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ABSTRACT

Massive multiple input multiple output (MIMO) is believed to be a very important
technology to get 1000x data rates in wireless communication systems. Massive MIMO
occupies a very large number of antennas placed at the base station (BS) to communicate
and serve multiple users simultaneously. It has appeared as a promising technique to
realize high-throughput green wireless communications. Massive MIMO exploits the
higher degree of spatial freedom, to extensively improve the capacity and energy
efficiency of the system. Thus, massive MIMO systems have been broadly accepted as an
important enabling technology for 5th Generation (5G) systems. In massive MIMO
communication systems, a precise acquirement of the channel state information (CSI) is
needed for beamforming, signal detection, resource allocation, etc. Yet, having large
antennas at the BS, users have to estimate channels linked with hundreds of transmit
antennas. Consequently, pilot overhead gets prohibitively high. Hence, realizing the
correct channel estimation with the reasonable pilot overhead has become a challenging
issue, particularly for frequency division duplex (FDD) in massive MIMO systems. In
this thesis, by taking advantage of spatial and temporal common sparsity of massive
MIMO channels in delay domain, nonorthogonal pilot design and channel estimation
schemes are proposed under thé frame work of structured compressive sensing (SCS)
theory that considerably reduces the pilot overheads for massive MIMO FDD systems.
The proposed pilot design is fundamentally different from conventional orthogonal pilot
designs based on Nyquist sampling theorem. Finally, simulations have been performed to

verify the performance of the proposed methods and schemes. Compared to its
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conventional counterparts with fewer pilots overhead, the proposed schemes get better

performance of the system.
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Chapter 1. Introduction

This chapter gives background, motivation and an overview to understand the current
important research issues of the fifth generation (5G) wireless systems. Massive multiple
input multiple output (MIMO) communication is one of major technology and issues of
5G. Furthermore, the problem statement and research objectives are presented. The focus
of our research is on channel estimation for massive MIMO communication systems. A
compressive sensing (CS) based channel estimation approach is proposed in this thesis.
Finally, research philosophy, hypothesis, research methodology and thesis outlines are

presented.

1.1  Background and Motivation

The fourth generation (4G) wireless communication system has been set up or is soon
to be set up in many countries. Yet, with a sudden raise in number of wireless devices
and services, there are still several challenges and issues that are not being resolved and
accommodated by 4G, such as the energy consumption issue and spectrum crisis. Due to
new wireless applications the demand of more data rate and mobility has been
significantly increased for wireless system researchers and designers. Therefore,
designers have started investigation on fifth generation (5G) system. The 5G is expected
to be set up in 2020. Right now, it is very difficult to say or describe that what will be 5G.
However, there is an overall agreement across the world that the 5G network will achieve
10 times the data rate (the peak rate upto 1-10 Gb/s depending upon the mobility), energy
efficiency, spectral efficiency, 1000 times the capacity of system and approximately the

average cell throughput will be 25 times as compared to 4G systems. The target is to



"

q

19

achieve the ubiquitous and seamless communication by connecting the whole world in
terms of machine to people, people to machine, people to people and machine to machine
anywhere, whenever and wherever, by any type of services, devices and networks. This
means that 5G systems will provide communications in some special scenarios that are
not carried out by 4G systems [1].

The various feature requirements for 5G, promising key technologies and their future

challenges for 5G networks are summarized in the following categories:
1.1.1 Engineering Requirements of 5G

In order to identify the 5G engineering issues, and to prepare to understand and
resolve them, it is essential to initially recognize the important requirements for the 5G
system. It is significant to keep in mind that not all of these are necessary to be fulfilled at
the same time. The key requirements are mentioned below:

i. Data Rate: Data rate may be characterized into various types, and there is a goal target
for each item in 5G:

a) Collective data rate is the entire measure of data a network can provide, described in
bits/s/area. The broader agreement is that this number should be increased by
approximately 1000 times from 4G to 5G [2].

b) Edge rate, which is known as 5% rate shows the worst amount of data rate that a
network provides to a user. Targeted edge rate for 5G is about 100 Mbps (sufficient to
carry out high definition (HD) streaming) upto 1 Gbps. Achieving 100 Mbps for 90 to 95
percent of the users is extremely challenging itself, even through major advancement in
technology. This is about 100 times the current 4G edge rate that is about 1 Mbps, though

the exact number depends on the load, radius of cell, and some other factors [2].
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¢) Peak rate, the maximum rate that a user expect to experience, it should be in the
around tens of Gbps [2].

ii. Latency: The expected total latency in 5G is about 1 ms that is much more faster than
4G (i.e. on the order of about 15 ms) [2].

iii. Energy and Cost: Since the data rates per-link will increase 100 times therefore costs
and energy consumption should significantly decrease, the cost per bit and Joules per bit

must be reduced by minimum 100 times) [2].
1.1.2 Heterogeneous Networks

A simple but enormously efficient method to raise the network capacity and to get
demand of high data rates is to deploy smaller cells. By shrinking the size of a cell,
spectral efficiency per area can be substantially enhanced with the help of high frequency
reuse factor, whereas transmit power can also be minimized (i.e. the loss of power due to
transmission will be lesser). Moreover, by deploying smaller cells indoors, coverage can
be better where reception is not possible to be high [3].

Furthermore, modifying the architecture of operational access network will allow data
as well as control signals to channel through the Internet (i.e. to deploy small cells
anywhere through Internet connectivity). These small cells usually have several types
such as femtocells classically deployed in enterprise and residential areas, and the higher
picocells that are generally powered to achieve broader outdoor coverage or covering the
holes within a coverage of a macro cell. Such networks are called heterogeneous
networks shown in Figure 1.1 which provide a synchronized operation of various

categories of base stations which are femto, pico, micro and macro base stations [3].
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Figure 1.1 Graphical representation of a Heterogeneous Network [3]

1.1.3 Millimeter Wave

A clear way of achieving higher throughput is by bandwidth extension. Still, the
bandwidth below 6 GHz is restricted. Designers are trying to stare beyond 6 GHz.
Specially millimetre wave frequencies are under study to assess their practicability to

employ in 5G systems [3].

The characteristics and advantages of higher frequencies are yet to be studied. The
measurement operations along with channel modeling for required environments and
scenarios is essential well before transmission advancements are made and deployed for
them. There is a strong consensus that millimetre wave communication will be a
promising technology in getting targets of 5G, and efforts are already started to make this
a possibility. Frequency range is form 25 GHz to 300 GHz and Wavelength is between
10mm to 1mm shown in Figure 1.2 and Figure 1.3 shows the Millimeter wave enabled

network with macro cell [3].
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78 GHz and 38 GHz millimetre wave frequencies are under study in [4] to realize
their transmission behavior in different propagation scenarios, paving the way to use

them in 5G wireless networks [3].

The major advantages Millimeter Wave are listed below:

e The radio spectrum is still rather undeveloped
® More bandwidth is available
e High data rates can be achieved

e Security and privacy is better

GSM mobile phone Satellte communications
Microwave oven ’

Microwave i i
Tons Millmeter communications
I 1GHz 20GH: tOOGH:
Microwave frequencies Millimeter-wave frequencies

Figure 1.2 Frequency ranges for Microwave, Satellite and Millimeter wave
communications [4]

Figure 1.3 Millimeter wave enabled network with macro cell [2]
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1.1.4 Massive MIMO

Multiple input muitiple output (MIMO) systems have several antennas at both the
transmitter and the receiver sides. By addition of multiple antennas, higher degree of
freedom in wireless communication channels (in terms of time and frequency
dimensions) can be obtained in order to achieve target of high data rates. For this reason,
major performance progress can be attained in terms of system reliability, energy and
spectral efficiency. And also, these higher degrees of freedom may be further subjugated
using beamforming given that channel state information is available. There are high
number of antenna elements (around tens or hundreds) deployed at both sides, the
transmitter and receiver. It is very important to consider that the transmit antennas can be
collocated or distributed for various functions. Moreover, the huge number of receive
antennas can be obtained by single device or distributed into several devices [1],[5].
Additionally, massive MIMO systems help in minimizing the results of fast fading and
noise, and also interference in intra-cell scenario can be reduced using straightforward
detection and linear precoding methods. By appropriately implementing multiuser MIMO
(MU-MIMO) in massive MIMO communication, the layer design of medium access
control (MAC) may be more simplified by getting rid of complex scheduling algorithms
[5]. With MU-MIMO, signals to individual users can be easily separated utilizing the
identical time-frequency resource, at base station. Therefore, these main advantages make
it feasible to introduce the massive MIMO system as a potential candidate for 5G

wireless systems.
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Figure 1.4 a) demonstrates Massive MIMO deployments in multi cell scenario and
Figure 1.4 b) is showing a beamforming scenario in single cell. In Figure 1.5 a 5G

heterogeneous network along with large MIMO is shown.

T
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Figure 1.4 Massive MIMO deployments: a) multi cell scenario b) beamforming in single
cell
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Figure 1.5 A 5G heterogeneous network along with large MIMO (1]

1.2 Research Problem

One of the major issues in massive MIMO systems is the exact attainment of the
channel state information (CSI) for beamforming, resource allocation, signal detection,
etc. Due to large antennas placed at the BS, the estimation of channels linked with
hundreds of transmit antennas is required at users which results in large pilot overhead.

Hence, the precise channel estimation with the low pilot overhead is a tough task [5],[6].

There are numerous research issues and challenges which are required to be resolved

prior to massive MIMO can be fully included into upcoming wireless networks [2],[3]:
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(D) MIMO can be unfeasible for frequency division duplex (FDD) systems, but
can be employed in time division duplex (TDD) systems due to having
channel reciprocity [2],[3].

(i)  Conventional channel estimation approaches require a large pilot and
feedback overhead, which typically scales proportionally with number of base
station (BS) transmit antennas, which results in unfeasible condition for large-
scale FDD MIMO systems [2],[3].

(iii)  There is a need for channel models of massive MIMO systems, without which
it will be difficult for researchers to perfectly validate the algorithms and
techniques [2],[3].

(iv)  For channel estimation, TDD scenarios are only taken for massive MIMO due
to the high cost of feedback and channel estimation. Even for TDD to work,
massive MIMO channel calibration can prove to be a big achievement. New
methods and schemes will be needed for the task of channel estimation in
massive MIMO systems [2],[3].

(v)  Extremely fast processing algorithms will be required for processing the

massive amount of data from the radio frequency (RF) chains [2],[3].

1.3  Research Objectives

The goal and approach of this thesis is to propose and examine several
methodologies, algorithms and configurations to fight against the problem of channel
estimation for massive MIMO systems. Channel estimation is usually done by two

approaches that are supervised (training based) and unsupervised (blind modes). We have
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analyzed the application of compressive sensing which require comparatively short pilot
overhead and follow the supervised (training mode) for the appropriate channel

estimation.

Furthermore, the objective is to provide an efficient solution of the following
important issues and research challenges for deployment of massive MIMO systems in

5G technology:

Resez=ch Objective 1: To employee massive MIMO system for (FDD) systems, without
having channel reciprocity property. To get rid of conventional channel estimation
approaches since they require a large pilot and feedback overhead specially for handling
a large number of BS transmit antennas which are unfeasible for large-scale FDD MIMO
systems.

Research Objective 2: To avoid pilot contamination, arise from neighboring cells
specially when transmit power is high. To provide a channel model for massive MIMO
systems based on realistic assumption for researchers to perfectly validate the algorithms
and techniques.

Research Objective 3: To propose new methods and schemes needed for the task of
channel estimation in massive MIMO systems which can work for both FDD and TDD
scenarios with reduced cost. Even for TDD to work, massive MIMO channel calibration
can prove to be a big achievement. To propose extremely fast processing algorithms by
incorporating the theory of compressive sensing for processing the massive amount of

data from the radio frequency (RF) chains.
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1.4  Hypothesis

Many experimental studies have shown that massive MIMO channels for TDD
protocol demonstrate spatial and temporal sparsity in its delay domain. These studies
have also shown that the channel state information (CSI) in the downlink can be directly
tacked by exploiting the sparse nature of massive MIMO channels. Furthermore, recent
researches have also demonstrated that the pilot overhead to estimate Rician MIMO

channels can be compacted by making use of the spatial correlation of MIMO channels.

Moreover, compressive sensing theory has shown significant results in recent studies
to achieve the targets of channel estimation for different types of wireless channels
having sparse nature. In few more studies the spatial correlation in sparsity of delay
domain MIMO channels is utilized to estimate channels achieving the reduced pilot
overhead, but the assumption level of the known channel sparsity to the user is

impractical.

Therefore, keeping in view the sparse nature of massive MIMO channels there is a
huge room for further research to achieve good channel estimation results by considering
the several other parameters and assumptions closer to practical systems. Moreover, one
can apply compressive sensing theory to perform channel estimation in massive MIMO
systems since there exist a large number of transmitting and receiving antennas for FDD
protocol. Also pilot overhead reduction is achievable by integrating the framework of

compressing sensing theory.
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1.5 Research Methodology

In order to accomplish the highest success rate in research, a correct and good

methodology is required. In this thesis following important points have been considered:

(i) Develop an analytical overall system model, simulation models for massive
MIMO communication channels and corresponding compressive sensing-based

recovery algorithms.

(i) Use the models and algorithms to construct specific massive MIMO channel
estimator for simulations.

(ii1) Execute simulations in Matlab to verify and validate the results.

Specifically speaking in this thesis, we developed an overall massive MIMO
communication systems model based on CS theory then we proposed a CS based
efficient non-orthogonal pilot scheme for the developed model by exploring the temporal
and spatial sparsity of massive MIMO channels. The proposed pilot scheme is
significantly different from the conventional schemes and substantially reduces the pilot

overhead.

Additionally we proposed a channel estimation scheme, i.e., sparsity update CoSaMP
(SUCoSaMP), Compared with the conventional CS algorithms subspace pursuit (SP) and

orthogonal matching pursuit (OMP) and with other available CS based algorithms, the

THAS) 77

proposed CS based pilot and channel estimation scheme is verified through simulations
over the developed system model with different parameters. It was validated that the

proposed schemes provided improved channel estimation performance.
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Figure 1.6 Massive MIMO Communication System with CS based Channel Estimator

Figure 1.6 illustrates the general graphical representation of the complete
communication system. The system consists of NxN massive MIMO communication
channel along with CS based channel estimator and compensator at the receiver end. The
similar type of CS based estimator is incorporated for each individual user. Each CS
based estimator works independently on the combined received signals for recovery and

detection of transmitted signals from their respective transmitters (i.e. Tx1 to TxN).

1.6  Thesis Outline

The organization of the thesis is as follows. Chapter 2 provides the literature review
including the general background, related research works and contribution of this thesis.
Chapter 3 demonstrates the materials, methods and experimentation details. It provides
the details about delay domain spatial and temporal sparsity of massive MIMO
communication channels, the proposed nonorthogonal pilot scheme based on CS theory,
the CS based massive MIMO channel estimation scheme, the simulation setup and the

summary. Chapter 4 presents the simulation results and discussion.

Finally, Chapter 5 winds up the thesis by presenting the conclusion and future

suggestions.
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Chapter 2. Literature Review

This chapter presents the literature review. A general overview of compressive
sensing (CS) theory, related work based on CS theory and the brief details about methods

proposed in this thesis are included.

2.1 Background of Compressed Sensing (CS)

The basic idea presented by compressed sensing is to recover and detect a signal
which is sparse in some domain from extremely a small amount of non adaptive, linear
measurements by applying convex optimization. Having a different opinion, it relates the
precise recovery of a sparse vector of high dimension by reducing its dimension. From
another point of view, the problem can be considered as calculation of a signal’s sparse
coefficient with respect to an over complete system. The basics of compressed sensing
are related to different other areas such as, frame theory, applied harmonic analysis,
numerical linear algebra, geometric functional analysis, random matrix theory and
optimization theory also explore some new methodologies. The concept of compressed
sensing was primarily applied for random sensing matrices, as which allow for a reduced
amount of non-adaptive, linear measurements. These days, the idea of compressed

sensing has been generally replaced by sparse recovery.

2.2 Related work

The challenges for massive MIMO communication systems mentioned in chapter 1
have been addressed up to some extent in the last few years. To date, many researches on

massive MIMO avoided the challenge of considering FDD systems by simply assuming
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the TDD protocol. At BS the uplink CSI is easy to obtain due to few one antenna users at
the BS and the strong capability of processing. Afterwards by leveraging an important
channel reciprocity property, the CSI in the downlink can be directly tacked [7].[8].
However, due to the fact that radio frequency chains suffer from calibration error and
restricted coherence time, the CSI obtained in the uplink is usually not correct for the
downlink [9],[10]. Additionally FDD systems have low latency as compared to TDD;
therefore the communication is more efficient [11]. Hence, it is significant to discover the
challenges and major issues in channel estimation for FDD systems, which can assist
massive MIMO to be compatible with existing FDD dominated cellular systems. There
has been wide analysis on channel estimation for traditional small-scale FDD scenarios in
MIMO systems [12],[13]. It was established that the equally spaced and equally powered
orthogonal pilots can be ideally suitable to approximate the noncorrelated Rayleigh
distributed MIMO channels for single OFDM symbol, where it increases the pilot
overhead as the number of transmitters increases [12]. The pilot overhead to estimate
Rician MIMO channels can be compacted by making use of the spatial correlation of
MIMO channels [14],[15]. Furthermore, by taking advantage of the temporal channel
correlation, more reduced pilot overhead can be attained to estimate MIMO channels
linked to multiple OFDM symbols [16],(17],[18). Presently, orthogonal pilots have been
extensively introduced in the current MIMO systems; due to small number of transmit
antennas (i.e., up to eight antennas in LTE-Advanced system), they have reasonable pilot
overhead [13],[19]. Though, this is a critical issue in massive MIMO systems due to
massive figure of antennas at the BS (i.e., up to 128 antennas or even more at the BS

[20]). An approach of exploiting the temporal correlation and the delay domain sparsity
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of channels for achieving the reduced pilot overhead has been presented for FDD massive
MIMO systems in [21],[22], but with large number of transmit antennas, the interference
cancellation of pilot sequences of different transmit antennas will be difficult. In
[23],[24],[25],[26] the spatial correlation in sparsity of delay domain MIMO channels is
utilized to estimate channels achieving the reduced pilot overhead, but the assumption
level of the known channel sparsity to the user is impractical. In [27],[28],[29], the
compressive sensing (CS) based channel estimation schemes are presented by exploiting
the spatial channel correlation, however due to having nonideal antenna array, the
leveraged spatial correlation can be impaired. In [30] a new structured compressive
sensing (SCS) channel estimation scheme for doubly selective MIMO-OFDM systems is
proposed with time and frequency-domain training (TFDT). In [32] a channel estimator
based on block distributed compressive sensing (BDCS) is proposed for the large-scale
MIMO systems. BDCS exploits structured sparsity to reduce the pilot overhead. In [33] a
new way to estimate sparse channels by construction of beamforming dictionary matrices
is presented. Continuous basis pursuit (CBP) algorithm that exploits the sparse nature of
channels to adaptively estimate the multipath mmWave channels is proposed. In [34] a
channel estimation scheme based on an open-loop and a closed-loop system for massive
MIMO is presented, but the channel statistics cannot be perfectly known to the user in the
long term, whereas in conventional wideband wireless systems, delay domain channels
basically exhibit the sparse nature due to the large channel delay spread and having

limited number of major scatterers in the transmission environments [22],[35].

In the meantime, MIMO communication systems have similar scatterers in the

transmission environment; therefore BS channels associated with one user and several
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transmit antennas experience similar type of path delays, which shows that these delay
domain channels share common sparsity specially in the case of not having very large
aperture of antenna array [5],[36]. Furthermore, throughout the coherence time, such
sparsity is nearly unchanged which is due to the fact that path delays fluctuate at very
slow rate as compared to path gains because of temporal correlation of channels [37]. In
[38] CS based block sparsity adaptive matching pursuit (BSAMP) technique is presented,
which targets the estimation of channels of MIMO system with unknown number of
channels paths. The BSAMP exploits the joint sparse nature of massive MIMO channels.
In [39] CS based probability-weighted subspace pursuit (PWSP) algorithm is proposed,
which exploits the probability information attained from previously estimated CIRs to
recover the uplink channels in massive MIMO scenario. In [40] such properties of
channels in MIMO are considered as the spatiotemporal common sparsity, which is
generally ignored in current work. A general idea of the CS method is presented in [41],
in which fundamental setup, recovery techniques, and guarantee of performance are
discussed. Furthermore, different sub problems of CS, i.e., sparse approximation,
identification of support, and sparse identification, are discussed, with respect to some
applications of wireless systems. Design issues of wireless systems, limitations and
potentials of CS algorithms, useful tips, and prior information are also discussed to
achieve maximum performance. In [41] a valuable guidance is provided for researchers
working in the area of wireless communication systems. In [42] authors proposes a CS
based detection and channel estimation scheme by making use of the sparsity of massive
MIMO in virtual angle domain. Authors in [43] proposed the block sparsity adaptive

matching pursuit (B-SAMP) algorithm for the purpose of Doubly Selective Channel
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Estimation for Massive MIMO Systems. Finally a structured turbo compressed sensing
(Turbo-CS) method is proposed in [44] for design and investigation of channel estimation

schemes based on structured sparsity.

Before getting into the detail of spatiotemporal common sparsity, we present an

overview of compressive sensing.

2.3  Thesis Contribution

In this thesis we propose a CS based efficient nonorthogonal pilot scheme for massive
MIMO communication systems by exploring the temporal and spatial sparsity of massive
MIMO channels. And then we propose a channel estimation scheme, i.e., sparsity update
CoSaMP (SUCoSaMP), which exploits the temporal and spatial sparsity of massive
MIMO channels. The proposed pilot scheme is significantly different from the
conventional schemes and substantially reduces the pilot overhead. The proposed pilot
scheme employs fully identical subcarriers for pilots of several transmit antennas in a
specific antenna group. The antennas placed at base station (BS) are subdivided into
groups based on the observation that the coherence time of path gains and system carrier
frequency are inversely proportional to each other and the variation in path delays and
signal bandwidth are inversely proportional to each other. Therefore, the decision of
making antenna groups and determining the number of antennas to be included in one
antenna group is taken according to the given system parameters, i.e., systems frequency,
system bandwidth, and antenna spacing at BS. Furthermore, considering the antenna
array geometry of BS, the proposed non-orthogonal pilot scheme is a space-time adaptive

pilot scheme that adaptively changes its design according to the given system parameters.
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The proposed: CS algorithm-based channel estimation scheme SUCoSaMP considers the
initial sparsity level as 1 and then regularly updates the sparsity level until the stopping
criteria are met or a correct sparsity level is achieved in a scenario where sparsity level is
unknown. Compared with the conventional CS algorithms subspace pursuit (SP) and
orthogonal matching pursuit (OMP) and with other available CS based algorithms, the
proposed CS based pilot and channel estimation scheme is tested through simulations on
systems with different parameters. It was verified that the proposed schemes provided

improved channel estimation performance.

2.4  Summary

This chapter provided the brief background of CS theory which is a base of methods
proposed in this thesis. Furthermore, most relevant related works are briefly discussed

and finally an overview of the contribution of this thesis is given.
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Chapter 3. Methodological Details of Compressive Sensing
Based Channel Estimation for Massive MIMO Communication

Systems

31 Introduction

This chapter provides complete details of methodology which includes the overview
of a general compressive sensing problem, proposed non-orthogonal pilot scheme which
include a method for creating the antenna groups and a pilot design based on delay
domain spatial and temporal sparsity. Furthermore, this chapter includes a massive
MIMO system model for experimentation purpose and a proposed massive MIMO
channel estimation approach based on compressive sensing. Finally, experimentation

details and summary of chapter are presented.

3.2 Materials and Methods

3.2.1 The Compressed Sensing Problem

To specify the problem in terms of mathematics, let consider a signal of interest as
x = (x;).; € R". Where x has a small number of nonzero coefficients i.e. x is assumed
to be a sparse signal as [|x||o == #{i:x; # 0}.

An orthonormal basis @ exist such that x = ®c with c as sparse. Where @ is a matrix
containing elements as frame or the orthonormal basis as column vectors. A frame is
usually more flexible as compared to orthonormal basis due to having redundancy and
this directs to better sparsifying properties, therefore customarily frames are preferred
than orthonormal bases. At times, the idea of sparsity is weaken, which refer to as nearly

sparse. In addition, there exist a matrix known as sensing matrix, let A be sensing matrix |

+
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of size mxn. where m < n and there does not exist any zero colums in 4, yet if not clearly
mentioned.

Then the problem can be stated as follows: Recover x from knowledge of

y = Ax 3.1
or recover ¢ from knowledge of
y = Adc (3.2)

Above mentioned, cases are underdetermined systems having prior information of
sparsity about the vector to be recovered. The support is yet not known, given that the
trivial solution could be obtained.

CS techniques allow reliable recovery of the sparse signal x. In case of nearly sparse
and the noise is also there, yet CS theory provides a guarantee stable solution and strong
result of reconstructed sparse signal if restricted isometric property (RIP) is satisfied [45]

[46] and the problem can be expressed as
min ||x||; s.t.|ly — A®c|l3 < € (3.3)

Where ¢ is related to variance of noise.
3.2.2 Delay Domain Spatial Sparsity

Considerable experimental researches have explored that in delay domain massive
MIMO channels demonstrate spatial sparsity. This is due to the fact that number of
significant scaterrers is limited in wireless communication in fading environments. While
communication between Base Station (BS) and users, the transmission distance is very
large as compared to the distance between several antennas in an antenna array placed at

BS. That is to say that CIRs associated with several transmitting antennas and single user
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exhibit exactly same path delays, therefore they also share identical common support of

CIRs [40].

Let’s consider a massive MIMO-OFDM system where M transmit antennas are
placed at BS. The CIR between m-th transmit antena and one single-antenna user for z-th

OFDM symbol is expressed by

dz,m = [dz,m(l): dz,m(z)' e dm,r (L)]T (3.4)

Where 1 < m < M, L is the channel length equivalent to the maximum delay spread.
Let S, , be the sparsity level of CIR between one transmit-receive antenna pair i.e. the

number of non zero elements in d ,,, the support of d; , can be expressed as
By m = supp{d,m} = {l: |d;m[l]| > 0} with1 <I1<L (3.5)
where S, ,, = lPZ'mlc fulfilling S, ,,, < L. And due to spatial sparsity, we have
Ppy=Pp==Py (3.6)

The delay domain spatial sparsity with specific system parameters will be detailed in

section 3.2.8.
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Figure 3.1 Delay domain temporal and spatial sparsity of massive MIMO channels:

(a) Limited number of scatterers and common scatterers in wireless communication

scenario,
(b) Temporal and Spatial sparsity of massive MIMO channels in delay domain
between two users and co-located antenna array
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Figure 3.1 shows the common sparse pattern of CIRs for different transmit-receive
antenna pairs. The details about temporal and spatial sparsity are given in the following

two subsections.

3.2.3 Delay Domain Temporal Sparsity

In [40], the authors have explored that fast time varying channels to illustrate
temporal correlation. That is to say that the variations in path gains are significant
whereas the path delays are almost invariant for various consecutive OFDM symbols.
The reason is that path delays variation duration over time-varying channels and the
signal bandwidth are inversely proportional to each other while the coherence time of
path gains and carrier frequency of the system are inversely proportional [29].

Consider a system with signal bandwidth B= 10 MHz and carrier frequency of system
f.=2 GHz, the path delays fluctuate slower than the path gains [16]. Therefore, due to the
nearly invariant path delays the CIRs share the common sparsity for R adjacent OFDM
symbols over the coherence time of path delays. The supports of CIRs associated with R
successive OFDM symbols signify that:

Pim=PBm="=Pgp,1<m<M (37

Figure 3.1. demonstrates the temporal sparsity of massive MIMO channels.

3.2.4 Proposed Non-orthogonal Pilot Scheme

In this section we shall propose a nonorthogonal pilot scheme based on the above-
mentioned two observations. First the basic idea to divide the antennas placed at BS into
subgroups is proposed. The proposed scheme of dividing the antennas into subgroups is

based on system parameters and the temporal and spatial sparsity of massive MIMO
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channels. Then after creating the antenna groups, a specific nonorthogonal pilot scheme

is proposed.
3.2.5 Proposed Scheme for Creating the Antenna Groups

There will be the uniform distribution of antennas to be included in sub-groups.
Consider a system with signal bandwidth B, system carrier frequency f., total number of
antennas placed at the BS in a uniform linear antenna array M, number of subgroups Ny,
number of antennas in one group My, ;. The maximum resolvable distance Dy, q, must be
smaller than ¢/10B [39], that is to say, to have two channel taps resolvable, the time
interval of arrival must be less than 1/10B, where ¢ is the speed of light [39]. The two
successive antennas are spaced by the distance d,, = 1/2, therefore the maximum
distance between two antennas can be dy = d,(M — 1) and the maximum distance
between two antennas in a single group can be dMng = dp(Mpg —1). In order to

guarantee the spatial sparsity and based on the condition that D4, /c < 1/10B, the d Mng

must satisfy d Mny < Dmax-

And the formula for number of antennas M, in each sub-group N, can be derived as

follow.

dn(Mpg —1) < = (3.8)

A/2(Mng —1) < — (3.9)
c

My SET?%)-I-I (3.10)
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Figure 3.2 1-D antenna array at the BS

The N, antenna groups are shown in Figure 3.2, where TA denotes the transmit

antenna.

In the section 3.2.6, first we will derive a massive MIMO system model. And then

specific pilot design will be proposed in section 3.2.7.

3.2.6 Massive MIMO System Model

Consider a massive MIMO OFDM system with M transmit antennas placed at BS
communicating with one user, ¢ , represents the index set of pilot subcarriers for nth
antenna group, the choice of & , will be detailed in the section ii C). There are total N
subcarriers in one OFDM symbols out of which N, corresponds to pilot subcarriers and

the pilot sequence of m-th transmit antenna in n-th antenna group is denoted by Sy €

CNe*!, y, . € C"P*! is the received vector of the pilot sequence of z-th OFDM Symbol

of n-th antenna group at user for N, antenna groups, ¥, can be expressed as.

dm,z,n

0 ] +w,, (3.13)
(N-L)x1

Yzn = Z Vnaf dlag{sm n}RIE ol
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Which clearly shows that My, is a function of B and f,. Therefore the N, can be

given by
M
Ny = l-@ +a 3.11)

The constant a represents an integer to make sure the uniform distribution of
antennas in each sub-group i.e. M is completely divisible by Nj. Similarly, actual number

of antennas My,;¢ in each group can be calculated by
Mpgr = M/Ng (3.12)

The formula for N, will ensure the spatial sparsity for any massive MIMO system

with large 1-D antenna array placed at BS. Moreover, since the My, is a function of |

system parameters B and f;, therefore if the B and f; are changed but the Nj; still ensures
the spatial sparsity for antennas. And also Ny is the minimum number of sub-groups a
system must have to ensure spatial sparsity, moreover by increasing N, spatial sparsity

of system will remain preserved. For example, consider a system with following

specifications:

M=128 1-D antenna array, f,= 2 GHz, B= 20 MHz, M, given in eq. (3.10) can be
calculated as 21. N, will be equal to 8 with @ = 2 and M4 will be equal to 16. Based
on these calculations the initial condition is satisfied that d Mng < D.4x, hence the spatial

sparsity is preserved for the system.
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With 1<n<N g

M M
Yzn = Znglf Sm,nRLlfn,n dm,z,n +Wzn = Zmr;glf lI’m,ndm,z,n + W;n (3.14)

Where R € C¥*V s the Discrete Fourier Transform matrix (DFT), ¥, is expressed
after exclusion of guard interval, dpp, ,, € CH** is the CIR vector of mg transmit antenna
of nth antenna group for zn OFDM symbol, R , € CMe*N is a submatrix comprised of

NpxL ontains the first L columns of

N, rows selected according to &, Rilg n €C
len,n € (CNPXN’ Smn = diag{sm,n} € CNPXNP: Yo = Sm,nRLlfn,n e C"* and Wzn
represents the Additive White Gaussian Noise of nth antenna group for zth OFDM

symbol.

The equation can be rearranged as

Yan = Wnlzn + Wy (3.15)
Where W = [Win, Wz, - Whyypn] € CVP*Mngrl and the aggregate CIR vector of

nth antenna group is given by d,, = [dl,z,n: dyzn - duyy f,z’n]T € CMngrl>1  Ag
explained earlier that the CIR vector dyy, , ,, exhibit spatial and temporal sparsity therefore
d, ., is also a sparse signal. The system in equation is an under determined system due to
the fact that N, < Mpg¢L and cannot be reliably solved using the traditional channel

estimation methods [40].

Moreover the equation can be rearranged into structured sparse form according to

[40] as

Yin = Anhz,n + Wzn (3.16)
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- T . .
Where h, , = [h{z,n, | L d"{’z’n] € CMnafl*! is an structured sparse equivalent

T
CIR vector, hj,,= [dl‘z‘n[l], danlll, ...,dMng,z,n[l]] for1<l<L and after

reformulation ,, can be converted into Ay, where A can be written as

An = [Ain Agp, . Apy) € CPMrart (3.17)

_ [@® o< ® — NpxM
Where A, = [ Lo gzl, ""lI’Mngf,n] = [Ain 1Az "'AMngf,n,l] € CNP*Mngs

After converting to structured form, we will have N such equations to be solved
simultaneously corresponding to each sub-group. The received pilot vectors of zw OFDM

symbol for Ny sub-groups can be expressed as

4

! (3.18)

Yan, = Anhzn, + Won )

The system equation of each sub-group exhibits structured sparsity, which provides
the motivation to apply CS theory to recover the high dimension structured sparse signal

BZ,NQ from the low dimension received pilot vector y,n,. The CS based sparse signal
recovery/channel estimation will be explained in section 3.2.8.

3.2.7 Proposed Pilot Design

Mostly wireless communication systems detect the data with the aid of pilot signals.

Specifically the purpose of pilot signals is to assist the receiver to estimate the wireless
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channels and then the receiver coherently detects the data on the basis of estimated

channel [47] .

In massive MIMO communication systems, due to huge number of transmit antennas
at BS, the number of channels turn into prohibitively high and thus result in high pilot
overhead for estimation of these channels. Therefore, there is need of methods to reduce
the high pilot overhead in massive MIMO communication systems to achieve the target

of high data rate.

In this thesis CS theory is implemented to reduce the high pilot overhead based on the
fact that the wireless channels undergo spatial and temporal sparsity. CS based pilot
design significantly reduces the pilot overhead as compare to conventional pilot design.
Figure 3.3 demonstrated the proposed, uniformly distributed and identical pilot subcarrier
for multiple antennas, while Figure 3.4 shows the convention pilot design (i.e orthogonal
pilots for different antennas). The Proposed pilot design allows the system to provide

more resources to data.

The CS based pilot design permits the antennas of each sub-group to occupy identical
subcarriers for pilots within a group while pilot subcarriers for each sub-group are
completely different from each other as shown in Figure 3.3. The design is based on the

choice of ¢,. The guard interval <can be calculated by N;=

N
Bx(maximum channel delay spread)’

Consider a set 0 = {1,2, ..., N — N}, The £ ,, is a subset

of 0, represents the index of pilot subcarriers for n-th sub-group and it is identical for all

the antennas within that group, the formula for creating the ¢ ,, can be given by
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= {n + spacing * q: l——— —a < Ny < spacing, 0<q <N, - 1andsapcing =
N-Ng
s Bl RU B
— a we have
(N-Ng)
Mpgr <N < mM (3.20)

There are N; unique sets associated with ¢ ,, ie. £, .....¢ , «-¢ ng> There will be
total NgN,, subcarriers occupied for pilot vectors for M transmit antennas at BS. Figure

3.3 demonstrates the proposed pilot design.

N, = [§ »l¢ is number of subcarriers for pilot vector in OFDM symbol of ng sub-group.

Pilot subcarriers of nw group are the null pilots for all the other Ny — 1 sub-groups

where as N — N; — NN, subcarriers are available for data.

NgNy

Pilot overhead ratio is defined by 8, = v
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Figure 3.3 Proposed pilot design.
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Figure 3.4 shows the conventional pilots in which different pilots are allocated to

different antennas resulting in very high pilot overhead.

32.8 Massive MIMO Channel Estimation Based on Compressive Sensing

The basic theory of CS is already presented in section 3.2.1. The idea is to consider

the task of channel estimation as sparse recovery problem.

In eq. (3.16) it can be seen len demonstrate structured sparsity in delay domain,

where ilz,n is S, m n-sparse vector due to
Pymn = Supp{hy o} = {L|Aznll]| > O}with 1 <1< L (3.21)
where S; mpn = IPz,m,nIC fulfilling S,  » < L. And due to spatial sparsity we have

Pz,l,n =fzon =" = zMn (3.22)

The desired small correlation of A, according to CS theory is achieved which is
described in [40], therefore reliable sparse recovery is guaranteed. It is further shown in
[40] that the any two columns of A, attain excellent cross correlation between them
according to RMT since pilot design proposed in [40] is the special case of proposed pilot
design. Therefore the proposed pilot design is simple to employ and also supportive in

terms of compatibility with current wireless networks [40].
For K adjacent OFDM symbols having identical pattern of pilots, we have
Y,=AH,+W, (3.23)

— NpxK
Where Y, = [YZ,II’ Yztin oo YZ+K—1,1’1]C
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The A, derived in massive MIMO model satisfies the Structure Restricted Isometric

Property (SRIP) condition. Specifically, SRIP can be given by
V=75 ||ay, ||F < [|Anhgnl VI=5 ||ANg ||F (3.24)

The definition and justification for SRIP is discussed in detail in [40]. Where § €

[0,1).

Our aim is to recover h,, , given Yzn- Under the framework of CS theory, the

massive MIMO channels ilZ'n are estimated by means of following problem
h=arg min”ilm”1 st |[Yzn — Anilz,n”2 <e (3.25)

Where € is the noise variance. There are many algorithms that can solve the problem.
For example, projected gradient methods or interior point methods can be used for

applying convex optimization. A famous greedy algorithm is orthogonal matching pursuit

(OMP).

For channel estimation purpose we propose the SUCoSaMP algorithm derived from

basic CoSaMP as described in Algorithm 1. There will be Ny similar parallel processing
required for estimating the massive MIMO channels with N sub-antenna groups i.e. the
same algorithm will be working simultaneously at user to estimate channels of N, sub-

groups.
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Algorithm 1. Proposed SUCoSaMP Recovery Algorithm

Input: Sensing matrix A, and noisy measurement vector y;
m=Mng fr n=Ng

Output: An sparse estimation h of channels {dmzn}m=1 n=1

Step 1 (Initialization)

1. h%«o0

Trivial initial approximation

2. VeV

Current samples = input samples

3. k<0

Iterative index

4. s«1

Initial sparsity level

Step 2 Solve the structure sparse vector i'lz,n to eq. (2.18)

Repeat

1. kk+1
2. y « ALV

Make the signal proxy
3. Qe supp(yzs)

Identify large components

4. T « QU supp(h*1)
Merge supports

3. ki « A:rlTYz,n

Signal estimation by least squares

6. hlpce0
7. h* « h

Prune to get next approximation
8. Ve« Y, — Aph¥

Update the current samples
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if [[v]l; < V"I,
9. Iteration with fixed sparsity level

else

10.  Update sparsity level h, « h*; v, « v¥

;ses+1
end if
Until stopping criterion true

Step 3 Obtain channels h=h,_; and obtain estimation of channels

(o zndme ™" "1 according to (3.14)-(3.18)

There are many natural approaches of stopping the algorithm. We follow the stopping

criterion as if |Jv**1,

> |lvs_1ll, the iteration is stopped [40]. The information of
correct sparsity level S, ., , is usually not available and also it is practically not possible
to have prior knowledge of correct sparsity level. Whereas information about sparsity
level plays the significant role in compressive sensing problem of solving
underdetermined system and it is also required as prior information by most of the CS
based algorithms. The proposed SUCoSaMP algorithm does not require prior information

of sparsity level because it adaptively acquires the sparsity level and avoids the

unrealistic assumption of having prior information of correct sparsity level.

In steps 2.1 to 2.9 the target of SUCoSaMP algorithm is to obtain the solution i‘z,n to
eq. (3.18) with fixed sparsity level s similar to conventional CoSaMP. The condition
¥l < lv**)|, shows that the solution Bz'n to eq. (3.18) has been acquired and then
the new iteration is started with updated sparsity level s+1. This process is repeated until
the stopping criteria is true and then the iteration is stopped. We get the solution to eq.

(3.18) with updated sparsity level and obtain the channels i.e. b = hy_;.
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Note that the proposed SUCoSaMP algorithm works in the same way as the CoSaMP
algorithm works. The CoSaMP algorithm is basically based on basic OMP. The
SUCoSaMP algorithm has incorporated some other ideas from the literature to present
strong guarantees that OMP and CoSaMP cannot satisfy and to speed up the algorithm as

compared to OMP.

The major advantage of SUCoSaMP over OMP, CoSaMP and basic subspace pursuit
(SP) algorithms is that it does not require prior acquaintance of sparsity level, which is an

unrealistic assumption, specifically in wireless communication scenario.

There are two differences between SUCoSaMP and CoSaMP. Firstly, SUCoSaMP
estimates the channels i.e. it recovers the high dimensional sparse vector by utilizing
structured sparsity of massive MIMO channels from one vector of low dimension.
Secondly, SUCoSaMP adaptively acquires the sparsity level. In contrast, the CoSaMP
recovers the sparse vector without exploiting the structured sparsity and it requires prior

information of correct sparsity level.

The proposed SUCoSaMP algorithm is exactly the same as CoSaMP algorithm up to
step 2.9. The proposed algorithm stops the iteration with fixed sparsity level (i.e. the
current value of s) if ||v¥||, > ||v***||, and then it performs an additional step that is
step # 2.10 to update the sparsity level by adding 1 to current value of sparsity level (i.e.

ses+1).

There are two different types of iterations in SUCoSaMP, one on k and one on s and

finally the iterations on s are stopped if [|[v***||, > [lvs_4|l,. Table 1 elaborates some
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further details of major steps involved in CoSaMP and SUCoSaMP algorithms. And
Table 2 demonstrates the hypothesis of CoSaMP and SUCoSaMP algorithms.
Table 1. Major steps involved in CoSaMP and SUCoSaMP
CoSaMP SUCoSaMP
1. Classification. The algorithm creates a | Follows the same step
replacement of the residual | of CoSaMP.
from the existing samples and
places the biggest components
of the replacement.
2. Support union. The set of recently recognized | Follows the same step
components is joined with the | of CoSaMP.
set of com-
ponents that emerge in the
present approximation.
3. Estimation. The algorithm finds the solution | Follows the same step
of a least-squares problem to | of CoSaMP.
estimate the objective signal on
the combined set of
components.
4. Pruning. The algorithm generates a fresh | Follows the same step
estimation by keeping only the | of CoSaMP.
biggest entries in this least-
squares  approximation  of
signal.
5. Sample Update. | Finally, the algorithm updates | Follows the same step
the samples such that they | of CoSaMP.
reflect the residual, the un-
approximated elements of the
signal.
6. Stopping Until stopping criterion true. Until  first  stopping

Criterion criterion true.

7. Sparsity level | None The algorithm updates
Update the sparsity level

8. Stopping None Until second stopping
Criterion criterion true.
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Table 2. CoSaMP and SUCoSaMP Hypothesis
CoSaMP SUCoSaMP
1. The sparsity level s is fixed. (i.e. | The sparsity level s is not fixed (i.e.
initialization with fixed value of | initialization with sparsity level equals to
sparsity level). 1). It adaptively acquires the correct
sparsity level.
2. The sensing matrix A, has|A, satisfies the Structure Restricted
restricted isometry constant 8, < | Isometric Property (SRIP) condition
0.1. according to [40].
3. |The signal h,, € CMrer't is | The signal hy, € CYnar™ s a structured
random, except where prominent. | sparse equivalent CIR vector.
4. W,, represents arbitrary noise | W, represents the Additive White
vector Gaussian Noise of nth antenna group for
zth OFDM symbol
3.3 Experimentation Details

This section provides complete details of simulations setup. Simulations have been
performed in MATLAB in order to verify the effectiveness of the proposed methods.
Mean square error performance of proposed scheme is compared with the conventional
OMP, CoSaMP, Structured Subspace Pursuit (SSP) and Adaptive Structured Subspace
Pursuit (ASSP) algorithms. Simulation parameters are mentioned in the Table 3 for the
proposed system. Two types of antenna arrays have been deployed, in first case the BS
has 1-D 1x128 antenna array (M= 128) and in second case the BS has 1-D 1x256
antenna array (M= 256). The system bandwidth and carrier frequency are set to B = 20
MHz and f, = 2 GHz respectively. There are N; =8 sub-antenna groups when M= 128,
while there are N; = 16 sub-antenna groups when M= 256 with 16 transmit antennas in
each group to make sure the spatial channel sparsity with-in group. The OFDM
subcarriers are set as N = 2048, guard interval is N; = 16 which could fight the delay
spread up to 6.4 us and 16QAM and 64QAM modulation is used. The numbers of pilot

subcarrier N;, in OFDM symbol transmitted by each antenna in each antenna group and
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channel length L are varied over a reasonable range to verify the performance of the
proposed system. The pilot positions are uniformly distributed according to eq. (16) and
are identical for the entire antennas with-in one group'. The number of multipath is
randomly chosen and the channel multipath amplitudes and positions follow Rayleigh

and random distribution, respectively.

Table 3. System Parameters
Parameter Type/Value
Total number of transmit antenna 128, 256
Number of transmit antennas in one sub-group | 16
Number of antennas groups (N) 8,16
Modulation 16 QAM, 64 QAM
Guard Interval 16
Number of pilot subcarriers (Np) 16, 32, 64
System bandwidth 20 MHz
DFT size 2048

34 Summary

This chapter proposes a non-orthogonal pilot scheme and a CS based algorithm
SUCoSaMP to estimate the massive MIMO wireless channels. The reduction of high
pilot overhead in massive MIMO systems and the recovery capability when the sparsity
level of massive MIMO channels is unknown are the focus of this research. The methods
have been proposed by exploiting the spatial and temporal common sparsity of massive
MIMO channels in the delay domain. Finally, experimentation details have been included

in order to implement and verify the proposed methods.
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Chapter 4. Results and Discussion

4.1 Simulation Results

In this section simulation results are presented and discussed. Simulations have been
performed in MATLAB to validate the proposed methods. Mean square error
performance of proposed scheme is compared with the conventional OMP, CoSaMP,
Structured Subspace Pursuit (SSP) and Adaptive Structured Subspace Pursuit (ASSP)

algorithms. Details about simulation setup and parameters for the proposed system are

given in the Table 3.
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Figure 4.1 MSE Comparison of each algorithm under different Pilot Overhead Ratios:
For SNR=10 dB, M=128, N, = 8 and 16QAM
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Figure 4.2 MSE Comparison of each algorithm under different Pilot Overhead Ratios:

For SNR=20 dB, M=128, N; = 8 and 16QAM
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Figure 4.3 MSE Comparison of each algorithm under different Pilot Overhead Ratios:

For SNR=25 dB, M=128, N, = 8 and 16QAM
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Figure 4.4 MSE Comparison of each algorithm under different Pilot Overhead Ratios:
For SNR=10 dB, M=128, N; = 8 and 64QAM
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Figure 4.5 MSE Comparison of each algorithm under different Pilot Overhead Ratios:
For SNR=20 dB, M=128, N, = 8 and 64QAM
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Figure 4.6 MSE Comparison of each algorithm under different Pilot Overhead Ratios:

For SNR=25 dB, M=128, N, = 8 and 64QAM
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Figure 4.7 MSE Comparison of each algorithm under different SNRs: N,, = 32 Pilot

M=128, N, = 8 and 16QAM
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Figure 4.8 MSE Comparison of each algorithm under different SNRs: With N, = 64
M=128, N; = 8 and 16QAM

Figure 4.1 — 4.3 show the MSE Comparison of each algorithm under different Pilot

Overhead Ratios with M = 128, N; =8 and 16QAM for SNR = 10, 20 & 25 dB

respectively.

Figure 4.4 — 4.6 demonstrate the MSE Comparison of each algorithm under different

Pilot Overhead Ratios with M = 128, N; = 8 and 64QAM for SNR = 10, 20 & 25 dB

respectively.

Figure 4.7 — 4.8 show the MSE performance of proposed SUCoSaMP algorithm with

different values of N, i.e. 32 and 64 respectively versus signal to noise ratio (SNR). In
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Figures 4.1 to 4.8, the performance of SUC0oSaMP is compared with the conventional
algorithms OMP and CoSaMP and with SSP and ASSP. The sparsity level for OMP,
CoSaMP and SSP is known in simulations whereas the ASSP and proposed SUCoSaMP
adaptively acquire the correct sparsity level. It is observed that the channel estimation
performance of all the algorithms is improved by increasing pilot subcarriers N,. And
overall, the proposed SUCoSaMP outperforms all the other algorithms. This is because
the SUCoSaMP takes full advantage of structured sparsity of massive MIMO channels.
Since the prior information of sparsity level of massive MIMO wireless channel is not a
realistic assumption, therefore the proposed SUCoSaMP algorithm has a clear advantage'
over the conventional algorithms. Furthermore, the MSE gap between the proposed.
SUCoSaMP and the conventional algorithm remains almost constant as the SNR
increases which makes SUCoSaMP superior in both low and high SNR wireless

communication scenarios.
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Figure 4.9 MSE performance comparison with different SNRs of 1% antenna group (N; )
with N, = 64, M=128, N; = 8 and 16QAM



i

1

100 T T T T T T T T T
—8— CoSaMP
—— OMP
D —0—ssp
ASSP
107 E —¥— SUCoSaMP | 7

D 192
§10>

102

107
10 12 14 16 18 20 22 24 26 28

SNR (dB)

30

65

Figure 4.10 MSE performance comparison with different SNRs of 2™ antenna group (N,

) with N,, = 64, M=128, N, = 8 and 16QAM
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Figure 4.11 MSE performance comparison with different SNRs of 3™ antenna group (N,

) with N, = 64, M=128, N, = 8 and 16QAM
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Figure 4.12 MSE performance comparison with different SNRs of 4% antenna group (N,

q

) with N, = 64, M=128, N, = 8 and 16QAM
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Figure 4.13 MSE performance comparison with different SNRs of 5% antenna group (Ns

) with N,, = 64, M=128, N; = 8 and 16QAM
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Figure 4.14 MSE performance comparison with different SNRs of 6* antenna group (N
) with N, = 64, M=128, N, = 8 and 16QAM
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Figure 4.15 MSE performance comparison with different SNRs of 7™ antenna group (N,
) with N, = 64, M=128, N, = 8 and 16QAM
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Figure 4.16 MSE performance comparison with different SNRs of 8% antenna group (Ng
) with N, = 64, M=128, N, = 8 and 16QAM

In Figure 4.9 — 4.16, individual MSE performance versus SNR of different sub
antenna groups (i.e. from antenna group N, to Ng) is presented with N, = 64 for M = 128,
Ny, = 8 and 16QAM and is compared with conventional algorithms OMP and CoSaMP
and with SSP and ASSP. It can be seen in the figures that SUC0oSaMP is evidently
superior to conventional algorithms. This is because the provided sparsity level to
conventional algorithms cannot be the actual sparsity of massive MIMO wireless
channels. However, the adaptive process in ASSP and SUCoSaMP is realized by fixed
increment in sparsity level, therefore the sparsity level estimation in these algorithms is
slightly over-estimated or under-estimated. It is again observed that with high number of
pilot subcarriers N,, the performance of SUCoSaMP is improved along with the other
algorithms. Furthermore, it is observed that the MSE gap between the proposed

SUCoSaMP and the conventional algorithm slightly increases or remains almost constant
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with the increase in SNR resulting in SUCoSaMP better in different wireless

communication environments with respect to SNR.
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Figure 4.17 MSE performance comparison with different SNRs of 1% antenna group (N, )

with N, = 32, M=128, N, = 8 and 16QAM
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Figure 4.18 MSE performance comparison with different SNRs of 2™ antenna group (N,

) with N, = 32, M=128, Ny = 8 and 16QAM
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Figure 4.19 MSE performance comparison with different SNRs of 3™ antenna group (N,
) with N, = 32, M=128, N; = 8 and 16QAM
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Figure 4.20 MSE performance comparison with different SNRs of 4% antenna group (N,
) with N, = 32, M=128, N; = 8 and 16QAM
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Figure 4.21 MSE performance comparison with different SNRs of 5% antenna group (N
) with N, = 32, M=128, N, = 8 and 16QAM
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Figure 4.22 MSE performance comparison with different SNRs of 6" antenna group (N
) with N, = 32, M=128, N, = 8 and 16QAM



4|

72

100 T T T T T T T T T
=8 CoSaMP
—%— OMP
—6—SSP

o ASSP
== SUC0SaMP

MSE

10 12 14 16 18 20 22 24 26 28 30
SNR (dB)

Figure 4.23 MSE performance comparison with different SNRs of 7% antenna group (N,
) with N, = 32, M=128, N; = 8 and 16QAM
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Figure 4.24 MSE performance comparison with different SNRs of 8® antenna group (Ng
) with N, = 32, M=128, N; = 8 and 16QAM
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Figure 4.25 MSE performance comparison with different SNRs of 1®* antenna group (N, )
with N, = 32, M=128, N, = 8 and 64QAM
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Figure 4.26 MSE performance comparison with different SNRs of 2™ antenna group (N,
) with N, = 32, M=128, N, = 8 and 64QAM
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Figure 4.27 MSE performance comparison with different SNRs of 3" antenna group (N3
) with N, = 32, M=128, N; = 8 and 64QAM
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Figure 4.28 MSE performance comparison with different SNRs of 4™ antenna group (N,
) with N, = 32, M=128, N, = 8 and 64QAM



75

100 F T T T T T T T T T 1
—#— CoSaMP ]

—4— OMP
——ssP
3 ASSP |
== SUCOSaMP

MSE

1 e 1 1 i 1 Il 1 1

1073
10 12 14 16 18 20 22 24 26 28 30

SNR (dB)

Figure 4.29 MSE performance comparison with different SNRs of 5% antenna group (N5
) with N, = 32, M=128, N, = 8 and 64QAM
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Figure 4.30 MSE performance comparison with different SNRs of 6™ antenna group (N
) with N, = 32, M=128, N, = 8 and 64QAM
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Figure 4.31 MSE performance comparison with different SNRs of 7™ antenna group (N,
) with N, = 32, M=128, N, = 8 and 64QAM
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Figure 4.32 MSE performance comparison with different SNRs of 8* antenna group (Ng
) with N,, = 32, M=128, N, = 8 and 64QAM



q

77

In Figures 4.17 — 4.32, MSE performance versus SNR of individual antenna groups

(i.e. from antenna group N; to Ng) is presented with N,= 32, M = 128, N, = 8 for 16

QAM and 64 QAM respectively.
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Figure 4.33 MSE Comparison of each algorithm under different SNRs: With N, = 32
M=256, N; = 16 and 16QAM

In Figure 4.33, combined MSE performance of 256 antennas versus SNR is presented

with N,= 32, M =256, N, = 16 for 16 QAM.

In these figures, comparison of SUCoSaMP is provided with conventional algorithms
OMP and CoSaMP and with SSP and ASSP. It can be seen from the figures that the
SUCoSaMP algorithm for each antenna group can achieve huge MSE gains over
conventional algorithms. However, it is observed that the MSE performance of all

algorithms slightly degraded with decrease in number of pilot subcarriers N,. Results
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shows that SUCoSaMP efficiently consider the effect of SNR and performs better in both

high and low SNR scenarios.

4.2 Resource Requirements and Execution

This thesis illustrates a modified iterative recuperation algorithm called SUCoSaMP
that provides the similar assurances as the top optimization centered approaches.
Additionally, SUCoSaMP presents thorough constraints on storage and computational
complexity cost. SUCoSaMP is particularly suitable and efficient for practical scenarios
and challenges since it simply needs matrix/vector multiplication with the sensing matrix.
The execution time for compressible signals is just O(Mng leogzMng fL), where M, (L
represents the size of the signal [48].

As described in Chap 3, SUCoSaMP is derived from basic CoSaMP {48]. The
resource requirement analyses presented in [48] for CoSaMP has been revisited in this
section in context of SUCoSaMP. CoSaMP was developed for practical solutions to
recover signals. A methodical execution of the algorithm needs several concepts from
linear algebra, along with a few basic practices from the theory and techniques of
algorithms. This section reviews the important factors and concerns and builds up an
evaluation of the execution time for the two most common scenarios [48].

The focus of CoSaMP/SUCoSaMP is on solving the least-squares problem during
estimation step as this step is the key hurdle to a rapid functioning of algorithms. The
CoSaMP/SUCoSaMP make it sure that the matrix A, ,. does not have higher than 3s

columns, thus the hypothesis of CoSaMP/SUCoSaMP i.e. 845 < 0.1 entails that the matrix

A, is particularly in perfect state. Therefore, the pseudoinverse AILT =

T
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(AnAn T)_lA;T can be employed exceedingly fast by applying any iterative method
like conjugate gradient or Richardson’s iteration. The further benefit of the techniques is
that the interaction with the matrix A, . is simply through action on vectors. Thus, it
develops that the fast matrix-vector multiplication for sensing matrix help algorithms to
perform better [48].

The solving cost of least-squares problem is O(£) where, L restraints the cost of
matrix—vector multiplication with A, .. or Ay,... Whereas the least-squares approach is
initialized with the existing approximation h*~1 [48].

In these arrangements the direct methods for least-square problems are highly ineffective
due to the following three major issues:
1) The first issue is that every single least-square problem can include
considerably unique sets of columns from A, . Consequently, the cost of
SVD or QR factorization required to be executed throughout every single
iteration becomes O(s?N),) [48].

it) The second issue is that computing SVD or QR factorization normally
requires to access the columns of the matrix directly. Whereas it becomes
challenging while accessing the matrix through actions on vectors [48].

iii) The third issue is that the storage cost for direct methods becomes O(sN,),
which unfeasible for large scale scenarios [48].

The algorithm includes typical approaches for the other steps, the process counts are

as follows as discussed in [48]:

Signal proxy: The cost of making signal proxy is controlled by matrix-vector

multiplication A} v [48].
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Classification: The largest 2s entries in a vector can be found in time O(MpgrL).
Practically, sorting of entries in a signal can be quicker at cost O(MpyrLlog MpgrL) in
declining order of scale and then choose first 2s of them. The concluding process can be
completed by heapsort or quick sort. Whereas, for the algorithm to be implemented as per
requirement, the sorting should be stable enough [48].

Support union: The two sets of size O(s) can be united using randomized hashing
methods in estimated time O(s). The other option is that to use elementary merge
procedure after sorting both sets first for a cost O(slogs) [48].

Signal estimation by least-square: Conjugate gradient or Richardson’s iteration can be
used to compute AIlTyZ,n. Initialization of least-squares approach needs a matrix-vector
multiplication with A7,. A matrix-vector multiplication is essential for least-squares
approach during iteration each with A7 and A4, . [48].

Pruning: It can be executed in time O(s), since it is exactly the similar step to
classification, however the better approach can be by sorting the vector components by
scale and then first s can be chosen at cost O(slogs) [48].

Sample update: The cost of this step is controlled by multiplication A h* 1,

Two cases are presented in Table 4. The first case is for standard way of applying sensing
matrix A, to vectors. The second case is that how both sensing matrix A, and its adjoint
A;, execute fast multiplication with cost L by considering the assumption £ = M, L.
Whereas the value O(MpgrLlog My4¢L) is considered as a conventional value. Partial
Fourier matrices particularly comply with this constraint [48].

It has been further noted that the storage needs are also satisfactory for the algorithm.

Apart from storage requirement for the sensing matrix, the signal proxy is formed by
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taking only one vector of length M, ;L. The vectors v and y, ,, require O(N,) storage as
they are of length N,,. The approximations of the signal may be stored as structured data,
requiring maximum storage O(slogM,¢L). In the same way the indexes set needs

simply O(s log Mp4¢L) storage. Finally, the total worst storage is O(Mng 7L) [48].

Table 4. Execution-operation count for SUCoSaMP: N, X M, L are the dimensions
of sensing matrix A, , s is the sparsity level, L restraints the cost of matrix-vector
multiplication with 4,, or A}, , For the purpose of reading clarity, Big-O notation is
excluded.

Step Multiplication (Standard) Multiplication (Fast)
Make proxy NpMy4rL L
Classification MpgrL MygrL
Support union S s
Estimation (least-squares) SN, L
Pruning s s
Sample update SN, L
Total per iteration O(NpMygsL) 0L)
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Table 5 presents the comparative performance of different algorithms based on the
following points discussed in [48]:

Table 5. Assessment of various recovery algorithms: N, is the length of measurement vector (i.e. the
received vector of the pilot sequence) My ;¢ L is the length of signal (i.e. the aggregate CIR vector of n'®
antenna group) and the sparsity level is denoted by s. [48]

SUCoSaMP OMP ROMP Fourier HHS Pursuit Convex CoSaMP
Sampling Optimization
Broad SRIP Subgauss. RIP no no RIP RIP
Samples
Stability yes ? yes yes yes yes yes
Ideal yes yes no no no yes yes
Number of
Samples
Consistency yes no yes no yes yes yes
Execution | O(NpMugrL) | O(sNyMpngeL) | O(sNpMpgrL) | s polylog(MpgsL) | poly(slogMngel) | LP(MngeL, Np) | O(NpMpgel)
Time

Broad Samples: This describes that how an algorithm behaves for a variety of sampling
methods i.e. whether it needs structured or unstructured samples? SRIP means that the
algorithm holds structured isometric property [40], whereas RIP means that the algorithm
satisfies the restricted isometry constant bound. Finally, “Subgauss.” represents that the
algorithm can be successfully incorporated particularly for sub-gaussian sampling
matrices [48].

Stability: This describes two important situations in which an algorithm assures success
or not; (a) A signal is not sparse but compressible (b) the samples suffers from noise

contamination [48].

Ideal Number of Samples: This is about possible recovery of s-sparse signal from
O(slogMp4¢L) measurements ie. Does the algorithm require higher sampling by

logarithmic factor? [48]
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Consistency: Can all the signals be recovered by the algorithm given a fixed sensing

matrix? Or does it need to derive a sensing matrix at random for each signal? [48]

Execution Time: This is about the worst-scenario cost to recuperate a signal with
sparsity level “s” by the algorithm up to some comparative accuracy, without having any

specific structure of a sensing matrix. The term LP(MpngL, N,) represents the cost (i.e
O(szMngle'S) for an interior point approach) of linear program solution with N,
constraints and M,g¢L variables. Furthermore, it can be easily noted that mostly

algorithms take good advantage of rapid matrix-vector multiplication to achieve

improved execution times. [48]

Finally, it can be concluded that the SUCoSaMP/CoSaMP performs better amongst
the super-linear and linear approaches for the given metrics. While the sub-linear
approaches are faster than SUCoSaMP/CoSaMP, however the SUCoSaMP/CoSaMP
overcomes the limitation by accepting the broad variety of sensing matrices with rarer

samples [48].

4.4 Summary

By taking advantage of spatial and temporal common sparsity of massive MIMO
channels in delay domain, the proposed nonorthogonal pilot design and channel
estimation scheme under the frame work of CS theory significantly reduce the pilot
overheads for massive MIMO systems and also outperform the conventional algorithms
in performance. This research may be extended by incorporating the proposed schemes in

the multicell scenarios.
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Chapter 5. Conclusion and Future Suggestions

This chapter presents the conclusion of each method proposed in chapter 3. The
methods include proposed nonorthogonal pilot scheme and proposed SUCoSaMP
recovery algorithm. This chapter also describes future research suggestions and potential

directions.

5.1 Conclusion

The targets of 5G can be met by using ultra-wide bandwidth, highly dense
deployment of BSs and hundreds of antennas at BS, however using these techniques will
result in unexpected power consumption, prohibitively high complexity and very large

pilot overheads.

Therefore, CS theory has motivated whole wireless communication community to
address these issues, and in this thesis, we also attempted to investigate the effectiveness
of CS by employing CS theory for the purpose of channel estimation for massive MIMO

wireless systems.
5.1.1 Proposed Nonorthogonal Pilot Scheme

e A nonorthogonal pilot scheme is proposed based on the experimentally observed
spatio-temporal common sparsity of massive MIMO communication channels.

e Initially the scheme divides the antennas placed at BS into subgroups. The
division of the antennas into subgroups is based on the system parameters and the
temporal and spatial sparsity of massive MIMO channels.

o Then after creating the antenna groups, a specific equally spaced nonorthogonal

pilot scheme is proposed.
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The proposed scheme dynamically reduces the pilot overhead and save the
resources.

Simulation results demonstrate that the proposed method has significant low
computational complexity. Moreover, the channel estimation using the proposed

scheme attains good estimation results.

Proposed SUCoSaMP Recovery Algorithm

For the task of channel estimation, the basic idea of CS theory is implemented
that is to recover a signal which is sparse in some domain from extremely small
amount of nonadaptive linear measurements by applying convex optimization.
We proposed the SUCoSaMP algorithm derived from basic CoSaMP as described
in Algorithm 1.

The information of correct sparsity level is usually not available and also it is
practically not possible to have prior knowledge of correct sparsity level, whereas
information about sparsity level plays a significant role in compressive sensing
problem of solving underdetermined system and it is also required as prior
information by most of the CS based algorithms.

The proposed SUCoSaMP algorithm does not require prior information of
sparsity level because it adaptively acquires the sparsity level and avoids the
unrealistic assumption of having prior information of correct sparsity level.

Note that the proposed SUCoSaMP algorithm works in the same way as the
CoSaMP algorithm. The CoSaMP algorithm is basically based on basic OMP.

The SUC0SaMP algorithm has incorporated some other ideas from the literature
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to present strong guarantees that OMP and CoSaMP cannot provide and to speed
up the algorithm as compared to OMP.

e The major advantage of SUCoSaMP over OMP, CoSaMP, and basic subspace
pursuit (SP) algorithms is that it does not require prior knowledge of sparsity
level, which is an unrealistic assumption, specifically in wireless communication
scenario.

e There are two differences between SUCoSaMP and CoSaMP. Firstly,
SUCoSaMP estimates the channels, i.e. it recovers the high dimensional sparse
vector by utilizing structured sparsity of -massive MIMO channels from one vector
of low dimension. Secondly, SUCoSaMP adaptively acquires the sparsity level.

e In contrast, the CoSaMP recovers the sparse vector without exploiting the
structured sparsity and it requires prior information of correct sparsity level.

e Simulation results shows that the proposed nonorthogonal pilot design and
channel estimation scheme under the frame-work of CS theory significantly
reduce the pilot overheads for massive MIMO systems and also outperform the
conventional algorithms in performance.

e Moreover, the proposed schemes are easy to implement in practical systems with

high-quality adaptive modification capacity and secure estimation results.

5.2 Future Recommendations

Following are some future suggestions and directions for compressive sensing-based
channel estimation for massive MIMO communication systems which could help to

further improve the system.
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CS based interference cancellations schemes can be implemented to avoid the
interference from neighboring cells and to overcome the pilot contamination
issue. Also, the feedback systems can be deployed to reduce the high pilot
overhead. The idea is to formulate the CS based recovery algorithm to be
implemented at the BS side by receiving the channel feedback information using
the uplink control channel.

This research may be extended by incorporating the proposed schemes in the
multicell and multiuser scenarios.

The virtual angular domain sparsity property of massive MIMO channels can be
exploited to further reduce the access latency. Moreover, the structured sparsity in

the angle-frequency domain can be exploited to design CS based channel

estimator.
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