






























































































Deformablc Modcl md Distancc Transform

In our proposed rule based pnrning there are four nrlesRr.,Rz, E, and .R. rvhich are defined on the

features of nodule candidates such as Diameter(D , Area(/), Volume(D, Elongatiou(I) atrd

Cirorlarity(D- To separate nodules candidates froru uon-nodule candidates each feature must be

compared with a mirimu.u and maximum value of threshol.d. Here we represeut, ro(*t) .f'"'

*d rr(*'^) as minimum thresholds for area, diameter and volume respectively- Similarly T:^*1

, ,ot**' and fr(**) represents the maximum threshold values of atea, die-eter and volume of

nodule candidates respectively- If an object has less value of its dir*eter, volume or area from

the threshold l.alue than it is not a nodule candidate and if its dirttteter, volume or area value is

maximurn than the threshold r.'alue. than it is considered as non-nodule candidate.

s

Pruzing Rules:

Rule Rr:

Diameter (i') * rj*'"]

RuIe R::

Volume (f), T,(**i or Overlapped (I,

Rule Rs:

Diameter (D =rj-"*)

Rule Rr:

Circtlarity (4 =.^&*.**"* Area(f > ro(*i")

I{,)> To or (Elongation A)>T,and llolume (l), T:^'") )

and Area(| < ro(-o.')

candidates from the non-noduleOn the basis of all above four rules rve rvill separate nodule

candidates. Here is the algorithm of our mle based pnrning.

685-FBAS/MSCS/F12





Hybrid Approadr for Lungs Nodule Detectionusing Deformable Model md Distance Transform

Algorithm for Rule based pruning for separation of nodule candidates from non-nodules

L. functionPruning(-tf$ )Remove vessels and noise fiodulc
Fusionffi)

:. for each:\Fe-trIfr's do

z r\rC+ f ) Nodule Candidates

{ FS <- # * l'essels

-; if Diameter($ * fjo*nl ,h*
6. coutinue * Noise

?^ end if
c if lhlu:r ({) 

= 4l*') or Overlapped (J, Fg) > f0

95 {Elo4gu i ian tl r> h od [ro lwme,4/, Ir]*n) ) then

s. f/S F*H u {ll ) Vessels

10" continut

tt. tud if
L: if Diameter {,1} Ij*4 ttren

t:. rontinue ) Noise

t*" eud if
1i, if CirculariB'(f) > &

.ggd.Area{{ =4*"' and tuea(fl < rj*at}rtn

16" -\lC +rYCu {i} ) Noftrle Candidates

t:. rud if
ts" end for

Lg returulfC

t,t end function
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Chapter 5

Results and Discussion

686-FBAS/MSCS/F12





{

Hybrid Approach for Lungs Nodule Detectionusing Deformable Model ard Distance Transform

Results and Discussion

In this area, we introduce the usage points of interest and various trial results at each substage of

the proposed CAD framework. To start with, we display how to assemble the lung CT database

and to decide its ground truth and hit criteria. Next, we examine the usage subtle elements and

execution of the lung volume division strategy and the identification of nodule candidates.

5.1 Data Collection and Detection Criteria:

The execution of the proposed CAD framework is assessed utilizing the LIDC database 12,l5), a

freely accessible database from the National Biomedical Imaging Archive (NBIA), and its

nodules have been completely clarified by various radiologists. In this database, four master mid-

section radiologists drew plots for nodules having viable sizes of 3 mm or more noteworthy. The

ground truth was then settled by a visually impaired perusing and a resulting un-blinded

perusing. The LIDC database comprises of 84 CT examines, however just 58 CT checks contain

nodules. In the nodules containing CT filters, we arbitrarily gathered 32 CT examines with a

specific end goal to assess the proposed framework. All commented nodules divisions were

utilized as a part of the assessment of the proposed strategy. The covered manual nodules

divisions from four distinct radiologists were converged to a solitary nodule division. Therefore,

this dataset comprised of 76 nodules and 5453 slices, and the nodule sizes across went from 3

mm to 30 mm.

The nodule candidates were delegated nodules or non-nodules in view of annotation gave by the

mid-section radiologists. Amid the assessment, each recognized knob hopeful was resolved to be

a knob if its separation to any knob in the database was littler than 1.5 times the span of that

knob, or if its range was more noteworthy than 0.8 times or littler than 1.5 times the sweep of the

objective knob. We indicate this arrangement as a hit. We additionally took into consideration a

'close hit'by utilizing these 0.8 and 1.5 components, which were acquired by trials. On the off

chance that a hit on a recognized knob hopeful was delivered, it was considered a TP; else, it was

viewed as a FP.

5.2 Lungs Segmentation:
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First of all we segmented lung volume based on linear interpolation. First of all we convert all

voxels into 3D Cartesian coordinate grid with uniform 3D spatial resolution to remove the

possible occrrrences of error due to anisotropic representations of grids. According to our

consideration the spatial resolution along the axial direction in CT examination is normally

different from the spatial resolution within each slice that's why we perform a linear

interpolation along the axial direction. Interpolated slice is computed between all paired

neighboring slices. After applying of linear interpolation size of each voxel is cubic. After this

we have to find lungs parenchymal volume for this purpose we used a two steps algorithm; l)
Inclusion process and 2) Connectivity analysis. In inclusion process we used 3G region growing

algorithm and find Volume of interest (VOD after it we perform a connectivity analysis process

to include image intemal nodule, vessels and air walls. For this purpose a dilation process called

connectivity analysis is applied to on lung image. To make volume of interest more accurate this

connectivity analysis is applied. Details of Inclusion process and Connectivity analysis is

described in Proposed Methodolory Section. Figure 4 represents different images of each stage.

Inclusion Processlnput Image Segmented Image
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5.3 Region of interest Extraction:

After segmentation multiple optimal thresholding applied to extract region of interest(RoD. In

earlier technique Wook jin et al [80] extracted ROI by giving five static threshold values which

are not optimized. In our work we applied ROI algorithm to extract region of interest. Detailed

algorithm is described Proposed Methodology Section. Resulted images of ROI are given below:
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v

5.4 Nodule Detection

Deformable Model:

We planned.afocalized strategy for the development of the deformable model from a starting

state in which the vertices are laid out on a vast measured box (this crate can contain ROI sizes

up to 50 mm). From this sort of starting condition the model is will completely expected to
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merge towards the nonexclusive ROI shapes by a constriction. The technique we created has the

accompanying properties :

lor*' compuutioaal arultifaceted natrue;

Easiness of enenrtioa;

Excellent executiou if the introduction of the model is arost cenainly;

The steps of the algorirhm are the following:

the value of the enrrgl, fimctioual EJttcnonar (fl is initializrd n'ith the euergl' l'alue

calculated at the fift r'ertex ti:l, . . . ,]I) of the iuttial sphere nresh;

fp6 each vRrtEsL &e algorithm evaluates the mergy functional for the v€f,ten itself and for

its *ight (first-order) ueighbors belouging to the sanre slice (the gaeric l'€rtex is allou,ed

to mol'e ouly xithin its oua Elic$- The new vef,tsx locatiou is zubsequently chosen as the

Ie*qser etrergl' l'ertex amoug these nine possibilities. The iteratiou process finishes rl'heu a

full ca'cle euergJr aualysis of all the N vetices is completed;

iJ a vertex remains statiouary for trv'o zuccessive iteratiou steps, it *ill be a*ificially

shifted by an applied 'jolt"; the procedue correqpouds to the broadening of the

urighborhood ufiere the merry functional gets estimated to zuccessive orders of

neigbbors. For the ener*' analysis, these uew' locations are choseu along the ditctiou

torvards the geoureuir cdnt€f, of the modeJ:

if the €uEf,g5, fuuctioual of N poiuts resrlting frou Eq. (2) is less than the energy

fiucrioual estimatcd at the prev.ious itsatiou step, then the procedrue retuns to the step

item (2), othmr-ise the miuimization process ends.

Distance Transform:

The 3D distance transform also known as separation change 122] is computed in each of the

structures portioned in the past stage, beginning with worth one, in all voxels of the edge, and is

augmented as we move towards the inward voxels, until there is maybe a couple voxels left at

the same separation from the edge. At the end of the day, voxels of a same layer have the same

quality for the separation change. The computation closes when we achieve the most internal

a

a
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layer. Tubular and prolonged structures have consistent estimations of the separation change

with little interims along their more prominent length.

Following the distance transform is computed as for the edge of the structure, the estimations of
most extreme grouping of voxels are in the focal point of the few structures found in the

bronchial and vascular trees. These focuses are conceivable lung knobs. Thus, the nearby

maximums are found along all structures of the bronchial and vascular trees and utilized as seeds

as a part of the procedure of knob identification through 3D district developing. In any case,

contingent upon the geometry of the fragmented structures, neighborhood maximums can show

up in conglom-erates and, for this situation, they are dealt with as a solitary nearby greatest,

however every one of them are seeds of the district developing calculation. The division of lung

knobs from vessels, bronchi, and so forth., is finished by investigating the element of tube

shaped state ofvessels and bronchi. They have a steady esteem along their length, and a basic 3D

district developing is equipped for confining a knob from structures joining with it.

Nodule Fusion:

At last nodule detected by deformable model and nodules detected by distance transform method

are combined together.

5.5 False positive reduction using rule based pruning:

Nodule candidate detected at the pervious stage may include some non-nodule candidates, so to

remove those candidates and to ensure accuracy of our detected rules here we perform rule based

pruning. In other words to reduce false positives we perform rule based pruning.

In our proposed we used Wook Jin et al [80] rule based pruning there are four rulesRr,Rz, R3

and R* which are defined on the features of nodule candidates such as Diameter(l) , Area(l),

Volume(l), Elongation(l) and Circularity(l). To separate nodules candidates from non-nodule

candidates each feature must be compared with a minimum and maximum value of threshold.

Here representations are as follows: T"(-'n ' ,tjn,'n' and TJmin) as minimum thresholds for area,

diameter and volume respectively. Similarly T"(max) , Tj-"*) and rJ-"*) ."pr.r"nts the

maximum threshold values of area, diameter and volume of nodule candidates respectively. If an

object has less value of its diameter, volume or area from the threshold value than it is not a
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nodule candidate and if its diameter, volume or area value is maximum than the threshold value,

Rule Rr:

Diameter (l^; * rj*'")

Rule R::

!'olume (D , r,l*"] or Overlapped (1 HD > To or (Elongation (t)>7, and Volwne fJ= To(*tni )

Rule R3:

Diameter (I) =rj*'*i

Rule Rr:

Cirorlarity (D =f€*g*g Area(S > Fo(*i") and Area(I) * ,.t-'*'.

On the basis of all above four mles s'e *"ill separate aodule candidates from the non-nodule

candidates. Here is the algorithm of ournrle based pnrniag-

Algorithm for Rule based pruning for separation of nodule candidates from non-nodules

Eot

r. fuurtiou Pruniug (IFs) *Reorove vessels atd noise {Nodule
Fusionffi))

a for each -IF e:\Fs do

3- .\lC*- @ * Nodule Candidates

1. Ir'S *- d g Vessels

s. if Diameter(4 < {*t"'**o
{. conlinue ) Noise

1- end if
s. if Volu&e (0 t 4(*"*) or Or-rrlapped {I, tS} > Io

g:-(Etongariaa {l)>Land Volwne (U> rj^;"t ) then
+. l''S *- ,ffi u {l} ) Vesse$
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10.

11.

I:.

1;.

14,

15.

I6.

17.

1&.

19.

:s.

GOIItilrUE
elrd u
if Diarneter (Ii = 2^o(**'
conthrle
GlId if

rherrl
-) Noise

if Circtrls{ity (O > {n
gg4 Area(S = ?**to I and Area(rJ * {^*}ruen
-Ug +-:VCu {/} + Nodule Candidates
end if
snd for
returrr FIC
errd fuuctiou

€

5.6 Classified Nodules:

Patient 1:

Patient 2:

Patient 3:

Patient 4:
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'.E

Patient 5:

Patient 7:
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5.7 Comparison with other works:

5.8 Critical analysis:

In Wook Jin et al [80] proposed technique they focused on all three main types of nodules i.e.

,isolated nodules, juxtaplueral and juxtavescular nodules but due to complex structure of

juxtavescular larger and non-solid nodules were not detected. We implement Wook Jin et al [80]

technique and found that in thirteen images larger juxtavescular nodules were not detected in

Wook Jin et al [80]. All these types of larger juxtavescular nodules and non-solid nodules were

detected. In our work for larger juxtavescular nodules we used distance transform technique to

,detect 
larger juxtavescular nodules which were not detected in earlier techniques. Some example

of those nodules is given below:

Wook Jin et al[80]:

r,l:

5.45
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Proposed Technique:

Segmentations ROI

Detected Nodules

rE.
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Chapter 6

Conclusion and Future
Work

J-

Conclusion and future work
., 
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To detect nodule candidate from lungs without using a CAD system is a harder task for human

beings so we developed this CAD scheme to help radiologist to detect lungs nodule and increase

survival rate of lugs cancer's patients. In this CAD scheme firstly we segment the lungs by using

Linear Interpolation and Lung Parenchymal Volume Identification then after it Region of

Interest is extracted using multiple optimal thresholding then deformable model and distance

transform applied to detect nodule candidates. False positives in our CAD scheme is 4.85 with

high sensitivity level which is 95.2%. This CAD scheme is very helpful for radiologist and it is

tested on LIDC databases.

In our work although we detected all kinds of nodules like isolated, juxtavescular and

juxtaplueral nodules this work also required a second interpretation task which differentiate

between benign and malignant lesions. Our work will help to categorize benign and malignant

because all types of nodules are detected in this process the only task is remaining to categorize

nodules in two different categories i.e. malignant and benign.

.{
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