Value based Regression Test Case Prioritization
using Evolutionary Algorithm

- Developed by:

Erum Ashraf 301-MSSE/FBAS/F09

Supervised by:

Dr.Abdul Rauf

Department of Computer Science and Software Engineering
Faculty of Basic and Applied Sciences
International Islamic University Islamabad

(2011) | centraL
; LIBRARY
ISLAMABAD.

TH958y

Accession No

MS

003
ERY

Lona fau}e/ ¢ J?éd-vre — TJestivg

DATA ENTERE;}
%3}:3

Department of Computer Science and Software Engineering

International Islamic University Islamabad

Date: C-).!a 3/2@(2 .

Final Approval

This is to certify that we have read the thesis submitted by Erum Ashraf, registration# 301-
MSSE/FBAS/F09. It is our judgment that this thesis is of sufficient standard to warrant its
acceptance by International Islamic University. Islamabad for the degree of MSSE,

Committee:

External Examiner:

- 7
Dr. Sajid Anwar b\ "}P/L }
=N

Assistant Professor

Internal Examiner:

Dr. Zuneralalil

Acting Chairperson

ool /»’J
Supervisor: X ¢ /
Dr.AbdulRauf

Assistant Professor

Dedicated to my family, my teachers and
everyone who helped and prayed for my

success.

exe

A dissertation Submitted To

Department of Computer Science and Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad
As a Partial Fulfillment of the Requirement for the Award of the

Degree of MSSE.

iv

Declaration

We hereby declare that this Thesis “Value based Regression Test Case

Prioritization using Evolutionary Algorithm” neither as a whole nor as a part has

been copied out from any source. It is further declared that we have done this research
. “with the accompanied.report entirely on the basis of our personal efforts, under the
proficient guidance of our teachers especially our supervisor Dr.Abdul Rauf. If any part of
the system is proved to be copied out from any source or found to be reproduction of any
project from any of the training institute or educational institutions, we shall stand by the

consequences.

b fb[t?"% -
—PU

Erum Ashraf

[Registration# 301-MSSE/FBAS/F09]

ACknowledgement

First of all I am obliged to Allah Almighty the Merciful, the Beneficent and the source of

all Knowledge, for granting us the courage and knowledge to complete this Project.

I would not have reached this stage but for the prayers, love and moral support of my
mother and father. I am greatly thankful to my supervisor Dr.Abdul Rauf, who provided
me useful and helpful assistance. I would like to thank my son Muhammad Umar, my
. - brothers, sisters, my friend uzma shaheen, my colleagues and teachers Dr Zunera Jalil,

Ehsan Ahmed, Dr.Waseem Shehzad, Dr.ramzan and all other well-wishers.

I am thankful to my husband Khurrum Mahmood who supported and helped me
throughout my research work.I am thankful to each and every person who helped and

prayed for me.

"7:-(1/11 "lgt\'si/'
= U

Erum Ashraf

Registration# 301-MSSE/FBAS/F09

vi

Project In Brief

Project Title:

Undertakeﬁ By:

- Supervised By:

Start Date:
Completion Date:
Tools & Teéhnologies

| Documentation Tools

Operating System:

System Used:

-Value based Regression Test Case

Prioritization using Evolutionary Algorithm

Erum Ashraf

Dr. Abdul Rauf

1% Mar, 2011

24" Nov, 2011

MATLAB 9.0

MS WORD 2007

Windows XP

" Pentium 4

vil

Abstract

Regression testing is type of software testing that is done to uncover new software faults
in existing functional areas of a system after changes. Common methods of regression
testing include rerunning previousty run tests and checking whether program behavior has
changed. The execution of the complete set of test cases will require time and is a
complex process, which may not be feasible in limited time to detect maximum faults at
earlier stages. Adequate time should be dedicated for testing but due to some limitations it
can’t be so. Experience has shown that without proper prioritization of test cases, the end
product usually fails to meet its objectives optimally. In fact in many instances, the
product is considered a failure because it fails to meet its core objectives due to mainly

shortened time pressure.

To reduce the effort required and to meet the time to market pressure, test cases are being
‘reordered now. Several.test case prioritization techniques have been presented by various
researchers over the past years. But we have found a lack of work in integration of
artificial intelligence algorithms for value based test case prioritization. In this thesis, we
have presented a novel value based intelligent test case prioritization algorithm using
particle swarm optimization. We have considered the criterion of maximum fault
coverage in minimum execution time for test case prioritization. We have performed
experimentation using our proposed algorithm and compared the results with -existing
technique. The experiments have shown that our ‘proposed algorithm is capable of

delivering impressive prioritization under varying and often conflicting circumstances.

Prioritization of test cases has been done by considering the factors found in literature.
The weightage of any factor can be maximized according to the required criteria of
prioritization of test cases. Therefore, our proposed strategy of prioritization of test cases
is customizable and it gives much better results than random technique of prioritization.
The proposed algorithm can search the best new positions of the test case which have
high fault detection ability. Qur probosed value based particle swarm optimization test
case prioritization algorithm can discover reasonable quality solution effectively and
efficiently. The proposed solution may have some biasness issue as many stakeholders
are being involved in our proposed solution to get factor values of test cases. These values

are validated from project managers to reduce this biasness factor.

viii

Al
AST
EA |
- GA
KBSE
PSO

SE

List of Abbreviations

Artificial Intelligence
Automated Software Testing

Evolutionary Algorithms
Genetic Algorithm

Knowledge Based Software Engineering
Particle Swarm Optimization

Software Engineering

TABLE OF CONTENTS

TABLE OF CONTENTS - -en-nmmmrmememrmememememeememeeeemeeeeememeee X

LIST OF TABLES --------oc et --=--=- XIII
LIST OF FIGURES === e XIV
CHAPTER 1: INTRODUCTION +-s-semrememememcmcemememamemmnemene 1
11 Regre;sion Testing 1
1.2 Test case prioritization S 1
1.3 Regression Test Case Prioritization 1
1.4 Motivation — ‘ - ‘ 2
1.5 Problem Statement : 3
1.6 Goals - .
17 Objectives ' a
1.8 Thesis o?ganization 5
CHAPTER 2: BACKGROUND STUDY -------sernsrcemmemremsaneemeamenns 6
2.1 Introduction 6
2.2 Optimization A-Igorithms < - 6
2.3 A Classiication of Optimization Algorithms - 7

2.4 Op¥imization and search techniques

2.4.1 Traditional Op¥miza on Algorithms

' 2.42 Gradient-Based Local Optimization Method

2.4.3 Random Search

0O 00 ~ 9~ 0~

2.4.4 Stochastc Algorithms

. 2.4.5 Evolutionary Algorithms 9

2.5 Value Based Sctware Engineering 9
2.6 Background . 10
2.6.1 What is Value? : 10
2.6.2 "Value” in Software Engineering 11
2.7 Foundations of VBSE -— . 12
2.7.1 Theory Context - 12
2.7.2 Theory W 12

2.8 Summary 13

CHAPTER 3: LITERATURE REVIEW-------cecnsececenmacemnememen- 14

3.1 Test Case Prioritization 14

3.2 Test Case Prioritization Techniques 14
3.2.1 Coverage-based Test Case Prioritizakion techniques -14
3.2.2 Non coverage-based Test Case Prioritization 16

3.3 Summary - 19

4.1 Value based Test Case Prioritization Factors 20
4.1.1 Customer Priority 20
4.1.2 Implementation Complexity 20
4.1.3 Requirement Volatility : - 21
4.1.4 Requirements Traceability ' 22
4.1.5 Execution Time 22
4.1.6 Fault Impact of Requirement - 22

4.2 Factor Collection Process : 22

4.3 Value Based Test Case Prioritization Block diagram - 23

4.4 Fault Detection Analysis Using PSO 24

© 4.4:1 Swarm Initialization - 24
4.4.2 Velocity Update 24

xi

4.4.3 Position Update 25

4.4.4 Quality Measure - 25

4.4.5 Completion Criteria 25

4.4.6 Opbmal Priority Check Equation - 26
4.5 Pseudo Code for Proposed Method 26
4.6 Summary ‘ 31
CHAPTER 5: RESULTS AND DISCUSSION ---c-eeeemcmcmcemameeaee 32
5.1 Introducton - , 32
5.2 Experimental Design 33
5.3 Project Description i 35
5.4 Performance Measure ; 37
5.5 Experimental Results 37

5.5.1 Pl;oject 1 Results 39

5.5.2 Project 2 Results — 41

5.5.3 Project 3 Results 43
5.6 Summary : a6
CHAPTER 6: CONCLUSION AND FUTURE WORK -------==eccme- 47
6.1 Conclusion 47
6.2 Recommendations for Future Work a7
REFERENCES-----==-nnneeme et 48
INDEX 1 (RISK MANAGEMENT DATA) -----recsceecrmmemmemeameanns 54
INDEX 2 (lT PROCUREMENT SUITE DATA) ------------- ——reenaaa- 56
INDEX 3 (SALES INTRANET DATA) --==sseeemmeccmccmcecncseemmmn- 57

xii

LIST OF TABLES

Table 2.1 Theory W

12

Table 4.1 Test case values 1#1

2?7

Table 4.2 Fitness Function Results I#1

27

Table 4.3 Velocities and Positions I#1

28

Table 4.4 Test Case Values 142

28

Table 4.5 Fitness Function Results 1#2

29

Table 4.6 Velocities and Positions 1#2

29

Table 4.7 Test Case Values 1#3

30

Table 4.8 Fitness Function Results 1#3

30

Table 4.9 Velocities and Positions I#3

31

Table 5.1 Simple Design Table

34

Table 5.2 Project Description

35

Table 5.3 Data Coliected from Stakeholder

Table 5.4 Parameters used for Project 1
Table 5.5 Parameters used for Project 2

Table 5.6 Parameters used for Project 3

36

38

38

38

46

Table 5.7 Summary of Results

xiii

LIST OF FIGURES

Figure 2.1 Theory W

12

Figure 4.1 Block Diagram of PSO for VBTCP

23

Figure 4.2 Particle Representation

24

Figure 5.1 Comparison of Results for P#1

39

Figure 5.2 Random Technique Resuits P#1

39

Figure 5.3 PSO Results P#1

40

Figure 5.4 Comparison Bar Chart for P#1

Figure 5.5 Comparisons of Results for P#2

a1

Figure 5.6 Random Technique Results P#2

42

42

Figure 5.7 PSO Results P#2
Figure 5.8 Cbmparison Bar Chart for P#2

43

Figure 5.9 Comparisons of Results P#3

43

Figure 5.10 Random Technique Results PH3
Figure 5.11 PSO Results P#3

Figure 5.12 Bar Chart Comparison for P43

45

-

Xiv

Chapter I: Introduction

Chapter 1 Introduction

1.1 Regression Testing

Regression testing is the process of having assurance regarding any modification in the
software. It makes sure the working of functional characteristics of software after having
modifications in software. It is quite expensive technique to be used. Some techniques
such as test selection, test prioritization [4] has been proposed by researchers for effectlve
cost reduction in regressu)n testing. Regression testing is a part of software development
process. It is the process of testing the changes made to the software, by executing a set of
test cases. The major task in this process is to fix the bugs and ensure that the issues are
resolved. Any software may require upgrade or change with time, but a small or large
‘change may disrupt the performance of the new software with old functions or data.
Regression testing is needed in order to ensure that software is working as it was before
changes. It is a control measure to maintain good quality of the software. Also the old test
cases are run against the new version to validate that all the previous capabilities still

work.

1.2 Test case prioritization

Test case prioritization can be performed by meeting some predefined criteria. This
criterion can be maximum fault detection, reduction of cost or maximum code coverage.
Selection of test cases from test suite is not a wise option when high quality software is
‘required. Another feasible option is the prioritization of the test cases, so that limited
number of test cases can be run to check the functionality of the software in available

time.

1.3 Regression Test Case Prioritization

Basically there are two methods to carry out regression testing. The first method involves
testing of entire system by re-executing all test cases, but this is a very lengthy process
and a complex process. As regression testing is quite expensive process so it is usually
not possible (due to limited resources) to see the effects of changes, every time the change

1s made by re executing all test cases. There is another strategy for this purpose which is

~Value based Regression Test Case Prioritization

™o -~ 1

Chapter 1: Introduction

executing regression testing by reordering the test cases in a specific order to meet few
performance aims, such as coverage etc. To do this, the test cases which give more
coverage will be executed first. This strategy is called as regression test case

prioritization.

1.4 Motivation

Efficient Al systems can be designed by integrating Al and SE disciplines together.
Advantages of Al applications can be seen in situations where complex decisions are
needed to be taken. Al knowledge_ can be integrated into computer science field to deliver
more efficient and correct systems to its customers. Software testing tools can benefit

from such knowledge. An active research is being happening for this purpose.

This thesis also puts an effort in test case prioritization using Al speciﬁcafly evolﬁtionary
algorithms. So that it is the connection of two entirely different research fields, test case
prioritization and evolutionary algorithms. Considering the significance of testing, and the
maturity of evolutionary algorithmic methods, we believe the time has come for the
“software testing and Al researchers to join forces in assisting software testers in testing of

software systems.

Software testing is difficult process as customers want to be delivered thoroughly tested
system in given constraints. There are different hurdles involve in this process such as
complexity of system, shortage of resources humans and otherwise, less mature testing
process etc. It gets often impossible to meet testing goals while using traditionally manual
testing methods. Automated Software Testing (AST) helps software testers to” address
these challenges by reducing the time and cost of software testing, AST can help software
testers to improve software quality by enhancing the manual testing efforts via increased
testing coverage and labour intensive tasks can also be replaced with it. Automated
.systems are used to ensure reliable system, to increase quality of testing effort, to reduce

manual testing effort and to minimize the testing schedule.

Exclusive research is being done to propose efficient solutions for difficulties of
regression testing. According to Myers [11], maximum test efficiency should be tried to
achieve by increasing the identification of faults with a limited number of test cases.
Fewster also gives almost same views about test efficacy. According to fewster, software

testing should be done to identify faults at lower cost in terms of time and ¢ost [23].

Value based Regression Test Case Prinritizatinmn

Chapter 1: Introduction

Regréssion testing search space as well as most test objects implies complex search space
[29]. Regression test comple_xity can be resolved by using EA for search space
optimization. The population-based stochastic nature of evolutionary algorithms makes
them more appropriate to solve such complicated problems. EA are capable to find global
optimal solution without being stuck in local optimum. Fault detectionn based

prioritization can also be done by using Metaheuristics algorithms. [29].

A PSO is a population-based stochastic optimization algorithm that has been modeled
after the simulation of the social behavior of bird flocks. It is a simpler and easily
'implementable algorithm and has fewer parameters to adjust for optimization. It has been
successfully applied to solve a wide range of search based optimization problems [26, 27,
28]. Thus, due to its simplicity and efficiency in navigating large search spaces for
optimal solutions, PSO is used in this research to develop efficient, robust and flexible
algorithms to solve test case prioﬁtization problem. Because test case prioritization is an
important strategy in regression testing, more benefits can take from it by integrating it
with value i)ased agenda. Focus of this thesis is to combine the VBSE into test case

prioritization using evolutionary algorithm.

1.5 Problem Statement

- Testing software is hard and to give guarantee that system is well being tested is even
more difficult, During testing it is difficult to execute all code in limited time. It is not
possible to test system exhaustively to declare it fault free system [15].Testing is often
done in time to market pressure and is supposed to test whole software in quality manner.
Regression testing involves executiﬁg large size of test cases which is time consuming

process [11].

It is not possible to test the software by executing all test cases for regression testing
under time, quality and resource constraints for fault identification at early stage.
Software testing gives an equal importance by giving same amount of time to all parts of
software to test but it does not meet to business value because 80% of value often comes

from its 20% of software.

Major constraint of testing is time. Time to market constraint pressurize the testers to test

software as early as possible for in time release of software, but this ultimately rises the

Value based Regression Test Case Prioritizatinon

T ™

Chapter 1: Introduction

possibility of potential risks in software, on the other hand time slippage occurs for

satisfactory quality assessment of software [30].

Test case prioritization is quite complex problem as it is closely related to regression test
case selection problem. Regression test case selection problem can be modeled as set
covering problem, which is a well-known NP-Hard problem [4]. This detail gives an
insight into difficulty of the problem of Test Case Prioritization. The selected set of
problem in this thesis is NP-hard.

To tackle with these challenges, concept of value has been introduced by giving more
value to critical and major functionality according to stakeholder. As ultimate objective of
software or any business is to increase the return of investment (ROI) so by introducing
value in testing, testers can focus on important part of software to be tested to increase
'R'OI. Overall testing performance can be increased by making investment decisions like
defining coverage criteria or prioritizing tests to optimize the overall testing progress

[30].

1.6 Goals

Our goal of brioritizatio_n is to increase the likelihood of revealing maximum faults earlier
in the testing process. We have proposed to use PSO. incorporated with value concept to

achieve the test case prioritization.

1.7 Objectives
T-he primary objectives of this thesis can be summarized as follows:

¢ To solve the difficult problem of prioritization of test cases in regression testing

by applying Particle Swarm Optimization.
* To develop an efficient value based algorithm using PSO.
» To analyze the effects of VALUE based test case prioritization in fault detection.

¢ To compare the findings of particle swarm optimization with random ordering for

fault detection.

Value based Regression Test Case Prioritizatinn

Chapter 1: Introduction

1.8 Thesis Organization

There are 6 chapters in this thesis. Introduction is given in €hapter 1. Chapter 2 focuses
on optimization methods and gives a comprehensive overview of value based software
‘engineering. In chapter 3 test case prioritization problem has been formally defined with
the help of literature support and detail of different existing test case prioritization
techniques has been presented. In chapter 4 test case prioritization factors, its structure
and factor collection process is 'discussed. Chapter 5 is about implementation of proposed
algorithm and results. These results are compared with random technique. The thesis is

concluded in the last chapter.

Value based Regression Test Case Prinritization

Dnewen &

Chapter 2: Background Study

Chapter 2 Background Study

2.1 Introduction

Optimization techniques are extensively applied in scientific, business, industrial
manufacturing, resource allocation, scheduling, computer science or engineering
_discipline. A common person also seeks for optimization to achieve some certain goal in
his/her practical life like a traveler may want to adopt some shortest path to reach
somewhere. Manufacturer wants to produce reliable machine parts by designing efficient
architecture and operation of their production process. Basic theory of optimization is to
fairly allocate the scarce resources o.r assets. In terms of Mathematics, the minimization
or maximization of a function keeping in view the constraints in its variables is known as
optimizatiori [74]. Research in the optimization field is very active and new optimization

methods are being developed regularly

This chapter comprises on two sections. The first section is about optimization and
optimization algorithms while the second section explains the concept of value in

software engineering disciplines.

2.2 Optimization Algorithms

Optimization is mainly to search values for certain set of predefined parameters or
variables that will ultimately optirhize some objective function to certain constraints. Not
all the optimization problems can be solved by some specific method [4]. There exists
different aléoﬁthm for different type of problems. Selection of appropriate algorithm
depends on nature of problem. The most feasible solution will solve the optimization
problem more rapidly [74]. Optimization includes both maximization and minimization

problems. Global optimization is the process of finding the global optimum solution. [82].

By nature optimization algorithms are iterative. Initial guess is needed to start them that is
tﬁe most favorable valﬁes of the variables and generate a sequence of improved results
until they reach a solution [74]. Optimization algorithms are guided by some objective
functions [82]. The fastest optimization algorithms search only a local solution, a point at
which the objective function is smaller than at all other feasible points in its surrounding
area. They do not always find the best of all such minima, that is, the global solution [74].

Global optimization problems are generally very difficult and are categorized under the

Value based Regression Test Case Prinritizatinn

Chapter 2: Background Study

class of nonlinear programming (NLP) [74]. Global optimization algorithms are
optimization algorithms that provide work for measures that prevent junction to local

optima and increase the probability of finding a global optimum. [82].

2.3 A Classification of Optimization Algorithms

Generally, we can divide the optimization algorithms- in two basic categories:
_detenﬁinistic and probabilistic algorithms. Heuristics are the functions or part of an
- oi)timiZation algorithm.that uses the information currently gathered by the algorithm to
help decide which one of a set of possible solutions is to be tested next. Heuristics are
usually problem class dependent. A meta heuristics a problem solving method for very
general classes. It combines objective functions or heuristics efficiently in an abstract
way, usually without utilizing deeper insight into their structure, i. e., by treating them as

black-box-procedures [82].

2.4 Optimization and search techniques

Following are the search and optimization techniques found normally in literature.

2.4.1 Traditional Optimization Algorithms

In traditional optimization algorithms precise methods are used to obtain the best result. It
is ba;c,ed upon the idea that if so_!ution of a problem exists than global best solution should
also be found by the algorithm. Brute force search is one of the exact methods, in which
every solution in the search space is tried for global optimal solution. Cost of brute force
algorithm increases with the increase of search space. Therefore, brute force algorithms
are not appropriate for NP-hard problems. The time to exhaustively search an NP-hard

problem increases exponentially with problem size. [8'1]

2.4.2 Gradient-Based Local Optimization Method

_Gradient based methods are also known as Hessian based optimization methods. These
methods are used to achieve efficient local optimization in the presence of smooth
objective function. Performance and reliability of these methods can be improved by

using them with some other optimization methods. [4]

YValuese haced Reoreccinn Test Case Prinritizatinon Paaca 7T

Chapter 2: Background Study

2.4.3 Random Search

Random search is a simple and fundamental technique. It selects the solutions randomly
from the search space and evaluates the fitness value of the solution that is selected. This
is relatively an obtuse strategy, and is infrequently used by itself. It is easier to implement
it, and considerable number of assessments can be done quite speedily. For new
unresolved and vague problems, it can be useful to compare the results of a more
advanced algorithm to random search for the same number of assessments. A random
search never gets trapped in any point such as a local optimum. Hypothetically random

search is assured to reach the optimal solution for finite search space. [4]

2.4.4 Stochastic Algorithms

Near optimal solutions are found by using stochastic search algorithms NP-hard problems
in polynomial time. This algorithm is based on the idea that good solutions are closer to
each other in the search space. This i 1s a good assumption for largely real world problems,
It is not necessary that stochastic algorlthms may always find a global optimal solution. In
other algorithms a solution is generated after the run is completed, whereas in stochastic
algorithm tﬁe best solution found during the run can be found by stopping the run.
Stochastic search algorithms are easier to implement. These algorithms are suitable for
discrete and combinatorial problems to find optimal or near-optimal solutions. They can
also be efficiently used in a multiprocessor environment. Three major stochastic

algorithms are Hill- Cllmbmg, Simulated Annealing and Tabu search[81, 82]

Hlll Cllmbmg

In Hill-Climbing, randomly a candidate solution is picked by assuming it as a potential
solution. Then this solution is compared with its neighboring solutions. If the surrounding
solution is found to be better accbrding to some fitness criteria then the new solution is
considered to be potential solution. This methodology is continued till the solution js

constant means that there is no more significant improvement in the solution. [82].

Simulated annealing

In Simulated annealing the algorithm is started by picking a_potential solution randomly.
In the next iteration the new solution is obtained by adding a small value in the previous
“solution. The new solution is tested by the fitness criteria and if found better than the

previous solution, then it becomes the current solution. Otherwise, the solution will move

Value based Regression Test Case Prioritizatinnm

Chapter 2: Background Study

to the new location with a probability that reduces as the run increases. The simulated
annealing behaves like a hill climbing but with the possibility of going downhill to evade
being trapped at local optima [4].

2.4.5 Evolutionary Algorithms

EAs are population-based metaheuristic optimization algorithms that use biology-inspired
system like mutation, crossover, natural selection, and endurance of the fittest to process a
set of solution candidates iterativély [4]). Evolutionary algorithms have benefit of their
black box characteristic over other optimization algorithms because it makes very few
assumptions‘ about objective function and requires less insight to structure of problem
space. These are the reasons which make EAs to perform consistently in many different
problems. Evolutionary algorithms copy the behavior of natural evolution and take
solution candidates as individuals that contend in a virtual environment [4].Hill climbing
and simulated annealing consider only one candidate solution as potential solution while

evolutionary algorithm maintain population of potential solutions [81].

2.5 Value Based Software Engineering

Software engineering is not a new field. Extensive search is being done in this field in the
last few decades. Presently, one of the features of this field is its equal stress on each and
every extraneous aspect. It can be said that majority of the research and practice of the

current software engineering a value-neutral settings. .

Previously, when software decisions had quite minor influences on a system’s cost,
schedule, and value, the value neutral approach was rationally effective. But today and
_progressively more in the future, software has a major influence on most systems’ cost,

séhedule, and value [80].

If we talk about engineering discipline the value-neutral methods are insufficient for it.
The definition of “engineering™ in [31] is “the application of science and mathematics by
which the properties of matter and soﬁrces of energy in nature are made useful to people.’;
It is hard for a value-neutral approach to provide guidance for making its products useful
to people, as this involves dealing with different people’s utility functions or value

suggestions.

Value based Regression Test Case Prioritization

Chapter 2: Background Study

A lot of research is being progressing over the years to integrate some value-oriented
perception into software engineering. In mid-ninetiés, Straut Faulk and his colleagues
were pioneers to propose Value Based Software Engineering. Later Barry Boehm and
colleagues laid down the theoretical fundamentals, agenda and application areas for Value

‘Based Software Engineering.

2.6 Background

The methodology of introduction of value in literature is very important. Detail regarding
certain methodologies of value and valuation techniques being applied in current era of

software development is given in this section.

2.6.1 What is Value?

The definitive purpose of any business is to earn profit by delivering such kinds of
product to its customer which will add value to existing worth of stakeholder. Same is
true for software as software is also designed for the same purpose to satisfy its customers

by producing more beneficial product or service.
It is important to understand value in order to maximize the objectives of all stakeholders.

Merriam-Webster online dictionary define value as, a fair return or equivalent in goods,
services, or money for something exchanged or the monetary worth of something or
relative worth, utility, or importance or a numerical quantity that is assigned or is

determined by calculation or measurement [32].

Dictionary of Canadian Economics defines value as: “The quantity of one product or
service that will be given or accepted in exchange for another” [33]. This definition
although elucidate value pretty well for almost all classical products or services, it is

_unable to define the value of software products or services that well.

According to Oxford Companion to Law and it states that“...value may consist of
spiritual or aesthetic qualities or in utility in use, or in the amount of money or other

goods which could be obtained in exchange for the thing in question...”[34].

Dictionary of Sociology defines value as a“...generalized principle of behavior to which
the members of a group feel a strong commitment and which provides a standard for
Judging specific acts and goals” [35]. This definition is unable to define the value with

respect to software products or services.

Value based Regression Test Case Prinritization n__. 10

Chapter 2: Background Study

All these definitions describe value in terms of money as relative unit. Value is defined in
context of business not particularly for software. Moreover stakeholders are not being
considered to establish value for product. In context of Value Based Software
Engineering, value-is relative worth, importance and utility. Engineering is not only
making a product or delivering a service it also incorporates the purpose behind them.
Therefore in engineering value is considered and so also in software engineering. But
majdrity of the software engineering activities are taking pl;u:e in value neutral settings.
This fesults i diverting from the most critical stakeholder and features, it merely
" becomes delivery of pfoduct at any cost and any quality. So VBSE is a discipline that

considers these stakeholder concerns in delivering any product or artifact [36].

2.6.2 “Value” in Software Engineering

The relationship between software engineering and value is quite obvious. According to
Stefan Biffl et al the definitive purpose of software engineering is adding value to the
existing conditions through forming products, services and processes [37]. This whole
process can have negative impact in absence of value considerations explicitly. Following

is the history of development of concept of vaiue in software engineering.

In software engineering different cost models have been described by value. Boehm was
~ the first one who described the concept of value away from cost models namely Boehm’s
software engineering economics [38]. After establishing relationship between value and
software, Boehm introduced spiral model in 1986. McTaggart’s further worked on it and
presented value as very signiﬁbant fundamental which was given name as value based
management movement [39]. After this management movement Favaro in 1996 presented
an essay titled as “When the Pursuit of Quality Destroys Value” to argue that focusing on
merely quality in some cases can weaken the value of the product [40].Favaro et al. has
also used value to address economics of software reuse [41]. In 1998 Boehm et al. has
proposed winwin model which was basically to deal with the concept of requirement
negotiations [43]). Formally in 2003 Boehm et al. has put f(-)rward the formal agenda of
‘ Value.Based Software Engineering. [42].

Value based Regression Test Case Prioritization

Thocown 11

Chapter 2: Background Study

2.7 Foundations of VBSE

In the coming sections a detailed context of the value-based software engineering theory

and the concept of VBSE theory is elaborated.

2.7.1 Theory Context

A VBSE theory needs to address all of the concerns essential for developing and evolving
successful software-intensive systems. This includes not only managerial aspects of
software engineering but also to cater personal, cultural, and economic values for

-successful software. The theory of VBSE rests on these foundations.

2.7.2 Theory W

The main proponent of VBSE is Barry Boehm who introduced this concept [44] in 1989.
Popularly known as Win-Win model [85], this technique relies heavily on negotiation to
resolve any conflicts of opinion among various stakeholders. The negotiations are
conducted in such a way that each stakeholder is in 2 “Win” situation. ThlS technique is
conducted on progress based predefined plan, risk assessment and risk handhng In this
technique, users are asked to rank their requirements before actual negotiations start.
Users arc asked to carefully categorize which requirements they are willing to negotiate
and.Which they are not. Theory W has been an active area of research among researchers
‘which has been applied in not only requirement engineering but also in other domains of
software engineering. Theory W is a major constituent of Value Based Software
Engineering (VBSE) agenda and principle as well. Theory W is sometimes also known as
- four point agenda. The Theory VW, establishes a set of win-win conditions. The four point

agenda is given below:

i Establish
i preconditions J
T
[
B
e .
i Structure: - Strugture
P Process e Product

Figure 2.1 Theory W

Value based Regression Test Case Priaritizatinmn

T™H- . 1"

Chapter 2: Background Study

2.8 Summary

The concept of introdlicing value in software engineering domain is quite critical but
often ignored area. However in recent times, its significance has been realized and a lot of
effort has been made to deliver a system fulfilling stakeholder’s perspective. There are
several existing optimization algorithms to solve complex problems such as GA, PSO,
and ACO. In the next chapters, we shall discuss our proposed test case prioritization

strategy for test case prioritization.

Value based Regression Test Case Prinritizatinn

« -

Chapter 3: Literature Review

Ch'aPter 3 Literature Review

3.1 Test Case Prioritization

.Test case prioritization techniques are used to reorder the test cases to achieve some
performance goal [8, 84].This chapter gives a general idea of test case prioritization

methodologies found in literature.

Test case prioritization is a very essential practice of software testing which is usually

neglected. Several test case prioritization techniques have been presented by authors.

The technique of obtaining a sequence of the test cases that achieves the required aim
faster of an available test suite is known as test-case prioritization. Rothermel ¢t al. [8]

defines test-case prioritization problem as below:

Given: T, a test-suite; PT, the set of permutations of T; f a function from PT to the real

numbers.
* Problem: Find TO 2 PTsuch that (8T00)(T00 2 PT)(T00 6= TO)(TO) _ f(T00)].

PT represents all possible orderings of T, and f is a function that yields an award value for
any given ordering it is applied to. f represents the goal of the prioritization. For example,
the goal might be to reach a certain coverage criterion as fast as possible, or to improve
the rate at which faults are detected. There are different test-case prioritization techniques

that can be used to achieve such goals.

3.2 Test Case Prioritization Techni(jues

Mainly test case prioritization techniques can be classified in two categories. These are
coverage based techniques and non-coverage based techniques for test case prioritization.

* Detail of these techniques from literature is as follows.

3.2.1 Coverage-based Test Case Prioritization techniques

Coverage-based TCP techniqués [8,-29, 79] comprise the test cases ordering which are
reliant on the code coverage that is provided by the test cases. Ordering of test cases are
dependent on the number of statements covered by the test case that is, more lines of code
test performs, the earlier it is executed in the test cycle. Code coverage techniques also

include branch coverage techniques and function 'coverage techniques. Branch and

Value based Regression Test Case Prioritizatinn

Do~ 1 4

Chapter 3: Literature Review

coverage techniques are the techni'ques to prioritize tests are done on the basis of

coverage of the program branches or program function.

Rothermal et al. [8] has investigated coverage based prioritization by examining a wide
range of prioritization techniques for specific objective function to give insight into trade
off among these techniques for test case prioritization. This work has been conducted for
early rate of fault detection on general rather than modified version specific prioritization.
To measure the efficiency of methods for fault detection, average percentage of fault
‘détection (APFD) metric has been used. FEP-based techniques outperformed coverage-
based techniques; however the total increase in APFD was not significant. These results
run opposing to preliminary perception and suggest that given their expense, FEP-based
prioritization may not be as cost-effective as coverage-based techniques. Randomly
prioritized test suites outperformed untreated test suites. These results suggest that these

techniques can improve the rate of fault detection of test suites.

Li et al. [29] propoéed a technique for prioritization of test cases for code coverage. This
technique includes the statement coverage, block coverage and decision coverage. An
experiment has been conduct to compare greedy, metaheuristics and evolutionary search
algorithm for test case prioritization and to figure out the factors that affects the
“effectiveness of algorithms for prioritization of the test case regarding regression testing.
Experiment has been performed on six programs, the primary criteria that is used is the
size and coverage criteria of test suits. Results indicate that size of the program does not
but the size of the test suite directly affects test case prioritization complexity because it
determines the size of the scarch space. Results suggest that for larger suit of regression
test case prioritization, global search techniques perform much better than local search

techniques.

Harman used coverage based metrics, which gives high value of coverage effectiveness to
those test cases which cover test requirements more quickly. As test cases which give
high coverage are more likely to determine program faults as compared to thosre with low
.covérage [29], so test cases are reordered according to improved rate of requirement
coverage. Proposed coverage based metrics is different than average percentage of block
coverage (APBC) metrics which is also coverage based metric which reorders the test
cases according to how quickly it covers the blocks inside program. This metric prevents
the requirement for fault seeding but it overlooked the test case running cost and so it may

imprecisely differentiate efficiency.

Value based Regression Test Case Prioritizatinm

T . 1 &

Chapter 3: Literature Review

Regression testing can also be used to reduce the occurrence and persistence of residual
defects [75]. An experiment has been conducted to compare original and heuristic
techniques to see the effectiveness of prioritization in reducing occurrence and age of
residual defects. He has used one control (representative of current practice) and two
heuristics techniques (total coverage prioritization, additional coverage prioritization
having feedback mechanism in addition). It concludes that heuristic techniques are better
than original technique in reducing the occurrence of residual defects as heuristic
techniques do not show any pattern in detecting residual defects and reveal less residual
defects in all versions while original technique describes higher residual defect value in

earlier version and very less in later versions.

3.2.2 Non coverage-based Test Case Prioritization

Fazlalizadah has proposed an innovative equation for the prioritization of test cases in test
suite for early fault detection in time constraint environment. Mainly three factors are
contributing in the proposed equation 1) Priority of the test case in previous regression
test session, 2) Historical demonstrated performance in fault detection during the
regression test lifeline, and 3) Duration of not execution for each test case. Results are
validated through an experiment on eight C programs and by case study. The results are
compared with random technique. APFD metric has been used to measure the detected
faults and proved it more effective way to prioritize the test cases in detection of faults

under time constraint.

To obtain early fault detection effectively, model based test case prioritization has been
used-in literature [68]. Its idea is to use model dependence analysis to identify different
ways m which marked transitions interact with the remaining parts of the model. This
information is used to prioritize higﬁ priority tests. This paper focuses on EFSM system
model. Six methods of prioritization has been used namely random prioritization,
selective prioritization, model dependence based prioritization, heuristic no.1
prioritization, heuristic no.2 prioritization and heuristic no.3 prioritization. An experiment
has been performed by focusing the source code faults. RP (d), the most likely relative
position of the first failed test that detects fault, as the measure of effectiveness of early
fault detection is used. It is deduced that on average some model based tests prioritization
methods may improve the effectiveness of carly fault detection as compared to random

prioritization These results may suggest that only the number of execution of marked

Value based Regression Test Case Prioritization | o TR

Chapter 3: Literature Review

transitions may not have a significance influence on the improvement of the early fault

detection.

"APFD metric has been widely used for test case prioritization which measures the
detected faults by using some technique. But this metric assumes that test cost and fault
severity are uniform. But this is not the case forever. Techniques that prioritize test cases
by using fault based metrics coinld fail to generate satisfactory results if test cost and fault
severity vary widely [72]. To address this problem cost cognizant metric APFDc has been
introduced to measure test case cost and fault severities to evaluate various test case
orders. Results of. proposed APFDc metric have been analyzed for -three practical
heuristics (additional statement coverage, additional functional coverage, additional fault
index prioritization) and one experimental control (random technique). A case study is
being performed to show the effect of test case cost and fault severity distributions on the

rate of fault detection as measured by APFDc. The differences between the new and old

metrics are also explained.

Genetic algorithm is meta heuristic approach and used for test case prioritization as a
regression technique under time constrained which is based on coverage information
(block and method) [70]. Effectiveﬁess of Genetic algorithm has been compared using
APFD values with initial, reverse of initial test suit ordering, random and fault aware
prioritizatioh and found it most effective in terms of rate of fault detection, It was
required for each test case to be independent from other test cases to maximize the fault
detection ability. An experiment and two case studies has been conducted to evahuate
effectiveness of parameterized genetic algorithms and to comtpare it with other mentioned
techniques. On average block coverage outperformed method coverage in relation to
' APFD while not increasing time overhead of test suit prioritization. Higher APFD values
of GA are found than random prioritization. Genetic algorithm prioritization were

imprbved in reverse ordering and showed up to 120% improved than initial ordering.

The concept of ILP (integer linear programming) has also been used for test case
prioritization. Two GA and four ILP based techniques are compared for test case
prioritization. Experimental results show that ILP based techniques are better than all
other techniques for rate of fault detection in general and version speciﬂé priori‘tization.
ILP based techniques are more time efficient than GA based techniques. Unlike ILP
techniques, the analysis time of GA based techniques get increases under less tight time
budget [71].

. Value based Regression Test Case Prioritizatian

- —- =~

Chapter 3: Literature Review

Kaur et al has proposed hybrid PSO algorithm for the prioritization of test case for
regression testing in order to obtain maximum fault coverage in minimum execution time,
PSO has been used with GA to generate diversity in population. In each iteration random
test case is selected and added in all test cases, Velocities and positions of test cases are
updated if it is better than previous one otherwise previously updated velocity and
positions are recorded APFD metric has been used to asses’ effectiveness of proposed

algorithm and it showed its efficacy up to 75.6% for fault coverage [84].

PSO is optimization techniqueof swarm intelligence paradigm. Hla et al. has obtained
best possible ordering of test cases using PSO in modified software units [76]. Existing
test case priorities are supposed to correspond to velocities and fitness of test cases. These
values are considered to be the prioritization parameters in this system. Twenty test cases
from JUnit test suite are used in experiment. Change in position velocity 'vector is found
by the new values of fitness of test cases. Expenment 1s performed over 100 runs. Due to
randomized weighting factor, false positive rate is 8.2% under 100 runs that shows results
are promising. Application of test case prioritization technique gives 64% of coverage in
. -Just 10 runs of test cases. By placing the test cases randomly, only 47% of test case
coverage was achieved after running 10 test cases. Effectiveness of PSO algorithms is
measured by comparing with greedy algorithm. Total prioritization cost and run time

complexity of this algorithm is found less than greedy algorithm [O (mn square)].

Bayesian network (BN) approach is also proposed to prioritize the test cases [83]. In this
paper BN approach has been modified by adding feedback mechanism and new change
information gathering strategy. The impact of various variables on BN approach is
observed in this paper. An empirical study on five java objects indicates the effectiveness
of feedback mechanism of BN approach in terms of early fault detection. Moreover cost

and beneﬁt tradeoff is also provided depending on various pérameters used in approach.

'Fayoum1 et al. [77] has proposed the algorithm (OptiTest) to envisage the modeling of
unit test for object oriented source code. Ant Colony Optimization (ACO) and Rough Set
Theory concepts are presented to find best quality test case. this approach use method
call, passing arguments and control flow dependency graphs and a hybrid novel
framework is proposed by inspiring natural ant. According to proposed algorlthm
OptiTest, the distribution and search of best test case value has been done through Ant

colony pheromone matrix and once the search of best test value is achieved, the search

Value based Regression Test Case Prioritizvatinm

Chapter 3: Literature Review

terminates through Rough set. Rough set is used as stopping criteria rule in proposed

model.

Prioritized test cases those are aiming to reduce the fault detection effort, also minimizes
the information needed to locate the fault in the program. In the result debugging cost gets
increase. So it is a big challenge to reduce the quality assurance cost which includes both
‘the teéting and debugging cost while minimizing the loss of diagnostic fault information
[78]. SFL (Spectrum-iaased Fault Localization) technique has been used for fault
diagnosis. An experiment has been conducted on Siemens set (composed of seven
programs having test case inputs and ensure full code coverage) and showed this
approach has reduced overall 53% of QA cost. SFL technique performed better than
previous techniques because it uses online prioritization in which order of test case has to
be dependent on output of previous tests. It is shown by an example that test cases whose
aim is to cover many statements does not provide much information needed to dfagnostic
algorithm. Author has proposed the on-line greedy diagnostic prioritization approach that
uses the observed test outcome to determine the next test.case. In this approach high
utility. tests would be those tests which will maximize the reduction of diagnostic cost at
~each step on average. Reduction of diagnostic cost will ultimately increase the diagnostic
informétion. Experiment is performed in permanent fault setting which is not very

common in software as diagnostic approach needs prior information.

- 3.3 Summary

Test case prioritization is not a new field in software testing. Many researchers have
presented different ways of ordering the test cases focusing on different criteria such as
code coverage or maximum fault detection rate. This chapter has summarized the work
previously done in this field. In next chapter we will define our proposed strategy for test

case prioritization for maximum rate of fault detection.

Value based Regression Test Case Prioritization Do 10

Chapter 4: Proposed Strategy

Chapter 4 Proposed Strategy

4.1 Value based Test Case Prioritization Factors

Time and budget constraints usuaily don't allow executing all test cases. Therefore,
project manager can use prioritization as a tool to help him in selection of those tést cases
which are more fault revealing or which are meeting some other defined criteria. This
chapter presents the test case prioritization scheme. Test case prioritization involves seven

prioritization factors. These factors are discussed in detail.

.~ Test cases should be prioritized objectively; i.e., there must be some parameters that shall
be used to assign values to each test case. Following are some important parameters for

prioritization:
4.1.1 Customer Priority

Customer-assigned priority (CP) denotes the significance of a requirement to the
customer. For each requirement a value is assigned by the customer that ranges from 1 to

10. Highest customer priority is denoted by 10 [45, 47).

Reasoning: Obviously, testing requirement priorities and test case costs should have a
great impact on the test case prioritization [46]. Approxir;lately 36% of the software
'functlons are only constantly used, while 19% are only often used and the rest percentage
is not used at all i.e. 45 % [54]. Frequent failures are caused by the fault that is situated
along the course of regular execution, and greater effort must be made to detect such kind
of faults [57, 58]. Customer-peréeived value and satisfaction can be increased by giving
priority to the customer requiremtents for development [53, 54, 55]. Identification and
more thoroughly testing the highest important fraction of requirement to the customer
sooner in testing can raise the business value. If the efforts for testmg were reduced
because of schedule demands, the requirements of highest value to the customer would

have been tested early and exhaustively [47].

4.1.2 1mplementation Complexity

‘Developer-perceived implementation complexity refers to individual measure of amount

of difficulty perceived by the development of the requirement by the development team.

Value based Regression Test Case Prioritizatian

Chapter 4: Proposed Strategy

Analysis of every requirement is made to evaluate the estimated implementation
~complexity. It is given a value between 1 to 10; smaller value shows lower complexity

" while the greater value shows higher complexity [45, 47].

Reasoning: A number of studies show higher number of faults are present on that
requirements that have high complexity in its implementation. Amland [52] carried out an
investigation to determine that the functions with greater McCabe complexity is those
with h high number of faults [52]). From the total system 20 % modules of the system
resulted in 80% of the faults [52, 59, 60, 61], and approximately there ‘was no fault in
50% of the modules [59]. This was shown by Don ONeill from National Software Quality
Experiment on a DoD project which had roughly one million source lines of code [59,
47].

4.1.3 Requirement Volatility

In literature requirement volatility (RV) is adapted as one of most important prioritization
factor [45, 46, 47]. Requirements volatility is measured as the number of times the
development cycle of a requi're_ment has been changed with respect to when the
requirement was initially introduced. It is basically a judgment of the requirements

change with respect to its start date. It also ranges from |1 to 10 [45, 47].

Reasoning: Approximately 50% of the total faults discovered in a project comprise of
those errors that are introduced in requirement phase [62]. Rigorous defects that deliver to
the customer costs hundred times greater averagely to resolve as compared to resolving

the same problem in the requirements time (59].

‘Standish Group has conducted many studies. It has deduced that 70% of the total projects
are unable to provide the obligator functionality of the system whereas 30% are cancelled
before completion. Changing requirements is the most important factor to cause these
project failures [63]. Some studie_s show that lack of user input can also be the cause for

project failures cans, and volatile or deficient requirements [65, 62].

On average approximately 25% to 40% of the requirements changes before completion of
project [64]. The changing requirements cause the testing activities to be complicated and
ground the software to have high fault bulk [66]. Volatile requirements result in re-

design, and an increase in the program’s fault density [66].

Value based Regression Test Case Prioritizatinnm

Chapter 4: Proposed Strategy

4.1.4 Requirements Traceability

The relationship between various artifacts in a software development process like

requirements, design and test cases is known as traceability [48].
, Rea'sohing: The quality of the software can be improved by considering the traceability of
the requirement [21].
4.1.5 Execution Time

Test case costs should have a great impact on the test case prioritization. In terms of test
case cost, it is related to the resources, such as execution time of test case, hardware costs
or even engineers’ salaries. In literature many authors have considered execution time of
test case as test case cost [45, 46, 49, 50]. '

4.1.6 Fault Impact of Requirement

Fault proneness (FP) of requirements is the identification of the requirements that have

_-the most failures in the previous version by the development team [46].

Reasoning: The test efficiency can be enhanced by concentrating on the functionalities

that have higher number of faults has been shown by Ostrand[67, 45].

4.2 Factor Collection Process
There are four stakeholders in this process. Roles of these stakeholders are defined below.
Developer | |
* To provide system requirements during development
* . To provide the priority for the each requirement during development
- e To provide any changes to the requirements during development
Requirement Analyst
* To record the requirements aqd related priorities

* To record any variations to requirements

Maintenance Engineer

* To resolve the field failures defects

Value based Regression Test Case Prioritizatian ™. _ . ~~

Chapter 4: Proposed Strategy

* To links the failure back to the requirements impacted
¢ To write test cases for each requirement
¢ To map the requirement to its test case

* To run the test cases

4.3 Value BaSed Test Case Prioritization Block diagram

We can have clear understanding of working of value based Particle Swarm Optimization
(PSO) with the help of following block diagram.

Test Cases

7
Iniiabze Population 345, Calculate Fitness based -
e ' upon fauk detectionrate

— "

Update Personal
Best of Each

N Update Velocity

e T et ot i e o5 ettt ool

> Update Position

e S L S —

=
e

Calculate Fitness based
upon fault detectionrate

Figure 4.1 Block Diagram of PSO for VBTCP

Value based Regression Test Case Prinritivatinm

Chapter 4: Proposed Strategy

4.4 Fault Detection Analysis Using PSO

Following is the detailed description of how our proposed algorithm works for test case

prioritization problem.

4.4.1 Swarm Initialization

The number of particles in our scheme is equal to the number of test cases. Each particle
represents a test case. Particle consists of 6 values.

represents the priority of the test case to be executed.

. - Generate random population of n particles. A random particle in our approach is depicted

as folldw:-

Each particle’s position in our scheme

8 4 3 6

4 5

Figure 4.2 Particle Representation

4.4.2 Velocity Update

The velocity of each particle is updated according to the following equation.

v; (t): W x v; (t — 1) +c X n (xlpb —X; (t)) + Ca X1y (x!?gb - X; (t)) ---- (4.1)

Where:-
Vi (t) = Velocity of particle at current iteration
Vi(t-1) = Velocity of particle at previous iteration
W = Inertia factor
C1 = Self confidence of particle
C; = Society confidence
rl = Constant

r2 = Constant

Value based Regression Test Case Prioritizatian

™. _ . =~ a

Chapter 4: Proposed Strategy

4.4.3 Position Update

The standard equation of PSO for position update has not been used. The main reason for
this is that this problem is prioritization problem; therefore each particle has to have a
position in terms of its priority. The idea is used that the particle whose velocity is the
least will be given highest priority, this is due to the fact that that particle will be close to
the optimum point. Similarly, the particle that has the highest velocity will be given the
least priority. Chapter 5 depicts that this concept <-)f position update in prioritization
problem gives good results.

4.4.4 Quality Measure

Given an input program, the fitness function returns a number whose value indicates the

factors that are to be optimized for the current sequence. Following is our fitness function
2C-ZF

F="""0 . (42)
- n
where:-
C denotes the summation values of the factors of a test case which are to be maximized
E denotes the summation values of the factors of a test case which are to be minimized
2.C = sum of C of the test cases that have been executed
2E = sum of E of the test cases that have been executed

11 =the position in which the test case is being executed
The updated fitness values of the test cases help in finding the position change vector,
velocity change vector. The rate of velocity is used to change the current positions of the
test cases to the new positions.

4.4.5 Completion Criteria
Following are the types of completion criteria:-
Completion of maximum iterations

Swarm global fitness shows no improvement for successive iterations

Value based R_g_g_ression Test Case Prioritizatian

Chapter 4: Proposed Strategy

4.4.6 Optimal Priority Check Equation

. n
' Value = (Fault Detection by ithpriority Test Case) X (Total Number of Test Cases — i) ---(4.3)
i=0

The above equation maximizes if the test case with most fault detection are played prior
to the respective test cases, this is because as the priority of the test case is decreased the

multiplying factor (i.e. Total Number of Test cases ~ i) decreases.

In the end of each iteration of PSO the above equation is checked and compared to the
previous value of the equation, in our algorithm this equation improves and becomes
constant that shows that the optimal results have been obtained and therefore is used as a

cross check to the PSO Algorithm Performance.

4.5 Pseudo Code for Proposed Method

To analyze the fault detection rate, particle swarm optimization algorithm has been used
with minor adjustments. Each particle represents the test case consisting of factor values

in our proposed algorithm. Following is the pseudo code for our proposed method:
Start: -Random generation of population of n particles.

Fitness Evaluation: -Fitness evaluation f(x) of each particle x in the population. We have

calculated fitness of particle based upon the fault detection analysis.

Follbwing is the example for illustration of working of our -proposed algorithm. For the
’sake df easiness, we assume inertia w = 0.1; and clrl= ¢2r2 =0.2. We have taken five

~ particles, pl, p2, p3, p4, p5 and fitness of each particle is calculated.

ITERATION 1

We are assuming that we have oﬁly five test cases for prioritization. In start we execute
these test cases sequential. The sum of maximizing factors (customer priority,
requirement‘ traceability and fault impact of requirement) and mini_miiing: factors
(implementation complexity, requirement volatility ‘and execution time) of these test

cases are given below.,

"Value based Regression Test Case Prioritizatinm

Chapter 4: Proposed Strategy

Order | Test Case No. 2> Maximizing Factors ZMinimiziﬁg Factors
1 TC1 2 | 6
2_ _ TC2 9 5
'3 TC3 ' 4 2
4 TC4 6 4
5 TCS 2 3

Table 4.1 Test case values I#1

Fitness function results of these test cases are given below.

Test Case Number Fitness Function Results
TCI executed first -4.00
TC2 executed secondly 0.00
TC3 executed thirdly 0.67
TC4 executed fourthly 1.00
TC5 executed fifthly 0.60

Table 4.2 Fitness Function Results I#1

-Velocities and positions are calculated by using their standard equations in below table.

Test cases having more velocities will be assigned lesser positions to execute at that

point.

. Value based Regression Test Case Prioritizatinm

Dinswnrn ™™

Chapter 4: Proposed Strategy

VTest Case Number Velocities Positions based on velocities
TC1 1.4000 5

TC2 0.6000 4

TC3 0.5333 2

TC4 0.5000 1

TCS 0.54 3

Table 4.3 Ve_locities and Positions I#1
ITERATION 2

In second iteration again we have same values of maximizing and minimizing factors of

test cases described below but with different execution order.

2 Maximizing
Order Test Case No. 2> Minimizing Factors
: Factors
5 TCI 2 6
4 TC2 9 5
2 TC3 4 2
1 TC4 6 4
3 TC5 2 3

Table 4.4 Test Case Values I#2

Value based Regression Test Case Prioritizatinnm

|) P T]

T 7.5?7

Chapter 4: Proposed Strategy

Then again we have calculated fitness function of these test cases mentioned in table 4.5.

Test Case Number

Fitness Function Results
TC1 executed ﬁfth'ly 0.6000
TC2 executed fourthly 1.7500
TC3 executed secondly 2.0000
TC4 executed first 2.0000
TCS executed thirdly 1.0000

Table 4.5 Fitness Function Results I#2

Velocities and positions are updated. More velocity means that, that particular particle

needs more velocity to reach the optimal point so we mark it less position than others.

Test Case Number Velocities Positions based on
velocities
TCl 0.3200 4
' _TC2 0.1917 1-
103 0.2000 2
TC4 0.4667 5
TCS '0.72778 3

Table 4.6 Velocities and Positions I#2

Value based Regression Test Case Priaritizatinmn T . 20

ITERATION 3

Again we have maximizing and minimizing factor values of test cases with updated

sequence in below table.

Chapter 4: Proposed Strategy

Order Test Case No. 2Maximizing YMinimizing Factors
Factors
4 TCl _ 2 6
1 e | e 5
2 TC3 4 2
5 TC4 6 4
3 TCS 2 3
Table 4.7 Test Case Values I#3
Fitness function values are calculated.
Test Case Number Fitness Function
Results
TC1 executed fourthly 0.2500
TC2 executed first 4.0000
TC3 executed secondly 3.0000
TC4 executed fifthly 0.6000
1.6667

TCS5 executed thirdly

Table 4.8 'Fitness Function Results [#3

Value based Regression Test Case Prioritization

Paoa TH

Chapter 4: Proposed Strategy

Velocities and positions are updated.'

Test Case Number Velocities Positions based on velocities
TC1 0.5729 5
TC2 0.1167 |
TC3 0.1500 2
TC4 0.4200 4
TCS : 0.234 3

Table 4.9 Velocities and Positions I#3

In further iterations the results will be constant as all the test cases have find their

personal best positions; they will just go towards the global best as close as they could.

4.6 Summary

~ In this-chapter we have discussed our proposed strategy in detail. The designed fitness
function has been explained with the help of example. The prioritization factors and the

process of collection of the values from different have been explained as well.

Value based Regression Test Case Prioritization Doern 21

Chapter 5: Results and Discussion

Chapter 5 ~ Results and Discussion

5.1 Introduction

In most of the situations, due to budget and time constraints, it becomes impossible to test
software system exhaustively. In these scenarios, we need test case prioritization. We can
prioritize test case to realize which test case may urgently be executed by meeting some
predefined constrained to fulfill time to market pressure. We have found it very important
to prioritize test cases in their true sense in order to deploy a quality and successful
product. Test case prioritization was a new practice in our specific testing environment.
‘So, the nature of our work required us to study further into various test case prioritization
techniques so that we can select one which can best suit our peculiar testing environment.
The main hindrances faced by testers while testing the software system are related to cost

and time,

In order to overcome these problems, one solution was to develop an artificially
intelligent expert driven test case prioritization technique. This work is inspired from
“value based requirements prioritization” technique [25]. This technique was veiy much
similar to Theory W. In this technique the end users ;'md experts were asked to prioritize
their requirements based upon the value that accomplishment of this requirement may
have for the system. The salient feature of this technique was an amalgamation of end
-users and experts in the process of requirement prioritization. However, while
implerhenting test case prioritization technique, we encountered one major problem. The
technique was completely manual. The prioritization was done through human endeavor

and element of human bias was noticeable.

In this chapter, we present and elaborate upon a PSO based intelligent test case
prioritization technique. This technique uses PSO to prioritize test cases ranked by
various stakeholders. This modified scheme is basically a single level prioritization where
development team gives value to requirement and ‘test cases according to mentioned
factors and then intelligent system performs test case prioritization. In order to apply the
utility of intelligent test case prioritization technique, we applied this as well as a
_represéntative random technique on several projects and determined the degree of

success.

Value based Regression Test Case Prioritizatian Dacn 27

.Chapter 5: Results and Discussion

In this section, we will explain general idea of PSO technique and its use for test case

prioritization.

3.2 Experimental Design
- The motivation behind using experiment as a validation tool is that we can create a
controlled environment in which an application can be tested. Secondly experiments are
suitable for validation of applications or techniques. We will start the experiment by
falsifying the null hypothesis.
Hypothesis:
1. The proposed algorithm is able to generate ordering of test cases that can detect

maximum faults in the application.

_ 2. The proposed work is extendable to support future work.

Null Hypothesis:

1. The proposed algorithm is not able to generate ordering of test cases that can detect all

faults in the application.
2. The proposed work is not extendable to support future development.
Treatment:.
The algorithm to reorder test cases through PSO.
Experimental Design:
Simple Design
‘ .E‘xperiment Operatioﬁ:
1. The experiment will be executed in following steps.
2. - An application will be creatéd._
3. - Test cases will be reordered using the application.

4. The results of the execution will be analyzed.

“Value based Regression Test Case Prioritization

Parca 22

Chapter 5: Results and Discussion

Technique | Projects
PSO Sales Intranet IT Procurement Suite Risk Management
Random Sales Intranet IT Procurement Suite Risk Management

Table 5.1 Simple Design Table

Experimental Steps:

1. Problem identification

2. Formulate hypothesis.

3. Application ADeveIOpment.

4. Execution of the application.

5. | | Comparing the results of test case reordering by appl);ing it on industrial project.
“Experiment objects: The test case reordering will act as an experiment object.
Independent Variable: prioritize technique will be independent variable during test case
priofitization

Dependent Variable: The dependent variables in our experiment will be rate of fault
detection.

Control Variable: project complexity, size.

Internal Validity: Biasness of factor values provided by different stakeholders. These
values will be validated from project expertise like project manager etc. This will increase

our confidence on results attained.

.E_xtérnal Validity: object program representativeness will be external threat to our
findings. The experiment will perform on mid-size projects so we cannot generalize the
results gathered from our experiment. Repeating the experiment at different complex
projects will ensures that the results are due to our technique used rather due to the fatigue

of continuous being involved in it.

Construct Validity: The possibility of difference in costs of faults and test cases are not
accounted by APFD.

Value based Reoression Test Case Prinritizatinan

| i PR, |

Chapter 5: Results and Discussion

The algorithm for fault detectlon analysis has been implemented in MATLAB. The
algorithm has been applied on various projects to determine its effectiveness. Three

industrial projects were selected to experiment with.

5.3 Project Description

B The detail of these projects is as follows.

Project Description Project 1 Project 2 Project 3
Project name Sa'les'Intranet ITProcurement Risk
Suite Management
Company Name Ovex Ikonomi " Ovex
technologies | technologies
Nature of Project Web based Web based desktop
' -N(;. Of modules - 14 9 23
No. Of Test Cases 40 21 47
Complexity level .M.edium Medium Medium
Team size_ 9 6 5

Table 5.2 Project Description

Project Name: ITProcurement Suite

Descﬁption: It is a web based solution that helps buyer to -post online projects, bidders
_submit bids against buyers project, buyer selects one sellers bid and assign contract to
- them both can communicate and interchange files etc. buyer made payment to the seller
by payment module. Three most important modules of this application include buy or

make decision, bid no bid decision and seller evaluation module.

Value based Reogrrccinm Tace ..

Chapter 5: Results and Discussion

Project Name: Risk Management

Description: 1.T. Projects are some of the riskiest projects executed today. This
application is windows based that helps to manage risks of any type of project that can be
either web -based or desktop based, small or large. It helps project managers in
minimizing the risks associated with project by risk mitigation methods and
understanding the impact of risk to customers and develop plans to identify their risk

tolerance.

Project Name: Sales Intranet

* Description: The main purpose of this project is to provide an interface to the Sales
Team to process Sales Quotes/Orders, Create New Customers and Track Sales Order
Status. Other interface is provided to the purchase team for purchasing software and
hardware from different vendors, credit team processes invoices, customers can submit
online orders and check the status of their orders. Data management team manages
inventory and price profiles into the system. Development team was asked to prov1de

values of these projects for following factors.

Factors Values Stakeholders

- Customer Priority - 1- 10 Developer
Implementation Complexity 1- 10 Developer
Requirement Volatility | o 1-10 Business Analyst
Requiremenlt Traceability 1- 10 Maintenance Engineer
Execution Time 1- 10 sec ‘ Developer
Fault Impact of requirement 1-5 ’ Test Engineer

Table 5.3 Data Collected from Stakeholder

Value based Resrecsinm Teoct mmn 1o

Chapter 5: Results and Discussion

3.4 Performance Measure

To quantify the goal of increasing a subset of the test suite's rate of fault detection, APFD
metric has been used. This metric is developed by Elbaum et al. [29] that measures the
average rate of fault detection per percentage of test suite execution. The APFD is
calculated by taking the weighted avérage of the number of faults detected during the run

of the test suite.

Formula:
TF1+TF2+ .. +TFm 1
APFD=1 - () +
: nm 2xn
- Where,'

T -> The test suite under evaluation
m -> the number of faults contained in the program under test P
n -> The total number of test cases and

TFi -> The ;_)osition of the first test in T that exposes fault i.

3.5 Experimental Results

Experimental results show that the proposed algorithm was able to achieve more fault
_ -detection rate than the random technique. Furthermore it is depicted by fault detection
rate there is still room for improvement. However, achieving such a high fault detection
rate proves the competiveness of our technique as compared to other existing approaches.
Following table shows the details of parameters used in experimentation during testing

each project.

Value based Regressinn Tect oco Doio o:a:.

Chapter 5: Results and Discussion

Table 5.4 Parameters used for Project 1

Parameters Values

Population size 40

Number of iterations | 30

Termination criteria Constant results or iterations=30

Table 5.5 Parameters used for Project 2

Parameters Values

Population size 2]

Number of iterations 30

Termination criteria Constant results or iterations=30

Table 5.6 Parameters used for Project 3

Parameters Values

Population size 47

Number of iterations 30

Termination criteria .Constant results or iterations=30

Value based Reorescinan Toct Cacn Do:. .:

Chapter 5: Results and Discussion

5.5.1 Project 1 Results

Following graph depicts the fault rate comparison between PSO and random techniques.

120
100 PSO APFD=78%
Random APFD= 67%
80

60
/'// =% Fault detected Random
4
0 / ——- % Fault detected PSO
20

0 20 40 60 80 100 120

% of Faults Detected

% of Test Cases Executed

Figure 5.1 Comparison of Results for P#1

We can see that after executing 40% test cases we obtained 42 % fault detection rate
through PSO and 24% fault were detected through random technique. Furthermore we
have also validated our results through APFD metric. APFD calculation results shows
that PSO detects 78% faults while random ordering produces 67% of faults which again

shows significance of our findings.

% Fault detected Random

120
100 /
80 /
60
24 % Faults /
40 ST —

20 /
o/

0.0 20.0 40.0 60.0 80.0 100.0 120.0

% of Faults Detected

% of Test Cases Executed

Figure 5.2 Random Technique Results P#1

Yalue based Regression Test Case Prioritization

Page 39

Chapter 5: Results and Discussion

% Fault detected PSO
120
100
-}
% /
o Detected
a 60
S
2
o /
- 20 /
0
0.0 200 40.0 60.0 80.0 100.0 120.0
% of Test Cases Executed
Figure 5.3 PSO Results P#1
120
B % Fault detected Random
B % Fault detected PSO
100
80
40 % Faults
60
40
20 4
0 -
10 20 30 40 50 60 70 80 90 100

Figure 5.4 Comparison Bar Chart for P#1

Value based Regression Test Case Prioritization Page 40

Chapter 5: Results and Discussion

5.5.2 Project 2 Results

120

100 PSO APFD=67%
Random APFD=
40%

’ /-/

60

// =% Fault detected Random
a0 — % Fault detected PSO
20 /7

o[o 20.0 40.0 60.0 80.0 100.0 120.0

% of Fault Detected

% of Test Cases Executed

Figure 5.5 Comparisons of Results for P#2

We can see that after executing 40% test cases we obtained 39 % fault detection rate
through PSO and 20% fault were detected through random technique. Furthermore we
have also validated our results through APFD metric. APFD calculation results shows
that PSO detects 67% faults while random ordering produces 40% of faults which again

shows significance of our findings.

Value based Regression Test Case Prioritization Page 41

Chapter 5: Results and Discussion

% Fault detected Random

% of Test Cases Executed

120
100
b -
[T /
S =
5 /
-
L 60 20 % Faults
F Detected /
bul-
Q
® /
i /
0
0.0 20.0 40.0 60.0 80.0 100.0 120.0
% of Test Cases Executed
Figure 5.6 Random Technique Results P#2
% Fault detected PSO
120
o 100
g /
g 39 % Faults
a Detected
a 60
=
P 40 \/
s /’ ~
R 5 /
0
0.0 20.0 40.0 60.0 80.0 100.0 120.0

Figure 5.7 PSO Results P#2

Value based Regression Test Case Prioritization

Page 42

Chapter 5: Results and Discussion

120

W % Fault detected Random

H % Fault detected PSO
100

80

60

40

20 A

10 20 30 40 50 60 70 80 S0 100

Figure 5.8 Comparison Bar Chart for P#2

5.5.3 Project 3 Results

120.00

3 100 PSO APFD=66%
] =
% 80.00 g;;dom APFD
& /S °
n 60.00
E
2 4000 % Fault detected Random
e —— % Fault detected PSO
® 2000

0.00

0.0 200 400 600 80.0 1000 1200

% of test cases executed

Figure 5.9 Comparisons of Results P#3

Value based Regression Test Case Prioritization Page 43

Chapter 5: Results and Discussion

75 % fault detection rate has been obtained while executing 40% of test cases through
PSO and 59% fault were detected through random technique. We have also validated our
results through APFD metric. APFD calculation results shows that PSO detects 66%
faults while random ordering produces 55% of faults which again shows significance of

our findings.

% Fault detected Random

120.00
T 100.00 60 % Faults
S Datected
< 40.00
?; 20.00 /

0.00 /
0.0 200 40.0 60.0 80.0 100.0 120.0
% of Test Cases Executed
Figure 5.10 Random Technigue Results P#3
% Fault detected PSO

120.00 78 % Faults
g 100.00 3\ /
£ 80.00
e /
» 60.00
2 40.00 /_/-
3 20.00 /

0.00
0.0 20.0 40.0 60.0 80.0 100.0 120.0
% of test cases executed

Figure 5.11 PSO Results P#3

Value based Regression Test Case Prioritization

Page 44

Chapter 5: Results and Discussion

120

B % Fault detected Random

W % Fault detected PSQ
100

80

60

40

20 -

10 20 30 40 50 60 70 80 90 100

Figure 5.12 Bar Chart Comparison for P#3

The results of these three projects have shown that our proposed algorithm is more

effective and efficient in earlier fault detection analysis.

Value based Regression Test Case Prioritization Page 45

Chapter 5: Results and Discussion

Table 5.7 Summary of Results

Experiment 1 Experiment 3
% of Test
Cases % Fault % Faul % Fault % Fauld % Fault % Fault
Executed detected detected detected detected detected detected
: Random PSO Random PSO Random PSO
10 7 8 0 9 9 11
20 13 20 - 7 20 17 23
30 i8 30 11 35 27 33
40 24 42 20 39 45 49
50 34 54 33 46 53 59
60 49 64 50 57 56 65
70 . 62 74 63 63 59 75
80 77 80 76 76 73 83
90 91 87 91 89 89 88
100 100 100 100 100 100 100
3.6 Summary

This chapter shows the effectiveness of our proposed technique in early fault detection

rate. There is no proof from literature that prioritization of test cases have been done

| 'through PSO incorporating value considerations before this research work. Thus proposed

algorithm offers an exciting new area of research for test case prioritization. This problem

can be solved using different other value based artificial intelligence algorithms. The

results have shown the overall 'worth and improvement that our proposed algorithm has

gained in competent early fault detection. This innovative idea to work on maximizing

early fault detection will be a huge reduction in terms of time.

Value based Reoreccinn Tact £ mme . -

Chapter 6: Conclusion and Future Work

Chapter 6 Conclusion and Future Work

6.1 Conclusion

Software tesﬁng is a critical area of software engineering which plays a significant role in
success or failure of software developments. However, software engineering fails to meet
its desired objectives due to several reasons. One major reason is that software testing in
general operates in traditional environment. Consequently it is very hard for software
testing practitioners to cope up with the significant changes in software development
* environment. This creates a lot of problem in the ensuring the error free and quality
software products. Also this creates extra operating cost to overwhelm software tester

CITOrS.

In this thesis, effort has been made to apply the principles of VBSE on intelligent test
case prioritization to make it more reasonable and worthwhile for software engineering
community ‘and practitioners. We have presented a value based PSO algorithm for
automation of the test case prioritization process. PSO based test case prioﬁtization
algorithm can be used to found a effective and efficient solution. OQur proposed technique
can be used to remove the manual effort required in detection of faults in software testing.
In this research, the experiments have shown very inspiring results. The results have
- 'revealed improvement in analyzing earlier rate of fault detection in comparison of random
technique. The proposed algorithm offers a new area of research for test case
prioritization. This problem can be solved using different other value based algorithms of

artificial intelligence.

6.2 Recommendations for Future Work

As a future work the same experiment could be performed on comi)lex pfoject to
generalize our findings. Comparison of the results obt;ained by PSO can also be compared
by using other evolutionally techniques like Genetic Algorithm. Moreover we can apply
the same approach to test case prioritization through hybrid PSO with GA. This approach
“of hybrid PSO with GA is expected to have merits of both techniques. It avoids premature
convergence of PSO by using mechanism of GA. Therefore mutation is applied to PSO to

increase the diversity of the population and to avoid the local maxima.

Value based Reoreccinn Tacs .. n

References

References

[1] F. Basanieri, A. Betolino and E. Marchetti, "The Cow_Suite Approach to Planning and
Deriving Test Suites in UML Project," Fifth International Conference on the Unified
Modeling Language - the Language and its applications UML 2002, Dresden, Germany, pp.
383-397, September 2002. ’

[2] B. Boehm and L. Huang, "Value-Based Software Engineering: A Case Study" IEEE
Computer, vol. 36, pp. 33-41, March 2003.

[3] B. Boehm, “Software Engineering Economics” Englewood Cliffs, NJ: Prehtice-Hé]l, Inc.,
1981.

[4] S. Elbaum, A. Malishevsky and G. Rothermel, "Test Case Prioritization: 4 Family of
Empiric_'al Studies" IEEE Transactions on Software Engineering, vol. 28, pp. 159-182,
February, 2002.

[5] IEEE, "IEEE Standard 610.12-1 990, IEEE Standard Glossary of Software Engineering
Terminology" 1990,

[6] J. Karlsson and K. Ryan, "4 Cosf— Value Approach for Prioritizing Requirements" IEEE
Software, vol. 14, pp. 67-74, Sep-Oct 1997.

[7] G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test Case Prioritization” IEEE
Transactions on Software Engineering, vol. 27, pp. 929-948, October, 2001.

[8] G. Rothermel, R. Untch, C. Chu and M. Harrold, "T. e&t Case Prioritization: An Empirical
Study" International Conference on Software Maintenance, Oxford, UK, pp. 179 - 188,
September 1999,)

[9] Tao Xie. “Improving Automation in Developer Testing: State of the Practice "North
Carolina State University Department of Computer Science Technical Report TR-2009-6,
February 20, 2009.

[10] G. Tassey, “The Economic Impacts of Inadequate Infrastructure Jor Software Testing”,
RTI Project 7007.011, U.S. National Institute of Standards and Technology, Gatithersburg,
Md, USA, 2002.

[11] G. J. Myers. “The Art of Software Testing” John Willey & Sons, Inc., New York, USA,
1976. : : ‘

[12] B. A. Myers, M. B. Rosson, “Survey on User Interface Programming”. Proc. CHI'92
Human Factors in Computing Systems (May 1992), ACM Press, 195-202.

Value based Resreccinn Tace oo n

References

[13] A. M. Memon, M. E. Pollack and M.L. Soffa, “dutomated Test Oracles for GUIs"
Proceedings of the ACMSIGSOFT 8th International Symposium on the Foundations of
Software Engineering (F SE-8), 8—10 November 2000. ACM Press: New York, 2000; 30-39.

[14] Q. Xie and A. M. Memon, “Using a Pilot Study 10 Derive a GUJ Model for Automated
Testing” ACM Transactions on Software Engineering and Methodology Volume 18 , Issue 2
(November 2008) Article No. 7 Year of Publication: 2008 ISSN:1049-331X

[15] B.Beizer, “Sofiware T. esting T echniques” International Thomson Computer Press, 1990..

[16] M. Lowry and R. Duran.”Knowledge-based Software Engineering. The Handbook of
Artificial Intelligence” Vol. 4.Addison-Wesley Publishing Company, Inc. 1989.

[17] J. S.Shirabad, Phr.D. thesis, “Supporting Software Maintenance by Mining Software
Update Records” School of Information Technology and Engineering, University of Ottawa,
May 2003.

[18] Craig, D. Rick and S. P. Jaskiel, “Systematic Software Testing”, 536, Artech House
P}lb]i;hers, Boston. 2002

[19] IEEE Std. 829, IEEE “Standard Jor Software Test Documentation™ 1998.

[20] W. C. Hetzel, “The Complete Guide to Software T esting” 2nd ed. Publication info:
Wellesley, Mass.: QED Information Sciences, 1988. ISBN: 0894352423

[21] A. Ahmed, “Software Testing as a Service™ Auerbach Publications, New York: 2009

(22] W.E. Hovx-rden, “Functional Program Testing and Analysis” McGraw-Hill, 1987,

[23] M. Fewster, “Common Mistakes in Test Automation™, Grove Consultants, 2001 .

[24] S.Berner, R.Weber and RK Keller, “Observations and Lessons Learned From
Automated Testing” in Proceedings of the 27th International Conference on Software
Engineering (ICSE "05), pp. 571-579, St. Louis, Mo, USA, May 2005

[25] M. Ramzan, M. A. Jaffar, A. A. Shahid, “Value based Intelligent Requirement
Prioritization (VIRP): Expert Driven Fuzzy Logic based Prioritization T echnigue”,
International Journal of Innovative Computing, Information and Control (IJICIC) Vol.6,
No.12, December 2010 ‘

[26] A.Windisch, S. Wappler and J. Wegener “Applying Particle Swarm Optimization to
Software T, esting” GECCO’07, July 7-11, 2007, London, England, United Kingdom.

[27] A. Rauf, S. Anwar, N. Kazim Khan, A. A. Shahid, “Evolutionary based Automated
Coverage Analysis for GUI T esting”, Communications in Computer and Information Science
(Springer) ISSN: 1865-0929

Value based Regression Test Case Prinritimae:..

References
[28] X. Chen, Q. Gu, J. Qi and D. Chen “Applying Particle Swarm Optimization to Pairwise
Testing”,34th Annual Computer Software and Applications Conference IEEE 2010

[29] Z. Li, M. Harman, and R.M.Hierons “Search Algorithms for Regression Test Case
Prioritization” IEEE Transaction on Software Engineering, VOL. 33,NO. 4, APRIL 2007

[30] R. Ramier, S. Biffl and P, Grunbacher “Value-Based Management of Software Testing”,
Book Chapter

(31] M. Amram and N. Kulatilaka, ” Real Oprions ", Harvard Business School Press, 1999,
[32] “Value” Dictionary of Canadian Economics. 2006

(33] “Value”. New Oxford Companion to Law, ed. Walker, David M. (Oxford: Clarendon
Press. 1980)

[34] “Value™. “Dictionary of Sociology”, 2005
[35]). McTaggart “The Valye Imperative” (The Free Press, 1994)
[36] D. Ahern, A.Clouse and R. Tumer, CMMI Distilled, Addison Wesley, 2001.

[37] "value." Merriam-Webster Online Dictionary. 2008. Merriam-Webster Online. 23
October 2008,

httn://\\MM-'.merriam-webster.com/dictionar\f.-"\-’alue

[38] B. Boehm, “Software Engineering Economics”, Prentice Hall, 1981,
[39] Favaro, “When the Pursuit of Quality Destroys Value™. IEEE Software (May 1996)

[40] Favaro, Favaro, K. R., Favaro, P. F “Value-based Reuse Investment, Annals of S‘ofrware
Engineering”, (1998)

[41] B. Boehm, B. W “Value-Based Software Engineering. Software Engineering Notes”,
28(2):2003

[42] B. Boehm and Sullivan, "Software Economics: 4 Roadmap in The Future of Software
Engineering”, 22nd International Conference on Software Engineering, June 2000.

[43] B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, and R. Madachy, “Using the WinWin
Spiral Model: 4 Case Study”, IEEE Computer, July 1998, pp. 33-44.

[44] Wiegers, K. E. “Software Requirements”, 2nd ed. Redmond, WA: Microsoft Press, 2003

[45] R. Krishnamoorthi, S.A. Sahaaya and Arul Mary “Incorporaring varying Requirement
Priorities and Costs in Test Case Prioritization for New and Regression testing”, 2008

Value based Regression Test Case Prinritizasinn

References

[46] X. Zhang, C.Nie, B. Xu and B.Qu “Test Case Prioritization based on Varying T esting
Requirement Priorities and Test Case Costs™, 2007

[47] H. Srikanth, L. Williams and J. Osborne “System Test Case Prioritization of New and
Regression Test Cases”, 2005

[48] R. Krishnamoorthi and S.A. Mary “Factor oriented requirément coverage based system
lest case prioritization of new and regression test cases”,2009

[49] A. M. Smith, G. M. Kapfhammer “4An Empirical Study of Incorporating Cost into Test
Suite Reduction and Prioritization”, 2009

[50] K. H. S. Hla, Y. Choi and J. S. Park “Applying Particle Swarm Opftimization to
Prioritizing Test Cases for Embedded Real Time Software Retesting” 2008

(51 H. Park, H. Ryu and J. Baik “Historical Value-Based Approach for Cost-cognizant Test
Case Prioritization to Improve the Effectiveness of Regression Testing”, 2008

[52] S. Amland, "Risk Based Testing and Metrics," 5th International Conference EuroSTAR
’99, Barcelona, Spain, pp. 1-20, 1999,

(53] B. Boehm, "Value-Based Software Engineering." ACM Sofiware Engineering Notes,
vol. 28, pp. 1-12, March 2003.

[54] B. Boehm and L. Huang, "Value-Based Software Engineering: A Case Study," IEEE
Computer, vol. 36, pp. 33-41, March 2003,

[55] J. Karlsson and K. Ryan, "4 Cost-Value Approach for Prioritizing Requirements," [EEE
Software, vol. 14, pp. 67-74, Sep-Oct 1997.

[56] F. Moisiadis, "Prioritizing Use Cases and Scenarios," 37th International Conference on
Technology of OO Languages and Systems, Sydney, NSW, pp. 108-119, 2000.

[57]1 J. C. Munson and S. Elbaum, "Sofiware reliability as a function of user execution
patterns and practice," 32nd Annual Hawaij International Conference of System Sciences,
Maui, HI, pp. 255-285, 1999,

[58] I. Musa, “Software Reliability Engineering”. New York, NY: McGraw-Hill, 1999,

[59] 'F. Shull, V. Basili, B. Boehm, W. Brown, P. Costa, M. Lindvall, D. Port, 1. Rus, R.
Tesoriero, and M., Zelkowitz, "What We Learned about Fighting Defects," IEEE Symposium
on Software Metrics, Ottawa, Canada, pp. 249-258, June 2002.

[60] H. Srikanth and L. Willianis,_"On Economic Benefits of System Level Test Case
Prioritization," International Conference on Software Engineering, St. Lotus, MO, pp., 2005.

Value based Regression Test Case Prinvitimasc:. .

References

[61] E. Wong, J. Horgan, M. Syring, W. Zage, and D. Zage, "Applying design metrics to
predict fault-proneness: a case study on a large-scale software system," Software Practice
and Experience, vol. 30, pp. 1587-1608, 2000.

[62] Standish.Group, "CHAOS." http://www.standisggoup.com/chaos.htm. _

[63] G.Mogyorodi, "Requirements-Based T esting. An Overview," 39th International
Conference and Exhibition on Technology of Object-Oriented Languages and Systems, Santa
Barbara, California, Pp. 286-295, August 2001. -

[64] A, Hutchings and S. Knox, "Creating Products Customers Demand.," Communications
of the ACM, vol. 38, pp. 72-80, 1995,

[65] C. Jones, "Software Challenges: Strategies Jor Managing Requirements Creep," [EEE
Computer, vol. 29, pp. 92 - 94, June 1996.

[66] Y. K. Malaiya and J. Denton, "Requirements volatility and defect density," 10th Intl'
Symposium on Software Reliability Engineering, Boca Ratan, Florida, pp. 285-298,
November 1999,

[67] T. Ostrand, E. Wéyukér and R. Bell, "Where the Bugs Are," Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis, Boston, MA, pp. 86-
96, July 2004.

(68] B.Korel “Application of System Models in Regression Test Suite Prioritization” 2008

(69]Y. Fazlalizadeh, A. Khalilian, M. Abdollahj Azgomi and S. Parsa “Prioritizing Test
Cases for Resource Constraint Environments Using Historical Test Case Performance Data”
IEEE2009

[70] K. R.Soffa*Time Aware Test Suite Prioritization "ISSTA’06, July 17-20, 2006,
Portland, Maine, USA.

[71] L. Zhang, S. S Hou, C. Guo, T. Xie and H. Mei “Time Aware T, est-Case Prioritization
using Integer Linear Programming” ISSTA 09, July 19-23, 2009, Chicago, Illinois, USA.

[72] Elbaum “Incorporating Varying test costs and Jault severities into test case
prioritization” 2001

[73] G. Rothermel “Prioritizing Test Cases For Regression Testing”, 1EEE Computer
Society, 2001

[74]J. Nocedal and S. J. Wright “numerical optimization” book chapter

[75] P. NagahawateandH.Do “Effectiveness of Regression Testing Techniques in Reducing
the Occurrence of Residual Defects” Third International Conference on Software Testing,
Verification and Validation2010

Value based Regression Test Case Prinritiones..

References

[76] K.H .S Hla, Y. Choi and J. S. Park “Applying Particle Swarm Optimization to
Prioritizing Test Cases Jor Embedded Real Time Software Retesting”, 8th International
Conference on Computer and Information Technology Workshops IEEE 2008

[77] M. A. Fayoumi, P. Mahanti and S. Banerjee “OptiTest: Optimizing Test Case Using
Hybrid Intelligence”. World Congress on Engineering 2007.

[78] A. G. Sanchez “Prioritizing Tests for Software Fault Localization” 10th International
Conference on Quality Software, 2010 ‘

[79] G. Kapfhammer and M. Soffa “Using Coverage Effectiveness to Evaluate Test Suite
Prioritizations " A CM 2007

(80] B. Boehm, “Value-Based Software Engineering”, ACM SIGSOFT, March 2003

[81] M. G. H. Omran “Particie Swarm Optimization Methods Jor Pattern Recognition and
Image Processing” November 2004

[82] “Global Optimization Algorithms Theory and Application “Thomas Weise Version:
2009-06-26

[83] S. Mirarab-and L.Tahvildari “4»n Empirical Study on Bayesian Network-based Approach
Jor Test Case Prioritization” International Conference on Software Testing, Verification, and
Validation 2008 '

[84] AKaur and B.bhatt “Hybrid Particle Swarm Optimization for Regression
Testing "International Journal on Computer Science and Engineering (IJCSE) Vol. 3 No. 5
May 2011

[85] B Boehm and Ross, R. "Theory-W Software Project Management: Principles and
Examples." IEEE Transactions on Software Engineering 15, 4 (July 1989): 902-916

Value based Regression Test Case Prioritismeinan

INDEX 1 (Risk Management Data)

INDEX 1 (Risk Management Data)

Requirem Fault Impact of
uc Implimenta o Execu on Coverage Req
RISK Ra ng n Complexity ent- Traceable Time {Func on sever
MANAGEMENT Vola lity {1-10} faults
1-10 (1-20) - {Sec) al) : y{v]
(1-10) (d)
{(1-5
TC1 3 2 2 10 3 2 3 8
TC2 3 2 2 10 3 2 3 8
uco1 | Tc3 3 . 2 2 10 3 2 3 8
T Tes] s 5 4 4 10 3 32
5. 5 4 4 7 3 32
5 8 5 5 15 3 4 32
5 8 5 10 8 3 2 32
5. 6 - 3 8 35 3 3 32
- 5 6 ~1 10 20 3 0 0
uco3 | TC11 S 7 8 4 15 5 1 ‘32
6 | -8 P
6, R 5
5 8 5 3
S 8 5 5
5 7 5 3
7 9 5 2
7 9 5 2
5 8 1 3
8 10 8 1
8 10 8 1 32
9 10 8 3 32
8 5 1 0 0
8 5 -1)]
8 5 1 0 0
10 6 1 0 0
10 6 1 i 8
) 6 1 1 8
7 6 1 0 0
7 6 1 _ 1 8
8 6 1 8 10 2 0 0
UC1s | TC34 8 6 1 6 5 7 1 8
UC16 | Tc35 7 5 1 4 10 2 1 8
.TC36 9 5 1 10 5 1 1 8
.| Teaz7 9 5 1 10 5 3 1 32
UC17 | TC38 9 5 1 3 10 3 0 0

INDEX I (Risk Management Data)

TC39 9 5 1 7 15 1 1 4

TC40 9 5 1 10 15 1 1 16
UC18 | TCa1 8 8 5 8 10 2 1 32
UC19 | TCa2 9 5 2 10 5 2 0 0
UC20 | TC43 7 8 1 6 8 1 0 0
UC22.| Tc46 7 8 4 10 10 5 3 16
UC23"| T¢47 8 -5 4 10 . 28| -5 -2 | g

Value based Regression Test Case

Prinritionds:

INDEX 2 (IT Procurement Suite Data)

INDEX 2 (IT Procurement Suite Data)

i UC " | Impliment Req. Traceable | EX€CU on | Coverage Fault Impacste:i:::
Procurement | 12 N& | Complexity | Vola lity (1-10) Time | (Func on | faults l
Suite 110 1 (110} (1-10) (Sec) al) (d) (1-5)
TC1 3 4 6 3 0 5
TC2 3 3 7 2 0 16
uco1 | Tc3 3 5 5 2 3 3
TCS 4 6 5 3 1 32

4 f: 0-
5

C11 |50 S 7 9 - 8 = =8

TC12 6 7 5 10 7 3 4 0

TC13 6 8 6 9 9 3 2 16

UC0o6 | TC14 6 9 8 8 9 3 3 4
TC15 7 5 3 10 7 1 4 32

UCo7 | TC16 7 4 2 7 6 1 3 16
UCcos | Tc17 7 9 4 10 7 2 4 32
TC18 7 10 7 9 5 2 4 8

TC19 7 7 3 10 4 2 4 32

TC20 | 7 8 2 8 8 2 2 16

ucos [Te2r | 7 9 9 8 9) 3 8

Value based Regression Test Cace Princieioo e

INDEX 3 (Sales Intranet Data)

INDEX 3 (Sales Intranet Data)

Sales UCRa ng '"::":‘: " Req- Traceable Execut et 'mpa‘:ts:\f,':i!:g
. | Vola lity Time | Coverage
Intranet 1-10 Complexi | ~ (1-10) (1-10) (Sec) faults (d) (v)
Data ty (1-10) | (1-5)
1 2 3 10 3
3 -5 3 10 | s
3 _F e 4 9 |6
3. = '5 10 | 5
3] 6] 6 8. .1
3 7 3 9 | 4
N) _ 8 7. |5
3 6 3 10 6
3 6 4 8 5 2 2
3 5 6 7 Il 2 3

1 0
1 2
2 1
2 4
2 1
2 1
2 3
2 1
g 9 7 8 4 2 3
9‘ 8 6 7 5 2 3
8 8 5" 9 3 2 1
8 9 7 10 3 2 2
8 8 6 9 4 2 3
8 8 4 8 5 2 2
8 7 6 9 4 3 1
8 7 5 8 6 2 2
8 8 5 10 3 2 1

Value based Resressinn Tect Cace D

oA o

i - - Al o

INDEX 3 (Sales Intranet Data)

TC37 8 9 6 9 3 2 2
UC13 | TC38 8 8 - 4 9 3 2 1
TC39 8 8 3 10 5 1 1
UC14 | TC40 . 8 9 5 9 4 2 1

Value based Regression Test Cace Prinritionéine i i

