
UrduKashishStyler **a
pH5

h. BT.. (Y m u ----

Developed By:

Khurram Iqbal

Muhammad Ali

Supervised By:

Dr. Sikander Hayat Khiyal

Department of Computer Science
International Islamic University Islamabad

(2003)

Department of Computer Science

International Islamic University Islamabad

Final Approval Dated December 26,2003

It is certified that we have read the project report submitted by Mr. Khurram Iqbal

Reg Nol4-CSIMSIOI and Mr. Muhammad Ali Reg No 17-CS/MS/OI, it is our

judgment that this report is of sufficient standard to warrant to acceptance by

International Islamic University Islamabad for Master of Science Degree in Computer

Sciences.

Committee

1. External Examiner

Dr. Muhammad Afzal

Director CIT, Arid Agriculture

University, Muree Road, Rawalpindi.

2. Internal Examiner

Mr. Zaheer Aziz

Assistant Professor

Department of Computer Sciences

Faculty of Management Sciences
A

3. Supervisor

Dr. Sikander Hayat Khiyal

Head Department of Computer Sciences

Faculty of Management Sciences

International Islamic University Islamabad.

A dissertation submitted to the International Islamic University, Islamabad as a

panial fulfillment of the requirement for the award of the degree of Master of Science

in Computer Science.

Dedication

To our parents

Declaration

We here by solemnly declare that the developed software and this accompanied

report neither as a whole nor as a part thereof has been copied from any source. It is

further declared that we have developed this software as well as the accompanied

report entirely on the basis of our personal efforts made under the kind guidance of

our teachers. If any part of this thesis is proved to be copied out from any source or

found to be reproduction of some other, we shall stand by the consequences thereof.

We also declare that no part or whole of the work presented in this thesis has been

submitted in support of any degree for other university or institution of learning.

Khurram Iqbal

Reg # 14-CS/1MS/OI

Muhammad Ali

Reg # 17-CSMSIO I

Acknowledgement

First and above all, gratitude is due to ALLAH who gave us health, strength and

patience to complete this thesis. We are thankful to our teachers who guided us in this

project in any way they could, specially to our supervisor Dr. Sikander Hayat Khiyal for

providing us help in conducting the project.

We further wish to express our gatitude to people we met during project who have

contributed to this thesis by offering guidance, sharing good advice, and providing tough

critique when necessary.

Khurram Iqbal

Reg # 14-CSiMSIOl

Muhammad Ali

Reg # 17-CSMSIOI

Project In Brief

Project Title:

Undertaken By:

Supervised By:

Date:

Start Date:

End Date:

Tools:

Operating System:

Khurram Iqbal 14-CS/MS/Ol

Muhammad Ali 17-CSlMSIO1

Dr. Sikander Hayat Khiyal

November 6,2003

September, 2002

Visual C++

Windows XP

Abstract

UrduKashishStyler is a vector-based tool specially designed for ~ r d u text

designing to ease and reduce the text designing efforts, because text con~posing with

effects in existing tools is a tedious job and require more than fifteen steps. With the

existing systems only skilled person can prepare good looking headings. This tool

provides a number of collections with different composing styles and pattems in

Knsl~ish Arr Gnllery, from where the user can select the sample and the pattem of

selected sample will be applied on the text. The user may also customize these

pattems.

We have used true type vector fonts for writing Urdu. In vector fonts the

shape of glyphs is stored in form of vectors. After obtaining data from font file we

decipher the information into vector points by using decasteljau algorithm. Then

these vector points are used to draw the actual glyphs and performing other operation

like gradient-filling, pattem filling and transformations.

vii

Preface

This thesis is regarding the project work title "UrduKashishStyler" submitted as

partial fi~lfillment of requirement for the award of the Master of Science Degree in

Computer Sciences International Islamic University, Islamabad.

In chapter one, we present the introduction of the project, giving the purpose and

need of the Project. Objectives of the project are also mentioned in this chapter.

In chapter two, we present general background of fonts and technologies used in

details. Chapter three is concerned with system analysis, which cover requirement and

domain analysis of this software with the help of different software models. Chapter four

deal with the design analysis describing the design of the software. In Chapter five, we

give the implementation details of our software along with some sample codes and

techniques that are used in the project. In Chapter six, we define Testing and Evaluation

part showing the system stability.

At the end of Dissertation Appendices, Glossary and References are given. In the

appendix-A a general description of software is given.

UrhKashishStvler Table o f Conrents

Table of Contents

Chapter No . Contents

1 .Introduction ...
.. 1.1 Vector Inlage

.................................. 1.2 Glyph And Vector Glyph :.
. 1.3; Existmg Problem

.. 1.4 Objective

... 2.Basic Concepts

.. 2.1 Fonts

... 2.1.1 TrueType Fonts

2.1.1.1 TrueTpe Font Files ...
2.1.1.2 TrueType Rasterizer ...

.. 2.1.2 Bitmap Fonts

... 2.2 Graphics Device Interface +
... 2.2.1 Parts of GDI+

.. 2.2.1.1 2-D Vector Graphics

......................... 2.2.1.2 Imaging ..:

.. 2.2.1.3 Typography

.. 2.2.2 Features of GDI+

... 2.2.2.1 Drawing Tools

.. 2.2.2.2 Gradient Brushes

... 2.2.2.3 Cardinal Splines

2.2.2.4 Independent Paths ...
2.2.2.5 Transformations and the Matrix

.. 2.2.2.6 Scalable Regions

.. 2.2.2.7 Alpha Blending

................................ 2.2.2.8 Support for Multiple Image Formats

... 2.3 Device Context

Page No .
1

1

1

2

3

5

5

5

6

6

6

7

7

7

8

8

8

8

8

9

10

10

11

11

12

12

UrduKoshishShder Table o f Contents

Chapter No . Contents

... 2.3.1 Device Context Types

.. 2.3.1.1 Display

... 2.3.1.2 Printer

... 2.3.1.3 Memory

... 2.3.1.4 Information

... 2.4 Object

.. 2.4.1 Filling and Outlining Objects

.. 2.4.1.1 Solid Color

.. 2.4.1.2 Gradient

2.4.1.3 Pattern ..
.. 2.4.1.4 Texture

... 2.4.1 Drawing Objects

2.4.1 Moving Objects ...

3 . System Analysis ..
.. 3.1 Analysis

... 3.1.1 Requirement Analysis
. .

~ 3.1.2 Domain Analysls:
.. 3.2 Steps for Object Oriented Analysis

... 3.3 Use Cases

.. 3.3.1 Use Case Analysis

.. 3.3.2 Actors

... 3.3.3 Use Case Expanded Format

... 3.3.3.1 Use Case Rectangle

.. 3.3.3.2 Use Case Circle

...... .. 3.3.3.3 Use Case Ellipse ...
.. 3.3.3.4 Use Case Line

.. 3.3.3.5 Use Case Text

... 3.3.3.6 Use Case Layered Text

... 3.3.3.7 Use Case Undo

Page No .
12

13

13

14

14

14

15

15.

16

16

16

17

17

18

18

18

18

19

19

19

20

20

22

23

24-

26

27

28

29

UrduKashishStvler Table of Contents

Chapter No . Contents

3.3.3.8 Use Case Redo ...
... 3.3.3.9 Use Case Cut

.. 3.3.3.10 Use Case Copy

.. 3.3.3.11 Usecasepaste

3.3.3.12 Use Case Delete ...
3.3.3.13 Use Case Duplicate ..

... 3.3.3.14UseCaseOrder

3.3.3.15UseCaseBreakText ...
... 3.4 Domain Analysis

... 3.4.1 Conceptual Diagram

3.4.2 Concepts ...

.. 4 . System Design

.. 4.1 Activity Diagrams

4.2 Class ..
.. 4.2.1 Attribute

.. . 4.2.2 Relationships
~-

~ ~ 4.3 Sequence Diagram .: :

.. 4.3.1 Drawing a Line

... 4.3.2 Drawing a Rectangle

.. 4.3.3 Drawing an Ellipse

.. 4.3.4 Drawing a Circle

.. 4.3.5 Selection process

... 4.3.6 Scaling Process

... 4.3.7 Translate Process

... 4.3.8 Group Process

5 . Implementation ..
5.1 Urdu Editor ..

.. 5.1.1 Font File

Page No .
30

31

32

33

34

35

36

37

39

39

40

UrduKashishStvler Table o f Conrents

Chapter No . Contents

.. 5.1.2 Word Processor

.. 5.1.3 Output Screen

.. 5.2 Graphical Editor

... 5.2.1 Select Tool

.. 5.2.1.1 Selection Actions

.. 5.2.1.2 Multiple Selections

... 5.2.1.3 Move Actions

.. 5.2.1.4 Scale Actions

... 5.2.2 Rectangle Tool

.. 5.2.3 Ellipse Tool

... 5.2.4 Circle Tool

... 5.2.5 Line Tool

.. 5.2.6 Free Hand Line Tool

... 5.2.7 Text Tool

... 5.2.8 Zero Layer Text Tool

.. 5.2.9 One Layer Text Tool

.. 5.2.10 Two Layer Text Tool

.. 5.2.1 1 Three Layer Text Tool

... 5.2.12 Break Text Tool

... 5.3 Undo

... 5.4 Redo

... 5.5 Cut

.. 5.6 Copy

.. 5.7 Paste

... 5.8 Delete

... 5.9 Duplicate

.. 5.10 Select All

... 5.1 1 Copy Attributes From

... 5.12 Group.,

.. 5.13 Ungroup

Page No .
70

70

71

71

72

72

73

73

74

75

75

76

76

77

77

77

78

78

78

79

79

79

80

80

80

80

81

81

82

82

xii

UrdrrKashishSh'ler Table o f Contents

Chapter No . Contents

... 5.14 Order Of Shapes

.. 5.14.1 Forward One

.. 5.14.2 Back One

... 5.14.3 To Front

... 5.14.4 To Back

.. 5.14.3 In Front Of

... 5.14.3 Behind

.. 5.15 Transformations

... 5.15.1 Translation

... 5.15.2 Scaling

... 5.16 Inside-Outside Tests

.. 5.16.1 Circle

5.16.2 Line ..
5.16.3 Text ..

.. 5.17 Getting the Glyph Outline

... 5.17.1 The GetGlyphOutline API

... 5.17.2 Polyline and QSpline Records

.. 5.17.3 Representing an 'A'.

6 .Testing ..
... 6.1 Objective of Testing

... 6.2 Object Oriented Testing Strategies

... 6.3 Types of Testing Done

... 6.3.1 Unit Testing

... 6.3.2 Integration Testing

.. 6.3.3 Black Box Testing

... 6.3.4 White Box Testing

... 6.3.5 Beta Testing

... 6.3.6 System Testing

... 6.3.7 Portability Testing

Page No .
83

83

84

85

86

86

86

86

86

87

89

89

90

90

93

94

95

99

UrduKashishSmler Tobie o f Contents

... 6.3.8 Regression Testing

.. 6.4 Evaluation

... 6.4.1 Efficiency and Effectiveness

6.4.2 Accuracy ...
.. 6.4.3 Easy to Use Graphical User Interface

.. 7 . Achievements and Future Work

... 7.1 Achievements

... 7.2 Future Work

.. 7.2.1 Using Unicode as Encoding System

.. 7.2.2 Use of OTF fonts

.. 7.2.3 Using .Net as Development Tool

.. 7.2.4 Multilingual Text Designing

.. Appendix A: UrduKashishStyler

... Appendix B: Glossary

... Bibliography and References

... Algorithm For Urdu Composite Vector Glyph
-~

xiv

Urdu Kmhish Stvler Fipipures Used in Proiecr Documenmtion

Figures Used in Project Documentation

Figure No . Page No .
.................................... Figure 1.1 Isolate. Final. Middle And Initial Glyphs 2

............................ Figure 1.2 Isolate. Final. Middle And Initial Vector Glyphs 2

... Figure 1.3 Vector Glyphs for Urdu Word Kashish 3

.......................... Figure 1.4 Composite Vector Glyphs for Urdu Word Kashish 3

.................................. Figure 1.5 Kashish Art Gallery With Different Samples 4

.. Figure 2.5 Shape Filled by Gradient Fill 9

Figure 2.6 Path Created by Cardinal Spline .. 10

Figure 2.7 Path Created by Connecting Straight Lines ... 10

............................... Figure 2.8 Path with Two Transfomations(Sca1e And Rotate) 10

... Figure 2.9 Region with Scale, Rotate And Translate I I

... Figure 2.1 0 Ellipse with Different Transparency Levels 11

... Figure 3.2 Conceptual Model of Urdukashishstyler 40

.. Figure 4.1 Activity Diagram of Drawing A Shape 43

.. Figure 4.2 Activity Diagram of Writing Text 44

Figure 4.3 Activity Diagram of Printing Process .. 45
- . .

.. Figure 4.4 Class Diagram of UrduKashishStyler 48

.. Figure 4.5 Class CShape 49

Figure 4.6 Class CFill Attributes ... 49

Figure 4.7 Class CKashishDoc .. 50

... Figure 4.8 Class CClose Shape 51

... Figure 4.9 Class CLine 51

.. Figure 4.10 Class CPrintData 51

Figure 4.1 1 Class CEllipse .. 52

... Figure 4.12 Class CUrdutext 52

Figure 4.13 Struct UndoRedo .. 52

Figure 4.14 Class CRectangle .. 53

.. Figure 4.15 Class CLayer Attributes 53

Urdu Knshish Stvler Fipures Used in Project Docurnenmtion

Figure No .
Figure 4.16 Class CTextpolygon ..
Figure 4.17 Class CMemdc ...

.. Figure 4.18 Class CUrduText

... Figure 4.19 Class CFreeHandLine

.. Figure 4.20 Class CText

.. Figure 4.21 Class CKashishView

Figure 4.22 Class CSelect ..
.. Figure 4.23 Sequence Diagram of Drawing A Line

Figure 4.24 Sequence Diagram of Drawing Rectangle ...

Figure 4.25 Sequence Diagram of Drawing An Ellipse ..

... Figure 4.26 Sequence Diagram of Drawing A Circle

.. Figure 4.27 Sequence Diagram of Selection Process

... Figure 4.28 Sequence Diagram of Scaling Process

.. Figure 4.29 Sequence Diagram of Translate Process

.. Figure 4.30 Sequence Diagram of Group Process

....... Figure 5.1 Parts of Urdu Editor : :

.................................... Figure 5.2 Table of Urdu Chars And Their Possible Forms

.. Figure 5.3 Shapes Drawn With Rectangle Tool

Figure 5.4 Objects overlapping Each Other ...
.. Figure 5.5 The Effect of the Fonvard One Command

Figure 5.6 The Effect of Back One Command ...
... Figure 5.7 The Effect of the Bring To Front Command

... Figure 5.8 The Effect of To Back Command

... Figure 5.9 Inside Outside Test for Polygon

.. Figure 5.10 Edge or Vertex on the Ray

... Figure 5.1 1 Polygon with Hole

... Figure 5.12 Bazier Curve with Points p l , p2 and p3

.. Figure 5.13 Two Quadratic Baziers Joined at p3

............................... Figure 5.14 Times New Roman A with Polylines and QSplines

.. Figure 5.15 Left Foot of A

Page No .
53

54

54

54

55

56

57

58

59

60

61

62

63

64

65

66

69

74. -

82

83

84

84

85

90

91

91

97

99

100

101

xvi

Chapter 1

Introduction

1. Introduction

Urdu, a language full of beauty and grace, a language that seems to have been

custom-built for literature, a language that adds meaning to prose and cham to poetry, a

language that is spoken in many countries of the world. To present Urdu with its grace and

beauty in the newspapers, magazines and business advertisements composing and designing

tools play an important role.

1.1 Vector Image

Vector images, also called object-oriented images, are created through a sequence of

commands or mathematical statements that place lines and shapes in two-dimensional

system. In physics, a vector is a representation of both quantity and direction at the same

time. In vector graphics, the file that results from a graphic artist's work is created and saved

as a sequence of vector stateinents. For example, instead of containing a bit in the file for

each bit of a line drawing, a vector graphic file describes a series of points to be connected.

One result is a nuuch smaller file. Graphical elements in a vector file are called objects, where

each object is a self-contained entity, having properties such as color, shape, outline, size,

and position on the screen included in its definition. Since each object is a self-contained

entity, we can move and change its properties over and over again while maintaining its

original clarity without affecting other objects in the drawing. These characteristics make

vector-based applications ideal for text designing, where the d e s i p process often requires

individual objects to be created and manipulated. Vector-based text designing is resolution

independent. This means that they appear at the maximum resolution of the output device,

such as your printer or monitor. As a result, the image quality of drawing is a higher quality

resolution.

1.2 Glyph and Vector Glyph

Glyph is the representation of a character. In Urdu many of the characters can have

more than one glyphs i.e. Isolate, initial, middle and final shown in figure 1.1. The words are

constituted with different combination of these glyphs provided that initial form always

conles first, final in the last and the middle is positioned behseen the first and last form of

glyphs and may vary in numbers.

Figure 1.1 Isolate, final, middle and initial glyphs

Vector Glyph is the glyph in'the form of outlines. The Outline of glyph is a series of

intermingled polyline and qspline records. The decasteljau algorithm is applied on these

records to get a series of points that are used to make the glyphs in vector form as shown in

figure 1.2. As vector glyph is resolution independent so when reducing or increasing the size,

i t remains same without the loss of quality. It is the characteristic which makes vector-based

applications ideal for text designing.

Figure 1.2 Isolate, final, middle and initial vector glyphs

The greatest thing about storing characters as outline is that only one outline per
. .

character is needed to produce all the sizes of that character. A single outline can be scaled to

an enormous range of different sizes. It enables the same character to be displayed on

monitors of different resolutions, and to be printed out at a large number of different sizes.

1.3 Existing Problem

There are different composing and designing tools available for different languages,

which play an important role for better presentation of the text written in simple format.

When the vector f o m ~ of glyphs are joined to make composite vector glyphs, then it becomes

very essential in various applications such as text designing in newspapers, magazines etc.

The existing applications that allow writing Urdu text in vector foml do not cope with the

de~enerate cases, such that the resultant composite vector glyph has the intersecting line,

common in the individual glyphs. .Let us take a brief survey of existing applications that

allow writing Urdu vector glyphs.

Figure 1.3 Vector glyphs for Urdu word KASHISH

The existing applications write these individual glyphs in composite form as follows

Figure 1.4 Composite vector glyphs for Urdu word KASHISH

The problem with the above composite vector glyph is that there are joining lines in

between each of the individual vector glyph, that makes each of the glyph as a separate

entity. Another problem in the existing tools is that the composing and designing of Urdu text

with effects is very difficult and requires more than fifteen steps that are possible only by a

skilled person.
-

1.4 Objective

To overcome the problem mentioned above, our objective is to develop an algorithm

that takes the individual vector glyph as input and the resultant output is the conlposite vector

glyph with no intersecting line that was common between the individual glyphs. We also

want to develop a software application which provides the facility to develop good looking

heading with few mouse clicks that is possible in existing systems with number of steps. For

this purpose a number of collections with different composing styles and patterns will be

available in Knshish Ari Gallery (Figure IS), from where the user can select the sample and

the pattern of selected sample will be applied on the text.

Figure 1.5 Kashish Art Gallery with different samples.

Chapter 2

Basic Concepts

Chapter- 2 Bmic Co,rceors

2. Basic Concepts

To present Urdu with its grace and beauty in the newspapers, magazines and business

advertisements, designing applications play an important role. These applications are based

on creating either vector or bitmap, images. UrduKashishStyler is a comprehensive vector-

based drawing program that makes i t easy to create professional artwork for intricate Urdu

text designing technical illustrations. UrduKashishStyler provide tools that work efficiently

producing high-quality text designing.

2.1 Fonts

The text is displayed using a Font that refers to a comF ,lete set of glyr ~ h s in a specific

typeface, style and weight. UrduKashishStyler uses the TrueType Fonts (TTF) instead of

Bitmap Fonts (BF) since Bitmap Fonts need separate bitmap sets for each and every font size

whereas TmeType Fonts remain essentially the same regardless of the size of a character.

TTF and BF are explained in the following section.

2.1.1 TrueType Font

. -

A TrueType is a scalar of scalable font. A TTF is defined using mathematical vectors,

so i t remains essentially the same regardless of the size of a character. As a result range of

sizes can be rendered from the same definition. Moreover lines and curves instead of pixels

are used by TTF for drawing glyphs. These lines and curves have no designated point size.

TrueType font technology is desiged by Apple Computer, and now used by both

Apple and Microsoft in their operating systems. Microsoft has distributed millions of quality

TrueType fonts in hundreds of different styles,.including them i n i t s range of products and

the popular TrueType Font Packs. TrueType fonts offer the highest possible quality on

computer screens and printers, and include a range of features which make them easy to use.

The TmeType font technology consists of two components: the Tn~eType font files

and TmeType rasterizer.

2.1.1.1 TrueType Font Files

A TrueType font file includes different kind of information used by the operating

system software to ensure that characters are displayed on the computer screen or are printed

out exactly as the font designer intended them to b e . ' ~ h e information in a TrueType font is

arranged in a series of tables. In addition to the shapes of each character, a TrueType font file

includes information about how the characters should be spaced within a block of text,

character mapping details (governing the variety of characters included in the font and the

keystrokes needed to access them), and much more besides.

2.1.1.2 TrueType Rasterizer

The TrueType Rasterizer is a computer program which is typically incorporated as a

part of an operating system or printer control software. With this in mind, it has been written

with a well defined client interface, and a clean modular structure in portable C.

The job of the TmeType Rasterizer is to generate character bitmaps for screens and

printers (otherwise known as raster devices). It accomplishes this by perfomling the

following tasks:

. Reading-the outline description of the character (lines and splines) fromthe Tn~eType

font file.

. Scaling the outline description of the character to the requested size and device

resolution. . Adjusting the outline description to the pixel grid (based on hinting information).

. Filling the adjusted outline with pixels (scan conversion).

2.1.2 Bitmap Font

A bitmap font represents each character glyph using a bitmap amay and is designed

for a specific aspect ratio and character size. Since the logical size of the bitmap is fixed, its

physical size on the display device will depend upon the resolution of the device. Either the

bitmap fonts need separate bitmap sets for each and every font size, or larger character sizes

Chnoter- 2 Bnsic Conmots

are created by simply duplicating rows or columns of pixels. However this can be done in

integral multiples only and with certain limits. For this reason bitmap fonts are termed non-

scalable fonts. They can not be extended or compressed to an arbitrary size.

2.2 GDI + (Graphics Device Interface)

Microsoft Windows GDI+ is a class-based application programming interface (M I)

for C/C++ programmers. It enables applications to use graphics and fom~atted text on both

the video display and the printer.

A graphics device interface, such as GDI+, allows application programmers to

display information on a screen or printer withont having to be concerned about the details of

a particular display device. The application programmer makes calls to methods provided by

GDIt classes and those methods in turn make the appropriate calls to specific device drivers.

GDI+ insulates the application from the graphics hardware, and it is this insulation that

allows developers to create device-independent applications.

As its name suggests, GDI+ is the successor to Windows Graphics Device Interface

(GDI), the graphics device interface included with earlier versions of Windows. Windows

XP or Windows Server 2003 s~~ppol t s GDI for compatibility with existing applications.
-

GDI+ optinlizes many of the capabilities of GDI and provides additional features as well.

2.2.1 Parts of GDI+

The services of Microsoft Windows GDI+ fall into three broad categories: 2-D vector

graphics, Imaging and Typography

2.2.1.1 2-D Vector Graphics

Vector graphics involves drawing primitives (such as lines, curves, and figures) specified

by sets of points on a coordinate system. For example, a straight line can be specified by its

two endpoints, and a rectangle can be specified by a point giving the location of its upper-left

comer and a pair of numbers giving its width and height. A simple path can be specified by

an array of points to be connected by straight lines. A Bkzier spline is a sophisticated curve

specified by four control points. GDI+ provides classes that store information about the

primitives themselves, classes that store information about how the primitives are to be

drawn, and classes that actually do the drawing.

2.2.1.2 Imaging

Certain kind of pictures is difficult or impossible to display with the techniques of

vector graphics. For example, the pictures on toolbar buttons and the pictures that appear as

icons would be difficult to specify as collections of lines and curves. A high-resolution

digital photograph of a crowded baseball stadium would be even more difficult to create with

vector techniques. Images of this type are stored as bitmaps, arrays of numbers that represent

the colors of individual dots on the screen. Data stn~ctures that store information about

bitmaps tend to be more complex than those required for vector graphics, so there are several

classes in GDIt devoted to this purpose.

2.2.1.3 Typography

Typography is concemed with the display of text in a variety of fonts, sizes, and

styles. GDI+ provides an impressive amount of support for this complex task. One of the

newest features in GDI+ is sub pixel antialiasing, which gives text rendered on an LCD
- . ~ - screen a smoother appearance.

2.2.2 Features of GDI+

The GDI+ has several features that allow application programmers to display

information on a screen or printer without being concemed about the details of a particular

display device. Following section describe these features.

2.2.2.1 Draking Tools

GDI+ provides a variety of drawing tools to use in device contexts. It provides pens

to draw lines, bmshes to fill interiors, and fonts to draw text.

2.2.2.2 Gradient Brushes

GDI+ expands on Windows Graphics Device Interface (GDI) by providing linear

gradient and path gradient brushes for filling shapes, paths, and regions. Gradient brushes can

also be used to draw lines, curves, and paths. When a shape is filled with a linear gradient

brush, the color gradually changes as it moves across the shape. For example, suppose a

horizontal gradient brush is created by specifying blue at the left edge of a shape and green at

the right edge.'When the shape is filled with the horizontal gradient brush, it will gradually

change from blue to green as it moves from its left edge to the right edge. Similarly, a shape

filled with a vertical gradient brush will change color as moved from its top to bottom. The

following illustration shows an ellipse filled with a horizontal gradient brush and a region

filled with a diagonal gradient brush shown in figure 2.5.

Figure 2.5 Shape filled by gradient f i l l

When a shape is filled with a path gradient brush, then there are a variety of options

for specifying how the colors change as it moves from one portion of the shape to another.

One option is to have a center color and a boundary color so that the pixels change gradually

from one color to the other as it moves from the middle of the shape towards the outer edges.

2.2.2.3 Cardinal Splines

G D I i supports cardinal splines, which are not supported in GDI. A cardinal spline is

a sequence of individual curves joined to form a larger curve. The spline is specified by an

anay of points and passes through each point in that array. A cardinal spline passes smoothly

(no sharp comers) through each point in the array and thus is more refined than a path

created by connecting straight lines. Figure 2.6 and 2.7 shows two paths, one created by

connecting straight lines and one created as a cardinal spline.

Chopter 2 Bosic Concepts

/

Figure 2.6 Path created by cardinal spline

Figure 2.7 Path created by connecting straight lines

2.2.2.4 Independent Paths

GDI+ provides drawing facility using a Graphics object. Several GraphicsPath

objects are created and destroyed from the Graphics object. A GraphicsPath object is not

destroyed by the drawing action, so the same GraphicsPath objects can be used to draw a

path several times.

2.2.2.5 Transformations and the Rlatrix

GDI+ provides the Matrix facility, a powerful tool that makes transformations

(rotations, translations, and so on) easy and flexible. A single 3x3 matrix can store one

transformation or a sequence of transfornlations. Figure 2.8 shows a path before and after a

sequence of two transformations (first scale and then rotate)

Figure 2.8 Path with two transfonnations (scale and rotate)

2.2.2.6 Scalable Regions

GDI+ expands greatly on GDI with its support for regions. In GDI, regions are stored

in device coordinates, and the only transformation that can be applied to a region is a

translation. GDI+ stores regions in, world coordinates and allows a region to undergo any

transformation (scaling, for example) that can be stored in a transfonmation matrix. Figure

2.9 shows a region before and after a sequence of three transformations: scale, rotate, and

translate.

Figure 2.9 Region with scale, rotate and translate

2.2.2.7 Alpha Blending

In figure 2.9, there is the untransfonned region (filled with red) through the

transformed region (filled with a hatch brush). This is made possible by alpha blending,

which is supported by GDI+. With alpha blending, the transparency of a filled color can be

specified. A transparent color is blended with tke background color: the more transparent the

fill color is made, the more the background shows through. Four ellipses that are filled with

the same color (red) at different transparency levels have been shown in f i g r e 2.15 below.

Figure 2.10 Ellipse with different transparency levels

Chapter 2 Basic Conce~cs

2.2.2.8 Support for Multiple Image Formats

GDI+ provides the Image, Bitmap, and Metafile classes, that allows loading, saving

and manipulating images in a variety of formats. The following formats are supported: BMP,

Graphics Interchange Format (GF), JPEG, PNG, TIFF, ICON, WMF, EMF.

2.3 Device Context

Device independence is one of the chief features of Microsoft Windows. Applications

can draw and print output on a variety of devices. The software that supports this device

independence is contained in two dynamic-link libraries. The first, Gdiplus.dl1, is referred to

as the GDI+, the second is referred to as a device driver. The name of the second depends on

the device where the application draws output. For example, if the application draws output

in the client area of its window on a VGA display, this library is Vga.dl1; if the application

prints output on an Epson FX-SO printer, this library is Epson9.dll.

An application must inform GDI+ to load a particular device driver and, once the

driver is loaded, to prepare the device for drawing operations (such as selecting a line color

and width, a brush pattern and color, a font typeface, a clipping region, and so on). These

tasks are accomplished by creating and maintaining a device context (DC). A device context
-

is a structure that defines a set of graphic objects and their associated attributes, and the

graphic modes that affect output. The graphic objects include a pen for line drawing, a bmsh

for painting and filling, a bitmap for copying or scrolling parts of the screen, a palette for

defining the set of available colors, a region for clipping and other operations, and a path for

painting and drawing operations. Unlike most of the structures, an application never has

direct access to the device context; instead, it operates on the structure indirectly by calling

various functions.

2.3.1 Device Context Types

There are four types of .device context (DC): display, printer, memory (or

con~patible), and information, where each type serves a specific purpose.

2.3.1.1 Display

It supports drawing operations on a video display. The application obtains a display

device context to identify the window in which the corresponding output will appear.

Whenever an application needs to draw in the client area then it obtains a display device

context that is released when the drawing is finished. There are three types of Device context

for video displays:

1. Class Device Contexts are supported strictly for compatibility with 16-bit versions of

Windows. When writing the applications, avoid using the class device context; use a

private device context instead.

2. Commor~ Device Contexts are display device context maintained in a special cache by the

system. Common device contexts are used in applications that perfom infrequent

drawing operations. Before the system retums the device context handle, it initializes the

common device context with default objects, attributes, and modes. Any drawing

operations perfomled by the application use these defaults unless one of the GDI+

functions is called to select a new object, change the attributes of an existing object, or

select a new mode. Because only a limited number of common device contexts exist, an

application should release them after it has finished drawing. When the application

releases a common device context, any changes to the default data are lost.

3. Private Device Contexts are disl;lay device context that, unlike common device contexts,

retain any changes to the default data, even after an application releases them. Private

device contexts are used in applications that perform numerous drawing operations such

as computer-aided design (CAD) applications, desktop-publishing applications, drawing

and painting applications, and so on. Private device contexts are not part of the system

cache and therefore need not be released after use. The system a~~tomatically removes a

private device context after the last window of that class has been destroyed.

2.3.1.2 Printer

Chnntcr 2 - Basic C o n c e ~ f s

The printer device context supports printing on a dot-mztrix printer, ink-jet printer,

laser printer, or plotter. An application creates a printer device context by supplying the

appropriate arguments (the name of the printer driver, the name of the printer, the file or

device name for the physical output medium, and other initialization data) and aRer the

application has finished printing, it deletes the printer device context.

2.3.1.3 Memory

To enable applications to place output in memory rather than sending it to an actual

device, a special device context is used for bitmap operations called a mentory device context.

A memory device context enables the system to treat a portion of memory as a virtual device.

It is an array of bits in memory that an application can use temporarily to store the color data

for bitmaps created on a normal drawing surface. Because the bitmap is compatible with the

device, a memory device context is also sometimes referred to as a conp! ib le device

contex!.

2.3.1.4 Information

The information device context is used to retrieve default device data. For example,

an application creates an information device context for a particular . . model ofprinter and then

retrieves the default attributes. Because the system can retrieve device information without

creating the structures, normally associated with the other types of device contexts, an

information device context involves far less overhcad and is created significantly faster than

any of the other types.

2.4 Object

Objects aredefined mathematically as a series of points joined by lines. The graphical

elements in a vector file are called objects. Each object is a self-contained entity, with

properties such as color, shape, outline, size, and position on the screen included in its

definition.

Clmpter 2 Bnsic Concents

Since each object is a self-contained entity, so its properties can be changed over and

over again while maintaining its original clarity and crispness without affecting other objects

in the drawing. These characteristics are ideal for text designing, in which the design process

often requires individual objects to be created and manipulated.

2.4.1 Filling and Outlining Object

The object's outline is the line that surrounds the object. The f i l l is the color or pattern

contained in the object. When an object is added to the drawing, its attribute can be changed

to Solid Color, Gradient, Texture and pattern.

2.4.1.1 Solid Color

Since solid colors are even-colored they allow to uniform fill. These colors

comn~unicated by scanners, monitors, and printers in order to achieve a consistent and

accurate reproduction of the colors as desired. A basic understanding of the color spaces and

color management of the equipment helps to achieve the precise color required for the

project.

We all see colnr differently. Color is subjective to the human eye. Each device that

interacts with project's file: the scanner, monitor, and printer may have a different color

space. For example, a color that is visible to the human eye may not be reproducible by the

printer. Because there are so many color variations, a precise method for defining each color

is required. For example once we find the perfect shade of light orange, we need to be able to

reproduce that color and possibly tell others how to do the same. A color model defines that

perfect shade of light orange by breakmg it down into precise components that allow to

accurately transmitting the information to other people and to the electronic devices used to

create projects. A color model is a system used to organize and define colors according to a

set of basic properties which are reproducible.

There are many different color models that define colors, forexample, HSB, RGB,

CMYK, and CIE Lab color models. The RGB and CMYK color models are only two of a

Chaoler 2 Basic Concepts

number of models developed to suit a variety of digital design and desktop publishing

applications.

2.4.1.2 Gradient

A gradient fill or a ramp fill% a progression of colors that causes two or more colors

to blend from one color to the others smoothly for adding depth-and color in the drawing.

When a shape is filled with a linear gradient, the color gradually changes as it moves across

the shape. For example, suppose a horizontal gradient brush is created by specifying blue at

the left edge of a shape and green at the right edge. When the shape is filled with the

horizontal gradient brush, it will gradually change from blue to green as it moves from its left

edge to the right edge. Similarly, a shape filled with a vertical gradient brush will change

color as moved from its top to bottom.

When a shape is filled with a path gradient, then there are a variety of options for

specifying how the colors change as it moves from one portion of the shape to another. One

option is to have a center color and a boundary color so that the pixels change gradually from

one color to the other as it moves from the middle of the shape towards theouter edges.

2.4.1.3 Pattern

A pattem is a simple picture composed of only "on" and "off' pixels. The two colors

included in the bitniap are black and white. A bitmap pattem is a regular color picttlre. These

bitmaps vary in complexity, and it is best to use less complex bitmaps for fill pattems,

because complex ones are memory-intensive and slow to display.

2.4.1.4 Texture

A texture is a random, fractally-generated color that is used to give a natural

appearance for wood, clouds, stone, ripples, waves, and wrinkles, or create artificial pattems

such as checkers, dots, lines, and swirls. Texture fills increase the size of a file and the time it

takes to print.

Clmuter 1 Bnsic Conceuts

2.4.2 Drawing Objects

Drawing Objects are the basic shapes used for drawing i.e. Line, Circle, Ellipse and

Rectangle.'

2.4.3 Moving Objects

Moving Object is to change the position of an object on the screen. The easiest way to

move and position the object is to drag and drop.

Chapter 3

System Analysis

3. System Analysis

Analysis is the foremost part of project development. Most of the time spent in

project development is dedicated to analysis. System analysis was done using prototyping

and object oriented methodology.

3.1 Analysis

Analysis plays a significant role in making of software. There are two main parts of

the analysis.

Requirement Analysis

Domain Analysis

3.1.1 Requirement Analysis

The rationale of analysis is to provide a model of the system's behavior. In

conducting the project, Object Oriented approach is adopted. Object oriented analysis is a
-
method of analysis that examines the requirements from the perspective of the classes and

objects found in the vocabulary of the problem domain. In requirement analysis we define

use cases diagram containing use cases, actors. A first step in analysis is to extract scenarios,

or use cmes that describe the behavior of a system from an external user's perspective.

3.1.2 Domain Analysis

Conceptual domain analysis yields common ground for each specific analysis. Object

Oriented analysis notions lend themselves for capturing generic concepts at multiple levels of '

granularity. Ensembles, sub ensembles, classes, and generic relationships are all candidates

for describing an application domain. A requirements domain analysis may lead to an 00

domain engineering effort. This entails the constn~ction of design fragments of the generic

elements identified by a requirements domain analysis. These designs can be implemented

and added to a domain-specific code library.

3.2 Steps for Object oriented Analysis:

. Obtain "con~plete" requirements. . Describe system-context interaction.

0 Delineate subsystems.

Develop vocabulary by identifying instances with their classes, ensembles, and

relationships.

Elaborate classes and relationships by defining their generic static stnicture and

describing their generic dynamic dimension.

Construct a model in which the dynamics of objects are wired together.

These steps are connected by transfom~ation -- elaboration relationships. The output

of the last step, the model, feeds naturally into the design phase.

3.3 Use Cases

A use case is a specific way of using the system by using some part - of the

functionality. Each use case constitutes a complete course of events initiated by an actor and

it specifies the interaction that takes place between an actor and the system. A use case is

thus a special sequence of related transactions performed by an act& and the system in a

dialogue. The collected use cases specify all the existing ways of using the system.

3.3.1 Use Case Analysis

Use case analysis is performed to identify portion of system perfomling specific task.

In use case analysis use cases, actors interacting with those use cases, and boundaries are

identified. A use case comprises a course of events begun by an actor, and it specifies the

interaction between actor and the system. All the use cases specify existing ways to use the

whole system. It is interaction of actors with external or other system with system being

Chapter 3 Svsfern A~~alvsis

designed in order to achieve a goal. Use case describes the functionality of the product to be

constructed.

3.3.2 Actors

There is one actor in this use case diagram

User

3.3.3 Use Case Expanded Format

There are fifteen use cases in this domain each ofwhich shows its functionality.

These are as follows.

Rectangle

Circle

Ellipse

Line

Text

Layered Text

Undo

Redo

. Cut

COPY

Paste

Delete

Duplicate

Order

Break Text

The use case diagram of our project is shown in Figure 3.1 followed by the detailed

information in expanded format of each use case.

Figure 3.1 Use Case d i a ~ a m of UrduKashishStyler

UrduKashishStyler 2 1

3.3.3.1 Use Case Rectangle

Actors: User

Purpose: To draw the rectangle.

Overview: User draws the rectangle on the drawing area.

Txpe: Real and Primary

Preconditions

. Rectangle Tool is selected from Drawing toolbar.

Post conditions

. The rectangle is drawn on the drawing area.

Initiation

This use case is initiated when user moves the mouse while keeping the left

nlouse button down.

Action

button.

3. The user moves the mouse I-----
) while keeping the left mouse

button down.

System Response

2. Set the point as starting of

rectangle.

4. A temporary rectangle is

drawn on the screen from

where the user pressed left

mouse button to the current

Alternative courses

5. The user releases the left

mouse button.

5.a User presses the right mouse button, rectangle draw action is canceled and temporary

rectangle is removed from the screen.

mouse position. .

6. Rectangle with the selected

attributes is drawn.

3.3.3.2 Use case Circle

Actors: User

Purpose: To draw the circle

Overview: User draws the circle onthe drawing area

Type: Real and Primary
-

~ ~

Preconditions

Circle Tool is selected from drawing toolbar.

Post conditions

The circle is drawn on the drawing area.

Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

Chanter 3 S w e m Atinlr.sis

Navigation

Action

1. User presses the left mouse

button.

3. The user moves the mouse

while keeping the left mouse

button down.

5. The user releases the left

mouse button.

System Response

2. Set the point as center of

circle.

4. A temporary circle is drawn

on the screen with dotted line,

using the radius point from

where the user pressed left

mouse button to the current

mouse position.

6 . Circle with the selected

attributes is drawn.

Alternative cours~es

5.a User presses the right mouse button, circle draw action is canceled and temporary

circle is removed from the screen.

3.3.3.3 Use ease Ellipse

Actors: User

Purpose: To draw the Ellipse.

Overview: User draws the ellipse on the drawing area.

Type: Real and Primary ,

Pre conditions

. Ellipse Tool is selected from drawing toolbar.

Post conditions

The ellipse is drawn on the drawing area

Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

Navigation

Action

1. User presses the left mouse

button

3. The user moves the mouse

while keeping the left mouse

button down.

5. The user releases the left

mouse button.

System Response

2. Set the point as starting of

ellipse.' .

4. A temporary ellipse is

drawn on the screen, with

dotted line, from where the

user pressed left mouse button

to the current mouse position.

6. Ellipse with the selected

attributes is drawn.

Chanter 3 System A~~nhwis

Alternative courses

5.a User presses the right mouse button, line draw action is canceled and temporary line

is removed from the screen.

3.3.3.4 Use case Line

Actors: User

Purpose: To draw the line.

Overview: User draws the line on the drawing area.

Type: Real and Primary

Preconditions

Line Tool is selected from Drawing toolbar.

post conditions

-

The line is drawn on the drawing area.

Initiation

This use case is initiated when user moves the mouse while keeping the left

mouse button down.

Navigation

r Action

(button. 1 line. I

System Response
I

1. User presses the left mouse 2. Set the point as starting of

- -

Alternative courses

3. The user moves the mouse

while keeping the left mouse

button down.

5. The user releases the left

mouse button.

-

5.a User presses the right mouse button, line draw action is canceled and temporary line

is removed from the screen.

4. A temporary straight line is

drawn on the screen from

where the user pressed left

mouse button to the current

mouse position.

6 . Line with the selected

attributes is drawn.

-

3.3.3.5 Use case Test

Actors: User

Purpose: To write the text.

Overview: User can write the text for designing.

Type: Real and Primary

Precondition

Text tool is selected from Drawing toolbar.

Post condition

Urdu text is available in UrduKashishStyler for designing.

UrduKashishStyler 27

Initiation

This use case is initiated when user clicks on the drawing area of the screen.

Navigation

Alternate Courses

Action

1. User clicks on the

drawing area of the screen.

3. User enters the text in the

Urdu Kashish Editor.

5. Click on OK button.

I

1.a If the text was selected before click on Text button, then by default the selected text

will be available in the Kashish Urdu Editor dialog box for n~odification.

5.a If user clicks on cancel button, the entered text will not be available in the

UrduKashishStyler for designing.

-
System Response

2. Kashish Urdu Editor appears

for writing text.

-
4. Text will be displayed in the

text area of dialog box.

6. The written text will be

available in the Urdu Kashish

Styler for designing.

3.3.3.6 Use case Layered Text

Actors: User

Purpose: To write Layered text

Type: Real and Primary

Precondition

Desired Layer Text Toolis selected from Drawing toolbar.

Post condition

The text is written in selected layer.

Initiation

This use case is initiated when user clicks on the drawing area of screen

Navigation

When user clicks on the drawing area of screen, a Text Art Gallery appears with

different samples. If the text was selected before the click on screen, then the pattern of

selected sample will be applied on the selected text, othenvise an Urdu Edit box will appear,

where the user will write the text and the pattern of selected sample will be applied on this

text. The user can also . ~ change the attributes i.e. line color, line style, line width and Fill of

the selected sample.

3.3.3.7 Use case Undo

Actors: User

Purpose: To reverse the last action performed.

Overview: Gives user, the freedom and flexibility to experiment and be creative without

worrying about permanently altering the drawings or having to start over. If

you make a change to your document, then wish you hadn't, you can reverse

the change.

Type: Real and Primary

Clmpler 3 Svstem Annlvsi5

Preconditions

0 At least one altering in done on the drawing area.

Post conditions

0 Reverses the last change.

Initiation

This use case is initiated when user gives the undo command.

Navigation

~ -

I

1. User presses the Undo 1 2. Reverses the last action

Action

button. I performed. I

System Response

Alternative courses

1. a No altering or change is done in the document, so not any of the action is perfomled.

3.3.3.8 Use case Redo

Actors: User

Purpose: Restores changes revkrsed by the Undo command.

Overview: Gives user, the facility to restore changes reversed by the Undo command. It

is available immediately after you click the Undo command.

Type: Real and Primary

Preconditions

. At least one Undo command is performed by the user.

Post conditions

Restores the changes.

Initiation

This use case is initiated when user gives the Redo command.

Navigation

Action- System Response
I

1. User presses the R d o 2. Restores the last action

button. performed.

3. UFdates the use; drawing

Alternative courses

I . a No Undo command is performed by the user, so not any of the action is performed.

3.3.3.9 Use case Cut

Actors: User

Purpose: Removes selected object or text from drawing area.and places them on

the clipboard.

Type: Real and Primary .

Preconditions

.At least one of the object is selected.

Post conditions

The selected object is removed from the drawing area and placed on the

clipboard.

Initiation

This use case is initiated when user gives the Cut command.

Navigation

3.3.3.10 Use case Copy

Action

1. User presses the Cut button.

Actors: User

Purpose: Copies selected object or text to the clipboard.

-
System Response

2. Place the selected object on

the clipboard.

3. Updates the user drawing

Type: Real and Primary

Preconditions

At least one of the objects is selected.

Post conditions

. The selected object is placed on the clipboard to paste anywhere on the drawing

area.

Initiation

This use case is initiated when user gives the Copy command.

Navigation

Action .
1. User presses the Copy

button.

System Response

2. Place the selected object on

the clipboard.

3.3.3.11 Use case Paste

Actors: User
. .

Purpose: Copies the text or objects to the drawing area that have been copied or cut to

the clipboard.

Type: Real and Primary

Preconditions

. At least one of the objects is placed on the clipboard.

Post conditions

. The object or text placed on the clipboard will be copied on the drawing area

Initiation

This use case is initiated when user gives the Paste command.

Navigation

1

1. User presses the Paste 1 2. Paste the text or object

r Action

I button. / placed on the clipboard, to ihe I

System Response

3.3.3.12 Use case Delete

Actors: User

Purpose: To remove selected object or text without lacing a copy on the

clipboard.

Type: Real and Primary

Preconditions

a At least one object or text is selected from drawing area.

Post conditions

. The selected object is deleted.

Initiation

This use case is initiated when user gives the delete command.

Navigation

Action

1. User presses the Delete

button

System Response

2. Deletes the selected object

from the list of objects.

3. Updates the user drawing

area.

3.3.3.13 Use case Duplicate

Actors: User

Purpose: To create a copy of the selected object.

Type: Real and Primary

Preconditions

i At least one object or text is selectedfrom drawing area.

Post conditions

A copy ofth le selected object i s created.

Initiation

This use case is initiated when user gives the duplicate command.

Navigation

area.

Action

1. User presses the Duplicate

button.

3.3.3.14 Use case Order

System Response

2. A new object of selected

type will be added in the list of

objects.

3. Updates the user drawing

Actors: - User -

Purpose: To change the sequence number of object.

Overview: Order is used to change the sequence of objects created in the Image Window.

This order determines the relationship between objects and, therefore, the

appearance of your image. The first object you create appears on the bottom

and the last object appears on the top. You can use the Order commands to

place the objects where you want them.

Type: Real and Primary

Preconditions

0 At least one object or text is selected from drawing area

Chnofer 3 Svsren~ A ~ ~ n l v s i s

Post conditions

0 Selected object is drawn according to the selected order.

Initiation

This use case is initiated when user gives the Order command.

Navigation

(Front, to Back, one step object is changed. I " I

Action

I . User presses the Order (to

System Response

2. The sequence of selected

3.3.3.15 Use case Break Text

Fonvard, one step Back,

inFront of.. .) button.

Actors: User

Purpose: To break the text.

Overview: User can break the text so individual words can be placed anywhere on the

screen.

Type: Real and Primary

3. Updates the user drawing

area.

Preconditions

. Break Text Tool is selected from Drawing toolbar.

Chaorer 3 Svstem Annlvsis

Post conditions

The individual words of text can be placed anywhere on the drawing area.

Initiation

This use case is initiated when user clicks on the text. '

Navigation

Action

1. User presses the left mouse

button on the text.

3. The user moves the word of

test anywhere on the screen.

System Response

2. Text is broken

4. Drawing screen area is

updated.

Alternative courses -

1.a Click is not on the text. Try again.

3.a User doesn't move the text and let it remain on the same location.

3.4 Domain Analysis

In domain analysis we represents concepts of our project .Discuses the functionality

of the project by representing conceptual diagram .Which contains main concepts and their

relations and their attributes.

3.4.1 Conceptual Diagram

Conceptual Model is a quintessential step in analysis or investigation, it is a

decomposition of the problem into individual Objects (called concepts), and the things we are

aware of. In addition to that creating a Conceptual Model also aids in clarifying the

terminology or vocabulary of the domain. A Conceptual Model is a description of things in a

real world problem domain, that is, it is not a Model of software design.

Figure 3.2 show the conceptual model and explains the main concept of the

UrduKashishSyler software. The Figure shows its working, relation between different

functions, relation between Concepts, their dependences and their colporations.

We have thkteen concepts in UrduKashishStyler problem domain which explain the

main operations and idea of the project.

Svsrem Annlr~sis Choorer 3

color1 :Color

Colw2 : Colar
ImageNo : Number

Wldth : Number . FillStyle
Ened : Number

Color1 :Color

Color2 : Colar
ImageNa: Number

Ened: Number

I

Ellipse Circle FreeHndLine Line Text Rectangle

staning~t : ~ ~ o i n t 1

Figure 3.2 Conceptual Model of UrduKashishStyler

3.4.2 Concepts

There are thirteen concept in UrduKashishStyler which explains the main working

and concept of the project.

KashishDoc

0 KashishView

FillStyle

Layerstyle

Shape

UrduKashishStyler 40

s Closeshape

Text

Rectangle

Ellipse

FreeHandLine

0 Circle

0 Line

TextPolygon

Chapter 4

System Design

4. System Design

The purpose of design is to create architecture for the evolving implementations. Object

oriented design is a method of design encompassing the process of objects oriented

decomposition and a notation for depicting logical and physical as well as static and dynamic

models of system under design.

The design phase focuses on defining the software to implement the application. The

design object is to produce a model of the system, which can be used later to build the system.

The design goal is to find the best possible design within the limitations imposed by the

requirement and the physical and social environment in which the system will operate.

4.1 Activity Diagrams

It gives the pictorial representation of algorithm for the function. Activity diagram is

used to represent activities present in mse cases. Basic need is that we want to make procedural

design in Unified Modeling Language (UML). Operations in use cases in sequence are

represented in activity diagram. Activity diagram are useful when we want to describe a

behavior which is parallel, or when we want to show how behaviors in several use cases

interact. The activity diagrams are described as follows.

The process of drawing a shape by the user is given in figure 4.1

The process of writing text by the user is shown in figure 4.2

The process of printing is shown in figure 4.3

Get End +
oiaw Shape 9

Figure 4.1 Activity Diagram of Drawing a Shape - .~-

Select OuQine Style (3 Selecl Fill Style 9

Get Texi (3
Render Texi 0
Make OuUlne (5

Create Text Polygon +
Figure 4.2 Activity Diagram of Writing Text

Prepare DC

Start Page

On Print (5
~ n d Page 6

End Document +
End Printing 0

Figure 4.3 Activity Diagram of Printing Process

4.2 Class

A class implements one or more interfaces. Graphically, a class is rendered as a

rectangle, usually including its name, attributes, and operations. Class stands for a family of

objects that have something in common. A class is not to be equated with a set of objects,

although at any moment we can consider the set of instances that belong to'the class. A class

may be seen as what all these sets have in 'common. In technical terminology, a class stands for

the intension of a particular characterization of entities, while the set of objects that confom to

such a characterization in a certain period is known as the extension.

The development phase produces candidate classes and relationships. After selecting

concise and evocative names we most describe each class with attributes. Althoush each class

must have a unique name, classes should be distinguishable on the basis of their attribute

characterizations. A rule of thumb is if two classes have identical attributes, then they are most

likely the same. Class diagram of our project is shown in Figure 4.4.

An attribute expresses an essential definitional feature that is shared by all instances of

a class. A minimal ~ - characterization of an attribute cousists of the value domain of the attribute
- .~

and a name that explains the role or relationship that an attribute value has with respect to the

instance to which it belongs. Multi valued attributes may be annotated with multiplicity

characterizations. Defaults for an attribute value and/or multiplicity description can be

formulated in this phase as well. Constraints can restrict attribute value combinations andlor

refer to multiplicity descriptions.

Real-life entities are often described with words that indicate stable features. Most

physicai objects have features such as shape, weight, color, and type of material. Sometimes it

is useful to indicate a default initial value for an attribute.

4.2.2 Relationships

Relationships help capture target system-specific knowledge by describing connections

among different objects. Relationships may also be used to modify descriptions in the previous

step. For example, when an attribute has a multiplicity range that includes zero, one may

eliminate the attribute and represent this information as a relationship instead.

Figure 4.4 Class Diagram of UrduKashishStyler.

48 UrduKashishStyler

Chauler 4

Now we will show a detailed view of each class.

CShape

bm-Id : int . - -
@rn-TopLefl: CPoint
@m-BottomRight: CPoint
+m-GroupNoList : CList
Igm-PrevTransfPt : CPoint
Igm-Layer1 Att : CLayerAttributes

OAddGroup(int)
$XalculateDistance(ptl : CPoint, pt2 : CPoint) :in8
OChangeGroupNo(int. POSITION)
O~opy~ttr ibutes(~Shape*)
ODraw(CDC' pDC)
ODrawMarquee(CDC' pDC)
OGetActi~?GroupNo() : int
O~el~rouNo~is !Head() :POSITION
OGetNextGroupNo(POSITION&) : int
OlsGroup() : bool
OlsPointOnVerlex0 : bool
OlsPointOnShape0 : bool
OlsShapelnSelectedArea(CRect)
OResetTransfPoint()
O~cale(Cpoint. CPoint, int. CDC')
O~erialize(CArchie&)
O~ranslate(CP0int. CPoint) .
OUngroupActiveGroup()
OGetTopLeR() : CPoint
Q ~ e t ~ o t t o m ~ i g h t 0 : CPoin-

Figure 4.5 Class CShape.

CFillAttributes

&mFillTransparency: int
& m ~ ~ i l l l r n a ~ e ~ o : int
@yn-~illEffeci: int
@m-FillColo~One : COLORREF
&rn-FillColorTwo : COLORREF

Figure 4.6 Class CFillAttributes.

UrduKashishStyler , 49

& r n I n ~ r o u b ~ o : int
@m-OLUDSLen : int
@m-1LUDSLen : int
@m-ZLUDSLen : int
Grn-3LUDSLen : int
@rn-OLUserDefSarnples : CText'
@m~lLUserDelSarnples : CText'
&m-~L~serDetSamples : CText'
Qrn-3LUserDefSarnples : CTed'
&m_ShapePtrList: CTypedPtrList
&m-OLUDSList : CTypedPtrLis t
Grn-1 LUDSList : CTpedPtrList
Qm_ZLUDSList : CTypedPLrList
Qrn-3LUDSList: CTypedPlrList

OGetDocEktent() : CRect
OGetDocSize() : CSize
ORemoveShape(P0SITION)
OGetShapeAtPosition(POSlTI0N) : CShape'
OGetShapeAUnde@nt) : CShape'
ORemoveAndDeleteShapeAtlndex(int)
OlnsertShapeAtlndex(int. CShape*)
ORemovehdDeleieShape(int) : boo1
QFindEiyld(int) : POSITION
OGetld() : int . ~

QGetlndex(CShape') : int
OGetlndex(POSITION8) : int
OSetUngroup() - -
OSetGroup() -
QCanGroup() : boo1
OCanUngroup() : boo1
OlncrementGroupNo()
OGetGroupNo() : in1
OTakeShapeBehind(POSITI0N. POSITION) : POSITION
OBringShapelnFrontOf(POSITION, POSITION) . POSITIOh
OTakeShapeBackOne() : POSITION
OBringShapeFonvardOne(POSlTION8) : POSITION
OTakeShapeToBack(POSIT10~) : POSITION
~DeleteFrornShapeList(POSITION8)

I OGetNedShapePtr(POSITlON8) : CShape
OGetShapeListHeadO :POSITION
O~ddToshapeList(CShape*) :POSITION
OBringShapeToFront(POSITION&) : POSITION
OGetPrevShapePtr(PDSITION8) : CShape'
QGetShapePtrListTail() : POSITION

InsertShapeAt(POSITION8. CShape') .-
Figure 4.7 Class CKashishDoc.

@rn-FirstPt : CPoint
@rn-SecondPt : CPoint

&GetLength() : int
&GetHeight() : int
OCopyAttribu!es(CShape')
'%raw(COC' pDC)
ODrawMarquee(CDC* pDC)
OlsPointOnVerlext(CPoint) : boo1
OlsPointOnShape(CPoin!) : boo1
OlsShapelnSelected&ea(CRect)
OScale(CPoint. CPoint, in!. CDC'
OSerialize(CArchive&)
OTranslate(CPoint. CPoint)
O ~ e t ~ o ~ L e f l () : CPoint

dGe!Bo!tornRight() : CPoin-
L

Figure 4.11 Class CEllipse

ern-LogFont : LOGFONT
@m-TextNr : CStrmgArray

OGe!TextV\ild!h() :in!
O~enderText(CString) : CString
O~ddTextToDisplay(CString'. UINT)

Figure 4.12 Class CUrduText

UndoRedo

Figure 4.13 Stmct Ur~doRedo

Urd~rKnshislrSfyler 5 2

Qrn-BottomRight : CPoint

&GetLength() : int
&GetHeight() : int
OCopyAttributes(CShape')
ODraw(CDC' pDC)
ODrawMarquee(CDC* pDC)
OlsPointOnVertex(CPoint) : boo1
OlsPointOnShape(CPoint) : boo1
OlsShapelnSelectedArea(CRect)
OSclae(CPoint. CPoint. int. CDC')
OSerialize(CArchiveB)
OTranslate(CPoint. CPoinf)
OGelTopLefl() : CPoint

+GetBottornRight() : CPoin

Figure 4.14 Class CRectangle.

Qm-Transparency: int
&rn-ImageNo : int
3m-Effect: int
Qrn-Layercolorone : COLORREF
Qm-LayerColorTwo : COLORREF

Serialize(Ckchive&)

Figure 4.15 Class CLayerAttl-ib~~tes

CTextPolygon

Qrn-IpvBuffer : LPVOID
@rn-cbBuffer : D W R D

&NorrnalizePolygon()
&AddGlyphPoints(inl. int)
,@GetQSplinePoints(POINTFX. POINTFX. POINTFX)
&MakeRotationMatrix()
OFrornGGOPoint(P0INT'. int, int, int, int)

~~rornGGO~oin t (POlNT^. p POINTFX, int, in!)------

Figure 4.16 Class CTextPolygon.

Qrn-Recl : CRecl
Qrn-bMernDC : BOOL

@m-LogFont : LOGFONT
%rn-Temr : CStringArray

OGetTextWldW() : int
ORenderText(CString) : CString
O~ddTextToDisplay(CString'. UINT)

. Figure4.18 Class CUrduTest.

OGetTopLeil() : CPoint
OGetBonornRightO : CPoint

C ~ r a w W r ~ u e e (~ ~ ~ ' pDC)
blsPointOnShape(CPoint) : boo1
OScale(CPoint CPoint, int. CDC')

Figure 4.19 Class CFreeHandLine.

CText -.
bm-SampleNo : int
bm-Textstyle : int
brn-pTempTextPolygon : CTextPolygon
&m-pTextPolygon : CTedPolygon
bm-nLayers : in1
bm-StartingPI: CPoint
&m-LayerZM : CLayerAilribules
bm-Layer3M: CLayerAttributes
brn-BrokenTed: boo1
bm-TextPolygonPtrList : CTypedPLrList
>m-nAlrSize : int
$m-nMaxLines : int
brn-LogFont : LOGFONT
bm-TexL4r : CStringArr

OCrealeTextPolygon(CDC'. in!. MouseDirection, MouseDirectiol'
OSelLineAt(in1. CString)
OGetLFTextMdth() : UlNT
OGetLFTexlHeight() : UlNT
O~eleleTempTextPol~onO
OCopyAttributes(CShape')
ODrawMarqueeOfPtrTedPolygon(CDC~)
OlsPlrTextPolygon~) : boo1
OReplaceTextPolygon()
OTranslateTextPolygon(CPoint. CPoint)
OCopyTextPolygonO
OScale(CPoint. CPoint, int. CDC')
O$PlOnShape(CPoinl) :boo1
OSerialize(CArchive&).. -
OGetNextTextPolygon(POSlTlON&) : CTextPolygon'
OGetPolygonPtrListHead() :POSITION
OGetBottomRight() : CPoint
OGetTopLefl() : CPoint
OlsShapelnSelectedArea(CPoint. CPoint) : boo1
OlsPointOnVertex(CPoint) : boo1
OTranslate(CP0int. CPoinl)
ODrawMarquee(CDC')
-QDraw(CDC')

Figure 4.20 Class CText

qrn-bBreakTezl : boo1
am-SelectionEioxNo : int
@m-~oom :double
Qrn-b~crolling : boo1
@rn-ClipBoardLisl: CTypedPtrLisl
Qrn-Undostack : CTypedPtrList
ern-Redostack : CTypedPtrList
Qrn-nGroupNo : in1
ern-SelectedShapes :CSelect
@rn-Position : POSITION
@rn-nSelectType : int
Qrn-pSelectedShapes : CShape*
Qrn-pTernpShape : CShape'
@rn-Firstpoint : CPoinl
Qrn-Secondpoint : CPoint
ern-OldPt : CPoint
Qrn-nTool :in!
@rn-FillMl : CFillAnributes
&rn-LayerA!t: CLayerMlributes
@rn-Join : int
ern-EndCap : in1
ern-Penstyle : inl
@rn-Redostack : in1
&rn-bDeleteMarquee : boo1

OSetUndoStack(Cpera1ion)
OErnptyRedoStack()
OCopyShapesToClipBoard()
OGetUndoRedold() : int
OErnplyUndoStack()
OCopyPoinler(C~hape') : CShape
O~ssignNewGroupNo()

+ReDraw()

. Figure 4.21 Class CKashishView.

4.3 Sequence Diagram

Sequence diagrams are used to show the flow of functionality tlirou& a use case. For
0 • ‹ C use case diagram there can be multiple sequence d i a~rams . For al~ernatc coursc o i
actions these are separate sequence diagram. Sequence diagrams are time dependent and tell
which operation will be executed first. Sequence diagram define a pattem of interaction
anlong objects arranged in chronological 01-der. These diagrams sho\v the objects
p-ticipating in interaction by the order of their life times and the messages being sen(from
one object to the other. The following are sequence diagrams.

4.3.1 Drawing a Line

Select Line

Mousemove

2

Creates

SaveToUndoSlack

Save ODjecl

Figure 4.23 Sequence diagram of Drawing a line.

4.3.2 Drawing a Rectangle

1 I > SaveToUndoStack
I I

Save Objecl
I I \

Figure 4.24 Sequence diagram o f Drawing Rectangle

4.3.3 Drawing all Ellipse

Sclecl Ellipse

Mousemove Creates

Draw(CDC') ;
raws lemparay Ellipse

. ,
Save Object

B !

Figure 4.25 Sequence diagram of Drawing an Ellipse.

4.3.4 Drawing a Circle

Creates

DrawCOC'l 1

Figure 4.26 Sequence diagram of Drawing a Circle.

4.3.5 Selection Process

. ~

Figure 4.27 Sequence diagram of Selection Process.

Chnprer 4 .- S\?ram Desipn

4.3.6 Translate Process

Figure 4.29 Sequence diagam of Translate Process.

4.3.7 Group Process

Figure 4.30 Sequence diagram of Group Process.

Chapter 5

Implementation

Chnpler'5 Irrr~lenie~r/ntiorr

5. Implementation

UrduKashishStyler is a comprehensive vector-based drawing and graphic-design

program for the composers. The software is composed of two major parts.

~ r d " Editor.

Graphical Editor.

An editor is developed to write Urdu which is than used in composing and designing. So

we will first explain the working of Urdu Editor

5.1 Urdu Editor

Urdu editor is composed of three parts.

Font file

s Word Processor

Output Screen

These three parts and there interaction with each other is shown in figure 5.1.

S--J' Medially
++-- c

Font File
Font Joininn Rules

Word Processing +

Eneine

- -
Olltnnt Screen \Vnrrl Procerrnr

Figure 5.1 Parts of Urdu editor.

5.1.1 Font File

Urdll language has thirty-four characters. Each character has more than one form. A11

these fOms of word are stored in a font file called True type font file. These forms of

characters are called Glyph. A Glyph is the representation of a character. A detailed analysis

of Urdu language shows that its characters havefollowing forms shown in figure 5.2.

ALlF

BAY

PAY

TAY

TTAY

S.iY

JEEhl

CHAY

H.AY

KHAY

D.iL

D U X

Z.&U.

R i Y

lnitial Middle Fiual Isolate

RRAY

SEEN

SHEEN

SUAT

ZUAT

TUAY

ZUAY

EAIN

GHAIN

F.AY

KAAF

Q.iAF

G . U F

L .LUJ

MEEkI

NOON

w o w

Figure 5.2 Table of Urdu chars and their possible forms.

In true type font file just information of shape of characters is present but no way is

defined in the font file to join these characters. The developers of Urdu editor themselves

write program in which the logic for joining these characters is defined often called as word

processor on character rendering engine.

5.1.2 Word Processor

Word Processor is a program to join different characters. As discussed before, a character

has different~shapes. The decision of selection of shape of a character depends on

Position of character in the word.
- . -

0 character before that character.

Characters after that character.

All these joining rules are defined in the word processor.

The characters of Urdu can be adjusted at any of the four places in a word.

Isolate

Initial

Middle

Final

All the characters can not come at all the places. After analysis of Urdu language we have

divided all the characters of Urdu into four separate groups. First group consist of those

characters which can not come at the beginning and in the middle of a word example of such

characters are ALIF, DAL etc. These words have only two forms i.e. isolate and final.

Second group comprises those characters which can come at any of the four places e.g. BAY,

PAY etc. Third group consist of HAMZA which can not come at the end of a word.

Word processor gets a string of isolated character as input and selects the shape of the

character depending on three rules described above. For example if the string passed to the

word processor is Muhammad i.e. MEEM HAY MEEM DAAL. It will start with first

MEEM check the character after it which is HAY, HAY has final form so selects initial form

of MEEM then for HAY first check the character before it, which is MEEM and has initial

form then check the character after HAY which is again MEEM and can have the final form

so selects the middle form of HAY and this process continues until whole string is parsed.

5.1.3 Output Screen

The output of word processor is displayed by the output screen to the user.

5.2 Graphical Editor

The graphical edjtor consists offollowing tools.

Select Tool.

Rectangle Tool.

Ellipse Tool.

Circle Tool.

Line Tool.

Free Hand Tool.

Text Tool.

Zero Layer Text Tool.

One Layer Text Tool.

Two Layer Text Tool.

Three Layer Text Tool

Break Text Tool.

5.2.1 Select Tool

Three types of actions can be camed out with the Select tool. Graphical objects can be

selected, they can be moved, and they can be scaled.

5.2.1.1 Selection Actions

The select tool is used to select objects, so that they can be subjected to editing

commands, such as Cut, copy or Delete etc.

When the Select tool is active, and user selects an object by moving the mouse so that the

mouse cursor points to the object and then clicks the left mouse button. The object is then

selected, and it takes on a selected appearance. 'Selection handles' appear around the object's

bounding rectangle. These are small black rectangles that appear on the periphery of objects

to show that they have been selected.

The second way to select single object is by using tab. When no object is selected and

user presses tab, the object which is drawn first is selected. If the user presses tab again then

the object which is drawn after that object gets selected and this process continues. First

object is selected again after last object.

All types of graphic shapes display same patterns of selection handles. All

UrduKashishStyler shapes display eight handles spaced around their bounding rectangles

four at the comers and one in the middle of each side of the bounding rectangle.

Selection actions are not undoable. That is, the Edit menu's Undo command will apply to

a prior action, not to the selection action that user just made. The reason for this is that

current selections are not remembered when a document is saved. Since selection does not

change the document, it does not need to be undoable.

Of course, it is very easy in practice to 'undo' a selection, simply by selecting something

else, or by selecting nothing. If user clicks in some part of a scene in which there are no

Chapter 5

graphics, then the selection will be set to nothing.

5.2.1.2 Multiple Selections

Multiple graphic objects can be selected using the Select tool. One way to select several

objects is to drag the mouse through a rectangular area that completely encloses the objects

that are to be selected. For example, user can put down the mouse button to the left and

above the set of objects to be selected, and then drag the mouse to the right and below the

entire set before releasing the mouse button. As the mouse is dragged, a dotted line selection

rectangle is traced out. All the objects fully enclosed in this rectangle will be selected when

the mouse button is released.

The second way to select multiple graphical objects is to hold down one of the

keyboard shift keys while clicking the mouse on the second and subsequent objects to be

selected. Shift-click has the effect of adding an unselected object to the set of currently

selected objects. If one shift-click on an already selected object, the action will have the

effect of deselecting the object, so that it will no longer be part of the set of selected objects.

5.2.1.3 Move Actions

The Select tool is also used to move objects on the UrduKashishStyler drawing area.

To move an object, user points to it, holds down the left mouse button, and drags the mouse

to position the object in a new location. When the mouse button is pressed, the bounding

rectangle of the object appears. As the mouse is dragged, the shape of object in form of

dotted line is traced out to show object moves with the mouse. The user then releases the

mouse when the shape is at the desired position. The object then appears at the new location.

To make very small movements, it is often better not to try to drag the object to a

precise position with the mouse. Instead, use the keyboard's cursor control (or 'arrow') keys

to carry out small moves. The up-arrow key moves the selection one pixel up on the scene.

Similarly, the left-arrow, right-arrow, and down-arrow keys move the selected object or

objects one pixel left, right, or down, respectively.

Fig. 5-3 Shapes Drawn with the Rectangle Tool

To draw a rectangle, the user must place the mouse pointer at the point where one

comer of the rectangle should be. Pressing and holding down the left mouse button, the user

then drags the pointer to the point in the graphical view where the diagonally opposite corner

of the rectangle should be. As the mouse is dragged, an outline rectangle is dragged out

between the original down-click point and the current mouse location. When the rectangle is

the corect size, the user releases the mouse button. At this time, the empty 'feedback'

rectangle is replaced by a rectangle with the previously chosen pen style, pen color, fill color

and fi l l pattem features.

The action of drawing with the Rectangle tool can be undone using the Edit menu's

Undo command.

5.2.3 The Ellipse . Tool
-

The Ellipse tool is used to draw ellipses. To draw an ellipse, the user must place the

mouse pointer at the point where one comer of the ellipse should be. Pressing and holding

down the left mouse button, the user then drags the pointer to the point i n the graphical view

where the diagonally opposite comer of the ellipse should be. As the mouse is dragged, an

outline ellipse is dragged out between the original down-click point and the current mouse

location. This temporary ellipse, which is continuously reshaped as the mouse is moved, is

drawn with a 1-pixel wide black pen. When the mouse button is released, the temporary

ellipse is replaced with an ellipse ir) the currently selected pen style, pattem, pen color, and

fill color. In order to draw an ellipse, the mouse must be dragged at least one pixel. If the

mouse is released at the same point at which it went down, no graphic is created.

5.2.6 The Free Hand Tool

The Free Hand tool is used for free hand drawing. For free hand drawing, the user

must first move the mouse to place the crosshairs at the point on the scene where the drawing

is to start. Then the left mouse button must be pressed and held down while the mouse

pointer is dragged to the point where free hand is to be drawn. A line is drawn with the

mouse movement in the most recently chosen pen style and pen color.

In order to draw a free hand drawing, the mouse must be dragged at least one pixel. If

the mouse is pressed and then released at the same point on a scene, no free hand line graphic

will be created.

The Edit menu's Undo command can be used to undo the action of drawing freehand

drawing with the tool.

5.2.7 The Text Tool

The text tool is used, together with the computer keyboard, to create text graphics.

User clicks with t h ~ s pointer where the bottom right edge of the text should begin. A text

editor will appears at that point. The user then types the desired text using the keyboard.

UrduKashishStyler can write only one line of text at a time. Tabs are ignored during text

entry. Before the text entry action has been con~pleted, the text can be edited. The backspace

key can be used to delete the last character.

There are two ways to ternlinatethe creation of a text g r a p h :

Typing the Enter key.

Clicking the OK button with the mouse.

As soon as any of these actions is taken, the text appears with the previously chosen pen

style, pen color, fill color and f i l l pattern features

5.2.8 The Zero Layer Text Tool

The zero layer text tool is used to write text with no outline.When the user selects

zero layer text tool UrduKashishStyler Zero Layer Sample dialog appears. After selecting the

sample when OK button is pressed, text editor comes in which text can be written. The

selected sample applies to the text.

Samples can be edited and can be added to sample gallery for filture use. As these

samples have no layer so only fill style of the samples can be changed. The samples added

are stored permanently unless deleted or edited.

5.2.9 The One Layer Text Tool

The one layer text tool is used to write text with one outline. When the user selects one layer

text tool UrduKashishStyler One Layer Sample Gallery appears. After selecting the sample

when OK button is pressed, text editor comes in which text is written. The selected sample

applies to the text.

Samples can be edited and can be added to sample gallery for future use. The user can

edit the fill properties and the outline properties of the sample. The samples added are stored

pern~anently unless deleted or edited. - . .

5.2.10 The Two Layer Text Tool

The two layer text tool is used to write text with two outlines. Two Layer Sample

Gallery appears when two layer text tool is selected. After selecting the sample when OK

button is pressed, text editor comes in which text is written. The selected sanlple applies to

the text.

Samples can be edited and can be added to sample gallery for future use. The user can

edit the fill properties and the outline properties of the first layer and second layer of the

sample. The samples added are stored pem~anently unless deleted or edited.

5.2.11 The Three Layer Text Tool

The three layer text tool writes Urdu text with three outlines. Three Layer Sample

Gallery appears when three layer text tool is selected. When OK button is pressed after

selecting the desired sample, a text editor appears in which text is written. The selected

sample applies to the text.

Samples can be edited and can be added to sample gallery for hture use. The user can

edit the fill properties and the outline properties of the first layer, second layer and the third

layer of the sample. The samples added are stored permanently unless deleted or edited.

5.2.12 Break Text Tool

This tool breaks the sentence to individual words so that each word can be moved

independently. When user clicks on any word after selecting break text tool a selection

rectangle appears for each word.

As the mouse is dragged by keeping its pointer in any of the selection rectangle, the

associated-word in form of dotted line is traced out to provide feedback about the scaling

operation being carried out. After the mouse is release. the \ ~ o r d then appears at thenew

location. Break text operationis undoable.
- ~.

Some other available features are.

5.3 Undo

Undo command undoes the last undoable action that was taken. UrduKashishStyler

has multilevel undo. That means that carrying out Undo will undo the last undoable action

taken; executing Undo again will undo the immediately previous action; the next Undo will

undo the action before that one; and so on. The number of actions that can be undone is

determined by the size of available memory only.

5.4 Redo

The Redo command is used to restore a document to its state before the just-carried-

out Undo command. Like Undo, UrduKashishStyler provides a multilevel Redo. For as many

times as an author has carried out Undo, that many times can Redo be camed out. If an

action which is not undoable takes place after an Undo, Redo ignores that non-undoable

action and applies to the earlier Undo action.

The effect of an Undo after a Redo is to undo the command just redone, so Redo is an

undoable command.

5.5 Cut

The Cut command in a graphic editor applies to the current selection, which may be

one or more graphic objects on the screen. So long as one or more graphic elements or

objects are selected, this command is enabled.

- The effect of the Cut command is to delete the selection and to place a copy of i t on

the UrduKashishStyler application's clipboard. The clipboard is a storage area in which

copies of data elements are preserved for pasting into appropriate contexts.
-

A Cut command can bs undone. Only the deletion is actually undone. The clipboard

will continue to hold its copy ofthe cut element(s), which can then be pasted.

5.6 Copy

The Copy command in a graphic editor applies to the current selection, which may be

one or more graphics which have been selected on that screen. The effect of the command is

to place a copy of the selection on the application's clipboard. The clipboard is a storage area

in which copies of data elements are preserved for pasting into appropriate contexts.

A Copy command cannot be undone. Undo applies only to actions that change the

data that is stored with a document. The clipboard is not stored when a Save action is carried

out.

5.7 Paste

~ h c Paste command places a copy of the clipboard's contents into the graphic editor

view. For example, user can make copies of one or more graphic objects by selecting in any

graphical view and issuing a Copy command.

The newly graphic element or elements will constitute the cunent selection

when the Paste has been carried out.

I'he Pasre command can be undone. Undoing a Paste has no effect on the contents of

the clipboard.

5.8 Delete

The Delete command removes the currently selected graphic or graphics from the

graphical view that issued the command. After the selection disappears, there is no current

selection on the scene. The scene is still active, however, and is therefore the target for a

subsequent Paste command. A deletion can be undone with the Undo command.

5.9 Duplicate

In many respects, the Duplicate command works like an immediate copy and paste of

the graphic view's cument selection. However, it does not change the contents of the

clipboard. A uscr can therefore copy object A, duplicate object B and then paste a copy of A.

After a Duplicate command is carried out, the new graphic element or elements

created will be selected and will be highlighted by selection rcctangles. The Duplicate

command is undoable.

5.10 Select All

The Select Ail command has the effect of selecting all the objects in the graphic

editor. The Select All command is not undoable. If there are no prior undoable actions on the

Chapter 5

history list, the Undo command will have no effect on the selection. If there are prior

undoable actions, then choosing Undo after Select All will have the effect of undoing the last

undoable action. As a side effect, that undoing will change the selection to what it had been

just before the undone action was originally canied out.

5.11 Copy Attributes From

This command copies all the attributes of a object to another object. The user selects

an object then selects copy attributes from edit menu then click on another object. All

attributes of second object are copied to first object. The attributes which are copied includes

outline style, color, fill style and fill colors. Copy attributes from is undoable.

5.12 Group

The group cornrnand is used to combine several objects into a grouped object. A

group is set of objects that behave as one unit. Operations performed on a group apply

equally to each of its objects.

When individual graphic elements are combined, the group can be moved and scaled

as an entity. Such transformations are automatically applikd appropriately to the members of

the group. - ...

To carry out the Group command, two or more grapllics must first be selected in a

graphical editor. (Multiple items can be selected rising the select tool either by dragging out a

bounding rectangle to enclose the items or by using shift-click.). The Group command can

then be issued. Two or more goups can further be grouped and this process can continue to

any level of grouping.

The group conln~and is undoable. After the Undo is carried out, the former members

of the group will still be selected, as they all were before undo.

5.13 Ungroup

The Ungroup command can be used to ungroup grouped objects. Ungrouping takes

effect only at the top level of a group. If one ungroups a group made up of groups which are

themselves made up of other groups, for example, only the top group itself is unprouped. Of

course, one can then ungroup its component groups by issuing other ungroup commands.

After the Ungroup command, the former members of the disbanded group are all

selected. Immediately subsequent operations will apply to all those objects.

The Ungroup command is undoable. After the ungroup action is undone, the grouped

object will be the selected object; just as it was just before the Ungroup command was

carried out.

5.14 Order Of Shapes

The objects can be thought of as occupying thin layers, with each object having its

own layer. The first object drawn on a scene has the lowest layer. The second object drawn is

in a layer just above the first. The third object drawn is in a layer just above the second, and

so on. For example, in the - f i p e 5.4, the tall rectangle was drawn first, then the circle, and

then the wide rectangle. When graphics overlap each other, objects in lower layers will be

partially or completely obscured by objects in higher layers.

UrduKashishStyler provides six commands for moving these layers backward

(toward the deepest layer) or fonvard (toward the top layer). These commands are fonvard

one, back one, to front, to back, in front of and in back of.

Figure 5.4 Objects overlapping each other

5.14.1 Forward O n e

The effect of the Move Fonvard command is to move the layer with the selected

object one layer closer to the top. This may result in the object occluding all or part of some

other object that formerly occluded it. In the figure 5.5, the tall rectangle was selected. (Note

that its lower right selection handle,shows even though that comer is occluded by objects in

higher layers.) When the Move Fonvard command was issued, the rectangle's layer moved

closer to the top, so that the rectangle partially obscured the circle.

Fignre.5.5 The Effect of the Forward One Command

It is not always the case that a Fonvard one command will make an obscured object

move in front of the object that obscures it. If the circle in the fig~tre above were located far

off to the right of the two rectangles, then applying the Move Fonvard con~n~and to the tall

rectangle would-make its layer move above the layer with the circle, but there wonld be no

visual effect until one of the graphics is dragged so that they overlap. When user wants to

make one object move in front of another, it will be necessary to issue as many Fonvard one

commands as there are layers separating the objects.

If the selected object is topn~ost in the graphical view, the Move Forward command

has no effect.

If several objects are the target of the Move Forward command, then each of their

layers will move one layer closer to the top. The Move Fonvard command is undoable.

5.14.2 Back One

The Back One command moves the layer of the selected object one step deeper in the

stack of layers. This may result in the object being con~pletely or partially occluded by some

other object that it formerly occluded. In the figure 5.6 at the left below, the wide rectangle

was selected. When the Back One command was then issued, the circle partially obscured the

wide rectangle, as shown at the right in the figure.

Figure. 5.6 The Effect of the Back One Command

Using the Back One command on an object will not always make it 'go behind' an

object that it overlaps. If a number of layers separate the two graphics, it may be necessary to

issue the Back One command several times to achieve this effect.

If the selected object is already in the deepest layer of a graphical view, then the Back

One command has no effect.

If several objects are the target of the Back One conlnland, then each of their layers

moles one step closer to the bottom of the stack of layers. The Back One command is
-

undoable.

5.14.3 To Front

The To Front command moves the layer of the selected object to be the top layer in

the gaphical view. Any overlapping objects may be partially or con~pletely obscured by the

action.

Figure 5.7 The Effect of the Bring to Front Conlmand

If the selected object is topmost in the graphical view, the Bring to Front command

has no effect.

If several objects are the target of the Bring to Front command, then their layers

become the top layers, stacked in the same order with respect to each other that they were in

originally.

The Bring to Front command is undoable. Even if a number of widely separated

layers are brought to the front in a single Bring to Front command, the Undo command will

restore each layer to its fonner place in the stack.

5.14.4 To Back

The to Back,command moves the layer of the selected object to be the bottom layer in

the graphical view. The selected objects may be partially or completely obscured by the To

Back action when their layers are sent behind other objects in the view. The figure 5.8 shows

the effect of applying the to Back Command to an object that overlaps other objects in a

view. Note that the selection handles of a selected object show through overlaid graphics.

.Y'uSendtoBwk

Figure 5.8 The Effect of the to Back Command

If the selected object is deepest in the graphical view, To Back command has no

effect. If several objects are the target of the To Back command, then their layers become the

bottom layers, stacked in the same order with respect to each other that they were in before

the command applied.

The To Back command is undoable. Even if a number of widely separated layers are

sent to the back in a single To Back command, the Undo command will restore each layer to

its former place in the stack.

Chanter 5

5.14.5 In Front Of

The effect of the In Front of command is to move the selected object at top of object

clicked after the command. The object may go back and it may come in front depending

upon its previous position in the stack of layers. This may result in the object occluding all or

part of some other object that formerly occluded it or vise versa. Objects can not be moved

relative to itself. The In Front Of command is undoable.

5.14.6 Behind

The behind command moves the selected object behind the target object. The object

may go back and it may come in front depending upon its previous position in the stack of

layers. This may result in the object occluding all or part of some other object that formerly

occluded it or vise versa. Objects can not be moved relative to itself. The Behind command

is undoable.

5.15 Transformations

UrduKashishStyler provides two types of transformations.

Translation

Scaling

5.15.1 Translation

A translation is applied to an object by repositioning it along a straight-line path from

one coordinate location to another. We translate a two-dimensional point by adding

translation distances, t, and $;to the original coordinate position (x , y) to move the point to

a new position (x', y') (Equation 5.1).

= x + t,, Y' = y + t y

The translation distance pair (t,, t,) is called a translation vector or shift vector.

We can express the translation equation 5.1 as a single matrix equation by using column

vectors to present coordinate positions and the translation vector:

This allows us to write the two-dimensional translation equations in the matrix form:

Translation is a rigid-body transformation that moves objects without deformation.

That is, every point on the object is translated by the same amount. A straight line segment is

translated by applying the transformation equation 5.3 to each of the line endpoints and

redrawing the line between the new endpoint positions. Polygons are translated by adding the

translation vector to the coordinate position of each vertex and regenerating the polygon

using the new set of vertex coordinates and the current attribute settings.

. ~

similar methods are used to translate curved objects. To change the position of a

circle or ellipse, we translate the center coordinates and redraw the figure in the new location.

We translate other curves (for example, splines) by displacing the coordinate positions

defining the objects, then we reconstruct the curve paths using translated coordinate points.

5.15.2 Scaling

A scaling transformation alters the size of an object. This operation can be carried out

for polygons by multiplying the coordinate values (x, y) of each vertex by scaling factors S,

and S, to produce the transformed coordinates (x' , y')

Scaling factors s, scales objects in the x direction, while s, scales in the y direction.

The transformation equation 5.4 can also be written in matrix form:

Where S is the 2 by 2 scaling matrix in Equation 5.5.

Any positive numeric values can be assigned to the scaling factors Sx and S,. Values

less than 1 reduce the size of objects; values greater than 1 produce an enlargement.

Specifying a value 1 for both S, and S, leaves the size of objects unchanged. When S, and S,

are assigned the same value, a uniform scaling is produced that contains relative object

proportions. Unequal values for S, and Sy result in a differential scaling.

Objects transformed with equation 5.5 are both scaled and repositioned. Scaling

factors with values less than 1 move objects closer to the coordinate positions farther from

thi origin, while values greater than I move coordinate positions farther from the odgin.

We can control the location of a scaled object by choosing a position, called the fixed

point, that is to remain unchanged after the scaling transformations. Coordinates for the fixed

point (xf, yr) can be chosen as one of the vertices, the object centroid, or any other position.

For a vertex with cooridinates (x,y), the scaled coordinates (x', y') are calculated as

We can rewrite these scaling transfom~ations' to separate the multiplicative and additive

terms:

x' = x.S, + Xf (1 - S,)

where the additive terms xr (1 - S,) and yf(1 - S,) are constants for all points in the object.

Polygons are scaled by applying transformations 5.8 to each vertex and then

regenerating the polygon using the transformed vertices. Other objects are scaled by applying

the scaling transformation equations to the parameters defining the objects. An ellipse in

standard position is resized by scaling the semimajor and semiminor axes and redrawing the

ellipse about the designated center coordinates. Uniform scaling of a circle is done by simply

adjusting the radius. Then we redisplay the circle about the center coordinates using the

transformed radius.

5.16 Inside-Outside Tests

When a user clicks on a shape certain tests are required to be performed to check

whether the point is inside the shape or outside the shape. Different types of shapes have

different types of test.

5.16.1 Circle
. . -

The equation of circle can be used to find that whether a point lies inside a circle, on

the circle or outside the circle. Equation of circle is

Fc (x, y) = xZ + 9 - r2 (5.9)

Any point (x, y) on the boundry of the circle with radius r satisfies the equation Fc(x,

y) = 0. If the point is in the interior of the circle, the circle function is negative. And if the

point is outside the circle, the circle function is positive. To summarize, the relative position

of any point (x, y) can be determined by checking the sign of the circle function.

0 if (x, y) is inside the circle boundary

Fc (x, Y) {: 0 if (x, y) is on the circle boundary

0 if (x, y) is outside the circle boundary

Chapter 5

5.16.2 Line

As a line has only two points. To check that a point lies on the line or not we use

distance formula. The distance between two points Pl(xl, yl) and P2(x2, yz) can be find

Let Pl(x,, yl) and P2(x2, y ~) are the end points of a line. And let the user clicks on a

point P3(x3, y3). Then if the distance between P1 and P2 is the same as the sum of the

distances between P1 and P3 plus P2 and P3 then the point P3 is on the line other wise not.

5.16.3 Text

As the outline of text is a polygon. So we can use the rules for inside outside test of

polygons for the text.

Consider a polygon made up of N vertices (xi,yi) where i ranges from 0 to N-I. The

last vertex (xN;yN) is assumed to be the same as the first vertex (xo,y~), that - is, the polygon is

closed. To determine the status of a point (xp,yp) consider a horizontal ray emanating from

(xp,yP) and to the right. If the number of times this ray intersects the line segments making up

the polygon is even then the point is outside the polygon. Whereas if the number of

intersections is odd then the point (x,,y,) lies inside the polygon. The following shows the

ray for some sample points and should make the technique clear.

Figure 5.9 lnside Outside Test for Polygon.

For the purposes of this discussion 0 will be considered even, the test for even or odd will be

based on modulus 2, that is, if the nbmber of intersections n~odulus 2 is 0 then the number is

even, if i t is 1 then it is odd.

The only trick is what happens in the special cases when an edge or vertex of the

polygon lies on the ray from (xp,y,). The possible situations are illustrated below in figure

Figure 5.10 Edge or Vertex on the Ray.

The thick lines above are not considered as valid intersections, the thin lines do count

as intersections. Ignoring the case of an edse lying along the ray or an edge ending on the ray

ensures that the endpoints are only counted once.
-

Note that this algorithnl also works for polygons with holes as illustrated below

Figure 5.11 Polygon with hole.

The following C function returns INSIDE or OUTSIDE indicating the status of a point P

with respect to a polygon with N points.

#define MIN(x,y) (x < y ? x : y)

#define MAX (x,y) (x > y ? x : y)

#define INSIDE 0

#define OUTSIDE 1

typedef struct (

double x,y;

) Point;

int ~nside~oly~on(Point *polygon,int N,Point p)

i
int counter = 0;

int i;

double xinters;

Point pl,p2;

p l = polygon[Ol ;

for (i=l;i<=N;i++) (

p2 = polygon[i % N1 ;
-

if (p.y > MIN(pl.y,pZ:y)l .{

if (p.y c = MAX(pl.y,pl.y)) (

if (p.x <= MAX(pl.x,p2.x)) {

if (p1.y ! = p2.y) (

xinters = (p.y-pl .y) * (p2 .x-pl.x)/ (p2.y-p1.y) +pl.x;
if (p1.x =- p2.x 1) p.x c= xinters)

if (counter $ 2 == 0)

return(0UTSIDE) ;

else

return (INSIDE) ;

\

Another code for determining whether or not a point (x,y) lies inside or outside a polygon is

give below this code returns 1 for interior points and 0 for exterior points.

int pnpoly(int npol, float 'xp, float *yp, float x, float y)

{
int i, j, c = 0 ;

for (i = 0, j = npol-I; i < npol; j = i++) {

if ((((yp[il <= y) && ly c yp[jl)) I [
((ypljl <= Y) && (y y p [i l))) &&

Ix < IxpLjl - xplill (y - yplil) / lypljl - yplil) + xplil))

I
return c;

}

5.17 Getting the Glyph Outline
- . ~

We have used true type fonts in UrduKashishStyler. TrueType is a common vector

font standard used by the Microsol7 Windows and Apple operating systems, among others. In

a vector font, a series of coordinates define a character's contour, so simple scaling

transformations effectively shrink or enlarge the character. Multiplying all the coordinates by

two doubles the character's size, for example, and it looks just as good at both resolutions.

Operating systems typically allow users to access TrueType font handling without having to

know all the details. But font manipulations beyond those supplied by the operating system

require a deeper understanding of the TmeType format. Understanding the fo~mat, and

having the coordinates to each character's contour, opens the door to a world of special text

effects like gradient-filling the character's interior, extruding it, placing i t realistically on a

sphere, and so on.

Microsoft Windows furnishes direct access to Tn~eType coordinates through the

GetGlyphOutline API. GetGlyphOutline supplies the vector points for straight lines and Bezier

curves in an abstract coordinate system. Rendering the character then requires deciphering

the vector points and drawing the lines and curves with MoveTos and LineTos. The Bezier

curves in particular must be decomposed into straight lines and patched together end-to-end

to produce the final smooth contour. We will explain the mechanics of drawing a Tr~leType

font.

5.17.1 The GetGlyphOutline API

The signature of GetGlyphOutline is

DWORD G e t G l y p h O u t l i n e (

HDC hdc, / I handle of device context

U I N T uchar, / / character to query

U I N T uformat, / / format of data to return

LPGLYPHMETRICS Ipgm, / / pointer to metrics struct

DWORD cbBuffer, / / size oE buffer for data

LPVOID lpv~uffer. / / address of buffer for data

CONST MAT2 *lpmat2 / / pointer to transform matrix
-

) ;

The handle to device contexi, hdc, must be valid at the time GetGlyphOutline is called,

and it must have the TrueTypi: font of interest selected into it. uChar is the character being

inte~~ogated for an outline. uFormat determines whether the data returned is in bitmap

(GGO-BITMAP) or vector (GGO-NATIVE) f o m ~ , the latter being appropriate here.

GetGlyphOutline fills in the fislds of the GLYPHMETRICS structure pointed to by lpgm with

information about the glyph's size and placement; fields gmBlackBoxX and gmBlackBoxY, for

example, hold the size of the glyph's bounding box. (See MSDN for a description of the

GLYPHMETRICS structure.)

Using GetGlyphOutline always requires two calls. In the first call, parameter cbBuffer is

set to 0 and IpvBuffer is set to NULL. This tells GetGlyphOutline to return the size of the buffer

needed to hold the glyph data. After the program has allocated a buffer of that size, it calls

GetGlyphOutline again, passing the buffer size in cbBuffer and the buffer address in IpvBuffer.

When called with these argument .values, GetGlyphOutline copies the vector data into the

buffer.

Parameter lprnat2 is a pointer to a transformation matrix, which GetGlyphOutline will

apply to all points in the glyph before writing them to the buffer. The transfom~ation is

applied through matrix multiplication, thus making GetGlyphOutline capable of linear effects

such as shearing and rotating..

GetGlyphOutline returns numbers in a fixed point format, in which two integers (fract,

value) represent a real number. value represents the part of the real number to the left of the

decimal point; fract represents the part to the right of the decimal point, considered as a

fraction of 65536. For example, 0.5. becomes (fract, value) = (32768, 0); 2.25 is equivalent to

(fract, value) = (16384, 2); and so on. Numbers of this format are stored in structures of type

FIXED. The same structure must be used for matrix entries as well.

5.17.2 Polyline and QSpline Records

GetGlyphOutline fills the buffer with a sequence of structures describing the glyph. A

glyph consists of one or more "contours". Each contour is described by a

TTPOLYGONHEADER structure followed by as many TTPOLYCURVE structures as required to

describe it. Each TTPOLYCURVE structure can be either a polyline record or a spline record.

The TTPOLYGONHEADER structure specifies the starting position and type of a

contour in a TmeType character outiine.

typedef s t r u c t -TTPOLYGONHEADER {

DWORD cb;

DWORD d~wType;

POINTFX p i x s t a r t ;

) TTPOLYGONHERDER, 'LPTTPOLYGONHEADER;

cb specifies the number of bytes required by the TTPOLYGONHEADER stnicture

and TTPOLYCURVE structure or structures required to describe the contour of the

character.

dwType specifies the type of character outline returned. Currently, this value must be

TT-POLYGON-TYPE.

pfxstart specifies the starting point of the contour in the character outline.

Each TTPOLYGONHEADER stn~cture is followed by one or more

TTPOLYCURVE structures. The TTPOLYCURVE stmcture contains information about a

curve in the outline of a TrueType character.

typedef struct tagTTPOLYCURVE (

WORD wType;

WORD cpfx;

POINTFX apfx Ill ;

) TTPOLYCURVE, *LPTTPOLYCURVE;

wType Specifies the type of curve described by the structure. This member can be one of the
- - -

following values.

Value WIeaning

TT - PRIM-LINE Curve is a polyline.

TT - PRLM - QSPLINE Curve is a quadratic Bkzier spline

TT - PRIM - CSPLINE Curve is a cubic Bkzier spline.

cpfx specifies the number of POINTFX stn~ctures'in the array.

apfx specifies an array of POINTFX structures that define the polyline or BCzier spline

Two contours make up a capital 'A', for example: one for the outer contour and one

for the triangular hole. Each contour consists of one or more curves, a series of connected,

intermingled polyline and QSpline records. A polyline is a series of connected straight lines,

while a QSpline record is a series of connected three-point (quadratic) Bezier curves. A

contour is closed, ending where i t started. Curve data consists of a series of points, which are

represented as POINTFX structures consisting of a FIXED x and a FIXED y.

polyline records consist of a short (2 byte) integer n followed by n points. The last

point of the previous record connects by a straight line to the first point, then straight lines

connect subsequent points.

QSpline records also consist of a short integer n followed by n points, but only the last

point lies on the glyph itself. These points define a connected series of n-1 Bezier curves.

Figure 5.1 I shows a cpadratic Bezier curve. A quadratic Bezier curve is defined by

three points: controls pl and p3, and handle p2. The curve begins at p l in the direction of

handle p2, eventually veering back towards p3, where it ends. The handle vectors connecting

p l and p3 to p2 in figure 5.1 1 are construction lines -- they're shown only to illustrate how

the curve runs tangent to one of these vectors before breaking off towards the other control

point. Although Windows 95 has built-in Bezier drawing support with functions PolyBezier

and PolyBezierTo, these functions draw four-point (cubic) Bezier curves, not three-point

(quadratic) curves. (Cubic Bezier curves have two handles; quadratic Beziers convert to

cubic Beziers by choosing the cubic handles to be two-thirds of the way from the quadratic

control points to the quadratic handle.)

Quodeatic
P2
4-
,'

Bezier ,' .

Figure 5.12 Bazier curve with points p l , p2 and p3.

Instead of trying to use the Windows 95 functions, we elected to inlplement the

elegant recursive decasteljau algorithm, which calculates a series of points along the Bezier

curve which are then connected as a polyline. DeCasteljau works by calculating point q l

midway between pl and p2, and point q2 midway between p2 and p3. Then point r l , the

midpoint of segment qlq2, is a point on the curve, and one that partitions the original Bezier

curve into left sub-Bezier p lq l r l and right sub-Bezier rlq2p3. The subdivision process

continues recursively to generate as many evenly spaced points on the original Bezier curve

as are desired.

TmeType adds an extra twist in the way Bezier curves are stitched together in a

single QSpline record. If n = 2 in a QSpline record, there will be a single Bezier with pl

being the last point on the previous record and p2 and p3 the given points. If n = 3, however,

there will be two Beziers joined end to end. If we denote the three points by apfxlO], apfx[l],

and apfx(21. The first Bezier curve is defined by:

pl = last po in t i n p rev ious r e c o r d

p3 = (apEx[Ol + apfxlll) / 2

The second ~ e z i e r c u s e haspoints:

p i ' = p3 on last Bezier

With the exception of the last point, the spline points returned by GetGlyphOutline are

the Bezier handles. The curve does not pass through any of .the points returned by

GetGlyphOutiine (since they are handles) except the last point. The control points can be

reconstructed from the handles: each control point is the average of two adjacent handles.

Since the average of two points is the point exactly midway between them, this ingenious

scheme insures that the joined Bezier curves are snlooth at the point of juncture. This is

because the first Bezier is tangent to the vector comlecting p3 to p2, while the second one is

tangent to the vector connecting p l ' = p3 to p2'. The two vectors point in diametrically

opposite directions, by construction (compare with Figure 5.1 2).

Figure 5.13 Two Quadratic Beziers Joined at p3

The same averaging scheme' applies if there are more than two Bezier curves in one

QSpline record, they patch togethei continuously at each juncture, insuring smoothness at
-

any resolution.

5.17.3 Representing an 'A'

Consider the TrueType representation of the Times New Roman capital 'A' in Figure

5.14, for example. First comes the outer contour, pictured here, then a second contour for the

hole (not shown). The outer contour's start point, marked by a green cross, is on the right

underside of the horizontal a m . The contour begins to trace straight to the left, then turns

down and to the lefl to start down the left foot, proceeding all the way around in a clockwise

fashion. The blue crosses mark points in polyline records, the red crosses points in QSpline

records.

Outer contour o f
Times New Roman ' A '

Figure 5.14 Times New Roman A with Polylines and QSplines

If Line2 denote's a polyline record with two points, QSpline3 a QSpline record with

three points,-and so on, then this contour consists of the following records:

Detail of le f t
foot of ' A '

record boundory

Figure 5.15 Left Foot of A

A detail view of the left foot in Figure 5.15, helps illustrate ho\v the QSplines work.

The first QSpline record in the contour begins to define the right edge of the left foot. It has

two points (QSpline2) and determines a single Bezier curve The two po~nts are the handle

and second control, the first control being the last point on the previous polyline record. The

llext QSpline record has three points (QSpline3), where the first hvo handles are not on the

contour and the third is the final control. Compare to Figure 5.12, which shows two quadratic

Beziers joined at point p3, essentially the same diagram in a different orientation. Here too

the construction lines are drawn, showing that the midpoint of the two interior handles is a

control point common to both Beziers.

Chapter 6

Testing and Results

6. Testing

Testing is an important phase during software development life cycle, and shows the

stability of the product. Also it helps in comparing the final product with the objectives.

Software testing is a critical element of software quality assurance and represents the

ultimate review of specification, design and coding.

Testing should focus upon the system's external behavior; a secondary purpose of

testing is pushing the limits of the system in order to understand how it fails under certain

conditions. A design must be testable. An implementation must be tested.

6.1 Objective of Testing

The overall objective of the testing is to find the maximum number of errors in

minimum amount of effort.

6.2 Object Oriented Testing Strategies

Testing begins with unit testing, then progress towards integration testing, and

culminates with validation and system testing. In unit testing single modules are tested first.
-

Once each module is tested individually, it is integrated into a program structures while a

series of regression tests are run to uncover errors due to interfacing of modules and side

effects caused by addition of new units. Finally the system as a whole is tested.

6.3 Types of Testing Done

We conducted various types of testing to make the software stable and error free.

6.3.1 Unit Testing

All the modules of the project were first tested individually by inserting invalid

values. Exceptions thrown were properly handled.

6.3.2 Integration Testing

ARer the modules were tested individually, they were combined to form the final

product. All the links and paths were tested. Invalid values were also checked and measure

taken to handle them successfully.

Tests of inter object and inter process coordination should be built at several

granularity levels. For example, tests of two or three interacting objects, dozens of objects,

and thousands of them are all needed.

6.3.3 Black Box Testing

The software was tested for graphical user interface and measures taken that expected

output is generated on input.

6.3.4 White Box Testing

Prior testing is part of white box testing in which we look inside the code. Here we

can often find errors, Tests that force most or all computation paths to be visited, and

especially those that place components near the edges of their operatin: conditions form

classic test strategies.

6.3.5 Beta testing

Use by outsiders rather than developers often makes up for lack of imagination about

possible error paths by testers.

6.3.6 System Testing

The software was checked under different operating system like Windows NT and

2000.

6.3.7 Portability testing

Tests should be applied across the range of systems on which the software may

execute. Tests may employ suspected non-portable constructions at the compiler, language,

tool, operating system, or machine level.

6.3.8 Regression testing

Tests should never be thrown out (unless the tests are wrong). Any changes in classes,

etc., should be accompanied by a rerun of tests. Most regression tests begin their lives as bug

reports.

6.4 Evaluation

Evaluation of the software is carried out to check the stability and usability of the

product being developed .We took measures to ensure that the developed software becomes

effective and easy to use. Some of the features of the sofhvare are given below.

6.4.1 Efficiency and Effectiveness

The product developed is effective and efficient.

6.4.2 Accuracy

The software provided reliable results. Format which is not supported can not be

opened.

6.4.3 Easy to Use Graphical User Interface

The graphical user interface used is simple but not multilingual and steps taken that

no problems arise during option finding.

encodings; yet whenever data is passed between different encodings or platforms, that

data always runs the risk of cormption.

Unicode providcs a unique number for every character. The Unicode Standard has

been adopted by such industry leaders as Apple, HP, DM, Justsystem, Microsoft,

Oracle, SAP, Sun, Sybase, Unisys and many others. Unicode is required by modem

standards such as XML, Java, ECMAScript (JavaScript), LDAP, CORBA 3.0, WML,

etc., and is the official way to implement BOIIEC 10646. It is supported in many

operating systems, all modem browsers, and many other products.

The emergence of the Unicode Standard, and the availability of tools supporting

it, are among the most significant recent global software technology trends. We are

planning that our software also use Unicode as encoding system.

7.2.2 Use of OTF fonts

We are using true type font format but the s o h a r e capabilities can be

dynamically enhanced by using OpenType Fonts. OpenType is a new cross-platform font

file format developed jo~ntly by Adobe and Microsoft. Adobe has converted the entire

Adobe Type Library into this format and now offers thousands of.OpenType fonts.
- - .

The two main benefits of the OpenTyPe format are its cross-platform

compatibility (the same font file works on Macintosh and Windows computers), and its

ability to support widely expanded character sets and layout features, which provide

richer linguistic support and advanced typographic control.

7.2.3 Using .Net as Development Tool

As Visual C++ 6 does not support OpenType Font and Java also does not fully

support OpenType so the solution is using .Net technology which fully support

OpenType format and is now considered as ideal tool for development of windows based

applications. The functionality of the software can be drastically increased by using .Net

as development tool.

Chapter 7 Achievements Afrd Future W o ~ k

7.2.4 Multilingual text designing

Using .Net as development tool and providing support for OpenType will provide

most of the foundation work for multilingual text designing and by making small changes

in the software we will enable the software to support all the languages of the world

provided their fonts are available.

Appendices

UrduKashishStyler is a vector based tool specially use for preparing versatile

headlines and text with effects.

A. 1 Description

with urduKashishStyler you can perform these functions:

Draw Line

Draw Circle

Draw Rectangle

Draw Ellipse

Draw Free Hand Line

Break Text

No Layer Text

One Layer Text

Two Layer Text

Three Layer Text

Gradient Fill

Solid Fill

Texture Fill

pattern Fill

Undo

Redo

ToBack

To Front

InFront Of

InBack Of

[(: ,
r < '

h

:2

'0 ~~

4

Re* I n

Figure A.1 UrduKashishStyler

Fonvard One

Back One

Group

Ungroup
-

A.2 Command Widget

The Command widget lists a number of sub-menus and commands. They are

3 File

New

Open

Close

Save

Save AS

Print

Print Preview

Print Setup

Page Setup

Exit

9 Edit

. Undo

Redo

Cut

COPY

Paste

Delete

Duplicate

Zoom

Select All

Copy Attributes From

. Toolbar

Status Bar

Drawing Bar

Text Bar

Kashish Bar

> Text

.BreakText

Text

One Layer Text

Two Layer Text

Three Layer Text

9 Tools

Select

Circle

Ellipse

Line

Rectangle

FreeHand

Fill Style

Outline Style

9 Object

Order

To Front

To Back

, Forward One

Back One

In Front Of

Behind

Group

Ungroup

9 Window

New Window

Cascade

Tile

Arrange Icons

P Help

About UrduKashishStyler

B. Glossary

Binary Image (monochrome image) where pixel has only two values generally 0 or 1.

Bitmap font represents each character glyph using a bitmap array and is designed for a

specific aspect ratio and character size.

BMP Bitmap image format. An uncompressed image format where the image pixel

values are mapped one to one in the image.

Device Context is a data structure that is defined by Windows, which contains information

that allows Windows to translate your output request info actions on a particular physical

device being used.

Font refers to a complete set of glyphs in a specific typeface, style and weight.

GDI Graphical Device Interface is a class-based application programming interface (AH) for

C/C++ programmers. It enables to program graphical output independently of the hardware

on which it will be displayed. - .

Glyph is the representation of a character.

Gradient fill is a progression of colors that causes two or more colors to blend from one

color to the others smoothly for adding depth and color in the drawing.

Pattern is a simple picture composed of only "on" and "off' pixels.

Pixel slang for picture element. The smallest element of an image. Pixels are arranged in

rows and columns to create an image.

Polyline is a series of connected straight lines.

QSpline is a series of connected three-point (quadratic) Bezier curves.

Ramp Fill same as gradient fill.

RGB Red-Green-Blue. An image color space where the image data is represented by the

Red, Green, and Blue bit planes of the image.

Scalable font can be resized (enlarged or reduced) without introducing distortion.

Texture is a random, fractally-generated color that is used to give a natural appearance for

wood, clouds, stone, ripples, waves, and wrinkles, or create artificial patterns such as

checkers, dots, lines, and swirls.

TTF True Type fonts is a font in which each character is defined mathematically as an

object, where each object is self-contained, with properties such as color, shape, outline, size

and position on the screen.

YCbCr an image color space where the image data is represented by the Luminance and Red

and Blue color difference components. Most of the image information is in the Y component.
-

Zoom process by which an image is magnified by a computer algorithm.

Bibliography and References

Biblioara~hv and References

Bibliography and References

1. "Computer Graphics"

Donald Heam and M. Pauline Baker

Prentice-Hall International Inc, 1996

2. "Introduction to Algorithms"

T. H. Cormen, C. E. Leiserson, R. L. Rivest,

The MIT Press, McGraw-Hill, 1990.

4. "C/C++ Users Journal, August 1999, TrueType Font Secrets"

Bertrand and Dave Grundgeiger.

5. "Fast Bezier Curves in Windows"
Michael Bertrand
PC Techniques, FebruaryMarch 1992.

r

7. "MSDN Library"

Research Paper

Aleoriihm for Urdu comDosite vector alv~hs

ALGORITHM FOR
URDU COMPOSITE VECTOR GLYPHS

Muhammad Ali, Khurram Iqbal
Dr. Sikandar Hayat Khiyal

Depaltment of Computer Science, International Islamic University Islamabad

ABSTRACT

This paper presents the process of making Urdu composite vector glyphs using True
Type fonts. A simple and fast algorithm is presented to solve the overlapping problem
that arises when Urdu text is written in form of composite vector glyph. The algorithm
explicitly copes with the degenerate cases, such that the vector glyph points are input to
the algorithm and as a result, the algorithm generates the composite vector glyphs having
no overlapping line common in the individual glyphs. The result of this process can be
utilized by vector graphics editors to apply special effects on extracted curves.

1. INTRODUCTION

In Urdu many of the characters can have more than one shape according to their position
in a word i.e. isolate, initial, middle and final. These shapes are known as glyphs. There
are two types of glyphs, bitmapped and vector glyphs. A bitmapped glyph is a collection
of bits arranged in rows and columns, designed at a fixed point size for a particular
display device, such as a monitor or a printer. These bitmapped glyphs are stored as
pictures in the font file. A vector glyph is the glyph in form of outlines and utilizes a
vector graphics system to define fonts, where the shape or outline of each character is
defined geometrically. -

The words in Urdu are constituted with different combination of glyphs provided that
initial form always comes first, final in the last and the middle is positioned between the
first and last form of glyphs and may vary in number.

In order to make composite vector glyph for Urdu having no overlapping line, we need to
get data from True Type font file. The data obtained is in the form of spline and qsplines,
then decasteljau algorithm is applied on qsplines to get vector points. After getting the
vector points, proposed algorithm is applied to remove the overlapping line.

In the True Type fonts, each character is defined mathematically a s an object, where each
object is self-contained, with properties such as color, shape, outline, size and position on
the screen. As each object is self contained, transformations may be applied on a large
scale while maintaining its original clarity. For this reason True Type is known as vector
font format. Probably the greatest thing about storing characters as outline is that only

one outline per character is needed to produce all the sizes of that character. A single
outline can be scaled to enormous range of different sizes. This enables the character to
be displayed on monitors of different resolutions, and to be printed out at different sizes.
To scale a character outline is a simple mathematical operation as are other
transformations such as rotation and reflection.

The True Type font resources consist of a sequence of tables that contain the data
necessary for drawing the glyphs, measurement information and instructions that the font
designer might include. In addition, the font designer can also define additional tables for
the outline font resource to support different platforms where outline fonts are ivailable
or to provide for future expansion of a font.

3. Extracting Glyph Outline

To access the data from True Type font files data extraction algorithms may be applied.
There are utilities available such as GetGlyphOutline[4] Microsoft Windows. It furnishes
direct access to TrueType coordinates and supplies the vector points for straight lines and
Bezier cuwes[3] in an abstract coordinate system. Rendering the character then requires
deciphering the vector points and drawing the lines and curves. The Bezier curves in
particular must be decomposed into straight lines and patched together end-to-end to
produce the final smooth contour.

The utility routine fills the buffer with a sequence of structures describing the glyph
where each glyph can have one or more contours. A contour is a closed path, ending
where it started. For example, the Urdu character 'BAY' is made of two contours, one for
the body of BAY and the other for nuqta.

Contour Start

Polylinel -+ ' ' ' \.+ Contour Start \./
Figure I: Outline of Urdu character 'BAY' with Polyline and QSpline records

Each contour in the character is described by a TTPOLYGONHEADER[4] structure
followed by as many lTPOLYCURVE[4] structures as required to describe it. The

TTPOLYCURVE structure can be either a polyline record or a qspline record where
polyline is a series of connected straight lines and qspline record is a series of connected
three-point (quadratic) Bezier curves (Figurel).

Figure 2: Quadratic Bezier curve determined by control points p l , p3 and handle p2

A quadratic Bezier curve of QSpline3 (Figurel) is defined by three points, controls pl , p3
and handle p2 as shown in Figure2. The curve begins at p l in the direction of handle p2,
eventually veering back towards p3, where it ends. The handle vectors connecting p l and
p3 to p2 in Figure2 are construction lines, they are shown only to illustrate how the curve
runs tangent to one of these vectors before breaking off towards the other control point.

4. Decomposition of Curve by decasteljau Algorithm

In order to decompose Bezier curve into straight lines we have implemented the elegant
recursive decasteljau algorithm, which calculates a series of points along the Bezier
curve. The decasteljau works by calculating point q l midway between p l and p2, and
point q2 midway between p2 and p3. Then point r l , the midpoint of segment qlq2, is a
point on the curve, and one that partitions the original Bezier curve into left sub-Bezier
plqlr l and right sub-Bezier rlq2p3 (see Figure 2). The subdivision process continues
recursively to generate as many evenly spaced points on the original Bezier curve as
desired.

5. FORMING COMPOSITE GLYPH

AAer applying the decasteljau algorithm on the glyph outline, we get the points of
individual vector glyphs. When these individual vector glyphs are joined to from
composite vector glyph an overlapping line is formed between the individual vector
glyph. In order to solve this problem we have developed an algorithm that takes
individual glyph points as input and the resultant output is a composite vector glyph with
no overlapping line.

.4l~orirhrn for Urdu comuosile vector d y ~ h s

3
Contour __* \'

Start Point

Figure 3: Composite vector glyph with overlapping line

The steps of algorithm are as follows.

Suppose A is the array containing all the points in first glyph and B is the array
containing the points of second glyph.
Find out the first intersection point of A and B.
Copy all the points from A to the resultant array up to the first intersection point.
The next point of A will be its second intersection point but for B either previous
or next point will be the second intersection point.
If next point of B is second intersection point then copy all the points of B from
first intersection point to resultant array until reached at the start of active contour
then copy points of B from the start of active contour until reached at the second
intersection point.
If previous point of B is the second intersection point then copy all the points of B
from first intersection point up to the end of active contour in the resultant array
then copy all points of B from the start, up to the second intersection point.
Copy all points of A From second intersection point up to the end in the resultant
array
Copy all the points from the start of B up to the starting index of intersecting
contour.
Copy all points from the ending index of intersecting contour up to the end of B.

Figure 4: Composite vector glyph without overlapping line

Aleorithm for Urdu comoosife vector dvohr

6. CONCLUSION

We may summarize the work done as below.

The process is defined to get data from font file and deciphering the vector points to
prodice final smooth contour. The algorithm for collecting the resultant vector glyph is
introduced, which avoids degeneracy problems of traditional applications.

The proposed algorithm was tested using a program in Visual Ctb. The algorithm proved
to be successfd with any combination of Urdu characters. Output of the algorithm can be
used by any vector based graphics editing application that uses Arabic script.

REFERENCES

Michael Bertrand and Dave Grundgeiger. "TmeType Font Secrets", U C + + Users
Journal, August 1999.

Michael Bertrand. "Fast Bezier Curves in Windows", PC Techniques,
FebmaryMarch 1992, pp. 25-30. (Reprinted in the book PC Techniques C/C++
Power Tools, 1992, pp. 213-225.)

MSDN Library.

hnp://www.webopedia.com
-

http://www.truetype.demon.co.uk

