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Preface
M any fluids in the industry and technology d o  not obey the N ew ton ’ s law o f  viscosity and are usually 
classified as a non-Newtonian in nature. For exam ple, blood, yoghurt, ketchup, sham poo, mud, paint, 
polym er melts and greases etc. have com plicated relationship between the shear stress and rate o f  strain 
are non-Newtonian fluids. The boundary layer flow  o f  these fluids and heat transfer analysis on a 
continuously m oving surface has a w ide range o f  application on engineering and industrial process, for 
exam ple, the manufacture o f  plastic fluids, artificial fibers and polym eric sheets, plastic foam  processing, 
in the extrusion o f  a polym er sheet from  a die, heat treated materials travelling between a feed role and 
many others. A fter the work o f  Sakiadis [1,2] on  a continuous m oving surface, many researchers studied 
the various aspects o f  flow  and heat transfer characteristics in a non-N ew tonian fluid with/without 
magnetic field over a stretching surface. Som e important studies are Rajagopal et al. [3], Dandapat and 
eqiptra [4], M cL eod  and Rajagopal [5 j, R ollins and Vajravelu [6, Cortell [7,8], Nazar et al. [9], Ishak et 
al. [10], Hayat et al. [11] and many references their in.

In the above mentioned investigations the stretching velocity  o f  the sheet is linearly proportional to the 
distance along the flow . T o  the best o f  our knowledge, W ang [12] first discussed the various flow  due to 
an oscillating stretching surface. The flow  is induced due to an infinite elastic sheet which is stretched 
back and forth in its ow n plane. A bbas et al. [13] extended the problem  o f  [12] to study the heat transfer 
o f  a viscous fluid over oscillatory stretching surface with flo w / thermal slip condition. Recently, A bbas et 
al. [13] attempted the firs problem regarding the boundar>- layer flo w  o f  a second grade fluid due to an 
oscillator)' stretching sheet with magnetic field. They have also studied the non-linear partial differential 
equation both num erically using fm ite-difference method and anal>tically using hom otopy analysis 
method (H A M ). In the light o f  this, the present dissertation is arranged as follow s:

Chapter one aim to present som e basic definitions and flow  equations which one used in fluid mechanics. 
Chapter tw o deals the boundary layer flow  o f  an electrically conducting second grade fluid due to an 
oscillatory stretching surface. The solution o f  the non-linear partial differential equations obtained 
num erically by em ploying finite difference method. The influence o f  the interesting parameters on the 
velocity  field  and skin-friction coefficien t is shown through graphs and tables. This chapter is a review  o f  
the w ork done by A bbas et al. [14].

Chapter three looks at the M H D  flow  and heat transfer over a porous oscillating stretching sheet in a 
viscoelastic fluid. The governing flow  equations are transformed into a set o f  non-linear partial 
differential equations. The finite difference method is em ployed to obtain the solution o f  this system. The 
effects on the flow , temperature field, the skin-friction coefficien t and the local Nusselt number are shown 
through graphs and tables. In fact, this chapter is an extension o f  the w ork done by A bbas et al. [ 14].
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Chapter 1

Basic Definitions

This chapter aims to describes some basic definitions and flow equations which are used in fluid 

mecliauics. The basic idea of finite difference method is also given in this chapter.

1.1 Fluid Mechanics

It is the branch of engineering and physics that deals with nature and properties of the fluid 

both in motion or at rest. In practice, the study of fluid mechanics can be divided into the 

categories.

1.2 Flow

Flow is a substance or material goes under deformation in the presence of different forces. If 

the deformation exceeds continuously without limit then this phenomenon is known as flow.

1.3 Fluid

A  fluid is a substance or material that deforms continuously under the application of shear 

stress, no matter how is material small the shear stress.



1.4 Velocity Field

In dealing with fluid motion, we shall necessarily be concerned with the description of velocity 

field. In general at given instant the velocity field V  is function of space coordinates x, y , z  and 

time t. The velocity at any point in flow field might vary from one instant to another. The 

complete representation of velocity field is given

V ^ V ( x ,  y. 2, t). (1.1)

1.5 Viscosity

In general, it is defined as the ratio of shear stress to rate of shear strain, i.e.

shear stress 
 ̂ rate of shear strain [dujdy]

where {j. is coefficient of viscosity.

1.6 Kinematic viscosity

It is the ratio of the viscosity to density of the fluid, and it is given as

^ =  (1.3)
P

1.7 Classification of fluids

There are two main types of fluids

(i)Ideal fluids

(ii) Real fluids

(i) Ideal fluids

A  fluid for which viscosity is zero are termed as ideal fluid. The fluids with zero viscosity 

offers no resistance to shearing forces and hence during the flow the deformation of fluid all 

shear forces are zero. An ideal fluid is fictitious and does not exist in natme however many



fluids under certaiin engineering applications show negligible viscosity effects and can be treated 

as ideal fluids.

(ii) R eal fluids

All fluids for which the \'iscosity is not equal to zero is known as real fluids. Real fluids are 

further divided into two main classes.

(a). Newtonian fluid

(b). Non-Newtonian fluid

(a ) N ew ton ian  fluid

All fluids which satisfy the Newton’s law of viscosity are called Newtonian fluids. The 

Newtonian law of viscosity is stated as "shear stress is directly and linearly proportional to rate 

of deformation". Mathematically, it is stated as

oc (1.4)

or
/  du

where Tyx is the shear stress acting in the plane normal to y-axis and in the direction parallel 

to x-axis and is constant proportionality, known as absolute or d>Tiamic viscosity. Water, 

air and gasoHne are examples of Newtonian fluids.

(b ) N o n -N e w to n ia n  fluid

All fluids which do not obey Newton’s law of viscosity are called non-Newtonian fluids. 

These types of fluid obey the power law model in which shear stress is directly but nonlinearly 

proportional to the rate of deformation. Mathematically,

yx CC

V  =  fc( — ) , (1.7)

where n is called the flow behavior index and k is the consistency index. Examples of non- 

Newtonian fluids are shampoo, gel, blood etc.



1.8 Internal flow systems

All those where fluid flows through confined spaces, e.g.. flow through pipes, pumping of blood 

through blood arteries and water in channels.

1.9 External flow system

All those where confining boundaries axe at relatively larger or at infinite distances such as 

atmosphere through airplane and space vehicles travels.

1.10 Stress field

A field in which surface forces and body forces are incountered called stress field. A  stress field 

is a region where the stress (surface forces and body forces)is defined at everj’ point.

1.11 Surface force

The surface force include all the forces acting on boundary through direct contact. Since theses 

forces act only in short range, therefore these forces are also called short range forces.

1.12 Body force

The forces which do not require any physical contact with boundary and distributed over the 

whole volume of the fluid are known as body forces. Gravitational and electromagnetic forces 

are categorized as body forces. These are infect long rang forces.

1.13 Pressure

Pressure is the surface force that acts normal to the area under consideration. The force per 

unit area is called pressure. Let A  is the surface area of fluid and F  is magnitude of force acting 

normal to surface, then pressure P  due to the force on unit area of this surface is defined as



P = j -  (1-8)

1.14 Maxwell’s equations

Maxwell’s equations are the set of four equations which relate the electric and magnetic field 

to their sources, charge density E ind current density. Individually, these equations are known 

as Guass’s law, Gauss’s law for magnetism, Faradays law of induction and Ampere’s law with 

MaxxweUs correction. These equations are described as

V . E - - ^ .  (1.9) 
eo'

V . B - 0 ,  (1.10)

V x E  =  - f ,  (1.11)

V  X B  =  /Xgj +  (1-12)

In above equations 6q is the permittivity of the free space also called electric constant, iiq is 

the permeability of free space which is also called magnetic constant, p is the total charge 

density and J is the total current density. The total magnetic field is Bq =  {B q +  b), where b  

is induced magnetic field. By Ohm’s law in generalized form we have

J =  ct(E  +  V x B ) ,  (1.13)

where cr is the electric conductivity of the fluid. In the present case there is no applied electric 

field, also the induced magnetic field is neglected due the assumption of flow' magnetic Reynold 

number. Therefore, the Lorentz force in the direction of the flow becomes

(J X  B ) -  (1.14)

where B q is the applied magnetic field and V  is the velocity.



1.15 Governing Equations

1 .1 5 .1  E q u a t io n  o f  c o n tin u ity

The mathematical relation of conservation of mass for fluid is known as equation of continuity. 

It has the following form

I ?  +  V . (pV ) =  0, (1.15)

and for incompressible fluid it reduces to

V .V  - 0 .  (1.16)

1 .1 5 .2  E q u a t io n  o f  m o tio n

The motion of fluid is governed by law of conservation of momentum. The application of this 

law to an arbitrary control volume in flowing fluid yield the following equation commonly known 

an equation of motion.
d V  

p—— =  —Vp +  d ivT +p b . (1-17)
at

In above equation T  is Cauchy stress tensor and b is body force per unit mass.

1 .1 5 .3  E n e r g y  e q u a tio n

Energy in a system may take on various forms (e.g. kinetic, potential, heat, Hght). Mathemat­

ical form of energy equation is described as

DB
pcp— =  T X - V . q ,  (1.18)

in which

L -  V V .  (1.19)

Energy equation also represent the ‘Law of Conservation of Energy’.



1.16 Boundary layer equation in second grade fluid

The law of conservation of momentum is given by

P ~ ^  — divT +  J X  B,

where B  is the magnetic field and is given by

B - ( 0 ,So .O) .

The Cauchy stress tenser T  for second grade fluid is

T  -  - p I + F ,  

where F  is the extra stress tensor and is given by

F  =  1.1A 1 +  a i A 2 +  Q2A 1

(1.20)

(1.21)

(1.22)

(1.23)

where p  is the pressure, I is identity tensor, and cni and are material module and A i  and 

A 2 are the Rivilin-Ericksen tensors and given by

A i  =  L  +  L S

A 2 =  ^  +  A iL  +  L'TAi. 
at

where L  =  grad V  and L ^ ’ =  (grad V ) ^  and the material derivative. 

For unsteady two-dimensional flow, we take the velocity field in the fonn

V  =  [ u { x , y , t ) ,  v { x , y , t ) ,  0],

and

L  =

(1.24)

(1.25)

(1.26)

du du
dx
dv dv
dx

0 0

(1.27)



A iL  =

Ai

du dv
d x d x

du dv

0 0

o d u du dv

du
"By

dv
55

r\dv

o  ( du \ ^  , f  du I d v \  dv
S i

{ _L Qa I o  dv dv  
\ a y  d x )  d x  ^ d x & y

0

2 ( i ) ' + ( t
cydu du  I dv (  

d x ^  ' d y  \

0

1 dv
+  m

du

dv
m

dv
"Bx0

A ?  =

Now Eq. (1.25) becomes

n d u  du r ( du , 9 v  ̂  dv

( ^  \ du  I r, { du\^
\ & y ^  d x )  d y ^  ^ \ & y )

0

( du I d v \  du  I r td v d v  
B x J d x  dy

^  { du , I / d v \ ^
d y \ d y  d x )  ^  ^  \ & y)

0

4
^  U x J  ^  { d y  ^  d x )

cydu du  I ^  _l_ 9 ^  ^  _1_ O dv dv 
B x ~By d x  d x  ^  "  dy dy d x  dy

0

2 du du  I d tt 9 v  \ e )d v d u  1 
a — ^5.. “ r  “ r  ^  75:̂  ISTT “ r  ^'5x

( S )

(1.28)

(1.29)

(1.30)

A 2 =

I o  ̂dv I odu dv
+  - l g 5 j  + ^ ^ d 5

d^u I d̂ v
d fd y  d td x

+ ^ d ^  + '^ 5 5 ^
► d u  du

I d u  d v  _i_ du  ^  _j_ d^v  
S y  S y 5 x  da; ' d xd y

d^u , d̂ i> I , ,  d£u

.d ^ u  I o d u d u  I o d u d u

+  U 0
i, ,c »  u I o o v  av  I o<

^  I ^  §21 I ,,
“ '■ d y  d y  ■'" d i  dx

_d£tL
d xd y

2 i |  +  2« | ^  +  2u ^  
2

+ 4 ( i )  + 2 ( 1 )  + 2| g

(1.31)
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After using the \-alues of A i, A 2.and A f, Eq. (1-23) gives

F  =

+ 4 ( i ) '  +  2 ( i ) ^

o y  a x  i

A ( 9 u \ ‘̂  , ( du  , d v \

A  I -  f  d^u I d^v 
cj +

+ a 2

+ u

5 u  r dv  
+

I Q 5 i ’ du  r o d u  du I du dv  
^  5a: ~By 'Ey

, d u  dv  
''Sx'Bx

+U

I dv
)  + “ l {

d'^u I

Sx5y
I , , c r u  I o o u  ov

dtdy

d^u
W

du dv

dtd x  

I dv dv

l O ^ d u  I d u d v  I au o v  
~ ^ '^ d x& y~ ^  dy d y  d x  d x

d x  dy

,, dH X 
d xd y  J

+0:2
ffy d u  du  I du dv , cydv du , n d v  d v\  
^  dy d y  ' ~  d x  dy J

2/^ g  +  « i { 2 | i
d^V

+ 2 « 0  +  2 « ^ + 4(1)
+ 2(| 7)"  +  2 | ;| ? }

4_q 2 + 2 | ^ #^ V a x  ^  ' a x  a x  d y d y  d x  dy

0

Using Eq.(1.32) in Eq.(1.22) gives

+ « 2

d y ' dy d x

/

(1.32)

11



XX T xy 0 r dp
” 55 0 0

T yx ’’'yy 0 — 0 0

0 0 0 0 0 0

-f

+ a i

+ «2

2

+2v

d̂ u + 2u d̂ u

+ 4 ( i r  

+ 2( S ) ^  +  2 t i i  

4 ( i i f + ( s  +  i ;

/  §u I 
[ d y ^ d x j

+Ql

d t6y ' dtdx

+ ' '| ¥  +  3 S g
, n d u  du I 5 u  5u+  '^ 5 ^ ^  +

+ a 2

+ i i + < '

2i t + 2

JiiL 
dxSj/ j

5u
5x 5x

1 O 5ti u_ O

M 0

+ a i

+ u

â u
dt&y

d̂ u

dv
~5i
I d'̂ v

dtdx

+  “ &dxdy  
d'^u I o d v  dv

d y  dy

___d'̂ v
d x d x  ^ d xdy .

9uc 
d x  ^

, o d u d u  t « 5 ^

d u d v  I ..

+^2
9  ̂  ^  I du dv  

~Bxdx
\

'd x  dy  
_^<ydv du____ i_ o  dv dv

~Sy dy ' "̂  d x  dy

dv 0-1 4-2u

d'̂ v
dtdy

d\’
dxd y

' du  • 
dy

+  2v 

+  4

d~̂ v
W

r
I o /  Ou \2  I r)du dv

+ a 2 ( 4 ( | )  + ( i f + g '
2\

(1.33)

'  dv'^
^ d t)

^dv\ 

\ ^ ) y ~

dx

d Z
dx

+
dT-xy

dy

y x
+

dy
yy

(1-34)

(1.35)

12



By solving above Eqs. (1.34) and (1.35). we get

du du du 1 dp ( d^u d^u
— — ^ — I-1' 

p o x
+

( l O ^ u  I I ( d ^ u  ,[ 1 ^ 9 ^  +  ^ ) + u  ^
I o d̂ u I ,, / d v̂ . d̂ u \

^ )
I o 5 t ’ ftidv,^  I d^u ^  I o d u  f  d'^u I

+ ^ 55  \ fd ^  +  ^ ^ j
I o d̂ u I £^u I d̂ v 

“  dtdx^ d td y- dtdx&y

+
2ol2 dud'^u du  /  d^u dv  /  d^u d v ^ \

dx dx‘̂  5y y dxdy dx^ ̂  ^  5x \ dxdy dx‘̂ J .

(tB qU
(1.36)

dv dv dv 1 d p  /  d “̂ v  a i

p d y ^ ^ \ d x ^ ^ d y ^ ) ^  p

d̂ u I d v̂ I o 
dtdx&y ' dtdydx'^ “ dtdy'^

I dv ( io 5 ^ v  I I 1, / d^v I d“̂ v \

I . .  ( I d^v \ I n  f  du d'^u , d^v ^  

, o  ( dv  d^v ,
' ^ W )

+
2a2 dv du f  d^v 5^u\ dv /  d^v d^u''

dydy^ dy \dxdy dy^)  ^  dx dx"^)
crBl

|l.37)

Using [15)

u  =  0 ( l ) ,  v =  0 {6) ,  x  =  0 ( l ) ,  y  =  0 ( ( 5 ) ,

W e get

T . T„
=  0 (1 ) ,  - ^  =  0 (5 ) ,  - ^  =  0 { 6 %  

P P
(1.38)

du du du d^u ko ^ u  d (  d^u\ dud^v d^u

dtdy"^ dx  \ dy“̂ )  dy dy^ dy^

o B l
u, (1.39)

where [16]

/i > 0 , £*1 >  0 , Qi +  Q2 =  0.

and now Eq. (1.39) can be written as

(1.40)

du du du d'^u a i
a t + “ ^  +  ’ ' ^  =  ‘^ ^  +  7

du d^u ^ u  du d^v ^ u
+  U-T— —s +  T -̂TT-:? +  V

dx dy'  ̂ dxdy"^ dy dy^ dy^
^ u .  (1.41)

13



1.17 Finite difference method

Finite difference method is an approximate method in the sense that derivatives at a point 

are approximated by difference quotient o\'er a small interval. It was first utilized by Euler, 

probably in 1768.

Assume that function F  and its deri\’atives are single valued, finite and contain fimction of 

2, then by Tayler’s theorem

and

F { z  +  h) =  F { z )  +  h F ' (z) +  ~ F '  {z) +  y  r  (z) +  0 {h^)

F { z - h )  =  F  {z) -  h F ' (z) +  ^ F >  (z) -  % F \ z )  +  0 (h^)

(1.42)

(1.43)

where 0{h^) denotes term containing fourth and higher pow-er of h. These approximations gives

(1.44)

/ d F \

f d F \  ^ F { z  +  h ) - F { z )  
h

^ F { z ) - F { z - h )
h

(1.45)

w'ith the error of order h. W e assume that containing second and higher power of h are negUgible. 

Eq. (1.44) and Eq. (1.45) are called forward and bgickward difference formulae. Subtracted Eq. 

(1.43)from Eq. (1.42) gives

t d F \

\ d z  y
F { z - \ - h ) ~ F { z - h )

2h
(1.46)

with leading error of h"̂ . This approximation is called central difference formula. Similarly we 

can find the approximation for second and third derivatives.
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Chapter 2

Hydromagnetic flow in a viscoelastic 

fluid over an oscillatory stretching 

surface

2.1 Introduction

This chapter deals with the unsteady IMHD two-dimensional boundary layer flow of a second 

grade fluid due to an oscillatory stretching surface. An infinite elastic sheet is stretched back 

and forth in its own plane. The resulting flow equations are transformed to a non-linear partial 

differential equations by im'oking similarity transformations. Numerical solution is developed 

by using the finite difi'erence scheme, in which a coordinate transformation is employed to 

transform the semi-infinite physical space to a bounded computational domain. The influence of 

the various parameters like viscoelastic parameter, the hartmann number, the relative frequency 

amplitude of the oscillatory stretching sheet to the stretching rate on the velocity field and the 

wall shear stress are plotted and analyzed through graphs and tables. This paper is a review 

of the work done by Abbas et al. [14].
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2.2 Flow Analysis

W e consider the unsteady two dimensional magnetohydrodynamics (MHD) laminar flow of in­

compressible viscoelastic fluid (second grade fluid) over an oscillatory stretching sheet coinciding 

with plane y =  0, the flow is being confined to the semi-infinte space y >  0. The elastic sheet 

is stretched back and forth periodically with velocity =  bxsinut (b is maximum stretch­

ing rate, x  is coordinate along sheet and oj is frequency) parallel to the x  axis, as shown in 

Fig. 2.1. A  constant magnetic field of strength B q is applied perpendicular to the stretching 

surface and the induced magnetic field is neglected, which is valid assumption on a laboratory 

scale under the assumption of small magnetic Reynolds number. Under the usual boundaiy 

layer assumptions and in the absence of pressure gradient, the unsteady basic boundarj^ layer 

equations governing the MHD flow of second grade fluid are;

Bi

4 4 P

0 u^.=b'x>\noj

Fig. 2.1: Geometry of the problem

du du du d'^u A:o

du dv  
d x ^  dy

d^u d 
+

d'^u\ diid'^v d^u
dtdy^ dx  \ dy^ J dy dy^ dy^  ̂

+ + v-

(2.1)

(2.2)
P
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where {u, v) are the velocity component in (x, y)  directions, respectively, v  is the kinematic 

viscosity of fluid, p is the fluid density, a is the electrical conductivity of fluid and ko is the 

viscoelastic parameter of fluid.

The appropriate boundary conditions of the problem are

u =  Ujj =  bxsinujt, v =  0 at y =  0, t >  0. (2.3)

du _
u — 0. t :z  =  0 as y  oo, (2.4)

dy

in which b and u  have the dimensions (time)“ .̂ Note that the system can also be solved by using 

the cosine function (coswi) instead of sinwi. The second condition in Eq. (2.4) is augmented 

condition since the flow is in an unbounded domain, which has been discussed by Garg and 

Rajagopal [5]. Now we assume

(2.5)

which is the ratio of the oscillation frequency of the sheet to its stretching rate.

Any particle path on the sheet is

_ _ / I  \
X =  x(,exp I — cosut . (2-6)

y

To simplify the flow equations, we use the following similarity transformations

f b -
y  =  , y - y >  T =  tuj,

u =  b x f y { y , r ) ,  v = - y / u b f  { y . r ) . (2.7)

Using Eq. (2.7), the continuity equation (2.1) is identically satisfied and the governing Eq. 

(2 .2) becomes

SJyT +  fy  ~  f f y y  +  /y  =  fyyy +  ^  i^fyyyr  +  ^fyfyyy ~  fyy ~  f  fyyyy) i (2 -8)
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subject to the boundary conditions

f y { 0 ,r )  =  sinr,  / ( 0 , r ) - 0. 

f y  (oo, r) ^  0 and f y y  { o g , t )  =  0, {2.9)

in which =  aB^/bp  is the Hartmann number or magnetic parameter and K  =  bko/i/b is 

non-dimensional viscoelastic parameter. Here K  =  0 corresponds to the case of Newtonian 

fluid.

A  physical quantity of interest is the skin-friction coefficient C f,  which is defined as

(2 .10)
p u i

where Tu, is wall shear stress and is gi\^n by

d u \  , ( d^u d^u d^u ^ d u d v \
 ̂ d y )  \ d td y  ^  d x d y  ^ d y - “ d y d y J y ^ Q

Using Eq. (2.7) and (2.11),  Eq. (2.10) yields

—  [fyy +  ^  i^fyfyy +  ^fyyr ~  f  fyyy)\y=o > (2.12)

where Rex =  u-Jxjv is the local Reynolds number.

2.3 Solution of the Problem

The non linear boundary-value problem consisting of Eq. (2.8) with the boundary conditions 

Eq. (2.9) is solved by means of the finite difference method. For this purpose, the coordinate 

transformation t] =  l / ( y  +  1) is appUed for transforming the semi-infinite physical domain 

y  G [0 , oo) to a finite calculation domain t] 6  [0 , 1], i.e.

1 d 2 ^ 4 , o 3 ^ d‘̂  _  2
^  07/’ dj)‘̂  07?’ dydr ~  d7]dr^

dy^  ̂ d if djf- dr]' dy^dr ^ dij^dr d tfd r  ̂ dijdr'

18



(2.13)

Using the above transformations, the Eq. (2.8) can be written in the form of ?; as 

=  (r,  ̂ -  SKr,'') ( g )  '  +  (6^2 -  +  36Kfrj^ -  2/ „ ) g  +  ^ ^ 0

The boundary conditions (2.9) in terms of t] can be written as

/»j ^  0, f,,r, =  0 at T/ =  0, (2.15)

/  — 0) / , ,  =  —sinr at r; =  1. (2-16)

The equation (2.14) is a differential equation, we can discretise it for L  uniformly distributed

discrete points in r/ =  rf, 7}^ , ........ , € (0 , 1) with a space grid size of A ;; =  1/  (L +  1)

and the time levels t =  (f\  ...). Hence the discrete v^alues (/{*, ..... , / £ )  at these grid

points for the time step =  n A t  (w’here A t  is time step size) can be numerically solved 

together with the boundary conditions at -q =  tiq =  0 and ij =  'H{l+ i} =  Eqs. (2.15) and 

(2.16) as the initial conditions are given as

f { v , r ^ 0 ) = 0 . (2 .17)

We will see that periodic fimction will be immediately reached within the first period, we 

construct a semi-implicite time difference for /  and assure that only linear equation for the
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new time step (n +  1) need to be solved.

5 ( 1 - 6A V )
1

At dr)
-  5 / v V : ^' At

1

V 57/3

-6S K 7J
3 1 /  ̂ 2yr(n+l) ^2y(n)

-  - «'V) ( t ^ ) ’ + (•-■ ̂  *'■) + <«V  - W ' +  

.  ( » y  -  -  ‘ V

(2.18)

It should be noted that other time differences are also mean of finite difference method we 

can obtained a linear equation system for each step, which can be soh-ed e.g. by Gaussian 

ehmination.

2.4 Results and Discussion

W e calculate the velocity field by solving Eq. (2.8) with boundary conditions Eq.(2.9) by

using finite difference method. First the initial boundary value problem in the computational

space 7} e  [0 , 1] and then the numerical solutions are transformed to the physical space with

y-coordinate y  €  [0, oo). The velocity field f '  =  {fy)  is plotted for the various parameters, for

example, the viscoelastic parameter K ,  the Hartmann number or magnetic parameter M  and

the non-dimensional relative amplitude of frequency to the stretching rate S,  for the time series

of the first five periods r €  [0, IOtt] and the trans\'erse profiles. W e also calculate and show the
1 /2\’alues of the skin-friction coefficient Re J  C f  both graphically and in tabular form.

Fig. 2.2 is plotted to examine the effects of the time series of velocity field f  at four different 

distances from the oscillating sheet far the first five periods r G [0, IOtt] by keeping A'’ =  0.1 

and K  =  0.4. In Fig. 2.2(a) (at K  =  0.1) that the ampHtude of flow near the oscillating surface 

is larger as compared to that for away from surface. However, in Fig. 2.2(b) (for K  — 0.4) 

the amplitude of flow motion is larger as compared with analysis at K  =  0.1. That shows as
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increased effective viscosity with the increase of the non-Ne\\1:onian parameter K .

Fig. 2.3 illustrates the effects of non-dimentional relative anipHtude of frequency to the 

stretching rate S,  the viscoelastic parameter K  and magnetic parameter M  on the time series 

of the velocity field /  at the fixed distance y == 0.25 from the surface, respectively. Fig. 2.3

(a) shows that with the increase of S  the amplitude of fiow increases slightly and a phase shift 

occurs which increases with the increase of S. The variation of the viscoelastic parameter K  on 

the time series of velocity f  can be seen from Fig. 2.3(b) with fixed values of 5  =  2 and A / =  10. 

W e note that amplitude of the flow motion is increased by increasing the viscoelastic parameter 

K  due to the increased effective viscosity. Fig. 2.3(c) shows the time series of velocity profile 

/  for different values of the magnetic parameter AI with fixed values of 5  =  1 and K  =  0.2. 

As expected, the amplitude of flow decreases with the increase of magnetic parameter M .  This 

is because for the investigated problem the magnetic force act as resistance to the flow.

Fig. 2.4 gives the effects of viscoelastic parameter K  on the transverse profile of velocity f  

for the different times of r  =  S.Stt, Qtt. Q.Stt and IOtt in the fifth period r € [StTjIOtt] for which 

a periodic motion has been reached. Fig. 2.4(a) (a) shows that at r  =  S.Stt, / '  =  1 at the 

surface y =  0 equating the sheet velocity and ^  0 far away from the sheet. It can also be 

seen that at this point of time, there is no oscillation in velocity profile and f  is increased as 

value of K  increases, i.e. the boundary layer become thickener with increase of K .  Fig. 2.8(b) 

gives the velocity profile /  at time point r  =  97t. At this point the velocity field f  is zero at 

the surface y =  0 and far away from the wall it again approaclies to zero. It is also evident 

that near the wall, there exist some oscillation in the velocity profile and the amplitude of flow 

increases as K  increases. This oscillation in transA'erse profile is an evdient of phase shift in the 

viscoelastic fluid against the viscous Newtonian fluid [ K  =  0). The velocity profile for other 

two time points within fifth period are displayed in Fig. 2.4(c) — {d).

Fig. 2.5 gives the influence of the magnetic parameter M  on the transverse profile of the 

velocity field f  for the different times of r  =  8 .57r, Qtt, O.Stt and IOtt. It is noted that the 

influence of magnetic field reduces the boundary layer thickness. As expected magnetic force 

is a resistance to the flow, hence reduces the velocity magnitude. Although for r  =  97t (Fig. 

2.5(6)) and r  =  IOtt (Fig. 2.5((i)), there exist still velocity oscillation in the transverse profile , 

their amplitudes are fairly small (in comparison with those in Fig. 2.3 (b, d)
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Fig. 2.6 elucidates tlie effect of non-dimentional relative amplitude of frequency to the

stretching rate S  on the velocity /'fo r  the different times of r  =  8 .57t, 97t, 9 .57t and IOtt in the

fifth period. Fig. 2.6(a) is plotted for the variation of 5  on the velocity f '  at time r  =  8 .57t

at the surface. It is observed that the velocity is equal to the sheet velocity f  =  1 at surface

y  =  0 and far away from the wall it is 2ero. The velocity /  increases only slightly with the

increase of S. Fig. 2.6(b) shows the influence of S  on the velocity field f '  at time r  — Qtt. It

is noted that for ver>’ small values of S  =  0.1 at this time point, the velocity in the transverse

section takes its value at the plate almost to the zero { / '  —» 0), i.e., for small value of S  no

phase difference occurs with increase of the distance from the plate and the flow in the whole

flow domain is in phase with the sheet motion. The velocity profiles for others two time points

within fifth period are plotted in Figs. 2.6(c) and {d) eind the similar observations are noted as

in Fig. 2.6(a) and (6), respecti\-ely.

Fig. 2.7 depicts the variation of viscoelastic parameter K , the relative amplitude of frequency

to the stretching rate S  and the magnetic parameter M  on the skin friction coefficient ReJ'^Cj

for the time series in the first five periods r € [0, IOtt]. Fig. 2.7(a) shows the influence of the

viscoelastic parameter K  on the skin friction coefficient R eJ ^ C f  with fixed 5  =  5 and M  =  12.

It is found that the skin friction coefficient v'aries also periodically due to oscillatory surface
1/2motion. The oscillation amplitude of skin friction coefficient R e^  C j  increases as the \'alues of

K  are increased. Fig. 2.7(6) shows the variation of S  on the skin-friction coefficient R eJ ^C f.

It can be seen that the oscillation amplitude of skin friction coefficient increases by increasing

the values of S. Fig. 2.7(c) displays the results of the magnetic number M  on the skin friction 
1/2coefficient R eJ C f  with fixed S' =  1 and A" =  0.1. It is noted that the oscillation amplitude of

1 /2the skin friction coefficient R eJ  C j is increased with an increase in A /.
1 /2Table 2.1 gives the numerical values of skin friction coefficient Rex C f  on the different 

values of K , S  and M  at the different periods of time series. The results show that the values 

of the skin friction coefficient for the three different time points r  =  I.Stt, 5 .57t and 9 .57t are 

almost identical. It means that the periodic motion may be reached within first period when 

the initial conditions are set up. The change of the skin friction coefficient from positive to 

negative with increase of K  as shown in Fig. 2.7(a)(but for slightly different parameters). It is 

also found that the v<Uues of the skin friction coefficient are increased as the relative frequency
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to the stretching rate S  or/and magnetic field A / are increased.
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F ig. 2 .2 : Time series of the flow of the velocity field f '  at the four diff’erent distances from the 

surface for the time period r  e  [0 .10;r] with S  =  2, M  =  10: (a) K  =  0.1 and (b) K  =  0.4.
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F ig. 2 .3 : Time series of the velocity field f '  in first five periods r € [0, IOtt] at a fixed distance to 

the sheet, y  =  0.25: (a) effects of S  with K  =  0.2, M  =  10. (b) effects of viscoelastic parameter 

K  with 5  =  2, A / =  10 and (c) effects of magnetic pai ameter M  with 5  =  1, A' =  0.2.
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F ig. 2 .4 : Transverse profiles of the velocity field / '  at the four different values of K  for the 

fifth period r  e [S/T, IOtt] for which a periodic velocity field has been reached: (a) r  =  8.57T, (b) 

r =  97t (c) r  =  9 .57t and (d) r  =  IOtt with S  =  2. M  =  10.
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F ig . 2 .5 : Transverse profiles of the velocity field f '  at the four different \^lues of M  for the 

fifth period r  6  [Stt, 10;r] for which periodic velocity field has been reached: (a) r  =  8 .57t, (b) 

T =  9 tt. (c ) t  —  9.57T and (d) r  — IOtt with S  =  1, K  =  0.2.
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F ig . 2 .6 ; Transverse profiles of the velocity field f '  at the foui' different values of S  for the 

fifth period r  €  [Stt. IOtt] for which a periodic velocity field has been reached: (a) r  =  S.Stt, (b) 

T  =  9 7 t ,  ( c )  t  =  9 .5 7 T  and (d) r  =  IOtt with K  =  0.2. M  =  12.
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F ig. 2 .7 : Time series of the skin friction coefRcient R e J ‘̂ Cf in the first five periods r €  [0, IOtt] : 

(a) effects of K  with 5  =  5, M  =  12, (b) effects of S  with K  =  0.1, AI =  12 and (c) effects of 

M  with K  =  0.1, 5  =  1.
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1 /2T able 2.1: Numerical \'alues of the skin-friction coefficient Rcx C f  for different values of 

K ,  5 , and M  at three different time points r  =  I.Stt, r =  5 .57t and r  =  9 .57t.

K S M r  — 1.57T T — 5.57T T  =  9.57T

0.0 1.0 12.0 11.678656 11.678707 11.678656

0.2 5.523296 5.523371 5.523257

0-5 -3.899067 -3.899262 -3.899162

0.8 -11.674383 -11.676506 -11.676116

1.0 -15.617454 -15.624607 -15.624963

0.2 0.5 5.322161 5.322193 5.322173

1.0 5.523296 5.523371 5.523257

2.0 6.08707 6.087031 6.087156

3.0 6.769261 6.768992 6.769294

4.0 7.497932 7.496924 7.496870

5.0 8.232954 8.229085 8.228996

1.0 5.0 2.323502 2.323551 2.323548

7.0 3.278018 3.278005 3.278123

9.0 4.197624 4.197771 4.197733

12.0 5.523296 5.523371 5.523257

15.0 6.791323 6.791301 6.791278
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Chapter 3

MHD flow and heat transfer over a 

porous oscillating stretching surface 

in a viscoelastic fluid

3.1 Introduction

This chapter concerns with the heat transfer of an unsteady two-dimensional and magneto- 

hydrodynaniics (MHD) boundary layer flow of a second grade fluid pgist a porous oscillating 

stretching surface. By similarity transformations, the governing flow equations are reduced to 

a system of non-hiiear partial differential equations. This system has been solved numerically 

using the finite difference scheme, in which a coordinate transformation is used to transform the 

semi-inflnite physical space to a bounded computational domain. The influences of the involved 

parameters on the flow, the temperature distribution, the skin-friction coefficient and the local 

Nusselt nimiber are shown and discussed in detail. In fact, this chapter is an extension of the 

work done by Abbas et al. [14].

3.2 Flow analysis

Consider the unsteady two dimensional magnetohydrodynamics (M HD) flow of incompressible 

viscoelastic fluid (second grade fluid) over a porous oscillatory stretching sheet coinciding with
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plane y =  0. The temperature of the outside siu’face of the sheet is maintained at a constant 

temperature of and far away from the sheet the temperature of ambient fluid is Too, where 

Tu,>Too- Under these assumptions along with the boundary layer approximations, the governing 

equations far law of conservation of mass, momentiun and energy in absence of discus dissipation 

are:

1 ;

B e

1

j  (

___
* -------------------------------------------------------------

1
1

7“ SB T" 0  H “  sinwt

Fig 3.1: Geometry of the problem

du du du d^u ko

du dv

d x ^  dy ’

d^u d {  d^u \ du d^v ^ u
+  —  +  V-

dtdy^ dx  \ dy^)  dydy"^ dy^

PCp
f d T  &T d T \  . d'^T

+  4- V- =  k-

(3.1)

(3.2)

(3.3)
^dt dx d y J dy^ ’ 

where Cp is the specific heat at constant pressure, k is the thermal conductivity and T  is the 

temperature of fluid.

The appropriate boimdaiy conditions of the problem are

u =  U:̂  =  bxsmujt, V =  Vy;, T  =  Tw  at y  =  0. t > 0 .

du
w =  0 , ^  0 'I' ^  Too at y  ^  oo,

(3.4)

(3.5)
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where is the wall mass transfer velocity with {vu, <  0) is for suction, and {vy; >  0) is for 

injunction, respectively. The second condition in (3.5) is arugmented condition since the flow 

is in unbounded domain and S  =  ^ , is defined in previous chapter.

To non-dimentionalize the flow problem, we use the similarity transformations defined in 

Eq.(2.7) and

n f \ ~  ^ o o )

W ith the help of Eq. (2.7) and Eq. (3.6), the continuity equation is identically satisfied and 

Eqs. (3.2) and (3.3) giv'e

SfyT fy ^  f  fyy fy  ~  fyyy +  ^  {^fyyyr +  ^fyfyyy fyy ~~ f  fyyyy) i (3-7)

e y y + P r i f d y - S $ r )  =  0, (3.8)

subject to the boundary conditions

/ y ( 0 , r )  = s i n r ,  / ( 0 , r ) = 7 , ^ (0 ,r)  =  l ,  (3.9)

/ y ( o o , r ) = 0 ,  /yy{oo ,r)  =  0, 5 ( o o , r ) - l ,  (3.10)

where 7  =  is constajit with (7  >  0) is for suction and (7 <  0) is for injection and

Pr =  fj.C p fk  is the Prandtl number

The physical quantities of interest are the skin-friction coefficient C /  and the local Nusselt 

number Nux, which are defined as

where and qu, are the shear stress and heat flux at w’all, respectively, which are defined as

^  , gv. =  - k  - ^ ]  . (3.12)
^ J y = 0  \ d y j j ;=0
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Using Eqs. (2.7), (3.6) and Eq. (3.11), Eq. (3.12) gives

“  [/yy +  (3/y/yy +  5/yyj- ~  //yj/i/)]|;_o ) (0, t ) (3-13)

where Re^ =  uyjxju  is the local Reynold number.

3.3 Solution of the problem

We solve the non-linear boundary value problem consisting of Eqs. (3.7) and (3.8) with the 

boimdary conditions (3.9) and (3.10) using finite difference method. For this purpose, we have 

been used the same coordinate transformation t] =  \ /y  +  1 (as used in chapter 2) to transform 

the semi-infinite physical domain y  6 [0, oo) to finite calculation domain rj €  [0,1]. Using. Eq.

(2.13),  the Eq. (3.7) will be same as in the previous chapter and Eq. (3.8) can be written in 

the form of t; as

and

/»7 =  0, f, )T}=0,  0 =  0 at r] =  0 (3.15)

/  — 7 , — - s i n r ,  at 9 =  1 t) =  1 (3.16)

Because Eqs. (2.14) and (3.14) are differential equations, we can discretize them for L uniformly

distributed discrete points in t/ =  rj2 ,......., ^  1) "'ith  a space grid size of At; =

1 / (A /  +  1) and time level t =  (£ ,̂ . Hence the discrete \-alues ( / " ,  /^ ,  ....... , /^ )  and

{Oi, 6 2 , ..... , ^2) at these grid point for time levels =  n A t  (At  is the time step size) can

be numerically solved together with boundary conditions at tj =  r)Q =  0  and rj =  V{L+i} — 

(3.15) and (3.16) ,  as the initial conditions are given. We start our simulations from a motionless 

velocity field and a uniform temperature distribution equal to temperature at infinity

f{Tj ,T =  0) =  0 and 0 (7;. r  =  0) =  0. (3-17)

The oscillatory motion of the sheet with a temperature Tu, (^ =  1) is suddenly set from r  =  0 

at 7; =  1 (?/ =  0). W e will see that this periodic motion will be immediately reached within first
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period. W e construct a semi-infinite time difference for /  and respectively, and make sure 

that only linear equations for the new time step (n +  1) need to be solved. The equation of the 

velocity field for new time step (n +  1) will similar to Eq. (2.18) and Eq.(3.14) becomes

A t  O i f  or)  07)

It should be noted that other different choices of time differences are also possible. By means 

of the finite difference method we can obtain two Unear equation system for and

i =  (1, 2, . . . .M)  at the time step {n +  1), which can be solved, e.g. by the Guassian elimination.

3.4 Results and discussion

The system of non-linear partial differential equations consisting of Eqs. (2.14) and (3.14) with 

boimdary conditions (3.15) and (3.16) has been solved numerically using finite difference scheme 

to compute the velocity and temperature profiles. The velocity field f  (t]) and the temperature 

profile 0 (tj) are plotted to analyzed the influence of the •̂al•ious parameters, for example, the 

viscoelastic parameter K ,  the suction parameter the non-dimentional relative amplitude of 

frequency to stretching rate S,  tlie magnetite parameter M  and the Prandtl number P r  for 

the time series of the first five periods r  €  [0, IOtt] and the transverse profiles. Furthermore, 

we compute and show the values of the skin friction coefficient R e]/^C j and the local Nusselt
_1 f O

number Rex Nux  for different involving parameters both graphically and in tabular form.

Fig. 3.2 shows the time series of the velocity component / '  at the four different values of 

distance y  from the oscillatorj' sheet for the first five periods r  G [0, IOtt] by keeping 5  =  2, 

M  =  10, 7 =  0.5 and K  =  0.1, 0.4 fixed, respectively. It is evident from Fig. 3.2(a) {K  — 0.1) 

that as we increcise the distance from the oscillatory sheet, the amplitude of flow decreases. 

It is fiirther noted that far away from the surface, the amplitude of the flow motion is almost 

is almost vanished (approached to zero) for larger distance from the surface. We observe the 

similar phenomenon from Fig. 3.2 (b) for the value of K  =  0.4. However, for K  =  0.4 the 

amplitude of the flow motion is large as compare with K  =  0.1. This indicates as increased 

effective viscosity with the increase of the non-Newtonian parameter K .  It is also observed that
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the amplitude of the flow motion increases in the presence of the suction parameter (7 =  0.5) 

as compared with (7 =  0) .

Fig. 3.3 ilhistrates the influence of the viscoelastic parameter iv, the magnetic parameter M  

and the suction parameter 7  on the time series of the velocity component / '  at a fixed distance 

y  =  0.25 from the sheet, respectively. Fig. 3.3(a) shows the effect of the viscoelastic parameter 

K  on the time series of the \-elocity profile f  by keeping 5  =  2, ^ /  =  10 and ^ =  0.5 fixed. 

From this Fig. we see that the amplitude of the flow motion increases by increeising the value 

of K  due to the increased effective v-iscosity and a phase shift occurs which increases with the 

increase of K .  Fig. 3.3(b) gives the effect of the magnetic parameter M  on the time series of 

the velocity component /  with fixed values of 5  =  2, 7  =  0.5 and K  =  0.1. It is found from 

this Fig. that the amphtude of the flow motion is decreased with the increase of the magnetic 

field. This is because for the present analysis the magnetic force acts as a resistance to the flow. 

Fig. 3.3(c) shows the time series of the velocity field f  for the different values of the suction 

parameter 7 with fixed values of 5  =  2, A / =  12 and K  =  0.2. It is evident from this Fig. that 

the amplitude of the flow motion increases for the large values of the suction parameter 7 . It is 

also noted that a phase shift occurs which also increases with the increase of 7 . Furthermore, 

it is also observed from this Fig. that only slight phase difference occurs among the time series 

for various values of M  in comparison with thase for different '̂alues of 7 and K .

Fig. 3.4 depicts the variation of the viscoelastic parameter K  on the transverse profile of the 

velocity f  for the different v’alues of r  =  8 .57t. Qtt, 9.57t and 10“  in the fifth periods r  G [Stt, 10;r] 

for which a period motion has been reax:hed. It can be seen from Fig. 3.4(a) that at a time 

r  =  8 .5 t . the velocity /  —» 1 at the sheet y =  0 equating the surface velocity and f ' —*Q far 

away from the surface. It is also found that at this point of time, there is no oscillation in the 

velocity profile and the velocity /  is an increasing function of the viscoelastic parameter K ,  

i.e. by increasing the values of K  the boundary layer becomes thickener. Fig. 3.4(b) presents 

the velocity component / '  at time point r  =  97t for \-arious values of K . It can be seen from 

this Fig. that at this time point velocity profile f '  is zero at the sheet y  =  0 and far away from 

the wall it again approaches to zero. It is also observed that near the surface, there exist some 

oscillation in the velocity field and the amplitude of the flow is increased with an increase in 

K .  This oscillation in the transverse profile is an evidence of a phase shift in the viscoelastic
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fluid { K  /  0) against the viscous fluid { K  =  0). Fig. 3.4(c)-(d) displays the velocity fleld for 

others two time points within the fifth periods. It is evdient from Fig. 3.4(c)-(d) that the flow 

in the whole flow domain is almost in phase with the sheet oscillator in the case of Newtonian 

fluid { K  =  0), as shown from the solid lines displayed in Fig. 3.4(a)-(d). Furthermore, we can 

see from Fig. 3.4 that the boundary layer thickness is increased by increasing the value of K .

Fig. 3.5 gives the effect of the magnetic parameter M  on the transverse profile of the velocity 

component /  for the difl’erent times of r  =  8.5?:, Ott, 9.57t and IOtt with fixed values of 5  =  1, 

7  =  0.5 and K  =  0.2. It is evdient from this Fig. that the influence of the magnetic fleld 

causes to reduce the velocity fleld /  and the boundary layer thickness. As expected, this is 

because the magnetic force is a resistance to the flow and reduces the magnitude of the velocity. 

However at r  =  Qtt (Fig. 3.5 ((6)) and r =  IOtt (Fig. 3.5 ((rf)), there exist still the oscillations 

in the transverse profiles near the wall, their amplitudes are fairly small. It is also noted that 

for different values of magnetic parameter M ,  the phase difference is almost invisible.

Fig. 3.6 presents the \’aiiation in the transverse profile of the velocity field /  for various 

values of the suction parameter 7  at different times of r  =  8 .57T, 9 " ,  9.57T and IOtt in the fifth 

period by keeping 5  =  2, A / =  12 and A' =  0.1 fixed. The change in the velocity f '  for different 

values of 7  at time r =  8.5;r at the sheet can be seen from Fig. 3.6(a). It is found that the 

velocity is equal to the surface velocity ( / '  =  ! )  at the sheet y  =  0  and far away from the sheet 

it approaches to zero. Furthermore, the velocity profile is increased by increasing the value of 

the suction parameter 7 . The influence of the suction parameter 7 on the \’elocity f '  at the 

time r  =  97t is presented in Fig. 3.6(b). It is evident fi-om this Fig. that at this time point the 

velocity takes its value at the wall almost to zero ( /  ^  0) and a phase difference occurs as ŵ e 

increase the distance from the plate. It is also noted that a phase difference increases with the 

increase of 7 . The velocity fields for other two time points within the fifth are plotted in Fig. 

3.6(c) and (d) and the same observations are found.

Fig. 3.7 shows the effect of the viscoelastic parameter K ,  the magnetic parameter M  and

the suction parameter 7 on the shear stress at the wall ReJ'^Cf for the time series in the

fli'st five periods r  G [0 ,10;r]. Fig. 3.7(a) elucidates the change in the skin friction coefficients 
1 /2

R eJ  C j  for different values of K  by keeping 5  =  5, A / =  12 and =  0.5 fixed. It is observed 

that the skin-friction coefficient varies also periodically due to the oscillation of the surface and
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the amplitude of ReJ'^Cj increases for large v'alues of K .  Fig. 3.7(b) gives the variation of the
1/2magnetic parameter M  on the skin-friction coefficient Rex C f. It is evident from this Fig. that

the oscillation amplitude of the skin-friction coefficient increases as M  increases. Fig. 3.7(c)
1/2displays the results of the suction parameter 7 on the skin-friction coefficient Rex C f  with

fixed \-alues of S  =  1, M  =  12 and K  =  0.1. It is noted that the oscillation amplitude of the
1 /2skin-friction coefficient Rsx C f  is increased by increasing the \'alues of suction parameter 7 .

Fig. 3.8 displays the effect of the Prandtl number P r, the suction parameter 7 and the 

magnetic parameter M  on the transverse profile o f the temperature 0  for the time point r =  8 /T 

with fixed value of S  =  2. Fig. 3.8(a) shows the variation of the transverse profile of the 

temperature distribution 9 for different values of P r  at the time point r  =  8rr. As expected, it 

is evident from this Fig. that both the temperature distribution 9 and the thermal boundary 

layer thickness are decreased for the large values of P r  due to the decreased thermal diffusivity. 

The influence of the suction parameter 7  on the temperature field 9 can be seen fi-om Fig. 3.8(b) 

in the fixed time r  =  87t. It is found that from Fig. 3.8(b) that the temperature is a decreasing 

function of the suction parameter 7 . The thermal boundary layer thickness also decreases by 

increasing the value of 7 . Fig. 3.8(c) gives the v’ariation of the magnetic parameter M  on the 

temperature profile 0 for various values of M  with fixed \’alues of 5  =  1, 7  =  0.5, K  =  0.2, and 

P r  =  5. As magnetic parameter M  increases, both temperature 9 and thermal boundary layer 

thickness are increased.

Fig. 3.9 presents the results of varying the Prandtl number P r  and suction parameter 7 on 

the time series of the temperature distribution 9 in the first five periods r  6 [0, IOtt] at a fixed 

distance y  — 0.25 from the sheet. Fig. 3.9(a) shows the changes of temperature with respect to 

P r  by keeping 5  =  2, 7  =  0.1, K  =  0.2 and M  =  12 fixed. It can be seen that with the increase 

of Prandtl number P r, i.e., ^̂ 'ith decrease of thermal diffusivity or the increase of specific heat, 

the increase in the fluid temperature becomes slower. Fig. 3.9(b) illustrates the effects of the 

suction parameter 7 on the temperature profile 9 in the first five periods r  e  [0, IOtt] . It is noted 

from this Fig. that w th  the increase in the suction parameter 7  , the decrease in temperature 9 

with time becomes slower. Furthermore, it is observed form Fig. 3.9, a small oscillation, which 

is superimposed on the nionotonically increasing in temperature time series, can be identified 

for large values of P r  an 7 .
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Fig. 3.10 presents the physical significance of the Prandtl number P r  and the suction
“ 1/2parameter 7  on the time series of the local Nusselt number Rcx Nux  in the first time periods

T  6  [0, IOtt]. Fig. 3.10(a) depicts the influence of P r  on the local Nusselt number Rcx N u ^

with fixed values of K  =  0.1, 5  =  2, M  =  12 and 7 =  0.1. One can see from Fig. 3.10(a) that

the magnitude of the local Nusselt number ReZ^^^Nux is increased by increasing the \'alues
— 1/2of P r. The variation of the suction parameter 7 on the local Nusselt number Rex Nux  can

__2 / 2

be seen from Fig. 3.10(b). It is found that the local Nusselt number Rcx Nux  has similar 

effects for the values of 7 as compared with the case of P r. However, it is noted from this Fig. 

that for r  =  0, the local Nusselt number has its maximum and then decreases monotonically 

because for the given initial conditions, the temperature gradient at the sheet has its maximum 

initially and decreases with time.
1 /2Table 3.1 shows the numerical values of the skin friction coefficient Rex C f  for \’arious

values of S, K , M  and 7  at the different periods of time series r  =  I.Stt. It is evident from

this table that the value of skin friction coefficient for the three different time periods r  =  I.Stt,

T =  5.5/T and r =  9 .57t are almost identical. Furthermore, we can see that the periodic motion

may be reached within the first period when the initial conditions are set up. However, the

change of the skin friction coefficient from positive to negative by increasing the \^lue of K

indicates the large phase difference as K  increases. It is also noted that the value of the skin 
1 /2

friction coefficient R eJ  C j  are increased as the relative frequency to the stretching rate 5 , the 

magnitude M  and the suction parameter 7 are increased.

Table 3.2 gives the numerical \-alues of the local Nusselt number ReZ^^'^Nux for various 

values of the Prandtl number P r, the viscoelastic parameter K .  the magnetic parameter A / 

and the suction parameter 7 at the four different times periods r  =  27t, r  =  4 t ,  r =  67t and 

r  =  8 ;r. It can be seen that the local Nusselt number increases by increasing the \-alue of P r , K,  

M  and for all four times periods r =  27t, r  =  47T, r  =  6 /t and r  =  Stt and various values of 

local Nusselt number are also decreases when the time periods increases due to the decrease in 

the rate of heat transfer neai’ the sheet.
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F ig  3 .2 : Time series of the flow of the velocity profile / '  at the four different distances from 

the sheet for the time period r  e [0, IOtt] with S  =  2, M  =  10, =  0.5 :(a) K  =  0.1 and (b) 

K  =  0.4.
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F ig. 3.3: Time series of the velocity profile / '  in the first five periods r 6 [0, IOtt] at a fixed 

distance to the sheet, y — 0.25: (a) eflfects of viscoelastic parameter K  with , S  =  2 . M =  10, 

7  =  0.5, (b) effects of magnetic parameter M  with 5  =  2, K  — 0.1, 7  =  0.5 and (c) effects of 

suction parameter 7 with S  =  2. K  =  0.1, M  — 12.

41



F ig . 3 .4 :  Transverse profiles of the velocity field / '  at the four different values of K  for the 

fifth period r  e  [Stt. IOtt] for which a periodic velocity field has been reached: (a) r  =  8 .57T, (b)

r  =  Qtt, ( c )  r  = 9 .Stt, and (d) r  — IOtt, with 5  — 2, M  =  10 and 7 — 0.5.
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F ig. 3.5: Transverse profiles of the velocity field f  at the four different values of M  for the 

fifth period r 6  [Stt, IOtt] for which a periodic velocity field has been reached(a) r  =  8.57t, (b) 

r  -  9TT, (c) r  =  9 .5”  and (d) r  ~  10;r with 5  =  1, A' =  0.2 and 7  =  0.5.
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F ig. 3 .6 : Transverses profile of the velocity field f '  at the four different values of 7  for the 

fifth period r  G [Stt, IOtt] for which a periodic velocity field has been reached: (a) r  =  S.Stt, (b) 

r  -  97t, ( c )  r  =  9.5;r and (d) r  =  1 0 "  with S =  2, K  =  O.l and M  =  12.
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F ig. 3 .7 : Time series of the skin friction coefficient R e J ’̂ Cj in the firet five periods r  e  

[87t, IOtt] : (a) effects of K  with S  =  5, Jl/ =  12, 7 ^  0.5, (b) effects of M  with K  =  0.1, 

M  =  12, 7  =  0.5 and (c) effects of 7 with K  =  0.1, S  =  \, M  =  12.
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F ig . 3.8: TVansverse profiles of the temperature field 0 at the time point r  =  Stt ; (a) effects 

of P r  with K  =  0.2, 7 =  0.5, 5 - 2 ,  M  =  12, (b) effects of 7  with A' =  0.1, 5  =  2, M  =  12, 

P r =  5 and (c) effects M  with K  =  0.2, 5 = 1 . ' ) =  0.5, P r  =  5.
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F ig. 3.9: Time series of the temperature profile 9 in the first five periods r  6  (0, IOtt] at a fixed 

distance to the sheet, y  =  0.25: (a) effects of P r  with K  =  0.2, 7  =  0.1, A / =  12, 5  =  2 and 

(b) effects of with K  =  0.1, S  =  2, P r  =  0.5, M  =  12.
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F ig. 3.10 : Time series of the local Nusselt number Rex^^'^Nux in the first five periods r  € 

[0, IOtt] : (a) effects of P r  with K  =  0.1. 5  =  2, M  — 12, ", — 0.1 and (b) effects of suction 

parameter 7  with K  — 0.1, S =  2, M  =  12, P r =  0.5.
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T able 3.1: Numerical \’alues of the skin-friction coeflBcient R e]/^C f for different values of 

7 , M , S, K  and three different time points r  =  1.57t, 5.57t, and 9.5/T.

s K M 7 r  =  1.57T T  =  5.57T r  — 9.57T

0.5 0.2 12 0.5 7.366961 7.366926 7.366853

1.0 7.476053 7.475794 7.476022

2.0 7.790178 7.789762 7.789836

3.0 8.202400 8.203105 8.202807

4.0 8.682439 8.682915 8.682859

1 0.0 11.724166 11.724170 11.724170

0.2 7.476053 7.475794 7.476022

0.5 1.630439 1.630612 1.630288

0.8 -3.674101 -3.674865 -3.673871

1.0 -6.956304 -6.956581 -6.955569

5 2.732155 2.732089 2.7321590

7 4.033675 4.0335629 4.0336795

9 5.382074 5.382172 5.381872

12 7.476053 7.475794 7.476022

15 9.63356 9.633849 9.633961

12 0.5 12.228457 12.224979 12.226006

1.0 14.640233 14.6431046 14.646995

1.5 16.605499 16.609908 16.5938511

2.0 18.266957 18.250942 18.282542

2.5 19.738842 19.764313 19.748855
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Table 3.2:  Numerical \-alues of the local Nusselt number Rex^^^Nux for different values of 

P r, K , M  and four different points r  =  27t, r  =  47t, r  =  Gtt, and r  =  Stt, when 5  =  3.

P r A' M 7 2n 47T 67T 87T

1 0.2 10 0.1 3.955616 3.534056 3.419845 3.386686

3 6.137262 4.824050 4.346720 4.123851

5 8.179701 6.212831 5.439938 5.050552

7 6.137262 4.824050 4.346720 4.123851

10 8.179701 6.212831 5.439938 5.050552

1.0 0.0 3.926829 3.507357 3.393924 3.360903

0.3 3.955694 3.534629 3.418675 3.385991

0.8 3.974724 3.553044 3.433939 3.401853

1.0 3.977727 3.556061 3.435827 3.4040001

1.5 3.978796 3.557350 3.434803 3.403525

0.2 7 4.603919 4.376667 4.315560 4.308688

9 4.611656 4.329706 4.277972 4.274563

12 4.628754 4.362667 4.299070 4.292905

15 4.643919 4.376667 4.315560 4.308688

20 4.663319 4.394577 4.336987 4.329227

12 0.0 3.733978 3.324538 3.214515 3.182517

0.5 4.965208 4.497219 4.366434 3.329196

1.0 6.510785 5.995219 5.845916 5.804440

1.5 8.392912 7.847680 7.684304 7.640581

1.8 9.691076 9.138652 8.969649 8.925759
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