AVOIDING TRACEABLE BIT STREAM PATTERNS IN LOGIC BASED
. STREAM CIPHERS USING INTELLIGENT ALGORITHMS

Researcher: Supervisor:

Syed Irfan Ullah Prof. Dr. M. Sikandar Hayat Khiyal

Reg. No.: 03-FAS/PHDCS/F03

Department of Computer Science
Faculty of Basic & Applied Sciences
INTERNATIONAL ISLAMIC UNIVERSITY, ISLAMABAD
PAKISTAN

CENTRAL

s\ LIBRARY

X
._\

AVOIDING TRACEABLE BIT STREAM PATTERNS IN LOGIC BASED STREAM

CIPHERS USING INTELLIGENT ALGORITHMS

Syed Irfan Ullah

Reg. No. 03-FAS/PHDCS/F03

Submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Science at the Faculty of Basic and Applied Sciences

International Islamic University, [slamabad.

Prof. Dr. M. Sikandar Hayat Khiyal) Qctober, 2015

N

——

To My Family and Teachers,

Title of Thesis: Avoiding Traceable Bit Stream Patterns in Logic Based Stream Ciphers using

Intelligent Algorithms

Name of Student: Syed Irfan Ullah

Registration No.: 03-FAS/PHDCS/F03

Accepted by the Department of Computer Science, Faculty of Basic and Applied Sciences,
International Islamic University, [slamabad, in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Science

Yiva Voce Committee

Dean FBAS (Prof. Dr. Muhammad Sher)- \\
Jq. 93
. e
Chairman DCS (Dr. Husnain Naqvi)- - - ey~ SO
External Examiner-I (Dr. Mujahid Alam) ,mm-...-aA. ____________

External Examiner-II (Prof. Dr. Sajjad Mohsin)

Prof. Dr. M. Sikandar Hayat Khiyal (Supervisor) ------ A -—--
Faculty of Computer Sciences,
Preston University, H-8/1, Islamabad

Never have I dealt with anything more difficult than
my own soul, which sometimes helps me and

sometimes opposes me.

Abil Hamid Muhammad ibn Muhammad al-Ghazali (c. 1058-1111);

known as Al-Ghazali or Algazel to the Western medieval world, was a

Abu Hamid Muhammad al-Ghazali Muslim theologian, jurist, philosopher, and mystic of Persian descent!

! & “Ghagzali, al-". The Columbia Encyclopedia. Retrieved 17 December 2012.

Abstract

Information security is one of the challenging topics in the modern communication. The stake
holders always demands fast and secure communication to share information and communicate
over the pubic channels all over the world. They have different requirements and challenges in
which they need to communicate. Stream cipher algorithms are best recommended for fast
communication in noisy and bursty channels with limited memory and processing powers. These
consume least memory, the encryption and decryption is based upon simple XORing the secret
key with the given text and the bit wise XORing restrict the error to propagate and the operation

is done with extremely high speed.

The entire security of stream ciphers is dependent on secret key, and a weak key may lead to
compromise the entire security of a communication channel. The secret key 1s a random number
that is generated by the computer using different Random Number Generator (RNG’s) and
Pseudorandom Number Generator (PRNG’s) algorithms. These algorithms generate random

numbers which are used by the stream ciphers for the encryption and decryption process.

The logic based stream ciphers algorithms are unable to generate true random numbers and the
cryptanalyst takes the advantage of the weak points in their design and can trace the key stream
with less efforts. The key stream may contain a series of patterns that may lead a cryptanalyst to
trace the entire key successfully. The designer is always of the opinion to avoid weak patterns in

the secret key to let the cryptanalyst unable to guess a part of it.

Stream cipher SNOW 2.0, that was considered to be unbreakable and secure but the later
research proved that it has serious security loopholes. It is not due the lapses in the algorithm but
the development in cryptanalytic techniques which were used for breaking SNOW 2.0 security.
It is proved that the SNOW 2.0 Pseudorandom Number Generator (PRNG) generates weak

patterns that let a cryptographer to break its security.

This study presents an intelligent stream cipher model of SNOW 2.0. This model intelligently
generates a series of bit streams those can be used confidently as a secret key. The loopholes in
the SNOW 2.0 Pseudorandom Number Generator (PRNG) that let a cryptanalyst to break the

security of a stream ciphers by guessing a weak key, have been removed by passing it through

Artificial Neural Network (ANN) based system to regenerate a secure key. This model
intelligently removes the statistical irregularities from the key stream by replacing the weak
patterns with other statistically proved patterns. The main objective of this work is to close all
the backdoors those may let a cryptanalyst to break the security of a stream cipher based
cryptographic system. Results have proved that proposed mode! is more secure than SNOW 2.0.

Acknowledgements

I dually express my deep gratitude to my supervisor Dr. M. Sikandar Hayat Khiyal who helped
me in the completion of my research work. I do thank him for his continuous encouragement and
support for the transfer of knowledge and experience. As an advisor, he taught me practices and

skills that I will use in my academic career.

I would also like to thank all my teachers, colleagues, and friends at the department of computer
science, International Islamic University, Islamabad for being helpful over all these years of my
studies. In particular I am grateful to Dr. Muhammad Sher, Dean Faculty of Basic and Applied

Sciences, for his positive comments, valuable discussions and excellent cooperation.

Particular acknowledgements go to Mr. Fareed Ahmad Raza Zakori, Dr. Abd-us-Salam, Dr.
Muazzam Ali Khan, Ms. Samina Zohra and Mr. Obaid Ullah for their all-time assistance at

critical stages for improving this work.

Let me finally acknowledge the duas, support, encouragement, push and who constantly gave me
enthusiasm from my family specially my mother, wife, and children. 1 hope I will make them

proud of my achievements, as I am proud of them.

{Syed Irfan Ullah}

Table of Contents

CHAPTER L.....irieeconnsiresensssossisasasesassssssosssssessssssssssssssssassastossssssssssassassns ssanssmssessesnsassasesusses 1
INTRODUCGTION.....ccirerrrercerranrencssssssssssssassessssssssesssssasssssassasssassasasssnastrass sasstssssasssssasssnssasssessssesns 1
1.1 Symmetric Key Cryptography.......cceceimninisniscnssisiiemimsismnsimeeomsmns 2
1.2 Asymmetric Key Cryptography ... ceiiiiiinicsinancensismenmenmeennissssises 3
1.3 BIOCK CIPRETS cccrviericciensensisestenesssrncsssvessssssesessssnsassssssstsssesssasssssstasssssossssessssissessisssnsasssensas 4
1.4 Stream Cipheriicnaniinienncenrersssnsaesenisanse reeesesiessettesatssaeassesessatesaasrReR Rt R et L eRa st sEbesans 5
1.5 Artificial Neural NetWoTK ... creeeciecrnsisnmsessessesssasssserassvnsasssanssssesssssssssassssssssssassessssosesas 7
1.6 Stream Cipher AIZOrItRIS........covccievnnireeciiiieiiiniisciisesismstsssmnisnsiissssnsesasass 9
1.6.1 Security Issues in Stream CIPhers. ..o 9
1.6.2 Properties of Stream Ciphers ... 11
1.7 Random Number and Sequencing......c.immiimnromismsmcrmmsiecemassiaisss 12
1.7.1 Random Number Generators (RINGS).......ccccviiiriiiiimniin it 13
1.7.2 Psendorandom Number Generators (PRNGS).......cooiviiiii 13
1.7.3 Forward Unpredictabilitycooeoereiineniecrcecinis it 13
1.8 Statistical TeStINEccevsmrerisrnnsrrernsssrsansiomseesnseniessstissiessnssssssarssssssensssnsssosssssrsnnassissasses 14
1.9 Considerations for Randomness and Unpredictability Testing........cocovevveresrensrreasanae 15
1.9.1 Random MapPingsccocoecerecrioerrmeree ittt issesss e ss e sie s sssassa s s ensscs s 16
1.9.2 Complexity TRHEOTY ..ooioiiiiiiiiii et sttt s be st eb e e nes 17
1.9.3 Asymptotic NOtationS.......cccoeiiiiiiiiierieiirrse e e 18
1.9.4 Complexity CLASSEScvieieerieieeeerereeereeiessieens e ses et s etscsac et seas st s snssaas s e b st abs s e e e 19
1.10 Statistical Hypothesis TeSting ceieonmrncnciissriirsiitinssiicnsisnsinsssieessnmmssssisisnssninnee 20
{]
t ")

1.1 MIOtIVALIOM.ccviiiiuiinrnsssssssseressessessersenssssnsssssssssssssssnsssnsanssnsanssresroesssoasns s4astrassanessasstensestsmessesss 22

1.12 Thesis OrganiZation.........ccccesnsierecrresesssrssersossssnastesasseessasessesosssssisenssssssssssssasssssassasssessassss 22
113 SUININATY...ccciecirinennsissnesessesseissncssssssstssessssssnsnsssmsassientossons sbesssotnsasssssssnssnessssssasssssssmsassnns 23
CHAPTER 2....ooectecreerrsrensnsesssessisssasssssssmsssastosssssatssassssssasssssssnssnssneassstaststtonsassssssesssossressosssssnass 24
RELATED WORKcovverrirresiereessssssisassssssssassisssssssrsassssessssassessessssasssersssssessssassssessassnisasissens 24
2.1 LFSR Based Stream CIPhers ... eicnceiennicsrinismmsissisessismsivnimesssistasisses 24
2.1.1 Golden Fish AlZOrithm. ...t 25
212 Fish Tailed Lion AIZOMthiM.........ocviirre i, 26
2.13 SNOW 2.0 .o eeeecterae e ee s ses s e saese s e sres s s eaeabaas e s e R e b et s sttt 26
2.14 1080, CONT SO OOV ST OUPUSTIUD RO P TR RPN 30
2.1.5 RCA ..ot eee et r et e ta st s et a e b o assae s hra e ae s ssehn e aa e s rs e e et 31
2.1.6 SEAL .ottt et e st et eta e et en e ek b e a e a e s e R oA e st 32
217 RADDIE ..ottt et et e e et s n b d et 33
2.1.8 T o T OO O OO PP OO PRSI PRSPPI 34
219 1T OO OO OO OO OO P PRSP 35
2000 Bt ettt e et bk e e e b R e e 37
2111 COS ettt ettt ettt s e h ek bbb 38
20 U8 B Y (- o WU O PO T PO PP SO PP P PP RIS 38
2103 HEC 256 ettt ettt s b e e e 39
2.2 Security Issues in Stream Ciphers.... i, 40
2.3 Genetic Programming in Cryptography... i 41
2.3.1 Genetic Programming Based Stream Cipher ... 41
2.3.2 Issues in GP-Based Stream CIPherscoeoiiiiini e 43
2.4 Neural Cryptography ... messotesaioss s 44
2.5 Problem Statement... . e civcnsrersecseiiomiseiicsssssiseesarsasssanssasssasssnssssssssssassassssssssssasssassansness 47
(]
LX)

fal

2.6 Problem DefiNItion. ... cociiiviiisssssisnsssessssssssssasnassassassosesesssssssasarssnersssssnassssonsesssnsasssssasssanss 48

2.7 SUIMIATY..ecccrierserasneserersnessssasssosssssssesssserssatsmsnsasssns sbessstsrss soresionsassssessensst enssssnesssisssasassass 49
CHAPTER 3 oeeeeeveeereacrtearesnessnsatosassssesssssssssssassrasssssnsstssnsansenssstss b oasssssssssstssstnstsssasasessassnsssess 51
BIT PATTERNS IN STREAM CIPHERSciriecirisctasninisiniesissssisnsassssnssnensesiisssssees 51
3.1 The KEY SPACL...cicirrerrersrrernisssstssssssassasrssnsssnssssissssssaionsassassincassasassssssssssassssssstsasassissessansine 52

3.1.1 ISSUES iN KEY SPACE...c.ccricmcrireriimitcrnaemres s st e 52

3.1.2 Key Comparison AIGOTIIM ... 53
3.2 Effective Attacks on Stream CiPRers .. 57
3.3 Pseudorandom Numbers and SeQUENCES ...cuerrerssiissnsarsssnsssnnisesssssassormostissenstessisssisns 57
3.4 Random Number Verification Tests ...eieemirissiinsinscsssinnsnmsisisensisnseinonssinsssssessie 59
3.5 SUNINAIY wecrecriesermreniesessssesisasssssssasasstststssssssssenssssesassenssssnansssrssssnsasasssthossissnesissrsassissstssses 60
CHAPTER Gc..ecereerrensrrsessssescesassassasssssonsenensssesssstsssasrsasnsassasesstssstastssesnsasssensssnsnestsnssassesstasses 62
INTELLIGENT ALGORITHM DESIGN ...coinniiveerirnnsssnssissersnssnsnsssacsisessssnssasssssassssssssnesses 62
4.1 BioloZiCal NEUIOIS c.vuvvnerrersresssmensonsassisisessssssssnsnsnemsmsnasssssssssnnesasarssssssessssssmssssssansssssssesse 62

4.1.1 Biological Neuron SIUCIUIE.ocvvemirierimssinireemsm st emsss e 63

4.1.2 ANN Based Stream CiPRercovvoioiiii i s 65
4.2 Artificial Neural Network (ANN) Architectureceimnciiciinicninnisscsicnissiinsenee 66
4.3 Multilayer Perceptron (MLP) ... cnrsssesssmsasssnstsssessssssnstsnsssnsmsesees 67
4.4 Activation Function of the MLP ... iiminrenmmeresisssnssnisssemsnsssssnsnieissims 68
4.5 Intelligent Cryptographic Model (ICM) ..cccciininonnmnnninisinsnnrenninsnsssissossnincane 69

4.5.1 TCM SHUCIUIE...oovvoiviireareeeseeetesas e esteeeesssatesaesatsrmn s stashnasbe s e st s e anesaesa b s b sa s n e 69

4,52 ICM THUSIAUOT ..o ettt st es s b ra s srn e e nan e e st b et s e 71

4.6 The Perceptron Learning Algorithmoinviniinriniinciinsssnsenenencsteicnisninas 73
4.6.1 Back Propagationc.ccccoceuviniimmieiiiiiiisiiisaiisssass s csassrstesse b s esss e s 75
4.6.2 Perceptron Convergence Theoremo, 77
4.6.3 Universal Approximation Theoremccoovvviniieniciniin e 79
4,6.4 An Illustrative EXampleo 80
4.6.5 Perceptron Worst Case SCENATIOoormvirieiiiieiiiiiinieienn e 82

4.7 Training Artificial Neural Networks (ANN) .o 82
4.7.1 Frequent Patterns in key and DICHONATYc.ooeriiiiiieniiiicieiit 83
472 Time COMPIEXIY ..o.veiiriiiirricisitiiei e 85

4.8 Frequent patterns in Key Stream ..o, 85

4.9 Summary.....e.e. reeteratessesresesseraTItisEIseNteRTIRRTIRT I beeEeeeteRNaE L EORR L e eT I BTN ES S a S e R TR e s R n e e n bbb E 4408 87

CHAPTER 5..uoteeerieccrerserossasseserssssssesassesssssssssssserssssssssassonsstisassasonssstasnesss 104sstsssessesssassssessssnssasss 88

RESULTS AND DISCUSSIONS ...covcieiiessssassamsmenscssesissssssisasssssasssnssrasnsssnssassnssasssisssssisstssnsasses 88

5.1 Repeated Bit PALtErNS......ccoiieiirinsnscsrnrecreernsssnsnssnmsasssmsanssstsssssnssssssssarsssssatsesssssssssssnans 88
5.1.1 Error Propagation and Dictionary Attacks ... 89
5.1.2 Statistical Tests for Randomness Verification ... 90

5.2 Randomness VerifiCationcueicmciciinnenninminiieisenmimmiassresisimssssamee. 9
5.2.1 Frequency (Monobit) Test ...t .91
5.2.2 Randomness Test Results of Intelligent SNOW 2.0 ... 92

5.3 Randomness Test Results of Original SNOW 2.0 iiinirneeninensnesinecsnnsssinsssnne 94

5.4 Experimental ANalysis......cceiecmmnnionminisnenmissniisisiosisinsrosssnonsiamas 95
5.4.1 Test Phase I {Partially Trained Intelligent SNOW 2.0) ..o 96

5.4.1.1 Determining Sub Key Frequency..........cooceimvienicrnic st 98
5.4.1.2 Determining Pattern Frequency ..o 99

5.4.2 Test Phase 11 (Fully Trained Intelligent SNOW 2.0) ..o, 101
5.4.2.1 Determining Sub Key Frequency.......cocoiiiminniiniicneeee e, 101
5.4.1.2 Determining Pattern FreqUenCy ..ot 103

5.5 Comparison of SNOW 2.0 and Intelligent SNOW 2.0......cccoinmiincinsnnissnsassssicesinns 104
5.6 Entropy in Ciphertext...........cc.ccouenene NeeseessNieAsEIsrasISSIeNISRNER NSNS Iastaan s et e ReR Rt aRR S SERPTSANS 108
5.7 Data DISPErSiOn cccciviverrecsseisorssmsrsarsosssssssssssassesaessssstsasersssssassssssssssssssssasssssassatssensasas 111
5.8 SUDMMIIALY.cicreurerracecercsssstessssesssessasssonsreammasssssessatsssasssensstsnsatsstassstasssesstsnsssonastsssnasassssssssanss 114
CHAPTER 6e.cevereerarrecseeresssssssssssssssasssassssesssssssesassssnsassstass stestsnssssssesssamsasssssssonsssssssnssssnsassarssss 115
CONCLUSION AND FUTURE WORKnirrnrerssisssssissininssissesnissssiesssasisssstisesmsaes 115
6.1 Conclusion ...cemcerniiesssissnsssnsssnsanssnsess csesssisrressesssarisiasesssseaT b Re s RRe st te s besEa s bssRRsReRe 115
6.2 Recommendations and Future WorkK... i, 117
BiDHOZIAPNY coovveisearmensrsesesssssnemasssrsassosnssssssasesssassaremssssssssnsnassinsssssisstsssssisssnsasnsmasaasensaansnsssensoss 119
ANNEXURE = A ..ccoverreeecrecsssseesserssnsasssisssasssssssssesestsssensarsssostsstssisasstesessssassmsessssssnssrssssconcssisesasss 135
ANNEXURE- B ..o.coeereinecesessessarsessisnsesssissssssasssssessonssasns pssssssssssisossvessassnsntsntsssontsnssnssssssasassssses 148
PAPER- L .oooeveeereeesorsssessasssesessesssssrassassnsssssssstonsasrasassat s10a00sssnsstesnatsess sonssssnsassstsstesssnsanaasatessasasis 149
PAPER - ILaeeceoivereseeessseseesessensersssassnsasssesssssansossassassssmsss 1000008100 0asnats sbsasssnsnssnssdssssstsnmansansusasssasess 158
PAPER- TIL .ooooeieeeeeemseesasssossesseseossessssssssstssssssssstissane st sstosionssessnsstsssstanrsssonsan sasssessssasansssateninsass 165

{ Xi

N-T—’

List of Figures

Figure 1.1: Symmetric Key Encryption and Decryption Process ..o 3
Figure 1.2: Asymmetric Key Encryption and Decryption Process............cooocoecciiiiiniinnnnn. 4
Figure 1.3: Block Cipher Algorithm (Electronic Codebook Mode of Operation)...........c..coocuveee 4
Figure 1.4: Stream Cipher AlgOrithm ..o 6
Figure 1.5: Mathematical Representation of Artificial Neural Network ... 7
Figure 1.6: Multilayer Architecture of Artificial Neural Network ..o 8
Figure 1.7: A Functional Graph Containing Cycles and Trees.............c.oomnnninicn 16
Figure 2.1: Golden Fish: Block Cipher and Stream Ciphers Fused Together ... 25
Figure 2.2: Diagrammatic Representation of SNOW 2.0 ... 27
Figure 3.1: Keys Selected from the original_key_file containing n keys produced by SNOW 2.0

PRING ..ottt e e e e aeas e st s et e s et ee s raesea s e e oae A e st b e R b s st s ae e s seas e e ek e b e be e e et E et 55
Figure 3.2: Keys Selected from attack_key_file containing n keys generated by GD-RNG......... 55
Figure 3.3: Comparison between original_key_file and attack_key file.......c.cocoovvierrnrroennne. 56
Figure 4.1: General Structure of a Biological Neuron ... 64
Figure 4.2: Biological Neuron Model for Stream CipherTccoooiniiiiiiii 65
Figure 4.3: Three Layered Structure of Artificial Neural Network ... 66
Figure 4.4: A Multilayer Perceptron (MLP) Structure. ... 68
Figure 4.5: Binary Step FUNCHOMN ..o 69
Figure 4.6: General Structure of Intelligent Cryptographic Model (ICM} ..o 70
Figure 4.7: Computational model of Artificial Neural Network for Stream cipher 73

Figure 5.1: Graph Representing Frequency of Sub Keys in Attacking Key Dictionary of Size 217

Figure 5.2: Frequency Graph Representing Frequency of Each Pattern (8 bit size) in Attacking
Key Dictionary 0f S1Ze 217.......coiiiiiiiinrnicns s, 100
Figure 5.3: Graph Representing Frequency of Sub Keys in Attacking Key Dictionary of Size
TOOOO0.eeeeeeeeeeeeee et ve e e et eeseseease e e raea s eanesesres e s de i a e st s b b st s aRm e b e b e sae e aa e e n R s o e ebea b as b e s s bnnn 102
Figure 5.4: Frequency Graph Representing Frequency of Each Pattern (8 bit size) in Attacking
KEY DICHOMATY ..o cveeeieiecreseee et st e cc e e bbb s b e e es b e s e n e se s e e e S rm e e e 104

XV

~
St

Figure 5.5: Frequency Graph for Sub Key of Size n=1,2,...., 8, Using Original SNOW 2.0 106
Figure 5.6: Frequency Graph for Sub Key of Size n=1,2,...., 8, Using Intelligent SNOW 2.0 . 107
Figure 5.7: Frequency Graph for Sub Key of Size n=1,2,...., 8, Using Original SNOW 2.0 and

IntelHgent SNOW 2.0 ..ottt et sec st e et a et sas st sns e s be s essasasas 108
Figure: 5.8: Entropy in Image using Original SNOW 2.0 and Intelligent SNOW 2.0 108
Figure 5.9: Conversion Graph for Original SNOW 2.0 and Intelligent SNOW 2.0.................. 111

XV

df——
Td

List of Tables

Table 1.1: Statistical Hypothesis Test......ccocveiiiiiiiiiiiireceiin e e 21
Table 3.1: Comparison between original_key_file and attack_key file..............cccooiiiiii, 56
Table 4.1: Neural Net Setup Keys for Decision Making ... 86
Table 5.1: Intelligent SNOW 2.0 PRNG Randomness Verification Results ... 93
Table 5.2: LFSR-based SNOW 2.0 PRNG Randomness Verification Results 94
Table 5.3: 500 Random keys Generated by GD-Attack ..., 96
Table 5.4: Frequency of Sub Keys in Attacking Key Dictionary of Size 217 ..., 98
Table 5.5: Frequency Table Representing the Frequency of Each Pattern (8 bit size) in Attacking
Key Dictionary 0f SiZe 217, ..ottt 100
Table 5.6: Frequency of sub keys in attacking key dictionary of size 100000.......................... 102
Table 5.7: Frequency Table Representing the Frequency of Each Pattern (8 bit size) in Attacking
KEY DICHOMATY c..v.veveeveericerieeres sttt s e s s aeas e s a s e e b s bbb ettt 103
Table 5.8: Frequency Table for Sub Key of Size n=1,2,...., 8, Using Original SNOW 2.0 and

INtelligent SNOW 2.0 ..ottt e b s b s 105
Table 5.9: Frequency table for sub key of size n=1, 2,, 8, using SNOW 2.0 and Intelligent

SNOW 2.0 (Large Patterns Only) . ..ot e b nn e 110
Table 5.10: Data Obtained using the Intelligent SNOW 2.0 ... 112
Table 5.11: Data obtained using Original SNOW 2.0 ... 113

(= }

List of Equations

Equation 4.1 67
Equation 4.2 68
Equation 4.3 69
Equation 4.4 69
Equation 4.5 73
Equation 4.6 77
Equation 4.7 77
Equation 4.8 77
Equation 4.9 77
Equation 4.10 77
Equation 4.11 77
Equation 4.12 78
Equation 4.13 78
Equation 4.14 78
Equation 4.15 78
Equation 4.16 78
Equation 4.17 78
Equation 4.18 78
Equation 4.19 79
Equation 4.20 79
Equation 5.1 91
Equation 5.2 112
Equation 5.3 112
Equation 5.4 113
Equation 5.5 113
[o)

List of Algorithms

Algorithm 3.1: Algorithm Comparing the SNOW 2.0 Generated key with Keys in
attack_key file
Algorithm 4.1:Perceptron Learmning Algorithm for Intelligent SNOW 2.0

Algorithm 4.2: Back Propagation Leaming Algorithm for Intelligent SNOW 2.0
Algorithm 4.3: Pattern Matching Algorithm based on Dictionary Attack

Algorithm 4.4: Key Verification Algorithm for Key Generated by Intelligent SNOW 2.0

(
1 v

\1-"

54

74

76

84

86

List of Abbreviations

Al Artificial Intelligence

ANN Artificial Neural Network

ASCII American Standard Code for Information Interchange
CA Cellular Automata

CBC Cipher Block Chaining

CCA Chosen Ciphertext Attack

CFB Cipher Feedback

CIM Computational Intelligence Model
CPA Chosen Plaintext Attack

CTR Counter

Cv Coefficient of Variance

ECB Electronic Codebook

FSM Finite State Machine

GA Genetic Algorithm

GD-Attack Guess-and-Determine Attack

GRNN General Regression Neural Networks

GSM Global System for Mobile Communications
ICM Intelligent Cryptographic Model

ISO International Standard Organization

v Initial Vector

KB Knowledge Base

KPA Known Plaintext Attack

LFSR Linear Feedback Shift Register

{ 1
- Xx J

MLP
NESSIE
NIST
NLFSR
OFB
OSI
PCBC

PRNG

RM
RNG
RSA
SN
TCP/TP
WTC

XOR

Multi-Layer Perceptron

New European Schemes for Signatures Integrity and Encryption
National Institute of Standards and Technology
Non Linear Feedback Shift Register

Output Feedback

Open System Interconnect

Propagating Cipher Block Chaining
Pseudorandom Number Generator

Random Access Memory

Random Mapping

Random Number Generator
Rivest-Shamir-Adelman Algonthm

Semantic Network

Transmission Control Protocol/ Internet Protocol
Worst-case Time Complexity

Exclusive OR

Chapter 1 Introduction

CHAPTER 1
INTRODUCTION

The term Cryptography or cryptology is derived from the Greek word kpurtog (kryptds) means
secret or hidden. The word ypaow (grdfo) means coding or writing, which is now becoming the
branch of information theory in the modem world and is used for secret messaging [1].
Cryptography is the computational and mathematical study of data to transfer information from
one location to another location. During this transmission three important things are involved,

these are:

i. Encrypting the information i.e. to make plaintext unreadable and un-understandable by
the computer as well as human beings. This text is known as ciphertext.

ii. Decrypting the information i.e. to make ciphertext readable and understandable by the
computer and human beings. This text is called plaintext.

iii. The message can sometime be recovered without key by the cryptanalyst or hacker using
cryptanalysis. Though the modern cryptographic techniques are considered to be

unbreakable.

Data protection is very difficult without proper cryptographic applications and is practically
impossible, because opponents are always trying to intercept the communication. The threats
(possible attacks) during electronic communication can compromise security. A lot of
cryptographic techniques have been proposed to achieve an unbreakable security. These

techniques are categorized as:

1. Block ciphers and

1. Stream ciphers

These methods are considered to be trustworthy, secure and verifiable and are accepted as
standard techniques. Over the last few years a series of researches [2] [3] [4] [5] have
concluded that the stream ciphers less secure than block ciphers. The loopholes in the design of
stream ciphers Pseudorandom Number Generators (PRNGs) and Encryption Algorithms their

security has been compromised.

Chapter | Introduction

Stream ciphers are comparatively less secure than block ciphers [2] [6] [7]. The stream ciphers
security is based upon the key generated by the Pseudorandom Number Generators (PRNGs).
The encryption process is a simple XOR operation that mixes the plaintext with the key. The
block cipher has a strong key and complex encryption process that produce confusion in the
target ciphertext. Block ciphers consume more memory and involve complex encryptions which
are not suitable for data communication in noisy data transfer. Block ciphers are comparatively
more secure than the stream ciphers but they are not recommended in noisy and erroneous data

transfer [2] [6] [7].

A stream cipher called SNOW 1.0 and its later versions have been proven to be compromised [8]
[9] [10], although these have a strong cryptographic and mathematical background. The reason is
that on one side system security is improved whereas on the other side code breaking knowledge
has also improved. A good cryptographer not only cares for the secure algorithm but also takes
care of current cryptanalytic attacks available and its effect on the design of a secure system.

Based on key management cryptography is divided into two major categories:

1. Symmetric key or Single key Cryptography
it. Asymmetric key or Multi key Cryptography

1.1 Symmetric Key Cryptography

Private Key encryption also called a single key encryption is one of the most familiar
cryptographic techniques. In this technique the sender and receiver both use the same key. The
sender encrypts the plaintext and the ciphertext is received by the receiver. The receiver uses a
decryption algorithm using the same private key to decipher the ciphertext generated by the
sender [11].

The plaintext is given to the encryption algorithm which converts it into ciphertext using key K.
The ciphertext is in unreadable and understandable format. The resultant ciphertext Is
reconverted to plaintext by inputting it into decryption algorithm using the same key K as shown
in Figure 1.1 [12].

A—
[2S]
| T—

Chapter | Introduction

Symmetric key

L —~
- ~
- ~
- .
.

’ .“ E ‘\
1;ahtamm'o«!a-25g !
PrmmavascA HLHS 4

B e an R~
"é' 4 » plaintext

laintext —P
_p— encrypt A0 M"‘g decrypt

mymng

aphertext

‘-“- -

Figure 1.1: Symmetric Key Encryption and Decryption Process

Depending on the requirements different stream cipher algorithms are used in various
cryptographic applications. The symmetric key cryptographic applications are used for
encrypting a bulk amount of data in a private network. These algorithms can be trusted to secure
secret information for a long period of time. The cryptanalyst cannot recover the plaintext from
the ciphertext in polynomial time without having a key. The cryptanalyst gets the information
about the encryption algorithm that has been used for encrypting the plaintext. The weak keys
produced by Pseudorandom Number Generators (PRNGs) may let a cryptanalyst to recover all or
a part of the plaintext by guessing the similarity index in the cipher text. This issue arises if a key

with weak statistical properties is used as a secret key.

1.2 Asymmetric Key Cryptography

In asymmetric key cryptography separate keys are used for encryption and decryption. Initially
pair of keys i.e. public and private key is generated. Then encryption takes place with public key
and decryption is made with private key and vice versa. The public key cannot be used to decrypt
to get back the plaintext. In this process the private key is kept secret, whereas the public key is
shared with the partners. Asymmetric key cryptography is used both for confidentiality and
authentication depending on the process of usage of the technique to use it for any of the
required purpose [11] [13]. Asymmetric key cryptography is used to share secret information

over a public channel in which the sender encrypt the plaintext with his private key and the

Chapter 1 Introduction

recetver recovers it using the senders public key to verify the authenticity. Depending on the

requirements public and private keys can be used in reverse if confidentiality is required.

—_—

Plaintext Receivet

Public key [* C:b Private Key

Figure 1.2: Asymmetric Key Encryption and Decryption Process

The plaintext is given to the encryption aigorithm which converts it to ciphertext using the public
key. The receiver recover the plaintext back by passing the ciphertext through the decryption
algorithm using private key as shown in Figure 1.2 [14]. Various genetic algorithms are used for
secure key exchange over public channel. Cryptography is further divided into block ciphers and

stream ciphers.

1.3 Block Ciphers

In block cipher cryptography the plaintext is converted into blocks of the same size, which
simply may be a group of characters or bits. Considering the block of 8 bytes i.e. 64 characters,
when the last block does not contain enough bytes to complete the block, then some padding bits
are added to complete the block size [11] [15]. Block ciphers are considered to be more secure

and are used by most of the security and defense agencies [16].

Plaintext Plaintext Plaintext
R RN I DR N O I VR I
Block Cipher . Block Cipher : Block Cipher
Key - - = Encryption Key -—= Encryption - Key ——= Encryption
v ' '
TN SRR I NN B B O SO
Ciphertext Ciphertext Ciphertext

Figure 1.3: Block Cipher Algorithm (Electronic Codebook Mode of Operation)

Chapter 1 Introduction

The data is then passed to the encryption algorithm to convert this plaintext into ciphertext after
converting tnto blocks. During the decryption process the ciphertext is converted into plaintext
after dropping the padding bits (if any). Block ciphers are not recommended in noisy and
erroneous data transfer modes.

The entire plaintext is divided into predefined block size. The plaintext block is given to the
encryption algorithm which converts it into ciphertext block. This process continues till the end
of the document. The electronic codebook mode of operation of the block cipher 15 shown n
Figure 1.3 [17]. Different modes of operation are used to convert a plaintext block into

ciphertext block namely [3] [11] [18]:

1. Electronic Codebook (ECB)

ii. Cipher Block Chaining (CBC)
i, Propagating Cipher Block Chaining (PCBC)
iv. Cipher Feedback (CFB)

V. Output Feedback (OFB)
Vi. Counter (CTR)

The major disadvantages of block ciphers is that it consumes more time in the encryption and
decryption process as the plaintext is converted into ciphertext after passing through several
rounds. The memory is consumed in bulk and is not recommended where memory and
computational power are limited. Further, error is propagated in the entire document even if the
error occurs in a single bit. The complex nature of the encryption process of block cipher

generates ciphertext even if a weak key is used as a secret key.

1.4 Stream Cipher

In stream cipher cryptography the key encryption algorithm takes one bit or one machine word
or byte at a time from the plaintext and encrypts it using secret key as delineated in Figure 1.4.
In this type of algorithms the whole focus is on the key strength and the key stream 1s generated
by Finite State Machine (FSM). If the key is stronger enough then the decipherment without key
would not be possible, but if the key 1s weak, then the cryptanalyst may look for the loopholes in
the ciphertext, and apply different algebraic attacks to get the plaintext back [4] [19] [20].

pr—,
W
St

Chapter 1 Introduction

Keystream
Generator

Keystream
Generator

Keystream Keystream

K; Plaintext E;
Plaintext Ciphertext Flaintext
B " U » P
Encrypt C; Decrypt

Figure 1.4: Stream Cipher Algorithm

The algorithms apply XOR operation on the key and plaintext bit, word or byte whatever
applicable to generate the ciphertext and for decryption process the same key is again XORed
with the ciphertext using the same algorithm, to get the plaintext back. It is very important that
the key must be strong enough and the cryptanalyst must not get any of the information from the

ciphertext, to decipher the code without key.

A single bit plaintext input P; is given as input to the encryption algorithm which converts it into
ciphertext C; using K; The plaintext P; can be recovered by inputting C; to the decryption
algorithm using the same part of the key K; as shown in Figure 1.4 [21]. Stream cipher

algorithms have the following important characteristics:

. Easy to implement and very fast as compared to block ciphers

il. Minimal hardware and memory requirement

Due to the above mentioned features stream ciphers are best recommended in situations where a
very high speed encryption is required, channels are noisy, memory is limited and hardware
resources are limited. In military communication, stream ciphers are more popular than block
ciphers. These algorithms take less time in encryption and decryption and works better in noisy
and even in erroneous communication. These algorithms are best recommended where real time
actions are critical. The entire security of these algorithms is dependent on key stream

generator, because if the resultant key has weak cryptographic properties then the entire security

Chapter 1 Introduction

can be compromised. The key size of most of the stream ciphers is 128 or 256 bits, which is
randomly produced by key stream generators. If key stream has the repeated patterns then the
encrypted text may let the cryptanalyst of deduce some part of the key, which may let him to
recover the entire plaintext. Repeated patterns can be distorted in weak keys using Artificial
Neural Networks (ANN) which makes the key more effective by producing a disbursed the
ciphertext.

1.5 Artificial Neural Network

The idea of Artificial Neural Network (ANN) has evolved due to inspiration from the human
understanding and knowledge processing [22] [23] {24] [25]. The human brain is considered to
be using the massive parallel computations. Thousands of neurons are working and processing at
the same time while performing different tasks. These are termed as computing elements in the
massively parallel system and are envisioned to perform even a very simple task as shown in

Figure 1.5 [26].

, weights zi= Zxa‘j wij + 8
inputs
x;
activation
functon
net input

HElj

(p —— 0
) @ activation
-‘.‘? G — v
transfer l

: : function
X 9
" threshold

Figure 1.5: Mathematical Representation of Artificial Neural Network

yi = f() where z; is assumed to be real valued input,
(|
L 7 5

Chapter 1 Introduction

y; is the binary or real values output of the i/ neuron, and £ is a non-lincar function or node
function, depending on the application area. Its structure varies and may be a simple equation or

a complex mathematical operation, but its general structure is same as shown in the Figure 1.5.

In human body a neuron takes input signals from different organs of the body for example eyes
to look, ear to hear, body to touch, nose to smell etc. and the output of one neuron may be sent to

another neuron or other part of the body for further processing.

hidden layers

output layer

X2 ‘

SSA)

X }‘,‘y (XA
<7 ,4:?

+

input layer {

Figure 1.6: Maltilayer Architecture of Artificial Neural Network

Artificial Neural Network has input layer, hidden layer and output layers. The input layers takes
input from the outer side and pass it to hidden layer. The hidden layer processes the input value
and concludes its decision and delivers its processed data to the output layer as shown in Figure
1.6 [27]. Similarly, in ANN the input to one node function may be any fact required for that
processing and the output is given to another node function or main function where the node
functions or neurons work collectively as a processing unit. A trained Artificial Neural Networks
(ANN) plays an effective role in producing a secret key. This work later on proves that it can be
effectively used for a generating a secure key having strong statistical properties by removing the

traceable bit stream patterns.

e

Chapter 1 Introduction

1.6 Stream Cipher Algorithms

Strearn ciphers are very important class of ciphering scheme in cryptography based on
symmetric key, i.e. the same key is used for both encryption and decryption using relevant

algorithms. A stream ciphering algorithm works in the following two steps:

i. A pseudorandom key is generated which is exclusive-OR (XORed) with the plaintext to
get the ciphertext using the encryption algorithm.
ii. In reverse the decryption operation takes place in which the same key is XORed with the

ciphertext back to generate the plaintext.
Following are the main features of stream ciphers:

i. They are very fast and recommended in areas with low memory and computational power.
ii. They are very effective in noisy situations, where there are chances of errors during data
transfer, because every bit or byte is encrypted independent of the others, therefore error

does not propagate during processing.

A pseudorandom key can be classified as strong and weak key depending on various statistical
properties. Semantic networks effectively do this job by passing the key through various
semantic nodes. Each node checks a specific statistical property and classifies further to pass it
through other statistical test. The overall result of the semantic network is a key classified as

strong or weak key.

1.6.1 Seéurity Issues in Stream Ciphers

Stream ciphers are comparatively less secure because the encryption process is done by XORing
the plaintext with the key to generate ciphertext. The security of the stream ciphers is mainly
dependent on the key stream produced by the random number generator that is called key stream
generator. The cryptanalyst while planting an attack may check the behavior of the key stream

generator of the stream cipher and its approach to the keys those are produced by it.

The improper use of the stream cipher algorithm by the programmer, even if the algorithm is
stronger enough may cause serious attacks and the security is being compromised. The

cryptanalyst may check the generation algorithm to determine that whether the key produced has

Chapter 1 Introduction

some of the loopholes and may implant a series of attacks to determine the key from the
ciphertext and recover they plaintext. It is recommended that the key must be used only once and

for the next time a new key must be generated and utilized [S] [28] [29] [30] [31].

The focus of this work is to find the solutions of the improper work of the stream cipher
algorithms., Stream ciphers are inherently weaker [18] because of simple encryption and
decryption operation. The simplest encryption operation improves the efficiency and the
encryption process is performed with a tremendous speed. A weak key may key may let a
cryptanalyst to deduce a part or the entire key by using chosen-plaintext attack. A strong secret
key is required to encrypt a plaintext so that the cryptanalyst may not be able to recover a
plaintext. The stream ciphers do not give better attention to ciphering algorithm, because they
mostly XORing the key stream with plaintext. Stream ciphering algonthms respond differently
to cryptographic attacks as listed below:

1. All cryptographic attacks (like algebraic, differential attacks) applicable on stream
ciphers.
1i. The correlation attacks are applicable on stream ciphers. Algebraic attacks on stream
ciphers are more effective.
11l. Minimal chances of data loss in stream ciphers because in erroneous communication only
the affected part of the text is lost.
iv. Guess-and-Determine attacks, slide attacks and cube are more effective over the stream

ciphers.

A large number of applications {32] [33] based on stream ciphers are shifting to block ciphers,
because it is claimed that stream ciphers do not give ultimate security. Its use in
telecommunication and military sector unavoidable because it efficiently work in a noisy and
bursty communication. This data is required to be kept secret and no one should be able to break
the security of these systems in polynomial time and can only be made readable if someone has
the relevant key and encryption algorithm [28] [29] [30]. A weak key having poor statistical
properties let a cryptanalyst to guess a part of the key and determine the rest of the key. If a part
of the key used for the encryption process is as same as some other part of the key, then the
ciphertext will have that reflection. The simple XORing of the encryption process with both the

similar patterns will result the same ciphertext.

10

—
mapme

Chapter 1 Introduction

A cryptographic algorithm is considered that it is known to anyone but they are unable to break
its security and only the authorized person having the key would be able to get proper
information from the encrypted text. The designer must keep in mind that the key used for
encryption must be stronger enough and must not be breakable in polynomial time. The key must
not have the patterns those may give a chance to the hacker to get information from ciphertext.
The Guess-and-Determine attacks are based on guessing a part of the key and determine the rest
of the key. They are more effective against stream ciphers and the key may be compromised to

leak out the secret information.

1.6.2 Properties of Stream Ciphers

For the last few decades a lot of work is done in the cryptography to improve the security of
stream ciphers [2] [18] [34] because of its advantages over the block ciphers. Every stream

ciphering algonithm has the following properties:

1. Stream ciphers are more efficient than block ciphers
ii. Used in area of minimal memory and other resources
1i. Used in noisy and erroneous data transfer

iv. Real time actions and data transfer like in military signaling

Stream cipher algorithms developed have been theoretically and mathematically proven to be
stronger, but when they come into real world applications a strange approach from hackers may
compromise their security and can breakdown its secunty in practical [35] [36] [37]. The
cryptanalyst needs to know about advanced cryptanalytic techniques those are in practice among
the hackers. Special attention is required to design a new cryptosystem and resist all types of

possible attacks.

In stream ciphers the main focus of the cryptosystem is key i.e. password therefore it is required
to generate such a pseudorandom key of a given size that is proven to be unbreakable in
polynomial time by a cryptanalyst. A weak key let a cryptanalyst to break the entire security of a
cryptosystem and may lead to dangerous situations. The differential key analysis [3] [5] {38],
dictionary attacks [39], Guess-and-Determine attacks [40] and many other known attacks [31)]
[39] are there to compromise its security. The focus of this research work is on getting such a

key stream which is unbreakable by these cryptanalytic techniques used by the cryptographers.

ey,

1
1

Chapter 1 Introduction

1.7 Random Number and Sequencing

A weak key may let a cryptanalyst to compromise the entire security of a cryptosystem, therefore
it is required to produce a secure random sequence of bits. A randomly generated key stream
produces more confusion in the ciphertext and it becomes very difficult for a cryptanalyst to
guess a part of a key. A key having weak statistical properties is compromised and the plaintext
can be recovered over a guessed key. If a part of a key is compromised it may guide an analyst to
guess another part of a key. Random numbers can be generated through the following two major

types of random number generators [41] [42]:

i. Random Number Generators (RNGs)
ii. Pseudorandom Number Generators (PRNGs)

These generators produce stream of 0°s and 1’s depending on the size of the key stream which is
subdivided into sub streams or blocks of random numbers. The sequence of bits is generated
randomly and behaves like fair coin with two sides head or tail where the probability of
occurrence of head or tail is same and there is no biasness in their occurrences {41] [42]. The
probability of 0’s and 1’s is exactly % and produces a sequence of (0, 1) without any planning. If
there is a perfect random bit sequence generator then the sequence will have 0’s and 1’s which
are uniformly distributed. This sequence of un-biasness and fairness has an important role in the
field of cryptography. The key produced by this process will not be predictable and the
cryptanalyst cannot properly get the knowledge whether the key stream generator is
malfunctioning. Thus the key stream produced will not have the uniform distribution of 0°s and

I’s in the given sequence.

All elements of the sequence are generated independent of each other, and the value of the next
element in the sequence cannot be predicted, regardless of how many elements have already
been produced. Obviously, the use of unbiased coins for cryptographic purposes is impractical.
Nonetheless, the hypothetical output of such an idealized generator of a true random sequence

serves as a benchmark for the evaluation of random and pseudorandom number generators.

12

r-L
T

Chapter 1 Introduction

1.7.1 Random Number Generators (RNGs)

The first type of sequence generator is Random Number Generator (RNG). They use
nondeterministic source like noise in the electrical circuit, the processor time taken by some
process like key strokes on keyboard or mouse movement etc. This information is given to the
entropy distillation process to produces randomness. The entropy distillation is necessary to
remove any weakness in the entropy source which may result in non- random numbers which are

easy to predict like long sequence of 0’s and 1’s.

The output produced by RNGs must be unpredictable; however, there are some entropy sources
which are quiet predictable such as date and time. The output of these random number generators
is reprocessed by some other techniques to regenerate a random numbers to overcome this
problem. Still such a random numbers have the deficiency and the cryptanalyst may predict it
easily. Thus instead of using such a RNGs it is preferable to use PRNGs to generate large

number of random numbers.

1.7.2 Pseudorandom Number Generators (PRNGs)

The pseudorandom number generators (PRNGs) use one or more inputs and produce multiple
pseudorandom numbers. The inputs given to the PRNGs are called seeds, which by self are
random numbers. The seeds given to the PRNGs must also be unpredictable and the resultant
pseudorandom numbers have no correlation with the seed. The pseudorandom numbers 1s passed
to deterministic algorithms which produces deterministic pseudorandom number. The
reproduction of these random numbers, eliminate statistical autocorrelation between input and
output and produce more randomness. The output of a PRNG may have better statistical

properties than RNGs.

1.7.3 Forward Unpredictability

The cryptographic applications those produce the random and pseudorandom numbers should be
unpredictable and should not be determined by any cryptanalytic method. If one key 1s produced
by Pseudorandom Number Generator, the other key produced by it has no relation with the

previous one. The new key must be independent of the previous keys produced by it. All bits

13

r———
\-1-"

Chapter | Introduction

generated by PRNGs are at random and have ¥ probabilities. This property is known as forward
unpredictability.

The seed used for generating the key must be unknown and could not be guessed from the key
generated by the PRNGs i.e. the backward unpredictability is also required. If the key generation
algorithm is weak then the key can be determined if the seed is known. As most of the stream
ciphers are known then the designer must ensure that the seed must be random and secret
otherwise the analyst may get the knowledge about the resultant key therefore, the seed must also

be unpredictable.

1.8 Statistical Testing

A randomly generated sequence of bits is required to satisfy various statistical tests. It is not
necessary that each randomly generated key is stronger enough and satisfy all parameters defined
for verifying randomization properties. A randomly generated sequence of bits may have some
series of bit patterns similar to some other part of the key. Moreover if millions of keys are
produced there may be a chance that some keys may be repeatedly generated in a given key
space. Varlous statistical tests are applied to ensure the true randomness in a key produced by
PRNGs. These tests ensure the likeliness of a key that whether it is acceptable to use as a secret
key or not? These tests check the randomness in different angles to ensure whether there are
some patterns of bits available in the sequence which may result in guessing the entire sequence?
If the sequence does not have weak pattemns and lies in the acceptable region then it is accepted

as key otherwise it is rejected.

Statistical hypothesis tests can be used as under:

Null Hypothests, Hy = the sequence is random
Alternate Hypothesis, H, = the sequence is not random

This hypothesis is made for a series of statistical tests and the result of each test my lie in the
acceptable or rejected region, which conclude that whether the sequence produced is an
acceptable sequence of bits or not. The critical region is defined and results is verified whether it

exists in it or otherwise. National Institute of Standards and Technology (NIST) [41] [43] [44]

(1
1 ¥

Chapter 1 Introduction

has introduced sixteen statistical tests which are necessary for certifying whether a key is truly
random. These statistical tests ensure that a randomly generated bit sequence does not have the
repeated patterns or a series of bit patterns that may lead to guess the forth coming bit sequences
in a given key or a key space. NIST recommended tests for randomness verification are listed

below:

i. The Frequency (Monobit) Test
ii. Frequency Test within a Block
iii. The Runs Test
iv. Test for the Longest-Run-of-Ones in a Block
v. The Binary Matrix Rank Test
vi. The Discrete Fourier Transform (Spectral) Test
vii. The Non-overlapping Template Matching Test
viii. The Overlapping Template Matching Test
ix. Maurer's "Universal Statistical” Test
x. The Lempel-Ziv Compression Test
xi. The Linear Complexity Test
xii. The Senal Test
xiii. The Approximate Entropy Test
xiv. The Cumulative Sums (Cusums) Test
xv. The Random Excursions Test

xvi. The Random Excursions Variant Test

1.9 Considerations for Randomness and Unpredictability Testing

The following assumptions are made with respect to random binary sequences to be tested:

L. Uniformity: The occurrence of a zero or one is equally likely at any point in the
generation of a sequence of random or pseudorandom bits. The expected number of zeros
(or ones) is n/2, where n is the sequence length.

il. Scalability: Any test applicable to a sequence can also be applied to subsequences
extracted randomly. If a sequence is random, then any such extracted subsequence should

also be random. Hence, any extracted subsequence should pass any test for randomness.

Chapter 1 Introduction

iil. Consistency: The behavior of a generator must be consistent across starting values
(seeds). It is inadequate to test a PRNG based on the output from a single seed, or an

RNG on the basis of an output produced from a single physical output.

1.9.1 Random Mappings

When the data vectors are high-dimensional it is computationally infeasible to use data analysis
or pattern recognition algorithms which repeatedly compute similarities or distances in the
original data space [45]. It is therefore necessary to reduce the dimensionality before, for
example, clustering the data. Random Mapping (RM) is a fast dimensionality reduction method
categorized as feature extraction method. The RM consists in generation of a random matrix that
is multiplied by each original vector and result in a reduced vector Let F, denote the collection of
all functions (mappings) from a finite domain of size n to a finite co-domain of size ». A random
mapping model is that where the random element F, are considered for processing. If there is a
model containing a series of random functions and we pick each and every model equally likely,
then randomization may occur and these models are frequently used in number theory and
cryptography [18] [45] . Because the cryptography is based upon choosing a true random number
if possible and passed through the algorithmic number theory to check the fitness and of its

application.
If there is function [Fn| = n", then the probability of selecting that particular function is 1/n".

To extract the valuable knowledge from the information stored in the knowledge base the
functional graphs are produced and to encircle the areas which are associated with each other. A
functional graph may have several components. Each component consists of a directed cycle, and

some directed trees attached to the cycle as shown in Figure 1.7 [45].

Figure 1.7: A Functional Graph Containing Cycles and Trees

1
16]

b,

Chapter | Introduction

These functional graphs are produced in a way that, if there are a series of keys produced and are
kept together then those parts of the key are encircled which have the resemblance with other
keys. For example if a key that is having repeated 1’s or 0’ then it is checked whether some other
keys produced by the given key stream generator is also having such a series. This process is
applied on the consecutive key streams, and the patterns are encircled so that we can easily find
out that the key stream generator is producing the patterns those are also repeated in other keys.
The cryptanalyst also determine that after how many keys such pattern is being repeated. The
picture shows that if a set of keys is given then there is a probability that the sane sequence is
repeated 1f 1t 1s not controlled intelligently. The designer may stuck in the circular part of the

Finite State Machine (FSM) and would generate a series of similar patterns.

1.9.2 Complexity Theory

To solve the computational problems we need to classify them according to the resources
needed, the complexity theory is used. Classification is based on the complexity and difficulty of
the problem and does not rely on a particular computational model. The resources might be of
different types for example the number of processors, time, random bits and storage space etc.
[18] [42] [46].

The computational procedure which takes inputs in the form of variables and results output is
called algorithm. In sense of computational model, i.e. the set of instruction given to the
computer in an order to accept input from some source and give resultant value called output.
The computer can’t be operated without these instructions and they are designed in a view to

give fruitful outcomes.

To get a correct output the computational procedures or algorithms are designed by using the
formal computational models for example the Boolean Circuits, Turing Machines, random
access machines etc. The end user is not being involved in the technicalities of involved while
designing these computational procedures, but the scientists must carefully observe and
producing more computational models. Looking to the problem, an algorithm is taught and
implemented in some programming language for computers and halts on a state that give the
required output. Designing a new algorithm for solving a computational problem it is important

to keep the following points in mind:

r-L-

1
17}

Chapter 1 Introduction

1. It should be efficient and depends on the time taken by the algorithms when it halts
i1, The resultant output must be accurate and
iii. Other algorithms working for solving that problem should be known and this new

algorithm must be comparatively better than the previous ones.

For cryptographic problem the input size is the total number of bits, provided to the algorithm for
solving a problem and sometimes it is the number of items in the input [18] [43].
i. The number of bits in the binary representation of a positive integer n is 1 + lg (n)bits.
For simplicity, the size of » will be approximated by Ig (n).
ir. If fis a polynomial of degree at most £, each coefficient being a non-negative integer at
most n, then the size of fis (k + 1) Ig (n) bits.
iii. If 4 is a matrix with r rows, s columns, and with non-negative integer entries each at

most #, then the size of A4 is (r.s.lg(n)) bits.

The number of steps taken by the algorithm while solving a new problem is called the running
time of the algorithm. A step may be a comparison, a machine instruction, a clock cycle or
modular multiplication. A step can be any operation those are involved in generating the final

output,

1. The total number of “steps” or operations done by algorithm on some input is called the
running time complexity.

ii. The average-case running time complexity is the average time taken by the algorithm for
a particular input, because some inputs niay take more time and some may take
comparatively less time so the average-case time complexity is required to check the
overall performance of the algorithm.

ili. The worst-case running time of an algorithm is an upper bound on the running time for
any input, expressed as a function of the input size, i.e. the maximum time taken by an

algorithm from solving a particular problem.

1.9.3 Asymptotic Notations

A Pseudorandom Number Generator (PRNG) produces a random bit sequence that is a member
of a given key space. A cryptographer prefers a key that is the member of a key space but must
not lie at their edges. A cryptographer is restricted to design such a security algorithms that lies

(1
1 B]

Chapter 1 Introduction

in a given asymptotic upper bound and lower bound. He tries to increase the time complexity for
searching a key space and the cryptanalyst must not be able to find out the key in polynomial
time. The exhaustive search attacks and other statistical attacks are infeasible in terms of time

and resources that infinite time and resources fails to search a given key.

Due to the difficulty of finding out the exact running time of the algorithm; it is needed to use
approximation of the running time. For this purpose asymptotic running time of the algorithm is
derived, i.e. so that the complexity of the algorithms can be found easily irrespective of the size

of the input is provided, they exist within the given bounds [18].

1.9.4 Complexity Classes

The functions having worst-case runtime complexity is of the form O(m"), is called a polynomial
time algorithm, where m is the input size and n is a constant. If m = 64 and n = 100, then O{m")
= 0(64!"%), lies in polynomial time. The runtime complexity for such an algorithm cannot be
bounded and are called exponential time algorithms. The algorithms whose complexities lie in
the exponential time are considered to be inefficient but there are certain realities and practical
solutions where this distinction in not appropriate. For example, the degree of polynomial is
significant while considering the polynomial time complexity, so the algorithm having the
running time complexity of O™ ™™ where n is the input size, is slower than the algorithm
with a running time of O(n’m) asymptotically. The first algorithm may be faster in practice for

smaller values of n, specially the hidden constant used by the big-O notation are smaller.

The average time complexity in cryptography is more important than that of the worst-case time
complexity. A necessary condition, that the cryptographic scheme used for encryption is
considered to be secure and the cryptanalysis problem is difficult on average, and not just for
some isolated cases. So, the designer of the algorithm must keep this in mind the he should not
only find the worst case time complexity but also the average, and the best case time is

complexity too.

An algorithm whose worst-case running time complexity function is of the form ¢”™, where n is

the input size, then such an algorithm is called subexponential-time algorithm.

19

L
et

Chapter | Introduction

An algorithm whose running time is fully exponential in the input size, the subexponential-time
algorithm is faster than that, while the former is asymptotically slower than polynomial time

algorithms.

The sct of all decision problems those are solvable in polynomial time are kept in the complexity

class P,

The set of all decisions problems for which a YES answer can be verified in polynomial time

given some extra information, called certificate are kept in class NP.

The set of all decisions problems for which a NO answer can be verified in polynomial time

using appropriate certificate are kept in complexity class co-NP.

All cryptographic algorithms are proven to be NP-Hard and their solution is not possible in
polynomial time. The cryptanalyst applies transformation or detection strategies for finding the
solution by tracing the cryptographic weaknesses in a given security model. If it is proven that
the NP-Hard problem is converted into NP-Complete then transformation and detection
techniques fail to find out the solution of a problem. This work removes the traceable bit patterns
from the key generated by PRNG of SNOW 2.0 security model to vanish the chances of

transformation and detection techniques to find out its solution.

1.10 Statistical Hypothesis Testing

A Pseudorandom Number Generator (PRNG) generates key, which may be random or
nonrandom depending on their statistical properties. The ultimate goal of this work is to generate
a random sequence of bits and a nonrandom sequence is classified as weak key. National
Institute of Standards and Technology (NIST) recommends various statistical for this purpose
that checks the key structure for various statistical properties. The sequence of bits and their
orientation, long run of zeros or ones, pattern repetition, overlapping and non-overlapping
properties of the patterns etc. is verified in a given key. The key is verified to be a true random

and having higher degree and entropy and distortion.

(| .
20 |

Chapter 1 Introduction

Statistical hypothesis testing is a conclusion-generation procedure that has two possible

outcomes [41):

1. Null Hypothesis, Hy = the key stream is random

1. Alternate Hypothesis, H, = the key stream in not random
The following table shows the situations that whether accept the hypothesis or reject it.

Table 1.1: Statistical Hypothesis Test

Conclusion
True Situation .
Accept Hy Accept H; (reject Hg)
Data is Random (Hj is True) No error Type I error
Data is not Random (Ha is not True) Type Il error No error

Two types of errors may occur:

Type I error: reject null hypothesis and accept alternate hypothesis (i.c. the sequence is non-

random} whereas the sequence in truth is random.

Type II error: reject alternate hypothesis and accept null hypothesis (i.c. the sequence is

random) whereas the sequence in truth is non-random.

The probability of a Type I error is called level of significance of the test, which is set prior to
the test and is represented as a, where a is the probability that the test results that the sequence is

non-random when it really is random.

The probability of a Type II error is called level of significance of the test, which is set prior to
the test and is represented as §, where f is the probability that the test results that the sequence is
random when it really is non-random. The calculation of £ is difficult than a because of the many

types of non-randomness.

These tests are used to minimize the risk of Type I errors. The non-random sequence treatment
as random may result in worst cryptographic loopholes and may result in information

vulnerability.

Chapter | Introduction

1.11

1i.

11l

1v.

Motivation

Humans have an interesting approach to problem solving, and a person cannot
specifically says that by what reasons he responds intelligently. The knowledge base is an
integral part of his intelligence but it is not the only part that enables a human to respond
intelligently because there are the situations in which a person with no knowledge also
has a reasonable response [47] [48].

Human beings have the capability to understand and adopt the new environment, whereas
the computer does not have this capability. Genetic programming and artificial
intelligence algorithm can also let the computers think and to make decisions based on
the situation arises [49] {50].

Stream ciphers play an important role in securing data where the communication
channels noisy and less computational power and has the following features:

a. Stream ciphers are more efficient than block ciphers

b. Used in area of minimal memory and other resources

c. Used in noisy and erroneous data transfer

d. Real time actions and data transfer like in military signaling

In military communication stream ciphers are more popular than block ciphers because
they take less time in the encryption and decryption and works better in noisy and even in

erroneous communication [29] [51].

1.12 Thesis Organization

This dissertation is organized in the form of chapters, in the following each chapter is described

briefly so as to make it more understandable:

In Chapter 2, we review the relevant literature concerning traceable pattern in the key
streams of different ciphering algorithms and the work done in this area. We also discuss
the artificial intelligence techniques those are suitable for ciphering algorithms; also we
present some of the algorithms those are claiming to be mtelligent.

In Chapter 3, we analyze the stream cipher SNOW 2.0 and apply different statistical

attacks then present the formal specification of the problem of the traceable bit stream

Chapter 1 Introduction

patterns in logic based stream ciphers, to check the vulnerability of the stream ciphers,
and present a formal discussion on the reasons and the realities that why we adopt this
new approach.

o In Chapter 4, we present a proposed model based on intelligent algorithms and stream
cipher, and the algorithm that extract knowledge from the Knowledge Basc while
creating the new key and intelligent action in such a situation.

e In Chapter 5, we present our results and the comparative analysis of both the original
ciphering Algorithm and our proposed model.

o In Chapter 6, we conclude our work and give recommendations for the future work.

1.13 Summary

A related knowledge is provided in this chapter to understand the rest of the work in this
dissertation. Stream cipher algorithms are used for swift communication and are suitable for the
noisy communication channels. In case of error only specific part of the data is disrupted, and
the error does not propagate in the proceeded bits. The major problem with the stream ciphers is
that these are comparatively less secure than block ciphers but required in high speed
communication. In stream ciphers the security is based upon the key that is used for the
encryption and decryption process. The designers always have concemns about getting a strong
random key. If the key generated is weak the cryptanalyst may get a clue regarding the plaintext

which may compromise the entire security of the system.

The cryptanalyst tries to break an encryption algorithm and guess a sequence of bits that may be
used as a key and tries to find out the weak points in the design of key stream generator and keys
produced by RNGs. NIST statistical suite is used for a randomness verification of key that 1s
produced by a given PRNG and before using it as secret key it is required to pass fandomness

verification test.

Chapter 2 Related Work

CHAPTER 2
RELATED WORK

Classical data encryption algorithms were used for data security and the messages were
encrypted using these algorithms. The evolutions of computer change the approach towards
modem cryptography. Stream cipher algorithms have a short history and a wide range of

contribution in telecommunication sector. This chapter reviews:

1. Modern stream ciphers
i, Genetic programming based stream ciphers
in. Cryptanalysis and security attacks on stream ciphers

v, ANN based stream ciphers

Cryptography is one of the most concentrating areas that attract everyone to trace out the secret
of another that ranges from an individual to the organizations and countries in their national
interest. The work done in this field is always a trade secret and the organizations and
departments keep their security models and algorithms secret. The cryptanalyst not only tries to
break an encryption algorithm but also tries to trace the seasons of breaking a secunty

algorithms. Every stream cipher cryptosystem consists of two parts which are:

1. Key stream (Random sequence bit) generator

i1 Mixer (XOR for the binary sequence)

The encryption process is simply XORing the key stream with the plaintext data. If the key
stream produced is not strong enough then a cryptanalyst may implant different cryptanalytic
attacks to recover the key or produce the plaintext from the given ciphertext which may lead to

code breaking.

2.1 LFSR Based Stream Ciphers

A number of cryptographic stream ciphers are available such as SNOW 2.0 [9] [10], ORYX
[52], RC4 [53], SEAL [54], Rabbit [55], Turing [56], AS/1 [32] [33], EO [19] [57], COS [58],
Scream [59], HC-256 [60] [61] [62] . The algorithms like Golden Fish [63], Fish Tailed Lion

(1
\ 2

Chapter 2 Related Work

[64] are claimed to be intelligent but their critical analysis show that these algorithms have been
amalgamated with some other cryptographic techniques. These algorithms use different
techniques to improve their security. This section covers the design and cryptographic loopholes

in modern logic based stream ciphering algorithms.

2.1.1 Golden Fish Algorithm

Golden Fish algorithm claims to be an intelligent stream ciphering algorithm. It is designed by
fusing the block cipher operation mode with the memory modules of the stream cipher, where
the security is proven by periodic and nonlinear evaluation. The Linear Feedback Shift Register
(LFSR) of stream cipher is replaced by the nonlinear characteristics of the block ciphers. The
author claims that it is an intelligent algorithm, however, the real structure and working process
shows that it is a logic based stream cipher and the LFSR characteristics are converted to non-
linear by fusing it with the block cipher. The linear charactenistics of the LFSR based stream

cipher are fused with the block cipher to get a nonlinear system [63] .

Figure 2.1: Golden Fish: Block Cipher and Stream Ciphers Fused Together

The M; output is given as input to LFSR which is adjusted as result of XORing M; and LFSR of
the current state. The output from LFSR is given to B (block cipher) after mixing it with the
output of B. The output from B is again XORed with P that generates a single bit stream at

~~
N
5]

S

Chapter 2 Related Work

random. The random bit is kept in array and also given again as input to M. The process is

repeated until the desired key of a given length is generated as shown in Figure 2.1.

2.1.2 Fish Tailed Lion Algorithm

It is a mini intelligent stream cipher that includes one stream cipher, block cipher and two
HASHSs. It is a toy-model design based on combining the ciphers, which are S-quark, Trivium,
Skein and Serpent. In this model the resultant Fish Tailed Lion is claimed to be different from
the classical ciphering algorithms. It is a simple module that enhances the security of the stream
ciphers [64].

This model again the design is partly the stream cipher and partly the block cipher. It is a stream
cipher that is combined with block ciphers to improve its security features. It is claimed to be
secure but still no literature is available on the cryptanalysis of this algorithm. The major
drawback in Fish Tailed Lion Algorithm is that it can neither be used as a replacement of the

block cipher nor as a replacement of the stream cipher.

2.1.3 SNOW 2.0

Ekdahl P. et al (2003) [10] redesigned SNOW 1.0 that was a New European Schemes for
Signatures, Integrity and Encryption (NISSIE) project and has been used in 3G, GSM and
military applications. Serious cryptographic loopholes in SNOW 1.0 were addressed to remove
them in the new version SNOW 2.0. Most of the part of SNOW 2.0 is similar to SNOW 1.0 but
major changes have been made in the Finite State Machine (FSM). It has the following variations

over the original SNOW 1.0:

i. The word size in both versions of SNOW is same i.e. (32 bits)
ii. Linear Feedback Shift Register (LFSR) length is 16, but the feedback polynomial is
different from SNOW 1.0.

iii. The operation of both versions i.e. SNOW 1.0 and SNOW 2.0 is slightly different. In
SNOW 1.0, the first symbol is read out before the cipher is clocked after the key
mmtialization, but in SNOW 2.0, the first symbol is read out after the cipher is clocked
once.

iv. SNOW 2.0 involves two different elements in the feedback loop, i.e. a and a”'.

26

L
e

Chapter 2 Related Work

v. The Finite State Machine (FSM) has two input words instead of one, taken from the
Linear Feedback Sift Register (LFSR), and the running key is generated by XOR
between FSM output and the last entry of the Linear Feedback Shift Register (LFSR).

The Psendorandom Number Generator (PRNG) of SNOW 2.0 shown in Figure 2.2 [10]

D B |
—ihls‘*:s S Sin Ses 5z >
I I = R N NS
E ET T - *
Y _.,®_, R2 ||
' :

e A I T T . T 'Y

Figure 2.2: Diagrammatic Representation of SNOW 2.0
| Addition mod 2%

) Bitwise XOR
The Pseudorandom Number Generator (PRNG) of SNOW 2.0 initializes the key as follows [10]:

1. Initially key initialization is performed. This operation provides starting states to Linear
Feedback Sift Register (LFSR) as well as to assign initial values to the internal Finite
State Machine (FSM) registers R1 and R2.

27

—_—
i

Chapter 2 Related Work

1. SNOW 2.0 takes two parameters as input value, the publicly known 128-bit initialization
value IV and a secret key of either 128 or 256 bits.
1t1. The TV, 1.e. TV = (IV3, IV,, IV, IVp) value is considered as a four word input, where IV;

1s the most significant one.

2128—1, means that, for a given key K,

iv. The initial vector IV, possibly ranges from 0......
SNOW 2.0 implements a pseudorandom length increasing function from the set of IV
values to the set of possible output sequences.

V. The secret key denoted by K = (ks, k», ki, ko), in 128 bit case, where k; is a word and &; is

the most significant word. The first half of the shift register is initialized with K and IV as

follows:
s$15= k3 @ Vo sta =k s13 =K
si7= ko @ IV, sn=k; @ 1 s=ky®1 DIV,
so=k D 1 @IV ss=ko D 1

and the second half of the shift register as follows:

s7=ks S6 = Ky ss =k
ks=ko si=ks P 1 s2=ka@ 1
SlzklfBl So=k0$1

It is easy to implement reaching speed of 3Gbits/Sec on Intel Pentium 4 Computer.

vi. The word size is 32 bits and LFSR length is 16 as it is in the original cipher but the
feedback polynomial has changed [8] [10] [65].

vii. The Finite State Machine (FSM) takes both inputs from LFSR and the running key. This
key is made up of the exclusive or XOR between FSM output and the last element of the
Linear Shift Feedback Register (LFSR).

2.1.3.1 Cryptographic Weaknesses

SNOW 2.0 is an advanced system that estimates the biases more accurately in the linear
approximation of Finite State Machine (FSM). As a result most of the successful attacks over
SNOW 1.0 are impractical over SNOW 2.0. This improved bias estimate, proves that the linear
distinguishers with bias 2% is significantly stronger and distinguishes the output key stream of
SNOW 2.0 of length 2'7 words from a truly random sequence with workload 2'"*, which is more

Chapter 2 Related Work

stronger than the distinguishing attack [8] [37] [66]. SNOW 2.0 was claimed that it produces a
secure, minimal biased bit sequence those were observed in the bit stream of produced by its
Pseudorandom Number Generator (PRNG) of SNOW 1.0. A recent fast correlation attack over
the extension fields of SNOW 2.0, (an ISO/IEC 18033-4 ISO Standard Stream Cipher) is
established by Zhang B. et al (2015) [67]. It is 2* times faster than best known attack on SNOW
2.0 published in [68]. This attack again proves that SNOW 2.0 is not secure and correlation

attacks over extension fields are more successful than the other known attacks.

2.1.3.2 Guess-and-Determine (GD) Attack

The Guess-and-Determine attack is a very effective and general attack that is applied on
approximately all the stream cipher algorithms [7] [69] [70]. This attack initially guesses the
contents of some of the cells and obtains the states of all the cells of the ciphering system and
comparing the running key sequence with the resulting key. If the guess is proper then an
approximate sequence is taken otherwise try another guess to find out the sequence those are
similar to that of the original one. The time complexity of the Guess-and-Determine attack is
similar to that of the exhaustive search algorithms, but the advantage here is that if the initial
guess is more appropriate then the probability of success is improved. Because of these reasons
the Guess-and-Determine attack is most recommended and often implemented heuristically [31]

[40] [68].

Guess-and-Determine attack and Correlation attacks are still applicable on SNOW 2.0. The
Pseudorandom Number Generator (PRNG) of SNOW 2.0 generate a sequence of bits having
improper “0” and “1” mixed together those may lead to cryptographic vulnerabilities [7]. The bit
streams in Modified SNOW 2.0 are comparatively more organized and highly resistant to Guess-
and-Determine attacks and increasing the time complexity to 277°34] [37] [68]. The cryptanalyst
require more overhead to compromise the secin‘ity of modified SNOW 2.0, because the statistical
weaknesses cannot be easily determined in modified SNOW 2.0. The initial guess is given to the
Guess-and-determine attack which determines the relationship between the internal values of the
key and the cipher is broken completely [40] [71]). Similarly, the linear masking attack that

2*% output words (27°° bits) and 2**° steps of analysis to distinguish the output of

requires
SNOW 2.0 from a true random bit sequence [13]. In this attack a series of bits are selected to

seek the correlation of selected bits with rest of the bit patterns in a given key to determine

F
N
w

| S—

Chapter 2 Related Work

another part of the key. This attack greatly supports the Guess-and-Determine attacks which

focuses only over guessing a part of the key and determine some other sequence of bit patierns.
2.14 ORYX

ORYX algorithm is used to encrypt data in digital cellular phones when data are sent from one
phone set to another. It is based on three 32-bit Galois, Linear Feedback Shift Registers (LFSR)
and is different from the block cipher CMEA that is used to encrypt the cellular data control
channel. D. Wagner, J. Kelsey, B. Schneider belong to cryptographic tag-tcam from Counterpane
systems have developed an attack on ORYX. The attack was successful and requiring about 216

guesses on 24 bytes of known plaintext [31] [52] .

Wagner D. et al (2002) [52] presents a very strong attack on the security of ORYX. Using this
attack the full 96-bit internal state can be directly recovered irrespective of the key schedule. The
North America Cellular system is using ORYX to encrypt data that is transmitted in the
channels. All the above discussion proves that a very low level security is provided by the
ORYX algorithm, and is strictly discouraged in the second generation and third generation

mobile communication.

The ORYX cryptosystem has 96-bit key space to guess the generator’s initial state as a whole.
As it is not feasible, so the cryptanalyst divide the initial generator state in to smaller parts and
then implants the guess on these small parts of the keys and continuously checks whether the
guess is correct, hence the entire key is compromised. The following are the two main points in

the attack:

1. If the cryptanalyst knows 25 bytes of the key stream, then the probability of success 1s 99,
where the attack requires exhaustive search over 16 bits.
ii. If more than 25 bytes of the key stream are vulnerable to the analyst, the probability of

success increases even more.

If the cryptanalyst has access to more than 25 bytes of the key stream, the probability of success
is increased. It proves that the cryptographic algorithm ORYX provides very poor security, and
most of the second generation mobiles and telephonic devices are insecure and the security may

compromise if some secret information is transmitted.

{ =}

Chapter 2 Related Work

2.1.5 RC4

It is a very important stream cipher algorithm, from RSA Security, Inc. It was a trade secret and
the US military but the source code was anonymously published in 1994. This algorithm was
performing similar to that of RC4 used in different devices launched by the official RSA
products. It is widely used and a large number of products are made secure using RC4. There
were no known security arracks on this algorithm as assumed until 1994. It is not developed in
RSA laboratories but RSA was using it as trade secret. The 40-bit exportable version of RC4 was
broken in Kremlin using brute force attack [36] [53] [72] [73].

2.1.5.1 Strength
The RC4 algorithm gives theoretical and practical security, and has number of features:

i It is very difficult to know that where the required values is located in the table.

il. Tt is difficult to know that which location in the table is used to pick up the values for the
sequence.
iii. The key is generated only once by the RC4 pseudorandom number generator.

iv. The encryption scheme of the RC4 algorithm is 15 times faster than Data Encryption
Standard Algorithm (DES) and other block ciphers [36] [72].

2.1.5.2 Weakness

Couture N. et al (2004) [36] argue that although RC4 is a widely used stream cipher but numbers
of effective attacks are available, which have compromised the security of RC4. Johansson T. et
al (2003) [29] and Viadimor V. C. et al (2002) [74] present some effective brute force attacks on
RC4 and a 40-bit can be recovered in few minutes. He also presents another efficient attack on
RC4, in which the author claims that RC4 is fully insecure in the natural mode of operation, and
must be rejected for using in widely deployed WEP (Wired Equivalent Privacy Protocols, which
is a part of the 802.11b Wi-Fi standard.)

The RC4 algorithm has the following issues in its structure:

1. The keys produced by RC4 are strong enough, but in every 256 keys there may be a weak
key. The analyst identifies the keys and checks the correlations of these keys with the

Chapter 2 : Related Work

others and on finding the correlation the attacks are generated [75]. The reason for this
attack is that the state table is vulnerable to analytical attacks.

ii. The cryptanalyst finds the correlation among the keys produced by the key generators, as
there are circumstances that the keys are strongly correlated with the subset of the key
bytes, or there can be only one key out of every 256 keys generated by the RC4 key
generator.

iil. The keys generated by RC4 are weak because, if some of the patterns have been detected
in the weak key will compromise the entire key. When a sub part of the key generated by
Key Scheduling Algorithm (KSA) of RC4 is exposed, the attacker applies related key
analysis attacks to find out the next part of the key.

2.1.6 SEAL

It is one of the fastest and secure encryption algorithm designed by Coppersmith D. et al (1998)
[54] of IBM Corporation. SEAL requires only five operations per byte to generate the key
stream, and need very less memory as compared to other algorithms of the same category. It is
best recommended for encrypting large amount of data on hard drive or where the ciphering data

is read from the middle of the channel in a ciphering communication.

It is a binary additive stream ciphers proposed in 1993. It is a software optimized encryption
algorithm. The cryptanalysts did not give proper attention to SEAL. However, some attacks are
proposed which are very effective on the simplified version of SEAL. This stream cipher is
specifically designed for 32-bit processors, with the capability of very high speed encryption and

decryption process.

The simplified version of SEAL has serious cryptographic vulnerabilities and effective attacks
can be launched on it. The attack on simplified version of SEAL is described in the following

four steps.

i Derive the unordered set of values from the T-table of the unknown 32 bit constant D

il. Compute constant « is required to find the statistics involving B, D'\ A" and B in the
third step.
iii. Use the values of »' those have been found and constant values to make the relation

between input and output values in the T-table.

Chapter 2 Related Work

v. Compute the input and output values of the T-table.

If the T-table is broken down, then the security is compromised, which is done in about 2%
samples of (n, 1). The simplified version of SEAL can be broken down, if we find the sets of
values (n;, ny, n3, ng). The security of T-table can be broken by generating randomized R-table

and find the relation between T- table and R-table [76]. .

2.1.7 Rabbit

It is one of the fastest encryption algorithms and was presented at the Fast Software Encryption
workshop (2003) [55]. Its design is based on the complex behavior of the chaotic maps having
the exponential sensitivity and generates a map containing random numbers and remained long-

time unpredictable.

i Tt takes 128 bit long secret key and generates an output of 128 pseudorandom bits from

the combination of the internal state.

11. The encryption and decryption is done by XORing the plaintext and ciphertext with the
pseudorandom number respectively.

iii. The internal 513 bits are divided into eight 32-bit counters, eight 32 bit state variables
and one carry bit.

iv. The eight state variables are updated by eight coupled non-linear integer valued
functions.

V. The lower bound is secured by counters on the period length for the state variables.

The two main features of Rabbit are:

i Security: The key size of the Rabbit is 128 bits and encrypts 264 byte of the plaintext.

1. Speed: It is a faster and commonly used stream ciphers.

A brief and comprehensive technical discussion of different aspects of stream ciphers is
presented in [7]. The stream ciphers are fast but less secure than block ciphers thus the focus of
designers of the Rabbit was on maintaining the speed and keeping the security of the data at the
highest level. One of the drawbacks of entire scheme of stream ciphers is that their main focus is
the key only. If someone is unable to get a truly random key, then none of the stream ciphering

will guarantee speed. A comprehensive discussion on security and cryptanalytic attacks on

Chapter 2 Related Work

Rabbit is available in [77]. Goli¢ J.D. et al (2005) {30] proposes the cryptanalysis of the stream
ciphers and proposes alternative designs. Various cryptanalytic weaknesses in the design of

Rabbit are discussed in [7].

2.1.8 Turing

Tt is another fast encryption stream cipher method using a key size of 265-bits. It is an efficient
algorithm and is designed to be used in areas involving huge computations. It is an LFSR based
stream cipher used in another algorithm SOBER along with the key mixing function of a block
cipher round [56] [78].

2.1.8.1 Security of Turing

In Truing two different aspects are combined together in a manner to achieve ultimate security. It
has a long key size and cannot be broken in polynomial time because 2258 keys are required in the

WwOrst case.

2.1.8.2 Known Plaintext Attacks

The key generated in the Turing is independent of the plaintext, and any misuse of the stream
cipher will result in destruction of plaintext. If a key stream is reused or if there are some
relevant bit patterns previously used in the key stream may compromise the security and the

cryptanalyst may get information about the plaintext from the ciphertext.

2.1.8.3 Statistical Attacks

The biased key stream generator may produce the weak keys which are detectable and the
cryptanalyst may find these weaknesses and approach the information. The Turing design is
based on the nonlinear transformation and discourages the linearity of the LFSR outputs. The
designer is of the opinion that LFSR based stream ciphers are less secured as compared to

NLFSR based stream ciphers.

2.1.8.4 Related Key Attacks

In these attacks the hacker gets some output from a black box, and look for the relevance of that
text with the ciphertext that has been attacked. Turing key loading mechanism addresses this

attack and ensures that a change in single byte will make a significant change in the S-Boxes. It

Chapter 2 Related Work

also affects the in term values of the Linear Feedback Shift Register (LFSR). The attackers make
a pair of keys and apply to the available plaintext and ciphertext looking for the similarity.
During the process of finding such a pair, if some part of the original key is known, the hacker
tries to find the key with similar characteristics. However, a key pair with an unknown pair is

very difficult to produce.

2.1.8.5 Correlation and Distinguishing Attacks

The nonlinear filter of Turing is designed to perform a strong transformation, and to use
significant amount of input state. The correlation among the states exists but it is sufficiently
small to support the correlation attack. However, the cryptographer does not rely on this attack
because it would not be successful due to security reasons. The correlation and distinguishing
attacks arc inapplicable on the secret key based S-Boxes. The main advantage of the nonlinear
filter function is that the hacker cannot analyze them as in case of LFSR based stream ciphers
where some unknown values are generated form a kind of “whitening” those are traceable and

predictable in view of the designer of Turing.

2.1.8.6 Guess-and-Determine Attacks

This is an efficient attack and very successful against the weakly designed LFSR based ciphering
algorithms. The nonlinear feedback shift register based stream cipher has less vulnerability to
these attacks. A strong NLFSR based structure of Turing has no fear of the Guess-and-Determine
attacks. In the New European Schemes for Signatures Integrity and Encryption (NESSIE) [78]
project it was studied in detail and provided a minimum complexity exceeding the enumeration

of the 256-bit keys.

2.1.9 AS5/1

AS5/1 is a strong and efficient stream cipher algorithm that provides privacy to over 200 million
users in the air link of data and voice communication. It was used as a Global System for Mobile
Communications {GSM) standard for security. The best published attacks against A5/1 require
steps ranging from 2*° to 2%, to compromise its security. It is best recommended in the areas
where the data is attacked by software based mechanism but not recommended where the special
hardware is used to implant attacks by large organizations. There are some flaws in the tap

structure of A5/1, their frequent reset and their non-invertible clocking mechanism which makes

g
w
el

| —

Chapter 2 Related Work

the algorithm insecure and the cryptanalysts with better arrangements for reestablishing the
plaintext [5]. The attacks on A5/l can be carried out by using a single PC, which has to be

applied only once after a 2% parallelizable data preparation stage.

2.1.9.1 Security Attacks on A5/1

A5/1 is under the strict considerations of the cryptanalysts due to its wide spread use and
implementation in the GSM technology. In these attacks the attacker assumes that he knows
some part of the secret key that has been generated by the A5/1 pseudorandom number
generator. It is a standard assumption in the cryptanalysis of all stream ciphers. The analyst then
applics the probability and statistical approaches and tries to guess what will be the next pattern
and how much probable it is. When the process completes for all chunks then he combines them
together using permutation. The GSM technology sends a new frame after every 4.6
milliseconds, containing 2 frames, and thus finding the initial key during conversation and the
rest of the conversation is decrypted [32] [33]. Biryukov A. et al (2002) [79] proposes two new
attacks on A5/1:

1. First attack is a very serious and it computes the key in several minutes, where there 1s

conversation among the parties for only two seconds.

1l The second attack is even more serious and efficient if there is a conversation between
the parties for several minutes. During the first two minutes the key 1s computed in one
second approximately.

Both of these attacks are interrelated to each other, but they use different types of time-memory
tradeoff. These attacks are practically applied and venfied to be efficient, but if there are special
arrangements such that the data is covered by other cryptographic measures too, the attacks
cannot be executed completely. These attacks has proved that A5/1 cannot be used any more for

achieving better security, and to protect the voice communication channel from data leakage.

2.1.9.2 Informal Description of the New Attacks

The key idea of the two attacks is given below:
1. They use the Golic time memory tradeoff.
ii. They identify the states from the prefixes of their output sequences.
1il. The A5/1 algorithm can be efficiently inverted.
v. The key can be extracted from the initial state of any of the frame.

Chapter 2 Related Work

. The Golic attacks cannot be practically applied on A5/1.
vi. Special states are used, which can be efficiently sampled in A5/1.
Vii. Biased birthday or Hellman's time-memory tradeoff attacks are used on a sub-graph of
special states

viil. A5/1 is very efficient on a PC, using parallelized stages for the software based

cryptanalysis.
These attacks are discussed in detail in [32] [33] [79].

2.1.10 E0

The Bluetooth protocol uses EQ algorithm which is a proficient stream cipher algorithm, and i1s
specially designed for Bluetooth supported devices and applications. The internal work EO is

described below:

i. The data is combined with the sequence of pseudorandom numbers generated by the
algorithm. A 128 bit long key is used but the size of the key may vary.
1. EO generates one bit per iteration using four shift registers of length 39, 33, 31, and 25
bits and two internal states each one is 2 bit long.
111, At each clock tick, the registers of A5/1 are shifted and its two states i.e. the current state
with the previous state and the values in the shift register are updated.
iv. From the shift register four bits are extracted and added together. The 2-bit register and
the four bit shift registers are XORed, where the first bit of the result is output for the

encoding.

It is used for link encryption in telecommunication based on stream cipher [57] that is used for
radio network link called Bluetooth. Patrik E. et al (2003) and others {5] [19] [57] analyzes EO
in different ways and prove that it is not secure and they recommend that should not be used for

secure communication in telecommunication sector.

Lu Y. et al (2004) [57] proposes different algorithms to attack EO. Different algorithms have
been proposed to break its security and it has been shown that E0 is no more secure. The time

complexity of the proposed attacks in the worst-case time is O(2°%).

Chapter 2 Related Work

The effective attacks over EO are the correlation attacks that break its security. The design lapses
in EO let the analyst to plot an effective attack. The initialization scheme of EQ is insecure as it
takes place in single step and does not strengthen the resultant key and the cryptanalyst
successfully break down the EO security. It is not recommended for use in dedicated stream
ciphers, and proves that E0 is no more secure, as the known-plaintext attack on Bluetooth

encryption.

2.1.11 COS

COS is another fast and secure stream cipher algorithm based on Nonlinear Feedback Shift
Register (NLFSR), proposed by Filiol E. et al (2001) [58]. Babbage S. H. et al (2001) [80] [81]
shows that Mode IT COS (2, 128) is extremely weak. He has proved that Mode I of COS (2, 128)
is also extremely weak, where the secret information could be recovered easily with a known
plaintext of size 216-bits. He describes a very efficient attack and claims that the stream cipher
of COS family are all extremely weak and states that the described attack requires successive
clocking amounts of 64 and 65. In fact it is easy to see that the attack can be generalized to work
for any two successive clocking amounts that are not both equal to 64. Given any three
consecutive blocks of known key streams, with % probability there is an attack that recovers the
entire state of the registers with negligible effort. He claims that it is not a weak cryptosystem but

it cannot be trusted any more.

2.1.12 Scream

Scream is another efficient and secure stream cipher algorithm. Its designers were inspired by
SEAL. It 1s more efficient and secure than SEAL [59]. The input to the first stage of the Scream
1s a short random string and the pseudorandom generator of the Scream expands it into a longer
string such that the resultant key is still random and the adversaries with limited resources cannot
break it. The pseudorandom number generator of Scream accepts a short input string called seed
(or key) and generates a longer output string called output stream (Key Stream). The key is used
only once for a single session and for the next session it is recommended to generate new key.
The key cannot be used for longer session because the cryptographers may get enough time to

break the security of Scream [7] {82]. The main goals achieved by the Scream are the following:

qri—
w
[=4]

—

Chapter 2 Related Work

i Scream is more secure than SEAL. The same seed can be used for 264 bytes of output.
To distinguish a cipher from a truly random number, the attacker would elapse more time
than that of the precise time, while looking at the initial 2°* bytes of output. It is
impossible to break it down, due to 2% key spaces and 2° times, and the security of the
Scream is above these values.

1. Scream is comparatively faster, i.e. on common PC’s it is about 5 cycles. It has better
performance over the 32-bit and 64-bit architectures.

iii. Full 128-bit input nonce is allowed for Scream and 32-bit nonce in SEAL is allowed.
iv. Scream is more suitable to be used in other implementation where SEAL is failed to
maintain the security, as it is more amendable and easily adjustable there too, for example

in smartcard etc.
Two distinguishing attacks are proposed on Scream Family:

1. The best one has 2% time complexity, but no specific attack has been proposed for
Scream. However, linear distinguishing attack can be applied if a sequence of 2% output
bytes is available. Based on the linear approximation of the nonlinear S- boxes the
distinguis'hing proves that some of the parts of the S- boxes have weak entries which
make the stream cipher vulnerable to cryptanalyst.

11, The second attack is due to the improper distribution of the values in S boxes create
problems. The attack is established which uses 2'% output words approximately and the

complexities of the similar size.

The linear distinguishing attack is faster than the exhaustive search attacks for the Scream of 128
bit keys. A full security cannot be obtained by Scream, means that none of the known attack is
applicable in polynomial time, but in case of the Scream Exhaustive key search and Linear
distinguishing attacks are the known attacks which may compromise the security of Scream

stream cipher, and the world cannot rely on Scream to use in industrial products.

2.1.13 HC-256

HC-256 is an efficient, fast and secure stream cipher algorithm. It requires low memory and
resources and 4 to 5 times faster than other stream ciphers of its family. It is very simple to

implement and encryption is done by XORing the key stream with the plaintext. It updates one

(1
1 3]

Chapter 2 Related Work

clement of a table with non-linear feedback function in the two secret tables with 1024 32-bit
clements. It is a software efficient stream cipher having superscalar features of modern and new

microprocessors [60] [61] [62].

The linear distinguishing attack on the key stream of HC-256 has been applied with no linear
masking. The weak feedback functions are analyzed and was proved that the key generator
generates a random numbers of 2!28 bits. It has the characteristics of truly random sequence.
None of the known attack is computationally feasible és the designer of HC-256 claims. The
cache-timing attacks are later on proven to be feasible on HC-256 and guess the key by taking
the random seed required for key initialization. Hyper threading attacks and process-interruption

attacks also have significance to break it security [31] [38] [83].

2.2 Security Issues in Stream Ciphers

Stream cipher algorithms security is mostly dependent on key stream and must not be discovered
by any cryptanalytic attack. The key space must contain enough keys that randomly generated
keys could not be reproduced in polynomial time. The cryptographers also require that not only
the entire key but the subpart of the key would also not have biases that would let the attacker to
distinguish a stream from any type of random noise. The ciphertext must not have any
relationship with the plaintext that could trace a secret key as a result the resultant ciphertext 1s
generated. The cryptographer should not get any clue to find the relationship among the chosen
plaintext and resultant ciphertext. A stream cipher can be guaranteed that it is unbreakable for
some of the cryptographic attacks and there may not have practical ways that it will be broken

down but might have other weaknesses which may lead it to break down in future.

The sequence of bits produced by PRNG is treated as secret and is used only once for a
communication channel and should not be used twice. The key is used for short term
communication and should not be used for long period of times as the prolonged period lead to
security leaks. The application designer must also recognize that the stream ciphers are mostly
used for confidentiality and not for authenticity. The encrypted message has the threat to be
modified in transit, and the designer need to take special actions to overcome such a situation.

Short period stream ciphers have practical concerns:

Chapter 2 Related Work

i. If the key size is very short then Brute Force and other Algebraic attacks may
compromise their security.
ii. If encryption is being performed at a rate of 8 megabytes per second, a stream of period
2°2 blocks will repeat after about a half an hour.
iii. The weak implementation of a stream cipher may let the analyst to guess the key by

implanting chosen plaintext or ciphertext attack.

The designer must also confuse the relationship among the key used and resuitant ciphertext. The
stream cipher RC4 that was used as a trade secret by US department of defense till 1994 18
attackable because of weaknesses in its key setup routines and new applications strictly

discourage the use of RC4 algorithm to be used for security purposes [75].

2.3 Genetic Programming in Cryptography

Cryptography is one of the most significant techniques in the field of information security. The
use of evolutionary .computation to analyze the cryptology is the product of evolutionary
computation and cryptography. Over the last few decades many researchers have made lot of
achievements. Evolutionary computation techniques include genetic algorithms and artificial
neural networks and their role cannot be ignored in cryptography. A number of stream cipher
algorithms are designed based on Artificial Intelligence. Section 2.3.1 discusses the work done

in this area so far.

2.3.1 Genetic Programming Based Stream Cipher

Spillman R. et al (1993) [84] used Genetic Algorithm (GA) and he used simulated annealing
method for the sheet substitution cipher of analysis. Clark J. A. et al (1998) [85], Van V. J. H. et
al (2003) [86] added their contributions in designing and developing more clever genetic
techniques. They developed tabu search algorithm and particle swarm optimization algorithm for
sheet substitution cipher analysis. Servos W. et al (2004) [87] used genetic algorithm (GA) for
the analysis of multi-Chart substitution Vigenere cipher. They used genetic algorithm to identify
and determine the parameters of the muiti-chart substitution ciphers. Peleg S.et al (1979) [88]

decoded substitution cipher using a technique called relaxation algorithm.

]
a |

ey,

Chapter 2 Related Work

Albassal M. B. et al (2003) [89] used genetic algorithms (GA) for deformation Feistel type
cipher analysis, in addition to this, he also used the same method and cryptography parameters
for the deformation of SPN cryptanalysis. Al-Salami M. et al (2004) [90] introduces a genetic
algorithm (GA) and timing attacks (time attack) on RSA cryptosystem. Nalini N. et al (2005)
[91] used genetic algorithms for the cryptanalysis of the S-Boxes. Combining cryptanalysis with
evolutionary computation methods is still a very challenging and innovative research direction;
however a lot of questions need to be answered [85). Clark J. A. et al (2004) [92] pointed out
that the analysis of the evolution of modern cryptography is a very difficult and time consuming

task.

Khaled M. G. et al {2005) [93] presented a cryptographic model based on general regression
neural networks (GRNN). The model is designed in three layers; the encryption process is
performed by one set of neurons which consists of 3 nodes representing n-bit blocks, the pattern
layer has 8 nodes and the output layer too has 8 nodes which are used to identify the decrypted
output message. The simulation results have shown a very good result, with relatively better
performance than the traditional encryption methods, but without any knowledge about the

security of the proposed model.

Shihab K. et al (2006) [94] presented a new asymmetric encryption mechanism based on

artificial neural networks.

Necla O. et al (2007) [95] presented a new data security approach over eclectronic
communication based on artificial neural networks (ANNs). Dalkiran I et al (2010) [96)
proposed a chaotic cryptosystems based on artificial neural network and chaotic generator

synchronization.

Karam M. Z. O. et al (2011) [97] presented a stream cipher system based on pseudo Random
Number Generator (PRNG) using artificial Neural Networks (ANN). Volna E. et al (2005) [98]
presents their work on multi-layer neural networks in cryptography. The multilayer neural
networks modified by back-propagation. The planned model converted the input message into
ASCII code then gets the sequence of bit for each code which divided into 6 bit blocks are used
as mnput for the encryption process. The cipher key is the neural network structure contained

input layer, hidden layer, output layer, and updated weights.

Chapter 2 Related Work

2.3.2 Issues in GP-Based Stream Ciphers

Designing an automated ciphering system is a complex problem and a number of researchers are
working on it. Genetic algorithm (GA) has been used to find a set of rules of Cellular Automata
(CA) suitable for cryptographic purposes [99] [100]. Also, GA has been used for the construction
of Boolean functions for ciphering systems [101]. The design of Boolean functions with
properties of cryptographic significance is a hard task because the cryptanalyst while finding a
sequence that how the next bit is generated will guess the next coming bit in the sequence. This
problem has attracted a number of researchers [102] and they propose a GA based method for
finding Boolean functions which have mostly high degree of nonlinearity. A general automated
method for designing a stream cipher is not known and is reviewed in detail by Ratten R. et al

(2014) [103].

The stochastic optimization and search algorithms can be easily simulated due to genetic
algorithms. The genetic programming is suitable for cryptographic algorithms because no
analytic expression exists for the analysis of the cryptographic algorithms. The genetic
programming can greatly shorten the time of cryptanalysis and improves cryptanalysis
efficiency. The genetic algorithms are used in many more applications because of its advantages
but it has some prominent drawbacks too. Zhang J. et al (2013) [99] proves that it performs
poorly if it searches for the global optimal solution near stagnation or for forward compatibility

and performs slowly and very inefficiently and describes its observations as follows:

1, The neural network with chaotic logistic map is used for cryptography by which both
partners use the neural network as input for the logistic map that generates the output bits
to be learned.

il. The General Regression Neural Network (GRNN) is used for encryption and decryption
process based on three layers, where the input data divided into 3 bits and 8 bits as
output.

111, The training back propagation neural network act as public key, while Boolean algebra
act as private key.

1v. The chaotic hope field neural network with time varying delay was used to generate

binary sequence for making plaintext, which considered as a random switching function

for chaotic map.

Chapter 2 Related Work

v. The neura! network based on chaotic generator is used to generate chaotic dynamic that
acts as a shard key.

vi. The initial weight value of the neural network is used after training as symmetric key.
The chaotic neural network is used to generate chaotic sequence act as a triple key

(combined of initial condition and control parameters) for cryptography.

2.4 Neural Cryptography

Artificial Neural Networks is field of artificial intelligence developed due to the inspiration from
the biological neural model of human brain, where the operations are taken and understood like
human brain and neuron system is called artificial neural network. An Artificial Neural Network
is an interconnected group of nodes, similarto the vast network of neurons in a brain {104]. The
circular node represents an artificial neuron and an arrow represents a connection from the output
of one neuron to the input of another as shown in Figure 1.6.

Artificial Intelligence and Neural Networks are used in almost every sphere of the computer
applications but limited literature is available on its application in cryptography in general and

stream ciphers in particular. It is a powerful tool and can be used effectively due to its following

advantages:
i. The processes that cannot be performed by linear programming are done by neural
network.
ii. If one of the neuron fails to perform the other neurons are not affected and they work
properly.

iii. No reprogramming is required and the advancements are adjusted due to learning.

Artificial Neural Networks (ANN) on the other hand has the following disadvantages:

i. A very boring and long training session is required, but the problem does not rest only in

ANN but remains in all other Al models too.

ii. In some applications it requires an indefinite period of time, to make a system trained,

because making rules identical to human sometimes become impossible.

ii. Large neural networks it requires high processing time.
[]
44
L J

Chapter 2 Related Work

Beavers A. F. et al (2013) [105] presents that Alan Turing in early 1950’s for the first time
conceived the idea of Artificial Intelligence that computer processes can behave and process like
human brain. Turing’s this hypothesis remains a vision and many researchers were inspired and
worked in this area. It is the designer choice to choose the performance function, network
topology, the learning rule and the criteria that when the system should stop training phase. It is
difficult to design a priori algorithms and if the system malfunctioning then the readjustment is

very hard.

For computational intelligence there is no standard definition that could be adapted and accepted
by the researchers for the computers system to make able to behave intelligently in complex and
changing environments [49]. The biggest advantage of the computational intelligence is that, it
has the ability to learn, adapt new situations, discovery, association and arbitration, automatic
modification and quick response in hazardous environments. The Computational Intelligence
Model (CIM) systerns are based on the human biological system, where there is a central
decision making organ along with a series of local and central transmitters i.e. neurons and
Knowledge Base and the Semantic Net is processing all these information by taking new suitable
decisions. The evolutionary system were supplemented with the elements of reasoning so as to
get the computational intelligence also later on the fuzzy logics and artificial neural networks

were merged together and the modern intelligent computing system were developed [106].

Some stream ciphering algorithms claim to be intelligent such as Golden Fish [63] and Fish
Tailed Lion [64]. These are based on merging the stream ciphers with block ciphers so as to
improve the security. However, they do not come under the domain of Artificial Intelligence. An
intelligent system contains some memory and logic, and the decision is based on the past
knowledge, where logic interprets new decision. Golden Fish and Fish Tailed Lion are designed
to combine stream ciphers and block cipher characteristics and present a new model. The
designers claim that these are more secure than ordinary stream ciphers. Some other algorithms
claim to be intelligent such as A5 [32]. It does not use Artificial Intelligence techniques and only

its internal structure has been modified.

The emphasis of this research work is to use more sophisticated and advanced Al techniques to
design security algorithms. Stream cipher algorithms those are comparatively weak but fast and

best recommended in low memory and noisy communication are a big challenge for the modern

Chapter 2 Related Work

world to improve its security. This is achieved to avoid bit patterns which are vulnerable to the

cryptanalyst.

Neural cryptography is the branch of cryptography dedicated to analyze the security of
encryption algorithms used in the field of cryptography and cryptanalysis. This approach uses
ciphering algorithms based on functions those could be reproduced. Neural Cryptography is used
in the key exchange protocol to increase the synaptic depth the analyst pay more cost by

generating a successful attack [107] [108].

Different applications based on Stream ciphers for security are now trying to shift to block
ciphers due to the inherent weaknesses in the stream ciphers. However, direct conversion to
block ciphers creates more problems [35] [65] [109]. The information security conversion in
block ciphers is a direction that researchers utilize the artificial intelligent techniques to optimize
its application according to the requirement. Expert systems and machine learning enforce the
security of Internet and wireless networks, which become scalable and flexible in their
application structures. So that intelligent information security 1s a new field that combines
artificial intelligent methods in cryptography. Furthermore, the traditional block cipher
algorithms adopt some intelligent technologies to build trusted computing platform. Besides the
secunty factor there are other factors such as speed and quality of service in the application of
block ciphers. To design more secure system as compared to existing block ciphers is little costly
to get a wider block cipher mode. There are still many other related fields that must pay more
attention to the application view, such as the size of network platform and type of networks. The
Internet security component structure is based on TCP/IP which is simpler than OSI model of
ISO and is scandalized by some big organizations [109]. If the key size is increased a stream

ciphenng algorithm may results in the following [8] [110]:

1. Increase the complexity of the linear attack

. The depth of the key space increase exponentially

The differential key attacks Guess-and-Determine attacks and other clever attacks may be more

effective if the key characteristics remain the same.

~
&
Sopens?

Chapter 2 Related Work

2.5 Problem Statement

The stream cipher algorithms are comparatively less secure than block ciphers. The block cipher
algorithms are used where we have enough memory and computational power. A long sequence
of bits can be used as a key and the encryption and decryption process can be made more
complicated by confusing the given input X and plaintext P. The Encryption process is a time
consuming job and the ciphertext is produced after passing the plaintext and key from several

rounds. There are very less chances of successful attacks on modern block ciphers.

The steam ciphers by nature have limited key size and the ciphertext is produced by simply
XORing the plaintext P and key K because they are used in limited memory and low
computational power environment. The cryptanalyst by applying clever attacks may have
comparatively more chances of success to recover the key or the plaintext from the ciphertext

without key.

Stream ciphers are mostly used in real-time communication systems where the cryptanalyst has
limited time for a successful attack. A weak key can let a cryptanalyst to become successful in
breaking the stream cipher algorithm very quickly. The cryptanalyst looks for the loopholes in
the implementation process of the algorithm and tries to apply different cryptographic attacks by
getting the information about the used stream cipher algorithm. By just changing the key size or
the key space is not enough to enhance the security of an algorithm, because if we ignore other
parameters, then the entropy may reduce and a statistical attack may become successful. So, it is
not the appropriate solution to achieve an unbreakable system. The key stream generated may

have statistical weaknesses that may lead a cryptanalyst to apply a successful attack.

The reason for compromising a stream ciphers is the weak key. The cryptanalyst may break the
security of a stream cipher algorithm by finding the expected key that has been used for the
encryption process. Most of the cryptanalytic attacks discussed so far are targeting weak keys.
This work focus on weak keys those may lead a cryptanalyst to break the security of SNOW 2.0,

a stream cipher algorithm.

i

]
47 |

Chapter 2 Related Work

2.6 Problem Definition

One of the most important classes of symmetric-key encryption scheme is the stream ciphers.
They are termed to be simple block ciphers in one sense having block length equal to one bit,
computer-word, or byte. The plaintext to encrypt using the stream ciphers is very simple than a
single bit, word or character is encrypted at a time. It ts useful in situation where the noise or
distortion may affect the transformed data and the transmission errors are highly probable. In
stream ciphers each bit is encrypted independent of another bit by simple XORing the key stream
with it, so there is no chances of error propagation in this scheme. It is used in the environments
where the data must be processed by one symbol at a time, for example the devices having less

processing power and no memory or limited data buffering.

By just making changes in the design of the algorithm does not give us the ultimate security
while changing the logic may for the time being make your model secure however, it may lead to
some more sophisticated and dangerous situations as it has been observed in cases of DES and

SNOW family of algorithms [65] [69] [70]. Stream cipher algorithms operate in two major steps:

i. Pseudorandom Number is generated by Pseudorandom Number Generators(PRNGs)
ii. The resultant sequence is treated as secret key and the plaintext and the secret key is

XORed together to generate ciphertext.

The whole security of stream cipher algorithms is dependent on the key stream because the
ciphertext is generated by simply XORing the plaintext with the secret key. As discussed earlier
that none of the stream ciphers fully satisfy the randomness verification tests recommended by
National Institute of Standards and Technology (NIST). That’s why these ciphering algorithms
are susceptible to different cryptographic attacks and cannot be trusted to use them for secure
communication. Cryptographers suggest different methods to secure stream cipher algonithms,
for example they suggest that the PRNG must have a sound mathematical foundation and the key

size must also be large enough that it should not be traceable in polynomial time.

A strong key is required to achieve unconditional security. The secunty of a stream cipher is
compromised if there is a loophole in the key stream that has been used in the encryption
process. The cryptanalysts are always in search of these loopholes which may support their

attempt for a successful attack. The PRNGs ensure that the key sequence of bits produced is

f 1
{ 2)

Chapter 2 Related Work

random. This work considers SNOW 2.0 for research and implant cryptographic attacks on key

stream produced by the SNOW 2.0 to check its soundness towards these attacks. The basic

purpose of this study is to highlight:

.

HI.

Iv.

The security of cryptographic schemes is improved then on the other hand we may result
the cryptosystems with weaker operational efficiency. We need to be careful about all
such improvements and we need to find ways to improve the security with minimal
operational cost.

The Pseudorandom Number Generator (PRNG) of SNOW 2.0 produces a series of keys
that can be traced by the cryptanalyst. Once the cryptanalyst gets knowledge, he plans for
the attack to recover the plaintext without having the original key.

In Pakistan E-commerce industry, banking sector and national defense systems cannot
completely trust on existing methods developed by other countries for securing their
databases and communications. It is dire need to develop our own encryption algorithms
and techniques to be used in different areas to secure data of national interests from
criminals and enemies.

Encryption models discussed in this chapter have mathematical weaknesses as described.
Some well-reputed algorithms claiming to be very strong were found to be very weak like
Rabbit, SNOW 1.0, SNOW 2.0 and HC-256. These threats results in that these stream
cipher models are not suitable for unconditional security.

The loopholes and application backdoors in the cryptographic models make the stream
cipher models susceptible to strong cryptographic attacks and if not used properly in a
controlled environment then it may lead to complete breakdown of these models. The
uncontrolled repeating bits in key generation and the ciphertext may compromise their
security [65] [70]. The loopholes are sometimes left by the designers due to ignorance or

innocence that may give advantage to cryptologists later to break its security.

2.7 Summary

Most of the modern stream cipher algorithms those claim to be secure have been compromised

after some period. These algorithms are based on logics and the cryptanalysts tries to find out the

loopholes in their design to break their security. They apply different cryptanalytic techniques to

Chapter 2 Related Work

recover the plaintext without having a key and try to guess a part of the key and recover the
remaining part of it. The designing weaknesses open doors to the hackers to get secret
information from a secure system. A number of logic based stream ciphering algorithms failed
due to their design weaknesses. It is also not always the case that the designers have designed a
weak system but the other reason is that the advancement in the cryptanalytic research has also
made the life of the designers of the cryptosystems very difficuit. Everyday new advancements

in the field of cryptanalysis threaten their so called secure security systems.

Genetic programming based stream cipher algorithms discussed are used either for cryptanalysis
or generating new stream cipher algorithms. If a cryptographically weak key is produced these
algorithms does not have the capability to check it prior to deliver it. Concrete models that may
cover all security aspects without losing the main features still need more concentration. These
algorithms too have the security drawbacks as discussed in this chapter. Golden Fish algorithm
and Fish Tailed Lion algorithms claim that these are intelligent but actually they fuse block
cipher operation modes with stream ciphers to improve their security. Stankovski P. et al (2013)
(111] and Wu H. et al (2008) [60] proved that the clever cryptographic attacks break the security
of weak stream cipher algorithms. A number of researchers have shown their interest in the field
of neural cryptography and a numbers of publication are discussed here in this chapter, but no

significant work is done in designing a secure stream cipher algorithm.

Chapter 3 Bit Patterns in Stream Ciphers

CHAPTER 3
BIT PATTERNS IN STREAM CIPHERS

A true random key is the combination of a sequence of balanced zeros and ones that is the
randomly generated key has equal number of zeros and ones. The occurrence of both zeros and
ones 1s /2, where n is the total number of bits in the key. The keys generated by the
Pseudorandom Number Generator (PRNG) of the stream cipher SNOW 2.0 require passing the
randomization tests. A randomly generated key does not have necessarily all characteristics
required in a true random number and if such a key is used for encryption of a secret message

may have to be compromised.

National Institute of Standards and Technology (NIST) recommends 16 different statistical tests
for the verification of random number. These tests ensure whether a key is random. These NIST
recommended tests mostly check the existence of zeros and ones and the interrelationship of one
part of the key with another part of the key. The frequency test (Monobit) test checks the pattern
of length 1 bit in key and its occurrence in a given key stream. The frequency test within a block
checks the proportion in ones within M-bit block. The purpose of this test is to determine the
frequency of 1 in a given pattern where a pattern is M-bit long and the frequency of ones is M/2.
These NIST recommended tests ensure that the occurrence of zeros and ones in a given sequence
1s uniform, which will be discussed later in this chapter. The cryptanalysts checks the behavior
of these random number generators and implant multiple statistical tests to check whether the
key is traceable in polynomial time. The cryptanalysts are always in search of breaking the
cryptographic security even though it has been proven to be NP-Hard. The emphasis of this work
is security issues of SNOW 2.0 algorithm. Their designers have claimed that its security 1s
unbreakable [9] [10]. This work shows that there are some weaknesses in the design of SNOW
2.0 algorithm that let the clever attacks to trace the key generated by its PRNGs [5] [40] [69].
This chapter focuses on the security issues in the design of stream ciphers that may let the

cryptanalyst to trace a sub part of key stream, which may result in compromising the entire key.

51

_~
s

Chapter 3 Bit Patterns in Stream Ciphers

3.1 The key space

A key space in a cryptographic system is the set of keys available for encryption or decryption
process. The key space contains all possible keys in a given range. It needs to be larger enough
that is by removing all possible weak keys from a given key space the rest of the strong keys are
untraceable using various cryptographic attacks. In symmetric key cryptographic a single keys is

selected from a given key space for the encryption and decryption process.

3.1.1 Issues in Key Space

SNOW 2.0 is available in with a key size of 128-bits and 256-bits, which produce 2'** and2>
possible combination of keys. A key space with 128-bit long includes keys ranging from 000...00
to 111...11, where each key is equally probable. The probability of each key is 1/2'% and by
running a fair PRNG may result in producing any possible combination of zeros and ones in the
given range. The focus of our work is whether every key randomly generated is secure or not.
The answer is certainly not, because a randomly generated key ranging in the early key space is
vulnerable to brute-force and other algebraic attacks. Similarly the key stream contains
unbalanced sequence of zeros and ones, which may lead to Guess-and-Determine attacks and
related key attacks. A key lies in the extreme end of the key space has a long run of ones with an
unbalanced sequence of zeros and once also let a cryptanalyst to apply successful attacks and

recover the plaintext.

The randomly generated key may also contain keys with the balanced zero’s and one’s bits bit
the patterns are traceable by its characteristics. For example a key 01010101........... 010101,
0011001100........... 110011 has balanced zeros and ones but their occurrence is harmonious i.e.
with alternate single zeros and ones and alternate double zeros and ones. A randomly generated
key with such characteristics cannot be used as a secret key. By removing all such patterns and
weak keys the key space again required to have enough key sets those could not be determined in
polynomial time otherwise the ciphertext produced with such keys may lead to serious

vulnerability.

A randomly generated key with a long run of zeros 00000...1101 or long run of one’s
11111...016 cannot be used as a secret key. The repeated bit patterns may cause a ciphering

algorithm to produce the same ciphertext for a given plaintext. Guess-and-Determine attacks,

Chapter 3 Bit Patterns in Stream Ciphers

correlation attacks, related attacks, distinguishing attack and frequency analysis may let the
secret information vulnerable to cryptanalyst to deduce the entire key from a given ciphertext [8]
[31] [39] [67]. Randomly generated bit stream can be used as a secret key if it has the
randomization properties in their bit sequences and does not have the aforementioned issues. A

wrong selection of a secret key may let serious cryptographic attacks.

Guess-and-Determine attack discussed in Chapter 2 is applied over SNOW 2.0 and the guessed
keys are stored in a separate file. It is computationally impossible to store all guessed keys in a
data file because of the limited storage and resources. Millions of keys guessed and the
determinations over the given guesses are not possible to represent as a whole. In our work we
base of results and experiments of the selected samples and compare the keys generated through
Guess-and-Determine attack with the keys produced through SNOW 2.0. It is necessary to find
out the maximum number of traceable bits in a given key to verify the key strength. A secure key
contains minimum number of traceable bit patterns because a keys compromised over a specific
threshold cannot be trusted. Moreover if the keys generated through Guess-and-Determine
attack are used for decrypting a ciphertext the bit patterns similar to the original key will result
the same plaintext which may result in understanding the context of the secure message and the

cryptanalyst reduce the rest of the undiscovered key.
3.1.2 Key Comparison Algorithm

Key comparison algorithm plays an important role in determining the traceable bit patterns in a
given secret key. This algorithm compares the original key produced by Pseudorandom Number
Generator (PRNG) of SNOW 2.0 with key set of keys produced through Guess-and-Determine
attack. The results of the key comparison algorithm are critically analyzed in this work to
determine that the key generated using SNOW 2.0 insecure to a given extent and the risk of

collective vulnerability.

The key stream produced by the Guess-and-Determine attack is kept in a separate file to
evaluate each individual key against the key generated by the SNOW 2.0 key stream Generator.
An algorithm is designed to compare key stream produced through SNOW 2.0 with key keys
generated through Guess-and-Determine attack. The key size is restricted due to computational

technicalities. A random key K is » bits long is divided into sub keys &;, ;. ks, ..., .k;, then each

('y
1 3 J

Chapter 3 Bit Patterns in Stream Ciphers

sub key has the random characteristics. It is necessary to understand some basic concepts before

describing the comparison algorithm [8].

i Each key stream comprises of 8 alphanumeric.
ii. Key stream generated by Original SNOW 2.0, and attack have been stored in separate
files naming attack_key file.
111, Key stream generated by Original SNOW 2.0 is stored in a file named
original_key file.
iv. The first key stream of the original_key_file is compared with all attacking key stream
in the attack_key_file, the next value available in the key stream file is taken and the

process continues till the last value in file.

Algorithm 3.1: Algorithm Comparing the SNOW 2.0 Generated key with Keys in attack_key_file
Input; Initial Vector //Any value randomly entered by cryptographer ,
Set IV « read input through keyboard
original_key file=SNOW2(IV) File containing n keys generated by SNOW 2.0
key[1= Key selected from original_key_file Containing keys generated by
SNOW2.0
attack key(i, j] = Current key in attack_key _file containing n keys responding as 2D array
Output: Qutput file containing 0 and 1 // 1 in case of true and 0 in case of false comparison
1 Key comparison
2 ¢
3 veount = 0
4 i=0
5 do{ hcount=0
6 fori=0ton
7 { if (key[i] = = attack_key[i, j])
8 { putltofile
9 hcount++
10 veount++
11)
12 else{
13 put 0 to file
14 }
15)
16 o
17 while (‘eof)
18)

Algorithm 3.1: Algorithm Comparing the SNOW 2.0 Generated key with Keys in
attack_key file

This algorithm compares the original key with each and every key stream of generated by Guess

~and-Determine Pseudorandom Number Generator (GD-PRNG}) stores the resultant keys in an

ey
wn
=

'

Chapter 3 Bit Patterns in Stream Ciphers

attack_key_file to determines that which of the elements in a key stream are traceable. The

algorithm works as follows:
Step I

A series of key streams produced by SNOW 2.0 Pseudorandom Number Generator (PRNG) are
stored in the file, called “original_key_file”. The algorithm loads the first key from this file and
store it in array 1, this algorithm stores this key in an array variable key[]. Each key in
“original_key_file” is 64 bit long making 8 ASCII characters as shown in Figure 3.1. (Note: the
key size of SNOW 2.0 stream cipher is 128 bit and 256 bit long, in this work we take a sample of
64 bits that is 8 characters at the time of generating original_key file, where each character is

treated as a pattern of 8 bits.)

Original File Array 1
ABCDEFHT

EFDHVFGT ABI|C|D|E!/F|{H|T
JKLMASDE

Figure 3.1: Keys Selected from the original_key _file containing n keys produced by SNOW
2.0 PRNG

Step 11

A series of key streams produced by Guess-and-Determine Pseudorandom Number Generator
(GD-PRNG) is stored in the file, called “attack _key_file”. The algorithm loads the keys from
attack_key_file and store it in array 2, the algorithm store in in array variable attack key[i, j].

Each key in “attack key file” is 64 bit long making 8 ASCII characters as shown in Figure 3.2.

Attack File Array 2
ZYXDLRGT

KGITEADW ZI|Y|X|D|LIRIGIT
BNXCFSRT

Figure 3.2: Keys Selected from attack_key _file containing n keys generated by GD-RNG

Chapter 3 Bit Patterns in Stream Ciphers

Step III

The original key stream key [] are compared with the key values of the attack_keyl[i, j].

original_key_file original key file
ABCDEFHT —» | ZYXDLRGT
EFDHVFGT KGITEADW
——
JKLMASDE BNXCFSRT
e

Figure 3.3: Comparison between original_key_file and attack_key_file

The key values at the respective index in one array are compared with the key values of another
array one by one and produce 0 as output in case of mismatch and 7 in case of success as shown

in Table 3.1. The algorithm stores these values in a separate file that would be used for further

analysis.
Table 3.1: Comparison Between original_key_file and attack_key file
Index Value at index Matching Value at index of Result
of array 1 (Equal/not equal) array 2
0 A 1= Z 0
| B 1= Y 0
2 C = X ¢
3 D == D 1
4 E I= L 0
5 F 1= R 0
6 H 1= G 0
7 T == T 1

The data collected in the experimental process is passed through several statistical tests. Various
graphs are drawn for the results produced to find the correlation among the key stream generated
by the original Pseudorandom Number Generator (PRNG) and Guess-and-Determine

Pseudorandom Number Generator (GD-PRNG), is discussed in Chapter 5 of this work.

Chapter 3 Bit Patterns in Stream Ciphers

3.2 Effective Attacks on Stream Ciphers

It is important to understand that the purpose of all attacks is to discover a key that is used in the
encryption and decryption process. There are a number of methods by which we can attack a
secure system to break its security. The designer must have the knowledge of all the known
attacks those may possibly be implanted over the designed security system. The effective attacks
on stream ciphers are listed below [39]:

i Exhaustive Search Attack [112]
il. Algebraic Attack [113]
1ii. Correlation Attack [114]
v. Fault Attack [115]
V. Distinguishing Attack [38] [40] [68] [82]
Vi. Chosen-IV Attack [78]
Vil. Slide Attack [116] [117] [118] [119]
vili. Cube Attack [120] [121]
iX. Time-Memory Trade-off Attack [122] {123]

3.3 Pseudorandom Numbers and Sequences

In stream cipher algorithms the random number generation is one of the most important
primitives, and the entire security is based on this key that is gencrated by these pseudorandom
number generators. For example, if the sender and receiver are at different locations and they
want to share some information by transformation then the adversary may get secret information
about the key. So the measures are taken that it should be unpredictable [41] [42] {124]. The
random numbers are bit sequences involved in generating the random numbers, which may
present challenging issues [43] [125]. Whenever a new algorithm is designed, the designers
claim that it is secure both in case of stream ciphers and block ciphers, and they claim the

efficiency of fast running stream ciphers.

The efficiency of the ciphering scheme can be compromised but the security cannot be
compromised. The purpose of the stream ciphers is to generate fast speed encryption and
decryption process, which has been achieved by simply XORing the key with the plaintext; key
generated by the Pseudorandom Number Generator (PRNG) requires more attention. From the

above discussion it becomes clear that in case of generating weak keys the whole stream cipher

Chapter 3 Bit Patterns in Stream Ciphers

is breakable. Repeating patterns in key stream may result a series of security issues due to which
these keys cannot be used for secure communication. Removing these weak patterns improves
the key strength which ultimately improves the security of the parent algorithm and the
cryptanalyst may not be able to determine the key in the polynomial time.

Using Linear Feedback Shift Registers (LFSR), Non Linear Feedback Shift Registers NLFSR
based stream ciphers, no one can guarantee that a randomly generated key is secure, which is the
major drawback in the logic based key generation. To overcome this problem the stream ciphers
require special attentions on the design of Pseudorandom Number Generators (PRNGs). This
dissertation proves that by removing traceable bit patterns from a key stream enables it to satisfy
most of the NIST recommended statistical tests and resist most of the known security attacks. In

any of the cryptographic application the following steps must be performed:

i. If there is a finite set of # elements, i.e. {1, 2, 3... n}, then select an element at random,
such that selection of each element is equally likely.

il Randomly select a sequence from the set of all sequences (strings) of length m over some
finite alphabet A4 of n symbols.

1ii. Generate a sequence having symbols of length move over a set on n symbols at random.

The exact meaning of the term generate at random or select at random is not clear, but calling a

number random without a context makes little sense [18] [41] [125].

Key Stream: K is called a key stream, such that X is key space of set of encryption

transformations, where K is the sequence of symbols {e1,e;,e3,.....6i}

Encryption Scheme: Let 4 be an alphabet of ¢ symbols and let E. be a simple substitution
cipher with block length 1 where e € K.

Let {m; mp; ms...... } be a plaintext string and
Let{ejeze3...... } be a key stream from K.

A stream cipher takes the plaintext string and produces a ciphertext string {c; c; ¢s.....}, Where
¢i= E(e;, my). , then

D(e;, ci) = m; decrypts the ciphertext string.

Chapter 3 Bit Patterns in Stream Ciphers

Encryption Scheme Security: For any of the encryption scheme to be secure, the key space
must be larger enough to preclude exhaustive search, it is a necessary but not a sufficient

condition.

3.4 Random Number Verification Tests

National Institute of Standards and Technology (NIST) recommends 16 statistical tests to ensure
whether a key generated is random or not. None of the stream ciphers designed so far satisfy all
16 statistical tests. The stream cipher that satisfies maximum number of tests is used to be
recommended for security purposes. These tests focus on a variety of different types of non-
randomness that could exist in a sequence. These tests ensure that whether a key generated by a

PRNG i1s secure if it is used as secret key.

In a given key space all keys are not treated as random even if these keys are generated
randomly. Every randomly generated key is not secure and it cannot be used as a secret key for
message encryption, National Institute of Standards and Technology (NIST) recommended
statistical suite defines the acceptance regions in terms of Standard Normal and the chi-square
Xzas reference distributions. These distributions define the regions for acceptance and non-
acceptance for a given key space. If a bit sequence under test is in fact non-random, the
calculated test statistic will fall in extreme regions of the reference distribution. The test results
for a given bit stream will fall outside the acceptance region. for example a key sequence fails to
satisfy the Monobit test will lie in the extreme region or away from the acceptance region, which

means that zeros and ones non proportional.

The standard normal distribution (i.e., the bell-shaped curve) is used to compare the value of the
test statistic obtained from the PRNG with the expected value of the statistic under the
assumption of randomness. A cryptanalyst expects that a PRNG generates a random key
satisfying all NIST recommended tests, and a generated key is tests under the assumption that it
is random and satisfies all randomness tests in NIST statistical suite. The test results classify the
randomly generated key locate its location under the bell-shaped curve of the Normal
distribution. The test statistic for the standard normal distribution is of the form z = (x - W/a’,

where x is the sample test statistic value, and 4 and ¢° are the expected value and the variance of

(1
1 °°)

Chapter 3 Bit Patterns in Stream Ciphers

the test statistic. The y° distribution (i.e., a left skewed curve) is used to compare the goodness-
of-fit of the observed frequencics of a sample measure to the corresponding expected frequencies
of the hypothesized distribution. A 128-bit or 256-bit randomly generated bit sequence is tested
for the patterns frequency within a block of 8 bits. A key selected require having unique
untraceable patterns. A Guess-and-Determine attack over the random key determines the
frequency of the original key with the guessed keys. A single pattern is more frequent in a given
key space but two consecutive patterns similar to the original key is comparatively less frequent
and so forth. Plotting a ¥’ graph is left skewed curve and classity the key as strong with minimal
frequent patterns. Rest of NIST statistical tests are discussed in detail in Chapter 5.

3.5 Summary

The stream cipher algorithms works in two major steps i.e. key generation phase and data
encryption phase. In the first step a random key is generated and forwarded to use for data
encryption. The data encryption in stream ciphers is a simple XOR operation of the random key
and the available data. If the key generated is not strong enough then the plaintext can be
recovered using clever attacks discussed in Chapter 2. The whole burden of security lies upon
the designer to generate a random key. It should not contain such a bit patterns those may let the
cryptanalyst to decipher the encrypted text without having key. We consider stream cipher
SNOW 2.0 and generate a random sequence of bits, and pass through Random Key Generator to
check whether the key is stronger enough to be used as a secure key for this purpose we check
the key produced whether they have the pattern those may be traced by the cryptanalyst. Multiple
experiments have been done to check whether the key is strong, which shows that the key is
stronger enough if we pass it through limited series of attacks. The same key is attacked for a
huge number of times as the cryptanalyst does during key analysis, it is observed that the
probability of some bit patterns does not occur under the normal curve and some patterns occurs
more frequently. The cryptanalyst while applying the frequency test guesses these patterns which
occur more frequently to determine the rest of the key. The cryptographic attacks discussed in
Section 3.1.2 and Section 3.2 is efficiently used to break the security of stream ciphers and it 1s
shown that the logic based stream ciphers are no more secure. The security algorithm designers
therefore have to change the security models those may have strong design structure and also

they need to introduce new techniques those may improve the security of stream ciphering

(1
1 % J

Chapter 3 Bit Patterns in Stream Ciphers

models. The stream ciphers based on genetic algorithms discussed in Chapter 2 have design
deficiency and the cryptanalytic attacks compromise their security. The key stream generator of
SNOW 2.0 is cryptographically proven to be secure but the practical attacks on SNOW 2.0 has
broken its security. These cryptographic attacks not only focus on the mathematical strength but
also on the resultant ciphertext produced by these stream ciphers, and there are dozens of
examples in which the cryptographically proven NP-Hard problems have been compromised.
This work therefore discourages the conventional stream cipher design and present Intelligent

Cryptographic Model (ICM) for stream ciphers.

Chapter 4 Intelligent Algorithm Design

CHAPTER 4
INTELLIGENT ALGORITHM DESIGN

Cryptographers are always in search of designing secure systems for keeping their information
secret. The sender and receiver require confidentiality during communication. They want to keep
their conversation secret. Different stream cipher algorithms can be used for this purpose. These
algorithms are best suited for short term communication having limited memory and processing
power. The sender and receiver require secret key to encrypt and decrypt the information. The
Random Number Generators (RNGs) and Pseudorandom Number Generators (PRNGs) generate
random numbers. Their output is dependent on the Initial Vector (IV), which can be feed by
different means. The end user relies upon the bit sequence that is produced by RNGs or PRNGs.
If the key produced has statistical weaknesses then that may compromise the security of entire

system.

Artificial Intelligence enables a system to take decisions intelligently. It plays vital role in
cryptography and is used in many areas for providing better information security. Neural
cryptography is an emerging branch of cryptography in which artificial neural network is used
for designing secure intelligent algorithms. Weak keys are generated because of the loopholes in
key generation algorithms those may lead a key or a subpart of a key vulnerable to cryptanalyst
[22] [23] [126] [127].

4.1 Biological Neurons

The study of the Artificial Neural Networks (ANN) is based on the study of biological learning
systems where thousands of other neurons are interconnected to make a very complex web of
these structures. The ANN are made up of simple program units where each unit takes an input
from a number of real value inputs, where these inputs may be through keyboard or the output of
some other program units and produce a single real valued output. This output produced by the
neuron may be the input to another neuron. These neurons need not have the similar

characteristics, and almost each neuron may function differently from another neuron, which

1
62 }

—_

Chapter 4 Intelligent Algorithm Design

performs some specific task. To clearly understand the analogy of ANN, we consider some facts

about the neurobiology.

There are approximately 10'' neurons in the human brain those work together to make an
interconnected network. Each neuron 1s connected to approximately 10? to 10" other neurons.
The processing speed of a neuron in human body is too slow than that of the processing speed of
a computer system. However, the speed is not the only matter; rather there are some very
important features in the natural structure of the neurons. A human can make surprisingly
complex decisions quickly, for example, in pattern recognition the basic task is to identify the
structures and images in motion or static. The human mind can process very fast whereas, the
computer systems have to pass through very complex opera|tions to recognize a pattern and the
end result may also an inappropriate decision. This was the vision of the early 80’s, but due to
advancements in artificial intelligence has now empowered computer systems to perform some

of the operations more precisely and better than the human beings [128] [129] [130] [131].

While ANNs are loosely motivated by biological neural systems, there are many complexities to
biological neural systems that are not modeled by ANNs, and many features of ANNs are known
to be inconsistent with biological systems. Individual unit of ANNs produces output a single
constant value, whereas biological neurons produce output a complex time series of spikes. This
work uses Artificial Neural Networks (ANN) to avoid the traceable bit stream patterns in the

logic based stream ciphers is due to the following two main reasons:

1. The resemblance of biclogical learning process of the ANN to human beings gives more
understanding power and knowledge extraction to ANN.
1. The enhanced decision making power when an attack is established to find the pattern of

the bit stream in the original key of the stream cipher algorithm.
4.1.1 Biological Neuron Structure

Biological neurons are the foundation for ANN. ANN’s functional model is designed to resemble
the biological neurons in many ways. "Neurons are the basic signaling units of the nervous
system" and "each neuron is a discrete cell whose several processes arise from its cell body”

[132]. The biological neuron has the following four regions as shown in Figure 4.1 [132]:

(1
— 8)

Chapter 4 Intelligent Algorithm Design

L. Cell body also termed as soma
i1 Dendrites
1ii. Axon

iv. Presynaptic terminals

Dendrite \“df-‘“s Axon
N, Action
\) Potential
_ ' |) ,’
I3 «E <] L
PR i <
- f"" i R K A
SR \,'
l - .
S\mapse <@

Figure 4.1: General Structure of a Biological Neuron

All four regions of a neuron has a specific task to perform and work as a unit, where it accepts
multiple inputs and produce output a single result. The functionality of the biological neurons is

discussed briefly in the following:

1. The cell body or soma is the main part of the neuron cell, which contains protein
synthesis and nucleus, which also works as storage and decision making body locally,
such as reflex actions which are initiated as a result of these local decision makers inside
the neuron.

1. The dendrites which are the offshoots of the soma have branches in a treelike structure,
which are used to receive signals from other neurons or the organs which senses the
information from the outside.

til. The axon that grows outside the cell body also termed as the hillock and conduct electric
signals that grows from the cell body and ends at the presynaptic terminals. Only one
axon grows from the cell which transfer signals to other neurons or brain. The action
potential that carries the electric signals is identical to each other so the brains can easily
Judge that which type of signal has been received based on the path that the signal took.

The brain analyzes the signal patterns and issues orders where appropriate.

—t,

1
64 |

Chapter 4 Intelligent Algorithm Design

iv. The synapses are again the threads at the end of the axons which are connected to the
dendrite of the other neurons where the information is passed from the synapse to the

dendrites of the following neuron.

4.1.2 ANN Based Stream Cipher

Artificial Neural networks works similar to biological neural networks. The dendrites takes input
from the outer world or other neurons and the cell body containing some local information and
has the decision making power required for the reflex action. On the basis of the decision taken
by the cell body the axon takes the information and further provide it to the next neurons as
shown in Figure 4.2. It is important to understand the working process of ANN as it has been

made a foundation for the Intelligent Stream cipher algorithm.

Knowledge

Stream ciphers
Algorithm

Dendrites

Series of Attacks
sensitivity

Figure 4.2: Biological Neuron Model for Stream Cipher

The cell body preforms two operations:

i. It is trained and takes decision based on the trained data. It takes input from other
neuron and decides whether the given key has some consecutive bit patterns like

consecutive 0’s or 1’s.

il. It takes a decision to disrupt this sequence and coverts some of 0’s to 1’s or otherwise.

———
L2)]
tn

hd

Chapter 4 Intelligent Algorithm Design

The output 1s given to axon that is further connected to other neurons and they also add their
functionality. The key produced during this process is passed through multiple cryptanalytic tests
and NIST statistical tests are also applied too. If the results produced come under the acceptance
region then the key is declared as secure otherwise the back propagation function is invoked that

changes the neuron weights and the process is continued to produce a secure key.

4.2 Artificial Neural Network (ANN) Architecture

The word network in ANN refers to the interconnections between neurons in different layers of
each system. An example system is shown in Figure 4.3 has three layers. First layer has input
neurons which send data via synapses to the second layer of neurons, and then via more synapses
to the third layer of output neurons. More complex systems will have more layers of neurons
with some having a number of layers of input and output neurons. The synapses store parameters

called "weights” manipulate the data in the calculations.

Hidden nodes layer

Input x3

22y

Figure 4.3: Three Layered Structure of Artificial Neural Network

The Artificial Neural Networks (ANN) working is a complex process. The hidden Layer works
as a brain that receives inputs from multiple neurons. The neurons in the hidden layers are also
interconnected to cach other and one neuron in the hidden layer gives its output to another
neuron and the neurons in the hidden layer produce a mesh topology. The purpose of each
neuron in the hidden layer is predefined and they perform that specific task. Each neuron

operates differently on the inputs given to it and adds its expertise to the results based on the

B 1
| % F

Chapter 4 Intelligent Algorithm Design

training data and decides accordingly. The data is refined and processed at each neuron and the
final output is handed over to the neurons in the output layer. If the final output is not lying in the

acceptance region, the back propagation invokes and the neuron weights are readjusted.

Mathematically, a neuron's network function f{x) is defined as a composition of other functions
gi(x), which can further be defined as a composition of other functions. This can be conveniently

represented as a network structure, with arrows depicting the dependencies between variables. A

widely used type of composition is the nonlinear weighted sum, where/ @)=k (¥, “"591’(1)),
where K (commonly referred to as the activation function) is some predefined function, such as
the hyperbolic tangent. It is convenient to refer to a collection of functions 9i as simply a vector

g=(91.92.-.-.gn). An ANN is typically defined by three types of parameters:

1. The interconnection pattern between the different layers of neurons
ti. The learning process for updating the weights of the interconnections
iii. The activation function that converts a neuron's weighted input to its output activation.

4.3 Multilayer Perceptron (MLP)

In multilayer perceptron (MLP) structure, neurons are grouped into layers. The first and last
layers are called input and output layers respectively, because they represent inputs and outputs
of the overall network. The remaining layers are called hidden layers. Typically an MLP neural

network consists of input layers, one or more hidden layers and an output layer.

Suppose total number of layers in MPL is L. Then the first layer is input layer, and L™ layer is
output layer and layers number 2 to L-/ are the hidden layers. Let the number of neurons in the

M layerbe Ny, /=1, 2,3, 4 L, is shown in Figure 4.4.

Let w', ; represent the weight of the link between j* neuron of /-1 layer and the i neuron of /*
layer, where 1 <j < N,;, and 1 £i < N, Let x; represents the i" external input of the MLP, and Z;
be the output of the i neuron of the I layer. The extra weight parameter w, for each neuron,
represents the bias of i neuron of the / layer. As such w of MLP includes w;,, where j = 1, 2,

3, Nu,i=1,2,3,...... N,=2,3, ... L, thatis

W= [wzm w2” w? J2ee e ea W!NIN]_!] 4.1

Chapter 4 Intelligent Algorithm Design

Layer L
(outpurt layer)

Layer L-1
{(hcden layer)

Layer 2
{hidden layer)

Layer 1
{input layer)

Figure 4.4: A Multilayer Perceptron (MLP) Structure.

where W is the overall weight of the connected perceptron that affect the final outcome of the
neural network. The output layer that results in generating the final key is controlled by
adjustment and readjustment of neurons weights available in the hidden layers. The process
continues till the required output is generated fulfilling almost all randomization tests to a

threshold value,

4.4 Activation Function of the MLP

Usually, in neural networks the neuron’s output is between 0 and 1 or -1 and 1. The activation
function is denoted by ®(.) is of three types:
1. If the summed input is less than the threshold value, then threshold function takes on a
value of 0, and if the summed input is greater than or equal to the threshold value then it

take the value as | as shown in Figure 4.5.

(1 ifv =20
‘I’(")“{o ifv<0

This kind of function is often used in single layer network.

(4.2)

68

i,
Hr

Chapter 4 Intelligent Algorithm Design

Figure 4.5: Binary Step Function

1. The piecewise-linear function, taken on the values of 0 or | and also may be taken on the
amplification factor in a certain region of linear operation.

1 v =

PV ={v —>v>- (4.3)

1
< —=
0 vE—o

. The sigmoid function ranged between 0 and 1, but can also be used for the range -1 and
1, the example of sigmoid function is hyperbolic function, which is applicable while
drawing the graph for the region of similar patterns.

@(v) = tanh{v/2)= (1 - exp(-v)) / (1+ exp(v)) (4.4)

4.5 Intelligent Cryptographic Model (ICM)

The Intelligent Cryptographic Model (ICM) is a compact solution for removing the
cryptographic loopholes from logic based stream ciphers. The key generated by logic based
stream ciphers having cryptographic vulnerabilities are addressed in Intelligent Cryptographic
Model (ICM) and trained Artificial Neural Network (ANN) regenerates a strong keys having no

statistical weaknesses.

4.5.1 ICM Structure

The structure of Intelligent Cryptographic Model (ICM) is shown Figure 4.6. When a request is
submitted from client side with an initial seed for a key to be generated, this request is forwarded
to the ference engine. The inference engine is connected to a number of other components to

communicate different information to generate a statistically strong key.

Chapter 4 Intelligent Algorithm Design

Domain Expen

Transder of Expertise
L 4
C ontrol Structure Knowledge Engineer | Knowledge Stucrure
ANN Rules
Semantic Nets
L v
Inference Engine Knowledge Base
External | < » Weak Key
Interfaces | | Working Memory Information
&» »
T Resuttant K
R:J se: " ¢ ey Update Knowledge
qu L] Base
L User Interface
Database {Consultation’
Executable Explanation)
Programs

Figure 4.6: General Structure of Intelligent Cryptographic Model (ICM)

Following are main components of ICM:

i. User Interface (Submit Final Result)

it. Knowledge Base/ Key Information Center
1iL. Knowledge Engineer (ANN Rules/ Semantic Nets})
iv. External Interfaces (To get seeds from outside world)

\2 Domain Expert (For Strong key Certification and Confirmation)

The Knowledge Base or Key Information Center represents facts about the world. In our model
the knowledge base keeps a list of keys having been marked as weak keys and has been proven
to breakable. These weak keys have such a bit patterns those have been proved to be traceable.
For an efficient and secure systems we need to have enough knowledge base and it must be

updatable to add new keys if proven to be traceable.

A knowledge engineer integrates knowledge into computer systems in order to solve complex
problems normally requiring a high level of human expertise. The expert system we propose

contains the neural networks and semantic rules which applies a series of tests upon the key

Chapter 4 Intelligent Algorithm Design

generated by, the LFSR based stream cipher, in our case SNOW 2.0. These tests include the
pattern checking in the key recently produced, and the detailed process is explained in the next

sections of this chapter.

External Interfaces in this model are database and program functions that get the key and keep it
in a list of secure keys once used. Alternatively it is marked as weak key as per decision of the
knowledge engineer after a though processing of the key generated. The key is assigned its

category and is stored in the database.

The Domain Expert is a central program that gets information from knowledge base, knowledge
engineer and external interfaces i.e. databases and checks with the threshold value that the user
considers acceptable. When key is sent to domain expert he then issues a certificate to the user

about the cryptographic strength of the key.

4.5.2 ICM Illustration

The proposed model is based on the amalgamation of modemn stream cipher and artificial neural
network. The model works in a systematic manner and the output of one part of the model is
taken as input to another part. In the following we illustrate important points of the Intelligent
Cryptographic Model (ICM):

1. Instance Representation: The learning algorithm educates the target function is defined
over the instances. A vector of predefined features is described, such as past attacks those
have been successfully implanted. The tendency towards the success that in case of a
successful attacks how much damage may occur. The input values can be any real values,
which may be independent of one another or may highly correlate.

11 The output of the Target Function: It is a vector of several real or discrete-valued, real
valued or discrete valued attributes. If the output is a real number then it will range
between 0 and 1, which in this case corresponds to the confidence in predicting the
corresponding steering direction. We can also train a single network to output both the
steering command and suggested acceleration, simply by concatenating the vectors that
encode these two output predictions.

1il. Training Errors: Errors may occur in the training examples. If there is a noisy data with

errors in training examples, then it depends on the learning methods that how they

-~

Chapter 4 Intelligent Algorithm Design

1v.

V1.

respond to these errors. In the other applications of the ANN, it is kept in mind that the
training data must not contain errors, but in the ciphering algorithms we permit to larger
instance, because here we are interested to maintain a training base and not in the quality
of data.

Training Time: It may be long in case of an isolated system. To fully train an artificial
neural network algorithm requires longer times ranging from a few seconds to many
hours and even days and weeks, depending on the factors such as the settings of various
learning algorithm parameters, number of training examples considered, and number of
weights in the network. Keeping in view that in public area where the outer world has
access to the system, longer time is never permissible, and in such a case the point iii,
may be applicable for the time being.

Learning Target: It is required to be evaluated with fast speed. Long time is required to
train an ANN. In case of a successful attack the there is a need for an instantaneous and
accurate decision. The data transfer among different nodes needs to be very fast so as to
update their weights.

Learned Target Function: The learned target function need not to be understood by the
humans. It is very difficult for the humans to clearly understand the complex nature of the
weights learned by the ANN, and is very difficult to interpret for them. The learned rules
can easily be communicated to the learning rules, but it is very difficult to communicate it
to human beings. Thus learned rules are designed in such a way that if the data store
contains some data for what the rules have already been defined, then a human may
ignore it, but the processing device cannot ignore it, which may cause to increase the
security, i.c. to avoid the similar bit patterns in the key stream, produced by ANN based

Intelligent Pseudorandom Number Generator.

p———

72

&WJ

Chapter 4 Intelligent Algorithm Design

. weights Yi = th‘j wij + 8]
inputs Knowledge Base
X
Activation
Function

()

J (p A 0}
. @ activation
.13 P re—]

b,
threshold

Stream Ciphers
Cryptographic Attacks

Figure 4.7: Mathematical Representation of Artificial Neural Network

The model shown in Figure 4.7 accepts different inputs for training the learning algorithm those
are kept in the database, which contain the rules for extracting the knowledge from the
knowledge base, sensitivity of serious attacks, the stream ciphers and dozens of the weak keys,

proved by the analysts.
yi=Ywij.xij + 6 4.5)

The activation function gets output from the summing junction where the weight wy, is
multipiied with the x;; and are added with 6. The computed output is forwarded as output to the
next neuron. Every neuron in the hidden layer transfer its output to the next neuron in the hidden
layer, except the neurons in the first layer which gets input from the input layer and the last layer

forward its output to the output layer.

4.6 The Perceptron Learning Algorithm

The patterns generated in this step need further evaluation to ensure that the key is unbreakable.
We apply cryptanalytic tests to ensure that the ultimate security is gained while using this
system. During this whole process the neurons also gets training and store the results generated

by these tests regarding that specific key.

¥)

73

-

Chapter 4 Intelligent Algorithm Design

Algorithm 4.1: Perceptron Learning Algorithm for Intelligent SNOW 2.0
Input: Threshold value ¢, weight of Neuron w, Initial Vector /V, Result File RF
Output: Leamed Perceptron

Initialize:

N(w) <« current weight of the Neuron

1 t <« assign random threshold value
2 w <« assign random weight value
3 Compute new weight of the Neuron

4 N(wi(t-1))=wi(t)+n(d-y)x

5 e=w;{t+1)-w(t)

* where
i « represent neuron no.
d « the expected output of the neuron
y +—the actual output generated by the neuron and
1} < learning rate or step size ranging between (0 < <1)
¢ «—error difference of the neurons

*/

6 N{w;)=N{w)XORIV

7 do
8 N(wi(ttl))=wi(t)+g(d-y)x
9 e=wi(t+1)-wi(t)

10 while (e > t)

Algorithm 4.1: Perceptron Learning Algorithm for Intelligent SNOW 2.0

This algorithm readjusts the weights w of the perceptron. Initially the weights w are randomly
assigned to each perceptron. These weights are used for the operations with the input values. In
the training session these weights are adjusted and readjusted if an input is wrongly classified.

The algonithm takes N(W), ¢ and weight w initially as input and compute the weight of the

{ 1
1 7*}

Chapter 4 Intelligent Algorithm Design

neuron for a threshold value t-1 in Line 4. Line 5 computes the error by finding the difference
between the current and previous neuron weights. The leaming rate value 1 is carefully selected
because for a smaller value of) the algorithm converges slowly and takes more time to produce

optimal solution and for a larger value of n, the algorithm will oscillate or diverge.

The neuron weight is computed by XORing N(w;) with the Initial Vector (IV). The neuron
weights are computed in Line 8 and the error difference is computed in Line 9 by subtracting the
current weight Wi(t) from the next neuron state W;(t+1). The process continues till the error 15

reduced to a threshold value. The output of the algorithm is a learned perceptron.

4.6.1 Back Propagation

It is a common method of training the ANN in which an input is given to the network and is
checked for the desired output. It is a supervisory learning method where the ANN is trained in
order to get a desired output. If the desired output is not obtained then the error is propagated and

the neurons weights are readjusted. Back propagation learning algorithm works in two phases:

1. Propagation

1. Weight Update

When an attack becomes successful in finding the similar bit patterns in the key stream, it
propagates that the pattern generated does not meet the expected output requirements and the

weights are updated accordingly [133] [134] [135] [136].

The back propagation algorithm trains a given feed-forward multilayer neural network for a
given set of input patterns with known classifications. When each entry of the sample set is
presented to the network, the network examines its output responses to the sample input pattern.
The output response is then compared to the known and desired output and the error value 18
calculated. Based on the error, the connection weights are adjusted. The set of these sample

patterns are repeatedly presented to the network until the error value is minimized [137].

The Algorithm 4.2 manages the knowledge base and is called Back Propagation Learning

algorithm and is illustrated below:

Chapter 4 Intelligent Algorithm Design

Algorithm 4.2: Back Propagation Learning Algorithm for Intelligent SNOW 2.0
Input: Randomly initialize the weights present an input vector pattern to the network
Output: Error Free Learned Perceptron

1 Evaluate the network’s outputs by propagating the signals forward
2 Calculate

0j = (y; — dj).
for all output neurons

Where d, is the output of neuron j, which is desired and y; is the output that we receive

currently, where y; is computed from the following equation.
yj = g(X, wijzs) = (1+ e 2 m) 71,
which is sigmoid activation function

3 For rest of the neurons compute
b; = L wjkg'(x)0k.
where &y is the &j of the succeeding layer, and
g'(x) = yr(l — yx),
4 Update the weights according to:
wi, (t+ 1) = wij(t) — nyay;(1 — y;)4;.
Where, 1] (neo) is called the learning rate in the above equation.

Go to step 2 for a certain number of iterations, or until the error is less than a pre-specified

value. Repeat step 1 to 4, until the error becomes less than the pre-specified threshold value.

Algorithm 4.2: Back Propagation Learning Algorithm for Intelligent SNOW 2.0

The perceptron initially trained may not properly classify the cryptographically weak keys and
strong keys. If a cryptographically strong key is classified as weak key may not affect the secure
model but wrong classification of a weak key may lead to a very serious attack. The back
propagation algorithm retrains the perceptron in such a situation. The algorithm finds &; by
finding the difference between the current neuron output y; and the desired output d;, recomputed
compute y; and d; in step 2 and 3. Update all the neuron weights by computing it in step 4. The

output of the back propagation algorithm is the error free leamed perceptron.

The input key to the neural network is checked whether the bit sequences are random or there 1s

some biasness in it. The desired output is always the patterns that are generated randomly and

N 1
A

Chapter 4 Intelligent Algorithm Design

meet the random sequence requirements. If the desired output is not achieved then the error 1s
propagated and the bits in the given sequence are readjusted. The weights arc updated and new
weights are assigned to the neurons. The process continues until the desired sequence is

generated.

4.6.2 Perceptron Convergence Theorem

“If there is a set of weights that correctly classify the (linearly separable) training patterns,
then the learning algorithm will find one such weight set, w’ in a finite number of iterations

(Rosenblatt)” [25]

Assumptions:
1. There is a set of weights w*
1l A known number of patterns exists to train the perceptron

iil. A unipolar threshold function with resultant output Gorl

Proof:

The process continues to train the perceptron and at k¥ iteration we have
Wi = Wk T U exXk, (4.6)
where
ex =de - Yk (4.7)

Reduce both the sides with the quantity w*

Wye1 — WF= 0 — W¥ + 1 eXg, 4.8

There is no update if yy is accurately categorized
Normalize the above equation, by putting that leff* =1, since e =% 1:
| @ wHP = =W+ 2 Il + 2 e os= 0% (4.9)

For each of the unclassified vector x;, we can show that:
e 0 X =| @ X =0 (4.10)

e WXk =] ok x =0 (4.11)

Chapter 4 Intelligent Algorithm Design

Rearranging Equation 4.9
I =W =1 @i =W+ 2 xdf - 2 1 (o] +]owx) (4.12)
If u is sufficiently small

WlIxdll* >0 (4.13)
putting the value from Eq. 4.15 in Eq. 4.14 we get

[Wi - W12 = | iwic- w15 200w T + wid xid) (4.14)
Since p = 0 and
W Txi] + fwi” xi] = 0, (4.15)

Where |{wi-; - w ||, must decrease with each of the iteration.
However, ||/| cannot go negative, so it must converge in a finite number of steps.
Note that this may not necessarily converge to 0 (i.e. w = w)

Rewriting Equation 4.12 in terms of the weight error,

e =W - w', (4.16)
lewetF = lewlf + m2lIxul - 2i(w T xl + (i xi) (4.17)

Minimizing e, with respect to u gives:

) *T“kl +|‘”Ezk‘ B |(w* _’-"k)Tzkl
ot = Tl el

(4.18)

In practice, it is impossible to evaluate this, since it contains w, (the optimal weight vector)
Uops can be interpreted as the optimal distance to move w; along the direction of x; . When the
perceptron becomes learned by getting from the relative attacks on SNOW 2.0, the perceptron

converges and the resultant vector or the output will become closer to the threshold values

f 1
1 8)

Chapter 4 Intelligent Algorithm Design

selected by the cryptanalyst, and if the threshold value is increased to a significant level, the
Equation 4.12 will diverge, and the analyst will become away from its destination value. The
algorithm will be successful but the accurate result cannot be achieved. The perceptron learning
algorithm becomes learned by providing the prior knowledge to it and is stored in the centralized
knowledge base (KB), which increases time to time by adding more information about the weak
keys where the patterns have been found to be traceable. The errors produced during the iteration
due to the incorrect classification if a weak is classified as strong and vice versa. It is a greedy
algorithm and stops iterations as it finds the first feasible outcome. The perceptron will diverge

in case of faulty training data therefore it is required to check the error difference in each step.
4.6.3 Universal Approximation Theorem

The linear approximation theorem is applied on SNOW 2.0, for the approximation of the
Addition Modulo 2", so as to find the approximate probability of any of the key stream with
some specific bit patterns. The universal approximation theorem states that: “The simplest form
of multilayer perceptron, a single hidden layer, in a feed forward network, containing a finite
number of neurons is a universal approximator among continuous functions on the reduced form
of R,,, where the activation functions are molded” [138]. The mathematical form of the universal

approximation theorem is as under:

Consider a bounded, non-constant and monotonically increasing continuous function ¢('),
Let I, denote the m-dimensional unit hypercube [0,1]". The space of continuous functions
on/,is denoted by C(In). Then, given any function f€C(,) and € > 0, there exist an

integer N and real constants a;, b; E R, w; € R™, where i = 1, ..., N such that we may define:

N
F(z)=)_ oy (w?:z: + b,—)
i=1 (4.19)
as an approximate realization of the function fwhere fis independent of @; that 18,
|F(z) — f(z)|<¢ (4.20)
for all x € 1,,. In other words, functions of the form F(x)} are dense in C(/n).

Let’s find out the linear approximation on Addition Modulo 2" in SNOW 2.0,

79

—_
\-T—l

Chapter 4 Intelligent Algorithm Design

1. In the linear approximation of the Finite State Machine (FSM) of SNOW 2.0, there are
two strongly dependent approximations: When one approximates over two subsequent
additions modulo 2*?, that is the output from the first addition is an input to the second
addition.

ii. The fact that the value in register R; is both an input to the modular addition and an

input to the S-box ensembles 5.

The interesting feature of the linear approximation with one-bit mask 1s that in two input case,
the linear approximation degrades when moving towards the most significant bits. For addition
with three inputs the bias values are almost the same in all positions of the key stream. Also the
linear approximation over modular addition with three inputs is more flexible and gives better
bias values when no all input masks are the same. The same holds in general for very sparse
masks and therefore exhaustive search over all masks for linear approximation over addition

modulo 2" is the most appropriate for finding the patterns in some spectfic key.

4.6.4 An Illustrative Example

A random sequence of bits is produced using SNOW 2.0 128-bit Pseudorandom Number
Generator (PRNG).

Random key: 0011010011000100000011000001110100001100000001110110010
11000010010111110000011001001000100001110106010110101010
101000100100110100

Key size: 128-bits

Visible Characteristics: Random

Let’s critically analyze the given sequence; the key is divided 16 chunks, where each chunk
contains 8-bts. The sequence contains 77 zeros and 51 ones, i.e. unbalanced number of zeros and
ones and the key contains long run of zeros. The given key contains five repeated patterns, the
key has visible signs and is key cryptanalyst can trace key by tracing the patterns in key and
resultant ciphertext to recover the plaintext without having the original key. Other statistical tests

are discussed in Chapter 5. The randomly generated keys is given as input to Intelligent

r—

!
80 |}

Chapter 4 Intelligent Algorithm Design

Cryptographic Model (ICM) for removing statistical faults and generate a true random key. The
internal process of Artificial Neural Network (ANN) given in Figure 4.8

Input Layer Hidden Layer Output Layer

[wi=10110011 | [W =00110110 |
I v =10110100
W S—
Qre\ 0‘ | O
) | w;=01110011 V .
r | ¥.=00100110
n

Figure 4.8: Artificial Neural Network (ANN) Interconnected nodes and Layers

The input layer of the Artificial Neural Network (ANN) containing 16 nodes takes the input key
generated by Original SNOW 2.0. Each node of the input layer takes one patterns of the given 16
patterns and forward it to the hidden layer. The hidden layer is more complicated and containing
16 X 16 neurons interconnected to each other producing partial mesh topology. The randomly
assigned weights are XORed with the new input to neuron and the result is forwarded to the next
neuron. The 16" level of neuron in the hidden layer gives its output to the output tayer. The error
difference is computed between the perceptron current state and previous state. The process
continues till the error difference becomes than a threshold value defined by field expert. The
final outcome of the hidden layer is passed through various statistical tests to verify that the bit

sequence exhibits true random number characteristics.

Note: Given the same input to Artificial Neural Network (ANN) will never give the same output.
The input key is randomly treated by the neurons in the hidden layers and the Final outcome is

the random operation of each individual neuron. The output of the 16" layer cannot be predicted

(1
L 8 F

Chapter 4 Intelligent Algorithm Design

that which of the neurons actually participated. The complex nature of the hidden layer does not

give any valuable information to cryptanalyst to determine the output key.

4.6.5 Perceptron Worst Case Scenario

To determine the time complexity of partially connected neurons is a complex scenario and it is
very difficult to determine the total numbers of operations are performed by the hidden layer of
Artificial Neural Network (ANN). A true mesh topology having n numbers of nodes connected
together has n (n - 1) / 2 number of connections and each node operates XOR operations with the
given input and its weight. The output is forwarded to the next neuron which again generates its
outcome the similar way and forwards its outcome. The partially connected neurons lies in the

O(n"’) region, similarly forward its outcome to the next neurons.

The worst case time complexity grows exponentially and become impractical if the perceptron
does not converge. The field expert defines the minimum threshold value and the process
continues till the error difference is reduced to a threshold value. In an uncontrolled neural
structure millions of keys are generated and forwarded to the output layer. In a controlled neural
structure the resultant key at the output layer is verified by passing maximum number of

statistical tests.

4.7 Training Artificial Neural Networks (ANN)

In Artificial Intelligence the knowledge acquisition is the bottleneck and most of the time 1s
wasted in this phase. The system learns by induction or conduction analogy and therefore
requires a long duration in this process. The expert systems acquire knowledge in the form of
rules or frames etc., and process whenever require. It is very difficult to formulate this
knowledge and to understand the entire process. Thus in case of missing any step in the process
will lead to erroncous knowledge gained by the system. In case of a proper acquirement of the
knowledge to be stored in the knowledge base, and gradually increase with process of experience

and real world application and thus the decisions made by the system are more appropriate.

In order to get the experts knowledge into an expert system we propose o process these

databases in the attempt to leamn the particularities of the domain. Whatever is leamt by this

Chapter 4 Intelligent Algorithm Design

process can be discussed with the expert, who is now in the role of a supervisor and consultant
that corrects and completes knowledge instead of (often) an unwilling teacher who has to express
himself in some form he is not common and not comfortable with. Experts are required to
describe their knowledge in the form of symbolic rules, i.. in a usually unfamiliar form. In
particular to describe the knowledge acquired by experience is very difficult. Therefore,
knowledge based system (KBS) may not be able to diagnose cases that experts are able to. Some
machine learning algorithms, for example Iterative Dichotomiser 3 (ID3) [47] have the capability
to learn from examples. Ultsch A. et al (1994) [139] propose to use Artificial Neural Networks
(ANN) as a first step of a machine learning algorithm. ANN claim to have advantages over non
intelligent systems, being able to generalize and to handle inconsistent and noisy data. Interesting
features of natural neural networks are their ability to build receptive fields in order to project the

topology of the input space.

To realize the integration, an algorithm has to be constructed, that converts symbolic knowledge
for the KBS out of the sub symbolic data of the ANN. The knowledge can be extracted from
various data sets in case of serious cryptographic threats to determine a strong key that has more
resistance capability. Due to their inherent parallelism ANN are well suited to be mapped on
massively parallel computer [140], which can be used for breaking the security of the
cryptographic algorithms. If enough knowledge is provided to these systems then, these can be
used to improve the security of the system. For example in case of dictionary attacks where the
system is enriched with the key words used in English and also with the keys those once used in
past are avoided. This work adopts different approach because it not only looks into the data
dictionary with the exact match but it also checks the probability of the key to be broken down at

run time to nullify the weak key generation.
4.7.1 Frequent Patterns in key and Dictionary

This algorithm compares the key stream with the key dictionary and finds the bit patterns in the
given dictionary. It takes variable length patterns and checks with each individual key in the

dictionary, and produces “0” output for no match and produces “1” if the pattern exists.

Initialize; 1y as String
Psize ag integer 1,23 bytes

key as strip gl]

setIV « Input Through keyboard (or any random string)
key = SNOW2(IV)

Set1=veount = 0, = heount = 0

do{

for(i=0; j < no_of TOWS(KB); j++)
{
forG=0;;j < length(key), J+)
t

If (key[i,j]= < KB[i,})
write 1 g Result file

else

write 0 to Result file

}

Algorithm 4.3, Pattern Matching Algorithm based on Dictionary Attack

The algorithm takes Initial Vector IV from key board and takes the knowledge base file

Chapter 4 Intelligent Algorithm Design

helps in deciding that whether the key in stronger enough produced by a given PRNG and can

safely be used as secret key for a given security system.

4.7.2 Time complexity

If there is a finite set of # elements for s, then 5] = n, the subsets of this set S is [P(S)| =2" which
is the motivation notation 2", and is described as follows:

Let wi, such that 1< i< n, and the subsets of Sare { w/, w2 ,w3,, wn}, where wi can take
values of 0 or 1.If wi = 1, then any element lies at i position will be the element in the subset or
otherwise. All the elements in the subset are distinct and non-overlapping and will lie under the
O(2"). If m is the size of the knowledge base then the time complexity for the above algorithm
will be M * 2°, and lies in the O(2") worst case, which is too high to reduce the performance of

the key generation of SNOW 2.0.

Instead of searching and comparing individual bit, the keys are arranged in 8-bit patterns. A 64-
bit long key has 8 patterns, which are compared with the 8-bit key patterns stored in the
dictionary. The patterns matching keys in the dictionary exceeding a threshold limit are rejected

and request for a new key.

This work focuses on the similarity of bit patterns and does not care about if a single bit is
matching at some specific position. If 8 consecutive bits are similar means one byte is matching
at the given index. A 64-bit long key represent 8 ASCII characters and if 4 characters are
matching in the key means 50% of the key is compromised. Therefore the cryptanalyst will try

for rest of the 32 bits in a given sample space and reduce the target in exponential times i.e. 2" 2

4.8 Frequent patterns in Key Stream

The following algorithm checks the key strength by comparing with the knowledgebase of
Artificial Neural Network (ANN) and the patterns existing at their respective indexes generated
by SNOW 2.0.

Chapter 4 Intelligent Algorithm Design

Algorithm 4.4: Key Verification Algorithm for Key Generated by Intelligent SNOW 2.0
Input: Seed, KBJ[i,]
Qutput: Result File
1 Initialize: [V as String
Psize as integer 1,2,3,... bytes
2 Pcount=0
3 key as string[]
4 key = precomputedkey SNOW2(IV)
5 tvalue = input; /{Threshold value,
set i = veount =0, j = hcount =0
6 | dof
7 Pcount = 0;
R for(i = 0; i < no.ofrows(KB); i++)
{
9 for(j = 0; j < length(key), j*++)
10 {
. if(key[i] = = KBij})
12 { :
write 1 to Result file/Array([]
13 Pcount++,
14 }
15 else
write 0 to Result file/Array([]
16 }
17 if pcount = tvalue
18 break;
19 . }
} while ('EOF)

Algorithm 4.4: Key Verification Algorithm for Key Generated by Intelligent SNOW 2.0

The array index and the values at the respective indexes produced by Algorithm 4.4 are

represented in Table 4.1. The algorithm works as follows:

Table 4.1: Neural Net Setup Keys for Decision Making

Index [0 [1 |2 [3 |4 |5 |6 |7 |8 (9 |10 |11l [12 [I3 |14 |15

Value { vO vl [v2 |v3 [v4 |vS |v6 |v7 |v8 [Vv9 |v10|vIl |[vI2]|v]13|vi4 | vI5

In first iteration if the value at index {0} is compared with the knowledge base and the values at

index {1,2) are compared with the knowledge base, and so on for values at index

(1
1 %

Chapter 4 Intelligent Algorithm Design

{1,2,3},.....,{1,2,3,....15}. In second iteration the value at index {2}, {2,3}, and so forth,
wherever the key match is successful unto some threshold level, the key is rejected. The
algorithm generates the next key and the process continues until and unless a secure key is
found. To compute the time complexity of the algorithm define the parameter used in the
algorithm, 7 is the numbers of bytes in key stream, and m is the size if the knowledge base, then

the worst case time complexity of the algorithmism (n(n+1)/2).

4.9 Summary

Stream Cipher SNOW 2.0 has many challenges as discussed in Chapter 2. The major issues in
both versions of SNOW are that PRNG is generating the sequence of bits that are susceptible to
cryptographic attacks. The key fails to pass most of the statistical tests recommended by NIST.
These tests ensure that whether the key stream produced is having such patterns those may lead
to break down the entire security. The intelligent algorithm for stream cipher works in different
phases. The input layer of Artificial Neural Network (ANN) gets the key generated by SNOW
2.0’s PRNG as input that is given to the hidden layer. The hidden layer verifies that whether the
key has the bits those may not pass the statistical tests. If the desired output is not received the
back propagation algorithm propagates the error message to other neurons and the randomly
assigned neuron weights are updated. The process continues till the desired output 1s received.
Artificial Neural Networks is a supervisory learning technique and requires enough data to train
the neural system involved in the process. The training data that is initially feed into the ANN 1s
updated time to time and is produced once should not be regenerated and ensure the one time
key, that is the major requirement for stream cipher algorithms. The resultant key streams

produced by Intelligent SNOW 2.0 pass most of the statistical tests discussed in Chapter 3.

Chapter 5 Results and Discussions

CHAPTER 5
RESULTS AND DISCUSSIONS

The key stream generated by the stream ciphers needs to be random and should not be traceable.

The whole security of the ciphering algorithm depends upon the resultant key generated by the
Pseudorandom Number Generators (PRNG). It is passed through certain statistical and
cryptographic tests to determine whether the key is strong or not. The statistical tests ensure that
the key is randomly generated and the cryptographic tests ensure that the key 1s generated
randomly, cannot be traced by any known cryptanalytic attack and produce enough confusion in

the ciphertext when an encryption is done.

This chapter discusses and compares the resultant key streams generated by SNOW 2.0 and
Intelligent SNOW 2.0. A set of candidate keys are selected out of the entire series of keys
generated by both versions of algorithms. Random samples of keys of various lengths are
selected among the millions of keys produced by their respective PRNGS and passed through
various tests. These randomly selected samples are tested to ensure that intelligently generated
keys satisfy varfous statistical tests. These keys can be used as secret keys for encrypting

plaintext messages. Following are the main objectives of this research study:

1. To ensure that Intelligent SNOW 2.0 generates a true random bit sequence and does not

have repeated bit patterns.

ii. To show that Intelligent SNOW 2.0 is more secure and best recommended to be used for

encrypting secret data.

1il. To guarantee that Intelligent SNOW 2.0 is more reliable and the cryptanalyst cannot break

its security by any means.

5.1 Repeated Bit Patterns

Various statistical tests are required to determine the repeated bit patterns in a randomly
generated weak key. Guess-and-Determine attack [8] [4] [141] have very effective results to

compromise the security of SNOW 2.0. Correlation attacks find the correlation between the

(1
-1 %8

Chapter 5 Results and Discussions

actual key stream and that of the best matching key [114]. In exhaustive search attack the key is
traced by checking different patterns in incremental order. The correlation attacks and the Guess-
and-determine attacks are based on the algebraic rules and have been proven to be more efficient
against stream ciphers. The key generated by the pseudo random numbers generators is used

only once and for the second use we need to generate another key.

The cryptanalysts have discovered the techniques that the new key generated by logic based
stream ciphers 1s traceable and the algebraic attacks are more successful. One alternative is to use
Nonlinear Feedback Shift Register (NLFSR) based key stream generators but it has its own
implications and drawbacks. Another approach that we propose is to use Artificial Neural
Networks along with the LFSR based Pseudorandom Number Generators (PRNG). The ANN 1is
proved to be the best suited intelligent algorithm for cryptography, to avoid the traceability in the
patterns of the key stream of any of the algorithm specifically the SNOW 2.0.

5.1.1 Error Propagation and Dictionary Attacks

A Pseudorandom Number Generator (PRNG) generates a random number and could not be
regenerated by the same or PRNG in polynomial time. Hypothesis testing and other statistical
tools are ensuring that the key generated is having maximum characteristics required for a
random number. A hypothesis is made that a resultant sequence could either be random or
nonrandom. NIST recommended test for verifying randomness are the best ones to ensure that is
key 1s random or otherwise. If a PRNG generates faulty keys then the sequence may be repeated
after some period or a part of the key would be repeated that could let a cryptanalyst to

successful attack.

In Guess-and-Determine attack, the guess was made on secret key and initialization values,
which was used to initialize the LFSR and FSM’s registers. On the basis of these guesses, key
streams were generated. These key streams were then matched with the original sequence of key
streams. If there were large numbers of similarities in both sequences then it was concluded that

the attack was successful. Otherwise, more guesses are required or changed the algorithm.

Chapter 5 Results and Discussions

5.1.2 Statistical Tests for Randomness Verification

The resultant key generated by the Pseudorandom Number Generator (PRNG) is passed through
various statistical tests to verify the randomness in the generated key. We cannot rely on single
test because by passing a single test and it cannot be guaranteed that the generated key is true
random but passing various statistical tests it can be guaranteed that the candidate key secure and
unbreakable. Intelligent SNOW 2.0 generates 128 bit, 256 bit or any arbitrary size key depending
on the choice of the designer. The results discussed in this chapter considered a 64 bit, and 100
bit long keys.

5.2 Randomness Verification

Apart from many other characteristics of Intelligent SNOW 2.0 1t behaved like a random
sequence. Multiple candidate keys for randomness are tested using National Institute of
Standards and Technology (NIST) randomness verification suite. It is observed that randomly
generated keys behave differently to these statistical tests. We give a brief detail of the

application of NIST-Statistical suite recommended for randomness verification:

[a—

The Frequency (Monobit) Test

Frequency Test within a Block

The Runs Test

Test for the Longest-Run-of-Ones in a Block
The Binary Matrix Rank Test

The Discrete Fourier Transform (Spectral) Test
The Non-overlapping Template Matching Test
The Overlapping Template Matching Test

e S L S

Maurer's "Universal Statistical” Test

[
=

. The Lempel-Ziv Compression Test

a—y
f—

. The Linear Complexity Test
. The Serial Test

Pk
(TSI .

. The Approximate Entropy Test

ek
.

. The Cumulative Sums (Cusums) Test

90

p—
|

Chapter 5 Results and Discussions

15. The Random Excursions Test

16. The Random Excursions Variant Test

A brief description of these tests is given in Chapter 1. These tests are necessary to verify that
whether a sequence is random [41] or otherwise. In this section we discuss these tests and its
results on both versions of SNOW 2.0 i.e. LFSR based SNOW 2.0 and Intelligent SNOW 2.0.

5.2.1 Frequency (Monobit) Test

The purpose of the frequency (monobit) test is to determine whether the proportion of ones and
zeros arc approximately same. This test assesses the closeness of the fraction of ones and zeros

to Y. Following parameters are required for the test:
n The length of the bit string.

£ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a

global structure at the time of the function call; e =g, &, ... , &,.

Sobs: The absolute value of the sum of the Xi (where, Xi = 2¢ - 1 = £1) in the sequence divided
by the square root of the length of the sequence. The reference distribution for the test
statistic is half normal (for large n). If the sequence is random, then the plus and minus
ones will tend to cancel one another out so that the test statistic will be about 0. If there
are too many ones or too many zeroes, then the test statistic will tend to be larger than

ZEeTO.
The Test Description is as follows:

1. Conversion to —1: The zeros and ones of the input sequences (&) are converted to values

of -1 and +1 and are added together to produce S, = X+ Xo+ ... X, where X; =2 £ ;1.

For example, if € = 1011010101, then n=10and S,=1+ (-1} + 1+ 1+ (-} + 1 +{-1) + 1
+(-D+1=2.

2. Compute the test statistic

Sobs= |Snl/sqrt(n) (5.1)

iy,

g1

S

Chapter 5 Results and Discussions

Here in our case Sgps = 2| / sqrt (10} = 0.632455532.

Compute P-value = erfc (Sebs/ sqrt (2)) , where erfc is the complementary error

function defined in [41]. Putting values from point 1 in this equation we get:
P-value = 0.527089
Decision Rule (at the 1 % Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random.

Otherwise, conclude that the sequence is random.
Conclusion

Note: In this case the P-value > 0.01, so the given input is random.

Input Size Recommendations

It is recommended that each sequence to be tested consist of a minimum of 100 bits

(i.e., n = 100).

Example

il.

1l

v.

vi.

(input) € = 100010000101101000110000100011010011000100110001100110
0010100010111000110010010000111111011010101000

{(input) n = 100

(processing) Syop = -29

(processing) Sqps = 1.16

(output) P-value = 0.7199509

(concluston) Since P-value > (.01, accept the sequence as random.

5.2.2 Randomness Test Results of Intelligent SNOW 2.0

Randommness verification tests recommended by National Institute of Standards and Technology

(NIST) are also applied on the key generated by Intelligent SNOW 2.0. The results are given in
Table 5.1.

92

F e
N

Chapter 5 Results and Discussions

Table 5.1: Intelligent SNOW 2.0 PRNG Randomness Verification Results

S.No | Test Name Key size | y2 value P-value Decision | Test Result
Rule
(P-value)
l The Frequency (Monobit) Test, 100 NA 0.199509 | =20.01 Random
2 Frequency Test within a Block, 100 6.5 0.743806 | =0.01 Random
3 The Runs Test, 100 NA 0.400432 | >0.01 Random
4 Test for the Longest-Run-of-Ones 100 0.500798 0.360918 | =0.01 Random
in a Block,
5 The Binary Matrix Rank Test, 100 1.2619656 0.065532 | =0.01 Random
6 The Discrete Fourier Transform 100 NA 0.339030 | =0.01 Random
{Spectral) Test,
7 The Non-overlapping Template 100 5.999377 1.730264 | >0.01 Random
Matching Test,
8 The Overlapping Template 100 8.965859 0. 001104 3 >0.01 Non
Matching Test, Random
9 Maurer's "Universal Statistical” 100 NA 0. 733427 | 20.0] Random
Test,
10 The Lempel-Ziv Compression Test, 100 NA 0.005804 | <0.01 Non
Random
11 The Linear Complexity Test, 100 2.700348 0. 026845 | =0.01 Random
12 The Serial Test, 100 0.845406 0. 764843 | =0.01 Random
0.336400 0.561913
13 The Approximate Entropy Test, 100 5.350792 0.530123 | >0.01 Random
14 The Cumulative Sums (Cusums) 100 z=16 0.194219 | =0.01 Random
Test, (forward) (forward})
z=19 0.186614
(reverse) {reverse)
i5 The Random Excursions Test, and 100 15.692617 0.037977 | =0.01 Random
16 The Random Excursions Variant 100 J=1490 0. 946858 | >0.01 Random
Test

Table 5.1 shows that the candidate random key generated by Intelligent SNOW 2.0 passed 14
tests and failed only two tests i.e. the overlapping template matching test and the linear
complexity test. It failed the overlapping template matching test which is about the number of
occurrences of pre-specified target strings. It also fails the Lempel-Ziv Compression tests which
focus on the number of cumulatively distinct patterns (words) in the sequence. Lempel-Ziv test
in included in initial documentation of NIST Statistical tests [44] but it has been removed 1n the
later report published by NIST [142] because the LZ-complexity has a defect such that its
distribution of P-values is strictly discrete for random sequences of length 10° [143]. It
successfully clears all other 14 tests which show that the Intelligent SNOW 2.0 can safely be

used for data security and can be deployed in different systems safely.

fr—
o
)

| T

Chapter 5

Results and Discussions

5.3 Randomness Test Results of Original SNOW 2.0

The tests were also conducted to generate candidate keys by the Pseudorandom Number

Generator (PRNG) of the stream cipher SNOW 2.0. Results are reported below:

The candidate sample key i.e. £ =010101010100101111011010110101110000111000010000100

000110101011010111110000010101000111100011010100111

Key size = 100

No. of Zeros = 52

No. of Ones = 48

The test results are given in the Table 5.2.

Table 5.2: LFSR-based SNOW 2.0 PRNG Randomness Verification Results

S.No | Test Name Keysize | x2 value | P-value Decision Rule | Test Result
{P-value)
1 The Frequency (Monobit) Test, 100 NA 0.203432 | >0.01 Random
2 Frequency Test within a Block, 100 9.5 0.564731 | >20.01 Random
3 The Runs Test, 100 NA 0.654312 | =0.01 Randorm
4 Test for the Longest-Run-of-Ones in 100 0.850432 | 0.0013432 | =0.01 Non
a Block, Random
5 The Binary Matrix Rank Test, 100 3454343 | 0094351 | >0.01 Random
6 The Discrete Fourier Transform 100 NA 0.453213 | =0.01 Random
{Spectral) Test,
7 The Non-overlapping Template 100 9.343464 | 0.765439 | =0.01 Random
Matching Test,
8 The Overlapping Template Matching 100 4543453 | 0. 001342 | =20.01 Non
Test, Random
9 Maurer's "Universal Statistical” Test, 100 NA 0.023412 | =001 Random
10 The Lempel-Ziv Compression Test, 100 NA 0.0342451 | <0.01 Random
1 The Linear Complexity Test, 100 7.347681 | 0. 004327 | 20.01 Non
Random
i2 The Serial Test, 100 3.4565781 | 0. 986211 | =0.01 Random
2.345797 | 0.456212
13 The Approximate Entropy Test, 100 3.235681 | 0.002432 | >0.01 Non
Random
14 The Cumulative Sums (Cusums) 100 z=34 0. 45321 >0.01 Random
Test, (forward) | (forward)
z=2.14 0.245431
(reverse) | {reverse)
15 The Random Excursions Test, 100 14.563123 | 0.098311 | =0.01 Random
16 The Random Excursions Varnant Test 100 J=3451 | 0.234251 | = Random
(1
L %)

Chapter 5 Results and Discussions

Table 5.2 shows that the candidate random key generated by SNOW 2.0 passed 12 tests and
failed four statistical tests i.e. the overlapping template matching test and the linear complexity
test. It failed the Test for the Longest-Run-of-Ones in a Block which is about the longest run of
ones within M-bit blocks, The Overlapping Template Matching Test which is about the number
of occurrences of pre-specified target strings, The Linear Complexity Test which is about the
longest run of ones within M-bit blocks and The Approximate Entropy Test which is about the
frequency of all possible overlapping m-bit patterns across the entire sequence. It also fails the
Lempel-Ziv Compression tests which focus on the number of cumulatively distinct patterns
(words) in the sequence. It successfully clears all other 12 tests which show that SNOW 2.0
cannot be used safely for data security all the times and the risk of breaking the security

algorithm is more.

Hence the bit sequence generated by Intelligent SNOW 2.0 is more reliable acceptable as a
random sequence as compared to the bit sequence generated by SNOW 2.0. The efficiency of the
stream cipher system can be compromised on the security to an extent, that the major advantage
of the stream ciphers i.e. speed must not be reduced to a nominal level. This deficiency does not
reflect later on in the implementation of the ciphering algorithm. The key is generated using
Intelligent SNOW 2.0 can then be used for the encryption of the plaintext with the same way as
in the Original SNOW 2.0 stream cipher algorithm.

5.4 Experimental Analysis

We conducted a series of experiments on both versions of SNOW 2.0 and Intelligent SNOW 2.0
and collected sequence of bits produced by the PRNGs of both versions and passed those
through different statistical and cryptographic tests defined in Chapter 1 and 2. These sequences
of bits also called candidate keys have different characteristics and properties. These keys are
generated randomly by the given PRNGs and resulted differently for different samples and
populations of the key stream.

It 1s important to mention that a sample is the representative of the population passes some
statistical tests means that the given population of key stream will also pass those tests. If the
statistical tests are applied on the entire population then the results are accurate but it is

sometimes impossible to conduct it especially in cryptography where the population may have

(1
1 %)

Chapter 5 Results and Discussions

infinite entitics. SNOW 2.0 and Intelligent SNOW 2.0, recommends different key sizes i.e. 64 bit
key, 128 and 256 bit keys. We limited our experiments to 64 bit keys which resulted in 2% =
18446744073709551616 candidate keys and require 2097152 Terabyte (TB) disk space. It is
impossible by all means to conduct such kind of experiments. The key sequence is generated a
number of times and stored in different data files to verify the security of PRNGs. The data is
analyzed in two ways: The original key is compared with the GD-key file for finding the
maximum number of pattern similarities and the frequency tables and graphs are produced. The
patterns compared with the respective indexes in the entire file and the frequencies are computed

for each index.
The experiments are conducted in two phases:

Phase I: Experiments are conducted on partially trained Intelligent SNOW 2.0 having training
data ranging between 200 and 10000.

Phase I1: Experiments are conducted on fully trained Intelligent SNOW 2.0 having training data.

5.4.1 Test Phase I (Partially Trained Intelligent SNOW 2.0)

Multiple experiments are performed in this phase in order to determine the traceable bit positions
in key. Each experiment has 500, 2000, 5000 and 10,000 attacking key stream respectively. The
neural network is partially trained and guessing key is compared with variable size GD-Key file.
The Intelligent model is trained with the random sequences, which are stored in the central

database. The data file having 500 attacking keys generated by GD-attack is listed in Table 5.3:

Table 5.3: 500 Random keys Generated by GD-Attack

1887D6BC 84598765 | 1A2AS7D3 | 3BFFASA4 | 6984AC65 | CA283F02 9248191 | F55CF774 IC9CS2E7 | CT7ALOST
C8802C06 | 18DSESFB | 73DI7E00 | OD174AFC | 89277D52 F36803D6 | EC38DCI1 | FC630E24 56443¢37 B3F560E7
F37DICEl | ASE69093 187C2BD6 | 1F9E9F62 | DSEA02DA | FSB6C2CS | 779F8D3A | 7BROEIBE 475AESBA | 7519D21B
69BBFO60 | A3CAE0AG | 62ACFA54 | 47F61052 87655fe2 CCLA43AF | 334E9971 7549482F TIASRIFA | 67C81551
33011751 | F7FSFBAT | 9655195D | DA6374C5 | BDAOFFSD | 4EDI18819 | FSAETAC6 | 7TA38EF65 CAD6ABBO | F95AI19E3
7258835 | 83C52C16 | D04447E9 | 4AQTE2E4 | 88DOSFSC | 1091D7F4 | BFO9SESC | 42742D51 867976DC | D3CCBIOF
SA21C15A | 17E87F45 | ATTDAEFA | 2EBA4064 | FEE22062 828FA275 | 62BF1037 | DCC60057 EDGBA2BC | 263CC6EQ
286CB4ES | 80FD3EC3 | S8EF4B959 | 8E88F793 DEY707ES 6A921D30 6.94E+08 | DA9601D0 E303053B 2FF02C08
FS5731EC4 | 6E34CB37 | S67F3EGF | D723291A | BDI9CAFD | 9684F255 B09SEF97 AO24FABT | 7964757B BE3CCFE$
FAB3BI28 | 582AD64C | D4AS3IASY | 54CC96CE | SBOSTOEQ AF83C045 | CAD4ED2D | FC3CSBDB | F455DBS3 6A5AADT3
SBB3E777 | 96E4C3B1 | 35A57B6A | SAIC615C | B9D69F8S | 064AB527 | OAB7TDS4A | 6822A679 640FFAFE | 3AFB909B
{ =)

Chapter 5 Results and Discussions
ABDB700D | 6A0963A3 | B6FFTD46 | 60CI93E8 | AQ9B5318 BIFBD$39 | CB48DF10 | 18B2C17F BYF23A60 | 491FF9FE
43FCE854 | BO40OE480 | AOC33B6F | 85114C40 137463D5 129FAF7A | OF9D2D08 | 48DC76D9 | EABOE402 | 4AB47F80
LFE30D24 | DO9BB251 | SF3ATAD3 | 64D821E] BBISDOCS | CF3A69A7 | TB258996 D837702B DIDBFZAE | 06D8538A
DAD4F054 | 3BICF25B | E7CF880! | 6AF64C6C | CEES062E | OCDCBEAS | 11DESBB0 | 37BDOACT | D8CCDF42 | F223F93E
FI5D5836 | 224D971E | 4542356A | F67TD9918 | 85AF3688 9EC00006 | DBBYCFOC | 309F6856 9912679 | 3071F90E
58F45628 88EC2020 | 9AOIEEAA | 8CD216E7 | C11760DB | 3IDSDM8E2 | CA2AD97D | 00528BFD 09CF59CE | 6A6F1CFD
1823EEE4 | 8EEIF69E | 7E184602 F5SD3A47A | SES0BID9 FB4D6A17 | 80C6A040 05A289AC ES474FFB 43CBD3B2
52B79164 490DB7D8 | FCC917D6 | 993B7AFA | BO416EE] ACCD98CB | 59C664E4 DCAL4BCC | F797604D DBC74C10
F32D2C5C | A9ATSADE | 230A3C8E | 16FE3125 GAGREA0D | CDO700AD | 8FSFCI5E | 24CB36B7 FEDCS1B7 | 45DE64DD
6ADYD242 | B6B616B3 | 4CBB25B0 | EAB511D4 | FB845C33 | D9CSFAGC | 754BF29D | 3F206560 93E93CCY | SFCS2B2F
098939BC | BOB454C1 | 302F3980 | DBC3028E | 2426A104 C9F46FDE | OESDA2D6 | AF448A87 957B32D8 | 8F39262C
9BCASAG0 | DO371E6C | A68C2F(9 46639172 | 40AD3BID | CA6BC21D | FE285C0E | C5403El4 JE4R2793 €0508915
ESFRDBED | 22F529CC | A4A78725 | SOIFB4EA | 4FS9CC78 C79CABSF | 9BD2C35A | BFFE9617 3F841614 CO8FBCI12
558E7TFE | 5824CFI15 51B2800% | DB798847 | ODF66BI3 E6DSE218 19875AB8 | CB7693FD D1364DOB | 383CA274
F12FE44C | 2EDS51015 | 36B64ED5 | 94B79A08 | OIE34FAA | ECFI35EC | 94E181AD | B2A948FE FiFS09EF 052E7538
D68DID62 | 4A630B14 | 316D846E | DSBS19FA | FE754721 091228FB 2B0363EC | 456DFDCS5 | 979537AE | FBOCSEAA
2B5343F4 | 2CEC59D2 | 3080A008 29508881 | 56B21F2A | FOA40B0S | CIF9D674 | SFRIF9BF 856DIBBB | 7FECG753
ODA3CEFC | EDC77B2F | 95F16984 FBDDBGB2 | 85BFO0OC 932D3548 CSDBESFS | 9E0905DA F74D4DAD | 73A3645E
6A13E29E | 947FFEA9 71174798 § F56E33D2 | 3SE2IDCE | 4104CE04 OBAROFF8 | 71DFDFQF A0597BAB | IF6FODFC
SEIE6633 | 0IB724BE | SA7R95CA | 3B508011 30879636 | 29E10FB2 10248ECA | $8AC0268 4DDE23B3 | 928EBRBCI
252985D9 JFATOF98 | C3FE9CAS | A45FI13D7 | 632ECBBI 1SF71B1A | CSE39E6F | DB2482D2 OF7F10F2 6565454
376919C0 | 03DBC6C6 | A4063F54 | 28B87FOC | 2C35COES | BBEA633D | 28CRF84A | TOCYF3E6 8A20FCOC | 20D3040B
93ED75C2 | 44C67BEF | FOSD770E | 16B35786 | 262A29DC | AES3DBA7 | FB2R0EAS | 271025A1 FA13E102 | ERI3F861
295BF61E | CC6219C4 | 8DC93FB1 | 9CUSFIC3 | A91160FF 5B9D28F9 7984751 | 0374CF05S AEIDA4DE | A3DBB38B
F38772A7 | 398985AF | 339BF824 | BC3ESFSC | F2798E39 166A68DC | 665478A2 CAFB1342 595A209B | TE077BOD
266FBCE2 | 6590DOFS | 2968BB1A | 21223BOB | BAB49554 | FOCB2A94 | A9BAF3IC 11027351 | CDISTICE | 39BE4028
1D3DDD47 | 335567BS 7CIE4D62 | 509246FA | 7C3FB782 D17EF98A 86817804 | 28A2DEFF | FTEF46B0 | 28F3DYB6
BDOCC383 | DA4FOA4E | FA588387 | 2B620ESF | 2E6BBO91 2EB71D27 | 10AFD551 | BA9C6083 CTAE09CB | E3E2C41D
160524C4 | AD36BAOQT 85665373 | 8BOO3A4C | 395638CI SICAE422 | 88C6DCT70 | 89F3FS73 JASEFBCO | 0SBSESEA
E44092AF | 7818B677 04EF9FA6 | DBSC1404 | 8354B2BD | 7D4AA384 | 059DF7FB | F32CD4O71 08C86CDE | 8394C934
ACIF5391 | 5F264339 89B74957 & 93176095 70FF8736 03268239 83A00B59 | C3389646 4A1DB227 29116345
2E241CA9 | OFE24EC% | 065F91B9 | AS6BSDAA | 9C75E968 SA474F19 20681893 | 2610E819 0B7219FC | E9F48F84
1462C28A | 58F698ER | OD7B27D9 | 2171B5DA | BD9CD391 | 2A024755 TA4F9EA] | SFI68DE3 BYSB78A0 | 40B2495B
38255FI12 ADC8R70D4 | 4615C8D1 | 58E29DEB | 4FOF9A13 7BOFODID | 91CAEDIC | BDACCEDB | 3A49984A | 26649FF1
825B38F9 | 4D44D3ITB | 888D040C 27250701 | 10B92234 3DECA663 | 40AF7FE6 | 17C43B6A | 9FB53RFS 8DAR67TB
AAJCC44B | 448AAF19 | 3FBBCS74 | F3673266 SICDE002 | AGAF6AA2 | OF8D56A4 4546E22F | C6DBAEL2 | 423CA43A
4B3CDD64 | OASE7A66 | 77D99CO3 | 42513FE3 | 451AF7C8 | 3FC873D8 | D9373700 ! AFE257EF | 202C6F7E | DSD2DISA
FF3B60CI | AF7E09D3 | SBATB613 | 262C8C9 | AD4813CE | 29A7FB86 | 35CF7248 2FC8ADSS 2CF7EDL7 47733088
4C56A68B | C93A2569 | CDCAI1334 | 6C6EOFD6 | TOEF3340 73D67AD2 | EIDTIDAA | 1A20521C 26DD2BSB | D216A0ZE
{ o)

Chapter 5 Results and Discussions

The dictionary size is increased gradually to 1000, 2000, 5000, 10000 and so on, up to the
maximum size of 5139189. The cross examination of the results show that if the Intelligent
SNOW 2.0 is not properly trained then Intelligent SNOW 2.0 also produce improper keys. The
untrained Intelligent SNOW 2.0 will work approximately similar to Original SNOW 2.0.

5.4.1.1 Determining Sub Key Frequency

In first experiment the guess key is 3 and Initialization Vectors (IV) are IV0=2, IV1=2, IV2=2,
IV3=2, and compare the key with the attacking key by taking different size of patterns. The

results are described in Table 5.4.

Table 5.4: Frequency of Sub Keys in Attacking Key Dictionary of Size 217

No. of Patterns (n) Frequency Percentage
(1 Pattern= 8 bits)
Pattern size n=1 126 58.1%
Pattern size n=2 56 25.8%
Pattern size n=3 35 16.1%
Pattern sizen =4 0 0%
Pattern sizen =135 0 0%
Total 100.0%

The data in Table 5.4 is graphically represented in Figure 5.1. It can be observed that a pattern of
size 8-bits is more frequent in the attacking keys index but by increasing the number of patterns
(sub key size) the frequency in the attacking key index gradually decreasing. A 32-bit and 40-bits
has a zero frequency in the attacking key index. The graph in Figure 5.1 behaves like a
£ distribution because the frequency near the origin is more and the as we go away from the

origin the ¥ graph touches the X-axis, means the frequency of a sub key tends to zero.

98

—,
Nusspiad

Chapter 5 Results and Discussions

Graph Representing Pattern Frequency of Different Sizes
70.00% -

58.10%

60.00% -

50.00% -

40.00% -

W
o
[}
=]
&

s Percetage Frequency Histogram

w156.10%

= Percentage Frequency Line

_ Graph 1
. i

5

Percentage Frequency

A 21 23 .

o o o e e ™
S-\-Le -\1'2 o ‘;\1,9 © 5\1,?- o 9\1'6
¢ a‘.‘-e 9 3‘.‘2 9 fa‘.‘e‘ ? aﬂ-e Q a@e‘

Patterns of Different Sizes

Figure 5.1: Graph Representing Frequency of Sub Keys in Attacking Key Dictionary of
Size 217

Taking a 64-bit key that contains 8-patterns of size 8-bits. The pattern match test on a small
attacking dictionary of size 217 results that a pattern of size 8-bits has 126 similarities which is
58.1% of the total keys in the attacking dictionary. Increasing the pattern size to 16-bits the
attacking dictionary has 58 similarities which is 25.8% of the entire attacking key dictionary. A
pattern size is increased to 24-bits and onward has 16.1% and 0% similarities, which shows that
GD-attack fails in this case. The graph in Figure 5.1 lies under the Chi-Square (X°) having a
bell shape towards origin and touching the x-axis for a pattern of size 4 (32-bits). A GD-attack
having limited iterations fails in this case, which partially shows that an untrained Intelligent
SNOW 2.0 also generates secure key. (Note: This experiment does not prove that an untrained or

partial trained Intelligent SNOW 2.0 is unconditionally secure.)

5.4.1.2 Determining Pattern Frequency

A 64-bit key containing 8-patterns is checked against limited GD-attack. The frequency of each
pattern in limited key dictionary generated through GD- attack is given in Table 5.5.

S

99

T

Chapter 5 Results and Discussions

Table 5.5: Frequency Table Representing the Frequency of Each Pattern (8 bit size) in
Attacking Key Dictionary of Size 217

Pattern No. Frequency Percentage
P1 24 11.1%
P2 24 11.1%
P3 32 14.7%
P4 33 15.2%
P5 24 11.1%
P6 23 10.6%
P7 35 16.1%
P8 22 10.1%
Total 100.0

A 64-bit is divided in 8 patterns of 8-bit size and treated at their respective indexes. The key is
checked against 217 key generated through Guess-and-Determine attack, results the facts in

represented in Table 5.5. The data is graphically represented in Figure 5.2.

Graph Representing Individual Pattern Frequency

18.00% ;

16.00% - 14:70%L5-20%

14.00% - i ;

.. 12.00%

ne

& 10.00% -
8.00% -

Frequ

N Percentage Frequency Histogram

6.00% f
: =—Percentage Frequency Line Graph |

4.00% -

Individual Pattern Percentage

2.00% -

0.00% - ‘ ,
D D d S o 91 D

Patterns Frequency Graph of 64-bit key Generated by unrained Intelligent
SNOW 2.0

Figure 5.2: Frequency Graph Representing Frequency of Each Pattern (8 bit size) in
Attacking Key Dictionary of Size 217

Chapter 5 Results and Discussions

It is clear that some of the patterns are more frequent as compared to others. The cryptanalyst
determine the more frequent patterns and guess the other patterns. This shows that when a clever
attack is implanted can guess the more frequent patterns and the next frequent patterns. We can
see that the value at the index 6 and 3 are 35 and 33, the most frequent values. The cryptanalyst
can use different statistical techniques to guess the values at the index 6 and 3 and determine that
what could be the values of the next most frequent indexes in the given table. It must be noted
that each pattern is 8 bit long and in case of a successful guess 8 bits of the key are cracked and
the next are at the risk of hunting them. The cryptanalyst guess the frequent patterns in the key

and determines the rest of the key.

The PRNG must produce a series of unbiased bit sequences where each pattern in general and
each bit in special must be equally probable. We let the graph be in normal so that the probability
of occurrence of each bit pattern must be same. The data gathered must be confused and the
cryptanalyst must not get any clue towards the collective collapse of the entire cryptosystem. A
closer look at each individual pattern and its relevant frequency shows that there is a reasonable
gap in the frequency difference that made the higher frequency patterns more vulnerable to the
cryptanalyst. It is required to minimize the frequency difference in given patterns by training
Intelligent SNOW 2.0 and adjusting neurons weights. Hence the cryptanalyst could not easily
generate the key using dictionary attack or using the Guess-and-Determine attack. A detailed

description is given in Annexure A.

5.4.2 Test Phase II (Fully Trained Intelligent SNOW 2.0}

Several experiments are performed in this phase in order to determine the traceable bit positions
in key. Each experiment had 40,000, 60,000, 80,000 and 100,000 attacking key streams
respectively. In the following we give experimental details of a dataset having approximately

1000000 keys.

5.4.2.1 Determining Sub Key Frequency

In this experiment the guess key with initial parameter is 449 and Initialization Vectors (IV) are
IV0=6, IV1=6, IV2=6, IV3=2, and compare the guessing key with attacking keys by taking

different size of patterns. The results are described in Table 5.6.

-

1
101 |-

Chapter 5 Results and Discussions

Table 5.6: Frequency of sub keys in attacking key dictionary of size 100000

No. of Patterns (n) Frequency Percentage
(1 Pattern= 8 bits)
Pattern size n=1 59697 59.7%
Pattern sizen=2 31641 31.6%
Pattern sizen =3 7523 7.5%
Pattern size n = 4 1053 1.1%
Pattern sizen=5 79 0.1%
Pattern sizen =6 7 0.0%
Pattern sizen="7 0 0.0%
Total 100.0

In Table 5.6 we see that the guessed key is checked against 100000 keys in the dictionary. A
single pattern (8-bits} is observed in 59697 keys, two consecutive patterns (16-bits) are observed
in 31641 keys, three consecutive patterns (24-bits) are observed in 7523 keys and so on. Seven
and eight consecutive patterns (56-bits / 64-bits) are not observed in the entire GD-attacking file.
Other experiments over a million of attacking keys also contain no sign patterns for 56-bits, 64-

bits long patterns generated by fully trained Intelligent SNOW 2.0.

Graph Representing Pattern Frequency of Different Sizes
70.00%

P SN . - -

59.70%,
60.00% - :

50.00%

40.00% -

30.00% |

20.00% . I Percentage Frequency Histogram

Pereentage Frequency

10.00% —i—Percentage Frequency Line Graph

0.00% -

O
g® Wt @ g
= o

5‘\1?' 9'\1’2
G

3N W)
e o o

g Ay g
o Qﬂc@ ?,,,\te ?3-50

Patterns of Different Sizes

Figure 5.3: Graph Representing Frequency of Sub Keys in Attacking Key Dictionary of
Size 100000

ey

)
102 }

Chapter 5 Results and Discussions

The graph in Figu.re 5.3 lies under the Chi-Square (x°) having a bell shape towards origin and
touching the x-axis for a pattern of size 7 (56-bits). A GD-attack having enough iteration fails in
this case, which shows that a trained Intelligent SNOW 2.0 generate unconditionally secure key.

(Note: This experiment shows that a fully trained Intelligent SNOW 2.0 is unconditionally

secure.)
5.4.1.2 Determining Pattern Frequency

A 64-bit key containing 8-patterns is checked against GD-attack. The frequency of each pattern
in the given key dictionary generated through GD- attack is given in Table 5.7.

Table 5.7: Frequency Table Representing the Frequency of Each Pattern (8 bit size) in
Attacking Key Dictionary

Pattern No. Frequency Percentage
Pl 6393 12.7%
P2 6387 12.7%
P3 6154 12.3%
P4 6165 12.3%
P5 6327 12.6%
P6 6225 12.4%
P7 6223 12.4%
P8 6323 12.6%
Total 100.0

Table 5.7 represents the frequency at the respective indexes of the patterns in the keys of the
GD-file. The frequency column shows that some of the patterns are more frequent as compared
to others. This shows that when a clever attack is implanted can guess the more frequent patterns
and the next frequent patterns. We can see that the patterns at all indexes are approximately
equally probable. The cryptanalyst has very limited chances to guess the key because the bit
patterns in the file are equally probable and there is no biasness in the PRNG that can give a
chance to even a single pattern to be guessed by the cryptanalyst. A 128 bit long key that is
generated by Intelligent SNOW 2.0 has no chances to be traced by a cryptanalyst in polynomial
time. It can be justified that a random sequence generated by Intelligent SNOW 2.0 PRNG is

103 V-

g———

Chapter 5 Results and Discussions

unconditionally secure. The problem in the untrained Artificial Neural Network (ANN) is

resolved by proper training,.

Graph Representing Individual Pattern Frequency
18.00% - : 5 s

16.00%

14.00% -1770%12: fU%i2_30%i2_30%12_b0%12_40%12_40%12,b0%1;

12.00%

10.00%
8.00% W Percentage Frequency

| Histogram
6.00% '
i ——Percentage Frequency Line

Graph

4.00% -

Individual Pattern Percentage
Frequency

0.00% - :
AL R L - TR - - B - B -1

Patterns Frequency Graph of 64-bit key Generated by Trained Intelligent
SNOW 2.0

Figure 5.4: Frequency Graph Representing Frequency of Each Pattern (8 bit size) in
Attacking Key Dictionary

A closer look at each individual pattern and its relevant frequency revealed that there is no
reasonable gap in their frequency difference, and the probability of occurrence of each individual
byte was approximately same as shown in Figure 5.4. A cryptanalyst cannot clearly determine
the frequent patterns because the frequency of all patterns at their respective indexes is

approximately same. A 128-bit and 256-bit key cannot be recovered in polynomial time.

5.5 Comparison of SNOW 2.0 and Intelligent SNOW 2.0

A series of experiments are conducted to break the code generated by Original SNOW 2.0 and
fully trained Intelligent SNOW 2.0. Table 5.8 contains data collected after analysis of Original
SNOW 2.0 and Intelligent SNOW 2.0,

Chapter 5 Results and Discussions

Table 5.8: Frequency Table for Sub Key of Size n=1,2,...., 8, Using Original SNOW 2.0 and

Intelligent SNOW 2.0
Intelligent SNOW 2.0 Original SNOW 2.0
No. of Patterns | Total No.of | Percentage | Total No. of Percentage Difference
(1 Pattern=8 Similarities Similarity Similarities Similarity
bits)
1 1629420 | 31.7057808% 1631213 31.7406696% 1793
2 379276 | 7.38007495% 396494 7.71510836% 17218
3 50016 | 0.97322749% 51210 0.99646073% 1194
4 4003 | 0.07789167% 5120 0.09962661% 1117
5 144 0.002802% 542 0.01054641% 398
6 2 | 3.8917E-05% 52 1.01E-03% 50
7 1.9458E-05% 8 1.56E-04% 7
8 0 0% 1| 1.94583E-05% 1

Table 5.8 contains information about Original SNOW 2.0 and Intelligent SNOW 2.0. It can be
observed at all stages that Intelligent SNOW 2.0 has collectively low similarity index values as
compared to Original SNOW 2.0. The Difference Column shows the difference in similarities
between both the competing algorithms. The sample data contains 8 keys that have 7 pattemns
similar to that of the original key generated by SNOW 2.0 and 1 key is 100% similar to that of
the original key. A 64-randomly generated key generated by Original SNOW 2.0 Pseudorandom

Number Generator (PRNG) has been cracked and it cannot be used as a secret key.

The sample is the representative of the actual data keys of its original length, the GD attack is
equally likely applicable to that of the key containing 128 bits. Intelligent SNOW 2.0 algorithm
produce a sample key that cannot be cracked and the key list produced by GD attack does not
contain any key similar to the secret key produced by Intelligent SNOW 2.0. The statistical facts
in Table 5.8 prove that Intelligent SNOW 2.0 is more secure and the series of keys produced by
it can be used unconditionally as a secret key. The data is graphically represented in Figure 5.5

and Figure 5.6.

The graph in Figure 5.5 represents that a single pattern (byte=8 bits) has the index similarity
with 1631213 keys and 396494 keys are having 2 patterns similar to that of the Onginal key
produced by Original SNOW 2.0. We can see that the secret key exactly match with a single

———

3
105}

Chapter 5 Results and Discussions

attacking key in the list. It shows that a 64-bit key generated by Original SNOW 2.0 has been

compromised and cannot be used as secret key.

1800000
1631213

1600000 -

1400000 -

1200000 -

1000000 -

800000 -

600000 -

consecutive Pattern

396494

400000 -

No. of Similarities for each

200000 A

51210 5150 542 52 8 1

0 4

1 2 3 4 5 6 ;8
No. of Bytes those match a Pattern

Figure 5.5: Frequency Graph for Sub Key of Size n=1,2,...., 8, Using Original SNOW 2.0

The graph in Figure 5.6 represents that a single pattern(byte=8 bits) has the index similarity with
1629420 keys and 379276 keys are having 2 patterns similar to that of the Original key produced
by Intelligent SNOW 2.0. A 64-bit key generated by Intelligent SNOW 2.0 is not fully
recovered. In large amount of guesses it is observed that the Intelligent SNOW 2.0 has more
similar patterns, however it is not always the case. The probabilistic and intelligent nature of

Intelligent SNOW 2.0 algorithm restricts statistically weak keys generation.

—

106 }

Chapter 5 Results and Discussions

1800000

1629420

1600000

1400000

1200000

1000000

800000

600000

379276

consecutive Pattern

400000

No. of Similarities for each

200000

1 2 3 4 5 6 7 8
No. of Bytes those match a Pattern

Figure 5.6: Frequency Graph for Sub Key of Size n=1,2,...., 8, Using Intelligent SNOW 2.0

A true random and cryptographically strong key generation is a critical issue in stream cipher
algorithms. A randomly selected key is also required to be guaranteed random and has no
statistical weaknesses that may support an analyst to break it. Intelligent Cryptographic Model
(ICM) store weak key information in knowledge base and a new randomly generated key is
required to avoid weak key properties. If the model is trained more intelligently, new situations
are fed to the inference enginc and the knowledge base is also increased then it respond more
intelligently and produce keys containing more security features. The keys produced can be
trusted to be used as secret keys. The intelligent algorithm reports the weak keys and is kept in

the knowledge base so as to avoid the chances of reuse such a weak key.

Figure 5.7 presents combined graph of Original SNOW 2.0 and Intelligent SNOW 2.0. The Red
bar represents Intelligent SNOW 2.0 and the Green shaded bar represents Original SNOW 2.0.
The bar graphs and the labels over it show that the patterns similarity is more frequent in
Original SNOW 2.0 as compared to Intelligent SNOW 2.0. The Intelligent SNOW more reliably
produces the random number which can be used as a secret key. Moreover the pictorial

representations of these facts show that Intelligent SNOW 2.0 is more secure than Original
SNOW 2.0.

107 }

——

Chapter 5 Results and Discussions

1800000 - - o oo e o
1600000
§400000 :
#200000
000000
+300000 -
2600000 —
9400000
200000

0 -

- o Red- Intelligent SNOW 2.0

... .. ._Green Original SNOW 2.0

CUTIV

ns

No. of Similarities for each
Cl

1 2 3 4 5 6 7 8
No. of Bytes those match a Pattern

Figure 5.7: Frequency Graph for sub key of size n=1,2,...., 8, Using Original SNOW 2.0
and Intelligent SNOW 2.0

5.6 Entropy in Ciphertext

Entropy destroys structure by adding confusion and disorder to the data during an encryption
process - it is the complete converse of ordered structure. Entropy negates structure and converts
plaintext into the state of neutral latency i.e. ciphertext thus making it meaningless to adversaries
by direct inspection at least. That ambition is not always fully realized in secure

communications. However, due to the clever skills of the cryptanalyst who believes that there is

still some residual structure in the ciphertext even after Alice has done her best to conceal it and

which he must find.

S - =T 2
Oriinal Image Ecrypted using Original ncrypted using Intelligent
SNOW 2.0 SNOW 2.0

Chapter 5 Results and Discussions

Entropy can easily be understood in an encrypted image. For example an encrypted image gives
shades of background and a foreground having scars of male or female sketches. This means that
the encrypted image is not fully confused and may provide enough information to the analyst to
recover the secret key. A statistically proven secure secret key having no repeated bit patterns
may highly confuse the encrypted image having no supported information that may enable a

cryptanalyst to recover the secret key.

Data + Structural Information = Visible Information

Entropy = (-ve) Structure

Data + Structural Information + Entropy = Minimizes Visual Information
If

Entropy = Structural Information
Then

Data + Structural Information + Entropy = No visible Information

Entropy is the negative structure information and negates the structural orientation of the data
provided. Thus by negating the structured form of data it will not be possible to collect
meaningful information. An encrypted text must not contain any valuable information. A
cryptanalyst checks the ciphertext whether it contains some sign from which the secret key can
be guessed. If a statistically weak key having repeated patterns is used as a secret key for
encrypting the plaintext may produce the same ciphertext repeated at various parts in the
encrypted message. The cryptanalyst on successful guessing one ciphertext pattern recover the
key pattern used for encrypting it. If some patterns of the ciphertext are successfully recovered
the cryptanalyst deduce rest of the text. A cryptographically strong key will destroy the structural
information by XORing with the plaintext and a clever ciphertext only attack will not be able to
successfully recover the secret key patterns used for encrypting the relevant plaintext. To
concentrate on the patterns of smaller size and work with it has no fruits to bring into front

because in that case the rest of the key is again untraceable for the cryptanalyst while applying

Chapter 5 Results and Discussions

different statistical tests. There was a big amount of disbursement in the data we collect and it

was difficult for the analyst to find the regularity in data.

A 1-MB (10°-Bytes) plaintext data is encrypted with 64-bit randomly generated key using both
Original SNOW 2.0 and Intelligent SNOW 2.0. Correlation attack is used to recover a 64- bit
long key used for encryption in SNOW 2.0 and Intelligent SNOW 2.0. The pattern similaritics
observed in both algorithms are given in Table 5.9.

Table 5.9: Frequency Table for Sub Key of Size n=1, 2,, 8, using SNOW 2.0 and
Intelligent SNOW 2.0 (Large Patterns only)

No. of Patterns Intelligent SNOW 2.0 Original SNOW 2.0
(1 Pattern= 8 bits) (Total No. of Similarities) (Total No. of Similarities)
Pattern of Size n=5 144 542
Pattern of Size n=6 2 52
Pattern of Size n=7 1 8
Pattern of Size n=8 0

A chunk of 5, 6, 7 patterns is observed at 144, 2, 1 locations in the ciphertext and the key
patterns used for encryption are recovered using correlation attack. A ciphertext generated
through Original SNOW 2.0 is containing one 64-bit chunk used for recovering the 64-bit
randomly generated key. The cryptanalyst may also use chosen ciphertext only attack by
attaching compression virus with the plaintext message. On successful receiving the ciphertext
on public channel the cryptanalyst recover the plaintext by observing the visual information
trend the ciphertext. The data from the Table 5.9 above has been summarized in the
line graph (Figure 5.9) below for the larger patterns created so far. It is evident to see that the
line is below the Original SNOW 2.0 showing significant improvement in using the Intelligent
SNOW 2.0.

The graph in Figure 5.9 contains blue line representing Intelligent SNOW 2.0 and red line
representing Original SNOW 2.0 clearly show that it converges in both cases but the Intelligent
algorithm converges more rapidly. It shows that visible information is deeply negated and does

not give enough support to cryptanalyst to recover the secret key.

——

3
10 }-

Chapter 5 Results and Discussions

600
542 - Origi
00 e N _ ~_Red- Original SNOW 2.0
2
S .
g 400 —Blue-Intelligent SNOW 2.0
5
=
=
=
&
8 1
- il o
k)
o
o

Traceable Patterns in Encrypted Text

Figure 5.9: Conversion Graph for Original SNOW 2.0 and Intelligent SNOW 2.0.

5.7 Data Dispersion

It is in contrast with the central tendency which is a central or typical value for a probability
distribution. The dispersion is a statistical property in which the central or typical value for a
probability distribution is dispersed and is confused with the given data to find out any clue over
a given region. In cryptography it has a great importance because a cryptanalyst tries to find out
a central or typical value for a probability distribution. The resultant key patterns must not be
traceable by applying various probability distributions which are used for normalizing a
statistically disbursed data. The ciphertext does have valuable information to recover the relevant
plaintext and a series of randomly generated sequence also does not give a clue about the next
randomly generated key. The cryptanalyst brings data to normal form and compute the
Coefficient of Variance. The Coefficient of Variance below 100% can be normalized to collect

valuable information and the data is considered reliable to some extent.

A cryptographer always tries to increase dispersion in a given sequence and the given data or
information must not fit under any of the aforementioned distributions. If the data is more
dispersed more that data will be secure and the cryptanalyst will not be able to get any clue from
a sample over a given population. If the Coefficient of Variance (CV) is more than 100%, then

statistically this data is considered unreliable which is the ultimate goal of a cryptographer in a

{ 111 }

Chapter 5 Results and Discussions

given security system. To find the dispersion and uncertainty in data that has been obtained white
using the original SNOW 2.0 and the Intelligent SNOW 2.0. The mean variance and the
Coefficient of Variance of the data generated by Intelligent SNOW 2.0 are computed below:

Table 5.10: Data Obtained using the Intelligent SNOW 2.0

S.No | x (x,—X) ‘ | (% -x)
[1629420 1371560 1881183005625.0625
2 379276 121418.25 14742391433.065
3 50016 -207841.75 43198193043.0625
4 4003 -257855.75 6444223409.75625
5 144 25771375 66416376939.0625
6 2 -257855.75 66489587808.0625
7 1 -257856.75 66490103520.5625
8 0 -257857.75 66490619235.0626

n=8 | 3 x =2062862 > (x, —X) =2269452511701.5

S

n | (5.2)

Mean of x =

2062862
8

X=

x =257857.75

The percentage coefficient of variance is:

—1
CV%= % x100 Where Standard deviation, o = (x; =) 4

X (5.3)

CV%=206.555

The coefficient in the given is 206.555% which shows that the data collected from Intelligent
SNOW 2.0 is highly abnormal and unreliable. The cryptanalyst tires to find any relevancy among
randomly generated keys which is highly dispersed and fails to guess the patterns in a given key.
The cryptanalyst cannot get sufficient information from the set of keys randomly generated by
Intelligent SNOW 2.0 PRNG. The randomly generated key is untraceable and cannot be
compromised through any cryptanalytic attacks.

Chapter 5 ' Results and Discussions

Table 5.11: Data Obtained using Original SNOW 2.0

8. No X, (x,. -X) (x; - EE)Z
1 1631213 | 1370633 1878634820689
2 396494 | 135914 18472615396
3 51210 | -209370 43835796900
4 5120 | -255460 65259811600
5 542 | -260038 67619761444
6 52 | -260528 - . 67874838784
7 8 | 260572 67897767184
8 1] -260579 67901415241

n=8 | %x, =2084640 D (x,—X)’ =2277496827238

25

n (5.4)

Mean of x =

_ 2084640
8

=|

260580

X

The percentage Coefficient of Variance is:

—2
CV%= gx 100 where Standard Deviation, o = "(x,. —X) /
X n (55)

CV%=204.759

Coefficient of Variance is expressed as the ratio of Standard Deviation and Mean value. It is the
measure of variability and stability of the data. In this work it is computed for both versions of
SNOW 2.0, i.e. Original SNOW 2.0 and Intelligent SNOW 2.0. When the value of Coefficient of
Variance is high, the data has high variability, less stability and less reliability. The Coefficient
of Variance (CV) of Intelligent SNOW 2.0 data is very high i.e. 206.555% and the data is highly
unreliable and a cryptanalyst cannot get any valuable information. The Coefficient of Variance
(CV) of Original SNOW 2.0 original data is 204.75% which is too high and unreliable but less
than Intelligent SNOW 2.0. Thus the intensity of the statistical attacks on the Intelligent SNOW
2.0 algorithm is reduced due to the vast dispersion in its data. In case of a clever attack it is

impossible to break the entire key in the polynomial time and to find the correlation between the

Chapter 5 Results and Discussions

plaintext and ciphertext by applying different statistical tests because of the increased dispersion

in the key produced by using Intelligent SNOW 2.0.

5.8 Summary

The probabilistic nature of the pseudorandom number generators does produce results of
deterministic in nature. It is impossible to achieve 100% unbiased results in computer systems.
Because computers are based on logic and the logic based systems always produce biased
results, although its level may be too less as we have shown in Chapter 4. The Intelligent
Cryptographic Medel (ICM) is more secure as it maintains the knowledge base. When a biased
key is generated by the Pseudorandom Number Generator (PRNG), its biasness will be
determined as shown and justified in this chapter. After a serics of experiments and statistical
proofs we see that the data collected for the intelligent stream cipher has more confusion and
dispersion as compared to the data collected for the original stream cipher algorithm. In this
chapter we have tested Intelligent SNOW 2.0 by different means as discussed in Section 5.4, 5.5
and 5.6, which proves that Intelligent SNOW 2.0 is more secure. In Section 5.2 and 5.3 Original
SNOW 2.0 and Intelligent SNOW 2.0 are tested separately and it has been shown that Intelligent
SNOW 2.0 passed 14 NIST recommended statistical tests whereas SNOW 2.0 passed 12 NIST
recommended randomness test. The cryptanalyst who tries to enter through the backdoors to
compromise the securnity of the system will not get any way to produce the plaintext without
having the real key. It is shown by applying different statistical tests that Intelligent SNOW 2.0 is
more secure than LFSR based SNOW 2.0 and data can be transferred more safely over a public

channel.

o

|
14 j

Chapter 6 Conclusion and Future Work

CHAPTER 6
CONCLUSION AND FUTURE WORK

Information security is one of the burning issues since inception of electronic data transfer. Its

history is as old as the human race. The world has now become a global village and each and
every individual from any part of the world can communicate with each other through internet
and other electronic systems. Information security is now considered as necessary as other
necessities of life. Both sender and receiver of data have reservations about information security.
If information is of national interest then it has become more important to take special measures
for its security. The most widely used medium for data transfer is the public network i.e. the
Internet. The most threatening challenge to this communication is that digital communications
are intercepted by an individual whom these are not intended. The purpose of this dissertation is
to keep the information more secure and confidential during digital communications. If an
unauthorized person gets an access to data even then he/she should not be able to decipher the

text in polynomial time. Block cipher and stream cipher algorithms are used for this purpose.

6.1 Conclusion

Stream cipher algorithms are best recommended in high speed communication where
computational resources are weak and communication channels are noisy. The main problem
with stream ciphers is that these are comparatively less secure than block ciphers. The security of
a stream cipher algorithm is dependent upon the secret key size and its strength. We can increase
the key size to improve the stream cipher’s security in a hope that it may stop the brute force
attacks to trace the secret key in polynomial time. The cryptanalyst also try to implant various
cryptanalytic attacks like algebraic attacks, Guess-and-Determine attacks, differential key
analysis and other statistical attacks those may compromise the security of a stream cipher
algorithm. Intelligent SNOW 2.0 can also be used in the time critical environments because it
does not increase the processing time during the encryption and decryption process. The key size
of Intelligent SNOW 2.0 is same i.c. 128-bits or 256-bits and using the same encryption and
decryption techniques. Intelligent SNOW 2.0 generates a true random key which can be used as

a secret key for a given session. The cryptanalyst tries by all means to compromise the security

{115,L

Chapter 6 Conclusion and Future Work

of a ciphering scheme by applying dozens of attacks and decides that which of the cryptanalytic
attack would be more successful to break its security. Following are the main features of this

work:

i. The focus in this dissertation is not to produce new stream cipher algorithms but to
present a new model i.e. Intelligent Cryptographic Model (ICM) which uses Artificial
Intelligence techniques to improve the security of stream ciphers.

u. Artificial Intelligence (AI) is one of the growing and dominant fields and covers
approximately all areas of computer science. We believe that in near future computers
will also think and act intelligently like human beings. This work fills up a gap to use
artificial intelligence in cryptography to generate a sequence of bits that would be used as
a secret key.

ni. The Intelligent Cryptographic Model (ICM) generates a random key and then it confirms
that weather the key is strong enough to be used as a secret key. It is a very important
task because if a randomly generated key is blindly used, it may let a cryptanalyst to
implant very serious attacks on a cryptographic model.

iv. Randomly generated key are categorized as strong and weak keys and a newly generated
key is ensured that has no statistical weaknesses. A newly generated key require passing
various statistical tests before using it as secret key to verify that it has no cryptographic
vulnerabilities.

v. Intelligent Cryptographic Model (ICM) is flexible and it can be fused with any other
stream cipher. It is proved that Intelligent Cryptographic Model (ICM) is more secure
than logic based stream ciphers.

vi. Different kinds of statistical analysis proved that Intelligent SNOW 2.0 is more secure
than Original SNOW 2.0. as discussed below:

a. It has been found that Intelligent SNOW 2.0 passed 14 statistical tests and failed
2. It failed The Overlapping Template Matching Test and the Lempel-Ziv
Compression Test where the Lempel-Ziv Compression Test has been removed
from the current Statistical suite [140].

b. It has been found that Original SNOW 2.0 passed 12 statistical tests and failed 4.
Thus comparing both the results it has been justified that Intelligent SNOW 2.0

Chapter 6 Conclusion and Future Work

generates random sequence of bits more effectively than that of Original SNOW
2.0.

C. Both Intelligent SNOW 2.0 and Original SNOW 2.0 are tested for 8-bit pattern
frequency and it has been observed that Intelligent SNOW 2.0 produces the
patterns at the respective index with the same frequency. This test ensures that the
cryptanalyst cannot get any information that some of the patterns are generated
more frequently. This test proved that the probability of all patterns at their
respective indexes is same.

d. It has been observed that the keys generated by both Original SNOW 2.0 and
Intelligent SNOW 2.0 are compared against a large data file having a large
number of keys generated against them. Intelligent SNOW 2.0 does not give
100% resemblance with the keys generated through Guess-and-Determine attack,
whereas the Original SNOW 2.0 has serious cryptographic vulnerabilities.

€. It has been observed that Intelligent SNOW 2.0 hides the entire information with
higher degree of entropy in the ciphertext and converges more frequently as
compared to Original SNOW 2.0.

f. It has been concluded that the keys produced by Intelligent SNOW 2.0 are
extremely dispersed and the data collected by cryptanalyst does not give any
support to trace the original key.

We conclude that Intelligent SNOW 2.0 is more secure than Original SNOW 2.0. The future
cryptographers can trust on Intelligent Stream Ciphers to use these algorithms in their security
models. No matter what ever stream cipher algorithm they use but its intelligent version will
always support their security system as most of the weaknesses recommended by the

cryptanalysts have been removed during its implementation process.

6.2 Recommendations and Future Work

In the following we give guidelines for the future researchers:

1. Intelligent stream ciphers for firmware require special care, because no significant work
is done in this area. It may perform faster than intelligent software but the major issue in

firmware is to update the knowledge base required for Artificial Neural Network (ANN).

[1
[117 |

Chapter 6 Conclusion and Future Work

1. Making encryption process intelligent may produce more confusion in the ciphertext and
the cryptanalyst will not be able to recover the plaintext back without having the key and
the equivalent decryption mechanism. The major issue in this case is that it requires more
computational cost and memory, which may not be possible some times. It may also
propagate error in case of erroneous data transfer.

1i1. Instead of using single key, several keys can be used for encrypting a plaintext. Only the
communicating parties may know its deciphering scheme, to recover the relevant
plaintext. It requires special training that Artificial Neural Network (ANN) decides
properly the key utilization during encryption and decryption algorithm.

iv. Special Intelligent stream cipher algorithms are required for mobile ad hoc networks.
Secure communication in ad hoc networks is still a burning issue which can be resolved
by designing special intelligent stream ciphers for mobile ad hoc networks. Low memory
and processing power are the major issues in designing intelligent algorithms for ad hoc
networks.

V. Special intelligent stream cipher algorithms are required for secure communication in
vehicular networks. Military convoys are mostly targeted due to the leakage of
information when they communicate in hazardous zones. Intelligent stream ciphers will

provide more security during communication among the vehicles and headquarters.

We believe that much and more are done in this area but the researchers still need to explore the
diamond from the mines of coals. The Artificial Intelligence is most dominant area in the next

future and still more need to be done for its use in cryptography.

Bibliography

Bibliography

(1] Leeuwen J.V., Handbook of Theoretical Computer Science, Algorithms and Complexity.
New York: Elsevier, 1990.

[2] Pelzl J., Paar C., Stream Ciphers, Understanding Cryptography, Atext book for students
and Practitioners, 2nd ed.: Springer, 2009, vol. 1.

[3] Arani D., Dasgupta A, "Analysis of Different Types of Attacks on Stream Ciphers and
Evaluation and Security of Stream Ciphers," Cite-Seerx, 2005.

[4] Matt J.B., Robshaw A, "Stream Ciphers, RSA Laboratories Technical Report TR-701,"
RSA Technical Laboratory, Red Wood city, 1995.

[5] Patrnk E., "On LFSR based Stream Ciphers - analysis and design," Department of
Information Technology, Electrical and information technology, Lund, Sweden, Ph.D
Dissertation (Monograph) 91-628-5868-8, 2003.

[6] Matt J. B., Robshaw A., "Stream Ciphers Technical Report TR-701," RSA Laboratories,
Technical Report 1995.

[7] Irfanullah S., Khiyal S. H., Tabassum A. A., "Cryptanalytic Weaknesses in Modem
Stream Ciphers and Recommendations for Improving Their Security Levels,” in
Proceedings of the IEEE Symposium on Emerging Technologies, Islamabad, 2005, pp.
236 - 241.

[8] Irfanullah S., Khiyal M.S.H., Naz T., "Traceable Bit Streams in SNOW 2.0 using Guess-
and-Determine Attack," World Applied Sciences Journal, pp. 190-195, 2010.

[9] Ahmadi H., Salehani Y.E., "A Modified Version of SNOW2.0," in International
Conference on Digital Communication, 2007, Santa Carla, Santa CArla, 2007, pp. 123-
133.

Bibliography

[10] Ekdahl P., Johansson T., "A New Version of Stream Cipher SNOW." Selected Areas in
Cryptography, pp. 47-61, February 2003.

[11] Stallings W., Cryptography and Network Security, Principles and Practices, 3rd ed. NJ:
Prentice Hall, 2003.

[12]IBM Knowledge Center. (2015, October) Cryptography. [Online}. http://www-
01.ibm.com/support/knowledgecenter/SSFKSJ 7.0.1/com.ibm.mq.csqzas.doc/sy10500a.

gif

[13] Ayushi, "A Symmetric Key Cryptographic Algorithm," International Journal of
Computer Applications, vol. 1, no. 15, pp. 1-4, 2010.

[14] Barry K. Shelton, Introduction to Cryptography, 2nd ed. Loss Angelles, USA: Auerbach
Publications, 2010.

[15] Menezes A., Vanstone S., Oorschot P.V., Handbook of Applied Cryptography, 1st ed.:
CRC Press, 1996.

[16] Rivest R. (1987) Vocal. [Online]. http://www.vocal.com/cryptography/rcd4-encryption-

algoritm/

[17] Wikipedia. (2015, October) Wikipedia(Block Cipher Mode of Operation). [Online].
https://en.wikipedia.org/wiki/Block_cipher mode of operation

[18] Menezes A., Vanstone S., Oorschot P.V., Handbook of Applied Cryptography, 2nd ed.:
CRC Press, 1996.

[19] Ye L., "Applied Stream Ciphers for Mobile Communications," B.Eng. in Computer
Science & Technology, , Beijing Polytechnic University, China, Beijing, Ph. D. Thesis
2006.

[20] Wikipedia. (2015, July) Wiki Pedia(Stream Cipher). [Online].

https://en.wikipedia.org/wiki/Stream cipher

Bibliography

[211Ward E. (2015, October) Cryptanalysis of the GSM Algorithms. [Online].

http://www .oocities.org/eocinward/images/egsmcracked.html

[22] Bhadeshia H. K. D. H., "Neural Networks in Materials Science," Journal of the Iron and
Steel Institute of Japan, pp. 1-25, 1999.

[23] Bishop C.M., Neural Networks for Pattern Recognition. London: Oxford Untversity
Press, 1995.

[24] Jackson P., Introduction To Expert Systems, 31d ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., 1998.

[25] Kevin L., Priddy K.L., Keller P.E., Artificial Neural Networks: An Introduction.. SPIE
Press, 2005. [Online]. http://www.eeng.dcu.ie

[26] Wikipedia. (2015, October) Artificial Neural Networks/Print Version. [Online].
htips://en.wikibooks.org/wiki/Artificial Neural Networks/Print Version

[27] Nielsen M., "Using Neural Nets to Recognize Handwritten Digits," in Neural Networks
and Deep Learning. USA: Bugfinder Hall of Fame, 2015, ch. 1, pp. 1-1000.

[28] Siegenthaler T., "Decrypting a Class of Stream Ciphers Using Ciphertext Only," IEEE
Transactions on COmputers, vol. C-34, no. 6, pp. 81-85, August 2006.

[29] Johansson T., "Analysis and Design of Modern Stream Ciphers,” Cryptography and
Coding, vol. 2898, pp. 66-72, December 2003.

[30] Goli¢ 1.D., "Linear Cryptanalysis of Stream Ciphers,” Fast Software Encryption, vol.
1008, pp. 154-169, June 2005.

[31] Johansson T., Jénsson F., "Improved Fast Correlation Attacks on Stream Ciphers via

Convolutional Codes," Advances in Cryptology, no. 1592, pp. 347-362, 1999.

[32] Biham E., Dunkelman O., "Cryptanalysis of the A5/1 GSM Stream Cipher," Progress in

1
e

Srmngind

Bibliography

Cryptology, vol. 1977, pp. 43-51, April 2002.

[33] Ekdahl P., Johansson T., "Another Attack on AS/1," IEEE Transactions on Information
Theory, pp. 284 - 289, January 2003.

[34] Rogaway P., Coppersmith D., "Software-Efficient Pseudorandom Function and the use
thereof for Encryption,” Computer Security US5454039 , 1995.

[35] Xiao G., Shan W. Ding C., "The Stability Theory of Stream Ciphers," Journal of
Information Security and Cryptography, vol. 561, 2011.

[36] Couture N., Kent K.B., "The Effectiveness of Brute Force Attacks on RC4,” in
Proceedings of the Second Annual Conference on Communication Networks and

Services Research, 2004.,2004, pp. 333 - 336.

[37] Ahmadi H., Eghlidos T., "Advanced Guess and Determine Attacks on Stream Ciphers,"
in Fifth International Conference on Information Assurance and Security, 09/2009,

Tehran, 2009.

[38] Sekar G., Preneel B., "Improved Distinguishing Attacks on HC-256," Advances in
Information and Computer Security, vol. 5824, pp. 38-52, October 2009.

[39] Banegas G., "Attacks in Stream Ciphers: A Survey," Journal of Applied Cryptography,
vol. 26, no. 2, pp. 1-16, August 2014.

[40] Rose G., Hawkes P., "On the Applicability of Distinguishing Attacks Against Stream
Ciphers," in In Proceedings of the 3rd NESSIE Workshop, 2006, pp. 321-329.

[41] Barker W., Burr W., Polk W., Smid M., Barker E., "NIST Recommendations for Key
Management," U.S. Department of Commerce, National Institute of Standards and
Technology, Gaithersburg, NIST Special Publication 2012.

[42] Rock A., "Pseudorandom Number Generators for Cryptographic Applications,” Paris-
Lodron-Universit“at Salzburg, 9780691025469, 2005.

—

)|
122 |

Bibliography

[43] Jakobsson M., Bruce K. H., Juelsy A., Shniver E., "A Practical Secure Physical Random
Bit Generator," in CCS ‘98 Proceedings of the 5th ACM conference on Computer and

communications security, New Yourk, 1998, pp. 103-111.

[44] Rukhin A., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Soto J,, "A
StatisticalL Test Suite For Random and Pseudorandom Number Generator for
Cryptographic Applications,” National Institute of Standards and Technology- NIST,
Technical Teport 2001.

[45] Chambers W. G., "On Random Mapping and Random Permutation,” Fast Software
Encryption, vol. 1008, pp. 22-28, June 2005.

[46] Vaziram U.V., "Towards a Strong Communication Complexity Theory or Generating
Quasi-random Sequences from Two Communicating Slightly-random Sources,”" in
Proceedings on the 17th Annual ACM Symposium on theory of Computing, Toranto,
2012, pp. 366-378.

[47] Quinlan J.R., "Learming Efficient Classification Procedures and their Application to
Chess End Games," Machine Learning, pp. 463-482, 1983.

[48] Ultsch A., Korus D., Li H., Guimaraes G., "Knowledge Extraction from Artificial Neural
Networks and Applications,” Parallele Datenverarbeitung mit dem Transputer, pp. 148-
162, 1994.

(49] Eberhart R., Simpson P., "Computational Intelligence PC Tools," IEEE Transactions on
Neural Networks, pp. 8-17, August 2002,

[50] Frisch A., Allen J., "What Are Semantic Networks? A Little Light History," Toranto,
1982.

[51] Mantin 1., Shamir A., Fluhrer S., "Weaknesses in the Key Scheduling Algorithm of
RCA4," Selected Areas in Cryptography, vol. 2259, pp. 1-24, December 2001.

[52] Wagner D., Dawson E., Kelsey J., Millan W., Schneier B., Simpson L., "Cryptanalysis of

Bibliography

ORYX," Selected Areas in Cryptography, vol. 1556, pp. 296-305, March 2002.

[53] Fluhrer S.R., McGrew D.A., "Statistical Analysis of the Alleged RC4 Keystream
Generator," Fast Software Encryption, pp. 19-30, 2001.

[54] Rogaway P., Coppersmith D., "A Software-Optimized Encryption Algorithm," Journal
of Cryptology, pp. 273-287 , September 1998.

[55] Boesgaard M., Pedersen T., Christiansen J., Scavenius O., Vesterager M., "Rabbit: A
New High-Performance Stream Cipher," Fast Software Encryption, vol. 2887, pp. 307-
329, 2003.

[56] Philip H., Gregory G. R., "Turing: A Fast Stream Cipher," Fast Software Encryption,
vol. 2887, pp. 290-306, February 2003.

[57] Lu Y., Vaudenay S., "Cryptanalysis of Bluetooth Keystream Generator Two-Level E0,"
Advances in Cryptology, vol. 3329, pp. 483-499, 2004.

[58] Filiol E., Fontaine C., "A New Ultrafast Stream Cipher Design: COS Ciphers,"
Cryptography and Coding, vol. 2260, pp. 85-98, December 2001.

[59] Halevi S., Jutla C., Coppersmith D., "Scream: A Software-Efficient Stream Cipher," Fast
Software Encryption, vol. 2365, pp. 195-209, July 2002.

[60] Wu H., "A New Stream Cipher HC-256," Fast Software Encryption, vol. 3017, pp. 226-
244, February 2004.

[61] Hongjun W., "The Stream Cipher HC-256," New Stream Cipher Designs, vol. 4986, pp.
39-47, 2004.

[62] Wu H., "A New Stream Cipher HC-128," New Stream Cipher Designs, pp. 39 - 47, April
2008.

[63] Luo L., Qin Z., Zhang W., Zhu S., Wei Z., "Golden Fish: An Intelligent Stream Cipher

Fuse Memory Modules," International Association for Cryptologic Research, Beijing,

—

124 }

Bibliography

Research Paper July 10, 2009. [Online]. https://eprint.iacr.org/2009/611.pdf

[64] Luo L., Qu Z., Hai Dai Q. Ye Y., "A Mini Fish Tailed Lion the Intelligent Fishbone
Based on Golden Fish," in fnternational Conference on Systems and Informatics (ICSAI),
Yantai, 2012, pp. 2556 - 2558.

[65] Masood M., Khiyal M.S.H., Arshad G., Khan A., "Analysis and Design of Non-Linear
SNOW 2.0 for improved security,” International Journal of Computer Technology and
Engineering, vol. 3, no. 5, October 2011.

[66] Hawkes P., Rose G. G., "Guess and Determine Attack on SNOW," Selected Areas in
Cryptography, pp. 37-46, February 2003.

[67]) Zhang B., Meier W., Xu C., "Fast Correlation Attacks over Extension Fields, Large-Unit
Linear Approximation and Cryptanalysis of SNOW 2.0," Advances in Cryptology, vol.
9215, pp. 643-662, August 2015.

[68] Watanabe D.,Canniére C. D., Biryukov A., "A distinguishing attack on SNOW 2.0 with
linear masking method," Selected Areas in Cryptography, vol. 3006, pp. 222-233, 2004.

[69] Khan S., Khiyal M.S.H., Naz T., Khan A., "Dynamic Feedback Based Stream Cipher
Modified SNOW 2.0," in IEEE International Conference on Emerging Technologies,
Islamabad, 2010, pp. 244-250.

[70] Khan A., Khiyal M. S. H., Naz T. Khan S., "Dynamic feedback based modified SNOW
2.0," in 6th International Conference on Emerging Technologies (ICET), 2010,
Islamabad, 2010, pp. 250 - 255.

[71] Joan R., Daemen V., The Design of Rijndael, 1st ed. Berlin, Germany: Springer-Verlag
Berlin Heidelberg, 2002.

[72] Bogdanovi¢ M., Stosi¢ L., "RC4 stream cipher and possible attacks on WEP,"
International Journal of Advanced Computer Science and Applications, pp. 110-114,
August 2012.

(
l 125

e

Bibliography

[73] Paul S., Preneel B., "A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher," Fast Software Encryption, vol. 3017,
pp. 245-259, 2004,

(74] Vladimor V. C., Smeets B., Johansson T., "A Simple Algorithm for Fast Correlation
Attacks on Stream Ciphers," Fast Software Encryption, vol. 1978, pp. 181-195, January
2002.

[75] Pudovkina M., "Statistical weaknesses in the alleged RC4 keystream generator," in
International conference on Cryptographic research, Moscow, 2002, pp. 1-19. [Online].
https://eprint.iacr.org/2002/171 .pdf

[76] Gilbert H., Handschuh H., "2 Cryptanalysis of the SEAL Encryption Algorithm," Fast
Software Encryption, vol. 1267, pp. 1-12, May 2006.

[77] Pedersen T., Vesterager M., Zenner E., Boesgaard M., "The Rabbit Stream Cipher -
Design and Security Analysis," in In Workshop Record of the State of the Arts of Stream
Ciphers, 2004, pp. 150-159.

[78] Joux A., Muller F., "A Chosen IV Attack Against Turing,” Selected Areas in
Cryptography, vol. 3006, pp. 194-207, August 2004,

[79] Biryukov A., Wagner D. Shamir A., "Real Time Cryptanalysis of A5/1 on a PC,” Fast
Software Encryption, vol. 1978, pp. 1-18, january 2002.

[80] Babbage S.H. (2001, September) Cryptology ePrint Archive. [Online].
http://eprint.iacr.org/2001/078

[81] Babbage S., "The COS Stream Ciphers are Extremely Weak," , Newbury, UK, 2001, pp.
70-78.

[82] Maximov A., Johansson T., "A linear distinguishing attack on Scream," in Proceedings.

IEEE International Symposium onlnformation Theory, 2003, 2003.

Bibliography

[83] Zenner E., "A Cache Timing Analysis of HC-256," Selected Areas in Cryptography, vol.
5318, pp. 199-213, August 2009.

[84] Spillman R., Nelson B., Kepner M., Janssen M., "Use of A Genetic Algorithm in the
Cryptanalysis of Simple Substitution Ciphers," Cryptologia, vol. 17, no. 1, pp. 3144,
Januay 1993.

[85} Clark J. A., "Optimization Heuristics for Cryptology," Queensland, univeristy of
Technology, http://sky.fit.qut.edu.cn/~clarka/papers/thesis-ac.pdf, PhD thesis 1998.

[86] Van V. J. H., Grundlingh W. (2003) Using Genetic Algorithms to Break a Simple
Cryptographic Cipher. [Online]. http://dip.sun.ac.za/~vuuren/abstracts/abstr_genetic.htm

[87] Servos W., "Using a genetic algorithm to break Albertic Cipher,” Journal of Computing
Sciences in Colleges, vol. 19, pp. 294-295, May 2004.

[88] Peleg S., Rosenfeld A., "Breaking Substitution Cipher using Relaxation Algorithm,"
Advances in Artificial Intelligence, pp. 598-605, 1979.

[89] Albassal M.B.,, Wahdan M.A., "Genetic Algorithm Cryptanalysis of the Basic
Substitution Permutation Network," in Proceedings of the 46th IEEE International

Midwest Symposium on Circuits and Systems, 2003, pp. 471 - 475,

[90] Hamza A., Al-Salami M., "Timing Attack Prospect for RSA cryptanalysts Using Genetic
Algorithm Technique," The International Arab Journal of Information Technology, vol.
1, pp. 81-85, January 2004.

[91] Nalini N., Rao G.R., "Cryptanalysis of Simplified Data Encryption Standard Via
Optimaisation Heuristics," in Third International Conference on Intelligent Sensing and

Information Processing, vol. 6, December 2005, pp. 74 - 79.

[92] Clark J. A., "Invited Paper-Nature-Inspired Cryptography: Past, Present and Future,” in
Conference on Evolutionary Computation, Special Session on Evolutionary Computation

in Computer Security and Cryptography, Canberra, 2003, pp. 1647-1654.

127

——
S

Bibliography

[93] Khaled M. G., Jalab H.A., "Data Security Based on Neural Networks," Task Qarterly,
vol. 9, no. 4, pp. 409414, 2005.

[94] Shihab K., "A Back Propagation Neural Network for Computer Network Security,”
Journal of Computer Science, vol. 2, no. 9, pp. 710-715, 2006.

[95] Necla O., Seref S., "Neural Solutions for Information Security," Journal of Polytechnic,
vol. 10, no. 1, pp. 21-25, 2007.

[96] Dalkiran I, Danis K., "Artificial Neural Network Based Chaotic Generator for Chaotic
Generator for Cryptology," Turk J Elec Eng& Comp Science, vol. 18, no. 2, pp. 255-
240, February 2010.

[97] Karam M. Z. O., AL Jammas Mohammed H., "Implementation of Neural -
Cryptographic System using FPGA," Journal of Engineering Science and Technology,
vol. 6, no. 4, pp. 411 — 428, 2011.

[98] Volna E., Kocian V., Janosek M., Kotyrba M., "Cryptography Based on Neural
Network," in JEEE Annual India Con, May 2005, pp. 1-7.

[99] Zhang J., Li T., Li J., "A Cryptanalysis Method based on Niche Genetic Algorithm,"”
International Journal of Applied Mathematics & Information Sciences, vol. 8, no. 1, pp.

279-285, December 2013,

[100] Shaker W., Awad M., "Designing Stream Cipher Systems Using Genetic Programming,”
in Sth International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected
Papers, vol. 6683, Rome, Italy, 2011, pp. 308-320.

[101] John A. C., Maitra S., Stinica P., Jacob J.L., "Almost Boolean Functions: The Design of
Boolean Functions by Spectral Inversion,” in The 2003 Congress on Evolutionary
Computation, 2003. CEC '03., vol. 3, December 2003, pp. 2173 - 2180.

[102] Millan W., Dawson E., Clark A., "An Effective Genetic Algorithm for Finding Highly

Nonlinear Boolean Functions," in ICICS '97 Proceedings of the First International

Bibliography

Conference on Information and Communication Security, Beijing, China, 1997, pp. 149-

158.

[103] Ratten R., "The applications of Genetic Algorithms in cryptology," Proceedings of the
Third International Conference on Soft Computing for Problem Solving, vol. 258, no. 1,
pp. 821-831, 2014.

[104] Lawrence J., Introduction to Neural Networks, 2nd ed. California: California Scientific

Software Press., 1995,
[105] Beavers A. F., Alan Turing: Mathematical Mechanist.: Waltham- Elsevier, 2013, vol. 1.

[106] Laskari E. C., Stamatiou Y. C., Vrahatis M. N., Meletiou G. C., "Cryptography and
Cryptanalysis Through Computational Intelligence,” Computational Intelligence in

Information Assurance and Security, vol. 57, pp. 1-49, 2007.

[107] (2013, July} Wikipedia(Artificial Neural Network). [Online].

https://en.wikibooks.org/wiki/Artificial_Neural Networks/Print Version

[108] Ruttor A., "Neural Synchronization and Cryptography," Department of Computer
Engineering, Cornell University, Ph.D Thesis 2007.

[109] Lan L., Wang J., Guang Z., "Intelligent Application Conversion of Block Ciphers for
Different Network Layers," International Journal of Innovative Computing Information

and control, vol. 3, no. 1, March 2009.

[110] Ruttor A., Naeh R., Kanter I, Kinzel W., "Genetic attack on neural cryptography,”
Physical Review of statistical, nonlinear, and soft matter physics, vol. 2, pp. 1-8,

December 2005.

[111] Stankovski P., "Cryptanalysis of Selected Stream Ciphers,” Department of Electrical and
Information Technology, Faculty of Engineering, LTH, Lund University, Lund, Sweden,
Ph. D thesis 2013.

Bibliography

[112] Babbage S. H., "Improved "Exhaustive Search" Attacks onm Stream Ciphers,” in
European Convention on Security and Detection, May 1995, pp. 161-166.

[113] Armknecht F., "Improving Fast Algebraic Attacks," Fast Software Encryption, vol. 3017,
pp. 65-82, 2004.

[114] Canteaut A., Anne C., "Correlation Attack for Stream Ciphers," Encyclopedia of
Cryptography and Security, pp. 261-262, 2011.

[115] Adi S., Jonathan J. H., "Fault Analysis of Stream Ciphers," Cryptographic Hardware and
Embedded Systems, vol. 3156, pp. 240-253, 2004.

[116] Biryukov A., Wagner D., "Slide Attacks," Fast Software Encryption, pp. 245-259, May
2001.

[117] Biryukov A., Wagner D., "Advanced Slide Attacks," Advances in Cryptology, pp. 589—
606, May 2000.

[118] Biham E., Keller N., Dunkelman O., "Improved Slide Attacks," Fast Software
Encryption, vol. 4593, pp. 153-166, 2007.

[119] Priemuth-Schmid D., Biryukov A., "Slide Pairs in Salsa20 and Trivium,” Progress in
Cryptology, pp. 1-14, 2008.

[120] Dinur 1., Shamir A., "Cube attacks on Tweakable Black Box Polynomials," Advances in
Cryptology, pp- 278-299, April 2009.

[121] Dinur I, Adi R., "Applying Cube Attacks to Stream Ciphers in Realistic Scenarios,"
Cryptography and Communication, vol. 4, no. (3-4), pp. 217-232, August 2012.

[122] Biryukov A., Adi S., Shamir A., "Cryptanalytic Time/Memory/Data Tradeoffs for
Stream Ciphers," Advances in Cryptology, vol. 1976, pp. 1-13, October 2000.

[123] Verdult R., Balasch J., Flavio D. G., "Gone in 360 Seconds: Hijacking with Hitag2," in
In Proceedings of the 21st USENLX Conference on Security Symposium, Security’l2,

Bibliography

Berkeley, CA, USA, 2012, pp. 37-47.

{124] Michael L., Pseudorandomness and Cryptographic Applications, 13th ed.. Princeton
University Press, 1996.

[125] Thaka R., Fenstermacher P., Davis D., "Cryptographic Randomness from Air Turbulence
in Disk Drives," Advances in cryptology, vol. 839, 1994, pp. 114-120, 2011.

[126] Cybenko G., "Approximation by superpositions of a sigmoidal function,"” Mathematics of
Control, Signals and Systems, vol. 5, no. 4, p. 435, December 1989.

[127] Siegelmann H.T., Sontag E.D., "Analog computation via neural networks,” in
Proceedings of the 2nd Israel Symposium on theTheory and Computing Systems,
Natanya, Israel, June 1993, pp. 98 - 107.

[128] Belavkin R.V., "Do Neural Models Scale up to a Human Brain?," in International Joint
Conference on Neural Networks, 2007. IJCNN 2007., Orlando, FL, 2007, pp. 2312 -
2317.

[129] Warren S., Pitts W., Culloch M., "A Logical Calculus of the Ideas Immanent in Nervous
Activity," The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115-133, December
1943.

[130] Stanton P. K., Terrence J. S., "Covariance Storage in the Hippocampus,” An Introduction
to Neural and Electronic Networks, pp. 365--377, 1989.

[131] Huyck C., Belavkin R., "Counting with Neurons: Rule Application with Nets of
Fatiguing Leaky Integrate and Fire Neurons," in Proceedings of the seventh international

conference on cognitive modelling, 2006, pp. 142-147.

[132] Gupta D.K., "Modeling the Relationship Between Air Quality and Intelligent
Transportation System (ITS) with Artificial Neural Networks," Department of civil and

Environmental Engineering, University of Louisville, Ph. D thesis 2008.

Bibliography

[133] Hornik K., White H., Stinchcombe M., "Multilayer Feedforward Networks are Universal
Approximators," Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.

[134]Ji C., Psaltis D., Snapp R., "Generalizing Smoothness Constraints from Discrete

Samples," Neural Computation, vol. 2, no. 2, pp. 188 - 197, May 2014.

[135] Poggio T., Girosi F., "Networks for Approximation and Learning," in Proceedings of the
IEEE, vol. 78, 2002, pp. 1481 - 1497.

[136] Cun Y. Le., "A Theoretical Framework for Back Propagation,” in Peoceedings of 1988
Connectionist Model Summer School Carnegie Melon University, 1989, pp. 21-28.

[137] Irfanullah S., Khiyal M.S.H. Khan M. A,, "Intelligent Algorithm Design of the LFSR
Based Stream Cipher,” World Applied Sciences Journal, vol. 30, no. 4, pp. 498-505,
2014,

[138] C Cs&ji B. C., "Approximation with Artificial Neural Networks," Faculty of Mathematics
and Computer Science, E6tvés Lorand University Hungary, Hungry, M. Sc. Thesis 2001.

[139] Ultsch A., Korus D., Li H., Guimaraes G., "Knowledge Extraction from Artificial Neural
Networks and Applications," Parallele Datenverarbeitung mit dem Transputer, pp. 148-
162, September 1994.

[140] Palm G., Riickert U., Ultsch A., "Wissensverarbeitung in neuronaler Architektur,”
Verteilte Kiinstliche Intelligenz und kooperatives Arbeiten, pp. 508-318, 1991.

[141] Lano J., "Cryptanalysis and Design of Synchronous Stream Ciphers,” Department
Elektrotechniek- East, Katholike University Leuven, Kasteelpark Arenberg, Ph. D thesis
June 2006.

[142] Rukhin A., Nechvatal J., Smid M., Barker E., Leigh S., Levenson M., Soto J,, "A
Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications,” National Institute of Standards and Technology- NIST,
Technical Report 2010.

Bibliography

[143] Hamano K., Yamamoto H., "A Randomness Test Based on T-Codes," in International

Symposium on Information Theory and Its Applications, Auckland, 2008, pp. 361-373.

Bibliography (Additions)

_ ANNEXURE- A

Annexure-A

Experiments and Analysis

Phase 1

Experiment-2

No. of Attacking Keys = 2000

Determining Sub key Frequency

No. of Patterns (n) Frequency Percentage
(1 Pattern= 8 bits)
Pattern size n=1 1195 59.8
Pattern size n=2 645 322
Pattern size n=3 140 7.0
Pattern size n = 4 19 1.0
Pattern sizen =3 1 0
Total 2000 100.0

[N T N Y =
o o O o o O
|

1

Percentage Frequency
<

o oo

Graph Representing Pattern Frequency of Different Sizes

| Pattern Frequency of Different Sizes

M Percentage Frequency
Histogram

~f- Percentage Frequency Line
Graph

—_

]
136 |

Annexure-A

Experiments and Analysis

Determining Pattern Frequency

Pattern No. Frequency Percentage
Pl 113 11.5
P2 120 12.2
P3 123 12.5
P4 133 13.5
P5 131 13.3
P6 103 10.4
P7 130 13.2
P8 133 13.5
Total 986 100

o 16 i o
g 14— 1221251
= -11.5 ‘\
o 12 - - -
[¥} i
5 _ 10 -
- E\ 8

55
=3
2L 4 -
I
s o :
E PL P2 P3

pa

P5 Pe P7
Patterns Frequency Graph of 64-bit key Generated by unrained Intelligent SNOW
2.0

1_5-5 13.3 :13__275.5_

P8

Graph Representing Individual Pattern Frequency

= Percentage Frequency
Histogram

~f—-Percentage Frequency Line
Graph

| 137

S

Annexure-A Experiments and Analysis

Experiment-3
No. of Attacking Keys = 2000

Determining Sub key Frequency

No. of Patterns (n) Frequency Percentage
Pattern size n=1 3031 60.6
Pattern size n=2 1567 313
Pattern size n=3 348 7.0

Pattern sizen=4 53 1.1
Pattern sizen=15 1 0
Total 5000 100.0

Graph Representing Pattern Frequency of Different Sizes

o~
[-]
I

& W
o o ©
for

H Percentage Frequency
Histogram

Percentage Frequency

e
<
|
|

—m=—Percentage Frequency Line
Graph+'Annexute |-B'!

o
+

o
I

AYA
(0 ok
pa® pat® pat® ?

Pattern Frequency of Different Sizes

——

1
138 |-

Annexure-A Experiments and Analysis

Determining Pattern Frequency

Pattern No. Frequency Percentage
Pl 301 12.4
P2 336 13.8
P3 296 12.2
P4 298 12.3
P5 326 13.4
P6 300 12.4
P7 307 12.7
P8 262 10.8
Total 2426 100

Graph Representing Individual Pattern Frequency

16 — - e e e e
st 138 13.4
= 14 : - ‘
=
:E 12
& 5, 10 -

- EE 3

.- g 6 mmm Percentage Frequency

P £2 4 Histogram

: § 2 —— Percentage Frequency Line
= Graph i
2 0 -
%
= PL P2 P3 P4 PS5 P& P7 P8

Patterns Frequency Graph of 64-bit key Generated by unrained intelligent SNOW
2.0

Annexure-A Experiments and Analysis

Experiment-3
No. of Attacking Keys = 10,000

Determining Sub key Frequency

No. of Patterns (n) Frequency Percentage
Pattern sizen =1 5942 59.4
Pattern sizen =12 3208 32.1
Pattern sizen =3 744 7.4
Pattern sizen=4 100 1.0
Pattern sizen =5 6 A

Total 10000 100.0

Graph Representing Pattern Frequency of Different Sizes

~)
o]

tnooan
o O

£
o

w
o

mmm Percentage Frequency
Histogram

]
[o=]

—@— Percentage Frequency Line
Graph+'Annexute 1-B'l

Percentage Frequency
e
o

o

=% =2 =3 =h =9
' asie® aste® ate
?age‘ e

ate AT
va‘te‘“ ?aue(“ oo

Pattern Frequency of Different Sizes

-

]
140 }

Annexure-A Experiments and Analysis

Determining Pattern Frequency

Pattern No. Frequency Percentage
Pi 639 12.7
P2 640 12.7
P3 636 12.7
P4 654 13.0
P5 612 12.2
P6 615 123
P7 620 12.4
P8 604 12.0
Total 5020 100.0

Graph Representing Individual Pattern Frequency

16 -+ - e m e
14 127127 12713 5 5-

12 - —
10 - |

P

E g

; 6 ! = Percentage Frequency

£ . ‘_ Histogram |
) ' ~@— Percentage Frequency Line |
0 : Graph ‘

Individual PPatternPercentage

P1 P2 P3 Pa P5 P6 P7 P8

Patterns Frequency Graph of 64-bit key Generated by untained Intelligent SNOW
2.0

——

]
141 |

Annexure-A

Experiments and Analysis

Phase I1

Experiment-1

No. of Attacking Keys = 40000

Determining Sub key Frequency

No. of Patterns (n) Frequency Percentage
Pattern sizen =1 23762 59.4
Pattern sizen =2 12924 32.3
Pattern size n =3 2902 13
Pattern size n = 4 376 9
Pattern sizen=15 31 1
Pattern sizen =6 5 0

Total 40000 100.0

Graph Representing Pattern Frequency of Different Sizes

Percentage Frequency

W Percentage Frequency
Histogram

Pattern Frequency of Different Sizes

—8—Percentage Frequency Line
Graph+'Annexute I1-A'l

Determining Pattern Frequency

Pattern No. Frequency Percentage
P1 2512 12.6
P2 2515 12.6
P3 2473 12.4
P4 2427 12.1
P5 2490 12.4
P6 2584 12.9
P7 2483 124
P8 2521 12.6
Total 20005 100.0

Graph Representing Individual Pattern Frequency

¢ U6 e =
= 14
g
S iz -
LW
- B
-
., =g ©
;i == 4
R
= pL P2

P3

P4

P5

i

P6 p7
Patterns Freuenty Graph of 54-bit key Generated by unrained Intelligent SNOW

2.0

126 126 17A 1 1247 M1 126

P8

e Percentage Frequency
Histagram

= Percentage Frequency Line
Grapn

143

Annexure-A

Experiments and Analysis

Experiment-2
No. of Attacking Keys = 60,000

Determining Sub key Frequency

No. of Patterns (n) Frequency Percentage
Pattern sizen =1 35705 59.5
Pattern sizen=2 19232 32.1
Pattern size n =3 4423 7.4
Pattern sizen=4 601 1.0
Pattern sizen =15 34 1
Pattern sizen=6 5 .0

Total 60000 100.0

| Graph Representing Pattern Frequency of Different Sizes

Percentage Frequency

=3 s =3 2B =9

i

: z

b et et et et et e
|

i Pattern Frequency of Different Sizes
i

Histogram

- I Percentage Frequency

=i Percentage Frequency Line
Graph+'Annexure {I-8']

Annexure-A

Experiments and Analysis

Determining Pattern Frequency

Pattern No. Frequency Percentage
Pl 3686 12.3
P2 3675 12.2
P3 3756 12.5
P4 3772 12.6
P5 3767 12.5
P6 3851 12.8
P7 3728 124
P8 3807 12.7
Total 30042 100.0

individual Pattermn Percentage Frequency

Graph Representing Individual Pattern Frequency

12.4

P1 P2

P& P7

P8

N Percentage Frequency
Histogram

—f—Percentage Frequency Line
Graph

Patterns Frequency Graph of 64-bit key Generated by unrained Intelligent SNOW

2.0

Annexure-A

Experiments and Analysis

Experiment-2

No. of Attacking Keys = 80,000

Determining Sub key Frequency

No. of Patterns (n) Frequency Percentage
Pattern size n =1 47687 59.6
Pattern sizen=2 25478 31.8
Pattern sizen =3 5943 7.4
Pattern sizen=4 815 1.0
Pattern sizen =5 73 1
Pattern sizen=6 4 0

Total 80000 100.0

Graph Representing Pattern Frequency of Different Sizes

B _

[~ H

[H

3

=

o

2 -

[T

@

g’ EEm Percentage Frequency

§ Histogram

E -8 Percentage Frequency Line

G.1 0 ! Graph+'Annexure {I-C'|
= B
=3 iy 23 =& =9 =0
e © e ® e 0= nF7 e
al® o ot ~ a1 aie e are
0
B i
Pattern Frequency of Different Sizes

(
| 146

Seepud’

Annexure-A

Experiments and Analysis

Determining Pattern Frequency

No. of Patterns (n) Frequency Percentage
Pl 5111 12.7
P2 4987 124
P3 4969 12.4
P4 4998 12.5
P5 4958 12.4
P6 4988 12.4
P7 5153 12.8
P8 4957 12.4
Total 40121 100.0

P1L P2

Patterns Frequency Graph of 64-bit key Generated by unrained Intelligent SNOW
2.0

Individual Pattern Percentage Frequency

P5 P6

Graph Representing Individual Pattern Frequency

m Percentage Frequency
Histogram

—i— Percentage Frequency Line
Graph

i
i
i
i

2
|
i
|
|

147

—

ANNEXURE-B

T

oy
fury

Annexure-B Research Publications

PAPER-1

Annexure-B

Research Publications

World Applied Sciences Journal 30 ¢4); 498-505, 2004
ISSN 18184952

< IDOS! Publicanons, 2014

DOI: 10.5829/idosi.wasj 2014.30.04 9

InteRigent Algorithm Design of the LFSR Based Stream Cipher

'Sved Irfan Uilah. *Mua—am A. Khan and *Malik Sikandar Hayat Khival

'Departtment of Computer Science, Faculty of Basic and Apphed Sciences,
Intemational Islamic University Islamabad, Pakistan
*EME College. NUST, H-11, Islamabad, Pakistan
IPreston University, H-8/1, Islamabad, Pakisian

Submitted: Nov 18, 2013;

Avccepted: Feb 3, 2014

Publshed: Feb 14 2014

Abstract: Artificial Intielligence is one of the most prorminent and dominant field of computer science, It is used
in almost all ares of computer fields. Very sophisticated imelligent algorithms have beer developed and
implemented in different applications and compuler programming. We present our work to use it in byte
onented stream cipher algorithms, which are Gist and comparatively less secure than those of the block ciphers,
along with the intelligent algorithms so as achicve more secure algorithms along with the encrypiion processing
speed, encryption algorithm, synchronization methods to improve the security of these comparatively less
secure algorithms. in our work we propose a model based on Anificial Neural Networks to generate a pseudo
random key intelligently for SNOW 2.0, so as to avoid the bit patterns traceable by the cryptanalysts using less

computational power.

Key worts: Stremm Cipher + Linear FeedBack Shift Register + SNOW 2.0 « Modified SNOW 2.0 » Guess-and-

_Determine Atiack + Anificial Neural Nerwork

INTRODUCTION

Based on the peural structure of the bram. Artificial
Neural Networks ANN are developed which are termed to
be the crude elecrronic models. The human brain leams
from the daily experience and ance it 1s placed i the mind,
1s recalled whenever necessary or some situation related
to that happens. There are a lot of problems in cur daily
tife. which are beyond the scope of today’s compmers,
because the computers makes devisions based ou logics,
already feed to it This problem can be solved by using
the artificial imelhgence along with the logis those are
feed to the current computers. This approach make i
possibie 1o solve complex problems with less overhead
and provide a graceful degradation curing system
overload where very buge computations are mvolved in
solving these problems.

The computers are best for keeping and maintaining
records those are based upon some logics for example
keeping and maintaining ledger and sotving mathematical
problems, but it faces troable 10 maintaim the paiterns like

humans and then i recognize those patierns and take
some decision apart from the logics those are already feed
o0 the system and take a proper decision al some acourate
time.

Artificia] Neural Network: It is a grear mystery that how
a hurnan brain works, but some the aspects are explored.
there are some cell i the human brain and spread in the
entire body which jointly work, process and fansmit
information from one part of the body to another pant of
the body. These are the neurons abowt 100 billion in
quamity, that makes the ervous systesn and makes a man
abie w think and makes the decisions [1].

Artificial Neural Network is an inspiration from the
human nervous system that compuies and behaves like
human brain. Thousands of the newrons are spread over
a parallel system, such that each individual neuron
performs a very simple computation, such as xi = fiyi).
where yi 15 2 real valued mput and the th neuron ouiput
is xi and f is non linear function also called the node
function. lun ANN each pewron performs a specific

Cotvespoading Anthor: Syed Irfan Ullah, Depariment of Computer Science. Favulty of Basic & Applied Sciences.
[nrernational Talamic University lslamabad, Pakistan.

E-mail: m.sikandarhayatii vahoo.com.

498

Annexure-B

Research Publications

World Appd. Sci. J. 30 (4); 498-505. 2014

4
L

»
Fig. I Diagramnuatic representation of SNOW 2.0

operation and accepts an input or a number of inputs
which may be different from another newron. The cutput
of vach newron is 2 single value normally either ¢ or §.

Design and Stroctare of Stream cipher SNOW 2.8:
Originally SNOW 1.0, which was modified 10 the new
version SNOW 2.0. In the new version of SNOW:

The word size in both versions of SNOW 5 same i.e.
(12 bits) and

Lmear Feodback Shift Register (LFSR) length is sgain
16, bt the feedback potynomial is different.

The Finite State Machine {FSM) has two input words
mnstead ol one, mken from the LFSR Le. Lmear
Feedback Sifi Register and the pseudorandom key i
gemermed by XOR between FSM owput and the last
entry of the (LFSR), as in first version of SNOW 1.0,

The aperations of stream cipher are as follows:

Key inmalization is performed. which provides
starting states 10 Linear Fecdback Sift Register
(LFSR) as well as 1o also give initial values to the
mernat Finite State Machine (FSM) registiers R) and
R2.

The operation of both the ciphers is slightly different,
in SNOW | 0. the model read the first symbol before
ciphering was clocked afier the initialization of the
key but in SKOW 2.0, the first symbol was read out
after the cipher is clocked once (Ekdahl and
Johansson, 2002).

In SNOW 2.0, two different elements involved m the
focdback loop. ie. aand @

SNOW 2.0 ukes two parameters as input value, the
publicly known 128-bit inivalization vake IV and a
sectet key of either 28 or 256 biis.

ThelV. e IV =(IV, 1V, IV, IV,) value is considered
as a four word mput. where [V, is the most significant
onc.

The mitial vecior IV, possibly ranges from 0
1, means that

499

For a given key K. SNOW 2.0 mplemenis a
pseudorandom length increasing function from the
ser of [V wvalwes 10 the set of possible output
SEUEnCEs.

The new version is schematically a small modification
of the origimal construction. Although SNOW 2.0 was
appear 1o be more secure, bt some weaknesses have
been found in # {3], which resubis m proposal of Modified
Version of SNOW 2.0 [4].

SNOW 2.0 is more secure, although 11 is slightly
changed from SNOW 1.0, but sull it has the crypaanalytic
weakness addressed in [2.4, 7).

Limear Cryptanalysis of SNOW Family: Guess-and-
Determine antack and correlation atacks are proven 10 be
cffective agninst word-onented stream oiphers. {n these
attacks we initially Guess the conkents of somce of the cells
and obiain the states of all the cells of the ciphering
system and comparing the running key saquence with the
resulting key. if the initial guess is proper onc, then we
may get that the sequences are same and otherwise we try
another goess. The time complexity of the G and
exhaustive search is in the same order and depend on the
guessed element. in spite of a long nme devobon 1o Guess
and Determine {GD) Atacks and correlation attacks on
SNOW family stream ciphers mnprovements on word-
onented stream ciphers. they have often been
mmplemented heurtstically as on every new day some work
i5 done oa them 1o prove and mustfy the weaknesses in
this family of stream ciphers [4].

This paper discusses the biological and mathemanical
design of the Artificial Newral Network in section 2.
section 3 discusses the design and crypuanalyss of the
ANN based sweam cipher. section 4 discusses the
Knowledge extraction from KB and back propagation of
the Leaming Algorithms, section 5 concludes the work
done and its imponance.

Biological and Compatstional Medel of Artificial Nearal
Network: In this section we discuss the biological and
computational modei of the Artificial Neural Netwock:

Biological Model of ANN: Biological neurons are
the foundation for the amificial newral networks. Le.
ANN fimctional model is made due 10 the inspimtion
from the biological ncurons where they resemble in
many ways. The mervous sysiem contains neurons,
the discrete cells and whose several processes
asise from itz cell body and generating and transmitnng
signals.

Annexure-B

Research Publications

World Appl. Scr. 1. 30 14): 498505, 201+

Derrdince

fig. 2: General Structure of Biological Neuron

The bizlogical neuron has the following four regions
i.e. the cell body also termed as soma which has two
offshoots from it the dendrites. the azon. which end in
Presynapuc wermitnals.

Al the four regions of the neurons has a specific task

o perform and work as a unit{5]. where it accept multiple

inputs and outpul a single result, the iimctionality of the

biological neurons is discussed briefly m the following
points:

+ The cell body or soma is the main part of the newron
celt, which contains protein synthesis and nucleus,
which also works as storage and deciston malking
bady locally. such as reflex actions which are
inmiated as a result of these local decision makers
inside the neuron.

¢ The dendmes which are the offshoots of the soma
have branches m a treehtke strucnire, which are used
to receive signals from other neurons or the organs
which senses the information from the outside.

« The axon that grows outside the cell body also
termed as the biflock and conduct electric signals that
grows from the cell body and ends at the presynaptic
terminals. Only one axon grows from the cell which
transfer signals to other neurons or brain. The action
potertial that cammies the elecinc signals is identicat 10
cach other so the brains can casily judge, from the
path it took that which type of signal has been
received. The bram analyzes the signal patterns and
issues orders where appropnaie.

+ The synapscs are again the threads a1 the end of the
axons which are connected 1o the dendrite of the
other scurons where the mformation is passed from
the synapse to the dendrites of the following neuron.

Computational Modet of ANN: This model [6] accepts
different inputs for traming the leamned algorithm those
are kept in the dawabase, which contain the rules for
extracting the knowledge from the knowledge base,
sensitivity of serious anacks, the smeam ciphers and
dozens of the weak keys, proved by the analysts.

~——

!
152}

e T I
O T

v, ._.t:,:,;r—
H ‘_\ L
~ \::/i'"' e gl

Fig. 3: Computational model of Artificial Neural Network.

-
7 Arasiber
e hnz o

o= I, WX

The activaton funchon that gets output from the
summing junction where the weight w,,. is mulinplied with
the X, and are added together and are given as outpwt to
oext neuron stored in the vanable y,

Knowledge Gain by Artificizl Newral Netwarks: In
Antificial Imelligence the Knowledge Acquisition 15 the
bottleneck and most of the time is wasted in this phase.
Because the system ham by induction, coaducuon
analogy and require a long duration is dhs process.
The expert systems those acquire knowledge in the form
of rules or frames eic and processed whenever require.
it i1s very difficult so formulate tis knowledge and 10
understand the cnure process. And thus in case of
missimg any of the steps will lead to erroneous knowledye
gain by the system. In case of a proper scquirement of the
knowledge that s stored in the knowledge base and
gradually increase with process of expenience and real
wortld applicaton and thus the decisions made by the
system are more appropriate.

In order to get the experts knowledge into an expent
systern we propose 1o process these databases in the
sttempt to leam the pariculanties of the domamn
Whatever is leamed by this process can be discussed
with the expert. who is now in the role of a supervisor and
consultant that corrects and completes knowledge instead
of a fofien) unwilling teacher who has to express humself
in some form he i1s not common amd not comforiabic
with. Experts are roquired 10 describe thewr knowledge
in form of symbolic rules, Le. m a usually unfamuliar form.
In particularly to descnbe knowledge acquired by
experience is very difficult Therefore KBS may not be
able 10 diagnosc cases that experts are able to. Some
machine learming algocithms. for example [D3 (B}, bave the
capability to learn from examples. We propose to use
Artificial Newral Networks (ANN) as a first step of a
machine leaming algorithm. ANN clim to have
advantages over these systems, being able o gencralize

Annexure-B

Research Publications

World Appl. Sci. L. 30 r4)- 498-305, 2014

and to handle inconsisienr and noisy data Inleresting
features of namiral neural networks are their ability to
build receptive fields in order Lo project the topology of
the input space.

A high~dimensional input space is projecied on a low
dimensionality, usually a planc, conserving the topology
of the input space. This is onc of the advantages of
unsupervised Newral Networks, like the Kohonen's
Feature Map [9}: the internal structure of the ANN reflects
sructural features in the data without having any a-prioni
knowledge aboul their structire. However a2 good
representation on this map has w be found in order to
find the inherent structures of data, now represented on
the map. The main idea therefore is to integrate both
approaches, s0 that the advantages of ANN 1o generalize
and 10 handle inconsistert and noisy data as well as to
find the inherent structures in the data are combined with
the ability of KBS w give explanations about the problem
solving, process using the rules of the knowledge base.

To realize the integration, an algorithm has o be
constructed, that converts symbolic knowledge for the
KBS out of the sub symbolic data of the ANN. In ths
work, we show how such a knowledge extraction was
developed and wsted on several data sets. Due to their
inherent parallelism ANN are well suited to be mapped on
massively paraflel computer architecures like transputer
clusters, which can be used as for hacking and breakmg
the security of the cryptographic algorithms. If enough
knowledpe is provided 1o these sysiems then, they can be
used to improve the security of the system. For example
in case of dictionary attacks where the system is enriched
with the key words used in English and also with the keys
those once used in past are avorded.

Our approach is differemt from this as it not only
looking 1o the data dictionary with the exact match but it
checks the probability to be broken down at run time 10
as to stop the generation and acceptance of the weak
kerys.

Imtedlipent Design of the Siream Cipher: To mplement
the biological neurons with stream ciphers it is necessary
1o define the working of the neural network with special
perspective of the said area. For this purpose we first
define the mathematical function of ANN and its diffevent

COMmponents.

imstance Represeatation by Atiribute Value Pairs: The
learning atgorithm the educate the trget function is
defincd over Whe instances, such that a vector of
predefined features is described. such as past atacks
those we successfully implanted, or the tendency towards

iy,

501

153

the success, because in our case we do not oaly look at
the intensity of fire, but the wound that may occur when
a masquerade, tries to find out the bit patterns in the key.
The input values can be any real values. which may be
independent of oe another or may highly correlate

The Quipat of the Tarpet Function May Be a Vector of
Several Real or Discrete-valued. Real Valued or Discrete
Vatued Attribstes: If the ontput is a real number then 1t
will range between O and i, which n this case
corresponds 1o the confidence in predicting the
corresponding steering direction. We can also tain a
single network 1o output both the steening command and
suggested acceleration, simply by comcatenating the
vectors that encode these two ourpin predictions.

Errors May Occur in the Training Examples: If there 1s
a noisy data with errors in wraining examples. then n
depends on the lcarping methods that how they respond
to these errors. In the other applications of the ANN_ 1t s
kept in mind thst the maining data must not comMam ermors,
but in the ciphering alganthms we permut 1o lfarger
instance, because here we are interested 10 mainiain 3
training hase and not in the quality of dam.

Loag Trainiag Times Are Acceptable in Case of an
Lsolated System: To fully rain an artificial neuna) network
training algorithms requires longer times ranging from a
few seconds to many hours and even days and wecks.
depending on the factors such 2s the settings of vanous
learning algorithm parameters. the number of training
cxamples considered. the nuwmber of weoights in the
network. Keeping in view that in public area whers the
outer world has the access 1o the system. longer time 15
never permissible and in such a case the point iii, may bz
applicable for the ime being.

The Learncd Target Is Required to Be Evaluated with
Fast Speed: Comparatively long time is required w ram
the ANN learning algorithms, but io evaluate the learned
network, in order w apply a subsequent instance 1s very
fast and the msantancous acton 5 uken while
transferring data upon the network. whenever and attack
is detected.

The Loarsecd Tarpet Function Need Not 1o Be taderstood
by the Humans: It is very difficult for the humans to
clearly understand the complex nature of the weights
leamned by the ANN and is very difficult to imerpret tor
them. The jearned rules can easity be communicaied to the
leaming rules. but it is very difficull to communicate it to

Annexure-B

Research Publications

World Appi. Sci. L. 30 (4)- 498-303, 2014

Stream ciphers
Algonthn

Series ef Amacks
wenssvity

. __...'..,,“, N\ Knowhrdge
RN B
s
\\ . At mon
rm
v g \ % \ -
| B SRIY —-- Ty
. -
-] hnhm.u
rd '\/
NETIRRE LY
v X "‘
Lhgae Y Pagete Elralesbd
ngaals Waahn
S-e:-th
St of Attacky
Sonsuvay

Fig. 4: Computational model of newral network for Stream

cipher

haman beings. So, the learned rules are made in such a
way that if the data store. contain some data for what the
rules have already been defined, then a human may gnore

To the summation function the information from the
knowicdge base. serics of amack sensitiviry and other
rules and frames are provided, where based on these rules
and frames the resultant vector is given 1o the activation
which ultimasely decides as the key generated is
appropriake at this stage or a repection 15 implanted and
the search for another sirong key is started.

Activation Function of the ANN, with the General Stream
Ciphers: In the neural networks the neurons output is
between 0 and! or -1 and 1. usually. The activaton
function is denoted by 4.} and is of threz types |6):

* If the summed input is smaller than the threshold
value, then threshold function taken on a valee of U
and if it is greater or equal to the threshold value then

itistakenas |.
1 ifv 20

-
P <o

* The piecewise-lincar function, taken on the values of
G or i and can be taken on the amplificaton factor in
a cenain region of lincar operanon.

b |

it | ==t | —

it, but the processing device cannot ignore it. which may

cause {0 increase the security, i.e. to avoid the similar bit
patterns in the key stream, produced by ANN pseudo-

random number generator.

Mathematics) Design of ANN for Stream Ciphers: The
mathematical model of this model can be seen m Figure
(4). This model acceps different inputs for traming the
learned algorithm those are kept in the database, which
contain the rules for extracting the knowiedge from the
knowledge base, sensitivity of serious aracks, the stream
ciphers and dozens of the weak keys. proved by the

analysts.

T -1-1 Wkj X3

The acuvation function that gess output from the
summing Junction where the weight w,, is maliiplied with
the x, and are added together and are given as output to

next neuron stored in the variable y,.

Success in Pattern Recegnition: The pattern recognition
in the field of cryptography is based upon the stansticat
tests, where the Guess and determune antack (3. 7] and
carrelation attacks find the correlanon between the actual
key stream and thdt of the best matching key and to applhy
exhaustive search for finding the exact key or the best
one. The correlation attacks and the Guess and determine
attacks those are based on the algebraic rules have been
proven w be mote cofficient agamnst stream ciphers.
The key gepermed by the pscudo random numbers
generators is used only once and for the second use we
need w0 generate another key.

The ¢ryptanatyst have find out the techmques that
when the new key generated by the LFSR based strcam
ciphers is traceable and the algebraic anacks are more
successful. Ome altemative s 10 use NLFSR based
keystream gemerators but it has 1ts own implications and
drawbacks and the other approach thal we propose is &0
use Anificial Newal Networks along with the LLFSR hased

g

Annexure-B

Research Publications

World 4ppl. Sci. 1., 30 t4)- 498-305. 2014

pseudo-random key saream generators. The ANK s
proved to be the best suited intclligent algonithm for
crypography. 10 avoid the waceability in the patters of
the keystream of any of the aigonthm specifically the
SNOW 2.0. The process jooks for the 0, 1,00, 11,000, 1.
0L, 001, 10, 119 as assumed in the Guess and Determine
attack on the stream ciphers. SNOW and make a
hypothesis that the pattem a1 the lowest is been
distinguished, in the imiversal approximation theorem,

Application of the Universal Approximation Theorem:
The universal approximation theorem states that ~“The
simplest form of mufulayer perceptron, a single hidden
layer, in a feed forward network. contaming a finite
number of neurons is 2 universal approximator among
continuous functions on the reduced form of Re. where
the activations functions are mouki™[8]

The mathemmatical form of the Universal approxanatoa
theorem is as under:

Consider a bounded. non-comsuant and monotonically
Lncreasing continuous function ¢(*),

Let /7, denote the m-dimensionsl unn hypercube
[0.1]" The space of continuous functions on /_ is denoted
by CUi,). Then, given any function f @ ({/.)and g > O,
there exist an integer N and real constants @, b, 2 R, w, €
R=. where i = 1. . A such that we may define:

A
F(I)=Zﬂ,—ﬂh!1 +h)
=l
as an approximnate realization of the function f where fis
independent of 4 that is,

IFxy= A< &

for all x € /_ In other words, functions of the form Frx)
are demse i C{J,)

we apply the tinear approximanon theorem on SNOW
2.0, for the approximation of the Addition Modulo °, 50
as to find the approximation w the probability of any of
the keystream with some specific bit pattems.

Kmowledge Extraction from KB and Back Propagstion of
the Learnimg Alporithms: The strategy adopted for the
implemeniation if the artifictal neural networks with the
SNOW 2.0. we design a special enviromment so that the
ANN and SNOW 2.0 both are kept in such a way that
when a pew key is established. it is compared with the
Knowledge base of the neural nerwork and if there exist
bit pattern which may be vuinerable to the anacker. then

iy

503

155

that key is rejected, for this purpose. The key companson
is performed by using the following algonthm, which lics
in the wors! casc of 2%,

Attack Based om the Knowledge Base and Pattern

Matching Algorithm:
KE_match{key, KB}

Set IV ~ input through keyboard
Key =snow (IV)
Psize = 1.2.3,..., o(Pattern size, where imtially 1 but,

2 bits and so forth)

+ veount - 0 {Initialize j to first inance
the dictwonary)

s j-0

* hoount - 0 {indtialize 10 first bit in the key smeam of

dictionary and Oniginal Key)

» Repeat siep ii to vin nmes

if (keyti) = = dic_key(ijh

put | to file

heount — heount+—+ {move pointer lo next bit)
else

put O to file

JH

Veoumt — veount~Hmove pomier ko next key n
dictionary)

Repeat step 5 to 7 ull end of file

End of function

If the imowledge base size 1s M and n is the key size,
then the time complexity of the algorithm to compare all
the paiems is illustrated in secuon 4.2

Time Complexity of the Paticrn Matching Algorithm:
If there 1s a finne set of n elements for s then [S] = » | the
subsets of this set S will be S = 2°. which s the
motivation notation 2%, is describad as follows:

Let wi. such that 1< 1< n and the subsets of S are
tad. w? @lum}, where i can take values of Uor 1.

If cwi = 1. then any element lies at ith position wil! be
the clement 1n the subset and otherwiae it will not be the
element of the subset. All the elements m the subset are
distinct and non overlapping and will lie under the (27,

If m 15 the size of the Knowledge base then the nme
complex ity for the above algorithm will be M * 27 and fres
in the (27, in the worst case, which is o high to reduce
the performance of the key generation of SNOW 2.0,

Annexure-B

Research Publications

Worid Appl. Sci. J, 30 (4): 498.3G5, 2014

So. to mupmmizz the tme and computational
complexity, we adopt an approach that mstead of
searching the each individual bit pattern, we make a group
of 8 bits and look 10 these 8 bit jointiy, which ulnmately
increase the performance of the algorithm, while still
existing in the O{2"), but in thus case n will be 0/8, so. if the
key size is 64 bits, then 64/8 = 8 and in case of £28 bu key
size 128/8 = 16, so. the performance will improved, while
using this algorithm but stll exisiing the O{27), worst
case time complexity. The bit patterns, while comparing
each individual bit, is stricity discouraged. because the
focus in this work is upon the bit pagerns, so if &
consecutive bits are similar. then we say that one pattern
1s simikar, while rest of the 7 blocks, m the 64 bit (8 block).
still require to be deduced. so if § consecutive bits are
similar, then we say that one patiern is similar, while rest
of the 7 blocks in the 84 bit(8 blocks), still require to be
deduced. so if 2 series of 8-bit blocks coasecutive to each
other are targeted by the comparison algonithm, in
response to the neura! networks, then that key is treated
as weak key and must be rejecied.

To minitnize the time complexity of the above
approach we proposc mining withou! minimum support
threshold is the best suited approach for finding frequent
patterns in the dataset [10]. “The prominent advantage of
this approach is that it does not require oser specified
min-sup threshold and performs single database scan
only. This technique can be applied 10 retnieve the jop
most and rop-k maximal frequent iem sets. In case of
mining more than one maximal Frequent item set, the
algorithm requires a2 more easily understandable parameter
k. which refers to the desired number of maximal frequent
item sets”.

Table. Nearal ot setup keys fom dovesot mabuag
Iwies 1] i t 2 3 4 5] 7

Frequent Patterms in Keystream and Knpowledge
Extraction fram KB: The following algorithm will check
the key strength by comparing with the knowledpebase in
the ANN, 10 get the adjacent partemns 10 the key:

KEY check(key, KB)

» Set IV - input through kevboard
« do

L

¢ Key=snowl([V)

e for {0 1<=n, i++)

.

s for{) ™o y<=n:j++)

s |

« Vcount-0

* Fork =i k<= k++}

* repeal step i (0 Vi f tumes

+ if (keypattern{i} = = dic_keyti})
* put | 10 datafile

» clse

« put {10 datafile

*» veoouni - voount—Hmove pointer o next key in
dictionary)

LI

=

LI

s While('key-not-approved)

» End of function

The algonithm works as follows:

5 ’ -.-9 Iﬂ ’11 T 12 7!3 -H is

Vatue +a sl x2 3 i 5 vb v7

[v w10 vl vl vid i vif

If value at the index (0}, is taken and compared with
the knowledge base and the value at the index {1.2) is
taken and compared with the knowledge base and dus
process conunues for the mdex
1,230 123 15, in the first iteraton, in the
second iteration the value at the index {2),{2,3} and s0
forth. wherever the key march is successful unto some
threshold level the key s rejected and the algorithm
generates the next key and the process coutinues until
and unless a secure key is found. To find out the time
complexity of the algoritun we fust define the parameter
used in the algorithm. n is the numbers of bytes in key

values at

——

|
156 |

stream and m is the size if the knowledge base. Then the
worst case tame complexiny of the algonthm s
m*(n{n+1)/2)

CONCLUSION

The model we present is mofe secure in a sense, that
scanning the knowledge base it does not output the weak
crypwgraphic keys and also the time complexity of the
algorithm is 100 high, that any of known attack cannot
sacceed, because of the natural strength of the SNOW 2.0
and also if there 1s 3 probability of gencrating weak key.

Annexure-B

Research Publications

World Appl. 5ci. 1, 30 r4): 498.503, 2014

if the knowledge base conmin that senes or pattern, will
be dismissed by the resultant activation function of the
Artificial neural network.

LA

REFERENCES

Gatkin, |. and UM. Lowell, 2010. Crash Imroduction
to Artifictal Neural Networks, Material for UML
94.531, Datamining.

Ekdahl, P., 2003. On LFSR based Streamn Ciphers -
Analysts and Design, PhD. Thesix. Dept. of
Informanon Technology, Lund Universiry.

Uliah, 5.1, 2005. Tabassam A A, Khiyal S.H.
Cryptanalytc weaknesses 10 modern stream cipbers
and recommendations for improving their security
levels. 1EEE -~ 2005 Intemational Conference on
Emerging Technologwes. September 17-18. Islamabad
Ahmadi. H. and T. Eghlidos, 2005, Advanced
Guess and Determme Atiacks on Stoeam Ciphers,
IST, pp: R7-91.

Christos Stergmiou and Dimitros Siganos, 2013. Newral
Networks. from web source hitp// www . doc.ic.ac uk/
~nd/surprise_96/ journaivold/cs! L freportitml™ as
read on 30-12-2013

505

6.

157

Anderson, Kohenson, 2001 Role of Artifscial Neural
Networks in Computer Leaming, EEEE Compurer.
pages 31 {44, March 2001}

Syed Irfap Ullah, T Naz and M S Hayat Khiyal.
2010. Traceable Bit Streams in SNOW 1.0 using
Guess-and-Detevmine Anack. World Applied
Sciences Journal, | (2} 190-195. 2010 ISSN IRIR-4552
© [DOSI Publications, 2610

Quintan. JR_, 1984, Learning Efficient Classificanon
Procedures and therr Application 10 Chess End
Games. in: Michalsky, R : Carbonell, .G: Mitchell,
T.M{Hrsg) Machine Leaming — An Anificial
intelligence Approach. Berlin. pp: 463482

Markus Tormi 2014, Kobooen Self-Orgamizing
Feature Map m Panermn Recognition. citeceerx,
papered= 4834, as viewed on 10 January, 2014,

. Bayndro, R, 1¥98. Efficicmly mining long patterns

from datahases. In pro. ACM-SIGMOD Int Conf on
management of data, pp: R5-93.

| —

Annexure-B Research Publications

PAPER- 11

Annexure-B Research Publications

World Applied Sciences Journal 11 (2): 190-195, 2010
ISSN 1818-4952
© IDOS! Publications, 2010

Traceable Bit Streams in SNOW 2.0 using Guess-and-Determine Attack
'Sved Irfantiliah, ‘Tarannum Naz and *Sikandar Havar Khival
‘Department of Computer Science, Faculty of Applied Sciences,

International Islamic University, H-10 Islamabad, Pakistan
'“Fatima Jinnah Women University, The Mall, Old Presidency Rawalpindi. Pakistan

Abstract: Word Oriented Stream Ciphers is an efficient class of stream ciphers in which basic operation is
performed on a block of bits called word. Word Oriented Stream Ciphers become very popular because they
generate block of several bits instead of one bit per clock. SNOW family is a typical example of word orienicd
stream ciphers based on Linear Feedback Shift Register (LFSR). In this paper we discuss SNOW family against
CGuess-and-Determine (GD) Artack. Original SNOW 2.0 is an improved version of SNOW 1.0 claimed 10 be more
secure and efficient in performance. The model claims that it is secure against Guess-and-Detcrmine attack but
our analysis show that it contains a scries of patterns of bits that is traceable. We analyze the key stream
generated by the SNOW 2.0 key stream generator against Guess-and-Determine attack to find out the
probability and vanance of the traceable bit patterns in key. Qur analysis shows that logic based stream ciphers
have these traceable patterns those cannot be avoided using lomic based approaches. The algorithm is
evaluated in three phases. The first phase discusses theoretical background of algorithm, the second phase
discusses methodology adopted for Guess-and-Determine attack and the third phase discusses statistical
analysis of attack.

Key words: Stream Cipher - Lincar FeedBack Shift Register «+ SNOW 2.0 - Modified SNOW 2.0 » Guess-and-
Determine Atlack

INTRODUCTION Guess-and-Detenmine (GD) attacks are one of the

general anacks which have been effective on some siream

In March 2000. the NESSIE project started its first ciphers. As it comes from 1he name. in Cuess-and-
announcement on cryptographic primitives from different Determine antacks, we attempt 10 obtain the states of all
fields of crypiography. Fory cryplographic primitives cells of the whole cipher system by guessing the contents
submitted to NESSIE project. there were five steam o syme of them initially and comparing the resulting key

ciphers and SNOW is one of them. The very first version sequence with the running key sequence. If these two
called SNOW .0 was submitted to NESSIE project in

2000. Some weaknesses were found on SNOW 1.0[1] then
a second version named SNOW 2.0 has been introduced.
SNOW 2.0 is an improved version of SNOW 1.0, proposed
by Patrick Ekdahl and Thomas Johansson in 2002. The
new version is schematically a small modification of the
original construction. Although SNOW 2.0 was appear o .) L
be more secure, but some weaknesses have been found in ciphers, they have often been implemented heuristically.
it [2]. which results in propusal of Modified Version of For instance, heuristic GD attacks on SNOWL.0 can be
SNOW 2.0 {1]. As Guess-and-Determine attack is proven ~ Studied in [2-4].

sequences are the sarme, we consider the initial guess as
a proper one, otherwise we should try another puess:
thus, the complexity of these attacks has the samc order
as the complexity of exhaustive search of the basis of the
guessed elements space. In spite of a long time devotion
to GD anacks™ improvements on word-oriented strcam

to be effective against word-oriented stream ciphers, so In [5) some new criteria classes were proposed (o find
we apply statistical approaches to analyze the traceability 2 sub-optimum basis for implementing a GI attack against
of similar bit-pattierns. the underlying stream cipher systematically. According 10

Corresponding Author: Syed IrfanUtlah, Department of Computer Science, Faculty of Applied Sciences,
International Islamic University, H-10 Islamabad, Pakistan.
E-mail: syedirfan_phdi@yahoo.com.

190

Annexure-B

Research Publications

World Appl. Sci. ., 11 12): 190-195. M0

these criteria classes a new algorithm, called Chess
Algorithm. was introduced. Based on the povel
idea {5}, the Advanced GD anacks were introduced [6],
which lead to the improvement of many previousty
heuristic GD attacks on some stream ciphets. For example.
the computational complexities of the attacks on
SNOW1.0 and SNOW2.0 were reduced from Q27
and O(2™) 10 O(2™) and O(2*) respectively. It is
worth mentioning that there are also better attacks on
these ciphers, e.g., a distinguishing attack on SNOW2.0
with computational complexity of ((2°™) has recently
been proposed in [7] which is the best published one so
far [R].

SNOW 1.0 was captured by GD anack in a way that,
Finite Siate Machine (FSM) has only one input function
s(1) to the FSM. It enables an attacker to invent the
operations in the FSM to derive more unknowns from
only a few guesses [1]. SNOW 2.0 was captured by
correlation attack.

Description of SNOW 2.0: Thc word size of
SNOW 2.0 remains same (32 bits) as of SNOW 1.0
and length of LFSR is again 16, but the feedback
polynomial is different. The Finite Stawe Machine
{FSM)} has two input words instead of one, taken from
the LFSR and the running key is generated by XOR
between FSM output and the last entry of the LFSR, as in
SNOW 1.0

The operations of cipher are as follows. first of all key
initialization is performed. This operation provides
starting states 1o LFSR and o give initial values 10 the
intemal FSM registers RI and R2. There is a small
difference in the operation of the cipher. In the first
verston, after the key initialization, the first symbol was
read out before the cipher was clocked but in second
version it is read out after the cipher is clocked once [9].

In SNOW 2.0, two different ciements involved in the
feedback loop, @ and @ '. SNOW 2.0 wmkes two
parameters as input value, a secret key of either 128 or 256
bits and a publicly known 128-bit imitialization value [V,
The IV value is considered as a four word input [V = (1V,,
V., IV, 1V,) where 1V, is the Jcast significant one. The
possible range for 1V is thus 0......2'™-], This means that
for a given key K, SNOW 2.0 implements a pscudorandom
length increasing function from the set of 1V valucs to the
set of possible output sequences.

Key Initislization Process: SNOW 2.0 mkes wo
paramelers as input values: a scoret key of either 128 or
256 bits and a publicly known 128 bit initialization vanable
IV, The IV value is considered as a four word input 1V =
IV, IV, IV IV,). where IV, is the least significant word.
The possible range for IV is thus 0.2 — 1. This means
that for a given sccret key K. SNOW 2.0 implements a
pseudo-random length-increasing function from the sct of
IV values to the set of possible output sequences.

Iy
Tkt

+

= FSM 777777 r_,\ o > AN Keystream
g o 1
. —| RI ———-@—» R2 ||
T ,
| .

Fig. I A schematic model of SNOW 2.0

191

ot

1
EOJ

Annexure-B

Research Publications

World Appl. Sci. J.. 11 (2}: 190-195, 2016

The model of SNOW 2.0 is shown in Figure |, where
we denote addition in F.* by the symbol @, addition
modulo 2% by the symbolBH. multiplication with a by ®
and $-Box operation is denoted by, .

The key initialization is done as follows. Denote the
registers in the LFSR by (S5,... S, §,)} from left iy
right in Figure |

Thus §,, comesponds to the element holding
S,.. during normal operation of the cipher. Let the secret
key be denoted by K= (K, K., K,. KJ in the 128 bit case
and K =K. K,. K., Ko, Ko Ko, K, Ko where each K, is a
word and K, is the least significant word [9]. First, the
shift register is initialized with K and IV as follows,

sI3=13:IV0, 314 =k2, 513 =kl 512 =k0 2 IV].sl] =k3
@ Lsl0=k2alV2 s9=klalalV3, sB= kg 1.

and for the second half of the register,

s7T=k3 s6=Kk2,s5=kl.s4=%0,s3 =X a |,
s2=2w L sl=kleil.s0=k0ql,

where | denotes the all one vector (32 bits}.

After the LFSR has been initialized, R1 and R2 are
both set to Zero. Now the cipher is clocked 32 times
without producing any output symbol. Instead. the
output of the FSM is incorporated in the feedback loop as
shown in Figure 2. Thus during the 32 clocks in the key
initialization, the next element to be inserted into the LFSR
isgivenby S=a”' 5., 25,585 s F {9].

After the 32 clockings the cipher shified back 1o
normal operation as shown in Figure | and is clocked
once before the first keystream symbol is produced [9).

Design of Dictionary Through Guess-and-determine
Attack: Afler the designing of SNOW 2.9, the next step is
to design an attack for SNOW 2.0. Reliability of SNOW 2.0
has to be checked against Guess-and-Determine (GD)
Attack. due to that reason Guess-and-Determine (GD)
Attack has been designed. It is designed in 2 way that

o

Fsut

Fig. 2: Structure of SNOW 2.0 during Key Initialization

192

guess has been made on secret key and initialization
valugs and determines running keystrcam on basis of
these guesses. Guess-and-Determine (GD) Anacks can be
considered as general anacks on stream ciphers. In the
proposed system the Guess-and-Determine {GD) Attack
is used to guess the sccret key and initialization values.
is described below.

Step 1: Make guess of secret key and 1V values. For this
purpose we have used the random function, which will
take random values from given range.

Step [E: Convert the guessed key into binary form because
SNOW is additive Stream Cipher (Le. a cipher in which
plain text. cipher text and secret key must be in binary
form).

Step tH: Transform binary form of guessed key into 32-
bits because 32 bit registers are used for storage and

operations.

Step 1V: Now secret keys and [V values are ready to
initialize the cipher.

Step V: Proper working has been started and keystream
are generated and stored in an attacking file.

Comparison Algorithm: Read the next keystream from
original file when first keysiream of original file is
compared with all attacking kevstream.

Key_comparison
{
Set IV ~ input through keyboard
Key=snow2{ IV}
veount = 0
j=0
do}
hcount =0

fori-0wn
{
if (keyti) = = dic_key(ij)

i
L]

put | to file
hcount = heount++
veount(i j)++

}

T

Annexure-B

Research Publications

World Appl. Sci. 1. 11 (2): 190-193. 2010

clse

I3

L]

put 0 to file

1
I

i

fRnd

'

while (leof)

Il
l}

The algorithm execwes in this fashion to compare the
original key with each and every keystream of artack file
so that to locale the specific byte positions i key, those
can be traced by Guess-and-Determine (GD) attack.

Experimental Analysis: A large number of experiments
were conducted and its data was analyzed through
statistical tols to find out the frequency of cach byte
position, 50 as to achieve the goal of finding traccable bit
patiemns in key. For this purpose we compare the original
keystream with attacking keystream through comparison
algorithm. Different data sets were taken 10 minimize
biasness in the population; therefore the experiment was
conducted on small datasets as well as large dam sets.
The complete analysis includes two phases.

In phase 1. we determine the traceable bit patterns in
key, a number of cxperiments were conducted on
comparalively small rardomly generated dictionaries and
we find the following facts:

The GD attack with low intensity i.¢. only with 500
guess keys. it was found that the frequency of 0,1, 2.3 was
64.2,29.2, 5.6 and 1.0 respectively, i.e. out of 500 guess
keys 64.2% keys were not matching at byte position, but
1.0% of the keys had the successful match at 3 locations,
i.e. 5 out-of 500 keys has 3 bvie similarities which is 100
less if we guess the entire key.

fix)e fix',).

where i is the byte position where one byte is equal
10 8 bits, so if we compare it one key only which has 3
matches has 24 bits similarity with a specific position,
which means that 24 bits have been traced in a pattern
with a population of size 500. Figure 3 shows the
frequency of byte similarity.

Figure 4 represents a graph shows the similarity of
the key with the dictionary bit position wise which may
give clue to traceable bit stream pattemns.

193

Fig. 3: Frequency graph for dictionary of 500 elernents
Histogram

foy-aite

HeT1t

L wegues by T

Fig. 4. Frequency graph for bit stream patterns for
population of size 500

The graph in Figure 4 shows that byte positions 2, 3.
6 arc more frequent as compared to the others, the
dictionary is tested for a number of data sets and it was
shown that these byte positions are more vulnerable 10
the cryptanalyst.

When the population is increased to 200000, it is
found that more than 60% of the key is traced; by having
5 byte similarities in 8 byte long key.

In a population of 20000 guess keys, it was found
that the frequency of 0, 1.2, 3,4, 5 was 59.756. 31.75, 7.43,
0.9775,0.0835 and 0.0030 pereent respectively. i.c. out of
200000 guess keys 59.756% keys were not matching at
byte position. but 0.0030% of the keys had the successful
match at 5 locations, i.c. 6 out-of keys 200000 has 5 byte
similarities which is too less if we guess the entire key.

The graph in Figure 5 represents the similarity of keys
with the dictionary byte position wise which may give
clue to traceable bit stream patterns.

Annexure-B

Research Publications

World Appl, Sci. /., 1 (25; 190-195, 2040

Tabe 1: Froquency tabic for a dictionary of 200000 ataclong kovs

Table 2: Byvie positwn Fregquency for dictionary of 200000 attacking kess

Row.wise Position:
Frequency Frequomsy
Pereent Vahd Percent Percem Valid Percent
. Cumulative Percenit
Comubatne Pereent . vad 2143 Y
Valid v i1es12 ki 3 124 124
9.5 LT 1 13518 3!
: 63500 i ;2 ’ ;u;: ’ 71
A 9ER 128 s
2 14360 1 3 12463 i3
14 989 12.% 00
3 1555 o 4 125822 ES
16 w.g 125 615
4 167 1 5 12581 Ty
; 12.6 752
1 L0a.0 6 12405 12
5 & o 124 6
o 1OR1.0 7 12382 13
T ot 200000 10g. 124 - e
Toal FITRY 100
ioog 100.0
Tabic 3 Cumulative froquency Tor data of different sizes
Byw Position
Sample Size 0 _ 1 2 3 4 5 b 1 Total
00 N} 11 14.7 152 1t 106 i6.1 0.1 100
100¢ 12.4 104 138 134 1.4 122 141 12.0 Wy
2000 1.5 122 125 13.5 133 104 132 133 L]
000 12.4 138 122 123 13.4 124 127 1.3 100
0000 12.7 12. 12.7 110 12.2 123 24 (R0 100
20000 123 12.1 [l] 12,1 129 112 1238 0
30000 126 126 122 130 12.1 121 124 124 100
40000 126 126 124 121 12.4 129 124 126 100
50000 126 x4 125 125 123 126 125 126 100
B0 121 1z 12.5 126 12.5 128 124 127 100y
TN 124 123 12.3 123 12.5 129 128 2.4 wy
OO0 127 124 124 12.5 124 12.4 128 12.4 100
A 124 121 127 12.4 126 1.5 123 126 160
100000 127 127 123 123 12e 12.4 124 126 100
200000 124 126 113 125 1.6 25 124 124 wo
C. *eage 1234 122y 1169331 1183333 1138 12.26 12 8K17] 122931

The following wable represents frequency of
each byte position and its percentage which
represents that positions 2, 5 are mere frequent as
compared 1o other byte positions so, we can see that data
at position 2 and 5 are morc vulnerable to the
cryptanalyst.

The graph in Figure 6 shows the similarity of the key
with the dictionary byte position wisc which may give
clue to traceable bit stream patterns.

The graph shows that byite positions 2. 6 are
more frequent as compared to the others, the dictionary is
tested for a number of data sets and it was shown that
these byte positions are more vulnerable to the
cryplanalyst.

—

]
163 |

This graph represents that there is uniformity in each
byte position and the frequency is also approximately
same, but if we attlempt even more clever attacks then we
see that some of the byte positions are vulnerable 1o the
cryptanalyst. For this purpos¢ we colleet data from
different population sizes and we pass it through
statistical tests it is observed that daw at location 2, 3. 6
is comparatively more frequent.

Cumulative Analysis: The following 1able contains
location based frequency for all experiments and its
relative frequencies:

From this graph it is clear that byte position 2, 3 and
6 are more frequent as compared to the other ones.

Annexure-B Research Publications

World Appl. Sci. J., 11 (2): 190-195, 2010

CONCLUSION

: In this paper we have introduced the statistical
analysis of the Guess-and-Determine attack on the strcam
cipher SNOW 20, based on advanced Guess-and-
Determine attacks. The study is limited to0 the byte tracing
instead of bit tracing, so as to justify the bulk amount of
similar bit patterns in the oniginal key. This study opens
a way that in Guess-and-Determine attacks if some portion
of the key is traced then it is preserved and recycled for
tracing other similar bit patterns.

Row_wizs REFRENCES
Fig. 5: Frequency graph for dictionary of 200000 elements
1. Ullah, S.1., A.A. Tabassam and S.H. Khiyal, 0000.

e “Cryptographic weaknesses in modern stream
- ciphers and recommendations for improving their

e security levels”.

2. Ekdahl, P, 2003. "On LFSR based Stream Ciphers-
Analysts and Design®, Ph.D. Thests. Dept. of
[nformation Technology. Lund University.

3. Hawkes, P. and G. Rose, 2002, Guess and Determine
Antacks on SNOW. Qualcomm Australia, SAC 2002,
LNCS., 2595: 37.46.

4. De Cannicre, C., 2001. Guess and Determine Attack

ST L ety mm——— on SNOW. NESSIE Public Document,”
Fig. 6: Frequency graph for bit stream patterns for NES/DOC/KUL/WPS/01 1/a.5¢e http:/fwww.
population of size 200000 cryplonessie.org.
momiin e e e e e 5. Mohammadi Chambolbol, A.. 2004. Cryptanalysis of
-~ - Word-Oriented Stream Ciphers. MSc. Thesis, Shanf
University of Technology, Sept. 2004.
6. Ahmadi, H. and T. Eghlidos, 2005. “Advanced Guess
and Determine Attacks on Stream Ciphers™. [ST 2005,
pp: 87-91.
7. Maximov, A. and A. Johansson. 2005 “Fast
Computation of Large Distribunons and lis
Cryptographic Applications™. Lecture Notes in
Computer Science ASIACRYPT. pp: 313-332.
8. Ahmadi, H. and Y.E. Salchani. 0000. A Modified

Version of SNOW2.0™
Camen wimpartay € Lasria 9. Ekdahl, P. and T, Johansson, 2002. "A new version of
Fig. 7: Cumutative Frequency graph for bit stream the stream cipher SNOW", Proceedings of Selected
patterns based on data in wable 3 Areas in Cryptography (SAC) 2002, Springer, 2002.

Available at, citesecr.ist. psu.edw/ckdahl02new . himl
On comparing the original key with the dictionary we
find that in 8 byte long key 5 bytes were traced to be
similar with six different antacking keys in & population of
206000 attacking keys which is 0.0030% of the entire
population. where as 4 bytes were traced to be similar with
167 different attacking keys which is 0.0835% of the entire
populations. On choosing more clever initial guesses.

195

- 164

Nyl

Annexure-B Research Publications

PAPER- 111

[]
{ 15 }

Annexure-B

Research Publications

IEEE —- 2005 International Conference on Emerging Technologies

September 17-18, Islamabad

Cryptanalytic Weaknesses in Modern Stream Ciphers and
Recommendations for Improving their Security Levels

Syed Irfan Ullah

Ahmad Ali Tabassam

Sikandar Hayat Khiyal

Departmeni of Computer Science, Faculty of Applied Sciences
International Islamic University. H-10 Islamabad, Pakistan
E-mail: !svedirfan_phd, ahmadthe8}(@vahoo.com, hdcs@iiu.edu.pk

Abstract

In this paper we discuss security problems in some
modern streem ciphers. As we observe some times
that a designer claims that the algerithm designed is
more secure hul when it comes 1o open literature we
find a number of problems. We discuss SNOW.
Scream and Rabbit. Some efforts have been made to
overcome the problems those were pointed out in
these cryptasystems by different cryptanalysts. The
stream ciphers are fuster und efficient than block
ciphers but comparatively less secure. Gur emphasis
in this paper is o make some compromise on
efficiency but to get more securily.

Index Terms - Stream ciphers, Block ciphers,
SNOW, Scream, Rabbir, chaotic.

1. Introduction

First we discuss SNOW 1.0. The idea for its design is
taken {rom the classical summation generator [1).
The design of the cipher is quite simple, consisting of
LFSR ie. linear shift feedback register feeding a
finite state machine. The new version of this stream
cipher is SNOW 2.0[2], which is more secure and a
bit faster as compared o SNOW 1.0. Although some
minor changes have been made in SNOW 1.0 as the
word size has not been changed (32 bit) and the
LFSR length is again 16 [2].

It is claimed that SNOW 2.0 is more secure and has
more resistance against guess and determine attacks.
Although some minor changes have been made in
original SNOW and we gol its more secure version.
So. by making very few but careful changes we can
close the entry points for ciphers.

Then we discuss Scream, which is considered to be a
more seeure SEAL [9]. We have made some changes
1o make il even more secure as some of the analysts
have found out weaknesscs in the eriginal Scream.

0-7803-9247-7/05/520.00 ©2005 IEEE

Then we discuss Rabbit. which is considered to be a
high performance stream cipher [3]. We analyze the
security of this model against different possible
artacks and the resistance of the model against these
attacks: we found out some weaknesses. those are
removed by making some changes in the model.

The organization of this paper is as follows:

In section 11 we discuss the shortcomings in onginal
cryptosysiem and their resistance against different
artacks. In section Il we presemt our work that how
these systems can be improved with less overhead
and minimal changes. In section 1V we analyze these
improved models that why these are so logical and
providing more strength to the cryptosystems. We
conclude and summarize our work in section V.

Il. Analyzing the models

In this section we discuss the shoricomings of the
cryplosysiems SNOW 1.0, Screarn and Rabbit
respectively.

A. SNOW 10

The SNOW 1.0 is a word oriented stream cipher with -
word size of 32 bits {1]. The cipher is described with
two possible sizes ie. 128, 256 bits. As usual
encryption starts with key initialization, giving the
components of the cipher their initial key value [1.
2]. The guess and determine attacks has the data
complexity of 295 words and the process complexity
of 2224 operations [4], if we have clever initial
choices then of the complexity can be decreased even
more. There are some weaknesses tn SNOW 1.0
which also reduces the complexity of the attack
below the exhaustive key scarch [2).

Finite State Machine (FSM) has only on¢ inpu
function s (1). [t enables an attacker to invert the
operations in FSM to derive more unknowns from
only a few guesses. There is an unfortunate choice of

236

Annexure-B

Research Publications

{EEE — 2005 International Conference on Emerging Technologies

September 17-18, Istamabad

feedback polynomial in SNOW 1.0. The lear
recurrence equation s given by:
S...,.='xlS,,..+S.¢;+Sl) “)
Thete is a distance of 3 words between S, and S 4.
and a distance of 6 = 2.3 between S .y and S ..o Thus
by squaring

S =28 ig* S+ Sy (2)

We can see that (S ., @ S ...} can be considered as a
single input to either equation. Hence, the attacker
does not need to determine S .; and S .4 explicitly
bur onty the XOR sum to use in both ones [2].

The choice of the feedback polynomial emerges
when considering bitwise linear approximations.
Using the same techniques as in [11] we can 1ake the
2*th power of the feedback polynomial i.e.
Pixy=x"+x"+x + = € F.{x}

(3

P(xp=x"T" + o

(x]

3092 72
X

R
2, xl._j- € F__!JE

“)

+

-1.2%32 -

Since x ' € Fo" we have « =x" summation of

pix) and p**(x) yields
th. it + :(L‘ 32 + x'.' 132 - xlb + xl] + KT (5)
dividing this equation by x” we get linear recurrence
equation satisfying

Serit Scane + Serrnc T8t S
+5,=0 {6}

We derive the linear recurmence equation that holds
for cach single bit position. Hence, any bitwise
correlation found in the FSM can be tumed into a
distinguishing amack. For comelaton and
distinguishing attacks we need abour 2™ words of
output and the computational complexity about 2'™
[6]- This discussion proves that SNOW 1.0 is a very
weak cryptosystem and some changes were made w0
improve its gquality; thosc were addressed in the
design of SNOW 2.0 [2], which is also having some
problems. We discuss it in section [11-A

B. Scream: A software e¢fficient siream
cipher

Scream is a software efficient stream cipher that was
designed to be a more secure SEAL [7, 9]. This
model resembles in many ways a block-cipher design

—

167

but it offers a significantly higher level of security.
As SEAL is specialized in encrypting small messages
and data authenticity. that has a pumber of
weaknesses [7]. One of the proposed attack [§] that
requires 230 “samples”, each 4-words long 10
distinguish SEAL from random function. The new
version SEAL 3.0 was proposed but it was also
having some weaknesses, so based on the design of
SEAL a new model Scream was proposed in
different versions. The first version Scream that is so-
called oy cipher due to its simplicity has many more
weaknesses.

For scream family of cipher two distinguishing
attacks are proposed. The best one has the
complexity around 280 [8]. Although if we
implement distinguishing attack on scream then the
attack uses 2105 output words and has complexity of
a similar size. We can decrease the complexity of the
attack againsl scream by improving the model of
attack [10]. Some other attacks proposed for scream
are linear attacks and low ditfusion attacks [9], show
that what ever the claims are. we can distinguish the
cipher from a truly random sequence which tends the
system 1o cryptographic weaknesses and invite new
attacks.

The main problem is in the for-loop where we find X
block which is 16 byies long, where it is XORed
directly with Y and we send it 1o the function F {) as
argument, that may allow the ciphers to distinguish
the key from a truly random sequence.

C. Rabbit

The design of Rabbit was inspired by the complex
behavior of real-valued chaotic maps. These maps
are primarily characterized by an exponential
sensitivity 1o small perurbations causing iterawes of
such maps 10 seem random and long-time
unpredictable [11]. These properties have also
previously leaded to suggestions that chaotic svstems
can be used for cryptographical purposes [12. 13}
Due to this modern method used for designing the
model makes crypanalysis difficult but even then
efforts have been made to anmalyze it. The
cryptanalysis of the Rabbit is resulted 1 the
following:

To investigate the possibilities for Divide-and-
Conquer and Guess-and-Determnine types of attacks.
an algebraic analysis was performed with special
attention on the nonlinear parts of the pext state
function, as they are the main sources of mixing the
input bits {14, 15]. Somc of the attacks like
correlation and distinguishing attacks have got some
sort of success against it. The literature gives us some

237

Annexure-B

Research Publications

IEEE —- 2005 International Conference on Emerging Technologies

September 17-18, Islamabad

clue the there are some deficiencies in the model
through which we can peep in to the interior of the
model specifically due to some weaknesses in the key
scheduling algorithm of the model.

There is a possibility of related key attacks that
exploil the symmetries of the next state and key setup
function. For instance consider two keys K and K'
related by K[i] = KTi+32}] for all i. This lead 1o the
relation, X, y = X' ;2o and C, o= C" 1 0. In the
same way this symmetry could lead to a set of bad
keys. ie. if K[if =K [i+32] for all i, then X | o= X,-1,
gand C | o =C .. ¢ and in this way the key can be
traced.

We need to take care of the brute force attack, and
other classical and modemn attacks. Due 10
advancement in mathemalics we cannot guaranice
that a cryptosystem will always be secure and
foolproof but we can give more tough time to
cryptanalysts.

Recommendations for improvements
in models

In this section we present the changes those we have
made in the original models. In section Il we
discussed the problems in the original models. To
minimize their severity we make the following
changes.

A, SNOW LD

In section II-A the design analysis of SNOW 1.0 has
been discussed in more detail and it has been shown
that SNOW 1.0 is a very weak stream cipher. So,
these weaknesses were addressed and removed in
new version of SNOW ie. SNOW 2.0 {2}, but very
soon a number of weaknesses were addressed by
different analysts [4. 6] and proved that this version
is also not 5o secure.

So, we make some changes in the basic design of
SNOW 2.0 as SNOW [.0 has already been improved
1o release its next version. Both versions of SNOW
have basically the same design but some minor
changes. so the basic design remains same for
SNOW.

a. Convert the LFSR property io partial
NLFSR:
b Take circular left shifi afier
XORing a (alpha} with S..».
it Take circular left shift again after
XORing o' (alpha inverse) with
S!-II-

168

b. Before XORing with R. take circular left

shift of (R, E S ;.15) once again,
We represent the model diagrammatically with the
above improvements. The diagram clearly represents
that we need memory buffers at three different places
to storc the bit stream on lemporary basis.

&
<< < J[H |

.o

L

L TRITT T TR
| [
O O —— -y
b P e I W
: T o<<e \]J N
OEORE

Figure 1: The new model of SNOW 2.0
B. Scream: A software efficient stream
cipher

Some of the attacks although less efficient have been
found. changes have been made in it [9] to improve
the security but the efficiency have been lost by 10 %
--15% although [10} analyze it for security. So. we
make some changes as such to improve the secunty
as well as less compromise on performance 2 %o -
5%.

The main weaknesses are in the for-loop where we
find X block that is 16 bytes long, where it is XORed
directty with Y and we send it to the function F () as
argument, that may allow the cipbers to distinguish
the key from a truly random sequence. The changes
that we have made are as follows:

a. Divide X block into 16 chunks, cach one
byie long.

b. Re-compute each byte by XORing it with
the next byte.

¢ Before XORing with the next byte. rotate 1t
one bit to the lefi.

d With the last byte the frst recently
computed byte is XORed.

238

S

Annexure-B

Research Publications

{EEE —- 2005 International Conference on Emerging Technologies

September 17-18, Istamabad

c. Recombine all the bytes to get a final 16
bytes block.
f. Compuie X=F(X & Y}.

In this way we enjoy the stream cipher advantages 16
byte blecks. As stream ciphers are speedily
computable. so the above computation takes less time
as well as the non-lincanty has also been maintained
and thus security is improved.

C. Rabbit

We see in section II-C thar there are some
weaknesses in the key scheduling of Rabbit as we
make some changes in its design that generates the
key stream as such to minimize the attacks on it.

In the next suaie functions every X affects the next
second state which is easily traceable so we make the
following changes:

a. Make the map as such that the current state
X affects the next X state and that X affects
the next second state and that affects the
next third state. Thus there is no linear
increase in the state scheduling, At the fifth
state the process is repeated once again as
for the first four states,

b. The process continues till alt states change
their values at feast once.

Figure 2: The New model of Rabbit

Sa, by making these few changes the attacks on key
tracing become more difficult.

The nonlincarity is an important property of Rabbit,
but we sce that even then if one state is guessed we
get information about the next state because the next
state computation is based upon the previous state.
The linearity problem is removed from the model by

r——

making these changes. The state diagram clearly
specifies that by making these changes no one can
determine the formuia in a straight forward manner.
So. a person whe generates the differential equation
after spending a lot of time can be discouraged just
by increasing the number of states. Thus even more
organized attacks may fail against this model. The
changes that we have made are represented through
diagram, which have a number of doubts that how we
represenl it mathematically, which is the actual
achievement.

IV. Analysis of the improved models

169

In this section we prove that the changes we make
are very logical and important. The secunty of the
cryplosysiems has been improved by making these
efforts,

A. SNOW L0

Both versions of SNOW are based on LFSR so. the
linear attacks are more efficient to analyze and crack
them. We conven their design to Partial Nonfinear
Feedback Shift Registers i.e. PNLFSRs, so the linear
attacks are mostly discouraped. We give a partiai
touch of chaotic map [13] m our model. Chaotic
maps give more strength to the security of
cryptosystems. It also discourages the guess and
determine attacks. The overhead that we make
decreases the performance of the sysiem. In the
original model! the linear recurrence equation is given
by:
Srw=x(S0+5,3+8) N
There is a distance of 3 words between S, and S ,.;
and a distance of 6 = 2.3 between S .5 and S ... Thus
by squaring:

Srar=T S+ See t 8 (%)
As in SNOW 2.0 a (alpha) and a”' (alpha inverse) are
XORed but even then they can be traced if we are
able to succeed in finding a. So. left circular shift
makes it difficult to trace the sequence as every time
the sequence is circulated that ts stored inside
temporary buffer at three different places in our
maodel. The input to the FSM is (S -5, S o) but S 1«
is the sequence number afier left circular shift. so the
ocutput of the FSM denoted by F ,, is computed as:

F t = (LeftCircularShift (S t+15) Ba Rl) <<<n @
R2,) 9

239

Annexure-B

Research Publications

1EEE —- 2005 International Conference on Emerging Technologies

September 17-18, Islamabad

where n 15 a chosen prime number.

The linear or distinguishing attacks do not affect the
model even if we have more clever attacks. The key
sequence can not be determined by linear sequence.
The guess and determine attacks are also discouraged
as these are based on initial guesses, but we see that
due to repeated circular shift the guess is in
contradiction with the exact value as the cipher is
always confused about the exact location of the bit
due to its circular shifts,

We do not make severe changes in the basic design
of the cryptosystem to keep the thing same as in the
oniginal model. The mode! is so weak that by making
changes we can decrease the severity of the attack
but we can not fully stop attacks on it. The drawback
in our model is that we store the key sequence at
three different locations in temporary buffers that
makes the model a little inefficient.

B.

Scream: A software efficient stream

cipher

[t is an advanced stream cipher that provides better
secunity. It is more efficient than SEAL, but even
then we look in Scream-0 that some security flaws
are there, specially in statement X = F{X ® Y). As X
and Y both are XORed in F (), which give way to
ciphers for tracing the key.

The F () function has linear approximations that
approximate onty three of the 8-by-8 S-boxes. Since
the S-boxes in Scream-0 are based on the Rijndeal §-
box, the best approximation of them has bias 22, So,
we can probably get a linear approximation of the F
 function with bias 3°.

For linear approximation we need to eliminate the
lincar masking, as each of these masks is used 16
times before it is modified. For each step the cipher
looks a pair (X @ Y & W[i]. F(X) ® Z & WE+L]),
where X is random. So if X is found once then we
can trace the whole sequence. So in scream-F this
problem was removed but it lost the efficiency by 10-
15%.

So we make changes such that 1o improve the
security as was challenged by direct XORing of X
and Y. The basic quality of the model has also been
restored. The theory of chaotic maps has been
introduced in the model which provides better
security by splitting the X in to 16 individual bytes
and each onc has been XORed with the next one. So,
it makes it difficult for cipher to trace the sequence
by applying the linear approximation and the (X @
Y @ W[i]. F (X} ® Z @ W[i+1]) has been converted
10 even more complex shape ie. ({X; D X;.y <<< I}

—~~

170

BY & W], F(X) & Z ® W[i+1]). The pair will
never give the required result to cipher as it changes
all the tmes. So, the cipher will not easily trace the
sequence as well as the efficiency has also been
restored up to some extant thal was the basic purpose
of the model to provide speedy encryption.

The basic purpose of the model has been restored
along with the improved security 1w stop linear.
differential and guess and determine attacks.

C. Rabbit

It is based on chaotic map but there are very linle
design weaknesses that allows cipher to peep in to
the model. We see that cvery current state affect
linearly the next sccond state. We can determine how
this state affects the coming state as mathematically
represented in the section 11-C

In original model the g-function is computed by
making some operation on the state of the map [11].
We see that every state is computed by XORing the
previous two states as follows,

Xop1 = Baa* (g 1, <<<16) + (g o,<<< b}
X = Lt iBu<<<B)+g
X 2101 = B 2i + {81516} + (g,<<<16}
Xiper= o 7 (B << B} + g,

(10}
(n
(1)
(13)

The g-function is the compuied in straight forward
mathematical function.

£, =X +C) B(X,+C;) >>320mod2™ (14)
This g-function can be summarized as follows.

gY)= (Y &(Y >> 32)) mod 2* (15}
This g-function has a very huge complexity and oaly
with very small word length it has been cxamined
[14]. This discussion reveal that the non-linear order
of this function is maximal and only through high-
level differential it can be cxamined due to some
weaknesses mentioned here.

In our model every current state affects the next
states in different manner which makes it difficull 10
analyze it in a lincar and even in differential way.
The guess and determine attacks have also been
discouraged.

The differential analysis is impossible bevause we are
not always sure afler how much iteration every state
is affected. if we increase the number of states for

240

Annexure-B

Research Publications

IEEE --- 2005 International Conference on Emerging Technologies

September 17-18, Islamabad

achieving more security the mathematical
representation is only possible by making some
logics. So. even a clever attacker is always confused
about the state of the an.

The spred of the cryplosysiem is not affected as
graphical and mathematical model is changed
through logics only.

V. Conclusion

We discussed some of exemplary stream ciphers
those are claimed by their designers o be mome
secure, but we saw that every model has been traced
when they came to open litcrature. We observed that
every model has left some very minor weaknesses
those may be considered as ignorance of designers or
there may be some other things that every designer
had left some peeping point 10 make it always
possible for them to crack their own models. We saw
that with minor efforts those peeping points have
been closed. The world is invited for any suggestion
refated o the paper will be encouraged to improve
our models.

References

P. Ekdathl. T. Johansson. “SNOW. A New
Stream Ciphwr™ Proceedings of first NESSIE
Workshap, Heverlve, Belyium, 2000,

P. Ekdalhl, T, Johansson, “A new version of the
sircam cipher SNOW™, Dept of Information
Technology. Lund University, Sweden.

M. Boesgaard, M. Veserager, T. Pedersen,).
Christiansen, “Rabbit: A new high performance
stream cipher” Fast Suftware Encryption 2003,
LNCY. Springer-Ferlag, wwow cTyplico.comm,.

P Hawkes, G.Rose, “The puess and determine
attack on SNOW™ Proceedings of Selected Areas

1

i1

&3]

14}

171

151

[6]

(71

(8

%

[10]

[t

[t21
3

{4}

[15)

in Crypiography (SAC). St Jokn's
Newfoundland, Canady August 2002,

P. Ekdahl. T. Johansson, “Distinguishing attacks
on SOBER", in Fust Software Encryprion (FSE),
2002, Springer 2002,

D. Coppersmith, S, Halevi. C. Jutla.
“Cryptanalysis of stream ciphers in linear
masking”™. tnt Advamces in Croprography -
CRYPTQ™ 02 Springer-Verlag. 2MK)2
hitp:feprintiacr.org/ 200202/

P. Rogaway. D. Coppersmith. “A sofiware
optimized stream cipher SEAL™. /n Journal of
Crvpredogy. September 18, 1997

H. Handschub and H. Gilbert, "X° cryptanalysis
of SEAL encryption algorithm™ In Procecdimngs
of the 4* Workskop on Fast Software Encruption,
Springer-Verlag, 1997

S.Halevi. . Coppersmith, C. Jutla , "Seream: A
software efficient stream cipher™. In Fast
Software Encryption (FSE} 2002, Springer 2002,

J. Thomson. A. Maximov, “A lincar

distinguishing attack on scream”, sDept of

Information
Sweden . 2004,
M. Boesgaard, T. Pedersen, M. Vesterager, J.
Chriestiansen. O. Scavenius, “Rabbit- a new high
performanice stream cipher™, CRYPTICC) ASS.
Copenhagen, Denmark,

Technology, Lund Lmversiy,

S. Wolfarm, ~Cryptography with cellular
autemata”, Proceedings of Cnvpte 1945,
G, Jakmoski, L.Kocarev., “Chaos and

cryplography: block encryption ciphers based on
chaouic maps™, IEEE, Transactions on Circuits
and Svstems-I: Fundamental Theon and
Applications, 2001

M. Boesgaard, T.Pedersen, M. Vesterager. E.
Zenner, “The Rabbit stream cipher: Design and
Security Analysis™, CRYPTICO A/S.
Copenhagen. Denmark

V. Rijmen. "Analysis of Rabbit”™. Cripromathic
September 5, 2003,

241

.

