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0.1 Literature review

Multiple-attribute decision making (MADM) and multiple attribute group decision
making (MAGDM) are very important research topics in current decision making
process. The main aim of MADM or MAGDM problems is to select the perfect
alternative between limited alternatives conforming to the preference values specified
by decision makers (DMs) with respect to the prescribed criteria. One of the
difficulties in real MADM or MAGDM problems is how to express the attribute
values in fuzzy and indeterminate decision making (DM) environments. Fuzzy set
(FS) initially developed by Zadeh [1] is a better mechanism for describing and
communicating uncertainty and vagueness. Since its initiation, FS has acquired a
consequential attention from the scholars and they studied its practical and theoretical
aspects. Various generalizations of FS have been proposed such as interval-valued FS
(IVFS) [2], in which the truth-membership degree (TRD) is described by an interval

value in the closed interval[0,1], IFS [3], which can be expressed by the TRD and

falsity-membership degree (FLD). Therefore, IFS can describe fuzziness and
uncertainty more completely than FS. Atanassov and Gargov [4] further generalized
IFS to interval valued IFS (IVIFS). However, neither FS nor IFS is capable to handle
indeterminate and inconsistent information. For example, when we take a student
opinion about the teaching skills of a professor with about 0.6 being the possibility
that the teaching skills of a professor is good, 0.5 being the possibility that the
teaching skills of the professor is not good and 0.3 is the possibility that he/she may
not be sure about the teaching skill of the professor is not good or good. To handle
such type of information, Smarandache [5] developed the notion of neutrosophic set
(NS) in which a new component “indeterminacy-membership degree” (IMD) is

11



added. NS described the uncertain information by TMD, IMD and FMD. These three

functions are independent and are standard or non-standard subsets jo-1 . As the

theory of NS has the IMD, therefore it can explain the uncertain information more
accurately than FS and IFS and is more consistent with human natural feelings and
judgement. But NS theory is hard to be utilized in real life problems expected to the

constraint of non-standard subsets of Jo-17[. To utilize NS in practical problems

expediently, Wang et al. [6] developed the perception of single valued neutrosophic

set (SVNS) which is subclass of NS by changing the Jo-17[ into the [0,1]. SVNS was

further generalized by Wang et al. [7] to developed interval neutrosophic set (INS)
and Zhang et al. [8] developed various operational rules for interval neutrosophic
numbers (INNs). Ye [9] developed the concept of simplified neutrosophic set (SNS),
which was the extended form of SVNS and INS. Peng et al. [10] developed some
improved operational rules for simplified neutrosophic numbers. Recently, Jun et al.
[11], Ali et al. [12] developed the concept of neutrosophic cubic set (NCS), which is a
hybrid structure that consist of SVNS and INS set. Jun et al. [13] further developed P-
union, P-intersection, R-union, R-intersection and discussed some related properties.
Zhang et al. [14] and Ye et al. [15] developed various operational rules for
neutrosophic cubic numbers (NCNs) and they developed some aggregation operators
which were further applied in MADM. Many researchers proposed distance and
similarity measures [16-25], correlation coefficients [26-31], entropies [32-36] for
these sets and applied them to various fields.

In actual decision making problems, there is an extensive arrangement of
qualitative information which is simply articulated by linguistic variables (LVSs). In

addition, LVs can enlarge the reliability and flexibility of conventional decision
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models and they have been consistent with other theories in solving MADM or
MAGDM problems [37, 38]. For instance, intuitionistic linguistic set (ILS) and
interval valued intuitionistic uncertain linguistic sets (IVIULS) were proposed to
solve MADM problems [39, 40]. The concept of ILSs and IVIULVs were further
extended by Ye et al. [41-43] to IN uncertain linguistic set (INULS), IN linguistic set
(INLS) and SVN linguistic set (SVNLS). Liu et al. [44] developed SVN uncertain
linguistic set (SVNULSs) and applied them to MADM problems. Hesitant fuzzy set
(HFS) developed by Torre and Torre and Narukawa [45, 46] is another effective
generalization of Zadeh’s FS. Some authors combined linguistic variable with HFS
and other extensions of HFS to develop some new hybrid structures and applied them
to various fields [47-52].

Chen et al. [53] defined the notion of linguistic intuitionistic fuzzy numbers
(LIFNSs), and proposed various basic operational laws, score and accuracy functions,
various aggregation operators, and are applied to MAGDM problems. After the
introduction of LIFNs, many researchers classified various aggregation operators for
LIFNs and they have been applied to various fields [54-56]. However, the
shortcoming of LIFN is that it cannot handle inconsistent or indeterminate
information. To overcome this shortcoming, Li et al. [57] proposed the concept of
linguistic NSs (LNSs) and proposed various operational laws, score, certainty and
accuracy functions, various aggregation operators and then applied these perceptions
to MADM problems. LNS was further studied by Fang et al. [58, 59] and proposed
some novel operational laws, score function, accuracy function, presented various
aggregation operators and are applied to MAGDM problems. Obviously, LNS can
deal with fuzzy, uncertain, inconsistent or indeterminate information by LVs and they

are the generalizations of LV, LIFN and so on.
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Aggregation operators (AOs) play a prevailing role in DM. subsequently, many
authors developed distinct aggregation operators and their simplifications, such as
power average (PA) operator [60], Bonferroni mean (BM) operator [61], Heronian
mean (HrM) operator [62], Muirhead mean (MM) operator [63], Maclurin symmetric
mean (MSM) operator [64], Hamy Mean (HM) operator [65] and so on. Definitely,
different AOs have different functions. Some can remove the effect of awkward data
given by prejudice DMs such as PA [60] operator developed by Yager has the
capibality that it can aggregate the input information by giving the importance degree
based on support degree among the input arguments, and attain this function. The PA
operator was further extended by many researchers to deal with different fuzzy
environments [66-71].

Some aggregation operator are competent to consider the interrelationship among
two or more input arguments such as BM operator, HM operators, MSM operators
and MM operators. All these AOs are extended into different environments such as
BM operator was extended by Xu et al. [72] to deal with intuitionistic fuzzy
information, Liu et al. [73] proposed various normalized BM for SVNNs and apply
them to MADM. MSM operator was extended by Qin et al. [74] to deal with IF
information and applied them to MADM. Wei et al. [75], Qin et al. [76] and Wang et
al. [77] further generalized MM operator to pythagorean fuzzy environment, hesitant
fuzzy environment and SVN linguistic environment and are applied to MADM.
Recently, Liu et al. [78, 79] extended MM operator to deal with IF information and IN
information and some advantages of MM operator over BM and HM operators were
discussed, and applied them to the MAGDM and MADM.

Some authors developed some hybrid structures to take the full advantages of PA

operator and other aggregation operators, such as BM, HM, MSM and MM operators
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such as He et al. [80] and Liu et al. [81] developed IF power Bonferroni mean and
interval-valued IF power Bonferroni mean and applied these to MAGDM. Liu et al.
[82] proposed interval-valued IF power HM operator and are applied to MAGDM.
Recently, Liu et al. [83] proposed interval-valued IF power MSM operator and gave
its application in MAGDM. Li et al. [84] introduced Pythagorean fuzzy power MM
operator and applied these to MADM.

These existing AOs have not considered the situation in which the criteria have
priority relationship among them. To solve this problem, Yager [85] developed
prioritized aggregation (PrA) operator Moreover, Liu et al. [86] developed some Pr
ordered weighted averaging/geometric operator to deal with neutrosophic
information. Several other studies were conducted to extend PrA operators to some
other fuzzy environment [87-92].

Some researchers developed AOs utilizing different T-norms (TN) and T-Conorm
(TCN). For example, Ji et al. [93] combined PrA operators with BM operator and
introduced some SVN prioritized BM operators by utilizing Frank operations. Wang
et al. [94] developed some Frank Choquet Bonferroni mean operators of bipolar NSs
and are applied to MAGDM. Recently, Wei et al. [95] proposed some PRA operators
based on Dombi [96] TN and TCN and are applied to MADM. Several other AOs
were developed by different authors on different TN and TCN in [97-105]

From the above stated AOs, most of the AOs for NS or SVNS are based on
algebraic, Hamacher, Frank and Dombi operational laws, which are special cases of
Archimedean TN (ATN) and TCN (ATCN). Certainly, ATN and ATCN are the
extensions of many TNs and TCNs, which have various special cases selected to
express the union and intersection of SVNS [106]. Schweizer-Sklar operations

[107] are the special cases of ATN and ATCN. They are with a variable parameter,
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which makes them more pliable and better than the other operations. However, the
majority of researchers mostly focused on the elementary theory and distinctiveness
of Schweizer-Sklar TN (SSTN) and TCN (SSTCN) [108, 109]. Recently, Liu et al.
[110] and Zhang [111] combined SS operations with IVIFS and IFS, and proposed

power averaging/geometric operators along with weighted averaging operators for

IVIFS and IFS respectively.

For better understanding of several concepts given in this thesis, the reader

should have to study [112-121].
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0. 2 Chapter wise Study

In chapter 1, some essential definitions of NS, SVNS, INSs, INULS, PA
operator, PrA operator, Muirhead mean (MM) operator, BM operator, HM operators,

HrM, operational laws of these sets, properties and associated theorems are given.

In chapter 2, the PA operator is combined with HrM operator and extended
to process linguistic neutrosophic information, and presented the linguistic
neutrosophic power Heronian AO, linguistic neutrosophic power weight Heronian
AO. Further, some characteristics of these newly developed AOs are examined and
various exacting cases are confered. A novel technique is developed based on these
AOs for MAGDM. Lastly, an illustrative example was specified to exemplify the
efficacy and compensation of the proposed method by contrasting with the existing

methods.

In chapter 3, various newly AOs for aggregating SVN information and a
novel technique for MAGDM are developed. To acquire full reward of MM operator
and PA operator, the single-valued neutrosophic power Muirhead mean (SVNPMM)
operator, its weighted form, single-valued neutrosophic power dual Muirhead mean
(SVNPDMM) operator, its weighted form and discuss their basic properties along
with particular cases with respect to the parameter vector. Moreover, based on the
developed AOs, a novel approach to MAGDM problem is developed. Lastly, a
numerical example is specified to explain the efficiency and practicality of the

developed approach.
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In chapter 4, some new aggregation operators for neutrosophic cubic
numbers (NCNs), which is a fundamental member of NCS. Taking the advantages of
MM operator and PA operator, we develop the power Muirhead mean (PMM)
operator and examined it under NC information. Therefore, some new NC AOs, such
as the NC power Muirhead mean operator, weighted NC power Muirhead mean
operator, NC power dual Muirhead mean operator and weighted NC power dual
Muirhead mean (WNCPDMM) operator are proposed and related properties of these
proposed AOs are discussed. Furthermore, a novel MADM method initiated on the
developed new aggregation operators. Lastly, a numerical example is given to show
the effectiveness of the developed approach.

In chapter 5, the conventional HM operator is combined to the traditional PA
operator in interval neutrosophic settings and presents the two novel IN AOs such as
the IN power Hammy mean (INPHM) operator and its weighted form. Then, various
preferable properties of the developed AOs are discussed. Moreover, based on these
AOs, a new method for MAGDM is presented to deal with IN information. Lastly, an
example is specified to explain the competence of the proposed method by comparing

with other presented methods.

In chapter 6, some operational laws for INNs based on Dombi TN and TCN
are developed. Several desirable characteristics of these operational rules are
investigated. We extend PBM operator based on Dombi operations to developed IN
Dombi PBM (INDPBM) operator, IN weighted Dombi PBM (INWDPBM) operator,
IN Dombi power geometric Bonferroni mean (INDPGBM) operator, IN weighted
Dombi power GBM (INWDPGBM) operator and discussed several properties of these

aggregation operators. Then, we initiated a MADM method based on these AOs to
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deal with IN information. Lastly, a descriptive example is demonstrated to explain the

competence and practicality of the developed MADM method.

In chapter 7, the notion of hesitant IN uncertain linguistic set (HINULS) and
hesitant IN uncertain linguistic element (HINULE) are proposed, various basic
operational laws, properties, the score, accuracy and certainty functions for
HINULEs. Then, various AOs are presented to aggregate HINULEs. A group
decision making based proposed AOs are initiated to handle MAGDM problems, in
which criteria values acquire the form of HINULEs and there exist prioritized
relations among the criteria. Lastly, a numerical example about investment

alternatives is given to explain the efficiency of the proposed method.

In chapter 8, we enlarge SS TN and TCN to SVN numbers (SVNN) and
gave the SS operational laws for SVNNs. Then, we merge PrA operator with SS
operations, and develop the SVN Schweizer-Sklar prioritized weighted averaging
(SVNSSPrA) operator, SVN Schweizer-Sklar prioritized ordered weighted averaging
(SVNSSPrOWA) operator, SVN Schweizer-Sklar prioritized weighted geometric
(SVNSSPrWG) operator, and SVN Schweizer-Sklar prioritized ordered weighted
geometric (SVNSSPrOWG) operator. Moreover, we studied some useful
characteristics of these proposed AOs and proposed two models on the basis of
SVNSSPrWA and SVNSSPrWG operators. At the same time, we apply these two
methods to deal with MADM problems under SVN information. Lastly, an illustrative
example about talent introduction is specified to testify the effectiveness of the

developed methods
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Chapter 1

Preliminaries

The aim of this chapter is to express various essential definitions of NS, SVNS,
INS, INULS, PA operator, PrA operator, MM operators, BM, Hamy mean (HM)
operators, HrM operator, linguistic scale function (LSF), operational laws of these

sets, properties and related theorems.
1.1  Neutrosophic Sets and Their Generalizations

In this part, we present the definition of NSs and its generalizations such as SVNSs,
INSs, NCSs, operational laws, score, accuracy and certainty functions of these sets

and various related theorems are discussed.

1.1.1 Neutrosophic Sets

The idea of NS was first developed by Smarandache [5] from philospical point of
view. The definition of NS is provided below. For deep understanding of the idea and
notions of NS the reader should study [5].

1.1.1.1 Definition [5]

Let UN be a universe set and un cUN . Then, a NS NE in UN is expressed by,

i

[l

v un). e (E),?NE(UT)FELJ:N}, (1.1)
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where, E?(Tn),?i(ﬁ)and Tﬁ(ﬁ)respectively expressing the truth-membership

degree (TRD), indeterminacy-membership degree (IMD) and falsity-membership

degree  (FLD) such that E:E(ﬁ):UN —>]0-,1+[,$ﬁ(ﬁ):m—>]0-,1+[ and

?ﬁ(u=n):=N—>]0*,1*[. The three functions must satisfy the condition that

0 <Ere (u_n)+$ﬁ (ﬁ)+?ﬁ (ﬁ) <3".

Smarandache [5] developed the concept of NS from philosophical point of view as a
simplification of FS and IFS. But NS was difficult to apply in practical problems. To
utilize NS easily in realistic problems, Wang et al. [6] developed the perception of
SVNS which is the subclass of NS and is define as follows:

1.1.1.2 Definition [6]

Let UN be a universe set and un cUN . Then, a SVNS SN in UN is expressed by,

SN:{<$,ESN(u=n),‘I’SN(u=n),YSN(u=n)>|u=neU=N}, (1.2)
where, Eﬁ(u=n),‘lf§(u=n) and Yﬁ(u=n) respectively express TRD, IMD and FLD such
that Eﬁ(ﬁ):U=N—>[O,1],‘P§(u=n):m —[0,1]and Yﬁ(ﬁ):U=N—>[O,1]. The sum of these
three functions must be less or equal to 3. The triplet <E§(E),‘Pﬁ(ﬁ)1§(ﬁ)> is said

to be a SVN number (SVNN). For computational simplicity, we shall denote a SVNN
by n=(Z,¥,Y).

1.1.1.3 Definition [10]

Let a,n,and n,be any three SVNNs and &>0. Then, few operational laws for

SVNNs are described as follows:
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(L) h,®h,=(5,+5,-5E,,¥,¥,,Y,Y,), (1.3)

(2 n,®n,=(EE, ¥, +¥,- V.V, \;+ Y, - Y.Y,), (1.4)
3) §h:<1—(1—5)§,‘P§,Y5>, (1.5)
(@) n° (=7 1-(1-w) 1-(1- 1)), (1.6)

To compare two SVNNSs, Ye [9] proposed the following cosine measure and
comparison rules for SVNNs.

1.1.1.4 Definition [9]

For a SVNN 7=(Z,¥,Y), the cosine measure is identified as follows:

(1]

Cs(h):m' For any two SVNNs 7, =(E,¥,Y,)and#r, =(5, V¥, Y,), if

CS(h,) <CS(h,)then n, <h,.

1.1.1.5 Definition [20]

Let #,=(=,¥,.Y,)and #,=(8,,¥,,Y,)be any two SVNNs. Then, the Hamming

distance among #,and #, is identified as follows:

1o =
Ds(hl,hz):§(|:l—n2|+|‘1’1—‘I’2|+|Y1—Y2|). (1.7)

1.1.1.6 Definition [10]

Let »=(=,¥,Y)be a SVNN. Then, a score function (SF) SO can be expressed as
follows:

SO(h):%(E,,+2—‘P,,—Y,,),So(h)e[0,1]. (1.8)
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1.1.1.7  Definition [10]

Let n=(2,%,Y)be a SVNN. Then, an accuracy function (AC) AR can be expressed as
follows:

AR(R)=(E,-Y,), AR(1) e[-11]. (1.9)
1.1.1.8 Definition [10]

Let », =(5, ¥, Y,)and n,=(5,, ¥, Y,)be two SVNNs. Then, the comparison rules for
comparing SVNNs are described as follow:

@) If ?)(hl)<§(hz), then #, is greater than 7,, and is denoted as 7, > &,,

2) If ?)(hl):?)(hz), and ﬁ(hlkﬁ(hz), then #,is greater than #,, and is
denoted as #, > n,,

(3) If SO(7,) = SO(1,) , and AR(x,) = AR(,) then 1, is equal to#, , and is denoted by

1.1.1.9 Definition [7]

Let UN be a universe set and uneUN . Thenan INS IN in UN is expressed by,
25 (1) i () v (o) 1am <N, (1.10)

where, =_ (u=n),‘1’ (u=n) and Ym(u=n) respectively, signify the TRD, IMD and FLD of

N

IN

the element uncUN to the set IN. For each pointheX, we have, c (ﬁ),l{f: (E)

Y (u=n) c[01],and 0< SUPE— (u=n) +sup¥— (un) +sup Y— (u_n) <3.

For computational simplicity, we can utilizen=([=",2" ],[w*, % ],[ ", 1" ])to express

an element 7 in an INS, and the element 7 is called an interval neutrosophic number
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(INN). Where, =_ (E):[EL,EU Jeloa], ¥ (u=n) =[¥h ¥ ]cfo], v (u:n):[rL,r“]g[o,l]

and 0<=Y +9Y +YY <3.

1.1.1.10 Definition [8]

Let n,=([=p,2 | [, ][ vi 0y ) and n, =([=5,2) ][5, W5 ][ 5,00 ) be any two
INNs, and ¢ >0. Then, various operational laws of INNs can be described as

follows:
W.h ®h, = ([ 2 +2; ~E1E5, 5 + 5 -2/=) | [wiws, Wy | [ vy ) (1.11)

(21, ®h, =([2125, 22 | [+ Wy - WPwE, WY+ W) -y | [ -, ) g -y ) (1.12)

©). 7 = <[(51L ) (s )1,[1—(1—\11; ) (- )1,[1—(1—1(; R )ﬂ>; (1.13)
(@) ¢h, =([1-(1-2 ) (-2 [ () ) () ), (1.14)

1.1.1.11 Definition [79]

Lets= <[EL

[1]

Y ][t ¥ ][x*. 1), be an INN. Then, the SC SO(r) and AC AR(%)

can be defined as follows:

— =Ly gy S
mso(n)==15 4 TP, X0 (1.15)
2 2 2
- =L, =U L L L U
(2) AR(7) == ;“ -7 ;‘P oL ;Y (1.16)

For comparing with two INNSs, the comparison rules were defined by Liu et al. [79],
which can be stated as follows.
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1.1.1.12 Definition [79]

Let n,=([=p2 | [wr ) ][ vi 0y ]) and n, =([=5,2) ][ w5 w3 ][ Y5, YY ) be any two

INNSs. Then we have

@) If g(hl) >§(h2), then 7, is better than 7, , and denoted by 7, > 71,;

(2) If SO(n,)=50(n,),and AR(h,)> AR(%,). then h, is better than4,, and denoted by

hy > hy;

(3) If SO(1,)=S0(n,),and AR(h,)=AR(n,), then h,is equal toh,, and denoted by

1.1.1.13 Definition [21]

INNs. Then, the normalized Hamming distance among 7,and 7, is described as

follows;
E(le,h2)=%(|alL B[ +]EY B |+ [t |+ [V Y|+ xE - xE | Y vy, (1.17)
1.1.1.14 Definition [11, 12]

Let UN the universe set and uneUN . Then, a neutrosophic cubic set (NCS) in UN is a

pair §=<m,/1> where m={<$,Em($),‘1’m(ﬁ)ﬁm(ﬁ)>Iﬁem} is an INS in UN and

p ={<$,ﬂ?(ﬁ),ﬂ?($),ﬂ?($)>|lﬁEm} is a SVNS in UN .
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For simplicity, a basic element {ﬁ,<5(ﬁ),?(ﬁ),¥(ﬁ)>,<ﬂf(ﬁ),ﬂ7(ﬁ),ﬂf(ﬁ)>}in a

NCS can be expressed by h:((E,‘P,Y>,<ﬂ,?,ﬂT,/1E>), which is said to be NC number

(NCN), where =,w,yc[o1]and A4, A €[0,1], satisfying 0<z=Y+¥Y +YY <3 and
OSA?+/1|: +/1E <3

1.1.1.15 Definition [15]

Letn, =(([=r.=r | [vn e ) [ (2, 4, 2 ) and o, =(([=52 ] [vsows T s ws ) (4 4 2 )

be any two NCNs and ?>O. Then, the operational laws for NCNs defined by Ye

[15] are as follows:

W) h, ®h, =(<[51L +E5-EE B + 5 —EVE) [ [wres e |y ),

(1.18)
<? A A A A A >)
(2)h1®h2:(([3;35,El“sﬂ,[tpfwg—w;w;,w+w§—Wquﬂ[ﬁwg—mg,ﬁ+Y§—Y1“Y§}>,
1.19
(e, b ~d e g e b)) -
@2, = ([ 1o a2 ) ey ) )
(1.20)
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1.11.16 Definition [14]

Let n, =(<[E;,51“],[w;,wy],[ﬁ,n“ ]><,1T:ATJF>) be a NCN. Then, the score, accuracy and

certainty functions of NCN are described as follows:

— 4428 WL -Yr 42 WY YV A +2-4 -4

so(h,) = L 91 ! h R (1.22)

— Er-Yr+E Y A - A — Er+E 4 A

AR(h) =+ * ™ - Lt Fi:and CR(z)=———.  (1.23)
1.1.1.17 Definition [14]

Let n—(([=r. ] (v oy ][] (%, 44 ))and n, = (=520 [ ws e T e ) (2 4 4 )

F2

Then, the comparison rules for NCNs can be described as follows:

(1) If so(n,) >S0(n,), then h,is larger than #,, and is indicated by 7, > 7,;

(2) If SO(1,)=50(1,). and AR(n)>AR(:,), then f,is larger than 7,, and is indicated by

h >h,;

1 2

(3) If SO(n,)=S0(1,), AO(h,) = AO(h,). and CR(i,)>CR(#,). then A, is larger than #,, and is

indicated by 7, >7,;

(4) If SO(n,)=S0(h,), AR(h,)=AR(h,), and CR(n)=CR(n,), then his equal to #,, and is

indicated by %, =h,.
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1.2 The Linguistic Set and Uncertain Linguistic Numbers

The linguistic set (LS) is thought out as a very good , of highest quality tool to put in a
given form these qualitative information. we can articulate the linguistic set by

S={8p:S,-- 54}, and s, ($=12,...,1-1) can be called a linguistic element (LE), and [ is

identified as the cardinality of the linguistic term set (LTS), usually odd values such

as 35,7, etc. For example, whenl =7, the linguistic term set S={s;s,...,5}

= (extremely poor,very poor, poor,medium, good,very good,extremely good )

Let s, and s; be any two LEs in LSS, then, they have the following characteristics

[116, 117]:

(1) Ifi>j thens; >s;,

(2) There exists a negative operator: neg (s;)=s;, where j =1 — 1 — i,
(3) Ifs; = s, max(si,sj) =s;;

(4)Ifs; <s;, min(si,sj) =s;.

In the process of calculation plenty of information is lost, to surmount the lost of

information the discrete LS is enlarged to a continuous LTS S ={s, | ¢ R"} which also

satisfy the properties of the original linguistic term set. The basic operational rules are

described as follows [118, 119]:
@) psi=spxis P =0,

(b) si+s; = Si4j,
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(€) 5 X 87 = Six;,
(d) (Si)n =sm;n= 0.

1.2.1.1 Definition [118, 119]

Assume that § = [s,,s,], sy, s, €S With u < v are respectively the inferior and

superior limits of §, then § is said to be an uncertain linguistic variable (ULV).

Let S represents the set of all ULVs and §; = [s,,, s,,] and 3, = [sy,, s, ] be any two

ULVs, then the basic operations are described as:

(1) 81 + 82 = [Suys Su, | *+[Suy» 50,17 [Suy 41 Svy 40, ],
(2)31 X 83 = [Su,» Sv,] X [Sups Su,1= [Suy xuys Svy xw, ]
(3) 831 = 8[5uy, 50,1 = [Sseuys S5w, |, 6 2 0,

(4) 3% = [5u,,50,1° = [5,,,5.5,,5], 6 2 0.

1.2.2 The Interval Neutrosophic Uncertain Linguistic Sets

(INULSS)

1.2.2.1 Definition [43]

Let UN be the universe of discourse set and [sg(ﬁ),sg(ﬁ)] €S bean ULV. An INULS

INU in U=N is described as:

INU ={u=n[s9(un),sa(un)](

1
=z
c
S
=)
*/
£
=z
C
5|
=)
=
=~
p=4
C
S
=)
="'
N
S
m
|
4
—

(1.24)
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where, s,.s, €S, =, (ﬁ):{infE,NU (E),supzmu (ﬁﬂg[o,l],w,w (u:n):[inf‘l’wu (u:n),sup‘{’mu (ﬁﬂg[o,l]

and Y, (E):[ian,NU (un),squlNU (u=nﬂg[0,1]with the condition, 0<supz,, (E)+Sup‘~l‘mu (E)+

suprlNU(ﬁ)ssfor any uneUN. The functions, E,NU(E),\P,NU(E),Y,NU@) denote

respectively TRM interval, IDM interval, and FLM interval of the element un e UN.

1.2.3 Hesitant Fuzzy Set

1.2.3.1 Definition [45, 46]

Let UN bea predetermined set, a HFS wF on UN is described in terms of a mapping

aw@n), that when applied to UN returns a finite subset of[0,1], which can be

mathematically represented as follows:

HE —{in v ) <O, (125)

Where,Zﬁ(u=n)= U {ﬂﬁ(u=n)} is a set of few different values in [0, 1], denoting

%F@)eéﬁ(ﬁ)
the possible membership degrees of the element uneUN to HF . For simplicity, we

shall write a instead of Zﬁ(u=n) = U ﬂﬁ(u=n)} and is said to be a hesitant fuzzy
ﬂ?(ﬁ)eiﬁ(u:n)

element.

Let Z,; and a. be any three HFEs, then the operational rules for HFEs are
described below:

_B
1) a = Uyez{yﬁ}, (1.26)
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2Ba=U -{1-Q1-1)*} (1.27)
YE a

B a,+a,=U - -m+r2-nrd (1.28)

y1€8 y2€8

@a,xa,=U - = ) (1.29)

Y1€Q 1YV2€ a 5
1.2.4 Linguistic Neutrosophic Set (LNS) and Their Operations

1.2.4.1 Definition [57]

Let UN be the domain set and S={s,Is,<s,<s,}, then a LNS is an object of the

form:

LN ={<E,SE,ST,SY>|U=I’IEW}, (1.30)

where, s.,S, and S, represent the TRM, IM and FLM functions of the element
Eeﬁ to the set LN, respectively and must satisfy condition that
0<s.+S, +5s, <6r. Furthermore, 7=(s.,s,,s,) is said to be a LNN and LN

consists a group of LNNs. Moreover, when S.,S,,S. €S, then (s_,s,,s,) is an

original LNN; otherwise, we call it virtual LNN.

1.2.4.2 Definition [57]

Let 7, =(s.,Sy,.Sy,) and 7, =(s. ,s,,,s, ) be any two LNNs. Then based on LSF,

few operational rules for LNNs are described as follows:
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o 1o, <E 56,0415 ()55 505 (5, 1555 5,15 s,
(1.31)

5 [§*<sn)§*(sn)j>,

(1.32)

@ e, =<L=s” [1—[1—L=s*(szl>jéj¢=s*1[[L=s*<sﬂ)f]¢=s” [[?s*(sn)m, (L.33)
ey (e S . A . ¢
@) hf =<|_s {[LS (Ssl)j ],LS (1—(1— LS (s%)] ],LS [1—(1— LS (Sﬂ)j ]> (1.34)

1.2.4.3 Definition [57]

Let n, =(s..s,,.5, ) and n, =(s. .s,,.s,,) be any two LNNs. Then

(1) hy=h,ifandonly if s, =s_ ,s, =s, and s, =s, ;

2 Neg(hl)=<sgl,s\{,1,sn> , Where Neg(#,)is the negation operator of #,.
1.2.4.4 Definition [57]

Let h=<sE,s\P,sY> be a LNN. Then the expected value, accuracy and certainty

functions are denoted and defined as follows:

SO(h) =%(L=S*(SE)+2—L=S*(s\y)—L=S*(s,)j, (1.35)

AR(W) =LS (s.)-LS (s,) , (1.36)
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CR) = 1S (s.). (1.37)
1.2.45 Definition [57]

Letn, and 7, be any two LNNSs; then the comparison rules are described as follows:
(1) If SO(h,) > SO(h,) , then i, > hy;

(2) If SO(,)=SO(h,) , and AR(%)> AR(h,), then &, > h,;

(3) If SO(h,)=SO(k,) , AR(h,) = AR(k,) and CR(k,) > CR(k,), then h, > h,;

(4) If SO(h,)=SO(h,) , AR(h,) = AR(h,) and CR(x,)=CR(#,), then &, =,

1.2.4.6 Definition [57]

Let  n,=(s..s,.s,) and n,=(s..s,.s.) be any two LNNs, and

Sz,1Sy,15r,:52, S, Sy, €S0, When Ls (s;) is LSF, D is a mapping, and Ds:/ixh—R',

17 =2

the hamming distance between 7#,and 7, can be defined as

B(hl,m)=§(|L_s*(sgl)—L_s*(s%)|+|L_s*(s%)—L_s*(swz)|+|L_s*(sn)fs*(srmj. (1.38)

1.3 Different Aggregation Operators

In this part, the definition and properties of different aggregation operators are
discussed.

1.3.1 The Bonferroni Mean (BM) operator

The BM operator was first presented by Bonferroni [61], and was explained as

follows:
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1.3.1.1 Definition [61]

Let ﬁ; (; =1,...,m) be a group of non-negative real numbers, x,y >0, then the BM

operator is a function BM :R" — R, such that

X+y

NR. | . (1.39)

BM”(ﬁl,ﬁz ...... ﬁm): mzl ii?

X
Z

The BM operator ignores the importance degree of each input argument, which can
be given by decision makers according to their interest. To overcome this
shortcoming of BM operator, He et al. [80] defined the weighted Bonferroni mean

(WBM) operators which can be explained as follows:

1.3.1.2 Definition [80]

Let ﬁ;(;:],...,m) be a group of non-negative real numbers, x,y>0,then a

weighted BM operator (WBM) is a function BM :R™ — R, such that:

=X
z

RINR. | | (1.40)

where, v=v=(v=vl,\7vZ ..... va) is the importance degree of every N=R;(§=J,....,m).

The WBM operator has the following characteristics:

1.3.1.3 Theorem (Reducibility)

If the importance degree of each ﬁz is W:(%,% ...... %) , then
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WBMX,Y(E:‘J@Z ...... mm): 21 Zmlzm: R

1.3.1.4 Theorem (ldempotency)

Let NR; = NR,(z=1...,m), then

BM** NRy, NRs......NRm | = NR.

1.3.1.5 Theorem (Permutation)

—_— e

Let (ﬁl,ﬁz,...,ﬁm) be any permutation of {ﬁl NRz,... ﬁm} then

wmsw[ﬁl,NRz ..... NRmJ=WBM(NR1,NR2 ..... NRm)-

r— r— —_—

1.3.1.6 Theorem (Monotonicity)

—

Let NR; > NR ?(E:l,...,m) , then

WBM”(ﬁl,ﬁz ..... NRm)zWBM”(ﬁl,@z ----- ﬁm].

1.3.1.7 Theorem (Boundedness)

The WBM™*Y lies among the min and max operators, that is
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Similar to BM operator, the geometric BM operator also considers the correlation

among the input arguments. It can be explained as follows:

1.3.1.8 Definition [120]

Let ﬁ;(izl,...,m) be a group of positive real numbers, x,y >0, then a geometric

BM operator (GBM) is a function GBM : R™ — R, such that

GBM ™ (NRw, Rz ... NRn | = X+yHH(xNRZ+yNR )m n (1.46)
e

Z#S

The GBM operator ignores the importance degree of each input argument, which
can be given by decision makers according to their interest. In a similar way to WBM,
the weighted geometric BM (WGBM) operator was also presented. The extension

process is same as that of WBM, so it is omitted here.

1.3.2 Heronian Mean (HM) operator

HM [62] is also an essential tool, which can process the interrelationships of the input

values, and is defined as follows:
1.3.2.1 Definition [62]

Let 1 =[0,1],a,b=0,H**: 1™ —> I, if H*’ satisfies;

1

b]a*b . (1.47)

Lo (ﬁl, NRz,..., NRm):[mZimZm:Zm:T

i=1 j=i

Then, the mapping H™” is said to be HM operator with parameters. The HM operator

must have the properties of idempotency, boundedness and monotonicity.
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1.3.3 Power Average (PA) operator

The PA operator was firstly introduced by Yager [60] for classical number. The
dominant edge of PA operator is its capacity to diminish the inadequate effect of
unreasonably high and low arguments on the results.

1.3.3.1 Definition [60]

Let ﬁ;(;zl,..,a) be a set of non-negative real numbers. The PA operator is then

represented as follows:

) = | (1.48)
-

where, ?(ﬁ;):iwp(ﬁ;,ﬁo)and 5up(ﬁ§,ﬁx)is the support degree forﬁi and
=

ﬁo, which must gratify the following condition:
1) Sup(ﬁ?,ﬁo) e[0,1];

(2) Sup(ﬁ?,ﬁo) = Sup(ﬁo, NRz) :

3) |f?s(ﬁ;,20 ) < Fs(ﬁ| ,ﬁm) , then 5up(ﬁ§,ﬁo) > Sup(ﬁl NR» ) where

Ds(ﬁ;,ﬁo) is the distance measure among NR:and ﬁo.

1.3.4 Muirhead mean (MM) operator

The MM operator was first introduced by Muirhead [63] for classical numbers, which
has the advantage of considering the interrelationship among any multiple aggregated

arguments.
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1.3.4.1 Definition [63]

Let NR:(z=1..,0)be a set of real numbers and (=2=(q1,q2,...,qo)e R° be a vector of

parameters. Then, the MM operator is described as:

1

MM (NR:, R, ... NRo | = [ Z]‘[ M] (1.49)

aljs

where, S_is the group of permutation of (1,2,..,0)and 6(z)is any permutation of
(12,...,0).
Now we can give some particular cases with respect to the parameter vector Q of

MM operator, which are shown as follows:

1) IfS =(1,0,0...,0), then MM operator deteriorates to the following form:
M £0--0 (ﬁl,ﬁz,...,ﬁo):—zﬁz. (1.50)

That is, the MM operator degenerates into arithmetic averaging operator.

2 1fQ :(%,%,...,%} , then MM operator degenerates into the following form:

w5+ (R R R =TT - (151

That is, the MM operator degenerates into geometric averaging operator.

3 Ifa =(11,0,...,0), then MM operator degenerates to the following form:

jN= NR, } | (1.52)

That is, the MM operator degenerates into BM operator (p=q=1).

c 0-C

4) IfQ = [1,...,1,0,...,0}, then MM operator degenerates to the following form:
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L > [INR,

1,..10,... o} —
MM[ (NRl,NRz ..... NRO): 1X€c = : (1.53)

That is, the MM operator degenerates into MSM operator.

1.3.5 The Hamy mean (HM) Operator

1.3.5.1 Definition [65]

The HM operator is described as follows:

1

oy (]

j=1

HM © (ml, NR:.... NR, ) _ Ish<p<.<i<z , (1.54)

where, k,(1,2,...z) are a parameter and i,,i,,...i_are k integer values taken from the set

z!

ki(z—k)!

of {1,2,..,z} of zinteger values, C!express the binomial co-efficient and c! =

The HM operator has the following properties, which are described below:

(1) When NR, = NR(0=12,...,z),then HM® (ﬁl,ﬁz,..., NRZ): NR;

3) minoﬁo < HM(k)(El,ﬁz ..... NRZ)S maxﬁo(ozl, 2,...2).

The HM operator has two specific cases, which are defined below:

(1) When k:l,HMw(ﬁl,ﬁz ..... NRz)zéiﬁu, the HM operator degenerate into

arithmetic mean operator.
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1

(2) When k:z,HM(Z)(ﬁl,ﬁz ..... NRz)z(ZNRqu, the HM operator degenerate into

0

geometric mean operator.

1.3.6 Prioritized Aggregation (PRA) Operator

PRA operator was first developed by Yager [85], which can consider the
prioritization among the aggregated parameters. Let 8:{81,82 ..... a}be a family of
attributes and ensure that there is a prioritization among the attributes represented by a

linear ordering 0. >0, >..>0,which denote that the attribute O, has a high
precedence then o, if d < f . O (u) is an evaluation value expressing the execution of

the alternative u under the attribute O and satisfies O W) efo1]. if
PRA(O4 (1)) = iwd Ou (U). (1.55)

PA operators have been effectively applied in a condition where the input

arguments are exact values.

1.3.7 Linguistic Scale Functions (LSFs)

To utilize data more capably and to articulate the semantics more pliably, LSFs
give diverse semantic values to linguistic scales under diverse situations [48]. They
are superior in practice since these functions are pliable and can give more settled
results according to diverse semantics.

1.3.7.1 Definition [48]

Suppose & €[0,1] is a numeric value, then the LSF LS that conducts the

mapping from S: to 4,(z=0,12,...,2r) which is defined as follows:
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*

LS :s,—9 (z=12,..,2r), (1.56)

where, 0<8 <9 <....<8,,. Clearly, the symbol $,(2=0,12,...,2r) imitates the

preference of the DMs when they are utilizing the LT s,€S(z=0,12,...,2r).

Therefore, the function value in fact indicates the semantics of the LTs.

(1) Consider

LS:(s,) =9 = = . (1.57)
2r

The assessment scale of the linguistic information specified above is divided on
average.

(2) Consider

: o (z=012,..1)
LSa(s)=8, =1 ", , (1.58)
W (Z=I’+1,I’+2...,2r)

with the expansion from the center of the specified LTS to both ends, the absolute
deviation among adjoining linguistic subscripts also amplifies.

(3) Consider

. e (z=0,12,...1)
LSs(s,)=9, =1 ,*" , (1.59)
ey (z=r+1r+2..,2r)

with the expansion from the center of the specified LTS to both ends, the absolute
deviation among adjoining linguistic subscripts will reduce.

To conserve all the specified information and make the calculation easy, the above

*

function can be enlarged to LS : S —R*(R*={c|c>0,ceR}), which satisfies

LS (s,) =9 and is a strictly monotonically increasing and continuous function.
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Therefore, the function from S to R* is one-to-one because of its monotonicity, and

*—1

the inverse function of LS exists and is denoted by LS

46



Chapter 2

Group Decision Making Based on Power Heronian
Aggregation Operators under Linguistic Neutrosophic

Environment

In this chapter, we merged the PA operator with HM operator and enlarged them to
process linguistic neutrosophic information, and presented the linguistic neutrosophic
power Heronian aggregation (LNPHA) operator, linguistic neutrosophic power
weight Heronian aggregation (LNPWHA) operator. Moreover, some characteristics of
these new developed aggregation operators are examined and some particular cases
are discussed. Furthermore, we propose a new technique based on these developed
aggregation operators for MAGDM. Lastly, some illustrative examples were given to
illustrate the efficiency and advantages of the developed method by comparing with

some existing methods.

2.1 The Linguistic Neutrosophic Power Heronian Mean Operators

In this part, we propose the LNPHA operator and LNPWHA operators based on the

operational laws for LNNSs.
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2.1.1 The Linguistic Neutrosophic PHA Operator

2.1.1.1 Definition

Let n, :<sEh,sWh,srh>(h=],2,---,r) be a group of LNNs, p,q>0,and LNPHA is a map

LNPHA: Q" - Q, if

. (1+'I='(hg))
LNPHA™ (h, hy,..., 1, ) = DI S . (22)

r(r+1) =5 m 2(1+T(h,))

1=1

where, '?(h,):zr:sup(h,,hh),and sup(i,,h,)is the support degree (SD) for #, from #,,

h=1
h=l

which must satisfy the following characteristics.
1)sup(h,,h,) €[0,1]; 2) sup(h,,hy) =sup(i,, h,); 3) sup(h,h) = sup(h, i), if Ds(n, ) < Ds(h, k), i

which Ds(x, ) is the distance between LNNs 7 and 7.

In order to write expression (2.1) in a more simplified form, we can define

(1+'?(hk))
Zr:(l+'?(hk))

k=1

, 2.2)

o =

and call (w,a,,...,) as the power weighting vector (PWV) with o, zo,iwk =1.
k=1

Then, expression (2.1) can be represented as follows:

1

P9 (hy, by, b)) hy,) hy) m- 2.3
LNPHAP (1, hy,..., 7, ) (r(r+1) gz roh,) ®(ro, g)] (2.3)

48



2.1.1.2 Theorem

Let n, =(s .S, )(h=12--r)be a group of LNNs, and p,q>0,then, the result
aggregated employing Equation (2.3) is still a LNN, and even

LNPHA® (1 .1, ) = E”[l-[f[ Jr-e-e-B e ye-aB e ))f”ﬂ)‘*]jw] ,

=h
h=1 g=i

=*-1 ror — roy P - ro, G\ \r(r+l) P
Ls |1- 1—[ _[1—[1—[Ls (su,h)j j[l—[LS (swg)) ]]J - (2.49)

L
P+

2

2

— ror — rey, \P . ro, a4\ \r(r+1)
LS |1- 1—[]‘[]‘[[1—[1—(5 (srh)] j[l—(LS (Sfe)j ]]J

iZ(rwhhn)P ®(rayh, ) =[§*1[1—[ (1—(1—(1—?(% P -0-LS s ))“’g)qj]],
_ __[1—{1—[5*(%)]%]p[l—(ﬁ*(s%)j%jq] . (25)
s [[ h; [1—[1-[5*(% )jr% jp [1—(? s, )j T]J >

By the operational rules of LNNs defined in (1.31)-(1.34), we have

e [ T

Gl
w
L
=
7\
7~ N\
=
‘ -
L
<« -
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(royh, )’ ®(rah, )’ = <[L=S*1 {(1—(1—§*(ssh)jr% T [1-[1—L=s*(s3g )] Jq]
s [[1[(1(?(5% )jm" ]p J[l—(ﬁ*(swg )jmg ]q , (2.6)
s [[1[[1(?(% )jmh ]p J[l—(ﬁ*(sYg )) ]q] >

(1) When r = 2, by Equation (1.31) and Equation (2.6), we have

ZZ (201,)" ®(20,1, )" =((201,)] ® (201,)" ) ®((20m,)” ® (20,8,

S—

(5 (ot me T e o)
& fe @ T)
55 ol - <[E [1_gﬁ[1_[1_(1_ﬁ*(sgh)jz’”" [rp=e] ]]
St e e T e
= )

That is, Equation (2.5) holds for r = 2.
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(2) Let us assume that Equation (2.5) holds for r =z

hz;gz ro,h,) ®(ro,h, )’ <[§*1 1—]3;_1 1—[1—[1— LS*(sEh)jmn]p[l—(l— LS*(sEg)jng N]

22 (z+Dayh, "®((z +1)a)ghg)q = hzz;gzz;((z +1)m,h, )" ®((2+1) ey, )q @hZ((z +Da,h, )" ®

=t (2.9
(z+D)@,.h,,) ®((2+1) @,0,,,) O((2+1)e,,4h,, )"

z+1

Firstly, we prove that

Z(Hla)hh) 8((2+1)o, ) <

We shall prove Equation (2.10) on mathematical induction on z

(a) For z =2,we have

sz 2+l ok, ) ©((2+1)w,,h

> ahia) =((3an)” ®(3ah,)')®((3w,h,)" ®(30h,)')
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(b) Let us assume that Equation (2.10) holds for z =b, that is;

4

>((z+)@n,) ©((2+2)@pah,, ) )

h=1

- <[§*1 [1—]j{1—[1— [1— 05 (s )j(bﬁm Jp (1— (1— IS (s )j(w)wm Jq N
1(1 (1 L= <b+1>wh]"[1_ ( *(Sm)j(mnm ]“J
o ]

Then, when z=b+1, we have

|

b
:D‘

=

,_
wn
zw

il

b+1

h=1
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(2.12)



—_1 b+l - (b+2)ay, \P - (b+2) @, \
<{ HH( ] (B ) ]]}
—a| bl — (b+2)a, \P . (b+2)ay,, \9
= H[[( oo " [[H(E ) j]

—1| byt — (b+2)a, \P S (b+2) ., \ 1
S [HU( o " [{F ) ]HD

Therefore Equation (2.10) is true for z =b+1. Hence Equation (2.10), is also true for

all z.

Similarly, we can prove the other parts of Equation (2.9).

So Equation (2.9) becomes

741 741 b q p— 741 741 * (24D ey P * (2+))oy, q
((Z+Dayh,) ®((@+Dwsh,) =(| LS |1- 1-|1-|1-LS (s.) 1-|1-18 (s2) ,
h=1g=i h=1 g=1

h=1 g=1

=*-1| 2+l z+1
s |TII1

. (z+Day \P e (@40, \
efFeo] [ 00) ]DD

Therefore Equation (2.5) is true for r = z+1. Hence Equation (2.5) is true for all r.

By Equation (2.5), we can prove that Equation (2.4) is right. From Equation (2.5) and

the operational laws defined for LNNs, we have
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_(ra) n) ®(ra)ghg)q

2

o) [ Fe) )

I
ol
wmw

*
iN
-
|
7~/ N\
=
1i -
N
«
Il =
N

1

2_\p+a
) 51{1_[ (1—(1—(1—Ls(szh))""")“(l—(l-Ls(szg))”“g)q]]r(”)J ,

1 g=i

1
2 \p+q

=*]1 r r J— roy P N Ty q m
LS |1- 1—[ _[1—[1—(5 (s\yh)] ] {1—(LS (S““e)j ]D

This completes the proof of Theorem 2.1.1.2.
In order to calculate the PWV @, we firstly need to calculate the SD between
LNNSs. In general, the support degree between LNNs can be replaced by the similarity

degree between LNNs. That is,

sup(hy,,hy) =1=Ds (I, 1, ) (0,1 =1,2,....T) . (2.13)
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2.1.1.3 Theorem

Let n,=(s., s, s, )(h=12-r)be a group of LNNs, and #,=h=(s.s,,s)for all
i=12,..,m,then
LNPHAP? (7,, hy, ... 1, ) = h. (3.14)

Proof. Since #, =h=(s_,s,,s;)forall h=12,...,r, we have

1
Sup(n,,hy)=1, forall 1,g=1,2,...r, 50 o == forall 1=12,...r. Then

LNPHAP? (71, 7,y i, ) = LNPHAP (B, ..., 1)

(i

= 1[;ﬂ([l(1@1&»)*}}“{1<“*<”)”W
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=(S2,5¢,5;) -

This completes the proof of Theorem 2.1.1.3.

2.1.1.4 Theorem

Let hy =(s2 8,8y, ) (h=1,2,---,r) be a group of LNNs, and

S_ =mins. ,S_, =maxs. ,S._ =mins, , S_. =Maxs, ,S.. =mins, ,S.. =Mmaxs
T acher o0 TET qcher o0TYT cher ThT YT g PhTTYT acher 0 TTYT T qepgr Yh’for all

h=12,..,r. Then, the LNPHA operator lies:

<SE, S,,. sw>sLNPHAP’“ (hl,hz,...,h,)£<s S sr>. (2.15)

1 O+ = 1 Oyt

Proof. Since s_ =mins_ ,s_. =maxs_ ,s, =mins, , s =maxs, ,S. =mins, s =maxs
= I<h<r =

hsr = = R St Y icher Y gcher

n 1<h<r 0 1<h<r

for all h=12..r. Then, there ares, <s; <s_,s, <s, <s,,s_<s, <s_. Further, we

have

*_q r r —_ ray p N rog q ﬁ
s. =LS 1-[1‘[1‘[[1—(1—(1— LS (sgh)) J (1—(1— LS (sgg)j j N

1
2 p+q

—— r r —_ ron \ P - reg q r(r+l)
> LS 1—{1‘[]‘[{1—(1—[1— LS (sE,)j J [1—(1— LS (sE,)) ] B —s

L
p+d

[m
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—) roor - ron \P - rog q r(r+1)
s.=LS |1- 1—{ [1—(1—(5 (srh)) J (1—(LS (SYg)j j D

2_\p+g

—1 roor — ray \P — rog \9 ) |+
<Ls |1- 1—( Ll—(l—(LS (SY*)j J (1—(LS (sw)] J D =5,

Because LS is a montone increasing function, then, there is the following comparison:

(1) For the expected value:

§(h):%(LS (SE)+2—E*(S\,,)—E*(ST)]2 (E*(SE)Q—E*(SW)—E (s, )j=$(<SE,SW,ST>).

1
3
If S0(n)>50((s. .5,..5,.)),

then, (s_,s,.,s.)<LNPHA" (h,,h,,....1,).

Else, %(h) = %«s S

= Wt

:s,.)), then, we have the score function,

J— * J— J—

(2) AR() =L (s.)-LS (5,)2LS (s. )-LS (s.)=AR((s. .5, s, ).

)

then, (s_.s,..s. ) <LNPHA™ (h,,h,,....1,).

If ﬁ(h)>ﬁ(<sg,,s 5. )

p+ 1 Oy

Else, AR(h)=AR((s, .s,. s,.)), then, we have the certainty function,

(3) CR(h) =L=S*(SE) > L_S*(SE_ )= @((sg_,sw,sr >)



then, (s_,s,.,s.)=LNPHA" (h,,h,,...,1,).
(s_,5,.,5,. ) < LNPHAP? (7, Ty, .., B, ).
In a analogous way, we can prove that LNPHA™ (7,7,

Hence, we have

(s.,5,.,5,. ) SLNPHAP (R, by, B )< (5SS, ).

=+ 1 Vg

However, the property of monotonicity, for LNPHA™ (#,,%,,...,h, ) cannot be proved.

The main reason is that the importance degrees can be calculated from the support
degrees, for the two groups of LNNs, and there is no constant inequality relationship
among them.

Now we can discuss some particular cases of the LNPHA operator by assigning

different values to the parameters p and g.
(1) When, p=q =1, then Eq. (2.4) degenerates to linguistic neutrosophic power line

Heronian mean operator, that is

LNPHAY (7, hy... 1, ) = u*1{1—(1L[1L[(1—(1—(1—U*(53h))“"")(1—(1—1)*(5%))rwg))Jr(Hl)},

c
N
i
|
N
[
|
I/
=
Il il
L
a
T
e
[
|
I/
-
|
/N
C
A
—
w
=
N
~—
e
Ne—
—
-
|
I~
c
11
~
w
k;
P
N
~—
B
N
Na—’
Na—
=
:‘
e
-~
|

(2) When, p:qzé, then Eqg. (2.4) degenerates to linguistic neutrosophic power

basic Heronian mean operator, that is
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w

h=1 g=i

s |1- 1—{ , f[[l— J[l—[w*(swh)jm"J[l—(l_s*(swg)jmg

LNPHAZ (1, 10, ) = <”[1[f[ﬁ[1\/(1(1w*(ssh D) (-LS (s, ))'%)]]M},

h=1 g=i

5|1 1—[ , ﬁ{l—J[l—(LS*(sm]%j[l—[Ls*(syg >]] Jr(r D

h=1 g=i

(3) When, p=0, and q=#0, then Eq. (2.4) degenerates to linguistic neutrosophic

power generalized linear ascending weighted operator, that is

h=1 g=h

LNPHA™ (n1:nz ..... nr): E*l[l[ﬁ : [1—(1—(1_E*(SEQ))MQ)QJ ]'(HI)J |

— ror — rog d " rere
LS |1- 1[ [1—[1—(5 (swg)) ] N . (2.18)

1
N D \r(r+1) !
E! r r p— Wy
LS |1-|1- 1- 1—(LS (s, ))
h=1 g=h !

(4) When p=0,and q=0, then Eq. (2.4) degenerates to linguistic neutrosophic

power generalized linear descending weighted operator, that is
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1
2 =

—] roor — r+1-h \r(r41)
LNPHAP® (A, 715,012, ) =( | LS 1—[ [1—(1—(1—LS (Ssh))““)"j ]
b .

o [

2

=—*1 ror — ra, \P e
LS |1-[1- [1—[1—(5 (Swn)j ] ] . (2.19)
h=1 g=i

2

=—*-1 ror — rop \P e
LS |1-|1- 1- 1—(LS (s, )j
h=1 g=i "

LNPHA® (#,, h,,..,7,)  weigh the information ((rwlhl)q,(rwzhz)q,...,(rwrh,)”')and

((ra)lhl)p,(ra)zhz)p ..... (ra),hr)”) with heavy weight vectors (12,...r) and(r,r-1..,1).
Hence, whenever p=0orq=0,LNPHA™" (h,,h,,...h,) have the linear weighted function

and also the parameters pand g are not interchangeable.

In LNPHA operators, only the PWV and the interrelationship among LNNs are
considered and the weight of every LNN is not taken under consideration. However,
in real decision making problems, the weight vector of input arguments is also a
necessary parameter. So, to overcome this limitation of the LNPHA operator, we will
propose the linguistic neutrosophic power weighted Heronian aggregation

(LNPWHA) operator.
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2.1.2 The Linguistic Neutrosophic Power Weighted Heronian

Aggregation Operators

2.1.2.1 Definition

Let n, =(s., .5y,.5y, ) (h=1,2,-,r)be agroup of LNNs, p,q>0,and LNPHA: Q" - @, if

1
P 9 \p+q
r r r
LNPWHAP (i, By ,..., B, ) = (r2 5 %y, | @ ~2% , (2.20)
r(r+1) =45
et Y a0, 20,9,
z=1 z=1
(1+'I='(hz)) r _ , _
where, o, =———— and Y o, =1. T(k,) = sup(h,h,),and sup(s,,4,)is the support
Y(wTemy) B

z=1

degree for », from 7, which has the following properties.
1) sup(h,,h,) €[0,1]; 2) sup(h,,h,)=sup(h,.7,);3) sup(h,i) = sup(h, i), if Ds(h, k) < Ds(h, ), iN

which D, n) is the distance between LNNs 7 and 7. Then LNPWHA is called the

linguistic neutrosophic power weighted Heronian aggregation operator.

2.1.2.2 Theorem

Let hh:<sgh,sq,h,srh>(h=1,2,---,r) be a group of LNNs, and p,q>0,then the result

aggregated from (2.20) is still a LNN, and even
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1

p+q

T, Fog Py r(r+1)
v

|
N
-

* — Z 0,0, = Z @0,
LNPHA™ (A, 7y, ) =( | LS | 1- 1-1-@-LS (s, )7 )’A-(@-LS (s )7 )"

1
i p+q
_ronen p rogeg q r(r+l)
T

3
% o X 00,
z=1 -

s |1-|1-|TTIT 2~ 1—[?(%)]

h=1 g=i

renen \ P rogeg
r T
X 027
=1

1_(5}%)) (@21)

PR
=1
==*-1 r

1-|1-|T11] - 1—(L:S*(sn)]

h=1g=i

—
w

The proof of this theorem is similar to Theorem 2.1.1.2, therefore, omitted here.

Similar to the LNPHA operator, the LNPWHA operator has the characteristics of
boundedness, however, it does not have the characteristics of idempotency and

monotonicity.

2.2  Multi-criteria Group Decision Making Based on Linguistic

Neutrosophic Power Weighted Heronian Mean operator

For a MAGDM problem with LNNs in which the weights of experts and attributes are

known, Let ={N1,ﬁz ...... ﬁm} ,8:{61,62 ...... Sn} represent the set of alternatives and
attributes respectively, and the experts set can be sapcified by e={e,e,,...e,}. Suppose
that n, =<s'3ab,s;m,s;ab> is the attribute assessment value for the alternative N. about

the attributes O, given by the expert e. Let the importance degree of the attributes
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experts {e,e,,...e,} can be denoted by 5=(s,.5,....6,), both the importance degrees
satisfy the condition that ¢,,5, €[0,1], Zn:(pg =1 and i&h =1. Then the aspire of this
g=1 h=1

MAGDM problem is to rank the alternatives.
The MAGDM method consists of the following main steps by using LNPWHA
operator.
Step 1. Normalize the decision matrix.
Generally, there are two types of attributes. One is of cost type and the other is of
benefit type. In MAGDM method, we need to convert the attributes in cost type to
ones in benefit type. The following method is used to convert the cost type into
benefit type.

NGy = (SE, /St .51, )

<s' Sy, Sy, > for benefit attribute Oy . (2.22)

Zap

<sLab Sy, SIEab> for cost attribute O»

So, the decision matrices A=|a}, | can be changed into matrices R=|n] |

mxn

Step 2. Determine the supports Sup(n;,,n} )(a=12,...,m1=12,..,zb,c=12..n) by

sup(nly.nl, ) =1-D(n},.n.,), (2.23)
where, D(nl,,n.,)is the Hamming distance between two LNNsn!, and nl,, which is
given in Definition 1.2.3.6.

Step 3. Calculate T (n, ) by
T(ngb)=Zn:Sup(n'ab,n;c),(a=1,2,...,m,| =12,...,2,b,c=12,..,n). (2.24)

c=1
c#b

Step 4. Calculate

63



. N, (1+T(niIb ))

v g%(ln(n'az))

(@=12,..ml=12..2b=12..n). (2.25)

Step 5. Utilize the LNPHA operator

n;:<sga,s sYa>:LNPHA(nLl,nLZ,...,n' ). (2.26)

v, ! an

To determine the overall LNNs n! (a=12,...,m,1 =1,2,...,2).

Step 6. Determine the supports Sup(n;,nf)(a=12,...,m,1l,g=12,...,z) by

Sup(n},ng)=1-D(n},n), (2.27)
where, [=)(n'a,ng) is the Hamming distance among two LNNs n! andn?, which is

given in Definition 1.2.3.6.

Step 7. Calculate T(n} )by

T(n))= isﬂp(n;,ng),(a =12,...,m1=12,..72), (2.28)

g=l

Step 8. Calculate

15, (1+T (n!
K =n'(+—(na)),(a=1, 2,om1=12,..2) (2.29)
2.0 (1+T(n))
Step 9. Utilize the LNPHA operator.

n, =(s..Sy,,Sy, )= LNPWHA(n},nZ,....n2). (2.30)

To determine the overall LNNs n, (a=12,...,m).
Step 10. Calculate the score values by using Definition 1.2.3.4 of the overall LNNs
Step 11. Rank the alternatives and select the best alternative according to their score

values.

Step 12. End.
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2.3 An illustrative example

In real applications, we can get the LNNs by questionnaire investigation or by Web
comment data. (1) We should firstly give the LTS, then some customers are invited to
give the TRM, IM and FLM by selecting a LT from LTS. So we can give a LNN. (2)
There are a lot of evaluation data from the customers by Web based on the LT, then
we can produce the LNNs by statistical method. In order to conveniently compare
with the existing methods, we can cite an example from Liu [8] by changing the types
of original evaluation data.

2.3.1 Example

Assume that there are four alternatives (ﬁl,ﬁz,ﬁg,ﬁ)showing the air quality of

Guangzhou City in 2006, 2007, 2008 and 2009. Three attributes were taken into

account which consists of the soz(a), the NOZ(Sz), and the leo(a). Importance
degree of attributes is »=(05,0.3,0.2)". The possible four alternatives Na (@=12,34)
are evaluated by three air-quality monitoring stations assessed as experts e=(e,.e,.e,)
under the LTS {so =verylow, s, =low,s, =slightly low, s, = medium, s, = slightly good
.S, =good,s; =verygood}. The importance degree of the experts is

5=(0.4,0.3,0.3)" . The evaluation values are represented by the LNNs, which are

given in Tables 2.1,2.2 and 2.3.

Table 2.1. Air quality data from station €,




N> <S4’SZ’Sl> <33’32’33> <35’52’52>
ﬁs <Se’33’33> <S4’32133> <Ss’53’53>
Ns (55,5, (53:5,;) (845215,
Table 2.2. Air quality data from station e,
O 0 0

Ni <S4’32133> <35’52’S3> <S4’Sz’se>
N> <Ss’33’53> <S4’33’31> <33’31'S3>
N3 <S4751’32> <54132151> <S4’51152>

N4 <55’52’51> <S4’52'52> <53’51v52>

Table 2.3. Air quality data from station e,

O 0. O

N, <53’52’53> <52’51’53>

N4 <54753151> <53’51’52>

<55’S1’52>
N 2 <S4’32153> <53’51132> <52’53'33>

N3 <53’51!51> <S4’Sz’51> <52’S4’52>

<55’51’52>

Rank the Alternatives by the Proposed Method.

Step 1.

R:[n

ab

:|m><n

Convert the decision matrices A=[a}]
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Since all the attribute are the benefit type, so there is no need to normalize it.
Step 2. Calculate the supports sup(ni,.n} )(a=1234,1=1,2,3b,c=123) by for formula
(223). To be easily understood we shall denoteSup(n,n) )withs,,,,
(a=123,41=123b,c=123), we have
S111,12 = S112,11 =0.8889, S112,13 = S113,12 =0.8889, S111,13 = S113,11 =0.7778,
821’22 = S;Z,Zl =0.8334, S%z,ze = 333’22 =0.8334, 821123 = 823,11 =0.8889,
S31,1,32 = S;2,31 =0.8334, S3%2,33 = S:13,32 =0.8889, 83%1,33 = S::3,31 =0.9445,
511142 = 812'41 =0.8334, 812’43 = 813’42 =0.9445, 811143 = 813141 =0.8889,
2 e2 2 e2 2 o2
S11,12 = 512,11 =0.9445, S12,13 = S13,12 =0.7778, S11,13 = S13,11 =0.8334,
S221,22 - S'222,21 =0.8334, S222,23 - S223,22 =0.7778, S221,23 - S223,21 =0.7223,
2 2 2 2 2 2
S3.1,32 = S32,31 =0.8889, S32,33 = S3.3,32 =10000, S31,3.3 = 833,31 =0.8889,
2 2 2 2 2 2
S41,42 = S42,41 =0.8889, S42,43 = S43,42 =(.8889, S41,43 = S43,41 =0.7778,
S =8% =0.8889,S3 .=S3 =0.7778S>..=S3. =0.7778
1112 — ©1211 — Ve 191213 = ©1312 — Y- 191113 = V1311 — Y- ,
S =83 =08334,S3.  =S3_=07778S3..=S% =0.8334
21,22 2,21 192223 23,22 1921,23 23,21 ;
3 3 3 3 3 3
S31,32 = S32,31 =0.8889, S32,33 = S33,32 =0.7223, S31,33 = S33,31 =0.7223,
3 3 3 3 3 3
S41,42 = S42,41 =0.7778, S42,43 = S43,42 =0.8889, S41,43 = S43,41 =0.7778.
Step 3. Calculate T(n;b)(b =1,2,3,a=1234;1=123) by formula (2.24) (for simplicity,
we denote T (n}, ) with Tj).
Tlll ::|_7778,Tll2 :l7778,T113 :l7778,T211 :]_7223,T212 216667,T213 =17223,
T31l :l7778,T312 :l7223,T313 218334,T411 :]_7223,T412 :l7778,T413 =18334,

T,; =177787T; =17223T; =16112,T,; =16112,T,, =15556,T,; =15001,
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T2 =18889,T2 =17778,T2 =18889,T2 =16667,T2 =17778,T2 =16667,

T2 =16667,T. =16667,T. =15556,T =16667,T =16112,T. =16112,

To =16112,T) =16112, T =14445T, =15556,T,, =16667,T,, =16667.
Step 4. Calculate «),(a=12,3,4;b=12,3;1=12,3), we have

K3, =15000, &, = 0.9000, &1, = 0.6000, %, =15092, x, = 0.8871, k%, = 0.6037,
Kk =15030, k%, = 0.8838, i, = 0.6132, k%, =14789, k%, = 0.9054, x}, = 0.6157,
K2 =15275, k2, = 0.8982, k% = 0.5743, k2, =15227, k% = 0.8942, 2, = 0.5832,
K2 =15175, k7% = 0.8755, k2 = 0.6070, k2, =14815, k2, = 0.9259, k%, = 0.5926,
K =15126, 2, = 0.9076, x5, = 0.5798, k2, =15158, x2, = 0.8905, x2, = 0.5937,
K3 =15194, k%, = 0.9116, k%, = 0.5690, k%, = 14681, x2, = 0.9191, k%, = 0.6128.
Step 5. Now use the LNWPHA operator to calculate the overall LNNs n!, and the

results are given in Table 2.4 (assume that p=1,9=2).

Step 6. Calculate the supports Sup(nj,n;) based on formula (2.26) (For simplicity, we
denote sup(n},n;) with Sf(a=1234,1,i=12,3). we have
S;,=S;,=0.9269,S,,=5;,=0.9136,5, =S;, =0.8861,S/, = S;, =0.9539,

S2,=5%,=0.8840,S% = S%, =0.9040,S%, = S3, =0.7442, 5%, = S2, = 0.9026,
S3, =2, =0.6906,5/, = S, =0.8534,5}. =S, =0.9785, 5, = S, = 0.8336,

Table 2.4. The overall assessment values of four alternatives

€1 € €3

N 1 <S4.3674 ! S1.7092 ! SZ.4271> <S4.2866 ! S2.1191’ 83.2530 > <SS.3802 ' S1.4735’ S3.2556 >

N 2 <SB.9670’ 82.1155' s2.0525> <S4.2568’ 82.4202’ S2.2870> <83.3278’ Sl.8438' S2.8691>
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N 3 <SG.OOOO’ 52.7123’ 83.3065> <S4.2485 ! S1.4020 ! S1.7630> <S3.1942’ S1.7968 ! Sl.4585>

N 4 <SG.OOOO ! 82.1098’ SZ.4354> <S4.2483' s1.8095' Sl.8492> <S3.9699’ S1.7157 ! Sl.8644>

Step 7. Calculate T(n))(a=12,3,4;1=1,23) by Eq. (2.27) (for simplicity, we
denote T (n} ) with T,*).

T} =18129,T} =18405,T} =17997, T2 =18580, T2 =18380,T? =17881,

T =14348 T} =16468,T} =15932,T," =16871, T, =18319, T, =18121

Step 8.Calculate x(a=1,2,34;1=1,2,3), we have

K+ =11982, k} =0.9074, x} = 0.8944, k2 =12114, k2 = 0.9022, k2 = 0.8864,

K2 =11476, k2 =0.9357, k2 = 0.9167, k' =11649, k' = 0.9208, k! =0.9143,

Step 9. Using LNWPHA operator to calculate collective LNNs, we can get (assume
thatp=21,q=2)

N, = (S4.0008: Su7753: S2.0630 ) » Mo = (382041 S21430+ S2a014 ) » My = (S Syoa11 Sooeas )

N, = (Ss: S1a075+ 20608 ) -

Step 10. Determine the score values of every alternative by using Definition (1.2.3.4).

We get

SO(n,) = 0.6257,50(n,) = 0.6258, SO(n,) = 0.7785, SO(n,) = 0.7800.

Step 11. According to the score values the ranking order of the alternatives is
N >Na>Nz >N,

So the best alternative is ﬁ4 , While the worst one is ﬁl.
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2.3.2Influence of Linguistic Scale Function on The Decision Results

p—"

In order to show the effect of the LSF v on this MAGDM problem, this subsection
uses different LSFs in the proposed MAGDM method to obtain the ranking results of
all alternatives. The ranking results are shown in Table 2.5. (In general, LM =1.4 and
a, f=0.8).

From Table 2.5, we can see that the ranking orders obtained by different LSFs
for LNWPHA operator are different. The reason is that these three LSFs represent the
different semantics which are described in subsection 1.3.7. The first one is one
balanced LTS which is divided on average, and the others are unbalanced LTSs. We
can construct some new LSFs according to the semantics of real applications.
Therefore, under different situation, the DMs may select different or re-define LSFs

according to their actual need.

p—

Table 2.5. Effect for different LSFsv in Example 2.3.1

linguistic scale function Score values Ranking order

%"

—

0 (s)=ZL(0sz<2g)  SO(n)=0.6257,50(n,)=06258 Ni¢>Ns>N: >N

29 — —
SO(n,) =0.7785,S0O(n,) =0.7800

g _ 9-z
. M(Oszsg)
b (s,)- 2LM9 -2
! LMY +LM?9 -2
2LM 9 -2

wn

(g9=2<29) SO(n,)=0.5855,50(n, ) =0.5852,

SO(n,)=0.7476,50(n,)=0.7460 N, >N.>Ni> N,

0°~(9-2)" (.4  SO(n)=06413,50(n,)=0.6412,
SO(n,)=0.7892,50(n,)=0.7928 N, >Ns > N: > N>
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2.3.3 Effect of the Parameters p, ¢ on Ranking Results

In this subsection, dissimilar values for the parameters p and g are taken into
account and the LSF takes(; (sz)zz/Zg). The score values and ranking orders

obtained for different values of parameters p and q were given in Table 2.6.

The results in Table 2.6 show that the ranking orders obtained for different
values of the parameters p and g are also different. In fact, when the values of the
parameters p and q are larger, more prominent interactions between different attribute
values are. If either p=0 or g=0, the proposed operator cannot confine the
interrelationship of the individual arguments. In actual decision making problem, for
computational simplicity, one can select p=q=21o0r p=q=21/2, which is not only
simple and straightforward, but also takes the interrelationships of the input
arguments into account.

Table 2.6. Ranking order using different parameters p and g

Score values Ranking order

p=0g=1 SO(n,) =0.6281,50(n,) =0.6232, Na>Ns > Ni> N,
SO(n,) = 0.7668, SO(n,) = 0.7730.

p=0.59=05 SO(n,) =0.6089,50(n,) = 0.6002, N> Ns > Ni> N,

SO(n,) = 0.7489, SO(n, ) = 0.7550.
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p=0q=1 SO(n,) =0.5497,50(n,) =0.5358, Ns>Na> N1 > N>
SO(n,) = 0.7365,50(n, ) = 0.7353.

p=1q=0 SO(n,) =0.7427,50(n,) =0.7421, Na>Ns> N1 > N>
SO(n,) = 0.8097, SO(n,) = 0.8334.

p=2q=3 SC(n,) = 0.6640,5C(n,) =0.6691, Ns > N4> N> > N1
SC(n,) =0.8007,SC(n,) = 0.8002.

p=59=7 SO(n,) =0.7366,50(n,) =0.7481, Ns > N4> N> > N
SO(n,) =0.8413,50(n,) = 0.8340.

2.3.4 Comparison and Discussion

In this subpart, we compare the developed approach with some existing approaches.
2.3.4.1 Example

A panel is gathered in order to select a desirable low-carbon supplier for
manufacturer. The panel receives LN information by accumulating linguistic
evaluations from a dozens of DMs and calculating the mean values of the subscripts

of the LVs. The DMs provided the information independently by giving equal rights.

The LTSS= {S0 =extremelylow s, = verylow,s, = low, s, = slightly low,s, = medium, s, = slightly
high,s; = high, s, = very high, s, =extremelyhigh} is employed here. The four potential
suppliers ﬁi(i =1,2,3,4) are evaluated by DMs based on the LTS S according to the

following three attributes: (=)1 represents low-carbon technology, (=)2 represents cost,

83 represent capacity. The method of acquiring mean values is used for integration
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the linguistic information provided by DMs and the final assessment values are

represented by LNNSs, and the decision matrix R =[r;],., is given in Table 2.7.

Table 3.7. Assessment values provided by DMs

Ol Oz 03
N, (84154:S;) (S5,5,,S5) (85,53, 55)
N, (S4,55,8,) (s,,8,,85) (S5,51,S5)
N (S5,5,,S;) (S,,5,,8,) (S5,54,S,)
N. (S5,55,5;) (S,,5,,8,) (85,5.,5,)

Since the attribute O, is cost type and the other two attributes are benefit type, we

need to convert 0, to benefit type by using the formula defined in Li et al. [57], and

the normalized decision matrix is given in Table 3.8.

Table 3.8. The normalized assessment values provided by DMs

O 0; 0;
N: (S4,54:5;) (S5.5,,5;) (S,,53:55)
N2 (S4:55:5;) (85,5,,5,) (S5,5,,8;)
N3 (S5,5,,8;) (54,5,.5;) (5,,5,,5;)
N4 (S5,55,5,) (5,.5,.,5;) (S3,5,,8,)

Then we use the Li et al.” method [57] based on the LNGHM, LNPGHM
operators and the proposed method in this paper based on the LNPHA, LNWPHA
operators (assume p =g = 2) to solve this problem, and the scores values of collective
LNNs can be shown in Table 3.9.

From Table 3.9, we can know there are the same ranking orders of alternatives,

this can prove the validity of the proposed method in this paper.
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The following Example is adapted from Z. Fang et al.[58,59] to show
effectiveness of the proposed method.

2.3.4.2 Example

An investment company plans to invest a sum of money in the available four

companies as a set of alternatives denoted by ﬁ=(ﬁ1,ﬁ2,ﬁ3,ﬁ4), where

Nl, Nz,ﬁs and N, respectively, represent a car company, a food company, a computer

company and an arm company. To evaluate these companies, they invite a group of
three experts e,(z=12,3) to select the best company for investment among these

companies. For the evaluation process the following three attributes are considered,

denoted by(=)=((_)1,62,(_)3). Those attributes represent respectively, risk ((=)1),

growth (82), environmental impacta, which importance degree is ¢ =(0.35,0.25,0.4)'
. The possible four alternatives are evaluated by three decision makers e, (z=12,3)

under the above three attributes based on a predefined LTS

S= {s0 =extremelybad, s, = verybad,s, =bad, s, = slightlybad , s, = fair,s, = slightly good, s, = good,s, = very good,

s, =extremely good}. The importance degree of the three DMs is 5=(0.37,0.33, 0.3)T .The
decision matrices U, =(nijz)4x5 are listed in Tables 2.10-2.12.

Table 2.9.Score values and ranking orders by different aggregation operators for

Example 2.3.4.1
Methods Score values Ranking orders
Base on LNGHM SO(n,)=0.4142,50(n,) = 0.5307,
(p=0q=2)[57] SO(n,)=0.4724,50(n,)=04703. N, >Ns> N4> N;
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Base on LNPHA %(nl) = 0_5913,§(n2) =0.6853,

(p =g =2)in this paper so(ns):o.6419,§(n4):o.6249. N2>Nsz:>Na> N,

Base on LNPGHM ﬁ(nl):0_4762,5(%):0,5779,
(p=0=2)[59] SO(n,)=0.5608,50(n,)=04995. N, >Na> N4 > Ny
Base on LNWPHA SO(n,)=0.6053,50(n, ) = 0.6728,

(p=Qq=2) in this paper %(n3)=0.6705,§(n4)=0.6075 N2>Ns>Ns> N,

Table 2.10 Decision matrices U, (z =1,2,3) by DM e; for Example 2.3.4.2

0O 0. O3
N: (85,55, (s,,5,,5,) (555,15, )
N, (s;,5.5,) (5,,5,,5,) (5,,5,,5,)
Ns (55,5,.5,) (s;,5,5,) (55,:5,.5,)
Ns (;,5,,,) (5,,5,,5,) (s;,5,,5,)

0. 0. O3
N: (85,55, (35:5,,5,) (54,5,,5;)
N, (5,,5,,5,) (35:5,,5,) (54,5,,5,)
Ns (35,5,,5,) (55,5,,5,) (55,5,,5,)
N (55,55, (55,5,5,) (5,5,,5;)
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Table 2.12 Decision matrices U,(z =1,2,3,4) by DM e; for Example 2.3.4.2.

N4 <S7132153> <55,52,51> <36151151>

Now we use the MAGDM methods given in Z. Fang et al.[58,59], and the

aggregation operator defined in this chapter to solve this MAGDM problem. LSF
takes [;(sz) = z/2gj.

Table 3.13 Ranking order using different aggregation operator

Aggregation  Parameter  Score values Ranking order
operator values

LNNWAA No 'SO(n,)=0.7528,50(n,)=0.7777, N&>N:>Ns > Nu.
operators [30] SO(n,)=0.7613,50(n, ) = 0.8060.

LNNWGA No

operators [30] E(nl) =0.7143, %(nz) =(0.7408, Na >Nz > Ns > Ni.

SO(n,)=0.7293,50(n, ) = 0.7789.

LNNNWBM e SO(n,)=0.7284,50(n,)=0.7461, N >Nz >Ns> Ny,

operators [31] (p=q=1) %(ng) = 0.7424,$(n4) =0.7864.

LNNNWGB - Yes SO(n,)=0.7808,50(n,) = 0.7627, Ni>Ngz>Ns>Nu.

(P=0=1) SO(n,)=0.7510,S0(n,)=0.7948.
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M  operators

[31]

LNWPHA  Yes SO(n,)=0.7515,50(n,) =0.7713, N4 >Nz >Na> Ny,
operators in  (p=g=1) SO(n,)=0.7534,50(n,)=0.7984.

this article

Obviously, there are the same ranking results, it can further prove the
effectiveness of the developed method. In the following, we will explain the
advantage of the developed method.

From the above analysis, we can know the developed method has the advantages,
i.e., it can relieve the influence of the awkward data by power weights and it can also
consider the relationships among the attributes, and it can give more accurate ranking
order then the existing methods. Of course, because the proposed method considered

the PA and HM operators simultaneously, it is a bit complex in calculations.

2.3.5 Conclusion

In this Chapter, we merged the PA operator with HM operator and developed the
LNPHA operator and LNPWHA operator. The developed aggregation operators can
take full advantages of PA operator and HM, i.e., they can consider the relationships
of the aggregated arguments and can reduce the influences of the awkward data by the
power weighting. Further, we investigated some properties of these new aggregation
operators and argued some particular cases, and developed a new method for
MAGDM problems with LNNs based on these operators. Lastly, we gave some

examples to explain its advantages by comparing with the existing methods. In the
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future research, we will extend PHM operator to some new extension of linguistic
variables, such as linguistic double valued neutrosophic sets, linguistic picture fuzzy

numbers, and so on.
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Chapter 3

Application of Single-Valued Neutrosophic Power Muirhead

Mean Operators to Multi-attribute Group Decision Making

In this chapter, we develop few new operators for aggregating SVN information
and apply them to MAGDM. To acquire complete advantages of both MM operator
and PA operator, we develop the SVN power MM (SVNPMM) operator, weighted
SVN power MM (WSVNPMM) operator, SVN power dual MM (SVNPDMM)
operator and weighted SVN power dual MM (WSVNPDMM) operator, and discuss
their basic properties, special cases with respect to the parameter vector. The
important advantages of the developed AOs are that it can eliminate the effect of
awkward data and can consider the interrelationship among aggregated data at the
same time. Moreover, based on the developed AOs, a novel approach to MAGDM
problem is developed. Lastly, a numerical example is presented to confirm the

efficacy and practicality of the developed approach.

3.1 Single-valued Neutrosophic Power Muirhead Mean Operators

In this part, we developed the SVNPMM operator, the WSVNPMM operator and

discussed some basic properties and related results.
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3.1.1The Single-valued Neutrosophic Power Muirhead Mean

operator
3.1.1.1 Definition

Let hz(z —1..,u) be a set of SVNNs and Sz(ql,qz,...,q )e R' be a vector of parameters.

u

If

SVNPMM® (1,7, ... ) = 121‘[ (3.1)

Sup(hz,hﬁ) is the support degree for h- and #, satisfying the following axioms:

(1) sljp(;‘z;,hE ) e[0.1];

(2) Sup(h;,hﬁ)=8up(hﬁ,h;);

@3) If Fs(h?hﬁ)<§(hu,hv),then Sup(i- 1) > Sup(h,.h,), Where Ds(i,h)is distance

among - and h-.

In order to write expression (3.1) in a more simplified form, we can suppose

(1+'?(h§))

@=—a (3.2)

(1+'?(hﬁ))

M=

=gl
AN
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with 55 e[0,1]and i% =1. Based on Equation (3.2), Equation (3.1) can be expressed

g=1

as,
_ :1
_ [Tp— - |
SVNPMM® (1,1, .. 1) =[=1 ZH(u@ghg(g)) ]Zq . (3.3)
! Uloes- g

Based on the operational rules given in Definition (1.1.1.3) for SVNNs, and
Definition (3.1.1.1), we can have the following Theorem 3.1.1.2.

3.1.1.2 Theorem

Let hg(zzl,...,a)be a set of SVNNs and Sz(ql,...,qj)e R' be a vector of

parameters. Then, the aggregated value obtained by using Equation (3.1), is still a

SVNN and

= u so; \% ) Jur |2
SVNPMMQ(hl,hZ ..... ho)= 1—[1‘[{1_1‘[(1_(1_59(9)) ]B

(3.4)

Proof: According to operational laws for SVNNs, we have

== TR —
uesh _ = 1—(1—5 ) eyl |
9(9) 9(9) %(9)  %9)

Therefore,
== % Egz % —_\O- —_ \O-
(u@;h :) - 1—(1—5 :) ,1—(1—\1!“"2)g,1—(1—¥“@:9)g .
9(9) 9(9) 9(9) 9(9)
So,
[Ty o u ue; | o u ——_\Q- u -—_\O-
(u@gh ,) - 1—(1—5 :) 1- (1—\1'“%)“,1— (1—Y“®:e)9 ,
1 $( 1 9(9) 1 9(9) 1 4(9)
g=1 g=1 g=1 g=1
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Furthermore,
1 u ==_ a
;ZH(u(agh@)
u!essj g-1
e 1
u uo; % ut u _ ! u !
— = _ uBg 9 _ _ [CH 9
= 1-{91‘5[[1—1_[[1 (l mz)) j ]] ,[H{l | ( ‘1’96)) D [“[1 [ (1 Y@) D
the 7% g=1 g=1
Hence,
1 1 L N L
s (I S0 u )% ) | (2 i ol
A R (SR RS (5 e
ulds o 9(9) 9 =3 F 9(9) =5 o 9(9)

; 0N
) ; AVANTE DX v Al
SVNPMM ® (i . ) = | 1=| TT|1- 1—(1—5 :) w12 (1—\Pu@:g)a
u 9es- g1 - a8 g1 o

On the top of equations, first of all we need to find out the PWV e, we have to find
out the support degree Sup(ha,hﬁ). As stated by Equation (1.1.1.5), we can acquire

Sup(hg , hﬁ)employing

Sup(ha,hﬁ):l—a(hg,hﬁ). (3.5)
Therefore, we exﬁploit the equation
?(ha)ziSup(hE,hﬁ). (3.6)
g-1
g=h

To determineT(%,)(z =1,..,a) . Then, as stated by Equation (3.2), we can acquire the
PWYV. We provide an example to demonstrate the calculation process.
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3.1.1.3 Example

Let 7,=(0.4,0.3,0.5),4,=(0.6,0.2,0.1)and 7,=(0.7,0.2,0.3)be any three SVNNs and
assume thatQ =(0.2,0.3,0.4). To utilize SVNPMM operator and aggregate these three
SVNNs to get the comprehensive SVNN 7=(=,¥,Y), the following steps can be
followed:

Step 1. Firstly, we determine the support degree Sup(ha,hﬁ),where E,E=1,2,3.
According to Equation (1.1.1.5) and Equation (3.5), we have
Sup(hy,h,)=Sup(h,,h,)=0.77,Sup(hy, hy) = Sup(fy,h, ) =0.8,
Sup(h,,hy)=Sup(hy,h,)=0.8333.

Step 2. We determine the PWV by utilizing Equation (3.2) to get,

T (hy)=Sup(hy,h,)+Sup(hy, hy)=0.77+0.8=15667, T (h,)=1600,T (h,)=1633.
Therefore,

=0.3291, 62 =0.3333, (T)g =0.3376.

1 \0.2+0.3+0.4

oot ts T

- [1—({1— (1— (1- 0,4)351 JO'Z 5 (1_(1— 0.6)332 )03 5 (1—(1—0,7)353 jmjx

A‘,_.

)
)
)
)

1\02+03+04
: 305 | ¥
R 1_H(1_\P9(E))
SES: g=1
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=102 = 103 = 104 =102 = 103 = 04
=1(1[(1(10.33®1) ><(170.23®2) x(170.43®3) jx(17(170.33®1) ><(170.43(')3) ><(170.23®2) jx

= 0.2 =103 = 104 = 0.2 = 1,03 = 104
(1—(1—0.23")2) x(l—O.Ss("l) ><(l—0.43®3) jx(l—(l—O.sz) x(l—0.43®3) x(l—0.33®2) jx

1
— 02 — 03 — \04 — 102 — 03 — \04 % 0s
(1—(1—0.43‘%) ><(1—O.33®1) ><(1—O.23®2) jx(l—(1—0.43®3) ><(l—0.23®2) ><(1—0.33®1) D

S0, ¥ =0.2804,
Similarly,

Y=0.3178.

Hence, 7=(0.5525,0.2804,0.3178).

3.1.14 Theorem (Idempotency)

Let hE(S =1,...,E) be a group of SVNNs, and #_=xfor all g=1..u. Then

SYNPMM® (1, ..., ) = h. (3.7)

Proof. Since #_ = for all g=1..,u,We acquire Sup(hg,hﬁ)=1f0r all g,h=1..u. Asa result,

we can obtain e; _Lforall g. In addition,
u

SVNPMM ® (7, 55,.... i ) = SYNPMM @ (1, ..., ),

u

u “1\% % iqg u % e 2
|- H[l_n(l_(l_g)uu) } 2 1_H[1_q, ] g
9<8; g=1 9es- g1
u L)% ¢ ZT
1-[1-T]|1- (1—)“] o
Jes- E:l
g % ;qg ;o\ X i ; i!:il i
- 1[{1(1 (1:))921%]} g 1[1[1(1‘11)?9] ]Z 1 [1[1(11()%%] Jz
=(E\¥,Y)=nh

3.1.1.5 Theorem (Boundedness)

Let hE(Ezl,z,...,a) be a set of SVNNS, n=min(n,,h,,...n.)=(=" ¥, r")and

):(E*,‘I”,Y’). Then

u

h=max(hy, iy,
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g SSVNPMMS(hl,hZ,...,hE)gh. (3.8)
Where,

L 1
LY N
u _ iéq 9 ut qu u +Egg 9 ut zqg
g={ [1-| []|21- 1—(1—:9@) o =TT T - Yew :
ges- 9=1 ges- 9=1
.
13
s L 15 % \ur Zqz
1-[1-T]| -] 1~ Yo .
JeS. 3:1
and
. 1
1\: R
u REENTACA T S0 e \S o X
h=( [1-| []|1- 1—(1—59@} T -T - TT - Yew :
9es. 5:1 Sesi 5:1
.
1
: _ae; \% Jur |2
1-11-TT11-] ]2 Ys@ "
9es- 3:1

== W0; = ——_ _ ue; , ue; ,ud;
= _ = u®; Uy (1_=.- - -
Proof. u®gh3(g)_<1—(1—~3(g)) "*’9<g)'Y,g(g)>2<1 (1 _s(g)) ,%(g),Ys<g>>.
Therefore,

— « a7 | — \a — o
(u@zh ) - 1—(1—5 ) ,1—(1-\11“@@)9,1—(1—1(“@:9)“ >
9(9) 9(9) 9(9) 9(9)

N % Luo; \%
l—(l—E.g(E)) ,l—[l— . )] ,1—[1—Y,9(g)] ,

g

<+
Qi el

: BN e \s cuo; )%
1—(1—53@) A= 1-Ys@ | -] || 1-Ys@ ,
-1 9-1 g=1

u == o i wo; \% a o i e
e (R (5 (el (8 ()
9e8= g 9(9) 55| gar 9(9) bes: o 9(9) bes: o 9(9)

Furthermore,
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This implies that g < SYNPMM® (i, ,,....1- ).
In a similar technique we can also prove that SYNPMM® (4, 4,,...,h,)<h . SO

9 < SYNPMM® (i, 7,,.... 1) <h.

In addition, then property of monotonicity is not satisfied by SVNPMM operator.

One of the most important advantages of SVNPMM is its capability to express the
interrelationship among SVNNs. Besides, SVNPMM operator is more pliable in
aggregation process due to parameter vector. Now, we will examine various particular
cases of SVNPMM operators by conveying diverse values to the parameter vector.

Case 1. If Q=(1,0,..,0), then SVNPMM operator degenerates into the following form:

SYNPMM %) (i, 7, B2 ) = Z (1+T(h )) A |. (3.9)
o-t Z(1+T(h )) i

h=1

This is the SVN power averaging operator.

Case 2. If o= ( ,l} then SVNPMM operator degenerates into the following

aa a

form:
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: (hl,hz,....,hu)zﬁh?mm)). (3.10)

g=1
This is SVN power geometric operator.
Case 3. If Q=(11...,0), then SVNPMM operator degenerates into the following form:

||
N

SVNPMM[

SVNPMM %) (1, .. ) = | 1- li[[l—[l‘(l‘gg)eg]{1_(1_%)@“)]

=

1-11-

(1—(1—?’?)(1—‘11?)) 1|1 ﬁ(l—(l—Y?g)(l—Y?“ ))

1 1

@ e
=2
I

@l
=
I

*
=
*
=

This is the SVN power BM operator (p=q=1).

Case 4. . If Q_£1,1,...,1,0,0,_...,O], then SVNPMM operator degenerates into the following

form:

[ ' *”*J 1y
11,.10,0,..,0 . 6;; C%
SYNPUM (1) = [1 Il [1— -fr-=;) J] ,

:_

1£y1<y2<....<yiéﬁ h=1

(3.12)

= |

fon et o)

l§y1<y2<....<ylsﬁ h=1 1<y <Y, <Y, <u h=1

This is the SVN power MSM operator.
3.1.2 Weighted Single-Valued Neutrosophic Power Muirhead

Mean (WSVNMM) Operator

As we can notice that the SVNPMM operator does not judge the importance degree of
the aggregated SVNNSs. In this subsection, we propose the weighted single-valued
neutrosophic power MM (WSVNPMM) operator, which has the capacity of taking the
weights of SVNNs.
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3.1.2.1 Definition

Let hg(azl,...j) be a set of SVNNSs and (=2:(q1,q2,...,q )e R" be a vector of

u

parameters. If

@

@
= -
o

QT

UDs)Os(m) ,
U= = 909

I ges- 5o =_=
R I T
h=1

WSVNPMM® (1, 7y,...., . ) = L5 p

(3.13)

<l

Then, we call WSVNPMM? the weighted single valued neutrosophic power

®; =1, S-is the set of all permutation,g(g)is any

M=

(g =12...u)with o; <[0.1],

1

Q||
]

. = = . - = (15(1‘1:)) P =
permutation 0f(1,2,...,u)and ®zis PVW fulfilling e;=-—"""Ye:=1

u

(hﬁ):ZSup(hg,hﬁ), Sup(hg,hﬁ) is the support degree for hgand h-, fulfilling the

=

=al=a]

followin; conditions:
(1) sup(h;.h; ) €[0.]; (2) Sup(n,,h | =Sup(ny, . )

Q|

3) If E(ka,hﬁkﬁ(hu,hv),then Sup(h_, h.) > Sup(h,, h,), where ?s(hg,hﬁ) is distance
among 7, and h-.
From Definition (3.1.2.1), we have the following Theorem (3.1.2.2).

3.1.2.2 Theorem

Let hE(E =1,2,...,G) be a set of SVNNSs and (=3 =(q1,q2,...,qa) e R" be a vector of

parameters. Then, the result aggregated by exploiting Equation (3.13) is still a SVNN
and
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-

i [-\.ﬂ:u

al)
oL

_ 5 igg(?)a@ 5 ) |
WSVNPMM® (B, 1, ... 1 ) = 1{1‘[ 1- [1—(1—59(9)) S ] D

I 1\ (3.14)
14 13\3
Tosm oo )T Ut 2% W0 e | Ut | 2%
22209) T009) ) —229) T0t9) =
_ u_ _ [ —
u PRI u P
,1— 1—| I 1- 1-y »2 ’]__ ]__I I 1— 1-Y =
1 4(9) ) 4(9)
SeS: g=1 SES: g=1

Proof: Proof of Theorem (3.1.2.2) is same as Theorem (3.1.1.2).

3.1.3 The Single-Valued Neutrosophic Power Dual MM

(SVNPDMM) Operator

In this sub-part, we develop the SYNPDMM operator and discuss some related
properties.

3.1.3.1 Definition

Let hg(E:L...,G) be a set of SVNNs and Ez(ql,qz,...,qi)e R® be a vector of

parameters. If

— u iHT he
SVNPDMM ® (i, 7.0, ) = 31 > qgh;(;() bs) : (3.15)
€S- g
2.4 -

Then, we call SYNPDMM ° the single valued neutrosophic power dual MM operator,

where S-is the set of all combination, and 3(9) is any combination of(l, 2, G)

u

):ZSup(hg,hﬁ) ,and Sup(hg,hﬁ) is the support degree for haand h, fulfilling the

Q=

followin; conditions:
(1) Sup(hg,hﬁ)e[o,l]; ) Sup(hg,hﬁ):Sup(hﬁ,hE);
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3) If E(ha,hﬁka(hu,hv),then Sup(h_. 1) > Sup(h,, ), where Fs(ha,hﬁ) is distance
among hE and hﬁ.

In order to inscribe Equation (3.15) in an uncomplicated form, we can identify it as

0; :m. (3.16)

Z(1+T(h ))

h=1

Sz =1. Based on Equation (3.16), Equation (3.15) can be indicated as

DM

1

« ||
Il
| =

<

SVNPDMM® (1, ,.....,h ) = ! [Hi(qghﬁj@)J (3.17)

JeS:

[_\-ﬂc |

g
1

«a ||
Il

3.1.3.2 Theorem

Let hg(g :1,...,3) be a set of SVNNs and the parameter vectors is indicated by

C=): (ql,qz,..., qi) eR" . Then, the result aggregated by employing Equation (3.15) is
still a SVNN and

SVNPDMM® (i, ,,...h- ) = 1 1—H(1—f[(1_5:?;))q9]”‘ Zq

1_[91:[%[1_12[1_(1‘\1’3(9))”%j H Zq ’ 1‘[&[1—&(1—(1-%))“%TQH”! 2

Proof: According to operational laws for SVNNs, we have

— —— u@E EEE
B =z 1 (1 ¥ ) ,1—(1—Y ) .
9(9) 99)’ 9(9)

Therefore

- _ vo; \% ue; )
qghs(;>_<l (l_ﬁusogg)g [1_(1_\119(9))0] ’(1_( - S(Q))OJ >
So,
u e u =\ u ue; )9 _u 105 ) o
;qE 9(9)_< 1 (l_“3(§)) L [1—(1—‘1’9(9)) ] ‘1] (1_(1 9(9)) J >
g=1 g-1 9=1 g=1



Furthermore,
[gesi_lqahi?;)]m
<[9 S [1 ;1( :u;;))]] 1[9 ° [1;1[1( Tg(g))mg] g]] .,1[5 s [l gul[l( Y%w)uog]gﬂ >
Hence,

_ . 1 : _ %% Elqi ; - 1 ;qg
1{952% e?g)J = 1(1’115{1 (159‘(’9))‘3} Jz ,{1[33[1 (17( S@) ] D J
:Z:;qg " o g=1

N

= u ==_\O- i ZQZ

SVNPDMMQ(hl,hZ ..... ha): 1{1 [1— (1—5;‘(');))gj J ,
S-

3.1.3.3 Theorem (Idempotency)

Let hE(E:Lz,...,G) be a set of SVNNs, and #_-nforall g=1...u. Then,

SVNPDMM® (i, By .. ) = (3.19)

3.1.34 Theorem (Boundedness)

9

Let hg(ﬁzl,...,a) be a set of SVNNs, ;%:min(hl,hz,...,h ):(minE,max‘P,maxY)and
h=max(h,, hy,....h. ) = (max 2, min ¥, min Y). Then
g < SVNPDMM® (i, 7., - ) <h. (3.20)

Where,
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1_[;;['[1_11[[1‘[1—%(9))”%Tg

Now we will discuss some special cases of SYNPDMM operator with respect to the

parameter vector 3
Case 1. If Q=(10,... 0),then SVNPDMM operator degenerates into the following
equation:

SVNPMM -0 (n, ... )=| TTAE | (3.21)

This is the SVN power geometric averaging operator.

Case 2. If Q:(l 11] then SVNPMM operator degenerates into the following

uu u

equation:
SVNPMM[%% """ i](hl,hz hi)=j ng. (3.22)
o1 hZ;(l+T (hﬁ))

.....

equation:
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. 323
1{1‘[ [1—{1—(1_\I;g)99][1_(1_\1/h)®"]] - 1{ﬁ{l[l(1yg)®g][1(th)®”]]J"2 ;
This is the SVN power geometric BM operator (p=q=1).
Case 4. If Q{mmj then SVNPDMM operator degenerates into the
following equation:
SVNPDMM[ah’mJ:(hl,hz,...,hu): 1—[1—1< H <[1—lj(1—52’:~ )]éJ
o 7 . (3.24)

{1 Kyﬁyg.qi <u[1_ lj{l— (1— v )5:; Dcl T ’(1 Kw}lh <u[1_ ]j[l— (1_ T )337 Dé ]“ .

This is the SVN power Dual Maclaurin symmetric mean operator.

3.1.4 Weighted Single-Valued Neutrosophic Power Dual MM

(WSVNMM) Operator

The SVNPMM operator does not judge the importance degree of the aggregated
SVNNSs. In this subsection, we propose the weighted SVN power MM (WSVNPMM)
operator, which has the capacity of taking the weights of SVNNSs.

3.14.1 Definition

Let hg(g =1..., G) is a set of SVNNs and the parameter vector is denoted by

S=(ql,q2,...,qa)e RE. If

93



1
ul

333(3)63@
_ 1 ; Y 5i6n
WSVNPDMM?® (1, hy ..., h ) = — 968:; o.h, _ (3.25)
2% "

@5 =1, Sais the set of all permutation,&(g)is any

M=

h- (3 1., E) with @; <[0,1],

1

Q|
I

. =_. e = (15(77:)) i =
permutation of(1,2,...,u)and Ogis PVW satisfying e;=—— """ >0;=1

<l

=l

(hﬁ): Sup(hg,hﬁ), Sup(ha,hﬁ) is the support degree for hgand h-, satisfying the

=i
Q|

following axioms:

(1) sup(h_ ;) <[0,1]; (2) Sup(hy ;) =Sup ., )

3) If E(ka,hﬁkﬁs(hu,hv),then Sup(h_ 1) > Sup(h,, ), where E(hg,hﬁ) is distance
among hE and hﬁ.

From Definition (3.1.4.1), we have the following Theorem (3.1.4.2).

3.1.4.2 Theorem

Let hg(a :1,...,3) be a set of SVNNs and the parameter vector is denoted by

Q= (ql,qz,..., qa) eR . Then, the result aggregated by employing Equation (3.25) is
still a SVNN, and

WSVNPDMM ® (1, ... o) =( 1| 1= T 1-[1-=

(3.26)

1

1 ; i -
-] -] 1—(1—‘{’3@) $5% 11— 9”& 1- 1_(1_Y3®) Sam |
o o " VR = h-l

Proof: Proof of Theorem (3.1.4.2) is same as Theorem (3.1.3.2).

=1

« ||
[N
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3.2 The MAGDM Approach Based on WSVNPMM Operator and

WSVNPDMM Operator

In this part, we give a novel method to MAGDM with SVNNs, in which the

importance degrees of the decision maker’s and criterion are known. Let

| = {NlNZEa}E = {C?l(?z(?b} respectively, specified the set of
alternatives and criterion and the set of decision makers be specified by e={ee,....e }

. Presume that the evaluation value for the alternative ﬁg specified by the decision

maker e about the criteria C?his specified by the formﬁzh=<agh,\ygh,nr;h>. The

importance degree of the criterion 3:{31,32,...,§b}is designated by

degree of the decision maker’s with A, e[O,l],Zc:Ak =1. Then the aspire of this MAGDM

problem is to order the alternatives. To accomplish this, the subsequent steps are
pursued.

Step 1. Homogenize the decision matrix. Normally, there are two kinds of criterion,
1) cost type and 2) benefit type. We necessitate exchanging the cost type of criterion
into benefit types of criterion by utilizing the following Equation (3.27):

N = (25, 95,75, )

(25, W5, 75, for benefit attribute O (3.27)

(Y§ 1- W 2, ) for cost attribute O.
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Consequently, the decision matrix m {nzh} can be altered to homogenize matrix

axb

N = |:5gkh :|a><b '

Sup (Pl Ply) =1-Ds 104 ), (3.28)
where, Fs(pgh, pg,) represents the distance measure between any two SVNNs p;, and
py given in Definition (1.1.1.5).

Step 3. Establish T(o%) by

T (k)= > sup(8%, 65 (L ash, I =1,..bk =1....c). (3.29)

(9=1..ahd=1..,bk=1..c). (3.30)

pb = (5, W5, Y5) WSVNPMM® oty s ) (3.31)
or

=WSVNPDMM® (0l 0f51.ee ). (3.32)

sup(5.25) =1=Ds (4} 7). (3.33)
where, E(pg, py ) represents, the distance measure between any two SVNNs o} and

ey given in Definition (1.1.1.5).
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Step 7. Find out ?(pg)by

?Z = (:Ak (1+ =(,o§)) (9=1...a;h,k=1,...c)
A, (1+T(pg))

Step 9. Make use of WSVNPMM or WSVNPDMM operators

Py =(Bp, ¥y, T, ) =WSVNPMME (05, .5
or

=WSVNPDMM® (p}, p2,..., 65 ).

To acquire collective overall SVNNs p, (g =1...a).

(3.34)

(3.35)

(3.36)

(3.37)

Step 10. Make use of Definition (1.1.1.4), to analyze the cosine measure of the

overall SVNN g,

Step 11. Order all the alternatives, and exploit the comparison rules given in

Definition (1.1.1.4) and the select the best one.
Step 12. End.

3.3 An illustrative Example

In this section, we give some numerical examples to confirm the efficacy and realism

of the anticipated aggregation operators and anticipated decision making approach.

The following example is adapted for Liu et al. [73].
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3.3.1 Example

Let there are four alternatives {N.N.N:,N.j respectively, confirming the quality of air

in Guangzhou city for November of 2006, 2007, 2008, 2009. The experts considered
three attributes into account, which are $0.(0.),N0:(0-)and PMw(0:). The importance
degree of the attributes IS »=(0.314,0355,0.331). Let us presume that there are three

decision makers that is, three air quality monitoring stations expressed by {e e, .e,}

and the importance of these monitoring stations is A=(0.40,0.20,0.40)". The valuation
values of the three air quality monitoring stations under the above three defined
attributes are provided in the form of SVNNs, which are given in Tables 3.1, 3.2 and

3.3.

3.3.1.1 The evaluation steps by utilizing WSVNPMM or
WSVNPDMM operators

The assessment steps by exploiting WSVNPMM operator or WSVNPDMM are as
follows.

Table 3.1. Air quality data from station e,

Cr, Cr; Crs

A, (026503500385)  (0.33003900.280)  (0.245,0.275,0.480)

Al (0.345,0.245,0.410)  (0.430,0.290,0.280)  (0.245,0.375,0.380)

2

ﬁ (0.365,0.300,0.335)  (0.480,0.315,0.205)  (0.440,0.270,0.290)
3

ﬁ (0.430,0.300,0.270)  (0.460,0.245,0.295)  (0.310,0.520,0.170)
4
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Table 3.2. Air quality data from station e,

Cr: Cr; Crs
El (0.125,0.470,0.405) (0.220,0.420,0.36) (0.345,0.490,0.165)
ﬁz (0.355,0.315,0.330)  (0.300,0.370,0.330)  (0.205,0.630,0.165)
ﬁs (0.315,0.380,0.305)  (0.330,0.565,0.105)  (0.280,0.520,0.200)
ﬁ“ (0.365,0.365,0.270)  (0.355,0.320,0.325)  (0.425,0.485,0.090)

Table 3.3. Air quality data from station e,

Cn Cr; Crs

E (0.260,0.425,0.315)  (0.220,0.450,0.330)  (0.255,0.500,0.245)

1

ﬁ (0.270,0.370,0.360)  (0.320,0.215,0.465)  (0.135,0.575,0.290)
2

ﬁ (0.445,0.265,0.290)  (0.450,0.370,0.180)  (0.2955,0.460,0.165)
3

ﬁ (0.390,0.340,0.270)  (0.305,0.475,0.220)  (0.465,0.485,0.050)
4

Step 1. Since all the attributes are benefit type, so there is no need to normalize them.

=k =k

Step 2. Find out the supports Sup(Algh,A|g|J(g—1,..,4;h,|—l,...,3,k—l,...,3.)by utilizing

formula (3.28). For simplicity, we shall denote Sup[AI:h,Al;jby Shaand are given

below:

Sits2 = St211 = 0.9300,51115 = Stsn1 = 0.9367, 51215 = S1312 = 0.8667,5 2122 = S22.1 = 0.9133,
Sz = 2321 = 0.9133,5 22,05 = S2320 = 0.8767:S 3122 = S50 = 0.9133, S 2133 = S 3.3 = 0.9500,
St2s = Ssa = 0.9433, 54142 = Suzas = 0.9633,5 4145 = Susas = 0.8533,5 40,45 = S0 = 0.8167;
Stisz = Sto11 = 0.9367,51115 = St311 = 0.8400,5 1213 = S1s10 = 0.8700,5 2120 = S 201 = 0.9633,
S7123 = Sgaz1 = 0.7900,S 22,23 = S 2322 = 0.8267:S 332 = Sz = 0.8667, S a1 = Sas = 0.9100,
S22 = Sasz2 = 0.9233,S 4142 = Sz = 0.9633,S 41,43 = Sazer = 0.8800,5 4245 = S sa.42 = 0.8433;
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§fl,12 = §fz,11 = 0.9733,§fl,13 = §f3,11 = 0.9500,§132,13 = §133,12 = 0.9433,§§1,22 = §gz,21 =0.8967,
S7123 = Syszn = 0.8633,5 22,25 = S2a.20 = 0.7600: S22 = Saz.1 = 0.9267, 55133 = Sser = 0.8433,
§§2,33 = §23,32 = 0.9133,§i1,42 = §32,41 = 0.9100,§z311,43 = §23,41 = 0.8533,§4312,43 = §4313,42 =0.8867.

Ti1 =18667T1 17967 Tas 18033 T 1 =18267.T 2 =17900,T s = 17900,
Ti —18633Tx —18567,T 1 =18933T 1 —18167,T 2 =17800, T4 =167

T1=17767 T2 =18067 T1s =17100.T 2 =17533.T 22 =17900.T 25 = 16167,
To=17767 T =17900.T s 18333 T 11 18433 T2 = 18067,T 15 =17233;
T11=19233. T2, =19167 T2 18933 T o1 =17600.T . —=16567,T s 16233,
To =17700.T 2 =18400.T s =17567.T 41 =17633.T s =17967.T 43 = 17400,

Step 4. Determine E; by utilizing formula (3.30), and are given below:

Oy = 0.9573,Dy, =10559,d1s = 0.9868, B2 = 0.9505,02 = 10606,D2: = 0.9889,
®a = 0.9395, D, = 10597, D5 = 10008, Ds = 0.9631, Bz = 10746, Dss  0.9623;
©s: = 0.9450,Dsz = 10809,dss = 0.9732,021 = 0.9532, B, = 10920,D25 = 0.9549,
®s = 0.9341, D5 —10611,Dss = 10048, Dy = 0.9598, Dz = L0711, Dz = 0.969L;
©11 = 0.9460, 012 = L0671,0s3 = 0.9870, D2 = 0.9708,02 = L0565, D3 = 0.9727,
®o = 0.9351, D, = 10839, D = 0.9810, 041 = 0.9406, D22 = 10763 D2 = 0.9832.

Step 5. Exploit the WSVNPMM by formula (3.31) to acquire the overall

Table 3.4. Collective decision matrix M

& €, &
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Al (0.2773,0.3399,0.3889)  (0.2113,0.4623,0.3177)  (0.2442,0.4598,0.2980)
A, (0.3304,0.3057,0.3611)  (0.2788,0.4597,0.2782)  (0.2263,0.4085,0.3749)
Al,  (0.4244,0.2958,0.2814)  (0.3400,0.4795,0.2127)  (0.3885,0.3700,0.2170)

Al (0.3932,0.3702,0.2461)  (0.3802,0.3961,0.2324)  (0.3811,0.4366,0.1860)

Su =0.9134,S1, =0.9187,5:5 = 0.9816,S 1 = 0.9038,52 = 0.9264,S 5 = 0.9332,
S31=0.8877,55 = 0.9418,Ss; = 0.9459,S 41 = 0.9825,S 4> = 0.9538,S 45 = 0.9707.

T1=18321T1 =18951 T1s =19003.T 1 =18303,T 2 =18370. T 25 =18597,
Ta=18296. T =18336 T ss =18877.T 41 =19363.T 2 =19532,T 43 = 19245,

Step 8. Find out E: by formula (3.35), for simplicity, we shall denote o by o, and

are given below:

D11 =11833. D1z = 0.6048, D15 =12118,Do =11945 D2 = 0.5987, D2 = 12069,
D =11899, D3> = 0.5958 M35 = 12143, =12005,Daz = 0.6037, Dz =11957.

Step 9. Exploit the WSVNPMM specified in formula (3.36), to get ﬁg(g =1,2,3,4)

.(assume (Q(1.1,1))).

Al =(0.2307,0.4526,0.3626), Al, = (0.2622,0.4291,0.3607),
A

(0.3622,0.4248,0.2658), Al = (0.3669,0.4275,0.2553).

1
I3
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Step 10. Utilizing Definition (1.1.1.4), to calculate the cosine measure for over all

SVNNSs Al,.
?)(ﬁl) _ 0.0853,§(ﬁ2) _ 0.11115(1) _ 0.2121,?)(1) —0.2177.

Step 11. Arrange all the alternatives descending order according to their cosine
measure values, and utilizing comparison rules defined in Definition (1.1.1.4), and

select the best one.
ﬁA >E3 >ﬁ2 >E1.

Hence Al is the optimal one and the worst one is Al
Further, we exploit the WSVNPDMM operator to re-calculate this example.
Steps 1 to 4 are same.

Step 5. Employ the WSVNPDMM by operating formula (3.32), to acquire the overall

Table 3.5. Collective decision matrix m

e e, e,
Al (0.2805,0.3343,0.3743) (0.2355,0.4588,0.2881) (0.2468,0.4567,0.2937)
Al (0.3437,0.2983,0.3523) (0.2901,0.4190,0.2610) (0.2442,0.3585,0.3639)
Al (0.4298,0.2931,0.2712) (0.3428,0.4668,0.1859) (0.4012,0.3549,0.2049)
Al (0.4029,0.3373,0.2378) (0.3836,0.3842,0.1985) (0.3924,0.4264,0.1435)

. =k =—m -
ease, we designate Supp[AIg,Algj(g =123 4mk=123) by s, and are provided below.

S =0.9148,51, =0.9211,5:s = 0.9936,S,, = 0.9115,52 = 0.9264,S 2 = 0.9429,
S31 =0.8850,53, = 0.9481,535 = 0.9369,S 4 = 0.9649,S 4, = 0.9354,S 43 = 0.9646.
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Step 7. Find out T(/—\Il;j(g =1..,4k=1..,3) by formula (3.34), for straightforwardness, we

T1 =18359T1» =19084 T1s =19148, T 1 =18544. T », =18418,T 2 =18732,
Ta =18330T2 =18219 T =18849.T 41 =19003.T 42 =19295 T 45 =19001.

Step 8. Find out @, by formula (3.35), for ease, we shall signify @, by @y and are

specified below:

D11 =11808, D1, = 0.6055, D13 = 12137, =11979 B2 = 0.5963, 25 = 12058,
D =11922,Dsr = 0.5938, D35 =12141 Dar =11976,Ds> = 0.6049 Dz =11975.

Step 9. Exploit the WSVNPDMM specified in formula (3.37), to acquire

Mo (9=12,34).(assume(Q(111))).

Al; =(0.2819,0.3957,0.3008), Al = (0.3247.0.3410,0.3042),

Aly
Al; = <0.4152,0.3522,0.2063>, Aly = <O.4186,0.3623,0.1799>.

Step 10. Employing Definition (1.1.1.4), to calculate the cosine measure for over all

SVNNs T
?)(ﬁl) - 0.13905(1) - 0.1881,§(ﬁ3) - 0.2961,§(ﬁ4) — 0.3010.

Step 11. Arrange all the alternatives descending order according to their cosine
measure values, and utilizing comparison rules defined in Definition (1.1.1.4), and

select the optimal one.
Ezt >E3 >E2 >E1.

Hence Al.is the optimal one, and the worst one is Al;.
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3.3.1 Influence of the Parameter Vector Q on Final Ranking

Results

The developed method to MAGDM problems has two notable advantages. Firstly, it
can eliminate the influence of the too high and low arguments on the final results.
Secondly, it can consider the correlation among SVN attributes values. Furthermore,
the developed aggregation operators have a parameter vector that makes the
aggregation process more flexible. In simple words, when distinct parameters are
given to the WSVNPMM operators and WSVNPDMM operators, different overall

values can be derived, resulting in differing in cosine measures and ranking results.
To show the effect of the parameter vector 3 on the ranking results, we give distinct
parameter vectors 3 in the WSVNPMM operators and WSVNPDMM operators and
discuss the ranking results in Table 3.6.

Table 3.6 shows that by utilizing distinct parameter vectora, distinct ranking

results are obtained. Furthermore, from Table 3.6, one can see that when the number
of interrelationship attributes increases, the values of the cosine measures utilizing
WSVNPMM operator decrease, while utilizing WSVNPDMM operator, the values of

the cosine measures increase.

Table 3.6. Score values and ranking order for different values of parameter vector Q

Parameter Score values Utilizing Score values Utilizing Ranking orders

values WSVNPMM operator WSVNPDMM operator

Q(1,0,0) SO(Al:)=0115050(Al)=0.1562,  SO(Al)=01058,50(Alz)=01311,  Als > Als > Al > Al

S (Ns) - 0.2640,8:(:I4) =0.2493.

(ﬁg) - 0.2811,50( |4) =0.2679.

[72)

ﬁa >ﬁ4 >ﬁz >ﬁ1.
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Q(11,0) SO(Al: ) =0.0981,

so(ﬂa) - 0.2403,50( |4) =0.2356. so(Al ) 0.2841 so(

Q(L11) %(ﬂ) =0.0853,

Q(5,0,0) so(

( z):0.1279, so(All)fo 1253, (ﬁ ) 01673,  Als> Al > Al > Al

z|
=
O
[
[e¢]
8

ﬁg >ﬁ4 >ﬁz >ﬁ1.

z) -0.1111, SO Nl) - 0.1390,§(ﬁ2) -0.1881, Als > Als > Al > Al

so(Al) 02961§(:|)=0.3010. _ o _

Al ) 0.0866,5 (ﬁ ) 00926,  Als>Als> Al > Al

ﬁg >ﬁ4 >ﬁz >ﬁ1.

3.3.2 Comparison and Discussion

To confirm the efficacy and compensation of the proposeed method, we confer a

relative analysis. We operate various presented methods to explain the same example

and scrutinize the final results. We compare our method in this paper with the

methods developed by Xu et al.[72] based on weighted SVNBM operator, developed

by Liu et al. [71] based INPWA operator and developed by He et al. [80] based on

SVN weighted power BM operator. The ranking results obtained by these four

methods are listed in Table 3.7.

Table 3.7. Comparison with different approaches

Approach

Score Values Ranking order

Weighted SVNBM operator

[72]

SVN power weighted

averaging operator [71]
SVN weighted power

operator [80]

ﬁ(ﬁl) - o.ooo7e§(ﬁz) =0.0010, Al; > Als > Al > Al

S0(Alz) =0.0023,50(Al, ) = 0.0022.

SO Nl):o.nso,s (ﬁz):o.lsel, Al; > Als > Al > Al

ﬁ(ﬁl) - 0.1266,§(ﬁ2) -0.1291, Als > Al > Al > Al



Proposed WSVNPMM  for ﬁ(ﬁl) - 0.1150,%(@) ~0.1562, Als> Al > Al > Al

Q(1,0,0)

Proposed  WSVNPDMM  for  55(Ai)-0.105855(A:) 0311, Alus Al Al > AL
Q(£0,0) SO(Al2) =0.2640,50( Al | <0.2493

Proposed WSVNPMM for ﬁ(ﬁl) _ 0_09815@) 01270, T T
(10 50(. oz (. -2

Proposed WSVNPDMM for SO (Al -0.1253,55 &1z - 0.1673, T T
Q(i0) 55{3) 001 5. o2

Proposed WSVNPMM for SO ~0.0853,50 (Al ~0.1111, = mom m
o 50( - 021 5{ ) oz

Proposed WSVNPDMM  for  50(Al)-01390,50( Al. | =0.4881, T T
e 50()-o2015(. 0300

From Table 3.7, we can see that methods in [71,72,80] produced the same ranking
results as the proposed method in this paper when Q takes (1,0,0) and (1,1,0), and this
can explain the validity of the proposed method in this paper. However, when Q takes
(1,1,1), i.e., when we consider the interrelationship among three attributes, we get a
different ranking result. Then we can give some explanations of the different existing
methods as follows.

While our adopted method is supported on the WSVNPMM operator or
WSVNPDMM operator, this can judge the correlation among SVNNs and also take
away the cause of uncomfortable data at the same time.

The Xu et al. [72] method based on BM operator can judge the correlation between

two SVNNSs, but cannot eradicate the cause of uncomfortable data. While our
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proposed method can judge the correlation among any number of SVNNs and also
eradicate the cause of uncomfortable data at the same time.

The Liu et al [71] method is based on PA operator, which can only remove the bad
influence of too high or too low arguments. But this cannot consider the
interrelationships among SVNNs. While our developed method can also remove the
effect of awkward data, and can consider the interrelationship among any number of
SVNNSs at the same time.

The He et al. [80] method based on PBM operator, which can judge the correlation
between two SVNNSs and also eradicate the influence of too high and too low
arguments by PA operator. While our propose method can judge the correlation
among any number of SVNNS.

Thus, the developed method based on the developed aggregation operators is more

effective and flexible for MAGDM problems.

3.3.3 Conclusion

In this article, we combined MM operator and PA operator and developed various
AOs, such as SVNPMM operator, WSVNPMM operator, SVNPDMM operator and
WSVNPDMM operator. The developed AOs take full advantage of MM operator and
PA operator. In simple words, the developed AOs not only consider the
interrelationship among SVNNs but also remove the influence of too high or too low
arguments on the final results. Further, we inspected some analyzed several desirable
properties and special cases of the developed AOs. We also proposed a novel
approach to MAGDM with SVN information. Lastly, we provide a numerical

example to confirm the efficacy and realism of the developed approach.
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In future research, we will extend the developed AOs to different fuzzy
environments such as double-valued NS, IFS, hesitant fuzzy sets, single valued

neutrosophic hesitant fuzzy set.
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Chapter 4

Neutrosophic Cubic Power Muirhead Mean Operators with

Uncertain Data for Multi-Attribute Decision Making

In this chapter, we intend various AOs for NCNs, which is a basic member of
NCS. Taking the full advantages of MM operator and PA operator, the PMM operator
is developed and is examined under NC information. To handle the problems up
stretched, various new NC AOs, such as the NCPMM operator, WNCPMM operator,
NCPDMM operator and WNCPDMM operator are developed and allied
characteristics of these developed AOs are granted. The significant advantage of the
proposed AO is that it can eliminate the effect of uncomfortable data and it takes the
interrelationship between aggregated values at the same time. Further, a novel
MADM method is instituted over the developed AOs to bestow the effectiveness of
these operators. Lastly, a numerical example is specified to show the efficiency of the

proposed approach.
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41  Some Power Muirhead Mean Operator for Neutrosophic Cubic

Sets

4.1.1 The Neutrosophic Cubic Power Muirhead Mean (NCPMM)

Operator

In this subsection, we extend the PMM operator to neutrosophic cubic

environment and discuss some basic properties, and special cases of these developed

aggregation operators with respect to the parameterg .

4.1.1.1 Definition

Let 7,(g=12..,u) be a set of NCNs and the parameters vector is denoted by

Q:(ql,qz,...,qz)e R; . |f,

NCPMM® (1, 7,y ) =| = 3 ]| =————1 . (4.1)

?(h;)ii sup(#y,h-) Sup(hg,h;) is the support degree for 7, and 7., satisfying the

m=1,x#g

following axioms:
(1) Sup(hg,h;)e[o,l];
@) Sup(hg,h;):Sup(h;,hz);
(3) If Ds(h,h-)<Ds(h,h,), then Sup(h,.h-)>Sup(h,.h,), Where Ds(h,h-) is the
distance among 7, and #,.
In order to inscribe Equation (4.1) in an easy form, we can stipulate it as:
(1+? (hg))
Z(1+f(h;))

a
m=1

@:

g

4.2)
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For appropriateness, we can entitle (e,0,...6,) the power weight vector (PMV),
such that e, <[o,5]and Y e,-1. From the exploit of Equation (4.2), Equation (4.1) can

be articulated as:

NCPMM® (i, ... 5. ) = [é > f[(Z@th(g) )qg JZ“ . (4.3)

a!HeS: g=1

Based on the operational rules given in Definition (1.1.1.15) for NCNs, and
Definition (4.1.1.1), we can have the following Theorem (4.1.1. 2).

4.1.1.2 Theorem

Let 7,(g=12...a) be a set of NCNs and Q=(q.q,...q,)eR* be a vector of parameters.
Then, the result aggregated by employing Equation (4.1) is still an NCN and,

. oy Y8 )1 [ 3 . oy Y8 )1 |20
Aot e et T
. . gizlg . . giilg
o l_o S [1_9=1(1_( L)H(;)q ] }lq 11_{1_%5 (1_1;!( _( U)H(;))q ] }lq
. o, 10 zlg . o, 15 Yo zl
1- 1_5 5 [1—91( _( L)0(9))q ] ] q 11—[1—0653[1_91( _( U)o(gl)q j } q

fes, g=1

,1-[1_11(1—161(1—(/1; o) ﬂ;qg (4.4)

Proof. According to the operational laws for NCNs, we have

aByhyq) = [<[1_ (1_ (EL)H(Q))aQB '1_(1_(5U )g(g))aeg }‘[(\PL):);) ’(\PU ):?;)}[(YL):(();) ’(YU ):?;)D

(11 8 ) )|
So,
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Therefore,

foo | [0, 7 0.7
| o

S T](a0,0,0) [<{1 n{re-ee, ") e,
{H[l Il () )jn[l I16-(+) )%H,[g[l-n(l (1) )]H[l I(-(e) )]D
<1‘£[[1f!(1‘(1‘(“ (S LRV p SV (R M

Furthermore,
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1 1
1\= 1
a a0 \% al Z;q a a0 \4 al gz,q
- 179 S [lH(l( L)B(g)) j J ’17 170 5 [l 9:1(17( U)H(g)) J }
L 1

This is the required proof of Theorem (4.1.1.2).

In the above equations, we calculate the PWV @, after calculating the support degree
sup(h,,h- ). First, we determined the sup(s, 1) utilizing

sup(hy,h- ) =1-Ds(hg,h- ), (4.5)
where,
S %( 2L ) (202 ) () (Y ) () e (Y Y )ZI “s)
(= ) (2, ~4) +(% ﬂp))
Therefore, we use the equation
T(n,)= i:Sup(hg,h;). (4.7)

g=1,g=m

To obtain values of ?(hg)(g=1,2...,a). Then using Equation (4.2) we can get the
PWV.
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4.1.1.3 Theorem (Idempotency)

Let 7,(9=12..a) be aset of NCNs, and 7, =4, forall g=12,..a. Then

NCPMM® (i, 7ty,..., 1, ) = .

Proof. Since #,=nhfor all g=12..awe have Supp(hg,h;):lfor all

Therefore, we can get o, ~Ltorall g. Moreover,
a

NCPMM® (7, By ., i, ) = NCPMM @ (B .. )

1 1
1 1
a L) al Z;q@ a A% al ;qg
=|||1- 1H[1(1:L) ] 1= 11‘[[1(1:”) J T
0es, g=1 0eS, 9=1
_ ) )
1 1
a Lal 4y \at Zl% a U 1 dg \a! Zl%
1-|1-TT|1- [1—\1/ ] Toa-1-TT|1- [1—4/ ] ’
0es, g=1 0eS, g=1
_ . )
1 a 1
a Lal % at ;qg a Ua3 b \a qu
1-|1- 1—1‘[[1—)( j A-|1- 1- [1—1( ]
ES) g=1 OeS, g=1
) 1 1
1 a 1
a % \a! |2 % a 1\% Yal [2%
1- [1— (1—(1-4)%) B 11— 1—]‘[(1—/1, j
fes, g=1 OeS, g=1
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1 1 1

1 a 1 a 1 a

a a!a z X a a!a Z s a a!a Z :
1[1[1(1\1/“)5%] }lq , 1{1[1(11&);%] }lq ,1[1 1—(1—Y“)§“g] ]“q

1

et [P floas P et T

(=2 [ A )=

which is the required proof of Theorem (4.1.1.3).

4.1.14 Theorem (Boundedness)

Let 7,(g=12..,a) be a group of NCNs, where
h=min(hyhy... ha):<[minEL,minEu},[maxw'-,max‘PU:‘,[maxY'-,maxYU},ir’,ﬂ,*,Z,F*> and
h=max(hy ... ha):<[max3'-,maxEU},[min\v'-,min‘{’”MminY'-,minYU},ﬂ,r*,/l[,ll;>.
Then
m < NCPMM® (7, 7ty,..., ) < . 4.9

Where,
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Hence,
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This implies that m < NCPMM® (7, 7,,..., 1,).

In a comparable technique we can prove thatNcPMM®(y,n,,...h,)<n. Hence

m < NCPMM (7, 7,,..., ) <N.

The NCPMM operator does not have the property of monotonicity.

One of the leading advantages of NCPMM is its capacity to represent the
interrelationship among NCNSs. Furthermore, the NCPMM operator is more flexible in
aggregation process due to parameter vector. Now we discuss some special cases of
NCPMM operators by assigning different values to the parameter vector.

Case 1. If Q=(10..0),then the NCPMM operator degenerates into the following

equation:

NCPMM %9 (B, By, .oy ) = n, |. (4.10)

This is the NCPA operator.

119



Case 2. If Q=(%%%) then the NCPMM operator degenerates into the following

equation:

11 1

NCPMM(W a](hl,hz ...... ) =] [h5 (4.11)

This is the NCPG operator.

Case 3. If Q=(11..,0), then the NCPMM operator degenerates into the following
equation:

NCPMM 9 = (i, 7,,...,1,) =

~

1- l[f[(l(l(ﬂp)f“)(l(ﬂ;)i‘* ))] : (4.12)

This is the NC power Bonferroni mean operator (p=q=1).

z—i

Case 4. . If Q:[l,l,...,l,0,0,...,O], then the NCPMM operator degenerates into the

following form:
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[N
11,.10,0,..,0

NCPMM[ J(hl,l‘u,---,"la)=

1 1

[ e sr [ fotieesr) ]

. HM(l_lj(l_(l_(“gx)%)jé]k'l_[l_ [1 (1—11(1—(1.)2’5‘))02},

(4.13)

This is the NC power Maclaurin symmetric mean operator.
4.1.2 Weighted Neutrosophic Cubic Power Muirhead Mean

(WNCPMM) Operator

The NCPMM operator does not consider the weight of the aggregated NCNs. In this
subsection, we develop the weighted neutrosophic cubic power Muirhead mean
(WNCPMM) operator, which has the capacity of taking the weights of NCNs.

4.1.2.1 Definition

Let n,(g=12,...a)be a group of NCNs and Q=(g.q,....q,)R* be a vector of parameters.

1

x=1

’ 2
: aqzs(g)@e(g) . . (4.14)

Then, we call wncPMM? the weighted neutrosophic cubic power Muirhead mean
operator, where o=(o,,..,)'is the importance degree n (g=1..a)such that

@, e[O,l],Za:(DZ =1, s,is the set of all permutation, ¢(z)is any permutation of(1....a)and e,
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is PVW satisfying ®Q:M,i@g:1, T(h)= > Sup(n,.h,), Sup(k,h,) is the support

g(lﬁ (n,)) o7 ey

degree for » and #,, fulfilling the following conditions:
(1) sup(hy,1, ) €[0,1];
(2) sup(iy,h,)=Sup(hy,.h,);

(3) If Ds(n,,n,)<Ds(h,, n,) then sup(,,n,)>sup(s, n,), Where Ds(,n,)is distance among 7,

and &,

From Definition (4.1.2.1), we have the following Theorem (4.1.2.2).

4.1.2.2 Theorem

Let 7,(g=12..a)is a set of NCNs and the parameters vector is denoted by
Q=(¢,9,..9,)eR*. Then, the result aggregated by employing Equation (4.14) is still a
NCN

1\ 1\a
2Py \ ¥ ! QZ:;% (g Pagg) \ |2 %qg
. 2
a Yoo > 0,0,
1-{1- 1- 1-(wh) = 1-11- 1- 1-(wY) =
0(9) ' 0(9)
0es, g-1 9 0eS, g-1 9
1 1
= 2 1 a
20,4 ®s(0) | )2 QZ;% () ®ug) \ | QZ;%
2
a X a > o,,
x=1
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o (4.15)

Proof. Proof of Theorem (4.1.2.2) is same as Theorem (4.1.1.2).

4.1.3 The Neutrosophic Cubic Power Dual Muirhead Mean

(NCPDMM) Operator

In this subsection, we develop the NCPDMM operator and discuss some related
properties.

4.1.3.1 Definition

Let 7,(9=12..a)is a set of NCNs and the parameters vector is denoted by
Q=(0y 0y 0,) € R™. If

1
a(147 (hy(g))) al

a

1 a (14T (ny))
NCPDMM @ (h,, 7ty ...y ) = ——| [ 20| 95hicsy . (4.16)
q 6eS, g=1

Then, we call NcPDMMQ the neutrosophic cubic power dual Muirhead mean operator,
where s,is the set of all permutation,é(g)is any permutation of(..,a)and

T(hy)= z sup(iy.h,), Sup(hg.h,) i the support degree for n and &, fulfilling the

m=1,x#g

following conditions:
(1) sup(ry,h, ) €[0,1];

(2) sup(iy,h,,)=Sup(hy, 1, );
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(3) If Ds(n,,n,)<Ds(h,,n,) then supe,,n,)>sup(s, n,), Where Ds(,n,)is distance among 7,
and 7,,.

In order to inscribe expression (4.16) in an easy structure, we can stipulate it as

o [T0)) (4.17)
g (1T (7))

1 Mﬂ’

[N

m

For appropriateness, we can label (e,0,...6,) the power weight vector (PMV), such

that e, <[o,17and i@g=1. From, the use of Equation (4.17), Equation (4.16) can be

expressed as

1

l a a al
NCPDMM® (71, 71y, ..oes Bty ) = — (HZ(qgh;g”‘)g’)j . (4.18)
qu 0eS, g=1
g=1

4.1.3.2 Theorem

Let 7,(9=12..3)is a set of SVNNs and the parameters vector is denoted by
Q=(1,9,..9,)eR*. Then, the result aggregated by employing Equation (4.16) is still a
NCN and

[t et ) g

Proof. Proof of Theorem (4.1.3.2) same as Theorem (4.1.1.2).
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4.1.3.3 Theorem (Idempotency)

Let 7,(g=12,..,a) be a group of NCNs, andr, = forall g=12..a Then

NCPDMM© (i, h,,....h, ) = h. (4.20)

4.1.3.4 Theorem (Boundedness)

Let 7,(9=12...a) be a group of NCNs, h:min(hl,hz,...,ha)=<[EL,5U},FL,\PUHYL,YU}AT,4,+,A;>

and
n* =max(hl,hz,...,ha)=<[éL,éU},{‘FL,‘PU}[YL,YU},A*,A,/1F>.
Then,
m < NCPDMM ® (7, f,,.... 7, ) <. (4.21)
Where,

a 1\ g é QZ:*% N U\ g ﬁ ;7%
m=|{ |1~ 1—]‘[[1—]‘[[1—[5 ] ] ] 1- 1—]‘[[1—]‘[[1—[5 ] ] J :
0eS, g=1 0(9) 0eS, 9=1 0(0)
i 1 L 1 !
20, \% al Z}lq g5 ) \a! :‘ﬂq
1—[]‘[[1—]1[[1—[1—[\%’ j ] ] H ,
=N g-1 0(0)
a0, \%
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Now we will discuss some special cases of NCPDMM operator with respect to the
parameter vector Q.

~—
|
~
EMH‘H
&

Case 1. If Q=(10,..,0),then NCPDMM operators disintegrates into the following
equation:

(+7(r))

a

£0,..0) a_ > (1+T(ky))
NCPDMM %) (n, h,,.... ki, ) =| [ [ 3 : (4.22)

9
g=1

This is the NC power geometric averaging operator.

Case 2. If Qz&%%] then NCPMM operators degenerate into the following form:

NCPDMM[a'a *‘j(hl,h2 ...... ha):imh. (4.23)

This is NC power arithmetic averaging operator.

Case 3. If Q=(110,..,0), then NCPDMM operators degenerate into the following form:
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{ 1_[31;[1_(1_(1_(WL)Q)%](1‘(1‘(‘“))%)] - glj[;[l(l(1(\"”)9)%)(1(1(\P”)X)OXD]“} l

1—[9]?[_1[1—(1-(1—(4)g)og](l—(l-(zF)x)@*)j]a } >} »

This is the NC power geometric Bonferroni mean operator (p=q=1).

Case 4. . If Q:[1,1,I...,1,0,OZ,.I..,0], then the NCPDMM operator degenerates into the

following form:

ssovrth st
[ i]i[lwpww[lH(l(l“”)ex)ohﬂjéﬂ> (425)
<11 L 1k[ty‘ﬂwillj(l(lm)‘"’“‘j)éf

[mp<y<a(1u<1<1<4>wr-*)f]K>}
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This is the NC power dual Maclaurin symmetric mean operator.

4.1.4 Weighted Neutrosophic Cubic Power Dual Muirhead Mean

(WNCPDMM) Operator

The NCPDMM operator does not judge the importance degree of the aggregated
NCNSs. In this subsection, we propose the weighted neutrosophic cubic power dual
Murihead mean (WNCPDMM) operator, which has the ability of captivating the
weights of NCNs.

4.14.1 Definition

Let 7,(90=12..a)is a set of NCNs and the parameters vector is denoted by

Q=(0,0,,-0,)eR". If

aPy(q)9(g) ) \a!
a

a >0,
WNCPDMM (i, Ay ,...., ], ) = al 112 agtois; : (4.26)
Zq 0eS, g=1
9
g=1

hen we call wncPDMM® the weighted neutrosophic cubic power dual Muirhead mean
operator, where o=(o,,..0,)'is the importance degree of 7 (g=12,..,a)with

o,is PVW fulfilling o, - ™) s _ 1()= 3 su(nn), sw(n,n,) is the SPD
2(1+T(hg)) g=1 m=1,x=g

g1

for n and »,,gratifying the following conditions:
(1) sup(ry,h, ) €[0,1];
(2) sup(iy,h,,)=Sup(hy, 1, );

(3) If Ds(n,,h,)<Ds(h,, n,) then sup(,,n,)>sup(s, n,), Where Ds(,n,)is distance among 7,
and #,.

From Definition (4.1.4.1), we have the following Theorem (4.1.4.2).
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4.1.4.2 Theorem

Let 7,(9=12..,2) be a group of NCNs and Q=(q,.q,...q,)eR* be a vector of parameters.
Then, the aggregated value obtained by using Equation (4.26) is still a NCN and

WNCPDMMQ(hl,h2 ..... ha):
1
1\z
. . 30y(g) Py \T0 |2 ;q“ . y @9(g)Ps(g)
-1 2-T1 1—[5) 200 A-11-TT1-T1 1—(5j 2.0
0ss,| o ) 0ss,| ot )

1

30(g)Py(q)

a L a
1- 1—[1—(\11) j 2o
0es, g=1 0(9)

39(9)Ps(9)

a L 2
=TT 2-TT] 2= 1—(1() 200
€S, g=1 0(9)

T al [
g-1
)

1

1

g ) \a Zﬂ%
a U a
- TTl1- 1—[1—(?) j;w
€S, g=1 0(9)

u 2
Y] Zloxwx
0(g)

1\a
]qg Ja! Z%
g1

)

39(g)Py(q)

39()Ps(g)

|

1
Tg a

1

P
6 G \a! |24
39 Pog) \° |* Z;g

a i(-)xcpx a 09 ®s10) “ %;qg
S 1| S O ESTEA R ,1[ [1 [1(1%)9@) z]]] -
0eS, g=1 0eS, g=1 xt
1 (4.27)
a 305y Pa(q) \ % gqﬁ
e

Proof. Proof of Theorem (4.1.4.2) is similar to that of Theorem (4.1.1.2).

4.2 The MADM Approach Based on WNCPMM Operator and

WNCPDMM Operator

In this section, we give a novel method to MADM with NCNs, in which the attributes
values gain the form of NCNs. For a MADM problem, let the series of alternatives is
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such thata, e[O,l],Zb:wz =1. Assume that z,, =< Eg B [ P o o[ Yo o |, A”,/Lgh,zﬁh)

—gh'=gh

is the assessment values of the alternatives N, on the attribute o,which is expressed
by the form of NCN. Then, the main aim is to rank the alternatives. The following

decision steps are to be pursued.

Step 1. Homogenize the decision matrix. Normally, there are two kinds of criterion,
1) cost type and 2) benefit type. We necessitate exchanging the cost type of criterion

into benefit types of criterion by utilizing the following equation:

2 =(([Z5 20 L5 Vo L5 5 D2, Ay 2, )

LB Yo oo || Yoo Yo A A for benefit attribute O

(<[ gh? gh [ ] [ ]> < Tgn ' "Fgn >)

= (<|:Y;h Yy ] [1 RORNER O J [E;h,agh]>,</1¢gh A-2, gh,ﬂth>). for cost attribute O
(4.28)

Therefore the decision matrix M =[z,] can be altered into regularized decision

matrix N =[5, ] .

Step 2. Find out the supports Supp(&,,,3, )(L2,...ah,1 =1,2,....b)by

SUpP (3,5 ) =1-D (S, 5, ), (4.29)

where, D(s,.5,)is the distance measure among two NCNs s, and s, defined in

Equation (4.6).

Step 3. Find out T(5,,) by
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T(5gh)=zb:Supp(5gh,5g,)(1,2,...,a;h,| =1,2,..,b). (4.30)

I#h

Step 4. Find out

_ ba, (1+7(5,))

= dzb;wd (1+T (5gh ))

)

(9=12,..,ah,d=12,..,b). (4.31)

gh

Step 5. Exploit the WNCPMM or WNCPDMM operators

8, =([Z5.20 W5, ¥y L[ 05 0% | Args g Arg ) =WNCPMM® (8,1, 8,508y, ) (4.32)
or
8, =([25.20 L5, we 1 Y5, 05 ] Arg g Ay ) =WNCPDMM® (8,,8,,,-.1, 8y ). (4.33)

to calculate the overall NCNs 6,(g=12,..,a).

Step 6. Determine the score values of the collective NCNs &,(g=12,..,a), using

Definition (1.1.1.16).

Step 7. Rank all the alternatives according to their score values, and the select the

best one using Theorem (1.1.1.17).

Step 8. End.

4.3  Anillustrative Example

In order to show the application of the developed MADM method, an illustrative

example is embraced from [14] with NC information.
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4.3.1 Example

A passenger wants to travel and select the best vans (alternatives) No(g=1234)
among the possible four vans. The customer takes the following four attributes into

account to evaluate the four alternatives: (1) the facility o.; (2) saving rento.; (3)
comfort Os;(4) safety 0.. The importance degree of the attributes is expressed by
@ =(05,0.25,0.125,0.125)' . Therefore, the following decision matrix M =]z, | can

4x4

be obtained in the form of NCNs shown in Table 4.1.

Table 4.1. The decision matrix M =[cN,, ]

4x4

O 02 Os O4

N:  (([0.205],[030.7], (({[0.20.4],[0.405], (([0.20.7],[0.409], (([0.1,0.6],[0.30.4],
[0.1,0.2],0.9,07,0.2) [0.2,05],0.7,04,05) [050.7],0.7,07,05) [050.8],050507)

N2 (([0.3,0.9],[0207], ({[0:30.7],[0.6,0.8], (([0.30.9],[0.4,0.6], (([0.2,05],[0.4,0.9],
[0.305],050.7,05)) [0204].07.06,08), [0.608].09,0406) [050.8]05,0207)

N:  (([0-30.4],[0.40.8], (([0.20.4],[0.20.3], ({[0.40.7],[0.L,0.2], ({[0.60.7],[0.30.],
[0.2,0.6],0.1,0.4,0.2)’ [0.2,0.5],0.2,0.2,0.2) [0.4,0.5],0.9,0_5,0.5>‘ [0.3,0.7],0.7,0.5,0.3)’

N. (([0.509],[0.1,08], (([0.4,0.6],[0.50.7], (({[0.50.6],[0.204], (({[0.30.7],[0.7.08],
[0.2,0.6],0.4,06,02)) [0.1,0.2],050302) [0.3,05],0504,05) [06,0.7],0.4,0208)

Step 1. Since all the attributes are the same, hence there is no need for conversion.
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Step 2. Utilize Equation (4.29), to calculate the support degree
Supp(2,2¢ )(L.2,.-, 401 =1,2,...,4). We denote SUPP(zy,.2, ) by SUPPg, g -

Suppll,lz = SupplZ,ll = 0'79452’8Upp11,13 = Supp13,11 = 0'73542578upp11,14 = Supp14,11 =0.65359,

Supplz,ls = Supp13,12 = 0'77147815upp12,14 = Supp14,12 = 0'8056351supp13,14 = Supp14,13 =0.786563;

SUppu,zz = Supp22,21 = 0-79721SUPp21,23 = Supp23,21 = 0-766718Upp21,24 = Suppz4,21 =0.727155,
SUppzz,zs = Suppz3,22 = 0-750556’SUPp22,24 = Supp24,22 = 0-750556:8Upp23,24 = Suppzs,zA =0.76906,

Suppal,sz = Suppsz,sl = 0.8,Supp31,33 = Supp33,31 = 0-61413915upp31,34 = Supp34,31 =0.735425,
Supp;, 53 = SUPP4; 5, = 0.690879,SuUpp,, 5, = SUPP,, 5, = 0.711325,SuUpp,;, 5, = SUPP4; 4, = 0.797241,

SUPP,, 4, = SUPP,, 4 = 0.7951,SUpp,; 45 = SUPP,; 4, = 0.783975,Supp,, ,, = SUPP,, ,, = 0.645662,
SUPP,, 45 = SUPP,; 4, = 0.783975,SUpp,, 4, = SUPP,, 4, = 0.675107,Supp,, ,, = SUPP,, 43 = 0.7152.
Step 3. Utilize Equation (4.30), to get T(s,,)(g,h=1to4). We denote T(5,,) by T,.
T,,=2.183534,T,,=2.371633,T,,=2.293466, T, =2.245787,
T,,=2.291063,T,,=2.298354,T,,=2.286283,T,,=2.246771,
T,,=2.149564,T,,=2.202204,T,,=2.102259,T,,=2.243991,
T,,=2.184688,T,,=2.214133,T,,=2.28315,T,, =2.035969.

Step 4. Utilize Equation (4.31), to obtain ®,(g.h=12,34).

®,, =1957844,0,, =1036761,0,, = 0.506363,D,, = 0.499032,
®,, =2.002623,®,, =100353,0,, =0.499929,0,, =0.493918,
®,, =1987975,0,, =1010601,D,, = 0.489529,d,, =0.511894,

®,, =1999323,®,, =1008904,0,, = 0.515284,0,, = 0.476489.

Step 5. Utilize the WNCPMM given in Equation (4.32)
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2, =(([25,20 L5 W0 T 050 D)oy g g ) = WONPMM® (2,175,102 ) (9 =1.210.,4)
To get the overall NCNs z,(g=12,..,4). Assume that Q=(1111).

Z = <[O.13993,0.469959] : [0.442103,0.702693] : [0.469048,0.684711] ,O.548309,0.636754,0.602874>

2, ={[0.2238,0.60211],[0.5236,0.8162],[0.5122,0.715],0.561704,0.55054,0.729379);

2, =([0.3002,0.4736],[0.3232,0.5782],[0.3881,0.6445],0.3255,0.4952,0.415668)

2, =([0.3413,0.5540],[0.5437,0.7485),[ 0.4487,0.5965,0.376197,0.445143,0.597579).

Step 6. Using Definition (1.1.1.16), we calculate the score values of the collective

NCNs z,(g=12,..,a).

SO(z,)=0.4022,50(z,) = 0.393352,50 z,) = 0.472717,50(z, ) = 0.4324.

Step 7. According to the score values, ranking order of the alternative is

ﬁs >ﬁ4 >ﬁ1 >ﬁz.
Hence using Theorem (1.1.1.17), the best alternative is M and the worst is M..

Similarly, by utilizing WNCPDMM operators, the Steps 1 to 4 are similar to the

WCNPMM operator.

Step 5. Utilize the WNCPDMM given in Equation (4.33)
2, =([25.20 L[ 2y Lrs 0y 1) (Arg g Arg ) =WNCPDMM® (203,251 244 ) (9 =1, 2,10, 4).
To get the overall NCNs z,(g=12,..,4) . Assume that, Q=(1111).

2, = ([0.2569,0.6239],[0.2929,0.5112],[0.2375,0.4571]),(0.7682,0.4666,0.3905);
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2, =([0.3642,0.8179],[0.3110,0.6479],[0.3194,0.5430] ), (0.7416,0.3336,0.5561);
2, =([0.4935,0.6438],[0.1794,0.3224],[0.2248,0.4812]),(0.6502,0.3206,0.2330);

2, =([0.4995,0.7691],[0.2570,0.5332],[0.2130,0.3815]),,(0.5355,0.2744,0.3248).

Step 6. Using Definition (1.1.1.16), we calculate the score values of the collective

NCNs z,(9=12,...,a).

SO(z,)=0.5881,50(z,) =0.5782,50 z, ) =0.6688,50 z, ) =0.6467.

Step 7. According to the score values, ranking order of the alternative is

ﬁ'a* >ﬁ4 >ﬁ1 >ﬁ2.
Hence using Theorem (1.1.1.17), the best alternatives is N:and the worst is N,.

4.3.2 Effect of the Parameter Q on the Decision Result.

In this subsection, different values to the parameter vector q and the results obtained
from these values are shown in Table 4.2 and Table 4.3. From Table 4.2 and Table

4.3, it can be seen that, when the parameter vector Q is (10,0,0), that is, when the
interrelationship among the attributes is not considered, then according to the score
values the best alternative is N. while the worst is N.. Similarly, when the parameter
vector Q is (110,0), that is, when WCNPMM operator and WNCPDMM operator
degenerate into NCPBM operator and NCPGBM operator respectively, the best
alternative is Nsand N while the worst for both cases is N.. When the parameter

vector Q is (1110), the best alternative is N.and the worst is N.. When the parameter
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vector Q is (1111), the best alternative is N.and the worst is .. Similarly, for other

values of the parameter vector the score values and ranking order vary. Thus, one can

select the value of the parameter vector according to the needs of the situations.

Table 4.2. Score values and ranking orders for different parameter values in

WCNPMM operator

Parameter Vector Score Values Ranking orders

Q

Q(1,0,0,0) S0(z,)=0.5671,50(z,) = 0.5230, Ns>Ni>Ns> No.
SO(z,) =0.5593,50 (2, ) = 0.6031.

Q(110,0) 50(2,)=0.4579,50 (2,) = 0.4468, N> Ne > Ni > No.
SO(z,)=0.5092,50(z, ) = 0.5027.

Q(1110) SO(z,)=0.4227,50(z,) = 0.4133, Ns>Ns>Ni> Na.
SO(z,) =0.4866,50(z, ) = 0.4607.

Q(111Y) SO(z,)=0.5881,50(z,) = 0.5782, Ns>Ns> Ny > Na.
SO(z,)=0.6688,S0(z,) = 0.6467.

Q(05,05,05,05) SO(z,)=0.3988,50(z,) = 0.3910, Na>Na>N:>No.
SO(z,) =0.4708,50(z, ) = 0.4306.

Q(S‘O‘O‘O) :O( z,)= 066088:(22)=O'6235' ﬁs >ﬁ4 >ﬁ1 >ﬁ2.

SO(z,)=0.6313,50(z,) = 0.6854.

Table4.3. Score values and ranking orders for different parameter values in

WCNPDMM operator

Parameter  Vector Score Values Ranking orders
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Q(10,0,0)

Q(110,0)

Q(1110)

Q(1111)

Q(05,05,05,05)

Q(5,0,0,0)

S0O(z,)=0.5588,50(z, ) = 0.5346,
SO(z,)=0.6040,50(z, ) = 0.6081.

SO
= —

SO(z,)=0.6688,50z, ) = 0.6467.

1)
8l

7
@]

S

w
8l 8l

|| v
8l 8l

S —

w
8l gl

(2,)=05881,50(z,)=0.5782,

50(z,)=0.5760,50(z,) = 0.5582,
SO(z,)=0.6478,50(z, ) = 0.6276.

(2,)=0.5881,50(z,) = 0.5782,
(2,)=0.6688,50(z, ) = 0.6467.

(2,)=0.5909,50(z,) = 0.5817,
(2,)=0.6741,50(z,) = 0.6488.

(2,)=0.4671,50(z,)=0.4073,
(2,)=0.4022,50(z, ) = 0.4559.

N4 >N1>N3 >N2.

ﬁ4 >ﬁ3 >ﬁ1>ﬁz.

N3 >N4 >N1>N2.

ﬁ3 >ﬁ4 >i1>ﬁz.

Ng >N4 >N1>N2.

ﬁl >ﬁ4 >ﬁz >ﬁ3.

4.3.3 Comparison with Existing Methods

To show the efficiency and advantages of the proposed method, we give a
comparative analysis. We exploit some existing methods to solve the same example
and examine the final results. We compare our method in this paper with the methods
developed by Qin et al.[74] based on weighted IFMSM operator, and the one
developed by Liu et al. [71] based generalized INPWA operator. We extend the
IFMSM operator method [74] for intuitionistic fuzzy information to neutrosophic
cubic Maclaurin symmetric mean operator. We also extend the GINPWA operator
[71] for interval neutrosophic information to generalized neutrosophic cubic power

average operator.
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The method developed by Qin et al. [74], is based on MSM operator, which is able to
consider the interrelationship among the attribute values, but unable to remove the
effect of awkward data. The MSM operator is a special case of the proposed
aggregation operator. Also the ranking result obtained using the method of Qin et al.

[74], is different from the one obtained using the proposed method.

Similarly, the method developed by Liu et al. [71], is based on power weighted
averaging operator, which can remove the effect of awkward data but cannot consider
the interrelationship among the attributes values. From Table 9.4, it can be seen that
the ranking result obtained using Liu et al. [71] is the same as the ranking order

obtained from the proposed method, when o(10,0,0). That is, when the

interrelationship between NCNs are not considered. This shows the validity of the

proposed approach. The ranking order is different whenqQ(1111). That is, when the

interrelationship among four attributes are considered, then the ranking order is
different. The main reason behind the different ranking results is due to the existing
aggregation operators, can only consider a single characteristic at a time while
aggregating the NCNs, meaning that they can only either consider interrelationship
among attributes or remove the effect of awkward data. Our proposed aggregation
operator, however, can consider two characteristics at a time. It has the ability to
consider the interrelationship among the attributes and also remove the effect of
awkward data. In fact, these existing aggregation operators can be regarded as special
cases to our proposed aggregation operator. Hence, our proposed aggregation operator

is more practical and flexible to be used in decision making problems.

Table 4.4. Score values and ranking orders for different parameter values in
WCNPDMM operator
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Aggregation operator Score Values Ranking orders

NCMSM operator  50(z)=0.6263,50(z,)=0.6153, N> Ns> Ny > Na.
SO(z,)=0.6355,50(z, ) = 0.6373.

[74]

GNCPWA  operator 50(z)=05694,50(z, )= 0.5266, Ni>Ni>Ns> Na.
SO(z,)=0.5646,50(z, ) = 0.6054.

[72]

Proposed WNCPMM  50(z)=05671,50(z,) = 0.5230, Ni>Ni>Ns> Na.

SO(z,)=0.5593,50(z, ) = 0.603L.
operator Q(1,0,0,0)

Proposed SO(z,)=0.5588,50 z,) = 0.5346, Ni>Ni>Ns> Na.

SO(z,) = 0.6040,50(z, ) = 0.608L.
WNCPDMM

operator Q(1,0,0,0)

Proposed WNCPMM  50(z,)=05881,50(z,) =0.5782, Nz>Ns>Ni>No.

(2,)=0.6688,50z, ) = 0.6467.

[%2)
gl 3l

operator Q(].,LL 1)

Proposed SO(z,)=05881,50(z,) = 0.5782, N2> Ns>Ni>No.

Zl
SO(z,)=0.6688,50(z, ) = 0.6467.

WNCPDMM

operator Q(1111)

4.3.4 Conclusion

In this chapter, we incorporate both the PA operator and MM operator to form a few
new aggregation operators to aggregate CNNs, such as, the CNPMM operator,
WCNPMM operator, CNPDMM operator and WCNPDMM operator. We discussed
several basic results and properties, along with a few special cases of the proposed

aggregation operators. In other words, the developed aggregation operators do not
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only consider the interrelationship among the NCNs, but also remove the influence of
too high or too low arguments in the final results. Based on these aggregation
operators, a novel approach to MADM problem is developed. Finally, a numerical

example is illustrated to prove the efficacy and realism of the proposed approach.

In future, we aim to enlarge the developed aggregation operators to deal with

intuitionistic fuzzy information [2], interval neutrosophic information [7], and others.
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Chapter 5

Application of Interval Neutrosophic Power Hamy Mean

Operators in MAGDM

In this chapter, we merge the conventional HM operator to the traditional PA
operator in interval neutrosophic settings and present the two novel interval
neutrosophic aggregation operators, that is, the interval neutrosophic power Hammy
mean (INPHM) operator and the weighted interval neutrosophic power Hammy mean
(WINPHM) operators. Then, some preferable characteristics of the developed
aggregation operators are discussed. Moreover, based on these introduced AOs, a
novel technique for MAGDM under the IN information. Lastly, some examples are
given to show the effectiveness of the developed method by comparing with other

existing methods.

5.1 Interval Neutrosophic Power Hamy Mean Aggregation

Operators

5.1.1The Interval Neutrosophic Power Hamy Mean Operator

In this subpart, we develop interval neutrosophic Hamy mean operator and discussed

it related properties, and results.
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5.1.1.1 Definition

parameter k =12,..,0. Then an interval neutrosophic power HM aggregation operator

is a function INPHM : ®° — @defined as follows.

INPHM © (1, 1,

...... hy)= (Ej , (5.1)

0

Where © is the set of all INNs, and mezw,and i@azl. T(n;)=> Supp(h,.h;)is
2(+7(n)) &

e=1

the support degree for », from 7, which satisfy the following characteristics:

1) sup(n,.h;)<[01],

2) sup(n,.n;)=Sup(n;.h,),

3) ifB(he,hj)sB(hx,hy),then sup(h,,h;)>Sup(h,.h,), Where B(hz,hj)represent the
distance measure between any two INNs defined in Definition (1.1.1.13), (r,,1,.....%,)

traversals all the k-tuple combination of (12...0). The denominator (Ej in the above

Equation (5.1) represents the binomial coefficient k'(o°7ik)l and ois the balancing

coefficient.

In order to write Equation (5.1) in a simple form, we can define
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D, :M, (5.2)
2 (1T (n.))

c=1

Then we call (®,,@,....®,)as the power weight vector. Therefore, the simplified form

Equation (5.1) is as follows:

1
K k
E | |o<I>,hr
il
ISn<p<.<f<o\  j=1

INPHM Y (B, iy, By ) = : (5.3)

(L’

51.1.2 Theorem

parameter k=12..,0. Then the value aggregated utilizing Equation (5.3) is still an

INN, and
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Therefore,

Now, we shall discuss some basic properties of INPHM operator, which are stated

below:

5.1.1.3 Theorem (Idempotency)

Ifall n, =n=(="2"] ¥ w ][ ])for (r=12..0), then

INPHM " (1, ..., i) = . (5.5)
Proof. Since, all n, =n=([2"2" ][9] [x" ' ])for(r=12..0), then
14T (h
oq)szwzl'
2 (14T (1,))

c=1

So, according to Theorem (5.1.1.2), we have
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e (h,h"“,h) ) < 1_{1sr1<r211<rks0[1_((5|_)k )i ]JE) ,1_{1sr1<r211<rk30[1_((EU )k )iJ (g]’

{[1--2)a- (-2 ) [ ). -l ) [ 1)) o)
ERSIIN)

5.1.14 Theorem (Commutativity)

Let 7, (r=12,..,0) be a group of INNs, and % be any permutation of #,. Then
INPHM Y (1, ..., ) = INPHM ) (B, .. o). (5.6)

Proof. Since, (hl,hz,...,h[;)is any permutation of (,.h,,...h,), therefore, according to

Definition (5.1.1.1), it is obvious that

 o(L+T (s )) '
Z 11_! 1+T(h))}

INPHM ) (hl,hz,....,ho)z
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= INPHM Y (i, 7y, 1ty ).
5.1.1.5 Theorem (Boundedness)

Let h(i=12,..,0) be a group of INNS, and

i =min(hhy,.hg) = (252 ][990 L)) A = max (B, By, ) = <[EL,EU }

[LI’L,‘I’U][YL,YU}. Then, the INPHM operator lies:

W~ < INPHM (hy,hiy, s hy ) <. (5.7)

Proof. Since

So,
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Therefore,
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Hence 7~ <INPHM (A, k... 1, )< K",
In what follows, we shall discuss some special cases of INPHM operators with respect
to the parameter k , which were stated below.

1. When k =1,the INPHM operator in Equation (5.4), will degenerate to the following

form:

{( rol (x)™ ]i ( ,01 (x)™ ﬂ>,(|et L=r) (5.8)

:%Zodbrhr = INPA(hy 7y 1)
r=1
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i.e., when k=1, the INPHM operator degenerates into power averaging operator

proposed by Liu [71].

2. When k = o, then the INPHM operator degenerates into the following form:

INPHM ) (1), By, ..y ) =

(5.9)

Further, if we suppose that sup(n,.n;)=pfor all i»j, then oo, - 2(1”(71“)) -1, and Equation
>aeT(n)

(5.4) can further degenerate into the following form.

<{[JH<E I [HFUIH {fen (e )ﬂ
MH“ ) ({1 Y‘é)ﬂ>.

(5.10)
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That is, Equation (5.4) degenerates into ING operator.

In the INPHM operator, we can notice that only the interrelation among inputs
arguments and the power weight vector are taken into consideration, the weight vector
of the aggregated arguments is ignored. However, in some situation, the importance
degree of the attributes is an important factor in the aggregation process, especially, in
MAGDM. So in order to overcome this deficiency, the weighted form of the INPHM

operator is defined as follows.

5.1.1.6 Definition

parameter k=1,2,...,0. Then a weighted interval neutrosophic power HM operator is a

function WINPHM : ®° — ®defined as follows.

WINPHM ¥ (7, 7y ..o 1ty ) = . : (5.11)
o

h o
Where @ is the set of all INNs, and o, =Owr(1+—T(r)), T(hj):ZSup(hc,hj)is the support

> o, (1+T (1)) o

c=1
degree for A, from 7, which satisfies the following properties; 1) sup(n,.n;)<[0,1],2)
sup(hg.h;)=Sup(h;.n,).3) B(hc,hj)sg(hx,hy),then sup(#,.h;)=Sup(h,,n,), Where

D(hc,hj)represents the distance measure between any two INNs defined in Definition

(1.1.1.13), @ =(@,,@,,...@,) is the weight vector of #7,(r=12..,0) such that

@, €[01]and Y @, =1. (r,r,....x,) traversals all the k-tuple combination of (12..,0). The

r=1
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denominator [E) in the above Equation (5.11) represents the binomial coefficient,

o!

and o are the balancing coefficients.
kl(o—k)!

5.1.1.7 Theorem

parameter k=12,..,0. Then, the value aggregated utilizing Equation (5.11) is still an

INN, and

WINPHM Y (i, 7,001, ) =

e bieen)]
| k % ﬁ k x ﬁ (5.12)
e f L b

b

-

==

N—e

N—e
=o

Proof. Proof of this theorem is same as Theorem (5.1.1.2).
5.1.1.8 Theorem (ldempotency)
Ifall n, =n=(="2"] ¥ % ][y )for (r=12..,0), then
WINPHM ) (1, h,..., ) = . (5.13)
5.1.1.9 Theorem (Commutativity)

Let #,(r=12,..,0) be a group of INNs, and 7. be any permutation of #,. Then,
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WINPHM ¥ (7, 7y,... 11, ) =WINPHM ) (71, 7z, .., o). (5.14)

5.1.1.10 Theorem (Boundedness).

Let h.(r=12,..,0) be a group of INNSs, and

no=min (i, hy,hg) = (2520 ][00 00 0000 ) 00 = max (i, 7y ho):<[EL,EU][‘PL,‘I’UJ,[YL,YUD.

Then, the INPHM operator lies:
H~ <WINPHM (A, iy, iy ) S . (5.15)

The proofs of the above theorems are same as the proofs of the theorems for INPHM

operator, therefore omitted here.

5.2 MAGDM Approach Based on Developed WINPHM Operator

In this part, we will utilize the developed WINPHM operator to deal with MAGDM

problem with the data presented in the form of INNs. Let the set of m alternatives be

denoted by ﬁ:{ﬁl,ﬁz,...,ﬁ }and the group of nattributes be denoted by 0 = {51 Oo..., Sn}
, the importance degree of nattributes be @=(w,,,...@,), such that

e[0,1],j=12,..,n, Zzu =1. There is a set of zexperts expressed by e={e,e,,....e,}

j=1

who are asked to provide the assessment information, and the importance degree of

the experts is expressed by v =(y;,w,,...v,)", such that v, €[0,1],(a=1,2,.. Zy/a =1

The expert e, assesses every attribute o) jof every alternative ﬁi by the form of INN

n :<[5§L a.a_UM\P;L,\p;U][r;ﬂr;ﬂ) (i=12,..,m12,.,n), then the decision matrices

ij ! 1
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DM. =(h?j)(a=1,2 ..... z)is established. The subsequent purpose is to execute a ranking

of all alternatives.

Then, in order to solve this problem, we will execute the following steps:
Step 1. Firstly, the given decision matrices DM. =(#;) should be transformed into

standardized decision matrices SDM. =(7;) . We change the cost-type attribute into

benefit-type attribute using the following formula.

1 = <[E;‘LEEU st ot ]> for benefit ~ type attribute O

h; _Ji=L2,..,mj=12,.,n _ (5.16)
() = <[Y§L,Y§” [ -t B E ]> for benefit — typeattribute O,

]

i=12,..,mj=12..n

Step 2. Determine the supports

Supp (75, 1y ) =1-D(h, 75 ), (c.,d =1,2....,2), (5.17)

which fulfils the required axioms given in Definition (5.1.1.1), and B(h;,h?j)

represents the distance measure given in Definition (1.1.1.13).
Step 3. Determine the supports T (5 ) of the INN 7 by other 7§ (d =12,..,zandc=d),

T(n5)= ZZ: waSupp (1§ Jic,d =1,2,.2;i =1,2,..,m, j=1.2,...,n. (5.18)

d=1;c=d
Then use the importance degrees v, (¢=12,..,z) of the DMs e, (a=12,..,z)to calculate

the importance degrees

al® =M;c=l,2,...,z;i =12,..m, j=12,..n. (5.19)

: iy/d (1+T(h?j))
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Where @, >0and » @ =1.
c=1

Step 4. Utilize the WINPHM operator expressed by (5.12)

hy =WSVNPHM " (n, 1., n ) =

Lo biensr oL eesr]|
: e k Y (5.20)

el o e

bt fla i)

to aggregate all the decision matrices DM.=(x}) (a=12..,z)given by the DMs into

the comprehensive decision matrix cb™m =(#,) .

Step 5. Determine the supports:

Supp (7,7 ) =1—-D (B, 1y ), i =1,2,...,m;q =1,2,...,n. (5.21)
which fulfils the required axioms given in Definition (5.1.1.1), and B(hij,hiq)
represents the distance measure given in Definition (1.1.1.13).

Step 6. Determine the supports T (n,)of the INN hy(i=12,.,m;j=12,..,n)by the
importance degrees o, of the attributes 0;and the importance degrees ¢, that are

associated with the INN 7; by the importance degree «; of the attributes 8,-.

T ()= ZZ: _a)jSupp(hij g )ii=12,.m, j,q=12,...n. (5.22)

q=Lg#]
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o, (1+T (ny))

$y=———"7i=12,..mj=12..n (5.23)

J_Z:;,“’j (27 (ny ))
Where 4, >0and ZZ:¢“. =1.

Step 7. Utilize the WINPHM operator (Equation (5.12))

h; =WSVNPHM " (1, 1y, By, ) =

Lot s ol e
e L i
D et

to get the comprehensive evaluation value.

(5.24)

Step 8. Determine the score and accuracy value of each INN 7, (r=12,..,n) using

Definition (1.1.1.11).

Step 9. Rank all the alternatives and select the best one using Definition (1.1.1.12).

5.3 Numerical Example

In this part, two numerical examples will be provided to show the application and
advantages of proposed approach. The first example is about the selection of

emerging technology enterprises (ETES), cited from [112].
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5.3.1 An illustrative example

Let us assume that there are five ETEs represented by ﬁi(i =1,2,3,4,5), which are
selected. These five ETEs are evaluated with respect to the following four attributes
0;(1,2,3,4), Which are (1) O:: the employment formation, (2) O.: the progress of
science and technology, (3) 83: technical improvement, (4) 34: the industrialization
configuration. There are three expertse,(a=12,3) with importance degree
(0.25,0.4,0.35)", who evaluate the five ETEs with respect to the four attributes with
importance degree (0.15,0.2,0.25,0.4)", and provide their information in the form of

INNSs, which are listed in Tables 5.1-5.3.

In the following, we need to select the best alternatives. The précised steps are

illustrated as follows:

Step 1. Normalize the decision matrices using Equation (5.16). Since all the attributes
are of benefit type so there is no need to normalize it.
Step 2. Determine the supports Supp(#;, 45 )(i=12....5,j=12,3,4,c,d =1,2,3,c=d) using

Equation (5.17). In order to define the supports between #jand &, we denote

ij1

(Supp(hfj,h?j ))M as Supp'™, which are given as follows:
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Table 5.1. The decision matrix e,

O

O

Os

Os4

([0.3,0.4],[0.6,0.7],[0.30.5])

([05,0.7],[0.6,0.8],[0.2,0.4])

([0.4,05],[0.5,0.6],[0.20.3])

([0.6,0.7],[0.20.3],[0.1,0.2])

([0.40.5],[0.2,0.3],[0.2,0.3])

([0.4,0.5],[0.2,0.3],[0.1,0.2])

([05,0.6],[0.3,0.5],[0.2,0.3])

([0.304],[0.5,06],[0.1,0.2])

([0.405],[0.1,0.2],[0.2,0.3])

([0.2,0.3],[0.6,0.7],[0.2,0.3])

([01,0.2],[0.4,05],[0.1,0.2])

([05,0.7],[0.4,0.6],[0.2,0.3])

([0.30.4],[0.1,0.2],[0.2,0.3])

([0.405],[0.2,0.3],[0.1,0.2])

([05,0.6],[0.4,05],[0.2,0.3])

([0.3,0.4],[0.5,06],[0.2,0.3])

([0.6,0.7],[0.3,0.4],[0.2,0.3])

([0.405],[0.1,0.2],[0.3,0.4])

([0.3,04],[0.4,05],[0.20.3])

([0.3,0.4],[0.6,0.7],[0.3,04])

Table 5.2. The decision matrix e,

O

0.

Os

O,

([0.4,0.6],[0.5,0.7],[0.3,0.4])

([06,0.9],[0.4,05],[0.3,0.4])

([0.8,09],[0.8,09],[0.4,05])

([06,0.7],[0.3,0.4],[0.5,0.6])

([0.405],[0.6,0.7],[0.6,0.7])

([0.6,0.7],[0.5,0.6],[0.5,0.6])

([0.7,0.8],[0.6,0.7],[0.4,05])

([0.7,08],[0.5,0.6],[0.5,0.6])

([0.8,0.9],[0.5,0.6],[0.6,0.7])

([0.6,0.7],[0.3,0.4],[0.3,0.4])

([05,0.6],[0.4,05],[0.3,0.4])

([0.7,0.8].[0.30.4],[0.3,0.4])

([0.7,08],[0.1,0.2],[0.3,0.4])

([05,0.6],[0.2,0.3],[0.4,0.5])

([0.9.1],[0.4,0.5],[0.3,0.4])

([06,0.7],[0.4,0.5],[0.3,04])

([0.80.9],[0.4,0.5],[0.3,0.4])

([0.8,09],[0.5,0.6],[0.2,0.3])

([05,0.6],[0.7,0.9],[0.3,0.4])

([0.7,08],[0.8,09],[0.1,0.2])

Table 5.3. The decision matrix e,

O

0O

Os

O.

([0.7,08],[0.4,05],[0.405])

([0.6,0.7],[0.5,0.6],[0.4,0.5])

([0.7,08],[0.3,0.4],[0.5,0.6])

([0.7,08],[0.4,05],[0.6,0.7])

([0.7.0.8],[0.3,04],[0.60.7])

([0.7,0.8],[0.6,0.7],[0.5,0.6])

([0.8,09],[0.2,0.4],[0.6,0.7])

([0.6,09],[0.1,0.2],[0.7,0.8])

([0.6,0.7],[0.3,0.4],[0.4,05])

([0.8,0.9],[0.2,0.3],[0.7,0.8])

([0.8,09],[0.2,0.4],[0.4,05])

([0.6,0.7],[0.1,0.2],[0.5,0.6])

([0.5,06],[0.4,05],[0.4,05])

([06,0.7],[0.3,0.4],[0.4,0.6])

([0.9.1],[0.1,0.2],[0.5,0.6])

([0.6,0.7],[0.3,0.4],[0.4,05])
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([06,0.7],[0.7,0.8],[0.2,0.3])

([0.7,0.8],[0.3,05],[0.4,0.5])

([0.7,0.9].[0.3,0.4],[0.4,0.5])

([0.8,0.9],[0.5,0.6],[0.5,0.6])

Ns
0.9167 0.7 0.8 0.8333 0.7833 0.7 0.7 0.8333
0.85 0.7833 0.867 0.8667 0.8833 0.75 0.6667 0.9167
Supp” =Supp®=| 0.7 07333 0.8333 0.7 | Supp®=Supp® =|0.7333 0.5833 0.7167 0.7667
0.8333 0.6 0.867 0.7833 0.7333 0.7333 0.7667 0.8
0.7333 0.7333 0.8333 0.7333 0.7667 0.6833 0.8167 0.7333
0.8333 0.8667 0.9 0.9333
0.9 0.9667 0.8 0.85
Supp® = Supp® =| 0.7667 0.85  0.8833 0.7333
0.9 0.8 0.9 0.7833
0.7667 0.9167 0.8833 0.7333

Step 3. Determine the weighted supports T(n5)of INN #; by other INNs
hj(d=123andc=d)by utilizing Equation (5.18), and determine the weight
o (i=12345j=1234,c=123) Of INN 7§ (i=-12345j=1234c=123) by utilizing Equation
(5.19). In order to represent (T(h?j))sx4

as Tc(c=123)and (=) as U, (c=123),

which are given as follows:

0.6408 0.525 0.565 0.625 0.5208 0.4783 0.515 0.535
0.6492 0.5758 0.58 0.6675 0.5275 0.5342 0.4967 0.5142
T:1=[0.5367 0.4975 0.5842 0.5483|; T2=]0.4433 0.4808 0.5175 0.4317|;
0.59 0.4967 0.615 0.5933 0.5233 0.43 0.5317 0.47
0.5617 0.5325 0.6192 0.55 0.4517 0.5042 0.5175 0.44
0.5292 0.5217 0.535 0.5817
0.5808 0.5742 0.4867 0.5692
Ts:=[0.49 0.4858 0.5325 0.485
0.5433 0.5033 0.5517 0.5133
0.4983 0.5375 0.5575 0.4767
0.2640 0.2533 0.2550 0.2581 0.3915 0.3929 0.3949 0.3901
0.26151 0.2528 0.2609 0.2652 0.3875 0.3937 0.3954 0.3853
U,=|02591 0.2518 0.2573 0.2616|; U, =[0.3893 0.3984 0.3943 0.3871 |,
0.2570 0.2541 0.2589 0.2628 0.3939 0.3885 0.3928 0.3879
0.2611 0.2516 0.2600 0.2618 0.3883 0.3951 0.3898 0.3891
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0.3445 0.3538 0.3501 0.3517
0.3509 0.3535 0.3437 0.3494
U,=|0.3517 0.3498 0.3484 0.3513
0.3492 0.3574 0.3482 0.3494
0.3507 0.3534 0.3501 0.3491

Step 4. Utilize the WINPHM operator (Equation (5.20)) to get the overall decision

matrix (and assume that k =2 ), which are given in Table 5.4.

Table 5.4. The overall decision matrix CDM

O} 0. O O

N

N

N

Ns

Ns

T ([0.4482,0.5903],[0.5066,0.6434],[0.3399,0.47 ([0.5577,0.6593],[0.3391,0.4442] [0.4088,0.523 ([0.3662,0.4810],[0.3740,0.4734],[0.2646,0.372 ([0.4553,0.5563],[0.4397,0.5387] [0.3044,0.4067
1

[0.5608,0.7529],[0.5077,0.6470],[0.3039,0.43 ([0.6251,0.7255],[0.5132,0.6455),[0.3726,0.477. ([0.6603,0.7947],[0.3067,0.4417],[0.4156,0.529 {[0.6553,0.7538],[0.3382,0.4386],[0.3034,0.4425

{[0.6234,0.7285),[0.5705,0.6868],[0.3717,0.47 ([0.5913,0.7040],[0.4143,0.5437,[0.4088,0.523 ({[0.5914,0.7042],[0.1392,0.2745,[0.3048,0.407 {[0.7040,0.8332],[0.2277,0.3427],[0.3462,0.447"
3

([0.6264,0.7261],[0.3048,0.4071], [0.4087,0.52; ([0.5848,0.7756],[0.2294,0.3443],[0.5230,0.636 ([0.4928,0.5928],[0.1731,0.2735],[0.3336,0.4441([0.4567,0.5586],[0.4874,0.6544],[0.3038,0.4061

([0.4574,0.5579],[0.5225,0.6354],[0.3428,0.4 ([0.4810,0.5912],[0.4091,0.5453],[0.3055,0.407: ([0.6863,0.8395],[0.3731,0.4727],[0.3042,0.406! [0.5914,0.7041],[0.6535,0.7623],[0.3205,0.4214

Step 5. Determine the supports Supp(n;,h,)(i=12,.5 j=12.,4q=12,..,4) by using
Equation (5.21). For simplicity, Supp(%,,,)_is denoted by supp,to define the

5x;

supports among the jth and qgth column of CDM .
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Supp,, = Supp,, =| 0.9267 |, Supp,; = Supp;, =

Supp,; = Supp, =| 0.8862 |, Supp,, = Supp,, =

0.8894
0.9659

0.9239

0.9428 |
[0.8909]
0.8969

0.8582
0.9016 |

0.8883 0.9475
0.8752 0.9206
0.8273 |, Supp,, = Supp,, =| 0.8456 |,
0.8857 0.8352
0.8487 0.9013
0.8965 0.9384
0.9093 0.9534
0.8720 |, Supp,, = Supp,, =| 0.9200 |.
0.7729 0.8611
0.8811 0.8614

Step 6. Determine the weighted supports T(hij)of INN &, by utilizing Equation

(5.22) and determine the weighs ¢, (j=12,34)0f the INNs &, by utilizing Equation

(5.23). For computational clarity, we denote (T (, ))5 ,as Tand (). ,as U, which

are given as follows:

0.7790
0.7802
T =|0.7304
0.7403
0.7613

0.7147 0.6868
0.7328 0.6920
0.7094 0.6693
0.6623 0.6489
0.7193 0.6522

0.5560
0.5583

0.1613 0.2074 0.2550
0.1609 0.2088 0.2548

0.5312 |,U =| 0.1591 0.2096 0.2558

0.4951
0.5268

0.1628 0.2073 0.2570
0.1619 0.2107 0.2531

0.3763
0.3755
0.3755
0.3729
0.3743

Step 7. Using the WINPHM operator in Equation (5.24), to aggregate all the

execution values 7, (j=12,34)in the ithline of cDMand get the comprehensive

execution values N; (i=12,.,5) (assume that k =2).

N: = ([0.4401,0.5531],[0.4305,0.5385],[0.3498,0.4614]) ;

N2 =([0.6068,0.7359],[0.4345,0.5587],[0.3712,0.4904] );

Ns =([0.6045,0.7137],[0.3484,0.4767],[0.3774,0.4805] );

N =([0.5221,0.6468],[0.3153,0.4443],[0.4129,0.5198]);

Ns =([0.5221,0.6468],[0.5101,0.6262], [0.3373,0.4390]).
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Step 8. Determine the score values of Ni (i=12,..,5) by using Definition (1.1.1.11), we

have

%(Nl) _ 160655(@ ) =17439§(ﬁg)=18176§(ﬁ4)=17383,§(ﬁ5)=16281.

Then the alternatives can be arranged in decreasing order according to their score

values:
Ns >N2 >N4 >N5 >ﬁ1.

Step 9. Based on Definition (1.1.1.12), and the best ETEs is Nswhile the worst one is

Ni.
5.3.2 Effect of the parameter k

In this subsection, we take different values of the parameter k in the WINPHM
operator to observe the ranking results, hence we can determine the score values
produced for different values of the parameter k, and the ranking results are given in

Table 5.5.

Table 5.5. Scores and ranking of the alternatives for different parameter values

=~

Score values O, Ranking order

k=1 ?(E):lmz,s (ﬁz)219127,§(ﬁ3):2.1819, Ns>Ns>Ns>Nae>Ni,

s:(ﬁ4):19061,§(ﬁs):19670.

k=2 50(N.:|=160655 ﬁz)=l7439,§(ﬁ3):18176, Ns >Nz > Ne>Ns > N,

S (ﬁ4):17383,§

—_— =

ﬁs):lezsl.

k=3 %(Nl)zz.wm,s (Nz):2.9816,§(ﬁ3):2.9869, Ns>Ns>N>>Ni > Ns.

SO ( N4 ) =2.9854,S

(ﬁs):2.9773.
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From Table 5, we can see that when the value of the parameter k =1, the ranking

order are slightly different, but the best and worst alternative remain the same as for

k=2 k=3

the parameter value When the value of the parameter , then the ranking

k=12

order are different from the ones obtained for the parameter value . The best

k=12

choice remains the same, but the worst alternative is changed. That is, for the

worst alternative is Ns, while for k=3 the worst alternative is Ns, these results are
reasonable, as we can consider the interrelationship for different number of attributes,
when k=1, we don’t consider the interrelationship of the attributes; when k=2, we can
take into account the interrelationship between any two attributes, and when k=3, we
consider the interrelationship among any three attributes. These results show that the

proposed AO is more flexible and practical.
5.3.3 Comparison with Other Approaches

In the following, we will utilize the other two approaches to solve the same example,
and compare and examine the decision results obtained by these methods. The first
approach is based on INBM operator proposed by Ji et al. [113], and the second
approach is based on INPWA operator proposed by Liu et al. [71]. The score values

and ranking order on these different approaches are shown in Table 5.6.

Table 5.6. Score values and ranking order of different approaches

Approach Score values of Ranking order

Based on INWBM operator (55 )_ 0.2004,80(?2)20.2326,§(ﬁ3)20.2633, Ns>N>>Ns>Ns> Ny
p=qg=1)byJietal [113] = (ﬁ )_0 2905
5|—VU. .

Based on INWPA operator (1 =1 55(N,|-17623, (ﬁz):19254,§(ﬁ3):2.1943, Ns>Ns>Nz>Ns>Nu.

) by Liuetal. [71] so(N. =18964,%(ﬁ5)=19794.

165



Base on the proposed operator in

this article (k =2)

Base on the proposed operator in

this article (k=1)

16065 :O(ﬁz

e
R) 17383 :o(ﬁs) 16281.
ﬁl) 17512 :o(ﬁz)

)

R)zlgoel :o(ﬁs =19670.

=l7439,§(ﬁ3):l8176,

=19127,§(ﬁ3)=2.1819,

ﬁe, >ﬁ2 >ﬁ4 >ﬁ5 >ﬁ1.

ﬁa >ﬁ5 >ﬁ2 >ﬁ4 >ﬁj

From Table 5.6, we can observe that when the value of the parameter gets k =1,

there are the same ranking results of our method in this paper with the method in Liu

et al. [71], while when the value of the parameter gets k =2, we get the same ranking

results of our method in this paper with Ji et al” method [113]. However, they are

different in ranking results from the methods [71] and [113]. We think these results

are reasonable and can explain them as follows.

(1) When k=1, our method proposed in this paper can reduce into PA operator for

INNs, and it is similar to method in [71], so these two methods produced the

same ranking results. Obviously, this can explain the validity of our proposed

method.

(2) When k=2, our method proposed in this paper can reduce into BM operator for

INNs, and it is similar to method in [113], so these two methods produced the

same ranking results. Obviously, this can further explain the validity of our

proposed method.

(3) There are the deferent ranking results of our method when k=1 and method in

[71] with our method when k=2 and method in [113], and the reason is that our

method when k=1 and method in [71] cannot consider the interrelationship of

the attributes while our method when k=2 and method in [113] can do.
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Further, we can compare the existing two methods [113] and [71] with our method

in this paper as follows.

(1) Ji et al. [113] developed the method based on INWBM operator, and the
developed aggregation operators only consider the interrelationship between two
attributes and cannot eliminate the effect of awkward data. While the proposed
aggregation operator has the properties that it can consider the interrelationship

among more than two attributes (k =2) or doesn’t consider the interrelationship of the

attributes (when k=1), and also remove the effect of awkward data. Obviously, our

method is more flexible and practical then the method in [8].

(2) Liu et al. [71] developed the method based on INPWA operator. The developed
operator can only eliminate the effect of awkward data given by the DMs and cannot
consider the correlation among attributes. Obviously, our method is also more flexible

and practical then the method in [71].

In practical MAGDM or MADM problems, our proposed approach is superior to

the existing two approaches.

5.3.4 Conclusion

The HM operator is an aggregation tool that can consider the interrelationship
between multiple input parameters, and the PA operator has the property that it can
reduce the potency of awkward assessment values in the decision consequences. The
INSs are a more powerful tool to handle uncertain information that exists in real life
problems. Therefore, for some complex decision-making situations in this article, we
combine the conventional HM operator to the traditional PA operator in interval
neutrosophic settings and present the two novel interval neutrosophic aggregation
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operators, that is, the interval neutrosophic power Hammy mean (INPHM) operator
and the weighted interval neutrosophic power Hammy mean (WINPHM) operators.
Then, some preferable properties and special cases of the developed aggregation
operators are discussed. Moreover, based on these developed aggregation operators,
we propose a new method to MAGDM. Lastly, the developed approach is applied to
some practical problems and shows that the proposed aggregation operators are better
and flexible then some existing aggregation operators. The other feature of the
developed aggregation operator is generalization of some existing aggregation

operators.
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Chapter 6

Multi-attribute Decision Making Method Based Interval

Neutrosophic Dombi Power Bonferroni Mean Operator

In this chapter, firstly, we describe some operational laws for INNs over Dombi
TN and TCN and examined numerous enviable properties of these newly developed
operational laws. Secondly, we enlarged PBM operator over Dombi operations to
develop INDPBM operator, INWDPBM operator, INDPGBM operator, INWDPGBM
operator and discussed some properties of these aggregation operators. Then, we
develop a MADM method over these aggregation operators to deal with IN
information. Lastly, an illustrative example is demonstrated to show the effectiveness

and practicality of the developed MADM method.

6.1 Some operations of INSs based on Dombi TN and TCN

6.1.1 Dombi TN and TCN
Dombi operations consist of the Dombi sum and Dombi product.
6.1.1.1 Definition [96]

Let wand &be any two real number. Then, the Dombi TN and TCN among Jand N

are explain as follows:

INASE

; (6.1)




; (6.2)

Where y >1,and (v,&)€[0,1]%[0,1].

According to the Dombi TN and TCN, we develop few operational rules for INNSs.
6.1.1.2 Definition

Letn=([="2" |,[ w5 |y 0 ]),n = (=52 |, [wh, ) ][5, ) and

n, =<[E;,Eg],[‘P;,‘F;’],[Yg,n’]) be any INNs and 2 >0. Then, the operational rules

based on Dombi TN and TCN for INNs are expressed as follows;

D ®h,=( |1- -

. | (6.3)
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(2, ®n, =

1 1
1-2-Y) (1-=5Y ) 1-2YY (1-=Y )
L =1 =2 =1 =2 ]
1 1
1- 1-
1! 1
Ly VA2 u oY u Y )
i 1-W! 1-yp! 1-y - ) | |
1- 1 1

i | (6.4)

@An={ |1- 1-

— ] I ! (6.5)

1 1 1 1

a2 Ni (6.6)
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6.2 The INPBM operator based on Dombi TN and Dombi TCN

In this part, based on the Dombi operational laws for INNs, we combine PA operator
and BM to introduced INDPBM, INWDPBM, INDPGBM, and INWDPGBM and

discussed some related properties.

6.2.1 The INDPBM operator and INWDPBM operator

In this subpart, based on the Dombi operational laws for INNs, we combine PA
operator and BM to introduced INDPBM, INWDPBM and discussed some related

properties.

6.2.1.1 Definition

T
9 h g+h

s 1+T(h,
INDPBM ™ (y, Bty ..ty ) = 21 ® Mﬁ b Mfz] . (6.7)
S8 @eT(ny) D(L+T(n,))

Then, INDPBM*Y is said to be IN Dombi power Bonferroni mean (INDPBM)

S

operator, where T(h )= @ sup(h,h,). Sup(h,h,) is the SPD for &, from &,

f=1,f=a

which must assures the following characteristics: (1) Sup(#,.%,)<[01]; (2)
sup(h,.hy)=Sup(hy.h,);(3)  Sup(h,.h,)2Sup(he,hy), if D(h,h)<D(hh,), in
which B(hc,hb)is the distance measure among INNs 7, and 7, defined in Definition

(1.1.1.13).

In order to simplify Equation (6.7), we can define
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o, - LT(R)) 6.:8)

@ (1+T(n,))

z=1

and call o=(o,®,,..,0,) is the power weight vector (PWV), such that

®, >0, (—iBl(Da =1. Then, the simplified form of Equation (6.7) can be written as follows:

1
g+h
INDPBM °" (i, hiy, .0y, ) = Szl_su?ll(vq’uhu)g®D(V‘Djhj)h . (6.9)
u#j

6.2.1.2 Theorem

Letn, =([=52) ][ wh vy | [Y5ry]).w=12..5), be a group of INNs. Then, the result obtained

utilizing Eq. (6.7), is expressed as;

INDPBM ™Y (hy,hy,..... 1ty

1
-
g h s°-s S
+ ‘, 1- 1+ x Z
o [TY 1-whY g+h e
SO | Ty SO, ¥ “i
2 _ s
1- 14223 Y
g+h e 1-Y
b
u

(6.10)

Proof: Since
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Sq)uhu = 1- T 1= T | 1 1= 1
=t YV =u V) _wtY ) gy Y )
1+{s®;| —2. 1+| s®, | —25 1+ s®, L T“ 1+| s@, L Ej“
1-& 1-% : Y
1 1
Tl | )
_yrY )y _yuyY )y
YLI YLI
and
Sq)jhj = 1- ! 1= : 1| : il ! 1
[:L an =u V) —gtY ) Y )
1+| sd, “’_L] 1+ scb.[ “"_U] 1+ stb.[ L’] 1+ stb.[ Ujj
! 1-5; ! 1-5; ! ¥; ! ;
1 1

= =Y 1-9t 1-gY 1-Yt 1-yY oh
And Iet all = - ’bu = : ’Cu a ’dLI = ‘ 'gu = 2 1hu = 4 1a' = ! 1]
15T = yt 3o Yt WO TIIE
=Y 1-¢t 1-pY 1-Yt 1-YY
bj=—to,c, =" ,d =—7r,9,=—— ,h == Then, we have
1-2 ¢ P Y T
1 1 1 1 1 1
s®, i, =( |1~ — - — —, — —, — )
1+(s®,)7a,  1+(s®,)rb, | |1+(s®,) ¢, 1+(s®,) d, |[1+(sD,)r g, 1+(s®,)rh,
ey ={ 1= 11’1_ 11 ' 11' 1; ’ 11 ' 11
1+(s®; ) a 1+(sc1>j)ybj 1+(sd)j)ycj 1+(sd)j)7dj_ 1+(sd)j)‘/gj 1+(sd)j)‘/hj
and
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(S(Duhu)q =

(sd)jhj)yz

1 1 L .
’ ~ ; ! 1t L 1 1= 1 1
‘1+gy/(sq)“)';a“ 1+g’v/(5‘1’u)?bu 1+gy/(sq:>u):7cu 1+gr/(s¢>u):7du
! 1
1-— T 1
L l+gy/(sq)u); M ].+gy/(5(])u);hu
1 L I . N 1

1-

1

1+h;/(sq>1)

1

L
7
a]

— .
1+ hf//(scbl)? b,

1

sy

1+h”

-
9;

B 1
1+h’/(s¢>j)? h,

L 1
1+ hV/(scDJ); ,

Moreover, we have

(50,1, )" ®, (sd,,)'

! 1

1

1

1+ h;/(scbl)%dJ

1

1+(g/s0,2; +1/s® aj )/

1

’1+(g/s®ub§ + h/S(Djbj’)%

1=

1

1= 1

1

1+(g/s0,9] +h/s®,g7 )
and

i(scbuhu)g ®p (sd)jhj)h

1+ 1

1+(0/s0,1; +h/s0 )

1

5‘/],:1 1+(g/s<1>uaq +h/s¢jalr

1+ 1

1—
)i/( 1+(g/s0,8; /s )

1

St 1+(g/s<DubJ +h/sd b7

)i/[l1+(g/s¢‘ub‘f+h/5q>jb]?)iﬂ

175

<l

1+(g/s<bucj +h/scpjcjy)?

Td-

L+(0/50,0; +h/s® d; )



1+

1+ 1-

|| -1+ ! /|-
W 1+(g/s®,¢] +h/s ¢} ) 1+

1
(g/sd)ic;"+h/s<Dch)iH

1

it 1+(g/s®,d; +h/s® d7 )3

1-

1+(g/s0,d] +h/s<1>,d;),%

1

i 1+(g/s®,9] +h/s0 g} )7

1+

1+(g/s®ugj+h/s¢tlgf)r%

/
/ /
/

1=

S g h
1+ +
;1/(&1) d;  s®,df

|
/

! 1
1
1+(g/sd ] +h/sd b7 ) 1+

Tl

7
s®,a;

: 9
1-171
g
u%j

1
g/s® h7 +h/vd . h! l
17

: 9
1+ +
Sile

u#j

}s g
+
u,j=1 [SIUQJ

U#j

g , h

|/

scDja’

1
7
h
s® by
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s

1
r 4
= 1+ 225 3 g ,_nh 1+ Sl > g _,_h
g+h G \soa)  soa ' g+h G4/ \so b so bl '
u¥ u¥
- 1 1
2 s g 2 s ’
1 14 S Sx g h 1— 1+ s S 9 + h (611)
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; YEJ' . in Equation (6.11), We can get
j
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This is the required proof of the Theorem (6.2.1.2).

In order to determine the PWV @, we firstly need to determine the support degree
among INNSs. In general, the similarity measure among INNs can replace the support

degree among INNSs. i.e;

Sup(fg, 1) =1-D (hg, 1, )(d,1 =1,2,....,5). (6.12)

6.2.1.3 Example

Letn, =([03,0.7],[0.2,0.4],[0.3,05]), 2, = ([0.4,0.6],[0.0,0.3],[0.2,0.4]) and 4, = ([0.1,0.3],[0.4,0.6],[0.2,0.4])

be any three INNs, g=1,h=15=3, then, by Theorem (6.2.1.2), Equation (6.10), we
can aggregate these three INNs and generate the comprehensive value

h:<[EL,EU],[‘PL,‘PU],[YL,YU]>WhiCh is calculated as follows.

Step 1. Determine the supports Sup(;.%;).i, j=12,3by using Eq. (6.12), and then we get

Sup(hy, i) =Sup(hy,hy)=0.9,Sup(hy, iy ) = Sup(hy, iy ) =0.933,Sup(h,, hy) = Sup(fy, hy ) =1.

Step 2. Determine the PWV T (n,)= i Sup(h,,h,),, and we have

s=1,5#2
T (hy)=Sup(hy,h,)+Sup(hy,hy)=1.833T (h,)=Sup(hy,hy)+Sup(h, hy)=1.9,

T (;) = Sup(hy, hy)+Sup iy, h,) =1.933,
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T(%,)+1)

(
(T (73) +2)+ (T (hy) +1)+(T (hs) +1)

=0.3346,

®, = (T(7,) +1) n =0.3269, ®, =

o, = (T () +1) =0.3385.
P (T (hy)+1)+(T () +2)+ (T () +1)

Step 3. Determine the comprehensive value h:<[EL,EU],[‘PL,‘PU],[YL,Y“]> by using Eq.

(6.10), we have

Wl

2 3
1+ 3-3 > ! + =0.2590

Similarly, we calculate

1 =([0.2590,0.5525],[0.2221,0.4373],[0.2334,0.4365)) .
6.2.1.4 Theorem (Idempotency)

u

Let n,=([=52 | [, el ][5 5 ]).(u=12..5), be a group of INNs, if all

h,(u=12,..,5) are equal, thatis n, =n=([2",2" ],[¥", % | [x" " ]),(u=12..5), then

INDPBM ®" (1), 71y, ) = . (6.13)
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Proof. Since all #, =n=([2",2" |,[¥" %" ],[x*,x"]),(u=12,..5), SO we have
Sup(hy.h,)=1 forall d,a=12,..,s,50 @, :%, forall d=12,..s. Then

INDPBM *" (7 +hg)=INDPBM*" (1, h,..., )
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g+h

1-v-Y
=

Ve
2
- 1+(s -s g+h |
g+h 1-y-Y
5]
1/ {

TN
<
0 ~ ——————————
-
+

(== ] [wm e ] [ ) =n.

6.2.1.5 Theorem (Commutativity)

Assume that #, is any permutation of #,(u=12,..,s),then
INDPBM " (A}, 7t},..., i, ) = INDPBM ®" (#1,, 71,,..., ) .

Proof. From Definition (6.2.1.1), we have

INDPBM ¥ (1, 7,...,

1
g+h
h;):[ 21 Z(sd)’uh[,)g®0(s®’jh'j)h] ,

and

1

g+h
INDPBM ®" (1, 1, ,..., hs)[ 1 Z(scpuhuf@D(sq)th)hJ :

2
s’ —s
u=#)
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S

Because, z (s, )’ ®, (s )“ =Y (s®,h,)" ®, (s®;h, )“ :
u,j=1 u,j=1
u#j u#]

Hence, INDPBM " (#},7},...,h.) = INDPBM ®" (A, 7,,.... ;).

6.2.1.6 Theorem (Boundedness)

Letn, =([=5,2) [ w5 ¥y [ Y505 ]).(u=12..5), be a group of INNs,

o = (max(= = ] min w2 Jmin v ). = min[ =222 ) max

then

h™ < INDPBM (hy,hy,...sh ) < "

Then, there are

<:L(n)<—~U+ \PL—<\P (n)<\PL+ \PU—<\PU(n)<\PU+ YL_<Y (n)<YL+

EY <E4(n)<EY, BV
Y <YyW(n) <y, forall u=12,.,s We have

=

=
v
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Then, there are the following scores,

[1]

L —U L U L U
=) +1_‘P +¥ +1_Y +Y _

Therefore according to the Definition (1.1.1.12), we have

W~ < INDPBM (hy, iy, 1y ).

In a similar way , we can show that INDPBM (#,,h,,...A

h™ < INDPBM (hy, 7y, hy ) < ",

Now, we shall study few special cases of the INDPBM®" , with respect to g and h.

(1) When h -0, >0, then we can get

INDPBM ¢° (i, B, ..., )
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(3) When g=h=1,5>0,then we can get




1 1
§-s : g h $-s s g h
1- 1+ X — + - 1- 1+ X —+ - ,
2 Zl -y (19 2 ;1 ) (1) (6.18)
uzj sO 4 J uzj 0] u | i
7 B e o Ty |~
u ] u ]
1 1
2 _ 2 _
1- 1+szsx o h " 1- 1+stx gu,+ hU
i 1-Y -1 I 1-7] 1-Y
i SO ! i SO !
i =5 ) w5

In the INDPBM operator, we can only take the correlation among the input
arguments and the PWV, and cannot consider the importance degree of input
arguments. In what follows, the INWPDBM operator shall be proposed to overcome

the shortcoming of the INDPBM operator.

6.2.1.7 Definition

Let n,=([=5= ] [wsw) ] [xrt]) u=12..5), be a group of INNs, then the

INWDPBM operator is described as

g h\\g+h
s AT(h.)+1
INWDPBM " (1, 7, ..., ) = 21 fw“(T(h“)+l) | ®, Mﬁi .(6.19)
ST Y w, (T, +1) > w, (T(h, +1))
z=1 z=1

j=Lizj

|
INNs, such that 0<w, <1(z=12,..,I) and ) w, =1
z=1
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6.2.1.8 Theorem

Let n, =([=52) [P ¥ |[ Y505 ]).(u=12..,5), be a group of INNs, then the result

obtained using Definition (6.2.1.7), is represented by

INDPBM * (i, 71y, ...y )

s?—s : g h
1
+(g+hx > +

v sw, (T(r,)+1) ( = ]y sw; (T (k) +1)

) (
Zw T(h, +1)) L ZW (T(n, +1))

T

1_*_(52_3>< Zs: 9 X "
o O TE RO ER
S0, )= S, )|

2 _ s
1- 1+[S S>< Z g ;T 7
g+h e sw, (T(n,) +1) (17‘{‘5) sw; (T (#, )+1 l ‘PL

zs“wz(T(hz+1))L ¥ Zw T(h, +1)

1+(527s>< i 9 RV " r
g+h i sw, (T(n,) +1) (1—‘{’UJ sw, (T(h)+1 (1 W
S, (T, +1)" S (10 )l ¥
1- 1+[32_S>< ZS: g +
g+h i sw, (T(n,) +1) (145}’ sw, T(h)+1 ) (1- YL ’
S, (T(h, +m)0 % Sw(Ten, syl T
1+[52_Sx ZS: g 4 h -
g+ i sw, (T(r,)+1) (1-YY ]’ sw; (T(h)+1) (11} ]
Sw o) ) Swra, eyl
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Proof: Similar to Theorem (6.2.1.2).

Similar to the INDPBM operator, the INWDPBM operator has the properties of

boundedness, idempotency and commutativity.
6.2.2 The INDPGBM Operator and INWDPGBM Operator

In this subsection, we develop INDPGBM and INWDPGBM operators and discussed

related properties and special cases with respect to the parameter.

6.2.2.1 Definition

Let n,=([=;2) | [¥5 ¥ ][t 0 ]).(u=12..5), be a group of INNs, then the

INDPGBM operator is defined as;

1
S(T (hy)+1) s(T(h)+1) ) \s?—s

S Zs:(T(hZ)A) ZS:(T(/II)+1)
INDPGBM " (11,1, ,..., hs):i I 9ny +hnid (6.21)

Then, INDPGBM®" is said to be an INDPGBM operator. Where

T(h,)= i Sup(h,,h,), Sup(h,.h,) is the support degree for 7, from 7%, which satisfy

s=1,5#2

the following axioms: (1) Sup(n,.n,)e[01]; (2) Sup(h,.h,)=Sup(h,,h,);(3)

Sup(h,,h,)2 Sup(h, 1), if D(h,,h)<D(h,h,), in which D(r,n,)is the distance

measure between INNs 7, and 7, defined in Definition (1.1.1.13).

In order to simplify Equation (6.21), we can define
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(L+7 (7))

®, = , (6.22)

YT (n)

z=1

S
and call ® =(d,,®,,..., D, )" is the power weight vector, such that @, >0,> ®, =1.

z=1

Then, Equation (6.21) can be written as follows:

1

INDPGBM ™ (i, h,,..., hs)i[ﬁ(ghz‘l’ +hi" )} . (6.23)
g + h u,j=1
u#j

6.2.2.2 Theorem

Let n, =([=5,2) ][ w5 ¥ ][ Y50 ]).(u=12..,5), be a group of INNs. Then, the result

obtained from Eq. (6.21), is expressed as

INDPGBM ™ (hy, hy, ... 11y

! 1]
2 s 2 _ s
1+[Ssx Y U h ) 1+[Ssx g _ h L
g+h it [ Lo \pJL X g+h it [ WY , ‘Yf 7
U#j . uz] .
v iy ) My (6.25)
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6.2.2.3 Theorem (Idempotency)

h(i=12,..1) are equal, thatis &, =h=([=2"2" ],[ %" ¥ ][ *" Y’ ]),(u=12,.,s), then
INDPGBM " (71, h1y,..., 51 ) = .. (6.26)
6.2.2.4 Theorem (Commutativity)

Assume that 7, is any permutation of #,(u=12,..,s),then

INDPGBM °" (1], 1},..., i, ) = INDPGBM *" (11, h,,..., h, ). (6.27)

h™ <INDPGBM (,, h,,....h ) < h". (6.28)
6.2.2.6 Definition

Letn, =([=5,2) [ w5 ¥y |[ Y505 ]).(u=12.,5), be a group of INNs, then the

INWDPGBM operator is defined as

1
sy (T (g )+1) sw; (T(k)+1) ) )s2—s

s zS:wZ(T(hZ)ﬂ) in(T(hz)ﬂ)
INWDPGBM °" (1, 7,,..., hs)=L 197 +hn

(6.29)
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6.2.2.7 Theorem

INWDPGBM " (1, h

)

1] e-

aggregated result from Eq. (6.29), is expressed as;

S)a

group of

INNs. Then the

1- 1+(SZ_S>< i g + h
g+h 43 sw, (T (h,)+1) (17551’ sw; (T(h))+1) (1-25 J
Swreyn = Sw o, el =
s°-s g h

/\.

g+h sw, (T (,)+1) [1-55 ]’ " swj(T(h;)+1) (1-2Y
Su )l = S| S
s°—s g h

sw, (T(h)+1) (el

Sw, (T(hz)+l)kl_q1“

+
Jr
L

sw, (T(h)+1) (W)

Sw (1) + )\ S
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g+h i3 sw, (T(h)+1) (W I w; (T () +1) ( v Jr
iWI(T(hZHl)U*W5 ZI:WI(T(hZ)+1)Ll_lPlJJ
1+[5275X S 9 + h
g+h 43 sw, (T(r)+1) (Xt JV SW,(T(hi)+1)( T ]
ZS;WZ(T(IWZ)H)U_Yt jwz(T(hz)Jrl)U*Y?
1+[SZ—SX 3 g + h
g+h uid SWU(T(/'IU)+1)( T T st(T(hj)Jrl)( YLJ_J JV
Zs‘,WZ(T(hZ)Jrl)U*YE iWI(T(hI)Jrl)kl_YLiJ

i

(6.30)




6.3 MADM Approach Based on the Developed Aggregation

Operators
In this section, based upon the developed INWDPBM and INWDPGBM operators,
we will propose a novel MADM method, which is defined as follows;

Let us assume that, in a MADM problem, we need to evaluate u alternatives

whe[O,l],ZV:whzl. The decision matrix for this decision problem is denoted by

h=1

W:Fﬂ , Where ggh:<[E§h,Egh],[wgh,wgh],ﬁ;h,Y;’h]> is an INN, provided by the

DM for the alternative N, for the attribute a,(g =12,..,u;h=12,..v). Then the main

purpose is to rank the alternative and select the best alternative.

In the following, we will use the proposed INWDPBM and INWDPGBM to solve this

MADM problem, and the detailed decision steps are as follows:

Step 1. Standardize the attribute values. Normally, in real DM problems, the attributes
are of two types, (1) cost type, (2) benefit type. To get better result, it is necessary to

change cost type of attribute values to benefit type using the following formula:
dan = ([0, 0%, ] [1- w9, -5, ] [ = 25 ) (6.31)

Step 2. Calculate the supports;
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Supp(ﬁgh,a):1—E(§gh,§g.), (@=12,..u:hl=12..v), (6.32)

where, D(Egh,a”) , I the distance measure given in Equation (1.17).

Step 3. Calculate T(ﬁgh);

T (Egh): iSupp(ggh,(T@ )(g =1,2,..,u;h,1 =1,2,...,v); (6.33)

I£h

Step 4. Calculate all the attribute values den (h=1,2,..,v) tO the comprehensive value

R, by using INWDPBM or INWDPGBM operators shown as follows;

R, = INWDPBM (ﬁgjgz ...... §gv); (6.34)
Or

R, = INWDPGBM (391,392 ...... dgv); (6.35)

Step 5. Determine the score values, accuracy values of R (g=12..,u), using

Definition (1.1.1.11).

Step 6. Rank all the alternatives according to their score and accuracy values, and

select the best alternative using Definition (1.1.1.12).

Step 7. End.

This decision steps are also described in Figure 1.
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Start

Read the decision matrix 1)

Step 1 —

If the attributes are cost type, then

v

If all attributes are same type, then,

Figure 1. Flow chart for developed approach.

6.4 Illustrative Example

In this part, an example adapted from [79] is used to illustrate the application and

effectiveness of the proposed method in MADM problem.

An investment company wants to invest a sum of money in the best option. The

company must invest a sum of money in the following four possible companies
(alternatives); (1) car companyﬁl; (2) food companyﬁz; (3) Computer companyﬁa;
(4) An arm company N., and the attributes under consideration are (1) risk analysis O:;

(2) growth analysis 0 (3) environmental impact analysis 0s. The importance degree
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of the attributes is @ =(0.35,0.4,0.25)" . The four possible alternatives ﬁg(g =1,..,4) are
evaluated with to the three above attributes a(h =1,..,4) by the form of INN, and the

IN decision matrix M is listed in Table 6.1. The purpose of this decision making

problem is to rank the alternatives.

6.1 The Decision Making Steps.

Step 1. Since 0:, O,are of benefit type, and Osis of cost type. So oswill be change

into benefit type utilizing Equation (6.31). So the normalize decision matrix NM s

given in Table 6.2.

Table 6.1. The IN decision matrix M

81 0. O3

N, ([0.4,05],[0.2,03],[0.3,04]) ([0.4,0.6],[0.1,0.3],[0.2,04])  ([0.7,0.9],[0.2,0.3],[0.4,0.5])

N, ([0.6,08],[0.1,02],[0.1,0.2]) ([0.6,0.7],[0.15,0.25],[0.2,0.3]) ([0.3,0.6],[0.6,0.7],[0.8,0.9])

N: ([0.3,06],[0.2,0.3],[0.304]) ([0.50.6],[0.2,0.3],[0.3,0.4]) ([0.4,0.5],[0.6,0.8],[0.7,0.9])

N, ([0.7,0.8],[0.01,0.1],[0.2,0.3]) ([0.6,0.7],[0.1,0.2],[0.3,04]) ([0.4,0.6],[0.4,0.5],[0.8,0.9])

Step 2. Determine the supportSSupp(jghEg.),(g=1,2,3,4;h,|=1,2,3), using Equation

), we have

gh,gl

(6.32),(for simplicity we denote, Supp(gghjgl)with S3
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S111,12 = S112,11 =0.930; S112,13 = S113,12 =0.800; S111,13 = S113,11 =0.85; S121,12 = S122,11 =0.933;
S122,13 = S123,12 =0.717; S121,13 = S123,11 =0.683; S131,12 = S132,11 =0.967; S132,13 = S133,12 =0.733;
S131,13 = S133,11 =0.700; Sfl,lz = sz,ll =0.902; sz,la = S143,12 =0.783; S141,13 = S1‘;,11 =0.752;

Step 3. Determine T (dgh);(g —1,2,3,4:h=1,2,3) using Equation (6.33),

T =1800,T; =1750,T;, =1650,T? =1617,T,2 =1650, T, =1400,
T2 =1667,TS =1.700,T; =1433,T,; =1653,T; =1685,T,; =1535.

Step 4. (a) Determine the comprehensive value of every alternative using INWDPBM

operator, that is Equation (6.34), (Assumethatg =h =1,y =3), we have

R = <[O.3974,0.5195],[0.1823,0.3023],[0.3353,0.4796]>; X

R, =([0.6457,0.7954],[0.1700,0.2885],[0.2044,0.3265] );
R, =([0.4846,0.6503],[0.2556,0.3711],[0.3376,0.4394]);

R, = ([0.6938,0.7953],[0.1062,0.2154],[0.3069,0.4278]).

(b) Determine the comprehensive value of every alternative using INWDPGBM

operator, that is Equation (6.35), (Assumethatg =h =1 =3), we have
R, =([0.4026,0.5381],[0.1570,0.2977],[0.2998,0.4520]);
R, =([0.6654,0.8193],[0.1558,0.2686],[0.1836,0.3035]);
R, =([0.5159,0.6732],[0.2366,0.3473],[0.3265,0.4279]);

R, ={[0.5159,0.8193],[0.0938,0.1952],[0.2862,0.4037]).
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Table 6.2. The Normalize IN decision matrix D

0. 0. O3

N, ([0.4,05],[0.2,0.3],[0.3,04]) ([0.4,0.6],[0.1,0.3],[0.2,04]) ([0.4,0.5],[0.2,0.3],[0.7,0.9])

N, ([0.6,0.8],[0.102],[0.1,0.2]) ([0.6,0.7],[0.15,0.25],[0.2,0.3]) ([0.8,0.9],[0.6,0.7],[0.3,0.6])

N: ([0.306],[0.2,0.3],[0.3,04]) ([05,06],[0.2,03],[0.304]) ([0.7,0.9],[0.6,0.8],[0.4,0.5])

N, ([0.7,08],[0.01,0.1],[0.2,0.3]) ([0.6,0.7],[0.1,0.2],[0.3,0.4])  ([0.8,0.9],[0.4,0.5],[0.4,0.6])

Step 5. (a) Determine the score values of R (g=1,234), using Definition (1.1.1.11),

we have
SO(R,) =18087, SO(R,) = 2.2259,50(R, ) = 18656,50(R, ) = 2.2164;

(b) Determine the score values of R (g =1,2,3,4), using Definition (1.1.1.11), we have

SO(R,) =18671, SO(R,) = 2.2866,50(R,) =19254,50(R, ) = 2.1781;

Step 6.(a) According to their score and accuracy values, using Definition (1.1.1.12),
the ranking order is N2> N> Ns>Ni. So the best alternative is N, while the worst

alternative is N..

(b) According to their score and accuracy values, using Definition (1.1.1.12), the
ranking order is N.>Ns>Ns>Ni. So the best alternative is N.,while the worst
alternative is N..
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So using INWDPBM or INWDPGBM operators the best alternative is N.while the

worst alternative is N..

6.4.1 Effect of Parameters y gand hon DM Result of This Example

In order to show the effect of the parameter xand yon the DM result of this
example, we set different parameter values for gandh, and y =3, is fixed, to show

the ranking result of this example. The ranking results are given in Table 6.3.

As we know from Table 6.3, and Table 6.4 the score values and ranking order are

different for different values of the parameter gandh, and y =3, is fixed, while using
INWDPBM operator and INWDPGBM operator. We can see from Table 6.3, and
Table 6.4, when the parameter . In some situation the ranking order may also be
different, while using different parameter values g=1or 0 and h=0or 1, then the best
choice is N. and the worst one is Nu.. In simple words, when the interrelationship

among attributes are not considered the best choice is N and the worst one is N.. On

the other hand when we use different values for the parameters gand h, while using

INWPBM and INWDPGBM operators, the ranking result is changed. That is from

Table 4, we can see that when the parameter values g =1,h=1, the ranking results are

changed as the one obtained for g=10r 0 and h=0or 1. In this case the best alternative

is N, while the worst alternative remains the same.

Table 6.3. Ranking order of decision result using different values for gandh for

INWDPBM
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Parameter INWDPBM Operator Ranking Orders

Values
g=1h=0y=3 SO(R)=19319,50(R,) = 24172, N> N3 > Ns > Nu.
SO(R,) = 2.0936,50(R,) = 2.4222;
g=1h=5y=3  SO(R)=18338,50(R,)=22684, N,>N4>Ns> Nu.

SO(R,) =19049,50(R, ) = 2.2666;

g=3h=7y=3 SO(R,) =18169, SO(R,) = 2.2398, N2> Na>Ns> N
SO(R,) =18777,50(R,) = 2.2327;

9=5h=10,y=3 §(R1) 218143,$(R2) =2.2354, ﬁa >ﬁ2 >ﬁ3 >ﬁ1.
SO(R,) =18738,50(R,) = 2.2275;

g=Lh=10,y=3  SO(R)=18501,SO(R,)=22966, Ns>N2>Ns> Ni.
SO(R,) =19355,50(R, ) = 2.3012;

g=10,h=4,y=3 SO(R,) =18182, SO(R,) = 2.2419, Na>No>Ns> N
SO(R,) =18796,50(R,) = 2.2352;

9=3h=127=3  $0(R)=1828550(R,)=22592, N;>Nu>Ns >N
SO(R,) =18958,50(R, ) = 2.2557;

Table 6.4. Ranking order of decision result using different values for gandh for

INWDPGBM

Parameter INWDPGBM Operator Ranking Orders
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Values

9=1h=0y=3  SO(R)=15032,50(R,) = 17934, Ni>N2>Ns> Ni.
SO(R,) =15136,50(R, ) = L8037;

g=Lh=5y=3  SO(R)=18220,50(R,) = 2.2256, N2> Ns>Ns> N
SO(R,) =18717,50(R,) = 2.1140;

g=3h=77=3  SO(R)=18539,SO(R,) = 2.2686, N2> Ne> N> Na.

SO(R,) =19094,50(R,) = 2.1584;

g=5h=10,y=3  5o(R)=18583,50(R,) = 2.2745, Ns > N> Ns > N,
SO(R,) =19146,50(R,) = 2.1647;

9=1h=10y=3  SO(R)=17814,50(R,) = 2.1710, N2> Ne > Ns > Ni.
SO(R,) =18248,50(R,) = 2.0632;

g=10h=47=3  5o(R)-18087, SO(R,) = 2.2259, N2>Ne>Na> N
SO(R,) =18656,50(R,) = 2.2164;

g=3h=127=3  SO(R)=18671,SO(R,) = 2.2866, Ni>N;>Ns> N
SO(R,) =19254,50(R,) = 2.1781;

From Table 6.3 and Table 6.4, we can observe that, when the values of the parameter

increases the score values obtained using INWDPBM decreases, while using

INWDPGBM operator the score values increases, but the best choice is N, for

g=h>1.
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From Table 6.5, we can see that different ranking orders are obtained for different
values of y. When, y=05andy=2, the best choice is N. by the INWPBM
operator; when we use the INWPGBM operator, it is N.. Similarly, for other

values of y > 2, the best choice is N. while the worst is Ni.

Table 6.5. Ranking order of decision result using different values for »

Parameter = INWDPBM Operator INWDPGBM Ranking Orders

Values Operator

9=1h=17=0 §5(R)=16662,50(R,) = 21025 SO(R)=L17870,50(R,)=2.2347 N¢>N; > N3 > Ni.
SO(R,) =17606,50(R,) = 2.1972 SO(R,)=19103,50(R,) =2.1812 N2 > N4 > N3 > N..

g=Lh=1y=2 §(R1) =17733,§(R2) —2.2015, §(R1) =18491,$(R2) =2.2786, R > ﬁz > ﬁs > ﬁl.
SO(R,) =18408,50(R,) = 2.2091; SO(R,) =19213,S0(R,) =2.1799; N2 > N4 > N3 > Ni.

g=Lh=1y=4 $(R1) :18229,§(R2) —2.2363, g(Rl) :18740,§(R2) =2.2856 ﬁz > ﬁ4 > ﬁs > ﬁl.
SO(R,) =18803,50(R,) = 2.2219; SO(R,)=19275,50(R,) =2.1751 N2 > N4> N3 > Ni.

9=1h=17=7 §0(R)-18375,50(R,) = 2.2455, SO(R)=L18747,50(R,)=2.2763 N> > N4> N3 > Ni.
SO(R,) =19037,50(R,) = 2.2315; SO(R,)=19331,50(R,) =2.1669 N2> N4> N3 > Ni.

g=lh=1y=1 §(R1) =]_8418,§(R2) =2.2477, §(R1) =]_8701,§(R2) =2.2698, ﬁz > R > ﬁs > ﬁl.
SO(R,) =19160,50(R,) = 2.2365; SO(R,) =19373,50(R,) =2.1622; N2> N4> N3 > Ni.
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g=lLh=1y=1 §(R1) =]_8447,§(R2) —2.2488, ﬁ(Rl) =18642,§(R2) ~22637 N> Ne>Ns> N,
SO(R,) =19270,50(R,) = 2.2409; SO(R,)=19414,50(R,) =2.1582 N2 > N4 > N3 > Ni.

g=lh=ly=2 %(Rl) =184601§(R2) =22492, §(R1) =18608,$(R2) =2.2604, ﬁz > ﬁ4 > ﬁs > ﬁl.
SO(R,) =19328,S0(R,) =2.2432;  SO(R,)=19435,50(R,) =2.1562; N2> N4> N3 > Ni.

6.3 Comparing With the Other Methods

To illustrate the advantages and effectiveness of the developed method in this
article, we solve the above example by four existing MADM methods, including IN
weighted averaging operator, IN weighted geometric operator [8], the similarity
measure defined by Ye [21], Muirhead mean operators developed by Liu et al. [79],
IN power aggregation operator developed by Liu et al [71].

From Table 6.6, we can see that the ranking orders are the same as the ones
produced by the existing aggregation operators when the parameter values

x=1y=0,y=3, but the ranking orders are different when the interrelationship

among attributes are considered. That is why the developed method based on the
proposed aggregation operators is more flexible due the parameter and practical as it

can consider the interrelationship among input arguments.

Table 6. Ranking order of the alternatives using different aggregation operators.

Aggregation Parameter Score Values Ranking Order

Operator
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INWA operator [8] No SO(R)=18430,SO(R,) =2.2497,  Nu>N2 > Ns > Nu.
SO(R,) =19151,50(R, ) = 2.2788;

INWGA operator [8] No %(Ri) :17286,§(R2) =2.0991, Na>N2>Ns>Nu.
SO(R,) =L17751,50(R,) = 2.1608;

Similarity measure No D,(R",R)=07948,D,(R",R,) =0958L, N, 5 N, > N> Ni.
D,(R",R,) = 0.8805,D,(R",R,) = 0.9725;
Hamming distance

[21]
Generalized power Yes SO(R)=18460,50(R,)=22543, N4> N2> N3 > Nu.
SO(R,) =19163,50(R,) = 2.2799;
Aggregation
a=1
operator [71]
INWMM operator Yes SO(R)=18054,50(R,) =2.2321, N4 >N > Ns > Na.
SO(R,) =19172,50(R,) = 2.2773;
[79]
PILLY)
INWDMM operator Yes SO(R)=16260,50(R,)=19202, N >Nz >Ns> N,
SO(R,) =17061,50(R,) = 2.0798;
[79]
PILLY)
Proposed INWDPBM Yes SO(R)=19319, SO(R,) = 2.4172, Ne>Ns>Ns> N
SO(R,) = 2.0936,50(R,) = 2.4222;
x=4,y=0,y=3
Proposed Yes SO(R)=15032,50(R,)=17934,  Ng¢> N> Nz > Nu.
SO(R,) =15136,50(R,) = 18037;
INWDPGBM
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g=Lh=0,y=3

INWDPBM operator Yes SO(R) =18087,50(R,) =2.2259, N2> N4> N3 > Ny,

o SO(R,) =18656,50(R,) = 2.2164;
in this article

g=h=17=3
INWDPBM operator Yes §(R1) =18671,§(R2) =2.2866, N2> Ne>Ns>Ni
SO(R,) =19254,50(R,) = 2.1781;
in this article
g=h=1y=3

From the above comparative analysis, we can know the proposed method has the
following advantages, that is, it can consider the interrelationship among the input
arguments and can relieve the effect of the awkward data by PWV at the same time,
and it can permit more precise ranking order than the existing methods. The proposed
method can take the advantages of PA operator and BM operator concurrently, these
factors makes it a little complex in calculations.

The score values and ranking orders by these methods are shown in Table 6.6.

6.4.2 Conclusion

The PBM operator can take the advantage of PA operator, which can eliminate
the impact of awkward data given by the predisposed DMs, and BM operator, which
can consider the correlation between two attributes. The Dombi operations of TN and
TCN proposed by Dombi have the edge of good flexibility with general parameter. In
this chapter, we combined PBM with Dombi operation and proposed some
aggregation operators to aggregate INNs. Firstly, we defined some operational laws

for INSs based on Dombi TN and TCN and discussed some properties of these
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operations. Secondly, we extended PBM operator based on Dombi operations to
introduce INDPBM operator, INWDPBM operator, INDPGBM operator,
INWDPGBM operator and discussed some properties of these aggregation operators.
The developed aggregation operators have the edge that they can take the correlation
among the attributes by BM operator, and can also remove the effect of awkward data
by PA operator at the same and due to general parameter, so they are more flexible in
the aggregation process. Further, we developed a novel MADM method based on
developed aggregation operators to deal with interval neutrosophic information.
Finally, an illustrative example is used to show the effectiveness and practicality of
the proposed MADM method and comparison were made with the existing methods.
The proposed aggregation operators are very useful to solve MADM problems.

In future research, we shall define some distinct aggregation operators for SVHFSs,
INHFSs, double valued neutrosophic sets and so on based on Dombi operations and

apply them to MAGDM.
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Chapter 7

Group Decision Making Method under Hesitant Interval

Neutrosophic Uncertain Linguistic Environment

In this chapter, we propose the concept of HINULSs and HINULEs, then developed
some basic operational rules, properties, score, accuracy and certainty functions for
HINULEs. Then, based on these operational rules, we described some aggregation
operators, such as HINULPWA operator, HINULPWG operator and GHINULPWA
operator to aggregate HINUL information. Further, some desired characteristics of
these developed operators are examined. A GDM method over GHINULPWA
operator is initiated to handle MCGDM problems, in which criteria values take the
form of HINULES and there exist prioritized relations between the criteria. Lastly, a
numerical example about investment alternatives is given to show the efficiency of

the proposed method.

7.1 Hesitant Interval Neutrosophic Uncertain Linguistic Set

In this section, the concept of HINULS, some operational laws, and related properties

for HINULSS are developed.
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7.1.1 HINULS and their operational laws
7.1.1.1 Definition

Let X be the domain set, then a HINULS in HI is represented by the following

mathematical symbol:

=I:{<o,hﬁ(o)>|0ez~<}. (7.2)

Where, h—(0) = {bﬁ(o)} is a set of INULNS, representing the possible INULNs
bﬁ(o)ehﬁ

of the element oexto the set HI , and

uﬁ(o):<[sg(0),s,(o)],([5%(0),5%(0)],[W%(o),w::l(o)],[%(o),Y%(o)])> is an INULE. For

simplicity, we shall write 7 =|J{b}instead of #_(0)= | {tﬁ(o)} inHI . Here we call

beh bﬁ (O)E/Iﬁ

» a HINULE and b:<[s€(b),s,(b)],([EL(b),EU OEERCRS (b)],[YL(b),r“(b)])> is called

an INULE. Then, ﬁis the set of all INULEs.

7.1.1.2 Definition

Let »nrandr, be any three HINULEs and ¢>0. Then we presented some basic

operations for HINULEs as follows:

@ h,xn, = <F*l[g*(smm)g(smm)}g*1(3*<5r(b1))3*(51<b1))ﬂ’

byehy beh,

([ ()= ()2 ()" (B)] [¥ () + ¥ (B) =" (8) ¥ (), (72
(0¥ (0,) = ()% (b) L [X* ()4 0" (b) -1 (6) T (),

Y ()10 (0) -1 () 1,)])),
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Q)7 = U<{3

[1—(1—‘PL(b))§,

[EEN

(F )7 (F e

-1 ) | [1-(-r @) - o)) D>
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7.1.1.3 Theorem

Let nn,and 7, be any three HINULEs and ¢,¢,,¢,>0. Then the operational rules

defined for HINULES have the following characteristics.
Q) a,+h,=h,+h,,
(2) hyxh, =h,xh,,
(3) &(hy+hy)=Chy+<h,,
(4) Sh+&h=(+&,)h,
(5) ¥ i = (),
(6) 7§ xns =(hyxh,) .

7.1.1.4 Example

Leth, ={([s,.5,],[0.2.04],[0.0,02],[0.3,05]),([s,.5,].[04,05],[0.1,0.2],[0.2,0.3])} and

h, =([s,,5,1,[0.3,04],[02,03],[0.1,03]) be two HINULNs and ¢ =2. Then

(1) If we use LSF 3*(39):% then
(i) 1 x - ([Soaza¢+ Sosen ] [0:06,0.16],[0.28,0.44], [0.37,0.65]),
e <([SO.6665! 50.9999]1[0-12,0-2],[0.28,.44], [0.28,0.51]) >

(“) h,+h, :<

([ 54000 ]:[0.2625,0.4],[0.1625,0.2625],[0.1750,0.3750] ),
([ 3900+ S2.00 | [0-3444,0.4444],[0.1556,0.2556 |, [0.1444,0.3])

(i) 75 = ([Sys065+ 815 ],[0.09,0.16],[0.36,0.51],[0.19,0.51] );

(iV) &y = ([S5009:55,[0.3,0.4],[0.2,0.3],[0.1,0.3]).

- £ (z=012,.,r)
(2) If we use LSF a:(s,) =9, =1 . Then
% (z=r+1r+2..,2r)
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(i) xh, = ([So67+ Soasia ]-[0.06,0.16],[0.28,0.44],[0.37,0.65]),\
yxh, ‘<([3046215.80,8348],[0.12,0.2],[0.28,.44],[0.28,0.51]) >

(ii)hl+h2=<

([S50650+ 555016 ]:[0-2592,0.4],[0.1592,0.2592],[0.1815,0.3815]), |
([S4.75+ Ss.216 |, [0-3465,0.4465],[0.1534, 0.2534],[0.1465, 0.3] )

(i) 17 = ([Speas+ 11265 |:[0.09,0.16],[0.36,0.51],[0.19,0.51]);

(IV) 7y =([S40754.55],[0.3,0.4],[0.2,0.3],[0.1,0.3]).

- B (z=0,12,...1)
(3) If we use LSFas(s,) =9, =1 ,* , then
% (z=r+1r+2..,2r)

(i)hlxh2:<

([S0.3148+ S1.02 ],[0-06,0.16],[0.28,0.44],[0.37,0.65]),
([Sosus3+ S1001]-[0-12,0.2],[0.28,.44],[0.28,0.51]) >

(ii)hl—l—h2=<

([S262+ S| [0.2637,0.4],[0.1638,0.2638], [0.1724,0.3724]),
([Sas00+ Su721 ],[0-3433,0.4433],[0.1567,0.2567],[0.1433,0.3])

(i) 717 = ([Sopuss» S1ess -[0-09,0.16],[0.36,0.51],[0.19,0.51]);

(iV) ¢y = ([Ss500 55 ],[0-3,0.4],[0.2,0.3],[0.1,0.3]).

7.1.1.5 Definition

Let [s,,s,]be ULV, and o be a LSF. Then, an aggregation expression of [s,,s ]can

be defined as

E([s;.s.]) = f. ([s5.5.]).
i[d‘f(’%(j(?(sf)—X(g*(sr)—g*(ss)ndx. (7.13)

where the function ¢ is expressed by a basic unit interval monotonic function

proposed by Yager [114] and f, is the continuous ordered weighted averaging
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operator. If(c>0), then¢ (x)=x". Moreover, E([s, s,])is an increasing function with
respect to s,ands, , and E([s,,s,]) satisfies 0<E([s,,s, ])<1.

Hence, the score, accuracy and certainty functions of HINULE 7 are defined as

follows:

%(n):%2(2(5([55@,sr(b)])((4+aL (b) " (b)-Y* (b)+

ben

[1]

Y (b)=w (b)Y (b))))j; (7.14)
AR (1) =23 ((E (s .00 )((E (0) - 1+ (B) 42 () -1 1)) (7.15)

ben

CR (k)= %;«E([Sm S J)((E(0)+

[1]

“(0))))- (7.16)

Where 07 represents the number of INULES in 7 .

7.1.1.6 Definition

Let » and », be two HINULEs, then the comparison rules between two HINULEs
can be defined as follows:

(1) If SO(n)=>SO(n,), then i >n,;

(2) If SO(n)=50(h,) and AR(%)> AR(%,), then i>n,;

(3) If SC(1)=SC(n,), AR(h)=AC(h,) and CR(h)=>CR(n,), then n>n;

(4) If SC(h)=SC(n,), AR(h)=AC(h,) and CR(h)=CR(n,), then & =n,.
7.2 The Hesitant Interval Neutrosophic Uncertain Linguistic

Aggregation Operators

In this part, we present two HINUL aggregation operators to aggregate HINUL

information. These aggregation operators are based on the operational rules of

HINULNS.
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7.2.1 The Hesitant Interval Neutrosophic Uncertain Linguistic

Prioritized Weighted Averaging Operator

In this subpart, we propose HINULPWA operators to aggregate HINULEs, and

related properties are discussed.

7.2.1.1 Definition .

Let 7, (v=1,2,...,0) be a group of HINULNs. The HINUL prioritized weighted

average operator (HINULPWA) is defined as

T T T T,h
HINULPWA (71, h,..., 1y ) = =1, @ —2— 1, ®..®—2—h, =@° | 2|, (7.17)

0

Z Tg Tg Z TO Zl Tg
g =]

g=1 g=1 g=1

V-1l — ES.
where, T, =1T, =[ [SO(%,)(v=2...,0), and SO(#,) is the score function of #,,.

z=1
Based on the operational laws for HIFULNSs, and Definition (7.1.1.2), we have the
following Theorem.

7.2.1.2 Theorem

Letn, (v=12,...,0) be a group of HINULEs. Then by Eq. (7.17) and the operational

laws for HINULES, we obtain the following result.

HINULPWA(%, iy, ...h) =~ h @12 @@,
2T, 2T, 2T,

g=1 g=1 g=1
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7l 7
Zl 0 (saur) 0 (s ij 2[3 (S)+2 (s <u>)ij
37 )7 )it 7 ()7 (o)
I VZU;‘(S (300) 2 (5 MUTV Z; 3*<39<u>)+5*(5r<uv>)ij
37 (a7 (510 1 27 (s0)#7 (510
2Tl EF bk )

Proof. Equation (7.18) can be proved by utilizing mathematical induction.

(1) For v = 2, we have

—a| T = | T =
=] : a(sswn) 0 - a(sr(un) ,(E(ul),LP(ul),Y(ul)) ,
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*

L =* =
(ul))jTH + 0 (S, )+ 0
S

( T(U1))

ST
0

~—
|
+
TN
Dl
*
w
s
=

(3 (s‘g(ul) ) +

U ehy Uy ek, =* =* =* ="
(a (sg(ul))+a (s,(ul,)jTﬁ 0 (S50 )+0

(2) Let us assume that Eq. (7.18) is true for v=b, then

T T T
HINULPWA(71y, i, ...,y ) = —— 1, ®@ —2—1, ®..&——h,,

2T, 2T 2T,

g=1 g=1 g=1

=*1| _b T = =*1| _b T =
v v
= o | 2] 50 (sow)y) |0 | 2| =0 (Sr(uv))
u, ehiy, Fiyye, ¥l v=1 v=1
h€hy Uy ehty,... .Uy €ty ZTg Tg
g=1 g=1
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(3) When v=b+1then

T T T T
HINULPWA(A, iy, Bty ) = Tty ®—2— 11, ®..® —2—h, @b p

ZTj ZTQ ZTQ ZTQ

U ehy,Uyehy,...upehy
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5[ (s 2 (sr(m)] = Z(S (Soy )+ 2 (sr(uv))jnag
b+l [ =* — ' bl == —
;[a (Soy)*+ @ (S ))jTV ;(a Sy ) T 0 (Sequ ))jTV
:ulehl,ust,,umleﬁbﬁ_b+l =* =* b+l [=* ==
;[ (SS(LIV))"'a (Sr(uv)) T, ;[8 (S.‘)(uv))_'_a (Sr(uv))ij\Py
b+l /[ =* =* b+l [ =* =* ’
30 (5000) 2 () [T 35[7 (5000)+2 () T

Hence Eq. (7.18) is true for all o.

According to (1)-(3), Eq. (7.18) is kept.

7.2.1.3 Theorem

V-1l —

Let 7, (v=12,...,0) be acollection of HINULEs, T, =1,T, =[[SC(,)(v=2.....0), and
z=1

SC(h,) is the score function of #,. If b>0, then
HINULPWA (ah,,ah,,.....ah, ) = aHINULPWA(h,, h, ..., h, ). (7.19)

Proof. According to the operational rules described for HINULNS, we have

oo U <Fl(§(g* (Sewn)D,E”(;(? (S“”“’)m

e (o e ) )

According to Theorem (7.2.1.2), we have

HINULPWA (ah,,ah,.,....,ah, )

=*1| o0 T =* =*1| 0 T =*
- U P |3 a0 (s, ||.0 Z; ——a0 (s,,)
W ehy Uyehy ..Uy ehy V= T V=" T



V= ! v=1
; (3*(39(”“))+3 (S & ))jTVYVL 01(3*(59(uv>)+3 (s (© )))TVYS
VZI:[{:? (Sg(u))+5 (S (u)))TV ;(3 (Sg(u))+6 (s (u)))TV

Il
3
=
£
m
s
=
m
DIl

bHINULPWA(hl’hZ"" ho):(a) U 371 i oT_V5 (SS(UV)) 3 i oTV 3 (Sr(uv))
hy,Upehy,.. h, v=1 ZTQ v=1 ZTg
=1 g1
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Hence, HINULPWA(bh,,bh,,....,bA, ) = bHINULPWA (7, 7ty Tty ).

7.2.1.4 Theorem

Let n,(12,...,m)and p,(v=12,...,m) be two collections of HINULNSs. Then

HINULPWA (i, @ p,, 71, @ py,.c0, 1y @ ) =

(7.20)
HINULPWA (/1,15 ..., i, ) @® HINULPWA( o, s, -.., £ )-

Proof. According to Definition (7.2.1.1)

HINULPWA(h, @ p, 7, ® p,,.... 1, ® p,,)
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] S(Sf(uv)) iy 3*(Sr(kv))

— NG| T, % =1l e T, =
_u1 e 0 2, iTgﬁ(SS(U)) 0 VZ:; ZO:Tga(S(U))
g=1 g=1




=*-1| o T =* =*1| o T =*
® U o 5 (sg(kv)) ,0 -9 (s,(kv))
k€1, Ko €0y 1o ko €0 v=1 v=1
1 2€P2 P Tg ZTQ
g=1 g=1

Thus, HINULPWA(h, ® p,, 7, @ p,,....h, @ p, ) = HINULPWA By, 7, ..., iy ) © HINULPWA(p, 9, .., 2, )
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7.2.2 The Hesitant Interval Neutrosophic Uncertain Linguistic

Prioritized Weighted Geometric (HINULPWG) Operator

In this subpart, we propose hesitant interval neutrosophic prioritized weighted
geometric operator and related theorems, properties are investigated.

7.2.2.1 Definition

Letn, (v=12,...,0) be a collection of HINULNs. The HINUL prioritized weighted

geometric operator is defined as

T T T T
g ]

ZTQ ZTQ Tg ZTQ
HINULPWG (hy, h,,....h, )= h @0 ®@..@#n% =@, | hit (7.21)

v=1 o]

V-1l —

Where T, =1T, =H§(hz)(v= 2,..,0), and %(hz) is the score function of #,.
z=1

Based on the operational laws for HIFULNSs, and Definition (7.2.2.1), we have the
following Theorem.

7.2.2.2 Theorem

Let n, (v=1,2,...,0) be a group of HINULEs. Then by Eqg. (7.21) and the operational

rules for HINULNS, we obtain the following result:
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T T To

HINULPWG(hl,hZ,...,}‘10)=2’zf:1 ns ®.0h

- U )] 1T )

Upehy,Uyehy ..U, €hy v=l

1) 11 eTe-wy)” ar1e-w)” |
. ‘ (7.22)
1T (1—YVL)Q4 /;,1—11[(1—1(3)'“4 }
Proof. Same as Theorem (7.2.1.2), omitted here.
7.2.2.3 Theorem
. V-1l —
Let n, (v=12,...,0) beacollection of HINULESs, T, =1T, =] [SO(#,)(v=2,..,0), and
z=1
E(hz) is the score function of #, . If a>0, then
HINULPWG((hl)a (h,)° ,....,(ho)a) = (HINULPWG (713,71, .o 1, (7.23)

Proof. Proof of this Theorem is same as Theorem (7.2.1.3), it is omitted here.

7.2.2.4 Theorem

Letn, (v=12,...,0)and p,(v=12,...,0) be two collections of HINULNS. Then

(7.24)

Proof. Proof of this Theorem is same as Theorem (7.2.1.4), omitted here.
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7.2.3 Generalized HINUL Prioritized Weighted Aggregation

Operators

In this subsection, we define some generalized prioritized weighted aggregation
operators for HINULNS.

7.2.3.1 Definition

Let z, (v=12,...,0) be a collection of HINULNS. The generalized HINUL prioritized

weighted aggregation operator is defined as

n n

n
GHINULPWA (. ... 1, ) =| i@ 2 m@..oto g | —ar,| W | (7.25)
2T 2T, 2T, 2T,
g-1 g-1 g-1 g-1

Where, >0, and T,=1T, =[[SO(,)(v=2...,0), and SO(n,) is the score function of

z=1

h

v*

7.2.3.2 Theorem

Let 7, (v=12,...,0) be a collection of HINULEs. Then by Eqg. (7.25) and the

operational rules for HINULEs, we obtain the following result.

Lol me. el

2T, 2T,

g=1 9=1 g=1

GHINULPWA (A, 71,,..., 1, ) =
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(7.26)

Now, we discuss some special cases of HINULPWA operator.

1. If =1, then the GHINULPWA reduce into the HINULPWA operator. i.e.,

GHINULPWA(h ..., 1, ) = @2, | 2 |
2T,
g1
1| o Tv = —1| o T =
U 0 |2 50 (su) [ [0 | 2 0 (Sw)
U ehy Upehy ..Uy €hy v=l ZTQ v=1 ZTg
g=1 g=1
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S Sl
;(6 (39(u ))+8 (Sf(uv)))'l'v 4 [6 (sg(uv))m (s " )))Tv

TV
0 iTg
limGHINULPWA (A, h,,....h, ) = ® hy™
n—0 v=1
=*_1 0 = it =*_1 0 = gzlg
:u hy,uyeh Uy eh a v=1 (a (SS(UV))j ’a v=1 (a (ST(UV))j
ME) 1) |eTle-v) " e Tle-w)
v=1 v=1 v=1 v=1
- . (7.28)
i (RS [V
v=1 v=1
3. If =00, then the GHINULPWA operator reduces into the following form.
lim GHINULPW (hy, h,,...,h, ) = U <[max Ss,): Maxs, )},[maxEVL,maxE‘vJ }
n—0 \ v v v % \
U ehy Uyehy ..U, hy (729)

[min ¥l minyY ][min Y5, min YV D

227



7.3 Group Decision-making Method Based on GHINULPWA

Operator

In this section, we proposed a group decision making method based on
GHINULPWA operator and the score, accuracy and certainty functions of HINULNSs

under a HINUL environment.
Let us assume that ﬁ:{ﬁl,ﬁz ,,,,, ﬁm} and 6:{61,62 ..... a} be the sets of m alternatives

and n attributes respectively in a group decision making problem, and that there is a

prioritization among the attributes represented by the linear ordering 0.>0.>..>0,

specifies that the attribute 0.has a higher priority than Su, if v<u. Let the set of z

DMs is denoted by D ={d,,d,....d,}, and that there is a prioritization among the DMs

represented by the linear ordering d, >d, >...> d, specifies that the DM d_ has a higher

priority than d_, if p<q. Let the decision matrix is represented by ﬁg:(ﬁ?j) . Ina

mxn

group decision process the evaluation information provided about the alternative

decision maker d°¢ is expressed by the form of HINULN: a; ={SJ,ZRQ (Sj)ﬁj 68},

where a (:j)= U {u (o,»)} is a set of INULNS, representing the possible

u:vg (6, )e;iig (6,)

- = — g
INULNSs of the element 0;e0 to the set M, , and

U (a)=<{sg$(a),sgr‘z(a)},[[inf%g (6,),3up5i‘g (a)},[inf‘ll;lg (8,),sup‘P;ig (8,)},[inf¥aa (a)'SUpYRQ(a)D> is an

INULN. For simplicity, we shall write a_, ={u_,} instead of ; (Sj)z U {u: (gj)}

u:g(oj)sﬁzg(i,)
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—)
in M, . Here we call Eﬁig a HINULN and ugij=[s&],s,“],([a+,zuu],[qf".t,xpij”],[Y”L,rijU]) is

called an INULN. Hence, one can ascertain the g — th hesitant interval neutrosophic
uncertain lingujistic decision matrix M9 = (ﬁgij)mxn for g=(1.2,..,2).

Generally, there are two types of attributes, one of which is of benefit type and the
other is cost type. So, we must transform the cost attribute into benefit attribute by the
following formula.

For cost attribute:

- U K[Sﬁ'u(m*(sa)m*(sr(up))'m*l(m*(szt)m*(sg(un))] >} (7.30)
([(YL ()0 (o) J [ (° ()2 ( () ] L (2" () (22 (s ))J)

For benefit criteria:

ni = K[W1(9%*(59(“]))),%*1(%(51(“])))] >] (7.31)
([(EL (uy ))(EU (uy ))][(\PU (uy ))*(\PL (uy ))J[(YL (uy ))*(Yu (uy ))J)

The decision steps are depicted as follows.

[1]

Ui €nij

Ui €nij

Step 1. Calculate the values of T, (g =1,2,..., z) by using the following formula:

2 ==(=g
T, :HSO(nijj(g =2,.,2);T¥ =1 (7.32)
g=1
Step 2. Using GHINULPWA operator to aggregate all the individual HINUL decision matrices
=9
M9 = (n ij) to a collective HINUL decision matrix M = <n i},) (i=12,...,mj=
mxn

mxn

1,2, ...,n) by the following aggregation formula:
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wy = (50,5 | (52,00 [95 w, 0L [Y5 Y, O])) = GHINULPWA, (7', 72, 7, )

F] QZZ:; ZZ::TJ (6*(590.,)))”} 0 ' QZ:‘ ZZ:]TJ (6 (Sr(“’))jﬂﬂ

N 3((7 ) (7 (o)) Jraa--miy) |
z([é ()| #[3 (sr(u“))jnj'l'”
. z((a (S“”-ﬁu +(a Es,wu))J JT. (1—(17rg) ) 733
z[(a (sse)) +( (500 JTU 7
Step 3. Calculate the values of T, (i=1,2,..,m, j=1,2,..,n) by using the following
formula.
T :ﬁ?)(;u)(g:2,...,2);Ti1:1. (7.34)

Step 4. Aggregate the HINULN 7; for each alternative N; (i = 1,2, ..., m) by the
using the following aggregation formula:

HINULPW A, (R, Ui, iz, -ov i)
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(7.35)

Step 5. Utilize the score function, accuracy function and certainty function for
E(R)E(R)and E(R) by using Egs. (7.14), (7.15) and (7.16).

Step 6. Rank all the alternatives according to their score values and select the best
one.

Step 7. End..

7.4  Numerical Example

In this section we adapted a numerical example from Ye [43] about speculation
alternatives is used to show the efficiency of the proposed decision-making method
under HINUL environment.

There is an investment company. In the available options, the investment company
wants to invest a sum of money in that option which is the best option for it. The

company should invest money according to the following group of possible four

alternatives: (a) N represents the car company; (b) N represents a food company (c)
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Ns represents a computer company (d) N represents an arm company. The decision

must be taken by the investment company according to the following three criteria:
@) o represents the risk; (b) 0, represents the growth; (a) 0: represents the
environmental impact. The priority among the criteria is o.>0. >0, . The four possible
alternatives N, (i =1,2,3,4) with respect to the criteria 0 i(j=12,3) is assessed by three
experts, E = {e,,e,,e,} , Where the assessment information is represented in the form of
HINULNSs under the linguistic term set

§ = {5y = extremely poor, s, = very poor, s, = poor, $3 = medium, s, =
good, ss = very good, s, = extremely good }. The priority among the experts is

e, >¢, >e,. Then, the assessment information with respect to the criteriac;(j=12,3) of

the alternatives M, (i=1,2,3,4) can be given by the three decision makers. For example,
the assessment value about alternative m. with respect to the criterion ¢, provided by
the first expert is {([ss, 5¢], [0.7,0.8],[0.0,0.1],[0.1,0.2])}, which shows that the value
of the alternative 2, with respect to the criteria c; is the uncertain linguistic variable

[s5, 5¢] With the satisfaction degree is [0.7,0.8], dissatisfaction value [0.0,0.1] and the
indeterminacy is [0.1,0.2]. Similarly, the three experts provide their assessment about
the four alternatives with respect to the three criteria. So we have the following three

HINUL decision matrices (see tables 7.1-7.3).
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Table 7.1. The HINUL decision matrix m

0, 0, 83

ﬁl ([525,],[0.3,0.4],[0.L,02],[03,04]) {([5,5.,],[0.4,0.5],[0.2,0.3],[0.1,0% (([5,5,],[0.45,0.55],[0.15,0.25],[0.25,0.
{([sg,54],[0.4,0.5],[0.15,0.25],[0.35,0 ([55.5,],[0.3,0.4],[0.2,0.3],[0.3,0.4])

[06,0.7],[0.,02],[0.L0. {{[s5,5,],[0.6,0.7],[0.1,0.2],[0.2,0.3])}

N, 155 5].[0.7.08].[0.0,01] [010.2])}
{ [0.8,0.9],[0.0,0.1],[0.1,0.

-

(
(

ﬁA ([54:55,[05,0.6],[0.1,0.2],[0.3,04]) {{[5.,5],[05,06],[0.15,0.25],[0.11 (([s,,5],[0.6,0.7],[0.15,0.25],[0.25,0.3¢
{( [s5.5,],[0.6,0.7],[0.0,0.1],[0.1,0.2]) ([55:55],[0.4,0.5],[0.2,0.3],[0.1,0.2])

(EX
([es.
55,5,1,[0.4,05],[0.1,0.2],[0.2,03]) (([s;,5,],[05,06],[0.1,02],[0.5,0.3 {([s,,5,],[0.5,0.6].[0.1,0.2],[0.2,0.3])}
s,,5,],[0.5,0.6],[0.1,0.15],[0.1,0.2 {({ 5],[0.4,0.5],[0.2,0.3],[0.1,0.2

Table 7.2. The HINUL decision matrix M®

O 0, Os

N:  {(5.5].[06,07],[0.,02],[02,03)) [([s,,5:].[0.2,04],[0.1,0.3],[0.2,04]) {([s,.5,].[0.3,0.4],[0.2,03],[03,0.4])}
([53:55].[0.3,0.5],[0.1,0.2],[0.1,0.2])

ﬁz ([ss.55],[0.5,0.6],[0.1,0.2],[0.1,0.2]) {{[4:55],[0-4,06],[0.0,0.2],[0.1,0.2]), ([55.55],[0.6,0.8],[0.0,0.0],[0.0,0.1]),
([5s:5],[0.7,0.8],[0.0,0.1],[0.0,0.1] ([54:55],[0.5,0.7],[0.1,0.15],[0.1,0.15'

])
N {2 s].[05,06],[0.2,0.3].[0.1.0.2], {([s,,5,],[05,0.6],[0.1,0.2],[0.2,0.3]) {([s,,5,].[05,0.6],[0.1,0.2],[0.1,0.2])}
|

\
/
5].[0.4,0.5],[0.1,0.3],[0.2,0.4]}

Ni  {([55:5:].[05,0.6],[01,02],[02,03]) [([s:5:].[04,0.5],[01,02],[0.1,0.2]) {([54,55],[0.5,o.e],[o.Lo.z],[0.1,0.2]>,
([s5.56].[0.7,0.8],[0.0,0.1],[0.0,0.1]) ([ss+55].[0.6,0.7],[0.0,0.1],[0.1,0.15],

Table 7.3. The HINUL decision matrix M®

O 0, Os

ﬁl ([5:5.],[0.1,0.2],[0.3,0.4],[04,05]) [([s,,5,],[0.4,0.5],[0.1,0.2],[0.2,03]) {([s,.s5,],[0.6,0.7],[0.0,0.2],[0.0,0.2])]
([55:5.].[0.4,0.5],[0.2,0.3],[0.2,0.3]) {([55,55],[0.6,0.7]|[0.:L0.2],[0.1,0.2]>

ﬁz {{[55:56],[0.7,0.9],[0.0,01],[0.1,0.15]  {([ss,5,],[0.8,0.9],[0.0,0.0],[0.0,0.1]) {([s,.5,].[0.4,05],[0.2,03],[0.2,0.3])
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N:  {([5:5.].[02,04].[02,03],[03,04]) {(s..5,],[05,06],[0.0,0.15],[0.,02] {{[s;5,],[0.3,0.5],[0.1,0.2],[0.1,0.2])}

Ne {([5::5].[0304],[0.1,02],[02,03]) {([5s5.],[0.7,08],[0.0,0.1],[0.0,0.1])} [([s.,5,],[0-4,05],[0.2,0.3],[0.103])
([54:55],[05,0.6],[0.1,0.2],[0.1,0.3])

7.4.1 Decision Making Steps

Since all the criteria are of same type, so there is no need of normalization.
The GDM method presented in this article can handle such type of problems in the
following way.

Step 1: Calculate the values of T (g =1,2,...,z) by using formula (7.32), we can get

111 05416 0.2916 0.2916 0.2496 0.1615 0.1649
TP=|11 1T =]07050 0.5296 0.6508 |,T,” =| 0.5483 0.4393 0.3054
111 05296 0.3981 0.5416 0.1667 0.2056 0.2105
111 05972 0.6514 0.6145 0.2803 0.5114 0.2992

Step 2. Using GHINULPWA operator to aggregate all the individual HINUL decision

matrices M9 = (79;;) to a collective HINUL decision matrix
mxn

M= (ﬁij)mxn(i =1,23,4,j = 1,2,3) by the following formula (2.33) (assume
n:lﬁﬁ"@):%), and have

{{[2.65- 3465] [0.4236,0.5236],[0.1141,0.2141],[0.26116,0.36116]),
- ([52724+53744 ],[0.4409,0.5409],[0.1150,0.2150],[0.2430,0.3430]),
o ([S302Sa02 ],[0.4594,0.5594],[0.1396,0.2396],[0.3506,0.3950] ),
([35302+S4300],[0-4716,0.5716],[0.1385,0.2385],[0.2771,0.3771])}
{{[S20101 3,99] [0.3701,0.4850],[0.1718,0.2867],[0.1282,0.3150])
([30215+ Ssencz |,[0-4031,0.5176],[0.1695,0.2840], [0.1145,0.2900])
([$3.111:53760 ]:[0-3826,0.5],[0.1697,0.2697],[0.1129,0.2826])
([8522085010]:[0-4143,0.5312],[0.1675,0.2675],[0.1,0.2675])}
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([S31131S3.226 |, [0-4457,0.5457],[0.1514,0.2514],[0.2354,0. 3354]>
([S3113 5301 ,[0.3435,0.4435],[0.1855,0.2855], [0.2710,0.2710])
= [{[Ss000+Sser ].[0-6414,0.7665],[0.0283,0.1283],[0.1,0.1928]),

2 =

([Ss.000:55 ],[0.7,0.8243],[0,0.1],[0.0698,0.1628])

[S4225:55.225 ][ 0-6007,0.7263],[0.0740,0.1480],[0.0740,0.1740]
[S471,55721],[0.7074,0.8306],[0.0231,0.0997],[0.0765,0.1498]

([Sa461:Ss511 ]:[0.5729,0.7050],[0.0765,0.1394],[0.1259,0.2209])
([Sas11+Ss511 ],[0.5421,0.6720],[0.1089,0.1889],[0.1599,0.2399])
(A 4312] [0.4188,0.5278],[0.1459,0.2459],[0.1722,0.2631])
([S362484512 ],[0-3827,0.4913],[0.1087,0.2480],[0.2087,0.3393]),
([S3001:54512 ],[0.4749,0.5832][0.1426,0.2139][0.1168,0.2084]),
([S4.210/54310],[0-4392,0.5472][0.1081,0.2170],[0.1528,0.2813])

N3 =

([55 12654000 ],[0-5,0.6][0.1100,0.2172],[0.1,0.2612])
([53751:54375 ][ 0-4330,0.5330],[0.1755,0.2816][0.1,0.2])

([335001 s4.880],[0.4808,0.5904],[0.1,0.2],[0.1586,0.2586]>]

= [([Suas:5s000 J[0:4712,0.5712][0.1,0.2][0.2514,0.3514])
Ng =

([S450+55 525 ][0-5305,0.6305][ 0.0436,0.1436][0.1436,0.2436 )

([S4220552 ], [0.5263,0.6263],[0.0930, 0.1914], [0.0714,0.1698])
([S4s57 55520 ], [0-6174,0.7174],[0.0610,0.1595], [0.0407,0.1392])

S4 0005042 ] [0.5390,0.6390], [0.1407,0.2407],[0.1798,0.2939])
S400/Ss.000 |+[0.5523,0.6523],[0.1261,0.2418],[0.2227,0.2940])
S4s21:Sam3 :[0.5727,0.6727],[0.1043,0.2043][0.1787,0.2782])
S, 321/S5.000 | [0-5849,0.68491[0.0908,0.1908][0.1757,0.2736])
s522/S5306 ][ 0.4292,0.5292],[0.1708,0.2708], [0.1,0.2126])
S,522/55522 |,[0.4428,0.5428],[0.1572,0.2572],[0.1,0.2140])

S, 0435306 |+ 0.4629,0.5629],[0.1371,0.2371], [0.10.1965]
Susi3:8s.520 ], [0-4755,0.5755],[0.1245,0.2245],[0.1,0.1981]) |.

2

Step 3. Calculate the values of T, (i=1,2,3,4, j =1,2,3) by using formula (7.34), we have
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1 0.40437 0.149235
T;=|1 0.718826 0.482424
1 0.470867 0.258899
1 0.671732 0.400866

Step 4. Aggregate the HINULN n; for each alternative N, (i=1,2,3,4) by the using the
following aggregation formula (7.35) (assume n =1,%(s,) =%), and have

5 ([S2.643:53520 |, [0-4106,0.5148],[0.1341,0.2383],[0.22100.3455])
- ([S21643:53505 |, [0-3999,0.5041],[0.1380, 0.2422],[0.2250, 0.3385])

([S2672/5355 ]:[0-4198,0.5240],[0.1338,0.2380],[0.2162,0.3380])
([S2672S3624 ]:[0-409,0.5133],[0.1376,0.2418],[0.2202,0.3311])

([S260513520 ]:[0.4139,0.5189],[0.1338,0.2338],[0.2158,0.3359)]
([52.60513.505 ][0-4033,0.5082],[0.1377,0.2377],[0.2198,0.3290])
([S2724-S5556 [0-4230,0.5279],[0.1335,0.2335],[0.2110,0.3310])

([S2724 83624 ],[0-4123,0.5173],[0.1373,0.2373],[0.2151,0.3242])
([S2628:S3700 |:[0-4224,0.5264],[0.13360.2376 ], [0.21160.3348])
([S2525155775 ],[0.4122,0.5264],[0.13730.2412],[0.21550.3195])
([S2852/55755 ),[0-4310,0.5349],[0.1333,0.2373],[0.20710.3278)])
([S2862+S300s -[0-4208,0.5247],[0.1369,0.2409][0.2110,0.3214])

([S2675:S3700 ][ 0.4254,0.5301],[0.1333,0.2333],[0.2068,0.3258])
([5,675:53775 |,[0-4152,0.5199],[0.1370,0.2370],[0.2107,0.3194])
([S2.0 53736 ],[0.4339,0.5386],[0.1330,0.2330],[0.2023,0.3212])
([52.904 8505 -[0.4237,0.5284],[0.1367,0.2367],[0.2063,0.3149)])
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([S3001S3.006 [ 0-4356,0.5394],[0.1488,0.2526],[0.2841,0.3695])
([S500:35054 | ,[0-4258,0.5295],[0.1488,0.2526 |, [0.2836,0.3692])
([S3022 55017 ]:[0.4436,0.5474],[0.1484,0.2521],[0.2792,0.3626)
([S3022+5308 [ 0.4338,0.5375],[0.1484,0.2554]0.2822,0.3561])
([S3085 3888][0 43830.5428],[0.14840.2484],[0.27890.3607 )
([S5055 55054 |,[0-4286,0.5330],[0.15174,0.2517],[0.2819,0.3542])
([S084 55017 ][0-44630.5507],[0.14800.2480][0.27410.3560] )
([Ss084:55 933] [0.4365,0.5409][0.1513,0.2513][0.2772,0.3497])
([S3162+S4.065 ][ 0-4450,0.5486],[0.1476,0.2512],[0.2377,0.3586])
([S162 154134 ,[0.43550.5391],[0.1508,0.2544],[0.2410,0.3525)
([S3211 84067 ][0-4525,0.5561][0.1472,0.2508][ 0.2335,0.3521])

([85211 4163] [0.4431,0.5466],[0.1504,0.2539][0.2367,0.3461),
([S5234 8460 ],[0-4475,0.5518],[0.1473,0.2473],[0.23320.3503)),
([S3224 84134 ],[0-4381,0.5424][0.1504,0.2504],[0.2364,0.3443]),
([S3265 54007 ][ 0-4550,0.5592],[0.1469,0.2469],[0.22900.3460]),
([S3265 54165 ]:[0.4456,0.5498],[0.1469,0.2469], [0.2290, 0.34591]

([S4712/55.407 |,[0.6139,0.7407],[0.0528,0.1367],[0.0979,0.1934])
N2 =1 ([S4 620557 - [0.6075,0.7338],[0.0597,0.1474],[0.1051,0.1973]
([S476:55.552 ][0-6481,0.7740][0.0370,0.1214],[0.0980,0.1849])
([S4005 5563 ], [0-6421,0.7676],[0.0435,0.1317],[0.1049,0.1887])
([Sa712+85.30 |,[0.6425,0.7690],[0.0388,0.1230],[0.0833,0.1789])
([S4 63955620 ]:[0.6365,0.7624],[0.0455,0.1334],[0.0903,0.1826 )
([S47615.505 |,[ 0-6754,0.7624],[0.0237,0.1083],[0.0838,0.1710])
([S4505 8505 | [ 0.6697,0.7948],[0.0300,0.1183],[0.0906,0.1746 )

Sy507S4012 ) [0.4281,0.5348],[0.1075,0.2323],[0.1734,0.3065]
S300S412 [ 0.4819,0.58851,[0.1277,0.2124],[0.1196,0.2294])
S3560:Sa12 ][ 0.4603,0.5667],[0.1072,0.2143],[0.1412,0.2729])
35075424 ]:[0.4330,0.5396],[0.1466,0.2483],[0.1498,0.2448]

[0.4123,0.5187],[0.1255,0.2494],[0.1709,0.2883])
05754424 :[0.4646,0.5709],[0.1446,0.2298],[0.1189,0.2141])
S .00 S4.2¢ ][ 0.4440,0.5502],[0.1245,0.2313],[0.1399,0.2565] }

S
— {( S3347/S4312 |, [0-4500,0.5568],[0.1289,0.2308],[0.1516,0.2619]
S

S3 697 4 414

(
(
(
(
(
(
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— {([54_230,55_046],[0.5019,0.6019],[0.1052,0.2047],[0.1786,0.2807]>

([S4230 85,076 ][ 0.5045,0.6045],[0.1026,0.2050] ,[0.1867,0.2808])

([S4262+55046 ],[0-5086,0.6086],[0.0985,0.1980],[0.17840.2778])
([S4262+5507 ][0-5111,0.6111],[0.0959,0.1954],[0.1779,0.2769])
([S4:331:55147 ][ 0.4806,0.5806],[0.1120,0.2115],[0.1626,0.2646]),
([S4331:55175 ,[0.4832,0.5832],[0.1094,0.2089],[0.1624,0.2647]),
([S4203:55.17 |.[0.4872,0.5872],[0.10540.2049],[0.16220.2609]),
([Ss450 55176 ]-[0.4898,0.5898],[0.1029,0.2024],[0.16200.2611]),
([S4527 55144 ,[0.5338,0.6338],[0.0939,0.1934],[0.1658,0.2679])
([S4527:55174 ,[0.5363,0.6363],[0.0914,0.1937],[0.1737,0.2680]
( ,],[0.5401,0.6401],[0.0874,0.1869],[0.1657,0.2651])
([S4.300 85174 ][ 0.5425,0.6425],[0.0850,0.1844],[0.1652,0.2643])
([S4.426155 205 ],[0.5122,0.6122],[0.1008,0.2003],[0.1504,0.2524])

S4 390 SS 14

([S4.42655.275 | .[0-5147,0.6147],[0.0983,0.1978],[0.1502,0.2525])
([S4.401:55.245 ][ 0.5185,0.6185],[0.0945,0.1940],[0.1500, 0.2488])
([S4.401:55.25 ][ 0.52100.6210],[0.0920, 0.1915],[0.1499,0.2490])
([Sa.67 15505 ],[0.5307,0.6307],[0.0760,0.1756],[0.1273,0.2292])
([Sa457 85335 ],[0.5331,0.6331][0.0737,0.1759],[0.1350,0.2295])

([ 5495503 ], [0-5368,0.6368],[0.0699,0.1694],[0.1274,0.2268])
([S4540 851325 ]:[0-5391,0.6391],[0.0675,0.1670],[0.1270,0.2261])
([ 56655404 ,[0-5098,0.6098],[0.0831,0.1826],[0.1131,0.2150])
([Sas00 1535 ],[0.5122,0.6122],[0.0807,0.1803],[0.1130,0.2152])
{ J ]

S4650+S5.004 |:[0.5160,0.6160],[0.0770,0.1766],[0.1130, 0.2118]

([Sas50- 5435] [0.5183,0.6183],[0.0747,0.1742],[0.1129,0.2121])
([S4504 85401 ]:[0-5604,0.6604],[0.0659,0.1654],[0.1161,0.2181])
([S4 554551 ][ 0.5626,0.6626],[0.0636,0.1658],[0.1238,0.2183])
([S46aes 1Ss.401 ][ 0.5662,0.6662],[0.0600,0.1595] [ 0.1163,0.2158]
([S4647:55.421],[0.5684,0.6684],[0.0577,0.1572],[0.1160,0.2151])
([Sae6 5502 | .[0-5394,0.6394],[0.0730,0.1726],[0.1024,0.2043])
([ 5665552 ][0-5416,0.6416],[0.0708,0.1703][0.1024,0.2046)])
([S4746155502 ][0-5452,0.6452],[0.0672,0.1667][0.1024,0.2013])
([S4748155522 ][0-5474,0.6474],[0.0649,0.1644][0.1024,0.2015])
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Step 5. Calculate the score values of the alternatives N, (i =1,2,3,4) by using

Definition (2.1.1.5), and get
?}(ﬁl) —0.3941, ?}(ﬁz) - 0.7375,§(ﬁ3) —0.4873, %(R) —0.6273..

Step 6. Ranking order of the alternatives according to their score values:
ﬁz >ﬁ4 >ﬁ3 >ﬁ1..

So ﬁz is the best alternative.

7.4.2 Influence on the Ranking Results of the Generalized Parameter

In this subpart, the effects of generalized parameter are discussed.

Table 7. 4. Influence of the parameter 7 on decision result

n Score values Ranking order

n—0, ﬁz>ﬁ4>ﬁ3>ﬁ1.

?}(ﬁl) - 03733, %( N 2) ~0.7277, %( N 3) ~0.4811, ﬁ(ﬁ) — 0.6139.

77=21 ﬁz>ﬁ4>ﬁ3>ﬁ1.

so(ﬁl) ~0.4142, ﬁ( N 2) - 0.7476,§(ﬁ3) _ 0.4934,$(ﬁ4) — 0.6387.

77:51 ﬁz>ﬁ4>ﬁ3>ﬁ1.

so(ﬁl) — 0.4620, %(ﬁz) - o.774o,$(ﬁ3) _ 0.5089,$(ﬁ4) _0.6715.

n="1, ﬁ2>ﬁ4>ﬁ3>ﬁ1.
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so(ﬁl) — 0.4852, %(ﬁz) - 0.7887,§(ﬁ3) - o.5174,§(ﬁ4) — 0.6915.

n=15, ﬁz>ﬁ4>ﬁ3>ﬁ1.

so( Nl) 05292, ;(ﬁz) - 0.8279,5( N3) _ 0.5424,5(54) 07492,

77=251 N2>N4>N1>N3.

so(Nl) 05757, ﬁ(ﬁz ) - 0.8509,§(ﬁ3) - o.5613,§(ﬁ4) —0.7831.

In order to show the effects on the ranking results of the generalized parameter 7 for
this example, we can use the different generalized parameter 7 in steps 2 and 4, and
get the ranking results shown in Table 7.4.

From Table 7.4, we can see the ranking orders obtained by using different values of
the parameter nare not always same, and when the value of 7 =25, they are changed,

but the best alternative remains the same.

7.4.3 Influence on the Ranking Results of LSF

In order to show the effects on the ranking results of LSF for this example, we can
use the different LSFs in steps 2 and 4, and get the ranking results shown in Table 7.5.

From Table 7.5, we can see the ranking orders obtained by using different LSFs are
same.

Table 7.5. Score values and ranking order using different LSFs

Ry (s,) ?}(ﬁl) - 0.3941,s=(ﬁ2 ) ~0.7375,S (ﬁg) _ 0.4873,%(@) ~0.62 N2>Nas>Ns> N

so(ﬁs) - 0.4315,573@4) — 05l

S (E):o.ssso,s (ﬁz)=o.6604,

ﬁz >ﬁ4 >ﬁ3 >§1

so(Nl) — 0.3665, so(ﬁz ) —0.7060,50 ﬁg) 04712, so(ﬁ) —0.609
g * == == == ==
R, (5,9) N2 > Ns >Nz > Ni.

—
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7.4.4 Compared With the Existing Method

Compared with the method proposed by Ye [43], the above ranking order is the
same as the one obtained in Ye [43]. Compared with the relative decision making
method based on INULSs, the decision making method in this chapter use HINUL
information, while the decision making methods in [43] use INUL information and
also the proposed aggregation operators in this chapter can handle decision making
problems in the HINUL environment, where criteria takes different priority levels,
and the criteria weights are obtained by using PA operators according to priority of
the priority level and are more reasonable than a set of known one. Since HINULSS is
a further extension of the concept of INULSs. HINUL information include INUL
information. Therefore, the group decision making method proposed in this article can
deal with not only HINUL information INUL information. To some extent, the group
decision making method in this chapter, is more general and feasible than the existing

method INUL setting [43].

7.4.5 Conclusion

The chapter presented the concept of HINULSs based on the combination of INULSs
and HFSs, and as a further generalization of these fuzzy concepts and defined some
basic operational rules for HINULEs and the score, accuracy, certainty functions of
HINULEs respectively, some of their properties were investigated. Then, based on

these operational rules we defined some aggregation operators, such as HINULPWA
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operator and a HINULPWG operator to aggregate HINUL information. Furthermore
some desired properties of the two operators were investigated. Moreover,
GHINULPWA operator and some special cases of GHINULPWA operator are
investigated. After that GHINUPLWA operator was applied to a group decision
making under HINUL environment, where values of the attributes with respect to the
alternatives takes the form of HINULEs and the attributes and experts weight are
known information. We utilize the score function, (accuracy and certainty functions)
to rank the alternatives and select the best ones. Lastly, an illustrative example was
provided to demonstrate the application of the proposed group decision making
method. The main advantage of the developed method is that, it can defined the
incomplete, indeterminate and inconsistent information by several INULNs in which
the uncertain linguistic variable indicate whether attribute is good or bad in qualitative
and INNs are adopted to demonstrate the satisfaction degree, dissatisfaction degree
and indeterminacy degree to an uncertain linguistic variable in quantitative.
Therefore, the proposed MAGDM method under HINUL environment is more
suitable for real science and engineering applications. In future, we shall develop
some more aggregation operators and apply them to MADM, medical diagnosis, and

expert system.
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Chapter 8

Multiple-Attribute Decision Making Based on Single-Valued
Neutrosophic Schweizer-Sklar Prioritized aggregation

Operators

In this chapter, we enlarge SS TN and TCN to SVNN and give the SS
operational laws of SVNNs. Then, we merge prioritize aggregation (PRA) operator
with SS operations, and develop the single-valued neutrosophic Schweizer-Sklar
prioritized weighted averaging (SVNSSPRWA) operator, single-valued neutrosophic
Schweizer-Sklar prioritized ordered weighted averaging (SVNSSPROWA) operator,
single-valued neutrosophic  Schweizer-Sklar prioritized weighted geometric
(SVNSSPRWG) operator, and single-valued neutrosophic Schweizer-Sklar prioritized
ordered weighted geometric (SVNSSPROWG) operator. Moreover, we study some
useful characteristics of these proposed aggregation operators (AOs) and propose two
models on the basis of SVNSSPRWA and SVNSSPRWG operators. At the same
time, we apply these two methods to deal with multiple-attribute decision making
(MADM) problems under SVN information. Lastly, an illustrative example about

talent introduction is given to testify the effectiveness of the developed methods.
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8.1 Schweizer-Sklar Operations For SVNNs

In this section, we develop some operational rules for SVNNs over SS T-norm

and T-conorm.

8.1.1 Schweizer-Sklar product and sum

SS operations consist of the SS product and SS sum, which are special cases of

ATT, respectively.

8.1.1.1 Definition [6]

Letsvi=(= ¥, .Y, )and sv.=(5 ¥ .Y, )be two SVNSs. Then, the

generalized union and intersection are described as follows:

SVlUT,T* SV, = {<SO7T* (Esw ’ES\/Q ),T (\Psvl ’\Psvz ),T (stl , stz )> | e N}, (81)

SVi[), SV = {<50,T (Bq, Bq, ) T (¥, ¥s. )T (Ya, Yy, )> lpe N}. (8.2)

Where, TandT , expressed T-norm (TN) and T-conorm (TCN) respectively.

The Schweizer-Sklar (SS) TN and TCN [107] are described as follows:

1

Tes (0,0) = (0" + 0" ~1), (6.3)

[

Tss (0.0)=1-((1-0)" + (- )" -1J". (8.4)

Where, ®<0,0,0<[0,1].
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Additionally, when % =0, we have T,(d,p)=dpand T,(d,p)=0+p-0¢. That is,

SS TN and TCN reduce to algebraic TN and TCN.

Now, in the next subsection, based on TNT,(d,p) and TCN T,(4,0) of SS

operations, we can permit the following definition about SS operations of SVNNs.

8.1.2 Schweizer-Sklar operations for SVNNs
8.1.2.1 Definition

Assume #, =(Z,¥, Y,)and #,=(Z,,%,,Y,)are any two SVNNs. Then based on SS

operations, the generalized union and intersection are introduced as follows:

n&. h, :<T*(El,52),T(\Pl,\yz),T(Yl,Yz)>, (8.5)

ne_ . n, =<T(31,32),T*(W1,\P2),T*(Yl,Y2)>. (8.6)

On the basis of Definition (1.1.1.3) and Equation (8.5), and Equation (8.6), we can

introduce the SS operations of SVNNs are described as follows( < 0,2 >0):

1 1

(1) b, ®g h, = <(:;‘ 2] -1 1 (- w,) (2, 1) 1 () + (1) —1)“‘>, (8.7)

(2) h,® h, = <1_((1_51)‘~" +(1-5,)" _1)5* (¥ ey _1)é (g —1)$>, (8.8)
3) u? :<( =" —(7&—1))‘)% A-(r@-w)" = (-] 1 (2 (2- )" —(7&—1))’“>, (8.9)
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(4) 2, = <1‘(7L(1—31)“ () (e - () _(x_l))$>.

8.1.2.2 Theorem
Let n, =(2,¥,,Y,)and 7, =(Z,,¥,,Y,) be any two SVNNSs, then
Q) h® h,=h, D h,,
(2) h,® h,=h,® hy,
(3) k(@ hr,)= RN, B¢ Kh,, E20;
(4) Rh, @ Kohy = (R +RK,)hy, Ry, R, 20
(5) 1 ®g it =(h, ® h,)", %20,

(6) i ®g 1z =(n,) ™™ 1,,%, >0.

8.1.3 Single-Valued Neutrosophic Scheweizer-Sklar Prioritized

Weighted Operator

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

we introduce a few new PRAOs for SVNNs, namely SVNSSPRAWA operator,

SVNSSPRAOWA operator, and discuss some characteristics of these developed

aggregation operators.
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8.1.4 Single valued neutrosophic Schweizer-Sklar prioritized

weighted averaging (SVNSSPRAWA) operator

8.1.4.1 Definition

A SVN Schweizer-Sklar prioritized weighted averaging (SVNSSPRWA) operator is a

function SYNSSPRWA: & — Q, which is described as:

SVNSSPRWA(,,71,,.... 1) = h. (8.17)

S-l—

Where, T:=1,andT, =®SC(n).(1=23,....,5). Here, SC(n,) expresses the score value of
1=1

SVNN #,.

8.14.2 Theorem

For a group of SVNNs», =(=,,%,,,).(g=12..,s), the value aggregated by utilizing

developed SVNPRWA operator is still a SVNN and is specified by:

SVNSSPRWA(fy, .1, ) = 1| @i (1-5, ) ~ @ o241
g=1 @Tg 9=l MT
g=1 g=1
1 (8.18)
: 1
> -Fg 9 > _g > 1_-9 9 -Fg
@S:‘P;z_ S=+1 @S:Y; S=+1
S@T Y@ | | U@ T

Proof: Firstly, Equation (8.18) will be proved by utilizing mathematical induction

(MI). The following steps of MI have been followed:
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Step 1. For g =2, we have

=1

2
SVNSSPRWA (,,71,) = @ ——h,,
91 T
9
g=1
O, (819)
(—I—)Tg @Tg
g=1 g=1

From the operational laws for SVNNs, proposed in Definition (8.1.2.1), we have

2 = hl:
DT
g=1
1 1 1
R " R
. = = = = =
1- le (1_‘:‘1)§_ Ti -1 zTi ‘Ply_ 2T; -1 2Ti YIR_ zT; -1
DT DT DT DTo DTo DT
g=1 g=1 g=1 g=1 g=1 g=1
and
T,
=N, =
DT
g=1
1 1 1
= 1 = = = = =
e = L e | I B B B B B B
T g @Te @Ty @T, @7, @7,
g=1

So, Equation (8.19) becomes
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1
IN\E 1\ R
% %
1-||1-]1- ZT; (1-2)" |- zTi -1 +1-]1- ZTi (1-%,)" |- ZTi -1 -1,
DT DT DT DT
g=1 g=1 g=1 g=1
1
1\% 1\% R
R R
Ti ye | T T, T
2__lP1R_ 2 = -1 2 = 3 - 2 = -1 -1
DT DT DT DT
g=1 g=1 g=1 g=1
1
1\® 1\® W
n n
T, | T To | T2
2 = Ylk_ 2 -1 2 = Y;{_ 2 = -1 -1 '
DT DT DTy DT
g=1 g=1 g=1 g=1
1
1 R 1
R R
2T w2 T 2T o2 T 2 T 2 l
= 1_@21(1_59) _®zi+1 | zi\yé‘_@zi"'l '®ziY;_@zi+l
o=t Tg o= R g:]'@Tg g:]'@Tg o= Tg o1 Tg
g=1 g=1 g=1 g=1 g=1 g-1
i.e. when g =2, Equation (8.18) is true.
Step 2. Assume that for g =r, Equation (8.18) is true. i.e.,
n
CT o T
SVNSSPRWA (B, 71y, .o, ) = 1| @2 (1-5, ) ~@—=+1|
g=1 'Fg g=1 -F
g=1 g=1
. (8.20)
pr— pr— ; pr— pr— o
Ty Ty
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Then, forg=r+1, according to the operational rules developed for SVNNSs in

Definition (8.1.2.1), we have

Tr+1

= el T
DT
g=1
1 1 1
i V3 R
?Hl — 1 -Fr+l -Fr+1 R -Fr+1 -Fr+1 R T_-r+1
1- r+l= (1_':'”1)9{_ r+l= -1 ! K\Prﬂ 7| = -1 | orHl= Yr+1 | A= -1 !
DT DT DT DT DT DT
g=1 g=1 g=1 g=1 g=1 g=1
and
Te.
SVNSSPRWA(y, 715,y Tty T,y ) = SYNSSPRWA By, Ty ooy T, ) ®gg iy,
DT
g=1
1" 1 R g
_ _ R B B ®
S | E T L | (1-2,)" - To 4 T O L = S L -1
DT DT @Ts @Ts
g=1 g=1 g=1 g=1
1
\% R R
p— p— § p— p— =
V@t | 4| @ | |
T PT, L PT, @T. = PT
g=1 g=1 g=1 9=1
1
R \® =
" ®
r -Fu 9 r -liu -|Tr+1 9 Tl -|Tr+l
r = \Ij;_ r = +1 + r+l= Yrﬂﬂ_ @Hl: -1 -1
CPT, S @T BT Ty
g=1 g=1 g=1 g=1

So, when g=r+1, Equation (8.18) is true. Therefore, Equation (8.18) is true for all s.

When STi >0, such that ESB STi =1, then, Equation (8.18) degenerates into the
DTy L PT,
g=1 g=1

following form:
250



BN

SVNSSPRWA(h i) = 1-| @2 (1-2,)" | || @297 | | @ | ).(8:20)

8.14.3 Example

Let »,=(0.3,0.4,05),4,=(0.4,0.20.1)and r, =(0.6,0.1,0.2) be three SVNNs. Based on the
score function of SVNNs, we get S=O(hl):0.4667,5?)(h2):0.7and §(h3):0.7667, and

hence T: =1T. =0.4667 and Ts =0.3267. By using this information, (y =-2)

SVNSSPRAWA(hy,hy, hy) =

E
S|
s

3 N 3 3 3 3 ) 3
1_®3=(1_‘=g) _®3=+1 '@3=\Pg_® _+1 ®3=Yg_®3=+1
g=1 T g=1 (‘DTQ 9=1 To g:l(_BTg g=1 (‘DTQ 9=1 T
g=1 g=1 g=1 g=1 g=1 g=1
=(0.4226,0.1883,0.1746).

8.14.4 Theorem

For a group of SVNNs#, =(2,,¥,,Y,).(u=12,..s), the SVNPRWA operator satisfies

the following characteristics:

(1) (Idempotency) Ifall z,(u=12,..,s)are equal, i.e., , =h=(Z,¥,Y);then

SVNSSPRWA (1, Ty, ..., ) = (8.22)

Proof. Since n, =n=(=,¥,Y);for all h. so,
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SVNSSPRWA (71, 1, ... 1, ) =

1 1
_ _ n _ _ R _ _ ="
Tu — \R > Tu Tu 9 S Tu s Tu 9 S Tu
1- (‘D s = (1_‘:U) _(-B s = +1 Nos = LPJ‘_(‘B s = +1 ! @ s = Yl]i_@ s = +1 !
L PT S PT. T CPT. CPT. S PT.
u=1 u=1 u=1 u=1 u=1 u=1
1 1 1
_ ® _ ® _ "
S Tu —\R s Tu 9 s Tu 9
={ 1- @ s = (1_‘:') ! @ s = IIJR ! @ s = YR '
BT = PT = PT
=1 u=1 u=1

- <l_(( _E)\R )i ,(‘I—"‘R )% ,(Y\‘“ )11:>'

(2) (Monotonicity) If h;=<s'u,\P’U,Y’u>and h,=(2,, W, Y,)are two groups of

SVNNs, such that 7, >n,. i.e., =, >=,,¥, <¥,and Y, <, forall h then

SVNSSPRWA (1}, Iy, ..., ) > SYNSSPRWA (71, iy ..., 1, ). (8.23)

Proof. Since #' >4, , which implies = >= and so
u u u u

s -?u s R s -?u o
=>@ — (1—au) <P (1—.:u) ,
u=1 (—DT . u=1 "
u=1 u=l
s = R s = s T . s =
5@ (1-8,) - @ =@ (1-5,) - @+
u=1 G—)T . u=1 .F . u=1 lu u=1 (—BTLI
u=1 u=1 u=1 u=1
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1 1
, _, R _ _ R
S -Fu —_ R S -Fu S Tu —_ U S Tu
= @5 (1-5.) ~@5 5+ g @) -@T=+1] .
u=1 T " u=1 (—DT . u=1 @Tu u=l (—BTU
u=1 u=1 u=1

1 1
— — " — — &
S R S S g S u
=1-| @ T_ (1—5'u) - T_ +1| 21-| @ ST“= 1-2,)" - ST= +1] . (8.24)
u=1 T . u=1 (—DT . u=1 Tu u=1 Tu
u=1 u=1 u=l u=1
and
Since ¥ <Y
é T’LI \PI‘R < TLI \P\_R
u=1 T_'u u=1 (—B-Fu
u=1 u=l
s = s = s - s T
e T R e R eSS
u=1 @T’u u=1 @T’u u=1 @Tu u=1 @Tu
u=1 u=1 u=1 u=1
1 1
o o 9w . . 9w
s 12 s ’ S S
e R i R e B e R G S I (8.25)
u=1 @T ,u u=1 @T’u u=1 @Tu u=1 @Tu
u=1 u=1 u=1 u=1
Similarly, we have
® _ _ 0
T T g, (8.26)

BT < DT -
u=1 T’u u=1 @T’u u=1 @Tu u=1 C'BT“
u=1 u=1 u=1l

u=1
From Equations (8.24),(8.25) and (8.26), we get
SVNSSPRWA(7, A ..., 1, ) = SYNSSPRWA (1, b, ..., 1, ).
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(3) (Boundedness) Let #,=(z,¥,Y,)be a group of SVNNs, and

h™ < SVNSSPRWA (i, hy,..... by ) < B (8.27)
Proof. Since miiln B, <E, < max=,,m ny
Hence, from property (2), we have
SVNSSPRWA(7;, A ..., 1, ) = SYNSSPRWA (1, b, ..., B, ).

When p=0,then the SVNPRASSWA operator reduces to the PRA operator based on

the algebraic operational laws for SVNNSs. That is,

SVNSSPRWA, , (7, /1, h)) = 1-®(1-E,)" .Q(¥,)" (1)) ). (8.28)

8.1.5 Single-Valued Neutrosophic Schweizer-Sklar Prioritized

ordered weighted averaging operator

In this subpart, we develop an AO which merges the conviction of PRWA with
ordered weighted operator and called as SVNSSPR ordered weighted averaging

(SVNSSOWA) operator.
8.1.5.1 Definition

A SVNPROWA operator is a function SYNSSPROWA: @ —Q, which is described as

follows:
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S

SVNSSPRWA(71,, 71, ) = @ —— N - (8.29)

— o(u)
Ty

=
)

u=1
s-l—
|

Where, T.=1andT, =®SO(#,),(1=2.3,....s),pis a permutation of (12,..,s)such that
=1

o@) > pa-1)for a=23,..,s.
8.1.5.2 Theorem

For a group of SVNNs#, =(z,,¥,.Y,),(u=12,..,s), the value aggregated by utilizing

the developed SVNPROWA operator is still a SVNN and is specified by:

E

S g S
SVNSSPROWA (2,71, ,...., 2 ) ={ 1- (-DST—”_(l—EW))R—@ST—“_+1
= DT = DT,
u=1 u=1l
(8.30)
. . R _ _ ®
@ST_U:\P?:(u)_ sT—u=+1 ,GBST—”:Y;%— ST_U=+1

T PTu T PTu L PTu T PTu
u=1 u=1

u=1
Proof: Same as Theorem (8.1.4.2).

8.1.5.3 Example

Consider the SVNNs given in Example 8.1.4.3, we have 'I='1:1,'E2:0.4667 and

T5=0.3267. the score values are S=O(hl) =0.4667,S=O(h2) =0.7 and S=O(h3) =0.7667 . S0, we

have S=O(h3)>S=O(h2)>§)(hl)and hence, 7 =hyh,, =h,h,, =h. By using this

9(2) #(3)

information (y =-2), we can get
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SVNSSPROWA (%1, 71, h1,) =

% =% %
3T, oy 3T STy o AT STy T
1- (-91 E (l_:()(u)) _6‘2 3u: 1, Q‘? 3u: T:j()_@? au: +1 C_B1 3u: Y::(u)_('Bl 3u: +1
S PT S PTu = PT = PT. u= u T
u=l @ uE’:? u=l :C':? =1

=(0.5327,0.1256,0.1568) .

8.154 Theorem
For a group of SVNNShg:<Eg,‘I—’g,Y‘g>,(g:L2 ..... s), the SVNPROWA operator
satisfies the following properties:

(1) (Idempotency) If all »,(g=12,..,s)are equal, i.e., n, =n=(Z,¥,Y);then

SVNSSPROWA (71, 1y ..., 1, ) = . (8.31)

(2) (Monotonicity) If h;:<5’g,\y’g,fg>and hy =(Z,,¥,,T,)are two groups of

’

SVNNSs, such that 7}, >4,. ie., 2, >= %' < and Y, <1, forall hthen
SVNSSPROWA (A}, 1y ...., 1, ) = SVNSSPROWA (1, ..., B, ). (8.32)

(3) (Boundedness) Let »,=(z, ¥, r,)be a group of SVNNs, and

g

S S S S S S
n =<mang,min‘I’s,mian>, I =<minEg,maxLPg,mang>. Then,
0 g1 c

9 g=1 g= g=1 g=1 g=1

h™ < SVNSSPROWA(hy,hy,.....h ) < B (8.33)
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8.2 Single-Valued Neutrosophic Schweizer-Sklar Prioritized

Weighted Geometric Operator

In this subpart, we develop single-valued neutrosophic Schweizer-Sklar prioritized
weighted geometric (SVNSSPRWG) and single-valued neutrosophic Schweizer-Sklar
prioritized ordered weighted geometric (SVNSSPROWG) operators. We also discuss

some characteristics of the developed aggregation operators.

8.2.1 Single-Valued Neutrosophic Schweizer-Sklar Prioritized

Weighted Geometric (SVNSSPRWG) Operator

8.2.1.1 Definition

A single valued neutrosophic Schweizer-Sklar prioritized weighted geometric

(SVNSSPRWG) operator is a function SYNSSPRWG : ° — Q, which is described as:

SVNSSPRWG (1, &, ,..., . ) = R (8.34)

s-l—
|

Where, T =1,and T, = ®S0(4,),(1 =2,3,.....s).

8.2.1.2 Theorem

Letn, =(=,.%,.7,).(9=12..5), the value aggregated by utilizing developed

SVNPRWG operator is still a SVNN and is specified by:
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SVNSSPRWG (71, 715,...., By ) = — = -p—=+1
gzle:_)Tg g=1 T
g=1 g=1
(8.35)
% %
S 'F w5 'F S 'F w5 'I_'
- @5 (1-%) ~@==+1| - @==(1-7,) D=1
T PT, S PTa L PTy L PT
g=1 g=1 g=1 g=1

Proof: Firstly, we will prove Equation (8.35), by utilizing MI. The following steps of

M1 have been followed:

Step 1. Forg =2, we have

g1

" o (8.36)

-
To T 1 T 1
= ZT; N - ZTi S| - 2R | 1| - ZT; 1-Y)n | 5—-1
BT T, PTo PTo BT T,
g=1 g=1 g=1 g=1 g=1 g=1
and
_ 1 1
7. o n o
@ T T 1| T T 1T
h = ZTZ g - zTi -1 1- ZT: 1-¥, )7 —| 1| 1- ZTi 1-Y,)% | -1
PTo P PTo PTo PT- PTo
=] g=1 g=1 g=1 g=1

So, Equation (8.36) becomes
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1
T @ T = = =
ht ®nyt = ZT; - ZT; -1 + zTi - ZTj -1 -1
DT DT DT DT
g=1 g=1 g=1 g=1
St IN\® 92
=R =%
1-||1-]1- ZT; 1-v,)" |- ZT; -1 +H1-|1-|| 5= (1-v,)" |- zTi -1 -1
@Ts @Te DT @Te
g=1 g=1 g=1 g=1
1
TN N\® 0
92 9%
1-|1-]1- ZT; a-r)" |- ZT; -1 +]1-|1- zTi a-r,)" zTi -1 -1
DT @Te DT @Ta
g=1 g=1 g=1 g=1
1 1
R €% 9%
2 T 2 T 2 T ; 2 T 2 T 2 T
- @1 ZTQ 5‘;—@1 zTi +1] 1- @1 zTi (1—\119)"—@1 zTi +1] 1 @1 zTi (1—1@)“—@1 zTi +1
9= T g T 9= T g 9= T 9=
o1 0 gzlg glg S—Blg 9629 glg
i.e.,, when g=2, Equation (8.35) is true.
Step 2. Assume that for g =c, Equation (8.35) is true, i.e.,
SVNSSPRWG (i, Tty .00, ) =
1 1 1
=" 0 "
I LR | I LR 0 AL M R T I SR R Y LS|
1 =1 Tg g=1 g g=1 @Tg g=1 g g:l@ g
g=1 g=1 g=1 g=1
(8.37)

Then, forg=c+1, according to the operational

Definition (8.1.2.1), we have

= 1
Tea R
(-B?g T T 1 T
h = cT1C:1 E, 1Ji - cTicf -1 1- Ilc;l (l_\ycn)?‘ - c: -1 1- cim (1_Yc+1)97 - +1c;1 -1
s s s DT ) T
g=1 g=1 g=1 g=1 g=1 g=1
and
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SVNSSPRWG (711, 1ty ey Iig T ) = SYNSSPRWG By, Ty, ooy ) ®s B,

1\ AR W
=" %
¢ T c T T c+l =
(||| @rrE @t | | 4| e s | @a || | 1)
SeT e IR
g=1 g=1 g=1 g=1
R ® ®
n 0
1| 11| @0 - @t | || 17| 1| e | ] -
LT T @Te @To
g=1 g=1 g=1 g=1
1 R % w
% %
¢ = . ¢ = = \ =
| |1 | @ @t ||| 4|1 | ) | 21| |
T =T @, @To
o1 9=l g1 g=1

1 L
=" e

_ c+l -?g 9 c+l -?g c+l -?g € c+l -?g c+l -?g R c+l -?g
- @ cHl — ':‘:;_® c+l — +1 ’1_ @ c+l — (1_‘{19) - cHl — +l ’l_ @ cHl — (1_Yg) _® c+l — +1
g=1 (—BT 9 -1 DT, -1 DT, g=1 @T . g=1 @T . =1 DT,
g=1 g=1 g=1 g=1 g=1 g=1

So, wheng=c+1, Equation (8.35) is true. Therefore, Equation (8.35) is true for all n.

S

When Ts >0,such that @ To =1, then, Equation (8.35) degenerates into the

s = s =
@T- L DT

g=1 g=1

following form:
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SVNSSPRWG (1, hy,...0, ) = e L B
0L NT 9=l NT
s g
g=1 g=1
1 (8.38)
R R
1-| @ STg (1—\Pg)” D STi 1| 14| @ sTg (1-v,) - To g
L PT, = PT, = PT, = T

8.2.1.3 Example

Let »,=(05,0.204),h,=(0.7,0.30.4) and , = (0.3,0.4,0.6) be three SVNNs. Based on the
score function of SVNNs, we get S=O(hl)=0.6333,§(h2)=0.6667 and S=O(h3)=0.4333,
and hence T:=17T.=06333 and T =0.42222. By using this information (R=-2), we

can obtain

E

3 T 3 T
SVNSSPRWG (71,,71,,11,) ={ | @ Jl EN - Ji +1
=1 DT, g=1 g
g=1 g=1
1 1
=" t
3 -Fg : 3 -Fg 3T w3 -Fg
- P52 (l—‘Pg) -5+ - P (1—Yg) ~P5>+1
gzl(—BTg g=1 g g=1 @Tg g=1 '|'g
g=1 g=1 g=1 g=1
=(0.4537,0.2856,0.4648).

8.2.14 Theorem

For a group of SVNNSs hg:<Eg,‘{—’g,Y‘g>,(g=L2 ..... s), the SVNPROWA operator

satisfies the following properties:
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(1) (Idempotency) If all #,(g=12,..,s)are equal, i.e., n, =r=(2,¥,¥); then

SVNSSPRWG (1, 715,...., 1, ) = h. (8.39)

(2) (Monotonicity) If h;:<5’g,‘}"g,Y’g>and hy=(Z,,¥,,Y,)are two groups of

SVNNSs, such that 7, >7,. i.e., 2 > %' <% and Y < forall hthen
SVNSSPRWG (1}, #y,...., 1) > SUNSSPRWG (h,, h,,..... i, ). (8.40)

(3) (Boundedness) Let n,6=(z,,¥,Y,)be a group of SVNNs, and

9

K :<maxEs,min‘{‘g, ian>,,hg =<minEg,max‘Pg,mang>. Then,
g=1 g=1 =1 9=1

9 9 g=1 g=1

™ < SVNSSPRWG (Il ) < . (8.41)

When % =0, the SVNPRASSWG operator reduces to the PG operator based on the

algebraic operational laws for SVNNSs. That is,

v ) (8.42)

(S

SVNSSPRWG,, , (71, 7,,..... ) = é)(zg) ,1—@(1_%)9;1 1-
1

g1 9= g-1

8.2.2 Single-Valued Neutrosophic Schweizer-Sklar Prioritized

ordered weighted Geometric operator

8.2.2.1 Definition

A SVNPROWG operator is a function SVNPROWG : Q° — Q, described as follows:

SVNSSPROWG (71,, 71y, 11, ) = Q%5 - (8.43)
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s-1—

Where, T:=1andT, =®S0(n,),(1=23,....,s),pIis a permutation of (1,2,..,s)such that
1=1

@) = pa-1)for a=23,..,s.
8.2.2.2 Theorem

For a group of SVNNs 7, =(=,,w,.1,).(g=12..s), the value aggregated by the

developed SVNPROWG operator is still a SVNN and is specified by:

s 1:— . s
SVNSSPROWG (71, 71,,..ons 1) = | @D —E2 ) — D= +1
=1 DT, g=1 @Tg
g=1 g=1
(8.44)
1 1
'|:' R '? S '? Rn '?
1-| D i (l_q‘xn(g)) -@ Si +11.1-1 D g: (1 Y‘4(9)) D g: +1
g=1 @Tg gA@ g g=1 Tg g=1 Tg
g=1 g=1 g=1 g=1

Proof: Same as Theorem (8.2.1.2).

8.2.2.3 Example

Consider the SVNNs given in Example (8.2.1.2), , we have T:=1T.=06333 and

T, =0.42222. the score values are SO(,) =0.6333,5C(h,) =0.6667and SC(h,)=0.4333. S0,

we have SC(h,)>SC(h,)>SC(h,)and hence, hy =,k =hyh,, =h,. By using this

#(2)

information (% =-2), we can obtain

SVNSSPROWG (72, 1, 1y ) =

> 1?9 = > -?g > -?g oz ?g : -?9 o2 -?g
D= :fi(g)‘@ el IR S e (1“*%(9)) @5+ 1D (l_Ys(g)) D5+l
g=1 g g=1 g 91@1’9 g=1 o g=1 Tg g:l@Tg

=(0.4710,0.3007,0.4648) .
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8.2.2.4 Theorem

For a group of SVNNSs hg=<Eg,‘I—’g,Yg>,(g=L2 ..... s), the SVNPROWA operator

satisfies the following properties:

(1) (Idempotency) If all #,(g=1,2,..,s)are equal, i.e., n, = =(2,¥,Y); then
SVNSSPROWG (hy, 1y, ..., hy ) = h. (8.45)

(2) (Monotonicity) If 7, =<E’Q,T’Q,Y’g>and ny=(2,,%,Y,)are two groups of

SVNNSs, such that 7}, >4 . ie., 2, >= ¢ < and Y’ <1, forall hthen
SVNSSPROWG (1, i), ..., 1, ) = SVNSSPROWG (4, 7., Iy ). (8.46)

(3) (Boundedness) Let »,=(=, ¥, Y,).(g=12..s)be a group of SVNNs, and

.....
g g=1 9 g=1 g=1 g

S S S S S S
n :<maXE ,min‘Pg,mian>,,hg :<minE max‘l’g,mang>. Then,
1 g=1 =1

h™ < SUNSSPROWG (i, 7, ,..... h, ) < " (8.47)

8.3 The MADM Methods Based on the Proposed Aggregation

Operators

In this part, we shall use the SVNPRWA and SVNPRWG operators with SVNNs to
solve the MADM problem. The following presumptions or notations are utilized to

express the MADM problems. Let the discrete set of alternatives be expressed by

there is a prioritization among the attributes represented by the linear-ordering
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01>0; >...> 041 >0y, the specified attribute 0.has a higher priority than Onif n<m

rs

Assume that ﬁz(;rs) =(Z, W5 Ys),, 1S the SVNN decision matrix, where =, ¥

hxg
and Y, express the TM function, IM function and FM function respectively, such that
E,€[01],¥,€[01],Y,€[01],0<E +¥,+Y,<3(r=12..9 s=12..,h). The goal of

rs —

this problem is to rank the alternatives.
8.3.1 The Method Based on SVNSSPRWA Operator

In the following, a process for ranking and selecting the most preferable alternative(s)

is provided as follows.

Step 1. Standardize the decision matrix.

First, the decision making information min the matrix ﬁ:(ﬁm) must be
hxg

standardized. Consequently, the attribute can be grouped into the cost and benefit
types. For benefit type attribute, the assessment information does not need to changed,

but for cost type attribute, it must be modified with the complement set.

The decision matrix can be standardized by the following formula:

= SN S o for benefitt eattributegrS
o< ¢ ) ypeatry (8.48)
(Y 1-¥ . E) for cost typeattribute Or

Step 2. Determine the values of T (r=12..,h;s=12..,9)by using the following

formula;

S—

_|

1s=(§n) r=12..hs=23...9). (8.49)

1=1
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Where, T =1forr=12,.,h.
Step 3. Use the decision information from decision

SVNSSPRWA operator given in Equation (8.18),

mo=(E,,¥, T, )= SVNSSPRWA(RE,Z ..... Meg ) .

To get the overall SVNN, ;r(r =12,..,h).

Step 4. Determine the score values %(Er)(rﬂ,z,..

matrix ﬁ:(:m)h and the
xg

(8.50)

,hyof the overall SVNNs

me (r=12,...,h) by Definition (1.1.1.6) to rank all the alternatives ﬁr(r =12,..,h).

Step 5. Rank all the alternatives ﬁr(rzl, 2,....hyand select best one utilizing Theorem

(1.1.1.5).

Step 6. End.

8.3.2 The Method Based on SVNSSPRWA Operator

Steps 1 and 2 are same.

Step 3. Use the decision information permitted decision matrix ﬁz(ﬁm) and the

SVNSSPRWG operator given in Equation (8.34)

mo=(Z,,¥,,Y,)= svn\JSSPRWA(EﬂEr2 ..... Meg )

To get the overall SVNN ;r(r =12,..,h).
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Step 4. Determine the score values %(R)(r:l,z,...,h) of the overall SVNNSs

me (r=12,...,h) by Definition (1.1.1.6) to rank all the alternatives ﬁ,(r =12,..,h).

Step 5. Rank all the alternatives ﬁr(rzl, 2,...hyand select best one utilizing Theorem

(1.1.1.5).

Step 6. End.

8.4 An Illustrative Examples

In this part, we use a numerical example of selecting third-party logistics (TPL)
providers with SVNNs [39] to show the effectiveness and advantages of the

developed approach.
8.4.1 Example

An electronic commerce distributer expects to select a suitable TPL provider.

evaluated by experts with respect to the following four attributes (1) customer
satisfaction O, (2) service cost 82,(3) market reputation 0s, and (4) operational

experience in the industry O.. The following priority relationship 0:>0,>0s > 04
among the four attributes is considered by the electronic commerce distributer. The
assessment values of the four providers with respect to the four attributes are provided

by expert in the form of SVNNs and listed in Table 8.1.

Table 8.1. Decision matrix M
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O 0. 0s 0.
N, (07,0102) (030905) (030201 (050.104)
N, (090101) (030804) (05030.2) (0.30.20.4)
N, (050.104) (0.1080.7) (0.6020.2) (0.80.10.3)
N, (040302) (020906) (0.7,020.1) (0.20.2,0.5)

Table 2. Normalize decision matrix M

0 0; 0s 0.
N, (0.7,0102) (050103) (0.30201) (050.104)
N, (090.101) (0.4,0203) (05030.2) (0.30.20.4)
N, (050.104) (07,020.1) (0.60.202) (0.80.10.3)
N. (040302) (060.102) (0.7,020.1) (0.20.2,0.5)

Step 1. Normalize the decision matrix. Since O:,0sand O are of benefit type, and

0. is of cost type attribute. Hence, by using Equation (8.48), the normalized decision
matrix is given in Table 8.2.

Step 2. Determine the values of T (r=12,..,4;s=12,..,4) by using the formula (8.49),

and get
1 0800 05600 0.2987
(1 0900 05700 0.3420
=t |1 06667 0.5333 0.2607
1 06333 04856 0.2460

Step 3. Use the SVNSSPRWA given in Equation (8.50) to get the overall SVNN
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(0.6004,0.1090,0.1702), m, = (0.8367,0.1431,0.3204),

+=(0.5653,0.1597,0.1618).

31 3

ma
Mms

(0.6598,0.1256,0.1661),

Step 4. Determine the score values %(R)(r:l,z,...,@ of the overall SVNNs

n=1r(r =12,...,4) by Definition (1.1.1.6), and have

s=o(7n) - 0.77375(52 ) - 0.79115(;3) - 0.78945(;4) —0.7479,

So, we get m; >ms > m; > ms.
Step 5. According to score values, ranking order of alternatives is N> > Ns > Ny > N+. S0

the best provider is N2, while the worst one is N..
Similarly, we solve the above Example (8.4.1) by utilizing SVNSSPWG operator:

Step 1 and step 2 are same.

L= <O.4583,0.1242,0.2492>,
3= <0.5826,0.1532,0.2961>,

2= <0.4662,0.1949,0.2434>,

S 3

+=(0.3951,0.2278,0.2438).

Step 4. Determine the score values %(R)(r:l,z,...,@ of the overall SVNNs

n=1r(r=12 ...... 4) , and have

so(ﬁl) - 0.69505(?2) - 0.67605(33) - 0.71115(714) — 0.6412.

So, ;3 >;1 >;2 > Ma.
Step 5. According to score values, ranking order of alternatives is Ns > N:> N> > Nu.

So, the best provider is N5, while the worst one is N..
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8.4.2 Effect of the Parameter o on Decision Result of This Example

In order to see the effect of the parameter p on the decision-making result, we set the
distinct values for the parameter p in step 3, to rank the alternatives. The score values

and ranking order are described in Table 8.3 and Table 8.4.
As from Table 8.3, we can notice that the ranking orders by utilizing SVNSSPWA

operator are slightly different when the parameter o takes the distinct values. When
the value of the parameter o tends to zero, the best choice isNs and the worst choice
isN.. When the value of the parameter p decreases from -2 then the best choice is N,

while the worst one is N.. We can also see from Table 8.3, when the value of the
parameter decreases the score values become bigger and bigger.

From Table 8.4, we can see that the ranking orders by utilizing SVNSSPWG
operator do not change for different values of the parameter p , the best choice is Ns,
while the worst one is N.. We can also notice from Table 4, when the value of the
parameter o decreases, the score values become smaller and smaller. Generally,
different DMs can set different values of the parameter p according to their actual
need.

Table 8.3. Score values and ranking order for different values of p utilizing SVNSSPWA operator for

example 5

P Score values Ranking order

%(El) ~0.7434S (Ez) —0.6932,

p—0 %(R):wsm,s (R):o.ms_ Ns>Ni>Ns> No.
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(2]

p=-1 5(&) ~0.7595, (;2) —0.7552,

%(R) _ 0.7718,80(:4) ~0.7302 Na>Ni>N»> Na.

p=-2 5(&) ~0.7682.S (;2) —0.7858,

%(R) —0.7984.S (R) ~0.7430. Ns>N,>Ni> Na.

i)
I
|
~
w
O
—_—
3l
=
~—
Il
o
[0e]
o
O
o
8l
—_—
Sl
~
~——
I
o
o)
B
o
=

(54) =0.7959. ﬁz > ﬁs > ﬁl > ﬁ4.
(54) =0.8201. ﬁz > ﬁs > ﬁl > ﬁ4.
p=-100 SO(R) _ 0.8645,$(;4) —0.8308. N,>Ns>Ni>Na.

p=-200

%(R) _ 0.8656,$(;4) 208321 Ny > No>Ni> Ne.

Table 8.4. Score values and ranking order for different values of p utilizing SVNSSPWG operator

Y Score values Ranking order

p—0 O(;z)=0.7077,

w

R) ~0.7168,

| 8l

%(Es) - 0.72445(;4) Z0.6754. No>Ni>N»> Ne.

50 R) - 0.7059,

&l

Ez) — 0.6904,

p=-1 %(Es) - 0.71765(;4) 206591, No>Ni>Na> N

%(a) —0.6853,

w

Ez) — 0.6580,

p=-2 %(R) - 0.72185(;4) ~0.5998. Ns>Ni>Na>Na.
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p=-T %(mg) —0.6857.S (R) —0.5656. No>Ni>Ns> Na.

=20 %(R) - 0.6584,S=(:4) ~0.5042. Na>Ni>Ns>Na.

p=-100 oo ﬁ3>ﬁ1>ﬁz>ﬁ4.

O
—_—
Sl
@®
Il
o
()]
w
(0]
o
8l
Sl
=
Il
e
N
hy]
N
o

=200 E(Eg) - 0.6359,S=(;4) ~0.4703. N3 >N;>N3>Na.

8.4.3 Example [40]

In order to reinforce the academic education, the school of management in a Chinese
university wants to introduce excellent overseas teachers. This introduction caught
much attention from the school, university president, dean of management school and
human resource officer sets of a panel of decision makers who will take the whole

responsibility for this introduction. The panel made strict assessment for five
alternatives (candidates) ﬁr(r=L2,...,5) from four characteristics (attributes) namely,
morality O, research potential 0, skill of teaching 05, education background O.. The
president of the university has absolute priority in decision making, and the dean of

the school of management is next. In addition, this introduction will be in a strict

accordance with the principle of combining ability with political integrity. The

prioritization among the attributes is as follow, O: >0, >0s >0.. The decision makers
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a(s =1,2,..,4) and construct the following SVN decision matrix given in Table 5.

Table 8.5. Decision matrix M

o, 0, 0; 0.
N, (050801 (060303) (030601 (0507,0.2)
N, (070201 (07,0202) (0.70204) (08020.1)
N, (060502) (0507,03) (050301 (06030.2)
N. (080.103) (060302 (060201 (06020.2)
N. (050504) (04080.1) (07,0601 (0.5080.2)

Step 1. Normalize the decision matrices by using Equation (8.49). Since all the
attributes are of benefit type so there is no need to normalize it.

Step 2. Determine the values of T (r=12,..55s=12,..,4) by using the formula (8.50),

and get
1 05333 0.3556 0.1011 |
1 0.8000 0.6133 0.3435
T =|1 06333 03167 0.1404
1 0.8000 0.5600 0.3435
|1 05333 0.2667 0.0948

Step 3. Use the SYVNSSPRWA given in Equation (8.51) to get the overall SVNN

my =(0.5151,0.4787,0.1176), m; = (0.7209,0.2000,0.1320),
ms = (0.5626,0.4490,0.1764), m, = (0.7246,0.1434,0.1681),
ms =(0.5366,0.5754,0.1462).
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Step 4. Determine the score values %(R)(r:l,z,...ﬁ)of the overall SVNNs

m (r=12,...,5) by using Definition (1.1.1.6), and have

%(R) — 0.6396, O(;z) - o.7963,§(§3) _ 0.64585(;4) _ 0.80445(;5) — 0.6050.

So, E4>Ez>ﬁg>ﬁl>ﬁs.
Step 5. According to score values, ranking order of alternatives is

Ni>Nz>Ns>Ni> Ns. So, the best candidate is E, while the worst one is Ns.
Similarly, we solve the above Example (8.4.3) by the SVNSSPWG operator:
Step 1 and step 2 are same.

Step 3. Use the SYVNSSPRWG operator given Equation (Step 3) to get the overall

(0.4498,0.7400,0.1745), m; = (0.7104,0.2000,0.2269), m; = (0.5477,0.5821,0.2233),

m m;
m, = (0.6554,0.2051,0.2265), ms = (0.4790,0.7022,0.3042).

Step 4. Determine the score values %(R)(r:l,z,...ﬁ)of the overall SVNNs

m (r=12,...,5) by using Definition (1.1.1.6), and get

%(R) - 0.5118,?)(:2) - 0.7612,%(;3) - 0.5808,%(;4) - 0.7412,%(;5) — 0.4900.

SO, az>a4>as>al>as.
Step 5. According to score values ranking order of alternatives is

ﬁz > R > ﬁg > ﬁl > ﬁs. So, the best candidate is ﬁz, while the worst one is ﬁs.
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8.4.4 Effect of The Parameter pon Decision Result of This Example

In order to see the effect of the parameter p on the decision-making result, we set the
distinct values for the parameter p in step 3, to rank the alternatives. The score values
and ranking order are described in Table 8.6, Table 8.7, and Fig.8.1, Fig.8.2. In Fig.

8.1, Fig. 8.2, ﬁr(r:Lz,...,S) are expressed by G, (1,...,5) .

Table 8.6. Score values and ranking order for different values of p utilizing SVNSSPWA operator for

example 8.4.3

Y Score values Ranking order

E(R) ~ 059355 (;2 ) - 0.7828,553) ~ 06195

p—>0 ,S=(:4)=07716 s=(§5)=0.5652. N> >Ne>Na>Ni>Ne.
p=-1 E(R) - 0.6179,s=(;2 ) - 0.7908,5(;3) - 06325

,s=(ﬁ4) _ 0.7887,%(;5) _ 0.5877. N> >Ne>Ns>Ni>Ne.
p=-2 ﬁ(ﬁl) 0 6396,S=(;z ) - 0.7963,5(;3) ~0.6458

,s=(§4 ) - 0.8044,5(;5) — 0.6050. Ne>Ns>Nas>Ni>Ne.

p=-1 ﬁ(a):o.eglﬁ,so

—

Ez) - 0.8110,5(33) - 0.6913

3|
|

54) = 0.8433,50

—

ms):0.6521. Nz>N>>Ni>Ns > Ns.

ﬁ(a) ~0.7170,S

—

r=nz) _ 0.82485(;3) ~0.7181

,s=(R) ~0.8588,5

—

m5)=0.6829. No>N2>Ns>Ni>Ns.

%(R) ~0.7301,S0

—

ms ) - o.8317,§(§3) =0.7304

p=-100 ,E(R) - 0.86515(35) — 0.6967. Ne>No>Ne>Ne > No.

275



p=-200 5(%):0.7317,5 (Ez)=o.8325,§(713)=0-7318

,%(R) - 0.8659,s=(§5) — 0.6983. Ne>N»>No>Ni> N,

Gl
mG2
mG3
mG4
mG5

0 -2 -7 -20 -100 -200

Fig 1. Chart for different values of parameter o utilizing SYVNSSPWA operator in Example 8.4.3

Table 8.7. Score values and ranking order for different values of p utilizing SVNSSPWG operator for

example 6
Y Score values Ranking order
p—0 E(R) - 0.5463,%(?2 ) - 0.7688,5(33) — 0.5985
E(R) - 0.7503,3(35) —0.5241. Na>Ne>No>No> N,
ﬁ(ﬁl) - 0.5271,S=(;2 ) - 0.7651,5(713) — 0.5804
p=-1 ,%(R) - o.7457,s=(§5) — 0.5067. Ny >Ne>NosNi> N,
ﬁ(ﬁl) - 0.5118,s=(§2 ) _ o.7612,§(§3) ~0.5808
p=-2 ,5(34) - o.7412,s=(§5) — 0.4909. No > Ne> N> Ne > N,
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(o]
($)]
=
el
—_——

m ) - 0.7414,5(53) ~0.5514

p=-7 ,s=(§4) - o.7224,s=(§5) ~ 0.4470. N2> Ne>No> N> N,

R) - 0.4268,S=(;2 ) - 0.7170,5(53) ~ 05255

p=-20 ,s=(§4) - 0.6959,s=(§5) - 0.4188. N> Ne>No> N> Ne.

E(R) =0.4053,50

—

ms ) - 0.7033,5(@) 05053

p=-100 ,S=(R) - 0.67285(3—,) —0.4037. No > Ne> N> Ne > No.

R) - 0.4026,S=(Ez ) - 0.70175(;3) 05027

p =200 ,s=(§4) - 0.6697,s=(§5) —0.4019. Na>Ne>Na>Ni> No.

0.9

0 -2 -7 -20 -100 -200

mG1
mG2
mG3
mG4
mG5

Fig 2. Chart for different values of parameter p utilizing SVNSSPWG operator in Example 8.4.3

From Table 8.6, we can notice that the ranking orders by utilizing SVNSSPWA
operator are slightly different when the parameter o takes the distinct values. When

the value of the parameter p is -1 and tends to zero, the best choice is N.. When the

value of the parameter o decreases from -1 then the best choice is N.. We can also see
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from Table 8.6, when the value of the parameter decreases the score values become
bigger and bigger.

From Table 8.7, we can see that the ranking orders by utilizing SVNSSPWG
operator do not change for different values of the parameter p , the best choice is N..
We can also notice from Table 7, when the value of the parameter p decreases, the

score values become smaller and smaller. Generally, different DMs can set different

values of the parameter p according to their actual need.

8.4.5 Comparison With the Other Methods

In order to further show the effectiveness of the proposed methods based on the
proposed AOs, in this article, we solve Example (8.4.3) by seven existing methods
based on different aggregation operators under SVN environment. SVN weighted
averaging (SVNWA) operator proposed by Ye [8], SVNWA operator proposed by
Peng et al. [9] based on improved operational laws for SVNNs, SVN-MABAC [21],
SVN-TOPSIS [21], SVN prioritized weighted averaging (PRWA) operator developed
by Wu et al. [36], SVN Dombi prioritized weighted averaging (PRWA) operator
developed by Wei et al. [40] and SVNN normalized BM (SVNNBM) operator
developed by Liu et al. [30]. The score values and ranking order are given in Table
8.8.

The weight vector of attributes for these methods is obtained using the PRA

operator.
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Table 8.8. Score values and ranking orders with different methods

Methods

Score values

Ranking order

SVNWA
operator [8]
SVNWA

operator [9]

SVNDPAW

[40] p=2

SVN-TOPSIS

[21]

SVN-

MABAC [21]

SVNPWA

operator [36]

SVNNBM
operator
(p=0=1) [30]
SVNSSPRW
A operator (in
this article) (

p—0)

=0.5532,50

el
—_—
EL
=
||

;2) - 0.7698,§(Eg) —0.6001

,s=(54) =0.7580,50

—

;5) - 0.5301.

ﬁ(ﬁl) 059345

—

ms ) - 0.7828,%(33) ~0.6195

,s=(ﬁ4) ~0.7716.50

3

5) =0.5652.

3l
O
—_
EL
E
|
o
(o))
(€21
DN
o
3l
o
—_
3
N

) - 0.7973,5(33) = 0.6529

,5(34) _ 0.8080,3(35) _ 0.6136.

E(R) - —3.3557,3(52 ) - —0.8123,E(E3) 27509,

E(R) —_0.4144.C

—

Es) — _3.8097.

Q(m:

~——

_ 0.2637,6(?2) - 0.6122,3(53) —0.2176,

Ol
3

- 0.5891,3(;5) —0.1903.

wn
—_
ELl
G
1]
©
ol
[Ce]
w
>
el
—_

ms ) - 0.7828,5(33) ~0.6195

,s=(§4) - 0.7716,s=(§5 ~0.5652.

~—

El
|

,s=(ﬁ4) - 0.754169,5(55) ~0.5391.

s=(ﬁl) _ 0.5935,S=(;2 ) - 0.7828,%(33) ~0.6195

,s=(ﬁ4) - 0.7716,s=(§5) —~0.5652.

ﬁz >ﬁ4 >ﬁ3 >ﬁ1 >ﬁ5.

ﬁz >ﬁ4 >ﬁ3 >ﬁ1 >ﬁ5.

ﬁ4 >ﬁz >ﬁ1>ﬁ3 >ﬁ5.

ﬁ4 >ﬁ2 >ﬁ3 >ﬁ1 >ﬁ5.

ﬁz >ﬁ4 >ﬁ1>ﬁ3 >ﬁ5.

ﬁz >ﬁ4 >ﬁ3 >ﬁ1 >ﬁ5.

El) - 0.565597,SO(E2) - 0.774729,5(33) ~0.6083 N2>Na>Ns>Ny> Ns.

ﬁz >ﬁ4 >ﬁ3 >ﬁ1 >ﬁ5.
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SVNSSPRW ﬁ(ﬁl) - 0.6396,S=(;2 ) - 0.7963,5(1) —06458  Ni>N2>Ns>Ni>Ns.

A operator (in =(

,%(R) —0.8044.5 Es) — 0.6050.

this article) (

p=-2)

From Table 8, we can see that when value of the parameter ptends to zero, the

ranking orders obtained by the proposed method based on the proposed aggregation
operators are same with the other five methods. This shows that our method is valid.
Further, when we set the parameter value p,=-2, then, the ranking order is same as
that obtained from the methods developed in [21] and [40] based on SVN-TOPSIS
and SVN Dombi prioritized averaging operators.

Moreover, the comparison among our method with the existing seven methods can
be pointed out as follows:

(1) The methods developed by Ye [8] and Peng et al. [9] are based on SVNWA
operators. These aggregation operators are based on algebraic operations, while the
aggregation operators in this article are based on Schweizer-Sklar operations.
Although the best alternative is same, however, when we change the value of the

parameter p the best alternative changed. That’s why our method is more flexible and

effective than Ye [8] and Peng [9].

(2) The method of Wu et al. [36] is based on SVN prioritized weighted averaging
operator. This is a special case of the developed aggregation operators, when the
value of the parameter tends to Zero.

(3) The method developed by Liu et al. [30] is based on the SVNNNWBM operator,

to solve the same example, we set p=q=1, then the ranking order is same as the one

obtained by the developed aggregation operators, when the value of the parameter

tends to zero. This shows the effectiveness of the proposed approach based on the
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developed aggregation operator. But the advantage of the developed method in this
article is that it can deal with the situation in which the attributes are with the
prioritized relationship.
(4) The methods developed by Peng et al. [21] is based on SVN-TOPSIS and SVN-
MABAC method in which the weights of the attributes are obtained via gray system
theory and cannot consider the prioritized relationship among the attributes.
(5) The method developed by Wei et al. [40] is based on Dombi prioritized
aggregation for SVNSs. The Dombi prioritized aggregation operator also consists of
parameter, but the decision makers can considered the parameter greater than zero,
while in the proposed aggregation operators in this article the decision makers can
considered the parameter values less than zero.

Certainly, the developed methods in this article are more general and flexible by the

parameter, and are more advanced to be used in practical decision-making problems.

8.4.6 Conclusion

Since SVNNs are a better mathematical tool and can define uncertain information
more accurately than the FS and IFS. In this chapter, we investigated some
Schweizer-Sklar prioritized aggregation operator based on SVNNSs and proposed two
methods to deal with single-valued neutrosophic information. First, we have
developed some new aggregation operators and studied their desirable properties such
as idempotency, monotonicity and boundedness. Moreover, we have analyzed some
special cases of the developed operators, and have presented two MADM methods
based on the proposed aggregation operators to deal with SVN information. Lastly, a
practical example about talent introduction is given to show the verification of the

developed methods and to demonstrate the effectiveness and practicality of the
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developed approaches and a comparison analysis is also given to verify the developed

methods.
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