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ABSTRACT 

Image classification of medical images for diagnostic purposes plays a significant role 

in early and accurate disease detection in various scenarios such as brain tumor 

classification, kidney stones detection, breast cancer detection, colorectal cancer 

classification, detection of certain lungs conditions such as pneumonia, lung cancer, 

COVID-19 and post-COVID-19 pneumonia etc., detection and classification of skin 

cancer and various other ailments. In the realm of ophthalmic health, conventionally, 

the surgeon or physician diagnoses the condition by analyzing the optical coherence 

tomography scans (Retinal OCT Scans). To automate and revolutionize the diagnostic 

process, an AI based efficient, fast, accurate, robust, reliable and interpretable system 

is required to treat the patients with due care. To address the challenges related to the 

AI based ophthalmic diagnosis tools, researchers have proposed various CNN based 

solutions in which various trade-offs are observed such as architectural complexity for 

improved accuracy, compromised feature extraction mechanisms and neglecting the 

integration of explainability techniques to limit memory usage and lack of various 

benchmark evaluation metrics that give information about various aspects of model’s 

performance. In this research work, two architectures of CNN are designed, beginning 

with an explainable “DA-CNN” model, having enhanced feature extraction mechanism 

that is based on latest proposed techniques like separable dynamic convolution and 

channel split dual attention. The second “CF-CNN” model is designed using dynamic 

convolution and static convolution attention and it is also integrated with explainability 

techniques. The proposed DA-CNN and CF-CNN models classify the OCT scan 

images in four separate categories i.e., Normal, DME, Drusen and CNV, accurately 

through enhanced feature extraction mechanisms, quickly through latest optimizers and 
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also provide the explanations for their decisions by highlighting the prominent features 

that were crucial in the decision-making process through explainable artificial 

intelligence (XAI) techniques like GradCam and LIME. The suggested model 

architectures surpass various standard competitors regarding accuracy, M.A.E., dice-

coefficient, AUC-ROC, sensitivity and specificity on benchmark OCT Kermany 2018 

dataset. The proposed models achieve the optimal accuracy of 97.4 percent for ‘DA-

CNN’ and 96.68 percent for ‘CF-CNN’ in relatively lesser number of iterations as 

compared to standard counterparts. Moreover, the ‘DA-CNN’ model is compiled by 

exploiting four different optimizers i.e., Adam, RMSprop, Nadam and Adafactor at 

four different instances. The case study of various evaluation metrics based on these 

optimizers is also presented in this thesis.  
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

This chapter provides an overview of applications of Machine Learning and 

Artificial Intelligence techniques in the field of healthcare, highlighting their 

inevitability, implications and practical applications. Moreover, this chapter also 

elaborates how different CNN based image classifiers are revolutionizing the 

diagnostic systems for various ailments such as brain tumor classification, kidney 

stones detection, breast cancer detection, colorectal cancer classification, detection of 

certain lungs conditions such as pneumonia, lung cancer, COVID-19 and post COVID-

19 pneumonia etc., detection and classification of skin cancer and various other 

conditions. Moreover, it presents the background and motivation behind the research 

work which includes the basic information of retinal conditions in the scope of the 

study and some statistics about the affecters of the three ocular conditions i.e. Choroidal 

Neovascularization, Diabetic Macular Edema and Drusen that are in the scope of this 

research work. 

1.2. Inspiration and Background 

The biomedical sciences have seen a computer science revolution in the last few 

decades, particularly in the areas of diagnosis and disease detection[1]. Artificial 

intelligence (AI) has completely changed the process of diagnosing diseases and 

anatomizing bodies by doing classification tasks that previously required a great deal 

of human effort. The medical industry is eager to embrace artificial intelligence 

approaches because of the recent widespread expansion in the usage of AI-based 

solutions, which function with very few errors, almost no accidents, and very few 

misdiagnosis [2].  The application areas of artificial intelligence in healthcare are shown 

in Figure 1. 
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Figure 1: Applications of AI in healthcare 

Using medical images to diagnose the condition, which if done manually can lead to 

human error, several AI and deep learning networks and models are helpful in the 

diagnosis and prognosis of numerous diseases, including brain tumors, ocular 

conditions, kidney stone detection, lung cancer, and breast cancer[3]. Deep learning 

techniques are utilized to interpret medical images that are obtained via various 

techniques such as computed tomography scans, X-Ray scans, magnetic rays imaging 

scans and optical coherence tomography scans. for the purpose of performing various 

tasks, such as segmentation, classification, and prediction, all of which can be 

completed accurately and without human intervention.  

In the rapidly progressing world of medical diagnostics particularly medical imaging, 

exploiting latest technology is important to make diagnosis better and quicker [4] As 

far as eye care is concerned, where being accurate is super important for efficient patient 

care, an optical coherence tomography (OCT) method has been developed [5].This tool 

helps doctors see structural details better than ever but various eye conditions are very 

complex, making it hard to identify them quickly and correctly [2]. 

The identification and supervision of retinal illnesses are significantly impacted by 
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artificial intelligence. The technique makes it easier for ophthalmologists to focus on 

patient care by demanding precise and accurate ocular layer identification and 

extraction. In this work, the benefits of AI have been utilized to identify and classify an 

eye condition; however, because of the retina's intricate anatomy, it takes a while for 

the specialist to appropriately assess the state of affairs[6]. The retina is responsible for 

providing the brain with images and light and is located inside the posterior wall of the 

eye.  

When light concentrates on the retina as opposed to some other place, Normal vision is 

noted. Those with normal vision are able to see objects both up close and far away. The 

retinal layers that are affected by some condition ultimately lead to macular 

degeneration, myopia and loss of vision. Eye conditions play pivotal roles in the field 

of ophthalmic health, presenting unique challenges and consequences for vision [7] 

Conditions like Choroidal Neovascularization (CNV) [8], Diabetic Macular Edema 

(DME) [9], and Drusen [10] stand out due to their distinct characteristics and impacts 

on visual well-being. 

In the case of CNV as shown in Figure 2, abnormal blood vessels growing beneath the 

retina pose a significant threat, often resulting in leakage and harm to nearby tissues. 

Indicators of CNV encompass vision distortion, blurred or wavy vision, and, in severe 

 
Figure 2: Pictorial representation of Choroidal Neovascularization condition[11] 
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instances, an abrupt loss of eyesight in the center. While Age-related Macular 

Degeneration (AMD) is a common culprit, CNV can also stem from various other 

retinal disorders [8]. DME, as shown in Figure 3, a complication of diabetic retinopathy, 

involves the buildup of fluid in the macula, the area of the retina in the center that is 

essential for detailed vision. Manifestations include blurred or distorted central vision, 

making tasks like reading, facial recognition, and detailed activities challenging.  

Long-term diabetes, particularly when not effectively managed, heightens the risk of 

developing DME [9]. Drusen, little yellow or white spots under the retina, as shown in 

Figure 4, often go with AMD. This is common in people over 60 years old and can be 

linked to Age-related macular degeneration that is an eye condition (AMD). On the 

other hand, soft drusen linked to AMD can cause you to lose your vision. The role of 

drusen in AMD progression involves the degradation of the macula's light-sensitive 

cells [10]. The OCT scans of all three conditions i.e. CNV, DME and Drusen in 

comparison with the normal retinal scan is shown in Figure 5. 

 
Figure 3: Pictorial representation of Diabetic Macular Edema condition[12] 
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Figure 4: Pictorial Representation of Drusen condition[13] 

In persons between the ages of 43 and 86, the prevalence of CNV linked to age-related 

macular degeneration (ARMD) was 1.2% in the Wisconsin Beaver Dam Study[14]. In 

the US and Europe, myopia is the second most typical cause of CNV. It is expected that 

5–10% of myopes experience CNV, with 60–75 percent of them being sub foveal. In 

0.1 percent of endemic area residents, disciform scars secondary to CNV from 

suspected ocular histoplasmosis syndrome (POHS) were seen.  

The formation of CNV is uncommon in multiple evanescent white dot syndrome 

(MEWDS). Estimates of CNV in multifocal choroiditis patients range from 25 to 40 

percent. Thirty-three percent of patients with punctate inner choroidopathy (PIC) 

experience CNV. Fifty percent of individuals have sub foveal acuities, meaning their 

visual acuities range from 20/80 to 20/200.  

Five percent of patients with birdshot chorioretinopathy experience CNV. 

Almost all choroidal ruptures experience CNV during the healing phase, with the 

majority involute spontaneously. 15% to 30% of patients may experience a recurrence 

of CNV, which could result in a serious or hemorrhagic retinal detachment and 

accompanying vision loss. One estimate estimates the prevalence of optic nerve drusen 
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between 1 and 2 percent in the US population. People of all sexes are equally affected 

by them. The percentage is estimated to be between 1.8 and 2.4 percent by another 

source. Compared to other racial groups, white persons are more likely to develop optic 

disc drusen. Thirty-three percent of patients with punctate inner choroidopathy (PIC) 

experience CNV.  

Out of the 1038 individuals over 40 who were diagnosed with diabetes mellitus 

and examined for this research, 55 of them had DME, resulting in a weighted 

prevalence of 3.8 percent (95% confidence interval: 2.7 to 4.9 percent) or around 

746,000 people in the US population aged 40 or above in 2010. Age or gender did not 

appear to have any bearing on the occurrence of DME. In comparison to non-Hispanic 

Whites, non-Hispanic Blacks were more likely to have DME using multivariable 

logistic regression (OR 2.64; 95 percent CI, 1.19–5.84; P=.02). DME prevalence was 

similarly correlated with higher hemoglobin A1c levels (OR 1.47; 95 percent CI, 1.26–

1.71 for each 1 percent; P<.0001) and longer diabetes duration (OR 8.51; 95 percent 

CI, 3.70–19.54 for ≥10 vs <10 years; P<.0001). 

  
(a) (b) 

  
(c) (d) 

Figure 5: OCT Scans of Ocular Ailments (a) Normal (b) DME (c) CNV (d) Drusen 
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1.3. Problem Statement 

The classification of ocular diseases has benefited substantially from advancements in 

deep learning, as evidenced by the popularity of numerous convolutional neural 

network (CNN)-based architectures, such as Google's Inception models (V1 and V3), 

ResNet-50, AlexNet, and VGG-16, which have become popular benchmark models. 

These architectures are useful, but they still have a lot of serious problems. 

First, the lack of interpretability of many of the present CNN models makes it hard for 

practitioners to understand and trust the predictions they provide. Slow classification 

speed is another problem that prevents timely diagnosis and treatment of eye diseases 

in clinical settings. Moreover, the complex topologies of these models may result in 

increased computation costs and need high-performance technology, both of which are 

often available in healthcare environments. Low classification accuracy is another 

ongoing issue that compromises these models' trustworthiness in real-world scenarios. 

The limitations such as low accuracy, slow classification speed, lack of model’s 

interpretability and architectural complexity will be addressed in this research work 

through enhanced CNN models.  

1.4. Goals and Objectives 

The prime objectives of the research work are stated as follows: 

 Design and implementation of two enhanced CNN architectures to accurately 

classify the OCT images in 4 distinct labels i.e., DME, Normal, Drusen, and 

CNV. 

 Integration of latest proposed features such as dynamic convolution, separable 

dynamic convolution, convolutional attention and channel split dual attention 

mechanisms for enhanced feature extraction and dimensionality reduction 

process, hence enabling the model to learn the essential features effectively.  

 Focus on enhanced accuracy along with classification speed, hence avoiding the 

tradeoffs that is commonly observed in complex architectures.  



- 21 - 

 

 Integration of model’s interpretability through Explainable Artificial 

Intelligence techniques such as Grad Cam and LIME, hence providing 

transparency in decisions and overcoming the black-box nature of CNN models. 

 Training and evaluating the model that surpasses its standard counterparts in 

terms of accuracy, sensitivity, specificity, dice-coefficient, AUC-ROC, mean 

absolute error and other benchmark evaluation metrics. 

1.5. Contributions 

1. Design and implementation of novel CNN architectures to accurately classify the 

OCT images in 4 distinct labels i.e., DME, Normal, Drusen, and CNV. 

2. Integration of latest proposed features such as separable dynamic convolution and 

channel split dual attention for enhanced feature extraction and dimensionality 

reduction process, hence enabling the model to learn the essential features 

effectively. 

3. Focus on enhanced accuracy along with classification speed, hence avoiding the 

tradeoffs that is commonly observed in complex architectures. 

4. The interpretability of the model is integrated through Explainable Artificial 

Intelligence technique Grad Cam, hence providing transparency in decisions and 

overcoming the black-box nature of CNN models. 

5. Training and evaluating the model that surpasses its standard counterparts in terms 

of accuracy, sensitivity, specificity, dice-coefficient, AUC-ROC, mean absolute 

error and other benchmark evaluation metrics. 

6. Achieved optimal accuracy of 97.42% in relatively much lesser number of 

iterations hence showcasing the efficiency of the proposed DA-CNN architecture 

and 96.68% for CF-CNN architecture. 

1.6. Thesis Organization 

The chapter-wise organization of the research work is presented below. 

Chapter 1: gives a conceptual summary of the entire thesis, including research gaps, 

statements, and definitions that explicitly outline the objectives of the study, as well as 

the background and reasons for the identification of significant issues and the 

formulation of the research topic. 
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Chapter 2: discusses the benefits and drawbacks of previously proposed techniques in 

the literature to give a detailed overview of the work completed thus far. 

Chapter 3: describes the research methodology with proposed models by elaborating 

the architectures, simulation environment, dataset description, data preprocessing and 

optimization algorithms employed in this research work. 

Chapter 4: includes hyper-parameters selection details. Moreover, it provides 

complete simulation results in terms of tables and learning curves for a detailed 

comparison of the proposed models along with the case studies on different 

optimization techniques. This chapter also includes the details on integrating 

explainable artificial intelligence techniques with the proposed CNN models. 

Chapter 5: presents the discussion on the results along with comparison with state-of-

the-art models and conclusions drawn from the research work along with future 

research directions for the possible extension of a current study. 

1.7. Summary 

This chapter introduces the scope of the study mentioning the advancements and 

exploitation of AI based diagnostic systems in medicine and healthcare particularly, 

classification of medical images through deep learning architectures followed by 

inspiration and background, the goals and objectives of the research, the problem 

statement, research contributions and ending on the chapter-wise organization of the 

thesis.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

Medical imaging methods have completely changed the healthcare industry by enabling 

specialists to explore deeper within the human body and try to cure ailments in ways 

never possible before which are shown in Figure 6. This is particularly significant when 

it comes to the identification of eye disorders, particularly in relation to medical scan 

analysis, which is critical to comprehending and treating various ocular illnesses. This 

has long been the responsibility of the licensed physicians who carefully review the 

scans and diagnose conditions pertaining to the eyes.  

It is important to emphasize that in ophthalmology, accurate diagnosis is the 

cornerstone of treatment; without it, there could never be a successful therapy. 

However, it is a process that is fundamentally dependent on humans and may be limited 

by time constraints, weariness, and individual knowledge gaps. The prevalence of 

technology in today's world makes it imperative to look for a few ways to automate and 

streamline this diagnostic process in order to provide high-quality medical care quickly 

and accurately.  

It has also been discovered that artificial intelligence (AI) is a highly powerful tool for 

solving these issues. The diagnosis of eye conditions can be altered by integrated AI, 

especially CNNs. Researchers need to strike a compromise between the three factors of 

accuracy, speed, and interpretability because several CNN designs are recommended 

to increase diagnostic accuracy. Because of their intricate designs, the majority of the 

current models slow down diagnostic processing, and interpretability based on XAI 

approaches is frequently disregarded.  

In this regard, a novel CNN-based model is presented in a ground-breaking study that 

aims to simplify the multi-class classification of optical coherence tomography samples 

into four different classes: Drusen, Normal, CNV, and DME. The interpretability using 

XAI approaches is one of the main improvements proposed in this work. Unlike many  
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Figure 6: AI in medical imaging 

other models that only place the onus of interpretation in a black box, our model goes 

one step further and provides justifications for classifications. The model can identify 

certain regions on the OCT images using XAI techniques, and these regions are in 

charge of the final classification. This openness fosters confidence in the model's 

judgments and grants medical practitioners a unique authority that they can verify and 

comprehend through the diagnostic results. 

The application of AI techniques for image classification in medical diagnosis is 

one of the most significant advancements in medicine. Image pre-processing, which 

includes quantization, sampling, and segmentation; mass data training for neural 

networks; statistical analysis; and imaging processing are all necessary for the 

automated detection of retinal diseases. Presently, scientists primarily focus on the in-

depth improvement of disease categorization and description linked to a decrease in 

time processing and memory needs. Additionally, they are capable of accurately 

segmenting ocular layers using sufficiently simple computations. 
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2.2. Literature Review 

Deep-learning techniques are being exploited in a lot of diverse biomedical applications 

to comprehend and analyze different illnesses. CNN was suggested by Perdomo et al. 

[15] as a means of identifying DME from OCT pictures. They presented the OCT-NET 

architecture, a 12-layer structure that uses median filters to highlight essential 

information in the picture layers.  

A unique CNN design was presented by Jeffrey et al. [16] and is capable of 

recommending referrals for a range of retinal conditions. The work uses a 3.D U-Net 

model to extract a segmentation plot that successfully distinguishes different retinal 

tissues and structures from the provided retinal picture. After segmentation, the 

discovered retinal diseases are analyzed using a classification network to provide 

recommendations for referrals.  

Fang et al. [17] suggested an abrasion-conscious CNN for OCT scan categorization that 

used data from the lesion regions. This improvement produced better categorization 

results, which are encouraging. Alqudah et al. [18] created a hybrid artificial 

intelligence system for efficient feature extraction in the multi-class classification of 

eye retina illnesses. Advanced OCT Network is used to take the highlights out of the 

pictures (AOCTNet). ANN is used to classify the OCT pictures after feature extraction.  

Tuncer et al. [19] offer a This work uses a hybrid CNN model to categorize 

normal, CNV, and DME images using OCT photographs. The CNN-SVM model is 

created for OCT image categorization. The suggested method for processing the OCT 

images does not call for any extra feature extraction or noise filtering. For efficient 

classification, an SVM classifier is utilized in lieu of the SoftMax layer. SVM is utilized 

in the last pooling layer of CNN to classify the attributes of OCT images. Paima et al.'s 

convolutional neural network was built on the architecture known as the feature 

pyramid network [20]. This technique accurately diagnoses both wet AMD (CNV) and 

normal, dry AMD (drusen). In this method, the model is trained using a single CNN, 

negating the necessity for preprocessing the input data.  

Akinniyi et al. [21] created a categorization network that was comprised of 

multiple stages for the classification of OCT images. Scale-adaptive-neural networks 
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are established to create inputs for extraction of features at multiple scales. An enhanced 

feature-driven-pyramidal network model is used to get the multi scale characteristics, 

with DenseNet serving as the backbone. A DL model with ResNet architecture 

comprising of 101 layers that was pretrained using the ImageNet-dataset was proposed 

by Lu et al. [22]. In order to distinguish serious detachment of the macular layer, 

macular-hole, epiretinal-membrane, and cystoid-macular-edema from normal OCT 

pictures, four binary classifiers were trained independently.  

A transfer learning (TL)-based CNN method was presented by Kermany et al. 

[23] for categorization of OCT images. The approach identified characteristics of both 

healthy and diseased OCT pictures, and the findings demonstrated that it could 

accurately categorize images of DME and AMD. Saleh et al. classified several retinal 

illnesses using a blend of DL and ML techniques in Refs. [24], [25], and [26]. A few 

studies that used deep learning frameworks to segment the IRF have also been 

published. A kernel regression-driven technique for determining the locations of fluid 

and retinal layers in OCT scans was presented by Chiu et al. [27].  

A DL-based technique for multi-retinal fluid segmentation was introduced by 

Lu et al. [28]. The system utilized a complete CNN in conjunction with the 

segmentation outcomes produced by a graph-cut algorithm to distinguish between 

retinal fluid pixels. A method for segmenting and classifying retinal fluids through U-

Net architecture was presented by Tennakoon et al. [29].  

Considering the model's forecasts, this pipeline positively segmented retinal 

liquids at the voxel threshold. Ref. [29] proposed an IRF segmentation technique that 

made use of an 18-convolutional-layer altered iteration of the U-Net model. The 

findings suggested that in order to get adequate performance, training must cover a wide 

range of diseases. Upadhyay et al. created the coherent convolutional neural network 

(CCNN) for 4 class retinal disease categorization [30]. Accurate detection of OCT 

images, including DME, CNV, Normal, and Drusen is achieved by the established 

CCNN model.  

This model accurately detects the erratic trends of retinal illness for every category. 

This technique effectively maintains consistency amid the network's input and output. 
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In this research, the network layer of the network is effectively integrated to accomplish 

the basic picture feature processing. The categorization process uses a five-layer CNN. 

The method that is being discussed incorporates the batch-normalization layer with 

every activity-layer to generate cohesive behavior. 

Ţălu et al. [31] and Schmidt- rfurth et al. [32] said that OCT, which is divided into SD-

OCT and TD-OCT categories, is a high-resolution imaging technology. The high-

resolution cross-sectional and volumetric views of the retina are provided by the SD-

OCT results. 

A two-dimensional image of the specified internal retinal structure is produced 

by TD-OCT. Because TD-OCT only analyses the macula's thickness, it is ineffectual. 

In contrast, SD-OCT allows for the monitoring and evaluation of a variety of 

distinguishing characteristics. According to the study, OCT is a helpful method for 

evaluating, tracking, and analyzing the various stages of AMD. Furthermore, drusen's 

structure could be examined using a variety of features. Srinivasan et al. [33] suggested 

a support vector machine (SVM) model and histogram of oriented gradients model to 

successfully achieve the categorization of DME and dry AMD using optical CT scans. 

The inner retinal layers were not segmented in their suggested methodology. There 

were 45 volumetric scans in the SD-OCT datasets: 15 AMD, 15 DME, and 15 normal. 

The system detected all of AMD cases, all of DME patients, and 86.67 percent of 

normal cases with the highest specificity and flawless sensitivity. When it comes to 

high-resolution 3D tomography imaging employing optical coherence tomography 

(OCT) for retinal diagnosis, ophthalmologists' manual classification of OCT pictures is 

still subjective and time-consuming.  

Addressing this challenge, the study [34]presents an automatic method for 

classifying retinal OCT scans using an IFCNN. By fusing data from current and 

previous layers of the convolutional neural network (CNN), the IFCNN leverages 

features from various scales within the CNN. This method enables a more thorough use 

of characteristics, resulting in precise classification of OCT images. The proposed 

IFCNN method outperforms conventional CNNs and known OCT classification 
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algorithms, as demonstrated by experimental findings on real retinal OCT and 

musculoskeletal radiograph datasets. 

In [35], Resnet-50 [36] based transfer learning was used to develop a deep CNN, which 

was evaluated on a dataset labelled for CNV, DME, and drusen. According to reports, 

this model has a 96.1 percent accuracy rate. However, because there were so many 

parameters in the transfer learning-trained network, the system's complexity increased. 

Real-time deployment may not be appropriate for this kind of complex network. In 

order to categorize healthy retina, Drusen, Diabetic Macular Edema and Choroidal 

Neovascularization, a layer-guided CNN model was suggested in [37] which was 89.9 

percent accurate.  

More learnable parameters result from using two networks—one for classification and 

the other for layer segmentation—than from using only one. Deep learning was 

suggested as a quick and automated way to classify wet and dry AMD in [38] where 

just the wet and dry AMD were categorized using the same data set. A unique technique 

was developed to classify DME, two phases of drusen and Choroidal 

Neovascularization from healthy scan images in [39]. This presented a classification 

method-based CNN variant (MDFF). On the test set, average values of 99.6% for 

sensitivity, 99.6% for specificity, and 99.6% for accuracy were attained; nonetheless, 

the network's complexity resulted from its multi-scale structure and numerous learnable 

parameters. 

A strategy for classifying AMDs based on deep learning processes was suggested in 

[40]. For categorization, the normalized oct scan image was loaded in a neural network. 

With the Inception v3 network, the reported accuracy was 96.93 percent. This type of 

heavy network might not be appropriate for instantaneous deployment because the pre-

trained network contained a large number of learnable parameters. It was described how 

to automatically detect AMD and DME on OCT pictures. in [41]. A 97.1 percent 

accuracy was obtained using the AlexNet architecture. The enormous number of 

learnable parameters in the AlexNet made this technology unsuitable for real-time 

deployment as well.  
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The authors of [42] further tested retinal images with AMD grading. They employed a 

21-layer CNN to do the binary classification task between healthy and AMD retinal 

images, and the result was a mean accuracy of 93%. The approach utilized in [43] tried 

to use dictionary learning and sparse coding to tackle the categorization challenge. This 

work shows that diabetic macular edema and drusen were involved in the binary 

classification, and over two datasets, a mean accuracy of 99% was recorded. So far, just 

a small number of photos were used to validate the algorithm. How well it would 

function on a sizable amount of untested data is unknown. In order to detect DME 

patients, a lot of prior methods have concentrated on the automatic analysis and 

classification of SD-OCT pictures. [44], [45]. 

This paper uses multiscale histograms of directed gradient descriptors as feature vectors 

for a support vector machine-based classifier, introducing a novel fully automated 

technique for the identification of retinal diseases via optical coherence tomography 

(OCT) imaging [46]. The classifier, trained and validated on spectral domain OCT 

datasets from 45 subjects, achieved impressive results, accurately identifying 100% of 

cases with dry age-related macular degeneration (AMD), 100% of cases with diabetic 

macular edema (DME), and 86.67% of cases for normal subjects. The algorithm 

presented in this paper emerges as a highly promising tool for remotely diagnosing 

ophthalmic diseases, providing a reliable and automated approach to identify and 

categorize retinal diseases with remarkable precision.  

The automated classification of optical coherence tomography (OCT) images has 

become important in the noninvasive assessment of retinal eye disorders using OCT. A 

recent study [47] proposed a surrogate-assisted approach to classification using 

convolutional neural networks (CNNs). The topology involves image denoising, mask 

extraction, and generation of surrogate images for CNN training, achieving promising 

results with an AUC of 0.9783 in private dataset and 0.9856 in the duke database, 

highlighting its potential for automatic classification of retinal OCT images. 

In [48], In order to distinguish between aberrant and healthy photos, researchers 

experimented with a pre-trained VGG-16 exploited for feature extraction. They found 

that the CNN achieved 93.5 percent accuracy and 81 percent specificity. Authors of 



- 30 - 

 

[49] used a combination of multi-scale CNN with a 98.66 percent claimed accuracy on 

148 subjects in a private dataset and over 3000 photos from 45 subjects in a public 

dataset with disease grading of three classes. Even with the accuracy, their method is 

excessively complicated and laborious to run. Moreover, testing was done using a 

limited dataset. A technique for unsupervised learning was described in [50], intended 

to lessen the need for substantial amounts of training data in order to achieve correct 

categorization. A one-class SVM classifier was used after a multi-scale deep denoiser 

to denoise the images. The accuracy of this procedure was reported to be 81.4 percent, 

significantly lower than the accuracy of SOTA methods. 

In [51], a feature extraction-based classification algorithm using 3000 photos from 45 

people in a public dataset was experimented. The retinal OCT image was encoded using 

a multiscale Linear Configuration Pattern (LCP), and the optimal subset of features 

linked to the phenotypic was found using wrapper-based feature selection techniques. 

99.3 percent accuracy was reported. Hand-crafted statistical features were combined 

with a Random Forest classifier in[52]. Following picture segmentation, ten features 

per image were obtained, and 15-fold cross-validation was applied to a complete dataset 

consisting of 177 AMD, 59 normal and 15 DME individuals. Ninety-six percent 

accuracy was reported.  

In a recent work [53], model yielded a 100% accuracy rate. He employed an Inception 

v1 based model which was 230 layers deep in his network. A network with so many 

parameters is not appropriate for applications that require real-time processing. In [54], 

Perdomo proposed a CNN for automatic classification of normal and DME using sd-

oct volumes and achieved the accuracy of 93%. In [55], Nugroho applied transfer 

learning approach and trained DenseNet and ResNet 50 achieving accuracy of 88 and 

89 respectively. Lemaître et al., [56] tackled the issue of classifying SD-OCT data in 

order to automatically identify patients who are impacted by DME.  

Tsanim et al. [57] Xception network, ResNet50, MobileNetV2, and Vanilla CNN were 

the four CNN models used to identify the illness categories from the retinal OCT 

scanned pictures. Feng et al., [58] used optical coherence tomography pictures to focus 

their investigation on a four-class retinal disease classification problem for the 
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identification of drusen, DME, CNV, and normal retina. They prepared a large 

collection of retinal OCT pictures and suggested a unique classification model for the 

automated detection of the majority of frequent blinding conditions. Improved 

ResNet50 served as the model's foundation. At the B-scan level, their method produced 

accuracy of 0.973, sensitivity of 0.963, specificity of 0.985, and AUC of 0.995. The 

prominent literature articles are presented in Table 1. 

Table 1: Summarized literature review 

Title Algorithm Advantages Limitations DOP 
[38] CNN  Specific region 

emphasis 
 Innovative 

architecture 
 Improved 

accuracy 

 Validation on limited 
datasets 

 Not applicable to 
real scenarios 

 Computational cost 
 
 

2023 

[39] CNN  Dual guidance 
network 

 Comprehensive 
evaluation 

Efficient testing 

 Single label 
classification and 
lesion aggregation 

 Computationally 
complex 

 Less accurate 
 No interpretability 

 

2023 
 
 
 
 

 

[40] Transformer 
network 

 Clinical relevance 
 Efficiency 

improvement 
 Novel 

architecture 
 

 Integration 
challenges 

 Accuracy 
improvement 
required 

 Interpretability 
 Complex 

architecture 
 

2023 
 

 
 

[37] CNN 
ResNet50 

TL approach utilized  Data generalizability 
not integrated 

 Clinical applicability 
not in scope 

 Classification speed 
 Vital evaluation 

metrics ignored 
 
 

2019 
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[29] CNN 
VGG-16 

Transfer Learning 
approach utilized 

 Limited diversity in 
data 

 Accuracy not up to 
the mark and model 
is prone to 
misclassification 

 Interpretability not 
addressed 

 
 
 

2017 

[35] Hybrid 
(Random Forest, 
KNN, SVM, 
Logistic 
Regression, 
Gradient 
boosting) 
 

 Comprehensive 
investigation 

 Outperforming 
previous studies 

 Consideration of 
pre-processing 
steps 

 Classifies only 
DME condition 

 Lack of external 
validation 

 Complexity of pre-
processing 

 Limited performance 
metrics 

 Low accuracy 
 Classification speed 
 Computational 

complexity 

2016 

[31] SVM  Unsupervised 
anomaly 
identification 

 Scalability and 
reduced 
supervision 

 Qualitative 
analysis 
alignment 

 Novel machine 
learning approach 

 Performance 

 Need for future 
validation 

 Limited generalized 
information 

 Interpretability not 
available 

 Accuracy of 94% can 
be improved 

 Complex architecture 

2019 

[18] Transfer 
Learning 
(ANN) 

 Transfer learning 
 General 

applicability 
 Transparent 

diagnosis 

 Dataset specificity 
 Dependency on pre-

trained weights 
 Accuracy concern 
 Number of iterations 

2018 
 
 
 
 

2.3. Summary 

This chapter presents the extensive literature review done throughout the course of this 

research work providing insights on advantages limitations and research gaps upon 

which we have finalized our problem statement and carried out our research. 
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CHAPTER 3 

PROPOSED METHODOLOGY 

3.1. Introduction 

The workflow of the proposed research will be included in this section, which 

covers the simulation environment, dataset description, proposed DA-CNN and CF-

CNN models, optimization schemes and evaluation metrics. 

3.2. Experimental Setup 

In this research work, the CNN model utilized in order to classify optical coherence 

tomography pictures is designed and evaluated using a simulated environment. 

TensorFlow v2.14.0 with the Keras API in Python is used to implement the simulation 

framework. Google Collaboratory is used as a coding environment with an NVIDIA-

SMI 525.105.17 Driver Version: Version 12.0 (CUDA) Graphics Processing Unit and 

running on a Lenovo 82TS with a 12th Gen Intel(R) Core (TM) i5-1235U 1.30 GHz 

and 8GB RAM. 

3.3. Description of the Dataset 

The most widely used dataset in computer vision for ophthalmology is the OCT 

2017 Kermany dataset. It is regarded as one of the top databases for the analysis of 

OCT images. Together with a group of knowledgeable experts, Daniel Kermany 

assembled and released it initially. A wide range of OCT samples are included in the 

database, which is graphically divided into four groups: diabetic macular edema 

(DME), normal, Druse, and choroidal neovascularization (CNV).  

As stated in the introduction chapter, these classes represent a variety of common 

eye disorders; as a result, the dataset is regarded as an essential tool for training and 

assessing machine learning models, which are subsequently used to diagnose and 

categorize ocular disorders to the fullest extent possible using data from OCT imaging.  

Out of all the images that are included in the dataset, we have loaded 1500 images 

from each class i.e., Normal, CNV, DME, Drusen, so a total of 6000 training images, 8  
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Figure 7: Sample images of the OCT Kermany 2018 Dataset at random 

samples from each of the classes for validation, so a total of 32 images in validation 

dataset, 242 images from each class for testing hence 968 images in the test dataset. 

The dataset images that are obtained during the dataset analysis are presented in Figure 

7. 

3.4. Data Preprocessing 

To prepare the data for training the CNN model, following approach is exploited. 

3.4.1. Function to Load Images (get_data): 

 This function loads a specific number of images i.e., 1500 from each class folder. 

 It takes two parameters: folder, which is the directory containing class folders, and 

num_images_per_class, which specifies the number of images to load from each 

class. 

 It initializes empty lists X for images and y for labels. 
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 It loops over each class ('NORMAL', 'CNV', 'DME', 'DRUSEN') and loads images 

from their respective folders. 

 For each sample, it reads the image through OpenCV (cv2.imread) and resizes it to 

the specified imageSize using scikit-image (skimage.transform.resize). 

 It converts the image to a NumPy array and appends it to the X list, while appending 

the label (encoded as an integer) to the y list. 

 The function returns NumPy arrays X containing images and y containing 

corresponding labels. 

3.4.2. Data Loading: 

 It defines the directories for the training, testing, and validation sets (train_dir, 

test_dir, validation_dir). 

 It sets the number of images to load per class (num_images_per_class). 

 It calls the get_data function for each directory to load the images and labels for 

training, testing, and validation sets. 

3.4.3. One-Hot Encoding: 

 It one-hot encodes the labels using to_categorical function from Keras 

(keras.utils.to_categorical). 

 With one-hot encoding, binary vectors representing integer class labels are created, 

with the exception of the index corresponding to the class label, which is set to 1. 

Each class is represented by a vector of all zeros. 

1
0[ ]

i y

one hot otherwise
y i



 
        

           7 

where i ranges from zero to N-1 representing the class indices. 

 This is a common preprocessing step for categorical variables in classification tasks 

and helps the neural network to better understand the class relationships. 
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3.5. Proposed CF-CNN and DA- CNN Models 

3.5.1. Dual Attentive Convolutional Neural Network or DA-CNN  

The proposed DA-CNN model comprises of three convolutional blocks to begin with, 

five layers constituting the first two blocks and six layers constituting the third 

convolutional block. The first one is separable dynamic convolution layer, next up is 

the activation-layer that is governed by ReLU, then the batch normalization layer, then 

the max-pooling layer with pool size of 3*3 and stride of 2*2 and at the end, the dropout 

layer with rate of 20% to prevent overfitting.  

This pattern is repeated for two blocks, the third one contains an additional 

channel split dual attention mechanism layer in between the activation and batch 

normalization layer. The convolutional filter size for first convolution block is 16 with 

the stride of 3 whereas the convolutional filter size for second and third convolutional 

block is 32 with the same stride. In separable dynamic convolution, (on the contrary to 

conventional static convolution in which a single set of filters is applied to the entire 

input feature map both spatially and across the channels), the convolutional operation 

is decomposed into spatial convolutions followed by channel wise convolutions, each 

with their own set of filters. Mathematically, the conventional convolution can be given 

as: 

Let K denote the kernel filter and I denote the input feature map. The output 

feature map O is computed as follows: 

, ,, , , ,
.k c

i j i e x ym n c m n c
O Q I    

where i,x are spatial indices, k is the channel index, m,n are kernel indices, c is 

the channel index of the input feature map, , ,m n cQ is the kernel weight at position (m,n,c), 

,
c
i e x yI    is the input feature map value at (i+e,x+y) and channel c. 

Whereas the separable dynamic convolution can mathematically be expressed as: 
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Let Ks denote the spatial kernel and Kc denote the channel wise kernel, the output 

feature map O can be computed as follows: 

,
, ,,

( . )m nk c c
i j c i m j nm n cs

O K K I     

where 
,m n

sK is the spatial kernel weight at (m,n), 
c
cK is the channel-wise kernel 

weight for channel c and all other variables are defined as in conventional static 

convolution. The block diagram of separable dynamic convolution is shown in Figure 

8. 

Figure 8: Block diagram of Separable Dynamic Convolution Operation 
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The key difference among the two convolution techniques lies in the decomposition of 

convolution operation. In the separable dynamic convolution, the convolutional 

operation is split into spatial and channel wise convolutions hence allowing for more 

efficient computations. By applying the separate filters for spatial and channel wise 

convolutions, the number of parameters to be learned is reduced, leading to 

computational savings and ultimately improved generalized performance of the model 

on the basis of enhanced feature extraction. Moreover, the separable dynamic 

convolution can capture both spatial and channel wise dependencies more effectively 

as compared to conventional static convolution.  

Another important contribution of this research work is the incorporation of 

channel-split dual attention mechanism with convolutional filter size of 32 and stride 

of 3. The Channel Split Dual Attention Mechanism is an incredible technique that is 

exploited in Convolutional Neural Networks (CNNs) to vividly improve feature 

representation by concurrently recording channel-wise and spatial relationships in 

feature maps. It features the combination of spatial and channel attention mechanisms. 

First, it performs channel attention based on the attention weighted features and then 

spatial attention on those for spatial locations. Spatial attention is concerned with the 

materialization of relevant channel maps, while channel attention focused on 

convolutional channels highlights only the essential channels.  

These attention maps are very specific for every image patch area. The feature 

maps are the same and these attention maps are integrated to create a final attention 

map that modifies the source feature maps. From the mathematical point of view, 

spatial attention is performed using a SoftMax function on the result of the linear 

transformation followed by ReLU activation, while channel attention refers to a 

sigmoid function on the result of an average or mean pooling on channel-wise element 

values.  

A final map of attention is obtained by means of element-wise multiplications of 

two attention maps, namely, the spatial and channel attention maps. This is introduced 

into CNN architectures; it is where this mechanism comes in to play by boosting model 

efficiency in tasks including object detection, segmentation, and image classification 

through the ability to focus on relevant spatial regions and channels, hence the models 
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produce more discriminative feature representation and get better at generalization. 

Mathematically, the channel-split dual attention can be expressed as: 

3.5.1.1. Spatial Attention 

,max( .Re ( . ))s s f i jA soft W LU W X  

where As is the spatial attention map, Ws and Wf are learnable parameters 

(weights) of the spatial attention mechanism. Xi,j displays the feature map at spatial 

location (i,j), ReLU is the rectified linear unit activation function, softmax computes 

the softmax function along the spatial dimensions hence yielding attention weights As 

for each spatial location. 

3.5.1.2. Channel Attention 

( . ( ))c cA sigmoid W avgpool X        
           4 

where Ac is the channel attention map, Wc is the learnable parameter (weight) of 

the channel attention mechanism, avgpool is the average pooling operation performed 

along the spatial dimensions to obtain global channel-wise statistics, sigmoid computes 

the sigmoid function to normalize the attention weights Ac between zero and one.  

3.5.1.3. Final Attention 

s cA A A           
            5 

where A is the final attention map,  denotes the element wise multiplication or 

Hadamard product, As is spatial attention map and Ac is the channel attention map. 

3.5.1.4. Enhanced Feature Representation 

X A X            

where X  represents the enhanced feature maps after application of attention 

mechanism and X is the original feature map. 
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Figure 9: Block diagram of Channel Split Dual Attention technique 

In a nutshell the channel split dual attention leads to more discriminative feature 

representation and improved performance by permitting the network to emphasis on 

prominent spatial areas and channels within the feature maps. The block diagram of 

channel split dual attention is presented in Figure 9. 

To continue the model architecture, followed by the convolutional blocks is a flattening 

layer to convert the data into 1-D array. The FC layer with 128 neurons, ReLU 

activation, batch-normalization and drop-out layer with rate of 50% to prevent 

overfitting. The last layer of the proposed CNN model is dense layer having 4 units, 

representing the ocular condition whether Normal, CNV, DME or Drusen. The final 

classification layer has SoftMax activation. The model summary is presented in the 

table. Figure 10 displays the overall block diagram of the suggested DA-CNN model. 

Table 2 presents the detailed model architecture along with the parameters that is 

obtained in Python environment using model.summary() function. 

 

Figure 10: Block diagram of DA-CNN model architecture 
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Table 2: Summary of the layers of the DA-CNN Model 

Sr. Layer Output shape Params# 

1 Separable Dynamic-Convolution 2D None, 126,126,16 91 

2 Activation None, 126,126,16 0 

3 Batch-Normalization None, 126,126,16 64 

4 Max-Pooling 2D None, 62,62,16 0 

5 Drop-out None, 62,62,16 0 

6 Separable Dynamic-Convolution 2D None, 60,60,32 688 

7 Activation None, 60,60,32 0 

8 Batch-Normalization None, 60,60,32 128 

9 Max-Pooling 2D None, 29,29,32 0 

10 Drop-out None, 29,29,32 0 

11 Separable Dynamic-Convolution 2D None, 27,27,32 1344 

12 Activation None, 27,27,32 0 

13 Channel Split-Dual Attention None, 27,27,64 18496 

14 Batch-Normalization None, 27,27,64 256 

15 Max-Pooling 2D None, 13,13,64 0 

16 Drop-out None, 13,13,64 0 

17 Flatten None, 10816 0 

18 Dense None, 128 1384576 

19 Activation None, 128 0 

20 Batch-Normalization None, 128 512 

21 Drop-out None, 128 0 

22 Dense (Eye-Condition) None, 4 516 

Total params: 1406671 (5.37 MB), Trainable params: 1406191 (5.36 MB) 

3.5.2. Channel Focused Convolutional Neural Network of CF-CNN 

The CF-CNN model is implemented using the Keras Sequential API and comprises a 

series of layers for a CNN with convolutional layers that is intended for image 

classification. The model begins with a DynamicConv2D layer with 16 filters and a (3, 

3) filter size, a Rectified Linear Unit (ReLU) activation function came next, an attention 
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layer with 16 filters and a (1, 1) kernel size, batch normalization, and max-pooling with 

a (2, 2) pool size. Next, the same convolution blocks are repeated two times as Conv2 

and Conv3 having the same structure as first convolutional block. The key point in 

Conv1 and Conv2 units is the convolution attention mechanism that is employed for 

the enhanced feature extraction and hence better accuracy. Following the convolutional 

blocks containing activation, batch normalization and dropout layers, flatten layer is 

incorporated to convert the output of last layer in 1D array. Next to flatten layer are the 

Fully connected layers containing 128 neurons for the first layer having ReLU 

activation and dropout rate of 20 percent to avoid overfitting. Lastly, the model 

concludes with a final FC layer encompassing 4 units, utilizing a SoftMax activation 

function to represent the various output classes for eye conditions. The model structure 

has properly schemed dynamic convolutional layers, activation functions, attention 

mechanisms, and regular CNN components like batch normalization and max-pooling. 

Dropout is applied only in the FC layers to enhance generalization. The last layer 

produces a SoftMax output for classification into four eye condition classes.  

3.5.2.1. Dynamic Convolution: 

Dynamic convolution layers represent a remarkable development over traditional 

convolution layers in Convolutional Neural Networks. In standard convolution, the 

kernel remains fixed during inference, meaning that a single set of weights is applied 

uniformly across the entire input feature map. While effective, this static nature limits 

the adaptability of the model, as the same filter processes all inputs, regardless of their 

local context or variations. 

Contrary to this, dynamic convolution incorporates adaptability by allowing the 

convolutional filters to change dynamically based on the input features or some 

external conditioning. This adaptability is achieved through a mechanism where 

multiple sets of filters are learned, and a dynamic aggregation or selection process 

determines which filters to apply at each spatial location. Mathematically, if X 

represents the input feature map and {W1,W2,…,Wk} are the possible filter sets, dynamic 

convolution computes the output as a weighted sum of these filters: 𝑧 = ∑ 𝜑௦௔ୀଵ a(u)*Wi 
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Figure 11: Block diagram of Dynamic Convolution Operation 

Here, 𝜑a(u) are the dynamically computed coefficients that depend on the input u, and 

* denotes the convolution operation. The coefficients 𝜑a(u) are often obtained using an 

additional lightweight network, such as a small fully connected layer or a SoftMax 

function, ensuring that the filter selection is both data-driven and context-sensitive. 

This dynamic approach enables the network to adapt its behaviour to different regions 

of the input. By allowing the network to effectively "choose" the most relevant filters 

on the fly, dynamic convolution layers can lead to more efficient and expressive models 

compared to their static counterparts, often resulting in improved generalization and 

robustness across varied datasets. Figure 11 presents the block diagram of dynamic 

convolution operation 

3.5.2.2. Channel Split Dual Attention Mechanism: 

The Channel Split Dual Attention (CSDA) technique is an advanced mechanism 

designed to enhance the representational capacity of convolutional neural networks 

(CNNs) by focusing on important features within input tensors. It splits the input tensor 

into two pathways: one emphasizes global average features, while the other highlights 

the maximum values. Each pathway generates an attention map, which is then used to 

re-weight the original features through element-wise multiplication, enhancing relevant 

information and suppressing less important data.  

These re-weighted features are then concatenated and passed to subsequent layers, 

resulting in more informative and discriminative feature representations. The CSDA 

technique is particularly beneficial in tasks requiring fine-grained feature detection, 

such as medical image analysis and fine-grained object recognition, and can be easily 

integrated into existing CNN architectures with minimal computational overhead. By 
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selectively emphasizing important channels and spatial regions, the CSDA technique 

improves the performance of deep learning models in various applications. The block 

diagram of the phenomenon is represented in Figure 12. The overall architectural 

diagram of the proposed CF-CNN model is shown in Figure 13. Table 3 presents the 

architectural summary of the layers along with filter sizes and parameter numbers. 

 
Figure 12: Flowchart of Channel Split Dual Attention technique 

 

 
Figure 13: Block diagram of CF-CNN architecture 
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Table 3: Architectural summary of CF-CNN model 

Sr. Layer type Output Shape Param 
# 

1 dynamic_conv2d (Dynamic Convolution 2D) None, 128,128,16 448 

2 activation (Activation) None, 128,128,16 0 

3 conv_attention_layer (ConvAttentionLayer) None, 128,128,16 272 

4 batch_normalization (Batch Normalization) None, 128,128,16 64 

5 max_pooling2d (Max Pooling 2D) None,64,64,16 0 

6 dynamic_conv2d_1 (Dynamic Convolution 2D) None,64,64,16 2320 

7 activation_2 (Activation) None,64,64,16 0 

8 conv_attention_layer_1 (ConvAttentionLayer) None,64,64,16 272 

9 batch_normalization_1 (Batch Normalization) None,64,64,16 64 

10 max_pooling2d_1 (Max Pooling 2D) None, 32,32,16 0 

11 dynamic_conv2d_2 (Dynamic Convolution 2D) None, 32,32,16 2320 

12 activation_4 (Activation) None, 32,32,16 0 

13 conv_attention_layer_2 (ConvAttentionLayer) None, 32,32,16 272 

14 batch_normalization_2 (Batch Normalization) None, 32,32,16 64 

15 max_pooling2d_2 (Max Pooling 2D) None, 16,16,16 0 

16 flatten (Flatten) None, 4096 0 

17 dense (Dense) None, 128 524416 

18 activation_6 None, 128 0 

19 batch_normalization_3 (Batch Normalization) None, 128 512 

20 dropout (Dropout) None, 128 0 

21 Eye_Condition (Dense) None, 4 516 

Total params: 531540 (2.03 MB) Trainable: 531188 (2.03 MB) Non-trainable: 352 (1.38 KB) 

3.5.3. Optimizers 

Optimizers, that are applied while compiling a machine learning or deep learning 

model, are of significant importance when training the neural networks as they 

iteratively modify the model parameters and reduce the cost function during the 
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training-process. The primary objective of optimizers is to help the algorithm for 

optimization to determine the ideal combination of parameters to attain the optimal 

results.  

During the process of training, the model is presented with the input labelled data in 

different batch sizes and ultimately predictions are made. Subsequently, the alteration 

amongst the goal values and the forecasted values is measured by the loss function or 

the cost function. The optimizer determines the direction and magnitudes towards the 

steepest ascent by calculating the gradient of this loss function regarding each 

parameter. By adjusting the parameters in the direction opposite to these gradients, the 

optimizer seeks to advance the model's efficiency by minimizing the loss function. 

Including the advantages and limitation, each optimizer exploits various strategies to 

update the parameters. As in case of Stochastic Gradient Descent, it updates the 

parameters that are directly proportional to the negative gradient and learning rate. The 

detailed description of all the optimizers that are in the scope of this study is presented 

in the following sections. 

3.5.3.1. Adafactor 

Adafactor is a variation of the AdaGrad optimizer that adapts learning rates according 

to several factors by performing the following: 

a. Adaptive Learning Rate Scaling 

Adafactor scales the learning-rate differently for each parameter based on the historical 

gradients of that parameter. It uses a two-dimensional parameter scale matrix, which 

helps in scaling the learning rates differently for different parameters. 

b. Adaptive Gradient Clipping 

It clips the per-parameter gradients based on the statistics of the past gradients. 

c. Initialization 

Initialize the scale matrix G as an identity matrix of size (d,d) where d is the amount of 

parameters 
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Initialize the exponential moving average of squared gradients v as a zero matrix of the 

same size as G. 

d. Per-Parameter Gradient Scaling 

 For each parameter wi compute its gradient gi.  

 Update the squared gradients exponential moving average v: 

2
2 2. (1 ).i i iv v g      

Update the scale matrix G 

max( , )ii ii iG G v   

e. Compute the effective learning rate 

The parameter's effective learning rate can be computed as follows: 

.
i

i

lr scalelr
v


 

 

where lr is the base learning rate and scale is the scalar value for numerical stability, 

typically set to “ min(1.0, 1.0 / _ )scale parameter  

f. Update Parameters 

Each parameter wi is updated using the corresponding effective learning rate lri  

.i i i iw w lr g    

Optionally, clip gradients before updating the parameters to prevent large gradient 

updates that might lead to unstable training. This whole process repeats for each 

training iteration. 
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2  refers to the squared gradients of the moving average exponential decay rate; lr 

corresponds to the learning rate; and the scale parameter is for numerical stability. 

By automatically adjusting the learning rates for various parameters according to their 

past gradients, this technique helps to increase convergence and stability during 

training. 

3.5.3.2. Root Mean Square Propagation (RMSprop) 

An optimization approach called Root Mean Square Propagation, or RMSprop, 

modifies the learning rate for each parameter according on the strength of its gradients. 

The following are the RMSprop optimizer's mathematical expressions: 

a. Initialization 

 Learning rate  : Step size for updating the parameters 

 Decay rate  : Decay rate for the moving average of squared gradients 

 Epsilon  : Small constant for numeric stability 

 Initialization step 0t    

 Initialize cache 0 (Initial accumulated squared gradients) 

b. Update Rule 

The update strategy for the RMSprop optimizer can be written as follows given a loss 

function L and its gradient in terms of the model parameters: 

2
1. (1 ).t t tcache cache g      

1 .t t t
t

g
cache

 
  

  
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Here, t represents the time step, t represents the models parameters at that particular 

time step t, moving average of the squared gradients is represented by tcache ,   

represents the decay rate,   the learning rate,  is considered as a small constant to 

prevent division by zero. 

c. Adaptation of learning rate 

Based on the size of each parameter's gradients, RMSprop modifies the learning rate 

for each one separately. Larger gradient values will have a lower effective learning rate, 

whereas smaller gradient parameters would have a higher effective learning rate. This 

aids in preventing oscillations or divergence during training due to an excessively high 

learning rate. A small constant ‘epsilon’ is added to the denominator, particularly when 

the cumulative squared gradients are minimal, to prevent division by zero and provide 

numerical stability. 

RMSprop is a highly helpful optimizer for training neural networks since it adapts the 

learning rates to stabilize the process. It is a widely applied optimization method that 

serves as the basis for other algorithms, such as Adam. 

3.5.3.3. Adam 

The Adam optimizer is a method that integrates the concepts of RMSprop and 

momentum-based optimization. The following are the Adam optimizer's mathematical 

expressions: 

a. Initialization 

 Learning rate  : Step size for updating the parameters 

 1 : exponential decay rate for first moment 

 2 : exponential decay rate for second moment 

  : Small constant for numeric stability 

 t=0 Initialization step 
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 Initialize 0m = 0, The first initial moment vector 

 Initialize 0 = 0, The second initial moment vector 

b. Update Rule 

Assuming a loss function L and its gradient concerning the model parameters, the 

Adam optimizer's update rule may be articulated in this way: 

1 1 1. (1 ).t t tm m g                                                                                                                         

2
2 1 2. (1 ).t t tg              

         14 

1
1 2

ˆˆ ˆ, , .
1 1 ˆ

t t t
t t t tt t

t

m u mm u
u

  
     

                  

where t, as usual represents the time step, t are model parameters at time step t, tg is 

the loss function gradient with respect to the model parameters at time step t, tm is the 

first moment estimate (mean)  of gradients, tu is the second moment estimate 

(uncentered estimate) of the gradients, ˆ tm and ˆtu are bias-corrected estimates of tm and 

t to account for their initialization at zero,  is the learning rate. 

c. Bias correction 

The Adam optimizer applies bias correction to the moment estimates to account for 

their initialization at zero. This correction is necessary particularly at the beginning of 

training when t is small. Adam can also incorporate optional L2 regularization (weight 

decay) by adding . t   to the gradient update, where   is the regularization parameter. 

Because Adam is adaptable, it can handle a variety of data formats and model 

topologies with ease, which makes it a popular choice in practice. Adam converges 

more quickly and is more resilient to noisy gradients thanks to the combination of 

momentum and RMSprop. 
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3.5.3.4. Nadam 

Nadam is an advancement of the Adam that incorporates Nesterov momentum into the 

adaptive learning rate scheme. The mathematical expressions of Nadam optimizer can 

be given as follows: 

a. Initialization 

 Learning rate  : Step size for updating the parameters 

 1 : exponential decay rate for first moment 

 2 : exponential decay rate for second moment 

  : Small constant for numeric stability 

 t=0 Initialization step 

 Initialize 0m = 0, The first initial moment vector 

 Initialize 0 = 0, The second initial moment vector 

b. Update Rule 

Given a loss function L and its gradient with respect to model parameters tg , the update 

rule for Nadam optimizer is same as Adam and can be formulated as follows: 

1 1 1. (1 ).t t tm m g            
         16 

2
2 1 2. (1 ).t t tg              
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     
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where t is time step, t are model parameters at time step t, tg is the loss function 

gradient with respect to the model parameters at time step t, tm is the first moment 

estimate (mean)  of gradients, tu is the second moment estimate (uncentered estimate) 

of the gradients, ˆ tm and ˆtu are bias-corrected estimates of tm and t to account for their 

initialization at zero,  is the learning rate. 

c. Nesterov Momentum 

Nadam incorporates Nesterov momentum into the update rule by updating the 

parameters in two steps. First, it calculates the gradient at the estimated next position 

ˆ (1 )..
ˆ

t t t
t

t

m g 
 

 


  

 

then it applies the gradient descent step using this estimated gradient. 

Nadam is effective for training neural networks, combining the advantages of adaptive 

learning rates (as in Adam) with the improved convergence properties of Nesterov 

momentum. It is widely used in practice for optimizing deep learning models. 

3.5.4. Evaluation Metrics 

During the evaluation phase of our proposed DA-CNN model, a wide range of 

evaluation measures are employed to attain a complete comprehension of the model's 

functionality and efficacy. The accuracy and other factors that effectively convey the 

performance of the model are included in these assessments. Higher the accuracy, 

better the model’s performance. The performance metrics employed are presented in 

this section. 

3.5.4.1. Accuracy 

The primary criterion for evaluating the model's overall soundness is its accuracy. It is 

considered by taking the total quantity of predictions and dividing it by the right 

number of predictions. 
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P

 
 

 

Where Pc represents the number of accurate predictions and Pt represents the number 

of total predictions. 

3.5.4.2. Mean Absolute Error 

MAE is the most crucial metric for assessing how well ML and DL models are working. 

Essentially, it informs us of the degree to which the predicted value differs from the 

true or anticipated value. The positive difference among the true and predicted value at 

each data point is utilized in the computation. The model performs better when the 

MAE value is lower. Mathematically, it can be shown as: 

1

1 ˆ| |
z

i i
i

MAE k k
z 

 
 

 

Here, z shows the number of total data points, ik  shows the measured value for ith data 

point, îk shows the predicted value for ith data point.  

3.5.4.3. Dice Coefficient (DSC) 

Dice coefficients are frequently utilized performance statistic in computer vision and 

medical image processing that evaluates the level of resemblance between two sets and 

the accuracy or total overlap of segmentation algorithms. This metric yields a value 

that represents the extent to which segmentations of objects within an image truly 

overlap. On the dice coefficient scale, which goes from 0 to 1, a higher score indicates 

greater overlap or agreement between the two segmentations, and vice versa. The dice 

coefficient can be calculated mathematically using the following formula: 

2 | |
| | | |

L MDiceCoeff
L M
 


  
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where L denotes the entire set of pixels that the predicted segmentation classifies as 

belonging to the object, M represents the whole set of pixels that the true segmentation, 

which is used as a reference, and | |L M  denotes the total number of pixels that 

overlap between the two sets. 

3.5.4.4. Sensitivity 

In the context of CNN models, sensitivity is an evaluation metric that is employed to 

get a picture of model’s performance in the classification tasks. It can also be termed 

as true positive rate or the recall. In essence, sensitivity indicates how well the model 

detects positive cases among all of the real positive examples present in the dataset. It 

is especially crucial in situations like anomaly detection or medical diagnostics where 

accurately recognizing positive cases is essential. This is basically the number of actual 

positive cases that are correctly predicted by the model.  

Mathematically, it can be expressed as: 

TxSety
Tx Uy


  

 

Tx represents the true positives and Uy represents the false negatives. 

3.5.4.5. Specificity 

On the contrary to sensitivity, the specificity measures the true negative cases that the 

model accurately identifies. The model's specificity indicates how well it detects 

negative cases among all of the real negative cases in the dataset. It is especially 

significant in applications related to security or quality control, where accurately 

recognizing negative cases is essential. Mathematically, it can be expressed as: 

TySpty
Ux Ty


  

 

Ty represents true negatives and Ux represents false positives. 
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3.6. Summary 

This chapter presents the detailed methodology which has been followed throughout 

the course of this research work. This include all the technicalities and details on the 

model architectures, dataset description, optimization techniques and hyperparameter 

tuning process along with theoretical and mathematical frameworks of the modalities 

and optimizers followed by the evaluation metrics that have been employed to get a 

clear understanding on the performance of the proposed models. 
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CHAPTER 4 

SIMULATIONS AND ANALYSES 

4.1. Introduction 

This section presents various subsections regarding the results obtained during 

the course of simulation and a case study based on three different optimization 

strategies as well as the evaluation of the proposed models on various evaluation 

metrics. 

4.2. Simulations and Results 

This section refers to the outcomes that are attained after the comprehensive 

experimentation in the environment mentioned in section 3. The extensive pre-

experimentation leads us to define some optimal hyperparameters such as 0.001 

learning rate, 32-sample batch size, verbose equal to 2 and the training process 

continued for 100 epochs. The loss monitored was categorical cross-entropy and five 

benchmark evaluation metrics such as accuracy, mean absolute error, dice-coefficient, 

sensitivity and specificity were monitored epoch wise.  

4.3. Learning behavior of DA-CNN model 

4.3.1. Case-1: Adam 

In the first case study, the suggested CNN architecture has been compiled by the Adam 

optimizer that combines the ideas of momentum-based optimization and RMSprop 

(Root Mean Square Propagation) into a single algorithm as discussed in detail in section 

5.3. The optimal hyperparameter stood out at batch-size of 32, learning-rate of 0.001 

for 100 iterations. The model’s accuracy came out to be 91.11% as the result of 

implementing the enhanced feature extraction techniques based on separable dynamic 

convolution and channel split dual attention. The model has demonstrated the bias of 

0.05 and variance of 0.10. Moreover, the generalized accuracy stands out to be 0.91, 

test loss of 0.28, test MAE of 0.08, test dice coefficient of 0.84, test sensitivity of 0.90 
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and test specificity of 0.97, AUR-ROC of 0.991. The epoch wise trend of evaluation 

metrics on training and validation sets is presented in Figure 14. Furthermore, the 

resulted confusion matrix is displayed in Figure 15. 

a b c 

d e f 

Figure 14: Final AUC-ROC Curve of the model(b); Epoch wise trend of evaluation metrics 
(a) Accuracy (c) Dice coefficient (d) Sensitivity (e) Mean Absolute Error (f) Specificity 

 

Figure 15: Confusion matrix presenting the complete picture of predictive capabilities of the 
model 
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4.3.2. Case-2: Adafactor 

In the second case study, the proposed DA-CNN model has been compiled using the 

Adafactor optimizer which scales the learning-rate differently for each parameter based 

on the past gradients of that parameter as discussed in detail in section 5.1. The optimal 

hyperparameter stood out at batch-size of 32, learning-rate of 0.001 for 100 iterations. 

The model’s accuracy came out to be 91.01% as the result of implementing the 

enhanced feature extraction techniques based on separable dynamic convolution and 

channel split dual attention. The model has demonstrated the bias of 0.36 and variance 

of 0.21. Moreover, the generalized accuracy comes out to be 0.91, test loss of 0.28, test 

MAE of 0.08, test dice coefficient of 0.85, test sensitivity of 0.90 and test specificity of 

0.97, AUC-ROC of 0.991. The epoch wise trend of evaluation metrics on training and 

validation sets along with confusion matrix is presented in Figure 16. Furthermore, the 

computed confusion matrix is displayed in Figure 17. 

Figure 16: Final AUC-ROC Curve of the model(b); Epoch wise trend of evaluation metrics 
(a) Accuracy (c) Dice coefficient (d) Mean Absolute Error (e) Sensitivity (f) Specificity 

a b c 

d e f 
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Figure 17: Confusion matrix presenting the complete picture of predictive capabilities of the 
model 

4.3.3. Case-3: Nadam 

In the third case study, the proposed DA-CNN method has been compiled using the 

Nadam optimizer that is an extension of the Adam optimizer that incorporates Nesterov 

momentum into the adaptive learning rate scheme, as discussed in detail in section 5.4. 

The optimal hyperparameter stood out at batch-size of 32, learning-rate of 0.001 for 

100 iterations. The model’s accuracy came out to be astonishing 97.4% which is the 

ultimate result of implementing the enhanced feature extraction techniques based on 

separable dynamic convolution and channel split dual attention. The model has 

demonstrated the bias of 0.06 and variance of 0.01. Moreover, the generalized accuracy 

comes out to be 0.974, test loss of 0.08, test MAE of 0.02, test dice coefficient of 0.97, 

test sensitivity of 0.98 and test specificity of 0.99, AUC-ROC of 0.999. The epoch wise 

trend of evaluation metrics on training and validation sets along with confusion matrix 

is presented in Figure 18. Furthermore, the calculated confusion matrix is displayed in 

Figure 19. 



- 60 - 
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d e f 

Figure 18: Final AUC-ROC Curve of the model(b); Epoch wise trend of evaluation metrics (a) 
Accuracy (c) Dice coefficient (d) Mean Absolute Error (e) Sensitivity (f) Specificity 

 

Figure 19: Confusion matrix presenting the complete picture of predictive capabilities of the 
model 
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4.3.4. Case-4: RMSprop 

In the fourth case study, the proposed DA-CNN model has been compiled using the 

RMSprop optimizer. The optimal hyperparameter stood out at batch-size of 32, 

learning-rate of 0.001 for 100 iterations. The model’s accuracy came out to be 

astonishing 89% due to implementing the enhanced feature extraction techniques based 

on separable dynamic convolution and channel split dual attention. The model has 

demonstrated the bias of approximately 0.10 and variance of 0.10. Moreover, the 

generalized accuracy comes out to be 0.89, test loss of 0.37, test MAE of 0.06, test dice 

coefficient of 0.88, test sensitivity of 0.89 and test specificity of 0.96, AUC-ROC of 

0.992. The epoch wise trend of evaluation metrics on training and validation sets along 

with confusion matrix is presented in Figure 20. Additionally, the resulted confusion 

matrix is displayed in Figure 21. 

Figure 20: Final AUC-ROC Curve of the model(b); Epoch wise trend of evaluation metrics (a) 
Accuracy (c) Dice coefficient (d) Mean Absolute Error (e) Sensitivity (f) Specificity 

a b c 

d e f 
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Figure 21: Confusion matrix presenting the complete picture of predictive capabilities of the 
model 

4.4. Learning Behavior of CF-CNN Model 

In this research work, the training process of the proposed CF-CNN model goes on for 

100 epochs which is significantly low as compared to various state-of-the-art models 

discussed in ‘Related Work’ section (avg_epochs=350). The overall training 

performance is assessed by the training and validation loss, training and validation 

accuracy. Moreover, the key evaluation metrics such as mean absolute error (MAE) and 

the dice coefficient (DSC) are also calculated at each epoch to get a better understanding 

of training process and ultimately the model’s performance. Figure 22 presents the train 

and validation loss whereas figure 10 shows the train and validation accuracy. We see 

a gradual decline in the loss epoch wise. Figure 23 presents the model's accuracy for 

the train and validation data. The figure exhibits minimal overfitting and a notable 

increase in accuracy. Particularly noteworthy is the significant increase in accuracy at 

epoch 15, which corresponds to a turning point in the model's learning trajectory. 
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Figure 22: Training and Validation Loss 

 

Figure 23: Training and Validation Accuracy 

Figure 24 shows the plot of training and validation Dice coefficient metric over the 

epoch during the training phase. Overall, every key performance metric, including 

values of dice coefficient with peaks or plateaus, shows the segmentation of the model 

and identifies the critical features well throughout the training procedure. 
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Figure 24: Training and Validation Dice Coefficient 

 
Figure 25: Training and Validation Mean Absolute Error 

Figure 25 extends the analysis by presenting the Mean Absolute Error (MAE) across 

epochs. The model's ability to minimize average absolute discrepancies between 

predicted and true values is demonstrated by the steady drop in MAE. This pattern 

demonstrates how the model's accuracy increased during training. These figures' 

analysis points to a balanced model that performs well in segmentation tasks and 

skillfully minimizes both error measures. We investigate further possible relationships 

and trade-offs between accuracy, Mean Absolute Error (MAE), and Dice coefficient, 

offering valuable information on the complex functionality of our suggested design. 
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Figure 26: Confusion Matrix 

4.5. Integrating the interpretability of the model using XAI 

This section discusses the incorporation of explainable Artificial Intelligence (XAI) 

techniques specifically Grad-CAM (Gradient-weighted Class Activation Mapping) and 

LIME (Local Interpretable Model-agnostic Explanations) into our proposed CF-CNN 

model design with a focus on increasing interpretability of the model. The concept of 

XAI contributes to research particularly in certain fields of study such as medical 

imaging because the transparency of decision-making systems makes an impact on 

acceptance and confidence. A tool – XAI augments the cognitive abilities of humanity 

by showing how complex the decisions models have to make are. The introduction 

presents a detailed on XAI approaches and leads to the point that it is necessary to 

improve models’ transparency. There are very important to get rid of the intrinsic 

ambiguity of complex neural networks. 
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It becomes clear that the last Conv Attention layer is essential to maintaining the 

model's interpretability. All of the crucial features needed for precise classification are 

retrieved at this layer, providing a clear understanding of the methods used to make the 

model's conclusions intelligible to end users. 

Grad-CAM distinguishes itself in particular by emphasizing important areas in medical 

pictures, giving end users insight into the particular characteristics that affect the 

model's forecasts. Furthermore, LIME provides insights at the local level to supplement 

Grad-CAM with its model-agnostic methodology. The detected patterns, revelations, 

or anomalies revealed by these interpretability techniques are the main topics of 

discussion. To complement and illustrate our findings, we have provided visualizations 

such as Grad-CAM heatmaps and LIME perturbation explanations. Various highlight 

the interpretative value of these XAI techniques in improving our comprehension of the 

model's decision-making processes. 

4.5.1. XAI techniques incorporated with CF-CNN model 
Following figures shows the interpretability of CF-CNN model. In Figure 27, it can be 

seen quite clearly that the true label of image is DRUSEN, which is condition in which 

lipid and protein deposits occur under the retina, which are highlighted in the heatmap 

and then superimposed on to the original image so that the interpretability is made. The 

model has learned this feature and made the decision based on the selected region in 

the heatmap. Figure 28 shows the model’s interpretability through XAI technique 

GradCAM on sample image of Diabetic Macular Edema. As we know that DME is 

manifested as retinal thickening caused by the accumulation of intraretinal fluid 

primarily in the inner and outer plexiform layers. It can be seen quite clearly on heat 

map that the feature that made the model to classify this image as DME in the 

intraretinal fluid that has been accumulated in the layer of retina. Hence, the XAI feature 

of the model is performing and it can be interpreted that the model has learned the 

features quite well. 
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Figure 27: Model’s interpretability through XAI on sample image of Drusen 

 

Figure 28: Model's Interpretability through XAI on sample image of DME 

As we know from the introduction section that CNV is a component of the exudative 

age-related macular degeneration (AMD) spectrum, which is characterized by aberrant 

vessel growth over the Bruch's membrane from the choroidal vasculature to the 

neurosensory retina. Figure 29 presents the XAI’s interpretation of sample image of 

choroidal neovascularization (CNV) condition which demonstrates through the 

heatmap clearly, the unnatural development of blood vessels beneath the retina. 

Similarly, the XAI technique LIME marks the boundaries in the region where the 

problem lies, giving the treating physician or surgeon a better understanding of the 

model’s prediction, which addresses the purpose of integrating the XAI techniques in 

precision medicine, precisely the artificial intelligence systems in the field of medical 

imaging. LIME interpretations are shown in Figure 30. 
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Figure 29: Model's interpretability through XAI on sample image of CNV 

 

Figure 30: LIME interpretation of the proposed CF-CNN model 

4.5.2. XAI techniques incorporated with DA-CNN model 

To complement and illustrate our findings, we have provided visualizations based on 

Grad-CAM heatmaps. To implement Grad-CAM (Gradient-weighted Class Activation 

Mapping) for explainable AI (XAI) technique, the following stages are involved in 

Grad-CAM explanations: 1. Loading the trained model. 2. Getting the output of the last 

convolutional layer and the predicted class score. 3. Computing the gradient of the 

predicted class score with respect to the output feature map. 4. Computing the 

importance weights by averaging the gradients. 5. Generating the heatmap by 

multiplying the importance weights with the output feature map.6. Visualizing the 

heatmap overlaid on the input image. For the visualizations, we will consider the model 

that is compiled using Nadam optimizer. The XAI interpretations are shown in Figure 

[31-34]. 
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Figure 31: XAI interpretation of model on the class CNV 

In Figure 31, it can be observed quite clearly that the model GradCAM technique 

highlights the regions where the problem lies. We are certain that the CNV condition 

arises due to irregular development of blood vessels beneath the retina. The OCT scan 

has the features that show the irregular evolution of blood vessels underneath the retina, 

hence captured by the model, learned and presented in the output. Heatmap is separately 

generated and then superimposed on to the original image pointing towards the actual 

spots where the blood vessels are grown. 
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Figure 32: XAI interpretation of the model on the class DME 

In Figure 32, the interpretations of GradCAM technique on DME class is presented. 

The region where the edema (accumulation of fluid) lies can be observed quite clearly 

which is the basic cause of the condition i.e., Diabetic Macular Edema. The OCT scan 

has the features that show the edema or the accumulation of sub retinal fluid underneath 

the retina, hence captured by the model, learned and presented in the output. Heatmap 

is separately generated and then superimposed on to the original image pointing 

towards the actual spots where the edema is located. 

 

 

Figure 33: XAI interpretation of the model on the Drusen class 
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Drusen, we already know is the condition in which the lipids or fats are deposited 

underneath the retina hence resulting in AMD.  In Figure 33, the interpretation of the 

model generated through XAI technique GradCAM is presented in which the retinal 

region where the lipid or fat deposits are located is highlighted. Ultimately, it assists 

the physician or the surgeon to trust the decision made by the CNN model hence 

eliminating any ambiguity. As the normal retinal layer must not contain any spot that 

is caused due to various conditions like CNV, DME, AMD or Drusen, the interpretation 

of the model that is presented in Figure 34 is clearly highlighting the whole retinal layer, 

demonstrating that there is no problem what so ever with the retina, hence the decision 

of the model to predict this image as Normal. Heatmap is separately generated again 

and then superimposed on to the original image pointing towards the whole retinal 

layer. 

 

 

Figure 34: XAI interpretation of the model on the Normal class 
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4.6. Visualizing the predictions 

This section analyses the predictive capacity of the proposed models, analyzing their 

performance based on important metrics and practical scenarios. The main objective is 

to get the understanding of the generalization ability of the models to real life data on 

which the model has not been trained and also to observe how much correctness is 

achieved by the model. In order to achieve accurate predictions in a variety of scenarios, 

this requires a thorough study that goes beyond simple statistics. This analysis will 

reveal the model's stability and consistency. The predictive capability of our models is 

tested in real-world settings in addition to numerical data. That is, testing the models 

with new and never-tried images to evaluate its adaptability for real application. Figure 

35 demonstrate our models’ predictions following training and validation. 
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Figure 35: Generalized predictions obtained on test data 

4.7. Summary 

This chapter presents the detailed results along with the analyses of the results that have 

been obtained after extensive experimentation. Moreover, the visualizations of the 

predictions that the model has done are also presented alongside the visualizations of 

the Explainable Artificial Intelligence techniques GradCam and LIME. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1. Introduction 

In the concluding chapter of the research, we review the main findings of the 

study, stimulate a critical evaluation of the results obtained and describe the limitations 

that were observed throughout the research. The conclusions section gives an 

understanding of usefulness and significance of the proposed methodologies and the 

final section of the discussion offers an assessment of general significance of these 

findings. Furthermore, we suggest future research agendas pointing to areas of 

enhancement and exploration which the present study could build upon. 

5.2. Discussions 

By the analysis of the results presented in preceding chapter, it can be observed in terms 

of bias and variance that the DA-CNN model is trained with low bias and low variance 

with each optimizer, having slightly higher variance when compiled with generalized 

fractional steepest descent optimizer but not so high to consider it, hence all the 

optimizers result in best fit models.  

There is no issue of underfitting or overfitting as per the analysis of bias and 

variance values. Now, to make the choice of the best performing model, we are 

presented with various other evaluation metrics. If we have a look at the model in terms 

of accuracy, the model shows the remarkable 97.4% accuracy when compiled with 

Nadam optimizer which is the best among all four, test loss of 0.08 which is lowest 

among all, MAE of 0.02 which is least among all, dice coefficient value of 0.97 which 

is best among all and shows 97% overlap hence the best segmentation between the sets, 

sensitivity of 0.98 which also is better than other 3 and shows the correct rate of 

predictions on positive cases, and specificity of 0.99 which is again the best among all 

four and shows the correct rate of predictions on negative cases and finally the AUC-

ROC score of 0.999 which is the most among all the cases under observation.  
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In a nutshell, based on bias and variance, all the models are best fit with slight difference 

between the values of bias and variance but in the terms of other benchmark evaluation 

metrics that are exploited to get the comprehensive assessment of the model, the model 

stands out on the performance when it is compiled by the Nadam optimizer, hence we 

will consider the model compiled with Nadam as the go-to or first choice model. 

Moreover, the most can also be considered as scalable and robust to the inherent noise 

because the test data set that has been employed to get the results contains variations of 

noisy images as well and it performs equally good on unseen data. Table 4, enlists the 

detailed performance comparison of proposed DA-CNN model with specified metrics 

and Table 5 presents the classification report of CF-CNN model. The graphical 

illustration of the summarized evaluation metrics is revealed in Figure 36.  

Table 4: Summarized performance metrics based of four optimizers on DA-CNN model 

Optimizer Accuracy Sensitivity Specificity AUCROC Dice MAE Bias Variance 

Adam 0.91 0.90 0.97 0.991 0.84 0.08 0.05 0.10 

Adafactor 0.91 0.90 0.97 0.991 0.85 0.08 0.36 0.21 

Nadam 0.97 0.98 0.99 0.999 0.97 0.02 0.06 0.01 

RMSprop 0.89 0.89 0.96 0.992 0.88 0.06 0.10 0.10 

 

Figure 36: Graphical representation of the summary and comparison of performance metrics 
of DA-CNN model 
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Table 5: Classification report of CF-CNN model 

Classification 
Report 

Precision Recall F1-Score Support 

Normal 0.96 0.99 0.98 242 
CNV 0.92 0.99 0.95 242 
DME 0.99 0.93 0.96 242 
Drusen 0.99 0.94 0.96 242 
Accuracy   0.96 968 
Macro avg 0.97 0.96 0.96 968 
Weighted avg 0.97 0.96 0.96 968 

5.3. Comparison with state-of-the-art models 

5.3.1. Comparison of DA-CNN model 
Table 6, shows the performance comparison of proposed DA-CNN model with 

benchmark methods on accuracy. The graphical comparison of CNN with state-of-the-

art models can been seen in Figure 37. The remarkable gains are achieved in terms of 

accuracy, Mean Absolute Error and the Dice coefficient, Sensitivity and Specificity. 

From performance comparison tables and graphs, it is seen that proposed DA-CNN 

model has outperformed the counterparts in accurate and efficient classification of OCT 

images. This displays the efficiency of the proposed DA-CNN model with respect to 

accurate prediction of eye condition i.e., Normal, CNV, DME or Drusen. 

Table 6: Performance Comparison of proposed DA-CNN model with existing benchmark 
models 

Reference Model/Methodology Classes Accuracy 
[47] Convolutional Neural Network (CNN) 2 and 3 91.77 
[34] IF-CNN 4 87.3 
[46] Transfer learning with Inception ResNet V2 4 86 
[54] CNN 2 93 
[55] DenseNet 4 88 
[55] ResNet50 4 89 
Proposed DA-CNN  4 97.4 
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Figure 37: Graphical representation of comparison of proposed model with existing models 

5.3.2. Comparison of CF-CNN model 
Table 7 shows the performance comparison of proposed CF-CNN model with state-of-

the-arts (SOTA) models on accuracy. The graphical comparison of CNN with state-of-

the-art models can been seen in Figure 38. The remarkable gains are achieved in terms 

of accuracy, Mean Absolute Error and the Dice coefficient. From performance 

comparison tables and graphs, it is seen that proposed CF-CNN model has 

outperformed the counterparts in accurate and efficient classification of OCT images. 

This shows the effectiveness of the proposed CF-CNN model in terms of accurate 

prediction of eye condition i.e., Normal, CNV, DME or Drusen. 

Table 7: Comparison of Accuracy of CF-CNN model with standard counterparts 

Reference Model/Methodology Classes Accuracy 
[47] Convolutional Neural Network (CNN) 2 and 3 91.77 
[34] IF-CNN 4 87.3 
[46] Transfer learning with Inception ResNet V2 4 86 
[54] CNN 2 93 
[55] DenseNet 4 88 
[55] ResNet50 4 89 
Proposed CF-CNN  4 96.88 
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Figure 38: Graphical Representation of comparison with SOTA 

5.4. Conclusions 

 In this research work, two customized CNN based architectures to accurately 

distinguish the OCT scans into four different classes i.e., Drusen, CNV, Normal 

and DME are proposed. 

 Latest features and techniques are exploited such as separable dynamic 

convolution, dynamic convolution, spatial attention and channel split dual attention 

for the enhanced feature extraction. This permits the model to acquire the features 

accurately through the OCT images which is a non-invasive method to get the 

image of internal structure of the eye.  

 One of the models i.e. DA-CNN is then compiled using four different optimizers 

for error back propagation that are Adam, Adafactor, Nadam and RMS prop.  

 By the comprehensive analysis of the results and comparison based on various 

evaluation metrics, we conclude that the DA-CNN model performs best when 

compiled with Nadam optimizer hence we consider that particular approach as 

best-fit.  
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 Interpretability of the model is integrated based on GradCAM XAI technique in 

which the model highlights the region or the features on the OCT images based on 

which the classification decision is matured.  

 The model outperforms various state-of-the-arts on different evaluation metrics and 

achieves the optimal accuracy in quite a smaller number of iterations. 

 

5.5. Future Work 

As for future work, we have listed the performance improvement and the generalization 

of these CNN architectures as a promising direction.  

 The model could be more generalizable if a larger and a more diverse dataset were 

collected from different population, aging, and diseases using different types of 

OCT images.  

 The presence of such diversity should further add to the dataset’s capacity to arrest 

the model’s degeneration, creating a more fortified immunity in confronting a 

wider range of patients.  

 Furthermore, using actual OCT images intensively processed with advanced data 

augmentation strategies that can be developed for OCT images, may further 

enhance its ability to detect even submicroscopic changes within the eye and 

enhance its diagnostic abilities even in the most complex cases. 

 Another aspect of future work is that the current study can be extended by 

considering other forms of interpretability in addition to GradCAM, thereby 

gaining a better understanding of the predictions of the developed model.  

 Other techniques, like LRP or SHAP, that provide more refined information that 

this paper provided may give the doctors a better non-simplified understanding of 

how the model works.  

 Finally, integrating this CNN model into a real-time OCT image analysis platform 

or embedding it into portable diagnostic tools would be another step to 

democratizing diagnostic eye health assessment in point-of-care analyses. 
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5.6. Summary 

This chapter presents the discussions on the results obtained and the comparison of the 

achieved values of the evaluation metrics with the standard counterparts and the models 

and methodologies mentioned in the literature along with the conclusions and the future 

directions of the research. 

  



- 81 - 

 

REFERENCES 

 

[1] J. Yanase and E. Triantaphyllou, “A systematic survey of computer-aided 
diagnosis in medicine: Past and present developments,” Expert Syst Appl, vol. 
138, Dec. 2019, doi: 10.1016/J.ESWA.2019.112821. 

[2] S. Kaur et al., “Medical Diagnostic Systems Using Artificial Intelligence (AI) 
Algorithms: Principles and Perspectives,” IEEE Access, vol. 8, pp. 228049–
228069, 2020, doi: 10.1109/ACCESS.2020.3042273. 

[3] M. Rezaei et al., “Role of Artificial Intelligence in the Diagnosis and Treatment 
of Diseases,” Kindle, vol. 3, no. 1, pp. 1–160, Jul. 2023, Accessed: Apr. 28, 2024. 
[Online]. Available: http://preferpub.org/index.php/kindle/article/view/Book23 

[4] “Fundamentals of Medical Imaging - Paul Suetens - Google Books.” Accessed: 
Jan. 06, 2024. [Online]. Available: 
https://books.google.com.pk/books?hl=en&lr=&id=U11EDgAAQBAJ&oi=fnd
&pg=PA9&dq=medical+imaging&ots=vfYYP8OsTp&sig=zqz_Vv1AqR5-
e0TnHf9QYRKlo8k&redir_esc=y#v=onepage&q=medical%20imaging&f=fals
e 

[5] D. Huang et al., “Optical Coherence Tomography,” Science (1979), vol. 254, no. 
5035, pp. 1178–1181, Nov. 1991, doi: 10.1126/SCIENCE.1957169. 

[6] J. P. O. Li et al., “Digital technology, tele-medicine and artificial intelligence in 
ophthalmology: A global perspective,” Prog Retin Eye Res, vol. 82, p. 100900, 
May 2021, doi: 10.1016/J.PRETEYERES.2020.100900. 

[7] A. Ashaye, A. J. Ajuwon, and C. Adeoti, “Perception of blindness and blinding 
eye conditions in rural communities.,” J Natl Med Assoc, vol. 98, no. 6, p. 887, 
Jun. 2006, Accessed: Jan. 06, 2024. [Online]. Available: 
/pmc/articles/PMC2569369/?report=abstract 

[8] H. E. Grossniklaus and W. R. Green, “Choroidal neovascularization,” Am J 
Ophthalmol, vol. 137, no. 3, pp. 496–503, Mar. 2004, doi: 
10.1016/J.AJO.2003.09.042. 



- 82 - 

 

[9] G. E. Lang, “Diabetic Macular Edema,” Ophthalmologica, vol. 227, no. Suppl. 
1, pp. 21–29, Apr. 2012, doi: 10.1159/000337156. 

[10] X. Zhang and S. Sivaprasad, “Drusen and pachydrusen: the definition, 
pathogenesis, and clinical significance,” Eye 2020 35:1, vol. 35, no. 1, pp. 121–
133, Nov. 2020, doi: 10.1038/s41433-020-01265-4. 

[11] N. J. Y. Yeo, E. J. J. Chan, and C. Cheung, “Choroidal neovascularization: 
Mechanisms of endothelial dysfunction,” Front Pharmacol, vol. 10, 2019, doi: 
10.3389/FPHAR.2019.01363/FULL. 

[12] “Diabetes-Related Macular Edema (DME): Symptoms & Treatment.” Accessed: 
Oct. 28, 2024. [Online]. Available: 
https://my.clevelandclinic.org/health/diseases/24733-diabetes-related-macular-
edema 

[13] “Schematic representation of the eye with structural and cellular... | Download 
Scientific Diagram.” Accessed: Oct. 28, 2024. [Online]. Available: 
https://www.researchgate.net/figure/Schematic-representation-of-the-eye-with-
structural-and-cellular-organization-of-the_fig1_367350142 

[14] “BDES Study - Klein Lab.” Accessed: Oct. 28, 2024. [Online]. Available: 
https://klein.ophth.wisc.edu/bdes-study/ 

[15] O. Perdomo, S. Otalora, F. A. Gonzalez, F. Meriaudeau, and H. Muller, “OCT-
NET: A convolutional network for automatic classification of normal and 
diabetic macular edema using sd-oct volumes,” Proceedings - International 
Symposium on Biomedical Imaging, vol. 2018-April, pp. 1423–1426, May 2018, 
doi: 10.1109/ISBI.2018.8363839. 

[16] J. De Fauw et al., “Clinically applicable deep learning for diagnosis and referral 
in retinal disease,” Nature Medicine 2018 24:9, vol. 24, no. 9, pp. 1342–1350, 
Aug. 2018, doi: 10.1038/s41591-018-0107-6. 

[17] L. Fang, C. Wang, S. Li, H. Rabbani, X. Chen, and Z. Liu, “Attention to lesion: 
Lesion-Aware convolutional neural network for retinal optical coherence 
tomography image classification,” IEEE Trans Med Imaging, vol. 38, no. 8, pp. 
1959–1970, Aug. 2019, doi: 10.1109/TMI.2019.2898414. 



- 83 - 

 

[18] A. Alqudah, A. M. Alqudah, and M. Altantawi, “Artificial Intelligence Hybrid 
System for Enhancing Retinal Diseases Classification Using Automated Deep 
Features Extracted from OCT Images,” International Journal of Intelligent 
Systems and Applications in Engineering, vol. 9, no. 3, pp. 91–100, Sep. 2021, 
doi: 10.18201/ijisae.2021.236. 

[19] S. A. Tuncer, A. Çinar, S. Arslan Tuncer, A. Çınar, and M. Fırat, “Hybrid CNN 
Based Computer-Aided Diagnosis System for Choroidal Neovascularization, 
Diabetic Macular Edema, Drusen Disease Detection from OCT Images”, doi: 
10.18280/ts.380314. 

[20] S. Sotoudeh-Paima, A. Jodeiri, F. Hajizadeh, and H. Soltanian-Zadeh, “Multi-
scale convolutional neural network for automated AMD classification using 
retinal OCT images,” Comput Biol Med, vol. 144, p. 105368, May 2022, doi: 
10.1016/J.COMPBIOMED.2022.105368. 

[21] O. Akinniyi, M. M. Rahman, H. S. Sandhu, A. El-Baz, and F. Khalifa, “Multi-
Stage Classification of Retinal OCT Using Multi-Scale Ensemble Deep 
Architecture,” Bioengineering 2023, Vol. 10, Page 823, vol. 10, no. 7, p. 823, 
Jul. 2023, doi: 10.3390/BIOENGINEERING10070823. 

[22] W. Lu, Y. Tong, Y. Yu, Y. Xing, C. Chen, and Y. Shen, “Deep Learning-Based 
Automated Classification of Multi-Categorical Abnormalities From Optical 
Coherence Tomography Images,” Transl Vis Sci Technol, vol. 7, no. 6, pp. 41–
41, Nov. 2018, doi: 10.1167/TVST.7.6.41. 

[23] D. S. Kermany et al., “Identifying Medical Diagnoses and Treatable Diseases by 
Image-Based Deep Learning,” Cell, vol. 172, no. 5, pp. 1122-1131.e9, Feb. 
2018, doi: 10.1016/J.CELL.2018.02.010. 

[24] N. Saleh, M. Abdel Wahed, and A. M. Salaheldin, “Computer-aided diagnosis 
system for retinal disorder classification using optical coherence tomography 
images,” Biomedizinische Technik, vol. 67, no. 4, pp. 283–294, Aug. 2022, doi: 
10.1515/BMT-2021-0330/MACHINEREADABLECITATION/RIS. 

[25] N. Saleh, M. Abdel Wahed, and A. M. Salaheldin, “Transfer learning-based 
platform for detecting multi-classification retinal disorders using optical 
coherence tomography images,” Int J Imaging Syst Technol, vol. 32, no. 3, pp. 
740–752, May 2022, doi: 10.1002/IMA.22673. 



- 84 - 

 

[26] A. M. Salaheldin, M. Abdel Wahed, and N. Saleh, “Machine Learning-Based 
Platform for Classification of Retinal Disorders Using Optical Coherence 
Tomography Images,” pp. 269–283, 2022, doi: 10.1007/978-981-19-1653-3_21. 

[27] M. J. Allingham, J. A. Izatt, P. S. Mettu, S. J. Chiu, S. W. Cousins, and S. Farsiu, 
“Kernel regression based segmentation of optical coherence tomography images 
with diabetic macular edema,” Biomedical Optics Express, Vol. 6, Issue 4, pp. 
1172-1194, vol. 6, no. 4, pp. 1172–1194, Apr. 2015, doi: 
10.1364/BOE.6.001172. 

[28] D. Lu et al., “Deep-learning based multiclass retinal fluid segmentation and 
detection in optical coherence tomography images using a fully convolutional 
neural network,” Med Image Anal, vol. 54, pp. 100–110, May 2019, doi: 
10.1016/J.MEDIA.2019.02.011. 

[29] R. Tennakoon, A. K. Gostar, R. Hoseinnezhad, and A. Bab-Hadiashar, “Retinal 
fluid segmentation in OCT images using adversarial loss based convolutional 
neural networks,” Proceedings - International Symposium on Biomedical 
Imaging, vol. 2018-April, pp. 1436–1440, May 2018, doi: 
10.1109/ISBI.2018.8363842. 

[30] P. K. Upadhyay, S. Rastogi, and K. V. Kumar, “Coherent convolution neural 
network based retinal disease detection using optical coherence tomographic 
images,” Journal of King Saud University - Computer and Information Sciences, 
vol. 34, no. 10, pp. 9688–9695, Nov. 2022, doi: 10.1016/J.JKSUCI.2021.12.002. 

[31] S.-D. Ţălu, Ş. Ţălu, S.-D. Ţălu, and Ş. Ţălu, “Use of OCT Imaging in the 
Diagnosis and Monitoring of Age Related Macular Degeneration,” Age Related 
Macular Degeneration - The Recent Advances in Basic Research and Clinical 
Care, Jan. 2012, doi: 10.5772/33410. 

[32] U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunovićabstract, 
“A view of the current and future role of optical coherence tomography in the 
management of age-related macular degeneration,” 2017, doi: 
10.1038/eye.2016.227. 

[33] G. M. Comer et al., “Fully automated detection of diabetic macular edema and 
dry age-related macular degeneration from optical coherence tomography 
images,” Biomedical Optics Express, Vol. 5, Issue 10, pp. 3568-3577, vol. 5, no. 
10, pp. 3568–3577, Oct. 2014, doi: 10.1364/BOE.5.003568. 



- 85 - 

 

[34] L. Fang, Y. Jin, L. Huang, S. Guo, G. Zhao, and X. Chen, “Iterative fusion 
convolutional neural networks for classification of optical coherence 
tomography images,” J Vis Commun Image Represent, vol. 59, pp. 327–333, 
Feb. 2019, doi: 10.1016/J.JVCIR.2019.01.022. 

[35] A. S. Daniel Kermany, M. Goldbaum, W. Cai, M. Anthony Lewis, H. Xia, and 
K. Zhang Correspondence, “Identifying Medical Diagnoses and Treatable 
Diseases by Image-Based Deep Learning,” Cell, vol. 172, pp. 1122-1131.e9, 
2018, doi: 10.1016/j.cell.2018.02.010. 

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 
Recognition,” 2016. Accessed: Jan. 06, 2024. [Online]. Available: http://image-
net.org/challenges/LSVRC/2015/ 

[37] L. Huang, X. He, L. Fang, H. Rabbani, and X. Chen, “Automatic Classification 
of Retinal Optical Coherence Tomography Images with Layer Guided 
Convolutional Neural Network,” IEEE Signal Process Lett, vol. 26, no. 7, pp. 
1026–1030, Jul. 2019, doi: 10.1109/LSP.2019.2917779. 

[38] A. Serener and S. Serte, “Dry and wet age-related macular degeneration 
classification using OCT images and deep learning,” 2019 Scientific Meeting on 
Electrical-Electronics and Biomedical Engineering and Computer Science, 
EBBT 2019, Apr. 2019, doi: 10.1109/EBBT.2019.8741768. 

[39] V. Das, S. Dandapat, and P. K. Bora, “Multi-scale deep feature fusion for 
automated classification of macular pathologies from OCT images,” Biomed 
Signal Process Control, vol. 54, p. 101605, Sep. 2019, doi: 
10.1016/J.BSPC.2019.101605. 

[40] D. K. Hwang et al., “Artificial intelligence-based decision-making for age-
related macular degeneration,” Theranostics, vol. 9, no. 1, pp. 232–245, 2019, 
doi: 10.7150/THNO.28447. 

[41] S. Kaymak and A. Serener, “Automated age-related macular degeneration and 
diabetic macular edema detection on OCT images using deep learning,” 
Proceedings - 2018 IEEE 14th International Conference on Intelligent 
Computer Communication and Processing, ICCP 2018, pp. 265–269, Oct. 2018, 
doi: 10.1109/ICCP.2018.8516635. 



- 86 - 

 

[42] C. S. Lee, D. M. Baughman, and A. Y. Lee, “Deep Learning Is Effective for 
Classifying Normal versus Age-Related Macular Degeneration OCT Images,” 
Ophthalmol Retina, vol. 1, no. 4, pp. 322–327, Jul. 2017, doi: 
10.1016/J.ORET.2016.12.009. 

[43] Y. Sun, S. Li, and Z. Sun, “Fully automated macular pathology detection in retina 
optical coherence tomography images using sparse coding and dictionary 
learning,” https://doi.org/10.1117/1.JBO.22.1.016012, vol. 22, no. 1, p. 016012, 
Jan. 2017, doi: 10.1117/1.JBO.22.1.016012. 

[44] D. Sidibé et al., “An anomaly detection approach for the identification of DME 
patients using spectral domain optical coherence tomography images,” Comput 
Methods Programs Biomed, vol. 139, pp. 109–117, Feb. 2017, doi: 
10.1016/J.CMPB.2016.11.001. 

[45] O. Perdomo et al., “Classification of diabetes-related retinal diseases using a 
deep learning approach in optical coherence tomography,” Comput Methods 
Programs Biomed, vol. 178, pp. 181–189, Sep. 2019, doi: 
10.1016/J.CMPB.2019.06.016. 

[46] P. P. Srinivasan et al., “Fully automated detection of diabetic macular edema and 
dry age-related macular degeneration from optical coherence tomography 
images,” Biomed Opt Express, vol. 5, no. 10, p. 3568, Oct. 2014, doi: 
10.1364/BOE.5.003568. 

[47] Y. Rong et al., “Surrogate-assisted retinal OCT image classification based on 
convolutional neural networks,” IEEE J Biomed Health Inform, vol. 23, no. 1, 
pp. 253–263, Jan. 2019, doi: 10.1109/JBHI.2018.2795545. 

[48] M. Awais, H. Muller, T. B. Tang, and F. Meriaudeau, “Classification of SD-
OCT images using a Deep learning approach,” Proceedings of the 2017 IEEE 
International Conference on Signal and Image Processing Applications, ICSIPA 
2017, pp. 489–492, 2017, doi: 10.1109/ICSIPA.2017.8120661. 

[49] R. Rasti, H. Rabbani, A. Mehridehnavi, and F. Hajizadeh, “Macular OCT 
Classification Using a Multi-Scale Convolutional Neural Network Ensemble,” 
IEEE Trans Med Imaging, vol. 37, no. 4, pp. 1024–1034, Apr. 2018, doi: 
10.1109/TMI.2017.2780115. 



- 87 - 

 

[50] P. Seeböck et al., “Unsupervised Identification of Disease Marker Candidates in 
Retinal OCT Imaging Data Index Terms-Unsupervised deep learning, anomaly 
detection, biomarker identification, optical coherence tomography,” IEEE Trans 
Med Imaging, vol. 38, no. 4, 2019, doi: 10.1109/TMI.2018.2877080. 

[51] Y. Wang, R. Zhao, F. Zhou, Y. Zhang, and Z. Yao, “Machine learning based 
detection of age-related macular degeneration (AMD) and diabetic macular 
edema (DME) from optical coherence tomography (OCT) images,” Biomedical 
Optics Express, Vol. 7, Issue 12, pp. 4928-4940, vol. 7, no. 12, pp. 4928–4940, 
Dec. 2016, doi: 10.1364/BOE.7.004928. 

[52] M. A. Hussain et al., “Classification of healthy and diseased retina using SD-
OCT imaging and Random Forest algorithm,” PLoS One, vol. 13, no. 6, p. 
e0198281, Jun. 2018, doi: 10.1371/JOURNAL.PONE.0198281. 

[53] M. Haloi CTO, “Towards Ophthalmologist Level Accurate Deep Learning 
System for OCT Screening and Diagnosis”. 

[54] O. Perdomo, S. Otalora, F. A. Gonzalez, F. Meriaudeau, and H. Muller, “OCT-
NET: A convolutional network for automatic classification of normal and 
diabetic macular edema using sd-oct volumes,” Proceedings - International 
Symposium on Biomedical Imaging, vol. 2018-April, pp. 1423–1426, May 2018, 
doi: 10.1109/ISBI.2018.8363839. 

[55] K. A. Nugroho, “A Comparison of Handcrafted and Deep Neural Network 
Feature Extraction for Classifying Optical Coherence Tomography (OCT) 
Images,” 2018 2nd International Conference on Informatics and Computational 
Sciences, ICICoS 2018, pp. 141–146, Oct. 2018, doi: 
10.1109/ICICOS.2018.8621687. 

[56] G. Lemaître et al., “Classification of SD-OCT Volumes Using Local Binary 
Patterns: Experimental Validation for DME Detection,” J Ophthalmol, vol. 
2016, 2016, doi: 10.1155/2016/3298606. 

[57] N. Tasnim, M. Hasan, and I. Islam, “Comparisonal study of Deep Learning 
approaches on Retinal OCT Image,” pp. 23–24, 2019, Accessed: Jan. 06, 2024. 
[Online]. Available: 
https://www.kaggle.com/paultimothymooney/kermany2018 



- 88 - 

 

[58] F. Li et al., “Deep learning-based automated detection of retinal diseases using 
optical coherence tomography images,” Biomedical Optics Express, Vol. 10, 
Issue 12, pp. 6204-6226, vol. 10, no. 12, pp. 6204–6226, Dec. 2019, doi: 
10.1364/BOE.10.006204. 

  


