M_

Diction Identifier 9.

iy
dos, No. IFH-S).{._.ff/

Developed By

Fouzia Latif
Farheen Hanif

Supervised By
Dr. M. Sikandar Hayat Khiyal

Department of Computer Science
Faculty of Applied Sciences
International Islamic University
[slamabad
2006

In
The
Name
of
ALLAH
The Most Merciful
The Most Beneficial

A
Dissertation
Submitted as Partial Fulfillment
of Requirements for the Award of the Degree of
MS in Computer Science

Diction Identifier

Dedication

DEDICATION

To
The Holiest man Ever Born,
Prophet Muhammad (Peace Be Upon Him)
&
Our Dear Parents
Who are an embodimeny of diligence and honesty,
Without their prayers and support
This Dream could has never come true
&
Our
Precious Friendship that has made us
laugh, held us when we cried and always, always, always
be among us

LIECLtUr Lidassrs

Diction Identifier

DECLARTAION

We hereby declare that this software neither as a whole nor as a part has been copied out
from any source. It is further declared that we have developed this software and
accompanied thesis on the basis of our personal efforts, under the sincere guidance of our
supervisor Dr. M. Sikandar Hayat Khiyal. If any part of this system is proved to be
copied out from any source or found to be reproduction of someone else, we shall stand

for the consequences.

Fouzia Latf
218 -CS/MS/04

Farheen Hanif
215-CS/MS/04

Diction {dentifier Acknowledgement

ACKNOWLEDGEMENT

Countless gratitude to the Almighty Allah, who is Omnipotent and He, who blesses us
with the ability to read and write. He blessed us with a chance and choice, health and

courage to achieve this goal.

Without the support and prayers of our families we could have never completed this
project work. They always helped us in our times and boosted our morals. We would like
to pay then the very special thanks for their best wishes, encouragement and support in
not only this project but throughout our lives without that we would have not been able to

achieve anything worthwhile.

We would like to pay special thanks to our supervisor Dr. M. Sikandar Hayat Khiyal,
Head, Department of Computer Science, International Islamic University, Islamabad

without his proper guidance we could never made this project a reality.
We also owe a great thanks to our dear brother Kashif Iftikhar who extended his help

whatsoever we needed.

Fouzia Latif
218 -CS/MS/04

Farheen Hanif
215-CS/MS/04

i

Final Approval

Diction Identifier

Department of Computer Sciences
International Islamic University, Islamabad

Poled:2P-5-20v6

Date:
Final Approval

It is certified that we have read the thesis submitted by Fouzia Latif (Reg # 218-
CS/MS/04) and Farheen Hanif (Reg # 215-CS/MS/04) and it is our judgment that this
thesis is of sufficient standard to warrant its acceptance by the International Islamic
University, Islamabad for the MS Degree in Computer Science.

Committee;

External Examiner SW_—-———/
I

Mr. Shaftab Ahmed

Engineer coordinator
Homse Ng. 460,-Sfre . 68
G-p72, al

Bangia omNIvERNITY

Internal Examiner /ﬁ/
Mt

Mr. Asim Munir)
Faculty Member ~
Department of Computer Science

1IUI

n
Supervisor | @\w})‘-/ﬁf__

Dr. M. Sikandar Hayat Khiyal .
Head, Department of Computer Science E
International Islamic University,

Islamabad

i

Project In Brief

Diction Identifier

PROJECT TITLE

UNDERTAKEN BY

SUPERVISED BY

STARTED ON

COMPLETED ON

TOOLS

PROJECT IN BRIEF

Diction identifier
: Fouzia Latif Reg# 218 -CS/MS/04

Farheen Hanif Reg# 215 -CS/MS/04

Dr. M. Sikandar Hayat Khiyal

Head, Department of Computer Science,
International Islamic University
Islamabad

September 2005
: May 27, 2006

Python (Wing IDE 2.0 professional)
PHP

HTML

Linux 2.4 (Slackware 10.2})

Apache Web Server

iv

Diction Identifier Abstract

ABSTRACT

The purpose of the described research is to develop a fast and accurate language detection
system that is able to detect languages belonging to different scripts. The system is
broadly divided into two general steps (Training & Identification). Two different
techniques are used for language identification both having their pros and cons.

The system is meant to be integrated into many bigger systems, such as search engines,
digital libraries, and discussion forums etc., where automated language detection is
useful. The whole language detection process relies on the factors like: quality of trajning
documents, type of input document, size of input document, multiple langunages/scripts

within the same document

The described research provides Unicode support and multiple script support. It also
provides language detection for multilingual decuments.

Multiple scripts within the same document are detected accurately however detecting
languages belonging to the same script in a document is a much up-hill task.

Diction Identifier Table of Contents

TABLE OF CONTENTS
Chapter No Contents Page No
1. INTRODUCTION....c0vrnercrionccercsencrssarsanssnnrarssssssassrsanse 1
1.1 General Techniques.......cccoevriiiiiiiiiiiii e 1
1.1.1 Cavnar’s and Trenkle’s algorithm....................... eree 1
1.1.2 Dictionary based method.........oivviviiieiiinininiecanan. 1
1.1.3 Unicode based script/language identification................ 2
1.1.4 Inter document lang/script scparation and identification.... 2
1.2 Purpose of System.......coevviuiiiiiiiiniiiiee e, 2
1.3 HiStOTy. .ovvieeeeiiniieineiniiieiivneas et e bt ateeaeraaar e 3
1.4 Main Features.ooieiiiiii i te e et e 3
1.4.1 Unicode Based Script Separation within a Single Doc....... 3
1.4.2 Unicode Based Script Separation within a Single Doc....... 3
1.4.3 Dictionary Based (Fast) Language Detection Method...... 3
1.4.4 N-Gram Based (More Accurate) Modified Method......... 3
1.4.5 Automatic Removal of Doc Formatting Info.................. 4
1.4.6 Support for Easily Adding More Languages into System... 4
1.5 Future Enhancements.cocoooiiiiciiiinimiresrinniiassconenes 4
2. LITERATURE SURVEY..ciioietiattarersensrsrnrarenrnsnrorsonsonssncns 5
2.1 Research Study......vveeeiiiiiiiiieniie e s e 5
2.2 OUF WOTK. .. in it cee et et ae e n e 11
2.2.1 Dictionary Based Language Identification..................... 11
2.3 Unicode Based Inter-Document Lang/Script Identification.... 12
2.4 Cavnar's and Trenkle's Algorithm..........c..cooiviiiiiinnens 13
3. REQUIRENMENT ANALYSIS....crvciiimiiiniiriiiniiiie . 19
3.1 Use Case ANalysis.....o.oieveeiirnenriiiii it eciaane 19
3.2 Use Case in Expanded Format..........cooviiiiinininnn. 20 -
4. DESIGN....cccoivvminrnnnne. teerensarresssriranseratstinseaannsrrenanessratis 24
4.1 Modular Approach..........c.ocoiiiiiiiiiiii s 24
4,11 USer INerfaces. . vuvrvriainssinenuarinriiaianerciassaeennaenno 24
4,2 Sequence DIAZram.ovieueverernmrseenessi e 24

vi

Table of Contents

Diction Identifier

5. IMPLEMENTATION...cvccriettecieintnrsensesasnsasnsssssnssises vervesernld
5.1 Unicode and Utility Modules.........oouvieniiieceiininninn 29
5.1.1 Inter-Document Multiple Script Identification............... 29

5.1.2 Document COMVEISIONM. ...verrviirernrinrenreresirarissisanes 30

5.1.3 HTML Cleaner.....cccouvevuaerniniraieraiaanrarrneeriassarsananes 31

5.14 Document Cleaner.......oovevieriiiiioniinniieiee e 31

5.1.5 File Folders Utilities. ..cveverviiieeaieieriieiiensinesanrannnns 32

5.1.6 NOFMAlZALON. .0 evverreenriiiieeivarirnaneaneiaaiirareennnas 32

5.2 Dictionary Based Modules.........coooveiviimriiiiiini 33
5.2.1 Dictionary Based Identification — Trainer..........c..coooeunns 33

5.2.2 Dictionary Based Identification — Identifier.................... 33

5.3 Cavnar's and Trenkle's Algorithm Modules...............coooiiie 34
5.3.1 N-Grams GeOerator. .. coveieeeneaaenriairarnranrssraraossrassons 34

I T A Ko T 0 e SO PP 35

5.3.3 Training Finalizer..........ccooiiiiiiin 36

5.3.4 Uniqueness Calculator.........ocovemrneircniieiiinnnn 36

5.3.5 Stats Comparison Module..........oooeiieiiiinnn 37

§5.3.6 CTA JAenTIEr. oo oo vseeeeeiieiinaineraeteansraenaeneensinsses 38

5.3.7 Fisher Discriminant.cc.cevvveivneeiruivemeiiieranncacanass 39

6. RESULT . i cveresneannenirassacencnsrsssinassssnanssessnsnatnsasassnsasssnsenss 40
6.1 Training DOCUMENtS. ... cuvirenenrnaient v 40

6.1.1 Training Languages and Scripts........ccooevueeiiiiceaiinnns, 42

6.2 Test ERVIFORIMIENT.uiveniiiaacrananeassiiisreneairaiasnsenean 42
6.3 Algorithm Wise Timing and Accuracy Statistics.........ccooveieennne 42
6.3.1 Dictionary Based Identification..........cocoeeiieniiiiin. 42

6.3.2 CTA without FF modification........ccocoiviiineiiiienicai 45

6.3.3 CTA with FF modification............coooviiiiiiiinianns 48

7. CONCLUSION AND FUTURE ENHANCEMENT............. ceree O3
7.1 CONCIUSION. .1t evieierenvranervretreeesrinracrneanrinesraanernaseestonasan 53
7.2 Future ENhancements.cveeecuerreinerariosnsainmenarmnesmamraeaeans 53
REFERENCES....ccitteiriireninensecnsinsansnsaes ererermrirersits ceartaes 54
PUBLICATION. ...cciiitiiiiiieananecinancinecassetantsatsnasasanssusses e D5

vii

CHAPTER 1

INTRODUCTION

Chapter 1 Introduction

1. Introduction

The fundamental purpose of “language™ identifiers is to indicate distinctions related to
linguistic properties and specifically distinctions that are relevant for information
technology purposes. There are a wide variety of distinctions pertaining to several distinct
linguistic parameters that have been suggested as potentially relevant for “language”
identification: languages, language families, dialects, country variants, other
regional-based variants, script variants, style variants, and modality variants, time based
variants and typographic variants. Many different orthogonal parameters could be used in
meta-data attributes, and the potential combinations and permutations are daunting. In
actual practice many of the potential distinctions arc not needed for most realistic usage

scenarios.

Application areas can probably be divided into two general types: cataloging and retrieval
of content and resources for localization and language enabling of software.

Diction identifier provides Unicode support and multi-script support (Roman, Chinese,
Arabic). It also provides language detection for multilingual documents.

1.1General Techniques

The system uses an array of different technigues for language identification. Some of the
techniques are suited for one scenario while others are more suited for different scenarios.

1.1.1 Cavnar’s and Trenkles algorithm

C & T algorithm is an n-gram bascd method. It is one of the most popular method used for
language identification [1].1t is the most effective method for identifying languages having
same script. Detection using this algorithm does not only rely on alphabets present in a
language rather it focuses on the most common combinations of these alphabets in
different languages. For this reason this method is more effective than the
primitive/traditional dictionary based method for language identification. As languages
belonging to the same script (for example Roman) may have similar or same alphabets but
the order in which they occur is not the same. For example, the 3-grams 'the’ and 'ing' are
the most common 3-grams in English but they are not found that frequently in other Roman

script languages like German and French.

1.1.2 Dictionary based method

In this method a list of unique characters for each language is generated and compared
against input list of unique characters in the document that 1s to be identified. This method
is much faster than C&T algorithm and performs well when comparing languages
belonging to different scripts.

Diction Identifier

Chapter 7 Introduction

1.1.3 Unicode based script/language identification

The Unicode standard defines unique code points for each alphabet in a language. These
code points are categorized according to language and script. In this technique Unicode
code points of characters in input document are analyzed and categorized according to the

script range in which they occur.

1.1.4 Inter document language/script separation and identification

In this method Unicode code point script ranges are used to identify different scripts in
input document. This method is very effective for detecting the presence of multiple

scripts/languages in a document.

1.2 Purpose of System

The purpose of the described research is to develop a fast and accurate language detection
system that is able to detect languages belonging to different scripts. The system is broadly
divided into two general steps (Training & Identification), Two different techniques are
used for language identification both having their pros and cons.

The system is meant to be integrated into many bigger systems, such as search engines,
digital libraries, and discussion forums, where automated language detection is useful.

Keeping this in mind

The whole language detection process relies on the factors mentioned below:
Quality of training documents

Type of input document

Size of input document

Multiple langnages/scripts within the same document

Proper training of the system is absolutely critical for successful language identification.
Quality of training documents matters a lot and these training documents have to be filtered
to make sure that they only contain the language they are used to train for. Corrupted
training documents can easily cause the system to give incorrect resuits.

Type of input document is also an important factor. The system accepts Unicode UTF-8
encoded documents. UTF-8 is a Unicode encoding scheme [9] [11]. All types of
documents (text, doc, PDF, html, etc.) can be saved using UTF-8 encoding. On windows
UTF-8 has been the default encoding scheme since windows 2000.

The system is known to perform badly on very short documents (10-30 characters). Very
short documents present too few information that can be processed for language
identification.Multiple scripts within the same document are detected accurately however
detecting languages belonging to the same script in a document is a much up-hill task.

Diction Identifier 2

Chapter 1 Introgucrion

1.3 HISTORY

Automated language identification has been the focus of research in the past decades.
However majority of the work has been done on Roman script languages only. In mid-80s
Cavnar and Trenkle proposed their algoritm for language identification. After this
algorithm, language identification was considered a solved problem in that era [1]. In those
times all the data present on computer systems was either in English or other Roman script

languages.
After the explosion of Internet, the world of computers guickly began expancfing to

multiple regions and with that, to multiple languages. The presence of multi-lingual data on
the web has once again prompted the need for a generic language identifier that has the

ability to handle muiltiple scripts.

Having multiple scripts and conversion to the Unicode standard has opened new
possibilities for language detection. These possibilities were mostly un-explored till now.
The latest known research by Katia Hayati [1] in Jun, 2004 also only considers Roman
languages though it uses web specific information for language detection.

1.4 Main Features

Main features of the system include:
1.4.1 Unicode Based Script Separation within a Single Document

The system is not only able to read/write Unicode files; it also uses Unicode extensively for
language identification. Use of Unicode makes language identification much more flexible,

accurate and faster.
1.4.2 Unicode Based Script Separation within a Single Document

Unicode code point information is used to detect the presence of multiple scripts in a
document. Data of each script is then processed separately and language identification
results for each script chunk are returned.

1.4.3 Dictionary Based (Fast) Language Detection Method

Alphabets in the input document are compared against the alphabets of different languages
and based on that the language of the input document is guessed. This method is the most
used method for language identification. Although simple, the results returned from this
method were found to be satisfactorily accurate and quite fast.

1.4.4 N-Gram Based (More Accui-ate) Modified Method

This is a modified (improved) version of Cavnar’s and Trenkle's algorithm [1]. The
modifications give higher weights to n-grams that are less common in other languages:

Diction Identifier

Chapter 1 Infroduetion

1.4.5 Automatic Removal of Document Formatting Information

The system handles input documents like web pages very well and automatically removes
all tags and other formatting info from the page using only the page content for language
identification.

1.4.6 Support for Easjly Adding More Languages into the System

More languages can be easily trained using a couple of training programs to expand the
system to support more languages.

1.5 Future Enhancements

With the ever changing face of information in the computer world, more possibilities for
improving language detection are just around the corner. There are many standards and
save meta-data along with documents. The increasing adoption of such standards (like
XML} will allow use of document meta data for language identification.

Automatic generation of training documents without having the need to check them
manually is also a field that requires more research. '
Detection of multiple languages belonging to the same script within a document is another

field that needs improvement.

Diction Identifier 4

CHAPTER 2

LITERATURE SURVEY

Chapter 2 Literature Survey

2. LITERATURE SURVEY
2.1 Research Study

Katia Hayati [1] improves on the existing widely used n-grams based technique for
Janguage identification proposed by Cavnar and Trenkle [1]. The focus is especially on

langnage detection for web documents.

A sample of 1359 web pages spanning eleven languages (Danish, German, English,
Spanish, Finnish, French, ltalian, Dutch, Norwegian, Portuguese, and Swedish) are
obtained and classified according to language. The encoding scheme used is in the
Windows-1252 character set [12] (a superset of the ISO-8859-1 character set, also called
Latin-1). _

The feature selection stage and similarity measure mechanism for the algorithm "are
improved using Fisher discriminant function and the cosine similarity metric respectively.
One observation mentioned in the paper is that the technique performs badly on very short
documents.

The use of Web-specific information, namely in links, to improve the performance of the
classifier on very short Web documents is also discussed. The new information more than
doubles the accuracy of the classifier on pages with less than 25 characters, and slightly
less than doubles the accuracy on pages with less than 50 characters.

Investigating top-level domain information for language identification is identified but not

done in this research.

Zhong GU and Daniel Berleant [3] discuss n-grams technique for machine readable
language identification. The main focus of the paper is one removing the shortcomings of
n-grams technique, which are huge memory and processing requirements. The fact that
most of the “all possible n-grams” for a language actually never occur in real documents
presents room for improvement.

The paper discusses two possible solutions to this problem.

1. Using actually occurring and most common n-grams of a language.

2. Using hash tables by having one hash to represent more than one n-grams.
The author focuses his discussion on hash table technique to reduce the size of n-grams

table by using representative hash tables instead.

Identifying good and bad hash table address this problem sizes over a wide range of sizes.
It is also observed that English, French, and German n-grams behave similarly when
hashed, and that this is unlike the behavior of randomly generated n-grams.
Therefore the difference in behavior is due to properties of the languages themselves.
Different table sizes are investigated and sizes that are particularly good when hashing n-
grams during processing of these languages are identified.

Clive Souter, Gavin Churcher, Judith Hayes, John Hughes & Stephen Johnson [14)
describes an experiment in the development and use of bigraph and trigraph models. for
automatically recognizing written natural languages. The models are extracted from
corpora of different languages, and then employed to identify new texts probabilistically. It
describes three approaches to the task of automatically identifying the language a text is

Diction Identifier

Chapter 2 Literature Survey

written in. Experiments are conducted to compare the success of each approach in
" identifying languages from a set of texts in Dutch/Friesian, English, French, Gaelic (Irish),
German, Italian, Portuguese, Serbo-Croat and Spanish.

The three techniques we chose to investigate are:

¢ Unique character string identification

This involved finding (empirically or using linguistic ‘competence’) short strings
of characters which are unique to each language. The simplest identification
technique might be to find a string of characters in the Latin alphabet which are
unique to a particular language.

s Frequent word recognition

Another method explored was fo extract frequency ordered wordlists, and choose
the top 100 words for each language. Unseen text would then be analyzed word by
word, looking up each candidate in the list for each language, and adding to a
running total or likelihood for each. At any time, or at the end of the text, it retums
the most likely language. An alternative method 1s to extract a frequency ordered
list of the words in each language from the training material. Then, the most
frequent words in each language can be used as a test list against which the words in
a new, unknown sentence can be matched. Some of the words in the unknown text
are found in the test list. '

e Bigraph/trigraph based recognition

All possible two- and three-letter combinations are extracted from the training texts,
along with their frequencies in each language. Unsecn text is then analyzed by
similarly splitting up the text info ordered bi/trigraph, and a running total
probability for each language maintained. We can return the most likely language

at any stage.

Each method was implemented by training the model on roughly 100 kilobytes of text and
tested on text samples. The bigraph recognition was 88% successful, being surpassed by
the ‘most- common-word’ approach, which correctly identified the language in 91% of the
test samples. However, trigraph approach showed recognition with 94%accuracy.

Results showed that a trigraph model 15 the most successful for recognizing the languages.
Bigraph and trigraph models can be used to classify languages along the lines of a
historical linguistic family tree for Indo-European languages.

There are many Issues in sentence categorization according to language and it is a
fundamental step in document processing. Emmanuel Giguet [5] proposed an approach to
sentence categorization which has the originality to be based on natural properties of

Diction Identifier

Chapter 2 Literature Survey

languages with no training set dependency. The paper also aims to point that the more the
linguistic properties of the object are used, more better results are observed.

The implementation is fast, small, robust and textual errors tolerant and tested for French,
English, Spanish and german discrimination.The resolution power is based on grammatical
words (not the most common words) and alphabet. Having the grammatical words and the
alphabet of each language at its disposal, the system computes for each of them. _
Categorization according to language is done with text. The goal of text categorization

is to tag texts with the name of the language in which they are written. Information retrieval
is the main application field. Grammatical Words are used as they are short, not numerous
and we can easily build an exhaustive list. Grammatical words in sentences represent on
average about 50% of words. They can’t be omitted because they structure sentences and
make them understandable. ‘

To improve categorization of short sentences, alphabets are used because alphabets are
Proper to each language

Mainly two ways can be explore to improve categorization, using natural languages

properties:

o Syllabation: This gives the ideas to check the good syllabation of words in a
language. It requites distinguishing first, middles and last syllabs. (Using only
endings seems 10 be a possible way)

e Sequences of vowels or consonants: the idea is that these sequences are proper to
each language.

Heuristical knowledge is also used to deal with texts. In a same paragraph, contiguous
sentences are written in the same language. Titles of a paragraph are written in the same
language as their body. Included blocks in a sentence (via parenthesis. . .) are written in the
same language as the sentence.

The techniques are implemented by sentence categorization and language classification.
This classification method is based on texts observation and understanding of their natural
properties. It does not depend on training sets and converges fast enough to achieve very
good results on sentences.

Gregory Grefenstette’s paper [6) focuses on two techniques for automatic language
identification. Machine readable text is given using easily calculable attributes.
The two techniques are

e Trigrams
e Short Words

The trigram technique calculates the frequency of sequences of three letters in a large
language sample. The idea is to capture the intuition that, e-g, a word ending with —ing is
more likely to be an English word whereas a word ending with —ez is more likely to belong
to French language. Each text is tokenized, space is used as separator and underscore is
added in the beginning and end of each token to indicate the initial and terminal mark. All

Diction Identifier

Chapter 2 Literature Survey

the sequences are counted and then probability of given trigram in a given language is
approximated. A minimum probability is assigned to each unseen trigram. A language with

highest probability is chosen.
Small word technique is based on the intuition of determiners, conjunctions and

prepositions. The first million characters of the text of each language was tokenized and all
tokens of five characters or less were extracted. These were counted for each language and
words appearing more then three times were retained. The frequencies of these words were

transformed into probabilities.

Peter G. Constable’s paper [15] serves as a comprehensive backgrounder for language
identification. It describes different components of a language and how it is represented.
The proposed model involves four core category types: individual languages, writing
systems, Orthographies, and domain-specific data sets.

This paper goes further, though, in also suggesting that these various category types stand
in certain relationships to one another, and that these relationships motivate certain
constraints on the way in which composite identifiers are formed.

This paper is intended as a starting point for discussion and development, not as a finished
Proposal. It is expected that others will find many ways in which refinements can be made
in the Mode! and comments to that effect are welcomed in the hope that such a dialog can

soon lead to adequate solutions.

Muntsa Padr'o and Llu’ys Padr'o [7) compared three different statistical language
identification methods, and a detailed study of the influence on those systems of some
basic parameters is performed. The analyzed parameters are the size of the train set, the
amount of text that are to be classify and the languages the system is able to distinguish (it
will be studied not only the influence of the number of languages but also the influence of
which are the considered languages).figure 2.1 shows the general architecture of the

system as discussed in the paper.

Diction Identifier

Chapter 2 Literature Survey

Markov Modcls

Hidden Markov Models (HMM) are commonly used in spoken language identification.
For each language that the system must know about, a model is trained from text
corpora, and stored for later comparison with unidentified text. In these models each
state represents a character trigram. Thus, the parameters of the MM are the transition
probability and the initial probability.

Trigram Frequency Vectors

The trigram frequency vectors technique consists in comparing a vector of trigram
frequencies for the text to classify with the vectors of known language, and select the
closest one, Trigrams are formed by three consecutive characters of the text.

Gram Based Text Categorization

This technique is a text categorization method that can be applied to language
identification, where each category is a language. The implementation of this technique
is named TextCat. The system is based on comparing n-gram frequency profiles.
A-gram frequency profile is a list of the occurring-grams sorted in decreasing
frequency order. For each language we want to train the system, we create its -gram
profile using all the -grams for all values of from 1to 5.

Martin Wechsler’s, Paraic Sheridan’s and Peter scauble’s paper [16] is based on the
SPIDER information retrieval system. Issues associated with indexing multilingual
collection of information are addressed. The main focus is on the language identification
and the use of stemming algorithm from the European countries. The scarch also focuses
on multilingual intranet which contains documents in English, French, German and Italian.
The work done include automatic identification of the language in which a particular text is
written and the use of stemming algorithm for each individual language. The correct

Diction Identifier

Chapter 2 Literature Survey

identification of the language is crucial so that the correct stemming algorithm can be
applied to each document. There is provision of user —friendly querying environment for a
large multilingual collection of documents and special attention is made to language
independent words.

The indexing features are based on the individual words and the size of the index is
maintained on the final performance of the retrieval system. The first step in reducing the
number of features to be included in the index usually involves discarding those words that
have little or no value in representing the content of a document-referred to as Stop Word.
The second step is taken to improve the set of features used to represent the content of
documents, called Normalization. In it the words from their surface are formed into a
common base form. The emphasis is made on the presence of stop-words.

During indexing, language specific accumulators count the number of stop words that
match against the stop-word list of each language. The language of the document or text
passage is then assigned according to the accumulator with the maximum value.

This paper also give the idea of stemming to improve the performance and efficiency
because the word reduction do not need to be linguistically meaningful since they are used
only as indexing feature by retrieval system and not presented to the user at any stage. The
crucial step to the performance of the stemming algorithm is the maintenance of the

lexicon.

Diction Identifier 10

Chapter 2 Literature Survey

2.2 Our Work
In this project we have used three approaches for language detection. The description of

these approaches is given below.

2.2.1 Dictionary Based Language Identification

Dictionary based identification (DBI) is one of the most tried and implemented methods
for language identification. Though simple, its effectiveness in certain areas cannot be
denied. One of its biggest advantages is its performance. DBI is much faster during training
and detection than other algorithms used in this research. DBI gives good results when
comparing languages belonging to different scripts. If used wisely this technique becomes
more useful than it seems at first glance. Joined with Unicode based inter-language
document identification, to detect and extract multiple languages data chunks from a
document; dictionary based identification is applied on these chunks individually.

Like most techniques used in this research, dictionary based identification is also a two
phase process. The first phase being training and the second identification. Before going on
to identifying documents, the system must first be trained for the languages that we wish to
detect. Remember, it only detects the languages it has been trained for. However, if a
language belongs to a script for which another language has already been trained is found
in an input document, that language is identified as the language that was trained for the
same script. For example, say in the Arabic script, we have trained DBI for Arabic, Urdu
and Persian languages. If we try to detect a Pushto, Punjabi or similar document, all Arabic,
Urdu and Persian will come up as close matches giving a hint to the script the language

belongs to.

The drawback in dictionary based implementation is that it doesn't perform well when
comparing between languages belonging to the same script. Also document containing too
few characters give much less information to DBI to detect languages effectively. Also, in
case of documents like web pages containing multiple languages, the results are not able to
clearly distinguish the language. However, if one language occupies the majority portion
of the document, it has higher match weight-age hinting its identification.

Algorithm:

Training Phase:

Inputs: 1) Training Document
2) Dictionary File Path

QOutput: Unique characters list

Open training document.

Read all data from the document.

Generate a list of unique characters present in the training document.
Sort the unique characters list.

Diction Identifier 11

Chapter 2 Literature Survey

e Dump the list into the dictionary file specified.

Identification Phase;
Input: 1) Document to be identified

Output: 1) Language match count

Open input document and read all data.
Generate a list of unique characters in the document.
Sort the generated list. '
Get a list of script folders in the lang_dicts folder
for each script_folder in lang_dicts folder:
o QGet alist of language files in the script folder
e For each language:
e Load the language list of unique characters
¢ Get match count of characters present in document list that are also
present in language list.
Display match count statistics for each language.

The language unique character lists are stored in a file folder hierarchy as displayed below:

e lang dicts/ (root folder)
s script folder 1/
e languagel list file
o language? list file
e script folder 2/
e language 3 list file

2.3 Unicode Based Inter-Document Language/Script Identification

The use of Unicode in our research has proved to be very useful. The global acceptance of
Unicode and the well thought out placement of different languages in the Unicode code-set
has given us more opportunities to detect languages effectively. Each script/language in
Unicode has defined code ranges. This information is provided in the form of Unicode
Database giving type, langnage, code point and other info for every character of every
language represented in Unicode. The use of this database enabled us to detect different
scripts in a document by querying the Unicode database for info about any character.

Unicode based identification is the only technique in our research that does not require an
explicit training phase. Only using updated versions of the Unicode database provided at

www,unicode.org is sufficient for improving the technique.

This technique is the fastest technique for language detection that we have implemented.
As added benefit, this technique also allows us to identify different script portions within a
document. Like all, this technique also has its drawbacks. First, for those scripts that have

Diction Identifier 12

Chapter 2 Literature Survey

many languages in them (Roman, Arabic, etc.) this technique can only detect the script and
not the language. Secondly for inter-document language identification, detection of
different language chunks is effective if consecutive language chunks belong to different
scripts. For example, it accurately separates Arabic and English language chunks repeating
one after another but has problems if English and French or German language chunks start
repeating after one another.

Algorithm:

Input: 1) Input Document

QOutput: List of languages and their byte
ranges in the input document.

Read all data from input document.
set current_script = ""
For each character in data:
e Get Unicode category of the character (Letter, Digit, Punctuation,
etc.)
e If category = Letter
e Get Unicode character name
e Get the script name portion from the character name
e if script name !=current_script:
e Add last script to language chunks with start and end byte
positions
e set current script = new script name
Add last script to the language chunks list
Remove first empty chunk from the list.

2.4 Cavnar's and Trenkle's Algorithm

C&T [1] algorithm is the most accurate algorithm around for language detection. This
algorithm concentrates on alphabet-combination characteristics of languages. Because of
this property, this algorithm excels where other algorithms fail. It more accurately
identifies languages belonging to the same script.

This algorithm performs its calculations on n-grams. The value of n can be any digit (1,2,3,
etc.) The number of n-grams in a document is equal to the number of characters in that
document. For example, take the text "HELLO WORLD". 1-grams of this text are: 'H', 'E,
Ll 0L, WL 0, R, LY, DY 2-grams for the same text are: 'HE', 'EL, 'LL', 'LOY,'0 "
W', 'WO', 'OR, 'RL’, 'LD', ‘DH'". The advantage of using n-grams is that they highlight the
language properties. Finding common alphabetic combinations of a language is the

purpose of processing n-grams.
Over the years modifications and filtering techniques have been applied to further improve

Diction Identifier 13

Chapter 2 Literature survey

the performance of this technique. The most recent successful addition to the technique
was by Katia Hayati [1] in June, 2004, which included Fisher Discriminant function to give
more importance to n-grams that were more unique across languages. We have further
implemented another modification to the process by that serves as a replacement of Fisher
discriminant function which was too time consuming for n-grams with n greater than 3.

The training phase for this technique spans across multiple steps that are:

e Document filtering to remove formatting information from documents.

e Document normalization for removing multiple white spaces.

e Training multiple documents per language so that sufficient training data per
language is present to make the calculations more real.

e Sorting the resulting statistics and calculating top C n-grams according to weight
for each language. In this research C=1000 was found to be a good value.

The identification phase involves generating n-grams for the input document and then
comparing top C n-grams from the document again top C n-grams for each language to
find out match value for that language.

By default the algorithm runs with our custom modifications (called FF modifications here)
included. Since comparing the statistics against fisher discriminant implementation was
also required to get validated results, so a fisher discriminant implementation of the

algorithm is also provided.

Drawbacks of this method involve slower detection and more time required to train
documents. Additionally adding a new language to the corpus of languages means doing
all the calculations again for each language.

Algorithm (with FF modification):

Training (Step_1);

Inputs: 1) Language Name
2) Training Document

Output: NILL

e If the lang folder not exists inside the data folder
e Load previously trained data for n-grams (n=1-4) from the data files prcsent
in the lang folder into n-gram lists.
o Iflang folder does not exist:
e Create lang folder
e Initialize n-grams lists to blank
e Read al data from training document
e Normalize the data by replacing multiple white spaces with a single space.
e Generate n-grams from input data.

Diction {dentifier 14

Chapter 2

Literature dSurvey

Calculate weights (frequency) for each n-gram in input document.

[}
« Update weight of each n-gram in the n-gram lists (loaded from previous training
data files).
¢ Dump n-grams lists to lang folder inside the data folder.
Training (Step 2):

Inputs: 1) Source n-gram list

2) Target n-gram list
3) C (Top no. of n-grams to store)

QOutput: NILL

Load Source n-gram list.

Sort the list in descending order.

Trim the list to top C items.

Dump the new list to Target n-gram list path.

Training (Step 3} - n-gram Unigueness Calculation:

Input: 1) Lang

Output: NILL

Load n-gram lists from lang folder in the data_finalizer folder.
Get list of languages in data_finalizer folder.
For each n-gram in n-gram lists:
e setu ng=C * total_langs
e For each lang:
e if n-gram found in lang list:
e idx = index of n-gram in current lang list.
¢ u_ng=u_ng-idx
¢ Add uniqueness value of n-gram to uniqueness list
Dump n-gram uniqueness lists to lang folder.

Identification phase:

Input: 1) Input Document

Output: Language match count

Read the data from document

Normalize the data.

Generate n-grams(1~4) for the data.

Calculate n~-gram weights (Frequencies) in data.

Diction Identifier

15

Chapter 2 Literature survey

Sort document n-grams list in descending order.
Trim list to top C items.
Get list of language folders in the data_finalizer folder.
For each language:
e Load lang n-gram lists.
e Load n-gram uniqueness values.
e For each document n-gram list (n= 1-4):
o setdiff=0
» For each n-gram in list;
e Ifn-gram found in lang list:
set i1 = index of n-gram in doc list
set i2 = index of n-gram in lang list
diff +=11-1i2
uv = unique-ness value of n-gram
diff -= (uv/100)
e ifn-gram not found in lang list
o diff +=C+]
e uv=unique-ness value of n-gram
o diff = (uv/100)
e return/display match statistics

Folder structure used in this algorithm is given below:

o data/

e Jlangl/
o lgrams.dat
e Zprams.dat
e 3grams.dat
e 4grams.dat

o lang2/
s lprams.dat
e Zgrams.dat
e 3grams.dat
» Aprams.dat

o data_finalizer/

o langl/
e lgrams.dat
o Zgrams.dat
e 3grams.dat
o 4grams.dat
e u_lgrams.dat

Diction Identifier 16

Literature Survey

Chapter 2
e u 2grams.dat
e u 3grams.dat
e u_4grams.dat
s lang2/
» lgrams.dat
e 2grams.dat
» 3grams.dat
e 4grams.dat
e u_lgrams.dat
e u 2grams.dat
» u 3grams.dat
e u_4grams.dat

Aleorithm (Fisher Discriminant}):

Training Phase:
Pre-condition: All training documents

are present in
training_documents folder.
e Generate a list all unique n-grams found in all training documents of each language.
Lets call this list A.
e Get alist of language in the training_documents folder.
¢ For each lang:
e (et a list of training docs in that lang.
e For each doc:
e Foreach n-gram in A:
e Find frequency of n-gram in doc.
e Find normalized frequency of n-gram in doc.
e Foreach n-gram in A:
e Calculate mean frequency of n-gram
e Sort the list of mean frequencies in descending order of frequency.
o Trim this list to top 1000 items. Lets call this list R,
e Foreach lang:
e (Calculate lang fisher values
e For each n-gram in A:
e (Calculate lang mean frequency.
e For each n-gram in R:
e {R =mean frequency of n-gram in R.
o fL =mean frequency of n-gram in current lang,.
e n-gram fisher value =FL / fR

e Save lang fisher values.

Identification Phase:

Diction Identifier 17

Chapter 2 Literature Survey

Input; Input Document

Read document data.
Normalize data.
Get a list of unique n-grams present in the document.
For each n-gram in document n-grams:
e calculate frequency of n-gram in document.
e Load R (Top thousand n-grams by mean frequency, generated during
training phase).
e For each n-gram in R:
e Ifn-gram present in document n-grams:
e calculate n-gram normalized frequency in document
e else:
e set normalized frequency of n-gram in doc to 0.00.
e Get a list of Languages available for identification
e Foreach lang:
e Load lang fisher values.
e setdiff =0.00
o For each n-gram in document normalized frequencies list:
e set nFV = lang fisher value for ngram
e set nNF = document normalized frequency for ngram
e diff += nNF * nFV
¢ Display diff as lang match value for document.

Diction Identifier 18

CHAPTER 3

REQUIRENMENT ANALYSIS

Chapter 3 Requirement Analysis

3. Requirement Analysis

The requirement analysis is the first step towards developing software. Analysis must be
performed in a systematic and correct manner so as to have as few mistakes as possible in
the software and to have an end product completely fulfilling the expectations of the client.
The main objective of this phase is to identify all possible requirements and expectation of

software.

3.1 Use Case Analysis

Analysis of the project is represented in terms of Use Case diagrams indicating the actors
and use case in expanded format. Use Case may be related to the other Use Cases by the
Extended, Include, and Generalization relationships. The use case model describes the
proposed functionality of the new system.

Diction Identifier 19

Chapter 3

Requirement Analysis

3.2 Use Case in Expanded Format

In this section we discuss the use cases by describing their related actors, pre and post

conditions, typical course of actions and alternative course of actions.
The use cases have been written in expanded format as follows.

3.2.1 Trainer

Ucl Dictionary Based Method
Uc2 Load Document

Uc3 Get Unique Characters
Uc4 Cavnar & Trenkle’s Algorithm
Uc5 Load Document

Uc6 Normalization

Uc7 HTML Removal

Uc8 Language Removal

Uc9 Preprocessing

Uc10 Gengrate n-grams

Ucl1 Calculate Weights

Uc12 Finalizer

3.2.2 Identifier

Ucl3 Get Unicode Script ranges

Ucl4 DBI
Ucl5 CTA

3.2.1.1 Trainer Use Case

a) Name: Trainer

b) Actor: Admin

¢) Pre-Condition: None

d) Post-Condition: Runs the selected method for training
e) Typical Course of Action:

Actor Action System ResPonse

1) User Selects the method for training. 2) Call and runs the specified method.

| A—

f) Alternate Course of Action:

[Actor Action) System ;Response

1a) If user doesn't select any method for | 2a) Default method is called. |
training

Diction Identifier

20

Chapter 3 Requirement Analysis

3.2.1.2 DBI Use Case

a} Name: DBI

b) Actor; Admin
¢) Pre-Condition: Input document must be specified and the target file path where the

dictionaries are to be saved. Input Document must be in the pdf, HTML, txt, doc and in
UTF-8 encoding

d) Post-Condition: Dictionaries are saved in specified path.

e) Typical Course of Action:

Actor Action System Response
1) Input document is 2) List of unique chafracters are generated
loaded(pdf,ixt,doc, HTML format,UTF-8 |for that document.
encoding) 3) Dictionaries are saved in the specified
path.

f) Alternate Course of Action:

Actor Action System Response
1a) If the document is not in specified 2a) Document is not[loaded.
format or UTF-8 encoding. 3a) Emmor message is displayed.

4a) Repeat step 1 to 3

3.2.1.3 CTA Use Case

a) Name: CTA

b) Actor: Admin

¢) Pre-Condition: Input document must be specified. Input Document must be in the pdf,
HTML, txt, doc and in UTF-8 encoding

d) Post-Condition: Saves list of n_grams and update their weights,iif no list exist creates a
list.

¢} Typical Course of Action:

Actor Action System Response

1) Input document is loaded (pdf, 2) Removes HTML tags

txt,doc, HTML format,UTF-8 encoding) 3) Removes the multiple spaces, \t,\n and
any other special characters

4) Removes the spemﬁed characters (may
belong to other scripts) from the document.
5) Returns only the téxtual data after

Diction Identifier 21

Chapter 3 Requirement Analysis

normalizing.

6) Generate all the n-grams (1 to 4 gram).
7) Calculates the weights for n-grams.

8) Reduce n-grams up to the value of

C(1000).
f) Alternate Course of Action:
Actor Action System Response
1a) If the document is not in specified 2a) Document is not loaded.
format or UTF-8 encoding. 3a) Error message is displayed.

4a) Repeat step I to 3

3.2.2.1 Identifier Use Casc

(A)

a) Name: Identifier

b) Actor: User/Admin

¢) Pre-Condition: Input document in specified format and in UTF-8 encoding,
d) Post-Condition: Language identification results displayed using CTA

¢) Typical Course of Action:

Actor Action System Response

1) User Selects the CTA method for 2) Generates n-gram list for the input

identification. document.
3) Loads n-grams list from data Finalizer

folder.

4) Compares the two lists.

5) Display language identified and its
percentage count.

1) Alternate Course of Action:

Actor Action System Response

12) If user doesn't select any method for |2a) Default method is called.
identification

3.2.2.2 Identifier Use Case
B)
a) Name: Identifier

b) Actor; User/Admin
¢) Pre-Condition: Input document in specified format and in UTF-8 encoding,

d) Post-Condition: Language identification results displayed using DBI

Diction ldentifier 22

Requirement Analysis

Chapter 3

e) Typical Course of Action:

Actor Action

System Response

1) User Selects the DBI method for
identification.

2) Generates list of unique characters for the
input document. :

3) Loads Dictionaries from data Finalizer
folder.

4) Compares dictionaries with list of unique
characters.

5) Display script, language identified and
percentage count.

f) Alternate Course of Action:

Actor Action

System Response

1a) If user doesn't select any method for
identification.

2a) Default method is called.

Diction Identifier

23

CHAPTER 4

SYSTEM DESIGN

Chapter 4 Design

4. DESIGN

System design is the specification or construction of a technical, computer based sclution
for business requirements identified in the system analysis. It is evaluation of alternative
solutions and the specification of a detailed computer based solution.

4.1 Modular Approach

The whole system is implemented as a set of python modules. This approach allows both
use of individual functions or the whole application. Most of the modules when run
individually either allow the user to perform one specific task or run some test cases to test
the code they contain. When imported into other python programs they allow usage of all
the functionality the system provides.

4.1.1 User Interfaces

Apart from being a code library that can be used in bigger systems requiring language
identification two user interfaces have been built using this library.

4.1.1.1 Command Line Interface (CLI)

The command line interface allows language detection from the command Iine. This
interface is ideally suited for quick language detection tasks, automated batch jobs for
doing language detection on a bulk of documents etc. The results returned are machine
parse-able (GREP-able). This is in-line with the traditional Unix philosophy of allowing
programs to be easily glued together for accomplishing bigger tasks.

4.1.1.2 Web Interface

To maximize the availability of the system, a web based interface for the system has also
been implemented allowing the user to upload a document and have its language detected.
This interface is built upon the idea of parsing the output of the CLI and displaying them in

a more user friendly manner.

4.2 Sequence Diagram

Sequence Diagrams are used to show the flow of functionality through a use case. It
illustrates the entire flow of processing object and actor interaction with respect o time.
Sequence Diagrams of some use cases are discussed below: -

Diction Identifier 24

Llesign

Chapter 4
fESETT
e,
1
4
M
i
A
4
S el
+Spacifisd dict:
- path
Figure 4.1 Sequence Diagram of DBI (Trainer)
N
o
3
|
.

Figure 4.2 Sequence Diagram of Load Document (CTA-Trainer)

Diction Identifier 35

Chapter 4 Design

Glear_seript | ! - Traner

-

HTML Tagsy -

§

Proprocassed Data

4.3 Sequence Diagram of Normalization (CTA-Trainer)

28,

Gaf; ngrems: . ﬁl‘;k

e E N . . :Ca[wlag e a‘nd‘,;-
ypdate waights

T ZSaves ngrams dnd ST
wmgms in data folder .

Figure 4.4 Sequence Diagram of Generate n-grams(CTA-Trainer)

26

Diction Identifier

Chapter 4

finalizer foldé

£

i data

Figure 4.5 Sequence Diagram of Finalizer (CTA-Trainer)

Diction Identifier

27

Chapter 4 Design

¢
3
1
g

ZlteniiBer

b e

Wty MR T s
)

M

D T P

it e i i it v o A A, S G o e i i, S A ot B et S
- e e e e A . A —— —— A A o

Figure 4.6 Sequence Diagram of CTA Identifier

T ok | [e,

4
- N
—_—

g e

éf _,_". - H

" Loads Unique
Jang dicts

by = f [0 ol

L Iqar‘

P . N S e L .

Figure 4.7 Sequence Diagram of DBI Identifier

Diction Identifier - 28

CHAPTER 5

IMPLEMENTATION

Chapter § Implementation

5. IMPLEMENTATION
Web interface for the system has been developed using PHP & HTML. All other

components of the system have been developed using Python.

The modules in the system can be divided into the following categories:

5.1 Unicode and Utility Modules
5.2 Dictionary Based Modules
- Training Modules
- Identification Modules
5.3. Caynar's and Trenkle's Algorithm modules
- Training Modules
- Identification Modules

5.1 Unicode and Utility Modules

5.1.1 Inter-Document Maltiple Script Identification (inter_lang_id.py)
This module is used to detect multiple scripts within a single document. Given the data it

returns chunks of each script.

Detecting and Returning multiple scripts within the same data;

def get lang portions{data):

i=0

Li=0
current_script=""
5i=0
script = '

#print repr(data)

for ch in data:
cat=unicodedata.category (ch)
#print "cat: %s" % (cat)

if cat{:1] == 'L':

Li= i

#print "ch Name: " + unicodedata.name (ch)
script = unicodedata.name{ch)
script=script.split(}

29

Diction Identifier

Chapter 5 Implementation

script = script(0]

#print "Script: %s, i: %i, Li: %i" & (script, i, Li)

if current script != script:

#print "IN IF: Current Script: $%s, script: %s" %
(current script, script)

L.append{current script)
L.append(Si}
L.append (Li)

big list.append(L)

L=[]
Si=Li
current script=script

i4= 1

L.append{current_ script)
L.append (Si}) '
L.append (Li)

big list.append(L)

L={]

Si=Li1

current script=script
del big 1ist[0]
return (big list}

5.1.2 Document Conversion (data_conversion.py)
This module is used to read various forms of input documents and return their data,

ignoring any formatting and other info they may contain. Type of the document is detected
using its file extension and data from the document is ready accordingly.

Reading data from different types of documents:

def get file data(filename):
fileparts = filename.rsplit(".",1}
file ext = fileparts(1]
#print repr(file ext)
file ext = file ext.lower()

Diction Identifier 30

Implementation

Chapter 5
if "htm" == file ext or "html" == file_ ext:
fd = codecs.open(filename, 'r',encoding = 'utf-8")
data = fd.read()
fd.close()
data = html cleaner.clear_html (data)
if "txt" == file ext or "text" == file ext:
fd = codecs.open(filename, 'r',encoding = 'utf-8')
data = fd.read()
fd.close{)
if "pdf" == file_ext:
cmd = "pdftotext %s $s" % (filename, filename + '.txt')
#print cmd
os.system(cmd)
fd = codecs.open(filename + '.txt','r',encoding =
'utf-8")

data = fd.read{)

fd.close()
os.system ("rm %s" % (filename + '.txt'))

return data

5.1.3 HTML Cleaner (ktml_cleaner.py}
This module is used to clear html tags, comments etc from html documents. Regular

expressions are used to clear off any html tags from the document. Any javascript and style
information present in the document is also removed

Clearing HTML fermatting information from a document:

def clear html {(d):
#define the regular expression to be matched

r =

re.compile ("<script.*?>.*<\/script>]<style.*?>, *<\/style>|{<\
/2\w.*?>|<\1=~|-=->| ", re.M + re.S + re.I + re.U)

d = r.sub{"",d) _

return d

5.1.4 Document Cleaner {doc_cleaner.py)
This module is used to remove alphabets of one language from documents of another

language. Its used in "purifying"” the training documents before using them for training. For
example, using this module Roman alphabets can be removed from non-Roman languages

like Urdu, Arabic, Chinese etc.
The data and a list of alphabets that need to be removed are passed to the function.

Diction Identifier 31

Chapter 5 Implementation

Removing alphabets of other scripts from a document:

def clear script(d,list):
d2 =Tu
for c¢h in d:

if ch in list:
#fiprint repr(ch)
d2 = a2 + ch
return d2

5.1.5 File Folders Utilities (myutils.py)
This module is used for misc functions like getting a list of files and folders in a given path.

Function to get a list of files and folder in given patb:

def get folders files(folder name]j:

directories = []

files = []

for r,d,f in os.walk(folder name):

if r == foldexr name:

directories = d
files = £

return (directories,files)

5.1.6 Normalization (Pre_Processing.py)
This module is used for normalizing input data by removing tab and new line characters etc.

and converting multiple spaces to single space.

Function to normalize given data:

def normalize{d):
d = d.replace("\n"," ")
d = d.replace{"\t"," ")
d = d.replace{"\r"," ™)
while -1 !'= d.find(" "):

" " n)

d = d.replace(" .

return (d)

Diction ldentifier 32

Chapter 5 Implementation

5.2 Dictionary Based Modules
5.2.1 Dictionary Based Identification - Trainer (DBI_Trainer.py)

This medule generates unique character lists from given input files. These lists are later
used for dictionary based language identification.

unigue list generation from input document :

dllist= []
fd = codecs.open(sys.argv([l],'r"',encoding = "utf-B’}
unicode_string = fd.read()
for unicode_char in unicede_string:
if unicode char not in dllist:
dllist.append{unicode char)

dllist.sort{)

5.2.2 Dictionary Based Identification - Identifier (DBI_Identifier.py)

This module performs dictionary based language identification. A List of unique
characters in the input document is generated and is compared against each list of unique

characters for supported languages.
Dictionary based language identification :

def dict_id{data):
DL = Uni_ char doc(data)
big list=[]
(folders,f) = myutils.get folders files('./lang dicts')
#print repr(folders)
script_dict = {}
for script folder in folders:
script dict= { 'name’ :script folder}
script dict['langs'] = []
(f,files) =
myutils.get folders files('./lang dicts/' + script_folder)
L={]
fprint repr(files)
for lang file in files:
Li = cPickle.load(codecs.open('./lang dicts/'
+ script folder + '/' + lang file,'r'))

L = [lang file]
match count = 0

for ch in DI:

Diction Identifier 33

Implementation

Chapter 5
if ch in Li:
match_count +=1
L.append(match count)
script _dict['langs'].append (L)
big list.append(script dict)
return big list

5.3 Cavnar's and Trenkle's Algorithm Modules

5.3.1 N-Grams Generator (ngrams.py)

This module serves for generating specified n-grams (1-grams, 2-grams, 3-grams, etc.)

from given data. This module is used at many occassions by modules of this category.

The n-gram generator function :

def getngrams(d,n=3):
1=len(d}
n = inti{n)
d=d+df:n-1]
list = []
for i in rangef{l}:
list.append{(d[i:i+n])}
return list

Diction Identifier

34

Chapter 5 Implementation

5.3.2 Trainer (trainer.py)

-

This trainer module is used to train the system for more language or to further improve the
learning of the system for already trained languages. It takes two arguments, a language
name and an input document. If the language has previously been trained then previous
stats are loaded and after processing the new document stats are updated and stored again.
If the language has not been previously trained, new stats are generated and stored.

1-gram training code snippet :

if os.path.isdir("./data/" + sys.argv([l]):
dict lgram = cPickle.load{codecs.open("./data/" + sys.argv{1l] +

“/igrams.dat®™, ‘"))

dict_2gram = cPickle.load(codecs.open(”./data/" + sys.argv[1)
+ "/2grams.dat", 'r')}

dict 3gram = cPickle.load(codecs.copen("./data/" + sys.argv[l] +
"/3grams.dat",’'r'}))

dict 4gram = cPickle.load{codecs.open("./data/" + sys.argv[1l] +
"/dgrams.dat", 'r'))

else:
os.mkdir("./data/" + sys.argv(1l] }
dict_lgram = {}
dict_2gram = {}
dict 3gram = {}
dict_4gram = {}

for filename in sys.argv[2:]:

print "Reading File: " + filename
starttime = time.time ()
filename = codecs.open(sys.argv([2],'r', encoding = "utf-8')

d = filename.read()
filename.close()
endtime = time.time ()
difference = endtime - starttime
print "Read Time : " + str{difference)
print "Normalizing: "
starttime = time.time()
d = Pre Processing.normalize (d}
endtime = time.time ()
difference = endtime - starttime
print " time: " + str{difference)

print "Getting ngrams: *

starttime = time.time ()

ng = ngrams.getngrams(d, 1)
endtime = time.time(}

difference = endtime - starttime

print " time: " + str(difference)

Diction Identifier 35

Chapter 5 Implementation

one_grams = {}
print "Calculating Weights:
starttime = time.time{)
for n in ng:
if one grams.has_key(n):
one grams[n]+=1
else:
one grams|[n]=1

L)

endtime = time.time (]}
difference = endtime - starttime
print " time: " 4 str(difference)

for k in one_grams:
if dict_lgram.has_key(k):
dict_lgram{k]=one_grams{k] + dict_lgram[k]
else:
dict lgram[k}=~one grams[k}

cPickle.dump(dict lgram, codecs.open{"./data/" + sys.argv[1l] +
"/lgrams.dat”,"w"))

5.3.3 Training Finalizer (training_finalizer.py)

After enough training documents have been used to train for languages, the training
finalizer module is used to sort the stats and trim them to the top C (¢=1000 used) most
frequent n-grams for each language. The results of this module are used for language

identification by the identifier module.
The training finalization phase :

dict = cPickle.load{codecs.openisys.argv([1],'r"'})
¢ print repr{dict)
list = dict sort(dict,’'d")
list = list[:int(sys.argv([3])]
print repr{list)
cPickle.dump{list, codecs.open(sys.argv[2], "w"})

5.3.4 Uniqueness Calculator (uniqueness_calculator.py)

This module trains the system for an allernate improvement to Fisher Discriminant
function. For each n-gram in every language, its uniqueness value is calculated. N-grams
that are more unique across languages are given higher weight-age during language
detection.

Calculating uniqueness of 4-grams :

lang folders = myutils.get folders files("data_ finalizer”)

Diction Identifier 36

Chapter 5 Implementation

lang folders[0]
len{lang_folders)

lang folders
folder count

for ng in L_4gram:
Ung = C * folder_count

for 1 in lang folders:
1_4gramlist = cPickle.load(codecs.open('./data_finalizer/' + 1 +

'/dgrams.dat', 'r"))

if ng in]1_4gramlist:
index = 1_4gramlist.index(ng)

Ung = Ung - index

unique_dict[ng] = Ung

cPickle.dump (unique dict, codecs.aopen("./data_finalizer/" + lang +
"/u 4grams.dat”, "w"))

5.3.5 Stats Comparison Module (caomparision.py)

This module compares input document stats against uniqueness and frequency stats of a
language and returns the results. It is used by the language identified moduies for

comparing languages for a given doc.

Comparing n-gram stats :

def compare ngrams{G,Gi,Ui,C):
similarity list = [0,0,0,0]

for en in range(0,4):
listl = Gien]
lisgt2 = Gilen]
U dict = Uilcn]
current difference = 0
for ngrams in listl:
if ngrams in list2:
indexl = listl.index(ngrams)
index2 = list2.index(ngrams)
current difference = current difference + (indexl - index2)
if U dict.has key(ngrams):
u _value = U _dictingrams)
current_difference = current difference - (u_value/100)

else:
current difference = current difference + (C+l)
if U_dict.has_key(ngrams):
u_value = U_dictngrams]
current_difference = current difference - (u_value/100)

Diction Identifier 37

Chapter 5 Implementation

fcurrent difference = current difference / 100
similarity list[cn] = current difference

return(similarity list)

5.3.6 CTA Identifier (CTAlgo_detector.py)

This module performs language detection for the C&T algorithm. It takes an inmput
document and prints language match percentages for that document.

code snippet of matching by one_grams:

def get match_count (unicode_string):
C = 1000
#return normalized data
#print "Time For Normalizing :"
#start time = time.time()
normalized doc = Pre Processing.normalize(unicode string)

fendtime = time.time()
#difference = endtime - starf time
#print " Time for Normalization: " + str{(difference)

#Return All the n-grams of normalized data
G =[]

#print "Getting lgrams:
#starttime = time.time()
ngl doc = ngrams.getngrams(normalized doc,1)
#endtime = time.time ()

#difference = endtime - starttime

$print " Time for all l-grams: " + str{difference)

"

one_grams = {}
#print "Calculating Weights:
#starttime = time. time(}
for n in ngl _ddc:
if one_grams.has key({n}:
one_grams [n]+=1
else:
one grams[n}=1

n

Diction Identifier 38

Chapter 5 Implementation

5.3.7 Fisher Discriminant (fisher_discriminant.py)

This module performs language detection by using C&T algorithm along with the Fisher
Discriminant Improvement. It takes an input document and prints language match

percentages for that document.

This module is implemented as one class that performs all operations for fisher
discriminant based C&T algo language detection. Every thing from training to detection is
performed by the same module.

calculating mean frequencies:

def calculate mean fregs{self):
self.load all ngrams{)
self.load all normalized fregs(})
total_ngrams = len(self.all ngrams)
print "A\nCalculating mean frequencies for all ngrams"
print "Total N-grams: %i" % total_ngrams
current count = 0
st = time.time()

mean fregs = {}
for ngram in self.all ngrams:
current_count += 1
f = self.get mean freq(ngram)
mean_ fregs[ngram) = £
if 0 == current_count % 100:
ct = time.time ()}
elapsed_time = ct - st
remaining ngrams = total ngrams - current_count
remaining time = (elapsed time/current count] *
remaining_ngrams
pPrint "calculating %i/%i, time elapsed: %i, estimated time
remaing: $i" % (current_ count, total_ngrams, elapsed_time, remaining time)

return(mean fregs})

Diction Identifier 39

CHAPTER 6

RESULTS

Chapter 6 Results

6. RESULTS

In this chapter various statistics generated and observations made during the system
development process are presented.

6.1 Training Documents

Training documents are the very basis of successful language identification. Picking
suitable training documents and cleaning them correctly before feeding to the system for
learning is the most important part to ensure the accuracy of the system. While picking
training documents following precautions were taken:

e Topic specific technical documents containing the same words or phrases again and

again were not picked.

e All formatting information and languages other than the language for which the
document would be used for training were removed.

e Total data size of training documents for each language was kept roughly equal to
avoid any bias toward an heavily trained language.

e All documents were save in UTF-8 encoding.

Given below is the list of training documents used for each language along with their sizes

root@fouzia:/Project/training documents# 1ls -1hR

total 5.5K
root root 528 2005-12-26 14:07 arabic/

drwxr-xr-x 2

drwxr-xr-x 2 root root 208 2006-01-01 01:46 chineese/
drwxr-xr-x 2 root root 96 2005-12-26 13:42 english/
drwxr-xr-x 2 root root B0 2006-01-01 01:47 french/
drwxr-xr-x 2 root root 144 2006-01-01 01:49 german/
drwxr-xr-x 2 root root 208 2005-12-25 15:15 italian/
drwxr-xr-x 2 root root 176 2006-01-01 01:50 japancese/
drwxr-xr-x 2 root root 488 2006-01-01 01:51 persian/
drwxr-xr-x 2 root root 208 2006-01-01 01:52 spanish/
drwxr-xr-x 2 root root 400 2005-12-26 13:57 urdu/
.farabic:

total 260K

-rw-r—-r—— 1 root root 1.7K 2005-12-26 14:05 arabicl.txt
-rw-r——-r-- 1 root root 25K 2005-12-26 14:06 arabiclO.txt
-rw-r——r-- 1 root root 31K 2005-12-26 14:06 arabicll.txt
-rw-r-—-r—-— 1 root root 51K 2005-12-26 14:06 arabicl2.txt
-rw-r——-r-- 1 root root 26K 2005-12-26 14:07 arabicl3.txt
-rw-r--r-~ 1 root root 5.8K 2005-12-26 14:07 arabicld.txt
-rw-r--r-- 1 root root 18K 2005-12-26 14:07 arabicl5.txt
-rw-r--r—-~ 1 root root 3.2K 2005-12-26 14:05 arabic2.txt
-rw-r—--r—- 1 root root 30K 2005-12-26 14:05% arabic3.txt
-rw-r--r-— 1 root root 5.8K 2005-12-26 14:05 arabic4.txt
~rw-r-—r-— 1 root root 4.0K 2005-12-26 14:06 arabich.txt
-rw-r--r-— 1 root root 9.1K 2005-12-26 14:06 arabicé.txt
-rw-r--r-- 1 root root 6.1K 2005-12-26 14:06 arabic7.txt

40

Diction Identifier

Results

Chapter 6

—rw-r——-r-- 1 root root 89.9K 2005-12-26 14:06 arabic8.txt
-rw-r—-—-r—— 1 root root 7.2K 2005-12-26 14:06 arabic9.txt
./chineese:

total 312K

~rw-r--r-- 1 root root 67K 2005-12-26 13:32 chineese2 clean.html
—rw-r--r-- 1 root root 30K 2005-12-26 13:32 chineese3 clean.html
-rw-r--r—— 1 root root 72K 2005-12-26 13:33 chineese5 clean.html
—rw-r--r-- 1 root root 140K 2005-12-26 13:33 chineesef_clean.html
./english:

total 340K

-rw-rw-r-- 1 root root 336K 2005-01-03 03:09 132.txt

-rw-r-——-r—-- 1 root root 2.4K 2005-11-11 06:08 new.txt

./french:

total 260K

-rwxr-xr-x 1 root root 258K 2005-12-25 15:15 french2.html*
./german:

total 304K

~rwxr-xr-x 1 root root 44K 2005-12-25 15:15 german2.txt*
-rwxr-xr-x 1 root root 83K 2005-12-25 15:15 germand.txt*
-rwxr-xr-x 1 root root 175K 2005-12-25 15:15 german5.txt*
./italian:

total 276K

~rWXr-xr-x 1 root reoot 45K 2005-12-25 15:15 italianl.txt*
—rwxr-xr-x 1 root root 59K 2005-12-25 15:15 italian2.txt*
~rwxr-xr-x 1 root root 114K 2005-12-25 15:15 italian3.txt*
-rwXr—-xr-x 1 root root 17K 2005-12-25 15:15 italiand.txt*
-rwxr-xr-x 1 root root 29K 2005-12-25 15:15 italian5.txt*
./japaneese:

total 260K

-rw-r—-r-- 1 root root 35K 2005-12-26 13:54 japaneesel.txt
-rwWw-r--r-- 1 root root 78K 2005-12-26 13:55 japaneeseZ.txt
-rw-r--r-- 1 root root 106K 2005-12-26 13:55 japaneese3.html
~rw-r--r-- 1 root root 36K 2005-12-26 13:55 japaneese5.html
./persian:

total 396K

-rw-r--r-- 1 root root 28K 2005-12-26 13:46 persian_clean.txt
-rw-r--r--~ 1 root root 20K 2005-12-26 13:28 persian cleanl.txt
-rw-r--r-— 1 root root 45K 2005-12-26 13:47 persian_cleanlO.html
-rw-r--r-- 1 root root 32K 2005-12-26 13:29 persian_clean2.txt
-rw-r--r—-—- 1 root root 41K 2005-12-26 13:29 persian_clean3.txt
—rw-r--r-- 1 root root 49K 2005-12-26 13:29 persian cleand.txt
-rw-r--r-- 1 root root 33K 2005-12-26 13:30 persian clean5.txt
-rw-r--r-- 1 root root 34K 2005-12-26 13:30 persian_clean6.txt
~rWw-r--r-- 1 root root 17K 2005-12-26 13:30 persian_clean7.txt
-rw-r--r-- 1 root root 51K 2005-12-26 13:45 persian clean8.txt
-xw-r--r-— 1 root root 28K 2005-12-26 13:45 persian_clean9.txt

. /spanish:

total 228K

—rwxr-xr-x 1 root root 62K 2005-12-25 15:15 spanishl.html*

Diction Identifier

41

Chapter 6 Results

root root 53K 2005-12-25 15:15 spanish2.html*

-rwxr=-xr-x 1

-rwxr-x*r-x 1 root root 35K 2005-12-25 15:15 spanish3.html*
-rwxr-xr-x 1 root root 63K 2005-12-25 15:15 spanish4.html*
-rwxr-xr=-x 1 root root 4.3K 2005-12-25 15:15 spanish5.txt*
./ardu:

total 212K

-rw-r--r-—- 1 root root 19K 2005-12-26 13:56 urdul.txt
-rw-r--r-- 1 root root 41K 2005-12-26 13:57 urdull.txt
=rw-r—--r—-— 1 root roct 32K 2005-12-26 13:57 urdull.txt
—-rw-r--r-—~ 1 root root 9.3K 2005-12-26 13:56 urduZ.txt
-rw-r--r-- 1 root root 6.3K 2005-12-26 13:57 urdu3.txt
-rw-r--r-- 1 root root 15K 2005-12-26 13:57 urdud.txt
-rw-r—--r-- 1 root root 9.9K 2005-12-26 13:57 urdu5.txt
-rw-r-—-r—— 1 root root 15K 2005-12-26 13:57 urdub.txt
-rw-r--r-—- 1 root root 14K 2005-12-26 13:57 urdu?.txt
-rw-r--r-— 1 root root 14K 2005-12-26 13:57 urdu8.txt
-rw-r--r-- 1 root root 18K 2005-12-26 13:57 urdu9.txt

6.1.1 Training Languages and Scripts

10 languages belonging to 4 different scripts have been used to test out the system training
and identification phases. The scripts are Arabic, Chinese, Roman/Latin, Japanese. The
languages used are Arabic, Chinese, English, German, French, Italian, Japanese, Persian,
Spanish and Urdu.

6.2 Test Environment

All statistics were gather by running the system on a 2.4 GHz P-IV system with 256 MB
RAM. Operating system used is GNU Linux 2.4.31#6 (Distribution: Slackware 10.2). No
processor intensive tasks were performed during the statistics gathering process.

6.3 Algorithm Wise Timing and Accuracy Statistics

Given below is are timing and accuracy statistics grouped by each algorithm used in the
language. These serve as the facts that support our conclusions.

6.3.1 Dictionary Based Identification

Training for Dictionary Based Identification is very fast and new languages can be trained

in a matter of seconds (even milliseconds).
A snippet of a training session of training a few languages for DBI is given below:

root@fouzia:/Project/src# ls -lh ../training documents/english/132.txt
~r'w-rw-r-— 1 root root 336K 2005-01-03
03:09 ../training documents/english/132.txt

root@fouzia:/Project/src#
time ./DBI_Trainer.py ../training documents/english/132.txt

Diction Identifier 42

Chapter 6 Results

u'#', u's',
u'l', u'2"',
u'A', u'B',
uth' ulol'
u'[', u')’,
u'i', u'j', v'k’,
u'v', u'w', u'x’,
u's', u n's',
ut2', utd?’,
u'B', u'bD',
ulol' ulQl'

ui"l'
u'o’',
u'@',
u'Mm',
u'z’',

!' u'l'!l’
I' u‘/',
', ul?l’
u'l’',
un'y',
u'h',
u'u',
'#"
ulllt
U'A',
ulNl’
ul[l' u']'l

lang dicts/roman/en.dict [u'\n', u'i\r', u'
ul&l’ u"'"; u.('r ul)l' u'*l’ u',!, ul_l' u'.
'Ll'4‘, u15l’ ulGI' u'?', u.Bl, ulgl'ulzl'ut;
u'D!, U‘E', ulFl’, ulGl' u'Hl, ull’!’ ulJl' uTKl’
ul‘Ql, ulR" u's'l, U'T" u'Ul’, ulvl" ulwf, u'xlr
'I.l"', ulaI’ ulb!' ulcl’ uldl' u'el' ulflr ulgl'
ulm|’ u‘n., u|0r' ulpl' ulql' u!r|' U'S', u!tt'
u'z', urll] [u’\n', U.'\I", U.' |’ u'!', ullll' u
ul'(l' ul)l' ul*l’ ul’l' u!_r' U.'.', u'/', 11'0';
u'lGl' U'7', U'B', ulgl’ ut:|' ul;c' 'Ll'?', u'@',
U'F', ulGi, uIHI’ ulIl’ u‘Jl’ ulKl’ ulLl’ ulMl’
ulS!’ u'T', u'Ul" ulvl’ ulwl,_ufxl' 11'&",I ulz',
'Ll'b', U'C', uldl’ ul'el' ulfl’ u'g'f ul‘hl’ ulil' u'jf' ulkf’
ulol’ ulpl, ulq!’ ulrl' ulsl’ ultl’ ulu|’ ulvl‘ ulwI’ ulx"
real Om0.758s user 0m0.730s sys Om0.000s

I%l'
'3',
lCl‘I
IPI"

ruttty

'
', u'm',
routze,

u
u
u
ul‘
u'I
ul'y u"ll]

rooct@fouzia:/Project/src# 1s -1h ../training documents/german/german2.txt
—-rwxr-xr-x 1 root rocot 44K 2005-12-25 B

15:15 .. /training documents/german/german2.txt* root@fouzia:/Project/src#
time ./DBI_Trainer.py ../training documents/german/germanZ.txt
lang dicts/roman/de.dict [u'\n', u' ', u'!’, u'"', u"'", w" {', u')', u',’',
ul_l' u'. r, uf/lf ulor’ ullrr u'2‘,. U'3', IJ'4', D'S', uisuf ul'?!’ ulal’ ulg!'
u!:l’ u';', u|>l’ ut?l' ulAI' U'B', 'IJ'C', 'I.l'DT, uIEI’ ulFl' u'G', ulHl, ulIl,
u'J', u'K', u'Ll’, u'™', u'N', w'0', u'P', u'R', u'S', u'T', wW'U', WV', u'w',
ulZI' ular' U'b', U'C', uldl' ule!' 'L]'f', U'g., ulhl’ ulil' u'j', u'k', U'l',
ulml’ u!n|' ‘u'ol' ulpl’ u!q!' ulrf’ U'S', u!tt’ ulul' U'V', u'w', U'X', uuyr'
u'z', u'\xa%9', u'\xcd', u'\xdc', u'\xdf', u'\xed4*, u'\xfe6', u'\xfc']
{ul\nf’ ul I’ u!’!t’ ul’"!’ uﬂ!"" ul(l' ul‘}l’ u'l'l u!_l' uI'-I' ul/"' ulo"
ulll' ul2|’ u'31’ ul'q!' ul5|’ ul'Gl' ul']l! utal’ ulgl’ u!:l’ U'F'.r ul’>l’ ul’?l'
u'A', u'B', u'C', u'D', u'E', u'F', u'G', w'H', u'l', u'J', u'K’', u'l', u'M',
u‘NI’ ulol’ ulP'l’ uTRI' ulsl, ulT', UIU" 'Ll'V', uIW" ul’Z(’ ula', ul’b" urct’
uldl' ule'l', uffl' ulg!" ulhl’ uli‘, U'j'; u!kl’ ulll’ ulml' U'n', ulOI’ u'pl'
u'g’,u'r',u's’, u't', uw'u',u'v', u'w', u'x',; u'y', u'z', u'\xa?%', u'\xcd’,
u'\xdc', u'\xdf’", u'\xed', u'\xf6', u'\xfc']

real
user
sys

Om0.117s
Om0.09%0s
Om0D.010s

As can be seen, training DBI for a new language takes under a second in most cases.

Language detection with DBI is equally fast. Here is a sample run session in which a
multi-lingual document contain Arabic, Urdu, English, German language paragraphs
(chunks) is processes.

root@fouzia:/Project/src# time ./lang identifier.py inter doc.txt UDBI
Scripts Found: ARABIC, LATIN, FEMININE,

Chunk Data From Starting Byte:0 To Ending Byte:22
Top 3 Languages Identified By Dictionary Based Method :
1. Arabic [13]
2. pr [11]
3. Uxdu [10]

Diction Identifier 43

Chapter 6

Chunk Data From Starting Byte:22 To Ending Byte:2185

Top 3
1. German [56]
2. sp [55]
3. French [53]

Chunk Data From Starting Byte

Top 3 Languages Identified
1. Urdu [0]
2. sp [0]
3. pr {0]

Chunk Data From Starting Byte:

Top 3 Languages Identified
1. sp [35]
2. English [33]
3. German [33]

Chunk Data From Starting Byte:

Top 3 Languages Identified
1. Arabic [3B]
2. Urdu [32]
3. pr [32)

Chunk Pata From Starting Byte:

Top 3 Languages Identified
1. sp [34]
2. English [34]
3. French [33]

Chunk Data From Starting Byte:

Top 3 Languages Identified

1. Urdu [45]
2, pr [36]
3. Arabic [32]

Chunk Data From Starting Byte:

Top 3 Languages Identified

1. sp [66]
2. English [63]
3. German [61]

real OmQ.334s
user Om0.300s
sys Om0.030s

:2185 Teo Ending Byte:

By Dictionary Based

By Dictionary Based

By Dicticnary Based

By Dictionary Based

By Dictionary Based

By Dictionary Based

2186 To Ending Byte:

2518 To Ending Byte:

3721 To Ending Byte:

4123 To Ending Byte:

6451 To Ending Byte:

Languages Identified By Dictionary Based Method

2186

Method :

2518
Method

3721

Method :

4123
Method

6451
Method

9409
Method

This shows the effectiveness of DBI as quick and quite reliable detection mechanism for

Diction Identifier 44

Chapter 6 Results

high performance requirements.

6.3.2 CTA without FF modification

This algorithm is the more accurate but more slow too. Training phase for this algorithm
requires hours and if n-grams for n>4 are to be used (5-grams, 6-grams etc.) it can span to
days and even months and would require huge storage requirements. However it was
noticed that results upto 4-grams are most satisfactory. Using n > 4 results in degradation

of accuracy.

Training the algorithm is a 3 step process. First documents are fed against a language for
training. Once enough documents for each language have been fed to generate accurate
n-gram frequencies, the generated lists are sorted and trimmed to top 1000 elements.

Sample of training sessions for a few Arabic and Urdu documents is given below. For
larger documents, generating 4-grams can take hours.

root@fouzia:/Project/CT_Algo# ./trainer.py ar
/Project/documents/cleaned documents/arabic/arabicl0.txt
Reading File: /Project/documents/cleaned documents/arabic/arabiclO.txt
Read Time : 0.02925705390973

Normalizing:

time: 0.00265288352966

Getting ngrams:

time: 0.031350851059

Calculating Weights:

time: 0.0387530326843

Generating 2grams:

time: 0.100138187408

generating 3 grams:

time: 0.205411195755

generating 4 grams:

time: 0.4550981521¢61

root@fouzia:/Project/CT_Algo# ./trainer.py ar
/Project/documents/cleaned documents/arabic/arabiclO.txt
Reading File: /Project/documents/cleaned documents/arabic/arabiclC.txt
Read Time : 0.0292570590973
Normalizing:

time: 0.00265288352966
Getting ngrams:

time: 0.031350851059
Calculating Weights:

time: 0.0387530326843
Generating Z2grams:

time: 0.100138187408
generating 3 grams:

time: 0.205411195755

generating 4 grams:

time: 0.455098152161

root@fouzia: /Project/CT Algo# ./trainer.py ur

Diction Identifier 45

Chapter 6 Results

/Project/documents/cleaned documents/urdu/urdu6.txt
Reading File: /Project/documents/cleaned documents/urdu/urdu6.txt
Read Time : 0.0267460346222
Normalizing:
time: 0.00266599655151
Getting ngrams:
time: 0.00911808013916
Calculating Weights:
time: 0.0296800136566
Generating 2grams:
time: 0.0721571445465
generating 3 grams:
time: 0.154779195786
generating 4 grams:
time: 0.324899196625
root@fouzia: /Project/CT _Algo# ./trainer.py ur
/Project/documents/cleaned documents/urdu/urdu?.txt
Reading File: /Project/documents/cleaned_decuments/urdu/urdu?.txt
Read Time : 0.0137910842896
Normalizing:
time: 0.00247097015381
Getting ngrams:
time: 0.00782513618469
Calculating Weights:
time: 0.0287661552425
Generating 2grams:
time: 0.0689010620117
generating 3 grams:
time: 0.153650045385
generating 4 grams:
time: 0.325874090195

After all langnages have been sufficiently trained, the whole set is sorted, trimmed to top
1000 n-grams (1-grams to 4-grams) for each language and uniqueness value for each
n-gram is calculated.

A session of this process on our test documents is given below:

root@fouzia:/Project/src# time ./finalize_CTA training.sh
Finalizing Training for Arabic

Finalizing Training for Chinese

Finalizing Training for German

Finalizing Training for English

Finalizing Training for French

Finalizing Training for Italian

Finalizing Training for Japanese
Finalizing Training for Persian
Finalizing Training for Spanish

Finalizing Training for Urdna

Calculating uniqueness wieghts for Arabic
Calculating uniqueness wieghts for Chinese
Calculating uniqueness wieghts for German
Calculating uniqueness wieghts for English
Calculating uniqueness wieghts for French

Diction Identifier 46

Chapter 6 Results

Calculating uniqueness wieghts for Italian
Calculating uniqueness wieghts for Japanese
Calculating unigueness wieghts for Persian
Calculating uniqueness wieghts for Spanish
Calculating uniqueness wieghts for Urdu

real 160m1%.854s
user 159m3.190s
sys 0m47.720s

This shows that for approximately 2.7 MB of training documents the process took 2 hours,
40 minutes and 19 seconds. It must be noted that this is still faster than the fisher

discriminant version of CTA.

Language Identification using this method is also somewhat slow but can be used in most
usage scenarios. Here is a sample run on the same document which was used for DBI.

root@fouzia: /Project/src# time ./lang identifier.py inter doc.txt CTA
Scripts Found: ARABIC, LATIN, FEMININE,

Chunk Data From Starting Byte:0 To Ending Byte:22
Top 3 Languages Identified By FF CT_Algo Method :
1. Arabic [111.51, 121.67, 137.5, 118.23]
2. pr [101.57, 92.27, 17.85, 0.0]
3. French (0.0, 0.0, 0.0, 0.0]

Chunk Data From Starting Byte:22 To Ending Byte:2185
Top 3 Languages Identified By FF CT Algo Method :
1. German [101.06, 101.61, 51.11, 27.2]
2. pr {0.0, 0.0, 0.0, .0.0]
3. French [95.99, 92.05, 34.48, 10.17]

Chunk Data From Starting Byte:2185 To Ending Byte:2186
Top 3 Languages Identified By FF CT Algo Method :
1. pr [0.0, 0.0, 0.0, 0.0]
2. French [0.0, 0.0, 0.0, G.0]
3. English [0.0, 0.0, 0.0, 0.0]

Chunk Data From Starting Byte:2186 To Ending Byte:2518
Top 3 Languages Identified By FF CT Algo Method
1. English [103.88, 114.31, 83.72, 52.16}
2. sp [110.65, 112.98, 75.32, 30.24]
3. pr (0.0, 0.0, 0.0, 0.0}

Chunk Data From Starting Byte:2518 To Ending Byte:3721
Top 3 Languages Identified By FF _CT Algo Method
1. Arabic [107.2, 115.B, 56.81, 28.14]
2. pr [95.44, 95.58, 24.13, 3.54)]

Diction Identifier 47

Chapter 6 Results

3, French [0.0, 0.0, 0.0, 0.0]

Chunk Data From Starting Byte:3721 To Ending Byte:4123
Top 3 Languages Identified By F¥ _CT Algo Method :
1. English [110.43, 111.85, 90.62, 51.64]}
2. German [107.27, 114.39, 48.82, 10.65]
3. sp [210.76, 113.65, 77.53, 28.24]

Chunk Data From Starting Byte:4123 To Ending Byte:6451
Top 3 Languages Identified By FF_CT Algoc Method :
1., Urdu [110.18, 116.23, 62.39, 39.77}
2. pr [B4.5%6, 91.09, 27.79, 6.21}
3. French [0.0, 0.0, 0.0, 0.0]

Chunk Data From Starting Byte:6451 To Ending Byte:94(09
Top 3 Languages Identified By FF CT_Algo Method ;
1. English [91.46, 91.26, 52.92, 23.24]
2. sp [99.86, 90.59, 47.06, 18.1)
3. pr [3.05, 0.35, 0.0, 0.0]

real Oml7.303s
user Oml6.420s
sys Om0.130s

As can be seen it is around 52 times slower than DBI. However language detection is more
accurate than DBL

6.3.3 CTA with FF modification

Fisher discriminant function uses another approach proposed and used in the past for
finding n-gram uniqueness across languages.

The first step in training is to generate a list containing all unique n-grams found in all
training documents available.

root@fouzia:/Project/src# ./fisher discriminant.py

Language: urdu
File: urdul.txt
File: urdu?2.txt
File: urdu3.txt
File: urdud.txt
File: urdub.txt
File: urdu6.txt
File: urdu7.txt
File: urduB.txt
File: urdu9.txt

Diction Hdentifier 48

Chapter 6 Results

File: urdulO.txt

File: urdull.txt
Language: japaneese

File: japaneesel.txt

Total Ngrams: 47372

time: 3926.53322601

The process took 1 hour and 5 minutes.
Second step is of calculating frequencies of all n-grams in each training document.

root@fouzia:/Project/src# ./fisher discriminant.py
arabic; ./fisher discriminant.py chineese; ./fisher_discriminant.py
english; ./fisher discriminant.py french; ./fisher discriminant.py
german; ./fisher discriminant.py italian; ./fisher discriminant.py
japaneese; ./fisher_discriminant.py persian; ./fisher_discriminant.py
spanish; ./fisher discriminant.py urdu
File: arabiclO.txt
File: arabicll.txt
File: arabicl2.txt
File: arabicl3.txt
File: arabicl4.txt
File: arabiclS5.txt
File; arabicl.txt
File:; arabicZ.txt
File:; arabic3.txt
File: arabic4.txt
File: arabich.txt
File: arabic6.txt
File: arabic7.txt
File: arabic8.txt
File: arabic9.txt
time: 16.9870109558
File: chineese2_clean.html
File: chineese3 clean.html
File: chineese5 clean.html
File: chineeseé clean.html
time: 188.355343103
File: new.txt
File: 132.txt
time: 242.632512093
File: french2, html
time: 120.97786808
File: german2.txt
File: germand.txt
File: german5.txt
time: 124.435526133
File: italianl.txt
File: italianZ.txt
File: italian3.txt
File: italiand.txt

49

Diction Identifier

Chapter 6 Results

File: italian5.txt
time: 75.2055030018
File: japaneesel.txt
File: japaneese2.txt
File: japaneese3.html
File: japaneese5.html
time: 106.28076911
File: persian_cleanlQ.html
File: persian clean.txt
File: persian cleanl.txt
File: persian_cleanZ.txt
File: persian_clean3.txt
File: persian_clean4.txt
File: persian_ cleanb.txt
File: persian_cleané.txt
File: persian_clean7.txt
File: persian_cleanB.txt
File: persian clean9.txt
time: 28.6899340153
File: spanishl.html
File: spanish2.html
File: spanish3.html
File: spanish4.html
File: spanishS5.txt
time: 91.8341488838
File: urdul.txt
File: urduZ.txt
File: urdu3.txt
File: urdud.txt
File: urdu5.txt
File: urdub.txt
File: urdu7.txt
File: urdu8.t=xt
File: urdu9.txt
File: urdul®.txt
File: urdull.txt
time: 14.1865110397

This process took 16 minutes.

The next stop of calculating normalized frequencies takes around 10 minutes.
The step of calculating mean frequencies take around 3-4 minutes.
Around 38 minutes are required to sort this list and trim it to top 1000 items.

The training phase concluded by generating language frequencies from the list generated in
the previous step. A session doing this is given below:

rootfifouzia:/Project/src# ./fisher discriminant.py arabic

Total N-grams: 47372
Calculating mean frequencies of all ngrams for language: arabic

Calculating fisher values of all ngrams for language: arabic

Diction Identifier 50

Chap[gr 1) Results

time: 21.7646238804
root@fouzia:/Project/srcd ./fisher discriminant.py chineese

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: chineese
Calculating fisher wvalues of all ngrams for language: chineese

time: 10.7011699677
root@fouzia:/Project/srcf ./fisher discriminant.py english

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: english

Calculating fisher values of all ngrams for language: english

time: B.76469802856
root@fouzia:/Project/src# ./fisher discriminant.py german

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: german

Calculating fisher values of all ngrams for language: german

time: 10.0287070274
root@fouzia: /Project/src# ./fisher discriminant.py french

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: french
Calculating fisher wvalues of all ngrams for language: french

time: 7.99114203453
root@fouzia:/Project/src# ./fisher discriminant.py italian

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: italian
Calculating fisher values of all ngrams for language: italian

time: 11.8043585592
root@fouzia:/Project/src# ./fisher discriminant.py japaneese

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: japaneese

Calculating fisher values of all ngrams for language: Jjapaneese

time: 12.897441864
root@fouzia:/Project/src# ./fisher discriminant.py persian

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: persian

Calculating fisher values of all ngrams for language: persian

time: 17.6784720421
root@fouzia: /Project/src ./fisher discriminant.py spanish

Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: spanish

Calculating fisher values of azll ngrams for language: spanish
time: 11.4607839584

Diction Identifier 51

Chapter 6 Results

root@fouzia: /Project/src# ./fisher discriminant.py urdu
Total N-grams: 47372

Calculating mean frequencies of all ngrams for language: urdu

Calculating fisher values of all ngrams'for language: urdu
time: 17.3237810135

This process takes around 96 seconds to complete.
Identification times for fisher discriminant are similar to FF modification. Here is a sample

run on a 36K document.

root@fouzia:/Project/src# ./fisher discriminant.py identify
/Project/sample.txt

spanish 47.7521386072

english 38.8319851158

french 31.7983005046

time: 11. 69'7'7_980137

Diction Identifier 52

CHAPTER 7

CONCLUSION AND FUTURE ENHANCEMENT

Chapter 7 Conclusion and Future Enhancements

7. Conclusion and Future Enhancements

7.1 Conclusion

Detection of multiple languages within a single script using Unicode meta data is most useful for
multi-lingual documents. Language chunks belonging to different scripts were always identified
and extracted correctly by this method. However, detecting language chunks belonging to same
script is not possible with this technique and requires further work.

Dictionary based identification serves well for script identification. Language identification results
give close match values for languages belonging to the same script as of the original documents.

The N-gram based implementations (CTA with FF modifications and Fisher Discriminant
Function) were found to be most accurate giving above 90% accuracy. Training phase of CTA
with FF was observed to take much less time than Fisher Discriminant. Identification times and

results for both variants were observed to be similar,

For very short documents (less that 30 characters) all algorithms were observed to perform badly
for language detection. However, accurate script detection of these documents using Unicode meta

info or Dictionary Based Identification was still accurate.

7.2 Future Enhancements

With the ever changing face of information in the computer world, more possibilities for
improving language detection are just around the corner. There are many standards and save
meta-data along with documents. The increasing adoption of such standards (like XML) will allow
use of document meta data for language identification.

Automatic generation of training documents without having the need to check them manually is
also a field that requires more research.

Detection of multiple languages belonging to the same script within a document is another field

that needs improvement.

Diction Identifier 53

REFERENCES

References

[1] Katia Hayati. Language Identification on the World Wide Web. UNIVERSITY of
CALIFORNIA, SANTA CRUZ. June, 2004,

[2] Andras Kornai and J. Michael Richards. Linear Discriminant Text Classification in High
Dimension. (http://www .kornai.com/Papers/his01.pdf)

[3]) Zhong GU and Daniel Berleant. Hash Table Sizes for Storing N-Grams for Text Processing.
Electrical and Computer Engineering, 2215 Coover Hall, Iowa State University, Ames, Iow

50011. :

[4] Clive Souter, Gavin Churcher, Judith Hayes, John Hughes & Stephen Johnson. Hermes,

Journal of Linguistics no. 13 — 1994
School of Computer Studies, University of Leeds, Leeds LS2 9IT (UK).

[5] Emmanuel Giguet. Multilingual Sentence Categorization according to Language. GREYC —
CNRS URA 1526 — Universit de Caen, Esplanade de la Paix, 14032 Caen cedex — France. 10™

March 1995.

(6] Gregory Grefenstette. Comparing two Language Identification Schemes. Xerox research
Centre Europe. 3rd International conference on Statistical Analysis of Textual data, Rome. Dec
11-13, 1995. _

[7] Muntsa Padr’o and Llu’ys Padr’o. Comparing Methods for Language Identification. TALP
Research Center.Universitat Polit ecnica de Catalunya Jordi Girona Salgado 1-3, 68034 Barcelona,
Spain. _

[8] Markus Kuhn, UTF-8 and Unicode FAQ for Unix/Linu.
(http:/f'www.cl.cam.ac.uk/~mgk25/unicode.html)

[91 The UTF-8 names Unicode Encoding Form. (http://tbray.org/tag/utf-8+names.html)
[10] Mudii-lingual text on Linwx. (http://www.jw-stumpel.nl/stestu.html)
[11] Recommendations for Creating New Orthographies. (http://www.unicode.org/notes/tn19/)

[12] Peter Constable and Gary Simons. Ananalysis of ISO639 Preparing the way for
advancements in language identification standards. SIL international 2002,
(http://www.unicode.org/notes/tn8/SILEWP2002-004.pdf)

[13] Python Unicode data module.
(http://www.python.org/doc/2.4.2/lib/module-unicodedata.html)

[14] Clive Souter, Gavin Churcher, Judith Hayes, John Hughes & Stephen Johnson Natural
Language ldentification using Corpus-Based Models. Hermes, Journal of Linguistics no. 13 —
1994,Schoal of Computer Studies, University of Leeds, Leeds LS2 9JT (UK)
http://www.comp.leeds.ac.uk/nti-kbs/ai5/research2.html

Diction Identifier 54

References

[15] Peter G. Constable, Toward a Model for Language IdentificationDefining ontology of
language-related categories, SIL International 2002,
http:/fwww sil.org/silewp/2002/SILEWP2002-003.pdf

[16] Martin Wechsler, Paraic Sheridan, Peter Scauble. Multi-language Text indexing for internet
Retrieval, Swiss federal institute of technology (ETH), CH-8092 Zurich, Switzerland

Diction Identifier 35

PUBLICATION

“Research

Manuscript Listing Submit Manuscript Account Information
Connection to Manuscript: Author Reviewer

ript Status: (Al

Rt irsfilters] (advanced filter, -

5-045 06-045 unicode aided language identification across multiple scripts and
N v - hetrogenous data (download)
' malik Sikander Hayat Khiyal, fareheen hanif,-and fouzia latif (e-mail
y authors) : . .

" "7 submitted: Sat, 11 Feb 2006

decision: none yet

notes:
(all) 2 E (auto) Sat, 11 Feb 2006 manuscript submitted by Sikandar

(add note)

Ir.csail. mit.edu/manudb/center/manulist?author 4/25/.

Unicode Aided Language Identification Across Multiple
Scripts and Heterogenous Data

Farheen Hanif, Fouzia Latif

M. Sikandar Hayat Khiyal
Department of Computer Science
International Islamic University
Sector H/10, Islamabad, PAKISTAN.
Email: farheen1112@hotmail.com
' fouzia latif@yahoo.com

hdcs@iiu.edu.pk

Abstract

With growing explosion of multi-lingual
data on the Internet and other
" informational and communicational fields,
the requirement of having -effective
automated language identifiers has
increased further. More information finds
its way into the computer systems and the
web and using manual - methods to
categorize the information is becoming
increasingly in-feasible. In this paper we
discuss improvements we have achieved in
existing language identification methods.
Couple of new areas that were mnot
explored before is the inclusion of non-
Roman scripts and active usage of Unicode

information about scripts to enhance the -

language detection process.

Keywords: language identification;
unicode; multi-lingual documents;

n-grams; internationalization; Al; language
script. '

1. Introductlon

The fundamental purpose of "language
identifiers is to indicate ' distinctions

related to linguistic propérties and

~

specifically distinctions that are relevant
for IT purposes. There are a wide variety
of distinctions pertaining to several
distinct linguistic parameters that have

“been suggested as potentially relevant for

“language”’ identification: languages,
language families, dialects, country
variants, other regional-based wvariants,
script variants, style variants, and modality
variants, time based variants, typographic
variants, etc. Many different orthogonal
parameters could be used in meta-data
attributes, and the potential combinations

and permutations are daunting. In actual
practice many of the potential distinctions
are not needed for most realistic usage
scenarios.

Application areas can probably be divided .
into two general types: cataloging and
retrieval of content and resources for
localization and language enabling of
software,

-Our research provides Unicode support

and multi-script’ support (e-g Roman,
Chinese, Arabic). It also provides language

detection for multilingual documents.

2. Identification Techniques

Dictionary based identification methods

had been the most used methods in the .

early stages. In the B0’'s Cavpar and
Trenkle presented their n-gram based
algorithm [2] for language detection that
solved many problems that persisted with
previous language identification
techniques. '

In our research we have tried to improve
on what already has been done. We have

implement improved variations of
dictionary ‘based and n-gram based
algorithms.

2.1 Dictionary Based Identification:

Dictionary based identification (DBI) is one
of the most tried and implemented
methods for language identification{8].
Though simple, its effectiveness in certain
areas cannot be denied. One of its biggest
advantages is its performance, DBI is
much faster during training and detection
than other algorithms wused in this
research. DBI gives good results when
comparing languages belonging to
different scripts. If. used wisely this
technique . becomes .more useful than it
seems at first glance. Joined with Unicode
based inter-language document
identification, to detect and extract
multiple languages data chunks from a
document; dictionary based identification
is applied on these chunks individually.

Dictionary based method has been
previously used but in different ways[14].
Dictionary.based method. used in our work
is more efficient as compared to previously
implemented methods. E.g. as compared
to [14] our method (DBI) is more efficient
due to the following reasons:

- DBI uses N-grams (1 grams) as compared
to the compounds used in[14].1-grams
covers all the linguistic features.

- DBI requires less mermtory

- DBI is not a lengthy process as compared
to [14].in~[14] the compounds are. first
split into components, normalized and then
query structuring for compounds and
components. In DBI n-grams are not

normalized. They are generated and stored
in the dictionary.

- DBi requires no lknowledge about the
language to be identified.

Like most techniques used in this
research, dictionary based identification is
also a two phase process. The first phase .
being training and the second
identification. Before going on -to
identifying documents, the system must
first be trained for the languages that we
wish to detect. Remember, it only detects
the languages it has been trained for.
However, if a language belong to a script
for which another language has already
been trained is found in an input
document, that language is identified as
the language that was trained for the same
script. For example, say in the Arabic
script, we have. trained DBI for Arabic,
Urdu and Persian languages. If we try to
detect a Pushto, Punjabi or similar
document, all Arabic, Urdu and Persian
will come up as close matches giving a hint
to the script the language belongs to.

The drawback in dictionary based
implementation is that it doesn't perform
well when comparing between languages
belonging to the same script. Also
document containing too few characters
give much less infarmation to DBl f{o
detect languages effectively. Also, in case
of documents like web pages elc
containing multiple languages, the results
are not able to clearly distinguish the
language. However, if one language
occupies the majority portion of the
document, it has higher match weight-age
hinting its identification.

Algorithm;

Inputs: 1) Training Document
2} Dictionary File Path

" Output: Unique characters list

Open training document.
Read all data from the document. -

Generate a list of unique characters
present in the training document.

Sort the unique characters list.

Dump the list into the dictionary file
specified.

Identification Phase;
Input: 1) Document to be identified

Qutput: 1) Language match count

Open input document and read all
data.
Generate a list of unique characters in
the document.
Sort the generated list.
Get a list of script folders in the
lang_dicts folder
for each script_folder in lang dicts
folder: . _ .
Get a list of Ianguage files in the
script folder
For each language:
Load the language list of
unique characters
Get match count of
characters present in
document list that are also
present in language list.
DlSpIElY match count statistics for each

language.

The language unique character lists are
stored in a file folder hierarchy as

displayed helaw;

lang_dicts/ (root folder)
script folder 1/
- languagel list file
- language? list file
script folder 2/
- language 3 list file

2.2 Unicode Based Inter-Document
Language/Script Identification:

The use of Unicode in our research has
proved to be very useful. The "global
acceptance of Unicode and the well
thought ~out - placement of different
languages in the Unicode code-set has
given us more opportunities to detect
languages effectively. Each
script/language in Unicode has defined
code ranges. This information is provided

‘different

-iﬁ the form of Unicode Databhase giving

type, language, code point and other info
for. every character of every language
represented in Unicode [10, 14]. The use
of this database enabled us to detect
different scripts in a document by
querying the Unicode database for info
about any character.

Unicode based identification is the only
technique in our research that does not
require an explicit training phase. Only
using updated versions of the Unicode
database provided at www.unicode.org is
sufficient for improving the technique.

This technique is the fastest technique for
language delection that we have
implemented. As added benefit, this
technique also allows us to .identify
script portions within a
document,

Like all, this technique also has. its
drawbacks. First, for those scripts that
have many languages in them (Roman,
Arabic, etc.) this technique can only detect
the script and not the language. Secondly
for inter-document language identification,
detection of different language chunks is
effective if consecutive language chunks
belong to different scripts. For example, it
accurately separates Arabic and English
language chunks repeating one after-
another but has problems if English and
French or German language chunks start
repeating after one another.

Algorithm:
Input: 1) Input Document

Qutput: List of languages and their byte
ranges in the input document.

Read all data from input document.
set current_script = "
For each character in data:
- Get Unicode category of the
character (Letter, Digit, Punctuation,
etc)
If category = Letter
- Get Unicode character name
- Get the script name portion from
the character name '

3

- if script_name != current_script:
Add last script to language

chunks with start and end

" byte positions-
set current script = hew
script name . -
Add last script to the language chunks
list
Remove first empty chunk from the
list.

2.3 Cavnar’s and Trenkle's Algorithm

C&T algorithm [2] is the most accurate
algorithm around for language detection.
This algorithm concentrates on aphabet-
combination characteristics of languages.
Because of this property, this algorithm
excels where other algorithms fail. It more
accurately identifies languages belonging
to the same script.

This algorithm performs its calculations on
n-grams. The value of n can be any digit
(1,2,3, etc.) The number of n-grams in a
document is equal to the number of
characters in that document. For example,
this text are: ‘H", 'E’, 'L", 'L",'C¥, ' ', "W, "0,
‘R’, 'L, 'D’, 2-grams for the same text are:
‘HE’, 'EL’, 'LL’, 'LO’, ‘O *, ' W', "WO’, 'OR’,
'RL’, 'LD’, 'DH’, The advantage of using n-
grams is that they highlight the language
" properties. Finding common alphabetic
combinations of a language is the purpose
of processing n-grams.

Over . the years modifications, and filtering
techniques have been applied to further
improve the performance of this
technique. The most recent successful
addition to the technique was by Katiya
Hayati[1] in June, 2004, which included

Fisher Discriminant function to give more

importance to n-grams that were more
unique across languages. We have further
implemented anocther modification to the

process by that serves as.a replacement of -

Fisher discriminant function which was too
time consuming for n-grams with n
greater than 3.

The training phase for this technique
spans acraoss multiple steps that are:

Document

filtering to remove
formatting information from
documents.

Document normalization for removing
multiple white spaces.

Training multiple documents per
lanquage so that sufficient training
data per language is present to make
the calculations maore real.

Sorting the resulting statistics and
calculating top C n-grams according to
weight for each language. In this
research C=1000 was found to be a
good value.

The identification phase involves
generating n-grams for the input
document and then comparing top C n-
grams from the, document again top C n-
grams for each language to find out match
value for that language.

By default the algorithm runs with our
custom modifications (called FF
modifications here) included. Since
comparing the statistics against fisher
discrimipant implementation was also
required to get validated results, so a

fisher discriminant implementation of the

algorithm is also provided.

Drawbacks of this method involve slower
detection and more time required to train

documents. Additionally adding a new

language to the corpus of languages
means doing all the calculations again for

each language.

.Algorithm (with FF modification):

Training (Step 1%

Inputs: 1) Language Name ‘
2) Training Document

QOutput: NILL

If the lang folder exists inside the data

folder
Load previously trained data for n-
grams (n=1-4) from the data files
present in the lang folder into n-
gram lists.

If lang folder-does not exist:

Create lang folder
Initialize n-grams lists to blank
Read all data from training document
‘Normalize the data by replacing
multiple white spaces with a single
.space.
Generate n-grams from input data.
Calculate weights {(frequency) for each
n-gram in input document.
- Update weight of each n-gram in the
_ n-gram lists (loaded from previous
training data files).
Dump n-grams lists to lang folder
inside the data folder.

Trainin

Inputs: 1) Source n-gram h‘str
2) Target n-gram list
3) C (Top no. of ngrams to store)

Qutput: NILL

Load Source n-gram list.
Sort the list in descending order.
Trim the list to top C items.
Dump, the new: list to Target n-gram
list path.. _

Training (Step 3) - n-gram Uniqueness

Calculation:
Input: 1) Lang

Output: NILL

. Load, n-gram, lists. from lang folder in

the data_finalizer folder.
- Get list of languages in data finalizer
folder.
For each n-gram in n-gram lists: .
set u_ng = C * total_langs
For each lang: -
+ if n-gram found inlang list:

idx = index of n-gram in
current lang list.
“ie.-t.. U NG =u_ng -idx

Add uniqueness value of n-gram to '

uniqueness list
Dump n-gram uniqueness lists to lang
folder._

Identification phase:
Input: 1) Input Document

Output: Language match count

Read the data from document
Normalize the data.
Generate n-grams(1-4) for the data.
Calculate n-gram weights
{(Frequencies) in data.
Sort document n-grams list in
" descending order. .
Trim list to top C items.
Get list of language folders in the
data finalizer folder.
For each language:
Load lang n-gram lists.
Load n-gram uniqueness values.
For each document n-gram list (n=
1-4}):
- setdiff =0
+ For each n-gram in list:
. If n-gram found in lang list:
- setil = index of n-gram in doc
list
- set i2 = index of n-gram in
lang list .
dif pmiloiz | O
» uv = unique-ness value of n-
gram
diff -= (uv/100) .
- if n-gram not found in lang
list
- diff += C+1
- uv = unique-ness value of
n-gram
diff -= (uv/100)
return/display match statistics

Folder structure used in this algorithm is
given below:

data/

langl/

- lgrams.dat
- 2grams.dat
* 3grams.dat
+ 4grams.dat
lang2/

- 1grams.dat
- 2grams.dat
+ 3grams.dat
- 4grams.dat

data_ﬁnali-zer/

fL. = mean frequency of n-gram

Iangll
lgrams.dat in current lang.
ZQramS dat n-gram ﬁSher value = FL/ fR
3grams.dat Save lang fisher values.
4grams.dat - '
u_lgrams.dat Identification Phase:
+ -u_2grams.dat
u_3grams.dat Input: Input Document
u_4grams.dat
langmr Read document data.
lgrams.dat - Normalize data.
2grams.dat Get a list of unique n-grams present in
3grams.dat the document. :
4grams.dat For each n-gram in document n-grams:-
- u_lgrams.dat- calculate frequency of n-gram in
"= - ul2grems.dat = - document.

u_3grams.dat
u_4grams.dat

Algorithm (Fisher Discriminant):

Load R (Top thousand n-grams by
mean frequency, generated during
training phase).
- . For each n-gram in R:
- If n-gram present in document n-
grams:)
- calculate n-gram normalized
frequency in document
- else:
- set normalized frequency of n-

Training Phase:
Pre-condition: All training documents
are present in training_documents folder.

_ gram in doc to 0.00.
Get a list of Languages available for

Generate a list all unique n-grams
found in all training documents of
each language. Lets call this list A.

Get a list of languages 1n the
training_documents folder.

identification
For eachlang:
Load lang fisher values.
set diff = 0.00
For each n-gram in document
normahzed frequencies list:

set nFV = lang fisher value
for ngram
FOI‘ each doc: : . sett nNF = document
- For each n-gram in A: ' normalized frequency for
Find frequency of n-gram in doc. . - ngram '
Find normalized frequency of n- diff + = nNF * nFV
_gram in doc. Dzsplay diff as lang match
For each n-gram in A: value for document.
Calculate mean frequency of n- _
© gram - i i
..Sort the list of mean frequencies in 3. Implementatlon Details
descending order of frequency.
Trimn this list to top 1000 items., Lets

For each lang

All the algorithms in our research were
tested on 4 scripts containing a total of 10

call this list R.
. For each lang: - language.
Calculate lang fisher values .
. For each n-gram in A: The scripts used are:
+ Calculate lang mean frequency. .
- For each n-gram in R: ,érhs;blc
. fR = mean frequency of n-gram nese
.. Sin R - Japanese

Roman
The languages used are:

Arabic
Chinese
English
French '
German
Italian
Japanese
Persian
Spanish
Urdu

¢ Training documents of roughly equal data

" ‘size were used for training each language
to ensure that all-languages get equal
share of training. All training documents
were manually cleaned. Portions of
languages other than the desired one were
removed from each training document and
all the documents were saved in UTF-8

encoding.

Training documents were mostly gathered
from the web primarily in HTML format.
The other formats used were UTF-8
encoded text, MS. WORD DOC format and

PDF.

All the code except for the web interface is
coded in Python programming language.
The web interface is-coded in PHP and
HTMIL running on Apache web server.

Operating system used for development .

and testing is Linux Kernel 2.4 (Slackware
10.2) on a Pentium IV (2.4 GHz) machine
with 256 MB of RAM.

4. Features
Main features of the system include:

4.1 Unicode based scnptllanguage
identification:

The system is not only able to read/write
Unicode files, it also uses Unicode -
extensively for language identification.
Use of Unicode makes language
identification much more flexible, accurate
and faster. '

4.2 Unicode based script separation

-within a single document:

Unicode codepoint information is used to
detect the presence of multiple scriptsin a
document. Data of each script is then
processed separately arid language
identification results for each script chunk
are returned.

4.3 Dictionary based (fast) language
detection method: :

Alphabets in the input document are

.compared against the alphabets of

different languages and based on that the.
language of the input document is

guessed. This method is the most used
method for language identification.
Although simple, the results returned from
this method were found to be satisfactorily
accurate and guite fast.

4.4 -N-gram based (more accurate)

.modified method:

This is a modified (improved) version of
Cavnar’'s and Trenkle’s algorithm. The
modifications give higher weights to n-
grams that are less common in other
languages.

4.5 Automatic removal of document
formatting information:

The system handles input documents like
web pages very well and automatically
removes all tags and other formatting info
from the page using only the page content
for language identification.)

4.6 Support for easily adding more
languages into the system:

i\jtbre languages can be easily trained
using a couple of training programs to
expand the system to support more

languages.

5. Results

Following are the results, notes and
observations we formulated during our
research and implementation of the

system.

Detection of multiple languages within a
single script using Unicode meta data is
most useful for multi-ingual documents.
Language chunks belonging to different
scripts were always
extracted correctly by this method.
However, detecting language chunks
belonging to same script is not possible
with this technique and requires further
work.

Dictionary based identification serves well
for script identification. Language
identification results give close match
values for languages belonging to the
same Script as of the original documents.

The N-gram based implementations {CTA
with FF modifications and Fisher
Discriminant Function) were found to be
most accurate giving above 90% accuracy.
Training phase of CTA with FF was
‘observed to take much less time than
Fisher -Discriminant. Identification times
and _ results, for both variants -were
observed to be similar.

For very short-documents (less that 30 -

characters) all algorithms were observed
to perform hadly for language detection.
However, accurate script detection of
these documents using Unicode meta info
or Dictionary Based Identification was still
accurate.

6. Statistics
Total Size of Cleaned Training Documents:
2.7 MB.

@achnique Operation |Time

DBI Training 0m0.117s
: ~+ - (Identificatio|0m0.334s
n

identified and .

80ml1.002s
Modification |(Generating |{1h:20m)
n-grams[1
to4])
‘Training 160ml19.854s
(Finalizing} |(2h:40m:90s)
Identificatiojoml7.303s
n
"[CTAWith |Training [3326.5332260
Fisher (Generating |1
Discriminant|n-gramsf{3 |(ih:5m}
{for 3- grams])
grams)
Training 30ml.119s
_|{Calculating
Frequencie
s)
Training 96m9.879s
(Calculating
Fisher
Values)
Identificatio/0m18., 1.34¢g
n

“document

CTA With FF[Training

7. Future Enhancements

With the ever changing face of information
in the computer world, more possibilities

for improving language detection are just

around ‘the corner. There are many
standards that save meta-data along with
documents. The _increasing adoption of
such standards (like XML} will allow use of
meta data for language
identification. To do so detailed study of
different document formats needs to be
done along with widespread use of open
file formats instead of closed specifications

formats.
. Automatic

generation of training
documents without having the need to
check them manually is also a field that
requires more research. Currently the
trainer requires good knowledge of the
languages that he/she wishes to train for.
Training documents need to contain only

the language that they will be used to

train. This process involves manual
cleaning of documents. Some technique
can be developed to use online digital
archives like digital libraries to

8

automatically obtain books or other
documents for different languages, clean
them and then use them for training the

system.

Detection of multiple languages helonging
to the same script within a document is
ancther field that needs improvement.
Currently this is being done using Unicode
script ranges that allows only script
detection. This poses problems detecting
multiple languages belonging to the same
script occurring in tandem. New ways
need to be developed based language

* properties to detect this.

8. References

[1] Katia Hayati. Language Identification
-on the World Wide Web. UNIVERSITY of
CALIFORNIA,‘SANTA CRUZ.-June, 2004. -

[2] Andras Kornai and J. Michael Richards.
Linear Discriminant Text Classification in
High Dimension.

(http://www kornai.com/Papers/his01.pdf)

[3] Zhong GU and Daniel Berleant. Hash
Table Sizes for Storing N-Grams for Text
Processing. Electrical and Computer
Engineering, 2215 Coover Hall, lowa State
University, Ames, Iowa 50011.

[4] Clive Souter, Gavin Churcher, Judith
Hayes, John Hughes & Stephen Johnson.
Hermes,School of Computer Studies,
University of Leeds, Leeds LS2 9]JT (UK).
Journal of Linguistics no. 13 - 1994

[5] Emmanuel Giguet, Multilingual .
Sentence Categorization according to
Language. GREYC — CNRS URA 1526 —
Universit de Caen, Esplanade de la Paiy,
14032 Caen cedex — France. 10" March
1995,

[6] Gregory Grefenstette. Comparing two
Language Identification Schemes. Xerox
research Centre Europe. 3rd International
conference on. Statistical Analysis of . ..
Textual data, Rome. Dec 11-13, 1995.

[7] Muntsa Padr o and Lluys Padr’o. C

.omparing Methods for Language

Identification. TALP Research Center.
Universitat Polit‘ecnica de Catalunya
Jordi Girona Salgado 1-3, 08034
Barcelona, Spain.

[8) Markus Kuhn. UTF-8 and Unicade FAQ
for Unix/Linux.

(http:/fwww.cl.cam.ac. ukl~mgk25/umcode
html)

[9] The UTF-8 names Unicode Encoding
Form. (http://thray.org/tag/utf-
B+names.html)

[10] Multi-lingual text on Linux.
(http:/fwww.jw-stumpel.nl/stestu.html)

[11] Recommendations for Creating New

Orthographies.
‘(http://www.unicode.org/notes/tn19/)

[12] Peter Constable and Gary Simons.
Ananalysis of ISO632 Preparing the way
for advancements in language
identification standards. SIL mternatlonal
2002. -
{(http://www.unicode.org/notes/tn8/SILEWP

2002-004.pdf)

'[13] Python Unicode data module.

(http:/fwww, python.org/dc:clz.4.2ﬂiblinodul
e-unicodedata.html)

[14] Turid Hedlund. Compunds in
Dictionary Based Cross Language
Information Retrieval, Department of
Information Studies university of Tampere

. Finland. Information Research, Vol. 7No
" 2 January 2002.

(http://informationr.net/ir/7-
2/paper128.html)

