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Predictive Intelligent Routing Abstract

Abstract

The project aims lo design and implement an efficient and intelligent routing
protocol for network routing. Computer networks are becoming more and larger and
complex. Dilferent network nodes with different link characteristics and different
processing power are interconnected with each other in the same neiwork. Conventional
routing algoritluns are found to be increasingly incapable of handling the fouling task for
such networks. The need arises to develop a new algorithm which has distributed
characteristics, low storage and has quick convergence. We present an efficient,
distributed and intelligent routing protocolA based on the framework of Reinforcement
Leaming for such problems. This protocol is distributed, has intelligent behavior, and has
low overhead in terms of storage and processing. The whole framework is implemented
on ns-2 simulator in Linux. The remainder of this document provides descriptions of the
interfaces to and implementation of each of these mechanisms. In addition, a description

of the design and implementation process on ns-2 simulator is also given.
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Chapter 1 Introduction

1. INTRODUCTION

In a communication network information is transferred from one node to another
as data packets. The process of sending a packet P(s; d) from its source node s to its
destination node d is referred to as packet routing. Normally this packet takes multiple
hops and on its way, spends some time waiting in the queues of intermediate nodes, while
they are busy processing the packets that came earlier. Thus the delivery time of the
packet, defined as the time it takes for the packet to reach its destination, depends mainly
on the total time it has to spend in the queues of the intermediate nodes. Normally, there
are multiple routes that a packet could take, which means that the choice of the route is
crucial to the delivery time of the packet for any (s,d) pair. If there was a global observer
with current information about the queues of all nodes in the network, it would be
possible to make optimal routing decisions: always send the packet through the route that
has the shortest delivery time at the moment.

1.1  State of Modern Computer Networks

Unfortunately In the real world, such complete, global information is not
available, and the performance of the global observer is an upper bound on actual
performance. Instead, the task of making routing decisions has to be shared by all the
nodes, each using only local information. Thus, a routing policy is a collection of local
decisions at the individual nodes. When a node x receives a packet P(s; d) originating at
node s and destined for node d, it has to choose one of its neighboring nodes y such that
the packet reaches its destination as quickly as possible.

The simplest policy is the shortest-path algorithm, which always routes packets
through the path with the minimum number of hops. This policy is not always good
because some intermediate nodes, falling in a popular route, might have large queues. In
such cases it would be better to send the packet through another route that may be longer
in term of hops but results in shorter delivery time. Hence as the traffic builds up at some

Predictive Intelligent Routing 1



Chapter 1 Introduction

popular routes, alternative routes must be chosen to keep the average packet delivery time

low.

Beliman-Ford Routing (BFR) algorithm is by far the most widely used distance
vector adaptive routing algorithm. In BF, each node has two tables which contain, for
each possible destination,

1.A cost (cost table) or minimum delivery time for sending a packet to
that destination.
2.The node's neighbor (routing table) to which the packet should be forwarded to

reach the destination for the corresponding cost.

Neighboring nodes exchange their cost tables frequently for adaptation. The
drawback being an enormous overhead of exploration (exchange of routing information

between nodes) and a slow rate of learning.

1.2 Use of Artificial Intelligence

Reinforcement learning is a relatively new and emerging area of machine leaming
theory [4]. Reinforcement learning aims to develop successful techniques for learning
complex strategies from limited data in a goal-directed manner. The definition of
reinforcement learning given by Sutton and Barto [4] is “Reinforcement learning is
defined not by characterizing learning methods, but by characterizing a learning
problem”. Neural Networks and genetic algorithms are used in conjunction with

reinforcement learning.

It is also known as neurodynamic programming and is closely related to dynamic
programming. It works well with situations where the outcome of processing is

modifications to outcome of processing is modifications to the environment itself.

Predictive Intelligent Routing 2
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Fig 1: Reinforcement Learning

In this thesis we design and implement a distributed, efficient and intelligent
protocol which provides for the development of further advanced protocols.
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2. LITERATURE SURVEY

The most important part in developing any research project is Literature review.
In order to understand or develop any research project we should have deep knowledge
about it. We should know what research has already been done, what comments have
been made by the pioneers of this field about this project and whether it is feasible to start
work on it or not. For example to start a work on a network protocol, extensive literature
survey about routing mechanisms, is needed. Similarly to understand an embedded
operating system we should have the knowledge about the following things.

2.1 Computer Networks

With the invention of computers, new paradigms in computing begin. Computers
were used to solve different problems and perform tasks for their users but soon it
became obvious that a single computer, no matter how fast it was, needed to interact with
other computers for different reasons [1]. Therefore computers were connected with each
other through different media and at different speeds. Different protocols were written to

support these interconnections.
2.1.1 Networks with static topology

These are the networks where the topology is considered to be static. No nodes
goes down and no link changes its state. Such networks are very rare.

2.1.2 Networks with dynamic topology

As mentioned earlier, computers were interconnected with each other. This was
no simple task. Some computers were old, had slow processing power, others had high
processing speed, still others were super computers. Similarly the links between them
were of varying speed; ranging from kbps to Mbps. There was a big problem as to how to
connect these machines with each other. The problem was compounded by the fact that

the network nodes were prone to failure. Any node could stop functioning at any time,
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similarly any offline node started functioning again. Complex protocols like TCP had to
be written to support these connections at the software level [2].

2.2  Routing Protocols

Routing protocols are the mechanisms by which different entities in a node
communicate with each other. Routing protocols handle the communication of the nodes
with each other. Routing protocols provide different services to the nodes. Once two
nodes have routing protocols running on them, which are interoperable with each other
then they can communicate easily with each other. The design of routing protocols is not

easy. Many factors have to be taken care of to design a routing protocol.

2.2.1 Classification of routing protocols

Routing protocols can be classified [1][2] into categories depending on their properties.
1. Centralized vs. Distributed.
2. Static vs. Adaptive

3. Reactive vs. Proactive

2.2.1.1 Centralized vs. Distributed

One way to categorize the routing protocols is to divide them into centralized and
distributed algorithms. In centralized algorithms, all route choices are made at a central
node, while in distributed algorithms, the computation of routes is shared among the

network nodes.

2.2.1.2 Static vs. Adaptive

Another classification of routing protocols relates to whether they change routes
in response to the traffic input patterns. In static algorithms, the route used by source-
destination pairs is fixed regardless of traffic conditions. It can only change in response to
a node or a link failure. This type of algorithm cannot achieve high throughput under a
broad variety of traffic input patterns as explained in [1}[2]. Most major packet networks
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use some form of adaptive routing where routes used to route between source-destination

pairs may change in response to congestion [1]{2].
2.2.1.3 Proactive vs. Reactive

A third classification that is more related to ad hoc networks is to classify the
routing algorithms as either proactive or reactive. Proactive protocols attempt to
continuously evaluate the routes within the network, so that when a packet needs to be
forwarded, the route is already known and can be used immediately. The family of
Distance-Vector protocols is an example of a proactive scheme. Reactive protocols, on
the other hand, invoke a route determination procedure on demand only. If a route is
unknown, the source node initiates a search to find one, which tends to cause a traffic
surge as the query is propagated through the network. Nodes that receive the query and
have a route to the requested destination respond to the query. In general, reactive
protocols are primarily interested in finding any route to a destination, not necessarily the
optimal route. Data sent in networks using reactive protocols do tend to suffer a delay
during the search for a route. Under highly dynamic link conditions, reactive protocols
are expected to generate less overhead and provide more reliable routing than proactive
routing, but at the cost of finding the optimal route.

The family of classical flooding algorithms belongs to the reactive group.
Proactive schemes have the advantage that when a route is needed, the delay before
actual packets can be sent is very small. On the other hand, proactive schemes need time
to converge to a steady state. This can cause problems if the topology is changing
frequently.

2.2.2 Conventional Routing Algorithms

Because many of the proposed ad hoc routing protocols have a traditional routing
protocol as underlying algorithm, it is necessary to understand the basic operation for
conventional protocols like link-state, distance vector, and source routing. More detailed
information about conventional routing algorithms can be founded in [1][2].
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2.2.2.1 Shortest Path Routing

The idea in shortest path routing is to build a graph from the network topology,
with each node of the graph representing a node and each arc of the graph representing a
link. To choose a route between a given pair of nodes, the algorithm just finds the
shortest path between them on the graph. One way of measuring the path length is the
number of hops. Another metric is the geographic distance in kilometers or even the cost
of the link. Several algorithms for computing the shortest path between two nodes of a
graph are known. Under shortest path routing a packet from a given source will always
take the same route. Several algorithms for computing the shortest path between two
nodes of a graph are known. The best known algorithm is formed by Dijkstra [1][2][9].

2.2.2.2 Flooding

Many routing protocols use broadcast to distribute control information, that is,
send the control information from an origin node to all other nodes. A widely used form
of broadcasting is flooding and operates as follows. The origin node sends its information
to its neighbors (in the wireless case, this means all nodes that are within transmitter
range). The neighbors relay to their neighbors and so on, until the packet has reached all
nodes in the network. A node will only relay a packet once and to ensure this some sort
of sequence number can be used. This sequence number is increased for each new packet

a node sends.

If the mobility is very high, flooding is a possible approach to route packets. The
main problem is that the flooding algorithm isn’t scalable to large mobile networks. Due
to the large amount of nodes, excessive flooding causes the network routing protocol to
break down.

2.2.2.3 Flow-based Routing

Flow-based routing is an algorithm that uses both topology and network load for
routing. If, for example, there is always a huge amount of traffic at a certain link, it may
be better to route the data over a longer path [10][11]. The basic idea behind this
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algorithm is that for a given line, if the capacity and average flow are known, it is
possible to compute the mean packet delay on that line from queuing theory. From the
mean delays on all the lines, it is straightforward to calculate a flow-weighted average to
get the mean packet delay for the whole network. The routing problem then reduces to
find the routing algorithm that produces the minimum average delay for the network. To
use this technique, the network topology, information about the traffic and the capacity of

the lines must be known in advance.
2.2.2.4 Distance Vector Routing

Modern computer networks generally use dynamic routing algorithms rather than
the static ones described above. Two dynamic algorithms in particular, distance vector
routing and link state routing are the most popular. Distance vector routing operates by
having each router maintain a table (i.e., a vector) giving the best known distance to each
destination and which line to use to get there. These tables are updated by exchanging
information with the neighbors [1]{2].

Compared to link-state, distance vector is more computation efficient, easier to
implement and requires much less storage [1]{2]. However, it is well known that distance
vector can cause the formation of both short-lived and long-lived routing loops. The
primary cause for this is that the nodes choose their next-hops in a completely distributed
manner based on information that can be stale.

2.2.2.5 Link State Routing

The idea behind link state routing is simple and can be stated in five parts. Each

router must

1. Discover its neighbours and learn their network addresses.
2. Measure the delay or cost to each of its neighbours.

3. Construct a packet telling all it has just learned.

4. Send this packet to all other routers.

5. Compute the shortest path to every other router.

Predictive Intelligent Routing 8
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Each node maintains a view of the complete topology with a cost for each link.
This cost is measured experimentally. To keep these costs consistent; each node
periodically broadcasts the link cost of its outgoing links to all other nodes using
flooding. A node that receives this information, updates its view of the network and
applies a shortest path algorithm to choose the next hop for each destination.

Some link costs in a node view can be incorrect because of long propagation
delays, partitioned networks, etc. Such inconsistent network topology views can lead to
formation of routing-loops.

These loops are short-lived, because they disappear in the time it takes a message
to traverse the diameter of the network. Link state routing is discussed in detail in {1].

2.3 Reinforcement Learning

Reinforcement learning dates back to the early days of cybernetics and work in
statistics, psychology, neuroscience, and computer science. In the last five to ten years, it
has attracted rapidly increasing interest in the machine learning and artificial intelligence

communities [4].

Fig 2: Standard Reinforcement Learning Model

Reinforcement learning is the problem faced by an agent that must learn behavior
through trial-and-error interactions with a dynamic environment. Its promise is beguiling:
a way of programming agents by reward and punishment without needing to specify how
the task is to be achieved. But there are formidable computational obstacles to fulfilling
the promise [4].
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2.3.1 Reinforcement Learning Model

In the standard reinforcement-learning model, an agent is connected to its environment
via perception and action, as depicted in Figure 2. On each step of interaction the agent
receives as input, i, some indication of the current state, s, of the environment; the agent
then chooses an action, a, to generate as output. The action changes the state of the
environment, and the value of this state transition is communicated to the agent through a
scalar reinforcement signal, r. The agent's behavior, B, should choose actions that tend to
increase the long-run sum of values of the reinforcement signal. It can leam to do this
over time hy systematic trial and error, guided by a wide variety of algorithms.

The model is formally defined as

e A discrete set of environment states S

o A discrete set of agent actions, A;

s A set of scalar reinforcement signals typically {x|x, x is a set of real number s}

e An input function I is also defined, which determines how the agent views the
environment state. Here is an example to understand the working of the
reinforcement learning model.

1. Network: You have a packet as input. You can take 4 actions. (4 paths to

forward the packet)

2. Routing Agent: I will take action 4.

3. Network: You have a reward of 10 reinforcement learning points. Next
packet as input. You can take 2 actions

4. Routing Agent: I will take action 2

5. Network: You have a reward of -7 reinforcment learning points. Next
packet as input. You can take 3 actions.

6. I will take action 1

7. You have a reward of 5 reinforcement learning points. Take next packet as
input. You can take 5 actions

In this way an agent learns how to use information available at run-time to decide

Predictive Intelligent Routing 10
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about the actions it needs to take. It’s the agent’s responsibility to devise a policy to reap
maximum reward (short term or long term). We assume that our environment is

stationery.

Reinforcement learning theory is developed for discrete cases. When we think of
optimizing our algorithms by using reinforcement learning we have to determine our
model of optimality.

2.3.1.1 Finite Horizon Model

This is the simplest model. An agent at any time t should optimize its expected
reward for the next h steps.

2.3.1.2 Infinite Horizon Discounted Model

The only difference this model has from the above model is that of geometrically
discounting the rewards received in the future by the discount factor? (0<? <1)

{5

If the discount factor approaches 1 then infinite horizon model is reduced to Finite
Horizon model.

2.3.1.3 Average Reward Model

In Average reward model the agent tries to optimize it’s long term average

. 1
(i 3 )

reward.
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2.3.1.4 Bias Optimal Model

This model improves upon the average reward model. It tries to get extra reward

at the start and also maximizes the long run average.

+2

Finite harizon, h=4
+10

infinite horizon, =09
=0 +11

Average reward

Fig 3: Comparison of Models of Optimality
2.3.2 Selection of Optimal Policy

The optimal policy depends on the model of optimality chosen. If finite horizon
model is chosen then the optimal policy may be different than the policy chosen when

infinite horizon model is in use.

The correct selection of optimal policy was found to be very important for the

efficient use of reinforcement learning in the application.
2.3.3 Guidelines for selecting Optimal Models

Following are the guidelines for selecting the optimal models

1. When the agent’s lifetime is known, finite-horizon model may be selected.
2. When the agent’s lifetime is unknown, either infinite-horizon or bias optimal
model may be selected.

3. Iflong term average reward is required then average reward model may be
selected.

2.3.4 Measuring Agent Performance

1. If an agent does achieve near optimal performance but in a large amount of time

Predictive Intelligent Routing 12
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then it is useless in many applications. Speed of convergence is needed.

2. Agent performance can also be checked at specified intervals of time.
2.3.5 Application of Reinforcement Learning

Reinforcement learning is mostly applied to static environments. Only recently
it’s also being used in dynamic environments. Q-Learning and Q-Routing are two well

known examples [7][9].
2.3.5.1 Single State k-armed bandit problem

This is a simple reinforcement learning problem. The agent is supposed to be in a
room with a collection of k gambling machines. Each machine has one handle to pull.
The agent can pull any handle on every turn. Pulls are allowed upto h. When handle of
machine i is pulled it outputs either 1 or 0. This is called the reward or payoff of the
machine. p;is the priority associated with each machine.

This example best illustrates the tradeoff between exploration and exploitation. The
agent may keep on choosing a handle with high probability of giving a reward of 1 or it
may try to explore another handle with low priority also. It also depends on how long the
agent plays the game.

Dynamic programming can be employed for solving this problem. A table may be
made with entties for actions taken for all the machines and reward given by all of them.
Then the expected payoff can be calculated and the remaining pulls may be used
optimally.

24 Q-Learning
Recently the exploration/exploitation framework of reinforcement learning was

used in Q-Routing and Q-Learning to learn optimistic routing for a dynamic network

(61[71.

To leam a controller for a task, two approaches may be used. In model-based
approach, the learning agent must first learn the model of the environment and then use

this knowledge to learn an effective control policy for the task. In the model-free

Predictive Intelligent Routing 13



Chapter 2 Literature Survey

approach a controller is learned directly from the actual outcome. Reinforcement learning

is an example of the model-based approach.

On-going tasks like network routing require the learning process to be continous.
Some mechanism may also be adopted to access the reward after an action. This is solved
by using temporal differences, a model-based approach. One such strategy is the
Adaptive Heuristic Critic (AHC). It consists of two components, a critic (AHC) and a
reinforcement learning controller (RL). For every action taken by the RL, there is a
reward generated by the environment which is converted to a reinforcement signal for the
RL by the AHC.

Q-Learning [6] is a method proposed by Watkins for solving the Markovian
Decision Problems (MDP). It is a direct method because it does not use an explicit model
of the dynamic system underlying the decision problem. In Q-leamning the states and the

possible actions in a given state are discrete and finite in number.

Q-learning solves the problem of finding the action that returns the maximum
value. In case of a non-deterministic MDP, value iteration requires that we find the action
that returns the maximum expected value (the sum of the reinforcement and the integral
over all possible successor states for the given action). For example, to find the expected
value of the successor state associated with a given action, one must perform that action
an infinite number of times, taking the integral over the values of all possible successor
states for that action. Rather than finding a mapping from states to state values (as in
value iteration), Q-learning finds a mapping from state/action pairs to values (called Q-
values). Instead of having an associated value function, Q-learning makes use of the Q-
function. In each state, there is a Q-value associated with each action. The definition of a
Q-value is the sum of the (possibly discounted) reinforcements received when performing

the associated action and then following the given policy thereafter.

Likewise, the definition of an optimal Q-value is the sum of the reinforcements
received when performing the associated action and then following the optimal policy
thereafler. Q-learning differs from value iteration in that it doesn’( require thai in a given

stale each action be performed and the expected values of the successor states be
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calculated. While value iteration performs an update that is analogous to a one level
breadth-first search, Q-learning takes a single step sample.

Q-Learning [6] is a technique to solve specific problems by using the
reinforcement learning approach. Q-Learning is an incremental version of dynamic
programming for solving multistage decision problems. In this case it is the adaptive
traffic control problem. This is a model-based approach. The controllers in such an
environment should adopt such routing policies so as to minimize the average packet
delivery time. The controllers usually have little or no prior knowledge of the
environment. Finding the optimal policy in such an environment is very difficult.
Moreover the optimal routing policy may change with time as the environment is non-
stationary.

An algorithm for implementing Q-Leaming is as follows

1. Initialize (with 0's or random values) Q(s,a ) for alls € § and for all a
€ A(s)
2. Repeat (for each episode)
3. Initialize s
4. Repeat (for each step episode):
5. Choose a from s uvsing a policy derived from Q (e.g., e-greedy)
6. Take action a, observe resultant state s’ and the reward r.
7. Q(s,a) « Q(s,a) + ajr + y maxa’Q(s',a’) - Q(s,a )}
8. s<s'; until s is terminal

2.5 Q-Routing

The Q-Learning framework described above was used by Boyan and Littman to
develop an adaptive routing algorithm [7]. Unlike the original Q-Learning algorithm, Q-
Routing is distributed in the sense that each communication node has a separate

controller, which does not rely on global information of the network for decision making
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and refinement of its routing policy. The packet routing problem can be modelled as a
Markov Decision Process. The states of the MDP are represented by the nodes of the
network. The actions available in a state (in a node) are represented by the neighbour-
nodes to which the packet can be sent. A node’s view of the state of the network is
represented by the Q-values in its routing table. The complete state of the network is
represented by the Q-values in all the nodes in the network. Q-Routing uses the finite

horizon optimality model.

Q-routing, learns a routing policy which balances minimizing the number of
“hops” a packet will take with the possibility of congestion along popular routes. It does
this by experimenting with different routing policies and gathering statistics about which
decisions minimize total delivery time. The learning is continual and on-line, uses only
local information, and is robust in the face of irregular and dynamically changing
network connection patterns and loads. A packet routing policy answers the question: to
which adjacent node should the current node sends its packet to get it as quickly as
possible to its eventual destination? Since the policy’s performance is measured by the
total time taken to deliver the packet, there is no “training signal” for directly evaluating
or improving the policy until a packet finally reaches its destination.

However, using reinforcement leaming (Q-leaming), the policy can be updated
quickly using only local information. In general, Q-values can also be used to represent
the characteristics of the system based on s and « instead of the expected reinforcement.
The control action, therefore, could be a function of all the Q-values in the current state.
In the Q-Routing algorithm, Q-learning is used to learn the task of finding an optimal
routing policy given the current state of the network. In Q-Routing, Q-learning is used to
first learn a representation of the state of the network in term of Q-values and then these
values are used to make control decisions. The task of Q-learning is to learn an optimal
routing policy for the network. The state s in the optimization problem of the network is
represented by the Q-values in the entire network. Each node x in the network represents
its own view of the state of the network through its Q-table Q.
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Given this representation of the state, the action a at node x is to choose that
neighbour y so that it takes minimum time for a packet destined to node d to reach its

destination if sent via neighbour node y.
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3. PROBLEM DOMAIN

The project aims to enhance and implement the Q-Routing protocol. As already
discussed, reinforcement learning is a promising field and it is used successfully in many
problems. Also it does not has the drawbacks of neural networks as it does not needs the
training data. Instead reinforcement learning trains itself according to the current
situation. Reinforcement learning has further branches undergoing active research. Two
of such branches are Q-Learning and Q-Routing. These fields have undergone intensive
research. After Q-Leamning framework was made Boyan and Littman designed the Q-
Routing framework to apply the Q-Learning technique on network routing by using Q-
Routing. The Q-Routing algorithm is based on Q-Learning. Hence it uses the Q-values

and the principles of reward of reinforcement learning.

3.1 The Routing Problem

To support a user’s need to send information to an intended recipient, a network
must be able to route information from one user to another. For any type of transmission
in a multi-node network, a transmitter must first gain access to the channel over which
the information will be sent. Techniques to access channels range from contention-based
to reservation-based. Contention-based methods [2] use packet-by-packet contention for
the radio channel and can lead to conflicts between nodes wanting to transmit at the same
time. Dynamic reservation-based methods reserve the channel for transmission of a
packet or series of packets in a message or call. Contention-based access tends to provide
the best delay and throughput characteristics when traffic consists of small packets with
bursty interarrival times, while reservation-based channel access tends to provide the best
performance when traffic consists of large messages or streams of packets in a call.

In addition to gaining access to another user, the network must figure out a path to that
user. This is the task of routing protocol. Getting to the destination may require making
many hops at intermediate routers along the way. To achieve this goal, the routing
algorithm must know about the topology of the network (i.e., the set of all nodes) and
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choose appropriate paths through it. It also has to take care to choose routes to avoid
overloading some of the communication lines and routers while leaving others idle. This
is the function of the routing protocol. Depending on the network topology, there could
be multiple routes from a particular source to a particular destination and hence the time
taken by the packet depends on the route it takes. The overall goal that emerges can be
stated as:

What is the optimal route from a given source node to a given

destination node in the current state of the network?

The state of the network depends on a number of network properties: the queue
lengths of the nodes, the condition of the links (whether they are up or down), condition
of the nodes (whether they are up or down) and so on. If there was a central observer that
had information about the current state (i.e. the packet queue length) of all the nodes in
the network, it would be possible to find the best route using the Weighted Shortest Path
Routing Algorithm (Dijkstra [1][2]). Such a central observer does not exist in any
realistic communication system. The task of making routing decisions is therefore the
responsibility of the individual nodes in the network. The routing problem can be viewed
as a complex optimization problem whereby each of the local routing decisions combine
to yield a global routing policy. This policy is evaluated based on the average packet
delivery time under the prevailing network and traffic conditions. The quality of the
policy depends, in a rather complex manner, on ali the routing decisions made by all the
nodes. Due to the complexity of this problem, a simplified version is usually considered.
Instead of a global optimal policy, one tries to find a collection of locally optimal ones.
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Fig 4: The Packet Routing Problem

When a node x receives a packet ) , ( d s P that originated at node s and is destined to
node d , what is the best neighbour y of x to which this packet should be forwarded so

that it reaches its destination as quickly as possible?

3.2 Project Scope

This scope of this project is described below and it includes the following things:
An enhanced form of Q-Routing based on Q-Learning framework which is based on
Reinforcement Learning.

1.Distributed Operation
2.Quick Convergence
3.Low processing

4 Efficient Operation

5.Low storage requirement

3.3 Objectives

The objective of this work is to enhance and implement the Q-Routing framework
with the following features:
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3.3.1 Distributed Operation
The algorithm will be distributed and will be running on all the nodes of the network.

3.3.2 Quick Convergence
The algorithm will be able to converge quickly after changes in the network load and

topology.

3.3.3 Low Processing

The algorithm will need low processing power for its operation.

3.3.4 Efficient Operation
The algorithm will work very efficiently.

3.3.5 Low Storage Requirment

The algorithm will have very low storage requirement.

3.4 Proposed Solution
The algorithm will be implemented with the following modules.
3.4.1 Distributed Operation

The algorithm will have distributed operation i.e., it will be implemented on all

the nodes of the network. On every node a local copy of the algorithm is running and
taking decisions.

3.4.2 Distance Vector Routing

Distance vector routing is chosen to be the base for the Q-Routing framework.
Distance vector routing was found to be efficient, had low processing requirements and

quick convergence.
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3.4.3 Quick Topology Discovery

The algorithm will perform quick topology discovery. This will be performed by
doing broadcasting. Every node which is alive and on-line will receive the updates and
send its own updates back.
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4. DESIGNING

Our algorithm is designed and the simulation environment chosen for it is the NS
simulator. Now let us discuss the design of each of the following:

4.1 Q-Routing

Reinforcement Learning is a relatively new field. Q-Leamning is a framework
based on reinforcement learning. Q-Routing is based on Q-Learning to solve the network
problems.

Several distributed adaptive algorithms for efficient packet routing are proposed
i the literature. The requirement for such an algorithm is that it is assumed to be
implemented on a network having non uniform topology with sudden change in network
traffic. The algorithm must adopt itself according to the changes and learn an efficient
routing policy while satisfying the criteria of avoiding congestion and minimization of
the number of hops.

We present a new distributed algorithm with adaptive behavior based on
Reinforcement Learning. Traditionally algorithms based on Neural Networks and
Reinforcement Learning need much more storage space and leamning time than
conventional algorithms which makes it unfeasible in a dynamic network with
unpredictable usage patterns. The proposed algorithm uses a special Reinforcement
Learning scheme which is very efficient in terms of space and time usage. The original
Q-Learning algorithm used a global approach while this variation is implemented in a
distributed way.

Exclusive simulations were performed to analyze this algorithm. Different
network topologies with varying traffic patterns were tested. Different parameters were
changed and the results were noted.
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Following are the requirements for such a routing algorithm:

¢ Optimize end-to-end delay & bandwidth
e Balance load during peak network stress, prevent hot-spots

¢ Converge quickly to near-optimal paths under topology and network load
changes, then revert back to original state when unloaded

e Use only local information

Q-Routing algorithm has the following characteristics:

¢ Q-Routing chooses best-known-delay paths through a network by recording delay

values.

¢ Q-Routing is based on distance vector routing.

¢ Q-Routing extensively uses the framework of reinforcement learning
e Q-Routing is able to converge quickly

¢ Q-Routing is distributed.

Q-Routing was simulated on NS simulator:
e Added Q-Routing as an rtProto routing object
e Modified the DV and DropTail framework to support packet delay and bandwidth
monitoring

Reinforcement Learning is the approach applied in the algorithm presented in this
paper. By using this approach, with the help of only local information an efficient routing
policy can be achieved. It is presented as follows.

Every node maintains information about other nodes in the network. Therefore
when a node has to send a packet to a distant neighbor, it already has information about
the next hop node which has the shortest delivery time to the destination. The next hop
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returns back its estimate for the destination which is used to update the policy by the

current node.
4.2 Simulation Environment

NS is an object-oriented simulator. Developed at UC Berkeley it simulates
different networks, implements network protocols such as TCP,UDP, traffic source
behavior such as FTP, Telnet, CBR, routing algorithms such as Dijkstra and more. It also
implements multicasting and some MAC layer protocols. It uses a unique split
programming concept for providing its functionality. The two languages which ns uses
are C++ and otcl (an extension of the popular tcl scripting language). Correspondingly

there are two class hierarchies in ns.
¢ Compiled Hierarchy
e Interpreted Hierarchy

Both these hierarchies are closely related with each other. OTcl is the object oriented

version of Tcl language and it has the same relation- ship with Tcl as C++ has with c.

OTd : Tel interpreter @

- with OO extention ad d
Sowlation
Resuiis

THTIN B

Siwdation NS Stalster Liseary b )
Program « Bvest Scheduler Objects
*» Network Component Objects
* Network Setup Belping
Modules (Phumbing Modules)

Fig 5: NS Architecture

As shown in figure 5 contains an object oriented Tcl (OTcl) interpreter that has a

simulation event scheduler and network component object and network setup libraries.
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NS is written in two languages C++ and OTcl. This is mainly done for efficiency
reasons. The event scheduler and the basic network objects are written and compiled in
C++. Through a unique binding mechanism the compiled objects of C++ are made
available to the OTcl interpreter.

r'd
r 4
"\_E b L am ="
C++

Fig 6: NS, The Duality

We can say that NS is a Object Oriented Tcl interpreter with network simulator
libraries. NS has a well thought architecture. This was particularly demonstrated when
the wireless/satellite support was added to NS seamlessly.

NS contains a graphical simulation display tool called NAM. NAM is used
extensively to graphically visualize different simulations. It is a very capable tool and can
present information such as throughput and number of packet drops at each link, although
accurate simulation analysis cannot be done with that data.

Fig 7: Internal Architecture

NS contains a discrete event scheduler. The main users of an event scheduler are
network components that simulate packet-handling delay or that need timers. Above

figure shows the NS event scheduler in action. Packets are send from one network object
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to another by using send (Packet* p) { target ->recv(p)}; for the sender and recv
(Packet* , Handler* h = 0) for the receiver.

One very significant addition to the NS simulator is that of a real-time scheduler
allowing NS to integrate in a real life LAN and introduce packets into it. This opens up

some very exciting possibilities.

A simple NS simulation may consist of 2 nodes and a duplex link between them.
A time interval may be set using a scheduler after which the nodes may start
communication with each other. A stop time may also be specified. This whole

simulation can be written in about 10 lines of OTCL script.

Fig 8: NS Event Scheduling

NS is a discrete event scheduler. It is not based on real-time. It has its own virtual
time which is different from the virtual time. As soon as one event is executed,
immediately the virtual time is advanced to next event time. The scheduler of NS is also
explained in the above figure.
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Fig 9: Internal Object Structure

As shown in figure, we can trace the queue with special trace objects. The queue
1s composed of several objects, The queue starts with the head_ object. At the other end
of the queue the entry _object of nl object processes the packet.

Link nfhnd

Lisk nln0 o

Fig 10: Internal Node Architecture

Predictive Intelligent Routing 28



Chapter 4 Design

As shown in above figure the architecture of the two Q nodes is described. The
two nodes have address classifiers, port classifiers and link between them. The address
classifier is used to check that whether the packet is intended for this Q node or not. If
yes then it sends the packet for further processing to the port classifier whose object name
is dmux . The dmux_ checks that to which port the packet may be send for further
processing. The link structure between the two nodes is already described.

Fig 11: NS Packet Structure

NS packet header is defined in the above picture. There is a common header
which is necessary in every packet. It is followed by the IP header and TCP header which
are the normal headers used in TCP/IP stack. Then rtp header and trace header come
followed by our custom headers. These customer headers include the header we
designed: the Q-Routing header.
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Fig 12: NS Class Hierarchy

Partial NS class hierarchy is shown in the above figure. As shown TclObject is at
the top of the hicrarchy immediately followed by the NsObject class.

Fig 13: Node Classifiers
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4.3 Modifications in NS to implement Q-Routing

Ns simulator was modified to implement Q-Routing. A new Q protocol was
added. The protocol was based on distance vector routing. A new packet header entry
was placed in ns/tcl/lib/ns-packet.tcl. Similarly for addition in the c++ source a new entry
was placed in the ns/common/packet.h. In two other files (.cc and .h) the main source of
the algorithm was written. The entries in the ns-packet.tcl and packeth were made to
make the Q-protocol visible in the c++ and the Tcl namespace. The Makefile had to be
modified also to ensure that the compiler and linker knows about the new written files.

Once the required changes were done, make command was issued in the main ns
folder. This resulted in the parsing of the Makefile and the recompilation of the NS
simulator. Once this step was done successfully the Q-routing protocol classes became
visible in the Tcl and ¢++ namespace. Sample simulations were run to check to correct
installation of the algorithm and they worked perfectly.
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5. Development and Testing

This chapter describes the development phase and the testing of the embedded operating

system kernel.

5.1 Development of the Q-Routing Framework

Many modifications in NS were made to implement the Q-Routing framework.
They are analyzed one by one. First the changes in the ns-default file are analyzed.

5.1.1 ns-default.tcl

This file stores the default settings for different protocols. We also add the entry
for the Q-Routing protocol in this file.

# Dynamic routing defaults

Agent/rtProto set preference 200 ;# global default preference
Agent/rtProto/Direct set preference 100

Agent/rtProto/DV set preference . 120

Agent/rtProto/DV set INFINITY [Agent set ttl_]
Agent/rtProto/DV set advertinterval 2

Agent/rtProto/Q set preference 110

Agent/rtProto/Q set INFINITY [Agent set ttl ]
Agent/rtProto/Q set advertinterval 2

The Agent/rtProto/Q specifies the protocol class in Tcl syntax, while the set
command sets the values of its variables. As shown above the values of Agent/rtProto/Q
were set. The preference  variable is used to set the preference of the Q-routing protocol
while INFINITY as set to a large value. This was done due to the fact that Q-routing is
based on distance vector routing. The advertInterval _variable was set to 2, so that the
routing updates may be send to each other after interval of 2.
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5.1.2 ns-packet.tcl

In this file the piicket name of the new packet which the Q-Protocol will use 1s
given. It also includes descriptions of other packets already included in NS. The new
packet should be added to this file to make it visible in the Tcl namespace.

foreach prot {

rtProtoQ
H

add-packet-header $prot
}

As evident from the loop, we add our entry i.e., rtProtoQ in the list.
5.1.3 ns-route.tcl
In this file the function RouteLogic is passed the protocol name and the list of

arguments. Suppose that in our case the proto is Q then we pass Q as protocol name and

list of arguments as the no of nodes running this protocol.

RouteLogic instproc register {proto args} {

This function is an instproc and it will perform the task of initializing the protocol.
RouteLogic instproc configure {} {

In this function additional configuration of the protocol is performed.
RouteLogic instproc lookup { nodeid destid } {

This is a simple lookup function getting two parameters nodeid and destid returning the
result.

Simulator instprec rtproto {proto args} {
This function is implemented by the Simulator class to support the routing protocol.

5.1.4 packeth

In ns/common/packet.h entries were made to add the packet name in the c++

namespace.

enum packet t {
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PT_TCP,

PT UDP,

PT CBR,
PT_AUDIO,
PT_VIDEO,

PT _ACK,

PT START,
PT_STOP,

PT PRUNE,
PT_GRAFT,
PT_GRAFTACK,
PT _JOIN,
PT_ASSERT,
PT_MESSAGE,

PT _RTCP,

PT_RTP,

PT RTPROTO DV,
PT RTPROTO _Q,
PT_CtrMcast_Encap,
PT CtrMcast Decap,
PT_SRM,

/* simple signalling messages */
PT REQUEST,
PT_ACCEPT,
PT_CONFIRM,
PT_TEARDOWN,
PT_LIVE, // packet from live network
PT_REJECT,

PT_TELNET, // not needed: telnet use TCP
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PT FTP,
PT_PARETO,
PT EXP,

PT INVAL,
PT HTTP,

/* new encapsulator */
PT ENCAPSULATED,
PT_MFTP,

/* CMU/Monarch's extnsions */
PT_ARP,

PT MAC,

PT TORA,

PT DSR,

PT_AODV,

PT_IMEP,

// RAP packets
PT_RAP DATA,
PT_RAP_ACK,

PT TFRC,
PT_TFRC ACK,

PT PING,

// Diffusion packets - Chalermek
PT DIFF,

// LinkState routing update packets
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PT RTPROTO LS,

// MPLS LDP header
PT LDP,

// GAF packet
PT GAF,

// ReadAudio traffic
PT REALAUDIO,

// Pushback Messages
PT_PUSHBACK,

#ifdef HAVE_STL
// Pragmatic General Multicast
PT_PGM,

#endif /STL

// LMS packets
PT_LMS,
PT_LMS_SETUP,

/! insert new packet types here
PT_NTYPE // This MUST be the LAST one

|5

class p_info {

public:
p_info() {
name [PT TCP}="tcp";
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name_[PT_UDP}= "udp”;

name_ [PT_CBR]= "cbr";

name_[PT AUDIO]= "audio";

name [PT VIDEO]}= "video";

name [PT ACK]="ack";

name [PT START]= "start";
name_[PT_STOP]="stop";

name [PT PRUNE]J= "prune";

name [PT_GRAFT]= "graft";

name [PT_GRAFTACK]= "graftAck";
name_[PT JOIN]= "join";

name [PT _ASSERT]= "assert";

name [PT MESSAGE]= "message";

name_[PT _RTCP}= "rtcp";

name_[PT RTP]="rtp";

name_[PT RTPROTO_DV]= "rtProtoDV";

name [PT RTPROTO Q]="rtProtoQ";
name_[PT CtrMcast Encap]= "CtrMcast_Encap”;
name [PT_ CtrMcast_Decap]= "CtrMcast_Decap";
name [PT SRM]}="SRM";

name [PT REQUEST]="sa req",
name_[PT ACCEPT}= "sa_accept";

name [PT CONFIRM]="sa_conf",
name_[PT_TEARDOWN]= "sa_teardown";
name [PT LIVE]}= "live";

name_[PT _REJECT]="sa_reject";

name [PT TELNET]= "telnet";

name_[PT FTP}="fip";
name_[PT PARETO]= "pareto";
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name_[PT_EXP]= "exp";

name [PT INVAL]= "httplnval";
name [PT_HTTP]= "http";

name [PT_ENCAPSULATED]}= "encap”;
name [PT MFTP}= "mftp";
‘name__[PT_ARP]= "ARP";
name [PT MAC]="MAC";
name [PT_TORA]="TORA";
name_[PT_DSR]="DSR";

name [PT_AODV]}="AODV";
name [PT IMEP}= "IMEP";

name_[PT RAP_DATA] = "rap_data";
name [PT RAP_ACK]="rap_ack";

name [PT_TFRC]= "tcpFriend";
name_[PT_TFRC_ACK]= "tcpFriendCtl";
name [PT PING}="ping";

/* For diffusion : Chalermek */
name [PT DIFF] = "diffusion";

// Link state routing updates
name [PT RTPROTO_LS}= "rtProtoLS";

// MPLS LDP packets
name_[PT LDP]="LDP",

// for GAF
name [PT GAF] = "gaf";

// RealAudio packets
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name_[PT REALAUDIO] = "ra";

//pushback

name [PT PUSHBACK] = "pushback";
#ifdef HAVE STL

// for PGM

name [PT PGM]="PGM";
#endif //STL

// LMS entries

name [PT LMS}="LMS",

name_[PT IMS SETUP]="LMS_SETUP";

name_[PT_NTYPE]= "undefined";

const char* name(packet_t p) const {
if (p <=PT_NTYPE ) return name_[p};
return 0;
ztatic bool data_packet(packet_t type) {
return ( (type) = PT_TCP ||\
(type) =PT_TELNET ||\
(type) =PT_CBR |\
(type) =PT_AUDIO ||\
(type) =PT_VIDEO ||\
(type) ==PT_ACK \
)
}

private:
static char* name [PT NTYPE+1];
35

extern p_info packet_info; /* map PT * to string name */

/lextern char* p_info::name [];

#define DATA_PACKET(type) ( (type) = PT_TCP ||\
(type) = PT_TELNET ||\
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(type) = PT_CBR ||\
(type) = PT_AUDIO ||\
(type) = PT_VIDEO |\
(type) = PT_ACK \

)

#define OFFSET(type, field) ((int) &((type *)0)->field)

In the above file, entry was made in the enumerated structure packet_t. The entry
was made by the name of PT RTPROTO Q. This specifies that this is a packet of a
routing protocol whose name is Q. Then in class p_info a name array is used to store the

enumerated values and their string equivalents. In this case following were the changes.
name [PT RTPROTO Q}="rtProtoQ";

5.1.5 rtProtoQ.h

This is the main file in which the Q-Routing protocol is defined. It contains the
normal C declarations, then the necessary header files are included and then the header
necessary for the protoco! implementation are included. Then the header hdr_Q is defined
which contains the variable definitions necessary to define the header of the protocol. The
static variable offset_ is defined which is required to access the offset at which the data of
the Q-Routing protocol is defined. Another variable u_int32 t is also defined which is

used as a metrics variable identifier.

#ifndef ns_rtprotog h
#define ns_rtprotoq h

#include "packet.h"
#include "ip.h"

struct hdr Q {

u_int32 tmv ; // metrics variable identifier

static int offset ;
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inline static int& offset() { return offset _; }
inline static hdr_Q* access(const Packet* p) {
return (hdr_Q*) p->access(offset_);

// per field member functions
u_int32_t& metricsVar() { retummv_; }

|5

class rtProtoQ : public Agent {
public:
rtProtoQ() : Agent(PT_RTPROTO Q) {}
int command(int argc, const char*const* argv);
void sendpkt(ns addr tdst,u_int32 tz, u_int32_t mtvar);

void recv(Packet* p, Handler*);

#endif

As obvious from the description, first packet.h and ip.h are included, then a new
structure is defined with two member variables and associated member functions. Then
public class rtProtoQQ is implemented, which has the necessary member functions defined.

5.1.6 rtProtoQ.cc

#include "agent.h"
#include "rtProtoQ.h"

int hdr_Q::offset ;

static class rtQHeaderClass : public PacketHeaderClass {
public:
rtQHeaderClass() : PacketHeaderClass("PacketHeader/rtProtoQ",
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sizeof(hdr_Q)) {

bind offset(&hdr Q::offset_);
}

} class_rtProtoQ hdr;

static class rtProtoQclass : public TclClass {

public:
rtProtoQclass() : TclClass("Agent/rtProto/Q") {}
TclObject* create(int, const char*const*) {

return (new rtProtoQ);
}

} class_rtProtoQ;

int rtProtoQ::command(int argc, const char*const* argv)

if (strcmp(argv] 1], "send-update") = 0) {
ns_addr_t dst;
dst.addr_= atoi(argv[2]);
dst.port_ = atoi(argv[3]);
u_int32_t mtvar = atoi(argv[4]);
u_int32_tsize = atoi(argv[5]);
sendpkt(dst, mtvar, size);
return TCL_OK;

}

return Agent::command(argc, argv),

}

void rtProtoQ::sendpkt(ns_addr_tdst, u_int32_t mtvar, u_int32_t size)
{

daddr() = dst.addr_;

dport() = dst.port_;

size = size;
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Packet* p = Agent::allocpkt(),
hdr_Q *rh = hdr_Q::access(p);
rh->metricsVar() = mtvar,

target_->recv(p);

void rtProtoQ::recv(Packet* p, Handler*)

{
hdr Q* rh =hdr_Q::access(p);
hdr_ip* ih = hdr_ip::access(p);
Tel::instance().evalf{"%s recv-update %d %d", name(),
ih->saddr(), rh->metricsVar());
Packet::free(p);
)

The above described class is the ¢++ implementation class. It creates packet
header, then routing protocol class, makes visible the class name in Tcl, and implements
the member methods command, sendpkt and receive. These functions were implemented
in c++ only to make the processing faster. This is because Tcl is interpreted and therefore

considerable slower than c++.

We have presented a distributed, adaptive algorithm with no global information of
network topology. The algorithm succeeds in finding an efficient routing policy.
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5.2 Testing

Afier development and implementation the protocol was tested with different
traffic scenarios and topologies. The protocol was implemented and NS simulator was
recompiled and linked. After linking the following command was issued on the command

line to check the correct installation of the Q-Routing protocol.

%set ns[new Simulator]
%Agent/rtProto info subclass

The command was issued to check the subclasses of the rtProto class. As expected the
name of the Agent/rtProto/Q was displayed

The implementation was found to be capable of full scale development. As the
protocol is fully extensible, it can be easily extended to mobile ad-hoc networks or to
satellite networks. The implementation was robust enough to perform at a fast speed on
my AMD Athlon 1700+ system.

After implementation, several test files were compiled and then run. The ouput in
graphical form was seen through NAM, which is the network animator for the NS
simulator. Following is the Tcl code of one such sample file.

The protocol was found to be a balanced one with code distributed between the
Tcl and c++ files. In the Tcl files one time initialization is done while in the c++ file

packet processing and other heavy processing is done.

5.2.1 Testing with FTP connections

Given is the source code of a file which contains the implementation of a network
topology with fip connection setup between the nodes. The fip connections worked
flawlessly with Q-Routing.

set n0 [$ns node)
set nl [$ns nodel
set n2 [$ns node]

set n3 [S$ns nodel
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$ns duplex-link $n0 $n2 5Mb 2Zms DropTail

$ns duplex-link $nl $n2 5Mb 2ms DropTail

$ns duplex-link $n2 $n3 1.5Mb 10ms DropTail

# Some agents.

set udp0 [new Agent/UDP] ;# A UDP agent

$ns attach-agent $n0 $udpO ;# omnode $n0

set cbr0 [new Application/Traffic/CBR} :# A CBR traffic generator agent
$cbr0 attach-agent $udpO ;# attached to the UDP agent

$udp0 set class_ 0 ;# actually, the default, but. . .

set null0 [new Agent/Nulll ;# Itssink

$ns attach-agent $n3 $null0 ;% onnode $n3

$ns connect $udp0 $nulll

Sns at 1.0 "Scbr0 start”

puts [$3cbr0 set packetSize ]

puts [Scbr0 set interval ]

# A FTP over TCP/Tahoe from $nl to 3n3, flowid 2

set tcp [new Agent/TCP]

$tcp set class_ 1

$ns attach-agent $nl $tcp

set sink [new Agent/TCPSink}

Sns attach—-agent $n3 $sink

set ftp [new Application/FTP] ;# TCP doesnot generate its own traffic
$ftp attach-agent $tcp

$ns at 1.2 "S$ftp start”

Sns connect Stcp $sink

Sns at 1.35 "$ns detach-agent $n0 Stcp ; $ns detach-agent $n3 $sink”

# The simulation runs for

# The simulation comes to an end when the scheduler invokes the finish{} procedure below.
# This procedure closes all trace files, and invokes nam visualization on one of the trace files.
Sns at 3.0 "finish”

proc finish {} {

global ns f nf

Sns flush-trace

close $f

close Snf
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puts "running nam..."
exec nam out.nam &
exit O

1

# Finally, start the simulation.

$ns run
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5.2.2 Testing with Packet Drops

boisciaia

Fig 14: Testing with Packet Drops

The above figure shows the running of the protocol. Packet drop is also indicated
in the figure. The topology is a simple topology consisting of 7 nodes while traffic using
the Q-Routing protocol is between node 0 and node 5. APIs are also available to monttor
the queue size, and packet drop information which may be used for further optimization.

Classes to support such functions include
e Queue Monitoring
e Tracing

e Packet level Tracing
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¢ Bytes Tracing
e Link Tracing

¢ Single Object Tracing

5.2.3 Testing with Complex Topology

“nam: aud.
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Fig 15: Testing with Complex Topelogy
In the above figure another topology is created. This topology is a complex one

consisting of many nodes which are interconnected with each other through different
links.
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am? outnam

Fig 16: Testing with Complex Topology

The above figure explains the running of a complex network traffic on Q-Routing.
The long black blocks are the packets which are reaching their destination by a efficient
path.
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Fig 17: Testing with Complex Topology

The above figure shows the running of the network with complex topology. The
red link shows that the link is currently down. Due to the efficiency of the Q-Routing
protocol, the traffic will be redirected through another path. The black rectangles are the
packets.
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5.2.4 Testing with Multicasting
The topology given is that of nodes with multicasting support enabled. As

expected the results were very encouraging.

Fig 18: Testing with Muiticasting

The above picture is an example of a network with ftp connections in a large
topology. This topology also contains multicast support. The Q-Routing protocol is tested
with multicast support. The source code is given below.
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# Creating the core event scheduler
set ns [new Simulator -multicast on]
$ns rtproto Q

# nam coloring

$ns color 1 red

$ns color 2 blue

# Create nam trace
set nf [open out.nam w}

$ns namtrace-all $nf
# Creating 11 nodes

for {seti0} {$i< 11} {incri} {
set n($i) [$ns node]

# Creating 10 links

# All with bandwidth 10Mb, delay 10ms, and DropTail queue

# Except the bottleneck link with bw 1.5Mb, delay 20ms, and RED queue

$ns duplex-link $n(0) $n(3) 10Mb 10ms DropTail
$ns duplex-link $n(1) $n(3) 10Mb 10ms DropTail
$ns duplex-link $n(2) $n(3) 10Mb 10ms DropTail
$ns duplex-link $n(3) $n(4) 1.5Mb 20ms RED

$ns duplex-link $n(4) $n(5) 10Mb 10ms DropTail
$ns duplex-link $n(4) $n(6) 10Mb 10ms DropTail
$ns duplex-link $n(5) $n(7) 10Mb 10ms DropTail
$ns duplex-link $n(5) $n(8) 10Mb 10ms DropTail
$ns duplex-link $n(6) $n(9) 10Mb 10ms DropTail
$ns duplex-link $n(6) $n(10) 10Mb 10ms DropTail
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# Set queue limit (buffer size) to 5 packets in the bottleneck link
$ns queue-limit $n(3) $n(4) 5
$ns queue-limit $n(4) $n(3) 5

# Set link orientation for nam

$ns duplex-link-op $n(0) $n(3) orient right-down
$ns duplex-link-op $n(1) $n(3) orient right

$ns duplex-link-op $n(2) $n(3) orient right-up
$ns duplex-link-op $n(3) $n(4) orient right

$ns duplex-link-op $n(4) $n(5) orient right-up
$ns duplex-link-op $n(4) $n(6) orient right-down
$ns duplex-link-op $n(5) $n(7) orient right-up
$ns duplex-link-op $n(5) $n(8) orient right

$ns duplex-link-op $n(6) $n(9) orient right

$ns duplex-link-op $n(6) $n(10) orient right-down

# Set queue position for nam
$ns duplex-link-op $n(3) $n(4) queuePos -0.5
$ns duplex-link-op $n(4) $n(3) queuePos =0.5

# Create a TCP connection from node 9 to node 1

set tcp [new Agent/TCP]

set sink [new Agent/TCPSink]

$ns attach-agent $n(9) $tcp

$ns attach-agent $n(1) $sink

$ns connect $tcp $sink

$tcp set class 1

$tcp set window 20

# Create an FTP source and attach it to the TCP connection
set ftp [new Application/FTP]
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$1ftp attach-agent $tcp

# Create a TCP-friendly connection from node 7 to node 0
set tfrc {new Agent/ TFRC]

set tfrcsink [new Agent/TFRCSink]

$tfrc set class_ 2

$tfrcsink set class 2

$ns attach-agent $n(7) $tfrc

$ns attach-agent $n(0) $tfrcsink

$ns connect $tfrc $tfrcsink

## Start the simulation
$ns at 0.2 "$ftp start"
$as at 0.2 "$tfrc start”
$ns at 1.5 "finish"

# A finish proc to flush traces and out call nam
proc finish {} {
global ns

$ns flush-trace
puts "running nam..."

exec nam out.nam &

exit 0

$ns run
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§.2.§ Testing with Trace Files.

The file given below is a trace file. It has the standard architecture of ns. The
fields denote packet type, protocol used, arrival time etc. The trace file contained the
complete correct information of the network simulation.
+090 tcp 40 ----—-- 09.07000
-090tcp40-----09.07000
r0.00216 90 tcp 40 -----—--09.07.000
h0.00216 0 8 tcp 40 ——---09.07.000
+0.00316 0 8 tcp 40 —----- 0907000
-0.00316 0 8tcp40 —-----09.07.000
r 0.004215 8 7 tcp 40 —------ 0907.000
h 0.004215 7 8 ack 40 —----- 0709001
+0.005215 7 8 ack 40 -~----—- 07.09.001
- 0.005215 7 8 ack 40 ----—-- 07.09.001
r 0.00627 8 0 ack 40 ----—-- 07.09.001
+0.00627 0 9 ack 40 —----- 0709001
-0.00627 0 9 ack 40 -~--—- 0709001
£ 0.00843 0 9 ack 40 ----- -0709001
+0.00843 9 0 tcp 1040 --—-----09.07.012
-0.008439 0 tcp 1040 ---——-09.07.012
+0.00843 9 0 tcp 1040 -----—- 0907023
-0.01259 9 0 tcp 1040 --—---- 0907023
r0.01459 9 0 tcp 1040 —----- 0907012
h0.01459 0 8 tcp 1040 ——-—-09.07.012
+0.01559 0 8 tcp 1040 —----- 0907012
-0.015590 8tcp 1040 --—--09.07012
r0.017438 8 7 tcp 1040 ----—- 0907012
h0.017438 7 8 ack 40 —---- 0709014
+0.018438 7 8 ack 40 —----- 0709014
-0.018438 7 8 ack 40 —---— 07.09.014
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r0.01875 9 0 tcp 1040 —-—---09.07.02 3
1 0.01875 0 8 tcp 1040 —--—09.07.023
£0.019493 8 0 ack 40 ----m- 07.09.014
+0.019493 09 ack 40 —-—07.09.0 14
-0.019493 0 9 ack 40 -~ 07.09.014
+0.01975 0 8 tcp 1040 ——-09.07.023
-0.01975 0 8 tep 1040 —-——-- 09.07.023
£0.021598 8 7 tcp 1040 ———-09.07.02 3
h 0.021598 7 8 ack 40 —-—-—-07.09.02'5
r0.021653 09 ack 40 —-——07.09.0 1 4
+0.021653 9 0 tep 1040 ~—-—-09.07.03 6
-0.021653 9 0 tcp 1040 ———-09.07.03 6
+0.021653 9 0 tcp 1040 - 09.07.04 7
+0.022598 7 8 ack 40 ———07.09.02 5
-0.022598 7 8 ack 40 ~-—emr 0709025
r0.023653 8 0 ack 40 ———07.09.02 5
+0.023653 09 ack 40 ——-——-07.09.02 5
-0.023653 09 ack 40 ——mmm- 07.09.025

- 0.025813 9 0 tcp 1040 ——nx- 09.07.047
r0.025813 09 ack 40 ——07.09.02 5
+0.025813 9 0 tcp 1040 —-——-09.07.05 8
+0.025813 9 0 tcp 1040 ——-09.07.06 9
r0.027813 9 0 tcp 1040 - 09.07.03 6
h 0.027813 0 8 tcp 1040 ———-09.07.03 6
+0.028813 0 8 tcp 1040 - 09.07.03 6
-0.028813 0 8 tcp 1040 —~—-09.07.03 6
-0.029973 90 tcp 1040 ————09.07.05 8
r0.03066 8 7 tcp 1040 ~———09.07.0 3 6
h 0.03066 7 8 ack 40 ~———-07.0 9.0 3 10
+0.03166 7 8 ack 40 ———-07.09.0 3 10
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-0.03166 7 8 ack 40 ~--~--- 07090310
r0.031973 90 tep 1040 —-----09.07.04 7
h 0.031973 0 8 tcp 1040 —----- 09.07.047
r0.0327158 0 ack 40 —----07.09.03 10
+0.032715 0 9 ack 40 ------- 07.09.0310
-0.03271509 ack 40 ---—-07.09.03 10
+0.032973 0 8 tcp 1040 —------ 09.07.047
- 0.032973 0 8 tcp 1040 --~---- 09.07.047
-0.034133 9 0 tcp 1040 ------- 0907069
r0.03482 8 7tcp 1040 —-—--09.07.047

h 0.03482 7 8 ack 40 ------- 07.09.04 11
r0.0348750 9 ack 40 —----07.09.03 10
+0.034875 9 0 tcp 1040 -—----09.07.07 12
+0.0348759 0 tcp 1040 —----09.07.08 13
+0.03582 7 8 ack 40 ------- 07.09.0411
-0.0358278 ack40-—-07.09.04 11
r0.036133 9 0 tcp 1040 ------- 09.07.058
h 0.036133 0 8 tcp 1040 ~----09.07.05 8
r 0.036875 8 0 ack 40 ~------ 07.090411
+0.03687509 ack 40 ——~---07.09.04 11

- 0.036875 0 9 ack 40 ------- 07090411
+0.037133 0 8 tcp 1040 ~—-—09.07.05 8
- 0.037133 0 8 tcp 1040 ------- 0907058

- 0.038293 9 0 tcp 1040 ------- 09070712
r 0.03898 8 7 tcp 1040 ------- 0907058
h0.03898 7 8 ack 40 —----07.09.05 14

r 0.039035 0 9 ack 40 -----—- 07090411
+0.039035 9 0 tcp 1040 ——--09.07.09 15
+0.039035 9 0 tcp 1040 ------- 09.07.01016
+0.03998 7 8 ack 40 —---07.09.0 5 14
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-0.03998 7 8 ack 40 ------- 07090514
r0.040293 9 0 tcp 1040 —----09.07.06 9
h 0.040293 0 8 tcp 1040 ------- 0907069
r0.041035 8 0 ack 40 —---—-07.09.05 14
+0.041035 09 ack 40 ------- 07.090514
-0.04103509 ack 40 -——-07.09.05 14
+0.041293 0 8 tcp 1040 ---~--- 0907069
-0.041293 0 8 tcp 1040 —----09.07.06 9
- 0.042453 9 0 tep 1040 ------- 09070813
r0.04314 8 7 tcp 1040 —----09.07.06 9

h 0.04314 7 8 ack 40 -----—-- 07090617
r0.04319509 ack 40 —---07.09.0 5 14
+0.043195 9 0 tcp 1040 ------- 090701118

+0.0431959 0 tcp 1040 —--09.07.01219

+0.04414 7 8 ack 40 --—---- 07.09.0617
-0.04414 7 8 ack 40 -----—-07.09.06 17

1 0.044453 9 0 tcp 1040 ------- 09070712
h 0.044453 0 8 tcp 1040 —--—--09.07.07 12
r0.045195 8 0 ack 40 -------07.09.06 17
+0.04519509 ack 40 ——--07.09.06 17
-0.0451950 9 ack 40 ------- 07.09.0617
+0.045453 0 8 tcp 1040 —----09.07.07 12
- 0.045453 0 8 tcp 1040 ------- 09.07.0712
- 0.046613 9 0 tcp 1040 ---—--09.07.09 15
1 0.0473 8 7 tcp 1040 ---—--- 09070712
h0.0473 7 8 ack 40 —--—-07.09.0720

r 0.047355 0 9 ack 40 --—--- 07090617

The output of this tracefile clearly shows how different packets traversed the

network and reached their destination correctly. Packets with names lik tcp, ack denote

that they are tcp, acknowledgement packets respectively.
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3.2.6 Testing with NAM Simulator

The simulator contains an efficient network animator called NAM. This animator
can run the NAM format files generated by NS simulator.

%HHHI HIIHLUIIIHUJHIJHJJHJJ}U_LHHll IlHllIlLJIIJJlIJJI (NN RN IIHIIllll

Fig 19: Testing with Nam Simulator
The above picture explains the architecture of NAM, the network animator of NS.
The circles define the nodes, while the lines define the link between them. The buttons at
the top control the flow of the animation. The play, pause and forward button are

available.
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5.2.7 Testing with Complex Topologies

Fig 20: Testing with Complex Topologies

Making a complex topology with Q-protocol. Below is the file given.

#Create a simulator object

set ns [new Simulator]

$ns rtproto Q
#

#let down link invoke neighbor to neighbor updating
#

Agent/rtProto/Q set advertInterval 5
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#Define different colors for data flows
$ns color 1 Blue
$ns color 2 Red

#Open the nam trace file
set nf [open out.nam w)
$ns namtrace-all $nf

$ns trace-all [open all.tr w]

#Define a 'finish’ procedure
proc finish {} {
global ns nf
global downTimes
$ns flush-trace
#Close the trace file
close $nf

#Execute nam on the trace file
exec nam out.nam &

exit 0

set alllinks {{11 0 IMB 10ms } \
{1110 IMB 10ms } \
{109 1IMB 10ms } \
{01 1MB 10ms } \
{12 1MB 10ms } \
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{28 IMB 10ms } \
{23 1MB 10ms } \
{9 8 IMB 10ms } \
{34 1MB 10ms } \
{45 IMB 10ms } \
{56 IMB 10ms } \
{67 IMB 10ms } \
{87 IMB 10ms } \
{04 1MB 10ms } \
{11 12 IMB 10ms} \
{13 3 IMB 10ms}\
{137 IMB 10ms}\
{14 7 IMB 10ms}\
{15 14 IMB 10ms }\
{16 5 IMB 10ms }\
{16 11 1MB 10ms }\
{17 16 1IMB 10ms } \
{18 17 IMB 10ms} \
{189 IMB 10ms} \
{19 6 IMB 10ms}\

}

for {seti0} {$i <20} {incri} {

set node($i) [$ns node]

foreach link $alllinks {
set nl [lindex $link 0]
set n2 {lindex $link 1]
set bw [lindex $link 2]

Implementation and Results
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set delay [lindex $link 3]
#set dir {lindex $link 4]

$ns duplex-link $node($n1) $node($n2) $bw $delay DropTail
$ns queue-limit $node($n1) $node($n2) 3
#$ns duplex-link-op $node($n1) $node($n2) orient $dir

set n0 $node(0)
set nl $node(4)
set n3 $node(8)

set dnl $node(2)
set dn2 $node(8)

#Create a CBR agent and attach it to node n0
set cbr0 [new Agent/CBR]

$ns attach-agent $n0 $cbr0

$cbr0 set packetSize 1280

$cbr0 set interval  0.005

#$cbr0 set fid_ 1

#Create a CBR agent and attach it to node nl
set cbrl [new Agent/CBR]

$ns attach-agent $nl $cbrl

$cbrl set packetSize 1280

$cbrl set interval  0.005

#8cbrl set fid 2

Predictive Intelligent Routing

63



Chapter 5

#Create a Nnll agent (a traffic sink) and attach it to node n3

#set null0 fnew Agent/Nulll

#8ne attach-agent $n3 Knnli

set sink dstl [new Aecm,/LossMonitgﬂ
cet cink_dat? Tnew Agent/T acsManitar)
fne attach-acent &n? Keink detl
$ns attach-apent $n3 Kaink dat?

#Cannect the traffic satrees with the teaffic sink
fns connect Schr() Ssink dst1

$n< cannect Kchrl Ssink dst?.

#Schednle events for the CBR agents

€nc at O £ "Schdd qtact"
Lnc at N 8 "Schrl ctart"
R0 at 4 § "Qoh) ctan”

nc at 4 § "Schrl atan”
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set dawnlTn ££1 123 1416 f1RI 0 £2274) AT RY {332} {341 6) £AR4N

set ent
fareach dn SdownlTn £
if {8ent = SdownTimes ¥ {
hreak
}
set dtime flindex $dn 01

Deadintine Tatallicant Dastine
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set utime (lindex $du 1]

$ns rtmodel-at $dtime down $dn1 $dn2
$ns rtmodel-at $utime up $dn1 $dn2

incr cnt

#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation

$ns run
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6. Conclusion and Future Work

6.1 Conclusion

In this thesis we presented an efficient and adaptive algorithm for network
routing. The algorithm was implemented on NS simulator on Linux. The framework of
Q-Routing is implemented and further research may be done over it. The algorithm is
well suited for small-scaled as well as large-scale networks. Furthermore the architecture
is modular and well defined making it easy to extend it.

The current implementation supports the following modules:
e Route Computation module
¢ Dynamic topology support module
e Distance Vector module

¢ Flooding support module

6.2 Future Work
The following tasks could be taken up as a part of future work, to take the work towards

it logical completion.

6.2.1 Extensions of Q-Routing

Several extensions can now be implemented by researchers on the Q-Routing
framework. These include but are not limited to: Q-Routing with confidence values, Q-
Routing with dual reinforcement and using neural networks as function approximator.

6,.2,2 Q-Routing on Wireless Ad-Hoc Networks
Very little work has been done in this area. Therefore anyone can take up this field and

do research.
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Appendix-A NS Simulator on Linux

Following steps were performed to run NS simulator on Linux.

A.1 Linux Installation

Redhat Linux 9.0 was used. The system installation went smoothly. Custom
Installation was selected. Disk Druid window was loaded. The drive partitions were
reformatted. Almost all the hardware was detected flawlessly by Linux and and after
other settings the installation started. Redhat Linux 9.0 is now on 3 cds with a huge
amount of software. The Tcl/Tk package is also installed which is needed by ns. The
installation took almost 1:30 hours after which the system rebooted and the linux started.

A.2 NS Installation

First of all install the ns-allinone package. In ns-allinone-xxx\ns-2.26 folder the

main ns package resides.

Fig 21: NS Directory Structure
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Enter into the main folder of ns and type /configure. This will result in the configuration
of the NS simulator Mcssagos will he displaved and impartant information will be
conveyed. Once this pracess is aver without any crrors, cursar reappears on the command
line. Now type make. This will compile and install the ns-allinane package which
containg Tel, OTcl, Telel, xgraph etc. Thiz is a lengthy process and requires a fast

computer

Frvad@hrwalin il =7 PR | AP ipurs

loading cathe .fﬂmf-‘:g.cache
No .conhgure file found in current directory
Contimiipng with defFsilt options,

chackring !'-.est system bume, ., 1686-po—linu-gnu
checking % Pf“ EUELOM TUPR. .. 1686-po-linux—znug
checking build system type,,, i886-pc-)inux-gnu
nhenking fnr gnng,  (nanhed} gnn

checlking vhether the C compiler (goc ) works,,, yes
checking whether the € compiler (gco ) is a a»oss—-oo-pxler... no
rharking whether we are u:ing i, (na T gEs
checking whether goo sccepts —2,.. (oaohedd 39:
checking for ct+,.., {cached) ci+
nhecking shetier the 44 el 1es I+ 3 mv‘&‘ius‘“ yes
ﬂ!'!ee‘-urw whether the C++ mﬂq- (o++ ) is a oross-—compiler,,. Mo
checkmg vhether we are using GNU C++,., (cached) yes
checking, whether oH accapts —p, ; {rached} ye=
checking how to run the C preproceasor,,, (cached) gee £
checking for ANSI C header files... (cached) yes
checking frr string b, fcached) yes
checking for main in —1Xbsd,,. {cached? no
checking for socket i lsecket,,, (cached) no
checking for gct-hosthwne in -lnsl,,, (cached) yes
checking for degettext in -lmtl... tcached) no
checking for getnodebyname in ~ldnet stub... (cached? no
checking that o+ dan handle -02,,. yes

checking 1+ 5L works «1thout any namespace... Yes
checking #ill use STL... uyes

oheokmg for tcl,h,.. -l../include

ohoolting for libtolg,3,,, -L.,/lib -1£018.3

checking for init.tecl... ../lib/tel8.3

theeking for tclsh3,3.2,,, (cached) ,./bin tclshs,3
cheching for thih,.. ~l.. /include
ohecking for 1libtk8,3,.. -'_.4/11b -1tkB8.3

checking for & ;t—nl,.. «

Sheciing for otel hess S10 Jotein 0a

mherkiing €nr H'-.—nt.nn OAR A satnlet 0aR =latal
cheoking for telel, h,” —I. stolel-1, Obi'l

cheoking For hhtolol,.. +,,/telol-4,0012 -1telol
rherking for hnl2ed+ o, AhnTel =1 003

checking for X11 header files

ing for X4 library archive

rheccing for ¥MpenNicplsy in —1X11 ., Cnarhed) ne
checking for libXext.a
checking for libtoldbg,., no
l"l‘pf"{)ng Amal 1nn. ¢k r-nqupefar-l with ==with=dmallnn

.........

Lroot@localhost ne-2,2638

A.3 NS configuration and protocol addition

After installation of NS simulator, we need to configure it. For many companents
of the NS simulator to wark properly, we need to set the library path of these components
at appropriate places i.e., xgraph, tclcl etc. We have to set LD LIBRARY PATH. Also
we need to set the path of required NS folders in the bash or csh login file. Once the path

has been set and libraries have been linked, we can start using the NS simulator.
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The ns simulator runs by the help of two languages c++ and tcl. So for running
any new protocol we need to add c++ as well as tcl code to the simulator.

For the c¢++ code we have to write our c++ code in two files. (file.cc and file.h)
Suppose they are pong.cc and pong.h Place these files in the apps folder of ns which is
ns-allinone-2.26/ns-2.26/apps. Note that these files can be placed in other directories also.
Only the makefile has to be modified to include the path and filenames of these files.
Now edit the file ns-allinone-2.26/ns-2.26/common /packet.h to add new packet entry. In

this case it is

PT PONG

name_[PT PONG]}=pong

For the tcl code we need to write our code in a tcl file and modify some tcl files.
First of all modify the file ns-allinone-2.26/ns-2.26/tcl/lib/ns-default.tcl to place our
default values there also, In this case they are
Agent/Pong set packetSize 64
Agent/Pong set off pong 0
These are the default values in tcl for the new agent Pong which we have written in
pong.cc and pong.h.
Now edit the file ns-allinone-2.26/ns-2.26/tcl/lib/ns-packet.tcl to enter the new packet
type which we have defined in pong.cc and pong.h, They are
foreach prot {
MIP
Pong

After the above two steps execute ns-allinone-2.26/ns-2.26/make depend. This
will resolve the dependencies. Then write ns-allinone-2.26/ns-2.26/make. This will
recompile the ns package and if completed successfully our written c++ code of pong.cc
and pong.h would be linked into the ns.
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Once the above c++ code is correctly compiled and linked into the main ns
package and the tcl modification in files is also done and a pong.tcl file for executing our
new protocol is made then we can go to the following folder ns-allinone-2.26/ns-2.26

/apps/ns pong.tcl and the simulation will start.
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Appendix-B Glossary of Terms

This appendix contains terminology that is related to computer networks

LI LIV |

Channei: The physical medium is divided into iogicai channel, ailowing possibly shared
uses of the medium. Channeis may be made availabie by subdividing the medium into
distinct time siots, distinct spectral bands, or de-correlated coding sequences.

Flooding: The process of delivering data or control messages to every node within the
data network.

Host: Any node that is not a router.

Link: A communication facility or medium over which nodes can communicate at the
link iayer.

Loop free: A path taken by a packet never transits the same intermediate node twice
before arrival at the destination.

Next hop: A neighbour, which has been desigtied to forward packets along the way to a
particuiar destination.

Neighbor: A node that is within transmitter range from another node on the same
channel.

Node: A device that implements 1P

Node TD: Tiniane identifier that identifies a particniar node

Neighbounr-node: A node that is one hop away.

Router: A node that forwards 1P packets not explicitly addressed to itself. in case of ad
hoc networks, all nodes are at least unicast routers.

Routing table: The table where the routing protocols keep routing information for
various destinations. This information can include the next hop and the number of hops to
the destination.

Scalability: A protocol is scalable if it is applicable to large as well as small populations.
Throughput: The amount of data from a source to a destination processed by the
protocol for which throughput is to be measured for instance, IP, TCP, or the MAC
protocol.
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Abstract: A mobile Ad-hoc network is the cooperative engagement of a collection of mobile nodes without the required
intervention of any centralized access point or existing infrastructure. Research in the field of mobile Ad-hoc networks
requires the use of network simulators. In this paper we compare two popular network simulators; OMNet angi NS.
Comparison study shows that in most cases NS simulator is more efficient and robust for the purpose of simulation of

mobile Ad-Hoc networks.

Keywords: Mobile Ad-Hoc Networks, OMNet++, NS.

1. INTRODUCTION

For experiments involving network research, a
simulator can be used to freely place and modify

network components as ver reaquired F33. Heloful
Gepugging and execunon contro! proves 1o be very

\.!!':,‘.‘}Blul.

NS and OMiNel are iwu ueiwork  sinnulaions
which are getting increasingly used for network
research. Both are open source and thus can be freely
modified. Features of OMNet++ and NS are
described in section IT and then section IIL Then a
detailed comparison is done in section IV. Finally
conclusion is presented in section V.

.
2. OMNet++

DN WT . S RN ISR R U, SN, IR SR ®
OMINeti 15 a discicte eveini sinwlatorn usifig U as
the simulater language. The namc stands for

Objective Modular Network lesthed in 4+ The
QT is written in Tel/Tk. This is a portahie simutator
and works on windows and several unix flavours.f1}

The sumutator can be ased for

e  Testing new algorithms
Protocoi modeiing
¢ Muitiprocessors and distribuied hw sysiems

In general wherever we use discrete event approach
we can use OMNet [11. OMNet introduces the
concept of models which may represent networks of

any type and size. A model can contain modules
which may contain further sub modules. The logical
structure of the network can hence be fully
represented.

PO COMMUAICATION PUIPOSes (ne MIOAUIeS eXcnange
information with each other through message
passing. They can do it directly or through gates and
connections. Gates are the input and output iteifaces
of modules. Messages are sent out through output
gates and arrive through input gates Links or
connections are used between modules to connect
them with each other (as shown in Figure).

e

vl Szl?l-fz

..]
P

| peteede |

Stbrotules connev b ewh other Submotus connected to e pae mode
Fig I

Connections going from simple to simple modules
are also called routes. These comnections may be
assigned parameters like propagation delay, bit error
rate and data rate.

OMNet moedules have perameters which serve the
following purpose
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« Creating flexible topologies
e Customizing module behavior
e  Module communication

User defined algorithms are implemented in simple
OMNet modules. Simple modules are implemented
as co-routines so they appear to execute in parallel.
User should have some knowledge of C/C++ to do
this.[1]

bystem module . smplemotiies
compound module - f
f Sbiaing 7T . ———— 4 - o
Fig2

Modules communicate by exchanging messages.
Messages can be representing real life network
packets/frames, jobs or customers in a mobile
network or other mobile entities.

OMNet uses NED language for network topology
description {1]. This language is specially designed
for network description. It supports modular
description of a network. The network descriptions
made in this language are reusable which means one
NED network description can be used in another
network.

oo lamdance| | e |
moddes ,ﬁ{,lmswy [ ibeaies )
*ee hE L IAd BIEERA TR R
SRR Liegl

] couwempa | '9“”&?;@'

mﬁﬁ i
o X agis ok

Fig 3
OMNet provides cross platform compatibility.

This allows the simulation to be run on Windows,
Linux and many other flavors of UNIX. Microsoft
Visual C++ integration is also provided on Windows
platform. MSVC IDE may be used for debugging of
the simulation. OMNet++ utilizes the macros of
MSVC to integrate OMNet++ with Visual C++.

3. NS

NS is an object oriented simulator. Developed at UC
Berkeley it simulates different networks, implements
network protocols such as TCP,UDP, traffic source
behavior such as FTP, Telnet, CBR, routing
algorithms such as Dijkstra and more. It also
implements multicasting and some MAC layer
protocols. It uses a unique split programming concept
for providing its functionality. The two languages
which ns uses are C++ and otcl (an extension of the
popular tcl scripting language). Correspondingly
there are two class hierarchies in ns.[2]

e Compiled Hierarchy

e Interpreted Hierarchy

Both these hierarchies are closely related with each
other. OTcl is the object oriented version of Tcl
language and it has the same relation- ship with Tcl
as C++ has with ¢ {7].

072l . Tel mterpreter
with OO extention

el Seript

Sodation NS Stmulator Library
Pregram » Event Scheculer Objects

* Network Compontnt Qbgects

+ Network Setp Helpng
Modules (Pharnbing Mo dules)

Fig4

As shown in figure NS contains an object oriented
Tcl (OTcl) interpreter that has a simulation event
scheduler and network component object and
network setup libraries.

NS is written in two languages C++ and OTcl. This is
mainly done for efficiency reasons. The event
scheduler and the basic network objects are written
and compiled in C++ Through a unique binding
mechanism the compiled objects of C++ are made
available to the OTcl interpreter [2].
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We can say that NS is a Object Oriemted Tcl
interpreter with network simulator libraries. NS has a
well thought architecture [2]. This was particularly
demonstrated when the wireless/satellite support was
added to NS seamlessly.

NS contains a graphical simulation display tool called
NAM. NAM is used extensively to graphisslly
visualize different simulations. It is a very capable
tool and can present information such as throughput
and number of packet drops at each link, although
accurate simulation analysis cannot be done with that
data.

Fig6

NS contains a discrete event scheduler. The main

.users of an event.scheduler are network components

that simulate packet-handling delay or that need
timers. Above figure shows the NS event scheduler in
action. Packets are send from one network object to
another by using send (Packet* p) { target -
>recv(p)}; for the sender and recv (Packet* ,

_-Handler* h = 0) for the receiver [2]. '

One very significant addition to the NS simulator is

that of a real-time scheduler allowing NS to integrate

in a real life LAN and introduce packets into it. This
opens up some very exciting possibilities.

A simple NS simulation may consist of 2 nodes and a
duplex link between them [2]. A time interval may be
set using a scheduler after which the nodes may start

communication with each other. A stop time may
also be specified. This whole simulation can be
written in about 10 lines of OTCL script.

4. COMPARISON

A comparison between features of NS and OMNet
was performed. Different criteria like detail level,
model availability, parallel execution etc was selected
for comparing the two simulators with each other.

Detail Level

OMNet-++ provides sufficient detail for the user to
implement new building blocks in his simulation.
User can easily write new classes to extend the
functionality of OMNet-++[1].

NS has a relatively complex method to extend the
simulator. A module has to be written in C++ and
then it’s equivalent class should be made available in
the interpreted hierarchy and both should be linked
with each other.

Model Availability

Model availability is a important criteria. k
necessarily means what protocol models are available
10 the user to use in his custom simulation. OMNet++
was found to have relatively less collection of
network models while NS contains an extensive
collection of network models.

Parallel Execution

OMNet++ modules use message passing as the

. ptimary communication mechanism between its

modules. Both MPI and PVM are supported.
OMNet++ uses a conservative approach to provide
parallel discrete event simulation (PDES). This
approach is implemented by using Null Message

Algorithm (NMA) [5].

This approach has essentially the drawback of
reverting back to sequential simulation if parallelism
in the model is not fully exploited or enough null
messages are not sent to participating nodes. (Parallel
simulation support is currently being redesigned in
OMNet++).

Debugging Support

OMNet++ supports command line as well as off-line
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and client-server style debugging. It does so by
linking the GUI library with the debugging/tracing
capability into the simulation executable. This
powerful approach allows full control over the
execution.

NS provides debugging support by generating trace
files for text and graphical output [2][7]. Runtime
debugging is complex and time consuming because
of debugging issues involving both Tcl and C+.
Although a debugger for debugging Tcl is available,
it requires to be compiled and linked with ns, the
simulation script may be modified to add debug
enable lines, and the whole NS package may be
recompiled. While running the simulation on Linux
the switching between the GNU debugger and Tcl
debugger was quite complex and time consuming.

Topology Description and Generation

OMNet++ follows a unique way for description and
generation of network topology [1]. It uses a custom
built network description language called (NED) for
this purpose. Both command line as well as gui
interface is provided. This allows the user to use one
NED file with network description in another project.
Internally the NED files are translated into C++ code,
then compiled by the C++ compiler and then linked
into the simulation executable.

NS uses tcl for topology generation which provides
for very easy topology generation Hierarchies like
those of OMNet are not forced. More control is
provided to the user. Creating complex hierarchies in
NS was therefore found to be more time consuming
than in OMNet++ [2].

Programming Model

OMNet allows programming in C++ with message
passing and co-routine execution. Integration with
MSVC is also provided [1].

NS provides an easy prograzmnming model with OTcl
and C++. If the built-in C++ objects are used as is in
OTcl then a simple mobile ad-hoc network with
AODYV can be formed in about 20 lines of code.
Something unthinkable when using OMNet for the
same purpose [2][7].

Performance
A sample simulation of OMNet was compared with

identical simulations developed in C and PARSEC
languages. The results were very encouraging as

OMNet was only 1.3 times slower than the
simulation developed in plain C. Similar results were
achieved in the second case [1].

NS was found to be relatively siow due to the binding
and linking overhead between the two languages
OTecl and C++ [2]]7].

5. CONCLUSION

In this paper two popular network simulators
OMNet++ and NS-2 were compared with each other.
It was shown that NS is easy to use when a
simulation is built using the built-in C++ objects in
the OTcl interpreter but it is difficult to extend it due
to the use of two languages OTcl and C++. On the
other hand OMNet++ was found to be relatively easy
to extend as the whole class hierarchy was in C++.
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