
Perception Based Obstacle Detection and
Avoidance System for Autonomous Vehicles with

Self-Localization Capability

Muhammad Farooq Azam Khan

Supervised by

Dr. Sikander Hayat KhiyaI

Department of Computer Science
International Islamic University, Islamabad

(2004)

In the name of

ALLAH

The most Compassionate

The most Merciful

Department of Computer Science,
International Islamic University, Islamabad.

Dated: 3u-Oh2004

Final Approval

It is certified that we have read the thesis, titled "Perception Based Obstacle Detection and
Avoidance System for Autonomous Vehicles with Self-Localization Capability"
submitted by Muhammad Farooq Azam Khan under University Reg. No. 20-CS/MS/Ol. It
is our judgment that this thesis is of sufficient standard to warrant its acceptance by the
International Islamic University, Islamabad, for the Degree of Master of Science.

Committee

External Examiner
Dr. Syed Afaq Husain
Head,
Computer Sciences Department,
Shaheed Zulfikar Ali Bhutto
Institute of Science & Technology,
Islamabad.

Internal Examiner
Asim Munir
Lecturer,
Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University,
Islamabad.

Supervisor
Dr. Sikander Hayat Khiyal
Head,
Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University,
Islamabad.

A dissertation submitted to the
Department of Computer Science,

International Islamic University, Islamabad
as a partial fulfillment of the requirements

for the award of the degree of
Master of Science

Declaration

I hereby declare that this software, neither as a whole nor as a part thereof has been

copied out from any source. It is further dcclared that I have dcvclopcd this software

entirely on the basis of my personal efforts made under the sincere guidance of my

supervisor. No portion orthe work prcsentcd in this repori has becn submitted in support

of any application for any other degrcc or qualification of this or any other university or

institute of learning.

M u l ~ a ~ n m a d Farooq Azam Khan
20-CSIMS101

Dedicated to m y family.

Acknowledgements

Praise be to the Almighty Allah, the most Merciful, the most Gracious, the

Creator, the Savior, One who ever was and One who forever will be. Without His

blessings I would not have been able to complete this project.

Thanks to my Parents and sisters who were always there whenever I needed them.

I must accept that this project would never have been completed without the help

of my supervisor Dr. Sikandar Hayat Khiyal. His far seeing vision and clarity of thought

steered me clear of countless disastrous situations and decisions. I can honestly say, I am

honored to have worked under him.

1 also acknowledge my teachers for their help. Most prominently Dr. Syed Afaq

Husain, for his sincere guidance and help.

They say a true friend is hard to find. I found two. I am glad to have Raheel

Siddiqui and Muneeb Ahmad as friends, they always helped me out whenever I was in a

tight spot.

Muhammad Farooq Azam Khan

Project in Brief

Project Title:

Objective:

Undertaken By:

Supervised By:

Technologies Used:

Perception Bascd Obstacle Dctection and
Avoidance System Ibr Aulonomous
Vehicles with Self-Localization Capability

To develop a system capable of
autonomous vehicle navigation and hurdle
avoidance with application of perception.

Muhammad Farooq Azam Khan

Dr. Sikander Hayat Khiyal
Head,
Department of Computcr Science,
Faculty of Applied Sciences,
International Islamic University,
Islamabad.

MicrosofiB Visual C++ 6.0,
OpenCV@

System Used: I'cntium@ 111

Operating System Used: Microsoft@ Windows@ 2000 Professional

Date Started: I" December, 2002

Date Completed: 30"' July, 2003

Abstract
The challenge for every autonomous navigation vision system is the bottle neck of

high amount of data processing required in real time. Along with that, the systems

capable of perceiving the environment and navigate autonomously to destination are

presented with a lot of uncertainties due to complexity and unpredictability of the

environment.

Against this backb~ound, this report prcscnts a vision-based path understanding

and navigation technique which aims at developing a system that would give the driving

seat of a vehiclc to the computer. Allowing it to do operations such as detection of path,

hurdles in that path, using perception to understand the path and find destination at run

time.

Suggested solution gives us satisfactory results in term of speed, accuracy and

reliability and provcs to bc compctitivc software. Thc technique applied in this software

can also be used in many other computer vision tasks such as intruder detection and

motion detection.

TABLE 0 1 7 CONTENTS

I INTRODUCTION ..
.. 1 . 1 Conrpotcr Visiorr I

.. 1.2 Computational Cost oCPmcessing Images 2
. . 1.3 Aulo~wn~ous Navtgat~on .. 3

1.4 Perception .. 4

.. 1.4.1 Perception and Autonomous Navigation 4

1.5 Literature Survey ... 5

.. 1.5.1 Conclusions Drawn from Literature Survey 8

... 1.6 The Project 9

1.7 Project Scope .. 9

1.9 Conclusion ... 10

2 ANALYSIS ...
2.1 Slruclured Analysis ..

.. 2.2 Analysis Model

2.2.1 Objcct Description ...
... 2.2.2 Enlily Relationship Diagram (ERD)

2.2.3 Data Flow Diagram (DFD) ..
... 2.2.4 Process Specification (PSPEC)

.. 2.2.4.1 Scan Image Ibr Ilurdlc

.. 2.2.4.2 Match Sequence 24

.. 2.2.5 Svalc Transition Diagram (STD) 24
. 2.2.6 Data D~ctronary 26

.. 2.3 0bjl.c.t Oricnlrd Analysis 29

.. 2.4 A Unified Approach to Object Oricnted Analysis 29

.. 2.5 Domain A~lalysis 29

... 2.5.1 Reuse and Domain Analysis 29

... 2.5.2 Domain Analysis Process 30

... 2.6 The Object Oriented Analysis Process 3 0

................................ 2.6.1 Usc-Cascs 30

... 2.6.1 . 1 Use-Cases in the System 31

... 2.6.1.2 Actors in the System 32

.. 2.6.1.3 Expanded Use-Casc Format 32

... 2.6.1.4 Use-Case Diagram 42

... 2.6.2 Conccplual Model

2.7 Conclusion ...

3 DESIGN ...
.. 3.1 Objecl-Orienled Design

3.2 Design Palterns ...
3.2.1 Describing Design Pallems
3.2.2 Using Palterns in Design ...

3.3 Object Oriented Design Process ..
3.3.1 Structural Model

3.3.1.1 What is a Class'! ..
... 3.3.1.2 Finding a Class

3.3.1.3 Class Diagram ..
3.4 O b j ~ t Diagranl ..

3.5 Behavioral Model ...
... 3.5.1 lnleractim Diagrams

3.5.1.1 Sequence Diagram

................... 3.6 Stale Transition Diagram

3.7 Activity Diagnm ...
3.8 Conclusions ..

4 IMPLEMENTATION ..
........... 4 I Implementation Technique

4.1.1 Objecl Oriented Programmi~ig ..
... 4.1.2 Component Based Programming

4.2 Implementation Tools ..
4.2.1 Microson Visual C++ ..
4.2.2 OpcnCV ...

4.3 Implementation Strategy ...
...................................... 4.4 OpenCV and IPL Image Library Factions Description

4.5 Implementation Details ..
.. 4.5.1 Classes i n the System

.. 4.5.1.1 Declaration ofCl;tss Objects

4.5.2 lmplenicntation o f DilTerent User Oplions ...
4.5.2.1 Choosing Post-Procmsing Option ...
4.5.2.2 Choosing Real-Time Prucessing Option
4.5.2.3 Choosing View l lGB Space Option ...

.. 4.6 Ground and Hurdle Detection Algorithm

.................. . 4.7 lmplemen~atinn orlntcnsity vs Frequency Graph for Gray-Scale Image

............................. . 4.8 lmple~~~enla l iun oflntcnsity vs I:rcqucncy Gnph for RGB i l l ~ ~ g c

4.9 Fmnlc Processing Loop for Real-Time/Post . Processing 94

.. 4.10 Conclusion 96

5 TESTING .. 97

5.1 Testing Process .. 97

... 5.2 General Types of Errors 97

5.3 Testing Strategies ... 97

.. 5.4 Tesling the Sonwa re 98

.. 5.5 Fealures lo be l'esled 98

5.5.1 Selecting Real-Time Procrssing oprjon with nu camen connected 98

5.5.2 Sclccling Red-Time Processing option with mulliplc csnieras
.. connected I00

5.5.3 Selecling Post-Processing option with invalid file format 100

5.5.4 Selmting View (;my Space (;r.~ph oplion with invalid lilc format 102

5.5.5 Selecting View RGB Space Graph option with invalid file format 102

5.56 Va1idating"Cument Path" folder ... 103

5.5.7 Navigation in Real-Time Mode with empty path 104

5.5.8 Navigation in Rcal-Time Mode with hurdles in the path I05

5.5.9 Navigation in Post-Processing Mode with empty path 105

5.5.10 Navigation in Post-Processing Mode with hurdles in the path 107

5.6 Conclusion ... 109

6 BIBLIOGRAPHY AND REFRENCES ...
RESEARCH PAPER

Chapter 1
Introduction

INTRODUCTION

Computer scientists all around the world are working hard to achieve one goal: an
intelligent computer. In a constant quest for improvement, all possible roads are trodden
to make computer understand. Numerous fields have emerged within the field of
computer science. Computer vision is just one such example. The essence of computer
vision is simple: "to make computcr see things", and consequently, to make it
"understand" the world.around it. For ifcomputcr starts seeing, it's formidable ability to
work on and on without making a single mistake could bc utilized in a variety of places
and number of ways. Computers that see could be used where humans fail. This project
is yet another step in that dircction.

The project in context is an cffon towards taking the human out of the driving
seat and place computer behind the wheel. The reason for computer driven vehicles are
numerous, most examples are, computers can not fall asleep while driving, they donot get
tired after a prolonged drive, they are precise and accurate, they don't get tense and so on.
All in all, this project has potential to be taken up seriously.

In that respect we were successfully able to differentiate thc ground plane from
the rest of the imagc and navigate the vchicle around different hurdlcs while maintaining
a database of all the hurdles encountered in a particular path.

The future enhancements include further reduction of computational load by
making the ground and hurdle detection algorithm even lighter and increasing the ability
to work on different types of ground textures.

1 .I Computer Vision

Computer vision is a field that runs parallel to Image processing. In fact, both
Computer Vision and lmage Processing are descendent of a single field called "Computer
Imaging". The difference between Computer Vision and Image Processing is that the end
user of resultant of Image Processing operations is human, while the end user of resultant
of Computer Vision operations is computer. These two fields share between them a
variety of definitions, processes, algorithms and methods.

Computer Vision is a field that deals with images. Just like we see with our eyes
and unconsciously store important aspects in our memory, the images in computer can be
captured using cameras and stored on some media such as hard disk. But the computer
can do imuch more with thc images otlrcr than just storing thenl. In Ihct, the images for
computer can be of variety of formats for example: color images, gray (intensity) images,
infrared images etc and they can be obtained from variety of sources for example: digital
camera, web cam, internet, satellite ctc. These imagcs can have many different
spectrums. These spectrums may rangc fiorn simple black and white images to multi-
spectrum images such as RGB images, that have three spectrums. But thc list does not

end here; there are satellite images that have up to 24 spectrums and others that have even
more spechums. These spectrums are of great use for storing significant data. This
enormous capacity and power could be used where human endurance runs out.

I .2 Computational Cost of Processing Images

The images used in Computer Imaging are digital instead of analogue. A digital
image a[~tl, n] described in a 2D discretc space is derived from an analog image a(x, y) in
a 2D continuous space through a sa~npling process that is frequently referred to as
"digitization". Thc 2D continuous imagc ~ (x . y) is divided into N r o w and M columns.
The intersection of a row and a column is tcnned a piwl. The value assigned to the
integer coordinates [trl,n] with {n1=0,1.2 ,..., M-I) and n = O 2 . I } is a[m,n]. The
value assigned to every pixcl is the average brightness in the pixel rounded to the nearest
integer value.

As every digital image is made up of elements called "pixels", we can say that
operations in Computer Vision (and Image processing) are actually operations done on
pixels.

The images obtained from web cams or cameras are generally of pre-specified
standard sizes. For example an image captured from a wcb cam can be of 640 by 480
pixels or 320 by 240 pixels. Thus an image of 320 by 240 means 76,800 pixels. This
means if we have a single spectrum image of dimension 320 by 240, the computer will
havc to work with 76,800 different pixels and pixel values. If we have a single spectrum
image of dimension 6 4 0 . b ~ 480, the computer will have to work with 307200 different
pixels and pixel valucs. In the same way. if wc have a commonly used RGB image (i.e.
three spectrums) image of dimension 320 by 240, the computer will have to work with
76, 800 different pixcls and 2,30,400 pixcl values. I11 thc samc way, if we havc a RGB
image (i.e. three spectrums) image of dimcnsion 640 by 480, the computer will have to
work with 2,30,400 diffcrcnl pixels and 6,01.200 pixcl v;~lucs. So o s i ~ ~ g l c RGB imagc of
640 by 480 pixels dimensions require 6, 91,200 computations for reading the image. If
you need to do some processing with the image, that would naturally requirc extra
computations since 6, 91,200 computations are just for rending the image (lets say) into
memory. Now if you have a filter that makes two passes on the image, then it would
require 13, 82,400 extra computations (i.e. apart from loading the image). If you make an
application that process real time images from web cam at a ratc of I0 frames per second
then thc number of rcquired computations would be at least 2.07.36,000 computations per
second. That is quilc a load, since generally you don't just rcquirc only two passes, you
have to access pixel locations, change pixel values, recompute, save and so on.

This computation load is a great bottle neck for all real time vision systems to
date. The challenge for every autonomous navigation vision system is this bottle neck of
high amount of data processing required in real time. The vision scientists are constantly
trying to tackle this issue through the introduction of newer techniques.

1.3 Autonomous Navigation

Autonon~ous navigation means navigation not requiring human help, in other
words "automatic navigation". This navigation is not limited to streets and roads, rather
it encapsulates on-ground, undcr-ground, underwater and even space navigation.

Autonon~ous navigation has yl.c;~t lick1 of applications i n our daily life.
Autonomous machines are already helping us build cars, rockets and doing many other
useful tasks in many cases bcttcr than any human can do. As already mentioned, the use
of autonomous navigation range from indoor environment to outer space exploration.
One such example could be the baseline 2003/2005 Mars Sample Return missions. The
baseline 200312005 Mars Sample Return n~issions require thc return of a science rover to
the lander for the transfer of sample cache containers to a Mars Ascent Vehicle or MAV.
Along thcse lines, the ncwcst mission guidclincs for thc Mars Sample Rcturn call for a
science rover to desccnd from the landcr using rilmps, acquirc corc samples from as far
away as hundreds of meters from the lander, rctum to the lander, and then ascend the
ramps to deposit these samples in the MAV. Thc return operation rcquircs tracking and
docking techniques for the dcvelopmeni ol'ncccssary integrated rovcr capabilities key to
the lander rendezvous operation. The scicncc rovcr must autonon~ously recognize, track,
and precisely rendczvous with the landcr from distances as far away as hundreds of
meters. Thc Sample Rcturn Rover, or the SRR, is a rover prototype that was originally
developed for the rapid retrieval of samples collected by longer ranging mobile science
systems. and the return of thcse samples to an Earth ascent vehicle [I].

"'Sysrems-~Jsysferrts will, in thr Zlsi Cm~t~rty, replace every major combat sjatcm
on the battlefield with rlistributeci rohols -in /he air and on the gmund, aulonomous.
netcentric, and integr(~tecl. "-Unknown DARI'A Source [Z]

This vision is driving much of the current robotics research in government and
defense laboratories around the globe. Its realization will require a demonstrable
capability in Intelligent Autonomy (IA), i.e., "The capability to operate effectively, singly
or in groups, with reduced, remote (geographically or temporally) or no human command
and interaction, and the ability to adapt independently to a changing, uncertain,
unpredictable and hostile external environment."[Z]

Thus the importance of autonomous navigation cannot be ovcr emphasized.

1.4 Perception

Literally perception is defined as thc "ability to understand" (CHAMBERS
Dictionary for Learners, BRITISH NATIONAL CORPUS). That is, to understand
anything, for example: the world around us, what one is saying and so on. However the
word "Perception" has a special meaning in computer vision and is related to an
outstanding quality of cvcry human bcing. Latcly, the term "Machine Perception" was
introduced. For the past few years, a lot of rescarch has been done in the field of machine
pcrccption. In the eorly ycwr:s the developr~~cr~! wtrs mainly driven hy space, underwater,
and oufo~nalion applications for kaznrt10u.s crreos, bur especially in [he receniJve years,
d@erenr ,foclors have led to an increasing nwnher of applicarions. The first important
,ficfor was [he expotim~icrl~ g rowi~g con~putu~ionulpower, enhanced control algorithms.
and new rnechaironic sensors and acruufors [3].

1.4.1 Perception and Autonomous Navigation

Perception to humans comes easy. We are adept at undetstanding different things
and situations. Scintists attribute this skill to millions of years of evolution. Further more
this ability to understand and adapt to cahnging environment has becn one of the biggest
factors of human survival through the centuries. But computers on the other hand are
relatively "newborn" as compared to humans and they do not have that "instinct" to
survive or understand. If sonichow wc can makc computcrs scc thc world around it, the
next possible step is to make then1 understand the world around them. These two goals, if
achieved can bring coniputcrs closer to rhc humuis. Scicntitically, i t would increase the
alrcady dominant usablilty of the computcrs in all fields of life.

I'crception has many applications in thc field of computcr vision. It can allow
computcr to take prcniptive actions. Specially in the field of navigation, perception can
be of very much usc in dcciding which path to takc, whcrc to turn, slow down or speed
up, recognize landmarks and so on.

1.5 Literature Survey

In order to judge our work it is iniportant to bring into perspective the existing
work in h i s field.

a - A Path Following System for Autonomous Robots with
Minimal Computing Power

This work by Andrew Thomson and Jacky Baltes [4] deals with following a pre-
specified path. The path lo follow is marked by illuminating it. The robot contains of
single camera facing the ground directly in front of the vehicle. The illuminated region
within each frame is scxched from the gray scale image. Thc system tries to stay at the
centre of this illuminated strip.

Fig. 1-1: ClTR Aulonomous robot Fig. 1-2: Gray sralc image ofthe path

b - Obstacle Avoidance of Autonomous Mobile Robot using
Stereo Vision Sensor

This work by Masako Kumano and Akihisa Ohya 151 use two monochrome CCD
cameras cquipped with about 90 degrees wide-angle lenses. which are fixed on the left
and right side with thc same height at the top of the robot (See Figure 1-3). Two images
are captured synchronously on an image processing board. One image is estimated from
the other by the matrix calculated with relative position. Then each point on the real
image is compared with the correspo~lding one on the estimated image. If there is a
certain difference of brightness, around there any 3D objects are detected.

Chanter I b7lrod11clion

. -

Figure 1-3: hlobile robot Figure 14: The principle of obstacle detection in this
equipped with stereo vision rcscnrch i s that ifboth right and k i t o f the brightnesses
sensor ufcorrcsponding points are nlmosl equal, there is not

m y obstacles there. The difference of brightnesses
mcans there i s something around the point.

c - Ground Plane Detection using Visual and Inertial Data Fusion

This work by Jorgc Lobo and Jorge Dias [6] uses inertial information for
navigation. In humans this inertial information is obtained from a sensorial system which
is located in the inncr ear and it is crucial for several visual tasks and head stabilization.
This work only deal with stereo vision based ground plane detection and does not take
into account hurdlcs in the path. The inertial unit is placed at the middle of two stereo
cameras. Each calncra position has its own rcfcrential, {R) and {I./ being for the right
and left positions.

Figure 15. The mobile
system with the active
vision system

Figure 16: System Architecture. The inertial
system processing board uses the Master
processing unit a s hos t computer.

d - Obstacle Detection and Self-Localization without Camera
Calibration Using Projective Invariants

In this work Kyoung Sig Roh, Wang Heon Lee and In So Kweon [7] detect
obstacles by comparing the pre-stored risk zone with a current risk zone. The positions of
thc detcctcd obstaclcs arc also dctermincd by da t ive positioning. Their system makes
use of the assumption that an environmental map database is available for matching
between the scene and the model. Intersection points between floor and the vertical lines
of door frames are used as point features to compute cross ratios. As an off-line process,
the system construct a database consisting of the cross ratios of point features. Using the
cross ratios in the constructed database, the correspondences between the model and
scene features can be found. The corresponding point features in the database of a real
environment and in the image are used to compute the positions of the mobile robot and
obstacles inside the risk zone.

Fig 1-7: Risk Zone and point features Fig 1-8: Rclercnce risk zone

e - Deriving and Matching Image Fingerprint Sequences for
Mobile Root Localization

This work by Lamon Pierre [81 deals with localization of a vehicle. Mr. Pierre
proposed a method for n~obile vehiclc localization called Fingcr Print Sequencing.
According to this mcthod, as the fingerprints 01' a person arc unique, so are at each
location the unique visual characteristics (save in pathological circumstances). SO a
unique virtualfingerprinl of a location can be created. If locations are denoted by unique
fingerprints in this manner..then the actual location of a mobile robotlvehicle may be
recovered by constructing a Fingerprint from its current view and comparing to a
database of known fingerprints. .

I

Fig 1-9: Views
of the system

Fig 1-11:
Fig 1-10: String i

Example extracted
image for from image
scquencc of Fie. 1-10
encoding

1.5.1 Conclusions Drawn from Literature Survey

Self-localization, obstacle detection and avoidance are the basic requirements for
successful navigation of any autonomous vehicle. Most of the vision based navigation
systems concentrate on only one aspect of autonomous navigation. Some systems try to
detcct obstacles in their path whilc others try to find their rclative position with respect to
cnvironmcnt without ihc facility of obstaclc avoidance.

The work by Andrew Thomson and Jacky Baltcs [4] uses illumination underneath
the floor for ground detection. This approach does not take into account obstacles
detection or avoidance. That makes this approach a little far from natural environment
where a path can not always be illuminated from underneath. The work by Kumano, et a1
[5] uses stereo vision for obstacle detcclion. They use two monochrome CCD cameras
equipped with about 90 degrees wide-angle lenses, which are fixed on the left and right
side with the sanlc hcighc at the top of a robot. Two imagcs arc captured synchronously
on an image processing board. One image is estimated from the other by the matrix
calculated with rclativc positioning. IT thcrc is :I certain dilrcrcncc of brightncss, nround
there any 3D objects arc detected. The handicap of this approach is that if both of the
canwas are focused on the same obstacle. that obstacle would not be detected. In their
work Roh, et a1 [7] dctcct obstacles by comparing a pre-stored risk zone with a current
risk zone. The positions of the detected obstacles are also determined by relative
positioning.

Although a lot of work has becn done in exploring thc possibility of vision in
autonomous navigation, much is left to be done to make it a part of our indoor/outdoor
evcry day life.

1.6 The Project

The project Perception Based Obstacle Detecfion and Avoidance System for
A U ~ O ~ O I I I O U S Vehicles with SeIJ-Locali~u/ion Cupability is an effort towards taking the
liu~nan out of the driving seat and place computcr behind the wheel.

The project could be divided into two major parts.

I - Navigation:

The navigation part deals with operations such as detection of path and
hurdles in that path on and taking actions to avoid the hurdles on run time

2- Perception

The word "Perception" in our project has a special and slightly different
meaning. Sincc perception means understanding, with reference to autonomous
navigation, we have defined perccption as "understartding sotne nutural/urt@cia~
aspect of the environment and tuking preenlptive and reactive actions accordingly
in order ro fucili/ute navigation".

1.7 Project Scope

I'revious work in this field has mostly concentrated on any one aspect of
navigation. That is why you would come across an application that would be capable of
detecting a hurdle and navigating around it while another that could only reach
destination by following some artificial property (such as specially colored floor) without
any hurdles in the way (or stop on finding one). Another observation is the heavy
dependence on spccializcd equipment in most of the existing systems. The reason being
the need of improving accuracy and reducing computational load. Apart from that, some
things are inevitable without the use of extcrnal hardware.

The scope of this project is to construct a system that would be capable of
navigation in a controlled environment. In other words, the project requires development
of a system that would be able to work in natural environment with reliable accuracy. In
practice, the system should be capable of detecting the ground plane, separate hurdles
from the ground plane, maintain a track record of encountered hurdles.

Another important aspect of thc project is that no specialized equipment such as
frame grabber or laser range finder arc uscd to keep the development cost of the project

T' as low as possible.

1.8 Objectives

The objectives of this project are given below:

0 Ground plane detection
0 Hurdle detection
0 1-Iurdle avoidance
0 Localization

In practice, we would require two tasks to meet the objectives of the project:

I - Real time algorithm for ground plane detection, hurdle detection and hurdle
avoidance.

2- Application of' perception for localization

1.9 Conclusion

In this chapter we gave an introduction to our field of work with brief definitions
and explanations of basic concepts that arc important in our system. Along with that we
gave examples of work that has already been done in this field, what were their shortfalls
and the need of what more has to be donc. At the end we dcfined our scope of work and
objectives.

Chapter 2

System An aljsis

Chanter 2 Analvsis

2. ANALY SlS

Software engineering, at a technical level, begins with a series of modeling tasks
that lead to a conlplcte specification of requirements and a comprehensive design
representation for the software to be built. The Analysis model, actually a set of models,
is the first technical representation of a system. Over the years many methods have been
proposed for analysis modeling. However just two models now dominate the analysis
modeling landscape. The first, sfrucfured analysis is a classical modeling method and the
other approach is objecf oriented method. We have used the both modeling techniques for
the analysis of our project, Perception Bused Obslacle Detection und Avoidance System
for Aufonomous Vehicles wifh Self-Locolizafion Capability.

2.1 Structured Analysis

It is a model building activity. Using a notation that satisfies the operational
analysis principles, we create models that depict information (data and control) contents
and flow, we partition the system functionally and behaviorally, and we depict the
essence of what must be built.

2.2 Analysis Model

The Analysis Model must achieve three primary objectives.

I . Describe what the customer requires.

2. Establish a basis for the creation of a software design.

3. Define i set of requiremaits that can be validated once the software is
built.

To accomplish these objectives, the analysis model derived during the structured
analysis takes the form illustrated in Figure 2-1.

At the core of the model lies the data dictionary - a repository that contains
description of all data objects consumed or produced by the software. Three different
diagrams surround the core. The entity-relationship diagram (ERD) depicts relationships
between data objects. The ERD is the notation that is used to conduct the data modeling
activity. The attributes of each data object noted in the ERD can bc described using a data
object description.

The Data flow Diagram (DFD) serves two purposes:

Perceprio,t Bard Obsr~sle Drrcrrim o n $ A v o i d ~ t r c r S y ~ ~ ~ ~ ~ ~ ~ j ~ r A ~ ~ ~ o n o ~ ~ ~ o ~ t ~ Vdzicter wirh Sclj-Lonrlizarion Copclbiliv 1 1

I . Provide an indication of how data are transformed as they move through
the system.

2. Depict thc functions and subfunctions that transform the data flow.

The DFD provides additional information that is used during the analysis of the
information domain and serves as a basis for the modeling of function. A description of
each function presented in the DFD is contained in a process specification (PSPEC).

State-Transition
/ .

Control Specification

Figure 2-1: Analysis Model.

The State-transition diagram (STD) indicates how the system behaves as a
consequence of external events. To accomplish this, the STD represents the various
modes of behavioral modeling. Additional information about control aspects of the
software is contained in the control specification (CSPEC).

2.2.1 Object Description

Object Description is used to describe the Objects. Object is a representation of
almost any composite information that must be understood by the software. By
composite, we mean something has a numbcr of different attributes or properties. For
example, in Perceprion Bused Obstacle Deleciion and Avoidance System for Autonomous
Vehicles with SeljlLocolization Capability, an object can be hurdle. Whenever the object
"hurdle" is encountered, the system shifts from path navigation to hurdle tracking and

navigation mode. It is used as a means of identifying the path and is compared with other
objects (hurdles) for recognition purposes.

I---- Dimensions

SepChans

Figure 2-2: TIN llurdlc Objccl.

Let us discuss the fields of the Hurdle object:

HurdNnme specifies the name of the hurdle. The initial name assigned to
the hurdle is "Un-Namcd Hurdle". The name may be changed later on
finding a successful match in the database.

HurdNumber is an internal index of each object called "Hurdlc" to
separate and distinguish it from the rest of the hurdles.

Dimensions is a three dimensiotval array used to store the location and size
of thc llurdle in a particular frame.

SetWid is a member function of Hurdle object which is used to fill the
Dimension array one element at a time.

FCVals is the member fhction of Hurdlc object which actually calls
another function (Checkit()) in order to find out whether hurdle has been
encountered for the first time or if it is already present in the hurdlc
database.

CreatenCopy is actually master-mind behind each Hurdle object, it
receives the information about a hurdle and crcatcs the hurdle, calling all
the subsequent functions.

SepChans separates the three channels of the hurdlc and stores them into
array in order to facilitatc recognition process.

ShowHurdle used for displaying the Hurdle object in a window named
after that hurdle.

2.2.2 Entity-Relationship Diagram (ERD)

ERD is used to definc the relationship between different entities or objects. These
objects are joined with the other based on the relationship they havc. ERD focuses solely
on data (and therefore satisfies the first operational analysis principle), representing a
"data network" that exist for a given system. ERD is especially useful for applications in
which data and the rclntionships that govcrn data arc complex. ERD of the system is
given in figure 2-3.

2.2.3 Data Flow Diagrams (DFD)

As information moves through the sortware, it is modilied by a series of
transformations. A DFD is a graphical technique that depicts information flow and the
transforms that are applied as data moves irom input to output. Thc DFD is also known
as Dafoflow graph or a huhhle chart.

Figure 2-4: Conlexl Lcvcl UFD for Vision I - I 'cr~~q~l ion Uuscrl Ohsl~rcle I~r~lccfiur~ urrd A~~c~idunce
Sy.sHm fur Aulonunrous Vchic1e.s with Scv-LocrrIizuIi~~r Cupr~bilily

User Commands

Figure 2-4 shows the Context Level DFD for the sofiware Vision I - Perceprion Based
Obstacle Delectiun and Avoidance Sysretn .fir Aulonomous Vehicles with Sew
Localizufion Capahilily. This level is the highest level of abstraction where no details arc
shown; only the input to the sofiware and output from software is shown. There is only
one bubble, which is the software and rcvcals no function of the sofiware.

Display lnfomation

Vision 1 Software

Now the DFD is expanded and level one shows the detail of the process or
functions of the sofiware.

Monitor

User Cwnrnands

interact with User

User Commands and Data

Front Panel Display \

Messages and instructions Activate Object
Creation Module

Display Messages
and Status

Monitor
Display Information

b

Figure 2-5: Level I DFD for Vision I

Figure 2-5 expands the bubble in 1,evcl I DFD and here the level of abstraction
decreases but only up to thc functions still thc sub functions are not reveled. It also shows
the data storage and the arrow, to show which process storcs the data and which process
use the stored data.

Percepimn B w d ObsmcIe lkI~~ci , ,on v n l Avaidmee Sysler~~~Jw At~luno,nutrv Vehicles will, %l/-1acoli:dion C ~ p u b i l l ~ 17

Navigation object Data
Create Navigation

\

Object Detection object Data

Display Messages
and Status

Figure 2-6: Level 2 DFD for Proccss Activate Object Creation Module.

'alh Message

Monitor a

Level 2 DFD process Activate Object Creation Module is shown in Figure 2-6.
This level shows the sub functions of the process Activate Object Creation Module and
describes almost all the data flow in the process Activate Object Creation Module.

Figures 2-7. 2-8,2-9 and 2-10 show l.cvel 3 DFD of processes "Scan Image for
I-Iurdle", "Match Scqucncc", "Create I'crccption Object" and "Create object Detection
Object" respectively.

Disparity lnformation

Classify Disparity

Hurdle lnformation

Display Information Display Messages

Hurdle detected Message Monitor

Figure 2-7: Level 3 DFD for Process Scan lmagc for Hurdle.

Compare Sequence
With others Sequence Information

Compare Sequence
In reverse direction

Match found/ not found

Match found1 not found

Display Messages
Monitor

Display lnformation

Figurc2-8: Level 3 DFD far Process Matell Scquenee

Paths Database lnfo

Initialize Perception

Validllnval~d Path lnfo

Path Sequence lnfo

Display Information

Monitor

Figure 2-9: Level 3 UFD for l'r~,rrss Cre;itc Pcrccptiul~ Ot?jcct

Prrce~lion &.sedOb~lacle D e I e d ~ ~ n u m J , l ~ ~ ; d m ~ Sy~lratfor Aul~nomu~rr Vehicles with Sel j - Ia~dizd~on Copobrii* 2 1

Hurdle Database lnfo

Load Hurdles

Object Detection Object Data

Load Extracted

d Hurdles lnfo

Display Messages Monitor

Display Information

Extracte

Figurc 2-10: Level 3 DFD for Proccss Create Object Delcction Object

Permprim h d Obsmclp fiwrrion and Avoidance S y s r m / i Acrmwonrms Vehicles wirh Sel/-1aculi:arion Capabiliry 22

2.2.4 Process Specification (PSPEC)

The Process specification contains thc detail information about the processes
detined in the DFD. These details eithcr can bc in simple English or in Program Design
Language (PDL) format. In simple English, the process is defined in simple words while
in PDL, the process is written in the format similar to the algorithms but they are not
complex as algorithms arc. We will definc thc process in PDL.

2.2.4.1 Scan Image for Hurdle

Procedure Scan Image for Hurdle;

Get the imagc data;

Scan image data to find any disparity larger than pre-specified values in
dimensions:

If disparity largcr than prc-spccilicd valucs in dinlcllsions;

Classify disparity as hurdlc;
Create an object of class Hurdle;
Assign properties of disparity to the created hurdle object;
Display information of hurdle on screen;

End;

Else begin

Classify disparity as noisc;
I<eplace the disparity color to its original color;

End if;

End proc

Chu~rer 2 Analysis

2.2.4.2 Match Sequence

Procedure Match Sequence

Get the sequence information of current path;

Compare sequence information of current path with scquence information
of previous paths in database;

If match exists
Display information on screen regarding path existence;

Else begin

Compare scquence infornlation of current path with reversed
sequcnce inform;~lion of prcvious paths in database;

If match exists

Display information on screen regarding path existence;

End if

End proc

2.2.5 State Transition Diagram (STD)

The State Transition Diagram indicates how the system behaves as consequence
of external events. The labeled transition arrows indicatc how the system reacts to the
external events as it traverses the defined states. By studying STD, a software engineer
can determine the behavior of thc systcni and can ascertain whether there are "holes" in
the specified behavior.

Figure 2-1 1 shows the State Transition Diagram for the sofhvare Vision 1 -
Perception Based Ohstacle Detection und Arwidance System ,for Au~onomous Vehicles
with Self-Localization Cupohilify.

Chanter I Analvsis

First Frame Event
lnvoke Load Paths
And Hurdle Database

Read User l n ~ u t

r--l lnvoke Process Images

Load Paths And
Hurdle Database

Next Frame Event

Process Images lnvoke Process lmages

Create and
Hurdle Encountered Event Classify Hurdle
lnvoke Create Path Sequence

Create Path Sequence

Sequence Match
foundINot found event
lnvoke Display
Messages and Errors

Hurdle Encountered Event
lnvoke Create And Classify Hurdle

Display Messages
and Errors

Hurdle Encountered Event
lnvoke Display Messages
and Errors

Disolav Status
First Frame Event Invoke Display
Invoke Display Messages and Errors
Messages and Errors

Fig 2-11: The State Transition Diilgri1111 for the sof1w;lrc Vision One

2.2.6 Data Dictionary

The analysis model cncompasscs rcprcscntations of data objccts, function and
control. In each representation, data objects andlor control items play a role. Therefore, it
is necessary to provide and organized approach for representing the characteristics of
each data objects and control item. This is accomplished with the data dictionary.

The Data Dictionary is an organized listing of all data clcmcnts that are pertinent
to the system, with rigorous dcfinitio~,~ so that both uscr and system analyst will
have a common understanding of inputs, outputs, components of storc and intermediate
calculations.

Name:

Aliases:

Where usedlhow used:

Description:

Name:

Aliases:

Where usedlhow used:

Description:

Name:

Aliases:

Where used/how used:

Description:

Name:

ip

None

Object of class 1mageProcessor. Used for processing of
images of video strcnrn.

Only a single instance of this objcct is created, it virtually
acts as a master mind, calling and controlling all the other
objects.

None

Used in lrnagc processing class

ObjectDetcction class object. Only a single instance of this
object is crcnted. I t is used to detect different hurdles.

pNav

None

Pointer to ihc object of class Navigation. Used in
ImageProccssor class.

Only a single instance of this object is created. It is used for
navigatio~~ of vcliicle on a path and around different
hurdles.

Aliases:

Where used/how used:

Description:

Name:

Aliases:

Where usedlhow used:

Description:

Name:

Aliases:

Where used/how used:

Description:

Name:

Aliases:

Where usedlhow used:

Description:

Name:

Aliases:

Where usedlhow used:

None

In Irnagel'roccssor class.

Pointer to the object of class Pcrccption. Only a single
instance of this objcct is created. It is used for perception
purposes.

None

Used in ImagcProccssor class,

Pointer to thc objcct of class Path. Only a single instance of
this object is crcatcd. This objcct is kept for adding extra
features to the project. Currently, its contribution to project
is almost non, although it contains full fledge functional
capability.

wid

None

In Irnagel'roccssor class.

It is a threc dimensional integer array. It is used for storing
dimensions of possible hurdle di~ncnsions. Its use through
out the projcct is very extcnsivc.

None

In ImageProcessor class.

Used as an index into wid array.

Lptl

None

In lmagel'rocessor class.

C'ltwrer 2 Analvsis

Description:

Name:

Aliases:

Where usedlhow used:

Description:

Name:

Aliases:

Where usedfhow used:

Description:

Name:

Aliases:

Where usedfhow used:

Description:

Used as bottom lcli starting point for second pass of ground
detection tiltcr.

Lpt2

None

In ImageProccssor class.

Used as top lcft ending point for second pass of ground
detection filter.

Rpt 1

None

In 1mageProccssor class.

Used as botton~ right starting
ground dctcction liltcr.

Rpt2

None

In Imagel'roccssor class.

~nd pass of

Used as top right starting point for second pass of ground
detection tiltcr.

2.3 Object-Oriented Analysis

It is a method of analysis that cx;ui~incs tlic rcquircmcnts ol' cnd-user from the
pcrspectivc of objcccs and classes found in tlic vocabulary ol'problcm domain.

2.4 A Unified Approach to Object-Oriented Analysis

Over the past decade, Grady Booch, James Rumbaugh. and lvar Jacobson have
collaborated to combine the best features of their individual object-oriented analysis and
design n~cthods into a unified method. Thc rcsult, eallcd thc Unifijicd Modeling Language
(UML), has becornc widcly used throughout tlic industry.

The following views are presentcd in UML:

User Model View. This view rcprescnts the system (product) from the user's
(called aclors in UML) perspective.

Structural Model View. Data and functionality are vicwcd from inside the
system. That is, static structure (classes, objects, and relationships) is modeled.

Behavioral Model View. This part of the analysis model represents the dynamic
or behavioml aspccts of thc system. It also depicts the interactions or
collaborations bctwccn various structural elements tlescribcd in the user model
and structural model views.

Implementation Model View. Thc slructural and behavioral aspects o f the
system are represented as they are to bc built.

Environment Model View. The structural and behavior aspects of thc
environment in which the system is to be implemented are represented

2.5 Domain Analysis

This activity, called domain nnolysis, is performed when an organization wants to
create a library of reusable classes (components) that will be broadly applicable to an
entire category of applications.

2.5.1 Reuse and Domain Analysis

Object-technologies are leveraged through reuse. The bcnefits derived from reuse
are consistency and familiarity. Patterns within thc softwarc will bccomc more consistent,
leading to better maintainability. Be ccrtain to establish a set of reuse "design rules" so
that these benefits arc achicvcd.

2.5.2 The Domain Analysis Process

The goal of domain analysis is straightforward: to find or create those classes that
are broadly applicable, so that they may bc rcuscd.

Technical Class
I iteratlm

Existing
Annlirdnnl

CunenVFuture Domain
Rpnuiremenls I anotmnpz

b

Sourcesof r,+(-main): Domain FunUional
Knowledge Ad,MI Analysis

Figure 2-12: Input and Output lor Domain Analysis.

Domain
Analysis

Model

Figure 2-12 illustrates key inputs and outputs for the domain analysis process.
Sources of domain kl~owled~c are survcyed in an attempt to idcntiry objects that can be
reused across the domain. Ln essence domain analysis is quite similar to knowledge
engineering. The knowlcdgc cngincer invcstip;~tcs a specific area of interest in an attcmpt
to extract key facts that may be of use in creating an expert system of artificial neural
network. During domain analysis. objmv (and class) exrrnclioi7 occurs.

2.6 The Object-Oriented Analysis Process

The OOA p roms doesn't begin with a concern for objects. Rather, it begins with
an understanding of the manner in which the system will be used-by people, if the
system is human-interactive; by machines, if the system is involved in process control; or
by other programs, if the system coordinates and controls applications. Once the scenario
of usage has been defined, the modeling ofthe sollware begins.

A series of tcchniques is used to gather basic customcr requirements and then
define an analysis model for an object-oricntcd system.

2.6.1 Use-Cases

Use-cases niodcl the system from the end-user's point of view. Created during
requirements elicilation, use-cases shcx~ld dcline the functional and operational
requirements of the system. provide a clear and unambiguous description of how the end-
user and the system interact with one anothcr and provide a basis for validation testing.

2.6.1.1 Use-Cases in the System

A iue-case is a high level piccc of functionality that the systcnl provides.

Activate Application

Initialize Dialog

* Perform Post Processing

0 Perform Real -Time Processing

View Gray Scale Image Space

View RGB Image Space

Choose Windows to be displayed

Choose Hurdle Seek Area

Choose Display Messages Option

Choose Hurdle Dinlensions

Load Saved Settings

Save New Settings

Load Paths And Hurdle Datal~ase

Process Frames

Display Resultant Images

Display Messages

Initialize Modules

2.6.1.2 Actors in the System

An actor is anyone or anything that interacts with the systcm being built. The
actor in our system are:

User

2.6.1.3 Expanded Use-Case Format

Use-Case: Activate Applicatiol~

Actors: User

Subject: Activates the software application.

Summary: The user gives the software execution command, which sends an
activation message to the application; the application responds the activating and
performing thc initialization.

Type: Essential, Primary

Typical Course of Actions:

1. This Usc-Case begins whcn thc user gives the software execution
command.

2. The application responds by activating.

3. It performs initialization.

4. Starts Message Loop

Alternative Courses of Actions:

6a. Application initialization failed, Exit the application.

Use-Case: Initialize Dialog

Actors: None

Subject: lnitializcs the Dialog.

Summary: This use-case is uscd by the Activate Application use-case. It
responds by pcrfom~ing the initialization, and display steps afterwards.

Type: Essential, Primary

Typical Course of Actions:

I . This Use-Case begins whcn Activate Application usc-case uses this use
case.

2. It responds by dialog initialization.

3. Loads Saved Settings.

4. Initialize Lists

5. Create Controls and Icons.

Alternative Courses of Actions:

5a. Dialog initiali7ation failctl, EXIT the application.

Use-Case: Perform Post Processing

Actors: User

Subject: Performs Post Processing services

Summary: The use-case is initiated by the user selecting the post processing
option. It performs post processing function.

Type: Essential, Primary

Typical Course of Actions:

1. This Use-Case begins when thc user selects Post-Processing option

2. The Use-Case responds by displaying "Choose .avi filc" dialog box

3. The user selects the .avi file

4. The Use-Case sends the specified .avi file information to process frames
Use-Case

Alternative Courses of Actions:

3a. The user does not select any .avi file, close "Choose .avi tile" dialog box

3b. Tho usor selccts an invalid .nvi lilc, closc "Cl~oosc: .itvi tile" dialog box
and display "Invalid .avi filc" message

/ I . I O h I ; I A i l S f A 1 h i i l 1 i : i h v 33

UsrCase: Perfbrm Real-Time Processing

Actors: User

Subject: I'crlbrms Rcal - Tilnc I'ruccssing scrviccs

Summary: The use-case is initiated by the uscr selecting the Real-Time
processing option. It perfoms Rcal-Time processing function.

Type: Essential, Primary

Typical Course of Actions:

I. This Usc-Case begins when rhc user selects Rcal-Time Processing option

2. The Use-Case responds by scarching for available caniera

3. The camera is initialized

4. The Use-Case sends thc specified camera information to process frames
Use-Case

Alternative Courses of Actions:

2a. There is no camera connected, display "Camera not found" message and
Exit

2b. There are more than onc camera connected to the systcm, choose the first
available camera

3a. Camera does not respond, display "Camera not responding" message and
Exit .

Use-Case: View Gray Scale Inlagc Space

Actors: User

Subject: View thc Gray Scale Image Space of a specified image

Summary: The Use-Case displays gray scale - intensity vs frquency graph

Type: Essential, Secondary

Typical Course of Actions:

1. This Use-Case begins when uscr selects the "Gray Scale Space" option

Chanter 2 Analvsis

2. It responds by displaying "Choose .bmp imagc"didog box

3. The user selects a particular .bmp image

4. The Use-Case creates a Gray Scale format of the specified image

5. The Use-Case creates Intensity vs. frequency graph

6. The Use-Case call "Display llesultant Images" to display the graph

Alternative Courses of Actions:

3a. User does not select a .bmp filc, display "Invalid File Format" message
and Exit

4a. The sclected image is alrcady in gray scale, go to step number 5

w Use-Case: View RGB Image Space

Actors: User

Subject: View the RGB Image Spacc of a specified image

Summary: Thc Usc-Case displays RGB - intensity vs frequency graph

Type: Essential, Secondary

Typical Course of Actions:

I . This Use-Case begins whc~l user sclects the "RGB Spacc" option

2. It responds by displaying "Choosc .bmp image" dialog box

3. The user selects a particular .hmp image

4. The Use-Case inspects RGB channel values of the specified image

5. The Use-Casc creates Intensity vs. frequency graph of the image

6. Thc Usc-Case calls "Display Rcsultant Imagcs" Usc-case to display the
graph

Alternative Courses of Actions:

3a. User does not select a .bmp file, display "Invalid File Format" message
and Exit

Use-Case: Choose Windows to be displayed

Actors: User

Subject: Selecting Windows appcaring on the screen

Summary: Thc Usc-Case lets the uscr sclcct the particular windows he wants to
view and those which hc docs not

Type: Esscntinl, Secondary

Typical Course of Actions:

I . The Use-Case begin when the user sclects "Windows to be Displayed Option"

2. The user selects windows to be displayed

3. The user selects windows not to be displayed

4. The Use-Case calls "Save New Settings" to save the uscr selection

Alternative Courses of Actions:

2a. The user makes no changes, Exit

3a. The user makes no changes, Exit

Use-Case: Cboose Hurdle Seek Arca

Actors: User

Subject: To choose the area in which the system would attempt to locate hurdles

Summary: This Use-Case lets the user set the area in which the system would
attcnipt to locate hurdles

Type: Essential, Secondary

Typical Course of Actions:

1. The Use-Case begins when thc uscr selccts "I-lurdlc Scck Arca" option

2. The user selects one of the prc-specified set of values

3. The Use-Case calls "Save Ncw Settings" to save the user sclcction

Alternative Courses of Actions:

2a. The user makes no changes, Exit

Use-Case: Choose ispl play Messages Option

Actors: User

Subject: Selecting whether or not user wants to view important decision oriented
messages generated during execution

Summary: This Use-Case lets the uscr select whether or not he wants to view
important decision oriented messages generated during execution

Type: Essential, Secondary

Typical Course of Actions:

1. The Use-Case begins when t l~c user sclccts "Display Mcssoges" option

2. The user selects/deselects messages to be displayed

3. The Use-Case calls "Save New Settings" to save the user selection

Alternative Courses of Actious:

2a. The uscr makes no changes, Exit

Use-Case: Choose Hurdle Dimensions

Actors: User

Subject: Choosing the dimensions of the hurdle to seek (in pixels)

Summary: This Use-Case lets thc user select the dimensions of the hurdle to seek
(in pixels)

Type: Essential, Secondary

Typical Course of Actions:

I . The Use-Case begins when thc uscr sclccts "Hurdlc Dimensions" option

2. The user selects one of the prc-specified set of values

Cl~unrcr 2 - Analvsis

3. The Use-Casc calls "Save New Scttings" to savc the user selection

Alternative Courses of Actions:

2a. The user makes no changes, Exit

0 Use-Case: Load Saved Scttiogs

Actors: Nonc

Subject: Load the sclections madc by the user for appropriate course of action

Summary: This Use-Case loads thc selections madc by thc uscr for appropriate
course of action to be taken on thc basis of the choiccs made

Type: Essential, Primary

Typical Course of Actions:

I . The Use-Case starts when the user has made all the selcetions and is ready to
proceed

2. The Use-Case calls Use-Case "lnitialize Modules" with the selections made
by the user

Alternative Courses of Actions:

la. The user does not make any changes to the settings, call Use-Case "Initialize
Modules" with pre-set values

Use-Case: Save New Settiugs

Actors: None

Subject: Save the changes to the settings made by the user

Summary: This Use-Case saves the changes to the scttings made by the user

Type: Essential, I'rimary

Typical Course of Actions:

I . The Usc-Case starts when the user makes a change to the setting and commits

2. The Use-Casc updates and stores changes in the valucs made by thc uscr

Alternative Courses of Actions:

la. The user docs not makc any changcs to thc settings, call Usc-Cnsc "Initialize
Modules" with pre-set values

Use-Case: Land P a t h And Hurdlc Database

Actors: Nonc

Subject: Loads the Database of Paths and Hurdles encountered and stored on the
previous runs

Summary: This Usc-Case loads paths and hurdle encountered and stored on the
prcvious runs

Type: Essential, Primary

Typical Course of Actions:

1. This Use-Case bcgins when Use-Case "Initialize Modules" calls it to load
previous paths and hurdles

2. The Use-Casc loads Paths from the paths database

3. The Use-Casc loads hurdles from the hurdle database

Alternative Courses of Actions:

2a. "Current ,Path" folder is not empty; call Use-Case "Display Messages" with
"Pleasc Empty the Currcnt Path Foldcr" mcssagc

2b. Thc format of I'nths databasc is invalid, call Usc-Casc "Display Mcssagcs"
with "Paths Database format Invalid" message

3a. The format of' Hurdles databasc is invalid, call Use-Case "Display Messages"
with "Hurdles Database forni;it Invalid" message

Use-Case: Process Frames

Actors: None

Subject: Process the frames from input stream

Summary: Processing the framcs of input stream (Rcal-Time or Post-Processing)

Type: Essential, Primary

Typical Course of Actions:

1 . This Use-Case is called by "lnitializc Modules" use case

2. The Use-Case retrieves the next fnme form the input stream

3. It applies processing on the frame

4. It calls Use-Cases "Display Resultant Images" and "Display Messages" based
on the result of processing on that frame

Alternative Courses of Actions:

2a. The frame cannot be retrieved, "Display Messages" with "Frame Cannot be
retrieved" message

2b. Previous frame was the last framc. "Display Messages" with "Processing
Complete" messagc

Actors: Nonc

Subject: Displays Resultant Images based on the processing performed

Summary: This Use-Case is used for displaying resultant images based on the
processing pcrf'ormcd

Type: Essential, Primary

Typical Course of Actions:

I. The Use-Case begins when any other use-case requests it to display a
particular image

2. The Use-Case responds by creating a window in which to display the image

3. The Usc-Case loads the specificd image into that window

4. The Use-Case displays the window with the specified image in it

Alternative Courses of Actions:

2a. Window cannot be created, call "Display Messages" Use-Case with "Cannot
create Window" message

3a. The image cannot be loadcd in thc create window, call "Display Messages"
Use-Case will1 "Cannot load imngc in thc window" nlcssage

4a. Window cannot be displaycd. call "Display Mcssagcs" Use-Case with
"Cannot display Window" messagc

Use-Case: Display Messages

Actors: Nonc

Subject: Displaying messages

Summary: This Use-Case is used for displaying messages generated during
execution

Type: Essential, Primary

Typical Course of Actions:

1. The Usc-Casc begins when any other use-case requcsts it to display a
particular lnessage

2. The Use-Case responds by receiving the sent messagc

3. The Use-Casc crcatcs a messayc box to display thc message

4. The Use-Case displays the messagc in the messagc box

Alternative Couises of Actions:

23. Message is not in proper format; display a mcss:lgc "lmpropcr format of
received message"

3a. Message box with specified propcrtics cannot be crcatcd, display a simple
message with "Message box with specificd properties cannot bc created"

4a. Message cannot be displayed, display a simple message with "Message cannot
be displayed properly"

Use-Case: Initialize Modules

Actors: None

Subject: Initialization of all the modules

Summary: This Use-Case perfonns initialization of all thc modules according to
the requirements of the user's choice

Type: Essential, Primary

Typical Course of Actions:

I . The Use-Casc begins when thc Uso-Case "Load Saved Settings" calls it with
specification about what coursc oTaction to take.

2. The Use-Case initializes all the internal modules that would be required

3. The Use-Case calls Use-Casc "l'roccss frames"

Alternative Courses of Actions:

2a. Modulc(s) cannot be initializctl, call Use-Case "Display Messages" with
"Unable to initialize Modules" message and Exit.

2.6.1.4 Use-Cases Diagram

Use-Case diagrani it1 Figurc 2-13 shows somc of tlw usc-cascs in the systcm,
some of the actors in llic systcrn, and thc relationships betwccn them.

Initialize MModes 7
Load Path Database 7
Process Frames -?

Display Messages a

Figure 2-13: Use-Case Diagram for Vision OIIC - Pcrccplion Based Obslncle U~~tecliorr und Avoirlnrlce
S ~ t ~ l r r r r ~ ~ r r Arrlor~o~~ruus Vd~iclc,~ with .Scl/--Locirli:~li~~~r Cn~~ahilily

2.6.2 Conceptual Model

Conceptual Modcl in Figure 2-14 dcpicts thc conccpts found in the domain o f the
system. In conceptual modcl we identify tllc conccptual (as opposcd to physical) objects
in the application.

I - I . 1

Figure 2-14: Conceptunl Model for Vision OIIC - I'rrcqlioe Bused Ohslurle Drlrcliart and Avoidance
Syslrw for Alrrorronrous Vehicles 118irh Sev-LoculiWinn Capuhilify

2.7 Conclusion

In this chapter we have given detailed description of our analysis phase of the
systcm development. In the beginning of this chapter, we havc givcn an introduction to
the basic concepts of analysis and diffcrcnt techniques to carry out analysis phase. Since
at the beginning of analysis phase, our approach was structured, which later on evolved
into object oricnted, we have presented our work in both structured and object oriented
approaches to analysis.

Chapter 3
Design

Design is an iterative process transforming requirements into a "blueprint" for
constructing the software. It is the first step in the development phase for any engineered
product or system. It can also be defined as "the process of applying various techniques
and principles for the purpose of defining a device, a process or a system in sufficient
detail to permit its physical realization."

The designer's goal is to produce a model or representation of an entity that will
later be built. The process by which the model is developed combines intuition and
judgment based on experience in building similar entities, a set of principles andor
heuristics that guide the way in which the model evolves, a ultimately leads to a final
design representation.

3.1 Object-Oriented Design

Object-Oriented Design is a process of object-oriented decomposition and a .
notation for representing logical and physical as well as static and dynamic models of the
system under design.

The four laycrs of object-oriented design pyramid are:

The Subsystem Layer contains a representation of each of the subsystems that
enable the software to achicve its customer-defined requirements and to
implement tile technical infnstructurc that supports customcr requirements.

0 The Class and Object Layer contains the class hierarchies that enable the system
to be created using generalizations and increasingly more targeted specializations.

0 The Message Layer contains the design details that enable each object to
communicate with its collaborators.

0 The Responsibilities Layer contains the data structure and algorithmic design for
all attributes and operations for each object.

3.2 Design Patterns

The best engineers in any field have an uncanny ability to see patterns that
characterize a problem and corresponding patterns that can be combined to create a
solution. Throughout the OOD process, a software engineer should look for every
opportunity to reuse existing design patterns (when they meet the needs of the design)

4
rather than creating ncw oncs.

3.2.1 Describing a Design Patterns

All design patterns can be described by spccifying the following information:

The name of the pattcrn

The intent of the pattcrn

The "design forces" that motivate the pattern

The solution thatmitigates thesc forces

The classes that are required to implenient the solution

The responsibilities and collaboration among solution classcs

Guidance that leads 10 cffeclivc i~nplcmcntntion

Example source code or source code templates

Cross-references to related design patterns

The design pattern name is itself an abstraction that conveys significant meaning
oncc the applicability and intent are understood.

3.2.2 Using Patterns in Design

In an object-oricnted system, design patterns can be used by applying two
different mechanisms: inheritance and composition. Using inheritance, an existing design
pattern becomes a template for new subclass. The attributes and operations that exist in
the pattern become part of the subclass.

3.3 Object-Oriented Design Process

UML design modcling addresses the structural modcl, behavioral model,
implementation model, and environmental model views.

3.3.1 Structural Model

Data and functionality are vicwcd from insidc thc system. That is, static structure
(classes. objects, and relationships) is modclcd.

3.3.1.1 What is a Class?

A class is something that encapsulates information and behavior. We take a little
bit of information and a littlc bit of behavior, and cncapsulatc thcm into somcthing called
a class.

3.3.1.2 Finding a Class

A good place to start when finding classes is the flow of cvcnts for the use-cases.
Looking at the nouns in the flow of events will let us know what some of the classes are.
When looking at the nouns, they will be one of four things:

s An actor

A class

An attribute of a class

An expression that is not an actor, class, or attribute

By filtering out all of the nouns cxccpt for the classes, wc have found classes
identified for our system.

3.3.1.3 Class Diagram

Since the project "Perceplion Based Obstacle Deteclion and Avoidance Syslem
for Autonomom Vehicles wi~h Self-Localization Capabili~" has quite a number of
classes, each having a number of memhcrs, thc class diagram is represented first by a
diagram showing the relationship behvcen different classes in the system, while the later
class diagrams show each class with detailed listing of its members.

Fig 3-1: Class Diagram showing different classcs and lheir inter-relationship for the project
"Percepfion Based Obsfaclc Drtecfion and Avoidorrcr Sysfem for Aufonon~orcs Vehicles wjlh Ser-
Localization Capobilily"

- Img: Ipllmage *
- Cimg: Ipllmage *
- GTex: IplImage *
- WTex : IplImagc *
- Gr : lpllmage *
- Bnr : Ipllmage *
- CSec : IplImagc *
- dummy : Ipllmage *
- grgrTex : IplImage *
- grwlTex : IplImage *
- heck : Ipllmage *
- ObjHurd : Ipllmage *
- BackGmd: IplImage *
- Lpt I : CvPoint
- Lpt2: CvPoint
- Rpt I : CvPoint
- Rpt2: CvPoint
- HurdWid : int
- HurdHght : int
- Lbound : int
- Rbound : int
-wid[][] : int
- wi : int
- pos : int
- iooo : int
- module int
- HurdInFrame int
- FrNum : int
- Clearcheck : boo1
- HurdTime : int
- StartPoint : CString
- Destination : CString
- HwdleNames[] : CString
- HurdNumber : int
+ pNav : Navigation *
+ pPrcp : Perception*
+ ptlurd : Murdlc'
+ pHurdArr[] : Hurdle**

Perceprion Uosed Obs~ocle Delrrrion ond ,lwidunce Syrremfiw A~atrm~~,rm,ru Vehicles ~vi ih lrSr//-1andt;lllIion Copobilily 49

+ indHurd : int
+ pP I : Path*
+ pOD : ObjcctDctcction*
+ im-gs : boo1
+ im LL: boo1
+ im-win1 : boo1
+ im-win2 : boo1
+ i r n A 1 ~ : boo1
+ i m - ~ ~ : int
+ im-HD : int
+ i r n ~ l m g ~ ~ : int

- SetUpThingsO : int
- SearchItUpo : void
- MatchItPalO : Ipllmage*
- FillChs() : void
- DoMore(): void
- it() : void
- CopletePic() : void
- QuickSortO : void
- Sortltl() : void
- SepChansO : void
- FindRope() : void
- LoadnProcessOriglmg() : void
- AIIProcessing() : void
- TexCompareGround() : void
- 'l'cxCompareWall() : void
- Livecapture() : void
- Display() : void '

- Drawpatho : void
- Filling() : boo1
- MyFloodFillO : void
- MaslcrMind(): void
- SetBounds(int) : void
- ScarchUp() : bod
- Initwid() : void
- filllJp() : void
- InocGuilty() : bool;
- Addlt() : void

- SeeDumrny();int) : void
- DestroyEmO : void
- SetHurdDimsO: void
- Eper(): void
- HurdSearchUp() : boo1
- HurdfillUpO : void
- UpsideDownChk() : void
- InUDC(): void
- DisplayForCam(): void.
- void LnitEvForCarn() : void
- InitOnEvFrarne() : void

Fig 3-2: Class Diagrnm for Class ImageProcessor

Path

- bgW : int
- bgH : int
- countcr : int
- BG I : Ipllmage*
- pos : CvPoint
- StartPoint : CvPoint
- Endingpoint : Cvl'oint
- FrNum : long int
- PosArr[J[] : int[][]
- indPA : int

+ Savelt() : void
+ SetPosArrO : void
+ ByForceInit() : void
+ ShowAgain() : void
+ DmwThePathO : void
+ CreatenFill() : void
+ Path() : void

Fig3-3: Class Diagram lor Class Path

- wallet : IplIrnagc*
- wallctWd : int
- walletwid : int[l[)
- wallet012 : int[][]
- wal : int

- book : IplIrnayc*
- bookWd : int
- bookwid : int
- book012 : int[][j
- boo : int

- brownH : Ipllmagc*
- brownHWd : int
- brownHWid : int(][]
- brownHO12 : int[l[l
- bnv : int

- greenH : Ipllmagc*
- grecnHWd : int
- greenHWid : int[]J]
- grecnH012 : int[][]
- grn : in1

- purpleH : IplImage*
- purpleHWd : int
- purplcHWid : in11 111
- purpleH012 ; inl[]l J
- prl : int
+ Name : char[][]

+ DispCols() : intl][J
+ Fillup() : boo1
+ I:illBelow() : boo1
+ FillRow() : void
+ InitDimsO : void
+ CalcDims() : void
t I:ill3Shade() : void
+ ObjcctDetection() : void
+ CalcDinis I() : void
t l:illRowlf) : void

Fig 3-1: Class Diaprilm lor Class ObjectUetecliun

- HurdPic : IplImagc*
- HurdName : CString
- IIurdNurnber : int
- HCVals : int[][]
- indHC : int
+ count : int
+ Boufy : CString
+ Toufy : CString

+ foe() : void-
+ Hurdle() : void
+ CreatenCopy()
- FCVals() : void

: void

- setwid() : void
- Savelt() : void
- ShowHurdle() : void
- SepChansO : void
- Quicksort0 : void

Fig 3-5: Class Diagram for Class Hurdle

Pwnnpon Boscd Obrrocle ikmction uftd Avoidance Sywen#,/or Asrwotnam Vehicles with Slf-lacwlcutim Cupbiliry 53

Navigation

- pathclear : IplImage*
- pathBlocked : Ipllmagc*
- mLefi : Ipllmagc*
- mRight : Ipllmage*
- mStraighc : Ipllmnge*
- niColIm : Ipllmaye*
+module : int
+ Dimen : int[]l]
+ Ndi : int
+ Lpll : int
+ Rptl : int
+ picHght : int

- Poplt() : void
- ComHQ() : void
- DcstroyEmO : void
+ BckorClr() : void
+ MoveImage() : void
+ Initwinso() : void
+Destroywins() : void

Fig 3-6: Class Diagram rur Class Navigatio~~

3.4 Object Diagram

An Object diagram captures thc instances and links of the system. It is built
during analysis and design phase. Object diagram illustrates datdobject structures.

Following are different Object diuxrunu identified in the project "Perception
Based Obstacle Detection and Avoidance Sy.sien?.fi)r Autonomous Vehicles with Self-
Localization Capability".

Since the project "Perception Bused Obstacle Defection und Avoidance System
for Auionomous Vehicles with Self-Locu1i:trtion Capability" has quite a number of
classes, each having a number of members, the object diagram in some cases can not be
rcprcsenkd on one pagc, hcnce the diagram is cxtcndcd from one pagc to the next with a
"continued ..." at the end ofthe page rcprescnting that this diagram is a continuation of
Lhe diagram at the rcspcctivc previous page.

1 theApp:CVision I App

I Name = "rheAppW

I I Llmg: I4ighGIII I

I -

u Name = "Lo;~dcd 1111age" I

D1g:CVision I DIg

Name = "dlg"

Fig 3-7: Object Diagram for View Channels

pAF:CAdvanccdFuctionality

Name = "pAF'

1heApp:CVision I App 1
Name = "theApp" t----l
Dlg:CVision I Dlg I

Name = "dlg"

ip:lmageProcessor

Name = "ip"

pAF:CAdvanccdl:uctionality

Name = "PAP'

-
13D: HighGUI

Name "Back Drop"

-

cvCani: HighGUl

Name = " C m Window"

-
Uum: I IighGUl

Name = "Gny Scale"

1.L: IlighGUl

Name ="Loading Library"
L

-
Dec: IiighGUI

Name = "Decision"

I

MovCom: HighGUl

Name = "Movement Command"

-

Namc = "img"

Name = 'Cimg" 1

Namc = "GTex"
WTex:lpllmage

Namc = "WTcx"

Name = "gi' t3nr:lpllmage

Name = "Bnr"

CSee:lpllmage 1

J
Name = "dummy" 1

Name = "grgrTex" -
gnvlTcx:lpllmage

- Name = "grwlTexW

-

Name = "ObjHurd"

RackGrnd:lpllmage

heck:lpllmage

Namc = "heck" 0bjHurd:lpllmage

pPercp:Pcrccplion

Name = "pPcrcp"

Fig 3-8: Object D i a ~ r u m lor I<ual Time processing

3.5 Behavioral Model

This part of the analysis model represents the dynamic or bchavioral aspects of
the system. It also depicts the interactions or collaborations bctwcen various structural
elements described in the user model and structural model views.

3.5.1 lnteraction Diagrams

An Inleraclion diagrum shows, step-by-step, one of the flows through a use-case,
There are two types of Interaction diagrams:

Sequence Diagram represents dynamic behavior which tinle oriented. It can
show the focus of control.

0 Collaboratio~~ Diagram represents dyniln~ic behavior which message oriented. It
can show the data flow.

3.5.1 .I Sequence Diagram

A Sequence diagram shown in Figurc 3-9 is an intcr~ction diagram, which is
ordered by time; it is read form the top to thc bottom.

We can read this diagram by looking at thc objects and messages. The objects that
participate in the flow are shown in rectangles across the top of the diagram.

The actor objects, involved in the usc-case are also shown in the diagram.

Each object has a ifdine, drawn as a vertical dashed line below the objcct. A
message is drawn between the lifelines of two objects to show that the objects
communicate. Each message represents one objcct making a function call of another.

Messages can also be reflexive, showing that an objcct is calling one of its own
operations.

pAF:CAdv:a~ccdl:~~~~clionalily

ip: Inlapcl'rocersor

1 r

F i l l ~ Fnmu Tot
licavnd and
I l , , l l ~
IUuUim

Cln

3 ' : M~lclm ll~utllr
I Wllll Il,"'ll<

sib Hurdle

- - - - - -

Fig 3-9: Srrlucnce Di;~grnm for Real-Timcll'~,sl I 'n~crss i~~g ~ ~ a v i g n l i a ~ ~ will1 11 si~lglr hurdlc c11cou111cr

User

3.6 State Transition Diagram

SIure Transilion diagrams show the life cycle of a single objcct, from the time it is
created until it is dcstroyed. Unlike Activity diagram that is activity-oriented, Stale
Trunsilion diagram is even1 oriented.

I:ollowing arc difl'ercnt Stcrle Trinrsilion diagranis idcntilicd in the project
"l'erceplion Based Ohs~ucle Delecfion tmd Avoiclc~nce Sy.slcnl,fir Arrronomous Vehicles
wilh Sel/-Localization Cltrptrhilily"

OnStreamEnd

- OnStreamEnd

Fig 3-1 1: State Transitin11 D i a g r a ~ ~ ~ for Class I~nagcProcessor

+

OnPathnlocked

OnPathClear

r
Display Path Clear Find which way lo Display Path Block

Message takc Mcssage

Display Rest
Navigation Slralcgy

Izig 3-12: State Transitiot~ D i i ~ g r i ~ n ~ lor Class Nuvip i~ I' IOII

Sceh Mode

L J

OnRecognized

f
v >

Predict Next
Hurdle

L ,

Fig 3-15: State Transi l io~~ i)i;~gr;l~n for Class I'crceptil~ll

F \
I:ind Clioicc

Type

OnCirayScalcSpace

\
Create RGB I m g e Create Gray Scale

hiage Space

, 1

Display l~iiagu Spacc

3.7 Activity Diagram

Acliviv diagrams show the life cyclc of a single objcct, from the time it is created
until it is destroyed. Unlike State Transition diagram that is event oriented, Activity
diagrams are activity-oricntcd.

Following arc different Activiv diagrams identified in thc project "Perception
Bmed 0h.stacle Deleclion und Avoidance Sy.sterri,fi~r Autonorrwr~.~ Vehicles with Self-
Locolizu/ion Capabi/ilj;'

Fig3-16: Activity U i a g r a ~ ~ ~ lor Load Paths activity

Create I~~~ngcl'roccssing Object t
Create Path 97

Display Modules
Inilialiwtion I: .?I ' I urc

Message

Display All Modules Loaded
Successli~lly Message

Fig-17: Activity Diagriun Initialize Modules Activity

Permplion Hosed Obnocle Lklr.clio,~ owl Avoidnnce Sysle,,, Jirr Atmnormrm Vehicles luitlr . ~ l / - / u~ r l r ;o l i rn Copobiliry 69

Chapter 3 Desien

Yes

Fig3-18: Activity Dinprhln~ Ior Load Paths activity

Yes
No

i
~ ~~

Fig 3-1Y:Activity Diagraln lor Validate folder aclivity

- -
P',rrrl8lion Hrrsud Obstacle lkactirm am1 ,hoidance Syslrnr Jiv ,I,mru~nruu Vehicles arrlr .Srl/-lrxr,l;~rlim Capab~l i !~ 70

Find Sequence Status

Colnprc wilh next
Revcrsc Scqucnce in

I>ati~hasu

Fig 3-21: Activity Diagram lor Match HurdleScquence Activity

Prompt Ibr Filc Scluction

T

Retrieve Selccled File

Not a .avi file .avi lilc

T
v

Call File Processing Functions Display Error Message

Fig 3-22: Activity D i n g r m for Choose file for processiiq: ;~ctivity

Display Real Time Processing option

Camera
Connection

Get Camera Count

Display Error Message

Select tirst Availshlc
Camera

Sclect the Camera

Iniliali7ation - Successful Start Streaming Video

I

Fig3-23: Activity Diagram for Iteal Time Proccssiag Aclivily

Extract Hurdle's Properties (=7 +
Compare will1 ncsl I lurdle

in Dal;lIwc

T

Fig 3-24: Activity Diiigrnii~ for Recognize activity

Y cs
N o Yes

T

Name the Hurdle as that
nf the match

t
No

Name the Hurdle
as "UNKNOWN"

Ccl BMP lilc

Display Error Message Create and Save Gray Scale
image . ; Display Channel Gra Scale

Fig 3-25: Aclivily Diagram for View Cruy Scale chwncl Graph Activity

Display lirror Mussagc a

Fig 3-26: Activity Diagram for Vicvv l l G B channel Cnph Activity

3.8 Conclusion

In this chaptcr we have given dctailcd dcscription of our design phase of the
system development. In thc beginning of this chaptcr, we havc given an introduction to
the basic conccpts of dcsign and difi'crcnt ~cchniqucs to carry out dcsign phase. Our
approach to design was totally object oricntcd. We havc thoroughly documented this
phase and given diagrams whcrc ever possiblc for the convcnicncc of someone trying to
understand our system. Due to complcxity of the system, some diagrams can not come
on a single page and require to be strctchcd to multiple pages. In such cases, we have
mentioned this at the last line of such diagram with a "continued ..." which means the
diagram stretches to next page.

Perceplio~ Hn,~rrl Obstacle ik~ecti~nt om1 AvuidonceSysr~~tttJi~r Aalrmrwrrw,,v Vdiclcs uvitlt ScV-lmrlizalion Capabilip 78

Chapter 4
.. Implementation

IMPLEMENTATION

This is the second last activity in the project and comes before testing of the
whole program. However the partial testing can be done during implementation aft&
completion of every modulc.

This is very important phase in thc software engineering paradigm because no
matter how efficiently analysis has been done or how brilliantly the design has been
prepared, it all depends on what you prescnt in form of implementation. Although
programming is an outgrowth of analysis and design, all the programming and
implementation skills have to be applied here, because any ineficiency on part of the
programmer will hammer the quality of the software. Another important aspect of this
phase is that, although this phase is succcedcd by the tcsting phase, but during the
implementaion phase the programmer is best equiped for glass box testing of the
software, because at this stage he has the access to the code.

4.1 Implementation Techniques

The following techniques are uscd during the implementation of our project.

4.1.1 Object-Oriented Programming

Although all areas of object technologies have received significant attention
within the software community, no suhjcct has produced more hooks, more discussion,
and more debate than nbjccl-nrienfrdprogrt~~~~~~~i~~g (OOP).

The software engineering viewpoint stresses OOA and OOD and considers OOP
(coding) an important, but secondary, activity that is an outgrowth of analysis and design.
The reason for this is simple. As the complexity of systems increases, the design
architecture of the end product has a significantly stronger influence on its success than
the programming language that has been used. And yet, "language wars" continue to
rage.

4.1.2 Component-Based Programming

In the software engineering contcxt. rcuse is an idea both old and new
programmers have stressed upon, since the carliest days of computing, but the early
approach to reuse was ad hoc. Today, complcx, high-quality computer-based systems
must be built in very short time periods. This mitigates toward a more organized
approach to reuse.

(%u~ler 4 Imolemcnlalion

4.2 Implementation Tools

Our software is developed using two tools Microsoft Visual C U and Intel's free
Computer Vision tool called OpenCV. Thcrc arc some reasons to sclect Visual C t t and
OpenCV. The basic rcason is VC++ provides ease for developing event-based, GUI
applications for Windows based operating system. While OpenCV is emerging as a very
strong Computer-Vision tool capable of' handling real time processing needs. Along with
that, OpenCV is compatible with VCi-t.

4.2.1 Microsoft Visual C++

Microsoft Visual C++.NET 2003 providcs the dynamic development environment
for creating Microsoft Windows-based and Microsoft .NET-based applications, dynamic
Web applications, and XML Web sewiccs using the C++ dcvelopment language. Visual
C++ .NET includes the industry-standard Active Template Library (ATL) and Microsoft
Foundation Class (MFC) libraries, advanced language cxtcnsions, and powerful
integrated development environment (IIIE) fc;~tures that cnablc dcvclopcrs to edit and
debug source code cfficicntly.

It provides dcvclopcrs with ;I provcn, object-oricntcd language for building
powerful and performance-conscious applications. With advanced template features, low-
level platform access, and an optimizing compiler, Visual Ci-t.NET delivers superior
functionality for generating robust applications and components. The product enables
developers to build a wide variety of solutions, including Web applications, smart-client
Microsoft Windows-based applications, and solutions for thin-clicnt and smart-client
mobile devices. C++ is the world's most popular systems-level language, and Visual
Ci-t.NET 2003 gives developers a world-class tool with which to build software.

4.2.2 OpenCV

The OpenCV Library is mainly aimed at real time computer vision. Some
example areas would be Human-Coniputcr Interaction (HCI); Object Identification,
Segmentation, and Recognition; Face Recognition; Gesture Recognition; Motion
Tracking, Ego Motion, and Motion Understanding; Structure From Motion (SFM); and
Mobile Robotics. The OpenCV Library is a collection of low-overhead, high-
performance operations performed on imagcs.

The OpenCV Library is a way of'cstablishing an opcn source vision community
that will make bettcr use of up-to-datc opportunities to apply computer vision in the
growing PC environment. The software provides a set of iniage processing functions, as
well as image and pattern analysis functions. The functions are optimized for Intel@
architecture processors, and are particularly effective at taking advantage of

r technolog log^. The OpenCV Library has platform-independent interface and supplied
with whole C sources. OpenCV is open.

4.3 Implementation Strategy

First problem encountered was trying to make thc Intel's tool OpenCV
compatible with Microsoft's VC++. Dcspitc thc intcl's claim of casc, it is a rcal task just
to make them work together in harmony and i t took some considcrablc amount of time.

As mentioned earlicr, no Imgc Computing background mcant that we had to
explore the field in parallel with persuit of thc project. Hencc the implementation strategy
followed was iterative increasing in complexity and can be bctter described as below:

I - Loading and displaying simplc images of different fomiats using OpenCV and
VC* and manipulating pixel valucs of images.

2- Creating gray scale image of a givcn image along with intensity vs. frequency
graph of an imagc after converting it into gray imagc.

3 - Separating the KGB channels of an image and crcating intensity vs. frequency
graph of an i m g c in RGB spacc.

4 - Examining the texture of intcndcd pound type in order to find a low
computational-cost way to separate thc intended ground plane from the rest of the
environment of an image.

5 - Testing ground dctcction algorithm in different scenarios of single images and
then converting ground detection algorithm properties to apply on an image
stream.

6 - Applying ground detection algorithm o n Real-Timc imagc stream.

7 - Creating logic to detect hurdlcs on ihc ground.

8 - Incorporating hurdle detection with ground detection algorithm and making
them one entity.

9 - Establishing highcr level logic li>r making decisions regarding navigation,
hurdle detection and avoidancc clc.

I0 -Combining all tlic abovc into onc wholc.

I i - Adding ability to Pos-Proccss along with Real-Timc Processing.

12 - Testing in different scenarios (controlled environment).

13 -Creating easy GUI for the user.

4.4 OpenCV and IPL Image Library Functions
Description

Following are some important functions and vriables o f OpenCV and image
library called IPL used in the implementation.

Pointer to an imagc in II'L prc-dclincd lormat

IJscd to crcatc a copy oran i~nagc

Sct a l l channcl vducs oran imagc to zero

To load an imagc

To save an imagc

Crmting IPL typc imagc licidcr

To crcatc a window with dclincd propcrtics

To show an l~nagc in ;I window

Creating IPL type image

Width and height retriever function

Sreating a memory storage block

To wait for a specified period of time

To draw line of desired properties

4 two dimensional integer type variable

To release the memory space occupied by an
mage

To destroy a window

4.5 lmplementation Details

Since the implementation of this project consists of more than ten thousand lines
of code, i t would bc in-appropriate to put all thc trivial code or even lcss trivial code
inside implementation documentation. l lc~icc the concentntion during preparing
implementation documentation is given to rcducc the clutter as much as possible and strip
the code to bare minimum in order to makc it understandablc. Implementation details
contain source codc as well as suedo-codc (whcrc whichcvcr is appropriate) in order to
make it easier to understand.

4.5.1 Classes in the System

Following arc the most prominent classes in thc systcm, objects of these
classes are at the core of thc software dcvclopcd.

I - ImageProcessor 4- ObjectDetection

2 - Hurdle 5 - Path

3 -Navigation 6 - l'crception

4.5.1.1 Declaration of Class Objects

CVision1 App theApp;

CAdvancedFunctionality* pAF;

ImageProcessor ip;

Navigation* pNav;

Perception* pPrcp;

Hurdle* pHurd;

Path* pP I ;

ObjectDetection* POD;

l+rcc~~~~ion Hr,.~cd Obslsrade llrlccliot~ and AvoidunceSysl~~~~~ Jiir Asl,~~o,,mus Vehicles wirlr .Sc~ lmdi~u l ion Copabilin. 83

4.5.2 Implementation of Different User Options

Following is thc implementation of somc important options available to the user.

4.5.2.1 Choosing Post-Processing Option

void CVision I Dlg::OnPostProccssing()

(
CFilcDialog dlg(TRUE, -l("*.avi"), "",
OFN FILEMUSTEXISTIOFN - I'ATHMUSTEXISTI
OFN-HI DEREADONLY,
" ~ u d i o Video Interleaved Files (*.avi)l*.avil", NULL);

char title[]= ("Choose AVI Filc");

if (dlg.DoModal() == IDOK) (

// contains thc, selected tilcnamc
CString path= dlg.GctPatllN;~~nc();
ImagcProcessor ip(l , path);

4.5.2.2 Choosing Real -Time Processing Option

Implementation of Real-Time in form of psuedo code is as follows

1. Check whether camera connectcd

2. If camera not connected than display message and exit

3. If more than one cameras conncctcd, sclcct the first camcra

4. Initialize thc camcra

5. Start sreaming

The implementation in form of codc is as follows:

CvCapture* capture = 0;

//check camera connccted
//check if connected than how many

capture = cvCaptureFromCAM(-I); //select the first available camera

if(!cvGrabFrame(capture)) //ca~i~cra cannot be initialized
{

//display error message
I
else
I

//start streaming
I

4.5.2.3 Choosing View RGB Space Option

void CAdvanccdFunctionality::OnRgbs()

CFileDialog dlg(TRUE, -T("*.bmp"), "",
OFN-FI LEMUSTEXISTlOFN-I'ATHMUSTEX ISTI
OFN HIDEREADONLY,
"~mage Files (*.bmp; *.jpg) I*.bmp;*.jpgl",
NULL);

char title[]= {"Choose BMI'/JI'G File");
d1g.m-ofn.lpstrTitle = title;

if (dlg.DoModal() = IDOK) (

I/ contain thc selected filename
CString path= dlg.GetPathName();

4.6 Ground and Hurdle Detection Algorithm
i-

Ground and hurdlc dctcction works at t l~c vcry corc of thc developed system. All
high levcl decisions arc bascd on the findi~~gs of this algorithm. In a way, ground and
hurdle detection algorithm is the work horsc of thc system.

Working of the algorithn~ from implementation point of view for one
image frame is as follows:

I . Initialization necessary for that franic

2. Creating a gray-scale image of thc imagc

3. Applying texture comparison with prc-stored ground tcmplate

4. Scanning thc algorithmed imagc to classify abnormalities as hurldes or noise as
follows:

4.1- Calling MasterMindO funclio~~ Tor scanning thc i~nagc

4.2- Calling MyFloodFill() function for classifying the anomalies

5. Notifying other modules of thc rcsult

These functions are performed as follows:

//all the necessary initialization of diffcrcnt variables
InitOnEvFramc();

//algorithm this framc for finding anomalies
TexComparcGround();

//loop for chccking the result of lind anomaly pahsc

//increment thc itcrator by one
Rmove++;

Nfind if therc is an anomaly at the currcnt position of the iterator
if(((uchar*)(dummy->imageData + dummy->widthstep* i))[Rmove] = 0)
I
I

Nif anomaly found, find out its properties likc dimensions etc, by calling
//Myl:loodFill with inforn~ation currently available
//anomally found calling Flood f i l l
//please see the documentation of MyFloodFill()in the next topic
nObjScr = MyFloodFill(Rn~ovc. i, Lbound, Rhound, IbrBound);

//anomaly's ending point for this row
if(n0bjSer > 0)
Kmove = nObjScr;

//find if you have rcachcd row's end rcached
else if(n0bjSer == - I)
i

//row's cntl rcachcd
//scan for upto thc hcight of upper path bound
if(--k >= 1.pt2.y)
I

//rc-inili;dizc Rinovc to work on the uppcr row
//as row's cnd was rcachcd
Rmovc = Lbound;

i = k ;

else
//scanning \his row completed successfully
dCheck = false;

1
else
{
Nif scanning this row completed was tcnninatcd abnormally
AfxMessageBox("Ab~~~~r~iial Termination in finding anomally
phasc");
dCheck = false;

//finds out dimcnsio~~s of anomaly
//classifies it as hurdle or noise,
Nworks on multiple rows intelligently and updates Rmovc counter of caller
Nfunction accordingly
MyFloodFill(anomally pixel localion. row number, other information)
I

//variables uscd
int Rmovc, Lmove, secPos, maxWid, maxllght, rctVal;

int j; /I j simple itcrator

//find whcthcr thing dctcctd is hurdlc or not
boo1 tboo;
valRcomp = vallcomp = tlChcck - true;

//we nccd this specifically to make ihc loop run for thc tirst time
valUp = truc;
max Wid = niaxHght = 0;
Lmovc = Rmove = origPix;
secPos = origPix;
j=O;
retval = I ;

Ninitialize width array
Initwid();
wid[wi][O] = curRow;
wid[wi][2] = origPix;
SetBounds(curRow);

//Initializing while loop
whilc(!valRcon~p)
{
if(Rn1ove < Rbound)

Nfind out anomaly's cnd point
if(((uchar*)(duniniy->in~agcDatn + tlu~nmy->witltliStcp*
wid[wi][O]))[Rrnovc] !:= 0)
{
//if this was the ending point
AfxMessageBox("Found not black pix whilc going right in flood
till");
//update the hurdlc dimension array

wid[wi][l] = Iln~ovc - 1;
Nnotify that object in this row complclcd

valKcomp = truc;
//indicate the hurtllc by turning it black in imagc called "heck"
br(j = widlwi][l]; j <= witl[wi][2]; j++)
((uchar*)(heck->i~iiagcDrl. til + heck->
widthstep* wid[wi][O]))U] = 0;

retval = 0;

I
1
else

Nyou reached row's cnd but found no white pixcl

//by force object in this row completed
valRcomp = true;

Nindicate the hurtllc by turtling it black in image called "heck"
forQ = wid[wi][l]; j <- wit11 wi][l]; j+ I-)
((uchar*)(heck->imagcDati~ + heck->
widthstep* wid[wi][O]))fi] - 0;
rctval = -2;
i

//out of whilc loop, calling SearchUp() to scc if hurdlc is in uppcr rows too
Nnecessary initialization

secPos = wid[wi][2];

//SearchUp() returns boo1 value
Nit is intelligent enough that if cellcd iteratively,
//it can search and update anomaly's position accuntcly for each row
while(SearchUp());

//Calling InocGuilty(),InocGu~lty() function is the jutlgc ofclassifying the
//anomally as hurdlc or noise

tboo = InocGuilty(); Nv imp: truc if thing was a hurdle
if((tboo) && (ClearCheck)) //if anomaly was hurdle
{

ClearCheck = falsc;

//Found a hurdle
//Notify Navigation module immcdiatcly
pNav->BckorClr(O);

I
else
BckorClr(1); //if anomaly was not hurdle
if(retVal ' 0)
return secPos;
else
return retVal;

4.7 Implementation of Intensity vs Frequency Graph for Gray-
Scale Image

//array for storing gray scale valucs
int GreyC[256][2];
char Buff1 1001;

//initializtion of arrays
for(i = 0; i < 256; i++)
1

GreyC[i][O] = i;
GreyC[i][l] = 0;

I
//Window for displaying the result
cvNamedWindow("Separated Channcls");
IplImage* sepl = cvCreateImagc();

Illnitialize image
cvSetZero(sep 1);
for(i = 0; i < frcsh->height; i++)

d = ((uchar*)(fresli->iti~agcData + frcsh->widthstep* i));
GrcyC[d][l] += I;

I

((uchar*)(sep I ->iniagcData + sep l ->widthstep* i))[l] = i;
1

I

//show the graph
cvShowImage("Separated Channcls", scp I);
I

4.8 Implementation of Intensity vs Frequency Graph for RGB
Image

//used for storing hits numbers Tor cach pixcl value
int rC[256], gC(2561. bC[256];

//initialzation of arrays

//Initializing image
cvSetZcro(scp3);

/ /R Channel

for(i = 0; i < 256; i t t)

//its quite possiblc to have morc ocuumnccs of an hue value ar~d and error can be
//generated

. .

//G Channel
for(i = 0; i < frcsh->height; i++)
(

for(I = 0; I < fresh->width ; I++)
{

//its quite possiblc to have more ocuuranccs of an hue value and and error can be
Ngenerated

N B Channel
for(i = 0; i < frcsh->height; i + +)

for(i = 0; i < 256; i++)
I
//its quite possiblc to have more ocuuranccs of an
//hue value and error can be gencrakd

(
//remcbcr rC[i] has also becn sct right above
if(rC[i].> (clone->height - 149))
rC[i] = (clonc->height - 140);

for(i = 0; i < 256; i++)
{

//remcbcr rC[i] has also bccn sct right above
if(gC[i] > (clone->height - 149))
gC[i] = (clone->height - 149);

for(i = 0; i < 256; i++)
i

Nremebcr rC[i] has also bccn sct right above
if(bC[i] > (clone->height - 140))
bC[i] = (clonc->height - 149);

I
//show the images
cvShowImage("Cloning", clone);
cvShowImage("Scparated Channels". sep3);

4.9 Frame Processing Loop for Real - TimelPost - Processing

Nstart of loop
{

//get next frame
cvGrabFramc();

//Windows artchitecture has thc b;ld 11;lbil of having cvcry f r m c from the
//input stream Upsidc down, so cvcry framc has to be put upright

Ntum the fratnc upright
UpsideDownChk(frame);

Ninitialization rcquircd for cvcry liamc
InitOnEvFramc();

//show the image captured from thc dcvicc (cam/.avi file)
cvShowImagc("cvcam window", fratnc);

//send the fmmc to Ground and hurdlc dctcction algorithm
AIIProcessing();

l+rccpion H m d Obslode i%l~criv,t and AtoidonceSysrer~~/i~r htrorrom,,rr Vdticlev rill, Se!/~laruli~ilion Cupabiliry ' 94

//draw the path lines, representing h e critical area in front of the vehicle
Drawpath();

//display othcr windows that would hclp thc user scc thc working
DisplayForCan~();

//update frame count
FrNum++;

//tell the path object about this frame
pP1->DrawTl~el'ath(FrNum, HurtllnFramc);

//are we in seek modc or navigation modc?
if((Hurd1nFrame == I) && (modulc == 0))
{

if(clrl'r:~incs < 4)
//Successfully Navigated around thc hurdleh shill to Detection module
{

Nshow "path clear" message instead of "path Blocked"
pNav->BckorClr(S);

//set arrow of movcmcnt command straight
pNav->MoveImagc(4);

//go back to detection modulc
module = I ;

//tell Navigation object that wc havc shifted to seek mode
pNav->module = 0;

//initialize clcar frames count
clrFrames = 0;
//as indHurd is Zcro Based
i = indHurd + I;

1
clrFrames++;

1
else
clrFrames = 0;

//This frame is finished, initialize for thc ncxt frame
IiurdInFramc = 0;

//it is the last f i m e to be processed so savc it as end point
if(PNFramc == false)

NRelease thc system resources usctl during this frame
Nextremely important, else you'll havc a great memory Icak!!!
DestroyEm();

//break when you don't want to I'roccss Ncxt Frame
if(PNFrame == false)
break;

//wait for some time?
if(cvWaitKey(.lO) >= 0)

break;
JNloop ends hcrc

4.1 0 Conclusion

In this chapter we described our approach to system implementation. In the
beginning of the chapter we describe diffcrent techniques of systcm implementation.
Then we have given description of tools that we have used in implementation and
described their importancc. We also gavc some important functions of an image
processing library that we used in our implcmcntation. In thc cnd, we have given specific
code to carry out some of the important functions used in the system. This code is well
indented and description of each line is givcn to make it easy to understand.

Chapter 5

Testing

Chu~cer 5 Testing

5. TESTING

The overall objective of the testing process is to identify the maximum number of
errors in the code with a minimum amount of efforts. Finding an error is thus considered
a success rather than failure. On finding an error, cfforts are madc to correct it.

5.1 Testing Process

Test consists of a number of test cases, where different aspects of the part of the
project under test are checked. Each test casc tells what to do, what data to use, and what
results to expect. When conducting the test, the results including deviations from the
planned tcst cases arc not in a test protocol. Normally a devi;~tion indicates an error in the
systcm (although some times the tcst casc is wrong, and thc system is right). An error is
noted and described in a test report for removal or directly rcniovcd by the programmer
who dcvclopcd that part.

5.2 General Types of Errors

Error can be of following types:

Functional error (e.g. function is not working correctly or missing).

Non-Functional error (e.g. performance is slow)

Logical error (e.g. error in algorithm, user interface errors is not considered as a
logical error).

5.3 Testing Strategies

A strategy for software testing may be viewed as the spiral. Unit testing begins at
the vortex of the spiral and concentrates on cach unit (i.e., component) of the software as
implemented in source codc. Testing progresses by moving outward along the spiral to
integration testing, where the focus is on design and the construction of the software
architecture. Taking another turn outward on the spiral, we encounter validation testing,
where requirements established as part of software requirements analysis are validated
against the software that has been constructed. Finally, we arrivc at system testing, where
the software and other system elements are tested as a whole. To test computer software,
we spiral out along strcam-lines that broadcn the scope of testing with each turn.

5.4 Testing the Software
r

Our software system is a real-time system, requiring heavy usage of system
resources. Since the real-time systems require a particular activity to be completed within
a bounded time interval, it is necessary that errors in the system must be carefully
scanned and eliminated.

One major aspect of the system is the heavy use of memory space. This also
makes the system vulnerable to memory leaks (dangling pointers) etc.

5.5 Features to be Tested

Following arc the features that would be put under test to see their proper
functionality and result.

I. Selecting Real-Time Processing option with no camera connected

2. Selecting Real-Time Processing option with multiple cameras connected

3. Selecting Post-Processing option with invalid file format

4. Selecting View Gray Space Graph option with invalid file format

5. Selecting Vicw RGB Spacc Graph option with invalid filc format

6. Validating "Current Path" foldcr

7. Navigation in Real-Time Mode with empty path

8. Navigation in Real-Time Mode with hurdles in the path

9. Navigation in Post-Processing Modc with cmpty path

10. Navigation in Post-Processing Modc with hurdles in the path

5.5.1 Selecting Real-Time Processing option with no camera
connected

Input Specification:

Real-Time Processing option selection

Environmental Needs:

1. A PentiumB I11 or higher machinc.

2. Windows 2000 (Family)

3. VC++ and OpenCV

4. Camera should be un-pluggcd

Expected Output:

Error message should be displayed and program should terminate
gracefully.

Actual Output:

Error mcssagc displayed and program terminated graccfirlly

Fig 5-1: lnlcrfacc visible lo the user

Red Tine Procesrinp

No Cmera Detected A. # % . . ~ i " t b , I

Post P~oceni-g

I

Fig 5-2: Message Displayed when
no canicra ro~u~rctcd

J I

I'c~mcplio,, Husd Obrrocle Damiu,, onrl Avuidanc~.SjWoa filr Aut,,nons,r,s Vrhidcs sill, .%lj:lmnl~~utiu~r Copudiliy 99

5.5.2 Selecting Real-Time Processing option with multiple cameras
connected

lnput Specification:

Real-Time Processing option selection

Environmental Needs:

1. A PentiumO III or higher machine.

2. Windows 2000 (Family)

3. V C t t and OpenCV

4. More than one Cameras should be connected

Expected Output:

Multiple cameras connected message should be displayed and program
should select the first available camera.

Actual Output:

Multiple cameras connected mcssagc displayed and first avnilablc camera
selected.

5.5.3 Selecting Post-Processing option with invalid file format

lnput Specification:

Post - Processing option sclcction with invalid file

Environmental Needs:

1. A Pentiurn@ 111 or higher machine.

2. Windows 2000 (Family)

3. VC++ and OpenCV

Expected Output:

The user should not be allowed to select any format except .avi file
format.

Actual Output:

The user not allowed selecting any format except .avi file format.

PINK FLOYD- On The PINI: FLOYD- The Video093
Great Gig In The Sky

We0047 beck

Fig 5-3: Folder with various types of files

Fig 5A: Only files with .avi extention are allowed to be viewed in selection

5.5.4 Selecting View Gray Space Graph option with invalid file format

I- Input Specification:

An illvalid lile Iiurlnat selcctiun

Environmental Needs:

1. A PentiuniB I11 or higher machine.

2. Windows 2000 (Family)

3. VC++ and OpenCV

Expected Output:

The user should not be allowed to select any format except .brnp file
format.

Actual Output:

The user not allowed to sclcct any format except .bmp file format.

j
5.5.5 Selecting View RGB Space Graph option with invalid file format

lnput Specification:

An invalid filc format sclcction

Environmental Needs:

1. A Pentiurn@ I11 or higher machinc.

2. Windows 2000 (Family)

3. VC* and OpenCV

Expected Output:

The user should not be allowed to select any format except .bmp file
format.

Actual Output:

The user not allowed to select any format except .bmp file format,

Ct~wter 5 Testing

Select an Item to view its
dcrcnpt~on.

I B l o w H2 Brwn HZ

i

Fig 5-5: Folder with dilkrent file formats

Fig 5-6: Only files with ".brnpn or *.jpf' cxlensions arc nllowcd to be sclcctcd

5.5.6 Validating "Current Path" folder

% Input Specification:

The folder "Current Path" should not be empty

Environmental Needs:

1. A Pentiurn@ I11 or higher machine.

2. Windows 2000 (Family)

3. VC++ and OpenCV

Expected Output:

The program should prompt the user to empty "Current Path" folder, and
should recheck the folder's status

Actual Output:

The program prompted the uscr to empty "Current Path" folder, and
rechecked the folder's status

5.5.7 Navigation in Real-Time Mode with empty path

lnput Specification:

Real-Time Processing option selection

Environmental Needs:

1. A Pentiurn@ 111 or higher m;~chinc.

2. Windows 2000 (Family)

3. VC++ and OpenCV

4. At least one camera should be connected to the systcm

Expected Output:

The system should succcssfully navigate on the path and display result of
navigation at the end.

Actual Output:

The system successfully navigated on the path and displayed result of
navigation at the end.

Clrooter 5 Testing

5.5.8 Navigation in Real-Time Mode with hurdles in the path

i Input Specification:

Real-Timc Processing option sclcction

Environmental Needs:

1. A Pentiurn@ 111 or higher machinc.

2. Windows 2000 (Family)

3. VC++ and OpenCV

4. At least one camera should be connected to the systcm

Expected Output:

The system should succcssfi~lly navigate on the path, should navigate
around the hurdle and display result of navigation at the end.

Actual Output:

The system succcssfully navigatcd on thc path, navigatcd around the hurdle and
displayed result of navigation at the end.

5.5.9 Navigation in Post-Processing Mode with empty path

lnput Specification:

Post - Processing option sclcction with a .avi file

Environmental Needs:

1. A Pentiurn@ 111 or higher machinc.

2. Windows 2000 (Family)

3. VC+t and OpenCV

Expected Output:

The system should succcssfully mvigate on the path and display result of
navigation at the end.

Actual Output:

The system successfully navigated on the path and displayed result of navigat
at the end.

Fig 5-7: Video slrcarn from .avi source

Fig 5-8: The gray-sculc in~age wit11 look-up table iu~plcmentation

C h u ~ c e r 5 Testing

Fig 5-9: Decisiot~ made based on obstacle detection

Fig 5-10: Message Displayed at the cnd of video stream

5.5.10 Navigation in Post-Processing Mode with hurdles in the path

Input Specification:

Post - Processing option selection with a .avi tile

Environmental Needs:

I . A Pentiurn@ 111 or higher machine.

2. Windows 2000 (Family)

3. VC++ and OpenCV

Expected Output:

The system should successfully navigate on the path, should navigate
around the hurdle and display result of navigation at the end.

Actual Output:

The system successfully navigated on the path, navigatcd around the hurdle and
displayed result of navigation at the end.

1'r.rr.r~plion Hwcd Obslucle lhwoi,,,n nnd A M I ~ ~ ~ I ~ ~ . S ~ S I L ~ ~ I I I ~ ~ ~ A ! ~ I , ~ ~ ~ S Y4icles with .%(I:lmd;:orian Capobilify 107

Chanter 5 Testing

Fig 5-1 1 : RGB image of a ilurdle coming into Col l is io~~ C o u n e

Fig 5-12: Gray image of a hurdle coming into Collision Course

Fig 5-13: Warnittg message given to uscr Fig 5-14: Suggested Hurdle avoidance
course

5.6 Conclusion

In this chaptcr we have given dctailed description of our systcrn testing phase. In
the beginning of this chaptcr, we havc clcscribcd various tcsting approaches. Next we
have outlined features of the softwarc system on which testing would be more
emphasized. We havc clearly described thc course of action, input, expected output and
actual output given by lhc system.

BIBLIOGRAPHY AND REFERENCES

1. Robotics and Machinc Perception,'l'he International Society for Optical Engineering
(SPIE), International Technical Group Newsletter, March 2000 VOL. 9, NO. 1

2. Robotics and Machine Perception, The International Society for Optical Engineering
(SPIE), International Technical Group Newsletter, August 2001 VOL. 10. NO. 2

3. Robotics and Machine Perception, The International Society for Optical Engineering
(SPIE), lnternational Technical Group Newsletter, March 2001 VOL. 10, NO. 1

4. A Path Following System for Autonomous Robots with Minimal Computing Power
Andrew Thomson and Jacky Baltes Centre for lmage Technology and Robotics,
University of Auckland.

5. Obstacle Avoidance of Autonomous Mobile Robot using Stereo Vision Sensor,
Masako Kumano Akihisa Ohya, Shin'ichi Yuta, Intelligent Robot Laboratory
University of Tsukuba, Ibaraki, 305-8573 Japan.

6 . Ground Plane Detection using Visual and Inertial Data Fusion, Jorge Lobo, Jorge Dias
Institute of Systems and Robotics, Electrical Engineering Department, University of
Coimbra, 3030 Coimbn, Portugal.

7. Obstacle Detection and Self-Localization without Camera Calibration Using Projective
Invariants, Kyoung Sig Roh, Wang Heon Lee, In So Kweon, Dept. of Automation and
Design Eng., Korea Advanced Institute of Science and Technology, 207-43,
Cheongryangri-dong, Dongdaemoon-gu, Seoul, Korea.

8. Deriving and matching image fingerprint sequences for mobile robot localization,
Autonomous System Labs, Camegie Mellon, Diploma Work 1999-2000.

9. Obstacle Avoidance and Self-Localization System f v Autonomous Vehicles,
Muhammad Farooq Azam Khan, Dr. Sikander Hayat Khiyal, Department of Computer
Science, Faculty of Applied Sciences, International Islamic University, Islamabad.

10. Computer Vision and Image Processing, A Pnctioner Approach using CVIPtools.
Scott E. Umbagh.

I I. Digital Image Processing. Rafael C. Gonzalez and Richard E. Woods. 1993 Prentice
Hall Press.

12. Digital lmage Processing Jan Teuber, 1992 Prentice Hall Press.

Research Paper

OBSTACLE AVOIDANCE AND SELF-LOCALIZATION SYSTEM
FOR AUTONOMOUS VEHICLES

Muhammad Farooq h a m Khan,
Dr. Sikander Hayat Khiyal

Department of Computer Science,
Faculty of Applied Sciences, Inlernalional Islamic Universiy, Islamabad.

Abstract: In this paper, we present a system for vision based autonomous navigation
capable of obstacle avoidance as well as self-localization. At first a ground plane
detection method is proposed which is capable of working on diffcrent most commonly
occurring indoorloutdoor ground textures. The benefit of ground plane detection is that
the system is not dependent on some spccific propcrty of obstacle to dctect (such as size
and orientation). Next, we describc our strategy for vchicle localization and
implementation of proposed method. Copyright Q 2003 IFAC

Keywords: Navigation system, path followi~ig. conlrol, guidance. localiuliun

1. INTRODUCTION

Self-localization, obstilclc dctcction and avoidance
are the basic requiremcnts for successful navigation
of any autonomous vchiclc. Most of the vision based
navigation systems concentrate on only one aspccl of
autonomous navigation. Some systems hy to dctcct
obslaclcs in thcir palh whilc others try to find their
relative position with respect to environment without
the facility of obstacle avoidance.

The work by (Kumano, ct al, 2000) uses stereo vision
for obstacle detection. They use two monochrome
CCD cameras equipped with about 90 degrees wide-
angle lenses, which are fixed on the left and right side
with the same height at thc top of a robot. Two
imagcs arc captured synchronously on an image
processing board. Onc image is estimated from the

other by the matrix calculated with relative
positioning. If thcrc is a certain difference of
brightness, around thcrc any 3D objects arc detected.
In their work (Roh, et al, 97) detect obstacles by
comparing a prc-storcd risk zonc with a current risk
zone. The positions of thc detected obstacles are also
determined by rclativc positioning.

Although a lot of work has been done in exploring
the possibility of vision in autonomous navigation,
much is left to be done to make it a part of our
indoorloutdoor every day life. Goal of research in this
field is to make vision based robots so reliable that
they could take over the responsibility of trivial tasks
(such as transporting files fmm one room to the
othcr) and non-trivial tasks (like transporting
hazardous materials). One way of enabling
widespread use of autonomous vehicles is to make it

economically sound by reducing the cost through
stripping down the hardware required. For example,
if the system can make use of the computing power
of a personal computer, the data processing unit of

/ the autonomous vehicle could be taken out. Instead
wc could load our navigation syslcm on pcrsonal
computer, make use of it and at other times use the
computer for other purposes. Thus we can reducc thc
over all cast and increase the flexibility through
vehicle size reduction.

This paper presents a vision-based path
understanding and navigation technique without the
nccd of exact camera calibration. We used two digital
cameras mounted on top of a remote controlled
vehicle and an ordinary personal computcr for
implementation and testing purposes. One camera is
facing the front of thc vehicle (used for navigation
and ubstaclc dctcction), while the other is facing the
ncar wall (for orientation and localization purposes).
Figurc 1 shows the arrangement of different dcviccs
i l l lhc SYSICIII.

Fig. I . Arrangement of different dcvices

For ground plane and obstacle dctection part. the
rcquircmcnt for our system was to dcvclop a
specializcd algorithm, light enough to be
implemented in real timc cnvironmcnl and accurate
enough to detect any obstacles encountcrcd.
Nevertheless while reducing the computational load;
here is a tradeoff of accuracy and time. Thc nccd
was to find a balance in such a way as to allow
computations to stay within real-time limit and still
givc accuracy to dctcct and navigate around
obstacles.

For localization part, a method was needed that
would understand the path, allowing intelligent
decisions to be made to make navigation more
cfftcient and lcss costly from both computation and
accuracy point of views.

This paper is organized as follows: In Section 2 we
present the method used for ground detection.
Section 3 presents the method used for obstacle
dctection. Section 4 deals with navigation. Section 5
deals with how different paths are recognized and
localization decisions arc made. Implementation
details are given in Section 6 and conclusion in
section 7.

Since our objcctivc was to develop system that could
work on ordinary pcrsonal computcr with no
specialized cquipmcnt likc frame grabber, the
computational cost of processing each frame was a
major issue. The computational power is also a
consideration in selecting the image space to work in.
In case of RGB image space, bits per pixel ratio of
24:1, thus ground plane/obstacle detection is more
reliable but more cornputationally expensive. On the
other hand in Gray scalc imagc spacc. bits per pixel
ratio of 8:1, thus ground plandobstacle detcction is
less reliable but lcss computationally expensive. The
ground plane dctcction algorithm was developed and
tested on two different ground textures. One texture
was quite simple whilc the other very complex.
Figures 1 & 2 show thc two textures under
consideration. The texture in figure Fig. 2 was termed
''plain-floor" while texture in Fig. 3 was termed as
"chipsed-floor".

Fig. 2. Plain-floor

Fig. 3. Chipscd-floor

The idea behind these ground planes selection was
that if the algorithm can work with relative accuracy
on such planes, it could be expected to work on other
indoorloutdoor plane textures such as roads (which
has similar texture to that of plain-floor shown in Fig.
2). The ground plane detection algorithm works as
follows:

2.1 Look-UD Table Creation:

First of all, a look-up table of 256 entries is created.
This table is indexed with numbers ranging from 0 to
255. The value stored in the table can either be 0 or I.
The table is filled by finding the gray level pixel
intensities that the ground plane can possibly take. A
zcro in thc table indicatcs that the corresponding
index value is not ground plane pixel intensity. Whilc
I in tllc tablc indicaks that corrcsponding indcx
v i h c is ground planc p ihd i ~ ~ t c ~ ~ s i t y . This COUILI bc
done by creating a gray scale histogram o f first few
frames o f "Critical Area" at the stan of navigation
(assumption being that those few frames do not have
any obstacle in that specific area). "Critical Area" is
the area within which any object is considered to be
on a collision course. From that histogram we find
pixel intensities that the ground plane takes on. Then
we use Quick sort to sort the pixel intensities based
on their frequency. This gives us intensities that
occur most often in the ground plane. After sorting
the intensities based on their Frequency, we apply

1 Quick sort once again, but this time a selected
number o f pixel intensities with top frequencies are
sorted. The result after the second sorting is an
arranged set o f pixel intensities that are most likely to
occur in a ground plane. By using this set, we mark
contents o f look-up table as one or zero. Our
experiments with the plane-floor texture have shown
that intensities values taken by the ground plane
almost always lie within specific intensity region. In
case o f chipsed-floor. this region grows a lot more
than that o f the plane-floor. This is due to the fact
tllnl many stones o f dini.rcnt pixel intensilics ;1rc
present on the ground plane. On creating a histogram
of the ground texture. we consistently found some
peak values of intensities in very close proximity.
with other smaller peaks lying un-evenly on both
sides (or one side in some cases) of these peak
values.

2.2. Look-UD Table Usace for Ground Plane
Detection:

Based on this look-up table, the system finds the
pixels that are part of the ground. We achieve
computational efficiency through the fact that the
system needs to make only one comparison per pixel
in order to decide whether i t is ground plane or some
obstaclelother environment feature. Figure 4 shows

how areas within a frame are classified as ground
plane.

Look Up Table

Intensity = 1 I I ,

Intensity = 169

Image Frame

255

Fig. 4. Look-Up Table Usage. At every pixel, system
accesses the contents of the Look-Up Table
corresponding to the pixel intensity. lfcontent o f
table is I, that pixel is part o f the ground, else i t
is not ground plane pixel.

Using the Look-Up Table, the system makes two
iterative passes on every frame:

2.2.1- On the first pass, the system finds out the
ground from the rest o f the frame. This pass deals
with the whole image. I n this pass the look up table
comparison is applied to the image frame. The
objects not part o f the floor are found based on their
corresponding intensity level. Such objecWobstacles
are marked by storing there pixel value as zero in the
image, while the pixels classified as ground are left to
their original intensity.

2.2.2- On the second pass, the system works on
"Critical Area" which is much smaller area as
compared to the whole image. Working of second
pass can be divided into two parts.

2.2.2.1- First the small blackened patches are
removed from the resultant image obtained from the
lirst pass. These patches can be objects not big
enough to be classified as obstacles. I n case o f
chipsed-floor these patches are mostly due to small
stones in the floor that were not present in the ground
images used in creating look-up table (since even a
large number ofground images can not assure that al l
possible stones in the chipsed-floor are taken into
account).

2.2.2.2- Then the algorithm searches for any
obstacles within the area that lie in course of vehicle
motion and classifies them as potential obstacles.

Intensities
not part of
ground

- Critical
Area

Fig. 5. Ground Plane Detection. Critical Area is the
area between the two bars

Figure 5 shows the image frame after application of
ground detection algorithm

Based on the results obtained from this floor
detection module, information is passed to other
system modules (navigation. object detection etc).
These modules in turn make decisions such as
moving left or right.

3. OBSTACLE DETECTION

Obstacles arc detected on the basis of their relative
size and pixel intensity. The dimensions of thc
"obstacle-lo-seek" can bc sct to lind obstacles ol'tlrat
or greater pixel size.

Since the obstacles are represented by pixel intensity
of zero, the dimensions of the group of adjacent
pixels having pixel intensity zero are counted, if it
exceeds the pre-set obstacle dimension value, this
group of pixels are considered to be part of an
obstacle. In this way regions within the critical area
are classified as obstacles.

If an obstacle is detected in a frame of video stream
the first task is to find out its correct dimensions. In
many cases, the obstacle is only a part of the entire
obstacle, since it is quite possible for algorithm
working on gray scale to miss-judge the correct
obstacle dimensions. Hence on locating an obstacle,
the system seeks to find the correct dimensions of the
obstacle. The data structure used to store the
information regarding the dimensions of the obstacle
is such that we have access to the extreme leR and

right pixel coordinates of the obstacle in each row of
image frame. By selecting appropriate intensity
threshold, we move left and right one pixel at a time
from left-most and right-most detected obstacle
coordinates. At each pixel we calculate the intensity
difference and find if the difference is greater than
the threshold. On finding the difference greater than
the threshold value, we store the previous pixel
coordinate as the extreme obstacle coordinates. This
task is carried out for each row containing the
obstacle. This task of finding correct obstacle
dimensions is necessary for safe navigation around
the obstacle. Once an obstacle has been detected, it is
tracked from one frame to the next as long as it is
visible. Figure 6 shows an obstacle detected in the
critical regin11 of 1:igwc 5.

Fig. 6. Obstacle Detection. After finding the correct
obstacle dimensions in g n y scale, a rectangle is
drawn around the obstacle in RGB image space.

4. NAVIGATION

The system provides on-screen instructions for
navigation for example path clear/blocked,
movement (forwardfleNright etc). The system also
provides instructions to navigate safely around any
obstacle encountered. When an obstacle is
encountered, the system finds on which side of the
obstacle the vehicle can pass safely. If there is more
space to maneuver on the left side of the obstacle, the
system prompts for turning towards left.

Figure 7 & 8 show the navigational information
given by the system in order to navigate around the
obstacle in Figure 5.

Fig. 7. Path clearhlockcd. System prompts that path
in front of vchiclc is blockcd.

Fig. 8. Directional Command. Bascd on thc frcc
spacc ;ivailablc, tlic systcm prumpts to movc Icn
to mallcuver around tlic obsli~clc.

5. SELF-LOCALIZATION

Localization is an important task for autonomous
navigation. In this rcgard many different techniqucs
have bccn proposed. (Matsumoto, ct al.. 1996)
proposed a model of thc route, the "View-Sequcnccd
Route Representation (VSRR)", for autonomous
navigation. A VSRR consists of a scqucncc of vicw
images, which have necessary information for
localization, steering anglc determination and
obstacle detection. (Kosaka and Kak, 1992)
implemented a system for a given environment using
a CAD model based expectation map. This mcthod
constmctcd a complcx database and required
additional analysis for handling unccrlainty.

I n most vision-based approachcs, databases for
cnvironmcnts bccomc complcx bccausc obscrvcd
gcomctric properties arc not invariant undcr thc
~wjcctivc tnnsforma~ic~n. Thus, matching is ;IISO
vcry complcx and tinic consuming.

i In many indoorloutdoor cnvironmcnts such as
factories, university campuses, parking lots ctc one
aspect oflcn seen is that diffcrcnt paths and corridors
arc almost identical. Onc good cxamplc could bc thc
ncwly constmclcd lntcrnational Islamic Univcrsily,
Islamabad campus, whcrc thcrc arc dilrcrcnt blocks

which are duplicate copies of each other.. Moreover
tlic corridors within cach block are also identical. In
such cnvironmcnt thc best localization system - the
human localization systcm -also fails (new comers to
tlic university c;m ollcn lrc sccn wandcring aruund
trying to find their destination). In such environments
different sign boards arc used to mark different paths
and allow people to "localize" themselves (in our
university's case you can only locate yourself by the
name plates on thc doors).

The work by (Pierre, ct al, 01) proposed a method for
mobile vehicle localization called "Finger Print
Scquencing". According to this mcthod. as the
fingerprints of a person are unique, so are at each
location the uniquc visual characteristics (save in
pathological circumstances). So a uniquc virtual
,firgerprint of a location can be created. If locations
arc dcnotcd by uniquc fingerprints in this manner,
thcn the actual location of a mobile robotlvehicle
may be rccovcrcd by constructing a Fingerprint from
its current vicw and comparing to a database of
known fingerprints. In the same way, our system uses
different color codcs (instead of sign-boards in case
of humans) for sclf localization. The camera facing
thc wall scans framcs to find color codes on the wall.
Based on thcsc color codcs the system generates a
tlircc lcttcrcd codc for tach color patch cncountered
in a particular path and hence generates a string for
cach path. Each string starts with an "S" indicating
start symbol and ends with an "E" indicating end
symbol.

When the systcm is executed, it searches the database
of different path folders it created on previous
cxccutions to cxtnct information regarding the
prcvious paths. Thus the system finds what color
codes were cncountcrcd on a particular path and what
was their sequence. While navigating on a particular
path, thc systcm continuously storcs imagcs of
important evcnts such as obstacles detection, wlor
codes detection ctc in a folder. The detected obstacles
and color codes arc sequentially numbered to take
into account the sequence of occurrence.

The localization algorithm also works similarly to
that of pound dctcction algorithm. In fact thc
algorithm shows the best results when applied to
walls due to thcir cvcn tcxturc. First of all a Look-Up
Table of wall is crcatcd in the similar manner as
explained in case of ground detection algorithm. This
~vsults i n cnlo~- codcs appcuring as black, as shown in
Figure 10. At thc ccntrc of image there are two
vcrtical lines. The systcm seeks blacked out patches
within thcsc two lincs. In ordcr to reduce the
computational load of camera facing the wall, the
arca bctwccn thcsc two lincs is kcpt as small as
possible. Thc rcason is that although localization is a
vcry important task. but obstaclc dctcction and
avoidancc still has a highcr priority. On finding the

I blackened patch betwccn thcsc vertical lines, thc
systcm finds thc corrcct dimcnsions of the color
patch and exhacts the patch. The top R, G and B
channel values of thc patch are extracted and
compared with RGB channel values of predefined
color codes. If a match is found, the corresponding
color code is retumcd, clsc "unk" code is retumcd.

A

The system is ablc to navigate successfully around
different obstacles and correctly identify the path.

7. Conclusion

In this paper wc havc prcscnted a path and obstacle
dctection mcthud. It includes a floor plane dctection
algorithm. Thc mcthod is computationally light
cnough to bc implcmcnlcd on an ordinary pcrsonal
computer. Thc systcm is capable of Self-Localization
using color codes on the wall.

REFRENCES

i Fig. 9. Color patch on the wall.

Fig. 10. Color Patch Detection. Color patch about to

C enter the detection rcgion (thc region bctwccn
the two vertical lincs).

The systcm is implemcntcd using VC* 6.0 togcthcr
with Intel's computer vision tool OpenCV (Beta 3.0).
The system is tested using two ordinary digital
cameras mounted on top of a remote controlled toy
car. The platform uscd is Windows2000 on :I 600
MHz AMD Athelon proccssor with 120 MB RAM.

Kosaka, A. and A.C.Kak, (1992). "Fast Vision-
Guided Mobile Robot Navigation Using Modcl-
Based Reasoning and Prediction of
Unccrtaintics," CVG1P:lmage Under. Vol. 56.
No.3, pp. 271-329.

Roh, K. S., W. H. Lcc, I. S. Kwcon(1997). "Obstacle
Detection and Sclf-Localization without Camera
Calibration Using Projcctivc Invariants". Proc of
1CRA '9 7
u l : http:llrcv.kaist.ac.kr/puWpaped~ms97.pdf

Pierre, L., (2001). "Deriving and rnatchhg image
fingerprint sequences for mobile robot
localization". Proc of 2001 IEEE Inlernational
Conference on Robotics and Automalion. ICRA
2001. Vol. 2, pp. 1609-1614.

Kumano. M.. A. Ohya. S. Yuta, (2000). "Obstacle
Avoidilmtcc 01' AU~UIIUIIIUUS Mubilc Robot using
Stereo Vision Sensor". Proc. of International
Symposiun~ on Robotics and Automation, pp.
497-502.

Matsumoto, Y., M. Inaba and H.Inoue, (1996).
"Visual Navigation using View-Sequenced
Route Represcntation," Proc. of ICRA '96, pp.
83-88.

