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modification in different algorithms for sparsifying transforms and sparse coding in
recently developed techniques; one can attain the betier results in 1Q. Patch based and
block based dictionary learning lead for development in new algorithms for recovery of
images recently.

Main problem in MRI is the time acquisition to get large numbers of image samples
for a better reconstruction of the image. A patient must wait for a long period of time in
MR1 scanner. The problem of long acquisition time in a scanner can be reduced to make
development either on hardware side or software side. The changes in software side ¢an
be implemented more casily than hardware side through efficient algorithms. These
algorithms mainly depend on CS technique.

The CS theory in biomedical imaging application has become popular as it permits a
rationally almost exact reconstruction of images from far fewer measurements. For
biomedical imaging, CS can increase the imaging speed and consequently decrease the
radiation dose. Modem theory of CS [1]-[8][9]-[18] supports the reconstruction of
sigmals accurately by means of fewer information as compared to the set of unknowns, or
requited by conventional Nyquist sampling. It is only possible, on condition that the
underlying signal is nearly sparse in any transform domain. The consequence of this
improvement is that the reconstruction technique is nonlinear. in recent times, CS theory
has been used in MRIJ [9], {19]-[23] showing good quality of recovery of signal from a
reduced amount of information (values).

The superiority of CS reconstruction methods generally relies on the use of various
sparsifying transforms also called dictionaries such as wavelet or total variation (TV) to

recover MRI, CT [24] and other biomedical images from the subsampled data by
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exploiting the sparsity of these images in the transform domain or dictionary. Non-
adaptive global sparsifying transform, known as compressed sensing MRI (CSMRI) is
restricted in conventional MR images to 2-4 folds under-sampling [14], [16). [17]. [25].
Numerous unwanted ariifacts and loss of features were observed during the
reconstruction of images with CSMRI technique and non-adaptive sparsifying transform
like wavelet and TV etc. [21], [26].

Initially, predefined dictionaries or sparsifying transforins known as non-adaptive
sparsifying transform were used to reconstruct the medical images. In this thesis, we
develop such formulations which aim to leam sparsifying transforms from data. Adaptive
learning sparsifying transforms can better sparsify the images because these are trained
from the particular class of images [27], [28]. Different artifacts and aliasing effect come
into play on the edges of reconstructed images, when using under-sampling the data from
k-space. So noise artifacis due to under-sampling are one of the main challenges to
reconstruct the MR images. Patch based dictionary learning has got the popularity,
because, it has a tendency to effectively apprehend the local image features and have a
potential to eliminate the aliasing artifact without compromising on resclution, An
adaptive patch based dictionary is learned from small number of k-space samples which
produces promising reconstruction.

Learning sparsifying transform involves a two-step process, i.e. the dictionary
learning from training data and sparse representation. Popular (algorithms) techniques for
dictionary tearning are method of optimal directions (MOD) [27], K-times singular value
decomposition (KSVD) [28], alternating direction method of multipliers (ADMM) [29],

iterative least square (ILS) [30], recursive least square (RLS) [31] and simultaneous
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discussion part, we have evaluated our resulis with leading stat of the art technique i.e.
DLMRI which had already leads over Lustig technique LDP [21]and Zero filling.

Chapter 4 explains the recovery of MR image through block dictionary lcarning
scheme .1n this proposed method, BOMP is used as sparse coding to select the dictionary
blocks sequentially that are best suited to the input signals. The key characteristic of
BLKSVD (block dictionary) is to update the atoms in blocks and corresponding non-zero
coefficients simultaneously.

Chapter 5 describes the conclusion along with the future work. Adaptive patch-
based block-structured dietionary leaming and hybridization of two algorithims (called
SiFo) framework have been presented for reconstruction of MR images using the
proposed technique. The proposed methods have shown improved performance over
other dictionary leaming based methods such as DLMRI, for both noisy and noiseless
cases. The performance is validated by using a diversity of sampling trails and k-space

under sampling ratios.
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Figure 2.1 Linear sparse model represeniation
Observation or measurement vector y is obtained from the non-adaptive linear projection
(or transformation) of the original image x. Biomedical MR images are encoded into
Fourier domain (called k-space) by the scanner, instead of pixel domain. That is why;
original image x in Equation (2.3) is represented as measurement vector y with respect to
encoded (measurement) matrix ®. When (q = {), measurement matrix become square
and invertible, then transformation is reversible which mean that input image or signal
can be exactly recovered from the output i.e. (2 = ®~ly). However, in the case (f « q),
where the niumbers of rows are lesser than columns, which leads to an under-detenmined
system of linear equations. In context of linear algebra, it seems to be impossible to find
the exact solution for such a case where transformation matrix is rectangular or fat
matrix. But CS based framework heips to find the solution in such cases. In CS theory, it
is equivalent to the obtaining small amount of measurements than the original image

dimension however in the biomedical imaging application e.g. CT and MRI, which
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directly relates to a decrease in the scan time and a reduced amonnt of exposure to the
electromagnetic radiations (EMR) respectively [20],[64]. Sensing matrix @ has a mull
space in an under determined system, which indicates that various vectors outcome with
same values or measurements after the transformation. Therefore, the recovery process
become ill-condition because there are many solutions. In MRI case, recovery of linear
image from its partial Fourier data faces the aliasing artifacts due te the violation of
Nyquist sampling criterion .Figure (2.2) shows aliasing artifacts during linear

reconstruction of under-sampled brain MR image.

Figure 2.2 Aliasing effect causes a linear recovery of MRI
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(2.10), well-known method of KSVD and other popular synthesis dictionary leaming
algorithms faced the convergence problem and stuck in local minima or saddle point
during finding solution. Also its sparse coding step is computationally expensive.

2.4.2,2  Analysis Transform Model

In analysis model, some operation or transform domain is desired to make given
signal x € R9 to be sparse. Let operator & € R"™9 be the matrix is called analysis
dictionary to make Qx € R" is sparse such that ||[Qx|l, « k [108]. Total numbers of
zeros in x is termed as co-sparsity [108]. Finite difference dictionary is considered as
well known analysis dictionary. Michal Elad et al. [103] has developed some derivation
for the conditions on equivalence of synthesis and analysis based prior.

In practical, analysis model is called noisy signal analysis model when we add
noise or error £ in signal. Then extended version of analysis model can expressed as
X = a+ £ with 2a bieng sparse and £ is supposed to be very small noise in signal
domain [108). Note that sparse representation Qa lies in the range space of Q. Problem
formulation for noisy signal analysis model to recover signal a will be expressed as
follows,

min{|x - allf .s.t }|Qall, <h-x, (2.10)
[}

Here 1, s the minimum allowed co-sparsity. The above Equation (2.4), also called
analysis sparse coding problem, is NP-hard and can be solved just like sparse coding in
the synthesis model [108),{109]-{113]. This is also computationally expensive. Aliernate
solutions for Equation (2.10) can also be used to relax the !;_norm into /,_norm method
with added penalty in the cost function. Both Ophir et al. [114] and Yaghoobi et al.[115]

have pursued in analysis dictionary leaming to minimize !; and !, norm of Qx
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The formulation in Equation (3.4) is the least square problem and detail solation is in

appendix A. The solution is as follows.

N(ky ky) (ke ky) €U
Px(ky, ky) =3 Mk, k,) + Mok, k 36
(kx ky) (ky Ky ) + 1o (kg Y),(k,.ky)EU (3.6)
1+n
Here x, is reconstructed by taking the IFFT of ®x. From (ix) in appendix A
T 1
N= qaz W] D 6, (3.7)

Equation (3.7) is called the “patched average result” in Fourier domain and
®x(k,, ky) denotes the restructured updated value on position(ky, ky) of the k-space.
Ny =® DOz expresses zero- filled k-space measurement and U denotes the subset of
k-space that has been sampled.

Algorithm 3,1:

Goal: To learn the dictionary for reconstruction of under-sampled image
Input: z= training signal in k-space measurements, |1, p
Output: ¥ = An estimated reconstruction MR Image
Initialization: x=x, = ®}z
Main Iteration:
1. Alternately learn dictionary by SimCO and sparse (coding) approximation
for x patches by FOCUSS.
Update x
N« FFT(x)

Restore sampled frequency to update the A as per (3.5)
X« LFFT(N)

R wN

More extensive pseudocode is presented in the appendix-B1
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input signals. The key characteristic of BLKSVD is to update the atoms in blocks and
corresponding non-zero coefficients simultaneously.

For a given set of MR signals, we want to find the dictionary whose atoms are
sorted into blocks and provide the most accurate representation vectors. An index number
is designated to each block and & € R¥ denotes the vector of block assignments, assigned
to the atoms of D. In other words, b[k] denotes the index of a block vector Dy, . A vector
f € CXis s-block sparse over b if its nonzero values are focused only to 5 blocks. 1t can
be expressed as:

N8l = s o (43)

Where ||8)|gp is the !, norm over block b and computes the number of non-zero
blocks as defined by b. Our objective is to leamn the block dictionary D along with its

block structure & having a maximum block size of s that leads to optimal 74-block sparse
representation @ = {Hp }i:’ For block-dictionary learning, Equation (4.2) can be
expressed as,
min||[X- DO s.t.|8,],, s 7 .p=1...L, |p| s ELN (44
Where N is indicates the number of blocks and b; is the set of indices represents the

list of dictionary atoms in block j and can be expressed as

b=k € 1,23, ........K|b[k] = j) (4.5)

4.3 Problem Formulation

Reconstructed compressively sampled biomedical MR images typically suffer from

numerous artifacts during under sampling of k-space and noise in samples. These are two
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