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ABSTRACT

This thesis considers the issue of evaluating heteroskedasticity consistent
covariance matrix estimators (HCCME) in linéar heteroskedastic regression models.
Several HCCMEs are considered, namely: HCO (White estimator), HC1 (Hinkley
estimator), HC2 (Horn, Horn & Duncan estimator) and HC3 (Mackinnon & White
estim;for). It is well known that White estimator is biased in finite samples; see e.g.
Chesher & Jewitt and Mackinnon & White. A number of simulation studies show that
HC2 & HC3 perform better than HCO over the range of situations studied. See e.g. Long

& Ervlin; Mackinnon & White and Cribari-Neto & Zarkos.

The existin§ studies have a serious.drawback that they are just based on
simulz{itions and not analytical results. A number of design matrices as well as skedastic
functions are used but the possibilities are too large to be adequately explored by
simulations. In the past, analytical formulas have been developed by several authors for
the means and the variances of different types of HCCMEs but the expression obtained
are too complex to perthit easy analysis. So they have not been used or analyzed to
explore and investigate the relative performance of different HCCMEs. Our goal in this
study is to analytically investigate the relative performance of different types of
HCCMEs. One of the major contributions of this thesis is to develop new analytic

formulae for the biases of the HCCMEs. These formulae permit us to use minimax type



criteria to evaluate the performance of the different HCCMEs. We use these analytical
formulae to identify regions of the parameter space which provide the ranges for the best
and the worst performance of different estimators. If an estimator performs better than
another in the region of its worst behavior, then we can confidently expect it to be better.
Similarly, if an estimator is poor in area of its best performance, than it can be safely
discarded. This pérmits, for the first time, a sharp and unambiguous evaluation of the

relative performance of a large class of widely used HCCMEs.

We also evaluate the existing studies in the light of our analytical calculations. Ad ~
hoc choices of regressors and patterns of heteroskedasticity in existing studies resulted in
ad hoc comparison. So there is a need to make the existing comparisons meaningful. The
best i%/'ay to do this is to focus on the regions of best and worst performance obtained by
analytical formulzae and then conipare the HCCMESs to judge their relative performance.
This will provide a deep and clear insight of the problem in hand. In particular, we sllow
that the conclusions of most existing studies change when the patterns of
heteroskedasticity and the regressor matrix is changed. By using the analytical techniques

developed, we can resolve many quéstions:

1) Which HCCME to use
2) How to evaluate the relative performance of different HCCMEs

3) How much potential size distortion exists in the heteroskedasticity tests

W

4) Pattérns of heteroskedasticity which are least favorable, in the sense of

creating maximum bias.

2
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Our major goal is to provide practitioners and econometricians a clear cut way to
be able to judge the situations where heteroskedasticity corrections can benefit us the

most and also which methoa must be used to do such corrections.

Our results suggest that HC2 is the best of all with lowest maximum bias. So we
recommend that practitioners should use only HC2 while performing hete"r?skedasticity

corrections.
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Chapter 1: INTRODUCTION TO HETEROSKEDASTICITY

CONSISTENT COVARIANCE MATRIX
ESTIMATORS (HCCMEs)

1.1: INTRODUCTION

P

The linear regression model is extensively used by applied researchers. It makes
up the*'bi.lilding block of most of the éxisting empirical work in econometrics, statistics
and economics as well as the related fields. Regardléss of this re‘ality, very little is known
about the properties of statistical inferences made from this model when customary
assumptions are violated. In particular, classical linear regression model requires the
researchers to assume that variances of thé error term are same. This assumption often

violated in cross sectional data. This is called heteroskedasticity.
We quote from Stock and Watson (2003) as,

“At a general level, economic theory rarely gives any reason to believe

i .
. that errors are homoskedastic. It is therefore prudent to assume that errors might
4

be heteroskedastic unless if you have compelling reasons to believe otherwise .



Using the analysis of Shepp (1965), we can prove the existence of error sequences which
are heteroskedastic, but the heteroskedasticity cannot be detected even asymptotically

with 100% power. i.c.
“Homoskedasticity is potentially unverifiable even with an infinite amount of data”.

Thus failure to reject the null of homoskedasticity does not provide sufficient insurance

against the alternative of heteroskedasticity.

DEFINITION: Distinguishability

Let (X . ¢ 2,...) be a sequence of independent and identically distributed (IID) positive
"

randor;i variables with common distribution F. Let Y =X,/o, for any sequence of

constants o,. The sequence Y, is distinguishagle from the sequence X, if and only if

i i

there exists a sequence of hypotheses tests, T,, of null and alternative hypotheses:

H,:o.=1, i=12..n

H 0, #1, forsomei
Such that size of the tests goes to zero and power goes to one as n approaches infinity, i.e.

lim P (T, rejects H,/ H,) =0

n—w

lim P (T, rejects H,/ H,) =1

n—wx

10



Theorem 0-1:

Let Z={z,z,,..} be a sequence of independent and identically distributed (IID) positive

. . , B
random variables. Let o ={0},0,,..} be a numerical sequence, where 0, represents the

erfor in scaling Z,.” The sequence Z is distinguishable from z if and only if
rog

Z]og(of) =400,
. Z
Proof: Let V[{=log(—)=log(Z);log(cr):X—a, where X =log(Z) and a=log(c).
o
Accor’éing to Shepp (1965), [if X :{Xl,Xz,...} is a sequence of IID random variables

. s . . . . : B . .
and a= {al,az,...} is a numerical sequence, anp representmg the error in centermg Xn.

F ,
Then the sequence X is distinguishable from the sequence X-a if Zaj =+ ], 5o using

Z
Shepp’s result, we can say that the sequence log(Z ) is distinguishable from log [;] if

and only if Zlog (o-f)=+oo. Since 10g(Z) is a monotonic transformation of Z; so the

same résult will hold for the sequence Z. Hence we-can say that the sequence Z is

distinguishable from z if and only if Zlog(o-j) = +oo0 . This proves the theorem.m
o

So, we can say that heteroskedasticity may be present but may not be detectiblé and one

should test for heteroskedasticity to get valid estimates.

11



The issue of heteroskedasticity arises in cross-séctional, time series as well as in

finance data. We list some important examples of situations where heteroskedasticity

arises.

)

2)

-
x

3)

4)

In studies of family income and expenditures, one expects that higfﬁ income
families’ spending rate is more volatile while spending patterns of low income
families is less volatile. [See Gujarati (2004), Prais & Houthakker (1955), Greene
(5003, Ch. 11, p. 215) and Griffiths et al. (1993) for an example of income and
food expenditure].

In error-learning models where individuals benefits from their previous mistakes,
‘fgr example, number of typing errors reduces with the increase in time spent on
'typing practice. This also reduces the variation among the typing mistakes. [See
Pearce-Hall model (1980) for error learning theory, Gujarati (2004, Ch 11, p. 389)

and Kennedy (2003) for examples].

When one or more regressors in a regression model has skewed distribution, e.g;
the distribution of income, wealth and education in most societies is skewed

which causes heteroskedasticity. [See Gujarati (2004, Ch 11, p. 389) for details].

If a regression model is misspecified (i.e. an important variable is ommited) then
this misspecification can cause heteroskedasticity in regression errors. [See

Gujarati (2004, Ch 11, p. 391), JB Ramsay (1969) for details].

5) Outliers in the data can cause heteroskedasticity. [See Gujarati (2004, Ch 11, p.

3

390].
12



6) Incorrect data transformation (e.g. ratio or first difference transfonhation) can
lead to heteroskedasticity. [See Hendry (1995) & Gujarati (2004, Ch 11, p. 381)

for details].

7) Incorrect functional form (e.g. linear versus log-linear models) can cause
heteroskedasticity. [See Hendry (1995), Kennedy (2003), JB Ramsay (1969),

Joachim Zietz (2001) and Gujarati (2004, Ch 11, p. 391) for details]. )

1.2: OLS METHOD UNDER HETEROSKEDASTICITY

&

ﬁ;()'rdinary Least Square (OLS) method is most often used to get the parameter
estima_tés in the linear regression model. When errors in the regression model are
1

b - . . . . .
heteroskedastic, then Ordinary Least Squares estimates of the linear parameters remain

unbiased and consistent but are no longer efficient.

The customary estimate of covariance matrix éstimator of the OLS parameters
|
becomes biased and inconsistent. This means that when heteroskedasticity is overlooked,

the inferences in the regression model are no longer reliable.

Most of the econometricians and statisticians while performing the anaiysis,
report the t-stats using thé wrong standard errors, i.e. 'OLS standard errors which assume

I’» - - i . - Lo 3 . 1
homoscedasticity. Use of heteroskedasticity consistent standard errors can change results

13
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in the sense that significance of the regressors change, i.c. significant regressors might

appear insignificant and vice-versa.

1.3: METHODS OF HETEROSKEDASTICITY CORRECTIONS

In the literature three main methods are used to handle the problem of heteroskedasticity.

The first, which is more commonly used, is to test the regression errors for
heteroskedasticity. If the test does not reject the null hypothesis of homoscedasticity, then
OLS analysis is used. Otherwise suitable adjustments for hetéroskedasticity are made by

transfai'ming the data, in log forms, etc. This method is known as Pre-testing.

* The second method is to use HCCME — heteroskedasticity corrected covariance
matrix. estimators. These estimators were first proposed by Eicker (1963, 1967) and

introduced by White (1980) into the econometric literature.

A third method, inti(zduced by Newey and West ( 1987), extends this methodology
to correct standa;dprrors for both heteroskedasticity and potential autocorrelation, called
heteroskedasticity and autocorrelation consistent (HAC) estimator. For the purpose of
this thesis, we consider the simplest case, where heteroskedasticity is the only

misspecification. This simplicity makes analytic derivations possible. The case of

dynamic models would add substantial analytical coniplications, and is not treated here.

o

14
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There are many reasons to suspect that the second method is superior to the first.
Many simulation studies including Mackinnon & White (1985), Cribari-Neto & Zarkos
(1999) and Cribari-Neto et al. (2007) support this conclusion, and show that it is better to

use HCCMEs rather than do-a pre-test for heteroskedasticity.

1.4: Evaluation of HCCMEs: Simulation versus Analytics

 Since heteroskedasticity corrections are relatively easy to implement, and provide
for more robust inference, there is general agréement with the idea that we should use

3
HCCMEs.

k
A quote from Wooldridge (2000, pg. 249):

“In the last two decades, econometricians have learned to adjust standard errors,
t, F and LM statistics so that they are valid in the presence of heteroskedasticity of
unknown form. This is very convenient because it means we can report new statistics that

work, regardless of the kind of heteroskedasticity present in the population”.

However, a number of practical obstacles have hindered widespread adoption of
HCCMEs. The initial proposals of Eicker and White were found to have rather large
small sample biases, usually downward, which results in wrong inferences in linear
regreszfon models (See, e.g., Bera et al., 2002; Chesher and Jewiﬁ,! 1987; Cribari-Neto et

al., 2006? Cribari-Neto and Zarkos, 2001; Furno, 1997). But when sample size increases,
F

15
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the bias shrinks which makes White estimator a consistent one. Numerous alternatives
have been proposed to reduce bias, but no clear cut winner has emerged. The presence of
a large number of alternative HCCMEs with widely differing srhall sample properties and

competing claims to superiority leaves the practitioner without guidance as to what to do.

A major problem in evaluating the performance of the HCCMEs is the complexity
of the analytic formulae required for their evaluation. Chesher and Jewitt (1987) made
some ;ir’qgress in this direction by deriving analytic formulae for the exact small sample
bias of some important HCCMEs. Cribari-Neto (2000) and Cribari-Neto (2004) have
provided some asymptotic analytic evaluations of biases. The -extreme complexity of

these formulae has hindered analytic comparisons of different HCCMEs.

Since analytics have not been possible; many simulation studies of the relative
performance of the different HCCME’s have been made. Simulation studies suffer‘from a
serious defect in this aréa — the performance of the HCCME'’s is directly dependent both
on the sequence of regressors and on the heteroskedastic sequence. This is an extremely
high dimensional space of which only a miniscule portion can be explored via’
simulations. It stands to reason that each HCCME will have its regions of strengths and
weaknesses within this parameter space. If so, choosing the regressors and
heteroskedastic alternative in different ways will lead to conflicting evaluations. This
appears to be reflected in the simulation studies which arrive at differing conclusions

regarding the relative strengths of the different HCCME’s.
¢

£
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The only solution to the problems with HCCMEs is to evaluate them analytically,
which is what we undertake in this study. Because of the complexity of the algebra, we
restrict our attention to the case of a single regréssor. The extension of results to multiple
regression models is also provided at the end, but this involves significant additional

complications. Thus it is useful to set out the basic methodology in the simpler context of

a single regressor model.

1.5: ORGANISATION OF THE STUDY

3
Rest of the thesis is organized as follows:
Chapter 2 gives literature review. The first section of this chapter provides an
introduction to heteroskedasticity corrections. The second section includes the discussion
of the usual estimator of the OLS covariance matrix which we label heteroskedasticity-
unadjusted covariance matrix estimator (HUCME). Section 3 of the same chapter
provides the discussion of heteroskedasticity consistent covariance matrix. estimators
(HCCMES). Here we included only those estimators which were compared in this study
while the details of all other estimators are provided briefly in the appendix for interested

. E . . . . .
readers. The last section of chapter 2 discusses some issues regarding comparison of

;
- §

HCCME:s and also presents a critique of existing studies.

17



Chapter 3 discusses the main heteroskedastic regression model used throughout the study
and the related issues regarging consistency of the HUCME. The model considered in the

thesis is one regressor case to lay the basis for more complex analysis later.

Chapter 4 provides the analytical apparatus which permits us to introduce and derive a
new minimax estimator that has substantially smaller bias than the standard Eicker-

White. The minimax properties of the same are discussed as well.

Chapter 5 presents results for the bias of general estimator which takes HCO, HC1, HC2
and HC3 as its special cases and analytically provides their finite samples as well as

asymptotic bias.

Chapter 6 includes results regarding maximum bias of all HCCMEs. The bias formulae
sir'nplﬁ“y substantially for the case of symmetric regressors, so this is treated separately
from the case of asy’mmetri};: regressors. The chapter concludes with a comparison of the
HCCMEs based on the maximum bias. The last section of the same chapter extends the

= - . - -'-.E
simple regression model to multiple regressors’ case and related issues are discussed.
Chapter 7 provides the conclusion and further recommendations.

At the end, an appendix is provided, which includes the discussion of all other estimators

which have not been taken into account in our thesis for interested readers.

18
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Chapter2:  LITERATURE REVIEW

2.1: INTRODUCTION

¥

T

1t is well known that Ordinary Least Squares (OLS) estimates are inefficient

¢
3 . . . - .
though they remain unbiased and consistent under heteroskedasticity. The covariance
matrix of the OLS estimates becomes inconsistent as well as biased because it is based on _
the assumption that regression errors are homoskedastic. Thus there is a need to get

correct estimates of the covariance matrix of OLS estimates in the presence of

heteroskedasticity to make valid statistical inferences.

The usual methodology to deal with heteroskedasticity, practiced by the
reséarchers and practitioners, is to use OLS estimate of the regression parameters which
is unbiased and consistent but not efficient along with the covariance matrix which is

consistent regardless of whether variances are same or not. This strategy introduces

19



heteroskedasticity consistent covariance matrix estimators, commonly known as

HCCMEs.

¢ There is a large literature on how to get a consistéfit covariance matrix estimator
of OLS estimates of regression parameters under heteroskedasticity. A number of
attempts have been made in this direction, which are the main source of literature

regarding heteroskedasticity corrections.

There are two main approaches being used to find the variance covariance matrix

estimator of OLS estimiates of trué parameters in linear regression model.

& Finding HCCMEs by modifying the original Eicker and White estimator

% b. Finding HCCMEs by employing bootstrap methodology

fWc will discuss only the first approach here which is the focus of the present
study. The detail of second approach is given briefly in the appendix A for the interested

readers.

For more clarity and ease, it is useful to introduce the forthcoming discussion in

the context of a standard heteroskédastic regression model.
Consider a linear regression model, .

EQ: 2-1 y=Xp+e¢
Where, y is the T x 1 vector of dependent variable, X is T x K matrix of regressors, 3 is

the K x 1 matrix of unknown parameters and € is the T x 1 vector of unobservable errors

with Thean zero and covariance matrix, 2. i.e. E(§) = 0 and Cov (¢) = X, where, 2 is a
| 3
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diagonal matrix, i.e. Ezdiag(o'f,oj,---,a%).The regression model in EQ: 2-1 is a

general heteroskedastic model.

For later use, define the OLS estimator of parameter $as, f=(X'X )_1 X'y.Let ‘e’ be

the vector of OLS residuals, defined as, e=y—X /. Then it is easily calculated that the

true covariance matrix of OLS estimator (8) under heteroskedasticity is:
Q=X"X) X'=X(X'X)"

All estimators of the covariance matrix (Q) to be discussed are based on replacing T by

some estimate, ~. We now list the main estimators which We will analyze in our study.
Our m:ain concern is the analysis of four most popular HCCMEs which are mostly used
by the software packages. These include, HCO introduced by Eicker-White (1980), HC1
suggested by Hinkley (1977), HC2 proposed l3y Horn, Horn & Duncan (1975) and finally
HC3 introduced by Mackinnon and White (1985). There dre two more HCCME:s in this
sequence which are concerned with the high-leveraged observations in the design matrix.

We will not discuss them since our focus in this thesis is the balanced regressors case;

where there are no outliers in the design matrix [See EQ: 5-19 for details].

- - b .
We discuss each of the above mentioned estimators briefly in the following subsections.
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2.2: HUCME

Recall that g = (X 'X )_1 X'y and that the OLS residuals are e=y—- X/ . The usual

OLS estimate of regression error variance is:- s> =

T-K

The simplest estimator of Q ignores heteroskedasticity and estimates 2. by io, =51

. We will call this the HUCME: Heteroskedasticity Unadjusted Covariance Matrix

Estimator. Then the usual estimator of Q simplifies to:

Qois =5 (X' X)™

s . .
This estimator of the covariance matrix is inconsistent (See Theorem 0-1 for details).

This means that confidence intervals based on it will be wrong, even in very large

samples. Consequently, we will make wrong decisions regarding the significance or

otherwise of the regressors.

2.3: * HCCMEs

To resolve the problem of the inconsistency of the HUCME, a large number of

=

heteroskedasticity-consistent covariance matrix estimators (HCCMEs) have been

introduced in the literature. The first of these is the Eicker-White (HCO) estimator. We
22



will also discuss three other estimators below. These estimators have an algebraic
structure, which permits analytic analysis by our methods. There are many other
estimators which cannot be analyzed so easily; some of these alternatives are discussed in
Appenziix A for the sake of completeness. The sections below will introduce and discuss

estimators we plan to analyze in this thesis.

2.3.1: EICKER-WHITE (HCO) ESTIMATOR

Literature of heteroskedasticity consistent covariance matrix estimators begins
with Jt;he influential paper by Eicker (1963, 1967), who introduced the first
heterog]fedasticity-cf‘insistent covariance matrix estimator (HCCME) -in statistics
literature. This estimator consistently estimates the covariance matrix of OLS estimator in
the presence of arbitrary heteroskedasticity in error variances. His estimator was
generalized by White (1980) to cover mardy types of dynamic models” used by
cconometricians. We will call it the Eicker-White (EW) throughout this study to
acknowledge the priority of Eicker who was the first to introduce this idea. The novelty
of Eicker-White lies in the .possibility of finding a consistent estimator for the OLS
covariance matrix even though the heteroskedastic error variances cannot themselves be
consisttently estimated, and form an infinite dimensional nuisance parameter. EW

: .

estimator has been labeled HCO in the literature and is consistent under both

homoskedasticity and heteroskedasticity of unknown form. This estimator is commonly
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used to construct quasi-t statistics and asymptotic normal critical values. The quasi-t
statistic based on this estimator displays a tendency to over reject the null hypothesis
when it is true; i.e. these tests are typically too liberal in finite samples. [See Cribari-Neto

& Zarkos (2004), Cribari-Neto et al. (2007)].

The main idea of the Eicker-White estimator is to replace the unknown variances by the
squares of the OLS residuals. i.c., Eicker-White estimator (HCO) estimates the unknown
Y. by 3, where, it replaces the unknown variances in Y, by the OLS squared residuals.
Thus estimated covariance matrix has the form,
Quco = (X' XY {(X'E, o XNX ' X)!
|

. & . 1 2 2
Where', EHCO = dlag(el 5€35°7 7 e'f)

Here, €*'s are the squares of the OLS residuals, e=y—~X j-.

Using the OLS squared residuals to estimate the unknown variances was a good
starting point and opens a new area of research for the researchers. Since Eicker, many
alternatives have beén proposed in the literature. Of these, the ones analyzed in this thesis

are discussed below.

2.3.2¢  HINKLEY (HC1) ESTIMATOR
Since the average of the OLS squared residual is a biased estimate of the true
variances, Hinkley proposed an-alternative to Eicker’s estimator in 1977. Instead of
: 24
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dividing by “T", Hinkley’s estimator, known as HC1, divides by (T-K). Hence the degree

of freedom adjustment done by Hinkley gave another heteroskedasticity Consistent
r

estimator which should be superior to HCO.

Hinkley estimator can be written as: Quer = (X' X)™ (X 'S, X)X X)™!

- T . (5
Where, ZHCI = T—_{-{—dzag(e, ), = l, 2,...,T

2.3.3: HORN, HORN AND DUNCAN (HC2) ESTIMATOR

3

$Horn, Horn and Duncan (1975) proposed another alternative to Eicker’s
estimator. They suggested that under homoskedasticity, the ratio of expected value of

OLS squared residuals and the'discouriting term is equal to true variance. The discounting
term is (1-hy), where hy is the t™ entry of the Hat matrix, H=X(X'X )'X'. Their

estimator is known as HC2 in the literature. To motivate the HC2, we proceed as follows:
lete=y—-X ﬁ be the OLS residual vector.

Note that we can write ‘¢’ as e = My = Mg, where M =1—-H

Consiger Cov(e)=Cov(Ms)= MCov(s)M' =MIM'=(I-H)Z(I-H)'
3

Since;M=I-H is symmetric, S0, Cov(e)=(/-H)E(I-H)
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Note that the above is the covariance matrix in case of Heteroskedasticity.

But in case of homoscedasticity, i.e, = =ag*7
Cov(e) =g’ (I -H ) Here we made use of the fact that M is idempotent, i.e. M?=M.
Hence in case of homoscedasticity,

Var(e,) = E(e,2)=(1—’h,,)cr,2 :

I-h

-

-2
This can be written as E ( & )= o’

€

W
From above expression, we can see that is an unbiased estimator of true variances

Ty

in case of homoscedasticity. This property need not hold under heteroskedasticity; that is

L 3 A

why, Homn, Horn and Duncan called it a ‘nearly’ unbiased estimator. Dividing OLS
squared residuals by the corresponding entries of the discounting term, (1-hy), gives the

Horn, Horm and Duncan HCCME (HC2) which is an unbiaséd estimator under

homoskedasticity.

HC?2 estimate of the covariance matrix is:

Qucz = (X' X) (XL, XX XY™

2
Where, Zhea =diag(1 e'h J, t=12,...T

i
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2.3.4"" MACKINNON AND WHITE (HC3) ESTIMATOR

The fourth éstimator was suggested by Mackinnon and White (HC3). Their

objective was to improve HC2 by (iividing each of the squared residual by the square of

the discounting term, (l—h“), t=12,..,T, where, hy is the t-th entry of the Hat matrix,

H H=X(x'Xx)"X"
HC3 estimator is given by:
Qies = (X' X) (X 'S0, X)X X))

Where,

:

-

A 32
Loy =diag| — , t=12,...,T

(j_htr)2

Dividing by the (1-hy) leads to over-correcting the OLS residuals, but if the regression
model is heteroskedastic, observations with large variances will tend to influence the
estimates heavily, and they will therefore tend to have residuals that are too small. Thus
this estimator may be attractive if large variances are associated with large values of hy.
HC3 i;:iiro‘ved to be a close approximation to Jackknife estimator {See Efron, 1979] by

;
Mackinnon and White (1985).
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2.3.5: SOME ESTIMATORS NOT EVALUATED

Later in 199%, a robust version of HCCMEs was introduced by Furno (1997) and
she showed that smali sample bias can be reduced by following her estimators. These
estimators are also covered in detail in the appendix A of the study. These estimators are
too complex to allow for analytic analysis, and hence we do not consider them in the

présent study.

Cribari-Neto et at. (2000) introduced bias corrected versions of the HCO and then
Cribari-Neto and Galvao (2003) generalized Cribari-Neto et al. (2000) idea to give the
bias corrected versions of HC1, HC2 and HC3 along with HCO. These are also provided

S '

in the: appendix for the interested readers, as they arc not directly relevant with the

present study.

During the last decade the focus of research shifted to the estimators which work
well when the regression design contains high influential observations. This leads to the
development of two new HCCME:s for the high-leveraged regression designs. These are
known as HC4 proposed by Cribari-Neto (2004) and HC5 suggested by Cribari-Neto et .
al. (2007). These are also not covered in the current study since this study deals with the
balanced regtressors. But their detailed versions are provided in the appendix A for the

interested readers.

28
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In our study we are considering only HCO to HC3 based estimators because the
analysis of these four estimators requires substantial analytical work. The analysis of

HC4 and HCS can be covered in a later study.

E H

An altérnative Stream of research is to use bootstrap based methods ‘to find the
covariance matrix of OLS estimator. Efron (1979) proposed this method thé first time,
called naive bootstrap. One of the bootstrapped based estimators is the Jackknife (JA),
(See Appendix A.1.2). Mackinnon & White (1.‘;85) showed that HC3 is a close
approximation to Jackknife (JA). We are evaluating HC3 along with rival estimators
(HCO0,.HC1 and HC2) in the current study, so we can safely say that we are considering
sore of the bootstrapped based estimators. The focus of our study is on developing
analytical methods for evaluations of bias. Most bootstrap estimators are simulation
based Eand hence cannot be evaluated analytically. Therefore they are excluded from this

study.

2.4: . COMPARISON & EVALUATION OF HCCMEs

[ Mackinnon and White (1985) compdted the performance of HCCMEs (HCO,
HC1, HC2 and HC3) using extensive Monte-Carlo simulations, and showed that, Eicker-
White:(HCO) estimator is downward biased in finite samples. The Monte-Carlo results

favored HC3 on the basis of size distortions. Our analytics supports this conclusion,
vt'.

showing that HCO can have very large biases. Later, Chesher & Jewitt (1987) developed

a formula for the bias of the original Eicker-White HCCME (HCO0) and suggested that it

[_ 29
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is always biased downward when regression design contains high leveraged observations.
They also gave expressions for the lower and upper bounds for the proportionite bias of
the HCO estimator. Our formulae are for the simple bias and not the proportional ones. In
addition, Chesher & Jewitt (1987) used the ratio of maximum and minifum variance to
represent the degree of heteroskedasticity but in our case, the minimum variance is zero
and maximum variance is bounded by putting an upper bound on variances (U), so in our
case the ratio of maximum to minimum variance is infinity. Hence our bias formulae are
not di%ectly comparable with the one obtained by Chesher & Jewitt (1987). Further
research is required to compare both results and we leave it open for future researchers.
;brhan (2000) in his PhD Thesis analyti¢ally calculated the bias of Eicker-White
and H'?om, Horn and Duncan estimator, when the regression modé¢l contains only one
regressor and regressors are standardized to have mean zero and variance unity. He also
compared the biases of different HCCMESs (OLS, White, Hinkley’s estimé‘tor, Hom,
Homn & Duncan estimator, Jackknife estimator, Maximum likelihood (ML) estimator,
Bias Corrected estimator, Bootstrap estimator, Pre OLS and the James Stein estimator)
using a number of different criteria (Chi-Square loss, Entropy loss ,Quadratic loss and the

t-loss). He used three real world data sets to do the comparison. His results are conflicting

and are data specific. His main finding is that ML should be preferred.

* Biases of different estimators vary with the configuration of unknown

hetero!'skedasticity. Our analytical formulae permit us to calculate the least favorable

oS
configurations of heteroskedasticity which generate the maximum bias. This allows to

evaluate and rank eStimators on the basis of their worst case biases. Our findings suggest

30
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that HC2 estimator proposed by Horn, Horn and Duncan has least maximum bias as
compared to all other estimators, namely, HCO, HC1 and HC3. Actually the results
provid;ad by Orhan (2000) are data specific, and we know that if we change the design
matrix or the skedastic function, the results get changed. The same thing happened in
Orhan (2000). Our findings suggest that HC2 should be used if we are comparing HCO to
HC3. But since our results did not cover other estimator [Jackknife estimator, Maximum
likelihood (ML) estimator, Bias Corrected estimator, Bootstrap estimator, and the James

~Stein es“tvi?ﬁa'to—f], so we cannot say about their performance compared to HC2.

Cribari-Neto and Zarkos (1999) using Monte-Carlo analysis judged the
performance of HCO to HC3 HCCMESs. Their results favored HC2 estimator when the

evaluation criterion is bias. These findings are consistent with our study.
H

‘Scot Long & Ervin (2000) performed Monte-Carlo simulations by considering a
number of design matrices and the error structures to compare various HCCMEs using
size distortion as the deciding criteria. Their results favored HC3 against its rivals and
they suggested that one should use HC3 when sample size is less than 250. Our findings
suggest that the performance of HC3 is better than HCO but its performance is very poor
as cor‘Ep’ared to HC1 and HC2. Although Long & Ervin (2000) used a number of design
matri§e§ as well as the error structures, but they missed many other combinations of
regressors and the skedastic sequences. So they arrived at the wrong conclusion due to

simuliition based results.
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The finite sample behavior of three alternative estimators (HC1, HC2 and HC3) is
found to be better than that of Eicker-White (HCO) estimator because these estimators
already incorporate small sample corrections. Many simulation studies suggested that
these éstimators are better than HCO, e.g., Mackinnon and White (1985), Davidson and

Mackinnon (1993), Cribari-Neto and Zarkos (1959).Our results indicate the samie.

Since the above studies are based on simulations, and not the analytics, so they
come up with different conclusions regarding the performance of HCCMEs, e.g.
Mackinnon and White (l§>85) stressed to use HC3, Cribari-Neto and Zarkos (1999)
favored HC2, Long and Ervin (2000) suggested HC3, Cribari-Neto (2004) advocated
HC4 and Cribari-Neto et al. (2007) provided some evidence for HCS, all studies use size
distoréon as the deciding criteria. The different conclusions are due to the fact that the
performance of HCCMEs depend on the structure of the design matrix as well as the
skedastic function, and since simulations cannot take into account all the combinations of
regressors and skedastic functions, so the question of comparing HCCMEs is not
answerable using simulations and can be well captured with the help of analytical results,
which we provide in this thesis. Using analytics, we gave exact expressions for the
*maximum positive and negative biases of all HCCMEs; this allows us to find the least
favorable cases for each HCCME. Now if an HCCME is found to perform well in its
worstiperforman’ce region, then surely this will perform better in other areas. So the only

b

way to compare HCCMEs is the analytics and not the simulations. That is why we

proviae analytical results for the comparison.



2.5: OBJECTIVES OF THE STUDY

in this section, we provide the main objectives of the study.

Our goal in this study is to analyticaﬂy investigate the relative performance of four most
popular HCCMEs (HCO, HC1, HC2 and HC3) which are mostly used by’ Software

Packages.

a) To do the comparism}, we developed, for the first time_, in literature, the i:;malytical
formulae for the biases of HCCMEs. In particular, we gave exact expressions for
,the maximum positive and negative biases of all HCCMEs
b)}Using the analytical formulae developed, we used Minimax Criteria to evaluate
t the performance of HCCMEs. In particular, we identified the regions of parameter
space which provide the ranges for the worst performance of each HCCME. This
Eallov«'/s to evaluate and rank estimators on the basis of their Worst case biases. If
an HCCME is found to perform well in its worst performance region, then surely
it will perform better in other areas.

c¢) This permits, for the first time, a sharp and unambiguous evaluation of the relative

performance of a large class of widely used HCCMEs.

Our major goal is to provide practitioners and econometricians a clear cut way to be able

to judge the situations where heteroskedasticity corrections can benefit us the most and

‘
3

also which method must be used to do such corrections.
.

|
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Chapter 3:  THE HETEROSKEDASTIC REGRESSION,

MODEL

3.1: Introduction

¥
5

3

In this chapter we present our basic regression model and the related definitions.

The bias of OLS estimate of the variance of error term is derived by re-parameterizing

the linear regression model. In addition, the issue of consistency of OLS estimate of
1 -

varianfc%s of error term has been explained explicitly using analytical formulae for the

bias.

3.2: The Basic Regression Model (Singie Regressor Case)

b

W mas ol
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In this section, we set out the basic model and definitions required to state our
results. We will consider a linear regression model with a single regressor, x, and

t=1,2,...,T observations

EQ: 0-1 Yy, =B +p5x +¢,

Let £=(¢&,&,,"",&)" be the T x 1 vector of errors. We assume that E(g) = 0, but
allow for heteroskedasticity by assuming that Cov(g) =2, where T is a diagonal matrix:
= diag(af,azz,m,ai).Let B=(B,B,) béthe2x 1 vector of regression coefficients.

4
3

’ -
As usual; we can define vector y and matrix of regressors, X, to write the model in matrix

form:
i
£
Y 1 x
1 x
y=l 2 x=l. Pl y=xp+e
Yr 1 x

The OLS estimate of the coefficient g is:
B=(X"X)'X'y.
The covariance matrix of OLS estimates of g is:

. Q:(XrX)—lXuz){(XcX)—l

The main objective of our interest is the estimation of €2y, the variance of the OLS

g . —
estimgtor of fB,. This will determine the significance of the regressor x.
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3.3: ééh’tering the féegressors

Let x = (1/ T)Z;'x‘ be the average of the regressors, as usual. An important issue

which has not received attention in the literature is that estimates of the variance 2,, have
F

different properties if the model is re-parameterized as follows:

EQ: 0-52 yr:ﬂ['+ﬂ2(xt_f)+6}’ Whére’ ﬂl':ﬂl+ﬁ2i—_

Heteroskedasticity corrections are different in model provided in EQ: 0-2, where
the regressors have been centered, from the original model. There are many reasons to
prefer model in EQ: 0-2° over model in EQ: 0-1 when making heteroskedasticity
corrections and this is the approach we will follow throughout this thesis. Recall that the
overall F statistic for the regression evaluates the coefficients of the regtéssors for
significance while removing the constant term from considerations. Exactly in the same
way, it is preferable to assess the significance of the regressor, x,.after removing the
portion of it collinear with the constant term. The second reason for preferring model in
EQ: 5—2 is that the analysis substantially simpler and offers formulae which are much

¥
easier to interpret and understand. The third reason is that the formulae for the covariance
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matrix .are substantially simpler, and correspond to simple intuition about the problem.

This will be discussed in detail later, after we present a formula for £2,,.

Lemma 1: The variance of the OLS estimate ﬁzwith heteroskedasticity is:
T 5 73 —N—T — T —_T
{Z::l g% —xzt;l O-‘zx’} _x {Zfélo-'zx’ —xzt=l (_I'z}
T N 2
MEEE

Proof: Both the derivation and interpretation of this result becomes much simpler if we

EQ: 0-3 Q, =

introdiice an artificial ordered pair of random variables (Z,V) which takes one of the T

possible values (x,,o”) with equal probability (1/T) for each outcome. In terms of these

random variables, the formula for €,, can be written in 2 much more revealing form:

_ Cov(VZ,Z)—Cov(V,Z)EZ

EQ: 0-4 Q, TVar(Z)?

To get to this result, we compute the matrices entering the formula for

Q=(XX) X'EX (Xx)" s follows.

1 EZ EZ* -EZ
XX:T[ \],(X'X)_l=—‘—1—"‘( J7

EZ EZ° TVar(Z)\-EZ 1
EQ: 0-5
EV EVZ
XX =T ,
EVZ EVZ
k-1
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Multiplying  throiigh,  rearranging terms, and  applying the formula

Cov(X,Y)=EXY —(EX)(EY) leads to the following expressions for the etries of the

matrix Q:
EQ: 0-6
Q, = W[Ezz Cov(VZ,Z)-Cov(V, 2*)| - EZ{Cov(VZ®,Z) - Cov(V'Z, 22 }}
EQ: 0-7 0, = W[Cov(r/ Z)EZ*—Cov(VZ,Z)EZ |
X 1 o .
EQ: 0:8 LS N _
(0 Q, Na@y [Cov(VZ,Z)-Cov(V,Z)EZ]

This pfos\‘/es the lemma.®
{

Let W= (Z-EZ)/ JVar(Z_) be the standardization of the random variable Z. The

following lemma shows how the formula for €2,, simplifies in the model with centered

regressors:

Lemma 2: If the regressors have mean 0, so that EZ=0, then

_Cov(VZ,7) _ (EVZ) _ EVW’
27 TVar(Z) TVar(Z) " Tvar(2)

If var;ances, V, and the squared standardized regressors W are uncorrelated, then Q,,,
the quantity we wish to estimate, is proportional to EVW?* = (EV)(E Wz) =EV, or the
k.

average variance. This will be properly estimated by usual OLS basedl estimates

3
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(HUCME) which ignore heteroskédasticity. On the other hand, in model given in EQ:
0-1, this condition does not suffice. In model given in EQ: 0-1, standard estimates are
unbiased only if the sequence of variances is uncorrelated BOTH with ‘X’ and with X7,

(See Theorem 0-2 below).

The more stringent condition is needed because X is correlated with the constant. This
shows that conditions for consistency of the HCCME are simpler, easier to fulfill and
make more intuitive sense in the model with the centered regressors. This gives us a third
reason to prefer model with centered regressors for making heteroékedasticity

corrections.

3.4: YOrder of Consistency

; White (1980) motivates the introduction of his heteroskedasticity corrected
covar?ance matrix estimates by stating that “It is well known that the pfeS§nce of
heteroskedasticity ... leads to inconsistent covariance matrix estimates”. This is true only
after altering the covariance matrix being estimated by rescaling it to have a positive

1
definite limit. It is worthwhile to spell out this technicality.

g Note that model given in EQ: 0-1 and EQ: 0-2 coincide when the regressors, x;

have ;ngan 0. We will henceforth work with model in EQ: 0-1 under this assumption,

)

whicl_: is equivalent to assuming that EZ=0.
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With heteroskedasticity, the variance of the OLS estimate [3’2 with centered regressors is
Qpr =(EYW?)/ (TVar(Z)) from Lemma 2. Both V and W’ are strictly positive
sequences. Under reasonable assumptions on the sequence of regressors and variances

(e.g. both are stationary, or ergodic) both EVW? and Var(Z ) will have finite non-zero

asymptotic values. Thus Q,, , will decline to zero. On first blush, a reasonable definition

for consistency for a sequence of estimators f)zz,T would appear to be:

plim (ézz,r —{r ) =0

T

Here plim is the probability limit, the standard weak convergence concept used for
¥

defining consistency. However, with this definition, the usual estimator of OLS

covariance (see EQ: 0-11) is consistent, even though it does not take heteroskedasticity

into account. Both the estimator and the quantity being estimated converge to zero, and

so the limiting difference is zero. This does not appear to be a satisfactory definition

because any sequence converging to zeroais consistent, even if it has nothing to do with

the problem at hand. The f::)llowing definition from Akahira and Takeuchi (1981) takes

care of the problem.

Definition: A sequence of estimates of Q,,, is k-th order consistent if

EQ: 0-9 plim7* (O = Q7 ) =0
b T ’
§
i

3
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Then we can easily check that the usual HUCME for OLS is zero-order consistent but not
first order consistent. Without explicit mention, the literature on the topic adopts first
order consistency as the right definition of consistency. For example, Theorem 3 of
White (1980) rescales the covariance matrix so that it is asymptotically positive definite,
so as to show inconsistency of the usual estimates. With this refined notion of
consistency, it is possible to characterize conditions for consistency of the HUCME in

standard regression models as follows.
H

Theorem 0-1: In the model of EQ: 6-2, after centering the regressor, the HUCME
based ,variance estimate Q%LS of €, which ignores heteroskedasticity is k-th order

consistent if and only if

\/\{arv(V)(EWJ' -1)

Var (Z)

0

EQ: 0-10 }im ™! Corr (V, w? )

Proof: Let [}z(X 'X )_IX 'y be the OLS estimates and e=y—-X i bcj the OLS

5

residuals. Then the stancfard HUCME of the OLS estimates is:

OLS

_ 2 . )
Q '=,0'2 (X 'X ) l,where o =e'e/(T —2) With centered regressors, the (2,2) entry of

the (X*X)"! matrix is [T Var(Z)] . It follows that the (2,2) entry of the HUCME is:
3

" B o o

41



* 2t B ' T

(/A

EQ:0-11  Qn =e'ef[T(T-2)Var(Z)]

So, the bias of HUCME for the variance of ,@2 is:

. ~OLS - OLS 1 1 2
EQ: 0-12 B =E|Qn |-Q,, = ] = Ee'e— EVW
2 T TVarZ)\T -2

Note that EVW? = Cov(V,W?)+(EVYEW?) = Cov(V,W*)+EV .

Substituting into the prévious expression yields:

5 2
EQ: 0-13 BYP = I ( ! Ee'e—EV]—M
TVar(Z)\ T -2 TVar(Z)

To evaluate the bias, we need to calculate Ee'e, which is done below:

Lemma 3: The expected value of the sum of squared residuals is:

, 1 s
Ee'e=Y | o? —-%—Z;(l-%wf)crf =(T-1)EV - EVW®
Proof: Let H =X(X'X)' X", It follows that

E(e'e)=E{u(s (I-H)s)} =k ((I- H)ss )=tr(I~H)Z

¢
Substituting the values 4, = ?V;i(—zj(EZZ + xf) = %{1 + Vaﬁ x,z) = —71:(1 +w} )

and ¥ = diag (af ),i =1,2,...,T leads to the lemma.m
g

3
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It follows that
(Ee'e/[T-21)— EV =(EV — EvW?) (T —2) =~Cov(V ,W*)/(T -2)

Substituting into EQ: 0-13, we get:

Cov(V,w?
EQ:0-14 B —_ ( )(Tl 2+1)

\ TVar(Z) \T-
172
Note that, Corr(V,WZ)= GOV(V’W ) f
JVar (v) Var (#?)
AlSO,i—?Var(Wz) = EW* -1, ( EW? = 1) -
5 "

.
So, we have;

EQ:0:15  BYS =

R GG el G TR

TVar(Z)

We can write it as,

EQ: 0-16 T

Bgm=_\/\Tar(V)(EW"“—_l)Corr(V,Wz)[ 1 +1)

Var(Z) T-2

Taking limit as ‘T’ approaches infinity on both sides of EQ: 0-16, leads to required

result.m
{

A3

{
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Remark 1: When V and X are not correlated, then V and W2 are also not cbrrelated. Tt

follows thatCov(V,Wz) = EVW? —-(EV)(EWZ) =0. In this case, from Lemma 2 above,

we see that

EVW® _(EVXEW?) __EV

EQ:0-17 Q= : =
0 2 rvar(Z) TVar(Z) TVar(Z)

This is exactly the expression for the variance as occurs in the case of homoslgedasticity
when each o] is replaced by the average value EV of all the variances. This means that
when V and W? are uncorrelated, this model is equivalent to a’homoskedastic model for
the purpose of estimating variance of f,. This is why the usual variance estimate which

ignores Heteroskedasticity succeeds under this condition.

L 2

Remark 2: The leading case is where both the heteroskedastic sequence of variances and
the sequence of regressors is stationary. In this case, a necessary and sufficient condition
for first order consistency of the HUCME is that the correlation between the variances
and the squared regressors is asymptotically zero. Higher order consistency requires this
correlation to go to zero at a suitably fast rate. However, if the regressors are non-
stationary and/or have a deterministic trénd, Var(Z) can go to infinity and result in
co'nsisg’téncy of the HUCME even when variances are correlated with squared ;;egressdrs.
This (Eonsistency can be offset if Var(V) (which is a measure of, heteroskedasticity)
increa:ses to infinity, and/or EW*(which measures the Kurtosis of the regressors)

increases to infinity. If the product of these two factors also goes to infinity sufficiently

fast, HUCME will again be inconsistent.
¢
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Remark 3: A more complex condition for higher order consistency of OLS obtains in the
original model, without centering the regressors. Essentially, this requires correlation
between the heteroskedastic variance sequence and both ‘X’ and X* to go to zero. The

required condition is provided in the following theorem:

Theorem 0-2: Higher order consistency of OLS in original model (EQ: 0-1), without

centered regressors, is given by:

EQ: 0-18
i i LN ) com (2. [ pr By cori(7.7) |
T {Var (z )}

Proof: A direct and intuitive way to prove the theorem is to replace w in EQ: 0-14 by:

Wz(%Z—EZ)/JVar(Z)

Note that, EQ: 0-14 can be written as,

OLS =
Bzz -

((EWZ)(EV)—EWZV)( 1 “J

TVar(Z) 7-2

Replacing the value of W, leads to:

OLS
Bzz -

z@Z){E.ZV-(EZ)(EV)}—{Ezzv—.(EZ?NEV)}( L)
T{Var(z)}’ r-2

Writing in terms of covariance form, we get:

OLS 1
22

2(EZ)C‘ov(Z,V)"C0V(ZZ’V)( I +1)
T{Var(2)}’ T-2

Mﬁwulmq-”f‘
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Now converting covariances into correlations, we have:

EQ: 0-19

OLS __

22

T{va(2)}’

We can write it as:

EQ: 0-20

2(EZ) Jvar (Z)Var (V)Corr(Z,V) - \/Vqr (z2 Jvar (V)E'orr (z,7)

_ 2(EZ)JVar;;(:‘JZ);/ar(V)Corr(Z,V)—\/Var (rzz)Vé‘rv(V)Cgrr(Zz,V) ( 1
T

TB) =

2

{var(2)}

Taking limit as T’ approaches infinity on both sides leads to required result. m
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Chapter 4: A MINIMAX ESTIMATOR

4.1: Introduction

EW (HCO) estimator and Hinkley (HC1) estimator pre-multiplies OLS squared
residuals by 1’ and ‘T/(T-2) respectively. In order to evaluate these, it is convenient to
introduce a class of estimators which multiplies the squared residuals by some constant.
This class includes both HCO and HC1. We show that the maximum bias of this class of
estimators can be evaluated analytically. This permits us to fmd a best estimator within
this class. The Minimax estimator is the one which minimizes the maximum bias. We
comptite this estimator and show that it has substantially smaller bias compared to both

HCO0 and HC1.
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4.2: Bias of EW-type Estimates

We will now derive analytical expressions for the bids of a class of estimators which
includes the Eicker-White, as well as the Hinkl€y bias-corrected version of the HCCME.

Consider estimators of true covariance matrix having the form:

EQ: 4-1 ) = (X' X)X '(2) X (X' X)
Where, a is any positive scalar, and 3 = diag(ef,---,eﬁ) with e?is the square of the t-th
OLS residual. Note that if @ =1, we have EW estimator of true covariance matrix and if

o= I , we have Hinkley’s (1977) estimator of the same. In this section, we provide
1

analytical expressions for the bias of f)zz(a), the variance of Bz under

L

heteroskedasticity.

As before, it is convenient to work with the artificial random variable (V, Z) which takes
each of the ‘T’ possible values (of,x,jfor t=1,2,---,T with equal probability 1/7. We

assume that the regressors have been centered, so that EZ=0 and EZ*=Var(Z).

Standardize ‘Z° by introducing W=2Z/ ‘fVar (Z), and note that EW=0 and
Var (ffV) = EW? =1. According to Lemma 3, the true variance of the OLS estimate B,

of the slope parameter 3, is given by:
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EW’Y

EQ: 4- = —_—
Q- 4-2 R T(Var(Z))

The HCCME of the variance of slope parameter is:

. ~ [0 4 T
EQ: 4-3 Q. (@) = ————) we’
¢ 2 (%) T*Var(Z)Z '

The following theorem gives the bias of this HCCME.

Theorem 4-1: The bias B,,(a) = Efz;,2 (@)—€,, of the HCCME for the variance of slope

1
parameter is:

EQ: 4-4
1 L 2
B = vy ool (W Y+ {T (=) + B <2}l =200 o}

1=

Proof: From the expressions for f)zz and ,, given earlier [See EQ: 4-2 and EQ: 4-3],

we get,

~

EQ_ 4-5 B, =EQ,,-Q, = TzVar(Z Zw [aE( ) :l

Before proceeding, we need E (e,z), which is given by following lémma:
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Lemma 4: With centered regressors, the expected value of OLS squared residuals is
given by:

EQ: 46 E(e})=0’+ %[EV —207 —2w}G; + 2w, EWV + W EWV |

Proof: The OLS residuals aree = y— X3 = (I — H)s, where, H=X(X'X)" X' is the

‘hat matrix’ as before. Using the standardized regressors w, =x, /Var(Z), we can

calculate the (i, /) entry of H to be:

1 1 | 1
Hy. :W(Z)(E22+x,xj):¥(l+ Var(Z) x,xj]=5(l+w,w})

' T T

Now note that ¢, =¢,— > h.e =(1-h, )& - D hs;.
¥ — —
=1 =1

J#t

Since E e=0, and the ¢’s are indépeﬁdent, the variance of ‘e’ is the sum of the variances.

This can be explicitly calculated as follows:

T T
E(e})=(-hY o+ Y ho,=(1-2h)3; +D Ko,
J=lj j=t

2
_ 2 2 2 L1 2
_[1_?(1”, ))0', +§(T(1+W,WJ)J .
From this it follows that:

H)- o1t it v o)
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This is easily translated into the expression given in the Lemma.m

Substituting the expression of the

Lemma 4 in EQ: 4-5 above, and noting that EW’ V=(1/T )Zw,’of leads to the

expression given in Theorem.m

4.3: Maximum Bias

Having analytical expressions for the bias allow us to calculate the configuration of
variancés which leads to the maximum bias. In this section we characterize this least

kA B . o« -
favorable form of heteroskedasticity, and the associated maximum bias. We first re-write

»

-2

the expression for bias in a form that permits easy calculations of the required maxima.

Define polynomial p( 1) as

EQ:47  p(N=a+(22EW*)A+(T(a—1)+a(EW* -2))2" - 204"

From the expression for bias given in Theorem of the previous section, we find that

~ o 1 T
EQ: 4:8 B, =— 2
0: 48 2 = PVar(Z) 2em POV
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If the variances are unconstrained, then the bias can be arbitrarily large, so we
assume some upper bound on the variances: V¢:o” <U. Under this assumption, wé
proceed to derive the largest possible second order bias for the class of EW-type
estimators under consideration. Since the expregéiOn' is not symmetric, and the maximum
positive bias may differ from the maximum negative bias, we give expressions for both in

our preliminary result below.

Theorem 4-2: Let B* and B~ be the maximum possible positive and negative biases 'of

the EW-type estimators fln () defined in %Q: 4-1 above. These are given by:

¥

; + . 1 r
EQ: 4-9 B =max B, = VD) >, max(p(w), 0

EQ:4-10 B =minB, =_3_1_
s 2 T*Var(Z)

> min{ p(w,), 00

Proof: Note that, maximum positive and negative biases can be found by maximizing

and minimizing the same with respect to variances, i.¢.,

B = max B, :—(;l—max i(P(Wg)O',Z)

Yoo 1 L

T =minB, =y min 3 (P00
-

i

¥
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Where, p(w,) :a+(2aEW3)w, +(T(0('—1)+0((EW4 —2))w,2 20w,

T
In order to maximize Z( p(w, )O',Z)With respect to variances (o7 )
=1

ie, max ) (p(w)o; ).
=1

4 i

~

Note that, we have to maximize a sum of linear functions. Each term in the siim can be

maximized separately with respect to variances (o2). i.¢. max ( p(w,)crf).

. 2 - . Uk . 2 .
Since, Vt:0, <U, so to maximize a linear function, we have to set variances (0, ) to its

. L - . 5 . . - “ . . . . .
maximum possible value ‘U’ when the coefficient is positive, and its minimum posstble
J . . - . - N
value ‘10’ when the coefficient is negative. Since, we have sum of such terms, so
maximizing each term separately leads to:
E

! !

+ T
B B gy ™ (000K

This is the required result.

A similar analysis can be done to get minimum bias, which is also the maximum
negfltive bias. We replace 0'3 by the maximizing value ‘U, if the coefficient i$ negative
and by minimizing value ‘0’ when the coefficient is positive: This leads to the following

equation for maximum negative bias:

> min(p(w,), 00

IR = n}ln B22 = T,l—_
{ ol T"Var(Z)

. .
This proves the theorem. &
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We now try to obtain more explicit characterizations of these maxima and
minima. It turns out that the case where the regressors are normally distributed offers

significant simplifications in analytic expressions, so we first consider this case.

4.3.1) Maximum Bias with Normal Regressors

Under the assumption that theé regressors x are i.i.d. normal, we derive analytical

formulae for the approximate large sample maximum bias B'= max (B”,—'B‘). In large
§> -
sample's, the skewness EW® should be approximately zero, while the kurtosis, Ew?

should be approximately 3.
Making these asymptotic approximations, the polynomial p( 1) simplifies to:

EQ: 4-11 p(/l)=a+(T(a-1)+a)i2—2aA‘

T . iy
In large samples, reasonable HCCME’s will havea =1, so it is convenient to re-
parameterize by setting a =1+a/7T, where ‘a’ is a positive constant. Evaluation of the
expreslsions for bias requires separating values of w for which p(w)>0 from those for

i
which p(w)<0. This is easily done since p(w) is a quadratic in w2,
1
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Lemma 5: p(w)>0 if and only if -Vr < w <+, where r is the unique positive root of the

quadratic p(w?). In large samples, this root is:

’“ 2
EQ:4-12 r=1+a+ 8+(lﬂ-a)

4

Proof: From EQ: 4-11, the quadratic equation in w® is given by:

powy=a+(T(a-1)+a)w - 2aw*
Where, a=1+a/T

So, the quadratic can be written as:

2(1+3)+(1+a+3)w2 —2(1+E]w" =0
T T T

Since this is quadratic in w?, so.its positive root (since r<0 is not possible) can be written

as:

Taking limit as “T” approaches infinity, leads to required result.m
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This permits a more explicit characterization of the minimum and maximum biases
derived earlier. In' this framework, a=0 corresponds to the Eicker-White éstimator, while

the Hinkley bias correction amounts to setting a=2 (Since, o = T/(T —2) ~1+2/T).

In order to calculate the bias functions explicitly, we need to specify the sequence

of regressors. We first consider the case "of normal regressors, which pérmits certain

simplifications. Other cases are considered later.

The following Theorem givés the relationship between the maximum bias and the
§
parameter ‘a’.

Theorem 4-3: Suppose the regressor sequence is i.i.d. Normal. Let ¢ and @ be the

density and cumulative distribution function of a standard normal random variable. Thén
the maximum positive and negative biases of the estimator €2,, (a) in large samples can

be written as:

EQ:413  B'(a)=2{2r-a+5}r g(\r)+2(a=4)®(r)-a+4

EQ:4-14  -B (a)=2{2r—a+5}r §(Jr)+2(a-4)D(Vr)-2a+8

Remark 1: The maximum bias functions are plotted in Figure 4-1 below. Recall that the
maximum bias is obtained by setting heteroskedasticity to the worst possible
conﬁgﬁfhtion, which makes the bias as large as pos;sibl& Maxfrr;al positive and negative
biases Fequire different configurations of heterosiedasticity, which is why they are

kb
plotted separately. Overall maximum bias is thé¢ maximum of these two functions. The
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¥

point of intersection of these two curves is the place where this maximumi\bias is the
lowest possible — the minimax bias. As shown in Figure 4-1 below, the two maximum
bias functions intersect at a=4, as can easily be verified analytically from the formulae
above (Sée EQ 4-15 below). Note that this minimax bias estimator with a=4 improves
substantially on the Eicker-White estimator with a=0. Figure also gives the positive and
negative biases of HCO, HCI and Minimax estimator in numerical form. Note that at
‘a=0’, the positive bias of HCO is 0.66 while negative bias of the same is 4.66 in absolute
form. Similarly, the positivé and absolute négative biases of HC1 are 1.95 and 3.95
respectively at ‘a=2’ while Minimax estimator has same value (3.67) of positive and

negative biases which occurs at the intersection ‘a=4’.

¥
'Figure 4-1: Positive and Negative Biases of Minimax HCCME

{(Normal Distribution Case)

Positive and Negative Biases of Minimax HCCME by varying

g W

o
4
Bias .
3 === Pos bias
2 -f= -Neg bias
% 1 4
v 0.66
% T H L - 1
-4 -2 0 2 4 6 8
3l 2

Note: Pos and Neg denote positive and négative biases respectively.

57



H
i

Proof: Let I(W >r) bé the indicator function taking values ‘1> and ‘0’ according to

whether or not the indicated inequality holds. The assumption of normality of regressors
means that W can be treated as a random variable with a standard normal distribution.

We have the following large sample approximations for the terms in the pOTynomial

p(w)=a+bw —2ow'

a=1 b=1+a

Maximum positive bias as a function of ‘a’ is given by:

B'(a) ~ P(W? <r)+(1+a)EW* I{W* <r}—2EW* 1{W* <r}

B

3
Where,

P(W2!<r) = P(j| <r)=0(r )-o(=F)
EW UW? <r}= ~2JF¢(J?)+®(JF:)—®(—J?)
EW* 1w <r} :_2r3’2¢(J?)—6J?¢(J?)+3(cD(J?)—<b(-JF,))

These expressions are obtained by evaluating the integrals of the normal dénsity via

?ntegration by parts.
Putting the values of P(W2 < r),lva2 I{W2 < r}, Ew* I{W2 < r} and making use of the

]

fact thét SD(—\/;) =1—<I>(\/;), we get:
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B (a)=2{2r—a+5}r 6(Jr |+ 2(a—4)0(Vr)-a+4

Similarly, maximum negative bias as a function of ‘a’ is:

B@=~P(W* >r)+(1+a) EW? I{W’ > r|-2EW" 1{W* >r}

Where,

P(w? >’r)=P(lW|>«/7)=P(W <~Jr)+P(W > Jr)=1+0(-F)-o(F)

EW U >} =2rg(Vr ) +2[1-0(VF )]

Ew* 1 >r}=[2r3’2¢(ﬁ)+6ﬁ¢(ﬁ)+6(1—m(Jr'))]
b
Again, putting the values of P(W2 >1r),EW2 I{W2 >r},EW" I{W2 >r} and making

use of the fact (D(—x/r:) =1 —tb(\/;), we get:

~B (a)=2{2r-a+5}r g(\r )+ 2(a-4)®(Vr ) -2a+8
This proves the theorem.m

Now solving, B*(a)=-B"(a), we get:
EQ:4-15%Y a=4=3+1=kwrtosis+1

As we will see, the optimal value of ‘a’ depends on the kurtosis of the tegressors, so the

above decomposition clarifies the relation between the kurtosis (which is 3 for standard
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normal) and the minimax value of ‘a’. This also confirms the discussion provided in

Remark 1 in Theorem 4-3. m

In next section, we provide a new minimax bias estimator which minimizes the maximum

bias.

4.4: The Minimax Bias Estimator

Given any particular sequence of regressors (X;), our formulae abové permit
calculation of an optimal value of ‘a’ — the one for which thé maximum bias is the lowest
possible. This may be called the minimax value of ‘a’. The bias functions themselves
depend on the skewness, kurtosis, as well as other characteristics of the sequence of
regressors, as indicative asymptotic calculations for the normal regressor Case in the

previous section show (See Theorem 4-3 above).

To check this for other regressor sequences except normal ones, we generated
several sequence of regressors for a fixed sample size ‘T’ and a fixed value of kurtosis
‘K’ but by varying skewness and calculated maximum and minimum biases. The object
of this'exercise was to evaluate the dependenqy of the minimax value of ‘a’ upon the

regressor sequence. To our surprise the value of minimax ‘a’ came out the same

60



regardless of any value of skewness but it is found to be dependent only on ‘T’ and

kurtosis (K) of the regressors. We now provide some details of these calculations.

We generated several sequence of regressors with matching kurtosis, i.e., first we
generated one random sequence with kurtosis equal to 2 and calculated maximum
positive and negative bias functions-for this sequence of regressors. The mir':imax value
of ‘a’ was calculated by setting these to be equal. Then we changed the sequence of
regressors in such a way that the new sequénce has exactly the same kurtosis, i.¢., 2 and
we again calculated maximum positive and negative bias functions, and the minimax
value of ‘a’. To our surprise, the value of ‘a’ came out exactly the same as was calculated
from the first sequence with matching kurtosis. -To further confirm, we generated several
seque;i:ces with same kurtosis, and found the same minimax value of ‘a’. Along the same
lines, we generated other sequences with kurtosis equal to 3, 4, .... etc. and found that the
minimax value of ‘a’ depends only on kurtosis and saniple size. Also sequences of
regressors with varying degrees of skewness but with matching kurtosis yield the same
results; although the-bias functions were different, the minimax value of ‘a’ remained the

same. .

To save space, we are only providing here results of two samples of sizes 100 and
kurtosis equal to 3. But first sample has skewness measure equal to 0 while the second
sample has skewness equal to ‘1°. For each set up, we calculated the maximum positive
and negative biases of Minimax HCCME by varying ‘a’. Our résults indicate that the
minimax value of ‘a’ is same (a=4.166) for both samples. The details are provided in

Figure 4-2 below.
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The same value of ‘a’ emerged with samples having same kurtosis and sample
sizes. This provides heuristic support for our invariance conjecture, formally stated in
Section 4.4.1: below, that minimax value of ‘a’ depends only on the sample size and

kurtosis of the regressors and actual sequence of regressors does not matter.

| o T VO

o

o WY A

=



| TR W w - o« sy
Figure 4-2: Positive and Negative Biases of Minimax HCCME by Varying 'a' with SS =100 an

S=0. S=1

5.000¢
4.000 \

s 3.000 \ /
@ 2.000 & Pos Bias
\ - Neg Bias

1.000 +
0.000 -

-

Note: K and S denote Kurtosis and Skewness measures respectively, whereas, Pos and Neg denote pos
respectively and SS represents Sample Size.




Due to the complexity of the relation beteén regressors “and the minimax value of ‘a’,
we were unable to establish this result analytically, and hence we leave it as a conjecture

stated below.

4.4.1: AnlInvariance Conjecture

The object of this section is to state a conjectiire about the minimax value of ‘a’ in
the class of estimators defined in EQ: 4-4 above. We recapitulate the basic definitions to

make this section self-contained.

»

EConsider a régression model ¥, = B, + By, + €, with' E¢, =0,and Var(g,) =07 .

4

1.
Introduce an artificial randorm variable (V,Z) which takes one of T possible values

(c?,x)for t=1,2,---,T with equal probabilities 1/7 . Define standardized regressors
w, = (x;—?c)/ . /Var(z) , where, ¥ =(1/T)Y x,, and Var(Z)=(/T)Y (x,—X)" a3
usual. Let K = %Z; w’ be the kurtosis of the standardized sequence of regressors.

Then the variance of the OLS estimate of S, is €,, explicitly given in EQ: 0-11 earlier.

The class of estimators of this variance under consideration is defined as:

an a i
* Q — 2 2
f‘ 2 (%) T*Var(Z) ;w, &
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Chapter 5: BIASES OF HCCMEs

5.1: Introduction

In order to compare the performances of the other two HCCMESs namely, Hoin,
Horn and Duncan (HC2) estimator and Mackinnon and Whité (HC3) estimator, with that
of Eicker-White (HCO), Hinkley (HC1) and Minimax estimator, we will now calculate
the maximum biases of HC2 and HC3. For our basic model and notations, refer to

Section 3.2: earlier.
The bias of any estimator Q of Qs given by:
EQ: 5-1 Bias(Q) = E(Q) -Q

The following sections dre devoted to get the biases of each of the above

mentioned HCCMESs including OLS estimator.

g o,
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Before deriving expressions for the bias of each HCCME, we introduce a general

estimator which takes each of the existing HCCMEs as a special case of it. The detail of

this general estimator is given in subsequent sections.

5.2: Bias of General Estimator

Consider estimators of true covariance matrix having the form:

EQ: 5-2 fz(4)=(X'X)—.‘X'(i,.)X(X'X)-‘, $ =43, i=0,1,2,3.

;
Where, £ =diag (e}, -, ;) with ¢/ is the square of the t-th OLS residual.

LR

Note that,

A, =1 gives White’s (HC0) estimator

4 = (};-T—z)] gives Hinkley’s (HC1) estimator

A = diag{] ];'1 } gives Horn, Horn & Duncan’s (HC2) estimator

it

A, = diag{ }gives Mackinnon & White’s (HC3) estimator

i

g.

i
(1-‘1’1“)2
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Also note that, 4, =1,V¢, 4, :F?é-,‘v’t and let 4,, = % and 4, = I arcthe

- h“ (1 _ h” )2

(%3] di;gona] entries of A; and Aj respectively and hy is the th entry of Hat matrix,

H=X(X'X)' X'

Note that the above f‘orm of HCCMEs has been taken from Cribari-Neto and Galvao

(2003).

.In this section, we provide analytical expressions for the bias of f)u (4), the

variance'of S, under heteroskedasticity.

As before, it is convenient to work with the artificial random variable (¥;,Z;)

{

which takes each of the ‘T’ possible values (o—f,xr) for t=1,2,--*,7 with equal

probability % We assume that the regressors have been centered, so that £Z, =0 and

EZ} =Var(Z,). Standardize Z, by introducing W, = —==L==, and note that EW, =0

JVar(ZT)
and Var (W, )=EW; =1.

Note that our artificial random variables Ve, Z, and W, depend on sample size

“T’. We introduce EV,, EZ,, EZ:, EW, and EW; to indicate that expectation is being

taken for these random variables at sample size ‘T’. Further note that we will drop the

subscript ‘T’ for convenience in situations where the dependence on “T” is not relevant.
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According to Lemma 2 of Chapter 3:, the true variance of the OLS estimate [3’2

of the slope parameter B, is given by:

’ 2
EQ:5-3  Q,-—V

T(Vvar(Z))
For HCCME:s of the type u%dgr discussion, the variance of the estimate of the slgpe
paraméter is:

T

; 1
EQ: 5-4 QO (A)= ———— S 4 o
Q 22( a) TzVar (Z) ;wr ‘4"91

The foTlowing theorem gives the biases of these HCCME.

Theorer 5-1: The bias B,,(4)= EQD(A,) Q,.,i=0,1,2,3, of the HCCMEs for the

variance of slope parameter is:

~

(v (D) (a)=15] (15 o2 3 S Ju Jo

8]l {gee - 2e e

Remark: Using this expression, we can easily show that under usual assumptions, this

EQ:5-5

bias of all these HCCMEs is of second order. This means that
;E{Tvar(Z)BZZ(/L)}:O’ while, ;ijg{TZVar(Z)Bn(A’)} is non-zeré and

lim {T*Var(Z)B,, (4,)} = e

S
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Proof: From the expressions for €2,, and Q,, given earlier [see EQ: 5-3 and EQ: 5-4],
we get,

EQ: 5-6 Bio(4) = EQp(4) = = (Z Zw,[ E(ef)-o?]

1=

Before proceeding, we need E(e}), which is given by following lemma:

Lemma 6: With centered regressors, the expécted value of OLS squared residuals is

e

given by:

EQ: 5-7 E(el)=o} +%[EV—-20',2 ~2wio? + 2w, EWV + W EWV |

L R P

Proof:‘i_ The OLS residuals aree ‘:’y—Xﬁ =(I-H)e, where, H= X(X'Xj'l X'is the
‘hat matrix’ as before. Using the standardized regressorsw, =x,/ Var(Z), we can

calculate the (i, j)entry of H to be:

1 1 1 1 4
Hij :ﬂ_(z_)(Ezz +x,,xj)=?(I+E(Z—)x,x]j=F(l+wiwj)

T

Nownote that ¢, =¢, —-th g=(1-h,) Zhg i

=1
;#t

c F ) S A .
Since E e=0, and the €’s are independent, the variance of e is the sum of the variances.

L E,
This can be explicitly calculated as follows:
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E(e})=(=h) o} + i R j:(l-zh,,)of+2h,j ol

f=1, j#¢
2 zj ]2 L1 Y
£ =[1—?(1+w, ))0', +§(F(l+w,wj))0'j

From this it follows that:

2 250 2002 Ly Leppay 20, (W)
T T T T T
Re-arranging terms, we get;

E(el)=0! +%[EV —207 —2wa] + 2w EWV + W EWV |

This proves the lemma.m

Now, substituting the expression of the Lemina 6 in EQ: 5-6 above, we get:

T
B, (4) = TZV D) wa[A,,{o’f+%[EV—20’f—2w,2cr,2+2w,EWV+w,2EW2V]}-0,2}

=1

Simplification leads to:

{TZVar(Z)}BZZ(/"?):ZT:WIZAn J +—(EV)Z IZAM—_ZW Avr t _%Zw4Allo-l

+= (EWV ZW*/L, (EW V) wid, Zw}a}
1=1

W=l
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Re-arranging terms, we have:
{T%Var (2)}B,(4) =( EV)( Zu, ,,)+2(EWV)(%§:W,3A”]+%(TZW,A,,o;)
t=1 -f=
T
__IT.(T'Z_I:waf)+(EW2 )( Zw, ") %ZW,A‘,O't IZ:waﬂa,z

Writing in summation form,

(rvar(@)pa(a)-L3 (35 oo v o o

e

+%i|ﬁ{T(An _1)+(%iw:‘4n)"2‘4vr}wr2 _2Airw:‘:lo-12

=
[

This leads to the expression in Theorem 5-1 which completes the proof.m

Now we replace values of A ,(i=0,1,2,3) to get biases of all HCCMEs in an explicit

form. The following subsections explain these results.

]

—
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5.3: Bias of Eicker-White (HC0) Estimator

)
In this: section, we provide results of finite as well as second order asymptotic bias of

HCO.

5.3.1: Finhite Sample Bias of HCO

Theorem 5-2: Finite sample bias of HCO for slope parameter is given by:

EQ: 5-8 B,,(4,) = i?i\_,l_

ar(Z){

EV +2{EW’)EWY +(EW* —2)EW2V—2EW“V}

Remark: Finite sample bias of HCO for slope®parameter can be written in summation

form as follows:

7

EQ: 5-9 Bn(Ao)=W;r(‘—Zj§po(ws)af

Where,

EQ: 5-10 Do (wr‘)=l+2(EW3)wr+(}'5W4—2)wt2—2w,4

Proof: Replacing, i=0,i.e 4 =1, 4, =LVt in EQ: 5-5 above, and making use of the
fact that EW’ =1, we get;

B, (4) 1 i[1+2(EW3)w,+(EW‘—2)wf—2wf]crf.

T TVar (2) 4
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Writing in terms of polynomial, B,, (AO) Z Po(w

Where, p,(w,)=1+2(EW*)w, +(EW* -2)w} —2w!

Changing summation expression to expectations, we get:

1

m{EV+2(EW3)EWV +(EWV* ~2) EWY —25WY)

Bzz(Ao) =

This proves theorem. m 2

5.3.2: Second Order Asyinptotic Bias of HCO

3
i ¢ , T :
tin order to derive second order asymptotic bias, we need to make some

assumptions about the asymptotic behavior of the regressors and variances. [n particular,

we assume the following hmits EXIST:

o <U, Vt, U is some upper bound on variances

lim — Za = lim EV; = EV,

= T T =1

= @ <
EQ: 5-11 | l‘i‘szw =limEW; =EW;,  a<ll

lim — Zwa = lim EW;V, = EW.'V. a<ll

T—)oo o "l
: t-l

« e BT 2 2= . 2= 2
lim Var (Z, ) = lim - le lim EZ; = EZ

Remark: The above limits in EQ: -5-11 exist under weaker condition. Specifically,

N .- Le 3 . .o
powers” of regressors and the sequence of variances and certain cross products are
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required to be Cesaro summable. One important special case where the limits exist is
K ’ -
when the distribution of the random variables V,, W, and Z, converge to some limiting

distribution. In this case, we can uselV_, W, and Z_to denote a random variable with

this limiting distribution, and the notation for limit above is accurate. It is important to
note that the limits assumed above will exist under much weaker conditions. It is

convenient to continue to use the same notation V_, W, and Z_even when the limiting

distribution of random variables do not exist, to .indicate the reauired‘ limits in the

expressions above.

From the above assumptions, it follows that the absolute moments lim £ lWT“’ also exist
To=o

for all @ <10 [See Chung (2001), Theorem 6.4.1, page 166].

Now we are in a position to present the second order asymptotic bias of HCO and

the following théorem provides the same.
B

X , %
Here and when necessary, we will use the notation, ASOB(HCi}, i=0,1,2,3 to
denote the second order asymptotic bias of corresponding HCCMES (namely HCO, HCl,

HC2 and HC3). ie. lim{T°B,, (4)} = ASOB(HCi) , i=0,1,2,3
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Theorem 5-3: Under the assumptions stated in EQ: 5-11 the second order asymptotic

LY

bias of HCO is given by:

I

2
0

EQ: 512 ASOB(HCO)=——{EV, +2(EW.) EW, V., +(EW.: -2)EW2V, - 2EW.V, |

%

Proof: Taking limit as “T” approaches infinity after multiplying both sides of EQ: 5-8 by
T? and noting that limit exists by the assumptions in EQ: 5-11. This leads to required

result.m

5.4: Bias of Hinkley (HC1) Estimator

Here we present results regarding finite samples as well as second order asymptotic bias

of HCI.

5.4.1: Finite Sample Bias of HC1

Theorem 5-4: Finite sample bias of HC1 for slope pafameter is given by:

EQ: 5-13

1 T o ) Y .
B, (4)= TzVar(Z)[T_ZJ(EV+2(EW3)EWV+(EW“)EWZV—2EW“V)

3
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Reinaik: Finite sample bias of HC1 for slope parameter can be written in summation

form as:

EQ: 5-14 BZZ(A,)—T3V (Z)T 2Zp](u)0'

t=1

Where,

EQ: 5-15 )2 (w,)=l+2(EW3)w,+(EW4)w,2—2w4

t

T

Proof: Replacing, i=1, 4, = (

use of EW?=1 s leads to:

T

B,,(4)= (T 2)T3Var ZT:[1+2(EW3)W,+(EW4)wf—2wf]0',2

I=l

-3

T

Writing in terms of polynomial, B,, (A,) = (T 2) 7 V . ax(2) 5 Zpl (w,)o?

Where, p, (w,) :I+2(EW3)W, +(EW4)w,2 —2w}

Changing summation expression to expectations, we get:

B,,(4) = [ r ) 1 {EV+2(EW3)EWV+(EW“)EWV 2EW4V}

T2T2V()

This proves theorem. ®

)I 4, = ( r JVI in £Q: 5-5 above, and making
2 -2
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5.4.2: Second Order Asymptotic Bias of HC1

As before, for second order asymptotic bias, we need to make some assumptions about
the asymptotic behavior of the regressors and variances. Under the same assumptions as
in case of HCO above, (se¢ EQ: 5-1I), the asymptotic bias of HCl i$ given in the

following theorem:

Theotem 5-5: Under the assumptions stated in EQ: 5-11, the second order asymptotic

bias of HC1 is given below:
E

EQ: 516 ASOB(HCI)= L

— {EV,, +2(EW.)EW,V,, +(EW. ) EW2V, - 2EW:Vw'}

Proof: Taking limit as ‘T” approaches infinity on both sides of EQ: 5-13 after multiplying

T . - .
both sides by T* and noting that (T 2) approaches one as ‘T’ approaches infinity. In

addition, assumptions in EQ: 5-11 Zuarantees that limit exists. This proves the theorem.m
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5.5: Bias of Horn, Horn and Duncan (HC2) Estimator

The results of finite"sample bias of HC2 along with second order asymptotic bias of the

same are provided in this section. The following two sub-sections provide their details.

5.5.1: Finite Sample Bias of HC2

Theorem 5-6: Finite sample bias of HC2 for slope parameter is given by:

EQ: 5-17

' i |
B (4) = Tz {EV, +2(EW; ) EW,V, +(EW 1) EWV, — EW;V, + R, |

Where, R;t is the remainder term given in EQ: 5-18 below.

Rematk: We will show later [See Theorem 5-7 below] that the remainder (R1) is small

for large ‘T.

Proof: To get the bias of HC2, take, i=2, 4,, = ﬁ,‘v’t in EQ: 5-5 and simplifying,

it

we get:
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5 1{< W 2{ & w o L wlo?
TVar(Z.): B = L EV.+= L EW V. i
{ ar( T)} zz(Az) T(;(l—h”)) T+T[§(l—h,,)J T T+§(]—h")

1{< w TE wlo?
—TEWV+— L EW2 —
T(g(l—h")J Z ) T,,(I )
Note that, we can write,
L h R =1+hﬂ+h§(;J
=Ny Ty

Replacing this in above expression, we get:

¥

{r’ Var{(z ) By (4,)= [}:w JEV += (iw?)EWV —TEW2V,
St (o2t S o

=1 =1

(Z 3 ,]EWV +Z WO (Z ., ,JEWV - Zh,,w,cr,

=1 t=}

hz 12 2 .I‘f !3 ¢ tt f l
e J[ 0 5
2 -2 4 2%

h24 T
+?(21h} ”_; glh’

=1 -

Using A, = - (1 +W ) and A = %(1 +w )2 = %(1+2w,2 +w,4) , and simplifying, we

get:

3

B,, (4;) = [EIZZ {EV, +2(EW})EW,V, +(EW; - I)EWTzVT—EW;V,}+R,T]

i

v
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Where,

‘EQ: 5-18

Ry = ngz ((1+ EW; Y EV, + 2(EW; + EWS ) EW,, + (EW} + EWS —2) EW2Y, |

T

2 4 6
ngz [4EW4V +2(EW;V, )] = 11?22 {%ZT:(W,J;ZW, + W )'JEVT
T

1=1 1- h,,

1 (W +2w) +w] wlol +2wia? + wio?!
" 22;;2 ‘—Z( T eV ) EWV+ 1 ' lz(d: i t )
T'EZZ TS 1-h TEZZ|\ T - -4,

w, +2w +w 7 (w3l 2wio? + wio?
+,lelz(' : )EWTZT : 2lz(f. AW ,f)
T'EZ2|\ TS 1-h I°EZ2| T =%,

i=

1
T*EZ}\ T4 1-h,

2 T (w,a, +2w0' +wlo, )]
¥

This coEnpletes the proof. &

5.5.2: Second Order Asymptotic Bias of HC2

To get an explicit expression for the second order asymptdtic bias of HC2, as
before, we have to make some assumptions about the asymptotic behavior of the

regressors and variances. The assumptions are stated in EQ: 5-11 above.

We also assume throughout that hat matrix, H = X(X'X)™ X'is asymptotically

balanced, i.e.
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EQ: 5-19 hmmax( ) 0

Tow |<1<T

This assumption assumes that all regressors are of similar order of magnitude and that
thére are no extreme outliers.

3
Theorem 5-7: Under the assumptions stated in EQ: 5-11 and EQ: 5-19, the second
order asymptotic bias of HC2 is given below: .

EQ: 5-20

ASOB(HC2)=

EIZé {EVm +2(EW.)EW.Y, +(EW. -1)EWV, ‘—EW:Vw}

Proof: We have established that

T’B,,(4,) = —El?-{EVT +2(EWR)EW,V,+(EW} 1) EW;V, — EWV, |+ Ry

T

Where, Rt is defined in EQ: 5-18 above. To prove the theorem, it is sufficient to show

that lTim(RlT) =0. The limit of the remaining part exists and equals the expression in the

theorem by assumptions in EQ: 5-11.

Note that, we can write Ryt as, er = %( FT) , where Fr is given by:
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m!w,

EQ: 5-21

1 AN
Fr=— (1+EWT“)EV,+E—§7(EW§+EWTS)EW,VT +é(EW; + EW; =2)EW}V,

2
T T T

2 4 3
: Ew;V,—i(waVT)+ : [li(w’ﬂwﬁw’)}EVT

EZ EZ? TEZ2| TS  1-h

+

1=l

2 [1.& (W 2w +w)) 11 (2w )
TEzﬁ(?Z 1-h, EWTVT+TEZ§ ;Z} 1= £

+—| = = =) _

EZ2|\ T4 -4, TEZI| T5 -4,
2 (1 (viat2mter i)

TEZX| T4 1-h,

Under the assumption that the design matrix is balaficed (Sée EQ: 5-19),

i.e. limimax(h,)=0,

Tow 1<<T

L <2.

(4

{1

So for ‘T large enough, A X %,Vr and hence,

. 7 T
Note that we can write — Y < 1 Dwf
T- =1 T =1

1 & w
_le—h

=1 1t

1 T
< —
_Tz

=1

and,

1—

o
Wi
hll

1 &y .
SZFglw, l

Since variances are bounded, i.e. o7 <U,Vt

iiwfc‘f
TS -k

t=1

- wio?
So, we can write, L
I1-h,

E

1L
<=
_TZ

=1

1 (1i(wffflz+2wf0',2+wf0',2)]_ 2 [li(wfaf+2wfo-f+wfaf)

18 . .
SZUF%:'w, |=20U Elwy|.
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This means that each of the terms in the Fy above is separately bounded and is of

order @(1) . Hence the sum of all terms (i.e. F1) is also bounded and is of order O(1),

SO R, = -;-(FT) goes to zero as ‘T’ ap‘p;roaches infinity, as claimed. ®

5.6: Bias of Mackinnon and White (HC3) Estimator

This section presents results of finite sample as well as second order asymptotic

bias of HC3. The details are provided in the following two sub-sections.

5.6.1: Finite Sample Bias of HC3

Theorem 5-8: Finite sample bias of HC3 for slope parameter is given by:

EQ:522  B,(4)= W{EVT +2(EW;} ) EW,V, +(EW,‘")EWT2VT +R2T}

1 4
Where, Ryt is the remainder term given in EQ: 5-23 below.

Remark: We will show later [See Theorem 5-9 below] that the remainder (Ry1) is small

for large ‘T".
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Proof: ""l“o‘ get the bias of HC2, replace i =3, Le. 4, = (—1—7,Vt in EQ: 5-5 above,
1-h

1

and simplifying, we get:

T 3

{TzVar(Zr)}Bzz(As)z%(zr: A z)EVT.;..]%{Z Wi )E w7, i w0'

=1 (1 - h,,) =1 (1 —h, )2 =1 )
T

& o 2& wo! 2 wla?
—TEWV+ EWV, — :
[,Z_x:(l— )ZJ n T}_;(l h,,) T;}-::‘(l h)

§

Note that,
—1—7=1+2h,, +3h7 +4h) +5h) + ... |
(l_hn) |
N v |
143h 4302 L. .
l—h.“ (1 ) H

Replacing it in bias expression given above, we get:

£
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The bi?s of this estimator is B,,(a) = Eﬁz-z(a)—sz. This bias depends on the unknown

variance under hetéroskedasticity. Assuming that the variances are bounded, i.e.

k
vt crf:’s U, there is a maximum possible bias which obtains when the heteroskedasticity

has the worst possible corifiguration. For each value of ‘ a ’; we can calculate this worst

possible bias: MB(€(cr))=max ( B',-B" )

¥
(3

Define the Minimax Value of ‘&’ to be the one which minimizes this maximum

bias. This is the best possible value of ¢ @ * in a certain sense.

In terms of these notations, we can state our conjecture.

4

.3 - e _ a
CONJECTURE: The minimax valie of ‘a’ and hence ‘ &’ (because a =1 +?) does not
depend on the exact sequence of regressors but.only on the sample size “T’, and the

kurtosis of the regressors, ‘K’.

Heuristic Proof: This was done by simulations. For each sample size ‘T’, and fixed
value (;f kurtosis ‘K’, we generated random sequences of ‘T’ regressors having kurtosis
‘K’, and numerically computed the minimax value of ‘a’. A heuristic proof of the
conjecture is obtained by showing that this minimax value always comes out the same.
Some of the simulations which support this conjecture have already been reported earlier
(See Section 4.4: abovej. The details of simulation results is provided in the following

table, . where we calculated maximum bias and the optimal value of ‘a’, where both

3

positive and negative bias are equal, for six different samples with matching kurtosis and
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skewness measures. In particular, we fixed kurtosis at ‘3’ and took two values of
skewness, first fixing it to zero and then at one and calculated maximum bias and also
calculated optimal value of ‘a’ for all ‘12” samples (6 samples taking skewness zero and
for remaining six samples skewness is taken as one). The second half of table shows
results with kurtosis measure fixed at ‘4’ while skewness measure taking values zero and

one respectively.

Table 4-1: Maximum Bias with varying skewness with fixed kurtosis at Saniple size
100 for different set of regressors

<,

e e K=3&S=0 | K=3&S=1 | K=4 & S=0 | K=4 & S=1
Samples of Regressors | a* | MB | a* | MB | a* | MB | a* | MB

i 14167 [ 2.080 [ 4.167 | 2.070 | 5.263 | 3.046 | 5.263 | 2.885 |
4167 | 2.012 | 4.167 | 2.131 | 5.263 | 4.166 | 5.263 | 4.095
4.167[2.394 | 4.167 | 1.833 | 5.263 | 4.162 | 5.263 | 3.750
4167 | 2.771 | 4.167 | 1.933 | 5.263 | 3.535 | 5.263 | 2.743
| 14167 [2.137 | 4.167 | 1.837 | 5.263 | 4.166 | 5.263 | 3.358
6 4.167 | 2.256 | 4.167 | 2.070 | 5.263 | 3.391 | 5.263 | 3.358

Note: K and S are Kurtosis and Skewness measures respectively and MB represents the maximum bias.

i
E
. K

D& || -

We can see from the above table that, for ail six samples with randomly chosen
regressors, whether skewness is zero or one but with same kurtosis measure, the optimal

value of ‘a’ is same.

|-
Similar results were obtained for sample sizes 25 and 50 which are not reported to save

space.t
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4.4.2: The Minimax Value of ‘a’

Once we assume that the invariance conjecture is valid, it becomes possible to
compute analytically the minimax value of ‘a’. This is because we now compute the
minimax value for a particular sequence of regressors for which easy analytic calculation
is possible. On the basis of the invariance conjecture, this calculation should be valid
simultaricously for all sequences of regressors with matching f(urtosis and equal sample
size. We use this method to compute analytically (instead of numerically) the optimal

minimax value of ‘a’ in this section.

This is what we do to find the minimax value of ‘a’ in Theorem 4-4 below. Even though
the chosen sequence of regressors is very different from the normal regressors case
solved earlier, identical asymptotic minimax values of ‘a’ emerge, giving further support

to our invariance conjecture.

Theorem 4-4: Assume that the variances are bounded so that V¢:02 <U. For each a

define the maximum bias MB(a)=max B,,(a)-- this is maximum possible bias
o, sU

obtainable by setting the heteroskedastic sequence of variances to the least favorable

configuration. Let K = EW* be the kurtosis of the sequence of regressors. Define

a*
a*=1+?,where,
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K+1

EQ: 4-16 a*_—__ui._
]—?(K-Fl)

Then MB(a')< MB(cx) for all o .

Proof: Assuming that the exact sequence of regressors does not matter, we pick a

particular sequence for which the computations are easy. We can easily calculate the

e

positive and negativé bias functions for the simple regressor seqiience described below.

We choose sample size T and a large constant M [M>1], such that k = T/ (2M ? )

is an integer smallér than T/2.Now consider the sequence of regressors X;,***,X;such that
N=x,==x=-M, x, ==x%,=0, and x_,,="=X% =+M. As before,

letting Z be the random variable such that Z = x, with probability 1/T, we can“easily

check that'EZ=0, EZ2=1, and FZ*=M>. That is Z is centered and standardized and has

kurtosis K = EZ* = M?. Note that we assume M>], this means that we are constraining
the kurtosis to be bounded below by 1; equivalently, we assume Excess Kurtosis (EK) to

be gredter than -2: EK=K-3>-2. Because Z is standardized, W=Z/Std(Z)=Z and the
standardized regressors are just W, =X,. Noting that EW’=0 and that the kurtosis is

EW*=M?, so, we can write the polynomial p(w) in EQ: 4-7 as:

p(w) = a+(T(a—l)+a(M2 —2))w2 —2aw!
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a ,
Note that p(0)=« =l+—17 > 0'for all positive values of ‘a’. Also p(+M)=p(-M) is a

polynomial in M2 with positive root:
3

Noteth’atp(i-M)<0, VYM?>r*>1 and p(ij\;)>0; Vi<M?<rt

First we consider the case where the value of ‘a’ is below M’ +2—#, and T is large.

In this case, it is easily checked from above calculations that p(+M) <0. The maximum

positiv_é and negative bias functions can be calculated as follows:

I =Tk 1 T-2
T*Var(Z) e PO T™Var(Z) T

B TZValr(-Z) (1_ A; )(1 +%Jg

B "—1_{2;17(\4’,)[] +Zf=r-k+1p(w’)U}

X poU

=T3Var(Z)
1 2% 1 pU
™var(2) T Y T TV () a8

= _-__TZV;r(Z) A—/I[Jr—z{[l+%]+(a+(l+a/T)(Mz —2))M2 —2(1+—;-)M“}

E
Simplifying, the above expressions, we get:

R
.
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EQ: 4-17 2T U= (M =1+ 2 (M2 -

Q M {T*Var(Z)} B* [U =(M 1)+T(M 1)

EQ:4-18  -M{T'Var(2Z)} B [U=M"+Q2-a)M* -1 +-aT-(M“ +2M° -1)

Solving M? {TZVar(Z)} B"/Uz’—M2 {TZVar{Z)} B‘/U yields the minimax (optimal)

value of ‘a’ in case of finite samples:

M?+1 K+1
EQ: 4-19 * S
Q a 1

- S
1—-?(M2+1) 1-—(K+1)

This proves that a* minimizes the maximum bias for the range of values of ‘a’ less than
o1 . . . . .

M? +2—F. Note that this range includes a=0 and a=2, so that the minimax estimator

a* dominates Eicker-White and Hinkley in terms of maximum risk. For larger values of

‘a’, i.e‘.' when a > Mf +2—#, the polynomial p(w) becomes positive at +M and -M,
b
i.e. p(£M)>0 and so the above calculations do not apply. For this case, maximum

negative bias becomes zZero and we have only maximum positive bias which can be

calculated as follows:

B = s S (U S P00+ 5L ()0

1 T-2% 1 %
—— O + = =% p(M)U
Vaz) T PO a7 P

This can be simplified as follows:

®
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LR "

{TzVarIEZ)}B* {*3})(”%)
+ﬁl;{(l+%)+(a+(l+a/T)(Mz—2))M2 —2(1+%)M‘}

a
=((a-1)-M*)-={1+ M’
((a=n)-7)- (14 80%)
Minimizing this maximum positive bias over range of values of ‘a’ larger than

M?*+2 YR we can get minimax bias for the case when p(+M ) > 0. Further note that,

these values of ‘a’, cannot lead to reductions in maximum risk. It follows that the value of

a* in EQ: 4-19 for the case when p(+M )<0 minimizes the maximum risk over all

possible non-negative values of ‘a’. This proves the Theorém.m

i

Takihé' the limit as T goes to infinity, we can get the asymptotic minimax value of ‘a’,

which is given below:

3
EQ:4£20 a*=M>+1=K+l.
Note that when K=3, matching the Kurtosis of normal regressors, we get the same

asymptotic minimax value of a=4.

4.4.3: Evaluation of Relative Performance

'Using the results obtained, we can analytically compare the relative performance
of the Eicker-White and the Minimax Estimator in terms of asymptotic bias. Note that

k ,
both the maximum bias functions B*and B~ are proportional to U, the upper bound on the
£

variances. To get a reasonable performance measure which is invariant to this arbitrary

H

upper bound, it seems reasonable to divide by this factor.

i
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The asymptotic maximum positive bias is then ;im{TzVeir(Z)} B /U =1-1/M?, which
does not depend on ‘a’, and is bounded above by 1.

On the other hand, the asymptotic maximum negative bias is:

lim{—{T"‘Var(Z)} B‘/U} = M?+(2-a)-1/ M>

Too

This increase with the kurtosis K = M’ of regressors and is unbounded.

Let maximum of both biases (maximum positive and minus the maximum negative bigs)
is represented by B =max (B”,-—B_),_Where B*and B respectively are positive and

negative biases.

b,

For the Eicker-White estimator with a=0, this maximum bia$ is somewhat larger than the
f

kurtosis:

b

‘ . 1
B, = max (B}, -5, )=K+2—?

Hinkley’s bias correction Has a=2, which yields ‘the maximum bias of:
1 . L ST
B, = max (Bf,—‘l?l‘): K X Note that Hinkley bias correction is too timid — it knocks

out the middle term, but does nothing to the dominant bias term K= A7,

The minimax value sets a = M~ +1, which results in:

i

Jim[~{T*Var(2)} B-/U|=1-1/M* = lim[ {T*Var(2)} B /U |

i T
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Thus maximum bias of the minimax estimate is: -

=max( y B )=1=—[12

Miaimax ? Minimax

B,

Minitoax

By knocking out the leading bias term, this results in maximum bias bounded above by 1.
When Kurtosis (K) is large, the minimax estimator is substantially superior to both

Eicker-White and Hinkley in terms of maximum possible bias.

These results above are for the asymptotic bias. Next we consider the finite sample case

by taking into account the terms of order (3(1/T) which have been ignored in the above

calculations. These (O(1/T)terms further enhance the superiority of the minimax bias
3 '

estimator over the Eicker-White. The leading O(1/T)term in EQ: 4-18 is M* which

dominates others for large values of M. The O(1/T) term in the minimax estimator

knocks out this term and substantially reduces maximum possible finite sample bias over

Eicker-White. !

S
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{TzVa‘f(ZT)}Bzz(Aj)_ (iw,szV+ (iw,)EWTV,+iwfa;-TEWT2VT
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—(Zhﬂwf)EWTVT+22 hwlo? + (Zh W )EW V, —= Zh wio?

=1 il

"_Z Zh,f,z BV, + 6 Zh,,w, EW,V, + 32 w
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F
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n

1 S | ey e tep
B = F(HW;)‘ = F(l +w¢ +3w} +3w' ), and simplifying, we get:

B, (4,)= [EZ {EV, +2(EW})EW,V, +(EW; )EW,ZV,}+R2T}

O’

{3
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Y
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Where,

EQ: 5-23

R, = T—;ZE[EVT +{EW ) EV, +2(EW; + EW? ) EW,V, |

-

2.
TEZ;

Al
3 1J (w,z,+2wf+wf) 6. [ 14 (w,3+2wf,+wf)'
T EZ (?Zl - EVT+T2Ez; TZ EWlr

[(EW,! + EWS = 2) EW}V, -4 EW,V, -2EWV, |

't A =1 I-h

L0 li(Wf0f+2wfaf+w,"6f) N
TEZ} T4 1-h, ) T*EZ;

B li (wfq'f +2w/o} + wfpf) 6 lZT: (w ol +2wic? +w,30',2)
T*EZIN TS 1-h, T

bl
[¥3

1% wzl:l-wf+3wf+3wf)

150
TEZZ\TS  (1-h)

r (W +w’ +3w 43w )
e D puskde et
TEZ| TS (1<h,)

EW,V,
/

T Z‘-2+82+34-’2+362
+ . 1 . lz (wr o, +w, 0, wlzo-l W, 0, )
T* EZ}| T3 (1)

EWV.

T'T

(1]

1 (1 T (wf?w}o ~|~3w,6 +3_wf)
+ I . T
TEZ\TSE  (1-,)

2 (14 ,
T3 EZ’% T =l (l_hu)2

r (wlo} +wie] +3wlo; +3wf0'f)]

N )
P EZ}\T (1-h,)

!

6.2 )
r (wio} +w°a} +3wlo] + 3w,80',2)]

This cogﬁ}pletes the proof. B
£

way o
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5.6.2: Second Order Asymptotic Bias of HC3

Under the same assumptions about the asymptotic behaVior of the regressors and
variances as in case of HC2, (See EQ: 5-11 and EQ: 5-19), we can get an explicit

expression for the second order asymptotic bias of HC3.

Theorem 5-9: Under assumptions (See EQ: 5-11 and .EQ: 5-19), the second order

asymptotic bias of HC3 is given below:

i

2

w

EQ: 5-24 ASOB(HC3)= {EVm +2(E’Wj)EWme+(EW3)EW;3V;}

#

Proof: Note, we have establishéd that

T’B,,(4,) = é{EVT +2(EWZ?)EWTI/; +(EW;)EWT2VT}+R2T

T

Where, Ryt is defined in EQ: 5-23 above.

To prove the theorem, it is sufficiefit to show that 1lririf'f( R;)=0.

The limit of the remaining part exists and equals the expression in-the theorem by

assumptions in EQ: §5-11.

e

Note that, we can write Ryt as, R, = %(GT) , where Gr is given by:

i




EQ: 5-25

t—=
T

T
3 (1d (w,z+2wf+wf)' , 6 |1 (w‘3+2w,5;l~wf7) )
" TEZ (72 1-A, Bt T8z 23 1=4, o

(EW; + EW; ~2) EW3V, ~AEW,Y, ~2EWV, ]

1=l

2

g 2 Il + wio? T (wt +2w8 +wh
+E; -LZT:(W'G‘ WG T )]+ 3 (ii(w”L - +w‘)JEWT2VT

= 1- h" T EZ% T t=1 1- hu
o +2wha? 4w -o-i)J 6 (wf'o-f +2wle? +wia? )]

T
__6_{1& (w2 6 [is
TEZ | T4 1-h, TEZ}| TS 1=h,
(w,2 +w) + 3w +3wf)\

1 (1 |
(15 EV,
T e 22 (-ny |7

1 (wf+wf+3wf+3wfﬂ
s 1
T EZX| TS (1-h,Y

EW.V, »
L [li(ﬁ@f M f3".”f6"3)J
T 5 (1-4,)
w'+w® + 3w’ +3wf)
T5 (1-h,)
s (1 ZT: (wia! +wio? +3wial +3wio] )]
T"EZZ| TS (1-n,)

JEWTzVT*'

1 i

" ER| T (1-4,)

2 (12 (wfq-z +w, 0} +3w/o; +3wlo; )J
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Under the assumption that the design matrix is balanced (See EQ: ‘5-19), ie

hmmax(h) 0.

T—oo 1<1<T

<4.

So for “T” large enough A, < l,\/t and -
2 (1-4,)

@ (24
wt

(=

i

=1

IZT:W

l! _rr

Note that we can write,

l 7
. S4?§wal‘

Since variances are bounded, i.e. o’ <U, Vt

So, we can write

L a2

1 & wio, wio?
T‘Zl:(l—hu)2 (1 hﬂ)2=

This means that each of the térms in the Gt above is separately bounded and is of order

1< i
STZ <4U— Z|w |—4UE|W |

=1

O(1). Hence the sum of all terms (i.e. Gy) is also bounded and is of order O(l) , SO

R, = %(GT) goes to zero as ‘T’ approaches infinity, as claimed. ™
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Chapter 6:  ASYMPTOTIC MAXIMUM BIASES OF HCCMEs

6.1: Introduction.

This chapter provides results regarding second order asymptotic maximum biases

b ;
of all HCCMEs. Since we have the analytical expressions for the biases in previous

chapter, this allows us to calculate the configuration of variances which leads to the
maximum bias. We characterize this least favorable form of heteroskedasticity and the

associated maximum bias.

To state the results of this chapter in a self-containéd manner, let’s recapitulate

our basic model and related definitions.

We start out with a heteroskedastic regression model with centered regressors,
without loss of generality: v, =B +Bx +¢

Where, E(£)=0, Cov(g)=X, where = =diag(c?,07,+,0%). As before,

¢
(VT, ZT) represents artificial random variable which takes one of “T” possible values
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(0',2, X, ) for +=1,2,---,T with equal probabilities El; Let W be the standardized

X, —X

regressors, W, = ———— where, X = (l/T)Zx, , and Var(ZT) = (l/T)Z(x, -X)

1/Var(Z,)

as usual. Note that EW, =0 and Var(W,)=EW; =1.

The following subsections provide results for maximum asymptotic bias of all HCCMEs.

6.2: Asymptotic Maximum Bias

In this section, our aim is to find the worst possible configuration of
heteroskedasticity. For this we provide the results of asymptotic maximum bias of all

HCCME:s including (HCO0, HC1, HC2 and HC3).

Note that, if the variances are unconstrained, then the maximum bias can be
oy ey . . . ; 2
arbitrarily large, so we assume some upper bound on the variances: V¢:0,.<U. Under

this assumption, we proceed to derive the largest possible second order bias for all

HCCMES under consideration.

L T e 1
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In addition, we note that these all estimators have second order asymptotic bias

and these biases are given below:

— {EVw +2(EW2)EW,V, +(EW: -2) EW2V, —2EW;‘Vw}

EQ: 6-1 ASOB(HC0)=

2
-3

1

EZ?

EQ: 6-2 ASOB(HC1)= {EVw +2(EW.2)EW, Y, +(EW. ) EWZY, —2EWij}

2
©

"BQ: 6-3 ASOB(HC?) = E'; (EV, +2(EW2)EW.V, +(EWS -1 EW2V, ~ EW.Y, )

1
EZ?

o

EQ: 6-4 ASOB(HC3) =

{EV,, +2(EW.)EW, Y, +(EW3)EW2V, |

. . B r . - .
In addition, note that throughout in the current chapter, asymptotic maximum bias means

the second ordér asymptotic maximum bias.

The maximum possible positive and negative biases occur at different least
favorable sequences of vafiances. We give the expression for both in our preliminary

result below.
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Theorem 6-1: Let :B’ and B, i=0,1,2,3 be the maximum possible second order

asymptotic positive and negative biases of HCCMEs which are given by:

EQ: 6-5

B Tg[ASOB(HCz)]—}%{WZmaX(p (W) O)U} 1—0 1 2 3.
EQ: 6-6
o, ley Tow

B mln[ASOB HCI)]— lim {M(—)_me (p,(w,), O)U} =0,1,2,3.

Where polynomials p; (i=0,1,2,3) are given below:

EQ: 6-7 po(w,) =1+2(EW )w, +(EW; —2)w} -2}
EQ: 6-8 () =1+ 2(EW; ) w, +(EW; ) w — 2w
EQ: 6-9 pa(w)=142(EW; Y w, +(EW; —1)w —w}

EQ: 6-10  p,(w,)=1+2(EW; }w, +(EW; )w}

Proof: Similar to Theorem 4-2 above.m

We now try to obtain more explicit chafacterizations of these maxima and

B
minima. Note that in Chapter 4:, we derived a class of estimators which considers HCO,
E

HC1 as special cases and we derived minimax estimator and that particular minimax
i

value of Minimax estimator ‘a’ was found to be independent of exact sequence of
3 A
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regressors and it only depends on the sample size, T, and the kurtosis of regressor (K).
Here in this chapter, we have formulae of two estimators under study (HC2 and HC3)
which do not fall into that particular class of estimators. Further, we do not have such
minimax value which exists in this class of estimators, so the bias of all. HCCMEs
proposed in Chapter 5: may depend on the exact sequence of regressors as well as the
sample size. We are presenting the maximum bias of all HCCMEs for a ﬁarticular
sequence of regressors for which computations are easy. In particular, wé consider two
cases, one with symmetric regressors and the other one as asymmetric case. The issue of
finding a minimax estimator which covers all four estimators (HCO to HC3) requires

more work and we leave it as an open problem for future research.

E‘ . . . ~ H - . "
+First we consider the “case where the regressors are symmetric.: The case of

}
asymmetric regressors will follow this case.

6.2.1: Asymptotic Maximum Bias with Symmetric Regressors

Under the assumption that the regressors are symmetric, we derive analytical formulae
for the‘approximate large sample maximum biases B =max (B,.’",—Bf),i =0,1,2,3 for all
HCCMESs. In this case the average value of regressors ( EW, ) and the skewness ( EW;)
will beagero, while the kurtosis ( EW,' ) will vary for different samples. This simplifies the

poiyno'fnials to:
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EW; —2)w} ~2w}

po(w,):1+(
pl(w,)=1+(EW;)wf—2wf

1

Py (W) =1+{EW; —1)w! —w!
(

2 (Ew,)=1+ EWT"')w2

‘We choose sample size T and a constant Mﬁ[M>I], such that k=T / (ZM 2)is an

integef, and consider the sequence Of regressors X, -,X;such that
=x,==x=-M, x,==x,=0, and X, ==X =+M. As before,
letting_ZT be the random variable such that Z7 = x; with probability 1/T, we can easily
check that EZ, =0, EZ} =1, and EZ}=M". That is Zt is centered and standardized
and has kurtosis K = EZ} = M”. Note that we assume M>1, this means that we are
constraining the kurtosis to be bounded below by ‘1°. Because Zr is standardized,
W1=Z1/Std(Z1)=Z7 and the standardized regressors are just W, =X, Noting that EW,’ =0

and that the kurtosis is EW, = M".

, Under this setup, the analytical expressions for the maximum asymptotic positive
and négative;’bias functions and the maximum bias, B = mﬁx(Bf',—B,’),i =0,1,2,3 are

&4 L. X .
provided in the following subsections.:

.

3
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Note that, the results of asymptotic maximum bias of HCO and HCI1 in case of symmetric
regressors are exactly the same as we have derived earlier in leapter 4:. But in Chapter
4:, we were interested in finding the maximum bias of a class of estimators and hence the
minimax estimator. Since HCO and ‘HC1 fall info that particular class of estimators. So
their maximum biases were also calculated. But here in this chapter, we are presenting
the results of both HCO and HC1 along with HC2 and HC3 which do not fall into that
particular class of estimators and hefice there is no minimax value of ‘a’ which remains
same of all regressor sequences. So for completeness, the results for the asymptotic
maximum bias of HCO and HC1 are also presented here.

In addition, we provide the results of Minimax estimator as well to compare it with HC2

§:

and HC3.

6.2.1.1: Asymptotic Maximum Bias of Eicker-White (HCO) Estimator

This subsection provides the asymptotic maximum-bias of Eicker-White (HCO)

estimator.
Theorem 6-2: Second order asymptotic maximum bias of HCO estimator, when the

regressors are symmetric, is given by:

EQ: 611 B =2+M' ——

0 M2
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Proof: When regressors are symmetric, polynomial corr'esponaing to HCO is:
p(w)=1+(EW: 2)wi 2uf
In order to find maximum. positive and hegative bias functions, we have to evaluate

max ( p,(w,),0) which involve finding signs of polynomial p,(w,)at w=+M, 0 and -M.
Note that, p,(0)=1>0 and p,(+M)=1-2M"-M* <0 (v M°>1)

So we can write the asymptotic maximum positive and negative bias functions for HCO

as follows:

B =max{1im{T2Var(z,)Bu (Aﬂ)}} :{ 7 (0)(1—#)}(1 =(1_-—$;—)U

ol<y \T—5w

¥
E

5; = thin {lim {7Var (2,) B, (4,)}} = { Pe (M)[—A%)}U - {(1 —2M7 —M“)(X/fl-;J}U

Note that, both the maximum bias functions B, and ., are proportional to U, the

upper bound on the variances. To get a reasonable performance measure which is
invariant to this arbitrary upper bound, it seems reasonable to divide by this factor.

Reversing the sign of the negative bias to get the magnitude, we obtain:

5 :max[ " {TI Var (ZT)‘BD (Ao)}] K

oist | Tow U M’

iU | Too U 2

|
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Taking maximum of the two biases leads to the required result. m

6.2.1.2: Asymptotic Maximum Bias of Hinkley (HC1) Estimator

Here we provide the results of asymptotic maximum- bias of Hinkley (HC1)

estimator.

Theorem 6-3: Second order asymptotic maximiim .bias of HC1 estimator when the

regressors are symmetric, is given by:

1
EQ.’ 6-12 BIZMZ—A—{—Z-

K

Proof: Polynomial corresponding to HC1, for symmetric regressors, is given by:
p(w) =1+(M2)w,2 —2w}
Working in the same lines as in the proof of the asymptotic maximum bias qf HCO, we
have to evaluate the above polynomial at different values of Wr's, i.e. at Wr= 0, +M and
-M:
2 (0)=1>0 and p (£M)=1-M* <0 (vM?>1)
This leads us to write the asymptotic maximum positive and negative bias functions as

follows:
B*—ﬁ?ax{lim{rlrfar(z ) B, (4 )}}= (0) - Wo=(1--L v
L SriR F A 7} Pn 4 F2 M M?
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¥ gl &

S

B = miin{lim {T*Var (Z,) B, (4)}} = { P (M)(#)}U - {(1 -M )(_ACIFJ}U

gl <U \Tow

Dividing both the bias functions with U and reversing the sign of negative bias function,

we have:
3 .
lgl+ ZmaX[lim{T Var(ZT)BZZ(Al)}jlzl__l{
g-,ZSU Towo U M

opsy | T U M?

B - min[lim{Tz Var (Z;) By (Ai)H M- =(1 —#)Jr(MZ =1)

Taking the maximum of two bias functions, leads to required result.m

6.2.1.3: Asymptotic Maximum Bias of Horn, Horn"and Duncan (HC2)
Estimator

In this subsection, we collect results regarding asymptotic maximum bias of Horn,

Horn and Duncan (HC2) estimator.

Theorem 6-4: Second order asymptotic maximum bias of HC2 estimator, when the

regressors are symmetric, is given by:

EQ: 6-13 B =1-—
e M
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Proof:-When regressors are symmetric, polynomial corresponding to HC2 is:
D, (w‘)=1+(M2 —l)w,2 -w,
As before, p,(0)=1>0 and p,(¥M)=1-M" <1 (VM >1)

Again value of polynomial at ‘0’ is ‘1°, which is always positive, while, value of
polynomial at +M and —M is negative for all M? (kurtosis) greater than 1. So; asymptotic

maximum positive and négative bias functions for HC2 can be written in a compact form

as fo]ldi:vs: .
B =max lim {TVar(2,) B, (4)}} =1 £, (0) 1-— > |t ={1-— |u
el )P\ Py JYE M

B; = S?i‘J{ lim {7%Var (2;) B, (4,)}} = { P, (M)[%]}U = {(I—Mz)(#)}U

Dividing by the U (the upper bound to variances), and reversing the sign of the negative

bias function, we have:

5 = max{]im{'ﬂ Var(7,)B,, (Az)}:l=l——l—

i<l | To= U Al2

o, U § T ﬁl2
E

) 2
=B, = Tﬁlin{lim {T Var (Zg}) B, (AZ)H =1 L

3
Note .that, both are exactly the same, so maximum bias is the bias of any one of them.

This leads to desired result.m
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6.2.1.4: Asymptotic Maximum Bias of Mackinnon and White (HC3)
Estimator ‘

In this portion, we present results of the asymptotic maximum bias of Mackinnon

and White (HC3) estimator.

Theorem 6-5: Second order asymptotic maximum bias of HC3 estimator, when the
regressors are symmetric, is given by:

1

EQ.’ 614 83 :M2+E_2

Proof: When regressors are symmetric, polynomial corresponding to HC3 is:
_ 2 2
ps(w)=1+(M*)w;
As before, we can see that, p,(0)=1>0, p,(+M)=1+M">0 (VM? >1)

Now, we can write the asymptotic maximum positive and negative bias functions for

HC3 as follows:
.

L ]
E

B; =max {ﬁm {TVar(z,)B,, (A3)}} = { 2 (O)[] :‘[;TJ’L ) (M)[I;—ZJ}U

J SRRV
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B; = min{lim {T*Var (Z,) B., (4)}} =0

Gl \T>»

Re-scaling the bias functions by U and reversing the sigh of negative bias function, we

have:

B =max[1ifn{72 Var(ZT).,Bzz(z‘?s)H= I
U M

of<U | T U ~

g min{ Hm{T? Var(Z,) B, (A3)H o

The maximum of two is B, = fnax (B7,~B; )= M +le~, which is the required result:m

Foa i . . -
6.2.1.5:  Asymptotic Maximum Bias of Minimax Estimator
&

In this portion, we present results of the asymptotic maximum bias of Minimax
t
estimator.

Theorem 6-6: Second order asymptotic maximum bias of Minimax estimator, when the

regressors are symmetric, is given by:

3 1
E Q'. 6-15 BMinimax == _M_Z

vy e

Proof: The proof is same as that of Theorem 4-4 in Chapter 4: above.m

|
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6.2.1.6: Asymptotic Comparison of HCCMEs (Symmetric Regressors

Case)

Using the resuits obtained, we can analytically compare the relative performance of

Eicker-White, Hinkley, Horn, Horn & Duncan, Mackinnon and White and Minimax

estimators in terms of asymptotic bias when regressors follow symmetric distribution.

Below we present the formulae derived in previous sub-sections in a cormparable manner.

Second order asymptotic maximum bias of HCO is:

“B, =MZ+2—#=[1— 1»"J+(1+M2)

M?

Second order asymptotic maximum bias of HC1 is:

: 1 :
B =M2-#=( ~I4:-;-)+(M2—1)

Second order asymptotic maximum bias of HC2 is:

B =1-—
2 M

Second order asymptotic maximum bias of HC3 is:

Y a2 1 1 2
EB:;._M +F——(I—X/{7)+(1+M )
b
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B B s . . . . .
Second order asymptotic maximum bias of Minimax is:
3

£ “ v
nimax =1 l 2
M

By

b

From the bias functions provided above, “we can see:that the second order
asymptotic maximum bias of HCO, HC1 and HC3 increases with the kurtosis (M?) and
differ marginally. Second order asymptotic maximum bias of Minimax and HC2 is

exactly same and goes to 1 with an increase in kurtosis M), ie.

Minimax

(B =B, = 1—%) -1, (ASM2 ~> 00) . This is because the 1/M? term goes to zero
M

as M? goes to infinity. So we conclude that bias of HC2 is bounded above by ‘1. The
bias of HCO is largest of all making it the least favorable estimator. The bias of HC3 is
the 2" feast favorable while HCI is 2™ favorable estimator. Minimax along with HC2 is

the clear winner among the five.

L

(19
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6.2.2;; Asymptotic Maximum Bias with Asymmetric Regressors

In this subsection, we consider the case of asymmetric regressors and derive
analytical formulae for the approximate large sample second order maximum biases
B, = max (B’,*,—*B,.’),i =0,1,2,3. As in case of symmetric regressors, the average value of
regressors is zero by construction but due to asymmetry of regressors, the skewness will

be different from zero and both skewness and kurtosis will vary for different samples.

Under this setup, the polynomials simplifies to:

B

po(w,) =1+ 2(EW} Yw, +(EW; —2)w! —2w}
(W) 214 2(EW; Yw, +(EW: )W} —2u!
P (W) =1+2(EW Yw, +(EW; =1)w} —w}

Ds (w,):]+2(EWT3)w, +(ET'VT4)W,2

As before, evaluation of the expressions for finding maximum positive and
negative bias functions, we have to evaluate max( p,.(w,),O), i=0,1,2,3 Which involve

finding signs of polynomials pi(wy) at w=+M, 0 and —M.
4
;

4
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F. B
+Following the same lines as in case of symmetric regressor, here again we pick a

E B
particular sequence of regressor for which the computations are easy.

We choose a sample of size ‘T’ such that & = _T———Z , [M and N are some

MN (M +N)
positive scalars] is an integer, and consider the sequence of regressors X;,*"*,X; such that
=Xy == =M, x, = =x,=0,and Xy, ==X, =N,
As before, letting Wt be the standardized regressors with EW=0, EW,; =1,
EW}=M-Nand EW;) =M*+ N> —MN..
Using these values in above polynomials, we have;

po(w,)=1+2(M -N)w, +{(M2+N2—A4W)—2}w2—2w,4

pl(w)—1+2(M N w+( M?+ N - ) —2w!
P (w)=14+2(M = N)w, +{(M7 + N* - MN ) -1} w? -}
(

p3(w)—l+2(M N)w+M2+N2 \ )w,2

As before, in order to find the second order asymptotic maximum positive and negative

bias functions, we have to evaluate the corresponding polynomials at W=0, +M and —N.

The value of polynomials at w=0is 1, i.e; p, (0) =1, i=0,1,2,3.

Note that; value of polynomial at ‘0’ is 1, which is always positive for any combination

of M and —N.
j

|

For finding the exact signs of polynomials at +M'and -N,
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let, — = p, or, N=pM (0<N<M&0<p<l)

With this notation, skewness and Kurtosis measures become:

EW; =M(1-p) and EW; =(p*—p+1)M>.
Putting value of N in-above polynomials, we get:
Po(+M)=1-2pM* +(p* — p=1) M*

po(-N)=1-2pM* + p* (l—p—pz)M4

p(+M)=142(1-p) M* +(p2—p—1)M”'

p(-N)=1-2p(1-p)M* + p*(1- p— p* ) M*

p, (+M)=1+(1-2p)M* + p(p-1) M*

p,(-N)=1-p(2-p) M’ + p* (1- p) M*

P (+M)=1+2(1- p)M* +(1- p+ p* ) M*

ps(-N)=1-2p(1-p) M’ + p* (1~ p+ p* ) M*

:

Note that, these polynomials are quadratic in M?, and so we can ‘easily find their

signs a’iﬁalyﬁcally. This will allow us to find the second order asymptotic maximum

i
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positive and negative bias functions of all HCCMEs, these are provided in the following
subsections.

E
In addition, we present here the second order asymptotic maximum bias of Minimax
estimator as well to show its performance against the HC2 and HC3 in case of

asymmeltric regressors.

Note here that the second order asymptotic maximum bias of Minimax estimator d*epends'
on the exact sequence of regressors etc. but the optimal value of ‘a’ is independent of
exact regressors sequence but only depends on the kurtosis of regressors and the sample
size ‘T;. So here it is important to see how second order asymptotic maximum bias of

Minimax estimator against HC2, HC3 as well.
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6.2.2.1: ASVrf'xiStOtic Maximum Bias 6f Eicker-White (HCO) Estimator
This subsection provides the second order asymptotic maximum bias of Eicker-
White (HCO) estimator.
Theorem 6-7: Second order asymptotic maximum bias of HCO estimator, when the

regressors are asymmetric, is given by:

(5-1)

EQ:616 B =2-—r—— M2 oMropu?, 0<pe<

. (] M2(1+p) I+p 1+p p » P
and

g .

I N

EQ: 6—17 BO:(pz_p+1)M2+2_ 1* (,_ . )

2

pM 2

<p<l
4 ” .
Proof: When regressors are asymmetric, polynomial corresponding to HCO is:

o (4,3 =1+ 2(EW2 ), + (EW —2) i =2

Using the values of EW =M —N and EW, = M*+ N>~ MN in above polynomial, we

- T
=

have; 1

Po () =142(M = N)w, +{(M* + N* ~ MN)~ 2} w? - 2}

Evaluating the polynomial at w=0, +M and —N, we have:

i
Po (1) -‘;1

po(+M) =1+2(M = N)M +{(M? + N* ~ MN) =2} M* - 20"
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s

§2 ('N)=1'—2(!\4—.}\7)N-§-{(M2 + N? _W)_z}N2_2N4

[

Since -N = pM (0< p<1), so we have: 5
po(+M)=1-2aM* +(a* —a-1)M*
po{-N)=1-2aM" +a* (1-a—a’ ) M*

Note that, these polynomials are quadratic in, M so, we can find the signs of the

polynomials by evaluating the roots of the same.

Note that, p, (0)=1>0, when0 < p <1
i

When, 0 <p <1, p,(+M)<0, when M’2r,,,

Where, 1, is the positive root of the polynomial p,{+M)and is given by:

, _a—~Na+l
P |
5-1
When,0<’p<(\/_ ),p0(4N)>O, when M’ >r,_,

V5-1)

When,( ———<p<l, Po(—N)<0, when M’>r,_,

Where, 7,_, is the positive root of the polynomial Do (—N) and is given by:

z'}%/p(Hp)

™ p(1-p-p?)

.-
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Consider two cases,

5~1
Case 1: When 0< p< (J; )
1

The second order asymptotic maximum positive bias of HCO is:

. mg{@ {TZ V,ar(.Z(TJ)'Bﬂ (AO)H= ” (‘)(l‘p;{ 2]“,0 (_N){

Replacing the values of polynomials and simplifying, we get:

1 M? 2

By =1-- -——
’ M (1+p) 1+p l4p

+M2_p2M2

Y
The second order asymptotic maximum negative-bias of HCO

5 - mlg[;gn {Tz' Var(Zgr) B, (AO)H== Pl M)(mJ

Replacing the value of polynomial and simplifying, we get:

1 M? 2
. +—t
M (1+p) 1+p 1+p

By =2+ —2M* + pM’?

I

pMz(l;kp)

|

Reversiﬁ‘g the sign of second order asymptotic maxiium negative bias function, we get:

H

y I M?

_B_=2_ =. -
P M (l+p) 1+p l4p

+2M? = pM?
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Case 2: When (ng_}) <p<l )

4
The second order asymptotic maximum positive bias of HCO is given by:

B;:mix[ﬁm{ﬁVar(z,)Bn(Ao)}}zpo(l)(l_ﬁjzl 1

U | To» U pM?

The second order asymptotic maximum negative bias of HCO is given by:

. 2312[}32 {T2 Var('Z(;)Bzz (AO)H =5 M)[Mz—(:-;p_)]-}- Po (_N)[,aTZEH_p)J

Replacing the values of polynomials and simplifying, we get:

B, = p]tlz —(,02 —p+1)M2‘—2

Reversing the sign of second order asymptotic maximum negative bias function, we get:

1
pM*

-B, =(p*—p+1)M*+2-

wh
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Overall 'gecond order asymptotic maximum bias of HCO is giver by:

(-

When,0<p< >

B, = max(B; ,-B, )=-5;

Where,
2
BJ:]__ . 1 _M, . 2 +M2—'p2M2
M*(1+p) 1+p. 1+p
2
B, =2 1 M +2M* — pM?

CM(1+p) l+p Lip

When (;/52_1) <p<l

B, = max(B;,—B;):—Bg

: 1 1

Where, By =Py (1)[ pMz) oM
~ 1

. -5, =(pz—p+1)M2+2—pM2

This completes the proof. m

v
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6.2.2.2: Asymptotic Maximum Bias of Hinkley (FiQI) Estimator

4
E.

This Esubsecti(')n provides the second order asymptotic maximum bias of Hinkley (HC1)

estimator.

Theorem 6-8: Second order asymptotic maximum bias of HCI estimator when the

regressors are asymmetric, is given by:

" (5-1)

B 1 3 4 _j\/f2
M*(1+p) 1+p l+p

EQ: 6-18 B =2 —-pM*+2M*, 0<p<

and

1 ()

pM?’

EQ: 6-19 B =(p"-p+1)M* - <p<l

) : t
Proof: When regressors are asymmetric, polynomial corresponding to HC1 is:

n(w) =1+2(EW?)W, +(EW}§’)W,2—2W,4

Using the values of EW; and EW, in above polynomial, we have;

p (w,)=1+§(M—N)w‘ +(M2 +]\/2—1\/[Z\.’)w,‘2—2w,4

a
4

Evaluating the polynomial at w=0, +M and —N, we have:

1
P (1) =1
'
p(+M)=142(M =N)M +(M*> + N> —MN ) M’ —2M*
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P (-N)=1-2(M —-N)N+(M* + N> - MN) N’ - 2N*

o
Since N = pM (0< p<1), so we have:

q

p(+M)=1+2(1- p) M’ +(p* - p-1) M’

p(-N)=1-2p(1-p)M* + p* (1= p— p*) M*

Note that, these polynomials are quadratic in. M2, so, we can find the signs of the

polynomials by evaluating the roots of the same.

Note that, p, (0)=1>0, when 0 < p <1
1l

3

When, 0< p<1, p,(+M)<0, when M’2r,,

Where, 1, is the positive root of the polynomial p, (+M) and is given by:

p-1- i—p
fim = 7 — p—1
When, ,0‘< p< (ng_l) , D (—N) >0, when M? >h_y
When, (\[5-2_1) <p<l, p(-N)<0, when M’ >H_y

Where, . r,_, is the positive root of the polynomial p, (—N)aﬁd is given by:

3

_ilip*\fzpzip

fion ™ p(l-p-p*)
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Again, consider two cases arise,

£
]

Case 1: When 0<p< (ng_l)

The second order asymptotic maximum positive bias of HCI is:

Replacing the values of polynomials and simplifying, we get:

1 4 M

B =3- -
= M (1+p) 1+p l+p

- M+ M

4

The second order asymptotic maximum negative bias of HC1 *

5 =§H£{¥E?°{Tz Var(zl;)Bu (4)}]=p1 (M)[Fém)

Replacing the value of polynomial and simplifying, we get:

g2
B =—; L . +pM*—2M* + M.,
M (1+ p) 1+p 1+p

1

pM* (1+p)

|

Reversing the sign of second order asymptotic maximum negative bias function, we gét:

1 4 M
M*(1+p) 1+p 1+p

§
B =2- — pM? +2M?

t
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R

N
Case 2: When ( > )<p<1
V
The second order asymptotic maximum positive bias of HC1 is given by:

+ . | T*Var(Z,)B,, (4 7 1 1
5 mg[lm{ 20, I)H=,,l(l)(l_}p_M_z)=l_pMz

The second order asymptotic maximum negative bias of HCI is given by:

. f,‘f:‘i{}[lil’?o{Tz Var(Zl;)Bzz (AI)H ~ M)(m}r P ('N)(WETIF))

Replacing the values of polynomials é.ndisimplifying, we get:
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Overall second order asymptotic maximum bias Bf HC1 is given by:

(51

When 0 < p<

s 14w
M (1+p) 1+p J1+p

B|=max(B’l+,—Bf)'=—B,"=2 —pi/fz+2M"

Where, =

1 4 M

B+=3_7 I ey 2M2+M2
: M*(1+p) 1+p 1l4p o

b
Bt 2 M o
M*(1+p) 1+p l+p

Where,

et
)

This completes the proof. m

»y
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6.2.233: Asymptotic Maximum Bias of Horn, Horn and Duncan (HC2)
E .
Estimator

This subsection provides the second order asymptotic maximum bias of Horn, Homn

and Duncan (HC2) estimator.

Theorem 6-9: Second order asymptotic maximum bias of HC2 estimator, when the

regressors are asymmetric, is given by:

R 2
EQ:620 B,=0-— 1 __ 3. 2M oM pM?, 0<p<l
3 M (1+p) 1+p l4p

F

Proof: When regressors are asymmetric, polynomial corresponding to HC2 is:

p{w)=1 +2(EWT3) W, +(EWT4 —l)wf —w)
E >
Using the values of EW; and EW,;' in above polynomial, we have;

() =142(M = N)¥, +{(M* + N> = MV )1} w] — ]

Evaluating the polynomial at w=0, +M and —N, we have:

b (I) =1

2, (+M)=142(M -N)M +“{(M2 +N* - MN)-1} M? -
F
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By (-N)=1-2(M = NN +{(M*+ N~ MN) - N*“N* -

3
Since N = pM (0<p <1), so we have: &

P, (+M) =1+(1-2p) M* + p(p-1) M*

7, (=N)=1-p(2-p)M* + p*(1- p) M*

Note that, these polynomials are quadratic in M?, so, we can find the signs of the
polynomials by evaluating the roots of the same. P

Note that, When, 0 < p<l, .

p,(0)21>0, p,(+M) <0, When M’=2r, and p,(~N)>0, when M’>r,_,

Where, r,,, and r_, are the positive roots of the polynomials p,(+M)and p,(-N)

. . 1
respectively, and are given by: r, ,, =7, _, ==

The second order asymptotic maximum positive bias of HC2 is:

B;:%[m{rzVar(z;})zsﬁ(Az)}}pz(l)[l_p;f)m(_m(mj

Replacing the values of polynomials and simplifying, we get:

t
e ] 3 v
2 g 2
EM(1+p) 1+p l+p
j

; 3
The second order asymptotic maximum negative bias of HC2

+2M? - pM’?
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s =gl [N ot

Replacing the value of polynomial and simplifying, we get:

S B 7. Uk §
M (1+p) l+p 1+p

Reversing the sign of second order asymptotic maximum negative bias function, wé get:

1 3w
M (1+p) 1+p l+p

—B, =2 +2M* - pM?

Overall second order asymptotic maximum bias of HC2 s given by’

t

2
1 3 _2M2 s o

3 + - .
B, = max(B;,-B; ):2_M2(1+,0)—1+p_ 1+ p

Where,

2
! 3__2M oa - par?

By =2-— -
2 M (1+p) l+p l+p

I3

2
B2 1 3 2M

v M(l+p) l+p 1+p 2

This corﬁpletes the proof. m
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6.2.2.4: Asymptotic Maximum Bias of Mackinnon and White {HC3)
Estimator

This subsection provides the second order asymptotic maximum bias of

Mackinnon and White (HC3) estimator for asymmetric regressors.

3

Theorem 6-10: Second order asymptotic maximum bias of HC3 estimator, when the
regressors are asymmetric, is given by:

EQ: 6-21 B3=l+(l—p+p2)M2, 0<p<l

Proof: When regressors are asymmetric, polynomial corresponding to HC3 is:
ps(w) =14 2(EW, )w, +(EW; )W

Using the values of EW; and EW,} in above polynomials, we have;

1

Py (W) =1+2(M = N)w, +(M* + N’ - MN ) w}

Evaluating the polynomial at w=0, +M and =N, we have:
»(1) ?1 ;

Py (+M)=14+2(M = N)M +(M* + N* = MN) M?

P (_]\;) :1—2(M—N)N+(M2 +N? —W)N2
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13

Since N = pM (0< p<1), so we have:

p3(+,ilb4')=1+2(1—,o)M2 +(1-p+p*)M*

P (—N)=1-2p(1- p)M* + p* (1- p+ 0" ) M*

Note that, these polynomials are quadratic in M?, so, we can find the signs of the

polynomials by evaluating the roots of the same.

Note that, roots the two polynomials at +M and —N are imaginary, so polynomials

do not cut the x-axis and will remain above it or we can say both will always be positive

for all values of p (0 <p< 1) .

So, For 0< p<1,p,(0)=1>0, p,(+M)>0 and .p;(-N)>0

The second order asymptotic maximum positive bias of HC3 is:

il

Replacing the values of polynomials and simplifying, we get:

B/ =1+(l—p+p2)M2
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The second order asymptotic maximum negative bias of HC3

Ao nﬁﬁ[lim {T2 Var(Z,) B, (AJH »

o/ </ T-w U

Reversing the sign of second order asymptotic maximum negative bias function, we get:

-B; =0

Overall second order asymptotic maximum bias of HC3 is givén by:
B = (5, 5) - 5 < 1+(1= 4 7)o

Where,

B/ =1 +(l_p+p2)'Mz

B =0 «

This completes the proof. m
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6.2.2.5: Asymptotic Maximum Bias of Minimax Estimator

This subsection provides the second order asymptotic maximum bias of Minimax

estimator for asymmetric regressors.

Theorem 6-11: Second order asymptotic maximum bias of Minimax estimator, when the
regressors are asymmetric, is given by:

13 4
M (1+p) l+p “l+p

EQ:6-22 B, =2 +AM? -2pM?,  0<p<l

Proof: When regressors are asymmetric, polynomial corresponding to Minimax estimator

is:
DPiinimac gw,) =a +(2aEWT3)w, +(a+a(EW§f —2))w,2 —20w!

Note that, in large samples « =1, and also note that, a= K +1= EWT4 +1

Using these values in the polynomial and simplifying, we get:

Puaner () =1+ (2EW; Yw, + (2EW; =1)w] 2w

Using the values of EW;and EW, iri above polynomials, we have;
Pusiimas ) = 14 (2(M = N))w, +{2(M? + N? = MV} 1}347 — 20

Evaluating the polynomial at w=0, +M ahd —N, we have:
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Prinimax (1) =1
Ptiniman (FM) = 1+(2(M-N))M+{2(M2 +N? —M]\/)-]}M2 —oM*
Putina (—V) =1=(2(M = N)) N +{2(M? + N? - MN) -1} N - 2N*

Since N =pM (0 < p <1}, so we have:

Prtinima (FM ) =1+(1=2p) M* +2p(p—-1) M*

Prtinimax (_]V):]"'/C’(l7—2)]w2+2p2(1-—p)M4

Note that, for large M, the leading term is the one involving M*, and, since 0 < p <1, s0

we can see that, pye . (0) =1>0, pyusr (+M) <0 and pg, (-—N) >0.
]
This permits us to write the second order asymptotic maximum positive bias of Minimax

estimator as:

3

- |

Minimax

o‘f Y| Tow U

= Prvimme (1) (1 - ;42 J+ Prinimac (=N )(/;Tz(lp,_p)J

Replacing the values of polynomials and simplifying, we get:

2
Bh;il';illlax =2- P ] . - 3 _4M +4M2—2pM2, 0<p<1
M (i+p) l+p l+p

F
L

13 .. . - . . .« . . .
The second order asymptotic maximum negative bias of Minimax estimator is:

I

E
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2 2
B = min{ lim {T Vr (Zr) B (A H = Prtmmas (+M )[——] J

o/ <U| TH= U j\l2 (1 +,0-)

Replacing the value of polynomial and simplifyiﬁg, we get:

T*Var(Z;) By, ( Ay
B fiiax = min|:lim { ar( T)~ 22( Mnunax}}:l
i<l T U B
aq2 .

: _M2(l+p')—l+p_1+p

Note that, second order asymptotic maximum positive and negative biases are
exactly the same, so we can write the overall second order asymptotic maximum bias of

MinimaXx estimator as follows:

2
BMinimax:2_ 2 1 = 3 _4M +4M2—2PM2, 0<p<1
M*(1+p) l+p l+p

This completes the proof. &
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6.2.2.6: Asyptotic Comparison of HCCMEs (Asymmetric Regressors

Case)

In this section we compare all four HCCMEs on the basis of overall second order

asymptotic maximum bias. In order to provide a suitable comparison, we first present the

formulae of the sécond order asymptotic maximum biases of all four HCCMEs in a

simplified form below:

Second order asymptotic maximum bias of HCO is:

VI (L ') WSS O \ i)
" l+p l+p M*(1+p)’

J5-1
80=2+(p2—p+1)M2—;-;7, ( 5 )

Second order asymptotic maximum bias of HC1 is:

_2p—2+(1+p—szM2_ 1 (\/5._.1)
\ 2

- SR 0
1+p 14+ p M?*(1+p) <p=

I ()

pM? 2.

B

Bl:(pz—p'—i-l)Mz— <p<l

b
Second order asymptotic maximum bias of HC2 is:

.

i _ e

B =2 PP 1 0<p<l
1+ p I+p M (1+p)

Second order asymptotic maximum bias of HC3 is:

N
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B, =1+(1=p+p* ) M?, 0<p<l

Second order asymptotic maximum bias of Minimax is:

0<p<l

2p-1 (“p—szMz R
I+p

.. = ~+2 S —
BMuumax l+p MZ (1+p)

When M is very large, then the terms containing (1/M?) will go to zero also the constant

terms are very small. So the only term that matters for thé comparison is the one

p=p
I+p

involving M?. Note that the coefficient of M? in B, is forall 0< p<1 , yielding

the smallest value as compared to coefficients of M? corresponding to all other HCCMEs.

So we can say that second order. asymptotic maximum bias of HC2 is the smallest,

dwlin—-

declaring it the clear winner against its rivals. Similar examination leads to the conclusion

that Minimax estimator is the second most preferable.

Also note that when the value of p (which is a measure of skewness) is close to zero or
one, and M? is relatively a small fiumbgr, then second order asymptotic maximum bias of
HC2 and Minimax are comparatively close to each other but when p is around 0.5 then
the second order asymptotic maximum bias of Minimax estimator is alm_os} double in
magnitude than that of HC2.

EV (5-)

+In addition, note that, when0< p<
E

, the second order asymptotic

maxi_m%m bias of HC3 is larger than both Minimax and HC2 but smaller than both HC1
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and HCO and when

(53

< p <1, the second order asymptotic maximum bias of HC3

is larger in magnitude than HC1, HC2 and Minimax estimator while it is about the same

as that of HCO.
Overall our results are in favor of HC2.

To make the comparison more clear, we plotted the second order asymptotic

maximum bias of all HCCMEs over all possible values of p while keeping M? fixed at

100. The following figure represents the comparison.
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Figure 6-1: Comparison of second order asymptotic maximum Bias of all HCCMEs over 'p'

Maximum Bias of all HCCMEs over 'p' with M?>=100
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From the above figure, we can see that the second order asymptotic maximum
bias of HC2 is the smallest, making HC2 as the best estimator against its rivals including

Minimax estimator, however, the Minimax estimator came out to be the second best.
Further note that, similar results were obtained with higher values of M2,

In the end we provide a comment on different findings of existing studies. As explained

earlier, existing studies are based on simulation by taking a particular set of regressors

and a skedastic function. But since the per"fonnancejof HCCMEs is different for different

set of regressors as well as skedastic function, conflicting results are obtained. Different

estimators are superior for different configurations of parameters. The minimax bias

criterio_x; provides a global comparison of the HCCMEs utilizing the worst case
ah

configuration of heterOske’éasticity. This evaluation shows that HC2 is by far the best

among all the estimators considered.
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6.3:  EXTENSION TO MULTIPLE REGRESSORS CASE

A major limitation on our results above is the restriction to the single regressor
model. As we show in this section, it is possible to extend these results to multiple
regressor models under certain conditions. This can be done by considering a sequence of

increasingly complex cases.

6.3.1: CASE 1: Orthogonal Regressors

N
Consider a standard regression model with regressors xg, Xi,...,Xk.1, where the first

L 4 . e
regressor is a constant, and all regressors are orthogonal, i.¢.
%
Y= IBO +,1le11 + ”+ﬂk—lxk—1t +&
1 3
Let B be the OLS estimate of B and consider the alternative model y' = 3, + Bx, +u,

where y' =y—lsz2 —“'_ﬂk—le-l'

Thus we can now use our results to assess the significance of regressor x; exactly as

before. The minimax variance estimate can be applied to obtain a minimally biased

estimator for the variance of f,.
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6.3.2: CASE 2: Prioritized Regressors

Next, consider a situation where the sequénce of priorities of the regressor is
known in advance. That is, we are testing for significance of a'regressor x; within a
nested sequence of models where the j-th model consists of all regressors x; to x;. This
situatiaon arises in polynomial regression, or ingARDL models, where we wéuld like to
choose the simplest models, with minimal order polynomial or lag. In this situation, we
can use the Gram-Schmidt procedure to orthogonalize rthe: régressors. Once we have
orthoggonal regfessors, we can use the procedure of Case 1 to evaluate the significance of

any regressor. Note that different priority orderings will lead to different calculations for

the variances. Intuitively, the question we ask of the data is the following:

Given the x) to X;.; are explanatory variables, does x; add sufficient explanatory power to
the model to be worth including? This is answered by purginig x; of the influence of the
preceding regressors prior to testing for significance. This differs from the conventional t-

statistic which treats x; on par with the other variables.

. 6.3.3: CASE 3: Categorized Variables with Unique Ranking

In the general case, to evaluate the significance of a regressor X;,” we must
categorize the relevant regressors into three categories. The first category is x1, ..., X;
where i<j. These are the regressors which have higher priority than x; — they must be

L
includéd in the model. This would be the case if, for example, theory dictates their

inclusion. The second category is those variables which are of equal priority; these would
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be variables Xi+1,...,Xx, Where k>j. The third category is variables of lower priority; these
are Xg+1, -.. , XK. These variables are to be included only if they add explanatory power

AFTER x; has already been included in the model.

First consider the case where i=j-1, and k=j+1, so that there are no variables of equal
priority. In this case, a Gram-Schmidt procedure will convert the model to orthogonal
regressors, and applying the procedures of the first case will yiéld the desired results. The
variable x; will be judged significant if and only if it adds significant explanatory power

after the inclusion of all variables x; to X;.1.

_ 6.3.4: CASE 4: General Case

Now suppose that there are other variable of equal priority. This includes the
possibility that i=1 and j=K so that all variables are of equal priority. This is typically
assumed in regression models. This is similar to the case of multicollinearity. If two
variab]es are close substitutes, then it can happen that both have insignificant t-statistics.
This fméans that one of the two is sufficient; rieither variable adds explanatory power in
presence of thei_other. In such cases, it is impossible to decide which of the two is
significant on purely statistical grounds. Many applied cases can be cited where
multiégllinearity leads to \:frong decisions on'significance on statistical grounds. The

suggested decision procedure for this situation is as follows.
Fr

First, Lposition x; as the first in the group of equivalent variables, then apply Gram-
b
Schmidt to orthogonalize the regressors, and follow the procedure of Case 1 to determine
144
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significance. If X; is not significant in the first position, then it is not significant. In any

later position, it cannot acquire significance after orthogonalization.

Next, position x; as the last in the group of equivalent variables. If it is significant in the
last position after a Gram-Schmidt orthogonalization, then it will always be significant in

earlier positions.

The only remaining possibility is that the variable is significant in the first position;
but insignificant in the last position. In this case, the data does not lead to a firm
conclusion. The variable may or may not be significant, depending on whether or not
other variables of equal priority are included. In absence of statistical evidence, decisions

about significance must be made on a priori or theoretical grounds.

B
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6.4: A REAL WORLD APPLICATION OF HCCMEs

In this section, we provide application of these results using some real world data.

The détails are provided below:

Consider a two-covariate linear regression model:
[6.4.1] y, =B+ 6%, + 0%, +£,t=12,..,T.

The dataset used consists of data on per capita expenditure on public schools and
per capita income by state in the U.S. in 1979, and is tz:keri from Greene (1997, p.541).
The dependent variable y is per capita expenditure on public schools and covariates 'x;
and xj are per capita income (scaled by 10™) and the squarer of per capita income
respectively, totaling T=50 observations. We considered only 47 observations omitting
three high leverage observations (Alaska, Mississipi, Washington D.C.), so our sample
size is T=47. Sincethis is a multiple regressor model so we first orthogonalized the
regressors by using Gram-Schmidt procedure and then estimated the above model using
OLS. The multiple linear regression model is transformed to simple linear regression

model using the procedure outlined in section 6.3 above. i.e. we estimated the following

regression model:

[6.42] ¥ =p +pB,x, +u, where y’ =y—,33X3, and, f3°s are OLS estimate of 3 °s.

)

‘We calculated the maximum positive and maximum negative bias of all

HCCMES, HCO0, HC1, HC2, HC3 and Minimax Estimator _L__lsing the analytical formulae
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developed. The overall maximum®*bias is also calculated for all HCCMEs including

Minimax estimator. The results are provided in the following table.

Table 6-1: Overall Maximum Bias of HCCMEs

MB of HCO . 363
MB of HC1 225
'MB of HC2 0% .
MB of HC3 322

MB of Minimax 1.64

Note: MB stands for maximum bias

From the above table, we can see that overall maximum bias of HC2 is smallest of all
while minimax estimator has second lowest maximum bias. The bias of HCO is found to

be largest of all.

1 . . : . o
We  experimented with -other data sets as well and obtained the similar results

favoring HC2 though the maximum bias changed due to change in the design matrix.

In the end we stiongly récommend the practitioners to use HC2 estimator while

performing heteroskedasticity corrections.

e
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Cha%ter 7:  CONCLUSIONS AND RECOMMENDATIONS

A e

This thesis deals with the issues of comparing the most famous HCCMEs namely
HCO proposed by White, HC1 proposed by ﬁinkléy, HC?2 suggested by Horn, Horn and
Duncan and HC3 by Ma‘ckin‘non and White. Much of the existing literature is concérned
to compare their performances using Monte Carlo simulations. Some of the studies
provided the bias expression for different HCCMESs but their analytics is too complex to
compare them in detail. So, still no clear cut winner has emerged, though, a number of
studies suggested HC2 and 'HC3 using different criteria, e.g. size distortion etc. Since
performance of HCCMEs depends on the design matrix of regressors as well as the
skedastic function of variances, so simulations are not the tight choice, since simulation
takes one particular set of regressors and skedastic function. So the only solution is to

compare HCCMEs using analytical comparison.

In this thesis, we gave exact analytical expressions for the biases of HCCMEs. Due to
complexity of analytics, we consider one regressor model and provided the comparison

of HCCMEs by comparing their asymptotical worst case biases.
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We have obtained elementary explicit analytical formulae for the bias of variance
estimates in a single regressor model with heteroskedasticity. This allows us to calculate
the pa&ém of the least favorable heteroskedastic sequence, and to compute worst case
bias. I’El the past, simulation studies chose different patterns of heteroskedasticity in an ad-
hoc fashion. This ad-hoc choice does not allow for‘._accurate evaluation of strengths and
weaknesses of diffe;rent classes of ‘estimators. Qur methodol(;gy permits an analytical
assessment and comparison of estimators on the basis of their worst case bias. In some

cases, this minimax assessment can be too pessimistic. Our formulae also permit

alternative methods of evaluation, which may be explored in future research.

One very important payoff from our research is an explicit formulae for a minimax
estimatior which has substantially lower maximum bias than conventional estimators,
HCO, ;Iél, HC3 [in case of symmetric as well as asymretric regressors] and HC2 [in
case of symmetric regressors only]. The proof of minimaxity is not analytic but
heuristically based on simulations. We prove minimaxity for a restricted class of
regressor sequences, and numerically showed that particulars of the regressor sequence
do not matter. It is possible that the estimator obtained is minimax among the clas$ of all

estimators — not just the special one parameter family analyzed in this thesis. Even if this

=
is not so, numerical calculations show that it cannot be improved upon by much. This

E
[

solves the problem raised in the introduction: how to choose a specific HCCME from
among ‘a broad class with competing claims to superiority and widely different small

4
sample properties.
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An unsolved puzzle is the invariance conjecture. The maximum bias functions B” (a)

and B™(a) depend directly on the sequence of regressors. Why the value of ‘a’ at their
£

inters'éction depends only the kurtosis is a mystery we leave for future researchers to
resolvé. Further note that we proved that invariance conjecture is valid in case of a
s'peciaT class of estimators which takes into account HCO and HC1 as special cases,
however, for the other two HCCMEs (HC2 and HC3), this conjecture may holds as well.

Further research is required to explore this issue.
We can summarize our main findings as follows:

. B . . . .k J
1. Minimax has lowest second order asymptotic maximum bias in” the class of all
' Estimators including HCO and HCI as special cases. Hence Minimax estimator is

J - hl e . " 3 . . -
a clear winner against all estimators which fall in this specific class of estimators.

*

2. HC2 and HC3 do ngt fall into that particular class, so, we compared them for a
particular sequence of regressors (symmetric as well as asymmetric). In case of
symmetric regressors, the second order asymptotic maximum bias of HC2 is
exactly same as that of Minimax estimator and both are lowest as compared to all

}

tsecond order asymptotic maximum bias of HC2 is best among all estimators
:
including Minimax estimator.

rival estimators (HCO, HC1, HC3). But in case of asymmetric regressors, the

i
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3. Overall we can say that HC2 is the real minimax estimator whether regressors are
4 symmetric or asymmetric but for a restricted class of estimator Minimax estimator

} is best.

The analysis can be extended to cover high-leveraged estimators (HC4 and HC5) ina

future research and one can devise a minimax estimator covering these two estimators as

well.
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APPENDICES

o m——

APPENDIX A: ESTIMATORS NOT COVERED IN THE STUDY

=

This appendix includes the estimators which have not been considered in our study but

are presented here for compléteness.

i
v

A:1: BOOTSTRAPPED BASED HCCMEs

One of the alternatives to HCCMEs is to use bootstrap methods to estimate the
covariance matrix of OLS e;fi;ator. Efron (1979) proposed this method the first time,
called naive bootstrap. The basic idea is to resample the available information in data to
get the inforination about the:unknown statistic of interest. Bootstrap based methods are
uséful, according to Ader et al. (2008), the bootstrap method should be adopted in the

following situations:

i.  When theoretical distribution of a statistic of interest is complicated or unknown.
ii. When the sample size is insufficient for straightforward statistical inference.
ili. When power calculations have to be performed, and a small pilot sample is

|

available.
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[For more detailed survey on bootstrap methods, See Li and Maddala (19965, Horowitz
(1997)'and Berkowitz and Kilian (2000) etc.]

1 .

3

In the 'f(;flowing sub-sections, we-provide brief review of bootstrap methods developed so
far. 1

E
4
T
A.1.1: NAIVE BOOTSTRAP ESTIMATOR

Efron “'(11979) proposed the first bootstrap estimator known as naive bootstrap. The

bootstrap scheme is as follows:-

s

a. Draw a random sample, e,.' ,i=1,2,...,T, with réplacement form OLS residuq_l,

#
1

e,i=12,..T.

bs Use y; = X, +¢, to get a bootstrap sample.
!
f:. Compute OLS estimate # =(X'X)' X'y .

d. Repeat first three steps a large number of times, (say N times) to get N vectors

ﬁ:

13

of OLS estimates ( ,B.).

e. Calculate Covariance matrix of N vectors of (2 ).

ik
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A.1.2} JACKKNIFE ESTIMATOR (JA)

In 1982, Efron proposed an estimator known as Jackknife estimator, the idea is to
Li}v

- i, N 3 . .
drop one observation each time the regression model is estimated and parameters aré

estimated. At the end, the variance of the estimated parameters gives an estimaté of the

variance of true parameter. The jackknife estimator is given by:

Qu =——(X XY [X'ijaX—%X'ree'X](X'X)_l

Z
Where, = dzag( 3 J, t=12,..,T
(1-4,)

Here ¢”’s are OLS squared residuals and hy is the t-th entfy of the Hat matrix (H),

o
H=X(X'X)"'Xx"

A.1.3: WEIGHTED BOOTSTRAP ESTIMATOR

The estimator proposed by Wu (1986) can work evenly well in situations where
the data, in population, is not HD as opposed to Efron (1979) which works well when
data, in population, is IID and gives inconsistent estimates. Wu’s (1986) proposed a
scheme based on resampling the residuals in such a way that can yield HCCME. This

‘estimator is known as weighted bootstrap estimator. ,
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Later Chernick (1999) suggested to resample the actual data (Y, X) instead of
ressmpling the OLS residuals when the model is mis-specified or there is

heteroskedasticity.

A.1.4: LEVERAGED ADJUSTED BOOTSTRAP ESTIMATORS

In 2004, Cribari-Neto & Zarkos proposed three altémative bootstrapped
estimators, namely, adjusted weighted bootstrdp estimator, liriearly adjustéd weighted
bootstrap and inversely adjusted weighted bootstrap to take into account the effect the
high-leveraged observations. Readers are referred to Cribari-Neto & Zarkos (2004) for

more detailed discussion of these methods.

B

A.2: ESTIMATORS BASED ON GMM

*Cragg (1983) proposed an estimator based ‘on generalized method of moments

(GMM) which is proved to be more efficient that OLS based estimator.

Cragg estimator is given below:
g

-1

- o
,Bcragg=(X'W(W’§W) W'X) X‘W(W'ZW) Wy

Where,"‘W is the matrix of instruments, which includes, regressors X, their cross-products

and successive positive powers.

k.

When W=X, Cragg estimator reduces to Eicker-White’ estimator. By ‘a?iding additional

instruments, a gain in efficiency can be obtained. Small samples performance of this
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estimator is very poor, due to large size distortions of tests based on it. So this approach

could not get much popularity.

A.3: ROBUST HCCMEs

Furno (1997) advocated to use robust HCCME and proposed the robust versions
of HCO, HC1, HC2 and HC3.According to her, her approach has three main advantages.
First, one need not to specify the form of heteroskedasticity, second, the sample bias of
HCCMEs can be reduced and third one need not to do any preliminary analysis for the
detection of outliers and thus this saves us from losing the additional information which

the outliers contain and can be lost if we delete them.

The robust version of Eicker-White (HCO0) estimator is:
HCO, = (X'WX)" X 'WEoWX (X' WX)"
Where, W is an TxT diagonal matrix"with- w, = Iﬂin(l,c/hn) and ¢=1.5k/T . Here,

Yor = ﬁiag{éf} J=1,2,....,T where, & is the t-th weighted least squares (WLS) residual

obtained from WLS regression of Y on X with least squares regression parameter
¥
Bre=(X"WX)" X'Wy.

The rol{ust version of Hinkley (HCO) estimator is:

3 i _ -
HCl, =(X'WX)" X'WSuWX (X' Wx)"

2

"
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Where, Ziz = diag il 4=12,..T
1—k/T

The robust version of Horn, Horn and Duncan (HC2) estimator is:

HC2, =(X'WX)" X 'WEWX (X WX)"

€r .
*

~2
Where, Zox = diag:{l p },z =1,2,..,T

LT

The robust version of Mackinnon & White (HC3) estimator is:’

HC3, =(X'WX)" X WEsWX (X 'Wx )™

F

. 2
Where, Zsz =diag{(l e'h,) },::1,2,...,T

With 4, is the t-th diagonal element of VWX (X 'Wx)" X'VW

Furno compared the performance of these Tour robust heteroskedasticity consistent
covariance matrix estimators (RHCCMES) using Monte Carlo Simulations. Her results

showed that in case of heteroskedasticity, the RHCCMEs reduce the biases and thus are

L, i
more efficient.

a

A.4: BIAS CORRECTED HCCMEs
i ‘ H
iThere is another approach that seems sensible, which first finds the bias and then

. A . . . [ . - .
simply .subtract this estimated bias from the estimator to get a bias corrected estimator.
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The first sct of bias corrected HCCMEs is proposed by Cribari-Neto et al. (2000)
who analytically calculated the bias of Eicker-White (HCO0) and then defined bias
corrected estimators recursively, that is, they calculated bias of HCO and subtracted it
from the actual HCO estimator recursively. They also provided the expressions for the

variances of these estimators.

Later, Cribari-Neto and Galvao (2003) generalized the results of Cribari-Neto et
al (2000) and analytically calculated the bias corrected versions of HCI, HC2 and HC3

along with HCO and also provided the expressions for the variances of these estimators.

ok , , L
A.5: HIGH-LEVERAGED BASED ESTIMATORS

Two esfimators developed by Cribari-Néto (2004) and Cribari-Neto et al. (2007) for
high-leveraged observations in the design matrix. These are discussed briefly in the

following sub-sections.

A.5.1: CRIBARI-NETO (HC4) ESTIMATOR
This estimator was proposed by Cribari-Neto (2004) and it takes into account the

effect of high-leveraged observations in the regression design. He adjusted HC3 by
taking the exponent of the c{iscounting term as minimum of the 3 and the ratio between
each leverage measure and the mean leverage. This estimator was named as HC4 and is

given as follows:
]{.
Qs = (X XY (X' E 0 XX XY

(2

i
3
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VTR Asad use: Ww. T

2 u’ .
Whete, Zyes = dzag[a—)?}, t=12,.2T

With,

g, =min

T‘Z

+ T
.3 —mm{T“ By , }, (.'.Zh" =KJ
K Py

Here the discount factor is the ratio between the leverage measure of each

observation and the average of all leverage measures. Cribari-Neto (2004) showed using

simulation suggested that.HC4 should be used when regression design contains

influential observations using size distortion as the deciding criteria.

A.5.2: CRIBARI-NETO et al. (HC5) ESTIMATOR
‘This estimator known as HC5 was proposed by Cribari-Neto et al. (2007) and is

given by:

Qsies = (X' X)) (X'E 0. XX X))

Where, 2 HCS =

With, @ =min

Where

?c...J i,

t=1

u"

N
((] % )a,) t=1,2,..,T

| i kho, il . {Th,,= ( Tkhmj}
———,max| 4,—"— |, =min jmax| 4, —==
YR | T oo

(]
=1

=max{h,h,,...., .} is the maximal leverage.
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The constant @, determines how much the i™ squared residual should be inflated

in order to account for the i observation leverage. Atcording to Cribari-Neto et al.

(2007), this estimator is useful when the regression design contains extreme high-

leveraged observations. This estimator (HCS) reduces to HC4 when the regréssion design

€

contains no extreme influential observations.
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