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Congestion Arbitration And Source Problem Prediction Using ANN In Wireless Networks Abstract

Abstract

Congestion is the problem which occurs when demand for a resource outstrips the
capacity. In wireless networks, congestion may occur through antenna, satellite link,
routers and switches which are shared by several sources. The congestion control
scheme described here employs a neural network to predict the state of congestion in
a wireless network over a prediction horizon. We propose using learning techniques
to predict the problems before they start impacting the performance of services
especially in wireless communication. In this thesis we focus on using a feed forward
neural network to predict severe congestion in a wireless network. We also use neural
networks to predict the source or sources responsible for the congestion, and we
design and apply a control method for limiting the rate of the offending sources so
that congestion can be avoided. This thesis introduces an adaptive neuro-control
strategy, adaptive neural swarming (ANS). A highly non-linear bioreactor benchmark
is used in the control simulation. Based on the neural predictor output, source rate
control signals are obtained by minimizing a cost function which represents the
cumulative differences between a set-point and the predicted output. An analytica]
procedure for the source rate control signal computations is given using gradient
functions of the neural network predictor by the use of wireless session protocol
(WSP), wireless transaction protocol{ WTP). Unlike the RED and usual TCP/IP flow

control, the proposed method is applied only to selected nodes and converges to the
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final rate faster. The described techniques set the stage for a new wave of wireless
network managers that are capable of preventing wireless networking problems

instead of repairing them.
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Chapter | Introduction

1. Introduction ‘
Neural Networks are originally developed from the inspiration of human brains. In

this chapter we will discuss the basics of neural network, its approaches, application

in the field and the overwork.

1.1. Neural Networks

Neural networks, more accurately called Artificial Neural Networks (ANN), are
computational models that consist of a number of simple processing units that
communicate by sending signals to each other over a large number of weighted
connections. They were originally developed from the inspiration.of human brains. In
human brains, a biological neuron collects signals from other neurons through a host
of fine structures called dendrites. The neuron sends out spikes of electrical activity
through a long, thin stand known as an axon, which splits into thousands of branches.
At the end of cach branch, a structure called a synapse converts the activity from the
axon into electrical effects that inhibit or excite activity in the connected neurons.
When a neuron receives excitatory input that is sufficiently large compared with its
inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs
by changing the effectiveness of the synapses so that the influence of one neuron on

another changes.

Like human brains, neural networks also consist of processing units (artificial
neurons) and connections (weights) between them. The processing units transport

incoming information on their outgoing connections to other units. The "electrical”
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information is simulated with specific values stored in those weights that make these

networks have the capacity to learn, memorize, and create relationships amongst data.

A very important feature of these networks is their adaptive nature where "learning by
example” replaces "programming” in solving problems. This feature renders these
computational models very appealing in application domains where one has little or
incomplete understanding of the problems to be solved, but where training data are

available

1.2. Approaches in Neural Network

There are many different types of neural networks, and they are being used in many
fields. And new uses for neural networks are devised daily by researchers. Some of the

most traditional applications include [1][2]:

Classification — To determine military operations from satellite photographs; to
distinguish among different types of radar returns (weather, birds, or aircraft); to

identify diseases of the heart from electrocardiograms.

Noise reduction — To recognize a number of patterns (voice, images, etc.) corrupted

by noise.

Prediction — To predict the value of a variable given historic values. Examples
include forecasting of various types of loads, market and stock forecasting, and

weather forecasting. The model built in this thesis falls into this category.

Congestion Arbitration And Source Problem Prediction Using ANN In Wircless Networks 2



Chapter | Introduction

1.3.  Applications

In the world of networking, more emphasis is being placed on speed, connectivity,
and reliability. When network problems occur, they often catastrophically break the
service for those enterprises or individuals that depend on the network connection.
Sometimes, such breaks of service are just annoying, but for companies and
commercial users they often mean lost revenues on the order of thousands, or even
millions, of dollars. Such breaks have become a significant problem in all forms of

electronic commerce.

A network congestion collapse occurs when the network is increasingly busy but littie
useful work is getting done. Congestion management features allow you to control
congestion by determining the order in which packets are transmitted out an interface
based on priorities assigned to those packets. Congestion management entails the
creation of queues, assignment of packets to those queues based on the packet’s
classification, and scheduling of the packets in a queue for transmission. The
congestion management QOS feature offers four types of queuing protocols, each of
which allows you to specify creation of a different number of queues, affording
greaier or lesser degrees of differentiation of traffic and the order in which that traffic
is transmitted. During periods with light traffic, that is, when no congestion exists,
packets are transmitted out the interface as soon as they arrive. During periods of
transmit congestion at the outgoing interface, packets arrive faster than the interface
can transmit them. If you use congestion management features, packets accumulating

at an interface are queued until the interface is free to transmit them; they are then

Congestion Arbitration And Source Problem Prediction Using ANN In Wircless Networks 3
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scheduled for transmission according to their assigned priority and the queuing
mechanism configured for the interface. The router determines the order of packet
transmission by controlling which packets are placed in which queue and how queues

are serviced with respect to each other.

1.4. Ourwork

It is important to avoid high packet loss rates in the internet. This problem is further
critical in the wireless communication because of the shared transmission medium,
dynamic topologies, different protocols (like WSP and WTP) and costly medium. The
bandwidth utilization in the wireless medium requires a good congestion control
mechanism. To address this difficulty, a system is needed to insure network
availability and efficiency by preventing such costly wireless network breakdowns.
The first step towards this end is to create a system with the intelligence to recognize,
as early as possible, carly signs of incoming network service difficulties. If the
problem can be recognized in advance, changing network parameters can possibly

circumvent the problem.

There are techniques of fancy queuing to avoid congestion but the major problem of
knowing about congestion in advance still remains unsolved. In this work we propose
a neural network based forecasting technique to estimate and forecast congestion state
in advance on the basis of input traffic from various sources arriving at the‘router [51.
We have used a feed forward neural network to forecast and then apply thé results

with the simulated traffic generated through network simulator (NS-2). The section-2
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describes about some background information on existing congestion management
techniques. The next section will describe design of an artificial neural network
(ANN) for congestion forecasting. Next in section-4 we will discuss the
implementation detail of our experimental setup. Then in section -5 we present the

results of our work, the conclusion and the references.

Congestion Arbitration And Source Problem Prediction Using ANN In Wireless Networks
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Analysis

This chapter focuses on the fundamentals of Neural Networks, the processing unit
and different functions like combinational, activation and objective function. Network
topologies and network learning in neural networks is of great importance, hence

dicussed later in the chapter.

2.1. Fundamentals of Neural Networks

Neural networks, sometimes referred to as connectionist models, are parallel-

distributed models that have several distinguishing features [3]:

e A set of processing units;

e An activation state for each unit, which is equivalent to the output of the unit;

o Connections between the units. Generally each connection is defined by a weight

wj that determines the effect that the signal of unit j has on unit &;

e A propagation rule, which determines the effective input of the unit from its
external inputs;

o An activation function, which determines the new level of activation based on the
.effective input and the current activation;

o Anexternal input (bias, offset) for each unit;

e A method for information gathering (learning rule);

s An environment within which the system can operate, provide input signals and, if

necessary, error signals.

Congestion Arbitration And Source Problem Prediction Using ANN In Wireless Networks 6
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2.2, Processing Unit

A processing unit (Figure 2-1), also called a neuron or node, performs a relatively

simple job; it reccives inputs from neighbors or external sources and uses them (o

compute an output signal that is propagated to other units.

X 0
[ “’ja I
_— J

;] - - S -

_ " ;( ,:) ga) >
. m
X "

" a;=Zw,.x.+6] Zj:g(aj)

=1

Figure 2-1 Processing unit

Within the neural systems there are three types of units:

1) Input units, which receive data from outside of the network;

2) Output units, which send data out of the network;

3) Hidden units, whose input and output signals remain within the network.

Each unit j can have one or more inputs xp, X7, X2, - Xn» but only one output z;. An

input to a unit is cither the data from outside of the network, or the output of another

unit, or its own output.

2.3. Combination Function

Each non-input unit in a neural network combines values that are fed into it via

synaptic connections from other units, producing a single value called net input. The

function that combines values is called the combination function, which is defined by

Congestion Arbitration And Source Problem Prediction Using ANN ln Wircless Networks
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a certain propagation rule. In most neural networks we assume .lhat each unit provides
an additive contribution to the input of the unit with which it is connected. The total
input to unit j is simply the weighted sum of the separate outputs from the connecte:d
units plus a threshold or bias term g:

aj=iw1m+6 (21)

i=l
The contribution for positive w;; is considered as an excitation and an inhibition for

negative wj;. We call units with the above propagation rule sigma uniis.

In some cases more complex rules for combining inputs are used. One of the

propagation rules known as sigma-pi has the following format [3]:

g=> wi] [x#+8 (2.2)

Lots of combination functions usually use a ubias" or "threshold" term in computing
the net input to the unit. For a linear output unit, a bias term is equivalent to an

intercept in a regression model. It is needed in much the same way as the constant

polynomial ‘1’ is required for approximation by polynomials.

2.4. Activation Function

Most units in neural network transform their net inputs by using a scalar-to-scalar
function called an activation function, yielding a value called the unit's activation.
Except possibly for output units, the activation value is fed to one or more other units.
Activation functions with a bounded range are often called squashing functions. Some

of the most commonly used activation functions are [4]:
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1) Identity function (Figure 2-1)
gx)=x (2.3)
It is obvious that the input units use the identity function. Sometimes a constant is

multiplied by the net input to form a linear function.

gix)

Figure 2-1 Identity function
2) Binary step function (Figure 2-2)
Also known as threshold function or Heaviside function. The output of this function is

limited to one of the two values:

(x) = 1 if{x=80 ) 24
g)=1, ifx<0) @24)

This kind of function is often used in single layer networks.

Figure 2-2 Binary step function

3) Sigmoid function (Figure 2-3)

1

— 2.5
l1+e

g(x)=
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This function is especially advantageous for use in neural networks trained by back-
propagation, because it is easy to differentiate, and thus can dramatically reduce the
computation burden for training. It applies to applications whose desired output values

are between 0 and 1.

Figure 2-3 Sigmoid function

4) Bipolar sigmoid function (Figure 2-4)

it 3

1_‘: (2.6)
l+e

gx)=

This function has similar properties with the sigmoid function. It works well for

applications that yield output values in the range of [-1,1].

) 1g(:&)

Figure 2-4 Bipolar sigmoid function

Activation functions for the hidden units are needed to introduce non-linearity into the
networks. The reason is that a composition of linear functions is again a linear

function. However, it is the non-linearity (i.e., the capability to represent nonlinear

10
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functions) that makes multi-layer networks so powerful. Almost any nonlinear
function does the job, although for back-propagation learning it must be differentiable
and it helps if the function is bounded (see Section 3.6). The sigmoid functions are the

most common choices [3].

For the output units, activation functions should be chosen to be suited to the
distribution of the target values. We have already seen that for binary {0,1] outputs, the
sigmoid function is an excellent choice. For continuous-valued targets with a bounded
range, the sigmoid functions are again useful, provided that either the outputs or the
targets to be scaled to the range of the output activation function. But if the target
values have no known bounded range, it is better to use an unbounded activation
function, most often the identity function (which amounts to no activation function). If

the target values are positive but have no known upper bound, an exponential output

activation function can be used {5].

2.5. Network topologies

The topology of a network is defined by the number of layers, the number of units per
layer, and the interconnection patterns between layers. They are generally divided into

two categories based on the pattern of connections:

2.5.1. Feed-forward networks

Fecd-forward networks (Figure 3-1), where the data flow from input units to output
units is strictly feed-forward. The data processing can extend over multiple layers of

units, but no feedback connections are present. That is, connections extending from

Congestion Arbitration And Source Problem Prediction Using ANN In Wircless Networks ¥



Chapter 2 ‘ ' Analysis

outputs of units to inputs of units in the same layer or previous layers are not

permitted. Feed-forward networks are the main focus of this thesis. Details will be

described in Chapter 3.

2.5.2. Recurrent networks

Recurrent networks (Figure 2-1), which contain feedback connections. Contrary to
feed-forward networks, the dynamical properties of the network are important. In
some cases, the activation values of the units undergo a relaxation process such that
the network will evolve to a stable state in which activation does not change
further. In other applications in which the dynamical behavior constitutes the
output of the network, the changes of the activation values of the output units are

significant.

70
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Input Layer Hidden Layer  Output Layer

Figure 2-1 Recurrent neural network
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2.6. Network Learning

The functionality of a neural network is determined by the combination of the
topology (number of layers, number of units per layer, and the interconnection pattern
between the layers) and the weights of the connections within the network. The
topology is usually held fixed, and the weights are determined by a certain training
algorithm. The process of adjusting the weights to make the network learn the
relationship between the inputs and targets is called learning, or training. Many
lcarning algorithms have been invented to help find an ;)plimum set of weights that
results in the solution of the problems. They can roughly be divided into two main

groups:
2.6.1. Supervised Learning

The network is trained by providing it with inputs and desired outputs (target
values). These input-output pairs are provided by an external teacher, or by the
system containing the network. The difference between the real outputs and the
desired outputs is used by the algorithm to adapt the weights in the network (Figure
2-1). It is often posed as a function approximation problem - given training data
consisting of pairs of input patterns x, and corresponding target 4, the goal is to find

a function f{x) that matches the desired response for each training input.
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Training Data

Input Desired output
target
Network error
in out
Weight Objective
changes Function

Training Algorithm
(optimization method)

Figure 2-1 Supervised learning model

2.6.2. Unsupervised Learning

With unsupervised learning, there is no feedback from the environment to indicate
if the outputs of the network are correct. The network must discovér features,
regulations, correlations, or categories in the input data automatically. In fact, for
most varieties of unsupervised learning, the targets are the same as inputs. In other
words, unsupervised learning usually performs the same task as an auto-associative

network, compressing the information from the inputs.

2.7. Objective Function

To train a network and measure how well it performs, an objective function (or cost
function) must be defined to provide an unambiguous numerical rating of system
performance. Selection of an objective function is very important because the function
represents the design goals and decides what training algorithm can be taken. To

develop an objective function that measures exactly what we want is not an easy task.
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A few basic functions are very commonly used. One of them is the sum of squares

error function,
E=-L S Sy @7
NP p=t 1=l

where p indexes the patterns in the training set, i indexes the output nodes, and f,; and
ypi are, respectively, the target and actual network output for the ith output unit on the

pth pattern. In real world applications, it may be necessary to complicate the function

with additional terms to control the complexity of the model
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Chapter 3 Design

3. Design

In design section we introduce the basic architecture of Feed Forward Neural
Network, its representation Capability and the network structure. Hidden Layers of
the network, Back-Propagation and Optimization Algorithms are the key parts of this

section.

3.1. Basic Architecture Of Feed Forward Neural Networks

A layered feed-forward network consists of a certain number of layers, and each layer
contains a certain number of units. There is an input layer, an output layer, and one or
more hidden layers between the input and the output layer. Each unit receives its
inputs directly from the previous layer (except for input units) and sends its output
directly to units in the next layer (except for output units). Unlike the Recurrent
network, which contains feedback information, there are no connections from any of
the units to the inputs of the previous layers nor to other units in the same layer, nor to
units more than one layer ahead. Every unit only acts as an input to the immediate next
layer. Obviously, this class of networks is easier to analyze theoretically than other

general topologies because their outputs can be represented with explicit functions of

the inputs and the weights.
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Input Layer Wi Hidden Layer ¥  Outputlayer

Figure 3-1 Feed-forward neural network

An example of a layered network with one hidden layer is shown in F igure 3-1. In this
network there are / inputs, m hidden units, and » output units. The output of the jth
hidden unit is obtained by first forrﬁing a weighted linear combination of the / input

values, then adding a bias,

a —Zw‘”x&w (3.1

i=1

where w'} is the weight from input / to hidden unit J in the first layer and wiy is the

bias for hidden unit j. If we are considering the bias term as being weights from an

extra input xo =1, (3.1) can be rewritten to the form of,

]
a =y wix (3.2)
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The activation of hidden unit j then can be obtained by transforming the linear sum

using an activation function g(x):

hi = g(@) (3.3)

The outputs of the network can be obtained by transforming the activation of the
hidden units using a second layer of processing units. For each output unit %, first we

get the linear combination of the output of the hidden units,

a =y wiPh +wy (3.4)

J=l

Again we can absorb the bias and rewrite the above equation to,

a=Yy wih (3.5)

7=0

Then applying the activation function g2(x) to (3.5) we can get the kth output

ye = g2(ax) (3.6)
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Combining (3.2), (3.3), (3.5) and (3.6) we get the complete representation of the

network as
m ) i)
yi=g2(0 wilg(X wix)) 3.7
=0 i=0

The network of Figure 3-1 is a network with one hidden layer. We can extend it to
have two or more hidden layers easily as long as we make the above transformation

further.

One thing we need to note is that the input units are very special units. They are
hypothetical units that produce outputs equal to their supposed inputs. No processing

is done by these input units.

3.2.  Representation Capability

The feed-forward networks provide a general framework for representing non-linear
functional mapping between a set of input variables and a set of output variables. The
representation capability of a network can be defined as the range of mappings it can

implement when the weights are varied. Theories [5] [6] (7] show that:

o Single-layer networks are capable of representing only linearly separable functions

or linearly separable decision domains.
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« Two hidden layered networks can represent an arbitrary decision boundary to
arbitrary accuracy with threshold activation functions and could approximate any

smooth mapping to any accuracy with sigmoid activation functions.

« One hidden layered network can approximate arbitrarily well any functional
continuous mapping from one finite-dimensional space to another, provided that

the number of hidden units is sufficiently large.

To be more precise, feed-forward networks with a single hidden layer and trained by
least-squares are statistically consistent estimators of arbitrary square-integral
regression functions if assumptions about samples, target noises, number of hidden
units, and other factors are all met. Feed-forward networks with a single hidden layer
using threshold or sigmoid activation functions are universally consistent estimators of

binary classifications under similar assumptions.

3.3, Network Structure Design

Though theoretically there exists a network that can simulate a problem to any
accuracy, there is no easy way to find it. To define an exact network architecture such
as how many hidden layers should be used, how many units should there be within a
hidden layer for a certain problem is always a painful job. Here we will give a brief

discussion about the issues to be considered when we design a network.
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3.4. Number of Hidden Layers

Because networks with two hidden layers can represent functions with any kind of
shapes, there is no theoretical reason to use networks with more than two hidden
layers. It has also been determined that for the vast majority of practical problems,
there is no reason lo usc more than one hidden layer. Problems that require two hidden
layers are only rarely encountered in practice. Even for problems requiring more than
one hidden layer theoretically, most of the time, using one hidden layer performs
much better than using two hidden layers in practice [1]. Training often slows
dramatically when more hidden layers are used. There are several reasons why we

should use as few layers as possible in practice:

e Most training algorithms for feed-forward network are gradient-based. The
additional layer through which errors must be back propagated makes the gradient
very unstable. The success of any gradient-directed optimization algorithm is
dependent on the degree to which the gradient remains unchanged as the

parameters vary.

¢ The number of local minima increases dramatically with more hidden layers. Most
of the gradient-based optimization algorithms can only find local minima, thus they

miss the global minima. Even though the training algorithm can find the global
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minima, there is a higher probability that after much time-consuming iteration, we

will find ourselves stuck in a local minimum and have to escape or start over.

Of course, it is possible that for a cerlain problem, using more hidden layers of just a
few units is better than using fewer hidden layers requiring to0 many units, especially
for networks that need to learn a function with discontinuities. In general, it is strongly
recommended that one hidden layer be the first choice for any practical feed-forward
network design. If using a single hidden layer with a large number of hidden units

does not perform well, then it may be worth trying a second hidden layer with fewer

processing units.

3.5. Number of Hidden Units

Another important issue in designing a network is how many units to place in each
layer. Using too few units can fail to detect the signals fully in a complicated data set,
leading to underfitting. Using too many units will increase the training time, perhaps
so much that it becomes impossible to train it adequately in a reasonable period of
time. A large number of hidden units might cause overfilting, in which case the
network has so much information processing capacity, that the limited amount of

information contained in the training set is not enough to train the network.

The best number of hidden units depends on many factors — the numbers of input and

output units, the number of training cases, the amount of noise in the targets, the

20
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complexity of the error function, the network architecture, and the training algorithm
(). ’
There are lots of “rules of thumb” for selecting the number of units in the hidden

layers [1] [5]:

e mel[l,n] - between the input layer size and output layer size

2(1 + . . .
m= W+ two third of the input layer size plus the output layer size

e m <2l-lessthan twice the input layer size

e m=+Jl-n-squared input layer size multiplied by output layer size
Those rules can only be taken as a rough reference when selecting a hidden layer size.
They do not reflect the facts well because they only consider the factor of the input
layer size and output layer size but ignore other important factors that we previously

mentioned.

In most situations, there is no easy way to determine the optimal number of hidden
units without training using different numbers of hidden units and estimating the
generalization error of ecach. The best approach to find the optimal number of hidden
units is trial and error. In practice, we can use either the forward selection or backward
selection to determine the hidden layer size. Forward selection starts with choosing an
appropriate criterion for evaluating the performance of the network. Then we select a
small number of hidden units, like two if it is difficult to guess how small it is; train
and test the network; record its performance. Next we slightly increase the number of

hidden units; train and test until the error is acceptably small, or no significant
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improvement is noted, whichever comes first. Backward selection, which is in contrast
with forward selection, starts with a large number of hidden units, and then decreases

the number gradually [1][8]. This process is time-consuming, but it works well.

3.6. Buack-Propagation

Back-propagation is the most commonly used method for training multi-layer feed-
forward networks. It can be applied to any feed-forward network with differentiable
activation functions. This technique was popularized by Rumelhart, Hinton and

Williams [9].

For most networks, the learning process is based on a suitable error function (Section
2.7), which is then minimized with respect to the weights and bias. If a network has
differential activation functions, then the activations of the output units become
differentiable functions of input variables, the weights and bias. If we also define a
differentiable error function of the network outputs such as the sum-of-square error
function, then the error function itself is a differentiable function of the weights.
Therefore, we can evaluate the derivative of the error with respect to weights, and
either using the popular gradient descent or other optimization methods can then use
these derivatives to find the weights that minimize the error function. The algorithm
for evaluating the derivative of the error function is known as back—proéagation,

because it propagates the errors backward through the network.
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3.7.  Error Function Derivative Calculation

We considers a general feed-forward network with arbitrary differentiable non-linear

activation functions and a differential error function.

From Section 3.1, we know that each unit j is obtained by first forming a weighted

sum of its inputs of the form,

ai= ZWJ:Z:' (3.8)

where z; is the activation of an unit, or input. We then apply the activation function

z = gla) 3.9

Note that one or more of the variables z; in (3.8) could be an input, in which case we
will denote it by x;. Similarly, the unit j in (3.9) could be an output unit, which we will

denote by yx.

The error function will be written as a sum, over all patterns in the training set, of an

error defined for each pattern separately,

E=Y E», E=E;W) (3.10)
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where p indexes the patterns, Y is the vector of outputs, and W is the vector of all

weights. E, can be expressed as a differentiable function of the output variable y;.

The goal is to find a way to evaluate the derivatives of the error functions £ with
respect to the weights and bias. Using (3.10) we can express these derivatives as sums
over the training set patterns of the derivatives for each pattern separately. Now we

will consider one pattern at a time.

For each pattern, with all the inputs, we can get the activations of all hidden and
output units in the network by successive application of (3.8) and (3.9). This process is
called forward propagation or forward pass. Once we have the activations of all the
outputs, together with the target values, we can get the full expression of the error

function E,.

Now consider the evaluation of the derivative of E, with respect to some weight wj; .

Applying the chain rule can get the partial derivatives

aEp — aEp 6a;' :5. aaj =577 (3] l)
Owi  Ow Own own

where we define

5= (3.12)
daj
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From equation (3.11) it is easy to see that the derivative can be obtained by
multiplying the value of 8 for the unit at the output end of the weight by the value of z

for the unit at the input end. Thus the task becomes to find the J; for each hidden and

output unit in the network.

For the output unit, J; is very straightforward,

&=—6—E—‘£=Qf—zﬂg'(ak) (3.13)

Oar Ok

For a hidden unit, J; is obtained indirectly. Hidden units can influence the error only

through their effects on the unit k to which they send output connections so

= 05 _ < 2E o1

aEp oar (3 1 5)
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For the second factor we know that if unit j connects directly to unit k then

daxf8aj = g'(ai)ww , otherwise it is zero. So we can get the following back-

propagation formula,

& = g'(@)) wudk (3.16)
k

which means that the values of J for a particular hidden unit can be obtained by
propagating the é's backwards from units later in the network, as shown in Figure 3-1.
Recursively applying the equation gets the &'s for all of the hidden units in a feed-

forward network, no matter how many layers it has.

O
Wi - Wi
® - 9:" ‘*J"*G_D&
& = g'(@) Y, wudk O
k

Figure 3-1 Backward propagation

3.8. Weight Adjustment with the Gradient Descent Method

Once we get the derivatives of the error function with respect to weights, we can use

them to update the weights so as 10 decrease the error. There are many varieties of

gradient-based optimization algorithms based on these derivatives. One of the

simplest of such algorithms is called gradient descent or steepesi descent. With this

26
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algorithm, the weights are updated in the direction in which the error E decreases most
rapidly, i.e., along negative gradient. The weight updating process begins with an
initial guess for weights (which might be chosen randomly), and then generates a

sequence of weights using the following formula,

AWt = - oF (3.17)

# oW

where # is a small positive number called the fearning rate, which is the step size we
need to take for the next step. Gradient descent only tells us- the direction we will
move to, but the step size or learning rate needs to be decided as well. Too low a
learning rate makes the network learn very slowly, while too high a learning rate will
lead to oscillation. One way to avoid oscillation for large # is to make the weight

change dependent on the past weight change by adding a momentum term,

AW = —n-gg +adw!) (3.18)
i

That is, the weight change is a combination of a step down the negative gradient, plus

a fraction a of the previous weight change, where 0 <a <1 and typically

0<a<09[6).

27
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The role of the learning rate and the momentum term are shown in Figure 3-1 [3].
When no momentum term is used, it typically takes a long time before the minimum is
reached with a low learning rate (a)., whereas for large learning rates the minimum

may be never reached because of oscillation (b). When adding a momentum term, the

minimum will be reached faster (c).

Figure 3-1 The descent vs. learning rate and momentum

There are two basic weight-update variations: batch learning and incremental learning.
With batch learning, the weights are updated over all the training data. It repeats the
following loop: a) Process all the training data; b) Update the weights. Each such loop
through the training set is called an epoch. While for incremental learning, the weights
are updated for each sample separately. It repeals the following loop: a) Process on¢

sample from the training data; b) Update the weights.

28
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3.9. Other Optimization Algorithms

Though the gradient descent optimization method used in the standard back-
propagation learning algorithm is widely used and proven very successful in many

applications, it does suffer two problems:

¢ The convergence tends to be extremely slow

e Convergence to the global minimum is not guaranteed

Many researchers [6][7][10][11][12] have devised improvements to the standard
gradient descent method such as dynamically modifying learning parameters or

adjusting the steepness of the sigmoid function.

In appropriate circumstances, other optimization methods may be better than the
gradient descent. Many converge much faster than gradient descent in certain
situations while others promise a higher probability of convergence to global minima
[6].

One of the most often recommended optimization methods to replace the gradient
descent is conjugate gradient descent [1][6]{7], which is a direction set minimization
method. Minimization along a direction d brings the function E to a place where its

gradient is perpendicular to d. Instead of following the gradient at every step, a set of

n directions is constructed which are all conjugate to each other, such that
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minimization along one of these directions does not spoil the minimization along one

of the earlier direction.

Gradient methods using second-derivatives (Hessian matrix), such as Newton's
method, can be very efficient under certain conditions [6]. Where first-order methods
use a local linear approximation of the error surface, second-order methods use a
quadratic approximation. Because such methods use all the first and second order
derivative information in exact form, local convergence properties are excellent.
Unfortunately, they are often impractical because explicit calculations of the full

Hessian matrix can be very expensive in large problems.

Some powerful, stochastic optimization methods such as simulated annealing [1][6]
and genetic algorithms [1][6], which can overcome the local minima, have also been

used successfully in a number of problems.
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4. Implementation

Data is being collected and processed after the analysis and design of neural network

by determining the types of variables and preliminary data.

4.1. Data Collection, Analysis and Processing

One of the most important components in the success of any neural network solution
is the data. The quality, availability, reliability, repeatability, and relevance of the data
used to develop and run the system is critical to its success. Even a primitive model
can perform well if the input data has been processed in such a way that it clearly
reveals the important information. On the other hand, even the best model cannot help
us much if the necessary input information is presented in a complex and confusing

way.
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Neural Network

Data
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Figure 4-1 Data processing

Data processing starts from the data collection and analysis, followed by pre-
processing and then feeds to the neural network. Finally, post-processing is needed to
transform the outputs of the network to the required outputs (Figure 4-1), if necessary.
This chapter discusses some of the most important considerations involved in

processing data for neural networks.

4.2. Types of Variables
Variables can be roughly divided into two categorics based on their properties | 1]]7):

4.2.1. Categorical Variables

Categorical variables do not have a natural ordering — they do not have relationships
like “greater than™ or “less than”. Some of them come from some input values that do

not have numerical values but have to transform to numerical values as input
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variables. For example, a variable called “color type”, which can take on the value
“red”, “green”, and “yellow” is a categorical variable. Sex is a categorical variable too.
Numerical data can also be categorical. Zip codes and telephone area codes are classic

examples.

Categorical variables can be presented to the networks with the 1-of-c g:ncoding
scheme, which has as many units as there are values that the variable can take on.
Exactly one of the units will be turned on according to the value of the variable, and
all the other units will be turned off. In the above “color type” example, it requires
three input variables, with the three colors represented by input values of (1,0,0),

(0,1,0) and (0,0,1).

Another way to encode categorical variables is to represent all the possible values 1o
one continuous input variable. For example, the “red”, »green”, and “yellow” could be
represented as 0.0, 0.5, and 1.0. The bad news for this method is that it imposes an
artificial ordering on the data that does not exist. But for variables with a large number

of categories, this can dramatically decrease the number of input units.

4.2.2. Ordinal Variables

Ordinal Variables have a natural ordering. Such data can be simply transformed
directly into corresponding values of a continuous variable, either with or without

scaling.
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4.3. Data Collection

The data collection plan typically consists of three tasks:

e Identifying the data requirement

The first thing to do when planning data collection is to decide what data we will
need to solve the problem. In general, it will be necessary to obtain the assistance of
some experts in the field. We need to know: a) What data are definitely relevant to the
problem; b) What data may be relevant; ¢} What data are collateral. Both relevant and

possibly relevant data should be considered as inputs to the application.

» Identifying data sources

The next step is to decide from where the data will be obtained. This will allow us
to make realistic estimates of the difficulty and expense of obtaining it. If the
application demands real time data, these estimates should include an allowance for
converting analogue data to digital form. In some cases, it may be desirable to obtain
data from a simulation of the real situation. This could be the case if the application is
intended to monitor conditions which have health, safety or significant cost
implications. Care must be taken to ensure that the simulation is accurate and

representative of the real case.
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e Determining the data quantity

It is important to make a reasonable estimation of how much data we will need to
'develop,the neural network properly. If too little data is collected, it may not reflect
the full range of properties that the network should be learning, and this will limit its
performance with unseen data. On the other hand, it is possible to introduce
unnecessary expense by collecting too much data. In general, the quantity ol data
required is governed by the number of training cases that will be needed to ensure the
network performs adequately. The intrinsic dimensionality of the data and the required
resolution are the main factors determining the number of training cases and,

therefore, the quantify of data required.

It is vital to assess correctly the quality of the data that will be presented to the neural
network. Often, the data will be less than perfect, and if the network is to perform
correctly then it needs to be trained with a greater quantity of data than would be the

case if high quality data were available.

4.4. Preliminary Data Analysis

There arc two basic techniques which can be used to help us understand the data:

o Statistical analysis
Neural networks can be regarded as extensions of standard statistical techniques, and

so such tests can give us an idea of the performance the network is likely to achieve.
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In addition, analysis can give useful clues to the defining features - for example, if the
data is divided into classes, @ statistical test can determine the possibility of

- distinguishing between the different classes in raw data or pre-processed data.

e Data visualization

Plotting a graph of the data in a suitable format enables us to spot distinguishing

features, such as kinks or peaks, which characterize the data. This will enable us to

plan and, if practicable, test the pre-processing required to enhance those features.

Preliminary data analysis often combines both visualization and statistical tests in an

iterative manncr. Visualization gives an appraisal of the data, and idcas about the

underlying patterns, while statistical analysis enables us to test those ideas.

4.5. Data Preparation

When the raw data has been collected, it may need converting into a more suitable

format. At this stage, We should do the following:

454. Data Validity Checks

Data validity checks will reveal any patently unacceptable data that, if retained, would

produce poor results. A simple data range check is an example of validity checking.

For example, if we have collected oven temperature data in degrees centigrade, we

would expect values in the range 50 to 400. A value of, say, -10, or 900, is clearly

wrong.

36
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if there is a pattern to the distribution of faulty data (for example, if most was

collected on a Monday morning), try and diagnose the cause. Depending on the nature

- of the fault, we may need to discard the data or make allowances for its shortcomings.

If there exist undesirable deterministic components such as trends or seasonal

variation, they should be removed first [13].

4.5.2. Partitioning of Data

Partitioning is the process of dividing the data into validation sets, training sets, and

test sets. By definition, validation sets are used 1o decide the architecture of the

network; fraining sels arc used to actually update the weights in a network; fest sels

are used to examine the final performance of the network. The primary CONCerns

should be to ensure that: a) the training set contains enough data, and suitable data

distribution to adequately demonstrate the properties we wish the network to learn; b)

there is no unwarranted similarity between data in different data sets.

4.6. Data Pre-Processing

Theoretically, a neural network could be used to map the raw input data directly to

required output data. But in practice, it is nearly always beneficial, sometimes critical

to apply pre-processing to the input data before they are fed to a network. There are

many techniques and considerations relevant to data pre-processing. Pre-processing

can vary from simple filtering (as in time-series data), t0 complex processes for

extracting features from image data. Since the choice of pre-processing algorithms
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depends on the application and the nature of the data, the range of possibilities is vast.

However, the aims of pre-processing algorithms are often very similar, namely
[1ES7):

1) Transform the data into a form suited to the network inputs - this can often
simplify the processing that the network has to perform and lead to faster

development times. Such transformations may include:

« Apply a mathematical function ( logarithm or square) to an input;
e Encode textual data from a database;
e Scale data so that it has a zero mean and a standard deviation of one;

o Take the Fourier transform of a time-series.

2) Select the most relevant data - This may include simple operations such as filtering
or taking combinations of inputs to optimize the information content of the data. This
is particularly important when the data is noisy or contains irrelevant information.
Careful selection of relevant data will make networks easier to develop and improve

their performance on noisy data.

3) Minimize the number of inputs to the network - Reducing the dimensionality of the
input data and minimizing the nur_nber of inputs to the network can simplify the
problem. In some situations - for example in image processing - it is simply
impossible to apply all the inputs to the network. In an application to classify cell

types from microscope images, each image may contain a quarter of a million pixels:

Congestion Arbitration And Source Problem Prediction Using ANN In Wircless Netwarks 38




Chap{er 4 Implementation

clearly, it would not be feasible to use that many inputs. In this case, the pre-
processing might compute some simple parameters such as area and length/height
ratio, which would then be used as inputs to the network. This process is called feature

extraction [7].

4.7. Data Post-Processing

Post-processing covers any process that is applicd to the output of the network. As
with pre-processing, it is entirely dependent on the applica;ion and may include
detecting when a parameter exceeds an acceptable range, or using the dutput of a
network as one input to a rule-based processor. Sometimes it is just the reverse process

of data pre-processing.
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The Load Forecast System

Neural networks are computational models with the capacity to learn, to generalize,
or to organize data based on parallel processing. These networks can be trained with a
powerful and computationally efficient method called error back-propagation.
Forecasting the behavior of complex system has been a broad application domain for
neural networks.

Network traffic forecast is a relatively new application of neural networks. We
propose a system that uses neural networks to detect network congestion before it
results in a breakdown of the network service and which also identifies the source of
the congestion. Having the nodes identified, our system applies the flow raic
restriction adaptively to the identified sources to avoid congestion overflowing the
router’s buffers. It should be noted that design and experiments presented in this
thesis focus on congestion control; however, the techniques could be applicable to
other network problems. It should also be noted that the remedy in the form. of flow
rate restrictions can be applied directly to the original flow source if it is within the
domain controlled by our system, or it could be applied to the edge router to the
domain to which our system is applied. In the latter case, the restriction will result in
the packets of the restricted flow being dropped at the edge router to the domain [4].
This kind of a solution in which the congestion is decomposed and “moved” from the
internal routers to the edge routers is becoming increasingly popular in modern traffic
management. Finally, it should be noted that in such edge-control techniques the

domains controlled by separate systems will collaborate through the edge routers.
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Dropping packets at the entry edge router of one domain will cause the packets to be
dropped at the exit router of the neighboring domain which will treat such dropping
as congestion and then will identify the source of the flow.

As a result, our techniques can be applied locally at a domain of the decomposed
network and their congestion solution will iteratively be mapped to the corresponding
edge routers of the intermediate domains until the source of the flow is found and
informed of the need to decrease the traffic. Another remark is needed to relate the
present work to the differentiated services, methods of creating different levels of
services for customers willing to pay higher levels. As more préducts are created to
control networks, differentiated services will become very important for the Internet,
Identification of sources that can be forced to limit their flow rate can lead to
accounting for different priorities of traffic and offending flows.

For example, if traffic from a certain machine is deemed high priority, the system
may restrict other machines, instead of slowing down the high priority machine.
Changing the architecture [13] to operate on a flow basis instead of a machine basis
could also be easily done to account for a variety of traffic from each machine, each
with a different priority. Hence, the techniques that we present in this thesis are
directly applicable to the “best effort traffic” over the Internet, but their extensions to

Differentiated Services or Quality of Services environments are straightforward.
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5.1. Factors Affecting Load

The most difficult part of building a good model is to choose and collect the training
and testing input data. A number of research papers [14][151{16][17][18]{19][20] show

that the following factors influence the demand of load:

5.1.1. Weather Conditions

This includes temperature, wind velocity, cloud cover, dew point, rainfall, and

snowfall.

51.2. Packet Scheduling

The basic function of packet scheduling is to reorder the output queue. There are
many papers that have been written on possible ways to manage the output queue,
and the resulting behavior, Perhaps the simplest approach is a priority scheme, in
which packets are ordered by priority, and highest priority packets always leave first.
This has the effect of giving some packets absolute preference over others; if there are
enough of the higher priority packets, the lower priority class can be completely
prevented from being sent. An alternative scheduling scheme is round-robin or some
variant, which gives different classes of packets access to a share of the link. A
variant called Weighted Fair Queuing, or WFQ, has been demonstrated to allocate the
total bandwidth of a link into specified shares. There are more complex schemes for
queue management, most of which involve observing the service objectives of
individual packets, such as delivery deadline, and ordering packets based. on these

”’

criteria.
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5.1.3. Queue Size

The controlled dropping of packets is as important as their scheduling. Most
obviously, a router must drop packets when its buffers are all full. This fact,
however, does not determine which packet should be dropped. Dropping the arriving
packet, while simple, may cause undesired behavior. In the context of today's
Internet, with TCP operating over best effort IP service, dropping a packet is taken by
TCP as a signal of congestion and causes it to reduce its load on the network. Thus,
picking a packet to drop is the same as picking a source to throttle. Without going
into any particular algorithm, this simple relation suggests that some specific
dropping controls should be implemented in routers to improve congestion control. In
the context of real-time services, dropping more directly relates to achieving the
desired quality of service. If a queue builds up, dropping one packet reduces the
delay of all the packets behind it in the queue. The loss of one can contribute to the
success of many. The problem for the implementor is to determine when the service
objective (the delay bound) is in danger of being violated. One cannot look at queue
length as an indication of how long packets have sat in a queue. If there is a priority
scheme in place, packets of lower priority can be pre-empted indefinitely, so even a
short queue may have very old packets in it. While actual time stamps could be used
to measure holding time, the complexity may be unacceptable. Some simple dropping
schemes, such as combining all the buffers in a single global pool, and dropping the
arriving packet if the pool is full, can defeat the service objective of a WFQ

scheduling scheme. Thus, dropping and scheduling must be coordinated.
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5.1.4. Linksharing

This scheme can provide controlled link sharing. The service objective here is not to
bound delay, but to limit overload shares on a link, while allowing any mix of traffic
to proceed if there is spare capacity. This use of ANN is available in commercial
routers today, and is used to segregate traffic into classes based on such things are
protocol type or application. For example, one can allocate separate shares to TCP,
IPX and SNA, and one can assure that network control traffic gets a guaranteed share

of the link.

5.1.5. Predictive real-time service

This service is actually more subtle than guaranteed service. Its objective is to give a
delay bound which is, on the one hand, as low as possible, and on the other hand,
stable enough that the receiver can estimate it. The mcchanism leads to a guaranteed

<

bound, but not necessarily a low bound.

5.1.6. Bandwidth Utilization

To explore the feasibility of the proposed scheme in ANN networ-ks, we conduct
simulation on the NS-2 simulator by considering a multi-node topology (Fig. 1).
Many connections are established between a set of senders and receivers through the
core ANN network. To focus on the data traffic over the forward path from node 0to
node 3, we assume the reverse path for ACK transfer is loss-free. In addition to
explicit TCP traffic, we use self-similar traffic sources to gencrate background UDP
traffic. For nodes 1, 2, 4 and 5, each one connects with four self-similar traffic

sources via local add ports to generate UDP traffic with transmission load 0:1. The
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generated traffic is equally dispersed to the other core nodes. Note that Fig.1 does not

show those UDP sources for the purpose of simplicity.

TP St Node1  Node2 @{cP R
D
NC&M
: 0d& 0 Ndde's  °

@ Node & Nodo 4 .@;

Figure 5-1 Network Topology used in Simulation

Due to the explicit TCP traffic and underground UDP traffic, the link from node 1 to
2 will become

overloaded at some time-points during the simulation period. Fig. 5.2 and 5.3 depict
the measured link utilization over the link 1->2 in a network with and without
congestion control, respectively. By dynamically adjusting the ACK transmission rate
based on network status, the proposed scheme results in a smoother traffic load
(Fig.5.2), and prevents the adverse load oscillations that are observed in the ‘network

without active congestion control (Fig.5.3).
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Table 5-1: Simulation Results of Link Utilization
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5.2. The Load Forecast Model

5.21. iInputData

This table shows the types of incoming stream and it also specifies the delay, ;

throughput requirements and error free Sequenced delivery.

B ettt T TR e o e T ittt T +
| | ] | Error~-free |
| Traffic | Delay | Throughput | Sequenced !
| Type | Requirement | Requirement | Delivery [
et T P e fommmmmm— e e — e PR et +
| Interactive Simulation | High |Moderate~-Highl Yes |
T Fmmm e Fmm o +
{ Network Monitoring i Moderate | High | Yes !
o e - e e +
| Virtual Terminal | Low | Low | Yes t
e e e e e e Fomm e — e e R et P +
| Bulk Transfer | Moderate | Moderate | HNo |
it it frm—m Femme e Fmrmm e ———
| Message { Moderate | Moderate | Yes t
e atate Fmm - Fmmr e ——————— fmemmmm +
| Voice jLow, constant] Moderate 1 No |
et L B S e e e ittt O ettt +
| Video fhigh, constant] High | Yes I
R e e e e e tmmm e Fomem e il T +
| Facsimile | Moderate } High | Yes |
e e et e Pt Fommmm pmmmm e m e +
| Image Transfer | Variable | High i Yes |
et i fmmm = o +
| Distributed Computing§ [ Low | Variable | Yes |
T et TP fommm e m e pmm e — o +
| Network Control | Moderate | Low | Yes |
e L Fo fmm fommm——— +

Table 5-1: Communication Traffic Requirements

5.2.2. Network Architecture

The network consists of one input layer, one output layer and one hidden layer.
Obviously, there is only one output unit — the load. The number of input units is also

fixed, depends on how many factors are included in the model, and how the factors are
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encoded. The number of hidden units needs to be decided by training with some test
sets. Figure 5.4 is the architecture of the load forecast model including all of the six

effects that we mentioned before.
bias

temperature %\
e

Wind

Hour-of-day

Weekday

\\
Weekend //- —
Month-of-year O/

Input Layer Hidden Layer Output Layer

Figure 5-1 Load forecast model

The network requires enough hidden units to learn the general features of the
relationship. With too many hidden units, it will cause overfitting while too few will
lead to underfitting (Section 3.5). The goal is to use as few units in the hidden layer as
possible while still retaining the network's ability to learn the relationships among the
data. As mentioned earlier, including more than a single middle layer does not

significantly improve the accuracy of the predictions.

The activation functions of the hidden units are sigmoid functions while the output
activation function can be either a sigmoid function or a linear function, which can be

selected by the users.
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5.3. Implementation of The Back-Propagation Algorithm

The network is trained using the back-propagation algorithm. The standard sum-of-

squares error function is used

E=-15i(ﬁ—yk)z .1

k=l

Here is the Java code for the error function, which is one of the methods within the
NeuralNetwork class:
public double errorFunction (double[] x, double[] y) {
double sum = 0.0;
for (int i=0; i<x.length; i++) sum += (x[i] - y[il)*(x[i] - y{i});
return 0.5 * sum;

-}

As mentioned above, the activation function for the hidden units is the sigmoid

function:

1 g (5.2)
I+e

gx)=
This function has a very useful feature — its derivative can be expressed in the
following form:

g'(x)=gx)(1-gx)) (5.3)
The above two equations can be easily coded:

public double sigmoid{double x) {

if (x> 50.) return 1.0;
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if (x < -50.) return 0.0;
return 1.0 /(1.0+Math.exp(-x));

}
public double sigmoidDerivative(double x) {

return x*(1.0-x);
}
The first step for the back-propagation is Jorward propagation
void feedForward() {
/{For hidden units
for (inti = O; i<numberOfHiddenUnit: i++) {
double sum = 0.0;
for (int j=0; j<numberOfinputUnit+1; j++) {
if (]==numberOfinputUnit)
sum += weightLayer1[j][i}; // Include the Bias term

else sum += weightlLayer1(j][i*inputsj];

hiddens]i] = sigmoid(sum);
}
/{For output units
for (inti = O; i<numberOfOutputUnit; i++) {

double sum =0.0;
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for (int j=0; j<numberOfHiddenUnit; 4

sum += weightLayer2[j][i]*hiddens[i};

}

outputs|i} = sigmoid(sum);

}

The second step is error back-propagation. Using the expression derived from (3.13)

and (3.16), we obtain the following results. For the output units, the &’s are gi\}en by

S = yr— Ik (5.4)

while for units in the hidden layer the &’s are found using

5 =2(-2) wid (5.5)

The derivatives with respect to the first layer and second layer weights are then given

by

O _ s ana 2E =5 (5.6)

Ovln Dy

We use the gradicnt descent algorithm with momentum (3.18) to update the weights:

void backpropagation{doubie rate, double alpha} {

doublef] deltal = new double[numberOinddenUnit];

double[] deita2 = new double[numberOfOutputU nit};

//Delta for second layer
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for (int j=0; j<number0f0utputUnit;. ) {
delta2[j] = targets[j] - outputsfil;
}
/{Delta for first layer
for (int j=0; j<numberOfHiddenUnit; j++) {
double sum = 0.0;
for (int k=0; k<numberOfOutputUnit; k++) {
double term = delta2[k] * weightLayer2[jj[k];
if (outputActivationType==1) term *=sigmoidDerivative{outputs[kl);
sum += term;
}
deltat[j] = sum;
}
{Update the second layer weights
for (int i=0; i<numberOfHiddenUnit; i++) {
for (int j=0; j<numberOfOutputUnit; j++) {
double deita = delta2{j]*hiddens(i};
if (outputActivationType==1) delta *= sigmoidDerivative(outputs{j]);
double weightChange = rate * delta +alpha*momentum2[il{j};
weightLayer2(i]fj] += weightChange;

momentum?2[i](j] = weightChange;
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}

//Update the first layer weights
for (int i=0; i<numberOfinputUnit+1; i++) {
for (int j=0; j<numberOfHiddenUnit; j++) {
if (i'=numberOfinputUnit && inputs|i]==0) {
momentum1{i](j] = 0.;

}

else {
double delta = deltat{j]*sigmoidDerivative(hiddens{j]);

if (il=numberOfinputUnit) delta *= inputsfi];

double weightChange = rate * delta +alpha*momentum1[ij[j};

weightLayer1[i][j] += weightChange;

momentum1[i]{j] = weightChange;

}

Batch learning method was adopted to train the networks.
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5.4. Network Generalization

The Split-sample (or hold-out validation) method [5] is used to estimate generalization
error. With this method, part of the data is reserved as a test set that will not be used
in the training. Afier training, run the network on the test set. The error on the test set
provides us an unbiased estimate of the generalization error, with which we can decide

whether the model is sufficiently general.

l 5.5. Features of The System

| The load forecast system has several useful features:

o It checks the importance of cach effect

e It helps find optimal number of hidden units

[ e It checks the influence of the learning rate and momentum

| o It displays the training and forecasting result in graphics and tabular form
o It displays training errorsv

Error! Reference source not found. is the main screen of the Load Forecast system.
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Load Forecaster

Figure 5-1 load forecast system main screen

5.6. Effects Setup

We can specify which effects can be included in the model by selecting Setup->Effect
Setup menu, a dialog as show in Figure 5.5 will appear. Selecting or deselecting each
factor can help us to evaluate the irﬁportance of this factor. This provides us an
efficient way to decide whether the effect should be included in the model or not if we
are not quite sure. For this model, the default values including all the effects are the

best.

5.7.  Network Parameters Setup

Once the input units and the output units are known, we can use the “Network Setup”
(Figure 5.6) to find the optimal number of hidden units. This is a trial and error
process. We can start with a large number of epochs and a small number of hidden

units. Next, we train the network and write down the minimum training error that the
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network can reach. Gradually we increase the number of hidden units and repeat the

above process until the training error has no big changes.

We can also use this setup to study the influence of the learning rate and momentum to
the training time. We can also choose different activation functions for the output units

to see whether they have similar performances or not.

s th!den Umts 1o
Learmng Rate 0.8
éT'Alpha;
: Epuchs
1 7:Output Activation:

O] I'mear “D nontinear

T
e

Figure 5-1 Network setup

5.8. Training the Network

From the main screen menu File->Load Training Set, training data which includes
both input values and target values can be loaded to the system. The data are stored in
the format as described previously. After setting up the effects and network
parameters, we can click the Run-> Training menu to start the training process. The
process stops upon hitting the error tolerance, or reaching the epoch limits. The
training error for each epoch is shown in the prompt as the training process is going

on. Once the trairing process finishes, we can click the Display->Display Training
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Results menu to show the training results in graphic form (Figure 5.7) or tabular form

(Figure 5-2). The hourly training errors are shown in column 4 (Figure 5-2).

. .. Training Results
L . ’ T
4000.0 1
¥ 300007 :
£ Load 20000 J\i"' ; fﬂﬁ
10000 g
0.0 ]
——— ] |
011711998 01/19/1998 012111988 01723/1988 n1125.r1993§5
Tiine
. . I =
Trating Load” e ¥
. ety - - E 5 %
R [ Tabular View | l Close | ‘

Figure 5-1 Training result graphic display
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Figure 5-2 Training result tabular display

5.9. Testing the Network

Once we finish training the network, we need to do a generalization test to sec whether
this model is sufficiently general. This can be done by first loading the test set from
menu File->Load Test Set; then éliéking the Run-> Testing menu to run the system,;
and finally clicking the Display->Display Testing Results menu to show the testing

results.

5.10. Future Load forecasting

After the network has been well trained and passed the generalization test, we can load

the future predicted input data from the menu File->Load Predicted Inputs, and then
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click the Run-> Predict menu to get the forecasted loads. The results can bé displayed
in graphic form Figure 5.10 or tabular form, which is similar to Figure 5.9 except

without “Actual Load” and “Error%” columns.
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Figure 5-1 Load forecast graphic display

Congestion Arbitration And Source Problem Prediction Using ANN In Wireless Networks 50



RESULTS



Chapter 6 - Results

6. Results

In this section we present the general analysis of results. We also discuss the future

work by the end of the topic.

6.1. Analysis of Results

¢ The multi-layered feed-forw;ai'd networks perform very well for short-term data
load forecasting. The forecast accuracy has been in excess of 90% for this
model. The weather and the calendar information have great impact on the

load, especially the temperature.

e A reasonable number of hidden units for this model is between 7 and 12, and
we recommend 10. Performances are not good if the numbers are less than 5

while larger than 12 has no significant decrease in the training error (Figure

6-1).

31
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Figure 6-1 Average squared error vs. hidden units

¢ Learning rate and momentum have significant influence on the training process
with the gradient descent method. Table 5.3 shows the epochs that the fraining
processes taken to meet the error tolerant (average square error is 0.0005) or
reach the epoch limit (9999) with different values of learning rate and
momentum, where each pair had 10 tests. It is easy to se¢ that too large and too
small learning rates converge slowly, while high momentum helps small
learning rate to converge fast. The best learning rate and momentt;m term are

0.8 and 0.1 respectively for this model.

e There are no big differences between using a sigmoid activation function and a

linear activation function for the output unit.

Congestion Arbitration And Source Problem Prediction Using ANN In Wircless Networks 52



Chapter 6 Results
Table 6-1 Training epochs vs. learning rate and momentum
S Momentum
Learning Rate! Test 0 X 0.2 0.4 06
1 1493 1867 1933 3030 4806
2 2014 1233 1207 2683 4728
3 961 1649 3260 3898 5547
4 2099 1642 2127 4230 2841
5 1638 3158 2061 1967 9999
1.2 6 2789 1834 3498 1804 9999
7 1135 1650 1215 5708 2091
8 2271 4508 1668 8503 9999
9 1257 1936 2127 3454 3238
10 4696 1253 1267 1625 9999
Average| 2025 1728 2036 3690 6325
1 2914 2813 4211 3421 9999
2 3469 1106 2496 1701 4419
3 1108 1770 2472 1898 9999
4 2179 3019 1448 2568 9999
5 1957 1468 2045 ° 1567 9999
1.0 6 1354 2086 961 2101 5333
7 887 1796 2393 3286 9999
8 2315 1442 1027 1268 1496
9 1058 2143 1462 3698 3109
10 1838 1626 1248 1324 3504
Average| 1908 1927 1976 2283 6786
1 1414 1689 2027 2022 1888
2 4411 916 2374 6034 3147
3 1600 1010 1960 1271 3100
4 1632 1093 3634 1952 2992
5 1237 1519 1603 1775 1782
0.8 6 1011 1037 1448 3415 3256
7 2622 1829 7767 1096 1002
8 1609 1073 1293 10588 7131
9 1665 2288 879 3006 2614
10 - 1425 1141 2590 3372 2193
Average| 1833 1360 2558 2500 2911
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. Momentum

Learning Rate| Test 0 0 0.2 04 06l
1 1493 1129 1000 630 3845

2 5471 2582 845 1981 2091

3 5461 1031 3003 1226 767

4 1972 2734 2952 640 913

5 2364 1796 1119 2405 1358

0.6 6 1943 870 7932 1377 1099
7 2088 5425 999 2209 953

8 1753 2490 3348 3547 1517

9 1887 2077 5242 1040 2705

10 2728 2753 2968 2395 2205

Average) 2716 2289 2941 1745 1755

1 3861 2272 5690 1467 962

2 5253 6670 1925 5917 1671

3 2622 1506 1324 1302 765

4 1762 5158 1489 2203 3333

) 1554 3009 1138 1620 1370

0.4 6 1722 1727 3962 1084 1340
7 2507 6240 1948 1253 1351

8 2222 4112 2035 814 3877

9 1966 2170 1761 2560 2094

10 2367 955 1667 1794 1207

Average| 2584 3382 2294 2001 1797

1 9999 2684 3611 4148 2639

2 4065 4114 4564 2219 1441

3 4187 3325 2874 3783 2594

4 4821 4627 8726 5053 2388

5 2713 2401 2090 1718 2297

0.2 6 7866 3322 4891 7496 2481
7 3908 8884 9999 6844 2681

8 1619 1767 3095 3529 2623

g 4740 6457 2221 2218 2282

10 9999 3613 1483 1907 1563

Average| 5392 4119 4355 3892 2299

6.2. Future Work

We hope that we will continue this research and will Insha-Allah be able to present its

extended architecture and the broader vision of our project.
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6.2.1. Extending Architecture

An extended architecture can be formed to suit the biggest communication networks
by decomposing these large networks into domains small enough to influence easily.
Most large networks are already composed hierarchically of domains that are
collections of local networks. When the larger networks have been divided, a separate
protocol or addition to current protocols can be used to determine domain-to-domain
agreements. As illustrated in Figure 5, the learning Control Agent would be
somewhere within each domain defined in the network. Using the forecasting and
detective powers of the agent, each domain would be regulated and operating at safe
levels. To negotiate any problems between domains, the control agents communicate
with each other as to the effects of one domain on another. The control agents take
this information into account just as they take the information from local nodes into
account. The inter-domain negotiation will promote the same safe state of operations
between domains, as it will inside each domain. In particular, a border router between
two domains is a source in one and the destination in the other. If the flow creates the
congestion in the second domain, the agent in control of the second domain will apply
corrections to the source border router, causing the router to drop packets from the
flow to enforce the lower rate allocated to the flow. The dropping of packets at the
border router, which is a destination for the first domain, will be perceived as
congestion by the agent controlling the first domain. As a result, the agent of the first
domain will apply correction to the source of the traffic, thereby eliminating
congestion. An important feature of this architecture is that if the agent has no control

over the source, it will apply rate correction to the first router under its control
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causing it to drop packets from the offending flow. As a result, our technique will
remedy malicious attacks by the “unruly” tcp sources by dropping the packets not

responding to the request for the lower rate of traffic from the source.

Broader Detection

At present, our system only predicts and detects traffic congestion. It would be useful
to create a system that-can do the same for other problems. It would also be of great
value to train the network over many different types of traffic. Due to the changing
nature of networking, it is not unreasonable for the network, at some point, not to fit
the same mold our neural network learned. For this reason, it could prove beneficial
to train the network with a real time recurrent learning algorithm to allow the neural
network to continue learning after the training period [19]. Alernatively, we can
envision an architecture in which a current generation of the neural network is used
for control while simultancously a new generation is being trained on the current
traffic patterns. We believe that the period of run/training could be quite infrequent,
something like few weeks at a time.

Different control neural networks could be trained for different times, special events,

and other cases where specialized traffic needs are noticed.
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7. Conclusions

Neural networks can learn to approximate any function and behave like associative
memories by using just example data that is representative of the desired task. They
are model free estimators and are capable of solving complex problems based on the
presentation of a large number of training data. This gives them a key advantage over
traditional approaches to function estimation such as the statistical methods. Neural
networks estimate a function without a mathematical description of how the outputs
functionally depend on the inputs - they represent a good approach that is potentially

robust and fault tolerant.

In this thesis, we examine the properties of the feed-forward neural networks and the
process of determining the appropriate network inputs and architecture, and built up a
short-term load forecast system. This system performs very well for short-term load

forecasting. The forecast accuracy has been in excess of 90%.

In order to forecast the future load from the trained networks, we need to use the
history loads, Queue size, packet scheduling, and delay information in addition to the
predicted future number of packets and Queue size. Compared to other regression
methods, the neural networks allow more flexible relationships between Queue size,
number of packets, buffer information and load pattern. It has also been shown by

other researchers that multi-layer feed-forward neural network performs best for short-

term load forecasting [14][21].

We utilize only Queue size, number of packets and buffer information since they are

the only information available to us. Since the neural networks simply interpolate
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among the training data, it will give high errors with the test data that is not close

enough to any one of the training data.

Feed-forward neural networks can be used in many kinds of forecasting in different
industrial areas. Similar models can be built to make electric load forecasting, daily
water consumption forecasting, stock and markets forecasting, traffic flow and product
sale forecasting [22][23] as long as correct relationships between the inputs and the
outputs can be captured and put in the models. But there is no universal network
paradigm suitable for all kinds of forecasting problems, For each problem, a detailed
analysis of domain data and the acquisition of prior knowledge are necessary to find a
suitable model. The introduction of prior knowledge in input selection, input
encoding, or architecture determination is often very useful, especially when the

available domain data is limited.

The standard back-propagation algorithm for training feed-forward neural networks
has proven robust even for difficult problems. However, its high performance results
are attained at the expense of a long training time to adjust the network parameters,
which can be discouraging in many real-world applications. Even on relatively simple
problems, it often requires a lengthy training process in which the complete set of
training examples is processed hundreds or thousands of times. Thus some
accelerating techniques or advanced training algorithms (Scction 3.8) can be applied

to improve the performance of the networks,

We have seen that neural networks produced fairly accurate forecasts. In this work,
we have tried to demonstrate that a neural network is a viable method of

implementing a realistic forecasting application for data communication networks.
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We have illustrated, through the use of a network simulator, that a neural network can
be used to achieve great accuracy in predicting network congestion problem. Wireless
networks need a special concern for congestion management. This work is applicable
to both wired and wireless environment. We realize many more problems exist that
for which neural network forecasting approach is applicable, but predicting
congestion is just the initial step towards our research goals. When structural
information of an actual data network is used to form the connections between layers
of the neural network, this special design forces the neural network to consider the
relationships only of those nodes that we think are important. A learning mechanism
can be of great value for a network manager. The generalization power of a neural
network particularly is appropriate because of the unpredicted variance of parameters
that the network manager encounters. Neural networks are an appropriate mechanism
for decision making in pro-active network management and should be the subject of

more research.
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//Program 1

//DataSet.Java

import java.io.*;
import java.util.*;
import java.util.Date;
import java.text.*;

/** The DataSet class Uses the following variables:<ul>

* <li>values[row][column]: Storing the data for the dataset
* <li>maxm{column]: The maximum value in that column
* <Ji>minmfcolumn]: The minimum value in that column
* <li>scaleMaxm: The maxm value to which the dataset is scaled
* <li>scaleMinm: The minm value to which the dataset is scaled
* <lizorder[row}: The random shuffling order
* <li>type Type of data Input or Output
* <ful>
*

public class DataSet implements Serializable {
public String name;
public int fromRow;
public int toRow;

public int inputs, outputs, rows;

public double[] indexValues = null;

public doublef] dateValues = null;

public double{][] inputValues = null;
public double[][] scaledInputValues = nuil;
public double maxinput{] = null;

public double mininput[] = null;

public double inputScaleMax=1;

public double inputScaleMin=0,

public double[][] outputValues = null;
public double[}[} scaledOutputValues = null;
public double maxOutput{]= null;

public double minOutput[}= null;

public double outputScaleMax=1;

public double outputScaleMin=0;

public double{]f] predictValues = null;
public doublef][) scaledPredictValues = null;

public double{] count = null;
public int[} order = null;
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public DataSet() {
}

public DataSet(double index[],double date[],double input[]{]){
this.indexValues=index;
this.dateValues=date;
this.inputValues=input;

try {

rows = inputValues.length;
inputs = inputValues{0].length;

fromRow = 1;
toRow=rows+ 1;

predictValues = new double[rows][outputs};
scaledinputValues = new doublefrows][inputs];
count = new double[rows];

minlnput = new double[inputs);
maxInput = new double[inputs];

order = new int[rows];

for (int kcol=0; kcol<inputs;kcol++) {
mininput[kcol]=Double.POSITIVE_INFINITY;
max!nput[kcol}]=Double. NEGATIVE_INFINITY;

}

for(int krow=0;krow<rows;krow-++){
for (int kcol=0; kcol<inputs;kcol++) {
maxinputfkeol] = Math.max(maxinput[kcolfinputValues| krow] [ keol]):
minlnput[kcol] = Math.min{minfnpu]kcot],inputValues[krow]{kcol]);

}

countjkrow] = (double)krow;
order[krow]} = krow;

}

randomize(};

catch(Exception ex) {
System.out.printin{ex.getMessage());
ex.printStackTrace();

}
}

public DataSet(double index[],double date[],double input[][],double output[]{D{
this.indexValues=index;
this.dateValues=date;
this.inputValues=input;
this.outputValues=output;
try {
rows = inputValues.length;
inputs = inputValues[0].length;
outputs = outputValues[0}.length;
fromRow =1;
toRow =rows + |;
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predictValues = new doublefrows][outpuis];
scaledinputValues = new double[rows][inputs];
scaledOutputValues = new double[rows][outputs];
scaledPredict Values = new double[rows][outputs];

count = new double[rows];-
minknput = new double[inputs];
minOutput = new doublc[outputs);
maxInput = new doublefinputs];
maxQutput = new double[outputs];
order = new int[rows];

for (int kcol=0; keol<inputs;kcol++) {
minlnput[kcol]=Double. POSITIVE_INFINITY;
maxinput[kcol]=Double. NEGATIVE_INFINITY;

}

for {int keol=0; kcol<outputs;kcol++) {
minOutput{kcol}=Double.POSITIVE_INFINITY;
maxOutput[kcol]=Double NEGATIVE_INFINITY;
}

for(int krow=0;krow<rows krow++){
for (int kcol=0; keol<inputs;kcol++) {
maxInput[kcol} = Math.max(maxInput{kcol],input Values[krow][kcol]);
minlnputfkcol] = Math.min(minlnput[kcol).inputValuesfkrow][kcol]);
} .

for (int keol=0; keol<outputs;kcol++) {
maxQutput[kcol] = Math.max(maxOutput|kcol],outputValues[krow][kcol]);
minOutput[kcel] = Math.min(minOutput[kcol],outputValues[krow][kcol]);

}

count{krow] = (double)krow;
order[krow] = krow;
}
randomize();
}
catch{Exception ex) {
System.out.printin(ex.getMessage());
ex.printStackTrace(),

}
}
public DataSet(String name, int fromRow, int toRow, int inputs, int outputs) {
this.name = pame;
this.fromRow = fromRow;
this.toRow = toRow;

this.inputs = inputs;
this.outputs = outputs;

public DataSet(String name, int inputs, int outputs) {
this.name = name;
this.fromRow =0;
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this.toRow  ={;
this.inputs = inputs;
this.outputs = outputs;

}

public DataSet{String name) {
this.name = flame;
this.fromRow =0;
this.toRow  =0;

}

public void setName(String s) {name = s}

public void sctFromRow(int i) {{romRow = i;}

public void setToRow (int i) {toRow =i}
public void setlnputValues {double[][]input) {inputValucs=input:)
public void setDateValues (double {Jdate) {dateValues = date;)
public void setindexValues (double {Jindex) {indexValues = index;}

public String getName() {return name;}

public int getFromRow() {return fromRow;}

public int getToRow () {return toRow;}

public int getRows () {return rows;}

public int getlnputs () {return inputs;}

public int getOutputs() {return outputs;}

public double getlnputValues (int i, int j) {return inputValues[i][j].}

public double getOutputValues (int i, int j) {return outputValues{i][j1;}

public void CopyDataSet(DataSet ds) {
name = ds.name;
fromRow = ds.fromRow;
toRow = ds.toRow;
inputs = ds.inputs;
outputs = ds.outputs;

rows = ds.rows;

indexValues = ds.indexValues;

dateValues = ds.dateValues;
inputValues = ds.inputValues;
scaledlnputValues = ds.scaledlnputValues;
maxInput = ds.maxinput;
minlnput = ds.minlnput;
inputScaleMax = ds.inputScaleMax;
inputScaleMin = ds.inpuiScaleMin;
outputValues = ds.outputValues;
scaledQutputValues = ds.scaledOutputValues;
maxQOutput = ds.maxQutput;
minOutput = ds.minQutput;
outputScaleMax = ds.outputScaleMax;
outputScaleMin = ds.outputScaleMin;
predictValues = ds.predictValues;

scaledPredictValues = ds.scaledPredictValues;
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count = ds.count;
order = ds.order;

public void setVariables() {

try {
rows = inputValues.length;

inputs = inputValues[0].length;

outputs = outputValues[O].lcngth;
fromRow = |;
toRow = rows + 1;

predictValues = new double{rows][outputs};

scaledlpputValues ~ =new double[rows]{inputs];
scaledQutputValues = new double[rows][outputs];
scaledPredictValues = new double[rows]outputs};

count = new double[rows];
minlnput = new double[inputs]:
minQutput = new double[outputs];
max!input = new double[inputs];
maxQutput = new doublefoutputs];
order = new int{rows];

for (int keol=0; kcol<inputs;kcol++) {
minlnput[kcol]=Double.POSlTlVE_lNFIN ITY;
maxlnput[kcol]=DoubIe.N EGATIVE_INFINITY;

}

for (int keol=0; kecol<outputs;kcol++) {
minOutput[kcol]=Double.POSlTlVE__lN FINITY;
maxOulput[kcoI]=Double.NEGATIVE_INFlNl’I‘Y;

}

for{int krow=0;krow<rows;krow++){

for (int keol=0; keol<inputs;kcol++) {
maxInputfkcol] = Math.max(rnaxlnput[kco!],inputValues[krow][kcol]);
minlnput{kcol] = Math.min(minlnput[kcoI],inputValues[krow][kcol]);

}

for (int kcol=0; keol<outputs;kcol++) {
maxQutputfkeol] = Math.max(maxOutput[kcoI],outputValues[krow][kcol])'.
minQutput{kcol] = Math.min(minOutput[kcol],outputValues[krow][kcol]);

}

count[krow] = (double}krow;
order[krow] = krow;

randomize();

catch(Exception ex) {
Systcm.out.println(ex.getMessage());

ex.printStackTrace(};

}
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//Normalizes the database given just the scale

public void normalize (double inputScaleMin, double inputScaleMax,

double outpuiScaleMin, double outputScaleMax) {
this.inputScaleMax = inputScaleMax;

this.inputScaleMin = inputScaleMin;
this.outputScaleMax = outputScaleMax;
this.outputScaleMin = outputScaleMin;

/f{Apply the scale such that the minm and maxm values become equal to scaleMinm and
ScaleMaxm.

for (int i=0; i<rows; i++) {

for (int j=0; j<inputs; j++) {
if (maxInput[j] > minlnput{j]) {
scaledInputValues[i}[j] = inputScaleMin + (inputScaleMax-inputScaleMin)

* (inputValues(i][j] - minlaput[j]) / (maxInput{j} - minlnput{j});
}

else {

scaledInputValuesfi][j] = (inputScaleMax + inputScaleMin)/2.0;
}
}

for (int j=0; j<outputs; j++) {
if (maxQutput[j} > minOutput[j}) {
scaledOutputValues[i}[i] = outputScaleMin + (outputScaleMax-outputScaleMin)
*  (outputValuesfi][j] - minQutput[j])) / (maxQutputfj]

minQutput[j]);
scaledPredictValues[i][j]= outputScaleMin + (outputScaleMax-outputScaleMin)

* (predictValues[i]ii] - minOutput{j]} / (maxOutputfj] -
minQutput(jl); ‘

}
else {
scaledOutputValues[i][j] = (outputScaleMax + outputScaleMin)/2.0;
scaledPredictValues[i][j] = (outputScaleMax + outputScaleMin)/2.0;
}
}
}
}

public void normalize (double inputScaleMin, double inputScaleMax) {
this.inputScaleMax = inputScaleMax;
this.inputScaleMin = inputScaleMin;

//Apply the scale such that the minm and maxm values become equal to scaleMinm and
ScaleMaxm.

for (int i=0; i<rows; i+1)  {

for (int j=0; j<inputs; j++) {
if (max!nput(j} > minlnput(j]) {
scaledinputValues{i][j] = inputScaleMin + (inputScaleMax-inputScaleMin)
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* (inputValues[i}{j] - mininput[j]) / {maxInput[j] - minlnput(j]);
} v
else {

scaledInputValues(if{j] = (inputScaleMax + inputScaleMin)/2.0;
}
H
}
H

/f Shuffles the values of a dataset and places the shuffled indices in the array mixCheck
public void randomize() {
sequential();

for (int i =0; i<rows ; i++) {
intj = (int)}{Math.random{}*rows);
intk = orderfi);
order[i} = order(j];
order{j] = k;
}
)

public void randomize(int partial) {
for (int i =0; i<partial ; i++) {
intj = (int}Math.random()*partial),
intk = order[i];
order[i] = order{j];
order[j] = k;

/! Orders the data sequentially
public void sequential() {
for (int i =0; i<rows ; i++) {
order{i] = i;
}

}

J/ This overloaded version of the randomize method shuffles a dataset with a given shuffling order
public void randomize(int{] givenOrder) {

for (int i =0; i<rows ; i++) {
order[i] = givenOrder[i];
}
}

public double[] getlnputRow (int i) {return inputValues [i};}
public doublef} getOutputRow (int i) {return outputValues [i];}
public double[] getPredictRow(int i) {return predictValues[i];}

public double[] getRandomlnputRow (int i) {return inputValues [order(i]];}
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public double[} getRandomOutputRow (int i) {return outputValues [order[i]];}

public double[] getRandomPredictRow(int i} {return predictValues[order[i]];}

public double{] getScaledInputRow (int i) {return scaledinputValues i)}
public double[] getScaledOutputRow (int i) {return scaledOutputValues {i];}
public double[] getScaledPredictRow(int i) {return scaledPredictValues{i];}

public double[] getScaledRandomlnputRow (int i) {return scaledInputValues [order(i]];}
public double[] getScaledRandomOutputRow (int i) {return scaledOutputValues [order[i}):}
public double{] getScaledRandomPredictRow(int i) {return scaledPredictValues[order[i]};}

public double[] getlnputCol (int i) {
double[] d = new double[rows];
for (int j=0; j<rows; j++) {
d[j] = inputValues [jI[i};
}

return d;

}

public double[] getOutputCol (int i) {
double[] d = new double[rows];
for (int j=0; j<rows; j++) {
dfj] = outputValues [jl[i];

return d;

}

public double[] getPredictCol(int i} {
double[] d = new double[rows];
for (int j=0; j<rows; j++) {
dij] = predictValues [ji[i];
}

return d;

}

{f Print debug of the data
public void print() {

System.out.println{"=== DataSet: "+name+" ===");

System.out.printin{"Rows = "+rows+" Inputs = "+inputs+" Qutputs = "+outputs);

if (rows >0} {
for (int i =0; i<rows ; i++) {

for (int j =0; j<inputs ; j++) {
if (j==0) System.out.print("Row ["+i+"] "),
System.out.print(",*+inputValues{il{j1);

}

for (int j =0; j<outputs ; j++) {
System.out.print(","toutputValues[i][j]);

}

Systent.out.printin("");
}
}
i
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public void printScales() {
System.out.primln("=== DataSet: "+name+" Scales===");
System.out.printIn("Rows = “rows+" Inputs = "+inputs+" Outputs = "+outputs);

System.out.printIn("Input Scale Maximum, Minimum "+inputScaleMax+",“+inputScaleMin);

for (int i =0; i<inputs ; i++} {
System.out.printin("Input "4+i+" Maximum, Minimum = "+maxlnput[i]+"."+minlnput[i]);
}

System.out.printin("Output Scale Maximum, Minimum
"+outputScaIeMax+",“+outputScaieMin);
for (int i =0; i<outputs ; i++) {
System.out.printin("Qutput *4i+* Maximum, Minimum = "+max0utput[i]+“,"+min0utput[i]);

}

/f Print randomized data

public void printRandom() {
System.out.printin("=== Randomized DataSet: "+name+" ===");
System.out.printin("Rows = "+rows+" Inputs = "+inputs+" Outputs = "+autputs);
if (rows > 0) {
for (int i =0; i<rows ; i++) {

for (int j =0; j<inputs ; j++) {
if (j==0) System.out.print("Row [*+order[i]+"] "}
System.out.print(",“+inputVa1ues[order[i]][i]);

}

for (int j =0; j<outputs ; j++) {
System.out.prim(","+outputValues[order[i]][i]);

}

System.out.printin("");

/f Print scaled data

public void printScaled() {
System.out.println("=== Scaled DataSet: "+name+" ===");
System.out.printin("Rows = "rrows+" Inputs = "+inputs+" Outputs = "+outputs},
if (rows > 0} {
for (int i =0; i<rows ; i++) {

for (int j =0; j<inputs ; jt+) {
if j==0) System.out.print("Row {"+H+"] "k
Systcm.out.print("."-l-scaledlnputValucs[i][j]);

}

for (int j =0; j<outputs ; j++) {
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System.out.print(","+scaledOutputValues[i]{j]);
}

System.out.println{"");
}
}
}

public void unscalePrediction {) {
for (int i=0; i<rows; i++) {
for (int j=0; j<outputs; j++} {
if (maxQutputfj] > minQutputfjl) {
predictValues{i][j} = minQutput[j] + (scaledPredictValues[i][j] - outputScaleMin)
{ (outpuiScaleMax-outputScaleMin)
* (maxQutput[j] - minOutput(j]) ;
}
else {
predictValues{i][j] = (maxOutput{j] + minQutput[j})/2.0;
}
1
}
}
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/[Program # 2

/MataSetFactory.Java

import java.io.*;
import java.util.*;
import java.text.*;
import java.sql.¥;
import java.util.Date;

/** The DataSetFactory class is the factory to create
* different type of dataset based on the input data

**/

public class DataSetFactory {

/{Construtor
public DataSetFactory(){}

public static double[][] createlnputSet(Effect effect,String[][] data) {
int monthEffect=0;
int weekdayEffect=0;
int weekendEffect=0;
int hourEffect=0;
int tempratureEffect=0;
int windEffect=0;

if{effect.getMonthEffect()) monthEffect=1;
if{effect.getWeekdayEfTect()) weekdayEffect=1;
if{effect.get WeekendEffect()) weekendEffect=1 ;
if{effect.getHourEffect()) hourEffect=1;
if{effect.getTempratureEffect()) tempratureEffect=1;
if(effect. get WindEffect()) windEffect=1;

int columns

monthEffecHwcekdayEffect+weekendEffect+hourEffect+tempralureEffecHwindEffect;

double[][] input=new double[data.length}{columns];
Calendar calendar = new GregorianCalendar();
calendar.setTimeZone{ TimeZone. petDefault());

SimpleDateFormat formatier = new SimpleDateFormat ("MM-dd-yyyy",Locale.US);

formatter.setTimeZone(TimeZone.getDefauli());

for(int i=0;i<data.length;i++){
ParscPosition pos = new ParsePosition(0);
Date startDate = formatter.parse(data[i][0], pos);
calendar.setTime(startDate);
iftmonthEffect==1)
input[i][0]=calendar.get(Calendar. MONTH);
if(weekdayEffect==1)

input[i][montthfect]=calendar.get(CaIendar.DAY_OF_W'EEK);

iffweekendEffect==1){
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ificalendar.get(Calendar.DAY_OF_WEEK)==1||calendar.get(Calendar. DAY_O F_WEEK)==T7)
input[i][monthEffect+weekdayEffect] = 1;
clse
inputfi]{monthEfect+weckdayEllect) = 0;

}
iflhourEffect==1)
input[i][monthEffect+weekdayEffect+weckendEflect) =
Integer.valueOf{data[i][1]).intValue();

if(tempratureEffect==1}){
input[i][monthEffect+weckdayEffect+weckend Effect+hourEffect}
=Double.valueOf{data[i][2]).doubleValue();

}
iflwindEffect==1){

input[i][monthEffect+weekdayEffect+weekend Effect+hourEffect+tempratureEffect] =
Double.valueOf{data[i}{3]).double Value();
}

}

return input;

public static double[][] createOutputSet(String[][] data} {
double[][] output=new double[data.length][1];
for(int i=0;i<data.length;i++){
output[i][0] = Double.valueOf(data[i]{4]).doubleValue();
}

return output;

}

public static double[] createlndexSet(String[](] data) {
double[] index=new double{data.length];
for(int i=0;i<data.length;it+){
index[i] = i;
}

return index;

public static double[] createTimeSet(String[](] data) {
double[] timeSet = new double[data.length];
Calendar calendar = new GregorianCalendar();
calendar.setTimeZone(TimeZone.getDefault());
SimpleDateFormat formatter = new SimpleDateFormat ("MM-dd-yyyy HH",Locale.US);
formatter.setTimeZone(TimeZone.getDefault());

for(int i=0;i<data.length;i++){
ParsePosition pos = new ParsePosition(0);
Date startDate = formatter.parse(data[iJ[0]+" "+data[i]{1], pos);
timeSet{i]=startDate.getTime()/1000;
}

return timeSet;

}
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public static String[] getTimeString(String([}{] data) {
String[] timeString = new String[data.length];
for(int i=0;i<data.length;i++){
timeString[i} = data[i][0]+" "+data{i][ 1}+":00™;
} .

return timeString;

72

Congestion Arbitration And Source Problem Prediction Using ANN In Wircless Networks



Appendix A (User Manual)

/{ Program # 3

{[Effect.Java

/** Tthe class defines the Effects and Network paramaters

%[
public class Effect {

/fEffects

boolean weekdayEffect=true;
boolean hourEffect=true;
boolean tempratureEffect=true;
boolean windEffect=true;
boolean monthEffect=true;
boolean weekendEffect=true;

/MNetwork Paramaters

double rate =0.8;

double alpha =0.1;

double sample =1

int epochs = 5000;

int nodes =10;

int type =0;

{{Constructor

public Effect(){

}

public void setWeekdayEffect(boolean effect){ weekdayEffect=effect;  }

public boolean getWeckdayEffect() { return weekdayEffect; 1
public void setWeekendEffect(boolean effect){ weekendEffect=effect; 1}

public boolean getWeekendEffect() { return weekendEfTect; }
public void setHourEffect(boolean effect)  { hourEffect=effect; }

public boolean getHourEffect() { return hourEffect;}
public void setMonthEfTect(boolean effect) { monthEffect=effect; }

public bootean getMonthEftect() { return monthEffect;
}

public void setTempratureEffect(boolean effect) {tempratureEffect=effect; }

public boolean getTempratureEffect() { return tempratureEffect;  }
public void setWindEffect(boolean effect) { windEffect=effect; }

public boolean getWindEffect() { return windEffect;
H

public double getRate() {return rate; }

public void setRate(double value){ rate=value;}
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}

public double getAlpha() {return alpha; }
public void setAlpha (double value){ alpha=value;}

public double getSample() {return sample;}
public void setSample(double value){ sample=value;}

public int getEpochs(){ return epochs;}
public void setEpochs(int value){ epochs=value;}

public int  getNodes(}{ return nodes;}
public void setNodes(int value){ nodes=value;}

public int  getType() { return type;}
public void setType(int value){ type=value;}

public static void main(String[] args)

{
}

new Effect(});
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// Program # 4

/{EffectSetup.Java

import javax.swing.border.*;
import java.awt.*;

import java.awt.event.*;
import java.io.*;

import java.util.*;

import javax.swing.*;
import javax.swing.table.*;
impart java.text.*;

/** The EffectSetup class is the GUI to set up the Effect
¥

public class EffectSetup extends JFrame implements ActionListener{

Effect effect;

static EffectSetup instance=null;

private JCheckBox monthEffectCheckBox = new JCheckBox("Month-Of-Year");
private JCheckBox weekdayEffectCheckBox = new JCheckBox("Weekday");
private JCheckBox hourEffectCheckBox = new JCheckBox("Hour-Of-Day"});
private JCheckBox weekendEffectCheckBox = new JCheckBox{"Weckend");
private JCheckBox tempratureEffectCheckBox = new JCheckBox("Temperature");

private JCheckBox windEffectCheckBox= new JCheckBox("Wind Velocity");

private JButton okButton = new JButton("Ok");
private JButton cancelButton = new JButton("Cancel");

ll#
* Constructor
¥/
EffectSetup( Effect effect){
this.effect=effect;
Insets ins| = new Insets(5,5,5,5);
Insets ins = new Inscts(0,0,0,0);

setTitle("Effects Setup™);
Font font = new Font ("Dialog”, Font.BOLD, 12};

weekdayEfectCheckBox.setSelected(effect.getWeekdayEfTect()).
weekendEffectCheckBox setSelected(efTect.getWeekendEffect());
monthEffectCheckBox.setSelected(effect.getMonthEffect());
tempratureEffectCheckBox.setSelected(effect.get TempratureEffect());
hourEffectCheckBox.setSelected{effect.getHourEffect());
windEffectCheckBox.setSelected(effect.zet WindEffect());

JPanel effectPane = new JPancl(new GridBagLayout(});
effectPane.setBorder{new TitledBorder(™"));
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MyUtility.makeGbComp(cffectPane,tempratureEffectCheckBox
.MyUtiIity.WEST,MyUtiIity.NONE,0,0, 1,1,1.,0.,ins);

MyUlility.makeGbComp(effectPane,windEffectCheckBox,MyUtility.WEST,MyUtility.NONE,O, )
,1,1,1.,0.,ins);

MyUtility.makeGbComp(effectPane,hourEff‘ectCheckBox,MyUtility.WEST,MyUtility.NONE,O,Z
,1,1,1.,0,,ins);

MyUtility.makeGbComp(effectPane,weekdayEffectCheckBox,MyUtiIity.WEST,MyUtiIity.NON
E.0,3,1,1,1.,0.,ins);

MyUtility.makeGbComp(effectPane,weekendEffectCheckBox.MyUtility.WEST,MyUtility.NON
E,0,4,1,1,1.,0.ins);
MyUtility.makeGbComp(effectPane,mothffectCheckBox,
MyUtility.WEST,MyUtility.NON E.0,5,1,1,1.,0.,ins);

JPanel buttonPane = new JPanel();
buttonPane.add(okButton);
buttonPane.add{cancelButton);

JLabel titleLabel=new JLabel("Effects Setup™);
titleLabel.setFont{new Font ("SansSerif", Font.BOLD, 20));
JPanel wholePane = new JPanel(new GridBagLayout());

MyUtility.makcGbComp(who!ePane,titchabeLMyUti|ity.C,MyUtility.NON E,0,0,1,1,0.,0.,ins1);
MyUtility.makeGbComp(wholePane,effectPane,MyUtility.C.MyUlility.BOTH,O, 1,1,1,1.,0.,ins1);

MyUtility.makeGbComp(wholePane,buttonPane.MyUtiIity.C,MyUtility.BOTH,O,ZZ, 1,1,1.,0.,ins1);
okButton.addActionListcner(this);
cancelButton.addActionListener(this);
addWindowListener(new windowAdapter() {
public void windowClosing(WindowEvent €) {

dispose();
}

);
getContentPane().add(wholePane);
setSize(300,300);
MyUlility.centerWindow(this);
setVisible(true);

}
l*t
* [nvoked when an action occurs
*/

public void actionPerformed{ActionEvent evt){
Object obj = evt.getSource();
if (obj == cancelButton){ //close the window
dispose();
!
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if (obj == okButton){
if{setParamater()) dispose();
}

public boclean setParamater(){
int nodes=0;
int epochs=0;
double rate=0;
double alpha=0;
int type=1;

effect.setWeekdayEffect(weekdayEffectCheckBox.isSelected());
effect.setWeekendEffect(weekendEffectCheckBox.isSelected());
effect.setMonthEffect(monthEffectCheckBox.isSelected());
effect.setTempratureEffect(temprature EffectCheckBox.isSelected());
effect.setHourEffect(hourEffectCheckBox.isSelected());
effect.setWindEffect(windEffectCheckBox.isSelected());

return true,
}
j#*

*Stand alone application entry point
*

public static void main(String [] arg){
new EffectSetup(new Effect());

}

L
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/IPr_ogram #5

/{Forcaster.Java

import java.io.*;
import java.util.*;
import java.awt.*;
import javax.swing.*;
import java.text.*;
import java.util.Date;
import java.math.*;

/** The Forecaster class is the forecast engine

w4y

public class Forecaster {

Effect cffect;
NeuralNetwork nn;

String[][] trainingSet;
double[] trainingActual;
double[] trainingResult;

String[]{] testSet;
double[) testActual;
double[] testResult;

String[]{] predictSet;
double[] predictResult;

double[) trainingTime;
double[] testTime;
double[] predictTime;

String [} training TimeString;

String [} testTimeString,;

String [] predictTimeString;

double tolerant = 0.0005;

public void setTrainingSet(String[][] dataSet){
trainingSet=dataSet;

}

public void setTestSet(String[][] dataSet ) {
testSet=dataSet;
}

public void setPredictSet(String[][] dataSet ) {
predictSet=dataSet;
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}

public Forecaster{Effect effect){
this.effect=effect;

}

public Forecaster(Effect effect, String[}{] dataSet) {
this.effect=effect;
this.trainingSet=dataSet;

void training() throws Exception{
double  rale = effect.getRate();
double  alpha = effect.getAlpha();
double sample = effect.getSample();

int epochs = effect.getEpochs();
int nodes = effect.getNodes();
int type=effect.getType();

double[]{] inputValues =DataSetFactory.createlnputSet(effect,trainingSet);
double[][] outputValues=DataSetFactory.createOutputSet(lrainingSet);
double[] indexValues =DataSetFactory.createlndexSet(trainingSet);
trainingTime =DataSetFactory.createTimeSel(trainingSet);

trainingTimeString =DataSetFactory.getTimeString(trainingSet);

DataSet ds=new DataSet(indexValues,trainingTime,inputValues,outputValues),
ds.normalize(0,1,0,1);

nn=new NeuralNetwork(ds,type,nodes,epochs,rate,alpha,tolerant);

nn.train();
trainingResult=ds.getPredictCol(0);

trainingActual =new double[outputValues.length];
for(int i=0;i<outputValues.length;i++)
trainingActual[i}=outputValues[iJ[0];

H

void testing() throws Exception{
double[][] inputValues =DataSetFactory.createlnputSet(effect,testSet);
double[1{] outputValues=DataSctFactory.createOutputSet(testSet);
double[} indexValues =DataSetFactory.createlndexSet{testSet);
testTime =DataSetFactory.createTimeSet{testSet);
testTimeString =DataSetFactory.getTimeString(testSet);

DataSet ds=new DataSet(indexValues,test’I‘ime,inputValues,outputValues);

ds.normalize(0,1,0,1);
nn.setDataSet(ds);
nn.predict();
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testResuit=ds.getPredictCol(0);

testActual =new double[outputValues.length];
for(int i=0;i<outputValues.length;i++)
testActual[i}=outputValues{i][0];

void predict() throws Exception{
double[][] inputValues =DataSetFactory.createlnputSet(effect,predictSet);
double(] indexValues =DataSetFactory.createlndexSet(predictSet);
predictTime =DataSetFactory.createTimeSet(predictSet);
predictTimeString =DataSetFactory.getTimeString(predictSet);

double[][] outputValues= new double[inputValues.length][1];
DataSet ds=new DataSet(index Values,predictTime,inputValues,outputValues);

ds.normatize(0,1,0,1):
nn.setDataSet(ds);

nn.predict();
predictResult=ds.getPredictCol(0);

for (int i=0;i<predictResult.fength;i++ )

{
}

System.out.println("i="+predictResult{i]);

void displayTraining() throws Exception{
if{trainingResult ==null) throw new Exception(“Network not trained");
String title="Training Results";
String label="Training Load";

new
GraphicDisplay(title,label training TimeString,trainin eTime,trainingActual trainingResult);

}

void displayTesting() throws Exception{
if{testResult ==null) throw new Exception("Network not predicted"),
String title="Testing Results";
String label="Predicted Load";
new GraphicDisplay(title,label,test TimeString,test Time,testActual testResult);

void displayPredicted() throws Exception{
iffpredictResult ==null) throw new Exception("Network not predicted");
String title="Predicted Load™;
String label="Predcited Data";
new GraphicDispIay(title,labeI,predictTimeString,predictTime,predictResuIt);

i
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//Program # 6

//GraphicDisplay.Java

import java.awt.*;

import java.awt.Colar;
import java.awl.event.*;
import java.io.*,

import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.table.¥;
import java.text.*;

import java.sql.*;

import java.util.Date;
import java.math.*;

/** The GraphicDisplay class is the GUI to display result

*/

public class GraphicDisplay extends JFrame implements ActionListener{

private String applD = “TddReporter”;
final double DISTANCE=60*60*24./5;

private JButton viewButton
private JButton cancelBution

String  start =nuli;
String end = null;
String xlabel = "Time",;
String ylabel = "Load";

Object[]f] data=null;
double []x=null;
double [] x1=null;
double [] x2=nuli;
double [} yt=null;
double [J y2=null;

String title=null;;

String label=null;

Vector display=new Vector();

JPanel plotPane;

Object]] columnNames=null;

PlotAxis plotAxis;

String timeString[];

/** Construct a TddReporter

*f

public GraphicDisplay (String title,
y1[}.double y2[}) {

this.timeString=timeString;
this.x=X;
this.yi=yl;

! For

= new JButton("Tabular View"),
= new JButton("Close™);

String label, String [] timeString, double x[].double
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this.y2=y2;
this.title = title;
this.label = label;

setTitle(title);
Font font = new Font ("Dialog", Font.BOLD, 12);

plotPane =new JPanel(new BorderLayout(});
JPanel root = new JPanel(new GridBagLayout(});
Insets ins = new Insets{0,0,0,0);

Insets ins] = new Insets(10,0,0,0);

Insets ins2 = new Ensets(3,10,5,10);

JLabe! subTitleLabel = new JLabel(title);

subTitleLabel.setFont(new Font("SansSerif", Font.BOLD, 22)};

MyUtility.makeGbComp(root,
subTitleLabel,MyUtility.C,MyUtility. NONE,0, 1,1, 1,0.,0.,ins2);

JPane! control = new JPanel(new GridBagLayout());
control.setBorder(new TitledBorder(""});

plotPane.setBackground(Color.white);

JPanel command = new JPanel(new GridBagLayout());
command.setBorder(new TitledBorder(""));

MyUtility.makeGbComp(command,viewButton,MyUtiIity.WEST,MyUtiIity.NON E.0,0,1,1,.0,.0,
new Insets(0,5,0,5));

MyUtility.makcGbComp(command,cancelButton.MyUtilily.W EST,MyUtility.NONE,3,0,1,1,.0,.0
,Jnew Insets(0,5,0,5));

JPanel legendPane=new JPanel(new GridBagLayout());

JLabel legend! = new JLabel(" Actual Load ");
legend! setFont(new Font("Serif”, Font.ITALIC, 12)};
legend].setForeground(Color.black);

JLabel legend2 = new JLabel(" "+label);
legend2.setFont(new Font("Serif", Font.ITALIC, 12));
IegendZ.setForeground(Color.red);

MyUtility.makeGbComp(legendPane, legend 1,MyUtility. CENTER,
MyUtility. NONE,0,0,1,1,0.,.0,ins2);
MyUtility.makeGbComp(lcgendPane, legend2, MyUtility. CENTER,

MyUtility.NONE, 1,0,1,1 ,0.,.0,ins2);

MyUtility.makeGbComp(root, plotPane, MyUtility. CENTER,
MyUtility.BOTH,0,3,1,1,1.,1 .0,ins2};
MyUtility.makeGbComp(root, ) legendPane, MyUtility. CENTER,

MyUtility. NONE,0,4,1,1 ,0.,.0,ins2);
MyUtility.makeGbComp(root,
MyUtility. NONE,0,5,1,1,0.,.0,ins2);

command,MyUtility. CENTER,
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plotChart("",x,y1,y2);
cancelButton.addActionListener(this);
viewButton.addActionListener(this);
getContentPane().add(root);

pack();

setVisible(true);
MyUltility.centerWindow(this);

public GraphicDisplay (String title, String label, String (] timeString, double x{],double y1{] ) {
this.timeString=timeString;
this.x=x;
this.y1=y1;
this.title = title;
this.label = label;

setTitle(title);
Font font = new Font ("Dialog”, Font.BOLD, 12}

plotPane =new JPanel(new BorderLayout()};
JPanel root = new JPanel(new GridBagLayout(});
Insets ins = new Insets(0,0,0,0);

Insets ins] = new Insets(10,0,0,0);

Insets ins2 = new Insets(5,10,5,10);

JLabel subTitleLabel = new JLabel(title);
subTitleLabel.setFont(new Font("SansSerif", Font. BOLD, 22));
MyUtility.makeGbConip{root,

subTitleLabel MyUtility.C,MyUtility. NONE,0,1, 1,1 ,0..0.,ins2);

JPanel control = new JPanel(new GridBagLayout());
control.setBorder(new TitledBorder(""));
plotPane.setBackground(Color.white); &

JPanel command = new JPanel(new GridBagLayout());
command.sctBorder(new TitledBorder(""});

MyUtiIity.makcGbComp(command,vichutton.MyUtilily.WEST.MyUtility.NON E.0,0,1.1..0..0,

new Inscts(0,5.0,5));

MyUtility.makeGbComp(command,cancelButton,MyUtiiity.WEST.MyUtility.NON E3,0,1,1,.0,.0

,new Insets(0,5,0,5));

JPane! legendPane=new JPanel(new GridBaglLayout());

JLabe! legend1 = new JLabel(" Actual Data ™);
legend setFont(new Font("Serif”, Font.ITALIC, 12))
legend1.setForeground(Color.black);

JLabe! legend2 = new JLabel(" "+abel);
legend2.setFoni(new Font("Serif*, Font.ITALIC, 12));
legend2.setForeground(Color.red);
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MyUtility. makeGbComp(legendPane,
MyUtility. NONE,0,0,1,1,0.,.0,ins2);

MyUtility.makeGbComp{legendPane,
MyUtility. NONE, 1,0,1,1,0.,.0,ins2});

MyUtility.makeGbComp(root,
MyUtility.BOTH,0,3,1,1,1.,1.0,ins2);

MyUitility.makeGbComp(root,
MyUtility.NONE,0,4,1,1,0.,.0,ins2);

MyUtility.makeGbComp(root,
MyUtility. NONE,0,5,1,1,0.,.0,ins2);

plotChart{"",x,y1);

cancelButton.add ActionListener(this);

viewButton.addActionListener(this);

getContentPane().add(root);

pack();
setVisible(trug);
MyUrtility.center Window(this);
}
/**
Implement the ActionLister interface
+f

public veoid actionPerformed(ActionEvent €) {
String s = e.getActionCommand(});
if (s.equals("Close™)){

try{
if{display!=null)

legend [, MyUtility. CENTER,

legend2, MyUtility. CENTER,
plotPane, MyUtility. CENTER,
legendPane, MyUtility. CENTER,

command,MyUtility. CENTER,

for(int i=0;i<display.size();i++)
if (display.elementAt{i)!=null)

dispose(};

catch(Exception ex}{}

}
if (s.equals("Tabular View")){

((JFrame)display.elementAt(i)).dispose();

selCursor(Cursor.gelPredeﬁnchursor(Cursor.WAIT_CURSOR));
Object[][] data =new Object{x.length]{4];

double totalError=0;

for( int i=0;i<data.length;i++){
data[i]{0)=timeString[i];
data[i]{1]=""+(int)y I[i};
data[i][2]=""+(int)y2[i]:

doubtle error=(y2[i]-y1{i])*100/y1{il;

data[i]{3]=""+(int)error,

totalError+=Math.abs(error);
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System.out.println("Average error= "+totalError/data.length);

Object[] columnNames={"Time","Actual Load" label," Error%"}

new TableView(title,data,columnNames);

setCursor(Cursor.getPredefinedCursor(Cursor, DEFAULT_CURSOR});

public void plotCurveChart(String title) {
try {
Plot plot = new Plot(x1, true);
PlotSeries ps = plot.addSeries(y1};
ps.setSymbol(faisce);
ps.setColor(Color.black);
plotAxis = new PlotAxis(plot.title ,xlabel ,ylabel);

plotPane.removeAll();
plotPane.add(plotAxis);
plotPane.validate();

catch(Exception ex){ -
System.out.println(ex.getMessage());
ex.printStackTrace();

}

}

public void plotChart(String title,double[]x,double{} y1,double[]y2) {
wry {
i Plot2 p = new Plot2(x,true);
if(x!=null && x.length>0){
PlotSeries ps! = p.addSeries(x,y1);
ps1.setSymbolSize(2),
psl.setColor{Color.black);

ifix!=null && x.length>0){
PlotSeries ps2 = p.addSeries(x,y2);
ps2.setSymbolSize(2);
ps2.setColor(Color.red);

}

plotAxis = new PlotAxis(p,title ,xlabel ,ylabel);

plotPane.removeAll();
plotPane.add(plotAxis);
plotPane.validate();

catch(Exception ex){
System.out.printin(ex.getMessage());
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ex.printStackTrace();

}
}

public void plotChart(String title,double[]x,doublef) y1) {

try {
Plot2 p = new Plot2(x,true),

ifixI=null && x.length>0){
PlotSeries ps2 = p.addSeries(x,y1):
ps2.setSymbolSize(2);
ps2.setColor(Color.red);

}

plotAxis = new PlotAxis(p,title ,xlabel ,ylabel);

plotPane.removeAll();
plotPanc.add(plotAxis);
plotPane.validate();

catch(Exception ex){
System.out.printin(ex.getMessage());

ex.printStack Trace();

}
}

public void plotBarChart(String title) {

try {
Plot2 p = new Plot2(x,true);

if(x!=null && x.Jength>0}{
PlotSeries psl = p.addSeries(x,y1);

psl.setSymbolSize(2);
psl.setBarChart{true),

psl.setColor(Color.black);
}

if(x!=null && x.length>0){
PlotSeries ps2 = p.addSeries(x,y2);
ps2.setBarChart(true);
ps2.setSymbolSize(2);

ps2.setColor(Color.red);
}

plotAxis = new PlotAxis(p,title ,xlabel .ylabel);

plotPane.removeAll(),
plotPane.add(plotAxis);
plotPane.validate();

catch{Exception ex){
System.out.println(ex.getMessage());

ex.printStackTrace();

}
}
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public void nodata(){
plotPane.removeA!l();
plotPane.setBackground(Co!or.white);
plotPanc.va!idate();

JOption Pane.showMessageDialog(this,

“There is no data available for this time
period.”,

"Warning Message", JOptionPanc.WARNING_MESSAGE);
repaint();

/*Stand alone application entry point
*

public static void main(String [] arg){
String host="localhost*;
if{arg.length>0) host= arg[0];
// new GraphicDisplay();
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{Program # 7

//MyUtility.Java

import java.awt.*;

import java.util.*;

import javax.swing.*;
import javax.swing.border.*;
import javax.swing.table.*;
import javax.swing.text.¥;
import java.text.*;

/** The MyUtility is utility class
*/

public class MyUtility {

public static final int FONTSIZE = 10; //these const could be put into a interface and let this
class

public static final int PAGEWIDTH = 1024;7/implement it and share it with other classes

public static final int PAGEROWS = 35;

public static final int XINITIAL = 30;.

public static final int YINITIAL = 30;

public static final int CENTER = GridBagConstraints. CENTER;
public static final int WEST = GridBagConstraints. WEST;

public static final int SOUTHWEST = GridBagConstraims. SOUTHWEST,
public static final int SOUTH = GridBagConstraints,. SOUTH,;

public static final int SOUTHEAST = GridBagConstraints.SOUTH EAST;

public static final int EAST = GridBagConstraints.EAST;

public static final int NORTHEAST = GridBagConstraints. NORTHEAST;
public static final int NORTH = GridBagConstraints. NORTH;

public static final int NORTHWEST = GridBagConstraints. NORTHWEST,
public static final int BOTH = GridBagConstraints. BOTH,

public static final int NONE = GridBagConstraints. NONE;

public static final int HORIZONTAL = GridBagConstraints. HORIZONTAL,;
public static final int VERTICAL = GridBagConstraints. VERTICAL;

public static final int REMAINDER = GridBagConstraints. REMAINDER;

public static final int RELATIVE = GridBagConstraints. RELATIVE;

public static final int C = GridBagConstraints. CENTER;
public static final int W = GridBagConstrainis. WEST;

public static final int SW= GridBagConstraints. SOUTHWEST;
public static final int S = GridBagConstraints.SOUTH;

public static final int SE= GridBagConstraints. SOUTHEAST;,
public static final int E = GridBagConstraints.EAST;

public static final int NE= GridBagConstraints NORTHEAST,;
public static final int N = GridBagConstraints NORTH;

public static final int NW= GridBagConstraints. NORTHWEST;
public static final int B= GridBagConstraints.BOTH;

public static final int H= GridBagConstraints. HORIZONTAL;
public static final int V. = GridBagConstraints. VERTICAL;

public static Color[] colors = {
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Color.red, Color.black, Color.blue, Color.cyan, Color.gray,
Color.orange, Color.pink, Color.yeliow, Color.white, Color.lightGray,
Color.darkGray, Color.green, Color.magenta};

f** an array of string to represent the color

*

public static String{] colorStrings = {
"red”, "black”, "blue”, "cyan", "gray",
“orange”, "pink", "yellow", "white", "lightgray",
"darkgray"”, "green"”, "magenta”};

/** convenient method to put component into gridbag layout

¥/

public static void makeGbComp(Container cont, Component comp, int X, int y, int w, int h,
double weightx, double weighty, Insets ins){

GridBagLayout gbl = (GridBagLayout) cont.getLayout();
GridBagConstraints ¢ = new GridBagConstraints();

¢.fill = GridBagConstraints.BOTH;
c.gridx = x;

c.gridy =y;

c.gridwidth = w;

c.gridheight = h;

c.weightx = weightx;

c.weighty = weighty;

c.insets = ins;

cont.add{comp);
gbl.setConstraints(comp, ¢);

}

/** convenient method to put component into gridbag layout
*/
public static void makeGbComp(Container cont, Component comp, int anchor, int fill, int x, int y,

intw, inth,

double weightx, double weighty, Insets ins){

GridBagLayout gb! = (GridBagLayout} cont.getLayout();
GridBagConstraints ¢ = new GridBagConstraints(};

c.fiil = GridBagConstraints. BOTH;
c.gridx = x;

c.gridy=v;

c.gridwidth = w;

c.gridheight = h;

c.weightx = weightx;

c.weighty = weighty;

c.insets = ins;

c.anchor = anchor;

c.fill = fill;

cont.add{comp);
gblsetConstraints{comp, c);

}
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/+* convenient method to put component into gridbag fayout
*

public static void makeGbComp(Container cont, Component comp. int anchor, int fill, int x, int ¥,

int w, int h,
double weightx, double weighty, Insets ins, int ipadx, int ipady){

GridBagLayout gb! = (GridBagLayout) cont.getLayout();
GridBagConstraints ¢ = new GridBagConstraints(},

c.fill= GridBagConstraints.BOTH;
c.gridx = x;

c.gridy =y;
c.gridwidth = w;
c.gridheight =h;
¢c.weightx = weightx;
c.weighty = weighty;
c.insets = ins;
c.anchor = anchor;
c.fill = fill;

c.ipadx = ipadx;
c.ipady = ipady;

cont.add(comp);
gbl.selConstmims(comp, c);

}

/+* convenient method to put component into gridbag layout
*

double weightx, double weighty){

GridBaglLayout ghl = (GridBagLayout) cont.getLayout();
GridBagConstraints ¢ = new GridBagConstraints();

cfill = GridBagConstraints.BOTH;
c.pridx = X5

c.eridy =Y,

c.gridwidth=w;

c.pridheight = h;

c.weightx = weighix:

c.wcighty = weighty;

cont.add(comp);
gbl.setConstraints(comp, c);

/** center the window on the screen

*/

public static void centerWindow(Window window){
int sW = Toolkit.gclDefaultToolkit().getScreenSize().width;
int sH= Toolkit.gclDcfaultToolkit().getScreenSize().height;
inth= window.getSize().height;
intw= window.gelSize().width;
window.setLocation(((int)sWQ)-((int)wa),((int)sH/Z)-((inl)hf2));

public static void makeGbComp(Container cont, Component comp, int x, int y, int w, int h,
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}

public static String toDateSiring(java.sql. Timestamp tsH
String s = ts.toString();
Stringy = s.substring(0,4);
Stringm = s.substring(5,7);
Stringd = s.substring(8,10);
return m+"/"+d+"/"+y;

}

public static String toTimeString(java.sql. Timestamp ts)}{
String s = ts.toString();
String h = s.substrinz(l 1,13)
String n = s.substring( 14,16);
String sr = h":"+u;
if (sr.equals("00:00")) return .
else return sr,

public static Color getColor(String s){ -
for (int i=0; i<colors.length; i++) {
if (s.toLowcrCase().equals(colorStrings[i])) return colors{il;

return Color.black;

/** get Color object based on index
*/
public static Color getColur(int i){
if (i>=0 && i<colors.length) return colors[ik
return Color.black;

}

/** a method return a string from a Timestamp based on a certain format-
*
public static String toString(java.sql. Timestamp ts){

String s = ts.toStrine();

Stringy = s.substring(0,4);

Stringm = s.substring(5,7)

String d = s.substring(8,10);

String h = s.substring(| 1,13);

String n = s.substrinu(14,16);

retum mA" gy S
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{{Program # 8

//NetworkSetup.Java

import javax.swing.border.*;
import java.awt.*;

import java.awt.event.*;
import java.io.*;

import java.util.*:;

import javax.swing.*;

import javax.swing.table.*;
import java.text.*;

/** The class NetworkSetup is the GUI to set up the network
paramaters

v/
public class NetworkSetup extends JErame implements ActionListener{

Effect effect;
static NetworkSetup instance=null;
private JTextField nodeText = new JTextField(8};
private JTextField rateText = new JTextField(8);
private JTextField alphaText new JTextField{8};
private JTextField epochsText= new JTextField(8):
private JRadioButton linearRadio=new JRadioButton("linear");
private JRadioButton nonlinearRadio=new

JRadioButton ("nonlinear”);
private JButton okButtoen
private JButton cancelButton

i

new JButton{"Ok");
new JButton{"Cancel"};

1

/**
* Constructor

*/

NetworkSetup{ Effect effect){
this.effect=effect;
Insets insl = new Insets(5,5,5,5):
Insets ins = new Insets(0,0,0,0};

setTitle{"Network Setup"}:
Font font = new Font ("Dialog", Font.BOLD, 12});

ButtonGroup typeGroup = new ButtonGroup{);
typeGroup.add(linearRadio);
typeGroup. add(nonlinearRadio);

if (effect.getType()==0} linearRadio.setSelected(true);
else nonlinearRadio.setSelected{true};

nodeText .setText {""+effect.getNodes ()]
epochsText.setText(""+effect.getEpochs());
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alphaText.setText("“+effect.getAlpha());
rateText.setText(“"+effect.getRate());

JPanel parameterPane = new JPanel {new GridBagLayout(});

parameterPane.setBorder(new TitledBorder (""));

MyUtility.mnkeGbComp(parameterPane,new JLabel {"Hidden
Units: ") ,MyUtility.WEST,MyUtility.NONE,0,0,l,1,0.,0.,ins);

MyUtility.makeGbComp(parameterPane,nodeText,MyUtility.WEST,MyUtil

ity.NONE,1,0,1,1,0.,0.,ins);
MyUtility.makeGbComp(parameterPane,new JLabel ("Learning

Rate: "} ,MyUtility.WEST,MyUtility.NONE,0,1,1,1,0.,0.,ins);

MyUtility.makeGbComp(parameterPane,rateText,MyUtility.WEST,MyUtil
ity.NONE,1,1,1,1,0.,0.,ins8}; ' )
MyUtility.makeGbComp(parameter?ane,new JLabel ("Alpha:
"),MyUtility.WEST,MyUtility.NONE,O,2,1,1,0.,0.,ins};

MyUtility.makeGbComp(parameterPane,alphaText,MyUtility.WEST,MyUti

lity.NONE,l,Z,l,l,O.,O.,ins);
MyUtility.makeGbComp(parameterPane,new JLabel {"Epochs: ")

,MyUtility.WEST,MyUtility.NONE,0,3,1,1,0.,0.,ins);

MyUtility.makeGbComp(parameterPane,epochsText,MyUtility.WEST,MyUt

ility.NONE,l,B,l,1,0.,0.,ins);
MyUtility.makeGbComp(parameterPane,new JLabel ("Output
Activation: "} ,MyUtility.WEST,MyUtility.NONE,0,4,2,1,0.,0.,ins);

MyUtility.makeGbComp(parameterPane,linearRédio,MyUtility.WEST,MyU
tility.NONE,O,S,l,1,0.,0.,ins);

MyUtility.makeGbComp(parameterPane,nonlinearRadio,MyUtiliEy.WEST,
MyUtility.NONE,l,S,1,1.0.,0.,ins); '

JPanel buttonPane = new JPanel({);
buttonPane.add (ckButton};
buttonPane,add(cancelButton);

JLabel titlelLabel=new JLabel ("Network Setup");
titleLabel.setFont {new Font ("SansSerif", Font.BOLD, 20}}:
JPanel wholePane = new JPanel {new GridBagLayout{}):

MyUtility.makeGbComp(wholePane,titleLabel,MyUtility.C,MyUtility.N
ONE,0,0,l,l,O.,O.,insl):

i
MyUtility.makeGbComp(wholePane,parameterPane,MyUtility.C,MyUtilit
y.BOTH,O,l,l,l,1.,0.,insl);

MyUtility.makeGbComp(wholePane,buttonPane,MyUtility.C,MyUtility.B
0TH,0,2,1,1,1.,0.,insl);

okButton.addActionListener(this);
cancelButton.addActionListener{this);
addWindowListener (new WindowAdapteri) {

public void windowClosing (WindowEvent e) {
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dispose(};
}

b);
getContentPane().add(wholePane);

setSize {300,300);
MyUtility.centerWindow(this);
setVisible{true);

/**

* Invoked when an action occurs

*/

public void actionPerformed(ActionEvent evt) {
Object obj = evt.getSource(};
if {obi == cancelButton}{ //close the window
disposel():
}
if (obj == okButton} {
if(setParamater()) dispose();

}

public boolean setParamater () {

int nodes=0;
int epochs=0;
double rate=0;
double alpha=0;

tryl
nodes =
Integer.valueOf(nodeText.getText()).intValue();
epochs =

Integer.valueOf(epochsText.getText()).intValue();

rate=Double.valueOf(rateText.getText()).doubleValue();

alpha=Double.valueOf(alphaText.getText()).doubleValue();
if (rate<Q | {alpha>l t talpha<0} {
JOptionPane.showMessageDialog{this, "Rate or

alpha format error "y
return false;
}
}

catch{ NumberFormatException el {
JOptionPane.showMessageDialog(this, vInvalide

input data "};
return false:

}

int type=1l:
if(linearRadio.isSelected(}) type=0;
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else {
MyUtility.makeGbComp(this,new JLabel{""+p.xMin),
MyUtility.NW,MyUtility.NONE,3,p.nyTicks+3,l ,1,.5,0,,ins);
MyUtility.makeGbComp(this,new JLabel(""+p.xMax},

MyUtil ity.NE,MyUtility. NON E,3+p.nxTicks,p.nyTicks+3,1, 1,.5,0.,ins});
}

for (int i=1 ;i<p.nxTicks;i++) {
double d = p.xMin+(double)i*p.xTick;

if (p.xIsTime) {
java.sql.Timestamp ts} = new java.sql. Timestamp ((long)d*1000);

String xs = MyUtility.toDateString(ts 1);
MyUtility.makeGbComp(this,new JLabel(xs),
MyUtility.CENTER,MyUtility.NONE,3+i,p.ny’I‘icks+3, 1,1,1.,0.,ins);

i String xst = MyUtility.toTimeString(tsl);

" MyUtiIity.makeGbComp(this,new JLabel(xst),

) MyUliIity.CENTER,MyUtility.NON E.3+i.p.nyTicks+4.1,1.1 .0..ins);
else {

MyUtility.makchComp(this,ncw JLabel(""+d),
MyUtility.CENTER,MyUti!ity.NONE,3+i,p.nyTicks+3,I ,1,1.,0.ins)
}

}

public PlotAxis(Plot2 p, String title,String xlabel, String ylabel) {

setLayout(new GridBagLayout());
{1 add

setBackground(Color.white);

Insets ins = new Insets(1,1,1,1);

Insets ins0 = new Insets(0,0,0.0);

MyUtility.makeGbComp(this,new PlotTick(p.nxTicks,true),
MyUtility.CENTER,MyUtility.BOTH,3,p.nyTicks+2,p.nxTicks+ 1,1,.0,.0,ins0,0,0);
MyUtility.makeGbComp(lhis,new PlotTick(p.nyTicks,false),
MyUtility.CENTER,MyUtility.BOTH,2,1 ,1,p.nyTicks+i ,.0,.0,ins0,0,0);
MyUtility.makeGbComp(this,new JLabel(title),
MyUtiIity.CENTER,MyUti!ity.NON E,0,0,p.nxTicks+4,1,0.,0.,ins);

MyUtiIity.makeGbComp(this.p,
MyUtiiity.CENTER,MyUtiIity.BOTH,S, 1,p.nxTicks+1 ,p.nyTicks+I ,0.,0.,ins0);
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MyUtility.makeGbComp(this,new JLabel(ylabel},
MyUtility.EAS’I‘,MyUtility.NONE,O,l ,1,p-nyTicks+] ,-0,.0,ins);

MyUtility.makeGbComp(this,new JLabel(""+p.yMax}, ¢
MyUtility.NORTHEAST,MyUtility.NON E.1,1,1,1,0.,.5,ins); : )
MyUtility. makeGbComp(this,new J Label(""+p.yMin), ¢
MyUtility.SOUTHEAST,MyUtiiity.NON E,1,p.nyTicks+1,1,1,0.,.5,ins);
for (int i=1;i<p.nyTicks;i++) {
doubled = p.yMax-(doubIe)i‘p.yTick;
MyUtiIity.makeGbComp(this,new JLabel(""+d),
MyUtiiity.EAST,MyUtility.NONE,I,i+l,l .1,0.,1.,ins);

}

MyUtility.makeGbComp(this,new JLabel({xlabel},
MyUtility.CENTER,MyUtiIity.NONE,3,p.nyTicks+5,p.nxTicks+l .1,.1,0.,ins);

if (p.xIsTime) {
java.sql. Timestamp ts1 = new java.sgl.Timestamp ((long)p.xMin*1000);
String Xs = MyUtility.toDaleString(tsI);
String xst = MyUtility.toTimeString(tsl %
MyUzility.makeGbComp(this,new ILabel(xs),
MyUiility.N W,MyUtiIity.NONE,3,p.nyTicks+3, 1,1,.5,0. ins}; -

Jfcomment out By Zhanshou May 19, we do not need hours, date will be enough

i MyUtility.makeGbComp(this,new JLabel(xst}), .
i MyUtility.NW,MyUtility.NONE,3,p.nyTicks+4,I ,1,.5,0,,ins);

ts} = new java.sql.Timestamp ((long)p.xMax*1000);
Xs = MyUtility.toDateString(ts1);

xst = MyUtility.toTimeString(tsl);
MyUtiiity.makeGbComp(this,new JLabel{xs}),

MyUtiIity.NE,MyUtility.NON E,3+p.nxTicks,p.nyTicks+3 ,1,1,.5,0.,ins};

/lcomment out By Zhanshou May 19, we do not need hours, date will be enough

!fMyUtiiity.makeGbComp(this,new JLabel{xst),
i MyUtility.N E,MyUtility.NONE,3+p.nxTicks,p.nyTicks+4,l ,1,.5,0.,ins);

else {
MyUtility.makeGbComp(this,new JLabel(""+p.xMin),

MyUtility.N W MyUtility. NON E,3,p.nyTicks+3,1,1 ,.5,0.,ins);
MyUtilily.makeGbCOmp(this,ncw JLabel(""+p.xMax),

MyUtility.N E.MyUtility.NON E,3+p.nxTicks,p.nyTicks+3,1,l,.S,O.,ins);

}

for (int i=1;i<p.nxTicks;it+) {
double d = p.xMin+(doubIe)i*p.xTick;

if (p.x1sTime) {
java.sql.Timestamp ts] = new java.sql.Timestamp ((long)d*1000);

String X5 = MyUlilily.toDatcString(!sI):
MyUlilily.makeGbComp(lhis,new JLabel(xs),
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MyUtility. CENTER,MyUtility. NONE,3+i,p.nyTicks+3,1,1,1.,0.,ins);
/fcomment out By Zhanshou May 19, we do not need hours, date will be

enough
i String xst = MyUtility.toTimeString(ts1);
/" MyUtility.makeGbComp(this,new JLabel(xst),
i MyUtility. CENTER,MyUtility. NONE,3+i,p.nyTicks+4,1,1,1.,0.,ins);
H
else {

MyUtility. makeGbComp(this,new JLabel(""+d),
MyUtility. CENTER,MyUtility. NONE,3+i,p.nyTicks+3,1,1,1.,0.,ins);
}

}
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[fProgram # 13

//PlotSeries.java

import java.awt.*;
/** the class is a line drawing tool
*/

public class PlotSeries {
double[] x=null;
double[] ¥ =nmull;
Color color = Color.blue;
boolean connect= true;
boolean symbol = true;
int  size =6;
boolean bar = false;

public PlotSeries{double[} y, boolean connect, boolean symbol) {
this.y =v;
this.connect = connect;
this.symbol = symbol;

public PlotSeries(doublef] y) {
this.y = y;
this.connect = trug;
this.symbol = true;

}
public PlotSeries(double x[].doublef] y) {
this.x = X;
thisy =y;
this.connect = true;
this.symbol = true;
}

public void setConnect(boolean connect) {
this.connect = connect;
}

public void setBarChart(boolean bar) {
this.bar = bar;
}

public void setColor(Color color) {
this.color = color;
}
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public void setSymbol{boolean symbol) {
this.symbol = symbol,
}

public void setSymbolSize(int size) {
this.symbol = true;
this.size = size;
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/{Program # 14

//PlotTick.java

import java.awt.*;

import java.util.*;

import javax.swing.*;

/** the class is a line drawing tool

*f
public class PlotTick extends JPanel {

public boolean horizontal = true;
public int nticks = 10;
pubtlic Color color = Color.black;

public static void main{String[] args){

JFrame jf = new JFrame("Horizontal");
jf.getContentPane().add(new PlotTick(10,truej);
jf.setSize(400,400};
MyUtility.centerWindow(jf);
jFsetVisible(true);

JFrame jf2 = new JFrame("Vertical™);
jf2.getContentPane().add(new PlotTick(10,false));
j12.5etSize(400,400); -
MyUtility.centerWindow(jf2});
jf2.setVisible(true);

}

public PlotTick() {
this.horizontal = true;

}

public PlotTick(int nticks) {
this.nticks = nticks;
this.horizontal = true;

}

public PlotTick(int nticks, boolean horizontal) {
this.nticks = nticks;
this.horizontal = horizontal;

}

public PlotTick(boolean horizontal) {
this.horizontal = horizontal;

}

public void paint (Graphics g) {
if (nticks==0) return;
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! gsetColor(MyUtility.getColor("white™)); ) .
# gfillRect(0, 0, getSize().width, getSize().height);

g.setColor(color);
if (horizontal) {
int tick = getSize().width/nticks;
for (int i=0; i<nticks; i++) {
g.drawLine(i*tick,0,i*tick,getSize().height);
for (int j=0; j<4; j++) {
int minor = i*tick+(j+1)*tick/5;
g.drawLine(minor,0,minor,getSize().height/4);
}
}
g.drawLinc(getSize(). width-1,0,getSize().width- I getSize().height);
else {
int tick = (getSize().height- 1 }/nticks;
for (int 1=0; i<nticks; i++) {
g.drawLine(0,i*tick,getSize().width,i*tick);
for (int j=0; j<4; j++) {
int minor = i*tick+(j+1)*tick/5;
g.drawLine(getSize().width"‘3!4,minor,getSize().width,minor);

}

} .
g.drawLine(0,getSize().height-1,getSize().width,getSize().height-1);
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/Program # 15

//TableView.java

import java.awt.*;

import java.awt.event.*,
import java.io.*;

import java.util,*;

import javax.swing.*;
import javax.swing.table.*;
import java.text.*;

import java.sql.¥;

import java.util.Daig;

/** The class TableView is a basic class that can display a two dimension data in a table.
*f

public class TableView extends JFrame implements ActionListener{
DefaultTableModel dtm;
JButton print = new JButton("Print");
JButton close = new JButton{("Close"Y;
// TableSorter sorter;
JTable table;
String title;
Font font[];
private static int MAX_NUM=5;
public TableView(String title,Object[}[] data, Object{] columnNames){
Insels ins  new lnsets(10,10,10,10);
Insets ins1 = new [nsets(5,10,5,10);
JLabel titleLabel=new JLabel(title);
titleLabel.setFont{new Font("SanSerif", Font BOLD, 22));

dtm = new DefaultTableModel();
IPanel whole = new JPancl(new GridBagLayout());
dtm.setDataVector(data, columnNames);

table = new JTable(dtm);
setAlignment{table);

JScrollPane scrollpane = new JScroltPane(table);

JPanel bottom = new JPanel(new GridBagLayout());

MyUtility.makeGbComp(bottom, print,
GridBagConstraints. CENTER,GridBagConstraints.NONE, 0, 0, 1, 1, .0, .0, insl);
MyUtility.makeGbComp(bottom, close,

GridBagConstraints. CENTER,GridBagConstraints.NONE, 1, 0, I, 1, .0, .0, insl);

MyUtility.makeGbComp(whole, titleLabel, MyUtility.C,MyUtility. NONE,0,1,1,1,0.,0.,ins1);
MyUtility.makeGbComp(whole, scrollpane,
GridBagConstraints. CENTER,GridBagConstraints.BOTH, 0, 2, 1, 1, 1.0, 1.0, ins);

Congestion Arbitration And Source Problem Prediction Using ANN In Wireless Networks 126



Appendix A (User Manual)

MyUtility.makeGbComp(whole, bottom, GridBagConstraints.CENTER,

GridBagConstraints. NONE, 0, 3, 1, 1, .0, .0, ins); *

print.addActionListener(this);
close.addActionListener(this);
getContentPane().add(whole);
pack();

MyUtility.center Window(this);
setVisible(true);

/#t

* Invoked when an action occurs
*f

public void actionPerformed{ActionEvent ¢) {
String s = e.getActionCommand();
if (s.equals("Close™))
this.setVisible(false);

private void setAlignment(JTable table){
DefaultTableCellRenderer centerRenderer = new DefaultTableCellRenderer();
DefaultTableCellRenderer rightRenderer = new DefaultTableCellRenderer();
centerRenderer.setHorizontalAlignment(JLabel. CENTERY),
rightRenderer.setHorizontal Alignment(JLabel. RIGHT);

for (int ¢ = 0; ¢ < table.getColumnCount(); c++) {

}

table.getColumnModel().getColumn(c).setCellRenderer(rightRenderer);
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//Program # 16

/fTellFuture.java

import Jjavax.swing.*;
import javax.swing.event.*;
import Javax.swing.border.*:
import javax.swing.ﬁlechooser.*;
import javax.accessibi lity.*;
import java.awt.*;
importjava.awt.event.*;
import java.util. *;

import java.io.*;

import java.applet.*;

import java.net.*;

/** The TellFuture class is the main class of the system
*/

public class TellFuture extends JPanel implements ActionListener{
TellFuture tf;
Effect effect=new Effect();;
EffectSetup effectSetup;
NetworkSetup networkSetup;
Vector inputVector;

String[][] trainingSet;
Stringf][] testSet;
String[][] predictSet;

Forecaster forecaster;
// The Frame
public static JFrame frame:

! Current uj
public String currenti)] = "Metal™,

// The width and height of the frame
public static int WIDTI = 790;
public static int HEIGHT = 550;
public static int INITIAL_WIDTH = 400;
public static jnt INITIAL_HEIGHT = 200;
static TellFuture instance;
Java.applet. Applet applet;
String dataDir = "data";
String weightsDir = "weights";

public TellFuture() {
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this{null);
}

/t***#*#******t*#*t****#t#***#*#********

Constructor
*#t***********#t**#*#*****t**t**t*#****t**,’

public TellFuture(java.applet. Applet anApplet) {

super{true);

instance = this;

applet = anApplet;

tf = this;

setLayout{new BorderLayout());

{/ Add a MenuBar

add(createMenuBar(}), BorderLayout. NORTH);

JPanel logoPanel = createLogo();

logoPanel.setBackground(Color.white);

add(logoPanel, BorderLayout. CENTER);

/**

* create Logo

*/

JPanel createLogo() {
JPanel p = new JPanel();
p.setLayout(new BorderLayout());
Imagelcon logo = loadimagelcon("images/forccastorLog. gif."Swing!");
JLabel logoLabel = new JLabel(logo);
logoLabel.getAccessibleContext().setAccessibleName("Swing!");
p.add(logoLabel, BorderLayout. CENTERY);

p.setBorder{new MatteBorder{6,6,6,6,

TellFuture.sharedInstance().loadImageicon("images/AboutBorder.gif"," About Box Border™));

return p;

}

/l****t*t*t#**t*#******!##*#ttt#**##t#*#t***/

/t#t#***#*t** create Components ##tt**t*#**#[
/*t*lltt***t*t#**#*##*‘#1*t*#t*********##t#‘*/

/4 x
* MenuBar
*f
IDialog aboutBox;
JCheckBoxMenultem cb;
JRadioButtonMenultem rb;

JMenuBar createMenuBar() {
/I MenuBar .
JMenuBar menuBar = new JMenuBar();
menuBar.getAccessibleContext().setAccessibleName("TellFuture Menus");
JMenultem mi;
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menu");

#/ “File" Menu
IMenu file = {(IMenu) menuBar.add(new JMenu("File™);
file.setMnemonic('F %

ﬁle.getAccessibleContcxt().setAccessibleDescription("Thc standard 'File* application

/"Load Training Set" Meny

mi= (JMenultem) file.add(new JMenultem("Load Training Set™));
mi.setM nemonic('T");
mi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_L,

ActionEvent.ALT_MASK));

mi.getAccessibleContext().setAcccssfbleDescription("Load the Training Set from file");
mi.addActionListener(this};

/"Load Weights* Menu

mi = ( JMenultem) file.add(new JMenultem("Load Test Set"));
mi.seanemonic('E');

mi.sctAccelerator( KcySlroke.gcchySlrokc( KeyEvent.VK_0,

ActionEvcnl.AL'l‘_MAS K»;

mi.getAccessibleContexl().setAccessib!eDescrIption("Load the Test Set from file™);
mi.addAction Listener(this);

//"Load Weights” Menu

mi= (JMenultem) file.add{new IMenultem("Load Predicted Inputs™));
mi.setMnemonic('P');
mi.selAccelerator(KeyStroke.gctKeyStrokc(KcyEvent.VK_O,

ActionEvent.ALT_MASK));

file");

3

mi.gctAccessibleConlext().sctAccessibleDescription("Load the Predicted Input from

mi.addActionListener(this);

ﬁle.addSeparator();

H"EXit" Meny
mi= (IMenultem) file.add(new IMenultem("Exit"));
mi.setMnemonic('x'); )
mi.getAccessibleContext().setAccessx'bleDescription("Ein the TellFuture application");
mi.addActionListener(new ActionListener() {

public void actionPerf'ormed(ActionEvent €) {
System.exit(0); ’

/f Setup Menu

JMenu setup = (JMenu) menuBar.add(new JMenu("Setup"));
setup.setMnemonic(’S');
setup.getAccessibleContextO.setAccessibleDescription("Set up");

mi= (JMenultem) setup.add(new JMenultem("Network Setup"));
mi.setM nemonic("N");
mi.setAcceferator(KeyStroke.getKeySlroke(KeyEvent.VK_N,

ActionEvem.ALT_MASK));
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mi.getAccessibIeContexr().setAccessibleDescription("");
mi.addActionListener(this);

mi= (JMenultem) Setup.add(new JMenu!tem("Effect Setup™):
mi.setM nemonic('E'):
mi.sclAccclcralur(KcySlrokc.gcchySlrokc( Kcy!;‘vcnl.VK_E.

ActionEvent. A LT_MASK));
mi.gctAccessiblcCon(cxt().sctAccessibchcscription( "
mi.add/\ctionLislcncr(lhis);

// Run Menu

JMenu run = (JMenu) MmenuBar.add(new JMenu("Run"));
un.setMuemonic('R");

run.getAccessibIeConlext().setAccessibleDescription("");

mi=( IMenultem) run.add(new JMenultcm("Training"));
mi.setMnemonic("P);

mi.setAccelerator(KeyStroke.getKeyS_troke( KeyEvent.VK_T,
ActionEvent. ALT MASK));

mi. getAccessiblcConlext().serAccessibleDescri ption("");
mi.addAction Listcncr(this);

mi = (JMenultem) run.add(new JMenuIIem("Testfng"));
mi.setMncmonic('E');

mi.selAccelemtor(KeyStroke.gethyStroke(KeyEvent.VK_P,
ActionEvent. ALT MASK)y;

mi.getAcccssibleConlexl().sclAccessibchescription("");
mi.addActionListener(this);

mj= (JMenultem) run.add(new JMenuItem("Predict"));
mi.setMnemonic('P');

mi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK__P,
ActionEvent. A LT__MASK));

mi. getAccessibleContext().setAccessibleDescription( ",
mi.addActionListener(this);

// Display Menuy

JMenu display = (JMenu) menuBar.add(new JM enu( "Display"));
display.setMnemonic('D');
display.getAccessibieContext().setAccessi bleDescription( "y

mi= {(IMenultem) display.add(new JMenultem("DispIay Training Results™));

mi.setMncmonic(‘T');

mi.setAccelerator(KeyStroke.getKe);Stroke(KeyEvent.VK_T,
ActionEvent, ALT MASK));

mi.gctAccessibleComcxl().selAccessibleDescription("");
mi.addActionListener(this);

mi= (JMenuItem) display.add(new JMenultem("Display Testing Results"));

mi.setMnemonic('P’);

mi.setAcceferator(KeyStroke.getKeyStroke(KeyEvent. VK _P,
ActionEvent.ALT_MASK));

mi.getAccessi b!eContext().setAccessibleDescription( "™

mi.addAcIionListener(this);

mi= (JMenultem) display.add(new JMenuIIem("Display Predicted Resuits"y);
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mi.setMnemonic('P');
mi.setAccclerator(KeyStroke.getKeySlroke(KeyEvent.VKﬁ_P,

ActionEvent.ALT_MASK));
mi.getAccessibIeContext().setAccessibleDescription("");
mi.addActionListcner(this);

/ Help Menu

JMenu help = (IMenu) menuBar.add(new JMenu("Help"));
help.setMnemonic('H";
heIp.gelAcccssibleContexI().sctAccessibleDescription("");

/"Help" Menu
mi= (JMenultem) help.add(new J Menultem(” About TellFuture™));
mi.setMnemonic('A');
mi.gctAcccssibleContext().sctAccessibleDescription("Find out about the TellFuture
application");
mi.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e){
iffaboutBox == null) {
aboutBox = new
JDIang(TellFuture.sharedInstance().getFrame(), “About TellFuture”, false);
JPanel groupPanel = new J Panel(new BorderLayout());
Imagelcon groupPicture =
loadlmagelcon("Images/aboutTeIlF uture. gif”,
"TeilFuture");
aboutBox.getContentPane().add(groupPanel,
BorderLayout.CENTER);

JLabel grouplabe| = (new JLabeI(groupPicture));
grcupLabe!.gctAccessibleContext().sctAccessibleName("TellFuture Copyright");
groupLabel.gctAccessibleContext().setAccessibleDescription("TellFuture "%

groupPanel.add(groupLabel, BorderLayout.CENTER);

JPanel buttonPanel = new JPanel(true);

groupPanel.add(buttonPanel, BorderLayout.SOUTH);

JButton  button = (JButton) buttonPanel.add(new

JButton("OK™")):

button.addActionListener(new ActionListener() {

public void actionPerfonned(ActionEvent e) {

}

aboutBox.setVisihIe(false);

1
}
aboutBox.pack();
aboutBox.show();

|95

return menuBar;

public Imagelcon loadlmagelcon(String filename, String description) {
iflapplet == nult) {
return new Imagelcon(filename, description);
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}

else {
URL url;

try {

}
catch(MalformedURLException e){

System.crr.println(“Error trying to load image " + filename);
return null; .

url = pew URL(applet.getCodeBase(),ﬁlename);

}

return new Imagelcon(url, description);

public static TellFuture sharedlnstance() {
return instance;

publicjava.applet.Applet getApplet() {
return applet;
}

public boolean isApplet() {
return (applet 1= null);

public Container getRootComponent() {
iftisApplet())
return applet;
else

return frame;

public Frame getFrame() {
iflisAppler()) {
Container parent;
for(parent = getApplet(); parent I= py] && !(parent instanceof Frame) ; parent

= parent.getParent());
iflparent 1= null)
return (Frame)parent;
else
return null;
}
else

return frame;

public void actionPerformcd(AcEionEvent evt){

setCursor(Cursor.getPredeﬁnedCursor(Cursor. WA!T__CURSOR));
try{
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String s = evt.getActionCommand();
/Af (name.equals("File™)){
if (s.equals("Load Training Set")){

" tratningSet=loadDataSet();
}

if (s.equals("Load Test Set")){
testSet=loadDataSet(};
}

if (s.cquals("Load Predicted inputs"){
predictSet=loadPredictSet();

}

else if (s.equals("Save Weights As..."){
saveWeightsAs();
H

else if (s.equals("Effect Setup")){
showEffectSetup();
1

else if (s.equals("Network Setup™)){
showNetworkSetup();

}

else if (s.equals("Training")){
training();

else if (s.equals("Testing™)){

testing();
}
else if (s.equals("Predict™)){
predict(); )

else if (s.equals("Display Training Results")}{
displayTraining();

else if (s.equals("Display Testing Results")}{

displayTesting();

}

else if (s.equals("Display Predicted Results")){
displayPredicted();

setCursor{Cursor. getPredefinedCursor(Cursor. DEFAULT_CURSOR));

catch{Exception e){
setCursor(Cursor.getPredefinedCursor(Cursor. DEF AULT_CURSOR)),
e.printStackTrace();

public String[]{] loadDataSet() throws Exception{
JFileChooser chooser = new JFileChooser();
File dataParent = new File("./"+dataDir);
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chooser.setCurrentDirectory(dataParent);
int retval = chooser.showOpenDiang(this); *
if(retval == 0){
File theFile = chooser.getSeiectedFile();
if{theFile 1= null) {
FilelnputStream inputStream =new FichnputStream(theFile);

BufferedReader d = new BufferedReader(new
InputStream Reader(inputStream));

inputVector =new Vector();
boolean stop= true;
while (true)

String iine=d.readLine0;

if{line==nuyl) break;

if(1 ine.indexOf("-999") >1) continue;

StringTokenizer st = new StringTokenizer(li ne);

String[] data=new String(5];

int index=0;

while (st.hasMoreTokens()) {
data[index++]=st.nextToken();

}

inputVector.addElement(data);

H

}
String[]{] temp =new String[inputVector.size()][5];
for(int i=0;i<temp.length;i++){

String data[] =(String[]) inputVector.elementAt(i);

for( int J=03j<5;j++)

templi][j}=(String) data(jJ;

}

return temp;

public String[][] loadPredictSet() throws Exception{
JFileChooser chooser = new IFileChooser():
File dataParent = new File(".l“+dataDir);
chooser.setCurrentDirectory(dataParent);
int retval = chooser.showOpenDiaiog(lhis);
if(retval == M
File theFijle = chooser.getSelectedF ile();
if{theFile = null) {
FileInputStream inputStrean =pew FilclnpulSlrcam(lhcl"i!c);
BufferedReader d = new BufTeredReader(new
InputStreamReader(inputStream});
inputVector =new Vector();
boolean stop= true;
while (true)

String Iine=d.readLine();

if{tine==nul)) break;

il(!ine.indexOf("~999") >1) continue;
StringTokenizer st = new StringTokenizer(line);
String[] data=pew String[4);

int index=0;
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while (st.hasMoreTokens()) {
data[index++]=st.nextToken();
if(index==4) break;

inputVector.addElemem(data);

}
}

String[]{] temp =new String[inputVector.size()][4];
for(int i=0;i<temp.length;i++){
String data(] =(String[]) inputVector.elememAt(i);
for( int j=0;j<4;j++)
templ[i}[jj=(String) data(j];
i

return temp;

public void saveWeightsAs() throws Exception{
JFileChooser chooser = new JF ileChooser();
File weightsParent = new F ile("./"+weightsDir);
chooser.setCurrentDirectow(weightsParem);

int retval = chooser.showSaveDia!og(this):
i{retval == 0y
File theFile = chooser.getSelectedFile();
if{theFile I= null) {
JOplionPane.shochssagcDialog(this, "You chose
this file: * +

chooser.getSelectedFj le().getAbsolutePath());

}

retumn;

public void showNetworkSetup(){
ifleffect==null) effect=new Effect();
if(networkSetup==nul!){
networkSetup=new NetworkSetup(effect);
}

else networkSetup.serVisible(true);

public void showEffectSetup(){
ifleffect==null) effect=new Effect();
if(effectSetup==null){
effectSetup=new EffectSetup(effect);
}
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else effectSetup.setVisible(true);

public void training() throws Exception{
forecaster =new Forecaster(eﬁ'ect,trainingSet);
forecaster.training();

public void testing() throws Exception{
forecaster.setTestSet( testSet);
forccaster.testing();

}

public void predict() throws Exceplion|
forccas(cr.selPrcdiclSct(prcdiclScl);
f‘orecasler.predicl();

public void displayTraining() throws Exception{
forecaster.displayTraining();
1

public void displayTesting() throws Exception{
forecaster.displayTe_sting();
}

public void displayPredicted() throws Exception{
forecaster.displayPredicted();
H

public static void main(String(] args) {
String vers = System.getPropcrty("java.version");
if (vers.compareTo("l.1.2") <0){
System.out.primln(“!!!WARNING: TellFuture must be run with 2 * +
*1.1.2 or higher version VYM!! ™

// Force TellFuture to come up in the Cross Platform L&F
try {

UlManager.setLookAndFeel(UlManager.getCrossPlatformLookAndFeeiClassName());
/1 1f you want the System L&F instead, comment out the above line and
// yncomment the following:
i
UlManager.setLookAndFeel(UlManager.getSystemLookAndFeeIClassName());

} catch (Exception exc) {
System.out.printin(*Error loading L&F: * + exc);

}

WindowListener | = new WindowAdapter() {
public void windowClosing(WindowEvent e) {System.exit(0):}
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b

frame = new JFrame("TellFuture"),
frame.addWindowListener(l);

/7 3OptionPane.setRootFrame(frame);

// show the [rame

i frame.setSize(INITIAL_WIDTH, INITIAL_HEIGHT);
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
i frame.setlocation(screenSize. width/2 - INITIAL_WIDTIL/2,
/ screenSize.height/2 - INITIAL_HEIGHT/2);

frame.setCursor(Cursor.getPredefinedCursor(Cursor. WAIT_CURSOR));

TellFuture tf= new TellFuture();
frame.getContentPane().removeAll();
frame.getContentPane().setBackground{Color.white);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add{tf, BorderLayout. CENTER);
frame.setLocation{screenSize.width/2 - WIDTH/2,
screenSize.height/2 - HEIGHT/2);

frame.setSize(WIDTH, HEIGHT);

frame.pack();
frame.setCursor(Cursor.getPredefinedCursor(Cursor. DEFAULT_CURSOR));

frame.show();

frame.validate();
frame.repaint();
tf.requestDefaultFocus();
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Fig 1: This figure shows the main script of the program
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Fig 2: This Figure shows the contents of meny “F ile”,
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Fig 3: The figure is about the “Setup” menu.
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Fig 5: Display menu contains the following.
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Fig 6: Help menu
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Fig 7: Demonstrating the function of “Open” in the main menu “File”
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Fig 8: Training results are showed in the figure
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Fig 9: This figure shows the training results with other data, while taking the values of actual

and training load.
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Fig 10: Tabular View of the results showed in graphic form.
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Fig 11: Testing results of the program are showed in the figure.
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Fig 12: Tabular forms of the testing results.
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CONGESTION ARBITRATION AND SOURCE PROBLEM PREDICTION USING ANNIN
WIRELESS NETWORKS

Seadin Arshad,  Ambreen Siddique, DrMubammad Sher,  DrSikandar Hayat Khiyal
msher313@iuedupk
Department of Computer Science,
Faculty of Applied Sciences,
Irternational Islarmic University,

Islamabad

Abstract:

Congestion is the problem which occurs when demand for a resource outstrips the
capacity. In wireless networks, congestion may occur through antenna, satellite link,
routers and switches which are shared by several sources. The congestion control scheme
described here employs a neural network to predict the state of congestion in a wireless
network over a prediction horizon. We propose using learning techniques to predict the
problems before they start impacting the performance of services especially in wireless
communication. In this paper we focus on using a feed forward neural network to predict
severe congestion in a wireless network. We also use neural networks to predict the
source or sources responsible for the congestion, and we design and apply a control
method for limiting the rate of the offending sources so that congestion can be avoided.
This paper introduces an adaptive neuro-control  strategy, adaptive neural
swarming(ANS). A highly non-linear bioreactor benchmark is used in the control
simulation, Based on the neural predictor output, source rate control signals are obtained
by minimizing a cost function which represents the cumulative differences between a set-
point and the predicted output. An analytical procedure for the source rate control signal
computations is given using gradient functions of the neural network predictor by the use
of wireless session protocol(WSP),wireless transaction protocol(WTP). Unlike the RED
and usual TCP/IP flow control, the proposed method is applied only to selected nodes
and converges to the final rate faster. The described techniques set the stage for a new
wave of wireless network managers that are capable of preventing wireless networking
problems instead of repairing them.

Keywords: congestion control, neural networks, weight pruning, Meta neural, network
problem Prediction, Fair Queuing, flow rate control, WFQ.

1. Introduction

In the world of networking, more emphasis is being placed on speed, connectivity, and
reliability. When network problems occur, they often catastrophically break the service
for those enterprises or individuals that depend on the network connection. Sometimes,
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such breaks of service are just annoying, but for companies and commercial users they
often mean lost revenues on the order of thousands, or even millions, of dollars. Such
breaks have become a significant problem in all forms of electronic commerce.

A network congestion collapse occurs when the network is increasingly busy but little
useful work is getting done. Congestion management features allow you to control
congestion by determining the order in which packets are transmitted out an interface
based on priorities assigned to those packets. Congestion management entails the creation
of queues, assignment of packets to those queues based on the packet’s classification, and
scheduling of the packets in a queue for transmission. The congestion management QoS
feature offers four types of queuing protocols, each of which allows you to specify
creation of a different number of queues, affording greater or lesser degrees of
differentiation of traffic and the order in which that traffic is transmitted. During periods
with light traffic, that is, when no congestion exists, packets are transmitted out the
interface as soon as they arrive. During periods of transmit congestion at the outgoing
interface, packets arrive faster than the interface can transmit them. If you use congestion
management features, packets accumulating at an interface are queued until the interface
is free to transmit them; they are then scheduled for transmission according to their
assigned priority and the queuing mechanism configured for the interface. The router
determines the order of packet transmission by controlling which packets are placed in
which queue and how queues are serviced with respect to each other.

It is important to avoid high packet loss rates in the internet. This problem is further
critical in the wireless communication because of the shared transmission medium,
dynamic topologies, different protocols (like WSP and WTP) and costly medium. The
bandwidth utilization in the wireless medium requires a good congestion control
mechanism. To address this difficulty, a system is needed to insure network availability
and efficiency by preventing such costly wireless network breakdowns. The first step
towards this end is to create a system with the intelligence to recognize, as early as
possible, early signs of incoming network service difficulties. If the problem can be
recognized in advance, changing network parameters can possibly circumvent the
problem.

There are techniques of fancy queuing to avoid congestion but the major problem of
knowing about congestion in advance still remains unsolved. In this work we propose a
neural network based forecasting technique to estimate and forecast congestion state in
advance on the basis of input traffic from various sources arriving at the router [5]. We
have used a feed forward neural network to forecast and then apply the results with the
simulated traffic generated through network simulator (NS-2). The section-2 describes
about some background information on existing congestion management techniques. The
next section will describe design of an artificial neural network (ANN) for congestion
forecasting. Next in section-4 we will discuss the implementation detail of our
experimental setup. Then in section -5 we present the results of our work, the conclusion
and the references.
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Background

One of the biggest problems with TCP’s [5] congestion control algorithm over drop-tail
queues is that sources reduce their transmission rates only after detecting packet loss due
to queue overflow. Since a considerable amount of time may elapse between the packet
drop at the router and its detection at the source, a large number of packets may be
dropped as the senders continue transmission at a rate that the network cannot
support{10]. Random early detection (RED) queuing alleviates this problem by detecting
incipient congestion early and delivering congestion notification to the end-hosts,
allowing them to reduce their transmission rates before queue over-flow occurs. In order
to be effective, a RED queue must be configured with a sufficient amount of buffer space
to accommodate an applied load greater than the link capacity from the instant in time
that congestion is detected using the queue length trigger, to the instant in time that the
applied load decreases at the bottleneck link in response to congestion notification. RED
must also ensure that congestion notification is given at a rate which sufficiently
suppresses the transmitting sources without underutilizing the link. Unfortunately, when a
large number of TCP [5] sources are active, the aggregate traffic generated is extremely
bursty[2]. Bursty traffic often defeats the active queue management techniques used by
RED since queue lengths grow and shrink rapidly, well before RED can react.

One way to solve this problem is to use a large amount of buffer space at the RED
gateways. For example, it has been suggested that in order for RED to work well, an
intermediate router requires buffer space that amounts to twice the bandwidth-delay
product. This approach, in fact, has been taken by an increasingly large number of router
vendors. Unfortunately, in networks with large bandwidth-delay products, the use of
large amounts of buffer adds considerable end-to-end delay and delay jitter. This severely
impairs the ability to run interactive applications. In addition, the abundance of deployed
routers which have limited memory resources makes this solution undesirable While
RED can achieve this ideal operating point, it can do so only when it has a sufficiently
large amount of buffer space and is correctly parameterized.

Weighted fair queue (WFQ) is an automated scheduling method that provides fair
bandwidth allocation to all network traffic. WFQ applies priority, or weights, to
identified traffic to classify traffic into conversations and determine how much bandwidth
each conversation is allowed relative to other conversations. WFQ is a flow-based
algorithm that simultaneously schedules interactive traffic to the front of a queue to
reduce response time and fairly shares the remaining bandwidth among high-bandwidth
flows. In other words, WFQ allows you to give low-volume traffic, such as Telnet
sessions, priority over high-volume traffic, such as FTP sessions. WFQ gives concurrent
file transfers balanced use of link capacity; that is, when multiple file transfers occur, the
transfers are given comparable bandwidth.

WFQ provides traffic priority management that dynamically sorts traffic into messages
that make up a conversation. WFQ breaks up the train of packets within a conversation to
ensure that bandwidth is shared fairly between individual conversations and that low-
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volume traffic is transferred in a timely fashion. WFQ classifies traffic into different
flows based on packet header addressing, including such characteristics as source and
destination network or MAC address, protocol, source and destination port and socket
numbers of the session, Frame Relay data-link connection identifier (DLCY) value, and
type of service (ToS) value. There are two categories of flows: high-bandwidth sessions
and low-bandwidth sessions. Low-bandwidth traffic has effective priority over high-
bandwidth traffic, and high-bandwidth traffic shares the transmission service
proportionally according to assigned weights. Low-bandwidth traffic streams, which
comprise the majority of traffic, receive preferential service, transmitting their enfire
offered loads in a timely fashion. High-volume traffic streams share the remaining
capacity proportionally among themselves. WFQ places packets of the various
conversations in the fair queues before transmission. The order of removal from the fair
queues is determined by the virtual time of the delivery of the last bit of each arriving
packet.

These techniques work well in the common congestion scenarios but are restricted by a
lack of early waming system about expected congestion state. For this purpose a
forecasting model is important to have some kind of early warming system.

2. Experimental Setup:

Design of ANN

Neural networks are computational models with the capacity to learn, to generalize, or to
organize data based on parallel processing. These networks can be trained with a
powerful and computationally efficient method called error back-propagation.
Forecasting the behavior of complex system has been a broad application domain for
neural networks. Network traffic forecast is a relatively new application of neural
networks. We propose a system that uses neural networks to detect network congestion
before it results in a breakdown of the network service and which also identifies the
source of the congestion. Having the nodes identified, our system applies the flow rate
restriction adaptively to the identified sources to avoid congestion overflowing the
router’s buffers. It should be noted that design and experiments presented in this paper
focus on congestion control; however, the techniques could be applicable to other
network problems. It should also be noted that the remedy in the form of flow rate
restrictions can be applied directly to the original flow source if it is within the domain
controlled by our system, or it could be applied to the edge router to the domain to which
our system is applied. In the latter case, the restriction will result in the packets of the
restricted flow being dropped at the edge router to the domain [4]. This kind of a solution
in which the congestion is decomposed and “moved” from the internal routers to the edge
routers is becoming increasingly popular in modern traffic management. Finally, it
should be noted that in such edge-control techniques the domains controlled by separate
systems will collaborate through the edge routers. Dropping packets at the entry edge
router of one domain will cause the packets to be dropped at the exit router of the
neighboring domain which will treat such dropping as congestion and then will identify
the source of the flow. As a result, our techniques can be applied locally at 2 domain of
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the decomposed network and their congestion solution will iteratively be mapped to the
corresponding edge routers of the intermediate domains until the source of the flow is
found and informed of the need to decrease the traffic. Another remark is needed to relate
the present work to the differentiated services, methods of creating different levels of
services for customers willing to pay higher levels. As more products are created to
control networks, differentiated services will become very important for the Internet.
Identification of sources that can be forced to limit their flow rate can lead to accounting
for different priorities of traffic and offending flows. For example, if traffic from a certain
machine is deemed high priority, the system may restrict other machines, instead of
slowing down the high priority machine. Changing the architecture [13] to operate on a
flow basis instead of a machine basis could also be easily done to account for a variety of
traffic from each machine, each with a different priority. Hence, the techniques that we
present in this paper are directly applicable to the “best effort traffic” over the Internet,
but their extensions to Differentiated Services or Quality of Services environments are
straightforward.

Basic Architecture of Feed Forward ANN

A layered feed-forward network consists of a certain number of layers, and each layer
contains a certain number of units. There is an input layer, an output layer, and one or
more hidden layers between the input and the output layer. Each unit receives its inputs
directly from the previous layer (except for input units) and sends its output directly to
units in the next layer (except for output units). Figure-1 presents a basic architecture of a
feed forward ANN [1]. Unlike the Recurrent network, which contains feedback
information, there are no connections from any of the units to the inputs of the previous
layers nor to other units in the same layer, nor to units more than one layer ahead. Every
unit only acts as an input to the immediate next layer. Obviously, this class of networks is
easier to analyze theoretically than other general topologies because their outputs can be
represented with explicit functions of the inputs and the weights.

X

W @)
Input Layer Ji Hiddenlayer ¥  OutputLayer

Figure-1: Feed-forward neural network

An example of a layered network with one hidden layer is shown in Figure-1. In this
network there are 1 inputs, m hidden units, and n output units. The output of the jth
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hidden unit is obtained by first forming a weighted linecar combination of the 1 input
values, then adding a bias,

aj -z ")xx+w

3.1

) m
where "7 is the weight from input i to hidden unit j in the first layer and Wjo is the bias
for hidden unit j. If we are considering the bias term as being weights from an extra input

x0=1_(3.1) can be rewritten to the form of,

@ = Z w(l)

i (3.2)
The activation of hidden unit j then can be obtained by transforming the linear sum using

an activation function§(*) ;

o)

The outputs of the network can be obtained by transforming the activation of the hidden

units using a second layer of processing units. For each output unit k, first we get the

linear combination of the output of the hidden units,

ar=Y wihi+wy
. (3:4)

Again we can absorb the bias and rewrite the above equation to,

ar = Z wm hy
Then applying the activation function 82x) o (3.5) we can get the kth output

e = g2(ax) (3.6)
Combining (3.2), (3.3), (3.5) and (3.6) we get the complete representation of the network
as

(3.5)

ye= 32(2 w(z’g(z eD)

(3.7)

The network of Figure-1 is a network with one hidden layer. We can extend it to have
two or more hidden layers easily as long as we make the above transformation further.
One thing we need to note is that the input units are very special units. They are
hypothetical units that produce outputs equal to their supposed inputs. No processing is
done by these input units.
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Implementation

A high level view of our architecture reveals a network with a congestion management
agent existing somewhere on a node in that network. This congestion management agent
has both the power to read from and to influence network nodes. The nodes involved
would either report the necessary statistics to the congestion management agent or the
congestion management agent would poll these nodes.

Simulated Network Topology

In the absence of the needed test-bed, NS-2, a discrete-event network simulator targeted
at networking research, was used to model the network and different scenarios of network
traffic. NS simulates network architectures on a packet by packet basis, giving the user
the ability to monitor very specific as well as aggregate statistics about all facets of the
network. This, of course, made the integration of a congestion management agent easier,
but a similar design could be implemented on a real network. In our example, the
network consisted of several nodes in a configuration where all of the network nodes
were attempting to send data to one node. Each node attempts to send at a random bit
rate. A random amount of variance is given to each node's rate to better represent traffic
in a real network and possible traffic coming in from other nodes outside of our
simulation. Link capacities between sending nodes were given arbitrary values (described
in a later section) for testing purposes. Some links were able to handle much more traffic
than other links.

Congestion Management Agent

We create a congestion management agent containing a neural network that is trained
prior to being placed in production. In our simulation, the congestion management agent
is called at a regular interval in part of the simulation code. This enables the agent to
easily monitor and influence traffic statistics from each node. The congestion
management agent gathers information from each managed node, performs several
mathematical functions normalizing the values, and makes a decision about where, if
anywhere, network problems will occur. With the predicted problem in our grasp, we can
take steps to stop or prevent it.

The Simulation Network

The simulated network is arranged such that six sending nodes are connected to one
receiving node through several links which direct the packets to the destination. The
sending nodes produce data in a way similar to Universal Datagram Protocol (UDP)
agents, sending constant bit rate (CBR) traffic with a randomized parameter to add
variance to the traffic. In NS, each connection is explicitly stated and each sending agent
in each node is configured to send to a particular receiving agent. To determine how fast
the sender sends data [9], the packet size and a packet interval are given in the simulation
script that defines the simulation run. The sender sends a packet of the designated size at
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the designated interval. The receiver simply has a null agent that receives the data and
sends no responses. NS Queue Monitors are attached to the queues to keep track of the
status of each queue. We gather statistics such as packets received and the size of the
queue during the simulation. During the simulation, the congestion management agent
executes at a polling interval, monitoring the traffic and making decisions. Files are
created for each node to keep track of that node’s data. During each run of the network
simulator, the files are extended with the new data from the latest interval. The most
important part of the congestion management agent is the neural network prediction
module.

Simulation Interface

For our agent implementation, we used a single hidden layer, feed-forward neural
network. This was a compile application, so wrappers (simulation interface) were needed
to control the input and output dealing with the neural network. The wrapper program
was written in C and is called after the data files are updated by the simulator. The
simulator halts until the C program finishes. To execute the congestion management
agent, a C wrapper is first called. This is where the bulk of the calculations for the neural
network program are done. It first opens the files written by the simulator which contain
historical and current values for the number of packets. The program uses these values
and computes the average number of packets, the variance of packets, and the third
momentum given the appropriate polling interval. In the first iteration, the average is the
current number of packets and the variance and third moment are zero. These values are
then normalized for the neural network using a basic normalization function. The
normalized values are then combined into one input file to the neural network package
for a decision. The neural network program is executed using new input files and the
output is rendered in yet another file. This file is read by the C wrapper and converted
into a readable format for the simulator to process.

ANN as a Control Management Agent

The neural network used by the congestion management agent has 4*n input nodes, 1
hidden layer containing n nodes, and n nodes in the output layer. The 4*n input nodes
correspond to the n traffic generating nodes in the network simulation; there are four
input nodes for each node in the network simulation corresponding to the average number
of packets, variance, and third moment for each monitored node. To stress the importance
of adjacency relationships between nodes in the data network, we placed an additional
optimization of the structure of the neural network. The weights were pruned to the point
in which the neural network reflected the connectivity of the actual network. The n nodes
in the hidden layer also represent active nodes in the data network. Instead of providing a
fully connected environment between the input layer and the first hidden layer, we only
allowed connectivity from input neurons that represent nodes adjacent to represented
nodes in the hidden layer. The hidden layer is representative of the participating nodes in
the data network. The statistical data regarding each node is provided to the hidden node
representing the actual node as well as to the hidden nodes representing the actual node's
neighbors. This is continued for all first layer nodes of the neural network. As aresult,
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the statistical information from node 1 is given to both the hidden node representing node
1, and the hidden node representing node 5 (1's neighbor.) This process is important in
realizing the relationships between adjacent nodes in a data communications network.
The output of the neural network is a mask representation of which nodes have been
suspected of causing the problem.

Patching the NS-2

In NS-2, both an interval and a packet size are provided for agents sitting at the sending
nodes to determine bandwidth used. The agent will send one packet at every interval,
therefore the smaller the interval, the higher the bit rate. If our neural network predicts
that a particular node will be responsible for congestion, we conclude that the predicted
problem source is using too many resources. To correct the predicted cause node traffic
rate, we add to its sending interval a small At, thus reducing its bit rate. This delta was
chosen to be small with respect to the simulation time scale, because we do not want to
take the chance of over-correcting or even worse, applying a large correction to the
wrong node if our prediction was wrong. To take into account the small At, the interval
in which our congestion management agent executes also is relatively small. Therefore
many of these small corrections can be applied which corrects a problem slowly without
drastically changing any one node's level of service.

Results

A general breakdown of the results can be found in the graph of Figure which shows our
current application detects and corrects congestion in about 90% of the cases. QOur tests
include cases in which corrections to one node are required, corrections to multiple nodes
are required, and some where no correction is required. Failing includes either missing
congestion or predicting congestion when there is none. We ran thirty-one network
simulations. Roughly 33% of the cases were simulations of a network without congestion
problems. In these cases we would want our control agent to realize that it does not have
to do anything. The detector realized that there was no correction needed in all but 1 case.
In this isolated case our agent unnecessarily applied a single small correction to a single
node. The correction that the control agent applied was with a single At, and therefore
was minimal. About 66% of the total cases had various levels of congestion in various
locations in the network of the congested cases, we were able to predict the cause and fix
the problems 89.99% of the time.
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Corrected Predictions

100
‘ [3 Correct Prediction

50 ' - r O Total Cases
1 4 5

[ Correct 9 17 | 32 | 40 | 44
Prediction

B TotalCases) 10 | 20 | 35 | 45 | 50

Figure 2: The bar chart shows the nevral network prediction of congestion and the total muber of cases

The results shows that 75% of the time we detected congestion, we were able to fix the
problem before packets were dropped in the network. These were truly remarkable
results, because the congestion was completely eliminated before it occurred. In the cases
that we could not stop packets from dropping, we were able to retumn the network to a
stable state within few seconds after packets began to drop.

Ratio Of Predicted Cases

1 Not Known
2 After Packet loss

01 Before Packet

Figure 3: The pie chart describes that around 75% of cases are predicted before any
packet loss.

Finally, in the cases that our detector missed the threat of congestion there was a common
characteristic. The neural network had trouble detecting congestion when a single node in
a particular part of the data network caused a problem. This probably can be improved
upon close examination of the training patterns and structure of the neural network.
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Training Errors Testing Exrors
Input Training Input Training
Combination NRMSE Combination NRMSE
1 0211 1 0255
2 0.227 2 0239
3 0217 3 0234
4 0202 4 0229
5 0.198 5 0225
Average 0.211 0.240
standard Dev 0.010 0.014

Figure 4: This table shows the summary of training and testing results of ANN

3.Conclusion

The goal of this paper has been to apply neural networks to the problem of forecasting the
congestion state in a packet switching network. We have seen that neural networks
produced fairly accurate forecasts. In this work, we have tried to demonstrate that a
neural network is a viable method of implementing a realistic forecasting application for
data communication networks. We have illustrated, through the use of a network
simulator, that a neural network can be used to achieve great accuracy in predicting
network congestion problem. Wireless networks need a special concern for congestion
management. This work is applicable to both wired and wireless environment. We realize
many more problems exist that for which neural network forecasting approach is
applicable, but predicting congestion is just the initial step towards our research goals.
When structural information of an actual data network is used to form the connections
between layers of the neural network, this special design forces the neural network to
consider the relationships only of those nodes that we think are important. A leamning
mechanism can be of great value for a network manager. The generalization power of a
neural network particularly is appropriate because of the unpredicted variance of
parameters that the network manager encounters. Neural networks are an appropriate
mechanism for decision making in pro-active network management and should be the
subject of more research.
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