International Islamic University, Islamabad, Pakistan
Faculty of Basic and Applied Sciences
Department of CS & Software Engineering

Date:

Thesis Acceptance Certificate

Thesis “Impact of Architecture Design and Evaluation on Risk, Schedule and Cost
Estimation for PSP Engineer” has accepted by the Faculty of Basic and Applied
Sciences, Department of Computer Sciences and Software Engineering in partial
fulfilment of the requirements in “Master of Science in Software Engineering” with
specialization in “Software Process Engineering”.

Submitted By:

Name: Waqar Ul-Hasnain Khokhar ,
-Registration # 213-FBAS/MSSE/F08

CNIC # 35202-7940764-1 :

Committee

External Examiner
Dr. Umer Khan
Assistant Professor
Department of Mechatronics, Faculty of Engineering

Air University, Islamabad, Pakistan |
! .
Internal Examiner ‘ (/Lﬁ"/ﬂ
Mr. M. Usman
Assistant Professor, DCS&SE, FBAS, ITUI, Pakistan

Supervisor 57

M. Shahbaz Ahmed
Assistant Professor, DCS&SE, FBAS, IIUI, Pakistan

IMPACT OF ARCHITECTURE DESIGN AND
EVALUATION ON RISK, SCHEDULE AND
COST ESTIMATION FOR
PSP ENGINEER

Submitted by:
Wagqar Ul-Hasnain Khokhar
Registration No. 213-FBAS/MSSE/F-08

Submitted in partial fulfilment of the requirements for the Master of Science in
Software Engineering with specialization in Software Process Engineering at the
faculty of Basic and Applied Sciences.

Department of Computer Science & Software Engineering,
International Islamic University,
Islamabad, Pakistan.

Supervisor:

Mr. Shahbaz Ahmed
Assistant Professor
DCS&SE, FBAS, ITUIL,
Pakistan.

2012-December-7
1434-Muharram-23

Acceossion No

774'947;’:

$AS
005'" \
v

y
-1 K ;z.ﬁu»y; ¢ 890/“@\(:
-) Camp&a(ﬁr QQ\M e

QI LUALI YAVd

Impact of Architecture Design and Evaluation on Risk,
Schedule and Cost Estimation for
PSP Engineer

ABSTRACT

Personal Soitware Process (PSP) has a long history of its implementation in industry
and academic. It can be applied in 21 key process areas of CMMI. But in past the main
emphasis was on planning, requirement, design, code, test and post-mortem phases of
software development. Identification of risk at system structure level for estimation of cost
and schedule is the key focus of PSP, However, current implementation of PSP does not
provide any process for risk, schedule and cost estimation at the architecture level. The
architecture design and evaluatioh phases highly influence other phases thus creates needs to
be integraved within the development process. Also, architecture analysis for <leveloper iy
proposed in literature. Therefore, this work presents a Personal Software Process with
integration of architecture design and internal evaluation. The proposed process “Personal
Integrated Process (PIP)” is designed and executed in the university computer lab. The
tmpact of integration of architecture design and evaluation was determined by a case study.
The process was automated to further facilitate the adoption of the process. The integration of
aréhitecture design and evaluation proved to be helpful in identification of technical risks
carly at the architecture level. The process integration demonstrated better estimation of cost
and schedule. The tool found to be help in process learning. It was also found that process
automation can substantially reduce project cost. Software quality management system

developed to automate the process is open source software and can be used for research

purpose or it can also be used in any CMMI company for process automation and process

improvement.

Impact of Architecture Design and Evaluation on Risk,
Schedule and Cost Estimation for
PSP Engineer

Copyright

The ideas, case study resuits and research findings in this thesis are protected by copyright and
published in the interest of scientific and technical information exchange. The document may be
reproduced in part or whole without any meodification for non-commercial use. However, for

cominercial use permission is required from author and may be contacted at following address.

Author Name: Wagqar Ul-Hasnain Khokhar

Address: 190-Q-Block, Model Town, Lahore, Punjab, Pakistan.
Mobile # 92-+300-4028714

Phone# 92+42+35861255

Email# waqarulhk{@gmail.com.

Copyright © 2012

TABLE OF CONTENTS

Chapter 1: Introduction

t.1 Personal SOftware Process......ccvv et snsssiessessnnsss s s 1
1.2 Process SignifiCance. ..ot 2
1.3 Problem Statement.. ..ot s 3
1.4 Proposed SOIUON.ooorieececcrs ettt e ssbes st sresaeiens 5
1.5 D ECEIVES. 1 eutieeurtirereeee e vtre e st e s rn e b e st b e eenb e b b st b s e s bae s st s 5

1.6 Research QUESTION.c.viiiiir ittt e s sean e serr e sane s esee s e brnnanes 5

1.7 Summary of ReSultS......ccouririmiiiniciiienen ettt 5

Chapter 2: Research Methodology

2.1 THEEOQUCHION. ... eeieireeieecteet et e et b seerr et e s e sae s e s s et et e as s asreessaasaesasseanesus 7

2.2 LAETAtUIE SUIVEY.eiiiieeiieieieieiesiceenneniessessaesess e e ssessessesstenessaseenesassnnsesnasessnsesnen 7

2.3 0850 STUAY . ceieiriiiiiieirieresieraireseeies e et ssas e se st e raae s ae s neenrn e st e sat e ree s aesannasanene 7
231 SHENZERS. ..ot e 7
232 WEBKIICESES. ...uivieirrirecrriietiacerretsecaanresassesbessenmesmesstssesasensansessneseessessesssores 8
2.3.3 Research QUESTION.ucov e ciciererene e irieeeesesassesaessenes s nresesstasesmsevesasessenen 8

234 Research Design.....cooi ettt s st e s s 8
2.3.5 Case Study Protocol.......o.eceiiinoicir e eseeieneecceeseesnsiseecresarisssenens 9
2.3.6 Case Study COmtEXt.. ..ottt seee et e erereseensraee e sesssaessasvnes 9
2.3.7 HYPOTRESIS..cooiee et r et er et e e e s st e s en e e e s ra s 9
2.3.8 Variables . oottt et e b e n e e emee e 9
239 Ethical ISSUES....ciceirmeeieiieereeec s reetcreiec et sees e e ses e e s ss s nes 9
2.3.10 Data Gathering......ocecciiveiiiieniciieseresee e rere e et v e s eeests e e e senessas 9
2.3.11 Results and ANAlVSiS....cccoiviireeiiieii e e ecsevecsins e et essesnaneae s rnsneneans 10
2.3.12 Construct Validiiy ..o v eereereiererencceeenicrercrese e sseesisste e meness et sees 10
2.3.13 Internal Validity......cooeeormiriiciieieceeeese e et e 10
2.3.14 External Validity.....cooooee e rencree s tsseneeseee st resraee e e s sne e saneas 11
2.3.15 Experimental Reliability......c..ccccooorircniniinniciiccnr i 11
2.3.16 Measurement Procedures...........coeevrercciniinanns e e 11
2317 SAMPING.c.eeteieieiiiierercirer et sttt sae e ee s e e sae e snenas 12
2.3.18 Research Setting.......cceiecieiiiriireicreieeiree e rree e snr s e e s sse s e e s reesenne 12
2.3.19 REPOITING....cetirrerenierriarerereinienierssaeseresessesessssussessnasansessasesrasessesseseesssnnesen 12
2.3.20 Schedule. ..ot e st e 12
2.3.21 Unit 0f ANALYSIS...ootiriririiieeiirreeereere sttt st er et et esee s s nen e 13
2.3.22 Case Study FINdINgs.....coceceiiirieinicreiirniect s stsser e sete e resese e e s snesaan 13

2.3.23 LiMEALIOMIS . eeueireeieriiseeeeeeeei et s esae st e esenresaests caeacasrnesssssasnnasesessssssasnraseens 15
2.3.24 Significance of StUAY.....coccovririirrii et et 13
Chapter 3: Literature Survey on Personal Software Process

3.1 The Gap Identification.......ccoueeceeeerene et cree et ee e sae s ae s eeaeaes 14
3.2 SUIVEY SOUICES. ueeeciieeieiierieireeiiaereeerteritassreessseessssessessnssassaeensessaeerasasensssesnesnnns 14
3.3 Index Terms and KeyWords........ccocivuiriieeniiinnseciirseeresie et vaessaens 14
3.4 Sarch SN, ...c.coveeiieeieirerreee et st et et et ere e sbeens et e er et s s enssrnesseanee 14
3.5 StUAY SElECHIOM. .ccueiiiierrerriecrrecreeee e e e et e esaesee s ssaeessesaserar s sasneesnbessens 15
3.6 Classification and AnalYsiS........ccccveeviiriiemveecssieeiesesre e s e esssseneersnens 16
3.7 PSP AULOMATION. ..c.tiriereieeiicieetes et cereaae e eissrrenteeraeaecarsassseeasesnessessssssesrensessssses 17

3.7.1 PSP-DROPS

372 HACKSTAL.eeveeeer et seseeeeseeeeeseressssessaseeeesaeeasareseesaassessasareteestensereesasssasnessesereenes 18

3.7.3 PROMu ot te et e b e e san bt sa et s e s b e asesases 18
374 PSPA ettt e 19
3.7.5 DUOTIACKEE....vti ettt st et e e nr s e e sas b sar e ne e 19
F3.7.6 PSP-EVA . ettt rre st sae st st ea et be st sane 20
3.7.7 PSP-EAT

3.7.8 Extended GESIP....oo ettt st 21
3.7.9 JTemporal API Based Tool......ccoiemiiiniiinciiiicminesva 22
3.7.10 Open Process COMPONENLS......oovivveierierireeieceeresreese st srneesseesrssnsanens 22
3.8 PSP Integration and AUtOMANON.c.ceeitiverrrrreeeieeiercnerrerecesaseereessennrsaneenenanse 23
B SOPMT ettt et e e st et en 23
3.8.2 PSP-SiX SIZMA....oiiiiiirieieierrrcrr s esece s eaeaneeesresae s e e e e eanenes 23
3.8.3 MIOTCULY ceiiiiie et et e e s e ss e e cote s sasbrneeseeneeneesssbssanessneeemas e bbe s rnesane 23
3.8.4 Six Sigma and PSP based Process Management..........ccccccvvinvieinnvcnenninnne 24
3.8.5 Process Platformi. .. .o ercresseess s st et s s rrn e eas 24
3.8.6 OPC fOr GrOUPD.....oiiiccie ettt e e e st s se s s s aea s nnea s 25
3.9 PSP MOQIfiCatiOn. . cc.uviiiieieiiecieisecsecenteennrecanseecsesebesanesseeeseessansvaneeseesessessenus 25
3.9.1 PSP Control TREOTY..ccvvviiiiiieectii et 25
302 B P et ae e en g s 25
3.9.3 Collaborative SOftware ProCess.......ovveecccnirienresiece e veern et snaenes 26
3.10 PSP Modification and Automation........cecveceerieveereesreniecrcereesessnesseesissnensns 26
31001 The Team PSP et et st rare et a e e naas s 26
30102 VDM OVEE PSPttt sve e asans e 26
3.10.3 PPMPuiieie e eereerseteeeeerreateesttieteeeaneesaeesteaesrrearnaas 27
3.10.4 Reflective Software ENgINeering........ccvvvvevccerieniininerinceneneneenneeneseenenes 27
3.10.5 PSPINET ...ttt b s e e st ann s rn s e easesreeans 27
3,11 TSP MOIICAtION. ..cceeiiieiecrecieeie st aern e sreea e srn e e se e seaaseee e 28
F1L1 ACE ettt et n e e s e n e nne e asna 28
T I 2t 0 Y & OO OO OO U OO U PRSP UUE OV STT PSPPI 28
3.12 Commercial TOOLo iee e ctae s s sr e e s s san e s ne e 28
3.13 Analysis and ResSultS. .ot s 28
314 CONCIUSTON. ... oeiiieiiec ettt e et eeae s s e e sas e s rae et et e sbreesrae e bnsaatbennnnannson 30

Chapter 4 Literature Survey on Software Architecture Design and Evaluation

4.1 The Gap Identification.ccecveeciiceeieriee e eeeie e e vae e sasesae s srseneesreemnenes 31
4.2 SUIVEY SOUITES..oeiiriireitiitiiireereeettetesneses s esste st ssr e e stesarasasesessasasnesneenrnens 32
4.3 Index Term and KeyWords......cooooviiierininirnenecre et ee 32
4.4 SEATCH SHIIILZ . cveeereerterrrrieeeieieeerraeaeesteerreaaesseasseesaasssassassresrressasesesssassessesssasss 32
4.5 StUdY SelECtON...ciiiiiiieiiia e st s e ae s 32
4.6 Classification and ANALYSiS........v.ieeecerieerieirieie i seevcseasrre e e eeesaresareenes 34
4.7 Architecture Design ProCesses......covvmeriiievrnrcinreniieese e eeneesecssnenne e 34
4.7.1 Rational Design Process......ccccivriecieciineiieeeeie e eae s 35
4.7.2 Feature Oriented Reuse Method.......cocoviiiininierciieieeseccre e 35

4.7.3 Architecture Based Design Method

4.7.4 Quality Attribute WOrkShop.....oovvcreccennniiesivncis i 37

4.7.5 Methodological Architectural Design........cooceviviriiiinnniiireen e 39
4.7.6 Attribute Driven Design........coociiiriiisiiniicinin et 41
4.7.7 Architecture Rationale and Elements Linkage..........c.ccoeviirenmrncrrennenncns 43
4.8 Architecture Evaluation Process. ... i 45
481 SAAM .ttt e s 45
4.8.2 SAAER ..ttt e en 46
483 E-SAAM . e s 47
4.8.4 ARID..oooiiiiirec sttt et s e e b et 48
8.5 ATAMu ettt et 49
4.8.6 CBAM.iii ettt e s 50
G.8.7 AHIVMEE ittt e s s 51
8.8 SARA e s 52
4.8.0 SACAM ..ottt s s 54
4810 ACCA .o ettt ettt s 55
81T APA etttk e e n e e b sas b s 57
4812 ALMA ..ottt e e 58
4.9 Architecture Design and Evaluation..........ccccceeieiiniec i 60
4.9.1 441 View Model.......coociiiiiiiicien s 60
492 RAMRTS ..ot e s b 61
493 SBSAR ...ttt bt et e bt b resene e 62
494 SBSAD ..ottt et e et 64
495 ABAS et et oot es 65
4906 QADA ot 66
9.7 APTIA et e ettt e b 69
498 GMSAD ..ottt n e et e st e s e 70
4.9.9 ABC/DD..ciciiirvrerceieceeeeens OSSR TUOU YR PRUBTOIURUOPROI 72
G910 SPE ..ttt e sttt an e senenene 74
A9 11 CB-SPE ettt st et s et s ae sreenes 75
4912 PASA . ottt ettt e eae e e 75
4.10 Analysis and Results......oooiiiiicccrres e 76
1T CONCIUSION....ciiiireititit e es et sre e st ea s st s st s e nssenas e 78
Chapter 5: Proposed Process “Personal Integrated Process”

5.0 TtTOTUCTION ittt ettt s e nerne s eneesbsesiatees 79
5.2 System Engineering PrOCeSS. ..o ivieeieiieriereiecreere st ceeeseee e rrr e e e 80
52,1 System Development......cvivmiirriiiinieeniesrr e seeeseassaa e e sesseen 81
5.2.2 Product DevelOPIEnt.veeierieiireneeieiseiesceesae e ereesessseassrsessessssessersenes 82
5.2.3 Component Development.......coocoeviiincriiciccctniene e eesee e 82
5.2.4 Module Development..... ..o oieiiiiiniievrenicene e ese e senens 82
5.3 Database DevelOpment Process......ciciiiiieriirirniecieicincts s secriee e enesesenscaeas 83
5.3.1 System DevelopImEnt.........cococmiiierenieenccri ettt snesresse e 84
5.3.2 Product Development.... ..o ce e sin e 85
5.3.3 Component DevelOpment........c..ccveeirinrinreincnenecenesesierncse e e et snanes 85
5.3.4 Module DevelopmMENt.......ccoouiiriceeicrinininriic et ses e aensenans 86

Vi

5.4 Computer Hardware Configuration Process.........coeveveirvercerncniescereniernessenns 86

5.5 Computer Network Configuration Process.......cvvevereervervrcerecinneessesaereeneees 86

5.6 PrOCeSS AULOMIATIONviiiieirreiscatessrtras it s et aerrmese s enstr e te s s resentassnassensasss 86
5.7 0880 STUAY ittt e s e 87
5.8 Analysis and ReSUIS. . oieeviirriiiecriri st ssiesssnesrescses s sessaecasenes 87
S8 FIINES, ittt e e nne e e s s e st e e s et v s s e e rne e s ae e s ateen e eaameeabesae 90
S0 CoNCIUSION. .t st e e e s 91

Chapter 6: Case Study

6.1 Case Study DeSCrIPUON..ccvuee ettt et res s srn e saeenns e 92
£ 2 Case Smudy Part-1: Process AtOMAation....c.uvecreinrireernnerosirrscrinsreresaseessessscsne 92
0.2.1 Development Technology.....ccccooiiviiriieirinieirreere e sresre e 93
6.2.2 System Major COMPONENIS...ccivrrrurereerereeiertereseeresnressermassec e snessacsresssieras 94
6.2.2.1 Time Log COMPONGHL.......coiiiiirirenrirrrrerer e iteene e sieestseessressnssasns ane 97
6.2.2.2 Defect Log COMPONGNL......cviriireieeeiieeriererrarerteennesesseessenassseessssaesesanees 97
6.2.2.3 Operational Scenario COmPONEnL.......cvivieaieeiiririrnieriscsrneninrenianeeseons 97
6.2.2.4 Test Report COmMPONENT.... .ot iceieries s stss e sasssss e esa s 97
6.2.2.5 Jssue Tracking COmMPONENL.......ccooeeiiiirirereercrc e eeee e aesssne e 97
6.2.2.6 Task Planning Component.........c.ccoviereerirennrinnienieesiteserece e seesiseeenees 98
6.2.2.7 Schedule Planning Component........c.coviieirciiniinncinceieiins s 98
6.2.2.8 Process Improvement Proposal Component..........cccooocevnciiniieccnicccncnnn 98
G.2.2.9 QAW COMPODENT...cooiiiiiiciiee ettt se e saa s en e sn s 98
6.2.2.10 ATAM COMPONENL...iutirriririrrieereeanresresrreseesnesrateesesessaesarssences 98
6.2.2.11 CBAM Component..........occcemeeiiimiiniecinimisineises s 98
6.2.2.12 VEB COMPONENL...iiiiiiiiiieeieirier sttt et sae s saee s 98
6.2.2 Results of Process AutOmMAation........ccereierinerreenreecssreeereererreneessessecsnesees 98
6.2.4 Research Findings Regarding Process AUtomation.......c..ccveecenerirnennnne 99
6.2.5 Conclusion Drawn from Process Automation.........ccoveeveveenesnieveenieecennns 100

6.3 Case Study Part:1 Personal Integrated Process Implementation (Architecture

DIESIQN ettt it eeieseeerre sttt e e s s e st e e st et et et a s r et s e s s e e e be b e sreesaenessreeas 100
6.3.1 Quality Attribute Workshop......vceoiiiivceeiccecreecre e 100
6.3.2 Attribute Driven DesSiZil.cviciiciireicrciceraesissressre e sseees e sae s sensee e 100
6.3.3 Active Reviews for Intermediate Design.......cc.oeoeevievcnnnirncnccninnnnenees 101

&.4 Case Stady Past:1 Personal Integrated Process Implemen{ation (Arckitecture

EVRIUATION).ttt ettt s e st see e st e e s er s s e ses e e saasenens 102
0.4.1 PerfOrMANCE....cociiieiirieeceeeeeeeeees sttt e eeebr e stae s et assbes s ebreeenbee e st meesenees 110
6.4.2 AvalabIIEY oot neas 110
0.4.3 Reliability. oottt e et 110
6.4.4 MOAIADIHTY . .oeereee et et 110
0.5 SCOUILY ottt ettt ee st ettt et r et sae st e e n e s nae e s enrbras 110
6.4.6 Results of Architecture Evaluation...........covcvviviviveciciensiee e 110

6.5 Case Study Part:1 Personal Integrated Process Implementation (Cost and
Benefit Evaliation)., .t ceetsseeeses s e se s b s abe e 112
6.5.1 Cost ESMAION......cr ittt s s ee s s see e aesnen 113

6.5.3 Cost Estimation ReSults.........coviiinerinciirnincerenieesceneesserensteaeseeseenses 120
6.5.4 Research Findings Regarding Cost EStimation.........cc.ccvvmeveemnniniesnninn, 123
6.6 Case Study Part-2: Personal Software Process..........ocvcvevcvvernrncceniserienenees 123
6.6.6 Case Study Part-2: Personal Software Process Results........c.cccoovevvicenne. 123
6.6.7 Case Study Part-2: Research FIndings.........cccoeveeieciicncrniicncscnnencananes 127

6.7 Personal Software Process and Personal Integrated Process Comparison127

Chapter 7: Introduction, Findings, Limitations, Future Work, and
Concluasion

AR I U o Te Htat 1o) s OO OO E UOR U SRRSO 130
7.2 FINAINES. et eiiteitesie e sad e rbe et e e sv e eas et ba e e e et e aeebressne s benns 130
3 LML ALIONIS ce et tee et e e ee st e ettt e et aee s enamasbeesaeeeesenabnn b aenaasee s astmneanesansenns 130
T FUTUIE W OTK ettt ettt ettt e e tes et etmessteara s eaee e tneesaeesassssssarnssbennssenss 131
7SOm0 ittt et etr ettt e e e s e s e sebe st eetasreasabnsebesaeaessare s banernedereein 131
LS R L= (L1 TR USSR USRS 132
RS A PUD L CALIONS e eet et et e s eeessiee e e sneeaenrssensasesat snsnrennsrsenssasossoeren 143
APPENAIX-A ittt eree et s s s ras s et re e s re e s s s ert et e b et s entaenr s berates 144
APPENIX-Bo.ocriieee ettt et e mne e 145
ADPPENAIX-Cootirii et e e s 147
APPENdixX-D..... o e PSR RUORRRION 148

APPCIAIX-F oottt ccie st eee st e sb e s et evae s ateat e sre e s et e abn e e aranes baesraans 149

10.

11.

12.

13.

LIST OF TABLES

Table # Page#
Table 2.1 Face and Content Validity.......ccccocevccrreniinncrecnnnncniinrnecnennens 13
Table 3.1 Comparative ANALYSiS......cccceierirvvimrncrnnierienreeseeresrseessenesranes 29
Table 4.1 Quality Attribute Analysis........ccocceecieciinvicnieecrnnnesese e 77
Table 6.1 Architectural Drivers.........cociiiiniie e 101
Table 6.2 System Use Case SCenario........c.ccccevviicrncenninincencenensn, 103
Table 6.3 Architectural Strategies and Desired Improvements................ 114
Table 6.4 Quality Attribute SCOTE......ccevvvvvrirrritrrerreere e vasia e eeneens 114
Table 6.5 Benefit Evaluation........cooeoiiriec e 115
Table 6.6 Cost and Schedule Evaluation..........c.cccovvveenenrnecniniciiennnncnne 117
Table 6.7 Software and Licensing Cost.......ccccvrnenrenrccannnsennnnennnen 119
Table 6.8 Return on Investment (ROI).......... eereanee e nee et e e ne et b eeenens 119
Table 6.9 Process COMPAriSOIL.......coouecvurrureiereererinrraneesesessernersnesseesneas 128
Table 6.10 Process CompariSOn........ouuererreniverecninrecresreresinessesesenessanaens 129

LIST OF FIGURES

Figure # Page #
Fig.3.1 PSP Literature Survey Results.........cccvvvmnncnnnniniinneninnnns 15
Fig.3.2 Classification 0f ATHCIES.........oovueveiveeersereesssreesssressreeseessseneesne 16
Fig.4.1 Literature Survey ResSultS......ccoovvveveeriirnrerenicriicrerceecesieneeeees 33
Fig.4.2 Classification of Publications...........cocouviirecoreneeiiennnnncrnncnnecereennas 33
Fig.5.1 System Engineering Process.........cocovcevvvmnvcesinnnnnnne e 80
Fig.5.2 Database Development Process-1.......ccocceccvcrivinccniinncnicnnninencns 83
Fig.5.3 Database Development Process-2.......ccecvvecevrrernisconeriecrmeenennine 84
Fig.3.4 Time Spent in Process Phases for SQL.....c.ccocevivvvenecnnrcnennnnen 87
Fig.5.5 Time Spent in Process Phases for JSF ... 88
Fig.5.6 Process Time Distribution for XML......c.ceeoiveerinencnnneennennennnn 88
Fig.5.7 Defects INJEcted. .. vt rves e sesesneens 89
Fig.5.8 Defects Removed... .ot rercenrecnseec v ee s 90
Fig.6.1 System Use Case DIiagrami........ccccccevvicoriiinnincrinienmineinsseeens 95
Fig.6.2 Bounded Task FIOW.......ocoiviiiiiineciniet et 96
Fig.6.3 Programming Languages Contribution..........ccccvveenivencesinnnenne 99
Fig.6.4 ABC Of FSQMS....oiiiieeieeereeecceeees e a s es e 108
Fig.6.5 Utility Tree of FSQMS.. .ot enraee e e snesaeeas 109
Fig.6.6 Technical Risk ANalysis....c..ccevveeiirieecieiireninnecenerreneeee st esreeane i1l
Fig.6.7 Time Distribution of ProCesses.....c..cveiervvevrcrinieeerienineicrennnrneennenes 111
Fig.6.8 Size Contribution of Programming Language............cccccvvvrvinnnn. 112
Fig.6.9 Architectural Cost-Benefit Analysis.......cocovveriricrrineccvcrnrecencnaas 120
Fig.6.10 Activity Based Time DiStribution.........oceccceveererrcrvcesmnennenenniens 120
Fig.6.11 Quality Attribute Score Contribution...........cccovieecericeinrniecsvvnnee 121
Fig.6.12 CoSt ANALYSIS.cuiiiiiriircrreireeeteeeterre e sreete s e e e saeane 121
Fig.6.13 Activity Based Time AnalysiS.......coccecivvveinneinsecrceneesiesneneeaens 122
Fig.6.14 Time ANaLYSiS.....cocvccriieniiemirersciinterenneeseestsessee s eesaesaeses 122
Fig.6.15 PSP1.1 Earned Value and Effort HOurs.......cccooeeevnceivennivnnnnens 124
Fig.6.16 PSP2 Earned Value and Effort Hours........c.cccooeenieinnencvinncnns 125
Fig.6.17 PSP2.1 Earned Value and Effort HOUrs......c.ccocovveeirnivencnncerecnnen. 126

Fig.6.18 PSP2.1Correlation between program size and development size.127

4+1VM-E
ABAS
ABC
ABC/DD

ABD
ACCA
ACE
ADD
ADF
ADL
AIS
ALMA
APA
API
APTIA

AREL
ARID
ASC
ASD
ASR
ATAM
BAPO
BIS
CBAM
CDS
CMM
CMMI
CMMI-DEV-1.2

LIST OF ABBREVIATIONS

4+1 View Model Extension

Attribute-Based Architectural Styles

Activity Based Costing

Architecture Based Component composition/ Decision-oriented
Design

Architeciure Basea Design
Architecture-Centric Concern Analysis
Architecture-Centric Engineering

Aturibute Driven Design

Application Development Framework
Architecture Description Language

Advanced Information System

Architecture Level Modifiability Analysis
Architecture Potential Analysis

Application Programming Interface

Analytic Principles and Tools for the Improvement of
Architecture

Architecture Rationale and Elements Linkage
Active Reviews for Intermediate Designs
Architectural Separation of Concerns
Architecturally Significant Decision
Architecturally Significant Requirement
Architecture Tradeoff Analysis Method
Business Architecture Process and Organization
Business Information System

Cost Benefit Analysis Method

Commanding Display System

Capability Maturity Model

Capability Maturity Model Integration

CMMI for Development Version 1.2

DFD
DMAIC
EBBS
EFI

ERP
E-SAAM
FODA
FORM
F30MS
GMSAD
HM1
HP-QC
JPA

JSF
LTSP
MAD
orc
PASA
PSPA
PBC-GZ
PBX

PIP
PPMP
PROBE
PROM
PSP
PSPBOK
PSP-DROPS
PSP-EVA
PWP
QADA
QADAG
QAW
RAMRTS

Data Flow Diagram

Define, Measure, Analyze, Improve, and Control
Electronic Bulletin Board System

Electronic Fund Transfer

Enterprise Resource Planner

Extended SAAM

Feature-Oriented Domain Analysis
Feature-Oriented Reuse Method

Firmsoft Software Quaiily Management System
General Model for Software Architecture Design
Human Machine Interface

HP Quality Center

Java Persistence API

Java ServerFaces

Level TSP

Methodological Architectural Design

Open Process Components

Performance Assessment of Software Architecture
Personal Software Process Assistant

People’s Bank of China Guangzhou

Private Branch Exchange

Personal Integrated Process

Personal Software Engineering Project Management Process
Proxy Based Size Estimation

PRO Metrics

Personal Software Process

PSP Body of Knowledge

PSP Data RepOsitory and Presentation System
Personal Software Process Expert Visualization Agent
Personal Writing Process

Quality-Driven Architecture Design and Analysis
Quality Attribute Directed Acyclic Graph
Quality Attribute Workshop

Rate Monotonic Analysis for Real! Time Systems

RDP
RMA
RSE
SAAER
SAAM
SACAM
SARA
SBSAD
SBSAR
SCADA
SEI

SPE
SPICE
SQL
SSPMT
TSP
TTSP
UML
V&B
VDM

Rational Design Process

Rate Monotonic Analysis

Reflective Software Engineering

Software Architecture Analysis for Evolution and Reusability
Software Architecture Analysis Method

Software Architecture Comparison Analysis Method
Software Architecture Review and Assessment

Scenario Based Software Architecture Design

Scenarid Based Sofiware Architecture Reengineering
Supervisory Control and Data Acquisition

Software Engineering Institute

Software Performance Engineering

Software Process Improvement and Capability dEtermination

Structured Query Language

- Six Sigma Project Management Tool

Team Software Process
Tailored TSP

Unified Modeling Language
View and Beyond

Vienna Development Method

CHAPTER 1
INTRODUCTION

1.1 PERSONAL SOFTWARE PROCESS

The “Personal Software Process (PSP)” [1] was designed for individual
software engineer or a team of three to five engineers. PSP is the initiative of
“Software Engineering Institute (SEI)” developed to improve the performance of
software engineers especially for small organizations. It is a structured, disciplined,
and measureable software process for engineers. PSP helps in improving quality and
productivity of engineers and make their result more predictable. Using PSP engineers
can identify areas where they can improve from their process feedback. An engineer
can use PSP to improve the quality and productivity. PSP is based on five principles
wlich emphesize the measuring and -racking work progress, applying suitable
methods consistently, and use of defined process for evaluating his own work.
Engineer can use consistent personal practices and become effective member of the
team.

PSP introduces a set of seven personal processes PSP0, PSP0.1, PSPI,
PSPI1.1, PSP2, and PSP2.1. PSP 3 is the cyclic process. PSPO is the baseline personal
process which introduces defect recording and time logging activities. PSP0.1
introduces the use of coding standard. Preparing process improvement proposal and
measuring software size. PSP1 is also refers to as personal planning process, which
introduces software size and resources estimation using PROBE. Software testing
activity is focused and test reports are introduced in this process. PSP1.1 introduces
task planning and schedule planning. PSP2 introduces code review and design review
activities. Finally PSP2.1 introduces design templates. PSP3 is cyclic personal
process for developing large scale programs.

It is a structured, disciplined, and measureable software process for engineers.

The PSP helps in improving quality and productivity of engineers and make their

result more predictable. Using PSP engineers can identify areas where they can
improve from their process feedback. However, initial work reported focuses only on

requirement, design, code, test, and post-mortem phases.

1.2 PROCESS SIGNIFICANCE

The PSP has successful track of industrial application especially in Digital
Equipment Corporation, Hewlett Packard Corporation and AIS Corporation [1].
Another publication [6] reports the use of PSP in Motorola Paging Products Group,
Union Switch & Signal Inc. and Advanced [iformation Services Inc. The most
projects executed at these organizations contain one to three software engineers.
However, project executed at AIS involved two groups with three to five software
engineers. The most projects executed at Motorola contain zero defects which

exposes the significance of using PSP in industry.

1.3 PROBLEM STATEMENT

Identification of risk, estimation of cost and schedule at system structure level
is the key focus of PSP.

“You must examine the system structure, asvess the principal development

risks, and select a strategy to fit your situation” [2]
However, current implementation of PSP does not provide any process for risk,
schedule and cost estimation at the architecture level. The architecture design and
evaluation phases highly influence other phases and need to be integrated within the
development process.

PSP3 is cyclic process for developing large software, i.e. PSP3 is large scale
personal process. However, PSP3 process addresses only module level development
within a component. It does not address component level development within a
product. A software engineer who wants to develop a large complex product with
number of components and each component may contain number of modules will
need a process that addresses these activities. In other word current implementation of
PSP does not provide processes for architecture design and architecture evaluation.

The current version of PSPBOK [3] addresses the seven necessary
competency areas: “Foundational Knowledge”, “Basic PSP Concepts™, “Size

Measuring and Estimating”; “Making and Tracking Project Plans”; “Planning and

Tracking Software Quality”; ‘“Sofiware Design”; “Process Extensions and
Customization”. However, it does not address architecture design and evaluation
competencies. The first competency area is foundational knowledge which comprises
of four knowledge areas. These knowledge arcas are process definition, process
elements, measurement principles and statistical elements. The basic PSP process has
planning phase, development phase and post-mortem phase. The main four elements
of PSP are scripts, forms, measures and standards used mainly in coding, counting
line of code and defects. The third knowledge area “measurement principles” describe
essential product and process measures. Two types of measures are involved in PSP
one is artifact measure which 1s used for measuring product size or defects. The other
measures are for historical process measures and current process measures. The
knowledge area “statistical elements” focus measurement and analysis using statistics.
The second competency area is “basic PSP concepts” which involves knowledge
areas such as process fidelity, data collection, data measure, data analysis and process
improvement. The third competency area “size measuring and estimating” describes
knowledge areas such as size measure, size data, size estimating principles, proxies,
the PROBE estimating method, combining estimates and size estimation guidelines.
Making and tracking project plans is the fourth competency area whicl: focuses or six
knowledge areas. These knowledge areas are planning principles, planning
framework, software size and effort, task and schedule planning, use of earned value
for schedule tracking, planning and tracking project issues. Planning and tracking
software quality is the fifth competency area which involves six knowledge areas.
These knowledge areas are quality principles, quality measures, quality methods, code
reviews, design reviews, and review issues. Software design is the sixth competency
area. This competency area involves six knowledge areas which are software design
principles, design strategies, design quality, design documentation, design templates,
and design verification. Finally the last and seventh competency area is “process
extensions and customization”. This competency area focuses on three knowledge
areas which are “defining a customized personal process”, “process evolution”, and
“professional responsibility”.

Engineer can use PSP principles in any of 21 key process areas of CMMI-
DEV-1.2 [4]. PSP is the class room implementation of CMMI. Initial reported work
on PSP focuses only on requirement, design, code, test, and post-mortem phases.

However, it does not address architecture design and evaluation. These are the

limitations of PSP and are focus of the research. PSP does not contain team
processes. The “Team Sofiware Process (TSP)” [5] is designed for managing team of
software engineers. TSP is beyond the scope of this research.

The PSP is designed for small organizations with few engineers and does not
define team software processes. However, PSP engineers can be guided through a
team oriented approach i.e. Team Software Process (TSP). PSP does not depends on
the use of any special tool, but PSP engineers have to go through many phases and
have to fill out many forms and prepare script which utilizes huge development time.
Therefore, automation of PSP will reduce development time and cost The automation
will also help in process learning as emphasized below.

“With CASE facilities to automatically log time, track defects, maintain
data, and present statistical analyses, the PSP likely would be easier to learn and
more efficient to use.”[1]

The Personal Software Process need its automation to reduce cost and time
spent in learning process and manual work. However, there are some issues in current
PSP process that need to be addressed. The PSP needs to be integrated with
architecture design and evaluation processes.

The “Sofiware Architecture Analysis Method (SAAM)” was proposed to
address the analysis of context dependent quality attributes. It is a scenario based
analysis of software architecture. The method was developed to compare software
architecture. The major activities involves in this method are “describe the candidate
architecture”, ‘“develop scenarios”, ‘“evaluate scenario”, “reveal scenario
interaction” and finally “weight scenario and scenario interactions”. The method
was successfully applied in a case study. The senior development staff and managers
found this method very helpful. They were able to identify many problems early in
the software development stage. These problems were identified at very low cost.
They commented about architectural analysis this way:

“It has convinced management that developers need architectural analysis up
Sront.”[7]
The “Team Softiware Process (TSP)” has recently been combined with “Architecture-
Centric Engineering (ACE)” [8]. The major process components of ACE are “Quality
Attribute Workshop (QAW)”, “Attribute Driven Design (ADD)”, “View and Beyond
(V&B)"” approach to document the software architecture, “Architecture Tradeoff

Analvsis Method (ATAM)”, and “Active Reviews for Intermediate Designs {ARID)”.

However, risk identification process ATAM together with other process
components have combined with TSP and is designed for coaches or managers

and not for individual engineer.

1.4 PROPOSED SOLUTION

The “Personal Integrated Process (PIP)” is proposed to address above
mentioned limitations. It is a consistent, systematic, disciplined, and repeatable
process for individual software system engineer. The proposed process is explained in

detaiied in chapter-5.

1.5 OBJECTIVES

The main objectives of the research are given below. These objectives were
derived from issues and limitations in current software processes. These objectives
also address the needs of “research question”.

» To determine the impact of architecture design and evaluation on risk

identification.

To determine the impact of architecture design and evaluﬁtion on project cost.

» To propose a process for individual software system engineer.

» To automate the proposed process i.e. “personal integrated process”.

1.6 RESEARCH QUESTION

The process variations highly impacts the cost associated with the software
project. Any modifications in software process can dramatically increase or decrease
productivity. Research question is designed so that factors affecting process can be
examined.

RQ: What is the impact of architecture design and evaluation on risk, schedule and

cost for PSP Engineer?

1.7 SUMMARY OF RESULTS
Process components necessary for software system architecture design and
evaluation were integrated in PSP. The proposed process was executed successfully.
A case study was designed to address the research question. Data related to research

question was gathered and numbers of analysis were carried out. The results of these

analysis shows that proposed process is suitable for individual software system
engincer. Only 15% of the cost was associated with the non coding activities such as

architecture design and evaluation.

CHAPTER 2
RESEARCH METHODOLOGY

2.1 INTRODUCTION

To achieve the objectives of the research, literature survey on two topics were
carried out followed by a case study. The research method used in this research
was quantitative in nature. However, the analysis carried out during literature

survey was qualitative.

2.2 LITERATURE SURVEY

Literature surveys on two topics were carried out. The first topic of literature
survey was “Personal Software Process™ and the second topic of literature survey
was “architecture design and evaluation process”. These literature surveys were

sent for publication before conducting the case study.

2.3 CASE STUDY

Case study is chosen as method for study design for carrying out research. It is

an empirical method for conducting research in software engineering [9], [10].
Case studies are descriptive and observational with or without some rational.
These studies are used for validating research. In software engineering case study

~ is used for comparing or evaluating processes, tools and methods. Case study is a
scientitic method for raising research question regarding investigation. Coliection
of row data during research and analysis of data set is purely scientific in nature.
Finally the research findings and conclusion can be published scientifically. Case
study scientific method of investigation has many strengths and weaknesses some

of them are discussed below [11].

2.3.1 Strengths

Case studies provide sufficient information for the judgment of the

technology, process or tools. They are suitable for comparing processes, tools or

7

technology. They are scientific investigation methods within the field of software
engineering. Case studies methods of investigation are important for industrial
evaluation of software engineering processes, tool and technology. Case studies are
easier to plan as compare to formal experiments. There are number of strengths of
case studies over other methodology such as: case studies are useful for evaluating
software engineering methods and tools; case studies avoid scale-up problems; easier
to plan; preferred when process changes are wide-ranging; case studies can be used to
find out which process is better; finally case studies can be used to control
improvement. The case study is suitable for settings where software researcher have

little control over variables,

2.3.2 Weaknesses

The results obtained for case study are sensitive and cannot be compared with
formal experiments. Formal experiment involves replication whereas case study does
not require any replication. Case study investigation is carried out for a typical project
undertaken. Case studies results are harder to interpret when compare to experiments.
The research findings from case studies cannot easily be generalized. The results are

context dependent.

2.3.3 Research Question

Case study was selected for empirical investigation of the impact of process
change on project risks, schedule implication and project cost. The research question
posed for investigation is given below.

What is the impact of architecture design and evaluation on risk,

schedule and cost for PSP engineer?

2.3.4 Research Design

The case study by design was the single case holistic design. However, case
study is based on theory and appropriate links to the existing literature has been
established. The subject of the case study was the software processes. The reason for
selecting single case was the uniqueness of the case. The source of research
evidences collected during case study includes documentation, archival records, direct

observation and physical artifact. The study design based on the reference period is

retrospective-prospective. However, there is no control group in the study design.
Other evidences that would be used for construct validity includes PSP standard

forms.

2.3.5 Case Study Protocol

The case study generic protocol template [12] and review checklist [13] were
modified to adapt the specific needs of the case study. The case study protocol
ensures consistent planning process. It increases the rigour of the case study. When
reseaich circumstances change case study protocol makes it easier to adjust new

circumstances.

2.3.6 Case Study Context

The main context of the case study includes: Design of process for software
system development was in the context of the case study. Development of software
quality management system for Personal Software Process (PSP) and Personal
Integrated Process (PIP) was the one of the context of the case study. Determination
of impact o architecture design and evaluation on cast, schedule and risk was also in

the context of the case study.

2.3.7 Hypothesis

Architecture design and evaluation affect project cost and risk identification.

2.3.8 Variables

Various dependent and independent variables were involved in different
analyses. Detaii of these variables will be discussed as these analvses will be

explained in next chapters.

2.3.9 Ethical Issues

Case study design and research proposal were approved before conducting

research.

2.3.10 Data Gathering

10

PSP standard forms and modified PSP forms were used for data gathering

during investigation. Narrative observation was also used during data collection.

2.3.11 Results and Analysis

Case study involved number of analysis. These analyses include project
software size, time, defects, effort, cost, and risks. All these analysis were
quantitative. However, some qualitative analyses were also conduced. These analyses
were carried out during literature review for comparing PSP tools and architecture
design aud evaluation processes. Resuiis of some of these analyses have been

published and other is sent for publication.

2.3.12 Construct Validity

Construct validity is the establishment of operational measures that are correct
for the concept being studied. Construct validity can be explained in term of
intentional validity, representation validity, and observation validity. Construct
validity can also be defined as what is being measured was intend to measure. The
product size, d2velopment time and system defects were the three basic measures.
These measures adequately represent the quantities which were intended to study.
Other measures were project cost that was measured in standard units. Project risks
such as availability risks, security risks, performance risks were also measured in
standard units. These concepts were operationalized for measuring correctly and
given in the Appendix-A. Multiple source of evidence, establishment of chain of

evidence, and expert review were used to ensure construct validity.

2.3.13 Internal Validity

Internal validity is the establishment of causal relationship. If the value of
dependent variable is the result of independent variable the relationship is said to have
an internal validity. To achieve internal validity confounding variables are eliminated.
The internal validity is mostly applied to explanatory and causal studies only. The
case study by nature was comparative. The case study was used to contrast standard
Personal Software Process with Personal Integrated Process. This comparison helped
in understanding the limitation of PSP. The causal relationship between outcome and

treatment were also determined in the case study.,

11

2.3.14 External Validity

External validity is the establishment of domain for which the case study can

be generalized. Theory was used in single case study to ensure external validity.

2.3.15 Experimental Reliability

Experimental reliability is the degree of results to which the case study can be
repeated. The documentation of case study is the prerequisite for experimental

reliability. The case study protocol was used for ensuring experimental reliability.

2.3.16 Measurement Procedures

The data were collected in architecture design; architecture evaluation; detailed
design; code; compile; test; planning; and post-mortem phases of process. Data were
collected using standard PSP forms and modified PSP forms.

Instrument Validity: The validity of research instrument is its ability to measure
the quantity for which this instrument was designed. There were many research
instruments involved in the case study and the validity of these research instruments
were deiermined using logic evidences. Expert reviews were used to ensure the
validity of research instruments,

Face and Content Validity: Face and content validity was established by linking

research question with objectives. Table 2.1 gives details of validation.

TABLE 2.1
Face and Content Validity

Objectives Process-1

To determine the impact of | How many risks were identified in process-1?

architecture design and Process-2

evaluation on risk, schedule | How many risks were identified in process-2?

and cost. How much architecture design and evaluation
impacted on project cost?

How much architecture design and evaluation
impacted on project schedule?

Instrument Reliability: The reliability of research instrument is the degree of
accuracy and precision by which it makes measurements. PSP involves three basic

measures size, time and defects. The program size was measured using automated

12

software tool. Time was noted using digital clock, and defects were counted
manually. Software performance and security were also measured using software

tools. These software instruments always provided accurate and precise results.

2.3.17 Sampling

Sample size was the whole population, i.e. all project risks identified were
measured and analyzed. Project cost was estimated and compared with actual for both

processes.

2.3.18 Research Setting

The case study was conducted in university computer lab. The place was
selected based on the computer and networking facilities available in the lab. The type
of study by nature was comparative. Two processes were compared during the

investigation.

2.3.19 Reporting

The literature reviews conducted on two topics were submitted for publication.
The analysis, results, findings and conclusion drawn frorn the case study were also

submitted for publication.

2.3.20 Schedule

The case study took about 36 months, during first 12 months literature review
on two topics was conducted. The analysis and findings of the literature review were
published in international journal. In second phase research question was designed
and approved froin the research committee. The sort coming in the literature review,
research problem and case study protocol was addressed in third phase. The second
and third phase took about 6 months. In forth phase research proposal was approved
for execution. During this phase process was designed, implemented and tested.
Software quality management system was designed, implemented and tested. Row
data was gathered and analysis was carried out over this data. The fourth phase took
about 12 months. The analysis, results, findings and conclusion drawn from the case

study were sent for publication in the fifth phase.

13

2.3.21 Unit of Analysis

The unit of analysis refers to as a “case” in a case study. The unit of analysis is
based on the research question under investigation. The unit of analysis in the case

study was a “process”.

2.3.22 Case Study Findings

The project cost that was associated with the architecture design and
evaluation was about 15%. By this investment project risks were identified early in
the development stage. I'hese risks if not identified would result in poor estimation of

project cost and schedule.

2.3.23 Limitations

More case studies and experiments are required to generalize the findings. The
major phases that were studied includes requirement; architecture design; architecture
evaluation; detailed design; coding; testing; planning; and post-mortem. Software
maintenance was not the focus of the study. There is also need to validate the process
for other domain to ensure external validity these major domains include embedded

firmware and industrial software.

2.3.24 Significance of Study

The proposed process is designed for development of enterprise resource
planner or business information systems. The process can be used to build such
commercial system in software industry. The proposed process helped in
identification of risks at the early stage of software development. The identification of
risks helped in better estimation «f cost and schedule for project. The automation of
process will significantly reduce the development time and context switching time for
engineer. The PSP tool will help in process learning. The tool can be used in research
activities carried out in universities or it can be used commercially in any CMMI
organization. Software quality management system developed for PSP and PIP is an
open source software project. This open source software project will help in

knowledge and technology transfer.

CHAPTER 3
LITERATURE SURVEY ON PERSONAL SOFTWARE
PROCESS

3.1 THE GAP IRENTIFICATION

To find the gap in research a literature survey was conducted. Considering
institutional requirement survey sources were selected. Keywords and index terms
were used to find the research articles from these research sources. Survey sources,

index terms, and quality criteria for research articles selection are discussed below.

3.2 SURVEY SOURCES

The survey sources include digital libraries, scientific database, publishers,
search engines, and references/bibliography. These sources include:
IEEExplore Digital Library; ACM Digital Library; CiteSeer Digital Library; 1:EE
Computer Society Digital Library; ScienceDirect; Web of Science; British Computer
Society; Wiley InterScience; Springer Verlag; Springer Science + Business Media;

Kluwer Academic Publishers; Elsevier; and Google.

3.3 INDEX TERMS & KEYWORDS

The keywords selected from research question were “PSP”, “Personal Process”,

and “Process Tool™.

3.4 SEARCH STRING
The search string was formulated based on keyword and index terms selected in
previous section. The sfring was designed so that only related articles for the survey
may be searched. Following search strings were used in survey.
String-1: “Personal Software Process”.
String-2: “PSP™.

String-3: “Personal Software Process Tool”.

15

3.5 STUDY SELECTION

The search string was used to find articles from selected survey sources. The
articles selected during primary study were based on search string appeared in
publication title, abstract, or keywords. The total publications selected in phase-1
were 98. These publications were downloaded after reading title and abstract..Most of
publications downloaded in phase-1 were selected from reference/ bibliography. So
these publications already fall in the inclusion criteria.

Inclusion Criteria: The reviewed article includes research papers froin journals,
conferences, workshops, and symposiums. Copyrights technical reports, doctoral
dissertation and books were also reviewed. _

Excluston Criteria: White papers, technical reports, books and website articles without
copyrights were not considered. The total selected research papers after applying

quality criteria in phase-2 were 87. These publications are shown in Fig.3.1.

Phase-4 Classification & Analysis

Phase-3 Decailed Study

Seriesl
Phase-2 incluston and Exclusion Criteria

Phase-1 Search String

¢} 20 40 60 80 100 120
Mumber of Publications

Review Phase

Fig. 3.1 PSP Literature Survey Results

In phase-3 the total selected research papers for detailed study were 87. The
study includes those publications which fulfilled the inclusion and exclusion criteria.
These articles were studied completely and selected for analysis. However, 57 articles
were related to standard PSP. As the focus of the research was to find those articles

that deals with modification of PSP or integration of other process components with

16

PSP. These articles were further separated to keep the focus of the research. In phase-

4 the total research papers selected for analysis were 30 and can be seen in Fig. 3.1.

3.6 CLASSIFICATION AND ANALYSIS

The total of 30 publications that were selected during phase-4 of the literature
survey was studied in detailed. It was found that 12 publication described just the
automation of personal software process, 6 publication described integration of other
process components with personal software process, 3 publication proposed the
modified process, 7 publication proposed the modification of process as well as they
automated the proposed process, and finally 2 publications proposed the modification

in Team Software Process (TSP).

PSP Automation

§ PSP Integration and Automation

ui PSP Modification

W PSP Maodification and Automation

i TSP Modification

Fig. 3.2 Classification of Articles

Analyses were performed for the selected survey population. The sample size
was 30 which is the total number of classified publications. Fig.3.2 shows the
classification of these publications selected during literature survey. The selected 30
publications were studied in detailed. A study was conducted to find out whether

these publications proposed modification or integration of architecture design and

17

evaluation in PSP. Wo publication was found that proposed architecture design
and evaluation for PSP. However, only one case study was found that proposed
the architecture design and evaluation for individual engineer. This study did
not proposed process for PSP. Also no PSP tool could be found that provides
facilities for managing architecture design and evaluation knowledge in PSP context.
Therefore, there is a strong need for a process with integrated architecture design and
evaluation for personal software process engineer. This integration will enhance the
knowledge, skill and competency of the software engineer [15]. The process
automation will reduce the learning process learning time. It will also help in better
estimation of cost, time, and risk early in the development. The purpose of this
research is to find the impact of architecture design and evaluation on cost, schedule
and risk. The study will open new area for research to further investigate the impact of

architecture design and evaluation.

‘3.7 PSP AUTOMATION

The research publications that proposed PSP automation software tool are
discussed in this section. All the publications discussed in this section addressed
standard PSP with automation support. The publications that were classified in this
section were 12. Out of these twelve publications three publications addressed same

process. Therefore, rest of 10 publications are discussed here in brief.

3.7.1 PSP-DROPS

The “PSP Data RepOsitory and Presentation System (PSP-DROPS)” is a web
based tool [16] that support Personal Software Process. The tool is developed at
Embry-Riddle Aeronautical University to automate the PSP process and to facilitate
the teaching of PSP. PSP-DROPS helped in cut down the work load of management
and analysis of personal software process data. Since it is web based tool students can
access this tool anywhere in the world using internet. The tool was developed to
address the issues in adaptation of PSP such as: extensive effort required in recording
process data; Process involves too many different forms; and lack of immediate
assistance on how to record the PSP data. PSP-DROPS provide assistance in filling
different form, performs calculation on collected data, store process data in database,

and generates graphical analysis. These reports and analysis result can be generated

18

anywhere in the world. The web base architecture of PSP-DROPS fulfils the goal of
its development for PSP data for academic and industrial use. The four major software
architectural components of the PSP-DROPS are PSP database server, “CSI module”,
“CS2 module” and a “Teaching Assistant module (TA)"'. The security feature of PSP-
DROPS allows only authorized and authenticated user to login and retrieve his own
PSP data. However, student can only enter data and are not allowed to update the

data.

3.7.2 Hackystat

The “Hackstat” [17] is one of PSP metrics collection and analysis tool which
reduce development time and cost thereby increase productivity of PSP engineer, but

introduces some adoption barrier.

3.7.3 PROM
The “PRO Metrics (PROM) " data collection and analysis tool [18] is déveloped

for Personal Software Process. PROM provides automated data collection and
analysis facility for both code and PSP process measures. This tool not only process
PSP data but also data of procedural metrics, object oriented meirics, and custom
metrics. PROM provides data collection and analysis facilities for personal,
workgroup and enterprise levels. The architecture of PROM is based on plug-in
technology and use SOAP to communicate with various component and subsystems
of the architecture. This architecture based on Package-Oriented Programming that
makes the development and integration of its components easier and extensible.
PROM is consists of four components “Dafabase”, “PROM server”, “plug-in
server” and “Plug-in”. Database of PROM is used to store data regarding PSP data,
software metrics and project activities, PROM server use SOAP web services to
communicate with other components. Plug-in server collect data from plug-ins
provide caching facility and communicate with PROM Server for data storage. The
fourth component is plugs-in for IDE. The plug-in communicates with PROM server
using SOAP protocol. PROM not only provides metrics and process support to
developer but also to the manager. Developers can simultaneously login for pair
programming and can access PSP data, and software metrics for analysis and

improvement. PROM is fully automated to support the context switching problem in

19

process recording and product development. PROM is developed using Java
technology and it component communicates using XML and SOAP. However,

PROM also supports manual data insertion facilities.

3.7.4 PSPA
The “Personal Software Process Assistant (PSPA)” [19] designed and

developed to facilitate the automatic collection of PSP data, viewing and editing PSP
logs and reports. The tool also performs automatic classification and ranking of
defects. This tool was developed to solve the adaptation issues of Personal Software
Process. The tool has the capabilities of recording compile defects of programs
written in Java and C. It not only automatically collects these defects but also
classifics for individual software engineer and for team. PSPA is written in .Net(C#)
with plug-in support written in Java. It uses centralized local database.

PSPA provides daily schedule tracking facilities, automatic line of code (LOC)
counting facility, compile defects recording facility, size and time estimation facility,
Time and defect recording facility, and facility of automatic classification and ranking
of defects. The data related to these facilities is collected through plug-ins and stored
in a local centralized database. Th: plug-in communicates with Eclipse wpen source
IDE. PSPA provides tracking individual engineer task with the help of Gantt chart and
a timer attach to it. Timer is invoked automatically when an engineer starts working
PSPA tools. Time is automatic calculated using timer and logged in the database.
These basic measures are used to calculate defect density and productivity of
individual engineer. Defects are logged and classified using standard PSP defect type
standard. These defects are ranked based on the frequency of their occurrence. PSP
logs and reports are automatically produced, these reports include “Productivity per
Task”; “Yield per Task”; “Defect Density per Task”;, “Estimate Size versus Actual
Size”; "' Estimated Time versus Actual Time"”; “Estimated Cost versus Actual Cost”;
“Productivity of Team”; and history of member. The consolidated team Gantt chart
provides information regarding individual and team productivity. This information is
only available to manager for project monitoring and control. The defects information

provides the quality at individual and at the team level.

3.7.5 DuoTracker

20

The “DuoTracker” is software tool {20] was designed and developed to address
the process tracking and analysis needs of individual software engineer and for
organization. Its defect classification capabilities and data collection is based on ISO
9001 and CMM standard. The tool is developed to address the issues related to
adoption barrier of PSP. These issues includes manual entry of data; switching
between applications; and collection of rigid data. DuoTracker provides the solution
to these problems by integrating PSP data collection tool in ISO 9001 and CMM
based defect tracking tool. The eleven mandatory categories of IEEE standard 1044-
1895 was used for defect classification scheme and implemented in CMM based
software lifecycle. These defects are collected using defect logger implemented as one
of the component of DueTracker. DueTracker has ability of integrating with
organization wide defect tracking and analysis tool. Software engineer can select any
type of defect for his own analysis for the available defect type in this tool. Defect
classified in IEEE standard 1044 are automatically logged whereas some PSP specific
and unique field are manually entered. DueTracker provide a facility for comparing
individual PSP quality data with organization wide product quality data. The tool
provides a time logging facilities for each defect, such as the time at which defect was
found and fixed. It allows engineer to analyze estimated defect fix time as well as
actual fix time. However, in DueTracker recording of compilation errors are not
automated. Another issue with the tool is security of PSP data which is restricted
from viewing using some measures. The defect records in DuoTracker system is
viewed by “Defect Viewer”. This viewer provides the necessary information
regarding defect classification and logged-on user. DueTracker provides two different
ways of updating defects one is for assigned defects and other is for unassigned

defects.

3.7.6 PSP-EVA

The system software architecture of the “Personal Software Process Expert
Visualization Agent (PSP-EVA)” tool is based on software agents {21]. The agents
that were used in the tool were the combination of “semi-intelligent agents”,
“informative agents”, and “interface agents”. The major agents that exist within the
system are “InferfaceAgent (I4)”, “TaskAgent (TA)" and “SearchAgent (SA)”. These

agents are used for visual representation of performance. These agents perform

21

several tasks including planning, scheduling and visual representation of defect
density. The tool provides the statistical performance of the individual software
engineer or for a team. The agents in the system work as a personal assistant for the
software engineers. They provide the visual representation of the performance of the
software engineers. The tool provides process support from PSP0.1 level through
PSP3 level. 1t used PHP and AJAX language to communicate with the web. The
project manager can generate Gantt chart for project tracking. For scheduling Gantt
chart is provided in the tool for graphical representation of milestone. This visual
representation of milestone in Gantt chart is accomplished with the help of agent that
enhanced PSP tool. Performance visualization is accomplished with the help of
interface agent. The user can monitor his performance with the help of these interface
agents. These agents send alert messages to software engineers when they are slow.
Finally the PSP-EVA provides analysis support for both software engineers and for

project manager.

3.7.7 PSP-EAT
The “PSP-EAT” [22] tool is the enhancement of Excel worksheets based

automation of software process. They developed this tool for providing assistance to
teachers and students of Master in Sofiware Engineering program conducted at
Monmouth University. They observed that about five hundred calculations were
involved in a single assignment given to a student. These assignments took about two
to eight hours of instructors. They developed and enhanced the existing tool to reduce
the manual time involved in the process. They were able to reduce manual work by
35%. They were also able to reduce post-mortem time by 64%. The features provided
by the tool include the addition of a student, database support and reports on specific

assignments.

3.7.8 Extended GESIP

Software quality management system such as GESIP [23] was extended to
support Personal Software Process. This support includes the time logging for PSP
activities. The second module was developed to support the software size information.
Third module was added to manage project defects. The tool supports the automatic

numeration of defects and creates links between these defects. The historical

22

information about the quality of the project can be determined using the module. Tool
provides the secure login for software engineers. The access to resources was
maintained using private key. The tool also provides the support for group work on
the projects. They developed and implemented tool in ISO 9000 certified company.
The company has established process based improvement. It has also achieved Silver
Q which is the grants for achieving 4000 points in the European Foundation for

Quality Management.

3.7.9 JTemporal API Based Tool

The tool discussed in [24] support Personal Software Process with focus on
problem of context switching and recording overhead faced by the users while
recording time log. The tool used the speech sensor in order to record activities. The
tool provides the facilities to record start and end time during the particular activity.
Microsoft speech recognition API was used in the too! to recognize the speech of user
for recording start and end time. Activity duration estimation was performed using
additional sourced of information such as information automatically obtained from
secondary sensor and information obtained from schedule stored in database. The tool
uses ¢ xty rules and seven algorithms to record start and end time of an activity

automatically.

3.7.10 Open Process Components
The research work on “Open Process Component (OPC)” [25] explains the

application of component based technique to process modeling. The proposed work
describes how open process component approach can be applied to Personal Software
Process. The proposed component based framework suppoit process activities such as
building of process models its execution and analysis. The framework is proposed to
study the process technology can be used to construct processes, its execution and
analysis. The OPC provides a distributed process components environment. In this
way process components are located and adapted relative to the process. These
components can also be optimized for such process. OPC provides a process enabled
environment where distributed components can interact. The OPC based tool for PSP
was implemented in Java. The processes can be viewed as dynamically interacting

components. These components are reused in process model. The distributed,

23

dynamic and reusable process components may be created by OPC. Processes such as

PSP and ISPW-6 have been implemented using OPC.

3.8 PSP INTEGRATION AND AUTOMATION

Six research publications are discussed here which proposed integration of other

process with PSP and automated these processes.

3.8.1 SSPMT

The research work [26] proposed a framework for software process
improvement. The framework is based on the integration of Six Sigma with PSP for
software process improvement. Six Sigma DMAIC (Define, Measure, Analyze,
Improve, and Control) methodology is used for software process improvement. The
framework is supported by a web based tool “Six Sigma Project Management Tool
(SSPMT)". The tool has integration with software project management tool and PSP
process tool. They introduced a conceptual mode! for software Six Sigma for software

process improvement.

3.8.2 PSP-Six Sigma

The proposed work on PSP-Six Sigma integration [27] provides a mapping
table by which PSP features are enabled by Six Sigma. They provided a relationship
between PSP and Six Sigma tools. Statistical problems such as determination of 2-
sample t-test can be done using these tools. They proposed an approach for
continuous process improvement. The improvement is based on Six Sigma based
reduction of variation, focus on consistency and high product quality. The process

improvement and its acceleration with PSP were discussed.

3.8.3 Mercury

The research work [28] proposed agent based process management model. The
knowledge management system provides the process management of knowledge
workers and service workers. They tried to improve the process execution accuracy
by the application of process visualization and standardization. They integrated agents
in their PSP system which provides accurate guideline in process execution. The PSP

agent provides the process execution data where as Advisor agent provides the

24

guideline on project execution. The process areas are improved by collecting data
regarding competency of individuals and subject of the process execution. The agents
in Mercury system behaves like a program which can automatically execute activity
for the users. These agents are intelligent, mobile, autonomous and collaborative in
nature. The agent based system is designed by integrating PSP agents with Six-Sigma
DMAIC methodology. The user identity management is established in the system. It
loads the required process from process repository and executes it for the specific
user. The system ts designed for small team of individual engineers or managers. The
system was proposed 1o manage process accurately, and to control the project

schedule and cost.

3.8.4 Six Sigma and PSP based Process Management

Six Sigma and PSP based approach was proposed to support business process
management in [29]. The proposed technique was considered to be helpful for process
operation. The technique also was considered helpful for the identification of areas for
process improvement. They used the technique for the schedule management. The
time data collected was used for identifying areas for process improvement. The
prozess management technique is designed for process definition, process execution,
and process measurement. The overall scope of this technique was business process of
a company. The business interests such as valued customers, product quality and
services provided by the organization are directly related with revenue. They consider
an organization can maximize return on investment by using well-defined processes.
They also proposed tools for their process management technique. These tools include
schedule management tools, schedule data measurement tools and process definition

tools.

3.8.5 Process Platform

The “Process Platform” [30] proposed to improve software process. It focuses
on software process improvement models such as CMMI (Capability Maturity Model
Integration} and “SPICE (Sofiware Process Improvement and Capability
dEtermination)”. They integrated Six Sigma and PSP/TSP within their proposed
process platform. They also utilized the 6-Sigma tools for process improvement

within process platform. The process improvement environment so called Process

25

Platform was discussed for process definition, process execution, and process
measure. The process data and service data for a process is identified by process
platform. The architecture of process platform has features such as integrated
environment for defining, executing and improving process. The tested processes are
presented to user for knowledge based environment. The software process operation is
provided for each process maturity level. The conceptual model of the process
platform has process instances, process applications. The process framework contains
CMMI and SPICE. The process repository is used for making decisions. Message
handlers and message brokers are used in process middleware. Finally the process OS

contains process such as PSP and TSP.

3.8.6 OPC for Group

The research work described in [31] proposed personal software process for
group projects. The process supports was automated with “Open Process Component
(OPC)". The OPC were developed at Arizona State University. The OPC is a toolset
developed for process definition and enactment. They developed a tool using OPC
with the support of planning and post-mortem. The integrated process consists of
“Planining Process (Components”, “Personal Sofiware Activitiex Components” and

finally the “Post-mortem Components”.

3.9 PSP MODIFICATION

Total of three publications were found on PSP modification. These research

articles are discussed in this section one by one.

3.9.1PSP Control Theory

PSP was combined with control theory to analyze the PSP evolution process,
discovery of critical factors, and to improve performance. It provides a feedback
control for training adjustment and feed forward training requirement for new

engineer [32].

3.9.2B-PSP
The PSP modified process with B-method was proposed to achieve high-quality

and reliable software on time and within budget [33]. The process introduces the

26

formal specification approach in the early stage. The developed defects type standard

related with formal specification based state machine.

3.9.3Collaborative Software Process

The practices of pair programming are integrated with Personal Software
Process [34]. The resulting “collaborative software process (CSP)” leverages the
power of two programmers. The process is defined and repeatable for any two
programmers. The process is supported by set of process scripts, forms and templates
to ensuring completeness. It provides the measurement-based feedback for measuring
progress of programmers. CSP introduces different levels for improving skills. The
level O introduces collaborative baseline, level 1 introduces collaborative quality
management, and finally the level 2 introduces collaborative project management

activities.

3.10 PSP MODIFICATION AND AUTOMATION

This section is designed to address the proposed processes which are modified
version of the PSP and also provides the automation support. Seven publications are
classified in this section. However, out of these seven publications only five addressed
process in the right context. The remaining two publications are not discussed here

because of the research context.

3.10.1The Team PSP
The Team PSP process [35] is designed for team of PSP engineers. They

designed Team PSP based on process model with measurement goals and related
measures. They introduced “Teem PSP(” where team effort is aggregated. “Team
PSPI" introduces planning and tracking procedures for individual and for project
team. Finally “Team PSP2” introduces three events compilation of modules,
integration of components, and the release of software product. The process is
supported with a tool TT for managing process. The tool provides privacy of data for
individual engineers, data storage and analysis, and problem tacking. The TT tool is

developed in Visual Basic with supported database.

3.10.2VDM over PSP

27

The VDM over PSP process is proposed to introduce the “Vienna Development
Method (VDM)" to the PSP engineers [36]. The process tool is supported by a
software tool VDM-SL Toolbox. They applied VDM over all of the PSP levels.
However, VDM over PSP uses PSP2.1 as baseline. The VDM-SL syntax review,
Type checking, and Validation introduced by VDM over PSP is supported by

software tool.

3.10.3PPMP

Personal Software Engineering Project Management Proccss (PPMP) is
modified process with more emphasize on project management activities with tool
support [37]. The process is designed for large team of software engineers. The focus
of the process is personal project management. It can be used at higher levels of PSP
2.0 through PSP3. The data gathering and analysis is carried out similar to the PSP.
The application of methods such as PROBE, regression, prediction interval and
multiple linear regressions is same as in PSP. It mtroduces the concept of “Personal

Writing Process (PWP)”, a process support for writing reports.

3.10.4Reflective Software Engineering

The *“Reflective Software Engineering (RSE)” process is proposed in [38]. It is
based on PSP basic idea and is supported by a software tool. The “Leap toolkit” is
designed for process automation. The toolkit is designed using Java language. The
toolkit is light-weight and does not introduce new substantial effort. The software
process is empirical in nature, and address measurement dysfunction. The tool

proposed for the process is portable and can be deployed in different environments.

3.10.5PSP.NET

The proposed process is designed to support collaborative sharing of defects
information {39]. It introduces the concept of anti-freezing of process definition in the
process. The research work presented tool to support personal software process. The
tool is proposed to address the overhead in data collection, excessive use of manual
work, freezing of process definition, and finally the privacy issues. The tool not only

supports standard PSP but software engineer can define his own process.

28

3.11 TSP MODIFICATION

In this section those publications are discussed which addressed the TSP

modification.

3.11.1ACE

ATAM along with QAW, ADD, V&B, and ARID form a systematic process
and is called Architecture-Centric Engineering (ACE) [8]. The ACE is recently
combined with Team Software Process (TSP) which provides an accelerated process
with focus on quality early in the architecture phase. However, the current
implementation of architecture design and evaluation method is for TSP coaches or

managers and not for PSP engineers.

3.11.2TTSP

Another study {40} which proposed a modified Team Software Process to
support PSP introduced two team processes “Tailored TSP (TTSP)” and “Level TSP
(LTSP)”. Both TTSP and L TSP do not provide support for architecture design and

evaluation.

3.12 COMMERCIAL TOOL
HP-Quality Center which was formerly known as “HP TestDirector for Quality

Center” 1s a commercial available software [72]. HP-QC is designed for managing
software quality. It is industry leading quality management system available in J2EE
and .Net. The system is designed to support Oracle and MS SQL Server databases.
The main modules of HP-QC are requirement module, release and cycle module, test
plan module, test lab module, defects management modules, dashboard reporting
module. The “HP Quality Center Premier Edition” is advanced version of HP-QC

family and have many advance features.

3.13 ANALYSIS AND RESULTS
The last phase of the literature review was involved the analysis of the selected
publication. Two type of analysis was conducted one for process support and other for

process automation support. A comparative analysis is given in table 3.1.

TH 478

- 29

TABLE 3.1
Comparative Analysis
Tool Support Process Support
Z
2 E
2 g 2 K
g 5 =)
- e g
g 5| 7| .. g - =
@ = B = 88 = @ -
° | B = | | 2 g 2 E £
£ 18 5| E| E 2 g 5 sl ==
g |3 3| 5 3 z 2 |lf |51%|8 & |c|a
< g | O a o =4 & | O = - | < Q
FSQMS Y | Y| JSF Oracle [Y Y Y (Y |Y Y | Y |Y
[T16] | PSP-DROPS | Y | N | CGI Y Y [N TN [N IN [N
[17] | Hackstat Y | N | SOAP XML Y Y [N IN N [N [N
18] | PROM Y { N |Java Y 1Y Y [N [N N IN |N
[19] | PSPA Y [N [Net{CH | MySQL | Y Y [N N N [N |N
[20] | DuoTracker Y | N|Java Y |N [N N |[N [N
{21} | PSP-EVA Y | N | PHP Y Y [N [N N [N |N
[22] | PSP-EAT Y | N | Excel Y Y Y [N |N N [N IN
{231 | E-GESIP Y |IN|NA N/A NA INA Y [N [N N [N IN
[24] | ITemp Y Net(C#) | MySQL Y [N |N N [N [N
{25] | OPCToo! Y | N[Java Y [N (N N [N [N
[26] | SSPMT Y | N HTTP Y I[N [N N IN |N
[27] | PSP-Six Y | N|NA N/A NA {NA Y |N [N N |N (N
Sigma-1
[28] | Mercury Y IN Y {N [N N [N IN
[29] | PSP-Six Y | N|NA N/A N/A [NA Y |N [N N [N [N
Sigma-2
[30] | Process Y | NINA N/A NA | NA Y |N | N N |N |N
Platform
[31] | OPC Group N | Java Y |[N [N N |[N |N
327 | PSP Control N | N/A N/A NA INA LY N IN N |N IN
L Theory
{33] | B-PSP Y IN|NA N/A N/A |NA |Y [N |N N I[N IN
[34] | CSP Y [N NA N/A N/A [NA Y [N [N N |N |N
V[35] | 1T Y IN|VB Y Y [N [N N [N [N
[36] | VDM-PSP Y | N|NA N/A N/A [NJA {Y |N [N N [N [N
[37] | PPMP Y | N Y |N |[N N |N |N
[38] | RSE (Leap) Y | N/ Java Y |N N N I[N [N
[39] | PSP.NET Y | N | HTTP MySQL Y !N | N N |[N [N
[81 | ACE Y |YINA N/A NA [NA Y |Y |Y Y |Y |N
f40] | TTSP Y I N|NA N/A NA INNA LY [N IN N [N [N
[721 } HP-QC N | Y | J2EE/ Oracle, | N Y N [N |N N [N | N
Net MS
SQL
L Server

30

3.14 CONCLUSION

The analysis and results discussed in previous section shows that no publication
addressed the integration of process components for architecture design and
evaluation. The personal integrated process (PIP) which is the proposed process has
all components for software architecture design and evaluation along with PSP, The
literature survey also shed light on the available publication on PSP modification.
Only 30 publications were found in this regard. Therefore, more research on PSP
modification or integration with other processes can produce high quality, disctplined,
repeatable, systematic processes. These processes if focus on domain and techiiology

can produce process that will be able to estimate project cost more accurately.

CHAPTER 4
LITERATURE SURVEY ON SOFTWARE
ARCHITECTURE DESIGN AND EVALUATION

4.1 THE GAP IDENTIFICATION

To find the gap in research a literature survey was conducted. Software
engineering survey [14] presents the comprehensive coverage of research literature
from 1972 to 2002. There is another study [79] which proposed framework for
classifying and comparing software architecture evaluation methods. The study
preseuts the comparison of various evaluation methods from 1976 to 2004. The
extended form of the framework is given in [80]. The comparison of these two
frameworks can be found in [81]. Since large number of software system evaluation
methods have been proposed after the publication of above mentioned surveys this
requires the need for a fresh survey. Considering institutional requirement survey
sources were selected. Keywords and index terms were used to find the research
articles from these research sources. Survey sources, index terms, and quality criteria

for research articles selection are discussed below.

4.2 SURVEY SOURCES

The survey sources inélude digital libraries, scientific databases, publishers,
search engines, and references/bibliography. These survey sources are given below:
[EEExplore Digital Library; ACM Digital Library; ScienceDirect; Web of Science;
British Computer Society; CiteSeer Digital Library; Wiley InterScience; Springer
Verlag:; Springer Science + Business Media; Kluwer Academic Publishers; Elsevier;

IEEE Computer Society Digital Library; and Google.

31

32

4.3 INDEX TERMS & KEYWORDS

The keywords selected from research question were “Software Architecture”,

*Architecture Evaluation Processes” and “Architecture Design Processes™.

4.4 SEARCH STRING

The search string was formulated based on keyword. The research stings used for
search are given below.
String-1: Software Architecture Evaluation Process.

String-2: Software Architecture Design Process.

4.5 STUDY SELECTION

These search strings were used for searching publications from selected search
sources. In study selection process publication title, abstract, keyword or references
were considered. The total publications that were selected in phase-1 were 155.
However, more than thousand publications are available on architecture design and
evaluation. The limited numbers of publications are due to accessibility to the digital
libraries, and institutional requiiements. Other factors are related with research project
cost and time.

Inclusion Criteria: The research work published in journals, conferences, workshops,
and symposiums were selected for review. The copyright technical reports, books and
doctoral dissertations were also selected for review.

Exclusion Criteria: White papers, technical reports, books and website articles without
copyrights were not considered.

The total selected research papers after applying inclusion and exclusion criteria in

phase-2 were 76.

In phase-3 the total selected research papers for detailed study were 76. The study
includes those publications which fulfilled the inclusion and exclusion criteria. These
articles were studied completely and selected for analysis. In phase-4 the total
research papers selected for analysis were 32. Fig.4.1 shows the results of literature
survey 155 publications were selected in first phase, 76 were selected in second phase

and third phase, and finally 32 were selected in forth phase.

33

Shace-4 Classification & Analysis

Shazse-3 Deradled Study

W Serigsl
Shgae-2inclusion ard Sxclusion Criterfs

Phzse-1 Search String

0 50 100 159 300
Huinber of Publications

Review Phase

Fig.4.1. Literature Survey Results

4.6 CLASSIFICATION AND ANALYSIS

The analysis was carried out after detailed study of 32 publications. Out of these
32 publ:cations seven publications were found to be related with zrchitecture design
process, twelve publications were found to be related with architecture evaluation
process, and thirteen were found to be related with architecture design and evaluation.

Fig.4.2 shows the resuits of review in graphical format.

8 Architecture Design

W Architecture Evaluation

Wi Architecture Design and Evalustion

Fig.4.2. Classification of Publications

34

4.7 ARCHITECTURE DESIGN PROCESSES

This section contains the research publications related with architecture design
process, model or methods. Total of 16 publications were found to be related with
architecture design process, model or method. These research publications are

discussed in this section.

4.7.1 Rational Design Process

The “Rational Design Process (RDP)” [42] was discussed to derived program
systematically from precise requirements. A rational process has number of benefits
such as the understanding of the process provides designer how to proceed, easier to
adapt the process, design better and backtrack less. It becomes easier to transfer
people and software from one project to another project. Project progress can be
measured and review can be conducted easily. The main steps of RDP are explained
below.

1- Establish and Document Requirements

The requirements are elicited and documented in this step that hely designer to
design the module structure. The requirement document contains complete
information to write software. The requirement statement should be valid. The
requirement document is completed in this phase. However, incomplete requirements
are identified and marked. The requirement document is organized as a reference
document and this saves labour. The requirement document is written by software
developer and approved from the user representatives. The mathematical models are
used in requirement specifications. The requirement document is organized in such a
way to ensure the separation of concerns which helps in achievement of completeness
of requirements. The major sections that a requirement document should have are
computer specification section with information regarding specification of the
computer system. The “Input/ Output Interface Section” contain the information
regarding specification of the interfaces for communication with input/ output
devices. “QOuiput Value Specification Section” contains the information about state
and history for each output. “Timing Constrains Section” provides timing information

for each output. “Accuracy Constraints Section” contains information of accuracy

35

level for each output. “Likely Change Section” is designed for programmers to decide
the changes that are most likely. “Undesired Event Handling Section” contains
information about those events that may occur.
2- Design and Document the Module Structure

In this step the module guide is prbdu’ced which contains the information about
work assignments and design decisions that reflects the responsibilities of particular
module. The module guide helps in achievement of separation of concerns and
maintenance of defected module. The module guide is arranged in tree structure with
miormation about all modules and sub-moduies of the system.
3- Design and Document the Module Interfaces

The module interface specifications are written for each module in this step in
such as way that it provides a formal representation of the module interfaces. The
specification document includes information of programs that can be invoked by the
module, the parameters information, timing constrains and accuracy constraints.
4- Design and Document the Uses Hierarchy

In this step the uses hierarch of the modules is designed in binary matrix form
which contains the information of modules and their access programs.
5- Design and Dorument the Madule Internal Structures

The module internal structure may contain process that is designed and
documented 1in this step. The internal data structure is designed and documented for
each access program or function. The module return values and its associated
mathematical functions are provided.
6- Programming:

The coding activity is performed for a specific design of module.
7- Maintenance:

During maintenance if a design document is changed all other concerning

documents are updated.

4.7.2 Feature Oriented Reuse Method

The “Feature-Oriented Reuse Method (FORM)” [44] is the extension of
“Feature-Oriented Domain Analysis (FODA)” method developed at Software
Engineering Institute Carnegie Mellon University. FODA uses feature model for

requirement engineering. However, FORM addresses the feature model for software

36

design phase for development of domain architecture with reusable components. To
design domain architecture with reusable components commonalities and differences
across related software systems are discovered systematically. In FORM reusable
architectures and components are developed using process called “domain
engineering”. In domain engineering the method analyzes the commonalities in terms
of services, operating environment, domain technologies, and implementation
technologies. These commonalities are captured as features of product and are
arranged in the form of AND/OR graph. The feature model is constructed in this way
from this graph analysis. The domain architecture thus constructed from three
viewpoints. Subsystem viewpoint is used to capture service features, Process
viewpoint is used to capture operating environment features, and module viewpoint is
used to capture feature associated with domain technology and 'implementation
techniques. The FORM was applied on electronic bulletin board system (EBBS) and
private branch exchange (PBX) domains to investigate development of common
domain language for developers and feature model for identifying reusable
components. The feature model use term features as characteristics of product that can
be implemented, tested, and maintained. These features of product are considered as

first class objects for development.

4.7.3 Architecture Based Design Method

The “Architecture Based Design (ABD)” |48} method is developed by scientists
of Software Engineering Institute and Robert Bosch GmbH for designing high level
software architecture for software product line engineering. The ABD method is
supported by Rational Rose tool for recording decisions made during the ABD
method execution. The input to the ABD method is abstract functional requirements;
concrete functional requirements in the form of use cases; abstract quality and
business requirements; concrete quality and business requirements in the form of
quality scenarios; architecture options; and constraints for initial conceptual
architecture. The requirement elicitation goes in parallel during conceptual
architecture design activity. This conceptual architecture represents first design choice
for developing a product. Decomposition of function; realization of quality and
business requirements; and software templates are the foundations of architecture

based destgn method. “Logical View”, “Deployment View” and “Concurrency View”

37

are used for functional decomposition. The output of the ABD method is abstract
components in logical view, deployment view and concurrency view. Software
templates; constraints; and concrete requirements are also the output of the ABD
method. Based on these outputs concrete component design is prepared. The ABD
method is used to decompose the system and to capture application portion and
infrastructure portion of the system. The system is first decomposed into conceptual
subsystems with associated subsystem templates. The responsibilities are allocated to
these conceptual subsystems according to logical view, deployment view and
concurrency view. These conceptual subsystems are then decomposed into conceptual
components along with its component template. These conceptual components are
then considered for responsibility using logical view, concurrency view and
deployment view. The next step is to decompose the conceptual components into
concrete components which may correspond to software element such as class. This
step produces “design elements” with their relationship. However, the order of
generation of these design elements is based on some consideration. These
considerations are architect’s knowledge of the domain; incorporation of new
technology; and personnel experience in particular portion of the architecture. The
design elements are decompased into children design clements with associated set of
requirements; templates; and constraints. The sequence and steps involved in
decomposing design elements are: “Define Logical View”; “Define Concurrency
View ", “Define Deployment View” and a feedback of verification of quality scenarios

and constraints.

4.7.4 Quality Attribute Workshop
The “Quality Attribute Workshop (QAW)” [50] is an eight steps method for

elicitation, identification and refinement of quality attribute of software intensive
system. It is system-centric and its main focus is system stakeholder for eliciting
requirements regarding driving quality attributes of software architecture. The QAW
engages systems stakeholders for better communication before the creation of the
software architecture. The QAW has the ability to complement ATAM for analyzing
architecture for tradeoffs points and sensitivity points. The method is not designed to
provide absolute measure of quality. However, it provides a systematic way of

elicitation, documentation, and prioritization of quality attributes. The system

38

engineer use these prioritized scenarios for analyzing architecture. It is their
responsibility to prepare risk mitigation strategy and identify quality attribute
concerns. QAW is a scenario based method and describes each scenario in term of
stimulus, response and environment from. “Stimulus” is a factor that causes system to
initiates, and reaction of this system is “response”. QAW is designed to address the
challenges such as: precise meaning of quality attributes; elicit, identify, prioritizé
quality attributes; engaging system stakeholders in disciplined and repeatable process;
processing and utilizing this information. The basic concern of QAW is system-level
for identifying and prioritizing quality attributes. The QAW stakeholders group may
range from five to thirty, during which they receive “participant handbook”. The
workshop requires focus and active participation of stakeholders.

Step-1: QAW Presentation

In this step facilitators and stakeholders have brief introduction about their role and
responsibilities in the orgamzation. Facilitator then presents standard slide
presentation of QAW for the purpose of motivation, and to explain the steps involved
in the method.

Step-2: Present Business and/or Mission

Facilitaior in this step note the key quality atiributes drivers during management
presentation. In this step the management representative presents business concerns
and/ or mission concerns of the system along with functional requirements,
constraints and quality attribute.

Step-3: Present Architectural Plan

In this step a technical stakeholder presents initial high-level system description and
system context diagram. The technical representative presents architectural plan and
strategies for meeting business and or mission requirements. While technical
requirements and constraints of the system are presented, facilitator captures
information about architectural drivers.

Step-4: Identify Architectural Drivers

To identify architectural driver facilitator captures information regarding functional
requirements, business concerns, mission concerns, goals, objectives, and system
quality attributes. This information is transformed into list of key architectural drivers.
The stakeholders then distilled the list of architectural drivers by some addition or
deletion. This final list of distilled and key architectural drivers is used during

subsequent brainstorming section.

3S

Step-5: Scenario Brainstorming Process

Scenario brainstorming process is initiated by the facilitator. Facilitator reviews the
generated scenarios by the stakeholders. During two round-robin passes of QAW at
lcast two scenarios are contributed by the stakeholders. The facilitator ensures that
collected scenarios are well formed and represented in the form of stimulus, response
and environment.

Step-6: Consolidate Scenario

Similar scenarios are merged if facilitator finds that similar scenarios will not
contribute anything.

Step-7: Prioritize Scenario

Consolidated scenarios are prioritized by the system stakeholders. This prioritization
of scenarios is based on voting activity which is done in round robin two passes. The
number of votes determines the priority of the scenarios.

Step-8: Scenario Refinement

[n scenario refinement process top five scenarios are refined and documented in the
form of stimulus; response; source of stimulus; environment; artifact stimulated; and

response measure for the particular scenario.

4.7.5 Methodological Architectural Design

The “methodological architectural design (MAD)” process [51] is designed to
address the limitations of Attribute-Driven Design (ADD) method such as making
design decision that satisfy the driving requirements. The process provides the
reasoning framework for making design decision based on accuracy of quality
attribute model. Since such models are available for performance so the method can
be used for it. The process helps in coupling one quality attrtbute requirements to
decision regarding architecture with objectives of providing analysis support to
designer for precise quality atiribute based design. The work demonstrates the
systematic relationship between concrete scenarios, general scenarios, design
fragments and architectural tactics. Concrete scenarios are instances of general
scenarios and are system specific quality attribute requirements. General scenario
which is the precise system independent specification of quality attribute consists of a
stimulus; a response; a source of the stimulus; an environment; a stimulated artifact

and a response measure. Tactic or architectural tactic is the architectural design

40

decision used to control a quality attribute response measure through the use of
quality attribute model. Thereby architectural tactic bridge the quality attribute model
and the architectural design. It represents codified knowledge of relationship between
decision of architecture and quality attribute parameters. To create quality attribute
model knowledge of reasoning frameworks are used. This process provides a set of
relations for moving from each scenario, through tactics, to design fragments i.e. it
provides a way for deriving design fragments from concrete scenarios. These set of
relations are: Concrete scenarios are instances of general scenarios; Quality attribute
rarameters are contains in general scenarios; Reasoning framewcrk comprise a set of
dependent parameters and independent parameters of quality attributes along with
their relationships; Quality attribute model is an instance of quality attribute reasoning
framework; finally reasoning framework rules and architectural design rules together
form the tactics.

The first step of the method emphasize for picking a concrete scenarios. In second
step it is verified that the concrete scenario is well formed and have all necessary
elements of a general scenario. The general scenario generation table can be used to
verify the concrete scenario. The other activity of this step is to identify
respoasibilities {from elements of the concrete scenario. In third step candidate
reasoning framework is identified by eliminating the unwanted reasoning framework
by using concrete scenario information. The association between reasoning
framework and general scenarios also help in identification of candidate reasoning
framework. The set of bound parameters that reflects decisions already been made
and set of free parameters that reflects decisions yet to be made are determined in
forth step. These parameters can be found from candidate reasoning framework, or
from concrete scenarios. However, dependent parameters are not considered. The fifth
step is to determine the tactics associated with the free parameters. In sixth step initial
set of values are assigned to the frec parameters determined in the last step. The value
1s assigned to free parameters based on the knowledge of designer. The value may be
arbitrarily chosen or based on prototype implementations. During seventh step
architectural tactics are selected for application of bind values for the achievement of
quality attribute response measure. These binding must be determined because of the
availability of multiple free parameters. In case if there is a single concrete scenario
with one free parameter and one modeling framework. The candidate tactic is relevant

st not 1s determined by adjusting the value of the free paramcter to a new value.

41

However, for multiple free parameters simultaneous adjustment of all free parameter
is required. Finally in the eighth step responsibility is allocated to the architectural

elements of the design fragments.

4.7.6 Attribute Driven Design
The “Autribute-Driven Design (ADD)” process [52] developed by Carnegie

Melion University Software Engineering Institute is a software architecture design
process based on software quality attributes. The ADD method consists of eight steps
tor decomposing system by applying architectural tactics and patterns. The inpuis to
ADD method are prioritized functional requirements; design constraints; and quality
attribute. These inputs are referred to as requirements of the system that an architect
address in the ADD process. System design is the output of ADD method. The system
design addresses software elements; their responsibilities; roles; properties of
software elements; and relationship among software elements. This system design is
documented using appropriate architectural views and refined using eight steps which
are explained below.

Step-1: The prioritized functional requirements based on business and mission goals
are docur :nted along with the impact of ithese requirements on the system
architecture. The prioritization of requirements is performed in consultation with the
stakeholders. The architect makes sure that the information about quality attribute is
suffictent and is expressed in term of “stimulus-response”. These measurable
qualities attribute should be expressed m the six parts: “Stimulus Source”,
“Stimulus”; “Artifact”; “Environment”, “Response”;, and “Response Measure”.
Design patterns and architectural tactics are applied on the system architecture based
on the information of quality attributes. These quality attribute scenarios are
documented and refined based on availability of architectural information. However,
no design decisions are made at this stage.

Step-2: In this step architect select a design element to decompose it. Since it is a
loop step, an architect can enter in this step in two ways: First when the system is not
decomposed and he is going to decompose it first time. In this case the design element
to decompose is the whole system. Second when the system is decomposed and
partially designed. In this case decomposed designed element will be the focus of

subsequent steps. In second case the major concerns of architect may be knowledge of

42

architect; difficulty in achievement of requirement; risk involved; business criteria;
and organizational criteria.

Step-3: In this step candidate architectural drivers are identified. This identification is
done with the help of ranking again the requirement with their relative impact on the
architecture. The second ranking is performed by assigning “High”, “Medium”, or
“Low” impact to architectural significant requirements. This ranking help in dividing
requirement into number of groups based on importance of requirements to
stakeholders and impact of requirement on the architecture, The final selected
requirements with indicated importance of stakeholders, but may or roay not have
impact on architecture are called “Candidate Architectural Drivers”. Those
requirements that have impact on the architecture are referred to as “Architectural
Drivers”.

Step-4: In fourth step architect select a “design concept” for architectural drivers.
Major types of design element and types of relationships based on design constraints
and quality attribute requirements are selected. This is carried out in six steps: A-
Identification of design concerns; B- Creation of list of alternative patterns for
selected design concern; C- Selection of appropriate pattern that satisfy candidate
architectural drivers. D-Rased on design decision determine relationship between
design element for selection of a pattern or combination of patterns. E- Using
architectural view describe the selected patterns. F- Evaluate the design for selected
architectural drivers and resolve inconsistencies in the design concept. In this step
some design decisions are made which includes, selection of design concept with
major types of elements and types of relationships; Identification of functionality
associated with elements; Software elements mapping; Communication among
elements; Resource allocation to elements; and dependencies between various types
of elements.

Step-5: In this step software architectural elements are instantiated and
responsibilities are assigned based on their types. The parent architectural element’s
requirements are expressed in sequence for child element.

Step-6: In this step “Interfaces” are defined for each instantiated element. The
interfaces are basically services and properties “Required” and “Provided” by the
software architectural element.

Step-7: In this step functional requirements, design constraints and quality attributes

are verificd and refined for decomposed instentiated elements.

413

Step-8: This step provides a loop back to step 2 for decomposing design element and

for refining it.

4.7.7 Architecture Rationale and Elements Linkage
The “Architecture Rationale and Elements Linkage (AREL)” model [55] is

developed for architecture design rationale modeling. The AREL model is validated
by a case study conducted on Electronic Fund Transfer System (EFT) at People’s
Bank of China Guangzhou (PBC-GZ) branch. The model captures relationship
hetween “Archiitecture Rationale (AR)” and “Architecture Elements (AE)”. The
AREL model uses entity-relation diagram to model AR and AE entities. The
modeling support is provided using UML. The AREL provides an automated support
for design reasoning traceability using Enterprise Architect. The traceability
techniques in the AREL model are used for impact analysis and root-cause analysis. A
traceable design rationale is used to trace relationships between the design objects.
The rationale-based architecture model was designed to address issues such as
conflicts, inconsistencies, and omissions in architecture design because of the absence
of design rationale. The reasons behind architecture design decisions are captured
using design rationale. The design rationale if capture and irace appropriately can help
in understanding architecture design during verification and maintenance of large
systems. Therefore, AREL was introduced to support architecture design rationale
capture. The architecture design rationale is captured using quantitative design
rationale and qualitative design rationale. Any arguments regarding design alternative
whether in favour or against is captured using qualitative design rationale. However,
for capturing the quantitative design rational cost, benefit and risks associated with
the design alternative are quantified.

The AREL model considers two forms of design reasoning one is “motivational
reasons” and other is “design rationale ”. Requirements, goals, constraints or design
objects are considered as motivational reasons as they motivates in design. The
AREL model is the implementation of “conceptual model” of architecture rationale.
The main entities of conceptual model are “drchitecture Rationale”; “Motivational
Reason”. and “Design Oufcome”. The actual implementation of AREL conceptual
model is represented using UML notation. The architecture element is represented by

AE. When AE participates in a decision as an input it is called motivational reason.

44

Architecture Elements: The architecture element is an artifact concerning business
requirements, technical constraints or assumptions about architecture design. The
architecture design elements are produced through architecture design process. These
architecture elements are classified in a set of related concerns. These concerns are
modeled using business viewpoints, data viewpoints, application viewpoints, and
technology viewpoints in IEEE standard 1471 format. Functional requirements, non-
functional requirements, information system environment, business environment, and
technology environment are contained in business viewpoint. They act as architecture
drivers of the archirecture design. Data models are contained in data viewpoiut.
Application models contained in application viewpoints and technology models are
contained in technology viewpoint. Data viewpoint are used to represent data being
used by an application. Application viewpoint are used for processing logic and
structure. Technology viewpoint represents technology used to implement system.
Requirements, assumptions, constraints, and design objects are motivational reasons
and act as architecture elements.

Architecture Rationale: Three justifications “Qualitative Rationale (QLR)”,
“Quantitative Rationale (QNR)”, and “Alternative Architecture Rationale (AAR)” are
considered in architecture rationale. The architecture rationale AR captured in AREL
model simplified process and it only capture the justifications of the decisions. The
design rationale is encapsulated in the architecture rationale. The direct dependencies
between decisions in a chain and architecture elements are used to understand design
reasoning. Qualitative rationale contained information regarding issue of the decision;
design assumptions; design constraints; strengths and weaknesses of a design;
tradeoffs involved; risks involved in design option; assessment and decisions; and
supporting information. This information provides qualitative rationale for decision.
However, uantitative rationales are not considered in AREL. Finally, the alternative
architecture rationale AAR contains “alternative behaviour” and “alternative design”.
The AREL model is extended to adapt the evolution. The extended model that can
capture the evolution history is eAREL. The model provides three types of
traceabilities “forward traceability”, “backward traceability” and “evolution
traceability”. The impact analysis of the design is provided through forward trace. The
root-cause analysis is performed using backward trace. Finally the analysis of the
evolution of a decision is provided by evolution trace. These traceabilities are

automated with Enterprise Architect which is a UML design tool.

45

4.8 ARCHITECTURE EVALUATION PROCESS

The research publications proposed architecture evaluation process are discussed

in this section.

4.8.1 SAAM
The “Software Architecture Analysis Method (SAAM)” [7], [57] is a five-step

method for analyzing software architectures. This method accompanied with an
architectural description language which was used to analyze three competing
architectures with respect to modifiability. This language describes the structural
perspective of the competing architectures. With this language one can describe
architecture consistently, having a common level of understanding for architecture
comparison. It is a practical and proven method and applied for examining
architectures of user interface portion of interactive system. There are two important
things about SAAM, ie. first it uses a common vocabulary for analyzing
architectures. Second it not only concentrate on functional features of architecture but
also the quality concerns within the system software life cycle. It uses three
perspectives for understanding and describing architectures which are functionality,
structure, and allocation.

In first activity characterization of canonical functional partition for a given domain is
considered. The second activity involves mapping of this partition over the structural
decomposition of architecture. The third activity involves selection of quality attribute
for architecture assessment. The forth activity involves identify set of concrete tasks
which test the selected quality attribute. Finally the fifth activity involves the
evaluation of architecture for these tasks. SAAM 1s an abstract evaluation method for
architecture for its functional and non-functional quality requirements. It is not metric
based evaluation method instead it is a qualitative evaluation of software architecture.
It uses three perspectives for describing software architecture functional partitioning,
its structure, and allocation. The functionality or behaviour of system may be based
on single function or set of functions. This functionality can be decomposed using
“Structured Awmalysis”, “Object Oriented Analysis”, or “Domain Analysis”. For
component based software a component may be consider the smallest unit of the

structure. These components communicate with each other and have control

46

relationship. SAAM used graphical language for these component and connections. In
a domain allocation choices are used to differentiate architecture because these
choices identify how domain functionality is realized in software structure.
Modifiability was the key quality attribute used in SAAM case study. However, it can
be used for other quality attributes. This quality attribute was chosen because SAAM
used “Evolutionary Development Life Cycle” at Carnegie Mellon University and
these projects has life time between 20 to 30 years. Project with long life modifiability
is the paramount important. This includes adaptation to new operating environments

and extensions of capabilities.

4.8.2 SAAER
The “Software Architecture Analysis for Evolution and Reusability” [58] (shortly

as SAAER) is a framework and a set of architectural views designed to evaluate
software architecture for evolution and reuse. It is based on SAAM which is a
scenario based approach for software evaluation. This framework consists of four
phases “Gathering”, “Modeling”, "Analyzing” and “Evaluating”.

'n first phase four different set of information is gathered which includes
“Stakeholder Information”, “Architecture Information”, “Quality Inforsaation’ and
"Scenarios”. However, information categories may be extended. This phase helps in
gap analysis i.e. what information is available and what information is required.
Stakeholder information provides who are participating and influencing system such
as designers, managers, end users etc. Architecture information on the other hand
provides information regarding critical design principles, architectural objectives, and
architectural views. Architectural views are considered to be important for evolution
and reuse. These architectural views help in comparing systems developed using
different paradigm such as functional decomposition or object oriented design.
Quality information refers to the non-functional requirements such as availability,
modifiability, or integrability. Scenarios describe the system’s functionality in term of
use cases. These scenarios help in detecting possible flaws in the system. Modeling
which is the second phase of the framework, information is aligned across
information categories and mapped information into usable artifacts. In the modeling
phase breadth aspect describes the relationships between objectives of stakeholders,

architecture objectives, quality attributes and scenarios. The depth aspect deals with

47

the levels of abstraction and will affect the cost of the analysis. Analyzing is the third
phase of the framework in which Software Architecture Analysis Method (SAAM) is
used for further apalysis of various artifacts generated in the last phase. These artifacts
include Domain Models, Architectural Views, Trade-off, Scenarios, Environmental
assumptions and Constraints. Evaluating is the fourth and last phase of the framework
in which recommendations are made, risk and their mitigation strategies are
suggested, and common reference models are identified. They applied this framework
over a large telecommunication call center software system and found that their
fistnework helped in better estimation of cost, schedule, and risk at early stage of

software development for evolution and reusability.

4.8.3 E-SAAM

The extended SAAM method [59] is developed to overcome the limitations of
SAAM for reuse of architecture knowledge in domain centric development processes.
It considers reuse of architecture assets by integrating SAAM in domain centric
process. The reusability analysis helps them in determining the degree of variability
and the corresponding limitations of reusable architecture. However, the reuse
scenarios should be sufficiently concrete. They found the conciete scenarios help to
determine flexibility of architecture and its limitation. During reuse of existing
architectures their comparison with each other and the effort required to reuse is also
considered. Then interaction patterns are applied along with the modification of
existing architectural elements. Same set of concrete scenarios are applied on resultant
architecture to analyze the adaptation. This ensures that the architecture does not
deviate from the initial design principles. An analysis templates is consists of
elements such as proto-scenarios, classification hints, and evaluation protocol etc.
This template is reused in SAAM analysis. The analysis template helps in reusability
of architecture knowledge in the domain-oriented development. These reuses of
architecture assets help in reduction of cost of development. Analysis template also
facilitates the identification and mitigation of risk of neglecting crucial issues. It also
helps in comparing different architectures in a domain. The analysis template together
with architecture helps in determining the risky decisions for developing application
that will be based on this architecture. In case of architecture-specific analysis

templates, proto-scenarios describe the elements of architecture. The domain specific

48

and project specific scenarios are evaluated separately. However, architecture specific
analysis templates increase the expressiveness of the evaluation. This reduces the
critical risk of the architecture. It helps in identifying the commonalities and
differences of the constructed software. The architecture specific analysis templates
and domain specific analysis templates provides similar advantages such as reduction
in cost and time of development. To reduce subjectivity it combines analysis
templates of architecture-specific, domain-specific, and project-specific scenarios.
The E-SAAM method emphasizes the use of domain-specific experience and
knowledge to reduce cost and development time. This method helps in comparing the

effort required for analysis.

4.8.4 ARID
The “Active Review for Intermediate Design (ARID)” [60] is a technical review

which is a blend of four approaches. These approaches are “stakeholder-centric”,
“scenario-based”, “Active Design Review”, and use of ATAM for “architecture
evaluation”. This technical review is conducted after the architecture phase and
before the start of design specification document. It is conducted for a portion of
software architecture. It is one of the reason that such technical review conducted in
pre-release stages are effective for discovering errors, inadequacies and
inconsistencies in design. ARID was developed to overcome the limitations of
ATAM and ADR. ARID adapts strong qualities of these techniques such as active
participation from ADR and stakeholder-generated scenarios from ATAM.

ARID review is conducted using ARID “Review Team”, “Lead Designer”, and
“Reviewers”. However, the number of stakeholders involved in ARID may vary. The
review team consists of “Facilitator”, “Scribe”, and “Process Observer”. Facilitator
prepare for the review meeting. Scribe note down inputs of reviewers, and process
observer monitor the process for any suggestion to improve process. The lead
designer is responsible for presenting design for review. Software engineers are the
major stakeholders for the design to be reviewed. They review the design to judge the
quality of design such as its adequacy and usability.

There are two phase in ARID technical review. In first phase four activities are
involved, where as in second phase five activities are involved. During first step lead

designer and facilitator select people for review. In second step design is presented.

49

This presentation is delivered by designer. In this phase the design is reviewed by
facilitator to ask possible question that reviewer may ask. This helps the designer to
improve his presentation. In third step designer together with facilitator creates seed
scenarios that may be used for actual evaluation. These scenarios are presented for
acceptance or rejection from reviewers. During forth step preparation of the review
meeting is completed. The preparation involves the distribution of seed scenarios,
review agenda, presentation and schedule to reviewers. In fifth step ARID is
explained to the participants. During sixth step the lead designer delivers his
presentation. The lead designer presents design. The facilitator ensures that only
question of factual clarification will be asked. The scribe notes down each such
question and prepare a list of potential issues. The designer addresses each critical
question before declarihg design to be complete.

During brainstorm activity which is the seventh step, seed scenarios are put together
with the other scenarios to filter those scenarios that observed to be repeated. The
reviewers use their vote to prioritize scenarios. The scenario with high number of
votes is used to test the design for usability of the portion of software architecture. In
step-8 the review is performed for scenario that receives more votes. The designer
does not give any hint in this review. Only reviewers use examples to review the
design. The scribe record any issues that may produce any hindrance for non-expert to
proceed with design. The review ends if either review time, highest priority scenarios
are reviewed or conclusion has been reached. Finally in the ninth step issues raised in
previous step are listed and counted. The effectiveness of reviews 1s determined from

participants.

4.8.5 ATAM
The “Architecture Tradeoff Analysis Method (ATAM)” [61] is a spiral model of

architecture design, 1t is iterative in its nature and its each iteration is used to reduce
risk that could result from competing quality attributes. This method is designed to
characterize the interactions of these competing quality attributes and identifies the
tradeoff points between such quality attributes. Hence, it provides a framework for
comparing multiple architectures in a continual, spiral and iterative way. It is designed
for general quality attributes such as performance, security, availability, reliability and

so forth. This method helps better communication between all stakeholders early in

50

the requirement and architecture phase for possibie requirement conflicts. ATAM is a
structured method that is refined and upgraded form of the Software Architecture
Analysis Method (SAAM). SAAM was developed for single attribute. However,
ATAM is designed to compare multiple and competing architectures. This method is
iteratively, qualitative, and quantitative in nature, and has four phases in iteration.
These phases are explained below:

In first phase two steps are executed which are interchangeable. These steps are used
to gather stakeholder’s attribute based requirements, system usages scenarios,
technical and business constraints and environmental details. In second phase various
architectural views such as module view, process view, dataflow view and class view
may be used. The process view can be used to analyze performance. Any change in
architectural views will result in new architecture of the system. The selection of
architectural views, scenarios and requirements provides a basis for initial system
architecture. The each iteration of this phase results in a refined and competing
architectures. These architectures now must be compared and analyze in the
subsequent phase for each quality attribute.

In third phase attribute specific analyses are performed. These attribute specific
analvses are analyzed in isolation by individual quality attribute experts. In this phase
attribute models for quantitative and qualitative analysis is built. Any change in
architecture’s functionality, structural elements, and coordination model will have
strong affect on these models. In this phase two steps are performed. In fifth step

sensitivity points are identified. In sixth step trade-off points are identified.

4.8.6 CBAM
The “Cost Benefit Analysis Method (CBAM)” [62] decision making process can

be conducted in two phases with six steps in either phase 1 or in phase 2. These steps
are listed below.

Step-1: To conduct first step of CBAM prioritized list of scenarios form ATAM with
high importance are selected. This importance is based on the desired improvement to
the architecture. This step also results in selection of architectural strategies for high
importance scenarios.

Step-2: In this step benefit evaluation function is calculated for architectural

strategies and quality attribute score “QAscore” is also calculated in this step.

51

Step-3: Quality attribute score “QOAscore” calculated in previous step arc used to
evaluate the individual architectural strategy (AS). In this step another variable
contribution “Cont” is evaluated which is used to represent ranking of architectural
strategies for each stakeholders. Thus benefit evaluation function “Benefit (4S5)” is
computed and finally for each stakeholder “concordance coefficient” is calculated.
Step-4: In this step rough estimate of cost and schedule of implementing each
architectural strategy is calculated.

Step-5: In fifth step architectural strategy are ranked using “desirability” metric.
Step-6: In this step architectural strategies are plotted for corresponding benefits and
costs. In this plot each AS surrounds an ellipse of uncertainty region. This helps in
selection of AS with high benefits low cost and low uncertainty. _

The CBAM process uncovers the optimal set of architectural strategies for all
stakeholders with the possible impact of cost, schedule, and benefits with associated
uncertainty. It is a repeatable method that stakeholders can use to make architectural
choices with better investment decision. Cost and benefit are two business quality
attribute that are trade-off in CBAM in addition to the technical quality attributes
trade-off in ATAM.

4.8.7 The 4 +1 View Model Extension (4+1VM-E)

The approach proposed in [63] is an extended form of 4 + 1 View Model
consisting of 9 major activities divided into three main phases. The first phase is
“Prepare the Evaluation”, the second phase is “Execute the Evaluation” and third
phase is “Complete the Evaluation”.

Preparation: In first phase of architecture evaluation three major steps are involved.
First step is to define the template for requirements, second step is to generate
evaluation contract, and third step is to define templates for software architecture.
This phase helps in defining and documentation of goals and scope of architecture
using 4 + 1 View Model. These views are documented using UML for functional and
non-functional requirements analysis. In second step evaluation contract is produced
which helps in defining scope and goals of an evaluation for required quality
atiributes. For this functional requirements are ranked and scope is clarified. Non-
functional requirements and their relationship are identified. In third step architecture

is documented using 4 + 1 View Model in UML..

52

Execution: In the second phase of sofiware architecture evaluation execution is
performed. The execution is performed in four steps from step-4 through step-7. In
the forth step architectural sub-designs are identified from functional requirements.
This step consists of three activities identification of use cases, views from quality
attributes and sub-design.

In fifth step architectural design decisions are determined. This step consists of two
activities, determination of decision wvariables for design problems. And
determination of decision values for design problems. These decision values represent
solutions to each probiern: In the sixth step rationale for these design decisions is
determined. And in the final step of this phase relationship among these architectural
decisions is finalized. The output of this step is the tradeoffs among quality attributes
and dependencies among the decisions.

Finalize: In third and last phase of the method two steps are performed step-8 and
step-9. In the step-8 finalized decisions are grouped based on quality attributes. The
step-9 is the last step in which prediction data is generated. The structure of prediction

i3}

data is organized in four layers "Qualities”, “Rationale”, “Architectural design
decisions”, and “Sub-designs”. This help in identification of risks and fitness of

architzcture with respect to quality attributes.

4.8.8 SARA

The “Infernational Working Group” on “Sofiware Architecture Review and
Assessment (SARA)” has developed a process for system architecture review and
assessment [64]. The process provides guidelines on which steps to follow for review,
question to ask from stakeholders, information to elicit, collect and document. SARA
provides guidelines for managing social and technical issues. However, it does not
provide any information for architecture design.

SARA provides a roadmap for finding and structuring “Architecturally Significant
Requirement (ASR) " and finding “Architecturally Significant Decision (ASD)”. These
reviews are conducted on concrete architecture artifacts such as architectural
description documents, business case, stakeholder’s concerns, standards, and
requirements. SARA reviewers may use one or more methods and techmques such as

SAAM, ATAM, RMA, and 4 +] Views. The objective of review may be for

53

analyzing the conformance to specific standard, quality assessment of the architecture,
architecture improvement and for effective communication between stakeholders.
Review and Assessment Inputs: The inputs to SARA for review and assessment
includes: Review Objectives; Review Scope; Architectural Artifacts (System
Description, Architecture Descriptions, Architectural Decisions, Reused Solutions,
Guidelines and Rules, Architecture Supporting Evidence); Architecturally Significant
Requirements (ASRs); Product Strategy and Product Planning; Requirements;
Standards and Constraints; Quality Assurance Policies; Risk Assessment Artifacts.
Review and Assessment Outruts: The SARA review outpnis are: Assessment
Report that includes: Objectives; Scope; Methodology; Evaluation Criteria for
Architecture; Architectural Foundation and Approaches; Architecture Analysis,
Findings and Recommendations; Executive Summary; Lesson Learned.

Activity-1: Identify Type of Review and Its Business Objectives

The objective of this activity is to identify the type of review required, its goals and
issues.

Activity-2: Identify Key Stakeholders and Review Scope

The objective of second activity 1s to identify project stakeholders, system and its
required quality attributes.

Activity-3: Identify Review Objectives

In this activity list of review objectives are prepared.

Activity-4: Plan Preparation for Approval

The objective of this activity is to prepare review plan and getting its approval.
Activity-5: Identify, Describe and Prioritize ASRs

The fifth activity is for identification of architectural significant requirements,
prioritization of ASRs and its approval from key stakeholders.

Activity-6: Development of Architectural Description

The objective of this activity is to develop the architectural description.

Activity-7: Analyze Architecture Description against ASRs

The objective of this activity is analyzing architecture description for ASR, finding
out risk, issues, tradeoff points and sensitivity points.

Activity-8: Summarizing and Reviewing

In this activity summary of review finding is discussed with architecture owner before
documentation. The outputs of this activity are strengths, weaknesses, issues, risks,

tra'eoff points, recommendations and action plan.

54

Activity-9: Presentation

The objective of this activity is to present review report and recommendations to
architecture owners and stakeholders. The outputs of this activity are review report,
review presentation, and corrective actions.

Activity-10: Refinement of Review Method

The objective of this activity is to analyze the process improvement opportunity.

4.8.9 SACAM
The “Software Architecture Comparison Analysis Method (SACAM)” [65] was

developed to compare and analyze the software architectures. It is architecture centric,
qualitative, goal-oriented analysis approach. This method is developed using scenario
generation concept of Architecture Tradeoff Analysis Method (ATAM) and Quality
Attribute Workshop (QAW). SACAM is based on the assumption that the software
architecture addresses best level of abstraction for organization’s business goals. The
scenarios are used to compare the candidate architectures for any commonality or
variability analysis of software product. However, it emphasizes on use of existing
architecture documentation or architecture reconstruction techniques for analysis. The
siakeholders score each scenario that leads to the selection of architevture. The
technical reuse context in which SACAM was developed helps in reuse of
architectural design.

The goal of SACAM is achieved by two objectives i.e. the extraction of
comparable architectural views, and criteria collation and analysis. The method
consists of six steps with total of 24 activities that are carried out to compare two
architectures.

Step-1: This step is further consists of nine activities such as clarify and identify the
application context. Architecture candidate for comparison are selected. Candidate
stakeholders are identified. SACAM is presented. Business goal for the system is
identified. The candidate architecture is presented. The availability of architecture
related documents is analyzed. SACAM initial plan is prepared.

Step-2: The comparison criterion is derived for organization’s business goals that
reflect the quality attributes scenarios. The criterion is then prioritized using

stakeholder’s scores and used as yardstick for comparison.

55

Identify Criteria, Prioritize Criteria, and Refine Criteria are the major activities of this
step.

Step-3: This step consists of two activities with quality attribute scenario and
architectural documentation as input. In first activity “viewtypes” are collected that
are common across architectures for comparison. The second activity is conducted to
collect architectural patterns, tactics, metrics and styles. _
Step-4: This step consists of four activities. The first activity involves the view
extraction for architecture documentation. The second activity involves the
identification of used tactics, patterns arnd styies. The third activity involves the data
collection for different metrics. The forth activity involves the view verification with
candidate stakeholders.

Step-5: The fifth step consists of four activities. The first activity involves the
selection of quality attributes model and response calculation. The second activity
involves the scoring and reasoning. The third activity involves the collection of
individual quality attribute scores. In forth activity score is analyzed.

Step-6: The inputs to this step are quality attribute scenarios; architectural views;
scoring and reasoning. Two activities are performed in this step: Result is presented,

and Summary report ’s prepared.

4.8.10 ACCA

The “Architecture-centric concern analysis (ACCA) " [66] method is analogous to
“defect causal analysis (DCA)” method and it uses root causes of concern in software
architecture. The architectural concerns are triggered by architectural evaluation
process. These architectural concerns are characterized by tradeoff points, sensitivity
points, and risks at architecture stage. Hence, by knowing root causes of associated
concerns early in the requirement phase will help in mitigation of these risk,
prevention and reduction of architectural problems. ACCA method uses a meta-model
which is the extended form of Ramesh & Jarke’s “Requirement Traceability
Reference Model”. Attribute Driven Design (ADD) is used in its architectural design
stage and ATAM method is used in architecture evaluation stage. ACCA method is
based on iterative process which helps in detection and prevention of architectural

problems early in the requirement engineering phase. This results in a high quality

56

architecture, stakeholder satisfaction and low utilization of resource. This method is
composed of eight processes which are listed and explained below:

1- Requirements Engineering Process

In this process requirements are elicited and documented, the output of requirement
engincering phase goes to “Architecting Process” and “CT-Map Construction
Process”.

2- Architecting Process

ADD is used in the architecting process for designing system using UML. This
process has requirement documents as an inptt. The output is the data and documents
related to “Architecture Template”. This process falls in first region therefore, it is
termed as “Data Collection”.

3- Architecture Evaluation Process

In data collection process ATAM is used to evaluate software architecture. The
architecture template data is used in architecture evaluation process and data
triangulation process. The output of this process is architecture evaluation documents.
These documents are used as an input to concern analysis and prioritization process.
4- Concern Analysis and Prioritization Process

In “Concern Analysis and Prioritizatio:: Process” set of concerns collected during
architecture evaluation are prioritized, duplicates concerns are eliminated. This is
done by validating concerns for any overlaps, ambiguities, and inconsistencies. This
process takes evaluation documents as an input and a process input from data
triangulation process. The outputs of this process are refined and prioritized concerns.
5- Data Triangulation Process

The "Data Triangulation Process’ takes two documents as inputs one is “Concerns
Documents” and other is architecture evaluation documents. Other input for this
process comes from “C7-Map” construction process. In this process a table is
constructed for gathering decisions and for constructing CT-Map. The output of this
process is documented form of rationale, assumptions, and decisions in the form of
“Triangulation Table” that are used as an input document for CT-Map construction
process.

6- CT-Map Construction Process

In “CT-Map Construction Process” requirements document, traceability meta-model,
and data regarding concerns, triangulation table data, and feedback data are used as an

inputs. This process also has one input from CT-Mayp analysis process. The ouizut of

57

this process is feedback to data triangulation process. The accurate construction of
CT-Map is guided by a meta-model. This traceability meta-model defines a schema
for all the node types, relationship types, implied entities, and attribute necessary for
CT-Map construction.
7- CT-Map Analysis Process
Characterization meta-model is the input to the “C7T-Map Analysis Process” along
with the feedback data, and CT-Map data. The output of this process is feed to CT-
Map construction process. “Root Causes Data” 1s the output data produced by this
process i.e. the analysis process will result in one or more root causes for each
architectural concern. This process is repeatedly validated in 10 steps. The
requirements are analyzed in 10 steps using the goal oriented approach. These steps
are: derivation of goals, identification of alternative decision, decision analysis,
conflict analysis, requirement analysis for conflicts identification, requirements
analysis for problem identification, repetition of previous six steps with examination
of CT-Map and scenarios for potential causes; eighth step involves the elimination of
items not causing specific concern. In ninth step root causes of concern are identified
by asking series of questions. The process terminates in tenth step if all valid
que:stions have been asked, and all nodes are visited.
8- Validation Process

The validation process gets input data from concerns, CT-Map, and root causes.

The output data of this process is used for feedback.

4.8.11 APA
The purpose of “Architecture Potential Analysis (APA)” process [67] is to

provide a concise architecture evaluation method. This method use “quality attribute
directed acyclic graph (OQADAG)” to uncover the dependencies of the quality
attributes such as performance and modifiability for expected cost. QADAG basically
is a structure of quality attributes. Any change in the architecture is calculated using
uncovered dependencies. The method provides a systematic way of documentation of
architecture knowledge and helps in traceability of architectural decisions. First define
a model for architectural representation along with their relevant properties. Second
use quality rate to find the achievement of architecture goals using QADAG. Third

evaluate the dependencies of the software system architecture. The dependencies

58

describe the influences that architecture may have on evaluation techniques. These
dependencies have two classes. One class deals with the dependencies between
architecture elements and quality attributes. Other class deal with the dependencies
among quality attributes.

QADAG which is the hierarchical structuring of quality attributes is based on
composite patterns. These quality attributes can be decomposed into sub-attributes or
may consist of evaluation techniques. Quality attribute directed acyclic graph based
evaluation structure is used to set dependencies into relation and for determining
optimai potential. The main classes of QADAG quality attributes arc scenarios,
constraint, interpretation, and “DataTypes”. The other classes are evaluation
technique, joining technique, “LeafPA” and “CompositeQA ".

The method facilitates the architecture evaluation process to be carried out either early
in the design phases or after design process for ensuring quality.

The method emphasizes the use of “Modular Performance Analysis (MPA)" for
performance analysis of architecture. This analysis is used to analyze communication
performance and computation performance. The analysis can be applied in various
architecture domains. MPA takes event stream models as input. The model contains
detailed information on the communication behaviour., MPA also consider resource
model that takes into account the resources in controller network along with execution
times. They found that dependencies help in determining relationship between cost,
performance and modifiability based on target market and available technology. By
considering these dependencies one can uncover the optimization potential and

development tendencies.

4.8.12 ALMA
The “Architecture Level Modifiability Analysis (ALMA)” [68] is designed to

analyze the modifiability potential of software architecture design. This method is
scenario based that can be used to assess the risk associated with modifiability,
compare software architectures or to predict the effort required for modification. The
goal of this method is to analyze software architecture for four different types of
architecture analysis.

1- The candidate architectures are from different origins and architecture design

differs significantly.

59

2- The candidate architectures are subsequent versions of the architecture to be
evaluated.

3- The candidate architecture meets the required quality requirements.

4- The candidate architecture compared against the quality requirement of

benchmarked virtual architecture.

The method is based on five step evaluation process in first step goals and aim of the
analysis is identified. The second step involves describing candidate software
architecture. In third step relevant scenarios are elicited. Evaluarion for these set of
scenarios is done in forth step. The fifth step involves reaching at some conclusion.
Step-1: Goal Setting

The first step of the method is to determine goal for software architecture analysis.
These goals may include maintenance cost estimation, risk assessment, or architecture
evaluation.

Step-2: Describe Candidate Architecture

The second step of software architecture evaluation method for modifiability is to
describe candidate architecture using available most appropriate techniques. Such
techniques may include using UML or some specific ADL. This method emphasize
on responsibilities of software architect to choose most appropriate techniques for
architecture description.

Step-3: Scenario Elicitation

The third step of the method is concerned with scenario elicitation. This step focuses
on use of different techniques for scenarios elicitation. The scenario elicitation
techniques depends upon the purpose of evaluation i.e. maintenance prediction, risk
assessment, or software architecture comparison. The two techniques that involves
are now discussed here one by one.

In first technique equivalence classes are used for change scenarios. The equivalence
classes are used in limiting the number of change scenarios to consider. The second
technique 1s used in identifying scenarios which justify selection criterion. This
technique also used for defining stopping criterion. The change scenarios are elicited
until the complete coverage of classification scheme. The method uses a bottom-up
approach without having predefined classification scheme. Therefore, stakeholders
play an important role in implicit categorization scheme. In this approach analyst

moves {rom concrete scenarios o abstract classes of scenarios. If the purpose of the

60

analysis is maintenance prediction, interview with the stakeholder is considered to be
the effective techniques for elicitation of change scenarios. However, if the aim of the
analysis is risk assessment the top-down approach is recommended for scenarios
elicitation. Complex change scenarios elicitation process uses interview with the
stakeholder. The output of this process is the set of equivalence classes representing
same complexity and account for same risks. If the analysis is carried out to compare
two architectures top-down approach is used. Change scenarios that expose difference
between two architectures are grouped using stakeholder interview.

Step-4: Scenarios Evaluation

In this step change scenarios are evaluated. The goal of analysis is to find the impact
of change scenarios and their resulting ripple effects on the architecture. The scenario
evaluation procéss is divided into three sub-steps. In first step affected components
are listed. In second step modifiable operations are located. Finally in the third step
ripple effect is determined. The result of scenarios evaluation may be qualitative or
quantitative in nature. Different techniques may be used for expressing results of
scenario evaluation.

Step-5: Result Interpretation

The fifth step involves the interpretation of results for specific goal of the analysts, i.e.
whether the analysis is carried out for maintenance cost prediction, risk assessment or
software architecture comparison. If the result are interpreted to predict maintenance
cost, such model is recommended that are based on cost drivers of the maintenance
process. However, if the results are interpreted for risk assessment, the analysis 1s
carried out in consultation with stakeholders. The scenarios which pose more risk are
group together in equivalence classes. On the other hand if the results are interpreted
to compare candidate software architectures three different approaches may be used.
The first technique involves the appointment of the best candidate for each scenario.
The second technique is to rank these best candidates for each scenario, and third

technique involves the estimation of effort for each scenario.

4.9 ARCHITECTURE DESIGN AND EVALUATION
4.9.1 4+1 View Model
The “4+1 View Model” [41] was developed to remedy the problem of software

architecture representation using five concurrent views. These views include “Logical

61

View”, “Physical View”, “Process View”, “Development View” and “Use Case
Scenarios”. These views are used to select applicable architectural style. The model
used these views and scenarios for modeling architecture. The model can be used to
evaluate system quality attributes such as availability, reliability, scalability and
portability. The process is evolutionary iterative development which involves
prototyping, testing, measuring, and analysis. The analysis involves risk assessment
and mitigation at the architecture level. The risk identification is performed using
scenarios which are the instances of use case.

Step-1: In first step scenarios are selected based on risk and criticality: taese risk may
be technical risks. These critical but small in number scenarios are synthesize by
abstracting user requirements. The next activity is to script the scenarios followed by
decomposing them into sequences of object and operation pairs.

Step-2: In this step architectural elements are organized in to the four views followed
by implementation, testing and measuring of the architecture. The architecture
analysis is performed at the end of these activities to reassess the risks and
discovering any flaws.

Step-3: The analysis helps in identifying the additional architectural elements or
changes. These changes are reflected using additio::al scenarios.

Step-4: The additional scenarios are implemented, tested, and measured for
incremental architecture prototype. Now by using five views reuse is considered.
Step-S: After analyzing reuse of existing architectural prototype for evolutionary

development the final system architecture is produced.

4.9.2 RAMRTS
The theory of “Rate Monotornic Analysis for Real Time Systems (RAMRTS)” [43]

was developed at Software Engineering Institute. The “Rate Monotonic Theory” is
concerned with assigning priorities as a monotonic function to a set of periodic
processes. This analysis consists of set of analytical methods for real-time system
engineering. RAMRTS addresses design and analysis of real-time resource
management. The current theory is based on concepts of scheduling independent
periodic tasks; scheduling both aperiodic and periodic tasks; synchronization of
requirements; mode change requirements; hardware scheduling support; Ada

scheduling rules; schedulability analysis of input/output paradigms; and algorithm

62

implementation in an Ada runtime system. By using rate monotonic‘theory one can
achieve resources wutilization up to 90 percentages. It is based on sporadic server
algorithm which is the enhanced form of deferrable server algorithm and aperiodic
server algorithm, In sporadic server the allocated budget is replenished after its
consumption. It is based on real-time synchronization protocol known as priority
ceiling protocol. The first property of this protocol is the freedom from mutual
deadlock and second property is bounded priority inversion. The protocol provides a
mathematical model of schedulability of set of tasks with their inequalities. The
current theory aiso addresses the iimitations of rate monotonic algorithm such as fixed
task set with static priorities. Hence, to overcome these limitations Mode Change
Protocol is introduced. The protocol considers deletion of some tasks or addition of
new tasks or change in parameters in some tasks as the change in its mode. The
extended theory addresses quality attributes such as compatibility, maintainability and
performance (and applied on IEEE 896 Standard of Futurebus) for designing real-time
systems. The Texas Instrument chip set TFB2010 is based on this standard.

4.9.3 SBSAR

The “Scenario Based Sofiware Architecture Reengineering (SBAR)” [45] was
initially introduced as method for software architecture design and passed through
many refinements. The method has applied in measurement systems, fire alarm
systems and in dialysis systems. SBAR now has the capability to reengineer existing
software architecture for further improvement. The inputs of SBAR are updated
requircments and the existing architecture which goes through many refinements and
transformations to produce improved architectural design as output of the method.
The improvement is carried out through three main phases which are: Functionality
based Architecture Redesign; Quality Atftribute Assessment; and Architecture
Transformations. The main artifacts to these phases are software architecture and
requirements specifications. These artifacts loop through four steps in these phases
which are explained below.

A. New Functionality Based Architecture Redesign:
In this step the redesign activity is carried out on the updated requirement and existing
architecture. The core abstractions which are modeled as objects of the system are

identified and evaluated. The interactions between these abstractions are defined in

63

more details. The most relevant properties of the domain entities are modeled as
architecture entities in a top-down approach.

B. Software Quality Requirement Assessment:

Software quality attributes are explicitly assessed using scenarios, simulation,
mathematical modeling or experience based reasoning. The “scenario based”
evaluation of architecture is carried out in three steps. In first step a representative set
of scenarios is defined and developed to concretize the actual meaning of the quality
attribute. In second step each individual scenario is analyze in its context for
architecture anaiysis. In third step overail result of analysis is summarized in terin of
number of accepted scenarios versus rejected scenarios. The second approach
recommended for assessment for quality attribute is “Simulation”. The operational
quality attributes are assessed based on simulating application behaviour. The third
recommended approach is “Mathematical modelling” for quality attributes
evaluation. This approach allows static evaluation of architecture design for assessing
operational quality attribute. The forth approach recommended for assessing quality
attribute is experienced based reasoning or logical reasoning.

C. Apply Architecture Transformation:

Architecture transformations ere applied after the assessment of architecture
properties. If some quality attribute does not meet its required value then architecture
transformations are applied. This transformation resulted in new version of the
architecture with same functionality but with improved or different value of quality
attribute. In this method five transformations are used which are

Architectural and design patterns, styles, quality attribute conversion, and
requirements distribution among subsystems. The application of architectural styles
results in to reorganization of software architecture. The reorganization result in
improvement of certain quality attribute but may result in degradation of another
quality attribute. The second transformation that is applied is application of
architectural patterns. This transformation affects the large part of the architecture by
imposing certain rules. The third transformation is applied by utilizing different
design patterns. However, this transformation only affects small numbers of
architectural components. In fifth transformation software quality requirements are
converted into functionality of the system. Finally, the distribute requirement
transformation is applied by distributing quality requirements in number of

components or subsystems.

64

D. Evaluate Design:
Once the architecture transformations are applied on architecture it goes through
assess quality attribute phase of the architecture reengineering method. If all

requirements meet the final version of the architecture is released for implementation.

4.9.4 SBSAD
The “Scenario Based Software Architecture Design (SBAD)” [46] method is an

iterative process for creating software architecture by applying design transformation.
The method uses different techniques for the evaluation of quality attributes of
architecture such as scenarios, mathematical modeling, simulation, and reasoning.
The method uses architectural transformations for iteratively assessing the
achievement of quality aftributes. Five different architectural transformations are
applied in this method which includes application of architectural styles, architectural
patterns, and design patterns. The other architectural transformations that are applied
include conversion of quality requirement into functionality and distributing quality
requirement across different components or subsystems. The method is a rational
design process that has the capabilities of balancing and optimizing quality
requirements. The input to this method is requirements specifications and outout of
this method is architectural design. This architectural design is produced through
application of various transformations which are applied iteratively. However, in first
iteration only functional requirements are considered which results into architecture
design of an application. This architecture is evaluated and analyzed with respect to
required quality attributes. This assessment may be quantitative or qualitative in
nature. If the quality attribute requirements are up to the expectation, the process is
terminated and architecture design is released. In case quality requirements are not up
to the expectation the architecture design process enters the second stage where
architecture transformations are applied. The application of architectural
transformation results into new version of architecture. This new version is then
evaluated for required quality attribute requirements. If NFR not fulfil the loop is
repeated otherwise the final architecture design version is released.

A. Functionality Based Architecture Design:

In this phase system architecture is designed by identifying the core abstractions of

the system structure in top-down approach. These abstractions are modeled as objects

65

using a creative design process which involves analysis of domain entities. These
domain entities are then modeled as architecture entities and interactions between
abstractions are identified.

B. Assessment of NFRs:

System NFRs are explicitly assessed using scenarios, simulation, mathematical
modeling or experience based reasoning. The scenario based evaluation of
architecture is carried out in three steps. The second approach recommended for
assessment for quality attribute is simulation of architecture. The third recommended
approach is mathematical modeling for quality attribute evaluation. The forth
approach recommended for assessing quality attribute is experienced based reasoning.
C. Apply Architecture Transformation:

Architecture transformations are applied after the assessment of architecture
properties. In this method five transformations are used which includes application of
architectural styles, patterns, quality attribute conversion in to functional
requirements, and finally the requirement distribution among subsystems. The
application of architectural styles results in to reorganization of software architecture.
The reorganization results into improvement of certain quality attribute but may result
in degradation of other quality a'tributes. The second transformation that is applied is
application of architectural patterns. This transformation affects large part of
architecture by imposing certain rules. The third transformation is applied by utilizing
different design patterns. However, this transformation only affects small numbers of
architectural components. In fifth transformation software quality requirements are
concreted into functionality of the system. Finally, the distribute requirement
transformation is applied by distributing quality requirements in number of
components or subsystems.

I’. Evaluate Design:

Once the architectural transformations are applied on architecture it goes through

assessment of quality attributes phase of the architecture design. If all requirements

66

design. The reasoning framework may be based on qualitative or quantitative model
of single quality attribute and can be used in architectural design and analysis.
Attribute Based Architectural Style is based on a specific quality attribute and have
additional property that they are attribute specific too. Therefore, for an architectural
style with more than one quality attributes needs ABAS for each quality attribute
associated with it. The method facilitates the reuse of attribute based architectural
styles in design and analysis for precise reasoning and predictable repeatable
properties. The publication exemplifies the use of ABAS for availability,
niodifiabiiity and performance in architecturai design. However, ABAS qualitative
analysis can be used with Architecture Tradeoff Analysis Method (ATAM) for detail
evaluation of architecture. When using ABAS one can use formal reasoning and
mathematical models for quantitative analysis or informal reasoning for qualitative
analysis. The standard characterization of quality attribute is the prerequisite for
execution of ABAS. Every quality attribute is characterized in three categories first is
stimuli; second is architectural parameter; and third is response. This standard
characterization of quality attribute provides consistent way of documentation and
analysis for architectural design decision. The common parts of any ABAS are
“Problem Description”; “Stimulus/Response Attribute Measure”; and “Arcritectur.al
Style and Analysis”. Initial work describes six ABASs which are: “Synchronization
ABAS”, “Data Indirection ABAS”; “Abstract Data Repository Sub-ABAS”,
“Publish/Subscribe Sub-ABAS”; " Layering ABAS”; and “Simplex ABAS”. With these
pre-packaged unit of design and analyses for known problem provides an architect a

reusable repository of knowledge for efficient architecture design and analysis.

4.9.6 QADA

The “Quality-driven Architecture Design and Analysis (QADA)” method {49]
developed by VTT Technical Research Center of Finland provides a process and
language for design and analysis of product line architecture. The method utilizes
architectural styles and patterns for designing high quality software architecture. In
QADA two level of abstraction are considered for developing product line
architecture first is conceptual architecture design and analysis second is concrete
architecture design and analysis. The method has applied on distributed service

platform which embodies layered service architecture. QADA is a scenario based

67

architecture evaluation method used to assess the quality of single product-line
architecture. In the first step two categories of changes are considered i.e. category of
scenarios related to technical requirement of the platform and category of scenarios
related to technical environment. In second step change scenarios are identified.
These scenarios reflect the future expected changes to product-line architecture. In
third step produci-line architecture is described in with the help of abstract as well as
concrete components. In forth step effect of scenarios is evaluated for product-line
architecture. Finally in the fifth step scenario interaction is evaluated to find poor
sepavation of concerr: in PLA. The main phases of (JADA and sub-activities are given
below.

a) Requirement Engineering:

The requirement engineering phase provides a link between requirement engineering
phase and software architectural design phase of software development lifecycle. In
this phase driving ideas of system are identified. The main steps involved in this
phase are system requirement specification, system requirement analysis, defining
system context, and determination of product line scope.

b) Conceptual Architecture Design:

During conceptual architecture design functionality and responsibilitier. are
considered for conceptual structural components using structural view, behaviour
view and deployment view. Conceptual structural components and conceptual
structural relationship are two design elements that are considered during design of
conceptual structural view. Conceptual structural view is designed in three iterative
steps. In first step functional responsibilities are captured in textual form. The
structural model is built using selected architectural styles, design principles and
rules. The technical properties of the system are also considered in this step. In second
step qualiiy responsibilities of conceptuai component are defined with selection of
appropriate architectural style. In third step functional responsibilities are grouped in
conceptual components and subsystems. Conceptual behaviour components and
conceptual behaviour relationship are the two design elements that are considered
during the design of conceptual behaviour view. This view is used to specify the
behaviour of the system at higher level of abstraction. The three main step of the
design process are: selection of collaboration scenarios; identification of service sets
related to collaboration scenarios; and creation of collaboration model which is the

aggregation: of collaboration diagrais. The main elements involved ‘n conceptual

68

deployment view are “Deployment Node ”; “Unit of Deployment”; and “Conceptual
Deployment” relationship. These elements along with deployment language and
design steps are used to design conceptual deployment view. The design step is
carried out in three steps in first step clustering is done for leaf component. In second
step deployment nodes are identified. Finally, in the third step deployment units are
allocated to nodes.

¢) Conceptual Architecture Quality Analysis:

Conceptual architecture is analyzed using commonality analysis and by determination
of any viniation of architecture patterns ard styles, Variability analysis is conducted
for building flexible architecture. The points where product line architecture has
variation points are analyzed. Such varability is represented using hot spots or
patterns. The violation of architectural patterns and styles are determined. Missing
components or links are traced to identify possible violation. These violations may
result from system maintenance, understand-ability, or discrepancies involved in
" documentation.

d) Concrete Architecture Design:

The conceptual structural components and their relationship are refined in this phase
usitrg three views. During design of concrete structural view step architectural
elements, structural language, and design steps are used to describe a concrete
structural view. “Capsule”, “Port”, “Connector” and “Protocol” are used as
architectural elements. ROOM method is used for concrete structural language. To
design concrete structural view as a first step functional responsibilities are refined
and documented as |capsule documentation. In Second step design patterns and
architectural styles are applied. Finally, the hierarchical structural diagram is
constructed in third| step. During design of concrete behaviour view econcrete
behaviour componengs and coucrete behaviour relationships are the two design
element involved in the design of concrete behaviour view. UML is used to describe
behaviour of architectural elements. State diagram and sequence diagram are used to
describe these behavipurs. The design steps involved in designing concrete behaviour
view are first to defigie inner behaviour of capsule using state machine. The second
step involved is to refine collaboration scenarios which are expressed in the form of
message sequence charts. During design of concrete deployment view concrete
deployment hardware|component; concrete deployment software component; concrete

deployment hacdwarg relationship; and concrete hardware-software deployment

69

relationship are used as four design elements. UML is used to describe concrete
deployment view. The design is carried out in three steps. In first step capsules and
protocols are physically packaged in a component. In second step deployment nodes
are defined. Finally, in the third step deployment diagram is built up from selected
hardware and software components.

¢) Concrete Architecture Quality Analysis:

The quality analysis of concrete architecture is carried out using “customer value
analysis (CVA)” and scenario-based analysis. Customer value analysis CVA is used
to identify mos. important changes and their impact on cost of product and return
from market. The architecture is evaluated using CVA by assigning weight to
scenarios and scenario interaction. The analysis can be used to compare two candidate

architectures.

4.9.7 APTIA
The “Analytic Principles and Tools for the Improvement of Architecture (APTIA)”

is a process {53} for improvement and design of software architecture which is based

on reusable pre-existing components of ten techniques. The method has been applied

on a commercial information system with product line architecture and real time

requirements. The method is based on three principles of software architecture. The

first principle is related to the abstraction of software architecture i.e. the elements of

software architecture should be coarse such that human intellectual can control 1t and

for meaningful reasoning it should be specific. The second principle is concerned

with business and mission goals i.e. quality attribute requirements should be

determined form business and mission goals. The third principle is concerned with

design and analysis of architecture i.e. the quality attribute requirements guides the

design and analysis of architecture. These principles and component techniques

together are used in APTIA. These techniques are explained one by one below:

1- The explicit elicitation of business and/or mission goals.

2- Active participation of stakeholders.

3- The explicit elicitation of rationale of architecture and documentation in
standardized views.

4- The realization of mission and business goals in 6-part quality attributes scenarios.

5- 6-part quality attribute scenario mapping onto architecture.

70

6- The use of architectural tactics.

7- Using templates to capture information.

8- The explicit elicitation of cost, benefit and schedule associated with architectural
decisions.

9- The use of quality attributes models for architecture analysis and design decisions.

10- The use of design principles based on quality attribute models to identify
alternatives for improvements.
The APTIA method provides more detailed analysis and design alternatives for
improvement of arciutecture. The ADPTIA is designed in such a way that it can be
broken down into a number of modular steps with each step consist of proven
techniques. These techniques are considered as “component” which can be combined
to create a new method. APTIA is one of such method that is created from these
component techniques tailored for specific need. APTIA has six phases. In its first
phase ATAM is performed. In its second phase based on risk themes focus of analysis
is determined. The third phase is concerned with use of quality attribute models for
risk themes. In forth phase model based analysis and design principles are used to
propose design alternatives. The fifth phase is concerned with ranking design
alternatives based on cost and benefits. The design decisions are made in final phase.
These decisions are made based on costs/benefits associated with the architecture
design using existing component techniques in an agile way. The APTIA therefore,
provides a deeper analysis of architecture design and suggests design alternatives with
new design principles. The consistency in design is achieved using two templates one
template for documenting outputs of APTIA for analysis and second template for

documenting outputs of APTIA for architectural alternatives.

4.9.8 GMSAD
The "General Model for Software Architecture Design (GMSAD)” process [54] is

based on the commonalities that can be found in five software architecture design and
analysis methods. These five methods are: Software Engineering Institute’s
“Attribute-Driven Design (ADD)”; “Siemens’ 4 Views (S4V)"; “Rational Sofiware
RUP 4+17; “Business Architecture Process and Organization (BAPO)” developed at
Philips Research; and Nokia Research’s “Architectural Separation of Concerns

(4SC)". The method provides a framework for comparison of strengths and

71

weaknesses of these methods. The framework developed can be used for developing
new methods. GMSAD is one such method that is developed using the framework
which is based on the commonalities of the five industrial methods. The method
presents three main and common activities in architectural design model which are
explained below.

Architectural Analysis: This is the first main activity whose inputs are “Confext”
and “Concerns”. The output of this activity is the “architecturally significant
requirements” (ASRs). The activity is performed to articulate the ASRs. The
architectural analysis wciivity ‘is performed to filter the requirements that are not
relevant to the architecture. Based on architectural concerns and system context a set
of architecturally significant requirement are identified. The architectural problems
are also analyzed in this activity.

Architectural Synthesis: The input of architectural synthesis activity is the
architecturally significant requirements whereas the “Candidate Architectural
Solutions™ are the output of this method. It is the core activity of architecture design.
Based on architecturally significant requirements different solutions are proposed in
this activity.

Architectural Evaluation: Candidate architectural soluticns and architecturally
significant requirements are the inputs of architectural evaluation activity. The
“Validated Architecture” is the output of this activity. Based on architecturally
significant requirements candidate architectural solutions are measured to validate
that the design decisions are correct. The evaluation is carried out repeatedly to ensure
the validation of architecture. The artifacts and sub-activities involved in this model
are now explained below.

The definition of architectural concerns is based on IEEE 1471 standard.
Architectural concerns reflect the interests of one or more stakeholders. The concern
may include system consideration, mandated design decisions or regulatory
requirements. All architectural concerns become the inﬁut to the architectural analysis
activity. IEEE 1471 standard’s definttion of context of system is used to determine the
setting and circumstances of political, developmental, or operational influences. The
“contexts” and “comcerns” together are the inputs to the architectural analysis
activity. Architecturally significant requirements {ASRs) are extracted from system
context or architectural concerns. The ASRs are those requirements that influence the

software system architecture. Therefore. it is not necessary that all of the system

72

requirements will be ASRs. The candidate architecture solutions are design decisions
about the structure of software. The output of the architecture synthesis activity is the
candidate architectural solutions which may be partial solution or alternative solution.
These candidate architecture solutions include design rationale and its traceability.
The candidate architectural solutions that are mutually consistent and consistent with
the architecturally significant requirements together form a validated architecture.
This validated architecture also includes design rationale. “Design Knowledge” in the
form of architectural styles, patterns, reference architecture, or use of ADLs comes
from the architect. These:are important inputs to design process. “Anafysis
Knowledge” in the form of analysis patterns and analysis models is another input to
the design process. The other inputs that go to design process are the “Knowledge of
Evaluation Process” and “Redlization Knowledge”. As the architecture design
process progresses a backlog of issues or problems is built up. This “backlog” drives
the architecture design process which is often non-linear. This backlog of need and
issues is prioritized to resolve these problems. The architectural issues that are

resolved by the architect are removed from backlog.

4.9.9 ASC/DD

The “Architecture Based Component composition / Decision-oriented Design
(ABC/DD)” is an iterative process [56] for designing software architecture. In the first
step architect elicit architecture design issues this phase is called issue elicitation
phase. The next stage is called solution exploiting phase in which architect exploit the
candidate solutions to each issue based on reusable design knowledge. The candidate
architecture solution is synthesized automatically from various “issue solutions™ in the
solution synthesizing phase. The architecture is evaluated in the architecture deciding
phase. The final phase is ration capturing phase in which architect captures
architecture rationale and issue rationale. The ABC/DD approach for software
architecture design is based on sofiware architecture principles of “decision-
abstraction” and “issue-decomposition”. These principles are used to solve
complexity and difficulty associated with the software architecture design. To bridge
the gap between requirements and design the “decision-abstraction™ principle is used,
this principle consider architecture from the perspective of sysiem wide design

decisions. The decision-abstraction provides necessary high level abstraction on

73

problem space as well as on solution space for modeling of software architecture.
The second principle “issue-decomposition” is used to consider the architecture
design task as solving system wide problems. The design goals are decomposed into
number of related design issues, these issues are used for making. decisions. In
ABC/DD an issue is referred to as “Architecturally Design Issue (ADI)” .The
“solution” is used for solving an issue or all the issues related to architecture. The
“decision” is used for acceptance or rejection of single candidate “issue solution” or
one candidate architecture solution. Finally, a “rational” is used to reason about an
“issue decision” or architecture dzcisions. This method provides a-way for making
architecture decisions based on architecture level problems. These architectural
significant problems are elicited in the architecture design phase and solution is
provided for these problems. In this activity stakeholders and architects participates
for considering solutions for each issue. The decisions made in this activity are
recorded in a tool that automates this process. The tool is developed as an Eclipse
plug-in and implements the ABC/DD process meta-model. The ABC/DD method is
successfully applied to Spaceflight Center Commanding and Control System. This
system is used to receive data of space vehicles using Telemetry, Tracking and
Control netwerk. Space vehicles current status, its orbit calculation and control
commands are monitored using this network. The second application of this method
is on Commanding Display Systems (CDSs) which is the Air Traffic Control system.
The ABC/DD method is applied on this system during its re-architecting. In this case
study architect first elicited functional requirements and non-function requirements.
Architect then elicited architecturally significant issues and solution for these issues.
The instance model was then created for each issue solution. All these information
was automated using tool and automated synthesis of architecture solution was
produced. The architect and stakeholder use this solution for making architecture
choices, tradeoff among quality attributes, and architecture evaluation for global
considerations. These case studies provided the evidence that decision-oriented
method which is stakeholder centric provides better architectural design approach
then traditional artifact-oriented approach. The proposed approach provided them a
sysiematic and rational design process. It also helped in reducing difficulties of
software architecture design. The automation of the process provided them a solution
synthesis of candidate architecture automatically and provides automatically

elimination of unfeasible combinations of issue solutions. Multiple candidate

74

architecture solutions are possible for a single issue with some advantages,
disadvantages and tradeoffs. Therefore, global impact on the whole architecture need
to be consider by the architecture. The proposed solution has to be evaluated and
compare for the candidate architecture. The ABC/DD decision oriented approach
makes clear the use of decision and rationale in design process as well as in

architecture design models.

4.9.10 SPE

The “Sofiware Performance Engineering (SPE)” [69] is the process to evaluate
performance of the software system. They proposed the process which is quantitative
in nature. The process utilizes models for predicting performance aspect of the
software. The process can be used to identify problems with the software system
architecture, design and implementation. The models used in the process are used to
predict performance goals. The process utilizes adaptive strategies which includes
upper-bounds, lower-bounds estimates, best-case and worst-case analysis. These
strategies are used for managing uncertainty in the measurement. These analyses are
used to predict best-case and worst-case performance. The process utilizes different
technigues for precise measurement of performance. The process uses mod:ls for
identification of problems with the software system architecture, design and
implementation. Different techniques are used for precise results. These techniques
include the refinement of architecture, building performance prototypes and
identifying resource requirement. The execution model of system and execution
model of software are used performance assessment of architecture. The software
execution model uses execution graph for workload scenarios. The static analysis of
the mean-case, best-case and worst-case response time is carried out with software
execution model. They consider the software execution models to be sufficient for
identification of performance problems of the architecture. The software execution
model is a dynamic model and is constructed in presence of workloads or multiple
users. The input parameters are collected by solving software execution model. These
parameters are used for system execution model. The system execution model
provides precise metrics used for resource contention, sensitivity of performance
metrics, effect of software on the system’s service objectives, bottleneck resource, and

finally the data for performance improvement.

75

4.9.11 CB-SPE

The “Component-Based Software Performance FEngineering (CB-SPE)” [70]
process is based on CB framework utilizes RT-UML profile for modelling. The
process is applied on component layer for parametric performance evaluation of the
components. CB-SPE is then applied on application layer to determine performance
of the assembled components. The performance is evaluated on actual platform. The
process deals with the automated compositional framework for performance analysis
of component based system. They used the approach for the analysis of the
performance attributes such as system execution time, component execution time,
response time, and resource utilization. The approach supports the computation of
performance parameters of application from its components. The component layer is
used to obtain components with desired performance properties. CB-SPE at the
application layer involves seven steps. The first step involves the determination of the
usage profile. In this step different types of application users and different use case
are defined. The usage profile is the collection of all the use case probabilities. Every
use case represents an activity diagram. In second step those components that provide
best performance with same services are selected. In third step application workflow
is represented by sequence diagrams. The deployment diagram is created for
representing available resources. The sequence and deployment diagram are annotated
with the proper performance values and parameters. In forth step best-case
performance analysis is performed. They performed the analysis with no resource
contention. The results they obtained provided them optimal bound on the expected
performance. The fifth step involves the CB-SPE based model generation. The
queuing model is obtained in this step. The sixth step involves the QN model
evaluation. Finally the seventh step involves the analysis on results obtained in the
previous step. The analysis performed is used to modify the parameters for achieving

desired performance results.

4.9.12 PASA

The “Performance Assessment of Software Architecture (PASA)” [71] is a method
for evaluating performance of software architecture. The method is based on

principles of software performance engineering (SPE). The method is used to identify

76

performance related architectural risks, and suggests mitigation strategies for these
risks. PASA is scenario based evaluation of software architecture. The first step
involves in the evaluation is concerned with the introduction of PASA process.
Presentation is given to the participants includes the process of assessment of
architecture, participant introduction, processing information, and potential outcomes
of the process. The presentation also includes the overview of software performance
engineering goals, methodology, data requirement and results. The steps of the
process are explained. The tradeoff involved in quality attributes. The second step
inveives in the process describes the architectuie of the system. The team member
explains the current or planned architecture, followed by a question and answer
session. They used scenarios elicitation technique in this step and found helpful. The
step three involves the identification of critical use cases. The use cases for which
there is sufficient performance risk are considered to be the critical use cases. The
forth step involves the selection of key performance scenarios. In case of critical use
case those scenarios are considered which found important for performance
evaluation. The performance modeling is used for quantitatively assessing the
performance. In step eight if performance of the system is found to be unsatisfactory
altzrnative sclution are found. Architectural styles and interaction between
components is explored for possible solution to the performance problems.
Performance anti-pattern are identified and refactored to improve performance. The
step nine involves the presentation of architecture with possible performance

solutions.

4.10 ANALYSIS AND RESULTS

The analysis was conducted in the last phase of literature survey. Total of 32
publications were selected for analysis. Out of these thirty two publications seven
publications were related with architecture design. Twelve publications discussed
architecture evaluation. Thirteen publications were classified in architecture designed
and evaluation section. All these publications were analyzed for required technical

and business quality attributes. Table 4.1 shows the results in tabular format.

77

TABLE 4.1
Quality Attribute Analysis

, |z |E]¢8 2| w2
13 = K] o} B ..E = = o
5§ |2 |E|E|&E|E 2|28 |3
S |Flg €889 |g|S|g|g|2|2
) = < 51 3 & 2| © g8 o o |5
e < {2 |2 |xn|D |2 ||| 0 |0«
RDP [42] G G
FORM [44] G |Y Y G
ABD [48] | Y Y Y R
QAW 1501 | Y Y Y |Y |Y Y |Y
MAD [511 | G Y Y |G |G G |G
ADD 521 1Y Y Y |Y |Y Y |Y
AREL [55] Y
SAAM 571 1Y Y Y |Y |Y P N
SAAER 58] | Y Y Y |Y |Y Y P N
E-SAAM f591 1Y Y Y |Y |Y Y
ARID [60] : Y
ATAM [6}} 1Y Y Y |Y Y N [P N | P
CBAM 62] 'Y Y Y 'Y |Y N |Y 1Y |Y
4+1VME [63] | Y Y Y |Y |Y Y Y
SARA [64] | Y Y Y |[Y |Y Y Y Y
SACAM 651 | Y Y Y |[Y (Y p P
ACCA [66] | Y Y Y Y 1Y P P
APA [67] | P Y Y |P P Y N
ALMA Y Y
~ Architecture Design ¢
PIP Y Y Y (Y |Y Y (Y |Y |Y |Y |Y
4+1VM [41] Y Y 'Y |Y Y Y Y
RAMRTS [43 Y Y Y
SBAR [45] 1 G G Y |G |G Y |G G
SBAD 1461 | G G G |G |G G |G G
ABAS 471 | G G G G
QADA [49] | Y Y Y |Y Y Y |Y Y Y
APTIA [53]1 | Y Y Y 1Y |Y Y |[Y INIY Y |Y
GMSAD [54] 1 G G G |G |G G |G
ABC/DD [56] Y Y Y Y
SPE [69] Y G
CB-SPE [70] Y
PASA [71] Y G

Yes=Y; No=N; Partially Address=P; Generic=G

78

4.11 CONCLUSTION

All of these thirty two publications that were discussed in this chapter was studied
and analyzed in detailed. However, no publication was found that addressed
architecture design and evaluation for Personal Software Process. Therefore, to
fill the gap in the literature Personal Integrated Process is proposed and will be
discussed in the next chapter in detail. The process is designed to address the need for

individual engineer for architecture design and evaluation.

CHAPTER 5
PROPOSED PROCESS
“PERSONAL INTEGRATED PROCESS”

5.1 INTRODUCTION
The “Personal Integrated Process (PIP)” is designed to address the need for

individual software system engineer. It is the extended form of the “Personal
Software Process (PSP)”. PSP was designed to address the need for individual
software engineers or for the team of three or five engineers. It strongly addresses the
need for risk analysis at the system structure level. However, it does not provide
support for architecture destgn and evaluation. PIP contains major form, scripts, and
tables of PSP for data collection. However, PIP was designed to address the
limitations of PSP. Like PSP personal integrated process contains major process of
CMMI-DEV. PIP introduces the “Bottom-up Planning and Post-mortem”. Bottom-up
estimation is designed for individual engineers. However, PIP also introduces “7op-
down Planning and Post-mortem . Top-down estimation is designed for TSP coaches
or managers. They can use this estimation for distribution of work among software
engineers. The major process components of PIP includes the process compenents for
architecture design, architecture evaluation, database development, computer
hardware installation and configuration, computer network installation and
configuration, and finally the process components for system suvfiware engineering.

These process components are explained below.

5.2 SYSTEM ENGINEERING PROCESS
The PIP is designed to address the need for individual software system engineers.
It is technology and domain aware process. The process has designed for development
of large complex systems such as Enterprise Resource Planners (ERPs) or business
information system. These systems are composed of large number of computers

connected in a complex network topology. These svstems are mostly designed for

79

81

The system engineering process is designed to address the need for such complex
and large software systems. The process has many feedbacks from database
development process, software development process, computer configuration process
and network configuration process. These feedbacks of information are used for
planning and post-mortem. Fig. 5.1 on previous page shows the system software
engineering process. The details of activities involving this process are discussed

beiow one by one.

5.2.1 System Development

The system software development process S-1 is designed for developing and
designing software system. The process has major feedback from “Srakeholder
Requirement Definition Process (S-A)}”, “Validation Process (S-C)”, “Verification
Process (S§-D)” and “Planning Processes (S-2.1, §-3.1, §-4.1) . The planning process
is further composed of two processes one is “System Requirement Engineering (SRE)
Process” and other is “Domain Engineering (DE) Process”. These processes are
discussed in detail in [73]. However, these processes are tailored for the individual
needs. Te process scripts are given in the Appendix-B and Appen-lix-C respectively.
The system requirement engineering process deals with requirement elicitation,
requirement analysis, and transformation of requirement into design. The “Unified
Modeling Language (UML)” specifications [74] are used to document the
requirements and design. However, for precise modeling technology based UML
modeling notations can be used [78]. The output of the “Planning Process (5-1.1)”
goes to “Sysiem drchitecture Design Process (S-1.2)”. Architecture of system such as
business information system 1is designed using the process. The process is started with
Quality Attribute Workshop (QAW) followed by the application of Attribute Driven
Design (ADD). These processes QAW and ADD are tailored for the need of
individual software engineers. The “System Architecture Design Review (S-1.3)”
process is designed for personal review for architecture design. In this process Active
Reviews for Intermediate Designs (ARID) is used for reviewing portion of
architecture. The ARID process is tailored for the need of individual software
engineers. The “System Architecture Evaluation (S-1.4)” process is conducted on

initial design documented using View and Beyond (V&B) approach. This process is

82

consisting of Architecture Tradeoff Analysis Method (ATAM) and Cost Benefit
Analysis Method (CBAM) for evaluation of system architecture. These methods are
also tailored for the need of individual software system engineer(s). Major feedbacks
for architecture evaluation process come from “Product Integration (S-1.6)” and
“System Testing (S-1.9)” processes. These feedbacks are also used for design

traceability, risk mitigation and comparison of project estimated cost with actual cost.

5.2.2 Product Development

The software product deveiopment process S-2 is introduced to develop
software products. The process is composed of standard PSP3 components with
support of architecture design. This “Architecture Design (S-2.2)” process is
conducted for software components. The “Architecture Design Review (5-2.3)"
process is executed for reviewing architecture of products. All other phases of S-2.1

are executed in the same manner as in PSP3.

5.2.3 Component Development

The component development process S-3 is executed in the same way as
executed in ’SP3. However, design process involves View and Beyond (V&B)
approach for documenting software design. Mathematical design notations are used in
addition with V&B. These mathematical design notations found to be very helpful
during design traceability, validation and verification. These mathematical design

notations were introduced in PSP.

5.2.4 Module Development

Software modules are designed using process S-4. However, design process for
software module can vary based on development technology used and its application
to domain. The design notation may include View and Beyond (V&B), mathematical
notations, technology based notation such as OraclJDeveloper design notation, or
domain based design notations such as used for Human Machine Interface (HMI),

Supervisory Control and Data Acquisition (SCADA), or IEC 61499.

85

5.3.2 Product Development

Product development process D-2 is used for developing database application
for each produce in the system. The “Product Architecture Design (D-2.2) ’process
consists of seven sub-processes. The “Database Usage Analysis” sub-process is used
for determining database usage. Usage analysis is used to determine the usage paths
or patterns. These usage paths and patterns are used for selection of file organization
and data access method. The “Volume Analysis” sub-process is used for determining
size (volume) of database utilization. Volume analysis is used to determine sizc of
disk storage and their associated cost. The “Data Distribution Strategy (D-2.2.2)”
sub-process is used for determining the location of data on the network. Four different
data distribution strategies are used centralized, partitioned, replicated and hybrid.
The “File Organization (D-2.2.3)” sub-process is used to select file organization
techniques optimal for recording and arranging records of files on physical storage
devices. Some of the techniques used for file organization include sequential, indexed
and hashed. The “Indexes (D-2.2.4)” sub-process is used identify indexes for primary
key value or for non-key attribute values. The sub-process is used in performance
trude-off anaiysis involved in utilization znd selection of indexes. Performance of
database can be increased for data retrievals by the used of indexes. However,
performance will be degraded during insert, update and delete operations. Finally
"Business Rules (D-2.2.5)”, “De-normalization (D-2.2.6)”, and “Redundant Keys

Elimination (D-2.2.7)" sub-processes are used in products development.

5.3.3 Component Development

The “Conceptual Design (D-3.2.1}” sub-process is used for developing detailed
E-R diagram. The “Process Design (D-3.2.2)” sub-process is used for developing
process model using “Data Flow Diagram (DFD)”. The “Logical Database Design
(D-3.2.3}” process is used to construct data model for some class of database‘
management system. Different logical database models are considered for
implementation. These models includes network, hierarchical, relational, object-
oriented, and object-relational. The “Relational Design (D-3.2.4)” is used to construct
relations model of the components. Personal Integrated Process (PIP) is domain and

technology aware process. This is one of the reasons that relational design sub-

86

process is used for modeling object-relational database such as Oracle 10g Express
Edition. However, if different logical model is required for database design then that
model’s activities will used in place of D-3.2.4. The four activities involved in
relational design process are represent entities, represent relationships, normalize the

relations, and merge the relations.

5.3.4 Module Development

Database module development also includes “Conceptual Database Design (D-
4.1.1)", “Logical Database Design (D-4.1.2})" and " Relational Design (D-4.1.3)”
processes. These processes have same activities as processes D-3.2.1, D-3.2.3, and D-
3.2.4 respectively. These database modules can be designed and documented using
V&B approach, mathematical notation, or technology based notations such as
OracleJDeveloper design notations. The OracleJDeveloper environment provides
paperless environment for documenting software design and architecture. The

environment also provides traceability support to design and architecture.

5.4 COMPUTER HARDWARE CONFIGURATION PROCESS

Business Information Systerns (BIS) such as ERPs are designed for handling
hundreds or even thousands of users. These systems may be designed using client-
server architecture, web-based architecture or service-oriented architecture. Therefore,
process is required to handle installation, configuration and cost estimation of large

number of computers. A process script for handling these activities is given in the

Appendix-D.

5.5 COMPUTER NETWORK CONFIGURATION PROCESS
Designing computer network designed for large number of computers, network
components and accessory also requires a process. This process can provide useful
information for estimation of project cost. A process script for designing, installation,

configuration and cost estimation process is given in the Appendix-E.

5.6 PROCESS AUTOMATION

Process automation support for the Personal Integrated Process is provided by

developing software quality management system. The software quality management

87

system designed for PIP is “Firmsoft Software Quality Management System
(FSOMS) . The FSQMS is designed to address the adaption barrier to manual process
for data entry and data logging. Detail of process automation is given in the next

chapter.

5.7 CASE STUDY

A case study was designed and executed to find the effectiveness of the process
for individual software engineer. Both processes i.e. PSP and PIP were executed in
university computer lab. These processes were used to develop an n-tier database
enable complex and large web-based system. The Personal Integrated Process was
first designed and implemented. Then PIP was executed manually without any
automation support. However, line of code counting tool was used for measuring

software size. Details of case study are given in the chapter2.

5.8 ANALYSIS AND RESULTS
The results of the Personal Integrated Process were found to be excellent. Its top-
down estimation facility found to be highly helpful in the process. Bottom-up
zstimation {acility provided standard teature of PSP.

Poetar ey S

Test ——
Corepile M

Code Review Hall

fLode il Series?

Jesigr Revigw

Cesign iunitai

Plarnirz K

X-axis: Percemage Time

y.axis: Phases

Fig.5.4 Time Spent in Process Phases for SQL

Three basic measures size, defect and time were estimated and compared with

actual data. The process found to be helpful in providing precise estimation of cost,

88

schedule and defects. Personal Integrated Process introduces top-down and bottom-up
planning for precise estimation of project cost, schedule and defects.

Time distribution among different phases of the Personal Integrated Process (PIP)
for SQL code is shown in Fig.5.4. About 50% of the project time was spent in
planning and post-mortem phases. This time can be reduced by automating process
the whole process. Time spent in other phases of software development is quite
reasonable. The bottom-up time and top-down time for both planning and post-

mortem were considered during analysis.

{odw [3ds RevienifrsoiaiTan |

! :
] :

Y-axis: Phases

~ : N -
2 28 32 £3 538 £2 73

X.axis: Percemtage Tine

Fig.5.5. Time Spent in Process Phases for JSF

Time spent in JSF development is shown in Fig.5.5. About 6% time was spent
during planning and post-mortem. Time analysis for JSF only includes the bottom-up

planning and post-mortem.

Postroriem

wode iCode Review iCompite I Test

Design Reviews

Jesign

S S S

2.2

£

+

5 : |
2lanning ? 5.5 : : :

= : !

Y.axis: Pracess Phases

a 20 43 80 80 100
X-axis: Percentage Tiine

Fig.5.6. Process Time Distribution for XML

39

PIP introduces the concept of “infegration time”. Product integration time is
now measureable and is shown in Fig.5.6. The process utilizes the concept of “Agile”
software development. Prototyping are used to evaluate portion of the design. It
introduces the concept of “Joint-Time” for measuring time of Code| Code Review!

Compile| Test phases.

Defect Injected

55 b0 ta3 g b el §a du B

Y-axis: Peicentage Defect injectad

X-axis: Process Phases

Fig.5.7. Defects Injected

Defect distribution of injected defects and removed defects can vary with the
selection of development technology. When using Oracle 10g Express Edition defect
removed in code review could be zero. This defect distribution is the result of use of
code generation technology. The defect injected during different phases of
developmeni is shown in Fig.5.7. Most defects were injected during planning and
coding phases. Only 14.86% defects were injected during design phase. Highest
defect injection percentage was shown in coding phase. In this phase 45.95% defects

were injected. However, planning phase introduced defect injection of 39.19%.

90

Defect Removed

SR 3243 3243

e —

B 3-1

W DefecrKemoves

& % o & 2 & 2 B
& & & W& 3 <

o & P & & K

g W S

5 B &

& OF

Z X-axis: Process Phases

~

N

Fig.5.8. Defects Removed

Because a stable design process was used in PIP, which was found to be very
helpful for defect removal. Percentage of defect removed in design phase was 4.05%.
Similarly, desigr: review was found to be very efficient where 32.42% defects were
removed. Testing was also found to be efficient and 32.43% defects were removed.

Fig.5.8 shows defects removed from different phases of software development

Process.

5.9 FINDINGS

The major finding of this case study regarding process design, implementation and
execution are discussed in this section. PIP introduced “Joint-Time” concept for
“Agile” software development. About 50% of the time was spent in planning and
post-mortem. This time can be reduced by process automation. Use of Oracle 10g
Express Database during case study execution was found to be useful in reducing
injected defect during code review phase. The process provided accurate estimates of
cost, schedule, defects and size. It was also found that the deployment phase is
necessary as many defect which did not detected during compilation phase were

appear in the deployment phase. This phase will be introduced in the next version of

the process.

91

5.10 CONCLUSION

The process was designed and implemented in the university computer lab. The
process was evaluated by executing a case study. The results of the process found to
be exceptional. The major finding of process implementation results in better
estimation of project cost, schedule, defects and software size. PIP is technology and
domain aware process. This process was designed for database driven web-
application. The process components for designing database were found to be very

helpful during implementation.

CHAPTER 6
CASE STUDY

6.1 CASE STUDY DESCRIPTION

A case study was conducted to validate the effectiveness of the “Personal
Integrated Process (PIP)”. Details of case study are discussed in chapter 2. In this case
study Personal Integrated Process was executed successfully, data regarding case
study was colilected and number of analyses were performed. In first section of the
case study process automation and its impact is discussed. In second section of the
case study analysis, results and finding regarding architecture design and evaluation
processes are discussed. In third section analysis, results and finding regarding

architecture based software system cost estimation is discussed.

6.2 Case Study Part-1: PROCESS AUTOMATION

Web-based software quality management system can provides fast, reliable,
global accessible historical data for process improvement. Globally distributed teams
of software engineers can store, access and perform analysis for process
improvement. Such systems are currently been used in different software houses
worldwide. These systems provide support in decision analysis and resolution, quality
management, and process improvement. Automation of the software process can
dramatically reduce development time. About 50% of the project time was spent in
planning and post-mottem phases of the Personal Iuiegrated Process (PIP). This was
because the process contains bottom-up planning and top-down planning as well as
bottom-up post-mortem and top-down post-mortem. Also PIP involves many
calculations in planning, development and port-mortem which consume huge amount
of process time. Manual work in PSP and PIP processes has many limitations and
problems such as it cannot be accessed globally, process consume huge amount of
time, results in increase in project cost, and slow access to historical data for analysis.
Context switching 1s another problem in manual process. There was also found great

emphasize for process automation in the literature:

92

93

“With CASE facilities to automatically log time, track defects, maintain data, and
present statistical analyses, the PSP likely would be easier to learn and more

efficient to use.[1]”

Therefore, a software quality management system is designed to address these

limitations and problems.

Many software quality management systems or software tools have been
propased in the lirerature. Some of these toois were proposed for automation of
Personal Software Process where as other were proposed for the automation of
modified PSP. A literature survey was conducted to find the gap in the research
literature details of this is given in the chaptef 3. Out of 98 publications 30 were found
to be related with the PSP automation or modification. However, none of these
publications addressed PSP modification or automation with architecture design and
evaluation components for individual software engineers. Therefore, “Firmsoft
Software Quality Management System (FSOMS)” was designed to address the needs

of process integration and automation.

6.2.1 Development Technology

A case study was conducted in the university computer lab to find the
effectiveness of the proposed process. Detail of the case study has discussed in
chapter 2. Here case study is discussed in brief. During case study execution a process
was designed to address the limitation of PSP. The proposed process “PIP” was
executed in the university computer lab. Process data was collected and analysis was
performed to find the impact of process integration on cost, schedule, risks, defects,

and size. However, in this chapter only process automation is discussed.

Software quality management system “FSQMS” was developed using
OracleJDeveloper’s “Application Development Framework (ADF)” [76]. Oracle
“Fusion Web Application” technology was used in designing web interface. Oracle
10g Express Edition was used for database. Oracle was selected because it can be
used in implementing n-tier architecture. The database was used for implementing

online connection. Business tier was constructed using EJB 3.0. Model View

94

Controller was selected as architectural pattern. Java ServerFaces / facelets were used
in implementing web-tier. Java Persistence API (JPA) was used in POJO persistence
model. It was used for object-relational mapping. OracleJDeveloper was selected
because it provides UML modeling facility. Business components such as EJB3.0 can
be medeled using the technology. Task flow feature is used for designing page flow,
navigation and security. The Oracle ADF provides two types of task flow one is
unbounded task flow and other is bounded task flow. Bounded task flow is used in
implementing region based permissions in ADF security. Oracle ADF Authentication
and Authorization security model was used in implementing security of the ecftware
quality management system. ADF Form-Based security was selected which can be
used to provide optimal security for users. Application roles were assigned to users
and resource grants were given to the users. All these features when implemented

require corresponding code in XML, JSF or Java.

6.2.2 System Major Components

FSQMS a software quality management system was designed to support
Personal Software Process and Personal Integrated Process. Fig.6.1 shows system
requirements of FIQMS in term of use cases. Two actors are involved in system
operation one role is manager where as other role is engineers. Most of the activities

are related with the engineer and manager can only view project plan summary.

Fig.6.1. System Use Case Diagram

95

Eounded Task Flow

OScenarnis

limelog

testrepont

defecting

Fig.6.2. Bounded Task Fiow

tizlog

)
=

ERanRE

schedu

96

97

These use cases are implemented using Oracle]Developer Fusion Web
Application technology. Web user interface components their interactions, and
control flows are shown in the Fig.6.2. The components are shown in the figure
using OracleJDeveloper design notation. The OracleJDeveloper design notations are
more expressive and informative than V&B notations. These visual components
have complete traceability support with source code. Major components of the tool

are discussed in detail one by one.

6.2.2.1 Time Log Component

Time log component “fimelog” was designed using 3-tier architecture. Web-
tier was implemented using JSF, business tier was implemented using ADF business
components and database tier was implemented with Oracle 10g database. Time log
component was designed to automate manual time logging. The component is

created within the bounded task flow and can only be accessible for authenticated

and authorized user.

6.2.2.2 Defect Log Compo:ient

Defect log component “defectlog” has same architecture as time logging

component. The component is used for logging process defects.

6.2.2.3 Operational Scenario Component

Operational scenario component “OScenario” 1s designed and

implemented for automating operational scenarios table in PSP and PIP.

6.2.2.4 Test Report Component

Test report component “festreport™ automated the test reports involved in
PSP and PiP.

6.2.2.5 Issue Tracking Component

Issue tracking component “issuelog” provides process automation support

to issue log.

98

6.2.2.6 Task Planning Component

Task planning component “task” provides basic task planning of PSP and
PIP.

6.2.2.7 Schedule Planning Component
Schedule planning component “schedule” is designed and implemented to

support PSP and PIP schedule planning activities.

6.2.2.8 Process Improvement Proposal Component

Process improvement proposal component “PIP” provides automated

support for both processes for preparing process improvement proposal.

6.2.2.9 QAW Component

QAW component “QAW” provides process support for Quality Attribute
Workshop. The component is designed and implemented for PIP.

6.2.2.10 ATAM Component

ATAM component “ATAM” provides process support for Architecture
Tradeoff Analysis Method and is the part of PIP.

6.2.2.11 CBAM Component
Like ATAM component CBAM component “CBAM” provides process

automation support for Cost Benefit Analysis Method.

6.2.2.i2 V&B Component

V&B component “VaB” is designed and implemented for PIP automation

needs,

6.2.3 Results of Process Automation
All of these twelve components of FSQMS were implemented using same
architectural pattern and open source software technology. Major development

languages involved in developing software quality management system were SQL,

99

XML, JSF, and Java. About 3827 lines of code was consists of SQL, 3444 lines of
code was consists of JSF and 364 lines of code was consists of XML. However, Java
code generated automatically was not considered during project planning, post-
mortem and analysis. Fig.6.3 shows programming languages contribution in

developing software quality management system.

Y-axis: Lines of code

QL ¥AL Js8
K-axis: Programming Languages

Fig.6.3. Programming Languages Contribution

6.2.4 Research Findings Regarding Process Automation

The integration of architecture design and evaluation in PSP was found to be
very effective during tool development. Project cost, schedule, defects, and size were
estimated and compared with the actual results and found to be extremely useful.
Personal Integrated Process was automated with latest technology and resulting
system was found to be highly secure. Technical risks were identified during
development. Technical risks were mitigated using different strategies. These risks
will not be identified if PSP was used. Project cost was estimated at architecture level.
The cost estimation at architecture design and evaluation would be impossible if PSP

was used.

100

6.2.5 Conclusion Drawn from Process Automation

Software quality management system such as “FSQMS™ is highly important
for software process improvement, project cost and schedule estimation. However,
technology of software tool plays an important role in mitigation of technical risks.
Architecture design and evaluation for such large and complex system is highly
desirable. Personal Integrated Process with the support of architecture design and
evaluation make such thing possible. The process automation support can reduce

tremendous amount of time and project cost.

6.3 Case Study Part-1: Personal Integrated Process Implementation
“ARCHITECTURE DESIGN”

Architecture design is the core activity of Personzi Integrated Process. As
discussed in the chapter 5, PIP is designed for individual software system engineers.
Quality Attribute Workshop (QAW), Attribute Driven Design (ADD), and Active
Reviews for Iniermediate Design (ARID) are the process components used in
architecture design process. These process components are discussed in this section

one by one.

6.3.1 Quality Attribute Workshop

The process was tailored for the need of individual engineers. Nine use case
scenario, two growth scenarios, and three exploratory scenarios were identified by
QAW. Architectural drivers were identified, during brainstorming it was cnsured the
scenarios aic iu ihree part stimulus, environment and response. Similar scenarios wvere
merged and priority of each scenario was established. After refinement scenarios were

in six parts.

6.3.2 Attribute Driven Design

Inputs of the ADD were functional requirements, design constraints and
quality attribute requirements. During process execution completeness of the
requirements were made sure. System was decomposed in to number of elements and

then these elements were further decomprsed. Candidate architectural drivers were

101

identified. Design concepts were selected for these architectural drivers. Decomposed
architectural elements were instantiated and responsibilities were allocated. Interface

for the instantiated elements were defined. Finally verification was performed.

TABLE 6.1
Architectural Dri

Candidate - ke rs -

Architectural -

Drivers . S

Scenario [D:1 Performance | End user M H NO

Scenario 112:2 | Security End user H H YES

N _|_Engineer

Scenario 1D:3 | Availability Engincer L H NO

Scenario ID:4 | Availability Engineer L M NO
. Scenario 1D:5 Reliability Engineer L L NO

Scenario ID2:6 | Modifiability | Engineer L L NO

Scenario ID:7 | Modifiability | Engineer H L NO

Scenario 11>:8 | Reliability Engineer L H NO

Scenario ID:9 | Availability Engineer H H YES .

Design N/A Engineer H H YES

Constraints-1

Capacity

Restriction

Design /A Engineer . . H H YES

Corustraints-2

Persistence

Storage

Service

Medium =M; High=H; Low=L

Table 6.1 shows the architectural drivers indentified in ADD process. Use case
scenario 2, use case scenario 9, design constraint-1 and design constrain-2 were found
to be architectural drivers. These candidate architectural drivers were considered to be
architectural drivers because they had high stakeholder priority and high impact on

architecture.

6.3.3 Active Reviews for Intermediate Design

ARID was performed when small portion of the system architecture was
reviewed. Inputs to the process were quality atinibutes requirements, functional
requirements, and portion of system architecture. During ARID seed scenarios were

prepared, and prioritized after brainstorming. Finally review was performed using

102

question set. Issues and problems along with the reviewed portion of the architecture
was the output of the process. All quality attributes were under discussion during
ARID. Each quality attribute was discussed individually. The quality attribute that
were under discussion include reliability, security, performance, and availability.
Some of questions that were used during review are given below,

Q1: Introduce exception handling in the modules for reliability.

(Q2: Write down the data type of each entity in a database table.

Q3: Maintain traceability of each object.

(Q4: Ensure that the celumn name is not oracie reserved word.

Q5: Write down the foreign key constraints for each object.

Q6: Ensure there is no spelling mistake for each object.

Q7: Ensure foreign key is assigned to write entity.

(8: Ensure users are mapped with appropriate role during application of Oracle ADF
security.

Q9: Ensure application roles have appropriate resource grants.

Q1i0: Ensure application role has grant of appropriate bounded task flow before
application of security. |

C11: Ensure application role has grant of all regions (web pages) in a bounded task
flow for security.

Q12: Ensure connection pooling for performance reason.

(Q13: Ensure application server is used for high availability.

6.4 Case Study Part-1: Personal Integrated Process Implementation
“ARCHITECTURE EVALUATION”

Architecture Tradeoff Analysis Method is the core process component of
Personal Integrated Process. The process was tailored for the needs of individual
software system engineers. Quality attributes such as performance, security,
availability and modifiability were evaluated by applying ATAM. Nine use case
scenarios, two growth scenarios, and three exploratory scenarios identified and
refined during QAW were the input to the ATAM. Other inputs to the process were
business drivers and architecture of the system. Different architectural approaches

were considered during the process. Quality attribute utility tree was generated, and

103

quality attribute specific questions were used to analyze architecture. Scenarios were
prioritized after brainstorming. Outputs of the process were architectural views,
sensitivity point, tradeoff point, and technical risks. During ATAM architecture
business cycle was created, and qguality attribute utility tree was constructed. Growth
scenarios and exploratory scenarios after applying ATAM are given below.

Growth Scenarios:

1- Add a new data server to reduce latency within 2-person-week.

2- The size of table space of database is doubled without effecting the average

retrieval time of ona second.

Exploratory Scenarios:

1- Server operating system may change from Microsoft Windows to Linux.

2- Improving the system availability from 99.9% to 99.999%.

3- One out of two backup servers goes down without effecting normal operation.

TABLE 6.2
System Use Case Scenario

Scenario ID:

UCS]

Scenario A PSP engineer query data from web server and data is displayed in less

Description: than 3 seconds.

Quality Performance

Attribute:

Risk: R1- Connection pooling implementation decisions are not considered.

Tradeoff Point: | T1-100 concurrent connections can degrade performance. To achieve
required number of concurrent connection will required increase number
of servers. The will resylt in increase project cost.

Sensitivity §1- Concurrent connection might be sensitive to the bandwidth of the

Point: network.

Architectural Considering cost limitations only one server is considered for handling

Decision requests. Only ten concurrent connections will be allowed.

{Non-Risk):

Reasoning: Currently only one system is available.

Architecture

Diagram:

S SsL
Web Server Or
HTTPS

Security

104

Use case scenarios were identified and prioritized using QAW process. These
scenarios were further refined in term of six part using ADD process. Technical risks,
sensitivity points and tradeoff points were identified by applying ATAM. These
sensitivity points and tradeoff points were converted into non-risk by ATAM process.

Use case scenarios after applying ATAM process is given in table.6.2.

TABLE 6.2 (Continued)

System Use Case Scenario
Scenario ID: ues2
Scenario The system allows login only to authorized and authenticated users.
Description:
Quality Security.
Attribute:
Risk: R1- Decision regarding form based security is not considered yet.
Tradeoff Point: | T1- Form based security can take more time to develop components.
This will result in increase in project cost.
Sensitivity S1-
Point:
Architectural Form base security will be implemented. Only two login will be
Decision implemented.
{Non-Risk):
Reasoning: Due to schedule constraints form based security will be implemented for
only two users
Architecture N/A
Diagram:
TABLE 6.2 (Continued)
System Use Case Scenario
Scenario ID: UCS3
Scenario A temperature spike causing hard disk failure and system is working in
Description: normal condition.
Quality Availability
Attribute: e .
Risk: R 1- Decision regarding software/hardware RAID is not considered yet.
Tradeoff Point: | T1- Achieving availability using software RAID may result in degrades
in performance.
Sensitivity S1- Software RAID might be sensitive to the number of hard disks.
Point:
Architectural RAID will not be implemented i.e. only single drive server will be used.
Decision
(Non-Risk):
Reasoning: Due to cost constraints RAID will not be implemented. It will be
considered in future projects
Architecture N/A
Diagram:

105

TABLE 6.2 (Continued)
System Use Case Scenario

Scenario ID: UCS4
Scenario The system switch to another power supply after one power supply fails.
Description:
Quality Availability
Attribute:
Risk: R1- Decision regarding dual power supply is not yet finalized.
Tradeoff Point: | T1- Achieving reliability using dual power supply will result in increase
in cost,
Sensitivity S1-
Point:
Architectural Single power supply server will be used. Server with single power
Decision supply will be used.
(Non-Risk):
Reasoning: Considering cost constraints only one power supply per server is
finalized
Architecture N/A
Diagram;
TABLE 6.2 (Continued)
System Use Case Scenario
Scenario ID: uCss

Scenarie The web application server sent a time synchronization request, but

Description: unable to receive response.

Quality Reliability

Attribute:

Risk: R1-

Tradeoff Point: | T1-

Sensitivity S1-

Point:

Architectural COST components will not be used.

Decision

(Non-Risk): .

Reasoning: Implementation of COST component to synchroutize time with internet
time server is deferred

Architecture N/A

Diagram:

106

TABLE 6.2 (Continued)
System Use Case Scenario

Scenario ID:

UCseé

Scenario Software engineer want to add service component to synchronize the

Description: time of server with internet time within ten man-days.

Quality Modifiability

Attribute:

Risk: R1-

Tradeoff Point: | TI-

Sensitivity Si-

Point:

Architectural COST components will not be used.

Decision

{Non-Risk):

Reasoning: Implementation of COST component to synchronize time with internet .
time server is deferred because of lack of development time.

Architecture N/A

Diagram;

TABLE 6.2 (Continued)
System Use Case Scenario

Scenario ID: UCs7

Scenario Software engineer wants to add a COST to the system to support

Description: automated counting of line of code.

Quality Modifiability

Attribute:

Risk: R1-

Tradeoff Point: | TI-

Sensitivity S1-

Point:

Architectural COST components will not be used.

Decision '

{Non-Risk):

Reasoning: Implementation of COST component for automated line of code
counting is deferred.

Architecture N/A

Diagram:

107

TABLE 6.2 (Continued)
System Use Case Scenario

Scenario ID:

UCS8

Seenario Exceptions occur during commit operation and notified to user by sound
Description: beeps and or text messages.
Quality Reliability
Attribute:
Risk: R1- Decision regarding database architecture (centralized or distributed)
is not yet considered.
Tradeoff Point: | Ti- Distributed database implementation will increase in cost.
Nensitivity S1- Achieving availability u:ing centralized database might be sensitive
Point: to the network availability.
Architectural Centralized database will be implemented i.e. single server will be used.
Decision
(Non-Risk):
Reasoning: Cost and schedule constraints.
Architecture N/A
i Diagram:
TABLE 6.2 (Continued)
System Use Case Scenario
Scenario ID: UCs9
Scenario Using web application server to achieve high availability.
Description:
Business Goal: Return on Investment {ROI); Profitability; Customer Trust.
Quality Availability
Attribute:
Risk: R1- Use of application server is not considered yet.
Tradeoff Point: | Tl- Use of application server will result in increase in project cost.
Sensitivity &1- Using application server fui availabitity might be sensitive to
Point: achieve performance.
Architectural Oracle WebLogic Server will be used as an application server.
Decision :
(Non-Risk):
Reasoning: OracleJDeveloper 1DE integration.
Architecture N/A
Diagram:

The Architeciure Business Cyde

Staketoter Architeciusal Engleser

Organization U

] Cracle 10y Danbase
{ UradedDeveloper 115
! Microsaft Windows

Architect expenence) Year

Fig.6.4. ABC of FSQMS

Source: Fig.1.4 [82]

108

109

During ATAM execution “Architecture Business Cycle (ABC)” constructed to

identify experience of architect, organization, technology involved, and system. Fig.

6.4 shows the ABC of FSQMS and is adapted from Fig.1.4 [82]. From this figure

experience of architect found to be one year, system engineer and end user was the

stakehoider, and Oracle 10g

Database was used for database, OracleJDeveloper 11g

was used to construct JSF based front end, and quality attribute requirements were

related with performance, security, reliability, availability and modifiability.

Transmission

; Thiroughput (M.H)
—Paormanae ‘1. L Query data in < 3 Seconds
{LL} Add time synchronization component in < 1
- NModifiabil rsan-months
Uttty Tree Modifiabiity pe
! Adda COTS
N (ML} add LOC counting component in < 1 peeson-
months
. My X .
e HOK Failures s RECOVET from disk failure in < 10 Minutes
TAvailability (LM} Recover from power supply fadlure in < 10
Minutes
N {H.H) ‘ . ‘
e SIW Faifures et Atid Weblogic Serverin < 1 person-week
y orizati o,
Data Configentiality (H.H; Da:.abase authorization works 104%
of ime.
roSacunty el
L) .
e SIN FallUres e Server sends jequest in < 1 seconds.
-Reftabilly ———d
. {LH} ‘ e
e S Failures ——e——— Exception handling in € 5 seconds,

Fig.6.5. Utility Tree of FSQMS

Source: Table.3, pp.8 [83]

110

Construction of utility tree is one of the activities of ATAM process and is
shown in Fig.6.5 this figure is adapted from Table.3 [83]. Utility tree is the graphical
representation of quality attribute requirements need for a system. In case of FSQMS
performance, modifiability, availability, security and reliability were the quality

attribute requirements.

6.4.1 Performance

Performance of the system was evaluated manually without the use of any
automated performance evaluation tool. This was because system involved only
twelve web pages, and the performance was evaluated for only one user. The
performance of the system was found to be satisfactory. However, in future it will be

studied for 500 concurrent users.

6.4.2 Availability

Availability of the system was the second attribute to be studied. One
availability risk was identified and deferred to reduce project cost. Second availability
risk was identiied and mitigated. Oracle WebLogic Server was used for achieving

high availability.

6.4.3 Reliability

Svstem reliability risks were identified and mitigated using OracleJDeveloper

Fusion Web Application’s built-in exception handling.

6.4.4 Modifiability

Modifiability risk were identified and deferred to reduce project development

time.

6.4.5 Security

Use case scenario 2 was related with system security. Security risk were

identified and then mitigated by applying Oracle ADF Form-Based security.

6.4.6 Results of Architecture Evaluation

111

By applying Personal Integrated Process (PIP) it was possible not only to
identify the technical risk, but these risk were mitigated using different strategies.
About 22.22% modifiability risks, 33.34% availability risks, 22.22% reliability risks,
and 11.11% performance and security risks were identified. The technical risks and

their frequency are shown in Iig.6.6.

Ik
B

z
.

tar

fud
[

¥-axis: Minuher of tisk

Parforrance Security Avsilability Mogifisbilbty Reliabilty

X-axis: Type of Risk

Fig.6.6. Technical Risk Analysis

@ 0AW
& CBAN
W ARID
% ATARY
@ ADD

Fig.6.7, Time Distribution of Processes

112

The time spent in different process such as architecture design and evaluation
is shown in Fig.6.7. Time spent in ATAM was about 31.44%, QAW was 21.75%,
ADD was 8.85%. and CBAM was 32.95%.

2444

y-axis: Lines of code

$0L Xah 355
X-axis: Pregrmmining Langaage

Fig.6.8. Size Contribution of Programming Language

Project time, cost and size were estimated accurately. For example the XML
code used for implementing bounded task flow and security was about 364 lines of

code. XML code along with SQL and JSF code is shown in Fig.6.8.

6.5 Case Study Part-1: Personal Integrated Process Implementation

“COST AND BENEFIT EVALUATION”

Personal Integrated Process (PIP) is the extended form of Personal Software
Process (PSP). PIP uses PROBE for estimation. Defects, size and schedule is
estimated and planned in the same way as in PSP. However, PSP does not address
architecture design and evaluation. These processes have many activities which do not

involve coding. Therefore, such processes cannot precisely be estimated using
PROBE.

1i3

PSP introduces the concept of estimation using expert judgment or estimation
using historical data regarding process time, defects, or size. However, in case of non-
coding process activities which consume substantial amount of time cannot be
estimated using process time. Therefore, such process activities should be estimated
using more precise approach such as activity based costing. Capers Jones has

emphasized the use of activity based costing.

“Indeed, we now know that on some projects (such as large defence systems) the cost to

produce pape: ducuments is twice us much as the cost to produce the code itself™, 777f

Keeping in this in view Personal Integrated Process (PIP) was designed to
support activity based costing. It not only support PSP based estimation but also
activity based cost estimation. However, it used lines of code as unit of measurement

for software size instead of function point metric.

6.5.1 Cost Estimation

As architecture based cost and schedule estimation was the focus of the case
study. A software quality management system was dev:loped (o find .the impact of
architecture design and evaluation on project cost and schedule. Cost Benefit Analysis
Methoed (CBAM) is the process component used in Personal Integrated Process (PIP)
to find the architecture based cost estimation. CBAM was tailored for the need of
individual software engineers. The resulting process component was used to analyze
cost and benefit of architectural strategies. Before the use of CBAM for cost and
schedule estimation ATAM was applied to find the architectural risks. Quality
attribute goals, high priority scenartos, utility tree, architectural views, and
architectural risks were the inputs to the CBAM. Detail of application ATAM arc
given in the chapter7. Selection of the architectural strategies for each use case
scenario was the objective of the first step of the CBAM. To achieve the objectives
appropriate architectural strategies were selected for each use case scenario. For each
architectural strategy desired improvement to the architecture was identified. These

architectural strategies along with desired improvements are given in the table 6.3.

113

PSP introduces the concept of estimation using expert judgment or estimation
using historical data regarding process time, defects, or size. However, in case of non-
coding process activities which consume substantial amount of time cannot be
estimated using process time. Therefore, such process activities should be estimated
using more precise approach such as activity based costing. Capers Jones has

emphasized the use of activity based costing.

“Indeed, we now know that on some projects (such as large defence systems) the cost to

v rew

produce pape: dvcumenis is twice uy much as the cost to produce the code itself™. i77f

Keeping in this in view Personal Integrated Process (PIP) was designed to
support activity based costing. It not only support PSP based estimation but also
activity based cost estimation. However, it used lines of code as unit of measurement

for software size instead of function point metric.

6.5.1 Cost Estimation

As architecture based cost and schedule estimation was the focus of the case
study. A software quality management system was devzloped <o find the impact of
architecture design and evaluation on project cost and schedule. Cost Benefit Analysis
Method (CBAM) is the process component used in Personal Integrated Process (PIP)
to find the architecture based cost estimation. CBAM was tailored for the need of
individual software engineers. The resulting process component was used to analyze
cost and benefit of architectural strategies. Before the use of CBAM for cost and
schedule estimation ATAM was applied to find the architectural risks. Quality
attribute goals, high priority scenarios, utility tree, architectural views, and
arciitectural risks were the inputs to the CBAM. Detail of application ATAM are
given in the chapter7. Selection of the architectural strategies for each use case
scenario was the objective of the first step of the CBAM. To achieve the objectives
appropriate architectural strategies were selected for each use case scenario. For each
architectural strategy desired improvement to the architecture was identitied. These

architectural strategies along with desired improvements are given in the table 6.3.

114

TABLE 6.3
Architectural Strategies and Desired Improvements
1) QA Architectural | Architectural Strategy Desired Improvement
Goal Strategy ID Description ‘ L
UCS2Z | Security | AS-001 Using hard coded security Reducing development time.
UCSs2 | Security | AS-002 Using JAAS Permission for Increasing business tire
business tier. security.
UCS2 | Security | AS-003 Using hard coded basic Reducing development time by
authentication. using integrated authorization.
UCS2 | Security | AS-004 ADF Authentication Using built-in facility.
UCS2 | Security | AS-003 HTTP Basic Authentication Reducing development time.
UCS2 | Security | AS-006 HTTP Digest Authentication Reducing development time., |
UCS2 | Security | AS-007 HTTPS Client Authentication | Using enhanced security. B
UCS2 | Security | AS-008 Form-Based Authentication Using optimal security
TABLE 6.4
Quality Attribute Score
Scenario | Quality Attribute | Quality | Stakeholder | Impacton | Total
D Attribute Priority Architectnre
% QAscore '
UCSI Performance 13.88 M 2 H 3 5
UCK2 Security 16.67 H 3 H 3 6
UCS3 Availability 11.11 L 1 H 3 4
UCS4 Reliability 8.3 L i M 2 5
UCSS Reliability 5.56 L 1 L 1 2
UCS6 Modifiability 5.56 L i L] 2
UCS7 Modifiability 11.11 H 3 L 1 4
UCS8 Reliability 11.11 L 1 H 3 4
UCSY Availability 16.67 H 3 H 3 6
Total % Score 100 Total Score 36

After identifying desired improvement to the architecture, quality attribute

score s established basced on stakeholder priority and impact on the architecture.

Quality attribute score along with priority of stakeholder and impact on architecture is

given in table 6.4.

Step-3: Benefit Score Calculation

Third step of the CBAM was to find the benefit score for each architectural strategy.

115

TABLE 6.5
Benefit Evaluation
Scenario | Quality .| Contribution | Architecture | QAscore | Benefit Score=
ID Attribute Cont Strategy QAscore x Cont
UCS1 Performance | +1 AS-00§ 13.88 13.88
UCS2 Security +1 AS-008 16.67 16.67
UCS3 Availability | +1 AS-008 11.11 11.11
ucs4 Reliability +1 AS-008 8.33 8.33
UCS5 Reliability +1 AS-008 5.56 5.56
UCS6 Modifiability | +1 AS-008 5.56 5.56
uCs7 Modifiability | +1 AS-008 11.11 11.11
UCS8 Reliability +1 AS-008 i1.11 11.11
i UCS9 Availability |] AS-008 16.67 16.67
Total Benefit Score for Architecture Strategy AS-008 +100 Benys
UCSI Performance | +1 AS-007 13.88 13.88
UCS2 Security +.5 AS-007 16.67 3.34
UCS3 Availability +1 . AS-007 11.11 11.11
UCs4 Reliability +1 AS-007 833 8.33
UCS5 Reliability +1 AS-007 5.56 5.56
UCS6 Modifiability | +1} AS-007 5.56 5.56
uCs7? Modifiability | +1 AS-007 11.11 11.11
UCS8 Reliability +1 AS-007 11.11 11.11
UCS9 Availability +1 AS-007 16.67 16.67
Total Benefit Score for Architecture Strategy AS-007 ' +91.67 Benys
UCS1 Performance | +1 AS-006 13.88 13.88
UCS2 Security +.5 AS-006 16.67 8.34
UCS3 Availability +1 AS-006 11.11 11.11
UCS4 Reliability +. AS-006 8.33 8.33
UCS5 Reliability +1 AS-006 5.56 5.56
UCS6 Modifiability | +1 AS-006 5.56 5.56
UCS7 Modifiability | +1 AS-006 11.11 11.11
UCS3 Reliability +1 AS-006 11.11 11.11
UCS9 Availability +1 AS-006 16.67 16.67
Total Benefit Score for Architecture Strategy AS-006 +91.67 Benys
UCSI Performance | +1 AS-005 13.88 13.88
UCS2 Security +.2 AS-005 16.67 3.34
UCS3 Availability +1 AS-005 11.11 11.11
UCs4 Reliability +1 AS-005 8.33 833
| UCS5 Reliability +1 AS-005 5.56 5.56
UCS6 Modifiability | +i AS-005 5.56 5.56
UCS7 Modifiability | +1 AS-005 11.11 11.11
UCSS Reliability +1 AS-005 11.11 11.11
UCS9 Availability +1 AS-005 16.67 16.67
Total Benefit Score for Architecture Strategy AS-005 - +86.67 Benys

Benefit score was determined by multiplying quality attribute score with its

confribution score and resulting “benys ™ are given in the table 6.5.

116

TABLE 6.5 (Continued)
Benefit Evaluation

Scenarie | Quality Contribution | Architecture | QAscore | Benefit Score=

1D Attribute Cont Strategy QAscore x Cont

UCSH Performance | +1 AS-004 13.88 13.88

UCS2 Security +.4 AS-004 16.67 6.67

UCS3 Availability +1 AS-004 11.11 11.11

UCS4 Reliability +1 AS-004 8.33 8.33

UCSS Reliability +1 AS-004 5.56 5.56

UCs6 Modifiability | +1 AS-004 5.56 5.56

UCS7 Modifiability | +1 AS-004 11.11 11.11

UCSS Reliability +1 AS-004 11.11 11.11

uCS9 Availability [+i AS-004 16.67 16.67

Total Benefit Score for Architecture Strategy AS-004 +90 Benys

UCS] Performance | +1 AS-003 13.88 13.88

UCS2 Security +.4 AS-003 16.67 6.67
FUCSB Availability | +1 AS-003 11.11 11.11

UCSs4 Reliability +1 AS-003 8.33 8.33

UCss Reliability +1 AS-003 5.56 5.56

UuCse6 Modifiability | +1 AS-003 5.56 5.56

UCS7 Modifiability | +1 AS-003 11.11 11.11

UCS8 Reliability +1 AS-003 11.11 11.11

UCS9 Availability | +1 AS-003 16.67 16.67

Total Benefit Score for Architecture Strategy AS-003 - +90 Benys

UCSI Performance | +] AS-002 13.88 13.88

JCS2 Security +.2 AS-002 16.67 3.34

UCS3 Availability | +1 _ Al-002 11.11 11.11

JCS4 Reliability +1i AS-002 8.33 8.33

UCss Reliability +1 AS-002 5.56 5.56

UCS6 Modifiability | +1 AS-002 5.56 5.56

uCs7 Maodifiability | +1 AS-002 11.11 11.11

UCS8 Reliability +1 AS-002 11.11 11.11

UCs9 Availability | +1 AS-002 16.67 16.67

Total Benefit Score for Architecture Strategy AS-002 +86.67 Benys

UCS1 Performance | +1 AS-001 13.88 13.88

UCS2 Security +.1 AS-001 16.67 1.67

UCS3 Availability +1 AS-001 11.11 11.11

UCS4 Reliability +1 AS-001 8.33 8.33

U3 Peliability +1 AS-001 5.56 5.56

UCSe6 Modifiability | +1 AS-001 5.56 5.56

UCS7 Modifiability | +1 AS-001 1111 11.11

UCS8 Reliability +1 AS-001 11.11 11.11

UCS9 Availability | +1 AS-001 16.67 16.67

Total Benefit Score for Architecture Strategy AS-001 +85 Benys

Step-4: Cost and Schedule Analysis

Forth step of the CBAM is to determine the project cost and schedule implications.

117

TABLE 6.6
Cost and Schedule Evaluation 7
Scenario | Quality °% Time | Effort | Cost US § Architecture
iD Attribute Required for (man-day) | $1000/ . Strategy
| Implementation 30days -
UCSI Performance | 23.33 7 233.31 AS-008
ucs?2 Security 3333 10 3333 AS-008
UCS3 Availability 1.67 0.5 16.665 AS-008
ucs4 Reliability 1.67 0.5 16.665 AS-008
UCS5 Reliability 1.67 0.5 16.665 AS-008
UCS4 Modifiability | 1.67 0.5 16.665 AS-008
UCs7 Modifiability | 1.67 0.5 16.665 AS-008
IROTERY Reliability 6.67 i 66.66 AS-008
UCS9 Availability 3.34 1 33.33 AS-G08
75.02% Total Days 749,925 AS-008
=22.5/30
UCS1 Performance | 23.33 7 233.31 AS-007
UCs2 Security 53.35 16 533.28 AS-007
UCS3 Availability 1.67 0.5 16.665 AS-007
1JCS4 Reliability 1.67 0.5 16.665 AS-007
UCSs Reliability 1.67 0.5 16.665 AS-007
UCS6 Modifiability | 1.67 0.5 16.665 AS-007
UCSs7 Modifiability | 1.67 0.5 16.665 AS-007
UCSE Reliability 6.67 2 66.66 AS-007
UCSso Availability 3.34 1 33.33 AS-007
95.02% Total Days 949 905 AS-007
= 28.5/30 - _
UCS1 Performance | 23.33 7 233.31 AS-066
UCS2 | Security 1333 4 13332 | AS-006
UCS3 Avatlability 1.67 0.5 16.665 AS-006
UuCcs4 Reliability 1.67 0.5 16.665 AS-006
UCS5 Rehability 1.67 0.5 16.665 AS-006
Uucse Modifiability | 1.67 0.5 16.665 AS-006
UCsy Maodifiability | 1.67 0.5 16.665 AS-006
UCSS Reliability 6.67 2 66.66 AS-006
UCSS Availability 3.34 1 33.33 AS-006
55.02% Total Days | 549.945 AS-006
1 =16.5/30
| UCSI Performance | 23.33 7 233.31 AS-005
UCS2 Security 13.33 4 133.32 AS-005
UCS3 Availability 1.67 0.5 16.665 AS-005
JCS4 Reliability 1.67 0.5 16.665 AS-005
UCSss Reliability 1.67 0.5 16.665 AS-005
UCS6 Modifiability | 1.67 0.5 16.665 AS-005
UCs7 Modifiability | 1.67 0.5 16.665 AS-005
UCSS Reliability 6.67 2 66.66 AS-005
UCSs9 Availability 3.34 i 3333 AS-005
55.02% Total Days 549945 AS-005
= 16.5/30

118

Time required for implementing cach quality attribute for each architectural

strategy was calculated along with the effort required for development. Project cost

was determined for each architectural strategy and results are given in the table 6.6.

TABLF. 6.6 (Continued)
Cost and Schedule Evaluation
Scenario | Quality | % Time Effort . | Cost USS | Architecture
ib Attribute : Required for . | (man-day) | $1000/ Strategy
Implementation | 30days
UCSI Performance | 23.33 7 23331 AS-004
UC2 [Security 33.33 10 3333 AS-001
UCS3 Availability 1.67 0.5 16.665 AS-004
UCs4 Reliability 1.67 0.5 16.665 AS-004
UCS5 Reliability 1.67 0.5 16.665 AS-004
UCS6 Modifiability | 1.67 0.5 16.665 AS-004
UCK7 Modifiability | 1.67 0.5 16.665 AS-004
UCss Reliability | 6.67 2 66.66 AS-004
UCS9 Availability 3.34 1 33.33 AS-004
75.02% Total Days | 749.925 AS-004
B =22.5/30
UCS1 Performance | 23.33 7 233.31 AS-003
UCs2 Security 10 3 99.99 AS-003
UCS3 Availability 1.67 0.5 16.665 AS-003
| UCS4_ [Reliability | 1.67 0.5 16.665 AS-003
UCS5 Reliability 1.67 0.5 16.665 AS-003
UCSo Modifiability | 1.67 0.5 16.665 AS-003
UCS7 Modifiability | 1.67 0.5 16.665 AS-003
LICS8 Reliability 6.67 2 66.66 AS-003
UCs9 Availability 3.34 1 33.33 AS-003
51.69% 15.5/30 516.615 AS-003
UCS1 Performance | 23.33 7 233.31 AS-002
LiCS2 Security 56.66 17 566.61 AS-002
UCS3 Availability | 1.67 0.5 16.665 AS-002
US4 Reliability 1.67 0.5 16.665 AS-002
LUCS5 Reliability 1.67 0.5 16.665 AS-002
| UCS6 Modifiability ; 1.67 0.5 16.665 AS-002
|UCS7 | Modifiability | 1.67 0.5 16.665 AS-002
UCS8 . Reliability 6.67 2 66.66 AS-002
UCS9 Availability 3.34 1 33.33 AS-002
98.35% 29.5/30 983.235 AS-002 -
UCS1 Performance | 23.33 7 233.31 AS-001
L UCS2 Security 16.66 5 166.65 AS-001
| UCS3 Availability | 1.67 0.5 16.665 AS-001
UCS4 Reliability 1.67 0.5 16.665 AS-001
UCS5 Reliability 1.67 0.5 16.665 AS-001
UCS6 Modiftability | 1.67 0.5 16.665 AS-00]
UCS7 Modifiability | 1.67 0.5 16.665 AS-001
UCS8 Reliability 6.67 2 66.66 AS-001

119

TALLE 6.7
Software and Licensing Cost
Item Software Cost US$ | License Cost US$ | Total Cost US $
Oracle 11g Database 70 17500 17570
Oracle WebLogic Suite | 180 45000 45180
Oracle Java 100 100
| Total Cost of All Items L 62850

In the next step cost of software components was calculated and is given in the table
6.7. Finally the project cost was calculated and given below.

Total cost of development: Development time x cost per month = 12 x 10008 = 12000 US $.
Total cost of equipments: 450 US §.

Total cost of project: 75300 US §.

Step-5: ROI Calculation
In fifth step Return on Investment (ROI) is calculated for each architectural strategy

and is given in the table 6.8.

TABLE 6.8
Return on Investment (ROT)
Architectural Strategy | Cost (US §) Benefit (Benys) ROIX
. Benefit/Cost
. (Benys/S)
AS-001 583.275 85 0.1457
AS-002 983.235 86.67 0.0881
AS-003 516.615 90 0.1742
AS-004 749,925 90 0.1200
AS-005 549,945 86.67 0.1576
AS-006 549.945 91.67 0.1667
AS-007 949.905 91.67 0.0965
AS-008 749925 100 0.1333

Step-6: Cost and Benefit Analysis of Architectural Strategies

Sixth step of the process involve cost-benefit analysis of all architectural strategies. In case of
software quality management system architectural strategy AS-3 and AS-6 have high
Benefit/Cost. However, AS-8 and AS-7 have high benefit and filtered for further
considerations. However, architectural strategy AS-8 was selected. when system was
implemented. This strategy was selected based on the security requirement for the software
quality management system. The strategy was based on the implementation of Oracle ADF
Form-Based security. Fig.6.9 shows the cost benefit analysis for all architectural strategies

this figure is partially adapted from Fig.2 [62].

120

A%
" - ry otrcen o e o
? 3 -
:&;
e e
AS-3 A8-4
+ A48 + AS-2
o ASI
s R o TN
Fig.6.9 Cost-Benefit Analysis
Source: Fig.2, pp.301 [62]

6.5.2 Return on Investment (ROI) for Architectural Strategies
| Return on Investment (ROI) for each architectural strategy is calculated by
dividing total benefit B; to the Cost C; of implementing it i.e. Ri = B/C;
Example: Raso0; = 85/583.275 =0.1457
6.5.3 Cost Estimation Results

CBAM was found to be extremely helpful for architecture base software cost

and schedule estimation.

Hoaw
M C2an
W ARD
BATAM
BAn0

Fig.6.10. Activity Based Tume Distribution

121

All the activities in this process component were non-coding and could not be

estimated if Personal Software Process was used for estimation of cost or schedule.
Therefore, activity based cost estimation was found to be very helpful for project cost
and schedule estimation. The time distribution among different phase of the process is
shown in Fig.6.10. CBAM took about 32.95% time, ATAM utilized 31.44%, QAW
21.76%, ADD 8.85%, and ARID consumed 5% of the project time.

WUSCT
58502
W USC3
B usCy
W UECE
MUS(S
B USCT
wE USCE

i USCH

Fig.6.11. Quality Attribute Score Contribution

Use case scenario UCS2 concerning security and UCS9 concerning availability
have high contribution and their quality attribution score is 16.67%. Quality attributes

score contribution for all use case scenarios is shown in Fig.6.11.

AS-1 AS-2 AS-3 AS-4 AS-S AS-6 AS-7 AS-3
Yeaxis: Architectin ol Strategies

Y-axis: Cost (USH

Fig.6.12 Cost Analysis

122

Architectural strategy AS-2 and AS-7 require more cost than AS-3, AS-5 and AS-
6. However, AS-3 and AS-7 have high benefit/cost. Project cost requirement for all

the architectural strategies is shown in Fig.6.12.

4.7 4.8
Co W H
€L TR R— T — .

35F QL K4 AW ADD ARID ATAM (3AM
X.axis: Processes and Activites

Y.axis: Tiine

Fig.6.13. Activity Based Time Analysis

§ ST SCLXRL

@ CAW ADD ARIDATAN
{BAN

Fig.6.14 Time Analysis

The activity based time analyses were performed to estimate the project cost.
These analyses are shown in Fig.6.13, and Fig.6.14. 85.16% project time was spent in

coding activities such as XML, SQL and JSF. 14.84% time was spent in architecture

123

design and evaluation. These processes includes QAW, ADD, ARID, ATAM and
CBAM.

6.5.4 Research Findings Regarding Cost Estimation

The integration of architecture design and evaluation processes were found to
be extremely helpful for architecture based cost and schedule estimation. If PSP were
used, cost of project at architecture level would be inaccurate and misleading. Also
project risk were identified and mitigated before detailed design. If these risks were
unidentificd, stakeholder may have reguirement conflicts. Furthermore project

schedule and cost would be impossible to estimate accurately.

6.6 Case Study Part-2: Personal Software Process

Personal Software Process (PSP) was ecxecuted first and then Personal
Integrated Process (PIP) was executed to find the impact of process change. Since
PSP3 is cyclic and stand alone process and contains forms and scripts of all seven
processes of standard PSP, therefore, PSP3 was integrated in PIP. Standard PSP
contains seven processes PSPO, PSPO.1, PSP1, PSPi.1, PSP2, and PSP2.1 and

exccuted separately. In this section only the staisdard PSP process will be discussed.

6.6.6 Case Study Part-2: Personal Software Process Results

In PSPO0 basic measures such as time and defects are involved. A program was
developed in Structured Query Language (SQL) which took 7.75% time for planning,
23.26% time for design, 58.91% time for code, 1.94% time for compile, 1.94% time
for test, 6.2% time for post-mortem. Only one defect was injected during code and
removed in compile phase.

In PSPO.1 seven programs were developed. Basic measures such as time,
defects and program size was measured for all programs developed in PSP0.1. These
seven programs contain reuse (R) value of 476 lines of code. Total new and changed
lines of code (N) were found to be 452, and total lines of code (T) were found to be
932. The “to-date percentage time” spent in planning was 10.74%, in design it was
16.61%, in code it was 34.6%, in compile it was 2%, in test it was 15.14%, and in
post-mortem it was 20.91%. The “to-date percentage defects injected” in design was

37.5% and in code it was 62.5%. However, no defect was injected in planning,

124

compile and test phases. The “fo-date perc;entage defects removed” in compile was
50% and in test it was 50%.

In PSP1 only one program was developed. This is because in standard PSP
each process is different from other. Due to process changes it was not possible to
accurately and precisely estimate the program size, defects, and time. Results of PSP1
are discussed in this paragraph. Productivity for this program was 29.22 line of
code/hour. 255 lines of code were added (A) in the system. To-date value for “foral
new and changed line of code (N)" was 255, for “total line of code (T)” it was 323,
and for “estirwaied object lines of code (Fj” 1t was 312. To-daic percentage value for
time spent in planning was 45.7%, in design it was 10.8%, in code it was 20.3%, in
compile it was 1.11%, in test it was 17.5%, and in post-mortem it was 4.6%. To-date
percentage value for defect injected in design was 100%. To-date percentage value for
defect removed in test was 100%.

In PSP1.1 actual productivity was 41.00 lines of code/hour. Cost Performance
Index (CPI) was 1.05, 723 lines of code was added (A) in the system. To-date value
for total new and changed lines of code (N) was 723. To-date value for total lines of
code (T) was 791. To-date value for percentage reused lines of code was 8.6%. To-
date volue for estimated object lines of code (E) was 616. To-date value for time spent
in planning was 28.35%, in design it was 10.4%, in code it was 46.32%, in compile it
was 1.89%, in test it was 6.9%, and in post-mortem it was 6.14%. To-date percentage
value for defect injected in design was 40% and in code it was 60%. To-date

percentage value for defect removed in code was 20%, and in compile it was 80%.

Earned Vaiue .| . EffortHours
1690 A T
T8
80 “
e
| %
Fe 31
: 33 8-
20 4 e
£
—— ¢ i Fian
20 4 Fran A :
2 4 —— AClua!
e ACiUA PRI
9 — = SR R
w25 w26 2@ a8 - Tamel T laet| i 225 THW® Ty 228 L9 33

Fig.6.15. PSP1.1 Earned Value and Effort Hours

125

Fig.6.15 shows PSP1.1 results of earned value and effort hours in graphical format.
This way PSP helps in schedule and task planning using earned value concepts.
However, it is very short schedule but a practical step toward a project planning.

In PSP2 actual to-date productivity was 65.75 lines of code/hour. CPI was 1.6.
To-date percentage reused was 1.49%. Total defects/KLOC was 0.75. Actual
percentage vield (Y) was 100%. 1326 lines of code was added (A) in the system. To-
date value for new and changed lines of code (N) was 1326. To-date value for total
lines of code (T) was 1346. To-date value for estimated object lines of code (E) was
1178. To-daic perceniage time spent in planning was 31.32%, in design it was
11.57%, in design review it was 11.57%, in code it was 30.16, in code review it was
0.41%. in compile it was 0.9%, in test it was 3.3%, and in post-mortem it was
10.77%. To-date percentage value forl defect injected in design was 100%. To-date
percentage value for defect removed in design review was 100%. Defect removal
efficiency for design review was 0.43,

Fig.6.16 shows PSP2 schedule and task planning results in graphical format.
Cumulative planned value and cumulative earned value are drawn along y-axis in

percentage, where as time is plotted along x-axis in term of date of task completion.

Eaméd\fal_ue_ R I R e Q._-fj;.",Effﬁt!H'Q_”?'s . TR
184 G 30 1
Loas
80 - L
@ g
89. &0 = e _Z'
O. 0
B il 5-;_’!5_ 4
49 38 R
a0
T T Plan
20
5 e At
. e AR SRR ;
3 3% . 38 oo ¥4 WE 3637 38 3 w0

Fig.6.16. PSP2 Earned Value and Effort Hours

In PSP2.1 actual to-date productivity was 34.7 lines of code/hour. CPI was
0.66. To-date percentage reused was 3.16%. To-date value for total defects/KLOC
was 9.5. To-date percentage yield was 83.33%. To-date percentage appraisal COQ
was 14.4%. To-date percentage failure COQ was 4.74%. To-date value for COQ A/F

126

ratio was 3.03. 622 lines of code was added (A) in the system. To-date value for total
lines of code (T) was 632. To-date value for new and changed lines of code (N) was
622. To-date value for estimated object lines of code (E) was 548. To-date percentage
time spent in planning was 40.2%, in design it was 4%, in design review it was 7.4%,
in code it was 22.7%, in code review it was 7.3%, in compile it was 0.7%, in test it
was 4.1%, and in post-mortem it was 13.6. To-date percentage defects injected in
code was 100%. To-date percentage defects removed in code review was 83.33% and
in compile its value was 16.67%. To-date defect removal efficiency for code review

was 3.9 and for compilz -t was 8.57.

]
160 I
L
o) ; . .14 b
IR
.4 . .
& § e :
& 8o g_ :w
40 e
20 4 Fan ' :"::4 1
@ 2
[’ &7 H
¥ 32 23N IR I 3l UM 32 32 3 o I
P St i S pae G
Fig.6.17. PSP2.1 Earned Value and Effort Hours

Fig.6.17 shows PSP2.1 schedule planning results in graphical format in this figure
plan value and earned value have same data of completion. After going through
various PSP exercises and availability of historical data regarding size, time and
defect produces scheduls planning and task planning results more precise and

accurate.

Fig.6.18 shows correlation between program size “new and changed (N)” and
development time (T). Correlation coefficient was calculated for PSP2.1 using
PROBE. It was found that there is a strong correlation between program size and

development time. However, results were not significant enough.

127

‘1400 ,‘; SRR

%
w
g 1290
=] H
£ ;
E 1093 e » o— . e rrmios o i
£ g
& BOO -
E ° :
E H
® 520 o % Seriesl
& :
E 400 [—Linear {Seriesl}
'§ H
g 28{} . VVVVVVVV

o S00 1000 15300

Program Size "New and Changed” (N} Lines of Code
Fig.6.18. PSP2.1 Correlation between program size and development time

6.6.7 Case Study Part-2: Research Findings.

It was found that standard PSP involves many manual calculations, and took huge
portion of development time. This also results in variétion of precision and accuracy
of development time. However, process automation can eliminate this inconsistency.
It was also found that a separatz process is required for requirement engineering,
database development, and architecture design and evaluation. These suzgestions

were included in “Process Improvement Proposal (PIP)” during PSP execution.

6.7 Personal Software Process and Personal Integrated Process
Comparison

Table 6.9 and table 6.10 provide a comparative analysis of two processes i.e. Personal
Software Process (PSP) and Personal Integrated Process (PIP). Labor rates are high
tor PIP because of the techmicality of the process. PIP involves advanced concepts and
skills which normal software engineer do not possess. However, with this investment
many risks were identified and mitigated. If these risks were not identified and
mitigated project cost estimation would be incorrect or misleading. There is very
slight difference in productivity for these processes. This shows that although PIP is
difficult process and involves number of other process scripts but have very slight

impact on productivity of software engineer.

128

TABLE 6.9

Process Comparison

Use Case Modeling

System Sequence Diagram

Operation Contract

Domain Modeling

Computer Hardware Selection Process

Computer Network Design Process

Database Design Process

QAW

ADD

ARID

I
I

ATAM

PSP Personal Integrated Process
Time Measure PSPO Y
Defect Measure PSP0 Y
Size Measure PSPO.1 Y
Process Improvement Proposal PSPO.1 Y
Coding Standard PSPO.1 Y
% Reuse PSPO.1 Y
% New Reuse PSP0.1 Y
PROBE PSP1 Y
Productivity PSP1 Y
Schedule Planning PSP1.1 Y
Task Planning PSP1.1 Y
CPI PSPI.1 Y
Design Review PSP2 Y
Code Review PSP2 Y
Total Defects/KLOC PSP2 Y
% Yield PSP2 Y
Program Size UPL 70% PSP2 Y
Program Size LPI 70% PSP2 Y
Defect Removal Efficiency. PSP2 Y
Defect Removal Leverage PSP2 Y
% Appraisal COQ PSP2.1 Y
% Failure COQ PSP2.1 Y
COQ A/F Ratio PSP2.1 Y
Functional Specification PSP2.1 Y
Logic Speci:ication PSP2.1 Y
Operational Scenario PSP2.1 Y
State Specification PSP2.1 Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

CBAM

ZIZ| 2| Z\ZZ|Z|Z2|Z\Z|Z|Z

129

TABLE 6.10

Process Comparison

PSP Personal Integrated Process
Development Language SQL SQL
Program Size (J.ines of code) 3380 3827

Development Time (Minutes)

4690=78.167H

5587 Minutes=93.116 Hours

Productivity (Lines of code/Hour)

43.24

41.09

Labor Rates

US $ 50/1Hour

US § 100/1Hour

Software Development Cost US $3908.35 US $9311.6
Availability Risk N/A 33.34%
Performance Risk N/A 11.11%
Modifiability Risk N/A 22.22%
' Reliability Risk N/A 22.22%]
Security Risk N/A 11.11%

CHAPTER 7
INTRODUCTION, CONCLUSION, LIMITATIONS,
FUTURE WORK, FINDINGS

7.1 INTRODUCTION

In this chapter research findings regarding literature review and case study will be
discussed in brief. The limitations in case study regarding its application to other
domain are discussed along with its application to technology. Conclusion drawn

from different analysis is discussed in brief and finally the future work is give.

7.2 FINDINGS

Out of 98 research publications selected during literature survey on PSP only 30
publications were related with process modification or integration of PSP. So there is
necd for further work on process modification or integration. Proposed process if
focus on domain and technology they can be used for precise estimation of cost,
schedule, and identification of risks

The time spent in manual planning and post-mortem was 50% for PIP. This time can
be reduced by using automated tool like FSQMS. Oracle 10g Express Edition was
found to be helpful in reducing project defects during code review. This was because
of the code generation facility provided by Oracle 10g Express Edition. It was also
found that the deployment phase is necessarv and will he integrated within the
process.

Integration of architecture design and evaluation found to be very helpful in cost
estimation. If however PSP was used the cost of project would be inaccurate or
misleading. Project risk were identified and mitigated before detailed design. If these
risks would not be identified stakeholder may had requirement conflicts. Project cost

and schedule were better estimated.

7.3 LIMITATIONS

130

131

The case study has some limitation such as it was evaluated for developing
software related to “Business Information System (BIS)”. So there is need to evaluate
“Personal Integrated Process (PIP)” for embedded systems such as Microcontroller,
FPGA, DSP based systems, and for industrial systems such as SCADA, PLC, DCS,
HMI based systems. These systems may or may not require database development
process. In case if database development process is not required process scripts
regarding database development process may be excluded from the system

development process.

7.4 FUTURE WORK

Business Information Systems (BIS) such as enterprise resource planners (ERPs)
are consists of thousands of users spread around the globe. Project cost estimation for
such large and complex system involves the estimation of all components such as
software, hardware and network. Personal Integrated Process is designed to address
the estimation of such large coinplex system. However, due to the time constraint
project was implemented on relatively small project. In future PIP will be applied on
such large complex system to es‘imate and compare actual values of cost, benefit,
scheduie, software size, defects, and risks. Return on Investment (*.01) was calculated
for each architectural strategy. However, ROI need to be calculated for whole project

and is the part of future work.

7.5 CONCLUSION

Case study was successfully designed, executed and analyses were performed
to find the impact of architecture design and evaluation on project risk, cost and
schedule. Software quality management system was successfully implemented using
OracleJDeveloper Application Development Framework. System was developed
using open source software Java. This system was designed to automate the Personal
Integrated Process. Open source software was used to facilitate the transfer of
knowledge and technology. The system can be used in the university to carry out
further research in the field of software process engineering or it can be used in any

commercial CMMI company for process improvement and automation.

132

REFERENCES

{11 W.S. Humphrey, “The Personal Process in Software Engineering,” Proceedings of
the IEEE 1994 Third International Conference on the Software Process, pp. 69-
77, 1994, doi: 10.1109/SPCON.1994.344422.

{2] W.S. Humphrey, 4 Discipline for Software Engineering. ISBN 81-7808-435-X,

Pearson Education Asia.

[3] M. Pomeroy, R. Cannon, T.A. Chick, J. Mullaney, W. Nichols, “The Personal
Software Process (PSP) Body of Knowledge,” version 2.0, Special Report
CMU/SEI-2009-SR-018, Carnegie Mellbn University, Software Engineering
Institute, 2009.

[4] CMMI Product Team, “CMMI for Developinent,” version 1.2, Technical Report
CMU/SEI-2006-TR-008, Carnegie Mellon University, Software Engineering
Institute, August 2006.

[5] W.S. Humphrey, “The Team Software Process (TSP),” Technical Report
CMU/SEI-2000-TR-023, November 2000.

[6] P. Ferguson, W.S. Humphrey, S. Khajenoori, S. Macke, A. Matvya, “Results of
Applying the Personal Software Process,” IEEE Computer, vol. 30, no. 5, pp. 24-
31, 1997. doi: 10.1109/2.589907.

[7] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-Based Analysis of
Software Architecture,” IFEE Soffware, vol. 13, no. 6, pp.47-55, November 1996,
doi: 10.1109/52.542294.

133

[8] R.L. Nord, J. McHale, F. Bachmann, “Combining Architecture-Centric
Engineering with the Team Software Process,” Technical Report CMU/SEI-2010-

TR-031, Carnegie Mellon University, Software Engineering Institute, December
2010.

[9] D.E. Perry, S.E. Sim, S.M. Easterbrook, “Case Studies for Software Engineers,”
Proceedings of the 26th International Conference on Software Engineering
(ICSE’04), pp. 736-738, 2004, doi: 10.1109/ICSE.2004.1317512.

[10] D.E. Perry, S.E. Sim, S.M. Fasterbrook, “Case Studies for Software Engineers,”
Proceedings of the 29" Annual IEEE/NASA Sofiware Engineering Workshop,
Tutorial Notes, pp. 96-159, April 2005, doi: 10.1109/SEW.2005.2.

I11] B. Kitchenham, L. Pickard, S.L. Pfleeger, “Case Studies for Method and Tool
Evaluation,” [EEE Software, vol. 12, no. 4, pp. 52-62, July 1995, doi:
10.1109/52.391832.

[12] P. Breraton, B. Kitchenham, D. Budgen, Z. Li, “Using a protocol template for
case study planning.” Proceedings of the 12" International Conference on
Evaluation and Assessment in Software Engineering (FASE), University of Bari,
Ttaly, pp. 26-27 June 2008.

[13] M. Host, P. Runeson, “Checklists for Software Engineering Case Study
Research,” Proceedings of the IEEE First International Symposium on Empirical
Sofiware Engineering and Measurement, pp. 479-481, 2007, doi:
10.1109/ESEM.2007.46.

[14] L. Dobrica, and E. Niemela, “A Survey on Software Architecture Analysis
Methods,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp.638-
653, 2002, doi:10.1109/TSE.2002.1019479.

[15] P. Clements, R. Kazman, M. Klein, “Working Session: Software Architecture
Competence,” Proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA'07), 2007, dot: 10.1109/WICSA.2007.50.

134

[16] 1. Syu, A. Salimi, M. Towbidnejad, T. Hilburn, "A Web-Based System for
Automating a Disciplined Personal Software Process (PSP),” Proceedings of the

Tenth IEEE Conference on Software Engineering Education & Training, pp.86-
96, 1997, doi: 10.1109/SEDC.1997.592443.

[17] P.M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani, S. Zhen,
W.E.J. Doane, “Beyond the Personal Software Process: Metrics collection and
analysis for ihe differently disciplined,” Proceedings of the 25™ International
Conference on Software Engineering (ICSE'03), pp. 641-646, 2003, doi:
10.1109/ICSE.2003.1201249.

[18] A. Sillitti, A. Janes, G. Succi, T. Vernazza, “Collecting, Integrating and
Analyzing Software Metrics and Personal Software Process Data,” Proceedings of
the 29" EUROMICRO Conference “New Waves in System Architecture”
(EUROMICRQO03), pp. 336-342, 2003, doi: 10.1109/EURMIC.2003.1231611.

[19] R. Sison, D. Diaz, E. Lam, D. Navarro. J. Navarro, “Personal Software Process
(PSP) Assistant,” Proceedings of the 12" Asia-Pacific Software Engineering
Conference (APSEC’05), 2005, doi: 10.1109/APSEC.2005.87.

[20] O. Akinwale, S. Dascalu, M. Karam, “DuoTracker: Tool Support for Software
Defect Data Collection and Analysis,” Proceedings of the International
Conference on Software Engineering Advances (ICSEA'06), 2006, doi:
10.1109/ICSEA.2006.261278.

[21]) H. Hassan, MLH.N.M. Nasir, S.S.M. Fauzi, “Incorporating Software Agents in
Automated Personal Software Process (PSP) Tools,” Proceedings of the IEEE o

International Symposium on Communications and Information Technology, pp.
976-981, 2009, doi: 10.1109/ISCIT.2009.5340991.

[22] D. Roscea, C. Li, K. Moore, M. Stephan, S. Weiner, “PSP-EAT- Enhancing a
Personal Software Process Course,” Proceedings of the 31st Annual ASEE/IEEE

135

Frontiers in Education Conference, pp. T2D-18, vol. 1, October 10-13, 2001, doi:
10.1109/FIE.2001.963883.

[23] 1. Etxaniz, “Software Project Improvement through Personal Software Process in
a R&D Center,” Proceedings of the IEEE FUROCON International Conference
on “Computer as a Tool”, pp. 413-418, September 9-12, 2007, doi:
10.1109/EURCON.2007.4400502.

(241 A. Torahim, H. Choi, “Aclivity time coliection and analysis ih-ough temporal
reasoning,” Proceedings of the [EEE 11 * International Conference on Advanced

Communication Technology (ICACT’9), vol. 1, pp. 579-584.

[25] K.A Gary, T.E. Lindquist, “Cooperating Process Components,” Proceedings of
the IEEE Twenty Third Annual International Conference on Computer Software
and Applications(COMPSAC '99), pp. 218-223, doi:
10.1109/CMPSAC.1999.812704.

[26] Z. Pan, H. Park, J. Baik, H. Chot, “A Six Sigma Framework for Software Process
Improvements and its Implementation,” Proceedings of the IEEE [4th Asia-
Pacific Software Engineering Conference (APSEC’07), pp. 446-453, 2007, doi:
10.1109/ASPEC.2007.43.

[27] Y. Park, H. Park, H. Choi, J. Baik, “A Study on the Application of Six Sigma
Tools to PSP/TSP for Process Improvement,” Proceedings of the 5" IEEE/ACIS
International Conference on Computer and Information Science and 17
IEEE/ACIS International Workshop on Component-Based Sofiware Engineering,

Software Architecture and Reuse, pp. 174-179, 2006, doi: 10.1109/ICIS-
COMSAR.2006.13.

[28] J.A. Kim, I.Y. Taek, S.M. Hwang, “Study of Agent Based Process Management
Environment — Mercury-,” Proceedings of the IEEE Fourth International

Conference on Software Engineering Research, Management and Applications

(SERA'06), pp. 132-136, 2006, doi: 10.1109/SERA.2006.65.

136

[29] J.A. Kim, “Process Management Technique Using 6 Sigma Tools and PSP,”
International Journal of Sofiware Engineering and its Applications, vol. 1, no.1,
pp. 1-18, July, 2007.

[30] J.A. Kim, S.Y. Choi, T.H. Kim, “Management Environment for Software Process
Improvement,” Proceedings of the IEEE International Symposium on Computer
Science and its Applications, pp. 292-296, 2008, doi: 10.1109/CSA.2008.29.

[31] L.D. Sauer, T.E. Lindquisi, J. Cairney, “Tracking Personal Processes in Group
Projects,” Proceedings of the IEEE Twenty Third Annual International
Conference on Computer Software and Applications, pp. 364-369, 1999, doi:
10.1109/CMPSAC.1999.812740. |

[32] Z. Yingying, Z. Xianzhong, J. Wang, “A Perspective of PSP Modeling Based on
Control Theory,” Proceedings of the IEEE International Conference on
Networking, Sensing and Control (ICNSC'10), pp. 342-345, 2010, doi:
10.1109/ICNSC.2010.5461508.

{33] A. Babar, J. Potter, “Adapting the Personal Software Process (PSP) to Formal
Methods,” Proceedings of the IEEE Australian Software Engineering Conference
(ASWEC'03), pp. 192-201, 2005, doi: 10.1109/ASWEC.2005.12.

[34] L. Williams, “Integrating Pair Programming into a Software Development
Process,” Proceedings of the IEEE 14" Conference on Software Engineering
Education and Training, pp. 27-36, 2001, doi: 10.1109/CSEE.2001.913816.

[35] D. Escala, M. Morisio, “A Metric Suite for a Team PSP,” Proceedings of the
IEEE Fifth International Software Metrics Symposium, pp. 89-92, 1998, doi:
10.1109/METRIC.1998.731230.

{36] H. Suzumori, H. Kaiya, K. Kaijiri, “VDM over PSP: A Pilot Course for VDM
Beginners to Confirm its Suitability for Their Development,” Proceedings of the
IEEE 27" Annual International Computer Sofiware and Applications Conference
(COMPSAC’03), pp. 327-334, 2003, doi: 10.1109/CMPSAC.2003.1245361.

137

[37] A.W. Brown, “Personal Software Engineering Project Management Process,”
Proceedings of the IEEE International Conference on Sofiware Engineering
(ICSE’99), pp. 669-670, 1999.

[38] C.A. Moore, “Lessons Learned from Teaching Reflective Software Engineering
using the Leap Toolkit,” Proceedings of the IEEE International Conference on
Software Engineering (ICSE 2000), pp. 672-675, 2000, doi:
10.1109/ICSE.2000.870464.

[39] M.H.N.M, Nasir, AM. Yusof, “Antomating a Modified Personal Software
Process,” Malaysian Journal of Computer Science, vol. 18, no. 2, pp. 11-27,
December 2005.

[40] H. Yu, X. Bao, S. Yang, “Research and Improvement of Team Software
Process,” IEEE World Congress on Computer Science and Information
Engineering (CSIE), pp. 654-658, 2009, doi: 10.1109/CSIE.2009.911.

[41] P. B. Kruchten, “The 4 + 1 View Model of Architecture,” IEEE Software, vol.
12, no. 6, pp. 42-50, November 1995, doi: 10.1109/52.469759.

[42] D.1. Pamnas, P.C. Clements, “A Rational Design Process: How and Why to Fake

it,” JEEE Transactions on Software Engineering, vol. 12, no. 2, pp 251-257.
February 1986.

[43] L. Sha, M.H Klein, J.B. Goodenough, “Rate Monotonic Analysis for Real-Time
Systems,” Technical Report CMU/SEI-91-TR-6, Sofiware Engineering Institute,
Carnegie Mellon University, March 1991.

[44] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, “FORM: A Feature-
oriented reuse method with domain-specific reference architectures,” Annals of

Softiware Engineering, vol. 5, no.1, pp, 143-168, 1998.

138

[45] P. Bengtsson, J. Bosch, “Scenario-Based Software Architecture Reengineering,”
Proceedings of the IEEE Fifth International Conference on Software
Reuse(ICSR98), pp. 308-317, 1998, doi: 10.1109/1CSR.1998.685756.

[46] J. Bosch, P. Molin, “Software Architecture Design: Evaluation and
Transformation,” Proceedings of the IEEE Conference and Workshop on
Engineering of Computer-Based Systems (ECBS’99), pp. 4-10, March 1999, doi:
10.1109/ECBS.1999.755855.

{47] M. Klein, R. Kazman, “Attribute-Based Architectural Styles,” Technical Report
CMU/SEI-99-TR-022, Software Engineering Institute, Carnegie Mellon
University, October 1999,

[48] F. Bachmann, I.. Bass, G. Chastek, P. Donohoe, F. Peruzzi, “The Architecture
Based Design Method,” Technical Report CMU/SEI-2000-TR-001, Software

Iingineering Institute, Carnegie Mellon University, January 2000.

[49] M. Matinlassi, E. Niemela, L. Dobrica, “Quality-driven architectuire design and
quality analysis method,” VTT Publications 456, Espoo. ISSN 1455-0857.
Technical Research Center of Finland, 2002.

[50] M.R. Barbacci, R, Ellison, A.J. Lattanze, J.A. Stafford, C.B. Weinstock, W.G.
Wood, “Quality Attribute Workshops (QAWSs)”, Third Edition, Technical Report
CMU/SEI-2003-TR-016, Software Engineering Institute, Carnegie Mellon
University, August 2003.

[51] F. Bachmann, L. Bass, M. Klein, “Deriving Architectural Tactics: A Step
Toward Methodical Architectural Design,” Technical Report CMU/SEI-2003-TR-
004, Software Engineering Institute, Carnegie Mellon University, March 2003.

[52] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, B. Wood,
“Attribute-Driven Design (ADD),” version 2.0. Technical Report CMU/SEI-2006-

TR-023, Software Engineering Institute, Carnegie Mellon University, November
2006.

139

[53] R. Kazman, L. Bass, M. Klein, “The essential components of software
architecture design and analysis,” The Journal of Systems and Software, vol. 79,
no. 8, pp. 1207-1216, August 2006.

[54] C. Hofmeister, P. Kruchten, R.I.. Nord, H. Obbink, A. Ran, P. America, “A
general model of software architecture design derived from five industrial
approaches,” The Journal of Systems and Software, vol. 80, no. 1, pp. 106-126,

January 20607,

[55] A. Tang, Y. Jin, J. Han, “A rationale-based architecture model for design
traceability and reasoning,” The Journal of Systems and Software, vol. 80, no. 6,
pp. 918-934, June 2007.

(56] X. Cui, Y. Sun, S. Xiao, H. Mei, “Architecture Design for the Large-Scale
Software-Intensive Systems: A Decision-Oriented Approach and the Experience,”
Proceedings of the 14" IEEE International Conference on Engineering of
Complex Computer Systems, pp. 30-39, 2009, doi: 10.1109/ICEC(CS.2009 42,

[57] R. Kazman, L. Bass, G. Abowd, M. Webb, “SAAM: A Method for Analyzing the
Properties of Sofiware Architectures”, Proceedings of the IEFEE | 6" International
Conference on Software FEngineering, pp. 81-90, May 1994, doi:
10.1109/ICSE.1994.296768.

[58] C. Lung. S. Bot, K. Kalaichelvan, R. Kazman, “An Approach to Software
Architecture Analysis for Evolution and Reusability,” Proceedings of 1997
Conference of the Center for Advanced Studies on Collaborative research

(CASCON’97), pp. 144-154, Oct. 1997.

[59] G. Molter, “Integrating SAAM in Domain-centric and Reuse-based Development

Processes,” Second Nordic Workshop on Software Architecture, 1999.

140

[60] P.C. Clements, “Active Reviews for Intermediate Designs,” Technical Report
CMU/SEI-2000-TN-009, Software Engineering Institute, Carnegie Mellon
University, 2000.

[61] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and S. J. Carriere,
“The Architecture Tradeoff Analysis Method,” Proceedings of the IEEE 4"
International Conference on Engineering of Complex Computer Systems, pp. 68-
78, 1998, doi: 10.1109/ICECCS.1998.706657.

[62] R. Kazman, J. Asundi, M. Klein, “Quantifying the Costs and Benefits of
Architectural Decisions,” JEEE Proceedings of the IEEE 23 International
Conference on Software Engineering (ICSE'23), pp. 297-306, May 2001,
doi:10.1109/1CSE.2001.919103.

{63] H. Choi, K. Yeom, “An- Approach to Software Architecture Evaluation with the
4+1 View Model of Architecture,” Proceedings of the IEEE Ninth Asia-Pacific
Sofiware Engineering Conference (APSEC’02), pp. 286-293, 2002, doi:
10.1109/APSEC.2002.1182998.

164] W.G. SARA, “Software Architecture Review and Assessment (SARA) Report,”
version 1.0, 2002.

[65] C. Stoermer, F. Bachmann, C. Verhoef, “SACAM: The Software Architecture
Comparison Analysis Method,” Technical Report CMU/SEI-2003-TR-006,

Software Engineering Institute, Carnegie Mellon University, 2003.

[66] Z. Wang, K. Sherdil, and N. H. Madhavji, “ACCA: An Architecture-centric
Concern Analysis Method,” Proceedings of the 5" Working IEEE/IFIP
Conference on Software Architecture (WICSA'05), pp. 99-108, 2005, doi:
10.1109/WICSA.2005.8.

[67] B. Florentz, M. Huhn, “Architecture Potential Analysis: A Closer Look inside
Architecture Evaluation,” Journal of Software, vol. 2, no. 4, October 2007.

141

[68] P. Bengtsson, “Architecture-Level Modifiability Analysis,” Doctoral
Dissertation, Series NO. 2002-2, Department of Software Engineering and
Computer Science, Blekinge Institute of Technology, ISBN 91-7295-007-2, 2002.

[69] L.G. Williams, C.U. Smith, “Performance Evaluation of Software Architectures,”
Proceedings of the ACM 1" International Workshop on Software and
Performance, pp. 164-177, 1998, doi: 10.1145/287318.287353.

17G] A. Berivlino, R. Mirandola, “Towards Componeni-Based Software Performance
Engineering,” Proceeding of CBSE Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction, May 2003.

[71) L.G. Williams, C.U. Smith, “PASA: A Method for the Performance Assessment
of Software Architectures,” Proceedings of the 3 International Workshop on

Software and Performance, pp. 179-189, 2002, doi: 10.1145/584369.584397.

[72] “HP Quality Center Software”, Data sheet 4AA0-9587ENW Rev. 3, Hewlett-
Packard Development Company, February 2009.

[73] C. Larman, Applving UML and Patterns: An Introduction to Objeci-Oriented
Analysis and Design and Iterative Development, Third Edition, ISBN: 0-13-
148906-2, Addison Wesley Professional, October 20, 2004.

[74] “Unified Modeling Language (UML) Specification: Infrastructure”, version 2.0,
OMG Adopted Specification, ptc/03-09-15, Object Management Group,

December 2003.

[75] R. M. Fred, A. H Jeffrey, Modern Database Management Fourth Edition, The.

Benjamin/Cummings Publishing Company, Inc.

[76] “Fusion Developer's Guide for Oracle Application Development Framework,”
11gRelease2 (11.1.2.0.0) E16182-01, Oracle, May 2011.

142

[77] C. Jones, “Activity-based software costing,” IEEE Computer, vol. 29, no. 5, pp.
103-104, May 1996, doi: 10.1109/2.494092.

[78] “Object-Oriented Application Analysis and Design for Java Technology
(UML)”, 00-226, Student Guide, Reviston B, Sun Microsystems, Inc., March
2000.

[79] M.A, Babar, L. Zhu, and R. Jeffery, “A Framework for Classifying and
Comparing Software Architecture Evaluation Methods,” Proceedings of ithe

Australian Software Engineering Conference (ASWEC '04), pp.309-318, 2004.

[80] M.A. Babar, 1. Gorton, “Comparison of Scenario-Based Software Architecture
Evaluation Methods,” Proceedings of the 11 * dsia-Pacific Software Engineering
Conference (APSEC04), pp.600-607, 2004, doi: 10.1109/APSEC.2004.38.

[81] R. Kazman, L. Bass, M. Klein, T. Lattanze, L. Northrop, “A Basis for Analyzing
Software Architecture Analysis Methods,” Software Quality Journal, vol. 13,
no.4, pp. 329-355, December 2005.

[82] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Second
Edition, ISBN: 0-321-15495-9, Addison Wesley, April 11, 2003.

[83] M.R. Barbacci, R. Ellison, A.J. Lattanze, J.A. Stafford, C.B. Weinstock, W.G.
Wood, “Quality Attribute Workshops”, Second Edition, Technical Report
CMU/SEI-2002-TR-019, Software Engincering Institute, Carnegie Mellon
University, June 2002,

143

RESEARCH PUBLICATIONS

The following research publications were produced during “Master of Science in
Software Engineering” thesis research project.

[1] H. Wagar, A. Shahbaz, “A Literature Review & Recommendations on
Personal Software Process Tools," International Journal of Reviews in

Computing, vol. 9, no. 4, pp. 26-33, April 10, 2012.

{2] H. Wagar, A. Shahbaz, “A Literature Review and Recommendations on
Software Architecture Evaluation,” International Journal of Reviews in

Computing, vol. 10, no. 4, pp. 28-35, July 31, 2012.

[3] H. Waqar, A. Shahbaz, “Software Quality Management System,” Journal of
Emerging Trends in Computing and Information Sciences, vol. 3, no. 8, pp.
1205-1212, August 2012.

E IEB NTRAL
ISLAJ’;‘@}J

