UrduKashishStyler 7—% A
TS

Frey H.- "“) o v wa oo

Developed By:

Kburram Igbal

Mubammad Ali

Supervised By:
Dr. Sikander Hayat Khiyal

Department of Computer Science
International Islamic University Islamabad
(2003)

LIBRARY

Islamabad

UrduKashishStvier Final Approval

ded _V._ (’H‘)-T“’S?s‘

o e

Department of Computer Science
International Islamic University Islamabad

Final Approval Dated December 26, 2003

It is certified that we have read the project report submitted by Mr. Khurram Igbal
Reg No14-CS/MS/01 and Mr. Muhammad Ali Reg No 17-CS/MS/01, it 1s our
judgment that this report is of sufficient standard to warrant to acceptance by
International Islamic University Islamabad for Master of Science Degree in Computer

Sciences.

Committee

1. External Examiner W)
e

Dr. Muhammad Afzal
Director CIT, Arid Agriculture
University, Muree Road, Rawalpindi.

2. Internal Examiner
Mr. Zaheer Aziz

Assistant Professor
Department of Computer Sciences

Faculty of Management Sciences

3. Supervisor é“' ok >~
Dr. Sikander Hayat Khiyal ,/;i—-——"—‘

Head Department of Computer Sciences

Faculty of Management Sciences

International Islamic University Islamabad.

A dissertation submitted to the International Islamic University, Islamabad as a
partial fulfillment of the requirement for the award of the degree of Master of Science

in Computer Science.

i

UrduKashishStyler Dedication

Dedication

To our parents

il

UrduKashishStyler Declaration

Declaration

We here by solemnly declare that the developed software and this accompanied
report neither as a whole nor as a part thereof has been copied from any source. It is
further declared that we have developed this software as well as the accompanied
report entirely on the basis of our personal efforts made under the kind guidance of
our teachers. If any part of this thesis is proved to be copied out from any source or
found to be reproduction of some other, we shall stand by the consequences thereof.
We also declare that no part or whole of the work presented in this thesis has been

submitted in support of any degree for other university or institution of learning.

Khurram Igbal
Reg # 14-CS/MS/01

Muhammad Ali
Reg # 17-CS/MS/01

v

UrduKashishStvler Acknowledgement

Acknowledgement

First and above all, gratitude is due to ALLAH who gave us health, strength and
patience to complete this thesis. We are thankful to our teachers who guided us in this
project in any way they could, specially to our supervisor Dr. Sikander Hayat Khiyal for

providing us help in conducting the praject.

We further wish to express our gratitude to people we met during project who have
contributed to this thesis by offering guidance, sharing good advice, and providing tough

critique when necessary.

Khurram Iqbal
Reg # 14-CS/MS/01

Muhammad All
Reg # 17-CS/MS/01

UrduKashishStvler

Project in Brief

Project Title:

Undertaken By:

Supervised By:

Date:

Start Date:

End Date:

Tools:

Operating System:

Project In Brief

UrduKashishStyler

Khurram Igbal 14-CS/MS/01
Muhammad Ali 17-CS/MS/01

Dr. Sikander Hayat Khiyal

November 6, 2003

September, 2002

Visual C++

Windows XP

vi

UrduKashishStyler . Abstract

Abstract

UrduKashishStyler is a vector-based tool specially designed for Urdu text
designing to ease and reduce the text designing efforts, because text composing with
effects in existing tools is a tedious job and require more than fifteen steps. With the
existing systems only skilled person can prepare good looking headings. This tool
provides a number of collections with different composing styles and patterns in
Kashish Art Gallery, from where the user can select the sample and the pattem of
selected sample will be applied on the text. The user may also customize these

patterns.

We have used true type vector fonts for writing Urdu. In vector fonts the
shape of glyphs is stored in form of vectors. After obtaining data from font file we
decipher the information into vector points by using deCasteljan algonithm. Then
these vector points are used to draw the actual glyphs and performing other operation

like gradient-filling, pattern filling and transformations.

vii

UrduKashishStvier Preface

Preface

This thesis is regarding the project work title “UrduKashishStyler” submitted as
partial fulfillment of requirement for the award of the Master of Science Degree in

Computer Sciences Internationai Istamic University, Islamabad.

In chapter one, we present the introduction of the project, giving the purpose and

need of the Project. Objectives of the project are also mentioned in this chapter.

In chapter two, we present general background of fonts and technologies used in
details. Chapter three is concemed with system analysis, which cover requirement and
domain analysis of this software with the help of different software models. Chapter four
deal with the design analysis describing the design of the software. In Chapler five, we
give the implementation details of our software along with some sample codes and
techniques that are used in the project. In Chapter six, we define Testing and Evaluation

part showing the system stability.

At the end of Dissertation Appendices, Glossary and References are given. In the

appendix-A a general description of software 1s given.

viii

UrduKashishStvler Table of Contents

Table of Contents

Chapter No. Contents

1. IntroduCtion .. oo e e e e
1.1 Vector Image........o.ovviiiniiiine e PO O serasias
1.2 Glyph And Vector Glyph.......................... r et e e e
1.3. EXiSting Problem e e eoei e e e
1.4 ObBJECHIVE. .. oirniriie i ettt aa s e

2. Basic COmEePLS. . ..ottt e e e
2.1 oD ettt e e
211 TrueType FORtS.oiinii e
2.1.1.1 TrueType Font Files.........ccoooiiiiiiiii

2.1.1.2 TrueType Rasterizer.oooiviiiiiii i e e eeaaas

2. 1.2 BItmap FONES. ..o e e e e

2.2 Graphics Device Interface +.... ..o
2.2 1 Parts Of GDIH . o oeisie it e e e
2.2.1.1 2-D Vector Graphics.........cooeiiniiiiiiiiiii e,
22.1.2ImMaging.....cooovviviiin i, e

2.2. 1.3 TYPOZIaPhY. .o e

2.2.2 Features 0f GDIH.....vniniiiiiriiicicie i s e e
2.2.2.1 Drawing Tools. ... oeieiiiiiiiiiiiii e e ea e

2.2.2.2 Gradient Brushes...........coiiiiiiiiiiniiiii e

2.2.2.3 Cardinal Splines...........oooiiiiiiiiniineennn, e

2.2.2.4 Independent Paths.............oooiiiiii i

2.2.2.5 Transformations and the Matrix.............c.oooviiiin e

2.2.2.6 Scalable RegiONS. ... viiviiiie i iieee et vris e

2227 AlphaBlending.........coooiiiiiiiiiii

2.2.2.8 Support for Multiple Image Formats..................ocins

D 3 DEVICE oM EXE. - o enes v eeeeen et e ettt aaase e e assiaaaesaaansesnaannrannsannes

W N

O e 00 00 00 o N N N NS N L

[y h— (SN e —t
[A R - T e

ix

UrduKashishStvler Table of Contents

Chapter No. Contents Page No.

2.3.1 Device Context TYPes. cocu ittt e e e e 12

2.3 1.1 DiSPlaY. . e et e 13

P T B sy 1 o £ PN 13

PR T Y (<) s 1o o 2 PP 14

2.3.1.4 Information.c..ou it 14

2.4 ODBJECL. ...ttt et et e e e et e 14
2.4.1 Filling and Outlining Objects..........c.oooiiiiiiiiiiiiiii . 15
2.4.1.1 Solid Color. .o e 15.

24.1.2 Gradient.......oooniieiii e e 16

P BB 11 1<)« | U PSP 16

A 90 B B = 11T PP 16

2.4.1 Drawing ObBJeCtS. ... ouenininiii ittt e 17
2.4.1 Moving ObJectS. ... o.iiiiiiiiiii i e 17

3. System ADalySis 18
3 ATAIYSIS oot e 18
3.1.1 Requirement Analysisc.ooooviiiiiiiiiiiiiiie e, e 18
3.1.2 Domain Analysis SRV SRR 18

3.2 Steps for Object Oriented Analysiscooviiiiiiiiniinii 19
3.3 TUSE CaASCS « e eeeeines vttt e ettt e e et e e e e e b e e aae e a e i 19
3.3.1 Use Case ANALYSIS .. .uenriiniiniiiiii et reeane s et vare e 19

T TN o) o S OO 20

3.3.3 Use Case Expanded Format............coviiiiiiniiiiin i, 20
333.1UseCaseRectangle.........ooveimnniiiiiiiiiiii i, 22
3.3.32UseCase Circle. .o v e 23
3.3.3.3 Use Case BIIPSE... . vriveeoeeeeeeieeeeneeeeieenesaeeennans e, 24
3.3.3.4Use Case LiNC ..o iivniiiiiiiiciiiii i raee e 26
3.3.3.5Use Case TeXtuu i iiiiiiiii it aens 27

3.3.3.6 Use Case Layered Text.......ccoviiiiiiiiciiiii e 28
3.3.3.7UseCase Undo......coooiiiiiiiniiiiiiii i 29

UrduKashishStyler

Table of Contents

Chapter No. Contents

4. System Design

4.1

4.3

5. Implementation
L LI 20 10)
R I 75 1180 T =T PP

5.1

3338UseCaseRedo...ccccininnniiiiiiiiiiiiiiiinn
3339 UseCaseCutl......covniiiiiiiiiiiiiiiiii e,
3.3.3.10 Use Case Copy....ovvvrirrreiemiriiinernnneeannen.
33311 UseCasePaste..ccocooenvviiineniiiiiaaan..,
3.33.12Use Case Delete........cooevveeiniineiiann...
3.3.3.13 Use Case Duplicate...........ccooevvvennnnn....
3.33.14UseCase Order..........occovvvinvvnnnnn. e
3.3.3.15Use Case Break Text......ccccoovniiieeinnnnnnn.
3.4 Domain Analysis
3.4.1 Conceptual Diagram...........c.ciiiiiiiiiieiiiniiiinnnn.
34,2 CONCEPES. «ene ettt aee ettt a s

Activity DIagramsovviviiiiiiiiiiire e aenaees

42.1 Attributeooeeiiiii e e a e icee e,
~4.2.2 Relationshipsooiieimeniiiieien e .
Sécjuence DAAGIAT <. Feveeeea e e eanes
431 Drawingaline...........coiiiiiiii
4.3.2 Drawing a Rectangle.................cooiiiiiiiininnne.
4.3.3 Drawing an Ellipse..........oiiiiiii
434 DrawingaCircle......coooiiiiiiiii i
4.3.5 Selection PrOCESS. ... cuneriereieeneeeaiareaiaaerarnannenns
4.3.6 Scaling Process........ooveiiiieiiiiiiniie e
4.3.7 Translate Process......... et ety aas he

4.3.8 Group Process.......c.c.covviiiiiiiiii SN

..

..

...

.................... 42
.................... 42
.................... 46
................... 46
.................... 47
.................... 58
.................... 58
................... 59
.................... 60
.................... 61
.................... 62
.................... 63
64
................. 65

................... 66
.................... 67
................... 69

X1

UrduKashishStyler Table of Contents

Chapter No. Contents Page No.
5.1.2 WOTA PrOCESSOT. .. . enere et eeeis eaeeeiitraia e tanaanr e eaanrsraasenanens 70
5.1.3 QUEPUL SCIEIL. . .evveiiiiiie it iieeee it it ea e ee e 70

5.2 Graphical BAitor.......cooviiiiiiiiiii e e 71
5.2.1 Select TOOL. ..t it er e v e aea et s v s e eaes 71
5.2.1.1 Selection ACHOMS. .viuruirieeeiaieareeaeranrrneenerniassreeniann, 72

5.2.1.2 Multiple Selections.oeiiviiiiiiiie e S 72

5.2.1.3 MOVE ACHOMS. . evoveiiniiaetereeeeceneeeiaaeeenetaeesen et aeaean, 73

5.2.1.4 8Cale ACHIONS. . uiittiiireraeeeeanete et aets e ten et e n e 73

5.2.2 Rectangle TOOL . cu e it 74
523 EHipse TOOL ... 75
5.2.4 CIrCle TOOL. . eutiniee e ee e s eee et et et 75
5.2, 5 LANE TOO0L. ettt ettt e 76
5.2.6 Free Hand Line Tool.....oviiuiniiiiorii i 76
TN A =% 0 T) PO P 77
5.2.8 Zero Layer Text Tool.. .o 77
5.29 0ne Layer Text TOOl..c.utiiniiiiiiiiii it N ’ 77
5.2.10 Two Layer Text Tool............cooeiiiiis e 78
5.2.11 Three Layer Text TOOL....coeiiniiinen i, 78
5.2.12 Break Text Tool. ..o iii i et e e 78

Lo 3 61T s TU U OO TP 79
IO £ i o T O U SRUP R PO 79
LT 08 P R 79
R 00) 3 7S TR RP 80
5.7 P AT o e ettt ettt et eea e ee e bt ettt 80
5.8 DeletC....veereeeeeerrneseeeeneans P PP PEpRe e 80
5.9 DUPHCALE. oot et erreee e eie et e e ee e e e re s e s e e e et et 80
LR ST [N | P OO 81
5.11 Copy Attributes FIom........ooiiiiiiiiiie e 81
I 17 €301 T P T 82
R0 0 35T (o151 T OO U g P PP 82

x11

UrduKashishStvler

Table of Contents

Chapter No. Contents

5.14 Order Of Shapes.....c.ovvuit i
5.14.1 Forward On€...ccooeeieivniniiiiiii i e vaeaes
5.14.2 Back One...ciiriiiiieiiii et s
5.14.3 TOFTONt. ..ttt eae e
5144 ToBack. .oooiiii i
5.18.3 TR FRONt Of v eoeeeeeeeese e eee s
5143 BehiNd....viviiniiirineie et

5.15 TranSfOTIIAtIONS. .. v e een et aean e aeer e aaecseeaerasaasenaans
5.15.1 Translation......ooree i
5.15.2 SCaliNg...cviniiiiiiiiii

5.16 Inside-Outside TestS......coovvririveriiiiiiiiiii e e
5.06.1 CIrCle. e eeeie i eecren s e
5.6, 2 LiNE. ettt e ve et e et
516, 3 ToXL et iitiiie ettt e b e bt

5.17 Getting the Glyph Outline..............ooviiiinin e,
5.17.1 The GetGlyphOutline APL...................
5.17.2 Polyline and QSpline Records............ccoovnvennann.
5.17.3 Representing an “A’...........oiiiiiiiiiiiiiiiniees

6. TeStIME. ...cnininiii e
6.1 Objective of Testing. covevvnivieriivrnne i
6.2 Object Oriented Testing Strategies..........c....cooeiiinninnn.
6.3 Types of Testing Done.........cooviiiiiiiii i,

6.3.1 Unit TeStNZ. .oevirinenieiieierieieeecarien e nineaeaaea
6.3.2 Integration Testing.........cocooiiiiieininii e
6.3.3 Black Box TeStNEZ. ..c.vvvvieiiiniiiniiiiiieieniaeaas s
6.3.4 White BOX TeStINg....veeeieiinrineeiaireirareriraaniens
6.3.5 Beta Testiig. . urererevererereancene i iavreaianaeans
6.3.6 System Testing.........coovvviiiiiiiniin .
6.3.7 Portability Testing.......ccooeeviveinnininiannaee e

e, 36

.................... 102
.................... 102
.................... 102
.................... 102
.................... 103
.................... 103
.................... 103
.................... 103
.................... 103
.................... 103
.................. 104

Xiil

UrduKashishStler Table of Contents

6.3.8 Regression Testing.......cocoiiiiiiiiiiiiiiiiii e e 104

6.4 BValUAtION. ..ottt e et aeee e ee et et te et e et et aaeaes 104
6.4.1 Efficiency and Effectiveness............ccoocviinininnnnn. eeenrraean 104

0.4.2 ACCUIACY . . tveneee ittt ettt et it ettt et ia e an i ae e e e s earaaenesenes 104

6.4.3 Easy to Use Graphical User Interface.................oooiiieninn 104

7. Achievements and Future Work.................iiii 105
7.1 ACRIEVEIMENLS. ..\ . eiietittiiiiiaern sttt teticnaessiaeasertnetnteaertensranernraaaans 105
7.2 FUIIE WOTK . oottt et et e e et e it e n e e et e e 105
7.2.1 Using Unicode as Encoding System..........coociieviiniiniiiiii i, 105
7.2.2Us8 Of OTF fONtS. ..ottt et r e 106

7.2.3 Using .Net as Development Tool........c.oooiviiiiiiinin i 107

7.2.4 Multilingual Text Designing.........cc.ccovivieiiiniiniinaenan, e, 107
Appendix A: UrduKashishStyler..............o 108
Appendix B: GIOSSary.....coooiiriiiir i e e 113
Bibliography and Referencesccooiiiiiiiinns e 115

Algorithm For Urdu Composite Vector GIyph ..o

xiv

Urdu Kashish Styler Figures Used in Project Documentation

Figures Used in Project Documentation

Figure No. Page No.
Figure 1.1 Isolate, Final, Middle And Initial Glyphs.....................o 2
Figure 1.2 Isolate, Final, Middle And Initial Vector Glyphsccoeieiininie 2
Figure 1.3 Vector Glyphs for Urdu Word Kashishc..ooiii i, e 3
Figure 1.4 Composite Vector Glyphs for Urdu Word Kashish................. ... 3
Figure 1.5 Kashish Art Gallery With Different Samples..................o.oools 4
Figure 2.5 Shape Filled by Gradient Fill..........c.ooiiiiiiiii e 9
Figure 2.6 Path Created by Cardinal Spline......c.ccovceveennccciiccnrvceereecinecneee. . 10
Figure 2.7 Path Created by Connecting Straight Lines.......c...ccveeivnciiicciinnniinnnnene, 10
Figure 2.8 Path with Two Transformations(Scale And Rotate)........cccccvvcivinnnnen 10
Figure 2.9 Region with Scale, Rotate And Translate..........cccooevrmmenennnneroiciirenenens 11
Figure 2.10 Eilipse with Different Transparency Levels......cocoevvremiervciimnininninnnon. 11
Figure 3.2 Conceptual Model of Urdukashishstyler...........ccoooeiiiiinciiiicinnnn 40
Figure 4.1 Activity Diagram of Drawing A Shape........cccocvveeiiiiinnicnnciec i 43
Figure 4.2 Activity Diagram of WIiting TeXt............ocoovvrveierereerierserereceins e eneseesenees 44
Figure 4.3 Activity Diagram of Printing Process. ... N 45
Figure 4.4 Class Diagram of ijduKashishStyler .. 48
Figure 4.5 Class CShape......c.couuiiiiimiiciie e tin e e s 49
Figure 4.6 Class CFill AHIDULES.ccocimmiiiiiicsccic e 49
Figure 4.7 Class CKashishDOC........ccivmriieiniiicce et 50
Figure 4.8 Class CClose Shape.......ccovciiiciniinriiciiiee s 51
Figure 4.9 Class CLINE........oiiiiier s et e s 51
Figure 4.10 Class CPrintDafa..........o.ocoummirinesiiiinccne st s 51
Figure 4.11 Class CEllipse............ e s o e 52
Figure 4.12 Class CUTAULEXE......coueomiiiiiinie i et e 52
Figure 4.13 Struct UndoRedo.........ocoiiiciien et 52
Figure 4.14 Class CRectangle...........oo oot 53
Figure 4.15 Class CLayer AHIDULES.......coiiviiineciiicc e 53

XV

Urdu Kashish Styler Fioures Used in Project Documentation

Figure No. Page No.
Figure 4.16 Class CTexXtPOlYZOn. ..ottt 53
Figure 4.17 Class CMemdC.....c.covm vt 54
Figure 4.18 Class CURAUTEX....ccoonirniirieicc et r e 54
Figure 4.19 Class CFreeHandLine........cc.ovovvoeeiiiiiici e 54
Figure 4.20 Class CTEX e veeeeveereeeesesseasassss s eesssseseee s s s seseseereseeseeses s sssssnes 55
Figure 4.21 Class CKashishVieW..............cco.cooen oot 56
Figure 4.22 Class CSeleCt.......coooiiiiiiiiiis s 57
Figure 4.23 Sequence Diagram of Drawing A Lin€........ccccocoviiiciivcnciininciviniennneen, 58
Figure 4.24 Sequence Diagram of Drawing Rectangle............cccocoooiiiiinicnnnnn. 39
Figure 4.25 Sequence Diagram of Drawing An Ellipse...........ccooovviiiiniin 60
Figure 4.26 Sequence Diagram of Drawing A Circle........ocoovviiviiciiienineireee 61
Figure 4.27 Sequence Diagram of Selection Process...........oooouiiiiienncennnncnen. 62
Figure 4.28 Sequence Diagram of Scaling Process..........cccovvmimincciiienn, 63
Figure 4.29 Sequence Diagram of Translate Process..........cccoooooiininiviininnnninencenen 64
Figure 4.30 Sequence Diagram of Group Process............occcoiiiiiiincinicennnn 65
Figure 5.1 Parts of Urdu EditOr........c.coovevininnn v et aenn s 66
Figure 5.2 Table of Urdu Chars And Their Possible Forms................. RROTRR 69
Figure 5.3 Shapes Drawn With Rectangle Tool...........ccccoiiiniiiiienian, e 14
Figure 5.4 Objects overlapping Each Other................c........... e 82
Figure 5.5 The Effect of the Forward One Command...............ccccovniiinnniincnnn 83
Figure 5.6 The Effect of Back One Command............ccooiviiiinninniniinecns 84
Figure 5.7 The Effect of the Bring To Front Command........cc..ovoinirvenninnss 84

Figure 5.8 The Effect of To Back Command..... ..o 85
Figure 5.9 Inside Outside Test for Polygon.........coovvevveinrennvnsscnnvisininecnnn. - 90
Figure 5.10 Edge or Vertex onthe Ray..........ccooiiiiniiinnnincnennee. 91
Figure 5.11 f’olygon with Hole. ...,]

Figure 5.12 Bazier Curve with Points pl, p2Z and p3.......ccoiiiiiiiniiiencices 97
Figure 5.13 Two Quadratic Baziers Joined at p3.........ccoooeinien 99
Figure 5.14 Times New Roman A with Polylines and QSplines........cccoccoiinieniee 100

Figure 5.15 Left Foot of A......ocoiiiiiiiiiiiiiiccnncnnsnnsesssessnessnsneneene 101

Xvi

Chapter 1

Introduction

Chapter | Introduction

1. Introduction

Urdu, a language full of beauty and grace, a language that seems to have been
custom-built for literature, a language that adds meaning to prose and charm to poetry, a
language that is spoken in many countries of the world. To present Urdu with its grace and
beauty in the newspapers, magazines and business advertisements composing and designing

tools play an important role.

1.1 Vector Image

Vector images, also called object-oriented images, are created through a sequence of
commands or mathematical statements that place lines and shapes in two-dimensional
system. In physics, a vector Is a representation of both quantity and direction at the same
time. In vector graphics, the file that results from a graphic artist's work is created and saved
as a sequence of vector stateiments. For example, instead of containing a bit in the file for
each bit of a line drawing, a vector graphic file describes a senes of points to be connected.
One result is a much smaller file. Graphical elements in a vector file are called objects, where -
gach object is a self-contained entity, having properties such as color, shape, outline, size,
and position on the screen included in its definition. Since each object is a self-contained
entity, we can move and change ifs properties over and over again while maintaining its
original clarity without affecting other objects in the drawing. These characteristics make
vector-based applications ideal for text designing, where the design process often requires
individual objects to be created and manipulated. Vector-based text designing 1s resolution
independent. This means that they appear at the maximum resolution of the output device,
such as your printer or monitor. As a result, the image quality of drawing is a higher quality

resolution.

1.2 Glyph and Vector Glyph

Glyph is the representation of a character. In Urdu many of the characters can have
meore than one glyphs i.e. Isolate, initial, middlc and final shown in figure 1.1. The words are

constituted with different combination of these glyphs provided that initial form always

UrduKashishStyler 1

Chapter { Introdiiction

comes first, final in the last and the middle is positioned between the first and last form of

glyphs and may vary in numbers.

Iy +

- A 4
J U“ rehr -~
- Figure 1.1 Isolate, final, middle and initial glyphs

Vector Glyph is the glyph in'the form of outlines. The Outline of glyph is a series of
intermingled polyline and gspline records. The deCasteljau algorithm is appli-ed on these
records to get a series of points that are used to make the glyphs in vector form as shown in
figure 1.2. As vector glyph is resolution independent so when reducing or increasing the size,
it remains same without the loss of quality. It is the characteristic which makes vector-based

applications ideal for text designing.

& & & &
J g’q IS e
Figure 1.2 Isolate, final, middle and initial vector glyphs

The greatest thing about storing characters as outline is that only one outline per
character is needed to produce all the sizes of that character. A single outline can be scaled to
an enormous range of different sizes. It enables the same character to be displayed on

monitors of different resolutions, and to be printed out at a large number of different sizes.

1.3 Existing Problem

There are different composing and designing tools available for different languages,
which play an important role for better presentation of the text written in simple format.
When the vector form of glyphs are joined to make composite vector glyphs, then it becomes
very essential in various applications such as text designing in newspapers, magazines etc.
The existing applications that allow writing Urdu text in vector form do not cope with the

degenerate cases, such that the resultant composite vector glyph has the intersecting line,

UrduKashishStyler y)

Chapter | Introduction

common in the individual glyphs. Let us take a brief survey of existing applications that

allow writing Urdu vector glyphs.

& &
g—%m

Figure 1.3 Vector glyphs for Urdu word KASHISH

The existing applications write these individual glyphs in composite form as follows

& &

Figure 1.4 Composite vector glyphs for Urdu word KASHISH

The problem with the above composite vector glyph is that there are joining lines in
between each of the individual vector glyph, that makes each of the glyph as a separate '
entity. Another problem in the existing tools is that the composing and designing of Urdu text
with effects is very difficult and requires more than fifteen steps that are possible only by a

skilled person.

1.4 Objective

To overcome the problem mentioned above, our objective is to develop an algorithm
that takes the individual vector glyph as input and the resultant output is the composite vector
glyph with no intersecting line that was common between the individual glyphs. We also
want to develop a software application which provides the facility to develop good looking
heading with few mouse clicks that is possible in existing systems with number of steps. For
this purpose a number of collections with different composing styles and patterns will be
available in Kashish Art Gallery (Figure 1.5), from where the user can select the sample and

the pattern of selected sample will be applied on the text.

UrduKashishSoyler 3

Chapter | Mmtroduction

BRI G x

“Three Lager Text Samples

%—’91
D Deh) &

[ok | Cancel]

Figure 1.5 Kashish Art Gallery with different samples.

UrduKashishStyler 4

Chapter 2

Basic Concepts

Chapter 2 Basic Concepts

2. Basic Concepts

To present Urdu with its grace and beauty in the newspapers, magazines and business
advertisements, designing applications play an important role. These applications are based
on creating either vector or bitmap 1mages. UrduKashishStyler is a comprehensive vector-
based drawing program that makes it ea‘sy to create professional artwork for intricate Urdu
text designing technical illustrations. UrduKashishStyler provide tools that work efficiently

producing high-quality text designing.

2.1 Fonts

The text is displayed using a Font that refers to a complete set of glyphs in a specific
typeface, style and weight. UrduKashishStyjer uses the TrueType Fonts (TTF) instead of
Bitmap Fonts (BF) since Bitmap Fonts need separate bitmap sets for each and every font size
whereas TrueType Fonts remain essentially the same regardless of the size of a character.

TTF and BF are explained in the following section.
2.1.1 TrueType Font

A TrueType is 2 scalar of scalable font. A TTF is defined using mathematical vectors,
so it remains essentially the same regardless of the size of a character. As a result range of
sizes can be rendered from the same definition. Moreover lines and curves instead of pixels

are used by TTF for drawing glyphs. These lines and curves have no designated point size.

TrueType font technology is designed by Apple Computer, and now used by both
Apple and Microsoft in their operating systems. Microsoft has distributed millions of quality
TrueType fonts in hundreds of different styles, including them in'its range of products and
the popular TrueType Font Packs: TrueType fonts offer the highest possible quahty on

computer screens and printers, and include a range of features which make them easy to use.

The TrueType font technology consists of two components: the TrueType font files

and TrueType rasterizer.

UrduKashishStyler 3

Chapter 2 ___Basic Concepts

2.1.1.1 TrueType Font Files

A TrueType font file includes different kind of information used by the operating
system software to ensure that characters are displayed on the computer screen or are printed
out exactly as the font designer intended them to be. ‘The information in a TrueType font is
arranged in a series of tables. In addition to the shapes of each character, a TrueType font file
includes information about how the characters should be spaced within a block of text,
character mapping details (goveming the vanety of characters included n the font and the

keystrokes needed to access them), and much more besides.
2.1.1.2 TrueType Rasterizer

The TrueType Rasterizer 1s a computer program which is typically incorporated as a
part of an operating system or printer control software. With this in mind, it has been written

with a well defined client interface, and a clean modular structure in portable C.

The job of the TrueType Rastenizer is to generate character bitmaps for screens and
printers (otherwise known as raster devices). It accomplishes this by performing the

following tasks:

+ Reading the outline description of the character (lines and splines).from the TrueFype
font file.

« Scaling the outline description of the character to the requested size and device
resolution. .

« Adjusting the outline description to the pixel grid (based on hinting information).

« Filling the adjusted outline with pixels (scan conversion).
2.1.2 Bitmap Font

A bitmap font represents each character glyph using a bitmap array and is designed
for a specific aspect ratio and character size. Since the logical size of the bitmap is fixed, its
physical size on the display device will depend upon the resolution of the device. Either the

bitmap fonts need separate bitmap sets for each and every font size, or larger character sizes

UrduKashishStyler 6

Chapter 2 Basic Concepts

are created by simply duplicating rows or columns of pixels. However this can be done in
integral multiples only and with certain limits. For this reason bitmap fonts are termed non-

scalable fonts. They can not be extended or compressed to an arbitrary size.
2.2 GDI + (Graphics Device Interface)

Microsoft Windows GDI+ is a class-based application programming interface (AP)
for C/C++ programmers. It enables applications to use graphics and formatted text on both

the video display and the printer.

A graphics device interface, such as GDI+, allows application programmers to
display information on a screen or pninter without having to be concerned about the details of
a particular display device. The application programmer makes calls to methods provided by
GDI+ classes and those methods in turn make the appropriate calls to specific device drivers.
GDI+ insulates the application from the graphics hardware, and it 1s this insulation that

allows developers to create device-independent applications.

As its name suggests, GDI+ is the successor to Windows Graphics Device Interface
(GDI), the graphics device interface included with earlier versions of Windows. Windows
XP or Windows Server 2003 supports GDI for compatibility with existing applications.

GDI+ optimizes many of the capabilities of GDI and provide;s additional features as well.
2.2.1 Parts of GDI+

The services of Microsoft Windows GDI+ fall into three broad categories: 2-D vector

graphics, Imaging and Typography
22.1.1 2-D Vector Graphics

Vector graphics involves drawing primitives (such as lines, curves, and figures) specified
by sets of points on a coordinate system. For example, a straight line can be specified by its
two endpoints, and a rectangle can be specified by a point giving the location of its upper-left
comer and a pair of numbers giving its width and height. A simple path can be specified by

an array of points to be connected by straight lines. A Bézier spline is a sophisticated curve

UrduKashishStyler . 7

Chapter 2 Basic Concepts

specified by four control points. GDI+ provides classes that store information about the
primitives themselves, classes that store information about how the primitives are to be

drawn, and classes that actually do the drawing.
2.21.2 Imaging

Certain kind of pictures is difficult or impossible to display with the techniques of
vector graphics. For example, the pictures on toolbar buttons and the pictures that appear as
icons would be difficult to specify as collections of lines and curves. A high-resolution
digital photograph of a crowded baseball stadium would be even more difficult to create with
vector techniques. Images of this type are stored as bitmaps, arrays of numbers that represent
the colors of individual dots on the screen. Data structures that store information about
bitmaps tend to be more complex than those required for vector graphics, so there are several

classes in GDI+ devoted to this purpose.
22.1.3 Typography

Typography is concerned with the display of text in a variety of fonts, sizes, and
styles. GDI+ provides an impressive amount of support for this complex task. One of the
newest features in GDI+ is sub pixel antialiasing, which gives text rendered on an LCD

screen a smoother appearance.
2,2.2 Features of GDI+

The GDI+ has several features that allow application programmers to display
information on a screen or printer without being concemed about the details of a particular

display device. Following section describe these features.
2.22.1 Drawing Tools

GDI+ provides a variety of drawing tools to use in device contexts. It provides pens

to draw lines, brushes to fill interiors, and fonts to draw text.

2.2.2.2 Gradient Brushes

UrduKashishStyler 8

Chapter 2 Basic Concepts

GDI+ expands on Windows Graphics Device Interface (GDI) by providing linear
gradient and path gradient brushes for filling shapes, paths, and regions. Gradient brushes can
also be used to draw lines, curves, -and paths. When a shape is filled with a linear gradient
brush, the color gradually changes as it moves across the shapé. For example, suppose a
horizontal gradient brush is created by specifying blue at the left edge of a shape and green at
the right edge. When the shape is filled with the horizontal gradient brush, it will gradually
change from blue to green as it moves from its left edg;e to the nght edge. Similarly, a shape
filled with a vertical gradient brush-will change color as moved from its top to bottom. The
following illustration shows an elli.;)se filled with a horizontal gradient brush and a region

filled with a diagonal gradient brush shown 1n figure 2.5.

Figure 2.5 Shape filled by gradient fill

When a shape is filled with a path gradient brush, then there are a variety of options
for specifying how the colors change as it moves from one portion of the shape to another.
One option is to have a center color and a boundary color so that the pixels change gradually

from one color to the other as it moves from the middle of the shape towards the outer edges.
2.2.2.3 Cardinal Splines

GD1+ supports cardinal splines, which are not supported in GDI. A cardinal spline is
a sequence of individual curves joined to form a larger curve. The spline is specified by an
array of points and passes through each point in that array. A cardinal spline passes smoothly
(no sharp comers) through each point in the array and thus is more refined than a path
created by connecting straight lines. Figure 2.6 and 2.7 shows two paths, one created by

connecting straight lines and one created as a cardinal spline.

UrduKashishStyler 9

Chapter 2 Basic Concepts

Figure 2.6 Path created by cardinal spline

\

Figure 2.7 Path created by connecting straight lines
2.2.24 Independent Paths

GDI+ provides drawing facility using a Graphics object. Several GraphicsPath
objects are created and destroyed from the Graphics object. A GraphicsPath object is not
destroyed by the drawing action, so the same GraphicsPath objects can be used to draw a

path several times.
2.22.5 Transformations and the Matrix

GDI+ provides the Matrix facility, a powerful tool that -makes transformations
(rotations, translations, and so on) easy and flexible. A single 3x3 matrix can store one
transformation or a sequence of transformations. Figure 2.8 shows a path before and after a

sequence of two transformations (first scale and then rotate).
/T

N

Figure 2.8 Path with two transformations (scale and rotate)

UrduKashishStyler 10

Chapter 2 Basic Concepts

2.2.2.6 Scalable Regions

GDI+ expands greatly on GDI with its support for regions. In GDI, regions are stared
in device coordinates, and the only transformation that can be applied to a region is a
translation. GDI+ stores regions in world coordinates and allows a region to undergo any
transformation (scaling, for example) that can be stored in a transformation matrix. Figure
2.9 shows a region before and after a sequence of three transformations: scale, rotate, and

translate.

.,
.

ol
¥
B
5

et FeTat it

Figure 2.9 Region with scale, rotate and translate

2.2.2.7 Alpha Blending

In figure 2.9, there is the; untransformed region (filled with red) through the
transformed- region (filled with a hatch brush). This is made possible by alpha blending,
which is supported by GDI+. With alpha blending, the transparency of a filled color can be
specified. A transparent color is blended with the background color; the more transparent the
fill color is made, the more the background shows through. Four ellipses that are filled with

the same color (red) at different transparency levels have been shown in figure 2.15 below.

Figure 2.10 Ellipse with different transparency levels

UrduKashishStyler 11

Chapier_2 Basic Concepts

2.2.2.8 Support for Multiple Image Formats

GDI+ provides the Image, Bitmap, and Metafile classes, that allows loading, saving
and manipulating images in a variety of formats. The following formats are supported: BMP,

Graphics Interchange Format (GIF), JPEG, PNG, TIFF, ICON, WMF, EMF.
2.3 Device Context

Device independence is one of the chief features of Microsoft Windows. Applications
can draw and print output on a variety of devices. The software that supports this device
independence is contained in two dynamic-link libraries. The first, Gdiplus.dll, is referred to
as the GDI+, the second is referred to as a device driver. The name of the second depends on
the device where the application draws output. For example, if the application draws output
in the client area of its window on a VGA display, this library ts Vga.dll; if the application
prints output on an Epson FX-80 printer, this library is Epson9.dil.

An application must inform GDI+ to load a particular device driver and, once the
driver is loaded, to prepare the device for drawing operations (such as selecting a line color
and width, a brush pattern and color, a font typeface; a clipping region, and so on). These
tasks are accomplished by creating and maintaining a device context (DC). A device context
is a structure that defines a set of graphic objects and their aséociated attributes, and the
graphic modes that affect output. The graphic objects include a pen for line drawing, a brush
for painting and filling, a bitmap for copying or scrolling parts of the screen, a palette for
defining the set of available colors, a region for clipping and other operations, and a path for
painting and drawing operations. Unlike most of the structures, an application never has
direct access to the device context; instead, it operates on the structure indirectly by calling

various functions.
2.3.1 Device Context Types

There are four types of .device context (DC): display, printer, memory (or

compatible), and information, where each type serves a specific purpose.

UrduKashishStyler 12

Chapter 2 Basic Concepts

2.3.1.1 Display

It supports drawing operations on a video display. The application obtains a display
device context to identify the window in which the corresponding output will appear.
Whenever an application needs to draw in the client area then it obtains a display device
context that is released when the drawing is {inished. There are three types of Device context

for video displays:

1. Class Device Contexts are supparted strictly for compatibility with 16-bit versions of
Windows. When writing the applications, avoid using the class device context; use a

private device context instead.

2. Common Device Contexts are display device context maintained in a special cache by the
system. Common device contexts are used in applications that perform infrequent
drawing operations, Before the system returns the device context handle, it initializes the
common device context with default objects, attributes, and modes. Any drawing
operations performed by the application use these defanlts unless one of the GDI+
functions is called to select a new object, change the attributes of an existing é)bjec_t, or
select 2 new mode. Because only a limited number of common device contexts exist, an
application should release them after it has finished drawing. When the application

releases a common device context, any changes to the default data are lost.

3. Private Device Contexts are display device context that, unlike common device contexts,
retain any changes to the default data, even after an application releases them. Private
device contexts are used in applications that perform numerous drawing operations such
as computer-aided design (CAD) applications, desktop-publishing applications, drawing
and painting applications, and so on. Private device contexts are not part of the system
cache and therefore need not be released after use. The system automatically removes a

private device context after the last window of that class has been destroyed.

2.3.1.2 Printer

UrduKashishStyler) 13

Chapter 2 _ Basic Concepts

The printer device context supports printing on a dot-matrix prnter, ink-jet printer,
lascr printer, or plotter. An application creates a printer device context by supplying the
appropriate arguments (the name of the printer driver, the name of the printer, the file or
device name for the physical output medium, and other initialization data) and after the

application has finished printing, it deletes the printer device context.
2,313 Memory

To enable applications to place output in memory rather than sending it to an actual
device, a special device context is used for bitmap operations called a memory device context.
A memory device context enables the system to treat a portion of memory as a virtual device.
It is an atray of bits in memory that an application can use temporanly to store the color data
for bitmaps created on a normal drawing surface. Because the bitmap is compatible with the
device, 2 memory device context is also sometimes referred to as a compatible device

context.
2.3.1.4 Information

The information device context is used .to retrieve default device data. For example,
an application creates an information device context for a particular model of printer and then
retrieves the default atiributes. Because the system can retrie;re device information without
creating the structures, normally associated with the other types of device contexts, an
information device context involves far less overhead and is created significantly faster than

any of the other types.

2.4 Object

Objects are defined mathematically as a series of points joined by lines. The graphical
elements in a vector file are called objects. Each object is a self-contained entity, with
properties such as color, shape, outling, size, and position on the screen included in its

definition.

UrduKashishStyler 14

Chapter 2 Basic Concepts

Since each object is a self-contained entity, so its properties can be changed over and
over again while maintaining its ori'ginal clarity and crispness without affecting other objects
in the drawing. These characteristics are ideal for text designing, in which the design process

often requires individual objects to be created and manipulated.

2.4.1 Filling and Outlining Object

The object's outline is the line that surrounds the object. The 11l is the color or pattern
contained in the object. When an object is added to the drawing, its attribute can be changed

to Solid Color, Gradient, Texture and pattern.
2.4.1.1 Solid Color

Since solid colors are even-colored they allow to umform fill. These colors
communicated by scanners, monitors, and prninters in order to achieve a consistent and
accurate reproduction of the colors as desired. A basic understanding of the color spaces and
color management of the equipment helps to achieve the precise color required for the

project.

We all see color differently. Color is subjt?c_:tive to the human eye. Each device that
interacts with project's file: the scanner, monitor, and printer may have a different color
space. For example, a color that is visible to the human eye may not be reproducible by the
printer. Because there are so many color variations, a precise method for defining each color
is required. For example once we find the perfect shade of light orange, we need to be able to
repraduce that color and possibly tell others how to do the same. A color model defines that
perfect shade of light orange by breaking it down inlo precise components that allow to
accurately transmitting the information to other people and to the electronic devices used {o
create projects. A color model is a system used to organize and define colors according to a

set of basic properties which are reproducible.

There are many different color models that define colors, for example, HSB, RGB,
CMYK, and CIE Lab color models. The RGB and CMYK color models are only two of a

UrduKashishStyler 15

Chapter 2 Basic Concepts

number of models developed to suit a variety of digital design and desktop publishing

applications.
2.4.1.2 Gradient

A gradient fill or a ramp fill’is a progression of colors that causes two or more colors
to blend from one color to the others smoothly for adding depth_and color in the drawing.
When a shape is filled with a linear gradient, the color gradually changes as 1t moves across
the shape. For example, suppose a horizontal gradient brush is created by specifying blue at
the left edge of a shape and green at the right edge. When the shape is filled with the
horizontal gradient brush, it will gradually change from blue to green as it moves from its left
edge to the right edge. Similarly, a shape filled with a vertical gradient brush will change

color as moved from its top to bottom.

When a shape is filled with a path gradient, then there are a variety of options for
specifying how the colors change as it moves from one portion of the shape to another. One
option is to have a center color and a boundary color so that the pixels change gradually from

one color to the other as it moves from the middle of the shape towards the outer edges.

2.4.1.3 Pattern

A pattern is a simpie picture composed of only “on” and “off” pixels. The two colors
included in the bitmap are black and white. A bitmap pattern is a regular color picture. These
bitmaps vary in complexity, and it is best to use less complex bitmaps for fill patterns,

because complex ones are memory-intensive and slow to display.
2.4.1.4 Texture

A texture is a random, fractally-generated color that is used to give a natural
appearance for wood, clouds, stone, ripples, waves, and wrinkles, or create artificial patterns
such as checkers, dots, lines, and swirls. Texture fills increase the size of a file and the time it

takes to print.

UrduKashishStyler 16

Chapter 2 Basic Concepts

2.4.2 Drawing Objects

Drawing Objects are the basic shapes used for drawing i.e. Line, Circle, Ellipse and

Rectangle.
2.4.3 Moving Objects
Moving Object is to change the position of an object on the screen. The easiest way 1o

move and position the object is to drag and drop.

UrduKashishStyler 17

Chapter 3

System Analysis

Chapter 3) Svstem Analysis

3. System Analysis

Analysis is the foremost part of project development. Most of the time spent in
project development is dedicated to analysis. System analysis was done using prototyping

and object oriented methodology.

3.1 Analysis

Analysis plays a significant role in making of software. There are two main parts of

the analysis.

e Requirement Analysis

e Domain Analysis
3.1.1 Requirement Analysis

The rationale of analysis is to provide a model of the system’s behavior. In
conducting the project, Object Oriented approach is adopted. Object oriented analysis is a
method of analysis that-examines the requirements from the perspective of the classes and
objects found in the vocabulary of the problem domain. In requirement analysis we define
use cases diagram containing use cases, actors. A first step in analysis is to extract scenarios,

or use cases that describe the behavior of a system from an external user's perspective.
3.1.2 Domain Analysis

Conceptual domain analysis 'yie!ds common ground for each specific analysis. Object
Qriented analysis notions lend themselves for capturing generic concepts at multiple levels of -
granularity. Ensembles, sub ensembles, classes, and generic relationships are all candidates
for describing an application domain. A requirements domain analysis may lead to an OO

domain engineering effort. This entails the construction of design fragments of the generic

UrduKashishStyler 18

Chapter 3 Svstenm Analvsis

elements identified by a requirements domain analysis. These designs can be implemented

and added to a domain-specific code library.

3.2 Steps for Object Oriented Analysis:

« Obtain ‘complete" requirements.

» Describe system-context interaction.

¢ Delineate subsystems.

e Develop vocabulary by identifying instances with their classes, ensembles, and
relationships.

e FElaborate classes and relationships by defining their generic static structure and
describing their generic dynamic dimension.

e Construct a model in which the dynamics of objects are wired together.

These steps are connected by transformation -- elaboration relationships. The output

of the last step, the model, feeds naturally into the design phase.

3.3 Use Cases

A use case is a specific way of using the system by using some part of the
functionality. Each use case conslitutes a complete course of events initiated by an actor and
it specifies the interaction that takes place between an actor and the system. A use case s
thus a special sequence of related transactions performed by an actor and the system in a

dialogue. The collected use cases specify all the existing ways of using the system.
3.3.1 Use Case Analysis

Use f-:ase analysis is performed to identify portion of system performing specific task.
In use case analysis use cases, actors interacting with those use cases, and boundaries are
identified. A use case comprises a course of events begun by an actor, and it specifies the
interaction between actor and the system. All the use cases specify existing ways to use the

whole system. It is interaction of actors with external or other system with system being

UrduKashishStyler 19

Chapter 3 Svstem Analvsis

designed in order to achieve a goal. Use case describes the functionality of the product to be

constructed.
3.3.2 Actors

There is one actor in this use case diagram

e User

3.3.3 Use Case Expanded Format

There are fifteen use cases in this domain each of which shows its functionality.
These are as follows.

e Rectangle

o (ircle

e Ellipse

e Line

o Text "

o Layered Text

e Undo] _ . _
e Redo

» Cut

e Copy

e Paste

¢ Delete

¢ Duplicate

e Order

o Break Text

The use case diagram of our project is shown in Figure 3.1 followed by the detailed

information in expanded format of each use case.

UrduKashishStyler 20

Chapter 3 Svstem Analvsis

Figure 3.1 Use Case diagram of UrduKashishStyler

UrduKashishStyler 21

Chanter 3 System Analvsis

3.3.3.1 Use Case Rectangle

Actors: User

Purpose: To draw the rectangle.

Overview: User draws the rectangle on the drawing area.
Type: Real and Primary

Preconditions

e Rectangle Tool is selected from Drawing toolbar.
Post conditions

» The rectangle 1s drawn on the drawing area.
Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

Navigation

B Action System Response

1. User presses the left mouse | 2. Set the point as starting of

button. rectangle.

3. The user moves the mouse | 4. A temporary rectangle is

while keeping the left mouse | drawn on the screen from

button down. where the user pressed left

mouse button to the current

UrduKashishStyler 27

Chapter 3 Svstem Analvsis

mouse posttion.

5. The user releases the left | 6. Rectangle with the selected

mouse button. attributes is drawn.

Alternative conurses

5.a User presses the right mouse button, rectangle draw action is canceled and temporary

rectangle is removed from the screen.

3.3.3.2 Use case Circle

Actors: User

Purpose: To draw the circle.

Overview: User draws the circle on the drawing area.
Type: Real and Primary |

Preconditions

e Circle Tool is selected from drawing toolbar.
Post conditions

e The circle is drawn on _t‘he drawing area.
Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

UrduKashishStyler

1~
wd

Chapter 3

Svstem Analvsis

Navigation

Action

System Response

1. User presses the left mouse

button.

2. Set the point as center of

circle.

3. The user moves the mouse
while keeping the left mouse

button down.

4. A temporary circle is drawn
on the screen with dotted line,
using the radius point from
where the user pressed left
mouse button to the cument

mouse position.

5. The user releases the left

mouse button.

6. Circle with the selected

attributes is drawn.

Alternative courses

5.a

circle is removed from the screen.

3.3.3.3 Use case Ellipse

Actors:
Purpose:

Overview:

Type:

User
To draw the Ellipse.

User draws the ellipse on the drawing area.

Real and Primary

User presses the right mouse button, circle draw action is canceled and temporary

UrduKashishStyler

24

e AN

Chapter 3

Svstem Analvsis

Pre conditions

» Ellipse Tool is selected from drawing toolbar.

Post conditions

e The ellipse is drawn on the drawing area.

Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

Navigation

Action

System Response

1. User presses the left mouse

button.

2. Sef the point as starting of

ellipse.

3. The user moves the mouse
while keeping the left mouse

button down.

4. A temporary ellipse is
drawn on the screen, with
dotted line, from where the
user pressed left mouse button

to the current mouse position.

5. The user releases the left

mouse button.

6. Ellipse with the selected

attributes is drawn.

UrduKashishStyler

25

Chapter 3

System Analvsis

Alternative courses

S.a User presses the right mouse button, line draw action is canceled and temporary line

is removed from the screen.

3.3.3.4 Use case Line-

Actors: User

Purpose: To draw the line.

Overview: User draws the line on the drawing area.

Type: Real and Primary

Preconditions

e¢ I ine Tool is selected from Drawing toolbar.

Post conditions
s The line is drawi on the drawing area.

Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

Navigation
Action System Response
1. User presses the left mouse | 2. Set the point as starting of
button. line.
UrduKashishStyler

26

Chapter 3

Svstem Analysis

3. The user moves the mouse
while keeping the left mouse

button down.

4. A temporary straight line is
drawn on the screen from
where the user pressed left
mouse button to the current

IMouse position.

5. The user releases the left

mouse button.

6. Line with the selected

attributes is drawn.

Alternative courses

5.2

is removed from the screen.
3.3.3.5 Use case Text
Actors: User
Purpose: To wnte the text.
Overview:
Real and Primary

Type:

Yrecondition

User can write the text for designing.

e Text tool is selected from Drawing toolbar.

Post condition

e Urdu text is available in UrduKashishStyler for designing.

User presses the right mouse button, line draw action is canceled and temporary line

UrduKashishStyler

27

Chapter 3

System Analysis

Initiation

This use case is initiated when user clicks on the drawing area of the screen.

Navigation

PX(:tion

System Respbnse

1. User clicks on the

drawing area of the screen.

2. Kashish Urdu Editor appears

for writing text.

3. User enters the text in the

Urdu Kashish Editor.

4. Text will be displayed in the

text area of dialog box.

F? Click on OK button.

will be

available in the Urdu Kashish

6. The written text

Styler for designing.

Alternate Courses

1.a If the text was selected before click on Text button, then by default the selected text
will be available in the Kashish Urdu Editor dialog box for modification.

s.a If user clicks on cancel button, the entered text will not be available in the
UrduKashishStyler for designing.

3.3.3.6 Use case Layered Text

Actors: User

Purpose: To write Layered text.

Type: Real and Primary

UrduKashishStyler 28

Chapter 3 Svstem Analysis

Precondition

e Desired Layer Text Tool is selected from Drawing toolbar.
Post condition
o The text is written in selected layer.

Initiation

This use case is initiated when user clicks on the drawing area of screen.
Navigation

When user clicks on the drawing area of screen, a Text Art Gallery appears with
different samples. If the text was selected before the click on screen, then the pattern of
selected sample will be applied on the selected text, otherwise an Urdu Edit box will appear,
where the user will write the text and the pattern of selected sample will be applied on this
text. The user can aiso change the attributes i.e. line color, line style, line width and Fill of

the selected sample.
3.3.3.7 Use case Undo

Actors: User _

Purpose: To reverse the last action performed.

Overview: Gives user, the freedom and flexibility to experiment and be creative without
worrying, about permanently altering the drawings or having to start over. If
you make a change to your document, then wish you hadn't, you can reverse
the change.

Type: Real and Primary

UrduKashishStyler 29

Chapter 3 System Analvsis

Preconditions

s At least one altering in done on the drawing area.

Post conditions

e Reverses the last change.

Initiation

This use case 1s initiated when user gives the undo command.

Navigation
Action System Response
1. User presses the Undo|2. Reverses the last action
button. performed.
3. Updates the user drawing
area.
-

Alternative courses

1.a No altering or change is done in the document, so not any of the action is performed.

3.3.3.8 Use case Redo
Actors: User
Purpose: Restores changes reversed by the Undo command.

Overview: Gives user, the facility to restore changes reversed by the Undo command. It

is available immediately after you click the Undo command.

UrduKashishStyler 10

Chapter 3 System Analyvsis
Type: Real and Primary
Preconditions

e At least one Undo command is performed by the user.

Post conditions

» Restores the changes.

Initiation

This use case is initiated when user gives the Redo command.

Navigation

Action_ System Response

1. User presses the Redo | 2. Restores the last action

button. " | performed.)
3. Updates the user drawing

darea.

Alternative courses

f.a No Undo command is performed by the user, so not any of the action ts performed.

3.3.3.9 Use case Cut

Actors: User

UrduKashishStyler 31

Chapter 3 Svstem Analvsis

Purpose: Removes selected object or text from drawing area and places them on
the clipboard.

Type: Real and Primary

Preconditions

e At least one of the object is selected.
Post conditions

e The selected object is removed from the drawing area and placed on the

clipboard.
Initiation

This use case is initiated when user gives the Cut command.

Navigation

Action | —System Response

| 1. User presses the Cut button. | 2. Place the selected object on
the clipboard.
3. Updates the user drawing

area.
3.3.3.10 Use case Copy
Actors: User
Purpose: Copies selected object or text to the clipboard.

UrduKashishStyler 32

Chapter 3 System Analysis

Type: Real and Primary

Preconditions

» At least one of the objects is selected.

Post conditions

« The selected object is placed on the clipboard to paste anywhere on the drawing

area.

[nitiation

This use case is initiated when user gives the Copy command.

Navigation

Action . : System Response

1. User presses the Copy | 2. Place the- selected object on |
button. the clipboard. B

3.3.3.11 Use case Paste

Actors: User

Purpose: Copies the text or objects to the drawing area that haye been copied or cut to
the clipboard.

Type: Real and Primary

Preconditions

UrduKashishStyler 13

Chapter 3 System Analvsis

e At least one of the objects 1s placed on the clipboard. .

Post conditions

e The object or text placed on the clipboard will be copied on the drawing area.

Initiation

This use case s initiated when user gives the Paste command.

Navigation

Action System Response
—— .
1. User presses the Paste [2. Paste the text or object

button. placed on the clipboard, to the

drawing area.

3.3.3.12 Use case Delete

Actors: User

Purpose: To remove selected object or text without placing a copy on the
clipboard.

Type: Real and Primary

Preconditions

« At least one object or text is selected from drawing area.

UrduKashishStyler 14

Chapter 3

Post conditions

o The selected object is deleted.

Initiation

System Analvsis

This use case is initiated when user gives the delete command.

Navigation

Action

System Response

button.

1. User presses the Delete

2. Deletes the selected objeaq
from the list of objects.

3. Updates the user drawing

area.
3.3.3.13 Use case Duplicate)
Actors: User

Purpose: To create a copy of the selected object.

Type: Real and Primary

Preconditions

o At least one object or tex is selected from drawing area.

Post conditions

e A copy of the selected object 1s created.

UrduKashishStyler

33

Chapter 3

Svstem Analysiy

Initiation

This use case is initiated when user gives the duplicate command.

Navigation
Action System Response
1. User presses the Duplicate | 2. A new object of selected
button. type wiil be added in the list of

L

objects.
3. Updates the user drawing

arca.

3.3.3.14 Use case Order

Order is used to change the sequence of objects created in the Image Window.

This order determines the relationship between objects and, therefore, the

appearance of your image. The first object you create appears on the bottom

and the last object appears on the top. You can use the Order commands {o

Actors: - User -
Purpose: To change the sequence number of object.
Overview:

place the objects where you want them.
Type: Real and Primary
Preconditions

At least one object or text is selected from drawing area.

UrduKashishStyler

36

Chapter 3 System Anéilysis

Post conditions

¢ Selected object is drawn according to the selected order.
Initiation
This use case is initiated when user gives the Order command.

Navigation

Action System Response

1. User presses the Order (to | 2. The sequence of selected
Front, to Back, one step | objectis changed.
Forward, one step Back,| 3. Updates the user drawing

inFront of...) button. area.

3.3.3.15 Use case Break Text L

Actors: User
Purpose: To break the text.

Overview: User can break the text so individual words can be placed anywhere on the

screen.
Type: Real and Primary

Preconditions

+ Break Text Tool is selected from Drawing toolbar.

UrduKashishStyler 37

Chapter 3

Svstem Analysis

Post conditions

o The individual words of text can be placed anywhere on the drawing area.

Initiation

This use case is initiated when user clicks on the text. -

Navigation

Action

System Response

1. User presses the left mouse

button on the text.

2. Text is broken.

3. The user moves the word of

text anywhere on the screen.

4. Drawing screen area

updated.

is

Alternative courses -

l.a Click 1s not on the text. Try again.

3.a User doesn’t move the text and let it remain on the same location.

UrduKashishStyler

38

Chapter 3 System Analvsis

3.4 Domain Analysis

In domain analysis we represents concepts of our project .Discuses the functionality
of the project by representing conceptual diagram .Which contains main concepts and their

relations and their attitbutes.

3.4.1 Conceptual Diagram

Conceptual Model is a quintessential step in analysis or investigation, 1t is a
decomposition of the problem into individual Objects {called concepts), and the things we are
aware of. In addition to that creating a Conceptual Model also aids in clarifying the
terminology or vocabulary of the domain. A Conceptual Model is a description of things in a

real world problem domain, that is, it is not a Model of software design.

Figure 3.2 show the conceptual model and explains the main concept of the
UrduKashishSyler software. The Figure shows its working, relation between different

functions, relation between Concepts, their dependences and their corporations.

We have thirteen concepts in UrduKashishStyler problem domain which explain the

main operations and idea of the project.

UrduKashishStyler 39

Chapter 3) System Analvsis

SavesTo
KashishDoc KashishView

LayerStyle
Draws in
Color1 : Color
Contains Color2 : Color
L _ Shape ImageNo : Number
FillStyle i <1 Width : Number

Effect : Number

Color1 : Calor
Colar2 ; Coler Contains]
ImageNo : Number l
Effect : Number CloseShape
Text Rectangle Ellipse Circle FreeHndline Line

StartingPt - CPoint
MyText : Sking

TextPolygon

Figure 3.2 Conceptual Model of UrduKashishStyler

3.4.2 Concepts

There are thirteen concept in UrduKashishStyler which explains the main working

and concept of the project.

¢ KashishDoc
o KashishView
« FiliStyle

«* [LayerStyle
«* Shape

UrduKashishStyler 40

Chapter 3

Svstem Analysis

CloseShape
Text
Rectangle
Ellipse
FreeHandLine
Circle

Line

TextPolygon

UrduKashishStyler

4]

Chapter 4

System Design

Lnaoier o+

4. System Design

The purpose of design is to create architecture for the evolving implementations. Object
oriented design is a method of design encompassing the process of objects oriented
decomposition and a notation for depicting logical and physical as well as static and dynamic

models of system under design.

The design phase focuses on defining the software to implement the application. The
design object is to produce a model of the system, which can be used later to build the system.
The design goal is to find the best possible design within the limitations imposed by the

requirement and the physical and social environment in which the system will operate.

4.1 Activity Diagrams

It gives the pictortal representation of algorithm for the function. Activity diagram is
used to represent activities present in use cases. Basic need 1s that we want to make procedural
design in Unified Modeling Language (UML). Operations in use cases in sequence are
represented in activity diagram. Activity diagram are useful when we want to describe a
behavior which is paréﬂel, or when we want to show how behaviors in several use caé;es

interact. The activity diagrams are described as follows.

e The process of drawing a shape by the user is given in figure 4.1
» The process of writing text by the user is shown in figure 4.2

e The process of printing 1s shown in figure 4.3

UrduKashishStyler 42

©

‘ Setect Qutline Style ' '

Select Fill Style

{ Get Start
Get End '
A
‘ Draw Shape
©

Figure 4.1 Activity Diagram of Drawing a Shape

UrduKashishStyler

@

N
| Select Qutline Style ,

ok
)

Select Text Tool

Get Text

o

Render Text l

Make Quline ,
‘ Create Text Polygon '

®

Figure 4.2 Activity Diagram of Writing Text

7

UrduKashishStyler

44

Prepare Printing

Begin Prinling

P
&

123
W
a
o
i
U\
1
2

Prepa

il
u)

Start

@

Print

(o) _[¢]

m
>
o
el
fu
w
m

End Document

1

End Printing

&

st

Figure 4.3 Activity Diagram of Printing Process

UrduKashishStyler

45

Chapter 4 —

4.2 Class

A class implements one or more interfaces. Graphically, a class is rendered as a
rectangle, usually including its name, attributes, and operations. Class stands for a family of
objects that have something in common. A class is not to be equated with a set of objects,
although at any moment we can consider the set of instances that belong to'the class. A class
may be seen as what all these sets have in tommon. In technical terminology, a class stands for -
the intensjon of a particular characterization of entities, while the set of objects that conform to

such a characterization in a certain period 1s known as the extension.

The development phase produces candidate classes and relationships. After selecting
concise and evocative names we must describe each class with attributes. Although each class
must have a unique name, classes should be distinguishable on the basis of their attribute
characterizations. A rule of thumb is if two classes have identical attributes, then they are most

likely the same. Class diagram of our project is shown in Figure 4.4.

4.2.1 Attribute

An attribute expresses an essential definitional feature that is shared by all instances of
a class. A minimal characterization of an atiribute consists of the value domain of the attribute
and a name that explains the role or relationship that an attribute value has with respéct to the
instance to which it belongs. Multi valued attnbutes may be annotated with multiplicrty
characterizations. Defaults for an attribute value and/or multiplicity description can be
formulated in this phase as well. Constraints can restrict attribute value combinations and/or

refer to multiplicity descriptions.

Real-life entities are often described with words that indicate stable features. Most
physicai objects have features such as shape, weight, color, and type of material. Sometimes it

is useful to indicate a default initial value for an attribute.

UrduK ashishStyler 46

———

Chapter 4

4.2.2 Relationships

Relationships help capture target system-specific knowledge by descnbing connections
among different objects. Relationships may also be used to modify descriptions in the previous
step. For example, when an attribute has a multiplicity range that includes zero, one may

eliminate the attribute and represent this information as a relationship instead.

UrduKashishStyler 47

chapier 9

CUrduText CUrduEditorview CPrintData

eates

Creates

CKashishDoc CKashishView Uses CMemDGC
KashishDoc |

UndoRedo
ClayerAttributes
~ CShape
CSelect
Cline CFreeHandLine
CCloseShape ’ CFillAtributes
CCircle Ciext CEllipse CRectangle CPolygon
CTextPolygon

Figure 4.4 Class Diagram of UrduKashishStyler.

UrduKashishStyler

Chapter 4

Now we will show a detailed view of each class.

CShape

Bom_Id :int -

fom_Topleft: CPoint
%om_BottomRight: CPoint
%m_GroupNoList: CList
%om_PreviransiPt: CPoint
Rom_LayeriAft: ClayerAttributes

SAddGroup(int)
g>CalculateDistance(pt! : CPoint, pt2 : CPoint) : int
“ChangeGroupNo(int, POSITION)
OCopyAttributes(CShape*)
SDraw{CDC* pDC)
QODrawMarguee (CDC* pDC)
QGetActiveGroupiNof) : int
SGetGrouNoLisiHead() : POSITION
QGetNextGroupNo(POSITION&) : int
s Group() : bool
VlsPeintOnVertex{) : bool
<ls PointOnShape() : bool
QlsShapelnSelectedArea{CRect)
GResetTransPaint(}
<$Scale{Cpoint, CPoint, int, CDC*)
$Serialize{CArchived)
<STranslate(CPoint, CPoint)
SUngroupActiveGroup()
SGetToplefi() : CPaint

- GetBottomRight() : CPoint

Figure 4.5 Class CShape.

CFilAttributes

—Serialize(CArchive&)~——

&ym_FiliTransparency: int

&> m_FilllmageNo :int
E»m_FillEffect s int

& m_FiiliColorOne : COLORREF
&>m_FillColorTwo : COLORREF

Figure 4.6 Class CFillAttributes.

UrduKashishStyler

49

CKasFishDoc

[&m_n1d ;int

£>m_bGroup : bool

& m_nGroupNo :int
&m_0OLUDSLen:int

& m_1LUDSLen :int

& m_2L.UDSLen :int
&>m_3LUDSLen :int
&m_0OLUserDefSamiples : CText®
&m_1lUserDefSamples : CText"
& m_2tUserDefSamples : CText"
&>m_3LUserDefSamples : CText*
&>m_ShapePtrList: CTypedPlrList
& m_0LUDSList: CTypedPirList
&»m_1LUDSList: CTypedPlList
Em_2LUDSList: CTypedPulist
&m_3LUDSList: CTypedPurList

$GetDocExtent() : CRect

OGetDocSize() : CSize

CRemoveShape{POSITION)

L GetShapeAtPosition(POSITION) : CShape*
LGetShapeAtindex(int) : CShape*
LRemoveAndDelete ShapeAtindex{int)
{InsertShapeAlindex(int, CShape*)
<“RemoveAndDelateShape(int) : boo

DFindB8yid(int) : POSITION

JGetld() tint

LGetindex(CShape*) tint

VGetindex(POSITIONS) : int

OSetUngroup() - : g
SetGroup() - - -
<CanGroup() : boof

$CanUngroup() : bool

ClncrementGroupNo()

LGelGroupNo() : int

< TakeShapeBehind(POSITION, POSITION} : POSITION
OBringShapelnFrontO{POSITION, POSITION) ;. POSITION
D TakeShapeSackOne() : POSITION
$BringShapeForwardOne{POSITIONS) : POSITION
OTakeShapeToBack(POSITION) : POSITION
$DeleteFromShapelist{POSITIONS)
LGelNextShapePtr{POSITIONS) : CShape
SGetShapelistHead() : POSITION
PAddToShapelisi{CShape*) : POSITION
$BringShapeToFront{POSITIONS) : POSITION

L GetPrevShapePir(POSITIONS) : CShape®
LGatShapePtrLis{Tail() : POSITION

—InsenShape A(POSITIONS, CShapey——————

. Figure 4.7 Class CKashishDoc.

UrduKashishStyler

50

Chapter 4

CEllipse

£»m_FirstPt: CPoaint
&,m_SecondPt: CPoint

EPGeilength() :int

&> GetHeight() : int
< CopyAtiributes (CShape*)
$Draw(CDC* pDC)
ODrawMarquee(CDC* pDC)
LlsPointOnVertext(CPoint) - boo!
VlsPointOnShape(CPoint) : bool

SSerialize(CArchive&)
OTranslate(CPoint, CPoint)
SGetTopLefi() : CPoint

QlsShapeinSelectedArea({CRect)
Seale(CPoint, CPoint, int, CDC*)

—OGetBottomRight() : CPoint——

Figure 4.11 Class CEllipse.

CUrduText

E»m_nArrSize tint
&,m_nMaxLines :int
&m_nC1 :int
&m_logFont: LOGFONT
Epm_TextArr : CStringArray

SsEmpyt{) : bool
LSetTextWidth(int
SGetTextWidtn() s int
SRenderTex{CString) : CString

{SetTextHeight(int)

{LAddTextToDisplay(CSting*, UINT)

—YGetTextHeight() : int———————

Figure 4.12 Class CUrduText

UndoRedo
operation : Operation
id - int

shapelndex: int
opShape : CShape”

Figure 4.13 Struct UndoRedo

UrduKashishStyler

52

Chapter 4

- CRectangle

&»m_ToplLef: CPaint
&»m_BottomRight : CPoint

&>GetLength(} :int

£>GetHeighl() 1 int
QOCopyAttributes (CShape*)
$Draw(CDC pOC)
ODrawMarquee(CDC* pDC)
SlsPointOnVertex(CPoint) : bool
{lsPointOnShape(CPoint) : bool
OtsShapenSelectedArea{CRech)
$Selae{CPoint, CPaint, int, CDC*)
<$Serialize(CArchived)
STranslate(CPoint, CPoint)
SGetToplefi) : CPoint

—>GeiBottomRight{) : CPoint——

Figure 4.14 Class CRectangle.

CLayerAfiributes
&>m_Width :int
&ym_Transparency:int
&,m_ImageNo :int
& m_Effect :int
&>m_LayerColorOne : COLORREF
&»m_LayerColorfwo : COLORREF

—OSerialize(CArchive &)——

Figure 4.15 Class CLayerAttributes

CTextPolygon

& m_|pvBuffer : LPVOID
&m_cbBuffer : DWORD
Em_mat2 : MAT2

&m_gm : GLYPHMETRICS
&»m_VerlexList: CList
&m_TempVerlexList: CList

&>NormalizePolygon()
&>AddGlyphPoints (inl, int)
@GetQSplinePOints(POlNTFX, POINTFX, POINTFX)
&>MakeRotationMatrix()

OFromGGOPGIn(POINT™, int, int, int, int)

—>FromGGOPoint{POINT*, POINTEX, int, in})

-

Figure 4.16 Class CTextPolygon.

UrduKashishStyler

Chapter 4

CMemDC
&,m_Bitmap : CBitmap
&ym_OidBitmap : CBitmap”
&,m_pDC :COC*
&,m_Rect: CRect
&ym_bMemDC : BOOL

|

. Figure 4.17 Class CMemDC.

CUrduText
l'g;m_ni\rrSize zint
&»m_nMaxLines it
&>m_nC1 :int
&ym_LogFont: LOGFONT
&>m_TextArr : CStringArray

S1sEmpyt() s boal

SSetTextWidth(int)

SGetTexdWidth() sint
QORenderText(CSting) : CString
{AddTextToDisplay{CString*, UINT)
<SetTextHeight(int
—GetTextHeight() - inh———ﬁz

. Figure 4.18 Class CUrduText.

CFreeHandLine

Rom_FreeHandLinelist: CPoint

QJGetToplef) : CPoint
LGetBotiomRight() : CPaint
QGetFHL HeadPosition(} : POSITION
DDrawline(COC*, CPoint, CPoinY)
QGetNextPoint(FOSITIONS) : CPoint
SaddSegment{GPaint&)
S*GeiHeight() : int

Getwidth() :int
OCopyAliribules(CShape™)
$Draw(CDC*)
$DrawMarquee(CDC* pDC)
DlsPointOnShape{CPoint) : bool
VSceale(CPoint, CPoint, int, CDC*)
$Serialize(CArchiveg)

—STranslate(CPoint, CPoin)——

Figure 4.19 Class CFreeHandLine.

UrduKashishStyler

Chapier 4

-

—>Draw(CDC")

CText

&;m_SampleNo :int

E»m_TexiStyle : int

& m_pTempTextPolygon : CTextPolygon
&>m_pTextPolygon : CTextPolygon
&m_ntayers :int

E»m_StartingPt: CPoint
&»m_Layer2att: ClayerAtiributes
&>m_Layer3att: CLayerAtributes
®om_BrokenText : bool
Fom_TextPolygonPirlist: CTypedPtrList
Rom_nArrSize ;int

Fom_nMaxbines :int

Rom_LogFont: LOGFONT

Zom_TextArr : CStringArr

SCreateTextPalygon{CUC*, int, MouseDirection, MouseDirection)

OSetLineAt(int, CString)
QGellFTextWidth() : UINT
LGelFTexiHeight() : UINT
<SDeleteTermnpTexPolygon()
QOCopyAttributes(CShape)
UDrawMarqueeQfPtrTextPolygon(CDC*)
Vs PIrTextPolygon{} : bool

QOReplace TextPolygon()
STranslateTextPolygon(CPoint, CPoint)
“CopyTextPolygon() .
OScale(CPoint, CPoint, int, COC*)
LIsPtOnShape{CPaint) : bool
DSerialize{CArchive&). -
$CetNextTextPolygon(POSITIONS) : CTextiPolygon®
$GetPolygonPirListHead() - POSITION
$GetBoftomRight() : CPoint
$GetToplefi) : CPoint
QlsShapeinSelectedArea{CPoint, CPoint) : baol
SlsPointOnVertex(CPoint) : bool
OTranslate{CPoint, CPaint)
COrawMarqueel{CDC*)

. Figure 4.20 Class CText

UrduKashishStyler

[

A

napler 4

QVSIEN LIENIEn

—

CKashishView

&»m_bBreakText : bool
&>m_SelectionBoxNo : int
&m_Zoom : double
m_hScrolling : bool
&»m_ClipBoardLis!: CTypedPirList
&>m_UndoStack : CTypedPtrlist
&ym_RedoStack : CTypedPtrList
&m_nGroupNo :int
&»m_SelecledShapes : CSelect
&>m_Pasition : POSITION
& m_nSelectType : int
Eom_pSelectedShapes : CShape*
&»m_pTempShape : CShape*
&, m_FirstPoint: CPoinl
»m_SecandPoint : CPaint
&,m_OldPt: CPoint
& m_nTool :int
E&m_FillAtt : CFillAltributes
&m_LayerAtt: ClayerAttributes
&m_Join :int
&>m_EndCap :int
&>m_PenStyle : int
&>m_RedoStack :int
& m_bDeleteMarquee : bool

OSetUndoStack{Cperation)
SEmptyRedoStack()

SCopyShapes ToClipBoard()
OGetUndoRedold(} : int
CEmpiyUndoStack()
SCopyPointer{CShape*) : CShape*
QAssignNewGrouphNo()

—ReDraw()

. Figure 4.21 Class CKashishView.

UrduKashishStyler

56

Chapter 4

4.3 Sequence Diagram

Sequence diagrams are used to show the flow of functionality through a use case. For
one use case diagram there can be mulliple sequence diagrams. For allernate course of
actions there are separate sequence diagrams. Sequence diagrams are time dependent and tell
which operation will be executed first. Sequence diagrams define a pattemn of interaction
among objects arranged in chronological order. These diagrams show the objects

participating in interaction by the order of their life times and the messages being sent from
one object to the other. The following are sequence diagrams.

4.3.1 Drawing a Line

User

| CKashishView

Select Line

LbuttonCwn
-

selecls s'lart point

Mousemove

r————%

Lbultnup
—3

i

Creates

Draw(COC*) E

Draws Temporay Line

Draw({CDC")

Draws final Line

> SaveTolndoSlack
[

Save

= :CLine l

Object

:CKashish{Tocument

-
1
1
]
L}
]

Figure 4.23 Sequence diagram of Drawing a line.

UrduKashishStyler

RIALE Y T TS S

—_— TR e KL

4.3.2 Drawing a Rectangle

User

I CKashishView

Select Rectangle

LbuttonDwn

selects start point

Mouscmove

Lbuttnup

=

Creales
;CRectangle
Draw(COC") ;
Ity

Oraws Temparay Rectangle

ﬁ_ _____________ .

D SaveToUndoStack
o [

Save Object

Draw{CDC")

Draws final Rectangte

[.CKashishDotument

.

Figure 4.24 Seqnencé diagram of Drawing Rectangle.

UrduKashishSiyvler

L

Chapter 4

Svstem Design

4.3.3 Drawing an Ellipse

:CKashishView

]
1
1
i
1
1
User Sclect Ellipse f
i
LbutionDwn
selects slart point
Mousemove Creates
— Ctllipse
3
Draw{CDC") f
Draws Temporay Ellipse
Lbutthup é_ _______ TtttT T

Draw{CDC"}

Draws final Ellipse
R

:>SaveToUndt)S!ack .
o

Save Object .

.CXashishDatument

v
1
!
1
L

0

Figure 4.25 Sequence diagram of Drawing an Elipse.

UrduKashishStyler

60

Chapter 4

Aonorspore

4.3.4 Drawing a Circle

CKashishView

User Select Circle
LbuttonDwn
———

selects center point

Mousemove
S |

Lbuttnup

[————-”‘—9

Creates r—“—'——
.CCircle

Draw(COGC™)

t

)

1
Draws Temporay Circle T

Draw{COC"}

Draws—iinal Circle

> SaveToUndaStack
” LI

Save Object

Figure 4.26 Sequence diagram of Drawing a Circle.

g

] i

[CKashishDocument

]
1
'
1
1
]
I
)
1
1
1
1
[}
Ll
1
1
i
'
¢
'
1
L
1
Ll
1
[}
1
1
]
1
]
[}
’
]
1
t
1
]
+
[}
L
L}
t
1
[}
1
L]
)
1
]
1
¥

UrduKashishStler

61

Chapter 4

4.3.5 Selection Process

LButlonDown

:CKashishView l - :CKashishOoc sslectedShapes:CSelect

Figure 4.27 Sequence diagram of Selection Process.

UrduKashishStyler

Chapter 4

4.3.6 Translate Process

Use/s

LButionCown

LCKashishview

seected3hapes:CShape ‘ [CShape

T
]
1
1
1
1

IsPtOnSelectedShapes(pt)

Translate(boxNo)

> ReDraw()

Figure 4.29 Sequence diagram of Translate Process.

- Svstem Design

UrduKashishStyler

64

Chapter 4 _OVSIEm LIesiyn

4.3.7 Group Process

:CKashishView selectedShapes ; Coelec! l pDecCKashishDocument hape

L T

1 &]

) 1 :
r 1

MakeGroup(pDec) ! ‘ !

1 [}

rl IncrementGrouphlo() ! !

—_—)

1

1

SetGroup{groupNo} H

=

- ‘::; SortShapes()

SetGroup(true)

SetUngroupifalse)

_———m——

“Figure 4.30 Sequence diagram of Group Process.

UrduKashishStyler 65

Chapter 5

Implementation

Chapter 3 Implementation

5. Implementation

UrduKashishStyler is a comprehensive vector-based drawing and graphic-design

program for the composers. The software is composed of two major parts.

e Urdu Editor.
e Graphical Editor.

An editor is developed to write Urdu which is than used in composing and designing. So

we will first explain the working of Urdu Editor.

5.1 Urdu Editor
Urdu editor is composed of three parts.

» Font file
e Word Processor

» Qutput Screen

These three parts and there interaction with each other is shown in figure 5.1.

o ~ - -
- -) M . .
"l/:{/::g'é -_;L_ﬂ(;_«_-l S Nl

e~ 2
G ?.: ?‘ C Ward :N: L:-,
L et aen g Medially 7= C
Ut t—

Font File
Font Joining Rules I
RN TA SRS ™
Word Processing | ¢
Engine

Ontout Screen
Word Processor

Figure 5.1 Parts of Urdu editor.

UrduKashishStyler 66

Chapter 5 {mplementation

5.1.1 Font File

Urdu language has thirty-four characters. Each character has more than one form. All
these forms of word are stored in a font file called True type font file. These forms of
characters are called Glyph. A Glyph is the representation of a character. A detailed analysis

of Urdu language shows that its characters have following forms shown in figure 5.2.

Isolate . Initial Middle Final
ALIF ‘ l_
BAY -) ~ (N
TAY <o S ~ i~
ol
TTAY & J 5 N
SAY G 3 - .
e ~
JEEN " c 7= "
k. 7=
CHAY (o 7= [
e 7=
HAY - > peed -
s . s
KHAY - . el C
DAL) u\
b o
DDAL 3 A
ZAAL J)’
RAY J D

UrduKashishStyler 67

Chapter 5

Implemeniation

RRAY
SEEN
SHEEN
SUAT
ZUAT
TUAY
ZUAY
EAIN
GHANN
FAY
KAAF
QAAF
GAAF
L AAM
MEEM
‘ NOON
wow

HAMZA

S R I S R

O S i T

"\ e

b3

e M

Sy

— >/“ o:

R S P O N G o L T T T I

UrduKashishStyler

68

Chapter 5

YE-CHOTT] Lg 2 -~

(

YE-BARRI 4 :‘ -~

N

Figure 5.2 Table of Urdu chars and their possible forms.

In true type font file just information of shape of characters is present but no way is
defined in the font file to join these characters. The developers of Urdu editor themselves
write program in which the logic for joining these characters is defined often called as word

processor on character rendering engine.

5.1.2 Word Processor

Word Processor is a program to join different characters. As discussed before, a character

has different_shapes. The decision of selection of shape of a character depends on

e Position of character in the word.
o Character before that character.

e Characters after that character.

All these joining rules are defined in the word processor.

The characters of Urdu can be adjusted at any of the four places in a word.

e Isolate
e Initial
o Middle
e Final

Al the characters can not come at all the places. After analysis of Urdu language we have

divided all the characters of Urdu into four separate groups. First group consist of those

UrduKashishStyler 69

Chapter 5

characters which ¢an not come at the beginning and in the middle of a word example of such
characters are ALIF, DAL etc. These words have only two forms i.e. isolate and final
Second group comprises those characters which can come at any of the four places e.g. BAY,

PAY etc. Third group consist of HAMZA which can not come at the end of a word.

Word processor gets a string of isolated character as input and selects the shape of the
character depending on three rules described above. For example if the string passed to the
word processor is Muhammad ie. MEEM HAY MEEM DAAL. It will start with first
MEEM check the character after it which is HAY, HAY has final form so selects initial form
of MEEM then for HAY first check the character before it, which is MEEM and has initial
form then check the character after HAY which is again MEEM and can have the final form

s0 selects the middle form of HAY and this process continues until whole string is parsed.

5.1.3 Output Screen
The output of word processor is displayed by the output screen to the user.
5.2 Graphical Editor
The gréphjcal editor consists of following tools.

s Seclect Tool.

» Rectangle Tool.

e Ellipse Tool.

* Circle Tool.

e Line Tool.

e Free Hand Tool.

¢ Text Tool.

e Zero Layer Text Tool.
e One Layer Text Tool.
* Two Layer Text Tool.
e Three Layer Text Tool.

UrduKashishStyler 70

Chapter 5

e Break Text Tool.

5.2.1 Select Tool

Three types of actions can be carried out with the Select tool. Graphical objects can be

selected, they can be moved, and they can be scaled.

5.2.1.1 Selection Actions

The select tool is used to select objects, so that they can be subjected to editing

commands, such as Cut, copy or Delete etc.

When the Select tool is active, and user selects an object by moving the mouse so that the
mouse cursor points to the object and then clicks the left mouse button. The object is then
selected, and it takes on a selected appearance. 'Selection handles’ appear around the object's
bounding rectangle. These are small black rectangles that appear on the periphery of objects

to show that they have been selected.

The second way to select single object is by using tab. When no object is selected and
user presses tab, the object which is drawn first is selected. If the user presses tab again then
the object which is drawn after that object gets selected and this process continues. First

object is selected again after last object.

All types of graphic shapes display same patterns of selection handles. All
UrduKashishStyler shapes display eight handles spaced around their bounding rectangles

four at the corners and one in the middle of each side of the bounding rectangle.

Selection actions are not undoable. That is, the Edit menu's Undo command will apply to
a prior action, not to the selection action that user just made. The reason for this is that
current selections are not remembered when a document is saved. Since selection does not

change the document, it does not need to be undoable.

Of course, it is very easy in practice to 'undo' a selection, simply by selecting something

else, or by selecting nothing. If user clicks in some part of a scene in which there are no

UrduKashishStyler 7

Chapter 5

graphics, then the selection will be set to nothing.

5.2.1.2 Multiple Selections

Multiple graphic objects can be selected using the Select tool. One way to select several
objects is to drag the mouse through a rectangular area that completely encloses the objects
that are to be selected. For example, user can put down the mouse button to the left and
above the set of objects to be selected, and then drag the mouse to the right and below the
entire set before releasing the mouse button. As the mouse is dragged, a dotted line selection
rectangle is traced out. All the objects fully enclosed in this rectangle will be selected when

the mouse button is released.

The second way to select multiple graphical objects is to hold down one of the
keyboard shift keys while clicking the mause on the second and subsequent objects to be
selected. Shift-click has the effect of adding an unselected object to the set of currently
selected objects. If one shift-click on an already selected object, the action will have the

effect of deselecting the object, so that it will no longer be part of the set of selected objects.

5.2.1.3 Move Actions

The Select tool is also used to move objects on the UrduKashishStyler drawing area.
To move an object, user points to it, holds down the left mouse button, and drags the mouse.
to position the object in a new location. When the mouse button is pressed, the bounding
rectangle of the object appears. As the mouse is dragged, the shape of object in form of
dotted line is traced out to show object moves with the mouse, The user then releases the

mouse when the shape is at the desired position. The object then appears at the new location.

To make very small movements, it is often better not to try to drag the object to a
precise position with the mouse. Instead, use the keyboard's cursor control (or "arrow’) keys
to carry out small moves. The up-arrow key moves the selection one pixel up on the scene.
Similarly, the left-arrow, right-arrow, and down-arrow keys move the selected object or

objects one pixel lefl, right, or down, respectively.

UrduKashiskStyler 72

Chapter 5 Implementation

Fig. 5-3 Shapes Drawn with the Rectangle Tool

To draw a rectangle, the user must place the mouse pointer at the point where one
corner of the rectangle shonld be. Pressing and holding down the left mouse button, the user
then drags the pointer to the point in the graphical view where the diagonally epposite corner
of the rectangle should be. As the mouse 1s dragged, an outline rectangle is dragged out
between the original down-click point and the current mouse location. When the rectangle is
the correct size, the user releases the mouse button. At this time, the empty 'feedback’
rectangle is replaced by a rectangle with the previously chosen pen style, pen color, fill color

and fill pattern features.

The action of drawing with the Rectangle tool can be undone using the Edit menu's

Undo command.

5.2.3 The Ellipse Tool

The Ellipse toal is used to draw ellipses. To draw an ellipse, the user must place the
mouse pointer at the point where one corner of the ellipse should be. Pressing and holding
down the left mouse button, the user then drags the pointer to the point in the graphical view
where the diagonally opposite corner of the ellipse should be. As the mouse is dragged, an
outline ellipse is dragged out between the original down-click point and the current mouse
location. This temporary ellipse, which is continuously reshaped as the mouse is moved, is
drawn with a 1-pixel wide black pen. When the mouse button is released, the temporary
ellipse is replaced with an ellipse in the currentiy selected pen style, pattern, pen color, and
fill color. In order to draw an ellipse, the mouse must be dragged at least one pixel. If the

mouse is released at the same point at which it went down, no graphic is created.

UrduKashishSeyler 74

Chapter 5 Implemeniation

5.2.6 The Free Hand Tool

The Free Hand tool is used.for free hand drawing. For free hand drawing, the user
must first move the mouse to place the crosshairs at the point on the scene where the drawing
is to start. Then the left mouse button must be pressed and held down while the mouse
pointer is dragged to the point where free hand is to be drawn. A line is drawn with the

mouse movement in the most recently chosen pen style and pen color.

In order to draw a free hand drawing, the mouse must be dragged at least one pixel. If
the mouse is pressed and then released at the same point on a scene, no free hand line graphic

will be created.

The Edit menu’s Undo command can be used to undo the action of drawing freehand

drawing with the tool.
5.2.7 The Text Tool

The text tool is used, together with the computer keyboard, to create text graphics.
User clicks with this pointer where the bottom right edge of the text should begin. A text
editor will appears at that point. The user then types the desired text using the keyboard.
Uf&uKashishStyler can write only one line of text at a time. Tabs are ignored during text
entry. Before the text entry action has been completed, the text can be edited. The backspace

key can be used to delete the last character.
There are two ways to terminate the creation of a text graphic:

« Typing the Enter key.
« Clicking the OX button with the mouse.

As soon as any of these actions is taken, the text appears with the previously chosen pen

style, pen color, fill color and fill pattemn features

UrduKashishStyler 76

e ———

Chapter § Implementation

5.2.8 The Zero Layer Text Tool

The zero layer text tool is used to write texi with no outhine.When the user selects
zero layer text tool UrduKashishStyler Zero Layer Sample dialog appears. After selecting the
sample when OK button is pressed, text editor comes in which text can be written. The

selected sample applies to the text.

Samples can be edited and can be added to sample gallery for future use. As these
samples have no layer so only fill style of the samples can be changed. The samples added

are stored permanently unless deleted or edied.
5.2.9 The One Layer Text Tool

The one layer text too! is used to write text with one outline. When the user selects one layer
text tool UrduKashishStyler One Layer Sample Gallery appears. After selecting the sample
when OK button is pressed, text editor comes in which text is written. The selected sample

applies to the text.

Samples can be edited and can be added to sample gallery for future use. The user can
edit the {ill properties and the outline properties of the sample. The sa.mples added are stored

permanently unless deleted or edited. _
5.2.10 The Two Layer Text Tool

The two layer text tool is used to write text with two outlines. Two Layer Sample
Gallery appears when two layer text tool is selected. After selecting the sample when OK
button is pressed, text editor comes in which text is written. The selected sample applies to

the text.

Samples can be edited and cén be added to sample gallery for future use. The user can
edit the fill properties and the outline properties of the first layer and second layer of the

sample. The samples added are stored permanently unless deleted or edited.

UrduKashishStyler 77

Chapter 5 ’ Implementation

5.2.11 The Three Layer Text Tool

The three layer text tool wites Urdu text with three outlines. Three Layer Sample
Gallery appears when three layer text tool is selected. When OK button is pressed after
selecting the desired sample, a text editor appears in which text is written. The selected

sample applies to the text.

Samples can be edited and can be added to sample gallery for future use. The user can
edit the fill properties and the outline properties of the first layer, second layer and the third

layer of the sample. The samples added are stored permanently unless deleted or edited.

5.2.12 Break Text Tool

This tool breaks the sentence to individual words so that each word can be moved
independently. When user clicks on any word after selecting break text tool a selection

rectangle appears for each word.

As the mouse is dragged by keeping its pointer in any of the selection rectangle, the
associated ‘word in form of dotted line is traced out to provide feedback about the scaling
operation being carried out. After the mouse is release. the word then appears at the new

location. Break text operationis undoable.

Some gther available features are.
5.3 Undo

Undo command undoes the last undoable action that was taken. UrduKashishStyler
has multilevel undo. That means that carrying out Undo will undo the last undoable action
taken; executing Undo again will undo the immediately previous action; the next Undo will
undo the action before that one; and so on. The number of actions that can be undone is

determined by the size of available memory only.

UrduKashishStyler 78

Chapter 5 Implementation

5.4 Redo

The Redo command is used to restore a document to its state before the just-carried-
out Undo command. Like Undo, UrduKashishStyler provides a multilevel Redo. For as many
times as an author has carried out Undo, that many times can Redo be carried out. If an
action which is not undoable ‘takes place after an Undo, Redo ignores that non-undoable

‘action and applies to the earlier Undo action.

The effect of an Undo after a Redo is to undo the command just redone, so Redo is an

undoable command.
5.5 Cut

The Cut command in a graphic editor applies to the current selection, which may be
one or more graphic objects on the screen. So long as one or more graphic elements or

objects are selected, this command is enabled.

The effect of the Cut command is to delete the selection and to place a copy of it on
the UrduKashishStyler application's clipboard. The clipboard is a storage area in which

copies of data elements are preserved for pasting into appropriate contexts.

A Cut command can be undone. Only the deletion 1s actually undone. The clipboard

will continue to hold its copy of the cut element(s), which can then be pasted.

5.6 Copy

The Copy command in a graphic editor applies to the current selection, which may be
one or more graphics which have been selected on that screen. The effect of the command 1s
to place a copy of the selection on the application's clipboard. The clipboard is a storage area

in which copies of data elements are preserved for pasling into appropriate contexts.

A Copy command cannot be undone. Undo applies only to actions that change the
data that is stored with a document. The clipboard is not stored when a Save action is carried

out.

UrduKashishStyler ‘ . 7

Chapter 3§

5.7 Paste

The Paste command places a copy of the clipboard's contents into the graphic editor
view. For example, user can make copies of one or more graphic objects by selecting in any

graphical view and issuing a Copy cotnmand.

The newly pasted graphic element or elements will constitute the current selection

when the Paste has been carried out.

The Paste command can be undone. Undoing a Paste has no effect on the contents of

the clipboard.

5.8 Delete

The Delete command removes the currently selected graphic or graphics from the
graphical view that issued the command. Afier the selection disappears, there is no current
selection on the scene. The scene is still active, however, and is therefore the target for a

subsequent Paste command. A deletion can be undone with the Undo command. -

5.9 Duplicate

In many respects, the Duplicate command works like an immediate copy and paste of
the graphic view's current selection. However, it does not change the contents of the

clipboard. A uscr can therefore copy object A, duplicate object B and then paste a copy of A.

After a Duplicate command 1s carried out, the new graphic element or elements
created will be selected and will be highlighted by selection rectangles. The Duplicate

command is undoable.

5.10 Select ANl

The Select All command has the effect of selecting all the objects in the graphic

editor. The Select All command is not undoable. If there are no prior undoable actions on the

UrduKashishStyler &0

Chapter 3

history list, the Undo command will have no effect on the selection. If there are prior
undoable actions, then choosing Undo after Select All wil) have the effect of undoing the last
undoable action. As a side effect, that undoing will change the selection to what 1t had been

just before the undone action was originally carried out.

5.11 Copy Attributes From

This command copies all the attributes of a object to another object. The user selects
an object then selects copy attributes from edit menu then click on another object. All
attributes of second object are copied to first object. The attributes which are copied includes

outline styie, color, fill style and fill colors. Copy attributes from 1s undoable..
5.12 Group

The group command is used to combine several objects into a grouped object. A
group is set of objects that behave as one unit. Operations performed on a group apply

equally to each of its objects.

When individual graphic elements are combined, the group can be moved and scaled
as an entity. Such transformations are antomatically applied appropriately to the members of

the group. L

To carry out the Group command, two or more graphics must first be selected in a
graphical editor. (Multiple items can be selected nsing the select tool either by dragging out a
bounding rectangle to enclose the items or by using shift-click.). The Group command can
then be issued. Two or more groups can further be grouped and this process can continue to

any level of grouping.

The group command is undoable. After the Undo is carried out, the former members

of the group will still be selected, as they all were before undo.

UrduKashishStyler 81

Chapter 3

5.13 Ungroup

The Ungroup command can be used to ungroup grouped objects. Ungrouping takes
effect only at the top level of a group. If one ungroups a group made up of groups which are
themselves made up of other groups, for example, only the top group itself is ungrouped. Of

course, one can then ungroup its component groups by issuing other ungroup commands.

After the Ungroup command, the former members of the disbanded group are all

selected. Immediately subsequent operations will apply to all those objects.

The Ungroup comniand is undoable. After the ungroup action is undone, the grouped
object will be the selected object; just as it was just before the Ungroup command was

carried out.

5.14 Order Of Shapes

The objects can be thought of as occupying thin layers, with each object having its

own layer. The first object drawn on a scene has the lowest layer. The second object drawn is
in a layer just above the first. The third object drawn is in a layer just above the second, and
so on. For example, in the figure 5.4, the tall rectangle was drawn first, then the circle, and
then the wide ;'ectangle. When graphics overlap each other, objects in lower layers will be

partially or completely obscured by objects in higher layers.

UrduKashishStyler provides six commands for moving these layers backward
(toward the deepest layer) or forward (toward the top layer). These commands are forward

one, back one, to front, to back, in front of and in back of.

Figure 5.4 Objects overlapping each other

UrduKashishStyler 82

Chapter 5

5.14.1 Forward One

The effect of the Move Forward comimand 1s to move the layer with the selected
object one layer closer to the top. This may result in the object occluding all or part of some
other object that formerly occluded it. In the figure 5.5, the tall rectangle was selected. (Note
that its lower right selection handle'shows even though that comer is occluded by objects in
higher layers.) When the Move Forward command was issued, the rectangfe‘s layer moved

closer to the top, so that the rectangle partialty obscured the circle.

Befors Comwnsid Aferbdove Forward

Figure.5.5 The Effect of the Forward One Command

It is not always the case that a Forward one command will make an obscured object
move in front of the object that obscures it. If the circle in the figure above were located far
off to the right of the two rectangles, then applying the Move Forward command to the tall
_rectangle would make its layer move above the layer with the circle, but there would be no
visual effect until one of the graphics ts dragged so that they overlap. When user wants to
make one object move in front of another, it will be necessary to issue as many Forward one

commands as there are layers separating the objects.

If the selected object is topmost in the graphical view, the Move Forward command

has no effect.

If several objects are the target of_ the Move Forward command, then each of their

layers will move one layer closer to the top. The Move Forward command is undoable.
5.14.2 Back One

The Back One command moves the layer of the selected object one step deeper in the

stack of layers. This may result in the object being completely or partially occluded by some

UrduKashishStyler 83

Chapter 3

other object that it formerly occluded. In the figure 5.6 at the left below, the wide rectangle
was selected. When the Back One command was then issued, the circle partially obscured the

wide rectangle, as shown at the right in the figure.

Sefore Command Afer Move Backward

Figure. 5.6 The Effect of the Back One Command

Using the Back One command on an object will not always make it 'go behind' an
object that it overlaps. If a number of layers separate the two graphics, it may be necessary to

issue the Back One command several times to achieve this effect.

If the selected object is already in the deepest layer of a graphical view, then the Back

One command has no effect.

If several objccts are the target of the Back One command, then each of their layers

moves one step closer to the bottom of the stack of layers. The Back One command is

undoable.
5.14.3 To Front

The To Front command moves the layer of the selected object to be the top layer in
the graphical view. Any overlapping objects may be partially or completely abscured by the

action.

)
g
e
Aresidm iy 4

Fefore Corndnd

g

~Ser Bring to Fromt

Figure 5.7 The Effect of the Bring to Front Conimand

UrduKashishStyler 84

Chapter 5

If the selected object is topmost in the graphical view, the Bring to Front command

has no effect.

If several objects are the target of the Bring to Front command, then their layers
become the top layers, stacked in the same order with respect to each other that they were in

originally.

The Bring to Front command is undoable. Even if a number of widely separated
layers are brought to the front in a single Bring to Front command, the Undo command will

restore each layer to its former place in the stack.
5.14.4 To Back

The to Back.command moves the layer of the selected object to be the bottom layer in
the graphical view. The selected objects may be partially or completely obséured by the To
Back action when their layers are sent behind other objects in the view. The figure 5.8 shows
the effect of applying the to Back Command to an object that overlaps other objects in a

view. Note that the selection handles of a selected object show through overlaid graphics.

Felore Commerd Aer Sendto Back

Figure 5.8 The Effect of the to Back Command

If the selected object is deepest in the graphical view, To Back command has no
effect. If several objects are the target of the To Back command, then their layers become the
bottom layers, stacked in the same order with respect to each other that they were in before

the command applied.

The To Back command is undoable. Even if a number of widely separated layers are
sent to the back in a single To Back command, the Undo command will restore each layer to

its former place in the stack.

UrduKashishStyler] 85

Chapter 3

5.14.5 In Front Of

The effect of the In Front of command is to move the selected object at top of object
clicked after the command. The object may go back and 1t may come in front depending
upon its previous position in the stack of layers. This may result in the object occluding all or
part of some other object that formerly occluded 1t or vise versa. Objects can not be moved

relative to 1tself. The In Front Of command is undoable,
5.14.6 Behind

The behind command moves the selected object behind the target object. The object
may go back and it may come in front depending upon its previous position in the stack of
layers. This may result in the object occluding all or part of some other object that formerly
occluded it or vise versa. Objects can not be moved relative to itself. The Behind command

is undoable.

5.15 Transformations
UrduK ashishStyler provides fwo types of transformations.

e Translation

e Scaling

5.15.1 Translation

A translation is applied to an object by repositioning it along a straight-line path from
one coordinate location to another. We translate a two-dimensional point by adding
translation distances, t, and t,, to the original coordinate position (x , ¥) to move the point to

a new position (x’, y") (Eguation 5.1).

X'=xtt, y =yt (5.1)

UrduKashishStyler 86

Chapter 5

The translation distance pair (ty, ty) is called a translation vector or shift vector,
We can express the translation equation 5.1 as a single matrix equation by using column

vectors to present coordinate positions and the translation vector:

p = l:x::' ’ p' _ [x::] ’ T = |it:i| (52)
X2 X2 ty

This allows us to write the two-dimensional translation equations in the matrix form:
p'=p+T (5.3)

Translation is a rigid-body transformation that moves objects without deformation.
That is, every point on the object is translated by the same amount. A straight line segment is
translated by applying the transformation equation 5.3 to each of the line endpoints and
redrawing the line between the new endpoint positions. Polygons are translated by adding the
translation vector to the coordinate position of each vertex and regenerating the polygon

"using the new set of vertex coordinates and the current attribute settings.

Similar methods are used to translate curved objects. To change the position of a--
circle or ellipse, we translate the center coordinates and redraw the figure in the new location.
We translate other curves (for example, splines) by displacing the coordinate positions

defining the objects, then we reconstruct the curve paths using translated coordinate points.

5.15.2 Scaling

A scaling transformation alters the size of an object. This operation can be carried out
for polygons by multiplying the coordinate values (x, y) of each vertex by scaling factors Sy

and S, to produce the transformed coordinates (x', y')

r

x'=x. S y =y.8,x’ (5.4)

UrduKashishStyler 87

Chapter 5

Scaling factors s, scales objects in the x direction, while sy scales in the y direction.

The transformation equation 5.4 can also be written in matrix form:

B0 s]- [
o = Sp (5.6)

Where S is the 2 by 2 scaling matrix in Equation 5.5.

Any positive numeric values can be assigned to the scaling factors Sy and Sy, Values
less than 1 reduce the size of objects; values greater than 1 produce an enlargement.
Specifying a value 1 for both S, and S, leaves the size of objects unchanged. When S, and Sy
are assigned the same value, a uniform scaling is produced that contains relative object
proportions. Unequal values for Sy and Sy result in a differential scaling.

Objects transformed with cquation 5.5 are both scaled and repositioned. Scaling
factors with values less than 1 move objects closér to the coordinate positions farther from

the origin, while values greater than 1 move coordinate positions farther from the origin.

We can control the location of a scaled object by choosing a position, called the fixed
point, that is to remain unchanged afler the scaling transformations. Coordinates for the fixed
point (xg, yr) can be chosen as one of the vertices, the object centroid, or any other position.

For a vertex with cooridinates (x,y), the scaled coordinates (x',y") are calculated as
' =x+t(x~898x, . Y =yur-¥S (5.7
We can rewrite these scaling transformations to separate the multiplicative and additive

terms:
x =x8,+xe(1~8y) (5.8)

UrduKashishStyler 88

Chapter §

yo=ySy+ye(1-8y)
where the additive terms x¢ (1 — Sy} and yy (1 — Sy} are constants for all points in the object.

Polygons are scaled by applying transformations 5.8 to each vertex and then
regenerating the polygon using the transformed vertices. Other objects are scaled by applying
the scaling transformation equations to the parameters defining the objects. An ellipse in
standard position is resized by scaling the semimajor and semiminor axes and redrawing the
ellipse about the designated center coordinates. Uniform scaling of a circle is done by simply
adjusting the radius. Then we redisplay the circle about the center coordinates using the

transformed radius.

5.16 Inside-Outside Tests

When a user clicks on a shape certain tests are required to be performed to check
whether the point is inside the shape or outside the shape. Different types of shapes have

different types of test.

5.16.1 Circle

The equation of circle can be used to find that whether a point lies inside a circle, on

the circle or outside the circle. Equation of circle is
Fo(x,Y)=x"+y¥ — r? (5.9)
Any point {x, y) on the boundry of the circle with radius r satisfies the equation Fe(x,
y) = 0. If the point is in the interior of the circle, the circle function is negative. And if the

point is outside the circie, the circle function is positive. To summarize, the relative position

of any point (x, y) can be determined by checking the sign of the circle function.

< 0 if (%, y) 1s inside the circle boundary

Fc (x,y) 0 if {x, y) 1s on the circle boundary {5.10)

> 0 if (x, y) 1s outside the circle boundary

UrduKashishStyler 89

Chapter 5 S

5.16.2 Line

As a line has only two points. To check that a point lies on the line or not we use

distance formula. The distance between two points P1(x;, vi) and P2(x;, y2) can be find

2
JOta ~x)t + (2 - 1) (5.11)
Let P1(xy, y1) and Pa(x2, y2} are the end points of a line. And let the user clicks on a

point P3(xs, yi). Then if the distance between P1 and P2 is the same as the sum of the

distances between P1 and P3 plus P2 and P3 then the point P3 is on the line other wise not.

S =507+ (02 - 117 =52 —x3)+ 2 ~¥3)2 + (K1 —x) 2+ (v, -¥2)? (5.12)

5.16.3 Text

As the outline of text is a polygon. So we can use the rules for inside outside test of

polygons for the text.

Consider a polygon made up of N vertices (x;,y;) where i ranges from 0 to N-1. The
© last vertex (xx.yn) is assumed to be the same as the first vertex (Xo,yo), that 1s, the polygon is
closed. To determine the status of a point (x,,yp) consider a horizonial ray emanating from
(Xp»¥p) and to the right. If the number of times this ray intersects the line segments making up
the polygon is even then the point is outside the polygon. Whereas if the number of
intersections is odd then the point (X,,y,) lies inside the polygon. The following shows the

ray for some sample points and should make the technique clear.

Figure 5.9 Inside Outside Test for Polygon.

UrduKashishStyler S0

Chagter 5 .

For the purposes of this discussion 0 will be considered even, the. test for even or odd will be
based on modulus 2, that is, if the number of intersections modulus 2 is 0 then the number is

even, if it is 1 then it 1s odd.

The only trick is what happens in the special cases when an edge or vertex of the

“polygon lies on the ray from (Xp,¥p)- The possible situations are illustrated below in figure

(xp.yp) //\
4

Figure 5.10 Edge or Vertex on the Ray.

The thick lines above are not considered as valid intersections, the thin lines do count
as intersections. Ignoring the case of an edge lying along the ray or an edge ending on the ray

ensures that the endpoints are only counted once.

Note that this algorithm also works for polygons with holes as illustrated below

Figure 5.11 Polygon with hole.

UrduKashishSpler : 91

Chapter 5 _ IMPLEr T o

The following C function returns INSIDE or QUTSIDE indicating the status of a point P
with respect to a polygon with N points.

#define MIN(x,y) (x <y ? x : y)
ddefine MAX(x,y) (x >y 2 X : ¥)
#define INSIDE 0 '
#d?fing QUTSIDE 1

typedef struct {
double x,vy;
} Point;

int InsidePolygon(Point *polygon,int N,Point p)
int counter = 0;
int i;
double xinters;

Point pl,p2;

pl = polygon(0];
for (i:l;i<=N;i++) {
p2 = polygon[i'% N1 ;
if {p.y > MIN(pl.y,p2-y)) { - -
if {p.y <= MAX{pl.y.p2.¥}) |{
if (p.x <= MAX(pl.x,p2.x}} {
if (pl.y '= p2.yv) {
xinters = (p.y-pl.y)*{p2.x-pl.x)/(p2.y-pl.y}+pl.x;
if (pl.x == p2.x || p.x <= xinters)

counter+t+;

if (counter % 2 == @}

return{OUTSIDE} ;

UrduKashishStyler 92

Chapter 3 LIRLIE s s,

else

return (INSIDE) ;

Another code for determining whether or not a point (x,y) lies inside or outside a polygon 1s

give below this code returns 1 for interior points and 0 for exterior points.

int pnpoly{int npol, float *xp, float *yp, float x, float y)

{
int i, j, c = 0;
for (i = 0, j = npol-1; 1 < npol; j = i++} {
if ((((yplil <= y) && [y < ypl(i1}) ||
{({ypl[3) <= ¥y) && (y < yplil}})} =&
(x < (xp(i}l - xplil) * (y - yplil} / {ypl3) - yplil) + xpiil})

c = lc;

}

return c;

5.17 Getting the Glyph Outline

We have used true type fonts in UrduKashishStyler. TrueType is a common vector
font standard used by the Microsoft Windows and Apple operating systems, among others. In
a vector font, a series of coordinates define a character's contour, so simple scaling
transformations effectively shrink or enlarge the character. Multiplying all the coordinates by
two doubles the character's size, for example, and it looks just as good at both resolutions.
Operating systems typically allow users to access TrueType font handling without having to
know all the details. But font manipulations beyond those supplied by the operating system
reqﬁire a deeper understanding of the TrueType format. Understanding the format, and
having the coordinates to each character's contour, opens the door to a world of special text
effects like gradient-filling the character's interior, extruding it, placing it realistically on a

sphere, and so on.

UrduKashishStyler 3

Cfmp!e!‘ 5 FHELNE G it

Microsoft Windows furnishes direct access to TrueType coordinates through the
GetGlyphOutline API. GetGlyphOutline supplies the vector points for straight lines and Bezier
curves in an abstract coordinate system. Rendenng the character then requires deciphering
the vector points and drawing the lines and curves with MoveTos and LineTos. The Bezier
curves in particular must be decomposed into straight hines and patched together end-to-end
to produce the final smooth contour. We will explain the mechanics of drawing a TrueType

font.
5.17.1 The GetGlyphOutline API
The signature of GetGlyphQutline is

DWORD GetGlyphOutline (

HDC hdc, [/ handle of device context
UINT ucChar, // character to query
UINT uFormat, // format of data to return

LPGLYPHMETRICS lpgm, // pointer to metrics struct

DWORD chbBuffer, // size of buffer for data

LPVOID lpvBuffer, // address of buffer for data

CONST MATZ2 *lpmat2 // pointer to transform matrix
}i A

The handle to device context, hdc, must be valid at the time GetGlyphOutline is called,
and it must have the TrueType font of interest selected into it. uChar is the character being
interrogated for an outline. uFormat determines whether the data returmed is in bitmap
(GGO _BITMAP) or vector (GGO_NATIVE} form, the latter being appropriate here.
GetGiyphOutline fills in the fields of the GLYPHMETRICS structure pointed to by Ipgm with
information about the giyph's size and placement; fields gmBlackBoxX and gmBlackBoxY, for
example, hold the size of the glyph's bounding box. (See MSDN for a description of the
GLYPHMETRICS structure.)

UrduKashishStyler 94

Chapter 3 tmptemenanon

Using GetGlyphOutline always requires two calls. In the first call, parameter coBuffer is
set to 0 and lpvBuffer is set to NULL. This tells GetGlyphQutline to return the size of the buffer
needed to hold the glyph data. After the program has allocated a buffer of that size, it calls
GetGlyphOutline again, passing the buffer size in cbBuffer and the buffer address in IpvBuffer.
When called with these argument -values, GetGlyphOutline copies the vector data into the

buffer.

Parameter lpmat2 1s a pointer to a transformation matrix, which GetGlyphOutline will
apply to all points in the glyph before writing them to the buffer. The transformation is
applied through matrix multiplication, thus making GetGlyphQutline capable of linear effects

such as shearing and rotating..

GetGlyphOutline returns numbers in a fixed point format, in which two integers (fract,
value) represent a real number. value represents the part of the real number to the lefi of the
decimal point; fract represents the part to the right of the decimal point, considered as a
fraction of 65536. For example, 0.5 becomes (fract, value) = {32768, 0); 2.25 15 equivalent to
{fract, value) = (16384, 2); and so on. Numbers of this format are stored m structures of type

FIXED. The same structure must be used for matrix entries as well.
5.17.2 Polyline and QSpline Records

GetGlyphOutine fills the buffer with a sequence of structures describing the glyph. A
glyph consists of one or more "contours”. Each contour 1is described by a
TTPOLYGONHEADER structure followed by as many TTPOLYCURVE structures as required to

describe it. Each TTPOLYCURVE structure can be either a polyline record or a spline record.

The TTPOLYGONHEADER structure specifies the starting position and type of a

contour in a TrueType character outline.

typedef struct _TTPOLYGONHERDER {
DWORD ch;
DWORD dwType;
POINTFX pixStart;

} TTPOLYGONHEADER, *LPTTPOLYGONHEADER;

UrduKashishStyler 95

Chapter 5 Iimplenentarion

cb specifies the number of bytes required by the TTPOLYGONHEADER structure
and TTPOLYCURVE structure or structures required to describe the contour of the
character.

dwType specifies the type of character outline returned. Currently, this value must be

TT_POLYGON_TYPE.

pfxStart specifies the starting point of the contour in the character outline.

Each TTPOLYGONHEADER structure is followed by one or more
TITPOLYCURVE structures. The TTPOLYCURVE structure contains information about a

curve in the outline of a TrueType character.

typedef struct tagTTPOLYCURVE {
WORD wType;
WORD cpfx;
POINTFX apfx(1];

} TTPOLYCURVE, *LPTTPOLYCURVE;

wType Specifies the type of curve described by the structure. This member can be one of the

following values.

Value Meaning

TT_PRIM_LINE Curve is a polyline.

TT PRIM_QSPLINE Curve is a quadratic Bézier spline.
TT_PRIM_CSPLINE Curve is a cubic Bézier spline.

cpfx specifies the number of POINTFX structurcs in the array.
apfx specifies an array of POINTFX structures that define the polyline or Bézier spline.

Two contours make up a capital 'A’, for example: one for the outer contour and one
for the triangular hole. Each contour consists of one or more curves, a series of connected,

intermingled polyline and QSpline records. A polyline is a series of connected straight lines,

UrduKashishSryler 96

Chapter 5 HIRpierncnidung

while a QSpline record is a series of connected three-point (quadratic) Bezier curves. A
contour is closed, ending where it started. Curve data consists of a series of points, which are

represented as POINTFX structures consisting of a FIXED x and a FIXED y.

Polyline records consist of a short (2 byte} integer n followed by n points. The last
point of the previous record connects by a straight line to the first point, then straight lines

connect subsequent points.

QSpline records also consist of a short integer n followed by n points, but only the last

point lies on the glyph itself. These points define a connected series of n-1 Bezier curves.

Figure 5.11 shows a quadratic Bezier curve. A quadratic Bezier curve is defined by
three points: controls pl and p3, and handle p2. The curve begins at pl in the direction of
handle p2, eventually veering back towards p3, where it ends. The handle vectors connecting
pl and p3 to p2 in figure 5.11 are construction lines -- they're shown only to illustrate how
the curve runs tangent to one of these vectors before breaking off towards the other control
point. Although Windows 95 has built-in Bezier drawing support with functions PolyBezier
and PolyBezierTo, these functions draw four-point (cubic) Bezier curves, not three-point
(quadratic) curves. (Cubic. Bezier curves have two handles; quadratic Beziers convert to
cubic Beziéfs by choosing the cubic handles to be two-thirds of the way from the quadratic

control points to the quadratic handle.)

Quadratic +

Figure 5.12 Bazier curve with points p1, p2 and p3.

UrduKashishStyler 97

Chapter 3] I i s ines

Instead of trying to use the Windows 95 functions, we elected to implement the
elegant recursive deCasteljau algorithm, which calculates a series of points along the Bezier
curve which are then connected as a polyline. DeCasteljau works by calculating point ql
midway between pl and p2, and p‘()int g2 midway between p2 and p3. Then point rl, the
midpoint of segment q1q2, is a point on the curve, and one that partitions the original Bezier
curve into left sub-Bezier plqlr! and right sub-Bezier rlq2p3. The subdivision process
continues recursively to generate as many evenly spaced points on the original Bezier curve

as are desired.

TrueType adds an extra twist in the way Bezier curves are stitched together in a
single QSpline record. If n = 2 in a QSpline record, there will be a single Bezier with pl
being the Jast point on the previous record and p2 and p3 the given points. If n =3, however,
there will be two Reziers joined end to end. If we denote the three points by apfx{0], apfx{1],

and apfx[2]. The first Bezier curve is defined by:

last point in previous record

pl =
p2 = apfx(d]
p3 = (apfx(0] + apfxill) / 2

The second Bezier curve has points:

pl' = p3 on last Bezier
p2' = apfxill
p3' = apfx[2]

With the exception of the last point, the spline points returned by GetGlyphOulline are
the Bezier handles. The curve does not pass through any of .the points retumed by
GetGlyphOutline (since they are handles) except thé last point. The control points can be
reconstructed from the handles: each control point is the average of two adjacent handles.
Since the average of two points is the point exactly midway between them, this ingenious
scheme insures that the joined Bezier curves are smooth at the point of juncture. This is

because the first Bezier is tangent to the vector connecting p3 to p2, while the second one is

UrduKashishStler 98

Chapter § Huplemenituun

tangent to the vector connecting pt' = p3 to p2'. The two vectors point in diametrically

opposite directions, by construction (compare with Figure 5.12).

Figure 5.13 Two Quadratic Beziers Joined at p3

The same averaging scheme applies if there are more than two Bezier curves in one
QSpline record, they patch together continuously at each juncture, insuring smoothness at

any resolution.
5.17.3 Representing an 'A’

Consider the TrueType representation of the Times New Roman capital 'A' in Figure
5.14, for example. First comes the outer contour, pictured here, then a second contour for the
hole (not shown). The outer contour's start point, marked by a green cross, is on the right
underside of the horizontal arm. The contour begins to trace straight to the left, then turns
down and to the lefi to start down the left foot, proceeding all the way around in a clockwise
fashion. The blue crosses mark points in polyline records, the red crosses points in QSpline

records.

UrduKashishStyler 99

Chapter 5 Jmplementation

Outer contour o'f
Times New Roman 'A’

Line3

Figure 5.14 Times New Roman A with Polylines and QSplines

If Line2 denotes a polyline record with two points, QSpline3 a QSpline record with

three points, and so on, then this contour consists of the following records:

Line2
QSpline2
QSpline3
Line3
0Spline2
QSpline2
Line3
QSpline3
LineB'
QSpline3l
QSplinez

UrduKashishStyler 100

Chapter § Iplementation

Detail of left
foot of 'A'

+f— QSpline2

Figure 5.15 Left Foot of A

A detail view of the left foot in Figure 5.15, helps illustrate how the QSplines work.
The first QSpline record in the contour begins to define the right edge of the left foot. It has
two points (QSpline2) and determines a single Bezier curve. The two points are the handle
and second control, the first contrbl_being the last point on the previous polyline récord. The
next QSpline record has three points (QSpline3), where the first two handles are not on the
contour and the third is the final control. Compare to Figure 5.12, which shows two quadratic
Beziers joined at point p3, essentially the same diagram in a different orientation. Here too
the construction lines are drawn, showing that the nudpoint of the two interior handles is a

control point common to both Beziers.

UrduKashishStyler 101

Chapter 6

Testing and Results

6. Testing

Testing is an important phase during software development life cycle, and shows the
stability of the product. Also it helps in comparing the final product with the objectives.
Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design and coding.

Testing should focus upon the system’s external behavior; a secondary purpose of
testing is pushing the limits of the system in order to understand how it fails under certain

conditions. A design must be testable. An implementation must be tested.

6.1 Objective of Testing

The overall objective of the testing 1s to find the maximum number of errors in

minimum amount of effort.
6.2 Object Oriented Testing Strategies

Testing begins with unit testing, tﬁen‘ progress towards integration testing, and
_culminates with validation and system testing. In unit testing single modules are tested first.
Once each module is tested individually, it is integratéd into a.prog:ra_m structures while a
series of regression tests are run to uncover errors due to interfacing of modules and side

effects caused by addition of new units. Finally the system as a whole is tested.
6.3 Types of Testing Done
We conducted various types of testing to make the software stable and error free.

6.3.1 Unit Testing

All the modules of the project were first tested individually by inserting mvalid

values. Exceptions thrown were properly handled.

UrduKashishStyler 102

Chapter 6 .

6.3.2 Integration Testing

After the modules were tested individually, they were combined to form the final
product. All the links and paths were tested. Invalid values were also checked and measure

taken to handle them successfully.

Tests of inter object and inter process coordination should be built at several
granularity levels. For example, tests of two or three interacting objects, dozens of objects,
and thousands of them are all needed.

6.3.3 Black Box Testing

The software was tested for graphical user interface and measures taken that expected

output is generated on input.
6.3.4 White Box Testing

Prior testing is part of white box testing in which we look inside the code. Here we
can often find errors, Tests that force most or all computation paths to be visited, and
especially those that place components near the edges of their operating conditions form

classic test strategies.
6.3.5 Beta testing

Use by outsiders rather than developers often makes up for lack of imagination about

possible error paths by testers.
6.3.6 System Testing

The software was checked under different operating system ﬁke Windows NT and
2000.

UrduKashishStyler 103

Chapter 6

6.3.7 Portability testing

Tests should be applied across the range of systems on which the software may
execute. Tests may employ suspected non-portable constructions at the compiler, language,

tool, operating system, or machine level.
6.3.8 Regression testing

Tests should never be thrown out (unless the tests are wrong). Any changes in classes,
etc., should be accompanied by a rerun of tests. Most regression tests begin their lives as bug

reports.
6.4 Evaluvation

Evaluation of the software is carried out to check the stability and usability of the
product being developed .We took measures to ensure that the developed software becomes

effective and easy to use. Some of the features of the software are given below.
.6.4.1 Efficiency and Effectiveness
The product developed is effective and efficient.
6.4.2 Accuracy

The software provided reliable results. Format which is not supported can not be

opened.
6.4.3 Easy to Use Graphical User Interface

The graphical user interface used is simple but not multilingual and steps taken that

1o problems arise during option finding.

UrduKashishStyler 104

Chapter 7 Achievements And Future Work

encodings; yet whenever data is passed between different encodings or platforms, that

data always runs the risk of corruption.

Unicode provides a unique number for every character. The Unicode Standard has
been adopted by such industry leaders as Apple, HP, IBM, JustSystem, Microsoft,
Oracle, SAP, Sun, Sybase, Unisys and many others. Unicode is required by modern
standards such as XML, Java, ECMAScrnpt (JavaScript), LDAP, CORBA 3.0, WML,
etc., and is the official way to implement ISO/IEC 10646. It is supported in many

operating systems, all modern browsers, and many other products.

The emergence of the Unicode Standard, and the availability of tools supporting
it, are among the most significant recent global software technology trends. We are

planning that our software also use Unicode as encoding system.

7.2.2 Use of OTF fonts

We are using true type font format but the software capabilities can be
dynamically enhanced by using OpenType Fonts. OpenType 1s a new cross-platform font
file format developed jomtly by Adobe and Microsoft. Adobe has converted the entire
Adobe Type Library'ihto_ this format and now offers thousands of OpenType fonts.

The two main benefits of the OpenType format are its cross-platform
compatibility (the same font file works on Macintosh and Windows computers), and its
ability to support widely expanded character sets and layout features, which provide

richer linguistic support and advanced typographic control.
7.2.3 Using .Net as Development Tool

_ As Visual C++ 6 does not support OpenType Font and Java also does not fully
support OpenType so the solution is using .Net technology which fu-lly support
OpenType format and is now considered as ideal tool for development of windows based
applications. The functionality of the software can be drastically increased by using .Net

as development tool.

UrduKashishStyler 106

Chapter 7 Achievements And Futire Work

7.2.4 Multilingual text designing

Using .Net as development tool and providing support for OpenType will provide
most of the foundation work for multilingual text designing and by making small changes
in the software we will enable the sofiware to support all the languages of the world

provided their fonts are available.

UrduKashishStyler 107

Appendices

Appendix A

A. UrduKashishStyler

UrduKashishStyler is a vector based tool specially use for preparing versatile

headlines and text with effects.

A.1 Description

With UrduKashishStyler you can perform these functions:
¢°® Draw Line
e ® Draw Circle
o ®* Draw Rectangle
s Draw Ellipse
¢ * Draw Free Hand Line
o * Break Text
¢ ® No Layer Text
o ®* One Layer Text
«*® Two Layer Text
® Three La)}er Text
* Gradient Fill
o * Solid Fill
e ® Texture Fill
#® Pattern Fill
«® Undo
»® Redo
«* To Back
o ® To Front
e * In Front Of
o * In Back Of

UrduKashishStyler 108

Appendix A

R RS =0l x|
B!ﬁre Edt View Text Too Object. Window' Heb -] |_j_

ECEEIL T M@i““‘ﬂ‘@‘?
1 I\r{d—th—___l_{ilght ~ ”F—ont ﬂii

l_ g};{'_;.,‘ad‘]@ﬁﬂ -ﬁ/ﬂ’]ﬁ%%‘%am
: TR W P T l;i._l._l__i_..l__-"_l_l—j

‘0 ﬂ‘ - % = © (-_f*_‘v";;jl
B

v P R . W
P PO S S L] N W NP il |
v
4

i
]
g
L

Figure A.1 UrduKashishStyler

¢ Forward One
*® Back One
**® Group

** Ungroup

A.2 Command Widget
The Command widget lists 2 number of sub-menus and commands. They are

» File
«® New
¢ Open
«® Close
«® Save
e® Save As
¢® Print

® Print Preview

UrduKashishStyler 109

Appendix A

o* Print Setup
«* Page Setup

« Exit

» Undo

¢* Redo

o Cut

o Copy

o® Paste

o Delete

o Duplicate

o* Zoom

o* Select All

«* Copy Attributes From

» View
‘e Toolbar
e Status Bar

«* Drawing Bar
o Text Bar

«* Kashish Bar
> Text

- Break Text

o® Text

«* One Layer Text
o* Two Layer Text

o Three Layer Text

UrduKashishStyler 110

Appendix A

» Tools

» Object

Select

Circle
Ellipse

Line
Rectangle
Free Hand
Fill Style
Outline Style

Order

»® To Front

ws To Back

» Forward One
» Back One

» In Front Of

» Behind

Group
Ungroup

3» Window

oo New Window

»

Cascade
Tile
Asrange Icons

UrduKashishStyler

111

Appendix A R

» Help

» About UrduKashishStyler

UrduKashishStyler 112

Appendix B

B. Glossary

Binary Image (monochrome image} where pixel has only two values generally O or 1.

Bitmap font represents each character glyph using a bitmap array and is designed for a

specific aspect ratio and character size.

BMP Bitmap image format. An uncompressed image format where the image pixel

values are mapped one to one in the image.

Device Context is a data structure that is defined by Windows, which contains information
that allows Windows to translate your output request into actions on a particular physical

device being used.

Font refers to a complete set of glyphs in a specific typeface, style and weight.

GDI Graphical Device Interface is a class-based application programming interface (API) for

C/C++ programmers. It enables to program graphical output independently of the hardware

on which it will be displayed.
Glyph is the representation of a character.

Gradient fill is a progression of colors that causes two or more colors to blend from one

color to the others smoothly for adding depth and color in the drawing.
Pattern is a simple picture composed of only “on” and “off” pixels.

Pixel slang for picture element. The smallest element of an image. Pixels are arranged in

rows and columns to create an image.

Polyline is a series of connected straight lines.

UrduKashishStyler 113

Appendix B i g

QSpline is a series of connected three-point {quadratic) Bezier curves.
Ramp Fill same as gradient fill.

RGB Red-Green-Blue. An image color space where the image data is represented by the
Red, Green, and Blue bit planes of the image.

Scalable font can be resized {enlarged or reduced) without introducing distortion.

Texture is a random, fractally-generated color that is used to give a natural appearance for
wood, clouds, stone, ripples, waves, and wrinkles, or create artificial patterns such as

checkers, dots, lines, and swirls.

TTF True Type fonts is a font in which each character is defined mathematically as an
object, where each object is self-contained, with propertics such as color, shape, outline, size

and position on the screen.

YCbCr an image color space where the image data is represented by the Luminance and Red

and Blue color difference components. Most of the image information is in the Y component.

Zoom process by which an 1mage is magnified by a computer algorithm.

UrduKashishStyler 14

Bibliography and References

Biblingraphv and References

Bibliography and References

1. “Computer Graphics”
Donald Hearn and M. Pauline Baker
Prentice-Hall International Inc, 1996

2. “Introduction to Algonithms”
T. H. Cormen, C. E. Leiserson, R. L. Rivest,

The MIT Press, McGraw-Hiil, 19%0.

3. “http://www.truetype.demon.co.uk”

4. “C/C++ Users Journal, August 1999, TrueType Font Secrets”
Bertrand and Dave Grundgeiger.

5. "Fast Bezier Curves in Windows"

Michael Bertrand
PC Techniques, February/March 1992,

6. “http://www.webopedia.com”

7.“MSDN Library”

UrduKashishStyler

115

Research Paper

Algorithm for Urdu composite vector glyphs

ALGORITHM FOR
URDU COMPOSITE VECTOR GLYPHS

Muhammad Ali, Khurram Igbal
Dr. Sikandar Hayat Khiyal
Department of Computer Science, International Islamic University Tslamabad.

ABSTRACT

This paper presents the process of making Urdu composite vector glyphs using Tre
Type fonts. A simple and fast algorithm is presented to solve the overlapping problem
that arises when Urdu text is written in form of composite vector glyph. The algorithm
explicitly copes with the degenerate cases, such that the vector glyph pomts are input to
the algorithm and as a result, the algorithm generates the composite vector glyphs having
no overlapping line common in the individual glyphs. The result of this process can be
utilized by vector graphics editors to apply special effects on extracted curves.

1. INTRODUCTION

In Urdu many of the characters can have more than one shape according to their position
in a word 1.e. isolate, initial, middle and final. These shapes are known as giyphs. There
are two types of glyphs, bitmapped and vector glyphs. A bitmapped glyph is a collection
of bits arranged in rows and columns, designed at a fixed point size for a particular
_ display device, such as a monitor or a printer. These bitmapped glyphs are stored as
pictures in the font file. A vector glyph is the glyph in form of outlines and utilizes a
‘vector graphics system to define fonts, where the shape or outline of each character is
defined geometrically. - -

The words in Urdu are constituted with different combination of glyphs provided that
initial form always comes first, final in the last and the middle is positioned between the
first and last form of glyphs and may vary in number.

In order to make composite vector glyph for Urdu having no overlapping line, we need to
get data from True Type font file. The data obtained is in the form of spline and gsplines,
then deCasteljau algorithm is applied on gsplines to get vector points. After getting the
vector points, proposed algorithm is applied to remove the overlapping line.

2. TRUE TYPE FONTS

In the True Type fonts, each character is defined mathematically as an object, where each
object is self-contained, with properties such as color, shape, outline, size and position on
the screen. As each object is self contained, transformations may be applied on a large
scale while maintaining its original clarity. For this reason True Type is known as vector
font format. Probably the greatest thing about storing characters as outline is that only

UrduKashishStyler

Aloorithm for Urdu composite vector glyphs

one outline per character is needed to produce all the sizes of that character. A single
outline can be scaled to enormous range of different sizes. This enables the character to
be displayed on monitors of different resolutions, and to be printed out at different sizes.
To scale a character oufline is a simple mathematical operation as are other
transformations such as rotation and reflection.

The True Type font resources consist of a sequence of tables that contain the data
necessary for drawing the glyphs, measurement information and instructions that the font
designer might include. In addition, the font designer can also define additional tables for
the outline font resource to support different platforms where outline fonts are available
or ta provide for future expansion of a font.

3. Extracting Glyph QOutline

To access the data from True Type font files data extraction algorithms may be applied.
There are utilities available such as GetGlyphQOutline[4] Microsoft Windows. It furnishes
direct access to TrueType coordinates and supplies the vector points for straight lines and
Bezier curves[3} in an abstract coordinate system. Rendering the character then requires
deciphering the vector points and drawing the lines and curves. The Bezier curves in
particular must be decomposed into straight lines and patched together end-to-end to
produce the final smooth contour.

The utility routine fills the buffer with a sequence of structures describing the glyph
where each glyph can have one or more contours. A contour is a closed path, ending
where it started. For example, the Urdu character ‘BAY” is made of two contours, one for
the body of BAY and the other for nuqta.

Contour Start
Splinel 2
st | Q)
QSpline2 ~»{ C \ Y
. ______V_____(,./ g
QSpline3 —» o

+ ---——-v—“__'_'_"

RN

Polylinel —» '\ /'4— Contour Start

Figure 1: Outline of Urdu character ‘BAY” with Polyline and QSpline records

Each contour in the character is described by a TTPOLYGONHEADER[4] structure
followed by as many TTPOLYCURVE({4] structures as required to describe it. The

UrduKashishStyler

Aleorithm for Urdu composite vector glyphs

TTPOLYCURVE structure can be either a polyline record or a gspline record where
polyline is a series of connected straight lines and gspline record is a series of connected
three~-point (quadratic) Bezier curves (Figurel).

p2

Figure 2: Quadratic Bezier curve determined by control points pl, p3 and handle p2.

A quadratic Bezier curve of QSpline3 (Figurel) is defined by three points, controls p1, p3
and handle p2 as shown in Figure2, The curve begins at pl in the direction of handle p2,
eventually veering back towards p3, where it ends. The handle vectors connecting pl and
p3 to p2 in Figure2 are construction lines, they are shown only to illustrate how the curve
runs tangent to one of these vectors before breaking off towards the other control point.

4, Decomposition-of Curve by deCasteljan Algorithm

In order to decompose Bezier curve into straight lines we have implemented the elegant -
recursive deCasteljau algorithm, which calculates a series of points along the Bezier
curve. The deCasteljau works by calculating point q1 midway between pl and p2, and
point g2 midway between p2 and p3. Then point rl, the midpoint of segment qlq2, is a
point on the curve, and one that partitions the original Bezier curve into left sub-Bezier
plglrl and right sub-Bezier r1q2p3 (see Figure 2). The subdivision process continues
recursively to generate as many evenly spaced points on the original Bezier curve as
destred.

5. FORMING COMPOSITE GLYPH

After applying the deCasteljau algorithm on the giyph outline, we get the points of
individual vector glyphs. When these individual vector glyphs are joined to from
composite vector glyph an overlapping line is formed between the individual vector
glyph. In order to solve this problem we have developed an algorithm that takes
individual glyph points as input and the resultant output is a composite vector glyph with
no overlapping line.

UrduKashishStyler

Alporithm for Urdu compasite vector glyphs

Contour
. & Start Point
"y
’/.\\/_.
)

Contour and ~ —

. . 43 P
Giyph Start Point (L——/‘/ /\/’L;’. ‘\

_-/’/\d://\/“/ Contour and
— Glyph Start Point
&
rd
Contour ~
Start Point

Figure 3: Composite vector glyph with overlapping line.

The steps of algorithm are as follows.

+ Suppose A is the array containing all the points in first glyph and B is the array
containing the points of second glyph.

« Find out the first intersection point of A and B.

+ Copy all the points from A to the resultant array up to the first intersection point.

- The next point of A will be its second intersection point but for B either previous
or next point will be the second intersection point.

» If next point of B is second intersection point then copy all the points of B from
first intersection point to resultant array until reached at the start of active contour
then copy points of B from the start of active contour until reached at the second
intersection point.])

. If previous point of B is the second intersection point then copy all the points of B
from first intersection point up to the end of active contour in the resultant array
then copy all points of B from the start, up to the second intersection point.

. Copy all points of A from second intersection point up to the end in the resultant
array

+ Copy all the points from the start of B up to the starting index of intersecting

contour.
. Copy all points from the ending index of intersecting contour up to the end of B.

Figure 4: Composite vector glyph without overlapping line

UrduKashishStyler

Algorithm for Urdu composite vector glyphs

6. CONCLUSION

We may summarize the work done as below.

The process is defined to get data from font file and deciphering the vector points to
produce final smooth contour. The algorithm for collecting the resultant vector glyph is
. introduced, which avoids degeneracy problems of traditional applications.

The proposed algorithm was tested using a program in Visual C++. The algorithm proved
to be successful with any combination of Urdu characters. Output of the algorithm can be
used by any vector based graphics editing application that uses Arabic script.

1]
2]
3]
(4]
(5]

REFERENCES

Michael Bertrand and Dave Grundgeiger. "TrueType Font Secrets", C/C++ Users
Journal, August 1999,

Michael Bertrand. "Fast Bezier Curves in Windows”, PC Techniques,
February/March 1992, pp. 25-30. (Reprinted in the book PC Techniques C/C++
Power Tools, 1992, pp. 213-225))

MSDN Library.

http:/!wmx}'.webopedia.com _

http://www.truetype.demon.co.uk

UrduKashishStyler

