
Frequent Itemset generation Using Cosine Measure

Undertaken by
Sobia Rlalik [330-FAShtSCSIF06]

' ' scpeivis6rs
.

Mr. iMuhammad Irnran Saeed

Department of Computer Science
Faculty of Basic and Applied Sciences

International Islamic University, H- 10, Islamabad
2008

CENTRAL
LIBRARY
ISLAMABAD.

Final Approval

It is certified that we have read the project report submitted by Ms. Sobia
Malik, Reg# 330-MSCSlFASlF06. it is our judgment that this project is of
sufficient standard to warrant its acceptance by the International Islamic
University, Islamabad for Masters Degree in Computer Science. . , . .

Committee

External Examiner

Dr.Abdus Sattar
5) ~ Director General,

Computer Bureau,
Islamabad, Pakistan.

Internal Examiner +
Miss Zakia Jalil \
Research Associate,
Department of Computer Science,
International Islamic University, Islamabad.

Supervisor

Mr. Muhanunad Imran Saeed
Assistant Professor,
Department of Computer Science,
International Islan~ic University, Islamabad.

r

A dissertation submitted to the
Department of Computer Science,

Faculty of Applied Sciences,
International Islamic University, Islamabad, Pakistan,

As a fulfillment of ;he requirements for the award of the degree of

MS in Computer Science

Our Beloved Prophet MUHAMMAD(SAW)
Best role 171odel for our lives

To
My Parents

1YI1ose encourage17zent arzdprajers have always ruotivated me towards a
successjd life

My Teachers
Who not on!ypaved way to I I I ~ goals, but also irnpired me their kr~o>rdedge.

Declaration

Declaration

I hereby declare that this software has not been copied as a whole from any source.
Furthennore, the developed software and the acconlpanied thesis report is made entirely
on the basis of personal efforts under my honest motivation, hard work and sincere
guidance.

In addition, no portion of the work presented in this report has been submitted in support
of an application for other degree or qualification of this or other university.

Sobia Malik
330-FAS/MSCS/FO6

Acknowledgement

h~lany gratitudes to Almighty ALLAH, The most Merciful and Glorious, who gave me
courage and potential to work hard and out up all my efforts throughtout my research
work, who enabled me o perceive higher ideas in addition to bestowing me with his
blessings and patience. I am deeply thankful to Holy Prophet Muhammad (SAW) who
molded our hearts to recognize our Lord and created enthusiasm in us by his true
teachings of Islam, taking us away from the shadows of disappointment.

I extend my greatest appl-eciation to my hardworking supervisor Mr. Muhammad
lmran Saeed, who motivated me to work hard by his suggestions and appreciation. He
put confidence in me and save me courage to carry on with my project helping me a great
deal with my project proposal. Special tha~lks to hlr. Saif-ur Rehman, who placed high
hopes in me, sharing his knowledge with me and making me work to the best of my
ability with a sincere approach and honesty of purpose.

I cannot deny the Feat generosity and continued support of Miss Zakia Jalil, who did
her best to assist and guide me throughout the procedure of research as well as kept me
infonned of all circumstances regarding my PI-oject. Her efforts are really appreciated.

Last, but not the least, my deepest gratitude to my beloved parents, who prayed for my
success day and night and gave me all the support and confidence I needed since my
childhoodi They were the one who paved way to my destination and lead me to the light
of my dreams throughout all the shadows of hopelessness and disappointment rewarding
me with a pessimistic approach towards life. I cannot forget the support and love I got
from my brothers, sisters, in-laws and my husband throuaout my project. Their suppolt
and courage will always be greatly appreciated.

Sobia Malik
330-FAS/MSCS/FO6

Project in Brief

Proiect Title: "Frequent itemset generation using Cosine Measure".

Organization: International Islamic University, Islamabad.

Developed by: Sobia.Malik
Reg. I\'o: 330-FASIRISCSIF06

Supervised bv: Mr. Muhammad Imran Saeed.

Starting Date: January, 2008

Eud Date: October, 2008

Tools used: C++, Turbo C.

System used: Pentium 4.

Abstract

Traditionally, business analysts have perfonned the task of extracting useful information
fl-om recorded data, but the increasing volume of data in modem business and science
calls for computer-based-approaches. As datasets have grown in size and complexity,
there has been a shift away from direct hands-on data analysis toward indirect, autoniatic
data analysis using more complex and sophisticated tools. The modem technologies of
codputers, networks, and sknsors have made data collection and organization much
easier. However, the captured data needs to be converted into information and knowledge
to become useful: Data Mining is the process of running data through sophisticated
algorithms to uncover meaningful patterns and correlations that may otherwise be hidden.

Association rule mining finds interesting associations andtor correlation relationships
anlong large set of data items. Association iules show attributes value conditions that
occur frequently together in a given dataset. A typical and widely-used example of
association rule mining is Market Basket Analysis. Association rule algorithm finds
associations behveen the frequently sold items, so that the shopkeeper could put such
items together for increased sales.

Our devised algorithm, Cos-FIS generator has certain advantages over previous
algorithms such as it scans the database only once since it uses the vertical data layout of
the database while scamling the database. Hence, not only the inultiple scans of the
database, but also the candidate generation was also avoided in our algoritlu~i. Also, this
algoritluu makes use of clustering measure known as "Cosine measure" rather than
using the Support or confidence measures. Moreover, the algorithm was tested on the
s)xthetic database.

Chapter No Contents Page . No

5.2.1 JDK (Java Development Kit) 40
5.2.2 JRE (Java Runtime Environment) 40

5.3 The C++ language ... 41
5.3.1 Conversion of Database file into ASCII file 42
5.3.2 Node structure ... 42
5.3.3 Conversion of ASCII file into Text format 43

................................... 5.3.4 Reading of Text file 45 .
5.3.5 Filling the buffer 46
5.3.6 Copying Buffer to node 47
5.3.7 Finding the Second level 48
5.3.8 Finding the Next level 51

5.3.9 Selecting the Previous FISIcandidate 54

... 6 . Results -57

6.1 Conversion of Database file into ASCII file 59
6.2 Conversion of ASCII file into Text file 59
6.3 Working of the CosFIS generator algorithm 60

6.3.1 Finding Support count 61
............... 6.3.2 Finding the First level of the SE tree 61

............ 6.3.3 Finding the Second level of the SE tree 64
6.3.4 Finding the Next level of the SE tree 66

7 . Conclusion and Future Enhancement 69

7.1 Conclusion ... 69
.. 7.2 Future Enhancement 69

.. Appendix A 70
Appendix B .. 71

. vii .

List of tables

fO
List of Tables

Serial No. Tables Paee No.

...... 1 . Table 1 - 1 : Example database with 4items and 5 transactions.. 4

2. Table 1-2: Some Differences Between the Nearest Neighbor Data
... nuning technique and Clustering.. .10

.............................. 3. Table 4-1 : Synthetic Binary Databases.. ..32

4. Table 4-2: Database Layouts .. 35

... 5. Table 6-1: Vertical data Layout of the Synthetic Binary Database 60

- viii -

List offipures

List of Figures

Serial No . Fi~ures Page No .

Fig 4.1. Set Enumeration Tree 30

Fig 4.2. Architectural Diagram 32

Fig 5.1 : ARtool user Interface 38

Fig 5.2. Java Platform Diagram from Sun 41

Fig 6.1. ARtool Graphical User Interface 57

Fig 6.2. Generating a synthetic database 1. 58

Fig 6.4. Newdatabase.db ... 59

Fig 6.5 Newdatabase.asc file .. 59

Fig 6.6 Newdatabase.txt file ... 60

Fig 6.7 First level of SE tree .. 61

Fig 6.8 First level of SE tree in C++ output 64

Fig 6.9 Second level of SE tree in C u output 65

Fig 6.10 Third level of SE tree in C++ output 67

I . Introduction

Once the user got analysis, reporting, and dashboards deployed, it's time to take business

intelligcnce (BI) to the next level by adding data mining and advanced analytics. This is a

level o f B I cscellence that niany organizations never manage to evolve to, however the

importance o f pushing ahead with advanced capabilities cannot be undel-estimated - they

can provide a truly sustainable competitive advantage and enable user's organization to

~naximize both its efticict~cy and effectivcness.

Data Mining i s the process o f running data through sophisticated algo~ithlns to uncover

~neaningful pattans and co~~elations that may otherwise be hidden. These can be used to

help user understand the business bctter and also exploit to improve future perfonnancc

lhrough predictive analytics. For example, data mining can wan1 user there's a high

probability a specific customer won't pay on time based on an analysis o f customers with

similar charaete~istics.

Data mining identilies trends within data that go beyond simple analysis. Tllrough the use

o f sophisticated algoritli~ns. non-statistician users have the opportunity to identify key

attributes o f business PI-ocesses and tal-get opportunities. However. abdicating control o f

this process from the statistician to the machine may result i n false-positives or no useful

~esults at all.

Altliougl~ data mining is a relatively new tern. the technology is not. For many yeal-s,

businesses have used powerful computen to run through volumes o f data such as

supennarkct scanner data to produce market research reports (although reporting is not

always considered to bc data mining). Continuous innovations in computer processing

powcr. disk storage. and statistical software are dramatically increasing the accuracy and

usefulness o f data analysis.

Thc temi data mining is often used to apply to the two separate processes o f knowledge

discove~y and prediction. Knowledge discovery provides explicit in fo~~nat ion that has a

readable f o m and can be understood by a user (e.g.. association rule mining).

Forecasting. or predictive modeling provides predictions o f future events and may be

Questions such as " i l ' a C L I S ~ O I ~ ~ I - ~UI-chases product A, how likely is he to purchase

product B?" and "Mint products will a customer buy if he buys products C and D?" are

answrrcd by association-lintling algo~ithms.

Each itcm has a Boolean variable representing the presence or absence of that item. Each

b~skct can tI1c11 be represented by a Boolean vector of values assigwl to these variables.

The buying patterns can be represented in tlie fonn of association mles. For example, the

infom~ation that customels who buy burgers also tend to buy coke at the same time is

repesrnted in association Rule below:

An association rule has two numbers that express the degree of uncertainty about the mle

namcly Support and Confidence. The Suppoll is simply the numbel- of t~ansactions that

include all items in the antecedent and consequent pans of the rule. Confidence is the ratio

of the number of transactions that include all items in the consequent as well as the

antecedent (namely. the suppo~-t) to the number of transactions that include all items in the

antecedent. For example. if a supelmarket database has 100.000 point-of-sale transactions,

out of which 2.000 ~nclude both items A and B and 800 of these include item C. the

association rule "If A and €3 are purchased then C is purchased on the same trip" has a

support of SO0 transactions (alternatively 0.8% = 8001100,000) and a confidence of 40%

(=SOOK.000). Association rules are considered interesting if they satisfy both a minimum

suppo~l threshold and a nlini~num contidence threshold. Such threshold are user or expelt

spccilicd. I f an item set satisfies minimum support, then i t is fi-equent item set (FIS).

One of the reasons bchind maintaining any databasc is to enable the user to find

interesting patterns and trends in the data. For example, in a supermarket. tlie user can

figure out \vhicli items are being sold most frequently. But this is not the only type of

'trend' which one can possibly t h i n k oE The goal ofdatabase mining is to atitonlate this

pmcess of finding interesting patterns and trends. Once this infonnation is available, the

user can perhaps get rid of the original database. The output of the data-milling process

should be a "summary" of the database. This goal is difficult to achieve due to the

va;ue~~ess associated with the tern1 'interesting'. The solution is to define various types of

trcnds ;ilitl tv look for only tllosc trends in t l x database. One such type constitutes the

associalion I-ulc.

Association rule niining comprises of two steps i.e. fiiiding.fieqnerrt itc~ritset.~ (FLS) and

g~vrer.irtiri,y ;.~s.r-oritrtio~~ r-nl~~.s. based on the fi-equent itemsets. However. researchers have

foulld ~~umcruus tcchniqucs to find FIS. mostly based on .wppor? measure. But, in this

thesis. one of thc similarity measures, known as "Cosirre" measure has been used and

only the first step of the association ~ u l e mining has been covered. While clustering data

points al-e al-ranged i n a way that the points nearest to each other al-e placed in one cluster.

This call be done either by similarity or dissi~nilarity measures. Siinilar data items will be

nearcst to each otl1c1- and dissimilar will be at distance far apart.

The iwoble~n of association ~ u l e mining is defined as: Let be a set of 1 1 bina~y attributes

called itorrs. Let bc a set ol't~nnsactions called the cltrtrrhrrsse. Each transaction in D has a

unique transaction ID and contains a subset of the items in I. A r d e is defined as an

implication ofthe fonn X->Y where Xis called o~ltc~cc~le~rt (lett-haud-side or L H S) and Y

L ~ J I I S ~ ~ I I L ~ I I ~ (right-hand-side or RHS) of the rule.

To illustrate tlie concepts, we use a small exaniple from the supemiarket domain. The set

o f items i s I = :miIk.bread.hutler,beer; and a small database containing the items (I

coiks prcsence and 0 absence o f an item in a transaction) i s shown i n tlie table to the

~riglll. An czamplc rule for thc supenuarket could be meaning that i f milk and bread is

bought. customers also buy butter.

Nolc: this example is extremely small. In practical applications, a lule needs a support o f

sevel-nl liundlcd itemsets bcfore i t can be consit1r1-ed statistically significant, and datasets

o h contain thousands or millions o f itemsets.

To sclect intel-esting I-ules fi-om the sct o f all possible rules. constraints on various

measures o f significance and interest can be used. The best-known constraints are

minimum thresholds on support and confidence. The s u q p w t supp(X3 o f an itemset X i s

delined as the proportion o f tramactions in the data set which contain the itemset. I n the

example database. the itemsel [milk.b~-ead; has a support o f 2 / 5 = 0.4 since i t occurs in

40% o f 311 transactions (7- out o f 5 transactions).

The col!fiilorce o f a rule i s delined . For example, the rule has a confidence o f 0.2 / 0.4 =

0.5 in the database. which means that for 50% o f the transactions containing milk and

bl-ead the rule is correct. Confidence can be interpreted as an estimate o f the probability

P(Y I A). the probability o f linding the RHS o f the ~ u l e i n transactions under tlie condition

that lhese transactions also contain the LHS.

In association ~ u l e mining. clusle~ing is one o f the most popular areas. Clustering is a

process o f paltitioning a set o f data (or objects) in a set o f meaningful sub-classes. called

clusters. Clustering i s a discipline devoted to revealing and desc~ibing homogeneous

groups ol'entities. that is, clustels. in data sets.

1.2 Clustering

Clustering is the ~netliod by which like records are grouped togethel-. Usually this

is done to g iw the end user a high level view of what is going on in the database.

Cluskring is son~etimrs uscd to mean segmcntation - which most marketing people will

tell is uselul for conling up with a birds eyc view of the business. Clustering is a data

mining (machine leaminy) technique used to place data elements into related groups

without ntlvance knowledge of the group tletinitions.

1.2.1 A simple esan~ple of clustering

A simple example of clustering woultl be the clustering that most people perf01111

when thcy do the laundl-y - grouping the permanent press, d ~ y cleaning. whites and

brightly colored clothes is important because they have similar characteristics. And i t

turns out they have i~npo~tant attributes in common about the way they behave (and can

be n~ined) i n the wash. To "cluster" laundry most of the decisions are relatively

struightro~ward. There are of course diflicult decisions to be made about which cluster

the white sh i~ t with red stripes goes into (since i t is mostly white but has some color and

is pennanernt press). When clustering is uscd in business the clusters are often much more

dynamic - even changing weekly to monthly and Inany more of the decisions concerning

wliicli cluster a record falls into can be difficult.

1.2.2 The Cosine Similarity Measure

Cosine sini~la~ity measure is one of the clustering measures. The purpose of

clustcring measure is to join toyether objects into successively larger clusters, using sollie

measure of similarity or distance. A typical result of this type of clustering is the

Iiieralrliical tree. C'osine simihity is a measure of similarity between two vectors of n

dimensions by linding the cosine of the angle between them. often used to compare

documents in test mining. Given two vectors of attributes A and B, the cosine simila~ity.

p is represented using a dot product and n~a_enitude as:

For tcst nlatching. the attribute vectors A and B are usually the tf vectors o f the

~OCUIIICII~S. Fu~thmnore. the cosine similarity o f two vectors i s an arbitrary mathematicl

measure o f ho\v similar two vectors are on a scale o f [O.I]. 1 being that the vectors a!-e

either itle~ltical. or that their values tlilfer by a constant factor. Ths cosine similarity of

t\\o vectors (d l and tl?) i s dctined as:

And where lltlll(= sqrt (d1[0]A2+d1[1]A2...)

Molrove~; the cosine similarity measure i s a popular measuz-e o f s i~n i la~ i ty for text (which

no~malizes the features by covariance matrix) clustering. I t captures a scale invariant

understanding o f si~nilal-ity. An even stronger property is that the cosine similarity doesn

not depend on the length. This allows documents with the same composition . but

different totals to be t~rated identically which makes this the most popular measure for

text documents. Also. due to this propelty. samples cane be norn~alized to the unit sphere

for more c~ticicnt processing.

1.2.3 Nearest Neighbor

Clusteting and the Nearest Neighhor prediction technique al-e among the oldest

tecllniqucs used in data inining. Most people have an intuition that they understand what

clustering i s - namely that like IPCO~CIS are grouped or clustered together. Nearest

ncighbo~- i s a pt-ediction technique that is quite similar to clustering - its esscnce is that in

order to QI-cdict what a prediction value is in one recocd look for records with similar

predictor values in the histol-ical database and use the prediction value froin the record

that it "nearest" to the unclassified record.

1.2.4 A simple esample of nearest neighbor

A simple example o f the nearest neighbor prediction algoritlm i s that i f the user

l o o k at the people in hislher neighborhood (in this case those people that are in fact

gcogr.apllically near to tlie user). The user may notice that. i n general. the incomes of

111ost pcoplc arc some\vliat similar. Thus if the user's neighbor has an income greater than

10,000 Rs. chances a)-e good that he too has a high income. Certainly the chances that lie

has u high incoiuc are greater when all of his neiglibon have incomes over 10.000 Rs.

tlian i1'aIl ol'llis 11eigllb0rs lime inconles of 5,000 Rs. Within his neighborhood there may

still be a wide vwiety of inconies possible among even his "closest" neighbors but if the

user had to p~edict someone's income based on only knowing their neighbors his best

chance of being I-iglit would be to p~edict the incomes of the neighbors who live closest to

the unknown person.

The ileal-cst 11eiglibo1- prediction algo~ithm rvorks in vely much the same way except that

"ncar-ncss" in a database may consist of a variety of factors not just where the person

lives. I t may. Sol- instance. be far more inlpo~tant to know which school someone attended

and what deyl-ee they attained when predicting income. The better definition of "near"

might in fact he other people that the user graduated from college with rather than the

peoplc that lie lives nest to.

Neal-cst Neighbor teclmiques are among the easiest to use and understand because they

work i n a way similar to the way that people think - by detecting closely matching

examples. They also perform quite well in tenns of automation, as many of the

algorithms are robust with respect to dirty data and missing data.

1.2.5 How to use Nearest Neighbor for Prediction

One of the essential elements underlying the concept of clustering is that one

pa~ticular object (whether they be cars. food or customers) can be closer to another object

than can some tliild object. It is interesting that most people have an innate sense of

ordering placed on a va~iety of different objects. Most people would agree that an apple is

closer to an orangc tlian it is to a tomato and that a Toyota Corolla is closer to a Honda

Civic than to a Porsclie. This sense of 01-dering on many different objects helps us place

tliem in time and space and to make sense of tlie world. I t is what allows us to build

c l u w s - both in databases on computers as well as in our daily lives. This definition of

ncanicss that secms to be ubiquitous also allows us to makc predictions.

The nearest neighbor prediction algoritlm simply stated is:

Objects that are "neal-" to each other will have si~nilar prediction values as well. Thus if

the usel- knows the prediction value of one of the objects he can PI-edict it for it's nearest

nei$bors.

1.2.6 Where has the nearest neighbor technique been used in

business?

One of the clnssical places thal nearest neighbor has been used fbr prediction has

been in text ret~ieval. The PI-oblem to be solved in text retrieval is one where the end user

delines a docu~nent (e.g. Wall Street Journal a~iicle. teclinical conference paper etc.) that

is interesting to them and they solicit the system to "find mol-e documents like this one".

Effectively defining a target ofi "this is the interesting document" or "this is not

interesting". The prediction problem is that only a very few of the docun~ents in the

database aclually have values for this prediction field (namely only the documents that

the reader has had a chance to look at so far). The nearest neighbor technique is used to

lind other documents that s11a1-e important characteristics with those docutnents that have

been nia~.kcd as interesting.

1.2.7 Using nearest neighbor for stock market data

As with ahnost all prediction algorithms. nearest neiglibor can be used in a

\wiety of places. Its successful use is mostly &pendent on the pre-formatting of the data

so that neaniess can be calculated and where individual records can be defined. In the text

1.~11-ieval example this was not too dillicult - the objects being documents. This is not

always as easy as it is fbr text I-et~ieval. Considel- what it might be like in a time series

problem - say for predicting the stock market. In this case the input data is just a long

series of stock prices over time without any particular record that could be considered to

be an object. The value to be predicted is just the next value of the stock price.

The way that this problem is solved for both nearest neighbor techniques and for some

other types of prediction also~ith~ns is to create training records by taking, for instance.

I 0 consecutive stock prices and using the lirst 9 as predictor values and the 10th as thc

prediction value. Doing things this way. if the user had 100 data points in his time sel-ies.

Iic ~,oulil create I 0 different training records.

He could c n x k even 11io1-e t~airling recods than 10 by creating a new record stalling at

cvery d3t3 poiul. Fur instance. the user could take the first 10 data points and create a

record. Then tlie user could take the 10 consecutive data points starting at the second data

point, then the 10 consecutive data point sta~ting at the third data point. Even though

some o f thc data points would overlap from one record to the next the prediction value

uould al\wys be dill'ercnt. In this example o f 100 initial data points 90 different training

records could be crcated this way as opposed to the 10 training I-ecol-ds CI-eated via the

other metliod.

Nc:1rcst Nciglibor

Used for prediction as well as consolidation.

Clustering

Used mostly for consolitlaling data into a

is defined by the problem to be solvedspace

(supm'~ised leanling).

xample linking two points together.

high-level view and general grouping ot

records into like behaviors.

i s defined as default n-dimensional

space. or is defined by the user, or is a

predefined space drive11 by past

experience (unsupervised learning).

Generally only uses distance metrics 1 eternline nramess.

Table 1-2 Sonic o f the Diffcrcnces Bctwcen the Nearest-Neighbor Data kl i t i ing

Tcclinique and Clustering

tocan use other metrics besides distance t

detennine nealmess o f two recolds -

1.3 Data Mining Can Bring Pinpoint Accuracy to Sales

Data w~.diousing - tlic practice of creating h ~ ~ g e . central stoles of customer data

11131 can be used tlilnughoul the e ~ ~ t e ~ y ~ - i s e - IS becoming more and more con~monplace.

But data warehouses are useless if companies don't have the proper applications for

accessing and using the data.

Tn.0 pop~11ar types of applications illat leverage companies' investments in data

warehousing are data mining and campaign management software. Data ~nining enables

conipmies to idenlil) trends within the data warehouse (such as "families with teenagers

are likely to have two phone lines," in the case of a telephone company's data). Campaign

rnana~enlent software enables them to leverage these trends via highly targeted and

automated direct marketing campaigns (such as a telemarketing campaign intended to sell

second phone lines to families with teenagers).

Data niininy and campaign managen~ent have been successfully deployed by hundreds of

Fortune 1000 cornpanics around the world. with inipressive results. But recent advances

in t~'c1inology have enabled companies to couple these teclinologies more tightly. with the

following brnctits: increased speed with which they can plan and execute marketing

ca~npnigns: incl-eased accuracy and response rates of canipaigs; and higher overall

marketing retul-n on investment.

Data mining automates the deteclion O F pattcnls in a database and helps marketing

prokssionals improve their understanding ot' customer behavior, and then predict

behavior. For example. a paltem might indicate that nimied niales with child~en are

t\&r as likely to drive a pa~ticular spo~ts cal- than nial-ricd niales with no childl-en. A

~narkeling manayer Ibr an auto manufacturer niight find this somewhat surprising pattem

quite valuable.

The dtlta ~nining PI-ocess can inodel vi~tually any customer activity. The key is to find

patterns relevant to current business problenis. Typical pattetns that data mining uncovers

includc which C L I S ~ O I ~ I C ~ S 31-c ~iiost l~hely to drop a sewice, which are likely to purcliase

merchandise or snvices. and which at-e most likely to respond to a pariicular offer.

The data mining process resuhs in the creation of a model. A model embodies the

iliscovercil patterns and can be used to inake predictions for records for which the true

behavior is unhnown. These predictions, usually called scores, are nunie~ical values that

are assigned to each record in the database and indicate the likelihood that the customer

will exhibit a pa~ticula~. bel~avio~-. These numerical values are used to select the most

appropriate prospects Sor a targeted marketing campaign.

Canipaigu mnnagement and data mining. when closely integrated. arc potent tools.

Campaign inana$ement sollware enables con~panies to deliver to customers and

prospects timely. pertinent, and cool-dinated offers. and also manages and monitors

custolner co~nnlunications across all channels. In addition, i t automates and integrates the

planning. execution, assessment and refinement of possibly tens to hundreds of highly

segmented campaigns running monthly. weekly. daily or intemittently.

1.3.1 Beliefits of Data mining

D a b inining being a very popular and interesting topic has number of advantages

which are as fbllows:-

A classic esan~ple of data mining is a i-ctailer who uncovers a relationship

between salcs of diapers and diaper rash cream - two items the user wouldn't

norninlly consider as linked. The explanation is that husbands who are sent out lo

pick up a fresh supply of diapers are also likely to pick up diaper rash cl-eam while

they happel1 to be in the store - something that hadn't been recognized as a

significant sales driver bcfore data mining uncovered it.

Chanter. 1 Introduction

Elrubles user to uploit the correlations to improve organizatiorral

y erfor~nance

Continuing the example above, very often retailers act on the relationships they

discover by using tactics such as placing linked items together on end-of-isle

displays as a way to spur additional purchases. All organizations can benefit from

acting in a sinlilar way - using newly discovered patterns and correlations as the

basis for taking action to improve their efficiency and effectiveness.

Provides indicators offirtrrre perfoi-~tiai~ce

"Those who do not learn from history are doomed to repeat it" is a famous quote

from philosopher George Santayana. In the case of data mining, being able to

predict outcomes based on historic data can dramatically improve the quality and

outcomes of decision making in the present. As a simple. example, if the best

indicator of whether a customer will pay on time turns out to be a combination of

their market segment and whether or not they have paid previous bills on time,

then this is inforn~ation the user can usefully benefit from in making current credit

decisions.

Enables ernbedding of recottunendations in user's applicatiorls

The user can use the data mining results to display a simple summary statement

and reconlmendations within operational applications. For example, on a credit

screen user could add: "Based on this new account profile there is an 85% chance

this customer will pay late. It is therefore recommended .user requires a 50%

prepayment on this order". Reporting on aggregate results such as Days Sales

Outstanding (DSO) enables the user to measure business improvements based on

when recommendations were followed and when they weren't so that the user can

fine-tune his model and recommendations over time for optimal effect.

Freqlrent Itertrset Genet-ation usirrg Cosine Measure 13

1.4 Existing techniques

Various algorithms have been developed to avoid the problems of association rule

mining such as the multiple scans and generation of large candidate itemset. Following

are some of these algorithms:-

Apriori is a seminal algorithm proposed by R.Agrawal[l] in May 1993. It usesprior

knowledge of frequent itemset properties. Apriori uses breadth-first 'search and a hash tree

structure to count candidate item sets efficiently. But its drawback is that the finding of

each Lk requires one full scan of database. Hence, due to n~ultiple scans we get wastage

of resources like time and space lnlemory in addition to the counting of false candidates.

Candidate generation generates large numbers of subsets (the algorithm attempts to load

up the candidate set with as many as possible before each scan).

FP-growth algorithm[6] proposed by J. Han, J. Pei, Y. Yin, and R. Mao in 2004 adopts

a divide and conquer strategy avoiding costly candidate generation. First, it compresses

the database representing frequent items into a frequent pattern tree o r FP tree, which

contains the itemset association information. It then divides the compressed database into

a set of coriditional databases. FP-growth tree is memory resident i d requires additional

storage in every node of the FP-tree (Because of excessive pointers storage in every

node) especially when the FP- tree is too large to fit in main memory.

Partition algorithm was proposed by A. Savasere[2] in 1996. This algorithm is used for

partitioning the data to find candidate itemsets. A partitioning technique can be used that

requires just two database scans fo mine the frequent itemsets.
i

The problem of accurately estimating the number of partitions given the available

memory, however, needs further work.

Sampling approach was proposed by Toivonen[3] in 1996. This algorithm is used for

mining on a subset of the given data. The basic idea of the sampling approach is to pick a

random sample S of the given data D, and then search for frequent itemsets in S in&ea(d

of D. In this way, there is some tradeoff of accuracy against efficiency. The sample size

Frequent Ilerirset Gelleration using Cosirre Measure 14

of S is sucll that the search for frequent itemsets in S can be done in main memory, and so

only one scan of the transactions in S is required overall. We might miss some of the

global frequent itemsets since we are searching for frequent itemsets in S than in D. The

sampling approach is especially beneficial when efficiency is of utmost importance, such

as in cornputationally intensive applications that must be run on a very basis. However,

there is a tradeoff between accuracy and efficiency.

MaxMiner (Bayardo, 1998)[4) is another algorithm for finding the maximal elements. It

uses Rymon R(1992)[10] "search through systematic set Enumeration" mechanism and

efficient pruning techniques to quickly narrow the search. MaxMiner employs a breadth-

first traversal of the search space; it reduces database scanning by en~ploying a look

ahead pruning strategy. Since MaxMiner uses the original horizontal database format, it

can perform the same number of passes over a database as Apriori does. Hence, there will

be need for scanning multiple times.

ECLAT (Equivalence CLASS transformation)[S] is an algorithm developed by M.J

Zaki, which transforms a given data set of transactions in the horizontal data format of

TID-iteruset into the vertical format of iten-TID-set. It mines the transformed data set by

TID-set intersections based on Apriori property and additional optimization techniques

such as diffset. However, the cost of registering long TID-sets is high.

The above literature shows that association rule mining is facing a number of problems

currently such as multiple scans of database and generation of large candidate itemsets

which needs to be solved.

1.5 Scope of the Project

Data mining has become very popular area for research where association rule

mining plays a vital role. Association rule mining is not only used in businesses, retail

sales but also in science and engineering, telecommunications, games, human resource

departments etc. Data Mining is a highly effective tool in the catalog marketing industry.

Frequeilf Ifenwet Generation using Cosine Measure 15

Catalogers have a rich history of customer transactions on millions of customers dating

back several years. Data mining tools can identify patterns among customers and help

identify the most likely customers to respond to upcoming mailing campaigns.

In applying our devised Cos-FIS generator algorithm, the main problem that may be

faced is limited memory and huge processing needed. Moreover, it needs a lot of time

while scanning the database. The volume of the database if large may also create
. ,

problems as it is not easy to handle it.

~ r e ~ t r & t ~terrrset Geuemtion using Cosine Measure 16

Chapter 2

2. Literature Survey

Market Basket Analysis is a modelling technique based upon the theory that if a costumer

buys a certain goup of items, helshe is more (or less) likely to buy another group of

items. For example, if the user is in a restaurant and he orders apple juice and doesn't

order pizza, he is more likely to order crisps at the same time than somebody who didn't

order apple juice.

The set of items a customer buys is referred to as an itemset, and market basket analysis

seeks to find relationships between purchases.

Typically the relationship will be in the form of a rule:

IF {Apple juice, no Pizza} THEN (crisps).

The probability that a customer will order apple juice without a Pizza(i.e. that the

antecedent is true) is referred to as the support for the rule. The conditional probability

that a customer will purchase crisps is referred to as the confidence.

Consider a supermarket with a large collection of items. Typical business decisions that

the management of the supermarket has to make include what to put on sale, how to

design coupons, how to place merchandise on shelves in order to maximize the product

sales etc. Analysis of past transaction data is a commonly used approach in order to

improve the quality of such decisions. Until recently, however, only global data about the

cumulative sales during sometime period a day, a week, a month, etc. was available on

the computer. Progress in bar-code technology has made it possible to store the so called

basket data that stores items purchased on a per-transaction basis. Basket data type

transactions do not necessarily consist of items bought together at the same point of time.

It may consist of items bought by a customer over a period of time. Examples include

monthly purchases by members of a book club or a music club.

Following is some of the research work done previously in association rule mining. Each

research paper represents an algorithm and its advantages and disadvantages.

~re~trer~t%ertrset Generation Using Cosirte Measure 16

Chapter 2 Literature Survey

database D must occur as a frequent itemset in atleast one of the partitions. Thus, all local
I *

frequent itemsets are candidate itemsets with respect to D. The collection of fiequent

itemsets from all partitions forms the Global candidate iternsets with respect to D. In

phase 11, a second scan of D is conducted in which the actual support of each candidate is

assessed in order to determine the global frequent itemsets.

Moreover, in this paper, Partition algorithm has been described as not only efficient but

also fast for discovering association rules in large databases. An important contribution of

this algorithm is that i t drastically reduces the UO overhead associated with previous

algorithms. This feature may prove useful for many real-life database mining scenarios

where the data is most often centralized resource shared by many user groups, and may

even have to support on-line transactions. Interestingly, this improvement in disk UO is

not achieved at the cost of CPU overhead. It is demonstrated with extensive experiments
I

that the CPU overhead is actually less than the best existing algorithm for low minimum

supports (i.e., cases which are computationally more expensive). In addition, the

algorithm has excellent scale-up property. The problem of accurately estimating the

number of partitions given the available memory, however, needs further work

2.3 Sampling large databases for association rules

Sampling approach was proposed by Toivonen[3] in 1996. This algorithm is used

for mining on a subset of the given data. The basic idea of the sampling approach is to

pick a random sample S of the given data D, and then search for frequent itemsets in S

instead of D. In this way, there is some degree of tradeoff of accuracy against efficiency.

The sample size of S is such that the search for frequent itemsets in S can be done in

main memory, and so only one scan of the transactions in S is required overall. The user

might miss some of the global frequent itemsets since he is searching for frequent

itemsets in S than in D. To lessen this possibility, a lower support threshold is used than

minimum support to find the frequent itemsets local to S (denoted as Ls). A mechanism

is used to determine whether all of the global frequent itemsets are included in Ls. If Ls

contains all of the frequent itemsets in D, then only one scan of D is required.

Frequent Itenwet Generation Using Cosine Measure 18

Chapter 2 Literature Survev

The sampling approach is especially beneficial when efficiency is of utmost importance,

such as in computationally intensive applications that must be run on a very basis.

However, there is a tradeoff betwecn accuracy and efficiency. The penalty in

partitio~dsanlpling [9] is that candidate set derived is necessarily a superset of the actual

set of frequent itemsets and may contain many false positives.

2.4 Tree Structure for Mining Association ruies

MaxMiner (Bayardo, 1998)[4] is another algorithm for finding the maximal

elements. It uses Ryn~on's (1992)[10] "search through systematic set Enumeration"

mechanism and efficient pruning techniques to quickly narrow the search. MaxMiner

employs a breadth-first traversal of the search space; it reduces database scanning by

employing a look ahead pruning strategy, i.e., if a node with all its extensions can

determine to be frequent, there is no need to further process that node. It also employs

iten1 (re)ordering heuristic to increase the effectiveness of superset-frequency pruning.

Since MaxMiner uses the original horizontal database format, it can perform the same

number of passes over a database as Apriori does. Hence, there will be need for scanning

multiple times.

2.5 Efficiently mining long patterns from databases

ECLAT (Equivalence CLASS transforn~ation)[S] is an algorithm developed by

M.J Zaki, which transforms a given data set of transactions in the horizontal data format

of TID-itenuet into the vertical format of ifem-TID-set. It mines the transformed data set

by TID-set intersections based on Apriori property and additional optimization

tecluliques such as dirjser. In this way the support of an itemset X can be easily computed

by simply intersecting the covers of any two subsets Y,Z X, such that YuZ=X. In this

algorithm, for each frequent item I, the I-projected database D' is created. This is done

Frequent Ite~nset Generatiorz Using Cosine Measure 19

Cl~anter 2 Literature Survev

by first finding every item j that frequently occurs together with i. The supeort of this set

{I, J} is con~puted by intersecting the covers of both items. If {i j) is frequent then j is

inserted into D' together with its cover then algorithm is called recursively to find all

FIS in the new database D' .

~ c l a t algorithm uses support based measure to find maximal frequent IS by using I-

projected databases technique but this algorithm generates large number of candidat? set

to derive frequent item set at each iteration of the algoritlun. Less memory is required as

compare to FP-growth to find FIS. Moreover, the cost of registering long TIRsets is

high.

2.6. Search through systematic set enumeration

FP-growth algorithm[6] proposed by J. Han, J. Pei, Y. Yin, and R. Mao in 2004

adopts a divide and conquer strategy avoiding costly candidate generation. First, it

compresses the database representing frequent items into a frequent pattern tree or FP

tree, which retains the itemset association information. It then divides the compressed

database into a set of cor~ditional databases, each associated with one frequent item or

"Pattern fragment" and mines each such database separately.

First, it scans the Database D and collects F, the set of frequent items, and their support

counts. F is sorted i n support count descending order as L, the list of frequent items.

Next, it creates the root of an FP-tree, and labels it as ''NULL" for each trausaction Trans

in D it does the following:-

* Selects and sorts the frequent items in Tram according to the order of L. Let the

sorted frequent item list in Trarrs be [plP], where p is thefirst element and P is

the rernairlittg list. Then insert-tree([p(P], 7) is called which is perfonned as

follows. If T has a child N such that N.item-name =pitem-name, then increment

N's count by 1 else create a new node N and let its count b 1, its parent link be

linked to T and it's node-link to the nodes with the same item-name via the node-

link structure. Finally, the FP-tree is mined.

Frequent Iternset Generatiort Using Cosine Measure 20.

Chapter 2 Literalure Survey

FP-growth tree is memory resident and requires additional storage in every node of the
v

FP-tree (Because of excessive pointers storage in every node) especially when the FP-

tree is too large to fit in main memory. However, it is efficient and scalable for mining

both long and short frequent patterns.

2.7 New Algorithms for fast discovery of Associations Rules

Goethals (2004) presented MEDIC Algorithm[7] which generates all itemsets

containing item i as soon as there can be no transaction anymore that contain i. One

transaction processes at a time in lexicographic order. After generating all these itemsets,

the cover of I can be removed from main memory. Affer that the transaction identifier of

the current transaction is added to the cover of all items occurring in that transaction.

Medic is a frequent set mining algorithm. Medic is also based on support count measure

and utilizes the ECLAT algorithm for mining the frequent item sets. Medic uses much

less memory than Eclat because the database is never entirely loaded into main memory.

2.8 Similarity based mining for finding frequent itemsets

SB-Miner is novel algorithm to find FIS based on clustering measure i.e.

jacquard similarity measure[l I]. Jacquard similarity measure is based on calculating the

distance between itemsets. Proposed technique makes use of prefix tree as data structure

and vertical database layout to cluster related items together. The experimental results

have proved that the same FIS can be generated by SB-miner technique as compared to

other Apriori based algorithms. This also showed that various clustering measures can be

applied for association rules mining. The research work in this paper is basically

extension or improvement of the work to prove that clustering measure like cosine

similarity is again a candidate clustering measure which can be used to generate FIS.

Frequent Itelitset Ger~eratior~ Using Cosine Measure 2 1

Cha~fer 2 Literature Survey

2.9 Selecting the right interestingness measure for association
A .

patterns

The DISJOINT and RANDOM algorithms are two table selection algorithms used

to select a small set of tables [I21 such that an expert can select a desirable measure by

looking at just this small set of tables. Many techniques for association rule mining and

feature selection require a suitable metric to capture the dependencies among variables in

a data set such as support, confidence, lift etc are used to determine interestingness of

association patterns. However, many such measures provide conflicting information

about the interestingness of a pattern and best metric is rarely known. In this paper, an

overview of various measures proposed in the statistics, machine learning and data

mining literature, is presented. Moreover, there is a description of several key properties

one should examine in order to select the right measure for a given application domain.

Also, a comparative study of these properties is made using twenty one of the existing

measures. Two scenarios are presented in which most of the existing measures agee with

each other, namely support-based pruning and table standardization. The RANDOM

algorithm randomly selects k out of the overall N tables and presents them to the experts.

Whereas, DISJOINT' algorithm selects k tables that are "furthest" apart according to their

average rankings and would produce the largest amount of ranking conflicts i.e. large

standard deviation in their ranking vector.

2.10 Problem Statement

In clustering, nearest data points are brought together. This can be done either using

Cosine similarity or dissimilarity measures. Similar data items will be nearest to each other

while Dissimilar will be at distance for apart. Association also finds most frequent items in

a dataset. If a subset is found frequently in data set then it can be said that its similarity is

high. So frequent item set can be found on the basis of Cosine similtuity measures as well. .

Freqlrenf Ife~met gene ratio^^ Using Cosirle Measure 22

From the literature survey, it is observed that rules are generated on the basis of candidate .
itemsets, which are generated using upp port and confidence measures. Moreover, the

database is scanned multiple times to generate candidate itemsets.

After scanning the database, the items are taken from database and their respective

support count is stored in a table. Then, 2-itemsets are created and database is scanned till

k-itemset is created. Multiple scanning is an extensive workload on the database specially

when the mining of association rules is done on a huge database.

Apriori [I], while historically significant, suffers from a number of inefficiencies or

trade-offs, which have spawned other algorithms. Candidate generation generates large

numbers of subsets (the algoritlun attempts to load up the candidate set with as many as

possible before each scan).

The problem of accurately estimating the number of partitions given the available

memory in PARTITION algorithm [2] needs further work.

The penalty in partitionlsan~pling [3] is that candidate set derived is necessarily a superset

of the actual set of frequent itemsets and may contain many false positives.

~ c l a t algorithm presented in [S] uses support based measure to find maximal frequent IS

by using I-projected databases technique but this algorithm generates large number of

candidate set to derive frequent item set at each iteration of the algorithm. Moreover, the

cost of registering long TID-sets is high.

FP-growth tree [GI is memory iesident and requires additional storage in every node of

the FP-tree (Because of excessive pointers storage in every node) especially when the FP-

tree is too large to fit in main memory.

In conclusion, the main problem in all the papers and algorithms is the multiple database

scanning as well as the generation of large candidate itemsets. Whereas the "Cos-FIS

Frequent Irerrtset Ger~eratiorr Using Cosine Measure 23

Chapter 3 Problem Domain arid Proposed Solutior~

3. Problem Domain and Proposed Solution

Data analysis is the process of looking at and summarizing data with the intent to

extract useful infonnation and develop conclusions. Data analysis is closely related to

data mining, but data mining tends to focus on larger data sets, with less emphasis on

making inference, and often uses data that was originally collected for a different

purpose. In statistical applications, some people divide data analysis into descriptive

statistics, exploratory data analysis(EDA) and confim~atory data analysis, where the EDA

focuses on discovering new features in the data, and CDA on confirming or falsifying

existing hypotheses.

Data mining is the process of sorting through large amounts of data and picking out

relevant infom~ation. It is usually used by business intelligence organizations, and

financial analysts, but is increasingly being used in the sciences to extract infonnation

from the enonnous data sets generated by modem experimental and observational

methods. It has been described as "the nontrivial extraction of implicit, previously

unknown, and potentially useful information from data and the science of extracting

useful infonnation from large data sets or databases". Data mining in relation to

enterprise resource planning is the statistical and logical analysis of large sets of

transaction data, looking for patterns that can aid decision making

Another example of data mining, often called the market basket analysis, relates to its use

in retail sales. If a clothing store records the purchases of customers, a data-mining

system could identify those customers who favor silk shirts over cotton ones. Although

some explanations of relationships may be difficult, taking advantage of it is easier. The

example deals with association rules within transaction-based data. Not all data, are

transaction based and logical or inexact rules may also be present within a database. In a

manufacturing application, an inexact rule may state that 73% of products which have a

specific defect or problem will develop a secondary problem within-the next six months.

Data Mining is a highly effective tool in the catalog marketing industry. Catalogers have

a rich history of customer transactions on millions of customers dating back several

years. Data mining tools can identify patterns among customers and help identify the

most likely customers to respond to upcoming mailing campaigns.

Freytreut Iteriiset Generutior~ Using Cosine Measure 24

Cltapter 3 Problem Donzain and Proposed Solrrtion

'C

In data mining, association rule mining is a popular and well researched method for

discovering interesting relations between variables in large databases. Piatetsky-Shapiro

describes analyzing and presenting strong rules discovered in databases using different

measures of interestingness, among which Cosine measure is one of the most useful

measure.

Association rules are required to satisfy a user-specified minimum support and a user-

specified minimum confidence at the same time. To achieve this, association rule

generation is a two-step process.

1. First, minimum support is applied to find all frequenf itenuets in a database.

2. In a second step, these frequent itemsets and the minimum confidence constraint

are used to form rules. While the second step is straight forward, the first step

needs more attention.

3.1 Problem Domain

Most of the existing methods of finding FIS are based on support measure. The

puvose of this thesis is to develop a novel data mining algorithm to find out association

which will find FIS on the basis of Cosine sinlilarity measure rather than on the basis of

support count.

Although Support and confidence measures help exclude the exploration of a good

number of uninteresting rules, many rules so generated are still not interesting to the

users. Unfortunately, this especially true when nzining at low support threshold or mining

for Iongpattems. This has been one of the major bottlenecks for successful application of

association rule mining. It is known that support and confidence measures are insufficient

at filtering out uninteresting association rules. To tackle this weakness, a correlation

measure such as COSINE measure can be used to augment the support-confidence

framework

Moreover, the following challenges of kequent pattern mining need to be met:

Multiple scans of transaction database / 110 overhead.

0 Huge number of candidates

Frequent lternset Generation Usitlg Cosine Measure 25

Chapter 3 Problem Dori~ain and Proposed Solution

Tedious workload of support counting for candidates.

3.1.1 Multiple Database scans

The major problem of Association rule mining is the multiple database

scans, since first frequent itemsets are searched in the database and then 2-itemset and k-

itemsets are created to find similarity between the two large itemsets which req&&

consulting the database again and again. Moreover, since the frequent itemset generation

is also perfomied on huge databases and large datawarehouses, there is chance of

multiple Disk V0s which are the main obstacle in efficiency of database and association

rule mining algoritluns. Therefore, the primary goal in association rule mining should be

to reduce database scans and the disk YOs.

3.1.2 Large candidate set size

Creation of candidate itemsets resembles to a chain process i.e. 1-itemsets

are used to create 2-itemsets and 2-itemsets are used to create k-itemsets and so on.

Hence, the more the size of the candidate itemset, the more complicated will the rules be

and the more time would it take to execute the algorithm for generating frequent itemsets.

Also, since the number of rules wil be numerous then, finding interesting rules will be

time consuming and hard. Moreover, the size and quantity of itemsets also leads to disk

and 110 overhead. The number of database scans required by Apriori-based algorithms

depends on the size of the largest large itemsets.

3.1.3 Algorithm execution time

One of the main challenges in database mining is developing fast and

efficient algorithms that can handle large volumes of data as most mining algorithms

perform computation over the entire database and often the databases are very large.

Time management is the key factor in any algorithm for the fast retrieval of results of the

Frequerlt Itemset Generation Using Cosine Measure 26

Cllaoter 3 Problem Domain and Proposed Solution

queries specially in todays world where there is huge amount of data and shortage of
9

time. The faster the frequent itemsets are generated, the faster would the process of sales

and promotion of products be, since the consequent rules would be generated and

reviewed faster. For example, suppose If a clothing store records the purchases of

customers, a data-mining system could identify those customers who favour silk shirts

over cotton ones. The faster this system would identify such customers before the

respective season comes, the more increase will be observed in the retail sales and the

process of importing the demanded cloth would be faster and easier.

3.2 Proposed Solution

To achieve good runtime performance and efficient running of association rule

mining algorithm, the above mentioned issues should be considered and solutions to

these problems must be found to prevent performance degradation. For instance, lessen

the number of database scans and reduce huge number of candidate itemsets.

3.2.1 Reduced Database scans

All the algorithms in the association rule mining need to scan the database

multiple times, which not only causes overhead on the disk V 0 but is also time

consuming. Multiple scans are-needed in order to create 1-itemset, 2-itemset and k-

itemset as well as to keep track of support counts. However, the Cos~FISS~eneratctr.

pcrfonns only a single scan of an item over the whole database while reading

transactions' ID list Srom thc .(st tile and then stores the count of the transaction in the

cache. Once the count of each transaction is maintained in the c~che. the user can use a

formula for Cosine mcasure which will show if a certain iti.niset is hequent 01. no where a

certain Cosine measure threshold is gi\;en. This single scanning of a particular item will

reduce he liO ovcl-hcad.

Frequent Itemset Generation Using Cosine Measure 27

~ h a ~ t e r 3 Problem Domain ar~d Proposed Solutio~r

Moreover, cuiiong vc~rious layouts ofthe database, horizontal and iwtical layouts are the

most coninion. Horizontal la you^ consists of tlie list of transactions. Each transaction lias

an identifier followcd by list of itcms. Ilie vt-rtical layout liowever consists of list of

items. Ilach ilcm has a transacti& IDS list- the list of all transactions containing the item.

Therdorc. the alxorithrn in this thesis uses tlir vertical layout of the database since this

Tomiat performs only a single scan while reading the transaction row by row and storing

its support count mea~iwliile in cache. Also relevant transactions can be clustered

together.

3.2.2 No candidate itemset generation

Another main problem with most of the association rule mining algorithms

is the size of the candidate itmsets . The size of these itemsets is sometimes too large that

its hard to find association rules. Moreover, it is very time consuming as well as storage

of these candidates becomes harder. All these factors affect the whole process of

association rule mining specially when the database is very huge. Finding candidate

itenisets and then pruning them is a very tedious job. However, the "Cos-FISgerterator"

algorithm works without candidate generation. In this algorithm, only the pairs of items

are created. Then, it is found out through the Cosine formula IS, whether a certain pair or

itemset is frequent or no. If the pair is frequent, it is added in the Set Enumeration tree

else it is discarded.

3.2.3 Reduced Algorithm Execution time

In today's era, fast and efficient algorithms are demanded as time'has

become a key element in one's life. Also, since such algorithms are required to handle

large amounts of data in data warehouses and perfom1 numerous computations, the faster

the algorithm executes, the faster the Frequent itemsets are generated. Therefore, the

Frequent Ile~rrset Gerteratio~l Using Cosi~re Meustrre 28

~liapter 3 Problem Domain and Proposed Solution

Cos - FIS generator creates the frequent itemsets faster. Also, the single scan of the

database perfonned by this algorithm contributes to the speed of generation of FIS.

Frequent Itenrset Generatior~ Using Cosine Measure 29

4. System design
The Cos-FIS generator takes the .txt file of 0's and 1's as an input which shows

absence and presence of data items respectively. The .asc file is first converted into .txt

file. Association rule mining comprises of two steps:-

1. Finding all frequent itemsets: the itemsets which satisfy the given threshold will

be frequent.

2. Generating strong association rules from these frequent itemsets: the rules

must also satisfy the minimum support.

However, this research is limited to the first portion of the association rule mining that is

the generation of the frequent itemsets.

4.1 Representation of the frequent itemsets

The frequent itemsets are represented into a node structure i.e. in form of a set

errrrn~e~ation tree. The Set-E~runieration (SE)-tree [lo] is a vehicle for representing andor

enumerating sets in a best-first fashion. The conrplete SE tree systematically enumerates

elements of a power-set using a pre-imposed order on the underlying set of elements. In

problems where the search space is a subset of that power-set that is (or can be) closed

under set-inclusion, the SE-tree induces a complete irredundant search technique.

4.1.1 Node structure

In this thesis, each node in SE tree represents a frequent iternset. Each node has

node-id field, which shows the name of the node and also indicates frequent itemset.

Node has a count field indicating the total number of transactions containing that

frequent itemset. There are two node pointers down and right node pointer pointing to the

node that is linked to current node in downward position level-wise and to the right

position item-wise respectively. In other words, the down pointer points to the node in , the .
next level where each level represents the k-itemset and the right pointer points to the

Freqrrent Itenrset Generation Using Cosi~ie Measure 29

Chapter -I Svsrern des im

node of the same level. Moreover, there is a transaction-id-list field, which actually .
represents the transaction IDS of transactions containing the particular FIS represented by

the node - id of the node.

4.1.2 Creation of Set Enumeration Tree

The Set Enumeration tree(SE tree) is created in a very systematic way. First node
' 3 ' a 1s created and then the column of dataset (text file) is scanned according to a pointer,

hence filling the buffer with the support count. Ifthe support count of the node is greater

than or equal to the minimum user specified threshold, then the node is said to be

frequent and hence is added in the SE tree. After the buffer is filled with count of the

node, it is then copied into the info field of newly created node. It is then linked with the

previous node. This way the first level of SE tree is generated.The second level of SE tree

is created by finding Cosine similarity between every two itemsets or nodes present in the

first level of SE tree i.e) between node 'a' and node 'b'. Only those itemsets whose

similarity is greater than or equal to the user supplied minimum similarity threshold are

declared frequent and are linked in the second level of the SE tree in lexicographic order.

And the same process is repeated for levels 3 and 4.

Fig 4.1 Set Enumeration Tree

Frequenr Iternser Generation Using Cosine Measure 30

4.2 The Cos - FIS generator algorithm
s

Ds: Transactional Dataset
a : Threshold .

Outgut:

FIS: Frequent itemsets
: No. of FIS after each iteration

Step I : Scan transactional dataset DS.
Step 2: Construct first level of Prefix tree.
Step 3 :Construct second level of prefix tree by finding similarity between every 2
itemsets in the previous level of tree as shown in step 4.

Repeat Step 5 to 7 until = 0.

Step 5: Scan each sub tree in the last level ofprefix tree.
Step 6: Store starting node's address of each sub tree in S.
Step 7: p = Generate-next - frequent-itemset (S,FIS, a).
Step 8: Return FIS.

4.3 System's Major Modules

Division of any project into modules adds to its efficiency and overall

performance. Hence this project is divided into following modules:-

1. Database conversion.

2. File reading.

3. Copying cache to node.

4. Frequent itemset generation.

Frequent Iternset Ge~ieratioii Using Cosine Measure 31

Frequent 15' Level
Itemset
Generation

2nd Level

ARtool

3rd Level a
Fig 4.2 Architectural Diagram

Synthetic
Database
(.db file)

4.4 Database Conversion

ASCII file Text file
(.ax file) (.txt file)

.

ARtool is an application for mining association in rules in binary databases. This

tool has utility to generate sy~ttlrefic biuary dntabases. The databases generated by

using ARtool are in a specific format to be used only with this tool. But there was a

need of having the synthetic database in format required to be used with Cos-FIS

generator. Therefore first the database file is converted into ASCII format(.asc file)

by the utility available in ARtool i.e. db2asc and then this ASCII format is converted

into binary database format (.txt file) used in Cos-FIS-generator algorithm. By using

the above technique, databases described in the table 4-1 are generated.

Table 4-1 Synthetic binary databases

Database
T200AT6110P5AP4.db
TSOOATS110PSAP3.db
T400AT611DP3AP4db

Frequent Itemsel Generation Using Cosine Measure 32

I

T
200
500
400

A T 1
6
5
6

10
10
10

5
5
3

P A P
4
3
4

Cliapter 4 Svstem desim

In table 4-1, T is number of transaction, AT is average size of transaction, I is the number .
of items, P is number of pattems.and AP is average size of patterns.

ARtool uses a custom format for its database files (which will be henceforth referred to

as the .db format and is identical to the format used in ARMiner). The asc2db and db2asc

are utilities that allow the conversion of a .db file to a specially formatted ASCII file

(user will refer to this as .asc) and respectively the conversion of a .asc file into a .db file.

The .asc files can be easily read and modified with any decent ASCII editor.

These formats can be best explained by taking a small example of supermarket data.

Suppose the items sold by a (very, very small) shop are green apples, red apples, oranges,

bananas, and grapes. Also suppose that the user had three customers, one bought green

apples and grapes, one bought o&y oranges, and the last one bought oranges and grapes.

This activity can be represented in the .asc fom~at as follows:

1 green apples

2 red apples

3 oranges

4 bananas

5 grapes

Fig 4.3 Part 1 of ASCII file

BEGIN-DATA

1 5

3

3 5

END - DATA

Fig 4.4 Part 2 of ASCII file

There are two distinct parts of this file, the first one illustrated in fig 4.3 contains a listing

of all the items user can sell, or otherwise said, of all the items that could participate in a

transaction.

Freqltent Iternset Generation Us@g Cosine Measure 33

Chapter 4 Svstem desinn
/

/'
The fom~at is pretty simple. It must consist of a positive number followed by a string

(which can contain blank spaces). It is important that the numbers be assigned in

increasing order starting from I . Empty lines are allowed to appear in this section. This

section enumerates all entities described by the data and between which ARtool

will later be used to look for association rules The second part illustrated in fig 4.4

consists of the actual data.

In this case, there were 3 ttansactions and these are each represented on a separate line.

The first transaction involved green apples and grapes and they iire represented by the

numbers associated in the first section, that is 1 for green apples and 5 for grapes.

The db2asc program in ARtool converts a .db file to . a x format. This can be useful if

the user wants to read or verify the content of a .db file. Helshe can also use it to modify

by hand the contents of a .db file by first converting it to a .asc file, then editing the .asc

file, and finally converting it back to a .db file.

db2asc is used in a similar way to its counterpart, asc2db. If the user needs to convert the

artdata.db database to .asc format, then helshe can type the following command in the

MS- DOS command prompt:

java db2asc artdata

which will produce an artdataac file. If the user wants a different name for the output,

then he can pass it on the command line as a second argument:

java db2asc artdata arttxt

which will produce an arttxt.asc file representing the contents of the artdata.db database.

Frequent Itelitset Generation Using Cosine Measure 34

4.4.1 Database layout

It can be observed that after the conversion of ASCII file into text file, the

database is being represented in vertical format. Among various layouts of the database

horizontal and vertical layout are very much common layouts as shown in the Figure 4.3.

Horizontal layout consists of list of transactions. Each transaction has an identifier

followed by list of items. The vertical layout consists of list of items. Each item has a

transaction IDS list- the list of all the transactions containing the item. Vertical database

fom~at has numerous advantages i.e. multiple scans of the database can be avoided and

relevant transactions can be clustered together.

Table 4-2 Database layouts

4.5 File reading

Once the ASCII file(.asc) is converted into text format (.at) by the C code, it is

read or scanned. The text file is in foml 0's and 1's which show the absence or presence

of a certain item in a particular transaction. This scanning is performed in order to keep

track of the support count of each item i.e. the number of 1's in a certain item which

shows the presence of that particular item in a certain transaction. The number of 1's is

equal to the support count of an item. The probability of an item is found by dividing the

Frequent Itemel Gerreratiorr Using Cosine Measure 35

support count by the total number of transactions. This probability will then be used in
*

the Cosine measure Fonnula to find the frequent itemset or to see if a certain itemset is

frequent.

4.6 Copying Cache to Node

After first node is created, the columns of dataset are scanned and the buffer is

filled with the infonnation of a certain item or node. This buffer is then copied by a

function named copybuffer in to newly crcated node info field. Each item presents a

node in the set enumeration tree. Each node in SE-tree represents a frequent itemset. Each

node has node-ID field, which shows the name of the node and also indicates frequent

itemset. There is an transaction-ID-list field in every node containing the transaction IDS

list, which actually represents the transaction IDS of the transaction containing the

particular FIS represented by the tag of the node.

4.7 Frequent Itemset Generation

Once the user gets the support count of a certain itemset, helshe can easily

calculate its probability by dividing the support count with the total number of

transactions. Afier getting the probability of all the itemsets, hetshe can easily find out

whether a ceratin itemset is frequent or no. In other words, he can find the frequent

itenisets /similarity between two items by applying the following Cosine masure formula

to the itemsets:

Where A is the first item and B is the second item, P(A) and P(B) is the probability of

item A and item B respectively, P(AUB) is the combined probability.

Frequerrt Iterrrsef Gerieratiorl Using Cosine Measure 36

/
Svstem desim

After applying the formula to a certain itemset, if the similarity user gets from this Cosine

fonnula is greater than or equal to the user specified similarity threshold, then that

itemset is said to be frequent and will be linked in the 2nd level of the SE tree in

lexicographic order.

Frequent Ilerilset Generution Usirlg Cosine Measure 37

Chapter 5

5. Implementation

This section covers all the aspects of the implementation of the Cos-FIS generator

algorithm. This project is divided into functions or modules which are discussed one by

one. Furthem~ore, the functionality of tools used in this project is also explained.

Efficient running of any system depends upon the software used in it and accurate input.

The software used in the project should be capable of meeting not only the user's

requirements but also of the proposed system. The tools/softwares used in this system are

ARtool, Notepad for the text format files, Wordpad for the ASCII files and the Java

platform for the ~unning of ARtool i.e. sun's JDK (Java Development Kit)or JRE(Java

Runtime Environment).

5.1 ARtool

ARtool v1.1.2 is a Java application for mining fiequent itemsets and association

rules in binary databases. ARtool is free s o h a r e distributed under the GNU General

Public License.

ARtool uses a custom format for its database files (which will henceforth referred to a s the

.db fonnat and is identical to the fonnat used in ARMiner). The asc2db and db2asc are

utilities that allow the conversion of a .db file to a specially formatted ASCII file (user will

refer to this as . a x) and respectively the conversion of a .asc file into a .db file. The .asc

files can be easily read and modified with any decent ASCII editor.

: I

ARtool comprises three components: a set of Java packages, a set of command line tools,

and a graphical user interface (GUI).

Frequerrt Iterilset Generation Using Cosine Measure 37

Moreover, it also helps to generate a synthetic database first which is then cotverted into

ASCII fonnat (.ax file) by using the command line prompt as mentioned previously in

section 4.2.

Fig 5.1 AKtool User Interface

5.1.1 How to install and execute ARtool

The user needs to have Sun's JDK or JRE installed, probably at least

version 1.3.

To install ARtool, user will just unzip the ARtool binaries to some directory on

his hard drive.

To run the ARtool GUI, user will just type:

Frequent Itentset Ger~eration Usiug Cosirte Measure 38

java -jar ARtool.jar

or will simply double-click on ARtool.jar (works only if he has JRE installed).

5.1.2 Features of ARtool

The new features of ARtool are:

- a set of comn~and line tools that allow mining, synthetic

database generation, operations on databases, etc

- the GUI gives more information about a selected database

- the GUI gives more infonnation about the frequent itemsets

- the GUI has a log window that keeps track of all operations

performed

- algorithm execution and database generation can now be

intempted

- lengthy tasks are executed in threads and do not freeze the

interface

- an online help systenl - provides a quick introduction to

association rule mining and to using ARtool

- the GUI is easier to navigate since I use dialogs sparingly

- there are plenty of tooltips to help the novice user

5.2 Java Platform

As it is known that in order to run ARtool, user needs Java platform i.e Sun's JDK

or JRE. Therefore, JDK (Java developlnent Kit) was installed in this system.

Frequer~t Iteri~set Generation Using Cosine Measure 39

5.2.1 JDK (Java Deyelopment Kit) .
The Java Development Kit (JDK) is a Sun Microsystems product aimed

at Java developers. Since the introduction of Java, it has been by far the most widely used

Java SDK. On 17 November 2006, Sun announced that it would be released under the

GNU General Public License (GPL), thus making it free software.

The JDK is a subset of what is loosely defined as a software development kit (SDK) in

the general sense. In the descriptions which accompany their recent releases for Java SE,

EE, and ME, Sun acknowledge that under their terminology, the JDK fornls the subset of

the SDK which is responsible for the writing and ruming of Java programs. The

remainder of the SDK is composed of extra sohvare, such as' Application Servers,

Debuggers, and Documentation.

The JDK also comes with a complete Java Runtime Environment, usually called a

private runtime. It consists of a Java Virtual Machine and all of the class 1ibraries:thqt

will be present in the production environment, as well as additional libraries only useful

to developers, such as the internationalization libraries and the IDL libraries.

5.2.2 JRE (Java Runtime Environment)

The JVM Java virtual machine, which is the instance of the JRE (Java

Runtime Environment), comes into action when a Java program is executed. When

execution is complete, this instance is garbage-collected. JIT is the part of the JVM that is

used to speed up the execution time. JIT compiles parts of the byte code that have similar

functionality at the same time, and hence reduces the amount of time needed for

compilation.

A Java Virtual Machine (JVM) is a set of con~puter software programs and data

structures which use a virtual machine model for the execution of other computer

programs and scripts. The model used by a JVM accepts a form of computer intermediate

language commonly referred to as Java bytecode. This language conceptually represents

the instruction set of a stack-oriented, capability architecture. The JVM is a crucial

Frequent Itenrset Ge~reratiorr Using Cosirle Measure 40

component of the Java Platfom~.Programs intended to run on a JVM must be compiled

into a standardized portable binary format, which typically comes in the fo& of .class

files. A program may consist of many classes in different files. For easier distribution of

large programs, multiple class files may be packaged together in a .jar file (short for Java

archive).The JVM runtime executes .class or .jar files, emulating the JVM instruction set

by interpreting it, or using a just-in-time compiler (JIT) such as Sun's HotSpot. JIT

compiling, not interpreting, is used in most JVMs today to achieve greater speed

I-- Java Language Java Language

I - - -

Toolr 8 java javac javadoc apt jar javap JPDA jconrolr

1 Too'AP1s Security Int'l RWI IDL Deploy I.1onitoring Troubleshoot Scdpting JV,r"

Java
SE
API

5.3 The C++ language

C++ ("C Plus Plus") is a general-purpose programming language. It is regarded as

a middle-level language, as it comprises a combination of both high-level and low-level

language features. It is a statically typed, free-fonn, multi-paradigm, compiled language

where compilation creates machine code for a target machine hardware, supports

Frequent Itemset Ger~erat ion Using Cosisi, Measure 4 1

Chapter 5 Implenlenlation

procedural programming, data abstraction, object-oriented programming, and gene~ic -
programming.

The language was developed by Bjame Stroustmp in 1979 at Bell Labs as an

enhancement to the C programming language and originally named "C with Classes". It

was renamed to C++ in 1983. Enhancements started with the addition of classes,

followed by, among other features, virtual functions, operator overloading, multiple

inheritance, templates, and exception handling.

5.3.1 Conversion of Database file into ASCII file

The Database file (.db) is converted to ASCII file in the same folder

where the ARtool application resides by typing the following command in the MS-DOS

Con1177and Prompt:-

java db2asc status.db status.asc

5.3.2 Node structure

Each node in SE tree represents a frequent itemset. The node structure is as

follows:

class node {

public:

node* downgtr;

node* rightytr;

int* tid - list;

char* node-id;

int count;

node()

{

Frequent Ite~met Gerleration Using Cosine Measure 42

5.3.3 Conversion of ASCII file into Text format

Following is the C t t code of converting the ASCII file(.asc) or format of

numbers into text format (.txt file) of 0's and 1's:

int main(void)

{

clrscr();

float sim - tlueshold=0.5;

unsigned int i=1; IIEOF

FILE *in;

if ((in = fopen("C:\\TC\\arttxt.asc", "rW))== NULL)

{

fprintf(stde1~. "Cannot open input fi1e.h");

return 1;

1
FILE *out;

if ((out = fopen("C:\\TC\\arttxt.txt", "wU))= NULL)

I
fprintf(stderr, "Cannot open input fi1e.W);

return 1;

I

int tn=l;

Frequerit Itenrrsel Ger~erutiorl Using Cosirre Measure 43

int fcont;

char c;

fscanf(in,"%c".&c);

if((c='a')ll(c='b'))

)while (i!=9);//3197 11

cout<<"number of Records="<<i<<endl;

fclose(in);

getch0;

return 0;

1

Frequeilt Iternset Gener-atiorl Using Cosirle Measure 44

5.3.4 Reading of Text file

After the conversion of the . a x file into .txt file, following is the module

that will read the text file of 0's and 1's showing the absence and presence of items.

When the file is read, track of number of 1's is kept as the support count of a certain item

in order to find out whether that item is frequent.

void database-scan(int record-length)

{

int currentgtr=O;

int space=';

char node-no='al;

int countt;

char character[2];

character[O]=node-no;

character[l]='\O';

copybuffer(start,size-filledbuff(),character);

node - no++;

delay(1000);

cout<<NODE NO<<node - no<<endl;

Frequent Iternset Generation Using Cosirie Measure 45

for(int c=space;c<record-length-space;node - no++,c+=space)

{

currentqtr=c+record - length;

current=createnode();

countt= fill-buff(11ode-no,cuue~:tgtr, record-length);

cout<<"$$$$$$$$$$$COUNT$$$$$$$$$"<<countt<<endl;

5.3.5 Filling the buffer

The readfile-makelist() module makes use of the fill - buffer() function

basically fills the buffer with the count of 1's i.e. number of 1's in an item, with help of a

pointer named as currentqtr and the parameter record-length.

int fill-buff(int node-id,int cumentgtr, int record-length)

{

int count=O;

freecache();

int cachecounter=O;

for(int row=0;row~rows;currentgtr+=record - length,row++)

Frequerlt Remset Generation Using Cosine Measure 46

fseek(infile, OL, SEEK - SET);

fseek(infile,currentgtr, SEEK-CUR);

Ilcout<<"The occurance of one is:"<<count<<endl;

return count;

I
5.3.6 Copying Buffer to node

Once a node is created, the relevant data or information of that node is

copied from the cachelbuffer to the newly created node's tid-list field. This information

may include the count f 1's of that node. In other words, afer the buffer is filled it is then

copied by a function named copybuffer in to newly created node tid-list (info) field.

Frequent Ifenset Generation Using Cosine Measure 47

This function takes the pointer to newly created node and size of the buffer and node-id

to be copied into that node. The created node is then linked with the previous node and in

this way the first level of set enumeration tree is created.

void copybuffer(node* temp,int sz, char* node-id)

{ temp->getsize(sz+l);

int str-size=get-stringsize(node - id);

temp->getsize - nodeid(str-size);

strcpy(temp->node - id,node - id);

for(int c=O;c<sz;c++)

{

temp->tid-list[c]=cache[c];

temp-Xid-list[sz]=-99

}

delay(50);

cout<<"node startU<<endl;

for(int t=O;t<sz;t++)

{

cout<<temp->tid - list[t]<<endl;

I
cout<<"node endU<<endl;

1

5.3.7 Finding the Second level

Atler first level of the SE tree is created, the second level is created by

finding the similarity between every two items in the first level. If the similarity is equal

to or greater than the user specified threshold, then that itemset will be added in the tree

considering it as a frequent itemset.

Frequent Iteiilsei Generation Using Cosine hfeasure 48

Chapter 5 Iniplenzentafion

int Generate - frequent-2-itemset()

{

int nfis=O;

node* outemode=start;

node* innernode;

node* temp;

float similarity;

while(outemode->rightgtr!=O)

't
node* strt=O;

node* prs=O;

int flag=];

innernode=outernode->rightgtr;

char* newtag=new char[3];

while(innemode > 0)

't
strcpy(newtag,outernode->node-id);

strcat(newtag,innemode->node-id);

freecache();

intersectioninbuffer(outemode,i~memode);

int numerator=size-filtedbuff0;

int product= (outemode->count-l)*(innernode->count-1);

int denon~inato~sqrt(product);

i f(denominat0~0)

{

goto nextnode; }

similarity (numerator* I .O) 1 denominator;

Frequent Itenuet Gerieratiorl Using Cosine Measure 49

prs = strt;

copybuffer(strt,size-filledbuff(),newtag);

freecache();//cache is freed after it is copied to node

flag=O;

nfis++;

1
else{

temp = createnode();

cout<<"Similar NOde="<<newtag<<" "<<similarity<<endl;

copybuffer(temp,size - filledbuffo~ewtag);

freecache();

prs->rightgtr = temp;

prs = temp;

nfis++;

1
)//if end

nextnode : innemode = innemode->rightqtr;

) / / i~u~er while loop

}//outer loop

Freqtrent Itelmet Generation Using Cosine Measure 50

return nfis;

I

5.3.8 Finding the Next level

The next level or the third and other subsequent levels are found the

same way as the second level is made. However, it uses the previous level to find

similarity between every 2-itemsets and hence generate the next level.

int Generate-next-frequent-itemset (void){

node* outernode;//=fnode;

int ind=O;

/I outeniode=Generate-frequent-2-itemset();

int nfis=O;

while((outemode=~iodeadd[indJ)!=NULL)

{

cout<<"outer nodeU<<outernode-mode - id<<endl;

hid++;

node* innernode;

node* temp;

float similarity-0;

delay(100);

while(outernode->rightjtr!=O)

{

cout<<"entered nex level"<<endl;

node* strt=O;

node* prs=O;

int flag=l;

innemode=outernode->right_ptr;

- ~p

5equerrt Iternset Gerleratiorz Using Cosirre Mecrsure 51

char* newtag=new char[lO];

while(innemode > 0)

{

strcpy(newtag,outemode->node - id);

char* src=new cliar[lO];

strcpy(src,innemode->node-id);

cout<<"src"<<src<iendl;

char* str-bit=new char[lO];

SubString(src,str - bit,get-stringsize(innemode->node-id)

1,get-stringsize(innem0de->node-id));

cout<<"SRC IN NEX LEBVEL-->>"<<src<<endl;

printf("STR-B1TTT%sW,str-bit);

cout<<"outemode" <<newtag<<endl;

strcat(newtag,str-bit);

cout<<"NEW TAG INNEX LEVEL---->>>"<<newtag<<endl;

freecache();

intersectioninbufferl (outernode,innemode,temp);

int numerato~size-filledbuff(); -

c o u t < < " i n t i - s c t n = ~ < i n t r s c t n < < " t a g g e n d l ;

int product= (outemode->count-l)*(innemode-~ount-l)*(temp-~count-l);

int denominator = sqrt@roduct);

if(denominator==O)

{

tout<<" node not found"<<endl;

goto nextnode;

1
similarity= (numerator* 1 .O) / denominator;

Freqtrenf Itenwef Gener-ation Using Cosine Measure 52

{

strt=createnode();

prs = strt;

copybuffer(strt,size-filledbuff(),str-bit);

cout<<"node tag="<<& - bit<sirnilarity<<endl;

freecache();//cache is freed after it is copied to node

flag=O;

nfist t ;

)else

{

node* temp = createnode(); -

copybuffer(ternp,size-filledbuff(),str-bit);

cout<<"node tag="<<str - bit<Qiniilarity<<endl;

freecache();

prs-zrightqtr = temp;

prs =temp;

nfis++;

I
][if end

nextnode : innernode = innernode->rightgtr;

)//inner while loop

outernode->downqtl-strt;

outemode=outemode->right@;

)//outer loop

1
return nfis;

Frequerrt Ifemset Generation Usir~g Cosirre Measure 53

5.3.9 Selecting the Previous FISIcandidate

This module will select the candidates for the third level, sot that it is

easy to generate the 3-itemset, i.e. it will use 'ab' and 'ac' nodes in the second level to

create the first node in the third level i.e. 'abc' after combination of these two nodes.

Basically, it will return the starting pointer of the linked list i.e. the address of the first

node in the linked list of the respective node. For example, under the node 'a', node 'ab'

and node 'ac' if frequent are the children of the node 'a'. Thus they form a linked list and

this module will return the address of the first node in the linked list i.e. 'ab' and pass

this address to the Generate-next-frequent-itemset0 module which will then concatenate

the nodes 'ab' and 'ac' to geuerate next level node 'abc'.

void selectqrevious-FIS(){

stack s;

Ilnode* start-node;

clearnodeadd();

int ind=O;

node* down - hlk;

node* cunent-node = start;

if(current-node->downgtr = 0)

current-node = current-node->rightqtr;

else {

s.push(current-node->rightgtr);

current-node = current-~iode->downgtr;

down-link= current-node;

Fwqctei~t Iternset Ger~eratior~ Using Cosirle Measure 54

while ((s.stackisnotempty()=l) 11 (current-node->rightqtr !=O) 11 (current - node-

>downqtr !=0))

down-link = current-node->downqtr;

current-node = current-node-zdowngtr;

)else

{

if(current-node->rightjtr != O)

current-node = current-node->right*;

else{

if((down_link=O) &&(s.stackisnotempty()=l))

{

while((cunent-node=s.pop())&&(cument - node->downjtl=O)&&

(current-node->rightgtr+))

{

if(s.stackisnotempty()=O)

return;

)//while end

)else

return;

if((down-link != O)&&(current - node->downjtr=O)&&(current-node-

>rightgtr=O))

{

Frequerlt Iferilset Generation Using Cosine Measure 55

whiie((current-node=s.pop())&&(current-node-~down~t~O)&&(cu~ent~node-

>rightgti==O))

{

if(s.stackisnotempty()=O)

retum;//tl~en exit from algorithm

)//while end

)else

return;

)//if end

Frequerlt Itemet Generatio11 Using Cosirie Measure 56

6. Results

Following is the example of the sample database on which the Cos-FIS generator

algoritlun was applied. This sample database is generated by using the ARtool.

Fig 6.1 ARtool Graphical User Interface

Freq~terrf Itermef Gerlerafion Using Cosine Measure 57

Chanter 6 Results

Fig 6.2 Generating a synthetic database

By using the tools menu in the ARtool application's user interface, user can generate a

synthetic database i.e. TI000 AT10 1100 P50 AP5.db in our case. - - - -

Frequer~t Iternsef Generatiorz Using Cosine Measure 58

Chapfer 6 Results

BEGIN - DATA

1 3 5

3 4 6

1 2 3

END-DATA

Fig 6.4 Newdatabase.db

6.1 Conversion of Database file into ASCII file

The 'Newdatabase.db' file is converted to ASCII file 'Newdatabase.asc' in the

same folder where the ARtool application resides by typing the following command in

the MS-DOS Cortwmnd Prompt:-

java db2asc Newdatabase.db Nervdatabase.asc

6.2 Conversion of ASCII file into Text file

The ASCII file 'Newdatabase.asc' is converted to text file 'Newdatabase.txt'

by using the C++ code. This file is in the form of 0's and 1's which shows the absence or

presence of a certain item in columns where each row represents a specific transaction

respectively.

Fig 6.5 Newdatabase.asc file

Frequent Itemset Generation Using Cosine Measure 59

Fig 6.6 Newdatabase.txt file

6.3 Working of the Cos - FIS generator algorithm

The Cos-FIS generator algorithm begins by scanning the text format of the

database in the form of vertical layout and keeping track of the support count of all the

items in the cache i.e. the total number of transactions containing the item.

Transaction A J

Table 6-1 Vertical data Layout of the Synthetic Binary Database

6.3.1 Finding Support count

While the database scan is being perfonned, the database-scan0

module keeps track of the support count of each item through the JII-brrffO function

Frequent Ifernset Generation Using Cosine Measure 60

Chauter 6 Results

inside it. The support count refers to the number of 1's that come in the column of an .
item or the presence of the item in a certain transaction i.e. the number of transactions

containing a specific item. The support count is saved in cache or buffer in our code. For

example:- The support count of item 'A' is 2 .

6.3.2 Finding the First level of the SE tree

After the database in text format is scanned, the first level of the Set

Enumeration tree is created through the inodule database - scan(). In this module first a

node is created and then the column of data set is scanned according to the pointer

Currerrtgtr with the help of a function named fill-buff, which requires record - length

parameter, thefilcbrgff fills the buffer. This buffer is then copied by a function named

copy-buffer in to newly created node info field. This function takes the pointer to newly

created node and size of the buffer and node tag to be copied into that node. The created

node is then linked with the previous node and in this way the first level of set

enumeration tree is created.

Fig 6.7 First level of SE tree

However, the output in C++ is as follows where each node or item. has the same support

in this case:-

Frequent ltenlset Gener.atior7 Using Cosine Measure 6 1

Cltoater 6 Results

node start

1

3

node end

NODE no = b

$$$$$$$$$$$COUNT$$$$$$$$$I

node start

3

node end

NODE no = c

$$$$$$$$$$$COUNT$$$$$$$$$3

node start

1

2

3

node end

NODE no = d

Frequent Itetnset Gerreration Using Cositre Measure 62

NODE no = e

$$$$$$$$$$$COUNT$$$$$$$$$3

node start

1

2

3

node end

NODE no = f

$$$$$$$$%$$COUNT$$$$$$$$$2

node start

1

2

Frequettt Iternset Gerleratiot~ Using Cosirle Measure 63

node end

Fig 6.8 First level of SE tree in C++ output

6.3.3 Finding the Second level of the SE tree

The second level of the SE tree is created using its first level, by finding

Cosine similarity between every two items in the first level. Each node in the first level

has a subtree beneath it which is stored as a linked list i.e. if Node 'a' has node 'ab' and

node 'ac' beneath it, then this forms a sub-tree as well as the linked list where the starting

node is 'ab'. The support count found earlier in the first level formation is used in the

Cosine measure formula to find the similarity. The Cosine formula is as follows:-

Where P(A), the probability of the item 'A' is found by dividing the support count by the

total number of transactions. i.e. 216 =0.3.

ARer putting all the relevant values into the Cosirle Sinrilarify measur-e formula, if the

similarity found is greater than or equal to the user specified sinlilarity threshold, then the

iteniset is said to be frequent and added in the SE tree as nodes of the second level.

Following is an example of itemsets in second level where the list of numbers shows the

transactions containing the respective itemset:-

Starting Similar node= de >>> Similarity-1

Freqrrerrt Itentset Generatio11 Usii~g Cosine Measure 64

Chapter 6 Results

node start

1

2

3

node end

Subsequent Similar node= df >>> Similarity- 1

node start

1

2

node end

Fig 6.9 Second level of SE tree in C++ output

6.3.4 Finding the Next level of the SE tree

Aftcr creating the second level of the SE tree, the subsequent levels are

created using the previous level. For example, the third level is created using the itemsets

of the second level. Each node in the first level has a subtree beneath it which is stored as

a linked list i.e. if Node 'a' has node 'ab' and node 'ac' beneath it, then this forms a suh-

tree as well as the linked list where the starting node is 'ab'. The selectqreviorrs-FISO

module will select candidates for the third level, by returning the address of the starting

node in every linked list and passing this address to the

Freperrt Iter~iset Generation Using Cosine Measure 65

Cha~ter. 6 Results

Generate-rrcv!fueque~ri~ite~irsetfl module. This module will then use the starting

address to concatenate all the nodes in the respective linked list and hence construct the

node(s) for the next level.

Following is an example of the third level nodes or itemsets where the nodes in the
.. : second level are concatenated i.e. 'cd' and 'ce' are combined to fonn 'cde':-

entered next level

Src ce

SUBSTRING;I'SRC IN NEX LEVEL-->> ce

*****outemode*****cd

NEW TAG INNER LEVEL---->>> cde

Src cf

SUBSTRING; k SRC IN NEX LEVEL-->>cf

*****outemode*****cd

NEW TAG INNER LEVEL---->>>cdf

...
Frequent Itenwet Ger~erarion Using Cosine Measure 66

Clraoter 6 Results

Src gi

SUBSTRING; k SRC IN NEX LEVEL-->>gi

*****outemode*****gh

NEW TAG INNER LEVEL---->>>ghi

Src gj

SUBSTRING; k SRC IN NEX LEVEL-->>g

*****outemode*****gh

NEW TAG INNER LEVEL---->>>ghj

entered next level

src gk

SUBSTRINGjSRC IN NEX LEVEL-->>gk

*****outernode*****gh

NEW TAG INNER LEVEL---->>>ghk

Fig 6.10 Third level of SE tree in C++ output

Frequent Iteniset Generation Usir~g Cosirie Measure 67

Cl~auter 6 Results

Frequent Itemset Generatiorl Using Cosine b4easure 68

Chapter 7

Cl~auter 7 Co~dusion and Future Enlrartcement

7. Conclusion and Future Enhancement

In this section, the conclusions and future enhancements to the Cos-FIS generator

algorithm will be discussed. This algorithm was implemented on the Pentium machine

with the windows Xp version. However, further enhancements to the algorithm can be

performed to increase efficiency of the software in order to cope with the slow processing

and limited speed of the system.

7.1 Conclusion

All the previous techniques and algorithms of generating frequent itemsets use

support and confidence measures as well as have some drawbacks such as multiple

number of scans and large candidate itemsets. However, the Cos-FIS generator algorithm

uses a new clustering measure 'Cosine measure' to generate frequent itemsets which has

certain advantages i.e. there is no candidate generation using this measure. Also,.this

algorithm uses the vertical data format or vertical data layout for scanning the database

which gives the benefit of a single scan of the database. This also establishes that the

clustering measures can also be used for association rule mining. Furthermore, the same

FIS that the user gets by applying Cosine sinlilarity measure on transactional dataset, can

be obtained by using the Apriori algorithm.

7.2 Future Enhancements

In this thesis, the application of the Cosine measure was studied as well as this

measure was implemented for generation of frequent itemsets. The emphasis in this thesis

was to observe that apart from support measure, other measures do exist and these can be

uscd to generate FIS. In future. different clustering measures can be compared to decide

which one is the best candidate for FIS gencration in terms of accuracy, time and memoly

consumption. Moreover, the Set Enumeration tree and vertical database layout to arrange

frequent itemsets were implemented. Therefore, the implementation of the algorithm in

this thesis also shows that clustering measures can also be used for the creation of

frequent itemsets. Also, the SE tree in this thesis could be represented graphically. In

Frequent Iternset Gerieratiorl using Cosine Measure 69

L I I U , ~ ~ I Concl~rsion and Fz~ture Enkancernerzt

future the Cos-FIS generator algorithm will be compared with the established algorithms
e

of association rule mining for efficiency purpose.

Frequent Itemset Generation using Cosine Measure 70

I.YYC,IYII n References

References *

[I] R. Agrawal, T. Imielinski, and A. Swami, "Mining Association
Rules between Sets of Items in Large Databases," ACM SIGMOD Conf.
Management of Data, May 1993

[2] A. Savasere, E. Omiecinski, and S. Navathe, TMAn Efficient Alaorithm for
 ini in^ Association Rules in Large Databases," Proc. 21st Very.Large ba t a Bases
Conf., 1995.

[3] Toivonen, H.1996, sampling large databases for association rules. In
Proc.22nd VLDB Confrence, Bombay, pp. 134-145

[4] Bayadro, Rj . 1998 Efficiently mining long patterns from databases. In pro.
ACM-SIGMOD Int Conf on management of data,~p.85-93

[5] M.J. Zaki, S Parthasarathy, M.Ogihara, "New Algorithms for fast discovery of
Associations Rules", Third lnt'l Conf. Knowledge Discove~y and Data mining, Aug
,1997

[6] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 2004.

[7] Bart Goethals SAC', March 14-17, 2004, Nicosia, Cyprus "Memory issues in
Frequent Itemset mining".

[a] P. Cosine. Nouvelles recherches sur la distribution florale. Bulletin de la Societe
Vaudoise de Sciences Naturelles, 44:223-270, 1908.

[9] Frans coenen, Graham GoulBoume, Paul Leng "Tree Structure for Mining
Association rules" July 17 2002.

[lo] Rymon, R.1992, search through systematic set enumeration. In Proc 3'd Int'l
Conf.on principles of knowledge Representation and reasoning, pp 539-550

[I l l M.S.H Khiyal, S Rahman, A Salam, D Khan. "Similarity based mining for
finding frequent itemsets". International Conference on Computers.
Communications and Systems.(lCCCS ? Nov ,2007) south Korea daegu university.

[I21 Pang-Ning Tan, Vipin Kumar, Jaideep Srivastava "Selecting the right
interestingness measure for association patterns" 2002.

Frequent Itenrset Cer~eratior~ Using Cosirle Measure 70

ARtool v1.1.2 - Associatioh Rule Mining Algorithms
i *

and Tools

B-1 Introduction

ARtool is a Java application for mining frequent itemsets and association rules in binary
databases. ARtool is free sofhvare distributed under the GNU General Public License.
ARtool uses a custom format for its database files (which will be henceforth referred to
as the .db fonnat and is identical to the fonnat used in ARMiner). The asc2db and db2asc
are utilities that allow the conversion of a .db file to a specially fomatted ASCII file (we
will refer to this as .ax) and respectively the conversion of a . a x file into a .db file. The
.asc files can be easily read and modified with any decent ASCII editor.

B-2 Description and usage of the .asc format

A small example of supermarket data can be taken. Suppose the items sold by a (very.
very small) shop are green apples, red apples,oranges, bananas, and grapes. Also suppose
that in this morning user had three customers, one bought geen apples and grapes, one
bought only oranges, and 'the last one bought oranges and gapes. This activity can be
represented in the .asc fom~at as follows:

1 geen apples
2 red apples
3 oranges
4 bananas
5 gapes
BEGIN-DATA
1 5
?
3

3 5
Em-DATA

There are two distinct parts of this file, the first one contains a listing of all the i t e m user
can sell, or otherwise said,,of all the items that could participate in a transaction. This pal-t
looks is:

1 green apples
2 red apples
3 oranges
1 bananas
5 grapes

Freq~~ent Iternset Generation Using Cosine Measure 71

The format is pretty simple. It must consist of a positive number followed by a string
(which can contain blank spaces). It is important that the numbers be assigned in
increasing order starting fron11. Empty lines are allowed to appear in this section. This
section enun~erates all entities described by the data and between which ARtool will later
be used to look for association rules.

The second part consists of the actual data:

BEGIb-DATA
l 5
3
3 5
END-DATA

In our case there were 3 transactions and these are each represented on a separate line.
The first transaction involved green apples and grapes and they are represented by the
numbers associated in the first section, that is I for green apples and.5 for grapes. The
user can check the other transactions as an exercise. Note that this section must be
enclosed between a BEGIN DATA and END-DATA lines. Anything appearing after the
Eh9-DATA line will be iGored. Blank lines are allowed to appear in this section. Note
that although the numbers appearing in each line are sorted, this is not required by the
format. The user can list the numbers in any order and the file can still be processed
correctly, however it is suggested to always list the numbers in a transaction in increasin:
order, because in this way asc2db will process the file more efficiently.

This concludes the supennarket data example as well as the description of the . a x
format. However most of'the time the data will not be similar to the one used in this
example. If that happens, then the user will have to try to f i g r e out some way in which
he/she can express their data in the . a x format. To give an idea, following is another
example:

Suppose the user has some sort of census data like the one below:

SSN# Age Sex Man-ied Num kids Income
006 26 M No 0 25600s
345 54 F Yes 2 55000$
743 37 M Yes 1 80000$

What can be done with it? Let's look at each colun~n:

SSW: this is unique for each entry, there is no sense to look for association rules
involving SSN#, at least not in this data, since each SSN# appears only once in the whole
data. So we can simply ignbre this field for mining purposes.

Age: this attribute can take a variety of values. ARtool cannot handle such attributes
easily, in fact it only considers binary attributes. The user needs to discretize this

Freqrrerrt Iterrlsef Gerzerafion Usirrg Cosirre hfeasure 72

attribute, replacing for example ages 0-21 with "very young age", 22-35 with "young
age", 35-55 with "middle age", etc

Sex: this has two values: "male" and "female", so user could create two attributes out of
it.

Married: again we can create hvo attributes: "married" and "not manied"

Nun1 - kids: this also has to be discretized, maybe in "no kids", "one kid", "several kids".

Inconle: we could also discretize this into "small", "average", and "high".

The discretization should be made such that it will identify clearly the ranges that present
interest for the person who wiII do the mining of this data.

With these changes we could represent the above data in .asc fom~at as:

1 very young age
2 young age
3 middle age
3 old age
5 lnale
6 female
7 manied
8 not manied
9 no kids
10 one kid
I1 several kids
12 small income
13 average income
14 high income
B E G X D A T A
2 5 8 9 1 2
3 6 7 11 13
3 5 7 10 14
EhQ-DATA

From this file the user can now create a .db file and then mine it using ARtool or
ARMiner.

B-2-1 Using asc2db

The ascZdb program can be used to convert a correctly formatted . a x file to ARtool's .db
fonnat. Suppose user has a sample .asc file. Then hekhe can create a .db file from it by
typing:

Frepent Ife~izset Generation Using Cosirze Measure 73

java asc2db sample

which will create a sample .db file. If the user wants the .db file to have a different name
then he/she can specify it o'n the command line as a second parameter:

java asc2db sample artdata

which will now produce an artdata.db file out of the sample.asc input. Note that the
extensions .asc and .db do not have to be specified on the command line, they are
automatically appended by asc2db.

B-2-2 Using db2asc

The db'asc prog-am converts a .db file to .asc format. This can be useful if the user Lvants
to read or verify the content of a .db file. The user can also use it to modify by hand the
contents of a .db file by first converting it to a .asc file, then editing the . a x file, and
finally converting it back to a .db file. db2asc is used in a similar way to its counterpart.
asc2db. If the user needs to convert the anndatadb database to .asc format, then helshe
can type:

java db2asc artdata

\\.hich will produce an armdata.asc file. If the user wants a different name for the output.
then you can pass it on the command line as a second argument:

ja1.a dblasc artdata arttxt

which will produce an arttxt.asc file representing the contents of the artdata.db database.

Again, the extensions .asc and .db should not be entered on the command line, since they
are automatically appended by db2asc.

B-3 How to install and execute ARtool

The user needs to have Sun's JDK or JRE installed, probably at least version 1.3.

In order to install ARtool, the user needs to unzip the ARtool binaries to some directory
on hisher hard drive.

To run the ARtool GUI, the user needs to type:

java -jar ARtooLjar

or double-click on ARtooLjar (works only if JRE is installed).

Frequent Zte~nsef Generation Using Cosine Measure 74

If ARtool luns out of memory during some niining operation (the user can see an
OutOfMemoryException message), then helshe needs to allocate more memory
to the JVM. In the case of Sun's JDK hetshe can do this by typing:

java -Xmx512M -jar ARtool.jar

which will let JVM use 5~12MB of memory, assuming of course that the user has that
much menlory installed.

If the user wants to use the command line utilities, then helshe will have to add laur.zip to
their class path. On Windows the user needs to have in hisher autoexec.bat a line like
this:

SET CLASSPATH=.;C:\ARTOOL\BlN\LAUR.ZIP

If the user uses Unix, then helshe will have to add something like

setenv CLASSPATH .:-/ARtool/bin/laur.zip

to their shell configuration file.

Freqnent Iterrrset Gerzeration Using Cosine hfeasftre 75

Frequent Itemset Generation Using Cosine Measure

Sobia Malik
Department of computer science

International Islamic University (IIU)
Islamabad, Pakistan.

sniz techno~.yahoo.com

ABSTRACT

Generating frequent itemsets (FIS) is the
first step of association rule -mining.
Existing techniques/algorithms for
generating FIS used the well known
support and confidence measures.
However, we introduced a novel
algorithm which makes use of a
clustering measure i.e. Cosine measure
for the generation of FIS. This algorithm
presents the FIS in the form of a Set
Enumeration tree in addition to the use
of vertical database layout for clustering
the items together. Furthermore, the
results show that the same FIS that the
user gets by applying Cosine similarity
measure on transactional dataset, can be
obtained by using the Apriori algorithm.

Keywords: Association rule mining,
Frequent Itemsets, Cosine similarity
measure.

1. INTRODUCTION

Dala Mining is the process of running data
through sophisticated algorithms to
uncover meaningful patterns and
correlations that may otherwise be hidden.
These can be used to help user understand
the business better and also exploit to
improve future perfonnance through
predictive analytics. In data mining,
association rule mining plays a vital role
which discovers interesting ' relations
between variables in large databases.

Piatetsky-shapiro describes analyzing and
presenting strong rules discovered in
databases using different measures of
interestingness. For example, the
infonnation that customers who buy
burgers also tend to buy coke at the same
time is represented in association Rule
below:

Where burger is the antecedent and coke
is the consequent of the rule. An
association rule has two numbers that
express the degree of uncertainty about
the rule namely Srrpport and
Conjiderrce. Researchers have
discovered numerous techniques to find
FIS, mostly based on these measures.
However, we introduce a new clustering
measure for the same purpose known as
"Cosirre" measure. While clustering,
data points are arranged in a way that the
points nearcst to cach othcr arc placed in
one cluster. This can be done by
similarity or dissimilarity measures.
Similar data items will be nearest to each
other and dissimilar will be at distance
far apart. Cosine similarity measure is
one of the clustering measures. The
purpose of clustering measure is to join
together objects into successively larger
clusters, using some measure of
similarity or distance. A typical result of
this type of clustering is the hierarchical
tree. Cosine similarity is a measure of
similarity between two vectors of n

dimensions by finding the cosine of the
angle between them, often used to
compare documents in text mining. The
cosine similarity of two vectors (dl and
d2) is defined as:

Where dot(d1, d2) - -

dl[O] *d2[0] +dl [I] *d2[1]. ..

And where Ildlll = sqrt
(dl[O]A2+d1[l]A2...).

2. LITERATURE REVIEW

Apriori is a seminal algorithm
proposed by R.Agrawal[l] h May
1993. It uses prior btowledge of
frequent itemset properties. Apriori uses
breadth-first search and a hash tree
structure to count candidate item sets
efficiently. FP-growth algorithm[6]
proposed by J. Han, J. Pei, Y. Yin, and
R. Mao in 2004 adopts a divide and
conquer strategy avoiding costly
candidate generation. FP-growth tree is
memory resident and requires additional
storage in every node of the FP-tree
(Because of excessive pointers storage in
every node) especially when the FP- tree
is too large to fit in main memory.
Partition algorithm was proposed by A.
SavasereIZ] in 1996. This algorithm is
used for partitioning the data to find
candidate itemsets. A partitioning
technique can be used that requires just
two database scans to mine the frequent
itemsets. The problem of accurately
estimating the number of partitions
given the available memory, however,
needs further work. Sampling approach
was proposed by Toivonen[3] in 1996.
This algorithm is used for mining on a
subset of the given data. The basic idea

of the sampling approach is to pick a
random sample S of the given data D,
and then search for frequent itemsets in
S instead of D. In this way, there is some
tradeoff of accuracy against efficiency.
MarMiner (Bayardo, 1998)[4] is
another algorithm for finding the
maximal elements. It uses Rymon
R(1992)[10] "search tluough systematic
set Enumeration': mechanism and
efficient pruning techniques to quickly
narrow the search. ECLAT
(Equivalence CLASS
transformation)[5] is an algorithm
developed by M.J Zaki, which
transforms a given data set of
transactions in the horizontal data format
of TID-iferrwet into the vertical format of
item-TID-set. The above literature shows
that association rule mining is facing a
number of problems currently such as
multiple scans of database and
generation of large candidate itemsets
which needs to be solved.These
problems cam be solved by using
clustering measures such as Jacquard
and Cosine measure etc. SB-Miner[ll]
developed by S.Rahman is novel
algorithm to find FIS based on clustering
measure i.e. jacquard similarity measure.
Jacquard similarity measure is based on
calculating the distance between
itemsets.

3. THE COS-FIS GENERATOR
ALGORITHM

The Cos-FIS generator algorithm uses
the clustering measure i.e. Cosine
measure to generate frequent itemsets.
Therefore, this algorithm makes use of
the SE tree which arranges the k-
itemsets according to their specific
levels.

3.1 MAJOR MODULES

Division of any project into modules
adds to its efficiency and overall
performance. Hence this project is
divided into following modules:-

1. Database conversion.
2. File reading.
3. Copying cache to node.
4. Frequent itemset generation.

Fig 1 Architectural Diagram

3.2 THE SET ENUMERATION TREE

The Set Enumeration tree is a lattice
structure used to enumerate all possible
itemsets. In general, a data set that
contains k items can potentially generate
up to 2•‹K-1 frequent itemsets, excluding
the null set. Because k can be very large
in many practical applications, the
search space of itemsets that need to be
explored is exponentially large. In this
paper, the SE tree as illustrated in Fig 1
is the data structure used to represent the
frequent itemsets in a lexicographic
order. Each node represents a frequent

itemset and each level represents k-
itemset i.e. level one will have' l -itemset
and level two will have 2-itemset and so
on. Every subtree as shown in Fig 1
represents an equivalence class of its
root node.

Defirritiorr I [Equivalence class]

Equivalence class of node A consists of
all elements containing node A. For
example, following is the equivalence
class of node A:-

A = {AB, AC, AD)

Fig 2 Set Enumeration Tree

3.3 THE NODE STRUCTURE OF SE
TREE

Each node in SE tree represents a
frequent itemset. Each node has a unique
node id field, which shows the name of
the node. Node has a count field
indicating the total number of
transactions containing that frequent
itemset. There are two node pointers
down and right node pointer pointing to
the node that is linked to current node in
downward position level-wise and to the
right position item-wise respectively. In
other words, the down pointer points to
the node in the next level where each
level represents the k-itemset and the
right pointer points to the node of the
same level. Moreover, there is a
t rausact iou~id~lis t field, which actually
represents the transaction IDS of
transactions containing the particular FIS
represented by the node - id of the node.

3.4 CREATION OF THE SF TREE

A brute force approach for finding
frequent itemsets is to determine the
support count of every candidate itemset
in the lattice structure. To do this, we
need to compare each candidate against
every transaction. If the candidate is
contained in the transaction, its support
count will be incremented. The
algorithm shown in Fig 2 creates the SE
tree for the purpose of generation of
frequent itemsets. The Set Enumeration
tree(SE tree) is created in a very
systematic way. It begins by execution
of the first module of the code i.e.
database-scan. Jn this module, first
node 'a' is created and then the column
of dataset (text file) is scanned according
to a pointer, hence filling the buffer with
the support count. If the support count of
the node is greater than or equal to the
minimum user specified threshold, then
the node is said to be frequent and hence

is added in the SE tree. After the buffer
is filled with count of the node using
fill-buff function, it is then copied into
the info field of .newly created node
using copybuffer module. It is then
linked with the previous node. This way
the first level of SE tree is generated.
The second level of SE tree is obtained
by execution of the
Generate frequent-2-itemset module.
This levelis created by finding Cosine
similarity between every two itemsets or
nodes present in the first level of SE tree
i.e) between node 'a' and node 'b'. Only
those itemsets whose similarity is greater
than or equal to the user supplied
minimum similarity threshold are
declared frequent and are linked in the
second level of the SE tree in
lexicographic order. And the same
process is repeated for levels 3 and 4:

'

Each equivalence class is represented in
form of a linked ' list.The
selectgrevious-HS module selects the
FIS generated in the previous level and
returns address of the starting node in
the linked list of equivalence classes.
Furthermore, the
Generate-next-frequent-itemset
nlodule uses these addresses to generate
the next subsequent levels.

This question can be answered by
applying the Cosine similarity measure
on the itemset as follows:-

Minimum threshold = 0.2
AUBUC = A.B.C

P(A.B.C) - 219
P(A) = 619
P(B) = 719
P (C) = 619

 IS^^^;,,, = 219 I d6/9.J7/9.d6/9 .
= 0.22 10.59
= 0.3

Since 0.3 > 0.2, therefore the {A, B, C)
itemset is frequent.

Algorithm Cos-FIS-generator

Ds: Transactional Dataset
a : Threshold

O U ~ D U ~ :

FIS: Frequent itemsets
0 : No. of FIS after each

iteration

Step I : Scan transactional dataset
DS.
Step 2: Construct first level of Prefix
tree.
Step 3 :Construct second level of
prefix tree by finding similarity
between every 2 itemsets in the
previous level of tree as shown in
step 4.

Step 4: =

Generate-frequent-2_itemset(FIS, a)
by using the Cosine similarity
nleasrtre

Repeat Step 5 to 7 until = 0.

Step 5: Scan each sub tree in the last
level of prefix tree.
Step 6: Store starting node's address
of each sub tree in S.
Step 7: =
Generate next-frequent-itemset
(S,FIS, a).
Step 8: Return FIS.

Fig 3 Pseudo code of the COS-FIS
generator algorithm

of scans and large candidate itemsets.
However, the Cos-FIS generator
algorithm uses a new clustering measure
'Cosine measure' to generate frequent
iternsets which has certain advantages i.e.
there is no candidate generation using this
measure. This also establishes that the
clustering measures can also be used for
association rule mining. In f~~ture , different
clustering measures can be compared to
decide which one is the best candidate for
FIS generation in terms of accuracy. time
and memoq consumption. Also, the SE
tree in this thesis could be represented
graphically. In future the Cos-FIS
generator algorithm will be compared with
the established algorithms of association
rule mining for efficiency purpose.

REFERENCES

[I] R. Agrawal, T. hielinski, and A.
Swami, "Mining Association

Rules between Sets of Items in Large
Databases," ACM SIGMOD Conf.
Management of Data, May 1993

[2] A. Savasere, E. Omiecinski, and S.
Navathe, TMAn Efficient Algorithm for
Mining Association Rules in Large
Databases," Proc. 21st Very Large Data
Bases Conf., 1995.

[3] Toivonen, H.1996, sampling large
databases for association rules. In
Proc.22nd VLDB Confrence, Bombay,
pp. 134-145

[4] Bayadro, Rj. 1998 Efficiently
mining long patterns from databases.
In pro. ACM-SIGMOD Int Conf on
management of data,pp.85-93 -

[S] M.J. Zaki, S Parthasarathy,
M.Ogihara, "New ~ l ~ o r i t h m i for fast
discovery of Associations Rules",
Third Int'l Conf. Knowledge
Discovery and Data mining, Aug ,1997

[6] J. Han, J. Pei, Y. Yin, and R.
Mao. Mining frequent patterns without
candidate generation: A frequent-
pattern tree approach. Dafa Mining
and Knowledge Discovery, 2004.

[7] Bart Goethals SAC', March 14-17,
2004, Nicosia, Cyprus ''Memory issues
in Frequent Itcmset mining".

[8] P. Cosine. Nouvelles recherches
sur la distribution florale. Bulletin de
la Societe Vaudoise de Sciences
Naturelles, 44:223-270, 1908.

[9] Frans coenen, Graham
GoulBoume, Paul Leng "Tree
Structure for Mining Association
rules" July 17 2002.

[lo] Rymon, R.1992, search through
systematic set enumeration. In Proc 3d
Int'l Conf.on principles of knowledge
Representation and reasoning, pp 539-
550

[I l l M.S.H Khiyal, S Rahman, A
Salam, D Khan. "Similarity based
mining for finding frequent
itemsets". Inttrnationnl Conference on
Computers. Communications and
Systems.(lCCCS 2 Nov .2007) south
Korea daegu univcrsity.

[I21 Pang-Ning Tan, Vipin Kumar,
Jaideep Srivastava "Selecting the right
interestingness measure for association
patterns" 2002.

