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0.1 Literature review 

Multiple-attribute decision making (MADM) and multiple attribute group decision 

making (MAGDM) are very important research topics in current decision making 

process. The main aim of MADM or MAGDM problems is to select the perfect 

alternative between limited alternatives conforming to the preference values specified 

by decision makers (DMs) with respect to the prescribed criteria. One of the 

difficulties in real MADM or MAGDM problems is how to express the attribute 

values in fuzzy and indeterminate decision making (DM) environments. Fuzzy set 

(FS) initially developed by Zadeh [1] is a better mechanism for describing and 

communicating uncertainty and vagueness. Since its initiation, FS has acquired a 

consequential attention from the scholars and they studied its practical and theoretical 

aspects. Various generalizations of FS have been proposed such as interval-valued FS 

(IVFS) [2], in which the truth-membership degree (TRD) is described by an interval 

value in the closed interval  0,1 , IFS [3], which can be expressed by the TRD and 

falsity-membership degree (FLD). Therefore, IFS can describe fuzziness and 

uncertainty more completely than FS. Atanassov and Gargov [4] further generalized 

IFS to interval valued IFS (IVIFS). However, neither FS nor IFS is capable to handle 

indeterminate and inconsistent information. For example, when we take a student 

opinion about the teaching skills of a professor with about 0.6 being the possibility 

that the teaching skills of a professor is good, 0.5 being the possibility that the 

teaching skills of the professor is not good and 0.3 is the possibility that he/she may 

not be sure about the teaching skill of the professor is not good or good. To handle 

such type of information, Smarandache [5] developed the notion of neutrosophic set 

(NS) in which a new component “indeterminacy-membership degree” (IMD) is 
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added. NS described the uncertain information by TMD, IMD and FMD. These three 

functions are independent and are standard or non-standard subsets 0 ,1    . As the 

theory of NS has the IMD, therefore it can explain the uncertain information more 

accurately than FS and IFS and is more consistent with human natural feelings and 

judgement. But NS theory is hard to be utilized in real life problems expected to the 

constraint of non-standard subsets of 0 ,1    . To utilize NS in practical problems 

expediently, Wang et al. [6] developed the perception of single valued neutrosophic 

set (SVNS) which is subclass of NS by changing the 0 ,1     into the  0,1 . SVNS was 

further generalized by Wang et al. [7] to developed interval neutrosophic set (INS) 

and Zhang et al. [8] developed various operational rules for interval neutrosophic 

numbers (INNs). Ye [9] developed the concept of simplified neutrosophic set (SNS), 

which was the extended form of SVNS and INS. Peng et al. [10] developed some 

improved operational rules for simplified neutrosophic numbers. Recently, Jun et al. 

[11], Ali et al. [12] developed the concept of neutrosophic cubic set (NCS), which is a 

hybrid structure that consist of SVNS and INS set. Jun et al. [13] further developed P-

union, P-intersection, R-union, R-intersection and discussed some related properties. 

Zhang et al. [14] and Ye et al. [15] developed various operational rules for 

neutrosophic cubic numbers (NCNs) and they developed some aggregation operators 

which were further applied in MADM. Many researchers proposed distance and 

similarity measures [16-25], correlation coefficients [26-31], entropies [32-36] for 

these sets and applied them to various fields. 

In actual decision making problems, there is an extensive arrangement of 

qualitative information which is simply articulated by linguistic variables (LVs). In 

addition, LVs can enlarge the reliability and flexibility of conventional decision 
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models and they have been consistent with other theories in solving MADM or 

MAGDM problems [37, 38]. For instance, intuitionistic linguistic set (ILS) and 

interval valued intuitionistic uncertain linguistic sets (IVIULS) were proposed to 

solve MADM problems [39, 40]. The concept of ILSs and IVIULVs were further 

extended by Ye et al. [41-43] to IN uncertain linguistic set (INULS), IN linguistic set 

(INLS) and SVN linguistic set (SVNLS). Liu et al. [44] developed SVN uncertain 

linguistic set (SVNULs) and applied them to MADM problems. Hesitant fuzzy set 

(HFS) developed by Torre and Torre and Narukawa [45, 46] is another effective 

generalization of Zadeh’s FS. Some authors combined linguistic variable with HFS 

and other extensions of HFS to develop some new hybrid structures and applied them 

to various fields [47-52].  

Chen et al. [53] defined the notion of linguistic intuitionistic fuzzy numbers 

(LIFNs), and proposed various basic operational laws, score and accuracy functions, 

various aggregation operators, and are applied to MAGDM problems. After the 

introduction of LIFNs, many researchers classified various aggregation operators for 

LIFNs and they have been applied to various fields [54-56]. However, the 

shortcoming of LIFN is that it cannot handle inconsistent or indeterminate 

information. To overcome this shortcoming, Li et al. [57] proposed the concept of 

linguistic NSs (LNSs) and proposed various operational laws, score, certainty and 

accuracy functions, various aggregation operators and then applied these perceptions 

to MADM problems. LNS was further studied by Fang et al. [58, 59] and proposed 

some novel operational laws, score function, accuracy function, presented various 

aggregation operators and are applied to MAGDM problems. Obviously, LNS can 

deal with fuzzy, uncertain, inconsistent or indeterminate information by LVs and they 

are the generalizations of LV, LIFN and so on. 
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Aggregation operators (AOs) play a prevailing role in DM. subsequently, many 

authors developed distinct aggregation operators and their simplifications, such as 

power average (PA) operator [60], Bonferroni mean (BM) operator [61], Heronian 

mean (HrM) operator [62], Muirhead mean (MM) operator [63], Maclurin symmetric 

mean (MSM) operator [64], Hamy Mean (HM) operator [65] and so on. Definitely, 

different AOs have different functions. Some can remove the effect of awkward data 

given by prejudice DMs such as PA [60] operator developed by Yager has the 

capibality that it can aggregate the input information by giving the importance degree 

based on support degree among the input arguments, and attain this function. The PA 

operator was further extended by many researchers to deal with different fuzzy 

environments [66-71]. 

Some aggregation operator are competent to consider the interrelationship among 

two or more input arguments such as BM operator, HM operators, MSM operators 

and MM operators. All these AOs are extended into different environments such as 

BM operator was extended by Xu et al. [72] to deal with intuitionistic fuzzy 

information, Liu et al. [73] proposed various normalized BM for SVNNs and apply 

them to MADM. MSM operator was extended by Qin et al. [74] to deal with IF 

information and applied them to MADM. Wei et al. [75], Qin et al. [76] and Wang et 

al. [77] further generalized MM operator to pythagorean fuzzy environment, hesitant 

fuzzy environment and SVN linguistic environment and are applied to MADM. 

Recently, Liu et al. [78, 79] extended MM operator to deal with IF information and IN 

information and some advantages of MM operator over BM and HM operators were 

discussed, and applied them to the MAGDM and MADM.  

Some authors developed some hybrid structures to take the full advantages of PA 

operator and other aggregation operators, such as BM, HM, MSM and MM operators 
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such as He et al. [80] and Liu et al. [81] developed IF power Bonferroni mean and 

interval-valued IF power Bonferroni mean and applied these to MAGDM. Liu et al. 

[82] proposed interval-valued IF power HM operator and are applied to MAGDM. 

Recently, Liu et al. [83] proposed interval-valued IF power MSM operator and gave 

its application in MAGDM. Li et al. [84] introduced Pythagorean fuzzy power MM 

operator and applied these to MADM.  

     These existing AOs have not considered the situation in which the criteria have 

priority relationship among them. To solve this problem, Yager [85] developed 

prioritized aggregation (PrA) operator Moreover, Liu et al. [86] developed some Pr 

ordered weighted averaging/geometric operator to deal with neutrosophic 

information. Several other studies were conducted to extend PrA operators to some 

other fuzzy environment [87-92].  

Some researchers developed AOs utilizing different T-norms (TN) and T-Conorm 

(TCN). For example, Ji et al. [93] combined PrA operators with BM operator and 

introduced some SVN prioritized BM operators by utilizing Frank operations. Wang 

et al. [94] developed some Frank Choquet Bonferroni mean operators of bipolar NSs 

and are applied to MAGDM.  Recently, Wei et al. [95] proposed some PRA operators 

based on Dombi [96] TN and TCN and are applied to MADM. Several other AOs 

were developed by different authors on different TN and TCN in [97-105] 

     From the above stated AOs, most of the AOs for NS or SVNS are based on 

algebraic, Hamacher, Frank and Dombi operational laws, which are special cases of 

Archimedean TN (ATN) and TCN (ATCN). Certainly, ATN and ATCN are the 

extensions of many TNs and TCNs, which have various special cases selected to 

express the union and intersection of SVNS [106]. Schweizer-Sklar operations 

[107] are the special cases of ATN and ATCN. They are with a variable parameter, 
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which makes them more pliable and better than the other operations. However, the 

majority of researchers mostly focused on the elementary theory and distinctiveness 

of Schweizer-Sklar TN (SSTN) and TCN (SSTCN) [108, 109]. Recently, Liu et al. 

[110] and Zhang [111] combined SS operations with IVIFS and IFS, and proposed 

power averaging/geometric operators along with weighted averaging operators for 

IVIFS and IFS respectively. 

For better understanding of several concepts given in this thesis, the reader 

should have to study [112-121]. 
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0. 2 Chapter wise Study 

               In chapter 1, some essential definitions of NS, SVNS, INSs, INULS, PA 

operator, PrA operator, Muirhead mean (MM) operator, BM operator, HM operators, 

HrM, operational laws of these sets, properties and associated theorems are given. 

               In chapter 2, the PA operator is combined with HrM operator and extended 

to process linguistic neutrosophic information, and presented the linguistic 

neutrosophic power Heronian AO, linguistic neutrosophic power weight Heronian 

AO. Further, some characteristics of these newly developed AOs are examined and 

various exacting cases are confered. A novel technique is developed based on these 

AOs for MAGDM. Lastly, an illustrative example was specified to exemplify the 

efficacy and compensation of the proposed method by contrasting with the existing 

methods.  

              In chapter 3, various newly AOs for aggregating SVN information and a 

novel technique for MAGDM are developed. To acquire full reward of MM operator 

and PA operator, the single-valued neutrosophic power Muirhead mean (SVNPMM) 

operator, its weighted form, single-valued neutrosophic power dual Muirhead mean 

(SVNPDMM) operator, its weighted form and discuss their basic properties along 

with particular cases with respect to the parameter vector. Moreover, based on the 

developed AOs, a novel approach to MAGDM problem is developed. Lastly, a 

numerical example is specified to explain the efficiency and practicality of the 

developed approach. 
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In chapter 4, some new aggregation operators for neutrosophic cubic 

numbers (NCNs), which is a fundamental member of NCS. Taking the advantages of 

MM operator and PA operator, we develop the power Muirhead mean (PMM) 

operator and examined it under NC information. Therefore, some new NC AOs, such 

as the NC power Muirhead mean operator, weighted NC power Muirhead mean 

operator, NC power dual Muirhead mean operator and weighted NC power dual 

Muirhead mean (WNCPDMM) operator are proposed and related properties of these 

proposed AOs are discussed. Furthermore, a novel MADM method initiated on the 

developed new aggregation operators. Lastly, a numerical example is given to show 

the effectiveness of the developed approach. 

            In chapter 5, the conventional HM operator is combined to the traditional PA 

operator in interval neutrosophic settings and presents the two novel IN AOs such as 

the IN power Hammy mean (INPHM) operator and its weighted form. Then, various 

preferable properties of the developed AOs are discussed. Moreover, based on these 

AOs, a new method for MAGDM is presented to deal with IN information. Lastly, an 

example is specified to explain the competence of the proposed method by comparing 

with other presented methods. 

             In chapter 6, some operational laws for INNs based on Dombi TN and TCN 

are developed. Several desirable characteristics of these operational rules are 

investigated.  We extend PBM operator based on Dombi operations to developed IN 

Dombi PBM (INDPBM) operator, IN weighted Dombi PBM (INWDPBM) operator, 

IN Dombi power geometric Bonferroni mean (INDPGBM) operator, IN weighted 

Dombi power GBM (INWDPGBM) operator and discussed several properties of these 

aggregation operators. Then, we initiated a MADM method based on these AOs to 
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deal with IN information. Lastly, a descriptive example is demonstrated to explain the 

competence and practicality of the developed MADM method.  

               In chapter 7, the notion of hesitant IN uncertain linguistic set (HINULS) and 

hesitant IN uncertain linguistic element (HINULE) are proposed, various basic 

operational laws, properties, the score, accuracy and certainty functions for 

HINULEs. Then, various AOs are presented to aggregate HINULEs. A group 

decision making based proposed AOs are initiated to handle MAGDM  problems, in 

which criteria values acquire the form of HINULEs and there exist prioritized 

relations among the criteria. Lastly, a numerical example about investment 

alternatives is given to explain the efficiency of the proposed method. 

               In chapter 8, we enlarge SS TN and TCN to SVN numbers (SVNN) and 

gave the SS operational laws for SVNNs. Then, we merge PrA operator with SS 

operations, and develop the SVN Schweizer-Sklar prioritized weighted averaging 

(SVNSSPrA) operator, SVN Schweizer-Sklar prioritized ordered weighted averaging 

(SVNSSPrOWA) operator, SVN Schweizer-Sklar prioritized weighted geometric 

(SVNSSPrWG) operator, and SVN Schweizer-Sklar prioritized ordered weighted 

geometric (SVNSSPrOWG) operator. Moreover, we studied some useful 

characteristics of these proposed AOs and proposed two models on the basis of 

SVNSSPrWA and SVNSSPrWG operators. At the same time, we apply these two 

methods to deal with MADM problems under SVN information. Lastly, an illustrative 

example about talent introduction is specified to testify the effectiveness of the 

developed methods 



20 

 

Table of Contents 

Chapter 1 .................................................................................................................................. 24 

1.1 Neutrosophic Sets and Their Generalizations ............................................... 24 

1.1.1 Neutrosophic Sets .................................................................................. 24 

1.2 The Linguistic Set and Uncertain Linguistic Numbers ................................. 32 

1.2.2 The Interval Neutrosophic Uncertain Linguistic Sets (INULSs) ........... 33 

1.2.3 Hesitant Fuzzy Set ................................................................................. 34 

1.2.4 Linguistic Neutrosophic Set (LNS) and Their Operations .................... 35 

1.3 Different Aggregation Operators .................................................................. 37 

1.3.1 The Bonferroni Mean (BM) operator .................................................... 37 

1.3.2 Heronian Mean (HM) operator .............................................................. 40 

1.3.3 Power Average (PA) operator ................................................................ 41 

1.3.4 Muirhead mean (MM) operator ............................................................. 41 

1.3.5 The Hamy mean (HM) Operator ............................................................ 43 

1.3.6 Prioritized Aggregation (PRA) Operator ............................................... 44 

1.3.7 Linguistic Scale Functions (LSFs) ......................................................... 44 

Chapter 2 .................................................................................................................................. 47 

Group Decision Making Based on Power Heronian Aggregation Operators under 

Linguistic Neutrosophic Environment ..................................................................................... 47 

2.1 The Linguistic Neutrosophic Power Heronian Mean Operators ................... 47 

2.1.1 The Linguistic Neutrosophic PHA Operator ......................................... 48 

2.1.2 The Linguistic Neutrosophic Power Weighted Heronian Aggregation 

Operators .............................................................................................................. 61 

2.2 Multi-criteria Group Decision Making Based on Linguistic Neutrosophic 

Power Weighted Heronian Mean operator .............................................................. 62 

2.3 An illustrative example ................................................................................. 65 

2.3.1 Example ................................................................................................. 65 

2.3.2 Influence of Linguistic Scale Function on The Decision Results .......... 70 

2.3.3 Influence of the Parameters p, q on Ranking Order ............................... 71 

2.3.4 Comparison and Discussion ................................................................... 72 

2.3.5 Conclusion ............................................................................................. 77 

Chapter 3 .................................................................................................................................. 79 

Application of Single-Valued Neutrosophic Power Muirhead Mean Operators to 

Multi-attribute Group Decision Making .................................................................................. 79 

3.1 Single-valued Neutrosophic Power Muirhead Mean Operators ................... 79 

3.1.1 The Single-valued Neutrosophic Power Muirhead Mean operator ....... 80 



21 

 

3.1.2 Weighted Single-Valued Neutrosophic Power Muirhead Mean 

(WSVNMM) Operator ......................................................................................... 87 

3.1.3 The Single-Valued Neutrosophic Power Dual MM (SVNPDMM) 

Operator ............................................................................................................... 89 

3.1.4 Weighted Single-Valued Neutrosophic Power Dual MM (WSVNMM) 

Operator ............................................................................................................... 93 

3.2 The MAGDM Approach Based on WSVNPMM Operator and 

WSVNPDMM Operator .......................................................................................... 95 

3.3 An illustrative Example ................................. Error! Bookmark not defined. 

3.3.1 Example ................................................. Error! Bookmark not defined. 

3.3.2 Effect of the Parameter Vector on Decision Results ..................Error! 

Bookmark not defined. 

3.3.3 Comparison and Discussion ................... Error! Bookmark not defined. 

3.3.4 Conclusion ............................................. Error! Bookmark not defined. 

Chapter 4 ................................................................................................................................ 109 

Neutrosophic Cubic Power Muirhead Mean Operators with Uncertain Data for Multi-

Attribute Decision Making .................................................................................................... 109 

4.1 Some Power Muirhead Mean Operator for Neutrosophic Cubic Sets ........ 110 

4.1.1 The Neutrosophic Cubic Power Muirhead Mean (NCPMM) Operator

 110 

4.1.2 Weighted Neutrosophic Cubic Power Muirhead Mean (WNCPMM) 

Operator ............................................................................................................. 121 

4.1.3 The Neutrosophic Cubic Power Dual Muirhead Mean (NCPDMM) 

Operator ............................................................................................................. 123 

4.1.4 Weighted Neutrosophic Cubic Power Dual Muirhead Mean 

(WNCPDMM) Operator .................................................................................... 128 

4.2 The MADM Approach Based on WNCPMM Operator and WNCPDMM 

Operator ................................................................................................................. 129 

4.3 An illustrative Example ............................................................................... 131 

4.3.1 Example ............................................................................................... 132 

4.3.2 Effect of the Parameter on the Decision Result. ............................. 135 

4.3.3 Comparison with Existing Methods..................................................... 137 

4.3.4 Conclusion ........................................................................................... 139 

Chapter 5 ................................................................................................................................ 142 

5.1 Interval Neutrosophic Power Hamy Mean Aggregation Operators ............ 142 

5.1.1 The Interval Neutrosophic Power Hamy Mean Operator .................... 142 

5.2 MAGDM Approach Based on Developed WINPHM Operator ................. 155 

5.3 Numerical Example ..................................................................................... 158 

5.3.1 An illustrative example ........................................................................ 159 

Q

Q



22 

 

5.3.2 Effect of the parameter  .................................................................... 164 

5.3.3 Comparison with Other Approaches .................................................... 165 

5.3.4 Conclusion ........................................................................................... 167 

Chapter 6 ................................................................................................................................ 169 

Multi-attribute Decision Making Method Based Interval Neutrosophic Dombi Power 

Bonferroni Mean Operator ..................................................................................................... 169 

6.1 Some operations of INSs based on Dombi TN and TCN ........................... 169 

6.1.1 Dombi TN and TCN ............................................................................ 169 

6.2 The INPBM operator based on Dombi TN and Dombi TCN ..................... 172 

6.2.1 The INDPBM operator and INWDPBM operator ............................... 172 

6.2.2 The INDPGBM Operator and INWDPGBM Operator ....................... 189 

6.3 MADM Approach Based on the Developed Aggregation Operators ......... 193 

6.4 Illustrative Example .................................................................................... 195 

6.4.1 Effect of Parameters   g and h on DM Result of This Example ........ 199 

6.4.2 Conclusion ........................................................................................... 205 

Chapter 7 ................................................................................................................................ 208 

7.1 Hesitant Interval Neutrosophic Uncertain Linguistic Set ........................... 208 

7.1.1 HINULS and their operational laws .................................................... 209 

7.2 The Hesitant Interval Neutrosophic Uncertain Linguistic Aggregation 

Operators ................................................................................................................ 213 

7.2.1 The Hesitant Interval Neutrosophic Uncertain Linguistic Prioritized 

Weighted Averaging Operator ........................................................................... 214 

7.2.2 The Hesitant Interval Neutrosophic Uncertain Linguistic Prioritized 

Weighted Geometric (HINULPWG) Operator .................................................. 223 

7.2.3 Generalized HINUL Prioritized Weighted Aggregation Operators ..... 225 

7.3 Group Decision-making Method Based on GHINULPWA Operator ........ 228 

7.4 Numerical Example ..................................................................................... 231 

7.4.1 Decision Making Steps ........................................................................ 234 

7.4.1 Influence on the Ranking Results of the Generalized Parameter   .... 239 

7.4.2 Influence on the Ranking Results of LSF ............................................ 240 

7.4.3 Compared With the Existing Method .................................................. 241 

7.4.4 Conclusion ........................................................................................... 241 

Chapter 8 ................................................................................................................................ 243 

8.1 Schweizer-Sklar Operations For SVNNs .................................................... 244 

8.1.1 Schweizer-Sklar product and sum ....................................................... 244 

8.1.2 Schweizer-Sklar operations for SVNNs .............................................. 245 

k



23 

 

8.1.3 Single-Valued Neutrosophic Scheweizer-Sklar Prioritized Weighted 

Operator ............................................................................................................. 246 

8.1.4 Single valued neutrosophic Schweizer-Sklar prioritized weighted 

averaging (SVNSSPRAWA) operator ............................................................... 247 

8.1.5 Single-Valued Neutrosophic Schweizer-Sklar Prioritized ordered 

weighted averaging operator .............................................................................. 254 

8.2 Single-Valued Neutrosophic Schweizer-Sklar Prioritized Weighted 

Geometric Operator ............................................................................................... 257 

8.2.1 Single-Valued Neutrosophic Schweizer-Sklar Prioritized Weighted 

Geometric (SVNSSPRWG) Operator ................................................................ 257 

8.2.2 Single-Valued Neutrosophic Schweizer-Sklar Prioritized ordered 

weighted Geometric operator ............................................................................. 262 

8.3 The MADM Methods Based on the Proposed Aggregation Operators ...... 264 

8.3.1 The Method Based on SVNSSPRWA Operator .................................. 265 

8.3.2 The Method Based on SVNSSPRWA Operator .................................. 266 

8.4 An Illustrative Examples ............................................................................. 267 

8.4.1 Example ............................................................................................... 267 

8.4.2 Effect of the Parameter on Decision Result of This Example ......... 270 

8.4.3 Example [40] ........................................................................................ 272 

8.4.4 Effect of The Parameter on Decision Result of This Example ....... 275 

8.4.5 Comparison With the Other Methods .................................................. 278 

8.4.6 Conclusion ........................................................................................... 281 

BiBLIOGRAPY ..................................................................................................................... 283 

 

  







24 

 

Chapter 1  

Preliminaries 

     The aim of this chapter is to express various essential definitions of NS, SVNS, 

INS, INULS, PA operator, PrA operator, MM operators, BM, Hamy mean (HM) 

operators, HrM operator, linguistic scale function (LSF), operational laws of these 

sets, properties and related theorems.  

1.1 Neutrosophic Sets and Their Generalizations 

In this part, we present the definition of NSs and its generalizations such as SVNSs, 

INSs, NCSs, operational laws, score, accuracy and certainty functions of these sets 

and various related theorems are discussed. 

1.1.1   Neutrosophic Sets 

The idea of NS was first developed by Smarandache [5] from philospical point of 

view. The definition of NS is provided below. For deep understanding of the idea and 

notions of NS the reader should study [5]. 

1.1.1.1  Definition [5] 

Let UN  be a universe set and un UN . Then, a NS NE  in UN  is expressed by, 

      , , , ,NE NE NENE un un un un un UN                                                                 (1.1) 



25 

 

where,    ,NE NEun un  and  NE un respectively expressing the truth-membership 

degree (TRD), indeterminacy-membership degree (IMD) and falsity-membership 

degree (FLD) such that    : 0 ,1 , : 0 ,1NE NEun UN un UN              and 

  : 0 ,1 .NE un UN        The three functions must satisfy the condition that 

     0 3 .NE NE NEun un un        

Smarandache [5] developed the concept of NS from philosophical point of view as a 

simplification of FS and IFS. But NS was difficult to apply in practical problems. To 

utilize NS easily in realistic problems, Wang et al. [6] developed the perception of 

SVNS which is the subclass of NS and is define as follows: 

1.1.1.2   Definition [6]  

Let UN  be a universe set and un UN . Then, a SVNS SN  in UN  is expressed by, 

 , ( ), ( ), ( ) | ,
SN SN SN

SN un un un un un UN                                                                 (1.2) 

where, ( )
SN

un , ( )
SN

un  and ( )
SN

un respectively express TRD, IMD and FLD such 

that    ( ) : 0,1 , ( ) : 0,1
SN SN

un UN un UN    and  ( ) : 0,1
SN

un UN  . The sum of these 

three functions must be less or equal to 3. The triplet ( ), ( ), ( )
SN SN SN

un un un    is said 

to be a SVN number (SVNN). For computational simplicity, we shall denote a SVNN 

by , , .     

1.1.1.3   Definition [10]  

Let 
1, and 

3
be any three SVNNs and 0.   Then, few operational laws for 

SVNNs are described as follows: 
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(1) 1 2 1 2 1 2 1 2 1 2, , ,                                                                           (1.3) 

(2) 1 2 1 2 1 2 1 2 1 2 1 2, , ,                                                              (1.4) 

(3)  1 1 , , ,
                                                                                            (1.5) 

(4)    ,1 1 ,1 1 .
                                                                                  (1.6) 

To compare two SVNNs, Ye [9] proposed the following cosine measure and 

comparison rules for SVNNs. 

1.1.1.4   Definition [9] 

For a SVNN , ,    , the cosine measure is identified as follows: 

 
2 2 2

CS



  

. For any two SVNNs 1 1 1 1, ,    and 2 2 2 2, ,    , if

1 2( ) ( )CS CS then 
1 2.   

1.1.1.5   Definition [20]  

Let 1 1 1 1, ,    and 2 2 2 2, ,    be any two SVNNs. Then, the Hamming 

distance among 
1
and 

2
is identified as follows: 

   1 2 1 2 1 2 1 2

1
, .

3
Ds                                                               (1.7) 

1.1.1.6    Definition [10] 

Let , ,    be a SVNN. Then, a score function (SF) SO can be expressed as 

follows: 

       
1

2 , 0,1 .
3

SO SO                                                             (1.8) 
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1.1.1.7     Definition [10]  

Let , ,    be a SVNN. Then, an accuracy function (AC) AR can be expressed as 

follows: 

       , 1,1 .AR AR                                                                          (1.9) 

1.1.1.8     Definition [10]  

Let 1 1 1 1, ,    and 2 2 2 2, ,    be two SVNNs. Then, the comparison rules for 

comparing SVNNs are described as follow: 

(1) If 
1 2( ) ( )SO SO , then 2 is greater than 1 , and is denoted as 2 1,  

(2) If 
1 2( ) ( )SO SO , and 

1 2( ) ( )AR AR , then 2 is greater than 1 , and is 

denoted as 2 1,  

      (3) If
1 2( ) ( )SO SO , and 

1 2( ) ( )AR AR then 1 is equal to 2 , and is denoted by

1 2 .  

1.1.1.9   Definition. [7] 

Let UN  be a universe set and un UN . Then an INS IN  in UN  is expressed by, 

      , , , | ,
IN INÎN

IN un un un un un UN                                                               (1.10) 

where,    ,
IN IN

un un   and  IN
un respectively, signify the TRD, IMD and FLD of 

the element un UN  to the set .IN  For each point h , we have,    ,
IN IN

un un  ,

   0,1
IN

un  , and      0 sup sup 3.
IN IN IN

sup un un un          

For computational simplicity, we can utilize , , , , ,L U L U L U                 to express 

an element  in an INS, and the element  is called an interval neutrosophic number 
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(INN). Where,    , 0,1L U

IN
un        ,    , 0,1L U

IN
un        ,    , 0,1L U

IN
un       

 

and 0 3.U U U      

1.1.1.10 Definition [8]  

Let 
1 1 1 1 1 1 1, , , , ,L U L U L U                  and 

2 2 2 2 2 2 2, , , , ,L U L U L U                  be any two 

INNs, and 0.   Then, various operational laws of INNs can be described as 

follows: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2(1). , , , , , ;L L L L U U U U L L U U L L U U                                        (1.11) 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2(2). , , , , , ;L L U U L L L L U U U U L L L L U U U U                                 (1.12) 

           1 1 1 1 1 1 1(3). , , 1 1 ,1 1 , 1 1 ,1 1 ;L U L U L U
     

                
          

          (1.13) 

           1 1 1 1 1 1 1(4). 1 1 ,1 1 , , , ,L U L U L U
     

              
          

.                         (1.14) 

1.1.1.11 Definition [79]  

Let , , , , ,L U L U L U                 , be an INN. Then, the SC  SO  and AC  AR  

can be defined as follows: 

 (1) 1 1 ;
2 2 2

L U L U L U

SO
     

                                              (1.15) 

 (2) 1 .
2 2 2

L U L L L U

AR
     

                                                (1.16) 

For comparing with two INNs, the comparison rules were defined by Liu et al. [79], 

which can be stated as follows. 
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1.1.1.12 Definition [79] 

Let 
1 1 1 1 1 1 1, , , , ,L U L U L U                  and 

2 2 2 2 2 2 2, , , , ,L U L U L U                  be any two 

INNs. Then we have 

(1) If    1 2 ,SO SO then 1 is better than 2 , and denoted by 1 2 ;  

(2) If    1 2 ,SO SO and    1 2 ,AR AR  then 1 is better than 2 , and denoted by 

1 2 ;  

(3) If    1 2 ,SO SO and    1 2 ,AR AR  then 1 is equal to 2 , and denoted by 

1 2 .  

1.1.1.13 Definition [21]  

Let 
1 1 1 1 1 1 1, , , , ,L U L U L U                  and 

2 2 2 2 2 2 2, , , , ,L U L U L U                  be any two 

INNs. Then, the normalized Hamming distance among 1 and 2  is described as 

follows; 

   1 2 1 2 1 2 1 2 1 2 1 2 1 2

1
, .

6

L L U U L L U U L L U UD                            (1.17) 

1.1.1.14 Definition [11, 12]  

Let UN  the universe set and un UN . Then, a neutrosophic cubic set (NCS) in UN  is a 

pair ,IN    where  , ( ), ( ), ( ) |
IN IN IN

IN un un un un un UN     is an INS in UN  and 

 , ( ), ( ), ( ) |
T I F

un un un un un UN      is a SVNS in UN . 
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For simplicity, a basic element , ( ), ( ), ( ) , ( ), ( ), ( )
T I F

un un un un un un un  
 
 
 

   in a 

NCS can be expressed by  , , , , ,
T I F
      , which is said to be NC number 

(NCN), where , , 0,1 
 

   and , , 0,1
T I F
      , satisfying 0 3U U U     and 

0 3.
T I F
       

1.1.1.15 Definition [15]  

Let  
1 1 1

1 1 1 1 1 1 1, , , , , , , ,L U L U L U

T I F
                   and  

2 2 2
2 2 2 2 2 2 2, , , , , , , ,L U L U L U

T I F
                  

be any two NCNs and 0.   Then, the operational laws for NCNs defined by Ye 

[15] are as follows: 




1 2 1 2 1 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2(1) , , , , ,

, , ,

L L L L U U U U L L U U L L U U

T T T T I I F F
       

                           

 

        (1.18) 




1 2 1 2 1 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2(2) , , , , ,

, , ,

L L U U L L L L U U U U L L L L U U U U

T T I I I I F F F F
         

                                   

   
  (1.19) 

             

     
1 1 1

1 1 1 1 1 1 1(3) 1 1 ,1 1 , , , , ,

1 1 , , ,

L U L U L U

T I F

     

  



  

      
                     


  



               (1.20) 

           

     
1 1 1

1 1 1 1 1 1 1, , 1 1 ,1 1 , 1 1 ,1 1 ,

, ,1 1 ,1 1 .

(4) L U L U L U

T I F

     

  

  

      
                  

     


    



 (1.21) 
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1.1.1.16 Definition [14]  

Let  
1 1 1

1 1 1 1 1 1 1, , , , , , , ,L U L U L U

T I F
                    be a NCN. Then, the score, accuracy and 

certainty functions of NCN are described as follows: 

1 1 1
1 1 1 1 1 1

1

4 2
( ) ;

9

L L L U U U

T I FSO
           

                 (1.22) 

1 1
1 1 1 1

1( ) ;
3

L L U U
T FAR
      

  and 1
1 1

1( ) .
3

L U

TCR z
  

         (1.23) 

1.1.1.17 Definition  [14] 

Let  
1 1 1

1 1 1 1 1 1 1, , , , , , , ,L U L U L U

T I F
                   and  

2 2 2
2 2 2 2 2 2 2, , , , , , , , .L U L U L U

T I F
                  

Then, the comparison rules for NCNs can be described as follows: 

 1 If 1 2( ) ( ),SO SO  then 1 is larger than 2
,  and is indicated by 1 2

;  

 2 If 1 2( ) ( ),SO SO  and 1 2( ) ( ),AR AR  then 1 is larger than 2
,  and is indicated by  

1 2
;  

 3 If 1 2( ) ( ),SO SO 1 2( ) ( ),AO AO  and 1 2( ) ( ),CR CR  then 1 is larger than 2
,  and is 

indicated by  1 2
;  

 4  If 1 2( ) ( ),SO SO 1 2( ) ( ),AR AR  and 1 2( ) ( ),CR CR  then 1 is equal to 2
,  and is 

indicated by 1 2
.  
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1.2 The Linguistic Set and Uncertain Linguistic Numbers 

The linguistic set (LS) is thought out as a very good , of highest quality tool to put in a 

given form these qualitative information. we can articulate the linguistic set by 

 0 1 1, , , lsS s s   , and  1, 2, , 1s l      can be called a linguistic element (LE), and   is 

identified as  the cardinality of the linguistic term set (LTS), usually odd values such 

as 3,5,7, etc. For example, when   , the linguistic term set  0 1 6, , ,S ss s   

(   ,    ,  ,  , extremely poor very poor poor medium ,    ,    .good very good ex tremely good  

Let is  and js  be any two LEs in LS S , then, they have the following characteristics 

[116, 117]: 

(1) If    , then      , 

(2) There exists a negative operator: neg (  )=  , where        , 

(3) If      ,              ; 

(4) If      ,              . 

In the process of calculation plenty of information is lost, to surmount the lost of 

information the discrete LS is enlarged to a continuous LTS { | }s RS     which also 

satisfy the properties of the original linguistic term set. The basic operational rules are 

described as follows [118, 119]: 

(a)                  , 

(b)            , 
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(c)           , 

(d)     
           

1.2.1.1    Definition [118, 119]  

Assume that           ,       S  with     are respectively the inferior and 

superior limits of   , then    is said to be an uncertain linguistic variable (ULV). 

Let    represents the set of all ULVs and               and               be any two 

ULVs, then the basic operations are described as: 

(1)                   +         =                , 

                               =                , 

(3)                 =                  , 

(4)    
           

  =                . 

1.2.2      The Interval Neutrosophic Uncertain Linguistic Sets 

(INULSs) 

1.2.2.1    Definition [43]  

Let UN  be the universe of discourse set and 
( ) ( )

[ , ]
un un

s s S
 

  be an ULV. An INULS 

INU  in UN  is described as: 

          , , ,  , , | ,INU INU INUun un
INU un s un un us n un UN

 

  
      

  
                             (1.24) 
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where, ,s s S   ,              , 0,1 , , [0,1]INU INU INU INU INU INUun inf un sup un un inf un sup un         
      

    

and      , [0,1]INU INU INUun inf un sup un  
 

  


with the condition,    0 INU INUsup un sup un      

  3INUsup un  for any un UN . The functions,     ( ), ,INU INU INUun un un   denote 

respectively TRM interval, IDM interval, and FLM interval of the element .un UN  

1.2.3      Hesitant Fuzzy Set 

1.2.3.1     Definition [45, 46]  

Let UN  be a predetermined set, a HFS HF  on UN  is described in terms of a mapping 

( )HFa un , that when applied to UN  returns a finite subset of  0,1 , which can be 

mathematically represented as follows: 

   , ( ) | ,HFHF un a un un UN                                                                                  (1.25) 

where,  
( ) ( )

( ) ( )

HF
HF

HF
HF

un a un

a un un





 is a set of few different values in [0, 1], denoting 

the possible membership degrees of the element un UN  to HF . For simplicity, we 

shall write a  instead of  
( ) ( )

( ) ( )

HF
HF

HF
HF

un a un

a un un





  and is said to be a hesitant fuzzy 

element. 

Let 1,a a  and 2a  be any three HFEs, then the operational rules for HFEs are   

described below: 

(1)  a
 

      
   a

                                                                                             (1.26) 
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(2)  a             
   a

,                                                                            (1.27) 

(3)  a
 
 a

 
               

   a
 
    a

 

                                                   (1.28) 

(4) a
 
 a

 
        

   a
 
    a

 

                                                                      (1.29) 

1.2.4     Linguistic Neutrosophic Set (LNS) and Their Operations 

1.2.4.1   Definition [57]  

Let UN  be the domain set and  0 2| ,rS s s s s     then a LNS is an object of the 

form: 

 , , , | ,LN un s s s un UN                                                      (1.30) 

where, ,s s   and s  represent the TRM, IM and FLM functions of the element 

un UN  to the set ,LN  respectively and must satisfy condition that 

0 6 .s s s r       Furthermore, , ,s s s    is said to be a LNN and LN  

consists a group of LNNs. Moreover, when , , ,s s s S    then , ,s s s    is an 

original LNN; otherwise, we call it virtual LNN.  

1.2.4.2    Definition [57]  

Let 
1 1 11 , ,s s s    and 

2 2 22 , ,s s s    be any two LNNs. Then based on LSF, 

few operational rules for LNNs are described as follows: 
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1 2 1 2 1 2

1 2

* 1 * * * * * 1 * *

1 2

* 1 * *

(1) ( ) ( ) ( ) ( ) , ( ) ( ) ,

( ) ( ) ,

LS LS s LS s LS s LS s LS LS s LS s

LS LS s LS s

 

     



 

   
      

   

 
 
 

                          (1.31) 

1 2 1 2 1 2

1 2 1 2

* 1 * * * 1 * * * *

1 2

* 1 * * * *

(2) ( ) ( ) , ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ,

LS LS s LS s LS LS s LS s LS s LS s

LS LS s LS s LS s LS s

 

     



   

   
      

   

 
  

 

                            (1.32)

 
(3)

1 1 1

* 1 * * 1 * * 1 *

1 1 1 ( ) , ( ) , ( ) ,LS LS s LS LS s LS LS s

  


  

  

          
                           

                  

(1.33) 

(4)
1 1 1

* 1 * * 1 * * 1 *

1 ( ) , 1 1 ( ) , 1 1 ( ) .LS LS s LS LS s LS LS s

  


  

  

          
                             

           

(1.34)

 

1.2.4.3    Definition [57]  

Let 
1 1 11 , ,s s s    and 

2 2 22 , ,s s s    be any two LNNs. Then 

(1) 1 2 if and only if 
1 2 1 2

,s s s s     and 
1 2

;s s   

(2)  
1 1 11 , ,Neg s s s   , where  1Neg is the negation operator of 1.  

1.2.4.4    Definition [57]  

Let , ,s s s    be a LNN. Then the expected value, accuracy and certainty 

functions are denoted and defined as follows: 

* * *1
( ) ( ) 2 ( ) ( )

3
SO LS s LS s LS s  

 
    

 
,                                                 (1.35)

 

* *

( ) ( ) ( )AR LS s LS s   ,

                                                                      

(1.36) 
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*

( ) ( ).CR LS s

                                                                                   

(1.37) 

1.2.4.5    Definition [57]  

Let 1 and 2  be any two LNNs; then the comparison rules are described as follows: 

(1) If 
1 2( ) ( )SO SO , then 1 2 ;  

(2) If 
1 2( ) ( )SO SO , and 

1 2( ) ( )AR AR ,  then 1 2 ;  

(3) If 
1 2( ) ( )SO SO ,

1 2( ) ( )AR AR  and 
1 2( ) ( ),CR CR  then 1 2 ;  

(4) If 
1 2( ) ( )SO SO ,

1 2( ) ( )AR AR  and 
1 2( ) ( ),CR CR  then 1 2 .  

1.2.4.6    Definition [57]  

Let 
1 1 11 , ,s s s    and 

2 2 22 , ,s s s    be any two LNNs, and 

 1 1 1 2 2 2 0,2
, , , , , .

r
s s s s s s S        When 

*

( )jLS s  is LSF, D is a mapping, and : ,Ds R   

the hamming distance between 1 and 2  can be defined as 

1 2 1 2 1 2

* * * * * *

1 2

1
( , ) | ( ) ( ) | | ( ) ( ) | | ( ) ( ) | .

3
D LS s LS s LS s LS s LS s LS s     

 
      

 
  (1.38) 

1.3 Different Aggregation Operators 

In this part, the definition and properties of different aggregation operators are 

discussed. 

1.3.1    The Bonferroni Mean (BM) operator  

 The BM operator was first presented by Bonferroni [61], and was explained as 

follows: 
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1.3.1.1    Definition [61]  

Let ( 1,..., )zNR z m be a group of non-negative real numbers, , 0,x y  then the BM 

operator is a function : ,mBM R R  such that 

 

1

,
1 2

2
11

1
, ,....,

x y

m m x y
x y

m z s

sz
z s

BM NR NR NR NR NR
m m






 
 

  


 
 

 .                                                 (1.39) 

   The BM operator ignores the importance degree of each input argument, which can 

be given by decision makers according to their interest. To overcome this 

shortcoming of BM operator, He et al. [80] defined the weighted Bonferroni mean 

(WBM) operators which can be explained as follows: 

1.3.1.2    Definition [80]  

Let ( 1,..., )zNR z m be a group of non-negative real numbers, , 0,x y  then a 

weighted BM operator (WBM) is a function : ,mBM R R  such that: 

 

1

,
1 2

2
11

1
, ,...., ,

1

x y

m m x y
z sx y

m z s

sz z
z s

w w
WBM NR NR NR NR NR

m m w






 
 

  
  

 

                                    (1.40) 

where,  1 2, ,...,
T

mw w w w is the importance degree of every ( 1,...., ).zNR z m  

The WBM operator has the following characteristics: 

1.3.1.3    Theorem (Reducibility)  

If the importance degree of each zNR  is 
1 1 1

, ,....,

T

w
m m m

 
  
 

, then 
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 

 

1

,
1 2

2
11

,
1 2

1
, ,....,

, ,...., .

x y

m m x y
x y

m z s

sz
z s

x y
m

WBM NR NR NR NR NR
m m

BM NR NR NR






 
 

  


 
 




                                             (1.41) 

1.3.1.4     Theorem  (Idempotency)  

Let , ( 1,..., )zNR NR z m  , then  

 ,
1 2, ,...., .x y

mBM NR NR NR NR                                                                              (1.42) 

1.3.1.5      Theorem (Permutation)  

Let  1 2, ,..., mNR NR NR be any permutation of 1 2, ,..., mNR NR NR
   
  
 

, then  

 ,
1 2 1 2, ,..., , ,..., .x y

m mWMB NR NR NR WBM NR NR NR
   

  
 

                                            (1.43) 

1.3.1.6     Theorem (Monotonicity)  

Let ( 1,..., )z zNR NR z m


  , then  

 , ,
1 2 1 2, ,..., , ,..., .x y x y

m mWBM NR NR NR WBM NR NR NR
   

   
 

                                         (1.44) 

1.3.1.7     Theorem (Boundedness)   

The WBM
x,y

 lies among the min and max operators, that is  

     ,
1 2 1 2 1 2min , ,..., , ,..., max , ,..., .x y

m m mNR NR NR WBM NR NR NR NR NR NR             (1.45) 
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Similar to BM operator, the geometric BM operator also considers the correlation 

among the input arguments. It can be explained as follows: 

1.3.1.8     Definition [120]  

Let ( 1,..., )zNR z m be a group of positive real numbers, , 0,x y  then a geometric 

BM operator (GBM) is a function : ,mGBM R R  such that 

   
2

1

,
1 2

11

1
, ,...., .

m m
m mx y

m z s

sz
z s

GBM NR NR NR xNR yNR
x y






 

                                        (1.46) 

   The GBM operator ignores the importance degree of each input argument, which 

can be given by decision makers according to their interest. In a similar way to WBM, 

the weighted geometric BM (WGBM) operator was also presented. The extension 

process is same as that of WBM, so it is omitted here. 

1.3.2     Heronian Mean (HM) operator 

HM [62] is also an essential tool, which can process the interrelationships of the input 

values, and is defined as follows: 

1.3.2.1     Definition [62]  

Let   ,0,1 , , 0, : ,a b mI a b H I I   if 
,x yH  satisfies; 

 
1

,
1 2

2
1

2
, ,..., .

m m a ba b
a b

m i j

i j i

H NR NR NR NR NR
m m



 

 
  

 


                               

(1.47) 

Then, the mapping 
,x yH  is said to be HM operator with parameters. The HM operator 

must have the properties of idempotency, boundedness and monotonicity. 



41 

 

1.3.3     Power Average (PA) operator 

The PA operator was firstly introduced by Yager [60] for classical number. The 

dominant edge of PA operator is its capacity to diminish the inadequate effect of 

unreasonably high and low arguments on the results. 

1.3.3.1    Definition [60]  

Let ( 1,.., )zNR z a be a set of non-negative real numbers. The PA operator is then 

represented as follows: 

 
  
  

1 2

1

1

1

, ,..., ,

1

za

a z
a

z
o

o

T NR

PA NR NR NR NR

T NR



 
 

 
 

 
 




                                                  (1.48) 

where,    
1

,
a

z z o

o

T NR Sup NR NR


 and  ,z xSup NR NR is the support degree for zNR and

oNR , which must gratify the following condition: 

(1)    , 0,1z oSup NR NR  ; 

(2)    , ,z o o zSup NR NR Sup NR NR ; 

(3) If    , ,z o l mDs NR Ds NR NR  , then    , ,z o l mSup NR NR Sup NR NR , where 

 ,z oDs NR NR is the distance measure among zNR and oNR . 

1.3.4     Muirhead mean (MM) operator 

The MM operator was first introduced by Muirhead [63] for classical numbers, which 

has the advantage of considering the interrelationship among any multiple aggregated 

arguments. 
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1.3.4.1     Definition [63]  

Let ( 1,..., )zNR z o be a set of real numbers and  1 2, ,..., o

oQ q q q R   be a vector of 

parameters. Then, the MM operator is described as: 

  1

1

1 2
( )

1

1
, ,..., ,

!

o

z
z

z

o

o q
qQ

o
z

S z

MM NR NR NR NR
a 




 

    
 

                                                        (1.49) 

where, 
oS is the group of permutation of  1,2,...,o and ( )z is any permutation of 

 1,2,...,o . 

    Now we can give some particular cases with respect to the parameter vector Q  of 

MM operator, which are shown as follows: 

(1) If  1,0,0,...,0Q  , then MM operator deteriorates to the following form: 

   1,0,...,0
1 2

1

1
, ,..., .

o

o z

z

MM NR NR NR NR
o



                                                           (1.50) 

That is, the MM operator degenerates into arithmetic averaging operator. 

(2) If
1 1 1

, ,...,Q
o o o

 
  
 

, then MM operator degenerates into the following form: 

   
11 1 1

, ,...,

1 2

1

, ,..., .
o

oo o o
o z

z

MM NR NR NR NR

 
 
 



                                                        (1.51) 

That is, the MM operator degenerates into geometric averaging operator. 

(3) If  1,1,0,...,0Q  , then MM operator degenerates to the following form: 

     

1

2

1,1,0,...,0
1 2

, 1

1
, ,..., .

1

o

o z g

z g
z g

MM NR NR NR NR NR
o o 



 
 
  
 

                                          (1.52) 

That is, the MM operator degenerates into BM operator (p=q=1). 

(4) If 1,...,1,0,...,0

c o c

Q

 
  
 
 

, then MM operator degenerates to the following form: 
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  1 2

1

1,...,1,0,...,0
1 ... 1

1 2, ,..., .

c o c

y

c

c c

z

x x x a y
o

c

o

NR

MM NR NR NR
C

 
 
        

 
 
 
 
 
 

 
                                              (1.53) 

That is, the MM operator degenerates into MSM operator. 

1.3.5     The Hamy mean (HM) Operator 

1.3.5.1    Definition [65] 

The HM operator is described as follows: 

  1 2

1

1 ... 1( )
1 2, ,..., ,

j

k

z k

i

i i i z jk
z

k

z

NR

HM NR NR NR
C

     

 
 
 



 
                                              (1.54) 

where,  , 1, 2,...,k z are a parameter and 1 2, , ..., ki i i are k  integer values taken from the set 

of  1, 2,..., z  of z integer values, k

zC express the binomial co-efficient and
 

!

! !

k

z

z
C

k z k



. 

The HM operator has the following properties, which are described below: 

(1) When ( 1,2,..., ),oNR NR o z  then  ( )
1 2, ,...,k

zHM NR NR NR NR ; 

(2) When  1,2,..., ,o oNR o z   then    ( ) ( )
1 2 1 2, ,..., , ,...,k k

z zHM NR NR NR HM    ; 

(3)    ( )
1 2min , ,..., max 1,2,...,k

o z oo NR HM NR NR NR NR o z   . 

The HM operator has two specific cases, which are defined below: 

(1) When  (1)
1 2

1

1
1, , ,...,

z

z o

o

k HM NR NR NR NR
k 

   , the HM operator degenerate into 

arithmetic mean operator. 
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(2) When  
1

( )
1 2

1

, , ,...,
z k

z
z o

o

k z HM NR NR NR NR


 
   

 
 , the HM operator degenerate into 

geometric mean operator. 

1.3.6     Prioritized Aggregation (PRA) Operator 

PRA operator was first developed by Yager [85], which can consider the 

prioritization among the aggregated parameters. Let 1 2{ , ,..., }lO O O O be a family of 

attributes and ensure that there is a prioritization among the attributes represented by a 

linear ordering 1 2 ... lO O O   which denote that the attribute dO  has a high 

precedence then ,fO if d f . ( )dO u  is an evaluation value expressing the execution of 

the alternative u  under the attribute dO  and satisfies  ( ) 0,1 .dO u    if 

1

( ( )) ( ).
l

d dd

d

PRA O u w O u



                                                               

(1.55) 

PA operators have been effectively applied in a condition where the input 

arguments are exact values.  

1.3.7     Linguistic Scale Functions (LSFs) 

To utilize data more capably and to articulate the semantics more pliably, LSFs 

give diverse semantic values to linguistic scales under diverse situations [48]. They 

are superior in practice since these functions are pliable and can give more settled 

results according to diverse semantics. 

1.3.7.1    Definition [48]  

Suppose  0,1z   is a numeric value, then the LSF LS


 that conducts the 

mapping from  zS   to  ( 0,1,2,..., 2 )z z r    which is defined as follows: 
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: ( 1,2,..., 2 )z zLS s z r


  ,
     

                                                   (1.56) 

where, 0 1 20 .... .r       Clearly, the symbol ( 0,1,2,..., 2 )z z r   imitates the 

preference of the DMs when they are utilizing the LT ( 0,1,2,..., 2 ).zs S z r    

Therefore, the function value in fact indicates the semantics of the LTs. 

 (1)   Consider  

1 ( )
2

z z

z
LS s

r




  .
            

                                                             (1.57) 

The assessment scale of the linguistic information specified above is divided on 

average. 

 (2)   Consider  

2 2

2
2

2 2

( 0,1,2,..., )
( )

( 1, 2..., 2 )

r r z

r

r z r

r

z z

z r
LS s

z r r r

 



 














 



 


  
  

,

                    

(1.58) 

with the expansion from the center of the specified LTS to both ends, the absolute 

deviation among adjoining linguistic subscripts also amplifies. 

 (3)   Consider 

( )

2
3

( )

2

( 0,1,2,..., )
( )

( 1, 2..., 2 )

r r z

r

z z
r z r

r

z r
LS s

z r r r

 



 





 


 

 
  

  

,

                 

(1.59) 

with the expansion from the center of the specified LTS to both ends, the absolute 

deviation among adjoining linguistic subscripts will reduce. 

To conserve all the specified information and make the calculation easy, the above 

function can be enlarged to : ( { | 0, }),LS S R R c c c R


      which satisfies 

( )z zLS s 


  and is a strictly monotonically increasing and continuous function. 
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Therefore, the function from S to R  is one-to-one because of its monotonicity, and 

the inverse function of LS


 exists and is denoted by  
1

.LS

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Chapter 2  

Group Decision Making Based on Power Heronian 

Aggregation Operators under Linguistic Neutrosophic 

Environment 

   In this chapter, we merged the PA operator with HM operator and enlarged them to 

process linguistic neutrosophic information, and presented the linguistic neutrosophic 

power Heronian aggregation (LNPHA) operator, linguistic neutrosophic power 

weight Heronian aggregation (LNPWHA) operator. Moreover, some characteristics of 

these new developed aggregation operators are examined and some particular cases 

are discussed. Furthermore, we propose a new technique based on these developed 

aggregation operators for MAGDM. Lastly, some illustrative examples were given to 

illustrate the efficiency and advantages of the developed method by comparing with 

some existing methods. 

2.1 The Linguistic Neutrosophic Power Heronian Mean Operators 

   In this part, we propose the LNPHA operator and LNPWHA operators based on the 

operational laws for LNNs. 
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2.1.1    The Linguistic Neutrosophic PHA Operator 

2.1.1.1  Definition  

Let , , ( 1,2, , )
h h hh s s s h r    be a group of LNNs, , 0,p q  and LNPHA is a map

: ,rLNPHA   if

 
 
 

 
 

1

,

1 2

1

1 1

1 ( ) 1 ( )
2

, ,..., ,
( 1)

1 ( ) 1 ( )

P q p q

r r h g
p q

r h gr r
h g i

l l

l l

T T

LNPHA r r
r r

T T



 

 

    
     
     
     

          


 

    (2.1) 

where, 
1

( ) sup( , ),
r

l l h

h
h l

T



 and sup( , )l h is the support degree (SD) for l from ,h  

which must satisfy the following characteristics. 

1)  sup( , ) 0,1l h  ; 2) sup( , ) sup( , );l h h l
 
3) sup( , ) sup( , ), if ( , ) ( , )Ds Ds , in 

which ( , )Ds is the distance between LNNs and .   

In order to write expression (2.1) in a more simplified form, we can define 

 
 

1

1 ( )

1 ( )

k

k r

k

k

T

T










,                                                                             (2.2) 

and call  1 2, ,...,
T

r   as the power weighting vector (PWV) with 
1

0, 1.
r

k k

k

 


   

Then, expression (2.1) can be represented as follows: 

     

1

,

1 2

1

2
, ,..., .

( 1)

r r p qqPp q

r k h k g

h g i

LNPHA r r
r r

 


 

 
  

 
                            (2.3) 
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2.1.1.2 Theorem  

Let , , ( 1,2, , )
h h hh s s s h r    be a group of LNNs, and , 0,p q  then, the result 

aggregated employing Equation (2.3) is still a LNN, and even 

 

1
2

( 1)* 1 * *
,

1 2

1

* 1 * *

, ,..., 1 1 (1 (1 ( )) ) (1 (1 ( )) ) ,

1 1 1 1 ( ) 1 ( )

h h

h h

h g

h g

p q
r r r r

r rp q p q

r

h g i

p q
r rr

g i

LNPHA LS LS s LS s

LS LS s LS s

 

 




 

 



 




                  
 



                             





1
2

( 1)

1

1
2

( 1)
* 1 * *

1

,

1 1 1 1 ( ) 1 ( ) .
h g

h g

p q
r r

r

h

p q
p q r rr rr r

h g i

LS LS s LS s

 











 

 

 
             
  

 

 
                                              
  

 





(2.4) 

Proof.  Firstly, we need to prove the following Equation. 

   
* 1 * *

1 1

* 1 * *

1

1 1 (1 (1 ( )) ) (1 (1 ( )) ) ,

1 1 ( ) 1 ( )

gh

h g

h g

h g

r rr r
qP rr p q

h h g g

h g i h g i

p q
r rr r

h g i

r r LS LS s LS s

LS LS s LS s



 

 


 

   



 

 

    
                

                               

 



* 1 * *

1

,

1 1 ( ) 1 ( ) .
h g

h g

p q
r rr r

h g i

LS LS s LS s

 


 

 




  


                                      



(2.5) 

By the operational rules of LNNs defined in (1.31)-(1.34), we have 

 
* 1 * * 1 * * 1 *

1 1 ( ) , 1 1 ( ) , 1 1 ( ) ,
h h h

h h h

p p p
r r r

p

h hr LS LS s LS LS s LS LS s

  


  

  

                                                                 

 

* 1 * * 1 * * 1 *

1 1 ( ) , 1 1 ( ) , 1 1 ( ) .
g g g

g g g

q

g g

q q q
r r r

r

s s s

  



  

  



                                                                     
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   
* 1 * *

* 1 * *

* 1 *

1 1 ( ) 1 1 ( ) ,

1 1 ( ) 1 ( ) ,

1 1 ( )

h g

h g

h g

h g

h

p q
r r
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h h g g

p q
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 

 

 

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
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
 
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 



                                    

                (2.6) 

(1) When 2,r  by Equation (1.31) and Equation (2.6), we have 
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By using Equation (1.31), we get 
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 (2.7) 

That is, Equation (2.5) holds for 2.r   
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(2) Let us assume that Equation (2.5) holds for .r z   
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(2.8) 

Furthermore, when 1m z  , we have   
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Firstly, we prove that 
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   (2.10) 

We shall prove Equation (2.10) on mathematical induction on .z   

 (a) For 2,z  we have 
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(b) Let us assume that Equation (2.10) holds for z b , that is; 
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                (2.12) 

Then, when 1z b  , we have 
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Therefore Equation (2.10) is true for 1.z b   Hence Equation (2.10), is also true for 

all .z  

Similarly, we can prove the other parts of Equation (2.9). 
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Therefore Equation (2.5) is true for 1r z  . Hence Equation (2.5) is true for all .r  

By Equation (2.5), we can prove that Equation (2.4) is right. From Equation (2.5) and 

the operational laws defined for LNNs, we have 
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This completes the proof of Theorem 2.1.1.2. 

    In order to calculate the PWV , we firstly need to calculate the SD between 

LNNs. In general, the support degree between LNNs can be replaced by the similarity 

degree between LNNs. That is,  

   , 1 , ( , 1,2,...., )h l h lSup Ds h l r   .                                              (2.13) 
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This completes the proof of Theorem 2.1.1.3. 
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. 

Because 
*

LS is a montone increasing function, then, there is the following comparison: 

(1) For the expected value: 

              
* * * * * *1 1

( ) 2 2 , , .
3 3

SO LS s LS s LS s LS s LS s LS s SO s s s         

   
           

   
 

If    , ,SO SO s s s    
 , 

then,  ,

1 2, , , ,..., .p q

rs s s LNPHA    
   

Else,    , ,SO SO s s s    
 , then, we have the score function, 

(2)          
* * * *

( ) , , .AR LS s LS s LS s LS s AR s s s          
      

If    , ,AR AR s s s    
 , 

then,  ,

1 2, , , ,..., .p q

rs s s LNPHA    
   

Else,    , ,AR AR s s s    
 , then, we have the certainty function, 

(3)      
* *

( ) , , .CR LS s LS s CR s s s       
    
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then,  ,

1 2, , , ,..., .p q

rs s s LNPHA    
   

 ,

1 2, , , ,..., .p q

rs s s LNPHA    
  

In a analogous way, we can prove that  ,

1 2, ,..., , , .p q

rLNPHA s s s    
  

Hence, we have 

 ,

1 2, , , ,..., , , .p q

rs s s LNPHA s s s          
   

However, the property of monotonicity, for  ,

1 2, ,...,p q

rLNPHA cannot be proved. 

The main reason is that the importance degrees can be calculated from the support 

degrees, for the two groups of LNNs, and there is no constant inequality relationship 

among them. 

Now we can discuss some particular cases of the LNPHA operator by assigning 

different values to the parameters p and q.  

  1  When, 1p q  , then Eq. (2.4) degenerates to linguistic neutrosophic power line 

Heronian mean operator, that is  
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  

 



  (2.16) 

 2 When,
1

,
2

p q   then Eq. (2.4) degenerates to linguistic neutrosophic power 

basic Heronian mean operator, that is 
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  (2.17) 

 3 When, 0, 0,p and q   then Eq. (2.4) degenerates to linguistic neutrosophic 

power generalized linear ascending weighted operator, that is 
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   (2.18) 

 4 When 0, 0,p and q   then Eq. (2.4) degenerates to linguistic neutrosophic 

power generalized linear descending weighted operator, that is 
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So, from Eq. (2.18) and Eq. (2.19), we can see that  0,

1 2, ,...,q

rLNPHA and 

 ,0

1 2, ,...,p

rLNPHA  weigh the information       1 1 2 2, ,...,
q q q

r rr r r   and  

      1 1 2 2, ,...,
p p p

r rr r r    with heavy weight vectors  1, 2,..., r  and  , 1,...,1r r  . 

Hence, whenever  ,

1 20 0, , ,...,p q

rp or q LNPHA   have the linear weighted function 

and also the parameters p and q  are not interchangeable. 

In LNPHA operators, only the PWV and the interrelationship among LNNs are 

considered and the weight of every LNN is not taken under consideration. However, 

in real decision making problems, the weight vector of input arguments is also a 

necessary parameter. So, to overcome this limitation of the LNPHA operator, we will 

propose the linguistic neutrosophic power weighted Heronian aggregation 

(LNPWHA) operator. 
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2.1.2      The Linguistic Neutrosophic Power Weighted Heronian 

Aggregation Operators 

2.1.2.1      Definition 

Let , , ( 1,2, , )
h h hhn s s s h r    be a group of LNNs, , 0,p q  and : ,rLNPHA   if 
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 

            (2.20) 

where, 
 
 

1

1 ( )

1 ( )

z

z r
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z

T

T






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
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1

1.
r

z

z


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  
1

( ) sup( , ),
r

l l h

h
h l

T



 and sup( , )l h is the support 

degree for l from ,h  which has the following properties. 

1)  sup( , ) 0,1l h  ; 2) sup( , ) sup( , );l h h l 3) sup( , ) sup( , ), if ( , ) ( , )Ds Ds , in 

which ( , )D is the distance between LNNs and .  Then LNPWHA is called the 

linguistic neutrosophic power weighted Heronian aggregation operator. 

2.1.2.2     Theorem 

Let , , ( 1,2, , )
h h hh s s s h r    be a group of LNNs, and , 0,p q  then the result 

aggregated from (2.20) is still a LNN, and even 
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

  (2.21) 

The proof of this theorem is similar to Theorem 2.1.1.2, therefore, omitted here. 

Similar to the LNPHA operator, the LNPWHA operator has the characteristics of 

boundedness, however, it does not have the characteristics of idempotency and 

monotonicity. 

2.2 Multi-criteria Group Decision Making Based on Linguistic 

Neutrosophic Power Weighted Heronian Mean operator 

For a MAGDM problem with LNNs in which the weights of experts and attributes are 

known,  Let  1 2, ,...., mN N N N ,  1 2, ,...., nO O O O  represent the set of alternatives and 

attributes respectively, and the experts set can be sapcified by  1 2, ,..., .ze e e e  Suppose 

that , ,
ab ab ab

l l l l

abn s s s    is the attribute assessment value for the alternative aN  about 

the attributes bO  given by the expert .le  Let the importance degree of the attributes 

 1 2, ,..., nO O O can be denoted by  1 2, ,..., n    and the importance degree of the 
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experts  1 2, ,..., ze e e  can be denoted by  1 2, ,..., z    , both the importance degrees 

satisfy the condition that  , 0,1g h   , 
1

1
n

g

g




  and 
1

1.
z

h

h




  Then the aspire of this 

MAGDM problem is to rank the alternatives. 

The MAGDM method consists of the following main steps by using LNPWHA 

operator. 

Step 1. Normalize the decision matrix.  

Generally, there are two types of attributes. One is of cost type and the other is of 

benefit type. In MAGDM method, we need to convert the attributes in cost type to 

ones in benefit type. The following method is used to convert the cost type into 

benefit type. 

   

2

, ,

, ,

, , cos

ab ab ab

ab ab ab

ab ab ab

l l l l

ab

l l l
b

l l l
br

n s s s

s s s for benefit attributeO

s s s for t attributeO

  

  

  






 



.                                (2.22) 

So, the decision matrices l

ab m n
A a


     can be changed into matrices .l

ab m n
R n


     

Step 2. Determine the supports   , 1,2,...., , 1,2,...., , , 1,2,...,l l

ab acSup n n a m l z b c n    by 

   , 1 ,l l l l

ab ac ab acSup n n D n n  ,
                                  

                               (2.23) 

where,  ,l l

ab acD n n is the Hamming distance between two LNNs l l

ab acn and n , which is 

given in Definition 1.2.3.6. 

Step 3. Calculate  l

abT n by  

   
1

, , ( 1,2,..., , 1,2,..., , , 1,2,..., )
n

l l l

ab ab ac

c
c b

T n Sup n n a m l z b c n



    .

                  

(2.24) 

Step 4. Calculate  
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  

  
1

1
,( 1,2,..., , 1,2,..., , 1,2,..., )

1

l

b abl

ab n
l

b az

z

n T n
a m l z b n

T n








   


.

                            

(2.25) 

Step 5. Utilize the LNPHA operator 

 1 2, , , ,..., .
a a a

l l l l

a a a ann s s s LNPHA n n n   
                                      

(2.26) 

To determine the overall LNNs ( 1,2,..., , 1,2,..., ).l

an a m l z   

Step 6. Determine the supports   , 1,2,...., , , 1,2,....,l g

a aSup n n a m l g z   by 

   , 1 ,l g l g

a a a aSup n n D n n  ,   
                                                                       

(2.27) 

where,  ,l g

a aD n n  is the Hamming distance among two LNNs l

an  and g

an , which is 

given in Definition 1.2.3.6. 

Step 7. Calculate  l

aT n by  

   
1

, , ( 1,2,..., , 1,2,..., )
z

l l g

a a a

g
g l

T n Sup n n a m l z



   ,  

                                        

(2.28) 

Step 8. Calculate  

  

  
1

1
,( 1,2,..., , 1,2,..., )

1

l

l al

a n
l

l a

z

l T n
a m l z

T n








  



,

                                            

(2.29) 

Step 9. Utilize the LNPHA operator. 

 1 2, , , ,..., .
a a a

z

a a a an s s s LNPWHA n n n   
                                      

(2.30) 

To determine the overall LNNs ( 1,2,..., ).an a m  

Step 10. Calculate the score values by using Definition 1.2.3.4 of the overall LNNs 

Step 11. Rank the alternatives and select the best alternative according to their score 

values.   . 

Step 12. End. 



65 

 

2.3 An illustrative example 

In real applications, we can get the LNNs by questionnaire investigation or by Web 

comment data. (1) We should firstly give the LTS, then some customers are invited to 

give the TRM, IM and FLM by selecting a LT from LTS. So we can give a LNN. (2) 

There are a lot of evaluation data from the customers by Web based on the LT, then 

we can produce the LNNs by statistical method. In order to conveniently compare 

with the existing methods, we can cite an example from Liu [8] by changing the types 

of original evaluation data. 

2.3.1 Example  

Assume that there are four alternatives  1 2 3 4, , ,N N N N showing the air quality of 

Guangzhou City in 2006, 2007, 2008 and 2009. Three attributes were taken into 

account which consists of the 12( )SO O , the 22( )NO O , and the  310 .PM O  Importance 

degree of  attributes is  0.5,0.3,0.2 .
T

   The possible four alternatives ( 1,2,3,4)aN a 

are evaluated by three air-quality monitoring stations assessed as experts  1 2 3, ,e e e e  

under the LTS  0 1 2 3 4, , , ,s very low s low s slightly low s medium s slightly good    

5 6, ,s good s very good  . The importance degree of the experts is 

 0.4,0.3,0.3 .
T

   The evaluation values are represented by the LNNs, which are 

given in Tables 2.1,2.2 and 2.3. 

Table 2.1. Air quality data from station 1e  

 
1O  2O  3O  

1N  5 2 2, ,s s s  4 1 2, ,s s s  4 2 3, ,s s s  
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2N  4 2 1, ,s s s  3 2 3, ,s s s  5 2 2, ,s s s  

3N  6 3 3, ,s s s  4 2 3, ,s s s  5 3 3, ,s s s  

4N  6 2 2, ,s s s  3 2 2, ,s s s  4 2 2, ,s s s  

 

Table 2.2.  Air quality data from station 2e  

 
1O  2O  3O  

1N  4 2 3, ,s s s  5 2 3, ,s s s  4 2 6, ,s s s  

2N  5 3 3, ,s s s  4 3 1, ,s s s  3 1 3, ,s s s  

3N  4 1 2, ,s s s  4 2 1, ,s s s  4 1 2, ,s s s  

4N  5 2 1, ,s s s  4 2 2, ,s s s  3 1 2, ,s s s  

Table 2.3. Air quality data from station 3e  

 
1O  2O  3O  

1N  3 2 3, ,s s s  2 1 3, ,s s s  5 1 2, ,s s s  

2N  4 2 3, ,s s s  3 1 2, ,s s s  2 3 3, ,s s s  

3N  3 1 1, ,s s s  4 2 1, ,s s s  2 4 2, ,s s s  

4N   4 3 1, ,s s s   3 1 2, ,s s s   5 1 2, ,s s s  

 

Rank the Alternatives by the Proposed Method.  

Step 1.  Convert the decision matrices l

ab m n
A a


     into normalized matrices 

.l

ab m n
R n


     
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Since all the attribute are the benefit type, so there is no need to normalize it. 

Step 2. Calculate the supports   , 1,2,3,4, 1,2,3, , 1,2,3l l

ab acSup n n a l b c    by for formula 

(2.23). To be easily understood we shall denote  ,l l

ab acSup n n with ,

l

ab acS

 1,2,3,4, 1,2,3, , 1,2,3a l b c   , we have 

1 1 1 1 1 1

11,12 12,11 12,13 13,12 11,13 13,110.8889, 0.8889, 0.7778S S S S S S      , 

1 1 1 1 1 1

21,22 22,21 22,23 23,22 21,23 23,110.8334, 0.8334, 0.8889S S S S S S      , 

1 1 1 1 1 1

31,32 32,31 32,33 33,32 31,33 33,310.8334, 0.8889, 0.9445S S S S S S      , 

1 1 1 1 1 1

41,42 42,41 42,43 43,42 41,43 43,410.8334, 0.9445, 0.8889S S S S S S      , 

2 2 2 2 2 2

11,12 12,11 12,13 13,12 11,13 13,110.9445, 0.7778, 0.8334S S S S S S      , 

2 2 2 2 2 2

21,22 22,21 22,23 23,22 21,23 23,210.8334, 0.7778, 0.7223S S S S S S      , 

2 2 2 2 2 2

31,32 32,31 32,33 33,32 31,33 33,310.8889, 1.0000, 0.8889S S S S S S      , 

2 2 2 2 2 2

41,42 42,41 42,43 43,42 41,43 43,410.8889, 0.8889, 0.7778S S S S S S      , 

3 3 3 3 3 3

11,12 12,11 12,13 13,12 11,13 13,110.8889, 0.7778, 0.7778S S S S S S      , 

3 3 3 3 3 3

21,22 22,21 22,23 23,22 21,23 23,210.8334, 0.7778, 0.8334S S S S S S      , 

3 3 3 3 3 3

31,32 32,31 32,33 33,32 31,33 33,310.8889, 0.7223, 0.7223S S S S S S      , 

3 3 3 3 3 3

41,42 42,41 42,43 43,42 41,43 43,410.7778, 0.8889, 0.7778S S S S S S      . 

Step 3. Calculate   1,2,3; 1,2,3,4; 1,2,3l

abT n b a l    by formula (2.24) (for simplicity, 

we denote  l

abT n  with ).l

abT   

1 1 1 1 1 1

11 12 13 21 22 231.7778, 1.7778, 1.7778, 1.7223, 1.6667, 1.7223,T T T T T T       

1 1 1 1 1 1

31 32 33 41 42 431.7778, 1.7223, 1.8334, 1.7223, 1.7778, 1.8334,T T T T T T       

2 2 2 2 2 2

11 12 13 21 22 231.7778, 1.7223, 1.6112, 1.6112, 1.5556, 1.5001,T T T T T T       
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2 2 2 2 2 2

31 32 33 41 42 431.8889, 1.7778, 1.8889, 1.6667, 1.7778, 1.6667,T T T T T T       

3 3 3 3 3 3

11 12 13 21 22 231.6667, 1.6667, 1.5556, 1.6667, 1.6112, 1.6112,T T T T T T       

3 3 3 3 3 3

31 32 33 41 42 431.6112, 1.6112, 1.4445, 1.5556, 1.6667, 1.6667.T T T T T T       

Step 4. Calculate ( 1,2,3,4; 1,2,3; 1,2,3)l

ab a b l    , we have  

1 1 1 1 1 1

11 12 13 21 22 231.5000, 0.9000, 0.6000, 1.5092, 0.8871, 0.6037,            

1 1 1 1 1 1

31 32 33 41 42 431.5030, 0.8838, 0.6132, 1.4789, 0.9054, 0.6157,            

2 2 2 2 2 2

11 12 13 21 22 231.5275, 0.8982, 0.5743, 1.5227, 0.8942, 0.5832,            

2 2 2 2 2 2

31 32 33 41 42 431.5175, 0.8755, 0.6070, 1.4815, 0.9259, 0.5926,            

3 3 3 3 3 3

11 12 13 21 22 231.5126, 0.9076, 0.5798, 1.5158, 0.8905, 0.5937,            

3 3 3 3 3 3

31 32 33 41 42 431.5194, 0.9116, 0.5690, 1.4681, 0.9191, 0.6128.              

Step 5. Now use the LNWPHA operator to calculate the overall LNNs l

an , and the 

results are given in Table 2.4 (assume that 1, 2)p q  . 

Step 6. Calculate the supports  ,l i

a aSup n n  based on formula (2.26) (For simplicity, we 

denote  ,l i

a aSup n n  with , ( 1,2,3,4, , 1,2,3).a

l iS a l i   we have 

 
1 1 1 1 1 1 2 2

1,2 2,1 2,3 3,2 1,3 3,1 1,2 2,10.9269, 0.9136, 0.8861, 0.9539,S S S S S S S S       

2 2 2 2 3 3 3 3

2,3 3,2 1,3 3,1 1,2 2,1 2,3 3,20.8840, 0.9040, 0.7442, 0.9026,S S S S S S S S       

3 3 4 4 4 4 4 4

1,3 3,1 1,2 2,1 2,3 3,2 1,3 3,10.6906, 0.8534, 0.9785, 0.8336.S S S S S S S S         

Table 2.4. The overall assessment values of four alternatives 

           e1         e2           e3 

1N  4.3674 1.7092 2.4271, ,s s s  4.2866 2.1191 3.2530, ,s s s  3.3802 1.4735 3.2556, ,s s s  

2N  3.9670 2.1155 2.0525, ,s s s  4.2568 2.4202 2.2870, ,s s s  3.3278 1.8438 2.8691, ,s s s  
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3N  6.0000 2.7123 3.3065, ,s s s  4.2485 1.4020 1.7630, ,s s s  3.1942 1.7968 1.4585, ,s s s  

4N  6.0000 2.1098 2.4354, ,s s s  4.2483 1.8095 1.8492, ,s s s  3.9699 1.7157 1.8644, ,s s s  

Step 7. Calculate   ( 1,2,3,4; 1,2,3)l

aT n a l   by Eq. (2.27) (for simplicity, we 

denote  l

aT n  with ).a

lT  

1 1 1 2 2 2

1 2 3 1 2 31.8129, 1.8405, 1.7997, 1.8580, 1.8380, 1.7881,T T T T T T       

3 3 3 4 4 4

1 2 3 1 2 31.4348, 1.6468, 1.5932, 1.6871, 1.8319, 1.8121.T T T T T T       

Step 8.Calculate ( 1,2,34; 1,2,3),a

l a l    we have 

1 1 1 2 2 2

1 2 3 1 2 31.1982, 0.9074, 0.8944, 1.2114, 0.9022, 0.8864,            

3 3 3 4 4 4

1 2 3 1 2 31.1476, 0.9357, 0.9167, 1.1649, 0.9208, 0.9143.            

Step 9. Using LNWPHA operator to calculate collective LNNs, we can get (assume 

that 1, 2p q  ) 

1 4.0023 1.7753 2.9639, ,n s s s , 2 3.8294 2.1430 2.4214, ,n s s s , 3 6 1.9311 2.0548, ,n s s s ,

4 6 1.8975 2.0608, ,n s s s . 

Step 10. Determine the score values of every alternative by using Definition (1.2.3.4). 

We get 

1 2 3 4( ) 0.6257, ( ) 0.6258, ( ) 0.7785, ( ) 0.7800.SO n SO n SO n SO n     

Step 11. According to the score values the ranking order of the alternatives is   

4 3 2 1.N N N N    

So the best alternative is 4N , while the worst one is 1.N  
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2.3.2 Influence of Linguistic Scale Function on The Decision Results  

In order to show the effect of the LSF 
*

  on this MAGDM problem, this subsection 

uses different LSFs in the proposed MAGDM method to obtain the ranking results of 

all alternatives. The ranking results are shown in Table 2.5. (In general, 1.4LM  and 

, 0.8   ). 

From Table 2.5, we can see that the ranking orders obtained by different LSFs 

for LNWPHA operator are different. The reason is that these three LSFs represent the 

different semantics which are described in subsection 1.3.7. The first one is one 

balanced LTS which is divided on average, and the others are unbalanced LTSs. We 

can construct some new LSFs according to the semantics of real applications. 

Therefore, under different situation, the DMs may select different or re-define LSFs 

according to their actual need.   

Table 2.5.  Effect for different LSFs
*

  in Example 2.3.1 

linguistic scale function 

*  

Score values Ranking order 

   
*

0 2
2

z

z
s z g

g
     

 
 

 

*
0

2 2

2
2

2 2

g g z

g

z g z g

g

LM LM
z g

LM
s

LM LM
g z g

LM







 
 

 
 

   
 

 

1 2

3 4

( ) 0.6257, ( ) 0.6258,

( ) 0.7785, ( ) 0.7800

SO n SO n

SO n SO n

 

 

 

   

   

1 2

3 4

0.5855, 0.5852,

0.7476, 0.7460

SO n SO n

SO n SO n

 

 

 

4 3 2 1N N N N  
 

 

 

3 4 1 2N N N N  

 

 

 
 

 
 

*
0

2

2
2

z

g g z
z g

g
s

g z g
g z g

g











  
 


 

 
 



   

   

1 2

3 4

0.6413, 0.6412,

0.7892, 0.7928

SO n SO n

SO n SO n

 

 

 

4 3 1 2N N N N  



71 

 

   

 

2.3.3      Effect of the Parameters p, q on Ranking Results 

In this subsection, dissimilar values for the parameters p and q are taken into 

account and the LSF takes  
*

/ 2zs z g
 

 
 

. The score values and ranking orders 

obtained for different values of parameters p and q were given in Table 2.6.  

The results in Table 2.6 show that the ranking orders obtained for different 

values of the parameters p and q are also different. In fact, when the values of the 

parameters p and q are larger, more prominent interactions between different attribute 

values are. If either 0p   or 0q  , the proposed operator cannot confine the 

interrelationship of the individual arguments. In actual decision making problem, for 

computational simplicity, one can select 1 1/ 2p q or p q    , which is not only 

simple and straightforward, but also takes the interrelationships of the input 

arguments into account.    

Table 2.6. Ranking order using different parameters p and q 

 Score values Ranking order 

1p q   
1 2

3 4

( ) 0.6281, ( ) 0.6232,

( ) 0.7668, ( ) 0.7730.

SO n SO n

SO n SO n

 

 
 

4 3 1 2N N N N    

0.5, 0.5p q   
1 2

3 4

( ) 0.6089, ( ) 0.6002,

( ) 0.7489, ( ) 0.7550.

SO n SO n

SO n SO n

 

 
 

4 3 1 2N N N N    
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0, 1p q   
1 2

3 4

( ) 0.5497, ( ) 0.5358,

( ) 0.7365, ( ) 0.7353.

SO n SO n

SO n SO n

 

 
 

3 4 1 2N N N N    

1, 0p q   
1 2

3 4

( ) 0.7427, ( ) 0.7421,

( ) 0.8097, ( ) 0.8334.

SO n SO n

SO n SO n

 

 
 

4 3 1 2N N N N    

2, 3p q   
1 2

3 4

( ) 0.6640, ( ) 0.6691,

( ) 0.8007, ( ) 0.8002.

SC n SC n

SC n SC n

 

 
 

3 4 2 1N N N N    

5, 7p q   
1 2

3 4

( ) 0.7366, ( ) 0.7481,

( ) 0.8413, ( ) 0.8340.

SO n SO n

SO n SO n

 

 
 

3 4 2 1N N N N    

 

2.3.4      Comparison and Discussion 

In this subpart, we compare the developed approach with some existing approaches.  

2.3.4.1   Example  

A panel is gathered in order to select a desirable low-carbon supplier for 

manufacturer. The panel receives LN information by accumulating linguistic 

evaluations from a dozens of DMs and calculating the mean values of the subscripts 

of the LVs. The DMs provided the information independently by giving equal rights. 

The LTS  0S s extremely low 
1 2 3 4 5, , , , ,s very low s low s slightly low s medium s slightly    

6 7 8, , ,high s high s very high s extremely high   is employed here. The four potential 

suppliers ( 1,2,3,4)iN i   are evaluated by DMs based on the LTS S according to the 

following three attributes: 1O  represents low-carbon technology, 2O represents cost, 

3O  represent capacity. The method of acquiring mean values is used for integration 
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the linguistic information provided by DMs and the final assessment values are 

represented by LNNs, and the decision matrix 4 3[ ]ijR r  is given in Table 2.7. 

Table 3.7. Assessment values provided by DMs 

                                 1O                            2O                        3O  

1 4 4 3 3 1 5 2 3 5

2 4 3 2 1 2 3 5 1 3

3 5 1 3 2 2 4 2 4 3

4 3 5 1 2 2 2 3 1 2

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

N s s s s s s s s s

N s s s s s s s s s

N s s s s s s s s s

N s s s s s s s s s

 

Since the attribute 2O is cost type and the other two attributes are benefit type, we 

need to convert 2O  to benefit type by using the formula defined in Li et al. [57], and 

the normalized decision matrix is given in Table 3.8.  

Table 3.8. The normalized assessment values provided by DMs 

                                     1O                               2O                                3O  

1 4 4 3 5 1 3 2 3 5

2 4 3 2 3 2 1 5 1 3

3 5 1 3 4 2 2 2 4 3

4 3 5 1 2 2 2 3 1 2

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

N s s s s s s s s s

N s s s s s s s s s

N s s s s s s s s s

N s s s s s s s s s

 

 

Then we use the Li et al.’ method [57] based on the LNGHM, LNPGHM 

operators and the proposed method in this paper based on the LNPHA, LNWPHA 

operators (assume 2)p q  to solve this problem, and the scores values of collective 

LNNs can be shown in Table 3.9. 

From Table 3.9, we can know there are the same ranking orders of alternatives, 

this can prove the validity of the proposed method in this paper. 
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The following Example is adapted from Z. Fang et al.[58,59] to show 

effectiveness of the proposed method.  

2.3.4.2 Example  

An investment company plans to invest a sum of money in the available four 

companies as a set of alternatives denoted by  1 2 3 4, , ,M N N N N , where 

1 2 3, ,N N N and 4N respectively, represent a car company, a food company, a computer 

company and an arm company. To evaluate these companies, they invite a group of 

three experts ( 1, 2,3)ze z   to select the best company for investment among these 

companies. For the evaluation process the following three attributes are considered, 

denoted by  1 2 3, ,O O O O . Those attributes represent respectively, risk ( 1O ), 

growth ( 2O ), environmental impact 3O , which importance degree is  0.35,0.25,0.4
T

 

. The possible four alternatives are evaluated by three decision makers ( 1, 2,3)ze z   

under the above three attributes based on a predefined LTS  

 0 1 2 3 4 5 6 7, , , , , , , ,S s extremely bad s very bad s bad s slightly bad s fair s slightly good s good s very good         

 

8 .s extremely good  The importance degree of the three DMs is  0.37,0.33,0.3 .
T

  The 

decision matrices  
4 5

z

z ijU n


  are listed in Tables 2.10-2.12. 

Table 2.9.Score values and ranking orders by different aggregation operators for 

Example 2.3.4.1 

 Methods Score values Ranking orders 

Base on LNGHM 

( 2)p q  [57] 

   

   

1 2

3 4

0.4142, 0.5307,

0.4724, 0.4703.

SO n SO n

SO n SO n

 

 
 

 

2 3 4 1N N N N    
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Base on LNPHA 

( 2)p q  in this paper 

   

   

1 2

3 4

0.5913, 0.6853,

0.6419, 0.6249.

SO n SO n

SO n SO n

 

 
 

 

2 3 4 1N N N N    

Base on LNPGHM 

( 2)p q  [59] 

   

   

1 2

3 4

0.4762, 0.5779,

0.5608, 0.4995.

SO n SO n

SO n SO n

 

 
 

 

2 3 4 1N N N N    

Base on LNWPHA 

( 2)p q   in this paper 

   

   

1 2

3 4

0.6053, 0.6728,

0.6705, 0.6075

SO n SO n

SO n SO n

 

 
 

 

2 3 4 1N N N N    

 

Table 2.10 Decision matrices ( 1, 2,3)zU z   by DM e1 for Example 2.3.4.2 

        1O        2O          3O  

1N  6 1 2, ,s s s  7 2 1, ,s s s  6 2 2, ,s s s  

2N  7 1 1, ,s s s  7 3 2, ,s s s  7 2 1, ,s s s  

3N  6 2 2, ,s s s  7 1 1, ,s s s  6 2 2, ,s s s  

4N  7 1 2, ,s s s  7 2 3, ,s s s  7 2 1, ,s s s  

 

Table 2.11 Decision matrices ( 1, 2,3)zU z   by DM e2 for Example 2.3.4.2 

   1O      2O      3O  

1N  6 1 2, ,s s s  6 1 1, ,s s s  4 2 3, ,s s s  

2N  7 2 3, ,s s s  6 1 1, ,s s s  4 2 3, ,s s s  

3N  5 1 2, ,s s s  5 1 2, ,s s s  5 4 2, ,s s s  

4N  6 1 1, ,s s s  5 1 1, ,s s s  5 2 3, ,s s s  
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Table 2.12 Decision matrices ( 1, 2,3, 4)zU z   by DM e3 for Example 2.3.4.2. 

 
1O  2O  3O  

1N  7 3 4, ,s s s  7 3 3, ,s s s  5 2 5, ,s s s  

2N  7 2 3, ,s s s  5 1 2, ,s s s  6 2 3, ,s s s  

3N  7 2 4, ,s s s  6 1 2, ,s s s  7 2 4, ,s s s  

4N  7 2 3, ,s s s  5 2 1, ,s s s  6 1 1, ,s s s  

 

Now we use the MAGDM methods given in Z. Fang et al.[58,59], and the 

aggregation operator defined in this chapter to solve this MAGDM problem.  LSF 

takes  
*

/ 2zs z g
 
  
 

.   

Table 3.13 Ranking order using different aggregation operator 

Aggregation 

operator 

Parameter 

values 

Score values Ranking order 

LNNWAA 

operators [30] 

LNNWGA 

operators [30] 

     No 

 

    No 

   

   

1 2

3 4

0.7528, 0.7777,

0.7613, 0.8060.

SO n SO n

SO n SO n

 

 

 

   

   

1 2

3 4

0.7143, 0.7408,

0.7293, 0.7789.

SO n SO n

SO n SO n

 

 

 

4 2 3 1.N N N N  
 

 

4 2 3 1.N N N N  
 

LNNNWBM  

operators [31] 

   Yes 

( 1)p q 

 

   

   

1 2

3 4

0.7284, 0.7461,

0.7424, 0.7864.

SO n SO n

SO n SO n

 

 

 

4 2 3 1.N N N N  
 

LNNNWGB Yes 

( 1)p q 

   

   

1 2

3 4

0.7808, 0.7627,

0.7510, 0.7948.

SO n SO n

SO n SO n

 

 

4 2 3 1.N N N N  
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M  operators 

[31] 

  

LNWPHA 

operators in 

this article 

Yes 

( 1)p q 

 

   

   

1 2

3 4

0.7515, 0.7713,

0.7534, 0.7984.

SO n SO n

SO n SO n

 

 

 

4 2 3 1.N N N N  
 

  

Obviously, there are the same ranking results, it can further prove the 

effectiveness of the developed method. In the following, we will explain the 

advantage of the developed method. 

From the above analysis, we can know the developed method has the advantages, 

i.e., it can relieve the influence of the awkward data by power weights and it can also 

consider the relationships among the attributes, and it can give more accurate ranking 

order then the existing methods. Of course, because the proposed method considered 

the PA and HM operators simultaneously, it is a bit complex in calculations. 

2.3.5     Conclusion 

In this Chapter, we merged the PA operator with HM operator and developed the 

LNPHA operator and LNPWHA operator. The developed aggregation operators can 

take full advantages of PA operator and HM, i.e., they can consider the relationships 

of the aggregated arguments and can reduce the influences of the awkward data by the 

power weighting. Further, we investigated some properties of these new aggregation 

operators and argued some particular cases, and developed a new method for 

MAGDM problems with LNNs based on these operators. Lastly, we gave some 

examples to explain its advantages by comparing with the existing methods. In the 
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future research, we will extend PHM operator to some new extension of linguistic 

variables, such as linguistic double valued neutrosophic sets, linguistic picture fuzzy 

numbers, and so on.  
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Chapter 3  

Application of Single-Valued Neutrosophic Power Muirhead 

Mean Operators to Multi-attribute Group Decision Making 

      In this chapter, we develop few new operators for aggregating SVN information 

and apply them to MAGDM. To acquire complete advantages of both MM operator 

and PA operator, we develop the SVN power MM (SVNPMM) operator, weighted 

SVN power MM (WSVNPMM) operator, SVN power dual MM (SVNPDMM) 

operator and weighted SVN power dual MM (WSVNPDMM) operator, and discuss 

their basic properties, special cases with respect to the parameter vector. The 

important advantages of the developed AOs are that it can eliminate the effect of 

awkward data and can consider the interrelationship among aggregated data at the 

same time. Moreover, based on the developed AOs, a novel approach to MAGDM 

problem is developed. Lastly, a numerical example is presented to confirm the 

efficacy and practicality of the developed approach. 

3.1  Single-valued Neutrosophic Power Muirhead Mean Operators 

In this part, we developed the SVNPMM operator, the WSVNPMM operator and 

discussed some basic properties and related results. 
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3.1.1 The Single-valued Neutrosophic Power Muirhead Mean 

operator 

3.1.1.1 Definition  

Let ( 1,..., )
g

g u be a set of SVNNs and  1 2, ,..., u

u
Q q q q R   be a vector of parameters. 

If  

 
  
  

1

1

( )

1 2 ( )
1

1

1
1

, ,...., .
!

1

ug

g
g

u

q

q

u
gQ

u gu
S g

x

x

u T

SVNPMM
u

T








 



     
     
      




                               (3.1) 

Then, we call QSVNPMM  the SVN power Muirhead mean operator, where 
u

S is the set 

of all permutation,  g is any permutation of  1,...,u ,    
1,

,
u

h g h
h h g

T Sup
 

  , and

 ,
g h

Sup  is the support degree for 
g
and ,

h
satisfying the following axioms:  

(1)    , 0,1 ;
z h

Sup   

(2)    , , ;
z h h z

Sup Sup  

(3) If ( , ) ( , ),u vg h
Ds Ds then ( , ) ( , ),u vg h

Sup Sup  where ( , )
g h

Ds is distance 

among 
z
 and .

h
 

In order to write expression (3.1) in a more simplified form, we can suppose  

 
  

  
1

1

.

1

z

z
u

h
h

T

T




 



                                                                                           (3.2) 
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For appropriateness, we can identify  1 2, ,...,
T

u   the power weight vector (PWV), 

with  0,1g  and 
1

1.
u

g
g

   Based on Equation (3.2), Equation (3.1) can be expressed 

as,  

    1

1

1 2 ( )
1

1
, ,...., .

!

u

g
g

g

u

u q
qQ

g
u g

S g

SVNPMM u
u






 

 
  

 
 

                           (3.3) 

Based on the operational rules given in Definition (1.1.1.3) for SVNNs, and 

Definition (3.1.1.1), we can have the following Theorem 3.1.1.2.  

3.1.1.2 Theorem   

Let ( 1,..., )
g

g u be a set of SVNNs and  1,...,
u

u
Q q q R   be a vector of 

parameters. Then, the aggregated value obtained by using Equation (3.1), is still a 

SVNN and  

   

   

1

1

1
1

!

1 2 ( )
1

1
1 1

! !

( ) ( )
1 1

, ,..., 1 1 1 1

,1 1 1 1 ,1 1 1 1

u

g gg
g

u

u

gg g
g gg

u u

q quu u
Q

u g
S g

qu uu uq q
u u

g g
S Sg g

SVNPMM




 
 







 

 

  

 
     
                 

 

   
     
                

     
   

 

    1

1

.

u

g

g

q







                         (3.4) 

Proof: According to operational laws for SVNNs, we have 

 ( ) ( ) ( ) ( )
1 1 , , .

g

g g

u
u u

g
g g g g

u
   


        

Therefore, 

       ( ) ( ) ( ) ( )
1 1 ,1 1 ,1 1 .

g
g

g g g
g g

q
q q qu

u u
g

g g g g
u

   


 

 
          

 
 

So,  

       ( ) ( ) ( ) ( )
1 1 1 1

1 1 ,1 1 ,1 1 ,
g

g
g g g

g g

q
qu u u uq qu

u u
g

g g g g
g g g g

u
   


 

   

 
          

 
     
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       ( ) ( ) ( ) ( )
1 1 1 1

1 1 1 , 1 1 , 1 1 ,
g

g
g g g

g g

u u u u

q
qu u u uq qu

u u
g

g g g g
S S S Sg g g g

u
   

   


 

      

      
                           

        

Furthermore, 

 

     

( )
1

1 1 1

! ! !

( ) ( ) ( )
1 1 1

1

!

1 1 1 1 , 1 1 , 1 1 .

g

u

g
g

g g
g g

u u u

qu

g
g

S g

q
u u uu u uq qu

u u

g g g
S S Sg g g

u
u




  
  

 


 

    



          
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On the top of equations, first of all we need to find out the PWV  , we have to find 

out the support degree  ,
g h

Sup . As stated by Equation (1.1.1.5), we can acquire 

 ,
g h

Sup employing 

   , 1 , .
g h g h

Sup Ds                                                                              (3.5) 

Therefore, we exploit the equation  

   
1

, .
u

g g h
g

g h

T Sup




                                                                                   (3.6) 

To determine  ( 1,.., )zT z a . Then, as stated by Equation (3.2), we can acquire the 

PWV. We provide an example to demonstrate the calculation process. 
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3.1.1.3 Example   

Let 1 20.4,0.3,0.5 , 0.6,0.2,0.1  and 3 0.7,0.2,0.3 be any three SVNNs and 

assume that  0.2,0.3,0.4Q  . To utilize SVNPMM operator and aggregate these three 

SVNNs to get the comprehensive SVNN , ,    , the following steps can be 

followed: 

Step 1. Firstly, we determine the support degree  , ,
g h

Sup where , 1,2,3g h  . 

According to Equation (1.1.1.5) and Equation (3.5), we have  

       

   

1 2 2 1 1 3 3 1

2 3 3 2

, , 0.77, , , 0.8,

, , 0.8333.

Sup Sup Sup Sup

Sup Sup

   

 
 

Step 2. We determine the PWV by utilizing Equation (3.2) to get, 

     1 1 2 1 3, , 0.77 0.8 1.5667,T Sup Sup        2 31.600, 1.633.T T   

Therefore, 

  
        

1

1 2 3

1 2 3

1
0.3291, 0.3333, 0.3376.

1 1 1

T

T T T


      

    
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0.5525 , 
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           
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So, 0.2804,   

Similarly,  

0.3178.   

Hence, 0.5525,0.2804,0.3178 .   

3.1.1.4 Theorem (Idempotency)  

Let ( 1,..., )
g

g u be a group of SVNNs, and 
g
 for all 1,..., .g u  Then  

 1 2, ,..., .Q

u
SVNPMM                                                                              (3.7) 

Proof. Since 
g
 for all 1,..., ,g u we acquire  , 1

g h
Sup  for all , 1,..., .g h u  As a result, 

we can obtain 
1

g

u
  for all .g  In addition, 
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, , .      

3.1.1.5 Theorem (Boundedness)  

Let ( 1,2,..., )
g

g u be a set of SVNNs,    1 2min , ,..., , ,
u


       and 

   1 2max , ,..., , , .
u


        Then 
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 1 2, ,..., .Q

u
g SVNPMM h                                                                              (3.8) 

Where, 
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Furthermore, 
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This implies that  1 2, ,..., .Q

u
g SVNPMM  

In a similar technique we can also prove that  1 2, ,...,Q

oSVNPMM h . So 

 1 2, ,...,Q

u
g SVNPMM h  . 

In addition, then property of monotonicity is not satisfied by SVNPMM operator. 

One of the most important advantages of SVNPMM is its capability to express the 

interrelationship among SVNNs. Besides, SVNPMM operator is more pliable in 

aggregation process due to parameter vector. Now, we will examine various particular 

cases of SVNPMM operators by conveying diverse values to the parameter vector.  

Case 1. If  1,0,...,0 ,Q  then SVNPMM operator degenerates into the following form: 

   
  

  
1,0,...,0

1 2

1

1

1

, ,...., .

1

u
g

u gu
g

h
h

T

SVNPMM

T




 
 
 

  
 
 
 




                                          (3.9) 

This is the SVN power averaging operator. 

Case 2. If 
1 1 1

, ,...., ,Q
a a a

 
   
 

 then SVNPMM operator degenerates into the following 

form: 
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This is SVN power geometric operator. 

Case 3. If  1,1,...,0 ,Q   then SVNPMM operator degenerates into the following form: 
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   (3.11) 

This is the SVN power BM operator  1 .p q   

Case 4. . If 1,1,...,1,0,0,...,0 ,

i z i

Q

 
 
 
 

 then SVNPMM operator degenerates into the following 

form: 
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      (3.12) 

This is the SVN power MSM operator. 

3.1.2      Weighted Single-Valued Neutrosophic Power Muirhead 

Mean (WSVNMM) Operator 

As we can notice that the SVNPMM operator does not judge the importance degree of 

the aggregated SVNNs. In this subsection, we propose the weighted single-valued 

neutrosophic power MM (WSVNPMM) operator, which has the capacity of taking the 

weights of SVNNs. 
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3.1.2.1 Definition  

Let ( 1,..., )
g

g u be a set of SVNNs and  1 2, ,..., u

u
Q q q q R   be a vector of 

parameters. If  
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       




     (3.13) 

Then, we call QWSVNPMM  the weighted single valued neutrosophic power 

Muirhead mean operator, where  1 2, ,...,
T

u     is the importance degree of 

 1,2,...,
g

g u with  
1

0,1 , 1,
u

g g

g

   
u

S is the set of all permutation,  g is any 

permutation of  1,2,...,u and g is PVW fulfilling 
  

   1

1

1

, 1,
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u
g

g z
u

g

g
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   
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,
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h g h
h

h g

T Sup




 ,  ,
g h

Sup  is the support degree for 
g
and ,

h
fulfilling the 

following conditions:  

(1)    , 0,1 ;
g h

Sup  (2)    , , ;
g h h g

Sup Sup  

(3) If ( , ) ( , ),u vg h
Ds Ds then ( , ) ( , ),u vg h

Sup Sup  where ( , )
g h

Ds is distance 

among 
g
 and .

h
 

From Definition (3.1.2.1), we have the following Theorem (3.1.2.2). 

3.1.2.2 Theorem   

Let ( 1,2,..., )
g

g u be a set of SVNNs and  1 2, ,..., u

u
Q q q q R   be a vector of 

parameters. Then, the result aggregated by exploiting Equation (3.13) is still a SVNN 

and  
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(3.14) 

Proof: Proof of Theorem (3.1.2.2) is same as Theorem (3.1.1.2). 

 

3.1.3     The Single-Valued Neutrosophic Power Dual MM 

(SVNPDMM) Operator 

In this sub-part, we develop the SVNPDMM operator and discuss some related 

properties. 

3.1.3.1 Definition  

Let ( 1,..., )
g

g u be a set of SVNNs and  1 2, ,..., u

u
Q q q q R   be a vector of 

parameters. If  
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

                           (3.15) 

Then, we call QSVNPDMM  the single valued neutrosophic power dual MM operator, 

where 
a

S is the set of all combination, and  g is any combination of  1,2,...,u ,

   
1

,
u

h g h
h

h g

T Sup




 , and  ,
g h

Sup  is the support degree for 
g
and ,

h
fulfilling the 

following conditions:  

(1)    , 0,1 ;
g h

Sup   (2)    , , ;
g h h g

Sup Sup  
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(3) If ( , ) ( , ),u vg h
Ds Ds then ( , ) ( , ),u vg h

Sup Sup  where ( , )
g h

Ds is distance 

among 
g
 and .

h
 

In order to inscribe Equation (3.15) in an uncomplicated form, we can identify it as 
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.
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g
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h
h
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T
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
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

                                                                                    (3.16) 

For appropriateness, we can identify  1 2, ,...,
T

u   the PMV, with  0,1g  and 

1

1.
u

g

g

   Based on Equation (3.16), Equation (3.15) can be indicated as  
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                                (3.17) 

 

3.1.3.2 Theorem  

Let ( 1,..., )
g

g u be a set of SVNNs and the parameter vectors is indicated by 

 1 2, ,..., u

u
Q q q q R   . Then, the result aggregated by employing Equation (3.15) is 

still a SVNN and  
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(3.18) 

Proof: According to operational laws for SVNNs, we have 

   ( ) ( ) ( ) ( )
,1 1 ,1 1 .

g g
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u u
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g g g g   
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Therefore, 

     ( ) ( ) ( ) ( )
1 1 , 1 1 , 1 1 .

g g
g g

g
g g

q q
q u uu

u

g g g g g
q

   

 


   
             

   
 

So,  
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Furthermore, 
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Hence, 

   

 

1
1

11
11 1

!! !

( ) ( ) ( )
1 1 1

1

( )

1
1 1 1 1 , 1 1 1 1

1 1 1 1

u
u

g gggg gg g g

u u u

g
g

q ququ u uu uq u
u u

g g g gu
S S Sg g g

g
g

q
u

g
g

q

q
  

  







 

    





                                                   

 
      

 

    


1

1
1

!

1

,

u

g

g

u

quu

S



 

 
    
   
      

 

 

 

   

   

1

1

1
1

!

1 2 ( )
1

1
1

!

( ) ( )
1 1

, ,..., 1 1 1 1 ,

1 1 1 1 , 1 1 1 1

u

gg
g g

u

u

g ggg g
g

u u

qu uq
uQ

u g
S g

q qquu uu u

g g
S Sg g

SVNPDMM




 
 







 

 

  

 
   
       

  
 

 
         
                                

 

 

   
1

1
1

!

.

u

g

g

qu



 
  

  
  
  

 

 

3.1.3.3 Theorem  (Idempotency)  

Let ( 1,2,..., )
g

g u be a set of SVNNs, and 
g
 for all 1,..., .g u  Then,  

 1 2, ,..., .Q

u
SVNPDMM                                                                   (3.19) 

3.1.3.4 Theorem  (Boundedness)  

Let ( 1,..., )
g

g u be a set of SVNNs,    1 2min , ,..., min ,max ,max
g



     and 

   1 2max , ,..., max ,min ,min .
u



      Then 

 1 2, ,..., .Q

u
g SVNPDMM h                                                                      (3.20) 

Where, 
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. 

 Now we will discuss some special cases of SVNPDMM operator with respect to the 

parameter vector .Q  

Case 1. If  1,0,...,0 ,Q  then SVNPDMM operator degenerates into the following 

equation: 

   
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                                   (3.21) 

This is the SVN power geometric averaging operator. 

Case 2. If 
1 1 1

, ,...., ,Q
u u u

 
   
 

 then SVNPMM operator degenerates into the following 

equation: 
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                          (3.22) 

This is SVN power arithmetic averaging operator. 

Case 3. If  1,1,0,...,0 ,Q   then SVNPDMM operator degenerates into the following 

equation: 



93 

 

       

     

2

2

1
1 2

1,1,0,...,0

1 2

, 1

1
1 2

, 1

, ,..., 1 1 1 1 1 ,

1 1 1 1 1 1 , 1 1 1 1 1

g h

g gh

u u
u

u g h
g h

g h

u u
u

g h g
g h

g h

SVNPDMM



 







 





 
  
  

       
   
  

 

 
  

       
                             
  

 



  

2

1
1 2

, 1

1 .
h

u u
u

h
g h

g h









 
  

    
            

  
 



(3.23) 

This is the SVN power geometric BM operator  1 .p q   

Case 4. If 1,1,...,1,0,0,...,0 ,
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 then SVNPDMM operator degenerates into the 

following equation: 
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        (3.24) 

This is the SVN power Dual Maclaurin symmetric mean operator. 

 

3.1.4      Weighted Single-Valued Neutrosophic Power Dual MM 

(WSVNMM) Operator 

The SVNPMM operator does not judge the importance degree of the aggregated 

SVNNs. In this subsection, we propose the weighted SVN power MM (WSVNPMM) 

operator, which has the capacity of taking the weights of SVNNs. 

3.1.4.1 Definition  

 Let ( 1,..., )
g

g u is a set of SVNNs and the parameter vector is denoted by 

 1 2, ,..., u

u
Q q q q R  . If  
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  
  




                       (3.25) 

Then, we call 
QWSVNPDMM  the weighted single valued neutrosophic power dual 

Muirhead mean operator, where  1 2, ,...,
T

a     is the importance dgree of 

 1,...,
g

g u with  
1

0,1 , 1,
u

g g

g

    u
S is the set of all permutation,  g is any 

permutation of  1,2,...,u and g is PVW satisfying 
  

   1

1

1

, 1,

1

u
g

g g
u

g

g
g

T

T 





   






   
1

,
u

h g h
h

h g

T Sup




 ,  ,
g h

Sup  is the support degree for 
g
and ,

h
satisfying the 

following axioms:  

(1)    , 0,1 ;
g h

Sup  (2)    , , ;
g h h g

Sup Sup  

(3) If ( , ) ( , ),u vg h
Ds Ds then ( , ) ( , ),u vg h

Sup Sup  where ( , )
g h

Ds is distance 

among 
g
 and .

h
 

From Definition (3.1.4.1), we have the following Theorem (3.1.4.2). 

3.1.4.2 Theorem   

Let ( 1,..., )
g

g u be a set of SVNNs and the parameter vector is denoted by 

 1 2, ,..., u

u
Q q q q R  . Then, the result aggregated by employing Equation (3.25) is 

still a SVNN, and  

 

 

( )( )

1

1

( )( )

1

1
1

!

1 2 ( )
1

( )
1

, ,..., 1 1 1 1 ,

1 1 1 1

u

g
gg g

g
u

hh

h

u

g
gg

u

hh

h
u

q quu

u
Q

u g
S g

q
u

u

g
S g

WSVNPDMM

















 

 

 

 

 

 

 
    
   
   
        
   
       

 

   
         

     

 

   
( )( )

1 1

1

1 1
1 1

! !

( )
1

, 1 1 1 1 .

u u

gg ggg
g g

u

hh

h
u

qq qu uu
u

g
S g






 



 

 

 

   
       
                

            
   

 

(3.26) 

Proof: Proof of Theorem (3.1.4.2) is same as Theorem (3.1.3.2). 
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3.2 The MAGDM Approach Based on WSVNPMM Operator and 

WSVNPDMM Operator 

In this part, we give a novel method to MAGDM with SVNNs, in which the 

importance degrees of the decision maker’s and criterion are known. Let 

   1 2 1 2, ,..., , , ,...,a bAl Al Al Al Cr Cr Cr Cr   respectively, specified the set of 

alternatives and criterion and the set of decision makers be specified by  1 2, ,..., ce e e e

. Presume that the evaluation value for the alternative gAl  specified by the decision 

maker ke about the criteria hCr is specified by the form , , .
k

k k k
gh gh gh ghAl      The 

importance degree of the criterion  1 2, ,..., bCr Cr Cr Cr is designated by 

 1 2, ,...,
T

b     with  
1

0,1 , 1.
b

h h

h

 


    1 2, ,...,
T

c     symbolize the importance 

degree of the decision maker’s with  
1

0,1 , 1.
c

k k

k

     Then the aspire of this MAGDM 

problem is to order the alternatives. To accomplish this, the subsequent steps are 

pursued. 

Step 1. Homogenize the decision matrix. Normally, there are two kinds of criterion, 

1) cost type and 2) benefit type. We necessitate exchanging the cost type of criterion 

into benefit types of criterion by utilizing the following Equation (3.27): 

, ,

, , for benefit attribute 

,1 , for cost attribute .

k
k k k

gh gh gh gh

k k k
hgh gh gh

k k k
hgh gh gh

N

O

O

   

   
 
   


                                           (3.27) 
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Consequently, the decision matrix 
k

gh

a b

M n


 
  
 

can be altered to homogenize matrix

k

gh a b
N 


    . 

Step 2. Establish the supports   , 1,..., ; , 1,..., , 1,...,k k

gh glSup a h l b k c    by 

   , 1 , ,k k k k

gh gl gh glSup Ds                                                                              (3.28) 

where,  ,k k

gh glDs    represents the distance measure between any two SVNNs k

gh  and 

k

gl given in Definition (1.1.1.5). 

Step 3. Establish ( )k

ghT  by 

    
1

, 1,..., ; , 1,..., , 1,..., .
b

k k k

gh gh gl

l
l h

T Sup a h l b k c  



                                  (3.29) 

Step 4. Establish 

 
  
  

 

1

1

1,..., ; , 1,..., , 1,..., .

1

k
k h gh

gh
b

k

d gd

d

b T

g a h d b k c

T

 

 




    


                          (3.30) 

Step 5. Utilize the WSVNPMM or WSVNPDMM operators 

 1 2, , , ,..., ,k k k k Q k k k

g g g g g g gbWSVNPMM                                                               (3.31) 

or 

    1 2, ,..., .Q k k k

g g gbWSVNPDMM                                                                              (3.32) 

To established the overall SVNNs  1,2,..., ; 1,2,...,k

g g a k c   . 

Step 6. Find out the supports   , 1,..., ; , 1,...,k m

g gSup g a m k c    by 

   , 1 , ,k m k m

g g g gSup Ds                                                                               (3.33) 

where,  ,k m

g gDs   represents, the distance measure between any two SVNNs k

g  and 

m

g given in Definition (1.1.1.5). 
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Step 7. Find out  k

gT  by 

    
1

, 1,..., ; , , 1,..., .
b

k k m

g g g

m
m g

T Sup g a h m k c  



                                         (3.34) 

Step 8. Find out  

  
  

 

1

1

1,..., ; , 1,..., .

1

k
k k g

g
c

k

c g

k

c T

g a h k c

T






 

   

 
                                           (3.35) 

Step 9. Make use of  WSVNPMM or WSVNPDMM operators 

 1 2, , , ,..., ,Q c

g g g g g g gWSVNPMM                                                          (3.36) 

or 

 1 2, ,..., .Q c

g g gWSVNPDMM                                                                      (3.37) 

    To acquire collective overall SVNNs  1,...,g g a  . 

Step 10. Make use of Definition (1.1.1.4), to analyze the cosine measure of the 

overall SVNN .g  

Step 11.  Order all the alternatives, and exploit the comparison rules given in 

Definition (1.1.1.4) and the select the best one. 

Step 12. End. 

3.3  An illustrative Example 

In this section, we give some numerical examples to confirm the efficacy and realism 

of the anticipated aggregation operators and anticipated decision making approach. 

The following example is adapted for Liu et al. [73]. 



98 

 

3.3.1 Example  

Let there are four alternatives  1 2 3 4, , ,N N N N  respectively, confirming the quality of air 

in Guangzhou city for November of 2006, 2007, 2008, 2009. The experts considered 

three attributes into account, which are 2 1 2 2( ), ( )SO O NO O and 10 3( )PM O . The importance 

degree of the attributes is  Let us presume that there are three 

decision makers that is, three air quality monitoring stations expressed by  1 2 3, ,e e e  

and the importance of these monitoring stations is  The valuation 

values of the three air quality monitoring stations under the above three defined 

attributes are provided in the form of SVNNs, which are given in Tables 3.1, 3.2 and 

3.3. 

3.3.1.1 The evaluation steps by utilizing WSVNPMM or 

WSVNPDMM operators 

The assessment steps by exploiting WSVNPMM operator or WSVNPDMM are as 

follows. 

Table 3.1. Air quality data from station 1e  

          1Cr           2Cr           3Cr  

1Al  
0.265,0.350,0.385  0.330,0.390,0.280  0.245,0.275,0.480  

2Al  
0.345,0.245,0.410  0.430,0.290,0.280  0.245,0.375,0.380  

3Al  
0.365,0.300,0.335  0.480,0.315,0.205  0.440,0.270,0.290  

4Al  
0.430,0.300,0.270  0.460,0.245,0.295  0.310,0.520,0.170  

 

 

 0.314,0.355,0.331 .
T

 

 0.40,0.20,0.40 .
T

 
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Table 3.2. Air quality data from station 2e  

          1Cr           2Cr           3Cr  

1Al  
0.125,0.470,0.405  0.220,0.420,0.36  0.345,0.490,0.165  

2Al  
0.355,0.315,0.330  0.300,0.370,0.330  0.205,0.630,0.165  

3Al  
0.315,0.380,0.305  0.330,0.565,0.105  0.280,0.520,0.200  

4Al  
0.365,0.365,0.270  0.355,0.320,0.325  0.425,0.485,0.090  

Table 3.3. Air quality data from station 3e  

          1Cr           2Cr           3Cr  

1Al  
0.260,0.425,0.315  0.220,0.450,0.330  0.255,0.500,0.245  

2Al  
0.270,0.370,0.360  0.320,0.215,0.465  0.135,0.575,0.290  

3Al  
0.445,0.265,0.290  0.450,0.370,0.180  0.2955,0.460,0.165  

4Al  
0.390,0.340,0.270  0.305,0.475,0.220  0.465,0.485,0.050  

Step 1. Since all the attributes are benefit type, so there is no need to normalize them. 

Step 2. Find out the supports  , 1,..,4; , 1,...,3, 1,...,3.
k k

gh glSup Al Al g h l k
 

   
 

by utilizing 

formula (3.28). For simplicity, we shall denote ,
k k

gh glSup Al Al
 
 
 

by ,

k

gh glS and are given 

below: 

1 1 1 1 1 1 1 1

11,12 12,11 11,13 13,11 12,13 13,12 21,22 22,21

1 1 1 1 1 1 1

21,23 23,21 22,23 23,22 31,32 32,31 31,33

0.9300, 0.9367, 0.8667, 0.9133,

0.9133, 0.8767; 0.9133,

S S S S S S S S

S S S S S S S S

       

      
1

33,31

1 1 1 1 1 1 1 1

32,33 33,32 41,42 42,41 41,43 43,41 42,43 43,42

0.9500,

0.9433, 0.9633, 0.8533, 0.8167;S S S S S S S S



       
2 2 2 2 2 2 2 2

11,12 12,11 11,13 13,11 12,13 13,12 21,22 22,21

2 2 2 2 2 2 2

21,23 23,21 22,23 23,22 31,32 32,31 31,32

0.9367, 0.8400, 0.8700, 0.9633,

0.7900, 0.8267; 0.8667,

S S S S S S S S

S S S S S S S S

       

      
2

32,31

2 2 2 2 2 2 2 2

32,33 33,32 41,42 42,41 41,43 43,41 42,43 43,42

0.9100,

0.9233, 0.9633, 0.8800, 0.8433;S S S S S S S S



       
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3 3 3 3 3 3 3 3

11,12 12,11 11,13 13,11 12,13 13,12 21,22 22,21

3 3 3 3 3 3 3

21,23 23,21 22,23 23,22 31,32 32,31 31,33

0.9733, 0.9500, 0.9433, 0.8967,

0.8633, 0.7600; 0.9267,

S S S S S S S S

S S S S S S S S

       

      
3

33,31

3 3 3 3 3 3 3 3

32,33 33,32 41,42 42,41 41,43 43,41 42,43 43,42

0.8433,

0.9133, 0.9100, 0.8533, 0.8867.S S S S S S S S



       

  

Step 3. Find ( 1,...,4; , 1,...,3)
k

ghT Al g h k
 

  
 

by employing formula (3.29). For ease, we 

shall indicate ( 1,...,4; , 1,...,3)
k

ghT Al g h k
 

  
 

by k

ghT and are provided below: 

1 1 1 1 1 1

11 12 13 21 22 23

1 1 1 1 1 1

31 32 33 41 42 43

1.8667, 1.7967, 1.8033, 1.8267, 1.7900, 1.7900,

1.8633, 1.8567, 1.8933, 1.8167, 1.7800, 1.67;

T T T T T T

T T T T T T

     

     
2 2 2 2 2 2

11 12 13 21 22 23

2 2 2 2 2 2

31 32 33 41 42 43

1.7767, 1.8067, 1.7100, 1.7533, 1.7900, 1.6167,

1.7767, 1.7900, 1.8333, 1.8433, 1.8067, 1.7233;

T T T T T T

T T T T T T

     

     
3 3 3 3 3 3

11 12 13 21 22 23

3 3 3 3 3 3

31 32 33 41 42 43

1.9233, 1.9167, 1.8933, 1.7600, 1.6567, 1.6233,

1.7700, 1.8400, 1.7567, 1.7633, 1.7967, 1.7400.

T T T T T T

T T T T T T

     

     

 

 Step 4. Determine
k

gh  by utilizing formula (3.30), and are given below: 

1 1 1 1 1 1

11 12 13 21 22 23

1 1 1 1 1 1

31 32 33 41 42 43

0.9573, 1.0559, 0.9868, 0.9505, 1.0606, 0.9889,

0.9395, 1.0597, 1.0008, 0.9631, 1.0746, 0.9623;

           

           
2 2 2 2 2 2

11 12 13 21 22 23

2 2 2 2 2 2

31 32 33 41 42 43

0.9459, 1.0809, 0.9732, 0.9532, 1.0920, 0.9549,

0.9341, 1.0611, 1.0048, 0.9598, 1.0711, 0.9691;

           

           
3 3 3 3 3 3

11 12 13 21 22 23

3 3 3 3 3 3

31 32 33 41 42 43

0.9460, 1.0671, 0.9870, 0.9708, 1.0565, 0.9727,

0.9351, 1.0839, 0.9810, 0.9406, 1.0763, 0.9832.

           

           

 

Step 5. Exploit the WSVNPMM by formula (3.31) to acquire the overall 

( 1,...,4, 1,...,3)
k

gAl g k  and are given in Table 3.4. (assume   1,1,1Q ) 

Table 3.4. Collective decision matrix M  

                    1e                2e                    3e  
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1Al  0.2773,0.3399,0.3889  0.2113,0.4623,0.3177  0.2442,0.4598,0.2980  

2Al  0.3304,0.3057,0.3611  0.2788,0.4597,0.2782  0.2263,0.4085,0.3749  

3Al  0.4244,0.2958,0.2814  0.3400,0.4795,0.2127
 

0.3885,0.3700,0.2170
 

4Al  0.3932,0.3702,0.2461
 

0.3802,0.3961,0.2324
 

0.3811,0.4366,0.1860
 

Step 6. Establish the supports  , 1,...,4; , 1,...,3
k m

g gSup Al Al g m k
 

  
 

by formula (2.33). For 

simplicity, we denote  , 1,...,4; , 1,...,3
k m

g gSup Al Al g m k
 

  
 

by gkS and are given below. 

11 12 13 21 22 23

31 32 33 41 42 43

0.9134, 0.9187, 0.9816, 0.9038, 0.9264, 0.9332,

0.8877, 0.9418, 0.9459, 0.9825, 0.9538, 0.9707.

S S S S S S

S S S S S S

     

     
 

Step 7. Find out  1,...,4, 1,...,3
k

gT Al g k
 

  
 

by formula (3.34), for ease, we signify 

 1,...,4, 1,...,3
k

gT Al g k
 

  
 

by gkT and are given below: 

11 12 13 21 22 23

31 32 33 41 42 43

1.8321, 1.8951, 1.9003, 1.8303, 1.8370, 1.8597,

1.8296, 1.8336, 1.8877, 1.9363, 1.9532, 1.9245.

T T T T T T

T T T T T T

     

     

 

Step 8. Find out 
k

g  by formula (3.35), for simplicity, we shall denote k

g  by gk and 

are given below: 

11 12 13 21 22 23

31 32 33 41 42 43

1.1833, 0.6048, 1.2118, 1.1945, 0.5987, 1.2069,

1.1899, 0.5958, 1.2143, 1.2005, 0.6037, 1.1957.

           

           

 

Step 9. Exploit the WSVNPMM specified in formula (3.36), to get  1,2,3,4gN g 

.(assume   1,1,1Q ). 

1 2

3 4

0.2307,0.4526,0.3626 , 0.2622,0.4291,0.3607 ,

0.3622,0.4248,0.2658 , 0.3669,0.4275,0.2553 .

Al Al

Al Al

 

 
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Step 10. Utilizing Definition (1.1.1.4), to calculate the cosine measure for over all 

SVNNs .gAl  

       1 2 3 40.0853, 0.1111, 0.2121, 0.2177.SO Al SO Al SO Al SO Al     

Step 11.  Arrange all the alternatives descending order according to their cosine 

measure values, and utilizing comparison rules defined in Definition (1.1.1.4), and 

select the best one. 

4 3 2 1.Al Al Al Al    

Hence 4Al is the optimal one and the worst one is 1Al . 

Further, we exploit the WSVNPDMM operator to re-calculate this example. 

Steps 1 to 4 are same.  

Step 5. Employ the WSVNPDMM by operating formula (3.32), to acquire the overall 

( 1,...,4, 1,...,3)
k

gAl g k  and are given in Table 3.5. (assume   1,1,1Q ) 

Table 3.5. Collective decision matrix M  

                    1e                2e                    3e  

1Al  0.2805,0.3343,0.3743  0.2355,0.4588,0.2881  0.2468,0.4567,0.2937  

2Al  0.3437,0.2983,0.3523  0.2901,0.4190,0.2610  0.2442,0.3585,0.3639  

3Al  0.4298,0.2931,0.2712  0.3428,0.4668,0.1859  0.4012,0.3549,0.2049  

4Al  0.4029,0.3373,0.2378  0.3836,0.3842,0.1985  0.3924,0.4264,0.1435  

Step 6. Find out the supports  , 1,...,4; , 1,...,3
k m

g gSup Al Al g m k
 

  
 

by formula (3.33). For 

ease, we designate  , 1,2,3,4; , 1,2,3
k m

g gSupp Al Al g m k
 

  
 

by 
gkS and are provided below. 

11 12 13 21 22 23

31 32 33 41 42 43

0.9148, 0.9211, 0.9936, 0.9115, 0.9264, 0.9429,

0.8850, 0.9481, 0.9369, 0.9649, 0.9354, 0.9646.

S S S S S S

S S S S S S

     

     
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Step 7. Find out  1,...,4, 1,...,3
k

gT Al g k
 

  
 

by formula (3.34), for straightforwardness, we 

denote  1,...,4, 1,...,3
k

gT Al g k
 

  
 

by gkT and are provided below: 

11 12 13 21 22 23

31 32 33 41 42 43

1.8359, 1.9084, 1.9148, 1.8544, 1.8418, 1.8732,

1.8330, 1.8219, 1.8849, 1.9003, 1.9295, 1.9001.

T T T T T T

T T T T T T

     

     

 

Step 8. Find out 
k

g  by formula (3.35), for ease, we shall signify 
k

g  by gk and are 

specified below: 

11 12 13 21 22 23

31 32 33 41 42 43

1.1808, 0.6055, 1.2137, 1.1979, 0.5963, 1.2058,

1.1922, 0.5938, 1.2141, 1.1976, 0.6049, 1.1975.

           

           

 

Step 9. Exploit the WSVNPDMM specified in formula (3.37), to acquire 

 1,2,3,4gM g  .(assume   1,1,1Q ). 

1 2

3 4

0.2819,0.3957,0.3008 , 0.3247.0.3410,0.3042 ,

0.4152,0.3522,0.2063 , 0.4186,0.3623,0.1799 .

Al Al

Al Al

 

 

 

Step 10. Employing Definition (1.1.1.4), to calculate the cosine measure for over all 

SVNNs .g  

       1 2 3 40.1390, 0.1881, 0.2961, 0.3010.SO Al SO Al SO Al SO Al     

Step 11.  Arrange all the alternatives descending order according to their cosine 

measure values, and utilizing comparison rules defined in Definition (1.1.1.4), and 

select the optimal one. 

4 3 2 1.Al Al Al Al    

Hence 4Al is the optimal one, and the worst one is 1Al . 
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3.3.1     Influence of the Parameter Vector Q   on Final Ranking 

Results 

The developed method to MAGDM problems has two notable advantages. Firstly, it 

can eliminate the influence of the too high and low arguments on the final results. 

Secondly, it can consider the correlation among SVN attributes values. Furthermore, 

the developed aggregation operators have a parameter vector that makes the 

aggregation process more flexible. In simple words, when distinct parameters are 

given to the WSVNPMM operators and WSVNPDMM operators, different overall 

values can be derived, resulting in differing in cosine measures and ranking results. 

To show the effect of the parameter vector Q  on the ranking results, we give distinct 

parameter vectors Q  in the WSVNPMM operators and WSVNPDMM operators and 

discuss the ranking results in Table 3.6. 

Table 3.6 shows that by utilizing distinct parameter vector Q , distinct ranking 

results are obtained. Furthermore, from Table 3.6, one can see that when the number 

of interrelationship attributes increases, the values of the cosine measures utilizing 

WSVNPMM operator decrease, while utilizing WSVNPDMM operator, the values of 

the cosine measures increase. 

Table 3.6. Score values and ranking order for different values of parameter vector Q  

Parameter 

values  

Score values Utilizing 

WSVNPMM operator 

Score values Utilizing 

WSVNPDMM operator 

Ranking orders 

 1,0,0Q     

   

1 2

3 4

0.1150, 0.1562,

0.2811, 0.2679.

SO Al SO Al

SO Al SO Al

 

 
 

   

   

1 2

3 4

0.1058, 0.1311,

0.2640, 0.2493.

SO Al SO Al

SO Al SO Al

 

 
 

3 4 2 1.Al Al Al Al    

3 4 2 1.Al Al Al Al    
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 1,1, 0Q     

   

1 2

3 4

0.0981, 0.1279,

0.2403, 0.2356.

SO Al SO Al

SO Al SO Al

 

 

 
   

   

1 2

3 4

0.1253, 0.1673,

0.2841, 0.2810.

SO Al SO Al

SO Al SO Al

 

 

 
3 4 2 1.Al Al Al Al    

3 4 2 1.Al Al Al Al    

 1,1,1Q     

   

1 2

3 4

0.0853, 0.1111,

0.2121, 0.2177.

SO Al SO Al

SO Al SO Al

 

 

 
   

   

1 2

3 4

0.1390, 0.1881,

0.2961, 0.3010.

SO Al SO Al

SO Al SO Al

 

 

 
4 3 2 1.Al Al Al Al    

4 3 2 1.Al Al Al Al    

 5,0,0Q     

   

1 2

3 4

0.1577, 0.2384,

0.3597, 0.3342.

SO Al SO Al

SO Al SO Al

 

 

 
   

   

1 2

3 4

0.0866, 0.0926,

0.2244, 0.1945.

SO Al SO Al

SO Al SO Al

 

 

 
3 4 2 1.Al Al Al Al    

3 4 2 1.Al Al Al Al    

 

3.3.2     Comparison and Discussion 

To confirm the efficacy and compensation of the proposeed method, we confer a 

relative analysis. We operate various presented methods to explain the same example 

and scrutinize the final results. We compare our method in this paper with the 

methods developed by Xu et al.[72] based on weighted SVNBM operator, developed 

by Liu et al. [71] based INPWA operator and developed by He et al. [80] based on 

SVN weighted power BM operator. The ranking results obtained by these four 

methods are listed in Table 3.7. 

Table 3.7. Comparison with different approaches 

Approach             Score Values Ranking order 

Weighted SVNBM operator 

[72] 

   

   

1 2

3 4

0.00076, 0.0010,

0.0023, 0.0022.

SO Al SO Al

SO Al SO Al

 

 
 

3 4 2 1.Al Al Al Al    

SVN power weighted 

averaging operator [71] 

   

   

1 2

3 4

0.1150, 0.1561,

0.2710, 0.2466.

SO Al SO Al

SO Al SO Al

 

 
 

3 4 2 1.Al Al Al Al    

SVN weighted power BM 

operator [80] 

   

   

1 2

3 4

0.1266, 0.1291,

0.2390, 0.2199.

SO Al SO Al

SO Al SO Al

 

 
 

3 4 2 1.Al Al Al Al    
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Proposed WSVNPMM for

 1,0,0Q  

   

   

1 2

3 4

0.1150, 0.1562,

0.2811, 0.2679.

SO Al SO Al

SO Al SO Al

 

 

 
3 4 2 1.Al Al Al Al    

Proposed WSVNPDMM for

 1,0,0Q  

   

   

1 2

3 4

0.1058, 0.1311,

0.2640, 0.2493.

SO Al SO Al

SO Al SO Al

 

 

 
3 4 2 1.Al Al Al Al    

Proposed WSVNPMM for

 1,1, 0Q  

   

   

1 2

3 4

0.0981, 0.1279,

0.2403, 0.2356.

SO Al SO Al

SO Al SO Al

 

 

 
3 4 2 1.Al Al Al Al    

Proposed WSVNPDMM for

 1,1, 0Q  

   

   

1 2

3 4

0.1253, 0.1673,

0.2841, 0.2810.

SO Al SO Al

SO Al SO Al

 

 

 
3 4 2 1.Al Al Al Al    

Proposed WSVNPMM for

 1,1,1Q  

   

   

1 2

3 4

0.0853, 0.1111,

0.2121, 0.2177.

SO Al SO Al

SO Al SO Al

 

 

 
4 3 2 1.Al Al Al Al    

Proposed WSVNPDMM for

 1,1,1Q  

   

   

1 2

3 4

0.1390, 0.1881,

0.2961, 0.3010.

SO Al SO Al

SO Al SO Al

 

 

 
4 3 2 1.Al Al Al Al    

 

From Table 3.7, we can see that methods in [71,72,80] produced the same ranking 

results as the proposed method in this paper when Q takes (1,0,0) and (1,1,0), and this 

can explain the validity of the proposed method in this paper. However, when Q takes 

(1,1,1), i.e., when we consider the  interrelationship  among three attributes, we get a 

different ranking result. Then we can give some explanations of the different existing 

methods as follows.  

While our adopted method is supported on the WSVNPMM operator or 

WSVNPDMM operator, this can judge the correlation among SVNNs and also take 

away the cause of uncomfortable data at the same time.  

The Xu et al. [72] method based on BM operator can judge the correlation between 

two SVNNs, but cannot eradicate the cause of uncomfortable data. While our 
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proposed method can judge the correlation among any number of SVNNs and also 

eradicate the cause of uncomfortable data at the same time. 

The Liu et al [71] method is based on PA operator, which can only remove the bad 

influence of too high or too low arguments. But this cannot consider the 

interrelationships among SVNNs. While our developed method can also remove the 

effect of awkward data, and can consider the interrelationship among any number of 

SVNNs at the same time. 

The He et al. [80] method based on PBM operator, which can judge the correlation 

between two SVNNs and also eradicate the influence of too high and too low 

arguments by PA operator. While our propose method can judge the correlation 

among any number of SVNNs. 

 Thus, the developed method based on the developed aggregation operators is more 

effective and flexible for MAGDM problems. 

3.3.3      Conclusion 

In this article, we combined MM operator and PA operator and developed various 

AOs, such as SVNPMM operator, WSVNPMM operator, SVNPDMM operator and 

WSVNPDMM operator. The developed AOs take full advantage of MM operator and 

PA operator. In simple words, the developed AOs not only consider the 

interrelationship among SVNNs but also remove the influence of too high or too low 

arguments on the final results. Further, we inspected some analyzed several desirable 

properties and special cases of the developed AOs. We also proposed a novel 

approach to MAGDM with SVN information. Lastly, we provide a numerical 

example to confirm the efficacy and realism of the developed approach. 
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In future research, we will extend the developed AOs to different fuzzy 

environments such as double-valued NS, IFS, hesitant fuzzy sets, single valued 

neutrosophic hesitant fuzzy set. 
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Chapter 4  

Neutrosophic Cubic Power Muirhead Mean Operators with 

Uncertain Data for Multi-Attribute Decision Making 

       In this chapter, we intend various AOs for NCNs, which is a basic member of 

NCS. Taking the full advantages of MM operator and PA operator, the PMM operator 

is developed and is examined under NC information. To handle the problems up 

stretched, various new NC AOs, such as the NCPMM operator, WNCPMM operator, 

NCPDMM operator and WNCPDMM operator are developed and allied 

characteristics of these developed AOs are granted. The significant advantage of the 

proposed AO is that it can eliminate the effect of uncomfortable data and it takes the 

interrelationship between aggregated values at the same time. Further, a novel 

MADM method is instituted over the developed AOs to bestow the effectiveness of 

these operators. Lastly, a numerical example is specified to show the efficiency of the 

proposed approach. 
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4.1 Some Power Muirhead Mean Operator for Neutrosophic Cubic 

Sets 

4.1.1    The Neutrosophic Cubic Power Muirhead Mean (NCPMM) 

Operator 

In this subsection, we extend the PMM operator to neutrosophic cubic 

environment and discuss some basic properties, and special cases of these developed 

aggregation operators with respect to the parameter Q  . 

4.1.1.1 Definition  

Let ( 1,2,..., )g g u  be a set of NCNs and the parameters vector is denoted by 

 1 2, ,..., a

a
Q q q q R  . If,  

 
  

  

1

1

( )

1 2 ( )

1

1

1
1

, ,....,
!

1

g u

g

g

u

q

q

u g
Q

gu u
S g

m
m

u T

NCPMM
u

T








 



       
   
  

  
  




.                      (4.1) 

Then, we call QNCPMM  the neutrosophic cubic power Muirhead mean operator, 

where 
a

S  is the set of all permutation,  g  signify any permutation of  1,2,...,a  and 

   
1,

,
a

gm m
m x g

T Sup
 

  ,  ,g m
Sup  is the support degree for g  and ,

m
 satisfying the 

following axioms:  

(1)    , 0,1 ;g m
Sup   

(2)    , , ;g zm m
Sup Sup  

(3) If ( , ) ( , ),g u vm
Ds Ds  then ( , ) ( , ),g u vm

Sup Sup  where ( , )g m
Ds  is the 

distance among g  and .x  

In order to inscribe Equation (4.1) in an easy form, we can stipulate it as: 

  
  

1

1

.

1

g

g a

m
m

T

T




 


                                                                                   (4.2) 
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For appropriateness, we can entitle  1 2, ,...,
T

a    the power weight vector (PMV), 

such that  0,1g  and 
1

1.
a

g

g

   From the exploit of Equation (4.2), Equation (4.1) can 

be articulated as:  

    1

1

1 2 ( )

1

1
, ,...., .

!

a
g

g

g

a

a q
qQ

g ga
S g

NCPMM a
a






 

 
  

 
 

                                (4.3) 

Based on the operational rules given in Definition (1.1.1.15) for NCNs, and 

Definition (4.1.1.1), we can have the following Theorem (4.1.1. 2).  

4.1.1.2 Theorem  

 Let ( 1,2,..., )g g a  be a set of NCNs and  1 2, ,..., a

aQ q q q R   be a vector of parameters. 

Then, the result aggregated by employing Equation (4.1) is still an NCN and,  

 1 2, ,...,Q

aNCPMM   

     

  

1 1

1 1
1 1

! !

( ) ( )
1 1

1

( )
1

1 1 1 1 , 1 1 1 1 ,

1 1 1 1

a a

g gg g
g g

g g

a a

g
g

q qq qa aa aa a
L U

g g
S g S g

a q
a

L

g
g

 
 



 
 

   





  
                                                                      

 
      

 

   

   

     

1 1

1

1 1
1

! !

( )
1

1
1 1

! !

( ) ( )
1 1

,1 1 1 1 ,

1 1 1 1 ,1 1 1 1

a a

g gg
gg g

a a

a

gg g
g gg

a a

q qa qa aa
U

g
S S g

qa aq qa aa a
L U

g g
S g S g


 

 
 

 





  

 

   

 
                        

     
 

       
                 

    
  

  

   

     

  

1

1 1

( )

1

1 1
1 1
! !
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1 1

1

!
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1

,

1 1 1 1 ,1 1 1 1

,1 1 1 1
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q

qq a qa a aa q
a
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S g S g
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a

F g
S g
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


   

   
 


(4.4) 

Proof. According to the operational laws for NCNs, we have 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 ,1 1 , , , , ,

1 1 , , .
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So, 
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Therefore,  
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and 
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Furthermore, 
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Hence, 



113 

 

  
       1 1

1

1 1
1 11

! !

( ) ( ) ( )
1 1 1

1
1 1 1 1 , 1 1 1 1

!

a a

a g gg g
g gg gg

g

g

a a a

q qq qa aa a aa aq q L U

g g g g
S g S g S g

a
a

  
  

 



 

     

  
                                                                          
 

     ,





               

     

    

1 1

1

1 1
1 1

! !

( ) ( )
1 1

1
1

!

( )
1

1 1 1 1 ,1 1 1 1 ,

1 1 1 1 ,1 1 1 1

a a

g gg g
g gg g

a a

a

gg
g g

a

q qa aq qa aa a
L U

g g
S g S g

qa q aa
L U

g
S g

 
 

 


 



 

   



 

 
                                  
    

 


                   
 



   

   

     

  

1

1 1

1
1

!

( )
1

1 1
1 1

! !

( ) ( )
1 1

( )

,

1 1 1 1 ,1 1 1 1 ,

1 1 1 1

a

gg
g g

a

a a

g gg
gg g gg

a a

g
g

qa q aa

g
S g

q qq aa a aqa a

T Ig g
S g S g

q
a

F g
g



 
 



 





 



 

 

   




          
  



                                   
  

   

 

   

1

1
1

!

1

,

a

g

g

a

qa a

S



 


          

 


 

 

This is the required proof of Theorem (4.1.1.2). 

In the above equations, we calculate the PWV  , after calculating the support degree 

 ,g m
Sup . First, we determined the  ,g m

Sup utilizing 

   , 1 , ,g gm m
Sup Ds                                                                             (4.5) 

where,  

 
           
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g x
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     

                


     


(4.6) 

Therefore, we use the equation  

   
1,

, .
a

g g m
g g m

T Sup
 

                                                                                   (4.7) 

To obtain values of  ( 1,2..., )gT g a . Then using Equation (4.2) we can get the 

PWV.  
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4.1.1.3 Theorem  (Idempotency)  

Let ( 1,2,..., )g g a be a set of NCNs, and ,g   for all 1,2,..., .g a  Then  

 1 2, ,..., .Q

aNCPMM                                                                            (4.8) 

Proof. Since g  for all 1,2,..., ,g a we have  , 1g m
Supp  for all , 1,2,..., .g m a  

Therefore, we can get 
1
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  for all .g  Moreover, 
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which is the required proof of Theorem (4.1.1.3). 

4.1.1.4 Theorem (Boundedness)  

Let ( 1,2,..., )g g a be a group of NCNs, where  
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This implies that  1 2, ,..., .Q

am NCPMM  

In a comparable technique we can prove that  1 2, ,...,Q

aNCPMM n . Hence 

 1 2, ,...,Q

am NCPMM n  . 

The NCPMM operator does not have the property of monotonicity. 

One of the leading advantages of NCPMM is its capacity to represent the 

interrelationship among NCNs. Furthermore, the NCPMM operator is more flexible in 

aggregation process due to parameter vector. Now we discuss some special cases of 

NCPMM operators by assigning different values to the parameter vector.  

Case 1. If  1,0,...,0 ,Q  then the NCPMM operator degenerates into the following 

equation: 
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                                       (4.10) 

This is the NCPA operator. 
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This is the NCPG operator. 

Case 3. If  1,1,...,0 ,Q   then the NCPMM operator degenerates into the following 

equation: 

   

             

   

2 2

1 1

1 1
2 2

, 1 , 1

, 1

1,1,0,...,0

1 2

1 1 1 1 1 1 , 1 1 1 1 1 1 ,

1 1 1 1 1

, ,...,

g x g x

g x

a a a a
a a

L L U U

g x g x

g x g x

g x g x

a
L L

g x

g x

g x

aNCPMM

 

   

 

 

 





               

      

 

 
                                  
     





 

    

       

2 2

2

1 1

1 1
2 2

, 1

1

1
2

, 1 , 1

1 1 1 1 1 ,

1 1 1 1 1 ,1 1 1 1 1

g x

g gx x

a a a a
a

U U

g x

g x

g x

a a
a a

L UL U

g x g x

g x g x

g x g x

 

 







  

 

 

      

             

 
                                
     

 
    
    
      

    
 



 

              

      

2

2

2

2

1

1
2

1

1
2

, 1

1

, 1

1
1 2

, 1

,

1 1 1 1 1 1 ,

1 1 1 1 1

1 1 1 1 1 ,
z

x

z x

g x

a a

a a
a

T xg

g x

g x

a
a

F Fz x

g x

g x

a a
a

I Tg x
g x
g x

T

 

 





 







 







 




     

    

 
  
  
  

   
   

  
     
         
        

     
   

 
 
  
 







1

2

.

a
 
 
 
 
 
 

 (4.12) 

This is the NC power Bonferroni mean operator  1 .p q   

Case 4. . If 1,1,...,1,0,0,...,0 ,

i z i

Q

 
 
 
 

 then the NCPMM operator degenerates into the 

following form: 
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This is the NC power Maclaurin symmetric mean operator. 

4.1.2     Weighted Neutrosophic Cubic Power Muirhead Mean 

(WNCPMM) Operator 

The NCPMM operator does not consider the weight of the aggregated NCNs. In this 

subsection, we develop the weighted neutrosophic cubic power Muirhead mean 

(WNCPMM) operator, which has the capacity of taking the weights of NCNs. 

4.1.2.1 Definition   

Let ( 1,2,..., )g g a be a group of NCNs and  1 2, ,..., a

aQ q q q R   be a vector of parameters. 

If  
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                                           (4.14) 

Then, we call QWNCPMM  the weighted neutrosophic cubic power Muirhead mean 

operator, where  1 2, ,...,
T

a     is the importance degree  1,...,g g a such that 

 
1

0,1 , 1,
a

z z

z

    aS is the set of all permutation,  z is any permutation of  1,...,a and g
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       (4.15)  

Proof. Proof of Theorem (4.1.2.2) is same as Theorem (4.1.1.2). 

 

4.1.3      The Neutrosophic Cubic Power Dual Muirhead Mean 

(NCPDMM) Operator 

In this subsection, we develop the NCPDMM operator and discuss some related 

properties. 

4.1.3.1 Definition  

Let ( 1,2,..., )g g a is a set of NCNs and the parameters vector is denoted by

 1 2, ,..., a

aQ q q q R  . If  
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                                   (4.16) 

Then, we call QNCPDMM  the neutrosophic cubic power dual Muirhead mean operator, 

where aS is the set of all permutation,  g is any permutation of  1,...,a and
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,
a

m g m
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  ,  ,g mSup  is the support degree for 
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and ,m fulfilling the 

following conditions:  

(1)    , 0,1 ;g mSup   

(2)    , , ;g m m gSup Sup  
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(3) If ( , ) ( , ),g m u vDs Ds then ( , ) ( , ),g m u vSup Sup  where ( , )g mDs is distance among g  

and .m  

In order to inscribe expression (4.16) in an easy structure, we can stipulate it as 
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For appropriateness, we can label  1 2, ,...,
T

a   the power weight vector (PMV), such 

that  0,1g  and 
1

1.
a

g

g

   From, the use of Equation (4.17), Equation (4.16) can be 

expressed as  
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4.1.3.2 Theorem  

Let ( 1,2,..., )g g a is a set of SVNNs and the parameters vector is denoted by 

 1 2, ,..., a

aQ q q q R  . Then, the result aggregated by employing Equation (4.16) is still a 

NCN and  
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   (4.19) 

Proof.  Proof of Theorem (4.1.3.2) same as Theorem (4.1.1.2). 
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4.1.3.3 Theorem (Idempotency)  

Let ( 1,2,..., )g g a be a group of NCNs, and ,g   for all 1,2,..., .g a  Then  

 1 2, ,..., .Q

aNCPDMM                                                                      (4.20) 

4.1.3.4 Theorem (Boundedness)  
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and 
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Now we will discuss some special cases of NCPDMM operator with respect to the 

parameter vector .Q  

Case 1. If  1,0,...,0 ,Q  then NCPDMM operators disintegrates into the following 

equation: 
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This is the NC power geometric averaging operator. 

Case 2. If 
1 1 1
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 then NCPMM operators degenerate into the following form: 
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                                        (4.23) 

This is NC power arithmetic averaging operator. 

Case 3. If  1,1,0,...,0 ,Q   then NCPDMM operators degenerate into the following form: 
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This is the NC power geometric Bonferroni mean operator  1 .p q   

Case 4. . If 1,1,...,1,0,0,...,0 ,
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 then the NCPDMM operator degenerates into the 

following form: 
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This is the NC power dual Maclaurin symmetric mean operator. 

 

4.1.4         Weighted Neutrosophic Cubic Power Dual Muirhead Mean 

(WNCPDMM) Operator 

    The NCPDMM operator does not judge the importance degree of the aggregated 

NCNs. In this subsection, we propose the weighted neutrosophic cubic power dual 

Murihead mean (WNCPDMM) operator, which has the ability of captivating the 

weights of NCNs. 

4.1.4.1 Definition  

Let ( 1,2,..., )g g a is a set of NCNs and the parameters vector is denoted by 

 1 2, ,..., a

aQ q q q R  . If  

 
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                              (4.26) 

hen we call QWNCPDMM  the weighted neutrosophic cubic power dual Muirhead mean 

operator, where  1 2, ,...,
T

a     is the importance degree of  1,2,...,g g a with 

 
1

0,1 , 1,
a

g g

g

    aS is the group of all permutation,  g is any permutation of  1,2,...,a and 

g is PVW fulfilling 
  

   1

1

1
, 1,

1

a
g

g ga
g

g
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



   

1,

,
a

m g m

m x g

T Sup
 

  ,  ,g mSup  is the SPD 

for 
g
and ,x gratifying the following conditions:  

(1)    , 0,1 ;g mSup   

(2)    , , ;g m m gSup Sup  

(3) If ( , ) ( , ),g m u vDs Ds then ( , ) ( , ),g m u vSup Sup  where ( , )g mDs is distance among g  

and .m  

From Definition (4.1.4.1), we have the following Theorem (4.1.4.2). 
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4.1.4.2 Theorem  

Let ( 1,2,..., )g g a be a group of NCNs and  1 2, ,..., a

aQ q q q R   be a vector of parameters. 

Then, the aggregated value obtained by using Equation (4.26) is still a NCN and  
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(4.27) 

Proof. Proof of Theorem (4.1.4.2) is similar to that of Theorem (4.1.1.2). 

  

4.2 The MADM Approach Based on WNCPMM Operator and 

WNCPDMM Operator 

In this section, we give a novel method to MADM with NCNs, in which the attributes 

values gain the form of NCNs. For a MADM problem, let the series of alternatives is 
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represented by  1 2, ,..., aN N N N  and the series of attributes is represented by 

 1 2, ,..., bO O O O . The weight vector of the attributes is denoted by  1 2, ,...,
T

b   

such that  
1

0,1 , 1.
b

z z

z

 


  . Assume that , , , , , , , ,
gh gh gh

L U L U L U

gh gh gh gh gh gh gh T I Fz                   

is the assessment values of the alternatives gN  on the attribute hO which is expressed 

by the form of NCN. Then, the main aim is to rank the alternatives. The following 

decision steps are to be pursued. 

Step 1. Homogenize the decision matrix. Normally, there are two kinds of criterion, 

1) cost type and 2) benefit type. We necessitate exchanging the cost type of criterion 

into benefit types of criterion by utilizing the following equation: 

 

 

, , , , , , , ,
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, , 1 ,1 , , , ,1 ,
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gh

hF O







                   (4.28) 

Therefore the decision matrix gh a b
M z


    can be altered into regularized decision 

matrix gh a b
N 


    . 

Step 2. Find out the supports   , 1,2,..., ; , 1,2,...,gh glSupp a h l b   by 

   , 1 , ,gh gl gh ghSupp D                                                                                   (4.29) 

where,  ,gh ghD   is the distance measure among two NCNs gh  and gl defined in 

Equation (4.6). 

Step 3. Find out  ghT  by 
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    
1

, 1,2,..., ; , 1,2,...,
b

gh gh gl

l
l h

T Supp a h l b  



  .                                                       (4.30) 

Step 4. Find out 

 
  

  
 

1

1
1,2,..., ; , 1,2,..., .

1

h gh

gh b

d gh

d

b T
g a h d b

T

 

 



   


                                                (4.31) 

Step 5. Exploit the WNCPMM or WNCPDMM operators 

 1 2, , , , , , , , , ,..., ,L U L U L U Q

g g g g g g g T g I g F g g g gbWNCPMM                                   (4.32) 

or 

 1 2, , , , , , , , , ,..., .L U L U L U Q

g g g g g g g T g I g F g g g gbWNCPDMM                                   (4.33) 

to calculate the overall NCNs  1,2,...,g g a  . 

Step 6. Determine the score values of the collective NCNs  1,2,...,g g a  , using 

Definition (1.1.1.16). 

Step 7.  Rank all the alternatives according to their score values, and the select the 

best one using Theorem (1.1.1.17). 

Step 8. End. 

4.3 An illustrative Example 

     In order to show the application of the developed MADM method, an illustrative 

example is embraced from [14] with NC information. 
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4.3.1 Example  

      A passenger wants to travel and select the best vans (alternatives) ( 1,2,3,4)gN g   

among the possible four vans. The customer takes the following four attributes into 

account to evaluate the four alternatives: (1) the facility 1;O  (2) saving rent 2 ;O  (3) 

comfort 3;O (4) safety 4 .O  The importance degree of the attributes is expressed by

 0.5,0.25,0.125,0.125
T

  . Therefore, the following decision matrix 
4 4ghM z


     can 

be obtained in the form of NCNs shown in Table 4.1. 

Table 4.1. The decision matrix  

          1O            2O            3O            4O  

1N     

  

0.2,0.5 , 0.3,0.7 ,

0.1,0.2 ,0.9,0.7,0.2
 
   

  

0.2,0.4 , 0.4,0.5 ,

0.2,0.5 ,0.7,0.4,0.5
 
   

  

0.2,0.7 , 0.4,0.9 ,

0.5,0.7 ,0.7,0.7,0.5
 
   

  

0.1,0.6 , 0.3,0.4 ,

0.5,0.8 ,0.5,0.5,0.7
 

2N     

  

0.3,0.9 , 0.2,0.7 ,

0.3,0.5 ,0.5,0.7,0.5
 

   

  

0.3,0.7 , 0.6,0.8 ,

0.2,0.4 ,0.7,0.6,0.8
 
   

  

0.3,0.9 , 0.4,0.6 ,

0.6,0.8 ,0.9,0.4,0.6
 
   

  

0.2,0.5 , 0.4,0.9 ,

0.5,0.8 ,0.5,0.2,0.7
 

3N     
  

0.3,0.4 , 0.4,0.8 ,

0.2,0.6 ,0.1,0.4,0.2
 
   

  

0.2,0.4 , 0.2,0.3 ,

0.2,0.5 ,0.2,0.2,0.2
 
   

  

0.4,0.7 , 0.1,0.2 ,

0.4,0.5 ,0.9,0.5,0.5
 
   

  

0.6,0.7 , 0.3,0.6 ,

0.3,0.7 ,0.7,0.5,0.3
 

4N     

  

0.5,0.9 , 0.1,0.8 ,

0.2,0.6 ,0.4,0.6,0.2
 
   

  

0.4,0.6 , 0.5,0.7 ,

0.1,0.2 ,0.5,0.3,0.2
 
   

  

0.5,0.6 , 0.2,0.4 ,

0.3,0.5 ,0.5,0.4,0.5
 
   

  

0.3,0.7 , 0.7,0.8 ,

0.6,0.7 ,0.4,0.2,0.8
 

 

Step 1.  Since all the attributes are the same, hence there is no need for conversion. 

4 4ghM CN


   
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Step 2. Utilize Equation (4.29), to calculate the support degree

  , 1,2,...,4; , 1,2,...,4gh glSupp z z h l  . We denote  ,gh glSupp z z by ,gh glSupp . 

11,12 12,11 11,13 13,11 11,14 14,11

12,13 13,12 12,14 14,12 13,14 14,13

0.79452, 0.735425, 0.65359,

0.771478, 0.805635, 0.786563;

Supp Supp Supp Supp Supp Supp

Supp Supp Supp Supp Supp Supp

     

     

 

21,22 22,21 21,23 23,21 21,24 24,21

22,23 23,22 22,24 24,22 23,24 23,24

0.7972, 0.7667, 0.727155,

0.750556, 0.750556, 0.76906,

Supp Supp Supp Supp Supp Supp

Supp Supp Supp Supp Supp Supp

     

     

 

31,32 32,31 31,33 33,31 31,34 34,31

32,33 33,32 32,34 34,32 33,34 33,34

0.8, 0.614139, 0.735425,

0.690879, 0.711325, 0.797241,

Supp Supp Supp Supp Supp Supp

Supp Supp Supp Supp Supp Supp

     

     

 

41,42 42,41 41,43 43,41 41,44 44,41

42,43 43,42 42,44 44,42 43,44 44,43

0.7551, 0.783975, 0.645662,

0.783975, 0.675107, 0.7152.

Supp Supp Supp Supp Supp Supp

Supp Supp Supp Supp Supp Supp

     

     

 

Step 3. Utilize Equation (4.30), to get  ( , 1 4)ghT g h to  . We denote  ghT   by .ghT  

11 12 13 14T =2.183534,T =2.371633,T =2.293466,T =2.245787;  

21 22 23 24T =2.291063,T =2.298354,T =2.286283,T =2.246771,  

31 32 33 34T =2.149564,T =2.202204,T =2.102259,T =2.243991,  

41 42 43 44T =2.184688,T =2.214133,T =2.28315,T =2.035969.  

Step 4. Utilize Equation (4.31), to obtain ( , 1, 2,3,4).gh g h   

11 12 13 141.957844, 1.036761, 0.506363, 0.499032,         

21 22 23 242.002623, 1.00353, 0.499929, 0.493918,         

31 32 33 341.987975, 1.010601, 0.489529, 0.511894,         

41 42 43 441.999323, 1.008904, 0.515284, 0.476489.         

Step 5. Utilize the WNCPMM given in Equation (4.32) 
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   1 2 4, , , , , , , , , ,..., ( 1,2,...,4).L U L U L U Q

g g g g g g g T g I g F g g g gz WCNPMM z z z g                      

To get the overall NCNs  1, 2,..., 4gz g  . Assume that . 

     1 0.13993,0.469959 , 0.442103,0.702693 , 0.469048,0.684711 ,0.548309,0.636754,0.602874z 

; 

     2 0.2238,0.60211 , 0.5236,0.8162 , 0.5122,0.715 ,0.561704,0.55054,0.729379 ;z   

     3 0.3002,0.4736 , 0.3232,0.5782 , 0.3881,0.6445 ,0.3255,0.4952,0.415668z  ; 

     4 0.3413,0.5540 , 0.5437,0.7485 , 0.4487,0.5965 ,0.376197,0.445143,0.597579 .z   

Step 6. Using Definition (1.1.1.16), we calculate the score values of the collective 

NCNs  1, 2,...,gz g a . 

       1 2 3 40.4022, 0.393352, 0.472717, 0.4324.SO z SO z SO z SO z     

Step 7. According to the score values, ranking order of the alternative is 

3 4 1 2 .N N N N    

Hence using Theorem (1.1.1.17), the best alternative is 3M and the worst is 2.M  

Similarly, by utilizing WNCPDMM operators, the Steps 1 to 4 are similar to the 

WCNPMM operator. 

Step 5. Utilize the WNCPDMM given in Equation (4.33) 

 1 2 4, , , , , , , , , ,..., ( 1,2,...,4).L U L U L U Q

g g g g g g g T g I g F g g g gz WNCPDMM z z z g                      

To get the overall NCNs  1,2,...,4gz g  . Assume that,  1,1,1,1Q  . 

     1 0.2569,0.6239 , 0.2929,0.5112 , 0.2375,0.4571 , 0.7682,0.4666,0.3905 ;z   

 1,1,1,1Q 
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     2 0.3642,0.8179 , 0.3110,0.6479 , 0.3194,0.5430 , 0.7416,0.3336,0.5561 ;z   

     3 0.4935,0.6438 , 0.1794,0.3224 , 0.2248,0.4812 , 0.6502,0.3206,0.2330 ;z   

     4 0.4995,0.7691 , 0.2570,0.5332 , 0.2130,0.3815 , 0.5355,0.2744,0.3248 .z   

Step 6. Using Definition (1.1.1.16), we calculate the score values of the collective 

NCNs  1,2,...,gz g a . 

       1 2 3 40.5881, 0.5782, 0.6688, 0.6467.SO z SO z SO z SO z     

Step 7. According to the score values, ranking order of the alternative is 

3 4 1 2 .N N N N    

Hence using Theorem (1.1.1.17), the best alternatives is 3N and the worst is 2.N  

4.3.2 Effect of the Parameter on the Decision Result. 

In this subsection, different values to the parameter vector Q and the results obtained 

from these values are shown in Table 4.2 and Table 4.3. From Table 4.2 and Table 

4.3, it can be seen that, when the parameter vector Q  is  1,0,0,0 , that is, when the 

interrelationship among the attributes is not considered, then according to the score 

values the best alternative is 4N  while the worst is 2N . Similarly, when the parameter 

vector Q  is  1,1,0,0 , that is, when WCNPMM operator and WNCPDMM operator 

degenerate into NCPBM operator and NCPGBM operator respectively, the best 

alternative is 3N and 4N  while the worst for both cases is 2N . When the parameter 

vector Q  is  1,1,1,0 , the best alternative is 3N and the worst is 2.N When the parameter 

Q
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vector Q  is  1,1,1,1 ,  the best alternative is 3N and the worst is 2.N  Similarly, for other 

values of the parameter vector the score values and ranking order vary.  Thus, one can 

select the value of the parameter vector according to the needs of the situations. 

Table 4.2. Score values and ranking orders for different parameter values in 

WCNPMM operator 

Parameter Vector 

Q 

             Score Values Ranking orders 

 1,0,0,0Q     

   

1 2

3 4

0.5671, 0.5230,

0.5593, 0.6031.

SO z SO z

SO z SO z

 

 

 4 1 3 2.N N N N    

 1,1,0,0Q     

   

1 2

3 4

0.4579, 0.4468,

0.5092, 0.5027.

SO z SO z

SO z SO z

 

 

 3 4 1 2.N N N N    

 1,1,1,0Q     

   

1 2

3 4

0.4227,SO 0.4133,

SO 0.4866,SO 0.4607.

SO z z

z z

 

 

 3 4 1 2.N N N N    

 1,1,1,1Q     

   

1 2

3 4

SO 0.5881,SO 0.5782,

SO 0.6688,SO 0.6467.

z z

z z

 

 

 3 4 1 2.N N N N    

 0.5,0.5,0.5,0.5Q     

   

1 2

3 4

SO 0.3988,SO 0.3910,

SO 0.4708,SO 0.4306.

z z

z z

 

 

 3 4 1 2.N N N N    

 5,0,0,0Q     

   

1 2

3 4

SO 0.6608,SO 0.6235,

SO 0.6313,SO 0.6854.

z z

z z

 

 

 3 4 1 2.N N N N    

 

Table4.3. Score values and ranking orders for different parameter values in 

WCNPDMM operator 

Parameter Vector               Score Values   Ranking orders 
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Q 

 1,0,0,0Q     

   

1 2

3 4

0.5588, 0.5346,

0.6040, 0.6081.

SO z SO z

SO z SO z

 

 

 4 1 3 2.N N N N    

 1,1,0,0Q     

   

1 2

3 4

0.5881, 0.5782,

0.6688, 0.6467.

SO z SO z

SO z SO z

 

 

 4 3 1 2.N N N N    

 1,1,1,0Q     

   

1 2

3 4

0.5760, 0.5582,

0.6478, 0.6276.

SO z SO z

SO z SO z

 

 

 3 4 1 2.N N N N    

 1,1,1,1Q     

   

1 2

3 4

0.5881, 0.5782,

0.6688, 0.6467.

SO z SO z

SO z SO z

 

 

 3 4 1 2.N N N N    

 0.5,0.5,0.5,0.5Q     

   

1 2

3 4

0.5909, 0.5817,

0.6741, 0.6488.

SO z SO z

SO z SO z

 

 

 3 4 1 2.N N N N    

 5,0,0,0Q     

   

1 2

3 4

0.4671, 0.4073,

0.4022, 0.4559.

SO z SO z

SO z SO z

 

 

 1 4 2 3.N N N N    

 

4.3.3 Comparison with Existing Methods  

To show the efficiency and advantages of the proposed method, we give a 

comparative analysis. We exploit some existing methods to solve the same example 

and examine the final results. We compare our method in this paper with the methods 

developed by Qin et al.[74] based on weighted IFMSM operator, and the one 

developed by Liu et al. [71] based generalized INPWA operator. We extend the 

IFMSM operator method [74] for intuitionistic fuzzy information to neutrosophic 

cubic Maclaurin symmetric mean operator. We also extend the GINPWA operator 

[71] for interval neutrosophic information to generalized neutrosophic cubic power 

average operator.  
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The method developed by Qin et al. [74], is based on MSM operator, which is able to 

consider the interrelationship among the attribute values, but unable to remove the 

effect of awkward data. The MSM operator is a special case of the proposed 

aggregation operator. Also the ranking result obtained using the method of Qin et al. 

[74], is different from the one obtained using the proposed method. 

Similarly, the method developed by Liu et al. [71], is based on power weighted 

averaging operator, which can remove the effect of awkward data but cannot consider 

the interrelationship among the attributes values. From Table 9.4, it can be seen that 

the ranking result obtained using Liu et al. [71] is the same as the ranking order 

obtained from the proposed method, when  That is, when the 

interrelationship between NCNs are not considered. This shows the validity of the 

proposed approach. The ranking order is different when  That is, when the 

interrelationship among four attributes are considered, then the ranking order is 

different. The main reason behind the different ranking results is due to the existing 

aggregation operators, can only consider a single characteristic at a time while 

aggregating the NCNs, meaning that they can only either consider interrelationship 

among attributes or remove the effect of awkward data. Our proposed aggregation 

operator, however, can consider two characteristics at a time. It has the ability to 

consider the interrelationship among the attributes and also remove the effect of 

awkward data. In fact, these existing aggregation operators can be regarded as special 

cases to our proposed aggregation operator. Hence, our proposed aggregation operator 

is more practical and flexible to be used in decision making problems. 

Table 4.4. Score values and ranking orders for different parameter values in 

WCNPDMM operator 

 1,0,0,0 .Q

 1,1,1,1 .Q
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Aggregation operator            Score Values      Ranking orders 

NCMSM operator 

[74] 

   

   

1 2

3 4

0.6263, 0.6153,

0.6355, 0.6373.

SO z SO z

SO z SO z

 

 

 4 3 1 2.N N N N    

GNCPWA operator 

[72] 

   

   

1 2

3 4

0.5694, 0.5266,

0.5646, 0.6054.

SO z SO z

SO z SO z

 

 

 4 1 3 2.N N N N    

Proposed WNCPMM 

operator  1,0,0,0Q  

   

   

1 2

3 4

0.5671, 0.5230,

0.5593, 0.6031.

SO z SO z

SO z SO z

 

 

 4 1 3 2.N N N N    

Proposed 

WNCPDMM 

operator  1,0,0,0Q  

   

   

1 2

3 4

0.5588, 0.5346,

0.6040, 0.6081.

SO z SO z

SO z SO z

 

 

 4 1 3 2.N N N N    

Proposed WNCPMM 

operator  1,1,1,1Q  

   

   

1 2

3 4

0.5881, 0.5782,

0.6688, 0.6467.

SO z SO z

SO z SO z

 

 

 3 4 1 2.N N N N    

Proposed 

WNCPDMM 

operator  1,1,1,1Q  

   

   

1 2

3 4

0.5881, 0.5782,

0.6688, 0.6467.

SO z SO z

SO z SO z

 

 

 3 4 1 2.N N N N    

 

4.3.4      Conclusion 

In this chapter, we incorporate both the PA operator and MM operator to form a few 

new aggregation operators to aggregate CNNs, such as, the CNPMM operator, 

WCNPMM operator, CNPDMM operator and WCNPDMM operator. We discussed 

several basic results and properties, along with a few special cases of the proposed 

aggregation operators. In other words, the developed aggregation operators do not 
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only consider the interrelationship among the NCNs, but also remove the influence of 

too high or too low arguments in the final results. Based on these aggregation 

operators, a novel approach to MADM problem is developed. Finally, a numerical 

example is illustrated to prove the efficacy and realism of the proposed approach. 

In future, we aim to enlarge the developed aggregation operators to deal with 

intuitionistic fuzzy information [2], interval neutrosophic information [7], and others. 
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Chapter 5  

Application of Interval Neutrosophic Power Hamy Mean 

Operators in MAGDM 

         In this chapter, we merge the conventional HM operator to the traditional PA 

operator in interval neutrosophic settings and present the two novel interval 

neutrosophic aggregation operators, that is, the interval neutrosophic power Hammy 

mean (INPHM) operator and the weighted interval neutrosophic power Hammy mean 

(WINPHM) operators. Then, some preferable characteristics of the developed 

aggregation operators are discussed. Moreover, based on these introduced AOs, a 

novel technique for MAGDM under the IN information. Lastly, some examples are 

given to show the effectiveness of the developed method by comparing with other 

existing methods. 

5.1  Interval Neutrosophic Power Hamy Mean Aggregation 

Operators 

5.1.1 The Interval Neutrosophic Power Hamy Mean Operator 

In this subpart, we develop interval neutrosophic Hamy mean operator and discussed 

it related properties, and results.  
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5.1.1.1 Definition  

Let  , , , , , 1,2,...,L U L U L U

r r r r r r r r o                   be a group of INNs, and the 

parameter 1,2,...,k o . Then an interval neutrosophic power HM aggregation operator 

is a function : oINPHM  defined as follows. 

   

  
  1 2

1

1 ... 1

1

1 2

1

1

, ,...., ,

j j

k

k

k r r

o
r r r o j

a

k a

o

o T

T

INPHM
o

k

     



 
 
 
 

 
 


 
 
 

 


                                   (5.1) 

Where  is the set of all INNs, and 
  
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the support degree for e  from 
j
, which satisfy the following characteristics:  

1)    , 0,1 ,e jSup   

2)    , , ,e j j eSup Sup  

3) if    , ,e j x yD D ,then    , , ,e j x ySup Sup  where  ,z jD represent the 

distance measure between any two INNs defined in Definition (1.1.1.13),  1 2, ,..., kr r r

traversals all the k-tuple combination of  1,2,..., .o  The denominator 
o

k

 
 
 

 in the above 

Equation (5.1) represents the binomial coefficient 
 

!

! !

o

k o k
 and o is the balancing 

coefficient. 

In order to write Equation (5.1) in a simple form, we can define 
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Then we call  1 2, ,...., o   as the power weight vector. Therefore, the simplified form 

Equation (5.1) is as follows: 
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5.1.1.2 Theorem  
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Proof. Based on the operational rules for INNs, we have 
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Now, we shall discuss some basic properties of INPHM operator, which are stated 

below: 
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So, according to Theorem (5.1.1.2), we have 
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Similarly, we can prove that  1 2, ,..., .oINPHM   

Hence  1 2, ,..., .oINPHM                                                                                                     

In what follows, we shall discuss some special cases of INPHM operators with respect 

to the parameter k , which were stated below. 

1. When 1,k  the INPHM operator in Equation (5.4), will degenerate to the following 

form: 
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i.e., when 1k  , the INPHM operator degenerates into power averaging operator 

proposed by Liu [71]. 

2. When ,k o  then the INPHM operator degenerates into the following form: 
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                       (5.9) 

Further, if we suppose that  ,r jSup  for all i j , then 
  
  

1

1
1,

1

j

j

r

r o

c

c

o T
o

T



  


and Equation 

(5.4) can further degenerate into the following form. 
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   

 

   
                          
             

 
             
     

   

 

                     (5.10) 
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That is, Equation (5.4) degenerates into ING operator. 

In the INPHM operator, we can notice that only the interrelation among inputs 

arguments and the power weight vector are taken into consideration, the weight vector 

of the aggregated arguments is ignored. However, in some situation, the importance 

degree of the attributes is an important factor in the aggregation process, especially, in 

MAGDM. So in order to overcome this deficiency, the weighted form of the INPHM 

operator is defined as follows. 

5.1.1.6 Definition   

Let  , , , , , 1,2,...,L U L U L U

r r r r r r r r o                   be a group of INNs, and the 

parameter 1,2,...,k o . Then a weighted interval neutrosophic power HM operator is a 

function : oWINPHM  defined as follows. 

    1 2

1

1 ... 1

1 2, ,...., ,

j j

k

k k

r r

r r r o jk

o

o

WINPHM
o

k


     

 
 
 


 
 
 

 
                                                (5.11) 

Where  is the set of all INNs, and 
  

  
1

1
,

1

r r

r o

c c

c

T

T











   

1

,
o

j c j

c
c j

T Sup



 is the support 

degree for c  from 
j
, which satisfies the following properties; 1)    , 0,1 ,c jSup  2) 

   , , ,c j j cSup Sup 3)    , , ,c j x yD D then    , , ,c j x ySup Sup  where 

 ,c jD represents the distance measure between any two INNs defined in Definition 

(1.1.1.13),  1 2, ,...,
T

o    is the weight vector of ( 1,2,...., )r r o  such that 

 
1

0,1 1.
o

r r

r

and 


   1 2, ,..., kr r r traversals all the k-tuple combination of  1,2,..., .o  The 
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denominator 
o

k

 
 
 

 in the above Equation (5.11) represents the binomial coefficient, 

 

!

! !

o

k o k
 and o are the balancing coefficients. 

5.1.1.7 Theorem   

Let  , , , , , 1,2,...,L U L U L U

r r r r r r r r o                   be a group of INNs, and the 

parameter 1,2,...,k o . Then, the value aggregated utilizing Equation (5.11) is still an 

INN, and 

   

 
 

 
 

 

1 2 1 2

1 2

1 1

1 1

1 .... 1 1 .... 1

, ,...,

1 1 1 1 ,1 1 1 1 ,

1 1

r rj j

j j

k k

rj

j

k

o

o o
k kk kk ko o

L L

r r

r r r o j r r r o j

o
L

r

WINPHM

 



           



 
                                                    

       
 

  


   

 
 

 

 

1 2 1 2

1 2

1 1

1 1

1 .... 1 1 .... 1

1

1 .... 1

, 1 1 ,

1 1

rj

j

k k

rj

j

k

o o
k kk kk ko

U

r

r r r o j r r r o j

k ko
L

r

r r r j





           

    

 
                                             
       
 

 
           

 

   


 

 
 

1 2

1 1

1

1 .... 1

, 1 1 .
rj

j

k

o o
k kk ko

U

r

o r r r o j



      

 
                           
     
 

  

                (5.12) 

Proof. Proof of this theorem is same as Theorem (5.1.1.2). 

5.1.1.8     Theorem  (Idempotency)  

If all , , , , ,L U L U L U

r
                  for  1, 2,...,r o , then 

   , ,..., .
k

WINPHM                                                                               (5.13) 

5.1.1.9      Theorem (Commutativity)  

Let ( 1,2,..., )r r o be a group of INNs, and r be any permutation of .r  Then, 
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       1 21 2, ,..., , ,..., .
k k

ooWINPHM WINPHM                                             (5.14) 

5.1.1.10 Theorem (Boundedness).  

Let ( 1,2,..., )r r o be a group of INNs, and 

   1 2 1 2min , ,..., , , , , , , max , ,..., , , , , , .
L U L U L UL U L U L U

o o

                                           

 Then, the INPHM operator lies: 

 1 2, ,..., .oWINPHM                                                                             (5.15) 

The proofs of the above theorems are same as the proofs of the theorems for INPHM 

operator, therefore omitted here. 

5.2  MAGDM Approach Based on Developed WINPHM Operator 

In this part, we will utilize the developed WINPHM operator to deal with MAGDM 

problem with the data presented in the form of INNs. Let the set of m  alternatives be 

denoted by  1 2, ,..., mN N N N and the group of n attributes be denoted by  1 2, ,..., nO O O O

, the importance degree of n attributes be  1 2, ,...,
T

n    , such that 

 
1

0,1 , 1,2,..., , 1.
n

j j

j

j n 


    There is a set of z experts expressed by  1 2, ,..., ze e e e

who are asked to provide the assessment information, and the importance degree of 

the experts is expressed by  1 2, ,...,
T

z    , such that    
1

0,1 , 1,2,..., , 1.
z

a a

a

a z 


    

The expert ae assesses every attribute jO of every alternative iN by the form of INN 

, , , , ,a a L aU a L aU a L aU

ij ij ij ij ij ij ij
                  1,2,..., ;1,2,..., ,i m n  then the decision matrices 
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  1,2,...,a
a ijDM a z  is established. The subsequent purpose is to execute a ranking 

of all alternatives. 

Then, in order to solve this problem, we will execute the following steps: 

Step 1. Firstly, the given decision matrices  a
a ij m n

DM


 should be transformed into 

standardized decision matrices   .a
a ij m n

SDM


  We change the cost-type attribute into 

benefit-type attribute using the following formula. 

 

, , , , , ,

1, 2,..., , 1, 2,..., .

, , 1 ,1 , , ,

1,2,..

a a L aU a L aU a L aU
jij ij ij ij ij ij ij

a

ij
c

a a L aU aU a L a L aU
jij ij ij ij ij ij ij

for benefit type attributeO

i m j n

for benefit type attributeO

i

                 

 

                 

 ., , 1, 2,..., .m j n








 

         (5.16) 

Step 2. Determine the supports 

   , 1 , , ( , 1,2,..., ),c d c d

ij ij ij ijSupp D c d z                                                           (5.17) 

which fulfils the required axioms given in Definition (5.1.1.1), and  ,c d

ij ijD

represents the distance measure given in Definition (1.1.1.13). 

Step 3. Determine the supports  c

ijT of the INN c

ij  by other  1, 2,..., .d

ij d z and c d   

   
1;

, ; , 1,2,... ; 1,2,..., , 1,2,..., .
z

c c d

ij d ij ij

d c d

T Supp c d z i m j n
 

                            (5.18) 

Then use the importance degrees  1,2,...,c c z  of the DMs  1, 2,...,ae a z to calculate 

the importance degrees  

  

  
( )

1
; 1,2,..., ; 1,2,...., , 1,2,..., .

1

c

c ijc

ij z
d

d ij

d

T
c z i m j n

T







   


                                  (5.19) 
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Where 0ij  and 
1

1.
z

ij

c




  

Step 4. Utilize the WINPHM operator expressed by (5.12) 
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     (5.20) 

to aggregate all the decision matrices   ( 1,2,..., )a
a ij m n

DM a z


  given by the DMs into 

the comprehensive decision matrix   .ij m n
CDM


  

Step 5. Determine the supports: 

   , 1 , , 1,2,..., ; 1,2,..., .ij iq ij iqSupp D i m q n                                          (5.21) 

which fulfils the required axioms given in Definition (5.1.1.1), and  ,ij iqD

represents the distance measure given in Definition (1.1.1.13). 

Step 6. Determine the supports  ijT of the INN  1,2,..., ; 1, 2,...,ij i m j n  by the 

importance degrees 
j  of the attributes jO and the importance degrees 

ij that are 

associated with the INN 
ij

by the importance degree 
j  of the attributes jO . 

   
1;

, , 1,2,..., , , 1,2,..., .
z

ij j ij iq

q q j

T Supp i m j q n
 

                                        (5.22) 
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  

  
1

1
; 1,2,...., , 1, 2,..., .

1

c ij

ij n

j ij

j

T
i m j n

T








  


                                                  (5.23) 

Where 0ij  and 
1

1.
z

ij

c




  

Step 7. Utilize the WINPHM operator (Equation (5.12)) 

   

 
 

 
 

1 2 1 2

1 2

1 1

1 1

1 .... 1 1 .... 1

, ,...,

1 1 1 1 ,1 1 1 1 ,

1 1

r rj j

j j

k k

j

k

i i i in

n n
k kk kk kn n

L U

r r

r r r n j r r r n j

r

WSVNPHM

 

           

 

 
                                                    

       
 

  

   

 
 

 
 

 

1 2 1 2

1 2

1 1

1 1

1 .... 1 1 .... 1

1

1 1

, 1 1 ,

1 1

r rj j

j

k k

rj

j

n n
k kk kk kn n

L U

r

r r r n j r r r n j

k kn
L

r

r r j

 



           

   

 
                                               
       
 

 
           

 

   


 

 
 

1 2

1 1

1

.... 1 .... 1

, 1 1 .
rj

j

k k

n n
k kk kn

U

r

r n r r r n j



       

 
                           
     
 

  

        (5.24) 

to get the comprehensive evaluation value. 

Step 8. Determine the score and accuracy value of each INN ( 1,2,..., )r r n  using 

Definition (1.1.1.11). 

Step 9. Rank all the alternatives and select the best one using Definition (1.1.1.12). 

5.3 Numerical Example 

 In this part, two numerical examples will be provided to show the application and 

advantages of proposed approach. The first example is about the selection of 

emerging technology enterprises (ETEs), cited from [112]. 
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5.3.1  An illustrative example 

Let us assume that there are five ETEs represented by  1,2,3,4,5iN i  , which are 

selected. These five ETEs are evaluated with respect to the following four attributes

(1,2,3,4)jO , which are (1) 1O : the employment formation, (2) 2O : the progress of 

science and technology, (3) 3O : technical improvement, (4) 4O : the industrialization 

configuration. There are three experts ( 1,2,3)ae a   with importance degree

 0.25,0.4,0.35
T

, who evaluate the five ETEs with respect to the four attributes with 

importance degree  0.15,0.2,0.25,0.4
T

, and provide their information in the form of 

INNs, which are listed in Tables 5.1-5.3. 

In the following, we need to select the best alternatives. The précised steps are 

illustrated as follows: 

Step 1. Normalize the decision matrices using Equation (5.16). Since all the attributes 

are of benefit type so there is no need to normalize it. 

Step 2. Determine the supports   , 1,2,...,5, 1,2,3,4, , 1,2,3,c d

ij ijSupp i j c d c d     using 

Equation (5.17). In order to define the supports between c

ij and d

ij , we denote 

  
5 4

,c d

ij ijSupp


as  cd
Supp , which are given as follows: 
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Table 5.1. The decision matrix 
1e  

             1O               2O              3O              4O  

1N       0.3,0.4 , 0.6,0.7 , 0.30.5       0.4,0.5 , 0.2,0.3 , 0.1,0.2       0.1,0.2 , 0.4,0.5 , 0.1,0.2       0.3,0.4 , 0.5,0.6 , 0.2,0.3  

2N       0.5,0.7 , 0.6,0.8 , 0.2,0.4       0.5,0.6 , 0.3,0.5 , 0.2,0.3       0.5,0.7 , 0.4,0.6 , 0.2,0.3       0.6,0.7 , 0.3,0.4 , 0.2,0.3  

3N       0.4,0.5 , 0.5,0.6 , 0.2,0.3       0.3,0.4 , 0.5,0.6 , 0.1,0.2       0.3,0.4 , 0.1,0.2 , 0.2,0.3       0.4,0.5 , 0.1,0.2 , 0.3,0.4  

4N       0.6,0.7 , 0.2,0.3 , 0.1,0.2       0.4,0.5 , 0.1,0.2 , 0.2,0.3       0.4,0.5 , 0.2,0.3 , 0.1,0.2       0.3,0.4 , 0.4,0.5 , 0.2,0.3  

5N       0.40.5 , 0.2,0.3 , 0.2,0.3       0.2,0.3 , 0.6,0.7 , 0.2,0.3       0.5,0.6 , 0.4,0.5 , 0.2,0.3       0.3,0.4 , 0.6,0.7 , 0.3,0.4  

Table 5.2. The decision matrix 
2e  

            1O             2O              3O             4O  

1N  
     0.4,0.6 , 0.5,0.7 , 0.3,0.4       0.6,0.7 , 0.5,0.6 , 0.5,0.6       0.5,0.6 , 0.4,0.5 , 0.3,0.4       0.6,0.7 , 0.4,0.5 , 0.3,0.4  

2N  
     0.6,0.9 , 0.4,0.5 , 0.3,0.4       0.7,0.8 , 0.6,0.7 , 0.4,0.5       0.7,0.8 , 0.3,0.4 , 0.3,0.4       0.8,0.9 , 0.4,0.5 , 0.3,0.4  

3N  
     0.8,0.9 , 0.8,0.9 , 0.4,0.5       0.7,0.8 , 0.5,0.6 , 0.5,0.6       0.7,0.8 , 0.1,0.2 , 0.3,0.4       0.8,0.9 , 0.5,0.6 , 0.2,0.3  

4N  
     0.6,0.7 , 0.3,0.4 , 0.5,0.6       0.8,0.9 , 0.5,0.6 , 0.6,0.7       0.5,0.6 , 0.2,0.3 , 0.4,0.5       0.5,0.6 , 0.7,0.9 , 0.3,0.4  

5N  
     0.4,0.5 , 0.6,0.7 , 0.6,0.7       0.6,0.7 , 0.3,0.4 , 0.3,0.4       0.9,1 , 0.4,0.5 , 0.3,0.4       0.7,0.8 , 0.8,0.9 , 0.1,0.2  

Table 5.3. The decision matrix 
3e  

              1O               2O            3O             4O  

1N  
     0.7,0.8 , 0.4,0.5 , 0.4,0.5       0.7,0.8 , 0.3,0.4 , 0.6,0.7       0.6,0.7 , 0.3,0.4 , 0.4,0.5       0.5,0.6 , 0.4,0.5 , 0.4,0.5  

2N  
     0.6,0.7 , 0.5,0.6 , 0.4,0.5       0.7,0.8 , 0.6,0.7 , 0.5,0.6       0.8,0.9 , 0.2,0.3 , 0.7,0.8       0.6,0.7 , 0.3,0.4 , 0.4,0.6  

3N  
     0.7,0.8 , 0.3,0.4 , 0.5,0.6       0.8,0.9 , 0.2,0.4 , 0.6,0.7       0.8,0.9 , 0.2,0.4 , 0.4,0.5       0.9,1 , 0.1,0.2 , 0.5,0.6  

4N  
     0.7,0.8 , 0.4,0.5 , 0.6,0.7       0.6,0.9 , 0.1,0.2 , 0.7,0.8       0.6,0.7 , 0.1,0.2 , 0.5,0.6       0.6,0.7 , 0.3,0.4 , 0.4,0.5  
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5N  
    

 

12 21 13 31

0.9167 0.7 0.8 0.8333 0.7833 0.7

0.85 0.7833 0.867 0.8667 0.8833 0.75

0.7 0.7333 0.8333 0.7 , 0.7333 0.5833

0.8333 0.6 0.867 0.7833 0.7333 0.7333

0.7333 0.7333 0.8333 0.7333 0.7667 0.683

Supp Supp Supp Supp

 
 
 
    
 
 
  

23 32

0.7 0.8333

0.6667 0.9167

0.7167 0.7667

0.7667 0.8

3 0.8167 0.7333

0.8333 0.8667 0.9 0.9333

0.9 0.9667 0.8 0.85

0.7667 0.85 0.8833 0.7333

0.9 0.8 0.9 0.7833

0.7667 0.9167 0.8833 0.7333

Supp Supp

 
 
 
 
 
 
  

 
 
 
  
 
 
  

 

 

Step 3. Determine the weighted supports of INN  by other INNs 

by utilizing Equation (5.18), and determine the weight 

of INN  by utilizing Equation 

(5.19). In order to represent  as and as , 

which are given as follows: 

1 2

0.6408 0.525 0.565 0.625 0.5208 0.4783 0.515

0.6492 0.5758 0.58 0.6675 0.5275 0.5342 0.49

0.5367 0.4975 0.5842 0.5483 ; 0.4433 0.4808

0.59 0.4967 0.615 0.5933 0.5233 0.43

0.5617 0.5325 0.6192 0.55 0.4517 0.5042

T T

 
 
 
  
 
 
  

3

0.535

67 0.5142

0.5175 0.4317 ;

0.5317 0.47

0.5175 0.44

0.5292 0.5217 0.535 0.5817

0.5808 0.5742 0.4867 0.5692

0.49 0.4858 0.5325 0.485

0.5433 0.5033 0.5517 0.5133

0.4983 0.5375 0.5575 0.4767

T

 
 
 
 
 
 
  

 
 
 
 
 
 
  

 

1 2

0.2640 0.2533 0.2550 0.2581 0.3915 0.3929

0.26151 0.2528 0.2609 0.2652 0.3875 0.3937

0.2591 0.2518 0.2573 0.2616 ; 0.3893 0.3984

0.2570 0.2541 0.2589 0.2628 0.3939 0.3885

0.2611 0.2516 0.2600 0.2618 0.3883 0.

U U

 
 
 
  
 
 
  

0.3949 0.3901

0.3954 0.3853

0.3943 0.3871 ;

0.3928 0.3879

3951 0.3898 0.3891

 
 
 
 
 
 
  

 

     0.6,0.7 , 0.7,0.8 , 0.2,0.3      0.7,0.8 , 0.3,0.5 , 0.4,0.5      0.7,0.9 , 0.3,0.4 , 0.4,0.5      0.8,0.9 , 0.5,0.6 , 0.5,0.6

 c

ijT
c

ij

 1, 2,3d

ij d and c d 

 ( ) 1,2,3,4,5, 1,2,3,4, 1,2,3c

ij i j c   
c

ij  1,2,3,4,5, 1,2,3,4, 1,2,3i j c  

  
5 4

c

ijT


 1, 2,3cT c   ( )

5 4

c

ij


( 1, 2,3)cU c 
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3

0.3445 0.3538 0.3501 0.3517

0.3509 0.3535 0.3437 0.3494

0.3517 0.3498 0.3484 0.3513

0.3492 0.3574 0.3482 0.3494

0.3507 0.3534 0.3501 0.3491

U

 
 
 
 
 
 
  

 

Step 4. Utilize the WINPHM operator (Equation (5.20)) to get the overall decision 

matrix (and assume that ), which are given in Table 5.4. 

Table 5.4. The overall decision matrix  

                    1O                    2O                     3O                  4O  

1N       0.4482,0.5903 , 0.5066,0.6434 , 0.3399,0.4733

 

     0.5577,0.6593 , 0.3391,0.4442 , 0.4088,0.5230

 

     0.3662,0.4810 , 0.3740,0.4734 , 0.2646,0.3724

 

     0.4553,0.5563 , 0.4397,0.5387 , 0.3044,0.4067

 

2N

 

     0.5608,0.7529 , 0.5077,0.6470 , 0.3039,0.4397

 

     0.6251,0.7255 , 0.5132,0.6455 , 0.3726,0.4773

 

     0.6603,0.7947 , 0.3067,0.4417 , 0.4156,0.5294

 

     0.6553,0.7538 , 0.3382,0.4386 , 0.3034,0.4425

 

3N

 

     0.6234,0.7285 , 0.5705,0.6868 , 0.3717,0.4765

 

     0.5913,0.7040 , 0.4143,0.5437 , 0.4088,0.5231

 

     0.5914,0.7042 , 0.1392,0.2745 , 0.3048,0.4070

 

     0.7040,0.8332 , 0.2277,0.3427 , 0.3462,0.4475

 

4N

 

     0.6264,0.7261 , 0.3048,0.4071 , 0.4087,0.5227

 

     0.5848,0.7756 , 0.2294,0.3443 , 0.5230,0.6361

 

     0.4928,0.5928 , 0.1731,0.2735 , 0.3336,0.4440

 

     0.4567,0.5586 , 0.4874,0.6544 , 0.3038,0.4061

 

5N

 

     0.4574,0.5579 , 0.5225,0.6354 , 0.3428,0.4531

 

     0.4810,0.5912 , 0.4091,0.5453 , 0.3055,0.4078

 

     0.6863,0.8395 , 0.3731,0.4727 , 0.3042,0.4065

 

     0.5914,0.7041 , 0.6535,0.7623 , 0.3205,0.4214

 

Step 5. Determine the supports by using 

Equation (5.21). For simplicity, is denoted by to define the 

supports among the  and  column of . 

2k 

CDM

 , ( 1,2,...5, 1,2..,4; 1,2,...,4)ij iqSupp i j q  

 
5 1

,ij iqSupp
 jqSupp

jth qth CDM
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12 12 13 31 14 41

23 32

0.8894 0.8883 0.9475

0.9659 0.8752 0.9206

0.9267 , 0.8273 , 0.8456 ,

0.9239 0.8857 0.8352

0.9428 0.8487 0.9013

0.8

Supp Supp Supp Supp Supp Supp

Supp Supp

     
     
     
          
     
     
          

  24 42 34 43

909 0.8965 0.9384

0.8969 0.9093 0.9534

0.8862 , 0.8720 , 0.9200 .

0.8582 0.7729 0.8611

0.9016 0.8811 0.8614

Supp Supp Supp Supp

     
     
     
        
     
     
          

 

Step 6. Determine the weighted supports of INN  by utilizing Equation 

(5.22) and determine the weighs of the INNs by utilizing Equation 

(5.23). For computational clarity, we denote as and as , which 

are given as follows: 

0.7790 0.7147 0.6868 0.5560 0.1613 0.2074

0.7802 0.7328 0.6920 0.5583 0.1609 0.2088

0.7304 0.7094 0.6693 0.5312 , 0.1591 0.2096

0.7403 0.6623 0.6489 0.4951 0.1628 0.2073

0.7613 0.7193 0.6522 0.5268 0.1619 0.210

T U

 
 
 
  
 
 
  

0.2550 0.3763

0.2548 0.3755

0.2558 0.3755

0.2570 0.3729

7 0.2531 0.3743

 
 
 
 
 
 
  

 

Step 7. Using the WINPHM operator in Equation (5.24), to aggregate all the 

execution values 
ij  1,2,3,4j  in the ith line of CDM and get the comprehensive 

execution values ( 1,2,...,5)iN i  (assume that 2k  ). 

     1 0.4401,0.5531 , 0.4305,0.5385 , 0.3498,0.4614N  ; 

     2 0.6068,0.7359 , 0.4345,0.5587 , 0.3712,0.4904 ;N   

     3 0.6045,0.7137 , 0.3484,0.4767 , 0.3774,0.4805 ;N   

     4 0.5221,0.6468 , 0.3153,0.4443 , 0.4129,0.5198 ;N   

     5 0.5221,0.6468 , 0.5101,0.6262 , 0.3373,0.4390 .N   

 ijT ij

 1,2,3,4ij j 
ij

  
5 4

ijT


T  
5 4ij 

 U
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Step 8. Determine the score values of ( 1,2,...,5)iN i  by using Definition (1.1.1.11), we 

have 

         1 2 3 4 51.6065, =1.7439, =1.8176, =1.7383, =1.6281.SO N SO N SO N SO N SO N  

Then the alternatives can be arranged in decreasing order according to their score 

values: 

3 2 4 5 1.N N N N N     

Step 9. Based on Definition (1.1.1.12), and the best ETEs is 3N while the worst one is 

1.N  

5.3.2        Effect of the parameter  

In this subsection, we take different values of the parameter k in the WINPHM 

operator to observe the ranking results, hence we can determine the score values 

produced for different values of the parameter k, and the ranking results are given in 

Table 5.5. 

Table 5.5. Scores and ranking of the alternatives for different parameter values 

   k                         Score values i           Ranking order 

1k        
   

1 2 3

4 5

1.7512, =1.9127, =2.1819,

=1.9061, =1.9670.

SC N SC N SC N

SC N SC N



 
3 5 2 4 1.N N N N N     

2k        
   

1 2 3

4 5

1.6065, =1.7439, =1.8176,

=1.7383, =1.6281.

SO N SO N SO N

SO N SO N



 
3 2 4 5 1.N N N N N     

3k        
   

1 2 3

4 5

2.9781, =2.9816, =2.9869,

=2.9854, =2.9773.

SO N SO N SO N

SO N SO N



 
3 4 2 1 5.N N N N N     

k
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From Table 5, we can see that when the value of the parameter , the ranking 

order are slightly different, but the best and worst alternative remain the same as for 

the parameter value  When the value of the parameter , then the ranking 

order are different from the ones obtained for the parameter value . The best 

choice remains the same, but the worst alternative is changed. That is, for the 

worst alternative is 3N , while for the worst alternative is 5N , these results are 

reasonable, as we can consider the interrelationship for different number of attributes, 

when k=1, we don’t consider the interrelationship of the attributes; when k=2, we can 

take into account the interrelationship between any two attributes, and when k=3, we 

consider the interrelationship among any three attributes. These results show that the 

proposed AO is more flexible and practical. 

5.3.3    Comparison with Other Approaches 

In the following, we will utilize the other two approaches to solve the same example, 

and compare and examine the decision results obtained by these methods. The first 

approach is based on INBM operator proposed by Ji et al. [113], and the second 

approach is based on INPWA operator proposed by Liu et al. [71]. The score values 

and ranking order on these different approaches are shown in Table 5.6. 

Table 5.6. Score values and ranking order of different approaches 

Approach                Score values of      Ranking order 

Based on INWBM operator (

1p q  ) by Ji et al. [113] 

     
   

1 2 3

4 5

0.2004, =0.2326, =0.2633,

=0.2250, =0.2205.

SO N SO N SO N

SO N SO N



 
3 2 4 5 1.N N N N N   

 

Based on INWPA operator ( 1 

) by Liu et al. [71] 

     
   

1 2 3

4 5

1.7623, =1.9254, =2.1943,

=1.8964, =1.9794.

SO N SO N SO N

SO N SO N



 
3 5 2 4 1.N N N N N   

 

1k 

2.k  3k 

1,2k 

1,2k 

3k 
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Base on the proposed operator in 

this article ( 2k  ) 

     
   

1 2 3

4 5

1.6065, =1.7439, =1.8176,

=1.7383, =1.6281.

SO N SO N SO N

SO N SO N



 
3 2 4 5 1.N N N N N   

 

Base on the proposed operator in 

this article ( 1k  ) 

     
   

1 2 3

4 5

1.7512, =1.9127, =2.1819,

=1.9061, =1.9670.

SO N SO N SO N

SO N SO N



 
3 5 2 4 1.N N N N N   

 

 

From Table 5.6, we can observe that when the value of the parameter gets , 

there  are the same ranking results of our method in this paper with the method in Liu 

et al. [71], while when the value of the parameter gets , we get the same ranking 

results of our method in this paper with Ji et al’ method [113]. However, they are 

different in ranking results from the methods [71] and [113]. We think these results 

are reasonable and can explain them as follows.  

(1) When k=1, our method proposed in this paper can reduce into PA operator for 

INNs, and it is similar to method in [71], so these two methods produced the 

same ranking results. Obviously, this can explain the validity of our proposed 

method. 

(2) When k=2, our method proposed in this paper can reduce into BM operator for 

INNs, and it is similar to method in [113], so these two methods produced the 

same ranking results. Obviously, this can further explain the validity of our 

proposed method. 

(3) There are the deferent ranking results of our method when k=1 and method in 

[71] with our method when k=2 and method in [113], and the reason is that our 

method when k=1 and method in [71] cannot consider the interrelationship of 

the attributes while our method when k=2 and method in [113] can do. 

1k 

2k 
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Further, we can compare the existing two methods [113] and [71] with our method 

in this paper as follows. 

(1) Ji et al. [113] developed the method based on INWBM operator, and the 

developed aggregation operators only consider the interrelationship between two 

attributes and cannot eliminate the effect of awkward data. While the proposed 

aggregation operator has the properties that it can consider the interrelationship 

among more than two attributes  or doesn’t consider the interrelationship of the 

attributes (when k=1), and also remove the effect of awkward data. Obviously, our 

method is more flexible and practical then the method in [8]. 

(2) Liu et al. [71] developed the method based on INPWA operator. The developed 

operator can only eliminate the effect of awkward data given by the DMs and cannot 

consider the correlation among attributes. Obviously, our method is also more flexible 

and practical then the method in [71].  

In practical MAGDM or MADM problems, our proposed approach is superior to 

the existing two approaches. 

5.3.4      Conclusion 

The HM operator is an aggregation tool that can consider the interrelationship 

between multiple input parameters, and the PA operator has the property that it can 

reduce the potency of awkward assessment values in the decision consequences. The 

INSs are a more powerful tool to handle uncertain information that exists in real life 

problems. Therefore, for some complex decision-making situations in this article, we 

combine the conventional HM operator to the traditional PA operator in interval 

neutrosophic settings and present the two novel interval neutrosophic aggregation 

 2k 
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operators, that is, the interval neutrosophic power Hammy mean (INPHM) operator 

and the weighted interval neutrosophic power Hammy mean (WINPHM) operators. 

Then, some preferable properties and special cases of the developed aggregation 

operators are discussed. Moreover, based on these developed aggregation operators, 

we propose a new method to MAGDM. Lastly, the developed approach is applied to 

some practical problems and shows that the proposed aggregation operators are better 

and flexible then some existing aggregation operators. The other feature of the 

developed aggregation operator is generalization of some existing aggregation 

operators. 
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Chapter 6  

Multi-attribute Decision Making Method Based Interval 

Neutrosophic Dombi Power Bonferroni Mean Operator 

     In this chapter, firstly, we describe some operational laws for INNs over Dombi 

TN and TCN and examined numerous enviable properties of these newly developed 

operational laws. Secondly, we enlarged PBM operator over Dombi operations to 

develop INDPBM operator, INWDPBM operator, INDPGBM operator, INWDPGBM 

operator and discussed some properties of these aggregation operators. Then, we 

develop a MADM method over these aggregation operators to deal with IN 

information. Lastly, an illustrative example is demonstrated to show the effectiveness 

and practicality of the developed MADM method.  

6.1  Some operations of INSs based on Dombi TN and TCN 

6.1.1      Dombi TN and TCN 

Dombi operations consist of the Dombi sum and Dombi product. 

6.1.1.1 Definition [96]  

Let  and  be any two real number. Then, the Dombi TN and TCN among and 

are explain as follows: 

1

1
( , ) ;

1 1
1

DT
  

 

 

 



      
     

     

                                                        (6.1) 

 
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*

1

1
( , ) ;

1
1 1

DT
  

 

 

 



     
     

      

                                                           (6.2) 

Where 1,  and      , 0,1 0,1 .     

According to the Dombi TN and TCN, we develop few operational rules for INNs. 

6.1.1.2 Definition  

Let , , , , ,L U L U L U                 ,
1 1 1 1 1 1 1, , , , ,L U L U L U                 and

2 2 2 2 2 2 2, , , , ,L U L U L U                  be any INNs and 0A . Then, the operational rules 

based on Dombi TN and TCN for INNs are expressed as follows; 

1 2 1 1

1 2 1 2

1 2 1 2

1

1 2 1 2

1 2 1

1 1
(1) 1 ,1 ,

1 1
1 1 1 1

1 1
,

1 1 1 1
1 1

L L U U

L L U U

L L U U

L L U

    

  

 
 
 
 

    
              

              
                  






          

          
           

1

2

1 1

1 2 1 2

1 2 1 2

,

1 1
, ;

1 1 1 1
1 1

U

L L U U

L L U U

 

    






  

   
     

 
 
 
 
 
                  

              
                           (6.3) 
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1 2 1 1

1 2 1 2

1 2 1 2

1

1 2 1 2

1 2 1

1 1
(2) , ,

1 1 1 1
1 1

1 1
1 ,1

1 1
1 1 1 1

L L U U

L L U U

L L U U

L L U v

    

  

 
 
 
 

   
              

              
                  





 

          
          
           

1

2

1 1

1 2 1 2

1 2 1 2

,

1 1
1 , ;

1 1
1 1 1 1

U

L L U U

L L U U

 

    






  

   
     

 
 
 
 
 

              
              
                                           (6.4) 

1 1 1 1

1

1 1 1 1
(3) 1 ,1 , ,

1 1
1 1 1 1

1 1

1 1
,

1 1
1 1

L U L U

L U L U

L U

L U

      

 

   
   
   
   

     
                    
                                                    

       
          

A

A A A A

A A

1
;

 

 
 
 
 
 

  
      

  (6.5) 

1 1 1 1

1

1 1 1 1
(4) , , 1 ,1

1 1
1 1 1 1

1 1

1 1
1 ,1

1 1
1 1

L U L U

L U L U

L U

L U

      

 

   
   
   
   

  
   

                    
                                                  

 

    
         

A

A A A A

A A

1
.

 

 
 
 
 
 

  
        

(6.6) 
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6.2 The INPBM operator based on Dombi TN and Dombi TCN 

In this part, based on the Dombi operational laws for INNs, we combine PA operator 

and BM to introduced INDPBM, INWDPBM, INDPGBM, and INWDPGBM and 

discussed some related properties. 

6.2.1 The INDPBM operator and INWDPBM operator 

In this subpart, based on the Dombi operational laws for INNs, we combine PA 

operator and BM to introduced INDPBM, INWDPBM and discussed some related 

properties. 

6.2.1.1 Definition  

Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs, and , 0g h  . If  

 
 

 

 

 

1

,

1 2 2 , 1

1 1

1 ( )1 ( )1
, ,...., .

1 ( ) 1 ( )

g h g h

s
jux y

s u D js su j
u j

a a
a a

s Ts T
INDPBM

s s
T T






 

    
    
                     

  (6.7) 

Then, ,x yINDPBM  is said to be IN Dombi power Bonferroni mean (INDPBM) 

operator, where    
1,

, .
s

f a f
f f a

T Sup
 

    ,a fSup  is the SPD for a  from ,f

which must assures the following characteristics: (1)    , 0,1 ;a fSup   (2) 

   , , ;a f f aSup Sup (3)    , ,a f c bSup Sup , if    , ,a f c bD D , in 

which  ,c bD is the distance measure among INNs c  and b defined in Definition 

(1.1.1.13).  

    In order to simplify Equation (6.7), we can define 
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and call  1 2, ,...,
T

s      is the power weight vector (PWV), such that 
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6.2.1.2 Theorem 
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Proof: Since 
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


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u j
u j




  
  
  
   
   
    

 


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   

   
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1 1
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u j
u j u u j j i i j j

u u j j u u j j

g s c h s c g s c h s c
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    

    




 
                                      

 

  
  

      
          

  



   

1
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1 1
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1 1
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s

u j
u j

v

u j
u j u u j j u u j jg s g h s g g s g h s g

 

 

    







 
 
 
 
 
 
 
 
  
   
  
  
  
  

  
  

 
                                     

 





   
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u j
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    


 
 
 
 
 
 

 
 
  
                                       

  
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     
  

  

      
                                                                  

       

  
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 
 
 
 
  
 

     
                                                        

     

   .

 
  
  
  
  
  

 

So, we can have 
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s s

u j u ju u j j u u j j
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 

 

   
 

 

                                                                                  

 
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









  
    
                                                          

 

  
  
  
  
  
  
  
 


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 
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                                                                               

  .
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Now, put 
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This is the required proof of the Theorem (6.2.1.2). 

In order to determine the PWV  , we firstly need to determine the support degree 

among INNs. In general, the similarity measure among INNs can replace the support 

degree among INNs.  i.e; 

   , 1 , ( , 1,2,...., ).d l d lSup D d l s                                                  (6.12) 

6.2.1.3 Example  

Let            1 20.3,0.7 , 0.2,0.4 , 0.3,0.5 , 0.4,0.6 , 0.1,0.3 , 0.2,0.4  and      3 0.1,0.3 , 0.4,0.6 , 0.2,0.4

be any three INNs, 1, 1, 3g h    , then, by Theorem (6.2.1.2), Equation (6.10), we 

can aggregate these three INNs and generate the comprehensive value 

, , , , ,L U L U L U                 which is calculated as follows. 

Step 1. Determine the supports  , , , 1,2,3i jSup i j  by using Eq. (6.12), and then we get

           1 2 2 1 1 3 3 1 2 3 3 2, , 0.9, , , 0.933, , , 1.Sup Sup Sup Sup Sup Sup       

Step 2. Determine the PWV    
3

1,

, ,z z s

s s z

T Sup
 

  , and we have 

            1 1 2 1 3 2 2 1 2 3, , 1.833, , , 1.9,T Sup Sup T Sup Sup       

     3 3 1 3 2, , 1.933,T Sup Sup    
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and 
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Step 3. Determine the comprehensive value , , , , ,L U L U L U                 by using Eq. 

(6.10), we have 
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  

Similarly, we calculate  

     0.2590,0.5525 , 0.2221,0.4373 , 0.2334,0.4365 . 

6.2.1.4 Theorem (Idempotency)  

Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs, if all 

 1,2,...,u u s  are equal, that is  , , , , , , 1,2,..., ,L U L U L U

u u s                    then 

 ,

1 2, ,...,g h

sINDPBM  .
                                                                           (6.13)
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Proof. Since all  , , , , , , 1,2,..., ,L U L U L U

u u s                    so we have 

 , 1,d aSup   for all , 1,2,...,d a s , so 
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6.2.1.5    Theorem (Commutativity)  

Assume that u
  is any permutation of  1, 2,..., ,u u s then 

   , ,
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s sINDPBM INDPBM    .                                           (6.14) 
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6.2.1.6    Theorem  (Boundedness) 
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Therefore according to the Definition (1.1.1.12), we have 

 1 2, ,..., .sINDPBM   

In a similar way , we can show that  1 2, ,..., .sINDPBM   Hence 

 1 2, ,..., .sINDPBM    

Now, we shall study few special cases of the ,g hINDPBM , with respect to g  and .h  

(1) When 0, 0,h    then we can get 

 ,0

1 2, ,....,g

sINDPBM  
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(2) When 1, 0, 0,g h     then we can get 
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(3) When 1, 0,g h    then we can get 
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(6.18) 

        In the INDPBM operator, we can only take the correlation among the input 

arguments and the PWV, and cannot consider the importance degree of input 

arguments. In what follows, the INWPDBM operator shall be proposed to overcome 

the shortcoming of the INDPBM operator. 
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6.2.1.8 Theorem  
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obtained using Definition (6.2.1.7), is represented by 
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Proof: Similar to Theorem (6.2.1.2). 

     Similar to the INDPBM operator, the INWDPBM operator has the properties of 

boundedness, idempotency and commutativity. 

6.2.2   The INDPGBM Operator and INWDPGBM Operator 

In this subsection, we develop INDPGBM and INWDPGBM operators and discussed 

related properties and special cases with respect to the parameter. 

6.2.2.1 Definition 

 Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs, then the 

INDPGBM operator is defined as; 
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  
  

  

                     (6.21) 

Then, ,g hINDPGBM  is said to be an INDPGBM operator. Where 

   
1,

, ,
l

z z s

s s z

T Sup
 

    ,z sSup  is the support degree for z  from ,s which satisfy 

the following axioms: (1)    , 0,1z sSup  ; (2)    , , ;z s s zSup Sup (3) 

   , ,z s a bSup Sup , if    , ,z s a bD D , in which  ,a bD is the distance 

measure between INNs a  and b  defined in Definition (1.1.1.13).  

    In order to simplify Equation (6.21), we can define 
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
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
                                                                                     (6.22) 

and call  1 2, ,...,
T

s     is the power weight vector, such that 
1

0, 1.
s

z z

z

     

Then, Equation (6.21) can be written as follows: 
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                                     (6.23) 

6.2.2.2    Theorem  

 Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs. Then, the result 

obtained from Eq. (6.21), is expressed as 
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6.2.2.3     Theorem  (Idempotency) 

 Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs, if all 

 1,2,...,i i l  are equal, that is  , , , , , , 1,2,..., ,L U L U L U

u u s                    then 

 ,

1 2, ,..., .g h

sINDPGBM  .                                                                            (6.26) 

6.2.2.4     Theorem (Commutativity) 

Assume that u
  is any permutation of  1, 2,..., ,u u s then 

   , ,

1 2 1 2, ,..., , ,..., .g h g h

s sINDPGBM INDPGBM                                             (6.27) 

6.2.2.5     Theorem  (Boundedness) 

 Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs, and 
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then 

 1 2, ,..., .sINDPGBM                                                                       (6.28) 

6.2.2.6        Definition  

Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs, then the 

INWDPGBM operator is defined as 
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  
  

  

                    (6.29) 
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6.2.2.7 Theorem  

Let , , , , , , ( 1,2,..., )L U L U L L

u u u u u u u u s                  , be a group of INNs. Then the 

aggregated result from Eq. (6.29), is expressed as; 
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6.3 MADM Approach Based on the Developed Aggregation 

Operators 

In this section, based upon the developed INWDPBM and INWDPGBM operators, 

we will propose a novel MADM method, which is defined as follows; 

Let us assume that, in a MADM problem, we need to evaluate u alternatives 

 1 2, ,..., uN N N N with respect to v  attributes  1 2, ,..., vO O O O , and the importance 

degree of the attributes is represented by  1 2, ,...,
T

v    , satisfying the condition 

 
1

0,1 , 1.
v

h h

h

 


   The decision matrix for this decision problem is denoted by 

gh

m n

M d


 
  

, where , , , , ,L U L U L U
gh gh gh gh gh gh ghd                  is an INN, provided by the 

DM for the alternative gN for the attribute hO ,  1, 2,..., ; 1, 2,..., .g u h v   Then the main 

purpose is to rank the alternative and select the best alternative. 

In the following, we will use the proposed INWDPBM and INWDPGBM to solve this 

MADM problem, and the detailed decision steps are as follows: 

Step 1. Standardize the attribute values. Normally, in real DM problems, the attributes 

are of two types, (1) cost type, (2) benefit type. To get better result, it is necessary to 

change cost type of attribute values to benefit type using the following formula: 

, , 1 ,1 , ,L U U L L U
gh gh gh gh gh gh ghd                                                                          (6.31) 

Step 2. Calculate the supports; 
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   , 1 , , ( 1,2,..., ; , 1,2,..., ),gh gl gh glSupp d d D d d g u h l v                                           (6.32) 

where,  ,gh glD d d , is the distance measure given in Equation (1.17). 

Step 3. Calculate   ;ghT d  

     
1

, , 1,2,..., ; , 1,2,..., ;
u

gh gh gl

l
l h

T d Supp d d g u h l v



                                               (6.33) 

Step 4. Calculate all the attribute values ( 1,2,..., )ghd h v to the comprehensive value 

gR by using INWDPBM or INWDPGBM operators shown as follows; 

 1 2, ,...., ;g g gvgR INWDPBM d d d                                                                    (6.34) 

Or 

 1 2, ,...., ;g g gvgR INWDPGBM d d d                                                                   (6.35) 

Step 5. Determine the score values, accuracy values of ( 1,2,..., ),gR g u  using 

Definition (1.1.1.11). 

Step 6. Rank all the alternatives according to their score and accuracy values, and 

select the best alternative using Definition (1.1.1.12). 

Step 7. End. 

This decision steps are also described in Figure 1. 
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Figure 1. Flow chart for developed approach. 

 

6.4 Illustrative Example 

In this part, an example adapted from [79] is used to illustrate the application and 

effectiveness of the proposed method in MADM problem. 

An investment company wants to invest a sum of money in the best option. The 

company must invest a sum of money in the following four possible companies 

(alternatives); (1) car company 1N ; (2) food company 2N ; (3) Computer company 3N ; 

(4) An arm company 4N , and the attributes under consideration are (1) risk analysis 1O ; 

(2) growth analysis 2O ; (3) environmental impact analysis 3O . The importance degree 
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of the attributes is  0.35,0.4,0.25
T

  . The four possible alternatives ( 1,...,4)gN g   are 

evaluated with to the three above attributes ( 1,...,4)hO h  by the form of INN, and the 

IN decision matrix M  is listed in Table 6.1. The purpose of this decision making 

problem is to rank the alternatives. 

6.1 The Decision Making Steps. 

Step 1. Since 1O , 2O are of benefit type, and 3O is of cost type. So 3O will be change 

into benefit type utilizing Equation (6.31). So the normalize decision matrix NM  is 

given in Table 6.2. 

Table 6.1. The IN decision matrix M  

                      1O                       2O                     3O  

1N       0.4,0.5 , 0.2,0.3 , 0.3,0.4

 

     0.4,0.6 , 0.1,0.3 , 0.2,0.4       0.7,0.9 , 0.2,0.3 , 0.4,0.5

 

2N

 

     0.6,0.8 , 0.1,0.2 , 0.1,0.2       0.6,0.7 , 0.15,0.25 , 0.2,0.3

 

     0.3,0.6 , 0.6,0.7 , 0.8,0.9

 

3N

 

     0.3,0.6 , 0.2,0.3 , 0.3,0.4

 

     0.5,0.6 , 0.2,0.3 , 0.3,0.4       0.4,0.5 , 0.6,0.8 , 0.7,0.9

 

4N

 

     0.7,0.8 , 0.01,0.1 , 0.2,0.3

 

     0.6,0.7 , 0.1,0.2 , 0.3,0.4       0.4,0.6 , 0.4,0.5 , 0.8,0.9

 

 

Step 2. Determine the supports  , , ( 1,2,3,4; , 1,2,3),gh glSupp d d g h l   using Equation 

(6.32),(for simplicity we denote,  ,gh glSupp d d with ,

g

gh glS ), we have 
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1 1 1 1 1 1 2 2

11,12 12,11 12,13 13,12 11,13 13,11 11,12 12,11

2 2 2 2 3 3 3 3

12,13 13,12 11,13 13,11 11,12 12,11 12,13 13,12

3 3

11,13 13,11 11

0.950; 0.800; 0.85; 0.933;

0.717; 0.683; 0.967; 0.733;

0.700;

S S S S S S S S

S S S S S S S S

S S S

       

       

  4 4 4 4 4 4

,12 12,11 12,13 13,12 11,13 13,110.902; 0.783; 0.752;S S S S S     

  

 Step 3. Determine  ;( 1,2,3,4; 1,2,3)ghT d g h  using Equation (6.33), 

1 1 1 2 2 2

11 12 13 11 12 13

3 3 3 4 4 4

11 12 13 11 12 13

1.800, 1.750, 1.650, 1.617, 1.650, 1.400,

1.667, 1.700, 1.433, 1.653, 1.685, 1.535.

T T T T T T

T T T T T T

     

     
  

Step 4. (a) Determine the comprehensive value of every alternative using INWDPBM 

operator, that is Equation (6.34),  1; 3Assumethat g h    , we have 

     1 0.3974,0.5195 , 0.1823,0.3023 , 0.3353,0.4796 ;R  ; 

     2 0.6457,0.7954 , 0.1700,0.2885 , 0.2044,0.3265 ;R   

     3 0.4846,0.6503 , 0.2556,0.3711 , 0.3376,0.4394 ;R   

     4 0.6938,0.7953 , 0.1062,0.2154 , 0.3069,0.4278 .R   

 (b) Determine the comprehensive value of every alternative using INWDPGBM 

operator, that is Equation (6.35),  1; 3Assumethat g h    , we have 

     1 0.4026,0.5381 , 0.1570,0.2977 , 0.2998,0.4520 ;R   

     2 0.6654,0.8193 , 0.1558,0.2686 , 0.1836,0.3035 ;R   

     3 0.5159,0.6732 , 0.2366,0.3473 , 0.3265,0.4279 ;R   

     4 0.5159,0.8193 , 0.0938,0.1952 , 0.2862,0.4037 .R   
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Table 6.2. The Normalize IN decision matrix D  

                      1O                       2O                     3O  

1N       0.4,0.5 , 0.2,0.3 , 0.3,0.4

 

     0.4,0.6 , 0.1,0.3 , 0.2,0.4       0.4,0.5 , 0.2,0.3 , 0.7,0.9

 

2N

 

     0.6,0.8 , 0.1,0.2 , 0.1,0.2

 

     0.6,0.7 , 0.15,0.25 , 0.2,0.3

 

     0.8,0.9 , 0.6,0.7 , 0.3,0.6

 

3N

 

     0.3,0.6 , 0.2,0.3 , 0.3,0.4

 

     0.5,0.6 , 0.2,0.3 , 0.3,0.4       0.7,0.9 , 0.6,0.8 , 0.4,0.5

 

4N

 

     0.7,0.8 , 0.01,0.1 , 0.2,0.3

 

     0.6,0.7 , 0.1,0.2 , 0.3,0.4       0.8,0.9 , 0.4,0.5 , 0.4,0.6

 

 

Step 5. (a) Determine the score values of ( 1,2,3,4),gR g   using Definition (1.1.1.11), 

we have 

1 2 3 4( ) 1.8087, ( ) 2.2259, ( ) 1.8656, ( ) 2.2164;SO R SO R SO R SO R     

(b) Determine the score values of ( 1,2,3,4),gR g   using Definition (1.1.1.11), we have 

1 2 3 4( ) 1.8671, ( ) 2.2866, ( ) 1.9254, ( ) 2.1781;SO R SO R SO R SO R     

Step 6.(a) According to their score and accuracy values, using Definition (1.1.1.12), 

the ranking order is 2 4 3 1.N N N N    So the best alternative is 2 ,N while the worst 

alternative is 1.N  

(b) According to their score and accuracy values, using Definition (1.1.1.12), the 

ranking order is 2 4 3 1.N N N N    So the best alternative is 2 ,N while the worst 

alternative is 1.N  
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So using INWDPBM or INWDPGBM operators the best alternative is 2N while the 

worst alternative is 1.N  

6.4.1   Effect of Parameters   g and h on DM Result of This Example 

In order to show the effect of the parameter and on the DM result of this 

example, we set different parameter values for g and h , and 3  , is fixed,  to show 

the ranking result of this example. The ranking results are given in Table 6.3. 

As we know from Table 6.3, and Table 6.4 the score values and ranking order are 

different for different values of the parameter g and h , and 3  , is fixed,  while using 

INWDPBM operator and INWDPGBM operator. We can see from Table 6.3, and 

Table 6.4, when the parameter . In some situation the ranking order may also be 

different, while using different parameter values 1 0g or and 0 1h or , then the best 

choice is 4N  and the worst one is 1.N  In simple words, when the interrelationship 

among attributes are not considered the best choice is 4N  and the worst one is 1.N  On 

the other hand when we use different values for the parameters g and h , while using 

INWPBM and INWDPGBM operators, the ranking result is changed. That is from 

Table 4, we can see that when the parameter values 1, 1g h  , the ranking results are 

changed as the one obtained for 1 0g or and 0 1h or . In this case the best alternative 

is 2N  while the worst alternative remains the same.  

Table 6.3. Ranking order of decision result using different values for g and h  for 

INWDPBM 

x y
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Parameter 

Values 

INWDPBM Operator Ranking Orders 

1, 0, 3g h     
1 2

3 4

( ) 1.9319, ( ) 2.4172,

( ) 2.0936, ( ) 2.4222;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

1, 5, 3g h     
1 2

3 4

( ) 1.8338, ( ) 2.2684,

( ) 1.9049, ( ) 2.2666;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

3, 7, 3g h     
1 2

3 4

( ) 1.8169, ( ) 2.2398,

( ) 1.8777, ( ) 2.2327;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

5, 10, 3g h     
1 2

3 4

( ) 1.8143, ( ) 2.2354,

( ) 1.8738, ( ) 2.2275;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

1, 10, 3g h     
1 2

3 4

( ) 1.8501, ( ) 2.2966,

( ) 1.9355, ( ) 2.3012;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

10, 4, 3g h     
1 2

3 4

( ) 1.8182, ( ) 2.2419,

( ) 1.8796, ( ) 2.2352;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

3, 12, 3g h     
1 2

3 4

( ) 1.8285, ( ) 2.2592,

( ) 1.8958, ( ) 2.2557;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

 

Table 6.4. Ranking order of decision result using different values for g and h  for 

INWDPGBM 

Parameter INWDPGBM Operator Ranking Orders 
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Values 

1, 0, 3g h     
1 2

3 4

( ) 1.5032, ( ) 1.7934,

( ) 1.5136, ( ) 1.8037;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

1, 5, 3g h     
1 2

3 4

( ) 1.8220, ( ) 2.2256,

( ) 1.8717, ( ) 2.1140;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

3, 7, 3g h     
1 2

3 4

( ) 1.8539, ( ) 2.2686,

( ) 1.9094, ( ) 2.1584;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

5, 10, 3g h     
1 2

3 4

( ) 1.8583, ( ) 2.2745,

( ) 1.9146, ( ) 2.1647;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

1, 10, 3g h     
1 2

3 4

( ) 1.7814, ( ) 2.1710,

( ) 1.8248, ( ) 2.0632;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

10, 4, 3g h     
1 2

3 4

( ) 1.8087, ( ) 2.2259,

( ) 1.8656, ( ) 2.2164;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

3, 12, 3g h     
1 2

3 4

( ) 1.8671, ( ) 2.2866,

( ) 1.9254, ( ) 2.1781;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

 

From Table 6.3 and Table 6.4, we can observe that, when the values of the parameter 

increases the score values obtained using INWDPBM decreases, while using 

INWDPGBM operator the score values increases, but the best choice is 2N  for 

1.g h   
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From Table 6.5, we can see that different ranking orders are obtained for different 

values of  . When, 0.5 and 2   , the best choice is 4N  by the INWPBM 

operator; when we use the INWPGBM operator, it is 2N . Similarly, for other 

values of 2  , the best choice is 2N  while the worst is 1N .  

Table 6.5. Ranking order of decision result using different values for  

Parameter 

Values 

INWDPBM Operator INWDPGBM 

Operator 

Ranking Orders 

1, 1, 0.5g h   

 
1 2

3 4

( ) 1.6662, ( ) 2.1025,

( ) 1.7606, ( ) 2.1972;

SO R SO R

SO R SO R

 

 

 

1 2

3 4

( ) 1.7870, ( ) 2.2347,

( ) 1.9103, ( ) 2.1812;

SO R SO R

SO R SO R

 

 

 

4 2 3 1.N N N N  

2 4 3 1.N N N N    

1, 1, 2g h   

 
1 2

3 4

( ) 1.7783, ( ) 2.2015,

( ) 1.8408, ( ) 2.2091;

SO R SO R

SO R SO R

 

 

 

1 2

3 4

( ) 1.8491, ( ) 2.2786,

( ) 1.9213, ( ) 2.1799;

SO R SO R

SO R SO R

 

 

 

4 2 3 1.N N N N  

2 4 3 1.N N N N    

1, 1, 4g h   

 
1 2

3 4

( ) 1.8229, ( ) 2.2363,

( ) 1.8803, ( ) 2.2219;

SO R SO R

SO R SO R

 

 

 

1 2

3 4

( ) 1.8740, ( ) 2.2856,

( ) 1.9275, ( ) 2.1751;

SO R SO R

SO R SO R

 

 

 

2 4 3 1.N N N N  

2 4 3 1.N N N N    

1, 1, 7g h   

 
1 2

3 4

( ) 1.8375, ( ) 2.2455,

( ) 1.9037, ( ) 2.2315;

SO R SO R

SO R SO R

 

 

 

1 2

3 4

( ) 1.8747, ( ) 2.2763,

( ) 1.9331, ( ) 2.1669;

SO R SO R

SO R SO R

 

 

 

2 4 3 1.N N N N  

2 4 3 1.N N N N    

1, 1, 10g h   

 
1 2

3 4

( ) 1.8418, ( ) 2.2477,

( ) 1.9160, ( ) 2.2365;

SO R SO R

SO R SO R

 

 

 

1 2

3 4

( ) 1.8701, ( ) 2.2698,

( ) 1.9373, ( ) 2.1622;

SO R SO R

SO R SO R

 

 

 

2 4 3 1.N N N N  

2 4 3 1.N N N N    


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1, 1, 15g h   

 
1 2

3 4

( ) 1.8447, ( ) 2.2488,

( ) 1.9270, ( ) 2.2409;

SO R SO R

SO R SO R

 

 

 

1 2

3 4

( ) 1.8642, ( ) 2.2637,

( ) 1.9414, ( ) 2.1582;

SO R SO R

SO R SO R

 

 

 

2 4 3 1.N N N N  

2 4 3 1.N N N N    

1, 1, 20g h   

 
1 2

3 4

( ) 1.8460, ( ) 2.2492,

( ) 1.9328, ( ) 2.2432;

SO R SO R

SO R SO R

 

 

 1 2

3 4

( ) 1.8608, ( ) 2.2604,

( ) 1.9435, ( ) 2.1562;

SO R SO R

SO R SO R

 

 

 

2 4 3 1.N N N N  

2 4 3 1.N N N N    

 

6.3   Comparing With the Other Methods 

To illustrate the advantages and effectiveness of the developed method in this 

article, we solve the above example by four existing MADM methods, including IN 

weighted averaging operator, IN weighted geometric operator [8], the similarity 

measure defined by Ye [21], Muirhead mean operators developed by Liu et al. [79], 

IN power aggregation operator developed by Liu et al [71].  

From Table 6.6, we can see that the ranking orders are the same as the ones 

produced by the existing aggregation operators when the parameter values 

1, 0, 3x y    , but the ranking orders are different when the interrelationship 

among attributes are considered. That is why the developed method based on the 

proposed aggregation operators is more flexible due the parameter and practical as it 

can consider the interrelationship among input arguments. 

Table 6. Ranking order of the alternatives using different aggregation operators. 

Aggregation 

Operator 

Parameter Score Values Ranking Order 



204 

 

INWA operator [8] No 
1 2

3 4

( ) 1.8430, ( ) 2.2497,

( ) 1.9151, ( ) 2.2788;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

INWGA operator [8] No 
1 2

3 4

( ) 1.7286, ( ) 2.0991,

( ) 1.7751, ( ) 2.1608;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

Similarity measure 

Hamming distance 

[21] 

No * *

1 1 1 2

* *

1 3 1 4

( , ) 0.7948, ( , ) 0.9581,

( , ) 0.8805,D ( , ) 0.9725;

D R R D R R

D R R R R

 

 
 4 2 3 1.N N N N    

Generalized power 

Aggregation 

operator [71] 

Yes 

1   

1 2

3 4

( ) 1.8460, ( ) 2.2543,

( ) 1.9163, ( ) 2.2799;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

INWMM operator 

[79] 

Yes 

(1,1,1)P  

1 2

3 4

( ) 1.8054, ( ) 2.2321,

( ) 1.9172, ( ) 2.2773;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

INWDMM operator 

[79] 

Yes 

(1,1,1)P  

1 2

3 4

( ) 1.6260, ( ) 1.9202,

( ) 1.7061, ( ) 2.0798;

SO R SO R

SO R SO R

 

 

 
4 2 3 1.N N N N    

Proposed INWDPBM 

1, 0, 3x y     

Yes 
1 2

3 4

( ) 1.9319, ( ) 2.4172,

( ) 2.0936, ( ) 2.4222;

SO R SO R

SO R SO R

 

 

 4 2 3 1.N N N N    

Proposed 

INWDPGBM 

Yes 
1 2

3 4

( ) 1.5032, ( ) 1.7934,

( ) 1.5136, ( ) 1.8037;

SO R SO R

SO R SO R

 

 

 4 2 3 1.N N N N    
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1, 0, 3g h     

INWDPBM operator 

in this article 

Yes 

1, 3g h     

1 2

3 4

( ) 1.8087, ( ) 2.2259,

( ) 1.8656, ( ) 2.2164;

SO R SO R

SO R SO R

 

 

 
2 4 3 1.N N N N    

INWDPBM operator 

in this article 

Yes 

1, 3g h     

1 2

3 4

( ) 1.8671, ( ) 2.2866,

( ) 1.9254, ( ) 2.1781;

SO R SO R

SO R SO R

 

 

 2 4 3 1.N N N N    

From the above comparative analysis, we can know the proposed method has the 

following advantages, that is, it can consider the interrelationship among the input 

arguments and can relieve the effect of the awkward data by PWV at the same time, 

and it can permit more precise ranking order than the existing methods. The proposed 

method can take the advantages of PA operator and BM operator concurrently, these 

factors makes it a little complex in calculations. 

The score values and ranking orders by these methods are shown in Table 6.6. 

6.4.2     Conclusion 

The PBM operator can take the advantage of PA operator, which can eliminate 

the impact of awkward data given by the predisposed DMs, and BM operator, which 

can consider the correlation between two attributes. The Dombi operations of TN and 

TCN proposed by Dombi have the edge of good flexibility with general parameter. In 

this chapter, we combined PBM with Dombi operation and proposed some 

aggregation operators to aggregate INNs. Firstly, we defined some operational laws 

for INSs based on Dombi TN and TCN and discussed some properties of these 
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operations. Secondly, we extended PBM operator based on Dombi operations to 

introduce INDPBM operator, INWDPBM operator, INDPGBM operator, 

INWDPGBM operator and discussed some properties of these aggregation operators. 

The developed aggregation operators have the edge that they can take the correlation 

among the attributes by BM operator, and can also remove the effect of awkward data 

by PA operator at the same and due to general parameter, so they are more flexible in 

the aggregation process. Further, we developed a novel MADM method based on 

developed aggregation operators to deal with interval neutrosophic information. 

Finally, an illustrative example is used to show the effectiveness and practicality of 

the proposed MADM method and comparison were made with the existing methods. 

The proposed aggregation operators are very useful to solve MADM problems. 

In future research, we shall define some distinct aggregation operators for SVHFSs, 

INHFSs, double valued neutrosophic sets and so on based on Dombi operations and 

apply them to MAGDM. 
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Chapter 7  

Group Decision Making Method under Hesitant Interval 

Neutrosophic Uncertain Linguistic Environment 

In this chapter, we propose the concept of HINULSs and HINULEs, then developed 

some basic operational rules, properties, score, accuracy and certainty functions for 

HINULEs. Then, based on these operational rules, we described some aggregation 

operators, such as HINULPWA operator, HINULPWG operator and GHINULPWA 

operator to aggregate HINUL information. Further, some desired characteristics of 

these developed operators are examined. A GDM method over GHINULPWA 

operator is initiated to handle MCGDM problems, in which criteria values take the 

form of HINULEs and there exist prioritized relations between the criteria. Lastly, a 

numerical example about investment alternatives is given to show the efficiency of 

the proposed method. 

7.1 Hesitant Interval Neutrosophic Uncertain Linguistic Set  

In this section, the concept of HINULS, some operational laws, and related properties 

for HINULSs are developed.  
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7.1.1    HINULS and their operational laws 

7.1.1.1 Definition  

Let    be the domain set, then a HINULS in is represented by the following 

mathematical symbol: 

 , ( ) | .
HI

HI o o o                                                                                     (7.1) 

Where,   
( )

( ) ( )

HI HI

HI HI
b o

o b o


 is a set of INULNs, representing the possible INULNs 

of the element oto the set HI , and 

 ( ) ( )( ) , , ( ), ( ) , ( ), ( ) , ( ), ( )L U L U L U

o oHI HI HI HI HI HI HI
u o s s o o o o o o 

                   
 is an INULE. For 

simplicity, we shall write  
b

b


 instead of  
( )

( ) ( )

HI HI

HI HI
b o

o b o


 in HI . Here we call 

 a HINULE and  ( ) ( ), , ( ), ( ) , ( ), ( ) , ( ), ( )L U L U L U

b bb s s b b b b b b 
                     is called 

an INULE. Then, HI is the set of all INULEs. 

7.1.1.2  Definition  

Let 1, and 2  be any three HINULEs and 0  . Then we presented some basic 

operations for HINULEs as follows: 

       

               

               

        

1 1 1 1

1 1 2

* 1 * * * 1 * *

1 2 ( ) ( ) ( ) ( )

,

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2

, ,

, , ,

,

1

,

)

,

( b b b b

b

L
L L U U L L L

U U U U L

b

L L L

U U U U

s s s s

b b b b b b b b

b b b b b b b b

b b b b

   

 

 

    
           

    

        

     



 

   

   

               (7.2)

 

HI
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       

           

       

 

1 2 2

1 1 1 1

1 1

1 2 2

2 2

1

1

1

* 1 * * * 1 * *

1 2 ( ) ( ) ( ) ( )

,

* * * *

( ) ( ) 1 ( ) ( ) 2

* * * *

( ) ( ) ( ) ( )

* *

( ) (

, ,

,

(2) b

b

b b b

b

L L

b b b b

b b b b

b

s s s s

s s s s t

s s s s

s

b

s

b

   

   

   

 

 

 

    
            

    

   
          
   

   
         
   

  

+

         

       

           

   

1 2 2

1 2 2

1 2 2

1

1

1

1

* *

) 1 ( ) ( ) 2

* * * *

( ) ( ) ( ) ( )

* * * *
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7.1.1.3     Theorem  

 Let and be any three HINULEs and 1 2, , 0    . Then the operational rules 

defined for HINULEs have the following characteristics. 

(1) 1 2 2 1,                                                                                       (7.7) 

(2) 1 2 2 1   ,                                                                                     (7.8) 

(3)  1 2 1 2 ,                                                                                (7.9) 

(4)  1 2 1 2      ,                                                                           (7.10) 

(5)  
 1 21 2 ,
   

                                                                                 (7.11) 

(6)  1 2 1 2 .
                                                                                   (7.12) 

7.1.1.4 Example 

 Let                 21 1 1 2, , 0.2,0.4 , 0.1,0.2 , 0.3,0.5 , , , 0.4,0.5 , 0.1, 0.2 , 0.2,0.3s s s s and 

       2 2 3, , 0.3,0.4 , 0.2,0.3 , 0.1,0.3s s  be two HINULNs and 2  . Then  

(1) If we use LSF  
*

2

i
s

t
  , then  

(i)
        

        
0.3334 0.9999

0.6665 0.9

1

9 9

2

9

, , 0.06,0.16 , 0.28,0.44 , 0.37,0.65 ,
;

, , 0.12,0.2 , 0.28,.44 , 0.28,0.51

s s

s s
   

(ii)
        

        
3 4.999

3.999 4.999

1 2

, , 0.2625,0.4 , 0.1625,0.2625 , 0.1750,0.3750 ,
;

, , 0.3444,0.4444 , 0.1556,0.2556 , 0.1444,0.3

s s

s s
+  

(iii)        1 0.6665 1.5, , 0.09,0.16 , 0.36,0.51 , 0.19,0.51 ;s s   

(iv)        1 3.999 6, , 0.3,0.4 , 0.2,0.3 , 0.1,0.3 .s s   

(2) If we use LSF 
2 2

2
2

2 2

( 0,1,2,..., )
( ) .

( 1, 2..., 2 )

r r z

r

r z r

r

z z

z r
s

z r r r

 



 














 



 


   
  



 Then 

1, 2



212 

 

(i)
        

        
0.3467 0.8348

0.6215 0.8

1

3 8

2

4

, , 0.06,0.16 , 0.28,0.44 , 0.37,0.65 ,
;

, , 0.12,0.2 , 0.28,.44 , 0.28,0.51

s s

s s
   

(ii)
        

        
3.9659 5.5316

4

1 2

.975 5.5316

, , 0.2592,0.4 , 0.1592,0.2592 , 0.1815,0.3815 ,
;

, , 0.3465,0.4465 , 0.1534,0.2534 , 0.1465,0.3

s s

s s
+  

(iii)        0.6215 1 1 51 . 36, , 0.09,0.16 , 0.36,0.51 , 0.19,0.51 ;s s   

(iv)        4.97541 6, , 0.3,0.4 , 0.2,0.3 , 0.1,0.3 .s s   

(3) If we use LSF

( )

2
3

( )

2

( 0,1,2,..., )
( )

( 1, 2..., 2 )

r r z

r

z z
r z r

r

z r
s

z r r r

 



 





 


 

 
   

  

, then 

(i)
        

        
0.3148 1.031

0.6453 1.0

1

1

2

3

, , 0.06,0.16 , 0.28,0.44 , 0.37,0.65 ,
,

, , 0.12,0.2 , 0.28,.44 , 0.28,0.51

s s

s s
   

(ii)
        

        
2.829 4.741

3.590

1 2

4.741

, , 0.2637,0.4 , 0.1638,0.2638 , 0.1724,0.3724 ,
;

, , 0.3433,0.4433 , 0.1567,0.2567 , 0.1433,0.3

s s

s s
+  

(iii)        0.6453 1.6 51 3, , 0.09,0.16 , 0.36,0.51 , 0.19,0.51 ;s s   

(iv)        3.5901 6, , 0.3,0.4 , 0.2,0.3 , 0.1,0.3 .s s   

7.1.1.5    Definition 

 Let  ,s s  be ULV, and 
*

  be a LSF. Then, an aggregation expression of  ,s s  can 

be defined as 

     

       
1 * * *

0

, , ,

.

s s f s s

d x
s x s s dx

dx

    

  



 

    
        

   


                               

(7.13) 

where the function  is expressed by a basic unit interval monotonic function 

proposed by Yager [114] and f  is the continuous ordered weighted averaging 
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operator. If  0 ,  then  x x  . Moreover,   ,s s  is an increasing function with 

respect to s and s , and   ,s s   satisfies   0 , 1.s s      

Hence, the score, accuracy and certainty functions of HINULE  are defined as 

follows: 

                ( ) ( )

1

6

1
, 4 ( ) ;L L L U U U

b b

b

SO s s b b b b bb 



 
            

     (7.14)

 

             ( ) ( )

1
, ( )L L U U

b b

b

AR s b b bs b 



        


                      

(7.15) 

           ( ) ( )

1
, .L U

b b

b

CR s s b b 



    
                                            (7.16)      

Where    represents the number of INULEs in    

7.1.1.6    Definition  

Let  and 1  be two HINULEs, then the comparison rules between two HINULEs 

can be defined as follows: 

(1) If    1SO SO>   then 1;  

(2) If    1SO SO  and    1 ,AR AR>   then 1;  

(3) If    1SC SC ,    1AR AC  and    1CR CR> , then 1;  

(4) If     1SC SC ,    1AR AC  and    1CR CR , then 1.  

7.2 The Hesitant Interval Neutrosophic Uncertain Linguistic 

Aggregation Operators 

In this part, we present two HINUL aggregation operators to aggregate HINUL 

information. These aggregation operators are based on the operational rules of 

HINULNs. 
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7.2.1    The Hesitant Interval Neutrosophic Uncertain Linguistic 

Prioritized Weighted Averaging Operator 

In this subpart, we propose HINULPWA operators to aggregate HINULEs, and 

related properties are discussed. 

7.2.1.1 Definition .  

Let                be a group of HINULNs. The HINUL prioritized weighted 

average operator (HINULPWA) is defined as 

  1 2

1 2 1

1 1

2

1

1

1

., , ., . o vo v

o oo oo o

g g o g

v

g g g g

T TT T
HINULPWA

T T T T




  

 

 
 
     
 
 
 

   
,

            

(7.17) 

 where,   
1

1

1

1, 2,..., ,
v

v z

z

T T SO v o




    and  zSO  is the score function of   .  

Based on the operational laws for HIFULNs, and Definition (7.1.1.2), we have the 

following Theorem. 

7.2.1.2    Theorem  

Let  ( 1,2, , )v v o  be a group of HINULEs. Then by Eq. (7.17) and the operational 

laws for HINULEs, we obtain the following result. 

  1 2
1 2 1 2

1 1 1

, , .., .o

o

o o o

g

g

o

g g

g g

TT T
HINULPWA

T T T
  

    

  
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 (2) Let us assume that Eq. (7.18) is true for v b , then 
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Hence Eq. (7.18) is true for all .o  

According to (1)-(3), Eq. (7.18) is kept. 

7.2.1.3 Theorem  
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Proof. According to the operational rules described for HINULNs, we have 
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According to Theorem (7.2.1.2), we have 

 1 2, ,...., ma aHINULPWA a  

   
1 2 21

* 1 * * 1 *

( ) ( )

1 1, ,...,

1 1

, ,
v v

m m

o o
v v

u uo o
v vu u u

g g

g g

T T
a s a s

T T
 

 

   

 

       
       
       
       
       
       

 

 

  
 

 



219 

 

   

   

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

* *

( ) ( )

1

* *

( ) ( )

, ,
v v v v

v v v v

v v

v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

o
L

u u v v

v

u u

s s T s s T

s s T s s T

s s T

s s

   

   

 

 

 

 



   
     

        
     

     
          

 
  

 

 


   

 

 


 

 

    

   

   

   

   

   

* *

( ) ( )

1

* *

( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1

, ,

,

v v

v v

v v v v

v v v v

o
U

u u v v

v

o o

v u u v

v v

o o
L U

u u v v u u v v

v v

o

u u v u u

v

s s T

T s s T

s s T s s T

s s T s s

 

 

   

   



 

 



  
   

  
  

      

   
      

   

 

 

 

   

  
 

  



 

 


1

,
o

v

v

T


 
 
 
  

      


 

   
1 21 2

* 1 * * 1 *

( ) ( )

1 1, ,...,

1 1

, ,
v v

o o

o o
v v

u uo o
v vu u u

g g

g g

T T
a s a s

T T
 

 

   

 

       
       
           
       
       
        

 
 

 

   

   

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

* *

( ) ( )

1

* *

( ) ( )

, ,
v v v v

v v v v

v v

v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

o
L

u u v v

v

u u

s s T s s T

s s T s s T

s s T

s s

   

   

 

 

 

 



     
            
     

     
              

 
    
 

 
  


 

 

    

   

* *

( ) ( )

1

* *

( ) ( )

1 1

, ,
v v

v v

o
U

u u v v

v

o o

v u u v

v v

s s T

T s s T

 

 



 

  
     
  
  
        



 

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

, .
v v v v

v v v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

s s T s s T

s s T s s T

   

   

 

 

    
            
     

    
               

 

 
 

       
1 1 2 2

* 1 * * 1 *

( ) ( )

1 1, ,...,

1 1

1 2 . , ,, ,....,
v v

o o

o o
v v

u uo o
v vu

g g

g g

o

u u

T T
bHINULPWA a s s

T T
 

 

   

 

       
       
           
       
       
        

 
 

 



220 

 

   

   

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

* *

( ) ( )

1

* *

( ) ( )

, ,
v v v v

v v v v

v v

v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

o
L

u u v v

v

u u

s s T s s T

s s T s s T

s s T

s s

   

   

 

 

 

 



     
            
     

     
              

 
    
 

 
  


 

 

    

   

* *

( ) ( )

1

* *

( ) ( )

1 1

, ,
v v

v v

o
U

u u v v

v

o o

v u u v

v v

s s T

T s s T

 

 



 

  
     
  
  
        



 

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

, ,
v v v v

v v v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

s s T s s T

s s T s s T

   

   

 

 

    
            
     

    
               

 

 

   
1 21 2

* 1 * * 1 *

( ) ( )

1 1, ,...,

1 1

, ,
v v

m m

o o
v v

u uo o
v vu u u

j j

j j

T T
a s a s

T T
 

 

   

 

       
       
           
       
       
        

 
 

   

   

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

* *

( ) ( )

1

* *

( ) ( )

, ,
v v v v

v v v v

v v

v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

o
L

u u v v

v

u u

s s T s s T

s s T s s T

s s T

s s

   

   

 

 

 

 



     
            
     

     
              

 
    
 

 
  


 

 

    

   

* *

( ) ( )

1

* *

( ) ( )

1 1

, ,
v v

v v

o
U

u u v v

v

o o

v u u v

v v

s s T

T s s T

 

 



 

  
     
  
  
        



 

 

   

   

   

   

* * * *

( ) ( ) ( ) ( )

1 1

* * * *

( ) ( ) ( ) ( )

1 1

, .
v v v v

v v v v

o o
L U

u u v v u u v v

v v

o o

u u v u u v

v v

s s T s s T

s s T s s T

   

   

 

 

    
            
     

    
               

 

 
 

Hence,    1 2 1 2, ,...., , ,...., .m mHINULPWA bHINULPWAb b b  

7.2.1.4 Theorem  

Let  1, 2,...,v m and ( 1,2,...., )v v m  be two collections of HINULNs. Then 

 

   
1 1 2 2

1 2 1 2

, ,...,

, ,..., , ,..., .

m m

m m

HINULPWA

HINULPWA HINULPWA

  

  

   


                   (7.20) 

Proof. According to Definition (7.2.1.1) 
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7.2.2     The Hesitant Interval Neutrosophic Uncertain Linguistic 

Prioritized Weighted Geometric (HINULPWG) Operator 

In this subpart, we propose hesitant interval neutrosophic prioritized weighted 

geometric operator and related theorems, properties are investigated. 

7.2.2.1    Definition  

Let  ( 1,2, , )v v o   be a collection of HINULNs. The HINUL prioritized weighted 

geometric operator is defined as 
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Where   
1

1

1

1, 2,..., ,
v

v z

z

T T SO v o




    and  zSO  is the score function of .v  

Based on the operational laws for HIFULNs, and Definition (7.2.2.1), we have the 

following Theorem. 

7.2.2.2 Theorem  

Let  ( 1,2, , )v v o  be a group of HINULEs. Then by Eq. (7.21) and the operational 

rules for HINULNs, we obtain the following result: 
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Proof. Same as Theorem (7.2.1.2), omitted here. 

7.2.2.3 Theorem  

Let   ( 1,2, , )v v o   be a collection of HINULEs,   
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 zSO  is the score function of v . If 0,a   then 
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Proof. Proof of this Theorem is same as Theorem (7.2.1.3), it is omitted here. 

7.2.2.4 Theorem  

Let  ( 1,2, , )v v o  and ( 1,2,...., )v v o  be two collections of HINULNs. Then 
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Proof.  Proof of this Theorem is same as Theorem (7.2.1.4), omitted here. 



225 

 

7.2.3    Generalized HINUL Prioritized Weighted Aggregation 

Operators 

In this subsection, we define some generalized prioritized weighted aggregation 

operators for HINULNs. 

7.2.3.1     Definition 

Let  ( 1,2, , )v v o   be a collection of HINULNs. The generalized HINUL prioritized 

weighted aggregation operator is defined as 
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    (7.25) 

Where, 0  , and   
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    and  zSO  is the score function of 

.v  

7.2.3.2     Theorem 

Let  ( 1,2, , )v v o   be a collection of HINULEs. Then by Eq. (7.25) and the 

operational rules for HINULEs, we obtain the following result. 
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Now, we discuss some special cases of HINULPWA operator. 

1. If 1,   then the GHINULPWA reduce into the HINULPWA operator. i.e.,
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2. If 0,   then the GHINULPWA operator reduces into the HINULPWG operator.  
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3. If ,   then the GHINULPWA operator reduces into the following form.
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7.3 Group Decision-making Method Based on GHINULPWA 

Operator 

In this section, we proposed a group decision making method based on 

GHINULPWA operator and the score, accuracy and certainty functions of HINULNs 

under a HINUL environment. 

Let us assume that  1 2, , , mN N N N   and  1 2, ,..., nO O O O  be the sets of   alternatives 

and   attributes respectively in a group decision making problem, and that there is a 

prioritization among the attributes represented by the linear ordering 1 2 ... nO O O  

specifies that the attribute vO has a higher priority than uO , if .v u  Let the set of   

DMs is denoted by  1 2, ,..., zD d d d , and that there is a prioritization among the DMs 

represented by the linear ordering 1 2 ... zd d d   specifies that the DM 
pd has a higher 

priority than 
qd , if .p q   Let the decision matrix is represented by 
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in M  

 

. Here we call      
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called an INULN. Hence, one can ascertain the      hesitant interval neutrosophic 
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Generally, there are two types of attributes, one of which is of benefit type and the 

other is cost type. So, we must transform the cost attribute into benefit attribute by the 

following formula. 
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For benefit criteria: 
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The decision steps are depicted as follows.  

Step 1. Calculate the values of  1, 2,...,g

ijT g z by using the following formula: 
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                                                                              (7.32) 

Step 2. Using GHINULPWA operator to aggregate all the individual HINUL decision matrices 

    n

 

  
 
   

  to a collective HINUL decision matrix    n
  
 
   

             

          by the following aggregation formula:  
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ij ij

z

u ij

g

z
L

u u ij ij

g

z

u u ij

g

s T

s s T

s s T



 



 


 

 

 







 
 
 
 
 
 
 
 
 

  
 

 
 

 
 

                  

     
               

 
    
           







      

   

1

1

* *

( ) ( )

1

* *

( ) ( )

1

,

.

1 1

1 1

ij ij

ij ij

z
U

u u ij ij

g

z

u u ij

g

s s T

s s T



  


 

 

 





 
  
  

   
   
   
   

 
 

       
                                                




                                             (7.33) 

Step 3. Calculate the values of  1,2,..., , 1, 2,...,ijT i m j n  by using the following 

formula. 

  
1

1

1

2,..., ; 1.
j

ij i

k

ijnT SO g z T




                                                                     (7.34) 

 Step 4. Aggregate the HINULN     for each alternative                 by the 

using the following aggregation formula: 

                                

   

11

* 1 * * 1 *

( ) ( )

1 1

1 1

, ,
ij ij

ijij

n n
ij ij

u un n
j ju n

j j

j j

T T
s s

T T



 

 

 

 

 

     
         
                                         
                        

 
 
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       
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    
  








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



 
 
 
 
 
 
 
 
  

                                           (7.35) 

Step 5. Utilize the score function, accuracy function and certainty function for 

   ,i iSC n CR n and  iAC n  by using Eqs. (7.14), (7.15) and (7.16). 

Step 6. Rank all the alternatives according to their score values and select the best 

one. 

Step 7. End.. 

7.4  Numerical Example 

In this section we adapted a numerical example from Ye [43] about speculation 

alternatives is used to show the efficiency of the proposed decision-making method 

under HINUL environment.  

There is an investment company. In the available options, the investment company 

wants to invest a sum of money in that option which is the best option for it. The 

company should invest money according to the following group of possible four 

alternatives: (a) 1N represents the car company; (b) 2N represents a food company (c) 
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3N represents a computer company (d) 4N represents an arm company. The decision 

must be taken by the investment company according to the following three criteria: 

(a) 1O represents the risk; (b) 2O represents the growth; (a) 3O represents the 

environmental impact. The priority among the criteria is 1 2 3O O O  . The four possible 

alternatives ( 1,2,3,4)iN i  with respect to the criteria ( 1,2,3)jO j   is assessed by three 

experts,  1 2 3, ,E e e e , where the assessment information is represented in the form of 

HINULNs under the linguistic term set 

                                                        

                                        The priority among the experts is 

1 2 3e e e  . Then, the assessment information with respect to the criteria ( 1,2,3)jC j   of 

the alternatives ( 1,2,3,4)iM i   can be given by the three decision makers. For example, 

the assessment value about alternative 2M  with respect to the criterion 1C  provided by 

the first expert is                                          , which shows that the value 

of the alternative    with respect to the criteria    is the uncertain linguistic variable 

        with the satisfaction degree is          , dissatisfaction value           and the 

indeterminacy is          . Similarly, the three experts provide their assessment about 

the four alternatives with respect to the three criteria. So we have the following three 

HINUL decision matrices (see tables 7.1-7.3).  
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Table 7.1. The HINUL decision matrix 
(1)

M  

                       1O                    2O                        3O  

1N
 

       

       , ,

2 3

3 4

, , 0.3,0.4 , 0.1,0.2 , 0.3,0.4 ,

, 0.4,0.5 , 0.15,0.25 0.35,0.45

  
 
  

s s

s s
 

        3 4, , 0.4,0.5 , 0.2,0.3 , 0.1,0.3s s         

       

3 3

3 4

, , 0.45,0.55 , 0.15,0.25 , 0.25,0.35 ,

, , 0.3,0.4 , 0.2,0.3 , 0.3,0.4

  
 
  

s s

s s
 

2N
 

        5 6, , 0.7,0.8 , 0.0,0.1 , 0.1,0.2s s         

       

4 5

5 6

, , 0.6,0.7 , 0.1,0.2 , 0.1,0.2 ,

, , 0.8,0.9 , 0.0,0.1 , 0.1,0.15

  
 
  

s s

s s
 

        5 6, , 0.6,0.7 , 0.1,0.2 , 0.2,0.3s s  

3N
 

       

       

3 4

4 4

, , 0.4,0.5 , 0.1,0.2 , 0.2,0.3 ,

, , 0.5,0.6 , 0.1,0.15 , 0.1,0.2

  
 
  

s s

s s
 

       

       

3 4

4 5

, , 0.5,0.6 , 0.1,0.2 , 0.1,0.3 ,

, , 0.4,0.5 , 0.2,0.3 , 0.1,0.2

  
 
  

s s

s s
 

        4 5, , 0.5,0.6 , 0.1,0.2 , 0.2,0.3s s  

4N
 

       

       

4 5

5 6

, , 0.5,0.6 , 0.1,0.2 , 0.3,0.4 ,

, , 0.6,0.7 , 0.0,0.1 , 0.1,0.2

  
 
  

s s

s s
 

        4 5, , 0.5,0.6 , 0.15,0.25 , 0.1,0.2s s         

       

4 5

5 6

, , 0.6,0.7 , 0.15,0.25 , 0.25,0.35 ,

, , 0.4,0.5 , 0.2,0.3 , 0.1,0.2

  
 
  

s s

s s
 

Table 7.2. The HINUL decision matrix (2)M  

                     1O                    2O                        3O  

1N
 

        4 5, , 0.6,0.7 , 0.1,0.2 , 0.2,0.3  s s         

       

2 3

3 3

, , 0.2,0.4 , 0.1,0.3 , 0.2,0.4 ,

, , 0.3,0.5 , 0.1,0.2 , 0.1,0.2

  
 
  

s s

s s
 

        3 3, , 0.3,0.4 , 0.2,0.3 , 0.3,0.4s s  

2N
 

       

     

5 5

5 6

, , 0.5,0.6 , 0.1,0.2 , 0.1,0.2 ,

, ,[0.7,0.8], 0.0,0.1 , 0.0,0.1

  
 
  

s s

s s
 

        4 5, , 0.4,0.6 , 0.1,0.2 , 0.1,0.2s s  

       

       

5 5

4 5

, , 0.6,0.8 , 0.0,0.0 , 0.0,0.1 ,

, , 0.5,0.7 , 0.1,0.15 , 0.1,0.15

  
 
  

s s

s s
 

3N
 

       

       

4 5

5 5

, , 0.5,0.6 , 0.2,0.3 , 0.1,0.2 ,

, , 0.4,0.5 , 0.1,0.3 , 0.2,0.4

  
 
  

s s

s s

 

        3 4, , 0.5,0.6 , 0.1,0.2 , 0.2,0.3s s          4 5, , 0.5,0.6 , 0.1,0.2 , 0.1,0.2s s  

4N
 

        5 5, , 0.5,0.6 , 0.1,0.2 , 0.2,0.3s s  

       

       

4 5

5 6

, , 0.4,0.5 , 0.1,0.2 , 0.1,0.2 ,

, , 0.7,0.8 , 0.0,0.1 , 0.0,0.1

  
 
  

s s

s s
 

       

       

4 5

5 5

, , 0.5,0.6 , 0.1,0.2 , 0.1,0.2 ,

, , 0.6,0.7 , 0.0,0.1 , 0.1,0.15

  
 
  

s s

s s

 

 

Table 7.3. The HINUL decision matrix (3)M  

                          1O                      2O                   3O  

1N
 

       

       

1 2

3 4

, , 0.1,0.2 , 0.3,0.4 , 0.4,0.5 ,

, , 0.4,0.5 , 0.2,0.3 , 0.2,0.3  

  
 
  

s s

s s
 

       

       

4 4

5 5

, , 0.4,0.5 , 0.1,0.2 , 0.2,0.3 ,

, , 0.6,0.7 , 0.1,0.2 , 0.1,0.2

  
 
  

s s

s s
 

        4 5, , 0.6,0.7 , 0.1,0.2 , 0.1,0.2s s  

2N
 

        5 6, , 0.7,0.9 , 0.0,0.1 , 0.1,0.15s s          5 6, , 0.8,0.9 , 0.0,0.0 , 0.0,0.1s s          4 5, , 0.4,0.5 , 0.2,0.3 , 0.2,0.3s s  
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3N
 

        3 4, , 0.2,0.4 , 0.2,0.3 , 0.3,0.4s s          4 4, , 0.5,0.6 , 0.0,0.15 , 0.1,0.2s s          3 4, , 0.3,0.5 , 0.1,0.2 , 0.1,0.2s s  

4N
 

        4 5, , 0.3,0.4 , 0.1,0.2 , 0.2,0.3s s          5 6, , 0.7,0.8 , 0.0,0.1 , 0.0,0.1s s         

       

4 4

4 5

, , 0.4,0.5 , 0.2,0.3 , 0.1,0.3 ,

, , 0.5,0.6 , 0.1,0.2 , 0.1,0.3

  
 
  

s s

s s
 

7.4.1   Decision Making Steps 

Since all the criteria are of same type, so there is no need of normalization. 

The GDM method presented in this article can handle such type of problems in the 

following way. 

Step 1: Calculate the values of  1, 2,...,g

ijT g z by using formula (7.32), we can get  

(1) (2) (1)

1 1 1 0.5416 0.2916 0.2916 0.2496 0.1615 0.1649

1 1 1 , 0.7050 0.5296 0.6508 , 0.5483 0.4393 0.3054

1 1 1 0.5296 0.3981 0.5416 0.1667 0.2056 0

1 1 1 0.5972 0.6514 0.6145 0.2803 0.5114

ij ij ijT T T

   
   
   
     
   
   
   
   

.2105

0.2992

 
 
 
 
 
 
 
 

 

Step 2. Using GHINULPWA operator to aggregate all the individual HINUL decision 

matrices              
  to a collective HINUL decision matrix 

           
                    by the following formula (2.33) (assume

 *1,
2

i
s

t
    ), and have  

       
       

       

   

2.465 3.465

2.744 3.744

1

3.023 4.023

3.302 4.302

,s , 0.4236,0.5236 , 0.1141,0.2141 , 0.26116,0.36116 ,

,s , 0.4409,0.5409 , 0.1150,0.2150 , 0.2430,0.3430 ,

s ,s , 0.4594,0.5594 , 0.1396,0.2396 , 0.3506,0.3950 ,

s ,s , 0.4716,0.5716

s

s
n 

    , 0.1385,0.2385 , 0.2771,0.3771










       
       

       

   

2.910 3.799

3.0215 3.9102

3.111 3.799

3.222 3.910

,s , 0.3701,0.4850 , 0.1718,0.2867 , 0.1282,0.3150

, , 0.4031,0.5176 , 0.1695,0.2840 , 0.1145,0.2900

s ,s , 0.3826,0.5 , 0.1697,0.2697 , 0.1129,0.2826

s ,s , 0.4143,0.5312 , 0.1675,0

s

s s

    .2675 , 0.1,0.2675 ,
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       

       

3.1131 3.226

3.113 3.912

,s , 0.4457,0.5457 , 0.1514,0.2514 , 0.2354,0.3354
.

,s , 0.3435,0.4435 , 0.1855,0.2855 , 0.2710,0.2710

s

s






       

       

5.000 5.687

2

5.000 6

,s , 0.6414,0.7665 , 0.0283,0.1283 , 0.1,0.1928 ,

s ,s , 0.7,0.8243 , 0,0.1 , 0.0698,0.1628

s
n






 

       

       
4.223 5.223

4.731 5.731

,s , 0.6007,0.7263 , 0.0740,0.1480 , 0.0740,0.1740

s ,s , 0.7074,0.8306 , 0.0231,0.0997 , 0.0765,0.1498

s
 

       

       

4.844 5.511

4.511 5.511

,s , 0.5729,0.7050 , 0.0765,0.1394 , 0.1259,0.2209

s ,s , 0.5421,0.6720 , 0.1089,0.1889 , 0.1599,0.2399

s 




       

       

     

   

3.312 4.312

3.624 4.312

3

3.901 4.312

4.214 4.312

s ,s , 0.4188,0.5278 , 0.1459,0.2459 , 0.1722,0.2631

s s , 0.3827,0.4913 , 0.1087,0.2480 , 0.2087,0.3393 ,

s ,s , 0.4749,0.5832 0.1426,0.2139 0.1168,0.2084 ,

s ,s , 0.4392,0.5472 0.1081

n 

   ,0.2170 , 0.1528,0.2813









  

      

      

3.128 4.000

3.751 4.375

s ,s , 0.5,0.6 0.1100,0.2172 , 0.1,0.2612

s ,s , 0.4330,0.5330 , 0.1755,0.2816 0.1,0.2
 

       3.880 4.880s , , 0.4808,0.5904 , 0.1,0.2 , 0.1586,0.2586s 
  

    

    

4.318 5.000

4

4.850 5.533

s ,s 0.4712,0.5712 0.1,0.2 0.2514,0.3514

s ,s 0.5305,0.6305 0.0436,0.1436 0.1436,0.2436
n






  

       

       

4.236 5.236

4.537 5.538

s ,s , 0.5263,0.6263 , 0.0930,0.1914 , 0.0714,0.1698

s ,s , 0.6174,0.7174 , 0.0610,0.1595 , 0.0407,0.1392
 

      

       

      

  

4.000 4.843

4.00 5.000

4.321 4.843

4.321 5.000

s ,s 0.5390,0.6390 , 0.1407,0.2407 , 0.1798,0.2939

s ,s , 0.5523,0.6523 , 0.1261,0.2418 , 0.2227,0.2940

s ,s , 0.5727,0.6727 , 0.1043,0.2043 0.1787,0.2782

s ,s 0.5849,0.6849 0.0908,0.190  

       

       

       

   

4.522 5.366

4.522 5.522

4.843 5.366

4.843 5.522

8 0.1757,0.2736

s ,s , 0.4292,0.5292 , 0.1708,0.2708 , 0.1,0.2126

s ,s , 0.4428,0.5428 , 0.1572,0.2572 , 0.1,0.2140

s ,s , 0.4629,0.5629 , 0.1371,0.2371 , 0.10.1965

s ,s , 0.4755,0.5755 , 0.1   245,0.2245 , 0.1,0.1981 .

 

Step 3. Calculate the values of  1,2,3,4, 1,2,3ijT i j  by using formula (7.34), we have  
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1 0.40437 0.149235

1 0.718826 0.482424

1 0.470867 0.258899

1 0.671732 0.400866

ijT

 
 
 
 
 
 
 
 

 

Step 4. Aggregate the HINULN     for each alternative ( 1,2,3,4)iN i   by the using the 

following aggregation formula (7.35) (assume  *1,
2

i
s

t
    ), and have 

       

       

2.643 3.529

1

2.643 3.595

s ,s , 0.4106,0.5148 , 0.1341,0.2383 , 0.22100.3455

s ,s , 0.3999,0.5041 , 0.1380,0.2422 , 0.2250,0.3385
N


 


 

       

       

       

  

2.672 3.558

2.672 3.624

2.695 3.529

2.695 3.595

s ,s , 0.4198,0.5240 , 0.1338,0.2380 , 0.2162,0.3380

s ,s , 0.409,0.5133 , 0.1376,0.2418 , 0.2202,0.3311

s ,s , 0.4139,0.5189 , 0.1338,0.2338 , 0.2158,0.3359

s ,s 0.4033,0.5082 , 0.1377,0.   

      2.724 3.558

2377 , 0.2198,0.3290

s ,s 0.4230,0.5279 , 0.1335,0.2335 , 0.2110,0.3310

 

       

       

       

   

2.724 3.624

2.823 3.709

2.823 3.775

2.852 3.738

s ,s , 0.4123,0.5173 , 0.1373,0.2373 , 0.2151,0.3242

s ,s , 0.4224,0.5264 , 0.13360.2376 , 0.21160.3348

s ,s , 0.4122,0.5264 , 0.13730.2412 , 0.21550.3195

s ,s , 0.4310,0.5349 , 0.1333,0.23   

      2.852 3.803

73 , 0.20710.3278

s ,s , 0.4208,0.5247 , 0.1369,0.2409 0.2110,0.3214

 

       

       

       

   

2.875 3.709

2.875 3.775

2.904 3.738

2.904 3.803

s ,s , 0.4254,0.5301 , 0.1333,0.2333 , 0.2068,0.3258

s ,s , 0.4152,0.5199 , 0.1370,0.2370 , 0.2107,0.3194

s ,s , 0.4339,0.5386 , 0.1330,0.2330 , 0.2023,0.3212

s ,s , 0.4237,0.5284 , 0.1367,   0.2367 , 0.2063,0.3149
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       

       

       

   

3.003 3.888

3.003 3.954

3.032 3.917

3.032 3.983

s ,s , 0.4356,0.5394 , 0.1488,0.2526 , 0.2841,0.3695

s ,s , 0.4258,0.5295 , 0.1488,0.2526 , 0.2836,0.3692

s ,s , 0.4436,0.5474 , 0.1484,0.2521 , 0.2792,0.3626

s ,s , 0.4338,0.5375 , 0.1484,  

      

       

     

 

3.055 3.888

3.055 3.954

3.084 3.917

3.084 3.983

0.2554 0.2822,0.3561

s ,s 0.43830.5428 , 0.14840.2484 , 0.27890.3607

s ,s , 0.4286,0.5330 , 0.15174,0.2517 , 0.2819,0.3542

s ,s 0.44630.5507 , 0.14800.2480 0.27410.3560

s ,s , 0.4365,0.5   

       

       

    

3.182 4.068

3.182 4.134

3.211 4.097

409 0.1513,0.2513 0.2772,0.3497

s ,s , 0.4450,0.5486 , 0.1476,0.2512 , 0.2377,0.3586

s ,s , 0.43550.5391 , 0.1508,0.2544 , 0.2410,0.3525

s ,s 0.4525,0.5561 0.1472,0.2508 0.2335,0.3521

 

      

       

      

   

3.211 4.163

3.234 4.068

3.234 4.134

3.263 4.097

s ,s , 0.4431,0.5466 , 0.1504,0.2539 0.2367,0.3461 ,

s ,s , 0.4475,0.5518 , 0.1473,0.2473 , 0.23320.3503 ,

s ,s , 0.4381,0.5424 0.1504,0.2504 , 0.2364,0.3443 ,

s ,s , 0.4550,0.5592 , 0.1469,   

       3.263 4.163

.

0.2469 , 0.22900.3460 ,

s ,s , 0.4456,0.5498 , 0.1469,0.2469 , 0.2290,0.34591











 

       

       

     

   

4.712 5.497

2 4.639 5.497

4.878 5.663

4.805 5.663

s ,s , 0.6139,0.7407 , 0.0528,0.1367 , 0.0979,0.1934

s ,s , 0.6075,0.7338 , 0.0597,0.1474 , 0.1051,0.1973

s ,s 0.6481,0.7740 0.0370,0.1214 , 0.0980,0.1849

s ,s , 0.6421,0.7676

N




 



   

       4.712 5.639

, 0.0435,0.1317 , 0.1049,0.1887

s ,s , 0.6425,0.7690 , 0.0388,0.1230 , 0.0833,0.1789

       

       

       

4.639 5.639

4.878 5.805

4.805 5.805

s ,s , 0.6365,0.7624 , 0.0455,0.1334 , 0.0903,0.1826

s ,s , 0.6754,0.7624 , 0.0237,0.1083 , 0.0838,0.1710

s ,s , 0.6697,0.7948 , 0.0300,0.1183 , 0.0906,0.1746







       

       

       

   

3.347 4.312

3

3.527 4.312

3.688 4.312

3.868 4.312

s ,s , 0.4500,0.5568 , 0.1289,0.2308 , 0.1516,0.2619

s ,s , 0.4281,0.5348 , 0.1075,0.2323 , 0.1734,0.3065

s ,s , 0.4819,0.5885 , 0.1277,0.2124 , 0.1196,0.2294

s ,s , 0.4603,0.5667

N


 


   

       

       

       

3.517 4.414

3.697 4.414

3.857 4.414

4.038

, 0.1072,0.2143 , 0.1412,0.2729

s ,s , 0.4330,0.5396 , 0.1466,0.2483 , 0.1498,0.2448

s ,s , 0.4123,0.5187 , 0.1255,0.2494 , 0.1709,0.2883

s ,s , 0.4646,0.5709 , 0.1446,0.2298 , 0.1189,0.2141

s ,      4.414s 0.4440,0.5502 , 0.1245,0.2313 , 0.1399,0.2565




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       

       

       

  

4.230 5.046

4

4.230 5.076

4.292 5.046

4.292 5.076

s ,s , 0.5019,0.6019 , 0.1052,0.2047 , 0.1786,0.2807

s ,s , 0.5045,0.6045 , 0.1026,0.2050 , 0.1867,0.2808

s ,s , 0.5086,0.6086 , 0.0985,0.1980 , 0.17840.2778

s ,s 0.5111,0.6111 , 0

N


 


   .0959,0.1954 , 0.1779,0.2769

       

       

       

   

4.331 5.147

4.331 5.178

4.393 5.147

3.456 5.178

s ,s , 0.4806,0.5806 , 0.1120,0.2115 , 0.1626,0.2646 ,

s ,s , 0.4832,0.5832 , 0.1094,0.2089 , 0.1624,0.2647 ,

s ,s , 0.4872,0.5872 , 0.10540.2049 , 0.16220.2609 ,

s ,s , 0.4898,0.5898 , 0.1029   

       

       

       

 

4.327 5.144

4.327 5.174

4.390 5.144

4.390 5.174

,0.2024 , 0.16200.2611 ,

s ,s , 0.5338,0.6338 , 0.0939,0.1934 , 0.1658,0.2679

s ,s , 0.5363,0.6363 , 0.0914,0.1937 , 0.1737,0.2680

s ,s , 0.5401,0.6401 , 0.0874,0.1869 , 0.1657,0.2651

s ,s ,     

       4.428 5.245

0.5425,0.6425 , 0.0850,0.1844 , 0.1652,0.2643

s ,s , 0.5122,0.6122 , 0.1008,0.2003 , 0.1504,0.2524

 

       

       

       

   

4.428 5.275

4.491 5.245

4.491 5.275

4.487 5.303

s ,s , 0.5147,0.6147 , 0.0983,0.1978 , 0.1502,0.2525

s ,s , 0.5185,0.6185 , 0.0945,0.1940 , 0.1500,0.2488

s ,s , 0.52100.6210 , 0.0920,0.1915 , 0.1499,0.2490

s ,s , 0.5307,0.6307 , 0.0760,0   

      4.487 5.333

.1756 , 0.1273,0.2292

s ,s , 0.5331,0.6331 0.0737,0.1759 , 0.1350,0.2295

 

       

       

       

   

4.549 5.303

4.549 5.333

4.588 5.404

4.588 5.435

s ,s , 0.5368,0.6368 , 0.0699,0.1694 , 0.1274,0.2268

s ,s , 0.5391,0.6391 , 0.0675,0.1670 , 0.1270,0.2261

s ,s , 0.5098,0.6098 , 0.0831,0.1826 , 0.1131,0.2150

s ,s , 0.5122,0.6122 , 0.0807,   

       4.650 5.404

0.1803 , 0.1130,0.2152

s ,s , 0.5160,0.6160 , 0.0770,0.1766 , 0.1130,0.2118

 

       

       

       

   

4.650 5.435

4.584 5.401

4.584 5.431

4.6465 5.401

s ,s , 0.5183,0.6183 , 0.0747,0.1742 , 0.1129,0.2121

s ,s , 0.5604,0.6604 , 0.0659,0.1654 , 0.1161,0.2181

s ,s , 0.5626,0.6626 , 0.0636,0.1658 , 0.1238,0.2183

s ,s , 0.5662,0.6662 , 0.0600   

       

       

     

 

4.647 5.431

4.686 5.502

4.686 5.532

4.748 5.502

,0.1595 , 0.1163,0.2158

s ,s , 0.5684,0.6684 , 0.0577,0.1572 , 0.1160,0.2151

s ,s , 0.5394,0.6394 , 0.0730,0.1726 , 0.1024,0.2043

s ,s 0.5416,0.6416 , 0.0708,0.1703 0.1024,0.2046

s ,s 0.5    

     4.748 5.532

452,0.6452 , 0.0672,0.1667 0.1024,0.2013

s ,s 0.5474,0.6474 , 0.0649,0.1644 0.1024,0.2015






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Step 5. Calculate the score values of the alternatives  1,2,3,4iN i  by using 

Definition (2.1.1.5), and get  

       1 2 3 40.3941, 0.7375, 0.4873, 0.6273.SO N SO N SO N SO N    . 

Step 6. Ranking order of the alternatives according to their score values: 

2 4 3 1.N N N N   . 

So 2N  is the best alternative. 

7.4.2 Influence on the Ranking Results of the Generalized Parameter 

  

In this subpart, the effects of generalized parameter are discussed. 

Table 7. 4. Influence of the parameter  on decision result 

                                         Score values Ranking order 

0  ,  

       1 2 3 40.3733, 0.7277, 0.4811, 0.6139.SO N SO N SO N SO N     

2 4 3 1.N N N N    

2  ,   

       1 2 3 40.4142, 0.7476, 0.4934, 0.6387.SO N SO N SO N SO N     

2 4 3 1.N N N N    

5  ,   

       1 2 3 40.4620, 0.7740, 0.5089, 0.6715.SO N SO N SO N SO N     

2 4 3 1.N N N N    

7  ,  
2 4 3 1.N N N N    
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       1 2 3 40.4852, 0.7887, 0.5174, 0.6915.SO N SO N SO N SO N     

15  , 

       1 2 3 40.5292, 0.8279, 0.5424, 0.7492.SO N SO N SO N SO N     

2 4 3 1.N N N N    

25  ,

       1 2 3 40.5757, 0.8509, 0.5613, 0.7831.SO N SO N SO N SO N     

2 4 1 3.N N N N    

In order to show the effects on the ranking results of the generalized parameter   for 

this example, we can use the different generalized parameter   in steps 2 and 4, and 

get the ranking results shown in Table 7.4. 

From Table 7.4, we can see the ranking orders obtained by using different values of 

the parameter  are not always same, and when the value of 25  , they are changed, 

but the best alternative remains the same. 

7.4.3 Influence on the Ranking Results of LSF 

In order to show the effects on the ranking results of LSF for this example, we can 

use the different LSFs in steps 2 and 4, and get the ranking results shown in Table 7.5. 

From Table 7.5, we can see the ranking orders obtained by using different LSFs are 

same. 

Table  7.5. Score values and ranking order using different LSFs 

 *

1 s

 

 *

2 s

 

 *

3 s

       1 2 3 40.3941, 0.7375, 0.4873, 0.6273SO N SO N SO N SO N   

       1 2 3 40.3530, 0.6604, 0.4315, 0.5601.SO N SO N SO N SO N   

 

       1 2 3 40.3665, 0.7060, 0.4712, 0.6094.SO N SO N SO N SO N   

2 4 3 1.N N N N  

 

2 4 3 1N N N N  

 

2 4 3 1.N N N N  
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7.4.4    Compared With the Existing Method 

Compared with the method proposed by Ye [43], the above ranking order is the 

same as the one obtained in Ye  [43]. Compared with the relative decision making 

method based on INULSs, the decision making method in this chapter use HINUL 

information, while the decision making methods in [43] use INUL information and 

also the proposed aggregation operators in this chapter can handle decision making 

problems in the HINUL environment, where criteria takes different priority levels, 

and the criteria weights are obtained by using PA operators according to priority of 

the priority level and are more reasonable than a set of known one. Since HINULSs is 

a further extension of the concept of INULSs. HINUL information include INUL 

information. Therefore, the group decision making method proposed in this article can 

deal with not only HINUL information INUL information. To some extent, the group 

decision making method in this chapter, is more general and feasible than the existing 

method  INUL setting  [43].     

7.4.5   Conclusion  

The chapter presented the concept of HINULSs based on the combination of INULSs 

and HFSs, and as a further generalization of these fuzzy concepts and defined some 

basic operational rules for HINULEs and the score, accuracy, certainty functions of 

HINULEs respectively, some of their properties were investigated. Then, based on 

these operational rules we defined some aggregation operators, such as HINULPWA 
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operator and a HINULPWG operator to aggregate HINUL information. Furthermore 

some desired properties of the two operators were investigated. Moreover, 

GHINULPWA operator and some special cases of GHINULPWA operator are 

investigated.  After that GHINUPLWA operator was applied to a group decision 

making under HINUL environment, where values of the attributes with respect to the 

alternatives takes the form of HINULEs and the attributes and experts weight are 

known information. We utilize the score function, (accuracy and certainty functions) 

to rank the alternatives and select the best ones. Lastly, an illustrative example was 

provided to demonstrate the application of the proposed group decision making 

method. The main advantage of the developed method is that, it can defined the 

incomplete, indeterminate and inconsistent information by several INULNs in which 

the uncertain linguistic variable indicate whether attribute is good or bad in qualitative 

and INNs are adopted to demonstrate the satisfaction degree, dissatisfaction degree 

and indeterminacy degree to an uncertain linguistic variable in quantitative. 

Therefore, the proposed MAGDM method under HINUL environment is more 

suitable for real science and engineering applications. In future, we shall develop 

some more aggregation operators and apply them to MADM, medical diagnosis, and 

expert system.     
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Chapter 8  

Multiple-Attribute Decision Making Based on Single-Valued 

Neutrosophic Schweizer-Sklar Prioritized aggregation 

Operators 

         In this chapter, we enlarge SS TN and TCN to SVNN and give the SS 

operational laws of SVNNs. Then, we merge prioritize aggregation (PRA) operator 

with SS operations, and develop the single-valued neutrosophic Schweizer-Sklar 

prioritized weighted averaging (SVNSSPRWA) operator, single-valued neutrosophic 

Schweizer-Sklar prioritized ordered weighted averaging (SVNSSPROWA) operator, 

single-valued neutrosophic Schweizer-Sklar prioritized weighted geometric 

(SVNSSPRWG) operator, and single-valued neutrosophic Schweizer-Sklar prioritized 

ordered weighted geometric (SVNSSPROWG) operator. Moreover, we study some 

useful characteristics of these proposed aggregation operators (AOs) and propose two 

models on the basis of SVNSSPRWA and SVNSSPRWG operators. At the same 

time, we apply these two methods to deal with multiple-attribute decision making 

(MADM) problems under SVN information. Lastly, an illustrative example about 

talent introduction is given to testify the effectiveness of the developed methods. 
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8.1 Schweizer-Sklar Operations For SVNNs 

        In this section, we develop some operational rules for SVNNs over SS T-norm 

and T-conorm. 

8.1.1   Schweizer-Sklar product and sum 

SS operations consist of the SS product and SS sum, which are special cases of 

ATT, respectively. 

8.1.1.1 Definition [6] 

Let
1 1 1

1 , ,
SV SV SV

SV     and 
2 2 2

2 , ,
SV SV SV

SV     be two SVNSs. Then, the 

generalized union and intersection are described as follows: 

      *
1 2 1 2 1 2

*

1 2
,

, , , , , , | ,
SV SV SV SV SV SVT T

SV SV T T T                         (8.1) 

      *
1 2 1 2 1 2

* *

1 2
,

, , , , , , | .
SV SV SV SV SV SVT T

SV SV T T T                         (8.2) 

Where, T and
*

T , expressed T-norm (TN) and T-conorm (TCN) respectively. 

The Schweizer-Sklar (SS) TN and TCN [107] are described as follows: 

   
1

, 1 ,SST                                                                                 (8.3) 

      
1

*

, 1 1 1 1 .SST
                                                                  (8.4) 

Where,  0, , 0,1   . 
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Additionally, when 0,  we have  ,T    and  
*

,T     . That is, 

SS TN and TCN reduce to algebraic TN and TCN. 

Now, in the next subsection, based on TN  ,T    and TCN  
*

,T    of SS 

operations, we can permit the following definition about SS operations of SVNNs. 

8.1.2    Schweizer-Sklar operations for SVNNs 

8.1.2.1 Definition 

 Assume 1 1 1 1, ,    and 2 2 2 2, ,    are any two SVNNs. Then based on SS 

operations, the generalized union and intersection are introduced as follows: 

     *

*

1 2 1 2 1 2 1 2
,

, , , , , ,
T T

T T T                                                                 (8.5) 

     *

* *

1 2 1 2 1 2 1 2
,

, , , , , .
T T

T T T                                                                (8.6) 

On the basis of Definition (1.1.1.3) and Equation (8.5), and Equation (8.6), we can 

introduce the SS operations of SVNNs are described as follows  0, 0   : 

(1)            
1 11

1 2 1 2 1 2 1 21 ,1 1 1 1 ,1 1 1 1 ,SS

                       (8.7) 

(2)         
1 1 1

1 2 1 2 1 2 1 21 1 1 1 , 1 , 1 ,SS

                                   (8.8) 

(3)             
1 11

1 1 1 11 ,1 1 1 ,1 1 1 ,
                               (8.9) 
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(4)           
1 1 1

1 1 1 11 1 1 , 1 , 1 .
                                       (8.10) 

8.1.2.2 Theorem 

Let 1 1 1 1, ,    and 2 2 2 2, ,    be any two SVNNs, then 

(1) 1 2 2 1SS SS   ,                                                                                         (8.11) 

(2) 1 2 2 1SS SS   ,                                                                                         (8.12) 

(3)  1 2 1 2 , 0;SS SS                                                                          (8.13) 

(4)  1 1 2 1 1 2 1 1 2, , 0;SS                                                                   (8.14) 

(5)  1 2 1 2 , 0,SS SS                                                                             (8.15) 

(6)  
 1 21 2

1 1 1 1 2, , 0.SS


                                                                           (8.16) 

8.1.3   Single-Valued Neutrosophic Scheweizer-Sklar Prioritized 

Weighted Operator 

        In this part, for a group of SVNNs  , , , 1,2,...,g g g g g s     symbolized by , 

we introduce a few new PRAOs for SVNNs, namely SVNSSPRAWA operator, 

SVNSSPRAOWA operator, and discuss some characteristics of these developed 

aggregation operators.  
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8.1.4    Single valued neutrosophic Schweizer-Sklar prioritized 

weighted averaging (SVNSSPRAWA) operator 

8.1.4.1 Definition  

A SVN Schweizer-Sklar prioritized weighted averaging (SVNSSPRWA) operator is a 

function : sSVNSSPRWA   , which is described as: 

 1 2
1

1

, ,..., .
s

g

s gs
g

g

g

T
SVNSSPRWA

T






                                                               (8.17) 

Where, 1 1,T  and  
1

1

( ), 2,3,....,
s

l l
l

T SC l s




  . Here, ( )lSC  expresses the score value of 

SVNN .l  

8.1.4.2 Theorem   

For a group of SVNNs  , , , 1,2,...,g g g g g s     , the value aggregated by utilizing 

developed SVNPRWA operator is still a SVNN and is specified by: 

   

1

1 2
1 1

1 1

1 1

1 1 1 1

1 1 1 1

, ,...., 1 1 1 ,

1 , 1 .

s s
g g

s gs s
g g

g g

g g

s s s s
g g g g

g gs s s s
g g g g

g g g g

g g g g

T T
SVNSSPRWA

T T

T T T T

T T T T





 

 

 

 

   

   

 
 
     
 
 
 

   
   
        
   
   
   

 
 

   
   

       (8.18) 

Proof: Firstly, Equation (8.18) will be proved by utilizing mathematical induction 

(MI). The following steps of MI have been followed: 
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Step 1. For 2,g  we have 

 
2

1 2 2
1

1

, ,
g

g
g

g

g

T
SVNSSPRWA

T






 

1 2

1 22 2

1 1

g g

g g

T T

T T
 

 

 
                                                                   (8.19) 

From the operational laws for SVNNs, proposed in Definition (8.1.2.1), we have 

 

1

12

1

1 1 1

1
1 1 1 1 1 1

1 1 12 2 2 2 2 2

1 1 1 1 1 1

1 1 1 , 1 , 1 ,

g

g

g g g g g g

g g g g g g

T

T

T T T T T T

T T T T T T



  

 


     



          
          
                   
          
          

          



     

 

and 

 

2

22

1

1 1 1

1
2 2 2 2 2 2

2 2 22 2 2 2 2 2

1 1 1 1 1 1

1 1 1 , 1 , 1 .

g

g

g g g g g g

g g g g g g

T

T

T T T T T T

T T T T T T



  

 


     



          
          
                   
          
          
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So, Equation (8.19) becomes 
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i.e. when 2g  , Equation (8.18) is true. 

Step 2. Assume that for g r , Equation (8.18) is true. i.e., 
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Then, for 1g r  , according to the operational rules developed for SVNNs in 

Definition (8.1.2.1), we have 
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So, when 1g r  , Equation (8.18) is true. Therefore, Equation (8.18) is true for all .s  

When 
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 then, Equation (8.18) degenerates into the 

following form: 



251 

 

   

1 1 1

1 2
1 1 1

1 1 1

, ,...., 1 1 , , .
s s s

g g g

s g g gs s s
g g g

g g g

g g g

T T T
SVNSSPRWA

T T T

  


 

  

  

     
     
         
     
     
     

  
  

(8.21) 

8.1.4.3 Example  

Let 1 0.3,0.4,0.5 , 2 0.4,0.2,0.1 and 3 0.6,0.1,0.2 be three SVNNs. Based on the 

score function of SVNNs, we get 
1 2( ) 0.4667,SO( ) 0.7SO   and 

3( ) 0.7667SO  , and 

hence 1 21, 0.4667T T   and 3 0.3267.T   By using this information,  2    
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0.4226,0.1883,0.1746 .  

8.1.4.4 Theorem  

For a group of SVNNs  , , , 1, 2,...,u u u u u s     , the SVNPRWA operator satisfies 

the following characteristics: 

(1) (Idempotency) If all  1,2,...,u u s are equal, i.e., , , ;u      then 

 1 2, ,...., .sSVNSSPRWA                                                                                 (8.22) 

Proof. Since , , ;u      for all .h  so,  
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 (2) (Monotonicity) If , ,u u u u
       and , ,u u u u    are two groups of 
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u u

     

1 1

1 1

,
s s

u u

u us s
u u

u u

u u

T T

T T

 

 

 

   


 
 

 

1 1 1 1

1 1 1 1
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u u u u
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u u u u

u u u u
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T T T T

T T T T

 

   
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 
       

 
   
   

 

1 1

1 1 1 1

1 1 1 1

1 1 ,
s s s s

u u u u

u us s s s
u u u u

u u u u

u u u u

T T T T

T T T T

 

 

   

   

   
    

          
       
   

   
   

                              (8.25) 

Similarly, we have  

1 1

1 1 1 1

1 1 1 1

1 1 .
s s s s

u u u u

u us s s s
u u u u

u u u u

u u u u

T T T T

T T T T

 

 

   

   

   
    

         
       
   

   
   

                                  (8.26) 

From Equations (8.24),(8.25) and (8.26), we get  

   1 2 1 2, ,...., , ,...., .s sSVNSSPRWA SVNSSPRWA     
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(3) (Boundedness) Let , ,u u u u    be a group of SVNNs, and 

1 11
max ,min ,min ,

s s s

u u u u
u uu



 
    ,

1 1 1
min ,max ,max

s s s

u u u u
u u u



  
    .  Then, 

 1 2, ,...., .sSVNSSPRWA                                                                      (8.27) 

Proof. Since 
1 11 1

min max ,min max
s s s s

u u u u u u
u uu u  

          , and 
1 1

min max ,
s s

u u u
u u 

      

Hence, from property (2), we have 

   1 2 1 2, ,...., , ,...., .s sSVNSSPRWA SVNSSPRWA     

When 0,  then the SVNPRASSWA operator reduces to the PRA operator based on 

the algebraic operational laws for SVNNs. That is, 

       
1 1 1

0 1 2
1 1 1

, ,...., 1 1 , , .

T T Tu u u
q s s

T T Tu u u
u u u

s s s

s u u u
u u u

SVNSSPRWA

  
  


  

                        (8.28) 

8.1.5   Single-Valued Neutrosophic Schweizer-Sklar Prioritized 

ordered weighted averaging operator 

In this subpart, we develop an AO which merges the conviction of PRWA with 

ordered weighted operator and called as SVNSSPR ordered weighted averaging 

(SVNSSOWA) operator. 

8.1.5.1 Definition 

 A SVNPROWA operator is a function : sSVNSSPROWA   , which is described as 

follows: 
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 1 2 ( )
1

1

, ,...., .
s

u

s us
u

u

u

T
SVNSSPRWA

T









                                                           (8.29) 

Where, 1 1,T  and  
1

1

( ), 2,3,....,
s

l l
l

T SO l s




  , is a permutation of  1, 2,..., s such that 

( ) ( 1)a a   for 2,3,..., .a s  

8.1.5.2 Theorem   

For a group of SVNNs  , , , 1, 2,...,u u u u u s     , the value aggregated by utilizing 

the developed SVNPROWA operator is still a SVNN and is specified by: 

   

1

1 2 ( )
1 1

1 1

1 1

( ) ( )
1 1 1 1

1 1 1 1

, ,...., 1 1 1 ,

1 , 1 .

s s
u u

s us s
u u

u u

u u

s s s s
u u u u

u us s s s
u u u u

u u u u

u u u u

T T
SVNSSPROWA

T T

T T T T

T T T T






 

 

 

 

 
   

   

 
 
     
 
 
 

   
   
        
   
   
   

 
 

   
   

                      (8.30) 

Proof: Same as Theorem (8.1.4.2). 

8.1.5.3 Example  

Consider the SVNNs given in Example 8.1.4.3, we have 1
2

1, 0.4667T T   and 

3 0.3267.T   the score values are 
1 2( ) 0.4667, ( ) 0.7SO SO  and

3( ) 0.7667SO  . So, we 

have 
3 2 1( ) ( ) ( )SO SO SO  and hence,      3 2 11 2 3

, , .
  

    By using this 

information  2   , we can get 



256 

 

 

      

1 2 3

1 1 1

3 3 3 3 3 3

3 3 3 3 3 3
1 1 1 1 1 1

1 1 1 1 1 1

, ,

1 1 1 , 1 , 1 .
u u u u u u

u u u
u u u u u u

u u u u u u

u u u u u u

SVNSSPROWA

T T T T T T

T T T T T T

  


 

  
     

     



     
     
              
     
     
     

     
     

 

0.5327,0.1256,0.1568 . 

8.1.5.4 Theorem   

For a group of SVNNs  , , , 1,2,...,g g g g g s     , the SVNPROWA operator 

satisfies the following properties: 

(1) (Idempotency) If all  1, 2,...,g g s are equal, i.e., , , ;g      then 

 1 2, ,...., .sSVNSSPROWA                                                                         (8.31) 

 (2) (Monotonicity) If , ,g g g g
       and , ,g g g g    are two groups of 

SVNNs, such that .g g
   i.e., ,g g g g

       and 
g g
    for all ,h then  

   1 2 1 2, ,...., , ,...., .s sSVNSSPROWA SVNSSPROWA                                         (8.32) 

(3) (Boundedness) Let , ,g g g g    be a group of SVNNs, and 

1 11
max ,min ,min ,

s s s

g g s g
g gg



 
    ,

1 1 1
min ,max ,max

s s s

g g g g
g g g



  
    .  Then, 

 1 2, ,...., .sSVNSSPROWA                                                               (8.33)                                        
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8.2 Single-Valued Neutrosophic Schweizer-Sklar Prioritized 

Weighted Geometric Operator 

In this subpart, we develop single-valued neutrosophic Schweizer-Sklar prioritized 

weighted geometric (SVNSSPRWG) and single-valued neutrosophic Schweizer-Sklar 

prioritized ordered weighted geometric (SVNSSPROWG) operators. We also discuss 

some characteristics of the developed aggregation operators. 

8.2.1    Single-Valued Neutrosophic Schweizer-Sklar Prioritized 

Weighted Geometric (SVNSSPRWG) Operator 

8.2.1.1 Definition  

A single valued neutrosophic Schweizer-Sklar prioritized weighted geometric 

(SVNSSPRWG) operator is a function : sSVNSSPRWG   , which is described as: 

  1

1 2
1

, ,...,

g

s

g

g

T

Ts

s g
g

SVNSSPRWG 




                                                                 (8.34) 

Where, 1 1,T  and  
1

1

( ), 2,3,....,
s

l l
l

T SO l s




  .  

8.2.1.2 Theorem   

Let  , , , 1,2,...,g g g g g s     , the value aggregated by utilizing developed 

SVNPRWG operator is still a SVNN and is specified by: 
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 

   
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1 1

1 1

1 1

1 1 1 1

1 1 11

, ,...., 1 ,

1 1 1 ,1 1 1 .

s s
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 

 
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 
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   
           
   
   

  

 
 

   
  

         (8.35) 

Proof: Firstly, we will prove Equation (8.35), by utilizing MI. The following steps of 

MI have been followed: 

Step 1. For 2g  , we have 

 

2

1

2

1 2
1

, ,

a

g

g

T

T

g
g

SVNSSPRWG 




  

1 2

2 2

1 1

1 2

g g

g g

TT

T T

 
 

                                                                           (8.36) 

From the operational laws for SVNNs, proposed in Definition (8.1.2.1), we have 
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and 
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1 1
2 2 2 2 2 2

2 2 2 22 2 2 2 2 2
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So, Equation (8.36) becomes 
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i.e., when 2,g   Equation (8.35) is true. 

Step 2. Assume that for g c , Equation (8.35) is true, i.e., 
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c c c c c c
g g g g g g

g g gc c c c c c
g g g g g g

g g g g g g

g g g g g g

SVNSSPRWG

T T T T T T

T T T T T T

  

 


     

     



     
     
                
     
     
     

     
     

(8.37) 

Then, for 1g c  , according to the operational rules developed for SVNNs in 

Definition (8.1.2.1), we have 

   

1

1

1

1 1

1 1
1 1 1 1 11

1 1 1 11 1 1 1 1 1

1 1 1 1 1 1

1 ,1 1 1 ,1 1 1

c

c

g

g

T

T
c c c c cc

c c c cc c c c c c

g g g g g
g

g g g g g g

TT T T T T

T T T T T T







 

      
        

     

         
         
                     
        
        

         
     

1

,





 
 



 

and  
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   

1

1

1

1 2 1 1 2 1, ,...., , , ,....,

c

c

g

g

T

T

c c c SS cSVNSSPRWG SVNSSPRWG







 


   

1

11

1
1 1

11 1
1 1 1

1 1 1 1

1 1 1 ,
c c c

g g c c

g cc c c c
g g g

g g g g

g g g g

T T T T

T T T T

 




  

 
  

   

   
       

        
               
        
                  

  
   

 

   

11

1

11
1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1
c c

g g c g

c cc c c c
g g

g g g g

g g g g

T T T T

T T T T





 


 

   

      
          
          
                      
          
                         

 
   

   

1

11

1

11
1 1

1 1 1 1

,1 1 1 1 1 1 1 1 1 1
c c

g g c c

c cc c c c
g g

g g g g

g g g g

T T T T

T T T T







 


 

   



      
          
          
                        
          
                         

 
   

1

.









 

=    

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1

1 ,1 1 1 ,1 1 1 .
c c c c c c

g g g g g g

g g gc c c c c c
g g g g g g

g g g g g g

g g g g g g

T T T T T T

T T T T T T

  

     
 



     
     

     

     
     
                
     
     
     

     
     

 

So, when 1g c  , Equation (8.35) is true. Therefore, Equation (8.35) is true for all  

When 

1

0,
g

s

a

g

T

T





such that 

1

1

1,
s

g

s
g

g

g

T

T






 then, Equation (8.35) degenerates into the 

following form: 

.h
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 

   

1

1 2
1 1

1 1

1 1

1 1 1 1

1 1 1 1

, ,...., 1 ,

1 1 1 ,1 1 1 .

s s
g g

s gs s
g g

s g

g g

g s s s
g g g g

g gs s s s
g g g g

g g g g

g g g g

T T
SVNSSPRWG

T T

T T T T

T T T T





 

 

 

 

   

   

 
 
    
 
 
 

   
   
           
   
   
   

 
 

   
   

    (8.38) 

8.2.1.3 Example  

Let 1 0.5,0.2,0.4 , 2 0.7,0.3,0.4 and 3 0.3,0.4,0.6 be three SVNNs. Based on the 

score function of SVNNs, we get 
1 2( ) 0.6333, ( ) 0.6667SO SO  and 

3( ) 0.4333SO  , 

and hence 1 21, 0.6333T T   and 3 0.42222.T   By using this information  2   , we 

can obtain 

 

   

1

3 3

1 2 3 3 3
1 1

1 1

1 1

3 3 3 3

3 3 3 3
1 1 1 1

1 1 1 1

, , 1

,1 1 1 ,1 1 1 .

a g

a
g g

a g

g g

g g g g

g g
g g g g

g g g g

g g g g

T T
SVNSSPRWG

T T

T T T T

T T T T





 

 

 

 

   

   

 
 
    
 
 
 

   
   
           
   
   
   

 
 

   
   

 

0.4537,0.2856,0.4648 .  

8.2.1.4 Theorem  

For a group of SVNNs  , , , 1,2,...,g g g g g s     , the SVNPROWA operator 

satisfies the following properties: 
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(1) (Idempotency) If all  1, 2,...,g g s are equal, i.e., , , ;g      then 

 1 2, ,...., .sSVNSSPRWG                                                                          (8.39) 

 (2) (Monotonicity) If , ,g g g g
       and , ,g g g g    are two groups of 

SVNNs, such that .g g
   i.e., ,g g g g

       and 
g g
    for all ,h then  

   1 2 1 2, ,...., , ,...., .s sSVNSSPRWG SVNSSPRWG                                    (8.40) 

(3) (Boundedness) Let , ,g g g g    be a group of SVNNs, and 

1 11
max ,min ,min ,

s s s

g s g g
g gg



 
    ,

1 1 1
min ,max ,max

s s s

g g g g
g g g



  
    .  Then, 

 1 2, ,...., .sSVNSSPRWG                                                               (8.41)                                        

When 0,   the SVNPRASSWG operator reduces to the PG operator based on the 

algebraic operational laws for SVNNs. That is, 

       
1 1 1

0 1 2
1 1 1

, ,...., ,1 1 ,1 1 .

T T Tg g g

s s s
T T Tg g g

g g gs s s

s g g g
g g g

SVNSSPRWG

  
  


  

                                (8.42) 

8.2.2    Single-Valued Neutrosophic Schweizer-Sklar Prioritized 

ordered weighted Geometric operator 

8.2.2.1 Definition  

A SVNPROWG operator is a function : ,sSVNPROWG   described as follows: 

  1

1 2 ( )
1

, ,...., .

g

s

g

g

T

Ts

s g
g

SVNSSPROWG 





                                                                   (8.43) 



263 

 

Where, 1 1,T  and  
1

1

( ), 2,3,....,
s

l l
l

T SO l s




  , is a permutation of  1, 2,..., s such that 

( ) ( 1)a a   for 2,3,..., .a s  

8.2.2.2 Theorem  

For a group of SVNNs  , , , 1,2,...,g g g g g s     , the value aggregated by the 

developed SVNPROWG operator is still a SVNN and is specified by: 

   

     

1

1 2

1 1

1 1

1 1

1 1 1 1

1 1 1 1

, ,...., 1 ,

1 1 1 ,1 1 1 .

s s
g g

s gs s
g g

g g

g g

s s s s
g g g g

g gs s s s
g g g g

g g g g

g g g g

T T
SVNSSPROWG

T T

T T T T

T T T T






 

 

 

 

 
   

   

 
 
    
 
 
 

   
   
           
   
   
   

 
 

   
   

                (8.44) 

Proof: Same as Theorem (8.2.1.2). 

8.2.2.3 Example  

Consider the SVNNs given in Example (8.2.1.2), , we have 1 21, 0.6333T T   and 

3
0.42222.T   the score values are 

1 2( ) 0.6333, ( ) 0.6667SO SC  and 
3( ) 0.4333SC  . So, 

we have 
2 1 3( ) ( ) ( )SC SC SC  and hence,      2 1 31 2 3

, , .
  

   By using this 

information  2   , we can obtain 

 

       

1 2 3

1 1 1

3 3 3 3 3 3

3 3 3 3 3 3
1 1 1 1 1 1

1 1 1 1 1 1

, ,

1 ,1 1 1 ,1 1 1 ,
g g g g g g

g g g
g g g g g g

g g g g g g

g g g g g g

SVNSSPROWG

T T T T T T

T T T T T T



  



  
     

     



     
     
                
     
     
     

     
     

 

0.4710,0.3007,0.4648 . 
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8.2.2.4 Theorem  

For a group of SVNNs  , , , 1,2,...,g g g g g s     , the SVNPROWA operator 

satisfies the following properties: 

(1) (Idempotency) If all  1, 2,...,g g s are equal, i.e., , , ;s      then 

 1 2, ,...., .sSVNSSPROWG                                                                       (8.45) 

 (2) (Monotonicity) If , ,g g g g
       and , ,g g g g    are two groups of 

SVNNs, such that .g g
   i.e., ,g g g g

       and 
g g
    for all ,h then  

   1 2 1 2, ,...., , ,...., .s sSVNSSPROWG SVNSSPROWG                                  (8.46) 

(3) (Boundedness) Let  , , , 1,2,...,g g g g g s     be a group of SVNNs, and 

1 11
max ,min ,min ,

s s s

g g g g
g gg



 
    ,

1 1 1
min ,max ,max

s s s

g g g g
g g g



  
    .  Then, 

 1 2, ,...., .sSVNSSPROWG                                                               (8.47)                                        

8.3 The MADM Methods Based on the Proposed Aggregation 

Operators 

In this part, we shall use the SVNPRWA and SVNPRWG operators with SVNNs to 

solve the MADM problem. The following presumptions or notations are utilized to 

express the MADM problems. Let the discrete set of alternatives be expressed by 

 1 2, ,..., hN N N N , and the set of attributes be expressed by  1 2, ,..., hO O O O , and that 

there is a prioritization among the attributes represented by the linear-ordering 
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1 2 1.... g gO O O O    , the specified attribute nO has a higher priority than mO if .n m  

Assume that     , ,rs rs rs rs h g
h g

M m




     is the SVNN decision matrix, where ,rs rs   

and rs  express the TM function, IM function and FM function respectively, such that 

      0,1 , 0,1 , 0,1 ,0 3, 1,2,..., ,rs rs rs rs rs rs r g             1, 2,...,s h . The goal of 

this problem is to rank the alternatives. 

8.3.1    The Method Based on SVNSSPRWA Operator 

In the following, a process for ranking and selecting the most preferable alternative(s) 

is provided as follows. 

Step 1. Standardize the decision matrix. 

First, the decision making information rsm in the matrix  rs

h g

M m


 must be 

standardized. Consequently, the attribute can be grouped into the cost and benefit 

types. For benefit type attribute, the assessment information does not need to changed, 

but for cost type attribute, it must be modified with the complement set. 

The decision matrix can be standardized by the following formula: 

, ,

,1 , cos

rsrs rs rs
rs

rsrs rs rs

for benefit typeattributeO
m

for t typeattributeO

   

   

                                     (8.48) 

Step 2. Determine the values of ( 1,2,..., ; 1, 2,..., )
rs

T r h s g  by using the following 

formula: 

  
1

1

1,2,..., ; 2,3,...., .
s

rl
rs

l

T SO m r h s g




                                                            (8.49) 
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Where, 
1

1for 1,2,..., .
r

T r h   

Step 3. Use the decision information from decision matrix  rs

h g

M m


 and the 

SVNSSPRWA operator given in Equation (8.18),  

 1 2, , , ,...,r r r rgr r rm SVNSSPRWA m m m     .                                                 (8.50) 

To get the overall SVNN, ( 1,2,..., )rm r h . 

Step 4. Determine the score values  ( 1,2,..., )rSO m r h of the overall SVNNs 

( 1,2,...., )rm r h by Definition (1.1.1.6) to rank all the alternatives ( 1,2,..., )rN r h . 

Step 5. Rank all the alternatives ( 1,2,..., )rN r h and select best one utilizing Theorem 

(1.1.1.5). 

Step 6. End. 

8.3.2  The Method Based on SVNSSPRWA Operator 

Steps 1 and 2 are same. 

Step 3. Use the decision information permitted decision matrix  rs

h g

M m


 and the 

SVNSSPRWG operator given in Equation (8.34)  

 1 2, , , ,...,r r r rgr r rm SVNSSPRWA m m m                                                     (8.51) 

To get the overall SVNN ( 1,2,..., )rm r h . 
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Step 4. Determine the score values  ( 1,2,..., )rSO m r h of the overall SVNNs 

( 1,2,...., )rm r h by Definition (1.1.1.6) to rank all the alternatives ( 1,2,..., )rN r h . 

Step 5. Rank all the alternatives ( 1,2,..., )rN r h and select best one utilizing Theorem 

(1.1.1.5). 

Step 6. End. 

8.4 An Illustrative Examples 

In this part, we use a numerical example of selecting third-party logistics (TPL) 

providers with SVNNs [39] to show the effectiveness and advantages of the 

developed approach. 

8.4.1    Example   

An electronic commerce distributer expects to select a suitable TPL provider. 

Initially, four providers (alternatives) ( 1,2,...,4)rN r  are available for selection and are 

evaluated by experts with respect to the following four attributes (1) customer 

satisfaction (2) service cost (3) market reputation  and (4) operational 

experience in the industry . The following priority relationship

among the four attributes is considered by the electronic commerce distributer. The 

assessment values of the four providers with respect to the four attributes are provided 

by expert in the form of SVNNs and listed in Table 8.1. 

Table 8.1. Decision matrix  

1,O 2 ,O 3 ,O

4O 1 2 3 4O O O O  

M
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Table 2. Normalize decision matrix  

     

     

     

     

     

Step 1. Normalize the decision matrix. Since , and  are of benefit  type, and 

is of cost type attribute. Hence, by using Equation (8.48), the normalized decision 

matrix is given in Table 8.2. 

Step 2. Determine the values of by using the formula (8.49), 

and get 

1 0.800 0.5600 0.2987

1 0.900 0.5700 0.3420

1 0.6667 0.5333 0.2607

1 0.6333 0.4856 0.2460

rs
T

 
 
 
 
 
 

 

Step 3. Use the SVNSSPRWA given in Equation (8.50) to get the overall SVNN 

 (assume ), and obtain 

1O 2O 3O 4O

1N 0.7,0.1,0.2 0.3,0.9,0.5 0.3,0.2,0.1 0.5,0.1,0.4

2N 0.9,0.1,0.1 0.3,0.8,0.4 0.5,0.3,0.2 0.3,0.2,0.4

3N 0.5,0.1,0.4 0.1,0.8,0.7 0.6,0.2,0.2 0.8,0.1,0.3

4N 0.4,0.3,0.2 0.2,0.9,0.6 0.7,0.2,0.1 0.2,0.2,0.5

M

1O 2O 3O 4O

1N 0.7,0.1,0.2 0.5,0.1,0.3 0.3,0.2,0.1 0.5,0.1,0.4

2N 0.9,0.1,0.1 0.4,0.2,0.3 0.5,0.3,0.2 0.3,0.2,0.4

3N 0.5,0.1,0.4 0.7,0.2,0.1 0.6,0.2,0.2 0.8,0.1,0.3

4N 0.4,0.3,0.2 0.6,0.1,0.2 0.7,0.2,0.1 0.2,0.2,0.5

1O 3O 4O

2O

( 1,2,..., 4; 1,2,..., 4)
rs

T r s 

( 1,2,...,4)rm r  2  
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1 2

3 4

0.6004,0.1090,0.1702 , 0.8367,0.1431,0.3204 ,

0.6598,0.1256,0.1661 , 0.5653,0.1597,0.1618 .

m m

m m

 

 

 

Step 4. Determine the score values  ( 1,2,..., 4)rSO m r  of the overall SVNNs 

by Definition (1.1.1.6), and have 

       1 2 3 40.7737, 0.7911, 0.7894, 0.7479.SO m SO m SO m SO m     

So, we get 2 3 1 4 .m m m m    

Step 5. According to score values, ranking order of alternatives is 2 3 1 4 .N N N N   So 

the best provider is 2N , while the worst one is 4 .N  

Similarly, we solve the above Example (8.4.1) by utilizing SVNSSPWG operator:  

Step 1 and step 2 are same. 

Step 3. Use the SVNSSPRWG operator to get the overall SVNN . 

(assume ), and have 

1 2

3 4

0.4583,0.1242,0.2492 , 0.4662,0.1949,0.2434 ,

0.5826,0.1532,0.2961 , 0.3951,0.2278,0.2438 .

m m

m m

 

 

 

Step 4. Determine the score values  ( 1,2,..., 4)rSO m r  of the overall SVNNs 

, and have 

       1 2 3 40.6950, 0.6760, 0.7111, 0.6412.SO m SO m SO m SO m     

So,  

Step 5. According to score values, ranking order of alternatives is 3 1 2 4 .N N N N  

So, the best provider is 3N , while the worst one is 4 .N  

( 1,2,....,4)rm r 

( 1,2,...,4)rm r 

2  

( 1,2,....,4)rm r 

3 1 2 4 .m m m m  
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8.4.2    Effect of the Parameter on Decision Result of This Example  

In order to see the effect of the parameter  on the decision-making result, we set the 

distinct values for the parameter   in step 3, to rank the alternatives. The score values 

and ranking order are described in Table 8.3 and Table 8.4.  

As from Table 8.3, we can notice that the ranking orders by utilizing SVNSSPWA 

operator are slightly different when the parameter   takes the distinct values. When 

the value of the parameter   tends to zero, the best choice is 3N  and the worst choice 

is 2N . When the value of the parameter  decreases from -2 then the best choice is 2N  

while the worst one is 4N . We can also see from Table 8.3, when the value of the 

parameter decreases the score values become bigger and bigger.  

From Table 8.4, we can see that the ranking orders by utilizing SVNSSPWG 

operator do not change for different values of the parameter  , the best choice is 3N , 

while the worst one is 4N . We can also notice from Table 4, when the value of the 

parameter   decreases, the score values become smaller and smaller. Generally, 

different DMs can set different values of the parameter  according to their actual 

need. 

Table 8.3. Score values and ranking order for different values of utilizing SVNSSPWA operator for 

example 5 

                              Score values       Ranking order 

 

0   

   
   

1 2

3 4

0.7434, 0.6932,

0.7513, 0.7103.

SO m SO m

SO m SO m

 

 

 

 

3 1 4 2 .N N N N    




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1       
   

1 2

3 4

0.7595, 0.7552,

0.7718, 0.7302.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

2       
   

1 2

3 4

0.7682, 0.7858,

0.7984, 0.7430.

SO m SO m

SO m SO m

 

 

 

 

3 2 1 4 .N N N N    

7       
   

1 2

3 4

0.8095, 0.8401,

0.8334, 0.7959.

SO m SO m

SO m SO m

 

 

 

 

2 3 1 4 .N N N N    

20       
   

1 2

3 4

0.8252, 0.8576,

0.8554, 0.8201.

SO m SO m

SO m SO m

 

 

 

 

2 3 1 4 .N N N N    

 

100    

   
   

1 2

3 4

0.8317, 0.8649,

0.8645, 0.8308.

SO m SO m

SO m SO m

 

 

 

 

2 3 1 4 .N N N N    

200       
   

1 2

3 4

0.8325, 0.8658,

0.8656, 0.8321.

SO m SO m

SO m SO m

 

 

 

 

2 3 1 4 .N N N N    

Table 8.4. Score values and ranking order for different values of utilizing SVNSSPWG operator 

                              Score values       Ranking order 

0      
   

1 2

3 4

0.7168, 0.7077,

0.7244, 0.6754.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

 

1    

   
   

1 2

3 4

0.7059, 0.6904,

0.7176, 0.6591.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

 

2    

   
   

1 2

3 4

0.6853, 0.6580,

0.7218, 0.5998.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    





272 

 

 

7    

   
   

1 2

3 4

0.6541, 0.6315,

0.6857, 0.5656.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

 

20    

   
   

1 2

3 4

0.6137, 0.5828,

0.6584, 0.5042.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

 

100    

   
   

1 2

3 4

0.5768, 0.5435,

0.6386, 0.4740.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

 

200    

   
   

1 2

3 4

0.5717, 0.5384,

0.6359, 0.4703.

SO m SO m

SO m SO m

 

 

 

 

3 1 2 4 .N N N N    

8.4.3   Example [40]  

In order to reinforce the academic education, the school of management in a Chinese 

university wants to introduce excellent overseas teachers. This introduction caught 

much attention from the school, university president, dean of management school and 

human resource officer sets of a panel of decision makers who will take the whole 

responsibility for this introduction. The panel made strict assessment for five 

alternatives (candidates) ( 1,2,...,5)rN r  from four characteristics (attributes) namely, 

morality 1,O research potential 2 ,O skill of teaching 3O , education background 4O . The 

president of the university has absolute priority in decision making, and the dean of 

the school of management is next. In addition, this introduction will be in a strict 

accordance with the principle of combining ability with political integrity. The 

prioritization among the attributes is as follow, 1 2 3 4 .O O O O    The decision makers 
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assess possible 5 alternatives ( 1,2,...,5)rN r  with respect to the 4 attributes 

( 1,2,...,4)sO s  and construct the following SVN decision matrix given in Table 5. 

Table 8.5. Decision matrix  

 
1O  2O  3O  4O  

1N  0.5,0.8,0.1  0.6,0.3,0.3  0.3,0.6,0.1  0.5,0.7,0.2  

2N  0.7,0.2,0.1  0.7,0.2,0.2  0.7,0.2,0.4  0.8,0.2,0.1  

3N  0.6,0.5,0.2  0.5,0.7,0.3  0.5,0.3,0.1  0.6,0.3,0.2  

4N  0.8,0.1,0.3  0.6,0.3,0.2  0.6,0.2,0.1  0.6,0.2,0.2  

5N  0.5,0.5,0.4  0.4,0.8,0.1  0.7,0.6,0.1  0.5,0.8,0.2  

 

Step 1. Normalize the decision matrices by using Equation (8.49). Since all the 

attributes are of benefit type so there is no need to normalize it. 

Step 2. Determine the values of by using the formula (8.50), 

and get 

1 0.5333 0.3556 0.1011

1 0.8000 0.6133 0.3435

1 0.6333 0.3167 0.1404

1 0.8000 0.5600 0.3435

1 0.5333 0.2667 0.0948

rs
T

 
 
 
 
 
 
  

 

Step 3. Use the SVNSSPRWA given in Equation (8.51) to get the overall SVNN 

 (assume ), and obtain 

1 2

3 4

5

0.5151,0.4787,0.1176 , 0.7209,0.2000,0.1320 ,

0.5626,0.4490,0.1764 , 0.7246,0.1434,0.1681 ,

0.5366,0.5754,0.1462 .

m m

m m

m

 

 



 

M

( 1,2,...,5; 1,2,..., 4)
rs

T r s 

( 1,2,...,5)rm r  2  
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Step 4. Determine the score values  ( 1,2,...,5)rSO m r  of the overall SVNNs 

( 1,2,....,5)rm r  by using Definition (1.1.1.6), and have 

         1 2 3 4 50.6396, 0.7963, 0.6458, 0.8044, 0.6050.SO m SO m SO m SO m SO m      

So, 4 2 3 1 5 .m m m m m     

Step 5. According to score values, ranking order of alternatives is

4 2 3 1 5.N N N N N    So, the best candidate is 4N , while the worst one is 5 .N  

Similarly, we solve the above Example (8.4.3) by the SVNSSPWG operator:  

Step 1 and step 2 are same. 

Step 3. Use the SVNSSPRWG operator given Equation (Step 3) to get the overall 

SVNN ( 1,2,...,5)rm r   (assume 2   ), and have 

1 2 3

4 5

0.4498,0.7400,0.1745 , 0.7104,0.2000,0.2269 , 0.5477,0.5821,0.2233 ,

0.6554,0.2051,0.2265 , 0.4790,0.7022,0.3042 .

m m m

m m

  

 

 

Step 4. Determine the score values  ( 1,2,...,5)rSO m r  of the overall SVNNs 

( 1,2,....,5)rm r  by using Definition (1.1.1.6), and get 

         1 2 3 4 50.5118, 0.7612, 0.5808, 0.7412, 0.4909.SO m SO m SO m SO m SO m      

So, 2 4 3 1 5 .m m m m m     

Step 5. According to score values ranking order of alternatives is

2 4 3 1 5.N N N N N     So, the best candidate is 2N , while the worst one is 5 .N  
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8.4.4    Effect of The Parameter on Decision Result of This Example  

In order to see the effect of the parameter  on the decision-making result, we set the 

distinct values for the parameter   in step 3, to rank the alternatives. The score values 

and ranking order are described in Table 8.6, Table 8.7, and Fig.8.1, Fig.8.2. In Fig. 

8.1, Fig. 8.2,  ( 1,2,...,5)rN r   are expressed by (1,...,5)iG .  

 

Table 8.6. Score values and ranking order for different values of  utilizing SVNSSPWA operator for 

example 8.4.3 

                              Score values       Ranking order 

 

0   

     
   

1 2 3

4 5

0.5935, 0.7828, 0.6195

, 0.7716, 0.5652.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

1         
   

1 2 3

4 5

0.6179, 0.7908, 0.6325

, 0.7887, 0.5877.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

2         
   

1 2 3

4 5

0.6396, 0.7963, 0.6458

, 0.8044, 0.6050.

SO m SO m SO m

SO m SO m

  

 

 

 

4 2 3 1 5.N N N N N     

7         
   

1 2 3

4 5

0.6916, 0.8110, 0.6913

, 0.8433, 0.6521.

SO m SO m SO m

SO m SO m

  

 

 

 

4 2 1 3 5.N N N N N     

20         
   

1 2 3

4 5

0.7170, 0.8248, 0.7181

, 0.8588, 0.6829.

SO m SO m SO m

SO m SO m

  

 

 

 

4 2 3 1 5.N N N N N     

 

100    

     
   

1 2 3

4 5

0.7301, 0.8317, 0.7304

, 0.8651, 0.6967.

SO m SO m SO m

SO m SO m

  

 

 

 

4 2 3 1 5.N N N N N     


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200         
   

1 2 3

4 5

0.7317, 0.8325, 0.7318

, 0.8659, 0.6983.

SO m SO m SO m

SO m SO m

  

 

 

 

4 2 3 1 5.N N N N N     

 

Fig 1. Chart for different values of parameter  utilizing SVNSSPWA operator in Example 8.4.3 

 

Table 8.7. Score values and ranking order for different values of  utilizing SVNSSPWG operator for 

example 6 

                              Score values       Ranking order 

0        
   

1 2 3

4 5

0.5463, 0.7688, 0.5985

, 0.7503, 0.5241.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

 

1    

     
   

1 2 3

4 5

0.5271, 0.7651, 0.5894

, 0.7457, 0.5067.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

 

2    

     
   

1 2 3

4 5

0.5118, 0.7612, 0.5808

, 0.7412, 0.4909.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 -2 -7 -20 -100 -200 
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G2 

G3 

G4 

G5 
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7    

     
   

1 2 3

4 5

0.4651, 0.7414, 0.5514

, 0.7224, 0.4470.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

 

20    

     
   

1 2 3

4 5

0.4268, 0.7170, 0.5255

, 0.6959, 0.4188.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

 

100    

     
   

1 2 3

4 5

0.4053, 0.7033, 0.5053

, 0.6728, 0.4037.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

 

200    

     
   

1 2 3

4 5

0.4026, 0.7017, 0.5027

, 0.6697, 0.4019.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

 

 

Fig 2. Chart for different values of parameter  utilizing SVNSSPWG operator in Example 8.4.3 

From Table 8.6, we can notice that the ranking orders by utilizing SVNSSPWA 

operator are slightly different when the parameter   takes the distinct values. When 

the value of the parameter   is -1 and tends to zero, the best choice is 2N . When the 

value of the parameter  decreases from -1 then the best choice is 4N . We can also see 
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from Table 8.6, when the value of the parameter decreases the score values become 

bigger and bigger.  

From Table 8.7, we can see that the ranking orders by utilizing SVNSSPWG 

operator do not change for different values of the parameter  , the best choice is 2N . 

We can also notice from Table 7, when the value of the parameter   decreases, the 

score values become smaller and smaller. Generally, different DMs can set different 

values of the parameter  according to their actual need. 

8.4.5     Comparison With the Other Methods 

In order to further show the effectiveness of the proposed methods based on the 

proposed AOs, in this article, we solve Example (8.4.3) by seven existing methods 

based on different aggregation operators under SVN environment. SVN weighted 

averaging (SVNWA) operator proposed by Ye [8], SVNWA operator proposed by 

Peng et al. [9] based on improved operational laws for SVNNs, SVN-MABAC [21], 

SVN-TOPSIS [21], SVN prioritized weighted averaging (PRWA) operator developed 

by Wu et al. [36], SVN Dombi prioritized weighted averaging (PRWA) operator 

developed by Wei et al. [40] and SVNN normalized BM (SVNNBM) operator 

developed by Liu et al. [30]. The score values and ranking order are given in Table 

8.8. 

The weight vector of attributes for these methods is obtained using the PRA 

operator.  
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Table 8.8. Score values and ranking orders with different methods 

Methods                           Score values           Ranking order 

 

SVNWA 

operator [8] 

     
   

1 2 3

4 5

0.5532, 0.7698, 0.6001

, 0.7580, 0.5301.

SO m SO m SO m

SO m SO m

  

 

 

 

2 4 3 1 5.N N N N N     

SVNWA 

operator [9] 

     
   

1 2 3

4 5

0.5934, 0.7828, 0.6195

, 0.7716, 0.5652.

SO m SO m SO m

SO m SO m

  

 

 
2 4 3 1 5.N N N N N     

SVNDPAW 

[40] 2   

     
   

1 2 3

4 5

0.6540, 0.7973, 0.6529

, 0.8080, 0.6136.

SO m SO m SO m

SO m SO m

  

 

 
4 2 1 3 5.N N N N N     

SVN-TOPSIS 

[21] 

     
   

1 2 3

4 5

3.3557,C 0.8123,C 2.7509,

C 0.4144,C 3.8097.

C m m m

m m

     

   

 
4 2 3 1 5.N N N N N     

SVN-

MABAC [21] 

     
   

1 2 3

4 5

0.2637, 0.6122, 0.2176,

0.5891, 0.1903.

Q m Q m Q m

Q m Q m

  

 

 
2 4 1 3 5.N N N N N     

 

SVNPWA 

operator [36] 

     
   

1 2 3

4 5

0.5934, 0.7828, 0.6195

, 0.7716, 0.5652.

SO m SO m SO m

SO m SO m

  

 

 
2 4 3 1 5.N N N N N     

 

SVNNBM 

operator 

(p=q=1) [30] 

     
   

1 2 3

4 5

0.565597, 0.774729, 0.60837

, 0.754169, 0.5391.

SO m SO m SO m

SO m SO m

  

 

 
2 4 3 1 5.N N N N N     

SVNSSPRW

A operator (in 

this article) (

0  ) 

     
   

1 2 3

4 5

0.5935, 0.7828, 0.6195

, 0.7716, 0.5652.

SO m SO m SO m

SO m SO m

  

 

 
2 4 3 1 5.N N N N N     
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SVNSSPRW

A operator (in 

this article) (

2   ) 

     
   

1 2 3

4 5

0.6396, 0.7963, 0.6458

, 0.8044, 0.6050.

SO m SO m SO m

SO m SO m

  

 

 
4 2 3 1 5.N N N N N     

From Table 8, we can see that when value of the parameter  tends to zero, the 

ranking orders obtained by the proposed method based on the proposed aggregation 

operators are same with the other five methods. This shows that our method is valid. 

Further, when we set the parameter value 2   , then, the ranking order is same as 

that obtained from the methods developed in [21] and [40] based on SVN-TOPSIS 

and SVN Dombi prioritized averaging operators.  

Moreover, the comparison among our method with the existing seven methods can 

be pointed out as follows: 

 (1) The methods developed by Ye [8] and Peng et al. [9] are based on SVNWA 

operators. These aggregation operators are based on algebraic operations, while the 

aggregation operators in this article are based on Schweizer-Sklar operations. 

Although the best alternative is same, however, when we change the value of the 

parameter   the best alternative changed. That’s why our method is more flexible and 

effective than Ye [8] and Peng [9]. 

(2) The method of Wu et al. [36] is based on SVN prioritized weighted averaging 

operator. This is a special case of the developed aggregation operators, when the 

value of the parameter tends to Zero. 

(3) The method developed by Liu et al. [30] is based on the SVNNNWBM operator, 

to solve the same example, we set p q 1  , then the ranking order is same as the one 

obtained by the developed aggregation operators, when the value of the parameter 

tends to zero. This shows the effectiveness of the proposed approach based on the 
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developed aggregation operator. But the advantage of the developed method in this 

article is that it can deal with the situation in which the attributes are with the 

prioritized relationship. 

(4) The methods developed by Peng et al. [21] is based on SVN-TOPSIS and SVN-

MABAC method in which the weights of the attributes are obtained via gray system 

theory and cannot consider the prioritized relationship among the attributes. 

(5) The method developed by Wei et al. [40] is based on Dombi prioritized 

aggregation for SVNSs. The Dombi prioritized aggregation operator also consists of 

parameter, but the decision makers can considered the parameter greater than zero, 

while in the proposed aggregation operators in this article the decision makers can 

considered the parameter values less than zero.     

Certainly, the developed methods in this article are more general and flexible by the 

parameter, and are more advanced to be used in practical decision-making problems. 

8.4.6   Conclusion 

Since SVNNs are a better mathematical tool and can define uncertain information 

more accurately than the FS and IFS. In this chapter, we investigated some 

Schweizer-Sklar prioritized aggregation operator based on SVNNs and proposed two 

methods to deal with single-valued neutrosophic information. First, we have 

developed some new aggregation operators and studied their desirable properties such 

as idempotency, monotonicity and boundedness. Moreover, we have analyzed some 

special cases of the developed operators, and have presented two MADM methods 

based on the proposed aggregation operators to deal with SVN information. Lastly, a 

practical example about talent introduction is given to show the verification of the 

developed methods and to demonstrate the effectiveness and practicality of the 
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developed approaches and a comparison analysis is also given to verify the developed 

methods. 
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