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ABSTRACT

This thesis considers the issue of evaluating heteroskedasticity consistent 

covariance matrix estimators (HCCME) in Hnear heteroskedastic regression models. 

Several HCCMEs are considered, namely: HCO (White estimator), HCl (Hinkley 

estimator), HC2 (Horn, Horn & Duncan estimator) and HC3 (Mackinnon & White 

estimator). It is well known that White estimator is biased in finite samples; see e.g. 

Chesher & Jewitt and Mackinnon & White. A number o f simulation studies show that 

HC2 8l HC3 perform better than HCO over the range of situations studied. See e.g. Long
I

& Ervin, Mackinnon & White and Cribari-Neto & Zarkos.

The existing studies have a serious .drawback that they are just based on 

simulations and not analytical results. A number of design matrices as well as skedastic 

functions are used but the possibilities are too large to be adequately explored by 

simulations. In the past, analytical formulas have been developed by several authors for 

the means and the variances of different types of HCCMEs but the expression obtained 

are too complex to permit easy analysis. So they have not been used or analyzed to 

explore and investigate the relative performance of different HCCMEs. Our goal in this 

study is to analytically investigate W  relative performance of different types of 

HCCMEs. One of the major contributions of this thesis is to develop new analytic 

formulae for the biases of the HCCMEs. These formulae permit us to use minimax type



criteria to evaluate the performance of the different HCCMEs. We use these analytical 

formulae to identify regions of the parameter space which provide the ranges for the best 

and the worst performance of different estimators. If an estimator performs better than 

another in the region of its worst behavior, then we can confidently expect it to be better. 

Similarly, if an estimator is poor in area of its best performance, than it can be safely 

discarded. This permits, for the first time, a sharp and unambiguous evaluation of the 

relative performance of a large class of widely used HCCMEs.

We also evaluate the existing studies in the light of our analytical calculations. Ad 

hoc choices of regressors and patterns of heteroskedasticity in existing studies resulted in

ad hoc comparison. So there is a need to make the existing comparisons meaningful. The

Jbest way to do this is to focus on the regions of best and worst performance obtained by
a

analytical formulae and then compare the HCCMEs to judge their relative performance. 

This will provide a deep and clear insight of the problem in hand. In particular, we show 

that the conclusions of most existing studies change when the patterns of 

heteroskedasticity and the regressor matrix is changed. By using the analytical techniques 

developed, we can resolve many questions;

1) Which HCCME to use

2) How to evaluate the relative performance of different HCCMEs

3) How much potential size distortion exists in the heteroskedasticity tests

^ 4) Patterns of heteroskedasticity which are least favorable, in the sense of 

creating maximum bias.



Our major goal is to provide practitioners and econometricians a clear cut way to 

be able to judge the situations where heteroskedasticity corrections can benefit us the 

most and also which method must be used to do such corrections.

Our results suggest that HC2 is the best of all with lowest maximum bias. So we 

recommend that practitioners should use only HC2 while performing heteroskedasticity 

corrections.

Ill
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Chapter 1: INTRODUCTION TO HETEROSKEDASTICITY 

CONSISTENT COVARIANCE MATRIX 
ESTIMATORS (HCCMEs)

1.1: INTRODUCTION

p
The linear regression model is extensively used by applied researchers. It makes 

up the^building block of most of the existing empirical work in econometrics, statistics 

and economics as well as the related fields. Regardless of this reality, very little is known 

about the properties of statistical inferences made from this model when customary 

assumptions are violated. In particular, classical linear regression model requires the 

researchers to assume that variances of the error term are same. This assumption often 

violated in cross sectional data. This is called heteroskedasticity.

We quote from Stock and Watson (2003) as,

“At a general level, economic theory rarely gives any reason to believe

that errors are homoskedastic. It is therefore prudent to assume that errors might
I,
1

he heteroskedastic unless i f  you have compelling reasons to believe otherwise



Using the analysis of Shepp (1965), we can prove the existence of error sequences which 

are heteroskedastic, but the heteroskedasticity cannot be detected even asymptotically 

with 10 0% power, i.e.

“Homoskedasticity is potentially unverifiable even with an infinite amount o f  data”.

Thus failure to reject the null of homoskedasticity does not provide sufficient insurance 

against the alternative of heteroskedasticity.

DEFINITION: Distinguishability

Let (Xp ^ sequence of independent and identically distributed (IID) positive
I

random variables with common distribution F. Let <7̂ for any sequence of

constants ct, . The sequence is distinguishable from the sequence if and only if 

there exists a sequence of hypotheses tests, T„ of null and alternative hypotheses:

:a,=\ ,  / = 1,2,...,«
77, :cr. ^ 1, for some r

Such that size of the tests goes to zero and power goes to one as n approaches infinity, i.e.

lim P (r„ rejects ) = 0

lim P {T̂  rejects H^! H ^  = \



Theorem 0-1:

Let Z  = be a sequence of independent and identically distributed (IID) positive

random variables. Let cr = be a numerical sequence/where cr̂  represents the

. t i . . . .  Z .error m" scaling Zn.̂  The sequence Z is distinguishable from — if and only if
O'

J]log(cr„") = -Hx).

Proof: Let W = \og — = log(Z)^log((T) = X - a ,  where X  = log(Z) and a  = log(cr).
y

According to Shepp (1965), [if X  = {X,,X 2,...} is a sequence of IID random variables

and is a numerical sequence, an representing the error in centering Xn-

I*
Then the sequence X is distinguishable from the sequence X-a if so using

Shepp’s result, we can say that the sequence log(Z) is distinguishable from log
<7

if

and only if ^ lo g (c r^ ) - +oo. Since l6 g(Z) is a monotonic transformation of Z, so the 

same result will hold for the sequence Z. Hence we can say that the sequence Z is 

distinguishable from — if and only if ^ lo g (c r^ )  = +oo .This proves the theorem.■

So, we can say that heteroskedasticity may be present but may not be detectible and one 

should test for heteroskedasticity to get valid estimates.



The issue of heteroskedasticity arises in cross-sectional, time series as well as in 

finance data. We list some important examples of situations where heteroskedasticity

arises.

1) In studies of family income and expenditures, one expects that high income 

families’ spending rate is more volatile while spending patterns of low income 

families is less volatile. [See Gujarati (2004), Prais & Houthakkef (1955), Greene 

(2003, Ch. 11, p. 215) and Griffiths et al. (1993) for an example of income and 

food expenditure].

2) In error-leaming models where individuals benefits from their previous mistakes, 

for example, number of typing errors reduces with the increase in time spent onk.i•i
* typing practice. This also reduces the variation among the typing mistakes. [See 

Pearce-Hall model (1980) for error learning theory, Gujarati (2004, Ch 11, p. 389) 

and Kennedy (2003) for examples].

:i
3) When one or more regressors in a regression model has skewed distribution, e.g; 

the distribution of income, wealth and education in most societies is skewed 

which causes heteroskedasticity. [See Gujarati (2004, Ch 11, p. 389) for details].

4) If a regression model is misspecified (i.e. an important variable is ommited) then 

this misspecification can cause heteroskedasticity in regression errors. [See 

Gujarati (2004, Ch 11, p. 391), JB Ramsay (1969) for details].

5) Outliers in the data can cause heteroskedasticity. [See Gujarati (2004, Ch 11, p. 

390].



6 ) Incorrect data transformation (e.g. ratio or first difference transformation) can 

lead to heteroskedasticity. [See Hendry (1995) & Gujarati (2004, Ch 11, p. 381) 

for details].

7) Incorrect functional form (e.g. linear versus log-linear models) can cause 

heteroskedasticity. [See Hendry (1995), Kennedy (2003), JB Ramsay (1969), 

Joachim Zietz (2001) and Gujarati (2004, Ch 11, p. 391) for details].

1.2: OLS METHOD UNDER HETEROSKEDASTICITY
i-

^ Ordinary Least Square (OLS) method is most often used to get the parameter

estimates in the linear regression model. When erroi^s in the regression model are 
i

heteroskedastic, then Ordinary Least Squares estimates of the linear parameters remain 

unbiased and consistent but are no longer efficient.

The customary estimate of covariance matrix estimator of the OLS parameters 

becomes biased and inconsistent. This means that when heteroskedasticity is overlooked, 

the inferences in the regression model are no longer reliable.

Most of the econometricians and statisticians while performing the analysis, 

report the t-stats using the wrong standard errors, i.e. OLS standard errors which assume
I

homoscedasticity. Use of heteroskedasticity consistent standard errors can change results



in the sense that significance of the regressors change, i.e. significant regressors might 

appear insignificant and vice-versa.

1.3: METHODS OF HETEROSKEDASTICiTY CORRECTIONS

In the literature three main methods are used to handle the problem of heteroskedasticity.

The first, which is more commonly used, is to test the regression errors for 

heteroskedasticity. If the test does not reject the null hypothesis of homoscedasticity, then 

OLS analysis is used. Otherwise suitable adjustments for heteroskedasticity are made by 

transforming the data, in log fonns, etc. This method is known as Pre-testing.

‘The second method is to use HCCME -  heteroskedasticity corrected covariance 

matrix, estimators. These estimators were first proposed by Eicker (1963, 1967) and 

introduced by White (1980) info the econometric literature.

A third method, introduced by Newey and West (1987), extends this methodology 

to correct standard errors for both heteroskedasticity and potential autocorrelation, called 

heteroskedasticity and autocorrelation consistent (HAC) estimator. For the purpose of 

this thesis, we consider the simplest case, where heteroskedasticity is the only 

misspecification. This simplicity makes analytic derivations possible. The case of 

dynamic models would add substantial analytical complications, and is not treated here.



There are many reasons to suspect that the second method is superior to the first. 

Many simulation studies including Mackinnon & White (1985), Cribari-Neto & Zarkos 

(1999) and Cribari-Neto et al. (2007) support this conclusion, and show that it is better to 

use HCCMEs rather than do a pre-test for heteroskedasticity.

1.4: Evaluation of HCbMEs: Simulation versus Analytics

 ̂Since heteroskedasticity corrections are relatively easy to implement, and provide 

for more robust inference, there is general agreement v îth the idea that we should use 

HCCMEs. ^

A quote from Wooldridge (2000, pg. 249):

“In the last two decades, econometricians have learned to adjust standard errors, 

t, F  and LM  statistics so that they are valid in the presence o f heteroskedasticity o f  

unknown form. This is very convenient because it means we can report new statistics that 

work, regardless o f the kind o f heteroskedasticity present in the population

However, a number of practical obstacles have hindered widespread adoption of 

HCCMEs. The initial proposals of Eicker and White were found to have rather large 

small sample biases, usually downward, which results in wrong inferences in linear
3

regression models (See, e.g., Bera et al., 2002; Chesher and Jewitt,T987; Cribari-Neto et

a!., 2000; Cribari-Neto and Zarkos, 2001; Fumo, 1997). But when sample size increases, 
f;



the bias shrinks which makes White estimator a consistent one. Numerous alternatives 

have been proposed to reduce bias, but no clear cut winner has emerged. The presence of 

a large number of alternative HCCMEs with widely differing small sample properties and 

competing claims to superiority leaves the practitioner without guidance as to what to do.

A major problem in evaluating the performance of the HCCMEs is the complexity 

of the analytic formulae required for their evaluation. Chesher and Jewitt (1987) made 

some progress in this direction by deriving analytic formulae for the exact small sample 

bias of some important HCCMEs. Cribari-Neto (2000) and Cribari-Neto (2004) have 

provided some asymptotic analytic evaluations of biases. The extreme complexity of 

these formulae has hindered analytic comparisons of different HCCMEs.

Since analytics have not been possible, many sirhulatioh studies of the relative 

performance of the different HCCME’s have been made. Simulation studies suffer^from a 

seriousldefect in this area -  the performance of the HCCME’s is directly dependent both 

on the sequence of regressors and on the heteroskedastic sequence. This is an extremely 

high dirnehsional space of which only a miniscule portion can be explored via* 

simulations. It stands to reason that each HCCME will have its regions of strengths and 

weaknesses within this parameter space. If so, choosing the regressors and 

heteroskedastic alternative in different ways will lead to conflicting evaluations. This 

appears to be reflected in the simulation studies which arrive at differing conclusions 

regarding the relative strengths of the different HCCME’s.



The only solution to the problems with HCCMEs is to evaluate them analytically, 

which is what we undertake in this study. Because of the complexity of the algebra, we 

restrict our attention to the case of a single regressor. The extension of results to multiple 

regression models is also provided at the end, but this involves significant additional 

complications. Thus it is useful to set out the basic methodology in the simpler context of 

a single regressor model.

1.5: ORGANISATION OF THE STUDY

Rest of the thesis is organized as follows:

Chapter 2 gives literature review. The first section of this chapter provides an

introduction to heteroskedasticity corrections. The second section includes the discussion

of the usual estimator of the OLS covariance matrix which we label heteroskedasticity-

unadjusted covariance matrix estimator (HUCME). Section 3 of the same chapter

provides the discussion of heteroskedasticity consistent covariance matrix estimators

(HCCMEs). Here we included only those estimators which were compared in this study

while the details o f all other estimators are j3rovided briefly in the appendix for interested

readers. The last section of. chapter 2 discusses some issues regarding comparison of 
i .

HCCMEs and also presents a critique of existing studies.



Chapter 3 discusses the main heteroskedastic regression model used throughout the study
'3

and the related issues regarding consistency of the HUCME. The model considered in the 

thesis is one regressor case to lay the basis for more complex analysis later.

Chapter 4 provides the analytical apparatus which permits us to introduce and derive a 

new minimax estimator that has substantially smaller bias than the standard Eicker- 

White. The minimax properties of the same are discussed as well.

Chapter 5 presents results for the bias of general estimator which takes HCO, HCl, HC2 

and HC3 as its special cases and analytically provides their finite samples as well as 

asymptotic bias.

Chapter _6 includes results regarding maximum bias of all HCCMEs. The bias formulae 

simplify substantially for the case of symmetric regressors, so this is treated separately

from the case of asymmetric regressors, th e  chapter concludes with a comparison of the
i'.

HCCMEs based oh the maximum bias. The last section of the same chapter extends the 

simple regression model to multiple regressors’ case and related issues are discussed.

Chapter 7 provides the conclusion and further recommendations.

At the end, an appendix is provided, which includes the discussion of all other estimators 

which have not been taken into account in our thesis for interested readers.



Chapter 2: LITERATURE REVIEW

2.1: INTRODUCTION

Tit is well known that Ordinary Least Squares (OLS) estimates are inefficient

%though they remain unbiased and consistent under heteroskedasticity. The covariance 

matrix of the OLS estimates becomes inco^nsistent as well as biased because it is based on 

the assiimption that regression errors are homoskedastic. Thus there is a need to get 

correct estimates of the covariance matrix of OLS estimates in the presence of 

heteroskedasticity to make valid statistical inferences.

The usual methodology to deal with heteroskedasticity, practiced by the 

researchers and practitioners, is to use OLS estimate of the regression parameters which 

is unbiased and consistent but not efficient along with the covariance matrix which is 

consistent regardless of whether variances are same or not. This strategy introduces



heteroskedasticity consistent covariance matrix estimators, commonly known as 

HCCMEs.
3

 ̂There is a large literature on how to get a consistent covariance matrix estimator 

of OLS estimates of regression parameters under heteroskedasticity. A number of 

attempts have been made in this direction, which are the main source of literature 

regarding heteroskedasticity corrections.

There are two main approaches being used to find the variance covariance matrix 

estimator of OLS estimates of true parameters in linear regression model.

 ̂a. Finding HCCMEs by modifying the original Eicker and White estimator

^ b. Finding HCCMEs by employing bootstrap methodology 
£

 ̂We will discuss only the first approach here which is the focus of the present 

study. The detail of second approach is given briefly in the appendix A for the interested 

readers.

For more clarity and ease, it is useful to introduce the forthcoming discussion in 

the context of a standard heteroskedastic regression model.

Consider a linear regression model,

EQ: 2-1 y ^ x p ^ E

Where, y is the T x 1 vector of dependent variable, X is T x K matrix of regressors, (3 is

the K x 1 matrix of unknown parameters and e is the T x 1 vector of unobservable errors

with mean zero and covariance matrix, Z. i.e. E(s) = 0 and Cov (e) = Z, where, Z  is a
20



diagonal matrix, i.e. 1. = d i a g { < T l regression model in EQ: 2-1 is a 

general heteroskedastic model.

For later use, define the OLS estimator of parameter p as, f3 = {^X' Let ‘e’ be

the vector of OLS residuals, defined as, e = y - X p . Then it is easily calculated that the 

true covariance rhatrix of OLS estimator (P) under heteroskedasticity is:

a ^ { x ' x y  X ' Y X { X '  x y ^

All estimators of the covariance matrix^ (Q) to be discussed are based on replacing 2  by

some estimate, S . We now list the main estimators which we will analyze in our study.

Our rnain concern is the analysis of four most popular HCCMEs which are mostly used
\

by the software packages. These include, HCO introduced by Eicker-White (1980), HCl 

suggested by Hinkley (1977), HC2 proposed by Horn, Horn & Duncan (1975) and finally 

HC3 introduced by Mackinhon and White (1985). There are two more HCCMEs in this 

sequence which are concerned with the high-leveraged observations in the design matrix. 

We will not discuss them since our focus in this thesis is the balanced regressors case; 

where there are no outHers in the design matrix [See EQ: 5-19 for details].

A • ^We discuss each of the above mentioned estimators briefly in the following subsections.



2.2: HUCME

Recall that ^  = [ X ' X )   ̂X ' y  and that the OLS residuals are e = y - X p . The usual

OLS estimate of regression error variance is:- = e e 
T ~ K

The simplest estimator of Q ignores heteroskedasticity and estimates S  by = s^Ij

. We will call this the HUCME: Heteroskedasticity Unadjusted Covariance Matrix 

Estimator. Then the usual estimator of O. simplifies to:

-]Doa = s \ X ' X )

This estimator of the covariance matrix is inconsistent (See Theorem 0-1 for details).

This means that confidence intervals based on it will be wrong, even in very large 

samples. Consequently, we will make wrong decisions regarding the significance or 

otherwise of the regressors.

2.3:  ̂HCCMEs

To resolve the problem of the inconsistency of the HUCME, a large number of

heteroskedasticity-consistent covariance matrix estimators (HCCMEs) have been

introduced in the literature. The first of these is the Eicker-White (HCO) estimator. We
22



will also discuss three other estimators below. These estimators have an algebraic 

structure, which permits analytic analysis by our methods. There are many other 

estimators which cannot be analyzed so easily; some of these alternatives are discussed in 

Appendix A for the sake of completeness. The sections below will introduce and discuss
-a

estimators we plan to analyze in this thesis.

2.3.1: EICKER-WHITE (HCO) ESTIMATOR

Literature of heteroskedasticity consistent covariance matrix estimators begins 

with Tthe influential paper by Eicker (1963, 1967), who introduced the first 

heteroskedasticity-consistent covariance matrix estimator (HCCME) in statistics 

literature. This estimator consistently estimates the covariance matrix of OLS estimator in

*
the presence of arbitrary heteroskedasticity in error variances. His estimator was 

generalized by White (1980) to cover many types of dynamic models'' used by 

econometricians. We will call it the Eicker-White (EW) throughout this study to 

acknowledge the priority of Eicker who was the first to introduce this idea. The novelty 

of Eicker-White lies in the possibility of finding a consistent estimator for the OLS 

covariance matrix even though the heteroskedastic error variances cannot themselves be 

consistently estimated, and form an infinite dimensional nuisance parameter. EW 

estimator has been labeled HCO in the literature and is consistent under both 

homoskedasticity and heteroskedasticity of unknown form. This estimator is commonly



used to construct quasi-t statistics and asymptotic normal critical values. The quasi-t 

statistic based on this estimator displays a tendency to over reject the null hypothesis 

when it is true; i.e. these tests are typically too liberal in finite samples. [See Cribari-Neto 

& Zarkos (2004), Cribari-Neto et al. (2007)].

The main idea of the Eicker-White estimator is to replace the unknown variances by the 

squares of the OLS residuals, i.e., Eicker-White estimator (HCO) estimates the unknown 

Z by S , where, it replaces the unknown variances in Z by the OLS squared residuals. 

Thus estimated covariance matrix has the form,

O h c o  =

I

Where, 2̂ -̂̂

Here, e^'s are the squares of the OLS residuals, e = y —X p .

Using the OLS squared residuals to estimate the unknown variances was a good 

starting point and opens a new area of research for the researchers. Since Eicker, many 

alternatives have been proposed in the literature. Of these, the ones analyzed in this thesis 

are discussed below.

2.3.2: HINiaEY (H C l) ESTIMATOR

iC
Since the average of the OLS squared residual is a biased estimate of the true 

variances, Hinkley proposed an alternative to Bicker’s estimator in 1977. Instead of



dividing by ‘T’, Hinkley’s estimator, known as HCl, divides by (T-K). Hence ttie degree 

of freedom adjustment done by Hinkley gave another heteroskedasticity consistent 

estimator which should be superior to HCO.

Hinkley estimator can be written as: Qhci = ( X ' X )  ^

2.3.3: HORN, HORN AND DUNCAN (HC2) ESTIMAtOR

3- ^

jHom, Hom and Duncan (1975) proposed another alternative to Bicker’s 

estimator. They suggested that under homoskedasticity, the ratio of expected value of 

OLS squared residuals and the'discounting term is equal to true variance. The discounting

term is (1-htt), where htt is the t^ entry of the Hat matrix, H  = X{X'X)  ^X' . Their 

estimator is known as HC2 in the literature. To motivate the HC2, we proceed as follows:

A

Let e = y - X j 3  be the OLS residual vector.

Note that we can write ‘e’ as where M  = I ~ H

Consider Cov(e) = Cov(^Ms) = MCovi^s^M' = ' = ( / - / / ) 2 ( / - / / ) '

Since M=I-H is symmetric, so, Cov(e) = ( / - / / ) ! ; ( / - / / )  
r

H



Note that the above is the covariance matrix in case of Keteroskedasticity.

But in case of homoscedasticity, i.e, Z ^  o ^I

Cov(e) = cr̂  ( / - / f ) . Here we made use of the fact that M is idempotent, i.e. M^=M.

Hence in case of homoscedasticity,

Var(e,) = E(e f )  = ( l -h„ )(jf

This can be written as E

e . . .
From above expression, we can see that — is an unbiased estimator of true variances

1-A„

in case of homoscedasticity. This property need not hold under heteroskedasticity; that is 

why, Horn, Horn and Duncan called it a ‘nearly’ unbiased estimator. Dividing OLS 

squared residuals by the corresponding entries of the discounting term, ( 1 -htt), gives the 

Horn, Horn and Duncan HCCME (HC2) which is an unbiased estimator under 

homoskedasticity.

HC2 estimate of the covariance matrix is:

nHC2 = ( X ' x y \ x % ^ ^ x ) { X ' X ) - '

Where, ^HC2 ~
v l- A ,.

, i = h2,...,T



2.3 A r  MACKINNON AND WHITE (HC3) ESTIMATOR

The fourth estimator was suggested by Mackinnon and White (HC3). Their 

objective was to improve HC2 by dividing each of the squared residual by the square of 

the discounting term, ( l -/?„), t = l,2 ,...,T , where, htt is the t-th entry of the Hat matrix,

H, / /  = X ( X ' X y X ' .

HC3 estimator is given by:

Where;
I

^HC3=diag

Dividing by the (1-htt) leads to over-correcting the OLS residuals, but if the regression 

model is heteroskedastic, observations with large variances will tend to influence the 

estimates heavily, and they will therefore tend to have residuals that are too small. Thus 

this estimator may be attractive if large variances are associated with large values of htt. 

HC3 is\proved to be a close approximation to Jackknife estimator [See Efron, 1979] by
r

Mackinnon and White (1985).



2.3.5: SOME ESTIMATORS NOT EVALUATED

Later in 1997, a robust version of HCCMEs was introduced by Fumo (1997) and 

she showed that small sample bias can be reduced by following her estimators. These 

estimators are also covered in detail in the appendix A of the study. These estimators are 

too complex to allow for analytic analysis, and hence we do not consider them in the 

present study.

Cribari-Neto et at. (2000) introduced bias corrected versions of the HCO and then 

Cribari-Neto and Galvao (2003) generalized Cribari-Neto et al. (2000) idea to give the 

bias corrected versions of HCl, HC2 and HC3 along with HCO. These are also provided 

in the appendix for the interested readers, as they are not directly relevant with the 

present study.

During the last decade the focus of research shifted to the estimators which work 

well when the regression design contains high influential observations. This leads to the 

development of two new HCCMEs for the high-leveraged regression designs. These are 

known as HC4 proposed by Cribari-Neto (2004) and HC5 suggested by Cribari-Neto et 

al. (2007). These are also not covered in the current study since this study deals with the 

balanced regressors. But their detailed*versions are provided in the appendix A for the 

interested readers.



In our study we are considering only HCO to HC3 based estimators because the 

analysis of these four estimators requires substantial analytical work. The analysis of 

HC4 and HC5 can be covered in a later study.

An alternative stream of research is to use bootstrap based methods to find the 

covariance rhatrix of OLS estimator. Efron (1979) proposed this method the first time, 

called naive bootstrap. One of the bootstrapped based estimators is the Jackknife (JA), 

(See Appendix A. 1.2). Mackinnon & White (1985) showed that HC3 is a close 

approximation to Jackknife (JA). We ^ e  evaluating HC3 along with rival estimators 

(HC0,.HC1 and HC2) in the current study, so we can safely say that we are considering 

some of the bootstrapped based estimators. The focus of our study is on developing 

analytical methods for evaluations of bias. Most bootstrap estimators are simulation 

based and hence cannot be evaluated analytically. Therefore they are excluded from this 

study.

2.4; COMPARISON & EVALUA TION OF HCCMEs

Ktackinnon and White (1985) comp^ed the performance of HCCMEs (HCO,

HCl, HC2 and HC3) using extensive Monte-Carlo simulations, and showed that, Eicker-

White (HCO) estimator is downward biased in finite samples. The Monte-Carlo results

favored HC3 on the basis of size distortions. Our analytics supports this conclusion, 
1

showing that HCO can have very large biases. Later, Chesher & Jewitt (1987) developed

a formula for the bias of the original Eicker-White HCCME (HCO) and suggested that it
29



is always biased downward when regression design contains high leveraged observations. 

They also gave expressions for the lower and upper bounds for the proportionate bias of5-

the HCO estimator. Our formulae are for the simple bias and not the proportional ones. In

addition, Chesher & Jewitt (1987) used the ratio of maximum and minimum variance to

represent the degree of heteroskedasticity but in our case, the minimum variance is zero

and maximum variance is bounded by putting an upper bound on variances (U), so in our

case the ratio of maximum to minimum variance is infinity. Hence our bias formulae ^ e

not directly comparable ^with the one obtained by Chesher & Jewitt (1987). Further 
r

research is required to compare both results and we leave it open for future researchers.

K
I Orhan (2000) in his PhD Thesis analytically calculated the bias of Eicker-White 

and Horn, Horn and Duncan estimator, when the regression model contains only one 

regressor and regressors are standardized to have mean zero and variance unity. He also 

compared the biases of different HCCMEs (OLS, White, Hinkley’s estimator, Horn, 

Horn & Duncan estimator, Jackknife estimator, Maximum likelihood (ML) estimator, 

Bias Corrected estimator, Bootstrap estimator, Pre OLS and the James Stein estimator) 

using a number of different criteria (Chi-Square loss, Entropy loss ,Quadratic loss and the 

t-loss). He used three real world data sets to do the comparison. His results are conflicting 

and are data specific. His main finding is that ML should be preferred.

Biases of different estimators vary with the configuration of unknown

heteroskedasticity. Our analytical formulae permit us to calculate the least favorable
t

configurations of heteroskedasticity which generate the maximum bias. This allows to 

evaluate and rank ekimators on the basis of their worst case biases. Our findings suggest



that HC2 estimator proposed by Horn, Horn and Duncan has least maximum bias as 

compared to all other estimators, namely, HCO, HCl and HC3. Actually the results 

provided by Orhan (2000) are data specific, and we know that if we change the design 

matrix or the skedastic function, the results get changed. The same thing happened in 

Orhan (2000). Our findings suggest that HC2 should be used if we are comparing HCO to 

HC3. But since our results did not cover other estimator [Jackknife estimator, Maximum 

likelihood (ML) estimator, Bias Corrected estimator, Bootstrap estimator, and the James

Stein estimator], so we cannot say about their performance compared to HC2.

Cribari-Neto and Zarkos (1999) using Monte-Carlo analysis judged the 

performance of HCO to HC3 HCCMEs. Their results favored HC2 estimator when the
I

evaluation criterion is bias. These findings are consistent with our study.

Scot Long & Ervin (2000) performed Monte-Carlo simulations by considering a

number of design matrices and the error structures to compare various HCCMEs using

size distortion as the deciding criteria. TTieir results favored HC3 against its rivals and

they suggested that one should use HC3 when sample size is less than 250. Our findings

suggest that the performance of HC3 is better than HCO but its performance is very poor

as compared to HCl and HC2. Although Long & Ervin (2000) used a number of design

matrices as well as the error structures, but they missed many other combinations of

regressors and the skedastic sequences. So they arrived at the wrong conclusion due to

simulation based results. i



The finite sample behavior of three alternative estimators (HCl, HC2 and HC3) is 

found \o  be better than that of Eicker-White (HCO) estimator because these estimators 

already incorporate small sample corrections. Many simulation studies suggested that 

these estimators are better than HCO, e.g., Mackinnon and White (1985), Davidson and 

Mackinnon (1993), Cribari-Neto and Zarkos (I999).0ur results indicate the same.

Since the above studies are based oh simulations, and not the analytics, so they 

come up with different conclusions regarding the performance of HCCMEs, e.g. 

Mackinnon and White (1985) stressed to use HC3, Cribari-Neto and Zarkos (1999) 

favored HC2, Long and Ervin (2000) suggested HC3, Cribari-Neto (2004) advocated 

HC4 and Cribari-Neto et al. (2007) provided some evidence for HC5, all studies use size 

distortion as the deciding criteria. The different conclusions are due to the fact that the 

performance of HCCMEs depend on the structure of the design matrix as well as the 

skedastic function, and since simulations cannot take into account all the combinations of 

regressors and skedastic functions, so the question of comparing HCCMEs is not 

answerable using simulations and can be well captured with the help of analytical results, 

which we provide in this thesis. Using analytics, we gave exact expressions for the 

’maximum positive and negative biases of all HCCMEs; this allows us to find the least 

favorable cases for each HCCME. Now if an HCCME is found to perform well in its

worstVerformance region, then surely this will perform better in other areas. So the only
I

way to compare HCCMEs is the analytics and not the simulations. That is why we 

provide analytical results for the comparison.



2.5; OBJECTIVES OF THE STUDY

In this section, we provide the main objectives of the study.

Our goal in this study is to analytically investigate the relative performance of four most 

popular HCCMEs (HCO, HCl, HC2 and HC3) which are mostly used by" Software 

Packages.

1
a) To do the comparison, we developed, for the first time in literature, the analytical 

formulae for the biases of HCCMEs. In particular, we gave exact expressions for

^the maximum positive and negative biases of ail HCCMEs

b)* Using the analytical formulae developed, we used Minimax Criteria to evaluate 

‘ the performance of HCCMEs. In particular, we identified the regions of parameter

space which provide the ranges for the Worst performance of each HCCME. This 

allows to evaluate and rank estimators on the basis of their worst case biases. If 

 ̂an HCCME is found to perform well in its worst performance region, then surely 

it will perform better in other areas.

c) This permits, for the first time, a sharp and unambiguous evaluation of the relative 

performance of a large class of widely used HCCMEs.

Our major goal is to provide practitioners and econometricians a clear cut way to be able
4

to judge the situations where heteroskedasticity corrections can benefit us the most and 
*

also which method must be used to do such corrections.
I



Chapter 3: THE HETEROSKEDASTIC REGRESSION 

MODEL

3.1: Introduction

In this chapter we present our basic regression model and the related definitions. 

The bias of OLS estimate of the variance of error term is derived by re-parameterizing

4 .the linear regression model. In addition, the issue of consistency of OLS e^imate of 
J

variances of error term has been explained explicitly using analytical formulae for the 

bias.

3.2: The Basic Regression Modet (Singie Regressor Case)



In this section, we set out the basic model and definitions required to state our 

results. We will consider a linear regression model with a single regressor, x, and 

t^ l,2 ,...,T  observations

EQ.O-l y,=p^+p^x,+s,

Let = be the T X 1 vector of errors. We assume that E (e) = 0, but

allow for heteroskedasticity by assuming that Cov(^) = 2 , where S is a diagonal matrix:

£ = diag[a^ Xet the 2 x 1 vector of regression coefficients.
r

As usual, we can define vector y and matrix of regressors, X, to write the model in matrix 

form:

/ \ 
>̂1 1̂ \

y = yi 1 2̂

.1 Xj j

,y  ^  XP-¥£

The OLS estimate of the coefficient p  is;

P = { X ' X Y^ X ^ y .

The covariance matrix of OLS estimates of ^  is:

n = ( X ' X ) ' ' X ' u c { X ' X ) ' '

¥ - 
The main objective of our interest is the estimation of ^225 the variance of the OLS

estimator of . This will determine the significance of the regressor x.



3.3: Centering the Regressors

Let 3c = ( l / r ) ^ j c ,  be the average of the regressors, as usual. An important issue

which has not received attention in the literature is that estimates of the variance Q 22 have
r

a.

different properties if the model is re-parameterized as follows;

Heteroskedasticity corrections are different in model provided in EQ: 0-2, where

the regressors have been centered, from the original model. There are many reasons to

prefer model in EQ: 0-2 over model in EQ: 0-1 when making heteroskedasticity

corrections and this is the approach we wilt follow throughout this thesis. Recall that the

overall F statistic for the regression evaluates the coefficients of the regressors for

significance while removing the constant term from considerations. Exactly in the same

way, it is preferable to assess the significance of the regressor, x,, after removing the

portion of it collinear with the constant term. The second reason for prefeiring model in

EQ: 0-2 is that the analysis substantially simpler and offers formulae which are much 
¥

easier\o interpret and understand. The third reason is that the formulae for the covariance



matrix.are substantially simpler, and correspond to simple intuition about the problem. 

This will be discussed in detail later, after we present a formula for ^22 •

Lemma 1: The variance of the OLS estimate heteroskedasticity is;

Proof: Both the derivation and interpretation of this result becomes much simpler if we 

introduce an artificial ordered pair of random variables (Z,V) which takes one o f the T 

possible values (a:,,cr,^) with equal probability (1/T) for each outcome. In terms of these

randorn vanables, the formula for O.22 can be written in a much more revealing form:

EQ: 0-4 ^22 =
Cov(VZ,Z)-Cow{V,Z)EZ

TVar(Zy

To get to this result, we compute the rhatrices entering the formula for

a  = {x 'xy  X'UC {X'xy as follows.

EQ: 0-5

X X  = T
1 EZ

EZ EZ^
1

7Yar(Z)
' EZ^ 
-E Z

-E Z
1

X '1 X  = T
 ̂ EV EVZ 
EVZ EVZ^



Multiplying through, rearranging terms, and applying the formula 

Cov(X,V)  -  EXY~(^EX)(^EY"j leads to the following expressions for the entries of the 

matrix Q :

EQ: 0-6

1
EZ^ {Cov{VZ,Z) -  Cov(F, Z ')} -  EZ [Cow{VZ^,Z) -  C ov(FZ,Z ')j

EQ: 0-7 = — ^ i- ^ r C o v ( F ,Z ) £ Z '-C oy{VZ,Z)EZ
TVar{Zy

EQ: 0-8 0^2 = J Cov(KZ, Z) -  Cov(K, Z)EZ
JVar^Zy

This proves the lemma, i

I

Let fV = ( Z -  EZj f yJVar (Z) be the standardization of the random variable Z. The 

following lemma shows how the formula for O 22 simplifies in the model with centered
‘T̂

regressors:

Lemnaa 2; If the regressors have mean 0, so that EZ=0, then

^  Cov(VZ,Z) (EVZ^) EVW^ 
TVav(Zf  rVar(Z)" 7Var(Z)

it

If variances, V, and the squared standardized regressors W are uncorrelated, then 1222, 

the quantity we wish to estimate, is proportional to EVW^ = (EV)(^EfV^'f ^  E V , or the

average variance. This will be properly estimated by usual OLS based estimates



(HUCME) which ignore heteroskedasticity. On the other hand, in model given in EQ: 

0-1, this condition does not suffice. In model given in EQ: 0-1, standard estimates are 

unbiased only if the sequence of variances is uncorfelated BOTH with ‘X ’ and with X , 

(See Theorem 0-2 below).

The more stringent condition is needed because X is correlated with the constant. This 

shows that conditions for consistency of the HCCME are simpler, easier to fulfill and 

make more intuitive sense in the model with the centered regressors. This gives us a third 

reason to prefer model with centered regressors for making heteroskedasticity 

corrections.

3.4:  ̂Order of Consistency

 ̂White (1980) motivates the introduction of his heteroskedasticity corrected 

covarmnce matrix estimates by stating that “It is well known that the presence of 

heteroskedasticity ... leads to inconsistent covariance matrix estimates”. This is true only

after altering the covariarice matrix being estimated by rescaling it to have a positive
1

definite limit. It is worthwhile to spell out this technicality.

^ Note that model given in EQ: 0-1 and EQ: 0-2 coincide when the regressors, Xt 

have mean 0. We will henceforth work with model in EQ: 0-1 under this assumption, 

which is equivalent to assuming that EZ^O.



With heteroskedasticity, the variance of the OLS estimate with centered regressors is 

0.^^j={EVW^^i{TVdx{Z^  from Lemma 2. Both V and are strictly positive 

sequences. Under reasonable assumptions on the sequence of regressors anld variances 

(e.g. both are stationary, or ergodic) both EVW^ and Var(Z)v^ill have finite non-zero 

asymptotic values. Thus Q.^^jW\W decline to zero. On first blush, a reasonable definition 

for consistency for a sequence of estimators r would appear to be:

plimfn^zr “ ^22 7-) “  ^

Here plim is the probability limit, the standard weak convergence concept used for 

defining consistency. However, with this definition, the usual estimator of OLS 

covariance (see EQ: 0-11) is consistent, even though it does not take heteroskedasticity 

into account. Both the estimator and the quantity being estimated converge to zero, and 

so the limiting difference is zero. This does not appear to be a satisfactory definition 

because any sequence converging to zero is consistent, even if it has nothing to do with 

the problem at hand. The following definition from Akahira and Takeuchi (1981) takes 

care o f the problem.

Defmition: A sequence of estimates of ^ 2 2  t  order consistent if



¥
Then we can easily check that the usual HUCME for OLS is zero-order consistent but not 

first order consistent. Without explicit mention, the literature on the topic adopts first 

order consistency as the right definition of consistency. For example, Theorem 3 of 

White (1980) rescales the covariance matrix so that it is asymptotically positive definite, 

so as to show inconsistency of the usual estimates. With this refined notion of 

consistency, it is possible to characterize conditions for consistency of the HUCME in 

standard regression models as follows.

Theorem 0-1: In the model of EQ: 0-2, after centering the regressor, the HUCME 

based .variance estimate of ^22 which ignores heteroskedasticity is k-th order

consistent if and only if

EQ:6-10  ̂Cotr(^",»^^) = 0
^  Var(Z) '■ ’

Proof: Let p  = i ^ X ' X ) ^ X \ y  be the OLS estimates and e = y ~ X p  be the OLS 

residuals. Then the standard HUCME of the OLS estimates is:

OLS 2 ,  2
Q '=(7 (^X'X)  , where cr = ^ '^ /( 7 -2 )  With centered regressors, the (2,2) entry of

n-Ithe (X’X)' matrix is T Var(Z) .I t  follows that the (2,2) entry of the HUCME is:



orJ>
EQ; 0-11 0.21 = e 'e l \T ( r - 2 )  V ar(Z)'

So, the bias of HUCME for the variance of (3̂  is:

{ . O L S\

EQ:0^12 S “ -'=£lr222 - a , , =
1

TVar(Z) T - 2
Ee'e-EVW '^

Note that EVW'^ =Co\{V,W ^) + (EV){EW'^) = Coy{V,W^) + E V .

Substituting into the previous expression yields;

EQ: 0-13 =
1

TVar(Z) T - 2
E e ' e - E V CoviV,W^)

rVar(Z)

To evaluate the bias, we need to calculate E e 'e , which is done below:

Lemma 3: The expected value of the sum of squared residuals is:

Proof: Let H  = X { X ' X y ^ X ' . It follows that

£ (e 'e )  = £ | t r ( f  = t r £ ((/-//)££■  ) = t r ( / - / ^ ) E

Substituting the values h„ =  ̂ = — 1 + ̂ —
7Var(Z) Var(Z) '

1.
and S  diag (cr/ ) ,  / ^ 1,2,..., T leads to the lemma, i



it follows that

{£ e ' e / [ T - 2 ] ) - E V  = [e V-EVW^ ) j {T  - 2) = -Cow(V, )/ {T  - 2)

Substituting into EQ: 0-13, we get:

EQ: 0-14 = -
TVar(Z)

+ 1

, Coy(V,W^)
Note that, CoTr(V,W^)= .■ -  ̂ —   ̂ -■

^V ar(F)V ar(PF ')

Also,^ V a r ) = EW'^ - 1, =  l )

So, we have;

EQ: 0-15 fig '"' = -  

We can write it as,

^Var{V)[EW^ -l)Corr[v,W^)
TVar(Z) r - 2

+  1

^Var{V){EW^ -\)Con[V, )
Var(Z) y T - 2

+ 1

Taking limit as ‘T’ approaches infinity on both sides of EQ: 0-16, leads to required 

result. ■
I



Rem ark 1; When V and are not correlated, then V and are also not cbirelated. It 

follows thatCov(^V,JV^^ = EVfV^ -(EV)(^EW^^ = 0. In this case, from Lemma 2 above, 

we see that

EQ.-0-17 A E V )iE W ^) EV
TWax{Z) TVar(Z) TVar(Z)

This is exactly the expression for the variance as occurs in the case of homoskedasticity

when each aj  is replaced by the average value EV of all the variances. This means that 

when V and are uncorrelated, this model is equivalent to a'homoskedastic model for 

the purpose of estimating variance of . This is why the usual variance estimate which 

ignores Heteroskedasticity succeeds under this condition.

Rem ark 2: TTie leading case is where both the heteroskedastic sequence of variances and 

the secjuence of regressors is stationary, hi this case, a necessary and sufficient condition 

for first order consistency of the HUCME is that the correlation between the variances 

and the squared regressors is asymptotically zero. Higher order consistency requires this 

correlation to go to zero at a suitably fast rate. However, if the regressors are non- 

stationary and/or have a deterministic trend, Var(Z) can go to infinity and result in 

consistency of the HUCME even when variances are correlated with squared regressors. 

This consistency c ^  be offset if Var(V) (which is a measure o f, heteroskedasticity) 

increases to infinity, and/or (which measures the Kurtosis of the regressors)

increases to infinity. If the product of these two factors also goes to infinity sufficiently
i

fast, HUCME will again be inconsistent.
i



Remark 3: A more complex condition for higher order consistency of OLS obtains in the 

original model, without centering the regressors. Essentially, this requires correlation 

between the hetefbskedastic variance sequence and both ‘X’ and to go to zero. The 

required condition is provided in the following theorem:

Theorem 0-2: Higher order consistency of OLS in original model {EQ: without 

centered regressors, is given by:

EQ: 0-18

_2(£Z )^V ar(Z )K a/•(F)C o^■(Z ,F)-^V ar(z ')^ 'a^-(F)C orf(Z^^")

(Var(Z)}'
lim f
7*—> »

1
=  0

Proof: A direct and intuitive way to prove the theorem is to replace w in EQ: 0-14 by:

W = ( z - E Z ) I ^ V a r { Z )

Note that, EQ: 0-14 can be written as,

r>OLS ^  

^22 -

Replacing the value of W, leads to:

d OLS __ 

^22 -

2{EZ)[EZV- (EZ) ( EV) ] - \ ^EZ^V ~[ e Z^){EV)^

T{Var(Z)}' l , r - 2
+1

Writing in terms of covariance form, we get:

nOLS^ 
^22 f

2(£ •Z )C o v (Z ,F )-C o v (Z ^F )

T { V a r (z )j T - 2



Now converting covariances into correlations, we liave: 

EQ: 0-19

2{EZ)  ̂ Var (Z) Var(v)Corr {Z ,V)~  ̂ Var ( Z ') Var (F)Corr ( Z \ v ) r  ]
'2 2

T{Vaf(Z)}' T - 2
+ 1

We can write it as:

EQ: 0-20

2 (EZ)  ̂ Var {Z)Var{V)Corr(Z,  V)  -  ̂ Var ( z " ) Var {V)Corr ( z \ v )
=

{Var(Z)

Taking limit as ‘T’ approaches infinity on both sides leads to required result. I



Chapter 4: A MINIMAX ESTIMATOR

4.1: Introduction

EW (HCO)' estimator and Hinkley (HCl) estimator pre-multiplies OLS squared 

residuals by ‘T and ‘T/(T-2) respectively. In order to evaluate these, it is convenient to 

introduce a class of estimators which multiplies the squared residuals by some constant. 

This class includes both HCO and HCl. We shov̂  ̂that the maximurn bias of this class of

estimators can be evaluated analytically. This permits us to fmd a best estimator within
£

this class. The Minimax estimator is the one which minimizes the maximum bias. We 

compute this estimator and show that it has substantially smaller bias compared to both 

HCO and HCl.



4.2: Bias of EW~type Estimates

We will now derive analytical expressions for the bias of a class of estimators which 

includes the Eicker-White, as well as the Hinkley bias-corrected version of the HCCME. 

Consider estimators of true covariance matrix having the form:

EQ; 4-1 Q{a) = { X ' X y ' X ' [ a i ) X ( X ' X y '

Where, a  is any positive scalar, and E = diag(ej“,-" ,e r )  is the square of the t-th

OLS residual. Note that if a  = \,  we have EW estimator of true covariarice matrix and if 

a  -  ~ —- ,  we have Hinkley’s (1977) estimator of the same. In this section, we provide

A A

analytical expressions for the bias of the variance of under

I

heteroskedasticity.

As before, it is convenient to work with the artificial random variable (V, Z) which takes 

each of the ‘T’ possible values (<r^^,x,)for with equal probability i /T . We

assume that the regressors have been centered, so that EZ=0 and EZ^-Var(Z).

Standardize ‘Z’ by introducing W = Z /  ̂ Va r[Z ) , and note that EW~0 and 

Var = EW^ = 1. According to Lemma 3, the true variance of the OLS estimate pj 

of the slope parameter /?2 is given by:



r(V ar(Z ))

The HCCME of the variance of slope parameter is:

a,
EQ: 4-3 n „  (a ) = ------—-  T  wjej

“  T ^ W a r (Z )^  ' '

The following theorem gives the bias of this HCCME.

Theorem 4-1: The bias 3^2 = £022 (^) “ ^22 the HCCME for the variance of slope 

parameter is:

EQ: 4-4

1

r V a r ( Z ) t l

T  —

^ a + [ 2 a E W ^ ) w , + [ T { a - \ ) + a [ E W ^ - 2 f ^ w ^ ~ 2 a w l Y ;

Proof: From the expressions for Q 22 ^22 given earlier [See EQ: 4-2 and EQ: 4-3\

we get,

EQ:4-S j^ w f \a E [ e ^ y c T ^
r 'K a r ( Z ) t r

Before proceeding, we need E {ef j , which is given by following lemma:



Lemma 4: With centered regressors, the expected value of OLS squared residuals is 

given by:

EQ: 4-6 E[ef  ) -  a f + - [ e V -  2af - 2wfaf + 2w,EWV + w^EW^V

Proof: The OLS residuals zx<̂ e = y - X p  = { I - H ') e , where, H  = X { ^ X ' X '  is the 

‘hat matrix’ as before. Using the standardized regressors w, = x ,/V ar(Z ), we can 

calculate the {i,j)  entry of / / to  be:

{EZ^+x,x^) = l 1 +

1 . I

Now note that e, = s, -  “  A-)
j-i j= l

Since E e-0, and the £’s are independent, the variance of ‘e’ is the sum of the variances. 

This can be explicitly calculated as follows:

cr.

From this it follows that:

T T



This is easily translated into the expression given in the Lemma. I

Substituting the expression of the

Lemma 4 in EQ: 4-5 above, and noting that EW^V = { ^ T y ^ w lo -^  leads to the 

expression given in Theorem. ■

4.3: Maximum Bias

Having analytical expressions for the bias allow us to calculate the configuration of 

variances which leads to the maximum bias, Jn this section we characterize this least
V 4

favorable form of heteroskedasticity, and the associated maximum bias. We first re-write 

the expression for bias in a form that permits easy calculations of the required maxima.

Define polynomial p( A) as

EQ.-4-7 p(X) = a -v { ^ E W ^ )X + { T { a - \ )+ a [ E W *  -2aX*

From the expression for bias given in Theorem of the previous section, we find that

EQ; 4^8 ----Y j , Pi^,



If the variances are unconstrained, tlieri the bias can be arbitrarily large, so we 

assume some upper bound on the variances: V /:cr,̂  < U , Under this assumption, we

proceed to derive the largest possible second order bias for the class of EW-type 

estimators under consideration. Since the expression is not symmetric, and the maxinium 

positive bias may differ from the maximum riegative bias, we give expressions for both in 

our preliminary result below.

Theorem 4-2: Let and B be the maximum possible positive and negative biases of 

the EW-type estimators ^ 22(0 )̂ defined in EQ: 4-1 above. These are given by:

EQ.-4-9 ^ ' = ' ^ ^ 2 2  = p : ^ 7 ^ I ! , > a x ( X w , ) , 0 ) [ /  

EQ:4-10  S - = m in 4 , = ^ ^ j ; ; '_ ,m i n ( p ( w , ) , 0 ) C /

Proof: Note that, maximum positive and negative biases can be found by maximizing 

and minimizing the same with respect to variances, i.e.,

1

\ 1
*r = min By. = min V (p(w, )crj)
1 T^Var{Z) ‘ ^



Where, p(w,) = a + ( 2 a £ r  ’ ) w, + (r  (a  - 1 ) + a  ( EW‘ -2 ))w f  -  law*

T

In order to maximize ^(/>(w,)cr,^)with respect to variances (a^)

T

i.e,

Note that, we have to maximize a sum of Hnear functions. Each term in the siiVn can be 

maximized separately with respect to variances {erf),  i.e. max(/?(w,)(Tf ).

Since, < U , so to maximize a linear function, we have to set variances ( (rf) to its

maximum possible value ‘U’ when the coefficient is positive, and its minimum possible 

value ‘__0’ when the coefficient is negative. Since, we have sum of such terms, so

maximizing each term separately leads to: 
t
I

= rnax 5,2 = —̂ ^ max(/7(w ),0V7 
r 'V a r (2 )^ '= '  ̂ ^

This is the required result.

A similar analysis can be done to get minimum bias, which is also the maximum

negative bias. We replace (jf by the maximizing value ‘U’, if the coefficient is negative 

and by minimizing value ‘0’ when the coefficient is positive. This leads to the following 

equation for maximum negative bias:

?B~ = m in ^ „  = —r—!---- - min(/>(’̂ ^/XO)^
I  r"V ar(Z)^ '=^  ̂ ^

This proves the theorem. ■



We now try to obtain more explicit ciiaracterizations of these maxima and 

minima. It turns out that the case where the regressors are normally distributed offers 

significant simplifications in analytic expressions, so we first consider this case.

4.3.1: Maximum Bias with Normal Regressors

Under the assumption that the regressors x are i.i.d. normal, we derive analytical 

formulae for the approximate large sample maximum bisLsB'= , - B ~ y  In large

■5
samples, the skewness EW^ should be approximately zero, while the kurtosis, EW 

should be approximately 3.

Making these asymptotic appi-oximations, the polynomial p(A)  simplifies to:

EQ;4-11 p ( l )  = a+[T{a-l )+a)i^ -2aJL*

In large samples, reasonable HCCME’s will have or «1, so it is convenient to re-

parameterize by setting a  — \ + a / T , where ‘a’ is a positive constant. Evaluation of the

expressions for bias requires separating values of w^for which p(w)>0 from those for 
I

which p(w)<0. This is easily done since p(w) is a quMratic in w .̂



Lemma 5: p(w)>0 if and only if -Vr < w < +Vr, where r is the unique positive root of the

2 " quadratic p(w ). In large samples, this root is:

EQ: 4-12
l + a +

r =
7 8 +(l + a)'

Proof: From EQ: 4-11, the quadratic equation in is given by:

p{w) = a  + { r [ a - \ )  + a^M^ ~ law "

Where, «r = l + a / r

So, the quadratic can be written as:

'  4w = 0

Since this is quadratic in w^, so its positive root (since r<0 is not possible) can be written 

as:

/ \ 
fl+-1 + l + a + — - 2
I T) I Tj I t )

f /  \  f , a 1
2

l + a + — + . l + a + — + 8 1 H---
I  T ) V I  T ) T

1 +

Taking limit as ‘T’ approaches infinity, leads to required result. I



This permits a more explicit cliaracterization of the minimum and maximum biases 

derived earlier. In this framework, a=0 corresponds to the Eicker-White estimator, while 

the Hinkley bias correction amounts to setting a^2 (Since, a  = r / c r  -  2) ~ 1 + 2 / r ).

In order to calculate the bias functions explicitly, we need to specify the sequence 

of regressors. We first consider the case 'of normal regressors, which permits certain 

simplifications. Other cases are considered later.

The following Theorem gives the relationship between the maximum bias and the
I

parameter ‘a'.

Theorem 4-3: Suppose the regressor sequence is i.i.d. Normal. Let ^ and O be the 

density and cumulative distribution function of a standard normal random variable. Then 

the maximum positive and negative biases of the estimator large samples can

be written as:

EQ: 4-13 [2i) = 2[2r-?i + 5]4r  +2(a-4)<I» |^/r j - a  + 4

EQ: 4-14 ~B~ {^) = 2\2r + <j)\ %/r j + 2 ( a - 4 ) 0  %/r̂  - 2 a + 8

Rem ark 1; The maximum bias functions are plotted in Figure 4-1 below. Recall that the 

maximum bias is obtained by setting heteroskedasticity to the worst possible 

configuration, which makes the bias as large as possible. Maximal positive and negative 

biases require different configurations of heteroskedasticity, which is why they are
Ib

plotted separately. Overall maximum bias is the maximum of these two functions. The



point o f intersection o f these two cuiycs is the place where this maximum bias is the

lowest possible -  the minimax bias. As shown in Figure 4-1 below, the two maximum

bias functions intersect at a=4, as can easily be verified analytically from the formulae

above (See EQ: 4-15 below). Note that this minimax bias estimator with a=4 improves

substantially on the Eicker-White estimator with a=0. Figure also gives the positive and

negative biases of HCO, HCl and Minimax estimator in numerical form. Note that at

‘a=0’ *the positive bias of HCO is 0.66 while negative bias of the same is 4.66 in absolute

form. Similarly, the positive arid absolute ne^gative biases of HCl are 1.95 and 3.95

respectively at ‘a^2’ while Minimax estimator has same value (3.67) of positive and

negative biases which occurs at the intersection ‘a=4’. 

f
Figure 4-1: Positive and Negative Biases of Mininiax HCCME 

(Normal Distribution Case)

Positive and Negative Biases of Mihimax HCCME by varying

-4 -2

•Pos bias 

‘ -Neg bias

Note: Pos and Neg denote positive and negative biases respectively.



Proof: Let l { W  > r)  be the indicator function taking values ‘1’ and ‘0’ according to

whether or not the iridicated inequality holds. The assumption of normality of regressors 

means that W can be treated as a random variable with a standard normal distribution. 

We have the following large sample approximations for the terms in the polynomial 

p{Wj) = or + bw^ — 2aw^

a  = \  6  = l + a

Maximum positive bias as a function o f ‘a’ is given by:

V
Where; 

X
p {w ^  <r) = p I^W\ < =  O ^ ) - O ( - V T )

These expressions are obtained by evaluating .the integrals of the normal density via 

integration by parts.

Putting the values of p{w ^ <r^,EW^  < r | ,  < rjand  making use of the

fact that we get:



(a) = 2 { 2 r-a  + 5}>/r J + 2 (a -4 )0 ^ > /r  J - a  + 4

Similarly, maximum negative bias as a function of ‘a’ is:

>r )^{ \+a)EW^ \\W^ >r ] - 2EW^ \{W^ > r \

Where,

p ( w ^ > r ]  = p ( |r |  >yf?) = p { f v < - f y p ( f v > y j ? )  = l + (t> -  O

EW^ l[W ^> r}=  2/-’'V('«/?^)+6N/r(!i(A/7)+6(l-<l)(>/?))

Again, putting the values of p{w ^  >r),EW ^ \ \w ^  >r^,EW'^ l \w ^  > r ^ 2in<\ making 

use of the fact j = 1 -  j , we get;

- 5 “ (a) = 2 { 2 r -a  + 5}>/Pi^(N /r)+2(a-4)(D (>/rj-2a + 8

This proves the theorem, ■

Now solving, (a) = -B~  ( a ) , we get:

EQ: 4-15  ̂ 2l = 4 = 3 + 1 = kurtosis + l

As we will see, the optimal value of ‘a’ depends on the kurtosis of the regressors, so the

above decomposition clarifies the relation between the kurtosis (which is 3 for standard



normal) and the minimax value of ‘a’. This also confirms the discussion provided in 

Rem ark 1 in Theorem 4-3. ■

In next section, we provide a new minimax bias estimator which In inimizes the maximum 

bias.

4.4; The Minimax Bias Estimator

Given any particular sequence of regressors (xt), our formulae above permit 

calculation of an optimal value of ‘a’ -  the one for which the maximum bias is the lowest 

possible. This may be called the minimax value of ‘a \  The bias functions themselves 

depend on the skewness, kurtosis, as well as other characteristics of the sequence of 

regressors, as indicative asymptotic calculations for the normal regressor case in the 

previous section show (See Theorem 4-3 above).

To check this for other regressor sequences except normal ones, we generated 

several sequence of regressors for a fixed sample size ‘T’ and a fixed value of kurtosis 

‘K’ but'by varying skewness and calculated maximum and minimum biases. The object 

of this exercise was to evaluate the dependency of the minimax value of ‘a’ upon the 

regressor sequence. To our surprise the value of minimax ‘a’ came out the same



regardless of any value of skewness but it is found to be dependent only on ‘T’ and 

kurtosis (K) of the regressors. We now provide some details of these calculations.

We generated several sequence of regressors with matching kurtosis, i.e., first we 

generated one random sequence with kurtosis equal to 2 and calculated maximum 

positive and negative bias functions for this sequence of regressors. The minimax value 

of ‘a’ was calculated by setting these to be equal. Then we changed the sequence of 

regressors in such a way that the new sequence has exactly the same kurtosis, i.e., 2 and 

we again calculated maximum positive and negative bias functions, and the minimax 

value of ‘a’. To our surprise, the value of ‘a’ came out ex;actly the same as was calculated 

from the first sequence with matching kurtosis.-To further confirm, we generated several 

sequences with same kurtosis, and found the same mininiax value of ‘a’. Along the same
4

lines, we generated other sequences with kurtosis equal to 3, 4, .... etc. arid found that the 

minimbc value of ‘a’ depends only on kurtosis and sample size. Also sequences of 

regressors with varying degrees of skewness but with matching kurtosis yield the same 

results; although the bias functions were different, the mihimax value of ‘a’ remained the 

same. *

To save space, we are only providing here results of two samples of sizes 100 and 

kurtosis equal to 3. But first sample has skewness measure equal to 0 while the second 

sample has skewness equal to ‘ 1’. For each set up, we calculated the maximum positive 

and ne^gative biases of Minimax HCCME by varying ‘a’. Our results indicate that the 

minimax value of ‘a’ is same (a=4.166) for both samples. The details are provided in 

Figure 4-2 below.



The same value of ‘a’ emerged with samples having same kurtosis and sample 

sizes. This provides heuristic support for our invariance conjecture, formally stated in 

Section 4.4.1: below, that minimax value of ‘a’ depends only on the sample size and 

kurtosis of the regressors and actual sequence of regressors does not matter.



Figure 4-2: Positive and Negative Biases of Minimax HCCME by Varying ’a’ with SS =100 an<

S-0

♦  Pos Bias 

— Neg Bias

S=1

Note: K and S denote Kurtosis and Skewness measures respectively, whereas, Pos and Neg denote pos 
respectively and SS represents Sample Size.



Due to the complexity of the relation between regressors“̂and the minimax value of ‘a ’, 

we were unable to establish this result analytically, and hence we leave it as a conjecture 

stated below.

4.4.1: An Invariance Conjecture

The object of this section is to state a conjecture about the minimax value of ‘a’ in 

the class of estimators defined in EQ: 4-4 above. We recapitulate the basic definitions to 

make this section self-contained.

S Consider a regression model p^-\- p 2^t -  0, and Var (£•, ) = (yf •

Introduce an artificial random variable (V,Z) which takes one of T possible values

for t = 1,2r • * ,r with equal probabilities l / T . Define staridardized regressors

w, where,X = (1 /7 )2 ]X,, and V ar(Z) = ( l / r ) ^ ( x ^ - x ) ^  as

1 Tusual. Let K  = — kurtosis of the standardized sequence of regressors.

Then the variance of the OLS estimate of A  is ^22 explicitly given in EQ: 0-11 earlier. 

The class of estimators of this variance under consideration is defined as:



Chapter 5: BIASES OF HGCMEs

5.1: Introduction

In order to compare the performances of the other two HCCMEs namely, Horn, 

Horn and Duncan (HC2) estimator and Mackinnon and White (HC3) estimator, with that 

of Eicker-White (HCO), Hinkley"(HCl) and Minimax estimator, we will now calculate 

the maximum biases of HC2 and HC3. For our basic model and notations, refer to 

Section 3.2: earlier.

The bias of any estimator Q of D is given by:

EQ: 5-1 Bias( o j  = £ ( q )  - Q

The following sections are devoted to get the biases of each of the above 

mentioned HCCMEs including OLS estimator.
I
I

I

rf

t



Before deriving expressions for the bias of each HCCME, we introduce a general 

estimator which takes each of the existing HCCMEs as a special case of it. The detail of 

this general estimator is given in subsequent sections.

5.2: Bias of General Estimator

Consider estimators of true covariance matrix having the form:

EQ:S-2 0 iA , )  = ( X ' X ) - ' X ' { i i ) X { , X ' X y \  ^ , = ' 4 ^  j = 0,l,2,3.

Where, i  ^  diag • ■ - , square of the t-th OLS residual.
r

Note that,

^  = I  gives White’s (HCO) estimator

A  = I  gives Hinkley’s (HCl) estimator

h= d iagi----— - gives Horn, Horn & Duncan’s (HC2) estimator

gives Mackinnon & White’s (HC3) estimator



T  1 1Also note that, 4,. =1,V?, A, = ------ ,Vr and let/1,, = ------- and A,, = ---------- ^ are the
T - 2 '  \~h„

It

(t,t) diagonal entries of A2 and A3 respectively and hu is the t̂ *̂ entry of Hat matrix,

H  = X ( X ' X y '  X '

Note that the above form of HCCMEs has been taken from Cribari-Neto and Galvao 

(2003). ^

im

^In this section, we provide analytical expressions for the bias of ^ 22(4 ) ’ the 

variance'of under heteroskedasticity.

As before, it is convenient to work with the artificial random variable 

which takes each of the ‘T’ possible values j for t 2 ,-" ,T  with equal

probability i . We assume that the regressors have been centered, so that EZj, = 0 and

Z
EZ ,̂ = Var[Zj). Standardize Zĵ  by introducing Wj, =  ̂ ^ , and note that EW-  ̂= 0

^Var(Zj^)

and Var{W^) = EW^ =1.

rr •Note that our artificial random variables Vj, , and Wj, depend on sample size 

T \  We introduce EVj^, EZ^, EZj., EWj  ̂ and to indicate that expectation is being

taken for these random variables at sample size ‘T’. Further note that we will drop the 

subscript‘T’ for convenience in situations where the dependence on ‘T’ is not relevant.



According to Lemma 2 of Chapter 3:, the true variance of the OLS estimate pj 

of the slope parameter P2 is given by:

EQ: 5-3 Cl,, = E W T
r(V ar(Z ))

For HCCMEs of the type under discussion, the variance of the estimate of the slope 

parameter is:

The following theorem gives the biases of these HGCME.

Theorem 5-1: The bias = = of the HCCMEs for the

variance of slope parameter is:

EQ: 5-5

{T^Var (Z)} B,, ( 4 )  = ^  1 + 2f ̂  '
 ̂ /=1 V <=3 J V =̂1 /

+ 7  S  j ̂  +f 7  Z  4 ,1 -  2 4 ,1W,' -  24, W,"
■t M I V-' f=l /

(T.

Remark: Using this expression, we can easily show that under usual assumptions, this 

bias of all these HCCMEs is of second order. This means that

Um {fVar(Z)B 22(4 )} = 0 , while, l^im{T^Var(Z)B22 (4 )} is non-zero and 

lim {T V ar(Z )B ,,(4 )}  = oo



Proof: From the expressions for Q22 ^22 given earlier [see^Eg; 5-3 and EQ: 5-4],

we get,

Before proceeding, we need E(e^^, which is given by following lemma:

Lemma 6 : With centered regressors, the expected value of OLS squared residuals is 

given by:

EQ: 5-7 E(ef ) = a f+ - \ _ E V - 2af - Iw fa f  + 2w,EWV + w^EW^V~ 
i

Prooft The OLS residuals arce = = ( I - H ) £ , where, H  = X ( X 'X ) ~ '  X ' \ s  the

‘hat matrix’ as before. Using the standardized regressors w, = xyV ar(Z ), we can

calculate the (/,y) entry of Hto  be:

'rV ar(Z)
1 + x,x.

T  T

Now note that e ,= £ ,~  2  “  S  ̂ tj^j ■
j=i j=i

Since E e=0, and the c’s are independent, the variance of e is the sum of the variances. 

This can be explicitly calculated as follows:



y=i
\2

C7.

From this it follows that:

E{e^) = <f" + l £ F  + iw ,^£ fT V  + |w ,  (EWV)

Re-arrahging terms, we get;

E [ e ^ ) = a ^  + -[^ E V -2 a " ^  -Iw '^o-f + 2w ,EW V + w^EW^V~

This proves the lemma. I

Now, substituting the expression of the Lemma 6 in EQ: 5-6 above, we get;

b ,2 (4 ) = T^Var{Z)i
4 , \ erf + - \E V -2 (r f-2 w f< j f+ 2 w ,E W V  + w f E w V ~(T.

Simplification leads to:

(=1

2  ^
f=l

1



Re-arranging terms, we have:

{T ^V ar{Z )]B ,M ) = (E y )  +2{EWV) + 1  T'^wfA„<rf
V »=i y V =̂'/

(  1 r

^

V /=i

+ (£ fF V )
V /  V '=1 )  f=l i=l

Writing in summation form,

r V « r ( z ) } B ^ ( 4 ) = lXJ »=1

i ,= ]

1 r \ T

7 l i « '/ 4 ,  + 2  -
‘t=] y /=i

7-(4, - i ) + |^ - ^ « , ; 4 , j - 2 4 , u /  - 2 4 ,M-;

This leads to the expression in Theorem 5-1 which completes the proof, i

Now we replace values of ,{i=0,\,2,3) to get biases of all HCCMEs in an explicit

form. The following subsections explain these results.



5.3: Bias of Eicker-White (HCO) Estimator

i
In this section, we provide results of finite as well as second order asymptotic bias of 

HCO.

5.3.1: Finite Sample Bias of HCO

Theorem 5-2: Finite sample bias of HCO for slope parameter is given by:

EQ: 5-8 (4,) = ‘ [£F  + 2{e W^) EWV+{EW’ - 2 ) e W'‘V - 2EW‘v'^

Remark: Finite sample bias of HCO for slope^pai'ameter can be written in summation 

form as follows:

EQ :5-9 =

Where,

EQ: 5-10 p ^{w^) = \ + 2[e W^)w,+ { e W ^ - 2)wf ~2w^

Proof: Replacing, / = 0, i.e. Aq = I  , = \,V t  in EQ: 5-5 above, and making use of the 

fact that EW^ = 1, we get;

O', .



Writing in terms of polynomial, ( 4 ,) = i - . \Y j Po
I  V a r j  ,^i

Where, {w^) = \ ^ 2 [ e W ^)w  ̂+[e W^ ~ 2 ) w^ - 2 w^

Changing summation expression to expectations, we get:

^22iA,) = ^ - ^ - r ^ \ E V  + 2(E W ')E W V + {E W ‘ -2 ) E W ^ V - 2 E W 'v ]  T V ar(Z )^  \ \ / j

This proves theorem. ■ -

5.3.2: Second Order Asymptotic Bias of HCO

V
I ^ ̂ . iÎn order to derive second order asymptotic bias, we need to make some 

assumptions about the asymptotic behavior of the regressors and variances. In particular, 

we assume the following hmits EXIST:

erf < U, Vt, U is some upper bound on variances 

lim -  Y  a-/ = lim EVj = EV,

1 ^
Hm -  V  wf = lim EW ; = E W ^, a < \ \

lim i y  w“<T," = lim EW;V^ = E W y ^ ,  a  < 11  

1 ^
lim Var CZj ) = lim — V  z] = lim EZ^ =

T —>x > T" T-¥<x>

Remark; The above limits in EQ: 5-JI exist under weaker condition. Specifically, 

powers' of regressors and the sequence of variarfces and certain cross products are

EQ: 5-11



required to be Ces^o summable. One important special case where the limits exist is 

when the distribution of the random variables Vj. , fVĵ  and Zj. converge to some limiting

distribution. In tiiis case, we can use^F^, fV  ̂ and Z^to denote a random variable with

this limiting distribution, and the notation for limit above is accurate. It is important to 

note that the limits assumed above will exist under much weaker conditions. It is 

convenient to continue to use the same notation fV̂  and Z^even when the limiting

distribution of random variables do not exist, to .indicate the required limits in the 

expressions above.

From the above assumptions, it follows that the absolute liioments limi^ also exist
r

for all a  < 10 [See Chung (2001), Theorem 6.4.1, page 166].

Now we are in a position to present the second order asymptotic bias of HCO and

the following theorem provides the same. 
ft

Here and when necessary, we will use the notation, A S O B (lfC i)  , / = 0,1,2,3 to 

denote the second order asymptotic bias of corresponding HCCMEs (namely HCO, HCl, 

HC2 and HC3). i.e. lim (4 )} = A S O B ( f f a ) , i = 0,1,2,3



Theorem 5-3: Under the assumptions stated in EQ: 5-11 the second order asymptotic 

bias of HCO is given by:

EQ: S-12 AS6B{HC0) = ~[EV^-^2[EWl)EWJ'„-^{EW‘ -2)EWlV„-2EWy\

Proof: Taking limit as ‘T’ approaches infinity after multiplying both sides of EQ: 5-8 by 

T  ̂ and noting that limit exists by the assumptions in EQ: 5-11. This* leads to required 

result.*

5.4; Bias of Hinkley (HC1) Estimator

Here we present results regarding finite samples as well as second order asyrhptotic bias 

ofH C l.

5.4.1: Finite Sample Bias of HCl

Theorem 5-4: Finite sample bias of HCl for slope parameter is given by:

EQ: 5-13



Remark: Finite sample bias of HCl for slope parameter can be written in summation 

form as:

EQ: 5-14 U ) = , ^   ̂ E  A («'.)
22V-1;  r 'v a r ( Z ) 7 ' - 2 t r  '

Where,

EQ: 5-15 p,(w ,) = l+ 2 (£ ir ^ )w ,+ (£ lV ‘‘)w ^ -2 w ;

Proof: Replacing, Aj =

use of EW ^^l, leads to:

k T ^ 2 j
f  T )

/ ,  Aj, = ------  , V? in BQ: 5-5 above, and making
\ T —2J

1 ^ ̂ y
U - 2 J r V a r { Z ) ^

<7 .

Writing in terms of polynomial, 832
T^Var{Z)i-,

Where, p,{w,) = 1 + 2[e W ^)w ,+ { E iv ' ) w f - 2 w  ̂

Changing summation expression to expectations, we get:

{e V+2[EW ^)EW V+{EW *) EW ^V- 2E W 'v]

This proves theorem.



5.4.2: Second Order Asymptotic Bias of HCl

As before, for second order asymptotic bias, we need to make some assumptions about 

the asymptotic behavior of the regressors and variances. Under the same assumptions as 

in case of HCO above, (see EQ: 5-11), the asymptotic bias of HCl is given in the 

following theorem:

Theoirem 5-5: Under the assumptions stated in EQ: 5-11, the second order asymptotic

bias of HCl is given below:
I

EQ: 5-16 ASO B(H C l) + 2{e IV^)EW„V„ +(e w : ) E J V X  - 2 E W X ]

Proof: Taking limit as ‘T’ approaches infinity oh both sides of EQ: 5-13 after multiplying

both sides by and noting that
y T - 2 ,

approaches one as"‘T’ approaches infinity. In

addition, assumptions in EQ: 5-11 guarantees that limit exists. This proves the theorem. I



5.5; Bias of Horn, Horn and Duncan (HC2) Estimator

The results of finite'‘sample bias of HC2 along with second order asymptotic bias of the 

same are provided in this section. The following two sub-sections provide their details.

5.5.1: Finite Sample Bias of HC2

Theorem 5-6: Finite sample bias of HC2 for slope parameter is given by:

EQ: 5-17

B,, (4) = ^ ^ { e W , ' - \ ) E W ,% - E W X  + 7?,̂ }

Where, Riy is the remainder term given in EQ: 5-18 below.

Remark: We will show later [See Theorem 5-7 below] that the remainder (Rn) is small 

for large ‘T’.

Proof: to  get the bias of HC2, take, / = 2, 4̂̂ , =  ̂ V/ in EQ: 5-5 and simplifying, 

we get:



E V ^ + -
T  j

T  2  2W. (7.E w ^ v ^ + y ~ ^ ^
t r O - A ,)

- T E W , X + j
T  4

W .
,2 _ 2 w V

y ~ - '  ̂ £ ^ /K , - - - T , '  ' , - - V - ^^  _ Z,  ̂  ̂  ̂ 'r L \ 'T ^  /i 7.

Note that, we can write,

\ - k

Replacing this in above expression, we get;

I:
V  /= ! /

E V j ^ -
T  j .

2 ^  ̂ ^
EWrVr-TEW^Vr

\  <=1 /

+ 7 [ Z “'.' |£ ^ r  + 7
»=i J V /=i 7  ̂  ̂ f=i ^

z' r.
+ —

V/=i
\  T

V/=1

T

1r T
Y , h y ,  £ fF ,F ,+ 2 \w ,V ,^ + -  E W X - - Z h „ ^ > f

 ̂ V(=i yy /=!
 ̂ r u„.2  ^

1+ —
7

Using /i„ = i  (l + ) and hi = ^  (l + ^  (l + 2w^ + ̂  ) > an"d simplifying, we

get:

- ^ { e V ,+ 2 { E W ^ ) E W ,V ,+ { E W ^ - l ) E W X - E W ,X }  + Rn



Where, 

EQ: 5-18

1
TEZ:

(l + EW ')EV^  + 2{EW^ + EW^)EW,.V,.+{e W^ + E W ^ - 2 ) e W^Vj.'

TEZ;
4EiF^V^ +2{EfV^Vr) + ■

1

+ ■
r E z :

+ -
T^EZ^

1 y

r h  T a
t j . {w" + 2wl + w^)

r h  \ - K

r E z :

EWj^V  ̂+

1

T T
EV^

TEZ^

EW^Vj. -
T^EZ^

J_ ‘+ 2 w > / + )
rf,

T t i \ - K

T\EZ;
t

r t r i - a .

This completes the proof.

5.5.2: Second Order Asjonptotic Bias of HC2

To get an explicit expression for the secorid order asymptotic bias of HC2, as 

before, we have to make some assumptions about the asymptotic behavior of the 

regressors and variances. The assumptions are stated in EQ: 5-11 above.

We also assume throughout that hat matrix, H  - X { X I X ) ~ ^  X' i s  asymptotically 

balanced, i.e.



This assumption assumes that all regressors are of similar order of magnitude and that 

there are no extreme outliers.

Theorem 5-7; Under the assumptions stated in EQ: 5-11 and EQ: 5-19, the second 

order asymptotic bias of HC2 is given below:

EQ: 5-20

ASOB{HC2) = ^ [ e V„+2[e w I ) E W J .^ { E W ^  ~ \ ) E W I V , - E W X }

Proof: We have established that 

1
ITT % ,( A , )  = ^ ^ E F j.+ 2 (e W^ )̂EWj.Vj.'+{e W* - 1) E W X  ~ E W X } + R

Where, R u  is defined in EQ: 5-18 above. To prove the theorem, it is sufficient to show 

that lim(i?]^) = 0. The limit of the remaining part exists and equals the expression in the
T  —>co

theorem by assumptions in EQ: 5-1L

Note that, we can write R it as, R̂ j. = i(-F j-), where F t is given by:



EQ: 5-21

1

EZl

4

[\ + EW^)EVj. + ~ [ e W ^^E W ^)E W j:v  ̂+ ̂ [ e W^ + EW^ - 2 ) e w :̂ V.,

1 y  (» '^+ 2 »’'  +w f)

\ - K
EV.

+ ■
T E Z l

1 + 2 >vf+>v;)

r h  \ ~ K
EW^V^+-

TEZl
Ew;v^

+■
EZl i-A„

1 W,<^] +2w^af+w‘crf) 
T E Z U T ^  l-h„

TEZ‘

1 y (**'' + 2 ”'" + ” ' 0  

T t ;  i - h , /

7 - ^  I-A ,

Under the assumption that the design matrix is balanced (See EQ: 5-19\

i.e. limmaxf/z,,) = 0 ,
\<i<r  ̂ '

1

and, I f  < 1  ̂
4 2 : ̂ (=1

w.

1 -/?.. J /=1

Since variances are bounded, i.e.

So, we can write;
V

l y < 5 f
4 t

W“CT,̂
1 -/J„

1  ̂
< 2 f / - V w. = 2UE



This means that each of the terms in the F t above is separately bounded and is of 

order . Hence the sum of ail terms (i.e. Ft) is also bounded and is of order 0 { \ ) ,

so goes to zero as T ’ approaches infinity, as claimed. ■

5.6; Bias of Mackinnoh and White (HC3) Estimator

This section presents results of finite sample as well as second order asymptotic 

bias of HC3. The details are provided in the following two sub-sections.

5.6.1: Finite Sample Bias of HC3

Tiieorem 5-8: Finite sample bias of HC3 for slope parameter is given by:

EQ: 5-22 B ,,{A ,)  = j ~ ^ { e V ,+ 2{e W^)EW^

t

Where, Rit is the remainder term given in EQ: 5-23 below.

Remark: We will show later [See Theorem 5-9 below] that the remainder (Rit) is small 

for large "T\



Proof: To get the bias of HC2, replace i = 3>, i.e. A, ---- ~ y t  in EQ: 5-5 above,

and simplifying, we get:

7’V a r(Z ,)} B ,3 (4 )  = l EV^+~
T  j . J

+ y - ^

J r^r(i-A„y

Note that,

1

{ ^ - K )
2 = 1  + 2/!,, + lh \  + 4/i’ +  5/i,t + ....

= l + 2/?„+3/!,. + a :

/  \  
1

Replacing it in bias expression given above, we get:



The bias of this estimator is ^22 (a ) = ^ Q 22( ^ ) “ ^ 22- This bias depends on the unknown

variance under heteroskedasticity. Assuming that the variances are bounded, i.e. 
I

\ f t : crf < U , there is a maximum possible bias which obtains when the heteroskedasticity 

has the worst possible configuration. For each value of ‘ we can calculate this worst 

possible bias: MB(0{a))=max{B^

Define the Minimax Value of ‘ a  ’ to be the one which minimizes this maximum 

bias. This is the best possible value of ‘ a; ’ in a certain sense.

In terms of these notations, we can state our conjecture.

CONJECTURE: The minimax value of ‘a’ and hence ‘ a  ’ (because a  = \ + — ) does not

depend on the exact sequence of regressors but,only on the sample size ‘T’, and the 

kurtosis of the regressors, ‘K’.

Heuristic Proof: This was done by simulations. For each'^sample size ‘T’, and fixed
ic.

value of kurtosis ‘K’, we generated random sequences of ‘T’ regressors having kurtosis

‘K’, and numerically computed the minimax value of ‘a’. A heuristic proof of the

conjecture is obtained by showing that this minimax value always comes out the same.

Some of the simulations which support this conjecture have already been reported earlier

(See Section 4.4: above). The details of simulation results is provided in the following

table,^where we calculated maximum bias and the optimal value of ‘a’, where both 
s-

positive and negative bias are equal, for six different samples with matching kurtosis and

I



skewness measures. In particular, we fixed kurtosis at ‘3’ and took two values of 

skewness, first fixing it to zero and then at one and calculated maximum bias and also 

calculated optimal value of ‘a’ for all ‘1 2 ’ samples (6  samples taking skewness zero and 

for remaining six samples skewness is taken as one). The second half of table shows 

results with kurtosis measure fixed at ‘4’ while skewness measure taking values zero and 

one respectively.

Table 4-1: Maximum Bias with varying skewness with fixed kurtosis at Saniple size
10 0 *for different set of regressors

. - E: . . . K=3 & S=0_ K=3 & S=1 K=4 & S=0 K=4 i& S=1
Samples of Regressors a* MB a* MB a* m b a* MB

] /  1 4.167 2.080 4.167 2.070 5.263 3.046 5.263 2.885
1 2 4.167 2 .0 1 2 4.167 2.131 .5.263 4.166 5.263 4.095

1 .  3 4.167 2.394 4.167 1.833 5.263 4.162, 5.263 3.750
4 4.167 2.771 4.167 1.933 5.263 3.535 5.263 2.743

5 . 4.167 2.137 4.167 1.837 5.263 4.166 5.263 3.358
6 4.167 2-256 4.167 2.070 5.263 3.391 5.263 3.358

Note: K and S are Kurtosis and Skewness measures respectively and MB represents the maximum bias.

We can see from the above table that, for ail six samples with randomly chosen 

regressors, whether skewness is zei'o or one but with same kurtosis measure, the optimal 

value o f ‘a’ is same.

Similar results were obtained for sample sizes 25 and 50 which are not reported to save 
i

space, f;



4.4.2: The Mihimax Value of'a'

Once we assume that the invariance conjecture is valid, it becomes possible to 

compute analytically the minimax value of ‘a’. This is because we now compute the 

minimax value for a particular sequence of regressors for which easy analytic calculation 

is possible. On the basis of the invariance conjecture, this calculation should be valid 

simultaneously for all sequences of regressors with matching Kurtosis and equal sample 

size. We use this method to compute analytically (instead of numerically) the optima! 

minimax value o f ‘a’ in this section.

This is what we do to find the minimax value of ‘aMn Theorem 4-4 below. Even though
f

the chosen sequence of regressors is very different from the normal regressors case 

solved earlier, identical asymptotic minimax values of ‘a ’ emerge, giving further support 

to our invariance conjecture.

Theorem 4-4: Assume that the variances are bounded so that yt:crj < U . For each a  

define the maximum bias MB{a) = m a x -  this is maximum possible bias
af<U

obtainable by setting the heteroskedastic sequence of variances to the least favorable 

configuration. Let K = be the kurtosis of the sequence of regressors. Define 

a *
a* = \ + — , where,

T



EQ: 4-16 a* = ----

Then M B {a)< M B {a)iovd \\  a .

Proof: Assuming that the exact sequence of regressors does not matter, we pick a 

particular sequence for which the computations are easy. We can easily calculate the 

positive and negative bias functions for the simple regressor sequence described below.

We choose sample size T and a large constant M [M>7], such that k = T l{ lM ^^  

is an integer smaller than T/2.Now consider the sequence of regressors A:j,---,.Xŷ such that

X, = ^2 = ■ ■" “  y )̂t+t “  ■" “  ^T-k -  = '"  = Xj=  + M . As before,

letting Z be the random variable such that Z = Xt with probability 1/T, we can "easily 

check that'EZ-0, EZ^^l, and That is Z is centered and standardized and has

kurtosis K  = EZ^ =M ^. Note that we assume M >/, this means that we are constraining 

the kurtosis to be bounded below by 1; equivalently, we assume Excess Kurtosis (EK) to 

be greater thafi -2: EK-K-3>-2. Because Z is standardized, W=Z/Std(Z)=Z and the

standardized regressors are just w, = x ,. Notirig that EW^=0 and that the kurtosis is 

EW"^=M ,̂ so, we can write the polynomial p(w) in EQ: 4-7 as:

p{w) = a  + (T(a-\)-\^a(M ^ - la w ^



Note that p (0 )  = cr =  1 +  — > 0 for all positive values of ‘a’. Also p(+M )^(-M ) is a

polynomial in with positive root:

a - 2 l  1 + -
\ \

a - 2 1 +  - + 4 1 +  -  
V T j

1 +  -

V T j

Note that /?(±M ) < 0, >r* >\ and p (± M ^  > 0,- VI <

First we consider the case where the value of ‘a’ is below + 2 ----- j ,  and T is large.
M

In this case, it is easily checked from above calculations that /?(±M ) < 0 . The maximum 
1

positive and negative bias functions can be calculated as follows:

r"V ar(Z )
1-

T )
U

B ' =
1

r"V ar(Z )

1 2k 
r'V ar(Z ) T

1 U 
r 'V a r(Z )  M ‘

{ Z ‘.i

1 p(M )U
p{M)U =

r"Var(Z) M '

f ( a  + (l + a/7’)(M " - 2 ) ) m ' - 2 ■1

Simplifying, the above expressions, we get:



EQ: 4-17 \j^Va.r{Z)]B* j u  = [M^ - \ )

EQ: 4-18 -M'^ \VMm{Z)]B-  j u  = M '  + (2 -a)M " -1  -i-^(m" + 2M" - 1)

Solving |T^V ai(Z)}B*/c/ = -M ^ |X^Var(Z)}S yields the minimax (optimal) 

value o f ‘a’ in case of finite samples:

/I io  * M ^ + 1  A' + lEQ: 4-19 a* =

This proves that a* minimizes the maximum bias for the range of values of ‘a’ less than

+ 2 - ^ - r .  Note that this ranee includes a^O and a=2, so that the minimax estimator

a* dominates Eicker-White and Hinkley in terms of maximum risk. For larger values of

‘a’, i.e! when a > + 2 — the polynomial /)(w) becomes positive at +M and -M , 
j ■ M

i.e. /? (± M )> 0  and so the above calculations do not apply. For this case, maximum

negative bias becomes zero and we have only maximum positive bias which can be 

calculated as follows:

r 'V a r(Z ) T 7’'V ar(Z ) T

This can be simplified as follows:



{r'V ar(Z )}5"

U ~

i + -  
V T )

+•
/

In— +
I r j \ ' m ^ - 2

/  \  
f l  + - l M* ■/ rj J

= ( ( a - l ) - M ^ ) - | ; ( l  + M^)

Minimizing this maximum positive bias over range of values of ‘a’ larger than

+ 2 — ^ , we can get minimax bias for the case when > 0. Further note that,
M

these values of ‘a’, cannot lead to reductions in maximum risk. It follows that the value of 

a* in EQ: 4-19 for the case when p (± M ) < 0  minimizes the maximum risk over all 

possible non-negative values o f ‘a’. This proves the Theorem.*

Taking the limit as t  goes to infinity, we can get the asymptotic minimax value of ‘a’, 

which is given below:

EQ: 4-20 a* = M^ + l  = K-i^L

Note that when K-3, matching the kurtosis of normal regressors, we get the same 

asymptotic minimax value of a=4.

4.4.3: Evaluation of Relative Performance

Using the results obtained, we can analytically compare the relative performance

of the Eicker-White and the Minimax Estimator in terms of asymptotic bias. Note that

both the maximum bias functions and are proportional to U, the upper bound on the 
I

variances. To get a reasonable performance measure which is invariant to this arbitrary 

upper bound, it seems reasonable to divide by this factor.



The asymptotic maximum positive bias is then hm {T^V ar(Z)|5^ /C/ = \ - \ I , which 

does not depend on ‘a’, and is bounded above by 1 .

On the other hand, the asymptotic maximum negative bias is:

l̂ im {t" Var (Z)} B ' l u ]  = M" + (2 -  a) -  1/M"

This increase with the kurtosis K  = of regressors and is unbounded.

.4Let maximum of both biases (maximum positive and minus the maximum negative bias) 

is represented by B -  , where and B~ respectively are positive and

negative biases.

L
For the Eicker-White estimator with a=0, this maximum bias is somewhat larger than the 

4
I -kurtosis:

H „=m ax(S;,-S„-) = ^: + 2 - ^

Hinkley’s bias correction has a=2, which yields the maximum bias of: 

B̂  = = AT--—. Note that Hinkley bias correction is too timid -  it knocks

out the middle term, but does nothing to the dominant bias term K = M ^.

The minimax value sets a =  + 1 , which results in:

{T'Var (Z)} B /f y ]  = 1 -  = l̂ im [ { t 'Var (Z)} j u



Thus maximum bias of the minimax estimate is:

By knocking out the leading bias term, this results in maximum bias bounHed above by 1. 

When Kurtosis (K) is large, the minimax estimator is substantially superior to both 

Eicker-White and Hinkley in terms of maximum possible bias.

These results above are for the asymptotic bias. Next we consider the finite sample case 

by taking into account the terms of order 0( \  i T)  which have been ignored in the above

calculations. These 0 (1 /T ) terms further enhance the superiority of the minimax bias 
I

estimator over the Eicker-White. The leading 0(1/7") term in EQ: 4-18 is M'* which 

dominates others for large values of M. The 0(1 / T) term in the minimax estimator

knocks out this tenn and substantially reduces maximum possible finite sample bias over

 ̂ I
Eicker-White.



1 ^ '
^V'=i y  ̂ v/=i y 

2 >v; E W X - ^ t ' ^ ! < r f - ~ t ^ X + ^ f ± h „ w f
 ̂ /=1 J /=) J V r=i

/=1

EV^

XA,w,’ EW,V,+2^h„w]<T^ + i  ' Z K » ' : W t%
V. <=i y <=i j V'=1 y  ̂ (=u?

+ —

3 + — 
T

V iV T L
t t \ - K )  ^  l - K

6 - y hlw^(j^ 6 - y hlw*or]  ̂ 1 ^  hlw^
t U  1-A„ Tjf, \-h„ T \ j i { \ - h „ ) \ EVr

2H---
T

£H7 K ,+ 2 M £ L  + i  2 —  . 
4 f (]- ;,„ )   ̂ m ( i - a „ )  T j : i { \ - h „ ) }

V  V " /  /

2  ^  / , » , ^  2  i

hlw', E W X

Using, A „=:|;(l+ »,"), t^ ,= -^ [ \  + wf)^ = ^ { \ + 2 w f  + w*).

hi = ^ { \  + w f'f  = ^ ( l  +wf +3wf+3w,''), aiid simplifying, we get:

^ { e v ,+ 2 { e w ,^)e w , v, + { e w ; ) e w , % } + i^,



Where, 

EQ: 5-23

Rjt —

+ ■

TE Zl
EV^ +[EW^ ) EVj. +2[e W^ + EW^ ) EWj^V̂ ,

TEZt,
[EW^ + EWj -  2 ) EW^Vj -  AEW^Vj -  lEW^V^.

+
EZl \ - K

EV^ +
EZl

1 y  ( ^ ' + 2 wf + >v/)^

+■
T E z:

f l y ' [ w]tT^ + 2w^a-f + H’‘ cyf )] 3i"
f l -  K + 2 w‘ + wf)'|

\ \-h„ V T^EZl 1 -A„ J

T^EZl

+ ■
T E Z

+

\ ~ K

1 '  [ 1 ^ (w ,"+ w '+ 3 w ;+ 3 w f)^

{ ^ ~ K f

1 ^  + 3>v; +3w] ) ^

Ew^y^

EW^V^

\
6 ( i f \ (w,V ,'+ 2 w,‘<t/  + w> / ) "

 ̂ T^ E Z l T j ^
V

1-A„
/

EV^

EW^V^

+ ■ 1
r  Ezt

+ Ew;v^

TEZt

r E z t

^  r (w /^/+w >,^+3w ;o-,̂  + 3>vfo-f) ̂

r h  {x- k Y

1 y  + 3 wf + 3 wf)

'  1 ^  {wfaf+w^&f  +3w^af

i ^ - K f

1 ^  + + 3wfaf +3wfcrf)

r h ~  ^ \ i - K ) ^

This completes the proof.

f
i



5.6.2: Second Order Asjonptotic Bias of HC3

Under the same assumptions about the asymptotic behavior of the regressors and 

variances as in case of HC2, (See EQ: 5-11 and EQ: 5-19), we can get an explicit 

expression for the second order asymptotic bias of HC3.

Theorem 5-9: Under assumptions (See EQ: 5-11 and EQ: 5-19), the second order 

asymptotic bias of HC3 is given below:

EQ: 5-24 A S0B (H C 3) = +2{EW^)EW, V, +{ e w : ^ ) E W X }

Proof: Note, we have established that

T 'B jj (A,) = ' - ^ { e Vj. +2{e W^)e W,.V^ + [e W ^)e W^Vj.̂  + R„

Where, R2T is defined in EQ: 5-23 above.

To prove the theorem, it is sufficient to show that iirri(/?2r) = ^ ■r->«o

The limit of the remaining part exists and equals the expression in the theorem by 

assumptions in^*^; 5-11.

Note that, we can write Rit as, -  — (Gj-), where Gt is given by:

I



EQ: 5-25

= — \^EV^+[e w ‘ )EV^-^2[EW^ + EW^)EW^V^
Hj Ẑ  7-

+■
EZ\

[EW^ + EW} -  2 ) EW^V^ -  4EW^% -

+ ■
T E Z l

1 +2w^ +w^j

T t i  \ - K
EVj -¥

T E Z l 7 Ei /=i \ - K
EW^Fj.

+•
EZ:

+ ■

TEZ;

1 - ^

1 j . (^ r^+ 2 w ^^ f+ w ^c T iy  

^-h„

TEZ;

6

l - ^ ( w / + 2 >vf + w*)

T t i  i - K
EW^Vj

+ ■ 1
r E z :

+■
r  £ z ;

1

TEZ:

1 +w^ +3w^ +3wf )

r h  { X - K f

J_ ̂  (>vf+w,^ +3w/ + 3w/) ̂

T h  ^

r h

TE Z\  

EV,
%

EWjV^ ^

l-A„

+■ 1

r  £z^

(!-* » ) '

r  £Z ‘

1 y  +3«'>," + 3m ',V )'

o - ^ , y

1 (w>,^ + w ,'V  +3w,Vf + 3w,V,^)

(1 -A „ r



Under the assumption that the design matrix is balanced (See EQ: 5-19), i.e. 

limmax(/z„) = 0 .\<t<T  ̂ ^

So fo r‘f ’ large enough h < —y t  a n d -----?— - < A .
2 { \ - K t

Note that we can write, w;
- E

0 - K )
w.

Since variances are bounded, i.e. <U,  \ft

So, we can write

1 ^
4 e ̂ r=l

= AUE

This means that each of the terms in the Gt above is separately bounded and is of order 

(9 ( l) . Hence the sum of all terms (i.e. Gy) is also bounded and is of order 0 (1 ) , so

goes to zero as ‘T’ approaches infinity, as claimed. ■



Chapter 6: ASYMPTOTIC MAXIMUM BIASES OF HCCMEs

6.1: Introduction

This chapter provides results regarding second order asymptotic maximum biases
r

of all HCCMEs. Since we have the analytical expressions for the biases in previous 

chapter, this allows us to calculate the configuration of variances which leads to the 

maximum bias. We characterize this least favorable form of heteroskedasticity and the
V

associated maximum bias.

To state the results of this chapter in a self-contained manner, let’s recapitulate 

our basic model and related definitions.

We start out with a heteroskedastic regression model with centered regressors, 

without loss of generality:

Where, £  = 0, Cov(^) = I , where Z = diag , • • •, ). As before,

{y^,Z j)  represents artificial random variable which takes one o f ‘T’ possible values



( o f , X,̂  for t = \ ,2 ," ’,T  with equal probabilities . Let Wj be the standardized

regressors, Wj = - = i = = = ,  where, J  = , and Var(Zy) = (l/r)Y (A :, - 3c)^
^Var{Zj)

as usual. Note that EWj, ~ 0 and Var [W^) = EW^ = 1.

The following subsections provide results for maximum asymptotic bias of all .HCCMEs.

6.2; Asymptotic Maximum Bias
*

In this section, our aim is to find the worst possible configuration o f  

heteroskedasiicity. For this we provide the results of asymptotic maximum bias of all 

HCCMEs including (HCO, HCl, HC2 and HC3).

Note that, if the variances are unconstrained, then the maximum bias can be 

arbitrarily large, so we assume some upper bound on the variances: Under

this assumption, we proceed to derive the largest possible second order bias for all 

HCCMEs under consideration.



In addition, we note that these all estimators have second order asymptotic bias 

and these biases are given below:

EQ: 6 -i A S O B {H C O )^ -^ {E V ,+ 2 {E fr^ )E W ^V ^^+ {E (f ': -2 )E IV ^V „ -2 E W X ]  

EQ: 6-2ASOB{HCl) = ^ { e V„+2{EW^)e W„V^ + {e w : ) e W X - 2 E W X }

EQ:6-3ASOB{HC2) = ̂ {EV,+2(EiV^)EW„V^+{Elv:-\)EWX-ElvX}
CO

m - ^ A S O B ( H C i )  = -^[EV„+2[EW !i)EW „V„+[EW :)EW lvJ\

In addition, note that throughout in the current chapter, as>roptotic maximum bias means 

the second order asymptotic maximum bias.

The maximum possible positive and negative biases occur at different least 

favorable sequences of variances. We give the expression for both in our preliminary 

result below.



Theorem 6-1: Let and , i=0,l,2,3 be the maximum possible second order 

asymptotic positive and negative biases of HCCMEs which are given by:

EQ: 6-5

B; = m sx \A SO B (H C i)\ = lim

EQ: 6-6

B~ = min r ASOBi HCi)\ = lim
af<U ^ ^

Where polynomials pi (i^0,l,2,3) are given beiow;

E Q : 6-7 p^{w,) = \ + 2 [e W ^)w^+{e IV^ ~2 )w f - 2 w/ 

EQ: 6 -8  p^{w^) = \ + 2{^EWj^Wj + {^EW^ ) wf -  2w‘̂

EQ: 6-9 p^(w,) = 1 + 2 [eW^ ) w, + [EW^^ - 1)wf -

EQ: 6-10 p ^(w^)^1 + 2[e W^)w, +{EWf )wf

Proof: Similar to Theorem 4-2 above, i

We now try to obtain more explicit characterizations of these maxima and

minima. Note that in C hapter 4:, we derived a class o f estimators which considers HCO,

HCI as special cases and we derived minimax estimator and that particular minimax

value of Minimax estimator ‘a’ was found to be independent of exact sequence of
102



regressors and it only depends on the sample size, T, and the kurtosis of regressor (K). 

Here in this chapter, we have formulae of two estimators under study (HC2 ^ d  HC3) 

which do not fall info that particular class of estimators. Further, we do not have such 

minimax value which exists in this class of estimators, so the bias of all HCClVtes 

proposed in Chapter 5: may depend on the exact sequence of regressors as well as the 

sample size. We are presenting the maximum bias of all HCCMEs for a particular 

sequence of regressors for which computations are easy. In particular, we consider two 

cases, one with symmetric regressors and the other one as asymmetric case. The issue of 

finding a minimax estimator which covers all four estimators (HCO to HC3) requires 

more work and we leave it as an open problem for future research.

 ̂First we consider the "case where the regressors are ’ symmetric. The case of 

asymmetric regressors will follow this case.

6.2.1: Asymptotic Maximum Bias with Symmetric Regressors

Under the assumption that the regressors are symmetric, we derive analytical formulae 

for the approximate large sahiple maximum biases ~ = 0, 1,2 ,3 for all

HCCMEs. In this case the average value of regressors ( EWj )  and the skewness {EWj)  

will be^zero, while the kurtosis {EWj)W\W vary for different samples. This simplifies the 

polynomials to:



P,{-w,) =  \ +  {EW ^ -2 ) w ^  -2 w ^

P,{m>,) =  \ +  { E W ‘ ) w ^ - 2 w :  

p,{w ,) =  \ + { E W ‘ - l ) w j - ^ . :  

p X w .)  = -i + { E W ‘ )w f

We choose sample size T and a constant M [Af>/], such that k = Tj{2M^y\% an 

integer, and consider tiie sequence of regressors xj,” *,x^such that

Xj ~ ^2 “ ' ‘  ̂ ^T-k -  and =-" = Xj^= + M . As before,

letting Z t be the random variable such that Z j -  Xt with probability 1/T, we can easily 

check that EZj~ = 0 , EZ^ =1, and EZj . That is Z t is centered and standardized 

and has kurtosis K  = EZ^=M^ .  Note that we assume M>7, this means that we are 

constraining the kurtosis to be bounded below by ‘1’. Because Zj  is standardized, 

Wi^ZT/Std(ZT)=ZT and the standardized regressors are just Noting that EW^ = 0

and that the kurtosis is EW^ = .

Under this setup, the analytical expressions for the maximum asymptotic positive 

and negative bias functions and the maximum b i a s , — 0,1,2,3 are

provided in the following subsections.^
V
I



Note that, the results of asymptotic maximum bias of HCO and HCl in case of symmetric

regressors are exactly the same as we have derived earlier in Chapter 4:. But in Chapter
1

4:, we were interested in finding the maximum bias of a class of estimators and hence the 

minimax estimator. Since HCO and HCl fall into that particular class of estimators. So 

their maximum biases were also calculated. But here in this chapter, we are presenting 

the results of both HCO and HCl along with HC2 and HC3 which do not fall into that 

particular class of estimators and hence there is no minimax value of ‘a’ which remains 

same of all regressor sequences. So for completeness, the results for the asymptotic 

maximum bias of HCO and HCl are also presented here.

In addition, we provide the results of Minimax estimator as well to compare it with HC2
t:

and HC3.

6.2.1.1: Asymptotic Maximum Bias of Eicker-Whiie (HCO) Estimator

This subsection provides the asymptotic maximum bias of Eicker-White (HCO) 

estimator.

Theorem 6-2: Second order asymptotic maximum bias of HCO estimator, when the 

regressors are symmetric, is given by:

2 1



Proof: When regressors are symmetric, polynomial corresponding to HCO is: 

p ,{ w , ) = i+ { E w ; - 2 ) w f - 2 w ;  ^

In order to find maximum, positive and negative bias functions, we have to evaluate 

max(po(w,),0) which involve finding sighs of polynomial Pq (m',) at Wt=+M, 0 and -M .

Notethat, = and p„(±M ) = < 0  ( V M ' > l )

So we can write the asymptotic maximum positive and negative bias functions for HCO 

as follows:

B: = {lim { r 'F a r (Z ,)  (4 ,)}} = L  (O) 1 - U = 1 - U

lim (4.)}} = = |(l-2A/^ >u

Note that, both the maximum bias functions 5g^and are proportional to U, the

upper bound on the varianciss. To get a reasonable performance measure which is 

invariant to this arbitrary upper bound, it seems reasonable to divide by this factor. 

Reversing the sign of the negative bias to get the magnitude, we obtain:

Bq = rnax
a}<U

lim
T  -> 0 0

T ^ V a r (Z ,)B , , (A )
U

=  f - ‘

-R =mma;<U
iim
T—*co

r  Var{Z,)B,,{A,)
U

= (2 + M ^ ) - 1 - 2V y
+



6.2.1.2: Asymptotic Maximum Bias of Hinkley (HGl) Estimator

Here we provide the results of asymptotic maximum bias of Hinkley (HCl) 

estimator.

Theorem 6-3: Second order asymptotic maximum bias of HCl estimator when the 

regressors are symmetric, is given by:

EQ:6-12 2 1

Proof:'Polynomial corresponding to HCl, for symmetric regressors, is given by:

Working in the same lines as in the proof of this asymptotic maximum bias of HCO, we 

Have to evaluate the above polynomial at different values of Wt’s, i.e. at Wt “  0, -l-M and 

-M:

p , (0) = 1 > 0  and p,{±M) = \ - M “ <0 (VM^ > l)

This leads us to write the asymptotic maximum positive and negative bias functions ̂ as 

follows:

1 -
y
u =

A/'
U



U

Dividing both the bias functions with U and reversing the sign of negative bias function, 

we have:

-  max
crj<U

lim
T  —>«> U

1

- b ; = mm
a,-<U

lim
7"—>oo u 1 — + K - i )

Taking the maximurh of two bias functions, leads to required result, i

6.2.13: Asymptotic Maximum Bias of Horn, Horn and Duncan (HC2) 

Estimator

In this subsection, we collect results regarding asymptotic maximum bias of Hom, 

Horn and Duncan (HC2) estimator.

Theorem 6-4: Second order asymptotic maximum bias of HC2 estimator, when the 

regressors are symmetric, is given by:

EQ: 6-13

f



P r6 of;"When regressors are symmetric, polynomial corresponding to HC2 is:

Again value of polynomial at ‘0’ is ‘1’, which is always positive, while, value of 

polynomial at +M and -M  is negative for all (kurtosis) greater than 1. So; asymptotic 

maximum positive and negative bias functions for HC2 can be written in a compact form 

as follows:

M
U

K  = m in
a/<f/

lim {7-V«r(Z,) B,, (^ 0 )} = (M )[^ ^ J |C /= | ( l  -  ) u

Dividing by the U (the upper bound to variances), and reversing the sign of the negative 

bias function, we have:

lim
r - » = o U

= 1 -

lim^r->«=
r  Var{Z,)B,,{A,)

u

Note that, both are exactly the same, so maximum bias is the bias of any one of them. 

This leads to desired result.*



6.2.1.4: Asymptotic Maximum Bias of Mackinnoti and White (HC3) 

Estimator

In this portion, we present results of the asymptotic maximum bias of Mackinnon

and White (HC3) estimator.

Theorem 6-5: Second order asymptotic rnaximum bias of HC3 estimator, when the 

regressors are symmetric, is given by;

EQ: 6-14

Proof: When regressors are symmetric, polynomial corresponding to HC3 is:

As before, we can see that, Pj (O) = 1 > 0, /?3 {±M)  = 1 + > 0

Now, we can write the "'asymptotic maximum positive and negative bias functions for 

HC3 as follows:

B:  = max [ ^ m y V a r { Z , ) B , ,  ( 4 )}} = | p, (0)M j + f t  (A/)
1

M
U

'  __L"
IV

+ (l + Af") U



Re-scaiiiig the bias functions by U and reversing the sigh of negative bias function, we 

have:

=max
^ a f< U

lim
T - * ‘xi

r^Var{Zr).Bn{A,)
U

'  +M^

-6. =min
a}<U

Um
r - > o o

Var{Z,)B,,{A,)
u = 0

The maximum of two is S, = ,-B^ ) = ^  required result:

I »
6.2.1.5: Asymptotic Maximum Bias of Minimax Estimator

In this portion, we present results of the asymptotic maximum bias of Minimax
1:

estimator.

Theorem 6-6: Second order asymptotic maximum bias of Miiiimax estimator, when the 

regressors are symmetric, is given by:

EQ: 6-15 B = \  —*^Mnumax ^ 2

Proof; The proof is same as that of Theorem 4-4 in Chapter 4: above.



6.2.1.6: Asymptotic Comparison of HCCMEs (Symmetric Regressors 

Case)

Using the resuits obtained, we can analytically compare the relative performance of 

Eicker-White, Hinkley, Horn, Horn & Duncan, Mackinnon and White and Minimax 

estimators in terms of asymptotic bias when regressors follow symmetric distribution. 

Below we present the formulae derived in previous sub-sections in a corriparable rharmer.

Second order asymptotic maximum bias of HCO is:

+

Second order asymptotic m ^im um  bias of HCl is:

l -

Second order asymptotic maximum bias of HC2 is:

Second order asymptotic maximum bias of HC3 is:

M ‘
+



--- PS ,
Second order asymptotic maximum bias of Minimax is:

Frorn the bias functions provided above, ^ve can see" ' that the second order

2,asymptotic maximum bias of HCO, HCl and HC3 increases with the kurtosis (M ) and 

differ marginally. Second order asymptotic maxirhum bias of Minimax and HC2 is 

exactly same and goes to 1 with an increase in kurtosis (M^), i.e.

r  M= a = i -Minimax 2 1, [As M^  00^. This is because the 1/M^ term goes to zero

as M  ̂ goes to infinity. So we cohclude that bias of HC2 is bounded above by ‘1’. The 

bias of HCO is largest of all making it the least favorable estimator. The bias of HC3 is 

the 2"  ̂ least favorable while HCl is 2"̂ * favorable estimator. Minimax along with HC2 is

the clear winner among the five.
I

* i 
r



In this subsection, we consider the case of asymmetric regressors and derive 

analytical formulae for the approximate large sample second order maximum biases

^  = m a x = 0,1,2,3 . As in case of symrnetric regressors, the average value of

regressors is zero by construction but due to asymmetry of regressors, the skewness will 

be different from zero and both skewness and kurtosis will vary for different samples. 

Under this setup, the polynomials simplifies to;

(w,) = 1 + i I e w ^  ) w, + {e W^ -  2) wf -  2w^

P,{w,) = \ + 2 { E W } ) w , + { e W ^ ) wf - 2w; 

p,{w,)  = l + 2 ( E W , ^ ) w , + { E f V ; - l ) w f - w :  

f t  (w ,) =  1 +  2{EW^)w, +{EW^)^vf

As before, evaluation of the expressions for finding maximum positive and 

negative bias functions, we have to evaluate max(/7,(wj,0), j = 0,l,2,3 which involve

finding signs o f  polynomials pi(wt) at Wt=+M, 0 arid —M.
I



t ..
•'Following the same lines as in case of symmetric regressor, here again we pick a 

particular sequence of regressor for which the computations are easy.

We choose a sample of size ‘t ’ such that k = -----------------^ , [M and N are some
M N ( M  + N)

positive scalars] is an integer, aiid consider the sequence of regressors such that

- X2 -  -  Xf. = M , = ■ • • = = 0 , and = ” ' = Xj= - N .

As before, letting Wy be the standardized regressors with EW-i^O, = 1 , 

E W ^ = M - N  and EW^ = -  AW .

Using these values in above polynomials, we have;

P„(w,) = \ + 2 { M - N ) w, +{ [M^ + N ^ - M N ) - 2 ^ w f  -2w^  

p, (w,) = \ + 2 { M - N ) w ,  +(jw'" + Af"-M N )'w^ - 2 w‘

P; (w,) = 1+2(M -JV)m ',+ |(M " + JV"-ACV)-l}ivf -  

Pi (^j) “ 1 + 2(M-A^)w, +(M^ + — MN'jw^

As before, in order to find the second order asymptotic maximum positive and negative 

bias functions, we have to evaluate the corresponding polynomials at Wt=0, +M and -N.

The value of polynomials at Wt-0 is l,i.e ; /?^(0) = 1,̂  z = 0,l,2,3.

Note that, value of polynomial at ‘0’ is 1, which is always positive for any combination 

of M an"d -N.

For finding the exact signs of polynomials at +M and -N ,



l e X , ~ - p ,  or, N  ~ p M  (O < < M&O < p  < 1)

With this notation, skewness and kurtosis measures become: 

EWj = M { \ - p )  dxvd EWj ^ [ p ^ - p ^ - \ ) M ^ .

Putting value of N in above polynomials, we get:

(+M ) - 1  - 2pM^  + (p" - p - \ ) m ^

p , { - N )  = l - 2 p M ^ + p ^ { \ - p - p ^ ) M ^

p, (+M ) = 1 + 2 { \ - p ) M ^  +[p^ 

p ( - N ) ^ \ - 2 p { l - p ) M ^  + p ^ { \ - p - p ^ ) M ^

Pi i+M) = l + ( l - 2 p)Af^ + p ( p - l ) M ‘' 

p , { - N ) ^ \ - p { 2 - p ) M ^ ^ p ^ { \ - p ) M *

p^{+M) = \ + 2 ( \ - p ) M ^  + [ \ -  p +  P ‘) m ‘ 

p , ( - N )  = \ - 2 p ( \ - p ) M ^  + p^ p  + P^)m *

xNote that, these polynomials are quadratic in M , and so we can easily find their

4signs analytically. This will allow us to find the second order asymptotic maximum



positive and negative bias functions of ail HCCMEs, these are provided in the following 

subsections.
E,

In addition, we present here the second order asymptotic maximum bias of Minimax 

estimator as well to show its performance against the HC2 arid HC3 in case of 

asymmetric regressors.

V-

Note here that the second order asymptotic maximum bias of Minimax estimator depends 

on the exact sequence of regressors etc. but the optimal value of ‘a’ is independent of 

exact regressors sequence but only depends on the kurtosis of regressors and the sample
I

size ‘T’. So here it is important to see how second order asymptotic maximum bias of 

Minimax estimator against HC2, HC3 as well.



^This subsection provides the second order asymptotic maximum bias of Eicker- 

Wliite (HCO) estimator.

Theorem 6-7: Second order asymptotic maximum bias of HCO estimatoT, when the 

regressors are asymmetric, is given by;

1 2  7 1EQ:6-16 B o= 2 ----- t t ------r --------------- -  + 2 M ^ ~ p M \  0 < p < ^ --------
" M ' ( l  + p ) \ + p  l + ;0 ^  2

and

 ̂  ̂ 1 ( '/5 -1 )EQ:6-17 e ;^ = U _ ^ + i) M ^ + 2 —
 ̂ p M  2

i s ^

Proof: When regressors are asymmetric, polynomial corresponding to HCO is:

Using the values of EWj = M - N  and EW^ =M^ +N^ - M N  in above polynomial, we
r

have; ^

A  (w,) = 1 + 2(M - Af) w, + {(Af' + - AflV)-  2} w/ - 2w;‘

Evaluating the polynomial at w=̂ 0, +M and -N , we have:

^o(l) = l

p„ { + M)  = \ + 2 { M - N ) M  + - 2 M '



P„(-N) = \ - 2 { M - N ) N  + +N^ - m ) - 2 ^ N ^  - I N *

Sincc N  = p M  ( 0 < p < l )  , so we have: ^

Pq (+ M )^ \ - 2 a M ^  +(ar^

( - N )  -  1 -  2 «iV/" -Pa" (l -  a  -

Note that, these polynomiais are quadratic so, we can find the signs of the

polynomials by evaluating the roots of the same.

Note that, (O) = 1 > 0, when 0< p < \

\

i

When, 0 < /7 < 1, Po ( + ^ )  < 0, when

Where, is the positive root of the polynomial /?o(+M)and is given by:

a - 4 o c  + \
~ 2  ̂ T a  - a - I

(V5 - 1) , , 2
When, 0 < /7 < ,  Pq(-^N)>0, when M

When, — L < p < \ ,  \ - N )  < 0, when M  > r̂ _-̂

Where, is the positive root of the polynomial p^i^-N^ and is given by:

"1 -7 /^ (1  + /^)



Consider two cases,

Case iVWhen 0 < /? <

The second order asymptotic maximum positive bias of HCO is:

=rnax lim u pM ^{ l  + p)

Replacing the values of polynomials and simplifying, we get:

The second order asymptotic maximum negative bias of HCO

6„-=imn
<jj<U

lim
T —>00 U

Replacing the vMue of polynomial and simplifying, we get:

Reversing the sign of second order asymptotic maximum negative bias function, we get:

M^[\+p)  1 +  p  \ + p



Case 2: When < P < \

The second order a s^ p to tic  maximum positive bias of HCO is given by:

lim
r V a r { Z , ) B , , { 4 , )

U = / ’oO) p M '
= 1 -

pM^

The second order asymptotic maximum negative bias of HCO is given by: 

r  Var{Z,)B,,{A,)
lim

U
= Po{M)

 ̂ _ 1  ̂
M \ \  + p)

+ P . { - N )
/  \  

1

pM^{\ + p)

Replacing the values of polynomials arid simplifying, we get:

Reversing the sign of second order asymptotic maximum negative bias function, we get:



Where,

1
M ^ [ \ + p y  \ + p .  \ + p  

1 2

(75-l)
When < p < \

Where, K = P o { ^ ) 1 --
pM^

=  \ -
1

p M \

1
pM^

This completes the proof, i



6.Z.2.2: Asymptotic Maximum Bias of Hinkley (HCl) Estimator
I

This lubsection provides the second order asymptotic maximum bias of Hinkley (HCl) 

estimator.

Theorem 6 -8 : Second order asymptotic maximum bias of HCl estimator when the 

regressors are asymmetric, is given by:

1 4EQ:6-18 R = 2 ----- ---------r ---- ----- — ----- p M ^ + 2 M \  0 < p < ^ --------
+ \ + p  \ + p  2

and

1
EQ:6-19 b , = [ p ^ - p ^\)m ^—^ , ^ - y - ^ < P < \

I
Proof: When regressors are asymmetric, polynomial corresponding to HCl is:

(w,) = 1 + 2{EW^)w, +{EW^)w^ - 2 w:

Using the values of EW^ andEfV^ in above polynomial, we have;

(w^) = \ ^ 2 { M - N ) w , + { M ^ + N ^ - M N ) w f - 2 w ^

Evaluating the polynomial at w=0, +M and —N, we have:

a ( 1) = 1 

*■

(+M ) = \ + 2 ( M - N ) M  + [m  ̂+N^ - A m ) M ^ - 2 W



p , ( - N )  = \ - 2 ( M - N ) N  + [m^ + N ^ ~ M N ) - 2N^ 

SincQ N_ = p M  (0 < /7 < l) , so we have: 

p,{+M) = l + 2 ( \ ~ p ) M ^  + { p ^ - P - 1 ) m ^  

p , { - N )  =  l - 2 p { \ ~ p ) M ^ + p ^  ( l _ ^ _ p 2 ) ^ 4

Note that, these polynomials are quadratic in M^, so, we can find the signs of the 

polynomials by evaluating the roots of the same.

Note that, /?, (O) = 1 > 0 , when 0 < p  < 1 

When, 0 < /9 < 1, p, ( + ^ )  < when

Where, r, ^  is the positive i"oot of the polynomial /?, {+M)  and is given by:

P .

When, 0< p <  ^ , p, ( - ^ )  >0, when > r,

When, ------ L < p < \ ,  Pi ( - ^ )  < 0, when M  >
2 t-

W h e r e , i s  the positive root of the polynomial (-A^)ahd is given by:

^ ± p - ^ 2 f ^ - p  

p { \ - p - p ^ )



Again, consider two cases arise,

Case 1: When 0 < p  <

The second order asymptotic maximum positive bias of HCi is:

= max lim
T^V ar{Z ,)B , ,{A )

u
1

Replacing the values of polynomials and simplifying, we get:

b :  = 3 -

\

4

The second order asymptotic maximum negative bias of HCI

K =m in lim
r—fco U = M ^ )

Replacing the value of polynomial and simplifying, we get:

Br =
M \ \  + p )  1 + p

.1Reversing the sign of second order asymptotic maximum negative bias function, we get: 

I

- b :  = 2 -
1 4

M ^[\  + p )  1 + p  1 + p
-pM ^+ 2M '^



Case 2: When
( T J - i )

■' < o < l

The second order asymptotic rnaximum positive bias of HCl is given by:

limr->̂TO
r V a r { Z , ) B , , { A , )

U = a ( i) 1 -
pM^

=  \ -

pM^

The second order asymptotic maximum negative bias of HC1 is given by:

H =m in
a}̂ U

lim
r - ^ o o V

=  p , ( M ) + p , { - N )
p M \ \  + p )

Replacing the values of polynomials and simplifying, we get:

Reversing the sign of second order asymptotic maximum negative bias function, we get:



When 0 <p<- i ---------
^  2

K = max ( -B7  ) = - H ' = 2 -----r  -  — ---- — -----pM ^+ 2M^
'  ‘ ’ ' M \ \ - ^ p )  U p  , 1  + p

Where,

B; = 3 - — ^------ - ^ - - - ^ ^ p ^ M ^ + M ^
M^{l + p )  \ + p  \ + p

_R- = 2------ J ----- r ---- ----- ---- ---- pM'^+

Where,

1 1 1------ = 1-

V p M ^ )
iI

I

This completes the proof. ■

p M '



Estimator

This subsection provides the second order asymptotic maximum bias of Horn, Horn 

and Duncan (HC2) estimator.

Theorem 6-9: Second order asymptotic maximum bias of HC2 estimator, when the 

regressors are asymmetric, is given by:

EQ:6-20 — r ---- + -  p M \  0 < p < l
r  M "(l + p ) \ + p  1 + /3

Proof: When regressors are asymmetric, polynomial corresponding to HC2 is: 

p,  {w,) = l + 2 ( k w ' ) w ,  - l ) w f  -H .;

Using the values of EW^andEW^  in above polynomial, we have; 

p^{w,)^\ + 2{ M - N ) w, + U m  ̂ - w ‘

Evaluating the polynomial at*w=0, +M and -N , we have:

P2(+M) = \ + 2 ( M - N ) M  + + N ^ - M '
rL



Since N  = p M  (O < ^ l ) , so we have; \

( + M )  = l + ( l - 2 p ) M ^ + > 9 ( p - 1 ) M '  

p , { - N )  = \ - p ( 2 - p ) M ^ + p ^ { \ - p ) M '

Note that, these polynomials are quadratic in M^, so, we can find the signs of the 

polynomials by evaluating the roots of the same. ,

Note that, When, 0 < /?< 1, ^

Pi (^) 7 1 ^ ^ > Pi ( + ^ )  < when and (~ ^ )  > 0, when

Where, and are the positive roots of the polynomials p^i+M^sxvd /? ,( - // )

respectively, and are given by;
P

The second order asymptotic maximum positive bias of HC2 is;

=max
a}<U

lim
T

T ^ V a r ( Z , ) B , , ( 4 )
u = P2{^)

1

PM^
+ p , { - N ) ^ 1  ̂

p M ^ \  + p)

Replacing the values of polynomials and simplifying, we get:

k M ^ { \  + p)  \ + p  1 + p
+ 2 M ^ - p M ^

\
The second order asymptotic maximum negative bias of HC2



Iim<
r—>00

Var{Z,)B, ,{A,)

U

Replacing the value of polynomial and simplifying, we get:

Reversing the sign of second order asymptotic maximum negative bias function, we get:

1 3 2M=
- R “ = 2 - ^ V -----T---- ^---- = ^  + 2 M ^ - p M ^ ̂ M^{\ + p)  l + p  \ + p

Overall second order asymptotic maximum bias of HC2 is given by:

,-B2 ) = 2 -
3 2M^

M \ l  + p )  \ + p  l + p
+ 2 M ^ - p M ‘

Where,

1 3 2M^

- b ;  = 2 - 3 2M '
t M \ l  + p )  l + p  l + p

+ 2M^-pM'^

This corripletes the proof. ■



6.2.Z.4: Asymptotic Maximum Bias of Mackinhon and White (HC3) 

Estimator

This subsection provides the second order asymptotic maximum bias of 

Mackinnon and White (HC3) estimator for asymmetric regressors.

Theorem 6-10: Second order asymptotic maximum bias of HC3 estimator, when the 

regressors are asymmetric, is given by:

EQ: 6-21 = 1+ + 0 < / j < 1

Proof: When regressors are asymmetric, polynomial corresponding to HC3 is: 

p , { w , ) ^ \  + 2{EW^)w,+{EW,')wf

Using the values of EW^ and EWj in above polynomials, we have;

{w,) = \ + 2 { M - N ) w ^ +  [m  ̂+ ~MN)wf

Evaluating the polynomial at w=0, +M and -N , we have:

P3(l) = > <r

p ^ { + M ) ^ l  + 2 { M - N ) M  + - M N ) m ^

P^{-N)  = \ ~ 2 { M - N ) N  + [m ^ ~ M N ) n ^



Since N  -  p M  (O < p  < l ) , so we have:

p ^ { + M ) ^ \  + 2 { \ - p ) M ^  + { \ -  p + P ^ ) m  ̂

p ^ [ - N ) ^ \ - 2 p { \ -  p)M^ + p^ [ \ -  p ^  P^)m ^

Note that, these polynomials are quadratic in M^, so, we can find the sighs of the 

polynomials by evaluating the roots of the same.

Note that, roots the two polynomials at +M and -N  are imaginary, so polynomials 

do not cut the x-axis and will remain above it or we can say both will always be positive

for all values of p  (O

So, For 0 < yO< 1, /?3 (O) = 1 > 0, > 0 and .p̂  (-A^) > 0

The second order asymptotic maximum positive bias of HC3 is:

= max
 ̂ a/<f7

. \ T ^Var(Z , )B^(A , )
limT = f tO )

+ p ,{ -N )

V - L 'pM^

1
a M \ l  + p )}

Replacing the values of polynomials and simplifying, we get: 

b ;  = \ + { \ - p + p ^)m ^



lim
T-¥'X>

V a r (Z , )B , , ( A )

U
= 0

Reversing the sign of second order asymptotic maximum negative bias function, we get:

~b ;

Overall second order asymptotic maximum bias of HC3 is given by:

B, = max (b :  , -BT ) = B,* = 1 + (l -  p + p " ) M '

Where,

b ;  ^ \ + [ \ - p +p ")m ^

- b ; = ^

This completes the proof.



This subsection provides the second order asymptotic maximum bias of Minimax 

estimator for asymmetric regressors.

Theorem 6-11: Second order asymptotic maximum bias of Minimax estimator, when the 

regressors are asymmetric, is given by:

EQ:6-22  = 2 - — ]----- - 2 p M \  0 < p < l
M  \\-\-p )  1 + p  \ + p

Proof: When regressors are asymmetric, polynomial corresponding to Minimax estimator

is:

(m',) = a+[laEW^)w,+[a+a[EW^ -2))-T/xw'

Note that, in large samples a  = and also note that, a = K-\-\ = EWj +1

1-
Using these values in the polynomial and simplifying, we get:

P^^„<w,) = 'i + [2EW^)w,+{2EW^ -2 w :

Using the values of EWj &xvlEWj in above polynomials, we have;

Evaluating the polynomial at w=0, +M and -N , we have:



= \ + { 2 { M - N ) ) M  + {2{m ^ + N ^ - M N ) - [ } m ^ - 2 M ‘

( - N )  = 1 - { 2 { M - N ) ) N  + {2{m  ̂+ N ^ - M N ) - \ } n ^ - 2 N ^

Since N  = p M  (0 < p  < 1), so we have:

P ^ ^ { + M )  = \ + { \ - 2 p ) M ^ + 2 p { p - \ ) M ^

P » . ^ { - N )  = \ + p { p - 2 ) M ^ + 2 p ^ ( \ - p ) M ^

Note tKat, for large M, the leading terrh is the oiie involving M"", and, since 0 < p  < 1, so

we can see that, (O) = 1 > 0, Puaaz (+A^) < 0 and { - N )  > 0 .

t

This permits us to write the second order asymptotic maximum positive bias of Minimax 

estimator as:
r

r V a r { Z , ) B , , { A ^ )
K —  = max lim

<rfw

~  /^M in im ax  ( 0

1
p M ^ )

U

+  P M in im a x  ( - ^ )

1

pM^  (1 + p )

Replacing the values of polynomials and simplifying, we get:

The second order asymptotic maxirrium negative bias of Minimax estimator is:
I
\



. înitnax
mincr/<[/ lim

T ^ V a r { Z , ) B ^ { A ^ )
U = PMn.n^{+^)

Replacing the value of polynomial and simplifying, we get:

M inilliax 2af<U lim
7 —»oo

=  2 -

u
3 4M"

Note that, second order asymptotic maximum positive and negative biases are 

exactly the same, so we can write the overall second order asymptotic maximum bias of

Minimax estimator as follows:

3 4M ' + 4 M ^ -2 p M ^  Q < p < \

This completes the proof.

V r



6.2.2.6; Asymptotic Comparison of HCCMEs (Asymmetric Regressors 

Case)

In this section we compare all four HCCMEs on the basis of overall second order 

asymptotic maximum bias. In order to provide a suitable comparison, we first present the 

formulae of the second order asymptotic maximum biases of all four HCCMEs in a 

simplified form below:

Second order asymptotic maximum bias of HCO is:

1 + P
\l£z£ 

I i+ P

2 A

pM " 2

Second order asymptotic maximum bias of HCl is;

1 ( ' / 5 - l )
--------- < P < \

\ + P )
M '- - -

1
0 < /?<

(7 5 -.)

Second order asymptotic maximum bias of HC2 is:

\ + p
P - P  
\ + p M \ \  + p Y

Q< p < \

I
Second order asymptotic maximum bias of HC3 is:



B, = l+ ( l-p + y o ')A ^ ^  0 < p < \

Second order asymptotic maximum bias of Minimax is:

l + p l + p

2\
----- --- ----- 0 < p < l

When M is very large, then the terms containing (1/M^) will go to zero also the constant 

terms are very small. So the only term that matters for the comparison is the one

2

involving M .̂ Note that the coefficient of in R  is —— —  for all 0 < p  < 1 , yielding
l + p

the smallest value as compared to coefficients of corresponding to all other HCCMEs.

So we can say that second order asymptotic maximum bias of HC2 is the smallest, 
i

declaring it the clear winner against its rivals. Similar exaniination leads to the conclusion 

that Minimax estimator is the second most preferable.

Also note that when the value of p  (which is a measure of skewness) is close to zero or 

one, and M is relatively a small number, then second order asymptotic maximum bias of 

HC2 and Minimax are comparatively close to each other but when p  is around 0.5 then 

the second order asymptotic maximum bias of Minimax estimator is almost double in 

magnitude than that of HC2.

 ̂ . .  (V 5 -l)
Jn  addition, note that, when 0 < p  < , the second order asymptotic
r

: 4maximum bias of HC3 is larger than both Minimax and HC2 but smaller than both HCl



[yl5- \)

is larger in magnitude than HCl, HC2 and Minimax estimator while it is about the same 

as that of HCO.

Overall our results are in favor of HC2.

To make the comparison more clear, we plotted the second order asymptotic 

maximum bias of all HCCMEs over all possible values of p  while keeping fixed at 

100. The following figure represents the comparison.



Maximum Bias of all HCCMEs over ’p’ with M^=100

re
m
E3
E
I



From the above figure, we can see that the second order asymptotic maximum 

bias of HC2 is the smallest, making HC2 as the best estimator against its rivals including 

Mini max estimator, however, the Minimax estimator came out to be the second best.

Further note that, similar results were obtained with higher values of M .̂

In the end we provide a comment on different findings of existing studies. As explained 

earlier, existing studies are based on simulation by taking a particular set of regressors 

and a skedastic function. But since the performance of HCCMEs is different for different 

set of regressors as well as^skedastic function, conflicting results are obtained. Different 

estimators are superior for different configurations of parameters. The minimax bias 

criterion provides a global comparison of the HCCMEs utilizing the worst case 

configuration of heteroskedasticity. This evaluation shows that HC2 is by far the best 

among all the estimators considered.



6.3: EXTENSION TO MULTIPLE REGRESSO RS CASE

A  major limitation on our results above is the restriction to the single regressor 

model. As we show in this section, it is possible to extend these results to multiple 

regressor models under certain conditions. This can be done by considering a sequence of 

increasingly complex cases.

6.3.1: CASE 1: Orthogonal Regressors

Consider a standard regression model with regressors xo, xi,...,Xk.i, where the first
I ^

regressor is a constant, and all regressors are orthogonal, i.e.

yt -  Pq + ■ ■ ■+Pk-\^k-\ t + i

Let p  be the OLS estimate of p  and consider the alternative model y  + /8,*| + m, 

where y  = y - -------■

Thus we can now use our results to assess the significance of regressor xj exactly as 

before. The minimax variance estimate can Be applied to obtain a minimally biased 

estimator for the variance of .



6.3.2: CASE 2: Prioritized Regressors

Next, consider a situation where the sequence of priorities of the regressor is 

known in advance. That is, we are testing for significance of a regressor Xj within a 

nested sequence of models where the j-th model consists of all regressors xi to xj. This 

situation arises in polynomial regression, or in ARDL models, where we would like to 

choose the simplest models, with minimal order polynomial or lag. In this situation, we 

can use the Gram-Schmidt procedure to orthbgonalize the regressors. Once we have 

orthogonal regressors, we can use the procedure of Case 1 to evaluate the significance of 

any regressor. Note that different priority orderings will lead to different calculations for 

the variances. Intuitively, the question we ask of the data is the following:

Given the xi to Xj.i are explanatory variables, does x; add sufficient explanatory power to 

the model to be worth including? This is answered by purging Xj of the influence of the 

preceding regressors prior to testing for significance. This differs from the conventional t- 

statistic which treats Xj on par with the other variables.

6.3.3: CASE 3: Categorized Variables with Unique Ranking

In the general case, to evaluate the significance of a regressor xj,̂  we must

categorize the relevant regressors into three categories. The first category is X], Xj

where i<j. These are the regressors which have higher priority than xj -  they must be

include'd in the model. This would be the case if, for example, theory dictates their

inclusion. The second category is those variables which are of equal priority; these would
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be variables Xi+i,...,X]c, where k>j. The third category is variables of lower priority; these 

are Xk+i, ... , xk. These variables are to be included only if they add explanatory power 

AFTER Xj has already been included in the model.

First consider the case where i-j-1, and k^j+1, so that there are no variables of equal 

priority. In this case, a Gram-Schmidt procedure will convert the model to orthogonal 

regressors, and applying the procedures of the first case will yield the desired results. The 

variable Xj will be judged significant if and only if it adds significant explanatory power 

after the inclusion of all variables Xi to xj.i.

6.3.4: CASE 4: General Casei

Now suppose that there are other variable of equal priority. This includes the 

possibility that i=l and j=K so that all variables are of equal priority. This is typically 

assumed in regression models. This is similar to the case of multicollinearity. If two 

variables are close substitutes, then it can happen that both have irisignificant t-statistics. 

This means that one of the two is sufficient; neither variable adds explanatory power in 

presence of the other. In such cases, it is impossible to decide which of the two is 

significant on purely statistical grounds. Many applied cases can be cited where 

multicollinearity leads to wrong decisions on ' significance on statistical grounds. The 

suggested decision procedure for this situation is as follows.

First, position Xj as the first in the group of equivalent variables, then apply Gram-

Schmidt to orthogonalize the regressors, and follow the procedure of Case 1 to determine
144



significance. If Xj is not significant in the first position, then it is not significant. In any 

later position, it cannot acquire significance after orthogonalization.

Next, position x\ as the last in the group of equivalent variables. If it is significant in the 

last position after a Gram-Schmidt orthogonalization, then it will always be significant in 

earlier positions.

The only remaining possibility is that the variable is significant in the first position,' 

but insi^ificant in the last position. In this case, the data does not lead to a firm 

conclusion. The variable may or may not be significant, depending on whether or not 

other variables of equal priority are included. In absence of statistical evidence, decisions 

about significance must be made on a priori or theoretical grounds.



6.4; A REAL WORLD APPLICATION OF HCCMEs

In this section, we provide application of these results using some real world data. 

The details are provided below:

Consider a two-covariate linear regression model:

[6.4.1] y, =/?, + p 2̂ 2, + A ^ 3, + E „ t  =  l2 , . . . ,T.

The dataset used consists of data on per capita expenditure on public schools and 

per capita income by state in the U.S. in 1979, and is takeri from Greene (1997, p.541). 

The dependent variable y is per capita expenditure on public schools and covariates'x2 

and X3 are per capita income (scaled by 10 '^) and the squarer of per capita income 

respectively, totaling T=50 observations. We considered only 47 observations omitting 

three high leverage observations (Alaska, Mississipi, Washington D.C.), so our sample 

size is T=47. Since* this is a multijple regressor model so we first orthogonalized the 

regressors by using Gram-Schmidt procedure and then estimated the above model using 

OLS. The multiple linear regression model is transformed to simple linear regression 

model using the procedure outlined in section 6.3 above, i.e. we estimated the following 

regression model:

[6.4.2] y  where y  =>’- ^ 3X 3, and, ‘s are OLS estimate of y?‘s.

i We calculated the maximum positive and maximum negative bias of all

HCCMEs, HCO, HCl, HC2, HC3 and Minimax Estimator using the analytical formulae



developed. The overall maximum^ bias is also calculated for all HCCMEs including 

Minimax estimator. The results are provided in the following table.

Table 6-1: Overall Maximum Bias of HCCMEs

MB of HCO 3.63
MB ofH Cl . 2.25
M BofHC2 - 0.96
MB of HC3 3.22

MB of Minimax 1.64
Note: MB stands for maximum bias

From the above table, we can see that overall maximum bias of HC2 is smallest of all 

while minimax estimator has second lowest maximum bias. The bias of HCO is found to 

be largest of all.

We  ̂ experimented with "other data sets as well and obtained the similar results 

favoring HC2 though the maximuni bias changed due to change in the design matrix.

In the end we strongly recommend the practitioners to use HC2 estimator while 

performing heteroskedasticity corrections.



I
rChapter 7: CONCLUSIONS AND RECOMMENDATIONS

V
This thesis deals with the issues of comparing the most famous HCCMEs namely 

HCO proposed by White, HCl proposed by Hinkley, HC2 suggested by Horn, Horn and 

Duncan arid HC3 by Mackinnon and White. Much of the existing literature is concerned 

to compare their performances using Monte Carlo sirhulations. Some of the studies 

provided the bias expression for different HCCMEs but their analytics is too complex to 

compare them in detail. So, still no clear cut winner has emerged, though, a number of 

studies suggested HC2 and'HC3 using different criteria, e.g. size distortion etc. Since 

performance of HCCMEs depends on the design matrix of regressors as well as the 

skedastic function of variances, so simulations are not the right choice, since sirn'ulation 

takes one particular set of regressors and skedastic function. So the only solution is to 

compare HCCMEs using analytical comparison.

In this thesis, we gave exact analytical expressions for the biases of HCCMEs. Due to 

complexity of analytics, we "consider one regressor model and provided the comparison 

of HCCMEs by comparing their asymptotical worst case biases.



We have obtained elementary explicit analytical formulae for the bias of variance 

estimates in a single regressor model with heteroskedasticity. This allows us to calculate 

the pattern of the least favorable heteroskedastic sequence, and to compute worst case 

bias. In the past, simulation studies chose different patterns of heteroskedasticity in an ad- 

hoc fashion. This ad-hoc choice does not allow for accurate evaluation of strengths and 

vveaknesses of different classes of estimators. Our methodology permits an analytical 

assessment and comparison of estimators on the basis of their worst case bias. In some 

cases, this minimax assessment can be too pessimistic. Our formulae also permit 

alternative methods of evaluation, which may be explored in future research.

One very important payoff from our research is an explicit formulae for a minimax 

estimator which has substantially lower maximum bias than conventional estimators, 

HCO, HCl, HC3 [in case of symmetric as well* as asymmetric regressors] and HC2 [in 

case of symmetric regressors only]. The proof of minimaxity is not analytic but 

heuristically based on simulations. We prove minimaxity for a restricted class of 

regressor sequences, and numerically showed that particulars of the regressor sequence 

do not matter. It is possible that the estimator obtained is minimax among the class of all 

estimators -  not just the special one parameter family analyzed in this thesis. Even if this 

is not so, numerical calculations show that it cannot be improved upon by much. This 

solves the problem raised in the introduction: how to choose a specific HCCME from 

among â broad class with competing claims to superiority and widely different small 

sample properties.



An unsolved puzzle is the invariance conjecture. The maximum bias functions (i3[)

%
and B~[a) depend directly on the sequence of regressors. Why the value of "a’ at their

intersection depends only the kurtosis is a mystery we leave for future researchers to 

resolve. Further note that we proved that invariance conjecture is valid in case of a 

special class of estimators which takes into account HCO and HCl as special cases, 

however, for the other two HCCMEs (HC2 and HC3), this conjecture may holds as well. 

Further research is required to explore this issue.

We can summarize our main findings as follows:

1. Minimax has lowest second order asymptotic maximum bias in"*the class of all 

' estimators including HCO and HCl as special cases. Hence Minimax estimator is

a clear winner against ail estimators which fall in this specific class of estimators.

2. HC2 and HC3 do not fall into that particular class, so, we compared them for a 

particular sequence of regressors (symmetric as well as asymmetric). In case of 

symmetric regressors, the second order asymptotic maximum bias of HC2 is 

exactly same as that of ̂ ^inimax estimator and both are lowest as compared to all

Kival estimators (HCO, HCl, HC3). But in case of asymmetric regressors, the

I second order asymptotic maximum bias of HC2 is best among all estimators
I
including Minimax estimator.



3. Overall we can say that HC2 is the real minimax estimator whether regressors are 

^ symmetric or asymmetric but for a restricted class of estimator Minimax estimator

is best.

The analysis can be extended to cover high-leveraged estimators (HC4 and HC5) in a 

future research and one can devise a minimax estimator covering these two estimators as 

well.
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APPENDICES

APPENDIX A: ESTIMATORS NOT COVERED IN THE STUDY

This appendix includes the estimators which have not been considered in our study but 

are presented here for completeness.

T

r

A .l: BOOTSTRAPPED BASED HCCMEs

One of the alternatives to HGCMEs is to use bootstrap methods to estimate the 

covariance matrix of OLS estimator. Efron (1979) proposed this method the first time, 

called naive bootstrap. The basic idea is to resample the available information in data to 

get the inforrnation about the; unknown statistic of interest. Bootstrap based methods are 

useful, according to Ader et al. (2008), the bootstrap method should be adopted in the 

following situations:

. When theoretical distribution of a statistic of interest is complicated or unknown.

i. When the sample size is insufficient for straightforward statistical inference.

ii. When power calculations have to be performed, and a small pilot sample is
J .

available.



[For more detailed survey on bootstrap rriethods, See Li and Maddala (1996), Horowitz 

(1997) and Berkowitz and Kilian (2000) etc.]

I,..
In the following sub-sections, we provide brief review of bootstrap methods developed so
far. 1  

r
r
r
i ‘ .. .................

A.1.1: NAIVE BOOTSTRAP ESTIMATOR

Efron ‘(1979) proposed the first bootstrap estimator known as naive bootstrap. The 

bootstrap scheme is as follows;-

a. Draw a random sample, e*,i = l ,2 , . . . , r , with replacement form OLS residual,

b.^ Use y* = +e* to get a bootstrap sample.

I
c. Compute OLS estimate = ( X ' X y ^ X '  y *.

d. Repeat first three steps a large number of times, (say N times) to get N vectors 

of OLS estimates ( ) ,
r

e.^ Calculate covariance matrix o fN  vectors of (/? )•



A.1.2: JACKKNIFE ESTIMATOR (JA)

In 1982, Efron proposed an estimator kribwn as Jackknife estimator,'the idea is to
t

drop one observation each time the regression model is estimated and parameters are 

estimated. At the end, the variance of the estimated parameters gives an estimate of the 

variance of true parameter. The jackknife estimator is given by:

n j , = — { x ' x y ' X ' i , X - - X ' e e ’X  1C J  p { x ' x y '

Where,

Here e^’s are OLS squared residuals and htt is the t-th entry of the Hat matrix (H), 

H  = x \ x ' x y '  X ' .

A.1.3: WEIGHTED BOOTSTRAP ESTIMATOR

The estimator propos"ed by Wu (1986) can work evenly well in situations where 

the data, in population, is not IID as opposed to Efron (1979) which works well when 

data, in population, is IID and gives inconsistent estimates. Wu’s (1986) proposed a 

scheme ,based on resampling the residuals in such a way that can yield HCCME. This 

estimator is known as weighted bootstrap estimator.,



Later Chemick (1999) suggested to resample the actual data (Y, X) instead of 

resampling the OLS residuals when the model is mis-specified or there is 

heteroskedasticity.

A.1.4: LEVERAGED ADJUSTED BOOTSTRAP ESTIMATORS

In 2004, Cribari-Neto & Zarkos proposed three alternative bootstrapped 

estimators, namely, adjusted weighted bootstrap estimator, linearly adjusted weighted 

bootstrap and inversely adjusted weighted bootstrap to take into account the effect the 

high-leveraged observations. Readers are referred to Cribari-Neto & Zarkos (2004) for 

more detailed discussion of these methods.

A.2: ESTIMATORS BASED ON GMM

"Cragg (1983) proposed an estimator based on generalized method of moments 

(GMM) which is proved to be more efficient that OLS based estimator.

Cragg estimator is given below:

P cr^  X w { w ' i w y t v ' y

Where, W is the matrix of instruments, which includes, regressors X, their cross-products

and successive positive powers.

fc:

When W=X, Cragg estimator reduces to Eicker-White'estimator. By adding additional 

instruments, a gain in efficiency can be obtained. Small samples performance of this



estimator is very poor, due to l^ge size distortions of tests based on it. So this approach 

could not get much popularity,

A.3: ROBUST HCCMEs

Fumo (1997) advocated to use robust HCCME and proposed the robust versions 

of HCO, HCl, HC2 and HC3.According to her, her approach has three main advantages. 

First, one need not to specify the form of heteroskedasticity, second, the sample bias of 

HCCMEs can be reduced and third one need not to do any preliminary analysis for the 

detection of outliers and thus this saves us from losing the additional information which 

the outliers contain and can be lost if we delete them.

The robust version of Eicker-White (HCO) estimator is:

HCOj,={X'WX)~' X 'WlLmWX{X'WXY'

Where, W is an TxT diagonal matrix*^with w, = m in(l,c //j„) and c = \ . S k / T . Here, 

So« where, e] is the t-th weighted least squares (WLS) residual

obtained from WLS regression of Y on X with least squares regression parameter 

P^={X 'W X )~ '  X 'W y .

The robust version of Hinkley (HCO) estimator is:



Where, Li/? = diag
-2
ei

l - k / T
t = l 2 Tr yi- 1 ,  -^5 * . .5  J.

The robust version of Horn, Horn and Duncan (HC2) estimator is:

N C 2 j,= (X 'f^ )~ 'x W t2 R W X (X 'W ^ )~ '

~2
e,

The robust version of Mackinnon & White (HC3) estimator is:

HC3j, = { X ' WXy' X ' ( X ' WXy'

Where, Zsa = diag
r

e.

With /z* is the t-th diagonal element of •JWX{X^WX)  ̂X ' ^

Fumo compared the performance of these four robust heteroskedasticity consistent 

covariance matrix estimators (RHCCMEs) using Monte Carlo Simulations. Her results 

showed that in case of heteroskedasticity, the RHCCMEs reduce the biases and thus are 

more efficient.

A.4: BIAS CORRECTED HCCMEs

\
IThere is another approach that seems sensible, which first finds the bias and then

simply subtract this estimated bias from the estimator to get a bias corrected estimator.



The first set of bias corrected HCCMEs is proposed by Cribari-Neto et al. (2000) 

who analytically calculated the bias of Eicker-White (HCO) and then defined bias 

corrected estimators recursively, that is, they calculated bias of HCO and subtracted it 

from the actual HCO estimator recursively. They also provided the expressions for the 

variances of these estimators.

Later, Cribari-Neto and Galvao (2003) generalized the results of Cribari-Neto et 

al (2000) and analytically calculated the bias corrected versions of HCl, HC2 and HC3 

along with HCO and also provided the expressions for the variances of these estimators.

k
A.S: HIGH-LEVERAGED BASED ESTIMATORS

Two estimators developed by Cribari-Neto (2004) and Cribari-Neto et al. (2007) for 

high-leveraged observations in the design matrix. These are discussed briefly in the 

following sub-sections.

A.5.1: CRIBARI-NETO (HC4) ESTIMATOR

This estimator was proposed by Cribari-Neto (2004) and it takes into account the

effect of high-leveraged observations in the regression design. He adjusted HC3 by 

taking the exponent of the discounting term as minimum of the 3 and the ratio between 

each leverage measure and the mean leverage. This estimator was named as HC4 and is 

given as follows:

IF
C l H a ^ { X ' X y \ X - Z „ „ X ) ( X ' X ) - '



Where,

With, g, =min^

T - 'Y .K

,3

/=!

T *h
K I

:.Y ^h„ = K
\  <=l

Here the discount factor is the ratio between the leverage measure of each 

observation and the average of all leverage measures. Cribari-Neto (2004) showed using 

simulation suggested that ?HC4 should be used when regression design contains 

influential observations using size distortion as the deciding criteria.

A.5.2rCRIBARI-NETO'etal. (HC5) ESTIMATOR
This estimator known as HC5 was proposed by Cribari-Neto et al. (2007) and is

given by:

Q h c s  = ( X ’X ) - \ X ' I ,„ , . ,X ) ( X 'X ) - 1

Where, ^Hcs = diag
u.

With, a , = m m -
h

max

t=\

A% T

V J

= min
Th

I P
^m ax 4,

Tkh

K

Where. =vo2cx.{h^,J\,....,hj.) is the maximal leverage.



The constant determines how much the squared residual should be inflated

in order to account for the i‘*̂ observation leverage. According to Cribari-Neto et al. 

(2007), this estimator is usefial when the regression design contains extreme high- 

leveraged observations. This estimator (HC5) reduces to HC4 when the regression design 

contains no extreme influential observations.


