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Abstract 

Traditionally, business analysts have perfonned the task of extracting useful information 
fl-om recorded data, but the increasing volume of data in modem business and science 
calls for computer-based-approaches. As datasets have grown in size and complexity, 
there has been a shift away from direct hands-on data analysis toward indirect, autoniatic 
data analysis using more complex and sophisticated tools. The modem technologies of 
codputers, networks, and sknsors have made data collection and organization much 
easier. However, the captured data needs to be converted into information and knowledge 
to become useful: Data Mining is the process of running data through sophisticated 
algorithms to uncover meaningful patterns and correlations that may otherwise be hidden. 

Association rule mining finds interesting associations andtor correlation relationships 
anlong large set of data items. Association iules show attributes value conditions that 
occur frequently together in a given dataset. A typical and widely-used example of 
association rule mining is Market Basket Analysis. Association rule algorithm finds 
associations behveen the frequently sold items, so that the shopkeeper could put such 
items together for increased sales. 

Our devised algorithm, Cos-FIS generator has certain advantages over previous 
algorithms such as it scans the database only once since it uses the vertical data layout of 
the database while scamling the database. Hence, not only the inultiple scans of the 
database, but also the candidate generation was also avoided in our algoritlu~i. Also, this 
algoritluu makes use of clustering measure known as "Cosine measure" rather than 
using the Support or confidence measures. Moreover, the algorithm was tested on the 
s)xthetic database. 
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I .  Introduction 

Once the user got analysis, reporting, and dashboards deployed, it's time to take business 

intelligcnce (BI) to the next level by adding data mining and advanced analytics. This is a 

level o f  B I  cscellence that niany organizations never manage to evolve to, however the 

importance o f  pushing ahead with advanced capabilities cannot be undel-estimated - they 

can provide a truly sustainable competitive advantage and enable user's organization to 

~naximize both its efticict~cy and effectivcness. 

Data Mining i s  the process o f  running data through sophisticated algo~ithlns to uncover 

~neaningful pattans and co~~elations that may otherwise be hidden. These can be used to 

help user understand the business bctter and also exploit to improve future perfonnancc 

lhrough predictive analytics. For example, data mining can wan1 user there's a high 

probability a specific customer won't pay on time based on an analysis o f  customers with 

similar charaete~istics. 

Data mining identilies trends within data that go beyond simple analysis. Tllrough the use 

o f  sophisticated algoritli~ns. non-statistician users have the opportunity to identify key 

attributes o f  business PI-ocesses and tal-get opportunities. However. abdicating control o f  

this process from the statistician to the machine may result i n  false-positives or no useful 

~esults at all. 

Altliougl~ data mining is a relatively new tern. the technology is not. For many yeal-s, 

businesses have used powerful computen to run through volumes o f  data such as 

supennarkct scanner data to produce market research reports (although reporting is not 

always considered to bc data mining). Continuous innovations in  computer processing 

powcr. disk storage. and statistical software are dramatically increasing the accuracy and 

usefulness o f  data analysis. 

Thc temi data mining is often used to apply to the two separate processes o f  knowledge 

discove~y and prediction. Knowledge discovery provides explicit in fo~~nat ion  that has a 

readable f o m  and can be understood by a user (e.g.. association rule mining). 

Forecasting. or predictive modeling provides predictions o f  future events and may be 



Questions such as " i l '  a C L I S ~ O I ~ ~ I -  ~UI-chases product A, how likely is he to purchase 

product B?" and "Mint products will a customer buy if he buys products C and D?" are 

answrrcd by association-lintling algo~ithms. 

Each itcm has a Boolean variable representing the presence or absence of that item. Each 

b~skct can tI1c11 be represented by a Boolean vector of values assigwl to these variables. 

The buying patterns can be represented in tlie fonn of association mles. For example, the 

infom~ation that customels who buy burgers also tend to buy coke at the same time is 

repesrnted in association Rule below: 

An association rule has two numbers that express the degree of uncertainty about the mle 

namcly Support and Confidence. The Suppoll is simply the numbel- of t~ansactions that 

include all items in the antecedent and consequent pans of the rule. Confidence is the ratio 

of the number of transactions that include all items in the consequent as well as the 

antecedent (namely. the suppo~-t) to the number of transactions that include all items in the 

antecedent. For example. if a supelmarket database has 100.000 point-of-sale transactions, 

out of which 2.000 ~nclude both items A and B and 800 of these include item C. the 

association rule "If A and €3 are purchased then C is purchased on the same trip" has a 

support of SO0 transactions (alternatively 0.8% = 8001100,000) and a confidence of 40% 

(=SOOK.000). Association rules are considered interesting if  they satisfy both a minimum 

suppo~l threshold and a nlini~num contidence threshold. Such threshold are user or expelt 

spccilicd. I f  an item set satisfies minimum support, then i t  is fi-equent item set (FIS). 

One of the reasons bchind maintaining any databasc is to enable the user to find 

interesting patterns and trends in the data. For example, in  a supermarket. tlie user can 

figure out \vhicli items are being sold most frequently. But this is not the only type of 

'trend' which one can possibly t h i n k  oE The goal ofdatabase mining is to atitonlate this 

pmcess of  finding interesting patterns and trends. Once this infonnation is available, the 

user can perhaps get rid of the original database. The output of the data-milling process 

should be a "summary" of the database. This goal is difficult to achieve due to the 

va;ue~~ess associated with the tern1 'interesting'. The solution is to define various types of 



trcnds ;ilitl tv look for only tllosc trends in t l x  database. One such type constitutes the 

associalion I-ulc. 

Association rule niining comprises of two steps i.e. fiiiding.fieqnerrt itc~ritset.~ (FLS) and 

g~vrer.irtiri,y ;.~s.r-oritrtio~~ r-nl~~.s. based on the fi-equent itemsets. However. researchers have 

foulld ~~umcruus tcchniqucs to find FIS. mostly based on .wppor? measure. But, in this 

thesis. one of thc similarity measures, known as "Cosirre" measure has been used and 

only the first step of the association ~ u l e  mining has been covered. While clustering data 

points al-e al-ranged i n  a way that the points nearest to each other al-e placed in one cluster. 

This call be done either by similarity or dissi~nilarity measures. Siinilar data items will be 

nearcst to each otl1c1- and dissimilar will be at distance far apart. 

The iwoble~n of association ~ u l e  mining is defined as: Let be a set of 1 1  bina~y attributes 

called itorrs. Let bc a set ol't~nnsactions called the cltrtrrhrrsse. Each transaction in D has a 

unique transaction ID and contains a subset of the items in I. A r d e  is defined as an 

implication ofthe fonn X->Y where Xis  called o~ltc~cc~le~rt (lett-haud-side or L H S )  and Y 

L ~ J I I S ~ ~ I I L ~ I I ~  (right-hand-side or RHS) of the rule. 



To illustrate tlie concepts, we use a small exaniple from the supemiarket domain. The set 

o f  items i s  I = :miIk.bread.hutler,beer; and a small database containing the items ( I  

coiks prcsence and 0 absence o f  an item in a transaction) i s  shown i n  tlie table to the 

~riglll. An czamplc rule for thc supenuarket could be meaning that i f milk and bread is 

bought. customers also buy butter. 

Nolc: this example is extremely small. In practical applications, a lule needs a support o f  

sevel-nl liundlcd itemsets bcfore i t  can be consit1r1-ed statistically significant, and datasets 

o h  contain thousands or millions o f  itemsets. 

To sclect intel-esting I-ules fi-om the sct o f  all possible rules. constraints on various 

measures o f  significance and interest can be used. The best-known constraints are 

minimum thresholds on support and confidence. The s u q p w t  supp(X3 o f  an itemset X i s  

delined as the proportion o f  tramactions in  the data set which contain the itemset. I n  the 

example database. the itemsel [milk.b~-ead; has a support o f  2 / 5 = 0.4 since i t  occurs in  

40% o f  311 transactions (7- out o f  5 transactions). 

The col!fiilorce o f  a rule i s  delined . For example, the rule has a confidence o f  0.2 / 0.4 = 

0.5 in the database. which means that for 50% o f  the transactions containing milk and 

bl-ead the rule is correct. Confidence can be interpreted as an estimate o f  the probability 

P(Y I A). the probability o f  linding the RHS o f  the ~ u l e  i n  transactions under tlie condition 

that lhese transactions also contain the LHS. 

In association ~ u l e  mining. clusle~ing is one o f  the most popular areas. Clustering is a 

process o f  paltitioning a set o f  data (or objects) in  a set o f  meaningful sub-classes. called 

clusters. Clustering i s  a discipline devoted to revealing and desc~ibing homogeneous 

groups ol'entities. that is, clustels. in data sets. 



1.2 Clustering 

Clustering is the ~netliod by which like records are grouped togethel-. Usually this 

is done to g iw the end user a high level view of what is going on in the database. 

Cluskring is son~etimrs uscd to mean segmcntation - which most marketing people will 

tell is uselul for conling up with a birds eyc view of the business. Clustering is a data 

mining (machine leaminy) technique used to place data elements into related groups 

without ntlvance knowledge of the group tletinitions. 

1.2.1 A simple esan~ple of clustering 

A simple example of clustering woultl be the clustering that most people perf01111 

when thcy do the laundl-y - grouping the permanent press, d ~ y  cleaning. whites and 

brightly colored clothes is important because they have similar characteristics. And i t  

turns out they have i~npo~tant attributes in common about the way they behave (and can 

be n~ined) i n  the wash. To "cluster" laundry most of the decisions are relatively 

struightro~ward. There are of course diflicult decisions to be made about which cluster 

the white sh i~ t  with red stripes goes into (since i t  is mostly white but has some color and 

is pennanernt press). When clustering is uscd in business the clusters are often much more 

dynamic - even changing weekly to monthly and Inany more of the decisions concerning 

wliicli cluster a record falls into can be difficult. 

1.2.2 The Cosine Similarity Measure 

Cosine sini~la~ity measure is one of the clustering measures. The purpose of 

clustcring measure is to join toyether objects into successively larger clusters, using sollie 

measure of similarity or distance. A typical result of this type of clustering is the 

Iiieralrliical tree. C'osine simihity is a measure of similarity between two vectors of n 

dimensions by linding the cosine of the angle between them. often used to compare 

documents in test mining. Given two vectors of attributes A and B, the cosine simila~ity. 

p is represented using a dot product and n~a_enitude as: 



For tcst nlatching. the attribute vectors A and B are usually the tf vectors o f  the 

~OCUIIICII~S. Fu~thmnore. the cosine similarity o f  two vectors i s  an arbitrary mathematicl 

measure o f  ho\v similar two vectors are on a scale o f  [O.I]. 1 being that the vectors a!-e 

either itle~ltical. or that their values tlilfer by a constant factor. Ths cosine similarity of 

t\\o vectors (d l  and tl?) i s  dctined as: 

And where lltlll( = sqrt (d1[0]A2+d1[1]A2...) 

Molrove~; the cosine similarity measure i s  a popular measuz-e o f  s i~n i la~ i ty  for text (which 

no~malizes the features by covariance matrix) clustering. I t  captures a scale invariant 

understanding o f  si~nilal-ity. An even stronger property is that the cosine similarity doesn 

not depend on the length. This allows documents with the same composition . but 

different totals to be t~rated identically which makes this the most popular measure for 

text documents. Also. due to this propelty. samples cane be norn~alized to the unit sphere 

for more c~ticicnt processing. 

1.2.3 Nearest Neighbor 

Clusteting and the Nearest Neighhor prediction technique al-e among the oldest 

tecllniqucs used in data inining. Most people have an intuition that they understand what 

clustering i s  - namely that like IPCO~CIS are grouped or clustered together. Nearest 

ncighbo~- i s  a pt-ediction technique that is quite similar to clustering - its esscnce is that in 

order to QI-cdict what a prediction value is in  one recocd look for records with similar 

predictor values in the histol-ical database and use the prediction value froin the record 

that it "nearest" to the unclassified record. 

1.2.4 A simple esample of nearest neighbor 

A simple example o f  the nearest neighbor prediction algoritlm i s  that i f the user 

l o o k  at the people in hislher neighborhood (in this case those people that are in fact 



gcogr.apllically near to tlie user). The user may notice that. i n  general. the incomes of 

111ost pcoplc arc some\vliat similar. Thus if the user's neighbor has an income greater than 

10,000 Rs. chances a)-e good that he too has a high income. Certainly the chances that lie 

has u high incoiuc are greater when all of his neiglibon have incomes over 10.000 Rs. 

tlian i1'aIl ol'llis 11eigllb0rs lime inconles of 5,000 Rs. Within his neighborhood there may 

still be a wide vwiety of inconies possible among even his "closest" neighbors but if the 

user had to p~edict someone's income based on only knowing their neighbors his best 

chance of being I-iglit would be to p~edict the incomes of the neighbors who live closest to 

the unknown person. 

The ileal-cst 11eiglibo1- prediction algo~ithm rvorks in vely much the same way except that 

"ncar-ncss" in a database may consist of a variety of factors not just where the person 

lives. I t  may. Sol- instance. be far more inlpo~tant to know which school someone attended 

and what deyl-ee they attained when predicting income. The better definition of "near" 

might in fact he other people that the user graduated from college with rather than the 

peoplc that lie lives nest to. 

Neal-cst Neighbor teclmiques are among the easiest to use and understand because they 

work i n  a way similar to the way that people think - by detecting closely matching 

examples. They also perform quite well in tenns of automation, as many of the 

algorithms are robust with respect to dirty data and missing data. 

1.2.5 How to use Nearest Neighbor for Prediction 

One of the essential elements underlying the concept of clustering is that one 

pa~ticular object (whether they be cars. food or customers) can be closer to another object 

than can some tliild object. It is interesting that most people have an innate sense of 

ordering placed on a va~iety of different objects. Most people would agree that an apple is 

closer to an orangc tlian it is to a tomato and that a Toyota Corolla is closer to a Honda 

Civic than to a Porsclie. This sense of 01-dering on many different objects helps us place 

tliem in time and space and to make sense of tlie world. I t  is what allows us to build 

c l u w s  - both in databases on computers as well as in our daily lives. This definition of 

ncanicss that secms to be ubiquitous also allows us to makc predictions. 



The nearest neighbor prediction algoritlm simply stated is: 

Objects that are "neal-" to each other will have si~nilar prediction values as well. Thus if 

the usel- knows the prediction value of one of the objects he can PI-edict it for it's nearest 

nei$bors. 

1.2.6 Where has the nearest neighbor technique been used in 

business? 

One of the clnssical places thal nearest neighbor has been used fbr prediction has 

been in text ret~ieval. The PI-oblem to be solved in text retrieval is one where the end user 

delines a docu~nent (e.g. Wall Street Journal a~iicle. teclinical conference paper etc.) that 

is interesting to them and they solicit the system to "find mol-e documents like this one". 

Effectively defining a target ofi "this is the interesting document" or "this is not 

interesting". The prediction problem is that only a very few of the docun~ents in the 

database aclually have values for this prediction field (namely only the documents that 

the reader has had a chance to look at so far). The nearest neighbor technique is used to 

lind other documents that s11a1-e important characteristics with those docutnents that have 

been nia~.kcd as interesting. 

1.2.7 Using nearest neighbor for stock market data 

As with ahnost all prediction algorithms. nearest neiglibor can be used in a 

\wiety of places. Its successful use is mostly &pendent on the pre-formatting of the data 

so that neaniess can be calculated and where individual records can be defined. In the text 

1.~11-ieval example this was not too dillicult - the objects being documents. This is not 

always as easy as it is fbr text I-et~ieval. Considel- what it might be like in a time series 

problem - say for predicting the stock market. In  this case the input data is just a long 

series of stock prices over time without any particular record that could be considered to 

be an object. The value to be predicted is just the next value of the stock price. 

The way that this problem is solved for both nearest neighbor techniques and for some 

other types of prediction also~ith~ns is to create training records by taking, for instance. 



I 0  consecutive stock prices and using the lirst 9 as predictor values and the 10th as thc 

prediction value. Doing things this way. if the user had 100 data points in his time sel-ies. 

Iic ~,oulil create I 0  different training records. 

He could c n x k  even 11io1-e t~airling recods than 10 by creating a new record stalling at 

cvery d3t3 poiul. Fur instance. the user could take the first 10 data points and create a 

record. Then tlie user could take the 10 consecutive data points starting at the second data 

point, then the 10 consecutive data point sta~ting at the third data point. Even though 

some o f  thc data points would overlap from one record to the next the prediction value 

uould al\wys be dill'ercnt. In this example o f  100 initial data points 90 different training 

records could be crcated this way as opposed to the 10 training I-ecol-ds CI-eated via the 

other metliod. 

Nc:1rcst Nciglibor 

Used for prediction as well as consolidation. 

Clustering 

Used mostly for consolitlaling data into a 

is defined by the problem to be solvedspace 

(supm'~ised leanling). 

xample linking two points together. 

high-level view and general grouping ot 

records into like behaviors. 

i s  defined as default n-dimensional 

space. or is defined by the user, or is a 

predefined space drive11 by past 

experience (unsupervised learning). 

Generally only uses distance metrics 1 eternline nramess. 

Table 1-2 Sonic o f  the Diffcrcnces Bctwcen the Nearest-Neighbor Data kl i t i ing 

Tcclinique and Clustering 

tocan use other metrics besides distance t 

detennine nealmess o f  two recolds - 



1.3 Data Mining Can Bring Pinpoint Accuracy to Sales 

Data w~.diousing - tlic practice of creating h ~ ~ g e .  central stoles of customer data 

11131 can be used tlilnughoul the e ~ ~ t e ~ y ~ - i s e  - IS becoming more and more con~monplace. 

But data warehouses are useless if companies don't have the proper applications for 

accessing and using the data. 

Tn.0 pop~11ar types of applications illat leverage companies' investments in data 

warehousing are data mining and campaign management software. Data ~nining enables 

conipmies to idenlil) trends within the data warehouse (such as "families with teenagers 

are likely to have two phone lines," in the case of a telephone company's data). Campaign 

rnana~enlent software enables them to leverage these trends via highly targeted and 

automated direct marketing campaigns (such as a telemarketing campaign intended to sell 

second phone lines to families with teenagers). 

Data niininy and campaign managen~ent have been successfully deployed by hundreds of 

Fortune 1000 cornpanics around the world. with inipressive results. But recent advances 

in t~'c1inology have enabled companies to couple these teclinologies more tightly. with the 

following brnctits: increased speed with which they can plan and execute marketing 

ca~npnigns: incl-eased accuracy and response rates of canipaigs; and higher overall 

marketing retul-n on investment. 

Data mining automates the deteclion O F  pattcnls in a database and helps marketing 

prokssionals improve their understanding ot' customer behavior, and then predict 

behavior. For example. a paltem might indicate that nimied niales with child~en are 

t\&r as likely to drive a pa~ticular spo~ts cal- than nial-ricd niales with no childl-en. A 

~narkeling manayer Ibr an auto manufacturer niight find this somewhat surprising pattem 

quite valuable. 

The dtlta ~nining PI-ocess can inodel vi~tually any customer activity. The key is to find 

patterns relevant to current business problenis. Typical pattetns that data mining uncovers 



includc which C L I S ~ O I ~ I C ~ S  31-c ~iiost l~hely to drop a sewice, which are likely to purcliase 

merchandise or snvices. and which at-e most likely to respond to a pariicular offer. 

The data mining process resuhs in the creation of a model. A model embodies the 

iliscovercil patterns and can be used to inake predictions for records for which the true 

behavior is unhnown. These predictions, usually called scores, are nunie~ical values that 

are assigned to each record in the database and indicate the likelihood that the customer 

will exhibit a pa~ticula~. bel~avio~-. These numerical values are used to select the most 

appropriate prospects Sor a targeted marketing campaign. 

Canipaigu mnnagement and data mining. when closely integrated. arc potent tools. 

Campaign inana$ement sollware enables con~panies to deliver to customers and 

prospects timely. pertinent, and cool-dinated offers. and also manages and monitors 

custolner co~nnlunications across all channels. In addition, i t  automates and integrates the 

planning. execution, assessment and refinement of possibly tens to hundreds of highly 

segmented campaigns running monthly. weekly. daily or intemittently. 

1.3.1 Beliefits of Data mining 

D a b  inining being a very popular and interesting topic has number of advantages 

which are as fbllows:- 

A classic esan~ple of data mining is a i-ctailer who uncovers a relationship 

between salcs of diapers and diaper rash cream - two items the user wouldn't 

norninlly consider as linked. The explanation is that husbands who are sent out lo 

pick up a fresh supply of diapers are also likely to pick up diaper rash cl-eam while 

they happel1 to be in the store - something that hadn't been recognized as a 

significant sales driver bcfore data mining uncovered it. 



Chanter. 1 Introduction 

Elrubles user to uploit the correlations to improve organizatiorral 

y erfor~nance 

Continuing the example above, very often retailers act on the relationships they 

discover by using tactics such as placing linked items together on end-of-isle 

displays as a way to spur additional purchases. All organizations can benefit from 

acting in a sinlilar way - using newly discovered patterns and correlations as the 

basis for taking action to improve their efficiency and effectiveness. 

Provides indicators offirtrrre perfoi-~tiai~ce 

"Those who do not learn from history are doomed to repeat it" is a famous quote 

from philosopher George Santayana. In the case of data mining, being able to 

predict outcomes based on historic data can dramatically improve the quality and 

outcomes of decision making in the present. As a simple. example, if the best 

indicator of whether a customer will pay on time turns out to be a combination of 

their market segment and whether or not they have paid previous bills on time, 

then this is inforn~ation the user can usefully benefit from in making current credit 

decisions. 

Enables ernbedding of recottunendations in user's applicatiorls 

The user can use the data mining results to display a simple summary statement 

and reconlmendations within operational applications. For example, on a credit 

screen user could add: "Based on this new account profile there is an 85% chance 

this customer will pay late. It is therefore recommended .user requires a 50% 

prepayment on this order". Reporting on aggregate results such as Days Sales 

Outstanding (DSO) enables the user to measure business improvements based on 

when recommendations were followed and when they weren't so that the user can 

fine-tune his model and recommendations over time for optimal effect. 
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1.4 Existing techniques 

Various algorithms have been developed to avoid the problems of association rule 

mining such as the multiple scans and generation of large candidate itemset. Following 

are some of these algorithms:- 

Apriori is a seminal algorithm proposed by R.Agrawal[l] in May 1993. It usesprior 

knowledge of frequent itemset properties. Apriori uses breadth-first 'search and a hash tree 

structure to count candidate item sets efficiently. But its drawback is that the finding of 

each Lk requires one full scan of database. Hence, due to n~ultiple scans we get wastage 

of resources like time and space lnlemory in addition to the counting of false candidates. 

Candidate generation generates large numbers of subsets (the algorithm attempts to load 

up the candidate set with as many as possible before each scan). 

FP-growth algorithm[6] proposed by J. Han, J. Pei, Y. Yin, and R. Mao in 2004 adopts 

a divide and conquer strategy avoiding costly candidate generation. First, it compresses 

the database representing frequent items into a frequent pattern tree o r  FP tree, which 

contains the itemset association information. It then divides the compressed database into 

a set of coriditional databases. FP-growth tree is memory resident i d  requires additional 

storage in every node of the FP-tree (Because of excessive pointers storage in every 

node) especially when the FP- tree is too large to fit in main memory. 

Partition algorithm was proposed by A. Savasere[2] in 1996. This algorithm is used for 

partitioning the data to find candidate itemsets. A partitioning technique can be used that 

requires just two database scans fo mine the frequent itemsets. 
i 

The problem of accurately estimating the number of partitions given the available 

memory, however, needs further work. 

Sampling approach was proposed by Toivonen[3] in 1996. This algorithm is used for 

mining on a subset of the given data. The basic idea of the sampling approach is to pick a 

random sample S of the given data D, and then search for frequent itemsets in S in&ea(d 

of D. In this way, there is some tradeoff of accuracy against efficiency. The sample size 
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of S is sucll that the search for frequent itemsets in S can be done in main memory, and so 

only one scan of the transactions in S is required overall. We might miss some of the 

global frequent itemsets since we are searching for frequent itemsets in S than in D. The 

sampling approach is especially beneficial when efficiency is of utmost importance, such 

as in cornputationally intensive applications that must be run on a very basis. However, 

there is a tradeoff between accuracy and efficiency. 

MaxMiner (Bayardo, 1998)[4) is another algorithm for finding the maximal elements. It 

uses Rymon R(1992)[10] "search through systematic set Enumeration" mechanism and 

efficient pruning techniques to quickly narrow the search. MaxMiner employs a breadth- 

first traversal of the search space; it reduces database scanning by en~ploying a look 

ahead pruning strategy. Since MaxMiner uses the original horizontal database format, it 

can perform the same number of passes over a database as Apriori does. Hence, there will 

be need for scanning multiple times. 

ECLAT (Equivalence CLASS transformation)[S] is an algorithm developed by M.J 

Zaki, which transforms a given data set of transactions in the horizontal data format of 

TID-iteruset into the vertical format of iten-TID-set. It mines the transformed data set by 

TID-set intersections based on Apriori property and additional optimization techniques 

such as diffset. However, the cost of registering long TID-sets is high. 

The above literature shows that association rule mining is facing a number of problems 

currently such as multiple scans of database and generation of large candidate itemsets 

which needs to be solved. 

1.5 Scope of the Project 

Data mining has become very popular area for research where association rule 

mining plays a vital role. Association rule mining is not only used in businesses, retail 

sales but also in science and engineering, telecommunications, games, human resource 

departments etc. Data Mining is a highly effective tool in the catalog marketing industry. 
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Catalogers have a rich history of customer transactions on millions of customers dating 

back several years. Data mining tools can identify patterns among customers and help 

identify the most likely customers to respond to upcoming mailing campaigns. 

In applying our devised Cos-FIS generator algorithm, the main problem that may be 

faced is limited memory and huge processing needed. Moreover, it needs a lot of time 

while scanning the database. The volume of the database if large may also create 
. , 

problems as it is not easy to handle it. 
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2. Literature Survey 

Market Basket Analysis is a modelling technique based upon the theory that if a costumer 

buys a certain goup  of items, helshe is more (or less) likely to buy another group of 

items. For example, if the user is in a restaurant and he orders apple juice and doesn't 

order pizza, he is more likely to order crisps at the same time than somebody who didn't 

order apple juice. 

The set of items a customer buys is referred to as an itemset, and market basket analysis 

seeks to find relationships between purchases. 

Typically the relationship will be in the form of a rule: 

IF {Apple juice, no Pizza} THEN (crisps). 

The probability that a customer will order apple juice without a Pizza(i.e. that the 

antecedent is true) is referred to as the support for the rule. The conditional probability 

that a customer will purchase crisps is referred to as the confidence. 

Consider a supermarket with a large collection of items. Typical business decisions that 

the management of the supermarket has to make include what to put on sale, how to 

design coupons, how to place merchandise on shelves in order to maximize the product 

sales etc. Analysis of past transaction data is a commonly used approach in order to 

improve the quality of such decisions. Until recently, however, only global data about the 

cumulative sales during sometime period a day, a week, a month, etc. was available on 

the computer. Progress in bar-code technology has made it possible to store the so called 

basket data that stores items purchased on a per-transaction basis. Basket data type 

transactions do not necessarily consist of items bought together at the same point of time. 

It may consist of items bought by a customer over a period of time. Examples include 

monthly purchases by members of a book club or a music club. 

Following is some of the research work done previously in association rule mining. Each 

research paper represents an algorithm and its advantages and disadvantages. 
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database D must occur as a frequent itemset in atleast one of the partitions. Thus, all local 
I * 

frequent itemsets are candidate itemsets with respect to D. The collection of fiequent 

itemsets from all partitions forms the Global candidate iternsets with respect to D. In 

phase 11, a second scan of D is conducted in which the actual support of each candidate is 

assessed in order to determine the global frequent itemsets. 

Moreover, in this paper, Partition algorithm has been described as not only efficient but 

also fast for discovering association rules in large databases. An important contribution of 

this algorithm is that i t  drastically reduces the UO overhead associated with previous 

algorithms. This feature may prove useful for many real-life database mining scenarios 

where the data is most often centralized resource shared by many user groups, and may 

even have to support on-line transactions. Interestingly, this improvement in disk UO is 

not achieved at the cost of CPU overhead. It is demonstrated with extensive experiments 
I 

that the CPU overhead is actually less than the best existing algorithm for low minimum 

supports (i.e., cases which are computationally more expensive). In addition, the 

algorithm has excellent scale-up property. The problem of accurately estimating the 

number of partitions given the available memory, however, needs further work 

2.3 Sampling large databases for association rules 

Sampling approach was proposed by Toivonen[3] in 1996. This algorithm is used 

for mining on a subset of the given data. The basic idea of the sampling approach is to 

pick a random sample S of the given data D, and then search for frequent itemsets in S 

instead of D. In this way, there is some degree of tradeoff of accuracy against efficiency. 

The sample size of S is such that the search for frequent itemsets in S can be done in 

main memory, and so only one scan of the transactions in S is required overall. The user 

might miss some of the global frequent itemsets since he is searching for frequent 

itemsets in S than in D. To lessen this possibility, a lower support threshold is used than 

minimum support to find the frequent itemsets local to S (denoted as Ls). A mechanism 

is used to determine whether all of the global frequent itemsets are included in Ls. If Ls 

contains all of the frequent itemsets in D, then only one scan of D is required. 
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The sampling approach is especially beneficial when efficiency is of utmost importance, 

such as in computationally intensive applications that must be run on a very basis. 

However, there is a tradeoff betwecn accuracy and efficiency. The penalty in 

partitio~dsanlpling [9] is that candidate set derived is necessarily a superset of the actual 

set of frequent itemsets and may contain many false positives. 

2.4 Tree Structure for Mining Association ruies 

MaxMiner (Bayardo, 1998)[4] is another algorithm for finding the maximal 

elements. It uses Ryn~on's (1992)[10] "search through systematic set Enumeration" 

mechanism and efficient pruning techniques to quickly narrow the search. MaxMiner 

employs a breadth-first traversal of the search space; it reduces database scanning by 

employing a look ahead pruning strategy, i.e., if a node with all its extensions can 

determine to be frequent, there is no need to further process that node. It also employs 

iten1 (re)ordering heuristic to increase the effectiveness of superset-frequency pruning. 

Since MaxMiner uses the original horizontal database format, it can perform the same 

number of passes over a database as Apriori does. Hence, there will be need for scanning 

multiple times. 

2.5 Efficiently mining long patterns from databases 

ECLAT (Equivalence CLASS transforn~ation)[S] is an algorithm developed by 

M.J Zaki, which transforms a given data set of transactions in the horizontal data format 

of TID-itenuet into the vertical format of ifem-TID-set. It mines the transformed data set 

by TID-set intersections based on Apriori property and additional optimization 

tecluliques such as dirjser. In this way the support of an itemset X can be easily computed 

by simply intersecting the covers of any two subsets Y,Z X, such that YuZ=X. In this 

algorithm, for each frequent item I, the I-projected database D' is created. This is done 
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by first finding every item j that frequently occurs together with i. The supeort of this set 

{I, J} is con~puted by intersecting the covers of both items. If {i j)  is frequent then j is 

inserted into D' together with its cover then algorithm is called recursively to find all 

FIS in the new database D' . 

~ c l a t  algorithm uses support based measure to find maximal frequent IS by using I- 

projected databases technique but this algorithm generates large number of candidat? set 

to derive frequent item set at each iteration of the algoritlun. Less memory is required as 

compare to FP-growth to find FIS. Moreover, the cost of registering long TIRsets  is 

high. 

2.6. Search through systematic set enumeration 

FP-growth algorithm[6] proposed by J. Han, J. Pei, Y. Yin, and R. Mao in 2004 

adopts a divide and conquer strategy avoiding costly candidate generation. First, it 

compresses the database representing frequent items into a frequent pattern tree or  FP 

tree, which retains the itemset association information. It then divides the compressed 

database into a set of cor~ditional databases, each associated with one frequent item or 

"Pattern fragment" and mines each such database separately. 

First, it scans the Database D and collects F, the set of frequent items, and their support 

counts. F is sorted i n  support count descending order as L, the list of frequent items. 

Next, it creates the root of an FP-tree, and labels it as ''NULL" for each trausaction Trans 

in D it does the following:- 

* Selects and sorts the frequent items in Tram according to the order of L. Let the 

sorted frequent item list in Trarrs be [plP], where p is thefirst element and P is 

the rernairlittg list. Then insert-tree([p(P], 7)  is called which is perfonned as 

follows. If T has a child N such that N.item-name =pitem-name, then increment 

N's count by 1 else create a new node N and let its count b 1, its parent link be 

linked to T and it's node-link to the nodes with the same item-name via the node- 

link structure. Finally, the FP-tree is mined. 
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FP-growth tree is memory resident and requires additional storage in every node of the 
v 

FP-tree (Because of excessive pointers storage in every node) especially when the FP- 

tree is too large to fit in main memory. However, it is efficient and scalable for mining 

both long and short frequent patterns. 

2.7 New Algorithms for fast discovery of Associations Rules 

Goethals (2004) presented MEDIC Algorithm[7] which generates all itemsets 

containing item i as soon as there can be no transaction anymore that contain i. One 

transaction processes at a time in lexicographic order. After generating all these itemsets, 

the cover of I can be removed from main memory. Affer that the transaction identifier of 

the current transaction is added to the cover of all items occurring in that transaction. 

Medic is a frequent set mining algorithm. Medic is also based on support count measure 

and utilizes the ECLAT algorithm for mining the frequent item sets. Medic uses much 

less memory than Eclat because the database is never entirely loaded into main memory. 

2.8 Similarity based mining for finding frequent itemsets 

SB-Miner is novel algorithm to find FIS based on clustering measure i.e. 

jacquard similarity measure[l I]. Jacquard similarity measure is based on calculating the 

distance between itemsets. Proposed technique makes use of prefix tree as data structure 

and vertical database layout to cluster related items together. The experimental results 

have proved that the same FIS can be generated by SB-miner technique as compared to 

other Apriori based algorithms. This also showed that various clustering measures can be 

applied for association rules mining. The research work in this paper is basically 

extension or improvement of the work to prove that clustering measure like cosine 

similarity is again a candidate clustering measure which can be used to generate FIS. 
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2.9 Selecting the right interestingness measure for association 
A . 

patterns 

The DISJOINT and RANDOM algorithms are two table selection algorithms used 

to select a small set of tables [I21 such that an expert can select a desirable measure by 

looking at just this small set of tables. Many techniques for association rule mining and 

feature selection require a suitable metric to capture the dependencies among variables in 

a data set such as support, confidence, lift etc are used to determine interestingness of 

association patterns. However, many such measures provide conflicting information 

about the interestingness of a pattern and best metric is rarely known. In this paper, an 

overview of various measures proposed in the statistics, machine learning and data 

mining literature, is presented. Moreover, there is a description of several key properties 

one should examine in order to select the right measure for a given application domain. 

Also, a comparative study of these properties is made using twenty one of the existing 

measures. Two scenarios are presented in which most of the existing measures agee  with 

each other, namely support-based pruning and table standardization. The RANDOM 

algorithm randomly selects k out of the overall N tables and presents them to the experts. 

Whereas, DISJOINT' algorithm selects k tables that are "furthest" apart according to their 

average rankings and would produce the largest amount of ranking conflicts i.e. large 

standard deviation in their ranking vector. 

2.10 Problem Statement 

In clustering, nearest data points are brought together. This can be done either using 

Cosine similarity or dissimilarity measures. Similar data items will be nearest to each other 

while Dissimilar will be at distance for apart. Association also finds most frequent items in 

a dataset. If a subset is found frequently in data set then it can be said that its similarity is 

high. So frequent item set can be found on the basis of Cosine similtuity measures as well. . 
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From the literature survey, it is observed that rules are generated on the basis of candidate . 
itemsets, which are generated using  upp port and confidence measures. Moreover, the 

database is scanned multiple times to generate candidate itemsets. 

After scanning the database, the items are taken from database and their respective 

support count is stored in a table. Then, 2-itemsets are created and database is scanned till 

k-itemset is created. Multiple scanning is an extensive workload on the database specially 

when the mining of association rules is done on a huge database. 

Apriori [I], while historically significant, suffers from a number of inefficiencies or 

trade-offs, which have spawned other algorithms. Candidate generation generates large 

numbers of subsets (the algoritlun attempts to load up the candidate set with as many as 

possible before each scan). 

The problem of accurately estimating the number of partitions given the available 

memory in PARTITION algorithm [2] needs further work. 

The penalty in partitionlsan~pling [3] is that candidate set derived is necessarily a superset 

of the actual set of frequent itemsets and may contain many false positives. 

~ c l a t  algorithm presented in [S] uses support based measure to find maximal frequent IS 

by using I-projected databases technique but this algorithm generates large number of 

candidate set to derive frequent item set at each iteration of the algorithm. Moreover, the 

cost of registering long TID-sets is high. 

FP-growth tree [GI is memory iesident and requires additional storage in every node of 

the FP-tree (Because of excessive pointers storage in every node) especially when the FP- 

tree is too large to fit in main memory. 

In conclusion, the main problem in all the papers and algorithms is the multiple database 

scanning as well as the generation of large candidate itemsets. Whereas the "Cos-FIS 
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3. Problem Domain and Proposed Solution 

Data analysis is the process of looking at and summarizing data with the intent to 

extract useful infonnation and develop conclusions. Data analysis is closely related to 

data mining, but data mining tends to focus on larger data sets, with less emphasis on 

making inference, and often uses data that was originally collected for a different 

purpose. In statistical applications, some people divide data analysis into descriptive 

statistics, exploratory data analysis(EDA) and confim~atory data analysis, where the EDA 

focuses on discovering new features in the data, and CDA on confirming or falsifying 

existing hypotheses. 

Data mining is the process of sorting through large amounts of data and picking out 

relevant infom~ation. It is usually used by business intelligence organizations, and 

financial analysts, but is increasingly being used in the sciences to extract infonnation 

from the enonnous data sets generated by modem experimental and observational 

methods. It has been described as "the nontrivial extraction of implicit, previously 

unknown, and potentially useful information from data and the science of extracting 

useful infonnation from large data sets or databases". Data mining in relation to 

enterprise resource planning is the statistical and logical analysis of large sets of 

transaction data, looking for patterns that can aid decision making 

Another example of data mining, often called the market basket analysis, relates to its use 

in retail sales. If a clothing store records the purchases of customers, a data-mining 

system could identify those customers who favor silk shirts over cotton ones. Although 

some explanations of relationships may be difficult, taking advantage of it is easier. The 

example deals with association rules within transaction-based data. Not all data, are 

transaction based and logical or inexact rules may also be present within a database. In a 

manufacturing application, an inexact rule may state that 73% of products which have a 

specific defect or problem will develop a secondary problem within-the next six months. 

Data Mining is a highly effective tool in the catalog marketing industry. Catalogers have 

a rich history of customer transactions on millions of customers dating back several 

years. Data mining tools can identify patterns among customers and help identify the 

most likely customers to respond to upcoming mailing campaigns. 
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In data mining, association rule mining is a popular and well researched method for 

discovering interesting relations between variables in large databases. Piatetsky-Shapiro 

describes analyzing and presenting strong rules discovered in databases using different 

measures of interestingness, among which Cosine measure is one of the most useful 

measure. 

Association rules are required to satisfy a user-specified minimum support and a user- 

specified minimum confidence at the same time. To achieve this, association rule 

generation is a two-step process. 

1. First, minimum support is applied to find all frequenf itenuets in a database. 

2. In a second step, these frequent itemsets and the minimum confidence constraint 

are used to form rules. While the second step is straight forward, the first step 

needs more attention. 

3.1 Problem Domain 

Most of the existing methods of finding FIS are based on support measure. The 

puvose of this thesis is to develop a novel data mining algorithm to find out association 

which will find FIS on the basis of Cosine sinlilarity measure rather than on the basis of 

support count. 

Although Support and confidence measures help exclude the exploration of a good 

number of uninteresting rules, many rules so generated are still not interesting to the 

users. Unfortunately, this especially true when nzining at low support threshold or mining 

for Iongpattems. This has been one of the major bottlenecks for successful application of 

association rule mining. It is known that support and confidence measures are insufficient 

at filtering out uninteresting association rules. To tackle this weakness, a correlation 

measure such as COSINE measure can be used to augment the support-confidence 

framework 

Moreover, the following challenges of kequent pattern mining need to be met: 

Multiple scans of transaction database / 110 overhead. 

0 Huge number of candidates 
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Tedious workload of support counting for candidates. 

3.1.1 Multiple Database scans 

The major problem of Association rule mining is the multiple database 

scans, since first frequent itemsets are searched in the database and then 2-itemset and k- 

itemsets are created to find similarity between the two large itemsets which req&& 

consulting the database again and again. Moreover, since the frequent itemset generation 

is also perfomied on huge databases and large datawarehouses, there is chance of 

multiple Disk V0s which are the main obstacle in efficiency of database and association 

rule mining algoritluns. Therefore, the primary goal in association rule mining should be 

to reduce database scans and the disk YOs. 

3.1.2 Large candidate set size 

Creation of candidate itemsets resembles to a chain process i.e. 1-itemsets 

are used to create 2-itemsets and 2-itemsets are used to create k-itemsets and so on. 

Hence, the more the size of the candidate itemset, the more complicated will the rules be 

and the more time would it take to execute the algorithm for generating frequent itemsets. 

Also, since the number of rules wil be numerous then, finding interesting rules will be 

time consuming and hard. Moreover, the size and quantity of itemsets also leads to disk 

and 110 overhead. The number of database scans required by Apriori-based algorithms 

depends on the size of the largest large itemsets. 

3.1.3 Algorithm execution time 

One of the main challenges in database mining is developing fast and 

efficient algorithms that can handle large volumes of data as most mining algorithms 

perform computation over the entire database and often the databases are very large. 

Time management is the key factor in any algorithm for the fast retrieval of results of the 
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queries specially in todays world where there is huge amount of data and shortage of 
9 

time. The faster the frequent itemsets are generated, the faster would the process of sales 

and promotion of products be, since the consequent rules would be generated and 

reviewed faster. For example, suppose If a clothing store records the purchases of 

customers, a data-mining system could identify those customers who favour silk shirts 

over cotton ones. The faster this system would identify such customers before the 

respective season comes, the more increase will be observed in the retail sales and the 

process of importing the demanded cloth would be faster and easier. 

3.2 Proposed Solution 

To achieve good runtime performance and efficient running of association rule 

mining algorithm, the above mentioned issues should be considered and solutions to 

these problems must be found to prevent performance degradation. For instance, lessen 

the number of database scans and reduce huge number of candidate itemsets. 

3.2.1 Reduced Database scans 

All the algorithms in the association rule mining need to scan the database 

multiple times, which not only causes overhead on the disk V 0  but is also time 

consuming. Multiple scans are-needed in order to create 1-itemset, 2-itemset and k- 

itemset as well as to keep track of support counts. However, the Cos~FISS~eneratctr. 

pcrfonns only a single scan of an item over the whole database while reading 

transactions' ID list Srom thc .(st tile and then stores the count of the transaction in the 

cache. Once the count of each transaction is maintained in the c~che.  the user can use a 

formula for Cosine mcasure which will show if a certain iti.niset is hequent 01. no where a 

certain Cosine measure threshold is gi\;en. This single scanning of a particular item will 

reduce  he liO ovcl-hcad. 
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Moreover, cuiiong vc~rious layouts ofthe database, horizontal and iwtical layouts are the 

most coninion. Horizontal la you^ consists of tlie list of transactions. Each transaction lias 

an identifier followcd by list of itcms. Ilie vt-rtical layout liowever consists of list of 

items. Ilach ilcm has a transacti& IDS list- the list of all transactions containing the item. 

Therdorc. the alxorithrn in this thesis uses tlir vertical layout of the database since this 

Tomiat performs only a single scan while reading the transaction row by row and storing 

its support count mea~iwliile in cache. Also relevant transactions can be clustered 

together. 

3.2.2 No candidate itemset generation 

Another main problem with most of the association rule mining algorithms 

is the size of the candidate itmsets . The size of these itemsets is sometimes too large that 

its hard to find association rules. Moreover, it is very time consuming as well as storage 

of these candidates becomes harder. All these factors affect the whole process of 

association rule mining specially when the database is very huge. Finding candidate 

itenisets and then pruning them is a very tedious job. However, the "Cos-FISgerterator" 

algorithm works without candidate generation. In this algorithm, only the pairs of items 

are created. Then, it is found out through the Cosine formula IS, whether a certain pair or 

itemset is frequent or no. If the pair is frequent, it is added in the Set Enumeration tree 

else it is discarded. 

3.2.3 Reduced Algorithm Execution time 

In today's era, fast and efficient algorithms are demanded as time'has 

become a key element in one's life. Also, since such algorithms are required to handle 

large amounts of data in data warehouses and perfom1 numerous computations, the faster 

the algorithm executes, the faster the Frequent itemsets are generated. Therefore, the 
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Cos - FIS generator creates the frequent itemsets faster. Also, the single scan of the 

database perfonned by this algorithm contributes to the speed of generation of FIS. 
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4. System design 
The Cos-FIS generator takes the .txt file of 0's and 1's as an input which shows 

absence and presence of data items respectively. The .asc file is first converted into .txt 

file. Association rule mining comprises of two steps:- 

1. Finding all frequent itemsets: the itemsets which satisfy the given threshold will 

be frequent. 

2. Generating strong association rules from these frequent itemsets: the rules 

must also satisfy the minimum support. 

However, this research is limited to the first portion of the association rule mining that is 

the generation of the frequent itemsets. 

4.1 Representation of the frequent itemsets 

The frequent itemsets are represented into a node structure i.e. in form of a set 

errrrn~e~ation tree. The Set-E~runieration (SE)-tree [lo] is a vehicle for representing andor 

enumerating sets in a best-first fashion. The conrplete SE tree systematically enumerates 

elements of a power-set using a pre-imposed order on the underlying set of elements. In 

problems where the search space is a subset of that power-set that is (or can be) closed 

under set-inclusion, the SE-tree induces a complete irredundant search technique. 

4.1.1 Node structure 

In this thesis, each node in SE tree represents a frequent iternset. Each node has 

node-id field, which shows the name of the node and also indicates frequent itemset. 

Node has a count field indicating the total number of transactions containing that 

frequent itemset. There are two node pointers down and right node pointer pointing to the 

node that is linked to current node in downward position level-wise and to the right 

position item-wise respectively. In other words, the down pointer points to the node in , the . 
next level where each level represents the k-itemset and the right pointer points to the 
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node of the same level. Moreover, there is a transaction-id-list field, which actually . 
represents the transaction IDS of transactions containing the particular FIS represented by 

the node - id of the node. 

4.1.2 Creation of Set Enumeration Tree 

The Set Enumeration tree(SE tree) is created in a very systematic way. First node 
' 3 '  a 1s created and then the column of dataset (text file) is scanned according to a pointer, 

hence filling the buffer with the support count. Ifthe support count of the node is greater 

than or equal to the minimum user specified threshold, then the node is said to be 

frequent and hence is added in the SE tree. After the buffer is filled with count of the 

node, it is then copied into the info field of newly created node. It is then linked with the 

previous node. This way the first level of SE tree is generated.The second level of SE tree 

is created by finding Cosine similarity between every two itemsets or nodes present in the 

first level of SE tree i.e) between node 'a' and node 'b'. Only those itemsets whose 

similarity is greater than or equal to the user supplied minimum similarity threshold are 

declared frequent and are linked in the second level of the SE tree in lexicographic order. 

And the same process is repeated for levels 3 and 4. 

Fig 4.1 Set Enumeration Tree 
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4.2 The Cos - FIS generator algorithm 
s 

Ds: Transactional Dataset 
a : Threshold . 

Outgut: 

FIS: Frequent itemsets 
: No. of FIS after each iteration 

Step I : Scan transactional dataset DS. 
Step 2: Construct first level of Prefix tree. 
Step 3 :Construct second level of prefix tree by finding similarity between every 2 
itemsets in the previous level of tree as shown in step 4. 

Repeat Step 5 to 7 until = 0. 

Step 5: Scan each sub tree in the last level ofprefix tree. 
Step 6: Store starting node's address of each sub tree in S. 
Step 7: p = Generate-next - frequent-itemset (S,FIS, a). 
Step 8: Return FIS. 

4.3 System's Major Modules 

Division of any project into modules adds to its efficiency and overall 

performance. Hence this project is divided into following modules:- 

1. Database conversion. 

2. File reading. 

3. Copying cache to node. 

4. Frequent itemset generation. 
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Frequent 15' Level 
Itemset 
Generation 

2nd Level 

ARtool 

3rd Level a 
Fig 4.2 Architectural Diagram 

Synthetic 
Database 
(.db file) 

4.4 Database Conversion 

ASCII file Text file 
(.ax file) (.txt file) 

. 

ARtool is an application for mining association in rules in binary databases. This 

tool has utility to generate sy~ttlrefic biuary dntabases. The databases generated by 

using ARtool are in a specific format to be used only with this tool. But there was a 

need of having the synthetic database in format required to be used with Cos-FIS 

generator. Therefore first the database file is converted into ASCII format(.asc file) 

by the utility available in ARtool i.e. db2asc and then this ASCII format is converted 

into binary database format (.txt file) used in Cos-FIS-generator algorithm. By using 

the above technique, databases described in the table 4-1 are generated. 

Table 4-1 Synthetic binary databases 

Database 
T200AT6110P5AP4.db 
TSOOATS110PSAP3.db 
T400AT611DP3AP4db 
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200 
500 
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6 
5 
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10 
10 
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5 
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In table 4-1, T is number of transaction, AT is average size of transaction, I is the number . 
of items, P is number of pattems.and AP is average size of patterns. 

ARtool uses a custom format for its database files (which will be henceforth referred to 

as the .db format and is identical to the format used in ARMiner). The asc2db and db2asc 

are utilities that allow the conversion of a .db file to a specially formatted ASCII file 

(user will refer to this as .asc) and respectively the conversion of a .asc file into a .db file. 

The .asc files can be easily read and modified with any decent ASCII editor. 

These formats can be best explained by taking a small example of supermarket data. 

Suppose the items sold by a (very, very small) shop are green apples, red apples, oranges, 

bananas, and grapes. Also suppose that the user had three customers, one bought green 

apples and grapes, one bought o&y oranges, and the last one bought oranges and grapes. 

This activity can be represented in the .asc fom~at as follows: 

1 green apples 

2 red apples 

3 oranges 

4 bananas 

5 grapes 

Fig 4.3 Part 1 of ASCII file 

BEGIN-DATA 

1 5  

3 

3 5 

END - DATA 

Fig 4.4 Part 2 of ASCII file 

There are two distinct parts of this file, the first one illustrated in fig 4.3 contains a listing 

of all the items user can sell, or otherwise said, of all the items that could participate in a 

transaction. 
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The fom~at is pretty simple. It must consist of a positive number followed by a string 

(which can contain blank spaces). It is important that the numbers be assigned in 

increasing order starting from I .  Empty lines are allowed to appear in this section. This 

section enumerates all entities described by the data and between which ARtool 

will later be used to look for association rules The second part illustrated in fig 4.4 

consists of the actual data. 

In this case, there were 3 ttansactions and these are each represented on a separate line. 

The first transaction involved green apples and grapes and they iire represented by the 

numbers associated in the first section, that is 1 for green apples and 5 for grapes. 

The db2asc program in ARtool converts a .db file to . a x  format. This can be useful if 

the user wants to read or verify the content of a .db file. Helshe can also use it to modify 

by hand the contents of a .db file by first converting it to a .asc file, then editing the .asc 

file, and finally converting it back to a .db file. 

db2asc is used in a similar way to its counterpart, asc2db. If the user needs to convert the 

artdata.db database to .asc format, then helshe can type the following command in the 

MS- DOS command prompt: 

java db2asc artdata 

which will produce an artdataac file. If the user wants a different name for the output, 

then he can pass it on the command line as a second argument: 

java db2asc artdata arttxt 

which will produce an arttxt.asc file representing the contents of the artdata.db database. 

Frequent Itelitset Generation Using Cosine Measure 34 



4.4.1 Database layout 

It can be observed that after the conversion of ASCII file into text file, the 

database is being represented in vertical format. Among various layouts of the database 

horizontal and vertical layout are very much common layouts as shown in the Figure 4.3. 

Horizontal layout consists of list of transactions. Each transaction has an identifier 

followed by list of items. The vertical layout consists of list of items. Each item has a 

transaction IDS list- the list of all the transactions containing the item. Vertical database 

fom~at has numerous advantages i.e. multiple scans of the database can be avoided and 

relevant transactions can be clustered together. 

Table 4-2 Database layouts 

4.5 File reading 

Once the ASCII file(.asc) is converted into text format (.at) by the C code, it is 

read or scanned. The text file is in foml 0's and 1's which show the absence or presence 

of a certain item in a particular transaction. This scanning is performed in order to keep 

track of the support count of each item i.e. the number of 1's in a certain item which 

shows the presence of that particular item in a certain transaction. The number of 1's is 

equal to the support count of an item. The probability of an item is found by dividing the 
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support count by the total number of transactions. This probability will then be used in 
* 

the Cosine measure Fonnula to find the frequent itemset or to see if a certain itemset is 

frequent. 

4.6 Copying Cache to Node 

After first node is created, the columns of dataset are scanned and the buffer is 

filled with the infonnation of a certain item or node. This buffer is then copied by a 

function named copybuffer in to newly crcated node info field. Each item presents a 

node in the set enumeration tree. Each node in SE-tree represents a frequent itemset. Each 

node has node-ID field, which shows the name of the node and also indicates frequent 

itemset. There is an transaction-ID-list field in every node containing the transaction IDS 

list, which actually represents the transaction IDS of the transaction containing the 

particular FIS represented by the tag of the node. 

4.7 Frequent Itemset Generation 

Once the user gets the support count of a certain itemset, helshe can easily 

calculate its probability by dividing the support count with the total number of 

transactions. Afier getting the probability of all the itemsets, hetshe can easily find out 

whether a ceratin itemset is frequent or no. In other words, he can find the frequent 

itenisets /similarity between two items by applying the following Cosine masure formula 

to the itemsets: 

Where A is the first item and B is the second item, P(A) and P(B) is the probability of 

item A and item B respectively, P(AUB) is the combined probability. 
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After applying the formula to a certain itemset, if the similarity user gets from this Cosine 

fonnula is greater than or equal to the user specified similarity threshold, then that 

itemset is said to be frequent and will be linked in the 2nd level of the SE tree in 

lexicographic order. 
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5. Implementation 

This section covers all the aspects of the implementation of the Cos-FIS generator 

algorithm. This project is divided into functions or modules which are discussed one by 

one. Furthem~ore, the functionality of tools used in this project is also explained. 

Efficient running of any system depends upon the software used in it and accurate input. 

The software used in the project should be capable of meeting not only the user's 

requirements but also of the proposed system. The tools/softwares used in this system are 

ARtool, Notepad for the text format files, Wordpad for the ASCII files and the Java 

platform for the ~unning of ARtool i.e. sun's JDK (Java Development Kit)or JRE(Java 

Runtime Environment). 

5.1 ARtool 

ARtool v1.1.2 is a Java application for mining fiequent itemsets and association 

rules in binary databases. ARtool is free s o h a r e  distributed under the GNU General 

Public License. 

ARtool uses a custom format for its database files (which will henceforth referred to a s  the 

.db fonnat and is identical to the fonnat used in ARMiner). The asc2db and db2asc are 

utilities that allow the conversion of a .db file to a specially formatted ASCII file (user will 

refer to this as . a x )  and respectively the conversion of a .asc file into a .db file. The .asc 

files can be easily read and modified with any decent ASCII editor. 

: I 

ARtool comprises three components: a set of Java packages, a set of command line tools, 

and a graphical user interface (GUI). 
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Moreover, it also helps to generate a synthetic database first which is then cotverted into 

ASCII fonnat ( .ax file) by using the command line prompt as mentioned previously in 

section 4.2. 

Fig 5.1 AKtool User Interface 

5.1.1 How to install and execute ARtool 

The user needs to have Sun's JDK or JRE installed, probably at least 

version 1.3. 

To install ARtool, user will just unzip the ARtool binaries to some directory on 

his hard drive. 

To run the ARtool GUI, user will just type: 
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java -jar ARtool.jar 

or will simply double-click on ARtool.jar (works only if he has JRE installed). 

5.1.2 Features of ARtool 

The new features of ARtool are: 

- a set of comn~and line tools that allow mining, synthetic 

database generation, operations on databases, etc 

- the GUI gives more information about a selected database 

- the GUI gives more infonnation about the frequent itemsets 

- the GUI has a log window that keeps track of all operations 

performed 

- algorithm execution and database generation can now be 

intempted 

- lengthy tasks are executed in threads and do not freeze the 

interface 

- an online help systenl - provides a quick introduction to 

association rule mining and to using ARtool 

- the GUI is easier to navigate since I use dialogs sparingly 

- there are plenty of tooltips to help the novice user 

5.2 Java Platform 

As it is known that in order to run ARtool, user needs Java platform i.e Sun's JDK 

or JRE. Therefore, JDK (Java developlnent Kit) was installed in this system. 
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5.2.1 JDK (Java Deyelopment Kit) . 
The Java Development Kit (JDK) is a Sun Microsystems product aimed 

at Java developers. Since the introduction of Java, it has been by far the most widely used 

Java SDK. On 17 November 2006, Sun announced that it would be released under the 

GNU General Public License (GPL), thus making it free software. 

The JDK is a subset of what is loosely defined as a software development kit (SDK) in 

the general sense. In the descriptions which accompany their recent releases for Java SE, 

EE, and ME, Sun acknowledge that under their terminology, the JDK fornls the subset of 

the SDK which is responsible for the writing and ruming of Java programs. The 

remainder of the SDK is composed of extra sohvare, such as' Application Servers, 

Debuggers, and Documentation. 

The JDK also comes with a complete Java Runtime Environment, usually called a 

private runtime. It consists of a Java Virtual Machine and all of the class 1ibraries:thqt 

will be present in the production environment, as well as additional libraries only useful 

to developers, such as the internationalization libraries and the IDL libraries. 

5.2.2 JRE (Java Runtime Environment) 

The JVM Java virtual machine, which is the instance of the JRE (Java 

Runtime Environment), comes into action when a Java program is executed. When 

execution is complete, this instance is garbage-collected. JIT is the part of the JVM that is 

used to speed up the execution time. JIT compiles parts of the byte code that have similar 

functionality at the same time, and hence reduces the amount of time needed for 

compilation. 

A Java Virtual Machine (JVM) is a set of con~puter software programs and data 

structures which use a virtual machine model for the execution of other computer 

programs and scripts. The model used by a JVM accepts a form of computer intermediate 

language commonly referred to as Java bytecode. This language conceptually represents 

the instruction set of a stack-oriented, capability architecture. The JVM is a crucial 
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component of the Java Platfom~.Programs intended to run on a JVM must be compiled 

into a standardized portable binary format, which typically comes in the fo& of .class 

files. A program may consist of many classes in different files. For easier distribution of 

large programs, multiple class files may be packaged together in a .jar file (short for Java 

archive).The JVM runtime executes .class or .jar files, emulating the JVM instruction set 

by interpreting it, or using a just-in-time compiler (JIT) such as Sun's HotSpot. JIT 

compiling, not interpreting, is used in most JVMs today to achieve greater speed 

I-- Java Language Java Language 

I - - - ... . 

Toolr 8 java javac javadoc apt jar javap JPDA jconrolr 

1 Too'AP1s Security Int'l RWI IDL Deploy I.1onitoring Troubleshoot Scdpting JV,r" 

Java 
SE 
API 

5.3 The C++ language 

C++ ("C Plus Plus") is a general-purpose programming language. It is regarded as 

a middle-level language, as it comprises a combination of both high-level and low-level 

language features. It is a statically typed, free-fonn, multi-paradigm, compiled language 

where compilation creates machine code for a target machine hardware, supports 
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procedural programming, data abstraction, object-oriented programming, and gene~ic - 
programming. 

The language was developed by Bjame Stroustmp in 1979 at Bell Labs as an 

enhancement to the C programming language and originally named "C with Classes". It 

was renamed to C++ in 1983. Enhancements started with the addition of classes, 

followed by, among other features, virtual functions, operator overloading, multiple 

inheritance, templates, and exception handling. 

5.3.1 Conversion of Database file into ASCII file 

The Database file (.db) is converted to ASCII file in the same folder 

where the ARtool application resides by typing the following command in the MS-DOS 

Con1177and Prompt:- 

java db2asc status.db status.asc 

5.3.2 Node structure 

Each node in SE tree represents a frequent itemset. The node structure is as 

follows: 

class node { 

public: 

node* downgtr; 

node* rightytr; 

int* tid - list; 

char* node-id; 

int count; 

node() 

{ 
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5.3.3 Conversion of ASCII file into Text format 

Following is the C t t  code of converting the ASCII file(.asc) or format of 

numbers into text format (.txt file) of 0's and 1's: 

int main(void) 

{ 

clrscr(); 

float sim - tlueshold=0.5; 

unsigned int i=1; IIEOF 

FILE *in; 

if ((in = fopen("C:\\TC\\arttxt.asc", "rW))== NULL) 

{ 

fprintf(stde1~. "Cannot open input fi1e.h"); 

return 1; 

1 
FILE *out; 

if ((out = fopen("C:\\TC\\arttxt.txt", "wU))= NULL) 

I 
fprintf(stderr, "Cannot open input fi1e.W); 

return 1; 

I 

int tn=l; 
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int fcont; 

char c; 

fscanf(in,"%c".&c); 

if((c='a')ll(c='b')) 

)while (i!=9);//3197 11 

cout<<"number of Records="<<i<<endl; 

fclose(in); 

getch0; 

return 0; 

1 
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5.3.4 Reading of Text file 

After the conversion of the . a x  file into .txt file, following is the module 

that will read the text file of 0's and 1's showing the absence and presence of items. 

When the file is read, track of number of 1's is kept as the support count of a certain item 

in order to find out whether that item is frequent. 

void database-scan(int record-length) 

{ 

int currentgtr=O; 

int space='; 

char node-no='al; 

int countt; 

char character[2]; 

character[O]=node-no; 

character[l]='\O'; 

copybuffer(start,size-filledbuff(),character); 

node - no++; 

delay(1000); 

cout<<NODE NO<<node - no<<endl; 
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for(int c=space;c<record-length-space;node - no++,c+=space) 

{ 

currentqtr=c+record - length; 

current=createnode(); 

countt= fill-buff(11ode-no,cuue~:tgtr, record-length); 

cout<<"$$$$$$$$$$$COUNT$$$$$$$$$"<<countt<<endl; 

5.3.5 Filling the buffer 

The readfile-makelist() module makes use of the fill - buffer() function 

basically fills the buffer with the count of 1's i.e. number of 1's in an item, with help of a 

pointer named as currentqtr and the parameter record-length. 

int fill-buff(int node-id,int cumentgtr, int record-length) 

{ 

int count=O; 

freecache(); 

int cachecounter=O; 

for(int row=0;row~rows;currentgtr+=record - length,row++) 
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fseek(infile, OL, SEEK - SET); 

fseek(infile,currentgtr, SEEK-CUR); 

Ilcout<<"The occurance of one is:"<<count<<endl; 

return count; 

I 
5.3.6 Copying Buffer to node 

Once a node is created, the relevant data or information of that node is 

copied from the cachelbuffer to the newly created node's tid-list field. This information 

may include the count f 1's of that node. In other words, afer the buffer is filled it is then 

copied by a function named copybuffer in to newly created node tid-list (info) field. 
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This function takes the pointer to newly created node and size of the buffer and node-id 

to be copied into that node. The created node is then linked with the previous node and in 

this way the first level of set enumeration tree is created. 

void copybuffer(node* temp,int sz, char* node-id) 

{ temp->getsize(sz+l); 

int str-size=get-stringsize(node - id); 

temp->getsize - nodeid(str-size); 

strcpy(temp->node - id,node - id); 

for(int c=O;c<sz;c++) 

{ 

temp->tid-list[c]=cache[c]; 

temp-Xid-list[sz]=-99 

} 

delay(50); 

cout<<"node startU<<endl; 

for(int t=O;t<sz;t++) 

{ 

cout<<temp->tid - list[t]<<endl; 

I 
cout<<"node endU<<endl; 

1 

5.3.7 Finding the Second level 

Atler first level of the SE tree is created, the second level is created by 

finding the similarity between every two items in the first level. If the similarity is equal 

to or greater than the user specified threshold, then that itemset will be added in the tree 

considering it as a frequent itemset. 
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int Generate - frequent-2-itemset() 

{ 

int nfis=O; 

node* outemode=start; 

node* innernode; 

node* temp; 

float similarity; 

while(outemode->rightgtr!=O) 

't 
node* strt=O; 

node* prs=O; 

int flag=]; 

innernode=outernode->rightgtr; 

char* newtag=new char[3]; 

while(innemode > 0) 

't 
strcpy(newtag,outernode->node-id); 

strcat(newtag,innemode->node-id); 

freecache(); 

intersectioninbuffer(outemode,i~memode); 

int numerator=size-filtedbuff0; 

int product= (outemode->count-l)*(innernode->count-1); 

int denon~inato~sqrt(product); 

i f(denominat0~0) 

{ 

goto nextnode; } 

similarity (numerator* I .O) 1 denominator; 
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prs = strt; 

copybuffer(strt,size-filledbuff(),newtag); 

freecache();//cache is freed after it is copied to node 

flag=O; 

nfis++; 

1 
else{ 

temp = createnode(); 

cout<<"Similar NOde="<<newtag<<" "<<similarity<<endl; 

copybuffer(temp,size - filledbuffo~ewtag); 

freecache(); 

prs->rightgtr = temp; 

prs = temp; 

nfis++; 

1 
)//if end 

nextnode : innemode = innemode->rightqtr; 

) / / i~u~er while loop 

}//outer loop 
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return nfis; 

I 

5.3.8 Finding the Next level 

The next level or the third and other subsequent levels are found the 

same way as the second level is made. However, it uses the previous level to find 

similarity between every 2-itemsets and hence generate the next level. 

int Generate-next-frequent-itemset (void){ 

node* outernode;//=fnode; 

int ind=O; 

/I outeniode=Generate-frequent-2-itemset(); 

int nfis=O; 

while((outemode=~iodeadd[indJ)!=NULL) 

{ 

cout<<"outer nodeU<<outernode-mode - id<<endl; 

hid++; 

node* innernode; 

node* temp; 

float similarity-0; 

delay(100); 

while(outernode->rightjtr!=O) 

{ 

cout<<"entered nex level"<<endl; 

node* strt=O; 

node* prs=O; 

int flag=l; 

innemode=outernode->right_ptr; 

- ~p 
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char* newtag=new char[lO]; 

while(innemode > 0) 

{ 

strcpy(newtag,outemode->node - id); 

char* src=new cliar[lO]; 

strcpy(src,innemode->node-id); 

cout<<"src"<<src<iendl; 

char* str-bit=new char[lO]; 

SubString(src,str - bit,get-stringsize(innemode->node-id) 

1,get-stringsize(innem0de->node-id)); 

cout<<"SRC IN NEX LEBVEL-->>"<<src<<endl; 

printf("STR-B1TTT%sW,str-bit); 

cout<<"outemode ...." <<newtag<<endl; 

strcat(newtag,str-bit); 

cout<<"NEW TAG INNEX LEVEL---->>>"<<newtag<<endl; 

freecache(); 

intersectioninbufferl (outernode,innemode,temp); 

int numerato~size-filledbuff(); - 

c o u t < < " i n t i - s c t n = ~ < i n t r s c t n < < " t a g g e n d l ;  

int product= (outemode->count-l)*(innemode-~ount-l)*(temp-~count-l); 

int denominator = sqrt@roduct); 

if(denominator==O) 

{ 

tout<<" node not found"<<endl; 

goto nextnode; 

1 
similarity= (numerator* 1 .O) / denominator; 
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{ 

strt=createnode(); 

prs = strt; 

copybuffer(strt,size-filledbuff(),str-bit); 

cout<<"node tag="<<& - bit<sirnilarity<<endl; 

freecache();//cache is freed after it is copied to node 

flag=O; 

nfist t ;  

)else 

{ 

node* temp = createnode(); - 

copybuffer(ternp,size-filledbuff(),str-bit); 

cout<<"node tag="<<str - bit<Qiniilarity<<endl; 

freecache(); 

prs-zrightqtr = temp; 

prs =temp; 

nfis++; 

I 
][if end 

nextnode : innernode = innernode->rightgtr; 

)//inner while loop 

outernode->downqtl-strt; 

outemode=outemode->right@; 

)//outer loop 

1 
return nfis; 

Frequerrt Ifemset Generation Usir~g Cosirre Measure 53 



5.3.9 Selecting the Previous FISIcandidate 

This module will select the candidates for the third level, sot that it is 

easy to generate the 3-itemset, i.e. it will use 'ab' and 'ac' nodes in the second level to 

create the first node in the third level i.e. 'abc' after combination of these two nodes. 

Basically, it will return the starting pointer of the linked list i.e. the address of the first 

node in the linked list of the respective node. For example, under the node 'a', node 'ab' 

and node 'ac' if frequent are the children of the node 'a'. Thus they form a linked list and 

this module will return the address of the first node in the linked list i.e. 'ab' and pass 

this address to the Generate-next-frequent-itemset0 module which will then concatenate 

the nodes 'ab' and 'ac' to geuerate next level node 'abc'. 

void selectqrevious-FIS(){ 

stack s; 

Ilnode* start-node; 

clearnodeadd(); 

int ind=O; 

node* down - hlk; 

node* cunent-node = start; 

if( current-node->downgtr = 0) 

current-node = current-node->rightqtr; 

else { 

s.push(current-node->rightgtr); 

current-node = current-~iode->downgtr; 

down-link= current-node; 
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while ((s.stackisnotempty()=l) 11 (current-node->rightqtr !=O) 11 (current - node- 

>downqtr !=0)) 

down-link = current-node->downqtr; 

current-node = current-node-zdowngtr; 

)else 

{ 

if( current-node->rightjtr != O ) 

current-node = current-node->right*; 

else{ 

if(( down_link=O) &&(s.stackisnotempty()=l)) 

{ 

while((cunent-node=s.pop())&&(cument - node->downjtl=O)&& 

(current-node->rightgtr+)) 

{ 

if(s.stackisnotempty()=O) 

return; 

)//while end 

)else 

return; 

if(( down-link != O)&&( current - node->downjtr=O)&&( current-node- 

>rightgtr=O)) 

{ 
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whiie((current-node=s.pop())&&(current-node-~down~t~O)&&(cu~ent~node- 

>rightgti==O)) 

{ 

if(s.stackisnotempty()=O) 

retum;//tl~en exit from algorithm 

)//while end 

)else 

return; 

)//if end 
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6. Results 

Following is the example of the sample database on which the Cos-FIS generator 

algoritlun was applied. This sample database is generated by using the ARtool. 

Fig 6.1 ARtool Graphical User Interface 
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Fig 6.2 Generating a synthetic database 

By using the tools menu in the ARtool application's user interface, user can generate a 

synthetic database i.e. TI000 AT10 1100 P50 AP5.db in our case. - - - - 
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BEGIN - DATA 

1 3 5  

3 4 6  

1 2 3  

END-DATA 

Fig 6.4 Newdatabase.db 

6.1 Conversion of Database file into ASCII file 

The 'Newdatabase.db' file is converted to ASCII file 'Newdatabase.asc' in the 

same folder where the ARtool application resides by typing the following command in 

the MS-DOS Cortwmnd Prompt:- 

java db2asc Newdatabase.db Nervdatabase.asc 

6.2 Conversion of ASCII file into Text file 

The ASCII file 'Newdatabase.asc' is converted to text file 'Newdatabase.txt' 

by using the C++ code. This file is in the form of 0's and 1's which shows the absence or 

presence of a certain item in columns where each row represents a specific transaction 

respectively. 

Fig 6.5 Newdatabase.asc file 
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Fig 6.6 Newdatabase.txt file 

6.3 Working of the Cos - FIS generator algorithm 

The Cos-FIS generator algorithm begins by scanning the text format of the 

database in the form of vertical layout and keeping track of the support count of all the 

items in the cache i.e. the total number of transactions containing the item. 

Transaction A J 

Table 6-1 Vertical data Layout of the Synthetic Binary Database 

6.3.1 Finding Support count 

While the database scan is being perfonned, the database-scan0 

module keeps track of the support count of each item through the JII-brrffO function 
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inside it. The support count refers to the number of 1's that come in the column of an . 
item or the presence of the item in a certain transaction i.e. the number of transactions 

containing a specific item. The support count is saved in cache or buffer in our code. For 

example:- The support count of item 'A' is 2 . 

6.3.2 Finding the First level of the SE tree 

After the database in text format is scanned, the first level of the Set 

Enumeration tree is created through the inodule database - scan(). In this module first a 

node is created and then the column of data set is scanned according to the pointer 

Currerrtgtr with the help of a function named fill-buff, which requires record - length 

parameter, thefilcbrgff fills the buffer. This buffer is then copied by a function named 

copy-buffer in to newly created node info field. This function takes the pointer to newly 

created node and size of the buffer and node tag to be copied into that node. The created 

node is then linked with the previous node and in this way the first level of set 

enumeration tree is created. 

Fig 6.7 First level of SE tree 

However, the output in C++ is as follows where each node or item. has the same support 

in this case:- 
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node start 

1 

3 

node end 

NODE no = b 

$$$$$$$$$$$COUNT$$$$$$$$$I 

node start 

3 

node end 

NODE no = c 

$$$$$$$$$$$COUNT$$$$$$$$$3 

node start 

1 

2 

3 

node end 

NODE no = d 
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NODE no = e 

$$$$$$$$$$$COUNT$$$$$$$$$3 

node start 

1 

2 

3 

node end 

NODE no = f 

$$$$$$$$%$$COUNT$$$$$$$$$2 

node start 

1 

2 
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node end 

Fig 6.8 First level of SE tree in C++ output 

6.3.3 Finding the Second level of the SE tree 

The second level of the SE tree is created using its first level, by finding 

Cosine similarity between every two items in the first level. Each node in the first level 

has a subtree beneath it which is stored as a linked list i.e. if Node 'a' has node 'ab' and 

node 'ac' beneath it, then this forms a sub-tree as well as the linked list where the starting 

node is 'ab'. The support count found earlier in the first level formation is used in the 

Cosine measure formula to find the similarity. The Cosine formula is as follows:- 

Where P(A), the probability of the item 'A' is found by dividing the support count by the 

total number of transactions. i.e. 216 =0.3. 

ARer putting all the relevant values into the Cosirle Sinrilarify measur-e formula, if the 

similarity found is greater than or equal to the user specified sinlilarity threshold, then the 

iteniset is said to be frequent and added in the SE tree as nodes of the second level. 

Following is an example of itemsets in second level where the list of numbers shows the 

transactions containing the respective itemset:- 

Starting Similar node= de >>> Similarity-1 
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node start 

1 

2 

3 

node end 

Subsequent Similar node= df >>> Similarity- 1 

node start 

1 

2 

node end 

Fig 6.9 Second level of SE tree in C++ output 

6.3.4 Finding the Next level of the SE tree 

Aftcr creating the second level of the SE tree, the subsequent levels are 

created using the previous level. For example, the third level is created using the itemsets 

of the second level. Each node in the first level has a subtree beneath it which is stored as 

a linked list i.e. if Node 'a' has node 'ab' and node 'ac' beneath it, then this forms a suh- 

tree as well as the linked list where the starting node is 'ab'. The selectqreviorrs-FISO 

module will select candidates for the third level, by returning the address of the starting 

node in every linked list and passing this address to the 
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Generate-rrcv!fueque~ri~ite~irsetfl module. This module will then use the starting 

address to concatenate all the nodes in the respective linked list and hence construct the 

node(s) for the next level. 

Following is an example of the third level nodes or itemsets where the nodes in the 
.. : second level are concatenated i.e. 'cd' and 'ce' are combined to fonn 'cde':- 

entered next level 

Src ce 

SUBSTRING;I'SRC IN NEX LEVEL-->> ce 

*****outemode*****cd 

NEW TAG INNER LEVEL---->>> cde 

Src cf 

SUBSTRING; k SRC IN NEX LEVEL-->>cf 

*****outemode*****cd 

NEW TAG INNER LEVEL---->>>cdf 

......................................................................... 
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Src gi 

SUBSTRING; k SRC IN NEX LEVEL-->>gi 

*****outemode*****gh 

NEW TAG INNER LEVEL---->>>ghi 

Src gj 

SUBSTRING; k SRC IN NEX LEVEL-->>g 

*****outemode*****gh 

NEW TAG INNER LEVEL---->>>ghj 

entered next level 

src gk 

SUBSTRINGjSRC IN NEX LEVEL-->>gk 

*****outernode*****gh 

NEW TAG INNER LEVEL---->>>ghk 

Fig 6.10 Third level of SE tree in C++ output 
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Cl~auter 7 Co~dusion and Future Enlrartcement 

7. Conclusion and Future Enhancement 

In this section, the conclusions and future enhancements to the Cos-FIS generator 

algorithm will be discussed. This algorithm was implemented on the Pentium machine 

with the windows Xp version. However, further enhancements to the algorithm can be 

performed to increase efficiency of the software in order to cope with the slow processing 

and limited speed of the system. 

7.1 Conclusion 

All the previous techniques and algorithms of generating frequent itemsets use 

support and confidence measures as well as have some drawbacks such as multiple 

number of scans and large candidate itemsets. However, the Cos-FIS generator algorithm 

uses a new clustering measure 'Cosine measure' to generate frequent itemsets which has 

certain advantages i.e. there is no candidate generation using this measure. Also,.this 

algorithm uses the vertical data format or vertical data layout for scanning the database 

which gives the benefit of a single scan of the database. This also establishes that the 

clustering measures can also be used for association rule mining. Furthermore, the same 

FIS that the user gets by applying Cosine sinlilarity measure on transactional dataset, can 

be obtained by using the Apriori algorithm. 

7.2 Future Enhancements 

In this thesis, the application of the Cosine measure was studied as well as this 

measure was implemented for generation of frequent itemsets. The emphasis in this thesis 

was to observe that apart from support measure, other measures do exist and these can be 

uscd to generate FIS. In future. different clustering measures can be compared to decide 

which one is the best candidate for FIS gencration in terms of accuracy, time and memoly 

consumption. Moreover, the Set Enumeration tree and vertical database layout to arrange 

frequent itemsets were implemented. Therefore, the implementation of the algorithm in 

this thesis also shows that clustering measures can also be used for the creation of 

frequent itemsets. Also, the SE tree in this thesis could be represented graphically. In 
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future the Cos-FIS generator algorithm will be compared with the established algorithms 
e 

of association rule mining for efficiency purpose. 
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ARtool v1.1.2 - Associatioh Rule Mining Algorithms 
i * 

and Tools 

B-1 Introduction 

ARtool is a Java application for mining frequent itemsets and association rules in binary 
databases. ARtool is free sofhvare distributed under the GNU General Public License. 
ARtool uses a custom format for its database files (which will be henceforth referred to 
as the .db fonnat and is identical to the fonnat used in ARMiner). The asc2db and db2asc 
are utilities that allow the conversion of a .db file to a specially fomatted ASCII file (we 
will refer to this as .ax)  and respectively the conversion of a . a x  file into a .db file. The 
.asc files can be easily read and modified with any decent ASCII editor. 

B-2 Description and usage of the .asc format 

A small example of supermarket data can be taken. Suppose the items sold by a (very. 
very small) shop are green apples, red apples,oranges, bananas, and grapes. Also suppose 
that in this morning user had three customers, one bought geen apples and grapes, one 
bought only oranges, and 'the last one bought oranges and gapes. This activity can be 
represented in the .asc fom~at as follows: 

1 geen apples 
2 red apples 
3 oranges 
4 bananas 
5 gapes 
BEGIN-DATA 
1 5  
? 
3 

3 5 
Em-DATA 

There are two distinct parts of this file, the first one contains a listing of all the i t e m  user 
can sell, or otherwise said,,of all the items that could participate in a transaction. This pal-t 
looks is: 

1 green apples 
2 red apples 
3 oranges 
1 bananas 
5 grapes 
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The format is pretty simple. It must consist of a positive number followed by a string 
(which can contain blank spaces). It is important that the numbers be assigned in 
increasing order starting fron11. Empty lines are allowed to appear in this section. This 
section enun~erates all entities described by the data and between which ARtool will later 
be used to look for association rules. 

The second part consists of the actual data: 

BEGIb-DATA 
l 5 
3 
3 5 
END-DATA 

In our case there were 3 transactions and these are each represented on a separate line. 
The first transaction involved green apples and grapes and they are represented by the 
numbers associated in the first section, that is I for green apples and.5 for grapes. The 
user can check the other transactions as an exercise. Note that this section must be 
enclosed between a BEGIN DATA and END-DATA lines. Anything appearing after the 
Eh9-DATA line will be iGored. Blank lines are allowed to appear in this section. Note 
that although the numbers appearing in each line are sorted, this is not required by the 
format. The user can list the numbers in any order and the file can still be processed 
correctly, however it is suggested to always list the numbers in a transaction in increasin: 
order, because in this way asc2db will process the file more efficiently. 

This concludes the supennarket data example as well as the description of the . a x  
format. However most of'the time the data will not be similar to the one used in this 
example. If that happens, then the user will have to try to f i g r e  out some way in which 
he/she can express their data in the . a x  format. To give an idea, following is another 
example: 

Suppose the user has some sort of census data like the one below: 

SSN# Age Sex Man-ied Num kids Income 
006 26 M No 0 25600s 
345 54 F Yes 2 55000$ 
743 37 M Yes 1 80000$ 

What can be done with it? Let's look at each colun~n: 

SSW:  this is unique for each entry, there is no sense to look for association rules 
involving SSN#, at least not in this data, since each SSN# appears only once in the whole 
data. So we can simply ignbre this field for mining purposes. 

Age: this attribute can take a variety of values. ARtool cannot handle such attributes 
easily, in fact it only considers binary attributes. The user needs to discretize this 
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attribute, replacing for example ages 0-21 with "very young age", 22-35 with "young 
age", 35-55 with "middle age", etc 

Sex: this has two values: "male" and "female", so user could create two attributes out of 
it. 

Married: again we can create hvo attributes: "married" and "not manied" 

Nun1 - kids: this also has to be discretized, maybe in "no kids", "one kid", "several kids". 

Inconle: we could also discretize this into "small", "average", and "high". 

The discretization should be made such that it will identify clearly the ranges that present 
interest for the person who wiII do the mining of this data. 

With these changes we could represent the above data in .asc fom~at  as: 

1 very young age 
2 young age 
3 middle age 
3 old age 
5 lnale 
6 female 
7 manied 
8 not manied 
9 no kids 
10 one kid 
I1 several kids 
12 small income 
13 average income 
14 high income 
B E G X D A T A  
2 5 8 9 1 2  
3 6 7  11 13 
3 5 7 10 14 
EhQ-DATA 

From this file the user can now create a .db file and then mine it using ARtool or 
ARMiner. 

B-2-1 Using asc2db 

The ascZdb program can be used to convert a correctly formatted . a x  file to ARtool's .db 
fonnat. Suppose user has a sample .asc file. Then hekhe can create a .db file from it by 
typing: 

Frepent Ife~izset Generation Using Cosirze Measure 73 



java asc2db sample 

which will create a sample .db file. If the user wants the .db file to have a different name 
then he/she can specify it o'n the command line as a second parameter: 

java asc2db sample artdata 

which will now produce an artdata.db file out of the sample.asc input. Note that the 
extensions .asc and .db do not have to be specified on the command line, they are 
automatically appended by asc2db. 

B-2-2 Using db2asc 

The db'asc prog-am converts a .db file to .asc format. This can be useful if the user Lvants 
to read or verify the content of a .db file. The user can also use it to modify by hand the 
contents of a .db file by first converting it to a .asc file, then editing the . a x  file, and 
finally converting it back to a .db file. db2asc is used in a similar way to its counterpart. 
asc2db. If the user needs to convert the anndatadb database to .asc format, then helshe 
can type: 

java db2asc artdata 

\\.hich will produce an armdata.asc file. If the user wants a different name for the output. 
then you can pass it on the command line as a second argument: 

ja1.a dblasc artdata arttxt 

which will produce an arttxt.asc file representing the contents of the artdata.db database. 

Again, the extensions .asc and .db should not be entered on the command line, since they 
are automatically appended by db2asc. 

B-3 How to install and execute ARtool 

The user needs to have Sun's JDK or JRE installed, probably at least version 1.3. 

In order to install ARtool, the user needs to unzip the ARtool binaries to some directory 
on hisher hard drive. 

To run the ARtool GUI, the user needs to type: 

java -jar ARtooLjar 

or double-click on ARtooLjar (works only if JRE is installed). 
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If ARtool luns out of memory during some niining operation (the user can see an 
OutOfMemoryException message), then helshe needs to allocate more memory 
to the JVM. In the case of Sun's JDK hetshe can do this by typing: 

java -Xmx512M -jar ARtool.jar 

which will let JVM use 5~12MB of memory, assuming of course that the user has that 
much menlory installed. 

If the user wants to use the command line utilities, then helshe will have to add laur.zip to 
their class path. On Windows the user needs to have in hisher autoexec.bat a line like 
this: 

SET CLASSPATH=.;C:\ARTOOL\BlN\LAUR.ZIP 

If the user uses Unix, then helshe will have to add something like 

setenv CLASSPATH .:-/ARtool/bin/laur.zip 

to their shell configuration file. 
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ABSTRACT 

Generating frequent itemsets (FIS) is the 
first step of association rule -mining. 
Existing techniques/algorithms for 
generating FIS used the well known 
support and confidence measures. 
However, we introduced a novel 
algorithm which makes use of a 
clustering measure i.e. Cosine measure 
for the generation of FIS. This algorithm 
presents the FIS in the form of a Set 
Enumeration tree in addition to the use 
of vertical database layout for clustering 
the items together. Furthermore, the 
results show that the same FIS that the 
user gets by applying Cosine similarity 
measure on transactional dataset, can be 
obtained by using the Apriori algorithm. 

Keywords: Association rule mining, 
Frequent Itemsets, Cosine similarity 
measure. 

1. INTRODUCTION 

Dala Mining is the process of running data 
through sophisticated algorithms to 
uncover meaningful patterns and 
correlations that may otherwise be hidden. 
These can be used to help user understand 
the business better and also exploit to 
improve future perfonnance through 
predictive analytics. In data mining, 
association rule mining plays a vital role 
which discovers interesting ' relations 
between variables in large databases. 

Piatetsky-shapiro describes analyzing and 
presenting strong rules discovered in 
databases using different measures of 
interestingness. For example, the 
infonnation that customers who buy 
burgers also tend to buy coke at the same 
time is represented in association Rule 
below: 

Where burger is the antecedent and coke 
is the consequent of the rule. An 
association rule has two numbers that 
express the degree of uncertainty about 
the rule namely Srrpport and 
Conjiderrce. Researchers have 
discovered numerous techniques to find 
FIS, mostly based on these measures. 
However, we introduce a new clustering 
measure for the same purpose known as 
"Cosirre" measure. While clustering, 
data points are arranged in a way that the 
points nearcst to cach othcr arc placed in 
one cluster. This can be done by 
similarity or dissimilarity measures. 
Similar data items will be nearest to each 
other and dissimilar will be at distance 
far apart. Cosine similarity measure is 
one of the clustering measures. The 
purpose of clustering measure is to join 
together objects into successively larger 
clusters, using some measure of 
similarity or distance. A typical result of 
this type of clustering is the hierarchical 
tree. Cosine similarity is a measure of 
similarity between two vectors of n 



dimensions by finding the cosine of the 
angle between them, often used to 
compare documents in text mining. The 
cosine similarity of two vectors (dl and 
d2) is defined as: 

Where dot(d1, d2) - - 

dl[O] *d2[0] +dl [I] *d2[1]. .. 

And where Ildlll = sqrt 
(dl[O]A2+d1[l]A2...). 

2. LITERATURE REVIEW 

Apriori is a seminal algorithm 
proposed by R.Agrawal[l] h May 
1993. It uses prior btowledge of 
frequent itemset properties. Apriori uses 
breadth-first search and a hash tree 
structure to count candidate item sets 
efficiently. FP-growth algorithm[6] 
proposed by J. Han, J. Pei, Y. Yin, and 
R. Mao in 2004 adopts a divide and 
conquer strategy avoiding costly 
candidate generation. FP-growth tree is 
memory resident and requires additional 
storage in every node of the FP-tree 
(Because of excessive pointers storage in 
every node) especially when the FP- tree 
is too large to fit in main memory. 
Partition algorithm was proposed by A. 
SavasereIZ] in 1996. This algorithm is 
used for partitioning the data to find 
candidate itemsets. A partitioning 
technique can be used that requires just 
two database scans to mine the frequent 
itemsets. The problem of accurately 
estimating the number of partitions 
given the available memory, however, 
needs further work. Sampling approach 
was proposed by Toivonen[3] in 1996. 
This algorithm is used for mining on a 
subset of the given data. The basic idea 

of the sampling approach is to pick a 
random sample S of the given data D, 
and then search for frequent itemsets in 
S instead of D. In this way, there is some 
tradeoff of accuracy against efficiency. 
MarMiner (Bayardo, 1998)[4] is 
another algorithm for finding the 
maximal elements. It uses Rymon 
R(1992)[10] "search tluough systematic 
set Enumeration': mechanism and 
efficient pruning techniques to quickly 
narrow the search. ECLAT 
(Equivalence CLASS 
transformation)[5] is an algorithm 
developed by M.J Zaki, which 
transforms a given data set of 
transactions in the horizontal data format 
of TID-iferrwet into the vertical format of 
item-TID-set. The above literature shows 
that association rule mining is facing a 
number of problems currently such as 
multiple scans of database and 
generation of large candidate itemsets 
which needs to be solved.These 
problems cam be solved by using 
clustering measures such as Jacquard 
and Cosine measure etc. SB-Miner[ll] 
developed by S.Rahman is novel 
algorithm to find FIS based on clustering 
measure i.e. jacquard similarity measure. 
Jacquard similarity measure is based on 
calculating the distance between 
itemsets. 

3. THE COS-FIS GENERATOR 
ALGORITHM 

The Cos-FIS generator algorithm uses 
the clustering measure i.e. Cosine 
measure to generate frequent itemsets. 
Therefore, this algorithm makes use of 
the SE tree which arranges the k- 
itemsets according to their specific 
levels. 



3.1 MAJOR MODULES 

Division of any project into modules 
adds to its efficiency and overall 
performance. Hence this project is 
divided into following modules:- 

1. Database conversion. 
2. File reading. 
3. Copying cache to node. 
4. Frequent itemset generation. 

Fig 1 Architectural Diagram 

3.2 THE SET ENUMERATION TREE 

The Set Enumeration tree is a lattice 
structure used to enumerate all possible 
itemsets. In general, a data set that 
contains k items can potentially generate 
up to 2•‹K-1 frequent itemsets, excluding 
the null set. Because k can be very large 
in many practical applications, the 
search space of itemsets that need to be 
explored is exponentially large. In this 
paper, the SE tree as illustrated in Fig 1 
is the data structure used to represent the 
frequent itemsets in a lexicographic 
order. Each node represents a frequent 

itemset and each level represents k- 
itemset i.e. level one will have' l -itemset 
and level two will have 2-itemset and so 
on. Every subtree as shown in Fig 1 
represents an equivalence class of its 
root node. 

Defirritiorr I [Equivalence class] 

Equivalence class of node A consists of 
all elements containing node A. For 
example, following is the equivalence 
class of node A:- 

A = {AB, AC, AD) 

Fig 2 Set Enumeration Tree 

3.3 THE NODE STRUCTURE OF SE 
TREE 



Each node in SE tree represents a 
frequent itemset. Each node has a unique 
node id field, which shows the name of 
the node. Node has a count field 
indicating the total number of 
transactions containing that frequent 
itemset. There are two node pointers 
down and right node pointer pointing to 
the node that is linked to current node in 
downward position level-wise and to the 
right position item-wise respectively. In 
other words, the down pointer points to 
the node in the next level where each 
level represents the k-itemset and the 
right pointer points to the node of the 
same level. Moreover, there is a 
t rausact iou~id~lis t  field, which actually 
represents the transaction IDS of 
transactions containing the particular FIS 
represented by the node - id of the node. 

3.4 CREATION OF THE SF TREE 

A brute force approach for finding 
frequent itemsets is to determine the 
support count of every candidate itemset 
in the lattice structure. To do this, we 
need to compare each candidate against 
every transaction. If the candidate is 
contained in the transaction, its support 
count will be incremented. The 
algorithm shown in Fig 2 creates the SE 
tree for the purpose of generation of 
frequent itemsets. The Set Enumeration 
tree(SE tree) is created in a very 
systematic way. It begins by execution 
of the first module of the code i.e. 
database-scan. Jn this module, first 
node 'a' is created and then the column 
of dataset (text file) is scanned according 
to a pointer, hence filling the buffer with 
the support count. If the support count of 
the node is greater than or equal to the 
minimum user specified threshold, then 
the node is said to be frequent and hence 

is added in the SE tree. After the buffer 
is filled with count of the node using 
fill-buff function, it is then copied into 
the info field of .newly created node 
using copybuffer module. It is then 
linked with the previous node. This way 
the first level of SE tree is generated. 
The second level of SE tree is obtained 
by execution of the 
Generate frequent-2-itemset module. 
This levelis created by finding Cosine 
similarity between every two itemsets or 
nodes present in the first level of SE tree 
i.e) between node 'a' and node 'b'. Only 
those itemsets whose similarity is greater 
than or equal to the user supplied 
minimum similarity threshold are 
declared frequent and are linked in the 
second level of the SE tree in 
lexicographic order. And the same 
process is repeated for levels 3 and 4: 

' 

Each equivalence class is represented in 
form of a linked ' list.The 
selectgrevious-HS module selects the 
FIS generated in the previous level and 
returns address of the starting node in 
the linked list of equivalence classes. 
Furthermore, the 
Generate-next-frequent-itemset 
nlodule uses these addresses to generate 
the next subsequent levels. 

This question can be answered by 
applying the Cosine similarity measure 
on the itemset as follows:- 



Minimum threshold = 0.2 
AUBUC = A.B.C 

P(A.B.C) - 219 
P(A) = 619 
P(B) = 719 
P (C) = 619 

 IS^^^;,,, = 219 I d6/9.J7/9.d6/9 . 
= 0.22 10.59 
= 0.3 

Since 0.3 > 0.2, therefore the {A, B, C) 
itemset is frequent. 

Algorithm Cos-FIS-generator 

Ds: Transactional Dataset 
a : Threshold 

O U ~ D U ~ :  

FIS: Frequent itemsets 
0 : No. of FIS after each 

iteration 

Step I : Scan transactional dataset 
DS. 
Step 2: Construct first level of Prefix 
tree. 
Step 3 :Construct second level of 
prefix tree by finding similarity 
between every 2 itemsets in the 
previous level of tree as shown in 
step 4. 

Step 4: = 

Generate-frequent-2_itemset(FIS, a ) 
by using the Cosine similarity 
nleasrtre 

Repeat Step 5 to 7 until = 0. 

Step 5: Scan each sub tree in the last 
level of prefix tree. 
Step 6: Store starting node's address 
of each sub tree in S. 
Step 7: = 
Generate next-frequent-itemset 
(S,FIS, a). 
Step 8: Return FIS. 

Fig 3 Pseudo code of the COS-FIS 
generator algorithm 



of scans and large candidate itemsets. 
However, the Cos-FIS generator 
algorithm uses a new clustering measure 
'Cosine measure' to generate frequent 
iternsets which has certain advantages i.e. 
there is no candidate generation using this 
measure. This also establishes that the 
clustering measures can also be used for 
association rule mining. In  f~~ture ,  different 
clustering measures can be compared to 
decide which one is the best candidate for 
FIS generation in terms of accuracy. time 
and memoq consumption. Also, the SE 
tree in this thesis could be represented 
graphically. In future the Cos-FIS 
generator algorithm will be compared with 
the established algorithms of association 
rule mining for efficiency purpose. 
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