1.9Cn gaxn )
Gul{an-1.0n.0,)Gp(00.00n-1-n1)
Gy (@n_1n-an) . b{dn—1.8n.0n rlniQnet)
— max : 1+G{an—1.an.an |

Gules - 1,6n,0)Gu{an Gns1487 1)
146G, (@n,a@n+1 ey

(2.71)
; Glan —1.0n,00) , Crlan@ni18ns1)
SlnCC, 1+Gh(ﬂu—lnﬂin“n) < 1 dnd 1+Cb(au-ﬂn+1~au+l) < 1
M (anfls Ap. an) - HIRX{G[, (anfl- Ay an} . Gb (”'n- An41. U] )}
I max{C, (ay_1. . n) . Go (tn. @us1. @ner )} = Gy (an. @p—1 g0 ). thensince a (o, 1 @y dn 2

1 for each n € N, 3176'31 (@n—1.g@n-1.9,-1) < Gy{an_1.an.w,) and so by {2.70). wo have

8(Gy (an. ansy-ane1)) = 0(Gy (gan-1. gan. g2n))
<o (anfla anyan) ¢ (SQGb (ga'ﬂ“l L G, gan))
< 0(M (@n—1.an.an))]"

= [6(Gs (an,an+1,an+l))]r

< B(Gb (an1an+l:anv—l)) (279}

which is a contradiction since r € (0.1). Thus. M (gn_1.@n.an) = Gy (an_1.@n. tn).
The rest of the proof is the same as in the proof of Theorem 2.1.6. =
Analogously, we can prove the following theorem.

2.4.8 Theorem

Suppose that (X.G),) is a complete G — metric space with s > 1. Suppose that a : XxXxX -~

(0.oc) and g be a rectangular a-admissible mapping. Suppose that there occur ¢ & {2 and
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re(0.1) s.t,

! Gy (u.gu, gu) < Gy (v, v.w) = a (u,v,w) 8 (s°Gy (gu, gv, gw)) < [0 (M (u. v. w))]

3s2
¥V u,v,w € X with at least two of gu, gv and gw are not equal. where

~ U g )Gl v.gu.gu
Gy ('U,. L. 'LL‘) Tl4s|G {u()rj‘(:) TGQ?IJ- g::(;ug)u—i—{g J(u gr.gvil’
M (u.v.w) = max pluae) TGy iv.gy. wlu-grgrl;
Golu.gr.gedG{uv.w)
1‘+sC',,(u.gu.gu)-&—sz[ch(i'-gl‘.gr}*G;,(l‘.g}u.guﬂ

Also. presume that the following assertions hold:

(i) there occurs ag € X s.t, a (ap. gao. gap) > 1:

(i7) for any convergent sequence {an} to a with a{a,.a,+1.0,41) 21V 0 € N {0}, we

have a {a,.a.a) > 1 ¥ n e NU{0}.
Then g has a FP:
(i1i) moreover, if ¥ u,v € Fiz(g), alu.v.v) > 1, then the FP is unique where Fiz{g) =

{u; gu = u}.
Now, we give an example to support Theorem 2.4.6.

2.4.9 Example
Assume that X = [0.oc) and Gy : X x X x X — Ris a Gp-metric space defined bv Gy (u. v, wd -

(u -vl =l -w+'u—w)? Clearly (X.G,) is a complete Gy-metric space with s = 2. Als

let r:%anddeﬁneg:X—vX.a:XxXxX—»RandH:[O.X,)—v[l.x)h.\

if 2.€,0.1]

il

z2. otherwise.

1, Huwv.oweill]

0. otherwise,
and 8(¢) = &'

Assume that %Gb(u,gu.gu) < Gy(u,v,w). If one of u.v,w ¢ [0,1]. then a{u.v.w) = 0

and so. the conclusion of (2.4.6) is satisfied. If u,v,w € [0.1]. then gu.gv,gu € 0.1} and
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afu, v.w) > 1 with gu # gv # gw. Hence.

o, v, 0)0(ACH{ gu., gu, gw)) = AL (vl o —wl+ =)
o 35 {lu—vlHe—wl+ ju—wl}?

6(3/5)(\uf‘u|+|u#m‘+|ﬂ_w‘)2

[A

_ (ecb(u,v'w))

= (8(Gp(u, v, w)))

3
_ (e(lu—u|+|vfw|+iu—w!)2) 5

it

wiw

Thus all the conditions of Theorem 2.4.6 are satisfied and = 0 is the unique FP of g.

2.4.10 Corollary

Presume that (X.G,) is a complete G- metric space with s > 1. Suppose that 0 X x .V x X -
(0. ) and ¢ be a rectangular a-admissible mapping. Suppose that there occur 6 . £ and

r.6.3.5 € {01y withé+ 3+ < 1s.t.

1
3—2Gb (u.gu.gu) < Gy (., v,w) = au.v,w)d (s2Gs (gu. guv. gw))
5

< [9 (56‘5 (u,v.w) + ﬁG

» (u, gu, gu) Gy, (v, gv. gw) Gy (u, gu, gu) Gy (v. gv. gw) )} "
14+ Gy {u,v.w) 1+ Gy (gu. guv. gw)
Y u.v.w € X with at least two of gu. gv and guw. are not equal. Also. suppose that the following
assertions hold:
(1) there occurs ag € .Y s.t, a (ag. gag, gao) 2 1:
(ii) for any convergent sequence {a,} to a with a (@n.Gni1.tns1) > LV 1 € N0 we
have a (a,.a.a) > 1V n e NU{0}.
Then g has a FP;
(iii) moreover, if ¥ w,v € Fiz(g) implies a(u.v.v) > 1. then the FP is unigne whoere

Fizlg) = {ugu — u}.
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2.4.11 Corollary

Presume that (X, G)) is a complete Gp-metric space with s > 1. Suppose that o : X x X x X' —
(0,0¢) and g be a rectangular a-admissible mapping. Suppose that there occur # € {} and
r,0,8,ve€(0,1)withd+ 3 +v<1st,

1 :
é?Cb (. gu. gu) < Gy (w.v.w) = a{w.v.w) 6 (s2Gy (gu. gv. gu))

Y s 7 Golu.gu.gu)Gy{u,gu.gwi+Gy{v.gr.gw)Gn(v.gu.gu)
Gy (w. v w)+ 3 1+5[Galu,gu,guw)+ G (v,gv.0w))]
A Gy {u,gu,gu)Gy(u,gu,gwi+Gy (v,gv.9w)Cs (v,9u,gu)
! 1+ Cp(ugr.gu)+Gp(v.gu.gu)

¥ u, v, w € X with at least two of gu, gv and gw are not equal. Also, suppose that the following
assertions hold:

(i) there occurs ap € X s.t. o (ag, gao, ga0) = 1

(i1} for any convergent sequence {a,} to a with a (@n, @ri1s @ny1) > 1, ¥V 0 € NU {0}, we
have o (an,a.a) > 1V ne NU{0}.
Then g has a FP;

(i11) moreover, if ¥ u.v € Fiz(g). a(u,v.v) > 1, then the FP is unique where Fizr(g) =

{u; gu = u}.
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Chapter 3

Fixed Point and Fuzzy Fixed Point

Results for F'—Contraction

In 2012. Wardowski [103] introduced a new type of contraction called F - contraction and proved
a new FP theorem concerning F—contraction. He generalized the BCP in a different aspect
from the well-known results from the literature. Afterwards. Secelean [96] proved FP theorems
consisting of F—contractions by Iterated function systems. Piri et al. [84] proved a P resuli
for F—Suzuki contractions for some weaker conditions on the self map of a complete metric
space which generalizes the result of Wardowski. Lately, Acar et al.[8 introduced the concept
of generalized multivalued F—contraction mappings. Further Altun et al. [7! extended multi-
valued mappings with §—distance and established FP results in complete metric space. Sgrol et
al. 198] established FP theorems for multivalued & —contractions and obtained the solution of
certain functional and integral equations, which was a proper generalization of some multival-
ued FP theorems including Nadler’s. Recently Ahmad et al. [12. 18, 46] recalled the concept of
F—contraction to obtain some FP, and common FP results in the context of complete metric
spaces.

In 1981, Heilpern [41] used the concept of fuzzy set to introduce a class of fuzzy wappings.
which is a generalization of the set-valued mapping. and proved a FP theorem for fuzzy contrac-
tion mappings in metric linear space. It is worth noting that the result announced by Heilpern

[41] is a fuzzy extension of the Banach contraction principle. Subsequently. several other au-
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thors have studied occurence of FPs of fuzzy mappings, for examples, Azam et al. {23. 24], Bose
et al. [27], Chang et al. [29]. Cho et al. [31], Qiu et al. [85], Rashwan et al. [86]. Shi-sheng
[99].

In 1969, Nadler [78], introduced a study of FP theorems involving multivalued mappings
and proved that every multivalued contraction on a complete metric space has a FP. Fisher 137
obtained different type of multivalued FP theorems defining d-distance between two hounded
subsets of a metric space. Then a lot of gencralization of multivalued mappings have been given
in the literature.

A fuzzy set in X is a function with domain X and values in [0,1]. I is the group of all
fuzzy sets in X. If A is a fuzzy set and = € X. then the function whose value is A{z) is called
the grade of membership of z in A. The o -level set of A is denoted by 14], and is defined as
follows:

(4], = {z: Alz) > a} if & € (0.1].

[23

[Al, = {z: A(z) > 0.

Here B denotes the closure of the set B. Suppose that F(X) be the group of all fuzzy sets
in a metric space X. For A, B € F(X), A C B means A{z} < B(z) for each z € X. We signify
the fuzzy set xyz} by {z} unless and until it is stated, where x () is the characteristic function

of the crisp set A. If there occurs an a € [0.1] s.t, [4],.[B], € CB(X), then define

(AB) =  inf  dz.y).
Pa(A.B) = jof ) A=)

Da(A.B) = H(JA], . [Bl.)

If [A],,[Bl, € CB(X) for each a € [0,1], then define

p(A, B) = suppa(4, B),

doo{A, B) = sup Do (A, B).

We write p(z. B) instead of p({z}, B). A fuzzy set A in a metric lincar space V' is said to be
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an approximate quantity iff 4] is compact and convex in V" for each a € 01 and supadjr) -~
1.The collection of all approximate quantities in V' is denoted by WV Su;)powr; l\mt X be
an arbitrary sct. Y be a metric space. A mapping T is called tuzzy mapping it 77 1x a mapping
from X into F{Y). A fuzzy mapping T is a fuzzy subset on X x ¥ with membership function
T(z)(y). The function T(z)(y) is the grade of membership of y in T(x).

In this chapter, we continue the study of generalized F'—contraction for single valued and
multivalued mapping in complete metric spaces. In Section 3.1. we extend the concept of F-
contraction into generalized F-contraction for single valued mapping. In Section 3.2, we discuss
this concept for multivalued mappings. Section 3.3 deals with the application of FP theorem
which was proved in the previous section to Volterra type integral equation. In Section 3.1.

we establish some common a-fuzzy FP theorems for generalized F-contraction in the setting of

complete metric spaces.

3.1 Fixed point results for single valued mappings

The results given in this section have been published in [61].

3.1.1 Definition

Supposc that (X,d) is a metric space. A mapping J : X — X is said to be generalized

F—contraction if there occurs 7 > 0 s.t,
Vrye X, d(Jz,Jy) > 0=71 + F{d(Jz. Jy)) < F(M(z.y)). {3.1)

where

. d(x. Jy) + d{y, Jx) N
M (x.y) = max {d(:c.y)._d(:r. Jx), d(y, Jy), (d(:c, T2) + (. Ju) + l) d(.f,.y)} .

We denote by [ . the set of all functions satisfying the conditions from (F1) - (F3).
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3.1.2 Theorem

Presume that (X, d) be a complete metric space and J : X -— X be generalized F—contraction.
If J or F is continuous. then J has a FP in X,

Proof. Suppose that xp in X, we construct a sequence {Zptoe, stoxy = Jrg. r2 = Joy =
J?xg. Continuing this process. rp41 = JZn = Jrtlzg. v on € N If there occurs n & N st

d(x,.Jx,) = 0, there is nothing to prove and the proof is complete. So. we assume that

d(Jxn 1.Jxn) = d(@n. Jr,) > 0.Vn € N, (3.2

Now for any n € N, we have

T+ Fd(Jen_1.Jn)) < F{M{r._1.7.)}.

Therefore

F{d{Zn. Tnv1)) = F{d{Jzao1. Jrn)) € F(M(z-1. Ind)—T. (3.3)
Now

In laIn) d(In 1: :b"n} d(In $n+])

A.[(irn—lel:ﬂ) = max d{l‘,. L a1 )b d(Tntn) d(I N )
d(zn - 1 Tn)+d{TnTu1 4] n—l:sn
:Cn I:In (In 1. xn)-d(l‘nixnjﬂ)r
= max (z . )
n—1.Tn+1 .
d(r, n,xu)+d J:..,x..+1)+1) d{zn-1.2n)
In 1- In) d(-rn T7:+1)
< max

dlcn L L) Td (T Laa1)
d(Iv T td (T Tt )] ALy -1-En)

= md‘{{d Tpet-i0n) d(In In+])}
So. we have

F(d(mn-xn—%l)) = F(d(anfl-JIﬂ)) < F(ﬂl&x {d(-rn—l--‘:n).‘d(l‘n-xn%l)}) -7
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In the case M(xn,_1,1,) = d{2,, rs41) is impossible.

F(d(IH-IFH—IJ) = F(d(J-'Enﬁl- J-'ﬂn)) < F (d(ln Inei}) -7 < F{d{r,

which is a contradiction. Otherwise. in other case

A”I(In—l--rn) = Inax{d(xn—lexn)sd($n-1n+l)} - d{.’]‘:"_].l‘n).

Thus from (3.3), we have

Fd{zn, Tny1)) < F{d(zn_1.20)) — 7.

Continuing this process, we get

Fd(znzap1)) < Fldlzp—an)) -7
= F(d(Jon . Jrn 1)) — 7
< F(d{zn_g.zn1)} — 27
= F{d{Jz,-3.Jra_2))- 27

< F (d(IH—S! I‘an)) - 37

1A

F (d(:l?g, Il}) - NT.

This implies that

F{d{zn. Tns1)) € F{d(ze. 7)) — n1.

From (3.4). we obtain limp—oc F (d(Zn, Tna1)) = —00,

which together with (F2) gives lim, oo d(Zp. Tns1) = 0. Le.,

lim d(zn. Tns1) = 0.

N—0C
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From (F3), there occurs k € (0,1) s.t,

lim ((d(mn,xn+1))kF(d(:cn,a:nH))) =0 (3.6)

n—o

From (3.4), the following holds ¥ n € N,

(@, Tns 1)) (F (d(@n, Tns1)) — F (d(z0,21))) < — (d(xn. 7031)) 07 0. (3.7)

By using (3.5}, (3.6) and letting n — > in (3.7). we have

lim (n (d(I,,.InH))k) — 0. (3.5)

2

We observe that from (3.8). then there occurs ; € N. s.t, n(d(:cn.xnﬂ))k <lvn>n

A, Tt} € - Y12 01 (3.9)
n%

To prove that {z,} is a C-seq. Consider m,n € N s.t, m > n > ny. Then by the triangle

inequality and from (3.9}, we have

(L, Tm) < d(y, Tni1)+ d(Zni1; Tpia) + d(Tp42. Tni3) + oo (3.10)

+d(‘r’rn-—i: I'ﬂ'l)
m—1

= Z d(zi, Tiv1)
-

< Zd(wi-fﬁiﬂ)
1

< DT
i=n Tk

The series Zfin qlr— is convergent. By taking limit as n — oc, in (3.10}, we have limy, 4~ d{zn. Tm) =
i

0. Hence {x,} is a C-seq. Since X is a complete metric space there occurs z* € X s.t.

lim, oo Zn = x*. Now if J is continuous. Then we have 7* = liMy oo Tnal = HMp_pe JTn =

J (limy 00 Tn) = Jz* and so z” is a P of J.

Now, suppose F is continuous. In this case, we claim that o* = Jz*. Assume the contrary,
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ic. ¥ # Jz* In this case. there occurs an ng € N and a subsequence {rn, | of {rn} s.1.
d(Jzn,, Jz*) > 0¥ ng > ng. (Otherwise. there occur ny € N sit. x, = Jr* ¥ n > mnp. which
implies that z, — Jz*. This is a contradiction, since ™ # Jr"). Since d{Jx,,. Jrty > v

ng > ng, from (3.1). we have

T4 F{d(Zn,41,J27)) = T+ Fld{Jz,. JT7)). (3.11
< F(M{z,,.x7)).
(T, . 27} d(Zp,  Tny 1) d(Z® ST

= nax
Fin e, J2V VA ) ) g e
d(Ink,I‘)er(:r..k_ ,I,.k+1)+] gt

Taking the limit & — oo and using the continuity of F we have 7 + Fld{z*. Ja™)} <

F{d{z*.Jz*)), which is a contradiction. Therefore our claim is true. i.c., rr=Ja". m

3.1.3 Example

Assume that X = [0,1]. Define a mapping. J: X — X by,

bol—

if e l0.1).
Jao—

%. ifz =1

Since. J is not continuous. J is not a F-contraction by Remark 1.1.3.

For z € {0,1) and y = 1, we have

11
d(Jz.J1)=d (5,2) =

and

d(z,J1}+d(1,Jz)
(@, Jz) ~d(LJD) + 1

max {d(az,l),d(z‘J:c),d(l,Jl). (d )d(r.l)} <d(1.J1) - %

Now by choosing. F{a) = lna, ¢ € (0,+oc) and 7 = In3. we see that J is a generalized
F-contraction.

Recently, Piri and Kumam [84) generalized the result of Wardowski 03! by replacing the
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conditions (F2) and (F3) with the following one:

(F2') Inf F = —0.

(F3') F is continuous on (0, 00).

Here F denotes the family of all functions F : R, — R which satisfy conditions (£’ DL(F2)
and (F 3') .

3.1.4 Definition [18]

Assume that (X.d} is a metric space and J : X — X be a sell mapping. then J is said to be

generalized F—contraction of rational type A if there occurs 7 > 0 s.t,
VrzyeX. diJr.Jy)>0=>7+ F{dJz. Jy)) < F{M{x.y)).

where

d(z.Jy) + diy. Jz) )d(a"--u)}-

M(z.y) = max {d(z. y).d(z. Jz). dly. Jy). (d(x. Jr) +d{y. Jy) +1

F: R, — R is a mapping satisfying the following conditions:
(F1) F is strictly increasing, i.c. ¥ 1.y € R, s.t.x <y, Flx) < Fly):
(F2) for cach sequence {a,}32; of positive numbers, lim, . o, = ¢ iff
Bim, e Flan) = —oc:
(F3') F is continuous on (0, 20).
We denote by F, the set of all functions satisfying the conditions (F1)-(F3").
The following theorem is a direct consequence of Theorem 3.1.2 which has been published

in {18] by using Piri technique.

3.1.5 Theorem [18]

Assume that {X.d) is a complete metric space and J : X — X be generalized I7 contraction

of rational type then J has a FP in X.
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3.2 Fixed point results for multivalued mappings

In this section, we present a FP theorem for multivalued mappings with d-distance using War-

dowski’s technique on complete metric spaces.

3.2.1 Theorem

Suppose that J : X — B(X) is a multivalued generalized F-contraction on a complete metric

space X. Suppose F € F, and there occurs 7 > 0 s.t,
Y,y € X with min{6(Jz,Jy)d(z. y)} >0=>717+F (8(Jz. Jy)) < F{M(x.y}). (3.12)

where

Diz,Jy) + D(y. Jx) ) d(;r.y)} .

M{x.y) = max {d(ss.y). D(x.Jz). D{y. Jy). (D(:c. 72+ Dy, Jy) = 1

If Fis continuous and Jz is closed V x € X . then J has a FP in X.

Proof. Suppose that x5 € X be an erratic point and define a sequence {0} in X =1,

Zni € Jx,. ¥ n > 0. If there occurs ng € NU {0} for which r,, = ¥, 1. then a,, s a FP ol
J and so the proof is completed. Thus. assume that. for evory ng < N {0} e - vy S0
d(zn. Loty > 0 and 6(Jz, 1. Jr,)>0 vneékl (3.13}

Then from {3.13). we have
T4 F(d(zn. tnn1)) S 7+ F(8(JTn1. Jn)) € F (M(zrn-1.2n))- (3.11)

Now

d(xn—l-xn)- D(I:TI—-]: J'IH—])- D(In- JIU )

PD{xp_1,Jz )+ D{xn. Jau1)
(D(In-[.JI,.,l )+D(I“.JI“)+1) d(:rn-l- In)

< F{max {d(zn_l.zn).d(zn.zn+1)}) )

F(M{zn-1.24)) = F | max
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We have

F(d(Zn, #ng1)) = F(d(J2n_1,J22)) < F (max {d(Tn-1,2n), HTn, Tn41)}) — 7

In the case M{(zn—1,Tn) = d(Tn. Tnyy) is impossible.

Fd(zn, Tn1)) = F{d{Jzno1. Jzn)) < F (d(@n. Tagr)) — 7 < Fd{zn, Tni)}-

which is a contradiction. Otherwise in other case

AM(:Cnfl: mn) = Imax {d(:cnfl . In)u d(xn xn+])} = d(xn-—l.- Ty,).

Thus from {3.14). we have

F{d{xn. Tni1)) € F(d(@n1,2a)) = T

Continuing this process, we get

F(d(@n, 2n1)) < Fld{@a1,20)) ~ 7
< F(d(zp_2,Zn-1)) — 27
< F(d(zpn-3,Tn-2)) — 37
< F(d(IQ,Il)) — 7.
This implies that
Fd(zn.zns1)) < F (d(zo, z1)) — nT. (3.15)
From {3.15), we obtain limn o F (d(Zx, Tni1)) = —oo and imposing (F2) gives lim, Az, Thir) —
0. Le..
Iim d{x,.z,.1) =0 (3.16)
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From (F3). there occurs k € (0.1) s.t,

lim ((d(xn.:cm))"p(d(xn,zm))) = 0. (3.17)

n—oc

From (3.15), the following holds ¥ n € N,
(dln, Tny: ) (F (d{@n. Tas)) — F(d{z0.71))) € — (dlzn. 20.1)) 07 0. (3.18)
By using (3.16), (3.17) and letting n — ~ in (3.18), we have

lim (n(d(mn,xnﬂ))k) =0 (3.19)

n-—oc

We observe that from (3.19), then there occurs n; € N, s.t, n (d(xn,xn+1))k <1V n>mng,

1

1
k

d(Iﬂ'IYI+1) < Vnzn. (320)

n

Now we prove that {z,} is a C-seq. Consider m.n € Ns.t.m >n 2 ny. Then by the triangle

inequality and from (3.20). we have

d(.l‘n,l‘m) < d(In-xn—rl) - d{-rn+l-1'n—w—2) + d(LC”_,‘,g. ITi-rS) + . (3.21)

-t d(xmfi--'rm)

m—1
= Z d(z;. ti=1)

i=rn

Zd(ri-rzﬂ)
i=n

o
=T

1

[FAN

A
| —

.

The series Zzn —‘%- is convergent. By taking limit asn — oc, in (3.21), we have limp n—ne d(2n. 10 ) =
i

0. Hence {z,} is a C-seq. Since {X.d} s a complete metric space the sequence {z,} converges

1o some point z* € X s.t, liMu—oc I = 27 Now suppose that F is continuous. lu this case

we claim x* € Jz*. Suppose contrary that z¥ ¢ Jz*. In this case there occur ng ¢ Iv and a

¥

subsequence {T,, } s.t. D(zn, +1.J27) > 0V g > no.(On the other hand. there occurs iy € °
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s.t, In € JT* ¥V n > ng. this implies that z* € Jx*. which is a contradiction. Since x* & Ju™).

Since D(zxp, 41.J2%) > 0¥ g > my. we obtain

T+ F(D(xn, +1.J2%))

= T+ F{6(Jz,,.Jz"))

< F(M(z,,,z"))
d(zn, . 2%). d{Tn, . Tn,+1). D(z*. J2™),
< F | max DECI ..31")-%—&(::' z o ) (322)
Hg L +1 d(I .I'*)
d(Ink;Ink+1)+D(I.SJI’)+1 Mg
Since I is continuous, taking the limit as £ — o in (3.22). we obtain
4 F{D(x*. Jz*))y < F(D({z". Jx™)). (3.23)

which is a contradiction. Therefore, we have r* € Jz*. Hence z"isa FP of J. =

3.3 Application to integral equation

In this section, we discuss the application of FP theorem which was proved in the previous

soction to the following Volterra type integral equation.
o
wlo) = [ K(os.uls)ds = f(o) (3.24)
0

for o € {0,a], where @ > 0. We find the solution of (3.24). Suppose that C([0.a[.R) be the
space of all continuous functions defined on [0.4a]. For u € C({0. ¢l R). define supremurm norin
as: ‘wil- = sup {u(ele "2} where 7 > 0 is taken arbitrary. Suppose that C'(0.a . K} be

o€ (0.q]
endowed with the metric

et
[ ]
[y )

de(u. vy - sup 'ulo)— vlo) e 79
ve[l.aj

v ou.v € C{[0.a].R). With these serting C{0.a].R.| - |;) becomes a Banach space.

Now we prove the following theorem to ensure the occurence of solution of integral equation.
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For more details on such applications. we refer the readers to [20, 83,.

3.3.1 Theorem

Assume the following conditions arc satisfied:
(VK :0.al x [0.al xR — Rand [:0.a — R are continuons:

(ii) Define

Ju(o) = [ K(o.s.u(s))ds + f(o).

Qk""‘ﬁla

Suppose there occurs 7 > 1, s.t,
K(ovs.w) — K(.5.v)] < re™ [M(u,v)]
¥ o.s € [0.a] and u.v € C([0,a],R), where

M(u,v) = maxflu(o) - v(o)].lu(e) — Ju(a)|. [v(o) — Ju(e)l.
( u(o) — Ju(o)| + |u(2) — Ju(o]|
)l

Then integral equation given in (3.24} has a solution.

Proof. By assumption (ii)

VK (o, 5, u(s) — K{g.s.v(s)})ids

iJu(o) — Ju(e)l =

of
/TE_T([M(“-U}!E”)e”d.s
0
0

<

< e | M(u,v)| e ds
¢

< T€7T|E‘\‘I(U.L‘)l|f[ETSdS
0

- 1,
< Te THJW(u._v)HT;e 2
< eM e

T4



This implies

[Ju(e) — Je(o) e ™ < e[| M (. v)lr.

That is,

lJule) — Ju(e)li- < e TIIM (u, v)|

T
which further implies

7+ In||Ju(g) — Ju(o)ll- < In[IM(u, v}l

Sy all the conditions of Theorem 3.1.2 are satisfied. Hence integral equations given in (3.24)

Lias a unique solution. =

3.4 Fuzzy FP results for generalized contractions

L this section. we establish some common a-fuzzy FP theorems for generalized F-contraction
in the setting of complete metric spaces. In this way, we unify. generalize and complement
various known comparable results in the literature. We also provide an example to show the
significance of the investigation of our results. As applications of our main results we derive
some multi-valued FP theorems from our fuzzy FP theorems.

For the sake of convenience, we first state some known results for subsequent use in our

main results.

3.4.1 Lemma

Assume that (X.d) is a metric space and A, B € CB(X). then for each a € A.
d(a. B} < H(A.B).

3.4.2 Lemma [19]

Suppose that V is a metric linear space. J: X — W(V) be a fuzzy mapping and 1o € 1" Then
there occurs 1 € V os.t, {21} € J(xo).

Now we state our main theorem of this section.
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3.4.3 Theorem

Presume that {X.d) is a complete metric space and let S. J be fuzzy mappings from X into 2 {.X)
and for each = € X. there occur ag(x).as{r) € (0.1] s.t. [Sz!, . Wy, are nonempty

closed bounded subsets of X. If there occur some F € F and 7 > {4 s.t,
T+ F (H ({Srlmm . {Jylnm)) < F(M(z.y) (3.26)

varye X withH ([Sz}ns(z) . [Jy]mm) >0, where

M(z.y) = max {d (z,y).d (I. {SI]OS(I)) .d (y, [Jy]aj(r)) . %[d (:1:. [Jy]QJ(I)) +d (y. [SI]DS(J.))E} .
(3.27)

Then there oceurs some u € [Su], ) N 1Julq, (-
Proof. Suppose that xg be an erratic point in X. then by hypotheses there occurs cg{Ty) €
(0.1} s.t, [SZo], (s 1S & nONCIPLY closed bounded subset of X. For convenience, we denote
ag(xg) by «aj. Suppose that z; € [SIU]QS(ID)- For this r; there occurs ay{z1) € (0.1} s.t.

[J£1]q ey IS & NOREMpty. closed and bounded subset of X. By Lemma 3.4.1. ( F1} and (3.26).

we have

TP (o nlae) € THF CAEE Uil o))
< F(M{xo.11))
d(zg.z1).d (:r,o._ [51'0]05_(1"0)) .d (2:1. {JJ'l}a,(IIJ> .
o A BT R +d (31520,
Z[d( o1/ l]C’u(fl)) ( 1 { Ulﬂrs(ru))]
< F {max {a’(rg.xl).d(21.[J$1]0J(Il))}). (3.28)

If max {d(;m. ), d (1‘1.- UIl]a‘,(rl))} =d (:':1, [‘]Il}u_;(xl)) , then from (3.28). we get
r 4 F (d (20 oo, ) < F (@ (o il en) ) -
which is a contradiction. So, max {d(rg. x1).d (Il, [Jx]]OJ(Ii))} = d(xg.x1). Then

7+ F(d (o1 21l ) ) < Fldzo.2:), (3.29)
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From ( F4). we know that

F (d (1’1. [J-lea;(m))) T el inf Fld{zri.y)}

JI[JHJ‘_]“

Thus from (3.29}, we get

r+  inf  Fld(z1,y)) < [F(d(ze. 1)) (3.30)

yE[J’z;]ﬂJ“l)

Then. from (3.30). there occurs z2 € [J:c]]m(m s.t,
T+ F{d{z1. 7)) € {F(d(zo, x1)]. (3.31)

For this z, there occurs ag(zg) € (0, 1] s.t. {Sx2], ¢, 15 a nonempty closed bounded subset of

X. By Lernma 3.4.1, (F1) and (3.26}, we have

7+ F (d (Tz [S:xg]as(rz))) < T4 F{H (EJII]QJ(I” . [S'.T'z],,gug))
= F(HA (ISIE]GS{IZ) : LJII]OJ(IU)

< FM(rz. 1))

B F(ma.x d(IQ:Il):d(I‘Z-[SI?EQS(IQ))-d(I].[JI]]OJ(I})) })

. 3ld (I% [JII]Q_,(x,)) +d (Ih {Sxﬂ]as{zz))}
< F (max {d(;rg, z1),d (.’EQ_. [SIZ]OS(IZ)) })
F (max {dla1,22).d (2 ST2lagen ) }) (3.32)

If max {d(a:l. xa).d (3:2. {Srg]as(n))} =d (Ig. [ng]as(zz)) . then from (3.32). we get
T+ F [d (1‘2. [SIQ]Gs(Iz))] <F [d (IQ, [SIQ]DS(IQ)):\ ,
which is a contradiction. So. max {d(m, z2).d (:rg. [S:cg}as(rz))} = d{x1.72). Then

7 F [d (2. [Srglns(”)ﬂ < Fd(zy.r2). (3.33)

-1
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From (F4), we know that

Fid STal = inf Fld{z;. )
1: (Iz{ Iz]“-"(”))] y1€[5}£121‘1¢5(12) (diz2.31))
Thus
T+ inf Fld{z2.1n)) € Fld(z1.22)}. (3.347
y16[512]&5(7,.2}

Then. from (3.34). there occurs z3 € [Sx2], (4, 51
7+ Fld(x2.73)) < Fld{x). 22). (3.35)

So. continuing recursively. we obtain a sequence {zn} in X st. 12,01 € [SIZ,;;”H(”", and

Ton42 € [J32n+1]a,f(12n+1) and
T+ F(d(Z2n+1-Z2n42)) < F(d(T2n: Z2n41) (536

and

7+ F(d(22042: T2n13)) < F(d(T2ns1, T2nt2) (3.37)

v n € N, From (3.36) and (3.37). we have

T+ Fld(zn. Tns1)) € Fd(zn-1.2n). (3.38)
Therefore
Fd{zn 2ns1)) € Fld(aao1.70)) =7 < Fd(@n 2. L2-1)) = 27
< .. < F{d{zg.x1)} — . {3.39)
Suppose thatting n — o¢ in above inequality, we obtain nlLr]ch(d(mn,zn+1)) = —x that

together with (F'2) gives

lim d{z,,zp41) = 0.

n—oC
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Now by (#73). there occurs h € (0.1) s.t.

lim [d(2n. o))" F (d(20. 2ae1)) = 0.

— 2

From (3.39) we have

({20, Zns )" F (d{Zn, 2041)) — [d(Zn. Tae )] F ({20, 221)

< —n'r[d(:cn,zn+])}}' < 0.
On taking limit as n — oc we obtain

lim n{d(zn.rn+1)]h = 0.
n—oc

. 1 . 1 ‘ .
Hence lim nwd(z,.zne1) = 0 and there occurs ny € N st nndiz,. ras1) < 1Y 20 50 we
n—+2C
have
1

7 (3.40)

d(l'ne 1:fi+l) S

Vv n > n;. Now consider m.n € Nst, m >n>np. we have

d{Tn, Tm) < d{TnTna)+ d{Tni1. Tne2) + oo+ d{Lm_1. o)

o
1
Z 1'[/.’1 ’
i=n

By the convergence of the series > o0y ITlI we get d (2, Ty,) — 0 asn.m — oo. Therefore {zn}
is a C-seq in X. The completeness of (X. d) ensures that there occurs u © Xst, lim, o Zn — w
Now. we prove that « € [Jul, (, . We suppose on the contrary that u ¢ [Ju], (. then there

occur a ng € N and a subsequence {zn, } of {zn} s.t, A(Zan, +1 {‘]u]a_;(u}) > 0 ¥V ngp > ng. Since
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d(Z2n,4+1. [Ju 4, (y) > 0V g > ng, by Lemma 3.4.1, ( F1) and (3.26), we have

T+ F [d(:L'2m+1. [JU}OJ(H)):{ < 7+ F [H([S'rznk]cls(l‘g,.k) : {JU}DJ(“))J
< F(M(zan,.u)
N d(T9q, . u), d (:.cgm. [S‘r?"k]ns(rz,.k )) il (u- lJ“fa‘J(m) .
%[d (l‘gm . "Ju]:m(“.‘) +d (u‘ 'Sxa,., ‘[,Hu_" )
< F | max

d{zan,  u).d(zan,  Top, 1) .d (u.. G ) .
Y (220, ) + (022, 1) '

which further implies that

d(zon,, u). d(Ton,  Ton, +1) . d (u. N“Lx,,(u}) .
%[d (Ignk, [Ju]aj{u)) + d (U, Ton, +1);
d(22q, . u). d(Ton, . Ton,+1).d (u, {Ju]mm) .
4 (@2, [0l )+ (1,221

Fld(zon, 11 [Jul, ) < F [ max

< F | max

Since F is strictly increasing, we have

d(932nk- u)‘ d(‘r2nk ' $2nk+l) .d ('U.. [J“']n_,(u)) .

d(x2n, 41, [Jul, (u)) < max
; lid (rzm, uu]w(u)) b d (. zan 1)

Suppose thatting n — o¢, we have
d(u, (Jujy ) € dluw[Jul, o))

which is possible only if u € [Ju]

u € [Suj

o, (u) - Similarly, one can easily prove that u & 1], (uy- Thus

y N Tl ]

as(u ayu)”

The following theorem is a direct consequence.

3.4.4 Theorem

Suppose that (X, d) is a complete metric space and let 5 be fuzzy mapping from X into F(X)

and for cach = € X, there occur as(z). as(z) € (0,1] s.t, [Sz], . [S]ag, are nonempty

n‘q(
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closed bounded subsets of X. If there occur some F € [ and 7 > 0 s.t.
r 4 F (H (158]agie)  [SVlastn) ) S FM ()

Vaye X with H ([SI]QS(I) , [Sy]ﬂs(y)) > 0, where

1
AI(I y) = max {d (I~y) ’ d (I' [SI]QS(.‘L‘)) d (y [Sy}af;‘(y)) ' §[d (CL‘, [Sy]aﬁ(y)) +d (!L 151']05‘(3‘})1} .
Then there occurs some u € [Suj, ) -

3.4.5 Corollary

Presume that (X,d) be a completc metric space and let F\G:X — CB{X) be multivalued

mappings. If therc occur some F € £ and 7 > 0 s.t,
T+ F(H{Fz.Gy)} < F(M(z.y))
Var,ye X with H(Fz,Gy) > 0, where
Mz.y) = max {d(m.y) cd(z, Fr), d{y.Gy). %{d(,szy) + d{y. F.r);} .

Then there occurs some v € FunGu.
Proof. Consider a mapping o : X — [0,1] and a pair of fuzzy mappings S.J: X — F(.X)

defined by
a(z), if t e Fz,

S(z)(t) =
0, iftg Fr
and
a(r}, ift Gz
J(z){(t} =
0, iftg Gz
Then

ST = 1t SE)(t) > a(x)} = Fr and [(Jzo,, =t J{z){t) > alr)} - G

)

81



Thus. Theorem 3.4.4 can be applied to obtain v € X s.t,

u € [Sul, o M ] = Fun Gu.

05(1:

3.4.6 Corollary

Assume that (X.d) is a complete metric space and let F : X — CB{X) be multivalued map-

pings. If there occur some F € {7 and 7 > 0 s.t,
T+ F(H(Fz. Fy)) < F(M(z.y)
v ax.y e X with H(Fz, Fy) > (0, where
Mz, y)= max{d(a:,y).d(:c,Fa:},d(y.Fy) . %[d(x.Fy) + d(y.F‘I)]} :
Then there occurs some 1 € Fu.

3.4.7 Corollary

Assume that (X.d) is a complete metric linear space and let 5.J : X — IW{X) be fuzzy

mappings. If there occur some F € # and 7 > 0 s.t,
7+ Fld (S(x). J(y))) < F(M{z.y))
V .y € X with doo (S(z), J(y)) > 0 . where
M(x.y) = max {p (z.y).ple. 8(x).ply. Jw). %ip(r- J(y)} -+ ply. S(-r'l‘)'} :

"Then there occurs some u € X s.t, {u} C S{u) and {u} C J(u).
Proof. Suppose that « € X, then by Lemma 3.4.1 there occurs y € X s.t. y € [Sz].
Similarly, we can find z € X s.t. z € [Jz]y. It follows that for each z € X, [Sz]a(z). [/ 2]a(e) are

nonempty closed bounded subsets of X. As a(x) = a(y) = 1, by the definition of a de-metric
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for fuzzy sets. we have

H (1] a2y [Wlage)) S doel(S(2). I (1)

V¥ r.y € X. It implies that

4 F(H (IS0l Ulan))) € Fldx(S@).J))

play) . plz.S(x).ply. Jy)). )
F [ max
ez, J()) + ply. S(2))]

V a.y € X. Since [Sz)|; € [Szl, for each a € (0,1), d(z, [Sz],) < d(z.[Sz],) for each a € (0.11.

A

[t implies that p{x. S(x}) < d(x, [Sz],}. Similarly, p{x, J(z)) < d{z, {Jx|;). This further implies
that V z.y € X,

(e el + a2l ).

6D

THF(H ([Sx],  [Jy ) < F (max{d(:c.y) d(x,[Sz],) . d(y. [Jx];),

Now, by Theorem 3.4.3, we obtain v € X s.t, u € [SulyN{July, Le.. {u} C J(u} and {u} C S(u).
[
In the following, we suppose that J {for dctails. see [93. 99]) is the set-valued mapping

induced by fuzzy mappings J: X — F(X). i.e.
Jr= {y S J(x)(E) = Itna{j(.](:c)(t)}.

3.4.8 Corollary

Assume that {X,d) is a complete metric space and let 5,J : X — F(X) be fuzzy mappings s.t.
vielX, 3'(1:), j(:r) are nonempty closed bounded subsets of X. If there occur some £ € F
and 7 > 0 s.t,

r+ F (8 (8@, 7w) )} < FM(z.y)

Vrye X with H (§(I) A(y)) > 0 . where

Miz.y) = max {d(&:.y) .d (:r. §(:c)) .d (y,j(y)) . %[d (:r. f(y}) +d (y, §(I))}} .
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Then there occurs a point z* € X s.t, S(z*)(z*) > S{z*)(z) and J(z*)(z*) > J(z7){z) V
reX.
Proof. By Corollary 3.4.5, there occurs r* € X s.t, z* € Sz*nJzr*. Then by Lemma 3.4.2.
we have

S(x*)(z%) 2 S(z*)(z)  and  J(z")(z") > J(z")(z)

vrzeX. =

3.4.9 Example

Suppose that X = {1.2.3}.{1}.{2}. {3} be crisp sets and d : X x X — R be the metric defined
by
Oif z=y.
fr#yandz.ye X — {1}
L2 ifz#yand z,y e X — {2}
lifr#yand z.y € X — {3}.

Sl

d{z,y) =

Then (X.d) is a complete metric space. Suppose that F(t) = la(¢) € f for ¢t > 0. Define a pair

of mappings S : X — F(X} as follows:

Tift=1
S((E) = 5(2)t) =SE)t) § pift=2 .
0ift=3
and
dift=1
J)E) = JB)E) = q ift=2 .
0ift =3
Oife=1
J2)y =4 {ift=2
Sift=3
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Then. for a(r} = % .we have

1} if 2
{J‘I]a(x):{t:'](-r')(t):u(,r)}: { { } | T # .
Gpifz =2
and
[Selagey = 1t SE@W = alz)} = {1
Then

H({1},{1}) =0ify +2

H [SI}OQI'[J }ﬂiy =
( s(@) y-“) H({1} {3 = FHify=2

Now we have the following three cases:

Case 1: If x =1, y =2, then

5
H ([S‘T]ay(;v:) H [Jy]cx_,(y)) = ﬁ > 0

and

1o ) #4570 )} 1

N | —

max {d tr.y) . d (I. [SI}HS(I)) d (y. Ly, J(r)) .

Then there occurs some 7 € (0. ln(lavl)} s.t. the inequalities (3.26) and (3.27) are satisfied.

Case 2: If r =2, y = 2, then again
)
H (1)) ¥la,i0) = 15 > 0
and

max {d (z.y).d (,r IS:C}QS(I)) .d (y\ [Jy]QJ(I)) , é{d (a:, [Jy]nJ(I)) +d (y [Sr]us(l,))}} =

Then there occurs some T € (U.Ill(%)} s.t, the inequalities {3.26) and (3.27) are satistied.

Case 3: If x = 3. y = 2, then again

. 2
H (i.s'r]n_g(l‘) N {Jy}a_}(y)) = ﬁ >0



and

17

max {d (2.9) .4 (. (55 0y) @ (¥ [T¥a i) %[d (2178, ) + 2 (v [S:c]as(l))]} _ 1

Then there occurs some 7 € (0.In(3})] s.t, the inequalities (3.26) and (3.27) are satisfied.

Hence all the conditions of Theorem 3.4.3 are satisfied to obtain 1 € [Sl]% n [Jl}%.
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Chapter 4

Fixed Point Results In Partial

Metric Spaces

In 1994, Matthews {65] introduced the notion of partial metric spaces (PMS) and obtained
various FP theorems. In fact, he showed that the BCP can be generalized to the partial metric
context for applications in program verification. Since then, many reserachers have investigated
various results and generalizations in context of PMS.

Later on. Romaguera [91] introduced the notions of 0-C-seqs and O-complete PMSs and
proved some characterizations of PMS in terms of completeness and O-completeness.

Tu this chapter. we continue these investigations and explore the FP and common FP results
in PMSs. In Section 4.1, we give a brief introduction of PASs. In Section 4.2. we introduce an
F--rational cyelic contraction on PMSs and present new FP results for such cyclic contraction
in O-complete PMSs. Section 4.3 is devoted to a common FP theorem for a pair of multivalued
F — W—proximinal mappings satisfying Ciric-wardowski type contraction in PMSs. Examples
are constructed to illustrate these result. In Section 4.4, applications to system of integral
equations are presented to show the usability of our results.

In the sequel. R, R*. N. and N1 will represent the set of all real numbers. non-negative real

numbers, natural numbers and positive integers.
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4.1 Introduction

First we recall some definitions and properties of PMSs.

4.1.1 Definition [65]

A partial metric on a nonempty set X is a function p: X x X — RT(R* stands for nonnegative
s.t. Vo, e X

(P1) z =y & p(z,z) =p(y.y) = p(z,9);

(£2) p(z.z) < plz,y);

(P3) p(z.y)=ply.zh

(P4) p(x.y) S p(z.z} +pla.y) —pla.2).

A PMS is a pair (X, p) s.t. X is a nonempty set and p is a partial metric on ..

It is clear that, if p{x.y) = 0. then from (P1) and (P2) z = y. But if r = y. p(z. y) may

not be 0. Also. every metric space is a PAMS, with zero self distance.

4.1.2 Example [65]

If p: Rt x RT — R* is defined by p(z.y) = max{z.y}. V z,y € R". then (R*.p) is a PMS.

For more examples of PMSs, we refer the reader to [21] and the references therein.

Each partial metric p on X generates a Ty topology 7 {p) on X which has a base topology
of open p—balls {B, (z.€): 7€ X, £ >0} and By (z.c) = {y € X : p(z.y) <z +plz.T)}.

A mapping f : X — X is contimuous if and only if. whenever a sequence {x,} in X
converging with respect to 7 (p) to a point x € X, the sequence {fx,} converges with respect
tor(p) to fre X.

Suppose that (X.p) be a PMS.

(i) A sequence {z,} in PMS (X.p) converges to a point x € X if and only if p(r.2} =
limy, e p . x).

(ii) A sequence {z,} in PMS (X, p) is called C-seq if there occurs (and is finite} fimy, m—oc p (0, & ).
The space (X, p) is said to be complete if every C-seq {z,} in X converges. with respect 10
7(p).toapoint z€ X s.t. p(r, ) = My m—oc P{Zn. T}

(1i1) A sequence {z,} in PMS (X, p} is called 0-Cauchy if limp oo P (ZTn.T,,) = 0. The
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space (X.p) is said to be O-complete if every 0-C-seq in X converges {in v (p)) to a point x € .X
s.t, plz,z)=0.
4.1.3 Lemma

Presume that (X, p) is a PMS.

(2)[5.56) If p(z,.2) — p(z.2) = 0 as n — oc. then p(z,.y) — p(z.y) as n — x for each
ye X,

(b) [91] If (X.p) is complete, then it is O0—complete.

It is casy to sce that every closed subset of a O-complete PMS is (-complete. The following
example shows that the converse assertion of (b) need not hold.

4.1.4 Example [91]

The space X = [0. +00) N Q with the partial metric p(z,y) = max{zr,y} is O-complete, but is
not complete. Moreover, the sequence {z,} with z, = 1 for each n € N is a C-seq in (X.p).

but it is not a 0-C-seq.

4.1.5 Definition [52]

Presume that (X, d) is a metric space and f: X — X be a mapping. Then it is said that f

satisfies the orbital condition if there accurs a constant &£ € (0.1) s.t.
d{fr, fPr) < kd(z. fx). (4.1)
vreX.

4.1.6 Theorem [6)

Suppose that (X, p) is a 0—complete PMS and f : X — X be continuous s.t,

p(fr. f2x) <k plz. fr) (4.2)

holds ¥V z € X, where & € (0.1). Then there occurs z € X s.it. p(z.2) =0 and p(fz.z2} =
p(fz fz).
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4.1.7 Definition [52]

Suppose that (X,p) is a PMS and f: X — X be a mapping with FP set Fiz(f) # ¢ . Then f
has property (P) if Fiz(f") = Fiz(f). foreach n € N.

4.1.8 Lemma [52]

Presume that (X,p) is a PMS, f: X — X be a self map s.t, Fix (f) # ¢. Then f has the
property (P) if (4.2) holds for some k € {0.1) and either (1) V z € X. or (i) Vz £ fx.
One of the remarkable generalizations of BCP was reported by Kirk et al. '62] via cvclic

contraction.

4.1.9 Theorem [62]

Suppose that {4,}™, is a nonempty closed subset of a coniplete metric space (X '} aud suppose
U™ A — UM A; is a mapping satisfying the following conditions:

(1) f{A) C Aisy for 1 <7< m. where A1 = Ay,

(2) d(fz, fy) <y (d(z,y)), forallz € 4;, y € Aip1; 1 € {1,2,---,m},

where Ap 1 = A and v : [0,1) — [0.1) is a function, upper semi-continuous from the right

and 0 <1 (t) <t for £ > 0. Then, f hasa FP z € N2, A,.

4.1.10 Definition [25]

Assume that K be a nonempty set and let z € X. An element y € K is called a best approxi-
mation in K if

d(z, K) = di(z,y0)., where d(z,K} = in}f\,d(:.r.y).
e

If cach z € X has at least one best approximation in K, then K is called a proximinal set.

4.1.11 Definition [25]

The function Hy, : P(X} x P(X) — R*. defined by

H,{A. B) = max{supp(a. B}. supp(A.b)}
acA beB
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is called a partial Hausdorff metric on P(X).

4.1.12 Lemma [25]

Presume that (P(X), H,) be a partially Hausdorff metric space on P(X) v A. B € P(X)
and for each @ € A there occurs b, € B satisfies dy(a. B) = dy(a,b,) then Hp(A. B) > di{a.b,).

4.2 Fixed point of F—rational cyclic mappings on 0—complete
PMS

The results given in this section have been presented in [72].
Suppose that (X, p) be a PMS, through out of this section we mean by A, be the set of all

nonempty closed subsets of X.

4.2.1 Definition

Assume that {X,p) is a PMS, V; € Ap for i = 1,2,---,m, E =", Vi wherem € N. A
mapping f : £ — E is called an F _rational cyclic contraction if there occur F € F and A € R,
s.t,

1. f(V;) € Viy1,i=1,2,...,m, where Vi1 = Vi,

2 forzeVi.y € Viyr, i1 =1,2,...,m, with p(fz, fy) > 0, we have

A+ F(p(fz. fy)) < F(Hy(z.y))- (4.3}
where
My (z,y) = ap (x.y) + bp (, fz) + ep (v, fy) + dp(z. fy) +ep (v, fx)
p(z, fr) -p(y=fy)j (4.4)
1+p(z,y)
and
a.bc.del>0wtha+tbt+etrd+e+i<l (4.5)

The main result of this section is the following.
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4.2.2 Theorem

Assume that {X,p) be a O-complete PMS, V; € A,; 4 =1.2.--- .m where m € N and £ =
LT Vi Suppose that f: B — E is an F-rational cyclic contraction. Then,

1. f has a unique FP = € E;

2 plz.z)=0and z € N, V;;

3. for any rp € E. the sequence z, = f™xq. converges to z in topology 7{p).

Proof. Suppose that zp € £ be an erratic point. Then there occurs ip s.t. zg € Vi,. s0
there is z; € V; ) where z; = fzp. Continue in this process we can construct a sequence
Tn = fayp—1 = ffxyg € Vigpn. If @n = zp4q for some for n € N, then x, is a FP of f. From
now on assume that z, # 2,41, V1 € N and let p,, = p(xn, Tuy1), 50 p, > 0¥ e € N, Since

f:E — Eis an F-rational cyclic contractions. from (4.3) and (4.4) we have that

A+Fipn) = M Fp(xn. Tra1))

= A+ F(p(fzanr. fzn))

ap{Zn_1.2,) +0p (a1, Tn) + P (Zn, Zng1) + AP (Tn1. Tnat)

JEEn -1 pplan Tn.1)
14p(n-1.0n)

F

+ep(zn, Tn) +

To 1.0 ) P{Tn Tyl ) <

Since p(Tn1.Tns1) < PlTn_1. o+ P{Tn. Tns1)—{(ETn, Tn), F is strictly increasing and Bl

T4 P(xn 120
P (Zn. Zny1). the above inequality becomes
At Fpn) < Flla+b+d)pn1t{ctd+)pa+{e—d)p(za,zn)). (4.6)
Since A > {.
Fp) A+ F(pa) < F(la+b+d)pn1+(c+d+1)pe + (e —d)p(Tn. z0)).
But, £ is strictly increasing, so we deduce that
Pn<la+b+dlpny+(c+d+0Opn+ (e — d)p(Ln. 2n)). (4.7)

By symmetry of p(z,41.24) = p{z,.2,41). and using similar argument as above one can
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deduce that

At Fip(ani1.za)) = A+ F(p(fan, fza-1))

Fllatcte)per+(b+e+Dpn+{d—e)p(z..z.}).

[ A

Thus,
Fpo) <A+ F(p) S Fllatct+e)paat(btet)p.+{d—e)p(@n.2a)).
which implies that

pn<{a+etelpp_1+ (b+e+0pn+(d—e)p(zn, Tn)- (1.8)

Adding up, equations (4.7) and (4.8) we get pp < 3pn-1. where 3 = m-*_‘?_‘i%{ < 1. which

is a consequence of (4.5). Hence,
Pn<Pn-1. YR E N. (4.9)

Using property(P2) of partial metric, equations {4.6), (4.9) and the property of strictly increas-

ing of F' we get

A+ F{pn)

A

F((a'kb{“d)pn—l +(C+d+l)pn +(€ —d)p(I,—,.In))

IA

Flatb+d)paoy +(c+d+)paa1+ (e = d)pnr)

Fllatb+c+d+e+1)pa1)

F(pn—l)'

[A

Hence, A + F (pn) < F (p,—1) ¥ n € N. This implics
Fp,) € Fpa1) = A<---< F(pg) —nh, VvneN {4.10)

and 50 M, oc F (pn) = —20. By the property {F2), we get that p, — 0 as n — +20.

Now, by (F3) there occurs k € (0,1) s.t, limy— 40Pt F (pr) = 0.
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By {4.10), the following holds ¥ 1 € N :
PhF (pn) = PR F (po) < —nApj < 0. (4.11)
Suppose thatting n — +oc in (4.11) we deduce that
I-imn_.+mnpﬁ =0. {4.12)
By using the continuous function g(z) = z¥ z € (0, ¢}, we get that

lim n%pn = lim g(npf)=0. (4.13)
n—+oo

n—+oc

Now, by using the limit comparison test with a, = p,, b, = n* and equation (4.12) we ensure
+o¢

that the series 3~ p, is convergent. This implies that {z,} is a 0—C-seq. Since E is closed in
ES

a 0-complete partial metric (X, p). E is also O-complete and there occurs 2 € £ = L7 1) st

lim p{z,.2)=0=p(z.2). (4.14)

n—oc

Notice that the iterative sequence {z, } has an infinite number of terms in V; foreach i = 1. ... m.
Hence, there is a subsequence of {r,} in each V;, i = 1, ..., m, which converges to z. Using that
each V,, i = 1.....m. is closed, we conclude that z € N2, V.

We shall prove that z is a FP of f. Using the triangle inequality (P4) of PMS and (4.4) (

which is possible since z belongs to each V;) to obtain

p(z.fz) < plz.zni1) + p(Tna1. f2) — P (Tns1. Tnt1)
< plzZan) +p(fzn, f2)
< Pz Tnq1) +ap{@n, 2) + 0 (Tn, Tp1) +eplz. f2) +dp (20, f2)

P (In: $n+1) -P (Z, fZ)
T+p(r, ) (4.13)

tep (a1, 2) +1

Using Lemma 1.1.3 part {a} and passing to the limit when n — ~ in {4.15) we obtain that

(1-c—-d)p(z.fz) <0,
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and hence

p(z fz)=0. (4.16)

Now by using triangle inequality (P4), (4.14} and (4.16) we deduce that p(fz, fz) = 0. There-
fore, by (P1) we get f(z) = 2.

Finally, we will prove the uniqueness, let u be another FP of f in E. with p(u,z) # 0. By
the cyclic character of f, we have u, z € N7, Vi. Since f is an F-rational cyclic contraction and

using the property (P2) of partial metric, we have

A+ F(p(u,2) = A+ F(p(fu, f2))

ap(u,z) + bp(u,u) + ep{z,z) + dp (u. z) + ep (u, z)

plu,fu).plzfz)
+1 1+p(u,z)

< F{latb+ct+d+e)p(uz),

1A

F

which is a contradiction deduced from the strictly increasing property of F' and being a +
b+c+d+e<1, hence z = u. Thus z is a unique FP of f. m

By taking F{a) — a + In{a)} in Theorem 4.2.2 we get the following corollary.

4,2.3 Corollary

Suppose that (X,p) is a O-complete PMS, V; € A, i =1,2,--- ,m where m € N and £ =
U™, V;. Suppose that f: E — E and the following conditions hold:
L f(‘f’t) - w+11i = 1:23 ey TH, where Vm+l - 1’/515

2. there occurs A > 0st, forx e Vi, y € Vigy, i = 1,2,...,m, with p(fz, fy} > 0. we have

ap (z,y) + bp (x, fx) + cp(y. fy) +dplz. fy)
+ep(y, fr)+ z&fr}_pt.@

I+p{z.y

A+ In{p(fz, fy)) <

ap (z,y) + bp (z, fx) + cp(y, fy) + dp(z, fy)

pl=.fx).ply, fy)
+ep (yi fz) + l 1+p(m,y)

+ In

where a,b,e,d,e,l > 0anda+b+c+d+e+! <1 Then,
1. f bas a unique FP z € F;
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2. p(z.z)=0and z € N, Vi
3. for any zg € E, the sequence z, = f"zg, converges to z in topology 7(p).

By taking F(a) = :7% in Theorem 4.2.2 we get the following coroliary.

4.2.4 Corollary

Suppose that (X,p) is a O-complete PMS, V; € Ay @ = 1,2,--- ,m where m € N and E =
1%, Vi. Suppose that f: E — E and the following conditions hold:
L. f(V;) C Vipr,i=1,2...,m, where Vipiy = V1,

2. there occurs A > O s.t. for z € Vi, y € Viy1, i = 1,2, ..m. with p(fz. fy) > 0. we have

-1 -1
A+ <
volfz, fy)

ap(z,y) + bplz. fx) + cp(y. fy) +dp(z. fy) + eply. f2)

pla,fz) ply.fu)
+ 1+plzy)

where a.b.c.d. el > 0anda+b+c+d+e+! <1 Then,
1. f has a unique FP 2 € E-
2. p(z.z)y=0and z € N,V

3. for any zg € E. the sequence z, = f"zg, converges to z in topology T(p}.

4.2.5 Example

Presume that X = R is equipped with the usual partial metric p(x,y) = max{|z, [y[}. Then,
clearly (X.p) is O0—complete. Suppose V) = [O, %] Vo= [%’,0] Vi = [0, 1]_8]’ Vi= [g—i,O] and
c =t V.. Define f: E — Est, fr=3F Vx€ £ Itisclear that f(Vi) € Vigr.

Take A = In(4), a = % andb=c=d=e=1= ﬁ Suppose that z € V; and y € Vi, s.t.
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either x # 0 or y # 0, then

plfz, fy) = max{| |, 15 1)

= 5 wax{ 2], ]}

= %p(z,y)

1.1
= (1)(—2-)1)(9:,11)- (4.17)
Now take {n for both sides of (4.17) we get

In(p( 7, f3) = In((3)(G)p(@ )

= —In{4) + ln(%jﬂ{xsy))

~{n{4) +In (%p(ax y) + ll—lp(lx fz) + %p(y- fy)+ %p(r- fy)

1 1 p(z, fziply, fy)
- l—l—p(y,fsc) T + p(z,y) )

| A

Hence,

In{4) + F(p(z,y)) < F(Hg(z,y))-

Therefore. all the conditions of Theorem 4.2.2 are satisfied and we deduce that f has a unique

FP = =0¢ ()., V: and p(2.2) = 0 holds true.

4.3 Ciric-Wardowski type generalized multivalued maps in PMS

In this scction, we prove common FP theorem for a pair of multivalued £ — ¥—proximinal
mappings satisfyving Cirie-Wardowski type contraction in PMS.

Suppose that (X.p) be a PMS, 20 € X and 5T : X — P(X) be the multifunctions vn .X.
Suppose that z, € Sxo be an element s.t, p(zg, Sz} = p(xg.z1). Suppose that xy € Ty be
s.t. plzy. Txz)) = p(x1.12). Suppose that 3 € STy be st plzs. S13) = plxz.r3). Continuing
this process, we construct a sequence z, of points in X s.t, Tgny1 € Sz, and Toage € TTang
where n = 0,1,2,.... Also p(zan, STon) = P(#2n, Tant1) P(Tans1, TT2041) = P{T2nt1, T2042)-

We denote this iterative sequence by {TS(z,)}. We say that {T'S(zy)} is a sequence in X
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generated by xy.
Suppose that ¢ be the set of functions ¢ : [0, 00) — [0, 00) s.t,
1. £ is upper semi-continuocus;
2. 2(8) <t foreach t > 0.
Suppose that U signify the set of all decreasing functions v : (0, <) — (0.2¢).

We begin with the following definition.

4.3.1 Definition

Assume that (X.p) is a complete PMS. The mappings $,T : X — P(X) are said to be a pair
of Ciri¢-Wardowski type generalized multivalued F — ¥—proximinal contraction, if there occur

veCand g c ®st,Vrye X withp(Tz,Ty) > 0,
viplz,y)) + F(Hy(Sz,Ty)) < F{¢(M(z,y))) (4.18)

where £ € Apand 7 > 0, and

p(z,Sx).p{y.Ty) plz.Sz) -p(y,Ty)‘p(x‘sr)‘p(yjy)}_ (419}

‘\I(;c‘y))zmax{P(I-y)- 1+ple.y) = 1+p(Sz.Ty)

The following theorem is one of our main results.

4.3.2 Theorem

Suppose that (X,p) is a PMS and S.7 : X — P(X) are said to be a pair of multivalued
mappings s.t.

(1). {8.T) are pair of continuous mappings,

(2). (S, T) are pair of Cirié-Wardowski type generalized multivalued F — ¥—proximinal
contraction .

Then the pair (S.7T) has a common FP u in X and p{u,u} = 0.

Proof: We begin with the following observation:

If. M{(y.z) =0, then clearly z = y is a common FP of (§,T).and there is nothing to prove
and our proof is complete. In ordered to find common FP of both S and T for the situation when

M(y.z) >0V z,y € X with z # y. we construct an iterative sequence {T5(z,}} generated by
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zg. Then from contractive condition (4.18) and Lemma 4.1.8, we get
v (p(x2i41. T2ie2)) + F(Hp(Sx2:, TT2i41)) € Fo(M(x2:, T2i41))) (4.20)

Vi€ NU{0}, where

plz2i.Sz2i)p(x2.41.TT2i41) plre..Sx0.) p(zai1 722,41

p(x2i, T2iy1), 1+ ) Tip(57a, Tx
111(1'2;'.,I2i+1) — max p(T2i,T2,41) p(Sz2i,T72,.1)
:P(I%aSI21‘):F(£2£+17T5‘72:+1)
] ) plz20,22i41) P(T2e 1. 3200 2) PlE2e X200 1) P(T2r 1 T2042)
— [nax p($2;,12;+1), 14+p(x2, .z2i41) : T+p{xzir1.T2,22)

P(T2, Toigr ). P{T2i 41, Taiv2)

max{p{Tz, T2iy1), P(Tois1, T242) }

If for some i € N7, M (2. T9i01) = P(T2i41, T2i4+2), then taking (4.20) into account. we get that
¢ (p(z2i11, T2i42)) + F(Hp(Sz2;, Tx2i41)) < F(¢(M (22041, T2i12))) -
On using the property of @ and from (F1), we get
v (px2ii1, Taiv2)) + F(Hp{ST2;, Tr2:41)) < F(p(T2i41, Z2i42))
V1 e NU{0}. Since, 9 (p (X241, Toi42)) > 0, which give contradiction, yielding thereby
M(z9i41. Taiv2) = P (Z2i41, T2i42) . V1€ NT.

Therefore from {4.20) and by the property of I, ¢ and v, we get

Fp(raip1. t2i42)) < F(d(plra.z2001))) — ¥ (p(r2. 22:41))
< Flo(plze, z2i41))) (4.21)

F(p(Taip1, T2i42)) < F(plT, T2i11)).

Tt follows from the above inequality and property of (F'1) that
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(it Tain) < p(22:, T2i41) Vi€ NT.

Thus {p(z2is1, T2i42)} 15 a decreasing sequence of positive real numbers. Consequentely from

(4.21). we have

F(p(zoit1, T242)) < F(p(22i, 22:41)) — ¥ (p(22i, 72041))

< F(p(zai_1, ) — ¥ (p(x2i—1, x2:)) — ¢ (p(x2i, T2041)} -

As 1) is a decreasing function, we get

F (p(z2i41, Tair2)) < F (p(zoi1, z2:)) — 29 (p(T2i-1, 22:)) -

Repeating the same process, we get

F (p(z2i+1, T2i2)) < F (p(zo, 21)) — n (p(20. 72)) - (4.22)
Since F € Ap, letting the limit as i — oo in (4.22) we must have

Hm F (p(22i41, T2i52)) = —00 & ili{glop(l“zﬂl,mwz) =0 {4.23)

00

Further, by (P2) we have the following equality

Alim r (mi, ;E,;) =0. (424)

1— 30

Next. we will show that {z;}$2, is a C-seq in X. Suppose, to contrary that, {z;};°; is not a
C-seq in a complete PMS (X,p). Then there exisit £ > 0 and two sub-sequences {T;x)} and
{Zjey )} of {z:i}2, s.t, i(k) > 7 (k) > k and

P (T Tiwy) 2 €

which yields

P (Tk): Tighy 1) < € (1.25)



Applying the property {P4) and inequality (4.25), we get

= < (@i Tam) < P (T T} + P {Z50000 2iw) — P T+ Titk)
< P (@000 Tiwr1) + P(Ti0041: i) + 2 (250 Titw) — P (00 5tk
< 2 (x50 Tiky+r) + P (2500 Tigry)
< 29 (50, i) + P (2500, Tigw—1) + P (Zigey—1- Tiey) — P (a1 Tigry—1)
< 2p (200, Tie 1) P (T Tigw-1) + P (Tige—1> Tige))
< 2 (20 Ty} + € P (Zigw-1 Titk))

which on making & — oc. vields
klil’lélcp (-Tj(k)s Ii(k)) - £. (426)

Furthermore, from (P4), (4.23), (4.24) and (4.26), we can get

Jim p (i, T 1) = &
Jim p (2041 Ti) = &
and
klijgop (k)41 Tigky+1) = &- (4.27)

Also from (4.24) there occurs a natural number ig € N s.t,

P (%)~ Tigeye1} = = and p(Tjck). Tymys1) =

]ty
a | Ty

YV i.k > ip. Now we claim that

p (T TTjin) = 2 (Tigyv1: Tieye1) > 0. (4.28)
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Suppose on contrary that, p (:zri(k)ﬂ . Ej(k)+1) = 0. Then

e < p (T Tim) <P (miw: Tagat) T2 Eiwen Ti) — 2T+t T o)
< P( Lifk) - $z(k)+1) +P(Iz‘(k)+1-1 (k)+ )+P( HOERE T;,-(A) P(I](k)+1fij(m-+1)
< P(Ir k) :r,(k)+1)+p( i(k)+1=$j(k}+1)+P($j(k)+1=$j(k))
< Sqp4E28
- 4 4 2

which vields a contradiction, thus (4.28) holds. Then it follows from the contractive condition

(4.18) and the property of # that

Y (p (Zigry i) + F (Hp (Szan) TT58))
F ((D (M (Ii(k): Iy (}C)))) 5 i.e., (429)
F

F (Hy (Taeysn: Ziey 1)) < F (0 (M (zigy. 25 ()} -

v (p (i Z500))) + F (Hp (Taye1s i)} =

1A

By the definition of M {x,y), (2.9}, (2.10) and after repeating the same process, we get

lim M (mi(k),zj(k)) =E£. (430)

k—oc

Putting k — oo in {4.29) and taking into account (4.23), (4.26), (4.27), (4.30). property
(FS') and upper semi continuity of ¢, we find that F(e) < F(#{g)) < F(g), which gives a

contradiction. Thus, we conclude that

lm p(ziz;) =90,

1..]4’

i.c., the sequence {T'S(z;)}{2, is a 0-C-seq. Therefore, the O-completeness of X ensures that

there occurs a point u € X s.t, {TS(xz;}} — u, Le,

lim p(u, z;) = 0. (4.31)

i
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Now,

F(p(u, Tu))

[ A

F(p(u, Toi1) + pl@oiy1, Tu))

F(p(u, z2;41) + Hp(Sz2;, Tu)) by Lemma 4.1.12

FAN

IA

F{plu, v2;11)) + F{H,(Sz0, Tu)). (4.32)
By using inequality (4.18), we have

% (0 (. Tw)) + F(Hy(Seai, Tu) < F(oM (2i, ) (4.3
where,

_ plxo:,512,).p(u,Tu) pleei Srai)plu.d'e)
‘?\{(22?:.“) —  max p{IQ“H)’ 1+p(xain) * 1+p(Sz2;. Tu)

plxai. Sxas), plu, Tu)

X p(a.*'g,-,a:z,.-,q).p(u,’]"u) p(Iz,—,rzl_,_l).p(u,Tu)
pla2i ), T+plrzatzicr) ° 1+p(Smeadu)

P21, T2i41), p(u, Tu)

= max

Taking limit i — oo, and by using (4.31), we get

p(z2i, u) = plu, Tu). (4.34)

It follows from the above inequality that

F(p(Tu,Tu)) < F((p(uw,Tu)) - ¥ (p(w.u),

which implies that

plu, Tu) < p(u, Tu).

That is a contradiction, hence p(Tw,Tn) = p{u,Tu) = 0 or u € Tu. Similarly by using (4.31).

Lemma 4.1.12 and the inequality

w (P (u1 Su)) + F(p(S’U., u)) S F(p(SU,I2n+2) +p($2n+2: Su))
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we can show that p{Su,u) = 0 or u € Su. Hence the pair (S, T) has a common FP u in (X.p).
Now.

plu.u) < plu,Tu) + p(Tu.u) < 0.

'This implies that p(u,u) = 0.

4.3.3 Example

Presume that X = R is equipped with a usual partial metric p(z.y) = max Wzl et Tt is

-

obvious that (X.p) is 0—complete PMS. Define the mappings 5.7 : X — P{X) as follows:

S(z) = —1 —2 d T{z) = AII—J; vieX
.
(z I.=x| an z %
Then S, T is a pair of continuous mappings. Define the function F:Rt — Rby F(x) = In(x)

and for r = 2 and y = 3, we have

o =b (4 ()

Define % : (0,06} — (0.0} by ¥ (t} = m and let @ : {0.oc) — [0.x) be given by
o(t) = LU.;Uil— It is casy to see that S.T is a Cirie-Wardowski type generalized multivalued
F — W—proximinal contraction on X. In short we proceed as follows:

LH.S= v (p(z,y))+ F(Hp( ST, Ty}) = gy +F (3) = oy Hlog (1.8) = a5 +0.25552 =
0.26666.

R.H.S=F (¢ (M (z,y))) where

(z,Sz) p(y.Ty) p(z.Sz).p (y,Ty)’p(x, SI),p(y.Ty)} .

’ _ P
M(z.y)) = max {P(Jﬂy)‘ l+p(zy) = 1+p{S5z,Ty)

Now for z = 2 and y = 3. we have

104



p(2,3) B(2,5(2)).p(3.7(3)) p(2,5(2)).p(3,T(3))
M(2,3) — max N TR Tep(52LTE)

p(2,5(2)),p(3,T(3))

p(2]2.4).2312.81) pi2.3.2]).005,
p(2,3)= 31‘1?(2’3)5 -, 1+{p({%,%],[

P2 (5. 5. p(3, 13, 8))

= max

Thus,
In{p(2.3)) = In(5) = 1.6094.

Hence

0.2666 < 1.6094.

Hence all the hypothesis of Theorem 4.3.2 are satisfied. So (5, T) has a common FP.

4.3.4 Corollary

Suppose that (X, p) is a complete PMS. The mappings S, T : X — P(X) be a pair of multivalued
I — W —proximinal contraction, if there occur 4 € Yand ¢ € @s.t, Vz,y € X withp (T2, Ty) >
0,

¥ (p(x.y)) + F(Hp(Sz, Ty)) < F (o (M (2,y)))

where F' € Apand 7 > 0, and

p(z,5z).p(y, Ty) plz, Sz) ply. Ty) plx S:r)}-

M(z,y)) = max {P(Is y), 1+p(z,y) ~ 1+p(Sz,Ty)

Then the pair (S, 7T} has a common FP v in X and p(u, u) = 0.

4.3.5 Corollary

Suppose that (X,p) be a PMS and 8.7 : X — P{X) are said to be a pair of multivalued
mappings s.t,

(1}, (5,T) is a pair of upper semi-continuous mappings,
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(2). (5,7 is a pair of Ciric-Wardowski type generalized multivalued F — ¥—proximinal
contraction .

Then the pair {5, T) have a common FP w in X and p{u,u) = 0.

4.4 Applications to system of integral equations

In this section applications to system of integral equations are presented to show the usability
of our previcus results.

Consider the integral equation
t
u(t) = h(u(t) + / H(t,r)((r, u(r)) dr, for all ¢ € [0,1], (4.35)
4]

where, (:[0.1] xR - R, H:{0,1] x [0,1] » R and h: R — [0, oc) are functions (see [72]).
Presume that X = C([0,1]) be the set of all real continuous functions on [0, 1], endowed

with the partial metric

plu,v) = max{ sup |u(t)|, sup |v(t)|}, for all u,v € X.
te0,1] t€(0,1]

Clearly, (X, p) is a (-complete PMS.
Suppose that &, € X, ko,179 € R s.t. V £ € [0,1] we have

ko < &(t) < n(t) < 5. (4.36)
s(t) < h{u(t)) + fo H(t, r)((r,n(r)) dr, (4.37)
and
1
n(t) > hiu(t)) +/0 H(t,r)((r,x(r)) dr. (4.38)

Assume that r € [0,1], {{r,-) and h{.) be decreasing functions, i.e,,

z.y € R,z > y implies {{r, z) < {(r,v). {4.39)
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and

h(z) < A(y) (4.40)
Assume that,
1
max ] H(t,s)ds < e~ for some A € (0,00) (4.41)
tc[0,1] Jo
and
sup |¢((r.u(r))| £ sup lu(r)]. (4-42)
rel0.1] ref0.1)
Define a mapping f: X — X by
t
flu(t)) = hlu(t)) +] H(t, 7)¢(r.u(r))dr: te 0.1]. (4.43)
0

Also. suppose that ¥ z,y € R with (z < g and y > sg) or (z > Ko and y < ng) we have,

|h(u(t)] < fe™* max{supco, |u(t)]- supeepo.ny f(u(t)}- (4.44)

4.4.1 Theorem [72]

Under the assumptions (4.36)-(4.44). the integral equation (4.35) has a solution = s.t. = €
C(10,1]) with k(t) < z(t) < n(t) ¥V t € 0. 1].
Proof. Define the closed subsets of X, U and Uz by

U={ueX:u<n}

and

Up={u€ X:u>k}

Also define the mapping f: U3 Ul — Uy JUa by

Flu{t)y = A{u(®)) + /0! H(t,7)((r, u{r)) dr, for all t ¢ [0, 1].

107



Now we prove that,

f{U1) € Uz and f(Uz) S Vs (4.4

Suppose., u € Uy, L.e,
u(r) < n(r). for all r € {0, 1].

Using condition (4.39) and (4.40) we obtain that
C(ryu(r)) 2 ((ryn(r)), for all v € [0.1]

and

h{u(r)) > hin(r)), for all r € [0.1].

The above incqualities with condition (4.37) imply that
flu(t)) = Alu(t)) + /Ot H{t,r)¢(r, ulr)) dr > h(n(t)} + fot H{t,r){(r.n{r)) dr = n{t) > &(t).
V¢ € [0.1]. Then we have f(u(¢)) € Uz. Similarly, let u € Uz, ie.
u(r) > k(r), for all 7 € [0,1].

Using condition (4.39) and (4.40) we obtain that C(rou(r)) < ¢(r.u(r)). for all » € j0.1]
and

h(u{r)) < h{x(r)). for all r € [0. 1].

The above inequalities with condition (4.38) imply that
t t
Su(e) = Aule) + [ H(EriCr () dr < his(©) + [ ey ar= ) <)

v t € [0.1]. Then we have f(u(t)) € U). Also, we deduce that (4.45) holds.
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Suppose that z € Uy and y € Ua. Then from (4.43), ¥ t € [0.1], we have

| F((6))] = (e (t) + fo H(t,7)C(r. 2(r) dr|
< h(=(t) + | / H(t,r){r, 2(r)) drl
1]
£
< h(z())] + ]0 He)[Glr 2(r)] dr
t
< |h{z(O) + f H(t, 7Y max{ sup [C(r.2(r)l, sup [S(r,u(r)I) dr
0 re(0,1] re(0,1]
t
< |h(z(t))] + B H(t,r)p(x. y)dr
< (D) + g¢ ple.y)

_ I _
S € ’\p(m,fm)-Fge Ap(I,y)

oo | -

— e lplafa) + grlew)

Thus.

sup [Fz(E))] < e Cpta. o) + 2p(z. ).
tc(0,1] 3 8

Similarly, we have

up 6l0) < N (Eply. 1) + grle.v)

Hence, from (4.46) and (4.47) we have

el sup ()] sup [[@O)} € e (apla.) + gpla. f2)+ L
te0,1] tei0, 4] 8 8 8

< M play) + gpla f) = o 0

1 1
Therefore,

o ) € e hpla) + Lot )+ Lot f4) 4 ol F0) ¢ ol 1)
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and so,

In(p(7z, £0)) < ~A+ tnp(e.y) + Sple, S2) + 3ol Fu) = gala. fu) + oy 12))

which implies that A + F{p(fz, fy)) < F(Hy{(x,y)) is satisfied for F{a) =1In(a) ¥ o € X with
a=b=c=d=e= % and I = 0. Hence, all conditions of Theorem 4.2.2 hold and f has a FP
zst, z€ C(0,1]) with k < 2(t) <nV t € [0,1]}. Thatis,z€ U1Nlzisa solution to (4.35).
[

Next we will discuss the application of Theorem 4.3.2 in form of following Volterra type

integral equations

ult) = /Kl(t,s,u(s))ds + f(¢t), (1.48)
0

v(t) = /Kg(t, s, v(s))ds + g(t) (4.49)
0

¥ t & [0,1]. We find the solution of (4.48) and (4.49). Suppose that X = C({0.1]) be the set
of all real continuous functions on [0, 1], endowed with the complete PMSs. For u ¢ C([0.1], R},

define suprenmum norm as:
max ||, v]l, = max { sup {u(t),v(&)je” o,
t<0,1]
where 7 > 0 is taken arbitrary. Then

pr{w,v) = maX{ sup || |u(t), v(t)| E'Ttllf}

te(0,1]

vV u,v € C(I0,1), R). With these setting, C([0, 1], R, || - {|r) becomes a complete PMS.

Now we prove the following theorem to guarantee the occurence of solution of integral

cquations.

4.4.2 Theorem

Assume the following conditions are satisfied:
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(1) K1, K2 :[0,1] x [0, 1] xR—=R and f,g:[0,1] — R are continuous;
{ii) Define

¢

Su(t) - f Kt s, u(s))ds + F(0),
0
Tu{t) = ng(t,s.v(s))d.s + g(t).

0

Suppose there occurs 7 > 1, s.t,

max | Kq(t. s, u). Ko(t.s.v)] < re T M(u.v))

v t.s € [0.1] and v.v € C([0.1],R), where

Irlaxh(t),Su(t)Lmax]u(t),Tu(t}L maxLu(t),Su(tH.max\v(t),Tu(!H
T+max[u(t),v(t)] ’ 1+max|Suft), Tv(t)|

max |u(t), Su(t)| , max |v(t), Tu(t))

max |u(t), v{€)l,
A (u,v) = max fu(t). o8

Then integral equations (4.48) and (4.49) have a solution.

Proof. By assumption (ii)

il

t
max |Su(t), Tv(t)| /max}Kl(t,s,u(s),Kg(t,s,v(s)))lds
0

t

< /T&'T([M(u,v)]e*”)eﬁds
v}
t
< fre'fli.ll(u,v)lre”ds
0
t
< Te'TIIA{(u,U)HTfe”ds
0
-7 1 Tt
< Te ||M(u,v)||,;e
< e 7| M(u, )|l
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This implies
max |Su(t), Tv(t) e ™ < e || M{u. v}

That is
max || Su{t), Te(t)li- < e 1M (u, v}l

which further implies

7 + In{max ||Su(t), Tu(t)|l-} < In | M (u, )]l

So all the conditions of Theorem 4.3.2 are satisfied. Hence integral equations given in (4.48)

and {4.49) hava a unique comrmoen solution. =
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Chapter 5

Common Fixed Point Results in

Dislocated Metric Spaces

In 1994, Matthews [65] intoduced the concept of PMSs and obtained various FP theorems. In
particular, he established the precise relationship between PMSs and the so-called weightable
quasi-metric spaces, and proved a partial metric generalization of Banach’s contraction map-
ping theorem. Later on, Neill in [30] introduced the concept of dualistic PMSs (DPMS) by
extending the range R* — R. He developed several connections between partial metrics and
the topological aspects of domain theory. In 2004, Oltra et al. [82] established Banach FP the-
orem for complete DPMS. Recently many authors developed some FP theorems using complete
DPMS for Banach’s contraction principle and partial order respectively.

Hitzler and Seda [42] introduced the concept of dislocated topologies and named their cor-
responding generalized metric a dislocated metric. They have also established a FP theorem
in complete dislocated metric spaces to generalize the celebrated Banach contraction principle.
The notion of dislocated topologies has useful applications in the context of logic programming
semantics (see [43]).

In this chapter, we continue these inquaries to find FP and common FP results in DPMS
and dislocated metric spaces. In Section 5.1, we use the notion of Hausdorff metric on the family
of closed bounded subsets of a dualistic PMS (DPMS) and establish a common FP theorem of

a pair of multivalued mappings satisfying Mizoguchi and Takahashi’s contractive conditions. In
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Section 5.2. we use the concept of dislocated metric spaces and obtain theorems asserting the
occurance of common FPs for a pair of mappings satisfying new generalized rational contractions
in such spaces. In Section 5.4, applications to system of integral equations are presented to

show the usability of our previous result.

51 Common FP results in dualistic partial metric space (DPMS)

The results presented in this section have been published in [59].

Mizoguchi and Takahashi proved the following theorem on complete metric spaces in [67].

5.1.1 Theorem

Suppose that {X,d) is a complete metric space and let the mapping S : X — CB{X) be a

multivalned map and ¢ : [0, +oc) — [0, 1) be an MJ —function. Assume that
H{Sz,Sy) < ¢ (d(z,y))d(z,y) (5.1)

V r.y € X. Then § has a FP in X.
Ve usc the notion of Hausdorff metric on the family of closed bounded subsets of a dualistic
partial metric space and establish a common FP theorem of a pair of multivalued mappings

satisfying M1-function. Following is our main result.

5.1.2 Theorem [59]

Presume that (X. D) be a complete DPMS. 5, J : X — CBP(X) be multivalued mappings and

21 [0.+20) — [0,1) be an M J—function. Assume that
Hp(Sz.Jy) < ¢ (D (z,4)) D (z.) (5.2)

¥ z.y € X. then there occurs z € X s.t, 2 € Szand z € Jz.

Proof. Suppose that xg € X and 71 € Sxg. ¥ D{(zg,21) =0, then zg = 71 and

HD(SJCU,JLL']) < @(D (IU,Il)) D(.’L‘Q.Il) = (.
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Thus. Stg = Jz;. which implies that
Ty = ro € Sxo = Jx1 = J1o, and we finish. Assume that D (zg.z1) > 0. By Lemma 1.3.16,

we can take xo € Jirp 8.8,

Hp(Szo, Jz) + 1D (0. 71)]

1D (z1,x2)| < 5 (5.3)
If D{xy.z2}) =0, then £y = 3 and
Hp(Jzy, Sz2) < (D (z1,22)) D (z1,z2) = 0,
and so Jzj = Szo. That is, 23 = 1y € Jo1 = Sxy = Sz and we finished.
Assume that D (z1,z2) > 0. Again By Lemma 1.3.16, we can take xa € Sxa S.1.
D (2. 23)| < HD{JI1.5I2)+\D($1.;L'2)|_ (5.4)

2

By repeating this process, we can construct a sequence In of points in X and a sequence

A, of elements in CRBP (X)st,

Sz, §= 2k,E>0 .
Ti41 S AJ = ) . (05)
Jzx;, j:2k+1,k20

and

1D (2;.2501)] < Hp (Aj—hAj);' D (%4:-"33‘)\! (5.6)

with j > 0, along with the assumption that D (rj, Tj41} > 0 for each j > 0. Now for
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j = 2k + 1, we have

Hp (Aj_l.AJ‘) +\D (Ij—le‘rj)i

D (xj,zjm}l < 3
Hp (Szak, JTakr) + | D (Zak, Tak 1)l
< ¥ (D(zog. Tor+1)) (D(z2k. Tokr1) + 1D (Zk Tk+1)]
- 2
w{D(z;—,z;))+1
< (Bt DGy
< D{zj,35)-

Similarly for j = 2k + 2, we obtain

Hp (Jz2e1, Sxakr2) + 1D (2541, 7))
2
s(D(ziq.x;))+1
< D(&L‘j,l,Ij).

[P

1D (2. 2;541)]

I

It follows that the sequence {D (Zn.Tny1)} I8 decreasing and converges to a nonnegative
real number ¢ > 0. Define a function v : {0,0¢} — [0,1) as follows:

Pl
v(()=—g—
Then

lim sup ¥ {{) < 1.
gttt

Using Proposition 1.3.18, for ¢ > 0. we can findd(t) >0 A <l,st.t&r< 4 (t)+t implies
¢ (r) < A, and there occurs a natural number N s.t, t < D(zy, Zny1) < §(¢) + t. when ever

n > N. Hence

v (D (Tn. Tns1)) < Xe, whenever n > N.
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Then forn =1.2,3.-- -

ID($H1IH+1)| < (P'(D (‘rnin’In)) i 1) |D (:I“Tl—la -Tn)i
< @ (D (In—l’ IH)) |D (;En,], In)|
< max {I??i_a.{cu(D (;r:n,l,:rn)),)\t} D (xn-1,Ta)l
AT 2
< [max{gg;cw(n(zn-l,mn)),/\t}] |D (Zam2: Tn-1),
< [max {Iilii{(’!,b(D (In_l,wn)),At}]n D (zo, 1)) -

Put max {max;_; v {D (ZTn-1.Zn)) . A} = ®. then @ < 1.

1D {20, Tna1)| < " |D (20, T1)] - (5.7)
Also we can deduce from the contraction that

|D (2n, 2a)] < 20771 |D (zo0.71)] - (5.8)

To prove that {z,} is a C-seq in (X, D), we will prove that {x.} is & C-seq in (X.dj}.

Since

dp(z.y) = D (z,y) — D(z.2),

dp (In9In+1) = D(In:-rn+l) - D (In-xn) .
dp {Tns Tns1) + D (zn.2n) = D (. Tps1)
< D (zn.Tnt1)l -

By (5.7). we have

7N

dp (In.r,.+1)+D($n.In) & D (xg. x1)].

A

dy (TnsTus1) < 71D (z0,71)} = D (0, 7n)

[A

®" | D (zg. z1)| + |D (&a, Tn)! -
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By using {5.8), we have
dp (T Tn1) < @D (zo. 21)] + 207 1D (zg. 1) -

This implies that

dy (20, Tnsn) < @ (38— 2¢) 1D (z0-21)]. (5.9)

and

dy (Zps1. Zna2) < @3 - 22) 1D (20 21)1- (5.10)

Continuing in the same way, we have
dy (Tniry—1s Tnsn) < D773 = 29) [D (20, 7)) - (5.11)

Now using the triangular inequality and equations (5.10)-(5.11}, we have

dp (In: $n+'~,a) < dp {Zn, $n+l) + d’p ($n+17 In+2) +-e +dp (Trta—1, Tytn)
< @™ (3—2¢)|D (zo, 7)) + 273 - 2¢) D (zg,z1)[+- -t
AL (3 = 22) D (0. 1)
"
< T3P )

Similarly. we can conclude that

Tt

1-9

dp (Tnss. Tn) < (3 -22) | D (zo. 71)l

Now taking limit as n — oc of last two inequalities, we obtain that

nllrr;c dp(Tn . Tnpa) =0= ﬂlijﬂmC dp (Tngn: Tn) .

This implies

nli_x_l;o dy (T Tpi~) =0

This implies that {z,} is a C-seq in (X, ds). Since (X, d3) is a complete metric space, there
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oveurs 2 € X s, T, — T asn — o<, le.,

lim d; {zn,z) = 0.

n—o0

Now from Lemma 1.3.12, we have limp o0 dp, (Tn,2) =01

D{z,z) = lim D(zs.2z)= lim D(xn,Tm).

n—s0C n,T— 00

So
lim dp(:cn,a:m) = 0,
nm—o
lim {D(:z:n.mm)—D(zn,zn)] = 0.
n.m—oC
im D(zn, tm) = }im Dizg.zn).

But (5.8) implies that
lim D (zn,za) =0

7,00

It follows directly that
lim D(zn, zm)=0.

n,m—o0
This implies that
Dz, z)= lim D{zn,z)= lin;.oD (2, zn) = 0. (5.12)
TLI— o0 T

Now, by (5.12), we have

(5.13)

I
.
n
[
193

So

Now from (P} 3.14) and (5.2), we get
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!
i
J.J
i
IA

D (8z, z9n12) + D (Zon42. 2) — D (22042, Toniz)

< D(xam42.82)+ D (T2n42.2) + | D (z2n+2, Tani2)|
< sup D (u.S2)+ D{(xani2,2) + D (T2ns2- Tant2)|
uCJE2 +1
< 5p(JTans1, S3) + D (Tans2.2) + | D (T2n+2, Z2ni2)]
S HD (JI'Zn—'—l- S:) e D (127:+25 3) T I:D (I‘2n+2- I'zﬂ-v-Z)!i
< 0 (D(Tans1, 2)) D (Tane1.2) + D (zons2, 2) + D {(Tong2: T2042)]
< D{Tane1.2) + D iranea. 2) + 10 (Tans2 Tone2):

Taking limit as n — 00, we get
D(5z.z)=0. (5.14)

Thus from (5.12) and (5.14), we get
D(z,z)=D(S8zz).
Thus by Remark 1.3.15, we get that 2 € Sz. It follows similarly that z € Jz. This completes

the proof of the theorerm.

5.1.3 Example

Presume that X = Rand D (z.y) = |z — 3+ jmax{zr,y}.Vz.ycX Note that if d, is quasi
metric on X, then d;, (z,y) = max{d, (x,y}, dp (y, )} is metric on X. Hence, & (z.y) = |2 — vl

and so {X. d;) is a complete metric space. Also define mappings S.J: X — CBP (X) by

Hp (Sz. Jy) = max[%,%]

< Lmax{z.y) <KD ().
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Thercfore, for ¢ (t) = 1—15, all the conditions of Theorem 5.1.2 are satisfied. Also it is

clear that V 7 € X. the set Sz and Jz are bounded and closed with respect to the topology

7 (D) = 7(d,) . Hence, we can show that (5.2) holds V z,y € X. 1.¢..

Hp (Sz.Jy) = Hp (0. [% %]) - g-

Now we deduce the result for single-valued self-mappings from Theorem 5.1.2.

5.1.4 Theorem

Assume that (X,d) is a complete DPMS, S,J : X — X be two self mappings and ¢ :

0. +2c) — [0.1) be an A J—function. Assume that
D(Sz,Jy) < ¢{D(z,y)) D (z,y)
¥ r.y € X. Then S and J have a common FP.

5.1.5 Corollary

Suppose that (X,d) is a complete DPMS, §,J : X — CBP(X) be multivalued mappings

satisfying the following condition
Hp(Sz. Jy) < kD (z,y)
v x,y € X.and k € [0.1), then S and .J have a common FP.

5.2 Common FPs of generalized rational contractive mappings

In this section. we will prove the occurence of common FPs of two self mappings involving
rational expressions in dislocated metric space.

Results given in this section have been published in [60].
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5.2.1 Theorem

Assume that (X,d) is a complete dislocated metric space and let the mappings ST : X —

X satisfy:

di (5. 55) 4 (k. TK) asdz (j.TK) .d; (k.Sj}
di (3. k%) di (5. k)
. d; (5.5} dy (k. Tk)
Y4 G. Tk) + d; (§. k) + di (k. S7)

d(S5.Tk) < a1 di{j. k) +a

(5.15)

v j.k € X. where aj.a2.a3.a4 arc nonnegative reals with a; +az +as —a4 < 1. Then §.T have
a unique common FP.

Proof: Suppose that jo be an erratic point in X and define j1 = Sjo and j2 = Tj1 s.t,

dy (41, 52) = d1 (So. T}

Then

di (Jo, Sjo) .di (1. T71) 4 aadz (jo-T1) -di (j1. Sdo)
dy (Jo. 1) d; {jo. J1)

a dy (jo. Sijo) di (J1.T1)

d; Go. Tj1) + di (Jo. 1) + di (1. SJo)
dy (o, 71) -dr (J1. J2) +a3d1 (jo.J2) i Gy, 1) _

dr (Jo, j1) d; {Go. 31) '

a dy (o, 1) di (41 J2) ‘

d; (o, g2) + di (jo. 1) + de (41, 51)

o o di (jo-j1)di {51 j2)
< aydg (Jo.j1) + azdi (j1.72) +a4d{ Go o) 1 Goodn)

di (G1.72) < aid; (o, Ju) + az +

[FAN

ard; (Jo. j1) + a2

As (owing to triangular inequality),

o d; (Jo, 1) di (J1. j2)
d; (1. 42) < ard; (Jo. 1) + azd; (41, Fa —— —
((r-32) < axd Uo-31) otk U 22) 843 G 5y 4, (o, )

where

dy (j1, j2) < di (J1. o) + di (Jo, 72) -

122



Hence

L + .
4 Grgs) < (‘” ad)ldz(Jo,Jl)l

1- (25)
< Ady{Jo.71)>

where A = 511;—“; Similarly, by repcating the same process for

di (ja. js) = di (Tj1. Sja) = di (Sj2.T51)

we get
Idy (G2 3)] < A% Vi (do. 1)) -

Consequently, we get

id (Jany1- Jans2)]l < Ay (Jor- J2n+1)
< Ay (j2n—1:J20)

< Nl (Go.gn) -

Hence for any m > n.

d[ (Jn‘Jm) < di (jmjn+1) + dl (jn+1ajn+2) + o +dl (.jm-lujm)

< (/\n+/\n+1+....+,\mfl)d1 (jO:jl)

n

1-A

<

di (Jo. 1)+

and

n

d.[ (Jnajm) < 1‘*/\ I(Joﬁjl}

— (. as m.n — .

This implies that {jn} is a C-seq. Since X 18 complete, there occurs v € X st jp-—u It
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follows that u = Su. otherwise d (1, Su) = z > 0 and we would then have

di (u.Su) < dy(ujony2) + di (J2ns2. Su)
dy(u,Su) < dp(u,Jons2) + di (Ti2asr, Su)
di(w.Su) < dy (. jans2) + dr (Su. Tians1)

| | dy (. S}y (janer. Tinn
dy(u.Su) < d (1. Jongz) + a1d; (u, Jons1) + a2 t(w. 5u) I(JAQ <1 Liznin) -

d! (u‘.?2n+1)
a;:,d' (. Tjzns1) -di (Jans1: 1) +ay di (w. Suydi (Fans1. Tians1)
di (u. fans1) di (w. Tjans1) + di (. Jans1) + di (Gan 11 S
. . d U,SU d j T 1 . n
€ d(uonsz) + ardy (1, fanr1) + 02 1 ). di (Jons1, J2n+2) N

dy (w, Jan+1)

a di (w, Jars2) i (Gons1. Su) La di (w. Su) dp (j2n~1. J2n+2)
dy (u, Jant1) di (s joangz) + i (U Joner} + di 2nr1 Su)

This implies that

z.dy (Jon+1: Jan+2} N agdz (u, Jont2) At (Jont1. S4)
dr (1, Jan+1) dp (u, Jon<1) '

= < di{w jansz) + a1 ld (u fan 1) + a2

o zd; (jon+1, Jon+2)
dy (4, janse) +di (4 J2ns1) + di (G2nr1s Su}’

which on making n — o gives rise to d; (w,Su) = 0. whichisa contradiction so that u = Su.

Similarly, one can show that u = Tu and its unigueness.

5.2.2 Example

Suppose that X = 0. 1] be a dislocate metirc space dj - X x X — X defined by

di(.k) =%+

0 | 2.
[0 =l

Suppose that $: X — X be defined by

: 2j |
§j=¢—=¢.,7cX.
={%} e
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And T': X — X is defined by

Tk = {%k},ke)(.

Now
. i 2k
di(S55.5k) = = + —.
1(S5. Sk) 33
Take 7 = % and k = % then we have
, j 2k 1 2 5
dS,Sk = - —_— = = _ = — = U .
(S, 5k) 3+ 6+9 18 0.2070

Now by using the contractive condition we have

& (j. k) LG
. di(5.87)dy (k. Tk)
Y, (5. Th) + dy (5. k) +di (R, S7)

d)(S3,Tk) < a1 di(j. k) +az

As given that @ +ag ~a3 +ag < 1. Select a = % ay = % az = % and a4 = i then clearly
aq + up + az + a4 < 1. Now putting j = % and k = %,we get

11 1, 13+DG+) 1G+H+GE 8 (3 +

5 1 1yl
— & =+ )+ - 4 = 636 .
8 S 3GT9TE gep 5 Ged o TGrprGrDeG

0.207 0.1387 + 0.0972 + 0.2266 + 0.009044,

A

0.207 (.4715.

1A

Hence. all the contractive conditions of Theorem 5.2.1 are satisfied.

5.2.3 Corollary

Presume that {X,d;) is a complete dislocated metric space and let the mappings 5.7 : X —

X satisfy:

dy (j, Sg) di (b, TK)
di (. k)
oGSk TE)
S G TR +dy (5. k) + dy (k. S5}

di{S5.Tk) < ap di(j. k) +az

125



¥ j.k € X, where aj,ag, a3 are nonnegative reals with a1 + @3 + a3 < 1. Then 5. T have a
unique common FP.

Proof: By putting a3 = 0 in Theorem 5.2.1, we get the required result.

5.2.4 Theorem

Suppose that (X.d;) is a complete dislocated metric space and let the mappings 5.7 : X —

X satisfy:
dy (7, S (j)) di (k, T (k})
1+di{j. k)

d(S (7). T (k) <ad(y.k)+b

¥ 5.k € X, where a, b are nonnegative reals with @ 4+ b < 1. Then 5.7 have a unique cormmon
FP.

Proof: Suppose that jp be an erratic point in X and define j; = S (jo) and j2 = T (N} s.t.

di (G1,42) = di (S (Go) . T (1)) -
Then

dy (Jo, S (Jo)) & (41, T (4r))
1+ d; (jo. J1)
d; (Go. j1) di (41, J2)
1+ d; (Jo, 23}
d; (Jo. j1) )
1+ di (jo, J1)

di{j1.52) < adi(jo.1)+0

I

ad; (jo.j1) +b

1A

ad; (jo, j1) + bdy (j1. J2) (

ad; (Jo. 71) + bdg (1. J2) -

A

This implies that

di{j1-j2) < (1—a5>dz(jo-j1)
< Adi(Jo. ) (5.16)

A

Similarly,

dy (j2.j3) = di (43, 52) = di (S (42) . T {51)) ,
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di (j2. S (G2)) di (1. T (G1))
1+d;{j2.71)
dy {ja.j3) i (h-g2)
1+ di(G2- )
4
ady (j2, j1) + bdi (jz‘js)( 141 72) )

1+ d; (J2.J1)
dy (o, j3) < adi(§1,32) + bdi (Ja, 73) -

d(S(j2). T(h)) < adi(ja.g1)+0

1A

ady (§2,51) + b

IA

This implies that

1A

di (jo. 73) (Tig) dy (J1- Jo)

AAdy (Jo.51)

< Ad; (o, 1)

[FAS

Consequently, we get

IA

)\dl (jnfl-jn)

/\2d1 (jn—2sjn-l)

dy (jn:j:H-l)

A

iA

Ny (Jo, 1) -

To prove that {jn} is a C-seq, we have for any m > 7,

& Gnajm) € G Undns) +di(Gnsasdne2) £ F di (1. Jm)
< A {Go. 1) + A (o, ) o
ANy (do, 1)
< (AN (oo )
<

(%) di (jo-J1)

— Qasm. n— .
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Hence {j,} is a C-seq. Since X is complete, for any u € X s.t. jn — u and suppose

6 = d; (u, Su) . Therefore we have

di (v, Su) < di(wJans2) +di (Jans2. Su)
= di(u,jons+2) +di (T (Jons1) - Su)

= d(u, Jans2) +di (Su. T (J2ni1))

dl (u! Su) df (j?n-’ 1. T (j2n+] H

< d I9n+2, + ad Jon +b
< di (Jangz, ) +adp (w2 +1) P+ d(w gens)
' ] dy {u.Su)d (j'2n+1~j'2n+2)
< 2n+2-  ad (u, zn ) i
=~ ) (32 +2 U‘) +ad ( J2 +1) * 1+ d[ (u--,72n+1}
9 d P 7L H . n+
6 < di{u jons2) + ad, (u.jgnﬂ) +b + di (Jan+1. 72 :)_

1+ di (¢ jane1)

Putting n — oo , and j, — u we get,

1-b68 < 0,

(1-0 # 0
8 = di{u,Su)=0

which implies that u = Su. It follows similarly that u = Tu. Now, we show that S and T
have a unique common FP. For this, assume that v in X is a second common FP of Sand T

Then

d( (u. 'L’) = dl (STJ..TL‘)

dp(u.Su)dy(v.Tv)
1+ dg (u,v)

1A

a di{u.v)+b

< a d;(u,v).
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This implies that

(1 —a)di(ue) < 0

1-a # 0.

1
o

dy (u. U)

This implies that u = v, completing the proof of the theorem.

5.3 Existence of a common solution for a system of integral
equations

in this scction, we show that Theorem 5.2.4 can be applied te the occurance of a commeon

solution of the system of the integral equations.

5.3.1 Theorem [60]

Presume that X = C {[a.b]. R). where b > a 2 0and d; : X x X — I be defined by

d; (5. k) = max ilj ({) - k(8] o /1 + a2ecot e

tela b

Consider the following system of integral equations:

b
] (7 (P)) dr g (1),

b
f ka(t,r,5(r))dr+h(t). (5.17)

where, X = Cla,b]. t € [a.b] C Rand j.gh€X.

Suppose that ki, k2 : [a,b] x [a,b] x R — R are continuous and s.t.

b
F; (t):/ Ey(tor g (r))dr (5.18}
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and

[
oF {t) = f ko (t,r, 7 (r))dr (5.19)

v je X and ¥Vt € [a.b]. Then the occurence of a solution to (5.17) is equaivalent to the

oceurence of common FP of S and T

Consider

LE5 (1) - Ge(t) +g () = h ()l VI a2t e < A (G R () + B(I R

where

ARV = (30— K VT - a2

and

15 () + (8~ 3 (Ol IGK (B4 R — ¥ WD A e

Bk (t) = G 1+a

Then the system of integral equations (5.18) and (5.19) has a unique common solution.

Proof: It is easily to check that (X, dy) is a dislocated metric space. Define two mappings

ST:XxX—=X bij:FJ—kgaude:G3+h.Then

d(§ (). T (k)) = max [|F; (t} - Gp(t)+g ) —h(t) mecutqa'

t€la.b)

d(3.5 (7)) = max [1F5(6) +9(8) —J ()il V1 + e "

and

d (kT (k) = max |G (t) + h{8) = k()] V1 +aZeo e

teia.bj

Thus by Theorem 5.2.4, we get S and T have a common FP. Thus there occurs a unique

point v € X st v=Sv= Tov. Now, we have

g=8{)=Fi+g
and

j=T(j)=GC;+h
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b
j0 = [ Bt o,
and
b
j(t)y = f ko (t.r, 4 (r))dr + h(1).
a UILIQUe COIIMOorn

Therefore. we can conclude that the system of integral equations (5.17) has

FP.
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