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Abstract 
Image communications is primarily constrained due to large b:mdwidth requircmcnts. 
Therefore, researchers worked on various compression algorithms to achieve low bit rate. 11 
was stated thdt images and video sequences are highly correlatcd sources and thcir co~relution 
should be exploited in a given compression algorithm Diffcrcntial pulsc cotlc motlulation 
(DPCM) has emerged as a mean of exploiting the correlation among the image pixels. Lutcr 
on, DPCM was improved upon by predictive vector quantization (PVQ). PVQ elnploys hiock- 
by-block prediction and results in satisfactory perfomiancc at low bit rates. However. its 
design is complicated and recently an asymptotic closed-loop (ACL) was proposed to stahilix 
the design. In this thesis, we attempted to replace the VQ with a multistage V Q  structure in n 
hope to further reduce the stress on the closed-loop design. The multistage VQ structure that 
wc employed is commonly referred to as reflected residual vector quantization (RRVQ). 
RRVQ works by imposing an additional symmetry constraint on the multistage codebook 
design. RRVQ has been quite popular where large block length vector quantization is necded 
due to their very low codebook search capability. Our proposed design goal in replacing V Q  
with RRVQ in a PVQ design is our wish to use large block length like I6 x I6 or 32 x -32 size 
vectors to g n b  any linearlnon-linear correlation among the vector components. The way to 
incorporate FXVQ within PVQ structure has been proposed and simulation rcsults are 
discussed. 
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Chapter 1 
Introduction 



1. Introduction 

This introductory chapter has threefold purpose. First, to place the work of this disscrtatioo inlo 
its proper place within the general framework of complcte communication system design and 
implementation. Second, to provide a brief review of the theory ol'sourcc hlock coding. and lo 
discuss the practical issues that utilization of source block code s1ructures called residual 
quantization (RQ) and reflected residual quantization (RRQ) that examined and iniprcwcd i n  
this dissertation. 
This chapter is comprised of four sections. Section 1.1 introduces a complete and very pxer:d 
communication system model and shows how the general design problem can be scpac~tctl into 
smaller design tasks. Section 1.2 provides brief reviews of the theory that motivates the use of 
source block codes. Section 1.3 reviews several source code structure and discuss the influence 
of practical issues on the design and utilization of these structnrcs. Finally. Section 1.4 
introduces residual quantization and presents the goals and objectives of this dissertation. 

1.1. A Communication System Model 

Consider the block diagram of the communication system model shown in figure 1 .  I .  The 
basic building blocks of this model are source-user pair, the encoder-decoder pair and the 
channel. This model is important for two reasons. First, the various elcments are suitably 
idealized from their physical components to allow the model to be sufliciently general for most 
communica:ion systems. Second, if the model components are statistically charctcrizable, then 
the model proves amenable to productive analysis. We proceed to describe brielly each of thc 
components of this communication system model. 

Encoder 

C - A - - - - - - - - -  - - - - - -  J 

Figure 1.1: Block diagram of a communication system model. 

The function of a communication system is to convey "useful" information from the source to 

the user. Often, the user does not require an exact reproduction ofth: lnrssage produced by the 



source. For example, distortion. which does not degrade the intellisibility of speech. docs not 

hinder a speech communication system's ability to convey the pertinent inl'ormatlon. In 

general, a fidelity criterion may be associated with each source-user pair that measures h c  

effect of any distortion of the received message relative to the actual transmitted tncssclgc. 

Ideally, fidelity criteria should measure the effect of transmissiou errors on the users ability to 

use the received message relative to the useful-ness oT the S O I I I C ~ S  intended mcssqc. 

Unfortunately, such fidelity measures are unknown for many source-user pairs. or are wry 

complex and difficult to use. Less descriptive. but more tractable fidelity nicasum may he 

demed by assigning functional values to the various errors that the commuuication system 

may make. 

To give a mathematical description of an infonnation source it is necessary to quantitatively 

specify the rate at which the sourcc produces information. One pf the major contributions ol' 

Shannon's [ I ]  work was the introduction of the entropy measure. Entropy may he interpreted as 

quantifying the average information content per source message. and hence. thc avcragr 

infonnation rate of the source. Information sources may be separated into two major classes: 

discrete alphabet sources or continuous alphabet sources. A discrete alphabet source PI-oduces 

source symbols from a finite set of possible symbols. A continuous alphabet source produces 

source symbols from a continuum of possible symbols. The entropy of a discrete alphahrt 

source is called absolute entropy and is different from the differential or relative entvopy of a 

continuous alphabet sourcc. To determine the entropy of either a discrete 01. continuous source. 

it is necessary to have a probabilistic description of thc source output. The characterizition of a 

source-user pair as a mathematical entity is complete if the joint probability distribution 

functions of the source outputs are known, and if a quantitative fidelity criterion is speciticd. 

These concepts are reviewed more thoroughly in Chapter 2. 

Before proceeding to the encoder and decoder of Figure 1.1, we discuss hrietly the channel. 

The channel is a physical medium that spatially or temporally links the source to the user. 

Channels can be separated into two major classes: noiseless channels and noisy channels. A 

noiseless channel is one in which each channel output results fiom a specific and known 

chamel input. A noisy channel is onc in which the signal is perturbed by noise during 

transmission, and the user is left uncertain as to what the channel input was. 

For our purposes, the only parameter of a channel that interests us is its capncily. Shannon 

proved that the capacity of a channel is a number C that specifies the maximum rate at which 

information can be sent through the channel with arbitrarily low probability of error. Shannon 



wes ahle to define n definite capacity for both the noiseless and noisy channels. Since i t  is IIOI 

possible to reconstruct the transmitted signal with certainty by any operation on llw rzccivcd 

signal, it may seem surprising that a capacity could be delined tbr a noisy z!iannel. IIowvcr. 

the channel capacity and the fundamental theorems of infommtion tlieury guarar>tcc the 

existence of methods which arc optimal (in the sense of achieving arbitrarily lo\\- pwbabilily o l  

error) in combating the channel noise. This is the job of the channel encoder and channel 

decoder of the block diagram in Figure 1.1. The channel encoder adds a eel-toin :unount of 

redundancy to combat the particular noise structure oi'the channel. Shani~on I] provcJ that ii 

the information rate of the source H is less than or cqual to the capacity C of the channel 

(noiseless or noisy), then an encoder-decoder pair can be found which transmits infornmtion at 

the rate H < C with as small a frequency of error as desired. Conversely. Slrannon provcd that 

if H is grea:er than C, any altempt to transmit information at the rate H will lose or deslroy 

in for ma ti or^ at a rate no less than the difference 13-C. This last situation is of special interest to 

the work of this dissertation. We consider the case for which the source-user pair and the 

channel arc assumed fixed, and the entropy of the source H exceeds either a given or desired 

channel capacity C. Although Shannon proved that information must unavoidably be lost undcr 

these circumstances, is it possible to control which infomlation is lost? It is a generalization of 

the concepts of information theory. Which collectively is called rate-distortion themy. that 

answers this quest ion in a rigorous yet relatively straightforward manner. 

Rate-distortion theoly associates with most source-users pairs a function D(R) callcd the 

distortion-rate function, which has the following significance. A communication system that is 

constrained to operate with a channel capacity o r  C and a source output rate of H > C niust 

somehow reduce the output, rate of the source to a value R that satisfies II 5 C. 'Thc distortion- 

rate function D(R) specifies the best possible fidelity that may be achieved when the rate of the 

information source is reduced to K. In other words. it is possible to control which information 

is lost, or more importantly, which information is communicated such that the I-esultiny 

average distortion is as closc as desired to the theoretically minimum value D(K). 

Whenever the entropy, of the source exceeds the channel capacity. the encoder and decodcr of 

Figure 1.1 may be separated into source/channel sub-blocks. The source encoder is given the 

important function of reducing the information rate of the source to a Value R not greater tl~an 

the capacity of the channel. An "ideal" source encoder operates such that the res~~lting avenge 

distortion is minimized to a value arbitrarily close to the theoretically optimal value DiK). The 



channel encoder then employs an "ideal" channel code to achievc. an arhitmc.ily low 

probability of error in the reproduction of the source encoder's output. 

With sourcelchannel encoder and decoder- sub blocks. the comniunicatiot~ systcm n:udcl has 

the advantage of a complete separation of the tasks of source coding and channel coding. 

Shannon [ I ]  proved that performance arbitrarily close to the theoretical opti~nurl~ could bc 

achieved by designing each subsystem independently, which usually is the apprc)ach in 

practice. The source encoder employs a source code that is optimal with respect to ihc gi\lcn 

source-user pair and fidelity criterion without any regard to the detailed nature of the channel. 

The channel encoder employs a channel code that is optimal with respcct to the channcl 

without any regard to the detailed nature of the source-user pair and fidelity critcrioo. I n  this 

dissertation we assume that we are given a source-user pair and iidelity criterion. and that we 

have the freedom to choose a source encoder and source decoder. The rest of {tie 

communication system model is assumed fixed and is lumped into some type of "idc.alU 

channel that we assume to be error free in the sense that the output of the source encoder can 

be communicated with arbitrarily low probability of error. The general problem addressed in 

this work is the design of "good" source encoder-decoder pairs, and in paticular. the design of 

"good" source coders we call residual quantizers. In the next two sections we brictly discuss 

what is meent by the word "good" in the present context. Sectioti 1.2 discusses some of the 

theoretical issues that determine "good" source coders, and Section 1.3 discusses somc of the 

practical issues that determine "good" source coders. 

1.2. Vector Ouantizers 

In this dissertation we consider the communication system model of Figure 1.1 to be a discrek- 

time system. The source produces a sequence of source symbols s (ti) drawn from the source 

alphabet A,, in discrete time. That is x (ti) = xti E Ax. The coding and transmission of the 

source output also occur in discrete time. The source is descrihed by the joint probability 

density functions p(x,)=p(x,j, xu ,..., xm) for all n={1,2 ,...I and for all t = (0 .* 1.+2...'[. We 

assume the source is stationary, that is p (x,+k) = p(xJ holds for all integers k, all t. all XI  6 I<". 

and all n. Thus, we ignore the t index and write the probability density function p(.ut? as p ( r l  

Each n-dimensional vector x produced by the source is called a source vector. 

We construct a particular type of source encoder called n vector quantizer (VQ) b?, 

choosing an indexed set A= {yl, y2, ..., y ~ ) ,  where A is called a code book of size JV and each 

of the selected yj E Rn is called a code vector of dimensionality n. The vector qurcnlixr 



encoder operates by blocking the sequence of source output samples into contiguous source 

vectors of length n. The encoder maps each source vectors into whichever code vcclor yj E A 

minimizes a given distortion function d,(x. yj), and transmits the index of thc srlcclctl code 

vector to the decoder. Since the decoder has a copy of the codebook. the clecodci- simply 

outputs the code vector corresponding to the received index associated with cvery possihlc 

codebook .A is an average distortion. 

D (A) = I min d,(x, yj)p(x) dx. 

Yj A 

The output rate of the vector quantizer is defined as R = n-' IgN bits per sample (the entropy of 

the vector quantizer's output cannot exceed this value). Where the index of each selected code 

vector is encoded in a straightfonvard manner into binary number requiring n-' IgN b i n a ~  

digits. 

As described in Section 1.1, rate-distortion theory associates with the given source p(si  and ihc 

given distortion measure d,(x, y,) with distortion-rate function D(R) which describes tlic lowest 

possible average distortion of any encoding scheme with an output rate of R. In particular. 

Shannon's Noisy Sourcz Coding Theorem and its converse (to be described in more detail in 

Chapter 2) state that for a fixed rate of R bits per symbol, if the block length n is sufficiently 

large, then there exists a code book such that the average distortion of the cncoded sequence is 

arbitrarily close to D(R). More precisely. there exists a code book A' such that D(A-) D(KI 

+ E ,  where E is an arbitrarily small positive number. The Noisy Source Coding Theorem and 

its converse have important practical consequences in communication theoiy. Other types of 

source code Structures may or may not be theoretically capable of achieving the distortion-rate 

bound D(R) but these theorems guarantee that the use of block codes will bc optiii~~il if (he 

block length is suficiently large. 

Even though rate-distortion theory guarantees the existence of vector yuantizers with 

codebooks, which give nearly optimal performance, the theory provides no mehods of 

determining "good" codebooks. It is interesting to note that although the Noisy Sourcc Coding 

Theorem and its converse were first proved by Shannon [I] in the 1940s, it was not until about 

1980 that vector quantizer code book design methods were widely developed and put into 

practice [2,4]. The delay was not a result of a lack of interest. hot probably a result of Llie 

unavailability of the necessary computation and storage resources required to design and 



implement block codes. In the next section we briefly review a l e w  of the nieth,rd: used to 

gcnerate code books and discuss the important practical issucs ihal Jctcrn~inc tlrr uscli~l~!css OF 

a given code book structure in a vector quantizer 

1.3. Desipn and Instrumentation of Vector Quantizers 

In 1980 a vector quantizer codebook dcsign method known as [he Gcncralizcd ILIoyd 

Algorithm (GLA) or LBO method (named for the authors Linde. Bum and Gray) W:IS 

introduced [26].  Although we do not prcscnt the GLA algorithm i n  detail until Chapter 2. rvc 

find it useful to describe briefly the algorithm here. The GLA method uses a set of statistically 

representative samples of the source output. called a training set, to design the codchook. 'fhc 

code vectors produced by this method are obtained by cluhtering (he training set into subscts of 

similar vectors and choosing the centroid of each cluster as a code vcctor. A chansteristic of 

the GLA design method is that the vectors in each clustcr are "closer" in the sense of the 

distortion measured,(-) to their centroid than to any other cluster's centroid. 

A key issue in using codebooks designed with the CLA algorithm is the complesity of the 
vector quantizer implementation. The GLA code vectors have no natural order or structure. so 
every source vector requires an exhaustive search of the codebook to locate a code vector. 
which minimizes d,(-). The implementation costs of thcse exhaustive search vector qunntizcrs 
(ESVQs), measured in terms of computation and mcmory requirements, grow exponentially 
with the product of quantizer dimension and output ratc. Specifically. h r  an ESVQ code book 
comprised of N code vectors, each of dimensionality n. the number of vector distortion 
computatio~s needed to quantize a source vector is N. A vector distortion computation :nay be 
arbitrarily complex. but for a single-letter fidelity criterion a vector distortion compuiatioo 
requires n total of n scalar distortion calculations. If a scalar distortion calcu1:hn quantities 3 
measure of computation, then the computation cost (C) for quantizing each source sample is 

C = N scalar distortion calculations. (1.2) 

A codebook with N code vectors requires (by definition) P == logzN bits to commonicale thc 
code vector selected for each source vector. Sincc one index is transmitted per sourcc vector. 
the transmission rate is given by R = p/n bits per source sample. Hencc, the compu!ation cost 
given by equation (1.2) can lie expressed as 

C = 2B = 2"R scalar distortion calculations per sample. ( 1  2 )  

Assuming that one scalar memory location is used for each element of a ccde vector. the 
memory cost (M) required to store the codebouk at either. the encoder or decoder is defined by 
the exponential relationship 

M = n2' = nTR scalar memory locations. (1.4) 



Equations (1.3) and (1.4) express that at a fixed data n te  ( I <  constant) the 

computation and memory costs increase exponentially with inclcasing vector leng~h n, or :I! :I 

fixed block length (n constant) the costs increase exponentially with incwasing rate R. I3ec.ause 

rate-distortion theory requires a block length that is "sufficiently large" ( h a  fired rate) bi.Sorc 

thc existence of an optimal codebook is guaranteed. these incumpatible tlic~~i~ciical im1 

practical requirements limit the performance of practical ESVQs to vnlucs l j r  from ihc 

optimum D(R). 

The exponential growth in computation and memory costs of ESVQ is a rcsulr of tlie lack of 

structure in the ESVQ codebook. Many researchers have suggested imposing different 

structures on the codebook in the hope that computationally economical scarches can be uscd 

instead of exhaustive searches. The choice of a particular structure is necessarily ad hoc. in the 

sense that there is no motivation for any particular structure in rate-distortion theory. Examples 

of structured vector quantizers proposed in the literature include product codc V Q  [2].  

classified VQ [3], lattice VQ [4, 51, hierarchical VQ, and tree-structured VQ 16.7). The 

different stiuctural constraints lead to various compromises between qunnti7.cr design 

complexity, implementation complexity and performance. For example. lattice VQs have s~nall 

computation and storage requirements, and perform quite well on rrnifwnily distributed 

sources. Unfortunately, lattice VQs give poor perfonnance for non-uniforni data sources such 

as speech and imagery sources. Tree-structured vector quantizers perfom1 well on these rcal 

data sources and have computation costs that grow only linearly with increasing vector length: 

however, the memory requirements arc at least as great as those of ESVQs. 

Most structured VQs arc fairly successful at reducing the computation cost. but very little work 

has been done to reduce the memoly requirements of VQ. One notable exception is a codcbook 

structure that we introduce in the next section. This structure has been proposed to reduce holh 

computation and memory expense. 

1.4. Residual Quantizers 
Imposing a multistage structure on the VQ has been suggested to hold down both the memory 
and computation costs [7, 8, 9, and 101. This class of structured vector quantims is known 
variously as multistage, multistep. Cascadc. residual or succt.ssive appro~imation VQ. In this 
dissertation, we refer to these quantizcrs as residual quantizers (RQs). Instead of using one 
very large codebook, a residual quantizer uses a sequence of smaller codebooks. As shown in 
Figure 1.2, each stage of a residual quantizer encodes the residual error of the preceding slagc. 
The final quantized value of the source vector is the sum of the code vectors selccted at each or 
the stages. 
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Fig 1.2. Residual Vector Quantizer 

The computation and storage costs of a P-stage RQ with Np code vectors co~nprising the 
codebook of the pth stage are determined by the sums 

P- 1 

CRQ = NP scalar distortion calculations per sample. (1.5) 

P=o 

MRQ = n 1 NP scalar memory calculations. 

p=o 

instead of the products 

P-1 

CESVQ = 11 NP scalar distortion calculations per sample 
P'O 

P-1 

M E S V ~ =  n 11 NP scalar memory locations 

P=o 



for an ESVQ that has the same number of code vectors as the number of unique codc vector 

combinations determined by the product No x N' s N' s.. . ..xNP-'. 

Juang and Gray [8] were the first to propose the residual quantizer structure. W~ey 

designed and tested two-stage RQs with each codehook size varying from 2 to 1023 codc 

vectors. U s i ~ g  the GLA algorithm and a set of source training set vectors. they l h t  dcsigned 

the first stage codebook. Then using a residual training set formed from the scrurce tr3inin; sci 

vectors and the first stage codebook. they used the GLA algal-ithm ro design the s ~ o n d  stage 

codebook. In their speech coding experiments, they reportcd a slight loss in pe.rl;w~::ncz 

relative to single stage ESVQs when using the two stages RQ. 

Baker [27] proposed a modified RQ structure that was a generalization of Juang and Gray-s 181 

RQ to a product code structure. He seems to have done some preliminary investigations with 

RQ structures having more than two stages: however, he gave no results and made the 

discouraging statement "that it is not advantageous to iteratively vector quantize image 

waveform residuals. 

Makhoul, Roucos, and Gish [9] conducted more extensive experiments with the R Q  structure. 

Their results showed that the performance of RQs designed with the method of Juang and Gray 

[8] become; relatively worse (compared to the performance of ESVQs) as the number of stages 

increases. They suggested using rotations of the residual vectors between stages to improve 

performance. The rotations improved the signal-to-quantization-noise rtttio by about I db. 

They conjectured that the reason RQs with more than two stages perfonn so poorly is because 

the training set residuals are pooled together before the GLA algorithm is applied (o design. the 

codebook of the next stage. They hypothesized that this pooling desrroys the dependencies that 

exist in the initial training set clusters, and prevents the .GLA algorithm from exploiting these 

dependencies when constructing the source code. Their final conclusion is that RQs should he 

limited to only two stages. 

Makhoul, et al. [9], make the general observation that if some method of reducing the storage 

requirement; of VQ without a concomitant major reduction in perfonnance is not found. then 

storage cos: is ultimately the major limitation in the practical use of VQ. 

It is at this point that we ask ourselves a few questions about. the RQ codebook structure: 

1. What is the nature of the structure in RQ encoders and decoders, and can this structux 

be made explicit for possible analytical work to improve RQ performance? 

2. Similar to ESVQ codebooks, are there certain conditions that are necessary for 

minimum distortion of RQ codebooks? 
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3. If such conditions exist, can design procedures be developed which yield R() 

codebooks that satisfy these conditions? 

The remainder of this dissertation essentially provides affirmative answers to e x h  of thesc. 

questions. 

Gabor and Gyorfi [28] note that the design process involves two complcmentaiy steps; the 

choice of the structural constraints, and the design of the system given the slructur-a1 

constraints. The former is mainly a heuristic and experimental process where tllc. dcsigitcl. 

should consider all the technological and financial limitations involved. The rctluc<d 

computation and memory costs justifi our interest in the RQ structure. liowever, once 3 

structural constraint is accepted, it is the task of the designer to make the constraint explicit. 

and maximize performance under it. This is precisely the task acconiplished in this 

dissertation. We make the structure of RQ codebooks explicit and optimize perfomlance under 

the residual constraint. 

This dissertation is outlined as follows. In Chapter 2. we provide background material 

necessary for understanding concepts used in subsequent chapters. Topics covered include a 

more detailed description of information theory, image compression and the theory of tised- 

level quantization. In Chapter 3, we make explicit the structure of residual quantizers and 

derive necessary conditions for minimum mean squared error scalar RQs and minimurn 

distortion vector RQs. In general, one of the derived necessary conditions requires a com- 

putationally expensive encoding strategy. We call residual quantizers that use this encoding 

strategy exhaustive search RQs. In Chapter 4, we give an algorithm to design of PIX-RIZVQ. 

In chapter 5, we will discus implementation of coder and decoder fo'or.PRIZVQ. In Chapter 6. 

we will show certain results and comparisons of PEC-RRVQ with EC-KRVQ and comparison 

of EC-RRVQ with certain exhaustive search RVQ techniques. Finally. in Chripter 6 we 

summarize the results of the dissertation and suggest future research topics. 



Chapter 2 
Background 



Everyday, an enormous amount of information is stored. processcd. and t~msrnittcd digilally. 
Companies provide business associates, investors. and potential custo~ucrs with linoncial data. 
annual reports, inventory, and product infommation over the Internet. Order cntry and tr~icking, 
two of the most basic on-line transactions, are routinely performed li.on~ (hc corniori oi'onc-'s 
own home. Cable television programming on demand is on the verge ol'hccoming a rcnlilj.. 
Digital image and video compression is now essential. Internet teleconferencing. I~ccoc~sc: 111clc11 
of this on-line information is graphical or piclorial in nature. the storage and co~nnumica!icns 
requiremenls are immense. Methods of compressing the daba prior to storagc and tr;~rls~nissio~i 
are of significant practical and commercial interest. High Definition 'l'elevision (IIIYI'V). 
satellite communications and digital storage of movies would not he feasible without a high 
degree of compression [lo]. 
Image compression addresses the problem of reducing the amount of data required to represent 
a digital image. The-underlying basis of the reduction process is the removal ofredundant data. 
From a mathematical viewpoint, this amount to transforming a 2-d pixel array into a statiscally 
uncorrelated data set. The transformation is applied prior to storage or transn~ission of image, 
At some later time, the compressed image is decompressed to reconstruct Lhc original i~nagc o r  
an approximation of it. 
Interest in image compression dates more back than 35 years. The initial research effwts in this 
field were on the development of analog methods for reducing the video transmissio~l 
bandwidth, a process called bandwidth compression. The adven~ of digital computcr and 
subsequent development of advanced integrated circuits however caused interest lo shift from 
analog to digital compression approaches. With relatively recent adoption of scveral key 
intemalional image compression standards, the field has undergone signiticant growth thruu~li 
the practical application of the theoretic work that began in the 1940s. when C.E.Shannon [I] 
and other first formulated the probabilistic view of information and its rcpi-esentation. 
transmission, and compression. 

Currently, image compression is organized as an "enabling technology". In addition lo thc 
areas just mentioned, image compression is the natural technology for handling the increased 
spatial resohions of today's imaging sensors and evolving broadcast television standards. 
Furthermore, image compression plays a major role in many impo~~anf  and diverse 
applications. including televideo conferencing, remote sensing (the use. of satellite image~y for 
weather and other earth-resource applications), document and medical imaging. facsimile 
transmission (FAX), and the control of remotely piloted vehicles in military, spacc m d  
hazardous waste management applications, in short, an ever-expanding number of applications 
depend on the efficient manipulation, storage, and transmission of hinary. gray-scale. arid color 
images. 
In this chapter, we examine both the theoretic and practical aspects of the in~lgc compression 
process. Section 2.1 through 2.3 constitutes an introduction to the fi~ndamentals that 
collectively from the theory of this discipline. Section discusses the basics of image 
compression. Section 2.2 describes the data redundancies that may be exploited hy inlaye 
compression algorithms. 

Section 2.4 through 2.5 covers the practical aspects of image compressionl including both thc 
principal techniques in use and standards that have been instrumental in increasing the scopc 



and acceptance of this discipline. Compression techniques fall into two broad calegorics: 
information preservation and lossy. Section 2.3 addresses these methods. Which n1.c 
particularly useful in image archiving (as a storage of lcgal or medical  words). Thcse n?cthods 
allow an image to be compressed and decompressed with or witho~~t losing inhrrnation. 
Section 2.5 describes method in the second category, which provides highcr level o f  data 
reduction but result in a less than perfect reproduction of the original image. I-ossy iningc 
compression is useful in applications such as broadcast telcvision. vi&oconiL.iencing. and 
facsimile transmission, in which a certain amount of error is an acceptc~ble trade-oif I;ir 

increased compression performance. Section 2.5 deals with existing a n d  proposed lossy imiigc 
compression standards known as Vector Quantization. 

The term data compression refers to the process of reducing the amount of data rcquircd to 
represent a given quantity of information. A clear distinction must be made beiween data and 
information. They are not synonymous. Infect, data are the means by which inii~rniation is 
conveyed. Such amount of data may be used to represent the same amount of intonnation. 
Such might be the case, for example, if a long-winded individual and someone who is short 
and to the point were to relate the same story. Here, the information of interest is the story; 
words are the data used to relate the information. If the two the individuals use a diffcreni 
number of words to tell the same basic story, two different versions of the story arc created. 
and at Least one includes nonessential data. That is, it contains data (or words) that either 
provide no relevant information or simply restate that which is already known. 11 is thus said to 
contain data redundancy. 
Data redundancy is a central issue in digital image compression. It is  not an abst~act concept 
but a mathematically quantifiable entity. If nl and n2 denote the number of information- 
carrying units in two data sets that represent the same infomiation. the relative redundancy Rd 
of the first data set (the one characterized by n l )  can he defined as 

RD= I -  1\CR 
Where CR, commonly called as compression ratio, is 

For the case n2 = nl,  CR=l and RD; 0, including that (relative to the second data set) tlic lirst 
representation of the information contains no redundant data. When n2 << nl. CR 3 co and 
RD+I,  implying significant compression contains no redundant data. Finally. When the case 
n2 >> nl,  CR+O and RD+ a3, indicating that the second data set contains much more data 
than the original representation. This is of course, undesirable case of dam expansion. In 
general, CR and RD lie in the open intet-vals (0, m) and (-03, I ) ,  respectively. A praclical 
compressior. ratio, such as 10 (or lo:]), means that the second or conipressed data sct. l'hc 
corresponding redundancy of 0.9 implies that 90% of the data in the first data set is redundanl. 

2.2. Redundancv 
Redundancy is the repetition of same data with in the image. In digital image cornprcssion. 
three basic redundancies can be identified are exploited: coding redundancy. interpixel 



redundancy, and psychovisual redundancy. Data compression is achieved when m c  or nlox of 
these redundancies arc rcduced or eliminated [ I  11. 

2.2.1. Coding Redundancy 

Wc developed the technique for image eenhanccn~ent by histoglan1 processing o n  the 
assumption that the gray levels of an image are random qunntitics. Wc showed thn1 grcai deal 
of information about the appearance on an image could be obtnincd lion1 histogram of thwc 
gray levels. In this section, we utilize a similar tbnnulatioa to sliow how the grclq-lerd 
histogram ocan image also can provide a great deal of insight into the construction of coiics to 
reduce the amount of data used to represent it. 
Let us assume, once again in, that a discrete random variable rk in thc inter-\at [U.l] wplrscnt 
the gray levels on an image and that each rk occurs with probability pr(Rk). 

Where L is the number of gray levels, nk is the number of times that the kt11 gray levcl appears 
in the image, and n is the total number of pixels in the image. If the number of bits uscd to 
represent each value of rk is I(Rk), then the average number of bits required to represent each 
pixel is 

L avg = C I(Rk)pr(Rk). ('2.4) 

That is the average length of the code words assigned to the various gray-level values is found 
by summing the product of the number of bits used to represent each g a y  level and the 
probability that the gray level occurs. Thus the total number of bit required to code an IvISN 
image is MflL avg. 
Representing the gray levels of an image with a natural m-bit binary codc reduces the right- 
hand side of Equation (2.4) tom bits, That is , Lavg = m when rn is substituted ibr I(P.1.:). Then 
the constant m may be taken outside the summation. leaving only the sum of thc pr(llk) for 
O<=k<=L-1, which, of course equals 1. 
Example: (A simple illustration of variable-length coding) 
An 8-level image has the gray-level distribution shown in Table 2.1. If n natural 3-hit binary 
code [see code I and II(Rk)= 3 bits for all Rk. If Code 2 in Table 2.1 is used. howcver. the 
average number of bits required to code the image is rcduced to 2.7 bits. 

Table 2.1 Examplc of variable-length coding. 



=2.7 bits. 
From Equation (2.2), the resulting compression ratio CR is 317.7 or I . I  1 .  Thus apprnsiniatc.1:; 
10% of the data resulting from the use of code is redundant. The exact lewl e f  rcduntluncy can 
be determined from Equation (2.1). 

RD=I-1/1.1 1=0.099. 
In the preceding examplc, assigning fewer hits to the more probable gray levels than to thc less 
probable ones achieves data compression. This process commonly is rcCcncd to as variablc- 
length coding. If the y a y  levels of an image represent each gray level [tlxtt is. the code Fails to 
minimize Equation (2.4)], the resulting image is said to con& coding redundancy. In  general. 
coding redundancy is present when the codes assigned to a set of events (such as gmy-levcl 
values) have not been selected to take full advantage of the probabilities of the events. It is 
almost always present when an image's gray levels are represented with a straight or natural 

"L\ arc binary code. In this case, the underlying basis for the coding redundancy is that ima;: 
typically composed of objects that have a regular and soruewhat predictablc morp!loloyy 
(shape) and reflectance, and are generally sampled so that the objects being depicted are much 
larger than gray levels are more probable than others (ihnt is, the histogran~s of most images 
are not uniform). A natural binary coding of their gray levels assigns the same number of biis 
to both the most and least probable values. thus failing to minimize Equation. 12.4) and 
resulting in coding redundancy. 

2.2.2. Inter-pixel Redundancy 

If the gray levels in images are not equally probable variable-length coding can bc used to 
reduce the coding redundancy that would result from a straight or natural binary encoding or 
their pixels. ?'he coding process. however, would not alter the level of conzlation bctwecn the 
pixels within the images. In other words, the codes used to represent the gray levels of e ~ c h  
image have nothing to do with the correlation between pixels. These correlations result horn 
the structural or geometric relationships between the objects in the image. 
Autocorrelation coefficients computed along one line of each image. 

y(An) = 
A(O) 

Where 

The scaling factor in Equntion (2.6) accounts for the varying number of sum terms that arise 

for each integer value of An. Of course, An must be strictly less than N. the numher of pixels 

on a line. The variable x is the coordinate of the line used in the computation. 



These illustrations reflect another important form of data redundancy. one directly related to 
the inter-pixel correlations within an image. Because the value of any given pisel can bc 
reasonably, predicted from the value of its neighbors. The infor~llatioil carried by individual 
pixels is relatively small. Much of the visual contribution of a single pixel to rnn imagc is 
redundant; it could have been guessed on the basis of the values of ils ncighhors. A variety of 
names, including spatial redundancy, geometric redundancy. and inter-lr-ame redundancy. have 
been coined to refer to these inter-pixel dependencies. We use the term inter-pisel redundiincy 
to encompass them all. 
In order to reduce the inter-pixel redundancies in an image. the 2-fi pixel array normrlly used 
for human viewing and interpretation must be transformed into more efficient (but usually 
"non visual") format. For example, the differences between adjacent pisels can he used to 
represent an image. Transformations of this type (That is, those that remove inter-pixel 
redundancy) are referred to as mappings. They are called reversible nmppings in the original 
image elements can be reconstructed from the transformed data set. 

2.2.3.Psychovisual Redundancy 

We noted in Section 2.1 that the brightness of a region, as perceived by the eye. depends on 
factors other than simply the light reflected by the region. For example. intensity variations 
(Mach bands) can be perceived in an area of constant intensity. Suc11 phenomena result from 
the fact that eye does not respond with equal sensitivity to all visual information. Certain 
information simply has less relative importance than other information in normal visual 
processing. This information is said to be psychovisually redundant. It can be eliminated 
without significantly impairing the quality of image perception. 
That psychovisual redundancies exist should not come as surprise, because human percapti011 
of the information in an in image normally does not involve quantitative analysis of every pixel 

JLS or value in the image. In general, an observer searches for distinguishing features such as edb3- 
textural regions and mentally combines them into recognizable groupings. The brain thcn 
correlates these groupings with prior knowledge in order to complete the image interpretation 
process. 
Psychovisus: redundancy is fundamentally different from the redundancies discussed carlicr. 
Unlike coding and inter-pixel redundancy, psychovisual redundancy is associated with real or 
quantifiable visual information. Its elimination is possible only because the inforniation itself is 
not essential for normal visual processing. Since the elimination of psychovisuolly redur~dmt 
data results in a loss of quantitative information, it is commonly refcrred to as qulrntization. 
This terminology is consistent with nonnal usage of the word. which generally m a n s  the 
mapping of a broad range of input valued to a limited number of output values. as discussed in  
Section 2.4. As it is an irreversible operation (visual information is lost). Quantization results 
in lossy d a k  compression. 

2.3. Fidelity Criteria 

As noted previously. removal of psycho visually redundant data results in a loss of red or 
quantitative visual information. Because information of interest may be lost, a repeatable and 
reproducible means of quantifying the nature and extent of information loss is highly desirable. 
Two general classes of criteria are used as for such an assessment: (1) objective fidelity criteria 
and (2) subjwtive fidelity criteria. 



When the level of information loss can be expressed as a function of !he original or inpu: 
image and the compressed and subsequently decompressed output image. it is said to he h:rsctl 
on an objective iidelity criterion. A good example is the root-mean-sqtr (rms) error bctwccn 
an input and output image. Let f(x. y) denote an estimate and approsiu~ation of f (I. y)  [hut 
results from compressing and subsequently decompressing the input. For any valuc 01's ancl y. 
the e m r  e (x, y) between f (x, y) and f(x. y) can be defined as 

So that the total error between the two images is 

Where the images are of size M x N. The root-mean-square error. mis. between f(x. yj  and 
f(x,y) then is the square root of the squared error averaged over the M x N array. or 

A closely related objective fidelity criterion is the mean-square signal-to-noise ratio of the 

compressed-decompressed image. If f(x,y)is considered [by a simple reamngen~ent of terms 

in Equation 2.71 to be the sum of original image f(x, y) and a noise signal e(x. y). the mean- 

square signzl-to-noise ratio of the output image, denoted SNR,,, , is 

The rms value of the signal-to-noise ratio, denoted SNR ,,,,, is obtained by taking thc silrrare 
root of Equation (2.9). 
The objective performance measure used in all experiments is the peak-si$nal-to-quantimtion 
noise ratio (PSNR). PSNR is defined as 



Where N x N is the size of the image and x(ij) and x(ij) represent the original and codcd 
values, respectively, at the ith row and the jth column. 

2.4.The Two Kingdoms of Techniques. 

Data-compression techniques can be divided into two major families; lossy and loss less. Lossy 
data compression concedes a certain loss of accuracy in exchangc for greatly iccreascd 
compression. Lossy compression proves effective when applied to graphics images and 
digitized voice. By their very nature, these digitized representations of analog phenomena arc 
not perfect to begin with, so the idea of output and input not matching exactly is a little mtrrc 
acceptable. Most lossy compression techniques can be adjusted to tliifcrcni quality levcis. 
gaining higher accuracy in exchange for less effective compression. Until rcccn:l\r. lossy 
compression has been primarily implemented using dedicated hardware. In the past Scw yetlrs. 
powerful lossy-compression programs have been moved to desktop CPUs. but even so the ficld 
is still dominated by hardware implementations. 

Loss less compression consists of those techniques guaranteed to generate an exact duplicate of 
the input data stream after a compresdexpand cycle. This is the type of compression used when 
storing database records, spreadsheets, or word processing files. In these applications. the loss 
of even a single bit could be catastrophic. 

2.4.1.Noiseless Source cod in^ 

If the original signal is digital and can be perfectly reconstructed from the coded signal or data. 
then the coding scheme is called noiseless coding or lossless coding or Entropy coding. 
Noiseless coding is often required in some systems, for example in coding binary computer 
programs for storage or transmission: A single bit in error has disastrous consequences. If the 
noiseless coding results in a digital sequence with a smaller communications rate or storage 
rate then than the original signal, then the noiseless coding is called noised less data 
compression. Noiseless data compression is also referred as data compaction. An example of 
noiseless data compression of the ASClI code is the Morse code representation (use short 
vectors for more common or likely letters and less characters for less common or less likely 
letters). 

In many cases the rate of a code used to encode discrete amplitude source exceeds the source's 
entropy. For example, the code used at the output of a scalar quantizer. or analog-to-digital 
converter, typically employs a fixed input of bits to represent the value of each output sample. 
If the quantizer's output values do not occur with equal regularity, then this fixed-length codc 
is inefficient. We may seek a code with an average rate below that of the fixed-lcngth codc. 
Encoding schemes that attempt to give the lowest possible average rate (For n discrete 
amplitude source) without introducing any distortion .is called distortion less cncoding 
schemes. Practical systems that realize noiseless coding arc called entropy codcss. Entropy 
coding involves variable-rate and variable length mappings of codewords. The instantaneous 
rate of an e!~tropy encoder varies about its average entropy and one must be concerned with 
buffer overflow and underflow problems in the implementation. 



lim n-l log N(n, D ) = R(D) 
n -->a, 

Equation (2.15) expresses that for each D > 0, the rate-distortion function R (D) is the minimzl 
exponential rate at which the size of a code book must be increased \%it11 i11c:c~sin;: blocir 
length n in order for the code to remain D-admissible. 

2.5. Quantization 

This section is the last of the preliminary background and review sections. The work of this 
dissertation is strongly influenced by the ideas presented here. In t'act. much or  this work may 
be considered analogous to the scalar work of Lloyd and Max. and the vector work ol' Lindr. 
Buzo and gray; the major difference being our acceptance of a particular structurai constraint 
which we call a residual structure on the quantizer's encoder and decoder. 
The purpose of this section is to discuss in more detail some of the particulars of qua:iti.zation. 
Included in this discussion is a review of conditions necessary for the optimality of fixed-level 
quantizers: both fixed-level scalar quantizers and fixed-level vector quantizers. Fixed-level 
quantizers have a fixed number of representative output values; other classes of quantizers (for 
example, entropy-constrained quantizer) place no constraint on the number of levels and may 
even have an infinite number of possible output values. Fixed-level scalar quantizers are of 
interest because the derivation of necessary conditions for minimum mean sqt~areci emor of' 
scalar quantizers preceded and motivated the establishment of necessary conditions ibr 
minimum distortion vector quantizers. 

2.5.1. Lloyd-Max Scalar Quantizers 

An N-level scalar quantizer of the real-valued random variable V consists of a finite 
indexed set or real numbers A = (yl, y2, ..., y ~ ] ,  and a corresponding set (Xo, XI ..... &;. The 
y, € A are called the quanta or reconstructed levels, and the hj are called the partition 
boundaries or decision levels. The Xj specify a set of partition intervals where the quantixr 
output is yj if x falls within the Interval Sj: {x,., < x <=x,). The collection of partition intervals 
forms the partition P = { S t ,  S2, ..., SN). It is usually implicitly assumed that yj E Sj. A scalar 
quantizer is specified by a mapping y = Q(x), called the quantizer characteristic. 
The quantizer represented in Figure 2.1 has decision levels and reconstruction levels no 
uniformly spaced, and is called non-uniform. A quantizer with equidistant decision levcls and 
reconstruction levels is called uniform, as shown by an example in Figure 2.2. Although 
uniform quantization is most commonly used in practice, it does not necessarily represent the 
most effective conversion. 



Figure 2.1 : Nonuniform scalar quantizer. 

Figure 2.2: Uniform scalar quantizer. 

A nonuniform quantizer, which uses smaller partition intervals where the probability ol' 
Occumnce of x is relatively higher, and larger intervals othenvisr. should yield a smaller 
average distortion. 

Necessary Conditions for Minimum Mean Squared Error 

To determine which X, and Yj minimize the average distortion of a nonunifornl scalar 
quantizer for a given source, we express thc mean squared error as 



Where f(x) is the probability density function of A'. Necessary condilions fix thc optimalit? of 
a nonuniform scalar quantizer with a finite number of quantization levels Ibllow ii-on1 the 
minimizations 

a =o; j=: 1,2 ... N- I aDhrsE=o;j=o. I ... N. - A -- (7.17) 

ax, 
and were first derived in an unpublished paper by Lloyd and later in a published papcr hy Max. 
For an N-Level scalar quantizer to give minimum mean squared error. implies th31 thc 
quantizer partition boundaries necessarily satisfy 

x, (,= yL*fi for 1 <=j <= N- 1 , (3.18) 

Where xo=-w x ~ = m  

and the quantizer quanta necessarily satisfy 

Above Conditions are also sufficient if f(x) is log-concave. Equation (2.18) expresses that thc 
optimal boundary points of the quantizer partition intervals lie halfway betwcen qnanla valucs. 
Equation (2.1 9) expresses that the optimal quanta are the centroid or conditional means of t k i r  
partition intervals. Quantizers satisfying both equations are called Lloyd-Max quantizcrs. Mas 
also derived necessary conditions for the optimality of uniform quantizers. We nest review; 
design algorithm which was developed to yield optimal Lloyd-Max nonuniform quantizers. 

Lloyd's "Method I" Design Algorithm 

Lloyd gave two different methods, which he called "Method I", and "Method 11" to design 
nonuniform scalar quantizers with quanta and partition boundaries that minimize mean syumd 
error. Since Method I has been generalized to yield a vector quantizer design mcthod. we 
briefly describe this algorithm. 
Starting with either an initial guess of the partitions or an initial guess of the quanta. Method ! 
iterates by first satisfying the condition not initially guessed and then the other. repeating the 
iteration until eventually both conditions are satisfied simultaneously. 
Lloyd's methods have been used to design optimal scalar quantizers for sources characterized 
by one of a variety of probability density functions. 

2.5.2 Exhaustive Search Vector Quantizers. 

Before reviewing conditions necessary for the optimality of vector quantizcrs and n vector 
quantizer design algorithm, it is helpfd to investigate the structure of exhaustive search vector 
quantizers. 



Let x be a random vector in n-dimensional Euclidian space R"describsd by a ilisil-ib~ltior~ 
function F on R". An N-level vector quantizer of Rn consists of the rollowing: I ) .  A finite 
indexed subset A= {yl. y2, ..., yNJ of Rn called a code book, wherc rach yi E A is called a code 
vector, 2) a partition P =(SI,S2. ...&I of Rn where the equivalence clnsscs or cclls Si 01. I' 
satisfy 

N 

u S, =R", 
j-l 

S ,  n S 1 . = 0 f o r  j t k ;  

And 3) a mapping Q: Rn -t A that defines the relationship hetween the codebook nxi partilion 
as 

Q(x) = yj if and only if x E S, (7.21 ) 

for 1 5 j5 N,  where yj E A and Sj E P. In practice, the quantizer mapping Q is realized as a 
composition of hvo separate functions: the encoder mapping [and the decodcr mapping D. 
The encoder mapping < : R n 4  J is defined as 

4 (x) = j if and only if x E Sj ,  f2.22) 

where x E R%nd j is a member of the index set J ={1.2 ...., N). Each j E J is called a ch~rtinel 
code word and is either stored in some medium or transmitted through thc channel. The 
decoder mapping D : J -t A is defined as 

Where j E J and yj G A. The encoder and decoder mappings define the quantizer mapping as 
Q(x) = D(&)). Specification of the triple (A.0.P) determines a vector quantizcr. hi the next 
section, we present a condition necessary for the optimalily of the codebook A. and a condition 
necessary for the optimality of the partition P. 

Vector Generalizations of the Lloyd-Max Conditions 

For a fixed quantizer dimensionality n and fixed codebook size N the vector 
quantizer design problem is to determine the triple (A.Q.P) that minimizes the expccted value 
of the distortion 

D(x,.v) = E{~(xJ)! = E [ d ( ~  y) I x E S j ) Pr (X E 5). ( 2 . 1 4 )  

For any given code book A, the partition that minimixs the average distortion satisiia 

d(x, yj ) < d(x, yk) for all k (2.25) 
Whert x E Sj. Any partition that satisfies above Equation is called a Voronoi parlition of R". 
Since any input vector may have more than one nearest neighbor ( ~ h e r e  nearest-neighbor 
means a code vector closest to x in the sense of d), a Voronoi partition is not in general uniqlre. 
In the case of a tie between two or more code vectors, the input vector may be assigned to any 
of the corresponding cells with some arbitrary tie-breaking rule. An arbitrary codebook A and 
its associated Voronoi partition is denoted by the ~ubscript V in the trlple (A, Q. I'v). The 
quantizer (A, Q, Pv) is called a Voronoi quantizer. 



For any fixed partition P, the codebook that minimizes the average distortion satisfies 

E (d$, y,) I x E S j ) = min E {cljx. 14) ( s E S , ) (2.20) 

for 1 < j < N. Analogous to the points that satis@ , any yj that satislies above equation is 
called a centroid of Sj. The points yj that satisfy above equation improved to exist if I'r (s E Si 
Also, if d(x,y) is strictly convex in y then the centroid y, is unique otherwise. the centroid d ' n  
cell is not in general unique and some arbitrary rule for resolving ties may bs iieccssary. I\ tie- 
breaking rule together with above equation defines a codebook of centroids for any givcn 
partition. An arbitrary partition P and its associated code book ofcentroids is indicntcd by rlic 
subscript C in the triple (Ac, Q, P) If the quantizer simultaneously satistics both thc Voruni~i 
partition condition and the centroid code book condition, then the resulting q ~ ~ a n t i x r  (Ac, 0, 
Pv) satisfies a fixed-point condition . 

The Generalized Lloyd Algorithm 

In 1980, Lindc, Buzo, and Gray generalized Lloyd's Method I to devclop a vector quantizcr 
design algorithm, known variously as the LBG or Generalized Lloyd Algorithm ((;LA). 
Although very similar, there are two significant differences between Method I and the CiLA 
algorithm. First, Method 1 requires an analytically satisfied probability density fniction to 
describe the source; but for many information sources encountered in practice, the 
multidimensional source probability density fi~nction is either unknown or is not easily 
specified analytically. The GLA algorithm circumvents this difficulty by substituting a training 
set for the probability density function. This substitution is proven in the limit of large training 
set size to produce asymptotically equivalent designs. Second, Method I require an explicit 
description ;.f the quantizer partition. Unfortunately, the specitication of the boundaries of an 
arbitrary partition of R"for n > 1 can be extremely complex. 'The GLA algorithm avoids this 
complication by exploiting the observation that any code book A and the nearest-neighbor rule 
partitions a training set the same as a Voronoi partition Pv of R" that is associated with thc 
triple (A, Q, Pv). [12] 
The GLA algorithm can be described as follows. Lct T = {XI, x,. ..., .rL: be a training set o f L  
sample vectors, where each sample vector x; is drawn according to the probability distribution 
function F on R". The GLA algorithm improves (in ~11r srnsc of reducing the avcrcqe 
distortion) a Voronoi quantizer for the training set T. The GLA algorithm starts with some 
initial codebook A and then iterates by first replacing the code book with the centroids of the 
training set vectors that are in each of the cells of Pv that is associated with A. Thc algorithm 
then determines the new Voronoi partition by a nearest-neighbor mapping of'lhe tmining set to 
the new codebook of centroids, and the entire process is repeated. Each iteration of the 
algorithm either reduces the average distortion or leaves it unchanged. If the distortion is 
unchanged by iteration, both the centroid codebook condition and nearest-ueighbor partition 
condition are simultaneously satisfied, and the resulting quantizer (A. Q, Pv) is fixed-point 
with respect to the training set T. 



Chapter 3 
Residual Vector Quantizers 
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3. Residual Vector Quantization 

Vector Quantization (VQ) is a powerful technique for data compression of specch, iiimgc, 
and video signals. Source coding theorems, as well as other well-known results i n  late 
distortion theory, imply that one can always do better in the sense of achieving better 
mte-distortion performance if one can code vectors of samples as units, instrad of 
separately as individual scalars. However, an issue of recognized importance lor 
unconstrained VQ is that the size of the codebook grows exponentially as a function of 
the product of the vector and bit rate. Even for simple distal-lion nicnsurcs. the cncoding 
ccmplexity can quickly become unmanageable. Similarly. the rncmol-y rcquircd storin: 
the codebook at both the encoder and decoder side also grows exponenlially. To 
overcome the complexity barrier, many researchers have suggested imposing certain 
structural constraints on the VQ codebook design. Residual VQ (RVQ) is one of the 
simple and efficient types of structurally constrained VQ designs. An RVQ consists of 
Multiple VQ stages, each operating on the residual of the previous stage. 
A simple two-stage RVQ was proposed by Juang and Gray in 1982 for coding of speech 
signals. This RVQ encoder utilizes a computationally inexpensive. but sub optimal 
sequential single-path search. The performance of this computationally cheap KVQ was 
found to degrade significantly as the number of stages grows beyond two. I n  1989. 
Barnes and Frost introduced a jointly optimized RVQ (JORVQ) design. In their design. 
an attempt was made to minimize the overall quantization error of the RVQ in lieu of 
merely optimizing the individual stages in isolation. They demonstrated that a sequential 
single-path search through VQ stages could not, in general, utilize all the available 
codevectors. They employed M-search, an efficient multi-path tree search algorithm. to 
search the stage codebooks. The design resulted in improvement. However. the increase 
in performance comes at the expense of additional computations. It was later shown i n  
that the rate-distortion performance of a JORVQ can be further iniproved by including 
entropy encoding. The method was referred to as Entropy-constrained JORVQ (BC- 
JORVQ). Experimental results, reported in, show that EC-JORVQ outperforms siugle- 
stage entropy-constrained VQ (ECVQ) [ I  31. 
Although multi-stage JORVQ and EC-JORVQ do provide improved rale-distortion 
performance over the initial Juang and Gray sequential single-path design. the fact 
remains that these are computationally expensive designs. In  order to keep the search 
complexity manageable while having a jointly optimized RVQ design, Rarncs suggested 
an alternati1:e in the form of a binary JORVQ with the advaneage of using single-path 
search. The encoder and decoder of this binary JORVQ perform a reflecting or folding 
operation on the residual vectors between VQ stages. The folding operation forces certain 
symmetry on the JORVQ codebook. The symmetry of this JORVQ structure makes the 
sequential single-path search of stage codebooks optimal. This new binary JORVQ is 
referred to as Reflected RVQ (RRVQ). The experimental results, reported in [;I. have 
shown that the imposition of reflection constraint led to an unavoidnhle increase in 
distortion as compared to multi-path JORVQ. Ilowever, since structured systems are 
inherently less random or more ordercd, we expect that imposition of structure will also 
reduce the output entropy. 
The RVQ emerges as a practical scheme for implementing VQ for large vector sizcs. In 
particular, it was shown in [3] that entropy-constrained (EC-RVQ), a.k.a. enlropy- 
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constrained jointly-optimized RVQ (EC-JORVQ), can outperform JPEG both in ratr- 
distortion performance and decoding complexity, but generally requires large encoding 
complexity. Later on, EC-RVQ utilizing conditional entropy-constrained. and subb;md 
coding frame-works was also introduced with better gains [4]. An option lor lowering 
RVQ encoding complexity cost is the imposition of additional structure on the RVQ 
stage codebooks to make the code more submissive to sequential single path searches. 
Multiple-stage VQ's with stage codebooks comprised of lattice VQ's and reflected RVQ 
(Ref-RVQ) and CEC-RVQ [25] are examples of this option. 
In this Thesis, we design and analyze the performance of predictive RKVQ under entropy 
constraint (EC-RRVQ). Specifically, we try to answer the question: to what degrec would 
entropy coding or optimization under an entropy constraint improvc RRVQ rate- 
distortion performance. Our technical discussion begins with an overview of the KVQ 
design and provides definitions. Then, EC-RRVQ theory is fully esplained and the 
algorithm de-sign is presented. In this chapter we formulate an explicit description of the 
structure of residual quantizers, and give a problem statement for the design of minimuni 
distortion residual quantizers. We develop a structure called an equivalent quantizer that 
is useful in the derivation of necessary conditions for the optimality of residual 
quantizers. 

3.1 Residual Ouantizer Structures 

Let x0 be a random vector described by a probability distribution function F on R". A P- 
stage residual quantizer consists of a finite sequence of P quantizers Mi', O", PI'); O _(p 
I P - 1 ) ,  ordrred such that (A', Q O ,  PO) quantizes the source vector ?(" and (ifi'. Q ' I .  P ") 
quantizes the residual vector xP of ( A ~ ' ,  Q P pi)  for 1 S p  _C P - I .  The code vectors 
comprising the code book Ap and the cells comprising the partition PI' are indexed with 
the subscripts jP. Where jP is a member of the index set f = ( 1.2, .... N"). The number 
of code vectors comprising AP is indicated by A? which we consider a fixed preassigned 
number. We sometimes find it necessary to index the code vectors and partition cells of 
the stage by the superscript p; that is. AP = {yP1, yp2. . .  y P ~ p  } and PP = ISP~ ,  S P 2  
S P ~ p ) .  
The mapping applied to the input x" yields an output random vector ~ '(x") .  The 
difference of x and ~ " ( x 4  produces the residual random vector x' = xn - Q"(s0). In 
general, the mapping Q applied to the input x yields an output Q (x Y, and the residual 
Xpt' =X - QP(xP) for 0 p <. P - 1 .  The random vectors (QP: 0 5  p 5 Pj  and the quantizer 
mappings (QP: 001 p I P-1) are related by the expression 

P- 1 
xn = C QP(xP) + xP (3.1) 

p=o 
where .P is the residual error of the last quantizer stage and is called the total residual 
error. 
The sequence of quantizer triples {(AP, P); 001 p I P-1 1 can be separated into a 
sequence of quantizer mappings {Q',Q', . . . ,Q~- ') ,  a sequence of codebooks (/\".A'. . . . 
, A ~ - ' ) ,  and a sequence of partitions (P',P', ... ,pp'). Each map QP in the sequence of 

0 I quantizer mappings {Q ,Q , ..., Q~. ' ) ,  is realized by a composition of an encoder 
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mapping ED and a decoder mapping Ep. The encoder mapping cP:R" 4 .I1' is delined 
by 

zP (.) = Jp if and only if ~ P E  S,, (2.2) 

where .f E R" , SJp E PP and jP E JP. 
For each source output xo the indexes selected by the sequence of encoder- mappings arc 
concatenated to form the P-tuple (jnjl,.... jp-I). Each P-tuple is an elemcnt o i  the Cartesian 
product of the index sets (jd'j' .... ..jP-I) ~[&Ix. . .x j~ l )  
mappings fY' :JP + AP defined by 

map each component index jP E JP to its corresponding code vector J"E A". The decoder 
sums the selected code vectors to form the residual quantizer's representation of the 
source vector x0 by 

Where QP(xP)= DP( E ~ ( x ~ ) )  

3.2. Formulation of the Kesidr~al Ouantizcr Optimization 
Problem 
Let the distortion that results from representing x0 with x0 be expressed by d(xo.u"). The 
expected value or average of the distortion is 

D(xOJO) =E(d(xo8xo)). (3.6) 
A P-stage residual quantizer is said to be optimal for F if it gives a locally or globally 
minimum value of the average distortion. The design problem of residual quantizer 
performance optimization can be stated as follows: 
Choose the codebooks (A', A I...., A~. ')  and partitions {P".P '....,PI'-'; that minimize the 
average distortion 
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The minimization of (3.9) is complicated by the fact that D(x"$') rcquircs hnowletlgc of  
the joint probability distribution function dF(x~.xl ..... x,.~). This depends in a coml~lic:~ted 
fashion upon the sequence of codebooks and Partitioning boundaries. 1'0 avoid usill: 
(3.9). we find it useful to introduce the concept of an equivalent qnantizer. Tlic mullistagc 
residual and single stage equivalent quantizer's arc identical in h e  sense 111;11 they 
produce the same representation of the source output. and they have the s;mc e~pec!~ci  
value of distortion. We show in the next section that the equivalent quantizcr allows 11.: to 
express the expected value of the distortion in terms of the known source distribdon 
F(x0). And avoid dealing explicitly with the complicated probabilistic intcrdepenilcrlcies 
that exist among the stages of the residual quantizer. 

3.3 Equivalent Quantizers 

For our purposes, an equivalent quantizer is specified by the triple : / IT.~' . lF)  
consisting of .an equivalent code book. equivalent mapping, and equivalent partition. We 
first define the equivalent codebook AC. 

From the finite sequence of code books ,'An.A ',....A"':. We form a set, 
denoted by {A', A I , . . . ,  A ~ - ' ) ,  of all ordered sums of the code vectors of the codebooks. . . 
That is, 

n I {A ,A ...... AP-I)={ (Y~I+Y' I+-+YI  "'2+ Y ID-1). 

(~O~o+y'~'+...+y ~ - 2 ~ ~ - Z + y  p1 N p-l )f 1 (3.10) 
where the number of elements in {A',A I.... ..A"') is given by 

Each summation in (A: A I. ..., AP'} represents one of the possible output values of the 
residual quantizer. Each summation also represents a path through a tree structure that 
may be associated with the residual quantizer. To define a simple indexing schenie to 
refer to these values, (or paths), let b be a one-to-one but othenvise arbitrary futlction t!ml 
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maps each index P-tuple (j, , j  I,.... j p ' )  6 ~ ~ x . f x  ... x.F'-': to an rquitr,/rnr indcr.j' E .B 
={1,2,3, ..., MI. 
Using the function B and the set (Inljl, ...jp-'1 we form a new indexed sir by setling 

8 . 1  For all 6 J ,....jp-I) ~ f i~x j~x . . .x j~ - l ] .  This set is called the equivalcn( codebook :tnd is 
denoted by 

Ae=(ye,,: 15je<NeJ,  (3.11) 
Where the yeje. are called the equivalent code vectors. We note that in gencral the 
equivalent code vectors are not necessarily unique. 
The (J")'~ equivalent cell of the residual quantizer is the subset SCj, E Rn such that all s" E 

S ',, are mapped by the residual quantizer into y;e. That is, 

The equivalent partition V =  {,TI, S,, SI.... SN,! of a residual quantizer is the collection 
of all equivalent cells. 
An eqlrivalenf qtrantizer mapping Qe: R"+Ae is defined by 

Qe(xu) = Y:~ if and only if x0 E Sej, (3.16) 

For 1 ije<M, where x O e  Rn , Sej, 6 Pe and yejc €Ae. The equivalent quantizer's map (7 is 
constrained to produce the same representation of the source that the sequencc orrcsidual 
quantizer mappings {@;0 < p  5 P-I} does. That is, the output of the equivalent quaniizer 
is required to satisfy 

P- l 
Q'(x')= C QP(xP) (3.17) 

pro  

The average distortion of the equivalent quantizer is 

D(x",x') = E{d[x0,QC(xo)]), (3.1s) 

= C jscJe d[x",Qe(x")] d~(xO), (3.  I V )  

and expresses the distortion of the RQ in terms of the known source distribution F(s0) 
Because (3.;7) constrains the equivalent quantizer and residual quantizer to produce the 
same representation of the source's output, the average distortions of the two quantizers 
are equal, that is 
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By (3.19) and (3.20) the distortion of the residual quantizer may he e\pwsscd aq 
P- I 

E(d [so, C QP(xP) ] )= C d[x",Qe(x0)] d~(xO) (3.21 ) 

FO jC €2 

Which is much simpler and more amenable to analysis than Equation (3.0). 

3.4 Necessary Conditions for the Ontimalitv of Residual 
Quantizers 

Because the explicit representation of an arbitrary partition of R" can be very 
complicated, the difficult problem of describing the cells Sc,, in (3.21) conrront us. We 
circumvent this difficulty by attacking the optin~ization problem in the same manner that 
led to the development of the GLA design method (4.221. 'That is. we first investigate i n  
Section 3.4.1 the problem of optimizing scalar residual quantizers for the special caw of 
mean squared error. The results of the scalar problem motivate an approach. which 1c.c 
use in Section 3.4.2 to determine conditions necessary for the optimality of i ~ c l o r  
residual quantizer, which hold for a broad class of distortion measures. 

3.4.1 Necessary Conditions for Minimum Mean Squared Error of 
Scalar Residual Quantizers 

Let x0 be a continuously varying random variable described by the probability 
distribution function F on Rn with corresponding density function fs" = F'. Choosing 
squared error d (xO, x") = (xo - x " ) ~  as the distortion measure. the design problem of scalar 
residual quantizer optimization can be stated as follows: 

Choose the codebooks {A', A' .  ..., Ap-1) and partitions (p0,P' ,..., P"-'; that minimizc 1hC 
mean squared error 

0 0 2  D (xO, x0) =E{(x x )  ' 97 (3.--) 

Equation (3.25) follows from (.3.1) and (3.5). and expresses that minimunl mean squcircd 
error requires minimum mean squared total residual error. 



PRRVQ Residual Vector Quantiza!io~i - 
r 

Optimum Quanta 

Assuming that the stage wise partitions :P'.P' ,.... 5 arc h c d .  we seek <l~c 
stagewise code books /A',A '....,A'-'), that minimize ( 3 . 3 ) .  f k e d  stu~cwisc ~a~-Lit i~ms 
imply that the equivalent partition P is also fixed. Optimization of ,',*J': .A1. .... A".' J h r  a 
fixed {P'.P'....,P~-') corresponds to optimization of A' for a lised I*. where the y',, e 
A' are responsible as sums of code vectors selected from I' code books consistin: of N1': 
0 i p  5 P-1 code vectors. The set of all such A' that corresponds to a l i d  P and Ni': 0 5 
p < P-l forms the class of allowed equivalent codebooks. We seek a codcbook ..I" within 
this class that minimizes the expected distortion thus. optin~izalion of the equiwk~i t  
codebook. Ae within the class of allowed single stage code books Tor a tised I+. 
corresponds to optimization of {A', A   for a fixed ,'P",I" . . . . , P " - ' I .  Since the 
construction of each ye,, E Ae is given explicitly by Equation (3.13). we choose an 
optimal A' within this class by choosing the best stagewise quanta used to form thc yCi, G 

A ~ .  
It is useful in the following derivation to define a set of functions that identify the p'' 
component quantum that is used to construct each (je)'h equivalent quantum. Functions 
that fulfill this role are f J-f for 0 s p  < P-l which are defined as 

y"(i3 =j" if and only ifjeOfljl, ...,jp-I) 

The maps yp are component-wise inverse mappings of the function 13. and allow us to 
express the (jr)lh equivalent quantum as 

- CY 
Je - Vue)  (3.27) 

p=o 

Using Equations (3.16), (3.19), and (3.27) we express the mean squared error of the 
scalar residual quantizer as 

P- l 

D (r", xO) = I: hej.( x O - x  y ,pot))' fyo(xo) d xu (3.18) 

je ~f FO 
To determine the best stagewise quanta, we minimize (3.28) with respect to the (kP)"' E 

{ 1.2, ..., NP) quantum of the p" E (0.1, ..., P-1 J stage by setting the partial derivative with 
respect to yhp equal to zero, i.e. 

P- 1 



The partial derivative in (3.30) is evaluated as 

P- I l ifj' .H. 

a la ~ L p ( 2  Y ypue)) = 1 0 otherwise (3.31 1 

p=o 

where H+= : y P ~ 4 =  P) That is, Hk is the subset, of all indexes in .t correspondins to 
equivalent quanta that contain yr, in their construction. Using (3.31) we wite  (3.30) as 

je €Hip p=O. 
To make explicit the fact that all equivalent quanta yeje with J" 6 FIA,, have y ~ ,  in their 
construction, we let 

P- l P- 1 

Substituting (3.33) into (3.32) we obtain 
P- I 

which we solve for ykP 
P- 1 
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In Equation (3.35) the expression differs from the construction of thc (jc)"' cquivalcnt 
quantum in that the p'h node of the 6')"' path through the trce is removed. It is in:pvt-tant 
to note that sincep € (0.1, .... P - I). the removed node is nor necessuril:g at tllc tnd 01'!Iic 
path through the tree and hence does not correspond to a pruning. Wc interpret 1'qu;l:ion 
(3.36) as the @)Ih path with one node removed and the two remaining portions of thc path 
reconnected or "grafted" back together. For each possible path y'. thro~~gh the tri'r 
structure, we denote the corresponding pth grafted path or pth grdfted branch hv t l x  
superscript p=OJ ...., P-l as 

YP~ '  = for 15 je<_Ne 

p=o 
p!=P 

In terms of the grafted branches, (3.35) becomes 

Equation (3.38) is a key expression. It is similar in form to the centroid espression. which 
is a necessary condition for the optimality of the quanta of single-stage Lloyd-Mas 
quantizers. 

Optimum Partitions 

Assuming that the codebooks {A', A' ,..., A~. ' ]  are fixed. We seek the equivalent 
partition P that minimizes (3.25). The tixed stagewise codebooLs imply that the 
equivalent codebook Ae is also fixed. Once we determine an optimal P' for thc fixcd A", 
we determine a sequence of stagewise partitions P P . P from the class of 
allowed stagewise partitions. The allowed class of stagewise partitions consists of 
collections of P partitions with NP :01 p 1 P-l cells in each partition. Since P' and the 
derived (Po, P', ..., PP-I}. By definition, partition R the same way. optimization of PC fur a 
fixed A' corresponds to optimization of {PO. P I , .  . ., pP-'J for a fixed {A", A'.. . .. A ~ - '  I. 

We make the reasonable assumption that an optimum equivalent partition P'= ,'.St, 
ST ,..., SeNe,} consists of a collection of connected, cells. That is each equivalent cell is :I 
finite or semi-infinite interval of R, which we denote? by 5;'= (xy-' ,x;"). The partition 
P may be described by the N ~ '  points. { xe" ..<I, ..., xr,G ). Without loss of generality. 
we assume that the one-to-one function cp : (JO x J' s ... x J~ . ' )  + Jc and the equivalent 
partitions are labeled such that the following ordering property is satisfied 

e e-l < yeNe < X ~ N e  xe0 < yel < ye2<. . . < x N (3.39) 

Where xco= - infinity and X'N~ = infinity 
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For .jo = 1.2, ..., N4 where the P-tuple (k", k' ...., !F') vary over all mernbcrs or hi: 
Cartesian product set :JO x J' x ... x J~ . ' )  and the (P -1)-tuples (k', k' ..... A".') vary oser 

1 . 2  all members of the Cartesian product set {J x J x ... x J ~ . ' ) .  The srtbsct of all xi' t R 
I1 such that Equation (3.46) holds for each j 0 s . J 0  defincs the optimal equivalcnse class Si . 

where all x" S: map as ~ ( 2 )  = y? and also Q'(x0) :r") y> in  accordance with the 
optimal partitioning rule Equation (3.42). In words. Equation (3.46) idenlilics S; :IS tlic 
subset of R that is Voronoi with respect to the terminating nodes of nil paths i l l  ;A"~+ A 
'+ ... + A ~ - ' )  which contains y; in their construction. 

yel ye2 ye, ye4. ye, y" $7 yex 
Figure 3.1: Example of an onentangled tree of a three stage. two quanta per stage scalar 
residual quantizer. 

Figure 3.2 Example of a partially entangled tree of a three stage, two quanta per stage 
scalar residual quantizer. 

Figures 3.1 and 3.2 represent three stages, two quanta per stage scalar residual 
quantizer by their tree structures. Each level of the trees (except, the root nodes which 
represent the origins) represents a particular stage of'the residual quantizers. The valuc of 
the nodes gives either an intermediate or final quantizer level constructed by the 
decoders. In particular, Figure 3.3 represents an unentangled irw. while Figurc 3.4 
represents an entangled tree. The degree of entanglement affects the fornm of the 
stagewise equivalence classes S, For example, in Figures 3.5 and 3.6 the nodes ol' the 
first layer have been labeled with the corresponding quanta of the first code book .A" - : 
y" ,, y"z] Equation (3.65) expresses that for optimal stagewise encoding, the equiudense 
classes 191,  92)of the partition Pomust be the union of all equivalent quantizer Voronoi 
cells that correspond to the terminating nodes of the sub-trees ofy''/ om/ 1!'2, respectively 
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Figure 3.3: The equivalence class 91 (indicated by thick lines) and S"fiindicated by thin 
lines) in an unentangled tree. 

Figure 3.4: The equivalence class 9, (indicated by thick lines) and 5". (indicated by thin 
lines) in an entangled tree. 
Comparing the unentangled tree of Figure 3.3 and the entangled tree of Figure 3.4 we see 
a fundamental difference in the construction of the equivalence classes [.("I. 9'2 ,' for the 
two different trees. The equivalence class 91 in Figure 3.3 is a connected interval of R 
and may be distinguished from the equivalence class 5'2 by a single boundary point; 
while the equivalence class S"l in Figure 3.4 is a union of three disjoint intervals. An 
encoder of greater complexity is required to distinguish the equivalence classes of 
entangled trees than the encoders of unentangled trees. We proceed to determine the 
optimal equivalence classes for the remaining stages. 

Fi ure 3.5: The translations of the sub-trees of {A'+ A ' +A2} to form the smaller tree ( B A + A ~ J  

Figure 3.6.: The tree { A I + A2} 
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0 When the residual xi is formed by the difference x' = xO- QO(.x J). The iree struciurc ; ; 1 
%A'+ ...+AP-') is modified by subtracting the first component ofeach pa~h of the tree to 
produce the smaller tree structure {A' +A' +...+AP-':. The difference s' = xo- Q0@"l 
causes shift or translation of each of the sub-trees corresponding to nodes in the lirs? 
layers of { A "+A1+ ...+ AF'). Each of the translated sub-trees superimposes to form i t i t  

smaller tree {A' +A2 +.,.+A~-I}. Where the root node of the smaller tree occurs at the 
origin of the residual. To determine the optimal partition  of the residual s' we nssuciri. 
that xo has been optimally mapped by QO and we fix yj' to determine s,'. That is. we w i l e  

~orj' = 1,2, ... , N', where the (P - 1)-tuple {kl,k ',...,kP-I ) varies over all menibcrs in the 
Cartesian product-set {J' x j  x ... x Jp-I) and likewise for the (P- ?)-tuple :k',k3.. ...kP-I I .  
Assuming that d(x,y) is translation or position invariant in the sense that &cy) = d(s-z. .v- 
z) for any x, y, z E R. we subtract QO(xO) from every term in (3.47) to obtain 

Substituting x' = x0 - ~ ( x ' )  into (3.48). we get 

P- l P-l 

d(x', yj' + 1 y L,) 5 d(x', 1 y L,) (3.49) 
p=2 p=o 

I the subset of all x' E R that satisfy (3.48) defines each equivalence class s,' : 1 5 j '  5 N . 
1 ' -  I where all x' E S,' map as Q (x) - y, and all corresponding xfl = x' + QO(X") niap as 

Q ~ ( X O )  =yje in accordance with the optimal partitioning rule (3.42). Similar to the rcsult 
for P9 (3.49) identifies s,' as /he subset of R that is Voronoi with respect to the 
terminating nodes of all paths in the smaller tree {A' 8 A 8 .... 8 AP' that contains - 
yjl  in their construction. 

I 
In general, this procedure can be repeated to determine ? =(S, : 1 5 jP 5 N ~ )  for 0: 5 p 5 
P - i  by identifying all xP such that 

P=P+ I F P  

holds true for each jP E .IP, where (kP ,kp',..., kP") varies over all members in  IJ''  X J'"' X 
... X JP' ) and likewise for (kPt' ,kp2,..., kpl). The optimal equivalence class S," is the 
subset of R that is closest (in the sense of d(x. y) = ( x - ~ ) ~ )  to the terminating nodcs of all 
paths of the tree [A' 8 A' 8 .... $ AP-' j,  which contain y? in their construction. 
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3.4.2 Necessary Conditions for Minimum Distortion of Vector  Residual 
Ouantizers 

We give vector generalizations of the scalar conditions necessary ibr- the op~irnahty or 
scalar residual quantizers. We also generalize the results of Seciion 3.4.1 lo disto~lion 
measures more general than simple menu squared error. The class ofdistorlion li~nctil)ns 
considered in tins section arc assumed to be nonnegativc real-valued functions that s:lislj. 
the followinq requirements: 

1 .  For ar.y x, y, z E Rn, d(x, y) is translation or position invcuiant in the sense ihai cl(.t. 
y) = d(x -y, y - r). 

2. For any fixed x E R", d(x, y) is a convex function of y. that is f o ~  y 1.p E R". k G (0. 
I), d(x, hyl + (1-h)y2 ) 5 M(x, yl ) + (I-h)d(x. y2). If the inequality is strict then (I(\: 
y) is strictly convex in y. 

3. For any fixed x, if y(k) a= (yl(k), y2(k), ...,yn( k))) -+m as k--tw (that is. y,(k) 
diverges for some i), then d ( x ,  y(k)) --roo also. 

Properties (1) and (2) are key assumptions, property (3) is a technical condition imposed 
to avoid pathological cases . Assumption (1) is a necessary constraint resulting from thc 
residual structure imposed on the vector quantizer. All distortion measures that depend on 
the difference (x - y) satisfy (1). since d[@-2)-&-z)]=d(x-y). 

For the general class of distortion measures determined by these assrmptioos. 
we proceed to derive necessaty conditions for the optimality of RQ code vectors in R" 
and necessary conditions for the optimality of stagewise partitions of R" for cach of thc 
residual quantizer stages. 



Chapter 4 
Analysis and Design 
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4. Analysis and Design 

Digital images and video sibmals exhibit large temporal correlations that can be exploiicd 
in a compression algorithm to bring down the bandwidth requiucrncnts. Thcrc certain 
compression algorithms reported in literature for this purpose. One such classical 
algorithm is differential pulse code Modulation (DPCM). The basic idea behind 1)I'Clr.l 
scheme is to predict value of a current input pixel based on neighboring piscl values 
using certain prediction coefficients. The difference between predicted value and ( I C ~ I I : ~  

value of the pixels emerge as differential or Residual image. which is much less 
correlated than original image. The Residual image is then coded 2nd sent. 'The scl~cnitltic 
diagram of the DPCM coderldecoder is shown in fig 4. I .a and 4. l .b. 

0 Reconstructed * 
X m  

Channel 
Pixel Entmpy 

Code 

~reclictor 1 
Fig.4.1 .a. DPCM CODER 

Fig.4.l .b. Differential pulse code Modulation DECODER 

Original a Channel 

The Fig 4.2.a and 4.2.b shows the original cameraman image and Residual or Differential 
image. The differential image exhibits variance in the range of 42 as apposed to 433 for 
original Cameraman image. This illustrates that DPCM has becu vely ctkctive in 
reducing spread of pixel values by at most 10:l ratio. This rcduction is very helpFul i n  
providing compression. Due to its simple structure DPCM has made its placc in the 
standard algorithms like JPEG [14] for still image coding, H.261 [I51 for vitlcophones 
and videoconference communications, and MPEG [I61 for interactive media applications. 
However performance of DPCM has certain drawbacks, which prevent its uses in certain 
circumstances. The two main drawbacks are channel error sensitivity and poor rate 
distortion performance at low bit rates [17]. 

Entropy 
Quantizer - 

x m 
Code 
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Fig. 4.2. (a) Original Cameraman image 

4.2.(b). The prediction error1 differential image. 
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4.2(d). Histogram of the Prediction errors with variance 43.33. 
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Another approach that generalizes DPCM is to code prediction Residual image using 
Vector Quantization (VQ). Generally, there are several arguments in support of V Q  b r  
image and video coding. Shannon rate-distortion theorem indicates that VQ always 
perform better than conventional vector Quantization for the simple reason that 
Quantization block of samples, as one unit is a general case of quantizing individuui 
san~ples in isolation. The DPCM structure that involves VQ as its Quantization modulc is 
referred to as predictive Vector Quantization (PVQ) proposed in [I 81. I t  was stated that 
although PVQ structure is simple and well understood, its design is problematic ~ L I C  to 
feed back loop involved and standard method often fail to produce optinial or evcn good 
predictors and quantizers. The design of vector quantizer in a feed back loop is in  need of 
representative training set of prediction error image. However the representative training 
set has dependence on both predictor and quantizer. The predictor and quantizcr have to 
be optimized jointly with respect to each other in order to come up with 3 reason shle 
prediction error image suited for training quantizer. 
Two simple approaches for PVQ design were introduced earlier by Ci~per~uan and 
Gresho [19]. The first approach referred as open loop solves the vector quantizer design 
problem by assuming no feedback, and operates directly on original source vectors. An 
improvement was suggested by using second approach called closed-loop design. I n  this 
case, an iterative design is employed for updating the training set and quantizcr given a 
fixed predictor. Later on, closed-loop design algorithm was modified further modified by 
Chang and Gray [20], where both vector predictor and vector quantizer are jointly 
optimized. The joint design algorithm provides an improvement over the previously 
stated designs however; such design approaches exhibit significant stability problems 
especially at low bit rates. The stability of closed-loop design is analyzed and a modifkd 
design with the name of asymptotic closed-loop (ACL) [21] starts as an open loop and 
then tries to simulate closed loop behavior over a long run. 

Vector Quantization (VQ) used in PVQ is a powerful technique for data compression of 
speech, image, and video signals. Vector Quantization takes advantage of linear or 
nonlinear correlations that exists among the vector components. Therefore larger the 
vector size is used grater the compression rate can be achieved. However an issue of 
recognized mportance for large block implementation of VQ is that size of codebuok 
associated with associated with VQ grows exponentially as a product of Vector 
dimension an bit rate. With an increase in code book size comes an ove~whclming 
increase in search complexity. To overcome the complexity barrier, many researches 
have suggested imposing certain constraints onthe VQ codebook design. The relief in 
search complexity was obtained by replacing VQ with multistage VQ referred to as 
residual vector Quantization. The argument is that multistage VQ can he designed 
sequentially and its stage codebooks are smaller in size and thus require less search 
complexity. Researches also considered reducing further the search complexity by 
applying additional structural constraints on multistage VQ, and proposed multistage VQ 
with stage code books comprised of lattice VQ's [22] and reflected RRVQ [23]. Our 
focus in the thesis is the utilization of RRVQ. 
A reflected RVQ (RRVQ) is a multistage structure \\itiith binary stage codebooks. The 
encoder and decoder of RRVQ perform reflecting and folding operations on residual 
vectors between stages. This reflecting operation forces a certain symmetry on the 
resultant codebooks, which in turn makes the sequential search of stage codebook 
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optimal. The sequential search ability of RRVQ makes it an ideal candidate ror lal-gc 
block VQ implementations. Recently an entropy-constrained RRVQ (KC-RRVQ) tfesign 
was introduced [24]. 
In order to extract linear and most of the non-linear correlations among image source. wc 
suggest the use of large-block RRVQ with the current PVQ structure. Thc pulposc of' 
large block RRVQ is to take advantage of lioear/nonlinear correlations p~rscnt among thc 
block of pixels and the predictive structure with the feedback loop to exploit the 
remaining intra-block dependencies. Our goal in this thesis is to simulate the behavior of 
RRVQ in a feedback loop that exploits correlation in a given image source in order to 
produce high compression ratios with lower complexity. A new dcsign dgoritlim Sor 
RRVQ in a predictive environment has been proposed in  this thesis. which is referred to 
as Predictive Reflected Residual Vector Quantization (PRRVQ). The rcst of the cliaplel- 
includes sections for the design parts of the technique. 

4.I.Reflected Residual Vector Quantization:(RRVQ) 

RRVQ is a Special form of RVQ in which only two code vectors are allowed in one 
stage. A p-stage residual quantizer col~sist of a finite sequence of P vector quantixn 
{(CP, P ~ ) ;  1 5 p 5 P}. We index the code vectors of pth-stage as :yPo. yP1. y" 2 . . . . .  yPN-II 
and voronoi cells of the pth-stage as {SPo, SP1, SP:,.. .., SP~-1) .  The code vectors 
comprising the codebook CP and the cells comprising the partition PPare indesed with the 
subscript jP . The quantized representation N' of the input source vector x' is formed by 
the sum of the selected stage code vectors. 

P 

XI= 2 yPJP (4.1 ) 

P=l 
For adopti~~g a jointly optimized approach, an RVQ is represented wrth an equilent 
quantizer, referred to as direct sum quantizer (Ce, Pel. The elements of C'nre the elernen& 
of the set of all possible sums of stage code vectors. That is CC =c' +c' +...+ C" .CCcan 
be interpreted as the terminating node of a path through tree structure. which is associated 
with the Residual vector quantizer mentioned earlier, corresponding to the direct sum 
quantizer. A tree structure of three stages two code vectors1 stage RVQ is illustrated in 
Fig 1 .  The root node the tree represents x'. The leaf nodes represent the set C' o r  the 
direct sum code vectors. The intermediate node represents the partial sums of the direct 
sum code vectors and branches represent stage code vectors. If two code vectors {yl',,, 
yPI }are allowed as in RRVQ in a given stage, then the Voronoi boundary is a plane of 
equal distortion between two code vectors. 
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Fig. 4.3. Three-stage binary RVQ tree structure. 

Voronoi boundaly can be specified by midway point mP between the two given rude 
vectors for that particular stage p as 

rn = %( yPg+ yPI) (4.2) 

The normal vector nP is defined to be the line joining two code vectors yPo, yP1. The 
equation of the plane through the midway point mPperpendicular to :he n q s  

Where zP is the any point in the plane. In order for this hyper-plane to specify also the 

boundary between adjacent children of the two code vectors. We reflect the input vectors 

of thc pth-stage to one side of the hyper plane boundary, and by convention, wc rellect all 

x ~ . ~ ~ ~ ~ ~  belongs to voronoi cell SPI to second voronoi cell SPo. After reflection we subtlnct 

yPo from reflected input vector forming a reflected residual vector. Thcn the residual 

vectors that represent the next stage code vectors will lie in the reflected residual space. If 

we are to unreflect all the reflected stage codebooks, the resulting direct sum codebook 

has the desired symmetry properties. 
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Fig. 4.4.a. Gaussian source coded with a binary 8-stage, two-dimensional quantizes 
(a) Equivalent code vector constellation of RVQ. 

Fig 4.4. Gaussian source coded with a binary 8-stage, two-dimensional quantizer. 
(b) Code vector constellation of Ref-RVQ. 
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To illustrate the structure of Ref-RVQ codebook. Fig 4.4.(a) shows thc code \wxor 
constellation for (8-stages, 2 code vectorlstage) two-dimensional RVQ dcsigncd for 
Gaussian source. Similarly Fig 4.4.(b) Shows the code vector eonstcllalion (8-st~gcs. 2 
code vector/stage) two-dimensional Ref-RVQ designed h r  Gaussi:in source. /\!I :hi. 
direct sum code vectors that involve the first code vector of the first KVQ stagc i n  ihcir 
construction are represented as dots. On the other hand. asterisks are used for rhc direct 
sum code vectors constructed with second code vector of the first stage IRVQ. Fig 4.2.(:1) 
indicates se.:ere code vector diffusion for RVQ, where as Ref-RVQ (Fig 4.?.(h)l sllo\+s 
no diffusion and hyper plane boundaries are evident. The presence of Voronoi cclls wil!i 
hyper-plane boundaries in Ref-RVQ codebook makes the sequential sin& path optimal. 

4.2.Entropv Constrained Reflected RVO (EC-RRVQI 

For Entropy constrained design algorithm, the distortion tmde of squared error with code 
word rate. In case of residual VQ (RVQ), we will have the Lagrangian 

Where L (Ce) is the length associated with a direct sum code-vector. For the case of 
developing an entropy-constrained design for the Ref-RVQ, we have binary stages i.e.. 7- 
code-vectorslstage. This will form the Voronoi region boundary hetween the two code 
vectors as plane. For an EC-Ref-RVQ, we need to work with the planc of eqwl 
Lagrangian as opposed to the plane of equal distortion used in fixed-rate ReGRVQ 
design. We define a plane of equal Lagrangian as 

We restate the above Equation as the more familiar normal plane equation n.xP = d as 

The shortest distance from yP, to the plane will be given by 

Thus the new midpoint in case of entropy-constrained Ref-RVQ (EC-Ref-KVQ) will be 
given by 
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By having a look at Equation.(4.8) one notice that unlike fixed-rate lief-RVQ the 
midpoint for a given stage will not be equidistant from the two code\cctors, hul  will he 
offset by an amount dependent on the difference of lengths between the two. Ttic 
midpoint will move in the direction of the larger length code vector bec:luse of the third 
term in the Equation. (4.8). 
An important complexity-reducing feature of EC-Ref-RVQ is its potential to use stage- 
conditional entropy tables of relatively sizes. where conditioning is perfomled on 
previous stages. With the use of smaller Markov model order x . a large reduction in 
entropy-tables storage can be obtained. The length for a direct sum code vector is giwn 
by 

For a given ~Markov model order x the above Equation. can be approximated as 

L(Ce) = L(cO) + L(C~ I C ~ +  ...+ L ( C ~ I  P I  ,cP-* ,... CFm) (4.10) 
Where P-m >>O 

4.3. ASYMPTOTIC CLOSED-LOOP DESIGN 

The asymptotic closed-loop design was originally proposed for video coding. In this 
section we will adopt ACL design for incorporating reflected residual vector 
Quantization in a PVQ structure. The encoding and decoding operation for PRRVQ is 
essentially same as being used in earlier PVQ implementations. However, the desipn of 
RRVQ stage codebooks in a feedback loop needs attention. The design of stage 
codebooks under ACL approach can be best explained by first introducing some 
mathematical notations. 
Given a set of source vectors, x:{x,}~,+, the training set of prediction errors at an 
iteration i-1 is generated by 

The quantizers at iteration i - 1, are denoted by Q'.' I . Q'-'Z.. ... Q ' - ' ~  .: where for example 
the Q'.', notation represents pth stage quantizer at the i - I t h  iteration.. Training set of 
prediction errors is generated forthe next iteration i as . 

Where e(",= x, - Pred[uin.~], and reconstruction vectors are produced a s  
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5. Implementation 

Implementation basically consists of three modules all the threc modules \burl\ 
independently but has an impact on other n~odule. 
Modules are 

1. Blocking code 
2. Prediction code 
3. EncoderIDecoder 

First of all a training set is created using sample image in  Matlab. Thr set is then 
converted into blocks of different sizes depending on the requirements. 
The blocked training set is then handed over to the prediction module a code wrillcn in 
matlab. This module is also used to reverse the process at the end of cycle. 
The blocked predicted data in the form of training set is given to EncodcdDecoder pair. 
This Module quantizes the data. 

5.1.Blocking Code 

It is a program written in whose only purpose is to convert the input into blocks. The 
data is converted into blocks in order to utilize block prediction instead of pixel 
prediction. The code also unblocks the data after its quantization. The same code and 
process is applied again to reverse the blocking data into an unblocked image 
StTuCtUK. 

The main portion of the blocking code is given below. 

blocksger-col = rows/blockheight; 
blocksger-row = cols/blockwidth; 
num-cols = blocksger - row*blockwidth; 
num-rows = blocksger-col*blockheight; 
num-blocks = blocksger~col*blocksger_row; 
numgixels = rows*cols; 
vector-length = blockheight*blockwidth; 

I* allocate memory for the raw image and the block image */ 
if (!(raster image = (DATA *) calloc(numgixels. sizeof(DATA))) 11 

!(blocked image = (DATA **) calloc(num-blocks, sizeoT(DATA *)))) ( 
fprintf(stde&,"%s: %s\n",programname.NOMEMORY); 
exit(l0); 

1 
I* allocate memory for the block image elements *I 
for(i=O; i<num-blocks; i+t) { 

if (!(blocked-image[i] = (DATA *) calloc(vector~length,sizeof(DATA)))) 
fprintf(stderr,"%s: %s\n",programname,NOMEMORY); 
exit(] 1); 

1 
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I* read contents of inputfile into raster-image army * I  
clearerr(inputfi1e); 
if (fread(raster image,sizeof(DATA),numqixels,inputfile)!=nunipixels [I 

feof(inputfic) I( ferror(inputfile) ) { 
fprintf(stden;"%s: %s: %s\n",programname,inputnan~e.NOREAD); 
exit(l2); 

I 

I* create the block vectors and write them to the output tile * I  
for(i=O; i<num-blocks; i++) { 

for(j=O; j<vector-length; j+t) { 
k = (i%blocksger-row)*blockwidth + Cj%blockwidtll) + 

( (ilblocksger-row)*blockheight + (ilblockwidth) ) * cols; 
blocked-image[i]fi] = raster-image[k]; 

I 
if (fwrite(blocked-image[i], sizeof(DATA), vector - length. outputfilc) 

!= vector length) { 
fprintf(stderr:'%s: Sbs: %s\n",programname,outputname.NOWRITE); 
exit(l3); 

1 
I 

1 

5.2. Prediction Code 

Prediction code is the block of code written in matlab and is used to create an i~iitiol 
prediction based training set or a prediction based sample image. The prediction may be 
one two or three dimensional where increasing dimension result in increase in 
performance. Prediction is block based instead of pixel. The predicted training set is 
provided to EncoderlDecoder for quantization. 

size=6144*5 12; 
fid=fopen('blk_training_set.S I T,'rb'); 
fid I-fopen('a1.5 12','wb'); 
fid2=fopen('a2.5 12':wb'); 
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for i=l:S 
fwrite(fidI.A(I :8,i).'float'); %check this 
fwrite(fid2,A(Y: l6,i);float'); 

end 
fclose(fid); 
fclose(fid I); 
fclose(tid2); 

EncoderDecoder is based on the vector quantization technique called Entropy 
constrained Reflected Residual Predictive vector Quantization. The module tirst time 
takes the input in the form of predictive training set as open loop. Then afterward work is 
done asymptotically and prediction is done similar to the closed loop i.e. prediction 
module is embedded in the EncoderIDecoder module and this module creatcs input lbr 
the next phase or cycle of EncodedDecoder. 
The EncoderDecoder functionality is achieved using a set of functions. 

5.3.1. parse command line0 

The function parse command takes input from user on command line and extract 
information training set name, code book sequence, no of vectors per stage etc and make 
available this information for rest of the program. 

parse-command-line( argc, argv, ts-file, nvps-file, cbk - file); 

5.3.2. Pet nvps( ) 

The function gets number o f  the vectors per stage o f  the Encoder and Decoder as provided hy uscr. 

get.nvps(nvps-file); 

The function is used to get training set from disk as specified by the user. Fuction uses file handling 
techniques to read the file and get training set. 

get-ts(ts_file); 



5.3.4. allocate rnernoryQ 

The Function is dynamically used to allocate memory for the storage of training set and other trmpc1-~11\ 
results during :he EncoderIDecoder functionallity. 

allocate-memory(); 

5.3.5. get cbksO; 

The Function get-cbk is used to get previously created codebooks so that code vectols can bc used tibr 
decoding. 

get-cbks(cbk-file); 

5.3.6. mwrite cbks(); 

The function mwrite-cbks0 is to write codebooks after each Encoding stage so that these can be used ibr 
next stages. 

mwrite-cbks(ts-file.cbk-file.0); 

5.3.7. read or write tables() 

The Function read-or-write-tables() is used to 

read-or-write-tables(0); 

5.3.8. rvq entropy encodeQ 

The Function rvq-entropy-encode() is used to simulate the functionality of the Encoder based on EC- 
RRVQ. 

5.3.9. minimize IagrangianQ 

The function ininimize-lagmngiano is used to minimize the Lagrangian 

minimize-lagmngian(l,ts-file.index) 



5.3.10. read or write midrindex) 

The function ,vad_or-write-mid(index) is used to read midpoints of previous stast. or is used 1 0  wrik 
midpoint of current stage so that they can be utilized at later stages. 

5.3.11. wq entropy decode0 

This function entropy decodes the image. 

rvqentropy-decode() 

5.3.12. wq entropy decode30 

This function is used to Encode and then decode an image using the results or codebook of training set. 
rvqentropy-decode30 

5.3.13. Encodinp portion 

The main portion of the module is Encoder and Decoder. The code for Encoder is as 
follows 

Initialize tppsizes ans disps arrays'l 
for(i=O,i<MAXNUMSTACES:++i) dispsl [i]=disps2[i]=tppsizesl[i]=tppsizes2[i]=O; 

I* Determine midgoint displacement for each stage*/ 
tmid_size=O; 
for(n=O;n<mi:~(order,num~med-stages);n++){ 

for(i=l j=O$nlj++) i*=nvpsfi]; 
tmid_size+= (i'vs); 
mid-disps[n]-rmid_size: 

1 
for(k=order:k<nurngrimed-stages;k++)( 
for(i=l,I=k-order;l<=k;ltk) ia=nvps[l]; 
tmid size+= (ibvs); 
mid-3isps[k]=tmid-size; 

I 

I* Determine length displacement for each stase*l 
tratio-size=O; 
for(n=O;n<min(order,numgrimed-stages);nx){ 

for(i=l j*$n;j++) i*=nvpsb]; 
tratio_size+= (i' I); 
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/*******Determine last stage flag displacement****'**/ 
tlast-stage-flag-size=0; 
for(n=O;n<min(order,num-primed-stags):n++) { 
for(i=l j=O$njU) if=nvpslj]; 
tlast-stage_flagsizet= (i* I); 
last-stage-flag-disps[n]-tlast_stage-flag-size; 

) 

for(k=order;k<numgrimed-stages;k*){ 
for(i=l,l=k-order;l<=k;lt+) i*=nvps[l]; 
tlast-stage-flag-size+= (i* I); 
last-stage-fl3g-disps[k]=tId. ~t~s tage~f lag~s ize ;  

j=O; 
('Determine sire of tppl and tpp2 amys*l  
for(tpp1-size=O,i=l j=O,k=O;k<min(order,num_primed-staps);Hk)[ 

i*=nvps[k];lppsizesl [t]=i;j+=i;dispsl [k]=j: 
)l8k*l 
tppl-size+=j; 
for(k=order;k<num-primed-stages;+bk) { 

for(i=l,l=k-order;l<=k:wl) i*=nvps[l]; 
tppsizes I [k]=i;tpp I-size+=i;disps I [k]=tpp I-size; 

}/*k*/ 

/*Allocate memory to hold old probabilities while determining new ones*/ 
tpp I = (float *)calloc(sizeof(float),tpp 1-size); 
if(tppl=O){ 

perror("Cannot allocate memory for probabilities: "); 
exit(-I); 

) /*if ' /  

/*Allocate memory to hold old probabilities while determining new ones*/ 
ttppl= (floal *)calloc(sizeo~float),tppl-size); 
if(nppl-0)( 
. perror("Canno1 allocate memory for probabilities: "); 

exit(-I); 
1 



if((order>O)&&(order<(num-primed_stages-I))){ 
tpp2= (float *)calloc(sizeol(float).tpp2_size); 
if(ipP2=o)( 

perror("Cannot allocate memory for probabilities: "); 

/*Initialize the tppl and tpp2 arrays*) 
for(i=O;i<tppl-size;+;) {*(tppl+i)=O.O;*(Rppl+i)=O.O;) 
it~(order>O)&&(order<(numgrimed-stages-!))) 

for(i=O;i<tpp2_size:*i) *(fpp?+i)=O.O; 

/*Store old prrbabilities*/ 
for(i=O;i<tppI-size;++i) *(nppl+i)=*(ppl +i); 

/*Compute conditional probabilities*/ 
if((order>O)&&(order+urngrimed-stages- I))){ 
for(i=order+l :i<numgrimed-stages;++i)( 

for(k=O;k<nvps[i];Hk) 
for(i=O;i<tppsizes2[i-l ];++j)( 

if(*(pp2+disps2[i-Z]+j)-.O) 
'(ppl +disps I [i-l]+j+tppsizes2[i- lIak)=O.O; 

else 
'(pp l+disps I [i- l]+j+tppsizes2[i- l]*k)/=*(pp2+dispsZ[i-2]+j); 

/*Initialize causal residual vector to be source vector.*/ 
chargtr  = ts-buf + i*vs; 

/*Initialize index buffers *I 
for(i=QjqMAXNPATHS*MAXNVPS);++j)( 

*(vi+j)=O; 
*fci+i)=O: 

/*Initialize the sp buffera/ 
fon'j=~;i<(numgrimed-stages*MAXNPATHS):+% *(sp+j)=O.O; 
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/*Clear the spaths buffer*/ 
for(j=0;j<num_primed_stages*MAXNPATHS;t+j) *(spatlls+j)=O; 

/*Encode through primed stages.*l 
for(stage= l ;stage<=vn[iJ;stage++)( 

/*Compare with each code vector.*/ 

/*Keep the best npathsil 

if(l!= O.O){ 

I***** here I make the change todeterminethe last stage **"I 

if(stage==O) (if(*(last_stage-flag)+) vrs[i]=stage;) 
else if(stage<=order)( 



PRRVQ Implamenlation 

i 

if(l!= 0.0 && stage==vrs[i]){ 

I***** here I make the change to determine the last stage ****I 

if(stage==O) (if(vrs[i]==stage) *(last-stage-flag)= I;) 
else if(stage<=order)( 

for(tI=I ,12+,k=O;k<stage;-Hk){ 
t2+=((ir,r)*(tci+stage))*tl; 
t l *=nvps[k]; 

/*Find the best M-paths by tracing back the RVQ structuref/ 
for(m-O;m<nin(npaths[stage],n);++m)( 

*(spaths+stage*MAXNPATHS+m)=*(tci+stage*MAXNPATHS+m); 



FINE:: 
/*Calculate average distortion as we encode.*/ 
new-cum-dist += *distortion; 

/*Find best path by tracing back the RVQ structure*/ 
'(P-tuple ti*num-stages+vn[iJ)=*(tcitvn[i]*MAXNPATHS); 
tcc[vrs[i]][*(tci+vrs[i]*MAXNPATHS)]+= I ;  
n=O; 
trace[n][O]=*(rvi+es*MAXNPATHS): 
for(stage=vrs[i]- l ;stage>=O;--stage){ 

best-index='(tci+stage*MAXNPATl IS4 trace[n][O]); 
trace[n+l ][O]=*(tvi+stage'MAXNPATHS+trace[n][O]); 
*(P-tuple+ianum-stages+stage)=best-index; 
tcc[stage][best-index]+=I; 
W n ;  

:lastage*/ 

/* Compute the probabilities ofall paths *I 



Chapter 6 
Results 



Fig 6.1. Ratedistortion performance of EC-RRVQ and EC-RVQ with 32 stages for lest 

image LENA at m=I. The vector size is 8 x 8 .  



PRRVQ Rc.o~/ls 

Fig. 6.2. Rate-distortion performance of EC-RRVQ with 32 stages for the test image 
LENA at increasing values of m. The vector size is 8 x 8. 

With increasing value of m performance increases but becomes static at a certain bit rate 
where all the curves meet each other. Due to less high frequencies image like LENA can 
be better coded by technique. 
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Fig. 6.4. Image LENA coded using EC-RVQ at a bit rate of 0.179 bpp with PSNR of 
28.03 dB of dimension 8 x 8 and m=l .  
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Fig. 6.5. Image LENA coded using EC-RRVQ at a bit rate o f  0.177 bpp with PSNR of 
28.15 dB o f  dimension 8 x 8 and m=l.  



6.1.2. Blocks of size 16 x 16 

For the 16 x 16 vector dimension, the training set was composed of 35O.OOO vectors. The 
same work as in the previous subsection is done with vectors of size 16 s 16. For the 
Markov model order experiment, the peak bit rate was 0.25 bpp mcaning 63 fixed mte 
stages were designed. Fig. 6 shows that for rates between 
0.1 and 0.2 bpp, there exits a difference of approximately 0.5 dB on average hetween EC- 
RRVQ with m=O and m=l. Also, for the range of rates between 0.1 and 0.2. the 
difference between EC-RRVQ with m=l and m=2 is 0.2 dB. In contrast, for rates less 
than 0. I bpp, all curves provide similar performance. 
A comparison is made between EC-RRVQ and EC-RVQ for the same set of data and 
dimension of 16 x 16 for m=l . It can be seen from Fig. 7 that for ratcs grater than 0.13 
bpp, the gap between the EC-RRVQ and thc EC-RVQ curves is  about 0.6 dB on average 
while for rates less than 0.12 hpp, the two curves will join. For subjective comparison, 
Fig. 8 and 9 sre provided. Fig 8 shows the test image LENA coded using EC-RVQ at a 
bit rate of 0.215 bpp with PSNR of 28.39 dB of dimension 16 x 16 and m=l .  Fig 9 shows 
the test image LENA coded using EC-RRVQ at a bit rate of 0.201 bpp with PSNR of 29 
dB of dimension 16 x 16 and m= I .  
A comparison is made between EC-RRVQ and CEC-RVQ for the same set of data and 
vector dimension of 16 x 16. It can be seen from figure 10 that CEC-RVQ coded image is 
blocky in nature. The Reason is the fact that CEC-RVQ with 64 residual stages, for the 
simple fact that it was in need of more than 32 multipaths and a very large training set of 
data. The EC-RRVQ coded BARBARA image provides no structural Artifacts and image 
is intact. 



Fig.6.6. Rate-distortion performance of EC-RRVQ with 64 stages for the test image 
LENA at increasing values of m. The vector size is 16 x 16. 
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Fig. 6.7. Ratc-distortion performance of EC-RRVQ and EC-RVQ With stages tiw the test 
image LENA at m=I. The vcctor size is 16 x 16. 
Both the curves are coincided at lower bit rates but at higher bite rates EC-RRVQ 
outperforms EC-RVQ. 



Fig. 6.8. Image LENA coded using EC-RVQ at a bit rate of 0.215 bpp with PSNR of 
28.39 dB o f  dimension 16 x 16 and m=I. 
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Fig. 6.9. Image LENA coded using EC-RRVQ at a bit rate of 0.201 bpp with PSNR of 29 
dB both of dimension 16 x 16 and m=l. 
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Fig 6.10. Image Barbara coded using 20- path CEC-KVQ at a bit rate of  0.175 bpp with 
PSNR o f  21 .; 7 dB of dimension 16 x 16. 



PRRVO Reslll1.s 

6.1.3. Blocks of size 32 x 32 

Here we report on the experiments conducted for designing 32 x 32 dimonsion EC- 
RRVQ design. Since the expense of design effort increases linearly with increasing 
residual stages, the EC-RRVQ design for very large dimension VQ was only feasible EC- 
RRVQ structure. However we are not able to design CEC-RVQ for 32 x 33 dimension 
with 128 residual stages, for the simple fact that it was not in need of more than 32 
multipaths and a very large training set data. For the 32 x 32 dimensiw CC-RRVQ 
system design the training data of400,OOO 32 x 32 vectors seems adequate for the rcason 
that it is stage by stage optimization with no inter-stage dependencies. This charactcristic 
is very desirable otherwise one may never design very large dimensional VQ duct0  
insufficient training set data. 
Shown in figures 6.1 1, 6.12, 6.13, 6.14 is the subjective quality comparison of 
BARBARA image coded at various bit rates using 32 x 32 dimension EC-RRVQ wit h 
128 binary stages. The coding results describe the fact that BARBAKA image coded at 
very low bit rates like 0.02 and 0.01 is still recognizable. 



PRRVQ Rcs~rlls 

Subjective quality comparison for 32 x 32 dimensions EC-RRVQ 
Fig 6.1 I .  Shows the original BARBARA image. 
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Subjective quality comparison for 32 x 32 dimensions EC-RRVQ 
Fig 5.13. Shows the coded BARBARA image at 0.02 bpp with PSNR 20.86 dB using 
EC-RRVQ of  dimensions 32 x 32. 



Subjective quality comparison for 32 x 32 dimensions EC-RRVQ 
Fig 6.14. Shows the coded BARBARA image at 0.01 bpp with PSNR 19.50 dB using 
EC-RRVQ of dimensions 32 x 32. 
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6.2. SIMULATION RESULTS for PEC-KRVQ 

In this section we compare the performance o f  PRRVQ with unpredictive RRVQ with an 
entropy-constraint. The training set for an 8 x 8 vector dimension contained no more than 
500,000 vectors and 32 fixed rate RRVQ stages were designed giving 0.05 bpp as a peak 
bit rate. First experiments were performed for obtaining satisfactory performance as ;I 

function o f  hlarkov model order. Fig. 15 shows that for rate below 0.1 bpp tlierc secms to 
be no difference among m=O, m=l and m=2 Entropy-constrained-RRVQ (EC-RRVQ) 
curves. However, third markov model order m=3 for EC-RRVQ has an cdge of about 
0.05 dB for rates above 0.15 bpp. Also, the Fig. I5 provides comparison between 
Predictive Entropy-constrained KRVQ (PEC-RRVQ) with unpredictive EC-RRVQ. We 
observe that for rates between 0.05 and 0.15, the first-order PEC-RRVQ provides only a 
slight improvement o f  about 0.2 dB difference with that o f  EC-RRVQ with m=3. The 
second-order PEC-RRVQ emerges as the most successful predictive quantizer design. 
The Fig. 6.7 shows that the second-order PEC-RRVQ outperforms both lirst-order PEC- 
RRVQ and unpredictive EC-RRVQ. Specially, in the middle region for rates betwcen 
0.05 and 0.2 bpp, the second-order PEC-RRVQ (PRRVQ-2) provides about 0.05 dB 
improvements. 
The Fig. 6.16 reveals the visual quality obtained for BARBARA image coded at 
dimension 8 x 8 with Predictive EC-RRVQ and 14-path conditional EC-RVQ employing 
32 binary stages. The conditional entropy-constrained residual vector quantization (CEC- 
RVQ) was earlier proposed in [12]. 
The CEC-RV'Q makes use o f  conditioning model to extract linear and non-linear 
correlations present in an image and has been considered as one o f  the most successful 
means o f  providing improved ratedistortion performance at low bit-rates. The 
comparison o f  rate-distortion results does not show a big difference. While examining the 
coded images we observe that high-frequency texture present on the tablecloth and on 
trouser o f  BARBARA image is well preserved in conditional EC-RVQ coding. However. 
the low-frequency portion o f  the image like the books and face is adequately 
reconstructed by PEC-RRVQ coding. This i s  due to the fact that high-frequency texture is 
highly non-linear in nature and cannot be predicted by a linear prediction model as 
employed in PEC-RRVQ. Therefore, to code images with texture, we need to en~ploy 
non-predictive EC-RRVQ but at a higher dimension to get effective coding with 
minimum complexity. 
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Fig 6.17. Image Barbara coded using PEC-RRVQ at a bit rate of 0.282 bpp with PSNR 
24.61 dB, o f  dimension 8 x 8. 
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Absrmcr - Image communications is prinlarily constrained 
due to its large bandwidth requirements. Therefore, researchers 
worked on various con~prrssion algorithm to achieve low bit 
nte.  It was stated that images and video sequences are highly- 
correlated sources and their correlation should be exploited In a 
given compression algorithm Dillerential pulse code modulation 
(DPChI ) has emerged as a mean of exploiting the correlation 
among the image pixels. Later on, DPChI was improved upon 
by predictive vector quantization (PVQ). PVQ employs block 
by block prediction and results in satisfactory performance at 
low bit rates. However, its design is complicated and recently 
an asymptotic closed-loop (ACL) was proposed to stabilize the 
design. In this paper, we attempted lo replace the VQ with 
a multistage VQ structure in a hope to further reduce the 
st- on the closed-loop design. The multistage VQ structure 
that we enrployed is commonly referred to as reflected residual 
vector quantization (KRVQ). RRVQ works by imposing an 
additional symmetry constraint on the multistage codebaok 
design. RRVQ has bccn quite popular where large block-length 
vector quantizations is needed due to their very low codebwk 
search capability. Our proposed design goal in replacing VQ 
with RRVQ in a PVQ design is our wish to use large block 
length like 16x16 or  32x32 size vectors to grab any linearlnon- 
Jinear correlation among the vector components. The way to 
incorporate RRVQ within PVQ stmcture has been proposed 
and simulation resulls are discussed. 

I. ~NTRODUCTION 

Compression of digital images and video signals to reduce 
their storage and transmission bandwidth requirements is 
of great interest in the implementation of communication 
systems. Low bit rates, particularly in the range of 16- 
32 kbitds, are gaining an impoflance due to the Internet 
and wireless mobile comniunications. Digital images and 
video signals exhibit large temporal correlations that can 
be exploited in a compression algorithm to bring dawn 
the banhwidth rcquircnicnts. Thcrc arc scvcnl cornpression 
algorithms reportcd in the literature for this purpose. One 
such classical algorithm is differential pulse code modulaiion 
(DPCM). The hnsic idcn hchind DPCM schcmc is to predict 
the value of  a current input pixel based on neighboring pixel 
values, using certain prediction coeficciet~rs. The difference 
between the predicted value and the actual value of the pixels 

emergeas a differential orrcsidual image, which is much less 
correlated than the original image. The differential image is 
then entropy coded and sent. The schematic diagram of the 
DPCM codddecoder  is shown in Fig. 1. The Fig. 2 displays 
the original Cameraman image and its differential image. 
The differential image exhibits variance in the range of 42  as 
oppose lo 433 for original Cameraman image. This illustrates 
that DPCM has been very effective in reducing spread of 
the pixel values by almost 10:I ratio. This reduction is very 
helpful in providing compression. Due to its simple structure 
DPCM has made its place in the standard algorithms like 
JPEG [I ]  for still image coding, H.261 [2] for videophones 
and video-conference communications, and MPEG [31 for 
interactive media applications. However, [he performance of 
DPCM has several drawbacks which prevent its uses in some 
circumstances. The two main drawbacks are the channel error 
sensitivity and poor rate-distortiou performance at low bit 
rates[4]. 

Rg. I. Bmic diKcrentisl pulse coded modulation (a) encoder, (b) decoder 

Another approach that generalizes DPCM is to code 
prediction residual image using Vector quantization (VQ). 
Generally, there are several arguments in support of VQ 
for image and video coding. Shannon rate-distortion 
theorem indicates that V Q  will always perform better 
than conventional quantiwlion for the simple reason that 
quantizing block of samples as one unit is a general case 
of quantizing individual samples in isolation. The DPCM 
structure that involves V Q  as  its quantization module 
is referred to as  predictive vector quantization (PVQ). 
Dctailed analysis o f  PVQ structure i s  proposed in 151. 
It was stalcd in [51 that although thc PVQ structure is 
simple and well-understood. its design is problematic due 
to feed-loop involved, and standard methods often fail lo 
produce optimal o r  cvcn good predictors and qu:~ntimrs. 
The design of vector quantizcr in a feedback loop is in need 
of a representative training set of prediction error image. 
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I. (3) Original Cameraman inrage. (b) The pmdicti~n enarldifkrenhl 
s. (c) Gray-be1 hisrogram 01 the original irrwge w i h  wimce 433.05. 
istogram of the prediction error with W m c e  4333. 

ever, thc representative training set has dependence on 
the predictor and roc quantizcr. Tfle prdicior and ihc 
rizer has to be optimized jointly with respect to each 
: in order to come up wirh a reasonable prediction enor 
,c suited for training quanrizers. 
vo simple approaches for PVQ design were inkoduced 
:r by Cupcrnman and Gersho [dl. The first approach 
red to as open-loop salves the vector quanrizer design 
;ern by assuming no feedback, and operates directly 
riginal source vectors. An improvement was suggested 
sing sccond approach called closed-loop design. in 
case, an iterative design is employed for updating 
mining set and the quantizer given a fixed predictor. 
an, closed-loop design algorithm was further modified 

hang and Gray 171. where burh vector predictor and 
r quantizer arc jointly optimized. The joint design 
ithm provides an improvement over the previously 
I designs however, such design approaches exhibirs 
icenl stability problems especially at low bit ntes. 
jtability of the closcd-loop design is analyzed and a 
fied design with h e  name of asymptotic closed-loup 

algorithm is proposed in [83. Specifically, the ACL 
as an open-loop md then tries to simulate closed-loop 
'ior over a longer run. 
:tor quanrimtion (VQ), used in PVQ, is a powerful 
ique for data compression of speech, image, and video 
s. Vector quantization takes advantage of-linear or non- 
correlations that exist among the vector components. 
fare larger fhe vector size used better cornprcssion can 
hiwed. Nowwcr, all issue o i  rucognizcd irrrlwnmrc 
rgc block VQ implementation is that the size of ihe 
onk associated with VQ grows exponentidly as a 

function of the product of the vt'rtor Jiriwbsion and bh me 
With increase in codebvok size comes an ovenvhelming 
increase in search complexity. To overcome the complexity 
barrier, many rcserlrchers have suggested imposing certain 
struc~umt constraints on [he V Q  code book design. The 
relief in  search cornpIexity was obtained by replacing 
VQ with a muhistage VQ referred to as residual vector 
qunnlkmion (RVQ). The argument is  that multistage VQ cm 
be designed sequentially and iis stage codebooks are smaller 
in size thus requires kss search complexity. Researchers 
also considered reducing furher rhe search complexity by 
applying additiand structural constrainis on the muirisrage 
VQ , and proposed hldtiple-stage VQ's with srage code 
books comprised of lattice VQ's 191 and reflecird RVQ 
(RRVQ) {lo]. Our focus in this paper is on the uriIjzation 
of RRVQ. 

A reflected RVQ {RRVQ) is 3 multistage structure with 
binary stage code books. The encoder and decoder of 
RRVQ pcrform 3 mjlertirrg oprrarions QII the residual 
vectors between stages. This ~rflccting opention furces 
certain symmctry on the rcsulmf RRVQ codchok which 
in rum makes the sequenriai search of stage codebook 
optimal. The sequential search rtbiriry of RRVQ makes ii 

an ideal candidate: for largc block VQ itnplc.~~c~~ratio~~s.  
Recenrly. an ccntropy-constrained RRVQ (EC-RRVQ) design 
was inlroduccd and its sinlulatiort results i ~ r c  prcscnrcd in 
I 1  1 1 -  

In order to cxttnn Iinrsr and mosi of ~ h c  non-linear 
correlations arrlong image source, we suggest the use of 
large-block RRVQ wirh the current PVQ structure. The 
purpose of large-blnck RRVQ is to take advantage of 
lineahon-linear correlations present among the block of 
pixels and the predictive suucrure with the feed-back loop 
to exploit the remaining intra-block dependencies. Our goal 
in his  paper is ro simulate the betlavjor of RRVQ in a 
feedback loop that exploits correlation in a given image 
source in order ro produce high compression ratios wirh 
lower complexity. A new design algorithm for RRVQ 
in a predictive environment has been proposed in this 
paper which is  refcrred ro as Predictive rsflected residual 
vector quantization (PRRVQ). The paper is organized 
as folIows. Section 11 describes reflecred residual vector 
quantization and its generalization to include entropy coding 
is prescnred in  Section 111. Predictive reflected residual 
vector quantization (PRRVQ) design is proposed in Section 
IV. Sirnula~ion results are discussed in Section V. 

A P-srage residual VQ consists of a finhe sequence of P 
vector guaniizers ((CP, PP);  1 5 p < P ) .  tVc index the 
code vectors of ptlmage as {& y r, y;, - - - , &-,) and 
Voronoi cells of prlr-stage as (Sc, Sf, S:, . - , SG-l). The 
cndcvccrars coirrprising rhc C D ~ L - ~ ) I > ~  CP xiA flit L-~I IS L.WI~- 

prising !he panition P P  are indexed with the subscript jP. 
The quantizrd rcprcsentatjon i1 of thc input sourcc vector 



x1 is formed hy the sum of the selected stage codevectors, 

p = l  

For adopting a jointly optitnizcd approach, an RVQ is 
represcnted with an equivalent quantizer. referred to as 
direct sum quantizer ( C e , P e ) .  The elements of Ce are the 
elements of thc sct of a11 possihlc sums of stagc codevectors. 
that is, CC = C 1  + Ce + ... + C P .  C C  can bc interpreted 
as a terminating nodc of n path through a tree structure. 
which is associated with the residual quantizer mentioned 
earlier, comspondingto the direct sum quantizer. A tree 
structure of three stages, two codevectorslstage RVQ i s  
illuslratcd in Fig.3. Thc root nodc of the tree represents 
xl. The leaf nodcs represents the set Cc of the dircct sum 
codevectors. The intermediate nodcs represent partial sums of 
[he direct sum codeveclors and the branches represent stage 
codevectors. If two codevectors {y;, yf} are allowed in a 

Fib. 3. Three-stage b i n q  RVQ tree structure 

given stage. then the Voronoi boundary is a plane of cqual 
distortion between two codevectors. This boundary can be 
specified by a midway point mP between the two given 
codevectors for that particular stage p as 

The normal vector. nP. is defined to be the line joining - 
two codevectors y:, yy. The equation of the plane through 
the midway point mP perpendicular to nP is 

where zP is any point in the plane. In order for this hyper- 
plane to specify also the boundary between adjacent children 
of h e  two codevectors, we reflect the input vectors of the 
prh-stage to one side of the hyper-plane boundary, and by 
convention, we reflect all xp which belong to Voronoi cell S: 
to second Voronoi cell Sz. After reflection, we subtract yz 

q from the reflected input vector forniing a re/lccred residual 
vector. Then, residual vectors that represent the next stage 
codevectors, will lie in the rcjecrrd residrral space. If we are 
to unrcflect a11 thc reflected stage codebooks, the resulting 
dircct sum codchook has tlic desired symmetry properties. 
To illustrate tlie structure of Rcf-UVQ codcbook, Fig.ll(a) 
shows the codevector constellation for (&stages. two code- 
vectorslstage) two dimensional RVQ designed for Gaussian 
source. Similarly, Fig.ll(b) shows the codevector constella- 
tion for (8-stages, two codevectorsJstage) two dimensional 

( 4  (b) 
Pig. 4. Gaussian sourcc codcd wilh a h i n q  8-stage. twodimensional 
qumtilsr. (a) Equivalent codc vector mmtcllation of RVQ. (3) Codc vector 
conncllation of Ref-RVQ. 

Ref-RVQ designed for Gaussian source. All the direct sum 
codevectors that involve first codevector of first RVQ stage in 
their construction are represented as dots. On the other hand. 
asterisks are uscd for the direct sum codevectors constructed 
with second codevector of first stage RVQ. Fig.ll(a) indicates 
severe codevector diffusion for RVQ, whereas the Ref-RVQ 
(Fig.ll(b)) shows no diffusion and hyper-plane boundaries 
are evident. The presence of Voronoi cells with hyper- 
plane boundaries in Ref-RVQ codebook makes the sequential 
single-path search optimal. 

111. ENTROPY-CONSTRAINED REFLECTED RVQ 
(EC-REF-RVQ) 

For entropy-constrained design algorithm, !he distortion 
trades off squared error with the codeword me. In case of 
residual VQ (RVQ), we will have the Lagrangian 

where L(Ce) is the length associated with a direct sum code 
vector. For the case of developing an entropy-constninec 
design for the Ref-RVQ, we have binary stages i t . ,  2 code. 
vcctors/stage. This will form the Voronoi region bound30 
between the two codevectors as plane. For an EC-Ref-RVQ 
we need to work with the plane of equal Lagrangian a! 
opposed to the plane of cqual distortion used in fixed-rat8 
Ref-RVQ design. We define a plane of equal hgrangian a! 

We restate the above Eq. as the more familiar normal plan' 
equation n . XP = d as 



The shortest distance from 117 to the plane will be given by 

Thus the new midpoint in case of entropy-constrained Ref- 
RVQ (EC-Ref-RVQ) will be given by 

By having a look at Eq. (8) one notice that unlike fixed- 
rate Ref-RVQ the midpoint for a given stage will not be 
equidistant from the two codevectors. but will be offset by 
an amount dependent on the difference of lengths between 
the two. The midpoint will move in the direction of the larger 
length c N e  vector because of the rhird term in the Eq. (8). 

An important complexity-reducing feature of EC-Ref- 
RVQ is its potential to use sfoge-con~/ifionolentropy tables of 
relatively sizes, where conditioning is performed on prcvious 

" stages. With the use of smallcr Markov model order m. a 
large reduction in entropy-tables storage can be obtained. 
The length for a direct sum codevector is given by 

For a given Markov model order m the above Eq. can be 
approximated as 

d + ,  

$L(c~) = L(CO) + L(C'ICO) + - - . + L ( c ~ I c ~ - ' , c ~ - ' ,  
I 

I ... ,cP-rn), (10) 

4 IV. ASYMPTOTIC CLOSED-LOOP DESIGN 
I 

1 The asymptotic closed-loop design was originally pro- 
' posed for video coding. In this section we will adopt ACL 
design for incorporating reflected residual vector quantization 
in a PVQ structure. The encoding and decoding operation 
for PRRVQ is essentially same as being used in earlier 

'PVQ implementations. However. the design of RRVQ s t ~ g e  
codebooks in a feedback loop needs attention. The design of 

I stage codebooks under ACL approach can be best explained 
by lirst introducing some mathcn~atical notations. 

I Given 3 set of source ~cctors, S : { z , , ) ~ = ~ ,  the training 

set of prediction errors at an iteration i - 1 is generated by 

The quantizers at iteration i - 1, are denoted by 
Q;-I, Q;-', . . . , Q$', where for example the notation 
represents Pth stage quantizer at the i -  Ith iteration., Train- 
ing set of prediction errors is generated for the next iteration 

(i) N i as,  qi) = {en where. e,(i) = z, - Pred[ii-,], and 
(i) &conswction vectors are produced as ih = Pred[i,-,] + 

' i t )  (i) (i-l)(e(i) )] 
[Q1 + Q!'-')(e?,\) + . . . + QP n,P . 

Having collected h e  next iteration training vectors we 
optimize a new set of quantizers, QI,Qi,. .- ,Q$ for the 

ith itention. The optimized quantizers are then in turn used 
to generate the new set of rcconslruction veclors. 

The ACL employed here is i n  fact a repetition of three 
basic steps, that is, first calculate e i  for a11 n = 1;2,. . . , N .  

(i) then design the stage quantizers. and finally calculate 5, 
for all 18 = I, 2,3, - . . , N. 

Note that the stage quantizers QI, Qi, .  . . , Q> are used 
to encode exactly the same prediction error vector used for 
its design. Neglecting possible problems of local oprirna, 
this is the bcst nlatch for thesr vectors. \Ire are thus assure 
that the resulting reconstruction is improved, and this results 
in better prediction for the next iteration. Subject to the 
high rate assumption that sn~allcr prediction errors l e d  to 
smaller quantization errors, we obtain monotonic conver- 
gence ihrough out the process. 

It  is emphdsized that h e  design is open-loop in nature 
due to the fact that prediction errors for all elements of 
the sequcnce are calculated before quantization. At each 
iterntion. the reconstructed set, on which the prediction for 
the next iteration will be based, is generated by applying the 
optimized quantizers and predictor based on the previous 
fixed set. Since [he new reeonntructed set will better ap- 
proximate the original input sequence. the distonion at each 
iteration is generally decreasing, and we expect the process 
to converge. At convergence. furthrr itcrations do not modily 
the training scl. The quantizer is hence assume to have 

( ' converged, i.r.. Q$+') = QY). where j = 4 ,2 ,3 , .  . . , P. 
which immediately ensures that the reconstruction sequence 
is unchanged, i.e.. it+') = i.:) as well as thr prediction 
sequence ~red[2!1~] = ~red[ i :~ i ) ] .  The procedure is thus 
open-loop in nature, yet it asymptotically converges to the 
closed loop performance. 

In this scction we compare the performance of PRRVQ 
with unpredictivc RRVQ with an entropy-constraint. The 
training set for an 8 x 8 vector dimension contained no murc 
than 500,000 vectors and 32 fixed n tc  RRVQ stages were 
dcsigncd gi\*iog 0.05 hpp ns :I park hit CIIL.. First cxperimcnts 
were performed for obtaining satisfxtory perform:lncc :IS a 
function of Markov model order. Fig. 7 shows that for n te  
below 0.1 bpp there seems to bc no difference among m = 0, 
m = 1 and m = 2 Entropy-constrained-RRVQ (EC-RRVQ) 
curves. However, third markov model order m = 3 for EC- 
RRVQ has an edge of about 0.05 dB for rates above 0.15 
bpp. Also. Ule Fig. 7 provides comparison between Predictive 
Entropy-constrained RRVQ (PEC-RRVQ) with unpredictive 
EC-RRVQ. We observe that for rates between 0.05 and 0.15. 
the first-order PEC-RRVQ provides only n slight improve- 
ment of about 0.2 dB difference with that of EC-RRVQ 
with m = 3. The second-order PEC-RRVQ emerges as the 
most successful predictive qunntizer design. The Fig. 7 shows 



that the second-ordcr I'EC-RRVQ oulperforms both lirst- 
ordcr PEC-RRVQ and ~tnprcdictivc EC-RRVQ. Specially. in 
the middle region for ratcs between 0.05 end 0.2 bpp. the 
second-order PEC-RRVQ (PRRVQ-2) provides about 0.05 

Fig. 5. Proposed a)'mptolic clorcd-loop (ACL) procedure for the design 
of predictive EC-RRVQ (PEC-RRVQ). 

The Fig. 6 reveals thc visual quality obtained for BAR- 
BARA imhge coded at dimension 8 x 8 with predictive 
EC-RRVQ and 14-path conditional EC-RVQ employing 32 
binary stages. The conditional entropy-constrained residual 
v c c w  qu:mtizatioa (CUC-RVQ) W:IS rarlier proposed in [ 121. 
The CEC-RVQ makes use of conditioning model to extract 
linear and non-linear corrclarions present in an image and 
has been considered as one of the most successful means 

- o f  providing improved rate-distortion performance at low 
bit-ratcs. The compnrison of rate-distortion results does not 
show a big difference. While examining thc coded images 
we observe that high-frequency texture present on the table 
cloth and on trouser of  BARBARA image is well-preserved 
in conditional EC-RVQ coding. However, the low-frequency 
portion of the image like the books and face is adequately 
reconstmcled by PEC-RRVQ coding. This is due to the fact 
that high-frequency texture is highly non-linear in nature 
and can not be predicted by a linear prediction model as  
employed in PEC-RRVQ. Therefore, to code images with 
texture, we need to employ non-predictive EC-RRVQ but a t  
a higher dimension to get effective coding with minimum 
complexity. 

(b) 
Fig. 6. 1m.w B d m  coded using (a) CEC-RVQ a1 a bit n t e  of 0.28 
bpp wilh PSNR of 24.54 dB (b) PEC-RRVQ at a bit rate of 0.282 bpp wilh, 
PSNR of 24.61 dB. h t h  of dimension 8 x 8. 

designed with smooth convcrgencc bchnvior. Thc low sidc OF 
PRRVQ algorithm is ils inability to reprcsent well the images 
with lot of texture or high-frequency contents. 

VI. CONCLUD~NG REMARKS 

Predictive Reilcctcd residual vector quantization (PRRVQ) 
has been designed and compared with other well-known 
predictive algorithms. The strength of PRRVQ lies in its 
ability to use large vector sizes in a predictive loop and can be 




