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Abstract

In this project, a wavelet-based surface defect detection of optical fiber ferrules is
proposed. Surface defects on optical fiber connectors can be detrimental to passing light
signals when coupled with other optical fiber connectors. Defect free connectors are very
important since these connectors couple very small cores and, unlike other connectors, do
not make metal-to-metal contact. Qur quality control enhancement work uses magnified
images, whereby morphological operations segment the image and wavelet transforms
such as Haar and the Daubechies transforms then detect defects on optical fiber connector

surfaces to improve the overall acceptability of the connectors.
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Chapter 1 Introduction

1 INTRODUCTION

1.1  Optical Fibers

The Internet is the fastest growing technology on Earth today, and this is mainly
possible because of fiber optics, the bair-thin glass wires that carry laser light
communication signals around the globe.

The first commercial optical fiber network was impiemented as recently as 1977.
The light in the fiber optic wire is almost lossless because of the carefully calculated
reflection factor between the glass core and the cladding of the fiber. While the speed of
processors doubles every 18 months, and the capacity of storage double every 12 months,
the speed of optical networks doubles every 9 months. The capacity for optical fiber
communications is potentially 100,000 times or more that of the nearest rival for long
distance, Satellite/microwave. The venture funding for optical networking in 2000 was 4
billion dollars.

Scientists have very little idea of what the actual capacity of optical
communication may actually be. It is not unthinkable that with advances over the next ten
or twenty years, the amount of traffic on the whole of the Internet today might be carried
in a single hair-thin fiber. Fiber optics is a very important technology. Communications
technologies future depends upon the effectiveness of his communications (something
that we can already see a glimpse of today).

Important advances have been in the purity of the fibers themselves, so the light
signal can travel as far as possible without being amplified. This has been advanced to
about 80 kilometers today, something which is quite amazing considering the thinness of
the fiber.

1.2 The Project

This idea of a communication system is based on the propagation of light by
multiple reflections along channels formed from glass or plastic. The reflection process
that is invariably employed is that of total internal reflection at a dielectric interface. This
surface is very sensitive to the way light actually travels in the fiber. Much like any other
communication media, optical fibers have to be cut and connected to other optical fiber
ends. This introduces the role of the connector.

These specialized connectors require polishing before they can be coupled with
other optical fiber connectors. But before that can happen, these connector-ends need to
be polished — a fundamental process in the preparation of a connector. Incorrect polishing
introduces scratches and other defects on the ferrule surface of these connectors. Such
defects are harmful to the passing light signal. And in order to identify these defects we
employ the use of image processing (wavelets). There are several other techniques that
are used in industry to capture images, one of which is a thermographic technique and
suggests one of the several ways an image may be acquired [20].

Surface Defect Detection in Optical Fiber Using Image Processing 1
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1.3 Image Processing

Image processing is now gaining integration of fundamental levels in industria
control processes. Control processes are mainly used for enhancing quality of the finished
product. These mechanisms can be found in the car-manufacturing industry, the airline
industry, tile-manufacturing industry, industries involving perishable and non-perishable
goods, space technologies, it is also used by law-enforcement agencies etc. In fact image
processing is used in almost everything that we can think of today — at least of the
manufacturing sector across the board {22].

By employing image processing techniques today, industries are able to speed up
the production processes significantly. This has helped in maintaining a balance of supply
against rising demand from consumers. It has indirectly helped in raising employment
and has raised the bar by enhancing the quality of goods available in the markets today,
than say a decade ago.

14 Wavelets

There are several techniques and methods used to automate production and
enhance quality in the overall context of image processing. Techniques vary from
standalone single applications to hybrid applications that involve different methods to
achieve a single task. One such discipline in image processing is wavelets. Though
wavelets originally found significance in terms of its impressive image compression
abilities, it has since found its way into other image-processing applications. Wavelets
have also been in prominence in areas related to defect detection; since these are
classified as discontinuities in the usual pattern of the image where wavelet transforms
have a natural tendency of highlighting abnormalities in images and signals. This and
other such techniques are largely discussed in [18].

Before any technique can be applied to images, it is often desirable to have the
area of interest segmented from other regions of the image, This step reduces the overall
computation time and also lays out only the significant part of the image for processing
purposes.

A 2-D discrete wavelet transform will decompose the image under inspection into
4 sub-images. These are called the approximation and detail sub-images. Also called
approximation and detail coefficients, they are classified as one approximation
coefficient image, a horizontal detail coefficient image, one detail vertical coefficient and
one as the diagonal detail coefficient.

The approximation image can then further be subdivided into four images of
which one result is another approximation image, only at a lower level. This process may
continue till the required level is reached.

Surface Defect Detection in Optical Fiber Using Image Processing 2
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1.5 Applied Idea

Our application involves surface defect identification of ferrule-tip ends of optical
fiber connectors. The images in question have a special range of colors, distinctive from
most other natural images. See Fig. 1.1.

Figure 1.1: Images of optical fiber ferrule-ends.

Images in Fig. 1.1 are in a raw format. These images are then processed to
enhance them, where a range of techniques are applied to segment the grayish-circular
ferrule part from the image. The image is then processed for defect identification. All
these techniques and more are presented in the following chapters.

An overview of how these images are segmented is briefly provided below. More
detail of these techniques is provided in the literature that follows.

The images contrasting colors give the images two very distinct segments — the
foreground and the background. The foreground consists of the circular ferrule, which is
grayish and darker in color and also contains the central core (fiber). The background,
which is relatively much lighter in color, is part of the polishing machine and holds the
connector tip in place during the actual polishing. Because the image contains such
distinctive segments, it also has very pronounced edges. These edges help is segmenting
the circular region from the image.

And once the image has successfully been segmented it can be passed on for
defect identification.

Surface Defect Detection in Optical Fiber Using Image Processing 3



Chapter 2 Literature Survey

2 LITERATURE SURVEY

2.1 Optical Fiber

Optical fibers have grown tremendously over the course of the last forty years.
The uses of optical fibers are quite numerous and the medium came into mainstream
industrial use after the decision of the US Military to use this technology for their
communication needs. Since then optical fiber technology is extensively used in
telecommunications, medicine, military and the automobile industry.
Telecommunications applications range from global networks to local telephone
exchanges to subscribers' homes to desktop computers. These involve the transmission of
voice, data, or video over distances of less than a meter to hundreds of kilometers, using
one of a few standard fiber designs in one of several cable designs.

An optical fiber is a glass or plastic or a hybrid fiber designed to carry light
through a process known as total internal reflection. There are several types of optical
fibers. Designs include graded-index optical fibers, step-index optical fibers. There are
design types that will determine the distance the fiber has to run to carry the signal which
include the single-mode and the multi-mode optical fibers. Because of the mechanical
properties of the more common glass optical fibers, special methods of splicing fibers and
of connecting them to other equipment are needed. Optical fiber connector-ends and their
defects are the theme of this report.

Before we embark on the techniques and methods used to detect the defects, an
overview of the optical fiber system, its use and benefits are provided below.

An optical fiber is a thin, flexible medium capable of guiding an optical ray.
Various glasses and plastics can be used to make optical fibers. The lowest losses have
been obtained using fibers of ultrapure fused silica. Ultrapure fiber is difficult to
manufacture. Higher-loss multi-component glass fibers are more economical and still
provide better performance. Plastic fiber is even less costly and can be used for short-haul
links where more loss can be tolerated [3].

An optical fiber cable has a cylindrical shape and consists of three basic sections:
the core, the cladding and the jacket. The core is the inner most section and consists of
one or more very thin strands, or fibers, made of glass or plastic. The core has a diameter
in the range of 8 to 100 micro meters. Each fiber is surrounded by its own cladding,
which is a glass or plastic coating that has optical properties different from those of the
core. The interface between the core and cladding acts as a reflector to confine light that
would otherwise escape the core. The jacket is the outermost layer surrounding one or a
bundle of cladded fibers. The jacket is composed of plastic and other material layered to
protect against moisture, abrasion, crushing and other environmental dangers. Fig. 2.1
shows a typical optical fiber.

Surface Defect Detection in Optical Fiber Using Image Processing 4
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Jacket

Core . Light at less than
Cladding critical angle is
absorbed in jacket

Figure 2.1: Cross sectional view of an optical fiber (left); and its corresponding
longitudinal view (right)

2.1.1 Applications

One of the most significant technological breakthroughs in data transmission has been
the development of practical fiber optic communications systems. Optical fibers already
enjoy considerable use in long-distance telecommunications and its use in other fields is
growing very rapidly. The continuing improvement in performance and decline in prices
together with the inherent advantages of optical fiber, have made it increasingly attractive
for local area networking. Following points highlight some of the advantages of the
optical fiber technology:

» Greater capacity: The potential bandwidth and data rate of optical fibers is
immense. Data rates of hundreds of Gbps over tens of kilometers have been
demonstrated.

e Small and lighter: Optical fibers are considerable thinner than coaxial or twisted-
pair cables. For cramped areas in buildings and underground support, the
advantage of small size is considerable.

* Lower attenuation: Attenuation is significantly lower for optical fiber than for
coax or twisted-pair cables and is constant over a wide range.

= Electromagnetic _isolation: Optical fibers are not affected by external
electromagnetic fields. Thus the system is not vulnerable to interference, impulse

Surface Defect Detection in Optical Fiber Using Image Processing 5
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noise or cross talk. Also, optical fibers do not radiate energy so there is less
interference with other equipment and a high degree of security from
eavesdropping and inherently are difficult to tap.

= Greater repeater spacing: With optical fibers repeater is significantly reduced.
This reduction in repeater spacing also means a reduction in cost and also fewer
faults. Repeater spacing in tens of kilometers for optical fibers is common and
repeater spacing of hundreds of kilometers has also been demonstrated.

Categories of applications that have become important for optical fibers:

Long-haul trunks
Metropolitan trunks
Rural exchange trunks
Subscriber loops
Local area networks

00 000

Long-haul trunks

Long-haul transmission is becoming increasingly common in the telephone
network. Most of the intercontinental internet traffic (data and voice) travels over optical
fiber cables under the sea. These routes average about 1500 km in length and offer high
capacity (typically 20,000 to 60,000 voice channels). These systems also compete very
economically with microwave systems.

Metropolitan Trunks

Metropolitan trunking circuits have an average length of 12 km and may have as
many as 100,000 voice channels in a trunk group. Most such facilities are installed under

the ground and are often repeaterless. Such circuits join telephone exchanges in a
metropolitan or city area.

Rural exchange trunks

Rural exchange trunks have circuit lengths ranging from 40 to 160 km and link
towns and villages. Most of these systems have less than 5000 voice channels. The
technology used in such applications also competes with microwave facilities.

Subscriber Loop

Subscriber loop circuits are fibers that run directly from the central exchange to a
subscriber. These facilities are beginning to displace twisted pair and coax cables
evolving into a complete voice, data and video-carrying systems. This is overhauling the
communication speed and will allow subscribers to experience faster internet access.

Surface Defect Detection in Optical Fiber Using Image Processing 6
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Local area networks

Standards have been developed and products introduced for optical fiber networks
that have a total capacity of 100Mbps to 1Gbps and can support hundreds or even
thousands of stations in an office building or a complex of buildings {4].

2.1.2 Transmission Characteristics

Optical fiber transmits a signal-encoded beam of light by means of total internal
reflection. Total internal reflection can occur in any transparent medium that has a higher
index of refraction than the surrounding medium.

Fig 2.2 shows the principle of optical fiber transmission. Light from a source
enters the cylindrical glass or plastic core. Rays at shallow angles are reflected and
propagated along the fiber. Other rays are absorbed by the surrounding material. This
form of propagation is called step-index multimode, referring to a variety of angles that
will reflect.

With multi-mode transmission, multiple propagation paths exist, each with a
different path length and hence time to traverse the fiber. This causes signal elements
(light pulses) to spread out in time, which limits the rate at which data can be accurately
received. In other words, the need to leave spaces between pulses limits data rate. This
type of fiber is best suited for transmissions over very short distances. When the fiber
core radius is reduced, fewer angles will reflect. By reducing the radius of the core to the
order of a wavelength only a single angle or mode can pass, which we refer to as the axial
array.

This single-mode propagation provides superior performance for the following
reason. Because there is a single transmission path with singlemode transmission, the
distortion found in multimode cannot occur. Single ~mode is typically used for long-
distance applications.

However, by varying the index of refraction of the core, a third type of
transmission, known as graded-index multimode, is possibie.

Its characteristics are intermediate between the other two. The higher refractive
index at the center makes the light rays moving down the axis advance more slowly than
those near the cladding. Rather than zig-zagging off the cladding, light in the core curves
helically because of the graded index, reducing its travel distance. The shortened path and
higher speed allows light at the periphery to arrive at a receiver at about the same time as
the straight rays in the core axis. Graded-index fibers are often used in local area
networks.

Surface Defect Detection in Optical Fiber Using Image Processing 7
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Input pulse Quiput pulse

(a3 Sep-index muliimode

Input pulse
] ]

Qutput pulse

\

(b} Graded-index multimede

Lnput pulse

Qutput pulse
1 ™) - '

(2 Single mode

Figure 2.2: Optical Fiber Transmission Modes (diagram courtesy of Data and Computer
Communications, William Stallings)

2.1.3 Light Sources

Two different types of light sources are used in fiber optic systems: the light
emitting diode (LED) and the injection laser diode (ILD). Both are semiconductor
devices that emit a beam of light when a voltage is applied. The LED is less costly,
operates over a greater temperature range and has longer operational life. The ILD, which
operates on the laser principle, is more efficient and can sustain greater data rates.

There is a relationship among wavelengths employed, the type of transmission
and the achievable data rate. Both singlemode and multimode can support several
different wavelengths of light and can employ laser or LED light sources. In optical fiber,

light propagates best in three distinct wavelength ‘windows’, centered on 850, 1300 and
1550 nanometers.

Wavelength-Division Multiplexing

The true potential of optical fiber is fully exploited when multiple beams of light
at different frequencies are transmitted on the same fiber. This is a form of frequency-
division multiplexing (FDM), but is commonly called wavelength-division multiplexing
(WDM). With WDM, the light streaming through the fiber consists of many colors, or
wavelengths, ecach carrying a separate channel of data. Bell Labs were able to

Surface Defect Detection in Optical Fiber Using Image Processing 8
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demonstrate 2 WDM system with 100 beams each operating at 10GBPS which equals a
trillion bits per second, or 1TBPS [4].

2.1.4 Optical Fiber Connector

Optical fibers themselves would not be of much use if they could not be
connected to other optical fibers. For coupling to occur, connectors are required. The
connector has an alignment mechanism, which also mounts the fiber, in a long, thin
cylindrical shape, called the ferrule. The ferrule of the connector (with the fiber housed)
is then polished using specialized equipment to achieve a good optical finish. This
processing of the end-face is one of the most important steps in the process of preparing a
connector for coupling. Diagram of a typical connector and its ferrule part is shown in
Fig2.3.

Fatrile

Figure 2.3: A Typical straight-tip connector.

Incorrect polishing will result in lips and hackles, blobs and scratches and other
forms of defects on the surface-tip of the ferrule. Fiber cores inside the connectors are
coupled very precisely to other connecting fibers and defects on the tip-surface will
attenuate a passing light signal [21]. And this is the focus of our study: surface defect
detection of optical fiber connectors.

2.2 Image Enhancement

Image enhancement is a very subjective term but is fundamental to the overall
image processing theory. Images that scientists work on are not as glittering or clearly
laid out as we see daily in magazines, television or the PC. Most images acquired are
dope in environments where a second chance might just not be possible e.g. NASA
capturing images of exploding stars at far off distances. These images (or images in
industrial applications) are prone to noise variations and usually do not have an optimal

light source to lighten up the capture. This requires processing the images to make them
more usable.

In other words, the principal objective of enhancement is to process an image so
that the result is more suitable than the original image for a specific application. The
degree of an acceptable enhancement is dependent very much on the problem at hand.
Thus, for example, an enhancement technique that is used to enhance an x-ray image may
not even be suitable for enhancing an image, captured in space, of a distant galaxy.

Surface Defect Detection in Optical Fiber Using Image Processing 9
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22,1 Image Enhancement Categories

Image enhancement falls into two broad categories: the spatial domain and the
frequency domain. The spatial domain refers to the image plane itself and modification is
done directly to the image pixels whereas the frequency domain technique is based on
modifying the Fourier transform of an image [1].

As we have just mentioned there is no general theory of image enhancement.
When an image is processed for visual interpretation, the viewer is the ultimate judge of
how well a particular method works. Even when an obvious situation for enhancement is
present, a certain amount of trial and error is required before an image enhancement
approach is selected.

The image enhancement is pictorially summarized in figures 2.4 and 2.5.

Enbancement Output image

g(x,y)

Application-Specific
feedback -

Figure 2.4: Summarized image enhancement process. f(x,y) is the input image and
g(x,y) is the enhanced image

Surface Defect Detection in Optical Fiber Using Image Processing 10



Chapter 2 Literature Survey

Frequency
domain
Input image ' Output image
f(x,y) Spatial | gx.y)
domain

Application-Specific
feedback &

Figure 2.5: Enhancement is possible in the frequency and the spatial domain.

The enhancement field has grown very large that no single topic would be able to
cover all the techniques and methods used in image enhancement. Here we provided a
brief overview of some of the more popular enhancement techniques used in DIP today

(5.
2.2.2 Spatial Domain
2.2.2.1 Image Negatives

This is probable the most simple enhancement technique and involves reversing
the intensity levels of an image. In this manner the output produces the equivalent of a
photographic negative. This type of processing is particularly suited for enhancing white
or gray level detail embedded in dark regions of an image [1].

2.2.2.2 Log Transformations

Log transforms have the form s = clog(1+r), where s is the output pixel-intensity
value from its corresponding input pixel-intensity value (r). ¢ is a constant and r is > 0.
The output log curve, which is generated in the process, shows that this transformation

maps a narrow range of gray-level values in the input image into a wider range of output
levels [1].

2223 Power-Law Transformation

Power-law transform has the basic form
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s=cr? (2.2-1)

where ¢ and y are positive constants. r is the input gray level and s is the output gray
level. And as with log transformation, power-law curves with fractional values of y map a
narrow range of dark input values into a wider range of output values, with the opposite
being true for higher values of input levels [1].

2.2.24 Contrast Stretching

Contrast stretching is a piecewise linear function. The idea behind contrast
stretching is to increase the dynamic range of the gray levels in the image being
processed. Low contrast images can result from poor illumination or lack of dynamic
range in the image sensor [1][5].

2225 Gray-level Slicing

Highlighting a specific range of gray levels in an image is often desired. Based on
pervious knowledge of certain attributes in an image, certain gray levels in the range of
interest are displayed while a low value for other gray levels is set. This results in a
binary image. Another approach brightens the desired range of gray levels but preserves
the background and gray-level tonalities in the image {1][5].

2.2.2.6 Bit-plane Slicing

Instead of highlighting gray-level ranges, highlighting the contribution made to
total image appearance by specific bits might be desired. Gray level images are often
represented by 8 bits per pixel. Here we imagine that the image is composed on eight 1-
bit planes, ranging from bit-plane 0 for the least significant bit to bit-plane 7 for the most
significant bit. In terms of an 8-bit byte, plane 0 contains all the lowest order bits in the
bytes comprising the pixels in the image and plane 7 contains all the high-order bits. The
higher order bits, usually, contain the majority of visually significant data. The other bit
planes confribute to more subtle details in the image [5].

2.2.2.7 Histogram Equalization

The histogram equalization approach distributes evenly gray-level values across
the dynamic range of an image. In other words, histogram equalization automatically
determines a transformation function that seeks to produce an output image that has a
uniform histogram. This method improves the overall contrast of dark and low contrast
images. Histogram equalization can be applied to an image globally or locally [1].

2.2.2.8 Histogram Matching (Specification)

There are applications where a uniforro histogram is not the best approach. In
particular, there are instances when it is useful to be able to specify the shape of the
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histogram that we wish the image to have. The method used to generate a processed
image that has a specific histogram is called histogram matching [1}.

22.2.9 Image Subtraction

Image subtraction has the form

gx,y) = f(x,y) — h(x,y) (2.2-2)

where fand # are identical images. With this approach in mind, image fand A start off as
rather same images. Certain changes are made to f'and after application-specific change is
given the form A. g is the image that shows the difference. This approach is used
extensively in an area of medical imaging called mask more radiography.

Even more popular enhancement techniques include smoothing and sharpening
spatial and frequency filters. As the names imply, smoothing filters make an image more
smooth and the sharpening filters make the rendering of the image sharper. The degree of
the smoothness or the sharpness depends on the application at hand. In spatal
enhancement the operation works with the values of the image pixels in the neighborhood
and the corresponding values of the subimage. The subimage has the same dimensions as
that of the neighborhood. This subimage is called a filter, a window or a mask. The
values of the filter are called coefficients. The filter is convolved with the image and
depending on the weights of the coefficients the convolution process determines the value
of the pixel at the center of the neighborhood. A filter size of 3x3 is very common {2].

2.2.3 Frequency Domain

In the frequency domain, the mask is usually the size of the whole image itself. A
discrete Fourier transform is applied to the image, the image is shifted and a frequency
domain filter is applied. Once the image has been processed by a frequency-domain filter
function, it is again shifted and an inverse Fourier transform is applied to obtain the
transformed image. Just as the Fourier transform converts the image to a frequency
domain application, the inverse Fourier transform reverts the image back to the spatial
domain. The shifting process centers the low frequency components of the transforms
and distributes the high frequency ones.

Fig 2.6 shows the mechanics of spatial filtering. The diagram shows a magnified
drawing of a 3x3 filter and its corresponding convolution area.

It is interpreted as :

g(x,y) = L& _ X pw(s, O)f (x +5,y +t) (2.2-3)

where
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a=— and b= >
m X n is the size of the filter.
ﬂx' I:y '])
>y
“ /4(’(,5’)
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oL y+) 4]

Image x.y) mask

P

w(0,0)

| 3x3 filter

Figure 2.6: Mask coefficients showing coordinate arrangement with corresponding
pixels of image section that will be convolved with the mask.
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Figure 2.7: Basic steps for filtering in the frequency domain

S kW

Fig. 2.7 shows the basics of filtering in the frequency domain. These basic steps
constst of the following:

Multiplying the input image by (-1)*" to center the transform.

Computing F(u,v), the DFT of the image from (1).

Multiplying F(u,v) by a filter dunction H(u,v).
Computing the inverse DFT of the result in (3).
Obtaining the real part of the resuit in (4)
Multiplying the resuit from (5) by (-1)*"”

The two-dimensional DFT and its inverse is calculated as follows

1 - - —jom(EE 4 2
F(u,v) = = TH3 TY3 £ (x, ) 0+ W)

And the inverse transform is calculated as

FGty) = SMoE N2 Ry, 1) /276G + W)

(2.2-4)

2.2-5)
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(2) (®)

Figure 2.8: A two-dimensional frequency-domain (a) lowpass filter function; and (b)
a highpass filter function

Fig 2.8a and 2.8b show two filter functions that are circularly symmetric. Their
origins have been shifted to the center. Fig 2.8a shows the filter function that highlights
or raises the low frequency component of the image. The outcome of this convolution is a
smooth or a blurred image. Fig 2.8b, on the other hand, is a filter function that raises the
high frequency portion of the input image. This will result in the output image having
pronounced edge detail.

Following is a brief description of some of the popular frequency-domain filters.
Here we consider the ideal, Butterworth and Gaussian filters.

2.2.3.1 Ideal Lowpass Filter

Also abbreviated as ILPS, this filter cuts off all high frequency components of the
Fourier transform that are at a distance greater than a specified distance Dy from the
origin of the (centered) transform.

The filter function, H(w,v), is calculated as

1 if D(u,v) <D,

H(u,v) = {o if D(u,v) > Dy (2.2-6)
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Where

D(w,v) = J( —52‘-)2 + v-—-’,})z (2.2°7)

D(u,v) is the distance from the point (uv) to the origin of the frequency rectangle. Dpis a
nonnegative quantity and is usually specified by the user.

2.2.3.2 Butterworth Lowpass Filter

The transfer function of a Butterworth lowpass filter (BLPF) of order », and with
cutoff frequency at a distance Dy from the origin is defined as:

1

H(u, 1]) = -l:—b(:;)]—z-ﬁ (22-8)
Do
Where D(u,v) is calculated as mention above
And 7 is an order value that is also user defined.
2233 Gaussian Lowpass Filter
The form of this filter (GLPF) in two dimensions is given by
~D(uv)
H(u,v)=e¢ 2o 2.2-9)

Where D(u,v) is the distance that we have calculated above and ¢ is the measure
of the spread of the Gaussian curve.

To obtain their respective highpass filters, reciprocation would be effective.

2.2.4 High-boost Filtering

Of all these techniques our results on ferrule-ends were best achieved with high-
boost filtering. High-boost filtering is a process that has been used for many years in the
publishing industry to sharpen images. The method consists of subtracting a blurred
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version of an image from the image itself. This process is called unsharp masking and is
expressed as |

&) =fxy) - f () (2.2-10)

where fy(x,y) denotes the sharpened image obtained by unsharp masking, f *(x,y) is a
blurred version of f(x.y).

A slight generalization of unsharp masking is called high-boost filtering. This is
expressed as

frn(x,y) = Af(x,y) = f (%, 5) (2.2-11)

where fip(X,y) is a high-boost filtered image and A > 1 and £ is a blurred version of the
same image. :

This above equation can be written as

@)= @A~ Dfxy) + fx,y) —f xy) (2.2-12)

and we can then obtain
fhb(x-:}’) = (A - 1)f(x1y) + fs(xv y) (2'2'13)

as the expression for computing a high-boost filtered image.

When A=1 the filter acts as a standard Laplacian sharpening filter. As the value of
A is increased the processed version will be closer in its property to the original image. If
the value of A is high enough, it will only have the effect of having multiplied the
original image with a positive constant [1]{2][5].

2.3 Image Segmentation

Image segmentation is an integral part of most image processing applications.
Segmentation is a task that separates non-uniform objects in an image. Or it could be
catered to carry out an operation to extract an object of interest in the image.

There are several different techniques and algorithms available to segment
images. As mentioned before, image processing involves trail and error and different
techniques are very much application dependent. More on information on segmentation is
provided in the Segmentation chapter.

2.4 Wavelets

The fundamental idea behind wavelets is to analyze according to scale. Wavelets
are functions that satisfy certain mathematical requirements and are used in representing
data or other functions. In wavelet analysis, the scale that we use to look at data plays a
special role. Wavelet algorithms process data at different scales or resolutions. If we look
at a signal with a large “window,” we would notice gross features. Similarly, if we look
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at a signal with a small “window,” we would notice small features. The result in wavelet
analysis is to see both the forest and the trees. We have more on the “window” concept
and how it differs between the wavelet transform (WT) and the Fourier transform (FT)

[11].

These windows make the wavelets more useful. With wavelet analysis, we can
use approximating functions that are contained neatly in finite domains. Wavelets are
well-suited for approximating data with sharp discontinuities [6]. And is also one of the
fundamental reasons for our choice of defect detection with wavelets.

The wavelet analysis procedure is to adopt a wavelet prototype function, cailed an
analyzing wavelet or mother wavelet. Temporal analysis is performed with a high-
frequency version of the wavelet, while frequency analysis is performed with a low-
frequency version of the same wavelet. Because the original signal or function can be
represented in terms of a wavelet expansion, data operations can also be performed using
just the corresponding wavelet coefficients [16].

Wavelets owe their evolution, to great extent, to the Fourier transform. Therefore,
before we embark on a detailed description and advantages of wavelets and their
transforms an introduction to the Fourier transform is provided below.

2.4.1 Fourier Transformation

The Fourier transform's utility lies in its ability to analyze a signal in the time
domain for its frequency content. An inverse Fourier transforms data from the frequency
domain into the time domain.

The discrete Fourier transform (DFT) estimates the Fourier transform of a
function from a finite number of its sampled points (e.g. a digital image).
The DFT has symmetry properties almost exactly the same as that of the continuous
Fourier transform and in the analysis one half of the symmetry is removed. It is possible
to find the surface faults from the disturbances in time and/or frequencies only, but the
wavelet transform provides added benefits that elude one or the other domains. It might
be useful to use a joint time and frequency method [23][25].

If f(t) is a nonperiodic signal, the summation of the periodic functions, sine and
cosine, does not accurately represent the signal. Here the windowed Fourier transform
(WFT) or the short time Fourier transform (STFT) is one solution to the problem of better
representing the nonperiodic signal. The WFT or STFT can be used to give information
about signals simultaneously in the time domain and in the frequency domain [7].

With the WFT, the input signal f(t) is chopped up into sections, and each section
is analyzed for its frequency content separately. If the signal has sharp transitions, we
window the mput data so that the sections converge to zero at the endpoints. This
windowing is accomplished via a weight function that places less emphasis near the
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interval's endpoints than in the middle. The effect of the window is to localize the signal
in time [8]. ,

Fourier transforms have been the mainstay of image processing for a long time.
Discrete Fourier transforms (DFT) initially, when developed for the first time, were very
resource hungry and required a very long time to process specially if the size of the
images was large. With the advent of the fast Fourier transform (FFT), it gained even
greater popularity. FFT cut down the computational time phenomenally. FFT has since
become an essential/fundamental tool in signal processing. To highlight the difference
between the DFT and the FFT consider a 1-D Fourier transform of M points. The DFT
transform required M? multiplication/addition operation. But with the FFT the same task
could be achieved with Mlog;M operations. This is not all and the FFT has another
advantage. The bigger the problem, the greater the computational advantage. For example
if M=1024, the computation advantage between the DFT and the FFT is 100 to 1 in favor
of the FFT. If M=8192, the computational advantage grows to 600 to 1.

Fourier transform is named after the French mathematician Jean Baptiste Joseph
Fourier. Fouriers contribution in this particular field states that any function that
periodically repeats itself can be expressed as the sum of sines and/or cosines of different
frequencies, each multiplied by a different coefficient and is popularly known today, as
the Fourier series. It does not matter how complicated the function is, as long as it is
periodic and satisfies some mild mathematical conditions, it can be represented by such a
sum {1].

Even functions that are not periodic (but whose area under the curve is finite) can
be expressed as the integral of sines and/or cosines multiplied by a weighing function.
The formulation in this case is known as the Fourier transform. These transforms allow
us to work in the Fourier domain and then return to the original domain of the function
without losing any information.

Therefore a function either a Fourier transform or a series can be reconstructed
completely without any loss of information. Same is true for wavelet transforms.

And hence, briefly, the information that cannot be readily seen in the time-domain
can easily be seen in the frequency domain. A signal in the time domain is easy to
comprehend in its totality and its frequency information is laid out clearly in the
frequency domain.

2.4.2 Wavelet Transformation

Although Fourier transform has been the mainstay of transform-based image
processing since the late 1950s, a relatively recent transformation, called the wavelet
transform, has made it even easier to compress, transmit and analyze many images.
Unlike the Fourier transform whose basis functions are the sinusoids, wavelet transforms
are based on small waves, called wavelets, of varying frequency and limited duration.
This allows them to provide the equivalent of a musical score for an image, revealing not
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only what notes {or frequencies) to play but also when to play them. ‘Conventional
Fourier transforms, on the other hand, provide only the notes or frequency information;
temporal information is lost in the transformation process. This allows for the processing
of images at more than one resolution. The appeal of such an approach is obvious —
features that might go undetected at one resolution may be easy to spot at another.

2421 Wavelet Transformation in Two Dimensions

In two dimensions, a two-dimensional scaling function, ¢ (x,y) and three two-
dimensional wavelets, Y7 (x,y), ¥V (x,y), and Y?(x,y), are required. Terms H,V,D
denote horizontal, vertical and diagonal respectively. Each is the product of a one-
dimensional scaling function ¢ and corresponding wavelet ¥. Excluding products that
produce one-dimensional results, like ¢ (x)y(x), the four remaining products produce
the separable scaling function

o(x,y) = p(x)p(¥) (2.4-1)

and separable, ‘directionally sensitive’ wavelets

Pi(x,y) =)o) (24-2)
¥V (xy) = o)) (2.4-3)
Y2 (x,y) = YY) (2.4-4)

. In order to provide the DWT (Discrete Wavelet Transform) of an image (or two-
dimensional array) we first define the scaled and translated basis functions:
L . .
@imn(x%y) = 220(2/x - m,2/y —n), (2:4-5)
) ) i
Yimn(x,y) = 229" (27 x —m,2/y - n), i ={H,V,D} (2.4-6)
where | identifies the directional wavelets in equations 2.4-2 to 2.4-4. Rather than an

exponent, { is a superscript that assumes values H,V, and D. The discrete wavelet
transform of function f(x,y) of size MxN is then

. 1 - -
W Uorm, ) = == 3700 3323 F (%, 3) @ mn (%, Y) 2.4-7)
s . 1 —- - 2
Wy Urmn) = == 3200 29256 £ (6, Y) ¥ ma(x, ) (2.4-8)

where j, is an arbitrary starting scale and W,(jo,m,n) coefficients define an
approximation of f(x,y) at scale j,. The WJ, (j, m,n) coefficients add horizontal, vertical
and diagonal details for scales j = j.

And f(x,y) is obtained via the inverse discrete wavelet transform:
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fix,y= T—':z z Wy (o m, 1) @jo mn (%, ¥} 2.4-9)

Z Z ZZWW m, )P} (2, Y)

L-H V.D j=jo m
2.4.3 WT Invaluable Property

Despite the Fourier transforms computational advantage and its uses, there is
something that the Fourier transform lacked — time information. Since we are aware that
the Fourier transform is largely responsible for representing the frequencies of say a
spatial domain signal, it does not demonstrate when in time those certain frequencies
occur. Fourier transforms only provide frequency information; temporal information is
lost in the transformation process. This led to developmental work that over the course of
time gave rise to wavelets [7].

Fourier transform was the stronghold of transform-based image processing since
the late 1950s. However, wavelet transform is now making it even easier to compress,
transmit and analyze many images. Unlike Fourier transform, whose basis functions are
sinusoids, wavelet transforms are based on small waves, called wavelets, of varying
frequency and limited duration. This allows them to provide the equivalent of a musical
score for an image, revealing not only what notes (or frequencies) to play but also when
to play them.

2.4.4 Basis Function

It is simpler to explain a basis function if we move into the realm of digital
vectors.
Every two-dimensional vector {(x; y) is a combination of the vector (1; 0) and (0; I):
These two vectors are the basis vectors for (x; y).

Notice that x multiplied by (1; 0) is the vector (x; 0); and y multiplied by (0; 1) is
the vector (0; y): The sum is (X; y).

The best basis vectors have the valuable extra property that the vectors are
perpendicular, or orthogonal to each other. For the basis (1; 0) and (0; 1); this criteria is
satisfied [9].

24.5 Scale-varying Basis Functions

A basis function varies in scale by chopping up the same function or data space
using different scale sizes. For example, imagine we have a signal over the domain from
0to 1. We can divide the signal with two step functions that range from 0 to 1/2 and 1/2
to 1. Then we can divide the original signal again using four step functions from 0 to 1/4,
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/4 to 1/2, 1/2 to 3/4, and 374 to 1. And so on. Each set of representations code the
original signal with a particular resolution or scale [9}.

2.4.6 Difference between WT and FT

One of the basic dissimilarities between FT and WT is time information. WT’s
provide temporal information whereas FT°s do not. This localization feature, along with
wavelets localization of frequency, makes many functions and operators using wavelets
“sparse” when transformed into the wavelet domain. This sparseness, in turn, results in a
number of useful applications one of which is data compression.

One way to see the time-frequency resolution differences between the Fourier
transform and the wavelet transform is to look at the basis function coverage of the time-
frequency plane [10].

Fig. 2.9 shows a windowed Fourier transform, where the window is simply a
square wave. The square wave window truncates the sine or cosine function to fit a
window of a particular width. Because a single window is used for all frequencies in the
WFT, the resolution of the analysis is the same at all locations in the time-frequency
plane {11].
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Figure 2.9: Fourier basis functions, time-frequency tiles, and coverage of the time-
frequency plane.

An advantage of wavelet transforms is that the windows vary. In order to isolate
signal discontinuities, one would like to have some very short basis functions. At the
same time, in order to obtain detailed frequency analysis, one would like to have some
very long basis functions.

A way to achieve this is to have short high-frequency basis functions and long
low-frequency ones. This happy medium is exactly what you get with wavelet
transforms.
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Fig 2.10 shows the coverage in the time-frequency plane with one wavelet
function, the Daubechies wavelet.

Unlike Fourier transforms, wavelet transforms do not have a single set of basis
functions. Fourier transforms utilize only the sine and cosine functions. Wavelet
transforms, on the other hand, have an infinite set of possible basis functions. Thus
wavelet analysis provides immediate access to information that can be hidden by Fourier

analysis [11].
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Figure 2.10: Daubechies wavelet basis functions, time-frequency tiles, and coverage
of the time-frequency plane.

2.4.7 Wavelet Family

Today there are several different types of wavelets with different pros and cons.
These different types of wavelets have formed a collection of wavelet classes and are
referred to as a family of wavelets. Within each family of wavelets (such as the
Daubechies family) are wavelet subclasses distinguished by the number of coefficients.
Wavelets are classified within a family most often by the number of vanishing moments.
This is an extra set of mathematical relationships for the coefficients that must be
satisfied, and is directly related to the number of coefficients [6].

For example, within the Coiflet wavelet family are Coiflets with two vanishing
moments, and Coiflets with three vanishing moments. Fig 2.11 illustrates several
different wavelet families.
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Figure 2.11: Several different families of wavelets. The number next to the wavelet
name represents the number of vanishing moments (A stringent mathematical
definition related to the number of wavelet coefficients) for the subclass of wavelet.

2.48 Multiresolution Analysis

In 1987, wavelets were first shown to be the foundation of a powerful new
approach to signal processing and analysis called multiresolution theory. Multiresolution
theory incorporates and unifies techniques from a variety of disciplines, including
subband coding from signal processing, quadrature mirror filtering from digital speech
recognition, and pyramidal image processing. As the name implies, multiresolution
theory is concerned with the representation and analysis of signals (or images) at more
than one resolution. This is appealing because features that might go undetected at one
resolution may be easy to spot at another [12].

From this very theory we get extra information when we split all the bands. This
is called as wavelet packet decomposition and its properties give an understanding of
analysis at different resolutions which is described in detail in the next section [24].

There are two major aspects to wavelets — analyzing images at different
resolutions and subband coding.

249 Image Pyramid

When we look at images, generally we see connected regions of similar texture
and gray level that combine to form objects. If the objects are small in size or low in
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contrast, we normally examine them at high resolutions. If they are large in size or high
in contrast, a coarse view is all that is required. If both small and large object — or low
and high contrast objects — are present simultaneously, it can be advantageous to study
them at different resolutions. This is the fundamental motivation for multiresolution
processing. :

Images are two-dimensional arrays of intensity values with locally varying
statistics that result from different combinations of abrupt features like edges and
contrasting homogenous regions. Here we introduce image pyramids.

Image pyramids are conceptually simple structures of representing an image at
more than one resolution. It was originally designed for computer vision applications and
is essentially a collection of decreasing resolution images arranged in the shape of a
pyramid. The base of the pyramid contains a high-resolution representation of the image,
and moving upwards, the apex contains a low resolution approximation. This is
conceptualized in Fig 2.12.
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Figure 2.12: Pyramidal image structure

As we move up the pyramid both the size and the resolution decreases. Since base J is
size 2'x2" or NxN, where J=log;N, intermediate level j is size 2x2, where 0 < 1’, <J. Fully
populated pyramids are composed of J+1 resolution levels from 2°x2’ to 2°x2°, but most
pyramids are truncated to P+1 levels, where j=J-P, ..., J-2,J-1,Jand 1 <P <.

In other words we normally limit ourselves to P reduced resolution approximations of the

original image; a 1x1 or single pixel approximation of a 512x512 image, for example, is
of little value [17]. The total number of elements in a P+1 level pyramid for P>0 is

1
N[L+5+ 5+ + 5] SN 2.4-1)

2.4.10 Subband Coding
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Another important imaging technique with ties to multiresolution analysis is
subband coding. In subband coding an image is decomposed into a set of band limited
components, called subbands, which can be reassembled to reconstruct the original image
without error. Originally developed for speech and image compression, each subband is
generated by bandpass filtering the input. Since the bandwidth of the resulting subbands
is smaller than that of the original image, the subbands can be down sampled without loss
of information. Reconstruction of the original image is accomplished by up sampling,
filtering and summing the individual subbands.

Fig 2.13 shows the principal components of a two-band subband coding and
decoding system. The input of the system is a one-dimensional, band-limited discrete
time signal x(n) = 0,1,2,...; the output sequence ,x'(n), is formed through the
decomposition of x(n) into yo(n) and y)(n) via analysis filters hy(n) and hi(n). The
subsequent recombination is done via synthesis filters go(n) and g;(n). Note that filters
hg(n) and h;(n) are halfband digital filters whose idealized transfer characteristics, H; and
H, are shown in Fig 2.14.

Filter Hp is a low pass filter whose output is an approximation of x(n) and filter H;
is a highpass filter whose output is the high frequency or the detail part of x(n). All
filtering is performed in the time domain by convolving each filters input with its impulse
response ~ its response to unit amplitude impulse function, 8(n) [1].
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Figure 2.13: A two-band filter bank for one-dimensional subband coding and
decoding; and
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Figure 2.14: its spectrum splitting properties

This was a very basic description of the properties that wavelets take advantage
of. In the case of images, which are two-dimensional instead of 1-D, the decomposition
of the bands is slightly different. Images on the other hand are 2-D and the processing is
slightly different (although the basics of WT remain intact). Wavelet analysis in image
processing decomposes an image into approximation, horizontal, vertical and diagonal
detail subbands. This is shown in Fig. 2.15.

In Fig. 2.15, x(m,n) is an input image with ‘m” rows and ‘n’ columns. a(m,n) is
the level 1 approximation detail of the image x(m,n). Similarly d¥(m,n), d*(m,n) and
d®(m,a) are the vertical, horizontal and diagonal level 1 details or subbands of the image
x(m,n). A level-2 wavelet analysis would involve replacing x(m,n) with a(m,n) as the
input. This in turn will generate another approximation, vertical, horizontal and diagonal
set of details or subbands. Because of the downsampling, each corresponding output
would be half its size.

The coefficients are ordered using two dominant patterns, one that works as a
smoothing filter (like a moving average) the output of which here is a(m,n), and one
pattern that works to bring out the images “detail” information (horizontal, vertical,
diagonal). These orderings of the coefficients are called a quadrature mirror filter pair. A
more detailed description of the transformation matrix can be found at [13].
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Figure 2.15: A two-dimensional four-band for subband image coding

2.5 Problem Identification

There are some similar studies on wavelet transforms but in different areas. In
[14] a solution regarding tile surface defect detection using wavelets is proposed. A
system developed by the researchers called TEMPLAR is described in the paper.
TEMPLAR enables a large reduction of the wavelet transform data while retaining
problem-specific information, which facilities an efficient pattern recognition process. In

J~ TEMPLAR the process begins with the creation of a template of the defective tile.

TH-517

Training data in the form of twelve identical tile images is provided to produce the
artificial template.

The second stage of the process involves passing the defective tile image through
a wavelet transform.

The third stage in TEMPLAR is the reconstruction operation, which is carried out
using the wavelet transform toolbox in Matlab that gives the Variance result as an image,
which is a black & white or Gray scale image. It contains only the difference between the
artificial template image (which can be considered the original template clear, and clean
image tile) and the defect tile image.

However, results are relative only to other wavelet transforms and are subjective.
Defects are not quantified. In summary the study concludes that the Daubechies wavelet
provides better results than Haar.
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Although the resuits demonstrated show good identification of the tile defects,
what is taken for granted is the fact that the tiles are rectangular. The application
mentioned therein takes advantages of the natural “discontinuity-highlighting” tendencies
of wavelets. Resultantly any irregularity within the coefficients of the transform is
labeled as a defect. Fig. 2.16 summarizes the process

()]

Figure 2.16: (a) Defective tile, {b) Tile template, (c) Reaction to Haar
wavelet (variance), and (d) Reaction to Daubechies wavelet (variance)

Ferrule images on the other hand are circular. When passed through a wavelet
transform the boundaries of the circular region are also classified as defects. The
boundary pseudo-defects have to be removed before an evaluation for the
classification/identification of defects can even take place. This remains the major
challenge.

Unlike circular objects, these rectangular images also avoid the computational
overhead of pseudo-defects.

Another similar study [227 identifies defects in images of textile surfaces. Here
the technique involves feature extraction, pixel intensities calculation and analysis of
wavelet coefficients. The process also involves the use of Haar and Daubechies wavelets.
Their results also successfully identify defects but again were subjective and were
rectangular and thus removing the overhead of having to remove pseudo-defects. See Fig.
2.17

®

Figure 2.17: (a) Textile image with defect, (b) Wavelet transform of the image

This approach employs using feature extraction methodology that is applied to a
k-level wavelet domain. The feature extraction approach considers multidimensional
vectors of wavelet coefficients having as components suitably selected windows of these
coefficients from their associated QMF channels.

Swrface Defect Detection in Optical Fiber Using Image Processing 30




Chapter 2 Literature Survey

Ferrule images in our study are circular (see fig. 2.18). They need to be
segmented before a wavelet transform can be applied. Even after the transform, the detail
subbands need to have pseudo-defects removed. The nature of the shape of the object in
question makes it necessary to segment the image and also involves the need to remove
pseudo-defects after the transform. The technique applied takes a wavelet transform of
the ferrule image and also of the ferrule boundary. The ferrule boundary transform detail
subbands are subtracted from the main transforms. This results in detail subbands as
having only the defect details.

(a)

Figure 2.17: (a) A ferrule end with scratch marks and (b) a ferrule end with an
obvious defect
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3 IMAGE SEGMENTATION

Our method is based on selecting a threshold value to segment the images. These
images have two large distinct areas based on their gray-level values — the darker
foreground ferrule region and the lighter background region. These images have
histograms that are bimodal, meaning that they will produce graphs with two obvious
peaks. From hereon, selecting the threshold is apparently simple: choose the grey level
representing the lowest point between the two peaks. Although it seems pretty simple, the
histograms that were generated had several spread out grey fevel values between the two
obvious peaks. This made the task slightly more skewed.

3.1 Image Acquisition

Images have been acquired using specialized cameras used in industrial quality
control departments. Image acquisition of these connector surfaces is unfazed by gloss-
related problems that may appear due to polishing or glazing operations that hamper the
accurate detection of surface defects of certain items in the industry [14][19]. The
captured images are converted to grayscale and binary forms to be suitable for use with
various algorithms that are used to segment areas of interest in such images. There are
other such similar tools that may be used to acquire these images [15].

3.2 Segmentation Method

There are also other problems involved in histogram processing like detecting the
two obvious peaks where, relatively, other peaks are in close proximity. Noise variations
can also produce sharp peaks. At times the second peak in the histogram is not obvious.
There may also be need to spread out the histogram or to make it more smooth for the
peaks to be made more distinct. And keeping all these in mind we adapted the iterative
selection threshold method.

The idea here is to provide an estimate of the average gray level of both the
background (Ty) and the objects (T,). The average of these two values is selected as the
initial threshold : T = (T, + Ty) / 2. Initially these values are guesses based on the known
properties of the image. Sometimes values from the four corners are assumed to be
background pixels. It is even possible to use the overall mean grey-level value as the
initial threshold {2].

However, in our application, since we know that the foreground ferrule region is
darker and the background is lighter, we chose the initial values as T, = 0 and Ty = 255.

The next step is to refine the values of T, and T, using the threshold value T. Here
mean of the values below T are treated as T, and mean value of grey levels greater than T
are treated as Ty. From the new values just acquired (T, and Tp) a second threshold value
T is calculated as before T = (T, + Tp) / 2. This process is repeated until the same T value
is produced on two consecutive iterations. This final T value is considered to be a good
threshold value.
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We applied the iterative technique to our “edge-detected” images. This is
demonstrated in Fig. 3.1. Image in Fig 3.1a was convolved with an edge detection kernel
of size 3x3. Fig 3.1b shows the intermediate result, with prominent edges of objects, of
the image after the edge detection operation. Fig 3.1c shows the result obtained after
applying the iterative selection threshold method on image on Fig 3.1b. There are more
images and resuits in the result section of the document.

() ©

Figure 3.1: (a) the original image; (b) image convolved with an edge detector and
(c) binary image obtained with the iterative selection threshold method of (b)

3.3 Edge Detection

Another objective of machine vision and image processing is edge detection. The
simplest way of obtaining edges is to differentiate between gray-level values of the object
and the background. An edge detection operation is primarily responsible for highlighting
boundary regions of objects in images. Object and background regions usually have a
distinct range of grey-level values and edge detection filters pronounce the effect of
discontinuities in images. Edge detection algorithms also (usually in practice) suppress
smother information of the image. However, we first enhanced the contrast of the image
to make the discontinuities more viable for processing.

There are several spatial edge detection kernels available and can be classified
into first~- and second-order derivative categories. First-order derivatives generally
produce thicker edges in the image. The second-order derivatives have a stronger
response to finer detail (e.g response to thin lines).

The images in question have a special range of colors, distinctive from most other
patural images. Their contrasting colors give the images two very distinct segments — the
foreground and the background. The foreground consists of the circular ferrule, which is
grayish and darker in color and also contains the central core (fiber.) The background,
which is relatively much highter in color, is part of the polishing machine and holds the
connector tip in place during the actual polishing. Because the image contains such
distinctive segments, it also has very pronounced edges.

We applied the second-order derivative and found very good results. The second-
order derivative (itself called the Laplacian) results in a Laplacian image. This is an
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image with edge information. The two-dimensional Laplacian is obtained by the

following equation [1][2]):

Vf=[fx+ 1)+ fx—1L+ fy+ D+ flx,y—D]-4f(xy) (3.3-1) |

Where V2f is the image laplacian,

f is the image.

This equation can be implemented using the following 3x3 kemels. We applied

the one shown in Fig 3.2a.

Q 1 0 1 1 1

1 4 1 1 8 1

0 1 0 1 1 1
(a) (b)

0 -1 0 -1 -1 -1

-1 4 -1 -1 8 -1

0 1| e -1 -1 -1
(©) )]

Figure 3.2: Masks that are used to obtain the Laplacian

In Fig. 3.2 we have four Laplacian masks that can be applied to an image for the
purpose of edge detection. Figures 3.2b and 3.2d also include the diagonal neighbors of

the pixels in the context of the mask.

The equation given above is the last term subtracted. This is because the central
weight is also negative. For masks in Fig. 3.2c and 3.2d this last term will be positive and

the ones preceding it will be negative.

3.4 Region Growing
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The binary image, we obtained earlier using the iterative method, is ‘then
processed based on values fundamental to circular regions. Values like circularity and
center of mass play a crucial role is growing a template to extract the central ferrule
region. The shape of the ferrule region is unique and consistent. The outline of the ferrule
region can therefore be approximated by a circle.

Once the bi-level image is obtained, the area of the region inside the circular
region is calculated using the technique, as mentioned in [2]. The center of mass C is also
calculated as (Cr, Cc), where Cr is the center row and Cc is the center column of the
circular object. Cr and Cc can be computed as:

— Eggﬁ;ﬂf&ﬂ F(row,col)row )
Cr= area(F) (3-4 1)
- gl_?_;’.‘,‘.;‘.:l NG, F(row,col)col ]
Ce= area(F) (3.4-2)

(where area (F) is the number of pixels of the object. NR and NC are the Number or
Rows and Number of Columns of the object, respectively.)

One property of the central core is that it is also the very center of the ferrule. The
core is also very small in area. This information is used together with the center of mass
value to establish the central point of the circular region. The lighter color of the core also
aids this process. A seed pixel is then chosen that is grown outwards, recursively, towards
the boundary from the center. This is shown in Fig 3.3b. Once the central circular region
is fully grown, it is able to provide a form of template that is then used to extract the
circular region from the main image (Fig. 3.3¢).

O &

(@ (b) (© (d)

Figure 3.3: (a) Binary image obtained based on an iterative threshold; (b) the
circular ferrule-area region is grown towards the boundary (c) template that has
been grown; and (d) ferrule obtained based on the grown template.

Other segments that appear in the background area are highlighted and removed
from the image on the basis of their overall area (see Fig. 3.3b).
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Based on the template that has just been grown, the ferrule segment of the image
is successfully obtained. Fig. 3.3d shows a successfully segmented ferrule region.

Fig. 3.4 shows some more results obtained by applying our technique.

Figure 3.4: Ferrule tips of varying size with respective segmented ferrule regions
(a-d, b-e, c-f)

In summary of the above mentioned techniques is the flow chart.
The flowchart of the ferrule region extraction is shown in Fig 3.5.
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3.5 Wavelet Analysis

Grayscale non-
segmented ferrule
image

|

| Image Enhancement |

:

Edge Detection

3

Binarization

:

Region Extraction

i

Post Processing

Figure 3.5: Image segmentation flowchart.

Fig. 3.6 summarizes the wavelet concept in the image-processing domain.

Wo(j+1,m,n)

Figure 3.6: Image wavelet decomposition

And similarly our effort of a segmented ferrule images wavelet decomposition is

shown in Fig 3.7.
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(e)

Figure 3.7: A segmented (a) ferrule image and its (b) approximation coefficient
wavelet transform, and (c) horizontal detail coefficient image, (d) vertical detail
coefficient image and (e) diagonal detail coefficient image obtained using the
Daubechies transform.

And it is notable that the horizontal detail image brings out successfully many of
the defect marks on the ferrules tip. Figures 3.8 through 3.10 show some more
transforms.

| ©. | (@ I

Figure 3.8: (a) Approximation image of a connector ferrule part , (b) Horizontal
detail image, (¢) Vertical detail and (d) Diagonal detail obtained using the
Daubechies transform.
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@

©

@

Figure 3.9: (a) Approximation image of segmented ferrule region, (b) Horizontal
detail image, (c) Vertical detail and (d) Diagonal detail obtained using the Haar

transform

()]

©

@

Figure 3.10: (a) Approximation image of a segmented ferrule region (b)
Horizontal detail image, (c) Vertical detail and (d) Diagonal detail obtained using
the Haar transform

We applied the Haar and Daubechies wavelets to our segmented images using
Matlab. Both effectively identified the defects with the Daubechies giving the better of
the two results. However, there is one thing to note. Although the results obtained
identified the defects pretty successfully, outer boundary areas of the ferrule region also
produced sharp discontinuities in the transformed version. Since these are farthest from
the central core, they may be eliminated based on their radius value ffom the center of the

ferrule.
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Figures 3.8 through 3.10 show some results. Fig. 3.7 and Fig. 3.8 show the
coefficients obtained using the Daubechies wavelet transform, while Fig. 3.9 and Fig.
3.10 do the same for the Haar transform.

We used our techniques on 12 images with different defects. Some of the images
were without the central core. Some were plain and flawless. We found that different
types of wavelets provided different results. In our scenario the Daubechies filters
provided the best results. Detail coefficients of Fig. 3.9 and Fig. 3.10 (horizontal, vertical
and diagonal details) were calculated using the Haar wavelets. Similarly detail
coefficients of Fig. 3.7 and Fig. 3.8 were calculated using the Daubechies 4-tap wavelets.
The latter have provided better results and have to quite a good extent been able to
identify the defects. Image analysis was done using the Matlab software (version 7).
More results are available in the Results section.
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4 IMPLEMENTATION & DESIGN

|
Image processing and computer vision techniques are used together to segment
the images. Image processing techniques are used to apply sharpening filters to bring out
the detail from the image. Edge detection algorithms are then applied to highlight the
boundary regions of the ferrule area. Computer vision techniques convert the edge
highlighted image to a bi-level form. The circular ferrule region is then grown to form a
type of template. This template is then used to extract the ferrule region from the image.

The extracted ferrule images are then passed into out Matlab application for the
purpose of defect detection using the various wavelet functions provided therein. The
Matlab application is a GUI and very simply highlights the defects in the ferrule region
through its coefficients.

Provided below is a complete description of the several functions used to
implement the two-tiered application process.

4.1 Proposed Solution

The images in our study are composed of optical fiber ferrule ends. Contrasting
colors give the images two very distinct segments — the foreground and the background.
The foreground consists of the circular ferrule, which is grayish and darker in color and
also contains the central core (fiber). The background, which is relatively much lighter in
color, is part of the polishing machine and holds the connector tip in place during the
actual polishing. Because the image contains such distinctive segments, it also has very
pronpunced edges. These edges help is segmenting the circular region from the image.

Before segmentation the images are enhanced and fed to the segmentation
method. Once the image has successfully been segmented it can be passed on for defect
detection using wavelets.

4.1.1 Flowcharts

All the design process and activities to achieve the tasks are described pictorially
as flowcharts below.
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Flowchart to generate a high-boost filtered image
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Flowchart to edge-detect the image
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Flowchart to calculate threshold for binarization
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Flowchart to convert the image to a bi-level form
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Flowchart to extract ferrule region
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Flowchart describing the use of wavelets to identify defects

[
Input ferrule
region

A

—
Select type of wavelet T
L from list
Apply selected
_ Wwavelet function

\ 4 A l

Approximation Horizontal detail Vertical detail Diagonal detail
Image Image Image Image
< l

Remove Remove Remove
transform transform transform
boundary boundary boundary

r ‘ N

Add images and count
5 defects )

~

Display defect count
\ _J

Surface Defect Detection in Optical Fiber Using Image Processing 47



Chapter 4 Implementation & Design

4.2 Image Enhancement

|
As mentioned earlier we used high-boost filtering method to sharpen the images.
High-boost filtering is defined as

Fr®¥) = AfCe.y) = f (,%) (4.2-1)
where fyp(X,y) is the sharpened image, A > 1, and f *(x,y) is the blurred version of f{x,y).

The implantation of high-boost filtering is done in the file unsharp.cpp and its
algorithm is shown below.

unsharp.cpp
for ( i= first row to last row ; i++) {

for (j = first column to last column ; j++) {

for (s = loop three times the rows of the kernel do) {
for (t = loop three times the columns of the kernel do) {

Average_Value[count] = Image[(i+s),(+t)];
sum = sum + Average_Value[count];

count++;
}

}

count=0;

Blurred_Image[i,j] = sum/(MASKROWS*MASKCOLUMNS);
Sharpened Image{i,j}=(2.1)*Image[i,j}-Blurred_Imagef{i,j];
sum=0;

} }
Result of high-boost filtered image is shown in Fig. 4.1.

o o —

Figure 4.1: The original image on the left-hand side and
the right-hand side image obtained after high-boost
filtering.

4.3 TImage Segmentation

After the enhancement the images are then segmented to separate the ferrule
region from the main image.
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This process in also implemented in C. It also involves more steps and functions.
This is implemented in the file seg.cpp.

Seg.cpp
The image is first of all passed through an edge-detector to enbance the edges.

for ( i = first row to last row ; it++) {
for (j = first column to last column ; j++) {

Edge_Detected Image[i,j] =
((originalimage([(i-1),(-1)] + originalimage((i,j-1)] +
originalimage[(i+1,j-1)]) - (originalimage[(i-1,j+1)] +
originalimage([(i,j+1)] + originalimage[(i+1, j+1)] ))

+

((originalimage[(i+1),(-1)] + originalimage[(i+1,§)] +
originalimage[(i+1),G+1)]) - (originalimage[(i-1),G-1)] +
originalimage[(i-1,j)] + originalimage[(i+1),G+1)]));

This algorithm detects the edges horizontally and vertically. The edges of the
regions in the image, that have just been identified, are then replaced with the values of
the gray-levels that appear in the original image. This results in a more perked-up
representation of the edge-enhanced image. This is shown below in Fig. 4.2.

@ ®)

Figure 4.2: (a) Connector ferrule with central core and light
colored background; and (b) The ferrules pronounced edges
after convolving with an edge-detector

4.4 Binarization

The “edged” image is then converted to a black-and-white or binary form. Here a
threshold value is chosen iteratively. Values greater than the iterative threshold are
converted to white or made part-of-the-background, and values of gray-levels below the
threshold are converted to black; in other words are made part of the object.
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The histogram is initially segmented into two parts using a starting threshold

range such as 0-127 and 128-255 (these are the ranges we have assumed in our technique,
they may however be different depending on the application at hand); i.e. half the
maximum dynamic range. The mean of the gray values associated with the foreground
pixels and the sample mean of the gray values associated with the background pixels are
computed. A new threshold value is then computed as the average of these two sample
means. The process is repeated, based upon the new threshold, until the threshold value
does not change any more.

1.

An initial threshold value (T) is chosen, this can be done randomly or according
to any other method desired but is usually chosen as
T=(max_value+min_value)/2.

The image is segmented into object and background pixels as described above,
creating two sets:

a. = {f{m,n):f(m,n)<T} (object pixels)
b. 62 {f(m,n):f(m,n)> T} (background pixels) (note, f(m,n) is the value of
the pixel located in the m® column, »* k row)

- The average of each set is computed.

a. m; = average value of G;
b. m; = average value of G

A new threshold is created that is the average of m; and m;,
a. T = (m; +my)2

Go back to step two, now using the new threshold computed in step 4, keep
repeating until the new threshold matches the one before it.

The above sequence is shown in a pictorial form in Fig. 4.3.
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Figure 4.3: Threshold value selection based on the iterative method. Final threshold
value results when two successive iterations produce the same value of T.

(a) Original image (b) Edge-detected image (c) Bi-level image obtaine_(_{
based on a threshold
_ selected iteratively.

Figure 4.4: Obtaining the bi-level image

Fig. 4.4 (c) shows a binary image obtained based on the threshold value (T) that
was selected iteratively. The binary image however still contains other objects in the
image that are not part of the ferrule region and hence need to be discarded. This is the
next step in the process of ferrule-region extraction.

4.5 Circularity Based Region Extraction

Extra information (small irregular objects other than the ferrule) in the bi-level
image is highlighted and removed on the basis of their overall area. Other auxiliary
information available from the image aids this process. The unique circular shape of the
ferrule region provides important information that is characteristic of circular regions.
Here the circularity property is used to check if the region is round enough to be
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considered circular. If the circularity value is 1 or close to 1, the region is circular. And if
the area of the object is also within the limits of the range set by our application, for that
of a ferrule region, then we have a successful hit. Other elements are eliminated from the
image since these would not qualify based on our set criteria.

In the meantime, the area of the object that is selected as a ferrule-region

candidate is grown into a template recursively. The area is calculated and center of mass
value established.

Center of mass and circularity is calculated as described in section 4.5.1 and 4.5.2
4.5.1 Center of Mass

The center of mass C is also calculated as (Cr, Cc), where Cr is the center row
and Cc is the center column of the circular object. Cr and Cc can be computed as
described in equation 3.4-1 and 3.4-2 in section 3.4. The area (F) described therein is the
number of pixels of the object [2].

4.5.2 Circularity

Before we proceed to the formula please note that the ratio P%/A for a circle is
always 4z. The minimum value for a circular region is 1. This value will increase as the
object becomes more complicated. And it is defined as [2]

PZ
C= e 4.5-1)
Where P is the perimeter of the object, and A is the area (which is the actual count
of an objects pixels).

We then have a template that will help in the extraction of the ferrule-region from
the main, enhanced image. This template is shown in Fig. 4.5a.

(a) (®)
Figure 4.5: (2) bi-level template that has
been grown; and (b) ferrule obtained based
on the grown template.
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Based on the template that has just been grown, the ferrule segment of the image
is successfully obtained. Fig. 4.5b shows a successfully segmented ferrule region.

4.6 Defect Detection Based on Wavelet Coefficients

Once the images are segmented they are then passed through a Matlab application
that calculates wavelet coefficients of different genre and type. The application displays
the results of the coefficients into different place holders where an assessment of the
transform can be had.

The application is a GUI and is implemented using Matlabs GUIDE tool. This
tool allows for rapid GUI rendering, where the backend can be programmed using the
syntax that the Matlab program supports.

We have applied different Matlab functions to carry out the demonstration. We
used Haar, Daubechies, Coiflet and the Symlet wavelet transform.

These different function each carry out and display the approximation, horizontal,
vertical, and diagonal details of the ferrule image.
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5 RESULTS & CONCLUSION

5.1 Image Enhancement Results

High-boost filtering was used to enhance the images. We used a multiplication
factor of 2.1 before subtracting the blurred image from it. More detail on high-boost
filtering is provided in section 4.1. Following images labeled (a) — (r) have been arranged
in a manner that the original images appear in the left hand-side column under the
heading Original Image and their respective enhanced images appear in the right hand-
side column under the heading Enhanced Image.

Enhanced Image

© | )
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5.2 Segmentation Results

The following images, s~(a) to s-(r) have been arranged in a manner that enhanced
images appear in the left hand-side column and their respective segmented ferrule regions
appear in the right hand-side column.

Enhanced Image Segmented Ferrule
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5.3 Wavelet Results
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Wavelet transformed detail images are shown below. These are level 1
transforms. The results are in the form as shown in Fig W-W:

Approximation . .
Detail Horizontal Detail
w~(a) w-(b)

Vertical . .
Detail Diagonal Detail
w-(c) w-(d)

Figure W-W: w-(a) Approximation image of segmented ferrule region, w-(b)
Horizontal detail image, w-(¢) Vertical detail and w-(d) Diagonal detail obtained
using the Haar transform

And have been computed using the Haar transform. Defects are clearly visible in the
detail coefficients.

w-(2)

w-(3) w-(4)

Figure W-A: w-(1) Approximation image of segmented ferrule region of image

shown in Fig. s-(I), w-(2) Horizontal detail image, w-(3) Vertical detail and w-(4)
Diagonal detail obtained using the Haar transform
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w-(5) w-(6)

w-(7) w-(8)

Figure W-B: w~(5) Approximation image of segmented ferrule region of image

shown in Fig. s-(n), w~(6) Horizontal detail image, w-(7) Vertical detail and w-(8)
Diagonal detail obtained using the Haar transform

w-(11) w-(12)
Figure W-C: w~(9) Approximation image of segmented ferrule region of image
shown is Fig. s-(f), w-(10) Horizontal detail image, w~(11) Vertical detail and w-(12)
Diagonal detail obtained using the Haar transform
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w-(13) w-(14)

| w~(15) w-(16)
Figure W-D: w-(13) Approximation image of segmented ferrule region of image
shown in Fig. s-(j), w-(14) Horizontal detail image, w-(15) Vertical detail and w-(16)
Diagonal detail obtained using the Haar transform

w-(17) w-(18)

w-(19) w-(20)
Figure W-E: w-(17) Approximation image of segmented ferrule region of image
shown in Fig. s-(r), w-(18) Horizontal detail image, w-(19) Vertical detail and w-(20)
Diagonal detail obtained using the Haar transform
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w-(21) w-(22)

w-(23) w-(24)
Figure W-F: w-(21) Approximation image of segmented ferrule region of image
shown in Fig. s-(h), w-(22) Horizontal detail image, w-(23) Vertical detail and w-(24)
Diagonal detail obtained using the Haar transform

w-(25) w-(26)

w-(27) w-(28)
Figure W-G: w-(25) Approximation image of segmented ferrule region of image
shown in Fig. s-(p), w-(26) Horizontal detail image, w~(27) Vertical detail and w-(28)
Diagonal detail obtained using the Haar transform
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w-(29) w-(30)

w-(31) w-~(32)
Figure W-H: w-(29) Approximation image of segmented ferrule region of image
shown in Fig, s-(d), w-(30) Horizontal detail image, w-(31) Vertical detail and w-(32)
Diagonal detail obtained using the Haar transform

w-(33) w-(34)

w-(35) w-(36)

Figure W-1: w-(33) Approximation image of segmented ferrule region of one of

the other images, w-(34) Horizontal detail image, w-(35) Vertical detail and w-(36)
Diagonal detail obtained using the Haar transform
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w-(37) w-(38)

w-(39) w-(40)

Figure W-J: w-(37) Approximation image of segmented ferrule region of another

one of the images, w~(38) Horizontal detail image, w~(39) Vertical detail and w-(40)
Diagonal detail obtained using the Haar transform

The three detail images, namely the horizontal, vertical and diagonal images
produced by the wavelet transform, out of the four images are used together to determine
the defects on the surfaces of the ferrule regions. Initially the images produced by the
wavelet transform produce very strong reactions to outer boundary regions demarcated
against the white background (it visible in all the transformed images). This is due to the
sharp contrast in the gray-level values of both the foreground region and the white
background and the wavelets tendency to highlight such changes. As a result the detail
approximations highlight the boundary regions as defects. Calculating a defect based on
the severity as would be determined by a higher gray-level value for a severe defect
would classify most of the boundary-region as defective. Most of the boundary region
gray-level coefficients highlighted in these approximation images lay well over 200 in
value (or whitish in appearance for an 8-bit gray-level image). Majority of the boundary
pixels, in these approximation images, had a gray-level value of 255.

The actual ferrule-region defects also produced good reactions in the transformed
approximations. The more severe the defect the greater in value the gray-level would
appear in the transformed image. A severe defect would have a high gray-level value
accompanied with lower gray-level pixels in its immediate neighborhood.

The findings have been such that in most cases the transformed approximations
did not highlight the defects in unison. In fact, for instance, a defect not picked up in the
horizontal approximation would either be highlighted in the vertical or the diagonal
approximation or both. Same could be the case the other way round. It was a rarity to see
all of the three approximations highlighting a more severe defect simultaneously.
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The approximations, however, highlighted defects individually. A hqﬁzoﬂtal
approximation highlighted its own set of defects as did a vertical approximation or a
diagonal approximation. Together these images would highlight most of the defects
across the domain as a whole.

Here we describe two approaches which we have used to highlight the defects
from these approximations.

First Approach

The first approach deals with the removal of the highlighted boundary region of
the transformed images based on gray-level values. With this possibility the three
approximations other than the approximation detail image are combined to form a single
image with all the defects made prominent. This single image contained all the
pronounced defects from all the three images along with the highlighted boundary region.
The boundary presence caused the presence of pseudo-defects in this new image. This
heavily skewed any result data out of the image analysis that this team was wishing to
work on.

Therefore, image synthesis of detail approximations (horizontal, vertical and
diagonal detail images) was delayed till after the exclusion of the highlighted boundary
regions from these images (the detail images). This was done based on the gray-level
values of the pronounced boundary regions. To minimize any losses gray-levels with a
value of 255 were chosen and removed from the approximation images. Choosing a
single value preserved the surrounding region gray-levels of defects whose values were
close to 255. A range of values was not chosen as it would have eroded most of the

. surrounding lesser-valued gray-level pixels of a defect.

This process greatly removed most of the boundary region pixels from detail
approximation images. It, however, did not completely eradicate all such pixels. The
synthesized new image contained several boundary-region pixels with high gray level
values albeit very small in number. Different wavelet transforms had different number of
defect pixels. Some of the defect pixels accounted for pseudo-defects that were present
due to the boundaries. These defects were always present in all images and had an
average number of pseudo-defect pixels presence in all synthesized images. An average
value, therefore, was calculated to determine the pre-presence of such pixels. To
determine the least possible number of defects an average pixel count was determined
based on five most clean defect-free ferrule image. The acceptable average defect values
for different wavelet transforms was found as under:

Images on which the averages were based are labeled below from Fig C1 to C5.
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Figure C1 Figure C2 Figure C3 Figure C4 Figure C5
Wavelet name | Defects Per Image | Acceptable Standard Maximum
average defect deviation of acceptable no
number defects per of defect

image points
Image C1 - 38
Image C2 - 27

Haar Image C3 - 31 34 8.75 42.75
Image C4 - 26
Image CS - 47
Image C1 - 34
Image C2 - 32

Daubechies Image C3 - 41 38 4.74 42.74
Image C4 - 43
Image C5 - 40
Image C1 - 51
Image C2 - 49

Coiflet* Image C3 — 50 49 2.70 51.70
Image C4 - 52
Image C5 - 45
Image C1-39
Image C2 - 38

Symlet* Image C3 - 42 40 2.58 42.58
Image C4 - 37
Image C5-43

Table 5.1: Results using the first technique. The average acceptable defect number

for its respective wavelet is shown in the third column.

® Values are for horizontal detail only. Image integration in these cases generated too much data for them to be of any
practical use.

Most of these values represent pseudo-defects present because of the boundary-region
pixels.

A ferrule-end with defects found that totaled greater than these values for that
respective transform would be rejected as being too deficient to be acceptable for
packaging and would be turned back for another round of polishing.

Another observation made was that of defect severity based on gray-level values
returned by the transforms in the detail approximations. Using this information a color-
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based synthesized image was given shape to aid in the identification of sever defects.
Gray-level values representing mild defects having values between 120 and 160 were,
given the color blue. Similarly intermediate-type defects with values between 160 and
200 were given the color green and values over 200 till 255 were represented with the
color red that signified a severe defect. These colors were added only to aid the decision
making ability of an individual who would, eventually, determine the products
acceptability as a polished end.

The following image (Fig. 5a) show the detail images of a wavelet transform. The
horizontal, vertical and diagonal detail images are combined to form a synthesized image.
This synthesized image is shown in fig 5b. Fig Sc shows its respective color based image.

Figure 5a: Daubechies 5pproiiiﬁati6n, hbrizontal; verﬁcai and diagonél details
images of the image shown in Fig s-(j).
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Figure 5b: Synthesized image obtained by combining the horizontal, vertical and
diagonal details of images shown in Fig 5a after boundary reduction. Total defect
points in this image are 99.

Figure 5c: Severity-based color image of fig 5-b. Mild defects are blue in color,
defects of intermediate nature are green and sever defects as red. Notice that the
boundary-region pseudo-defects are also visible in red.

Second Approach

The second approach, however, yields better outputs in terms of the number of the
boundary pseudo-defects that appear in an output image. In this approach we proceed
with the usual wavelet transform of a ferrule image and at the same time take another
transform of only the corresponding ferrule boundary areca. With both the transforms
available, the wavelet transformed boundary images are subtracted from the ferrule image
detail images. In other words, the horizontal detail transform of the boundary area is
subtracted from the horizontal detail transform of the ferrule image. Similarly the vertical

Surface Defect Detection in Optical Fiber Using Image Processing 67



Chapter 5 Results

and diagonal detail transforms of the boundary region are subtracted from their respective
ferrule transforms.

Followed by this, and like in the previous approach gray-levels equal to 255
value are removed as are any pixels with values less than 100. The resultant subtracted
detail images are integrated. The results are then displayed. Color codes and schemes
used in the previous approach are kept the same. And as summary are categorized below:

Pixel Color Meaning
5] signifying a sever defect
o signifying an intermediate defect
o signifying a mild defect

Results of the new approach are demonstrated below. Image of the ferrule region shown
is Fig. s-(j) is subjected to the Daubechies transform. The approximation and detail
images of this transform are shown in Fig. 5d.

Approximation Detail Horizontal Detail

Vertical Detail Diagonal Detail

Figure 5d: Daubechies approximation, horizontal, vertical and diagonal detail
images of the image shown in Fig s-(j).
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The integrated image of the horizontal, vertical and diagonal detail using the new
approach is shown in Fig. Se.

Figure Se: Synthesized image obtained by combining the border-subtracted
horizental, vertical and diagonal details of images shown in Fig 5d. Total defect
points in this image are 73.

Figure Sf: Severity-based color image of fig Se. Notice how the boundary pseudo-
defects have diminished in number compared to the integrated color image of the
transform in Fig Sc. The defect pixels have been successfully retained.
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Based on the images labeled C1 to C5 is table 5.2 below. The results are tabulated

in a similar manner and contain the defects figures obtained by applying the second
approach of border-transform subtraction from the main ferrule wavelet transform.

'Wavelet name| Defects Per Image Acceptable Standard Maximum
average defect Deviation of {acceptable no of

number Jdefects per image defect Bgints

Image C1 - 13
Image C2-9
Haar Image C3-10 14 5.37 19.37
Image C4 - 21 _

Image C5 - 19
Image C1 -9
Image C2 - 13
Daubechies Image C3 - 16 14 4.87 18.87
Image C4 - 21
Image C5—10
Image C1 - 29
Image C2 - 28
Coiflet Image C3 - 30 29 5.03 34.03
Image C4 - 35
Image C5 - 21
Image C1 - 27
Image C2 - 23
Symlet Image C3 - 14 26 835 34.35
Image C4 - 37
Image C5 —- 28

Table 5.2: Results obtained using the second technique. The average acceptable
defect number for every respective wavelet is shown in the third column. Notice the
decrease in average acceptable defect count from that of Table 5.1,

Table 5.3 shows some results of defective and clean images taken after the
application of the second approach.

Standard | Max
Image Wavelet Defects Deviation | Allowed Outcome
Haar 58 5.73 19.37 Fail
Daubechies 52 4.87 18.87 Fail
Coiflet 46 5.03 34.03 Fail
Symlet 60 8.35 34.35 Fail
Haar 23 5.73 19.37 Fail
Daubechies 23 4.87 18.87 Fail
Coiflet 46 5.03 34.03 Fail
Symlet 47 8.35 34.35 Fail
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Haar 93 . 5.73 19.37 Fail
Daubechies 73 4.87 18.87 Fail
Coiflet 102 5.03 34.03 Fail
Symiet 89 8.35 34.35 Fail
Haar 19 5.73 19.37 Pass
Daubechies 10 487 18.87 Pass
Coiflet 21 5.03 34.03 Pass
Symlet 28 8.35 34.35 Pass
Haar 10 5.73 19.37 Pass
Daubechies 16 4.87 18.87 Pass
Coiflet 30 5.03 34.03 Pass
Symlet 14 8.35 34.35 Pass

Table 5.3: Results of the chosen technique. Images with defects fail the tests while
the clean images have passed.

5.4 Conclusion

As is visible from figures 5b, 5c, 5¢ and 5f, the techniques applied identify defects
effectively. And the notable difference between the two approaches is the number of
pseudo-defect pixels related to the boundary regions. The results from the two
approaches are summarized in Table 5.3 detailing the degree to which the pseudo-defects
have been reduced with the use of the second approach.

The first approach involved taking the transform of a ferrule region and
combining the detail subbands to get a single image. However, pseudo-defects appeared
in the image because of the boundary. This heavily skewed any result data out of the
image analysis that this team was wishing to work on. It was also noticed that the
boundary pixels in particular had gray-level values well over 200 and as a result were
removed. But pseudo-defects still remained and that too in large numbers.

A second approach involved taking a transform of the boundary pixels separately.
These respective detail subbands of the boundary were subtracted from the detail
subbands of the main ferrule transform. Another interesting aspect to note is that, though
the second approach reduced the number of pseudo-defects significantly, it maintained
the pixels corresponding to actual defects. There was no handicap of the second approach
in terms of effective identification of defects when compared to the first approach.

Another interesting aspect to note is that, though the second approach reduced the
number of pseudo-defects significantly, it maintained the pixels corresponding to actual
defects. There was no handicap of the second approach in terms of effective identification
of defects when compared to the first approach.
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Data from Tables 5.1 and 5.2 is compared and summarized in Table 5.3

Wavelet Name Average acceptable | Average acceptable % change for
defect number using | defect number using technique 2
technique 1 technique 2 (decrease)
Haar 34 14 58.82
Daubechies 38 14 63.16
Coiflet 49 29 40.82
Symlet 40 26 35

Table 5.3: Summary of the results obtained using the first and the second technique.
The average acceptable defect numbers for their respective wavelet transforms are
shown in the second and third columns. The fourth column lists the % change in
terms of pseudo-defects using the two techniques. Notice the significant decrease as
a percentage in the number of pseundo-defects obtained by using the second
approach.

Based on these results we adopted the second technique. The number of boundary
pseudo-defects has significantly been reduced using the second techmique. And this
approach continues to identify defects effectively.

Different wavelets have given different results. Different wavelets work on

images in different ways. Based on information from tables 5.2 and 5.3 we can conclude
that the Daubechies wavelet provides more accurate results. It also takes into account
greater level of detail. But overall from the techniques applied we have seen that all the
wavelets successfully failed the erroneous ends and passed the clean ones.
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Appendix A Types of optical fiber connectors

The schemes that we have used here are done on straight/flat tip ferrule
connectors. There are however other types of connectors available commercially. A
description of these connectors is provided below. These are some of the popular
connectors and there is a whole range of other connectors available from different
manufacturers.

Short name Long form

LC Lucent Connector / Local Connector
ST Straight Tip

SC Subscriber Connector / Standard Connector
FC Ferrule Connector

MT-RJ Mechanical Transfer Registered Jack
FDDI Fiber distributed data interface
Obsolete

NEC D4

Optimate

Biconic

SMA

Deutsch 1000

LC (Lucent/Local Connector)

This interface was developed by Lucent Technologies (hence, Lucent Connector).
LC is a small form factor connector that uses a 1.25 mm ferrule. It is a standard ceramic
ferrule connector, easily terminated with any adhesive. Good performance, highly
favored for singlemode. It uses a push-pull mechanism, similar to the SC, and the
connector body resembles the squarish shape of SC connectors as well. LC connectors
can also be held together in a duplex configuration with a plastic clip.

Figure A-1: An L.C Connector

ST (Straight Tip Connector)

The ST connector was one of the first connector types widely implemented in
fiber optic networking applications. It was developed by AT&T, and for Straight Tip
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connector. The connector stays in place with a “twist-on/twist-off” bayonet-style
mechanism. ST connectors have ferrule sizes or 2.5 mm and can be mixed and matched
to each other using hybrid mating adapters. This makes it convenient to test, since you
can have a set of multimode reference test cables with ST or SC connectors and adapt to
all these connectors. Although extremely popular for many years, the ST connector is
slowly being replaced by smaller, denser connectors. ' '

Figure A-2: a straight tip connector
SC (Subscriber/Standard Connector)

SC connectors use a round 2.5 mm ferrule to hold a single fiber. They use a push-
on/pull-off mating mechanism which is generally easier to use. The connector body of an
SC connector is squarish, and two SC connectors are usually held together with a plastic
clip (this is referred to as a duplex connection). The SC connector was developed in
Japan by NTT (telecommunications company)

Figure A-3: An SC connector

FC (Fiber Connector)

The FC is one of the most common connector types. The FC is the connector of
choice for single-mode, SM & PMF fiber optic components and applications, and in
high-speed fiber optic data transfer links. This very precise, ceramic ferrule connector has
been equipped with an antirotation key that prevents rotational sensitivity and fiber end
face damage. The FC connector is also available in multimode versions.

Figure A-4: A FC connector

MT-RJ (Mechanical Transfer Registered Jack)

The MT-RJ connector closely resembles an RJ-style modular plug, even getting
part of its name from the resemblance. MT-RJ is a duplex connector with both fibers in a
single ferrule. It uses pins for alignment and has male and female versions. The body and
ferrule are normally made from plastic or plastic composite, and lock into place with a
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tab (just like a modular RJ-style plug). MI-RJ are difficult connectors to test, as most test
sets do not allow direct adaptation to the connector.

Figure A-5: a MT-RJ connector
FDDI (Fiber Distributed Data Interface)

FDDI stands for Fiber Distributed Data Interface, and it actually refers to a local
area network standard such as Ethernet or Token Ring and hence FDDI connectors mate
to their specific networks. They are generally used to connect to the equipment from a
wall outlet, but the rest of the network will have ST or SC connectors. Since they both
use 2.5 mm ferrules, they can be mated to SC or ST connectors with adapters. It may be
worthy to note that the FDDI connector is now considered by many to be heading
towards obsolescence if not already out-of-date.

Figure A-6: An FDDI connector

These were some of the more popular connectors and below is a brief description
of some of the popular connectors that were considered revolutionary in their times but
have since become obsolete.

Obsolete Connectors
NEC D4

The NEC D4 was probably the first connector to use ceramic or hybrid
ceramic/stainless steel ferrules. It uses a smaller ferrule than SCs or FCs. It was widely
used in telco networks in the 80s to early 90s and some may still be in use.

Optimate
It was developed by AMP and was popular in the early 80s. It used a conical

plastic ferrule and screw-on nut. It was available for every fiber size including plastic
fiber. Some may still be in use in old military and industrial systems.
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Biconic

f
This connector was developed at Bell Labs. The Biconic was molded from a
glass-filled plastic that was almost as hard as ceramic. Since it was not keyed and could
rotate in the mating adapters, it had an airgap between the ferrules when mated resulting
is sever signal attenuation and hence could not become very popular.

SMA (SubMiniature A)

It was developed by Amphenol and is in use mainly in old military and industrial
systems.

Deutsch 1000
Deutsch 1000 was probably the first commercially successful fiber optic

connector. It was a "pin vise" holding a stripped fiber. This connector was state of the art
in the late 70s for optical fiber systems and has since been rendered obsolete.

The Ferrule

The ferrule is a thin structure (often cylindrical) that actually holds the glass fiber.
It has a hollowed-out center that forms a tight grip on the fiber. Ferrules are usually made
from ceramic, metal, or high-quality plastic, and typically will hold one strand of fiber.
The ferrule also acts as a fiber alignment mechanism. The ferrule is bored through the
center at a diameter that is slightly larger than the diameter of the fiber cladding. The end

of the fiber is located at the end of the ferrule. Diagrams are shown in figures A-11 and
A-12.

-~

\ N fiber

Figure A-11: A typical connector
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terrale of cchnactor A

4N (a0 paAch

Figure A-12: Cross sectional view of connectors
Ferrule tip-end face preparation

When a connector is terminated on the end of a fiber the end face of the fiber will
be shaped.

When one of the standard connectors from the previous section is used the fiber is
placed in a ferrule and is polished. There are several ways of polishing. This determines
the return loss (RL) or back reflection of the connector.

Flat Polish

‘The connector tip will be flat which can be a problem when two fibers are mated
because even the slightest contamination of the connector tip will result in optical loss. A
flat polish of the connector surface will result in a back reflection of about -14.7 dB (4%),
when two connectors are mated the RL will be in the area of -11.7 dB.

PC Polish

The Physical Contact (PC) polish gives a slightly curved connector tip forcing the
fiber ends of mating connector pairs into physical contact with each other The return loss
is around 14.7 dB. This results in back reflections of -30 to -40 dB when mated. The PC
polish is the most popular connector end face polish and used in most applications.

SPC Polish

The Super PC (SPC) polish also called ultra polish (UPC), is the result of
improved polishing processes and verifying measurements. These connectors have a
smoother surface resulting in back reflections of -40 to -55 dB when mated. Unmated the
RL is again 14.7 dB. This polish is used in highspeed, digital fiber optic transmission
systems, for single mode fiber.

APC Polish
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The Angled PC (APC) polish, adds an eight or nine-degree angle to the connector
end face. Back reflections of <-60 dB can routinely be accomplished with this polish.
Other angles are possible but not standard. This polish is not intermatable with the others.

Etching

It is possible to alter the NA of a conventional fiber with the use of an etching
process. With etching one can create a lens at the fiber tip and therefore improve the
coupling parameters of a fiber.

Laser cleaving

Polishing is a time consuming process so to reduce the time needed to produce
connectors manufactures are looking for alternatives. The use of a laser is a very
promising alternative. The laser allows one to create a scratchs and digs free fiber end
face due to the fact that the quartz is vaporized. Also, it is possible to create a cylindrical
lens on the fiber end face and improve the diode-laser fiber coupling efficiency [15].

Different shapes are shown in Fig A-13.

et
L

Flat PC APC

> 7
Etching Laser
Figure A-13: Different end-face preparations

And the tip-ends of the ferrule types are shown in Fig. A-14.
/e’""*-\\ /—\ “
I/ ?\ .,
)
O

\
MM PMF

Figure A-14: Different types of ferrule-tip ends

Surface Defect Detection in Optical Fiber Using Image Processing 78



References

(]

(2]
(3]
(4]

(5]
(6]

(71

(8]
(9]
[10]

(11]

[12]

[13]
[14]

(15]

[16]

R. C. Gonzales and R. E. Woods, Digital Image Processing 2nd edition,
Prentice-Hall, 2002.

J. R. Parker, Practical Computer Vision Using C, John Wiley & Sons, 1993.

http://www.corningcables.com

William Stallings, Data and Computer Communications, 6% Edition, Prentice-
Hall, 2000.

Scott E. Umbaugh, Computer Vision and Image Processing, Prentice-Hall, 1999.

R. Crandall, Projects in Scientific Computation, Springer-Verlag, New York,
1994.

Robi Polikar Wavelet Tutorial
http://users.rowan.edw/~polikar/WAVELETS/WTtutorial html

G. Kaiser, A Friendly Guide to Wavelets, Birkhauser, Boston, 1994.
G. Strang, “Wavelets”, American Scientist, vol. 82, 1992, pp. 250-255.

M. Vetterli and C. Herley, “Wavelets and Filter Banks: Theory and Design,”
IEEE Transactions on Signal Processing, Vol. 40, 1992, pp. 2207-2232.

A. Graps, “An Introduction to Wavelets,” IEEE Computational Science and
Engineering, 1995, vol. 2, num 2, Los Alamitos.

S. Mallat, “A compact Multiresolution Representation: The Wavelet Model,”
Proc. IEEE Computer Society Workshop on Computer Vision, IEEE Computer
Society Press, Washington D.C., 1987, pp. 2-7.

W. Press et al., Numerical Recipes in Fortran, Cambridge University Press, 1992.
H. M. Elbehiery, A. A. Hefnawy and M. T. Elewa, “Visual Inspection for Fired
Ceramic Tile’s Surface Defects using Wavelet Analysis,” IEEE Trans., ICENCO,
Cairo University, Cairo, Egypt, December 2004.

1. P. Stroobach, IPSE Ingenieursbureau., Eindhoven, 2005 IPSE uitgave.

G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge
Press, 1996.



...

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

{23]

P. I. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image
Code,” IEEE Trans. Commun., no. 4, 1983.

Jr. R. W. Tucker, S. W. Kercel and V. K. Varma, “Characterization of Gas
Pipeline Flaws using Wavelet Analysis,” 6% Int’l conf on Quality Control by
Artificial Vision, Proceedings of the SPIE, 2003.

H. Elbehiery, A. Hefnawy and M. Elews, “Surface Defects Detection for Ceramic
Tiles using Image Processing and Morphological Techniques,” Trans. On
Engineering, Computing and Technology, Enformatica, 2005.

P. Meinlschmidt, “Thermographic detection of defects in wood and wood-based
materials,” 14% Int’l symposium on nondestructive testing of wood, Hannover,
2005. :

Applications Engineering Note, Multimode Optical Fiber Connectors with
Polymer Ferrules, revision 3, AEN 73, Oct. 2002.

D. A. Karras, S. A. Karkanis, D. K. Lakovidis, D. E. Maoulis, B. G. Mertzios,
“Improved Defect Detection in Manufacturing using Novel Multidimensional
Wavelet Feature Extraction Involving Vector Quantization and PCA Techniques,”
8% Panhellenic Conf. on Information, 2001.

P. F. Odgaard and M. V. Wicherhauser, “Discrimination between different kind of

surface defects on compact discs,” Accepted by proceedings of IECON, Busan,
2004.

Serdaroglu, A., A. Ertuzun, and A. Ercil, “Defect detection in textile fabric
images using wavelet transforms and independent component analysis,” Pattern
Recognition and Image Understanding: New Technologies, PRIA-7-2004, Oct.
18-23, 2004, St. Petersburg, Russia.

P. F. Odgaard, J. Stoustrup and M. V. Wickerhauser, “Wavelet Packet Based
Detection Of Surface Faults On Compact Discs,” 6* (IFAC) Symposium on Fault

Detection, supervision and Safety of Technical Processes, 30 Aug. 2006, pp.
1165-1170, Beijing, China.



Optical Fiber Connector Surface Defect Detection Using Wavelets

Atique Rchman*t, Waheed Bin Mozaffar*H
*International Islamic University, Islamabad
tatique. rehman@gmail.com, Ywaheed. bin. mozaffar@gmail.com

Abstract

In this paper, a wavelet-based surface defect
detection of optical fiber ferrules is proposed. Surface
defects on optical fiber connectors can be damaging to
passing signals when coupled with other connectors.
Our quality control enhancement work is a visual
control stage, using magnified images, whereby
morphological operations segment the image and
wavelet transforins then detect defects on optical fiber
connector surfaces to improve the overall acceptability
of the manufactured components.

1. Introduction .

Optical fiber connector surfaces bave received very
little attention in terms of defects that can and do
appear over them due to inandatory undergoing of a
process called polishing. Optical fiber itself bas gone
through a continuing evolution of several decades now
but, without splices and coanectors would not be of
much practical use. Much like any other
communication media, optical fibers have to be cut and
connected to other optical fiber ends. This introduces
the role of the connector.

The connector has an alignment mechanism, which
also mounts the fiber, in a long, thin cylindrical shape,
called the ferrule. The ferrule of the connector (with
the fiber housed) is then polished using specialized
equipment to achieve a good optical finish. This
processing of the end-face is one of the most important
steps in the process of preparing a connector for
coupling. It will determine the ferrule-end geometry
and will set the characteristics of the connector like
return loss performance, physical contact, dome radius,
dome offset, fiber protrusion or undercut and angle 5].
Diagram of a typical connector and its ferrule part is
shown in Fig 1.

1-4244-12486-3/07/$25.00 ©2007 IEEE

Ferrule

Figurc 1. A typicalsinglemode flat ST
(straight tip) connector.

Incorrect polishing will result in lips and hackles,
blobs and scratches and other forms of defects on the
surface-tip of the ferrule. Fiber cores inside the
connectors are coupled very precisely to other
connecting fibers to minimize attepuation as light
propagates betwecen the cores of (wo separate
connectors. It is important to note that fiber cables
transmit pulses of light instead of electrical signals, so
the tcrminations must be more precise. Instead of
allowing metal pins to make metal-to-metal contact,
fiber optic connectors must align microscopic glass
fibers perfectly. Attenuation of a coupled connector
pair is directly related to the polish, contact area and
alignment of the cores. Hence, these defects are
detrimental to the signal that passes through the
coupled pair [1]{4][5]. A polished multimode ferrule
end is shown in Fig 2.

Figure 2. Polished multimode ferrule end
with large central core.
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These ferrule ends are very miniscule and, for them
to be of any use in terms of defect detection, requirc
magnification of the scale beyond the capabilities of
the human eye. Specialized cquipment captures and
magnifies images of the ferrule-end to a size that is
easily discernable by human beings. These images can
then be fed to visual systems for desired processing.

Thercfore, in this paper, we aim to create a visual
system that is capable of detecting defects on the
connectors’ ferrule surface, once the ferrule region has
been segmented from the main image.

Moreover, the presented inspection procedures have
been implemented and tested on a number of
connectors using real and mock defects. Examining
such tasks can of course be uninteresting, skewed and
expensive, but it is based on the unparalleled
recognition abilities of the human brain. However, with
the use of automated systems, production and quality
control teams can specify the test criteria and quality
management teams may then decide which connector
ends to filter out and ones which to keep. One of its
advantages is that the automated systems are flexible in
regard to production changes and testing criteria. That
makes them simple to opecrate and give a good
overview. By looking at the results, we found them
highly suitable for providing a rapid feedback in the
production process.

This paper has two major sections that follow this
introduction; sections 3 and 4. Section 3 discusses
image segmentation using morphological techniques
and section 4 discusses use of the wavelet transform to
detect defects on the surfaces of these connectors.

2. Image acquisition

Images have been acquired using specialized
camcras uscd in industrial quality control departments.
Image acquisition of these connector surfaces is
unfazed by gloss-related problems that may appear due
to polishing or glazing operations that hamper the
accurate detection of surface defccts of certain items in
the industry {3]. The captured images are converted to
grayscale and binary forms to be suitable for use with
various algorithms that are uscd to segment arcas of
interest in such images. There are other such similar
tools that may be used to acquire thesc images {5).

3. Image segmentation

The flowchart of the ferrule region extraction is
shown in Fig 3. The images in question have a special
range of colors, distinctive from most other natural
mages (Fig. 4a) Their contrasting colors give the
images two very distinct segments — the foreground
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and the background. The foreground consists of the
circular ferrule, which is grayish and darker in color
and also contains the central core (fiber) The
background, which is relatively much lighter in color,
is part of the polishing machine and holds the
connector tip in place during the actual polishing.
Because the image contains such distinctive segments,
it also has very pronounced edges (sce Fig 4b.)

Grayscale non-segmented
ferrule image

|

L " Image Enhancement l

¥

l Edge Detection 1

E

Binarization

Y
[ Region Extraction l
L Post Processing I

Figure 3. Image segmentation flowchart.

However, before the image is segmented, we apply
a spatial image enhancement filter. We tried several
filters but the best results were obtained when we
applicd the spatial high-boost filter to enhance this
image as is also described in [1].

The image was then passed through an edge
detection algorithm to highlight the edges of the
segments with a kernel size of 3x3.

The  edge-detcction  algorithm  successfully
highlights the desired boundary-area of the ferrule, as
can be seen in Fig. 4b.

(a) ()]

Figure 4. (a) Connector ferrule with central core
and light colored background; and (b) The ferrules
pronounced edges after convolving with an edge-

detector
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The shape of the ferrule rcgio\; is unique and

consistent. Therefore, the outline of the ferrule region

can therefore be approximated by a circle and

" auributes agsociated with circles can be used to obtain

useful information about the circular region. Onee the
edges are detected, machine vision techniques are used
to convert the image to a bi-level form from grayscale,
using a threshold value calculated using the iterative
method.

The idea here is to provide an estimate of the
average grey level of both, the background (Tb) and
the objects (To), and 1o use the average of these two
levels as the threshold: T=(To+Tb)/2. Because the
properiies of the image are known (darker foreground
and lighter background), initial values chosen are
To=0, and Tb=255.

Once the bi-level image is obtained, the area of the
region inside the circular region is calculated using the
technique, as mentioned in [2). The center of mass Cis
also calcutated as (Cr, Cc), where Cr is the center row
and Cc is the center column of the circular object. Cr
and Ce can be computed as:

NR ANC
Z X F(rowcol).row
Row=i Col=t ’

= 1
Cr arca (F) )

NR NC
Y. X F(rowcoD.co
Ce = Row=1 Col=i

2
area (F) @

(where area (F) is the number of pixels of the object.
NR and NC are the Number or Rows and Number of
Columns of the object, respectively.)

The unique property of the central core (being very
small in area) is that it is also the very center of the
ferrule region that encloses it. This information is used

in conjunclion with the center of mass value to.

establish the central point of the circular region (which
15 also aided by the fact that the core is much lighter in
color than the ferrule region that encloses it). A seed
pixel is chosen that is- then grown outwards,
recursively, towards the boundary from the center.
Ouce the central circular region is fully grown, it is
able to provide a form of template that is then used to
extract the circular region from the main umage (Fig.
5b).
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(a) ) (9
Figure 5. (a) Blnary image obtained based on
an iterative threshold; (b) template that has been
grown; and (c) ferrule obtained basad on the
grown template.

Other segments that appear in the background area
arc higblighted and removed from the image on the
basis of their overall area (see Fig. 5b).

Based on the template that has just been grown, the
ferrule segment of the image is successfully obtained.
Fig. 5c shows a successfully segimented ferrule region.

Fig. 6 shows somec more resulis obtained by
applying our technique.

(L ®) ©)

(] {c) Q]

Figure 6. Ferrule tips of varying size with
respective segmentad ferrule reglons (a-d,b-e,c-f)

4, Defect detection based on wavelet
cocfficients

Wavelets are mathematical functions that cut up
data into different frequency composents, and then
study each component with a resolution matched to its
scale. They have advantages over traditional Fourier
methods in analyzing physical situations where the
signal contains discontinuities and sharp spikes [3].

It is possible to find the surface faults from the
disturbances in time and/or frequencies only, but the
wavelet transform provides added benefits that elude
one or the other domains. 1t might be useful to use a
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i similar data, i.e.,
{ original data manifest themselves as small or zero
§ elements in the wavelet transformed version. Therefore
{ an imegularity in the image will have a more

S

joint time and frequency method [10]. Here we use
: different wavelet transforms to identify the surface
!faults from the other features of the ferrule, and,
thereby, detect the surface defects.

Unlike Fourier transform, whose basis functions are
1smusoxds, wavelet transforms are based on small
waves called wavelets of varying frequency and
limited duration. Wavelets take advantage of the image
pyramid, which is a conceptually simple structure
| representing an image at more than one resolution, and
the multiresolution theory (Mallat {1987]). The appeal
; of such an approach is obvious — features that might go
undetected at one resolution may be easy to spot at
another. At every level, the image is down sampled and
decomposed. Optimal decomposition is eventually
determined by the Heisenberg Uncertainty Principle
[14].

Wavelet transform, in our method, is used for a
more obvious reason — little impulsive reaction to
the regions of little variation in the

[

pronounced effect in the outcome of the wavelet

i transform.

Use of Wavelet Packets

The decomposition of a signal can be done via the
conventional method of wavelet transform and is called
as pyramid structured wavelet transform {8]. Each time

T the low frequency band is split, the other bands are not

used. This is suitable for signals with most of their
energy concentrated in the low frequency regions.
However, for some signals, energy is concentrated at
the middle frequencies. In this case, we have to split all
the bands. This is called as wavelet packet
decomposition [9].

The wavelet bases constructed by Haar, Daubechies

i became the foundation for one of the most popular

techniques for signal analysis and representation in a

; wide range of applications [3]. We applied two kinds

of wavelet decomposition types (Haar and Daubechies)

1 on different connectors to identify the defects on the

surface of the polished ferrule, with the eventual aim of
identifying defects on thc surfaces using wavelet
transforms.

Before we analyze the results of the wavelets that

we used, a brief description of wavelets is provided
below.

A. The Continwous Wavelet Transform

The continuous wavelet transform (CWT) is defined.

as the sum over all time of the signal, multiplied by
scaled, shified versions of the wavelet function y:

CO(scale, position) = [f{t)w(scale position,t)dt 3
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The results of the CWT are many wavelet
coefficients CO, which are a function of scale and
position. Multiplying each coefficient by the
appropriately scaled and shifted wavelet yields the
constituent wavelets of the original signal [6]. Wavelet
analysis for the signals to different scales and positions
is shown in Fig 7.

If the signal is a function of a continuous variable
and a transform that is a function of two continuous
variables is desired, then the continuous wavelet
transform (CWT) can be defined by (equation 4):

:‘ . 'A':h\fd +
L >
: Tnm‘mn ‘l‘—

sigml cmmma&mmmmpmm

Figure 7. Wavelet analysis for signals

F(a,b) = [fo((-a)/b) G

With an inverse transform of,

f(t) = [[F(a,b)er ((t-a)/b)dadb (5
Where (1) is the basic wavelet and (a, b belong 10
R) are real continuous variables.

B. Discrete Wavelet Transform Algorithms

An awful lot of data is generated and quite a fair
amount of work is required if wavelet coefficients are
to be calculated at every possible scale. (What if we
choose only a subset of scales and positions at which to
make our calculations?) It turns out, rather remarkably,
that if we choose scales and positions based on powers
of two, so called dyadic scales and positions, then our
analysis will be much more efficient and just as
accurate. We obtain such decomposition from the
discrete wavelet transform (DWT) [7]. Decomposition
is usually large enough to provide enough
discrimination power but not so large as to make the
computation time prohibitively large.

Given a signal s of length N, the DWT consists of
log,N stages at most. Starting from s, the first-step
produces two sets of coefficients: approximation
coefficients CcA,, and detail coefficients ch. These

vectors arc obtained by convolving s with the low-pass
fitter Lo_D for approximation, and with the high-pass
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filier Hi_D for detail, tollowed by dyadie decimation.
This is shown in Fig 8. ’

Low pass filter Dow pl Approxinuti
F Coefficients
LoD | 42 > cA
3 Domnmp'ic

no [ {2} o,

High pass filler Detail

Coeflicients
Convalve with filter x
! IZ I Keep tven indexed elements

Where:

Figure 8. General slgorithm for discrete wavelet .

transforms

The next step splits the approximation coefficients
¢A, in Iwo parts using the same scheme, replacing s by

¢A, and producing cA, and ¢D,, and so on. Therefore,
the wavelet decomposition of the signal s analyzed at
level j has the following structure: [cA,. cDj. - €D}
(Fig. 9). This way the structure will also contain
terminal nodes in the form of a tree {6][[ 13{12].

The Decomposition Step
Le D ]-—-b{ LZ ]——P Ay
HiD | 42 > D,

level f+1
Where: Convolve with X
l II ‘ Downsample

o/

Figure 9. One dimsnsional DWT

C. Fast Wavelet Transform (FWT)

In 1988, Mallat produced a fast wavelet
decomposition and reconstruction  algorithm. The
Mallat algorithin for discrete wavelet transform is, in
fact, a classical scheme in the signal processing
cotununity, known as o two-channel sub-band coder
using conjugate quadrature filters or quadrature mirror
filters (QMF). The decomposition algorithin starts with
signal s, next calculates the coordinates of A, and D,
and then those of A, and D, and so on. The

reconstruction algorithm, called the inverse discrete

1-4244-1246-3/07/$25.00 ©2007 IEEE

wavelet transform (IDWT), starts from the coordinates
of A, and 1, next calculates the courdinates of A,

and then, using the coordinates of A, end D, .,
calculates those of A, ., and so on [13].

53

()

Figurs 10. (a) Approximation image of the
ferruie part shown in Fig, 6f, (b) Horlzontal detall
imagse, (c) Vertical detaii and (d) Diagonal detall

obtained using the Haar transform

)

Figure 11. (a) Approximation image of the
ferrule part shown in Fig. 6f, (b) Horizontal detall
image, (¢) Vertical detaii and (d) Diagonal detall
obtained using the Daubechies 4-tap transform

) )

Figure 12. (8) Approximation image of the
ferrule part shown in Fig. 6e (b) Horizontal detall
image, (c) Vertical detail and (d) Diagonal detail

obtalned using the Haar transform
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Figure 13. (a) Approximation image of the
ferrule part shown in Fig. e, (b) Horizontal detail
image, (c) Vertical detail and (d) Diagonal detail
obtained using the Daubechles 4-tap transform

5. Results

We applied the Haar and Daubechics wavelets 1o
our sepmented images using Matlab. Both effectively
idemtified the defects with the Daubechies giving the
better of the two results. However, there is one thing to
note. Although the results obtained identified the
detects premty successfully, outer boundary areas of the
terrule region also produced sharp discontinuities in
the transformed version. Since these arc farthest from
the central core, they may be eliminated based on their
radius value froin the center of the ferrule,

Figures 10 through 13 show some results. Fig. 10

and Fig. 12 show the coefTicients obtained using the -

Haar wavelet tunstorm. wiile Fig. 11 and Fig. 13 do
the same for the Davbechies transform.

The resuhis of this project have basically been
achieved with some major simplifications compared to
the solutions that might be required for a commercial
product. An automated system’s main advaniage,
compared with a2 manual system, is in its ability to
speed up the testing process.

We used our techniques on 12 images with different
defects. Some of the images were Without the central
core. Some were plain und flawless. We found that
different types of wavelets provided diflerent results.
11 our scenario the Daubechies filters provided the best
results. Detail coeflicients of Fig. 10 and Fig. 12
{hotizontal, vertical and diagonal details) were
calculated using the Haar wavelets, Similarly detail
coefficients of Fig. 11 and Fig. 13 were calculated
using the Daubechies 4-tap wavelets. The latter have

provided better results and have 1o quite a good extent

been able to identity the defects. Image analysis was
done using the Matlab softwave (version 7).
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