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ABSTRACT

Image classification of medical images for diagnostic purposes plays a significant role
in early and accurate disease detection in various scenarios such as brain tumor
classification, kidney stones detection, breast cancer detection, colorectal cancer
classification, detection of certain lungs conditions such as pneumonia, lung cancer,
COVID-19 and post-COVID-19 pneumonia etc., detection and classification of skin
cancer and various other ailments. In the realm of ophthalmic health, conventionally,
the surgeon or physician diagnoses the condition by analyzing the optical coherence
tomography scans (Retinal OCT Scans). To automate and revolutionize the diagnostic
process, an Al based efficient, fast, accurate, robust, reliable and interpretable system
is required to treat the patients with due care. To address the challenges related to the
Al based ophthalmic diagnosis tools, researchers have proposed various CNN based
solutions in which various trade-offs are observed such as architectural complexity for
improved accuracy, compromised feature extraction mechanisms and neglecting the
integration of explainability techniques to limit memory usage and lack of various
benchmark evaluation metrics that give information about various aspects of model’s
performance. In this research work, two architectures of CNN are designed, beginning
with an explainable “DA-CNN” model, having enhanced feature extraction mechanism
that is based on latest proposed techniques like separable dynamic convolution and
channel split dual attention. The second “CF-CNN” model is designed using dynamic
convolution and static convolution attention and it is also integrated with explainability
techniques. The proposed DA-CNN and CF-CNN models classify the OCT scan
images in four separate categories i.e., Normal, DME, Drusen and CNV, accurately

through enhanced feature extraction mechanisms, quickly through latest optimizers and
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also provide the explanations for their decisions by highlighting the prominent features
that were crucial in the decision-making process through explainable artificial
intelligence (XAI) techniques like GradCam and LIME. The suggested model
architectures surpass various standard competitors regarding accuracy, M.A.E., dice-
coefficient, AUC-ROC, sensitivity and specificity on benchmark OCT Kermany 2018
dataset. The proposed models achieve the optimal accuracy of 97.4 percent for ‘DA-
CNN’ and 96.68 percent for ‘CF-CNN’ in relatively lesser number of iterations as
compared to standard counterparts. Moreover, the ‘DA-CNN’ model is compiled by
exploiting four different optimizers i.e., Adam, RMSprop, Nadam and Adafactor at
four different instances. The case study of various evaluation metrics based on these

optimizers is also presented in this thesis.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

This chapter provides an overview of applications of Machine Learning and
Artificial Intelligence techniques in the field of healthcare, highlighting their
inevitability, implications and practical applications. Moreover, this chapter also
elaborates how different CNN based image classifiers are revolutionizing the
diagnostic systems for various ailments such as brain tumor classification, kidney
stones detection, breast cancer detection, colorectal cancer classification, detection of
certain lungs conditions such as pneumonia, lung cancer, COVID-19 and post COVID-
19 pneumonia etc., detection and classification of skin cancer and various other
conditions. Moreover, it presents the background and motivation behind the research
work which includes the basic information of retinal conditions in the scope of the
study and some statistics about the affecters of the three ocular conditions i.e. Choroidal
Neovascularization, Diabetic Macular Edema and Drusen that are in the scope of this

research work.

1.2. Inspiration and Background

The biomedical sciences have seen a computer science revolution in the last few
decades, particularly in the areas of diagnosis and disease detection[1]. Artificial
intelligence (AI) has completely changed the process of diagnosing diseases and
anatomizing bodies by doing classification tasks that previously required a great deal
of human effort. The medical industry is eager to embrace artificial intelligence
approaches because of the recent widespread expansion in the usage of Al-based
solutions, which function with very few errors, almost no accidents, and very few
misdiagnosis [2]. The application areas of artificial intelligence in healthcare are shown

in Figure 1.
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Figure 1: Applications of Al in healthcare

Using medical images to diagnose the condition, which if done manually can lead to
human error, several Al and deep learning networks and models are helpful in the
diagnosis and prognosis of numerous diseases, including brain tumors, ocular
conditions, kidney stone detection, lung cancer, and breast cancer[3]. Deep learning
techniques are utilized to interpret medical images that are obtained via various
techniques such as computed tomography scans, X-Ray scans, magnetic rays imaging
scans and optical coherence tomography scans. for the purpose of performing various
tasks, such as segmentation, classification, and prediction, all of which can be

completed accurately and without human intervention.

In the rapidly progressing world of medical diagnostics particularly medical imaging,
exploiting latest technology is important to make diagnosis better and quicker [4] As
far as eye care is concerned, where being accurate is super important for efficient patient
care, an optical coherence tomography (OCT) method has been developed [5].This tool
helps doctors see structural details better than ever but various eye conditions are very

complex, making it hard to identify them quickly and correctly [2].

The identification and supervision of retinal illnesses are significantly impacted by
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artificial intelligence. The technique makes it easier for ophthalmologists to focus on
patient care by demanding precise and accurate ocular layer identification and
extraction. In this work, the benefits of Al have been utilized to identify and classify an
eye condition; however, because of the retina's intricate anatomy, it takes a while for
the specialist to appropriately assess the state of affairs[6]. The retina is responsible for
providing the brain with images and light and is located inside the posterior wall of the

eye.

When light concentrates on the retina as opposed to some other place, Normal vision is
noted. Those with normal vision are able to see objects both up close and far away. The
retinal layers that are affected by some condition ultimately lead to macular
degeneration, myopia and loss of vision. Eye conditions play pivotal roles in the field
of ophthalmic health, presenting unique challenges and consequences for vision [7]
Conditions like Choroidal Neovascularization (CNV) [8], Diabetic Macular Edema
(DME) [9], and Drusen [10] stand out due to their distinct characteristics and impacts

on visual well-being.

In the case of CNV as shown in Figure 2, abnormal blood vessels growing beneath the

retina pose a significant threat, often resulting in leakage and harm to nearby tissues.

Indicators of CN'V encompass vision distortion, blurred or wavy vision, and, in severe
4 "\ NerwaiReting

e
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choroidal neovascularization (CNV)

—+— Retina (Macular area)
Photoreceptor cells

Retinal Pigment Epithelium (RPE)

Choroid

Drusen

Figure 2: Pictorial representation of Choroidal Neovascularization condition[11]
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instances, an abrupt loss of eyesight in the center. While Age-related Macular
Degeneration (AMD) is a common culprit, CNV can also stem from various other
retinal disorders [8]. DME, as shown in Figure 3, a complication of diabetic retinopathy,
involves the buildup of fluid in the macula, the area of the retina in the center that is
essential for detailed vision. Manifestations include blurred or distorted central vision,

making tasks like reading, facial recognition, and detailed activities challenging.

Long-term diabetes, particularly when not effectively managed, heightens the risk of
developing DME [9]. Drusen, little yellow or white spots under the retina, as shown in
Figure 4, often go with AMD. This is common in people over 60 years old and can be
linked to Age-related macular degeneration that is an eye condition (AMD). On the
other hand, soft drusen linked to AMD can cause you to lose your vision. The role of
drusen in AMD progression involves the degradation of the macula's light-sensitive
cells [10]. The OCT scans of all three conditions i.e. CNV, DME and Drusen in
comparison with the normal retinal scan is shown in Figure 5.

Healthy eye

Macula

Healthy retina

Macular edema

Hemorrhage “Cotton wool” spots

Hard exudate

Figure 3: Pictorial representation of Diabetic Macular Edema condition[12]
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Figure 4: Pictorial Representation of Drusen condition[13]

In persons between the ages of 43 and 86, the prevalence of CNV linked to age-related
macular degeneration (ARMD) was 1.2% in the Wisconsin Beaver Dam Study[14]. In
the US and Europe, myopia is the second most typical cause of CNV. It is expected that
5-10% of myopes experience CNV, with 60—75 percent of them being sub foveal. In
0.1 percent of endemic area residents, disciform scars secondary to CNV from

suspected ocular histoplasmosis syndrome (POHS) were seen.

The formation of CNV is uncommon in multiple evanescent white dot syndrome
(MEWDS). Estimates of CNV in multifocal choroiditis patients range from 25 to 40
percent. Thirty-three percent of patients with punctate inner choroidopathy (PIC)
experience CNV. Fifty percent of individuals have sub foveal acuities, meaning their

visual acuities range from 20/80 to 20/200.

Five percent of patients with birdshot chorioretinopathy experience CNV.
Almost all choroidal ruptures experience CNV during the healing phase, with the
majority involute spontaneously. 15% to 30% of patients may experience a recurrence
of CNV, which could result in a serious or hemorrhagic retinal detachment and

accompanying vision loss. One estimate estimates the prevalence of optic nerve drusen
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between 1 and 2 percent in the US population. People of all sexes are equally affected
by them. The percentage is estimated to be between 1.8 and 2.4 percent by another
source. Compared to other racial groups, white persons are more likely to develop optic
disc drusen. Thirty-three percent of patients with punctate inner choroidopathy (PIC)
experience CNV.

Out of the 1038 individuals over 40 who were diagnosed with diabetes mellitus
and examined for this research, 55 of them had DME, resulting in a weighted
prevalence of 3.8 percent (95% confidence interval: 2.7 to 4.9 percent) or around
746,000 people in the US population aged 40 or above in 2010. Age or gender did not
appear to have any bearing on the occurrence of DME. In comparison to non-Hispanic
Whites, non-Hispanic Blacks were more likely to have DME using multivariable
logistic regression (OR 2.64; 95 percent CI, 1.19-5.84; P=.02). DME prevalence was
similarly correlated with higher hemoglobin Alc levels (OR 1.47; 95 percent CI, 1.26—
1.71 for each 1 percent; P<.0001) and longer diabetes duration (OR 8.51; 95 percent
Cl, 3.70-19.54 for >10 vs <10 years; P<.0001).

(©) (d)

Figure 5: OCT Scans of Ocular Ailments (a) Normal (b) DME (c) CNV (d) Drusen
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1.3. Problem Statement

The classification of ocular diseases has benefited substantially from advancements in
deep learning, as evidenced by the popularity of numerous convolutional neural
network (CNN)-based architectures, such as Google's Inception models (V1 and V3),
ResNet-50, AlexNet, and VGG-16, which have become popular benchmark models.

These architectures are useful, but they still have a lot of serious problems.

First, the lack of interpretability of many of the present CNN models makes it hard for
practitioners to understand and trust the predictions they provide. Slow classification
speed is another problem that prevents timely diagnosis and treatment of eye diseases
in clinical settings. Moreover, the complex topologies of these models may result in
increased computation costs and need high-performance technology, both of which are
often available in healthcare environments. Low classification accuracy is another
ongoing issue that compromises these models' trustworthiness in real-world scenarios.
The limitations such as low accuracy, slow classification speed, lack of model’s
interpretability and architectural complexity will be addressed in this research work

through enhanced CNN models.

1.4. Goals and Objectives

The prime objectives of the research work are stated as follows:

e Design and implementation of two enhanced CNN architectures to accurately
classify the OCT images in 4 distinct labels i.e., DME, Normal, Drusen, and
CNV.

e Integration of latest proposed features such as dynamic convolution, separable
dynamic convolution, convolutional attention and channel split dual attention
mechanisms for enhanced feature extraction and dimensionality reduction
process, hence enabling the model to learn the essential features effectively.

e Focus on enhanced accuracy along with classification speed, hence avoiding the

tradeoffs that is commonly observed in complex architectures.

-20 -



1.5.

1.6.

Integration of model’s interpretability through Explainable Artificial
Intelligence techniques such as Grad Cam and LIME, hence providing
transparency in decisions and overcoming the black-box nature of CNN models.
Training and evaluating the model that surpasses its standard counterparts in
terms of accuracy, sensitivity, specificity, dice-coefficient, AUC-ROC, mean

absolute error and other benchmark evaluation metrics.
Contributions

Design and implementation of novel CNN architectures to accurately classify the
OCT images in 4 distinct labels i.e., DME, Normal, Drusen, and CNV.

Integration of latest proposed features such as separable dynamic convolution and
channel split dual attention for enhanced feature extraction and dimensionality
reduction process, hence enabling the model to learn the essential features
effectively.

Focus on enhanced accuracy along with classification speed, hence avoiding the
tradeoffs that is commonly observed in complex architectures.

The interpretability of the model is integrated through Explainable Artificial
Intelligence technique Grad Cam, hence providing transparency in decisions and
overcoming the black-box nature of CNN models.

Training and evaluating the model that surpasses its standard counterparts in terms
of accuracy, sensitivity, specificity, dice-coefficient, AUC-ROC, mean absolute
error and other benchmark evaluation metrics.

Achieved optimal accuracy of 97.42% in relatively much lesser number of
iterations hence showcasing the efficiency of the proposed DA-CNN architecture

and 96.68% for CF-CNN architecture.

Thesis Organization

The chapter-wise organization of the research work is presented below.

Chapter 1: gives a conceptual summary of the entire thesis, including research gaps,

statements, and definitions that explicitly outline the objectives of the study, as well as

the background and reasons for the identification of significant issues and the

formulation of the research topic.
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Chapter 2: discusses the benefits and drawbacks of previously proposed techniques in

the literature to give a detailed overview of the work completed thus far.

Chapter 3: describes the research methodology with proposed models by elaborating
the architectures, simulation environment, dataset description, data preprocessing and

optimization algorithms employed in this research work.

Chapter 4: includes hyper-parameters selection details. Moreover, it provides
complete simulation results in terms of tables and learning curves for a detailed
comparison of the proposed models along with the case studies on different
optimization techniques. This chapter also includes the details on integrating

explainable artificial intelligence techniques with the proposed CNN models.

Chapter 5: presents the discussion on the results along with comparison with state-of-
the-art models and conclusions drawn from the research work along with future

research directions for the possible extension of a current study.

1.7. Summary

This chapter introduces the scope of the study mentioning the advancements and
exploitation of Al based diagnostic systems in medicine and healthcare particularly,
classification of medical images through deep learning architectures followed by
inspiration and background, the goals and objectives of the research, the problem
statement, research contributions and ending on the chapter-wise organization of the

thesis.
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CHAPTER 2

LITERATURE REVIEW

2.1. Introduction

Medical imaging methods have completely changed the healthcare industry by enabling
specialists to explore deeper within the human body and try to cure ailments in ways
never possible before which are shown in Figure 6. This is particularly significant when
it comes to the identification of eye disorders, particularly in relation to medical scan
analysis, which is critical to comprehending and treating various ocular illnesses. This
has long been the responsibility of the licensed physicians who carefully review the

scans and diagnose conditions pertaining to the eyes.

It is important to emphasize that in ophthalmology, accurate diagnosis is the
cornerstone of treatment; without it, there could never be a successful therapy.
However, it is a process that is fundamentally dependent on humans and may be limited
by time constraints, weariness, and individual knowledge gaps. The prevalence of
technology in today's world makes it imperative to look for a few ways to automate and
streamline this diagnostic process in order to provide high-quality medical care quickly

and accurately.

It has also been discovered that artificial intelligence (Al) is a highly powerful tool for
solving these issues. The diagnosis of eye conditions can be altered by integrated Al,
especially CNNs. Researchers need to strike a compromise between the three factors of
accuracy, speed, and interpretability because several CNN designs are recommended
to increase diagnostic accuracy. Because of their intricate designs, the majority of the
current models slow down diagnostic processing, and interpretability based on XAl

approaches is frequently disregarded.

In this regard, a novel CNN-based model is presented in a ground-breaking study that
aims to simplify the multi-class classification of optical coherence tomography samples
into four different classes: Drusen, Normal, CNV, and DME. The interpretability using

XAI approaches is one of the main improvements proposed in this work. Unlike many
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Figure 6: Al in medical imaging

other models that only place the onus of interpretation in a black box, our model goes
one step further and provides justifications for classifications. The model can identify
certain regions on the OCT images using XAl techniques, and these regions are in
charge of the final classification. This openness fosters confidence in the model's
judgments and grants medical practitioners a unique authority that they can verify and

comprehend through the diagnostic results.

The application of Al techniques for image classification in medical diagnosis is
one of the most significant advancements in medicine. Image pre-processing, which
includes quantization, sampling, and segmentation; mass data training for neural
networks; statistical analysis; and imaging processing are all necessary for the
automated detection of retinal diseases. Presently, scientists primarily focus on the in-
depth improvement of disease categorization and description linked to a decrease in
time processing and memory needs. Additionally, they are capable of accurately

segmenting ocular layers using sufficiently simple computations.
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2.2. Literature Review

Deep learning techniques are being exploited in a lot of diverse biomedical applications
to comprehend and analyze different illnesses. CNN was suggested by Perdomo et al.
[15] as a means of identifying DME from OCT pictures. They presented the OCT-NET
architecture, a 12-layer structure that uses median filters to highlight essential

information in the picture layers.

A unique CNN design was presented by Jeffrey et al. [16] and is capable of
recommending referrals for a range of retinal conditions. The work uses a 3 D U-Net
model to extract a segmentation plot that successfully distinguishes different retinal
tissues and structures from the provided retinal picture. After segmentation, the
discovered retinal diseases are analyzed using a classification network to provide

recommendations for referrals.

Fang et al. [17] suggested an abrasion-conscious CNN for OCT scan categorization that
used data from the lesion regions. This improvement produced better categorization
results, which are encouraging. Alqudah et al. [18] created a hybrid artificial
intelligence system for efficient feature extraction in the multi-class classification of
eye retina illnesses. Advanced OCT Network is used to take the highlights out of the
pictures (AOCTNet). ANN is used to classify the OCT pictures after feature extraction.

Tuncer et al. [19] offer a This work uses a hybrid CNN model to categorize
normal, CNV, and DME images using OCT photographs. The CNN-SVM model is
created for OCT image categorization. The suggested method for processing the OCT
images does not call for any extra feature extraction or noise filtering. For efficient
classification, an SVM classifier is utilized in lieu of the SoftMax layer. SVM is utilized
in the last pooling layer of CNN to classify the attributes of OCT images. Paima et al.'s
convolutional neural network was built on the architecture known as the feature
pyramid network [20]. This technique accurately diagnoses both wet AMD (CNV) and
normal, dry AMD (drusen). In this method, the model is trained using a single CNN,

negating the necessity for preprocessing the input data.

Akinniyi et al. [21] created a categorization network that was comprised of

multiple stages for the classification of OCT images. Scale-adaptive neural networks
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are established to create inputs for extraction of features at multiple scales. An enhanced
feature-driven pyramidal network model is used to get the multi scale characteristics,
with DenseNet serving as the backbone. A DL model with ResNet architecture
comprising of 101 layers that was pretrained using the ImageNet dataset was proposed
by Lu et al. [22]. In order to distinguish serious detachment of the macular layer,
macular hole, epiretinal membrane, and cystoid macular edema from normal OCT

pictures, four binary classifiers were trained independently.

A transfer learning (TL)-based CNN method was presented by Kermany et al.
[23] for categorization of OCT images. The approach identified characteristics of both
healthy and diseased OCT pictures, and the findings demonstrated that it could
accurately categorize images of DME and AMD. Saleh et al. classified several retinal
illnesses using a blend of DL and ML techniques in Refs. [24], [25], and [26]. A few
studies that used deep learning frameworks to segment the IRF have also been
published. A kernel regression-driven technique for determining the locations of fluid

and retinal layers in OCT scans was presented by Chiu et al. [27].

A DL-based technique for multi-retinal fluid segmentation was introduced by
Lu et al. [28]. The system utilized a complete CNN in conjunction with the
segmentation outcomes produced by a graph-cut algorithm to distinguish between
retinal fluid pixels. A method for segmenting and classifying retinal fluids through U-

Net architecture was presented by Tennakoon et al. [29].

Considering the model's forecasts, this pipeline positively segmented retinal
liquids at the voxel threshold. Ref. [29] proposed an IRF segmentation technique that
made use of an 18-convolutional-layer altered iteration of the U-Net model. The
findings suggested that in order to get adequate performance, training must cover a wide
range of diseases. Upadhyay et al. created the coherent convolutional neural network
(CCNN) for 4 class retinal disease categorization [30]. Accurate detection of OCT
images, including DME, CNV, Normal, and Drusen is achieved by the established
CCNN model.

This model accurately detects the erratic trends of retinal illness for every category.

This technique effectively maintains consistency amid the network's input and output.
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In this research, the network layer of the network is effectively integrated to accomplish
the basic picture feature processing. The categorization process uses a five-layer CNN.
The method that is being discussed incorporates the batch-normalization layer with

every activity-layer to generate cohesive behavior.

Talu et al. [31] and Schmidt- rfurth et al. [32] said that OCT, which is divided into SD-
OCT and TD-OCT categories, is a high-resolution imaging technology. The high-
resolution cross-sectional and volumetric views of the retina are provided by the SD-

OCT results.

A two-dimensional image of the specified internal retinal structure is produced
by TD-OCT. Because TD-OCT only analyses the macula's thickness, it is ineffectual.
In contrast, SD-OCT allows for the monitoring and evaluation of a variety of
distinguishing characteristics. According to the study, OCT is a helpful method for
evaluating, tracking, and analyzing the various stages of AMD. Furthermore, drusen's
structure could be examined using a variety of features. Srinivasan et al. [33] suggested
a support vector machine (SVM) model and histogram of oriented gradients model to
successfully achieve the categorization of DME and dry AMD using optical CT scans.
The inner retinal layers were not segmented in their suggested methodology. There
were 45 volumetric scans in the SD-OCT datasets: 15 AMD, 15 DME, and 15 normal.
The system detected all of AMD cases, all of DME patients, and 86.67 percent of
normal cases with the highest specificity and flawless sensitivity. When it comes to
high-resolution 3D tomography imaging employing optical coherence tomography
(OCT) for retinal diagnosis, ophthalmologists' manual classification of OCT pictures is

still subjective and time-consuming.

Addressing this challenge, the study [34]presents an automatic method for
classifying retinal OCT scans using an IFCNN. By fusing data from current and
previous layers of the convolutional neural network (CNN), the IFCNN leverages
features from various scales within the CNN. This method enables a more thorough use
of characteristics, resulting in precise classification of OCT images. The proposed

IFCNN method outperforms conventional CNNs and known OCT classification
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algorithms, as demonstrated by experimental findings on real retinal OCT and

musculoskeletal radiograph datasets.

In [35], Resnet-50 [36] based transfer learning was used to develop a deep CNN, which
was evaluated on a dataset labelled for CNV, DME, and drusen. According to reports,
this model has a 96.1 percent accuracy rate. However, because there were so many
parameters in the transfer learning-trained network, the system's complexity increased.
Real-time deployment may not be appropriate for this kind of complex network. In
order to categorize healthy retina, Drusen, Diabetic Macular Edema and Choroidal
Neovascularization, a layer-guided CNN model was suggested in [37] which was 89.9

percent accurate.

More learnable parameters result from using two networks—one for classification and
the other for layer segmentation—than from using only one. Deep learning was
suggested as a quick and automated way to classify wet and dry AMD in [38] where
just the wet and dry AMD were categorized using the same data set. A unique technique
was developed to classify DME, two phases of drusen and Choroidal
Neovascularization from healthy scan images in [39]. This presented a classification
method-based CNN variant (MDFF). On the test set, average values of 99.6% for
sensitivity, 99.6% for specificity, and 99.6% for accuracy were attained; nonetheless,
the network's complexity resulted from its multi-scale structure and numerous learnable

parameters.

A strategy for classifying AMDs based on deep learning processes was suggested in
[40]. For categorization, the normalized oct scan image was loaded in a neural network.
With the Inception v3 network, the reported accuracy was 96.93 percent. This type of
heavy network might not be appropriate for instantaneous deployment because the pre-
trained network contained a large number of learnable parameters. It was described how
to automatically detect AMD and DME on OCT pictures. in [41]. A 97.1 percent
accuracy was obtained using the AlexNet architecture. The enormous number of
learnable parameters in the AlexNet made this technology unsuitable for real-time

deployment as well.
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The authors of [42] further tested retinal images with AMD grading. They employed a
21-layer CNN to do the binary classification task between healthy and AMD retinal
images, and the result was a mean accuracy of 93%. The approach utilized in [43] tried
to use dictionary learning and sparse coding to tackle the categorization challenge. This
work shows that diabetic macular edema and drusen were involved in the binary
classification, and over two datasets, a mean accuracy of 99% was recorded. So far, just
a small number of photos were used to validate the algorithm. How well it would
function on a sizable amount of untested data is unknown. In order to detect DME
patients, a lot of prior methods have concentrated on the automatic analysis and

classification of SD-OCT pictures. [44], [45].

This paper uses multiscale histograms of directed gradient descriptors as feature vectors
for a support vector machine-based classifier, introducing a novel fully automated
technique for the identification of retinal diseases via optical coherence tomography
(OCT) imaging [46]. The classifier, trained and validated on spectral domain OCT
datasets from 45 subjects, achieved impressive results, accurately identifying 100% of
cases with dry age-related macular degeneration (AMD), 100% of cases with diabetic
macular edema (DME), and 86.67% of cases for normal subjects. The algorithm
presented in this paper emerges as a highly promising tool for remotely diagnosing
ophthalmic diseases, providing a reliable and automated approach to identify and

categorize retinal diseases with remarkable precision.

The automated classification of optical coherence tomography (OCT) images has
become important in the noninvasive assessment of retinal eye disorders using OCT. A
recent study [47] proposed a surrogate-assisted approach to classification using
convolutional neural networks (CNNs). The topology involves image denoising, mask
extraction, and generation of surrogate images for CNN training, achieving promising
results with an AUC of 0.9783 in private dataset and 0.9856 in the duke database,

highlighting its potential for automatic classification of retinal OCT images.

In [48], In order to distinguish between aberrant and healthy photos, researchers
experimented with a pre-trained VGG-16 exploited for feature extraction. They found

that the CNN achieved 93.5 percent accuracy and 81 percent specificity. Authors of
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[49] used a combination of multi-scale CNN with a 98.66 percent claimed accuracy on
148 subjects in a private dataset and over 3000 photos from 45 subjects in a public
dataset with disease grading of three classes. Even with the accuracy, their method is
excessively complicated and laborious to run. Moreover, testing was done using a
limited dataset. A technique for unsupervised learning was described in [50], intended
to lessen the need for substantial amounts of training data in order to achieve correct
categorization. A one-class SVM classifier was used after a multi-scale deep denoiser
to denoise the images. The accuracy of this procedure was reported to be 81.4 percent,

significantly lower than the accuracy of SOTA methods.

In [51], a feature extraction-based classification algorithm using 3000 photos from 45
people in a public dataset was experimented. The retinal OCT image was encoded using
a multiscale Linear Configuration Pattern (LCP), and the optimal subset of features
linked to the phenotypic was found using wrapper-based feature selection techniques.
99.3 percent accuracy was reported. Hand-crafted statistical features were combined
with a Random Forest classifier in[52]. Following picture segmentation, ten features
per image were obtained, and 15-fold cross-validation was applied to a complete dataset
consisting of 177 AMD, 59 normal and 15 DME individuals. Ninety-six percent

accuracy was reported.

In a recent work [53], model yielded a 100% accuracy rate. He employed an Inception
v1 based model which was 230 layers deep in his network. A network with so many
parameters is not appropriate for applications that require real-time processing. In [54],
Perdomo proposed a CNN for automatic classification of normal and DME using sd-
oct volumes and achieved the accuracy of 93%. In [55], Nugroho applied transfer
learning approach and trained DenseNet and ResNet 50 achieving accuracy of 88 and
89 respectively. Lemaitre et al., [56] tackled the issue of classifying SD-OCT data in
order to automatically identify patients who are impacted by DME.

Tsanim et al. [S57] Xception network, ResNet50, MobileNetV2, and Vanilla CNN were
the four CNN models used to identify the illness categories from the retinal OCT
scanned pictures. Feng et al., [58] used optical coherence tomography pictures to focus

their investigation on a four-class retinal disease classification problem for the
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identification of drusen, DME, CNV, and normal retina. They prepared a large
collection of retinal OCT pictures and suggested a unique classification model for the
automated detection of the majority of frequent blinding conditions. Improved
ResNet50 served as the model's foundation. At the B-scan level, their method produced
accuracy of 0.973, sensitivity of 0.963, specificity of 0.985, and AUC of 0.995. The

prominent literature articles are presented in Table 1.

Table 1: Summarized literature review

Title  Algorithm Advantages Limitations DOP
[38] CNN e Specific region Validation on limited | 2023
emphasis datasets
e Innovative Not applicable to
architecture real scenarios
e Improved Computational cost
accuracy
[39] CNN e Dual guidance Single label 2023
network classification and
e Comprehensive lesion aggregation
evaluation Computationally
Efficient testing complex
Less accurate
No interpretability
[40] Transformer Clinical relevance Integration 2023
network e Efficiency challenges
improvement Accuracy
e Novel improvement
architecture required
Interpretability
Complex
architecture
[37] | CNN TL approach utilized Data generalizability | 2019
ResNet50 not integrated
Clinical applicability
not in scope
Classification speed
Vital evaluation
metrics ignored
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[29]

[35]

[31]

[18]

2.3.

This chapter presents the extensive literature review done throughout the course of this

research work providing insights on advantages limitations and research gaps upon

which we have finalized our problem statement and carried out our research.
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CNN Transfer Learning Limited diversity in | 2017
VGG-16 approach utilized data
Accuracy not up to
the mark and model
is prone to
misclassification
Interpretability not
addressed
Hybrid e Comprehensive Lack of external 2016
(Random Forest, investigation validation
KNN, SVM, | ¢ Outperforming Complexity of pre-
Logistic previous studies processing
Regression, e Consideration of Limited performance
Gradient pre-processing metrics
boosting) steps Low accuracy
e C(lassifies only Classification speed
DME condition Computational
complexity
SVM e Unsupervised Need for future 2019
anomaly validation
identification Limited generalized
e Scalability and information
reduced Interpretability not
supervision available
e Qualitative Accuracy of 94% can
analysis be improved
alignment Complex architecture
e Novel machine
learning approach
e Performance
Transfer o Transfer learning Dataset specificity 2018
Learning e General Dependency on pre-
(ANN) applicability trained weights
e Transparent Accuracy concern
diagnosis Number of iterations
Summary




CHAPTER 3

PROPOSED METHODOLOGY

3.1. Introduction

The workflow of the proposed research will be included in this section, which
covers the simulation environment, dataset description, proposed DA-CNN and CF-

CNN models, optimization schemes and evaluation metrics.

3.2. Experimental Setup

In this research work, the CNN model utilized in order to classify optical coherence
tomography pictures is designed and evaluated using a simulated environment.
TensorFlow v2.14.0 with the Keras API in Python is used to implement the simulation
framework. Google Collaboratory is used as a coding environment with an NVIDIA-
SMI 525.105.17 Driver Version: Version 12.0 (CUDA) Graphics Processing Unit and
running on a Lenovo 82TS with a 12th Gen Intel(R) Core (TM) i5-1235U 1.30 GHz
and 8GB RAM.

3.3. Description of the Dataset

The most widely used dataset in computer vision for ophthalmology is the OCT
2017 Kermany dataset. It is regarded as one of the top databases for the analysis of
OCT images. Together with a group of knowledgeable experts, Daniel Kermany
assembled and released it initially. A wide range of OCT samples are included in the
database, which is graphically divided into four groups: diabetic macular edema

(DME), normal, Druse, and choroidal neovascularization (CNV).

As stated in the introduction chapter, these classes represent a variety of common
eye disorders; as a result, the dataset is regarded as an essential tool for training and
assessing machine learning models, which are subsequently used to diagnose and

categorize ocular disorders to the fullest extent possible using data from OCT imaging.

Out of all the images that are included in the dataset, we have loaded 1500 images

from each class i.e., Normal, CNV, DME, Drusen, so a total of 6000 training images, 8
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Figure 7: Sample images of the OCT Kermany 2018 Dataset at random

samples from each of the classes for validation, so a total of 32 images in validation
dataset, 242 images from each class for testing hence 968 images in the test dataset.
The dataset images that are obtained during the dataset analysis are presented in Figure

7.

3.4. Data Preprocessing

To prepare the data for training the CNN model, following approach is exploited.
3.4.1. Function to Load Images (get_data):
e This function loads a specific number of images i.e., 1500 from each class folder.

o [t takes two parameters: folder, which is the directory containing class folders, and
num_images_per_class, which specifies the number of images to load from each

class.

o It initializes empty lists X for images and y for labels.
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It loops over each class (NORMAL', 'CNV', 'DME', 'DRUSEN') and loads images

from their respective folders.

For each sample, it reads the image through OpenCV (cv2.imread) and resizes it to

the specified imageSize using scikit-image (skimage.transform.resize).

It converts the image to a NumPy array and appends it to the X list, while appending

the label (encoded as an integer) to the y list.

The function returns NumPy arrays X containing images and y containing

corresponding labels.

3.4.2. Data Loading:

It defines the directories for the training, testing, and validation sets (train_dir,

test_dir, validation_dir).
It sets the number of images to load per class (num_images_per_class).

It calls the get data function for each directory to load the images and labels for

training, testing, and validation sets.

3.4.3. One-Hot Encoding:

It one-hot encodes the labels using to_categorical function from Keras

(keras.utils.to_categorical).

With one-hot encoding, binary vectors representing integer class labels are created,
with the exception of the index corresponding to the class label, which is set to 1.
Each class is represented by a vector of all zeros.

1=y

Yonenor 11 = {o

otherwise

7
where i ranges from zero to N-1 representing the class indices.

This is a common preprocessing step for categorical variables in classification tasks

and helps the neural network to better understand the class relationships.
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3.5. Proposed CF-CNN and DA- CNN Models
3.5.1. Dual Attentive Convolutional Neural Network or DA-CNN

The proposed DA-CNN model comprises of three convolutional blocks to begin with,
five layers constituting the first two blocks and six layers constituting the third
convolutional block. The first one is separable dynamic convolution layer, next up is
the activation-layer that is governed by ReLU, then the batch normalization layer, then
the max-pooling layer with pool size of 3*3 and stride of 2*2 and at the end, the dropout

layer with rate of 20% to prevent overfitting.

This pattern is repeated for two blocks, the third one contains an additional
channel split dual attention mechanism layer in between the activation and batch
normalization layer. The convolutional filter size for first convolution block is 16 with
the stride of 3 whereas the convolutional filter size for second and third convolutional
block is 32 with the same stride. In separable dynamic convolution, (on the contrary to
conventional static convolution in which a single set of filters is applied to the entire
input feature map both spatially and across the channels), the convolutional operation
is decomposed into spatial convolutions followed by channel wise convolutions, each
with their own set of filters. Mathematically, the conventional convolution can be given

as:

Let K denote the kernel filter and / denote the input feature map. The output

feature map O is computed as follows:

o = o I
i,j Titex+y
mn.c = mn.c

where i,x are spatial indices, & is the channel index, m,n are kernel indices, c is

0,

the channel index of the input feature map, =™"<is the kernel weight at position (m,n,c),

c

rexty s the input feature map value at (i+e,x+y) and channel c.

Whereas the separable dynamic convolution can mathematically be expressed as:
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Let K denote the spatial kernel and K. denote the channel wise kernel, the output

feature map O can be computed as follows:

of, =2 K" KL,

i,j i+m j+n

m,n

where K, is the spatial kernel weight at (m,n), K. is the channel-wise kernel
weight for channel ¢ and all other variables are defined as in conventional static
convolution. The block diagram of separable dynamic convolution is shown in Figure
8.

“Input
Feature

% Dynamic |
Depth-Wlse
Convolution ||

. (H.W, C
 Dynamic
. Pointwise
| Convolution

Output
Feature

Figure 8: Block diagram of Separable Dynamic Convolution Operation

-37 -



The key difference among the two convolution techniques lies in the decomposition of
convolution operation. In the separable dynamic convolution, the convolutional
operation is split into spatial and channel wise convolutions hence allowing for more
efficient computations. By applying the separate filters for spatial and channel wise
convolutions, the number of parameters to be learned is reduced, leading to
computational savings and ultimately improved generalized performance of the model
on the basis of enhanced feature extraction. Moreover, the separable dynamic
convolution can capture both spatial and channel wise dependencies more effectively

as compared to conventional static convolution.

Another important contribution of this research work is the incorporation of
channel-split dual attention mechanism with convolutional filter size of 32 and stride
of 3. The Channel Split Dual Attention Mechanism is an incredible technique that is
exploited in Convolutional Neural Networks (CNNs) to vividly improve feature
representation by concurrently recording channel-wise and spatial relationships in
feature maps. It features the combination of spatial and channel attention mechanisms.
First, it performs channel attention based on the attention weighted features and then
spatial attention on those for spatial locations. Spatial attention is concerned with the
materialization of relevant channel maps, while channel attention focused on

convolutional channels highlights only the essential channels.

These attention maps are very specific for every image patch area. The feature
maps are the same and these attention maps are integrated to create a final attention
map that modifies the source feature maps. From the mathematical point of view,
spatial attention is performed using a SoftMax function on the result of the linear
transformation followed by ReLU activation, while channel attention refers to a
sigmoid function on the result of an average or mean pooling on channel-wise element

values.

A final map of attention is obtained by means of element-wise multiplications of
two attention maps, namely, the spatial and channel attention maps. This is introduced
into CNN architectures; it is where this mechanism comes in to play by boosting model
efficiency in tasks including object detection, segmentation, and image classification

through the ability to focus on relevant spatial regions and channels, hence the models
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produce more discriminative feature representation and get better at generalization.

Mathematically, the channel-split dual attention can be expressed as:

3.5.1.1. Spatial Attention

A, = softmax(W,.Re LU(W, X))

where A is the spatial attention map, W, and Wy are learnable parameters
(weights) of the spatial attention mechanism. X;; displays the feature map at spatial
location (i,j), ReLU is the rectified linear unit activation function, softmax computes
the softmax function along the spatial dimensions hence yielding attention weights A

for each spatial location.

3.5.1.2. Channel Attention

A, = sigmoid (W, .avgpool(X))

4

where A, is the channel attention map, W, is the learnable parameter (weight) of
the channel attention mechanism, avgpool is the average pooling operation performed
along the spatial dimensions to obtain global channel-wise statistics, sigmoid computes

the sigmoid function to normalize the attention weights 4. between zero and one.

3.5.1.3. Final Attention

A=A ® A

where 4 is the final attention map, ® denotes the element wise multiplication or

Hadamard product, 4; is spatial attention map and 4. is the channel attention map.

3.5.1.4. Enhanced Feature Representation
X'=4A®X

where X’ represents the enhanced feature maps after application of attention

mechanism and X is the original feature map.
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Figure 9: Block diagram of Channel Split Dual Attention technique

In a nutshell the channel split dual attention leads to more discriminative feature
representation and improved performance by permitting the network to emphasis on
prominent spatial areas and channels within the feature maps. The block diagram of

channel split dual attention is presented in Figure 9.

To continue the model architecture, followed by the convolutional blocks is a flattening
layer to convert the data into 1-D array. The FC layer with 128 neurons, ReLU
activation, batch-normalization and drop-out layer with rate of 50% to prevent
overfitting. The last layer of the proposed CNN model is dense layer having 4 units,
representing the ocular condition whether Normal, CNV, DME or Drusen. The final
classification layer has SoftMax activation. The model summary is presented in the
table. Figure 10 displays the overall block diagram of the suggested DA-CNN model.
Table 2 presents the detailed model architecture along with the parameters that is

obtained in Python environment using model.summary() function.
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Figure 10: Block diagram of DA-CNN model architecture
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Table 2: Summary of the layers of the DA-CNN Model

Sr. Layer Output shape Params#
1 Separable Dynamic-Convolution 2D None, 126,126,16 91

2 Activation None, 126,126,16 0

3 Batch-Normalization None, 126,126,16 64

4 Max-Pooling 2D None, 62,62,16 0

5 Drop-out None, 62,62,16 0

6 | Separable Dynamic-Convolution 2D None, 60,60,32 688
7 | Activation None, 60,60,32 0

8 Batch-Normalization None, 60,60,32 128
9 Max-Pooling 2D None, 29,29,32 0
10 | Drop-out None, 29,29,32 0
11 | Separable Dynamic-Convolution 2D None, 27,27,32 1344
12 | Activation None, 27,27,32 0
13 | Channel Split-Dual Attention None, 27,27,64 18496
14 | Batch-Normalization None, 27,27,64 256
15 | Max-Pooling 2D None, 13,13,64 0
16 | Drop-out None, 13,13,64 0
17 | Flatten None, 10816 0
18 | Dense None, 128 1384576
19 | Activation None, 128 0
20 | Batch-Normalization None, 128 512
21 | Drop-out None, 128 0
22 | Dense (Eye-Condition) None, 4 516

Total params: 1406671 (5.37 MB), Trainable params: 1406191 (5.36 MB)

3.5.2. Channel Focused Convolutional Neural Network of CF-CNN

The CF-CNN model is implemented using the Keras Sequential API and comprises a
series of layers for a CNN with convolutional layers that is intended for image
classification. The model begins with a DynamicConv2D layer with 16 filters and a (3,

3) filter size, a Rectified Linear Unit (ReLU) activation function came next, an attention
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layer with 16 filters and a (1, 1) kernel size, batch normalization, and max-pooling with
a (2, 2) pool size. Next, the same convolution blocks are repeated two times as Conv2
and Conv3 having the same structure as first convolutional block. The key point in
Convl and Conv2 units is the convolution attention mechanism that is employed for
the enhanced feature extraction and hence better accuracy. Following the convolutional
blocks containing activation, batch normalization and dropout layers, flatten layer is
incorporated to convert the output of last layer in 1D array. Next to flatten layer are the
Fully connected layers containing 128 neurons for the first layer having ReLU
activation and dropout rate of 20 percent to avoid overfitting. Lastly, the model
concludes with a final FC layer encompassing 4 units, utilizing a SoftMax activation
function to represent the various output classes for eye conditions. The model structure
has properly schemed dynamic convolutional layers, activation functions, attention
mechanisms, and regular CNN components like batch normalization and max-pooling.
Dropout is applied only in the FC layers to enhance generalization. The last layer

produces a SoftMax output for classification into four eye condition classes.

3.5.2.1. Dynamic Convolution:

Dynamic convolution layers represent a remarkable development over traditional
convolution layers in Convolutional Neural Networks. In standard convolution, the
kernel remains fixed during inference, meaning that a single set of weights is applied
uniformly across the entire input feature map. While effective, this static nature limits
the adaptability of the model, as the same filter processes all inputs, regardless of their

local context or variations.

Contrary to this, dynamic convolution incorporates adaptability by allowing the
convolutional filters to change dynamically based on the input features or some
external conditioning. This adaptability is achieved through a mechanism where
multiple sets of filters are learned, and a dynamic aggregation or selection process
determines which filters to apply at each spatial location. Mathematically, if X
represents the input feature map and {W;, W5, ..., Wi} are the possible filter sets, dynamic

convolution computes the output as a weighted sum of these filters:

z = Yoa=1Pa(w)*W,
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Figure 11: Block diagram of Dynamic Convolution Operation

Here, @a(u) are the dynamically computed coefficients that depend on the input u, and
* denotes the convolution operation. The coefficients ¢.(u) are often obtained using an
additional lightweight network, such as a small fully connected layer or a SoftMax

function, ensuring that the filter selection is both data-driven and context-sensitive.

This dynamic approach enables the network to adapt its behaviour to different regions
of the input. By allowing the network to effectively "choose" the most relevant filters
on the fly, dynamic convolution layers can lead to more efficient and expressive models
compared to their static counterparts, often resulting in improved generalization and
robustness across varied datasets. Figure 11 presents the block diagram of dynamic

convolution operation

3.5.2.2. Channel Split Dual Attention Mechanism:

The Channel Split Dual Attention (CSDA) technique is an advanced mechanism
designed to enhance the representational capacity of convolutional neural networks
(CNNs) by focusing on important features within input tensors. It splits the input tensor
into two pathways: one emphasizes global average features, while the other highlights
the maximum values. Each pathway generates an attention map, which is then used to
re-weight the original features through element-wise multiplication, enhancing relevant

information and suppressing less important data.

These re-weighted features are then concatenated and passed to subsequent layers,
resulting in more informative and discriminative feature representations. The CSDA
technique is particularly beneficial in tasks requiring fine-grained feature detection,
such as medical image analysis and fine-grained object recognition, and can be easily

integrated into existing CNN architectures with minimal computational overhead. By
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selectively emphasizing important channels and spatial regions, the CSDA technique
improves the performance of deep learning models in various applications. The block
diagram of the phenomenon is represented in Figure 12. The overall architectural
diagram of the proposed CF-CNN model is shown in Figure 13. Table 3 presents the

architectural summary of the layers along with filter sizes and parameter numbers.

Convolution 2D layer
filter

-kerne! size
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-activation=linear
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4

)
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{Output Tensor)

Figure 12: Flowchart of Channel Split Dual Attention technique
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Figure 13: Block diagram of CF-CNN architecture
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Table 3: Architectural summary of CF-CNN model

Sr. Layer type Output Shape  Param
#
1 | dynamic_conv2d (Dynamic Convolution 2D) None, 128,128,16 | 448
2 | activation (Activation) None, 128,128,16 0
3 | conv_attention layer (ConvAttentionLayer) None, 128,128,16 | 272
4 | batch_normalization (Batch Normalization) None, 128,128,16 64
5 | max_pooling2d (Max Pooling 2D) None,64,64,16 0
6 | dynamic_conv2d 1 (Dynamic Convolution 2D) None,64,64,16 2320
7 | activation 2 (Activation) None,64,64,16 0
8 | conv_attention layer 1 (ConvAttentionLayer) None,64,64,16 272
9 | batch normalization 1 (Batch Normalization) None,64,64,16 64
10 | max_pooling2d 1 (Max Pooling 2D) None, 32,32,16 0
11 | dynamic_conv2d 2 (Dynamic Convolution 2D) | None, 32,32,16 2320
12 | activation_4 (Activation) None, 32,32,16 0
13 | conv_attention layer 2 (ConvAttentionLayer) None, 32,32,16 272
14 | batch_normalization 2 (Batch Normalization) None, 32,32,16 64
15 | max_pooling2d 2 (Max Pooling 2D) None, 16,16,16 0
16 | flatten (Flatten) None, 4096 0
17 | dense (Dense) None, 128 524416
18 | activation_6 None, 128 0
19 | batch_normalization 3 (Batch Normalization) None, 128 512
20 | dropout (Dropout) None, 128 0
21 | Eye Condition (Dense) None, 4 516

Total params: 531540 (2.03 MB) Trainable: 531188 (2.03 MB) Non-trainable: 352 (1.38 KB)

3.5.3. Optimizers

Optimizers, that are applied while compiling a machine learning or deep learning
model, are of significant importance when training the neural networks as they

iteratively modify the model parameters and reduce the cost function during the
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training-process. The primary objective of optimizers is to help the algorithm for
optimization to determine the ideal combination of parameters to attain the optimal

results.

During the process of training, the model is presented with the input labelled data in
different batch sizes and ultimately predictions are made. Subsequently, the alteration
amongst the goal values and the forecasted values is measured by the loss function or
the cost function. The optimizer determines the direction and magnitudes towards the
steepest ascent by calculating the gradient of this loss function regarding each
parameter. By adjusting the parameters in the direction opposite to these gradients, the

optimizer seeks to advance the model's efficiency by minimizing the loss function.

Including the advantages and limitation, each optimizer exploits various strategies to
update the parameters. As in case of Stochastic Gradient Descent, it updates the
parameters that are directly proportional to the negative gradient and learning rate. The
detailed description of all the optimizers that are in the scope of this study is presented

in the following sections.
3.5.3.1. Adafactor

Adafactor is a variation of the AdaGrad optimizer that adapts learning rates according

to several factors by performing the following:

a. Adaptive Learning Rate Scaling

Adafactor scales the learning-rate differently for each parameter based on the historical
gradients of that parameter. It uses a two-dimensional parameter scale matrix, which

helps in scaling the learning rates differently for different parameters.
b. Adaptive Gradient Clipping
It clips the per-parameter gradients based on the statistics of the past gradients.

c. Initialization

Initialize the scale matrix G as an identity matrix of size (d,d) where d is the amount of

parameters
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Initialize the exponential moving average of squared gradients v as a zero matrix of the

same size as G.

d. Per-Parameter Gradient Scaling

e For each parameter w; compute its gradient g;.

e Update the squared gradients exponential moving average v:
v, By +(1-5,)g’

Update the scale matrix G
G, < max(G;,v,)

e. Compute the effective learning rate

The parameter's effective learning rate can be computed as follows:

lr.scale

o

Ir, =

where /r is the base learning rate and scale is the scalar value for numerical stability,

typically set to «min(1.0, Jl.O/scale_parameter)

f. Update Parameters

Each parameter w; is updated using the corresponding effective learning rate /r;
W, W, — lri -8

Optionally, clip gradients before updating the parameters to prevent large gradient
updates that might lead to unstable training. This whole process repeats for each

training iteration.
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22 refers to the squared gradients of the moving average exponential decay rate; /r

corresponds to the learning rate; and the scale parameter is for numerical stability.

By automatically adjusting the learning rates for various parameters according to their
past gradients, this technique helps to increase convergence and stability during

training.
3.5.3.2. Root Mean Square Propagation (RMSprop)

An optimization approach called Root Mean Square Propagation, or RMSprop,
modifies the learning rate for each parameter according on the strength of its gradients.

The following are the RMSprop optimizer's mathematical expressions:
a. Initialization

e Learning rate . Step size for updating the parameters

e Decay rate P, Decay rate for the moving average of squared gradients
e Epsilon ¢ : Small constant for numeric stability

e Initialization step /= 0

e Initialize cache =0 (Initial accumulated squared gradients)

b. Update Rule

The update strategy for the RMSprop optimizer can be written as follows given a loss

function L and its gradient in terms of the model parameters:

cache, = p.cache, , +(1-p).g’

0., =06 - —"

t+1 t 'gt
\ /cachet +é&
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Here, ¢ represents the time step, 9 represents the models parameters at that particular

time step ¢, moving average of the squared gradients is represented by caChef, P

represents the decay rate, M the learning rate, € is considered as a small constant to

prevent division by zero.

c. Adaptation of learning rate

Based on the size of each parameter's gradients, RMSprop modifies the learning rate
for each one separately. Larger gradient values will have a lower effective learning rate,
whereas smaller gradient parameters would have a higher effective learning rate. This
aids in preventing oscillations or divergence during training due to an excessively high
learning rate. A small constant ‘epsilon’ is added to the denominator, particularly when
the cumulative squared gradients are minimal, to prevent division by zero and provide

numerical stability.

RMSprop is a highly helpful optimizer for training neural networks since it adapts the
learning rates to stabilize the process. It is a widely applied optimization method that

serves as the basis for other algorithms, such as Adam.

3.5.3.3. Adam

The Adam optimizer is a method that integrates the concepts of RMSprop and
momentum-based optimization. The following are the Adam optimizer's mathematical

expressions:
a. Initialization

e Learning rate m. Step size for updating the parameters
o B : exponential decay rate for first moment

. A : exponential decay rate for second moment
e ¢ :Small constant for numeric stability

e =0 Initialization step
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e Initialize "= 0, The first initial moment vector

e [Initialize V0= 0, The second initial moment vector

b. Update Rule

Assuming a loss function L and its gradient concerning the model parameters, the

Adam optimizer's update rule may be articulated in this way:
m, = ﬂl m_ + (1 - ﬂl)‘gt

vV, = ﬂZ'Vt—l + (1 _ﬁz)'gzz
14

~ m ~
t’ut

_ i _ Y _ ,/;,lt
m, = - PEL STl P By
1-5 1-5, Vi, +¢

where 1, as usual represents the time step, ¥+ are model parameters at time step 7, 8is
the loss function gradient with respect to the model parameters at time step t, " is the
first moment estimate (mean) of gradients, “is the second moment estimate
(uncentered estimate) of the gradients, 1, and Z are bias-corrected estimates of " and

Vi to account for their initialization at zero, is the learning rate.

c. Bias correction

The Adam optimizer applies bias correction to the moment estimates to account for
their initialization at zero. This correction is necessary particularly at the beginning of

training when 7 is small. Adam can also incorporate optional L2 regularization (weight
decay) by adding A0, to the gradient update, where A is the regularization parameter.
Because Adam is adaptable, it can handle a variety of data formats and model
topologies with ease, which makes it a popular choice in practice. Adam converges

more quickly and is more resilient to noisy gradients thanks to the combination of

momentum and RMSprop.
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3.5.3.4. Nadam

Nadam is an advancement of the Adam that incorporates Nesterov momentum into the
adaptive learning rate scheme. The mathematical expressions of Nadam optimizer can

be given as follows:
a. Initialization

e Learning rate . Step size for updating the parameters
o B : exponential decay rate for first moment

. A : exponential decay rate for second moment
e ¢ :Small constant for numeric stability

e =0 Initialization step
e Initialize ™0 =0, The first initial moment vector

e Initialize Y0 =0, The second initial moment vector

b. Update Rule

Given a loss function L and its gradient with respect to model parameters &', the update

rule for Nadam optimizer is same as Adam and can be formulated as follows:

m,=f.m,_, +(1-75).g,
16

vV, = ﬂZ'Vt—l + (1 _ﬁz)'gzz
17

~ M ~ Y _ ﬁ/lt
mt_l_ﬂ;’ut_l_ t’l//rﬂ_l//r_n'\/T
1 2 ut+8
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where ¢ is time step, Y are model parameters at time step 7, $is the loss function
gradient with respect to the model parameters at time step t, """ is the first moment
estimate (mean) of gradients, “is the second moment estimate (uncentered estimate)
of the gradients, i, and Z are bias-corrected estimates of " and "' to account for their
initialization at zero, 7 is the learning rate.

¢. Nesterov Momentum

Nadam incorporates Nesterov momentum into the update rule by updating the

parameters in two steps. First, it calculates the gradient at the estimated next position

) -7 m, +(1_ﬂr)'gt

then it applies the gradient descent step using this estimated gradient.

Nadam is effective for training neural networks, combining the advantages of adaptive
learning rates (as in Adam) with the improved convergence properties of Nesterov

momentum. It is widely used in practice for optimizing deep learning models.

3.5.4. Evaluation Metrics

During the evaluation phase of our proposed DA-CNN model, a wide range of
evaluation measures are employed to attain a complete comprehension of the model's
functionality and efficacy. The accuracy and other factors that effectively convey the
performance of the model are included in these assessments. Higher the accuracy,
better the model’s performance. The performance metrics employed are presented in

this section.

3.5.4.1. Accuracy

The primary criterion for evaluating the model's overall soundness is its accuracy. It is
considered by taking the total quantity of predictions and dividing it by the right

number of predictions.
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P
Accurcy =—=x100
P

t

Where P, represents the number of accurate predictions and P; represents the number

of total predictions.

3.5.4.2. Mean Absolute Error

MAE is the most crucial metric for assessing how well ML and DL models are working.
Essentially, it informs us of the degree to which the predicted value differs from the
true or anticipated value. The positive difference among the true and predicted value at
each data point is utilized in the computation. The model performs better when the

MAE value is lower. Mathematically, it can be shown as:

MAE=12|kl.—l€i|

i=1

Here, z shows the number of total data points, k. shows the measured value for i data

A

point, K shows the predicted value for i data point.

3.5.4.3. Dice Coefficient (DSC)

Dice coefficients are frequently utilized performance statistic in computer vision and
medical image processing that evaluates the level of resemblance between two sets and
the accuracy or total overlap of segmentation algorithms. This metric yields a value
that represents the extent to which segmentations of objects within an image truly
overlap. On the dice coefficient scale, which goes from 0 to 1, a higher score indicates
greater overlap or agreement between the two segmentations, and vice versa. The dice

coefficient can be calculated mathematically using the following formula:

2x| LM |

DiceCoeff =
| L]+|M|
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where L denotes the entire set of pixels that the predicted segmentation classifies as

belonging to the object, M represents the whole set of pixels that the true segmentation,

which is used as a reference, and [LAOM | denotes the total number of pixels that

overlap between the two sets.

3.5.4.4. Sensitivity

In the context of CNN models, sensitivity is an evaluation metric that is employed to
get a picture of model’s performance in the classification tasks. It can also be termed
as true positive rate or the recall. In essence, sensitivity indicates how well the model
detects positive cases among all of the real positive examples present in the dataset. It
is especially crucial in situations like anomaly detection or medical diagnostics where
accurately recognizing positive cases is essential. This is basically the number of actual

positive cases that are correctly predicted by the model.

Mathematically, it can be expressed as:

Tx
Sely:—
Tx+Uy

Tx represents the true positives and Uy represents the false negatives.

3.5.4.5. Specificity

On the contrary to sensitivity, the specificity measures the true negative cases that the
model accurately identifies. The model's specificity indicates how well it detects
negative cases among all of the real negative cases in the dataset. It is especially
significant in applications related to security or quality control, where accurately

recognizing negative cases is essential. Mathematically, it can be expressed as:

Ty

Spty =———
i Ux+Ty

Ty represents true negatives and Ux represents false positives.
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3.6. Summary

This chapter presents the detailed methodology which has been followed throughout
the course of this research work. This include all the technicalities and details on the
model architectures, dataset description, optimization techniques and hyperparameter
tuning process along with theoretical and mathematical frameworks of the modalities
and optimizers followed by the evaluation metrics that have been employed to get a

clear understanding on the performance of the proposed models.
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CHAPTER 4

SIMULATIONS AND ANALYSES

4.1. Introduction

This section presents various subsections regarding the results obtained during
the course of simulation and a case study based on three different optimization
strategies as well as the evaluation of the proposed models on various evaluation

metrics.

4.2. Simulations and Results

This section refers to the outcomes that are attained after the comprehensive
experimentation in the environment mentioned in section 3. The extensive pre-
experimentation leads us to define some optimal hyperparameters such as 0.001
learning rate, 32-sample batch size, verbose equal to 2 and the training process
continued for 100 epochs. The loss monitored was categorical cross-entropy and five
benchmark evaluation metrics such as accuracy, mean absolute error, dice-coefficient,

sensitivity and specificity were monitored epoch wise.

4.3. Learning behavior of DA-CNN model

4.3.1. Case-1: Adam

In the first case study, the suggested CNN architecture has been compiled by the Adam
optimizer that combines the ideas of momentum-based optimization and RMSprop
(Root Mean Square Propagation) into a single algorithm as discussed in detail in section
5.3. The optimal hyperparameter stood out at batch-size of 32, learning-rate of 0.001
for 100 iterations. The model’s accuracy came out to be 91.11% as the result of
implementing the enhanced feature extraction techniques based on separable dynamic
convolution and channel split dual attention. The model has demonstrated the bias of
0.05 and variance of 0.10. Moreover, the generalized accuracy stands out to be 0.91,

test loss of 0.28, test MAE of 0.08, test dice coefficient of 0.84, test sensitivity of 0.90
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and test specificity of 0.97, AUR-ROC of 0.991. The epoch wise trend of evaluation

metrics on training and validation sets is presented in Figure 14. Furthermore, the

resulted confusion matrix is displayed in Figure 15.
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Figure 14: Final AUC-ROC Curve of the model(b),; Epoch wise trend of evaluation metrics
(a) Accuracy (c) Dice coefficient (d) Sensitivity (e) Mean Absolute Error (f) Specificity
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Figure 15: Confusion matrix presenting the complete picture of predictive capabilities of the

model
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4.3.2. Case-2: Adafactor

In the second case study, the proposed DA-CNN model has been compiled using the
Adafactor optimizer which scales the learning-rate differently for each parameter based
on the past gradients of that parameter as discussed in detail in section 5.1. The optimal
hyperparameter stood out at batch-size of 32, learning-rate of 0.001 for 100 iterations.
The model’s accuracy came out to be 91.01% as the result of implementing the
enhanced feature extraction techniques based on separable dynamic convolution and
channel split dual attention. The model has demonstrated the bias of 0.36 and variance
of 0.21. Moreover, the generalized accuracy comes out to be 0.91, test loss of 0.28, test
MAE of 0.08, test dice coefficient of 0.85, test sensitivity of 0.90 and test specificity of
0.97, AUC-ROC of 0.991. The epoch wise trend of evaluation metrics on training and
validation sets along with confusion matrix is presented in Figure 16. Furthermore, the

computed confusion matrix is displayed in Figure 17.
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Figure 16: Final AUC-ROC Curve of the model(b); Epoch wise trend of evaluation metrics
(a) Accuracy (c) Dice coefficient (d) Mean Absolute Error (e) Sensitivity (f) Specificity
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Figure 17: Confusion matrix presenting the complete picture of predictive capabilities of the
model

4.3.3. Case-3: Nadam

In the third case study, the proposed DA-CNN method has been compiled using the
Nadam optimizer that is an extension of the Adam optimizer that incorporates Nesterov
momentum into the adaptive learning rate scheme, as discussed in detail in section 5.4.
The optimal hyperparameter stood out at batch-size of 32, learning-rate of 0.001 for
100 iterations. The model’s accuracy came out to be astonishing 97.4% which is the
ultimate result of implementing the enhanced feature extraction techniques based on
separable dynamic convolution and channel split dual attention. The model has
demonstrated the bias of 0.06 and variance of 0.01. Moreover, the generalized accuracy
comes out to be 0.974, test loss of 0.08, test MAE of 0.02, test dice coefficient of 0.97,
test sensitivity of 0.98 and test specificity of 0.99, AUC-ROC 0f 0.999. The epoch wise
trend of evaluation metrics on training and validation sets along with confusion matrix
is presented in Figure 18. Furthermore, the calculated confusion matrix is displayed in

Figure 19.
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Figure 18: Final AUC-ROC Curve of the model(b); Epoch wise trend of evaluation metrics (a)
Accuracy (c) Dice coefficient (d) Mean Absolute Error (e) Sensitivity (f) Specificity

Normal

True Labels
CNV

DME

DRUSEN

1
Normal

Confusion Matrix

1 )
CNV DME
Predicted Labels

DRUSEN

200

150

- 100

Figure 19: Confusion matrix presenting the complete picture of predictive capabilities of the

model

-60 -



4.3.4. Case-4: RMSprop

In the fourth case study, the proposed DA-CNN model has been compiled using the

RMSprop optimizer. The optimal hyperparameter stood out at batch-size of 32,

learning-rate of 0.001 for 100 iterations. The model’s accuracy came out to be

astonishing 89% due to implementing the enhanced feature extraction techniques based

on separable dynamic convolution and channel split dual attention. The model has

demonstrated the bias of approximately 0.10 and variance of 0.10. Moreover, the

generalized accuracy comes out to be 0.89, test loss 0of 0.37, test MAE of 0.06, test dice

coefficient of 0.88, test sensitivity of 0.89 and test specificity of 0.96, AUC-ROC of

0.992. The epoch wise trend of evaluation metrics on training and validation sets along

with confusion matrix is presented in Figure 20. Additionally, the resulted confusion

matrix is displayed in Figure 21.
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Figure 20: Final AUC-ROC Curve of the model(b), Epoch wise trend of evaluation metrics (a)
Accuracy (c) Dice coefficient (d) Mean Absolute Error (e) Sensitivity (f) Specificity
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Figure 21: Confusion matrix presenting the complete picture of predictive capabilities of the
model

4.4. Learning Behavior of CF-CNN Model

In this research work, the training process of the proposed CF-CNN model goes on for
100 epochs which is significantly low as compared to various state-of-the-art models
discussed in ‘Related Work® section (avg epochs=350). The overall training
performance is assessed by the training and validation loss, training and validation
accuracy. Moreover, the key evaluation metrics such as mean absolute error (MAE) and
the dice coefficient (DSC) are also calculated at each epoch to get a better understanding
of training process and ultimately the model’s performance. Figure 22 presents the train
and validation loss whereas figure 10 shows the train and validation accuracy. We see
a gradual decline in the loss epoch wise. Figure 23 presents the model's accuracy for
the train and validation data. The figure exhibits minimal overfitting and a notable
increase in accuracy. Particularly noteworthy is the significant increase in accuracy at

epoch 15, which corresponds to a turning point in the model's learning trajectory.

-62 -



Training and Validation Loss

8 — Training Loss
I validation Loss

Loss

Epoch
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Figure 23: Training and Validation Accuracy
Figure 24 shows the plot of training and validation Dice coefficient metric over the
epoch during the training phase. Overall, every key performance metric, including

values of dice coefficient with peaks or plateaus, shows the segmentation of the model

and identifies the critical features well throughout the training procedure.
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Training and Validation Dice Coefficient
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Figure 24: Training and Validation Dice Coefficient
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Figure 25: Training and Validation Mean Absolute Error

Figure 25 extends the analysis by presenting the Mean Absolute Error (MAE) across

epochs. The model's ability to minimize average absolute discrepancies between

predicted and true values is demonstrated by the steady drop in MAE. This pattern

demonstrates how the model's accuracy increased during training. These figures'

analysis points to a balanced model that performs well in segmentation tasks and

skillfully minimizes both error measures. We investigate further possible relationships

and trade-offs between accuracy, Mean Absolute Error (MAE), and Dice coefficient,

offering valuable information on the complex functionality of our suggested design.
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Figure 26: Confusion Matrix

4.5. Integrating the interpretability of the model using XAI

This section discusses the incorporation of explainable Artificial Intelligence (XAI)
techniques specifically Grad-CAM (Gradient-weighted Class Activation Mapping) and
LIME (Local Interpretable Model-agnostic Explanations) into our proposed CF-CNN
model design with a focus on increasing interpretability of the model. The concept of
XAI contributes to research particularly in certain fields of study such as medical
imaging because the transparency of decision-making systems makes an impact on
acceptance and confidence. A tool — XAl augments the cognitive abilities of humanity
by showing how complex the decisions models have to make are. The introduction
presents a detailed on XAI approaches and leads to the point that it is necessary to
improve models’ transparency. There are very important to get rid of the intrinsic

ambiguity of complex neural networks.
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It becomes clear that the last Conv Attention layer is essential to maintaining the
model's interpretability. All of the crucial features needed for precise classification are
retrieved at this layer, providing a clear understanding of the methods used to make the

model's conclusions intelligible to end users.

Grad-CAM distinguishes itself in particular by emphasizing important areas in medical
pictures, giving end users insight into the particular characteristics that affect the
model's forecasts. Furthermore, LIME provides insights at the local level to supplement
Grad-CAM with its model-agnostic methodology. The detected patterns, revelations,
or anomalies revealed by these interpretability techniques are the main topics of
discussion. To complement and illustrate our findings, we have provided visualizations
such as Grad-CAM heatmaps and LIME perturbation explanations. Various highlight
the interpretative value of these XAl techniques in improving our comprehension of the

model's decision-making processes.

4.5.1. XAI techniques incorporated with CF-CNN model

Following figures shows the interpretability of CF-CNN model. In Figure 27, it can be
seen quite clearly that the true label of image is DRUSEN, which is condition in which
lipid and protein deposits occur under the retina, which are highlighted in the heatmap
and then superimposed on to the original image so that the interpretability is made. The
model has learned this feature and made the decision based on the selected region in
the heatmap. Figure 28 shows the model’s interpretability through XAI technique
GradCAM on sample image of Diabetic Macular Edema. As we know that DME is
manifested as retinal thickening caused by the accumulation of intraretinal fluid
primarily in the inner and outer plexiform layers. It can be seen quite clearly on heat
map that the feature that made the model to classify this image as DME in the
intraretinal fluid that has been accumulated in the layer of retina. Hence, the XAl feature
of the model is performing and it can be interpreted that the model has learned the

features quite well.

- 66 -
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Figure 27: Model’s interpretability through XAI on sample image of Drusen
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Figure 28: Model's Interpretability through XAI on sample image of DME

As we know from the introduction section that CNV is a component of the exudative
age-related macular degeneration (AMD) spectrum, which is characterized by aberrant
vessel growth over the Bruch's membrane from the choroidal vasculature to the
neurosensory retina. Figure 29 presents the XAlI’s interpretation of sample image of
choroidal neovascularization (CNV) condition which demonstrates through the
heatmap clearly, the unnatural development of blood vessels beneath the retina.
Similarly, the XAI technique LIME marks the boundaries in the region where the
problem lies, giving the treating physician or surgeon a better understanding of the
model’s prediction, which addresses the purpose of integrating the XAl techniques in
precision medicine, precisely the artificial intelligence systems in the field of medical

imaging. LIME interpretations are shown in Figure 30.
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Figure 29: Model's interpretability through XAI on sample image of CNV

Figure 30: LIME interpretation of the proposed CF-CNN model

4.5.2. XAI techniques incorporated with DA-CNN model

To complement and illustrate our findings, we have provided visualizations based on
Grad-CAM heatmaps. To implement Grad-CAM (Gradient-weighted Class Activation
Mapping) for explainable Al (XAI) technique, the following stages are involved in
Grad-CAM explanations: 1. Loading the trained model. 2. Getting the output of the last
convolutional layer and the predicted class score. 3. Computing the gradient of the
predicted class score with respect to the output feature map. 4. Computing the
importance weights by averaging the gradients. 5. Generating the heatmap by
multiplying the importance weights with the output feature map.6. Visualizing the
heatmap overlaid on the input image. For the visualizations, we will consider the model
that is compiled using Nadam optimizer. The XAl interpretations are shown in Figure

[31-34].
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Original Image - Sample 11
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Original Image - Sample 10
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Figure 31: XAl interpretation of model on the class CNV

In Figure 31, it can be observed quite clearly that the model GradCAM technique
highlights the regions where the problem lies. We are certain that the CNV condition
arises due to irregular development of blood vessels beneath the retina. The OCT scan
has the features that show the irregular evolution of blood vessels underneath the retina,
hence captured by the model, learned and presented in the output. Heatmap is separately
generated and then superimposed on to the original image pointing towards the actual

spots where the blood vessels are grown.
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Original Image - Sample 17
True Label: DME Heatmap
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Figure 32: XAl interpretation of the model on the class DME

In Figure 32, the interpretations of GradCAM technique on DME class is presented.
The region where the edema (accumulation of fluid) lies can be observed quite clearly
which is the basic cause of the condition i.e., Diabetic Macular Edema. The OCT scan
has the features that show the edema or the accumulation of sub retinal fluid underneath
the retina, hence captured by the model, learned and presented in the output. Heatmap
is separately generated and then superimposed on to the original image pointing

towards the actual spots where the edema is located.
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Figure 33: XAl interpretation of the model on the Drusen class
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Drusen, we already know is the condition in which the lipids or fats are deposited
underneath the retina hence resulting in AMD. In Figure 33, the interpretation of the
model generated through XAI technique GradCAM is presented in which the retinal
region where the lipid or fat deposits are located is highlighted. Ultimately, it assists
the physician or the surgeon to trust the decision made by the CNN model hence
eliminating any ambiguity. As the normal retinal layer must not contain any spot that
is caused due to various conditions like CNV, DME, AMD or Drusen, the interpretation
of the model that is presented in Figure 34 is clearly highlighting the whole retinal layer,
demonstrating that there is no problem what so ever with the retina, hence the decision
of the model to predict this image as Normal. Heatmap is separately generated again
and then superimposed on to the original image pointing towards the whole retinal

layer.

Original Image - Sample 2
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Figure 34: XAl interpretation of the model on the Normal class
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4.6. Visualizing the predictions

This section analyses the predictive capacity of the proposed models, analyzing their
performance based on important metrics and practical scenarios. The main objective is
to get the understanding of the generalization ability of the models to real life data on
which the model has not been trained and also to observe how much correctness is
achieved by the model. In order to achieve accurate predictions in a variety of scenarios,
this requires a thorough study that goes beyond simple statistics. This analysis will
reveal the model's stability and consistency. The predictive capability of our models is
tested in real-world settings in addition to numerical data. That is, testing the models
with new and never-tried images to evaluate its adaptability for real application. Figure

35 demonstrate our models’ predictions following training and validation.

True Label: 0, Predicted Label: 0 True Label: 0, Predicted Label: 0 True Label: 1, Predicted Label: 1

True Label: 1. Predicted Label: 1 True Label: 2. Predicted Label: 2 True Label: 2, Predicted Label: 2
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True Label: 3, Predicted Label: 3 True Label: 0, Predicted Label: 0

True Label: 3, Predicted Label: 3

Figure 35: Generalized predictions obtained on test data
4.7. Summary
This chapter presents the detailed results along with the analyses of the results that have
been obtained after extensive experimentation. Moreover, the visualizations of the

predictions that the model has done are also presented alongside the visualizations of

the Explainable Artificial Intelligence techniques GradCam and LIME.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1. Introduction

In the concluding chapter of the research, we review the main findings of the
study, stimulate a critical evaluation of the results obtained and describe the limitations
that were observed throughout the research. The conclusions section gives an
understanding of usefulness and significance of the proposed methodologies and the
final section of the discussion offers an assessment of general significance of these
findings. Furthermore, we suggest future research agendas pointing to areas of

enhancement and exploration which the present study could build upon.

5.2. Discussions

By the analysis of the results presented in preceding chapter, it can be observed in terms
of bias and variance that the DA-CNN model is trained with low bias and low variance
with each optimizer, having slightly higher variance when compiled with generalized
fractional steepest descent optimizer but not so high to consider it, hence all the

optimizers result in best fit models.

There is no issue of underfitting or overfitting as per the analysis of bias and
variance values. Now, to make the choice of the best performing model, we are
presented with various other evaluation metrics. If we have a look at the model in terms
of accuracy, the model shows the remarkable 97.4% accuracy when compiled with
Nadam optimizer which is the best among all four, test loss of 0.08 which is lowest
among all, MAE of 0.02 which is least among all, dice coefficient value of 0.97 which
is best among all and shows 97% overlap hence the best segmentation between the sets,
sensitivity of 0.98 which also is better than other 3 and shows the correct rate of
predictions on positive cases, and specificity of 0.99 which is again the best among all
four and shows the correct rate of predictions on negative cases and finally the AUC-

ROC score of 0.999 which is the most among all the cases under observation.
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In a nutshell, based on bias and variance, all the models are best fit with slight difference
between the values of bias and variance but in the terms of other benchmark evaluation
metrics that are exploited to get the comprehensive assessment of the model, the model
stands out on the performance when it is compiled by the Nadam optimizer, hence we
will consider the model compiled with Nadam as the go-to or first choice model.
Moreover, the most can also be considered as scalable and robust to the inherent noise
because the test data set that has been employed to get the results contains variations of
noisy images as well and it performs equally good on unseen data. Table 4, enlists the
detailed performance comparison of proposed DA-CNN model with specified metrics
and Table 5 presents the classification report of CF-CNN model. The graphical

illustration of the summarized evaluation metrics is revealed in Figure 36.

Table 4: Summarized performance metrics based of four optimizers on DA-CNN model

Optimizer Accuracy Sensitivity Specificity AUCROC Dice MAE Bias Variance

Adam
Adafactor
Nadam

RMSprop

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.91

0.90

0.97

0.991

0.84

0.08
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0.21
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Figure 36: Graphical representation of the summary and comparison of performance metrics
of DA-CNN model
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Table 5: Classification report of CF-CNN model

Classification Precision Recall F1-Score Support
Report
Normal 0.96 0.99 : 0.98 242
CNV 0.92 0.99 ' 0.95 242
DME 0.99 0.93 0.96 242
Drusen 0.99 0.94 0.96 242
Accuracy 0.96 968
Macro avg 0.97 0.96 0.96 968
Weighted avg 0.97 0.96 0.96 968

5.3. Comparison with state-of-the-art models

5.3.1. Comparison of DA-CNN model

Table 6, shows the performance comparison of proposed DA-CNN model with
benchmark methods on accuracy. The graphical comparison of CNN with state-of-the-
art models can been seen in Figure 37. The remarkable gains are achieved in terms of
accuracy, Mean Absolute Error and the Dice coefficient, Sensitivity and Specificity.
From performance comparison tables and graphs, it is seen that proposed DA-CNN
model has outperformed the counterparts in accurate and efficient classification of OCT
images. This displays the efficiency of the proposed DA-CNN model with respect to

accurate prediction of eye condition i.e., Normal, CNV, DME or Drusen.

Table 6: Performance Comparison of proposed DA-CNN model with existing benchmark

models
Reference Model/Methodology Classes Accuracy
[47] ' Convolutional Neural Network (CNN) 2 and 3 91.77
[34] IF-CNN 4 87.3
[46]  Transfer learning with Inception ResNet V2 4 86
[54] CNN 2 93
[55] ' DenseNet 4 88
[55] ResNet50 4 89
Proposed | DA-CNN 4 97.4
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Figure 37: Graphical representation of comparison of proposed model with existing models

5.3.2. Comparison of CF-CNN model

Table 7 shows the performance comparison of proposed CF-CNN model with state-of-
the-arts (SOTA) models on accuracy. The graphical comparison of CNN with state-of-
the-art models can been seen in Figure 38. The remarkable gains are achieved in terms
of accuracy, Mean Absolute Error and the Dice coefficient. From performance
comparison tables and graphs, it is seen that proposed CF-CNN model has
outperformed the counterparts in accurate and efficient classification of OCT images.
This shows the effectiveness of the proposed CF-CNN model in terms of accurate

prediction of eye condition i.e., Normal, CNV, DME or Drusen.

Table 7: Comparison of Accuracy of CF-CNN model with standard counterparts

Reference Model/Methodology Classes Accuracy
[47] Convolutional Neural Network (CNN) 2 and 3 91.77
[34] [F-CNN 4 87.3
[46] Transfer learning with Inception ResNet V2 4 86
[54] CNN 2 93
[55] DenseNet 4 88
[55] ResNet50 4 89
Proposed | CF-CNN 4 96.88
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Figure 38: Graphical Representation of comparison with SOTA

Conclusions

In this research work, two customized CNN based architectures to accurately
distinguish the OCT scans into four different classes i.e., Drusen, CNV, Normal
and DME are proposed.

Latest features and techniques are exploited such as separable dynamic
convolution, dynamic convolution, spatial attention and channel split dual attention
for the enhanced feature extraction. This permits the model to acquire the features
accurately through the OCT images which is a non-invasive method to get the
image of internal structure of the eye.

One of the models i.e. DA-CNN is then compiled using four different optimizers
for error back propagation that are Adam, Adafactor, Nadam and RMS prop.

By the comprehensive analysis of the results and comparison based on various
evaluation metrics, we conclude that the DA-CNN model performs best when
compiled with Nadam optimizer hence we consider that particular approach as

best-fit.
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e Interpretability of the model is integrated based on GradCAM XAI technique in
which the model highlights the region or the features on the OCT images based on
which the classification decision is matured.

e The model outperforms various state-of-the-arts on different evaluation metrics and

achieves the optimal accuracy in quite a smaller number of iterations.

5.5. Future Work

As for future work, we have listed the performance improvement and the generalization

of these CNN architectures as a promising direction.

e The model could be more generalizable if a larger and a more diverse dataset were
collected from different population, aging, and diseases using different types of
OCT images.

e The presence of such diversity should further add to the dataset’s capacity to arrest
the model’s degeneration, creating a more fortified immunity in confronting a
wider range of patients.

e Furthermore, using actual OCT images intensively processed with advanced data
augmentation strategies that can be developed for OCT images, may further
enhance its ability to detect even submicroscopic changes within the eye and
enhance its diagnostic abilities even in the most complex cases.

e Another aspect of future work is that the current study can be extended by
considering other forms of interpretability in addition to GradCAM, thereby
gaining a better understanding of the predictions of the developed model.

e Other techniques, like LRP or SHAP, that provide more refined information that
this paper provided may give the doctors a better non-simplified understanding of
how the model works.

e Finally, integrating this CNN model into a real-time OCT image analysis platform
or embedding it into portable diagnostic tools would be another step to

democratizing diagnostic eye health assessment in point-of-care analyses.
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5.6. Summary

This chapter presents the discussions on the results obtained and the comparison of the
achieved values of the evaluation metrics with the standard counterparts and the models
and methodologies mentioned in the literature along with the conclusions and the future

directions of the research.
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