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ABSTRACT 

The purpose of the described research is to develop a fast and accurate language detection 
system that is able to detect languages belonging to different scripts. The system is 
broadIy divided into two geneml steps (Training & Identification). Two different 
techniques are used for language identification both having their pros and cons. 

The system is meant to be integrated into many bigger systems, such as search engines, 
digital libraries, and discussion forums etc., where automated language detection is 
useful. The whole language detection process relies on the factors like: quality of training 
documents, type of input document, size of input document, multiple languages/scripts 
within the same document 

The described research provides Unicode support and multiple script support. It also 
provides language detection for multilingual documents. 
Multiple scripts within the same document are detected accurately however detecting 
languages belonging to the same script in a document is a much up-hill task. 
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Chapter 1 Introduction 

1. Introduction 

The fundamental purpose of "language" identifiers is to indicate distinctions related to 
linguistic properties and specifically distinctions that are relevant for information 
technology purposes. There are a wide variety of distinctions pertaining to several distinct 
linguistic parameters that have been suggested as potentially relevant for "language" 
identification: languages, language families, dialects, country variants, other 
regional-based variants, script variants, style variants, and modality variants, time based 
variants and typographic variants. Many different orthogonal parameters could be used in 
meta-data attributes, and the potential combinations and permutations are daunting. In 
actual practice many of the potential distinctions arc not needed for most realistic usage 
scenarios. 

Application areas can probably be divided into two general types: cataloging and retrieval 
of content and resources for localization and language enabling of software. 
Diction identifier provides Unicode support and multi-script support ( Roman, Chinese, 
Arabic). It also provides language detection for multilingual documents. 

1 . 1  General Techniques 

The system uses an array of different techniques for language identification. Some of the 
techniques are suited for one scenario while others are more suited for different scenarios. 

1.1.1 Cavnar's and Trenkles algorithm 

C & T algorithm is an n-gram bascd method. It is one of the most popular method used for 
language identification [l].It is the most effective method for identifying languages having 
same script. Detection using this algorithm does not only rely on alphabets present in a 
language rather it focuses on the most common combinations of these alphabets in 
different languages. For this reason this method is more effective than the 
priiitiveltraditiona1 dictionary based method for language identification. As languages 
belonging to the same script (for example Roman) may have similar or same alphabets but 
the order in which they occur is not the same. For example, the 3-grams 'the' and ling' are 
the most common 3-grams in English but they are not found that frequently in other Roman 
script languages like German and French. 

1.1.2 Dictionary based method 

In this method a list of unique characters for each language is generated and compared 
against input list of unique characters in the document that is to be identified. This method 
is much faster than C&T algorithm and performs well when comparing languages 
belonging to different scripts. 

Diction Identijier 1 
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1.1.3 Unicode based scripfflanguage identification 

The Unicode standard defines unique code points for each alphabet in a language. These 
code points are categorized according to language and script. In this technique Unicode 
code points of characters in input document are analyzed and categorized according to the 
script range in which they occur. 

1.1.4 Inter document languagdscript separation and identification 

In this method Unicode code point script ranges are used to identify different scripts in 
input document. This method is very effective for detecting the presence of multiple 
scriptsllanguages in a document. 

1.2 Purpose of System 

The numose of the described research is to develo~ a fast and accurate language detection . . . - - 
system that is able to detect languages belonging to dierent  scripts. The system is broadly 
divided into two general steps (Training & Identification). Two different techniques are 
used for languageidentification both h a G g  their pros and cons. 

The system is meant to be integrated into many bigger systems, such as search engines, 
digital libraries, and discussion forums, where automated Ianguage detection is useful. 
Keeping this in mind 

The whole language detection process relies on the factors mentioned below: 
Quality of training documents 
Type of input document 
Size of input document 
Multiple languageslscripts within the same document 

Proper training of the system is absolutely critical for successful Ianguage identification. 
OualitV of training documents matters a lot and these training documents have to be filtered 
to m&e sure that they only contain the language they & used to train for. Cormpted 
training documents can easily cause the system to give incorrect results. 

Type of input document is also an important factor. The system accepts Unicode UTF-8 
encoded documents. UTF-8 is a Unicode encoding scheme [9] [I 11. All types of 
documents (text, doc, PDF, html, etc.) can be saved using UTF-8 encoding. On windows 
UTF-8 has been the default encoding scheme since windows 2000. 

The system is known to perform badly on very shortdocuments (10-30 characters). Very 
short documents present too few information that can be processed for language 
identification.Multiple scripts within the same document are detected accurately however 
detecting languages belonging to the same script in a document is a much up-hill task. 
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1.3 HISTORY 

Automated language identification has been the focus of research in the past decades. 
However majority of the work has been done on Roman script languages only. In mjd-80s 
Cavnar and Trenkle proposed their algorithm for language identification. After this 
algorithm, language identification was considered a solved problem in that era [I]. In those 
times all the data present on computer systems was either in English or other Roman script 
languages. 

After the explosion of Internet, the world of computers quickly began expancbg to 
multiple regions and with that, to multiple languages. The presence of multi-lingual data on 
the web has once again prompted the need for a generic language identifier that has the 
ability to handle mdtiple scripts. 

Having multiple scripts and conversion to the Unicode standard has opened new 
possibilities for language detection. These possibilities were mostly un-explored till now. 
The latest known research by Katia Hayati [I] in Jun, 2004 also only considers Roman 
languages though it uses web specific information for language detection. 

1.4 Main Features 

Main features of the system include: 

1.4.1 Unicode Based Script Separation within a Single Document 

The system is not only able to readkvrite Unicode files; it also uses Unicode extensively for 
language identification. Use of Unicode makes language identification much more flexible, 
accurate and faster. 

1.4.2 Unicode Based Script Separation within a Single Document 

Unicode code point information is used to detect the presence of multiple scripts in a 
document. Data of each script is then processed separately and language identification 
results for each script chunk are returned. 

1.4.3 Dictionary Based (Fast) Language Detection Method 

Alphabets in the input document are compared against the alphabets of different languages 
and based on that the language of the input document is guessed. This method is the most 
used method for language identification. Although simple, the results returned from this 
method were found to be satisfactorily accurate and quite fast. 

1.4.4 N-Gram Based (More Accurate) Modified Method 

This is a modified (improved) version of Cavnar's and Trenkle's algorithm [I]. The 
modifications give higher weights to n-grams that are less common in other languages: 

Diction Identifier 3 



Chapler 1 Introductron 

1.4.5 Automatic Removal of Document Formatting Information 

The system handles input documents l i e  web pages very well and automatically removes 
all tags and other formatting info from the page using only the page content for language 
identification. 

1.4.6 Support for Easily Adding More Languages into the System 

More languages can be easily trained using a couple of training programs to expand the 
system to support more languages. 

1.5 Future Enhancements 

With the ever changing face of information in the computer world, more possibilities for 
improving language detection are just around the comer. There are many standards and 
save meta-data along with documents. The increasing adoption of such standards (like 
XML) will allow use of document meta data for language identification. 
Automatic generation of training documents without having the need to check them 
manually is also a field that requires more research. 
Detection of multiple languages belonging to the same script within a document is another 
field that needs improvement. 
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2. LITERATURE SURVEY 
2.1 Research Study 

Katia Hayati [I] improves on the existing widely used n-grams based technique for 
language identification proposed by Cavnar and Trenkle [I]. The focus is especially on 
language detection for web documents. 

A sample of 1359 web pages spanning eleven languages (Danish, German, English, 
Spanish, Finnish, French, Italian, Dutch, Norwegian, Portuguese, and Swedish) are 
obtained and classified according to language. The encoding scheme used is in the 
Windows-1252 character set [I21 (a superset of the ISO-8859-1 character set, also called 
Latin- I ) .  
The feature selection stage and similarity measure mechanism for the algorithm .are 
improved using Fisher discriminant function and the cosine similarity metric respectively. 
One observation mentioned in the paper is that the technique performs badly on very short 
documents. 
The use of Web-specific information, namely in links, to improve the performance of the 
classifier on very short Web documents is also discussed. The new information more than 
doubles the accuracy of the classifier on pages with less than 25 characters, and slightly 
less than doubles the accuracy on pages with less than 50 characters. 
Investigating top-level domain information for language identification is identified but not 
done in this research. 

Zhong GU and Daniel Berleant [3] discuss n-grams technique for machine readable 
language identification. The main focus of the paper is one removing the shortcomings of 
n-grams technique, which are huge memory and processing requirements. The fact that 
most of the "all possible n-grams" for a language actually never occur in real documents 
presents room for improvement. 
The paper discusses two possible solutions to this problem. 

1. Using actually occurring and most common n-grams of a language. 

2. Using hash tables by having one hash to represent more than one n-grams. 
The author focuses his discussion on hash table technique to reduce the size of n-grams 
table by using representative hash tables instead. 

Identifjmg good and bad hash table address this problem sizes over a wide range of sizes. 
It is also observed that English, French, and German n-grams behave similarly when 
hashed, and that this is unlike the behavior of randomly generated n-grams. 
Therefore the difference in behavior is due to properties of the languages themselves. 
Different table sizes are investigated and sizes that are particularly good when hashing n- 
grams during processing of these languages are identified. 
Clive Souter, Gavin Churcher, Judith Hayes, John Hughes & Stephen Johnson [I41 
describes an experiment in the development and use of bigraph and trigraph models. for 
automatically recognizing written natural languages. The models are extracted kom 
corpora of different languages, and then employed to identify new texts probabilistically. It 
describes three approaches to the task of automatically identifying the language a text is 
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written in. Experiments are conducted to compare the success of each approach in 
' identifying languages ffom a set of texts in DutchFriesian, English, French, Gaelic (Irish), 

German, Italian, Portuguese, Serbo-Croat and Spanish. 

The three techniques we chose to investigate are: 

0 Unique character string identification 

This involved finding (empirically or using linguistic 'competence') short strings 
of characters which are unique to each language. The simplest identification 
technique might be to Find a string of charact& in the Latin alphabet which are 
unique to a particular language. 

0 Frequent word recognition 

Another method explored was to extract frequency ordered wordlistq and choose 
the top 100 words for each language. Unseen text would then be analyzed word by 
word, looking up each candidate in the list for each language, and adding to a 
running total or likelihood for each. At any time, or at the end of the text, it returns 
the most likely language. An alternative method is to extract a fiequency ordered 
list of the words in each language fiom the training material. Then, the most 
fiequent words in each language can be used as a test list against which the words in 
a new, unknown sentence can be matched. Some of the words in the unknown text 
are found in the test list. 

Bigraphltrigraph based recognition 

All possible two- and three-letter combinations are extracted from the training texts, 
along with their frequencies in each language. Unsecn text is then analyzed by 
similarly splitting up the text into ordered biltrigraph, and a running total 
probability for each language maintained. Wc can return the most likely language 
at any stage. 

Each method was implemented by training the model on roughly 100 kilobytes of text and 
tested on text samples. The bigraph recognition was 88% successful, being surpassed by 
the 'most- common-word' approach, which correctly identified the language in 91% of the 
test samples. However, trigraph approach showed recognition with 94%accuracy. 
Results showed that a trigraph model is the most successful for recognizing the languages. 
Bigraph and trigraph models can be used to classify languages along the lines of a 
historical linguistic family tree for Indo-European languages. 

There are many Issues in sentence categorization according to language and it is a 
fundamental step in document processing. Emmanuel Giguet [5] proposed an approach to 
sentence categorization which has the originality to be based on natural properties of 
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languages with no training set dependency. The paper also aims to point that the more the 
linguistic properties of the object are used, more better results are observed. 
The implementation is fast, small, robust and textual errors tolerant and tested for French, 
English, Spanish and german discrimination.The resolution power is based on grammatical 
words (not the most common words) and alphabet. Having the grammatical words and the 
alphabet of each language at its disposal, the system computes for each of them. 
Categorization according to language is done with text. The goal of text categorization 
is to tag texts with the name of the language in which they are written. Information retrieval 
is the main application field. Grammatical Words are used as they are short, not numerous 
and we can easily build an exhaustive list. Grammatical words in sentences represent on 
average about 50% of words. They can't be omitted because they structure sentences and 
make them understandable. 
To improve categorization of short sentences, alphabets are used because alphabets are 
Proper to each language 
Mainly two ways can be explore to improve categorization, using natural languages 
properties: 

Syllabation: This gives the ideas to check the good syllabation of words in a 
language. It requires distinguishing lirst, middles and last syllabs. (Using only 
endings seems to be a possible way) 

Sequences of vowels or consonants: the idea is that these sequences are proper to 
each language. 

Heuristical knowledge is also used to deal with texts. In a same paragraph, contiguous 
sentences are written in the same language. Titles of a paragraph are written in the same 
language as their body. Included blocks in a sentence (via parenthesis. . .) are written in the 
same language as the sentence. - - 
The techniques are implemented by sentence categorization and language classification. 
This classification method is based on texts observation and understanding of their natural 
properties. It does not depend on training sets and converges fast enough to achieve very 
good results on sentences. 

Gregory Grefenstette's paper [6] focuses on two techniques for automatic language 
identification. Machine readable text is given using easily calculable attributes. 
The two techniques are 

a Trigrams 
Short Words 

The trigram technique calculates the frequency of sequences of three letters in a large 
language sample. The idea is to capture the intuition that, e-g, a word ending with -ing is 
more likely to be an English word whereas a word ending with -ez is more likely to belong 
to French language. Each text is tokenized, space is used as separator and underscore is 
added in the beginning and end of each token to indicate the initial and terminal mark. All 
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the sequences are counted and then probability of given trigram in a given language is 
approximated. A minimum probability is assigned to each unseen trigram. A language with 
highest probability is chosen. 
Small word technique is based on the intuition of determiners, conjunctions and 
prepositions. The first million characters of the text of each language was tokenized and all 
tokens of five characters or less were extracted. These were counted for each language and 
words appearing more then three times were retained. The frequencies of these words were 
transformed into probabilities. 

Peter G. Constable's paper [I51 serves as a comprehensive backgrounder for language 
identification. It describes different components of a language and how it is represented. 
The proposed model involves four core category types: individual languages, writing 
systems, Orthographies, and domain-specific data sets. 
This paper goes further, though, in also suggesting that these various category types stand 
in certain relationships to one another, and that these relationships motivate certain 
constraints on the way in which composite identifiers are formed. 

This paper is intended as a starting point for discussion and development, not as a finished 
Proposal. It is expected that others will find many ways in which refmements can be made 
in the Model and comments to that effect are welcomed in the hope that such a dialog can 
soon lead to adequate solutions. 

Muntsa Padr'o and Llu'ys ~ a d r ' o  [7] compared three different statistical language 
identification methods, and a detailed study of the influence on those systems of some 
basic parameters is performed. The analyzed parameters are the size of the train set, the 
amount of text that are to be classify and the languages the system is able to distinguish (it 
will be studied not only the influence of the number of languages but also the influence of 
which are the considered languages).figure 2.1 shows the general architecture of the 
system as discussed in the paper. 
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Figure 2.1 General Architecture of the System 

Markov Modcls 

Hidden MarkovModels (HMM) are commonly used in spoken language identification. 
For each language that the system must know about, a model is trained from text 
corpora, and stored for later comparison with unidentified text. In these models each 
state represents a character trigram Thus, the parameters of the MM are the transition 
probability and the initial probability. 

Trigram Frequency Vectors 

The trigram kequency vectors technique consists in comparing a vector of trigram 
frequencies for the text to classlfy with the vectors of known language, and select the 
closest one. Trigrams are formed by three consecutive characters of the text. 

Gram Based Text Categorization 

This technique is a text categorization method that can be applied to language 
identification, where each category is a language. The implementation of this technique 
is named TextCat. The system is based on comparing n-gram frequency profiles. 
A-gram frequency profile is a list of the occurring-grams sorted in decreasing 
frequency order. For each language we want to train the system, we create its -gram 
profile using all the -grams for all values of from 1 to 5. 

Martin Wechsler's, Paraic Sheridan's and Peter scauble's paper [I61 is based on the 
SPLDER information retrieval system. Issues associated with indexing multilingual 
collection of information are addressed. The main focus is on the language identification 
and the use of stemming algorithm from the European countries. The scarch also focuses 
on multilingual intranet which contains documents in English, French, German and Italian. 
The work done include automatic identification of the language in which aparticular text is 
written and the use of stemming algorithm for each individual language. The correct 
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identification of the language is crucial so that the correct stemming algorithm can be 
applied to each document. There is provision of user -friendly querying environment for a 
large multilingual collection of documents and special attention is made to language 
independent words. 
The indexing features are based on the individual words and the size of the index is 
maintained on the final performance of the retrieval system. The first step in reducing the 
number of features to be included in the index usually involves discarding those words that 
have little or no value in representing the content of a document-referred to as Stop Word. 
The second step is taken to improve the set of features used to represent the content of 
documents, called Normalization. In it the words from their surface are formed into a 
common base form. The emphasis is made on the presence of stop-words. 
During indexing, language specific accumulators count the number of stop words that 
match against the stop-word list of each language. The language of the document or text 
passage is then assigned according to the accumulator with the maximum value. 
This paper also give the idea of stemming to improve the performance and efficiency 
because the word reduction do not need to be linguistically meaningful since they are used 
only as indexing feature by retrieval system and not presented to the user at any stage. The 
crucial step to the performance of the stemming algorithm is the maintenance of the 
lexicon. 
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2.2 Our Work 
Ln this project we have used three approaches for language detection. The description of 
these approaches is given below. 

2.2.1 Dictionary Based Language Identification 

Dictionary based identification (DBI) is one of the most tried and implemented methods 
for language identification. Though simple, its effectiveness in certain areas cannot be 
denied. One of its biggest advantages is its performance. DBI is much faster during training 
and detection .than other algorithms used in this research. DBI gives good results when 
comparing languages belonging to different scripts. If used wisely this technique becomes 
more useful than it seems at first glance. Joined with Unicode based inter-language 
document identification, to detect and extract multiple languages data chunks from a 
document; dictionary based identification is applied on these chunks individually. 

Like most techniques used in this research, dictionary based identification is also a two 
phase process. The fvst phase being training and the second identification. Before going on 
to identifying documents, the system must first be trained for the languages that we wish to 
detect. Remember, it only detects the languages it has been trained for. However, if a 
language belongs to a script for which another language has already been trained is found 
in an input document, that language is identified as the language that was trained for the 
same script. For example, say in the Arabic script, we have trained DBI for Arabic, Urdu 
and Persian languages. If we try to detect a Pushto, Punjabi or similar document, all Arabic, 
Urdu and Persian will come up as close matches giving a hint to the script the language 
belongs to. 

The drawback in dictionary based implementation is that it doesn't perform well when 
comparing between languages belonging to the same script. Also document containing too 
few characters give much less information to DBI to detect languages effectively. Also, in 
case of documents like web Dages containing multiple lanmanes, the results are not able to - - - - 
clearly distinguish the language. However, if one language occupies the majority portion 
of the document, it has higher match weight-age hinting its identification. 

Training Phase: 

Inputs: 1) Training Document 
2) Dictionary File Path 

Output: Unique characters list 

Open training document. 
Read all data from the document. 

0 Generate a list of unique characters present in the training document. 
Sort the unique characters list. 
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Dump the list into the dictionary file specified. 

Identification Phase: 
Input: 1) Document to be identified 

Output: 1) Language match count 

a Open input document and read all data. 
Generate a list of unique characters in the document. 
Sort the generated list. 

a Get a list of script folders in the lang-dicts folder 
a for each script-folder in lang-dicts folder: 

Get a list of language files in the script folder 
For each language: 

Load the language list of unique characters 
0 Get match count of characters present in document list that are also 

present in language list. 
a Display match count statistics for each language. 

The language unique character lists are stored in a file folder hierarchy as displayed below: 

0 lang-dictsl (root folder) 
0 script folder I/ 

language1 list file 
a language2 list fde 

script folder 21 
language 3 list file 

2.3 Unicode Based Inter-Document LanguageIScript Identification 

The use of Unicode in our research has proved to be very useful. The global acceptance of 
Unicode and the well thought out placement of different languages in the Unicode code-set 
has given us more opportunities to detect languages effectively. Each scriptflanguage in 
Unicode has defined code ranges. This information is provided in the form of Unicode 
Database giving type, language, code point and other info for every character of every 
language represented in Unicode. The use of this database enabled us to detect different 
scripts in a document by querying the Unicode database for info about any character. 

Unicode based identification is the only technique in our research that does not require an 
explicit training phase. Only using updated versions of the Unicode database provided at 
www.unicode.org is sufficient for improving the technique. 

This technique is the fastest technique for language detection that we have implemented. 
As added benefit, this technique also allows us to identify different script portions within a 
document. Like all, this technique also has its drawbacks. First, for those scripts that have 
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many languages in them (Roman, Arabic, etc.) this technique can only detect the script and 
not the language. Secondly for inter-document language identification, detection of 
different language chunks is effective if consecutive language chunks belong to different 
scripts. For example, it accurately separates Arabic and English language chunks repeating 
one after another but has problems if English and French or German language chunks start 
repeating after one another. 

Input: 1) Input Document 

Output: List of languages and their byte 
ranges in the input document. 

Read all data from input document. 
set current - script = "" 
For each character in data: 

Get Unicode category of the character (Letter, Digit, Punctuation, 
etc.) 

If category = Letter 
Get Unicode character name 
Get the script name portion from the character name 
if script-name != current-script: 

Add last script to language chunks with start and end byte 
positions 
set current script = new script name 

Add last script to the language chunks list 
Remove fust empty chunk from the list. 

2.4 Cavnar's and Trenkle's Algorithm 

C&T [I] algorithm is the most accurate algorithm around for language detection. This 
algorithm concentrates on alphabet-combination characteristics of languages. Because of 
this property, this algorithm excels where other algorithms fail. It more accurately 
identifies languages belonging to the same script. 

This algorithm performs its calculations on n-grams. The value of n can be any digit (1,2,3, 
etc.) The number of n-grams in a document is equal to the number of characters in that 
document. For example, take the text "HELLO WORLD". 1-grams of this text are: 'H', 'E', 
'L', 'L', 'O', ' ', 'W, 'O', 'R', 'L', 'D'. 2-grams for the same text are: 'HE', 'EL', 'LL', 'LO', '0 ', ' 
W', 'WO', 'OR', 'RC', 'LD', 'DH'. The advantage of using n-grams is that they highlight the 
language properties. Finding common alphabetic combinations of a language is the 
purpose of processing n-grams. 
Over the years modifications and filtering techniques have been applied to further improve 
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the performance of this technique. The most recent successful addition to the technique 
was by KatiaHayati [ l]  in June, 2004, which included Fisher Discriminant function to give 
more importance to n-grams that were more unique across languages. We have further 
implemented another modification to the process by that serves as a replacement of Fisher 
discriminant function which was too time consuming for n-grams with n greater than 3. 

The training phase for this technique spans across multiple steps that are: 

Document filtering to remove formatting information from documents. 
Document normalization for removing multiple white spaces. 
Training multiple documents per language so that sufficient training data per 
language is present to make the calculations more real. 
Sorting the resulting statistics and calculating top C n-grams according to weight 
for each language. In this research C=1000 was found to be a good value. 

The identification phase involves generating n-grams for the input document and then 
comparing top C n-grams from the document again top C n-grams for each language to 
find out match value for that language. 

By default the algorithm runs with our custom modifications (called FF modifications here) 
included. Since com~aring the statistics against fisher discriminant implementation was - - - 
also required to get validated results, so a fisher discriminant implementation of the 
algorithm is also provided. 

Drawbacks of this method involve slower detection and more time required to train 
documents. Additionally adding a new language to the corpus of languages means doing 
all the calculations again for each language. 

Training (Step 1): 

Inputs: 1) Language Name 
2) Training Document 

Output: NILL 

If the lang folder not exists inside the data folder 
Load previously trained data for n-grams (n=l-4) from the data files pesent 
in the lang folder into n-gram lists. 

If lang folder does not exist: 
Create lang folder 
Initialize n-grams lists to blank 

Read all data kom training document 
Normalize the data by replacing multiple white spaces with a single space. 
Generate n-grams from input data. 
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Calculate weights (frequency) for each n-gram in input document. 
a Update weight of each n-gram in the n-gram lists (loaded fiom previous training 

data files). 
0 Dump n-grams lists to lang folder inside the data folder. 

Training (Step 2): 

Inputs: 1) Source n-gram list 
2) Target n-gram list 
3) C (Top no. of n-grams to store) 

Output: NILL 

a Load Source n-gram list. 
Sort the list in descending order. 
Trim the list to top C items. 

a Dump the new list to Target n-gram list path. 

Training (Step 3) - n-gram Uniqueness Calculation: 

Input: 1) Lang 

Output: NILL 

a Load n-gram lists from lang folder in the data-finalizer folder. 
a Get list of languages in data-fmalizer folder. 

For each n-gram in n-gram lists: 
a set u-ng = C * total-langs 
0 For each lang: 

if n-gram found in lang list: 
a idx = index of n-gram in current lang list. 

u - ng = u-ng -idx 
a Add uniqueness value of n-gram to uniqueness list 

Dump n-gram uniqueness lists to lang folder. 

Identification phase: 

Input: 1) Input Document 

Output: Language match count 

Read the data from document 
Normalize the data. 

a Generate n-grams(1-4) for the data. 
Calculate n-gram weights (Frequencies) in data. 
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Sort document n-grams list in descending order. 
Trim list to top C items. 
Get list of language folders in the data-f~nalizer folder. 
For each language: 

Load lang n-gram lists. 
Load n-gram uniqueness values. 
For each document n-gram list (n= 1-4): 

set diff= 0 
For each n-gram in list: 

If n-gram found in Iang list: 
set il = index of n-gram in doc list 
set i2 = index of n-gram in lang list 

a cliff+= il- i2 
uv = unique-ness value of n-gram 
diff -= (uv/100) 

if n-gram not found in lang list 
diff += Ci-1 
uv = unique-ness value of n-gram 
diff -= (uv/100) 

returnldisplay match statistics 

Folder structure used in this algorithm is given below: 

data - f d i z e r l  
langll 

1grams.dat 
2grams.dat 
3grams.dat 
4grams.dat 
u-1 grams.dat 
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Training Phase: 
Pre-condition: All training documents 

are present in 
training-documents folder. 

Generate a list all unique n-grams found in all kaining documents of each language. 
Lets call this list A. 
Get a list of language in the training-documents folder. 
For each lang: 

Get a list of training docs in that lang. 
For each doc: 

For each n-gram in A: 
Find fiequency of n-gram in doc. 
Find normalized frequency of n-gram in doc. 

For each n-gram in A: 
Calculate mean frequency of n-gram 

Sort the list of mean frequencies in descending order of frequency. 
Trim this list to top 1000 items. Lets call this list R. 
For each lang: 

Calculate lang fisher values 
For each n-gram in A: 

Calculate lang mean fiequency. 
For each n-gram in R: 

fR = mean fiequency of n-gram in R. 
fL = mean frequency of n-gram in current lang. 
n-gram fisher value = FL I fR 

Save lang fisher values. 

Identification Phase: 
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Input: Input Document 

a Read document data. 
0 Normalize data. 

Get a list of unique n-grams present in the document. 
For each n-gram in document n-grams: 

a calculate frequency of n-gram in document. 
Load R (Top thousand n-grams by mean frequency, generated during 
training phase). 
For each n-gram in R 

a If n-gram present in document n-grams: 
a calculate n-gram normalized frequency in document 

else: 
set normalized frequency of n-gram in doc to 0.00. 

Get a list of Languages available for identification 
For each lang: 

Load lang fisher values. 
0 set diff = 0.00 

For each n-gram in document normalized frequencies list: 
set nFV = lang fisher value for ngram 

a set nNF = document normalized frequency for ngram 
diff += nNF * nFV 

a Display diff as lang match value for document. 
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3. Requirement Analysis 

The requirement analysis is the first step towards developing software. Analysis must be 
performed in a systematic and correct manner so as to have as few mistakes as possible in 
the software and to have an end product completely fulfilling the expectations of the client. 
The main objective of this phase is to identify all possible requirements and expectation of 
software. 

3.1 Use Case Analysis 

Analysis of the project is represented in terms of Use Case diagrams indicating the actors 
and use case in expanded format. Use Case may be related to thc other Use Cases by the 
Extended, Include, and Generalization relationships. The use case model describes the 
proposed functionality of thc new system. 
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3.2 Use Case in Expanded Format 

In this section we discuss the use cases by describing their related actors, pre and post 
conditions, typical course of actions and alternative course of actions. 
The use cases have been written in expanded format as follows. 

3.2.1 Trainer 

Ucl Dictionary Based Method 
Uc2 Load Document 
Uc3 Get Unique Characters 
Uc4 Cavnar & Trenkle's Algorithm 
Uc5 Load Document 
Uc6 Normalization 
Uc7 HTML Removal 
Uc8 Language Removal 
Uc9 Preprocessing 
UclO Generate n-grams 
Ucl 1 Calculate Weights 
Uc12 Finalizer 

3.2.2 Identifier 

Uc13 Get Unicode Script ranges 
Uc14 DBI 
Uc15 CTA 

3.2.1.1 Trainer Use Case 

a) Name: Trainer 
b) Actor: Admin 
c) Pre-Condition: None 
d) Post-Condition: Runs the selected method for training 
e) Typical Course of Action: 

f) Alternate Course of Action: 

Actor Action 
- 
I) User Selects the method for training. 

System Response 

2) Call and runs the specified method. 
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Actor Action 

la) If user doesn't select any method for 
training 

System Response 

2a) Default method i$ called. 
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3.2.1.2 DBI Use Case 

a) Name: DBI 
b> Actor: Admin 
cj  Pre-Condition: Input document must be specified and the targe! file path where the 
dictionaries are to be saved. Input Document must be in the pdf, HTML, txt, doc and in 
U P - 8  encoding 
d) Post-Condition: Dictionaries are saved in specified path. 
e) Typical Course of Action: 

r Actor Action I SystemlResponse 

f) Alternate Course of Action: 

1) Input document is 
loaded(pdf,txfdoc,HTML format,UTF-8 
encoding) 

2) List of unique characters are generated 
for that document. 
3) Dictionaries are saved in the specified 

3.2.1.3 CTA Use Case 

Actor Action 

la) If the document is not in specified 
format or UTF-8 encoding. 
4a) Repeat step 1 to 3 

a) Name: CTA 
b) Actor: Admin 
c) Pre-Condition: Input document must be specified. Input Document must be in the pdf, 
HTML, txt, doc and in UTF-8 encoding 
d) Post-Condition: Saves list of n-s and update their weights,~if no list exist creates a 
list. 
e) Typical Course of Action: 

System !Response 

2a) Document is notlloaded. 
3a) Error message is displayed. 

Actor Action 
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1) Input document is loaded (pdf, 
txt,doc,HTML format,UTF-8 encoding) 

2) Removes HTML tags. 
3) Removes the multiple spaces, \t,h and 
any other special chGacters. 
4) Removes the specified characters (may 
belong to other scripts) from the document. 
5) Returns only the textual data after 
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f) Alternate Course of Action: 

- -  - - 
normalizing. 
6)  Generate all the n-grams (1 to 4 gram). 
7) Calculates the weights for n-grams. 
8) Reduce n-grams up to the value of 
C(lOO0). 

Actor Action 

la) If the document is not in specified 
format or UTF-8 encoding. 
4a) Repeat step 1 to 3 

System Response 

2a) Document is not loaded. 
3a) Error message is displayed. 

3.2.2.1 Identifier Use Case 
(A) 
a) Name: Identifier 
b) Actor: User/Admin 
c) Pre-Condition: Input document in specified format and in UTF-8 encoding, 
d) Post-Condition: Language identification results displayed using CTA 
e) Typical Course of Action: 

f )  Alternate Course of Action: 

Actor Action 

1) User Selects the CTA method for 
identification. 

System Response 

2) Generates n-gram list for the input 
document. 
3) Loads n-gams list &om data Finalizer 
folder. 
4) Compares the two Lists. 
5) Display language identified and its 
percentage count. 

3.2.2.2 Identifier Use Case 
9) 
a) Name: Identifier 
b) Actor: UserIAdmin 
c) Pre-Condition: Input document in specified format and in UTF-8 encoding, 
d) Post-Condition: Language identification results displayed using DBI 

Actor Action 

la) If user doesn't select any method for 
identification 
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2a) Default method is called. 
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e) Typical Course of Action: 

I 
1) User Selects the DBI method for 12) Generates list of unique characters for thf 

Actor Action System Response 

f) Alternate Course of Action: 

identification. input document. 
3) Loads Dictionaries from data Finalizer 
folder. 
4) Compares dictionaries with list of uniqut 
characters. 
5) Display script, language identified and 
percentage count. 
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Actor Action 

la) If user doesn't select my method for 
identification. 

System Response 

2a) Default method is called. 
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4. DESIGN 

System design is the specification or construction of a technical, computer based solution 
for business requirements identified in the system analysis. It is evaluation of alternative 
solutions and the specification of a detailed computer based solution. 

4.1 Modular Approach 

The whole system is implemented as a set of python modules. This approach allows both 
use of individual functions or the whole application. Most of the modules when run 
individually either allow the user to perform one specific task or run some test cases to test 
the code they contain. When imported into other python programs they allow usage of all 
the functionality the system provides. 

4.1.1 User Interfaces 

Apart from being a code library that can be used in bigger systems requiring language 
identification two user interfaces have been built using this library. 

4.1.1.1 Command Line Interface (CLI) 

The command line interface allows language detection fiom the command line. This 
interface is ideally suited for quick language detection tasks, automated batch jobs for 
doing language detection on a bulk of documents etc. The results returned are machine 
parse-able (GREP-able). This is in-line with the traditional Unix philosophy of allowing 
programs to be easily glued together for accomplishing bigger tasks. 

4.1.1.2 Web Interface 

To maximize the availability of the system, a web based interface for the system has also 
been implemented allowing the user to upload a document and have its language detected. 
This interface is built upon the idea of parsing the output of the CLI and displaying them in 
a more user friendly manner. 

4.2 Sequence Diagram 

Sequence Diagrams are used to show the flow of functionality through a use case. It 
illustrates the entire flow of processing object and actor interaction with respect to time. 
Sequence Diagrams of some use cases are discussed below: 
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Figure 4.1 Sequence Diagram of DBI (Trainer) 

Figure 4.2 Sequence Diagram of Load Document (CTA-Trainer) 
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4.3 Sequence Diagram of Normalization (CTA-Trainer) 

Figure 4.4 Sequence Diagram of Generate n-grams(CTA-Trainer) 
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Figure 4.5 Sequence Diagram of Finalizer (CTA-Trainer) 
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Figure 4.6 Sequence Diagram of CTA Identifier 

Figure 4.7 Sequence Diagram of DBI Identifier 
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5. IMPLEMENTATION 
Web interface for the system has been developed using PHP & HTML. All other 
components of the system have been developed using Python. 

The modules in the system can be divided into the following categories: 

5.1 Unicode and Utility Modules 
5.2 Dictionary Based Modules 

- Training Modules 
- Identification Modules 

5.3. Cavnar's and Trenkle's Algorithm modules 
- Training Modules 
- Identification Modules 

5.1 Unicode and Utility Modules 

5.1.1 Inter-Document Multiple Script Identification (inter-1angid.p~) 
This module is used to detect multiple scripts within a single document. Given the data it 
returns chunks of each script. 

Detecting and Returning multiple scripts within the same dab: 

def get - lang - portions(data): 

big - list = [ I  

L = I 1  
i=O 
Li=O 
current - script=" 
Si=O 
script = " 

#pr in t  repr  (data) 

for ch in data: 
cat=unicodedata.category(ch) 
#pr in t  " c a t :  %s" % (cat) 

Li= i 
# p r i n t  "ch Name : " + unicodeda t a  . name (chl 
script = unicodedata.narne(ch) 
script=script.split() 
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script = scriptI01 
#print "Script: %s, i: %i, Li: %in % (script, i, Li) 
if current - script != script: 

#print "IN IF: Current Script: %s, script: %s" % 
(current script, script) 

L.append(current-script) 
L.append(Si) 
L. append (Li ) 

big - list. append (L) 

L= [ I 
Si=Li 
current - script=script 

L.append(current - script) 
L. append(Si) 
L. append (Li) 

big - list. append (L) 

L=[l 
Si=Li 
current script=script 
del big-list [ O ]  
return (big - list) 

5.1.2 Document Conversion (data-conversion.py) 
This module is used to read various forms of input documents and return their data, 
ignoring any formatting and other info they may contain. Type of the document is detected 
using its file extension and data fkom the document is ready accordingly. 

Reading data from different types of documents: 

def get-file - data(fi1ename): 
fileparts = filename.rsplit(".",l) 
file ext = fileparts[l] 
#print repr (file e x t )  
file - ext = file - ext. lower ( )  
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if "htm" == file - ext or "html" == file - ext: 
fd = codecs.open(filename,'r',encoding = 'utf-8') 
data = fd.read() 
fd.close0 
data = html - cleaner.clear-html(data) 

if "txt" == file - ext or "text" == file - ext: 
fd = codecs.open(filename,'r',encoding = 'utf-8') 
data = fd.read() 
fd.close() 

if "pdf" == file ext: 
cmd = "pdftotext %s %s" % (filename, filename + ' . txt' ) 
#print cmd 
0s. system(cmd) 

fd = codecs.open(filename + '.txt1,'r',encoding = 

'utf-8 ' ) 
data = fd.read0 
fd.close() 
os.system ("rm 8s" % (filename + '.txt1)) 

return data 

5.1.3 HTML Cleaner (html-c1eaner.p~) 
This module is used to clear html tags, comments etc fiom html documents. Regular 
expressions are used to clear off any html tags from the document. Any javascript and style 
information present in the document is also removed 

Clearing HTML formatting information from a document: 

def clear html (d) : 
#define-the regular expression t o  be matched 
r =  

re.c~mpile(~'<script.*?>.*<\/script>~<style.*?>.*<\/style>l<\ 
/?\w.*?>l<\!--1-->l&nbsp;", re.M + re.S + re.1 + re.U) 

d = r.sub("",d) 
return d 

5.1.4 Document Cleaner (doc-cleaner.py) 
This module is used to remove alphabets of one language from documents of another 
language. Its used in "purifying" the training documents before using them for training. For 
example, using this module Roman alphabets can be removed fiom non-Roman languages 
like Urdu, Arabic, Chinese etc. 
The data and a list of alphabets that need to be removed are passed to the function. . 
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Removing alphabets of other scripts from a document: 

def clear-script (d, list) : 
= " "  

for ch in d: 

if ch in list: 
#print repr (ch) 
d 2 = d 2 + c h  

return d2 

5.1.5 File Folders Utilities (rnyutikpy) 
This module is used for misc functions like getting a list of files and folders in a given path. 

Function to get a fist of files and folder in given patb: 

def get folders - files (folder - name) : 
directories = [ I  
files = [I 
for r,d,f in os .walk (folder - name) : 

if r == folder name: 
directori& = d 
files = f 

return (directories,files) 

5.1.6 Normalization (Pre-Processing.py) 
This module is used for normalizing input data by removing tab and new line characters etc. 
and converting multiple spaces to single space. 

Function to normalize given data: 

def normalize (d) : 
d = d.replace("\n"," " )  
d = d.replace("\tW," " )  
d = d.replace("\rW," " )  
while -1 ! = d. find ( "  " )  : 

d = d.replace ( "  " t " " )  

return (d) 
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5.2 Dictionary Based Modules 

5.2.1 Dictionary Based Identification - Trainer OBI-Trainer.py) 

This module generates unique character lists fiom given input files. These lists are later 
used for dictionary based language identification. 

unique list generation from input document: 

unicode string = fd.read0 
for unicode-char in unicode-string: 

if unicode-char not in dllist: 
dll is t .append(unicode_char)  

dllist . sort ( j 

5.2.2 Dictionary Based Identification - Identifier OBI-1dentifier.p~) 

This module performs dictionary based language identification. A List of unique 
characters in the input document is generated and is compared against each list of unique 
characters for supported languages. 

Dictionary based language identification : 

def dict id(data) : 
DL = Uni char-doc (data) 
big - list:[] 
(folders,f) = myutils.get - folders - files('./lang - dicts') 
#print repr (folders) 
script dict = ( 1  
for script folder in folders: 

script diet= { 'name1 :script - folder} 
scripthdict [ langs ] = [J 
(f,fiGs) = 

myutils.get folders-files('./lang - diets/' + script - folder) 
L=I I 
#print repr (files) 
for lang file in files: 

Li = cPickle . load (codecs .open ( . /lang - dicts/ ' 
+ script - folder + ' / '  + lang - file,'rl)) 

L = [lang-file] 
match count = 0 - 
for ch in DL: 
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if ch in Li: 
match count +=1 - 

L.append(match count) 
script - dict [ lzngs ] . append (L) 

return big - list 

5.3 Cavnar's and Trenkle's Algorithm Modules 

5.3.1 N-Grams Generator (ngrams.py) 

This module serves for generating specified n-grams (1-grams, 2-grams, 3-grams, etc.) 
from given data. This module is used at many occassions by modules of this category. 

The n-gram generator function : 

def getngrams(d,n=3): 
l=len (d) 
n = int (n) 
d=dtd[:n-11 
list = [ I  
for i in range(1): 

list.append(d[i:i+nl) 
return list 
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5.3.2 Trainer (trainer.py) . 
This trainer module is used to train the system for more language or to further improve the 
learning of the system for already trained languages. It takes two arguments, a language 
name and an input document. If the language has previously been trained then previous 
stats are loaded and after processing the new document stats are updated and stored again. 
If the language has not been previously trained, new stats are generated and stored. 

I-gram training code snippet : 

dict - 3gram= cPickle.load(codecs.open("./data/" t sys.argv[ll + 
"/3grams.datW, 'r')) 

dict~4gram=cPickle.load(codecs.open("./data/"tsys.argv[11 t 
"/4grams.datW, 'r') ) 

else: 
os.mkdir("./data/" + sys.argv[l] ) 
dict-lgram = { I  
dict-2gram = I )  
dict 3gram = { )  
dictI4gram = 1 )  

fo r  filename i n  sys.argv[Z:]: 
p r i n t  "Reading File: " t filename 
starttime = time.time0 
filename = codecs.open(sys.argv[Zl,'r', encoding = 'utf-8') 
d = filename. read!) 
filename.close0 

endtime = time.time() 
difference = endtime - starttime 
p r i n t  "Read Time : " + str(difference) 

p r i n t  "Normalizing: " 
starttime = time.time0 
d = Pre Processing.normalize(d) 

endtime =time. time ( ) 
difference = endtime - starttime 
p r i n t  " time: " + str(difference) 

p r i n t  "Getting ngrams: " 

starttime = time.time() 
ng = ngrams. getngrams [d, 1) 

endtime = time.time[) 
difference = endtime - starttime 
p r i n t  " time: " t str!difference) 

Diction Identifier 35 



Chapter 5 Implementation 

one-grams = I }  
p r i n t  "Calculating Weights: " 
starttime = time.time0 
for n i n  ng: 

i f  one-grams.has-key(n): 
one-grams [nl+=l 

else: 
one-grams [n] =l 

endtime = time.time(j 
difference = endtime - starttime 
p r i n t  " time: " + str(difference) 

for k i n  one-grams: 
if dict-lgram. has-key (k) : 

dict - lgram[kJ=one - grams[kl + dict-lgram[kl 
else: 

dict-lgram [ k] =one-grams [kl 

cPickle.dump(dict-lgram, codecs .open("./data/" + sys.argv[l] + 
"/lgrams.dat", " w " ) )  

5.3.3 Training Finalizer (trainingfinalizer.py) 

After enough training documents have been used to train for languages, the training 
finalizer module is used to sort the stats and trim them to the top C (c=1000 used) most 
frequent n-grams for each language. The results of this module are used for language 
identification by the identifier module. 

The training finalization phase : 

dict = cPickle.load(codecs.open(sys.argv[l],'r')) 
# print repr (diet) 

list = dict-sort(dict,'d') 
list = list [:int (sys.argv[3] ) 1 

# print repr(iistl 
cPickle.dwnp(list, codecs.open(sys.argv[21, "w")) 

5.3.4 Uniqueness Calculator (uniqueness-calculator.py) 

This module trains the system for an alternate improvement to Fisher Discriminant 
function. For each n-gram in every language, its uniqueness value is calculated. N-grams 
that are more unique across languages are given higher weight-age during language 
detection. 

Calculating uniqueness of 4-grams : 

lang - folders = myutils.get-folders-files("data-finalizer") 
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lang folders = lang-folders[Ol 
folder-count = len (lang-folders) 

for ng in L-4gram: 
Ung = C * folder-count 

for 1 in lang-folders: 
1-4gramlist = cPickle.load(codecs.open('./data - finalizer/' t 1 t 

'/4grams.dat1, 'r')) 

if ng in 1-4gramlist: 
index = 1 - 4gramlist.index(ng) 

Ung = Ung - index 

unique-dict [ng] = Ung 

cPickle.dump(unique dict,codecs.open("./data-finalizer/" t lang t 
"/u_4grams .dat", "w")) 

5.3.5 Stats Comparison Module (caomparision.py) 

This module compares input document stats against uniqueness and frequency stats of a 
language and returns the results. It is used by the language identified modules for 
comparing languages for a given doc. 

Comparing n-gram stats : 

def compare-ngrams(G,Gi,Ui,C): 
similarity-list = [0,0,0,01 

for cn in range(0,4) : 
listl = G[cn] 
list2 = Gi[cn] 
U dict = Ui[cn] 
current-difference = 0 
for ngrams in listl: 
if ngrams in listZ: 
indexl = listl.index(ngrams) 
index2 = list2. index(ngrams) 
current-difference = current-difference + (indexl - index2) 
if U dict.has-key (ngrams) : 
u value = U-dict[ngramsl 
current-difference = current-difference - (u-value/100) 

else: 
current-difference = current-difference + (C+l) 
if U dict. has key (ngrams) : 
u value = ~3ct[n~rams] 
current-difference = current-difference - (u-value/100) 

Diction ldenfijier 37 



Chapter 5 Implementation 

#current  d i f f e rence  = ~ r r e n t - d i f f e r e U c e  / 100 
s i m i l a r i k l i s t  [cnl = current-difference 

r e t u r n  ( s imi la r i ty - l i s t )  

5.3.6 CTA Identifier (CTAlgo-detect0r.p~) 

This module performs language detection for the C&T algorithm. It takes an input 
document and prints language match percentages for that document. 

code snippet of matching by onexrams: 

def get-match-count(unicode-string): 
C = 1000 
f r e t u r n  normalized data  
# p r i n t  "Time For Normalizing : " 
# s t a r t  time = time. time() 
normalized-doc = Pre-Processing.normalize (unicode-string) 
#endtime = t i m e .  time 0 
#dif ference  = e n d t h e  - start- t ime 
# p r i n t  " Time f o r  Hormalization: " + s t r fc i i f ference)  

$Return A l l  the  n-grams o f  normalized data 
G = [ I  
# p r i n t  "Getting lgrams: " 
#s ta r t t ime  = time.time() 
ngl  doc = ngrams.getngrams(normalized-doc,l) 
#endtime = time. time 0. 
#dif ference  = endtime - s t a r t t i m e  
# p r i n t  " T i m e  f o r  a l l  1-grams: " + str (difference) 

one-grams = { I  
#print  "Calculat ing Weights: " 

# s t a r t t i m e  = t i m e .  t i m e  0 
f o r  n i n  ngl-doc: 

i f  one-grams.has - key(n) :  
one-grams[nl+=l 

else: 
one-grams [nl = l  
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5.3.7 Fisher Discriminant (fisher-discriminant.py) 

This module performs language detection by using C&T algorithm along with the Fisher 
Discriminant Improvement. It takes an input document and prints language match 
percentages for that document. 

This module is implemented as one class that performs all operations for fisher 
discriminant based C&T algo language detection. Every thing from training to detection is 
performed by the same module. 

calculating mean frequencies: 

def calculate-mean freqs(se1f): 
self. load allXgrams ( )  
self .loadIall-normalized-freqs 1 )  
total ngrarns = len(self.al1-ngrams) 
print-"\n~alculating mean frequencies for all ngrams" 
print "Total N-grams: %it' B total-ngrams 
current-count = 0 
st = time.time() 

mean-freqs = [ I  
for ngram in self.al1-ngrams: 

current-count += 1 
f = self.get-mean-freq(ngram1 
mean-freqs [ngram] = f 
if 0 == current-count 2 100: 

ct = time.time() 
elapsed-time = ct - st 
remaining-ngrams = total-ngrams - current-count 
remaining-time = (elapsed-time/current-count) * 

remaining-ngrams 
print "calculating %i/%i, time elapsed: $i, estimated time 

remaing: %i" % (current - count, total - ngrams, elapsed-time, remaining time) - 

return (mean-freqs) 
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6.  RESULTS 

In this chapter various statistics generated and observations made during the system 
development process are presented. 

6.1 Training Documents 

Training documents are the very basis of successful language identification. Picking 
suitable training documents and cleaning them correctly before feeding to the system for 
learning is the most important part to ensure the accuracy of the system. While picking 
training documents following precautions were taken: 

Topic specific technical documents containing the same words or phrases again and 
again were not picked. 
All formatting information and languages other than the language for which the 
document would be used for training were removed. 
Total data size of training documents for each language was kept roughly equal to 
avoid any bias toward an heavily trained language. 
All documents were save in UTF-8 encoding. 

Given below is the list of training documents used for each language along with their sizes 

root@fouzia:/Project/training~documents# 1s -1hR 
. . 
total 5.5K 
drwxr-xr-x 2 root root 528 2005-12-26 14:07 arabic/ 
drwxr-xr-x 2 root root 208 2006-01-01 01:46 chineese/ 
drwxr-xr-x 2 root root 96 2005-12-26 13:42 english/ 
drwxr-xr-x 2 root root 80 2006-01-01 01:47 french/ 
drwxr-xr-x 2 root root 144 2006-01-01 01:49 german/ 
drwxr-xr-x 2 root root 208 2005-12-25 15:15 italian/ 
drwxr-xr-x 2 root root 176 2006-01-01 01:50 japaneese/ 
drwxr-xr-x 2 root root 488 2006-01-01 01:51 persian/ 
drwxr-xr-x 2 root root 208 2006-01-01 01:52 spanish/ 
drwxr-xr-x 2 root root 400 2005-12-26 13:57 urdu/ 

1 root root 1.7K 2005-12-26 14:05 arabicl.txt 
1 root root 25K 2005-12-26 14:06 arabicl0.txt 
1 root root 31K 2005-12-26 14:06 arabicll.txt 
1 root root 51K 2005-12-26 14:06 arabicl2.txt 
1 root root 26K 2005-12-26 14:07 arabicl3.txt 
1 root root 5.8K 2005-12-26 14:07 arabicl4.txt 
1 root root 18K 2005-12-26 14:07 arabicl5.txt 
1 root root 3.2K 2005-12-26 14:05 arabic2.txt 
1 root root 30K 2005-12-26 14:05 arabic3.txt 
1 root root 5.8K 2005-12-26 14:05 arabic4.txt 
1 root root 4.OK 2005-12-26 14:06 arabic5.txt 
1 root root 9.1K 2005-12-26 14:06 arabic6.txt 
1 root root 6.1K 2005-12-26 14:06 arabic7.txt 
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-rW-r--r-- 1 root root 9.9K 2005-12-26 14:06 arabic8.txt 
-rW-r--r-- 1 root root 7.2K 2005-12-26 14:06 arabic9.txt 

./chineese: 
total 312K 
-rW-r--r-- 1 root root 67K 2005-12-26 13:32 chineese2 clean.htm1 
w - - - I -  1 root root 30K 2005-12-26 13:32 chineese3-clean.htm1 
-rW-r--r-- 1 root root 72K 2005-12-26 13:33 chineese5Iclean.html 
-rW-r--r-- 1 root root 140K 2005-12-26 13:33 chineese6-clean.htm1 

./english: 
total 340K 
w - w - r -  1 root root 336K 2005-01-03 03:09 132.txt 
-rW-r--r-- 1 root root 2.4K 2005-11-11 06:08 new.txt 

. /french: 
total 260K 
-rwxr-xr-x 1 root root 258K 2005-12-25 15:15 french2.html* 

. /german: 
total 304K 
-rwxr-xr-x 1 root root 44K 2005-12-25 15:15 german2.txtt 
-rwxr-xr-x 1 root root 83K 2005-12-25 15:15 german4.txt* 
-rwxr-xr-x 1 root root 175K 2005-12-25 15:15 german5.txt* 

./italian: 
total 276K 
-rwxr-xr-x 1 root root 45K 2005-12-25 15:15 italianl.txt* 
-rwxr-xr-x 1 root root 59K 2005-12-25 15:15 italianZ.txt* 
-rwxr-xr-x 1 root root 114K 2005-12-25 15:15 italian3.txt* 
-rwxr-xr-x 1 root root 17K 2005-12-25 15:15 italian4.txt* 
-rwxr-xr-x 1 root root 29K 2005-12-25 15:15 italian5.txt* 

. / japaneese : 
total 260K 
w - r -  1 root root 35K 2005-12-26 13:54 japaneesel.txt 
-rW-r--r-- 1 root root 79K 2005-12-26 13:55 japaneese2.txt 
-rW-r--r-- 1 root root 106K 2005-12-26 13:55 japaneese3.html 
-rW-r--r-- 1 root root 36K 2005-12-26 1355 japaneese5.html 

./persian: 
total 396K 
-r.,-r--r-- 
-rW-r--r-- 

-rw-I--r-- 
-rW-r--r-- 
-rW-r--r-- 
-rW-r--r-- 
-rW-r--r-- 
-rW-r--r-- 
-rw-r--L'-- 
-rW-r--r-- 

-rw-r--r-- 

1 root root 28K 2005-12-26 13:46 persian-clean.txt 
1 root root 20K 2005-12-26 13:28 persian cleanl.txt 
1 root root 45K 2005-12-26 13: 47 persianIcleanlO. html 
1 root root 32K 2005-12-26 13:29 persian-clean2.txt 
1 root root 41K 2005-12-26 13:29 persian clean3.txt 
1 root root 49K 2005-12-26 13: 29 persianIclean4. txt 
1 root root 33K 2005-12-26 13:30 persian-clean5.txt 
1 root root 34K 2005-12-26 13:30 persian-clean6.txt 
1 root root 17K 2005-12-26 13:30 persian-clean7.txt 
1 root root 51K 2005-12-26 13:45 persian-clean8.txt 
1 root root 28K 2005-12-26 13:45 persian-clean9.txt 

./spanish: 
total 228K 
-rwxr-xr-x 1 root root 62K 2005-12-25 15:15 spanishl.html* 
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-rwxr-xr-x 1 root root 53K 2005-12-25 15:15 spanish2.htmlt 
-rwxr-xr-x 1 root root 35K 2005-12-25 15:15 spanish3.html* 
-rwxr-xr-x 1 root root 63K 2005-12-25 15:15 spanish4.html* 
-rwxr-xr-x 1 root root 4.3K 2005-12-25 15:15 spanish5.txt' 

1 root root 19K 2005-12-26 13:56 urdul.txt 
1 root root 41K 2005-12-26 13:57 urdul0.txt 
1 root root 32K 2005-12-26 13:57 urdull.txt 
1 root root 9.3K 2005-12-26 13:56 urdu2.txt 
1 root root 6.3K 2005-12-26 13:57 urdu3.txt 
1 root root 15K 2005-12-26 13:57 urdu4.txt 
1 root root 9.9K 2005-12-26 1337 urdu5.txt 
1 root root 15K 2005-12-26 13:57 urdu6.txt 
1 root root 14K 2005-12-26 13:57 urdu7.txt 
1 root root 14K 2005-12-26 13:57 urdu8.txt 
1 root root 18K 2005-12-26 13:57 urdu9.txt 

6.1.1 Training Languages and Scripts 

10 languages belonging to 4 different scripts have been used to test out the system training 
and identification phases. The scripts are Arabic, Chinese, RomadLatin, Japanese. The 
languages used are Arabic, Chinese, English, German, French, Italian, Japanese, Persian, 
Spanish and Urdu. 

6.2 Test Environment 

All statistics were gather by running the system on a 2.4 GHz P-IV system with 256 MB 
RAM. Operating system used is GNU Linux 2.4.31#6 (Distribution: Slackware 10.2). No 
processor intensive tasks were performed during the statistics gathering process. 

6.3 Algorithm Wise Timing and Accuracy Statistics 

Given below is are timing and accuracy statistics grouped by each algorithm used in the 
language. These serve as the facts that support our conclusions. 

6.3.1 Dictionary Based Identification 

Training for Dictionary Based Identification is very fast and new languages can be trained 
in a matter of seconds (even milliseconds). 
A snippet of a training session of training a few languages for DBI is given below: 

root@fouzia:/Project/src# 1s -1h ../training - documents/english/l32.txt 
w - w -  1 root root 336K 2005-01-03 
03:09 ../training - documents/english/l32.txt 

root@fouzia:/Project/src# 
time ./DBI-Trainer.py ../training - documents/english/l32.txt 
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lang - dicts/roman/en.dict [u9\n', ul\r', u' ', u'! ', u"", u'#', ul$', u'%', 
u'h', u"'" , ul[', u')', ur*', u',', u1-' , u'.', u'/', u'O', u'l', ~ ' 2 ' ~  u'3', 
u14', u15', u16', u'7', u'8', u'9', u':', u'.' t , u'?', u'@', u'A', u'B', u'C', 
u'D', u'E', u'F', u'G', u'H', u'I', u'J', u'K', u'L', u'M', u'N', u'O', u'P', 
u'Q', u'R', u'S', u'T', u'U', u'V', u'W', u'X', u'Y', u'Z', ul[', u']', u'-', 
u t  - t  , u'a', u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', 
u'm', u'n', u'o', u'p', u'q', u'r', u's', u't', u'u', u'v', u'w', u'x', u'y', 
u'z', u'l'l Iu1\n', ul\r', u' ', u'!', u'"', u'#', ul$', u'%', u'h', u"'", 
Uf(', U')', U'*' , u',', u'-', u'.', U1/', U'O', U'l', U12', u13', U14', U'5', 
u'6', u17', u18', u'9', u':', u';', u'?', u'@', u'A', u'B', u'C', u'D', u'E', 
u'F', u'G', u'H', u'I', u'J', u'K', u'L', u'M', u'N', u'O', u'P', u'Q', u'R', 

3 u"' u'S', u'T', u'U', u'V', u'W', u'x', u'Y', u'Z', u'[', u']', u'- , , u'a', 
u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', u'm', u'n', 
u'o', u'p', u'q', u'r', u's', "It1, u'u', u'v', u'w', u'x', u'y', u'z', u'l'l 
real 01110.758s user Om0.730~ sys Om0.000~ 

root@fouzia:/Project/src# Is -1h ../training-documents/german/german2.txt 
-rwxr-xr-x 1 root root 44K 2005-12-25 
15:15 ../training documents/german/german2.txt* root@fouzia:/Project/src# 
time . /~B~-~raineY.py . ./training - documents/german/german2. txt 
lang - dicts/roman/de.dict [u'\nl, u' ', u ! ,  u"", u""', uT(', u')', u',', 
u g - *  , u'.', ut/', u'0'. u'l', u12', u'3', u'd', u15', u'6', u'7', u'8', u'9', 
u':', u';', u'>', u'?', u'A', u'B', u'C', u'DT, u'E', uqF', u'G', u'H', u'I', 
u'J', u'K', u'L', u'M', u'N', u'O', u'P', u'R', u'S', u'T', u'U', u'V', u'W', 
u'Z', u'a', u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', 
u'm', u'n', u'o', u'p', u'q', u'r', u's', u't', u'u', u'vT, u'wt, u'x', u'y', 
u'z', u'\xa9', u1\xc4', u'\xdcl, u1\xdf', u1\xe4', uq\xf6', ul\xfc'] 
[ut\nl, u l  1 ,  uv!t, u'n*, unln , ul(', u')', u', ' , us-' , u'.', u8/', u1O', 
u'l', u'2', u'3', u14', u15', u16', u'7', u18', u'9', u':', u';', u'>', u'?', 
U'A', u'B', u'C', u'D', U'E', U'F', u'G', u'H', u'I', u'J', u'K', u'L', u'M', 
u'N', u'O', u'P', u'R', u'S', u'T', u'U', u'V', u'W', u'Z', u'a', urb', u'c', 
u'd', u'e', u'f', u'g', u'h', u'i', u'j', u'k', u'l', u'm', u'n', u'o', u'p', 
u'q', u'r', u's', u't', u'u', u'v', u'w', u'x', u'y', u'z', u'\xa9', u1\xc4', 
ul\xdc', u'\xdft, u1\xe4', u1\xf6', u'\xfc11 

real Om0.117~ 
user Om0.090~ 
SYS Om0.010s 

As can be seen, training DBI for a new language takes under a second in most cases. 

Language detection with DBI is equally fast. Here is a sample run session in which a 
multi-lingual document contain Arabic, Urdu, English, German language paragraphs 
(chunks) is processes. 

root@fouzia:/Project/src# time ./lang identifier.py inter-doc.txt UDBI 
Scripts Found: ARABIC, LATIN, FEMININE, 

Chunk Data From Starting Byte:O To Ending Byte:22 
Top 3 Languages Identified By Dictionary Based Method : 

1. Arabic 1131 
2. pr [ll] 
3. Urdu [lo] 
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Chunk Data From Starting Byte:22 To Ending Byte:2185 
Top 3 Languages Identified By Dictionary Based Method : 

1. German [561 
2. sp [551 
3. French [531 

Chunk Data From Starting Byte:2185 To Ending Byte:2186 
Top 3 Languages Identified By Dictionary Based Method : 

1. Urdu [Ol 
2. SP [Ol 
3. pr [Ol 

Chunk Data From Starting Byte:2186 To Ending Byte:2518 
Top 3 Languages Identified By Dictionary Based Method : 

1. sp 1351 
2. English [331 
3. German [331 

Chunk Data From Starting Byte:2518 To Ending Byte:3721 
Top 3 Languages Identified By Dictionary Based Method : 

1. Arabic [381 
2. Urdu [321 
3. pr [32] 

Chunk Data From Starting Byte:3721 To Ending Byte:4123 
Top 3 Languages Identified By Dictionary Based Method : 

1. sp [341 
2. English [341 
3. French [33] 

Chunk Data From Starting Byte:4123 To Ending Byte:6451 
Top 3 Languages Identified By Dictionary Based Method : 

1. Urdu (451 
2. pr [361 
3. Arabic [321 

Chunk Data From Starting Byte:6451 To Ending Byte:9409 
Top 3 Languages Identified By Dictionary Based Method : 

1. sp [661 
2. English [63] 
3. German [61] 

real 01110.334s 
user Om0.300~ 
SYS Om0.030s 

This shows the effectiveness of DBI as quick and quite reliable detection mechanism for 
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high performance requirements. 

6.3.2 CTA without FF modification 

This algorithm is the more accurate but more slow too. Training phase for this algorithm 
requires hours and if n-grams for n>4 are to be used (5-grams, 6-grams etc.) it can span to 
days and even months and would require huge storage requirements. However it was 
noticed that results upto 4-grams are most satisfactory. Using n > 4 results in degradation 
of accuracy. 

Training the algorithm is a 3 step process. First documents are fed against a language for 
training. Once enough documents for each language have been fed to generate accurate 
n-gram frequencies, the generated lists are sorted and trimmed to top 1000 elements. 

Sample of training sessions for a few Arabic and Urdu documents is given below. For 
larger documents, generating 4-grams can take hours. 

root@fouzia:/Project/CT-Algo# ./trainer.py ar 
/Project/documents/cleaned~documents/arabic/arabiclO.txt 
Reading File: /Project/documents/cleaned~docments/arabic/arabiclO.txt 
Read Time : 0.0292570590973 
Normalizing: 
time: 0.00265288352966 
Getting ngrams: 
time: 0.031350851059 
Calculating Weights: 
time: 0.0387530326843 
Generating 2grams: 
time: 0.100138187408 
generating 3 grams: 
time: 0.205411195755 
generating 4 grams: 
time: 0.455098152161 

root@fouzia:/Project/CT-Algo# ./trainer.py ar 
/Project/documents/cleaned documents/arabic/arabiclO.txt 
Reading File: /~roject /doc&ents /c leaned - documents/arabic/arabiclO.txt 
Read Time : 0.0292570590973 
Normalizing: 
time: 0.00265288352966 
Getting ngrams: 
time: 0.031350851059 
Calculating Weights: 
time: 0.0387530326843 
Generating 2grams: 
time: 0.100138187408 
generating 3 grams: 
time: 0.205411195755 
generating 4 grams: 
time: 0.455098152161 
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/Project/docments/cleaned~documents/urdu/urdu6.txt 
Reading File: /Project/docments/cleaned - docurnents/urdu/urdu6.txt 
Read Time : 0.0267460346222 
Normalizing: 
time: 0.00266599655151 

Getting ngrams: 
time: 0.00911808013916 

Calculating Weights: 
time: 0.0296800136566 

Generating 2grams: 
time: 0.0721571445465 
generating 3 grams: 
time: 0.154779195786 

generating 4 grams: 
time: 0.324899196625 

r o o t @ f o u z i a : / P r o j e c t / C T p l g o #  ./trainer.py ur 
/Project/documents/cleaned documents/urdu/urdu7.txt 
Reading File: /~roject/doc~ents/cleaned~documents/urdu/urdu7.txt 
Read Time : 0.0137910842896 
Normalizing: 
time: 0.00247097015381 

Getting ngrams: 
time: 0.00782513618469 
Calculating Weights: 
time: 0.0287661552429 
Generating 2grams: 
time: 0.0689010620117 
generating 3 grams: 
time: 0.153650045395 

generating 4 grams: 
time: 0.325874090195 

After all languages have been sufficiently trained, the whole set is sorted, trimmed to top 
1000 n-grams (I -grams to 4-grams) for each language and uniqueness value for each 
n-gram is calculated. 

A session of this process on our test documents is given below: 

root@fouzia:/Project/src# time ./finalize-CTA-training.sh 
Finalizing Training for Arabic 
Finalizing Training for Chinese 
Finalizing Training for German 
Finalizing Training for English 
Finalizing Training for French 
Finalizing Training for Italian 
Finalizing Training for Japanese 
Finalizing Training for Persian 
Finalizing Training for Spanish 
Finalizing Training for Urdu 
Calculating uniqueness wieghts for Arabic 
Calculating uniqueness wieghts for Chinese 
Calculating uniqueness wieghts for German 
Calculating uniqueness wieghts for English 
Calculating uniqueness wieghts for French 
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Calculating uniqueness wieghts for Italian 
Calculating uniqueness wieghts for Japanese 
Calculating uniqueness wieghts for Persian 
Calculating uniqueness wieghts for Spanish 
Calculating uniqueness wieghts for Urdu 

real 160m19.854~ 
user 159m3.190~ 
SYS Om47.720s 

This shows that for approximately 2.7 MB of training documents the process took 2 hours, 
40 minutes and 19 seconds. It must be noted that this is still faster than the fisher 
discriminant version of CTA. 

Language Identification using this method is also somewhat slow but can be used in most 
usage scenarios. Here is a sample run on the same document which was used for DBI. 

root@fouzia:/Project/src# time ./lang identifier.py inter - doc.txt CTA 
Scripts Found: ARABIC, LATIN, FEMININE, 

Chunk Data From Starting Byte:O To Ending Byte:22 
Top 3 Languages Identified By FF-CT-Algo Method : 

1. Arabic [111.51, 121.67, 137.5, 118.231 
2. pr (101.57, 92.27, 17.85, 0.01 
3. French L0.0, 0.0, 0.0, 0.01 

Chunk Data From Starting Byte:22 To Ending Byte:2185 
Top 3 Languages Identified By FF CT-Algo Method : 

1. German L101.06, 101.61, 51711, 27.21 
2. pr L0.0, 0.0, 0.0, .0.0] 
3. French L95.99, 92.05, 34.48, 10.171 

Chunk Data From Starting Byte:2185 To Ending Byte:2186 
Top 3 Languages Identified By FF - CT-Algo Method : 

1. pr r0.0, 0.0, 0.0, 0.01 
2. French L0.0, 0.0, 0.0, 0.01 
3. English [0.0, 0.0, 0.0, 0.01 

Chunk Data From Starting Byte:2186 To Ending Byte:2518 
Top 3 Languages Identified By FF CT Algo Method : 

1. English L103.88, 114.31, 87.72, 52.161 
2. sp L110.65, 112.98, 75.32, 30.241 
3. pr L0.0, 0.0, 0.0, 0.01 

Chunk Data From Starting Byte:2518 To Ending Byte:3721 
Top 3 Languages Identified By FF-CT Algo Method : 

1. Arabic r107.2, 115.8, 56.81, 28.141 
2. pr L95.44, 95.58, 24.13, 3.541 
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3. French L0.0, 0.0, 0.0, 0.01 

Chunk Data From Starting Byte:3721 To Ending Byte:4123 
Top 3 Languages Identified By FF-CT-Algo Method : 

1. English C110.43, 111.85, 90.62, 51.641 
2. German [107.27, 114.39, 48.82, 10.651 
3. sp [110.76, 113.65, 77.53, 28.241 

Chunk Data From Starting Byte:4123 To Ending Byte:6451 
Top 3 Languages Identified By FF-CT-Algo Method : 

1. Urdu [110.18, 116.23, 62.39, 39.77) 
2. pr f84.96, 91.09, 27.79, 6.211 
3. French L0.0, 0.0, 0.0, 0.01 

Chunk Data from Starting Byte:6451 To Ending Byte:9409 
Top 3 Languages Identified By FF CT-Algo Method : 

1. English [91.46, 91.26, 52.52, 23.241 
2. sp L99.86, 90.59, 47.06, 18.11 
3. pr 13.05, 0.35, 0.0, 0.01 

real Om17.303~ 
user Oml6.420~ 
SYS Om0.130s 

As can be seen it is around 52 times slower than DBI. However language detection is more 
accurate than DBI. 

6.3.3 CTA with FE modification 

Fisher discriminant fimction uses another approach proposed and used in the past for 
finding n-gram uniqueness across languages. 

The first step in training is to generate a list containing all unique n-grams found in all 
training documents available. 

root@fouzia:/Project/src# ./fisher-discriminant.py 
Language: urdu 

File: urdul. txt 
File: urdu2.txt 
File: urdu3,txt 
File: urdu4.txt 
File: urdu5.txt 
File: urdu6. txt 
File: urdu7.txt 
File: urdu8.txt 
File: urdu9. txt 
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Chapter 6 Results 

File: urdul0.txt 
File: urdull.txt 

Language: japaneese 
File: japaneesel.txt 

Total Ngrams: 47372 

time: 3926.53322601 

The process took 1 hour and 5 minutes. 
Second step is of calculating frequencies of all n-grams in each training document. 

root@fouzia:/Project/src# ./fisher-discriminant.py 
arabic; ./fisher-discriminant.py chineese; ./fisher-discriminant.py 
english; ./fisher-discriminant.py french; ./fisher-discriminant.py 
german; ./fisher-discriminant.py italian; ./fisher-discriminant.py 
japaneese; ./fisher-discriminant.py persian; ./fisher-discriminant.py 
spanish; ./fisher discriminant.py urdu 

File: arabicl0. txt 
File: arabicll.txt 
File: arabicl2.txt 
File: arabicl3.txt 
File: arabicl4.txt 
File: arabicl5.txt 
File: arabicl.txt 
File: arabic2.txt 
File: arabic3.txt 
File: arabic4.txt 
File: arabic5.txt 
File: arabic6.txt 
File: arabic7.txt 
File: arabic8.txt 
File: arabic9.txt 

time: 16.9870109558 
File: chineese2-clean.htm1 
File: chineese3-clean.htm1 
File: chineese5-clean.htm1 
File: chineese6-clean.htm1 

time: 188.355343103 
File: new.txt 
File: 132. txt 

tine: 242.632512093 
File : french2. html 

time: 120.97786808 
File: german2.txt 
File: german4.txt 
File: german5.txt 

time: 124.435526133 
File: italianl.txt 
File: italian2.txt 
File: italian3.txt 
File: italian4.txt 

Diction Identifier 49 



File: italian5.txt 
time: 75.2099030018 

File: japaneesel.txt 
File: japaneese2.txt 
File: japaneese3.html 
File: japaneese5.html 

time: 106.28076911 
File: persian-cleanlO.htm1 
File: persian-clean.txt 
File: persian-cleanl.txt 
File: persian-clean2.txt 
File: persian-clean3.txt 
File: persian clean4.txt 
File: persianIclean5. txt 
File: persian-clean6.txt 
File: persian-clean7.txt 
File: persian-clean8.txt 
File: persian-clean9.txt 

time: 28.6899340153 
File: spanishl.htm1 
File: spanish2.html 
File: spanish3.html 
File: spanish4.html 
File: spanish5.txt 

time: 91.8341488838 
File: urdul.txt 
File: urdu2.txt 
File: urdu3. txt 
File: urdu4.txt 
File: urdu5.txt 
File: urdu6.txt 
File: urdu7.txt 
File: urdu8.txt 
File: urdu9.txt 
File: urdul0.txt 
File: urdull.txt 

time: 14.1865110397 

This process took 16 minutes. 

The next stop of calculating normalized frequencies takes around 10 minutes. 

The step of calculating mean frequencies take around 3-4 minutes. 

Around 38 minutes are required to sort this list and trim it to top 1000 items. 

The training phase concluded by generating language frequencies from the list generated in 
the previous step. A session doing this is given below: 

root@fouzia:/Project/src# ./fisher - discriminant.py arabic 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: arabic 

Calculating fisher values of all ngrams for language: arabic 
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time: 21.7646238804 
root@fouzia:/Project/src# ./fisher-discriminant.py chineese 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: chineese 

Calculating fisher values of all ngrams for language: chineese 
time: 10.7011699677 
root@fouzia:/Project/src# ./fisher - discriminant.py english 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: english 

Calculating fisher values of all ngrams for language: english 
time: 8.76469802856 
root@fouzia:/Project/src# ./fisher-discriminant.py german 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: german 

Calculating fisher values of all ngrams for language: german 
time: 10.0287070274 

root@fouzia:/Project/src# ./fisher - discriminant.py french 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: french 

Calculating fisher values of all ngrams for language: french 
time: 7.99114203453 
root@fouzia:/Project/src# ./fisher - discriminant.py italian 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: italian 

Calculating fisher values of all ngrams for language: italian 
time: 11.8043589592 
root@fouzia:/Project/src# ./fisher - discriminant.py japaneese 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: japaneese 

Calculating fisher values of all ngrams for language: japaneese 
time: 12.897441864 

root@fouzia:/Project/src# ./fisher-discriminant.py persian 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: persian 

Calculating fisher values of all ngrams for language: persian 
time: 17.6784720421 

root@fouzia:/Project/src# ./fisher-discriminant.py spanish 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: spanish 

Calculating fisher values of all ngrams for language: spanish 
time: 11.4607839584 
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root@fouzia:/Project/src# ./fisher-discrirninant.py Urdu 
Total N-grams: 47372 

Calculating mean frequencies of all ngrams for language: urdu 

Calculating fisher values of all ngrams for language: urdu 
time: 17.3237810135 

This process takes around 96 seconds to complete. 
Identification times for fisher discriminant are similar to FF modification. Here is a sample 
run on a 36K document. 

root@fouzia:/Project/src# ./fisher - discrirninant.py identify 
/Project/sample. txt 
spanish 47.7521386072 
english 38.8319851158 
french 31.7983005046 

time: 11.6977980137 
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Chapter 7 Conclusion and Future Enhancements 

7. Conclusion and Future Enhancements 

7.1 Conclusion 

Detection of multiple languages within a single script using Unicode meta data is most useful for 
multi-lingual documents. Language chunks belonging to different scripts were always identified 
and extracted correctly by this method. However, detecting language chunks belonging to same 
script is not possible with this technique and requires further work. 

Dictionary based identification serves well for script identification. Language identification results 
give close match values for languages belonging to the same script as of the original documents. 

The N-gram based implementations (CTA with FF modifications and Fisher Discriminant 
Function) were found to be most accurate giving above 90% accuracy. Training phase of CTA 
with FF was observed to take much less time than Fisher Discriminant. Identification times and 
results for both variants were observed to be similar. 

For very short documents (less that 30 characters) all algorithms were observed to perform badly 
for language detection. However, accurate script detection of these documents using Unicode meta 
info or Dictionary Based Identification was still accurate. 

7.2 Future Enhancements 

With the ever changing face of information in the computer world, more possibilities for 
improving language detection are just around the comer. There are many standards and save 
meta-data along with documents. The increasing adoption of such standards (like XML) will allow 
use of document meta data for language identification. 
Automatic generation of training documents without having the need to check them manually is 
also a field that requires more research. 
Detection of multiple languages belonging to the same script within a document is another field 
that needs improvement. 
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Abstract 

With growing explosion of multi-lingual 
data on the Internet and other 
informational and communicational fields, 
the requirement of having effective 
automated language ' identifiers has 
increased further. More information finds 
its way into the computer systems and the 
web and using manual . methods to 
categorize the information is becoming 
increasingly in-feasible. In this paper we 
discuss improvements we have achieved in 
existing language identification methods. 
Couple of new areas that were not 
explored before is the inclusion of non- 
Roman scripts and active usage of Unicode 
information about scripts to enhance the 
languagedetection process. ' 

Keywords: language identification; 
unicode; multi-lingud documents; 
n-grams; internationalization; AI; language 
script. 

1. Introduction 

The fundamental purpose of 'language" 
identiers is to .indicate ' distinctions 
related to linguistic properties and 

specifically distinctions that are relevant 
for IT purposes. There are a wide variety 
of distinctions pertaining to several 
distinct linguistic parameters that have 
been suggested as potentially relevant for 
"language"' identification: languages, 
language families, dialects, country 
variants, other regional-based variants, 
script variants, style variants, and modality 
variants, time based variants, typographic 
variant& etc. Many different orthogonal 
parameters could be used in meta-data ' 
attributes, and the potential combinations 
and permutations are daunting. In actual 
practice many of the potential distinctions 
are not needed for most realistic usage 
scenarios. - 

Application areas can probably be divided . 
into two general types: cataloging and 
retrieval of content and resources for 
localization and language enabling of . 
software. 
Our research provides Unicode support 
and multi-script ' support (e-g Roman, 
Chinese, Arabic). It also provides language 
detection for multilingual documents. 



2. Identification Techniques 

Dictionary based identification methods 
had been the most used methods in the 
early stages. In the 80's Cavnar and 
Trenkle presented their n-gram based 
algorithm [21 for language .detection that 
solved many problems that persisted with 
previous language identification 
techniques. 

In our research we have tried to improve 
on what already has been done. We have 
implement improved variations of 
dictionary based and n-gram based 
algorithms. 

2.1 Dictiona~y Based Identification: 

Dictionary based identification (DBI) is one 
of the most tried and implemented 
methods for language identi€ication[Bl. 
Though simple, its effectiveness in certain 
areas cannot he denied. One of its biggest 
advantages is its performance. DBI is 
much faster during training and detection 
than other algorithms used in this 
research. DBI gives good results when 
comparing languages belonging to 
different scripts. If- used wisely this 
technique. becomes .more useful than it 
seems at  first glance. Joined with Unicode 
based inter-language document 
identification, to detect and extract 
multiple languages data chunks from a 
document; dictionary based identification 
is applied on these chunks individually. 

Dictionary based method has been 
previously used but in Merent  ways[l4]. 
Dictionary based method used in our work 
is more efficient as compared to previously 
implemented methods. E.g. as compared 
to [I41 our method (DBI) is more efficient 
due to the following reasons: 
DBI uses N-grams (1 5ams)  as compared 

to the compounds used in[l4].1-grams 
covers all the linguistic features. 

DBI requires less memory 
DBI is not a lengthy process as compared 

to [14].In-[14] the compounds are first 
split into components, normalized and then 

normalized. They are generated and stored 
in the dictionary. 
. DBi requires no knowledge about the 
language to be identified. 

Like most techniques used in this 
research, dictionary based identification is 
also a two phase process. The first phase 
being training and the second 
identification. Before going on to 
identifying documents, the system must 
first be trained for the languages that we 
wish to detect. Remember, it only detects 
the languages it has been trained for. 
However, if a language belong to a script 
for which another language has already 
been trained is found in an input 
document, that language is identified as 
the language that was trained for the same 
script. For example, say in the Arabic 
script, we have trained DBI for Arabic, 
Urdu and Persian languages. If we try to 
detect a F'ushto, Punjabi or similar 
document, all Arabic, Urdu and Persian 
will come up as close matches giving a hint 
to the script the language belongs to. 

The drawback in dictionary based 
implementation is that it doesn't perform 
well when comparing between languages 
belonging to the same script. Also 
document containing too few characters 
give much less information to DBI to 
detect languages effectively. Also, in case 
of documents like web pages etc 
containing multiple languages, the results 
are not able to clearly distinguish the 
language. However, if one language 
occupies the majority portion of the 
document, it has higher match weight-age 
hinting its identification. 

inputs: 1) Training Document 
2) Dictionary F ie  Path 

. . 
Output: Unique characters list 

query structk-ing for compounds and 
components. In DBI n-grams are not Open training document. 

Read all data from the document. 



Generate a list of unique characters 
present in the training document. 
Sort the unique characters list. 

: Dump the list into the dictionary file 
specified. 

Identification Phasc 
Input: 1) Document to be identified 

Output: 1) Language match count 

Open input document and read all 
data. 
Generate a list of unique characters in 
the document. ' 
Sort the generated list. 
Get a list of script folders in the 
lang-dxts folder 
for each script-folder in lang-dicts 
folder: 

Get a list of language files in the 
script folder 
For each language: 

Load the language list of 
unique characters 
Get match count of 
characters present in 
document list that are also 
present in language list. 

Display match count statistics for each 
language. 

The language unique character lists are 
stored in a file folder hierarchy as 
displayed below: 

lang-dictsl (root folder) 
script folder 11 

language1 list file 
language2 list file 

script folder 21 ' 

language 3 list file 

2.2 Unicode Based Inter-Document 
LanguagelScript Identification: 

The use of Unicode in our research has 
proved to be very useful. The global 
acceptance of Unicode and the well 
thought ' out placement of different 
languages in the Unicode code-set has 
given us more opportunities to detect 
languages effectively. Each 
scripaanguage in Unicode has defined 
code ranges. This information is provided 

in the form of Unicode Database giving 
type, language, code point and other info 
for every character of every language 
represented in Unicode [lo, 141. The use 
of this database enabled us to detect 
diierent scripts in a document by 
querying the Unicode database for info 
about any character. 

Unicode based identification is the only 
technique in our research that does not 
require an explicit training phase. Only 
using updated versions of the Unicode 
database provided at  www.unicode.org is 
sufficient for improving the technique. 

This technique is the fastest technique for 
language detection that we have 
implemented. As added benefit, this 
technique also allows us to identify 
different script portions within a 
document. 

Like all, this technique also has its 
drawbacks. Fust, for those scripts that 
have many languages in them (Roman, 
Arabic, etc.) this technique can only detect 
the script and not the language. Secondly 
for interdocument language identification, 
detection of different language chunks is 
effective if consecutive language chunks 
belong to diierent scripts. For example, it 
accurately separates Arabic and English 
language chunks repeating one after 
another but has problems if English and 
French or German language chunks start 
repeating after one another. 

Input: 1) Input Document 

Output: List of languages and their byte 
ranges in the input document. 

Read all data from input document. 
set current-script = "" 
For each character in data: 

G e t  Unicode category of the 
character (Letter, Digit, Punctuation, 
etc.) 

If category = Letter 
Get Unicode character name 
Get the script name portion from 
the character name 



if script-name != current-script: 
Add last script to language 
chunks with start and end 
byte positions 
set current-scrigt = new 
script name 

Add last script to the language chunks 
list 
Remove first empty chunk from the 
list. 

2.3 Cavnar's and Trenkle's Algorithm 

C&T algorithm [2] is the most accurate 
algorithm around for language detection. 
This algorithm concentrates on aphabet- 
combination characteristics of languages. 
Because of this property, ~ this algorithm 
excelswhere other algorithms fail. It more 
accurately identifies languages belonang 
to the same script. 

This algonthm performs its calculations on 
n-grams. The value of n can be any digit 
(1.2.3, etc.) The number of n-grams in a 
document is equal to the number of 
characters in that document. For example, 
take the text "HELLO WORLD". I-grams of 
this text are: 'H', 'E', 'L', 'L', '0', ' ', 'W', '0'. 
'R', 'L', 'D'. 2-grams for the same text are: 
'HE', 'EL', 'LL', 'LO', '0 ', ' W', 'WO', 'OR', 
' R E ,  'LD', 'DH'. The advantage of using n- 
grams is that they highlight the language 
properties. Finding common alphabetic 
combinations of a language is the purpose 
of processing n-grams. 

0ver.the years modifications and filtering 
techniques have been applied to further 
improve the performance of t h s  
technique. The most recent successful 
addition to the technique was by Katiya 
Hayatif11 in June, 2004. which included 
Fisher Discriminant function to give more 
importance to n-grams that were more 
unique across languages. We have further 
implemented another modification to the 
process by. that serves as,a replacement of 
Fisher discriminant function which was too 
time consuming for n-grams with n 
greater than 3. 

The training phase for this technique 
spans across multiple steps that are: 

Document filtering to remove 
formatting information from 
documents. 
Document normalization for removing 
multiple white spaces. 
Training multiple documents per 
language so that sufficient training 
data per language is present to make 
the calculations more real. 
Sorting the resulting statistics and 
calculating top C n-grams according to 
weight for each language. In this 
research C=1000 was found to be a 
good value. 

The identification phase involves 
generating n-grams for the input 
document and then comparing top C n- 
grams from the document again top C n- 
grams for each language to find out match 
value for that language. 

By default the algorithm runs with our 
custom modifications (called FF 
modifications here) included. Since 
comparing the statistics against fisher 
discriminant implementation was also 
required to get validated results, so a 
fisher discriminant implementation of the 
algorithm is also provided. 

Drawbacks of this method involve slower 
detection and more time required to train 
documents. Additionally adding a new 
language to the corpus of languages 
means doing all the calculations again for 
each language. 

kqbrithm (with FF modificatidn): 

Inputs: 1) Language Name 
2) Training Document 

Output: NILL 

: If the lang folder exists inside the data 
folder 

Load previously trained data for n- 
grams (n=l-4) from the data files 
present in the lang folder into n- 
gram lists. 

If lang folder does not exist: 



. Create lang folder 

. Initialize n-grams lists to blank 
. Read all data from training document 
. Normalize the data by replacing 

multiple white spaces with a single 
.space. . Generate n-grams from input data. . Calculate weights (frequency) for each 
n-gram in input document. 

. Update weight of each n-gram in the 
n-gram lists (loaded from previous 
training data files). 

. Dump n-grams lists to lang folder 
inside the data folder. 

~ r a k n o  (SteD 2): 
.. 
; Inputs: 1) Source n-gram list 

2) Target n-gram list 
3) C (Top no. of ngrams to store) 

Output: NILL 

Load Source n-gram list. 
Sort the list in descending order. 
Trim the list to top C items. 
Dump,, the..newlist.t? .T??%t~?-gr?nt 
list path.. 

Traininq (Step 3)' - n-uram Uniqueness 
Calculation: 

Input: 1) Lang 

Output: NILL 

. . ....& oad, w r a m ,  ,Qs@..fSqm.lang folder in 
the data finalizer folder. 
Get listof languages in data-finalizer 
folder. 
For each n-gram in n-gram lists: 

set u-ng = C * total-langs 
For each lang: 

if n-gram found in lang list: 
idx = index of n-gram in 
current lang list. 

.... .:. - u-ng = u-ng -idx 
Add uniqueness value of n-gram to 
uniuueness list 

Dump h-gram uniqueness lists to lang 
folder. 

Identification ahasel 

Input: 1) Input Document 

Output: Language match courit 

Read the data from document 
Normalize the data. 
Generate n-grams(1-4) for the data. 
Calculate n-gram weights 
(Frequencies) in data. 
Sort document n-grams List in 
descending order. . 
Trim list to top C items. 
Get list of language folders in the 
data-finalizer folder. 

. . For each language: 
Load lang n-gram lists. 

. Load n-gram uniqueness values. 
For each document n-gram list (n= 
1-4): 

set diff = 0 
For each n-gram in list: 

If n-gram found in lang list: 
set il = index of n-gram in doc 
list - " 
set i2 = index of n-gram in 

.~., - 
uv = uniqueness value of n- 
gram 
cliff-= ( ~ ~ 1 1 0 0 )  

if n-&am not found in lang 
list 

. diff+= C+1. 
uv = unique-ness value of 
n-gram . diff-= (uv/lOO) 

return/display match statistics 

Folder structure used in this algorithm is 
given below: 

data/ 
langll 

1grams.dat 
2grams.dat 
3grams.dat 
4grams.dat 

lang21 
1grams.dat 
2grams.dat 
3grams.dat 
4grams.dat 



Alsorithm (Fisher Discriminant): 

Trainin Phas.e~...---'-'-' 

Precondition: All training documents 
are present in trainingidocuments folder. 

. Generate a list all unique n-grams 
found in . all training documents of 
each language. Lets call this list A 
Get a list of language in the 

. training documents folder. 
For ea6Elangi- , , , a ,  

Get a list of training docs in that lang. 
For each doc: 

For each n-gram in A: 
Find frequency of n-gram in doc. 
find normalized frequency of n- 
gram in doc. 

For each n-gram in A: 
Calculate mean frequency of nr 
gram 

. . .Sort .the..pst of mean frequencies in 
descending order of frequency. 
Trim this list to top 1000 items. Lets 
call this list R. 

- . For each lang: 
Calculate lang fisher values 

For each n-gram in A: 
Calculate lang mean frequency. 
For each n-gram in R: 
fR = mean frequency of n-gram 

, . .-in R 

fL = mean frequency of n-gram 
in current lang. 
ngram fisher value = FL / fR 

Save lang fisher values. 

Identilication Phase: 

Input: Input Document 

Read document data. 
Normalize data. 
Get a list of unique n-grams present in 
the document. 
For each n-gram in document n-grams: 

calculate frequency of n-gram in 
document. 
Load R (Top thousand n-grams by 
mean frequency, generated during 
training phase). 
For each n-gram in R: 

If n-@am present in document n- 
grams: 

calculate n-gram normalized 
frequency in document 

else: . . 
set nobalized frequency of n- 
mam in doc to 0.00. 

Get a %st of Languages available for 
identification 
For each lang: 

Load lang fisher values. 
set diff = 0.00 
For each n-gram in document 
normalized frequencies list: 

set n N  = lang fisher value 
for ngram 
set nNF = document 
normalized frequency for 

- ngram 
d ' i + = n N F * n F V  

Display diff as lang match 
value for document. 

3; lmplem&.ation Details 

All the algorithms in our research were 
tested on 4 scripts containing a total of 10 

. language. - 

The scripts used are: 

Arabic 
Chinese 
Japanese 



Roman 

The languages used are: 

Arabic 
Chinese 
English 

. French 
German 
Italian 
Japanese 
Persian 
Spanish 

. Urdu 

Training documents of roughly equal data 
'size were used for training eachlanguage 
to ensure that all. languages get equal 
share of training. AU training documents 
were manually cleaned. Portions of 
languages other than the desired one were 
removed from each h-aining document and 
all the' documents were saved in UTE-8 
encoding. ' . ' . , . . . . . . . 
Training documents were mostly gathered 
from the web primarily in HTML format. 
The other formats used were UTF-8 
encoded text, MS. WORD DOC format and 
PDF. 

AU the code except for the web interface is 
coded in Python programming language. 
The web interface is coded in PHP and 
HTML mnning on Apache web server. 
Operating system used for development 
and testing is Linux Kernel 2.4 (Slackware 
10.2) on a Pentium N (2.4 GHz) machine 
with 256 MB of RAM. 

4. Features 

Main features of the system include: 

4.1 Unicode based scripflanguage 
identification: 

The system is not only able to readlwrite 
Unicode files, it also uses Unicode 
extensively for language identification. 
Use of Unicode makes language 
identification much more flexible, accurate 
and faster. 
. . . . I . ,  ... . _  . . . - . 

4.2 Unicode based script separation 
.within a single document: 

Unicode codepoint information is used to 
detect the presence of multiple scripts in a 
document. Data of each script is then 
processed separately and language 
identification results for each script chunk 
are returned. 

4.3 Dictionary based (fast) language 
detection method: . 

Alphabets in the input document are 
compared against the alphabets of 
different languages and based on that the 
language of the input document is 
guessed. This method is the most used 
method forlanguage identification. 
Although simple, the results returned from 
this method were found to be satisfactorily 
accurate and quite fast. 

4.4 N-gram based (more accurate) 
modified method: 

This is a modified (improved) version of 
Cavnar's and Trenkle's algorithm. The 
modifications give higher weights to n- 
grams that are less common in other 
languages. 

4.5 Automatic removal of document 
formatting information: 

The system handles input documents like 
web pages very well and automatically 
removes all tags and other formatting info 
from the page using only the page content 
for language identification. 

4.6 Support for easily adding more 
languages into the  system: 

More languages can be easily trained 
using a couple of training programs to 
expand the system to support more 
languages. 



5. Results 

Following are the results, notes and 
observations we formidated during our 
research and implementation of the 
system. 

Detection of multiple languages within a 
single script using Unicode meta data is 
most useful for multi-lingual documents. 
Language chunks belonging to different 
scripts were always identified and 
extracted correctly by this method. 
However, detecting language chunks 
belonging to same script is not possible 
with this technique and requires further 
work. 

Dictionary based identication serves well 
for script identification. Language 
identification results give close match 
values for languages belonging to the 
sanie.script 'as of tKe original documents. 

The N-gram based implementations (CTA 
with FF modifications and Fisher 
Discriminant Function) were found to be 
most accurate giving above 90% accuracy. 
Training phase of CrA with FF was 
observed to take much less time than 
Fisher Discriminant. Identification times 
and ... results, :, fo r  , , bo* ?rim& ,;-were 
observed to be similar. 

For very short, documents (less that 30 
characten) all algorithms were observed 
to perform badly for language detection. 
However, accurate script detection of 
these documents using Unicode meta info 
or Dictionary Based Identification was still 
accurate. 
. ..,, ..* .. . ..- ... ? .  , ,.. ~. .. :. . 

6. Statistics 

Total Size of Cleaned Training Documents: 
2.7 MB. 

(Calculating 
Frequencie 

80ml.  0 0 2 s  
(lh:20m) 

CTA With FF 
Modification 

to-41) 
Training 
(Finalizing) 
Identificatio 

(calculiting 
Fisher 
Values) 

Training 
(Generating 
n-arams[l 

l 6 O r n l 9 . 8 5 4 ~  
(2h: 40m: 9 0 s )  

Orn17.303~ 

7.  Future Enhancements 

With the ever changing face of information 
in the computer world, more possibilities 
for improving language detection are just 
around the comer. There are many 
standards that save meta-data along with 
documents. The increasing adophon of 
such standards (like XML) will allow use of 
document meta data for language 
identification. To do so detailed study of 
different document formats needs to be 
done along with widespread use of open 
file formats instead of closed specifications 
formats. 
Automatic generation of training 
documents without having the need to 
check them manually is also a field that 
requires more research. Currently the 
trainer requires good knowledge of the 
languages that helshe wishes to train for. 
Training documents need to contain only 
the language that they will be used to 
train. This process involves manual 
cleaning of documents. Some technique 
can be developed to use online digital 
archives like digital libraries to 

8 



automatically obtain books or other 
documents for different languages, clean 
them and then use them for training the 
system. ' 

Detection of multiple languages belonging 
to the same script within a document is 
another field that needs improvement. 
Currently this is being done using Unlcode 
script ranges that allows only script 
detection. This poses probIems detecting 
multiple languages belonging to the same 
script occurring in tandem. New ways 
need to be developed based language 

' properties to detect this. 
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