dee Ha. IPBH)E-CISD
Perception Based Obstacle Detection and o
Avoidance System for Autonomous Vehicles with
Self-Localization Capability

LIBRARY
Istamabad

Developed by

Muhammad Farooq Azam Khan

' Supervised by
Dr. Sikander Hayat Khiyal

Department of Computer Science
International Islamic University, Islamabad
(2004)

In the name of

ALLAH

The most Compassionate

The most Merciful

LIBRARY

Islamabad

Ados Beo. (PEIB)

IG5

et dnainn dning iy

Department of Computer Science,

International Islamic University, Islamabad.
Dated: 3v-0[-2004

Final Approval

It is certified that we have read the thesis, titled “Perception Based Obstacle Detection and
Avoidance System for Autonomous Vehicles with Self-Localization Capability”
submitted by Muhammad Farooq Azam Khan under University Reg, No. 20-CS/MS/01. 1t
is our judgment that this thesis is of sufficient standard to warrant its acceptance by the
International Islamic University, Islamabad, for the Degree of Master of Science.

Committee

External Examiner /
Dr. Syed Afaq Husain W’H
Head, _‘
Computer Sciences Department,

Shaheed Zulfikar Ali Bhutto
Institute of Science & Technology,

Islamabad.

Internal Examiner &AJL_

Asim Munir y
ANV

Lecturer,

Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University,
[slamabad.

(4]
Supervisor é_,\ P, T
Dr. Sikander Hayat Khiyal %
Head,
Department of Computer Science,
Faculty of Applied Sciences,
International Isfamic University,

Islamabad.

A dissertation submitted to the
Department of Computer Science,
International Islamic University, Islamabad
as a partial fulfillment of the requirements
for the award of the degree of
Master of Science

Perception Based Obstadle Detection und Aveidance System for Awtonomous Vehicles with Self-Localization Capability Declaration

Declaration

I hereby declare that this software, neither as a whole nor as a part thereof has been
copied out from any source. 1t is further declared that | have developed this software
entirely on the basis of my personal efforts made under the sincere guidance of my
supervisor. No portion of the work presented in this report has been submitted in support
of any application for any other degree or qualification of this or any other university or

institute of learning.

Muhammad Farooq Azam Khan
20-CS/MS/01

Perception Rased Obstacle Detection und Avaidance Svstens for Autoresnons Vehicles with Self-lovatization Capability Dedication

Dedication

Dedicated to my family.

&

Perception Based Obsiacle) ion wnd Avaidance Sysiem for A Vehicies with Self-Localization Capability Acknowledgements

Acknowledgements

Praise be to the Almighty Allah, the most Merciful, the most Gracious, the
Creator, the Savior, One who ever was and One who forever will be. Without His

blessings I would not have been able to complete this project.
Thanks to my Parents and sisters who were always there whenever | needed them.

I must accept that this project would never have been completed without the help
of my supervisor Dr. Sikandar Hayat Khiyal. His far seeing vision and clarity of thought
steered me clear of countiess disastrous situations and decisions. I can honestly say, I am

honored to have worked under him.

1 also acknowledge my teachers for their help. Most prominently Dr. Syed Afaq

Husain, for his sincere guidance and help.

They say a true friend is hard to find. [found two. I am gfad to have Raheel
Siddiqui and Muneeb Ahmad as friends, they always helped me out whenever I was in a

tight spot.

Muhammad Farooq Azam Khan

iii

Pervecption Based Obstacle Detection and Avaidanee Sysicm for Auionomous Vohicles with Sell-Localization Capishility Project fu Brief

Project in Brief

Project Title:

Objective:

Undertaken By:

Supervised By:

Technologies Used:

System Used:

Operating System Used:

Date Started:

Date Completed:

Perception Bascd Obstacle Detection and
Avoidance System for Autonomous
Vehicles with Seif-Localization Capability

To develop a system capable of
autonomous vehicle navigation and hurdle
avoidance with application of perception.

Muhammad Farooq Azam Khan

Dr. Sikander Hayat Khiyal
Head,

Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University,
Islamabad.

Microsoft® Visual C++ 6.0,
OpenCV®

Pentium® 111

Microsoft® Windows® 2000 Professional

1 December, 2002

30" July, 2003

Perception Based Obstacie Detection ead Avoidance System for Autenomons Vehicies with Self-Localization Capahility Abstract

Abstract

The challenge for every autonomous navigation vision system is the bottle neck of
high amount of data processing required in real time. Along with that, the systems
capable of perceiving the environment and navigate autonomously to destination are
presented with a lot of uncertainties due to complexity and unpredictability of the
environment.

Against this background, this report presents a vision-based path understanding
and navigation technique which aims at developing a system that would give the driving
seat of a vehicle to the computer. Allowing it to do operations such as detection of path,
hurdles in that path, using perception to understand the path and find destination at run
fime.

Suggested solution gives us satisfactory results in term of speed, accuracy and
reliability and proves to be competitive software. The technique applied in this software
can also be used in many other computer vision tasks such as intruder detection and

motion detection.

Percepiion Based Obsiacle Detection and Avoidance Sysiom fisr Auiinomeous Vohicles with Self-lovalization Capahitine

Tabie of Coments

Ch. No

TABLE OF CONTENTS

Contenis

INTRODUCTION. ...iiiereanieicriiciiiiananass oreertsranseeras crerreiens

Pl COMEPUICE VST v it eeiee s e ree i sttt s b an s
1.2 Computational Cost of Processing Images............o oo
1.3 Aulonomous NaviBalIon. ... v ieree i cinvrasnasa e et are s s b i e
L T F O T PP ppenr
1.4.1 Perception and Autonomous Navigalion.o rureanr e

I YT NI F R Tt ot P P PP PSPPI AP
1.5.1 Conclusions Drawn from Literature SUTVEY....ccovvviimieniiiniiiiine e ranre i
1.6 THE PrOJECL. . cesiereeeeincinn i ieiit e et ebaa s s dam e e s s e r s rpe st n s eat e ey e e
1.7 PIOJECE SCODE. .t ererenseerreiieecrreniett et s taaatssrssr b s e n e e r e ns s n s e ks sanas
1.8 OB EClIVES. ..uvees e eeerrertrcae e et e e e et a s teer e e et een e n e e se e r s ee e
1.0 COME USION 1ttt ie sttt et st e e et it
2.1 Structured AMIYSIS «oooeiiirtiin e et e s e
2.2.1 Objoct DesCriplion. ... ciiitiiiiiriiens e siisraas s arr s e s assiatne sttt
2.2.2 Eality Relationship Diageam (ERD)......ociiiinens e ieereaeiaaraneeee
2.2.3 Data Flow Diagram (DFD)......oo s
2.2.4 Process Specification (PSPEC).................. et araeeeane s hen A a e iiaanas
2.2.4.0 Scan Image for Hurdle .. .o

2242 Match Sequence.ooooiiiiiiiiiiiiii e e

22.5 State Transition Diagram (STD)........ooi i e
226 Datd DICHONBIY. .. ccivntiiiit it ie e s s esra s rreasarares i m st et

2.3 Object Oriented ANBLYSIS. ...vvrrersrriarmreint ey e s s s s e e e
2.4 A Unified Approach to Object Oricnted Analysis. ... ccovven e
2.5 Domain ARAlYSIS....c.ooviiiiiii i s e eberabe vt rh et

2.5.1 Reuse and Domain AnalysiS......ooo.oiiveiniiisnarirenecannes e eerreee .

2.52 Domain Analysis Process.....cooo i nais e

2.6 The Object Oriented Analysis Process.....oo.o.ooioiiiiie rerven
R O T TR PR PPPP
2.6.1.1 Use-Casesinthe Syslem.......cooveaiiiimiiniicician i in

2.6.1.2 Actorsinthe SySIeM. i rrarrra e i e

2.6.1.3 Expanded Use-Case FOrmato.oooriiiiimn i neniiieans

2.6.1.4 Use-Case DIGEImmM ...o.oieiii i ieris st se an e rna e

29
30

vi

Pervepiinn Gased Fdstacle Detoctieon aed Avidance System for Awtonomons Fukicles with Self-Lovalization 0 ‘upethilay

Tuble of Conients

2.6.2 Conceplual Model.......ooo i

P2 B 601 1T P PP PP OPPPPPSUR T SR
DESIGN...covvriiniiisivanisrrseaiinian erereeratesreicaenannas esreretvsionnnnrrnes
3.1 Object-Orienmted DeSIEN..o.vriiv i e e st
3.2 DIESIEN PALEENIS v etseeem e eer e ceectie it et e e e s e e et e a2 s s
3.2.1 Descriling Design Palterns...o.ovoiiiiiiiinineas-- e et
3.22 Using Patterns in Desigioioii i i ainrar e e s s

3.3 Object Oriented Desigh Process. ..ot iiiniiier e e
3.3.} Structural Model.............. e it ere e eaeeeae e iieesieneee il eeaas
3300 Whatisa Class?. .o e

3.3.1.2 Finding a Class.....ooiiiiiin i e e et

3.3.1.3 Class Diagram. . c..ooioiiiiii i iiiirsr e s rrnr e i a i sana

BT 0 T BT T T S S LE LTI T T

3.5 Behavioral Model. ...

35,1 Interaction DIAagrams. ...

3.5'.1.1 Sequence Diagram.........ooi PSSP

3.6 Stale Transition DIagrami......cooo i i en s e aar s crr ot et eabees

3.7 ACHVILY DIBITL Lo oeoitiiitiiit s arss e niae s an £ e s e e st

R B O T Te LT E 1T ot 1 T PSP PP PPN

IMPLEMENTATION. i icceeaeeens crssenencane teeseruny

4.0 Implemeniation TeChiiqUES.ooio it e st st

4.1.1 Object Oriented Progranuming.cooiiimiriiiiemiin e

4.1.2 Component Based Programming.........coooiviiiiuinnsviss s

4.2 Implementation ToolS. .. cco e viirie i erer s

42,1 Microsofl VIsual G, i iiireciiiice it e s vra s s rn e nra e
427 OpenCV.iii i,

4.3 Implementation SITAlEEY. . .cooiiiiiiie i e e ra s e

4.4 OpenCV and IPL Image Library Factions Description.......ocooeviiniiiienniniinnn,

4.5 Implementation Details.....ooovr i s

4.5.1 Classes inThe SYSIEM. . oot iiiiiaisa s am s et ra e cr s e

4.5.1.1 Declaration of Class Objects ...coovovaviiiininiins e nanns
4.5.2 Implementation of Different User Oplions.......ooviiininne i,
4.5.2.1 Choosing Post-Processing OpHONc..ovveumeenionvunuennns s
4.5.2.2 Choosing Reul-Time Processing Option ...
4.5.2.3 Choeosing View RGEB Space Oplion......cooviieiiii i,

4.6 Ground and Hurdle Detection Algorithm..........cooiiiiiiiannin st
4.7 Implementation of Intensity vs. Frequency Graph for Gray-Scale [mage ..o

4.8 Implementation of Intensity vs. Frequency Graph for RGB Image .o

47

47

79

4

vii

Perceprion Based Obsiacle D ivn and Avoid, System for A Vehicies with Self-Locafization Capubility Table of Contents

49

Frame Processing Loop for Real-Time/Post — Processing......co.oeeciciisiiiinnaiine 94

10 COMCIUSION. - et v e etee vt rae et teeeraearranetasaeassanaeneenssisnrennsnsansannsssinermomsimmrnene D0

5 TESTING....couiiimiitiriicisninisssnesacaractasias ecwmerstrassrersaroscnceresss 0T
S0 TeStmE PrOCESS. .c.uiivtian it iiin i eir e s e e s rs et st e e es s mr s s s e 97
52 General Types of Brrors......ocooiniiiiiin e - 97
5.3 Testing StratBEIES vire i ieiirisiivrarir e v mt s e ee i re s r e er s e s s as 97
54 Testing the SOfIWAE. ... et s es e a v 98
5.5 Features 0 be TeSIEd . i e st e e e et 98

5.5.1 Selecting Real-Time Processing oplion with no camera connecfed.............., 98
5.5.2 Selecting Real-Time Processing option with muitiple cameras

COMMBOICUL 1o e iertt ittt int et e e eraraeiaim e s s e n e san e e dan bt iarana e eanas 100
5.5.3 Selecting Post-Processing option with invalid file format......................... 100
5.5.4 Selecting View Gray Space Graph option with invalid file format................ 102
5.5.5 Selecting View RGB Space Graph option with invalid file format................ 102
5.5.6 Validating “Current Path” folder... .. cocoiiiiiiiii (03
5.5.7 Navigation in Real-Time Mode with empty path...............ciivieieniins 104
5.5.8 Navigation in Real-Time Mode with hurdles in the path.............cocooivals 105
5.5.9 Navigation in Post-Processing Mode withemplypath...........ooorienin, 105
5.5.10 Navigation in Post-Processing Mode with hurdles in the path.............coonil. 107

5.6

COMCIUSTON . - o oeea i erieirie e ree e rstaeessasannoaeranraisssassrarensasersrmresnsosmnsineee 109

6 BIBLIOGRAPHY AND REFRENCES......covinriimineiseriorerinesssecsenss, 110

RESEARCH PAPER

viil

Chapter 1
Introduction

Chapter [Introduction

1. INTRODUCTION

Computer scientists all around the world are working hard to achieve one goal: an
intelligent computer. In a constant quest for improvement, all possible roads are trodden
to make computer understand. Numerous fields have emerged within the field of
computer science. Computer vision is just one such example. The essence of computer
vision is simple: “to make computcr see things”, and consequently, to make it
“understand™ the worid-around it. For il computer starts sceing, it's formidable ability to
work on and on without making a single mistake could be utilized in a variety of places
and number of ways. Computers that sce could be used where humans fail. This project
1s yet another step in that dircction.

The project in context is an effort towards taking the human out of the driving
seat and place computer behind the wheel. The reason for computer driven vehicles are
numerous, most examples are, computers can not fall asleep while driving, they donot get
tired after a prolonged drive, they are precise and accurate, they don’t get tense and so on.
Allin all, this project has potential to be taken up sericusly.

In that respect we were successfully able to differentiate the ground plane from
the rest of the image and navigate the vehicle around different hurdles while maintaining
a database of all the hurdles encountered in a particular path.

The future enhancements include further reduction of computational load by
making the ground and hurdle detection algorithm even lighter and increasing the ability
to work on different types of ground textures.

1.1 Computer Vision

Computer vision is a field that runs parallel to Image processing. In fact, both
Computer Vision and Image Processing are descendent of a single field called “Computer
Imaging”. The diffcrence between Computer Vision and Image Processing is that the end
user of resultant of Image Processing operations is human, while the end user of resultant
of Computer Vision operations is computer. These two fields sharc between them a
variety of definitions, processes, algorithms and methods.

Computer Vision is a field that deals with images. Just like we see with our eyes
and unconsciously store important aspects in our memory, the images in computer can be
captured using cameras and stored on some media such as hard disk. But the computer
can do much more with the images othcr than just storing them. In fact, the images for
computer can be of variety of formats for example: color images, gray (intensity) images,
infra red images etc and they can be obtained from variety of sources for example: digital
camera, web cam, internet, satellite ctc. These images can have many different
spectrums. These spectrums may range from simple black and white images to multi-
spectrum images such as RGB images, that have three spectrums. But the list does not

Pereeption Besed Obstaele Deteciion and Aveidance System for Autonomons Vehicles with Sclf-Locatization Capabiliiy |

Chapper 4 . e Inteaduction

end here; there are satellite images that have up to 24 spectrums and others that have even
more spectrums. These spectrums are of great use for storing significant data. This
enormous capacity and power could be used where human endurance runs out.

1.2 Computational Cost of Processing Images

The images used in Computer Imaging are digital instead of analogue. A digital
image a[m, n] described in a 2D discrete space 1s derived from an analog image a(x, y) in
a 2D continuous space through a sampling process that is frequently referred to as
“digitization”. The 2D continuous image a(x, y) is divided into N rows and M columns.
The intersection of a row and a column is termed a pixe/. The value assigned to the
integer coordinates {m,n] with {m=0,12,.. ., M-1} and {»=0,1,2,.. N-1} is a[mn]. The
value assigned to every pixel is the average brightness in the pixel rounded to the nearest
integer value.

As every digital image is made up of elements called “pixels”, we can say that
operations in Computer Viston {and Image processing) are actually operations done on
pixels.

The images obtained from web cams or cameras are generally of pre-specified
standard sizes. For example an image captured from a web cam can be of 640 by 480
pixels or 320 by 240 pixels. Thus an image of 320 by 240 means 76,800 pixels. This
means if we have a single spectrum image of dimension 320 by 240, the computer will
have to work with 76,800 different pixels and pixel values. If we have a single spectrum
image of dimension 640. by 480, the computer will have to work with 307200 different
pixels and pixe! values. In the same way, if we have a commonly used RGB image (i.e.
three spectrums) image of dimension 320 by 240, the computer will have to work with
76, 800 different pixcls and 2,30,400 pixcl values, In the same way, if we have 2 RGB
image (i.c. three spectrums) image of dimension 640 by 480, the computer will have to
work with 2,30,400 different pixels and 6,91,200 pixc! values. So a single RGB image of
640 by 480 pixels dimensions require 6, 91,200 computations for reading the image. If
you need to do some processing with the image, that would naturally requirc extra
computations since 6, 91,200 computations are just for reading the image (lets say) into
memory. Now if you have a filter that makes two passes on the image, then it would
require 13, 82,400 extra computations (i.e. apart from loading the image). If you make an
application that process real time images from web cam at a rate of 10 frames per second
then the number of required computations would be at least 2,07,36,000 computations per
second. That is quite a load, since gencrally you don’t just requirc only two passes, you
have to access pixel locations, change pixel values, recompute, save and so on.

This computation load is a great bottle neck for all real time vision systems to
date. The chalienge for every autonomous navigation vision system is this bottle neck of
high amount of data processing required in real time. The vision scientists are constantly
trying to tackle this issue through the introduction of newer techniques.

Perception Based Obstacle Detection and Avoidance Svstem for Aviuiomons Vehicles with Self-Loeulizaion Cupability 2

Chapier 1 Introduction

1.3 Autonomous Navigation

Autonomous navigation means navigation not requiring human help, in other
words “automatic navigation”. This navigation is not limited to strects and roads, rather
it encapsulates on-ground, under-ground, underwater and even space navigation.

Autonomous navigation has great ficld of applications in our daily life.
Autonomous machines are already helping us build cars, rockets and doing many other
useful tasks in many cases better than any human can do. As already mentioned, the use
of autonomous navigation range from indoor environment to outer space exploration,
One such example could be the baseline 2003/2005 Mars Sample Return missions. The
baseline 2003/2005 Mars Sample Returit missions require the return of a science rover to
the lander for the transfer of sample cache containers to a Mars Ascent Vehicle or MAV.
Along these lines, the newest misston guidclines for the Mars Sample Return call for a
science rover to descend from the lander using ramps, acquire core samples from as far
away as hundreds of meters from the lander, rcturn to the lander, and then ascend the
ramps to deposit these samples in the MAYV., The return opcration requires tracking and
docking techniques for the development of neccssary integrated rover capabilities key to
the lander rendezvous operation. The science rover must autonomously recognize, track,
and precisely rendezvous with the lander from distances as far away as hundreds of
meters. The Sample Return Rover, or the SRR, is a rover prototype that was originally
developed for the rapid retrieval of samples collected by longer ranging mobile science
systems, and the retumn of these samples to an Earth ascent vehicle [1].

“Systems-of-systems will, in the 21st Century, replace every major combat system
on the battlefield with distributed robols —in the air and on the ground, autonomous,
netcentric, and integrated. " —Unknown DARPA Source [2]

This vision is driving much of the current robotics research in government and
defense laboratories around the globe. lts realization will require a demonstrable
capability in Intelligent Autonomy (IA), i.e., “The capability to operate effectively, singly
or in groups, with reduced, remote (geographically or temporally) or no human command
and interaction, and the ability to adapt independently to a changing, uncertain,
unpredictable and hostile external environment.”[2]

Thus the importance of autonomous navigation cannot be over emphasized.

Perception Based Obstacle Detection amd Aveidance System for Autonomat Vehicles with Sclf-docalization Capability 3

‘Chapter | _ Introduction

1.4 Perception

Literally perception is defined as the “ability to understand” (CHAMBERS
Dictionary for Learners, BRITISH NATIONAL CORPUS). That is, to understand
anything, for example: the world around us, what one is saying and so on. However the
word “Perception” has a special meaning in computer vision and is related to an
outstanding quality of cvery human being. Lately, the term “Machine Perception” was
introduced. For the past few years, a lot of research has been done in the field of machine
pereeption. In the early years the development was mainly driven by space, underwater,
and agutomation applications for hazardous areas, but especially in the recent five years,
different factors have led to an increasing number of applications. The first important
factor was the exponentially growing computational power, enhanced control algorithms,
and new mechaironic sensors and actuators {3].

1.4.1 Perception and Autonomous Navigation

Perception to humans comes easy. We are adept at undetstanding different things
and situations. Scintists attribute this skill to milfions of years of evolution. Further more
this ability to understand and adapt to cahnging environment has been one of the biggest
factors of human survival through the centuries. But computers on the other hand are
relatively “newborn™ as comipared to humans and they do not have that “instinct” to
survive or understand. If somchow we can make computers see the world around it, the
next possible step is to make them understand the world around them. These two goals, if
achicved can bring computers closer to thc humans. Scientifically, it would increase the
already dominant usablilty of the computers in all fields of life.

Perception has many applications in the field of computer vision. It can allow
computer to take premptive actions. Specially in the field of navigation, perception can
be of very much use in deciding which path to take, where to turn, siow down or speed
up, recognize landmarks and so on.

Purception Bused Obstaele Detectivn and Avoidance System for Autonomtons Vehicles with Scif-locatization Capability 4

Chupter 1 Introduction

1.5 Literature Survey

In order to judge our work it is important to bring into perspective the existing
work in (his field.

a - A Path Following System for Autonomous Robots with
Minimal Computing Power

This work by Andrew Thomson and Jacky Baltes [4] deals with following a pre-
specified path. The path to follow is marked by illuminating it. The robot contains of
single camera facing the ground directly in front of the vehicle. The illuminated region
within each frame is scarched from the gray scale image. The system tries to stay at the
centre of this illuminated strip.

Fig. I-1: CITR Autonpmous robot Fig. 1-2: Gray scale image of the path

b - Obstacle Avoidance of Autonomous Mobile Robot using
Stereo Vision Sensor

This work by Masako Kumano and Akihisa Ohya {5] use two monochrome CCD
cameras cquipped with about 90 degrees wide-angle lenses, which are fixed on the left
and right side with the same height at the top of the robot (See Figure 1-3). Two images
are captured synchronously on an image processing board. One image is estimated from
the other by the matrix calcufated with relative position. Then each point on the real
image is compared with the corresponding onc on the estimated image. If there is a
certain difference of brightness, around there any 3D objects are detected.

Perception Based Obstacle Detection and Avoidance System for Autonsmeus Vehicles with Self-Loculizelion C upability 5

Chapter]

lniroduction

Figure 1-3: Mobhife robat
equipped with stereo vision
sensor

eren camera

ek sy
PN 111w

beft ipage

gi
Wiyt
%ﬁm
o

/ﬁ-?"ht image

compare gy’

Figure 1-4: The principle of obstacle detection in this
research is that if both right and left of the brightnesses
of corresponding points are almost equal, there is not
any obstacles there. The difference of brightnesses
means there is something around the point.

¢ - Ground Plane Detection using Visual and Inertial Data Fusion

This work by Jorge Lobo and Jorge Dias [6] uses inertial information for
navigation. In humans this inertial information is obtained from a sensorial system which
is located in the inncr ear and it is crucial for several visual tasks and head stabilization.
This work only deal with sterco vision based ground plane detection and does not take
into account hurdles in the path. The inertial unit is placed at the middle of two stereo
cameras. Each camcra position has its own referential, R} and /I.} being for the right

and left positions.

Figure 1-5: The mobile
system with the active
vision system

Ly B ad

Sy

L]
SERTIN

Figure 1-8: System Architecture. The inertial
system processing board uses the Master
processing unit as host computer.

Perception Based Obstacle Detection und dvoidance Systens Jor Autanomous Vehicles with Seff-Localization Capability

—~y

Chupter § Introduction

d - Obstacle Detection and Seif-Localization without Camera
Calibration Using Projective Invariants

In this work Kyoung Sig Roh, Wang Heon Lee and In So Kweon [7] detect
obstacles by comparing the pre-stored risk zone with a current risk zone. The positions of
the detected obstacles are also determined by relative positioning. Their system makes
use of the assumption that an environmental map database is available for matching
between the scene and the model. Intersection points between floor and the vertical lines
of door frames are used as point features to compute cross ratios. As an off-line process,
the system construct a database consisting of the cross ratios of point features. Using the
cross ratios in the constructed database, the correspondences between the model and
scene features can be found. The corresponding point features in the database of a real
environment and in the image are used to compute the positions of the mobile robot and
obstacles inside the risk zonc.

Fig 1-7: Risk Zone and point features Fig 1-8: Refercnce risk zone

e - Deriving and Matching Image Fingerprint Sequences for
Mobile Root Localization

This work by Lamon Pierre [8] deals with localization of a vehicle. Mr. Pierre
proposed a method for mobile vehicle localization called Finger Print Sequencing.
According to this method, as the fingerprints of a person are unique, so are at each
location the unique visual characteristics (save in pathological circumstances). So a
unique virtual fingerprint of a location can be created. If locations are denoted by unique
fingerprints in this manner, then the actual location of a mobile robot/vehicle may be
recovered by constructing a Fingerprint from its current view and compering to a
database of known fingerprints.

Perception Based Obstacle Detection and Avoidance System for Autonomons Vehicles with Self-t.ocalization Capabilfity 7

Chapter] Introduction

& 88

BvKO
T Fig 1-11:
Fig 1-0: Views Fig 1-10: String 1
of the system Example " extracted
image for from image
scquence of Fig. 1-1¢

encoding

1.5.1 Conclusions Drawn from Literature Survey

Self-localization, obstacle detection and avoidance are the basic requirements for
successtul navigation of any autonomous vehicle. Most of the vision based navigation
systems concentrate on only one aspect of autonomous navigation. Seme systems iry to
detcct obstacles in their path while others try to find their relative position with respect to
environment without the facility of obstacle avoidance.

The work by Andrew Thomson and Jacky Baltes [4] uses illumination underneath
the floor for ground detection. This approach does not take into account obstacles
detection or avoidance. That makes this approach a little far from natural environment
where a path can not always be illuminated from underneath. The work by Kumano, et al
[5] uses stereo vision for obstacle detection. They use two monochrome CCD caimeras
equipped with about 90 degrees wide-angle lenses, which are fixed on the left and right
side with the same height at the top of a robot. Two images are captured synchronously
on an image processing board. One image is estimated from the other by the matrix
calculated with relative positioning. I there is o certain difference of brightness, around
there any 3D objects arc detected. The handicap of this approach is that if both of the
camcras are focused on the same obstacle, that obstacle would not be detected. In their
work Roh, et al [7] detect obstacles by comparing a pre-stored risk zone with a current
risk zone. The positions of the detected obstacles are aiso determined by relative

positioning.

Although a lot of work has been done in exploring the possibility of vision in
autonomous navigation, much is left to be done to make it a part of our indoor/outdoor
every day life.

Perception Based Obstacle Detection and Avoidance System for Autonamous Vehicles with Self Localization Capability B

Chapter] Introduction

1.6 The Project

The project Perception Based Obstacle Detection and Avoidance System for
Autonomous Vehicles with Self-Localization Capability is an effort towards taking the
human out of the driving seat and place computer behind the wheel.

The project could be divided into two major parts.
!- Navigation:

The navigation part deals with operations such as detection of path and
hurdles in that path on and taking actions to avoid the hurdles on run time

2- Perception

The word “Perception” in our project has a special and slightly different
meaning. Since perception means understanding, with reference to autonomous
navigation, we have defined perception as “understanding some natural/artificial
aspect of the environment and taking preemptive and reactive actions accordingly
in order to facilitate navigation™.

1.7 Project Scope

Previous work in this field has mostly concentrated on any one aspect of
navigation, That is why you would come across an application that would be capable of
detecting a hurdle and navigating around it while another that could only reach
destination by following some artificial property (such as specially colored floor) without
any hurdies in the way (or stop on finding onc). Another observation is the heavy
dependence on specialized equipment in most of the existing systems. The reason being
the need of improving accuracy and reducing computational load. Apart from that, some
things are inevitable without the use of external hardware.

The scope of this project is to construct a system that would be capable of
navigation in a controlied environment. In other words, the project requires development
of a system that would be able to work in natural environment with reliable accuracy. In
practice, the system should be capable of detecting the ground plane, separate hurdles
from the ground plane, maintain a track record of encountered hurdies.

Another important aspect of the project is that no specialized equipment such as
frame grabber or laser range finder are uscd to keep the development cost of the project
as low as possible.

Perception Bused Obstucle Detection and Avordance Systeen for Adutonomous Vehicles with Self-Localization Capability g

Chappter 1 Introduction

1.8 Objectives

The objectives of this project are given below:

@ Ground plane detection
® Hurdle detection

® [Hurdle avoidance

0 Localization

In practice, we would require two tasks to meet the objectives of the project:

i- Real time algorithm for ground plane detection, hurdle detection and hurdle
avoidance.

2- Application of perception for localization

1.9 Conclusion

In this chapter we gave an introduction to our field of work with brief definitions
and explanations of basic concepts that are important in our system. Along with that we
gave examples of work that has already been done in this field, what were their shortfalls
and the need of what more has to be donc. At the end we defined our scope of work and

objectives.

Perception Baved Obstacle Drtection and Avoidance System Jor Autonomonus Vehicles with Self-Localization Capability

Chapter 2
System Analysis

Chapter 2 Analysis

2. ANALYSIS

.

Software engineering, at a technical level, begins with a series of modeling tasks
that lead to a complete specification of requirements and a comprehensive design
representation for the software to be built. The Analysis model, actually a set of models,
is the first technical representation of a system. Over the years many methods have been
proposed for analysis modeling. However just two models now dominate the analysis
modeling landscape. The first, structured analysis is a classical modeling method and the
other approach is odject oriented method. We have used the both modeling techniques for
the analysis of our project, Perception Bused Obsitacle Detection und Avoidance System
Sfor Autonomous Vehicles with Self-Localization Capability.

2.1 Structured Analysis

It is @ model building activity. Using a notation that satisfies the operational
analysis principles, we create models that depict information (data and control) contents
and flow, we partition the system functionally and behaviorally, and we depict the
essence of what must be built.

2.2 Analysis Model
The Analysis Model must achieve three primary objectives.
1. Describe what the customer requires.
2. [Establish a basis for the creation of a software design.

3. Define a set of requirements that can be validated once the software is
built.

To accomplish these objectives, the analysis model derived during the structured
analysis takes the form illustrated in Figure 2-1.

At the core of the model lies the data dictionary — a repository that contains
description of all data objects consumed or produced by the software. Three different
diagrams surround the core. The entity-relationship diagram (ERD) depicts relationships
between data objects. The ERD is the notation that is used to conduct the data modeling
activity. The attributes of each data abject noted in the ERD can be described using a data
abject description.

The Data flow Diagram (DFD) serves two purposes:

Perception Based Obstacle Detection and Avoidance Sysiem for Anionamous Vehicles with Sclf-Locnlization Capability 11

Chapler 2 Analysis

I. Provide an indication of how data are transformed as they move through
the system.

2. Depict the functions and subfunctions that transform the data flow.
The DFD provides additional information that is used during the analysis of the

information domain and serves as a basis for the modeling of function. A description of
each function presented in the DFD is contained in a process specification (PSPEC).

g
)
%

%

Relationship Data Flow

& Diagram Data Diagram
Pl Dictionary

State-Transilion
Diagiam

Contirol Spacification

Figure 2-1: Analysis Model,

The State-transition diagram (STD) indicates how the system behaves as a
consequence of external events. To accomplish this, the STD represents the various
modes of behavioral modeting. Additional information about control aspects of the
software is contained in the control specification (CSPEC).

2.2.1 Object Description

Object Description is used to describe the Objects. Object is a representation of
almost any composite information that must be understood by the software. By
composite, we mean something has a number of different attributes or properties. For
example, in Perception Bused Obstacle Detection and Avoidance System for Autonomous
Vehicles with Self-Localization Capability, an gbject can be hurdle. Whenever the object
“hurdle” is encountered, the system shifts from path navigation to hurdle tracking and

Perception Baved Gbstacle Detcction and Aveidance Systen for Autonmmous Vehicles with Self-Localization Capability 12

Chapier 2 - Analysis

navigation mode. It is used as a means of identifying the path and is compared with other
objects (hurdles) for recognition purposes.

HurdName

HurdNumber

Dimensions

SetWid

FCVvals

CreatenCopy

SepChans

Figure 2-2: The Hurdle Object,

Let us discuss the fields of the Hurdle object:

e HurdName specifies the name of the hurdle. The initial name assigned to
the hurdle is “Un-Named Hurdle”, The name may be changed later on
finding a successful match in the database.

Perceprion Based Obstacle Detection and dvoidance System Jor Antonomons Fehicles with Self-Localizanon Capability 13

Chapter 2 Analvsis

HurdNumber is an internal index of each object called “Hurdle” to
separate and distinguish it from the rest of the hurdles.

e Dimensions is a three dimensionai array used to store the Jocation and size
of the hurdle in a particular frame.

o SetWid is a member function of Hurdle object which is used to fill the
Dimension array one element at a time.

e FCVals is the member function of Hurdle object which actually calls
another furiction (Checklt{) } in order to find out whether hurdle has been
encountered for the first time or if it is already present in the hurdle
database.

e CreatenCopy is actually master-mind behind each Hurdle object, it
receives the information about a hurdle and creates the hurdle, calling all
the subsequent functions.

e SepChans separates the three channels of the hurdle and stores them into
array in order to facilitate recognition process.

o ShowHurdle used for displaying the Hurdle object in a window named
after that hurdle.

2.2.2 Entity-Relationship Diagram (ERD)

ERD is used to definc the relationship between different entities or objects. These
objects are joined with the other based on the relationship they have. ERD focuses solely
on data (and therefore satisfics the first operational analysis principle), representing a
“data network™ that exist for a given system. ERD is especially useful for applications in
which data and the relationships that govern data are complex. ERD of the system is
given in figure 2-3.

Perception Bused Obstacle Detection and Avoidance System for Awionomons Velicles with Self-Localizutiont Capability 14

Analysis

Chapter 2

=
5
=
I/
(e
&
7,
A
(a3
Path Otiec “%, image Processor Object
%, . CJ;,e/
%

1233000
vona#agiaelag

7
ol
199190
wolydanlad

s3uanbes
1y
L3pINH

paIenxy

Figure 2-3: Entity-Relation Diagram (ER Diagram) for Vision One - Perception Based Obstacle

Detection and Avoidance System for Autonomous Vehicles with Self-Localization Capability.

Perception Based Obstacle Detection and Avoidance Sysiom for AutonQmons Vehicles with Self-locafization Capability 15

Chapier 2 Analysis

2.2.3 Data Flow Diagrams (DFD)

As information moves through (he software, it is modilied by a series of
transformations. A DFD is a graphical technique that depicts information flow and the
transforms that are applied as data moves {rom input 1o output. The DFD is also known
as Data flow graph or a bubble chart.

User Commands

Keyboard Display information

Monitor

Vision 1 Software

Mouse

User Commands

Figure 2-4: Context Level DFD for Vision 1 - Perceptive Based Obstacle Detection and Avoidance
System for Autonomous Vehicles with Self-Localization Capubility

Figure 2-4 shows the Context Level DFD for the software Vision 1 - Perception Based
Obstacle Detection and Avoidance System for Autonomous Vehicles with Self-
Localizution Capability. This level is the highest level of abstraction where no details are
shown; only the input to the software and output from software is shown. There is only
one bubble, which is the software and reveals no function of the software,

Now the DFD is expanded and level one shows the detail of the process or
functions of the sofiware.

16

Perception Based Obstacle Detection and Avoidance Sysiem fur Antontonions Vehicles with Seif-Locelization Capability

Chupter 2 _ Analysis

Keyboard ,
User Commands and Data

interact with User
Mouse

User Commands and Data

Front Panet Display

Messages and instructions Activate Gbject

Creation Module
Display Messages
and Status

Monitor

Display Information

Figure 2-5: Level | DFD for Vision |

Figure 2-5 expands the bubble in Level t DFD and here the level of abstraction
decreases but only up o the functions still the sub functions are not reveled. It also shows
the data storage and the arrow, to show which process stores the data and which process
use the stored data.

Perception Bused Obsiacle Detection and Avoidance System_for Anlvnomons Vehicles with Self-Localization Capability 17

Chapier 2 Analysis

Front Panel Display Create Perception

object

Perception object Dala

Create Image

Processing object Navigation object Data

Create Navigation
object

Objec! Detection object Data

Image Data Create Object
Detection Navigation Infarmation
y object
Scan image
for Hurdles

Extracted Huypdle Messages

xtracted Hurdle Information
Hurdie Info) .
Valid/Invalid Path Message

Image information

Create and Display Messages fMenitor

classify hurdie and Status »

Display Information
Hurdle Information

Figure 2-6: Level 2 DFD for Process Activate Object Creation Module.

Perception Based Obstacle Detection and Avoidance System for Autonomons Vehicles with Self-Localization Capability 18

Chapter 2 Analysis

Level 2 DFD process Activate Object Creation Module is shown in Figure 2-6.

This level shows the sub functions of the process Activate Object Creation Module and

describes almost all the data flow in the pracess Activate Object Creation Module.

Figures 2-7, 2-8, 2-9 and 2-10 show lL.evel 3 DFD of processes “Scan Image for

Hurdle”, “Match Sequence™, “Create Pereeption Object™ and “Create object Detection
Object” respectively.

Find Disparity
in Image

Image Data

Disparity Information

Classify Disparity

Hurdle Informstion

Create Hurdle
object

Display Information

Display Messages
and Status

Monitor

Hurdle detected Message

Figure 2-7: Level 3 DFD for Process Scan Image for Hurdle,

Perception Bused Ghstacle Dvicctian and Avoidunce System for Autononions Vehicles wiih Self-l.ocalizution Capability 19

Analysis

Chupter 2

Compare Sequence

With others Sequence Information

Segquence |nformation

Compare Sequence
In reverse direction

Match found/ not found

Match founds not found

Display Messages
and Status

Monitor

Display Information

Figure 2-8: Level 3 DFD for Process Match Sequence

20

Ferception Based Obstacle Deteciion and Jvoidance System fir Aufenouions Velicles with Self-laocalization Capability

Chapter 2

Analysis

Paths Database Info

Initialize Perception
Object

Load Paths
Database

Perception Object Data

Paths Info
Create Path

Sequences

Valid/invalid Path Info

Path Sequence Info

Display Information
Display Messages

and Status

Monitor

Figure 2-9: Level 3 DFD for Process Create Perception Object

Perception Hased Obstacle Detection and Avoidance Systes for Autonomons Vehicles with Self-Loculization Capability 21

Chapler 2 Analysis

Hyrdle Database Info

.

fLoad Hurdles

Initialize Object
Database

Detection Object

- Object Detection Object Data

Extracted Hurdles
Data

Load Extracted
Hurdles

Valid/Invalid Hurdles database info

Extracted Hurdles Info

Display Messages
and Status

Monitor

Display Information

Figure 2-10: Level 3 DFD for Process Crcate Object Detection Object

22

Perception Based Obstacle Detection and Avoidance System Jar Autortomens Vehicles with Self-Localization Capability

Chuapier 2 Analysis

2.2.4 Process Specification (PSPEC)

The Process specification contains the detail information about the processes
defined in the DFD. These details either can be in simple English or in Program Design
Language (PDL) format. In simple English, the process is defined in simple words while
in PDL., the process is written in the format similar to the algorithms but they are not
complex as algorithms are. We will define the process in PDL.

2.2.4.1 Scan Image for Hurdle
Procedure Scan Image for Hurdle;
Get the image data;

Scan image data to find any disparity larger than pre-specified values in
dimensions;

If disparity larger than pre-specified values in dimensions;
Then begin
Classify disparity as hurdle;
Create an object of class Hurdle;
Assign properties of disparity to the created hurdle object;
Display information of hurdle on screen;
End;
Else begin

Classify disparity as noisc;
Replace the disparity color to its original color;

End if;

End proc

Perveption Based Obstacle Detection amld Avoidance Systea fir Awtonomons Vehicles with Self-lacalization Cupability 23

Chapter 2 Analysis

2.24.2 Match Sequence
Procedure Match Sequence
Get the sequence information of current path;

Compare sequence information of current path with sequence information
of previous paths in databasc;

If match exists
Display information on screen regarding path existence;

Else begin
Compare sequence information of current path with reversed

sequence information of previous paths in database;

1f match exists
Display information on screen regarding path existence;

End if

End proc

2.2.5 State Transition Diagram {(STD)

The State Transition Diagram indicates how the system behaves as consequence
of external cvents. The labeled transition arrows indicatc how the system reacts to the
external events as it traverses the defined states. By studying STD, a software engineer
can determine the behavior of the system and can ascertain whether there are “holes™ in
the specitied behavior.

Figure 2-11 shows the State Transition Diagram for the software Vision 1 -
Perception Based Obstacle Detection and Avoidance System for Antonomous Vehicles
with Self-Localization Cupubility.

Perception Hused Obstacle Detection and Avidance Sysiem fir Awanmtiois Vehicles with Self-Localization Capabilily 24

Fmioo

Analysis

Chapter 2

Read User Input

First Frame Event
Invoke Load Paths
And Hurdle Database

Read User input

Invake Process Images

Load Paths And
Hurdle Database

L]

Process Images

Next Frame Event
Invoke Process Images

Create and
Hurdle Encountered Event Cla;Zia;yeHSrdl e

Invoke Create Path Sequence

Hurdle Encountered Event

Create Path Sequence Invoke Create And Classify Hurdle

Sequence Malch

found/Not found event
invoke Display H

urdle Encountered Event
Messages and Emors Invoke Display Messages

and Errors

Display Messages
andErrors [*
. - Display Statu
First Frame Event Invoke Display
invoke Display Messages and Errors

Massages and Errors

Fig 2-11: The State Transition Diagram for the software Yision One

Perception liexed Obstacte Detection and Avoidance System for Antonontons Vehicles with Self-Locafization Capability

25

Chapter 2 Analysis

2.2.6 Data Dictionary

The analysis model encompasses representations of data objects, function and
control. In each representation, data objects and/or conirol items play a role. Therefore, it
1s necessary to provide and organized approach for representing the characteristics of
each data objects and control item. This is accomplished with the data dictionary.

The Data Dictionary is an organized listing of all data clements that are pertinent
to the systern, with precise, rigorous definitions so that both user and system analyst will
have a common understanding of inputs, outputs, components of store and intermediate
calculations,

Name: ip
Aliases: None
Where used/how used: Object of class ImageProcessor. Used for processing of

images of vidco stream.

Description: Only a single instance of this object is created, it virtually
acts as a master mind, calling and controlling all the other
objects.

Name: pOD

Aliases: None

Where used/how used: Used in Imagce processing class

Description: ObjectDetection class object. Only a single instance of this

object is created. It is used to detect different hurdles.

Name: pNav
Aliases: None
Where used/how used: Pointer to the object of class Navigation. Used in

ImageProcessor class.

Description: Only a single instance of this object is created. 1t 1s used for
navigation of vchicle on a path and around different
hurdles.

Name: pPrep

Purception Bused Cbstacle Detection und Avoidunce Systom for Atonomens Vehicles with Self-Loculizaiion Capability 26

Chapier 2

Analysis

Aliases:
Where used/how used:

Description:

Name:
Aliases:
Where used/how used:

Description:

Nume:
Aliases:
Where used/how used:

Description:

Name:

Aliases:

Where used/how used:
Description:

Name;

Aliases:

Where used/how used:

None

In Imagelrocessor class.

“Pointer to the object of class Perception. Only a single

instance of this object is created. It is used for perception
purposes.

pP!

None

Used in lmageProcessor class.

Pointer to the object of class Path. Only a single instance of
this object is created, This object is kept for adding extra
features to the project. Currently, its contribution to project
1s almost non, although it contains full fledge functional
capability.

wid

None

In ImageProcessor class.

It is a three dimensional integer array. It is used for storing
dimensions of possible hurdle dimensions. Its usc through
out the project is very extensive.

wi

None

In ImageProcessor class.

Used as an index into wid array.

Lptl

None

In ImagePracessor class.

Perception Based Obstacle Detection and Avaidance System for Autonomons Yehicles with Self-Localizasion Capability 27

Chupter 2

Analysis

Description:

Name;
Aliases:
Where used/how used:

Description:

Name:
Aliases:
Where used/how used:

Description:

Name:
Aliases:
Where used/how used:

Description:

Used as bottom left starting point for second pass of ground
detection filter.

Lpt2
None
In ImageProcessor class.

Used as top lcft ending point for second pass of ground
detection filter.

Rptl
None
In ImageP'rocessor class.

Used as bottom right starting point for second pass of
ground detection filter.

Rpt2

None
In ImageProcessor class.

Used as top night starting point for second pass of ground
detection filter.

Perception Bused Obsiacle Detection aivd Avidarce System for Autanumans Vehicles with Self-locatization Capability 28

Chapter 2 Angalysis

2.3 Object-Oriented Analysis

It is a method of analysis that cxamines the requiremients of cnd-user from the
perspective of objects and classes found in the vocabulary of problem domain.

2.4 A Unified Approach to Object-Oriented Analysis

Over the past decade, Grady Booch, James Rumbaugh, and Ivar Jacobson have
collaborated to combine the best features of their individual object-oriented analysis and
design mcthods into a unified method. The result, called the Unified Modeling Language
(UML), has become widcly used throughout tiwe industry.

The following views are presented in UML:

e User Model View. This view represents the system (product) from the user’s
(called actors in UML) perspective.

e Structural Model View. Data and functionality are vicwed from inside the
system. That is, static structure (classes, objects, and relationships) is modeled.

* Behavioral Model View. This part of the analysis model represents the dynamic
or behaviorul aspects of the system. It also depicts the interactions or
collaborations between various structural elements described in the user model
and structural model views.

e Implementation Model View. The structural and behavioral aspects of the
system are represented as they are to be built.

e Environment Medel View. The structural and behavior aspects of the
environment in which the system is to be implemented are represented

2.5 Domain Analysis

This activity, called domain analysis, is pcrformed when an organization wants to
create a library of reusable classes {components) that will be broadly applicable to an
entire category of applications.

2.5.1 Reuse and Domain Analysis

Object-technologies are leveraged through reuse. The benefits derived from reuse
are consistency and familiarity. Patterns within the software will become more consistent,
leading to better maintainability. Be certain to cstablish a set of reuse “design rules” so
that these benefits arc achicved.

Perception Baxed Obsiacle Deteetion and Avoidance System for dutonowes Vehicles with Self-Lacalization Capability 29

Chapter 2 Analysis

2.5.2 The Domain Analysis Process

The goal of domain analysis is straightforward: to find or create those classes that
are broadly applicable, so that they may be reuscd.

Technical Class

| taratura Yarnnamias

Existing "

Annlicatinns Reuse

> [tandards

Customer » .

Saurces of Surves Domain Bomain
Domain) Functional Analysis

Knowledge | Exwet Analysis Modtals Modet

Advire >

Cuntent/Future "

Reniraments

Domain
1 annanes

v

L

Figure 2-12: Input and Qutput for Domain Analysis.

Figure 2-12 illustrates key inputs and oulputs for the domain analysis process.
Sources of domain knowledge are surveyed in an attempt to identify objects that can be
reused across the domain. In essence domain analysis is quile similar to knowledge
engineering. The knowledge engineer investigates a specific area ol interest in an attempt
to extract key facts that may be of use in creating an expert sysiem of artificial neural
network. During domain analysis, object (and class) extraction occurs.,

2.6 The Object-Oriented Analysis Process

The QDA process doesn’t begin with a concern for objects. Rather, it begins with
an understanding of the manner in which the system will be used—by people, if the
system is human-interactive; by machines, if the system is involved in process control; or
by other programs, if the system coordinates and controls applications. Once the scenarto
of usage has been defined, the modeling of the software begins.

A series of techniques is used to pather basic customer requirements and then
define an analysis modei for an object-oricnted system. '

2.6.1 Use-Cases

Use-cases model the system from.the end-user’s point of view. Created during
requirements elicitation, use-cases should deline the functional and operational
requirements of the system. provide a clear and unambiguous description of how the end-
user and the system interact with one anothcr and provide a basis for validation testing.

Pereeption Hased Obstucle Detection and dvoidance Spstem Jor dwimssions Vehicles with Self-Locabization Capabiliy 30

Chapter 2 Analysis

2.6.1.1 Use-Cases in the System

A use-case is a high level picce of functionality that the system provides.
e Activate Application
e Initialize Di:lllog
¢ Perform Post Processing
¢ Perform Real - Time Processing
¢ View Gray Scale Image Space
e View RGB Image Space
e Choose Windows to be dispiayed
e Choose Hurdle Seek Area
o Choose Display Messages Option
e Choose Hurdle Dimensions
e Load Saved Settings
¢ Save New Settings
e Load Paths And Hurdle Database
o Process Frames
o Display Resultant Images
e Display Messages

e [nitialize Modules

Perception Bused Obstacle Detevtion and Avaidunce Sysien for Awvionnmous Vehicles with Self-Localization Capability 31

Chapter 2

Analysis

2.6.1.2 Actors in the System

An actor is anyone or anything that interacts with the system being built. The

actor in our system are:

User

2.6.1.3 Expanded Use-Case Format

Use-Case: Activate Application

Actors: User

Subject: Activates the software application.

Summary: The user gives the software execution command, which sends an
activation message to the application; the application responds the activating and
performing the initialization.

Type: Essential, Primary

Typical Course of Actions:

I. This Usc-Case begins when the user gives the software execution
conumand.

2. The application responds by activating.
3. Tt performs initialization.

4. Starts Message Loop
Alternative Courses of Actions:

6a. Application initialization failed, Exit the application.
Use-Case: Initialize Dialog
Actors: None
Subject: Initializes the Dialog.

Summary: This use-case is used by the Activate Application use-case. It
responds by performing the initialization, and display steps afterwards.

Type: Essential, Pnmary

Perception Bused Obstucle Dewection aud Avaidance Sysiew far Awwnivans Vehicles with Self-Localization Capability

32

Chapter 2 Analysis

Typical Course of Actions:

1. This Use-Case begins when Activate Application usc-case uses this use
case.

It responds by dialog initialization,
Loads Saved Settings.

Initialize Lists.

Loos W

Create Controls and Icons.
Alternative Courses of Actions:
5a. Dialog initialization failed, EXIT the application.
o Use-Case: Perform Post Processing
Actors: User
Subject: Performs Post Processing services

Summary: The use-case is initiated by the user selecting the post processing
option. It performs post processing function.

Type: Essential, Primary
Typical Course of Actions:

1. This Use-Case begins when the user selects Post-Processing option
The Use-Case responds by displaying “Choose .avi file” dialog box

The user selects the .avi file

el S

The Use-Casc sends the specified .avi file information to process frames
Use-Case

Alternative Courses of Actions:
3a. The user does not select any .avi file, close “Choose .avi file” dialog box

3b. The user selects an invalid .avi lile, close “Choosc .avi tike” dialog box
and display “lnvalid .avi file” message

33

Perception Bused Obstacle Detection pnd Avoidunce System fiw Antoniosivons Veliie, Jex with Self-Localization Capability

Chapter 2 Analysis

e Use-Case: Perform Real-Time Processing
Actors: Uscr
Subject: Performs Real - Time Processing services

Summary: The usc-case is initiated by the uscr sclecting the Real-Time
processing option. It performs Real-Time processing function.

Type: Essential, Primary

Typical Course of Actions:

I. This Use-Case begins when the uscr selects Real-Time Processing option
The Use-Case responds by scarching for available camera

2
3. The camera is initialized
4

The Use-Case sends the specified camera information to process frames
Use-Casc

Alternative Courses of Actions:

2a. There is no camera connected, display “Camera not found™” message and
Exit

2b. There are more than onc camera connected to the system, choose the first
available camera

3a. Camera does not respond, display *Camera not responding” message and
Exit

e Use-Case: View Gray Scale Image Space
Actors: User
Subject: View thc Gray Scale Image Space of a specified image
Summary: The Usc-Case displays gray scale - intensity vs frequency graph
Type: Essential, Secondary

Typical Course of Actions:

1. This Use-Casc begins when user selects the “Gray Scale Space™ option

34

Perveption Based Obstacle Detection amd Avoidance System for Autonomeny Yehicles with Self-Loculization Capability

Chapter 2

Analysis

It responds by displaying “Choose .bmp image” dialog box

The user selects a particular bmp image

The Use-Case creates a Gray Scale format of the specified image

. The Use-Case creates Intensity vs. frequency graph

6.

The Use-Case call “Display Resultant Images™ to display the graph

Alternative Courses of Actions:

3a. User does not select a .bmp file, display “Invalid File Format” message

and Exit

4a. The sclected image is alrcady in gray scale, go to step number 5

¢ Use-Case: View RGB Image Space

Actors: User

Subject: View the RGB Image Spacc of a specified image

Summary: The Usc-Case displays RGB - intensity vs frcquency graph

Type: Essential, Secondary

Typical Course of Actions:

1.
2.

This Use-Case begins when uscr sclects the "RGB Space” option
It responds by displaying “Choose .bmp image” dialog box

The user selects a particular .bmp image

The Use-Case inspects RGB channel values of the specified image
The Use-Casc creates Intensity vs. frequency graph of the image

The Usc-Case calls “Display Resultant Images” Usc-case to display the
graph

Alternative Courses of Actions:

3a. User does not select a .bmp file, display “Invalid File Format” message

and Exit

Porception Based Obstacle Dotection and Avoidance Sysion fir Awtonamons Veliicles with Self-Localization Capability 35

Chupter 2 Analysis

® Use-Case: Choose Windows to be displayed
Actors: User
Subject: Sclecting Windows appcaring on the screen

Sumimnary: The Use-Case lets the user sclect the particular windows he wants to
view and those which he docs not

Type: Esscntial, Sccondary
Typical Course of Acfions:
1. The Use-Case begin when the user selects “Windows to be Displayed Option”
2. The user selects windows to be displayed
3. The user selects windows not to be displayed
4. The Use-Case calls “Save New Scttings” to save the user selection
Alternative Courses of Actions:
2a. The user makes no changes, Exit
3a. The user makes no changes, Exit
e Use-Case: Choose Hurdle Seck Area
Actors: User
Subject: To choose the area in which the system would attempt to locate hurdies

Summary: This Use-Case lets the user set the area in which the system would
attempt to locate hurdles

Type: Essential, Sc-e'condary

Typical Course of Actions:

). The Use-Case begins when the uscr selects “Hurdle Scek Arca” option
2. The user selects one of the pre-specificd set of values

3. The Use-Case calls “Save New Settings” to save the user sclection

Percoprion Bused Obstacle Detfeciion amd Avoidance Sysiem for Aucncamans Vehicles with Self-Localization Capability 36

Chapter 2 Analysis

Alternative Courses of Actions:
2a. The user makes no changes, Exit

e Use-Case: Choose Display Messages Option
Actors: User

Subject: Seiccting whether or not user wants to view important decision oriented
messages generated during execution

Summary: This Use-Case lets the uscr sclect whether or not he wants to view
important decision oricnted messages generated during execution

Type: Essential, Secondary
Typical Course of Actions:
. The Usc-Case begins when the user selects “Display Messages™ option
2. The user selects/deselects messages to be displayed
3. The USC-C'E'JSG calls “Save New Scttings” to save the user selection
Alternative Courses of Actions:
2a. The user makes no changes, Exit
e Use-Case: Choose Hurdle Dimensions
Actors; User
Subject: Choosing the dimensions of the hurdle to seek (in pixels)

Summary: This Use-Case lets the user select the dimensions of the hurdlie to seek
(in pixels)

Type: Essential, Secondary
Typical Course of Actious:
l. The Use-Case begins when the user sclects “Hurdle Dimensions” option

2. ‘The user selects onc of the pre-specificd set of values

Perception Based Gbstacle Deteciion und Avoidance Sysiem for Awlonamons Vehicles with Self-Localization Capabiliry 37

Chapter 2 Analysis

3. The Use-Casc calls “Save New Scthings” to save the user selection
Alternative Courses of Actions:
2a. The uscr makes no changes, Exit
e Use-Case: Load Saved Seftings
Actors: Nonc
Subject: Load the selections made by the user for appropriate course of action

Summary: This Usc-Case loads the selections made by the user for appropriate
course of action to be taken on the basis of the choices made

Type: Essential, Primary
Typical Caurse of Actions:

. The Use-Case starts when the user has made all the selcctions and is ready to
proceed

2. The Use-Case calls Use-Case “Initialize Modules” with the selections made
by the user

Alternative Courses of Actions:

la. The user does not make any changes to the settings, call Use-Case “Initialize
Modules” with pre-set values

¢ Use-Case: Save New Settings
Actors: None
Subject: Save the changes to the settings made by the user
Summary: This Usc-Case saves the changes to the scttings made by the user
Type: Essential, Primary
Typical Course of Actions:
I. The Usc-Case starts when the user makes a change to the setting and commits

2. The Use-Case updates and stores changes in the valucs made by the user

Perception Based Obstacle Detection aid Avoidance System for Awononious Vehicles with Seff-Locelizarion Capability 33

Chapter ? . Analysis

Alternative Courscs_of Actions:

ta. The user does not make any changes to the scttings, call Use-Casc “Initialize
Modules” with pre-set values

e Use-Case: Load Paths And Hurdle Database
Actors: None

Subject: Loads the Database of Paths and Hurdles encountered and stored on the
previous runs

Summary: This Use-Case loads paths and hurdle encountered and stored on the
previous runs

Type: Essential, Primary

Typical Course of Actions:

t. This Use-Case begins when Use-Case “Initialize Modules™ calls it to load
previous paths and hurdles

2. The Use-Casc loads Paths from the paths database
3. The Use-Casc loads hurdles from the hurdle database
Alternative Courses of Actions:

2a. “Current -Path” folder is not empty; call Use-Case “Display Messages” with
“Please Empty the Current Path Folder™ message

2b. The format of Paths database is invalid, call Use-Casc “Display Mcssabcs
with “Paths Database format Invalid™ message

3a. The format of Hurdles databasc is invalid, call Use-Casc “Display Messages”
with *“Hurdles Database format lnvalid” message

o Use-Case: Process Frames
Actors: Nong
Subject: Process the frames from input stream

Summary: Processing the framcs of input stream (Real-Time or Post-Processing)

Perception Based Obstacle Detection and Avoidance Systom for Autonomous Vehicles with Self-lacalization Capability 39

Chapter 2 Analysis

Type: Essential, Primary

Typical Course of Actions:

}. This Use-Case is called by “Initialize Modules™ use case

2. The Use-Case retricves the next frame form the input stream
3. It applies processing on the frame

4. Tt calls Use-Cascs “Display Resultant Images’™ and “Display Messages™ based
on the result of processing on that frame

Alternative Courses of Actions:

2a. The frame cannot be retrieved, “Display Messages” with “Frame Cannot be
retrieved” message

2b. Previous frame was the last frame, “Display Messages” with “Processing
Complete” message

» Use-Case: Display Resultant Images
Actors: None
Subject: Displays Resultant Images based on the processing performed

Summary: This Use-Case is used for displaying resultant images based on the
processing performed

Type: Essential, Primary
Typical Course of Actions:

. The Use-Case begins when any other use-case requests it to display a
particular image

2. The Use-Case responds by creating a window in which to display the ima{ge
3. The Usc-Cuse loads the specificd image into that window

4. The Usc-Case displays the window with the specified image in it

Perception Based Obstucle Detection and Avoidatice Systewm fir Autonomans Vohicles with Selj-tocalizition Capability 40

Chapter 2 Analysis

Alternative Courses of Actions:

2a. Window cannot be created, call “Display Messages” Use-Case with “Cannot
create Window™ message

3a. The image cannot be loaded in the create window, call “Display Messages”
Use-Case with “Cannot load image in the window™ message

4a. Window cannot be displayed, call “Display Mcssages” Use-Case with
“Cannot display Window” message

o Use-Case: Display Messages
Actors: None
Subject: Displaying messages

Summary: This Use-Case is used for displaying messages generated during
exccution

Type: Essential, Primary

Typical Course of Actions:

1. The Usc-Casc begins when any other use-case requests it to display a
particular message

2. The Use-Case responds by receiving the sent message

3. The Use-Case creates a message box to display the message
4. The Use-Case displays the message in the message box
Alternative Courses of Actions:

2a. Message is not in proper format; display a message “Improper format of
received message”

3a. Message box with specified propertics cannot be created, display a simple
message with “Message box with specificd properties cannot be created”

4a. Message cannot be displayed, display a simple message with “Message cannot
be displayed properly”

Perception Bascd Obstacle Dvteetion and Aveidance System for dutonomous Vehicles with Self-Loealization Capability 41

Chapter 2] . Analysis

Use-Case: Initialize Modules
Actors: None
Subject: [nitialization of all the modules

Summary: This Use-Case performs initialization of all thc modules according to
the requirements of the user’s choice

Type: Essential, Primary

Typical Course of Actions:

I. The Use-Casc begins when the Use-Case “Load Saved Settings” calls it with
specification about what coursc of action to take.

2. The Use-Case initializes all the internal modules that would be required
3. The Use-Case calls Use-Casc “Process frames”™
Alternative Courses of Actions:

2a. Module(s) cannot be initialized, call Use-Case “Display Messages” with
“Unable to initialize Modules™ message and Exit.

2.6.1.4 Use-Cases Diagram

Use-Case diagram in Figure 2-13 shows some of the usc-cases in the system,

some of the actors in the system, and the relationships between them.

DPorception Based Obstacle Detection and Avoidance System fir Autenonnus Vekicles with Self-Locelization Capability 42

Cheapter 2 ; Analysis

Activale Application

Perform Real-Time
Pracassing

initiaiize Dialogs
Load Saved
Settings

Initialize Modules

Perform Post
Processing

Sellings

View Gray Scale
age Space

User

View RGB

mage Spage
Load Path Database

L

Choose Windows
0 Be Displayed

Choose Hurdie
Seek Area

Process Frames

Display Resuttant
images

Choose Messages
Display optio

Display Messages

!

Choose Hurdle

Imension

Figure 2-13: Use-Case Diagram for Vision Quc - Perception Based Obslacle Detection and Avoidance
System for Autenomous Vehicles with Self-Lacalization Capubility

Perception Based Obstacle Detection and Avoidance System for duiononious Vehicles with Self-1.aculization Capability 43

Chupter 2 Analysis

2.6.2 Conceptual Model

Conceptual Model in Figure 2-14 depicts the concepts found in the domain of the
system. In conceptual model we identify the conceptual (as opposcd to physical) objects
in the application.

CAdvancedFuncliondily Ctiect Detedtion
T char Name{1]30%
il m_SA 1 1 CWin10g e | plimage” welia
od m g5 g\ -pllmege” bock
wdm bl " AmegeProcessor p pllmege® brrwnhi
Int @ HD Credes Jpllmege* greend
<y
A
Identifies
Hede Q'ea & Path
4 Hurdhurrber inbgW
u:‘:v]-:qm:q * * 1 [1 .—1“ :[I': ?;‘Mlma
i »- L= : X
|_inomeay | I S R
1 | i 1
Credes Afimage * gr
i OPgint Lot N
4| ey g
W
S]
Percegtion

Navigaion performs Credes B

mide | 1 Y 1 st metcheq 10t

dnl Omer{20003 P— S A\ | A Reaced1q

o e i gy
Jdlmge'_plhﬂ-uizd-| | -Carring Pahshurg 10

Figure 2-14: Conceptusl Model for Vision One - Perception Based Obstacle Detection and Avoidance
Spstem for Autonomous Vehicles with Self-Localization Capability

44

Perception Based Obstacle Detection and Avoidance Systent for Autunonous Vehicles with Self-Locatization Capability

Chapter 2 Analysis

2.7 Conclusion

In this chapter we have given detailed description of our analysis phase of the
system development. In the beginning of this chapter, we have given an introduction to
the basic concepts of analysis and different techniques to carry out analysis phase. Since
at the beginning of analysis phase, our approach was structured, which later on evolved
into object onicnted, we have presented our work in both structured and object oriented
approaches to analysis.

Perception Based Obstucle Deteciion and Avoidance Sysiem for Autonomous Vehicles with Self-Localization Capability 45

Chapter 3
Design

Chaprer 3 Design

3. DESIGN

Design is an iterative process transforming requirements into a “blueprint” for
constructing the software. 1t is the first step in the development phase for any engineered
product or system. [t can also be defined as “the process of applying various techniques
and principles for the purpose of defining a device, a process or a system in sufficient
detail to permit its physical realization.”

The designer's goal is to produce a model or representation of an entity that will
later be built. The process by which the model is developed combines intuition and
judgment based on experience in building similar entities, a set of principles and/or
heuristics that guide the way in which the model evolves, a ultimately leads to a final

design representation.

3.1 Obiject-Oriented Design

Object-Oriented Design is a process of object-oriented decompositionand a -
notation for representing logical and physical as well as static and dynamic models of the
system under design.

The four layers of object-oriented design pyramid are:
The Subsystem Layer contains a representation of each of the subsystems that

enable the software to achicve its customer-defined requirements and to
implement the technical infrastructurce that supports customer requirements,

¢ The Class and Object Layer contains the class hierarchies that enable the system
to be created using generalizations and increasingly more targeted specializations.

¢ The Message Layer contains the design details that enable each object to
communicate with its collaborators.

o The Responsibilities Layer contains the data structure and algorithmic design for
all attributes and operations for each object.

3.2 Design Patterns

The best engineers in any field have an uncanny ability to see patterns that
characterize a problem and corresponding patterns that can be combined to create a
solution. Throughout the OOD process, a software engincer should look for every
opportunity to reuse existing design patterns (when they meet the needs of the design)
rather than creating ncw oncs.

Perception Based Obstacle Detection and Avoidance Sysient for Autonomous Felicles with Solf-Locplizosion Capability 46

Chapler 3 Design

3.2.1 Describing a Design Patterns

All design pafterns can be described by specifying the following information:

e The name of the pattcrn

e The intent of the pattern

e The “design forces” that motivate the pattern

o The sofution that-mitigates these forces

o The classes that are required to implement the solution

¢ The responsibilitics and collaboration among solution classes
e Guidance that lcads to effective implementation

e Example source code or source code templates

e Cross-references to related design pattemns

The design pattern name is itself an abstraction that conveys significant meaning
once the applicability and intent are understood.

3.2.2 Using Patterns in Design

In an object-oricnted system, design patterns can be used by applying two
different mechanisms: inheritance and composition. Using inheritance, an existing design
pattern becomes a template for new subclass. The attributes and operations that exist in
the pattern become part of the subclass.

3.3 Object-Oriented Design Process

UML design modcling addresses the structural model, behavioral model,
implementation model, and environmental mode! views.

3.3.1 Structural Model

Data and functionality are viewed from inside the system. That is, static structure
(classes, objects, and relationships) is modeled.

3.3.11 What is a Class?

A class is something that encapsulatcs information and behavior. We take a little
bit of information and a little bit of behavior, and encapsulate them into something called

a class.

Perception Baxed Obstacle Deiection and Avoidance Sysicm jor Autennons Vehicles with Seif-Localization Capahility - 47

Chupter 3 Desion

3.3.1.2 Finding a Class

A good place to start when finding classes is the flow of events for the use-cases.
Looking at the nouns in the flow of events will let us know what some of the classes are.
When looking at the nouns, they will be one of four things:

¢ Anactor
e Aclass
¢ An attribute of a class

e An expression that is not an actor , class, or attnbute

By filtering out all of the nouns except for the classes, we have found classes
identified for our system.

3.31.3 Class Diagram

Since the project “Perception Based Obstacle Detection and Avoidance System
Jor Autonomous Vehicles with Self-Localization Capability” has quite a number of
classes, each having a number of members, the class diagram is represented first by a
diagram showing the relationship betwcen different classes in the system, while the later
class diagrams show each class with detailed listing of its members.

CAd vanced Fundionality O ect Dategion
! -
A
Identifies
Hurd'w o O:ﬂ = Prth
1
£ 1 1
flnwﬁm::u___ u A *
N 1 1 Loads
eales
‘4 1
atoston pertorns Creates Provee
- o

Fig 3-1: Class Diagram showing different classes and their inter-relationship for the project
“Perception Based Obstacle Detection and Aveidance System for Autonomous Vehicles with Self-
Localization Capability”

Pereeption Baved Obsiacle Detection and Avaidarice System for Autonomous Vehicles with Self-Localization Capability 48

Chapter 3

Design

ImagceProcessor

- Img: Ipllmage *

- Cimg: Ipllmage *

- GTex: Iplimage *

- WTex : Ipllmage *

- Gr: Ipllmage *

- Bnr : Ipllmage *

- CSee : Iplimage *

- dummy : Iplimage *
- grgrTex : Ipllmage *
- grwlTex : Ipllmage *
- heck : Ipllmage *

- ObjHurd : IplImage *
- BackGrnd: IplImage *
- LptI: CvPoint

- Lpt2: CvPoint

- Rptl: CvPoint

- Rpt2: CvPoint

- HurdWid - int

- HurdHght : int

- Lbound : int

- Rbound : int

- wid[][] : int

- wi:int

- pos :int

- 1000 : int

- module int

- HurdInFrame int

- FrNum : int

- ClearCheck : bool

- HurdTime : int

- StartPoint : CString

- Destination : CString
- HurdleNames][] : CString
- HurdNumber : int

+ pNav : Navigation *
+ pPrep : Perception*
+ pHurd : Hurdle*

+ pHurdArr{] : Hurdle**

Perception Based Obstacle Detection and Avoidunce System for Autonomons Vehicles with Self-Loculization Capability

49

Chapter 3 Design

+ indHurd : int

+ pP1 : Path*

+ pOD : ObjectDetection*
+im_gs : bool
+im_LL : bool
+im_winl : bool
+im_win2 : bool
+im_AIS : bool
+im_SA :int
+im_HD : int
+im_ImgSp : int

- SetUpThings() : int

- SearchitUp() : void

- MatchltPal() : Iplimage*
- FllIChs() : void

- DoMore(): void

- 1t() : void

- CopletePic() : void

- QuickSort() : void

- Sort]t1() : void

- SepChans() : void

- FindRope() : void

1 - LoadnProcessOriglmg() : void
- AllProcessing() : void

- TexCompareGround() : void
- TexCompare Wall() : void
- LiveCapture() : void

- Display() : void -

- DrawPath() : void

- Filling() : bool

- MyFloodFill() : void

- MasterMind(): void

- SetBounds(int) : void

- ScarchUp() : bool

- InitWid(} : void

- fillupQ) : void

- InocGuilty() : bool;

- AddIt() : void

Perception Based Obstacle Detection amnd Avoidance System for Autonomeus Vehicles with Self-localization Capability 50

Chapter 3

Desian

- SeeDummy();int}) : void

- DestroyEm() : void

- SetHurdDims(): void

- Eper(): void

- HurdSearchUp() : bool

- HurdfillUp() : void

- UpsideDownChk() : void
- InUDC(): void

- DisplayForCam(): void.

- void InitEvForCam() : void
- InitOnEvFrame() : void

Fig 3-2: Class Diagram for Class ImageProcessor

Path

- bgW : it

- bgH :int

- counter ; int

- BGI : Iplimage*

- pos : CvPoint

- StartPoint : CvPoint

- EndingPoint : CvPoint
- FrNum : [ong int

- PosArr[]]] : int[][]

- indPA : int

+ Savelt() : void

+ SetPosArr() : void

+ ByForcelnit() : void
+ ShowAgain() : void

+ DrawThePath() : void
+ CreatenFill() : void

+ Path() : void

Fig 3-3: Class Diagram for Class Path

Perception Based Obstacle Detection and Avoidance System for Aumonmons Vehicles with Self-Loculization Capability

51

Chapter 3

Design

ObjectDetection

- wallet ; Iplimage*
- walletWd : int

- walletWid : int{][|
- walletO12 : int[]]]
- wal : int

- book : IplImage*
- bookWd : int

- book Wid : int

- book012 : int[][]
- boo : int

- brownH : Iplimage*
- brownHWd : int

- brownHWid : int{]{]
- brownHO12 : int[][}
- brw : int

- greenlI : Ipllmage*
- grecnHWd : int

- greenHWid : int[]]]
- greenHO12 @ intf]])

- grn :int

- purpleH : Ipllmage*
- purpleHWd : int

- purpleHWid : int])]
- purpleHO12 ; im[}])
-prlint

+ Name : char[](]

+ DispCols() : int{]|}
+ FillUp() : bool

+ FillBelow() : bool
+ FillRow() : void

+ InitDims() : void
+ CalcPims() : void
+ FilBShade() : void

+ ObjectDetection() : void

+ CaleDims1() : void
+ FillRow1(} : void

Fig 3-4: Class Diagram [or Class ObjectDetection

Perceprion Based Obstacle Detection and Avoidance System for Antonomous Vehicles with Self-Loculization Capability

52

Chapter 3 Desicn

Hurdle

- HurdPic : Ipllmage*
- HurdName : CString
- HurdNumber : int

- HCVals : int[][]

- indHC : int

+ count : int

+ Boufy : CString

+ Toufy : CString

+ foo() : void.

+ Hurdle() : void

+ CreatenCopy() : void
- FCVals() : void

- SetWid() : void

- Savelt() : void

- ShowHurdle() : void
- SepChans() : void

- QuickSort() : void

Fig 3-5: Class Diagram for Class Hurdle

Percepiion Based Obstacle Detection and Avoidance System for Autonomaous Vehicles with Self-Localization Capability 53

Chapter 3 Design

Navigation

- pathClear : Ipllmage*
- pathBlocked : Iplimage*
- mLeft : Iplimagc*

- mRight : Ipllmage*

- mStraight : Iplimage*
- mCollm : Ipllmage*
+ module : int

+ Dimen : int[]{]

+ Ndi : int

+ Lpt] @ int

+ Rptl :int

+ picHght : int

- Poplt(} : void

- ComHQ() : void

- DestroyEm() : void
+ BekorClr() : void

+ Movelmage() : void
+ InitWinsa() : void
+DestroyWins() : void

Fig 3-6: Class Diagram for Class Navigation

3.4 Object Diagram

An Object diagram captures the instances and links of the system. It is built
during analysis and design phase. Object diagram illustrates data/object structures.

Following are different Object diagrams identified in the project “Perception
Based Obstacle Detection and Avoidance System for Autonomous Vehicles with Self-
Localization Capability”.

Since the project “Perception Based Obstacle Detection and Avoidance System
Jor Autonomous Vehicles with Self-Localization Capability” has quite a number of
classes, each having a number of members, the object diagram in some cases can not be
represented on one page, hence the diagram is extended from one page to the next with a
“continued...” at the end ol the page representing that this diagram is a continuation of
the diagram at the respective previous page.

Perceprion Bused Obstacle Detection and Aveidance System for Autonamans Vehicles with Self-Localization Capabitity 54

Chapter 3

Design

theApp:CVisionlApp

Name = “theApp”

—

Dlg:CVisioniDlg

Name = “dig”

pAF:CAdvancedFuctionality

Name = "pAF”

ip:ImageProcessor

. Name =*“ip”

gr:lpllmage

Name - ugrﬂ

img:!Iplimage

Name = “img”

SC:HighGUl

Name = “Separated Channels™

Limg: HighGUI

Name = “Loaded lmage”

Fig 3-7: Object Diagram for View Channels

Percepiion Based Obstacle Detection and Avoidance System for Aulononnus Vehicles with Seif-Localization C apability

55

Chapter 3 Design

theApp:CVisionl App

Name = “theApp”

Dlg:CVisioniDlyg

Name = “dlg"

ip:ImageProcessor pAF:CAdvancedFuctionality

Name = “ip" Name = “pAF”

BD: HighGUI

Name = “Back Drop”

cvCam: HighGUI

Name = “Cimi Window™

Dum: HighGUI

Name = “Gray Scale”

LL: HighGUI

Name = “Loading Library”

Dec: HighGUI

Name = “Decision™

MovCom: HighGUI

Name = “Movement Command™

Continued...

Porception Based Obsiacle Dereetion ard Avoidance System fir Autononons Vehicles with Self-Localization Capability 56

Design

Chapter 3

img:1pllmage

Name = *img”

Cimg:ipllmage

Name = “Cimg"

GTex:1pllmage

Name = “GTex”

WTex:[pllmage

Name = “WTex”

gr:ipllmage

Name = “gr"”

Bnr:iplimage

Name ="Bnr”

CSec:lplimage

Name = “CSee”

dummy:lpllmage

Name = “dummy”

grgrTex:plimage

Name = “grarTex”

grwlTex:Iplimage

heck:Iplimage

Name = “grwlTex"

Name = “heck”

CbjHurd:iplimage

BackGmd: [plimage

Name = “ObjHurd”

Name = “BackGmd”

Continued...

37

Perception Based Obstacle Detection amd Avoidance Systcat for dutonomons Vehicles with Self-localization Capability

Chapter 3 Design

pNav:Navupgation

Name = “pNav"

pOB:ObjectDetection

Name = “pOi3”

pP):Path

Name =“Path™

pPercp:Perceplion

Natne = “pPercp”

pHurd:Hurdle

Name = “pHurdle”

Fig 3-8: Object Diagram for Real Time processing

Perception Rased Obstacle Detection and Avoidance System for Autanomous Vehicles with Self-Loculization Capability 58

Chapter 3 Desien

3.5 Behavioral Model

This part of the analysis model represents the dynamic or behavioral aspects of
the system. It also depicts the interactions or collaborations between various structural
elements described in the user model and structural model views.

3.5.1 Interaction Diagrams

An Interaction diagram shows, step-by-step, one of the flows through a use-case.
There are two types of Interaction diagrams:

e Sequence Diagram represents dynamic behavior which time oriented. It can
show the focus of control.

¢ Collaboration Diagram represcents dynamnic behavior which message oriented. It
can show the data flow.

3.5.141 Sequence biagram

A Sequence diagram shown in Figure 3-9 is an intcraction diagram, which is
ordered by time; it is read form the top to the bottom.

We can read this diagram by looking at the objects and messages. The objects that
participate in the flow are shown in rectangles across the top of the diagram.

The actor objects, involved in the use-casc are also shown in the diagram.
Each object has a /ifeline, drawn as a vertical dashed line below the object. A
message is drawn between the lifelines of two objects to show that the objects

communicate. Each message represents one object making a function call of another.

Messages can also be reflexive, showing that an object is calling one of its own
operations.

Perception Based Obstacle Detection and Avoidance System for Autanomous Vehicles with Self-Localization Capability 59

Chapier 3

Design

Applicalion: Visim Om:

(]
]
]
: PAFC Advaneedunstionalily
User ' —
t
' . !
1 , N N
1 Activate() '
*]
L]
> '
H CoCruateInstancet }
1 L]
\ — Initialize Dialogs
! .
L]
1
| ' D.oad Settings
+]
1 1
. ! Save New Settings
L]
]]
‘]
! 1
, ip: lmageProcessor
! "' - T
i K 4
' 1
: —p Initialize | pOD:Objectletection
1
: : :
]
: Createlnstancy ! pNav:Navigation
1
' ’ : :
L] . 1 '
: : ! '
: ' Apply User Lo ey
. ! Seltings v Daabise pRY: 1t
i ' L : T
| ' ' > ' ¢
' : . 1 \
i : ' Crcafeinstan ' ' e Precepli
[]
; i : : : :
i H : g ------) : , :
! : : ' - : .
']] : Load Helper]
r N » N . "M ']
1]] ' b] '
i N N ' N]
4 1] N 1]
' ' !) ! '
' : . Createtustance ! :
+]] . ‘ :
1} [i 1 1)
1 ’] N +]
1 (] 1 N » L}
! ' 1 N +]
l : : - : ' :
' ' ' R L A m ’ Load Directions '
1 : . ' ! and Wamning .
; : ' ; i Messages Initiatiz and
! ' 1 . ! Jistablish
' . ' ' ' ! Startiug (Wit
. ! ' L] -
M L] l L ' .
: . ! Createlustanc: . '
' '] T : [
M ' ' N H]
P - . :
i : : : 1 :
M : : |‘- -------- : -------- :- -------] (]
! 1] f ' ' :
! ' 1 ' ' [!
] 1 ' ' ' '
¥]] N N ' :
[l ' ‘ . ' ' '
! ' | ' ' [
' 1 ' ' ' . :
] . . .

Hurd:Hurd

P L L L L N R R A Y]

Perception Baved Gbsiacle Detection and Avoidance System for Aitearonins Vehicles with Self-Localization Capability

60

=

Design

Chapter 3

pODCHicetd detechiun

Application:Vision (ne

F
: it
s =
) I o e T
.m - [0 g m
i| &3 EE: o 1 . a
M.m 3%) .m.m dm
= = 2 | In = 2
m &£ 2§ ! 524 T e
l“ 1
= R T O S
£ ")
= F ' ' F 3
' t "
y
! _ .
=] [] '
= ' ' '
& ' ¥ '
T S LD ;
: " frmmm oo e R RAORURERTIEE 3
[}] L]
[' |
g ' o ' '
5] ¢ ! -~ "
= 3 - ! b4
g = = -1
3 S S S LSS g e teeeo 3% qeomemnaed- S -
= 3 ' = 1 £iy k] '
Z 5 ' ~ ' == = "
= S , | £23 £ !
' 1 z2x= b \
' i 2 '
] ! = '
- e Her m mmamwhwa—= ' :
: & e L I S e e e Ll
> o .) "
= =] ! " i F Y ' '
EIRE L DL T :
- = [] L]
= = " ﬂ.mmw “ mm.m = [|
3 £ T =8Exm v SFE & ! !
£ 3 v EEZ A v RZz Z ! .
ﬂw m h 4 [a f Y
2] < r-
= g
>
]
=
e
(5N
<
P

continued...

ol

Perception Besed Obstacle Detection and Jvoidance Sysicm fur Autonemons Velicles with Self-lovalization € ‘apability

Design

pOD:Chject Xetection

Applicalion; Vision One

Chapier 3

E g
T g8 - § el
=2 ia i
. £8 8t
E =3
R =
% 3 8
2
£ erommmrrr e VA
& - -7
= B ! 4
i
]
t
= 1]
] i
T ||| mcesecccscs s emnn .
= " y
, A
t
a 1
2 ~ '
] z '
s g '
z = '
F leccecacencmccccccmescmcmcamamafe B acemeeo—n- L 2
N g H £ - -
Z = ; = e
= £] = z
H ' = 2 z
5 .. - %
-] % - -
| et m— e e memmmammeaeammmmmmeh e mamaccccaa doemmmn - &
]
oy 3 H =
= c 23 ' e
= 2 £5 _ < &
2| | 8| 3ze £E " z g
HIE L E 23 ! ;i | @
2 z 2232 = ! £
50|z T
= -
m .. - ---
m e
3
<
T U) EFS .
M ey
5] e
X o~
g z
... N N

Sequence Dizgram for Real-Time/Post Processing navigation with a singte hurdle cucounter

Fig 3-9

62

Perception Based Obstacle Detection and Avoidance System for didonontons Vehicles with Self-Localization Capability

Chapier 3 Design

Application: Vision One

]
L]
:I pAEC AdvancedFunctionality
User ! T
1 1 1
‘ . ‘ ‘
v Activate()) !
: '
—M
1
1
)

DoModal(}

» Initialize Dialogs

D

l.oad Setlings

U

Save New Scitings

O _.

ip: ImapeProcessor

A
’
L
1
L]
L)
L)
L)
]
1
)

—
1

g Initigalize

]
]
]
)
L]
.
]
]
1
1
L]
L]
[}
)
1
]
]
L
L}
]
1
1
)
1]
)
1
1
1
1
'
1
’
]
]
: Createlnstance()
! .
L3
L}
)
]
1
i
+
E
1
[}
1
1
»
]
L)
1
1
L
1
]
L)
L
1
L
L]
]
1
L]
]
1
L}
L}
]

Creinte
fmape Ciraph

U

e iy g g

Phsplay
b Image Graph
, O
:‘ --------------------------- L3
L) L]
i + L]
A
] Destroy () 3<
1 ' et
, Destray {)
1 J
! ' Destioy () b <
Fig 3-10: Sequence Diagram for displayiag graph (Gray scalc / RGB) of an jmage
.
} g Perception Hased Dbstacle Deteotion aind Avaidance System Jor Autonmons Vehicles with Self-Localization Capability 63

Chapter 3 Design

3.6 State Transition Diagram

State Transition diagrams show the life cycle of a single objcct, from the time it is
created until it is destroyed. Unlike Activity diagram that is activity-oriented, State
Transition diagram is event oriented.

Following are different State Transition diagrams identified in the project
“Perception Based Obstucle Detection und Avoidance System for Autonomous Vehicles
with Self-Localization Cupabhility”

OnStreamEnd

Seek Mode

OnHurdleFound OnSuccessiulNavigation @
L4
~
Navigatton
Mode

OnStreamEnd

Fig 3-11: State Transition Diagram for Class linageProcessor

Perception fused Obstacle Detection and Aviidance System for Autenomous Vehiclexs with Nelf-Localization Capability 64

Chapter 3 Desipn

Scan Path

OnPathBlocked

OnPathClear

r Y
Display Path Clear Find which way to Display Path Block
Message take Mcssage

OnbecisionMade

r

Display Best
Navigation Strategy

A

N

Fig 3-12: State Transition Diagram for Class Navigation

Perception Based Obstacle Detection and Avoidance System for Autonomans Vehicles with Self-localization Capability 05

Chapier 3 Design

Maich

OnUnRecognized OnRecopnized

Name the
hurdle

Fig 3-13: State Transition Diagram for class ObjectDetection

OnUnRecognized

Seek Maode

OnRecognized

h 4

Predic

t Next |
Hurdle

Fig 3-14: State Transition Diagram for Class "creeplion

Perceprion Based Obstacle [xteciion and Avoidance System for dutonomous Vehicles with Self-Localization Capability 66

Chuapter 3 Design

FFind Choice
Type

OnRGBSpace

OnGrayScaleSpace

Create RGD [mage Create Gray Scale
Space Image Space

Display Image Space

Fig 3-15: State Transition Diagram for Class Perception

Perception Hased Obsiacle Detecting and Avoidance System for dutemsmnons Vehicles with Self-lovalization Cupability 67

Chapter 3 . Desivn

3.7 Activity Diagram

Activity diagrams show the life cycle of a single object, from the time it is created
until it is destroyed. Unlike State Transition diagram that is event oriented, Activity
diagrams are activity-oriented,

Following are different Activity diagrams identified in the project “Perception
Based Obstacle Detection and Avoidance System for Autonomous Vehicles with Self-
Localization Capability”

No

More Hurdles
lo Load?

h 4

Yes

< Load Hurdle)

Fig 3-16: Activity Diagram for Load Paths activity

Perception Hased Obstacie Deicction and Avoidance System for Autonomans Vehicles with Self-localization Capability 63

Chapter 3 Design

C Creale ImageProcessing Object >

4 ,
\ 4
Create Navigation Object
Create Perception Object

) _ Y
Create ObjectDetection
reate O Je_ct etection Create Path
Object -
Object

No All Modules Yes
foaded
Successfully?
Display Modules Display All Modules Loaded
Initialization Failurc Successlully Message

Message

Fig-17: Activity Diagram Initialize Modules Activity

Perception Bused Obstacle Detection and Avoidance Sysiem for Autonomons Vehicles with Self-localization Capability 69

Chapter 3 Design

More Paths to No

lL.oad?

Yes

C l.oad Path)

Fip 3-18: Activity Diagram for Load Paths activity

Current Path No

Folder
Empty?

Display Lirror Message)

Fig 3-19:. Activity Diagram for Validate folder activity

Perception Based Obstacle Detection amd Avoidance System for Awtononinis Vehicles with Self-Localization Capability 70

Chapter 3 Design

C Find SC(]I.’ICHCC Status)
C Create Reverse Sequence)

Compare with next

Reverse Sequence in j

Database

Yes

l

Notify Other
Modules

More
Scquences
in Database

Fig 3-20: Activity Diagram for Match Hurdle Sequence in Reverse Activity

Perception Based Obstacle Detection and Avoidance System for Awoiomons Vehicles with Self-Localization Capability 71

Chapter 3 Design

Gind Scquence Status)

Compare with next \‘

Sequence in Database

Yes

.

Notify Other
Modules

More
Sequences
in Database

Fipg 3-21: Activity Diagram for Match Hurdle Sequence Activity

Perception Based Obstacle Detection and Avoidunce Systea fur Awtonomoux Vehicles with Nelf-Localization Capability 72

Chapter 3 Design

C Prompt for File Selection)

b

C Retrieve Selected File)

Not a .avi file .avi lile

Validate
FFile

r

(Display Error Message) Call File Processing Functions

Fig J-22: Activity Diagram for Choose file for processing activity

Perception Baved Obstacle Detection and Avoidance System for Autonomous Vehicles with Self-Localization Capability 73

Chapter 3 Design

(Display Real Time Processing option)

No Yes

A 4

y C Get Camera Count >

Display Error Message

Select first Available Yes More Than
Camera -— One
(Camera
No
Imt:allze the camera Sck.cl the Camera)

‘ .(Start Streaming Video

Fig3-23: Activity Diagram for Real Time Processing Activily

Perception Based Obstacle Detection and Avoidance Systens for Awlonomous Vehicles with Self-Localizition Capability 74

Chapter 3 Design

(Extract Hurdle’s Propertics)

h 4
Compare with next | Iurdle\.

in Datahase
1

No Yes

y

More
Hurdles in
Database

Name the Hurdle as that
of the match

Name the Hurdle
as “UNKNOWN"

Fig 3-24: Activity Dingrnm for Recognize activity

Perception Bused Qbstacle Detection and Avoidance System Jor Autonomous Vehicles with Self-Localization Capability B b

Chapter 3 Desiyn

(Get BMP file)

No Yes
L 4
Display Error Message Create and Save Gray Scale
image
Display Gra Scale
Channel

k 4
O
F 3

Fig 3-25: Activily Diagram for View Gray Scale channel Graph Activity

Perception Based Obstacle Detection and Avoidance System for Autonanns Vehicles with Self-Localization Capability 76

Chapter 3 Desion

C Get BMP file >

No Yes
Display Lrror Message Separate and Save R,G&B
channels
Display Channels

A 4
A

Fig 3-26: Activity Diagram for View RGDB channel Graph Activity

Percepiion Bused Obstacle Detection and Avoidance Systcm Jor Awtoeomons Vehicles with Self-Localization Capability 77

Chupter 3 Design

3.8 Conclusion

In this chapter we have given dctailed description of our design phase of the
system development. In the beginning of this chapter, we have given an introduction to
the basic concepts of design and different techniques to carry out design phase. Our
approach to design was totally object oricnted. We have thoroughly documented this
phase and given diagrams wherc ever possible for the conventence of someone trying to
understand our system. Due to complexity of the system, some diagrams can not come
on a single page and require to be stretched to multiple pages. In such cases, we have
mentioned this at the last line of such diagram with a “continued...” which means the
diagram stretches to next page.

Perception Based Obstacle Detection and Avoidance System jor Autonomans Vehicles with Sclf-Loculization Capability 78

.Chapter 4
Implementation

Chapier 4 Implementation

4, IMPLEMENTATION

This is the second last activity in the project and comes before testing of the
whole program. However the partial testing can be done during implementation after
completion of every module.

This is very important phase in thc software engineering paradigm because no
matter how efficiently analysis has becn done or how brilliantly the design has been
prepared, it all depends on what you present in form of implementation. Although
programming is an outgrowth of analysis and design, all the programming and
implementation skills have to be applied here, because any inefficiency on part of the
programmer will hammer the quality of the software. Another important aspect of this
phase is that, although this phase is succceded by the testing phase, but during the
implementaion phase the programmer is best equiped for glass box testing of the
software, because at this stage he has the access to the code.

4.1 Implementation Techniques

The following techniques are used during the implementation of our project.

4.1.1 Object-Oriented Programming

Although all areas of object technologics have received significant attention
within the softwarec community, no subject has produced more books, more discussion,
and more debate than object-oriented programming (OOP).

The software engineering viewpoint stresses OOA and OOD and considers OOP
(coding) an important, but secondary, activity that is an outgrowth of analysis and design.
The reason for this is simple. As the complexity of systems increases, the design
architecture of the end product has a significantly stronger influence on its success than
the programming language that has been used. And yet, “language wars” continue to
rage.

4.1.2 Component-Based Programming

In the software engineering context, rcuse is an idca both old and new
programmers have stressed upon, since the carliest days of computing, but the early
approach to reuse was ad hoc. Today, complex, high-quality computer-based systems
must be built in very short time periods. This mitigates toward a more organized

approach to reuse.

Perception Based Obstacle Detection and Aveidance System for Aulononious Vehicles with Self-Locatization Capability 79

Chapter 4 Implementation

4.2 Implementation Tools

Our software is developed using two tools Microsoft Visual C++ and Intel’s free
Computer Vision tool called OpenCV. There arc some reasons to sclect Visual C++ and
OpenCV. The basic rcason is VC++ provides ease for developing event-based, GUI
applications for Windows based operating system. While OpenCV Is emerging as a very
strong Computer-Vision tool capable of handling real time processing needs. Along with
that, OpenCV is compatible with VC++.

4.2.1 Microsoft Visual C++

Microsoft Visual C++.NET 2003 provides the dynamic development environment
for creating Microsoft Windows—based and Microsoft .NET-based applications, dynamic’
Web applications, and XML Web services using the C++ development language. Visual
C++ NET includes the industry-standard Active Template Library (ATL) and Microsoft
Foundation Class (MFC) libraries, advanced language cxtensions, and powerful
integrated development environment (IDE) features' that cnable developers to edit and
debug source code ctticicently.

It provides developers with a proven, object-oricnted language for building
powerful and performance-conscious applications. With advanced template features, low-
level platform access, and an optimizing compiler, Visual C++.NET delivers superior
functionality for generating robust applications and components. The product enables
developers to build a wide variety of solutions, including Web applications, smart-client
Microsoft Windows-based applications, and solutions for thin-client and smart-client
mobile devices. C++ is the world's most popular systems-level language, and Visual
C++.NET 2003 gives developers a world-class tool with which to build software.

4.2.2 OpenCV

The OpenCV Library is mainly aimed at real time computer vision. Some
example areas would be Human-Computer Interaction (HCI); Object Identification,
Segmentation, and Recognition; Face Reccognition; Gesture Recognition; Motion
Tracking, Ego Motion, and Motion Understanding; Structure From Motion (SFM); and
Mobile Robotics. The OpenCV Library is a collection of low-overhead, high-
performance operations performed on images.

The OpenCV Library is a way of cstablishing an open source vision community
that will make better use of up-to-datc opportunities to apply computer vision in the
growing PC environment. The software provides a set of image processing functions, as
well as image and pattern analysis functions. The functions are optimized for Intel®
architecture processors, and are particularly effective at taking advantage of
MMXtechnology. The OpenCV Library has platform-independent interface and supplied
with whole C sources. OpenCV is open.

Perceprion Baved Obstacle Detection and Avoidance System for Autonomonx Vehicles with Self-localization Copability 80

Chapter 4 Implementation

4.3 Implementation Strategy

First problem encountered was trying to make the Intel’s tool OpenCV
compatible with Microsoft’s VC++. Despite the Intel’s claim of case, it is a real task just
to make them work together in harmony and it took some considerable amount of time.

As mentioned earlier, no Imge Computing background meant that we had to

explore the field in parallel with persuit of the project, Hence the implementation strategy
followed was iterative increasing in complexity and can be better described as below:

| - Loading and displaying simple images of different formats using OpenCV and
VC++ and manipulating pixel valucs of tmages.

2- Creating gray scale image of a given image along with intensity vs. frequency
graph of an image after converting it into gray image.

3 - Separating the RGB channels of an image and creating intensity vs. frequency
graph of an image in RGB space.

4 - Examining the texture of intended ground type in order to find a low
computational-cost way to separate the intended ground plane from the rest of the
environment of an image.

5 - Testing ground detection algorithim in different scenarios of single images and
then converting ground detection algorithm properties to apply on an image
stream.

6 - Applying ground detection algorithm on Real-Time image stream.

7 - Creating logic to detect hurdles on the ground.

8 - Incorporating hurdle detection with ground detection algorithm and making
them one entity.

9 - Establishing higher level logic for making decisions regarding navigation,
hurdle detection and avoidance cle.

10 — Combining all the above into one whole.
11 —- Adding ability to Pos-Process along with Real-Time Processing,
[2 - Testing in different scenarios (controlied environment).

13 - Creating easy GUI for the user.

Perception Based Qbstacle Detection aud Avoidance Systew for Amtonomous Vehicles with Self-localization Cepability 81

Chapter 4

Implementation

4.4 OpenCV and IPL Image Library Functions

Description

Following are some important functions and vriables of OpenCV and image

library called IPL used in the implementation.

Ipllmage* Pointer to an image in IPL pre-defined format.
cvClonelmage() Used to create a copy of an image
cvSetZero() Sct all channel values of an image to zero
cvLoadImage() To load an image

cvSavelmage() To save an image

cvCreatelmagcHeader()

Creating IPL type image header

cvNamedWindow() To create a window with defined propertics
cvShowlmage() To show an Image in a window
cvCreatelmage() Creating IPL type image

cvSize() Width and height retriever function
cvCreatcMemStorage() Creating a memory storage block
cvWaitKey() To wait for a specified period of time
cvLine() To draw line of desired properties

cvPoint A two dimensional integer type variable
cvReleascimage() To release the memaory space cccupied by an

image

cvDestroyWindow()

To destroy a window

Percepiion Based Obstacle Detection amd Avoidance Sysiem for Autonomous Vehicles with Seif-localization Capability 82

Chapter 4 Implementation

4.5 Implementation Details

Since the implementation of this project consists of more than ten thousand lines
of code, it would be in-appropriate to put all the trivial code or even less trivial code
inside implementation documentation. Hence the concentration during preparing
implementation documentation is given to reducc the clutter as much as possible and strip
the code to bare minimum in order to makc it understandable. Implementation details
contain source code as well as suedo-code (where whichever is appropriate) in order to
make it easier to understand.

4.5.1 Classes in the System

Following are the most prominent classes in the system, objects of these
classes are at the core of the software developed.

| — ImageProcessor 4- ObjectDetection
2 — Hurdle 5 — Path
3 — Navigation 6 - Perception

4.5.1.1 Declaration of Class Objects

CVisionl App theApp;
CAdvancedFunctionality* pAF;
ImageProcessor ip;

Navigation* pNav;

Perception* pPrep;

Hurdle* pHurd;

Path* pP1;

ObjectDetection* pOD;

Pereeption Based Obstacle Detection and Avoldance System for Autunomous Vehicles with Self-Localizution Capability 83

Chapter 4

Implementation

4.5.2 Implementation of Different User Options

Following is the implementation of some important options available to the user.

45.2.1 Choosing Post-Processing Option

void CVision | Dlg::OnPostProcessing()

{
CFileDialog dlg(TRUE, T("*.avi"),"",

OFN_FILEMUSTEXISTIOFN_PATHMUSTLEXIST]

OFN_HIDEREADONLY,

"Audio Video Interleaved Files (*.avi)|*.avi|", NULL),

char title[]= {"Choose AVI File"};
dlg.m_ofn.lpstrTitle = title;

if (dlg.DoModal() == IDOK) {

// contains the selected filename

CString path= dlg.GetPathName();
ImageProcessor ip(1, path);

4.5.2.2 Choosing Real -Time Processing Option

Implementation of Real-Time in form of psuedo code is as follows

1. Check whether camera connected

2. If camera not connected than display message and exit

3. If more than one cameras connccted, select the first camera

4, Initialize the camera

5. Start sreaming

Perception Rased Obstacle Detection and Avoidance System for Autonomons Vehicles with Self-Locolization Capability 34

Chapter 4 Implementation

The implementation in form of code is as follows:
CvCapture* capture = Q;

//check camera connected
/check if connected than how many

capture = cvCaptureFromCAM(-1); //sclect the first available camera

il(tcvGrabFrame(capture)) //camera cannot be initialized

{
//display error message
i
else
{
//start streaming
}

4523 Choosing View RGB Space Option

void CAdvancedFunctionality::OnRgbs()

{
CFileDialog dlg(TRUE, _T("*.bmp™), "",
OFN_FILEMUSTEXIST|OFN_PATHMUSTEXIST]|
OFN_HIDEREADONLY,
"Image Files (*.bmp; *.jpg) [*.bmp;*.jpgl",
NULLY);

char title[]= {"Choose BMP/IPG File"};
dig.m_ofn.lpstrTitle = title;

if (dlg.DoModal() == IDOK) {

/f contain the selected filename
CString path= dlg.GetPathName();

ImageProcessor:im_ImgSp =2,
ImagcProcessor ip(path);

}

Pereeption Hased Obstacle Duicetion and Avoidunce System for Autonomous Vehiclex with Self-Localizwtion Capability 85

Clugner 4 Iniplementation

4.6 Ground and Hurdle Detection Algorithm

Ground and hurdle detection works at the very core of the developed system. All
high level decisions arc bascd on the findings of this algorithm. In a way, ground and
hurdle detection algorithm is the work horse of the system.

Working of the algorithm from implementation point of view for one
image frame is as follows:

1. Initialization necessary for that frame
2. Creating a gray-scale image of the image
3. Applying texture comparison with pre-stored ground template

4. Scanning the algorithmed image to classify abnormalities as hurldes or noise as
follows:

4.1- Calling MasterMind() function for scanning the image
4.2- Calling MyFloodFill() function for classifying the anomalies
5. Notifying other modules of the result A

These functions are performed as follows:

//all the necessary initialization of different variables
InitOnEvFrame();

//algorithm this frame for finding anomalics
TexComparcGround();

/loop for checking the result of {ind anomaly pahse

while{dCheck)
s

//increment the itcrator by one
Rmovet++;

/Ifind if there 15 an anomaly at the current position of the iterator

if{ ((uchar*)(dummy->imageData + dummy->widthStep* i))[Rmove] =0)

Perception Based Obstacle Detection and Avoidance System fur dutononens Vehicles with Self-Loculization Capability 86

Chapter 4 Implementation

/Nif anomaly found, find out its properties like dimensions etc, by calling
/IMyFloodFill with information currently available

/fanomally found calling Flood fill

//please sce the documentation of MyFloodFill()in the next topic
nObjSer = MyFloodFill{(Rmove, i, Lbound, Rbound, forBound);

/fanomaly’s ending point for this row
if(nObjSer > 0)
Rmove = nObjSer;

//find if you have reached row’s end rcached
else if(nObjSer == -1}

{
/row's end reached
//scan for upto the height of upper path bound
if(--k >= L.p12.y)
{
/fre-initialize Rmove to work on the upper row
/1as vow’s end was reached
Rmove = Lbound;
1=k;
}
else
{fscanning this row completed successtully
dCheck = false;
}
else
¢ ,

/Mif scanning this row completed was terminated abnormally
AfxMessageBox(“*Abnormal Termination in finding anomally
phasc™);

dCheck = false;

!

}

//finds out dimensions of anomaly

flclassifies it as hurdle or noise,

//works on multiple rows intelligently and updates Rmove counter of caller
/ffunction accordingly

MyFloodFill{anomally pixel location, row number, other information})

)]
t

/lvariables used
int Rmove, Lmove, secPos, maxWid, maxHght, retVal;

int j; // j simple iterator

Perception Based Obstacle Detection and Avoidance Systent for Awlonomuns Vehicles with Self-Localization Cepability 87

Chapter 4

Implementation

bool valREomp, valLcomp, valUp, dCheck;

//find whether thing detceted is hurdle or not
booi tboo;
valRcomp = valLcomp = dCheck = true;

//we nced this specifically to make the loop nin for the first time
valUp = truc;

max Wid = maxHght = 0;

Lmove = Rmove = origPix;

secPos = origPix;

1=0;

retVal = [;

/hinittalize width array
InitWid();

wid[wi][0] = curRow;
wid[wi][2] = origPix;

SetBounds(curRow);

/Mnitializing while loop
while(!valRcomp)
{

if(Rmove < Rbound)

{

//find out anomaly’s end point
if(((uchar*)}(dummy->imageData + dummy->widthStep*
wid[wi][0D)Rmove] 1==0)
!
{/if this was the ending point
AfxMessageBox("Found not black pix while going right in flood
filrry,
/fupdate the hurdlc dimension array
wid[wi][1] = Rmove - 1;
/Inotify that object in this row completed
valRcomp = true;
/findicate the hurdlc by turning it black in image called “heck”
for(j = wid|wil[!]; j <= wid]wi][2]; j++)
{(uchar*)(heck->imageData + heck->
widthStep* wid[wi){01)[j1 = 0;
retVal = 0;
}
i

else

{

/fyou reached row's end but found no white pixel

Perception Bused Obstucle Detection and Avoidance System for Awtonsmons Vehicles with Self-localization Capability 88

Chapter 4 Implementation

wid[{wi][3] = ++Rmove;

/by force object in this row completed
valRcomp = true;

/findicate the hurdle by turaing it black in image called “heck”
for(j = wid[wi][1]; j <= wid{wi][1]; j+ +)
((uchar*)(heck->imageData + heck->

widthStep* wid[wi][0]))[j] = O;

retVal=-2;
}
Rmovet++;

}

flout of while loop, calling SearchUp() to sce if hurdle is in upper rows too
/inecessary initialization '
secPos = wid[wi][2];

/{SearchUp() returns bool value

/it is intelligent enough that if called itcratively,

/lit can search and update anomaly’s position accuratcly for cach row
while(SearchUp());

//Calling InocGuilty(),InocGuilty() function is the judge of classifying the
/fanomally as hurdle or noise

tboo = InocGuilty(); /v imp: true if thing was a hurdle
if((tboo) && (ClearCheck)) //if anomaly was hurdle
{

ClearCheck = falsc;

/fFound a hurdle
//Notify Navigation module immediately
pNav->BckorClr(0);
}
else
BckorClr(1); //if anomaly was not hurdle
if(retVal > 0)
return secPos;
else
return retVal;

Perceprion Based Obstuele Detection amld Avoidance System for Autonenons Vehicles with Sclf-Localization Capability &9

Chapter 4 Implementation

4.7 Implementation of Intensity vs Frequency Graph for Gray-
Scale Image '

/farray for storing gray scale valucs
int GreyC[250][2];
char Buff] 100];

/fimtializtion of arrays
for(i = 0; 1 < 256; i++)
{

GreyC[i][0] = 1;
GreyCli][1]=0;
;
//Window for displaying the result
cvNamedWindow("Separated Channcls");
IplImage* sepl = cvCreatelmage();

/fnitialize image
cvSetZero(sepl);
for(i=0; i < fresh->height; i++)

I
i

for(| = 0; | < fresh->width; |-++)

{
d= ((uchar*)(ﬁ.'esh->i1;mgcData + fresh->widthStep* 1));
GreyC[d][1] +=1;
}
H
for(i = 0; i <256, i++)
{
for(1=0; 1 < GreyC[i][I]; I4++)
{
((uchar*)(sepl->imageData + sepl->widthStep* 1))[1] =1;
}
}
//show the graph

cvShowlImage("Separated Channcls", sepl);

i
H

Perception Based Obstacle Detection and Avoidance System for Astonomous Vehicles with Self-Loculization Capability 90

Chaprer 4 Implemenitation

4.8 Implementation of Intensity vs Frequency Graph for RGB
Image

/{used for storing hits numbers for cach pixel value
int rC[256], gC[256], bC[256];

//initialzation of arrays

for(i = 0; 1< 256; i++)

—

rC[i] = 0;
gC[i] = 0;
bC[i] = 0;

cvNamedWindow("Scparated Channcls");
Iplimage* sep3 = cvCreateImage();

/Initializing image

cvSetZero(scp3): -
/ /R Channel
for(1=0;i < fresh->leight; i++)
{
for(1 =10; | < fresh->width ; |++)
{
d = ((uchar*){fresh->imageData + fresh->widthStep* 1))[1*3];
rC[dl +=1;
'
H

for(i = 0; i < 256; i++)
{

Mlits quite possible to have more ocuurances of an hue value and and error can be
//generated

g1

Pereeption Bused Obstacle Detection aml Avoidance Spstem for Autononws Velricles with Self-Loculization Capability

Chapter 4 Implementation

for(1=0; 1 < rC[i]; I1++)
((uchar*){sep3->imageData + sep3->widthStep* i})[1*3] =1;

h
//G Channel
for(i=0; i < fresh->height; i++)
{
for(1= 0; | < fresh->width ; [++}
{
d = ((uchar*)(fresh->imageData + fresh->widthStep* i})[1*3];
rC[d]} += I;
}
'

for(i=0; 1 < 256; i++)
{

/fits quite possiblc to have more ocuurances of an hue value and and error can be
/lgenerated
for(1= 0; 1 < rC[i]; H+)
((uchar*)(sep3->imageData + scp3->widthStep* i))[1*3+2] =1,
;
/t B Channel
for(i =0;1 < fresh->height; i++)
{
for(1 = 0; 1 < fresh->width ; I++)
{
d= ((uc'har*)(flv'esh->imngcl)ata + fresh->widthStep* i))[1*3+2];
bC[d] +=1;
}
}

92

Porception Baxed Obstacle Detcction and Avoidance System for Autonomons Vehicles with Self-Localizaiion Capability

Chapter 4 Implementation

for(i=0; 1< 2506; i++)
!

//its quite possible to have more ocuurances of an
/fhue value and error can be gencrated

((uchar*)(sep3->imageData + scp3->widthStep* i))[1*3+2] =1;
}

cvNamedWindow("Cloning");

Ipllmage* clone = cvClonelmage(sep3);
cvSetZero(clonc);

for(i=0; 1 <256; 1++)

{
/fremeber rC[i] has also been set right above
if(rC[i] > (clone->height - 149))
rC[i] = (clonc->height - 149);
for(1 = 0; 1 < C[i]; 1++)
{
((uchar*)(clone->imageData + clone->widthStep*
((clone->height) - 1)))[i*3+2] =;
}
}

for(i = 0; 1 < 256; i++)

{
/lremcber rC[i] has also been set right above
if{gC[i] > (clone->height - 149))
gC[i] = (clone->height - 149);

for(1 =0Q; | < gCfi]; H+)
{

((uchar*)(clone->imageData + clone->widthStep*
((clone->height - 150) - 1) P[(i + 260)*3+1] =i;

Perceprion Bused Obstacle Detectivn and Avoidance Systent fir Autonomons Vehicles with Self-localization Capability 93

Chapter 4 Implementation

for(i = 0; 1 < 256; i++)

{
/fremeber rC[1] has also been sct right above
if(bC[i] > (clone->height - 149))
bC[i] = (clonc->height - 149);

for(| = 0; 1< bC[1]; 1++)
{

((uchar*)(clone->imageData + clone->widthStep*
({clonc->height - 150) - 1) P[(i + 520)*3] =1,

}

/fshow the images
cvShowImage("Cloning", clone);
cvShowlImage("Separated Channcls", sep3);

4.9 Frame Processing Loop for Real — Time/Post — Processing

//start of loop

{
//get next frame
cvGrabFrame();

HWindows arichitecture has the bad habit of having every frame from the
/finput stream Upside down, so every frame has to be put upright

/fturn the frame upright
UpsideDownChk(frame);

/finitialization required for every frame
InitOnEvFrame();

//show the image captured from the device (cam/.avi tile)
cvShowImage("cvecam window", framce);

/fsend the frame to Ground and hurdle detection algorithm
AllProcessing();

Perception Based Obsiacle Detvetivn and Avoidance Systew for Autonomous Vehictes with Self-Loculization Capability 94

Chapier 4 Implementation

{/draw the path lines, representing the critical area in front of the vehicle
DrawPath();

/ldisplay other windows that would help the user sce the working
DisplayForCam();

/fupdate frame count
FrNum++;

//tell the path object about this frame
pP1->DrawThePath(FrNum, HurdInFrame);

/fare we in seck modc or navigation modc?
if((HurdInFrame == 1) && { module == 0))
{
if(clrFrames < 4)
//Successfully Navigated around the hurdle\n shift to Detection module

{

/fshow "path clear” message instead of "path Blocked"
pNav->BckorClr(5);

//set arrow of movement command straight
pNav->Movelmage(4);

//go back to detection module
module = 1;

/ftell Navigation object that we have shifted to seek mode
pNav->module = 0;

/finitialize clear frames count
clrFrames = 0;

//as indHurd i1s Zero Based

i = indHurd + I;

clrFrames++;

}

else
clrFrames = Q;

//This frame is finished, initialize for the next frame
HurdInFrame = 0;

/it is the last frame to be processed so save it as end point
if{fPNFramc == false)

Perception Based Obstacle Detection and Avoidance System for Awonomous Vehicles with Self-Localization Capability 95

Chupter 4 Implementation

pP1->Savelt();

//Release the system resources used during this frame
/lextremely important, else you'll have a great memory leak!!!
DestroyEm();

//break when you don't want to Process Next Frame
if(PNFrame == falsc)
break;

/fwait for some time?

if(cvWaitKey(*10)>=0)
break;
{//loop ends here

4.10 Conclusion

In this chapter we described our approach to system implementation. In the
beginning of the chapter we describe different techniques of system implementation.
Then we have given description of tools that we have used in implementation and
described their importance. We also gave some important functions of an image
processing library that we used in our implementation. In the end, we have given specific
code to carry out some of the important functions used in the system. This code is well
indented and description of each line is given to make it easy to understand.

96

Perception Based Obstacle Detection and Avoidance Systens fir Astenancnss Vehieles with Self-lowcalizution Capabifity

Chapter 5
Testing

Chapter 3 Testing

5. TESTING

The overall objective of the testing process is to identify the maximum number of
errors in the code with a minimum amount of efforts. Finding an error is thus considered
a success rather than failure. On finding an crror, cfforts arec madc to correct it.

5.1 Testing Process

Test consists of a number of test cases, where diffcrent aspects of the part of the
project under test are checked. Each test case tells what to do, what data to use, and what
results to expect. When conducting the test, the results including deviations from the
planned test cases are not in a test protocol. Normally a deviation indicates an error in the
system (although some times the test case is wrong, and the system is right). An error is
noted and described in a test report for removal or directly removed by the programmer
who developed that part.

5.2 General Types of Errors
Error can be of following types:
Functional error {e.g. function is not working correctly or missing).
Non-Functional error (e.g. performance is slow)

Logical error (e.g. error in algorithm, user interface errors is not considered as a
logical error).

5.3 Testing Strategies

A strategy for software testing may be viewed as the spiral. Unit testing begins at
the vortex of the spiral and concentrates on cach unit (i.e., component) of the software as
implemented in source code. Testing progresses by moving outward along the spiral to
integration testing, where the focus is on design and the construction of the software
architecture. Taking another turn outward on the spiral, we encounter validation testing,
where requirements cstablished as part of software requirements analysis are validated
against the software that has been constructed. Finally, we arrive at system testing, where
the software and other system elements are tested as a whole. To test computer software,
we spiral out along strcam-lines that broaden the scope of testing with each turn,

Pereeption Bused Obstacle Detection and Avoidance System for Awtnnomous Vehicles with Self-Localization Capubiliy 97

Chapter 5 Tosting

5.4 Testing the Software

Our software system is a real-time system, requiring heavy usage of system
resources. Since the real-time systems require a particular activity to be completed within
a bounded time interval, it is necessary that errors in the system must be carefully
scanned and eliminated.

One major aspect of the system is the heavy use of memory space. This also
makes the system vulnerable to memory leaks (dangling pointers) etc.

5.5 Features to be Tested

Following are the features that would be put under test to see their proper
functionality and result.

1. Selecting Real-Time Processing option with no camera connected
Selecting Real-Time Processing option with multiple cameras connected
Selecting Post-Processing option with invalid file format

Selecting View Gray Space Graph option with invalid file format

Selecting View RGB Space Graph option with invalid file format

CANEE S o

Validating “Current Path” folder
Navigation in Real-Time Mode with empty path

Navigation in Real-Time Mode with hurdles in the path

20 ~J1
. -

9. Navigation in Post-Processing Modce with empty path

10. Navigation in Post-Processing Mode with hurdles in the path

5.5.1 Selecting Real-Time Processing option with no camera
connected

Input Specification:

Real-Time Processing option sclection

Environmental Needs:
1. A Pentium® III or higher machine.

2. Windows 2000 (Family)

Perceprion Based Obstacle Detection and Avoidance System for Autonomons Vehicles with Self-Localizotion Capability 93

Chapter 5

Testing

3. VC++ and OpenCV

4. Camera should be un-plugged

Expected Output:

Error message should be displayed and program should terminate

gracefully.

Actual Output:

Error message displayed and program terminated gracefully

s VISION ONES

Real Time Plocessing

Post Piocessng

Advanced Functionally |

EXIT [

VISIOﬂlﬂﬁé‘g?&: 23 =

! No Camera Detected
Please Plug in the Camera

[o]

Fig 5-2: Message Displayed when
no camera connected

Perception Bused Obstacle Detection and Avoidance System for Autontomons Vehicles with Nelf-localization Capability

99

Chapter 5 Testing

5.5.2 Selecting Real-Time Processing option with multiple cameras
connected

Input Specification:
Real-Time Processing option selection
Environmental Needs:
1. A Pentium® III or higher machine.
2. Windows 2000 (Family)
3. VC++ and OpenCV

4. More than one Cameras should be connected

Expected Output:

Multiple cameras connected. message should be displayed and program
should select the first available camera.

Actual Output;

Multiple cameras connected message displayed and first available camera
selected.

5.5.3 Selecting Post-Processing option with invalid file format
Input Specification:
Post - Processing option sclection with invalid file

Environmental Needs:
1. A Pentium® III or higher machine.

2. Windows 2000 (Family)
3. VC++and QpenCV

Expected Qutput:

The user should not be allowed to select any format except .avi file
format.

Pereeption Based Obstacle Detection and Avoidance System fire dutonomous Yelicles with Self-Locatization Cupability 100

Chapter 5

Testing

Actual Output:

The user not allowed selecting any format except .avi file format.

3 S edvironment Whthts SR AR (=
"] Fie Edit \n‘geur Faviwites Topols Hadp m

. J woBack v = - l__], aSearch C:‘ Folders »

| address i o: \Medla\wdeo\,My PrSpTI—— Watch =)

TR

PINK FLOYD- OnThe PINK FLOYD- The Videot43
Run Great Gig In The Sky
Video045 Video047
Sobiects), ifizeMs &My Computer p

Fig 5-3: Folder with various types of files

Look in: I*'_j Envionment Watch _v_I & i

5] video043
-.gﬂVIdeoO‘}S
) VideoD47

File name:

LT ATl [udio Video Interleaved Files [* avi] SR

Fig 5-4: Only files with .avi extention are allowed to be viewed in selection

Pereeprion Based Obstacle Detection and Avoidance Sysiem for dstonomons Yehicles with Self-localizotion Capability

101

Chuapter 3 Testing

5.5.4 Selecting View Gray Space Graph option with invalid file format
Input Specification:
An invalid file format selection

Environmental Needs:
1. A Pentium® Il or higher machine.

2. Windows 2000 (Family)
3. VC++and OpenCV

Expected Output:

The user should not be allowed to select any format except .bmp file
format.

Actual Qutput:

The user not allowed to sclect any format except .bmp file format.

5.5.5 Selecting View RGB Space Graph option with invalid file format

Input Specification:

An invalid file format sclcction

Environmental Needs:
1. A Pentium® III or higher machinc.

2. Windows 2000 (Family)
3. VC++and OpenCV

Expected Output:

The user should not be allowed to select any format except .bmp file
format,

Actual Output:

The user not allowed to select any format except .bmp file format.

Percepiion Bused Obstacle Deteetion ami Avoidance System for Autoncnous Vehicles with Self-Localization Capability 102

Chapter 5 . Testing

!!myjexfwﬁo Favortes }Ei';lpf .
e | ! %wi B f" 2 | X
I___Eéik'__" s Fowsd U CudTl Paste |i.tlindo *| Deleto Piope
“Address IC‘- D\DdaBase\Hud{es\OH!G 7 7
z,‘ i A m > ‘BMP ‘Ju
i o
(11 TR 1] Biue H
Orig
; Iy T
Select an item to view its UIRG3 RIPGH
description. ‘C’A' ‘QA'
BiownH Brovwn H2 Brown M2
I, , N (rreeeced
1BMP PG | -
194 &ta =
GreenH Green H MP3TOP4ONET
Purple H Puple H
I o smdtis - 3 3 L ewid[6,31MB tor [S MyComputer O T D

Fig 5-5: Folder with different file formats

.‘ *‘F :}1 «i, -Uﬁ

Flename: | - ' Open: l

Fles of type: {image Fies (“bmo: “ipg) ' ~] Cancel

Fig 5-6: Only files with “.bmp” or “.jpg” cxtensions are allowed (o be sclected

Perceprion Bused Obstaele Detection and Avoidance System fin Autonomens Vehicles with Self-Localization Cupubility 103

i

Chapter 5 Testing

5.5.6 Validating “Current Path” folder

Input Specification:
The folder “Current Path” should not be empty
Environmental Needs:
1. A Pentium® Il or higher machinc.
2. Windows 2000 (Family)
3. VC++and OpenCV

Expected Output:

The program should prompt the user to empty “Current Path” folder, and
should recheck the folder’s status

Actual Output:

The program prompted the user to empty “Current Path” folder, and
rechecked the folder’s status

5.5.7 Navigation in Real-Time Mode with empty path

Input Specification:
Real-Time Processing option sclection
Environmental Needs:
1. A Pentium® II[or higher machinc.
2. Windows 2000 (Family)
3. VC++and OpenCV

4. At least one camera should be connected to the system

Expected Output:

The system should successfully navigate on the path and display result of
navigation at the end.

Actual Output:

The system successfully navigated on the path and displayed result of
navigation at the end.

Perceprion Based Obstacle Detection and Avoidance System fir Autonomens Vehicles with Self-Loculization Capabifity - 104

Chapter 5 Testing

5.5.8 Navigation in Real-Time Mode with hurdles in the path

Input Specification:

Reai-Time Processing option sclection

Environmental Needs:
1. A Pentium® 11 or higher machine.

2. Windows 2000 {(Family)
3. VC++ and OpenCV

4. At least one camera should be connected to the system

Expected Output:

The system should successfully navigate on the path, should navigate
around the hurdle and display result of navigation at the end.

Actual Output:

The system successfully navigated on the path, navigated around the hurdle and
displaycd result of navigation at the end.

5.5.9 Navigation in Post-Processing Mode with empty path

Input Specification:
Post - Processing option selcction with a .avi file
Environmental Needs:
1. A Pentium® Il or higher machine.

2. Windows 2000 (Family}
3. VC++ and OpenCV

Expected Qutput:

The system should successfully navigate on the path and display result of
navigation at the end.

Percepiion Bused Obstacle Detection and Avoidance System for Autonomous Vehicles with Scif-Loculizution Capability 105

Chapter 3 Testing

Actual Qutput:

The system successfully navigated on the path and displayed result of navigation
at the end.

Fig 5-8: The gray-scale image with look-up table implementation

Perception Based Obstacle Detection and Avoidance System for Autonomons Vehicles with Self-Localization Capability 106

Chapter 3 Testing

Fig 5-9: Decision made based on obstacle detection

vision1 = 5if R e

f! } Path's end raachad

Fig 5-10: Message Displayed at the end of video stream

5.5.10 Navigation in Post-Processing Mode with hurdies in the path

Input Specification:
Post - Processing option sclection with a .avi file
Environmental Needs:
1. A Pentium® 1l or higher machine.
2. Windows 2000 (Family)
3. VC++and OpenCV

Expected Qutput:

The system should successfully navigate on the path, should navigate
around the hurdle and display result of navigation at the end. :

Actual Output:

The system successfully navigated on the path, navigated around the hurdle and
displayed result of navigation at the end.

107

Perception Based Obstacle Dotection and Avoidance System for Awtanomaus Vehicles with Self-Localization Capability

Chapter 5 Testing

Fig 5-11: RGB image of a hordle coming into Collision Course

Fig 5-12: Gray image of a hurdle coming inte Collision Course

Perception Bused Obsiacle Detection and A voidarice System fir Autonomous Vehicles with Sclf-localization Capability 108

Chupter 5 Testing

e
— /
Fig 5-13: Warning message given to user Fig 5-14: Suggested Hurdle avoidance

course

5.6 Conclusion

in this chapter we have given detailed description of our system testing phase. In
the beginning of this chapter, we have described various testing approaches. Next we
have outlined features of the softwarc system on which testing would be more
emphasized. We have clearly described the course of action, input, expected output and

actual output given by the system.

109

Pereeption Based Obstacle Detection and Avoidance System for Autonomos Vehicles with Self-Locafization Capability

Bibliography end
Chapter 6 References

BIBLIOGRAPHY AND REFERENCES

1. Robotics and Machine Perception, The International Society for Optical Engineering
(SPIE), International Technical Group Newsletter, March 2000 VOL, 8, NO. 1

2. Robotics and Machine Perception, The Intemational Society for Optical Engineering
(SPIE), International Technical Group Newsletter, August 2001 VOL. 10, NO. 2

3. Robotics and Machine Perception, The International Society for Optical Engineering
(sPig), International Technical Group Newsletter, March 2001 VOL. 10, NO. 1

4. A Path Follawing System for Autonomous Robots with Minimal Computing Power
Andrew Thomsan and Jacky Baltes Centre for Image Technology and Robaotics,
University of Auckland.

5. Obstacle Avoidance of Autonomous Mobile Robot using Sterec Vision Sensor,
Masako Kumano Akihisa Ohya, Shin’ichi Yuta, Inteiligent Robot Laboratory
University of Tsukuba, Ibaraki, 305-8573 Japan.

6. Ground Plane Detection using Visual and Inertial Data Fusion, Jorge Lobo, Jorge Dias
Institute of Systems and Robotics, Electrical Engineering Department University of
Coimbra, 3030 Coimbra, Portugal.

7. Obstacle Detection and Self-Localization without Camera Calibration Using Projective
Invariants, Kyoung Sig Roh, Wang Heon Lee, In So Kweon, Dept. of Automation and
Design Eng., Korea Advanced Institute of Science and Technology, 207-43,
Cheongryangri-dong, Dongdaemoon-gu, Seoul, Korea.

8. Deriving and matching image fingerprint sequences for mobile robat lacalization,
Autonomous System Labs, Carnegie Mellon, Diploma Work 1999-2000.

9. Obstacle Avoidance and Self-Localization System fgr Autonomous Vehicles,
Muhammad Farooq Azam Khan, Dr. Sikander Hayat Khiyal, Department of Computer
Science, Faculty of Applied Sciences, Intemnational Islamic University, Islamabad.

10. Computer Vision and Image Processing, A Practioner Approach using CVIPiools.
Scott E. Umbagh.

11. Digital Image Processing. Rafael C. Gonzalez and Richard E. Woods. 1993 Prentice
Hall Press.

12. Digital Image Processing Jan Teuber, 1992 Prentice Hall Press.

Perception Based Obstacle Detection and Avoidance System for Autonomous Vehicles with Scif-Localization Capability . noe

Research Paper

OBSTACLE AVOIDANCE AND SELF-LOCALIZATION SYSTEM
FOR AUTONOMOUS VEHICLES

Muhammad Farooq Azam Khan,
Dr. Sikander Hayat Khiyal

Department of Computer Science,
Faculty of Applied Sciences, International Islamic University, Islamabad.

mfaroogsbox(@yahoo.com, sikandar_hayat_khival@yahoo.com

Abstract: In this paper, we present a system for vision based autonomous navigation
capable of obstacle avoidance as well as self-localization. At first a ground plane
detection method is proposed which is capable of working on different most commonly
occurring indeor/outdoor ground textures. The benefit of ground plane detection is that
the system is not dependent on some specific property of obstacle to detect {such as size
and orientation). Next, we describc our strategy for wvchicle localization and
implementation of proposed method. Copyright © 2003 IFAC

Keywords: Navigation system, path folowing, control, guidance, localization

1. INTRODUCTION

Self-localization, obstacle detection and avoidance
are the basic requirements for successful navigation
of any autonomous vehicle, Most of the vision based
navigation systems concentrate on only one aspect of
autonomous navigation. Some systems try to detect
obstacles in their path while others try to find their
relative position with respect to environment without
the facility of obstacle avoidance.

The work by (Kumano, ct al, 2000) uses stereo vision
for obstacle detection. They usc two monochrome
CCD cameras equipped with about 90 degrees wide-
angle lenses, which arc fixed on the left and right side
with the same height at the top of a robot. Two
images are captured synchronously on an image
processing board. Onc image is cstimated from the

ather by the matrix calculated with relative
positioning. If there is a certain difference of
brightness, around there any 3D objects are detected.
In their work (Roh, et al, 97) detect obstacles by
comparing a pre-stored risk zone with a current risk
zone, The positions of the detected obstacles are also
determined by rclative positioning.

Although a lot of work has been done in exploring
the possibility of vision in autonomous navigation,
much is left to be done to make it a part of our
indoor/outdoor every day life. Goal of research in this
field is to make vision based robots so reliable that
they could take over the responsibility of trivial tasks
{such as transporting files from one room to the
other) and non-trivial tasks (like transporting
hazardous materials). One way of cnabling
widespread use of autonomous vehicles is to make it

economically sound by reducing the cost through
stripping down the hardware required. For example,
if the system can make use of the computing power
of a personal computer, the data processing unit of
the autonomous vehicle could be taken out. Instead
we could load our mavigation system on personal
computer, make use of it and at other times use the
computer for other purposes. Thus we can reducc the
over all cost and increase the flexibility through
vehicle size reduction.

This paper presents a vision-based path
understanding and navigation technique without the
neced of exact camera calibration. We used two digital
cameras mounted on top of a remote controlled
vehicle and an ordinary personal computer for
implementation and testing purposes. One camera is
facing the front of the vehicle (used for navigation
and obstacle detection), while the other is facing the
ncar wall (for orientation and localization purposcs).
Figure 1 shows the arrangement of different devices
Al system.

GROUND —

HURDLE

Camera 1

Camera 2

VEHICLE

Fig. 1. Arrangement of diffcrent devices

For ground plane and obstacle detection pan, the
requircment for our syslem was 1o develop a
specialized algorithm, light cnough to be
implemented in real time environment and accurate
enough to detect any obstacles encountered.
Nevertheless while reducing the computational load;
there is a tradeoff of accuracy and time. The nced
was to find a balance in such a way as to allow
computations to stay within rcal-time limit and still
give accuracy to deteet and navigate around
obstacles.

For localization part, 2 method was needed that
would understand the path, allowing intelligent
decisions to be made to make navigation more
cfficient and lcss costly from both computation and
accuracy point of views.

This paper is organized as follows: In Section 2 we
present the method used for ground detection.
Section 3 presents the method used for obstacle
detection. Section 4 deals with navigation, Section 5
deals with how different paths are recognized and.
localization dccisions are made. Implementation
details are given in Section 6 and conclusion in
section 7.

2. GROUND PLANE DETECTION

Since our objective was to develop system that could
work on ordinary personal computer with no
specialized cquipment like frame grabber, the
computational cost of processing each frame was a
major issue. The computational power is also a
consideration in selecting the image space to work in.
In case of RGB image space, bits per pixel ratio of
24:1, thus ground planc/obstacle detection is more
reliable but more computationally expensive. On the
other hand in Gray scale image space, bits per pixel
ratio of 8:1, thus ground planc/obstacle detection is
less reliable but less computationally expensive. The
ground pianc detection algorithm was developed and
tested on two different ground textures. One texture
was quite simple while the other very complex.
Figures 1 & 2 show the two fextures under
consideration. The texture in figure Fig. 2 was termed
“plain-floor” while texture in Fig. 3 was termed as
“chipsed-floor”.

ST
. yLy. AN el U
b i

Pl 5

Fig. 3. Chipsed-floor

The idea behind these graund planes selection was
that if the algorithm can work with relative accuracy
on such planes, it could be expected to work on other
indoor/outdoor plane textures such as roads (which
has similar texture to that of plain-floor shown in Fig.
2). The ground plane detection algorithm works as
follows:

2.1 Look-Up Table Creation:

First of all, a look-up table of 256 entries is created.
This table is indexed with numbers ranging from 0 to
255. The value stored in the table can either be 0 or 1.
The table is filled by finding the gray level pixel
intensities that the ground plane can possibly 1ake. A
zero in the table indicates that the corresponding
index value is not ground plane pixel intensity. While
1 in the table indicates that corresponding index
vitlue is ground planc pixel intensity. This could be
done by creating a gray scale histogram of first few
frames of “Critical Area” at the start of navigation
{(assumption being that those few frames do not have
any obstacle in that specific area). “Critical Area” is
the area within which any object is considered to be
on a collision course. From that histogram we find
pixel intensities that the ground plane takes on. Then
we use Quick sort to sort the pixel intensities based
on their frequency. This gives us intensities that
occur most often in the ground plane. After sorting
the intensities based on their frequency, we apply
Quick sort once again, but this time a selected
number of pixel intensities with top frequencies are
sorted. The result after the second sorting is an
arranged set of pixel intensities that are most likely to
occur in a ground plane. By using this set, we mark
conlents of look-up table as one or zero. Our
experiments with the plane-floor texture have shown
that intensities values taken by the ground plane
almost always lie within specific intensity region. In
case of chipsed-floor, this region grows a lot more
than that of the plane-floor. This is due to the fact
thal many stones of different pixel intensitics are
present on the ground plane. On creating a histogram
of the ground texture, we consistently found some
peak values of intensities in very close proximity,
with other smaller peaks lying un-evenly on both
sides (or one side in some cases) of these peak
values.

2.2. Look-Up Table Usage f.‘(')r Ground Plane

Detection:

Based on this look-up table, the system finds the
pixels that are part of the ground. We achieve
computational efficiency through the fact that the
system needs to make only one comparison per pixel
in order to decide whether it is ground plane or some
obstacle/other environment feature. Figure 4 shows

haw areas within a frame are classified as ground
plane.

Look Up Table
0 0

Intensity = 1

_L'Pl69 1

Intensity = 169

Intensity = 170

Image Frame 2541 o
285 o

Fig. 4. Look-Up Table Usage. At every pixel, system
accesses the contents of the Look-Up Table
corresponding to the pixel intensity. If content of
table is 1, that pixel is part of the ground, else it
is not ground plane pixel.

Using the Look-Up Table, the system makes two
iterative passes on every frame:

2.2.1- On the first pass, the system finds out the
ground from the rest of the frame. This pass deals
with the whole image. In this pass the look up table
comparison is applied to the image frame. The
objects not part of the floor are found based on their
corresponding intensity level. Such objects/obstacles
are marked by storing there pixel value as zero in the
image, while the pixels classified as ground are left to
their original intensity.

2.2.2- On the second pass, the system works on
“Critical Area” which is much smaller area as
compared to the whole image. Working of second
pass can be divided into two parts.

2.2.2.1- First the small blackened patches are
removed from the resultant image obtained from the
lirst pass. These patches can be objects not big
enough to be classified as obstacles. In case of
chipscd-floor these patches are mostly due to small
stones in the floor that were nat present in the ground
images used in creating look-up table (since even a
farge number of ground images can not assure that all
possible stones in the chipsed-floor are taken into
account).

22.22- Then the algorithm searches for any
obstacles within the area that lie in course of vehicle
motion and classifies them as potential obstacles.

Critical
Area

TP,

Fig. 5. Ground Plane Detection. Critical Area is the
arca between the lwo bars

Figure 5 shows the image frame after application of
ground detection algorithm

Based on the results obtained from this floor
detection module, information is passed to other
system modules (navigation. object detection etc),
These modules in turn make decisions such as
moving left or right.

3. OBSTACLE DETECTION

Obstacles are detected on the basis of their relative
size and pixel intensity. The dimensions of the
“ubslacle-tu-seek™ can be set to lind obstacles ol that
or greater pixel size.

Since the obstacles are represented by pixel intensity
of zero, the dimensions of the group of adjacent
pixels having pixel intensity zero are counted, if it
exceeds the pre-set obstacle dimension value, this
group of pixels are considered to be part of an
obstacle. In this way regions within the critical area
are classified as obstacles.

If an obstacle is detected in a frame of video stream
the first task is to find out its correct dimensions. In
many cases, the obstacle is only a part of the entire
obstacle, since it is quite possible for algorithm
working on gray scale to miss-judge the correct
obstacle dimensions. Hence on locating an obstacle,
the system seeks to find the correct dimensions of the
obstacle. The data structure used to store the
information regarding the dimensions of the obstacle
is such that we have access to the extreme left and

right pixel coordinates of the obstacle in each row of
image frame. By selecting appropriate intensity
threshold, we move left and right one pixel at a time
from left-most and right-most detected obstacle
coordinates. At each pixel we calculate the intensity
difference and find if the difference is greater than
the threshold. On finding the difference greater than
the threshold value, we store the previous pixel
coordinate as the extreme obstacle coordinates. This
task is carried out for each row containing the
obstacle. This task of finding correct obstacle
dimensions is necessary for safe navigation around
the obstacle. Once an obstacle has been detected, it is
tracked from one frame to the next as long as it is
visible. Figure 6 shows an obstacle detected in the
critical region of Figure S.

Fig. 6. Obstacle Detection. After finding the correct
obstacle dimensions in gray scale, a rectangle is
drawn around the obstacle in RGB image space.

4. NAVIGATION

The system provides on-screen instructions for
navigation for example path clear/blocked,
movement (forward/left/right etc). The system also
provides instructions to navigate safely around any
obstacle encountered, When an obstacle is
encountered, the system finds on which side of the
obstacle the vehicle can pass safely. If there is more
space to maneuver on the left side of the obstacle, the
system prompts for turning towards left.

Figure 7 & 8 show the navigational information
given by the system in order to navigate around the
obstacle in Figure 5.

Fig. 7. Path clear/blocked. System prompts that path
in front of vehicle is blocked.

| Gl

t
|
\
!
H]
\
1
¥
i
!
i

Fig. 8. Dircctional Command. Based on the free
space available, the system prompts to move left
to mancuver around the obstacle,

5. SELF-LOCALIZATION

Localization is an important task for autonomous
navigation. In this regard many different techniques
have been proposed. (Matsumoto, ct al., 1996)
proposed a model of the route, the “View-Sequenced
Route Representation (VSRR)”, for autonomous
navigation. A VSRR consists of a sequence of view
images, which have nccessary information for
localization, steering angle dctermination and
obstacle detection. (Kosaka and Kak, 1992)
implemented a system for a given environment using
a CAD model based expectation map. This mcthod
constructed a complex database and required
additional analysis for handling uncertainty.

In most vision-based approaches, databascs for
cavironments become complex because observed
geometric propertics arc not invariant under the
projective transformation. Thus, matching ix also
very complex and time consuming.

In many indoorfoutdoor cnvironments such as
factories, university campuses, parking lots etc one
aspect often seen is that different paths and corridors
arc almost tdentical. One good cxample could be the
newly constructed International lslamic University,
Islamabad campus, where there are different blocks

which are duplicate copies of each other, - Moreover
the corridors within cach block are also identical. In
such environment the best localization system - the
human localization system - also fails (new comers to
the university can oflen be seen wandering around
trying to find their destination). In such environments
different sign boards are used to mark different paths
and allow people to “localize” themselves (in our
university's case you can only locate yourself by the
name plates on the doors).

The work by (Pierre, ct al, 01) proposed a methed for
mobile vehicle localization called *Finger Print
Scquencing”. According to this mecthod, as the
fingerprints of a person are unique, so are at each
location the unique visual characteristics (save in
pathological circumstances). So a unigue virtual
fingerprint of a location can be created. If locations
arc denoted by unique fingerprints in this manner,
then the actual location of a mobile robot/vehicle
may be recovered by constructing a Fingerprint from
its current view and comparing to a database of
known fingerprints. In the same way, our system uses
different color codes (instead of sign-boards in case
of humans) for self localization. The camera facing
the wall scans frames to find color codes on the wall,
Bascd on these color codes the system generates a
three leticred code for cach color patch encountered
in a particular path and hence generates a string for
cach path. Each string starts with an “S” indicating
start symbol and ends with an “E” indicating end
symbol.

When the system is excecuted, it searches the database
of different path folders it created on previous
cxccutions to cxtract information regarding the
previous paths. Thus the system finds what color
codes were encountered on a particular path and what
was their sequence. While navigating on a particular
path, thc system continuously stores images of
important events such as obstacles detection, color
codes detection ete in 2 folder. The detected obstacles
and color codes arc sequentially numbered to take
into account the sequence of occurrence.

The localization algorithm also works similarly to
that of ground dctection algorithm. In fact the
algorithm shows the best results when applied to
walls due to their cven texture. First of all a Look-Up
Table of wall is created in the similar manner as
cxplained in casc of ground detection algorithm. This
results in color codes appearing as black, as shown in
Figure 10. At the centre of image there are two
vertical lines. The system seeks blacked out patches
within thesc two lincs. In order to reduce the
computational load of camera facing the wall, the
arca between these two lincs is kept as small as
possible. The reason is that although localization is a
very important task, but obstacle detection and
avoidance still has a highcr priority. On finding the

5

blackened patch between these vertical lines, the
system finds the correct dimensions of the color
patch and extracts the patch. The top R, G and B
channel values of the patch are extracted and
compared with RGB channgl values of pre-dcfined
color codes. If a match is found, the corresponding
color code is retumed, clse “unk™ code is returmned.

£ T ETTEY R

KR LI - Pk

Fig. 10. Color Patch Detection. Color patch about to
cnter the detection region (the region between
the two vertical lines).

6. IMPLEMENTATION

The system is implemented using VC++ 6.0 togcther
with Intel’s computer vision tool OpenCV (Beta 1.0).
The system is tested using two ordinary digital
cameras mounted on top of a remote controlled toy
car. The platform used is Windows2000 on a 600
MHz AMD Athelon processor with 120 MB RAM.

The system is able to navigate successfully around
different obstacics and correctly identify the path,

7. Conclusion

In this paper we have presented a path and obstacle
detection method. It includes a floor plane detection
algorithm. The method is computationally light
cnough to be implemented on an ordinary personal
compulter. The system is capable of Self-Localization
using color codes on the wall,

REFRENCES

Kosaka, A. and A.C.Kzak, (1992). "Fast Vision-
Guided Mobile Robot Navigation Using Model-
Based Reasoning and Prediction of
Uncertaintics," CVGIP:Image Under. Vol, 56,
No.3, pp. 271~329.

Roh, K. S., W. H. Lee, 1. S. Kweon (1997). “Obstacle
Detection and Sclf-Localization without Camera
Calibration Using Projective Invariants™. Proc of
ICRA'97
url: http://rev.kaist.ac.kr/pub/papers/iros97.pdf

Picrre, L., (2001). “Deriving and matching image
fingerprint sequences for mobile robot
localization™. Proc of 2001 IEEE International
Conference on Robotics and Automation, ICRA
2001.Vol. 2, pp. 1609~1614,

Kumano, M., A. Ohya, S. Yuta, (2000). “Obstacle
Avoidance of Aulunomous Mobile Robot using
Sterco Vision Sensor”, Proc. of 2* International
Symposium on Robotics and Automation, pp.
497~502.

Matsumoto, Y., M. Inaba and H.Inoue, (1996).
"Visual Navigation using View-Sequenced
Route Representation,” Proc. of ICRA’96, pp.
83~88. .

