Frequent Itemset generation Using Cosine Measure

Undertaken by
Sobia Malik [330-FAS/MSCS/F06]

»

" " Siipérvisors
Mr. Muhammad Imran Saeed

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University, H-10, Islamabad
2008

CENTRAL

LIBRARY
ISLAMABAD.

i Tomst

i

|

|

It

8

Final Approval

Dated: Z_ﬂo’;/ 2,09‘;]

It is certified that we have read the project report submitted by Ms. Sobia
Malik, Reg# 330-MSCS/FAS/F06. it is our judgment that this project is of
sufficient standard to warrant its acceptance by the International Islamic
University, Islamabad for Masters Degree in Computer Science.

!

Committee

External Examiner Q_.zé{ ’

Dr.Abdus Sattar
&y Director General,

Computer Bureau,

Islamabad, Pakistan.

M
Internal Examiner \\K;\f/

\ |
Miss Zakia Jalil \

Research Associate,
Department of Computer Science,
International Islamic University, Islamabad.

Supervisor %ES

Mr. Muhammad Imran Saeed
Assistant Professor,

Department of Computer Science, /
International Islamic University, Islamabad.

P

LASSENIdIION

A dissertation submitted to the
Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University, Islamabad, Pakistan,
As a fulfillment of the requirements for the award of the degree of

MS in Computer Science

LIECICATION

To
Our Beloved Prophet MUHAMMAD(SAW)

Best role model for our lives

To
My Parents

Whose encouragement and prayers have always motivated me towards a
successful life

To
My Teachers

Who not only paved way to my goals, but also inspired me their knowledge.

Declaration

Declaration -

I hereby declare that this software has not been copied as a whole from any source.
Furthermore, the developed software and the accompanied thesis report is made entirely
on the basis of personal efforts under my honest motivation, hard work and sincere
guidance.

In addition, no portion of the work presented in this report has been submitted in support
of an application for other degree or qualification of this or other university.

Sobia Malik
330-FAS/MSCS/F06

AACMIVUNIEUEETHTESNT

Acknowledgement

Many gratitudes to Almighty ALLAH, The most Merciful and Glonious, who gave me
courage and potential to work hard and out up all my efforts throughtout my research
work, who enabled me o perceive higher ideas in addition to bestowing me with his
blessings and patience. I am deeply thankful to Holy Prophet Muhammad (SAW) who
molded our hearts to recognize our Lord and created enthusiasm in us by his true
teachings of Islam, taking us away from the shadows of disappointment.

I extend my greatest appreciation to my hardworking supervisor Mr. Muhammad
Imran Saeed, who motivated me to work hard by his suggestions and appreciation. He
put confidence in me and gave me courage o carry on with my project helping me a great
deal with my project proposal. Special thanks to Mr. Saif-ur Rehman, who placed high
hopes in me, sharing his knowledge with me and making me work to the best of my
ability with a sincere approach and honesty of purpose.

I cannot deny the great generosity and continued support of Miss Zakia Jalil, who did
her best to assist and guide me throughout the procedure of research as well as kept me
tnforiried of all circumstances regarding my project. Her efforts are really appreciated.

Last, but not the least, my deepest gratitude to my beloved parents, who prayed for my
success day and might and gave me all the support and confidence I needed since my
childhood: They were the one who paved way to my destination and lead me to the light
of my dreams throughout all the shadows of hopelessness and disappointment rewarding
me with a pessimistic approach towards life. I cannot forget the support and love I got
from my brothers, sisters, in-laws and my husband throughout my project. Their support
and courage will always be greatly appreciated.

Sobia Malik
330-FAS/MSCS/F06

-1 -

F 'UJCLL ity 41t IL’:}

Project in Brief

Project Title: “Frequent itemset generation using Cosine Measure”.

Organization: International Islamic University, Islamabad.

Developed by: Sebia-Malik.
Reg. No: 330-FAS/MSCS/F06

Supervised bv: Mr. Muhammad Imran Saeed.

Starting Date: January, 2008

End Date: October, 2008
Tools used: C++, Turbo C.

System used: Pentium 4.

- fii -

SAC/IEF LI

Abstract

Traditionally, business analysts have performed the task of extracting useful information
from recorded data, but the increasing volume of data in modem business and science
calls for computer-based approaches. As datasets have grown in size and complexity,
there has been a shift away from direct hands-on data analysis toward indirect, automatic
data analysis using more complex and sophisticated tools. The modem technologies of
computers, networks, and sensors have made data collection and organization much
easier. However, the captured data needs to be converted into information and knowledge
to become useful. Data Mining is the process of running data through sophisticated
algorithms to uncover meaningful pattems and correlations that may otherwise be hidden.

Association rule mining finds interesting associations and/or correlation relationships
among large set of data items. Association rules show attributes value conditions that
occur frequently together in a given dataset. A typical and widely-used example of
associafion rule mining 1s Market Basket Analysis. Association rule algorithm finds
associations between the frequently sold items, so that the shopkeeper could put such
items together for increased sales.

Qur devised algorithm, Cos_FIS generator has certain advantages over previous
algonthms such as 1t scans the database only once since it uses the vertical data layout of
the database while scanning the database. Hence, not only the multiple scans of the
database, but also the candidate generation was also avoided 1n our algonthm. Also, this
algorithm makes use of clustering measure known as “Cosine measure” rather than
using the Support or confidence measures. Moreover, the algorithm was tested on the
synthetic datahase.

-1V -

Table of contents

Chapter No Contents Page No
5.2.1 JDK (Java Development Kit)..........ccce.eeeeeuunns.. 40
5.2.2 JRE (Java Runtime Environment)...................... 40
53 The CH+1anguage.cooovriiiiiiiiiii e 41
5.3.1 Conversion of Database file into ASCII file.............. 42
5.3.2 NOde SHUCIUIE. ... oov et ee e iineeaanes 42
5.3.3 Conversion of ASCII file into Text format............ 43
5.3.4 Reading of Textfile.........ccoooiviiiiiiiniiin 45
5.3.5 Filling the buffer.................. i, 46
5.3.6 Copying Buffertonode.................oooiiiiiil 47
5.3.7 Finding the Second level...............c..o.ooi 43
5.3.8 Finding the Next level..................o o 51
5.3.9 Selecting the Previous FIS/candidate............ T
6. ReSUltS...cvviiiniiiiiiiiiiiiiriiieiiiiiiiiiiiietitiiietanreasanees 57
6.1 Conversion of Database file into ASCIIfile................... 59
6.2 Conversion of ASCII file into Text file........................ 59
6.3 Working of the Cos_FIS generator algorithm.................. 60
6.3.1 Finding Supportcount...........cooooeeiiiiiiinn 61
6.3.2 Finding the First level of the SE tree............... 61
6.3.3 Finding the Second level of the SE tree............ 64
6.3.4 Finding the Next level of the SE tree............... 66
7. Conclusion and Future Enhancement........................ 69
F L CONCIUSION. .o ut it ettt aaaees 69
7.2 Future Enhancément.........ooooiiiiiiiiiiiiiiiiiiiiieeeinne, 69
APPENdiX A . 70
Appendix B. ..o 71

- Vil -

List of rables

List of Tables .
Serial No, Tables Page No.
1. Table 1-1: Example database with 4items and 5 transactions........ 4

2. Table 1-2: Some Differences Between the Nearest Neighbor Data

mining technique and Clustering.............cooeiiiiiiiiiiiiiin i, 10
3. Table 4-1: Synthetic Binary Databases............ccooviiiinnnnnn.n. 32
4. Table 4-2: Database Layouts..........ooiiiiiiiiiiiiiiiiiiiiiiiiinans 35

5. Table 6-1: Vertical data Layout of the Synthetic Binary Database...60

- viil -

List of figures

List of Figures . .
Serial No. Figures Page No.
1. Fig4.1: Set Enumeration Tree................oooviiii i, 30
2. Fig 4.2: Architectural Diagram..............cococviiinniniinenn. 32
3. Fig 5.1: ARtool User Interface................oeevvneeinnniinnn. 38
4. Fig 5.2: Java Platform Diagram from Sun...................... 41
5. Fig 6.1: ARtool Graphical User Interface................ e 57
0. Fig 6.2: Generating a synthetic database............ e 58
7. Fig 6.4: Newdatabase.db................cooiiiennnennl. ey 59
8. Fig 6.5 Newdatabase.asc file............coooiiiiiiiiiin.n. 59
9. Fig 0.6 Newdatabase.txt file.................oooi e 60
10. Fig 6.7 First level of-SE L. e e 61
11. Tig 6.8 First level of SE tree in C++output....................... 64
12. Fig 6.9 Second level of SE tree in C++ output.................... 65
13. Fig 6.10 Third level of SE tree in C++ output.......- 67

Cix -

Chapter 1

o o A ok sk sk skt skokokoskeok ok

INTRODUCTION

Chapter | [troditetion

1. Introduction

Once the user got analysis, reporting, and dashboards deployed, it's time to take business
intelligence (Bi) to the next level by adding data mining and advanced analytics. This is a
level of Bl excellence that many organizations never manage to evolve to, however the
importance of pushing ahead with advanced capabilities cannot be underestimated - they
can provide a truly sustainable competitive advantage and enable user’s organization to

maximize both its efficiency and effectiveness.

Data Mining is the process of running data through sophisticated algorithms to uncover
meaningful patterns and correlations that may otherwise be hidden. These can be used to
help user understand the business better and also exploit to improve future pertormance
through predictive analytics. For example, data mining can warn user there’s a high
probability a specific customer won’t pay on time based on an analysis of customers with

stmilar chavacteristics.

Data mining identilies trends within data that go beyond simple analysis. Through the use
of sophisticated algorithms, non-statistician users have the opportunity to identify key
attributes of business processes and target opportunities. However, abdicating control of
this process from the statistician to the machine may result in false-positives or no useful

results at all,

Although data mining is a relatively new teym, the technology is not. For many years,
businesses have used powerful computers to run through volumes of data such as
supermarket scanner data to produce market research reports (although reporting is not
always considered to be data mining). Continuous innovations in computer processing
power. disk storage, and statistical software are dramatically increasing the accuracy and

usetulness of data analysis.

The term data mininy is often used to apply to the two separate processes of knowledge
discovery and prediction. Knowledge discovery provides explicit information that has a
readable form and can be understood by a user (e.g.. association rule muning).

Forecasting. or predictive modeling provides predictions of future events and may be

Freguent fremset Generation using Cosine Measure |

Chapiter | fntroduction

Questions such as "if’ a customer purchases product A, how likely is he to purchase
product B?" and "What products will a customer buy if he buys products C and D?" are

answered by association-{inding algorithms.

Each item has a Boolean variable representing the presence or absence of that item. Each
basket can then be represented by a Boolean vector of values assigned to these variables.
The buying pattemns can be represented in the form of association rules. For example, the
information that customers who buy burgers also tend to buy coke at the same time is

represented tn association Rule below:
{ Butrger]--> { Coke

An association rule has two numbers that express the degree of uncertataty about the rule
namely Support and Confidence. The Support is simply the number of transactions that
include all items in the antecedent and consequent parts of the rule. Confidence is the ratio
of the number ol transactions that include all items in the consequent as well as the
antecedent (namely, the support) to the number of transactions that include all items io the
antecedent. For example, if a supermarket database has 100,000 point-ot-sale transactions.
out of which 2,000 include both items A and B and 800 of these include item C, the
association rule "If A and B are purchased then C is purchased on the same trip" has a
support of 800 transactions (altermatively 0.8% = 800/100,000) and a confidence of 40%
(=800/2,000). Association rules are considered interesting if they satisfy both a minimum
support threshold and a minimum confidence threshold. Such threshold are user or expert

specified. 1f an item set satisttes minimum support, then it is frequent item set (FIS).

One of the rcasons bchind maintaining any database is to enable the uvser to find
interesting patterns and trends in the data. For example, in a supermarket, the user can
figure out which items are being sold niost frequently. But this is not the only type of
‘trend’ which one can possibly think of. The goal of database mining is to automate this
process of finding interesting patterns and trends. Once this information is available, the
user can perhaps vet rid of the original database. The output of the data-mining process
should be a "summary" of the database. This goal 1s difticult to achieve due to the

vagueness associated with the term “interesting’. The solution is to define varous types of

Frequent Ttemset Generation using Cosine Meusure

(5]

Chapter | Introduction

trends and to look for only those trends in the database. One such type constitutes the

associatton rule.

Association rule mining comprises of two steps i.e. finding frequent itemsets (FIS) and
generating association rules, based on the frequent itemsets. However, researchers have
found numerous techniques to find FIS, mostly based on support measure. But, in this
thesis, one of the similarity measures, known as *“Cosine" measure has been used and
only the first step of the association rule mining has been covered. While clustering data
points are aranged in @ way that the points nearest to each other are placed in one cluster.
This can be done either by similarity or dissimilarity measures. Smilar data items will be

nearest to each other and dissimilar will be at distance far apart.

The problem of association rule mining is defined as: Let be a set of i binary attributes
called items. Let be a set of transactions called the database. Each transaction in D has a
unique transaction 1D and contains a subset of the items in /. A rule is defined as an
implication of the formi X->Y where X is called antecedent (left-hand-side or LHS) and ¥

conxegiient (right-hand-side or RHS) of the rule.

transaction 1D milk |bread |butter heer

] bbb
; 0 [l 0

3 0 0 0 !

o 1 | l 0

5 0 l 0 0

Table 1-1 Example database with 4 items and 5 transactions

Frequent fremscet Generation using Cosine Measure 4

Clupneer 1 Inteoduction

To illustrate the concepts, we use a small example from the supermarket domain. The set
of items is [= (milk,bread,butter,.beer! and a small database containing the items (I
codes presence and 0 absence of an item in a transaction) is shown in the table to the
right. An example rule for the supermarket could be meaning that if milk and bread is

bought. customers also buy butter.

Note: this example is extremely small. In practical applications, a rule needs a support of
several hundred itemsets before it can be considered statistically significant. and datasets

olten contain thousands or millions of itemsets.

To sclect interesting rules from the set of ail possible rules, constraints on various
measures of significance and interest can be used. The besi-known constraints are
minimum thresholds on support and confidence. The support supp(X) of an itemset X 1s
delined as the proportion of transactions in the data set which contain the itemset. In the
example database, the itemsel {milk.bread} has a support of 2 / 5 = 0.4 since it occurs in

40% of all transactions (2 out of 5 transactions).

The confidence of a rule 1s defined . For example, the rule has a confidence of 0.2/ 0.4 =
0.5 in the database, which means that for 50% of the transactions containing milk and
bread the rule is correct. Confidence can be interpreted as an estimate of the probability
P(Y | X). the probability of finding the RHS of the rule in transactions under the condition

that these transactions also contain the LHS.

[n association rule mining. clustering is one of the most popular areas. Clustering is a
process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called
clusters. Clustering is a discipline devoted to revealing and describing homogeneous

groups of entities, that is, clusters, in data sets.

Frequent Itemset Generation using Cosine Measure

T

Chapiter | Introduction

1.2 Clustering

Clustering is the method by which like records are grouped together. Usually this
is done 1o give the end user a high level view of what is going on in the database.
Clustering is sometimes used to mean segmentation - which most marketing people wiil
telt is useful lor coming up with a birds eyc view of the business. Clustering is a data
mining (machine leaming) technique used to place data elements into related groups

without advance knowledge of the group definitions.
[.2.1 A simple example of clustering

A simple example of clustering would be the clustering that most people perform
when they do the laundry - grouping the permanent press, dry cleaning, whites and
brightly colored clothes is important because they have similar characteristics. And it
turns out they have important attributes in common about the way they behave (and can
be ruined) in the wash. To “cluster” laundry most of the decisions are relatively
straightforward. There are of course difficult decisions to be made about which cluster
the white shirt with red stripes goes inlo (since it is mostly white but has some color and
is permanent press). When clustering is used in business the clusters are often much more
dynamic - even changing weekly to monthly and many more of the decisions concerning

which cluster a recard falls into can be difficult.
1.2.2 The Cosine Similarity Measure

Cosine similarity measure is one of the clustering measures. The purpose of
clustering measure is to join together objects into successively larger clusters, using some
measure of similarity or distance. A typical result of this type of clustering is the
hierarchical tree. Cosine similarity is a measure of similarity between two vectors of n
dimensions by finding the cosine of the angle between them. often used to compare
documents in text mining. Given two vectors of attributes A and B, the cosine sumilaity,

[} is represented using a dot product and magnitude as:

Similarity = Cos(0) = A.B/ [|A[.]|B]|

Fregucnt ltemset Generation using Cosine Measure 6

Chapter £ {ntroduction

For text matching, the attribute vectors A and B are usually the tf vectors of the
documents. Furthermore, the cosine stmilarity of two vectors is an arbrtrary mathematici
measure of how similar two vectors are on a scale of [0,1]. | beiny that the vectors are
either identical. or that their values differ by a constant factor. The cosine similarity of

two vectors (d! and d2} is detined as:

Cos(dl, d2) = dot(d1,d2) / ||d1]].||d2}
Where dot(d]. d2) = d1[0]*d2[0}+dI[1)*d2[1]...
And where ||[d1}j = sqrt (d1[0]"2+dI[1]72..))

Moreover, the cosine similarity measure is a popular measure of similarity for text (which
nommalizes the features by covariance matrix) clustering. [t captures a scale invariant
understanding of similarity. An even stronger property is that the cosine simifanity doesn
not depend on the length. This allows documents with the same composition , but
different totals to be treated identically which makes this the most popular measure for
text documents. Also. due to this property, samples cane be normalized to the unit sphere

for more ethicient processing.
1.2.3 Nearest Neighbor

Clustering and the Nearest Neighbor prediction technique are among the oldest
techniques used in data mining. Most people have an intuition that they understand what
clustering is - namely that like records are grouped or clustered together. Nearest
neighbor is a prediction technique that is quite similar to clustering - its esscnce is that in
order to predict what a prediction value is in one record look for records with similar
predictor values in the historical database and use the prediction value from the record

that 1t “nearest™ o the unclassified record.
1.2.4 A simple example of nearest neighbor

A simple example of the nearest neighbor prediction algorithm is that if the user

looks at the people in his/her neighborhood (in this case those people that are in fact

Frequem ftemset Generation wsing Cosine Measure 7

Chaper £ fntroduction

gcographically near to the user). The user may notice that, in general, the incomes of
most people are somewhat simitar. Thus if the user's neighbor has an income greater than
10,000 Rs. chances are good that he too has a high income. Certainly the chances that he
has a lugh income are greater when all of his neighbors have incomes over 10,000 Rs.
than il all of hus neighbors have incomes of 5,000 Rs. Within his neighborhood there may
slill be a wide variety of incomes possible among even his “closest™ neighbors but if the
user had to predict someone’s income based on only knowing their neighbors his best

chance of being right would be to predict the incomes of the neighbors who live closest to

the unknown person.

The nearest neighbor prediction algorithm works in very much the same way except that
“nearncss” in a database may consist of a vaviety of factors not just where the person
lives. It may, for instance, be tar more important to know which school someone attended
and what degree they attained when predicting income. The better definition of “near”
might in fact be other people that the user graduated from coliege with rather than the

people that he lives next to.

Nearest Neighbor techniques are among the easiest to use and understand because they
work in a way similar to the way that people think - by detecting closely matching
examples. They also perform quite well in terms of automation, as many of the

algorithms are robust with respect to dirty data and missing data.
1.2.5 How to use Nearest Neighbor for Prediction

One of the essential elements underlying the concept of clustering is that one
particular object {(whether they be cars. food or customers) can be closer to another object
than can some third object. It is interesting that most people have an innate sense of
ordering placed on a variety of different objects. Most people would agree that an apple 1s
closer to an orange than it is to a tomato and that a Toyota Corolla s closer to a Honda
Civic than to a Porsche. This sense of ordering on many difterent objects helps us place
them in time and space and to make sense of the world, it is what allows us to build
clusters - both in databases on computers as well as in our daily lives. This definition of

nearness that seems 1o be ubiquitous also allows us to make predictions.

Fregucm lemset Generation using Cosine Measure 3

Chapicer | Intraduction

The nearest neighbor prediction algorithm simply stated is:

Objects that are “near” to each other will have similar prediction values as well. Thus if
the user knows the prediction value of one of the objects he can predict it for it’s nearest

neighbors.

1.2.6 Where has the nearest neighbor technique been used in

business?

One of the classical places that nearest neighbor has been used for prediction has
been in text retrieval. The problem to be solved in text retrieval is one where the end user
delines a document (e.g. Wall Street Journal article, technical conference paper etc.) that
is interesting to them and they solicit the system to *“find more documents like this one™.
Effectively defining a target of. “this is the interesting document™ or “this is not
interesting”. The prediction problem is that only a very few of the documents in the
database aclually have values for this prediction field (namely only the documents that
the reader has had a chance to look at so far). The nearest nerghbor technique is used to
find other documents that share important characteristics with those documents that have

been marked as interesting.
1.2.7 Using nearest neighbor for stock market data

As with almost all prediction algorithims, nearest neighbor can be used in a
variety of places. Its successful use is mostly dependent on the pre-formatting of the data
so that nearness can be calculated and where individual records can be defined. In the text
retrieval example this was not too difficult - the objects being documents. This is not
always as casy as it is for text retrieval, Consider what it might be like in a time series
problem - say for predicting the stock market. In this case the input data is just a long
series of stock prices over time without any particular record that could be considered to

be an object. The value to be predicted is just the next value of the stock price.

The way that this problem is solved for both nearest neighbor techniques and for some

other types of prediction algorithms is to create training records by taking, for instance,

Freguend leeanset Generation using Cosine Measure 9

Chapter | Introduction

[0 consecutive stock prices and using the hirst 9 as predictor values and the 10th as the
prediction value. Doing things this way, i the user had 100 data points in his time series,

he could create 10 different training records.

He could create even more training records than [0 by creating a new record starting at
cvery data point. For instance, the user could take the ficst 10 data points and create a
record. Then the user could take the 10 consecutive data points starting at the second data
point, then the 10 consecutive data point starting at the third data point. Even though
some of the data puints would overlap from one record to the next the prediction value
would always be different. In this example of 100 initial data points 90 different training
records could be created this way as opposed to the 10 training records created via the

other method.

Nearest Neighbor Clustering

Used for prediction as well as consolidation. Used mostly for consolidating data into a
high-level view and general grouping of

records into like behaviors.

Space i1s defined by the problem to be solved|Space is defined as default n-dimensional
(supervised learning). space, or is defined by the user, or is a
predefined space driven by past

experience (unsupervised leaming).

Generally only uses distance metrics tojCan use other metrics besides distance to
determine nearness. determine nearness of two records - for

example linking two points together.

Table 1-2 Some of the Differences Between the Nearest-Neighbor Data Mining

Technique and Clustering

Freguent ftemset Generation using Coxine Measure 10

Chapter { fitrenduction

1.3 Data Mining Can Bring Pinpoint Accuracy to Sales

Data warchousiny - the practice of creating huge, central stores of customer data
that can be used throughout the enterprise - is becoming more and more commanplace.
But data warehouses are useless if companies don't have the proper applications tor

accessing and using the data.

Two popular types ol applications that leverage companies’ investments in data
warchousing are data mining and campaign management software. Data mining enables
companies to identtly trends within the data warehouse (such as "families with teenagers
are likely to have two phone lines," in the case of a telephone company's data). Campaign
management sotiware enables them to leverage these trends via highly targeted and
automated direct marketing campaigns (such as a telemarketing campaign intended to sell

second phone lines to families with teenagers).

Data mining and campaign management have been successfully deployed by hundreds of
Fortune 1000 companies around the world, with timpressive results. But recent advances
in technology have enabled companies to couple these technologies more tightly, with the
following benetits: increased speed with which they can plan and execute marketing
campaigns; ncreased accuracy and response rates of campaigns; and higher overall

marketing return on investment.

Data mining automates the detection of patterns in a database and helps marketing
professionals improve their understanding of customer behavior, and then predict
behavior. For example, a paltern might indicate that married males with children are
twice as likely to drive a particular sports car than married males with no children. A
marketing manager for an auto manutacturer might find this somewhat surprising pattern

quite valuable.

The data mining process can model virtually any customer activity. The key is to find

pattems relevant to curvent business problems. Typical patterns that data mining uncovers

Frequent lremset Generation using Cosine Measure [

Chapier 1 Intraduction

include which customers are most hikely to drop a service, which are likely to purchase

merchandise or services, and which are most likely to respond to a particular ofter.

The data mining process results in the creation of’ a model. A model embodies the
discovered patterns and can be used to make predictions for records for which the tree
behavior is unknown. These predictions, usually called scores, are numerical values that
are assigned to each record in the database and indicate the likelihood that the customer
will exhibit a particutar behavior. These numerical values are used to select the most

appropriate prospects for a tarzeted marketing campaign.

Campaign management and data mining, when closely integrated, are potent tools.
Campaign management soflware enables companies to deliver to customers and
prospects timely, pertinent, and coordinated offers, and also manages and monitors
customer communications across all channels. In addition, it automates and integrates the
planning. execution, assessment and refinement of possibly tens to hundreds of highly

segmented campaigns running monthly, weekly, daily or intermittently.
[.3.1 Benefits of Data mining

Data mining being a very popular and interesting topic has number of advantages

which are as follows:-
Provides insight into hidden patterns and relationships in user’s data

e A classic example of data mining is a retailer who uncovers a relationship
between sales of diapers and diaper rash creaim — two items the user wouldn't
normally consider as linked. The explanation is that husbands who are sent out lo
pick up a fresh supply of diapers are also likely to pick up diaper vash cream while
they happen to be in the store — something that hadn’t been recognized as a

sienificant sales driver before data mining uncovered it.

Frequent lremscet Generation using Cosine Measure [

Chapter 1 . Introduction

Enables user to exploit the correlations to improve organizational

performance

Continuing the example above, very often retailers act on the relationships they
discover by using tactics such as placing linked items together on end-of-isle
displays as a way to spur additional purchases. All organizations can benefit from
acting in a similar way — using newly discovered patterns and correlations as the

basis for taking action to improve their efficiency and effectiveness.

Provides indicators of future performance

“Those who do not learn from history are doomed to repeat it” is a famous quote
from philosopher George Santayana. In the case of data mining, being able to
predict outcomes based on historic data can dramatically improve the quality and
outcomes of decision making in the present. As a simple. example, if the hest
indicator of whether a customer will pay on time tums out to be a combination of
their market segment and whether or not they have paid previous bills on time,
then this is information the user can usefully benefit from in making current credit

decisions.

Enables embedding of recommendations in user’s applications

The user can use the data mining results to display a simple summary statement
and recommendations within operational applications. For example, on a credit
screen user could add: “Based on this new account profile there is an 85% chance
this customer will pay late. It is therefore recommended user requires a 50%
prepayment on this order”. Reporting on aggregate results such as Days Sales
Qutstanding (DSO) enables the user to measure business improvements based on
when recommendations were followed and when they weren’t so that the user can

fine-tune his model and recommendations over time for optimal effect.

Frequent Itemset Generation using Cosine Measure

13

Chapter 1 Introduction

1.4 Existing techniques

Various algorithms have been developed to avoid the problems of association rule
mining such as the multiple scans and generation of large candidate itemset. Following

are some of these algorithms:-

Apriori is a seminal algorithm proposed by R.Agrawal[1] in May 1993. It uses prior
knowledge of frequent itemset properties. Apriori uses breadth-first search and a hash iree
structure to count candidate item sets efficiently. But its drawback is that the finding of
each Lk requires one full scan of database. Hence, due to multiple scans we get wastage
of resources like time and space /memory in addition to the counting of false candidates.
Candidate gencration generates large numbers of subsets (the algorithm attempts to load

up the candidate set with as many as possible before each scan).

FP-growth algorithm[6] proposed by J. Han, J. Pei, Y. Yin, and R. Mao in 2004 adopts
a divide and conquer strategy avoiding costly candidate generation. First, it compresses
the database representing frequent items into a frequent pattern tree or FP tree, which
contains the itemset association information. It then divides the compressed database into
a set of conditional databases. FP-growth tree is memory resident and requires additional
storage in every node of the FP-tree (Because of excessive pointers storage in everjr

node) especially when the FP- tree is too large to fit in main memory.

Partition algorithm was proposed by A. Savasere[2] in 1996. This algorithm is used for
partitioning the data to find candidate itemsets. A partitioning technique can be used that

requires just two database scans to mine the frequent itemsets. l

The problem of accurately estimating the number of partitions given the available

memory, however, needs further work.

Sampling approach was proposcd by Toeivoren([3] in 1996. This algorithm is used for
mining on a subset of the given data. The basic idea of the sampling approach is to pick a
random sample S of the given data D, and then search for frequent itemsets in S instead

of D. In this way, there 1s some tradeoff of accuracy against efficiency. The sample size

Frequent Itemset Generation using Cosine Measure 14

Chapter | Introduction

of § is such that the search for frequent itemsets in S can be done In main memory, and so
only one scan of the transactions in S is required overall. We might miss some of the
global frequent itemsets since we are searching for frequent itemsets in S than in D. The
sampling approach is especially beneficial when efficiency 1s of utmost importance, such
as in computationally intensive applications that must be run on a very basis. However,

there is a tradeoff between accuracy and efficiency.

MaxMiner (Bayardo, 1998)]4] is another algonthm for finding the maximal ¢lements. It
uses Rymon R(1992)[10] “search through systematic set Enumeration” mechanism and
efficient pruning techniques to quickly narrow the search. MaxMiner employs a breadth-
first traversal of the search space; it reduces database scanning by employing a look
ahead pruning strategy. Since MaxMiner uses the original horizontal database format, it
can perform the same number of passes over a database as Aprion does. Hence, there will

be need for scanning multiple times.

ECLAT (Equivalence CLASS transformation)|5] is an algorithm developed by M.J
Zaki, which transforms a given data set of transactions in the horizontal data format of
TID-itemset into the vertical format of item-TID-set. It mines the transformed data set by
TID-set intersections based on Apriori property and additional optimization techniques

such as diffset. However, the cost of registering long TID_sets is high.

The above literature shows that association rule mining is facing a number of problems
currently such as multiple scans of database and generation of large candidate itemsets

which needs to be solved.
1.5 Scope of the Project

Data mining has become very popular area for research where association rule
mining plays a vital role. Association rule mining is not only used in businesses, retail
sales but also in science and engineering, telecommunications, games, human resource

departments etc. Data Mining is a highly effective tool in the catalog marketing industry.

Frequent Itemset Generation using Cosine Measure 15

Chapter] : Introduction

Catalogers have a rich history of customer transactions on millions of customers dating
i
back several years. Data mining tools can identify patterns among customers and help

identify the most likely customers to respond to upcoming mailing campaigns.

In applying our devised Cos FIS generator algorithm, the main problem that may be
faced 15 limited memory and huge processing needed. Moreover, it needs a lot of time
while scanning the database. The volume of the database if large may also create

problems as it is not easy to handle it.

Frequent ltemset Generation using Cosine Measure 16

Chapier 2

ko ok Rk Rk Rk kK

LITERATURE SURVEY

Chapter 2 Literature Survey

2. Literature Survey

Market Basket Analysis is a modelling technique based upon the theory that if a costumer
buys a certain group of items, he/she is more (or less) likely to buy another group of
items. For example, if the user is in a restaurant and he orders apple juice and doesn’t
order pizza, he is more likely to order crisps at the same time than somebody who didn't

order apple juice.

The set of items a customer buys is referred to as an itemset, and market basket analysis

seeks to find relationships between purchases.
Typically the relationship will be in the form of a rule:

IF {Apple juice, no Pizza} THEN {crisps}.
The probability that a customer will order apple juice without a Pizza(i.e. that the
antecedent is true) is referred to as the support for the rule. The conditional probability

that a customer will purchase crisps is referred to as the confidence.

Consider a supermarket with a large collection of items. Typical business decisions that
the management of the supermarket has to make include what to put on sale, how to
design coupons, how to place merchandise on shelves in order to maximize the product
sales etc. Analysis of past transaction data is a commonly used approach in order to
improve the quality of such decisions. Until recently, however, only global data about the
cumulative sales during sometime period a day, a week, a month, etc. was available on
the computer. Progress in bar-code technology has made it possible to store the so called
basket data that stores items p-urchased on a per-transaction basis. Basket data type
transactions do not necessarily consist of items bought together at the same point of time.
It may consist of items bought by a customer over a period of time. Examples include

monthly purchases by members of a book club or a music club.

Following is some of the research work done previously in association rule mining. Each

research paper represents an algorithm and its advantages and disadvantages.

Frequent Itemset Generation Using Cosine Measure 16

Chapter 2 _ Literature Survey

database D) must occur as a frequent iuzmset in atleast one of the partitions. Thus, all local
frequent itemsets are candidate itemsets with respect to D. The collection of frequent
itemsets from all partitions forms the Global candidate itemsets with respect to D. In
phase II, a second scan of D is conducted in which the actual support of each candidate is

assessed in order to determine the global frequent itemsets.

Moreover, in this paper, Partition algorithm has been described as not only efficient but
also fast for discovering association rules in large databases. An important contribution of
this algorithm is that it drastically reduces the I/O overhead associated with previous
algorithms. This feature may prove useful for many real-life database mining scenarios
where the data 15 most often centralized resource shared by many user groups, and may
even have to support on-line transactions. Interestingly, this improvement in disk I/O is
not achieved at the cost of CPU overhead. It is demonstrated with extensive experiments
that the CPU overhead is actually less than the best existing algorithm for low minimunfl
supports (i.c., cases which are computationally more expensive). In addition, the
algorithm has excellent scale-up property. The problem of accurately estimating the

number of partitions given the available memory, however, needs further work

2.3 Sampling large databases for association rules

Sampling approach was proposed by Toivonen[3] in 1996. This algorithm is used
for mining on a subset of the given data. The basic idea of the sampling approach is to
pick a random sample S of the given data D, and then search for frequent itemsets in S
instead of D. In this way, there is some degree of tradeoff of accuracy against efficiency.
The sample size of S is such that the search for frequent itemsets in S can be done in
main memory, and so only one scan of the transactions in S 1s required overall. The user
might miss some of the global frequent Hemsets since he is searching for frequent
itemsets in S than in D. To lessen this possibility, a lower support threshold is used than
minimum support to find the frequent itemsets local to S (denoted as Ls). A mechanism
is used to determine whether all of the global frequent itemsets are included in Ls. If Ls

contains all of the frequent itemsets in D, then only one scan of D is required.

Frequent ltemset Generation Using Cosine Measure 18

Chapter 2 Literature Survey

The sampling approach is especially beneficial when efficiency is of utmost importance,
such as in computationally inténsive applications that must be run on a very basis.
However, there is a tradeoff between accuracy and efficiency. The penalty in
partition/sampling [9] is that candidate set derived is necessarily a superset of the actual

set of frequent itemsets and may contain many false positives.

2.4 Tree Structure for Mining Association ruies

MaxMiner (Bayardo, 1998)[4] is another algorithm for finding the maximal
elements. It uses Rymon’s (1992)[10] “search through systematic. set Enumeration”
mechanism and efficient pruning techniques to quickly narrow the search. MaxMiner
employs a breadth-first traversal of the search space; it reduces database scanning by
employing a look ahead pruning strategy, i.e., if a node with all its extensions can
determine to be {requent, there is no need to further process that node. 1t also employs

item (re)ordering heuristic to increase the effectiveness of superset-frequency pruning.

Since MaxMiner uses the original horizontal database format, 1t can perform the same
number of passes over a database as Apriori does. Hence, there will be need for scanning

multiple times.

2.5 Efficiently mining long patterns from databases

ECLAT (Equivalence CLASS transformation)[5] is an algorithm developed by
M.J Zaki, which transforms a given data set of transactions in the horizontal data format
of TID-itemset into the vertical format of item-TID-set. It mines the transformed data set
by TID-set intersections based on Apriori property and additional optimization
techniques such as diffset. In this way the support of an itemset X can be easily computed
by simply intersecting the covers of any two subsets Y,Z X, such that YUZ=X. In this

algorithm, for each frequent item I, the I-projected database D' is created. This is done

Frequent Hiemset Generation Using Cosine Measure 19

Chapter 2 Literature Survey

by first finding every item j that frequently occurs together with i. The support of this set
¥ »

{1, J} is computed by intersecting the covers of both items. If {i,j} is frequent then j is

inserted into D' together with its cover then algorithm is called recursively to find all

FIS in the new database D' .

Eclat algorithm uses support based measure to find maximal frequent IS by using I-
projected databases technique but this algorithm generates large number of candidate set
to derive frequent item set at each iteration of the algorithm. Less memory is required as
compare to FP-growth to find FIS. Moreover, the cost of registering long TID sets is
high.

2.6. Search through systematic set enumeration

FP-growth algorithm[6] proposed by J. Han, J. Pei, Y. Yin, and R. Mao in 2004

adopts a divide and conquer strategy avoiding costly candidate generation. First, it
compresses the database representing frequent items into a frequent pattern tree or FP
tree, which retains the itemset association information. It then divides the compressed
database into a set of conditional databases, each associated with one frequent item or
“Pattern fragment” and mines each such database separately.
First, it scans the Database D and collects F, the set of frequent items, and their support
counts. F is sorted in support count descending order as L, the list of frequent items.
Next, it creates the root of an FP-tree, and labels it as “NULL” for each transaction T rans
in D it does the following:-

* Selects and sorts the frequent items in Trans according to the order of L. Let the
sorted frequent item list in Trans be {p|P], where p is the first element and P is
the remaining list. Then insert tree([p|P], T) is called which is performed as
follows. If Thas a child N such that N.item_name =p.item_name, then increment
N’s count by 1 else create a new node N and let its count b 1, its parent link be
linked to T and it’s node-link to the nodes with the same item_name via the node-

link structure. Finally, the FP-tree is mined.

Frequent Itemset Generation Using Cosine Measure 20

Chapter 2] Literature Survey

FP-growth tree is memory resident and requires additional storage in every node of the
L] v

FP-tree (Because of excessive pointers storage in every node) especially when the FP-

tree is too large to fit in main memory. However, it is efficient and scalable for mining

hoth long and short frequent patterns.

2.7 New Algorithms for fast discovery of Associations Rules

Goethals (2004) presented MEDIC Algorithm[7] which generates all itemsets
containing item i as soon as there can be no transaction anymore that contain i. One
transaction processes at a time in lexicographic order. After generating all these itemsets,
the cover of I can be removed from main memory. After that the transaction identifier of

the current transaction is added to the cover of all items occurring in that transaction.

Medic is a frequent set mining algorithm. Medic 1s also based on support count measure
and utilizes the ECLAT algorithm for mining the frequent item sets. Medic uses much

less memory than Eclat because the database is never entirely loaded into main memory.

2.8 Similarity based mining for finding frequent itemsets

SB-Miner is novel algorithm to find FIS based on clustering measure i.e.
jacquard similarity measure[11]. Jacquard similarity measure is based on calculating the
distance between itemsets. Proposed technique makes use of prefix tree as data structure
and vertical database layout to cluster related items together. The experimental results
have proved that the same FIS can be generated by SB-miner tech;lique as compared to
other Apriori based algorithms. This also showed that various clustering measures can be
applied for association rules mining. The research work in this paper is basically
extension or improvement of the work to prove that clustering measure like cosine

similarity is again a candidate clustering measure which can be used to generate FIS.

Frequent Itemset Generation Using Cosine Measure 21

Chapter 2 Literature Survey

2.9 Selecting the right interestingness measure for association

A

patterns
The DISJOINT and RANDOM algorithms are two table selection algorithms used

to select a small set of tables {12] such that an expert can select a desirable measure by
looking at just this small set of tables. Many techniques for association rule mining and
feature selection require a suitable metric to capture the dependencies among variables in
a data set such as support, confidence, lift etc are used to determine interestingness of
association patterns. However, many such measures provide conflicting information
about the interestingness of a pattern and best metric is rarely known. In this paper, an
overview of various measures proposed in the statistics, machine learning and data
mining literature, 1s presented. Moreover, there is a description of several key propertics
one should examine in order to select the right measure for a given application domain.
Also, a comparative study of these propertics is made using twenty one of the existing
measures. Two scenarios are presented in which most of the existing measures agree with
each other, namely support-based pruning and table standardization. The RANDOM
algorithm randomly selects & out of the overall N tables and presents them to the experts,
Whereas, DISJOINT algorithm selects k tables that are “furthest” apart according to their
average rankings and would produce the largest amount of ranking conflicts i.e. large

standard deviation in their ranking vector.
2.10 Problem Statement

In clustering, nearest data points are brought together. This can be done either using
Cosine similarity or dissimilarity measures. Similar data items will be nearest 1o each other
while Dissimilar will be at distance for apart. Association also finds most frequent items in
a dataset. If a subset is found frequently in data set then it can be said that its similarity is

high. So frequent item set can be found on the basis of Cosine similarity measures as well. .

Frequent Itemset Generation Using Cosine Measure 2

Chapter 2 . Literature Survey

From the iterature survey, it is observed that rules are generated on the basis of candidate
itemsets, which are generated using Eupport and confidence measures. Moreover, the

database is scanned multiple times to generate candidate itemsets.

After scanning the database, the items are taken from database and their respective
support count is stored in a table. Then, 2-itemsets are created and database is scanned till
k-itemset is created. Multiple scanning is an extensive workload on the database specially

when the mining of association rules is done on a huge database.

Apriori [1], while historically significant, suffers from a number of inefficiencies or
trade-offs, which have spawned other aigorithms. Candidate generation generates large
numbers of subsets (the algorithm attempts to load up the candidate set with as many as

possible before each scan).

The problem of accurately estimating the number of partitions given the available

memory in PARTITION algorithm [2] needs further work.

The penalty in partition/sampling [3] is that candidate set derived is necessarily a superset

of the actual set of frequent itemsets and may contain many false positives.

Eclat algorithm presented in [5] uses support based measure to find maximal frequent IS
by using I-projected databases technique but this algorithm generates large number of
candidate set to derive frequent item sct at each iteration of the algorithm. Moreover, the

cost of registering long TID_sets is high.

FP-growth tree [0] is memory resident and requires additional storage in every node of
the FP-tree (Because of excessive pointers storage in every node) especially when the FP-

tree is too large to fit in main memory.

In conclusion, the main problem in all the papers and algorithms is the multiple database

scanning as well as the generation of large candidate itemsets. Whereas the “Cos _FIS

Frequent Itemset Generation Using Cosine Measure 23

Cheptr

VGO b GGG Ebddbb
ARERRRRARRRRRRGRR2LR

PROBLEMDONADA RORSED SOLUTON

Chapter 3 Problem Domain and Proposed Solution

3. Problem Domain and Proposed Solution

Data analysis is the process of looking at and summarizing data with the intent to
extract useful information and develop conclusions. Data analysis is closely related to
data mining, but data mining tends to focus on larger data sets, with less emphasis on
making inference, and often uses data that was originally colliected for a different
purpose. In statistical applications, some people divide data analysis into descriptive
statistics, exploratory data analysis(EDA) and confirmatory data analysis, where the EDA
focuses on discovering new features in the data, and CDA on confirming or falsifying

existing hypotheses.

Data mining is the process of sorting through large amounts of data and picking out
relevant information. It i1s usuvally used by business intelligence organizations, and
financial analysts, but 1s increasingly being used in the sciences to extract information
from the enormous data sets generated by modern expenimental and observational
methods. It has been described as “the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data and the science of extracting
useful information from large data sets or databases”. Data mining in relation to
enterprise resource planning is the statistical and logical analysis of large sets of

transaction data, looking for patterns that can aid decision making

Another example of data mining, often called the market basket analysis, relates to iis use
in retail sales. If a clothing store records the purchases of customers, a data-mining
system could identify those customers who favor silk shirts over cotton ones. Although
some explanations of relationships may be difficult, taking advantage of it is easier. The
example deals with association rules within transaction-based data. Not all data are
transaction based and logical or inexact rules may also be present within a database. In a
manufacturing application, an inexact rule may state that 73% of products which have a

specific defect or problem will develop a secondary problem within-the next six months.

Data Mining is a highly effective tool in the catalog marketing industry. Catalogers have
a rich history of customer transactions on millions of customers dating back several
years. Data mining tools can identify patterns among customers and help identify the

most likely customers to respond to upcoming mailing campaigns.

Frequent {temset Generation Using Cosine Measure 24

Chapter 3 Problem Domain and Proposed Sohition

In data mining, association rule mining is a popular and well researched method for
discovering interesting relations between variables in large databases. Piatetsky-Shapiro
describes analyzing and presenting strong rules discovered in databases using different
measures of interestingness, among which Cosine measure is one of the most useful

measure.

Association rules are required to satisfy a user-specified minimum support and a user-
specified minimum confidence at the same time. To achieve this, association rule

generation is a two-step process.
1. First, minimum support is applied to find all frequent itemsets in a database.

2. In a second step, these frequent itemsets and the minimum confidence constraint
are used to form rules. While the second step is straight forward, the first step

needs more attention.

3.1 Problem Domain

Most of the existing methods of finding FIS are based on support measure. The
purpose of this thesis is to develop a novel data mining algorithm to find out association
which will find FIS on the basis of Cosine similarity measure rather than on the basis of
support count.

Although Support and confidence measures help exclude the eicploration of a good
number of uninteresting rules, many rules so gencrated are still not interesting to the
users. Unfortunately, this especially true when mining at low support threshold or mining
for long patterns. This has been one of the major bottlenecks for successful application of
association rule mining. It is known that support and confidence measures are insufficient
at filtering out uninteresting association rules. To tackle this weakness, a correlation
measure such as COSINE measure can be used to augment the support-confidence
framework

Mareover, the following challenges of frequent pattern mining need to be met:

e Multiple scans of transaction database / I/O overhead.

» Huge number of candidates

Frequent Iltemset Generation Using Cosine Measure 25

Chapter 3 Problem Domain and Proposed Solution

o Tedious workload of support counting for candidates.

3.1.1 Multiple Database scans

The major problem of Association rule mining is the multiple database
scans, since first frequent itemsets are searched in the database and then 2-itemset and k-
itemsets are created to find similarity between the two large itemsets which reql:iire’s
consulting the database again and again. Moreover, since the frequent itemset generation
15 also performed on huge databases and large datawarchouses, there is chance of
multiple Disk I/Os which are the main obstacle in efficiency of database and association
rule mining algorithms. Therefore, the primary goal in association rule mining should be

to reduce database scans and the disk I/Os.

3.1.2 Large candidate set size

Creation of candidate itemsels resembles to a chain process i.e. 1-itemsets
are used 1o create 2-itemsets and 2-itemsets are used to create k-itemsets and so on.
Hence, the more the size of the candidate itemset, the more complicated will the rules be
and the more time would it take to execute the algonithm for generating frequent iternsets.
Also, since the number of rules wil be numerous then, finding interesting rules will be
time consuming and hard. Moreover, the size and quantity of itemsets also leads to disk
and /O overhead. The number of database scans required by Apriori-based algorithms

depends on the size of the largest large itemsets.
3.1.3 Algorithm execution time

One of the main challenges in database mining is developing fast and
efficient algorithms that can handle large volumes of data as most mining algorithms
perform computation over the entire database and often the databases are very large.

Time management is the key factor in any algorithm for the fast retrieval of results of the

Frequent Itemset Generation Using Cosine Measure 26

Chapier 3 Problem Domain and Proposed Solution

queries specially in todays world whez‘c there is huge amount of data and shortage of
time. The faster the frequent itemsets are generated, the faster would the process of sales
and promotion of products be, since the consequent rules would be generated and
reviewed faster. For example, suppose If a clothing store records the purchases of
customers, a data-mining system could identify those customers who favour silk shirts
over cotlon ones. The faster this system would identify such customers before the
respective season comes, the more increase will be observed in the retail sates and the

process of importing the demanded cloth would be faster and easier.

3.2 Proposed Solution

To achieve good runtime performance and efficient running of association rule
mining algorithm, the above mentioned issues should be considered and solutions to
these problems must be found to prevent performance degradation. For instance, lessen

the number of database scans and reduce huge number of candidate Jtemsets.

3.2.1 Reduced Database scans

All the algorithms in the association rule mining need to scan the database
multiple times, which not only causes overhead on the disk /O but is also time
consuming. Multiple scans are needed in order to create l-itemset, 2-itemset and k-
itemset as well as to keep track of support counts. However, the Cos FIS generator
performs only a single scan of an item over the whole database while reading
transactions’ 1D list from the .txt file and then stores the count of the transaction in the
cache. Once the count of each transaction is maintained in the cache, the user can use a
formula for Cosine measure which will show il a certain itemset is frequent or no where a
certain Cosine measure threshold is given. This single scanning of a particular item will

reduce the /O overhead.

Frequent ltemset Generation Using Cosine Measure 27

Chapter 3 Problem Domain and Proposed Solution

Moreover, among various lavouts of th:z database, horizontal and vertical Eag’outs are the
most common. Horizontal layoutl consists of the list of transactions. Fach transaction has
an identifier followed by list of items. The vertical layout however consists of list of
itemns. Each item has a transaction {Ds list- the list of all transactions containing the item.
Therefore, the algorithm in this thesis uses the vertical layout of the database since this
format performs only a single scan while reading the transaction row by row and storing
its support count meanwhile in cache. Also relevant transactions can be clustered

together.

3.2.2 No candidate itemset generation

Another main problem with most of the association rule mining algorithms
is the size of the candidate itmsets . The size of these itemsets is sometimes too large that
its hard to find association rules. Moreover, it is very time consuming as well as storage
of these candidates becomes harder. All these factors affect the whole process of
association rule mining specially when the database is very huge. Finding candidate
itemsets and then pruning them is a very tedious job. However, the “Cos_FIS generator”
algorithm works without candidate generation. In this algorithm, only the pairs of ifems
are created. Then, it is found out through the Cosine formula IS, whether a certain pair or
itemset is frequent or no. If the pair is frequent, it is added in the Set Enumeration tree

else it 15 discarded.

3.2.3 Reduced Algorithm Execution time

In today’s era, fast and efficient algorithms are demanded as time' has
become a key element in one’s life. Also, since such algorithms are required to handle
large amounts of data in data warehouses and perform numerous computations, the faster

the algorithm executes, the faster the Frequent itemsets are generated. Therefore, the

Frequent Itemser Generation Using Cosine Measure 28

IH-S6 5/

Chapter 3 Problem Domain and Proposed Solution

Cos_FIS generator creates the frequent itemsets faster. Also, the single scan of the

database performed by this algorithm contributes to the speed of generation of FIS.

Frequent ltemset Generation Using Cosine Measure

29

Chapter 4

AR R Rk ok ok ks sk sk skok ko

Chapter 4 _ Svstem design

4. System design

The Cos_FIS generator takes the .txt file of 0’s and 1’s as an input which shows
absence and presence of data items respectively. The .asc file is first converted into .txt
file. Association rule mining comprises of two steps:-

1. Finding all frequent itemsets: the itemsets which satisfy the given threshold will
be frequent.
2. Generating strong association rules from these frequent itemsets: the rules

must also satisfy the mimmum support.

However, this research is limited to the first portion of the association rule mining that is

the generation of the frequent itemsets.

4.1 Representation of the frequent itemsets

The frequent itemsets are represented into a node structure i.e. in form of a set
enumeration tree. The Set-Enumeration (SE)-tree [10] is a vehicle for representing and/or
enumerating sets in a best-first fashion. The complete SE tree systematically enumerates
elements of a power-set using a pre-imposed order on the underlying set of elements. In
problems where the search space is a subset of that power-set that is {or can be) closed

under set-inclusion, the SE-tree induces a complete irredundant search technique.
4.1.1 Node structure

In this thesis, each node in SE tree represents a frequent itemset. Each node has
node_id field, which shows the name of the node and also indicates frequent itemset.
Node has a count field indicating the total number of transactions containing that
frequent itemset. There are two node pointers down and right node pointer pointing to the
node that is linked to current node in downward position level-wise and to the right
position item-wise respectively. In other words, the down pointer points to the node in the

next level where each level represents the k-itemset and the right pointer points to the

Frequent Itemset Generation Using Cosine Measure 29

Chapter 4 System desien

node of the same level. Moreover, thgre is a transaction_id_list field, which actually
represents the transaction [Ds of transactions containing the particular FIS represented by

the nede_id of the node.

4.1.2 Creation of Set Enumeration Tree

The Set Enumeration tree(SE tree) is created in a very systematic way. First node
‘a’ is created and then the column of dataset (text file) is scanned according to a pointer,
hence filling the buffer with the support count. If the support count of the node is greater
than or equal to the minimum user specified threshold, then the node is said to be
frequent and hence is added in the SE tree. After the buffer is filled with count of the
node, it is then copied into the info field of newly created node. It is then linked with the
previous node. This way the first level of SE tree is generated.The second level of SE tree
is created by finding Cosine similarity between every two itemsets or nodes present in the
first level of SE tree i.e) between node ‘a’ and node ‘b’. Only those itemsets whose
stmilarity 1s greater than or equal to the user supplied minimum similarity threshold are
declared frequent and are linked in the second level of the SE tree in lexicographic order.

And the same process is repeated for levels 3 and 4.

Fig 4.1 Set Enumeration Tree

Frequent liemset Generation Using Cosine Measure 30

Chapter 4 System design

4.2 The Cos_FIS generator algorithm

Input
Ds: Transactional Dataset
a : Threshold

Quiput:

FIS: Frequent itemsets
B: No. of FIS after each iteration

Step I : Scan transactional dataset DS.

Step 2: Construct first level of Prefix tree.

Step 3 :Construct second level of prefix tree by finding similarity between every 2
itemsets in the previous level of tree as shown in step 4.

Step 4: B = Generate_frequent_2_itemset(FIS, a0)

Repeat Step 5 to 7 untit f = 0.

Step 5: Scan each sub tree in the last level of prefix tree.
Step 6: Store starting node’s address of each sub tree in S.

Step 7: B = Generate_next_frequent_itemset (S,FIS, a).
Step 8: Return FIS.

4.3 System’s Major Modules

Division of any project into modules adds to its efficiency and overall

performance. Hence this project is divided into following modules:-

Ao

Database conversion.
File reading.
Copying cache to node.

Frequent itemset generation.

Frequent ftemset Generation Using Cosine Measure 31

/‘-Q/_.‘

Chapter 4

Svstem design

r

Synthetic
Database
(.db file)

ARtool

I ASCII file | Text file
(.asc file) {(.txt file)
Frequent »| 1% Level

Itemset
Generation v
2nd Level
h
3rd Level

Fig 4.2 Architectural Diagram

4.4 Database Conversion

ARtool is an application for mining association in rules in binary databases. This

tool has utility to generate synthetic binary databases. The databases generated by

using ARtool are in a specific format to be used only with this tool. But there was a

need of having the synthetic database in format required to be used with Cos_FIS

generator. Therefore first the database file is converted into ASCII format(.asc file)

by the utility available in ARiool i.e. db2asc and then this ASCII format is converted

into binary database format (.txt file) used in Cos_FIS generator algorithm. By using

the above technique, databases described in the table 4-1 are generated.

Database T AT |1 [P[AP
T200AT6I1I0F5AP4.db] 200 6 191514
T500ATS110P5AP3 du] 500 | 3 101513
T40DATEII0PSAPA.dh| 406 {6 10§51]14

Table 4-1 Synthetic binary databases

Frequent ltemset Generation Using Cosine Measure

'Chapter 4 System design

In table 4-1, T is number of transaction, AT is average size of transaction, I is the number

of items, P is number of patterns and AP is average size of patterns.

ARtool uses a custom format for its database files (which will be henceforth referred to
as the .db format and is identical to the format used in ARMiner). The asc2db and db2asc
are utilities that allow the conversion of a .db file to a specially formatted ASCII file
(user will refer to this as .asc) and respectively the conversion of a .asc file into a .db file.

The .asc files can be easily read and modified with any decent ASCII editor.

These formats can be best explained by taking a small example of supermarket data.
Suppose the items sold by a (very, very small) shop are green apples, red apples, oranges,
bananas, and grapes. Also suppose that the user had three customers, one bought g;een
apples and grapes, one bought only oranges, and the last one bought oranges and grapes.

This activity can be represented in the .asc format as follows:

1 green apples
2 red apples
3 oranges
4 bananas
5 grapes
Fig 4.3 Part 1 of ASCII file
BEGIN_DATA
15
3
35
END _DATA
Fig 4.4 Part 2 of ASCII file

There are two distinct parts of this file, the first one illustrated in fig 4.3 contains a listing
of all the items user can sell, or otherwise said, of all the items that could participate in a

transaction.

Frequent Itemset Generation Using Cosine Measure 33

_

Chapter 4 . System desien

The format is pretty simple. It must consist of a positive number followed by a string
(which can contain blank spaces). It i1s important that the numbers be assigned in
increasing order starting from 1. Empty lines are allowed to appear in this section. This
section enumerates all entities described by the data and between which ARtool

will later be used to look for association rules The second part illustrated in fig 4.4

consists of the actual data.

In this case, there were 3 transactions and these are each represented on a separate line.
The first transaction involved green apples and grapes and they are represented by the

numbers associated in the first section, that is 1 for green apples and 5 for grapes.

The db2asc program in ARtool converts a .db file to .asc format. This can be useful if
the user wants to read or verify the content of a .db file, He/she can also use it to modify
by hand the contents of a .db file by first converting it to a .asc file, then editing the .asc

file, and finally converting it back to a .db file.

db2asc is used in a similar way to its counterpart, asc2db. If the user needs to convert the
artdata.db database to .asc format, then he/she can type the following command in the

MS- DOS command prompt:
Java db2asc artdata

which will produce an artdata.asc file. If the user wants a different name for the output,

then he can pass it on the command line as a second argument:
Jjava db2asc artdata artixt

which will produce an arttxt.asc file representing the contents of the artdata.db database.

Frequent Itemset Generation Using Cosine Measure 34

':hapter 4 System design

4.4.1 Database layout

It can be observed that after the conversion of ASCII file into text file, the
database is being represented in vertical format. Among various layouts of the database
horizontal and vertical layout are very much common layouts as shown in the Figure 4.3.
Horizontal layout consists of list of transactions. Each transaction has an identifier
followed by list of items. The vertical layout consists of list of items. Each item has a
transaction IDs list- the list of all the transactions containing the item. Vertical database
format has numerous advantages i.e. multiple scans of the database can be avoided and

relevant transactions can be clustered together.

DATABASE HORIZONTAL VERTICAL

I ITEMS 1ITEM SET TID SET

1 A, B E 1l A]| Bl E A BiC| D|E
2 B,D 2B | D 1j1]13{21
3 B,C 3| B C 41 2| 5 4| &
5 |a.BD|la]a]lslD EHE

s A C 5| A]C 2 4| 7

6 B, C slBlc gl 6| 8

7 |AC 7Halc ol g e

g é’g' slalBlCc|E 9

9 A.BCi|lola]|B|lC

Table 4-2 Database layouts

4.5 File reading

Once the ASCII file(.asc) is converted into text format (.txt) by the C code, it is
read or scanned. The text file is in form O’s and 1’s which show the absence or presence
of a certain item 1n a particular transaction. This scanning is performed in order to keep
track of the support count of each item i.e. the number of 1’s in a certain item which
shows the presence of that particular item in a certain transaction. The number of 1°s 1s

equal to the support count of an item. The probability of an item is found by dividing the

Frequent Itemset Generation Using Cosine Measure 35

'Chapter 4 Svstem design

support count by the total number of transactions. This probability will then be used in
the Cosine measure Formula to find the frequent itemset or to see if a certain itemset is

frequent.

4.6 Copying Cache to Node

After first node is created, the columns of dataset are scanned and the buffer is
filled with the information of a certain item or node. This buffer is then copied by a
function named copybuffer in to newly created node info field. Each item presents a
node in the set enumeration tree. Each node in SE-tree represents a frequent itemset. Each
node has node_ID field, which shows the name of the node and also indicates frequent
itemset. There is an transaction_ID_list field in every node containing the transaction IDs
list, which actually represents the transaction IDs of the transaction containing the

particular FIS represented by the tag of the node.

4.7 Frequent Itemset Generation

Once the user gets the support count of a certain itemset, he/she can easily
calculate its probability by dividing the support count with the total number of
transactions. After getting the probability of all the itemsets, he/she can easily find out
whether a ceratin itemset is frequent or no. In other words, he can find the frequent
itemsets /similarity between two items by applying the following Cosine masure formula

to the itemsets:

IS 4Bsim=P(AUB) / NP(A)X{P(B)

Where A is the first item and B is the second item, P(A) and P(B) is the probability of
item A and item B respectively, P(AUB) is the combined probability.

Frequent ltemset Generation Using Cosine Measure 36

Chapter 4 Svstem design

/’

After applying the formula to a certain itemset, if the similarity user gets from this Cosine

formula is greater than or equal to the user specified similarity threshold, then that
itemset is said to be frequent and will be linked in the 2™ level of the SE tree in

lexicographic order.

Frequent Itemset Generation Using Cosine Measure 37

Chapter 5

[MPLEMENTATION

Cnapler) implementalion

5. Implementation .

This section covers all the aspects of the implementation of the Ceos_FIS generator
algorithm. This project is divided into functions or modules which are discussed one by

one. Furthermore, the functionality of tools used in this project is also explained.

Efficient running of any system depends upon the software used in it and accurate inpuf.
The software used in the project should be capable of meeting not only the user’s
requirements but also of the proposed system. The tools/softwares used in this system are
ARtool, Notepad for the text format files, Wordpad for the ASCII files and the Java
platform for the running of ARtool i.e. sun’s JDK (Java Development Kit)or JRE(Java

Runtime Environment).

5.1 ARtool

ARtool v1.1.2 is a Java application for mining frequent itemsets and association
rules in binary databases. ARtool is frec software distributed under the GNU General

Public License.

ARtool uses a custom format for its database files (which will henceforth referred to as the
.db format and is identical to the format used in ARMiner). The asc2db and dblasc are
utilities that allow the conversion of a .db file to a specially formatted ASCII file (user will
refer to this as .asc) and respectively the conversion of a .asc file into a .db file. The .asc

files can be easily read and modified with any decent ASCII editor.

. o
ARtool comprises three components: a set of Java packages, a set of command line tools,

and a graphical user interface (GUI).

Frequent Itemset Generation Using Cosine Measure : 37

Chapter S Implementation

Moreover, it also helps to generate a syr:thetic database first which is then coilverted.into
ASCII format (.asc file) by using the command line prompt as mentioned previously in

section 4.2.

Program §Tools |

Tiwgiand Generate a syithelic datahase g;!i@-;’%

[Cigvent database: no datahase selected
Descriptione no description available

Hinnber o1 cohmns: NAA, colimn nomes are:

Hunbey of rows: NiA

| Selectadatabase.. | Gyerb ditabase veidy |

v e a3 LT e s

Fig 5.1 ARtool User Interface

5.1.1 How to install and execute ARtool

The user needs to have Sun's JDK or JRE installed, probably at least

version 1.3.

To install AR1ool, user will just unzip the ARtool binaries to some directory on

his hard drive.

To run the ARtool GUI, user will just type:

Frequent Itemset Generation Using Cosine Measure 33

Chapter S Implementation

java -jar ARtool.jar

or will simply double-click on ARtool.jar (works only if he has JRE installed).

5.1.2 Features of ARtool

The new features of ARtoo! are;

- a set of command line toals that allow mining, synthetic
database generation, operations on databases, etc

- the GUI gives more information about a selected database

- the GUI gives more infornation about the frequent itemsets

- the GUI has a log window that keeps track of all operations
performed

- algorithm execution and database generation can now be
interrupted

- lengthy tasks are executed in threads and do not freeze the
interface

- an online help system - provides a quick introduction to
association rale mining and to using ARtool

- the GUI is easier to navigate since 1 use dialogs sparingly

- there are plenty of tooltips to help the novice user

5.2 Java Platform

As it is known that in order to run ARtool, user needs Java platform i.e Sun’s JDK

or JRE. Therefore, JDK (Java devetopment Kit) was installed in this system.

Frequent ftemset Generation Using Cosine Measure 39

Lhapter 5 fmplementation

5.2.1 JDK (Java Deyelopment Kit)

The Java Development Kit (JDK) is a Sun Microsystems product aimed
at Java developers. Since the introduction of Java, it has been by far the most widely used
Java SDK. On 17 November 2006, Sun announced that it would be released under the
GNU General Public License (GPL), thus making it free software.

The JDK is a subset of what is loosely defined as a software development kit (SDK) in
the general sense. In the descriptions which accompany their recent releases for Java SE,
EE, and ME, Sun acknowledge that under their terminology, the JDK forms the subset of
the SDK which is responsible for the writing and running of Java programs. The
remainder of the SDK is composed of extra software, such as Application Servers,

Debuggers, and Documentation.

The JDK also comes with a complete Java Runtime Environment, usually called a
private runtime. It consists of a Java Virtual Machine and all of the class libraries. that
will be present in the production environment, as well as additional libraries only useful

to developers, such as the internationalization libraries and the IDL libraries.

¥

5.2.2 JRE (Java Runtime Environment)

The JVM Java virtual machine, which is the instance of the JRE (Java
Runtime Environment), comes into action when a Java program is executed. When
execution is complete, this instance is garbage-collected. JIT is the part of the JVM that is
used to speed up the execution time. JIT compiles parts of the byte code that have similar
functionality at the same time, and hence reduces the amount of time needed for

compilation.

A Java Virtual Machine (JVM) is a set of computer software programs and data
structures which use a virtual machine model for the execution of other computer
programs and scripts. The model used by a JVM accepts a form of computer intermediate
language commonly referred to as Java bytecode. This language conceptually represents

the instruction set of 2 stack-oriented, capability architecture. The JVM is a crucial

Frequent ltemset Generation Using Cosine Measure 40

Chapter 5 : Implementation

component of the Java Platform.Programs intended to run on a JVM must be compiled
into a standardized portable binary format, which typically comes in the form of .class
files. A program may consist of many classes in different files. For easier distribution of
large programs, multiple class files may be packaged together in a jar file (short for Java
archive). The JVM runtime executes .class or jar files, emulating the JVM instruction set
by interpreting it, or using a just-in-time compiler (JIT) such as Sun's HotSpot. JIT

compiling, not interpreting, is used in most JVMs today to achieve greater speed

Java Language Java Language

Tools & java javac javadoc apt jar javap JPDA : jconsale

Deployment PRl v N PR PP 0.2 T B ol et
Technalogies oyment;.: X : ﬁ%_wm.lavaﬂu -{n

User
Interface
Toolkits

JOK Integration
Libraries

JRE Other Base
Libraries

lang and util
Base §
Libraries LN

Java Virtual
Machine ¥

Platforms

T Linux Vslndows Other

Solaris

Fig 5.2 Java Platform Diagram from Sun

5.3 The C++ language

C++ ("C Plus Plus") is a general-purpose programming language. It is regarded as
a middle-level language, as it comprises a combination of both high-level and low-level
language features. It is a statically typed, free-form, multi-paradigm, compiled langunage

where compilation creates machine code for a target machine hardware, supports

Frequent Itemset Generation Using Cosine Measure 41

- - - A pa—

Tool APIs Secuity Intl RMI IDL Deploy Llonitoring Troubleshaot Seripting i

Chapter 5 Implementation

procedural programming, data abstraction, object-oriented programming, and generic

programming.

The language was developed by Bjarne Stroustrup in 1979 at Bell Labs as an
enhancement to the C programming language and originally named "C with Classes". It
was renamed to C++ in 1983. Enhancements started with the addition of classes,
followed by, among other features, virtual functions, operator overloading, multiple

mheritance, templates, and exception handling.

5.3.1 Conversion of Database file into ASCII file

The Database file (.db) 1s converted to ASCII file in the same folder
where the ARtoo) application resides by typing the following command in the MS-Dos

Command Prompt:-

java db2asc status.db status.asc

5.3.2 Node structure

Each node in SE tree represents a frequent itemset. The node structure is as
follows:
class node {
public:
node* down_ptr;
node* right ptr;
int* tid_list;
char* node id;
int count;
node()
{
down_ptr=0;
right_ptr=0
I H

Frequent Itemset Generation Using Cosine Measure 42

Chapter 5 Implementation

5.3.3 Conversion of ASCII file into Text format

Following is the C++ code of converting the ASCII file(.asc) or format of

numbers into text format (.txt file) of 0’s and 1°s:

int main(void)
{
clrser(),
float sim_threshold=0.5;
unsigned int 1=1; /EOF
FILE *in;
if ((in = fopen("C:WTC\Warttxt.asc”, "r"))== NULL)
{
fprintf(stderr, "Cannot open i1-1put file\n");
return 1;
}
FILE *out;
if ((out = fopen("C:WTCWarttxt.txt", "w"))== NULL)
{
fprintf(stderr, "Cannot open input file.\n");

return 1;

}

nt tn=1;

do

Freguent Itemset Generation Using Cosine Measure ' 43

Chapter 5

Implementation

int fcont;

fscanf(in,"%i",andfcont};

for(;tn<fcont;tn++)

fprintf{out,"%i",0);

fprintf(out,"%i",1);

tn=fcont+1;

char c;
fscanf(in,"%c",&c);

if((c=="2')[|(c==""))

i+

fprintf{out,"%c","\n");

n=1,;

jwhile (11=9);//3197 11

cout<<"number of Records="<<i<<endl;
fclose(in);

getch();

retumn 0;

Frequent ltemset Generation Using Cosine Measure

44

Chapter 5 Implementation

5.3.4 Reading of Text file

After the conversion of the .asc file into .txt file, following is the module
that will read the text file of 0's and 1’s showing the absence and presence of items.
When the file is read, track of number of 1’s is kept as the support count of a certain item

in order to find out whether that item is frequent.

void database_scan(int record_length)
{
it current_ptr=0;
nt space=2;
char node _no="a';
mt countt;
freecache();
start=createnode();

previous=start;

count=fill_buff{node_no,record_ length,record_length);
start->count=countt;

cout<<"¥*¥**COUNT****+>>"<<start->count<<endl;

char character[2);
character[0]=node_no;

character[1]="\0";

copybuffer(start,size _filledbufi(),character);
node_no++;
delay(1000);

cout<<NODE NO"<<node_no<<endl;

Frequent ftemset Generation Using Cosine Measure 45

Chapter 5 Implementation

for(int c=space;c<record_length-space;node_no++,c+=space)

{

current_ptr=c+record_length,

current=createnode();

countt= fill_buff(node_no,current_ptr, record length);
cout<<"3§33553FSPICOUNTEF$$ES$$$"<<countt<<endl;
current->count=countt;

character[0]=node no;

character|1]="\0";
copybuffer(current,size_filtedbuff{),character);
previous->right_ptr=current;

previous=current;

cout<<"NODE NO"<<node no<<endl;

1

3.3.5 Filling the buffer

The readfile_makelist() module makes use of the fill buffer() function
basically fills the buffer with the count of 1's i.e. number of 1’s in an item, with help of a

pointer named as current_ptr and the parameter record_length.

int fill_buff(int node_id,int current ptr, int record_length)

{
int count=0;
freecache();

int cachecounter=0;

for(int row=0;row<rows;current_ptr+=record_length,row++)

Frequent Itemset Generation Using Cosine Measure 46

Chapter 5 Implementation

fseek(infile, OL, SEEK_SET);
fseek(infile,current_ptr, SEEK_CUR);

if{fgete(infile)=='1")
{

count++;
cachefcachecounter]=row;
cachecounter++;
delay(100);

cout<<"Node Number"<<node_id<<endl<<"chread=="<<cachecounter<<endl,

current->count=count;

cout<<"COUNTSS"<<current->count;

/lcout<<"The occurance of one is:"<<count<<endl;

return count;

}
5.3.6 Copying Buffer to node

Once a node is created, the relevant data or information of that node is
copied from the cache/buffer to the newly created node’s tid_list field. This information
may include the count f 1's of that node. In other words, afer the buffer is filled it is then

copied by a function named copybuffer in to newly created node tid_list (info) field.

Frequent Iltemset Generation Using Cosine Measure 47

Chapter 5§ Implementation

This function takes the pointer to newly created node and size of the buffer and node_id
to be copied into that node. The created node is then linked with the previous node and in

this way the first level of set enumeration tree is created.

void copybuffer(node* temp,int sz, char* node_id)
{ temp->getsize(sz+1);
int str_size=get_stringsize(node id);
temp->getsize nodeid(sir_size);
strepy(temp->node_id,node _id);
for(int c=0;c<sz;ct++)
{
temp->tid_list[c]=cache[c];
temp->tid_list{sz]=-99
}
delay(50);
cout<<"node start"<<endl;
for(int t=0;t<sz;t++)
{

cout<<temp->tid list[tj<<endl;

}

cout<<'node end"<<end];

5.3.7 Finding the Second level

After first level of the SE tree is created, the second level is created by
finding the similarity between every two items in the first level. If the similarity is equal
to or greater than the user specified threshold, then that itemset will be added in the tree

considering it as a frequent itemset.

Frequent ltemset Generation Using Cosine Measure 48

Chapter 5 Implementation

int Generate frequent 2_itemset()

{

int nfis=0;

node* outernode=siart;
node* innernode;
node* temp;

float similarity;

while(outernode->right_ptr!=0)
{
node* strt=0;
node* prs=0;
int flag=1;
innernode=outernode->right_ptr;
char* newtag=new char[3];
while(innernode > 0)
{
strepy(newtag,outernode->node _id);
streat(newtag,innemode->node_id};
freecache();
intersectioninbuffer(outernode,innemode);
int numerator=size_filledbuff();
int product= (outemode->count-1)*(innernode->count-1),

int denominator=sqrt(product);
if{denominator==0)
{

goto nextnode; }

similarity= (numerator*1.0) / denominator,

Frequent Itemset Generation Using Cosine Measure 49

Chapter §

Implementation

if(similarity >= sim_threshold)
{

if(flag==1)

{
cout<<"Similar tag="<<newtag<<" "<<similarity<<endl;
strt=createnode(); -
prs = strt;
copybuffer(strt,size_filledbuff(},newtag);
freecache();//cache is freed afier it is copied to node
flag=0;

nfis++;

else{
temp = createnode();
cout<<"Similar NOde="<<pewtag<<" "<<similarity<<endl,
copybuffer(temp,size_filledbuff{),newtag);
freecache();
prs->right_ptr = temp;
prs = temp;
nfis++;

}
Hihfend

nextnode : innemode = innernode->right _ptr;

Hfinner while loop

outernode->down_ptr=strt;

outermode=outernode->nght ptr;

//outer loop

Frequent itemset Generation Using Cosine Measure

50

Chapter 5 Implemeniation

return nfis;

}
5.3.8 Finding the Next level

The next level or the third and other subsequent levels are found the
same way as the second level is made. However, it uses the previous level to find

similarity between every 2-itemsets and hence generate the next level.
int Generate_next_frequent_itemset (void){
node* outernode;//=fnode;

int ind=0;
/{ outernode=Generate_frequent_2_itemset();

int nfis=0;

while((outernode=nodeadd[ind])!=NULL)
{
cout<<"outer node"<<outernode->node_id<<endl;
ind++;
node* innemode;
node* temp;
float similarity=0;
delay(100);
while(outernode->right_ptr!=0)
{
cout<<"entered nex levei"<<endl,
node* strt=0;
node* prs=0;
int flag=1;

innernode=outernode->right_ptr;

Frequent Itemset Generation Using Cosine Measure 51

Chapter 5 Implementdtion

char* newtag=new char{10];
while(innemode > 0)

{

strcpy(newtag,outernode->node_id);

char* src=new char{10];
strepy(src,innemode->node_id);
cout<<"src¢"<<src<<endl;

char* str_bit=new char[10];
SubString(src,str_bit,get_stringsize(innernode->node_id)

1,get_stringsize(innermode->node_id)};

cout<<"SRC IN NEX LEBVEL-->>"<<src<<endl,
pront{("STR_BITTT%s",str_bit);
cout<<"outemnode...."<<newtag<<endl;
strcat(newtag,str_bit);
cout<<"NEW TAG INNEX LEVEL---->>>"<<newtag<<endl,
freecache();
intersectioninbufferl (cutermode,innemode.temp);
int numerator=size_filledbuff); -
cout<<"intrsctn="<<intrsctn<<"tag="<<newtag<<endl;
int product= (outermmode->count-1)*({innernode->count-1)*{temp->count-1);
int denominator = sqrt(product);
if{denominator==0)
{

cout<<" node not found"<<endl;

goto nextnode;

}

similarity= (numerator*1.0) / denominator;

Frequent Itemset Generation Using Cosine Measure 52

Chapter 5 Implementation

if(similanty >= sim_threshold)
{
if{flag==1)
{
strt=createnode();
prs = strf;
copybuffer(strt,size_filledbuff(),str_bit);
cout<<"node tag="<<str_bit<<similarity<<endl;
freecache();//cache is freed after it is copied to node
flag=0;
nfis++;
}else
{
node* temp = createnode(); -
copybuffer(temp,size_filledbuff(),str_bit);
cout<<'node tag="<<str_bit<<similarity<<endl;
freecache();
prs->right_ptr = temp,
prs = temp;
nfis++;
}
{//if end
nextnode : innernode = innernode->right_ptr;

}/inner while loop

outernode->down_ptr=strt;
outernode=cutemnode->right_ptr;
}//outer loop

}

return nfis;

Frequent Itemset Generation Using Cosine Measure 53

Chapter 5 Implementation

5.3.9 Selecting the Previous FIS/candidate

This module will select the candidates for the third level, sot that it is
easy to generate the 3-itemset, i.e. it will use ‘ab’ and ‘ac’ nodes in the second level to
create the first node in the third level i.e. ‘abe’ after combination of these two nodes.
Basically, it will return the starting pointer of the linked list i.e. the address of the first
node in the linked list of the respective node. For example, under the node ‘a’, node ‘ab’
and node “ac’ if frequent are the children of the node “a’. Thus they form a linked list and
this module will return the address of the first node in the linked list i.e. “ab’ and pass
this address to the Generate next_frequent_itemset() module which will then concatenate

the nodes ‘ab’ and ‘ac’ to generate next level node ‘abe’.

void select_previous_FIS{){
stack s;

flmode* start_node;
clearnodeadd();

int ind=0;

node* down_link;

node* current_node = start;

if{ current_node->down_ptr == Q)

current_node = current_node->right_ptr;

else {
s.push(current_node->right_ptr);
current_node = current_node->down_pir;

down_link= current_node;

Frequent ltemset Generation Using Cosine Measure . 54

Chapter 5 Implementation

while ((s.stackisnotempty(}==1) || (current_node->right ptr !=0) || (current node-
>down_ptr 1=0))
{

if(current_node->down_ptr!=0)
{
s.push(current_node->right_ptr);
down_link = current_node->down_ptr;
current_node = current_node->down_ptr,
jelse ‘
{
if{ current_node->right_ptr 1=0)
current_node = current_node->right_ptr,
else{
if{(down_link==0) &&(s.stackisnotempty()==1})
{
while((current_node=s.pop())&&(current_node->down_ptr—0)&&
(current_node->right_ptr=—=0))
{
if{s.stackisnotempty()==0)

retumn;

}//while end

}else
retum;
}
}
iff((down link !'= 0)&&(current_node->down ptr==0)&&(current_node-
>right_ptr==0))
{

Frequent Iltemset Generation Using Cosine Measure 55

Chapter 5 Implementation

if{down_link!=current_node)

{
nodeadd[ind}=down_link;

ind++;

if(s.stackisnotempty()=1)

{
down_link=0;

while((current_node=s.pop())&&(current_node->down_ptr—0)&&(current_node-
>right_ptr==0))

{
if(s.stackisnotempty()==0)

return;//then exit from algorithm
}//while end
}else

returm,

Vifif end

Frequent Itemset Generation Using Cosine Measure 56

Chapter 6

** ** >!< * ****$* ** .‘rE{?k* * **

RESULTS

Chapter 6 Results

6. Results

Following is the example of the sample database on which the Cos_FIS generator

algorithm was applied. This sample database is generated by using the ARtool.

Brogiam | Tools {

1Daizbasé Generate a symhetic database.. jiFules |

It 1

Cinreat ddabase: no database selected
Ceseriptinie no description available

Hunber of colinns: KA, colnnn naines ares

Nunbet of taws: HA

| Selectadatabase.. if unecklsslusaivens ’

Fig 6.1 ARtool Graphical User Interface

Frequent Itemset Generation Using Cosine Measure 57

Chapter 6

Results

synthetic daiabascd

Database name and dascription -
Name; - T1000_AT10_1100_P50_APS 0 _ |
Desciiption: T1000_AT10_1100_FSO_APS |

7 Auto yaming

Database characteristics

Nuindier of Hems: 100 i
HNumdier of transactions: fiﬁé:::
Averap# size of tansactions: po T
Nuinher of patierns: ?5_—*_“"}
Average size of patteins: Eiw '_"_-_‘_“_-3
Cosvelation: "D_g ———— w_%
Coruptione F;_H_: “_n_m:i

| w !

1

i I i H
i Generate __3 toAtagt i Clese |
e i, B i F

Fig 6.2 Generating a synthetic database

By using the tools menu in the ARtool application’s user interface, user can generate a

synthetic database 1.e. TI000_ATI10 1100 P50 APS5.db in our case.

A

2B

iC

4D

5E

6F

Frequent Itemset Generation Using Cosine Measure

58

Chapter ¢ Results

BEGIN DATA
135

346

123
END_DATA

Fig 6.4 Newdatabase.db
6.1 Conversion of Database file into ASCII file

The ‘Newdatabase.db’ file 1s converted to ASCII file ‘Newdatabase.asc’ in the
same folder where the ARtool application resides by typing the following conunand in

the MS-Dos Command Prompt:-

java db2asc Newdatab:ise.db Newdatabase.asc
6.2 Conversion of ASCII file into Text file

The ASCII file ‘Newdatabase.asc’ is converted to text file ‘Newdatabase.txt’
by using the C++ code. This file is in the form of (’s and 1’s which shows the absence or
presence of a certain item in columns where each row represents a specific transaction

respectively.
13456
3456

12345

Fig 6.5 Newdatabase.asc file

Frequent {temset Generation Using Cosine Measure 59

Chapter 6 Results

101111
001111

111110

Fig 6.6 Newdatabase.txt file

6.3 Working of the Cos_FIS generator algorithm

The Cos _FIS generator algorithm begins by scanning the text format of the
database in the form of vertical layout and keeping track of the support count of all the

items in the cache 1.e. the total number of transactions containing the item.

Transaction | A B C D E ¥

Table 6-1 Vertical data Layout of the Synthetic Binary Database

6.3.1 Finding Support count

While the database scan is being performed, the database scan()

module keeps track of the support count of each item through the fill_bufff) function

Frequent Itemset Generation Using Cosine Measure 60

Chapter 6 Results

inside it. The support count refers to the number of 1°s that come in the column of an
4

item or the presence of the item in a certain transaction i.e. the number of transactions

containing a specific item. The support count is saved in cache or buffer in our code. For

example:- The support count of item ‘A’ is 2.

6.3.2 Finding the First level of the SE tree

After the database in text format is scanned, the first level of the Set
Enumeration tree is created through the module database scan(). In this module first a
node is created and then the column of data set is scanned according to the pointer
Current_ptr with the help of a Tunction named fill_buff, which requires record length
parameter, the fill_buff fills the buffer. This buffer is then copied by a function named
copy_buffer in to newly created node info field. This function takes the pointer to newly
created node and size of the buffer and node tap to be copied into that node. The created
node is then linked with the previous node and in this way the first level of set

enumeration tree is created.

Fig 6.7 First level of SE tree

However, the output in C++ is as follows where each node or item. has the same support

in this case:-
Nodeno—> a

FEEEETEETSSCOUNTESSSESESE 2

Frequent Itemset Generation Using Cosine Measure . 6l

Chapter 6

Results

node start

node end

NODEno=b

$3S35388$SSCOUNTSES38338S 1

node start

node end

NODEno=c¢

$55533553$3COUNTSS5553588 3

node start

node end

NODEno=d

Frequent Itemset Generation Using Cosine Measure

62

Chapter ¢

Results

$$$555$$$SSCOUNTES5585588 3

node start

node end

NODEno=¢

$3555555933COUNTSS5555555 3

node start

node end

NODEno=1{

$$55553858SCOUNTS$553558S 2

node start

Frequent Itemset Generation Using Cosine Measure

63

Chapter 6 Results

node end

Fig 6.8 First level of SE tree in C++ output
6.3.3 Finding the Second Ievel of the SE tree

The second level of the SE tree is created using its first level, by finding
Cosine similarity between every two items in the first level. Each node in the first level
has a subtree beneath it which is stored as a linked list i.e. if Node ‘a’ has node ‘ab’ and
node ‘ac’ beneath it, then this forms a sub-tree as well as the linked list where the starting
node 1s ‘ab’. The support count found earlier in the first level formation is used in the

Cosine measure formula to find the similarity. The Cosine formula is as follows:-

IS .485in=P(AUB) / NP(A)XP(B)

Where P(A), the probability of the item ‘A’ is found by dividing the support count by the

total number of transactions. 1.e. 2/6 =0.3.

After putting all the relevant values into the Cosine Similarity measure formula, if the
similarity found is greater than or equal to the user specified similarity threshold, then the

itemset is said to be frequent and added in the SE tree as nodes of the second level.

Following is an example of itemsets in second level where the list of numbers shows the

transactions containing the respective itemset:-

Starting Similar node= de >>> Similarity=1

Frequent ltemset Generation Using Cosine Measure 64

Chapter 6 Results

node start

node end

Subsequent Similar node=df >>> Similarity= 1

node start

node end

Fig 6.9 Second level of SE tree in C++ output

6.3.4 Finding the Next level of the SE tree

After creating the second level of the SE tree, the subsequent levels are
created using the previous level. For example, the third level is created using the itemsets
of the second level. Each node in the first level has a subtree beneath it which is stored as
a linked list 1.e. if Node ‘a’ has node ‘ab” and node ‘ac’ beneath it, then this forms a sub-
tree as well as the linked list where the starting node is ‘ab’. The select previous_FIS()
module will select candidates for the third level, by returning the address of the starting

node in every linked lst and passing this address to the

Frequent Itemset Generation Using Cosine Measure 65

Chapter 6 Results

Generate_next_frequent_itemset() module. This module will then use the starting
* *
address to concatenate all the nodes in the respective linked list and hence construct the

node(s) for the next level.

Following is an example of the third level nodes or itemsets where the nodes in the

second level are concatenated i.e, ‘cd’ and ‘ce’ are combined to form “cde’:-

entered next level
Srcce

SUBSTRING;)SRC IN NEX LEVEL-->> ce

kkk **OUtemOde*****Cd

NEW TAG INNER LEVEL---->>> cde

Srccf

SUBSTRING; k SRC IN NEX LEVEL-->>cf

*****Outcmode*****cd

NEW TAG INNER LEVEL---->>>¢df

(AR R A RSN ENRRENRRNRRRENRRENERENNNERRNNERRRENERENERIERENNRENESREERNERENNFRERNNRRNR]

Frequent Itemset Generation Using Cosine Measure 66

Chapter 6 Results
Src gi

SUBSTRING; k SRC IN NEX LEVEL-->>gi

*****outemode*****gh

NEW TAG INNER LEVEL---->>>ghi

Src gj

SUBSTRING; k SRC IN NEX LEVEL-->>gj

'*****outcmode*****gh

NEW TAG INNER LEVEL---->>>ghj

entered next level

src gk

SUBSTRING;jSRC IN NEX LEVEL-->>gk

*****outernode*****gh

NEW TAG INNER LEVEL---->>>ghk

Fig 6.10 Third level of SE tree in C++ output

Frequent Itemset Generation Using Cosine Measure 67

Chapter 6

Results

Frequent Itemset Generation Using Cosine Measure

68

Chapter 7

e v o v o s s skok ok ok oK

CONCLUSION & FUTURE ENHANCEMENT

Chapter 7 Conclusion and Future Enhancement

7. Conclusion and Future Enhancement

In this section, the conclusions and future enhancements to the Cos_FIS generator
algorithm will be discussed. This algorithm was implemented on the Penttum machine
with the windows Xp version. However, further enhancements to the algorithm can be
performed to increase efficiency of the software in order to cope with the slow processing

and limited speed of the system.
7.1 Conclusion

All the previous techniques and algorithms of generating frequent itemsets use
support and confidence measures as well as have some drawbacks such as multiple
number of scans and large candidate itemsets. However, the Cos_FIS generator algorithm
uses a new clustering measure ‘Cosine measure’ to generate frequent itemsets which has
certain advantages i1.c. there is no candidate generation using this measure. Also,-this
algorithm uses the vertical data format or vertical data layout for scanning the database
which gives the benefit of a single scan of the database. This also establishes that the
clustering measures can also be used for association rule mining. Furthermore, the same
FIS that the user gets by applying Cosine similarity measure on transactional dataset, can

be obtained by using the Apriori algorithm.

7.2 Future Enhancements

In this thesis, the application of the Cosine measure was studied as well as this
nieasure was implemented for generation of frequent itemsets. The emphasis in this thesis
was 1o observe that apart from support measure, other measures do exist and these can be
uscd to generate FIS. In future, different clustering measures can be compared to decide
which one is the best candidate for FIS generation in ferms of accuracy, time and memory
consumption. Moreover, the Set Enumeration tree and vertical database layout to arrange
frequent itemsets were implemented. Therefore, the implementation of the algorithm in
this thesis also shows that clustering measures can also be used for the creation of

frequent itemsets. Also, the SE tree in this thesis could be represented graphically. In

Frequent Itemset Generation using Cosine Measure 69

CHUpLEr / Conclusion and Future Enhancement

future the Cos_FIS generator algorithm will be compared with the established algorithms
of association rule mining for efficiency purpose.)

Frequent Itemset Generation using Cosine Measure 70

nppenwia_A References

References ‘ .

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” ACM SIGMOD Conf
Management of Data, May 1993

[2] A. Savasere, E. Omiecinski, and S. Navathe, ™An Efficient Algorithm for
Mining Association Rules in Large Databases,® Proc. 21st Very ‘Large Data Bases
Conf., 1995,

(3] Toivonen, H.1996, sampling large databases for association rules. In
Proc.22nd VLDB Confrence, Bombay, pp. 134-145

[4] Bayadro, R,j. 1998 Efficiently mining long patterns from databases. In pro.
ACM-SIGMOD Int Conf on management of data,pp.85-93

[5] M.J. Zaki, S Parthasarathy, M.Ogihara, “New Algorithms for fast discovery of
Associations Rules”, Third Int’] Conf. Knowledge Discovery and Data mining, Aug
1997

(6] J.Han,J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discavery, 2004.)

[7] Bart Goethals SAC’, March 14-17, 2004, Nicosia, Cyprus “Memory issues int
Frequent Itemset mining”.

[8] P. Cosine. Nouvelles recherches sur la distribution florale. Bulletin de la Societe
Vaudoise de Sciences Naturelles, 44:223-270, 1908.

[9] Frans coenen, Graham GouiBoume, Paul Leng “Tree Structure for Mining
Association rules” July 17 2002,

[10] Rymon, R.1992, search through systematic set enumeration. In Proc 3 Int’l
Conf.on principles of knowledge Representation and reasoning, pp 539-550

[11] M.S.H Khiyal, S Rahman, A Salam, D Khan. “Similarity based mining for
finding frequent itemsets”. Iaternational Confercnce on Computers,
Communications and Systems.(ICCCS 2 Nov .2007) south Korea daegu university.

[12] Pang-Ning Tan, Vipin Kumar, Jaideep Srivastava “Selecting the right
interestingness measure for association patterns” 2002.

Frequent Itemset Generatian Using Cosine Measure 70

P r AN ing]

ARtool v1.1.2 - Association Rule Mining Algorithms
and Tools | \

B-1 Introduction

ARtool is a Java application for mining frequent itemsets and association rules in binary
darabases. ARtool is free software distributed under the GNU General Public License.
ARtool uses a custom format for its database files (which will be henceforth referred to
as the .db format and 1s identical to the format used in ARMiner). The asc2db and db2asc
are utilities that allow the conversion of a .db file to a specially formatted ASCII file (we
will refer to this as .asc) and respectively the conversion of a .asc file into a .db file. The
.asc files can be easily read and modified with any decent ASCII editor.

B-2 Description and usage of the .asc format

A small example of supermarket data can be taken. Suppose the items sold by a (very,
very small) shop are green apples, red apples,oranges, bananas, and grapes. Also suppose
that in this moming user had three customers, one bought green apples and grapes, one
bought only oranges, and the last one bought oranges and grapes. This activity can be
represented mn the .asc format as follows:

1 green apples
2 red apples

3 oranges

4 bananas

5 grapes
BEGIN_DATA
15

3

35

END_DATA

There are two distinct parts of this file, the first one contains a listing of all the items user
can sell, or otherwise said, of all the items that could participate in a transaction. This part
looks is:

1 green apples
2 red apples

3 oranges

4 bananas

5 grapes

Frequent Itemset Generation Using Cosine Measure 71

The format 1s pretty simple. It must consist of a positive humber followed by a string
(which can contamn blank spaces). It is important that the numbers be assigned in
increasing order starting froml. Empty lines are allowed to appear in this section. This
section enumerates all entities described by the data and between which ARtool will later
be used to look for association rules.

The second part consists of the actual data:

BEGIN DATA
15
3 .
35

END_DATA

In our case there were 3 transactions and these are each represented on a separate line.
The first transaction involved green apples and grapes and they are represented by the
numbers associated in the first section, that 1s 1 for green apples and-5 for grapes. The
user can check the other transactions as an exercise. Note that this section must be
enclosed between a BEGIN_DATA and END_DATA lines. Anything appearing after the
END_DATA line will be ignored. Blank lines are allowed to appear in this section. Note
that although the numbers appearing i each line are sorted, this is not required by the
format. The user can list the numbers in any order and the file can stil] be processed
correctly, however it is suggested to always list the numbers in a transaction in increasing
order, because in this way asc2db will process the file more efficiently.

This concludes the supenmarket data example as well as the description of the .asc
format. However most of 'the time the data will not be similar to the one used in this
example. If that happens, then the user will have to try to figure out some way in which
he/she can express their data in the .asc format. To give an idea, following 1s another
example:

Suppose the user has some sort of census data like the one below:

SSN# Age Sex Married Num_kids Income
006 26 M No 0 250008
345 54 F Yes 2 55000%
743 37 M Yes 1 800005

What can be done with it? Let's look at each column:

SSN#: this is unique for each entry, there is no sense to look for association rules
involving SSN#, at least not in this data, since each SSN# appears only once in the whole
data. So we can simply ignore this field for mining purposes.

Age: this attribute can take a variety of values. ARtool cannot handle such attributes
easily, in fact it only considers binary attributes. The user needs to discretize this

Frequent Itemset Generation Using Cosine Measure 72

attribute, replacing for example ages 0-21 with "very young age", 22-35 with "young
age", 35-55 with "middle age", etc

Sex: this has two values: "male" and "female", so user could create two attributes out of
it.

Married: agan we can creaie two attributes: “married” and "not married"
Num_kids: this also has to be discretized, maybe in "no kids", "one kid", "several kids".
Income: we could also discretize this into "small”, "average”, and "high".

The discretization should be made such that it will identify clearly the ranges that present
interest for the person who will do the mining of this data.

With these changes we could represent the above data in .asc format as:

I very young age
2 young age
3 middle age

-4 old age
5 male
6 female
7 married
8 1ot married
9 no kids
10 one kid
11 several kids
12 small income
13 average income
14 high income .
BEGIN DATA
258912
3671113
3571014
END _DATA

From this file the user can now create a .db file and then mine it using ARtool or
ARMiner.

B-2-1 Using asc2db

The asc2db program can be used to convert a correctly formatted .asc file to ARt001'§ .db
format. Suppose user has a sample .asc file. Then he/she can create a .db file from it by

typing:

Frequent Itemset Generation Using Cosine Measure 73

java asc2db sample

which will create a sample .db file. If the user wants the .db file to have a different name
then he/she can specify 1t on the command line as a second parameter:

java asc2db sample artdata

which will now produce an artdata.db file out of the sample.asc input. Note that the
extensions .asc and .db do not have to be specified on the command line, they are

automatically appended by asc2db.

B-2-2 Using db2asc

The db2asc program converts a .db file to .asc format. This can be useful if the user wants
to read or vernify the content of a .db file. The user can also use it to modify by hand the
contents of a .db file by first converting it to a .asc file, then editing the .asc file, and
finally converting it back to a .db file. db2asc is used in a similar way to its counterpart.
asc2db. 1f the user needs to convert the anndata.db database to .asc format, then he/she

can type: .
java db2asc artdata

which will produce an armdata.asc file. If the user wants a different name for the output,
then you can pass it on the command line as a second argument:

java db2asc artdata arttxt
which will produce an arttxt.asc file representing the contents of the artdata.db database.

Again, the extensions .asc and .db should not be entered on the command line, since they
are automatically appended by db2asc.

B-3 How to install and execute ARtool
The user needs to have Sun's JDK or JRE installed, probably at least version 1.3.

In order to install ARtool, the user needs to unzip the ARtool binaries to some directory
on his/her hard drive.

To run the ARtoo) GUI, the user needs to type:
java -jar ARtool jar

or double-click on ARtool.jar (works only if JRE is installed).

Frequent Itemset Generation Using Cosine Measure 74

t

[f ARtool runs out of memory during some niining operation (the user can see an
OutOfMemoryException message), then he/she needs to allocate more memory
to the JVM. In the case of Sun's JDK he/she can do this by typing:

java -Xmx512M -jar ARtool jar

which will let JVM use 512MB of memory, assuming of course that the user has that
much memory installed.

If the user wants to use the command line utilities, then he/she will have to add laur.zip to
their class path. On Windows the user needs to have in his’her autoexec.bat a line like
this:

SET CLASSPATH=;CAARTOOL\BIN\LAUR.ZIP
If the user uses Unix, then he/she will have to add something like
setenv CLASSPATH .:~/ARtool/bin/laur.zip

to their shell configuration file.

Frequent Itemset Generation Using Cosine Measure 75

Frequent Itemset Generation Using Cosine Measure

Sobia Malik
Department of computer science
International Islamic University (1IU)
Islamabad, Pakistan.
smz_techno{@yahoo.com

ABSTRACT

Generating frequent itemsets (FIS) is the
first step of association rule -mining,
Existing techniques/algorithms for
generating FIS used the well known
support and confidence measures.
However, we introduced a novel
algorithm which makes use of a
clustering measure i.e. Cosine measure
for the generation of FIS. This algorithm
presents the FIS in the form of a Set
Enumeration tree in addition to the use
of vertical database layout for clustering
the items together. Furthermore, the
results show that the same FIS that the
user gets by applymg Cosine similarity
measure on transactional dataset, can be
obtained by using the Apriori algorithm.

Keywords: Association rule mining,
Frequent Itemsets, Cosine similarity
measure.

1. INTRODUCTION

Data Mining is the process of runriing data
through sophisticated algorithms to
uncover meaningful pattems and
correlations that may otherwise be hidden.
These can be used to help user understand
the business better and also exploit to
improve future performance through
predictive analytics. In data mining,
association rule mining plays a vital role
which discovers interesting ~relations
between variables in large databases.

Piatetsky-shapiro describes analyzing and
presenting strong rules discovered in
databases using different measures of
interestingness. For example, the
information that customers who buy
burgers also tend to buy coke at the same
time is represented in association Rule
below:

{ Burger]—> [Coke]

Where burger is the antecedent and coke
is the consequent of the mle. An
association rule has two numbers that
express the degree of uncertainty about
the rule namely Support and
Confidence. Researchers have
discovered numerous techniques to find
FIS, mostly based on these measures.
However, we introduce a new clustering
measure for the same purpose known as
“Cosine” measure. While clustering,
data points are arranged in a way that the
points nearcst to cach other arc placed in
one cluster. This can be done by
similarity or dissimilarity measures.
Similar data items will be nearest to each
other and dissimilar will be at distance
far apart. Cosine similarity measure 1s
one of the clustering measures. The
purpose of clustering measure is to join
together objects into successively larger
clusters, using some measure of
similarity or distance. A typical result of
this type of clustering is the hierarchical
tree. Cosine similarity is a measure of
similarity between two vectors of n

dimensions by finding the cosine of the
angle between them, often used to
compare documents in text mining. The
cosine similarity of two vectors (d1 and
d2} is defined as:

Cos(d1, d2) = dot(d1,d2) / ||d1jl.{{d2||

Where dot(d1, d2) =
dif0]*d2{0]+d1f1]*d2f]] ...
And where [ld1] = sqrt

(d1{0]"2+dI[1]2...).

2. LITERATURE REVIEW

Apriori is a seminal algorithm
proposed by R.Agrawal|[l] in May
1993. 1t uses prior knowledge of
frequent itemset properties. Apriori uses
breadth-first search and a hash tree
structure to count candidate item sets
efficiently. FP-growth algorithm[6]
proposed by J. Han, J. Pei, Y. Yin, and
R. Mao in 2004 adopts a divide and
conguer strategy avoiding costly
candidate generation. FP-growth tree is
memory resident and requires additional
storage in every node of the FP-tree
{Because of excessive pointers storage in
every node) especially when the FP- tree
is too large to fit in main memory.
Partition algorithm was proposed by A.
Savasere[2] in 1996. This algorithm is
used for partitioning the data to find
candidate itemsets. A partitioning
technique can be used that requires just
two database scans to mine the frequent
itemsets. The problem of accurately
estimating the number of partitions
given the available memory, however,
needs further work. Sampling approach
was proposed by Toivonen[3] in 1996.
This algorithm 1s used for mining on a
subset of the given data. The basic idea

of the sampling approach is to pick a
random sample S of the given data D,
and then search for frequent itemsets in
S instead of D. In this way, there is some
tradeoff of accuracy against efficiency.
MaxMiner (Bayardo, 1998)[4] is
another algorithm for finding the
maximal elements. It uses Rymon
R(1992)[10] “search through systematic
set Enumeration” mechanism- and
efficient pruning techniques to quickly
narrow the search. ECLAT
(Equivalence CLASS
transformation)|5] is an algorithm
developed by M.J Zaki, which
transforms a given data set of
transactions in the horizontal data format
of TID-itemset into the vertical format of
item-TID-sei. The above literature shows
that association rule mining is facing a
number of problems currently such as
multiple scans of database and
generation of large candidate itemsets
which needs to be solved. These
problems cann be solved by using
clustering measures such as Jacquard
and Cosine measure etc. SB-Miner[11]
developed by S.Rahman is novel
algorithm to find FIS based on clustering
measure 1.e. Jacquard similarity measure.
Jacquard similarity measure is based on
calculating the distance between
itemsets.

3. THE COS_FIS GENERATOR
ALGORITHM

The Cos_FIS generator algorithm uses
the clustering measure i.e. Cosine
measure to generate frequent itemsets.
Therefore, this algorithm makes use of
the SE tree which arranges the k-
itemsets according to their specific
levels.

3.1 MAJOR MODULES

Division of any project into modules
adds to its efficiency and overall
performance. Hence this project is
divided into following modules:-

1. Database conversion.
2. File reading.
3. Copying cache to node.
4. Frequent itemset generation.
| Sytetie ASCH B) Terfile
Aol Dilthase (asc) (it i)
(b)
f
Freqenl Ll
lemsst
Gerenlon
| dLlewd
Ydlem!

Fig 1 Architectural Diagram

3.2 THE SET ENUMERATION TREE

The Set Enumeration tree is a lattice
structure used to enumerate all possible
itemsets. In general, a data set that
contains k items can potentially generate
up to 2”K-1 frequent itemsets, excluding
the null set. Because k can be very large
in many practical applications, the
search space of itemsets that need to be
explored is exponentially large. In this
paper, the SE tree as illustrated in Fig 1
is the data structure used to represent the
frequent itemsets in a lexicographic
order. Each node represents a frequent

itemset and each level represents k-
itemset i.c. level one will have 1-itemset
and level two will have 2-itemset and so
on. Every subtree as shown in Fig 1
represents an equivalence class of its
root node.

Definition 1 [Equivalence class)

Equivalence class of node A consists of
all elements containing node A. For
example, following is the equivalence
class of node A:-

A ={AB, AC, AD}

Fig 2 Set Enumeration Tree

3.3 THE NODE STRUCTURE OF SE
TREE

Each node in SE tree represents a
frequent itemset. Each node has a unique
node_id field, which shows the name of
the node. Node has a count field
indicating the total number of
transactions containing that frequent
itemset. There are two node pointers
down and right node pointer pointing to
the node that is linked to current node in
downward position level-wise and to the
right position item-wise respectively. In
other words, the down pointer points to
the node in the next level where each
level represents the k-itemset and the
right pointer points to the node of the
same level. Moreover, there i1s a
transaction_id_list ficld, which actually
represents the transaction IDs of
transactions containing the particular FIS
represented by the node_id of the node.

3.4 CREATION OF THE SE TREE

A brute force approach for finding
frequent itemsets is to determine the
support count of every candidate itemset
in the lattice structure. To do this, we
need to compare each candidate against
every transaction. If the candidate 1s
contained in the transaction, its support
count will be incremented. The
algorithm shown in Fig 2 creates the SE
tree for the purpose of generation of
frequent itemsets. The Set Enumeration
tree(SE tree) is created in a very
systematic way. It begins by execution
of the first modute of the code ie.
database scan. In this module, first
node ‘a’ is created and then the column
of dataset (text file} is scanned according
to a pointer, hence filling the buffer with
the support count. If the support count of
the node is greater than or equal to the
minimum user specified threshold, then
the node 1s said to be frequent and hence

1s added in the SE tree. After the buffer
is filled with count of the node using
fill_buff function, it is then copied into
the info field of .newly created node
using copybuffer module. 1t is then
linked with the previous node. This way
the first level of SE tree 1s generated.
The second level of SE tree is obtained
by execution of the
Generate frequent_2_itemset module.
This level is created by finding Cosine
similarity between every two itemsets or
nodes present in the first level of SE tree
1.€} between node ‘a’ and node ‘b’. Only
those itemsets whose similarity is greater
than or equal to the user supplied
minimum similarity threshold are
declared frequent and are linked in the
second level of the SE tree in
lexicographic order. And the same
process is repeated for levels 3 and 4:
Each equivalence class is represented in
form of a linked list.The
select_previous_FIS module selects the
FIS generated in the previous level and
returns address of the starting node 1n
the linked list of equivalence classes.
Furthermore, the
Generate_next_frequent_itemset
module uses these addresses to generate
the next subsequent levels.

EXAMPLE:-
Is {A,B,C} itemset frequent?
This question can be answered by

applying the Cosine similarity measure
on the 1temset as follows:-

'-"—"—‘O’—"—‘OO"“}

r—dh—-n—i—-—-cn—ooo

'—‘—-‘O-'c'—"—'-—"—‘w

Minimum threshold = (.2
AUBUC = A.B.C

A.B.C =
11 *0+0*P¥0+0* | *1+1*1*0+ 1 +0* 1 +0*
[T 1 +1* 1 *1+1%1%]

= l+]=2.

P(A.B.C) = 2/9
P(A) = 6/9
P(B) = 7/9
P(C) = 6/9

IS sgsim=PAUBUC)NP(A)XNP(B)
XVP(C)

ISgsim = 2/9 1 N6/9.N7/9.N6/9
=022/0.59
=03
Since 0.3 > 0.2, therefore the {4, B, (}
itemset s frequent.

Algorithm Cos_FIS_generator

Input

Ds: Transactional Dataset
a ; Threshold

Qutput:

FIS: Frequent itemsets
P : No. of FIS after each
iteration

Step 1 : Scan transactional dataset
DS.

Step 2: Construct first level of Prefix
tree.

Step 3 :Construct second level of
prefix tree by finding similarity
between every 2 itemsets in the
previous level of tree as shown in
step 4.

Step 4: p=
Generate_frequent_2_itemset(FIS, u)
by using the Cosine similarity
measure

Repeat Step 5 to 7 until § = 0.

Step 5: Scan each sub tree in the last
level of prefix tree.

Step 6: Store starting node’s address
of each sub tree in S.

Step 7: =
Generate_next_frequent_itemset
(S,FIS, o).

Step 8: Return FIS.

Fig 3 Pseudo code of the COS_FIS
generator algorithm

of scans and large candidate itemsets.
However, the Cos_FIS generator
algorithm uses a new clustering measure
‘Cosine measure’ to generate frequent
itemsets which has cerlain advantages i.e.
there 1s no candidate generation using this
measure. This also establishes that the
clustenng measures can also be used for
association rule mining. In future, different
clustering measures can be compared to
decide which one is the best candidate for
FIS generation in terms of accuracy. time
and memory consumption. Also, the SE
tree in this thesis could be represented
graphically. In future the Cos_FIS
generator algorithm will be compared with
the established algorithims of association
rule minmg for efficiency purpose.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A.
Swami, “Mining Association

Rules between Sets of Items in Large

Databases,” ACM SIGMOD Conf.

Management of Data, May 1993

{2] A. Savasere, E. Omiecinski, and §S.
Navathe, ™An Efficient Algorithm for
Mining Association Rules in Large
Databases,” Proc. 21st Very Large Data
Bases Conf., 1995.

{3] Toivonen, H.1996, sampling large
databases for assoctation rules. In
Proc.22nd VLDB Confrence, Bombay,
pp. 134-145

[4] Bayadro, R,. 1998 Efficiently
mining long patterns from databases.
In pro. ACM-SIGMOD Int Conf on
management of data,pp.8§5-93 -

{5] M.J. Zaki, S Parthasarathy,
M.Ogihara, “New Algorithms for fast
discovery of Associations Rules”,
Third Int’l Conf. Knowledge
Discovery and Data mining, Aug .1997

(6] J. Han, J. Pei, Y. Yin, and R.
Mao. Mining frequent patterns without
candidate generation: A frequent-
pattem tree approach. Data Mining
and Knowledge Discovery, 2004,

[7] Bart Goethals SAC’, March 14-17,
2004, Nicosia, Cyprus “Memory issues
in Frequent [temset mining™.

[8] P. Cosine. Nouvelles recherches
sur la distribution florale. Bulletin de
la Societe Vandoise de Sciences
Naturelles, 44:223-270, 1908.

9] Frans coenen, Graham
GouiBourne, Paul lLeng “Tree
Structure for Mining Association
rules” July 17 2002.

{10] Rymon, R.1992, search through
systematic set enumeration. In Proc 3"
Int’l Conf.on principles of knowledge
Representation and reasoning, pp 539-
550

[11] M.S.H Khiyal, S Rahman, A
Salam, D Khan. “Similarity based
mining for " finding frequent
ttemsets”. Intemational Conference on
Computers. Communications and
Systems.(ICCCS 2 Nov .2007) south
Korea daegu university.

[12] Pang-Ning Tan, Vipin Kumar,
Jaideep Snivastava “Selecting the right
interestingness measure for association
patterns” 2002.

Cer

LiBanY
iISLAMABAD.

