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Abstract

Image communications is primarily constrained due to large bandwidth requiremcents.
Therefore, researchers worked on various compression algorithms to achieve fow bit rate. It
was stated that images and video sequences are highly correlated sources and their cormrelation
should be exploited in a given compression algorithm Differential pulse code modulation
(DPCM) has emerged as a mean of exploiting the correlation among the image pixels. Later
on, DPCM was improved upon by predictive vector quantization (PVQ). PVQ employs block-
by-block prediction and results in satisfactory performance at low bit rates. However, its
design is complicated and recently an asymptotic closed-loop {ACL) was proposed to stabilize
the design. In this thesis, we attempted to replace the VQ with a multistage VQ structure in a
hope to further reduce the stress on the closed-loop design. The multistage VQ structure that
we employed s commonly referred to as reflected residual vector quantization (RRVQ)).
RRVQ works by imposing an addifional symmetry constraint on the multistage codebook
design. RRVQ has been quite popular where large block length vector quantization is needed
due to their very low codebook search capability. Our proposed design goal in replacing VQ
with RRVQ in a PVQ design is our wish to use large block length like 16 x 16 or 32 x 32 size
vectors to grab any linear/non-linear correlation among the veclor components. The way to
incorporate FRVQ within PVQ structure has been proposed and simufation results are
discussed.
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1. Introduction

This introductory chapter has threefold purpose. First, to place the work ol this disseriation into
its proper place within the general framework of complete communication system design and
implementation. Second, to provide a brief review of the theory of source block coding, and to
discuss the practical issues that utilization of source block code structures called residuat
quantization {RQ} and reflected residual quantization (RRQ) that examined and improved in
this dissertation.

This chapter is comprised of four sections. Section 1.1 introduces a complete and very veneral
communication system model and shows how the general design problem can be separated into
smaller design tasks. Section 1.2 provides brief reviews of the theory that motivates the use of
source block codes. Section 1.3 reviews several source code structure and discuss the influence
of practical issues on the design and wtilization of these structures. Finally. Section 1.§
introduces residual quantization and presents the goals and objectives of this dissertation.

1.1. A Communication System Model

Consider the block diagram of the communication system model shown in figure 1.1, The
basic building blocks of this model are source—user pair, the encoder-decoder pair and the
channel. This model is important for two reasons. First, the various elements are suitably
idealized from their physical components to allow the model to be sufliciently general tor most
communicalion systems. Second, if the model components are statistically charcterizable, then
the model proves amenable to productive analysis. We proceed to describe briefly cach of the
components of this communication system maodel.

» Encoder
intart ekl bt witabtiad
Source = ! | Source -+ } Channel |}
i { {Encoder { . . | Encoder {
LT
cae D Chanuel
Dcc_:_)der
4 - - ) 1
User ¥ 1] Source Channel | '

1 | Decoder’ Decoder |1
1 . . '

[

- . . s - e em m e o em W m v F]

Figure 1.1: Block diagram of a communication system model.

The function of a communication system is to convey “useful” information from the source to

the user. Often, the user does not require an exact reproduction of the message produced by the
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source. For example, distortion, which does not degrade the inteiligibitity of speech. does not
hinder a speech communication system's ability fo convey the pertinent mformation. In
general, a fidelity criterion may be associated with each source-user pair that measwres the
effect of any distortion of the received message relative to the actual transmitted messaue.
Ideally, fidelity criteria should measure the effect of transmission errors on the users ability to
use the received message relative to the useful-ness of the sowrce's intended message.
Unfortunately, such fidelity measures are unknown for many Source-user pairs, or are very
complex and difficult to use. Less descriptive. but more tractable fidelity measures may be
denned by assigning functional values to the various errors that the communication system
may make.

To give a mathematical description of an information source it is necessary to quantitafively
specify the rate at which the source produces information. One pf the major contributions of
Shannon’s [ 1] work was the introduction of the entropy measure. Entropy may be interpreted as
quantifying the average information content per source message, and hence. the average
information rate of the source. Information sources may be separated into two major classes:
discrete alphabet sources or continuous alphabet sources. A discrete alphabet source produces
source symbols from a finite set of possible symbols. A continuous alphabet source produces
source symbols from a continuum of possible symbols. The entropy of a discrete alphabet
source is called absolute entropy and is different from the differential or relative entropy ol a
continuous alphabet source. To determine the entropy of either a discrete or continuous source.
it is necessary {o have a probabilistic description of the source output. ‘The charactenization of a
source-user pair as a mathematical entity 1s complete if the joint probabtlity distribution
functions of the source outputs are known, and if a quantitative fidelity criterion is specitied.
These concepts are reviewed more thoroughly 1n Chapter 2.

Before proceeding to the encoder and decoder of Figure 1.1, we discuss briefly the channel.
The channel is a physical medium that spatially or temporally links the source to the user.
Channels can be separated into two major classes: noiseless channels and noisy channels. A
noiseless channel is one in which each channel output results from a specific and known
channel input. A noisy channel is one in which the signal is perturbed by woise during
transmission, and the user is left uncertain as to what the channel input was.

For our purposes, the only parameter of a channel that interests us is its capacity. Shannon
proved that the capacity of a channel is a number C that specifies the maximum rate at which

information can be sent through the channel with arbitrarily low probability of error. Shannon
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was able to define n definite capacity for both the noiseless and noisy channels. Since it is uot
possible to reconstruct the transmitted signal with certainty by any operation on the reecived
signal, it may seem surprising that a capacity could be defined for a noisy channel. However,
the channel capacity and the fundamental theorems of information theory guarantec the
existence of methods which arc optimal (in the sense of achieving arbitrarily low probability of
error) in combating the channel noise. This is the job of the channel encoder and channel
decoder of the block diagram in Figure 1.1. The channel encoder adds a certain amount of
redundancy to combat the particular noise structure of the channel. Shannon [ 1] proved that i’
the information rate of the source H is less than or equal to the capacity C ol the channel
(noiseless or noisy), then an encoder-decoder pair can be found which transmits infounation at
the rate H < C with as small a frequency of error as desired. Conversely. Shannon proved that
if H is greaer than C, any altempt to transmit information at the rate H will lose or destroy
information at a rate no less than the difference H-C. This last situation is of special interest to
the work of this dissertation. We consider the case for which the source-user pair and the
channel arc assumed fixed, and the entropy of the source H exceeds either a given or desired
channel capacity C. Although Shannon proved that information must unavoidably be lost under
these circumstances, is it possible to contre! which information is lost? it is a generalization of
the concepts of information theory. Which collectively is called rate-distortion theory, that
answers this quest ion in a rigorous yet relatively straightforward imanner.

Rate-distortion theory associates with most source-users pairs a function ID(R) called the
distortion-rate function, which has the following signiticance. A communication system that is
constrained to operate with a channel capacity of C and a source output rate of H > C must
somechow reduce the output, rate of the source to a value R that satisfies R < C. The distortion-
rate function D(R) specifies the best possible fidelity that may be achieved when the rate of the
information source is reduced to R. In other words, it is possible to control which information
is lost, or more importantly, which information is communicated such that the resulting
average distortion is as closc as desired to the theoretically minimum value D(R).

Whenever the entropy, of the source exceeds the channel capacity. the encoder and decoder of
Figure 1.1 may be separated into source/channe! sub-blocks. The source encoder is given the
important function of reducing the information rate of the source to a Value R not greater than
the capacity of the channel. An "ideal” source encoder operates such that the resulting average

distortion is minimized to a value arbitrarily close to the theoretically optimal value D(R). The

t
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channel encoder then employs an "ideal” channel code to achieve, an arbitranly low
probability of error in the reproduction of the source encoder’s output.

With source/channel encoder and decoder sub blocks. the communication system model las
the advantage of a complete separation of the tasks of source coding and chamel coding.
Shannon 1] proved that performance arbitrarily close to the theoretical optimum could be
achieved by designing each subsystem independently, which usually is the approach in
practice. The source encoder employs a source code that is optimal with respect to the given
source-user pair and fidelity criterion without any regard to the detailed nature of the channel.
The channel encoder employs a chammel code that is optimal with respect to the channel
without any regard to the detailed nature of the source-user pair and fidelity criterion. In this
dissertation we assume that we are given a source-user pair and {idelity criterion. und that we
have the freedom to choose a source encoder and source decoder. The rest of the
communication system model is assumed fixed and is lumped into some type of "ideat"
channel that we assume to be error free in the sense that the output ot the source encoder can
be communicated with arbitrarily low probability of error. The general problem addressed in
this work is the design of "good" source encoder-decoder pairs. and in particular. the design of
"good” source coders we call residual quantizers. In the next two sections we brietly discuss
what is meant by the word "good" in the present context. Section 1.2 discusses some of the
theoretical issues that determine "good" source coders, and Section 1.3 discusses somce of the

practical issues that determine "good" source coders.

1.2. Vector Quantizers

In this dissertation we consider the communication system mode! of Figure 1.1 to be a discrete-
time system. The source produces a sequence of source symbols x (t;} drawn from the sowrce
alphabet A,, in discrete time. That is x (t) = Xi € A, The coding and transmission of the
source output also occur in discrete time. The source is described by the joint probability
density functions p(x)=p(Xu. Xa...., Xa) for all n={1,2,...} and for all t = (O.x1£2..}. We
assume the source is stationary, that is p (xux) = p(x,) holds for all integers k, all t. all x; € R",
and all n. Thus, we ignare the t index and write the probability density function p{x} as p{x).
Each n-dimensional vector x produced by the source is called a source vector.

We construct a particular type of source encoder calied n vector quantizer (VQ) by
choosing an indexed set A= {y1, ¥2,-.., Yn), where A is called a code book of size JV and each

of the selected y; € R" is called a code vector of dimensionality n. The vector quantizer




PRRVOQ ]

encader operates by blocking the sequence of source output sampics into contizuous soarce
vectors of length n. The encoder maps each source vector x into whichever code veclor yj € A
minimizes a given distortion function d, (X, yj). and transmits the index of the selected code
vector to the decoder. Since the decoder has a copy of the codebook, the decoder simply
outputs the code vector corresponding to the received index associated with every possible

codebook .A is an average distortion.

D (A)= [ min d(x, yp(x) dx. (1)

yi €A

The output rate of the vector quantizer is defined as R = n” IgN bits per sample (the entropy of
the vector quantizer's output cannot exceed this vajue). Where the index of each selected code
vector is encoded in a straightforward manner into binary number requiring n”' 1aN binary
digits.

As described in Section 1.1, rate-distortion theory associates with the given source p(x) and the
given distortion measure dy{x, y;) with distortion-rate function D({R) which describes the lowest
possible average distortion of any encoding scheme with an output rate of R. In particular.
Shannon's Noisy Source Coding Theorem and its converse (to be described in more detail in
Chapter 2) state that for a fixed rate of R bits per symbol, if the block length n 1s sufficiently
large, then there exists a code book such that the average distortion of the encoded sequence is
arbitrarily close to D(R). More precisely, there exists a code book A’ such that D{A™) < (R}
+e, where € is an arbitrarily small positive number. The Noisy Source Coding Theorem and
its converse have important practical consequences in communication theory. Other types of
source code Structures may or may not be theoretically capable of achieving the distortion-rate
bound D(R). but these theorems guarantee that the use of block codes will be optimal if the
block length is sufficiently large.

Even though rate-distortion theory guarantees the existence of wector quantizers with
codebooks, which give nearly optimal performance, the theory provides no methods of
determining "good" codebooks. It is interesting to note that although the Noisy Source Coding
Theorem and its converse were first proved by Shannon [1] in the 1940s, it was not unti! about
1980 that vector quantizer code book design methods were widely developed and put into
practice [2,4]. The delay was not a result of a lack of interest, but probably a result of the

unavailability of the necessary computation and storage resources required to design and

LA
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implement block codes. In the next section we briefly review a few of the methods used to
generate code books and discuss the important practical issucs that determine the usefudness of

a given code book structure in a vector quantizer.

1.3. Design and Instrumentation of Vector Quantizers

In 1980 a vector quantizer codebook design method known as the Generalized Lloyd
Algorithm (GLA) or LBG method (named for the authors Linde, Buzo and Gray) was
introduced [26]. Although we do not present the GLA alporithm in detail until Chapter 2. we
find it usetful to describe briefly the algorithm here. The GLA method uses a set of statistically
representative samples of the source output, called a training set, to design the codebook. The
code vectors produced by this method are obtained by clustering the training set into subscts of
similar vectors and choosing the centroid of each cluster as a code vector. A characieristic of
the GLA design method is that the vectors in each cluster are "closer" in the sense of the
distortion measure dy(+) to their centroid than to any other cluster's centroid.

A key issue in using codebooks designed with the GLA algontlun is the complexity of the
vector quantizer implementation. The GLA code vectors have no natural order or structure. so
every source vector requires an exhaustive search of the codebook to locate a code vector,
which minimizes dn(*). The implementation costs of these exhaustive search vector quantizers
(ESV(Qs), measured in terms of computation and memory requirements, grow exponentially
with the product of quantizer dimension and output ratc. Specifically, for an ESVQ code book
comprised of N code vectors, each of dimensionality n, the number of vector distortion
computatiors needed to quantize a source vector is N. A vector distortion computation may be
arbitrarily complex, but for a single-letter fidelity criterion a vector distortion computation
requires n total of n scalar distortion calculations. If a scalar distortion calculation quantities a
measure of computation, then the computation cost (C) for quantizing each source sample is

C = N scalar distortion calculations. (1.2)

A codebook with N code vectors requires (by definition) £ == logaN bits fo communicate the
code vector selected for each source vector. Since one index is transmitted per source vector,
the transmission rate is given by R = f#n bits per source sample. Hence, the computation cost
given by equation (1.2) can lie expressed as

C = 2% = 2™ scalar distortion calculations per sample. (1.3}

Assuming that one scalar memory location is used for each element of a cede vector, the
memory cost (M) required to store the codebook at either, the encoder or decoder is defined by
the exponential relationship

M= n2’ = n2"® scalar memory locations. (1.4)
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Equations (1.3) and (1.4) express that at a [ixed data rate (R constani) the
computation and memory costs increase exponentially with increasing vector length n, or at o
fixed block length (n constant) the costs increase exponentially with increasing rate R, Because
rate-distortion theory requires a block length that is "sufficiently large™ (Tor a fixed rate) belore
the existence of an optimal codebook is guaranteed. these incompatible theorctical and
practical requirements limit the performance of practical ESVQs o values far from the
optimum D(R).

The exponential growth in computation and memory costs of ESVQ) is a resuit of the lack of
structure in the ESVQ codebuok. Many researchers have suegested imposing different
structures on the codebook in the hope that computationally economicat searches can be used
instead of exhaustive scarches. The choice of a particular structure is necessarily ad hoc, in the
sense that there is no motivation for any particular structure in rate-distortion theory. Examples
of structured vector quantizers proposed in the literature include product code VQ [2].
classified VQ (3], lattice VQ [4, 5], hierarchical VQ, and tree-structured VQ [6.7). The
different structural constraints lead to various compromises between quantizer desien
complexity, implementation complexity and performance. For example, lattice VQs have small
computation and storage requircments, and perform quite well on uniformly distributed
sources. Unfortunately, lattice VQs give poor performance for non-uniform data sources such
as speech and imagery sources. Tree-structured vector quantizers perform well on these real
data sources and have computation costs that grow only linearly with increasing vector length:
however, the memory requirements arc at least as great as those of ESVQs.

Most structured VQs are fairly successful at reducing the computation cost. but very little work
has been done to reduce the memory requirements of VQ. One notable exception is a codebook
structure that we introduce in the next section. This structure has been propesed to reduce hoth

computation and memory expense.

1.4, Residual Quantizers

Imposing a multistage structure on the VQ has been suggested to hold down both the memory
and computation costs [7, 8, 9, and 10]. This class of structured vector quantizers is known
variously as multistage, multistep, Cascade, residual or successive approximation VQ. In this
dissertation, we refer to these guantizers as residual quantizers (RQs). lanstead of using one
very large codebook, a residual quantizer uses a sequence of smaller codebooks. As shown in
Figure 1.2, each stage of a residual quantizer encodes the residual error of the preceding slage.
The final quantized value of the source vector is the sum ot the code vectors selected at each of
the stages.
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Fig 1.2, Residual Vector Quantizer

The computation and storage costs of a P-stage RQ with Np code vectors comprising the
codebook of the pth stage are determined by the sums

P-1
Cro = Z NP scalar distortion calcutations per sample. (1.5)
p=0
P-1
Mg = n Z NP scalar memory calcutations. (1.6)
p=0
instead of the products
p-1
Cesvg= II NP scalar distortion catculations per sample (LN
p==0
P-1
Mgsvg= n I e scatar memory [ocations (L3)
p=0
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for an ESVQ that has the same number of code vectors as the number of unique code vector
combinations determined by the product N x N' x N* x_... .xN™",

Juang and Gray [8] were the first to propose the residual quantizer structure. They
designed and tested two-stage RQs with each codebook size varying from 2 to 1024 code
vectors, Usiag the GLA algorithm and a set of source training set vectors. they first designed
the first stage codebook. Then using a restdual training set formed from the source traming sei
vectors and the first stage codebook, they used the GLA algorithm to design the second stape
codebook. In their speech coding experiments, they reported a shight loss in performance
relative to single stage ESVQs when using the two stages RQ.

Baker [27] proposed a modified RQ structure that was a generalization of Juang and Gray’s 8]
RQ to a product code structure. He seems to have done some preliminary investigations with
RQ structures having more than two stages: however, he gave no results and made the
discouraging statement "that it is not advantageous to iteratively vector quantize image
waveform residuals.

Makhoul, Roucos, and Gish [9] conducted more extensive experiments with the RQ structure.
Their results showed that the performance of RQs designed with the method of Juang and Gray
[8] becomes relatively worse (compared to the performance of ESVQQs) as the number of stages
increases. They suggested using rotations of the residual vectors between stages 1o improve
performance. The rotations improved the signal-to-quantization-noise ratio by about | db.
They conjectured that the reason RQs with more than two stages perform so poorly is because
the training set residuals are pooled together before the GLA algorithm is applied (o design. the
codebook of the next stage. They hypothesized that this pooling destroys the dependencies that
exist in the initial training set clusters, and prevents the .GLA algorithm from exploiting these
dependencies when constructing the source code. Their final conclusion is that RQs should be
limited to only two stages.

Makhoul, et al. [9], make the general observation that if some method of reducing the storage
requirements of VQ without a concomitant major reduction in performance is not found. then
storage cos: is ultimately the major limitation in the practical use of VQ.

It is at this point that we ask ourselves a few questions about, the RQ codebook structure:

1. What is the nature of the structure in RQ encoders and decoders, and can this structure
be made explicit for possible analytical work to improve RQ performance?
2. Similar to ESVQ codebooks, are there certain conditions that are necessary for

minimum  distortion of RQ codebooks?
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3. If such conditions exist, can design procedures be developed which yield RQ
codebooks that satisfy these conditions?

The remainder of this dissertation essentially provides aflirmative answers to each of these
questions.
Gabor and Gyorfi {28] note that the design process involves two complementary steps: the
choice of the structural constraints, and the design of the system given the sirucwural
constraints. The former is mainly a heuristic and experimental process where the designer
should consider all the technological and financial limitations involved. The reduced
computation and memory costs justify our interest in the RQ structure. However, once o
structural constraint is accepted, it is the task of the designer to make the constraint exphicit,
and maximize performance under it. This is precisely the task accomplished in this
dissertation. We make the structure of RQ codebaoks explicit and optimize performance under
the residual constraint.
This dissertation is outlined as foliows. In Chapter 2. we provide background material
necessary for understanding concepts used in subsequent chapters. Topics covered include a
more detailed description of information theory, image compression and the theory of fixed-
level quantization. In Chapter 3, we make explicit the structure of residual quantizers and
derive necessary conditions for minimum mean squared error scalar RQs and minimum
distortion vector RQs. In general, one of the derived necessary conditions requires a com-
putationally expensive encoding strategy. We call residual quantizers that use this encoding
strategy exhaustive search RQs. In Chapter 4, we give an algorithm to design ot PEC-RRVQ.
In chapter 5, we will discus implementation of coder and decoder for PRRVQ. In Chapter 6,
we will show certain results and comparisons of PEC-RRVQ with EC-RRVQ and comparison
of EC-RRVQ with certain exhaustive search RVQ techniques. Finally., in Chapter ¢ we

summarize the results of the dissertation and suggest future rescarch tlopics.




Chapter 2
Background
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2. Background

Everyday, an enormous amount of information is stored, processed. and transmitted digitatly.
Companies provide business associates, investors, and potential customers with {inancial data.
annual reports, inventory, and product information over the [nternet. Order entry and tracking,
two of the most basic on-line transactions, are routinely performed (rom the comiort of one's
own home. Cable television programming on demand is on the verge of hecoming a veality.
Digital image and video compression is now essential. Internet teleconferencing, because much
of this on-line information is graphical or pictorial in nature, the storage and communications
requirements are immense. Methods of compressing the data prior to storage and tiunsmission
are of significant practical and commercial interest. High Definition Television (IHDTV),
satellite communications and digital storage of movies would not be feasible without a high
degree of compression [10].

Image compression addresses the problem of reducing the amount of data required to represent
a digital image. The-underlying basis of the reduction process is the removal of redundant data.
From a mathematical viewpoint, this amount to transforming a 2-d pixel array into a statiscally
uncorrelated data set. The transformation is applied prior to storage or transmission of image.
At some later time, the compressed image is decompressed (o reconstruct the original image or
an approximation of if.

Interest in image compression dates more back than 35 years. The initial research efTorts in this
field were on the development of analog methods for reducing the video transmission
bandwidth, a process called bandwidth compression. The advent of digital computer and
subsequent development of advanced integrated circuits however caused interest to shifl from
analog to digital compression approaches. With relatively recent adoption of several key
international image compression standards, the field has undergone signiticant growth through
the practical application of the theoretic work that began in the 1940s, when C.E.Shannon {1}
and other first formulated the probabilistic view of information and its representation,
transmission, and compression.

Currently, image compression is organized as an "enabling technology”. In addition to the
areas just mentioned, image compression is the natural technology for handling the increased
spatial resorutions of today's imaging sensors and evolving broadcast television standards.
Furthermore, image compression plays a major role in many important and diverse
applications, including televideo conferencing, remote sensing (the use of satellite imagery for
weather and other earth-resource applications), document and medical imaging, facsimile
transmission (FAX), and the control of remotely piloted vehicles in military, space and
hazardous waste management applications, in short, an ever-expanding aumber of applications
depend on the efficient manipulation, storage, and transmission of binary, gray-scale, and color
trmages.

In this chapter, we examine both the theoretic and practical aspects of the image compression
process. Section 2.1 through 2.3 constitutcs an introduction to the fundamentals that
collectively from the theory of this discipline. Section discusses the basics of image
compression. Section 2.2 describes the data redundancies that may be exploited by tmage
compression algorithms.

Section 2.4 through 2.5 covers the practical aspects of image compression, including both the
principal techniques in use and standards that have been instrumental in increasing the scope

11



PRRVQO Buckground

and acceptance of this discipline. Compression techniques fall into two broad categories:
information preservation and lossy. Section 2.4 addresses these methods. Which are
particularly useful in image archiving (as a storage of legal or medical records). These methods
allow an image to be compressed and decompressed with or without losing infermation.
Section 2.5 describes method in the second category, which provides higher leve) of data
reduction but result in a less than perfect reproduction of the original image. Lossy image
compression is useful in applications such as broadcast television, videoconferencing. and
facsimile transmission, in which a certain amount of error is an acceptable (rade-oil” for
increased compression performance. Section 2.5 deals with existing and proposed lossy image
compression standards known as Vector Quantization.

2.1.FUNDAMENTALS:

The term data compression refers to the process of reducing the amount of data required to

represent a given quantity of information. A clear distinction must be made belween data and
information. They are not synonymous. Infect, data are the means by which information is
conveyed. Such amount of data may be used to represent the same amount of information.
Such might be the case, for example, if a long-winded individual and someone who is short
and to the point were to relate the same story. Here, the information of interest 1s the story;
words are the data used to relate the information. If the two the individuals use a different
number of words to tell the same basic story, two different versions of the story are created,
and at least one includes nonessential data. That is, it contains data {(or words) that cither
provide no relevant information or simply restate that which is already known. 1t is thus said to
contain data redundancy.
Data redundancy is a central issue in digital image compression. It is not an abstract concept
but a mathematically quantifiable entity. If n1 and n2 denote the number of information-
carrying units in two data sets that represent the same information, the relative redundancy Rd
of the first data set (the one characterized by n1) can be defined as

RD=1- NCR 2.1
Where CR, commonly called as compression ratio, s

CR =nl\n2 2.2
For the case n2 = nl, CR=[ and RD= 0, including that (refative to the second data set) the first
representation of the information contains no redundant data. When n2 << nl, CR =2 w and
RD=>1, implying significant compression contains no redundant data. Finally, When the case
n2 >> nl, CR=>0 and RD-> -0, indicating that the second data set contains much more data
than the original representation. This is of course, undesirable case of data expansion. In
general, CR and RD lie in the open intervals (0, o) and {(-o2, 1). respectively. A practical
compressior. ratio, such as 10 (or 10:1), means that the second or compressed data set. The
corresponding redundancy of 0.9 implies that 90% of the data in the first data set is redundant.

2.2. Redundancy

Redundancy is the repetition of same data with in the image. In digital ftmage compression.
three basic redundancies can be identified are exploited: coding redundancy. interpixel
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redundancy, and psychovisual redundancy. Data compression is achieved when one or more of
these redundancies are reduced or eliminated [11].

2.2.1. Coding Redundancy

We developed the technique for image enhanccment by histegram processing on the
assumption that the gray levels of an image are random quantitics. We showed that great deal
of information about the appearance on an image could be obtained from histozram of these
gray fevels. [n this section, we utilize a similar formufation to show how the gray-level
histogram of an image also can provide a great deal of insight into the construction ot codes to
reduce the amount of data used to represent i.

Let us assume, once again in, that a discrete random variable rk in the interval [0.4] represent
the gray levels on an image and that each rk occurs with probability pr(Rk).

Pr (RK) =nk/n k=0, 1,2...., L-I (2.3)

Where L is the number of gray fevels, nk is the number of times that the kth gray level appears
in the image, and n is the total number of pixels in the image. If the number of bits used o
represent each value of rk is I(Rk), then the average number of bits required to repsesent cach
pixel is

L avg = 2 KRk)pr(Rk). 2.4y

That is the average length of the code words assigned to the various gray-level values is found
by summing the product of the number of bits used to represent each gray level and the
probability that the gray level occurs. Thus the total number of bit required to code an MXN
image is MML avg.

Representing the gray levels of an image with a natural m-bit binary code reduces the right-
hand side of Equation (2.4) to m bits, That is , Lavg = m when m is substituted tor }{Rk). Then
the constant m may be taken outside the summation, leaving only the sum of the pr(RK) for
0<=k<=L-1, which, of course equals 1.

Example: (A simple illustration of variable-length coding)

An 8-level image has the gray-tevel distribution shown in Table 2.1, If a natural 3-bit binary
code {see code | and l;(Rk)= 3 bits for all Rk. If Code 2 in Table 2.1 is used. however, the
average number of bits required to code the image is reduced to 2.7 bits,

Table 2.1 Example of variable-length coding.

Rk Pr(RK) Codel L(RK) [ Code? L2(RK)
RO=0 0.19 000 3 1 2 ]
R1=1/7 0.25 001 3 01 2
R2=2/7 0.21 010 3 10 2

' R3=3/7 0.16 011 3 001 3
R4=4/7 0.08 160 3 0001 4
R5=5/7 0.06 101 3 00001 5 ]
R6=6/7 0.03 110 3 00000 6
R7=1 0.02 111 3 000000 6
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Lavg= 3, 1(RK) pdRK)
K=0

=2(0.19) +2 (0.25) + 2 (0.21) + 3 (0.16) + 4 (0.08) + 5(0.06) + 6 (0.03) + 6 (1.02)

=2.7 bits.

From Equation (2.2), the resulting comypression ratio CR is 3/2.7 or 1.11. Thus approximately
10% of the data resulting from the use of code is redundant. The exact level of redunduncy can
be determined from Equation (2.1).

Rp=1-1/1.11=0.099.

In the preceding example, assigning fewer bits to the more probable gray levels than to the less
probable ones achieves data compression. This process commonly is referred to as variable-
fength coding. If the gray levels of an image represent each gray level [that is, the code fails o
minimize Equation (2.4)], the resulting image is said to contain coding redundancy . In general.
coding redundancy is present when the codes assigned to a set of events (such as gray-level
values) have not been selected to take full advantage of the probabilities of the events. It is
almost always present when an image’s gray levels are represented with a straight or natural
binary code. In this case, the underlying basis for the coding redundancy is that images arc
typically composed of objects that have a regular and somewhat predictable merphology
(shape) and reflectance, and are generally sampled so that the objects being depicted are much
larger than gray levels are more probable than others (that is, the histograms of most images
are not uniform). A natural binary coding of their gray levels assigns the same number of bits
to both the most and least probable values. thus failing to minimize Equation. (2.4) and
resulting in coding redundancy.

2.2.2. Inter-pixel Redundancy

If the gray levels in images are not equally probable variable-length coding can be used to
reduce the coding redundancy that would result from a straipght or natural binary encoding of
their pixels. 'The coding process, however, would not alter the level of conelation between the
pixels within the images. In other words, the codes used (o represent the gray levels of eacli
image have nothing to do with the correlation between pixels. These correlations result from
the structural or geometric relationships between the objects in the image.

Autocorrelation coefficients computed along one line of each image.

¥(An) = A(An) (2.9)
A(0)
Where
A(An) = 1 (2.6)
N-An

The scaling factor in Equation (2.6) accounts for the varying number of sum terms that arise
for each integer value of An. Of course, An must be strictly less than N, the number of pixels

on a line. The variable x is the coordinate of the line used in the computation.
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These illustrations reflect another important form of data redundancy. one directly related to
the inter-pixel correlations within an image. Because the value of any given pixel can be
reasonably, predicted from the value of its neighbors. The information carried by individual
pixels is relatively small. Much of the visual contribution of a single pixel to an image is
redundant; it could have been guessed on the basis of the values of its neighbors. A variety of
names, including spatial redundancy, geometric redundancy. and inter-frame redundancy. have
been coined to refer to these inter-pixel dependencies, We use the term inter-pixel redundancy
to encompass them all. _

In order to reduce the inter-pixel redundancies in an image. the 2-D pixel array normally used
for human viewing and interpretation must be transformed into more cfficient (but vsually
“non visual”} format. For example, the differences between adjacent pixels can be used to
represent an image. Transformations of this type (That is, those that remove inter-pixel
redundancy) are referred to as mappings. They are called reversible mappings in the original
image elements can be reconstructed from the transformed data set.

2.2.3.Psvchovisual Redundancy

We noted in Section 2.1 that the brightness of a region, as perceived by the eye, depends on
factors other than simply the light reflected by the region. For example, intensity vartations
(Mach bands) can be perceived in an area of constant intensity. Such phenomena result from
the fact that eye does not respond with equal sensitivity to all visual information. Certain
information simply has less relative importance than other information in normal visual
processing. This information is said to be psychovisually redundant. It can be elininated
without significantly impairing the quality of image perception.

That psychovisual redundancies exist should not come as surprise, because human perception
of the information in an in image normally does not involve quantitative analysis of every pixel
value in the image. In general, an observer searches for distinguishing features such as edges or
textural regions and mentally combines them into recognizable groupings. The brain then
correlates these groupings with prior knowledge in order to complete the image interpretation
process.

Psychovisus! redundancy is fundamentally different from the redundancies discussed carlier.
Unlike coding and inter-pixel redundancy, psychovisual redundancy 1s associated with real or
quantifiable visual information. Its elimination is possible only because the information itselt'is
not essential for normal visual processing. Since the elimination of psychovisually redundant
data results in a loss of quantitative information, it is commonly referred to as quantization.
This terminology is consistent with normal usage of the word, which generally means the
mapping of a broad range of input valued to a limited number of output values. as discussed in
Section 2.4. As it is an irreversible operation (visual information is lost). Quantization resuits
in lossy data compression.

2.3. Fidelity Criteria

As noted previously, removal of psycho visually redundant data results in a loss of real or
quantitative visual information. Because information of interest may be lost, a repeatable and
reproducible means of quantifying the nature and extent of information loss is highly desirable.
Two general classes of criteria are used as for such an assessment: (1) objective fidelity criieria
and (2) subjective fidelity criteria.
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When the level of information loss can be expressed as a function of the oviginal or mput
image and the compressed and subsequently decompressed output image. it is said to be based
on an objective fidelity criterion. A good example is the root-mean-square {rms) error between
an input and output image. Let f(x. y) denote an estimate and approximation of f{x. y) that
results from compressing and subsequently decompressing the input. For any value of x and y.
the error e (x, y) between f (x, y) and f(x, y) can be defined as )

e(x, y) = f(x, y) - f(x.,y) (2.7)
So that the total error between the two images is

M-I N-1

x=0 y=0

Where the images are of size M x N. The root-mean-square error, rms, between (. y) and
f(x,y) then is the square root of the squared error averaged over the M x N array, or

M-l N-1
€ms~ [IIMN * Z Z [f(x,Y) - f(X,y) ] 2] 12 (2()}
x=0 y=0

A closely related objective fidelity criterion is the mean-square signal-to-notse ratio of the
compressed-decompressed image. If' f(x,y)is considered {by a simple rearrangement of terms
in Equation 2.7] to be the sum of original image f(x, y) and a noise signal e(x. y). the mean-

square signal-to-noise ratio of the output image, denoted SNR 5, is

M-l N-1
Z 2 fey)
x=0 y=0
SNR s = -- - -—- (2.10)
M-1 N-I

Y Y Sy - e I

=0 y=0

The rms value of the signal-to-noise ratio, denoted SNR (s, is obtained by taking the square
root of Equation (2.9).

The objective performance measure used in all experiments is the peak-signal-to-quantization
noise ratio (PSNR}. PSNR is defined as

PSNR=-10logso 2 =12 o1 (x(i,})- ¥(i )" (2.11)

(N?)(255)°
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Where N x N is the size of the image and x(i,) and x(i,}) represent the original and coded
values, respectively, at the ith row and the jth column.

2.4.The Two Kingdoms of Techniques.

Data-compression techniques can be divided into two major families; lossy and loss less. Lossy
data compression concedes a certain loss of accuracy in exchange for greatly increased
compression. Lossy compression proves effective when applied to graphics images and
digitized voice. By their very nature, these digitized representations of analog phenomena arc
not perfect to begin with, so the idea of output and input not matching exactly is a Httle more
acceptable. Most lossy compression techniques can be adjusted to ditferent quality levels.
gaining higher accuracy in exchange for less effective compression. Until recently, lossy
compression has been primarily implemented using dedicated hardware. In the past few years,
powerful lossy-compression programs have been moved to desktop CPUs. but even so the ficld
is still dominated by hardware implementations.

Loss less compression consists of those techniques guaranteed to generate an exact duplicate of
the input data stream after a compress/expand cycle. This is the type of compression used when
storing database records, spreadsheets, or word processing files. In these applications. the loss
of even a single bit could be catastrophic.

2.4.1.Noiseless Source Coding

If the original signal is digital and can be perfectly reconstructed from the coded signal or data.
then the coding scheme is called noiseless coding or lossless coding or Entropy coding.
Noiseless coding is often required in some systems, for example in coding binary computer
programs for storage or transmission: A single bit in error has disastrous consequences. [f the
noiseless coding results in a digital sequence with a smaller communications rate or storage
rate then than the original signal, then the noiseless coding 1s called noised less data
compression. Noiseless data compression is also referred as data compaction. An example of
noiseless data compression of the ASCII cede is the Morse code represcntation (use short
vectors for more common or likely letters and less characters for less common or less likely
letters).

In many cases the rate of a code used to encode discrete amplitude source exceeds the source's
entropy. For example, the code used at the output of a scalar quantizer. or analog-to-digital
converter, typically employs a fixed input of bits to represent the vilue of cach output sample.
If the quantizer's output values do not occur with equal regularity, then this fixed-length code
is inefficient. We may seek a code with an average rate below that of the fixed-length code.
Encoding schemes that attempt to give the lowest possible average rate (for a discrete
amplitude source) without introducing any distortion .is called distortion less encoding
schemes. Practical systems that realize noiseless coding are called entropy coders. Entropy
coding involves variable-rate and variable length mappings of codewords. The instantaneous
rate of an entropy encoder varies about its average entropy and one must be concerned with
buffer overflow and underflow problems in the implementation.

17
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lim n-1 log N(n, D )= R(D) (2.13)
n—>on

Equation (2.15) expresses that for each D > 0, the rate-distortion function R (D} is the minimal
exponential rate at which the size of a code book must be increased with increasing block
length n in order for the code to remain D-admissible.

2.5. Quantization

This section is the last of the preliminary background and review sections. The work of this
dissertation is strongly influenced by the ideas presented here. In fact. much of this work may
be considered analogous to the scalar work of Lioyd and Max. and the vector work ol Linde.
Buzo and gray; the major difference being our acceptance of a particular structurai constraint
which we call a residual structure on the quantizer's encoder and decoder.

The purpose of this section is to discuss in more detail some of the particulars of guantization.
Included in this discussion is a review of conditions necessary for the optimality of hxed-level
quantizers: both fixed-level scalar quantizers and fixed-level vector quantizers. Fixed-level
guantizers have a fixed number of representative output values; other classes of quantizers (for
example, entropy-constrained quantizer) place no constraint on the number of levels and may
even have an infinite number of possible output values. Fixed-level scalar quantizers are of
interest because the derivation of necessary conditions for minimum mean squared error of
scalar quantizers preceded and motivated the establishment of necessary conditions for
minimum distortion vector quantizers.

2.5.1. Lloyd-Max Scalar Quantizers

An N-level scalar quantizer of the real-valued random variable V consists of a finite

indexed set or real numbers A = (y1, ¥2, ..-, ¥n}, and a corresponding set {Xg, Xi..... Xy} The
y; € A are called the quanta or reconstructed levels, and the xj are called the partition
boundaries or decision levels. The Xj specify a set of partition intervals where the quantizer
output is yj if x falls within the Interval Sj: {xj.1 < x <=x;}. The collection of partition intervals
forms the partition P = {S;, S,, ..., Sn}. It is usually implicitly assumed that yj € S}. A scalar
quantizer is specified by a mapping y = Q(x), called the quantizer characteristic.
The quantizer represented in Figure 2.1 has decision levels and reconstruction levels no
uniformly spaced, and is called non-uniform. A quantizer with equidistant decision levels and
reconstruction levels is called uniform, as shown by an example in Figure 2.2, Although
uniform quantization is most commonly used in practice, it does not necessarily represent the
most effective conversion.

19
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Figure 2.1: Nonuniform scalar quantizer.
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Figure 2.2: Uniform scalar quantizer.

A nonuniform quantizer, which uses smaller partition intervals where the probability of
Occurrence of x is relatively higher, and larger intervals otherwise, should yield a smalier
average distortion.

Necessary Conditions for Minimum Mean Squared Error

To determine which X and Y; minimize the average distortion of a nonuniform scalar
quantizer for a given source, we express the mean squared error as

Dase = % 19 g1 (xy))? Bx)d(x) (2.16)

20
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Where f(x) is the probability density function of A'. Necessary conditions for the optimality of
a nonuniform scalar quantizer with a finite number ol quantization levels follow from the
minimizations

QM:O;jZ: 1,2...N-1 szo,_,:OiN (317}

Ox; ;i

and were first derived in an unpublished paper by Lloyd and later in a published paper by Max.
For an N-Level scalar quantizer to give minimum mean squared error. implics that the
quantizer partition boundaries necessarily satisfy

Xj=yj+t ¥ for 1<=j<=N-1, (2.18)
2
Where xp= -0 XN = 0

and the quantizer quanta necessarily satisfy

yi= [ x £x)d60) for 1<=j <= N. (2.19)
3 i f0d(x)

Above Conditions are also sufficient if f{x) is log-concave. Equation (2.18) expresses that the
optimal boundary points of the quantizer partition intervals lie halfway between quanta values.
Equation (2.19) expresses that the optimal quanta are the centroid or conditional means of their
partition intervals. Quantizers satisfying both equations are called Lloyd-Max quantizers. Max
also derived necessary conditions for the optimality of uniform quantizers. We next review;
design algorithm which was developed to yield optimal Lloyd-Max nonuniform quantizers.

Lloyd's "Method I'' Design Algorithm

Lloyd gave two different methods, which he called “Method 17, and "Method 11" 1o design
nonuniform scalar quantizers with quanta and partition boundaries that minimize mean squared
error. Since Method | has been generalized to yield a vector quantizer design method. we
briefly describe this algorithm.

Starting with either an initial guess of the partitions or an initial guess of the quanta, Method !
iterates by first satisfying the condition not initially guessed and then the other. repeating the
iteration until eventually both conditions are satistied stmultaneously.

Lioyd's methods have been used to design optimal scalar quantizers for sources characterized
by one of a variety of probability density functions.

2.5.2 Exhaustive Search Vector Quantizers.

Before reviewing conditions necessary for the optimality of vector guantizers and a vector
quantizer design algorithm, it is helpful to investigate the structure of exhaustive scarch vector
quantizers.
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Let x be a random vector in n-dimensional Fuclidian space R" described by a distribution
function F on R". An N-level vector quantizer of R" consists of the following: 1). A finite
indexed subset A= {y1, y2..., yn} of R" called a code book, where each yj € A is called a code
vector, 2) a partition P ={S,,S,..,Sy} of R" where the equivalence classes or cells S5 of P
satisty

N

oo =R, (2.20)
j=
S, NnSy=for j zk;
And 3) a mapping O: R" -»> A that defines the relationship between the codebook and partition
as

O(x)=yjif and only if x € §; (2.21)

for 1 <j< N, where y; € A and & € P. In practice, the quantizer mapping ¢ is realized as a
composition of two separate functions: the encoder mapping ¢ and the decoder mapping D.
The enceder mapping & . R"— J is defined as

E(x}=jifand onlyifx € §j, (2.22)

where x € R" and ; is a member of the index set J ={1.2..., N). Each j € J is called a chunne!
code word and is either stored in some medium or transmitted through the channel. The

decoder mapping D : J — A is defined as
DG) =y, (2.23)

Where j € Jand y; € A. The encoder and decoder mappings define the quantizer mapping as
Ofx) = D(&kx}). Specification of the triple (4.(2.P) determines a vector quantizer. In the next
section, we present a condition necessary for the optimality of the codebook A, and a condition
necessary for the optimality of the partition P.

Vector Generalizations of the Lloyd-Max Conditions

For a fixed quantizer dimensionality n and fixed codebook size N the vector
quantizer design problem is to determine the triple {A.Q.P} that minimizes the expected value
of the distortion

D) = Efd(xy)}= LB (d(x. )| x € S; Pr(x € §). (2.24)
For any given code book 4, the partition that minimizes the average distortion satisties
d(x, y;j ) <d(x, y) forall k (2.25)

Where x € Sj. Any partition that satisfies above Equation is called a Voronoi partition of R".
Since any input vector may have more than one nearest neighbor (where nearest-neighbor
means a code vector closest to x in the sense of d), a Voronoi partition is not in general unique.
In the case of a tie between two or more code vectors, the input vector may be assigned to any
of the corresponding cells with some arbitrary tie-breaking rule. An arbitrary codebook A and
its associated Voronoi partition is denoted by the subscript V in the triple (A, Q. Pv). The
quantizer (A, Q, Pv) is called a Voronoi quantizer.

M
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For any fixed partition P, the codebook that minimizes the average distortion satishes

Efdix.p)|xe8;} =minkEfdix u}|xec§;} (2.20)

for 1 £j < N. Analogous to the points that satisfy , any yj that satisfies above equation 1s
called a centroid of §j. The points yj that satisfy above equation improved to exist if Pr(x € §
Also, if d(x,y) is strictly convex in y then the centroid y, is unique otherwise. the centroid o a
cell is not in general unique and some arbitrary rule for resolving ties may be necessary. A tie-
breaking rule together with above equation defines a codebook of centroids for any piven
partition. An arbitrary partition P and its associated code book of centroids is indicated by ithe
subscript C in the triple (Ac, Q. P) If the guantizer simultaneously satistics hoth the Voronoi
partition condition and the centroid code book condition, then the resulting quantizer (Ac, Q.
Pv) satisfies a fixed-point condition .

The Generalized Lloyd Algorithm

In 1980, Linde, Buzo, and Gray generalized Lloyd's Method 1 to devclop a vector quantizer
design algorithm, known variously as the LBG or Generalized Lloyd Algorithm (GLA).
Although very similar, there are two significant differences between Method | and the GLA
algorithm. First, Method 1 requires an analytically satisfied probability density function to
describe the source; but for many information sources encountered in practice, the
muitidimensional source probability density function is either unknown or is not easily
specified analytically. The GLA algorithm circumvents this difficulty by substituting a training
set for the probability density function. This substitution is proven in the limit of Jarze tratning
set size to produce asymptotically equivalent designs. Second, Method [ require an explicit
description ~f the quantizer partition. Unfortunately, the specitication of the boundaries ol an
arbitrary partition of R" for n > 1 can be extremely complex. The GLA algorithm avoids this
complication by exploiting the observation that any code book A and the nearest-neighbor rule
partitions a training set the same as a Yoronoi partition Pv of R" that is associated with the
triple (A, Q, Pv). [12]

The GLA algorithm can be described as follows. Let T= {xy, x5,..., xi}t be a training set of £
sample vectors, where each sample vector x; is drawn according to the probability distribution
function £ on R". The GLA algorithm improves (in the sense of reducing the averuge
distortion) a Voronoi quantizer for the training set 7. The GLA algorithm starts with some
initial codebook A and then iterates by first replacing the code book with the centroids of the
training set vectors that are in each of the cells of Pv that is associated with A. The algorithm
then determines the new Vorenoi partition by a nearest-neighbor mapping of the training sct to
the new codebook of centroids, and the entire process is repeated. Each iteration of the
algorithm either reduces the average distortion or leaves it unchanged. If the distortion is
unchanged by iteration, both the centroid codebook condition and nearest-neighbor partition
condition are simultaneously satisfied, and the resulting quantizer (A. Q, Pv) is fixed-point
with respect to the training set T.

1]
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Residual Vector Quantizers



PRRVQ Residual Vector Quantization

3. Residual Vector Quantization

Vector Quantization (VQ) is a powerful technique for data compression of specch, tmage.
and video signals. Source coding theorems, as well as other well-known results in rate
distortion theory, imply that one can always do better in the sense of achieving better
rate-distortion performance if one can code vectors of samples as units, instead of
separately as individual scalars. However, an issue of recognized importance for
unconstrained VQ is that the size of the codebook grows exponentially as a function of
the product of the vector and bit rate. Even for simple distortion mcasures. the encoding
complexity can guickly become unmanageable. Similarly. the memory required storng
the codebook at both the encoder and decoder side also grows exponentially. To
overcome the complexity barricr, many researchers have suggested imposing certain
structural constraints on the VQ codebook design. Residual VQ {(RVQ) is one ol the
simple and efficient types of structuraily constrained VQ designs. An RVQ consists of
Multiple VQ stages, each operating on the residual of the previous stage.

A simple two-stage RVQ was proposed by Juang and Gray in 1982 for coding of speech
signals. This RVQ encoder utilizes a computationally inexpensive. but sub optimal
sequential single-path search. The performance of this computationally cheap RVQ was
found to degrade significantly as the number of stages grows beyond two. ln 1989,
Barnes and Frost introduced a jointly optimized RVQ (JORVQ) design. In their design,
an attempl was made to minimize the averall quantization error of the RVQ in licu of
merely optimizing the individual stages in isolation. They demonstrated that a sequeniial
single-path search through VQ stages could not, in general, utilize all the available
codevectors. They employed M-search, an efficient multi-path tree search algorithm, to
search the stage codebooks. The design resulted in improvement. However, the increase
in performance comes at the expense of additional computations. It was later shown in
that the rate-distortion performance of a JORV(Q can be further improved by including
entropy encoding. The method was referred to as Entropy-constrained JORVQ (EC-
JORVQ). Experimental results, reported in, show that EC-JORVQ outperforms single-
stage entropy-constrained VQ (ECVQ) [13].

Although multi-stage JORVQ and EC-JORVQ de provide improved rate-distortion
performance over the initial Juang and Gray sequential single-path design, the fact
remains that these are computationally expensive designs. In order to keep the search
complexity manageable while having a jointly optimized RVQ design. Barnes suggested
an alternative in the form of a binary JORVQ with the advantage of using single-path
search. The encoder and decoder of this binary JORVQ perform a reflecting or folding
operation on the residual vectors between VQ stages. The folding operation forces certain
symmetry on the JORVQ codebook. The symmetry of this JORVQ structure makes the
sequential single-path search of stage codebooks optimal. This new binary JORVQ is
referred to as Reflected RVQ (RRVQ). The experimental results, reported in [3]. have
shown that the imposition of reflection constraint led to an unavoidable increase in
distortion as compared to multi-path JORVQ. tlowever, since structured systems are
inherently less random or more ordercd, we expect that imposition ot structure will also
reduce the output entropy.

The RVQ emerges as a practical scheme for iraplementing VQ for large vector sizes. In
particular, it was shown in [3] that entropy-constrained (EC-RVQ). a.k.a. enlropy-
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constrained jointly-optimized RVQ (EC-JORVQ), can outperform JPEG both in rate-
distortion performance and decoding complexity, but generally requires large encoding
complexity. Later on, EC-RVQ utilizing conditional entropy-constrained, and subband
coding frame-works was also introduced with better gains [4]. An option for lowering
RVQ encoding complexity cost is the imposition of additional structure on the RVQ
stage codebooks to make the code more submissive to sequential single path searches.
Multiple-stage VQ’s with stage codebooks comprised of lattice VQ's and reflected RVQ
(Ref-RVQ) and CEC-RVQ) [25] are examples of this option.

In this Thes:s, we design and analyze the performance of predictive RRVQ under entropy
constraint (EC-RRVQ). Specifically, we try to answer the question: to what degree would
entropy coding or optimization under an entropy constraint improve RRVQ rate-
distortion performance. Our technical discussion begins with an overview of the RVQ
design and provides definitions. Then, EC-RRVQ theory is fully explained and the
algorithm de-sign is presented. In this chapter we formulate an explicit description of the
structure of residual quantizers, and give a problem statement for the design of minimum
distortion residual quantizers. We develop a structure called an equivalent quantizer that
1s useful in the derivation of necessary conditions for the optimahiy of residual
quantizers.

3.1 Residual Quantizer Structures

Let x° be a random vector described by a probability distribution function F on R". A P-
stage residual quantizer consists of a finite sequence of P quantizers [{A”, 0%, P7); 0 <p
< P-1}, ordered such that (A®%, Q%, P%) quantizes the source vector x* and (4", O %, P7)
quantizes the residual vector x® of (4, O 7/, PP') for I <p < P - 1. The code vectors
comprising the code book Ap and the cells comprising the partition PU are indexed with
the subscripts j°. Where j° is a member of the p™ index ser # = {1.2, ....N"}. The number
of code vectors comprising 4” is indicated by M, which we consider a fixed preassigned
number. We sometimes find it necessary to index the code vectors and partition cells of
the p™ stage by the superscript p; that is, A® = {y|, y%. . ¥'np } and PP = {SP, §"
S°nps.

Thep mapping (° applied to the input x° yields an output random vector Q%". The
difference of x° and Q°(x°) produces the residual random vector x' = x” — Q'(x"). In
general, the mapping Q7 applied to the input x P yields an output QO ” (¥ ) and the residual
Pt =x? _QPx*) for 0 p < P -1.The random vectors {Q: 0< p < P} and the quantizer
mappings {QP: 0< p < P-1} are related by the expression

P-1
X'=% QH)+x G-

p=0
where x” is the residual error of the last quantizer stage and is called the total residuat
error.
The sequence of quantizer triples {(A?, ¢”, P°); 0< p < P-1 } can be separated into a
sequence of quantizer mappings {Q°.Q', ... .Q*"}, a sequence of codebooks IAYAY L
AP and a sequence of partitions {P°P', ... P*'}. Each map Q° in the sequence of
quantizer mappings 1Q°.Q", ..., Q™"), is realized by a composition of an encoder
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mapping E” and a decoder mapping EP. The p” encoder mapping €”:R" — " is defined
by

g’ (%) =J° if and only if ¥’ € §;, {3.2)

where X eR". S, e P andj® € I

For each source output x° the indexes selected by the sequence of encoder mappings are
concatenated to form the P-tuple (;”J',...,j""). Each P-tuple is an element of the Cartesian
product of the index sets (... i) efi’xi 'x..xj" "}

mappings D :J” — A” defined by

D’@)=yp (3.3)

map each component index j° e J® to its corresponding code vector J” e A7, The decoder
sums the selected code vectors to form the residual quantizer's representation of the
source vector x° by

P-1

X'=3 yip (3.4)
p=0
P.1

X'=% Q&) (3.5)
p=0

Where QP(x™)= D?( eP(x"))

3.2. Formulation of the Residual Quantizer Optimization

Problem

Let the distortion that results from representing x° with x° be expressed by d(x°.x°). The
expected value or average of the distortion is

Dx° x°)=E{d(x° x°) . (3.6)
A P-stage residual quantizer is said to be optimal for F if it gives a locally or globally
minimum value of the average distortion. The design problem of residual quantizer
performance optimization can be stated as follows:
Choose the codebooks 4%, 47,.... A™'} and partitions {P".P'...._.P™"} that minimize the
average distortion

Dx°x°) = Efdix" x°)} (5.7}
=E{d[x",Q°")} (3.8)
={xoeRa...[xp1 eRA[X QAR X/, ., x™) (3.9




PP Residual Vector Quantization

The minimization of (3.9) is complicated by the fact that D(x" %) requires knowledge of
the joint probability distribution function dF(xo.x;..... Xp.1). This depends in a complicated
fashion upon the sequence of codebooks and Partitioning boundaries. To aveid using
(3.9). we find it useful to introduce the concept of an equivalent quantizer. The muliistage
residual and single stage equivalent quantizer’s arc identical in the sense that thev
produce the same representation of the source output, and they have the same expected
value of distortion. We show in the next section that the equivalent quantizer allows us to
express the expected value of the distortion in terms of the known source distribution
F(x0). And avoid dealing explicitly with the complicated probabilistic interdependencies
that exist among the stages of the residual quantizer,

3.3 Equivalent Quantizers

For our purposes, an equivalent quantizer is specified by the triple /A5, 0" /)
consisting of .an equivalent code book. equivalent mapping, and equivalent partition. We
first define the equivalent codebook A4°.

From the finite sequence of code books ,’AO.A I ...AM1. We form a set,
denoted by {4°, 47,..., A""}, of all ordered sums of the code vectors of the codebooks.
That is,

(A4 AP = (Y Y ey P2y o,

(Y0|+YI|+0--+Y]p‘Z+ sz-!).

YOy et ¥ P2 Y ™),

(YO Y eeet Y P24 Y Py,

(Y0N0+YIN'+...+Y p-ZNP—2+Y p-!NP-i)} (3' l U)
where the number of clements in {An,A ‘. ..A"'(} is given by

P-1
i 20

Each summation in fA” A ..., A”'} represents one of the possible output values of the
residual quantizer. Each summation also represents a path through a tree structure that
may be associated with the residual quantizer. To define a simple indexing scheme to
refer to these values, (or paths), let b be a one-to-one but otherwise arbitrary function that
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maps each index P-tuple (*, j ... i"") € f%/'x..xF'} 10 an equivalent index | < F
={1.23,.. N} o
Using the function e and the set {i;/, ..., "'} we form a new indexed sét by setting

y0j0+ylj1+.._+yjP.!p-|=y200‘n’j{, . jp-I) (3. ; 2)
=¥ (3.13)

For all (in.j ',....jp") E{]ﬂxj'x...xj""}. This set is called the equivalent codebook and is
denoted by

ALy 15N} (3.14)
Where the y%. are called the equivalent code vectors. We note that in general the
equivalent code vectors are not necessarily unique.

The (I9)™ equivalent cell of the residual quantizer is the subset 8% € R” such that al} X" e
S ‘je are mapped by the residual quantizer into y%. That is,

P-1

'}—{ ', T Q) =y°je} (3.15)
p=0
The equivalent partition ¥ = {5, 85, $;.... &xet of a residual quantizer is the collection

of all equivalent cells.
An equivalent quantizer mapping Q°: R"— A is defined by

Q°(x") = ¥%e if and only if x” & S5 (3.16)

For 1 <j*<N°, where x’e R",S%. e P and yj. €A". The equivalent quantizer's map (¥ is
constrained to produce the same representation of the source that the sequence of restdual
quantizer mappings {0°;0 < p < P-1} does. That is, the output of the equivalent quantizer
1s required to satisfy

P-1
Q= X Q) (3.17)
pr_‘
The average distortion of the equivalent quantizer is
D(x"x") = E{d[x" Q"(x"1}, (3.18)
= ¥ Is% d[x".Q(x")] dF(x°), (3.19)

and expresses the distortion of the RQ in terms of the known source distrnibution F(x°).
Because (3.17) constrains the equivalent quantizer and residuval quantizer to produce the
same representation of the source's output, the average distortions of the two quantizers
are equal, that is
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p-1
B{ACQ N =B X, ¥ Q") } ) (3.20)
P=0
By (3.19) and (3.20) the distertion of the residual quantizer may be expressed as
P-1
B S Q) )= ) s%e d[x",Q°(x")] dF(x") (3.21)
p=0 jfer

Which is much simpler and more amenable to analysis than Equation (3.9).

3.4 Necessary Conditions for the Optimality of Residual
Quantizers

Because the explicit representation of an arbitrary partition of R" can be very
complicated, the difficult problem of describing the cells S5 in (3.21) confront us. We
circumvent this difficulty by attacking the optimization problem in the same manner that
led to the development of the GLA design method (4,22]. "That is, we first investigate in
Section 3.4.1 the problem of optimizing scalar residual quantizers for the special case of
mean squared error. The results of the scalar problem motivate an approach. which we
use in Section 3.4.2 to determine conditions necessary for the optimality of vecror

residual quantizer, which hold for a broad class of distortion measures.

3.4.1 Necessary Conditions for Minimum Mean Squared Error of
Scalar Residual Quantizers

Let x° be a continuously varying random variable described by the probability
distribution function F on Rn with corresponding density function <" = F". Choosing
squared error d (x°, x?) = (x° - x°Y as the distortion measure, the design problem of scalar
residual quantizer optimization can be stated as follows:

Choose the codebooks {4”, 47,..., Ap-1} and partitions {P".P',...,P""} that minimizc the
mean squared error

D (¢ x° = E{(x*s")*} (3.22)
E{[x-F(x)} (3.23)
P-1
=e{[X’- T QN [}’ (3.24)
p=0
=E{(x%} (3.23)

Equation (3.25) follows from (.3.1) and (3.5), and expresses that minimum mean squarcd
error requires minimurn mean squared total residual error.
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Optimum Quanta

Assuming that the stage wise partitions {P° P .. P™'} are fined. we seck (he
stagewise code books /4 4 ! A" that minimize (3.25). Fixed stagewise parlitions
imply that the equivalent partition /7 is also fixed. Optimization of /4" 4 (LA ora
fixed {P°.P',....P""} corresponds to optimization of A® for a fixed /™, where the ¥y, €
A° are responsible as sums of code vectors selected from P code books consisting of N*;
0 < p < P-1 code vectors. The set of all such A that corresponds to a fixed P and W™ 0 <
p < P-1 forms the class of allowed equivalent codebooks. We seck a codebook A within
this class that minimizes the expected distortion thus, optimization of the equivalent
codebook. 4° within the class of allowed single stage tode books for a fixed /*,
corresponds to optimization of {4° A4 ' .. A"for a fixed [P"P' .. .P™"\. Since the
construction of each y%c e AS is given explicitly by Equation {3.13), we choose an
optimal A% within this class by choosing the best stagewise quanta used to form the y%,
A’

It is useful in the following derivation to define a set of functions that identify the p"
component quantum that is used to construct each (i)™ equivalent quantum. Functions
that fulfill this role are y° S—J for 0 < p £ P-1 which are defined as

() =" if and only if j%¢®/ ', ... ;") (3.26)

The maps yo are component-wise inverse mappings of the function @, and allow us to
express the (7)™ equivalent quantum as

P-1
Yie = XY (3.27)
p=0
Using Equations (3.16), (3.19), and (3.27) we express the mean squared error of the
scalar residual quantizer as

P-1
D2 x9) =5 5l xD ¥ mio)? o) d X (3.28)
ifef p=0

To determine the best stagewise quanta, we minimize (3.28) with respect to the (k") &
{1.2,..., NP} quantum of the pth e {0,1,...,P-1} stage by setting the partial derivative with
respect to yu, equal to zero, i.e.

P-1
813 ol £ Je(xY ¥ i o) dx? 1=0 (3.20)
i‘ef p=0
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p-! p-1
s Js D Y i 3034y O, ¥ el x4 X" =0 (3.30)
= P=0 p=0

The partial derivative in (3.30) is evaluated as

p-) 1ifj° € Hip
a/0 ykp(z Y ynijey) = 0 otherwise (3.31}
p=0

where Hip= i :¥°(%)= ¥} That is, H, is the subset, of all indexes in ./* corresponding to
eguivalent quanta that contain yx, in their construction. Using (3.31) we write (3.30) as

Pl
> .[ Sejc( XO'Z Y Yp(je)) fuo(x% d x°= 0. (3.32)
je eH, kp p:O

To make explicit the fact that all equivalent quanta yic with I &€ Hj, have yy, in their
construction, we let

P-1 P-1
Z Yy = Z Y ey + Yip (3.33)
p=0 p=0
pt=0
Substituting (3.33) into (3.32) we obtain
p-1
Zf e ) ¥ P65 vip) B dx'=0. (3.34)
jc eH, kp p‘—“O
which we solve for yf
P-1
Sieap Jst (0 Ty rew?) K d e (3.35)
vl = p=0.
Yt ets | € £,90% d x°
P-1
Z Y0 (3.36)
p=0

p!=
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In Equation (3.35) the expression differs from the construction of the (i“)"' cquivalent
quantum in that the p® node of the (j°)" path through the tree is removed. It is important
to note that since p € {0,1, .... P - 1}, the removed node is not necessarily at the cnd of the
path through the tree and hence does not correspond to a pruning. We interpret Eqguution
(3.36) as the (j9)™ path with one node removed and the two remaining portions of the path
reconnected or "grafted" back together. For each possible path y°, through the tree
structure, we denote the corresponding pth grafted path or pth graited branch by the
superscript p=0,l....,P-1 as

p-1
Y= )y P for 1< ¢ < N° (3.37)
p=0

p!=P
In terms of the grafted branches, (3.35) becomes

D eHy j (2% yie) £ d X (3.38)

W =

Zje EHkp .[SEjE fxo(xo) d xﬁ

Equation (3.38) is a key expression. It is similar in form to the centroid expression. which
is a necessary condition for the optimality of the quanta of single-stage l.loyd-Max
quantizers,

Optimum Partitions

Assuming that the codebooks {A°, A'...., A"'} are fixed. We seck the equivalent
partition P* that minimizes (3.25). The fixed stagewise codebooks imply that the
equivalent codebook A® is also fixed. Once we determine an optimal P¢ for the fixed A°,
we determine a sequence of stagewise partitions {P°, P',...., PP't from the class of
allowed stagewise partitions. The allowed class of stagewise partitions consists of
collections of P partitions with N” :0< p < P-l cells in each partition. Since / and the
derived {PO, P'...., p! }. By definition, partition R the same way. optimization of P* for a
fixed A° corresponds to optimization of {P%, P',..., P*"'} fora fixed {A”, A'..... A”'}.

We make the reasonable assumption that an optimum equivalent partition P’= /S/,
SZ,.... 8¥,} consists of a collection of connected, cells. That is each equivalent cell is a
finite or semi-infinite interval of R, which we denote? by 5= (¥ x**). The partition
P* may be described by the N**! points. { x%.x%), ..., x°x° }. Without loss of generalily,
we assume that the one-to-one function ¢ : {J° x J' x ... x J”') — J® and the equivalent
partitions are labeled such that the following ordering property is satished

Xeo < }'cl < yez<. < chc-I < yeNe < xeNc (3_39)

Where x°¢- - infinity and x°\® = infinity

[OF)
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For j° = 1.2, ..., N° where the P-tuple ke K. Ky vary over all members of the
Cartesian product set f2xJ' x ... x P'} and the (P ~1)-tuples (', & ..... K1) vary over
all members of the Cartesian product set (7' x Px ... xJPY. The qubsct of all x" € R
such that Equatlon (3.46) holds for each j° _] € ./° defines the oplrmd! cquivalence class ;"
where all x” & S0 map as Q"(x) = yJ and also Q‘(r) = y“j in accorduance with the
optimal partlttonmg rule Equation (3.42). In words, Equation (3.46} identilics S, us the
subset of R that is Voronot w11h respect to the terminating nodes of all paths in A"+ A
‘+...+A"'} which contains y;” in their construction.

uf + el 4 23N0T 4210{08 4 )y

Ju

¢ (3 < < € < < <
Yy ¥2 ¥y Y4 ¥s ¥Ye Y7 ¥
Figure 3.1: Example of an unentangled tree of a three stage, two quanta per stage scalar
residual quantizer.

VT WY WiW WY %
Figure 3.2 Example of a partially entangled tree of a three stage, two quanta per stage
scalar residual quantizer.

Figures 3.1 and 3.2 represent three stages, two quanta per stage scalar residual
quantizer by their tree structures. Each level of the trees (except, the root nodes which
represent the origins) represcnts a particular stage of the residual quantizers. The value of
the nodes gives either an intermediate or final quantizer level constructed by the
decoders. In particular, Figure 3.3 represents an unentangled (ree, while Figure 3.4
represents an entangled tree. The degree of entanglement affects the form of the
stagewise equivalence classes S, For example, in Figures 3.5 and 3.6 the nodes 01 the
ﬁrst layer have been labeled with the corresponding quanta of the first code book A=t
V). } Equation (3.65) expresses that for optimal stagewise encoding, the equn’aleme
classes {S" 1, 8%3 Jof the partition P° must be the union of all equn. alent quantlzcr Voronot
cells that correspond to the terminating nodes of the sub-trees of y ; and 3" respectively
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Figure 3.3: The equivalence class S, (indicated by thick lines) and &, (indicated by thin
lines) in an unentangled tree.

S

Figure 3.4: The equivalence class S, (indicated by thick lines) and & (indicated by thin
lines) in an entangled tree.

Comparing the unentangled tree of Figure 3.3 and the entangled tree of Figure 3.4 we see
a fundamental difference in the construction of the equivalence classes /S, §”>/ for the
two different trees. The equivalence class 5", in Figure 3.3 is a connected interval of R
and may be distinguished from the equivalence class S, by a single boundary point;
while the equivalence class 5", in Figure 3.4 is a union of three disjoint intervals. An
encoder of greater complexity is required to distinguish the equivalence classes of
entangled trees than the encoders of unentangled trees. We proceed to determine the

optimal equivalence classes S/ for the remaining stages.

Figure 3.5: The translations of the sub-trees of {A"+ A" + A%} 1o form the smaller tree |
AT +AD

Figure 3.6: The tree { A7 + A%}
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When the residual x' is formed by the difference x' = x* 0°0%). The tree structure | .
%54+ .+ AP} is modified by subtracting the first component of each path of the tree to
produce the smaller tree structure {A" +4° +.. +A™'). The difference x' = x> Q%
causes shift or translation of each of the sub-trees corresponding to nodes in the first
layers of [ A O 474+ AP} Each of the translated sub-trees superimposes to form the
smaller tree {4’ +4% +..+AP'}. Where the root node of the smaller tree occurs at the
origin of the residual. To determine the optimal partition P'of the residual x' we assume
that x° has been optimally mapped by 0° and we fix yj' to determine Sjl. That is, we write

P-1 P-1
dix®, Q°6")+ vy + ¥y ) Sdx® Q) +L Y 1p) (3.47)
p=2 p=0

Forj" = 1,2, ..., N', where the (P - )-tuple {kl,kl....,k"" } varies over all members in the
Cartesian product-set {J' x F x ... x 1) and likewise for the (P- 2)-tuple Lk
Assuming that d(x,y) is translation or position invariant in the sense that dfx.y) = d(x-z. v-
z) for any x,y, z € R. we subtract Q°(x°) from every term in (3.47) to obtain

P-1 p-}
di- Q) ¥ + Ty 1) Sd(x°- 0°60), Ty i) (3.48)
p=2 p=0

Substituting x'=x"- Q(xo) into (3.48), we get

Pl Pl
die’, yi' + Xy k) A, Ty p) (3.49)
p=2 p=0

the subset of all x' & R that satisfy (3.48) defines each equivalence class Sjl ;1< <N
where all x' & Sj' map as o' (x’) = yjl and all corresponding x'=x!+ Q"(x“) map as
Qe(xo) =y;* in accordance with the optimal partitioning rule (3.42). Similar to the resuilt
for P° (3.49) identifies S}" as the subset of R that is Voronoi with respect to the
terminating nodes of all paths in the smaller tree Al ® A2 @ ... @ 47" ) that contains
y;' in their construction.

In general, this procedure can be repeated to determine £ ={ Sjl 1 <PPENMY for0: <p<
P-1 by identifying all x” such that

P-1 P-1
i, P+ Ly ) SAT LY k) (3.50)
p=p+l p=p

holds true for each i* € I, where (k° KPU k™! varies over all members in {J" X My
LX) and likewise for & kP 2 ... K1), The optimal equivalence class S is the
subset of R that is closest (in the sense of d(x. y) = (x-y)) to the terminating nodes of all
paths of the tree e A4 o.. e "'y, which contain y;” in their construction.

L2
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3.4.2 Necessary Conditions for Minimum Distortion of Vector Residual

Quantizers

We give vector generalizations of the scalar conditions necessary for the optimality of
scalar residual quantizers. We also generalize the results of Section 3.4.1 to distortion
measures more general than simple menu squared error. The class of distortion functions
considered in tins section arc assumed to be nonnegative real-valued functions that satisty
the following requirements:

1. For any X, ¥, z € R", d(x, ¥) is translation or position invariant in the sense thal dfx.
y)=dfx -y, y-z).

2. For any fixed x € R", d(x, v) is a convex function of y. that is for y;.y» € R". & e (0.
1), d(x, Ay + (1-A)y2 ) €Ad(x, vy ) + (1-A)(x. y2). If the inequality is steict then dx,
) is strictly convex in y.

3. For any fixed x, if y(k) a= (yi(k), y2(k),....,yu(k)}} —w as k—w (that is. yi(k)
diverges for some i), then d(x, y(k)) oo also.
Properties (1) and (2) are key assumptions, property (3) is a technical condition imposed
to avoid pathological cases . Assumption {1) is a necessary constraint resulting trom the
residual structure imposed on the vector quantizer. All distortion measures that depend on
the difference (x - y) satisfy (1). since df{(x-z}-(3-z)]=d(x-y).
For the general class of distortion measures determined by these assumptions.,
we proceed to derive necessary conditions for the optimality of RQ code vectors in R"
and necessary conditions for the optimality of stagewise partitions of R" for cach of the
residual quantizer stages.
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4. Analysis and Design

Digital images and video signals exhibit iarge temiporai correlations that can be exploiied
in a compression algorithm to bring down the bandwidth requitements. There certiin
compression algorithms reported in literature for this purpose. One such classical
algorithm is differential pulse code Modulation (DPCM). The basic idea behind DPCM
scheme is to predict value of a current input pixel based on neighboring pixel values
using certain prediction coefficients. The difference between predicted value und actual
value of the pixcls emerge as differential or Residual image, which is much less
correlated than original image. The Residual image is then coded and sent. The schematic
diagram of the DPCM coder/decoder is shown in fig 4.1.aand 4.1.b.

> Reconstructed *
B Xm Pixel Z € Entropy Chanuel

o Code

Predictor

Fig.4.1.a. DPCM CODER
Origingl

Chanuel
Pixel ‘m . m Entropy
—Xm—{>§ | Quantizer code

A
-——7—{—“1——- Predictor .—i Z

|

Fig.4.1.b. Differential pulse code Modulation DECODER

The Fig 4.2.a and 4.2.b shows the original cameraman image and Residual or Differential
image. The differential image exhibits variance in the range of 42 as apposed to 433 for
original Cameraman image. This illustrates that DPCM has becen very effective in
reducing spread of pixel values by at most 10:1 ratio. This reduction is very helpful m
providing compression. Due to its simple structure DPCM has made its place in the
standard algorithms like JPEG [14] for still image coding, H.261 [15] for videophones
and videoconference communications, and MPEG [16] for interactive media applications.
However performance of DPCM has certain drawbacks, which prevent its uses in certain
circumstances. The two main drawbacks are channel error semsitivity and poor rate
distortion performance at low bit rates [17].
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4.2.(b). The prediction error/ differential image.
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4.2(c). Gray-level histogram of the original Cameraman image with variance 433.05.
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4.2(d). Histogram of the Prediction emrors with variance 43.33.
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Another approach that generalizes DPCM is to code prediction Residual image using
Vector Quantization (VQ). Generally, there are several arguments in support of V(Q for
image and video coding. Shannon rate-distortion theorem indicates that VQ always
perform better than conventional vector Quantization for the simple reason that
Quantization block of samples, as one unit is a general case of quantizing individual
samples in isolation. The DPCM structure that involves VQ as its Quantization moduie is
referred to as predictive Vector Quantization (PVQ) proposed in [18]. It was stated that
although PVQ structure is simple and well understood, its design is problematic duc to
feed back loop invelved and standard method often fail to produce optimal or even good
predictors and quantizers. The design of vector quantizer in a feed back loop is in need of
representative training set of prediction error image. However the representative training
set has dependence on both predictor and quantizer, The predictor and quantizer have to
be optimized jointly with respect to each other in order to come up with a rcason able
prediction error image suited for training quantizer.

Two simple approaches for PVQ design were introduced earlier by Cuperman and
Gresho [19]. The first approach referred as open loop solves the vector quantizer design
problem by assuming no feedback, and operates directly on original source vectors. An
improvement was suggested by using second approach called closed-loop design. In this
case, an tterative design is employed for updating the training set and quantizer given a
fixed predictor. Later on, closed-loop design algorithm was modified further modified by
Chang and Gray [20], where both vector predictor and vector quantizer are jointly
optimized. The joint design algorithm provides an improvement over the previously
stated designs however; such design approaches exhibit significant stability problems
especially at low bit rates. The stability of closed-loop destgn is analyzed and a modified
design with the name of asymptotic closed-loop (ACL) [21] starts as an open loop and
then tries to simulate closed loop behavior over a long run.

Vector Quantization (VQ) used in PVQ is a powerful technique for data compression of
speech, image, and video signals. Vector Quantization takes advantage of lincar or
nonlinear correlations that exists among the vector components. Therefore larger the
vector size is used grater the compression rate can be achieved. However an issue of
recognized :mportance for large block implementation of VQ is that size of codebook
associated with associated with VQ grows exponentially as a product of Vector
dimension an bit rate. With an increase in code book size comes an overwhelming
increase in search complexity. To overcome the complexity barrier, many researches
have suggested imposing certain constraints on the VQ codebook design. The reliel in
search complexity was obtained by replacing VQ with multistage VQ referred to as
residual vector Quantization. The argument is that multistage VQ can be designed
sequentially and its stage codebooks are smaller in size and thus require less scarch
complexity. Researches also considered reducing further the search complexity by
applying additional structural constraints on multistage VQ, and proposed multistage VQ
with stage code books comprised of lattice VQ’s [22] and reflected RRVQ [23]. Our
focus in the thesis is the utilization of RRVQ.

A reflected RVQ (RRVQ) is a multistage structure with binary stage codebooks. The
encoder and decoder of RRVQ perform reflecting and folding operations on residual
vectors between stages. This reflecting operation forces a certain symmetry on the
resultant codebooks, which in turn makes the sequential search of stage codebook
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optimal. The sequential search ability of RRVQ makes it an ideal candidate lor large
block VQ implementations. Recently an entropy-constrained RRVQ (EC-RRVQ) design
was introduced [24).

In order to extract linear and most of the non-linear correlations among image source, we
suggest the use of large-block RRVQ with the current PVQ structure. The purpose of
large block RRVQ 1s to take advantage of hnear/monlinear correlations present among the
block of pixels and the predictive structure with the feedback loop to exploit the
remaining intra-block dependencies. Our goal in this thesis is to stmulate the behavior of
RRVQ@ in a feedback loop that exploits correlation in a given tmage source in order to
produce high compression ratios with lower complexity. A new design algorithm {or
RRVQ) in a oredictive environment has been proposed in this thesis, which is referred to
as Predictive Reflected Residual Vector Quantization (PRRVQ). The rest of the chapier
includes sections for the design parts of the technique.

4.1.Reflected Residual Vector Quantization:(RRVQ)

RRVQ is a Special form of RVQ in which only two code vectors are allowed in one
stage. A p-stage residual quantizer consist of a finite sequence of P vector quantizers
{(C®, p™); 1 < p < P}. We index the code vectors of pth-stage as {¥Po. y"1, ¥'2..... ¥'nyl
and voronoi cells of the pth-stage as {S%, SPi, SP,..... SPw.a}. The code vectors
comprising the codebook C? and the cells comprising the partition P? are indexed with the
subscript j° . The quantized representation &' of the input source vector x' is formed by
the sum of the selected stage code vectors.

P
DR (1)
p=1

For adopting a jointly optimized approach, an RVQ is represented with an cquilent
quantizer, referred to as direct sum quantizer (C°, P¥). The elements of C® are the clements
of the set of all possible sums of stage code vectors. That is C° =C +C? +. . +C" .C* can
be interpreted as the terminating node of a path through tree structure, which is associated
with the Residual vector quantizer mentioned earlier, cortesponding to the direct sum
quantizer. A tree structure of three stages two code vectors/ stage RVQ is illustrated in
Fig 1. The root node the tree represents x'. The leaf nodes represent the set C° of the
direct sum code vectors. The intermediate node represents the partial sums of the direct
sum code vectors and branches represent stage code vectors. If two code vectors {y"y,
y") }are allowed as in RRVQ) in a given stage, then the Voronoi boundary is a plane of
equal distortion between two code vectors.
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Fig. 4.3. Three-stage binary RVQ tree structure.

Voronoi boundary can be specified by midway point m” between the two given code
vectors for that particular stage p as

mP = ¥5( yPo+ y™1) (#4.2)

The normal vector n° is defined to be the line joining two code vectors v%, y"; The
equation of the plane through the midway point m” perpendicular to the n" is

n’.m? 2P =0 (4.3)

Where 2 is the any point in the plane. In order for this hyper-plane to specify also the
boundary between adjacent children of the two code vectors. We reflect the input vectors
of the pth-stage 1o one side of the hyper plane boundary, and by convention, we refiect ail
xPr which belongs to voronoi cell S to second voronoi cell SP. After reflection we subtract
yPo from reflected input vector forming a reflected residual vector. Then the residual
vectors that represent the next stage code vectors will lie in the reflected residual space. 1f
we are to unreflect all the reflected stage codebooks, the resulting direct sum codebook

has the desired symmetry properties.
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Fig. 4.4.2. Gaussian source coded with a binary 8-stage, two-dimensional quantizer.
(a) Equivalent code vector constellation of RVQ.

Fig 4.4. Gaussian source coded with a binary 8-stage, two-dimensional quantizer.
(b) Code vector constellation of Ref-RVQ.
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To illustrate the structure of Ref-RVQ codebook, Fig 4.4.(a} shows the code vector
constellation for (8-stages, 2 code vector/stape) two-dimensional RVQ designed for
Gaussian source. Similarly Fig 4.4.(b) Shows the code vector consteilation (8-stages. 2
code vector/stage) two-dimensional Ref-RVQ designed for Gaussian source. All ihe
direct sum code vectors that involve the first code vector of the first RVQ stage in thew
construction are represented as dots. Ou the other hand. asterisks are used for the direct
sum code vectors constructed with second code vector of the first stage RVQ. Fig 4.2.{a)
indicates se-vere code vector diffusion for RVQ, where as Ref-RVQ (Fig 4.2.(b}) shows
no diffusion and hyper plane boundaries are evident. The presence of Voronot cefls with
hyper-plane boundaries in Ref-RVQ codebook makes the sequential single path optimal.

4.2.Entropyv Constrained Reflected RVO (EC-RRVQ)

For Entropy constrained design algorithm, the distortion trade of squared error with code
word rate. In case of residual VQ (RVQ), we will have the Lagrangian

3, =E[dx',C)] + 3 L(C) (4.4)

Where L (C°) is the length associated with a direct sumy code-vector. For the case of
developing an entropy-constrained design for the Ref-RVQ, we have binary stages 1.e.. 2
code-vectors/stage. This will form the Voronoi region boundary between the two code
vectors as plane. For an EC-Ref-RVQ, we need to work with the plane of equat
Lagrangian as opposed to the plane of equal distortion used in fixed-rate Rel~RVQ
design. We define a plane of equal Lagrangian as

kP - ¥R |2 + AL(yP) C™'.CP7,...CY)
= -y I+ AL LLCY 45)

We restate the above Equation as the more familiar normal plane equation n.x" =d as

(¥% - ¥°1) ly"olf” - lly"alf®
xP =
lyPo-y" il 20y -Y2ull

+ ALY e CY Ly e e
(4.6)

2jly0 -yl
The shortest distance from y°; to the plane will be given by
Id] - n.ypl (47)

Thus the new midpoint in case of entropy-constrained Ref-RVQ (EC-Ref-RVQ) will be
given by
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m” =y + [ly%o. y*ill
n
2

AL(yR CPF O, CY - Ly P L
+ (4.8)
2tyPo-yPl

By having a look at Equation.(4.8) one notice that unlike tixed-rate Ref-RVQ the
midpoint for a given stage will not be equidistant from the two codevectors, but will be
offset by an amount dependent on the difference of lengths between the two. The
midpoint will move in the direction of the larger length code vector because of the third
term 1n the Equation. (4.8).

An important complexity-reducing feature of EC-Ref-RVQ is its potential 1o use stage-
conditional entropy tables of relatively sizes, where conditioning is performed on
previous stages. With the use of smaller Markov model order x . a large reduction in

entropy-tables storage can be obtained. The length for a direct sum code vector 1s given
by

L(C%) = L(C% + L(C'{CY+.. +L(CP C*' P2 ...CY (4.9)
For a given Markov model order x the above Equation. can be approximated as

L(C%) = L(C" + L(C' |CY+.. +L(CP| C™' €72 ...C7™) (4.10)
Where P-m >>0

4.3. ASYMPTOTIC CLOSED-LOOP DESIGN

The asymptotic closed-loop design was originally proposed for video coding. In this
section we will adopt ACL design for incorporating reflected vesidual vector
Quantization in a PVQ structure. The encoding and decoding operation for PRRVQ is
essentially same as being used in earlier PVQ implementations. However, the design of
RRVQ stage codebooks in a feedback loop needs attention. The design of stage
codebooks under ACL approach can be best explained by first introducing some
mathematical notations.

Given a set of source vectors, X:{X,} oz, the training set of prediction errors at an
iteration i-1 is generated by

e, = x, — Pred[x"V0.1], n=1,2,3.....N (4.11)
The quantizers at iteration i — 1, are denoted by Q). Q.. Qi"p .. where for example
the Q"'p notation represents pth stage quantizer at the i - 1th iteration.. Training set of
prediction errors is generated for the next iteration i as .

Tiy = { e™, }Nn=1 )

Where Cmn =Xp— Pred[xin_|], and reconstruction vectors are produced as
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5. Implementation

Implementation basically consists of three modules all the three modules work
independently but has an impact on ather module.
Modules are

I. Blocking code

2. Prediction code

3. Encoder/Decoder
First of all a training set is created using sample image in Matlab. The set is then
converted into blocks of different sizes depending on the requirements.
The blocked training set is then handed over to the prediction module a code writfen i
matlab. This module is also used to reverse the process at the end of cycle.
The blocked predicted data in the form of training set is given to Encoder/Decoder pair.
This Module quantizes the data.

S.1.Blocking Code

It is a program written in whose only purpose is to convert the input into blocks. The
data is converted into blocks in order to utilize block prediction instead of pixel
prediction. The code also unblocks the data after its quantization. The same code and
process is applied again to reverse the blocking data into an unblocked image
structure.

The main portion of the blocking code is given below.

blocks per col = rows/blockheight;

blocks_per row = cols/blockwidth;

num_cols = blocks_per_row*blockwidth;
num_rows = blocks_per_col*blockheight;
num_blocks = blocks_per_col*blocks per_row;
num_pixels = rows*cols;

vector_length = blockheight*blockwidth;

/* allocate memory for the raw image and the block image */
if (!(raster_image = (DATA *) calloc(num_pixels. sizeof(DATA))) ||
I(blocked image = (DATA **) calloc(num_blocks, sizeofl(DATA *)))) {
fprintf(stderr,"%s: %s\n",programname,NOMEMORY);
exit{10);
}
/* allocate memory for the block image elements */
for(i=0; i<num_blocks; i++) {
if (!(blocked_imagefi] = (DATA *) calloc(vector_length,sizeof(DATA)))) |
fprintf(stderr,"%s: %s\n" programname NOMEMORYY;
exit(11);
}
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}

/* read contents of inputfile into raster_image array */
clearerr(inputfile);
if (fread(raster_image,sizeof(DATA),num_pixels,inputtile)!=num_pixels ||
teof(inputfile} || ferror(inputfile) ) {
fprintf(stderr,"%os: %s: %s\n",programname,inputname NOREAD);
exit(12); '
H

/* create the block vectors and write them to the output file */
for(i=0; i<num_blocks; i++) {
for(j=0; j<vector_length; j++) {
k = (1%blocks_per_row)*blockwidth + (j%blockwidth) +
{ (ifblocks_per_row)*blockheight + (j/blockwidth) ) * cols;
blocked_image[i][1] = raster_image[k];
¥
if (fwrite(blocked_imageli], sizeoffDATA), vector_length. outputfile)
I= vector_length) {
fprintf{stderr,"%s: Yos: %s\n" ,programname,ontputname NOWRITE),
exit(13);

1
i

}
5.2. Prediction Code

Prediction code is the block of code written in matlab and is used to create an initial
prediction based training set or a prediction based sample image. The prediction may be
one two or three dimensional where increasing dimension result in increase in
performance. Prediction is block based instead of pixel. The predicted training sct is
provided to Encoder/Decoder for quantization.

size=6144*512;
fid=fopen('blk_training set.512'.'rb");
fidl1=fopen('al.512",'wb");
fid2=fopen('a2.512','wb;

input=fread(fid,] 1 size],'uchar’;
input=double{input);

R11=zeros(8.8);
R 12=zcros(8,8);

R21=zeros(8.8);
R22=zeros(8,8);

R10=zeros(8,8);
R20=zeros(8,8Y;
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RR(1:8.1:8)=R10(:.2);
RR(9:16,1:8)=R20(:.2);

inverse=inv(RL);
A=inverse*RR

fori=1:8

fwrite(fidl,A(1:8,i),'float’); % check this
fwrite(fid2,A{9:16,1), float’);

end

felose(fid);

felose(fidl);

fclose(fid2);

5.3.Encoder/Decoder

Encoder/Decoder is based on the vector quantization technique called Entropy
constrained Reflected Residual Predictive vector Quantization. The module first time
takes the input in the form of predictive training set as open loop. Then afterward work is
done asymptotically and prediction is done similar to the closed loop i.e. prediction
module is embedded in the Encoder/Decoder module and this module creates input for
the next phase or cycle of Encoder/Decoder.

The Encoder/Decoder functionality is achieved using a set of functions.

5.3.1. parse command line()

The function parse command takes input from user on command line and extract
information training set name, code book sequence, no of vectors per stage ctc and make
available this information for rest of the program.

parse_command_line( arge, argv, ts_file, nvps_file, cbk_file);

5.3.2. get nvps()

The function gets number of the vectors per stage of the Encoder and Decoder as provided by uscr.

get _nvps{nvps_file);

5.3.3. get _ts()

The function is used to get training set from disk as specified by the user. Fuction uses file handling
techniques to read the file and get training set.
get ts(ts file);
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5.3.4. allocate memorv()

The Function is dynamically used to allocate memeory for the storage of training ser and other temperary
results during the Encoder/Decoder functionallity.
allocate_memory();

5.3.5. get_cbks():

The Function get_cbk is used to get previously created codebooks so that code vectors can be used for
decoding.

get_cbks{cbk_file);

5.3.6. mwrite cbks();

The function mwrite_cbks() is to write codebooks after each Encoding stage so that these can be used for
next stages.

mwrite_cbks(ts_file,cbk_file,0);

5.3.7. read or write tables()

The Function read_or_write_tables(} is used to

read _or_write_tables(();

5.3.8. rvq_entropy encode()

The Function rvq_entrapy_encode() is used to simulate the functionality of the Encoder based on EC-
RRVQ.

rvq_entropy_encode(in_tambda.start _index);

5.3.9. minimize lagrangian()

The function minimize_lagrangian() is used to minimize the Lagrangian.

minimize_lagrangian(l,ts_file,index)

A
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5.3.10. read or write mid{index)

The function vead_or_write_mid(index) is used to read midpoints of previous stage or is used 10 wrile
midpoint of current stage so that they can be utilized at later stages.

read_or_write_mid(index)

5.3.11. rvq entropy decode(}

This function entropy decodes the image.

rvq_entropy decode()

5.3.12. rvg entropy decode3(}

This function is used to Encode and then decode an image using the results ar codebook of training set.
rvg_entropy_decode3()

5.3.13. Encoding portion

The main portion of the module is Encoder and Decoder. The code for Encoder is as
follows

Initialize tppsizes ans disps arrays"/
for(i=0;i<MAXNUMSTAGES:++i) disps | [i]=disps2{i]=tppsizes|{i|=tppsizes2{i]=0;

/* Determine mid_point displacement for each stage*/
tmid_size=0;
for(n=0;n<min{order,num_primed_stages);n++){
for(i=1§=03<n;j++) i*=nvps[j};
tmid_size+= (i*vs);
mid_disps[n]=tmid_size;
}
for(k=order:k<num_primed_stages;k++){
for(i=1,I=k-order;1<=k;H-+) i*=nvps]l];
tmid_size+= (i*vs);
mid_dispsfk]=tmid_size;

}

/* Determine length displacement for each stage*/
tratio_size=0;
for(n=0;n<min(order,num_primed_stages):n++){
for(i=1,j=0j<mj++) i*=nvps[j];
tratio_size+= (i*1),
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ratio_disps[n]=tratio_size;

for(k=order;k<num_primed_stages;k++){
for(i=1,1=k-arder;l<=k:H+) i*=nvpsil];
tratio_size+= (i*1);
ratio_disps[k}=tratio_size;

}

Jexd2sDararmine last stage flag displacemenr****&*+/
tlast_stage flag_size=0;
for(n=0:n<min(order,num_primed_stages);n++){
for(i=1,j=0:j<mj++) i*=nvps{j];
tlast_stage flag size+=(i*1});
last_stage fiag_disps[n]=tlast_stage flag size;

for(k=order;k<num_primed_stages;k++}{
for(i=1,I=k-order;t<=l;}++) i*=nvpsfl};
tlast_stage flag size+=(i*1);
last_stage flag disps[k]=tlast_stage flag size;
}

=0
f*Determine size of tppt and tpp2 arrays®/
for(tpp)_size=~0,i=1,j=0,k=0:k<min(order,num_primed_stages);++k){
i*=nvps[k]ippsizes L[k]=i;j+=i;disps1[k]=};
Yrk*
tppl_size+=j;
for(k=order;k<num primed_stages;++k){
for(i=11=k-order;|<=k;++1} i*=nvps[l};
tppsizes | [k}=istpp|_size+=i:dispsi[k]=tpp!_size;
A

if{(order>0)&&(order<num_primed_stages-1)){
for(tpp2 size=0,k=order+1;k<num_primed_stages;++k){
for(i=1,1=k-order;I<k;++1) i*=nvps[l];
tppsizes2[k-11=itpp2 size+=i:disps2[k-1]=tpp2_size;
| Fad $4
Y/ife/

/*Allocate memory to hold old probabilities while determining new ones*/
tppl= (float *)calloc(sizeof{float)tppl_size),
if{tpp1==0){
perror("Cannot allocate memory for probabilities: ");
exit(-1);
 ¥adtidd

/* Allocate memory to hold old probabilities while determining new ones*/
ttpp1= (float *)calloc(sizeoR float),tppl_size);
if{ttpp 1==0H
. perror{"Cannot allocate memory for probabilities: ");
exit(-1);

}

(W e}
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if{(order>0)& & (order<(num_primed_stages-1)))4
tpp2= (float *)calloc(sizeof{float)tpp2_size);
if{tpp2==0){
perror("Cannot allocate memory for probabilities: ),
exit(-1);
Hrast i}
a1l

/*Initialize the tppl and tpp2 arrays*/
for(i=0;i<tppl_size:++i) {*(tpp!+i)=0.0;*(ttpp1+i)=0.0;}
if{(order>0)&&(order<(num_prired_stages-1)))

for(i=0;i<tpp2_size;++i) *(tpp2+i)}=0.0;

F*Store old prcbabilities*/
for(i=0;i<tpp)_size;++i) *(ttppl+iy=*(ppl+i);

*Compute conditional probabilities*/
if((order>0)&&(order<{num_primed_stages- I )}
for(i=order+ 1 i<num_primed_stages;++i}{
for(k=0;k<nvps|i]; +tk)
for(7=0;j<tppsizes2[i-1];++)){
if(*(pp2-+disps2[i-2}+)==0.0)
*(pp) +disps1[i-1]+j+Hppsizes2{i-1]*k)=0.0;
else

*(pp t+disps H[i- 1]+ +ippsizes2[i-1]*k)/=*(pp2 +disps2[i-2]+)):

JA
YA
V/¥ifY/

far(i=0; i<num_ts_vecs; i++)
flag{il=200;

for{i=0; i<num_ts_vecs; i++}{

[*¥*initialize* ¥ ¥4/
vrsfiJ=num_primed_stages-1;

[*Initialize es*/
es={;

/*nitialize causal residual vector to be source vector.*/
char_ptr = ts_buf+ i*vs;

/*nitialize index buffers */
for(j=0;j<(MAXNPATHS*MAXNVPS),+j}{
*vitj)=0;
H(er)=0;
*(pi+j)=0.0;
2ad 4

[*nitialize the sp buffer*/

for(i=0;j<(num_primed_stages*MAXNPATHS):++j) *(sp+1)=0.0;

N
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/*Clear the spaths buffer*/
for(j=0;j<num_primed_stages*MAXNPATHS: ++j} *(spaths+1)=0.

for(k=0;k<vs;k++) fveclk]= (floaty*char_pir++;

diable(i,0,&zero.&one fvec, | ,cb{0],nvps[0).ci,vi,pi,lagrangian.distortion, lambda.& zero.& zero, &zero):

for{m=0;m<min{npaths[0).nvps[01);+m) {
*(tei+m)=*(ci+m);
*tvi+tm)=*(vi+m);
*(sptm)=*(pi+m);
*(spaths+m)=*(citm);

Hrmt/

iflvrs{i}=0)}{
if(*pit=0.0)
dt3+=-log((double)*pi)log(2.0);
H*ib*/

*for(m=0;m<nin{npaths[0},nvps[0});++m)
subvecs{fvec,cb[O+(*(tci+tm))*vs,fbuftm*vs);*/

[*Initialize n*/
n=nvps[0];

/*Encode through primed stages.*/
for{stage=1;stage<=vrsfi};stage++}{

/*Compare with each code vecior.*/

dtable(i,stage.dispsi-+stage-1,tppsizes] +stage-1,fvec,min(npaths{stage-
1],n).cb{stage].nvps[stage).ci,vi,pilagrangian distortion,Jambda,mid_disps+stage-1.ratio_disps? stage-
), Jast_stage flag dispst+stage-1);

*Update n*/
in<MAXNPATHS) n*=nvps(stage];

/*Keep the best npaths*/

for(m=0;m<min(npaths[stage].n};, +m}{
*(tci+stage *MAXNPATHS+m)=*(citm);
*(tvitstage *MAXNPATHS +m)=*(vi+m);
*(sptstage*MAXNPATHS +m)=*(pi+m),
Y rm/

(1= 0.0)¢

/¥%*+% here | make the change to determine the last stage ****/

if{stage==0) {if{*(last_stage_flagy=1) vrs{i}=stage:}
else if{stage<=order}{
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for(ti=1,12=0 k=0:k<stage:++k){
2+=((int)*(tci+stage)) *ti;
t1 *=nvps[k];

if(*(last_stage_flag+last_stage_flag_disps[stage-1]+12+11*0)==1) vrsji]=stage:

}
else{
for(tl=1,t2~0k=stage-order;k<stage: +k){
2+=((int)*{tci+stage))*t1;
t1*=pvps[k];

if(*(last_stage_flag+last_stage_flag_disps[stage-1]+2+t1*0y==1} vrs[i]=stage;
)
,t#ttlttt*#*#tt*#*tit**titt*********i***********************I

)\
]
if{l1= 0.0 && stage==vrs[i]}{

j¥*%** here | make the change to determine the last stage ****/

if(stage==0) {if{vrs[i]==stage) *(last_stage_flag)=1;}
else if{stage<=order){
for(t1=1,12=0,k=0;k<stage; ++k){
t2+=((in0)*(tci+stage))*tl;
ti*=nvps[k];

if(vrs[i]==stage) *(last_stage flag+last_stage flag_disps[stage-1]+2+t1*0)=1;
elsef
for(t1=1,t2=0 k=stage-order;k<stage;++k}{

t2-+=({int)*(tci+stage))*tl;
t1*=nvps{k];

}
iflves[i]==stage) *(last_stage flag+last_stage flag disps[stage-1j+H2+11*0)=1;
}

I*******t******t*#**it!t#t*itttttt*****tt#t*ttt*************l

if(stage==vrs[i[}{
if{*pi!=0.0) di3+=-log({double)*pi)/log(2.0);
[Adt idd

es=stage;
if(staget=vrsfiN{
/*Find the best M-paths by tracing back the RVQ structure*/

for(m=0;m<min{npaths{stage],n);++m}{
*(spaths+stage* MAXNPATHS+m)=*(tci+stage*MAXNPATHS+m);
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trace[0][m]=*(tvi+stage*MAXNPATHS+m);
for(j=0,k=stage-1 k>=0;--k){
*(spathstk*MAXNPATHS+m)=*(tcitk*MAXNPATHS+trace(j[{mi);
trace[}+1 JIm]=*(tvi+k*MAXNPATHS+trace[j][m});
++j;
R
}i*me/

Yallads

VHstage*/

FINE:;
/*Calculate average distortion as we encode.*/
new_cum_dist += *distortion;

/*Find best path by tracing back the RVQ structure*/

*P_tuple +i*num_stages+vrs[i])=*(tci+vis[i]*MAXNPATHS);

tec[ves{i]l{ ¥(tei+vrs[i*  MAXNPATHS)+=1;

n=0;

trace[n][0]=*(tvi+es*MAXNPATHS):

for(stage=vrs{i]-1;stage>=0;--stage}{
best_index=*(fci+stage*MAXNPAT] IS+trace[n][0]);
trace[n+1][0]=*(tvirstage* MAXNPATHS+trace[n}{0]);
*(P_tupieti*num_stages+stage)=hest_index; ’
teefstagelfbest_index]+=1;
++n:

}/*stage*/
/* Compute the probabilities of all paths ¥/

for(inc=0,t1=1,£2=0,j=0;j<min(order,vrs{i]+1);++{)}{
t2-+=*(P_tuple+i*num_stages+j)*t1;
*(tppl+incH2y+=unit; {1*=nvps[j];inc+=t1;
1Tk
for(k=orderk<=vrs[i];++k){
for(t1=1,2=t3=0,I=k-order;l<=k; ++1{
t2+=*(P_tuple+i*num_stages+i)*tl;
t1*=nvps[l};13+=tl;
HYAd bl
*{tpp 1 +incH2)+=unit;inc+=tl
kS

if((order>0)&8 (order<vrs[i])}{
far(inc=0 k=order+1 k<{vrs[i}+1); ++k}{
for(t1=1,12=13=0,I=k-order;|<k;++1){
2+=*(P_tupie+i*num_stages+1)*t1;
t1*=nvps[Il;t3+=tl;
[ Yad )
*(tpp2-+inc 12 H=unit;inc+=11;
HAd &)
Halta
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Fig 6.1. Rate-distortion performance of EC-RRVQ and EC-RVQ with 32 stages for test
image LENA at m=1. The vector size is 8 x 8.
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Fig. 6.2. Rate-distortion performance of EC-RRVQ with 32 stages for the test image
LENA at increasing values of m. The vector size is 8 x 8.

With increasing value of m performance increases but becomes static at a certain bit rate
where all the curves meet each other. Due to less high frequencies image like LENA can
be better coded by technique.
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Fig. 6.5. Image LENA coded using EC-RRVQ at a bit rate of 0.177 bpp with PSNR of
28.15 dB of dimension 8 x 8 and m=1.
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6.1.2. Blocks of size 16 x 16

For the 16 x 16 vector dimension, the training set was composed of 350,000 vectors. The
same work as in the previous subsection is done with vectors of size 16 x 10. For the
Markov model order experiment, the peak bit rate was 0.25 bpp mcaning 64 fixed rate
stages were designed. Fig. 6 shows that for rates between

0.1 and 0.2 bpp, there exits a difference of approximately 0.5 dB on average between EC-
RRVQ with m=0 and m=1. Also, for the range of rates between 0.1 and 0.2. the
difference between EC-RRVQ with m=1 and m=2 is 0.2 dB. In contrast, for rates less
than 0.1 bpp, all curves provide similar performance.

A comparison is made between EC-RRVQ and EC-RVQ for the same set of data and
dimension of 16 x 16 for m=1. It can be seen from Fig. 7 that for rates grater than 0.12
bpp, the gap between the EC-RRVQ and the EC-RVQ curves is about 0.6 dB on average
while for rates less than 0.12 bpp, the two curves will join. For subjective comparison,
Fip. 8 and 9 are provided. Fig 8 shows the test image LENA coded using EC-RVQ at a
bit rate of 0.215 bpp with PSNR of 28.39 dB of dimension 16 x 16 and m=1. Fig 9 shows
the test image LENA coded using EC-RRVQ at a bit rate of 0.201 bpp with PSNR of 29
dB of dimension 16 x 16 and m=1.

A comparison is made between EC-RRVQ and CEC-RVQ for the same set of data and
vector dimension of 16 x 16. It can be seen from figure 10 that CEC-RV(Q coded image is
blocky in nature. The Reason is the fact that CEC-RVQ with 64 residual stages, for the
simple fact that it was in need of more than 32 multipaths and a very large training set of
data. The EC-RRVQ coded BARBARA image provides no structural Artifacts and image
is intact.
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Both the curves are coincided at lower bit rates but at higher bite rates EC-RRVQ
outperforms EC-RVQ.
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Fig. 6.8. Image LENA coded using EC-RVQ at a bit rate of 0.215 bpp with PSNR of
28.39 dB of dimension 16 x 16 and m=1.
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Fig 6.10. Image Barbara coded using 20- path CEC-RVQ at a bit rate of 0.175 bpp with
PSNR of 21.17 dB of dimension 16 x 16.
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6.1.3. Blocks of size 32 x 32

Here we report on the experiments conducted for designing 32 x 32 dimension EC-
RRVQ design. Since the expense of design effort increases linearly with increasing
residual stages, the EC-RRVQ design for very large dimension VQ was only feasible EC-
RRVQ structure. However we are not able to design CEC-RVQ for 32 x 32 dimension
with 128 residual stages, for the simple fact that it was not in need of more than 32
multipaths and a very large training set data. For the 32 x 32 dimension EC-RRVQ
system design the training data of 400,000 32 x 32 vectors seems adequate for the reason
that it is stage by stage optimization with no inter-stage dependencies. This characteristic
is very desirable otherwise one may never design very large dimensional VQ duc'to
insufficient training set data.

Shown in figures 6.11, 6.12, 6.13, 6.14 is the subjective quality comparison of
BARBARA image coded at various bit rates using 32 x 32 dimension EC-RRVQ wit h
128 binary stages. The coding results describe the fact that BARBARA image coded at
very low bit rates like 0.02 and 0.01 is still recognizable.
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Subjective quality comparison for 32 x 32 dimensions EC-RRVQ
Fig 6.11. Shows the original BARBARA image.
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Subjective quality comparison for 32 x 32 dimensions EC-RRVQ
Fig .6.13. Shows the coded BARBARA image at 0.02 bpp with PSNR 20.86 dB using

EC-RRVQ of dimensions 32 x 32.
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Subjective quality comparison for 32 x 32 dimensions EC-RRVQ
Fig 6.14. Shows the coded BARBARA image at 0.0} bpp with PSNR 19.50 dB using
EC-RRVQ of dimensions 32 x 32.
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6.2. SIMULATION RESULTS for PEC-RRVOQ

In this section we compare the performance of PRRVQ with unpredictive RRVQ with an
entropy-constraint. The training set for an 8 x 8 vector dimension contained no more than
500,000 vectors and 32 fixed rate RRVQ stages were designed giving 0.05 bpp as a peak
bit rate. First experiments were performed for obtaining satisfactory performance as a
function of Markov modei order. Fig. 15 shows that for rate below 0.1 bpp there seems to
be no difference among m=0, m=1 and m=2 Entropy-constrained-RRVQ (EC-RRVQ)
curves. However, third markov model order m=3 for EC-RRVQ has an edge of about
0.05 dB for rates above 0.15 bpp. Also, the Fig. 15 provides comparison between
Predictive Entropy-constrained RRVQ (PEC-RRVQ) with unpredictive EC-RRVQ. We
observe that for rates between 0.05 and 0.15, the first-order PEC-RRVQ provides only 2
slight improvement of about 0.2 dB difference with that of EC-RRVQ with m=3. The
second-order PEC-RRVQ emerges as the most successful predictive gquantizer design.
The Fig. 6.7 shows that the second-order PEC-RRVQ outperforms both first-order PEC-
RRVQ and unpredictive EC-RRVQ. Specially, in the middle region for rates between
0.05 and 0.2 bpp, the second-order PEC-RRVQ (PRRVQ-2) provides about 0.05 dB
improvements.

The Fig. 6.16 reveals the visual quality obtained for BARBARA image coded at
dimension 8 x 8 with Predictive EC-RRVQ and 14-path conditional EC-RVQ employing
32 binary stages. The conditional entropy-constrained residual vector quantization (CEC-
RVQ) was earlier proposed in {12].

The CEC-RVQ makes use of conditioning model to extract linear and non-linear
correlations present in an image and has been considered as one of the most successfui
means of providing improved rate-distortion performance at low bit-rates. The
comparison of rate-distortion results does not show a big difference. While examining the
coded images we observe that high-frequency texture present on the tablecloth and on
trouser of BARBARA image is well preserved in conditional EC-RVQ coding. However,
the low-frequency portion of the image like the books and face is adequately
reconstructed by PEC-RRVQ coding. This is due to the fact that high-frequency texture is
highly non-linear in nature and cannot be predicted by a linear prediction model as
employed in PEC-RRVQ. Therefore, to code images with texture, we need to employ
non-predictive EC-RRVQ but at a higher dimension to get effective coding with
minimum complexity.
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Fig 6.17. Image Barbara coded using PEC-RRVQ at a bit rate of 0.282 bpp with PSNR of
24,61 dB, of dimension 8 x 8.
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Abstract - Image communications is primarily constrained
due to its Iarge bandwidth requirenicuts. Therefore, researchers
worked on various compression algorithm to achieve low bit
rate. It was stated that images and video sequences are highly-
correlated sources and their correlation should be exploited in a
given compression algorithm Differential pulse code modulation
(DPCM ) has emerged as a mean of exploiting the correlation
among the image pixels, Later on, DPCM was improved upon
by predictive vector gquantization (PVQ). PYQ employs block
by block prediction and results in satisfactory performance at
low bit rates. However, its design is complicated and recently
an asymptotic closed-loop (ACL) was proposed to stabilize the
design. In this paper, we attempted to replace the VQ with
a multistage VQ structure in a hope to further reduce the
stress on the closed-loop design. The multistage V@ structure
that we eniployed is commonly relerred to as reflected residual
vector quantization (RRVQ), RRV@ works by impesing an
additional symmetry constraint on the multistage codebook
design. RRYQ has been quite popular where large bleck-length
vector quantizations is needed due to their very low codebock
search capability. Our proposed design goal in replacing VQ
with RRVQ in a PVQ design is our wish to use large block
length like 16 x 16 or 32X 32 size vectors to grab any linear/non-
Jinear correlation among the vector components. The way to
incorporate RRVQ within PVQ structure has been proposed
and simulation results are discussed,

I. INTRODUCTION

Compression of digital images and video signals to reduce
their storage and transmission bandwidth requirements is
of great interest in the implementation of communication
systems. Low bit rates, particularly in the range of 16-
32 kbitsfs, are gaining an importance due to the Internet
and wircless mobile communications. Digital images and
video signals exhibit large temporal correlations that can
be exploited in a compression algorithm to bring down
the bandwidth requirements. There are several compression
algorithms reported in the literature for this purpose. Onc
such classical algorithm is differential pulse code modulation
(DPCM). The basic idea behind DPCM scheme is o predict
the value of a current input pixel based on neighboring pixel
values, using certain prediciion cocfficients. The difference
between the predicied value and the actual vahue of the pixels
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emerge as a differential or residual image, which is much less
correlated than the original image. The differential image is
then entropy coded and seat. The schematic diagram of the
DPCM coder/decoder is shown in Fig. 1, The Fig. 2 displays
the original Cameraman image and its differential tmage.
The differential image exhibits variance in the range of 42 as
oppose 10 433 for original Cameraman image. This illustrates
that DPCM has been very effective in reducing spread of
the pixel values by almost 10:1 ratio. This reduction is very
helpful in providing compression. Due to its simple structure
DPCM has made its place in the standard algorithms like
JPEG {1] for still image coding, H.261 [2] for videophones
and video-conference communications, and MPEG [3] for
interactive media applications. However, the performance of
DPCM has several drawbacks which prevent its uses in some
circumstances, The two main drawbacks are the channel error
seasitivity and poor rate-distortion performance at low bit
rates{4].

vt bl Py

— s -~ -

s

(b}

Fig. 1. Basic diffcrential pulse coded modulation (a) encoder, (b) decader

Another approach that generalizes DPCM is to code
prediction residual image using Vector quantization (VQ).
Generally, there are several arguments in support of VQ
for image and video coding. Shannon rate-distortion
theorem indicates that VQ will always perform better
than conventional quantization for the simple reason that
quantizing block of samples as one unit is a general case
of quantizing individual samples in isolation. The DPCM
structure that involves VQ as its quantization module
is referred to as predictive vector quantization (PVQ).
Detailed analysis of PVQ structure is proposed in [5).
It was staied in [5] that although the PVQ structure is
simple and well-understood, its design is problematic due
to feed-loop involved, and standard methods often fail to
produce optimal or cven good prediclors and quantizers.
The design of vector quantizer in a feedback loop is in need
of a representative training set of prediction error image.




{d)
L. (8) Original Cameraman image. {b) The prediction ervor/ differentiut

t. (¢) Gray-level histogram of the original image with variance 433.05.
istogram of the prediciion error with variance 43,33,

{c)

cver, the representative training set has dependence on
the predictor and the quaatizer. The predictor and the
tizer has to be optimized jointly with respect to each
: in order to come up with a reasonable prediction error
£ suited for training quantizers.
vo simple approaches for PYQ design were introduced
xr by Cuperman and Gersho {6]. The first approach
red to as open-loop solves the vector quantizer design
iem by assuming no feedback, and operates directly
riginal source vectors. An improvement was supgested
sing sccond approach called closed-foop design. In
case, an iterative design is employed for updating
raining set and the quantizer given a fixed prediclor.
“on, closed-loop design algorithm was further modified
hang and Gray [7), where both vector predictor and
r guuntizer are jointly optimized. The joint design
ithm provides an improvement over the previously
| designs however, such design approaches exhibits
icant stability problems especially at low bit rates.
stability of the closcd-loop desipn is asalyzed and a
fied design with the name of asymptotic closed-loop
) algorithm is proposed in [8). Specifically, the ACL
as an open-loop and then tries to simulate closed-loop
'iar aver a longer run.
stor quantization (VQ), used in PVY(Q, is a powerful
ique for data compression of speech, image, and video
s. Vector quantization takes advantage of-linear or non-
correlations that exist among the vector components.
fare larger the vector size used better compression can
hieved. However, an issue of recognized importance
rge block VQ impiementation is that the size of the
ook associsted with VQ grows exponentially as a
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function of the product of the vector dimension and bit rte
With increase in codebook size comes an overwhelming
increase in search complexity. To overcome the complexity
barrier, many researchers have sugpested imposing certain
structural constraints on the VQ code book design. The
relief in search complexity was obtained by replacing
VQ with a multistage VQ referred fo as residual vector
quantization (RVQ). The argument is that multistage VQ can
be designed sequentintly and its stage codebooks are smaller
in size thus requires less search complexity. Researchers
also considered reducing further the search complexity by
applying additional structural constrainis on the mullistage
VQ , and proposed Multiple-stage V(Q's with siage code
books comprised of Iattice VQ's [9] and reflected RVQ
(RRVQ) {10]. Qur focus in this paper is on the utilization
of RRVQ.

A reflected RVQ (RRVQ) is a multistage structure with
binary stage code books. The encoder and decoder of
RRVQ perform a refleciing operations on the residual
vectors between stages. This reflecting operation forces 2
certain symmetry on the resultant RRVQ codebook which
in turm makes the sequential search of stage codebook
optimal. The sequeatial search ability of RRVQ makes it
an idea! candidate for Jarge block VQ implementations,
Recently, an entropy-constrained RRVQ (EC-RRV(Q) design
was introduced and its simulation results are presented in
(11}

In order to extract lincar and most of the non-lincor
correlations among image source, we suggest the use of
larpe-block RRVQ with the current PYQ structure. The
perpose of large-block RRYQ is to take advantage of
linear/non-lingar correlations present among the block of
pixels and the predictive structure with the feed-back loop
to exploit the remaining intra-block dependencies, Our goal
in this paper is to simulate the behavior of RRVQ in a

" feedback loop that exploits correlation in a given image

source in order to produce high compression ratios with
lower complexity. A new design algorithm for RRVQ
in a predictive environment has been proposed in this
paper which is refcrred to as Predictive reflected residual
vector quantization (PRRVQ). The paper is organized
as follows. Section I describes refiected residual vector
quantization and its generalization to include entropy coding
is presented in Section IH. Predictive reflected residual
vector quantization (PRRVQ) design is proposed in Section
IV. Simulation results are discussed in Section V.

II. REFLECTED RVQ (REF-RV(Q)

A P-siage residual VQ consists of a finite sequence of F
vector quantizers {{CF,PF); 1 < p < P}. We index the
code vectors of prth-stage as {y],v%,y5,- -+, y%_1} and
Voronoi cells of pri-stage as {$5,5%,5%,-+- ,S%_1}. The
codevectors comprising the codebook CF amd the cells com-
prising the partiion PP are indexed with the subscript j7.
The quantized representation &' of the input source vector




b
7

!

)

z! is formed by the sum of the selected stage codevectors,

p o
=) vh M
p=1

For adopting a jointly optimized approach, an RVQ is
represented with an equivalent quantizer, referred to as
direct sum gquantizer (C¢,P¢). The elements of C* are the
clements of the sct of all possible sums of stage codevectors,
thatis, C* = C? + C* + .-+ CP. C® can be interpreted
as a lerminating node of a path through a trce structure,
which is associated with the residual quantizer mentioned
earlier, corresponding 1o the direct sum quantizer. A tree
structure of three stages, two codevectors/stage RVQ ' is
iltustrated in Fig.3. The root node of the tree represents
z!. The leaf nodes represents the set C¢ of the direct sum
codevectors. The intermediate nodes represent partial sums of
the direct sutn codevectors and the branches represent stage
codevectors.  If two codevectors {yf,y}} arc allowed in a

Fig. 3. Threc-stage binary RVQ tree siructure.

given stage, then the Voronoi boundary is a plane of cqual
distortion between two codevectors. This boundary can be
specified by a midway point m? between the two given
codevectors for that particular slage p as

1
m? = E(.US +y5) (2

The normal vector. nP, is defined to be the line joining
two codevectors 7, y5. The equation of the plane through
the midway peint mP perpendicular to nP is

nP mPzP = 3

where 2P is any point in the plane. In order for this hyper-
plane to specify also the boundary between adjacent children
of the two codevectors, we reflect the input vectors of the
pth-stage to one side of the hyper-plane boundary, and by
convention, we reflect all £P which belong to Voronoi cell 5%
to second Voronoi cell §%. After reflection, we subtract y5

g from the reflected input vector forming a reflected residual

vector. Then, residual vectors that represent the next stage
codevectors, will lie in the reflecred residual space. If we are
to unreflect all the reflected stage codebooks, the resulting
dircct sum codebook has the desired symmetry properties.
To illustrate the structure of Ref-RVQ codebook, Fig.11(a)
shows the codevector constellation for (8-stages, two code-
vectorsistage) two dimensional RVQ designed for Gaussian
source. Similarly, Fig.Il{b} shows lhe codevector constella-
tion for {8-stages, two codevectors/stage) two dimensional
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Fig. 4. Guussian sourcc coded with o hinary 8-stage, two-dimensional
quantizer. (3} Equivalent code vector consticilation of RVQ. (1) Cade vector
constellation of Ref-RVQ.

Ref-RVQ designed for Gaussian source. All the direct sum
codevectors that involve first codevector of first RVQ stage in
their construction are represented as dots. On the other hand,
asterisks are used for the direct sum codevectors construcied
with sccond codevector of first stage RVQ. Fig.11(a) indicates
severe codevector diffusion for RVQ, whereas the Ref-RVQQ
(Fig.1i(b)) shows no diffusion and hyper-plane boundasies
are evident. The presence of Voronoi cells with hyper-
plane boundaries in Ref-RVQ codebook makes the sequential
single-path search optimal.

I11. ENTROPY-CONSTRAINED REFLECTED RVQ
(EC-REF-RV(Q))
For entropy-constrained design algorithm, the distortion

trades off squared errar with the codeword rate. In case of
residual VQ (RYQ), we will have the Lagrangian

Jy = E[d(a',C%) + AL(CY), @

where L{C®) is the length associated with a direct sum code-
vector. For the case of developing an entropy-constrainec
design for the Ref-RVQ, we have binary stages i.e., 2 code-
vectors/stage, This will form the Voronoi region boundar)
between the two codevectors as plane. For an EC-Ref-RVQ
we neced to work with the plane of equal Lagrangian a:
opposed to the plane of equal distortion used in fixed-rat
Ref-RVQ design. We define a plane of equal Lagrangian a

l=? — yBlI? + AL(yicP 2, cP~2,--- . CY)
={lz? ~ y2lI? + AL(flcP 1, CP 2, C). 5

We restate the above Eq. as the more familiar normal plan
equation 2 - z¥ = d as

{¥h - ¥1)

o TS e
g - vill
———

n
Huolt” ~ Bl
2||lyg — il
S MEGRICP -+, CY ~ LORICP™, ')
2|y ~ vl




The shortcst distance from ¥ to the plane will be given by
(d] M

Thus the new midpoiat in case of entropy-constrained Ref-
RVQ (EC-Ref-RVQ) will be given by

liva ; yill n

‘ ,Cl) - L(yﬂcp-lv Tt
2Alye — vill
By having a look at Eq. (8) one notice that unlike fixed-
rate Ref-RVQ the midpoint for a given stage will not be
equidistant from the two codevectors, but will be offset by
an amount dependent on the difference of lengths between
the two. The midpoint will move in the direction of the larger
length code vector because of the third term in the Eq. (8).
An important complexity-reducing feature of EC-Ref-
RVQ is its potential 1o use stage-conditional entropy tables of
relatively sizes, where conditioning is performed on previous
“ stages. With the use of smaller Markov model order m. a
large reduction in entropy-tables storage can be obtained.
The length for a direct sum codevector is given by

L{c?) = L(Ca) + L(ClICO) PR L(CP[CP"I,CP—2’
€)- )

For a given Markov model order m the above Eq. can be
approximated as

}“ R
Py = L(C®) + LECYCD) +---+ L(CFICP-1,eP-2,
| -, 08, (10)

i where P —m >> 0.

IV. AsYMPTOTIC CLOSED-LOOP DESIGN

i The asympuotic closed-toop design was originally pro-
' posed for video coding. In this section we will adopt ACL
design for incorporating reflected residual vector quantization
in a PVQ structure. The encoding and decoding operation
for PRRVQ is essentially same as being used in earlter
'PVQ implementations. However, the design of RRVQ stage
codebooks in a feedback loop needs attention, The design of
{ stage codebooks under ACL approach can be best explained
by lirst introducing some mathematical notations.

| Given a set of source veetors, X : {2, }_,, the training
set of prediction errors at an iteration  — 1 is generated by

e =z, — Prediz’"}], n=1,2,3,---.N. (1)

‘The quantizers at iteration 4 — 1, are denoted by
QL 06, -+, Q%5 where for example the @5 notation
reprcsents Pth stage quantizer at the ¢ — Lth iteration.. Traia-
ing set of prcdlcuon errors is generated for the next iteration
ias, Ty = {e,, }N_, where, e,(i) = Tn— — Pred{zi _,], and
geconstrucuon vectors are produced as £}, = Pred['(') 1+
105700l + QYD () + -+ QI (el
n,

Having coliected the next iteration trammg vectors we

optimize a new set of quantizers, @y,Q%,--- ,Qp for the

P
—ﬂ-‘yl.

mP =yl +

A(L{yglcP, 9))

18}
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ith iteration, The optimized quantizers are then in turn used
1o generate the new sct of reconstruction vectars,

& = PredE )] +(QP (D) + Pl

+--+ Q5 (el (12)

The ACL employed here is in fact a repetition of three
basic steps, that is, first calculate €}, forall n = 1;2,--- , N,
then design the mge quantizers, and finally calculate & (’)
forall n =1,2,3,---, V.

Note that the stage quanlizers Qi Q-+, @b are used
to encode exactly the same prediciion error veclor used for
its design. Neglecting possible problems of local optima,
this is the best match far these vectors. We are thus assure
that the resulting reconstruction is improved, and this resulis
in better prediction for the next iteration. Subject o the
high rate assumption that smaller prediction errors lead to
smaller quantization errors, we obtain monotonic conver-
gence through out the process,

It is emphasized that the design is open-loop in nawse
due to the fact that prediction errors for all elements of
the sequence are calculated before guantization. At each
iteration, the reconstructed set, on which the prediction for
the next iteration will be based, is gencrated by applying the
optimized quantizers and predictor based on the previous
fixed set. Since the new reconstructed set will better ap-
proximate the original input sequence, the distortion at each
iteration is generally decreasing, and we expect the process
to converge. At convergence, further iterations do not modify
the training sct. The quantizer is hence assume to have
converged, i.e., Q_S-"H) = Q_(’.‘), where j = 1,2,3,-.-,P
which immediately ensures that the reconstruction sequence
is unchanged, :e :?:(“H) = 75 as well as the prediction
sequence Pred[.’z:n = Pred[;r(’-l)] The procedure is thus
apen-loop in nature, yet it asymptotically converges to the
closed loop performance,

Y. SIMULATION RESULTS

In (his section we compare the performance of PRRVQ
with unpredictive RRVQ with an entropy-constraint. The
training set for an 8 x 8 vector dimension contained no more
than 500,000 vectors and 32 fixed raie RRV(Q) stages were
designed giving 0.05 bpp as a peak bit rate. First experiments
were performed for oblaining smisfactery performance as a
function of Markov model order. Fig. 7 shows that for rate
below 0.1 bpp there seems to be no difference among m = 0,
m = 1 and m = 2 Entropy-constrained-RRVQ (EC-RRVQ)
curves. However, third markov model order n = 3 for EC-
RRVQ has an edge of about 0.05 dB for rates above 0.15
bpp. Also, the Fig. 7 provides comparison between Predictive
Entropy-constrained RRVQ (PEC-RRVQ)) with unpredictive
EC-RRVQ. We observe that for rates between 0.05 and 0.15,
the first-order PEC-RRVQ provides only 2 slight improve-
ment of ahout 0.2 dB difference with that of EC-RRVQ
with m = 3. The second-order PEC-RRVQ emerges as the
most successful predictive quantizer design. The Fig. 7 shows




that the second-order PEC-RRVQ outperforms both first-
order PEC-RRVQ and unpredictive EC-RRVQ. Specially, in
the middle region for rates between 0.05 and 0.2 bpp, the
second-order PEC-RRVQ (PRRVQ-2) provides about 0.05

dB improvement.

Sequence of Vectors,

Nexd brerstion () « 1)

Fig. 5. Proposed asymptotic closed-loop (ACL) procedure for the design
of predictive EC-RRVQ (PEC-RRVQ).

The Fig. 6 reveals the visual quality obtained for BAR-

BARA image coded at dimension 8 x 8 with predictive

f%‘g EC-RRVQ arnd 14-path conditional EC-RVQ cmpioyin_g 32

binary stages. The conditional entropy-consirained residual

vector quantizadion (CLEC-RVQ) was carlicr proposed in [12].

The CEC-RVQ makes use of conditioning model to extract

linear and non-linear correlations present in an image and

has been considered as one of the most successful means

- of providing improved rae-distostion performance at low

bit-rates. The comparison of rate-distortion results does not

: show a big difference. While examining the coded images

we observe that high-frequency texture present on the table

cloth and on trouser of BARBARA image is well-preserved

in conditional EC-RVQ coding. However, the low-frequency

portion of the image like the books and face is adequately

reconstructed by PEC-RRVQ coding. This is due to the fact

that high-frequency texture is highly non-linear in nature

and can not be predicted by a linear prediction model as

! employed in PEC-RRVQ. Therefore, to code images with

texture, we need to ecmploy non-predictive EC-RRVQ but at

a higher dimension to get effective coding with minimum
compléxily.

P -

VI. CONCLUDING REMARKS

Predictive Reflected residual vector quantization (PRRVQ)

has been designed and compared with other well-known

,:,5 predictive algorithms. The strength of PRRVQ lies in its
i ability to use large vector sizes in a predictive loop and can be

i44

(b)
Image Barbora coded using (a) CEC-RVQ at a bit cate of (.28

bpp with PSNR of 24.54 dB (b) PEC-RRVQ at a bit rate of 0.282 bpp with,
PSNR of 24.61 dB, both of dimension 8 x 8.

Fig. 6.

designed with smooth convergence behavior. The fow side of
PRRVQ algorithm is its inability 1o represent well the images
with lot of texture or high-frequency contents.






