Security Implementation of a Real-time
Transport Protocol Based Application

(TranSecure) %Z Z/

doo, Bo. (pr18) /"0 ES

Developed by

Junaid Aslam
(24-CS/MS/01)

Saad Rafique
(15-CS/MS/01)

Supervised by

Dr. S. Tauseef-ur-Rehman
Head Department of Telecommunication and Computer Engineering

Department of Computer Sciences
International Islamic University, Islamabad
(2004)

Istamapag

ii

International Islamic University

Islamabad
18-T- 2ty
June21:-2004

Final Approval

It is certified that we have read the project titled “Security Implementation of a Real-time
Transport Protocol based Application (TranSecure)” submitted by Junaid Aslam and
Saad Rafique. It is our judgment that this project is of sufficient standard to warrant its

acceptance by International Islamic University for the Master’s degree in Computer Sciences.

Committee

External Examiner /C(QZDPQ/L@_)

Prof. Dr. M. Qasim Rind
Preston University

Internal Examiner

Prof. Dr. Sikandar Hayat Khayal
Head, Faculty of Applied Sciences
International Islamic University

Mr. M

Supervisor

Prof. Dr. S. Tauseef-ur-Rehman

Head, Department of Telecommunication
International Islamic University

il

A DISSERTATION SUBMITTED TO THE
DEPARTMENT OF COMPUTER SCIENCE
INTERNATIONAL ISALMIC UNIVERSITY, ISLAMABAD
AS
A PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE AWARD OF DEGREE OF
MASTERS OF COMPUTER SCIENCE

iv

DECLARATION

We, hereby declare that the project titled “Security Implementation of a Real-time Transport
Protocol based Application (TranSecure)”, neither as a whole nor as a part thereof has been
copied out from any source. 1t is further declared that we have developed this application and
the accompanied report entirely on the basis of our personal efforts made under the guidance
of the kind supervisor. No portion of the work presented in this report has been submitted in
support of any application for any other degree or qualification of this or any other university

or institute, if found we will stand responsibie.

uhaid AJam

24-CS/MS/01

arl

15-CS/MS/01

ACKNOWLEDGEMENTS

First of all we are thankful to Almighty ALLAH (SWT) most compassionate and most

merciful, without his blessings completion of this project was not possible.

Then is the place of our respected supervisor Dr. S. Tausecef-ur-Rehman. His all time
appreciation has been the motivating force behind the successful completion of this
application. He has been very kind and extra ordinarily cooperative to us during the whole

process of development.

We are also thankful to our friends in Masters of Computer Sciences who have been a source
of support, encouragement and motivation during the whole academic and development

period.

Above all we owe this success of ours to our loving parents without whose pure prayers, true

encouragements, moral, and financial support we would never have succeeded.

unaid Aslam
24-CS/MS/01

R ie
15-CS/MS/01

vi

~

PROJECT IN BRIEF

Security Implementation of RTP based
Project Title o
Application

o To develop a Real Time Transport Protocol based
Objective application that can securely transmit data over the
network.

Junaid Aslam

(24-CS/MS/00)
Saad Rafique

(15-CS/MS/00)

Undertaken By

Dr. S. Tauseef-ur-Rehman

Head Department of Telecommunication and Computer
Engineering

International Islamic University, Islamabad

Supervised By

Protocol Level Technologies Real Time Transport Protocol

Programming Languages JAVA
Operating System/ Server Windows 2000 professional / Windows XP Professional
Date Started January, 2003

Date Completed April, 2004

vii

Table of Contents

Contentd# Contents

1

1.2
1.3
1.3.1
132
1.33
134
14
14.1
1.4.2
143
15
15.1
1.5.2
153
1.5.4
1.5.5
1.5.6
1.6
1.6.1
16.2
1.63
1.7
1.7.1
1.7.2
1.7.3
1.8
18.1
1.9
1.9.1
1.9.2
1.9.3
1.10
1.10.1
1.10.2
1.103
1.104
2

2.1
2.11
2.1.2
213
2.14
213
2.1.6
2.1.9
22
221
222
2221
2222
2223
2224

Introduction

TranSecure

Encryption

Security Methodologies

Analog Scrambling

Digital Encryption

Signal Encryption

Recommended Security Algorithms
DES

Triple DES

AES

Real-time Transport Protocol

RTP Services

RTP Architecture

Data Packets

Control Packets

RTP Applications

Network Organization

Desired Security Features
Confidentiality

Integrity and Authenticity
Performance Considerations of Security Features
Security Features Provided by RTP
Confidentiality

Authentication and Integrity

Key Management

Introduction to SRTP

Security in SRTP

JMF

JMF Architecture

High Level Architecture
Understanding the JMF-RTP API
Working with Real-time Media Streams
Streaming Media

Protocols for Streaming Media
Transmitting Media Streams across the Network
Receiving Media Streams from the Network
Existing Systemn

Proposed System

Project Definition

Project Scope

Efficiency

Reliability

User Friendliness

Future Enhancements

Advantages of the Proposed System
System Analysis

Object

Criteria for Objects

Retained Information

Needed Services

Multiple Attributes

Comemon Attributes

R N T T N S
Y
a2
[4:]
It

L) Lo Lo Ld LD W W W W W W Ld W R R RN N R BRI BN N B B B 2 et et et et e e e e e
AR BEWWRNRN S —mw OO 0OV RNRWRWNNWOOSOWOWOOWEONWNW—=O

22125
2.2.2.6
223
23
2.3.1
2311
2312
2313

31

32

321
322
323
324
3.25
326
327

34
35

4.1
4.2

43

4.3.1
44

44.1
442
443
444
44.5
446
447
448
449

5.1
5.1.1
5.1.2
513
3.1.4
313
516
3.1.7
5.1.8
5.2
53
54

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5

Common Operations

Essential Requirements

Selected Objects

Domain Analysis

Domain to be Investigated

Interested Domain

Object Oriented ltems

Non Object Oriented ltems

System Design

Important Classes

Use Cases

Actors of the System

Domains in our System

Use Cases of Transmitter

Use Cases of Receiver

Use Cases in Extended Format
Extended Use Cases of Transmitter
Extended Use Cases of Receiver
Use Case Diagrams

Sequence Diagrams

Object Diagrams

Description of Classes
Implementation

Java

JMF

Session Manager

Code Sample for Transmitting and Receiving Audio and Video of Client using RTP
Classes and Packages for Media Streaming and Media Reception
Classes and Packages for Encryption
Configuring a Processor

Retrieviag the Processor Qutput
Creating a RTP Player for Each New Received Stream
Implementing Controller Listener
Displaying Media Interface Components
Displaying a Visual Component
Displaying a Control Panel Component
Testing

Testing Strategies

Specification Testing

Black Box Testing

White Box Testing

Regression Testing

Acceptance Testing

Assertion Testing

Unit Testing

System Testing

System Evaluation

Testing TranSecure

Test Results

Intreduction

User Manual for Transmitter

Add Receiving Client

Remove Receiving Client

Media Locator

Encrypting Payload

Start Transmission

34
34
35
35
36
36
36
38
39
39
41
41
42
42
44
46
46
51
55
58

66
74
74
75
77
79
79
79
82
84
87
o0
21
92
52
93
93
94
9%
94
94
95
95
95
95
96
96
97
101
101
101
102
104
105
106

6.1.6
6.2

6.2.1
6.22
6.2.3
6.24
6.2.5

Stop Transmission

User Manual for Receiver
Add Target Sender
Remove Target Sender
Decrypt Data

Start Receiver

Stop Receiver

107
108
108
109
110
111
112

List of Tables

Table# Contents

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
49
5.1
5.2
5.3
54

Description of Class TranSecureServ

Description of Class AVTransmit3

Description of Class RTPSocketAdapter

Description of Class SocketOutputStream :: RTPSocketAdapter
Description of Class SocketInpuiStream :: RTPSocketAdapter
Description of Class Config

Description of Class Target

Description of Class CipherSelect

Description of Class AVReceivel

Test Table for 1¢ KB Test File

Test Table for 100 KB Test File

Test Table for 1 M Test File

Comparison Table of Different Algorithms

Page#

67
68
70
70
71
71
72
72
97
98
99
100

List of Figures

Figure# ©Name of Figure

1.1
1.2
1.3
1.4
L5
1.6
1.7
1.8
1.9
110
1.11
3.1
3.2
33
34
35
36
7
38
19
310
4.1
5.1
5.2
53
54
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Working of DES

Working of Triple DES

Working of AES

RTP Architecture

RTP Running Over Different Protocols

RTP Data Packet Header Format

RTP Network Organization

Recotding, Processing and Presenting Time-Based Media
High Level IMF Architecture

RTP Reception

RTP Transmission

Use Case Diagram of Transmitter

Use Case Diagram of Receiver

Sequence Diagram for Add Target Use Case
Sequence Diagram for Remove Target Use Case
Sequence Diagram for Encrypt Data Use Case
Sequence Diagram for Start Transmitter Use Case
Sequence Diagram for Start Receiver Use Case
Sequence Diagram for Decrypt Data Use Case
Object Diagram of Transmitter

Object Diagram of Receiver

Events in IMF

Time Graph for 10 KB Test File

Time Graph for 100 KB Test File

Time Graph for | MB Test File

Comparison Graph for Different Algorithms
Add Receiving Client

Remove Receiving Client

After Pressing the “Remove Target” Button this Form will Appear
Media Locator

Encrypting Payload

Start Transmission

Stop Transmission

Add Target Sender

Remove Target Sender

Remove Target

Decrypt Data

Start Receiver

Stop Receiver

100
101
102
103
164
105
106
107
108
109
109
110
111
112

CHAPTER 1
INTRODUCTION

Chapter | Introduction

1. Introduction

An increasing number of commercial organizations are now coming to realize that
information is valuable and needs to be protected from disclosure to unauthorized parties.
However, communications security is still relatively new to the commercial sector, and
many organizations are uncertain about the options available and how to proceed. This
real-time transport protocol based application is intended to assist organizations which

are considering implementing a secure communications network.

Communications security is the protection of information during transmission.
Information may need to be protected from modification (accidental or malicious),
destruction or disclosure. Realistically, it is often not possible to prevent access to
transmissions, so information can only be kept secure by disguising the content of the
transmission. Modern communications require this to be achieved electronically, usually

by some form of scrambling or encryption.

There are many reasons communications security may be required - in a recent survey,
the most commonly cited reasons for securing transmissions were the prevention of
accidental security breaches, the prevention of purposeful breaches, meeting Privacy Act

requirements, and meeting customer expectations {1].

Communications security 1s common sense. Information is a valuable commodity, and
needs to be protected just like other commodities. Protecting your communications is
sensible business practice, regardless of whether or not your information is actually
‘secret’. Most organizations keep documents in filing cabinets and lock office doors
overnight, and communications security 1s the next obvious step. Secure commurications
also allow the best use to be made of your communications equipment - for example, fax
machines are both faster and cheaper than couners, and it is easiest to discuss strategies

or conduct business negotiations in real time, using a telephone.

Security Implementation of RTP Based Application i

Chapter | Introduction

1.2 TranSecure

TranSecure is a real-time transport protocol based application that enables you to

securely transmit real time data such as voice and video over different existing networks

i.e.
1. IP/UDP
2. ATM/AALS
3. IPX

You can choose your own security algorithm from a list of highly secure algorithms i.e.
1. Data Encryption Standard (DES})
2. Triple Data Encryption Standard (3DES)
3. Advanced Encryption Standard (AES)

You also have the option to send the data without any encryption (Null Cipher).

1.3 Encryption

Encryption is the process of transforming information from an unsecured form (“clear” or
"plaintext") into coded information ("cipher text"), which cannot be easily read by
outside parties. The transformation process is controlled by an algorithm and a key. The
process must be reversible so that the intended recipient can return the information to its
original, readable form, but reversing the process without the appropriate encryption
information should be impossible. This means that details of the key must also be kept

secret,

Encryption is generally regarded as the safest method of guarding against accidental or
purposeful security breaches. The strength of the encryption methed is often measured in

terms of work factor - the amount of force that is required to 'break’' the encryption. A

Security Implementation of RTP Based Application 2

Chapter 1 Introduction

strong system will take longer to break, although this can be reduced by applying greater

force (the more effort that is put into the attack, the less time required to break the code).

1.3.1 Security Methodologies

Communications can be protected in a2 number of ways, and each method has different
strengths and weaknesses. Two of the most common techniques are scrambling and
encryption. These terms are often used interchangeably, but technically the processes are
quite different - one deals with the information being transmitted and the other modifies

characteristics of the signal being used for the transmission.

1.3.2 Analog Scrambling

Scramblers disguise the transmission signal in a variety of ways. Usually this involves
splitting and mixing the frequency spectrum, and scramblers are most commonly used to
protect analog voice communications. Most scramblers do not employ keys, so
unscrambling the message is relatively straightforward. Scrambling systems provide an
intermediate level of security that is effective against casual interception, but can result in

a poor voice quality at the receiver.

1.3.3 Digital Encryption

Encryptors manipulate the information or data being carried by the signal. They use an
algorithm to alter the message content prior to transmission, and normally operate on
digital information, For this reason, encryptors are primarily used to secure data

transmissions.

Digital encryption can also be used to protect voice transmissions, but this requires the

analog voice signal to be converted to a digital signal before the encryption process can

Security Implementation of RTP Based Application 3

Chapter [Introduction

begin. Depending on the method used, this can also impair the quality of the voice signal
after decryption. Because the process uses modems and usually requires synchronization,

communications may fail over poor quality lines.

1.3.4 Signal Encryption

A third approach is signal encryption, which uses an algorithm to manipulate the analog
signal. This method is the core of the Safe encryption process, and provides a level of
security between scrambling and digital encryption. Safe does not require
synchronization, so communications are possible in areas with poor telecommunications

infrastructure; the process also ensures good guality in the voice reconstruction.

1.4 Recommended Security Algorithms:

Our research deals primarily with Real Time Applications (see section 1.5). For this RFC

3550 has recommended use of the following three algorithms for RTP security:
1. DES
2. Triple DES

3. AES
1.4.1 DES

The Data Encryption Standard (DES) cryptographic algorithm was approved in the 1970s
as a US federal standard for use on unclassified government communications and is a de-

facto standard for modern encryption [2].

The DES algorithm is based on a 128-bit block algorithm developed in the 1960s by
IBM. In technical terms, LUCIFER is an iterative block cipher, using Fiestel rounds - a
block of data is encrypted a number of several times, each time applying the key to half

of the block and then XOR'ing with the other half of the block.

Security Implementation of RTP Based Application 4

Chapter i

Introduction

DES was designed to usc a 64-bit key to encrypt and decrypt 64-bit blocks of data using a

cycle of permutations, swaps, and substitutions. Encryption and decryption use the same

key.
INFPUT
Y
INITIAL F‘ERMUTAT!D
PERMUTED A Hl
INPUT LO 0
Y Kl
(e (D ,
—a — -
Ll =HApn Al =L [+)FR. KON
YV K2
(e (e
— = ——
L2=R1 A2= L1(+)}(R.K1)2
....................... 'Kﬂ
Y %
- _‘__'_,_F—-'—"—'—'-:
‘ -
L15 = Al4 R15 = L14[+)F(R.K14)15
16
[Yr}+ f
PRE-OUTPUT R16 = L15[+)f{A.KI5)16 L16 = RIS

vV

INVERSE INITIAL PERMUTATION

h J

QUTPUT

Figure 1.1: Working of DES

A block to be encrypted is subjected to an initial permutation, then to a key-dependent

computation, and then to a final permutation. The initial and final permutations take the

Security Implementation of RTP Based Application

Chapter | Introduction

64-bit block and change the position of each bit in a pre-determined manner. The final

permutation is the reverse of the initial permutation

A DES key consists of 64 binary digits of which 56 bits are randomly generated and used
directly by the algorithm. The other 8 bits, which are not used by the algorithm, are used
for error detection. The 8 error detecting bits are set to make the parity of each 8-bit byte

of the key odd, i.e., there is an odd number of "1"s in each 8-bit byte.

DES was not only the Federal Standard, but was also widely used as the algorithm of
choice for many years [3]. However, it also became the focus of much dissent because
the US imposed controis over its export. Furthermore, the academic cryptographic
community argued that DES's 56-bit key was too short to withstand a brute-force attack
from modern computers. (Moore's Law states that computer power doubles every 18
months, so a key that could withstand a brute-force guessing attack in 1975 could hardly
be expected to withstand the same attack a quarter of a century later) [4]

1.4.2 Triple DES

Triple DES is a three fold DES encryption in which two 56 bit keys are applied, that
means a practical security of 112 bits in strength, which as far we know today should be
reasonably secure. 1 12 bit3 DES in outer CBC mode o ffers an equivalent amount o f
cryptographic security relative to 168 bit 3 DES in the identical mode. The deep crack
project has shown that 112 bit 3 DES offers significant resilience to brut-force
cryptanalytic methods. 112 bit 3 DES in outer CBC mode offers the same media stream

privacy as 168 bits with a less cumbersome key.

The implementation of this strategy using 3 hardware engines adds only a small
propagation delay, however in software using the same single engine; it would take more

than double the time required.

To make 3 DES even stronger a triple length key must be used (168 bit key). A triple
length key is true 3 DES. It increases the cost of attack when applying the easiest known

Security Implementation of RTP Based Application 6

Chapter | Introduction

attacks i.e. exhaustive key attack but triple key will be a burden if application involves
short messages with short life and frequent key changes, also that due to certain space

complexity cryptanalytic attacks, 168 bit 3 DES offers cryptographic security no better

than 112 bit 3 DES [5].

Key 1 Key 2 Key 3
! | !
Plaintext -t DES e DES — DES e Ciphertvd
ENCRYPTION DECRYPTION ENCRYPTION
Ciphetext DES DES DES Plainted
DECRYPTION ™ | encrypTioN | | OECRYPTION[™ T
Key 3 Key 2 Key 1

Figure 1.2: Working of Triple DES

Moreover a 112 bit key is still quite viable for most commercial applications which

require high grade cryptography.

1.4.3 AES

The Advanced Encryption Standard supersedes DES as the new information protection
standard defined by the US to protect certain levels of Federal information and

communications [2]. The selection process for an AES algorithm began in 1997, and the

Security Implementation of RTP Based Application 7

Chaprer | Introduction

new standard was finalized in November 2001. AES is a publicly disclosed encryption

algorithm, and is unclassified.

M
e Round Key 0
Routil Key 1
v
e Round #nja— Round Key Ne-1
e
seFinalRound .. [— Round Rey Nr

1

Figure 1.3: Working of AES

On January 2, 1997, the US National Institute for Security Technologies (NIST)
announced that it was develop an new Advanced Encryption Standard to replace the
previous Data Encryption Standard (DES), and called for public submissions for the new
AES algorithm {2]. At a minimum, the algorithm would have to implement symmetric
key cryptography as a block cipher and support a block size of 128 bits and key sizes of
128, 192, and 256 bits.

Security implementation of RTP Based Application 8

Chapter I Introduction

1.5 Real-Time Transport Protocol

RTP, Real-time Transport Protocol, is an application level protocol that is intended for
delivery of delay sensitive content, such as audio and video, through different networks.
The purpose of RTP is to facilitate delivery, monitoring, reconstruction, mixing and
synchronization of data streams. Although RTP does not provide quality of service on IP
networks, its mixers can be used to facilitate multimedia delivery on a wide range of link

types and speeds. RTP is designed to use both unicast and multicast transport protocols

[6].

Even though RTP is a relatively new protocol, it is widely used by applications like Real
Network’s RealPlayer, Apple’s QuickTime and Microsoft’s NetMeeting. Some of the
common applications of RTP are audio and video streaming media services and video

conferences.

As RTP is usually used through Internet, the network should be considered as insecure.
Although many media streams are publicly available, video conferencing use usually
requires confidentiality. In many situations it would be preferable if the user could

authenticate the originator and ensure the integrity of media streams.

RTP provides end-to-end network delivery services for the transmission of real-time data.

RTP is network and transport-protocol independent, though it is often used over UDP.

Real-Time Media Frameworks and Applications

I Real-Time CorltroProtocd (FITCP) I E

3

Other Networkand
Jransport Protocols. .
{TCP M. ST, ete)

Figure 1.4: RTP Architecture

RTP can be used over both unicast and multicast network services. Over a unicast
network service, separate copies of the data are sent from the source to each destination.

Over a multicast network service, the data is sent from the source only once and the

Security Implementation of RTP Based Application 9

Chapter 1 Introduction

network is responsible for transmitting the data to multiple locations. Multicasting is
more efficient for many multimedia applications, such as video conferences. The

standard Internet Protocol (IP) supports multicasting,

1.5.1 RTP Services

RTP enables you to identify the type of data being transmitted, determine what order the
packets of data should be presented in, and synchronize media streams from different

SOUICES.

RTP data packets are not guaranteed to arrive in the order that they were sent. It's up to
the receiver to reconstruct the sender's packet sequence and detect lost packets using the

information provided in the packet header.

While RTP does not provide any mechanism to ensure timely delivery or provides other
quality of service guarantees, it is augmented by a control protocol (RTCP) that enables
you to monitor the quality of the data distribution. RTCP also provides control and

identification mechanisms for RTP transmissions.

If quality of service is essential for a particular application, RTP can be used over a

resource reservation protocol that provides connection-oriented services.

RTP defines the roles for two active application level devices that may reside on the

network
1. Mixers
2. Translators

In essence the difference between a translator and a mixer is, that mixers change

synchronization source identifiers, whereas translators do not.

Mixers have many similar characteristic features with routers, as they connect two or
more networks together. Mixers process RTCP packets and may perform payload format

translations. They also perform remixing of RTP streams. The purpose of mixers is to

Security Implementation of RTP Based Application 10

Chapter | Introduction

allow users behind low speed links to receive high speed transmissions by receiving all
high speed strcams, down-mixing them to one or more lower speed streams and
forwarding these low speed streams to receivers. Reverse will of course be done for
possible returmn packets. Mixers have to regenerate timing information and change
SSRC’s, as they essentially create new streams based on one or more existing streams.
Mixers are non transparent devices. As mixers may combine several encrypted streams,

they are capable of encrypting and decrypting RTP streams.

Translators are transparent on RTP level — they leave SSRC identifiers intact. The
putpose of the translators is to perform payload format conversions, tunneling of the
packets through firewalls, adding or removing encryption and enabling the coexistence of
the different networking technologies. Whereas mixers could be described as RTP

routers, closest equivalent for RTP transiators is an application leve!l proxy.

There exist a few limitations for placing multiple translators or mixers on the same node
i.e. their network address (on IP network consisting port number and IP address) must be
unique and they may not perform same forwarding task unless they have not been

partitioned to prevent them from forwarding same packets to same receivers [7].

1.5.2 RTP Architecture

An RTP session is an association among a set of applications communicating with RTP.
A session is identified by a network address and a pair of ports. One port is used for the
media data and the other is used for control (RTCP) data.

A participant is a single machine, host, or user participating in the session. Participation
in a session can consist of passive reception of data (receiver), active transmission of data

(sender), or both.

Fach media type is transmitted in a different session. For example, if both audio and
video are used in a conference, one session is used to transmit the audio data and a

separate session is uscd to transmit the video data. This enables participants to choose

Security Implementation of RTP Based Application 11

Chapter | Introduction

which media types they want to receive, for example, someone who has a low-bandwidth

network connection might only want to receive the audio portion of a conference.

RTP is a modular protocol. The base protocol is defined by RFC 3550. The usage of RTP
for a specific purpose requires that an application area specific RTP profile must be
implemented. RFC 3550 defines basic fields for the transportation of real time data. It
also defines RTCP, RTP Control protocol, whose purpose is to provide feedback on
transmission quality, information about participants of RTP session, and enable minimal

session control services,

RTP profiles are used for refining the basic RTP protocol to suit for a particular
application area. Commonly RTP profiles refine the meanings of the fields provided by
the basic RTP protocol. RTP profiles also add new fields and rules. RTP profiles define
how and by which formats data is encapsulated to RTP packets.

In contrary to many protocols, RTP is usually implemented by each application, and not
by an operating system or by a separate stack. These implementations inay, and often are,
based on generic RTP libraries. Existence of the application dependent profiles almost
mandates that the RTP service must be implemented on an application basis. RTP
protocol is transport independent and it can be used over various networking
technologies. The most common transport protocols for RTP are IP/UDP, ATM/AALS
and IPX. Figure below shows the RTP on the protocol stack. Note that although RTCP
can be considered as a protocol running over RTP, it is actually only a special type of
RTP packet.

RTCP
RTP
ubDP AALS
Other Protacols
IP ATM

Figure 1.5: RTP running over different protocols

Security Implementation of RTP Based Application 12

e

Chapter | Introduction

It should be understood that the basic RTP has never been intended as a complete
protocol, but as a framework for building application protocols. As the consequence, a
RTP based system commonly relies on non-RTP protocols to negotiate and establish the
sessions. RTP protocol uses synchronization source { SSRC) identifiers as addresses of
the peers. SSRCs are unique within the session and are chosen randomly when a
participant joins to the session. RTP peers automatically detect and correct SSRC

collisions.

1.5.3 Data Packets

The media data for a session is transmitted as a series of packets. A series of data packets
that originate from a particular source is referred to as an RTP stream. Each RTP data
packet in a stream contains two parts, a structured header and the actual data (the packet's
payload).

Bit:0123456789012345167890123456789031

VIR X|CC |NPT Sequence Number

Timestamp

Synchronization Source (SSRC)

Content Source{ CSRC)

Figure 1.6: RTP data-packet header format

The header of an RTP data packet contains:

o« The RTP version number (V): 2 bits. The version defined by the current

specification is 2.

Security Implementation of RTP Based Application 13

Chapter] introduction

o Paddiag (P): 1 bit. If the padding bit is set, there are one or more bytes at the end
of the packet that are not part of the payload. The very last byte in the packet
indicates the number of bytes of padding. The padding is used by some encryption
algorithms,

o Extension (X): 1 bit. If the extension bit is set, the fixed header is followed by
one header extension. This extension mechanism enables implementations to add

information to the RTP Header.

¢ CSRC Count {CC): 4 bits. The number of CSRC identifiers that follow the fixed
header. If the CSRC count is zero, the synchronization source is the source of the

payload.
o Marker (M): 1 bit, A marker bit defined by the particular media profile.

o Payload Type (PT): 7 bits. An index into a media profile table that describes the
payload format. The payload mappings for audio and video are specified in RFC
3550.

» Sequence Number: 16 bits. A unique packet number that identifies this packet's
position in the sequence of packets. The packet number is incremented by one for

each packet sent,

+ Timestamp: 32 bits. Reflects the sampling instant of the first byte in the payload.
Sevcral consecutive packets can have the same timestamp if they are logically
generated at the same time, for example, if they are all part of the same video

{rame.

e SSRC: 32 bits. Identifies the synchronization source. If the CSRC count is zero,
the payload source is the synchronization source. If the CSRC count is nonzero,

the SSRL identifies the mixer.

« CSRC: 32 bits each. ldentifies the contributing sources for the payload. The

number of contributing sources is indicated by the CSRC count field; there can be

Security Implementation of RTP Based Application 14

Chapter | Introduction

up to 16 contributing sources. If there are multiple contributing sources, the

payload is the mixed data from those sources.

1.5.4 Control Packets

In addition to the media data for a session, control data (RTCP) packets are sent
periodically to all of the participants in the session. RTCP packets can contain
information about the quality of service for the session participants, information about the
source of the media being transmitted on the data port, and statistics pertaining to the data

that has been transmitted so far.
There are several types of RTCP packets:
1. Sender Report
2. Receiver Report
3. Source Description
4. Bye
5. Application-specific

RTCP packets are "stackable" and are sent as a compound packet that contains at least

two packets, a report packet and a source description packet.

Al participants in a session send RTCP packets. A participant that has recently sent data
packets issues a sender report. The sender report (SR) contains the total number of
packets and bytes sent as well as information that can be used to synchronize media

streams from different sessions.

Session participants periodically issue receiver reports for all of the sources from which
they are receiving data packets. A receiver report (RR) contains information about the
number of packets lost, the highest sequence number received, and a timestamp that can

be used to estimate the round-trip delay betwecn a sender and the receiver.

Security Implementation of RTP Based Application 15

Chapter | Introduction

The first packet in 2 compound RTCP packet has to be a report packet, even if no data

has been sent or received, in which case, an empty receiver report is sent.

All compound RTCP packets must include a source description (SDES) element that
contains the canonical name (CNAME) that identifies the source. Additional information
might be included in the source description, such as the source's name, email address,
phone number, geographic location, application name, or a message describing the

current state of the source [6].

When a source is nno longer active, it sends an RTCP BYE packet. The BYE notice can

include the reason that the source is leaving the session.

RTCP APP packets provide a mechanism for applications to define and send custom

information via the RTP control port.

1.5.5 RTP Applications

RTP applications are often divided into those that need to be able to receive data from the
network (RTP Clients) and those that need to be able to transmit data across the network
(RTP Servers). Some applications do both, for example, conferencing applications

capture and transmit data at the same time that they're receiving data from the network.

1.5.6 Network Organization

RTP is delivered as unicast, multicast or as both, As most RTP uses have more than two
participants, it is preferable that RTP is transported on multicast capable network.
Translator can be located in unicast network boundary, where it will replicate packets for

unicast participants of RTP sessions [8).

Multiple RTP streams can be down-mixed and combined for slow links. Application
level firewall might be bypassed by using two translators with a tunnel though the

firewall between them. As mixers are allowed to change Synchronization Source

Security Implementation of RTP Based Application 16

Chapter [Introduction

Identifiers, it is essential that R TP network is loop free {note that underlying n etwork

may contain as many loops as it is desired).

A simple RTP network is presented below. If ATM network would run IP over AALS, no
translator would be necessary. As ATM has quality of service, it might be preferable to
run RTP without IP.

fletwork
with slow
connection

IP mulcicast
network

Transiator Translator

Figure 1.7: RTP Network Organization

Security Implementation of RTP Based Application 17

Chapter { Introduction

1.6 Desired Security Features

The following are some of the desired security features in a real-time environment.

1.6.1 Confidentiality

RTP is commonly used for broadcasting content through network. On such use
confidentiality is not necessarily even desired. As RTP is also commonly used for video
conferences and for shared white board applications, need for confidentiality should be
obvious — for example when RTP based video conference is used for telemedicine,
confidentiality is of paramount importance. Even on confidential telemedicine session not
all information should be confidential sender and receiver reports containing network

performance data can help third party mixers and translators to optimize network usage.

1.6.2 Integrity and Authenticity

Even on public broadcast it is useful to be able to verify both the integrity and the ongin
of the transmission. This information helps the receiver to assess the trustworthiness of
the received information. If anyone could modify CNN news broadcast, which many
consider reliable information source, results could be potentially disastrous. It should be
noted that the possibility for anonymous broadcast is also important, even though not
always politically acceptable feature in some countries. It is desired that no participant of

the same session could masquerade as some other.

1.6.3 Performance Considerations of Security Features

As RTP is often used for transferring huge amounts of time critical data {e.g. video) 1t is
essential that all security features are implemented with minimal delay and jitter. It

should be evident that with huge transmission rates even a small timing overhead easily

Security Implementation of RTP Based Application 18

Chapter | Introduction

amounts to huge loss of bandwidth. Although encryption, especially using DES, causes
overhead, it is minor compared to CPU requirements of modem compression algorithms
for voice and video. Such a small overhead is hardly noticeable, especially as connection
speeds available for general population are much lower than the encryption speed of

modern desktop computer.

1.7 Security Features Provided by RTP

The following are the security features provided by RTP.

1.7.1 Confidentiality

The basic RTP protocol, as defined in RFC 3550, provides flexible facilities for
encrypting RTP packets. This facility allows splitting packets to encrypted and
unencrypted parts, and therefore facilitates the need for unencrypted performance
statistics. The default algorithm, which all encryption capable RTP clients must support,
is DES-CBC.

Algorithm usage is same as defined in RFC 1423. To prevent known plain text attacks,
RTCP headers are obfuscated with 32 bit random prefix. CBC mode has random access
property for decryption, which guarantees that the lost packet only prevents decoding of
itself and the following packet. This feature is vital, as time sensitive data can usually not

be resent [7].

RTP allows the use of any other encryption algorithm, but the algorithm must be
negotiated on non RTP means. An application profile may specify additional methods for
encrypting the payload. It is suggested by RTP standards that when multicast supporting
encryption is offered by the network layer, it should be used instead. In terms on IPsec
RTP encryption corresponds using only ESP headers, within pre-established security

association.

Security Implementation of RTP Based Application 19

Chapter 1 Introduction

1.7.2 Authentication and Integrity

RTP standard does not specify any authentication, except that implicit authentication is
assumed if encryption key is known. RTP assumes that the lower layers of the network
will handle more sophisticated authentication. Integrity is verified by sanity checking
decrypted headers. Sanity checks verify the known field values, such as protocol version

number, packet length and payload type [5).

RTP limits issuing certain commands, like bye (which is used for session termination) to
the peers which command affects. This is enforced by checking the SSRC identifiers of
the packets containing the commands. This command authentication mechanism only

works, if authenticity of RTP stream is ensured by other means.

1.7.3 Key management

The only key management feature of RTP is specified in RFC 1890, which specifies a
MDS5 based method for deriving the encryption key from the password. RTP assumes that
more c omplex k ey management is either handled by other protocols or by application
specific profiles. On conference type applications (video, andio or even only a shared
white board) key management is handled by combination of SIP, SAP and SDP
protocols. These protocols feature strong authentication and key exchange features, and
provide standardized way to establish enerypted conferences using RTP as the transport

protocol.

1.8 Introduction to SRTP

On occasions, when intense security is needed, RTP applications may take advantage of
the fact that new encryption algorithms can be specified dynamically for a session that
must be negotiated on non-RTP means, and can consider other, more conventional,
protection means for which profiles can be defined. An application profile may specify

additional methods for encrypting the payload. A profile defines extensions or

Security Implementation of RTP Based Application 20

Chapter | Introduction

modifications to RTP that are specific to a particular class of applications, services and

algorithis that may be offered [5).

Secure Real-time Transport Protocol (SRTP) is an RTP profile that is meant to provide
security services like confidentiality, message authentication and replay attack protection
to RTP and RTCP traffic. It defines set of default cryptographic transforms and allows
introducing new transforms. These transforms assets low computational costs and support
bandwidth economy by limiting packet expansion. SRTP has ability to attain high
through put by preserving the header compression techniques efficiently. SRTP, like RTP

is suitable for both unicast and multicast environment.

1.8.1 Security in SRTP

Conceptually SRTP is considered as bump in the protocol stack implementation, which
resides between the application layer and the transport layer. SRTP intercept RTP packet
and forwards an equivalent SRTP packet to the receiver, and which incepts SRTP packet

and passes an equivalent an RTP packet up the stack to the application layer.

SRTP applies both encryption and authentication to the equivalent RTP packet. The
encryption portion contains the payload and padding while authentication portion
contains the equivalent RTP packet. For this purpose two optional fields are added to the
RTP packet, a MK field and an authentication tag. MKI is an identifier that is used by
key management protocol to identify the master key that derives session keys. The
authentication tag is used to carry authentication data. The authentication portion
provides protection against replay attacks. A packet is replayed when it is stored by an
adversary and then re-injected into the network. SRTP receiver keeps a replay list which

keeps record of all the received packets and is authenticated {9].

Secure RTCP follows the definition of Secure RTP. SRTCP adds three mandatory new
fields (the SRTCP index, an "encrypt-flag", and the authentication tag) and one optional
field (the MKI) to the RTCP packet definition. The three mandatory fields MUST be
appended to an RTCP packet in order to form an equivalent SRTCP packet.

Security Implementation of RTP Based Application 21

Chapter 1 Introduction

The preceding discussion is a brief description of RTP security. The security services like
confidentiality, integrity and authentication, key management and any architecture level

security service provided will be discussed in subsequent related topics.

1.9 JMF

The Java™ Media Framework (JMF) is an Application Programming Interface (API) for
incorporating time-based media into Java applications and applets. This guide is intended
for Java programmers who want to incorporate time-based media into their applications
and for technology providers who are interested in extending JMF and providing JMF

plug-ins 1o support additional media types and perform custom processing and rendering.

1.9.1 JMF Architecture

Java™ Media Framework (JMF) provides a unified architecture and messaging protocol
for managing the acquisition, processing, and delivery of time-based media data. JMF is
designed to support most standard media content types, such as AIFF, AU, AVI, GSM,
MIDI, MPEG, QuickTime, RMF, and WAV.

By exploiting the advantages of the Java platform, JMF delivers the promise of "Write
Once, Run Anywhere” to developers who want to use media such as audio and video in
their Java programs. JMF provides a common cross-platform Java API for accessing
underlying media frameworks. JMF implementations can leverage the capabilities of the
underlying operating systemn, while developers can easily create portable Java programs

that feature time-based media by writing to the JMF APL

With JMF, you can easily create applets and applications that present, capture,
manipulate, and store time-based media. The framework enables advanced developers
and technology providers to perform custom processing of raw media data and
seamlessly extend JMF to support additional content types and formats, optimize

handling of supported formats, and create new presentation mechanisms.

Security Implementation of RTP Based Application 22

Chapter | Introduction

1.9.2 High-Level Architecture

Devices such as tape decks and VCRs provide a familiar model for recording, processing,
and presenting time-based media. When you play a movie using a VCR, you provide the
media stream to the VCR by inserting a video tape. The VCR reads and interprets the

data on the tape and sends appropriate signals to your television and speakers.

Vvideo camera\
{Capture Device) _

Video tape
(Data Source}

Quiput Devices
{Destination)

Figure 1.8: Recording, Processing, and Presenting Time-Based Media

JMF uses this same basic model. A data source encapsulates the media stream much like
a video tape and a player provides processing and control mechanisms similar to a VCR.
Playing and capturing audio and video with JMF requires the appropriate input and

output devices such as microphones, cameras, speakers, and monitors.

Data sources and players are integral parts of JMF's high-level API for managing the
capture, presentation, and processing of time-based media. JMF also provides a lower-
level API that supports the seamless integration of custom processing components and
extensions. This layering provides Java developers with an easy-to-use API for
incorporating time-based media into Java programs while maintaining the flexibility and
extensibility required to support advanced media applications and future media

technologies [10).

Security Implementation of RTP Based Application 23

Chapter 1 Introduction

Java Applications. Applets, Beans

. ‘JMF ?resentabon and Processmg API-,

Figurel.9: High-level JMF Architecture

1.9.3 Understanding the JMF-RTP API

JMF enables the playback and transmission of RTP streams through the APls defined in
the following packages:

1. javax.media.rtp
2. javax.media.rtp.event
3. javax.media.rtp.rtcp

IMF can be extended to support additional RTP-specific formats and dynamic payloads
through the standard JMF plug-in mechanism.,

Note: JMF-compliant implementations are not required to support the RTP APIs in
javax.media.ritp, javax.mediartp.event, and javax.mediartpatcp. The reference
implemcntations of JMF provided by Sun Microsystems, Inc. and IBM Corporation fully
support these APIs,

You can play incoming RTP streams locally, save them to a file, or both.

Security Implementation of RTP Based Application 24

7t gy

Chapter { Introduction

bk

Serionfinayer §

Figure 1.10: RTP Reception

For example, the RTP APIs could be used to implement a telephony application that

answers calls and records messages like an answering machine.

Similarly, you can use the RTP APIs to transmit captured or stored media streams across
the network. Outgoing RTP streams can originate from a file or a capture device. The

outgoing streams can also be played locally, saved to a file, or both.

Db Sourre Yo Sezion Mamager Fome (Pletacth

Ha

Figure 1.11: RTP Transmission

For example, you could implement a video conferencing application that captures live
audio and video and transmits it across the network using a separate RTP session for each

media type.

Security Implementation of RTP Based Application 25

Chapter [Introduction

Similarly, you might record a conference for later broadcast or use a prerecorded audio

stream as "hold music” in a conferencing application.

1.10 Working with Real-Time Media Streams

To send or receive a live media broadcast or conduct a video conference over the Internet
or Intranet, you need 1o be able to receive and transmit media streams in real-time. This
chapter introduces streaming media concepts and describes the Real-time Transport

Protocol JMF uses for receiving and transmitting media streams across the network.

1.10.1 Streaming Media

When media content is streamed to a client in real-time, the client can begin to play the
stream without having to wait for the complete stream to download. In fact, the stream
might not even have a predefined duration, downloading the entire stream before playing
it would be impossible. The term streaming media is often used to refer to both this
technique of delivering content o;rer the network in real-time and the real-time media

content that's delivered.

Streaming media is everywhere you look on the web, live radio and television broadcasts
and webcast concerts and events are being offered by a rapidly growing number of web
portals, and it's now possible to conduct audio and video conferences over the Internet.
By enabling the delivery of dynamic, interactive media content across the network,

streaming media is changing the way people communicate and access information.

1.10.2 Protocols for Streaming Media

Transmitting media data across the net in real-time requires high network throughput. It's

easier to compensate for lost data than to compensate for large delays in receiving the

Security Implementation of RTP Based Application 26

Chapter 1 Introduction

data. This is very different from accessing static data such as a file, where the most
important thing is that all of the data arrive at its destination. Consequently, the protocols

used for static data don't work well for streaming media.

The HTTP and F TP protocols are based on the Transmission Control Protocol (TCP).
TCP is a transport-layer protocol! designed for reliable data communications on low-
bandwidth, high-error-rate networks. When a packet is lost or corrupted, it's
retransmitted. The overhead of guaranteeing reliable data transfer slows the overall

transmission rate.

For this reason, underlying protocols other than TCP are typically used for streaming
media. One that's commonly used is the User Datagram Protocol (UDP). UDP is an
unreliable protocol; it does not guarantee that each packet will reach its destination.
There's also no guarantee that the packets will arrive in the order that they were sent. The
receiver has to be able to compensate for lost data, duplicate packets, and packets that

arrive out of order.

Like TCP, UDP is a general transport-layer protocol, a lower-level networking protocol
on top of which more application-specific protocols are built. The internet standard for
transporting real-time data such as audio and video is the Real-Time Transport Protocol

(RTP).

1.10.3 Transmitting Media Streams across the Network
RTP server applications transmit captured or stored media streams across the network.

For example, in a c onferencing application, a media stream might be captured from a
video camera and sent out on one or more RTP sessions. The media streams might be
encoded in multiple media formats and sent out on several RTP sessions for conferencing
with heterogeneous receivers. Multiparty conferencing could be implemented without IP

multicast by using multiple unicast RTP sessions.

Security Implementation of RTP Based Application 27

Chapter 1 Introduction

1.10.4 Receiving Media Streams from the Network

Being able to receive RTP streams is necessary for several types of applications. For

example:

1. Conferencing applications need to be able to receive a media stream from an RTP

session and render it on the console.

2. A telephone answering machine application needs to be able to receive a media

stream from an RTP session and store it in a file.

3. An application that records a conversation or conference must be able to receive a
media stream from an RTP session and both render it on the console and store it

in a file.

Security Implementation of RTP Based Application 28

CHAPTER 2

Problem Domain
&
System Analysis

Chapter 2 Problem Domain & System Analysis

2. Existing System

In the existing real time applications security has been a main issue. The RFC
recommended algorithms (DES, 3DES & AES) have not been implemented as yet in any
application altogether. The existing applications either focused on enhancing voice or

video quality or their data rate (Transmission Speed).

2.1 Proposed System

In the new proposed system a user will be able to send encrypted real time data over the
underlying network that uses UDP protocol with multicast capabilities. The sender can
select an algorithm from a list of RFC recommended security algorithms to send data.
Only the receiver will be able to decrypt the incoming RTP stream since he knows the
encryption algorithm that has been applied. The new system should be able to work on

any operating system.

2.1.1 Project Definition

In the secure video conferencing system TranSecure many users can participate at the
same time. They can send and receive data at the same time. Only one person at a time

will be able to speak and all others will have to listen until the active user is deactivated.

The speaking/active person will be able to watch all other participants while his address.
So that he could notice the facial expressions and moments in reaction of his speech from
the participant’s side. Proposed software will overcome the drawback of existing systems
as it can become platform independent and faster depending upon the LAN

specifications.

Security Implementation of RTP Based Application 29

Chapter 2 Problem Domain & System Analysis

2.1.2 Project Scope

The new application can be used by any organization for a secure real time

communication session. The end users of TranSecure can be
1. Hospitals for Telemedicine sessions
2. Military departments
3. Universitics for delivering distant education
4. Businessmen for communication with clients
5. 01l and gas companies to have a close look on their sites
6. News agencies for delivering live info from field
7. Shopping malls for keeping an eye on shoppers
8. From remote location for interviews of applicants and many more

Any organization can use the software for the purposes stated above. So it can be easily
commercialized. Many organizations are looking to transfer their old manual
conferencing system to the latest video conferencing systems. These days’ markets are

rapidly getting developed in this new field.

2.1.3 Efficiency

Duc to the usage of latest CODECS data will travel on LAN in an efficient way.
Although the data rate will be a little slow when a security algorithm is applied but

alternately you have to pay something for the a secure RTP session.

Security Implementation of RTP Based Application 30

Chapter 2 Problem Domain & System Analysis

2.1.4 Reliability

As the application is developed using state of the art technology and algorithms it will be
highly reliable for a lot of reasons the foremost being the security aspect. The sender can
be sure that his data has been sent to the receiver after receiving the receiver report (RR).
He can check the transmission status by checking the receiver report. As the development

environment is JAV A the users can be sure of a secure RTP session.

2.1.5 User Friendliness

The interface is made in such a way to provide the user-friendly environment. Even a lay
man would be able to use the software easily. The interfaces are very easily built up
keeping in mind all the possibilities and according to the proposed approaches of

software engineering.

2.1.6 Future Enhancements

The sofiware can be implemented interdepartmentally by performing nominal
modifications. The reason for this easy conversion is that it will use TCP/IP protocol
suite and object oriented programming in JAVA. So the small modules can be reused to

build up a more complex and valuable software.

2.1.7 Advantages of the Proposed System
Proposed system has the following advantages:
1. Multiple users can use this application at the same time.
2. No eavesdropper can decrypt the RTP stream if it is encrypted.

3. Its works on any type of networks.

Security Implementation of RTP Based Application 3!

Chapter 2 Problem Domain & System Analysis

4, This application emulates the real time conference.
5. Every one can use the application with great ease.

6. Any user can participate in the conference even if he does not have the

audio or video equipment.
7. The application can be commercialized easily.

8. The application has the ability to be enhanced and new features like file

sharing can be easily added.
9. Application uses very less bandwidth.

10. The application uses the latest CODECS for audio and video coding and
decoding.

11. No extra rearrangements are required for the application to work on LAN. It

works on the existing scenario.

2.2 System Analysis

In this process the problem is analyzed to see that how it can meet requirements. The
system is divided into different components and their functionality is decided. The

interaction of the system components with one another and the actors are analyzed.

2.2.1 Object

Objects are the entities of our system. In design phase, these will be the classes of our
system. All nouns in our problem statements will be candidates for objects. There is a
criterion for selecting the objects. The candidates that fulfill the following requirements

will be the objects of our system.

Security Implementation of RTP Based Application 32

Chapter 2 Problem Domain & System Analysis

Following are the candidate objects
1. Window media player
2. Sender
3. Receiver
4. Client
5. Encryption Algorithms
6. Interface
7. Local Area Network (LAN)
8. Terminals
9. Camera
10. Headphone
11. Microphone

12. Real Time Transport Protocol

2.2.2 Criteria for Objects

How do we know whether a potential object is a good c andidate for use in an Object

Oriented system? The following is the criteria for selecting an object.

2.22.1 Retained Information

The specific object will be useful during analysis only if information about it must be

remembered so that system can function.

Security Implementation of RTP Based Application 33

Chapter 2 Problem Domain & Svstem Analysis

2.2.2.2 Needed Services

The specific object must have a set of identifiable operations that can change the value of

its attributes in some way.

2.22.3 Multiple Attribute

During requirement analysis focus should be on important information i.e.; a single
attribute may infect be useful during design but it is probably better represented as an

attribute of another object during the analysis activity.

2.2.2.4 Common Attributes

A set of attributes can be defined for the specific objects and these attributes applied to all

occurrences of objects.

2,2.2.5 Common Operations

A set of operations can be defined for the specific objects and these operations applied to

all occurrences of objects.

2.2.2.6 Essential Requirements

Extemal entities that appear in the problem space and produce or consume information
that i s e ssential to the operation o f any solution for the s ystem will almost always be

defined as objects in the requirement modal.

Security Implementation of RTP Based Application 34

Chapter 2 Problem Domain & System Analysis

2.2.3 Selected Objects

Following objects were fulfilling the above stated selection criteria for objects. These

objects will become our classes.

1. Sender
2. Receiver
3. Client

4. Encryption Algorithms

5. Interface

6. Local Area Network (LAN)
7. Terminals

8. Camera

9. Headphone

10. Microphone

11. Real Time Transport Protocol

2.3 Domain Analysis

Domain analysis is an important step during the analysis phase. In technical terms it can
be defined as, “domain analysis is the identification analysis and specification of
common requirements from a specification of common requirements from a specific

application domain”.

In simple words it is “The identification, analysis and specification of common teusable
capabilities with in a specific application domain, in terms of common objects, classes,

sub assemblies and frame work™.

Security Implementation of RTP Bused Application 35

Chapter 2 Problem Domain & System Analysis

There are following steps in domain analysis.
1. Domain to be investigated
2. Categorization of objects

Now implementation of these steps will be as follows.

2.3.1 Domain to be Investigated

During this step there are two subcategories.

2.3.1.1 Interested Domain

Our interested domain is to provide opportunity to users, sitting apart from each other on
their own computer systems connected to the same LAN, to interact with each other as in

real time conference. Users may also send text messages and documents to one another.

2.3.1.2 Object Oriented Items

Object oriented items include specifications, code for existing object oriented

application classes. Our object oriented items are as follows.

Media Classes
1. javax.media.*
2. javax.media.rtp.*

3. javax.media.rtp.event.*

Security Implementation of RTP Based Application 36

Chapter 2 Problem Domain & System Analysis

4. javax.media.rtp.ricp.*

w

. javax,media.protocol.*

=

. javax.media.protocol.DataSource

~Jl

. javax.media.format. AudioFormat

o0

. javax.media.format.VideoFormat

=4

. javax.media.Format
10. javax.media.format. FormatChangeEvent
11.javax.media.control. BufferControl

These packages provide the classes and interfaces to send, receive and control the

media related features.

Networking Classes
1. java.net.*
2. java.o.*

These packages provide the classes and interfaces to provide communication

between the server and the clients.

Encryption Classes
1. javax.crypto.*
2. javax.cypto.spec.*

3. javax.security.*

Security Implementation of RTP Based Application 37

Chapter 2

Problem Domain & Svstem Analysis

These packages provide the encryption algorithms to secure the payload

transmitted on the underlying protocol.

Interface Classes
1. java.awt.*
2. javax.swing.*

3. javax.swing.border.*

These packages provide the classes and interfaces to create the application to

human interfaces.

2.3.1.3 Non Object Oriented Items

Non object oriented items include the hardware and software. Following items are used

as non object oriented item in our project.
1. Microsoft Word
2. Microsofi Paint

3. Web Cam

Security Implementation of RTP Based Application

38

CHAPTER 3
SYSTEM DESIGN

Chapter 3 System Design

3. System Design

In design mode we give shape to our components for implementation. Different classes
are created. These classes represent the functions and attributes to be used in
implementation. The objects in object oriented analysis will be the classes for our system.
In structure analysis these are the entities of our system. We shell discuss these classes
and their functionality in detail here. The class diagram will show the variable and

operation of that class and relationship among different classes
3.1 Important Classes
Following classes are used in TranSecure

1. Main

2. Config

3. Trapsmitter

4, Receiver

5. Server

6. Client

Main

This ¢ lass ¢ reates the graphic user interface o f the application. It adds and removes a

target from the receiver or senders list. It also creates socket.

Config

This class stores the local and remote addresses in a log file so that the data can be

reloaded once the application is restarted.

Security Implementation of RTP Based Application 39

B R

Chapler 3 System Design

Transmitter

Transmitter is a main class of our system. Through this very class we are able to transmit
the video over the L AN. [ts basic functionalityis to capture the video from the video
source and compels it to be transmitted over the LAN. Here in this class first of all we
take the list of all the attached devices from the system through the built in function of
the Java’s API JMF. Then we set the format for the transmission e.g. MPEG, AV! and
many more formats are there. Thirdly we create 2 RTP SESSION MANAGER which is
very important step in our class. This manager provides us the facility to transmit the data
from a real time capture source like in this case is camera. Through this process we

transmit the video of a user.

Receiver

This is another very important class of our system. Here the receiver class receives a
stream from its interface named LISTENER. Then it creates a data source of the received
stream being received by the transmitter class of the transmitting system. This class alse
needs to make a RTP SESSION MANAGER, because it has to work with the real time
media. Here this class modifics the stream by specifying the CODECS for the video and
settles down the related issues. Then this class performs a last step and that is to create a

video player from data source, to make the video visible to the receiving user.

Server

This class creates a connection with the client, and instructs the client class to use a
specified security algorithm that has been used at the transmitting end, This class alse
encrypts the data using the security algorithm selected by the user.

Security Implementation of RTP Based Application 40

Chapter 3 Svstem Desien

Client

This class receives the data from the server class. It decrypts the data and passes the

decrypted data to the application for display.

3.2 Use Cases

Usc cases are the tasks that are performed by a user of the system, The user, known as an
actor in UML invokes use cases. In coming sections we will discus the use cases of our

system and also extended use case formats.

3.2.1 Actors of the System

An Actor is any thing that communicates with the system or the product that is extemal to
the system usually an actor represents the roles that people are devices play as the system

operatar,
The following are the actors of our system:
1. Sender

Sender will initiate the RTP session. He will enter the address of the receiver and will
start transmission. If the sender wants to encrypt data he can do so by selecting a security

algorithm from the application.
2. Receiver

Receiver will receive the data from sender. If the data is encrypted he can decrypt it.

Security Implementation of RTP Based Application 4]

Chapter 3 System Design

3.2.2 Domains in our System.
There are two domains in our system.
1. Transmitter
2. Receiver

Therefore the use cases will be divided into two sub domains.

3.2.3 Use cases of Transmitter

1. Add Target

2. Remove Target

3. Select Cipher

4. Select Data Source
5. Start Transmission
6. Stop Transmission

7. Maintain Log File

Add Target

The transmitter will add the IP address and the Data Port of the receiver to add a target. It
can add multiple targets if wanted. Every receiver will have its own session with the

sender.

Security Implementation of RTP Based Application 42

Chapter 3 System Design

Remove Target

If t he t ransmitter wants to stop a receiver from receiving RTP stream itcandoso by

removing the receiver from the target list.

Select Cipher

If the transmitter wants to send encrypted data it can do it by selecting a cipher type from

the menu. The three available ciphers are
1. Data Encryption Standard (DES)
2. Trple Data Encryption Standard (Triple DES)
3. Advanced Encryption Standard (AES)

The default option is Null cipher that leaves data unencrypted.

Select Data Source

Transmitter can select the data source. If it wants to send live data from the camera it ¢can
do so by selecting the video camera as the data source. If it wanis to send data from a file

it can also do this by giving the location of the media file.

Start Transmission

Transmitter can stari sending data by starting the transmission process. After the

transmission has heen started all the receivers will start receiving data.

Security Implementation of RTP Based Application 43

Chapter 3 System Desigrt

Stop Transmission

If the transmitter wants to stop the data transmission it can do so by stopping the
transmission process. Afier the transmission has been stopped no onc will be receiving

data anymore.

Maintain Log File

A log of target client is stored in a file “Xmit.dat” that reloads the list of receivers in the

application when restarted.

3.2.4 Use Cases of Receiver
1. Add Target
2. Remove Target
3. Start Receiver
4. Decrypt Data
5. Stop Receiver

6. Maintain Log File

Add Target

The receiver will add the IP address and the Data Port of the sender to add a target. Ii can
add multiple targets if he wants. Every sender will have its own session with receiver for

which a separate player window will open.

Security Implementation of RTP Based Application 44

Chaprer 3 System Design

Remove Target:

If the receiver wants to stop receiving data from the sender it can do it by removing the

sender from the target list.

Start Receiver

Receiver can start receiving data by starting the reception process. It can receive from

multiple targets if wanted. Every sender will have its own session with the receiver.

Decrypt Data

If the transmitier wants to send encrypied data it can do it by selecting a cipher type from

the available ciphers 1.€.
1. Data Encryption Standard (DES)
2. Triple Data Encryption Standard (Triple DES)
3. Advanced Encryption Standard (AES)

The receiver will have a separate socket opened that will provide the name of cipher that

is encrypting data and accordingly will decrypt data.

Stop Receiver

If the receiver wants to stop receiving data it can do so by stopping the transmission

process. After the transmission has been stopped it will be receiving no data anymore.

Security Implementation of RTP Based Application 45

Chapter 3 System Desion

Maintain Log File

A list of senders is stored in a f{ile “rx.dat” that reloads the list of senders in the

application when restarted.

3.2.5 Use Cases in Extended Format
In extended use case we have to provide the detail about the use case.

3.2.6 Extended Use Cases of Transmitter

1. Add target

Name: Add Target

Actor: User

Pre condition: No Precondition

Post condition: Add receiver to log file

Description: The transmitter will add the IP address and the Data Port of the receiver to
add a target. It can add multiple targets if wanted. Every receiver will have its own

session with the sender.
Type: Primary, Essential.

Actor Action System Response

1. The user adds IP address, remote data | 3. System adds target to list. If the address
port and local data port already exists, system would not add target

2. The vser clicks add target button. 4. System adds target to log file.

Security Implementation of RTP Based Application 46

Chapter 3 System Desion

2. Remove Target

Name: Remove Target

Actors: User

Pre condition: Target must be in the log file

Post condition: Target is removed from the log file

Description: If the transmitter wants to stop a receiver from receiving RTP stream it can

do 50 by removing the receiver from the target lhist.
Type: Primary, Essential.

Actor Action System Response

1. User clicks the address of a receiver in | 3. System removes the target from the list.

the receivers list.

2. User clicks the remove farget button. 4. Sysiem removes target from the log file.

3. Select Cipher

Name: Select Cipher

Actor: User

Pre condition: Some data must be captured.

Post condition: Data has to be transmitted with encryption.

Description: If the transmitter wants to send encrypted data it can do so by sclecting a

cipher type from the menu. The three available ciphers are
1. Data Encryption Standard (DES)

2. Tnple Data Encryption Standard (Triple DES)

Security Implementation of RTP Based Application 47

Chapter 3 System Design

3. Advanced Encryption Standard (AES)
The default option is Nult cipher that leaves data unencrypted.
Type: Primary, Essential.

Actor Action System Response

1. User will select a cipher type from the | 2. The data will be encrypted using the

ment. selected cipher.

Alternate Course

1. By default NULL cipher is used for encryption. 2. Data will be unencrypted if transmitied.

4. Select Data Source

Name: Select data Source

Actors: User

Prz condition:
1. File must exist
2. Data capture device (Camera) must cxist.
Post condition: Application is capturing data successfully.

Description: Transmitter can select the data source. If it wants to send live data from the
camera it can do so by selecting the video camera as the data source. If it wants to send

data from a file it can also do this by giving the location of the media file.

Type: Primary, Essential

Security Implementation of RTP Based Application 48

Chapter 3 Svstem Design

Actor Action System response

1. User will select data source. 2. Application will start capturing data

from the selected data source.

Alternate Course

1. If no data source is selected. 2. Application will generate an error “Data

source not found”.

5. Start Transmission

Name: Start Transmission

Actors: User

Pre condition: data source and tarpet must have been added.
Post condition: data will be sent to the receiver.

Description: In this use case transmitter can start sending data by stariing the
transmission process. After the transmission has been started all the receivers will start

receiving data.
Type: Primary, Essential

Actor Action System response

1. Transmitter will press the start| 2. Data will be transmitted to the receiver.

transmission button,

Security Implementation of RTP Based Application 49

Chapter 3 Svystem Desion

6. Stop Transmission

Name: Stop Transmission

Actors: User

Pre condition: Transmission has been started.
Post condition: Transmission will be stopped.

Description: In this use casc if the transmitter wants to stop the data transmission it can

do so by stopping the transmission process. After the transmission has been stopped no

ong will be receiving data anymore.
Type: Pnmary, Essential

Actor Action System response

1. Transmitter will press the stop| 2. Data transmission to the receiver will

transmission button. stop.

7. Maintain Log File

Name: Maintain log file

Actors: Transmitter

Pre condition: Any target has been added to the receivers list.
Post condition: Targets address will be added to the log file.

Description: In this use case a log of target clients is stored in a file “Xmit.dat” that

reloads the list of receivers in the application when restarted.

Type: Primary, Essential

Security implementation of RTP Based Appiication 50

Chapter 3 Svstem Design

Actor Action System response

1. User will click the add target button. 2. Receiver data will be added to the log
file.

3.2.7 Extended Use Cases of Receiver
1. Add target

Name: Add target

Actor: User

Pre condition: No Precondition

Post condition: Add sender to log file

Description: The receiver will add the IP address and the Data Port of the sender to add a
target. It can add multiple targets if wanted. Every sender will have its own session with

the receiver.
Type: Primary, Essential.

Actor Action System Response

1. The user adds IP address, remote data | 3. System adds target to list. If the address

port and local data port already exists, system would not add target

2. The user clicks add target button. 4. System adds target to log file,

2. Remove Target

Name: Remove Target

Actors: User

Security Implementation of RTP Based Application 51

Chapter 3 System Design

Pre condition: Target must be in the log file
Post condition: Target is removed from the log file

Description: If the receiver wants to stop a sender from sending RTP stream it can do so

by removing the sender from the target list.
Type: Primary, Essential.

Actor Action System response

1. User clicks the address of a sender in the | 3. System removes the sender from the list.

senders list.

2. User clicks the remove target button. 4. System removes sender from the log file.

3. Start Receiver

Name: Start Receiver

Actors: User

Pre condition: Data source and target must have been added.
Post condition: Data will be recetved from sender.

Description: In this use case receiver can start receiving data by starting the transmission
process. After the transmission has been started ail the senders in the senders list will start

sending data to the receiver.
Type: Primary, Essential

Actor Action System response

1. Receiver will press the start receiver { 2. Data will be received by the receiver.

button.

Security implementation of RTP Based Application 52

Chapter 3 Svstem Design

4. Decrypt Data

Name: Decrypt Data

Actor: Receiver

Pre condition: Data sent by sender is encrypted.

Post condition: Data is decrypted and read by the player.

Description: 1 f the transmitter wants to send encrypted data it can do it by selecting a

cipher type from the available ciphers i.e.
1. Data Encryption Standard (DES)
2. Triple Data Encryption Standard (Triple DES)
3. Advanced Encryption Standard (AES)

The receiver will have a separate socket opened that will provide the name of cipher that

is encrypting data and accordingly will decrypt data.
Type: Primary, Essential.

Actor Action System response

1. User will click the Decrypt Data buston. | 2, The data will be Decrypted using the
cipher whose name will be provided by the

sender.
Alternate Course
1. By default NULL cipher 1s used for 2. Data will not be decrypted if transmitted.

encryption.

Security Implementation of RTP Based Application 53

Chapter 3 Svstem Design

5. Stop Receiver

Name: Stop Receiver

Actors: User

Pre condition: Receiver is receiving data.

Post condition: Data reception will be stopped.

Description: In this use case if the receiver wants to stop receiving the data, it can do so
by s topping the reception process. A fler the receiver has been stopped noone wiil be

receiving data anymore.
Type: Primary, Essential

Actor Action System response

1. User will press the stop receiver button. | 2. Data transmission to the receiver will

stop.

6. Maintain Log File

Name: Maintain log file

Actors: Receiver

Pre condition: Any target has been added to the senders list.
Post condition: Target address wiil be added to the log file.

Description: In this use case a log of target clients is stored in a file “rx.dat” that reloads

the list of senders in the application when restarted.

Type: Primary, Essential

Security Implementation of RTF Based Application 54

Chapter 3 System Design

Actor Action System response

1. User will ¢lick the add target button. 2. Senders data will be added to the log
file.

3.3 Use-Case Diagrams

User diagram 15 the schematic representation of the Use-Case and their interaction with

the actors. Use-Case diagrams for our project are as follows.

Security implementation of RTP Based Application 55

Chapter 3

System Design

User

Fig 3.1:

AN

Add Target

Remove Target

Select Cipher

Select Data Source

Start Transmission

Stop Transmission

Maintain Log File

Use Case Diagram of Transmitter

@\

Transmitter

Security Implementation of RTP Based Application

36

Chapter 3 System Design

Add Target

Remove Target

Start Receiver

Stop Receiver

User Decrypt Data

S

Receive Data

[
j—
D
D
D
= D

Maintain Log File Receiver

Fig 3.2: Use Case Diagram of Receiver

Security Implementation of RTF Based Application 57

Chapter 3 System Design

3.4 Sequence diagrams

Sequence diagram is the diagram or design artifact that represents the sequence of

activities. The following diagrams represent the sequence of activities in TranSecure.

]
"

Target ListUpdate Config

Enter Info

Store Into File

O
>

Invoke Action

h, 4

- o e i e T R e e e e e e

Add target to
List

Show Info

M e e memmmmmmoemme oo e e mmmememam—o—ammce oM.l
e nmmmemmammm e mmafemmmmm e conzazam M ema———— -
PRI SIPIPIIS RPREpRORpIe, P IEpSPI UL

Fig 3.3: Sequence diagram for Add Target Use-Case

Security Implementation of RTP Based Application 58

System Design

config

ListUpdate

Target

Tx

Chapter 3

............................. h,
g
gl&
O
2g,
ME
................... ..Huf..:-...,;n:-.....u.:s..:-u:..-uuu...u-l
L
D
A @
g g
2 ©
= 8=
— =
...............
mM
2
(&
»)
-
o
Elo
s
o 162
v

lll

Fig 3.4: Sequence diagram for Remove Target Use-Case

59

Security Implementation of RTP Based Application

System Design

AVTransmit

EncryptServer

Chapter 3

Tx

Request Encryption

lect Algorithm

r—y

)

]

i

‘

:
Transmit Enerypted Data
]
i
'

i

'

i

'

i
'
i

Fig 3.5: Sequence diagram for Encrypt Data Use-Case

60

Security Implementation of RTP Based Applicatian

Svstem Design

AVTransmit

Target

Tx

Chapter 3

................................... e ISR
g
v
E 5
g g
&7
............................ e S
o &
8 H
-t
..................... s
b

Connect the

Failed to
Client

ll

Fig 3.6: Sequence diagram for Start Transmission Use-Case

6l

Security Implementation of RTP Based Application

System Dexign

AVReceiver

Target

Chapter 3

ll

A
g
]
o =4
[=]
7 O =t
L M -
5} L2~
LTINS 8 =
2 o o
............................ IRRREN S SR
ko
By s
o N =
vl = e
o
] =
} >
................... 7 Sk SR EEERREPETRRERL ot v e R
oy =
| P =]
3 038
]
D
W
bt
3
T .8
v g
e N V..

Failed to Connect the Client

H‘

Failure &
Try Again

Sequence diagram for Start Receiver Use-Case

Fig 3.7

62

Security Implementation of RTP Buased Application

qum Network

Decrypt Data

Chapter 3 System Design
Rx DecryptClient AVReceiver
1 1 [} 1
) 1 L 1
t 1] 1] 1
I 1 [} 1
1] [} 1
1] 1 1
1 [) i 1
1 .] [}]
uest Decryplion i ; :
—" : ' :
[}] r 1
; Request Algorithm ; i ;
[} i 1
: Name From Server > E :
i :] : :
. ' Receive Encrypted . :
. ' Tata o i
t)) | t
t 1) t
r]) +
: : X '
! : ' Receive Data ¢
! ! ‘ Om MNETWOIk !
L) I i r
' 1] r
) 1) r
]) 1 !
: ' : send Data froln
, ' : etwor
; ' '
~ Fail ' ' '
H ' Pass Encrypted Data '
: '
1 L)
]]
])
])
L} 1
: :
1]
L] 1

F'y

isplay medi

Fig 3.8: Sequence diagram for Decrypt Data Use-Case

Security Implementation of RTP Based Application

63

Chapter 3

System Design
3.5 Object Diagrams
Server
ListUndater
w T]
RTCPListModel N TargeiLisiModel
RYCPViewer oo s
™ |
StateListener Y
Config N ;
AVTransmitter RN
'''' *v~-w Target

Fig 3.9: Object diagram of Transmitter

Security Implementation of RTP Based Application

Svstem Design

Chapter 3
Client -
ListUpdater
h Ly .
RTCPListModel ~, TargetLisiMode)
RTCPViewer R) !
\‘\\” \!‘; E .. :l

StateListenar

AVReceiver

Fig 3.10;: Object Diagram of Receiver

Security Implementation of RTP Based Application

CHAPTER 4

DEVELOPMENT

Chapter 4

Development

4. Class Description

Class description is used to represent the overview of the class, its variables and methods

as shown in the following tables:

Table 4.1: Deseription of class TranSecureServ

TranSecureServ

This is the main class on transmitter side that creates GUI and calls other

relevant classes. This class also takes input from the user i.e. the target IP and ports,

media input device and cipher used to encrypt the data.

Variables Remarks

avTrasmitter Object of class myTransmitter that is used to perform
the transmission function.

ListModel Stores the list of receivers.

cipher_selected

String variable that stores the name of selected cipher.

Config Object of class Config

Sock Datagram socket that transmits to receiver the name of
selected cipher

Targets Vector variable that stores the list of target receivers in
memory.

Methods Remarks

main{) Main function that initiates the program.

actionPerformed(} Actionlistener that execuies instructions when any
event has occurred.

addTargetToList() Adds user input target to the list that stores target
values in memory.

removeNonBaseTargets() Validates if the user input is really a valid receiver,
removes the input from the list if it is not.

mouseClicked() Initiated if 2 mouse event is called.

Security Implementation of RTP Based Application 66

Chapter 4 Development

Table 4.2: Description of class AVTransmit3

AVTransmit3:

This is the main class that interacts with JMF. This class uses java
media framework library its classes to create the transmitter. This class also sets the
media codecs to be used and the format of the media.

Variahles Remarks

locator Instance of class javax.media.medialocator that

converts hardware device address and passes to media

Processor,
ipAddress [P value input by user as target receiver.
portBase Port value input by user as target receiver.
local_data_port Local port that transmits data.
processor Object o fj avax.media.processor ¢ lass. A processoris

used to explicitly process or store the captured media

data.

dataQutput Object of class javax.media.protocol.DataSource. A
DataSource is constructed using media locator that
gives the address of the other device that helps to

initiate the capture process.

rtpMgrs Object of class javax.mediartp.RTPManager. A
manager is used to coordinate an RTP session. It also
keeps track of session participants and streams that are

being transmitted.

Methods Remarks

start() Starts the transmission. Returns null if the transmission
started successfully.

createProcessor() Creates a processor for specified media locator. It

creates data source for that specific locator and creates

a processor to handie the input media locator. Wait for

Security Implementation of RTF Based Application 67

Chapter ¢ Development
it to configure. It also gets the tracks from the
processor and sets media format and video size, It also
gets the output data source of the processor.

createTransmitter() Creates RTP session to transmit the output of the |
processor to the user input IP address and port. This
method uses RTPManager API to create sessions for
each media track of the processor.

stop() Stops the transmission.

set/IPEGQuality() Sets the encoding quality of the default codec.

waitForState() Initiates instructions for specific processor states.

controllerUpdate() Method implemented by inner class StateListener used

to notify if a controller event occur.

Table 4.3: Description of class RTPSocketAdapter

RTPSocketAdapter:

It is an implementation of RTPConnector for UDP based socket.

Variable Comments

dataSock Datagram Socket that transmit RTP data in a
session

ctriSock Datagram Socket that transmit RTCP data in a
session

Addr InetAddress that will receive RTP data

Port Port that will recetve data

cipher_selected

The name of the cipher selected to encrypt data

dataInStrm

Object of inner class SockInputStream that is an
inner class to implement an PushSourceStream
for UDP based Sacket the .object store the input

stream to receive RTP data.

Security Implementation of RTP Based Application 68

Chapter 4 Development

dataOutStrm Object of inner class SockOutpuStream that is an
inner class to implement an QutputDataStream for
UDP based Socket. The object store the output
stream to send RTP data

ctrlinStrm Object of inner class SockInputStream that is an
inner class to implement an PushSourceStream
for UDP based Socket the .object store the input
stream to receive RTCP data.

ctrlOutStrm Object of inner class SockQutpuStream that is an
inner ¢lass to implement an QutputDataStream for
UDP based Socket. The object store the output
stream to send RTCP data

Methods Comments

getDatalnputStream() Returns an input stream to receive the RTP data

getDataQutputStream() Returns an output stream to send the RTP data

getControllnputStreamy() Returns an input stream to receive the RTCP dafa

getControlOutputStream() Returns an output stream to send the RTCP data

close() Close all the RTP, RTCP streams

setReceiveBufferSize()

Set the receive buffer size of the RTP data

channel

getReceiveBufferSize()

Get the receive buffer size set on the RTP data

channel
setSendBufferSize() Set the send buffer size of the RTP data channel
getSendBufferSize() Get the send buffer size set on the RTP data

channel

getRTCPBandwidthFraction()

Return the RTCP bandwidth fraction

getRTCPSenderBandwidthFraction()

Return the RTCP sender bandwidth fraction

Security Implementation of RTP Based Application 69

Chapter 4

Development

Table 4.4: Description of class SocketOutputStream::RTPSocketAdapter

SocketOutputStream:

It

is an

QutputDataStream based on UDP based socket.

inner class of RTPSocketAdapter and implements

L

Variable Comments]
sock Datagram Socket that transmit RTP data in a
session

addr InetAddress that will receive RTP data
port Port that will receive data
cipher_sclected The name of the cipher selected to encrypt data
Methods Comments
write) Write UDP packets on the underlying network

Table 4.5: Description of class SocketInputStream::RTPSocketAdapter

SocketinputStream:

It is an inner class of RTPSocketAdapter and implements

PullSourceStream based on UDP based socket.

Yariable Comments

sock Datagram Socket that transmit RTP data in a
session

addr InetAddress that will receive RTP data

port Port that will receive data

cipher_selected

The name of the cipher selected to encrypt data

sth

It is Object of SourceTransferHandler that needs

to be implemented if implementing

Security Implementation of RTP Based Application 70

Chapter 4 Development
PullSourceStream

Methods Comments

read () Read UDP packets from the underlying network
and passes to the RTP Manger

nun() Loop and notify the transfer handler of new data

Table 4.6: Description of class Config

Config:

Class that write the values stored in the vector containing list of receivers in a file

“Xmit.dat” when the application window is closed. This class also retrieves the stored

values from the file when the application initiates.

Variable

Comments

local data_port

String variable that store the local port number

that transmits the data

media_locator

Media locator passed to the class

target Vector containing list of receivers
Methods Comments

addTarget() Add any new receiver added to its vector
read() Read the reccivers from file

write () Write the receiver list in file

Table 4.7: Description of class Target

Target:

Class that sets the ip and port and referenced from different classes

Variable Comments
ip ip passed to the class
port Port passed to the class

Security Implementation af RTP Based Application 71

Chapter 4 Development

localport contain local port number that transmit data
Methods Comments
Target() Constructor of the class set the variable

Table 4.8: Description of class CipherSelect

CipherSelect:

Class that initiate the cipher and sets key for the corresponding selected cipher

name

Variable Comments

c Cipher class object

cipher_selected name of cipher selected by user

K Object of java.security.Key

Kg Object of javax.crypto.KeyGenerator

Methods Coemments

CipherSelect() Constructor of the class set the name of selected
cipher

Init () Initialize the cipher according to the selected
cipher

Table 4.9: Description of class AVReceive3

AVReceived:

This is the main class that interacts with JMF. This class uses java
media framework library and uses its classes to create the receiver. This class also sets
the media codecs to be used and the format of the media. The class also receives RTP

transmission using the RTP connector.

Variables Comments

mgrs Object of class javax.media.rtp.RTPManager. A

manager is used to coordinate an RTP session. It also

Security Implementation of RTP Based Application 72

Chapter 4 Development
keeps track of session participants and streams that are
being transmitted.

playerWindows GUI class for the player. A player is used to display the
received media. It processes an input stream of media
data and renders it at a precise time. A DataSource is
used to deliver the input media-stream to the Player.

sessions Stream variable that stores the session 1P and port
address given as input by the user.

Methods Comments

initialize() This method creates instance of RTPmanagers and
playerwindows. Opens RTP session. Initializes
RTPManager with RTPSocketAdapter

controllerUpdate() Implementation of controllerListener that listens for

player related events.

update(ReceiveStreamEvent)

Implements ReceiveStreamListener that listens for the

media stream related events.

update{SessionEvent) Implements SessionEvent that listens for the session
related events.

close() Closes the players and the session managers.

find() Checks and initiates whether a player is created for

received stream.

Security Implementation of RTP Based Application

73

Chapter 4 Development

4.1 Implementation

In this chapter we shall discuss the implementation of the system. We shall discuss the
technologies used to develop the system and the benefits these technologies. These
technologies have greater scope on other related technologies. In section 4.2 we shall

discuss JAVA and in the next section i.e. 4.3 JMF.

4.2 JAVA

Java as a language needs no introduction. It’s never been out of the news since it was
released. The Java2 platform is a fast maturing way to program portable, object oriented,
secure, and internct ready application. Over the last two years, Java’s support for
application development has expanded enormously. The Java APIs in question have very
broad industry support, having been developed by java soft in wide consultation with
expert partners. In consequence the Java revolution of portable code and open APIs is
married with an evolution in existing products. The wide ability of products to run java
application on the server has made this a fast moving and very competitive market, but
essential compatibility through specification, standard APIs and class libranes has held.

This makes server side Java a very exciting area.

Although Java has an enormous number of products that support solving different types

of problems. Some of those technologies are listed below.

Java Media Framework (JMF)

Java Naming and Directory Interface (JNDI)
Java Secure Socket Extension (JSSE)

Java Speech API

Java 3D API

CORBA

Enterprise JavaBeans

N AW

Security Implementation of RTP Based Application 74

Chapter 4 Develonment

8. JavaMail

9. Java Message Service (JMS)

10. Java Servlets

11. Java Advanced Imaging

12. Java Media APls

13. Java Embedded Server Technology

Discussion on all these topics will become very lengthy therefore we wili discuss only
Java M edia F ramework in the c oming section as this is used for d eveloping r eal-time

application for video conferencing.

4.3 Java Media Framework

The Java™ Media Framework (JMF) is an application programming interface (API) for
incorporating time-based media into Java applications and applets. It is intended for fava
programmers who want to incorporate time-based media into their applications and for
technology providers who are interested in extending JMF and providing JMF plug-ins to

support additional media types and perform custom processing and rendering.

The JMF 1.0 API (the Java Media P layer A PI) enabled programmers to develop Java
programs that presented time-based media. The JMF 2.0 API extends the framework to
provide support for capturing and storing media data, controlling the type of processing
that 1s performed during playback, and performing custom processing on media data
streams. In addition, JIMF 2.0 defines a plug-in API that enables advanced developers and
technology providers to more easily customize and extend JMF functionality {10].

The following classes and interfaces are new in JMF:

AudioFormat BitRateControl Buffer

BufferControl BufferTolmage BufferTransferHandler

Security Implememiation of RTP Based Application 75

Chapter 4 Development
CaptureDevicé CaptureDevicelnfo CaptureDeviceManager
rEh:vmeabIeDatakS“ource Codec ({ ConfigureCompleteEvent
ConnnectionErrorEvent DataSink DataSinkErrorEvent
DataSinkEvent DataSinkListener Demultiplexer
Effect EndOfStreamEvent FileTypeDescriptor
Format FormatChangeEvent FormatControl
FrameGrabbingControl FramePositioningControl FrameProcessingControl
FrameRateContro} H261Contro! H261Format
H263Control H263Format ImageToBuffer
mdexcholorFormat InputSourceStream KeyFrameControl
ManitorControl MpegAudioControl Multiplexer
;f NoStorageSpaceErrorEvent PacketSizeControl Plugin
| PlugInManager PortControl Processor
ProcessorModel PullBufferDataSource PuliBufferStream
PushBufferDataSource PushBufferStream QualityControl
Renderer RGREormat SlilenceSupprcssionContr
8
gncmWﬁtemontrol Track 7‘ TrackControl
VideoFormat VideoRenderer YUVFormat

Security Implementation of RTP Based Application

76

Chapter 4 Development

In addition, the MediaPlayer Java Bean has been included with the JMF API in
javax.media.bean.playerbean. MediaPlayer can be instantiated directly and used to

present one or more media streams.

Future versions of the JMF API will provide additional functionality and enhancements

while maintaining compatibility with the current APL

4.3.1 Session Manager

In JMF, a SessionManager is used to coordinate an RTP session. The session manager

keeps track of the session participants and the streams that are being transmitted.

The session manager maintains the state of the session as viewed from the local
participant. In effect, a session manager is a local representation of a distributed entity,
the RTP session. The session manager also handles the RTCP control channel, and

supports RTCP for both senders and receivers.

The SessionManager interface defines methods that enable an application to initialize and
start participating in a session, remove individual streams created by the application, and

close the entire session

Security Impiementation of RTP Based Application 77

Chaprer 4 Development

[Med1aEvent |

rﬁ'ﬁvent |

N
_—BeceiweStreamEvmt]
PraN

;___[AcﬁwﬁeceivestrealEvem]

—{ﬁpp11caﬁm£9¢nt]

—-——-——{ InactiveReceivestreamivent)
e} HeaReceiveStraanEvent 1
o] Remot=Pay oadChangeEvent |
- Streanfdappadivent 1
o] TimeoutEvent ' 1
W__!_ngvtm ||

1§ ReceiverfeportEvent |
| { Sender Repor tévent |
bee——— Remot=CollisionEvent |
______.{-SendStreamEvent]

PaN

mmmmd ACTIVESENUSTreamEvent '}
—————1i InacTiveSendStreanEvent |
)
1

[liewSendStresstvent
et LocalPayloadChang efvent

_—.ljes sjonEvent]

] L€ KO TT IS5 IONEVENT - 1
e HewParticipantEvent |

Figure 4.1: Events in JMF

Security Implementation of RTP Based Application 78

Chapter 4 Development

4.4 Code Sample for Transmitting and Receiving Audio and Video of
Client using RTP

Here is the sample code for transmitting and receiving audio and video. They are
Transmitter for video transmission, Receiver for video receiver, AudioReceiver for audio

reception and AudioTransmission for audio transmission.

4.4.1 Classes and Packages for Media Streaming and Media Reception

Following are the packages and classes used for media streaming and reception:

import java.awt.*

import java.io.*

import java.net.InetAddress
import javax.media.*

import javax.media.protocol.*
import javax.media.format.*
import javax.media.control. ¥

import javax.media.rtp.*

e A R R

import javax.media.rtp.ricp.*
10. import com.sun.media.rtp.*
11. import java.util.*

i2. import javax.swing.*
4.4.2 Classes and Packages used for Encryption

Following are the packages and classes used for media encryption:

1. import javax.crypto.*;

2. import javax.security.*;

Security Implementation of RTP Based Application 9

IEE—————

Chapter 4 Development

You can use JMF to capture media data from a capture device such as a microphone or
video camera. Captured media data can be processed and rendered or stored for future

use.
To capture media data, the following tasks are performed:

1. Locate the capture device you want to use by querying the

CaptureDeviceManager.
CaptureDeviceManager cd = new CaptureDeviceManager();

YUVFormat yuvformat = new YUVFormat(),

2. Get a CaptureDevicelnfo object for the device.
dl = cd.getDeviceList(yuvformat);
CaptureDeviceInfo di = (CaptureDevicelnfo)dl.firstElement();

3. You access capture devices through the CaptureDeviceManager. The
CaptureDeviceManager is the central registry for all of the capture devices
available to JMF. You can get a list of the available capture devices by calling the

CaptureDeviceManager.getDeviceList method.

Each device is represented by a CaptureDevicelnfo object. To get the
CaptureDevicelnfo object for a particular device, you call

CaptureDeviceManager. getDevice:
CaptureDevicelnfo

devicelnfo = CaptureDeviceManager.getDevice("deviceName”);

Security Implementation of RTP Based Application 80

Chapter 4 Development

4, Get a Medialocator from the CaptureDevicelnfo object and use it to create a

DataSource.

this.locator = di.getLocator();

5. To capture media data from a particular device, you need to get the device's
Medialocator from its CaptureDevicelnfo object. You can either use this
Medialocator to construct a Player or Processor directly, or use the Medial.ocator
to construct a DataSource that you can use as the input to a Player or Processor.

To initiate the capture process, you start the Player or Processor.
DataSource ds;
DataSource clone;
try {
ds = javax.media.Manager.createDataSource(locator);
} catch (Exception e} {

return "Couldn't create DataSource™;

6. When you use a capture DataSource with a Player, you can only render the
captured media data. To explicitly process or store the capturcd media data, you

need to use a Processor. Create a Player or Processor using the DataSource.
// Create a processor for the specified media locator
/{ and program it to output JPEG/RTP

/f Try to create a processor to handle the input media locator

Security Implementation of RTP Based Application §1

IEEEEE—————

Chapter 4 Development

try {

processor = javax.media. Manager.createProcessor(ds);
processor.addControlierListener(this);

} catch (NoProcessorException npe) {
return "Couldn't create processor”;

} catch (IOException ioe) §

return "1OException creating processor”;

7. Start the Processor to begin the capture process
J/ Create an RTP session to transmit the output of the
// processor to the specified IP address and port no.

result = createTransmitter();

4.4.3 Configuring a Processor

In addition to the Realizing and Prefetching phases that any Player moves through as it
prepares to start, a Processor also goes through a Configuring phase. You call configure

to move an Unrealized Processor into the Configuring state.

While in the Configuring state, a Processor gathers the information it needs to construct

TrackControl objects for each track. When it's finished, it moves into the Configured

Security Implementation of RTF Based Application 82

I

Chapter 4 Development

state and posts a ConfigureCompleteEvent. Once a Processor is Configured, you can set
its output format and TrackControl options. When you're finished specifying the
processing options, you call realize to move the Processor into the Realizing state and

begin the realization process.

Once a Processor is realized, further attempts to modify its processing options are not

guaranteed to work. In most cases, a FormatChangeException will be thrown.
DataSource ds;
DataSource clone;
try {
ds = javax.media.Manager.createDataSource(locator);
} catch (Exception e) {

return "Couldn't create DataSource”;

// Try to create a processor to handle the input media locator
try {
processor = javax.media.Manager.createProcessor(ds);
processor.addControllerListener(this),
} catch (NoProcessorException npe) {
return "Couldn't create processor”;

} catch (IOException ioe€) {

Security Implementation of RTP Based Application 83

Chapter 4 Development

return "IOException creating processor™;

/f Wait for it to configure
boolean result = waitForState(processor, Processor.Configured);
if (result == false)

return "Couldn't configure processor”,

4.44 Retrieving the Processor Output

Once the format of a Processor's track has been set and the Processor has been realized,
the output DataSource of the Processor can be retrieved. You retrieve the output of the
Processor as a DataSource by calling getDataOutput. T he returned D ataSource canbe
either a PushBufferDataSource or a PullBufferDataSource, depending on the source of

the data.

The output DataSource is connected to the SessionManager using the createSendStream

method. The session manager must be initialized before you can create the send stream.

If the DataSource contains multiple SourceStreams, each SourceStream is sent out as a
separate RTP stream, either in the same session or a different session. If the DataSource
contains both audio and video streams, separate RTP sessions must be created for audio
and video. You can also clone the DataSource and send the clones out as different RTP

streams in either the same session or different sessions.

Security Implementation of RTP Based Application 84

Chapter 4 Development

/1 Get the tracks from the processor

TrackControl [] tracks = processor.getTrackControls();

{/ Do we have atleast one track?
if (tracks == null |} tracks.length < 1)

returm "Couldn't find tracks in processor”;

// Set the output content descriptor to RAW_RTP
// This will limit the supported formats reported from
/f Track.getSupportedFormats to only valid RTP formats.
ContentDescriptor cd = new ContentDescriptor(ContentDescriptor. RAW_RTP);
processor.setContentDescriptor(cd),
Format supported[];
Format chosen;
boolean atLeastOneTrack = false;
/{ Program the tracks.
for (int i = 0; i < tracks.length; i++) {
Format format = tracks(i].getFormat();

if (tracks{i].1sEnabled()) {

Security Implementation of RTP Based Application

85

Chapter 4

Development

supported = tracks{i].getSupportedFormats();
/f We've set the output content to the RAW_RTP.
/f So all the supported formats should work with RTP.

/ We'll just pick the first one.

if (supported.length > 0) §{
if {supported[0] instanceof VideoFormat) {
/! For video formats, we should double check the
// sizes since not all formats work in all sizes.
chosen = checkForVideoSizes(tracks[i].getFormat(),
supported{0]);
} else
chosen = supported[0];
tracks{i|.setFormat(chosen);
System.err.printin("Track " + 1 + " is set to transmit as:™);
System.err.println(" " + chosen);
atLeastOneTrack = true;

} else

Security Implementation of RTP Rased Application

86

Chapter 4 Develppment

tracks[i].setEnabled(false);
} else

tracks{i].setEnabled(false);

4.4.5 Creating a RTP Player for Each New Received Stream

To play all of the ReceiveStreams in a session, you need to create a scparate Player for
cach siream. When a new stream is created, the session manager posts a
NewReceiveStreamEvent. Generally, you register as a ReceiveStreamListener and
construct a Player for each new ReceiveStream. To construct the Player, you retrieve the

DataSource from the ReceiveStream and pass it to Manager.createPlayer.
To create a Player for each new receive stream in a session:
1. Setup the RTP session:

e Create a SessionManager. For example, construct an instance of
com.sun.media.rtp. RTPSessionMgr. (RTPSessionMgr is an
implementation of SessionManager provided with the JMF reference
implementation.)

e (all RTPSessionMgr addReceiveStreamListener to register as a listener.

e Initialize the RTP session by calling RTPSessionMgr initSession.

» Start the RTP session by calling RTPSessionMgr startSessio

PushBufferDataSource pbds = (PushBufferDataSource)dataOutput;

PushBufferStream pbss[] = pbds.getStreams();

Security Implementation of RTP Based Application 37

Chapter 4

Development

rtpMgrs = new RTPManager[pbss.length];
localPorts = new int] pbss.length};
SessionAddress localAddr, destAddr;
InetAddress ipAddr;

SendStream sendStream;

int port;

SourceDescription srcDesList{];

for (int 1 = 0; i < pbss.length; i++) {
i for (inti=0;i<1;i+) §

try {

ripMgrs[i] = RTPManager.newInstance(};

port = local_data_port + 2*i;

localPorts(i}= port;

localAddr = new SessionAddress(InetAddress.getLocalHost(),

port);

Security Implementation of RTP Based Application

88

Chapter 4 Development

rtpMgrs[i].initialize(localAddr);
ripMgrs(i].addReceiveStreamListener(this);
ripMers[i].addRemoteListener(this);
for(int k= 0; k < targets.size(}); k++) {
Target target= (Target) targets.elementAt(k),
int targetPort=new Integer(target.port).intValue();

addTarget(localPortsf i}, tpMgrsf 1], target.ip, targetPort + 2*i);

)

sendStream = rtpMgrs[i].createSendStream{dataQutput, i);
sendStream.start();

} catch (Exception e) {
e.printStack Trace();
return e.getMessage();

}

}

Security Implementation of RTP Based Appiication 29

Chapiter 4 Development

4.4.6 Implementing Controller Listener

To implement the ControllerListener interface, you need to:
1. Implement the ControllerListener interface in a class.

2. Register that class as a listener by calling addControllerListener on

the Controller that you want to receive events from.
When a Controller posts an event, it calls controlletUpdate on each registered listener.
Typically, controllerUpdate is implemented as a series of if-else statements.

This filters out the events that you are not interested in. If you have registered as a
listener with multiple Controllers, you also need to determine which Controller posted the
event. ControllerEvents come “"stamped" with a reference to their source that you can

access by calling getSource.

When you receive events from a Controller, you might need to do some additional
processing to ensure that the Controller is in the proper state before calling a control
method. For example, before c alling any of the methods that are restricted to Stopped
Players, you should check the Player object’s target state by calling getTargetState. If
start has been called, the Player is considered to be in the Started state, though it might be

posting transition events as it prepares the Player to present media.

Some t ypes o f C ontrollerEvents ¢ ontain additional state i nformation. F or e xample, the
StartEvent and StopEvent classes each define a method that allows you to retrieve the

media time at which the event occurred
public void controllerUpdate(ControllerEvent ce) {
System.out.printin(ce);

if{ ce instanceof DurationUpdateEvent) {

Security Implementation of RTP Based Application 90

Chapter 4 Development

Time duration= ((DurationUpdateEvent) ce).getDuration();

System.out.println("duration: " + duration.getSeconds());
} else if{ ce instanceof EndOfMediaEvent) {
System.out.println("END OF MEDIA - looping=" + looping);
if{ looping) {
processor.setMediaTime(new Time(0));

processor.start();

4.4.7 Displaying Media Interface Components

A Player generally has two types of user interface components, a visual component and a
control-panel component. Some Player implementations can display additional

components, such as volume controls and download-progress bars.

Security fmplementation of RTP Based Application 91

Chapter 4 Development

4.4.8 Displaying a Visual Component

A visual component is where a Player presents the visual representation of its media, if it
has one. Even an audio Player might have a visual component, such as a waveform

display or animated character.
To display a Player object's visual component, you:
1. Get the component by calling getVisualComponent.
2. Add it to the applet's presentation space or application window.

You can access the Player object's display properties, such asits x and y coordinates,
through its visual component. The layout of the Player components is controlled through

the AWT layout manager.

4.4.9 Displaying a Control Panel Component

A Player often has a control panel that allows the user to control the media presentation.
For example, a Player might be associated with a set of buttons.to start, stop, and pause

the media stream, and with a slider control to adjust the volume.
Every Player provides a default contrel panel. To display the default control panel:
1. Call getControlPanelComponent to get the Component.

2. Add the returned Component to your applet's presentation space or

application window.

If you prefer to define a custom user-interface, you can implement custom GUI
Components and call the appropriate Player methods in response to user actions. If you
register the custom components as ControllerListeners, you can also update them when

the state of the Player changes.

Security Implementation of RTP Based Application 92

CHAPTER 5

TESTING

Chapier 5 Testing

3. Testing

System testing is an essential step for the development of a reliable and error-free system.
Testing is the process of executing a program with the explicit intention of finding errors
1.e., making the program fail and test cases are devised with the purpose in mind. A test
case is a set of data items that the system processes as normal input. A successful test is

the one that finds an error.

5.1 Testing Strategies
The basic strategies that were used for testing were following:

1. Specification testing
Black box testing
White box testing
Regression testing
Acceptance testing
Assertion testing

Unit testing

® N D R W N

System testing

Each of the testing schemes is discussed below.
5.1.1 Specification Testing

Even if the code testing is performed exclusively, it doesn’t provide grantee against the
program failure. Code testing doesn’t answer whether the code meets the agreed
specification document. It doesn’t also determine whether all aspects of the design are

implemented.

Therefore, examining specifications stating what program should do and how it should

behave under various conditions performs specification testing. Test cases are developed

Security Implementation of RTP Based Application 93

Chapter 5 Testing

to test the range of values expected including both valid and invalid data. It helps in
finding discrepancies between the system and its original objective. During this testing

phases, all efforts were made to remove programming bugs and minor design faults.

5.1.2 Black Box Testing

In Black Box only the functionality was tested without any regard to the code written. If
the functionality, which was expected from a component, is provided then black box

testing is completed.

5.1.3 White Box Testing

In White Box testing internal code written in every component was tested and it was
checked that the code written is efficient in utilizing resources of the system like

memory, bandwidth, or the utilization of input output.

5.1.4 Regression Testing

In regression testing the software was testing against the boundary condition. Various
input fields were tested against abnormal values and it was tested that the software does

not behave abnormally at any time.

Security Implementation of RTP Based Application M4

Chapter S Testing

5.1.5 Acceptance Testing

In acceptance testing the sofiware was tested for its completeness that it is ready.
Normally the quality assurance department performs the acceptance testing that the

software is ready and can be exported.

5.1.6 Assertion Testing

In assertion testing the software is tested against the possible assertions. Assertions are
used to check the program and various locations that whether the state of the program at

a particular point is the same as expected or not.

5.1.7 Unit Testing

In unit testing we checked that all the individual components were working properly.
Before integration o f the entire c omponents unit testing is e ssential because it gives a
confidence that all the components individually are working fine and ready to be

integrated with other ones.

5.1.8 System Testing

When all the units were working properly and unit testing was performed then comes the
time for system testing where we checked all the integrated components as a whole and

looked for possible discrepancies, which could have arisen after the integration.

Security Implementation of RTP Based Application 25

Chapter 5 Testing

5.2 System Evaluation

The objectives of the system evaluation are to determine whether the desired objectives
have been accomplished or not. Determining the merits and demerits of the proposed
system over the existing system is also covered in the system evaluation. This is
concerned with the detailed study of the developed system, from implementation point of

view. At the end, some suggestions for the improvements of the system are coded.

5.3 Testing TranSecure

Testing process of TranSecure started as different modules were completed. Qur project
is mainly divided in to three parts on the basis of technology. The interfaces were tested
as they were built. As two interfaces were directly related to human input so unit testing
was applied to them besides Regression testing. These interfaces were tested with
different data sets and the syntax errors were removed. Then some validation checks were
introduced in to the code for other interfaces as well. By applying the extensive tests to
the video and audio transmission and receiving mechanism we tried to achieve the best

ever quality.

Upon successful testing of individual modules the application was tested as a whole.
Syntax changes were made where ever required. Then finally all the links in the
application were updated and views of all the users were changed to new requirements. In
the end all the checks for debugging purpose were removed and the application’s

interface was once again updated and minor changes were made as well.

Security Implementation of RTP Based Application 96

Chapter 5 Testing

5.4 Test Results

The efficiency of different algorithms was noticed for different test files of different sizes

File Sizes:
e I0KB
e 100KB
« IMB
Table 5.1: Test Table for 10 KB Test File
Null DES 3DES AES
Run 1 91 120 90 92
Run 2 91 101 100 97
pzunz, loo 100 100 93
verage 90.66 107 06.66 94
Time Graph for 10KB Test File
€ 150 1=
(&
& 100 —e—Null
E 50 + —=DES
g oL | . | —2— 3DES
- Run1 Run2 Run3 Average |——AES
Test Run

Figure 5.1; Time Graph for 10 KB test file

Security Implementation of RTP Based Application 97

Chapter 5 Testing

Table 5.2: Test Table for 100 KB Test File

Null |DES 3DES AES
Run 1 403 521 461 411
Run 2 1411 460 480 431
Run 3 407 471 490 430
Average 407 484 77 424

Time Graph for 100KB Test File
< 550
o 490 15— —e—Null
2 460
‘e 430 —a—DES
< 400
e 370 —— 3DES
= Run1 Run2 Run3 Average |—*—AES

Test Run

Figure 5.2: Time Graph for 100 KB test file

Security Implementation of RTP Based Application 28

Testing

Chapter 5
Table 5.3; Test Table for 1 MB Test File
Null ES 3DES AES
un 1 390 1352 302 791
Run 2 490 1022 801 771
Run 3 440 1081 752 751
FAverage 440 1151.667 785 771
Time Graph for 1MB Test File
£ 1500
g 1250
» 1000 —e— Null
£ 790 —a—DES
£ 500 foosraad
£ 250 1— . —a—3DES
= Run1 Run2 Run3 Awerage |—>—AES
Test Run

Figure 5.3: Time Graph for 1 MB test file

Security Implementation of RTP Based Application

99

Chapter 5 Testing
Table 5.4: Comparison Table of different Algorithms
Null IoEs 3DES AES
10KB 90.66 107 196.66 4
100KB 407 484 477 424
1MB 440 1151.67 785 771
Comparison Graph for diffrent
Algorithms
1250
—e— Nuill
. —=— DES
'E —a— S3DES
E —x— AES
F 0 5 ook - | - .:_
10KB 100KB 1MB
File Size
Figure 5.4: Comparison Graph for Different Algorithms
Security Implemeniation of RTP Based Application 100

CHAPTER 6

USER MANUAL

Chapter 6

User Manual

6. Introduction

TranSecure has been designed keeping in view user’s interaction and ease in use. All

interfaces are simple and easy to use. This user manual facilitates the user to understand

different forms and interfaces. The use of forms and different options are described in

details in this manual.

6.1 User Manual for Transmitter

User manual provide relevant information for usage of this software.

6.1.1 Add Receiving Client

H % TranSecure Yranst
g T '

1 b22a— 192.168.0.2:2224

I " —=| 7 paddress:’ [192168.02

| " baaPport:, 2224

I “Local Data Port:.

Lt bt it st

:K"::;ﬁm‘:wmmzwmu
- e =S i fre'v
is
o

e ot WL e A R - R T o r——

| Media Locator: :!-—fw.fm

Start *I_[?nsmissimi ‘

B —
Y rupmarrerrerras

—

TS OUCe el e et

Figure 6.1: Add Receiving client

Security Implementation of RTP Based Application

101

Chuapter 6

User Marual

The transmitting module adds target clients to its list. To add a target receiver, the IP

address and port of the receiving terminal along with the local port that is transmitting

data should be inserted and then the “Add Target” button be pressed. A target receiver

will be added to the list of receivers as our application supports the multicast

fransmission.

The string 2224 ---> 192.168.0.2:2224 tells that the local port 2224 is transmitting

payload to target client 192.168.0.2 port 2224.

A log of the target client list is stored in a file “Xmit.dat” that reloads the list in the

program when restarted.

6.1.2 Remove Receiving Client

“tf§ .
-

2224 .>'192.168.0.2:2224

G 5

s Fa
- ¥
i f

= H

=2

k-

e
S

B : #
1P Mdless.w l1 32,168, 02

: ” *Dataport. [222::

MediaLocator: fwaro

P R e ;
o et

j . StartTransmission

Add Target

Fig 6.2: Remove R

eceiving Client

Security Implementation of RTP Based Application

192

Chapter 6

User Manual

The transmitting module removes target clients from its list. To remove a target receiver,

an address must be selected and the “Remove Target” is pressed. When the button is

clicked it removes the selected address. If any address is not selected, the button

“Remove Target” returns nothing and no address is removed.

The removed address will also be removed not only from the target list but also for the

log file “Xmit.dat”.

The status of the application afier removing the target address is shown in the following

figure,

\ : B _

il " 1P Address:; [192.168.0.2]
%+ patafort: (2224 I
';i___i.ogﬁqihéfé}ﬁggﬁhzzat |}
| —

! i eﬁaloc%to;z!@arjm

1N &

By

i‘"r\

i

Figure 6.3: After pressing the “Remove Target”, this form will appear

Security Implementation of RTP Based Application

103

Chapter 6 User Manual

6.1.3 The Media Locator

¥ & TranSecure Transmitter R

- -
% r—]‘argets ~ e LS e _ T Al

P hodress: (19216802 |
Dataport: [2224 1
Local Data Port: [2224__ 1

g

|- ada Target ||, RemaveTarget: |- !

Tt

—~ ; 2%;‘ g%g P
. I

N
|

" Start Transmission | =c ¢ T, T o T =)

e — o B i oy

B

Fig 6.4: Media Locator

The Media Locator describes the location of data source. For example, in our case the
viw://Q the data source is a camera attached to the USB port and live streaming is being
done. For any recorded media, file:/C:\medial.dat would transmit the file medial.dat

located on path C:\.

The media stream will test the payload and make as many sessions for each stream. For
example, if any file has both audio and video, the each stream will have separate session

on separate ports with the receiver.

Security Implementation of RTP Based Application 104

User Manual

Chapter 6

6.1.4 Encrypting Payload

 [2224 —> 192.968.0.2:2224 N —
] (P'address: [192.168.0.2
DataPort: [2224
{LocalData port: (2224

.| addTarget |
:QE}&OWE&'_M' TR "‘L;"“’”M ““”_ “ ™
Media Locator: {viw0 7 |' Encrypting Ciptiers: |Nul
. . Start Transmission
| - e - 2.

Fig 6.5: Encrypting Payload

The application provides support for the three encryption algorithms that are proposed by
the RFC 3350 which is RFC for Real-time Transport protocol. The three algorithms DES,
3DES and AES are the standard algorithms that can encrypt the payload on the

underlying protocol.

Security Implementation of RTP Based Application 105

Chapter 6

User Manual

6.1.5 Start Transmission

? & TranSecure Transmitter n—‘ﬁ
f; rTargets: = = =
11 2224 > 192.168.0.22224 - ,
i 1P Address:]19215302 |
1 © DataPost: [2224 F

Local Data Port: [2224

. S

g e

o e

nudrafg‘m [F

o P y ———

E) 'ﬂiﬁT_Tréhsmisshﬁ*' = M &

Figure 6.6: Start Transmission

After the destination addresses are added to the list, the encryption cipher is selected, the

system is ready to transmit the payload across the network to the listed receivers.

The system will capture data from the device or from the media file whose address is

provided. The media stream will test the payload and make as many sessions for each

stream. For example, if any file has both audio and video, the each stream will have

separate session on separate ports with the receiver.

Security Implementation of RTP Based Application

106

Chapter 6

User Manual

6.1.6 Stop Transmitter

£ TransSecure Transmitter

TAfgets s

| [2224 > 192.168.0,2:2224 C o
| P Address; [182.168.02 l

Data port: 722 i
Local Data Port: (2224 G

e

| iSource === e 2 S Y
f o 2 * T .- LR s
+| Media Locator:: w40 } Enc;Mjngg,pﬁ"ef% Nl v
: =) - F S P T
{ 7 S o s 1 2 . H
£ - Stop-Transmission: S :w
| » Lo o : e Lt o T

Figure 6.7: Stop Transmission

After the successful transmission of the data is started, the application let the user to stop

the transmission. The transmission to all the receivers will be stopped and no data will be
transmitted any further.

Security Implementation of RTP Based Application 107

Chapier 6 User Manual

6.2 User Manual for Receiver

User manual provide relevant information for usage of this software.

6.2.1 Add Target Sender

& TranSecure Recéive

; ﬁrargeﬁms s - — —
L ~ Sender IP: [182168.0.1 L
 Sender Port:. [2224 }.
I Local Port: [2224 f1
: { P b) ;‘Hgmw »gw%i P :..-"';—}
A £ ;o
M ,

3 = o P |- DQCW Data: E E

Figure 6.8: Add Target Sender

The recetving module adds senders to its list. To add a target sender, the IP address and
port of the transmitting terminal along with the local port that is receiving data should be
inserted and then the “Ada Target” button be pressed. A target transmitter will be added
to the list of transmitters as our application supports the multicast reception. If more than

one sender is added to the list, each sender will have a session of its own.

The string 2224 <--- 192.168.0.1:2224 tells that the local port 2224 is receiving payload
from target client 192.168.0.1 port 2224.

A log of the target transmitter list is stored in a file “Xmit.dat” that reloads the list in the

program when restarted.

Security Implementation of RTP Based Application 108

Chapter 6 User Manual

6.2.2 Remove Target Sender

1{% TranSecure Receiver Sl
ffa;ggt‘sA hic - B L o B T

|| pza<im2demoazeon T) e
1 Sender IP;- [192.168.0.1 F
| - Sénder Port; 2224 J)
;E . ,,‘V, B P R YT :’ ’
| ‘Local Port: {2224 E
st Taget || Fomows Tarwet] |

Figure 6.9: Remove Target Sender

The receiver module removes target sender from its list. To remove a target sender, an
address must be selected and the “Remove Target” is pressed. When the bufton is clicked
it removes the sclected address. If any address is not selected, the button “Remove
Target” returns nothing and no address is removed. The removed address will also be
removed not only from the target list but also for the Jog file “mx.dat”. The status of the

application after removing the target address is shown in the following figure.

l = Trrﬁ Rec'eiif

' E,‘l?irgets’.“"' e . AR S b e “

11 Sender1p: [192.168.0.1 11

il Sender Port: [2224

E Local Port: :{2224]
Li : Fndcf Targét;

& [Decrymbata || start Recewer: |

; e e R S s

Figure 6.10: Remove Target

Security Implementation of RTP Based Application 109

Chapter 6

User Manual

6.2.3 Decrypt Data

1% rranSecure Receiver,

i

ggztgl'érﬁg‘ﬁs;;;; i i SRR

Sender IP: [192.168.0.1

! ‘Sender Poit: [2224

LocalPoit: 2224

GIgET e

‘gudjg;g?éi

o=

.;&

5;,.;
o
¥

Figure 6.11: Decrypt Data

The application provides support for the three encryption algorithms that are proposed by
the RFC 3350 which is RFC for Real-time Transport protocol. The three algorithms DES,

3DES and AES are the standard algorithms that can encrypt the payload on the

underlying protocol.

When the button “Decrypt Data” is pressed a new socket connection is established and

the algorithm name is requested and decryption will be done accordingly.

Security Implementation of RTP Based Application

110

Chapter 6 User Manual

6.2.4 Start Receiver

.{;fzzzu_wiwannzzn — o

1l Sender iP: {192.168.0.1

Sender Port: 12224

! i (Loéraihp'u_rt: |-223; . —

: I AddTarget | Remove Yarget |

i o - : J
| pecyptpata ||
i B

Figure 6.12: Start Receiver

After the source addresses are added to the list, the encryption cipher is requested, the

system is ready to receive the payload across the network from the listed senders.

The system will receive data from the transmitter whose address is listed. The media
stream will test the payload and make as many sessions for each stream. For example, if
any file has both audio and video, the each stream will have separate session on separate

ports with the receiver.

Security Implementation of RTP Based Application 11

Chapter 6 User Manual

6.2.5 Stop Receiver

| & Transecure Receiver

~Targeiss~ i e e ot e
I .,
! i

2224 <. 192.168.0.1:2224 — A
Sender IP:; [192.168.01 |

: Sender Port: {2224

AR

Locai Port: [2224 _

o

H
i 5
v o 5
i R —— R e T R R -0 =
I
b

Decyptbata || -Sto

Figure 6.13: Stop Receiver

After the successful reception of the data, the application let the user to stop the
transmission. The transmission from the sender will be stopped and no data will be

received any further.

Security Implementation of RTP Based Application 112

Appendices

Appendix A: Glossary

Appendix B: References

Appendices References & Glossary

Appendix A: Glossary

AALS ATM Adaptation Layer 5. An ATM sub layer for computer networks.

AH Authentication Header, and IPsec header that authenticates by cryptographic
means datagram’s origin and verifies it’s integrity.

ATM Asynchronous Transfer Mode. A common cell based network technology.

CBC Cipher Block Chaining. Encryption mode which hides reoccurring patterns from
encrypted stream.

DES Data Encryption Standard. Robust cipher which is currently considered somewhat
weak due to it’s small key size.

ESP Encrypted Security Payload, and IPsec header that indicates that datagram is
encrypied.

IPsec Network level encryption and authentication service for IP networks. IPsec is not
widely used, but it is expected to gain popularity in near future.

IPX Internetwork Packet Exchange. A legacy network protocol by Novel.

Mixer RTP device that changes synchronization source identifiers.

RTP Real-time transport Protocol.

RTCP RTP Control Protocol.

RTSP Real-time Streaming Protocol

SAP Session Announcement Protocol.

SDP Session Description Protocol.

SIP Session Initiation Protocol.

SNMP Simple Network Management Protocol

SSRC Synchronization source. An unique 32 bit identifier associated with single RTP
packet stream originator. SSRC is independent of transport address.

Security Implementation of RTP Based Application

Appendices References & Glossary

Appendix B: References

1.

10.
11.

12.

"Security Services for Multimedia Conferencing”, Stubblebine, S.16th
National Computer Security Conference,(Baltimore, Maryland), pp. 391--395,
September 1993,

NIST, "Advanced Encryption Standard (AES)", FIPS PUB 197,

hittp://www.nist.gov/aes/

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C.John Wiley and Sons, Inc., New York, NY, USA, second edition,
1996.

Hellman, M. E., "A cryptanalytic time-memory trade-off”', IEEE Transactions
on Information Theory, July 1980

RFC 3711 The Secure Real-time Transport Protocol (SRTP) M. Baugher, D.
MeGrew, M. Naslund, E. Carrara, K. Norrman.

March 2004.

Ville Hallivouri , “Real-time Transport Protocol Security” Tik-110.501
Seminar on Network Security HUT TML 2000

RFC 3550 RTP: A Transport Protocol for Real-Time Applications

H. Schulzrinne, S. Casner, R. Fredenick, V. Jacobson. July 2003.

(Obsoletes RFC1889)

"Vaice-over-I1P-over-wireless', Svanbro, K., Wiorek, J. and B. Olin, Proc.
PIMRC 2000, London, Sept. 2000.

RFC 3551, "RTP Profile for Audio and Video Conferences with Minimal
Control", Schulzrinne, H. and S. Casner, July 2003.

W, java.sun.com

Merlin Hughes, Java Network Programming, Manning Publications Co., 2001,
2" edition.

Deitel & Deitel, Java How To Program, Prentice Hall, 2002, 4" edition

13. java.sun.com\products\java-media\jmf\2.1.1\guide

Sun Micro System’s official JIMF Programmers® guide

Security Implementation of RTP Based Application

R

o

- ‘ [F——

INFORMATION TECHMNOLOGY JOURNAL
A Quarterly Publication of ANSinet e

Saad Ralique 04-Aug-2004
Department of Computer Sciences, Faculty of Applied

Sciences, International Islamic University, 1stamabad,

Pakistan

Subject: Galley pracf of Article No. 171-PAT

?
Dear Saad Rafique,

We hape you will receive this letter with good health.
Please find enclosed herewith galley proof of above mentioned manuscript for final checking. Please point out the
corrections clearly on the manuscript and alsa pravide the typed corrections on a separate sheet also. Your quick

response will help us to accommaodate your article in the coming issue.

Accarding to our record printing cost is still laying pending. 1t is therefore, requested to please send printing cost with
the checked galley proaf.

ANSinet cordially invites to please visit the Journal's wehsite http://www.ansiner.net
Waiting for your quick response.

Acgads

#

Muhammad imran Pasha
Account Manager

Information Technology Joumal 3 (). cc cc, 2004
ISSN 1682-6027 ’

€'2004 Asian Network for Scientific Information

17— P57

Analysis of Real-time Transport Protocol Security

Junaid Aslam, Saad Rafique and S. Tauseef-ur-Rehman
Department of Computer Sciences, Faculty of Applied Sciences,
s International Islamic University, Islamabad, Pakistan

Abstract: This study describes RTP and its security mlated features. The emphasis is on the ¢ffect and
efficiency of the cryptographic and authentication algorithms recommended by RTP and its profiles. For
Judging efficiency of the recommend algorithms a java based implementation was developed and a comparison
between them was discribed in this ‘study. The study also describes in brief the security features that are
available when RTP is used along with higher level protocols like SIP, SAP, SDP and H.323.

Key words;

[ntroduction to real-time transport protocol (RTP):
Real-time Transport Protocol is an application level
protocol that is intended to transmit real-time data such as
audio and video. RTP is used for multi-media sessions ltke
business conferences and telemedicine sessions. These
sessions support both the unicast and multicast sessions
provided the underlying nerwork is multicast capable. Tt
facilitates netvork transport functions bur does not
guarantee tinely delivery of packet.

RTP is an application level protocol that provides
application level framing and is integrated into application
processing rather being implemented as a separate
protocol stack.

RTP consist of two parts RTP and RTCP, where, RTP is
responsible for providing media transmission, while RTCP
provides the feedback infdrmation on transmission

quality.

Introduction to RTP Profiles: RTP is never intendedto be
a completc protocol but as a framework for building
applieation protocols'! and thus in contrary to other
protocols, it is usually implemented by each application
according to its requirements for which profiles are
defined. A profile detines extensions or modifications to
RTP that are specific to a class of applications, services
and algorithms that may be offered.-

Secure real-time transport protecol (RTP): The sccurity
features provided by RTP may not fulfill the needs cf
applications that need extensive sccurity. Such
application can consider the use of secure real-time
transport protoccl (SRTP)F. SRTP is a RTP profile that is
incant to provide more conventional security services that
may be offered. 1t defines the set of additional

cryptographic algorithms and authentication algorithm
and allows introducing new ones,

RTP prafile for audio and vidco conferences with minimal
controls: This profile™ describes how audio and vidao
data may be carried within RTP and describes the usage
of fields lefi unspecified in RTP. This profile provides a
framework for new profiles that may be defined. The SRTP
profile is an extension to this profile since ali aspeets of
this profile may appiy with additton of SRTP security
ofeatures.

Security consideration: Swdies have shown that users
may be more sensitive 10 privacy concerns with zudio and
video communication than thev have been with more
traditiona! forms of nerwork communications*. RTP relies
on services provided by lower layver protocol for most of
its security requirements. However. some methods are
described for authentication and some algorithms are
specified for attaining confidenuality bv RTP or its
profiles.

Confidentiality: RTP sessions like business confercnces
and telemedicine sessions do require confidentiality.
Confidentiality means that only the intended receiver can
decode the received packet; for others, the packet
contains no logical information. Confidenuality of the
content is attained by encryptior. RTP and its profile
have recommended few algorithms that may be used for
encrypting RTP payload.

DES: Data cncryption standard {DES) is the default
crypiographic algorithm for RTP applications. The mode
uwsed 15 DES-CBC. The DES-CBC mode was chosen

Corresponding Author: Soad Rafiq. Department of Cemputer Scicnees, Faculty of Applied Sciences,
International Isiamic University, Islamabad, Pakistan E-mailisaadrafique 2 hotmail com

i‘(

Injorm. Technol, 1., 3(): cc cc, 2004

because it has shown to be easy and practical to use in
experimental audio and video communication. The CBC.

mode has the advantage of having the random access

property for decryption which guarantees that any lost

packet could only prevent decoding of itself and the

following packets of that specific block'*. The remaining

transmission is not affected by this loss.

DES is good choice as the overhead caused by it is
hardly noticeable compared to the CPU requirements of
modern compression algorithm of voice and video. Also,
it is a fast to execute algorithm that is good for real time
data. But DES has been found to be easily broken with
specialized hardware'®. Also, the DES is mainly designed
for hardware implementation. It is difficult to implement
efficiently on roftware and therefore, not an optimal
choice for huge amount of time sensitive data.

Triple DES: Since DES has been easily broken, the usage
of a stronger encrypting algorithm is recommended. The
leading candidate for a replacement to DES is triple DES,
Triple DES is a three level construct using DES at each
level. Unfortunatety the triple DES is much slower and
takes a lot of processing time since it is encrypted three
times over. Also the block size of triple DES is not bigger
than DES, the 64 bit block size has security implications of
its own. Triple DES fails to address the problems of °
manipulating individual bits of the following packets if an
amacker manages to get a packet.

AES: RTP proftle SRTP recommends AES"™ with counter
mode (CM) and -8 mode. The -8 mode. is used for
wireless transmission. AES overcomes the flaws of
individual bit manipulation, introduced by CBC mode
because it has the property that the encryption and
decryption of one packet does not depends on preceding
packets. The security of CM has been proven by Bellare®!,
Their analysis shows the security of CM can be berer
than that of CBC.

AES would be a good choice because it has z larger
block size of 128 bits. AES offers larger encryption key.
The key size can vary from 128,196 and 256 bit and can be
used according to user requirements. In addition 1o
increased security that comes with larger key sizes the
AES can encrypt data much faster than triple DES, due to
the rcason that AES has a lot of inherent parallelism in
implementation making it easy to urlize processor
resources cfficiently.

Efficiency comparison of recommended encryption
algorithm: A Java based implementation of real time
audio and video iransmission “TranSecurc” was
developed to pravide the encrypted transmission of real

time data. The data Was encrypied using the

recommended algorithms (Fig. 1) and the efficiency was
noted for transmitting 1, 383 KB test file using a 1.GHz P-
1V machine over a 100 Mbps fast Ethemet,

Authentication: Authentication means guarantee of
originator and of electronic transmission. Tt is useful to
verify the authentication of the receiver to assess the
trustwarthiness. RTP does not specify any amhentication
except that implicit authentication is assumed if
encryption is present. However, its profiles specify some
authentication methods.

MD3: This RTP profile!” specifies hashing algorithm MD3
and describes a method that retrieves authentication key
from the password that may be used for authentication™
The massage digest MD3 hash algorithm is considered ta
be as strong as 128 bit hash code so the difficulty of
finding a message with a given digest is of the order 2
operations.

Secure hash algorithm: The profile SRTP™ recommends
taat each SRTP stream should be protected by SHA-1.
The default session authentication key-length is [60-bits
while the defanlt authentication tag length shall be 80 bits.
SRTP recommends that it should not be used without
message authentication because the . predefined
encryption algorithms does not provide any message
authentication™!. The SRTP allows smail authentication
tags of 32 bits for 3G networks where under certain link
technologies, even few additional bytes could result in
significant result ‘of efficiency"™. The security provided
by 32 bit tag is limited and is allowed for restricted set of
applications.

Comparison of MD5 and SHA-1: 160-bit SHA- is 32 bit
longer than 128-bit MDS3, thus if neither algorithms
contain any structural fiaws that are svulnerable to
cryptanalytic attack, then SHA-1 is a stronger algorithm,

The SHA tnvolves more steps {80 vs 64) and must
process 160 bit buffer compared to 128 bit buffer of MD5.
Thus SHA should execute about 25 times slower than
MDS on same hardware.

A comparison of both the authentication tags in the
Java based implementation is given in Fig. 2.

Security provided by underlying protocels; RTP itself
relies either on underlying protocols for security purposes
or the higher level protocols that are implemented on RTP
framework, define its own security features that may be
used, Below here we will discuss the protocols and the
security that can be provided by them when used
alongwith RTP,

Sy e

i

Inform. Technol. J, 3(}: cc cc, 2004

E

Tinw
{in millis econds)

0 Null DES-CBC 3IDES-CBC AES-CM
Alzorithms

-
Fig. I: Comparison of time taken by recommended

" algorithms
5120
S0
3
=100 /
E
£ 90
2 804— —
= MD § SHA-1

Authentiction algorithms

Fig. 2: Comparison of recommended authentication
algornthms

1PSec: 1PSec”* is considered to be responsible for
providing security features, as being the underlying
protocol of RTP. Tt provides services for confidentiality
and for authenticarton it uses its authentication headsr.
1PSec is a comprehensive solution for unicast sessions
but it hes falled 1o specify the support for multicast
sessions. Thus the higher level protocols need to define
own sccurity services,

Session initiation pratecol: This protocol has the
particular ability of distributing the encryption keys and

other security parameters. It supports various encryption.

algorithms and methods. That can provide security to
RTP whenused with it. ™

- Session snnouncement protocel: This protocol is

intended for broadcast information. It has variety of
authentication methods such as PGP. Since 1t is intended
for public scssion announcement, encryption s
discouraged.

Sessjon description protocol: This protocol may be
considered as the high level protocol than SIP and SAP
and consequently it usually works in conjunction with STP
and SAP (o transport itself. Keys for RTP are distributed
using SDP. SDP self is neither encrypted nor
authenticated and usvally uses SIP and SAP for such
SEIvices.

H. 323: This is the most widely used protocol for
applications such as telephony and VOIP. It has profile
like RTP that describes security seevices (Table 1). The

Table i: Common RTP conliguration

RTP RTP+JPSec RTP+SDP_SRYP+H.323
Key/alporithm -No Yes s Yeos
setup
Confidentiality Yes Yes Yes Yos
Session Implicit Y3 Yes Yo
wnhontication
Session integrity Some Yeos Some Yeu
Transmitter Unicast Unicasl Unicast Multicast
authentication
Multicast support ¥Yecs No Yos Yes

. 2
possible security services have been defined by [X4]

which describes that H.323 be used with SRTP instead
and hence provides security services that also supports
multicast sessions.

Conclusion: Security facilities provided by the RTP
protocol alone are inadequate. RTP has an excellent
design since jt provides a framework for high level
protoco} which in tum can implement its own szcurity
services that may eventually provide benefit o RTP itself,
RTP cannot rely on underlying nenwork just because it is
transmitted over [P and considening IPSec will
consequently provide the secunty senices. Senvices
provided by IPSec are not useful for protocol other than
iF and also it doesn’t support multicast sessions, RTP is
nerwork independent and could use the other protocols
like: ATM/AALS for transmission of Real-time data for
which [PSec won’t be viable. Services provided by RTP
are quitc comprehefisive though it still has failed to
provide adequate authentication for wireless ncrworks
and the key distribution mechanism. Authentication with
SHA may be useful but the key size may be burdensome
for wireless networks.

RTP is a flexible protocol and allows new encoding
techniques that may provide secure communication that
may solve these problems. RTP in conjunction with other
protocols can aiso be used for security purposes that may
eventually solve most of the probiems.

REFERENCES

1. Schulzrinne, H, S. Casner, R. Frederick and V.
Jacobson, 2003. RTP: A transport protocol for real-
time applications, REC3550, July 2003.

2. Baugher, M, R. Blaom, E.Carrara. D. McGrew.
M. Naslend, K. Norman and D. Oran. 2004. Secure
Real-time Transport Pratocoi: RFC 3711, March 2004.

3. Schulzrinne, H. and S. Casner, 2003. RTP profile for
audio and video conferences with minimal control:
RFC 3551, July 2003.

4. Stubblebine, S., 1993. Sccurity services for multimedia
conferencing. In 16th National Computer Security
Conference, (Baltimore, Maryland), pp: 391-395.
Scptember, 1993.

Inform. Technol. J, 3(): cc cc, 2004

Bruce, S., 1996. Applied Cryptography: Protocols,
Algorithms and Source Code in C. John Wiley and
Sons, Inc., New York, NY, USA, 2nd Edn., 1996.
Flectronic Frontier Foundation. Cracking DES:
Secrets of Encryption Research, Wiretap Politics and
Chip Design. O’Reilly and Associates, Inc., 103a
Morris Street, Sebastopol, CA 95472, USA.

NIST, Advanced Encryption Standard (AES), FIPS
PUB 197, kapdiwww.nist.goviaes/ {date of list visit)
Bellare, M., A. Desai, E. JokiPii and P. Rogaway, 1997,
A concrete security treatment of symmetric
encryption:analysis of the DES modes of operation,
Proceedings 38th Symp. Found. Computer Science,
[EEE, 1997. A revised version is available online at
http:iwww-cse.ucsd.edu/users/mihir.

9.

10.

i1.

Ville, H., 2004. Real-time transport protocol secunity,

Tik-110.501 Seminar on Network Security HUT TML
2000.

Svanbro, K., . Wiorek and B. Olin, 2000. Voice-over-
P-over-wireless. Proc. PIMRC 2000, London, Sept.
2000.

Kent, S. and R. Atkinson, 1998. Security architecture
for the internet protacol: RFC 2401, November 1998,

