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ABSTRACT

This thesis mainly concentrates on the empirical Bayes estimation of all standard classical panel data
models. The regression model that is used in this thesis consists of K orthogonal regressors. The estimation
technique that is used for the coefficients of the regressors is empirical Bayes. The strategy that is followed
for the estimation of regression coefficients is single coefficient estimation, i.e., one coefficient from among
all K coefficients is estimated at a time. By the virtue of single orthogonal regression coefficient estimation
with empirical Bayes severat ideas have been contributed with the help of this dissertation.

The first contribution and main purpose of this thesis is to illustrate that all the standard frequentist
panel data linear regression models and their corresponding estimators emerge from a single origin. That is to
say, all the frequentist panel data linear regression models are the special cases of the Bayesian linear
regression model and similarly all the frequentist panel data estimates are the special cases of the empirical
Bayes estimate.

The second contribution is the origination of; (i) ail the standard frequentist panel data finear regression
models from a Bayesian linear regression model and (ii) the estimates corresponding to standard frequentist
panel data linear regression models from the empirical Bayes estimate, analytically as well as numericaily.

In fact, the frequentist panel data linear regression models and the corresponding estimators can be
attained from the empirical Bayes by imposing certain restrictions upon the prior precision parameter. At this
time, the structure of the empirical Bayes estimate is the precision weighted arithmetic mean of the prior mean
and data mean, and where the precision weighted arithmetic mean of the ordinary least squares coefficients
estimates as the estimate of the prior mean and the precision based on g-prior as the estimate of the prior
precision. Therefore, the prior precision parameter in empirical Bayes has significant role in producing
different frequentist estimators of panel data models. For every value of the prior precision parameter, different
frequentist estimators are acquired. Tending the value of prior precision parameter from zero to infinity yields
infinite frequentist estimators. In this approach no pre-testing for model selection and estimation technique is
required rather the value of the prior precision parameter itself will led to the appropriate model and the
corresponding estimate.

The third and one of the major contributions of this thesis is the development of new empirical Bayes
estimator. As mentioned, the prior precision parameter has an important role in producing panel data medels
and their corresponding estimators, but it has to be estimated, so in this thesis a modified version of the
empirical Bayes formula has been developed which is independent of the prior precision parameter and hence
is free of estimating the prior precision parameter.

Finalty, a real-world data of five European countries, namely, Austria, France, Italy, Sweden, and
Britain, on two variables the “Gross Domestic Product” and “Consumption” for the period 1970 to 2016 have
been used for depicting the estimation procedure for the new empirical Bayes estimator. A balanced panel has
been employed. Further, the data have been taken from the world statistics. The empirical Bayes estimates that
have been computed from this data set have the tendency towards the randem coefficients model estimates.

Keywords: Empirical Bayes, Frequentist Estimates, Prior Precision Parameter

JEL Code: C11
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Chapter 1

Introduction

In Statistics and Econometrics, the more valid the data, the better the result, or to put it another way, the
better the estimates of the parameters. Sufficient large sample size facilitates the researchers in the
determination of the average values of the observations and evade the errors in testing that could have been
caused by an inadequate small sample size. For this reason, a researcher should examine as many data points
as possible in addition to different aspects of heterogeneity in the data set in order to obtain valid and better
results

In Econometrics, basically there are three main types of data: the cross-sectional data, the time series
data and the panel data. The panel data, in fact, is the combination of cross-sectional data and timeseries data,
Panel' data econometrics has evolved rapidly over the last few decades and the researchers often deal in
econometrics using panel data in the analysis of relationship between variables. Hsiao (2007} says, the panel
data is preferred and considered better in characteristics than either pure time series data or purely cross-
sectional data, because it addresses both sources of variation in the data, i.e., the time dimension as well as the
cross-sectional dimension. The key difference between time series and panel data is that time series focuses
on a single individual at multiple time intervals while panel data {or longitudinal data) concentrates on
numerous individuais at multiple time intervals.

There are a number of advantages of panel data:

e Panel data can be used to model both the common and individual behaviours of groups.
» Panel data contains more information, more variability, and more efficiency than pure time series data or
.

cross-sectional data.

¢ Panel data usually contain more degrees of freedom and more sample variability than cross-sectional or

timeseries data.

" Panel data is also called longitudinal data, there is a bil difference between these two, however, in the lilerature they are being
used interchangeably or synonymously.
1



» Panel data can capture the complexities of human behaviour better than a single cross-section or time
series data.

¢ Panel data can detect and measure statistical effects that pure time series or cross-sectional data cannot.

e ' Panel data can minimize estimation biases that may arise from aggregating groups into a single time series.

* Panel data make more accurate inference of model parameters.

There are a number of other advantages of panel data as well.

Panel data involve at least two dimensions, a cross-sectional dimension, and a time dimension. In panel
data if both temporal® and spatial sources of variations are modelled meticulously. then better results are
expected. More reliable interence regarding the coefficients of the model can be anticipated in panel data (e.g.,
Hsiao et al., 1995).

Like other econometric models, the panel data econometrics has also huge variety of models. Chang,
Swamy, Hallahan and Tavlas (1998) prescribed the facts of the econometric model which are as follows: (i)
in economic relationships, the true functional forms of the models are almost unknown; (ii) from every
gconometric model, at least one unrevealed explanatory variable is excluded; (iii) it is very baseless or futile
to assume that the excluded explanatory variables are uncorrelated with the candidate explanatory varables
of the model; (iv) economic data are subject to measurement errors in many cases, so that is why they are only
the approximate values to the underlying exact values. According to them, if an econometric model is
consistent with all of the above realities of building of economic model, then it would be causal and
meaningful. In other words, the elucidations attached with the model parameters are reliable with these
realisms.

Some most commonly used standard models related to panel data in the standard econometrics or
statistics books are: the subject specific panel data linear regression model, the subjects common panel data
linear regression mod'el, the fixed effects panel data linear regression model, the random effects panel data

linear regression model and the random coetficient panel data iinear regression model, etc. (see. Wooldridge

ZTime based.



(2010), Greene (2003) etc). These panet data models are from frequentist® theory, which is to be exptained
shortly.

Further, the most commonly used frequentist techniques for the estimation of the unknown regression
coefficients or parameters of the aforementioned models, is the ordinary least squares, abbreviated as, {OLS).
Once the model is specified, the method of ordinary least squares is applied to estimate the parameters of the
model.

The specification of the model also needs some pretesting. If after the model specification test, the subject
specific model is deemed. Then the frequentist techniques of estimation for the model parameters yield the
vectors of coefficient estimates one specific to each subject or unit of the panel.

Similarly, if subsequently to the model specification test, the subjects common model is supposed. Then
the frequentist techniques of estimation for the model parameters yield a vector of coefficient estimates which
is common to all subject of the panel.

Further, if next to the model specification test, the fixed effects model is believed. Then the frequentist
techniques of estimation for the model parameters yield the vectors of coefficient estimates one for each unit
of the panel, in which all the corresponding estimates of the coefficients across the subjects are constant and
common 1o all subject of the panel except the intercepts, the intercepts are fixed to each subject of the panel
separately.

Additionally, if succeeding to the model specification test, the random effects model is thought. Then the
frequentist techniques yield the vectors of coefficient estimates, one for each unit of the panel, in which all the
corresponding estimates of the coefficients across the subjects are constant and common to all subject of the
panel except the intercepts. Here, the intercept is the mean of all the intercepts, and an intercept for a particular
subject is considered to be randomly scattered from this mean of all subjects of the panel, consequently the
mean of the intercepts is taken as the intercept for all units,

Finally, if following to the model specification test, the random coefficients model is considered. Then the

frequentist techniques of estimation for the model parameters yield a vector consisting of the mean of the

* The word frequentist retfers to the classical school of thought. The frequentist Schaol of thought rely only on the dala
information. This is also to note thal, the frequentist school of thought s alse called the classical school of thought.
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coefficient estimates, which is common to all subjects of the panel, and the vector of coefficient estimate
specific to each subject of the panel is considered to be randomly scattered from this common mean vector.

Apart from panel data models and their corresponding estimates, there are other model and estimation
technique for panel data.

Basically, there are mainly two school of thoughts, namely, the classical or the frequentist school of
thought and the Bayesian school of thought. The frequentist school of thought relay only upon the available
information or data set and having nothing to do with any additional information (if available) obtained from
other sources. Fundamentally, a frequentist method makes decisions and predictions on the underlying truths
of the experiment using only data from the current experiment.

Contrary to the frequentist school of thought, the Bayesian school of thought takes into consideration
the additional information, technically called the prior* information, along with the data information. Thus,
the Bayesian school of thought is consistent with the theory of more valid information for the better estimates
and analysis, as mentioned above.

The Bayesian school of thought combines the data information with the prior information and produces
estimates, which are far better than the frequentist estimates in many cases and are evident in the literature
(See. Zaman (1996) or Carrington and Zaman (1994)). Bayesian statistics take a more bottom-up approach to
data analysis. This means that past or relevant knowledge of similar experiments is encoded into a statistical
device known as a prior, and this prior is combined with current experiment data to make a conclusion on the
test at hand. The biggest distinction is that Bayesian probability specifies that there is some prior probability
while the frequentist does not.

The Bayesian approach:
= defines the prior distribution that incorporates the subjective beliefs about a parameter. The prior can be
uninformative or informative.
» gather data.
= update the prior distribution with the data using Bayes’ theorem to obtain a postertor distribution.

= analyse the posterior distribution and summarize it, i.e., mean, median, standard deviation, quantiles, etc,

* In Bayesian school of thought, the information other than the data information are technically called prior information.
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A fundamental aspect of Bayesian inference is updating the beiiefs in light of new evidence. Essentially,
one starts out with a prior belief and then updates it in light of new evidence. An important aspect of this prior
belief is the degree of confidence in it,

The controversy between “frequentism” and “Bayesianism” is at least 200 years old (although these
terms are much younger) and still unresolved. A pragmatic view is that to accept both viewpoints depending
on the context. Samaniego and Reneau {2012) “A Note on the Comparison of the Bayesian and Frequentist
Approaches to Estimation™, presented a landmark study on the comparison of Bayesian and frequentist
point estimators. Their findings indicate that Bayesian point estimators work well in more situations than
were previously suspected. In particular, their comparison reveals how a Bayesian point estimator can
improve upon a frequentist point estimator even in situations where sharp prior knowledge is not

necessarily available.

1.1. Statement of the Problem

As stated above, in the frequentist set up there are many panel data linear regression models and
accordingly many estimation techniques. Therefore, for a researcher there exists choices or uncertainties
among the model selection as well as in the estimation techniques. Specifically, first to model the data with
the most appropriate model and then estimate its parameters with a reasonable estimation technique. Thus,
choosing the panel data model for any given scenario can be difficult and time consuming. Sometimes for a
practitioner or a researcher, it becomes unfeasible to make an appropriate choice among the combinations of
the available panel data models and the corresponding estimation techniques. Different panel data model and
the estimation technique have their own specific requirements and assumptions of application. Some of the
assumptions among various models and/or the estimation techniques are conflicting to each other. In such case
of conflicting assumptions either among the panel data models or the estimation techniques, the selection
choice becomes even more tedious. For exampie, the simple OLS theoretically assumes that all the cross-
sections in the panel have ditferent sets of parameters, i.e., one set of parameters for each cross section of the
panel. Similarly, the pooled OLS assumes that all the cross-sections in the panel have identical set of
parameters, i.e., one set of parameters for all cross sections of the panel. Further, the fixed effects assumes that

all the cross-sections in the panel have different intercept parameters while the slope parameters are identical
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for all cross sections of the panel. Furthermore. the random effects assumes that all the cross-sections in the
panel have identical intercept parameters but the variability among them is due to random causes and all the
slope parameters are identical for all cross-sections of the panel. Finally, the random coefficient assumes that
all the cross-sections in the panel have identical set of parameters but the variability among them is due to
random causes. “Most statistical analyses are largely concemed with the appropriateness ot the regression
model being used. Howewver, for the data at hand, an important and often neglected problem concerns the issue
of misclassification error, which leads to bias and loss of efficiency in estimation. It is possible to correct this
bias if the probabilities of the misspecification can be unbiasedly estimated from, for instance, the validation
data.” (See. Samuel Mwalili (2006)).

This should also be kept in mind that the complexity of model selection and estimation technique do not
cxist only in panel data. Besides panel data models, the existence of multiple models either in time series or
cross-sectional data is also a common phenomenon. [n empirical analysis of either time series or cross-
sectional data, the existence of multiple models also leads to difficulty in the choice of selection of an
appropriate modei. That is to say, which of the models would be an appropriate model and to be used for the
problem at hand. One way to handle this sort of problem is to nest all the candidate models into a general
model, then the rival candidate model could be obtained as a special case of this general model by imposing
certain restrictions upon the parameters of this general model to get the most convenient and parsimonious
tnodel. The researcher can then test the validity of the assumptions by certain hypothesis testing methods and
it couid be insured that the imposed restriction does not result in loss of predicting power (see, Hausman
(1978)).

After a parsimonious model, the next step, either in time series or cross-sectional analysis, is the
estimation of model parameters. Different techniques of estimation are used in different scenarios.
Unfortunately, no crystal-clear law for any technique to be applied is defined. The multiplicity of available
estimation techj.‘liques also causes problems in the estimation process. Hence the time series and cross-sectional
data have also its own related issues.

The current frequentist literature of panel data mainly captures countable major sources of heterogeneity

among the units of the panel and the corresponding models that will be discussed shortly. That is why the



current researches have also been restricted only to these countable models. In fact, there are many sources of
variation or heterogeneity in the resulted models. The frequentist literature of panel data linear regression
models summarised from Hsiao (1986) or Wooldridge (1995) assumes one of the possibilities for the
parameters vectors of models, that are given below;

totally ditferent parameters vector for each unit,

if}  aunique parameters vector for all the units,

a common parameters vector, but random fluctuations have also been considered for each unit as well,
different intercept terms while all the slopes parameters of all the units are identical, but the difference in

the intercepts is due to subject specific heterogeneity,

v} different intercept terms but all the slopes parameters are identical for all the units, and the difference in

the intercepts is due to random fluctuations not due to subject specific heterogeneity.

In these five possibilities expressed above, the first possibility refers to the subject specific model; the
second reveals the subjects common coefficients model; the third directs to the random coefficients model;
the fourth describes the fixed effects model and the fifth shows the random Effects model. For further
reference, (see, Arellano (2003), Baltagi (2001), Hsiao (2003), Matyas and Sevestre (2008), and Nerlove

(2002), etc).

However, it is injustice unfair with the widespread literature of panel data to deal only with these
limited possibilities of heterogeneity presented above, and this is the gap in the literature of panel data models.
There is a room for the discovery of some more new models in the existing frequentist literature of panel data
models, other than those discussed above. Therefore, now this is the need of the hour to explore some new

models in the frequentist literature of panel data models, and to fill up this gap.

Secondly, what important to note is that the frequentist considers all of the above panel data linear
regression models are of different origin. As for as we think, all the panel data models are not of ditferent
origins. A uniform framework for all of the above models as well as for the estimation techniques is possibie
and exists. The uniform framework would be the best solution for the model and the corresponding estimation

technique selection problenis discussed above.



Similar to the case of either time series or cross-sectional data. in case of panel data models, it also
seems possible to nest all the existing panel data linear regression models into a single general framework and
then obtain the most suitable and parsimonious model from it. We argue that all of these possibilities (all of
the above panel data models) can be derived with the help of a Bayesian linear regression model by using

specialized Bayes estimation techniques.

in linear regression models the key entities for the classification of the models are the regression
coefficients or the regression parameters. The whole model almost depends upon the chamacteristics of the
regression parameters i.e., in panel data case, if the regression parameters are specific to each unit of the panel,
then the corresponding regression mode! is termed as the unit specific panel data linear regression model. On
the other hand, if the regression parameters are common for all the linear regression models corresponding to
different units of the panel, then a single model with these common coefficients is applied to all the units of
the panel and is termed as the units common linear regression model. Further. if the regression parameters of
various linear regression models are different from each other, and if these differences can be acknowledged
as random, then a single model like in the case of units common model with random fluctuations i3 sufficient
and this linear regression model is called the random coetficient linear regression model. There are some other
possible structures of the regression parameters too, which are discussed in this thesis in the coming sections.

At the moment the above models are sufficient to clear the picture and the scenario.

The problem with the regression analysis is that the regression parameters do not exist in reality, they
do not exist numerically. They only lie in the mind of the researchers. Therefore. to identify the regression
parameters the corresponding parameter estimates are used for this purpose. If the parameter estimates match
to any of the above hypothetical structure of the regression parameters, then the whole model is narrated in
that way, and the model is considered of that type and is being named. This methodology, for the classification

t

of different panel data models will be followed here.

The derivation of all the frequentist estimators of panel data models trom a single empirical Bayesian
estimator witness that the corresponding frequentist panel data models are also the derived versions of the

Bayesian linear regression model. As models are classified on the basis of the vectors of regression



coefficients and estimators produce the estimates of the vectors of coefficients, Hausman (1978). This will
also confirm that in fact all the frequentist models are not of different origins, rather they have been emerged
from a single Bayesian linear regression model with some restrictions imposed upon its prior parameters.
Therefore, this thesis is intended to derive all the limiting cases of the Bayesian regression coeflicients
estimator and the resultant frequentist regression coefficients estimator of panel data models. The derivation
of the frequentist regression coefficients estimators from the Bayesian estimator will be presented first
analytically and then numerically and will be of main concern. This will confirm the claim that in fact all the
frequentist panel data linear regression models can be derived from a single Bayesian linear regression model.
This wilt also be shown that all the frequentist estimators have a common origin rather than a separate one tor
each one of them. In other words, all the frequentist panel data linear regression models are the specialized
form of the Bayesian linear regression model and the frequentist estimators are the limiting cases of the
Bayesian estimator as prior precision goes from zero to infinity all the frequentist panel data estimator will be

produced.

1.2. Aims of the Study

This thesis is aimed to nest all of the frequentist panel data linear regression models in a general
Bayesian linear regression model. This issue can be addressed indirectly, by deriving ail the frequentist panel
data linear regression models estimators from a single Bayesian linear regression model estimator. Further,
the frequentist panel data linear regression models are not of different origins rather all of the models have a
unique comnmon origin. It is also aimed to derive all the frequentist® panel data linear regression model

estimators from Bayesian linear regression model estimator, first analytically, and then numerically.

1.3. Obijectives of the Study

The main objectives of this study are;

i)  to encompass all the standard frequentist panei data linear regression models into a single general

Bayesian linear regression model.

* Frequentisi and classical are the two names of the same school of thoughts, and they shall be used interchangeably throughout.
This school of thought is considering only data information and hence relying onty on it.
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ii)  to derive and confirm analytically as well as numerically that all the frequentist panel data linear
regression models are the specialized cases of the Bayesian linear regression models.

iii}  todiscover some new linear regression models and estimators in the frequentist literature of panel data
models.

iv)  to develop a modified empirical Bayes estimator for all standard panel data models.

1.4. Motivation for the Study

As there are so many frequentist panel data linear regression models in the literature of panel data, the
application of which depend upon different conditions and assumptions. Due to the complexity in the
assumptions among different models, it becomes more difficult for a researcher to choose any particular model
for a particular problem at hand. In the frequentist literature of panel data models some ad-hoc methods are
used for model selection. The efficacy of these ad-hoc methods for model selection have also been severely
questioned in the literature, (See. Clark and Linzer(2012 )), and thus the risk of misspecification ot models
always exists. It is therefore very much essential to have a uniform and general specification of models, which
could be appropriate for many research problems, in order to control the misspecification risk and also to avoid
pretesting for model selection. For this purpose, the Bayesian linear regression model seems to be the most
convenient choice of models, which has the potential to encompass all the existing frequentist panel data linear

regression models and also to avoid the pretesting procedure for model selection as such.

The Bayesian linear regression model, (See. Zaman (1996)), has also the ability of reproducing the
typical or conventional frequentist panet data linear regression model after imposing some restrictions upon
its prior precision parameters. This model has also shown very fruitful results in the empirical analyses of data
in the past. This intuition leads us to explore the possibility of a common framework for specification of panel
data models with the help of Bayesian linear regression model. As in frequentist set up, the model specification
test 1s pl:erequisite, and the efficiency of such tests have been criticised severely in the literature (see. Hausman
{1978)). fherefore, it was aimed to get rid of such ad-hoc based pretesting procedures for model setection and

to minimize the misspecification risk.
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The aforementioned were the main points which have compelled to work upon this direction with the

help of this dissertation.

1.5.  The Contributions Made by this Study

This work has been intended to contribute in the existing literature of panel data Econometrics and

Statistics in the following ways.

1. With the help of this thesis, the major contribution in the literature of panel data is that all the frequentist
panel data linear regression models and/or estimators have been derived from a single Bayesian linear
regression model and/or estimator. In other words, the Bayesian linear regression model has encompassed
all the existing classical® panel data linear regression models or conversely the frequentist panel data linear
regression models have been derived from the Bayesian linear regression model.

2. Some new panei data linear regression models which are ignored (or were seem impossible to exist) in the
current frequentist literature of panel data, are discovered. As with the help of this research new models
are added to the literature and this is also a significant contribution in the Iiterature of panel data models.

3. The techniques of computing the prior precision parameters from data give rid the researchers from
pretesting for model specification or selection in panel data.

4. The work in this “thesis” lets the data free to tell by itself; that what is the convenient model for the data
and no specification of a model in advance are mandatory. Ad-hoc bases of panel data model selection are
avoided and as a result the problem of misspecification of models (in terms of candidateship)} have been

minimized.

1.6. Significance of the Study

This study mainly focuses on the estimation techniques of panel data linear regression models. Panel data
models are actually the extracts of a single Bayesian linear regression model. In this study not onty the existing
panel data linear regression modeils are derived from the Bayesian linear regression model, but also some new
models got birth in the literature of panel data. Wi’tﬁ the help of this study pretesting, like Hausman

Specification Test etc., for model selection are no more needed. For any sort of panel data, if the Bayesian

® The term “Classical™ over here means the School of thought as opposite to the Bayvesian,
11



linear regression model has been used, the data itself will design a model which will be the most appropriate

one. With the help of this study the researchers will be able:

a. to get rid of pretesting procedures for model selection.
b. to let the data free to speak what structure of parameter vector is needed to model the data.
¢. as more models would be discovered so the researches shall not be restricted only to these countable

existing frequentist panel data models.
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Chapter 2

Literature Review

The statistical problems that can be confronted in either pure time series data or pure cross-sectional data
can be controlled to a great extent by using panel data. In panel data analysis different sources of variations
can be studied, like temporal change and spatial change. In other words. the time-varying analysis and unit-

varying analysis are being done in panel data analysis.

The conventional methodology of econometrics considers the parameters of the linear regression model
as invariant or fixed over time and over space. This implies that a single vector of parameters will suffice the
need regarding the relationship between the explained and explanatory variables over the time and/or across
the individual units of the panel. That is why the traditional linear regression model explicitly adopts that the
sample data generating process of economic structure, remains fixed across the units of the panel and over
different time periods. Therefore, the traditionalists believe that the pooled or the fixed parameters linear

regression model describes the true functionai structure between the regressand and the regressors.

In reality, when dealing with the time series data, the response coefficient might change until and unless
the time variant factors are being modelled properly. Likewise, when dealing with the cross-sectional data, the
response to an explanatory variable will vary for different units of the panel. As long as the data generating
process is uncontrolied and unobservable experiments, the assumption of the fixed or constant parameters is

very poor and highly restrictive.

As opposed to the fixed parameter models, there are other types of models called the varving coefficients
models. These models assume the parameters to be variant over time or across the units of the panel. By
allowing the parametric variation from one observation to another over time or across the units of the panel

and challenge the assumption of the constant parameters in the conventional methodology of econometrics.

There are so many valid reasons for the justification of variations in the econometric model parameters.

The key cause of parameter dissimilarity which is addressed in the literature can be categorised as;
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specification errors primarily caused by the characteristics of the missing variables and/or misspecification of
the real functional relationship (e.g., nonlinearities in true relationships); measurement error in the vartables

and cumulation bias.

As the true model or the data generating process is unknown, and does not exist numerically in reality,
it is only the imagination. Therefore, some writers have stated some facts about the econometric models which
have been revealed in the introductory chapter of this thesis. The study of Chang, Swammy, Hallan and Tavlas
(1998} in this regard, discourses the question that how to verify whether a particular econometric model agrees
with an underlying model or stochastic law or not, as detined by Pratt and Sclaifer (1988). In the real world
problems, the fixed or constant coefficients models are very limited representations and fall short of being
consistent with the econometric model building realities, therefore, they cannot be considered as causal. In
one of the very important articles by Pratt and Schlaifer (1984}, they have shown that the OLS estimates will
aimost and always be inconsistent by the nature of the stochastic laws. Also, in many basic theoretical
econometric books, after analysing many of the estimation techniques for the linear regression models it has
been concluded that the OLS estimates are always in consistent and inefficient and even biased by the nature

due to the said law.

Considering the simple representation of the sim'ple linear regression model, y = xf8 + u, the writers
emphasise the statement that the model parameters can be consistently estimated with the help of OLS, if and
only if the regressor of the model is uncorrelated with disturbance term of the model, that is, if x is uncorrelated
with u. Now from practical point of view or from real world issues it is very much difficult for anyone to judge
whether the regressor x and the disturbance term u are correlated or not. The importance of the correctly
interpreting the error process u was interpreted by them. The interpretation of u made by the econometricians
takes the following form: u is the effect of those omitted variables, say w, which along with the included
variables x, suffice to determine the average vatue of the dependent variable y but are not explicitly included
in the model. Ifthese excluded variables or factors were identified, the scientist would able to decide whether
the joint effect of these excluded variables is likely to be correlated with x or not; the authors emphasize that

the econometricians never suggest identifying all of the excluded variables from the model.
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Some authors, like Malinvaud, states that it is even impossible to identify all of the excluded varjables.
Although, if all the excluded variables, say, have been identified the inclusion of them in the model also leads
to some incurable problem too, like the loss of degree of freedom, the high R-squared etc. Therefore, the
assumption that x being independent of the error term is either untrue or worthless and if this assumption is

made so it is purely on adhoc bases.

Swamy and Tavlas (1995) gives explanations for using the Random Coefficients models, as opposed to
the fixed or constant parameters model discussed above, in the context of a “class of functional forms™
approach to model evaluation. The logic behind the functional form is that many estimation techniques in
econometrics are concerned with the data generating process. They make particular assumptions about the
functional form of the data generating process. Although the exact or true functional form of the data
generating process is not known. Sometimes the economic theory explains the candidate variables that are
very probable to be involved in the stochastic economic law, but it does not have much to say about the
functional forms between the dependent and independent variables. The assumption about the functional form
in the traditional econometric methods is very much essential, adding simply the disturbance term to the
mathematical form, straight away, is not meaningful. The specific functional form plays a pivotal role in the
results of the estimation and the estimates heavily depend upon the functional form. Further the effects of the
omitted variables on the estimates of the coefficients of the included variables cannot be known in advance. It
is very worthless to assume that every included regressors of the model are uncorrelated with every excluded
variable from the model that affects the dependent variable. These issues have been addressed by Swamy and
Tavlas {1995) through an article, namely *class of functional forms”. This approach basically illustrates that
one can begin with a wide class of functional form and check whether the answer to a specific question being
addressed is fundamentally the same for any particular functional form in the class. If the functional forms in
the class are found to give markedly answer, then the modification of the class will be desirable.in making the
modification of the class, careful interactions with the data are necessary. They pointed out that the RC models
are very significant as they signify the key intermediary steps in the problem of deriving major classes of

functional forms.
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A random coefficient model encompasses a variety of models including the fixed coefficients model,
The fixed coefficients models are assumed as the special cases of the RC model. The specification errors, to a
significant extent, are less serious in case of following the RC as compared to any of its special cases. Klein
(1989) reasons the random parameters and systematic changes in the parameters may be indication of
nonlinearities that have not been modelled effectively in a model’s specification. According to Granger (1993)

the time-varying parameters model provide satisfactory approximation to nonlinear associations.

The RC assumes each coefficient of an econometric equation of a model as a stochastic or randem. Thus,
each coefficient of the model comprises of two components; namely the deterministic and the stochastic. The
first component is deterministic, that changes directly in line with the regressor, and the second part is
stochastic, that may be simply a white noise process or may follow any process that may even be complex. In
case of specification error such as the omitted variables, the incorrect functional form and measurement error
in variables, it very poor assumption to assume that the simple error term added to the intercept will be
sufficient to the effects of these natural sources of errors. If the parameters of the model are variable, then it is
quite clear that the OLS estimators are unbiased hut seriously inefficient. Cooley and Prescott (1973) and
Rosenberg (1973b) have shown a remarkable improvement in efficiency in simulation by using the RC
specification. Additionally, when the parameters of the model are stochastic then it has been shown that the
OLS sampling theory severely underestimate the parameter estimation error variance. Thus, the random
coefficient specification is removing the downward bias in the estimated variance of error, Rosenberg (1973b)
described in a simulation study that the OLS error variance rises to five times as compared to the efficient
variance and the OLS sampling underestimates OLS error variance by a factor of twenty or more. The area of

the time-varying parameter regression models have received significant attention in the literature.

The literature on the wide class of time-varying parameter models can be classified into the three main

categories, which are described as under: !
(i}  Systematic but non-stochastic variation models (See. e.g. Quandt (1960), Belsley (1973)%

(ity Random Coefficient Models (See e.g. Hildreth and Houck (1968), Froehlich (1973), Hsiao (1974),
Swamy and Tinsley (1980), Basg1, & Zaman (1998));
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{iii) Random but not necessarily stationary coefficient models (See. Kalman filter models, Cooley and

Prescott (1976)).

Regarding the first ¢class of the models i.e., systematic but non-stochastic variation models, the vector of
the coefficients can be expressed as a deterministic function of some observables, which might possibly be
nonlinear and may contain the regressors themselves with the variation of the systematic parameter the theory

of OLS is applicable.

Next, the second as well as the third class of the models emerges when the variation of the parameter
contains an element which is a realisation of any stochastic process in addition fo a deterministic portion that
may be a function of observable. Further, for the stochastic coefficient models some more information must
be put on the structure of how the coefticients changes across the data points, if possible, the estimation
procedures are to be developed. There are numerous models and estimation techniques in the literature towards

this end.

The third and final class is the time-varying regression models, these are also known as the sequential
of Markov parameter models. In this type of models, the stochastic parameter process includes random drifts.
For the estimation purpose of these models the Kalman filter technique has been vastly used, after the
introduction of it with Kalman (1960) and Kalman and Bucy (1961). For deep understanding about the
application of the Kalman filter technique in case of time-varying regression models, see Raj and Ullah (1982),

also Chow (1984) and Nicholls and Pagan (1985).

For a variety of other estimators developed for the regression of nonstationary time varying parameter,
see, Rosenberg (1973), Cooly and Prescot (1976). Also, for its Bayesian counterpart, see, Sarris (1973) and

Liu and Hanssens (1981).

The study in this thesis does not concentrate on the time-varying regression models, this mainly
concenlrates on the unit-varying regression coefficients parameter in case of panel data, which are very much

similar to time-varying regression above,
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In “stochastic frontier analysis™ the use of panel data was introduced by Pitt and Lee (1981) and Schmidt
and Sickles (1984). The maximum likelihood analysis presented by Pitt and Lee (1981), the assumption of the
constant coefficients over time allows the researchers to use a “within” estimator in case of fixed effects model,
this is stated by Schmidt and Sickles (1984). Frequentist analysis of this model can be seen in Meeusen and
Van den Broeck (1977) with an Exponential inefficiency distribution, Aigner, Lovell and Schmidt (1977)
(haif-Normal), Stevenson (1980) (truncated Normai} and Greene (1990) {(Gamma). The application of this
model in case of cross-sectional data abound. They are usuaily conducted in the setup of one of the references
cited earlier. Further, the Bayesian analysis of the-above model was introduced for cross-sectional data in Van
den Broeck, Koop, Osiewalski, and Steel (1994) under different inefficiency distributions. The literature
incorporating a Bayesian approach to panei data models with applications in stochastic frontier analysis has
been growing in the last two decades. The approach was first suggested by Van den Broeck (1994), which
considers the Bayesian method under the composed error model. Koop et al. (1997) has established the
Bayesian setup where the random and fixed effects models are defined; they also applied Gibbs Sampling to

analyse their model.

Liu. J., et, al (2013) consider two longitudinal data models with unobservable heterogeneous time-
varying effects. The first one with unit effects treated as a random function of time, the second one with the
common factors which are unknown in number and their effects are unit specific. This paper has two very
important features and can be considered as the generalization of the conventional panel data models. Firstly,
the unit specific effects that are considered to be heterogeneous across subjects as well as along time varying
are treated non parametrically, following the essence of the model from Bai (2009) and Kneip et al. (2012),
and Ahn et al. (2013). For an extended discussion of these and other models used in panel work in the

productivity field (See. Sickles, Hsiao, and Shang (2013)).

Bayesian numerical integration methods are described in Osiewalski and Steel (1998) and used to fully
perform the Bayesian analysis of the stochastic frontier model using both cross-secti_(;nal and panel data.
However, the subject effects are assurmned to be time-invariant by Liu, et, al (2013), which is inappropriate in
many settings; for example, in the stochastic frontier analysis, the technical inefficiency levels typically adjust

over time. In order, to address the temporal behaviour of individual technical efficiency effects, Tsionas (2006}
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considers a dynamic stochastic frontier model using Bayesian inference, where the inefficiency levels are

assumed to evolve log-linearly,

Bayesian methods have many advantages. First, tollowing the Bayesian perspective of random
coefficient models, (Swamy (1970); Swamy and Tavlas (1995) the panel data model will not subjectively
assume a common functional form for all the individuals as the subjective processes may vary among
individuals and fixed parametric values of the parameters that describe this functional relationship may not be
well-defined. Moreover, a Bayesian approach may circumvent the theoreticaily complex as well as the
computationally intense nature of nonparametric or semiparametric regression techniques { Yatchew, 1998)

and the need to rely on asympuotic theory for inference {Koop and Poirier, 2004).

2.1. Deficiencies in Frequentist Panel Data Models

There are several deficiencies related to panel data, some of which have been outlined below. From
frequentist perspective, model selection is one of the major problems in panel data models. When conducting
the research in the area of social sciences, it is very common to deal with the data that are bunched or grouped
into higher-level units. The most important chalienge while modelling such data appears when the regressand
shows group level variability beyond what can be described by the regressors alone. Dealing with such cases,
simply the fit of standard linear regression model or the generalized linear regression model without properly
accounting for the grouped nature of the observations can lead to very poor fit of the models and also leads to
misleading estimates of both the effect of the regressand and precision of the estimates. (Beck and Katz 1995;
Greene 2012). The two well-known approaches for the remedy of this problem are the fixed effects and the
random effects models approaches. There is a lot of written work in the literature over the theoretical properties
of these two approaches. (for example, Kreft and DeLeeuw (1998); Robinson (1998)), application of these
methods in applied work are often very confusing— occasionaily contradictory (Gelman and Hill (2006}).
Inadequate guidance can be understood by a researcher to decide between the fixed effects and random effects
inodel to be used to model the data at hand: Researchers often use the Hausman test to resolve this problem.
This is intended 1o apply to tell the researcher how significantly the parameter estimates differ between the

two approaches. As demonstrated by Clark and Linzer (2012), after an extensive study of analysing Hausman
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technique from various perspective the finatly reached to the conclusion that Hausman test is neither necessary
not sufficient condition for deciding between fixed effects model and random effects models, According to

them what matters is the;

—_

) size of the data set (both number of units and number of observations)
ii}  level of correlation between the covariates,
ifiy  subject effects,

iv)  extent of within unit variation in the regressors relative to the regressand.

To summarise the discussion of this chapter, we prefer to use the panei data as compared to either pure
time series data or pure cross-sectional data. Because panel data has more advantages over either of the two
types of data. Secondly, we prefer the varying parameter models as opposed to the fixed parameter models
because the fonmer are more flexible and can bitterly model the data. For example, the fixed parameter model
in case of panel data, assuming no temporal effects, assume the parameter are identical for all the units ot the
panel, which in reality are very poor assumptions. There must exist some unit effects or heterogeneity.

Therefore, the fixed parameter cannot be highly recommended for the analysis of panel data.

On the other hand, assuming a strong heterogeneity among the units of the panel and employing
different parameters model to each unit of the panel to bitterly accounts for the subject specific heterogeneiry
among the units of the panel. Then the common characteristic among the units of the panel is lost and hence
the purpose for which the panel data has been preferred over either time series data or corss-sectional data is
no tonger exist. Even though if using the panel data and account for the heterogeneity among the units of the
panel, there is not credible techniques in the classical literature that could help us in deciding whether the
heterogeneity among the units of the panel is random or fixed. The commonly used tool for deciding this is
Hausman test and as it has already been mentioned that this tool is not very trustworthy. The only option that
is left with us the random coefTicient setup, as it has great potential and can z;ncompass variety of models. If

“this has been chosen, then the problem has been controlled to a certain extent. There lies another issue in the

estimation of the model parameters, that is, either to foltow the frequentist approach, which solely depends
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upon the sample data available to the researcher or the Bayesian approach, which along with sample data rely

on additional information as well.

The Bayesian approach has shown very fruitful results in the literature as it utilises more information
as compared to the frequentist approach. Therefore, the Bayesian techniques have been preferred, and this is
the reason that panel data, random coefficient mode} and Bayesian techniques of estimation are the main ideas

of this thesis.
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Chapter 3

Methodological Framework

[n this chapter we describe the methodological framework that is carried out in the chapters to be come

irt this thesis.

In chapter 4, the theoretical development of the K regressors panel data linear regression model for
the i*" unit of the panel has been described, which includes, the variables in the model, the dimensions of the
variables, the assumptions of the variables, the associated parameters of the variables in the model, the
interpretations of the parameters of the model, the dimensions and assumptions of the parameters, the
variances and covariances of the parameters, the precisions of the parameters, etc. will be described.
Thereafter, the Bayesian structure of the parameters of the model, its assumptions, distributions of the
parameters and the errors etc. will be presented. Next, various densities which are needed for the Bayesain
analysis/computation, namely the data density, the prior density, the posterior density, the marginal density,
their parameters, the corresponding structure and related assumptions will be expressed. After that, in the next
section of chapter four, the Bayes estimators, the classical Bayes estimator, its theory, structure, assumption,
drawbacks, etc. are discussed. Then the empirical Bayes estimate, its theory,_ its structure, assumption,
superiority over classical Bayes estimator, the advantages, and the estimates of the prior parameters, etc. are
discussed. The estimator for the prior mean used here is derived from the marginal density of 3. This estimator
is the precision weighted arithmetic mean of the ordinary least squares coefficients estimates f§ !, The estimator
of the prior variance is, the Zellnet’s (1971} g-prior, which is proportional to the data precision. Lastly, the
empirical Bayes estimate for a single kM orthogonal regressor of the {** unit of the panel data linear regression

model is developed which is the main objective of this chapter. This completes chapter 4.

In chapter 3, the analytical derivations of the frequentist estimators from the empirical Bayes estimate
will be derived. The frequentist estimates wiil be derived from the empirical Bayes estimate by imposing

certain restrictions upon the prior precision parameters denoted by “p,.”. This is shown easily that by imposing
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different restrictions on g yield different frequentist estimators of the standard panel data linear regression
models. Moving the prior precision parameter py, in different directions “i.e., when py — 0, when p; — o0 and
finally when 0 < g < 00,” yield almost all of the frequentist standard panel data linear regression models and

the corresponding estimators for these models.

In the frequentist framework there are very limited panel data linear regression models as compared to
the need of the researchers. The subject specific coefficients model, which assumes the coefficients to be
constant with-in the subject but variable among different subjects of the panel. In other words, each subject of
the panel will have its own distinct coefficients vector. On the other hand, the subjects common coefticients
model assumes a single coefficients vector for all the units of the panel. It further assumes homogeneity of the
coefficient vector with-in and between the units. Further, the fixed effects model assumes the intercept to be
unit specific and the slope coefficients constant across all the units of the panel. Similarly, the random effects
model assumes the intercept to be randomly fluctuated across the units of the panel and the slope coefficients
are constant across all the units of the panel like in the case of fixed effects model. Finally, the random
coefficients model which assumes some common characteristics and some random characteristics for all the

regressors including the intercept as well as the slope coefficients.

There are number of questions regarding the frequentist standard panel data models. The first question
that comes in mind is that in most of the models described above i.e., subjects common coefficients model,
fixed effects coeificients model and the random effects coefficients, the slope coefficients have been restricted
to be common and the intercept may or may not be variable. This restriction seems very impractical and very
unlikely that all the regressors across all the units of the panel are constant. Further, in neither of the above
cases it is assumed that the intercept may be common or constant across the units and some or all of the slopes
coefficients may vary. This situation is very likely to occur in practice where the intercept may be common
for all of the units but the slope coefficients may vary. This possibility has been completely ignored in their

literature of panel data model.

The frequentists have categorized the regression coefficients in two major categories, in the first

category, they put the intercepts coefficients and in the second category, they keep the rest of the regression
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coefficients. In many cases, they assume the second category as constant for all the units of the panel especially
in the three cases mentioned above. Though, there are many regression coefficients in the second category as
compared to the first category due to muitiple regressors and the frequentist still assume them constant across

all the units of the panel.

The next question is that the frequentist panel data models take into consideration the data information
only, they do not consider any additional information to which Bayesian set up referred as the prior
information. The problem in taking only the data information is that if for instance the data collected for a
specific time period (or time periods) or for a particular unit (or units) due to any reason is very odd, extreme
or outlying then the estimates from the frequentist techniques with the help of this data will be very irrelevant,
meaningless and useless, because of outiier. The frequentist does not use other sources of data that could help
and show that this special or particular case is exceptional and out of pattern. On the other hand, in the same
assumed situation the empiricai Bayes outperforms. The empirical Bayes estimate helps a [ot in this regard, as
it uses additional information. The empirical Bayes estimate has also the potential to produce all the frequentist
estimates of panel data linear regression models. Therefore, the frequentist estimates of all the standard panel
data linear regression models will be derived here from the empirical Bayes estimate and thus corresponding
to each vector of the coefficient estimates the panel data linear regression model will be presented. The
Bayesian linear regression model has the capability to produce a number of new models as well, which have

not been discovered so for in the literature.,

3.1. The Details of the Data Used in the Example

In order to show numerically that all the frequentist estimates of the panel data linear regression models
can be attained from the empirical Bayes estimate of the panel data linear regression model. We take an
example and the data from the book “Basic Econometrics™ by Gujarati, Fourth Edition. This example is based
on the data of Table 16.1 in it. The data in Table 16.1, is taken fro_rﬁ one of the most popular studies on
investment theory conducted by Y. Grunfeld. The rationale behind selecting the above example is to show
that the estimates produced by the Bayesian technique, under certain restrictions, exactly match to the

cstimates produced by the frequentist approach in the book. The description of the study of Y. Grunfeld is as
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under. Grunfeld was concemed in discovering out that how real gross investment (Y} depends on the real
value of the firm (X5) and real capital stock (X3).

It is to mention here that the original study covered number of companies. For demonstrative
determinations we have picked data over four companies, the General Electric (GE), the General Motor (GM),
U.S. Steel (US), and Westinghouse. For each company the data is available for the afore mentioned three
variables from the period 1935-1954. Hence, there are four units in the panel and 20 time periods. so it results
us 80 observations in all. The relationship between Y and X, and X5 is expected to be positive, a priori. Now,
this implies that we can either run tour time series regression one corresponding to each of the companies or
can run 20 cross-sectional regression one corresponding to each time period. If running the laiter case, the 20
cross-sectional regression one corresponding to each time period, we should care about the degree of freedom
problem. Moreover, as mentioned earlier repeatedly, in the conventional econometrics, each of the frequentist
estimates is considered to be of different origin. But now here the empirical Bayes estimates of the panel data
linear regression model will nullify the theory of the separate origin of each frequentist estimate. This
derivation will certify that all the frequentist estimates of panel data regression models are of the same origin
and can be derived from that unique or common origin. The frequentist estimates to be derived from the
empirical Bayes estimate includes the subject specific coetficients estimates, the subjects common coefficients
estimates, the random coefficients estimates, the fixed effects coefficients estimates and the random effects
coefficients estimates. For this purpose, for each of the above frequentist estimates, the theoretical description
of derivation, the particular prior precision parameters with the help of which those particular coefficients
estimates are being derived, then the corresponding derived frequentist coefficients estimates are presented in

the next chapter.
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Chapter 4

Deriving Empirical Bayes Estimate for Panel Data Linear Regression Model

This is the main chapter of this dissertation which consists of the empirical findings. In this chapter,
the analytical derivation of the empirical Bayes estimate for the coefficient of the k** orthogonal regressor in the i
unit of the panel data linear regression model has been carried out. The empirical Bayes estimate that will be developed
here is for a K orthogonal regressors linear regression panel data model. But each regression coefficient in the model
will be estimated individually and independently. This is a single or individual regression coefficient estimation
approach. [n other words, asingle regression coefficient out of all K regression coefficients will be estimated
at a time one by one. In this chapter, we first develop theoretically the basic concepts regarding the K orthogonal
regressors panel data linear regression model for the i*" unit of the panel and then the comresponding Bayes
estimate. But before this, as for the analytical workout of the Bayesian linear regression model and the
corresponding empirical Bayes regression estimate, we need prerequisite the frequentist panel data linear
regression model, their estimates and some other quantities. As the Bayesian estimates utilizes these

frequentist estimates for computation etc.

Therefore, below we discuss, the frequentist K orthogonal regressors linear regression model for the

"{th" unit of the panel.

4.1. The General Panel Data Linear Regression Model

The general K orthogonal regressors panel data linear regression model, for the i unit of the panel,

in the frequentist set up may be considered as under,
yi=xigi+ ¢t for  i=1,2,...,N. (4.1a)

where,

Yi=(¥f, ¥, o YE o YE) B = (B, B v Bl BE) £l = (€L, &) o ihionih) (4.1b)
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Xt Xp oo Xuo oo X
-Xii"l X%‘z X'f‘k X%‘K-

Note: We assume all the regressors in X to be orthogonal.

Further, Y* is the dependent variable of order T x 1, X ! is the matrix of the orthogonal regressors of
order T X K, B! is the corresponding K X 1, coefficients vector for the matrix of the independent variables
“X* and £! is the vector of random residuals of order T X 1. Here, throughout in this dissertation, the
superscript “i” represents the unit number in the panel, the first subscript “t” represents the time period, the
second subscript “k” represents the regressor’s number. The two subscripts “tk” denote, the time period and

the regressor number respectively.

Moreover, in frequentist set up, the model parameters vector 8¢ is a vector of fixed constant quantities.
1t does not have any further structure. While this is not the case in the Bayesian set up. It is further to be noted
here that, the balanced panel is assumed in this study i.e., all the units of the panel have equal number of

observations for each of its variables or regressors and there is no missing data, also T > K is assumed too.

Furthermore, the distribution of the residuals is assumed as given below,
[sil(az)"] Ii) s (0, (02)"!-,-) {4.1d}
This implies that, [£¢|(52)¢] is normally distributed with mean zero and covariance [(JZ)EIT].
Further,
([ 1D, [€23(62)?], ... [€}1(a?)}], .., [£¥[(0?)]) are all independent. (4.1¢)

4.2. The Regression Coefficients Estimates

The OLS or ML estimate of fi*, with the help of (4.1d) above, is given as under,
A FREES BT
gi= (Xl X:) xi'yt (4.2a)
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Note: Here in the above, the dash or prime “ '  above “X e, X "’, depicts the transpose of the beneath

variable X*, and where transpose of a matrix is, the interchanging of the rows into columns of the matrix and

vice versa.
For analogous expression of (4.2a) above, (See. Carrington and Zaman ((1999).pp. 252)).
4.3. The Covariances of the Regression Coefficients Estimates
Similarly, the variance covariance structure of £° given in (4.2a) is as under,
cov(?) = [(o®(x"x") "] (4.32)

The dimension of Cov(ﬁi) in(4.3a) above is K X K, due to the fact of K regressors in "i**" regression model

llithll

corresponding to unit of the panel.

Let the data covariance of the regression coefficients estimate for the i*" unit of the panel may be

abbreviated and denoted by (DV)* then,
(DV)i = [(az)‘(xi'xi)'l] {4.3b)

4.4. The Precision of the Regression Coefficients Estimates
By definition, the precision of an estimate is equal to the inverse of its variance covariance siructure,

therefore, the precision of ¢ which is denoted by Prec(8*), equals as under,

. Lo 1771
Prec(f') = [(a®(x"x%)" ] (4.42)
or equivalently,
Prec()=[(x!x){e?} '], (4.4b)

Let the data precision of the regression coefficients estimate for the i** unit of the panel may be

abbreviated and denoted by (DP)¢ then,

Py =[{e»¥ " (x!'x")] (4.4c)
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Below, we discuss the additional workout that is needed for the Bayesian linear regression model.

4.5. The Bayesian View

From the Bayesian point of view, the information regarding the unknown parameters may be expressed
in the form of a distribution. Prior to observe the data whatever information we do have is summarised with
the help of a distribution called the prior distribution. When the sample data is observed, the Bayes estimator
is used to update the prior density and obtained the posterior density. The posterior density describes the sum
of the additional or prior information and the sample or data information.
4.6. The Bayesian Central Tendency Model

In Bayesian set up, the model parameters vector B is considered to be a vector of variable quantities
rather than a vector of fixed constant quantities, it has further a structure (fixed quantity plus random
fluctuations), unlike in dealing with the classical linear regression model. The Bayesian setup demands us to
put further a model on the structure of the parameters vector 3°. The central tendency model” seems suitable

here; which is given as under,
gt =B+t (4.6a)
where, B is called a hyperparameter and is the prior mean of 3* in Bayesian set up, while v' is the disturbance
term, and
i~ N (0,AY) (4.6b)
The model parameter #! in Bayesian framework, is presumed to have a probability density with some
mean B and variance A%, and the coefficient vector for a particular case is considered as a random outcome

from that density. Thus, this implies that 8* is normally distributed with prior mean B and prior varianc-

covariance Al this can be expressed as under,
Bt~ N (B.A) (4.6¢)

In the next section we describe various densities.

? For the central tendency mode! see Zaman ( 1996), Statistical Foundation for Econometric Techniques.
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4.7.  Various Densities Required for the Bayesian Analysis

The general procedure for the derivation of the Bayes estimate is as follows. First we describe some
useful densities which have been using for the derivation purposes. These densities are already availabie in
the Bayesian literature, but the purpose to present here is that to express them in our own symbois and notations
which are easily understood, according to the needs and the goals of this dissertation. Therefore, the first

density to be discussed below is called the data density.

4.8. The Data Density

The data density is the one that contains the data information or the sample information about the
unknown population parameter in the form of a distribution or density. The data distribution can be described
as; if B is the vector of the regression coefficients estimates and f¢ is the vector of the corresponding
unknown parameters of the regression model, then the data density f(ﬁi) is considered to be the
conditional density and is denoted by f(#*| ') and pronounced as, the data density of A% given £ The

data density of % given 8¢ is given as under,

818 (0%, X~ N |8 (x"x) 7] (4.80)
or, in the light of (4.3b),

[BU18% (6®), X]~ N [BL(DV)Y] (4.8b)

for reference, (See. Corollary 3.3, pp.(45), Statistical Foundation for Econometric Techniques, Zaman

(1996)). It is further to expiain that the data density is sometimes known as the conditional density.

From Bayesian perspective the existence of the prior or additional information regarding the unknown
population parameter ' is assumed through a density, called the prior density. Therefore, the next important

density that is to be described is the prior density.
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4.9. The Prior Density

The density that contains useful information, other than the data, regarding the unknown parameter of
interest 8%, is called the prior density. There are many types of the prior densities in the literature, one type of

the prior densities is known as the conjugate prior.

In the Bayesian theory of probability, if the prior and posterior densities belong to the same family of
the distributions, then the prior they are cailed the conjugate distributions. Further, the prior density is then
called the conjugate prior density and the posterior is called the conjugate posterior density. Such priors are
called the conjugate prior for the likelihood function. The conjugate prior is also known as the paturai

conjugate prior.

Now the prior we use here in the Bayes estimate are the normal conjugate priors. The kind of prior
information required by the Bayesian techniques built on the natural conjugate priors are very demanding.
Why we make this assumption about the prior because they are mathematically convenient and easy to
compute. Representing the prior information in the form of a normal distribution takes to the estimates that

have certain very unwanted properties.

Analytically suitable the natural conjugate priors are naturally not adequately flexible to appropriately

express the prior information. However, they form the basis for empirical® and hicrarchical’ Bayes estimates.

Below we describe the normal conjugate prior density of 8¢ and some other related useful information.

The prior density conditional on hyperparameters f (ﬁ ‘B, Ai) is as under,
[811B, A |~ N [B,AY], for alt 5* {4.92)

This states that 8¢ is distributed normally with prior mean vector B, and prior covariance matrix A‘,

Where, B and A’ are the parameters of the prior density and are called the Avperparameters, in o}der, to

¥ The Bayes estimator, where, the estimates of the hy perparameters, estimated from the density of the parameters, are used is called
the hierarchical.

“The Baves estimator. where, the hyperparameters further have prior structure or prior density, with the help of which first siage
prior paramcters arc cstimated from the density of the sccond stage prior parameters density. is called the cmpirical.
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differentiate them from the parameters of the data density. For analogous expression of (4.9a) above, (See.
Carrington and Zaman (1994),pp. 256}.

Let the prior variance A° (hyperparameter) of the parameters of the i unit of the panel may be
abbreviated and denoted by (PV)* then,

(PVY =[AY] (4.9b)
Now with the help of (4.9b), the above (4.9a) can also be written as,

[811B, A" | ~ N [B. PV, for all gi. (4.9¢)

;171 . . .
Similarly, let the inverse of the prior variance of the i*® unit of the panel [A‘] i.e., the prior precision

of the {* unit of the panel, may be abbreviated and denoted by (PP)* then,
PPy =[A]" (4.9d)

Now with the help of the above densities we obtain another valuable density, in fact, the most important

density called the posterior density, this density is presented in the following subsection.

4.10. The Posterior Density

The posterior density is the desired density in the Bayesian setup as it contains all the valuable
information about the unknown parameter of interest after observing the sample data Thus, the posterior
density has the virtue of containing ali the useful information regarding the parameter ¢ which were either
before in the data density or in the prior density. Therefore, in the light of (4.4¢) and (4.9d) above, the posterior

density f( B¢|8%) is given as under,
gilgi~N {[(DP)*' + Py [(0PY 4 + (PPYBL[(DPY + (PPY] " ). (4.10)

The arithmetic mean or simply the mean of the po'sterior density contains a good single-point summary
of this information. This mean is the optimal Bayes estimator for the class of loss functions it also includes

the quadratic loss function.
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Consequently, the prior to posterior transformation formula resultantly yields formula for the Bayesian

estimates of the regression coefficients.

In other words, the posterior density has very useful information, the expected value or the mean of
the posterior density is the Bayes estimate. Therefore, the expected value of the posterior density is shown

below,
E[Bi8] = [(DPY + (PPY] '{(DPY B! + (PP)B]. (4.10b)
Let the mean of the posterior density or the Bayes estimate may be denoted by M!, then,
Mt = [(DP)t + (PP)]"'[(DP)ift + (PP)'B]. (4.10¢)
Further, the covariance matrix of the posterior density is given as under,
Cov[p!|'] = [(DP): + (PP)] . (4.10d)
Let the posterior covariance may be denoted by V¥, then,
vi=[opr) +@p)]™ (4.10¢)

(For analogous expression of (4.10a) - (4. 10e) above, See. Statistical Foundation for Econometric Technigues,

by Zaman (1996), pp. (45) equation (3.2), (3.3} and pp.( 334) equation (17.15)).

The posterior mean is the weighted arithmetic mean of the prior mean B and the data mean gl
Furthermore, the weights that are entering in the formula of the posterior mean are just the corresponding
precisions of the two measures or means, namely the precision of the data mean and the precision of the prior
mean: both the means are multiplied by their precisions and the sum is then pre-multiplied by the inverse of
the total of the precisions.

As {t has been mentioned earlier that the mean of the posterior density is the Bayes estimate, so, in this

particular case of linear regression, the mean of this posterior density is the Bayes linear regression estimate

of the linear regression coefficients.
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4.11. The Bayes Estimates of the Panel Data Linear Regression Model

Now, we describe two various approaches of the Bayesian estimate of the linear regression panel data
models. The first kind we will label classical Bayes, simply because they were introduced first. Further, they
are very easy to compute, and also based on the natural conjugate priors, where the conjugate prior is also
known as the natural conjugate prior, as mentioned previously. This label is attached only for the convenience

of reference to such types of estimates.
4.12. The Classical Bayes

The Bayes estimates based on normal priors refer to the “classical Bayes™ since they were developed
first. If the hyperparametets, i.e., {B, (PV)"}, are known in advance, then M¢, which is the mean of the posterior
density, is the classical Bayesian estimator for 8¢, and denoted by M5, Thus, the classical Bayes estimate of

the coefficients of the linear regression model from (4.10c) above is as under,

#és =[Py +(PPY] ™ [(DPYB + (PP)B], (4.12a)
and similarly, the covariance matrix of the classical Bayes estimate in this case is given as under,
Vi =[DP) +(PPY] " (4.12b)

The prior used here, in the classical Bayes, are assumed as known as the cenjugate priors. The natural
conjugate prior information, that gives the base, are very attractive for the classical Bayes estimation
techniques.

If the prior information or in other words, the hyper parameters are not known then the classical
Bayesian perception for the selection the values for the hyper parameters on subjective grounds does not work
adequately well practicaily. This is the reason that the classical Bayes estimation techniques are not being
seriously recommended for the use in the practical settings. There are some problems attached with classical
Bayes, the main three complications related to the classical Bayes are being described below.

The first compiication is the “unbounded risk"”. 1t is worth noting that the Bayes estimate is biased

towards the prior mean (See. Zaman (1996)). Thus, by choosing the prior variance sufficiently large, the set
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of values where the Bayes rule dominates ML or OLS arbitrarily large can be made larger, but at the same

time, for the large value of B, the risk of the Bayes rule goes to infinity.

Further, irrespective of the fact that how the prior parameters have been chosen, the risk of the ML
dominates the Bayes rule arbitrarily for sufficiently large £°. This emerges the problems by using the Bayes
rules. The cases where the prior information is certain and definite are very rare in practice. Thus, if the priors
are not reasonable, then there is always a chance for tremendously poor results by the Bayes rule or classical
Bayes.

The second is the “choice of hyperparameters ", unluckily, there is no rule available in the literature

that could help us in making good choice for the hyperparameters in real world applications. For the choice
of the hyperparameters the classical Bayes technique needs the assessment of the prior density on subjective
grounds.
There are occasions where rational choices can be made, in decision making environment, by assuming as if
one has the known priors. The performance of Bayesian procedure mainly depends upon the choices of the
hyperparameters, for different choices of the hyperparameters the Bayesian procedure petforms very
differently from one another.

The third is the “conflicting prior and data”. Sometimes the prior information and the data information
are conflicting to each other and hence such a situation always becomes a source of difficulties in the Bayesian
analysis. However, when the contlict between the data information and prior information appears, in such
situations it does makes sense to make use of both sources of data and aggregate the two data sets. In the
situation like the one discussed here, if the researcher believes the prior to be more conventent and meaningful

then he/she should discard the data and vice versa (See. Zaman (1996)).

4.13, Remedies of the Difficulties in the Classical Bayes Estimate
Now, related to the first difficulty of the classical Bayes estimate, that of the unboupded risk, if the
prior variance'i_'s selected small and B is chosen near to the prior mean then the risk of the Bayes rule is good

against the ML and very poor otherwise.
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On the other hand, if the prior parameters are estimated from the sample data, then the data is
automatically in conformity with the values of the hyperparameters and the case where the data confronts the
prior is avoided.

Related to the second difficulty, uncertainty about the hvperparameters. As mentioned above to estimate
the hyperparameters directly from data, this assumes the hyperparameters to be correct with certainty, but this
is not the case, in reality. Attempts are made to account for the uncertainty related to the hyperparameter one
way or the other.

To overcome this difficulty, another way is that the hyperparameters are not directly estimated rather
estimate the decision rule to be used. This is the alternate and indirect way of addressing the problem.

Related to the third difficulty of the conflicting prior and data, this can also be minimized if the prior
have been estimated from the data, conflict may still exist, however.

The fact behind the avoidance of the Bayesian technique in econometrics is that in many instances the
reliable prior information is not available, and the conventional Bayesian estimates perform very badly if the
prior information is somehow mis-specified.

The estimate where the prior parameters {B, (PV)f} are being estimated from the data set is another
type of estimates and to be discussed after the classical Bayes estimate.

The Bayes estimate, where the data are used to estimate not only the parameters of the data density,
but also the prior parameter, this is known as the “Empirical” Bayes approach. The empirical Bayes procedure
invoives proceeding with a classical Bayes analysis using these estimates as it they were the prior parameters.

There are three different ways to implement the empirical Bayes approach. In all cases, the marginal
density of the observations is used to provide estimates for the hyperparameters. The simplest type of empirical
Bayes procedure is based on directly estimating the hyperparameter.

In the coming subsection a very important d:ensity is presented that is very much meaningtul for linking
the data and the hyperparameters, this density is known as the marginal density. Now we are going to write
the marginal density of £,

4.14. The Marginal Density

The marginal density of i relative to data and prior in a compact form can be described as under,



m(B) ~ N [B, (OV)' + (PV)Y]. (4.14a)

Why do we need to write the marginal density'® of #¢ given prior parameters B and A*? This is a crucial
element of the empirical Bayes method. The marginal density links the data with the hyperparameters via the

parameters of the data density.

Note that the data density depends on the parameters, and the prior density of the parameters depends
on the hyperparameters so that the marginal density of the observation, after integrating out the parameters,
will depend directly on the hyperparameters. This is the crucial step in empirical Bayes method. The marginal

density thus allows estimation of the hyperparameters from the data.

Below we estimate the prior variance, that is needed for the empirical Bayes, from the data with the

help of the marginal density of B¢.

4.15. The Estimation of the Prior Variance

There are several different priors for the prior varance in the literature, i.e., d-prior or g-prior, flat
prior, nominformative prior, etc., where d in d-prior stands for the diagonal and similarly g in g-prior stands
tor gamma. Below we describe the d and g-priors.

4.15.1. d-pror

The d-prior involves assuming that §* ~ N (B, A}, where A’ is a diagonal matrix. As a general rule,
putting in too many hyperparameters leads to instability in empirical Bayes procedures, and it would be a bit
risky to try to estimate a generai covariance matrix unless the number of hyperparameters is small relative to

the dataset size. Thus, it is essential to keep the A’ diagonal.
4.152. g-prior

An altemative formulation for the prior leads to very tractable formulae. Suppose we assume that §°
~ N (B,@(DV)'), where *¢’ is a'scalar. Zellner (1971) and Ghosh et al. (1989), label this the g-prior and

present some stories justifying the use of this prior. In fact, the prior is plausible, but its main justification is

'” In joint density, the factor m{f*). other than the posterior density. is of course. the marginal density of §t.
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computational convenience and the fact that it frequently leads to reasonabie/good results in empirical
applications.
Note that it is typically not useful in small samples to estimate all teatures of the prior, and some parts

of the prior must still be specified a priori. We will use the g-prior here, because only with the help of this we

(g ] ]

can reach to our destination and “g” stands for the gamma priors.
To estimate the prior'' vartance of ¢, with the help of g-priors, we need first to define the g-priors. By
the definition of g-priors, the prior variance is proportional to the data variance. i.e.,

(PVY « {(DV)} (4.15.2a)
or in the light of 8 ~ N (B, ¢(DV)'),
(PV) = (DV)-. (4.15.2b)

4,16. The Prior Precision Structure

The estimate of the prior precision of 8¢, with the help of g-priors, will take the form as given below,
(PPY: =p (DP)!, (4.16a)
where, p is a (K X K) diagonal matrix here, and is catled the prior precision parameters’ matrix, also,

p=(@ (4.16b)

This prior precision parameter p plays a very imporant roie, in panel data linear regression models,
the variation in this p leads to different standard classical panel data linear regression estimates and the

corresponding models.

4.17. The Estimate of the Prior Mean

The estimate of the prior mean is obtained from the marginal density of ¢ relative to the prior B and

(PV)E. We have m(B%) ~ N [B, (DV)F + (PV){], thus the precision weighted arithmetic mean of the weil-

" There are nonetheless certain dilTiculties introduced by estimating the prior in the usual empirical Bayes way.
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known ordinary least squares estimates, the estimate of the prior mean with the help of g-priors is described

as under,

B=(3¥,[0P) + (PPY]) (S {[(0P) + PPY]BY). (4.17a)

The above in (4.17a) is the precision weighted arithmetic mean of the ordinary least squares
coefficients estimates.

For analogous expression of (4.16a), (See. Carrington and Zaman (1994), pp238), equation (7) and

“Statistical Foundation for Econometric Techniques” by Zaman (1996}, pp.334, equation (17.16)). Now,

having all the estimates needed for the empirical Bayes, below we describe the empirical Bayes estimates.

4.18. The Empirical Bayes Estimate

The empirical Bayes estimate of the regression coefficients of the panel data linear regression model

is as under,
. . _1 . .
fiks = [(BP) +(PP)|  [(DP)'p" + (PP)'B]. (4.182)

and covariance matrix of the empirical Bayes estimate in this case is given as under,

-1

is =[(OP) + (PP (4.18b)

The above (4.18a) is the empirical Bayves estimate.

[n the empirical Bayes technique described above, we estimate the hyperparameters, but then pretend
that our estimates equal the hyperparameters with certainty and proceed to use classical Bayes formulas.
Note: The model that is introduced by Hildreth and Houck (1968) and is called the Hildreth-Houck random
coefficients model, is closely related to the empirical Bayes models, although estimation techniques and

motivation for the models are different.

‘The estimate which alleviates all three of the difficulties associated with classical Bayesian estimates

discussed above is called the empiricali'? Bayes.

12 Empirical Bayes estimates can he viewcd as atiempts fo remove or reduce some of these nndesirable features of classical Bayes
estimators.
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Morris { 1983), in an excellent though dated review of empirical Bayes methods, writes that the benefits
of empirical Bayes depend on the validity of (4.6a) and less critically on the procedure used to estimate the
hyperparameters. One of the main characteristics of the empirical Bayes estimates is the ability to compromise
between the priors and the data information.

An important reason why the empirical Bayesian techniques have been avoided in econometrics, this
is because the model and estimation techniques are new and refatively unfamiliar, Therefore, the empirical
Bayes technique is vastly underutilized in econometrics. The same situation prevailed in statistics, where these
techniques originated, until a series of articles by Efron and Morris (1972}, (1973) and {1975), were written to
address the four main obstacles to the use of the empirical Bayesian techniques.

A number of authors, such as, Efron and Morris, Carter and Rolph, and some others, have adapted the
empirical Bayes techniques and successfully applied them to regression models. However, each has done so
in his own way, and the unity behind the diverse techniques is hard to recognize.

Now, et us discuss, in following subsection, the empirical Bayes estimate single orthogonal regressor

approach in this dissertation,
4.19. Deriving the Empirical Bayes Estimate in Single Orthogonal Regressor Case

In this section we develop the empirical Bayes estimate for a single k™" orthogonal regressor, as this
is the route to the goal of this dissertation. As here all the derivations are made about a particular k" regressor,

therefore, we modify all of our previous symbols and notations, and specity them for a k" regressor.
For this purpose, let,

DV = (68) (Al (4.194)
be the k" diagonal entity of (DV)* “the data variance matrix” given in (4.3b) and let,

CEAI CHUCT) R (4.19B)
be the corresponding k" diagonal entity of (DP)’ “the prior variance matrix” given in (4.4c).

Then the marginal density of 8 is as,
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BL ~N(By, (DV! + (PVOY (4.192)
This implies that 8} is normally distributed with mean By, and variance [(DV;()" + (PV,C)"].
Note: The variance of the marginal density of # is the sum of the data variance and prior variance.

Further, foreach i = 1,2, ..., N, the OLS estimate of the k** coefficient is an independent observation
on By, but each of these estimates has different variance. We have N independent observations on By which

have different variances then the best estimate of B, is the precision weighted average of the observations.

[E{[ovi) "+ [eva] 13
[ZL{lovio ] + (v Y]

-~

K

(4.19b)

Depending on how we specify the prior variance, we can get different formulae for the empirical Bayes
estimate of the prior mean B,. A convenient assumption, which makes the formulae simplify is the Zellner’s

{(1971) g-prior, where,

(PVi)" = @ (DV)'. (4.19¢)
or equivalently,
[PV = pe OV ] (4.19d)
and where,
pie= (@)™ {4.19¢)

Now the formula for 5y in the light of (4.19¢) simplifies,

~ [E?l:l{[(DVk)i]_l+[¢'k(DVk)i]*1}E£]

(4.19)

Y[ [ov] T Hek@viol]
Further, the formula for B, in the light of (4.19d) simplifies to,
[ {lovioT T+ aulovil] 1B
B, = : {4.19g)

28, [0V ™ + provi)i] 7]
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or equivalently,

5, ([oviol] B

By = iZ?:l([(DVk)i]_l)] {4.19h)
Furthermore, in the light of (4.19¢c), the marginal density of ﬁ,‘( given in (4.19a} is as,

Bk ~N B, DV + 9 (DY) (4.191)
ot equivalently,

Bl ~N [Bx, (1 + 0 (DV)'] (4.19))

For empirical Bayes estimate, there are two steps in the derivation. The first step is the estimation of
prior parameters from marginal density and the second step is to take these estimates and plug them into the

classical Bayes estimate,

Since the classical Bayes estimate of ﬁ,‘{, denoted by CB([?,‘;), is the precision weighted arithmetic

mean of i and By, the weights are being the corresponding precisions, is given as,

) = [(ovi] Bitorlovi)] ' Bx

B (vl +okl@vii] *1%
CB(fY) = ——pi + X8, @.191)
1+ pg 1+pk
Now from the marginal density of BLin(4.19),
Mean(fi}) = By (4.19m)
and '
Var(Bi) =(1 + @)DV} (4.19n)
let, Z= B8y (4.190)

Ja+e0vy
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; 2
S =¥N BB
let, z i=1 i
:)(1 + @ )(DV)

then
; 2
Sz = Z?:l ﬂk_ BE ; ~ X}%
I+ 90V
since,
1
s, ~ inv(xy)
1y _ 1
E (3‘;) " N-2
ar
{(1 + 40kJ{DVk) H 1
E N-2
( ]
N (N 2) DVk) 1
E|Li=1 (1 + @g)
G 2)(ka)‘ -1
¢ (1+7)
(Bk Bk) ok
(N 2)(ka) Pk
P Bk (1 + o)
thus,
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(4.191)

(4.19u)

(4.19v)
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N JN-DOVe! Pi

i—1 ———— = (4.19x)
(Bi—Br) (1+pk)
as, the classical Bayes estimate for ﬁ,‘( in (4.191) is,

cB(f) = o fi+ T8, (4.199)

1+ pg 1+ pp
Now, using the empirical Bayes estimation methodology to derive an estimate for the a T; ) that

k

occurs in the classical Bayes estimate, when we do not know that value of the prior parameter pg. Using

(4.19x) the classical Bayes estimate in (4.19y) simplifies and known as empirical Bayes estimate, denoted by

EB(fx),

- (fo- profgpiffoe e fsle) e

Here whichever part becomes positive must be taken in the first term and the second term must have Max (],

Sum). Hence, this was the desired form of the empirical Bayes estimate for a single &*" orthogonal regressor.

4.20. Summary of the Chapter

In this chapter, first the panel data models and the associated stuff have been discussed, then the
Bayesian procedure has been outlined. In the Bayesian procedure all the densities which are being used in the
analysis have been presented and then the corresponding Bayesian estimates have been described. In the
Bayesian estimates, first, the classical Bayes estimate for the linear regression model the corresponding pros

and cons were discussed.

The classical Bayes estimates suffering from three main difficulties, these difficulties have been
described here, also the remedies of the difficulties have been suggested. These difficulties can be overcome
by the empirical Bayes estimate. After this, the empirical Bayes estimate for the panei data linear regression

model, the corresponding pros and cons were discussed.



The empirical Bayes estimate discussed here in this chapter is of much importance, because from this
empirical Bayes we derive all the frequentist panel data estimates and the associated models. All the frequentist
panel data linear regression models will be derived from this empirical Bayes analytically and then numerically

in chapter 5 and 6 respectively.

Finally, a new empirical Bayes estimate with the precision weighted arithmetic mean of the OLS
estimates as the estimate of the prior mean and the g-prior precision as the prior precision, for single k**
orthogonal regressor case, has been developed in 4.19z and this is the main objective and finding of this chapter

as well.
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Chapter 5
Analytical Derivations of the Frequentist Estimates

This chapter is the main chapter of this thesis, as one of the main objectives of this thesis is to show
that ail the standard frequentist panel data linear regression models and the corresponding estimators of these
model, are of single'* origin and all of them can be derived from this particular origin. The common origin we

talk about is the Bayesian linear regression mode] and the empirical Bayes estimate.

This chapter discusses the derivations of the frequentist panel data linear regression models from the
Bayesian panel data linear regression model and also the derivations of the frequentist estimators from the

empirical Bayes estimate. Therefore, the whole analytical work is described here in this chapter.

Note: Here, the derivations will be carried out for K orthogonal regressors model, but a single (for k™

orthogonal) regressor estimation approach at a time.

The goals of derivations of the frequentist panel data estimates from the empirical Bayes estimate can

be achieved, when;

i)  the precision weighted arithmetic mean, of the ordinary least squares coetficients estimates, is used as the
estimate of the prior mean,
ii}  the Zellner’s g-prior is used as the estimate of the prior variance (and the resulted prior precision), for the

empirical Bayes estimate,
and then

iii)  the prior precision parameter "py" takes different values i.e., zero, infinity or any value in-between zero

and infinity. (Note: "pg" is the prior precision parametet as defined above),

* Note: In the classical viewpoint, all the standard ctassical pancl data model estimators have their own distinct origin, they are
totally different from each other. while the Bayesian consider that all of the standard classical panel data maodel estimators have a
single, unique und identical origin they are not of distinet origin.
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Only with the help of the above conditions, regarding the empirical Bayes estimate, the goals will be

achieved.

The five different possibilities or limiting cases of variation, in the prior precision parameter gy, take
to different frequentist estimates. These limiting cases are being discussed below in section {(5.3) to (5.7) and

hence the resulted frequentist estimates are also being derived.

Further, with each of the derived frequentist estimate of panel data models, the corresponding panel

data linear regression model is also presented.

Betow, we modify the K orthogonal regressors’ empirical Bayes estimate and the related quantities for a

single k*® regressor of i*" unit of the panel, as this is the methodology of the derivation in this thesis.

5.1. Single Regressor Empirical Bayes Estimate

The empirical Bayes estimate of 8* of K regressors pane] data linear regression model for the i*" unit of
the panel, with the precision weighted arithmetic mean of the ordinary ieast squares coefficients estimates as
the estimate of the prior mean and the Zellner’s g-prior as the estimate of the prior variance (and the resulted

precision) from (4.18a), is given as under,

fis=[(0P) + (7P)] |(6P)'5 + (PP)'E] (5.1a)
or equivalently from (4.16),

i =[(07)' + o(0P)] " [(5P)'# + o(5P)'B] .10

In the light of (4.3b), the estimate of the data variance of the &% regression coefficient estimate of i*"

unit of the panet may be denoted as under,

' (DY) = (62 (x x&) 7", (5.10)
or
CIARICH I (5.1d)

because X}, is a single orthogonal regressor and where,
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Al =(x x)™. (5.1¢)

Similarly, the corresponding data precision may be denoted and expressed as under,

(0P) = [@] " (A ™", (.10
or
i 1
(0P,) =M. (5.1g)

Let us, the prior variance, may be denoted and defined as under,

(PV)" = ox {(B3) Al (5.1h)

or
i i _

(PV) = s (o7,)'. (5.1i)
The corresponding prior precision may be denoted and defined as under,

(Pﬂ)i*m{ 215 1, } .15)

(%) Ak

where

(0r) ™1 =px (5.1k)
then,

(PP) =pe (DP). (5.1

Also, in the light of (4.2a), the ordinary least squares coefficient estimate for the k** orthogonal regressor of

i*® unit of the panel is given as under,

Bt = (xf x) ™ (xt v, (5.1m)
because, X}, is a single orthogonal regressor.
Analogously, the modified prior mean of the k** regression coefficient will be as under,

Estimate of the Modified Prior Mean for k® Regression Coefficient = 5. (5.1n)
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Thus, having all of the above sample counter parts, the empirical Bayes estimate for the £** regression

coefficient of i*® unit of the panel gets the form as under. Let this may be denoted by EB(j}), then,

o gy 010

BB (AL - ([(—7 (xE 1)

([t ) (cxtoxy o v) e [ 000 ) s1o
or
- e f — i—‘l . I:A- . EA
EB(A) = (0B +px (0B)] (5P B+ o (0P) Bi) (5.1p)

Now on the basis of the above information, we can show how the empirical Bayes estimate produces
all the frequentist coefficients estimates of the panel data linear regression models and then the cotresponding

panel data linear regression models.

Below we show all of the five cases mentioned above one by one analytically.

5.2. The Derivations of the Frequentist Estimates

In the following sections, we derive all the standard frequentist coefficients estimates of the K
orthogonal regressors panel data linear regression models from the empirical Bayes estimate. Further, a single
regressor coefficient estimation technique will be adopted. Let see in the following subsection the individual
or the subjects specific coefficients estimates and the corresponding subjects specific panel data linear

regression model.
5.3 The Subjects Specific Coefficients Estimates

The case where the prior precision parameter pg tends to zero, corresponding to all the coefficients

estimates of the model, the empirical Bayes estimate reduces to the subject specific coefficients estimates.

The prior precision parameter p, tends to Zero: The first limiting case is: when the prior precision

4

parameter g, tends to zero corresponding to all the coefticients estimates, i.e. p, = 0, ¥ k&, in the empirical
Bayes estimate. As a result, the prior precision becomes zero, which means a high level of impreciseness of
the prior information and hence the common prior mean or the common characteristics of the units from the

empirical Bayes estimate vanishes and resultantly only the subject specific individual estimate remains in the
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formula of the empirical Bayes and similarly the empirical Bayes estimate solely depends upon the data
information. This case indicates complete heterogeneity among the units of the panel. Thus, in this case the
empirical Bayes estimate, becomes the frequentist subject specific coefficient estimate. Now to show this, we

proceed as follow.

From (5.2p) above, we have

sB(3) = [{(0P) + o (0P} {(0P)' B+ e (0P)B]| (5.38)
BB(B) = [{a+ o0 (0P)} {(Bh+ 0iB) (0P} (5.3b)
EB(Bi}= [(1+ p)™" (Bh+ piBi)] (5.3¢)

applying the limits as p,, — 0, on (5.3c) above,

Jim EB(8¢) = tim [(1+ p)™ (Be+ piBy)] (5.3d)
plkiglo EB(BLy=[(1+ 0)7! (B} + 0By)] (5.3¢)
lim EB(8L)=p (5.3
Pr—0

The estimate at the righthand side of (5.3f) above, is the frequentist subjects specific coetficients
estimates for a single k** orthogonal regressor of the it" unit of the panel data linear regression model. Now

the vector of all the K regression coetfficients estimates, in this case, will become as under,

b
B

B

T

Bk

Mig =EB(f') = , fori=1,2,..., N, (5.3g)

Hence, it has been seen that as the precision parameter p, tends to 0, against ail the coefficient

estimates in the empirical Bayes estimate, then the empirical Bayes estimate tends to reduce to the frequentist
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subject specific coefficients estimate, and hence it witnesses that the subject specific coefficients estimate is

the special case of the empirical Bayes estimate.

Now below we show the commesponding subjects specific coefficients panel data linear regression

modei for the i**® unit of the panel.

5.3.1. The Subjects Specific Coefficients Panel Data Linear Regression Model

Now on the basis of the vector of the regression coefficients estimates above (5.3g), (vector of the

subject specific regression coefticients estimates), the corresponding model can be expressed as,

YE=X{BL+ X365 + ..+ XiBh+ ... + XkBk + &, (53.1)
or in matrix notation the above model becomes as,

yi=xi gt + ¢, (5.3.2)

Hence, the subjects specific coefficients panel data linear regression model is the special case of the Bayesian

linear regresston model.

Below we show the next case as the prior precision parameter tends to infinity and the resulted subjects

common coefficients estimates.

5.4. The Subjects Common Coefficients Estimates

The case where the prior precision parameter g, tends to infinity, corresponding to all the coefficients
estimates of the model, the empirical Bayes estimate reduces to the subject common coeflicients estimates and

the resulted estimates so formed exactly constant and common across all the units of the panel.

The prior precision parameter g, tends to Infinity: The second limiting case is, when the prior

precision parameter pj tends to infinity, corresponding to ail the coefTicients estimates, i.e. py = © ¥ k, in
the empirical Bayes estimate. In this case the prior precision becomes very precise and hence the prior mean
or the subjects common characteristics of the panel remains only and the subject specific characteristics vanish
from the empirical Bayes estimate. Thus, the estimates so remains are the frequentist subjects common

coefficients estimates of the panel data linear regression models. This case indicates complete homogeneity
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among the units of the panel. This time all the coetficients vector will be identical and will be equal to the

common prior mean.

In order, to address the case where the prior precision parameter py, tends to infinity. First, simplifying

the formula of the empirical Bayes and then taking the limits, as p; approaches infinity, on both sides of the

simplified version of equation (5.2p) above. Thus, before applying the limits, equation (5.2p) can also be

expressed as follow,

-1

£B(8) = [{(0P)" + 5 (0P} (0P i + o (07) B

n(i) = [L{(2) 0P + 0P () (o7 B+ (o7 B

P

sa() =[G o + P} () @m0

applying the limits as g, — oo, on the above,

o 000, () + @] () o o

Jim£8(8) = [{0P)} { (5P B

. Ay - h
ﬁkh_n}m EB(ﬁk) Bg.

(5.4a)

(5.4b)

(3.4¢)

(5.4d)

{5.4e)

(5.41)

Thus, the estimate at the righthand side of the above (5.41), is the subjects common coefficient estimate

for a single k" orthogonal regressor of the " unit of the panel data linear regression model.

Now the vector of all the K regression coefficients estimates, in this case, will then become as under,
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Hence, it has been seen that as the precision parameter p, tends o for k =1, 2, 3, ..., K, then the
empirical Bayes estimate tends to reduce to the frequentist subjects” common coefficients estimate and hence
it witnesses that the subjects common coefficients estimate is the special case of the empirical Bayes estimate

{00,
Further, since, in above (5.4f} lim EB (ﬁi) = B, and from (4.15d) we can write the modified version
Pr = ®

for k" regressor case as under,

By = ():1-‘;1(0'?%)")*L (22, (D7) BL]. (5.4h)

Here, in the light of (5.4f), the above (5.4h) can also be written as under,
i 50 N e T Ton {5 .
iy = EB(F%) = [ZE.(0R)] [SXu (0P i) (5.4)

The above {5.di) is the frequentist subjects common coefficients estimate of all panel data linear
regression models. Here in (5.4i) we have seen that as p,, — oo, the empirical Bayes estimate reduces to an
estimate which is the precision weighted arithmetic of the ordinary least squares coefficients estimates. Now
below we show the corresponding subjects common coefficients panel data linear regression model for the it*

unit of the panel.

5.4.1. The Subjects Common Coefficients Panel Data Linear Regression Model

Now on the basis of the vector of the regression coefficients estimates above (5.4g), (vector of the
subjects common regression coefficients estimates), the corresponding panel data linear regression model can

be expressed as,

Yi=XiB, +XiB, + ... +X.B, + ...+ XLBg + €. (5.4.1)
or in matrix notation the above model becomes as,

Yi=X! g + £, (5.4.2)

Hence, the subjects common coefficients panel data linear regression model is the special case of the

Bayesian linear regression model.
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5.4.2. A Special Case of Subjects Common Coefficients Estimate
As it has been shown in (5.41) above, that as the prior precision parameter p, — oo against all the
regression coefficients, the empirical Bayes estimate gives the precision weighted arithmetic mean of the

ordinary least squares estimates.

One of the special cases of the estimate given in (5.41) above, is that when the homoscedasticity or the
constant variance across all the units of the panel is assumed, i.e. (62)' = (%) foralli=1,2, ..., N, then

(5.4i) above takes the form as under,

putting (52)¢ = (%) in above,

-1
- 3y = [y Ly i N pn iy pi
pL"_T}m EB(ﬂk) [ i=1 (5;%) (Xk Xk) [ i=1 (5@ (Xic Xk) B (5.4.2a)
Jim EB(f) = [EX, X¢ bANCH a7 [Z X0 A (5.4.2b)
JimEB(BL) = [Tl xi ] [ZX, (xi x4) Bi] (5.4.20)

The estimate given (5.4.2¢) above is the aggregate estimate for all the units of the panel, this estimate

exactly matches to the estimate given in, Zaman (1996}, equation 10.2,

Below we show the third case when the prior precision parameter remains in-between zero and infinity

and the corresponding random coefficients estimates.

5.5. The Random CoetfTicients Estimates

The case where the precision parameter py is in-between zero and infinity, corresponding to all the
coetficients estimates of the model, the empirical Bayes estimate reduces to the random coefficients estimates

and the resulted estimates so formed differ from both of the above two cases.

The prior precision parameter p; in-between Zero and Infinity: The third case is, when the prior

precision parameter p, remains in-between zero and infinity corresponding to all the coefficients estimates

ie. 00 < py, < o for any k out of all X regressors, in the empirical Bayes estimate. This time the empirical
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Bayes estimate neither solely depends upon the data information nor the prior intormation, rather, on the
combination of these two. It means, that there is neither complete homogeneity nor complete heterogeneity,

rather, some common and some random structure exists in the units of the panel.

The case where the prior precision parameter py tends to R, where R € [0, co] any real number.
5i o i — {171 = s — i
£B(8) = [{(7P) + o (P} {(OP) B + o (0P Bl (5.59)
taking the limits, as g, approaches to R, on both sides of (5.5a) above.
5 <5 3\ it i s N
EB(BL) = [{(DPk) +R(0P)'} {(DP)BL + R (0P, Ek}]. (5.5b)

The coefficients estimate at the righthand side of (5.5b) above, is the random coefficient estimate for
a single k" orthogonal regressor of the i*" unit of the panel data linear regression model. Now the vector of

all the K regression coefficients estimates, in this case, will then become as under,

By
B,
Mip=EB(F) =] & for  i=1,2,....N.  (5.50)
By
By

Note: In the above, hat “A” is placed upon tilde “~” in order, to represent the random fluctuations, and

also to differentiate between the common coefficients and the random coefficients estimates.

Hence, it has been seen that as the prior precision parameter p;, remains in-between 0 and oo, for k =1,
2,3, ..., K, then the empirical Bayes estimate tends to reduce to the frequentist random coefficients estimate
and hence it witnesses that the random coefficients estimate is the special case of the empirical Bayes estimate

f0o.
Note: The empirical Bayes estimate itself is the random coefficients estimate.

This is the estimate of more importance; it has a huge potential to be fitted in many circumstances. This

estimate encompasses so many possibilities existing in panel data models. [n the above cases, ail the prior
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precisions estimates were tending either to zero, infinity or was in-between zero and infinity, which yielded

the corresponding estimates.

In the third case, the prior precision can take infinite values and has the potential to produce intinite
frequentist random coefficients estimates of panel data linear regression models, and these models are what

explored with the help of this thesis, for the very first time in the history of panel data literature.

If the prior precision parameter is close to zero, the estimated coefficient will resemble the unit specific
coefficients estimate, on the other hand, if the prior precision parameter is close to infinity, then the estimated

coefficient resembles the subjects common coetficients estimates of all the units of the panel.

Also, it the prior precision becomes moderately precise, i.c., neither too precise nor too imprecise, then
the common characteristics as well as the specific characteristics of the units or the common prior mean and
the subject specific individual units estimates, both become the parts of the empirical Bayes estimate and such

estimates are known as the random coefficients estimates of the panel data models.

If starting the joumey of the prior precision parameter from being zero and tending it towards infinity,
one starts to have the subject specific coefficients estimates and then slowly and gradually modifying structure

towards the subjects common coefficients estimates for all the units of the panel.

The estimates between these two extremes i.e. zero and infinity, are known as the random coefficients

estimates of the panel data linear regression models as discussed above.

The speed of the convergence of estimates from subject specitic coefficients estimates to subjects
common coefficients estimates, actually depends upon the speed of the convergence of the prior precision

parameters from zero to infinity.

Now below we show the corresponding random coefficients panel data linear regression model for the

i*" unit of the panel. s

5.5.1. The Random Coetficients Panel Data Linear Regression Model

Now on the basis of the vector of the regression coefficients estimates above (5.5¢), (vector of the

random coefficients regression estimates), the corresponding modet can be expressed as,
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Yi=XiB, +XiB,+ . + XLB, + .. + X By + £ (5.5.1)
or in matrix notation the above model becomes as,
vi=x'§ + ¢l (5.5.2)

Hence, the random coefficients panel data linear regression model is the special case of the Bayesian

linear regression model.

Below we show the next case as the prior precision parameter py, tends to 0, for k =1, and p,, tends to

wfork=273,...,K.

5.6. The Fixed Effects Coefficients Estimates

The case where the prior precision parameter p; tends to zero, corresponding to the intercept estimate
and tends to infinity, corresponding to the rest of the coefficients estimates of the model, the empirical Bayes
estimate reduces to the fixed effects coefficients estimates and the resulted estimates so formed have exactly

the fixed effects characteristics.

The prior precision parameter pg tends to Zero for k = land tends to infinity for k =2, 3, ...,

K': The fourth limiting case is; when the prior precision parameter py tends to zero corresponding to the first

coefficients estimates i.e. p — 0 for k = 1, and tends to infinity, corresponding to all the remaining (K — 1)
coefficients estimates i.e. p = o for k =2, 3, ..., K, in the empirical Bayesian estimator, as a result, the

empirical Bayes estimate reduces to the fixed effects coefficients estimates.

When the prior precision parameter p, for k = 1, tends to zero and py tends to infinity, for k =2, 3,

..., K, then let us see what happens to the empirical Bayes estimate.

The case where the precision parameter p;, tends to zero, the cmpirical Bayes estimate reduces to the

subjetct specific coefficients estimates, as already shown in (5.31) above, i.c.

Mig =EB(B') = pL. (5.6a)
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Similarly, where the prior precision parameter gy tends to infinity, the empirical Bayes estimate reduces to the

subjects common coefficients estimates, this is also been shown in (5.4) above, i.e.
Mis=EB(fY) =B;. (5.6b)

Thus, if the first regressor, in a regression model, is a (T X 1} vector of ones and the remaining (K — 1)
regressors fixed variables then the combination above yields the fixed effects coetficients estimates. So, the
combination of the estimates at the righthand side of the (5.6a) and (5.6b) above, constitutes the fixed effects
coefficient estimates for a single k" orthogonal regressor of the {*® unit’s panel data linear regression model.

Now the vector of all the K regression coefficients estimates, in this case, will then become as under,

My =EB(B) = g . forki=1.2....,N. {5.6¢)
k

Hence, it has been seen that as the prior precision parameter gy tends to 0 for k =1, and p,. tends to
o, for k =2, 3, ..., K, then the empirical Bayes estimate tends to reduce to the frequentist fixed effects
coefficients estimaie and hence it witnesses that the fixed effects coefficients estimate is the special case of

the empirical Bayes estimate too. Now below we show the corresponding fixed effects coefficients model.

5.6.1. The Fixed Effects Coefficients Panel Data Linear Regression Model

Now on the basis of the vector of the regression coefficients estimates above (5.6¢), {vector of the fixed

effects regression coefficients estimates), the corresponding model can be expressed as,

Yi=XiBi+ XiB, + ... + XiBy + ...+ XEBy + &L, (5.6.1)
or in matrix notation the above model pecomes as,

Yi=xi g+ g, (5.6.2)

Hence, the fixed effects coefficients panei data linear regression model is the special case of the Bayesian

linear regression model.
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Below we show the next case as the prior precision parameter g, remains in-between 0 and oo for k =

I,and py tends to o for k=2, 3, ..., K., and the resulted random eftfects coefficients estimates

5.7. The Random Effects Coefficients Estimates

The case where the prior precision parameter g, remains in-between zero and infinity for the intercept
coefticients estimate and tends to infinity, corresponding to the rest of ail the coefficients estimates ot the
model, the empirical Bayes estimate reduces to the random effects coefficients estimates and the resulted

estimates so formed have exactly the random etfects characteristics.

The prior precision parameter p;, Remains in-between Zero and Infinity for k = 1and p, tends

to infinity for k =2, 3, ..., K: The fifth limiting case is; when the prior precision parameter p;, remains
in-between zero and infinity i.e. 0 < p, < oo for k = 1, corresponding to the first coefficients estimates and
tends to infinity, i.e. ppy = @ for k =2, 3, ..., K, corresponding to all the remaining (K — 1) coefficients
estimates in the empirical Bayesian estimator. The empirical Bayes estimate reduces to the random effects

coefficients estimates.

When the prior precision parameter g, remains in-between 0 and oo for k = 1, and p, tends to o for

k=2,3, ..., K, then let us see what happens to the empirical Bayes estimate.

The case where the prior precision parameter py remains in-between Zero and infinity i.e. R, the empirical

Bayes estimate becomes the combination of the random estimates as already shown in (5.5) above, i.e.
siy e N i = i) 7T {5 N
EB(BL) = [(0R) +R (OB} {(UP) B+ R (DB) B} (5.72)
Similarly, where the precision parameter gy, tends to infinity, the Baves estimate, as before, reduces to
the subjects common coefficients estimates, this is also been shown in {5.4) above, i.e.
EB(Bi) =B, ' (5.70)
Thus, if the first regressor is a (T X 1) vector of ones and the remaining (K — 1) regressors are fixed

or non-random variables, like in the case of the fixed effects, then the combination above yields the random

effects coefficients estimates.
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Thus, the combination of the estimates at the righthand side of the (5.7a) and (5.7b) above, constitutes

the randomn effects coefficient estimates for the panel data linear regression model.

Now the vector of all the K regression coefficients estimates, in this case, will then become as under,

Mig=EB(f) =| |, for i=1,2,...,N. {5.7¢)

Hence, it has been seen that as the precision parameter p, tends to 0 for k = 1. and py tends to o for
k=2,3, ..., K, then the empirical Bayes estimate tends to reduce to the frequentist random effects coefficients
estimate and hence it is evident that the random effects coefficients estimate is the special case of this Bayes

estimate too,

Now below we show the corresponding random effects coefficients model.

5.7.1. The Random Effects Coefficients Panel Data Linear Regression Model

Now on the basis of the vector of the regression coefficients estimates above (5.7¢), (vector of the

random effects regression coefficients estimates), corresponding model can be expressed as,

Yi=XifE+ XLBy + ...+ XEBy + ..+ X[ By + et (5.7.1)
or in matrix notation the above model becomes as,

Yi=Xipg + el (5.7.2)

Hence, the random effects coefficients panel data linear regression model is the special case of the

Bayesian linear regression model.

So, this way all the frequentist panel data mode! estimators and the corresponding panel data linear regression

models have been derived from the empirical Bayes estimate.
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5.8. Summary of the Chapter

In this chapter, we showed analytically that all the frequentist estimates of the panel data linear
regression mode! and the corresponding panel data linear regression models can be derived from the Bayesian
linear regression model and the empirical Bayes estimate of the panel data linear regression model, when the
empirical Bayes estimate uses the precision weighted arithmetic mean of the ordinary least squares coefficients

estimate as the estimate of the prior mean and the g-prior as the estimate of the prior variance.

We derived five different standard frequentist estimates, namely the subject specific estimate, the
subjects common coefficients estimate the random coefficients estimate. the fixed eftects coefficients estimate
and the random effects coefficients estimate, and the corresponding panel data linear regression models by
considering a K orthogonal regressors panel data linear regression model, and a single k** regressor estimation

technique at a time.

The frequentist estimates and the comresponding panel data linear regression models above were
obtained from the empirical Bayes estimate by assigning five different values to the prior precision parameter.
These values were either zero or infinity or a value in-between zero and infinity or the combination of these

three values.

Now, the finding of the chapter are, that all the frequentist estimates and the corresponding standard
panel data regression model are of a unanimous origin and they have been derived from this unanimous origin,
hence they are the special cases of this unanimous origin. This unanimous origin is the empirical Bayes
estimate. Hence this achieves our goal of deriving all the frequentist panel data linear regression models and
the corresponding estimates from the Bayesian linear regression model and the empirical Bayes estimate,

respectively.

Now in the next chapters we show numerically with help of numerica) examples that all the frequentist
'_ estimates of the panel data linear regression model can be derived from the empirical Bayes estimate of the
panel data linear regression model. This will more authenticate the claim of deriving all the frequentist panei

data linear regression models and the corresponding estimates from the Bayesian linear regression model and
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the empirical Bayes estimate, respectively. So, let us see all the frequentist estimates of the panel data linear

regression mode in the next chapters.
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Chapter 6

The Numerical Derivation of the Frequentist Estimates

In the previous chapter, all the frequentist estimators and the corresponding panel data linear regression
modeis have been derived from the empirical Bayes estimate and the corresponding Bayesian linear regression

model. All the assumptions, conditions and technicalities have been made clear over there.

Now here, in this chapter, we numerically derive, all the frequentist estimates of the panel data linear
regression models that have been derived analytically in the previous chapter, from the empirical Bayes
estimate. In fact, as said before, the trequentist estimates of the panel data linear regression models are the
special cases of the empirical Bayes estimate, for different values of the prior precision parameters and hence

this chapter mainly notarize this fact,

The numerical derivation will be done here, with the help of a numerical example. We take the data
and an example from, Gujrati (2003), Basic Econometrics, 4™ edition, the details of the book and data have

already been discussed, in details, in chapter 4, we do not mention it again.

One more thing to note is that, for all of the derivations, the programming has been done with the help
of “MATLAB 2017a". The programming is done according to single regressor estimation approach. Here, in
this chapter only the theoretical descriptions and the results are given in different sections corresponding to
different frequentist estimates. The results are shown with the help of different tables. For each type of the
frequentist estimates, the prior precision parameters, with the help of which those particular frequentist

estimates are derived, have been discussed.

Derivation of the Frequentist Estimates Numerically

[n this section we derive all the frequentist estimates of the panel data linear regression models from
the corresponding empirical Bayes estimates. This chapter is the numeric counter part of the previous chapter

therefore, all the assumptions are the same as to that of the previous chapter.
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6.1. The Derivation of the Subject Specific Coetficients Estimates

Here, we describe and derive numerically the frequentist subject specific coefficients estimates. In the
light of the panet data literature, if the intercepts terms, as well as, all the slopes coefficients, in K regressors
panel data linear regression models, are unit specific, across all the units of the panel, (i.e. B # ,8;’;, fori #j
or at least all ﬁfc are not equal to By, for k=1, 2, ..., K), then such coefficients correspond to the subject
specific panel data linear regression model and the corresponding coefficients estimates are known as the
subject specific coefficients estimates. The following is the subject specific coefficients panel data analytic

model.

Yi=xigl+ gl fori=1,2,..,N. (6.1a)
B'= (Bl Bl Bl BE) (6.1b)

The distribution of 8 is normal with mean, pi}k and variance, [aﬁk]l, both subject specific across the panel,

By~ N (uh,. (03 ]) fork=1,2,.. K (6.1¢)
The description of the above model and the associated terms is as given in chapter 3.

Further, in the previous chaptet, as we have seen analytically that, the empirical Bayes estimate of panel
data linear regression model, reduces to the subject specific coefficients estimates, when the prior precision
parameters, corresponding to each regression coefficient (in the empirical Bayes estimate), is set to zero, i.e.
pr— 0. fork =1.2, ..., K. So, here making this as the base for the numerical computation i.e. MATLAB
programming, we take the prior precision parameters g, equal to zero, for all the regression coefficients
estimates, in the empirical Bayes estimate. Thus, Table (6.1a), shows ihe estimates for the prior precision
parameters of the empirical Bayes estimate corresponding to each regression coefficient estimate. Since there
are three regressors in each model o-f a unit in the panel, therefore, the first, second and third prior precision
parameters, are lying in the first, second and third row of Table (6.1a}, and correspond to the intercept term,
the second and the third regression coefficients estimates of the model, respectively.
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Now, when we put the prior precision parameters as zero corresponding to each regression coefficient
estimate in the MATALB Programming for the empirical Bayes, discussed above, it gave the subject specific
coefficients estimates corresponding to each regressor, as given in Table (6.1b). Further, from Table (6.1b), it
can be seen that the intercepts estimates are different across the units of the panel and are subject specific,
similarly, the coefficients estimates of the second and third regressor of any one unit are different from the
corresponding coefficients estimates of any other unit across the units of the panel, and these shouid be the
way they are, for being the subject specific coefficients estimates. Thus. the coefficients estimates of Table

(6.1b) are the subjects specific coefficients estimates.

Now, it is evident that when all the prior precision parameters corresponding to each regression
coefficient estimate, are set to zero, the empirical Bayes estimate reduces to the subject specific coefficients
estimates. Hence, it is concluded that as the frequentist subject specific coefticients estimates are derived from
the empirical Bayes estimate, theretore, they are the special cases of the empirical Bayes estimate. The subject
specific coefficients model is also known as the subject specific fixed coefficients model, the individual units

model, sometimes also the ordinary least squares linear regression model etc.

Below, we show the tables of the prior precision parameters and the derived frequentist subject specific
coefficients estimates. Table (6.1a) contains the prior precision parameters and Table (6.1b) contains the

corresponding subject specific coefficients estimates.

Table 6.1a: The Prior Precision Parameters for the Subject Specific Coefficients Estimates

Prior Precision Parameters for the Subject Specific Coefficients Estimates

Prior Coefficients Estimates Prior Precision Parametet
[ntercept 0
Second Regressor 0
Third Regressor 0

Table 6.1b: The Subject Specific Coefficients Estimates

The Subject Specific Coefficients Estimates
Variable Unit; 1 Unit: 2 Unit: 3 Unit: 4
Intercept -9.9563 -149.4667 -50.078 -0.5804
Second Regressor 0.0265 0.1192 0.1710 (.0531
Third Regressor 0.1517 0.3715 0.4080 0.0917
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6.2. Derivation of the Subjects Common Coefficients Estimates
Here, we describe and derive numerically the frequentist subjects common coefficients estimates. In

the light of the panel data literature, if the intercept term, as well as, all the slopes coetficients, of K regressors

panel data linear regression model, are common for all the units of the panel, (i.e. [3’}; = ﬁ,{ =f fork=1,2,
..., K, common for all the units of the panel}, then such coefficients correspond to the subjects common panel
data linear regression model and the corresponding coefficients estimates are known as the subjects common

coefficients estimates. The following is the subject common coefficients panel data analytic model.
Yi=Xxig+¢ fori=1,2,.. N. {6.2a)

B =B B2 o, Pree. Br). (6.2b)

The distribution of §,, is normal with mean, #g, and variance, [crfk], both subject common across the panel,
B~ N (ug.[05]=0) fork=1,2 ... K (6.2¢)

Further, in the previous chapter as we have seen analytically that, the empirical Bayes estimate of panel
data linear regression model, reduces to the subjects common coefficients estimates, when the prior precision
parameters, corresponding to each regression coefficient estimate (in the empirical Bayes estimate) is set to
infinity, i.e. py = oo, for, k =1, 2, ..., K. So here making this as the base for the numerical computation i.e.
MATLAB programming, we take the prior precision parameters p, equal to infinity, (p, equal to (10)1° =
10000000000, as the approximate value of infinity for, k =1, 2, ..., K), for all the regression coefficients
estimates, in the empirical Bayes estimate. Thus, Table (6.2a), shows the prior precision parameters
corresponding to each regression coefficients estimate. The first, second and third prior precision parameters
Table in (6.2a), correspond to the intercept term, the second and third regression coefficients estimates,

respectively.

Now, when we put the prior precision parameters as infinite in the formula of empirical Bayes
[MATALB Programming], it gave the subjects common coefficients estimates, as given in Table {(6.2b), for
all the units of the panel. Further, from Table (6.2b), it can be seen that the coefficients estimates of the

intercept term are identical for all the units across the panel, similarly, the coefficients estimates of the second
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regressor are also identical for ail the four units across the panel, in the same way, the coefficients estimates
of the third regressor are too identical for all the units across the panel, and these should be the way they are,
tor being the subjects common coefficients estimates. In other words, all the units of the panel have a common
intercept estimate, simifarly, all the units have a common second regression coefficient estimate and the third
regression coefficient estimate is also common for all of the units of the panel. Thus, the coefficients estimates
ot Table (6.2b} are the subjects common coefficients estimates. Now, it is evident that when all the prior
prectsion parametets corresponding to alf regression coefficients estimates, set to infinity, the empirical Bayes
estimate reduces to the subjects common coefficients estimates. Hence, it is concluded that the frequentist
subjects common coefficients estimates are derived from the empirical Bayes estimate and they are the special
cases of the empirical Bayes estimate. The subjects common coefficients model is also known as the common
coefficients model, the constant coefficient model, the pooled coefficients model or the pooled ordinary least

squares regression model.

Below we show the tables of the prior precision parameters and the derived frequentist subject common
coefficients estimates. Table {6.2a) contains the prior precision parameters and Table (6.2b) contains the

corresponding subject common coefficients estimates.

Table 6.2a; The Prior Precision Parameters for the Subjects Common Coefficients Estimates

Prior Precision Parameters for the Subjects Common Coefficients Estimates

Prior Coefficients Estimates Prior Precision Parameter
Intercept (10)™° = 10000000000
Second Regressor (10)*° = 10000000000
Third Regressor {(10)12 = 10000000000

Table 6.2b: The Subjects Common Coefficients Estimates

The Subjects Common Coefficients Estimates
Variables Unit: 1 Unit: 2 Unit: 3 Unit: 4
Intercept -2.0839 -2.0839 -2.0839 -2.0839
Second Regressor 0.0542 0.0542 0.0542 0.0542
Third Regressor 0.2105 0.2105 0.2105 0.2105
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6.3. Denvation of the Fixed Effects Coefficients Estimates

Here, we describe and derive numerically the frequentist fixed effects coetficients estimates, In the
light of the panel data literature, if the intercept term, in K regressors panel data linear regression model, is
unit specific, (i.e. 8L # ﬁ,’i, fori + jand k =1), but all the slopes coefficients, are common for all units of the
panel, (i.e. ﬁf, = ﬁ,{ =f,fori #jand k=2, 3, ..., K), then such coefficients correspond to the tixed effects

panel data linear regression model and the corresponding coefficients estimates are known as the fixed effects

coefficients estimates. The following is the fixed effects coefficients panel data analytic model.

Yi=xigt+ ¢l fori=1,2,..., N. (6.3a)
Bi=(BL, Bov s B s Br) - (6.3b)

The distribution of 8 for k = 1, is normal with mean, Jui;k and variance, [aﬁk]i, both subject specific,
B~ N (o3 ]) for k=1 (6.3¢)

Further, the distribution of £ for k=2,3, ..., K, is normal with mean, ug, and variance, [oﬁk], both subject

common across the panel,
Bx ~N (ug,fof ]| =0) fork=2,3 .. K (6.3d)

Furthermore, In the previous chapter, as we have seen analytically, the empirical Bayes estimate of panel
data linear regression model, reduces to the fixed effects coefficients estimates, when the prior precision
parameter, corresponding to the estimate of the intercept is set to zero, i.e. pg = 0, for k = 1, and corresponding
to all the slopes coefficients is set to infinity, i.e. py = oo, for k=2, 3, ..., K. So, here making this as the base
for the numerical computation i.e. MATLAB programming, we take the prior precision parameter py, equal
to zero, for k = 1 and equal to infinity, for k¥ =2, 3. Thus, Table (6.3a), shows the prior precision parameter$

of the first, second and third regression coefficients estimates,

Now, by puiting the prior precision parameters, from Table (6.3.a), in the formula of empirical Bayes,

[MATALB Programming], it gave the fixed effects coefTlicients estimates as given in Table (6.3b). Further,
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from Table {6.3b), it can be seen that the coefficients estimates of the intercept term are not identical or
common for all the units across the panel, but the coefficients estimates of the second and third regressor are
identical to their respective counterparts across all the units of the panel. Thus, all the cells’ entities in the first
row of the Table (6.3b) are subject specific and exactly match to their counterparts in the subject specific

coefficients estimates of Table (6.1b).

Further, all the cells’ entities in the second and third row of the Table (6.3b) are identical, and exactly
match to their respective counterparts in the subject common coefficients estimates of Table (6.2b) and these
should be the way they are for being the tixed etfects coefficients estimates. Thus, the coefficients estimates

of Table (6.3b) are the fixed effects coefficients estimates.

Now, it is evident that when the prior precision parameters corresponding to the intercept is set to zero
and corresponding to all the slopes set to infinity, the empirical Bayes estimate reduces to the fixed effects
coefficients estimates. Hence, it is concluded that the frequentist fixed effects coefficients estimates are the

special cases of the empirical Bayes estimate.

Below we show the tables of the prior precision parameters and the derived frequentist fixed effects
coefficients estimates. Table (6.3a) contains the prior precision parameters and Table (6.3b) contains the

corresponding fixed effects coefficients estimates.

Table 6.3a: The Prior Precision Parameters for the Fixed Effects Coefficients Estimates

Prior Precision Parameters for the Fixed Effects Coefficients Estimates

Prior Coefficients Estimates Prior Precision Parameter
Intercept 0
Second Regressor (10)1° = 10000000000
Third Regressor (10)1? = 10000000000

Table 6.3b: The Fixed Effects Coefficients Estimates

The Fixed Effects Coefficients Estimates
Variables Unit: 1 Unit: 2 Unit: 3 Unit: 4
Intercept -9,9563 -149,4667 -50.078 -0.5804
Second Regressor 0.0542 0.0542 0.0542 0.0542
Third Regressor 0.2105 0.2105 0.2105 0.2103
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6.4. Derivation of the Random Effects Coefficients Estimates

Here, we describe and derive numenrically the random effects coefticients estimates. In the light of the
panel data literature, if the intercept term is not unit specific, (i.e. B = By + el, for k = 1, and where e’ are
random fluctuations), but is randomly fluctuated from a common mean with constant variance, and all the
slope coefficients, are common for all units of the panel, (i.c. B = ﬁ,; =pfori £jand k=23, ..., K),
then such coetficients correspond to the random effects panel data linear regression modet and the
corresponding estimates are known as the random effects coefficients estimates. The following is the random

effects coefficients panel data analytic model.

vi=Xipi+ gl fori=1,2,...,N. (6.4a)
B =(BL, B i Buy o Be) s (6.4b)
B =([8+ ef] B B Be) - (6.4¢)

The distribution of @, for k = 1, is normal with mean, ug, and variance, [aﬁk] =[aZ .

Bi ~ N (g, [05] #0) fork=1, (6.4d)
and ex ~ N (0,[2]) for k=1, (6.4¢)
then, Bi ~ N (ug,.[od]) for k = 1. (6.4)

Further, the distribution of B, for k=2, 3, ..., K, is normal with mean, #g, and variance, [oﬁk], both subject

common across the panel,

Bx ~ N (pg.[o5 ] =0} fork=2,3 .. K (6.4¢)

Furthermore, in the previous chapter, as we have seen analytically that, the empirical Bayes estimate,
reduces to the random effects coefficients estimates, when the prior precision parameter, corresponding 1o the
intercept, is set in-between zero and infinity, i.e. 0 < p, < o for k = 1, and corresponding to the rest of all

the slopes, is set to infinity, i.e. py — oo, for k=2, 3, ..., K, in the formula of empirical Bayes. So, here
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making this as the base for the numerical computation i.e. MATLAB programming, we take the prior precision
parameter; g, as in-between zero and infinity for k = 1, and g, equal to infinity for k = 2, 3, (for p; we take
(10) = 10, as the approximate value in-between zero and infinity). Thus, Table (6.4a), shows the estimates
tor the prior precision parameters of the empirical Bayes estimate corresponding to each regression
coefficients estimate,

Now, by putting the prior precision parameter accordingly as discussed, in the formula of empirical

Bayes, [MATALB Programming], it gave the random effects coefficients estimates as given in the Table
{6.4b). From Table (6.4b), it can be seen that the coefficients estimates of the intercept terms are randomly
fluctuated, but the coetficients estimates of the second and third regressor exactly match to their fixed effects
as well as the common coefficients counterparts. Thus, the coefficients estimates of Table (6.4b) are the
random effects coefficients estimates. Now, it is evident that the frequentist random effects coefficients
estimates are derived from the empirical Bayes estimate. Hence, it is concluded that the frequentist random
effects estimates are the special cases of the empirical Bayes estimate. The random effects coefficients model
is also known as the random intercept model.

Below, Table (6.4a) contains the prior precision parameters and Table (6.4b) contains the
corresponding random effects coefficients estimates,

Tabie 6.4a: The Prior Precision Parameters for the Random Effects Coefficients Estimates

The Prior Precision Parameters for the Random Effects Coefficients Estimates
Prior Coefficients Estimates Prior Precision Parameter
Intercept (10)1 =10
Second Regressor (10)'° = 10000000000
Third Regressor (10)° = 10000000000

Table 6.4b: The Random Effects Coefficients Estimates

The Random Effects Coefficients Estimates
Variables Unit: | Unit: 2 Unit: 3 Unit: 4
Intercept -2.7996 -15.4823 -6.4470 -1.9472
Second Regressor 0.0542 0.0542 0.0542 0.0542
Third Regressor 0.21905 0.2105 0.2105 0.2105
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6.5. Derivation of the Random Coefficients Estimates

Here, we describe and derive numerically the random coefficients estimates. In the light of the panel
data literature, if the intercept term as well as all the slopes coefficients, in the K regressors panel data linear
regression model, are neither unit specific nor common, (i.e., 8§ = B + ek, fork=1,2, 3, ..., K, and where
the e* are random fluctuations), but are randomly fluctuated around a common mean with constant variance,
then such coefficients comespond to the random coefficients panei data linear regression model and the
corresponding estimates are known as the random coefficients estimates. The following is the random

coefficients panel data analytic model.

Yi=Xigt+£l, fori=1,2,...,N. (6.5a)
B = (Bl Bo s B s Br) s (6.5b)
Bi=([8 + ei]. [Ba+ €3] oo [Bi + i) .. [Bx + ek]). (6.5¢)

The distribution of By, for k=1, 2, 3, ..., K, is normal with mean, g5, and variance, [crgk] = [02]. both

subject common across all the units of the panel,
ey ~N(0.[c2]), fork=1,23 ...k, (6.5¢)
then. Be ~ N (ug,.[02]), fork=1,2,3,... K. (6.5d)

Further, in the previous chapter as we have seen analytically that, the random coefficients estimates
have been deduced from the empirical Bayes estimate, when the prior precision parameter, corresponding to
all the coefTicients estimates. are set in-between zero and infinity, i.e.,0 < p, <oo,forallk=1.23, ..,
K. in the formula of empirical Bayes. So, here making this as the base, we take the prior precision parameter
P as in-between zero and infinity. Here again as before, we put the prior precision parameters p, equal to

'
(10)! = 10, as the approximate value, in-between zero and infinity. Thus, Table (6.5a), shows the prior
precision parameters c;f the empirical Bayes estimate corresponding to each regression coefficient estimate in
the panel data linear regression model. In simple words. in this case, all the regressors share a common value
as the prior precision parameters and this time this common value is the value in-between zero and infinity.
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Now, when we put the prior precision parameters, discussed above, corresponding to all the
coefficients estimates, in the formula of empirical Bayes [MATALB Programming], it gave the random
coefficients estimates as given in Table (6.5b). Further, from Table (6.5b), it can be seen that all the coefficients
estimates in the table are not identical, rather, seem randomly fluctuated. Thus, all the cells” entities in the
first, second and third row of the table are different within the row from one another, but the difference is due
to random fluctuations and this should be the way they are for being the random coefficients estimates. Thus,
now we can say that, the coefficients estimates of Table {6.5b) are the random coefficients estimates. Now, it
is evident that when the prior precision parameters corresponding to all the coefficients estimates are set in-
between zero and infinity, the empirical Bayes estimate reduces to the random coefficients estimates. The
random coefficients model is also called the varving parameters model.

Below we show the tables of the prior preciston parameters and the derived frequentist random
coefficients estimates, Table {6.5a) contains the prior precision parameters and Table (6.5b) contains the
corresponding random coetficients estimates.

Table 6.5a; The Prior Precision Parameters for the Random Coefficients Estimates

Prior Precision Parameters for the Random Coefficients Estimates

Prior Coefficients Estimates Prior Precision Parameter
[ntercept (10)Y* =10
Second Regressor (10t =10
Third Regressor (10): =10

Table 6.5b: The Random Coefficients Estimates

The Random Coefficients Estimates
Variables Unit: | Unit: 2 Unit: 3 Unit: 4
Intercent -2.7996 -15.4823 -6.4470 -1.9472
Second Regressor 0.0517 0.0602 0.0649 0.0541
Third Regressor 0.2025 0.2251 (0.2285 (.1997

This completes the goal of this thesis as the all the standard panel data models estimates have been

derived numerically from the empirical Bayes estimate,
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Summary of the Chapter

In the above five sections, we have derived the five standard frequentist panel data linear regression
models coefficients estimates from the empirical Bayes estimate and then the corresponding models. The main
purpose in all of the above five sections was, to derive and justify that the frequentist estimates for panei data
linear regression models can be derived from this single empirical Bayes estimate. For this derivational
purpose, we took different numerical prior precision parameters corresponding to different regression
coefficient estimates, in the formula of the empirical Bayes. We either took the prior precision parameters
equal to zcro or infinity ot any other value in-between zero and infinity. Only with these special numerical
prior precision parameters, we could derive all the desired frequentist coefficients estimates of panel data

linear regresston models from the empirical Bayes estimate.

The choice of zeros as the prior precision parameters was crystal clear, and also the choice of the
approximate value for the infinity of the prior precision parameter was clear to somehow, but the choices of
the values in-between zero and infinity of the prior precision parameters was infinite and hence it was not as
clear as the previous two cases, in terms, that what value for the prior precision parameters to be assumed, as

in-between zero and infinity.

We arbitrarily took (10)! = 10, as the in-between zero and infinity, numerical prior precision
parameters and derived the required random estimates, namely the random effects coefficients estimates-and
the random coeflicients estimates. In all of the above sections, our aim was to derive these particular frequentist
estimates from the empirical Bayes estimate. We have seen that, in fact, all the standard frequentist panel data

models estimates have been derived from the empirical Bayes estimate.

After a huge research and attempts (attempted many different prior means and variances estimates)
finally we reached to the goal and found that, this was only possible with, when the empirical Bayes estimate
use the precision weighted arithmetic mean of the ordinary least squares coetlicients estimates as the esti.mate
of the prior mean and the Zellner's g-prior as the prior variance and the corresponding precision and then the
prior precision parameter in the formula take different values i.e. either zero or infinity or values in-between

these two limits. The precision is actually the measure of the uncertainty of an estimate and hence the empirical
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Bayes estimate incorporates this uncertainty. Therefore, in the above numerical derivations, we were restricted
only to use these predetermined values for the prior precision parameters. Below we present all of the above
different frequentist estimates derived from the empirical Bayes estimate altogether in a single table for

abserving the special characteristic of each of the frequentist estimates.

6.6. Comparison of All the Frequentist Estimates

The table below shows ali the derived frequentist estimates from the empirical Bayes estimate, in otder,
to observe the characteristics of each of the frequentist estimates. In this table all the frequentist coefficients

estimates have been stacked one upon the other to constitute a single table.

Table 6.6: Comparison of All the Frequentist Coefficients Estimates from the Empirical Bayes Estimates

Table of Coefficients Estimates of the Standard Classical Panel Data Model
Derived from the Empirical Bayes Estimates

Second Third

Variables Serial No Units Intercept | Regressor | Regressor
I Unit: | -9.9563 0.0266 0.1517
Subject Specific 2 Unit:2 | -149.4667 0.1192 0.3715
Coefficients Estimates 3 Unit: 3 | -50.0780 0.1714 0.4087
4 Unit: 4 -0.5804 0.0531 0.0917
5 Unit: 1 -2:0839 0.0542 0.2105
Common Coefficients 6 Unit: 2 -2.0839 0.0542 0.2105
Estimates 7 Unit: 3 -2.0839 0.0542 0.2105
8 Unit: 4 -2.0839 0.0542 0.2105
9 Unit: 1 | --9.9563 0.0542 0.2105
Fixed Effects 10 Unit: 2 | -149.4667 0.0542 0.2105
CoefTicients Estimates 11 Unit: 3 | -50.0780 0.0542 0.2105
12 Unit: 4 -0.5804 0.0542 0.2105
13 Unit: | -2.7996 0.0542 0.2105
Random Effects 14 Unit: 2 | -15.4823 0.0542 0.2105
Coeflicients Estimates 15 Unit: 3 -6.4470 0.0542 0.2105
16 Unit: 4 -1.9472 0.0542 0.2105
17 Unit: 1 -2.7996 0.0517 0.2052
Random Coefflicients 18 Unit: 2 | -15.4823 0.0602 0.2251
Estimates 19 Unit:3 | _ -6.4470 0.0649 0.2285
20 Unit: 4 | * -1.9472 0.0541 0.1997

Now in Table 6.6 above, the empirical Bayes estimate, for zero as the prior precisions parameters

corresponding to all the three coefTicients, gave the subject specific coefficients estimates. Thus, the first 4 x
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3 portion of the coefficients estimates in the table, i.e. row no.1 to row no. 4 and column named intercept 10
column named third regressor, contains the subject specific coefficients estimates, for all four units of the

panel.

The first column and the corresponding rows, as mentioned above, in this specified portion of Table
6.6, contains the estimates of the intercepts of all the four units of the panel, here, it can easily be seen that all

the estimates of the intercepts are different from each other.

Similarly, the second column, in this specitied portion of the table, contains the estimates of the second
regression coefficient of all the four units of the panel, here, it can also be seen easily, that all the estimates of

the second regression coetficients are different from each other.

In the same way, the third column, in the said portion of the table, contains the estimates of the third
regression coefficients of all the four units of the panel, here, it can be seen again easily, that all the estimates
of the third regression coefficients, are different from each other, and this way all the coefficients estimates

discussed here, exactly match in characteristics to the subject specific coefficients estimates.

Next, the empirical Bayes estimate, for infinity as the prior precisions parameters, corresponding to
all the three coefficients, gave the subjects common coefficients estimates. Thus, the third, 4 X 3 portion of
the coefficients estimates in the table, i.e. row no.9 to row no. 12 and column named intercept to column

named third regressor, contains the subjects common coefficients estimates, for all the four units of the panel.

The first column and the corresponding rows, as mentioned above, in this specified portion of Table
6.6, contains the estimates of the intercepts of all the four units of the panel, here, it can easily be seen that all

the estimates of the intercepts are common, constant and identical to each other,

Similarly, the second column, in this second specified portion of the table, contains the estimates of
the second regression coefficients of all the four units of the panel, here too, it can be seen ea'sily, that ail the

estimates of the second regression coefficients are identical to each other.

In the same way, the third column in this said portion of the table, contains the estimates of the third

regression coefficients of ali the four units of the panel, here again, it can easily be seen, that all the estimates
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of the third regression coefficient are identical to each other and this way all the coetficients estimates

discussed here, exactly match in characteristics to the subjects common coetficients estimates.

Further, the empirical Bayes estimate, for zero as the prior precisions parameters corresponding to the
intercepts coefficients, and infinity, corresponding to both the slopes coefficients, gave the fixed effects
coefficients estimates. Thus, the third 4 x 3 portion of the coefficients estimates in the table, i.e., row no.9 to
row no. 12 and column named intercept to column named third regressor, contains the fixed effects coefficients

estimates, for all the four units of the panel.

The first column and the corresponding rows, as mentioned above, in this specified portion of the table,
contains the estimates of the intercepts for all the four units of the panel, here, it can easily be seen that all the
estimates of the intercepts are different from each other, as in this case they are subject specific like the
intercepts in the case of the subject specific coefficients estimates above, and therefore, they exactly match to

them as well.

Similarly, the second column, in this third specified portion of the table, contains the estimates of the
second regression coefficients of all the four units of the panel, here too like in the case ofthe subjects common
coefficients estimates, it can be seen easiiy, that all the estimates of the second regression coetficients are
identical to each other, and this should be in the case of the fixed effects coefficients estimates, as, in the fixed
effects coetficients estimates, the siopes coefficients must exactly match to their counterparts slopes

coefficients in the subjects common coefficients estimates.

[n the same way, the third column in this said portion of the table, contains the estimates of the third
regression coefficients of all the four units of the panel, here agatn, it can easily be seen, that all the estimates
of the third regression coefficients are identical to each other, here too like in the case of the subjects common
coefficients estimates, it can be seen easily, th'at all the estimates of the third regression coefficients are
identical to each other. Here too the third regression coefficients estimates must exactly match to the slopes
coefficients of tis counterpart in the subjects common coefficients estimates, and this way all the coefficients

estimates discussed here, exactly match in characteristics to the fixed effects coefficients estimates.
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Furthermore, the empirical Bayes estimate, for a value in-between zero and infinity as the prior
precisions parameters corresponding to the intercepts coefficients, and infinity, corresponding to both the
slopes coefficients, gave the random effects coefficients estimates. Thus, the fourth 4 X 3 portion of the
coefficients estimates in the table, i.e, row no.13 to row no. 16 and column named intercept to column named

third regressor, contains the random effects coefficients estimates, for all the four units of the panel.

The first column and the corresponding rows, as mentioned above, in this specified portion of the table,
contains the estimates of the intercepts of all the four units of the panel, here, it can easily be seen that all the
estimates of the intercepts are fluctuating from each other, but differently from either the case of the subject
specific coefficients estimates or the fixed effects estimates, above. Theoretically they should be the way they

are in the case of the random effects coefficients estimates.

Further the nature and characteristics of the slopes coefficients in the random etfects coefficients
estimates should exactly equal to either of the subjects common coefficients estimates or the fixed effects
coetficients estimates, and here they are like them, and they have already been explained. Therefore, here we
do not feel any need of them again and do not discuss them again. Thus, all the coefficients estimates discussed

here, exactly match in ¢characteristics to the random effects coefficients estimates.

Finaily, the empirical Bayes estimate, for values in-between zero and infinity as the pror precisions
parameters corresponding to all the coefficients estimates, gave the random coefficients estimates. Thus, the
fifth 4 x 3 portion of the coefficients estimates in the table, i.e. row no.17 to row no. 20 and column named
intercept to column named third regressor, contains the fixed effects coefficients estimates, for all the four

units of the panel.

The first column and the corresponding rows as mentioned above, in this specified portion of the table,
contains the estimates of the intercepts of all the four units of the panel, here, it can easily be seen that all the
estimates of the intercepts are fluctuating from each other, similar to the case ot the random eftfects coefficients
estimates, but ditferently from either the case of the subject specific coefficients estimates or the fixed effects
estimates, above. Theoretically they should be the way they are in the case of the random coefficients
estimates.
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Similarly, the second column, in this fifth specified portion of the table, contains the estimates of the
second regression coefficients of afl the four units of the panel here too, it can easily be seen that all the
estimates of the second regression coefficients are fluctuating from each other but differently from the case of
the subject specific coefficients estimates, above. Theoretically they should be the way they are in the case of

the random coefficients estimates.

In the same way, the third column in this said portion of the table, contains the estimates of the third
regression coefficients of all the four units of the panel here again, it can easily be seen that all the estimates
of the third regression coefficients are fluctuating from each, but here too, differently from the case of the
subject specific coefficients estimates, above. Theoretically, it also should be the way they are in the case of
the random coefficients estimates, and this way all the coefficients estimates discussed here, exactly match in

characteristics to the random coefficients estimates.

Thus, from this detailed analysis of Table 6.6 above, it is concluded that all the frequentist estimates
of the panel data model have been derived from the empirical Bayes estimate. Further, all of the frequentist
estimates are the special cases of the empirical Bayes estimate. Finally, all the frequentist estimates have the

common origin as the empirical Bayes estimate.
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Chapter 7

Computation of the Empirical Bayes Estimate

In chapter 5, we have shown and seen analytically in details, that all the standard frequentist estimators
of panel data linear regression models, are the limiting or special cases of the empirical Bayes estimate. The
empirical Bayes estimate used there took the precision weighted arithmetic mean of the ordinary least squares
coefficients estimates as the estimate of the prior mean, and the Zellner’s g-prior as the estimate of the prior
variance. Only with the help of this combination, of the estimate of the prior mean and prior variance, the

frequentist estimates of panel data linear regression model could be derived from the empirical Bayes estimate.

Then, next in chapter 6, we numerically derived, the frequentist estimates, of standard frequentist panel
data linear regression modeis, from the same empirical Bayes estimate. In this case we assigned different
values to the prior precision parameters, in order, to derive the desired frequentist estimates. This method or
trick worked well, enly to the extent to show that in fact, with these prior precision parameters the frequentist

estimates of panel data models can be derived from the empirical Bayes estimate.

But in reai world practice, this setf-selection or subjective procedure, of the assignment of values to
the prior precision parameters, is looking hard and confusing, as different users might use different values for
the prior precision parameters and hence different estimates wiil be produced by different users, even if dealing

with the same data set,

To solve this issue, we need a unique solution of the problem. Therefore, it is far better than assigning

arbitrarily values to the prior precision parameters, instead, estimate them too, from the same data set. For this
[]

purpose, in the current chapter, we estimate the prior precision parameters from the same data set, that has

been used in chapter 6, by empirical Bayes procedure. The empirical Bayes procedure to be adopted here will

be as given in (4.182). The benefit of this method is that, we do not need to estimate the prior precision

parameters, corresponding to each regression coefficient estimate, separately, rather, these will be estimated
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from the data automatically along with the model parameters, by applying (4.18z). Let us see the empirical

Bayes estimate.

7.1. The Empirical Bayes Estimate

As mentioned above, the empirical Bayes coefficients estimates shall be obtained here by applying
(4.18z), the courtesy of this estimator is that we do not need to estimate the prior precision parameter “p”
separately from the estimates of the model parameters, rather, both the prior precision parameters and the

model parameters will be estimated simuitaneously with the help of the said formula of the empirical Bayes.

Thus, from (4.18z) we have,

.. N=2)(DV,) : N-207) (] .
e () =( {1 - s S g s (OO g (.12
(i 24) (i)

and the estimate of the prior mean 8, from (4.16h) is as under,

B (lovod R

SR CEIRE o
Further, in the light of (4.2a), fi}. can be expressed as follow,

Bl = (xixp)™ (). (7.1¢)
Similarly, in the light of (5.12b), the sample counterpart of (DV,)! can be written as under,

(07 =3y (xi xiy™ (7.1d)

Now having all of the above quantities or estimates, below, we show, the empirical Bayes coefficients
estimates for the same data set of chapter 6, Table (7.1), shows these estimates. Table (7.1) contains the

empirical Bayes estimates,
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Table 7.1: The Empirical Bayes Coefficient Estimates

The Empirical Bayes Coefficient Estimates
Variables Unit: 1 Unit: 2 Unit: 3 Unit: 4
Intercept -8.0823 -114.3830 -38.6532 -0.9383
Second Regressor 0.0446 (.0768 0.0950 0.0538
Third Regressor 0.1919 (.2614 0.2732 0.1729

In the above, empirical Bayes procedure, the prior precision parameter has been estimated along with

the parameters of the model.

7.2.  Summary of the Chapter

We summaries the findings of chapter 7, and discuss and relate it to theoretical realities, in order, to
reach some conclusions, Table (7.1}, contains the important and valuable information of this chapter.
Therefore, this is the main and useful table of this section, with the help of this we can reach to any valid
conclusion. The estimates in Table (7.1} have been computed with the help of such version of the empirical
Bayes estimate which have yielded all the frequentist panet data estimates analytically as well as numerically.
These facts we have been seen in chapter 5 and 6 respectively. Now towards Table (7.1}, theoretically, if the
intercept terms as well as the slopes coefficients, of the panel data linear regression models corresponding to
different units of the panel are different from each other due to random fluctuations. Then they are known as
the random coefficients estimates. In the random coefficients estimates, the coeftficients (intercepts and slopes)

are deviating randomly from the common mean, and the deviation is due to random causes.

Now, related to our this specific problem, it is evident that all the coefficients estimates. including the
mtercepts and slopes, are different from one another across all the units of the panel. These are the most
appropriate estimate for the data, as here the prior precision parameters have been estimated from the data and
not by our choice. Hence the estimates coincide with theory of the random coefficients and justity the results
to be random coefficients estimates. Since, the derived estimates, of Table (7.1), have all the characteristics of
being the frequentist random coefficients estimates, therefore, they are considered as the random effects

coelficients estimates, and they are the special cases of the empirical Bayes estimate,
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Chapter 8
Empirical Bayes Estimates from the Real-World Data

In this chapter, we take the real-world problem, to show the procedure for the analysis without
pretesting for model selection. Here we show a single regressor empirical Bayes estimation procedure in
details as well as the tendency of the empirical Bayes estimates. Therefore, we take a simple case of linear
regression model, for five European Union countries namely, Austria, France, Italy, Sweden and Britain. The
data is on two variables, i.e. the “GDP” and “Consumption” for the period of 1970 to 2016. Each variable for
each country consists of 47 observations. The data has been taken from the world statistics. The log transforms
of the variables have been made in order, to condense the data. Further, the GDP as the regressor has been
centralised, in order, to make the regressors orthogonal and bring independency in the intercepts and slope

coefficients.

One of the most important things to be noted here is that we are not interested in the economic
characteristics of the above countries, i.e., how the GDP of a country affects the expenditure of the country,
or how much the GDP of a country affects the consumption of a country, rather we are interested in the
econometric or the statistical characteristics of the estimates corresponding to these countries by applying this

specialised empirical Bayes technique of estimation.

This was ail about the data set and the corresponding variables. Below we show the model to be used

here.

8.1. The Simple Linear Regression Model

The simple linear regression model of our study with two regressors, i.e. the intercept and the GDP, is

given as under,
cf = yif Bi+ b Bi + el (8.1)

Here, the description of the above model is as under,
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c} denotes, the consumption of the i country at ¢'* time period,
yi, denotes, the constant 1 for the intercept term of the i™® country at t** time period,
yi, denotes, the GDP of the it® country at t** time period.

e} denotes, the random errors of the i*® country at t* time period.

B} denotes, the intercept term of the it® country.

B4 denotes, the slope coefTicient of the i** country.

The above (8.1a) can also be described as given below,

ct =181 +y5 B +el.

8.1.1. Matrix Form of the Variables

The matrix structures of the above variables are given as under,

Ci [yia=1]
C; y{z =k
ci=| | ,ri=| . ¢
Ct yie=1
LC?E'-Tu yir = 1]
Let, Yi=[r} Vi]

Then, the expended matrix form of ¥* in (8.1.1b) above, will get the form given as under,

Yi=

[1 Y31]
1 Y22

:1 J’zit

‘1 y;-;'rJsz

Tx1

Tx1

(8.1a)

(8.1.1a)

(8.1.1b)

(8.1.1c)

In order, to orthogonalize the intercept and the slopes coefficients, we centralize ¥ in (8.1.1a) above

and get the following,
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Y1
o

y?z
vis|

|

i (8.1.1d)
}’:?.t

-0
-Yardr

Where, i, = (¥, — 7%), the top-head dot is to differentiate the centralized y§, from the simple ¥4, and 74

is the mean.

After centralization of Yzi, {8.1.1¢) can now be written as follow,

[1 J"’in-
} J"fez
yi=t: (8.1.1e)
} J’:i?z
1yl
After the centralization, below we present the modified model as well.
8.1.2. The Modified Model A fiter Centralization
The model below is the modified model after centralization of Y3.
Ci=yie Bi+ (5 ~ 75) B+ €, (8.1.2a)
CE=yic B+ 5 B3 + €l (8.1.2b)
where, Ve = (J’i.t - ?5) (8.1.2¢c)

8.2. Some Basic Quantities

In the following subsections of (8.2), we present some of the important quantities that are needed for

this estimation process.

8.2.1. The Model Parameters Estimates

Now to estimate the model {8.1.2b) parameters, we have the ordinary least squares coefficients estimate

which are given as under. Let this may be denoted by f
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i = (vev) g (8.2.13)
(8= [ﬁ‘] (8.2.1b)
2

These #i and 3% are now the ordinary least squares coefficients estimates for the intercept term and
the slope coefficients of model parameters (8.1.2b) respectively, We zlso need the variance of the ordinary
least squares coefficients estimates. Below, we present the data variances of the ordinary least squares

coefficients estimates.

8.22. The Data Variance of the Model Parameters Estimates

As mentioned above, we need the data variances of the model parameters i.e. the variances of the

ordinary least squares coefficients estimate, therefore, by definition,

DY (31) = (aB)i(viv)™ (8.2.2a)
further, by definition,
i Giffi
(0% = (?f_—,f,) (8.2.2b)
and in this orthogonal case, we have,
(r¥) = [T . 2] 8.2.2
)= 0 XL.(7i) (82.20)
and
oy (™ 0 ]
Vi) = A2y (8.2.2d)
( [ 0 (Z{=1(}’2t)2)
thus finally,
(0'2)1(};'h17'l')_1 = (g?)} [(T)‘l 0 1‘ - (8.2.2¢)
= FEYi S 2.
0 ( 1=1 (V) )

or
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( 2)"(}""'?‘)_1— [(az)i(r)-i ’ ] (8.2.29)
7 0 COTPXMEAY -
and thus,
(5 (e 0
DV(pt) = ) ) -1 822
8 [ 0 (2 (S5 ] (8.2.2g)

Note: In (8.2.2g) the lefi-hand top diagonal or the first diagonal, quantity is the variance of the first
regression coefficient estimate, i.e. the intercept while the right-hand bottom diagonal or the second diagonal,

quantity is the variance of the second regression coefficient estimate, i.e. the slope.

Let, DV{f}) denotes the data variance of the first regression coefficient and DV {1} denotes the data

variance of the second regression coefficient.

Then,
DV(ff) = (eH(r)™ (8.2.2h)

and

Az . Lion2 -1 .
DV(ﬁi) ={g?)! (ZI:l(yét) ) (8.2.21)
On the basis of the above quantities, below in section (8.2.3), we show the corresponding data precisions.

8.2.3. The Data Precision of the Model Parameters Estimates
Here on the basis of the above data variances, the corresponding data precisions, which are denoted by

DP(f}) and DP(f%) respectively for both of the regression coefficient estimates become as under,

pP() =[(e®] T (8.2.32)

and
DP(B5) = [0 [Ea(3h)’] (8.2.3b)

Below, we describe the data densities for both coefficients estimates.
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8.2.4. The Data Densities for Both of the Coefficients Estimates

The data density in terms of means and variances of 8} is given as under,
~ 11D . a:
§ 1Y N (L ov(8D)) (8.2.49)
Thus, £ is normally distributed with mean 8¢ and variance DV (£}).

and similarly, the data density in terms of means and variances of 8} is also given as under,
< 1D , .
§ 0N (85 ov(B))) (8.2.4b)

Thus, £} is normally distributed with mean S} and variance DV(ﬁ}) Now in the following section we describe

the prior densities too.

8.2.5. The Prior Densities of Both Regression Coefficients

The prior density in terms of mean and variance of B} is given as under,

i !‘LD N (By,A) (8.2.5a)

and similarly, the prior density in terms of mean and variance of 8 is also given as under,

: "f_D N ( By, AY) (8.2.5b)

Here, B, and B, denotes the prior means of £ and S, i.e. the 15 and 29 regression coefficient in the

model respectively, and A% and A5 denotes the prior variances of 8} and S84 respectively.
Let, (PV)E = AL, (8.2.5¢)

and (PV,) = AL, (8.2.5d)

L}

for the rest of the chapter. Now, in the following subsection we present the prior variance.

8.2.6. Computation of the Prior Vanance

In order, to use the g-priors in general and the g-prior precision in specific, let us define the g-prior

precision for both of the regression coefficients.
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By the definition of the g-prior, the g-prior vanance is proportional to the data variance. In our case,

(PVy)t < DV(BD) (8.2.6a)
or

(PVy) = p DV (B) (8.2.6b)
and

(PVo)t o DV (L) (8.2.6¢)
or

(PV2) = p37'DV(B3) (8.2.6d)

Now plugging the value of DV(#}) and DV(fL) from (8.2.32) and (8.2.3b) above in (8.2.6¢) and

(8.2.6d) respectively, we have,

(P1)t = pr*[(aH ()7 (8.2.6¢)
. . -1
(PVy) = p3* [(crz)‘ {E. %)} ] (8.2.60)
Now, in the following subsection we present the prior precision.

8.2.7. The Prior Precisions

Let, (PP,)' and (PP;)* denote the two prior precisions respectively, ther, in terms of precision (8.2.6¢)

and (8.2.6f) above can also be expressed as,

(PP =py [{(crz)i}_lT ] (8.2.7a)
' (PP, = p; [(a? T {STL(4)} ] (8.2.7b)

where,
(PP = (A (8.2.7¢)
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and
(PPY; = (AL}~ (8.2.7d)

Now, with the help of (8.2.6e) and (8.2.6f) above, the prior densities of both of the coefficients are as under,
3 110 N (B, {pr [ )) (8.2.7¢)
and
§ 110w (B, fo @ (TR G4)") ) 8279
Below we show the marginal densities of the estimates of the model parameters.

8.3. The Marginal Densities of the Estimates

Here, the marginal density for the 1% regression coefficient estimate becomes as under,

m(8) P N (B, . {[eB ™) + pr [(eBT) ) 8.32)

~

Now, we describe the marginal density for the 2™¢ regression coefficient estimate which becomes as under,

-1

e , , -1 . L2
m(33) 0w (B {09 (ETa04)) |+ 27 |0 ELGR) ) @ow
Below we show the estimates of the prior means.

8.4. The Estimates of the Prior Means

Below we show the estimates of the prior means separately, first, we show the estimates of the prior
mean for the intercept and then the estimates of the prior mean for the slope. Let us see the estimates of the

prior mean for the intercept in the following subsection.

8.4.1. The Estimates of the Prior Mean for the Intercept

Now, the estimate of the prior mean B, for the first regression coefficient may be given as follow,
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o GOV IS N ((CAV IR T
il 1[{(65)"}_11"

o

B, (8.4.1a)

+ Py

L[u +P1)

]ﬂi
(8.4.1b)

(@) r|}s
B, = e
L fasoffeny r)
A +PDX%:; {(af)‘}_lr ]I?i
B, = (8.4.1¢)

I 1[{(6‘%)‘}_11']

N P
Llfen) e
B, = ] (8.4.1d)

2 (e T

Here it is to be noted that, B, becomes independent of 5, .

Now, let us see the estimates of the prior mean for the slope in the following subsection.

8.4.2. The Estimates of the Prior Mean for the Slope

Also, the estimate of the prior mean B, for the second regressor may be given as follow,

2 {(@D) (a6 mal{en)) (2721687 34 i}
[ @ e nflEn ) (08| i
s far ol{en) (51464074 |
i X 1{_(1*} ﬁz){(az?)‘}ﬂ():l”:l(yéc)z)ﬂ =
el {eD) (07080 B
B, = (8.4.2¢)

ezt [ (Ea0h))
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62 (5o .6k B
B, = - —3 — (8.4.2d)
P {(622) ] (EL 1(3e) )

Here again it is to be noted that, B, becomes independent of 3,.

8.5. The Empirical Bayes Estimates

Here, by applying the empirical Bayes estimate given (4.18z), we apply the empirical Bayes estimates
without estimating the prior precision parameter, thus, the empirical Bayes estimates for the intercept term

and the slope coefficients respectively, are described in the following sections.

8.5.1. The Empirical Bayes Estimates for the Intercept

From (4.18z) we have,

ea(d) = ([1- [oa e o (for, (2 s) s

Modifying for the intercept we get,

o) ([~ st o (2 )5) s

ar

EB(f) - ( { - [ v {w—z}[(a«f)"m-l}}

(Bi-8,)"

}ﬁi + { v {w_%[(ir—f;?ﬂ}m §1) 8.5.1¢)

The above in (8.5.1¢), is the empirical Bayes estimate of the first regression coefficient i.e. the intercept

term of the model independent of the prior precision parameter.

8.5.2. The Empirical Bayes Estimate for the Slope '

Modifying (8.5.1a) for the slope we get,

EB(f) - ([1 - [z (s + o, {22 Bz) (8.522)
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or

m-z){(a@" [23;4?502]_1}
(B-8,)"

(N-2)!(52)° [EL,(y%t)Z]_l}
(Eziz_ gZ)z

ar

B,

EB(EE)'_‘ 1-|ZE, A+ (TN,

(8.5.2b)

The above in (8.5.2b), is the empirical Bayes estimate of the second regression coefficient i.e. the slope
coefficient of the model. Now, it is very simple to find the empirical Bayes estimates from (8.5.1c) and (8.5.2b)

above.

8.6. The Empirical Bayes Estimates

In this section we present, with the help of different tables, all the numerical findings.

Below we show the empirical Bayes estimates for the intercept terms,

Table 8.6a: The Empirical Bayes Estimates for the Intercepts

Empirical Bayes Estimates for the Intercept
Austria France Ttaly Sweden Britain
Intercept Coefficient Estimates 0.2694 0.3012 0.2861 0.2767 0.2921
Standard Error of Intercepts 0.0097 0.0183 0.0234 0.0065 0.0203

Table 8.6b: Empirical Bayes Estimates for the Slopes

Empiricai Bayes Estimates for the Slopes
Austria France Italy Sweden Britain
Slope Coefficient Estimates 0.9804 0.9436 0.9302 0.9338 0.9989
Standard Error of Slopes 0.0084 0.0078 0.0064 0.0092 0.0074

Table 8.6¢: The Empirical Bayes Coefticients Estimates for All Countries

The Empirical Bayes Coefficients Estimates
Intercept Slope
Country Coefficients Standard Error of the Coefficients Standard Error of the
Estimates Coefficients Estimates Estimates Coefficients Estimates
Austria 1(.2694 0.0097 0.9804 0.0084
France 03012 0.0183 0.9436 0.0078
Italy 0.2861 0.0234 0.9302 0.0064
Sweden 02767 0.0065 0.9338 0.0092
Britain 0.2921 0.0203 0,9989 0.0074
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Here, Table (8.6a) above, contains the intercepts estimates with their corresponding standard errors for all the
five countries of the analysis. Similarly, Table (8.6b) above, contains the slopes with their corresponding
standard errors for all the five countries of the analysis. Further, Table (8.6¢) above, contains the intercepts as
well as the slopes with their corresponding standard errors simultaneously, for all the five countries of the
analysis. Here as per the theoretical relationship between the consumption and GDP, the sign and magnitude
of both the intercepts and the slopes seem very much consistent with the theory. That is, according to theory,
the sign of the slope coefficient in the consumption function must be positive, and the magnitude of the slope
coefficient must be smaller than unity, and so are the cases. Also, the coefficients estimates among different

countries seem randomly fluctuating.
Summary of the Chapter

Here, in this chapter we applied the empirical Bayes estimation techniques to the real-world data. The
data was for five European Union countries namely, Austria, France, ltaly, Sweden and Britain. The data was
on two variables, i.e. the “GDP” and “Consumption” for the period of 1970 to 2016. Each variable for each
county consists of 46 observations. The data had been taken from the world statistics. The log transforms of
the variables have been made in order, to condense the data. Further, the GDP as the regressor has been
centralised, in order, to make the regressors orthogonal and bring independency in the intercepts and slope

coefficients. Thereafter, the whole procedure was described analytically.

Salient features of the estimates are that we have not done any pretesting procedure for model selection
and neither we have decided in advance that either we fit the subjects specific coefticient model or the subjects
commen coefficients model or any other model of the frequentist set up, rather we estimated the coefficients
by the empirical Bayes estimate for each unit. This is the quality of the empirical Bayes estimate that one have
no need for pretesting for model selection, the technique itself will first design the vectors of the coetficients
estimates and then resultantly the corresponding models, and this is what we have shown for the very first

time in this thesis.
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Chapter 9

Summary, Contributions, Conclusion, Recommendations and Direction for Future
Studies

In this chapter we summartse the whole study conducted in this thesis, in order to reach some
conclusions and then on the basis of these conclusions to assert some recommendations and directions for
future studies. This dissertation concentrates on the derivation of the standard frequentist panel data linear

regression models from the panel data Bayesian linear regression model.

Chapter one is the first and the introductory chapter, it contains the introduction to this dissertation. In
the first part of the introduction chapter the statement of the problem is described, then we have briefly
discussed the use and importance of the panel data. We have also discussed some important characteristics of
the panel data and the related models for panel data, and similarly the corresponding frequentist estimation
techniques necessary for the efficient estimation of these models. Next in tum, we have discussed the Bayesian
techniques of estimation used for panel data models. Further, the aims of the study were described with the
objectives of the study in chapter one. After discussing the objectives, the motivation for this study is also
expressed in chapter one. Next, the contributions made with the help of this thesis have been presented. Finaily,

the significance of the study has been given.

Chapter two has mainly dealt with the literature review. The chapter has basically oscillated around
the use or need of the Bayesian techniques. It also discussed the frequentist panel data models and their

corresponding estimation techniques.

Chapter three has presented the methodological framework carried out in this dissertation.

Chapter four has developed the theoretical background of the models, the variables, the estimates, etc.

It also contains the new empirical Bayes estimate.

Chapter five is spared to the analytical derivations of the frequentist estimates from the Bayesian

estimates. [n this chapter, from the empirical Bayes estimator with the precision weighted arithmetic mean of
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the ordinary least squares coetficient estimate as the estimate of the prior mean and the Zellner’s g-prior as the
estimate of the prior variance, the frequentist estimates of panel data linear regression models have been
derived, by single regressor estimation method. In the derivation of the frequentist estimates, first, the subject
specific coefficients estimate, second the subjects common coefficients estimate, third the fixed effects
estimates, fourth, the random effects estimates and finally the frequentist random coefficients estimate have

been derived, this has completed chapter five.

In chapter six, similar to chapter five the frequentist estimates have been derived numerically. Here the
[requentist estimates have been derived from the empirical Bayes estimate, with the precision weighted
arithmetic mean of the ordinary least squares coefticients estimates as the estimate of the prior mean and the
Zellner’s g-prior as the estimate of the prior variance, analogously to chapter five but numerically. We have
shown for each coefficients estimates, in a table, the prior precision parameters with the help of which those
particular coefficients estimates can be derived from the empirical Bayes estimate, then in another table, the

corresponding derived frequentist coetficients estimates.

In chapter seven we estimated the prior precision parameter *p", because in chapter six, the prior
precision parameter has been purpostvely and arbitrarily selected rather than estimated, as some special results
had to dertve, and these special results could only be derived with the help of these special selected values of
the prior precision parameters. But one interesting think to note is that, in chapter four, we develop such an
empirical Bayes estimate, which estimates the prior precision parameter along with model parameters
simultaneously. So in chapter seven we used this estimator and did not estimate the prior precision parameters

separately.

In chapter eight, the real-world problem has been taken into account, to show a single regressor
empirical Bayes estimation procedure in details as well as the tendency ot the empirical Bayesian estimates.
Therefore, we took a simple linear regression model for' five European Union countries namely Austria,
France, ltaly, Sweden and Britain. The data was on two variables i.e. the “GDP" and *“Consumption” for the

period of 1970 to 2016. Each variable for each country consisted of 46 observations. The data had been taken

from the world statistics. The log transforms of the variables had been made in order, to condense the data.

96



Further, the GDP as the regressor had been centralised, in order to make the regressors orthogonal and bring
independency in the intercepts and slope coefficients. And then the empirical Bayes estimate of chapter had

been applied.

This was the whole story of the thesis. Now we describe the contributions made of the thesis.

9.1. The Contributions

In the contributions, of this thesis, the first contribution is that all the frequentist panel data models
have been shown to be encompassed by a single model. The second contribution is the derivation of all basic
standard frequentist panel data linear regression models from the Bayesian linear regression model. The third
contribution is that it has been shown that all the trequentist panel data models have a single origin, which is
the Bayesian model, and all the frequentist modeis are the special cases of this origin. The fourth contribution
is that all the frequentist estimates corresponding to different frequentist panel data models can be derived
from empirical Bayes estimate analytically as well as numerically. The fifth main contribution is the new
version of the empirical Bayes estimate based on the weighted arithmetic mean of the ordinary least squares
coefficients estimates as the estimate of the prior mean and the Zellner’s g-prior as the estimate of the prior
variance has been developed, where there is no need of estimation of the prior precision parameters first. The
importance of this estimator is that this estimator has been derived from the same combination of the prior
mean and prior variance of the empirical Bayes estimate which produces the estimators required for all the
basic standard panel data linear regression models. The sixth contribution is that this technique give relief to

the researchers from pretesting of model selection in panel data.

9.2. Advantage of the Research
The advantages of the research include: self-setection of the models in the light of data, no pretesting
for model sel?ction on ad-hoc basis, to estimates the modeis with more reliable techniques of estimation where

the uncertainty is as an inherent part.

9.3. Conclusion of this Dissertation

After the detailed analysis, it has been found that the empirical Bayes estimate is the most flexible

estimator tor the panel data ease as compared to any of the frequentist estimators.
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The first conclusion we have been reached at is that ail the frequentist panel data linear regression
models have a unique and common origin they are not of the different origin. The consideration of different

origin by the frequentist School of thought is not very reasonable.

The second conclusion that we have been arrived at is that all the frequentist estimates are the derived
forms or versions of the empirical Bayes estimate. The Bayesian estimator have encompassed all the

frequentist estimates of the panel data models and therefore has the greatest potential.

The third conclusion that we derived, based on this dissertation, is that it is meaningful for many panel
data sets o be modelled with the random cocfficients model and the corresponding estimates. Except the two
extreme cases, that is, either the subject specific coefficients models or the subjects common coefficients

models, there are numerous random coefficients models and the resultant estimates,

The fourth conclusion is that when the frequentist statisticians or econometricians force the panel data

to be fitted with only these basic five models is injustice.

The fifth and in fact the most important conclusion that has been derived is that by using empirical

Bayves estimate the data itself will generate the most appropriate model without any pretesting etc.

94. Recommendations

Here in this dissertation, all the frequentist panel data models have been derived from the Bayesian
model. As there are infinite values of the prior precision parameters and only two of them i.¢., zero and infinity,
take to two extreme cases namely, the subject specific coefficients estimates and the subjects common
coefficients estimates and the rest of the values ot the prior precision parameter take to the random coefficients
estimates. So, therefore, there is very high likelihood of the random coefficients model that fits the data. In the
real-world problem too, in most of the cases, the panel data is neither completely heterogeneous nor completely
homogeneous but a combination of these two. Fortunately, the Bayes estimate spontaneously leads to the
random coefficients estimates in many cases, and resultantly, I:'he Bayesian estimation techniques are highly
recommended. Therefore, the empirical Bayes estimation tecl;niques are strongly recommended for practical

uses.
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9.5. Directions for Future Studies or Research

As all of the frequentist estimates of panel data models have been derived from the empirical Bayes
estimate, it is therefore the most important, valuable and useful techmique of estimation. Here, in this
dissertation, we derived these frequentist estimates by adopting a single regressor estimation approach, so in
directions for future studies, it is advised to derive the Bayes estimate of the panel data models with the same
combination of the prior mean and prior variance that could estimate all regression parameters of a model

simultaneously.

Further, the empirical Bayes estirnate is a very precious tool in general and the estimator we developed
in specific, but unfortunately it has not been used by the users or researchers to get facilitated from it, because
it needs programming and many of the researchers are either unable to do programming or can do very little
programming and hence this deprives them from the benefits of this beneficial technique. There is no such
statistical package or software with the built-in functions for it, and friendly interface. Therefore, the future
research may be conducted to design a friendly used software for the users of the empirical Bayes formula that

13 developed in this thesis.
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