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Preface

Many fluids in the industry and technology do not obey the Newton’s law of viscosity and are usually
classified as a non-Newtonian in nature. For example, blood, yoghurt, ketchup, shampoo, mud, paint,
polymer melts and greases etc. have complicated relationship between the shear stress and rate of strain
are non-Newtonian fluids. The boundary layer flow of these fluids and heat transfer analysis on a
continuously moving surface has a wide range of application on engineering and industrial process, for
example, the manufacture of plastic fluids, artificial fibers and polymeric sheets, plastic foam processing,
in the extrusion of a polymer sheet from a die, heat treated materials travelling between a feed role and
many others. After the work of Sakiadis [1,2] on a continuous moving surface, many researchers studied
the various aspects of flow and heat transfer characteristics in a non-Newtonian fluid with/without
magnetic field over a stretching surface. Some important studies are Rajagopal et al. [3], Dandapat and
eqiptra [4], McLeod and Rajagopal [5], Rollins and Vajravelu [6, Cortell [7,8], Nazar et al. [9], Ishak et
al. [10]. Hayat et al. [11] and many references their in.

In the above mentioned investigations the stretching velocity of the sheet is linearly proportional to the
distance along the flow. To the best of our knowledge, Wang [12] first discussed the various flow due to
an oscillating stretching surface. The flow is induced due to an infinite elastic sheet which is stretched
back and forth in its own plane. Abbas et al. [13] extended the problem of [12] to study the heat transfer
of a viscous fluid over oscillatory stretching surface with flow/ thermal slip condition. Recently, Abbas et
al. [13] attempted the firs problem regarding the boundary layer flow of a second grade fluid due to an
oscillatory stretching sheet with magnetic field. They have also studied the non-linear partial differential
equation both numerically using fmite-difference method and analytically using homotopy analysis
method (HAM). In the light of this, the present dissertation is arranged as follows:

Chapter one aim to present some basic definitions and flow equations which one used in fluid mechanics.
Chapter two deals the boundary layer flow of an electrically conducting second grade fluid due to an
oscillatory stretching surface. The solution of the non-linear partial differential equations obtained
numerically by employing finite difference method. The influence of the interesting parameters on the
velocity field and skin-friction coefficient is shown through graphs and tables. This chapter is a review of
the work done by Abbas et al. [14].

Chapter three looks at the MHD flow and heat transfer over a porous oscillating stretching sheet in a
viscoelastic fluid. The governing flow equations are transformed into a set of non-linear partial
differential equations. The finite difference method is employed to obtain the solution of this system. The
effects on the flow, temperature field, the skin-friction coefficient and the local Nusselt number are shown
through graphs and tables. In fact, this chapter is an extension of the work done by Abbas et al. [14].
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Chapter 1

Basic Definitions

This chapter aims to describes some basic definitions and flow equations which are used in fluid

mechanics. The basic idea of finite difference method is also given in this chapter.

1.1 Fluid Mechanics

It is the branch of engineering and physics that deals with nature and properties of the fluid

both in motion or at rest. In practice, the study of fluid mechanics can be divided into the

categories.

1.2 Flow

Flow is a substance or material goes under deformation in the presence of different forces. If

the deformation exceeds continuously without limit then this phenomenon is known as flow.

1.3 Fluid

A fluid is a substance or material that deforms continuously under the application of shear

stress, no matter how is material small the shear stress.



1.4 Velocity Field

In dealing with fluid motion, we shall necessarily be concerned with the description of velocity
field. In general at given instant the velocity field V is function of space coordinates z,y, z and
time t. The velocity at any point in flow field might vary from one instant to another. The

complete representation of velocity field is given

V =V(z, y. z, t). (1.1)

1.5 Viscosity
In general, it is defined as the ratio of shear stress to rate of shear strain, i.e.

5 shear stress . Txy (1.2)
" rate of shear strain  (du/dy)’ 1s

M

where p is coefficient of viscosity.

1.6 Kinematic viscosity

It is the ratio of the viscosity to density of the fluid. and it is given as

1.7 Classification of fluids

There are two main types of fluids

(i)Ideal fluids

(11) Real fluids

(i) Ideal fluids

A fluid for which viscosity is zero are termed as ideal fluid. The fluids with zero viscosity
offers no resistance to shearing forces and hence during the flow the deformation of fluid all

shear forces are zero. An ideal fluid is fictitious and does not exist in nature however many



fluids under certain engineering applications show negligible viscosity effects and can be treated
as ideal fluids.

(ii) Real fluids

All fluids for which the viscosity is not equal to zero is known as real fluids. Real fluids are
further divided into two main classes.

(a). Newtonian fluid

(b). Non-Newtonian fluid

(a) Newtonian fluid

All fluids which satisfy the Newton’s law of viscosity are called Newtonian fluids. The
Newtonian law of viscosity is stated as "shear stress is directly and linearly proportional to rate

of deformation". Mathematically, it is stated as

du

Ty; [0 & d—y. (1.4)
or
du) (1.5)
T =M1 N
=t \dy

where 7, is the shear stress acting in the plane normal to y-axis and in the direction parallel
to x-axis and p is constant proportionality. known as absolute or dynamic viscosity. Water,
air and gasoline are examples of Newtonian fluids.

(b) Non-Newtonian fluid

All fluids which do not obey Newton’s law of viscosity are called non-Newtonian fluids.
These types of fluid obey the power law model in which shear stress is directly but nonlinearly

proportional to the rate of deformation. Mathematically,

‘du\"
Tor X | — % 0 I 1.6)
v (\dy) (
Fdu\"
Tyr = K \’—1!7/ , (1.7)

where n is called the flow behavior index and k is the consistency index. Examples of non-

Newtonian fluids are shampoo, gel, blood etc.



1.8 Internal flow systems

All those where fluid flows through confined spaces, e.g.. flow through pipes, pumping of blood

through blood arteries and water in channels.

1.9 External flow system

All those where confining boundaries are at relatively larger or at infinite distances such as

atmosphere through airplane and space vehicles travels.

1.10 Stress field

A field in which surface forces and body forces are incountered called stress field. A stress field

is a region where the stress (surface forces and body forces)is defined at every point.

1.11 Saurface force

The surface force include all the forces acting on boundary through direct contact. Since theses

forces act only in short range, therefore these forces are also called short range forces.

1.12 Body force

The forces which do not require any physical contact with boundary and distributed over the
whole volume of the fluid are known as body forces. Gravitational and electromagnetic forces

are categorized as body forces. These are infect long rang forces.

1.13 Pressure

Pressure is the surface force that acts normal to the area under consideration. The force per
unit area is called pressure. Let A is the surface area of fluid and F is magnitude of force acting

normal to surface, then pressure P due to the force on unit area of this surface is defined as



p= % (1.8)

1.14 Maxwell’s equations

Maxwell’s equations are the set of four equations which relate the electric and magnetic field
to their sources, charge density and current density. Individually, these equations are known
as Guass’s law, Gauss’s law for magnetism, Faradays law of induction and Ampere’s law with

Maxxwells correction. These equations are described as

VE= 2. (1.9)
€0
VB =0 (1.10)
OB
VXE= —E, (1.11)
V xB=pyJ+ #ofo%lt;:- (1.12)

In above equations € is the permittivity of the free space also called electric constant, p is
the permeability of free space which is also called magnetic constant, p is the total charge
density and J is the total current density. The total magnetic field is Bg = (Bp + b), where b

is induced magnetic field. By Ohm’s law in generalized form we have
J=0c(E+V xB), (1.13)

where o is the electric conductivity of the fluid. In the present case there is no applied electric
field. also the induced magnetic field is neglected due the assumption of flow magnetic Reynold

number. Therefore, the Lorentz force in the direction of the flow becomes
(I xB) = —aB}V, (1.14)

where By is the applied magnetic field and V is the velocity.

-1



1.15 Governing Equations

1.15.1 Equation of continuity

The mathematical relation of conservation of mass for fluid is known as equation of continuity.

It has the following form
d
5? V. (pV) =0, (1.15)

and for incompressible fluid it reduces to

V.V =0. (1.16)

1.15.2 Equation of motion

The motion of fluid is governed by law of conservation of momentum. The application of this
law to an arbitrary control volume in flowing fluid yield the following equation commonly known

an equation of motion.

dv
pg = —Vp +divT+pb. (1.17)
In above equation T is Cauchy stress tensor and b is body force per unit mass.

1.15.3 Energy equation

Energy in a system may take on various forms (e.g. kinetic, potential, heat, light). Mathemat-

ical form of energy equation is described as

Ry _ TL-V 1.18
pcpvﬁ? = S il .q, ( . )

in which
L=VV. (1.19)

Energy equation also represent the ‘Law of Conservation of Energy’.



1.16 Boundary layer equation in second grade fluid

The law of conservation of momentum is given by
p% =divr +J x B,
where B is the magnetic field and is given by
B = (0, By.0).
The Cauchy stress tenser T for second grade fluid is
T = —pI+F,
where F is the extra stress tensor and is given by

F= A +aAs+ azAf

(1.20)

(1.21)

(1.22)

(1.23)

where p is the pressure, I is identity tensor, and «; and as are material module and A; and

A, are the Rivilin-Ericksen tensors and given by

Ai=L+L%,
d _
Ay = % +A;L+LTA;,

where L = grad V and LT = (grad V)T and ;;d; is the material derivative.

For unsteady two-dimensional flow, we take the velocity field in the form

V= [u(w,y,t), ’U(:leyvt)7 O]’

and . 3
P

Ju 35 0
— 3

L= 35 dy 0

0 0 0

9

(1.24)

(1.25)

(1.26)

(1.27)
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0

u

3‘t&y"8t31 +u5£“—+u

4 %g+scli ay +3§“dy

Bu Bv " gy g: + t'Bmay

0

S Y=
L'=|& & o
0 0 0
2du %Lgf 0
A= R+E 2= 0
0 0o 0
2@+ (B 8) % ol (Bal)g
= u 1 u ) u .\ <
A= (Je+f) ol (@) +2(3)
0 0
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(1.28)

(1.29)

(1.31)



After using the values of Aj, Agand A%, Eq. (1.23) gives

+ao

Using Eq.(1.32) in Eq.(1.22) gives
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By solving above Egs. (1.34) and (1.35). we get

fu (135;, +52) +u (5’;‘-‘ + 4 )
n 33 / U (3
RN N )
o " "oz’ dy p Oz 9z 9y? P +2 3 qg_u{azu i ﬁ;‘
295 + m/ o8y \ 3y T 57 )
Pu_ - Pu v
+2505% + daes + 5 :
2a; [ 6ud®n  Ou [ J*u 0(3‘ v / &*u Bv _ oBju
— M=t | ) ' v (1.36)
p | 92822 * Gy \dzdy a:c 8z \Bz(?y s p
[ _u
Btozdy W "“atay
2. 38 2
ov _H‘Bv +p3’u , 18p+u/62'u+02v\ ) "g's (1‘3?;,% ' %) ""-'(?a)?f'!'b%)%?)
ot dx Dy ~= T 50y _2 _2 2 ae {’," 1 331) \ 3211 ' 32v\
OF v 20 NS POy \B:c % ) Pl (_‘ + ooy ) 2(35%‘ T vy )
gfov v . 0
! TN\ 9 Oy 'a_y'f) A
a0 [ v Ou [/ 0% o [ v % oB3
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Using [15]
r s T .
u=0(1), v=0(), =2=0(), y=0(), —=-0(1) -=X=0(), -=-0@)
(1.38)
We get
ou Ju Ou Pu k[ Bu Io} o%u ou 8%y Pu 0_%22
e T A N A S Ll P iy N e B S 5 . (L
o T T 2T ) [3t0y2 ¥ 3z ("ay2) Yo F s s (139)
where [16]
£>0, >0, aj+a=0. (1.40)
and now Eq. (1.39) can be written as
ot oz Oy  0z? Ordy?  9zdy? Byoy: Oy p ’
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1.17 Finite difference method

Finite difference method is an approximate method in the sense that derivatives at a point
are approximated by difference quotient over a small interval. It was first utilized by Euler,
probably in 1768.

Assume that function F and its derivatives are single valued, finite and contain fumction of

z, then by Tayler’s theorem

F(z+h)=F(z)+ hF'(z) + gF’(z) + f‘2'—21;"(:»:) +0 (h%) (1.42)
and
h? h?
F(z—h)=F(z) - hF'(2) + =F' (2) - =F'(2) + 0 (k%) (1.43)

where O(h?) denotes term containing fourth and higher power of k. These approximations gives

dF _F(z+h)—F(2)
(Tf?/ By 7 (1.44)
dF\ _ F(zx)—F(z—h)
(I U2 h (1.45)

with the error of order h. We assume that containing second and higher power of h are negligible.

Eq. (1.44) and Eq. (1.45) are called forward and backward difference formulae. Subtracted Eq.
(1.43)from Eq. (1.42) gives

dF _F(z+h)— F(z = h)
() s a0

with leading error of h2. This approximation is called central difference formula. Similarly we

can find the approximation for second and third derivatives.

14



Chapter 2

Hydromagnetic flow in a viscoelastic
fluid over an oscillatory stretching

surface

2.1 Introduction

This chapter deals with the unsteady MHD two-dimensional boundary layer flow of a second
grade fluid due to an oscillatory stretching surface. An infinite elastic sheet is stretched back
and forth in its own plane. The resulting flow equations are transformed to a non-linear partial
differential equations by invoking similarity transformations. Numerical solution is developed
by using the finite difference scheme, in which a coordinate transformation is employed to
transform the semi-infinite physical space to a bounded computational domain. The influence of
the various parameters like viscoelastic parameter, the hartmann number, the relative frequency
amplitude of the oscillatory stretching sheet to the stretching rate on the velocity field and the
wall shear stress are plotted and analyzed through graphs and tables. This paper is a review

of the work done by Abbas et al. [14].

15



2.2 Flow Analysis

We consider the unsteady two dimensional magnetohydrodynamics (AMHD) laminar flow of in-
compressible viscoelastic fluid (second grade fluid) over an oscillatory stretching sheet coinciding
with plane 7 = 0, the flow is being confined to the semi-infinte space 7 > 0. The elastic sheet
is stretched back and forth periodically with velocity u,, = b¥sinwt (b is maximum stretch-
ing rate, T is coordinate along sheet and w is frequency) parallel to the T axis, as shown in
Fig. 2.1. A constant magnetic field of strength By is applied perpendicular to the stretching
surface and the induced magnetic field is neglected, which is valid assumption on a laboratory
scale under the assumption of small magnetic Reynolds number. Under the usual boundary
layer assumptions and in the absence of pressure gradient. the unsteady basic boundary layer

equations governing the MHD flow of second grade fluid are:

-

{ / \
W A

eSS g 3 »

- - - - - - - »

0 u.=h7sinox

Fig. 2.1: Geometry of the problem

16



where (u,v) are the velocity component in (%,7) directions, respectively, v is the kinematic
viscosity of fluid, p is the fluid density, o is the electrical conductivity of fluid and kg is the
viscoelastic parameter of fluid.

The appropriate boundary conditions of the problem are

u=1u, =bFsinwt, v=0 at F=0 ¢>0. (2.3)
Ou

u=0, —=0 as y— oo, 2.4
5 7] (2.4)

in which & and w have the dimensions (time)~!. Note that the system can also be solved by using
the cosine function (coswt) instead of sinwt. The second condition in Eq. (2.4) is augmented

condition since the flow is in an unbounded domain, which has been discussed by Garg and

Rajagopal (5] . Now we assume

== 2.
s=% (25)
which is the ratio of the oscillation frequency of the sheet to its stretching rate.
Any particle path on the sheet is
T — 7, explfiid cos it (26)
zAxoexp\Scosw . .
To simplify the flow equations, we use the following similarity transformations
[o_
y = v/ Y, (== twv
SN
u = bzf,(y,7), v=—Vvbf(y.7). (2.7)

Using Eq. (2.7), the continuity equation (2.1) is identically satisfied and the governing Eq.
(2.2) becomes

Sty + f;" —ffp+ -“12fy = fyw + K (Sfyyw' + 2fy fyyy — .;;’y - ffwyy) ’ (2.8)

17



subject to the boundary conditions

fy(0,7) = sin7, f(0,7)=0.
fy(oo,7) = 0 and  fy, (oo, 7) =0, (2.9)

in which M? = 0B%/bp is the Hartmann number or magnetic parameter and K = bko/vb is
non-dimensional viscoelastic parameter. Here K = 0 corresponds to the case of Newtonian

fluid.
A physical quantity of interest is the skin-friction coefficient Cy, which is defined as

Cp= (2.10)

pu?,

where 7, is wall shear stress and is given by

n [ Ou\ o / 8%u o u Ua2u nauav) (2.11)
Tw = p| = { s U + Uy — 2 2.11)
"oy ), " \otoy " “amay a0y ) 4
Using Eq. (2.7) and (2.11), Eq. (2.10) yields
Re}*Cy = [fyy + K B3fyfyy + Sfuyr — FFuwu)lymo> (2.12)

where Re, = u.,®/v is the local Reynolds number.

2.3 Solution of the Problem

The non linear boundary-value problem consisting of Eq. (2.8) with the boundary conditions
Eq. (2.9) is solved by means of the finite difference method. For this purpose, the coordinate
transformation = 1/(y + 1) is applied for transforming the semi-infinite physical domain

y € [0, 00) to a finite calculation domain 7 € [0, 1], i.e.

1 0 d 9? i . 2 92
y=c-—1, o =P, g= ,140_2 vopd O o
U] dy dan ay- on on dyor onoT
8 Y a L o . 8
A »__G.) —6 -(_ﬁ__‘ Bl e (3] _6) -(r-l___.
dy? r o’ ? on? " on Oy30r T oper " On2or - Mmor’



o o . & & d

W R 7 35n® — + 24n° —. 2.13
o 7 i + 129 W + 357 o " o (2.13)
Using the above transformations, the Eq. (2.8) can be written in the form of 7 as
e L. cna O e ONF
S(1-6Kn") oron —~ SKy 0T 6SKy G0
ar\? 0 &
= (n* —8Kn%) (a—f’) + (692 — M? + 36K fy* — 2f17)—f + n“a—nﬁ
S, & f Py | ’fﬂf
3 =3 -3 . 4 peiin (g s 5 ,
+ (69" = fn° + 36K fn') o2 8K o0 2 ( o2 ) )
e 93f ok 184 & ks o 2
-2K7n an + 12Ky fa,ls [()" (2.14)
The boundary conditions (2.9) in terms of 7 can be written as
5Hh=9 fim=0 at =0, (2.15)
f=0, f,=—sint at np=1 (2.16)

The equation (2.14) is a differential equation, we can discretise it for L uniformly distributed
discrete points in = (7;, Ny N3 coneee . q(“) € (0,1) with a space grid size of Ay =1/(L + 1)
and the time levels ¢ = (¢!, t%,...). Hence the discrete values (ff, ff, ..., f{) at these grid
points for the time step t" = nAt (where At is time step size) can be numerically solved
together with the boundary conditions at n = 79 = 0 and 3 = 77 ;3 = 1. Egs. {2.15) and

(2.16) as the initial conditions are given as
fin,7=0)=0. (2.17)

We will see that periodic function will be immediately reached within the first period. we

construct a semi-implicite time difference for f and assure that only linear equation for the
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new time step (n + 1) need to be solved.
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It should be noted that other time differences are also mean of finite difference method we
can obtained a linear equation system for each step, which can be solved e.g. by Gaussian

elimination.

2.4 Results and Discussion

We calculate the velocity field by solving Eq. (2.8) with boundary conditions Eq.(2.9) by
using finite difference method. First the initial boundary value problem in the computational
space 1 € [0,1] and then the numerical solutions are transformed to the physical space with
y-coordinate y € [0, 00). The velocity field = fy) is plotted for the various parameters, for
example, the viscoelastic parameter K, the Hartmann number or magnetic parameter A/ and
the non-dimensional relative amplitude of frequency to the stretching rate S, for the time series
of the first five periods 7 € [0.107] and the transverse profiles. We also calculate and show the
values of the skin-friction coefficient Re./ 2Cf both graphically and in tabular form.

Fig. 2.2 is plotted to examine the effects of the time series of velocity field f at four different
distances from the oscillating sheet far the first five periods 7 € [0,107] by keeping A = 0.1
and K = 0.4. In Fig. 2.2(a) (at K = 0.1) that the amplitude of flow near the oscillating surface
is larger as compared to that for away from surface. However, in Fig. 2.2(b) (for K = 0.4)

the amplitude of flow motion is larger as compared with analysis at K = 0.1. That shows as
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increased effective viscosity with the increase of the non-Newtonian parameter K.

Fig. 2.3 illustrates the effects of non-dimentional relative amplitude of frequency to the
stretching rate S, the viscoelastic parameter K and magnetic parameter A on the time series
of the velocity field f at the fixed distance y = 0.25 from the surface, respectively. Fig. 2.3
(a) shows that with the increase of S the amplitude of fiow increases slightly and a phase shift
occurs which increases with the increase of S. The variation of the viscoelastic parameter K on
the time series of velocity f  can be seen from Fig. 2.3(b) with fixed values of S = 2 and M = 10.
We note that amplitude of the flow motion is increased by increasing the viscoelastic parameter
K due to the increased effective viscosity. Fig. 2.3(c¢) shows the time series of velocity profile
f* for different values of the magnetic parameter Af with fixed values of $ = 1 and K = 0.2.
As expected, the amplitude of flow decreases with the increase of magnetic parameter Af. This
is because for the investigated problem the magnetic force act as resistance to the flow.

Fig. 2.4 gives the effects of viscoelastic parameter K on the transverse profile of velocity f
for the different times of 7 = 8.57, 97, 9.57 and 107 in the fifth period 7 € [87,107] for which
a periodic motion has been reached. Fig. 2.4(a) (a) shows that at 7 = 8.57, f = 1 at the
surface ¥ = 0 equating the sheet velocity and f* — 0 far away from the sheet. It can also be
seen that at this point of time, there is no oscillation in velocity profile and f' is increased as
value of K increases, i.e. the boundary layer become thickener with increase of K. Fig. 2.8(b)
gives the velocity profile f at time point = = 97. At this point the velocity field ' is zero at
the surface y = 0 and far away from the wall it again approaches to zero. It is also evident
that near the wall, there exist some oscillation in the velocity profile and the amplitude of flow
increases as K increases. This oscillation in transverse profile is an evdient of phase shift in the
viscoelastic fluid against the viscous Newtonian fluid (K = 0). The velocity profile for other
two time points within fifth period are displayed in Fig. 2.4(c) — (d).

Fig. 2.5 gives the influence of the magnetic parameter M on the transverse profile of the
velocity field f for the different times of 7 = 857, 97, 9.57 and 107. It is noted that the
influence of magnetic field reduces the boundary layer thickness. As expected magnetic force
is a resistance to the flow, hence reduces the velocity magnitude. Although for = 97 (Fig.
2.5(b)) and 7 = 107 (Fig. 2.5(d)), there exist still velocity oscillation in the transverse profile ,

their amplitudes are fairly small (in comparison with those in Fig. 2.3 (b, d)
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Fig. 2.6 elucidates the effect of non-dimentional relative amplitude of frequency to the
stretching rate S on the velocity f'for the different times of 7 = 8.5m, 97, 9.5m and 107 in the
fifth period. Fig. 2.6(a) is plotted for the variation of S on the velocity f at time 7 = 8.57
at the surface. It is observed that the velocity is equal to the sheet velocity f = 1 at surface
y = 0 and far away from the wall it is zero. The velocity f increases only slightly with the
increase of S. Fig. 2.6(b) shows the influence of S on the velocity field f at time 7 = 97. It
is noted that for very small values of § = 0.1 at this time point, the velocity in the transverse
section takes its value at the plate almost to the zero (f — 0), i.e., for small value of S no
phase difference occurs with increase of the distance from the plate and the flow in the whole
flow domain is in phase with the sheet motion. The velocity profiles for others two time points
within fifth period are plotted in Figs. 2.6(c) and (d) and the similar observations are noted as
in Fig. 2.6(a) and (b), respectively.

Fig. 2.7 depicts the variation of viscoelastic parameter K, the relative amplitude of frequency
to the stretching rate § and the magnetic parameter Af on the skin friction coefficient Re:lc"ZC i
for the time series in the first five periods 7 € [0,10x]. Fig. 2.7(a) shows the influence of the
viscoelastic parameter K on the skin friction coefficient Rel/ 2Cf with fixed S =5 and M = 12.
It is found that the skin friction coefficient varies also periodically due to oscillatory surface
motion. The oscillation amplitude of skin friction coefficient Rei‘QC 'r increases as the values of
K are increased. Fig. 2.7(b) shows the variation of S on the skin-friction coeflicient ReY ZCf.
It can be seen that the oscillation amplitude of skin friction coefficient increases by increasing
the values of S. Fig. 2.7(c) displays the results of the magnetic number M on the skin friction
coefficient Re;/ 2Cf with fixed § =1 and K = 0.1. It is noted that the oscillation amplitude of
the skin friction coefficient Rei-/ 2c ¢ is increased with an increase in M.

Table 2.1 gives the numerical values of skin friction coefficient Re}'2C t on the different
values of K, S and AMf at the different periods of time series. The results show that the values
of the skin friction coefficient for the three different time points 7 = 1.57, 5.57 and 9.57 are
almost identical. It means that the periodic motion may be reached within first period when
the initial conditions are set up. The change of the skin friction coefficient from positive to
negative with increase of A" as shown in Fig. 2.7(a)(but for slightly different parameters). It is

also found that the values of the skin friction coefficient are increased as the relative frequency
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to the stretching rate S or/and magnetic field M are increased.
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Fig. 2.2: Time series of the flow of the velocity field f* at the four different distances from the
surface for the time period 7 € [0.107| with § =2, M =10: (a) K = 0.1 and (b) K = 0.4.
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Fig. 2.3: Time series of the velocity field f’in first five periods 7 € [0, 107] at a fixed distance to
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K with § =2, M =10 and (c) effects of magnetic parameter Af with $ =1, K = 0.2.
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Table 2.1: Numerical values of the skin-friction coefficient ReimC ¢ for different values of

K, S. and M at three different time points 7 = 1.57, 7 = 5.57 and 7 = 9.57.

K|S |M |r=15% T = 5.57 T =9.57
0.0 1.0 | 12.0] 11.678656 | 11.678707 | 11.678656

0.2 5.523296 5.523371 5.523257
0.5 -3.899067 | -3.899262 | -3.899162
0.8 -11.674383 | -11.676506 | -11.676116
1.0 -15.617454 | -15.624607 | -15.624963

0.2 0.5 5.322161 5.322193 5.322173

1.0 5.523296 5.523371 9.5623257

2.0 6.08707 6.087031 6.087156

3.0 6.769261 6.768992 | 6.769294

4.0 7.497932 7.496924 | 7.496870

5.0 8.232954 8.229085 8.228996

1.0 | 5.0 | 2.323502 | 2.323551 2.323548

70 | 3.278018 3.278005 3.278123

9.0 | 4.197624 4.197771 4.197733

12.0 | 5.523296 5.523371 5.023257

15.0 | 6.791323 | 6.791301 6.791278
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Chapter 3

MHD flow and heat transfer over a
porous oscillating stretching surface

in a viscoelastic fluid

3.1 Introduction

This chapter concerns with the heat transfer of an unsteady two-dimensional and magneto-
hydrodynamics (MHD) boundary layer flow of a second grade fluid past a porous oscillating
stretching surface. By similarity transformations, the governing flow equations are reduced to
a system of non-linear partial differential equations. This system has been solved numerically
using the finite difference scheme, in which a coordinate transformation is used to transform the
semi-inflnite physical space to a bounded computational domain. The influences of the involved
parameters on the flow, the temperature distribution, the skin-friction coefficient and the local
Nusselt number are shown and discussed in detail. In fact. this chapter is an extension of the

work done by Abbas et al. [14].

3.2 Flow analysis

Consider the unsteady two dimensional magnetohydrodynamics (MHD) flow of incompressible

viscoelastic fluid (second grade fluid) over a porous oscillatory stretching sheet coinciding with
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plane ¥ = 0. The temperature of the outside surface of the sheet is maintained at a constant
temperature of T,, and far away from the sheet the temperature of ambient fluid is 75, where
Tw>T. Under these assumptions along with the boundary layer approximations, the governing
equations far law of conservation of mass, momentum and energy in absence of viscus dissipation

are:

B

Fig 3.1: Geometry of the problem

ou Ov
c‘% Siw 5 = U, (31)
@ﬂ@.ra_u_ua%w Fu 0 ( Pu) udv Bu| oBj -
o oz a0 oo m\"o) oy Vo 5 (32)
ar 9T
pcp(—+ta_ 8’) kag“ (3.3)

where ¢, is the specific heat at constant pressure, k is the thermal conductivity and 7 is the
temperature of fluid.

The appropriate boundary conditions of the problem are

u=1u, =bfsinwt, v=wv,, T=Tw at F=0. t>0. (3.4)
du
u=0, %—0 T—-Tx at y— oo, (3.5)



where v, is the wall mass transfer velocity with (v, < 0) is for suction, and (v, > 0) is for
injunction, respectively. The second condition in (3.5) is arugmented condition since the flow
is in unbounded domain and S = ¥, is defined in previous chapter.

To non-dimentionalize the flow problem, we use the similarity transformations defined in

Eq.(2.7) and

(T-Tx)

__(T._.‘ T (3.6)

af N
WYy, 7; =

With the help of Eq. (2.7) and Eq. (3.6), the continuity equation is identically satisfied and
Egs. (3.2) and (3.3) give

Sfyr + fy — Sy + M2 fy = fyyy + K (S fogwr + 2y Sy = fiy — F Frm) (3.7)

8,, + Pr(f6, — S6.) =0, (3.8)

subject to the boundary conditions

fy (07 T) = SinTy f (0! T) =7 9(0, T) = l; (39)
fy(00,7) =0, fip(o0,7)=0, 8(oo,7)=1, (3.10)
where 7 = —u,,/v/vb is constant with (v > 0) is for suction and (v < 0) is for injection and

Pr = pc,/k is the Prandt] number

The physical quantities of interest are the skin-friction coefficient Cs and the local Nusselt

number Nuz, which are defined as

Tw ? f’lu
Cy = N —t— o -
I= odl - (T =To) \eay

where 7. and ¢, are the shear stress and heat flux at wall, respectively, which are defined as

(™Y (T
w = H ‘\ag}y=0: Qu k( )f=0' (312)

33



Using Egs. (2.7), (3.6) and Eq. (3.11), Eq. (3.12) gives
RC:'QCI = [foy + K (Bfyfyy + Sfyyr — ffyyu)];.o , Rez'*Nuy =—6,(0,7) (3.13)

where Re; = u,,Z /v is the local Reynold number.

3.3 Solution of the problem

We solve the non-linear boundary value problem consisting of Eqs. (3.7) and (3.8) with the
boundary conditions (3.9) and (3.10) using finite difference method. For this purpose, we have
been used the same coordinate transformation 7 = 1/y + 1 (as used in chapter 2) to transform
the semi-infinite physical domain y € [0, o} to finite calculation domain 5 € [0, 1]. Using. Eq.
(2.13), the Eq. (3.7) will be same as in the previous chapter and Eq. (3.8) can be written in

the form of 7 as

d°4 7 08 o9 o8
AU 5 3V QW . N,
" on? = dn Prfn an s(').-) 0, (3.14)
and
fy) =0, f,rr,:O, 6 :0 at 77———0 (3.15)
f=7 fo=-sint, at 6=1 7gn=1 (3.16)

Because Egs. (2.14) and (3.14) are differential equations, we can discretize them for L uniformly
distributed discrete points in n = (v;,. T250emeues T “) € (0, 1) with a space grid size of An =
1/(Af +1) and time level t = (¢!, ¢*.....). Hence the discrete values (f{*, fZ, ......, f}) and
(97, 653, ..... , 87) at these grid point for time levels " = nAt (At is the time step size) can
be numerically solved together with boundary conditions at 7 = 3 =0 and n = 5 iy =1

(3.15) and (3.16) , as the initial conditions are given. We start our simulations from a motionless

velocity field and a uniform temperature distribution equal to temperature at infinity
f(p, 7=0)=0 and 8{n.T=0)=0. (3.17)

The oscillatory motion of the sheet with a temperature T, (6 = 1) is suddenly set from 7 = 0

at n =1 (y = 0). We will see that this periodic motion will be immediately reached within first
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period. We construct a semi-infinite time difference for f and #, respectively, and make sure
that only linear equations for the new time step (n + 1) need to be solved. The equation of the

velocity field for new time step (n + 1) will similar to Eq. (2.18) and Eq.(3.14) becomes

O(n-‘l) ol 9(’14!\ 82 aln+1) asn+1) anin+1)
() B s

By At on? on on

It should be noted that other different choices of time differences are also possible. By means
of the finite difference method we can obtain two linear equation system for fl("q" and 6"*"

i = (1, 2,....M) at the time step (n + 1), which can be solved, e.g. by the Guassian elimination.

3.4 Results and discussion

The system of non-linear partial differential equations consisting of Eqs. (2.14) and (3.14) with
boundary conditions (3.15) and (3.16) has been solved numerically using finite difference scheme
to compute the velocity and temperature profiles. The velocity field f' (1) and the temperature
profile 6 (7) are plotted to analyzed the influence of the various parameters, for example, the
viscoelastic parameter K, the suction parameter 5. the non-dimentional relative amplitude of
frequency to stretching rate S, the magnetite parameter A and the Prandtl number Pr for
the time series of the first five periods 7 € [0,107] and the transverse profiles. Furthermore,
we compute and show the values of the skin friction coefficient Re,l-,/ o) r and the local Nusselt
number Re; '°N ug for different involving parameters both graphically and in tabular form.
Fig. 3.2 shows the time series of the velocity component f  at the four different values of
distance y from the oscillatory sheet for the first five periods 7 € [0, 107] by keeping S = 2,
M =10, v = 0.5 and K = 0.1, 0.4 fixed, respectively. It is evident from Fig. 3.2(a) (K =0.1)
that as we increase the distance from the oscillatory sheet, the amplitude of flow decreases.
It is further noted that far away from the surface, the amplitude of the flow motion is almost
is almost vanished (approached to zero) for larger distance from the surface. We observe the
similar phenomenon from Fig. 3.2 (b) for the value of K = 0.4. However, for A = 0.4 the
amplitude of the flow motion is large as compare with K = 0.1. This indicates as increased

effective viscosity with the increase of the non-Newtonian parameter K. It is also observed that
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the amplitude of the flow motion increases in the presence of the suction parameter (y = 0.5)
as compared with (y = 0).

Fig. 3.3 illustrates the influence of the viscoelastic parameter A, the magnetic parameter A
and the suction parameter 7 on the time series of the velocity component f' at a fixed distance
y = 0.25 from the sheet, respectively. Fig. 3.3(a) shows the effect of the viscoelastic parameter
K on the time series of the velocity profile f by keeping § = 2, Ml = 10 and 4 = 0.5 fixed.
From this Fig. we see that the amplitude of the flow motion increases by increasing the value
of K due to the increased effective viscosity and a phase shift occurs which increases with the
increase of K. Fig. 3.3(b) gives the effect of the magnetic parameter A on the time series of
the velocity component f with fixed values of § = 2, 4 = 0.5 and K = 0.1. It is found from
this Fig. that the amplitude of the flow motion is decreased with the increase of the magnetic
field. This is because for the present analysis the magnetic force acts as a resistance to the flow.
Fig. 3.3(c) shows the time serics of the velocity field f* for the different values of the suction
parameter v with fixed values of § = 2. M =12 and K = 0.2. It is evident from this Fig. that
the amplitude of the flow motion increases for the large values of the suction parameter ~. It is
also noted that a phase shift occurs which also increases with the increase of ~. Furthermore,
it is also observed from this Fig. that only slight phase difference occurs among the time series
for various values of M in comparison with those for different values of 4 and K.

Fig. 3.4 depicts the variation of the viscoelastic parameter K on the transverse profile of the
velocity f' for the different values of 7 = 8.5%. 9, 9.57 and 10~ in the fifth periods 7 € (87, 107}
for which a period motion has been reached. It can be seen from Fig. 3.4(a) that at a time
7 = 8.57. the velocity f — 1 at the sheet y = 0 equating the surface velocity and f — 0 far
away from the surface. It is also found that at this point of time. there is no oscillation in the
velocity profile and the velocity f is an increasing function of the viscoelastic parameter K,
i.e. by increasing the values of K the boundary layer becomes thickener. Fig. 3.4(b) presents
the velocity component f* at time point T = 97 for various values of K. It can be seen from
this Fig. that at this time point velocity profile f* is zero at the sheet y = 0 and far away from
the wall it again approaches to zero. It is also observed that near the surface, there exist some
oscillation in the velocity field and the amplitude of the flow is increased with an increase in

K. This oscillation in the transverse profile is an evidence of a phase shift in the viscoelastic
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fluid (K # 0) against the viscous fluid (K = 0). Fig. 3.4(c)-(d) displays the velocity fleld f for
others two time points within the fifth periods. It is evdient from Fig. 3.4(c)-(d) that the flow
in the whole flow domain is almost in phase with the sheet oscillator in the case of Newtonian
fluid (K = 0), as shown from the solid lines displayed in Fig. 3.4(a}-(d). Furthermore, we can
see from Fig. 3.4 that the boundary layer thickness is increased by increasing the value of K.

Fig. 3.5 gives the effect of the magnetic parameter M on the transverse profile of the velocity
component f for the different times of 7 = 8.57. 97, 9.57 and 107 with fixed values of S =1,
v =05 and K = 0.2. It is evdient from this Fig. that the influence of the magnetic fleld
causes to reduce the velocity fleld f and the boundary layer thickness. As expected, this is
because the magnetic force is a resistance to the flow and reduces the magnitude of the velocity.
However at 7 = 97 (Fig. 3.5((b)) and 7 = 10w (Fig. 3.5((d)), there exist still the oscillations
in the transverse profiles near the wall, their amplitudes are fairly small. It is also noted that
for different values of magnetic parameter M, the phase difference is almost invisible.

Fig. 3.6 presents the variation in the transverse profile of the velocity field f for various
values of the suction parameter -y at different times of 7 = 8.5, 9=, 9.57 and 107 in the fifth
period by keeping S = 2, M = 12 and K = 0.1 fixed. The change in the velocity f  for different
values of  at time 7 = 8.57 at the sheet can be seen from Fig. 3.6{a). It is found that the
velocity is equal to the surface velocity (f = 1) at the sheet ¥y = 0 and far away from the sheet
it approaches to zero. Furthermore, the velocity profile is increased by increasing the value of
the suction parameter 4. The influence of the suction parameter ~ on the velocity f at the
time 7 = 97 is presented in Fig. 3.6(b). It is evident from this Fig. that at this time point the
velocity takes its value at the wall almost to zero (f — 0) and a phase difference occurs as we
increase the distance from the plate. It is also noted that a phase difference increases with the
increase of 7. The velocity fields for other two time points within the fifth are plotted in Fig.
3.6(c) and (d) and the same observations are found.

Fig. 3.7 shows the effect of the viscoelastic parameter K, the magnetic parameter A/ and
the suction parameter v on the shear stress at the wall Re,l:/ 2C ¢ for the time series in the
first five periods 7 € [0, 107]. Fig. 3.7(a) elucidates the change in the skin friction coefficients
R,ealp/ 2Cf for different values of K by keeping S = 5, A = 12 and 5 = 0.5 fixed. It is observed

that the skin-friction coefficient varies also periodically due to the oscillation of the surface and
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the amplitude of Rel QCI increases for large values of K. Fig. 3.7(b) gives the variation of the
magnetic parameter A on the skin-friction coefficient ReilzC 7. It is evident from this Fig. that
the oscillation amplitude of the skin-friction coefficient increases as M increases. Fig. 3.7(c)
displays the results of the suction parameter v on the skin-friction coeflicient Reych with
fixed values of S =1, M = 12 and K = 0.1. It is noted that the oscillation amplitude of the
skin-friction coefficient ReyzCI is increased by increasing the values of suction parameter «.

Fig. 3.8 displays the effect of the Prandtl number Pr, the suction parameter 7 and the
magnetic parameter M on the transverse profile of the temperature 8 for the time point r = 87
with fixed value of § = 2. Fig. 3.8(a) shows the variation of the transverse profile of the
temperature distribution # for different values of Pr at the time point 7 = 8%. As expected, it
is evident from this Fig. that both the temperature distribution # and the thermal boundary
layer thickness are decreased for the large values of Pr due to the decreased thermal diffusivity.
The influence of the suction parameter -y on the temperature field 8 can be seen from Fig. 3.8(b)
in the fixed time 7 = 8. It is found that from Fig. 3.8(b) that the temperature is a decreasing
function of the suction parameter . The thermal boundary layer thickness also decreases by
increasing the value of v. Fig. 3.8(c) gives the variation of the magnetic parameter M on the
temperature profile 6 for various values of M with fixed values of § = 1, v = 0.5, K = 0.2, and
Pr = 5. As magnetic parameter M increases, both temperature § and thermal boundary layer
thickness are increased.

Fig. 3.9 presents the results of varying the Prandtl number Pr and suction parameter 4 on
the time series of the temperature distribution 6 in the first five periods 7 € [0, 107] at a fixed
distance y = 0.25 from the sheet. Fig. 3.9(a) shows the changes of temperature with respect to
Pr by keeping § =2, v =0.1, K = 0.2 and M = 12 fixed. It can be seen that with the increase
of Prandtl number Pr, i.e., with decrease of thermal diffusivity or the increase of specific heat,
the increase in the fluid temperature becomes slower. Fig. 3.9(b) illustrates the effects of the
suction parameter - on the temperature profile 6 in the first five periods 7 € [0, 107] . It is noted
from this Fig. that with the increase in the suction parameter v , the decrease in temperature 8
with time becomes slower. Furthermore, it is observed form Fig. 3.9, a small oscillation, which
is superimposed on the monotonically increasing in temperature time series, can be identified

for large values of Pr an .
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Fig. 3.10 presents the physical significance of the Prandtl number Pr and the suction
parameter « on the time series of the local Nusselt number Re;” N 1z in the first time periods
7 € [0,107]. Fig. 3.10(a) depicts the influence of Pr on the local Nusselt number Re; YiNu,
with fixed values of K = 0.1, § =2, M = 12 and v = 0.1. One can see from Fig. 3.10(a) that
the magnitude of the local Nusselt number Re;l/ “Nug is increased by increasing the values
of Pr. The variation of the suction parameter  on the local Nusselt number Re, 172py Uz can
be seen from Fig. 3.10(b). It is found that the local Nusselt number Regl‘lzNu,; has similar
effects for the values of 4 as compared with the case of Pr. However, it is noted from this Fig.
that for 7 = 0, the local Nusselt number has its maximum and then decreases monotonically
because for the given initial conditions, the temperature gradient at the sheet has its maximum
initially and decreases with time.

Table 3.1 shows the numerical values of the skin friction coefficient Real,/zc ¢ for various
values of S, K, M and v at the different periods of time serics 7 = 1.57. It is evident from
this table that the value of skin friction coefficient for the three different time periods 7 = 1.57,
7 = 5.5 and 7 = 9.57 are almost identical. Furthermore, we can see that the periodic motion
may be reached within the first period when the initial conditions are set up. However, the
change of the skin friction coeflicient from positive to negative by increasing the value of K
indicates the large phase difference as K increases. It is also noted that the value of the skin
friction coefficient Rei/ 2Cf are increased as the relative frequency to the stretching rate S, the
magnitude M and the suction parameter v are increased.

Table 3.2 gives the numerical values of the local Nusselt number Re;l/ 2Nux for various
values of the Prandtl number Pr, the viscoelastic parameter K. the magnetic parameter Af
and the suction parameter 7 at the four different times periods 7 = 2w, 7 = 47, 7 = 67 and
7 = 8. It can be seen that the local Nusselt number increases by increasing the value of Pr K,
M and + for all four times periods 7 = 2%, 7 = 4m, 7 = 6ir and T = 87 and various values of
local Nusselt number are also decreases when the time periods increases due to the decrease in

the rate of heat transfer near the sheet.
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Fig 3.2: Time series of the flow of the velocity profile f’ at the four different distances from
the sheet for the time period 7 € [0,107]| with § = 2, M = 10, 7 = 0.5 :(a) A = 0.1 and (b)
K =04.
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Fig. 3.3: Time series of the velocity profile f'in the first five periods 7 € [0,107] at a fixed
distance to the sheet, y = 0.25: (a) effects of viscoelastic parameter K with ,§ = 2. M = 10,
v = 0.5, (b) effects of magnetic parameter M with S = 2, K = 0.1, v = 0.5 and (c) effects of
suction parameter v with S =2, K =0.1, M = 12.
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Fig. 3.4: Transverse profiles of the velocity field f' at the four different values of K for the
fifth period 7 € [87, 10| for which a periodic velocity field has been reached: (a) 7 = 8.5, (b)
7 =9m, (¢) 7 =9.5%, and (d) 7 = 107, with § =2, M =10 and vy = 0.5.
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Fig. 3.5: Transverse profiles of the velocity field f’ at the four different values of A for the
fifth period 7 € [8, 107| for which a periodic velocity field has been reached(a) = = 8.57, (b)
T =97, (¢) 7=9.57 and (d) 7 = 107 with S =1, A =0.2 and ~ = 0.5.
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Fig. 3.6: Transverses profile of the velocity field f’ at the four different values of + for the
fifth period 7 € [87, 107 for which a periodic velocity field has been reached: (a) 7 = 8.5%. (b)
T =9, (¢) 7 =9.57 and (d) 7 = 107 with S =2, K = 0.1 and M =12,
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Fig. 3.7: Time series of the skin friction coefficient Re;/ QCf in the first five periods 7 €
[87,10%] : (a) effects of K with § = 5, M = 12, v = 0.5, (b) effects of Af with K = 0.1
M =12 4 = 0.5 and (c) effects of 7 with A =0.1, § =1, M = 12.
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Fig. 3.8: Transverse profiles of the temperature field 8 at the time point 7 = 8 : (a) effects

of Pr with K = 0.2, 7 =05, § = 2, M = 12, (b) effects of v with K = 0.1, § = 2, Af = 12,
Pr =5 and (c) effects M with K =0.2, S =1.~ = 0.5, Pr =5.
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Fig. 3.9: Time series of the temperature profile 6 in the first five periods 7 € [0, 107] at a fixed
distance to the sheet, y = 0.25: (a) effects of Pr with K = 0.2,y = 0.1, M =12, § = 2 and
(b) effects of 4 with K = 0.1, § = 2, Pr = 0.5, M = 12.
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Fig. 3.10 : Time series of the local Nusselt number Re; 172p u, in the first five periods 7 €
[0.107] : (a) effects of Pr with K’ = 0.1. § = 2, M = 12, 7 = 0.1 and (b) effects of suction
parameter v with K = 0.1, S =2, M =12, Pr =0.5.
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Table 3.1: Numerical values of the skin-friction coefficient Re;/ 2c 7 for different values of

v, M, S, K and three different time points 7 = 1.57, 5.57, and 9.5.

S |K |Mijy |7=157 |T=0557 T = 9.5%
05]02 12| 0.5 | 7.366961 | 7.366926 7.366853
1.0 7.476053 | 7.475794 7.476022
2.0 7.790178 | 7.789762 7.789836
3.0 8.202400 | 8.203105 8.202807
4.0 8.682439 | 8.682915 8.682859

1 0.0 11.724166 | 11.724170 | 11.724170
0.2 7.476053 | 7.475794 7.476022
0.5 1.630439 | 1.630612 1.630288

0.8 -3.674101 | -3.674865 | -3.673871

1.0 -6.956304 | -6.956581 | -6.955569

5 2.732155 | 2.732089 2.7321590

7 4.033675 | 4.0335629 | 4.0336795
9 5.382074 | 5.382172 5.381872
12 7.476053 | 7.475794 7.476022
15 9.63356 9.633849 9.633961

12 1 0.5 | 12.228457 | 12.224979 | 12.226006

1.0 | 14.640233 | 14.6431046 | 14.646995

1.5 | 16.605499 | 16.609908 | 16.5938511
2.0 | 18.266957 | 18.250942 | 18.282542
2.5 | 19.738842 | 19.764313 | 19.748855
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Table 3.2: Numerical values of the local Nusselt number Re;1/2N u. for different values of

Pr, K, M and four different points 7 = 2%, 7 = 4w, 7 = 67, and 7 = 87, when S = 3.

Pr|K [ M|~y |2 47 67 8w

1 0.2 | 10 | 0.1 | 3.955616 | 3.534056 | 3.419845 | 3.386686
3) 6.137262 | 4.824050 | 4.346720 | 4.123851
5 8.179701 | 6.212831 | 5.439938 | 5.050552
7 6.137262 | 4.824050 | 4.346720 | 4.123851

10 8.179701 | 6.212831 | 5.439938 | 5.050552
1.0 | 0.0 3.926829 | 3.507357 | 3.393924 | 3.360903
0.3 3.955694 | 3.534629 | 3.418675 | 3.385991
0.8 3.974724 | 3.553044 | 3.433939 | 3.401853
1.0 3.977727 | 3.556061 | 3.435827 | 3.4040001
1.5 3.978796 | 3.557350 | 3.434803 | 3.403525
027 4.603919 | 4.376667 | 4.315560 | 4.308688
9 4.611656 | 4.329706 | 4.277972 | 4.274563
12 4.628754 | 4.362667 | 4.299070 | 4.292905

15 4.643919 | 4.376667 | 4.315560 | 4.308688
20 4.663319 | 4.394577 | 4.336987 | 4.329227
12 | 0.0 | 3.733978 | 3.324538 | 3.214515 | 3.182517
0.5 | 4.965208 | 4.497219 | 4.366434 | 3.329196
1.0 | 6.510785 | 5.995219 | 5.845916 | 5.804440
1.5 | 8.392912 | 7.847680 | 7.684304 | 7.640581
1.8 | 9.691076 | 9.138652 | 8.969649 | 8.925759
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