
Automatic Code Generation using
Swarm Intelligence

Submitted by:

Hina Mahmood
297-FBAS/MSSE/F09

Supervised by:

Mr. Atif Aftab Ahmed Jilani

Co-Supervised by:

Mr. Qaisar Javaid

Department of Computer Science and Software Engineering
Faculty of Basic and Applied Sciences

International Islamic University Islamabad
(June 2012)

\

Accession No

7 , '

> 6 i
/>^V(

e y ^ i

1

/ ^ f t i i>

Department of Computer Science and Software Engineering

International Islamic University Islamabad

Final Approval

This is to certify that we have read the thesis submitted by Hina Mahmood, 297-
FBAS/MSSE/F09. It is our judgment that this thesis is o f sufficient standard to warrant its
acceptance by International Islamic University, Islamabad for the degree of Masters of Science
in Software Engineering (MSSE).

Committee:

External Examiner:

Dr. Arshad Ali Shahid
Professor, HOD
Department o^ Computer Science
National University of Computer and
Emerging Sciences (NUCES) - FAST

Internal Examiner:

Dr. Zunera Jahl
Assistant Professor
Department of Computer Science and
Software Engineering
International Islamic University, Islamabad

Supervisor

Mr. Atif Aftab Ahmed Jilani
Assistant Professor
Department of Computer Science
National University of Computer and

. Co-supervisor
I

Mr. Qaisar Javaid
Assistant Professor
Department of Computer Science and
Software Engineering
International Islamic University

11

Dedication...

{fcu^tdcf m cf Htom

wAo ̂ *Diil^€Hce ^M d

w<t&occt ^ ^%cufm4. and S^î ipont

cO t^utt a u d d came Piae.

HI

Department of Computer Science and Software Engineering,
jtf'

Faculty of B^ic and Applied Sciences,

International Islamic University, Islamabad

As a Partial Fulfillment of the Requirement for the Award of the

Degree of Masters of Science in Software Engineering (MSSE),

A dissertation Submitted to

IV

Declaration

I hereby declare that this thesis ‘̂Automatic Code Generation using Swarm Intelligence”

neither as a whole nor as a part has been copied out from any source. It is further declared that I

have done this research with the accompanied report entirely on the basis of my personal efforts,

under the proficient guidance of my teachers especially my supervisor Mr. Atif Aftab Ahmed

Jilani. If any part of the system is proved to be copied out from any source or found to be

reproduction of any project from any of the training institute or educational institutions, I shall

stand by the consequences.

Hina Mahmood

297-FBAS/MSSE/F09

Acknowledgement

In the name of Allah, the passionate, whose blessings made it possible for me to

complete this complex and hard task. Its completion is a matter of great enthusiasm and pleasure

for me. It is all because of Almighty Allah’s guidance that made me so able.

Every mission and project has a brain behind that vivifies the theoretical raw ideas. I am

fortunate enough that a masterful intellect, in the mind of my supervisor Mr. Atif Aftab Ahmed

Jilani, was with me. I offer my sincerest gratitude to him, who has supported me throughout my

thesis with his patience and knowledge whilst allowing me the room to work in my own way.

My thesis would have been a complete fiasco in the absence of such a mastermind. I attribute the

level of my Masters degree to his encouragement and effort. I have no words to thank the

laborious and tiring contributions of this extraordinary personahty. One simply could not wish

for a better supervisor.

1 wish to express my deepest gratitude to Mr. Qaisar Javaid for his worthy support and

kind cooperation particularly near the completion of my thesis. I would also like to acknowledge

Dr. Abdul Rauf for his genuine support, valuable advice, sincere coniiments and motivation

throughout the project. He regularly gave his precious time to this thesis despite of his tight

schedules. I thank the members of my graduate committee for their worthy comments and

valuable criticism. I am also gratefiil to my friends and colleagues for their love and

encouragement.

It will be failing in my duties if I miss to thank my beloved family. I am indebted to my

parents and would like to express my deepest gratitude to them for their constant encouragement,

affection and motivation. Their prayers always contribute a lot in completing difficult tasks. It is

due to their unexplainable care and love that I am at this position today. I am thankful to my

caring brothers especially Dr. Salman Mahmood for constantly helping me during hard times and

offering me his valuable advice. Thanks are also due to my brother Imran for his support and

assistance. My brother Irfan deserves my special appreciation for providing me his amusing

companionship during my tight and strained schedules, after which I always feel fresh and

VI

relaxed. Last but not least, I am particularly thankful to my sweet sister-in-law Aysha for her

loVe, care and valuable discussions.

Every work is bound to flaws. I accept complete responsibility for all flaws in this

dissertation. I shall be grateful for valuable suggestions and all positive criticism will be

welcomed.

Hina Mahmood

297-FBAS/MSSE/F09

V II

Project In Bfief

Project Title: Automatic Code Generation using Swarm
Intelligence

Undertaken By: Hina Mahmood
297-FBAS/MSSE/F09

Supervised By: Mr. Atif Aftab Ahmed Jilani

Start Date:

Completion Date:

December 01, 2010

January 31, 2012

Tools & Technologies

Documentation Tools

Java™ SE Development Kit 7 ,
Visual Paradigm for UML 7.0
Microsoft Office Visio 2003
Rational Rhapsody Developer V7.6

Microsoft Office Word 2007
Endnote X Volume License Edition
Pdf995 Suite

Operating System:

System Used:

Microsoft Windows 7, Home Premium

HP ProBook 4530s Notebook PC

Vlll

Abstract

Automatic code generation refers to the mechanical generation of implementation code

from system design models by executing a set of transformatidh rules. Existing approaches for

model-to-code (M2C) transformation assume these rules to be manually defined by the domain

experts, by exploiting the source and target languages’ metamodels and expressed in some model

transformation language. However in reality, the definition, maintenance and evolution of a

complete, correct, consistent and non-redundant transformation rule set is not an obvious task,

especially in the availability of Httle domain knowledge. The complex nature of mefamodels and

transformation languages further aggravates the situation, making the code generation process

compUcated and time-consuming.

It has been observed that many organizations maintain a record of their past M2C

transformations and feel more comfortable to show these transformation examples instead of

defming a complete and consistent transformation rule set. Our work starts from these

observations to view automatic code generation problem as the one to solve with fragmentary

knowledge i.e. with only examples of M2C transformations. In this research, we present a novel

approach for automatic code generation by utilizing the previously solved M2C transformation

problems. We view M2C transformation as an optimization problem and select the best solution

from all feasible solutions. The existing set of examples is used to train the system regarding

automatic code generation. After the system is trained transformation blocks, that best match the

constructs of the input source model to be transformed, are extracted from the transformation

examples. These transformation blocks are then used to translate the source model constructs

into target code. An optimal transformation solution is searched by utilizing the heuristic search

technique Particle Swarm Optimization. We implemented this approach in a tool named C0(Je

$warm.

This approach is generic and its application is not limited to any set of models. However

as a proof of concept, we have apphed this approach for generating Java code from class model

and state model, as these two models are representatives of both the static structure and the

dynamic system behavior. Experiments performed for the validation of this approach indicate

IX

that up to 100% correct code can be generated. However, the only prerequisite of this approach is

to have a set of previously solved transformation examples. Besides them, no extra information

is needed. Furthermore, we can easily start with a small and non-exhaustive set of transformation

examples, no special expertise are required. Moreover, the proposed approach always proposes a

transformation strategy, nearest match in case if no exact match exists in the training data. This is

rather impossible in the existing code generation approaches in which the absence of a rule

results in a failure to perform the correspcmdihg transformation.

Conclusively, our proposed approach does not rely on using an explicitly defined

transformation rule set for performing the transformations, rather it is intelligent enough to

automatically derive the rules frorn the existing set of transformation examples. In the absence of

an explicit transformation rule set definition, automatic code generation process becomes

independent of transformation languages. Moreover, by automatic extraction of transformation

rules from previously solved transformation examples, our approach also becomes independent

of source and target formalisms. In this way, our proposed approach makes the code generation

process painless by dissociating it from explicit transformation rule set definition, its expression

and metamoHels’ comprehension.

Table of Contents

List of Figures .. xv

List of Tables xviii

List of Publications .. xix

Acronyms and Abbreviations ... xx

Chapter 1. Introduction 1

1.1 Introduction .. 2
1.2 Problem Statement ... 2
1.3 Motivation ... 3
1.4 Research Questions 4
1.5 Proposed Solution; 4
1.6 Thesis Contributions .. 5
1.7 Dissertation Outhne .. 6

Chapter 2. Background 7

2.1 Introduction ... 8
2.2 Model Driven Architecture .. 8

2.2.1 Model ... 8
2.2.2 Model Transforniation .. 8

2.3 Code Generation .. 9
2.3.1 Metamodels ... 10
2.3.2 Transformation Rules 10
2.3.3 Transformation Languages ... 11
2.3.4 Code Generation Process .. 11

2.4 Swarm Intelligence t 12
2.4.1 Particle Swarm Optimization ... 12

2.5 Action Language ... 13
2.5.1 Action Specification Language .. 13

Chapter 3. Related Work 14

3.1 Introduction ... 15
3.2 Code Generation Approaches .. 15

3.2.1 Class Model Transformation Approaches ... 15
3.2.2 State Model Transformation Approaches .. 16
3.2.3 Interaction Model Transformation Approaches 16
3.2.4 Hybrid Approaches 17

3.3 Code Generation Tools .. 18

Abstract .. ix

xi

3.3.1 Rational Rose 18
3.3.2 Rational Rhapsody ----- 19
3.3.3 StructureBuilder 19
3.3.4 Enterprise Architect .. 19
3.3.5 Visual Paradigm 19
3.3.6 AndroMDA ... 19
3.3.7 MagicDraw ... 19
3.3.8 Papyrus ... -...... 20
3.3.9 iUML .. 20
3.3.10 AgroUML ... 20

3.4 Swarm Intelligence for Model Transformation 20
3.4.1 Model-to-Code Transformation .. 20
3.4.2 Model-tO'Model Transformation 21

3.5 Analysis ... 21

Chapter 4. Problem Definition 23
4.1 Introduction 24
4.2 Issues of Transformation Rules ... 24
4.3 Concerns of Transformation Languages ... 25
4.4 Complexity of Metamodels ... 25
4.5 The Gap ... 25

Chapter 5. Proposed Approach for Code Generation 27
5.1 Introduction ... 28
5.2 Preliminaries 28

5.2.1 Input Source Model :.. 28
5.2.2 Model Construct 28
5.2.3 Mapping Block 29
5.2.4 Transformation Example (Training Data) 29
5.2.5 Predicate ... 29

5.3 Approach Overview ... 30
5.4 Knowledge Representation .. 32

5.4.1 Class Model Representation .. . 33
5.4.2 State Model Representation 36
5.4.3 Action Specification 38

5.5 PSO Adaptation for Automatic Code Generation 39
5.5.1 Representation of Transformation Solution ... 40
5.5.2 Evaluation of Transformation Solution 41
5.5.3 Deriving an Optimal Solution .. 44
5.5.4 Parameter Tuning ... 46

5.6 Automatic Code Generation Process 47
5.6.1 Build a Knowledge Base .. 47
5.6.2 Prepare Input Source Model 48
5.6.3 Search for an Optimal Solution .. 48

 ̂ 5.6.4 Transform the Model using Optimal Solution 48

xii

6.1 Introduction 50
6.2 C04,$ Architecture ... 50

6.2.1 PredicateParser 50
6.2.2 SearchEngine ... 52
6.2.3 M2CTransformationEngine .. 52

6.3 C0^S Implementation ... 53
6.3.1 AutoCodeGenerator 53
6.3.2 PSO .. .̂......... 55
6.3.3 Editor ... 56

6.4 C04S Process Flow .. 56
6.4.1 Import Training Data ... 57
6.4.2 Import Source Model ... 58
6.4.3 Transform Model 59
6.4.4 Generate Java Code 61

Chapter?. Case Study 63
7.1 Introduction .. 64
7.2 Elevator Control System ... 64

7.2.1 Scope of the ECS ... 64
7.2.2 Functional Requirements ... 65

7.3 Class Model .. 66
7.4 State Model ... 69

7.4.1 State Model of Elevator̂..................................... 69
7.4.2 State Model of EmergencyBrake .. 71
7.4.3 State Model of HallCallButton ... 71
7.4.4 State Model of CarButton ... 71
7.4.5 State Model of CarPositionlndicator 72
7.4.6 State Model of CarLantem ... 72
7.4.7 State Model of Door ... 72
7.4.8 State Model of Drive 73

Chapters. Evaluation 7 4

8.1 Introduction ..T... 75
8.2 Elevator Control System ... 75

8.2.1 Experimental Setting .. 75
8.2.2 Results and Discussion ... 76

8.3 10-fold Cross VaUdation .. 80
8.3.1 Experimental Setting .. 80
8.3.2 Results and Discussion ... 80

8.4 Comparison ... 84
8.4.1 Code Generation Approaches ... 84
8.4.2 Code Generation Tools ... 85

8.5 Assessment 86
8.5.1 Benefits .. 86

Chapter 6. Tool Implementation 49

xiii

Chapter 9. Conclusion 89
9.1 Introduction .. 90
9.2 Conclusion 90
9.3 Future Work .. 92

9.3.1 Improve Code Correctness ... r...................... 92
9.3.2 Reduce Execution tim e .. 92
9.3.3 Application to large-Scale Models .. 92
9.3.4 Application to Multiple System Design Models 93
9.3.5 Automate Expression of Predicates ... 93
9.3.6 Automation of Transformation Examples Representation 93
9.3.7 Enhance C0ct$ Tool .. 93

References .. 94

Appendix A. Predicate Structure Templates 99

Appendix B. User Manual 109

Appendix C. Training Data 127

Appendix D, Generated Code 162

8.5.2 Limitations ... 88

x i v

Figure 2.1 MDA process 9
Figure 2.2 Traditional code generation process .. II

Figure 5.1 Knowledge base system ... 30
Figure 5.2 Code generation approach overview .. 32
Figure 5.3 Class model of an ‘Online Shopping System’ .. 34
Figure 5.4 State model of the class‘ShoppingCart’ ;...................... 36
Figure 5.5 Steps of automatic code generation process ..47

Figure 6.1 C04$ architecture 51
Figure 6.2 004$ implementation 53
Figure 6.3 Interaction pattern within the ‘AutoCodeGenerator’ package:........... 54
Figure 6.4 Main interface of C0cJS .. 57
Figure 6.5 Training data file ... 58
Figure 6.6 Input source models file .. 59
Figure 6.7 Predicates file Tredicates.txt’ ... 60
Figure 6.8 Model transformation‘readme.txt’ 61
Figure 6.9 Java code file ‘Command.java’ 62
Figure 6.10 Code generation‘readme.txt’ 62

Figure 7.1 Class diagram of th e ‘Elevator Control System’ ... 67
Figure 7.2 State model of the ‘Elevator’ .. 70
Figure 7.3 State model of th e ‘EmergencyBrake’ ... 71
Figure 7.4 State model of the ‘HallCallButton’ 71
Figure 7.5 State model of th e ‘CarButton’ 71
Figure 7.6 State model of th e ‘CarPositionlndicator’ .. . 72
Figure 7.7 State model of th e ‘CarLantem’ 72
Figure 7.8 State model of the ‘Door’ ...;... 73
Figure 7.9 State model of the ‘Drive’ .. 73

Figure 8.1 C 0 ^ scTC&nshoi highlighting doubtful transformations 77
Figure 8.2 C04$ screenshot highlighting missing transformations 79
Figure 8.3 Correctly mapped constructs vs. Correctly transformed constructs 82
Figure 8.4 Best fitness vs. Code correctness .. 84
Figure 8.5 Model constructs vs. Execution time .. 84

Figure B.l C0(^$ interface .. 110
Figure B.2 File menu .. 112
Figure B.3 New project 113
Figure B.4 New proj^t coiifirmatibh screen ' ... 113
Figure B.5 Close project .. 114
Figure B.6 Delete project confirmation ... 115

List of Figures
Figure 1.1 Dissertation outline ... 6

XV

Figure B.7 Delete project confirmed 116
Figure B.8 Open file 116
Figure B.9 Close file 117
Figure B. 10 Exit 117
Figure B. 11 Thank you 118
Figure B. 12 Edit menu 119
Figure B. 13 Import training data - browsing dialog ... 119
Figure B.14 Import training data - console 120
Figure B.15 Import input model - browsing dialog .. 120
Figure B.16 Import input model - console 121
Figure B.17 Transform model - in progress 122
Figure B. 18 Transform model - process completed ..122
Figure B.19 Generate code - in progress 123
Figure B.20 Generate code - process completed .. . 123
Figure B.21 Help menu 124
Figure B.22 Help menu - welcome screen .. 124
Figure B.23 Help menu - about C0c|S project 125
Figure B.24 Help menu - user guide 125
Figure B.25 Help menu - working sequence .. . 126
Figure B.26 Help menu - important poiiits ... 126

Figure C.l Class model of Task Management System’ ... 128
Figure C.2 State model o f ‘Employee’ .. 129
Figure C.3 State model of Task’ .. 129
Figure C.4 State m odelbf‘TForce’ ... 130
Figure C.5 State model o f ‘Position’ ... 130
Figure C.6 Class model of ‘Book Bank’ ... 131
Figure C.7 State model o f ‘Person’ 132
Figure C.8 State model o f ‘Loan’!....................................... 132
Figure C.9 State model o f ‘Book’ 133
Figure C.IO Class model of ‘Bill Payment System’ ... 133
Figure C.l 1 State model o f ‘Command’ 134
Figure C .l2 State model o f ‘Bill’ .. 134
Figure C.13 State model o f ‘Item’ ;..................................:........ 135
Figure C.14 State model o f ‘Client’ 135
Figure C .l5 Class model of ‘Student Enrollment System’ ... 136
Figure C. 16 State model o f ‘Student’ 137
Figure C.17 State model o f ‘Enrollment’ 138
Figure C.18 State model o f ‘Seminar’ 138
Figure C. 19 State model o f ‘Professor’ 139
Figure C.20 Class model of ‘Purchase Order’ appUcatioh .. 140
Figure C.21 State model o f ‘Customer’ .. 141
Figure C.22 State model o f ‘Phone’ .. 141
Figure C.23 State model of ‘PurchaseOrder’ 142
Figure C.24 State model of ‘Lineltem’ 142
Figure C.25 State model o f ‘Address’ :... 143

xvi

Figure C.26 State model o f ‘Stockltem’̂..... .. 143
Figure C.27 Class model of ‘Library Management System’=... 144
Figure C.28 State model of ‘Catalogue’ 145
Figure C.29 State model o f ‘Book’ ... 145
Figure C.30 State model o f ‘Alert’ .. 145
Figure C.31 State model o f ‘Librarian’ ... 146
Figure C.32 State model o f ‘Member’ .. 146
Figure C.33 Class model of ‘Online Shopping System’ .. 147
Figure C.34 State model of ‘ItemtoPurchase’ 147
Figure C.35 State model o f ‘ShoppingCart’ 148
Figure C.36 State model of ‘Product’ 148
Figure C.37 State model of ‘CreditCard’ .. 149
Figure C.38 State model o f ‘Customer’ .. 149
Figure C.39 Class model of ‘Purchase Management System’ 150
Figure C.40 State model of ‘Customer’ .. 150
Figure C.41 State model of ‘Order’ 151
Figure C.42 State model o f ‘Payment’ .. 151
Figure C.43 State model o f ‘Item’ 152
Figure C.44 State model of ‘OrderDetail’ ... 152
Figure C.45 Class model of ‘Drawing Application’ 153
Figure C.46 State model o f ‘Object’; 154
Figure C.47 State model o f ‘Shape’ .. 154
Figure C.48 State model o f ‘List’ 154
Figure C.49 State model of ‘Eventhandler’ .. 155
Figure C.50 State model of ‘Application’ ... 155
Figure C.51 State model o f ‘Box’ .. ;............................. 155
Figure C.52 State model o f ‘Circle’ 156
Figure C.53 State model o f ‘Document’ 156
Figure C.54 State model o f ‘Palette’ ... 156
Figure C.55 State model o f ‘Window’ .. 156
Figure C.56 Class model of ‘Account Management System’ 157
Figure C.57 State model o f ‘Product’ ... 158
Figure C.58 State model o f ‘Cash’ 158
Figure C.59 State model o f ‘ManagedFund’ 159
Figure C.60 State model of ‘Loan’159
Figure C.61 State model o f ‘Address’ ..1... 159
Figure C.62 State model o f ‘Person’ ... 160
Figure C.63 State model o f ‘Transaction’ ... 160
Figure C.64 State model o f ‘Account’ .. 161

X V II

Table 2.1 Steps of PSO 13

Table 5.1 Transformation solution vector .. 40

Table 8.1 Training data 75
Table 8.2 Execution results for ECS .. 79
Table 8.3 Post-analysis execution results for ECS 79
Table 8.4 Number of input model constructs and mapping blocks 80
Table 8.5 Execution results for 10-fold cross validation ... 81
Table 8.6 Post-analysis execution results for 10-fold cross validation 82

List of Tables

X V IU

1. Hina Mahmood, Atif Aftab Ahmed Jilani, Abdul Rauf, “A Lightweight Framework for

Automated Model-to-Code Transformation”, in Proc. of the 14th IEEE International

Multitopic Conference (INMIC), pp. 279-283, Dec. 22-24 2011

2. Hina Mahmood, Atif Aftab Ahmed Jilani, Abdul Rauf, “Code Swarm: A Code Generation
h ^Tool Based on Automatic Derivation of Transformation Rule Set”, accepted in the 9

International Conference on Information technology: New Generations (ITNG), April 2012,

USA
- i

3. Hina Mahmood, Atif Aftab Ahmed Jilani, Abdul Rauf, “An Optimization Approach for

Automatic Code Generation using Swarm Intelligence”, under-review in the Journal of

Systems and Software (JSS)

List of Publications

X IX

Acronyms and Abbreviations

ASL Action Specific Language
CIM Computation Independent Model
ECS Elevator Control System
EHA Extended Hierarchical Autorhata
Fujaba From UML to Java And Back Again
FXU Framework for executable UML
GReAT Graph Rewriting and Transformation
IE Inference Engine
KBS Knowledge Base System
M2C Model-to-Code
M2M Model-to-Model
MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering
MOTOE Model Transformation as Optimization by Examples
OCL Object Constraint Language
OMG Object Management Group
OMT Object Modeling Technique
oo Object Oriented
PIM Platform Independent Model
PLC Programmable Logic Controller
PSI Platform Specific Implementation
PSM Platform Specific Model
PSO Particle Swarm Optimization
rCOS Relational Calculus of Object Systeins
SMC Source Model Construct
STD State Transition Diagram
TCC Target Code Construct
UJECTOR Uml to Java Executable Code GeneraTOR
UML Unified Modeling Language
VUML View-based UML
XMI " XML Metadata Interchange
xUML Executable UML

XX

chapter 1

INTRODUCTION

-1-

1.1 Introduction

Within software engineering, implementation phase is considered as the core activity of

developing a software system. However, the advent of Model Driven Engineering (MDE)

brought a paradigm shift in the history of software engineering by changing it from a code-

centric to a model-centric activity. MDE focuses on developing a software system by performing

a series of model transformations to generate target code, referred to as Platform Specific

Implementation (PSI).
I

The goal of software engineering is to produce a quahty software product in a faster and

cheaper way [2]. As a result, automatic mbdel-to-code (M2C) transformation remains an actively

explored research area as it makes the activity of software development more efficient,

productive and less error-prone. The existing approaches and tools for M2C transformation rely

on three fundamental building blocks; 1) transformation rules, 2) trahsfofmation languages and

3) source and target metamodels. Currently, program code can be automatically generated from

system models by executing a set of transformation rules, which are defined on the base of

source and target languages metamodels and expressed in a model transformation language.

1.2 Problem Statement

Due to various benefits offered by automatic code generation, it remains an extensively

explored research area for the last few years. Consequently, literature is stuffed with approaches

to automatically generate source code from system’s design artifacts. By analyzing these

approaches, it can be concluded that all existing approaches are based on transformation rules,

which define the mapping between source and target metamodels.

As for any rule-based system, defining a set of tr^sformation rules is not an obvious task

and many unwanted limitations confine the results [3]. Some of these limitations are: 1) Some

transformations cannot be easily expressed in the form of rules [4]. 2) In some cases, the

availability of httle domain knowledge also hinders the way of defining a complete

transformation rule set [3]. 3) Furthermore, experts may find it difficult to master both the source

and target metamodels [5]. 4) Due to the availabihty of a wide range of transformation languages

for expressing rules, it often becomes complex for experts to choose the one that best serves the

- 2 -

needs of their domain. All these difficulties are amplified when we consider that transformation

rule set may evolve. During the evolution, addition and adaptation of transformation rules makes

it difficult to ensure their consistency and correctness. Due to all these reasons, the development

of a correct, complete, consistent and non-redundant transformation rule set becomes a complex

and demanding activity.

More specifically, the definition of transformation rules is a human-dependent activity at

the moment and expert intervention is needed during the whole process. There is no method to

automatically derive or extract transformation rules without human intervention. No such"

approach currently exists that can perform the task of automatic code generation: 1) without

explicit transformation rule set definition, 2) independent of transformation languages and 3)

irrespective of source and target metamodels.

1.3 Motivation

It is recognized that experts can more easily give transformation examples instead of

defining complete and consistent transformation rules [6]. In most cases, the companies have

accumulated knowledge from past industrial transformation examples [4, 7]. However, currently

there is no way to automatically extract transformation rules fi-om these previously accumulated

transformations and utilize them to solve new M2C transformation problems.

From these observations, our work starts to view automatic code generation problem as

the one to solve with fragmentary knowledge i.e. with only examples of M2C transformations. In

this case, there should be some procedure to automatically derive transformation rules from

existing set of industry-based transformation examples. The automatic extraction of

transformation rules will circumvent the manual definition of transformation rule set by domain

experts. It will make the M2C transformation process independent of source and target

formalisms. In this way, all the difficulties associated with manual definition, rhaintenance and

expression of a complete, consistent and non-redundant transformadon rule set will be

eradicated.

- 3 -

1.4 Research Questions

This research aims to address the following three research questions:

1. How to perform the process of M2C transformation without explicitly defining

transformation rules?

2. How to make the automatic code generation process independent of transformation

languages?

3. How to generate code from models irrespective of source and target languages’ i

metamodels?

1.5 Proposed Solution

Keeping in view all the problems and complexities associated with the existing code

generation approaches, we aim to propose an approach that can make the task of automatic code

generation simple, easy and unproblematic. The core theme of our approach is to use knowledge

from previously solved industrial transformation examples to solve new M2C transformation

problems.

We propose to use a Knowledge Base System (KBS) for M2C transformation, th e set of

existing transformation examples are used to train the system regarding automatic code ^

generation. After the system is trained, new M2C transformations are performed. Thus, instead

of providing transformation rules directly as input, our aim is just to provide an existing set of

transformation examples and let the system automatically extract transformation rules from

them, without any expert intervention. Besides transformation examples, no extra information is

needed to utilize this approach.

In the absence of an explicit transformation rule set definition, automatic code generation

process becomes independent of transformation languages. Moreover, by automatic extraction of

transformation rules from previously solved transformation examples, our approach also

becomes independent of source and target formalisms. In this way, our proposed approach

makes the process of automatic code generation independent of manual transformation rule set

- 4 -

definition, transformation languages and metamodels. However, the only prerequisite of this

approach is to have a set of previously solved transformation examples to be used as the training

data.

1.6 Thesis Contributions

This dissertation introduces a novel approach developed for automatic code generation

from system design models. Our approach makes use of the existing transformation examples,

heuristic search and swarm intelligence to automate the process of code generation. To the best

of our knowledge, these concepts have never been used in the context of M2C transformation

before, making it significantly different from what already exists in current Uterature regarding

M2C transformation. The core characteristics of this approach are as follows.

1. It can utihze previously solved transformation examples to solve new M2C transformation

problems.

2. It can transform models into code without exphcit definition of transformation rules.

3. It does not rely on the metamodels of source and target languages.

4. It is irrespective of any transformation language.

The benefits achieved by developing an approach having the above-mentioned

characteristics are given below.

1. Ease the process of transformation from models to code.

2. Utilize the existing fragmentary knowledge in solving new M2C transformation problems.

3. Transform models into code without using transformation languages.

4. Generate code from rhodels without expUcitly writing transformation rules.

5. Make the transformation process independent of metamodels complexities.

6. Our approach always proposes a transformation strategy, nearest match if no exact match is

found in the training data, which is rather impossible in the existing rule-based approaches.

- 5 -

7. Accelerate the process of M2C transformation by eradicating the need of learning complex

technologies.

1.7 Dissertation Outline

Figure 1.1 illustrates the organization of this dissertation: Chapter 2 estabhshes the background

for understanding the dissertation by providing an introductory knowledge regarding M2C

transformation. Chapter 3 presents the related work in the fields of automatic code generation

and swam intelligence. The issues and limitations of existing code generation approaches and

research gaps are highlighted in Chapter 4. Our proposed approach for automatic M2C

transformation is described in Chapter 5. Chapter 6 introduces the tool based on the

implementation of our approach. Case study used for the validation of proposed approach is

explained in Chapter 7. Chapter 8 discusses and evaluates the results of our research work.

Finally, chapter 9 concludes this dissertation and presents the findings of our research work.

Figure 1.1 Dissertation outline

- 6 -

Chapter 2

BACKGROUND

- 7 -

2.1 Introduction

This chapter is dedicated to establish the background for understanding the dissertation.

Section 2.2 presents a brief description of Model Driven Architecture. An explanation of major

building blocks of code generation process is provided in Section 2.3. Section 2.4 introduces the

concept of swarm intelligence. Finally, Section 2.5 covers the topic of action language,

particularly Action Specification Language (ASL).

2.2 Model Driven Architecture

MDE, first proposed by Kent in [8], is a promising approach that raises the level of

abstraction of program specification by using models as the major driving obj^ts throughout the

software engineering Hfe cycle. Model Driven Architecture (MDA) defined by Object

Management Group (OMG) [9, 10] in 2000, is the best reaUzation of MDE principles. By

keeping the application and implementation logic separate, MDA provides the advantage of

realizing the same system model on multiple platforms [II], thus allowing the reuse of models

over a software lifespan. Models and model transformation form the basis of MDA.

2.2.1 Model

MDE is a model-centric software engineering approach [12]. In MDE system, a model is

composed of a complete and consistent set of formal elements describing a software system that

is amenable to analysis [13]. Models representing a software system should be expressed in a

well-defined modeling language. In 1997, OMG defined Unified Modeling Language (UML)

[14], which quickly became the de facto industry standard for the design and specification of

object-oriented (OO) software systems [15]. MDA defines three classes of models; Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model

(PSM) [16].

2.2.2 Model Transformation

A central concept of MDA is model transformation [17]. According to OMG [11], model

transformation is the process of translating one model to another model of the same system. In

- 8 -

Model Driven Development (MDD) of software systems, CIM is transformed into a PIM and

PIM is transformed into one or more PSMs. These PSMs are finally used to generate target code.

In this way, the whole software development process can be seen as a series of model

transformations, where one source model is transformed into one or more target models.

Consequently, model transformation has been considered as the heart and soul of MDD by

Sendall and Kozaczynski in [18].

At the most abstract level, model transformation can be divided into two main categories;

1) model-to-model (M2M) transformation and 2) model-to-code (M2C) transformation

(automated code generation) [19, 20]. In MDA, automated transformations are performed using

transformation tools. These tools work on the basis of transformation definitions. Figure 2.1

shows the process of MDA with transformation definition and transformation tool incorporated

into it.

Figure 2.1 MDA process {adopted from [10])

2.3 Code Generation

The most significant use of a model representing a software system is code generation

[21]. Manual transformation of system models into code is a very time-consuming and tedious

task. Produced code may not be fully compliant with the models due to chances of human error.

Consequently, researchers have developed approaches to automate this process, resulting in

increased productivity, improved efficiency and reduced errors. The existing approaches of

automatic code generation are based on three fundamental building blocks; 1) metamodels of

source languages and target languages, 2) transformation rules and 3) transformation languages.

- 9 -

2.3.1 Metamodels

Metamodel defines the semantics, structure and constraints of a language for a family of

models [22]. In simple words, a metamodel is a model of the modeling language. A system

model expressed in some modeling language, e.g. in UML, is said to conform to its metamodel if

each and every element in UML model is a valid class in UML’s rrietamodel. As the code

generation process aims at transforming elements of modeling language’s metainodel into

programming language’s metamodel, therefore the comprehension of these two metamodels is

vital for M2C transformation.

2.3.2 Transformation Rules ^

The entire process of generating code from system models is based on defining and using

transformation rules. These rules define the mapping between the source modeling and the target

programming languages [23], In M2C transformation, the correctness and quality of generated

code depends upon the quality of the transformation rule set. For the correct transformation of

system models into code, defined rule set should have the following characteristics:

1. Transformation rule set should be complete i.e. for every element of source language’s

metamodel, a rule should be defined for its transformation into target metamodel’s element.

2. All transformation rules niust be consistent with each other and there should not be any two

conflicting rules in the transformation rule set.

3. Rules set should be non-redundant i.e. there should not exist two or more different rules for

transforming same source metamodel’s element into a different target metamodel’s

element, under same circumstances.

4. Rules should be syntactically correct i.e. every element of source metamodel should be

transformed into a vaUd target metamodel’s element.

5. Transformation rules should be semantically correct i.e. the transformation rules should

preserve the meaning of the source model.

-10-

2.3.3 Transformation Languages

In the field of model transformation, the major contributions are concerned with the

definition of transformation languages which are utilize to state the transformation rules [4].

Transformation rules can be expressed using general-purpose programming languages like Java

or C#, graph-transformation languages like AGG, VIATRA, TGG, VMTS and model

transformation languages like ATL (Atlas Transformation Language), Kermeta, GReAT (Graph

Rewriting and Transformation), MOLA and QVT [4, 7].

2.3.4 Code Generation Process

The complete code generation process is shown in Figure 2.2. Based upon the elements

of source modeling and target programming languages’ metamodels, transformation rules are

developed. These transformation rules, expressed in a model transformation language, are fed

into the transformation tool. In the automatic code generation process, transformation tool takes

system model as input and applies transformation rules to generate the target implementation

code.

Figure 2.2 Traditional code generation process

-1 1 -

2.4 Swarm Intelligence

Swarm intelligence refers to a kind of problem-solving ability that emerges in the

interactions of simple information processing-units [24]. These units are autonomous agents, as

there is no leader or global plan to follow. However, the units must interact and cooperate with

each other so as to achieve a common goal collectively, as this goal is difficult to achieve for any

unit individually. Several algorithms have been designed on the base of swarm intelligence

including Particle Swarm Optimization (PSO), Ant Colony Optimization, Honeybees algorithm,

etc. The aim of these algorithms is to search for an optimal solution in the search space of a

given problem. From all algorithms utilizing swarm intelligence, our prime focus is oh PSO.

2.4.1 Particle Swarm Optimization

PSO is a stochastic-based optimization technique originaDy proposed in 1995 [24]. The

main idea of this algorithm is to iteratively improve the optunal solution with respect to a given

measure of quahty. PSO is inspired by the social behavior of bird flocking and fish schooling. In

PSO, a population of candidate solutions is called a swarm and each individual solution is called

a particle. As there ^ e many birds in a flock, similarly the swarm is composed of multiple

particles. In a flock, each single bird adjusts its miovement (position) by coordinating with its

flock mates. Likewise, particles fly in the swarm by updating their velocities and positions.

Table 2.1 summarizes the steps of PSO algorithm. PSO starts by initializing the swarm

with randomly generated particles. These particles are placed in the search space of a problem.

The fitness of particle at its current location is calculated according to a user-defined objective

function. Each particle has a memory which keeps a record of the best position achieved by the

particle until now in the search space. This is known as pbest. Overall, the swarm also remembers

the best position achieved so far by any particle in the search space. This is known as gbesh

In every iteration, each particle updates its position and velocity by combining some

aspect of the history of its own current and best locations with those of other members of the

swarm [25]. The number of particles in the search space, the number of iterations, and some

other parameters are problem-dependent and are set by the user. The values of these parameters

-12-

have a significant influence on the performance, efficiency and ability of PSO to search an

optimal solution.

Table 2.1 Steps of PSO

1. Randomly initiahze particle positions and velocities
2. While not terminate

A. For each particle i
a. Evaluate fitness at current position Xi
b. If fitness is better than pbesu update pbest and pi
c. If fitness is better than gtest, update gb̂ st and pg

B. For each particle
d. Update velocity v; and position Xi

2.5 Action Language

Executable UML (xUML) bridges the semantic gap between the UML design models and

implementation [26] by the use of an action language. Action language is a high-level

implementation-independent language that provides control logic and manipulation of the UML

structural models. They present a way to build complete system models by incorporating logical

actions at the UML level of abstraction. From among a vast variety of available action

languages, this research work uses Action Specification Language (ASL).

2.5.1 Action Specification Language

ASL [27] was developed in 1993 with the aim of providing an unainbiguous, concise and

readable definition of the processing to be carried out by an OO system. Since then, it has been

successfully applied for specifying and developing many small and large-scale software systems

ranging from embedded controllers to distributed databases. It is a rich language that is capable

of specifying all the processing required. Because of its simplicity and readability, any human

reader can easily and quickly scan through it.

- 1 3 -

Chapter 3

RF.T ATED WORK

3.1 Introduction

The use of models in the development of software has a rich history [28]. In the planet of

research, automatic code generation remains an actively explored area by researchers for the last

few years. Consequently, a plethora of approaches, techniques and tools are cuirently available

to automatically generate executable code from system’s analysis and design artifacts.

This chapter of dissertation is devoted to discuss the existing work in this field. Keeping

in view the title of the thesis, our work can be associated to two ^eas of software engineering -

automatic code generation and the application of swarm intelligence to model transformation.

Section 3.2 presents the code generation approaches, techniques and research based-tools from

existing literature. Some prominent commercial and open source tools for M2C transformation

are discussed in Section 3.3. Section 3.4 discusses transformation of models in the light of swarm

intelligence. Finally, Section 3.5 concludes the chapter with an analysis of the common traits of

existing approaches and tools.

3.2 Code Generation Approaches

Initially, researchers focused on specifying mapping between individual UML models

and target language. With the passage of time, they developed approaches for transforming a set

of models into source code, so as to generate maximum implementation code automatically. We

categorize the existing literature on the bases of models covered by these approaches and tools.

3.2.1 Class Model Transformation Approaches

Favre et al. [29] presented an approach to map static design ^ifacts particularly UML

class diagram to OO code. Annotations in class diagram were expressed using OCL. Initially

class diagram is converted into GSBL°” specification, an OO algebraic language. This

specification is then converted into a more complete specification using SpRelm hbrary. Nassar

et al. [30] presented a model-driven technique to generate code in VUML (View-based UML)

profile. VUML metamodel extends UML with OCL rules. In the proposed approach, VUML

PIM is transformed into an OO PSM, which is then used to generate OO code in Java. The

transformation rules are specified and implemented using ATL.

-1 5 -

3.2.2 State Model Transformation Approaches

Prior to MDE, Weg et al. [31] presented a method named CORSO, “CASE tool support

for real-time systems design” to generate PLC (Programmable Logic Controller) code from State

Transition Diagram (STD) in two steps - first STDs are translated to an intermediate PLC

independent textual code, which is then used to generate PLC specific code.

Ali and Tanaka [1] presented an approach to automatically convert dynamic model,

represented as OMT (Object Modeling Technique), into implementation code. OMT is a

predecessor of UML statechart diagram. The proposed approach focuses on generating Java code

by applying transformation rules. This approach has been implemented in a tool called O-Code.

A few years later, this approach was extended to generate code from UML activity diagrams

[32]. dCode is a tool that implements the enhanced approach. Knapp and Merz [33] presented a

set of tools called Hugo to generate Java code from state machines. A generic set of Java classes

provides a standard runtime component state for UML state machines.

In 2003, for the first time, design patterns were used for transforming statecharts into

Java code. Niaz and Tanaka [23] proposed a novel approach based on State design pattern. Their

approach extends the State pattern and focuses on implementing sequential substates, concurrent

substates and compound transitions in Java. They enhanced this approach in [34] to include

transformations for more complex statechart elements.

Pinter and Majzik [35] provided an implementation pattern for the instantiation of UML

statecharts at the source code level. In this pattem. Extended Hierarchical Automata (EHA) is

used as an intermediate representation of statecharts, as UML statecharts can be automatically

mapped to EHA. A prototype of this pattern was implemented in C.

3.2.3 Interaction Model Transformation Approaches

Sangal et al. [36] presented a technique to generate code from UML interaction diagrams,

particularly UML sequence diagram. As sequence diagrams lack sufficient details for generating

completely executable code, the concept of interaction schemata was introduced. An interaction

schema is a textual description of object-interaction, represented as a list of actions. All messages

of sequence diagram are translated into actions. This technique has been implemented in a Java

-16-

programming tool named Structure Builder. Engels et al. [37] presented a methodical approach

for deploying UML collaboration diagrams to model functional behavior. TTiis approach focuses

on specifying transformation rules to generate Java code from UML collaboration diagranis.

3.2.4 Hybrid Approaches

Niaz and Tanaka [38, 39] proposed a behavioral approach for generating code from class

and state models. This approach has been implemented in a tool named JCode. JCode takes the

specifications of statecharts as input and uses transformation rules to generate Java code from

these specifications. Noe and Hartrum [40] also automate the process of transforming class and

state transitions diagrams into Ada code by merging two tools, Rational Rose 98 and AFIT.

Derezinska and Pilitowski [41, 42] proposed Framework for executable UML (FXU) for

transforming UML class and state models into C# source code. Class and state models are given

as input in the form of XMI (XML Metadata Interchange).

Thongmak and Muenchaisri [43] proposed a rule-based transformation approach for

generation of Java code from UML sequence and class diagrams. This approach was

implemented in a tool for automating the transfotination process. Long et al. [44] presented an

algorithm to generate rCOS (Relational Calculus of Object Systems) code from UML class and

sequence diagrams. rCOS is an OO language and its code is quite similar to Java. The algorithm

uses class diagram to generate code skeletons. Sequence diagram is traversed by the algorithm to

generate method bodies.

Nickel et al. [45] developed an environment Fujaba (From UML to Java And Back

Again) that supports code generation from UML collaboration, activity and statechart diagrams.

Java code skeletons are generated by UML class diagrams and method bodies are generated by

using behavioral diagrams of UML. Bjorklund et al. [46] also proposed an approach to generate

C++ source code. UML statecharts, activity and collaboration diagrams are given as input in the

form of XMI. These input models are translated into Rialto using SMW toolkit. Rialto is an

intermediate formal description language used between models and code.

Usman et al. [47, 48] developed a tool named UJECTOR (UML to Java Executable Code

GeneraTOR) for automatic generation of executable Java code from UML class, sequence and

-17-

activity models. Structural code is generated from class model whereas behavior is added to the

code by transforming sequence and activity diagrams. Models are given as input to the tool in the

form of XML XMI is parsed and metamodel instances are created. These metamodel instances

are used to produce isolated Java code, which is then merged with code of activity and sequence

diagrams.

Jakimi and Elkoutbi [49] presented a method to generate code from UML sequence

diagrams. An extension of this work [50] focuses on generating Java code from UML statecharts.

The proposed approach defines transformation rules for converting UML statechart elements into

Java code constructs.

Doungsa-ard and Suwannasart [51] proposed an approach for automatic transformation of

CafeOBJ specifications to Java template code. CafeOBJ is a formal algebraic specification

language. The proposed approach describes the steps and transformation rules for generating

Java template code. This approach is implemented in a tool, Cafe2Javd. The aforementioned

approach only generates Java code skeletons. This approach was extended to include system

behavior to generate more complete code [52].

3.3 Code Generation Tools

This section is dedicated to discuss some of the renowned commercial and open-source

code generation tools.

3.3.1 Rational Rose

IBM® Rational® Rose® Enterprise [53] is a commercial 0 0 UML-based software

design tool capable of generating code in several languages including Java/J2EE , C++ and

Visual Basic. It provides support for generating code from UML class, component, deployment,

sequence, statechait and use case diagrams. However, it only provides facility to generate code

skeletons and do not provide any support for specifying system behavior.

-18-

3.3.2 Rational Rhapsody

IBM® Rational® Rhapsody® [54] is a commercial rule-based CASE tool relying on

UML modeling standard. It allows development of source code from UML class and statechart

diagrams. Like IBM Rational Rose, this tool is also capable of generating code frames only.

3.3.3 StructureBuilder

StructureBuilder [55] is a tool to develop UML class and sequence diagrams and generate

Java code from these. However, the core limitation of this tool is that it can generate class

structures only.

3.3.4 Enterprise Architect

Sparx System Enterprise Architect [56] is a comprehensive UML design tool capable of

generating source code in multiple languages including Java. This commercial tool uses template

technology and follows the traditional MDA process of transforming PEM to PSM to target code.

However, it does not support any action language for behavior specification.

3.3.5 Visual Paradigm

Visual Paradigm [57] is a UML modeling and design tool by OMG to generate

implementation code in multiple languages from thirteen UML diagrams. Still, no support for

specifying behavioral actions in any action language is currently provided.

3.3.6 AndroMDA

AndroMDA [58] is an open-source framework following MDA paradigm. It generates

Java/J2EE code by using template technology. It is a rule-based tool and does not offer support

for generating class and method bodies automatically.

3.3.7 MagicDfaw

MagicDraw^'^ [59] is a commercial UML software and system modeling tool supporting

template-driven transformations by following the traditional MDA process. It provides partial
-1 9 -

i

support for specifying behavioral actions. Yet, behavioral actions need to be added rrianually to

complete the implementation code.

3.3.8 Papyrus

Papyrus [60] is an open-source tool by OMG capable of transforming UML class and

statechart diagrams to Java and Ada2005 code. In order to specify constraints, OGL is supported

by Papyrus. Nevertheless, complete support for behavioral actions is lacking.

3.3.9 iUML

iUML [61] is a commercial product that allows code generation from UML use-case,

class, sequence and statechart models. This tool supports ASL for behavioral action

specification. However, it rehes on rule-based approach, where rules have been explicitly

specified for transforming UML models into target implementation code.

3.3.10ArgoUML

ArgoUML [62] is an open-source modeling tool built upon standard UML 1.4

metamodel. It possesses the capability of transforming nine UML models into Java, C-I-+, C# and

PHP code. Constraints on the models can be specified using OCL but no support for any action

language is currently available.

3.4 Swarm Intelligence for Model Transformation

In the context of model transformation, we can discuss the application of swarm

intelligence to M2C and M2M transformation.

3.4.1 Model-to-Code Transformation

A brief review of the existing literature reveals that the concept of swarm intelligence has

never been applied in the context of automatic code generation before.

-20-

I

3.4.2 Model-to-Model Transformation

The intelligent behavior of swarms has been recently employed in the field of M2M

transformation. Kessentini et al. [4] presented an approach MOTOE (Model Transformation as

Optimization by Examples) to perform M2M transformation by using PSO. In [7], MOTOE is

extended to build a more sophisticated M2M transformation process. In addition to PSO,

enhanced approach also uses Simulated Annealing to perform the transformation. Since it is a

M2M transformation approach, it covers only the structural aspects of a model rather than

focusing on both the structural and dynamic aspects of a system.

3,5 Analysis

By analyzing the aforementioned approaches and tools, we can draw following

conclusions:

1. All existing approaches and tools for automatic code generation are based on three major

building blocks:

• Transformation rules

• Formal language to express transformation rules

• Metamodels of source and target languages

2. All presented approaches and tools are rule-based i.e."transformation rules explicitly need to

be defined for transforming different models into target code. Different approaches and tools

use different transformation rules.

3. All presented approaches are directly dependent on UML metamodel, which implies that

these metamodels must be understood before defining a mapping i^tween source and target

languages’ metamodels.

4. For automatic M2C transformation, rules must be expressed in some formal language. It can

be general purpose programming language, graph transformation language or model

transformation language.

-21-

r

5. Major focus of research-based approaches and tools is on transforming UML class and

statechart diagrams into implementation code.

6. A vast majority of tools do not provide support for action languages, meaning that these tools

do not generate complete class and method bodies.

-22-

Chapter 4

PROBLEM DEFlNrriON

- 2 3 -

4.1 Introduction

Automatic M2C transformation drastically improves the productivity and efficiency of

software developers. Keeping in mind this very advantage, the process of automatic code

generation has been made quite mature. However, despite the many efforts invested by software

researchers and practitioners in this field, there still exist some problems and issues that can

obstruct the way to smooth and easy transformation.

This chapter of dissertation explains the issues and hmitations associated with the

existing approaches for automatic code generation. As there are three pillars of code generation

process, consequently this chapter is divided into three sections, each section explaining the

concerns of each building block. Section 4.2 discusses the difficulties associated with the

definition and maintenance of transformation rule set. Section 4.3 highlights the issues of

transformation languages. The complexities of metamodels are elaborated in Section 4.4. Finally,

Section 4.5 summarizes the problem statement and states the existing research gap.

4.2 Issues of Transformation Rules

Presently, the activity of formulating a transformation rule set is considered as the central

task of automatic code generation process. However in reality, the definition of a transformation

rule set is not a smiple task. This is due to several reasons. First, some transformations cannot be

easily expressed as rules [4]. In some situations, rule induction can become impossible or

difficult to achieve [7]. Rule set needs to be correct, coniplete, consistent and non-reduridant so

as to obtain the accurate target code. These properties are especially difficult to ensure in

situations where little domain knowledge is available [3].

Moreover, transformation rule set is not only difficuh to define, rather it is also hard to

express and maintain. With the passage of time, transformation rule sets may evolve. Adding

new rules or changing existing rules makes it complex to ensure their consistency and

correctness. Furthermore, the definition of a complete transformation rule set requires

proficiency in high-level programming languages, knowledge of the underlying metamodels and

knowledge of the semantic equivalency t^tween the metamodels’ concepts [63] , which further

-24-

aggravates the situation. These unwanted hmitations make the activity of trahsfdrmation rule set

difficult, tricky and complex.

4.3 Concerns of Transformation Languages

So far, the contributions in model transformation have mostly relied on defining

transformation languages for expressing M2C transformation rules [4, 7] . As a result, a vast

variety of model transformation languages have emerged, m ^ing it difficult for experts to

choose the one that best serves the needs of their domain. Learning and specializing these

languages is a difficult task and lingers the process of formulating a complete transformation rule

set. Moreover, some languages are not expressive enough and all transformations cannot be

easily expressed as rules using these languages.

4.4 Complexity of Metamodels

The development of a complete transformation riile set requires understanding of the

source and target languages’ metamodels. Practically, experts may find it difficult to master both

the source and target metamodels [5] . Besides understanding the individual metamodels, they

also need to realize the intricate mapping between the metamodels’ elements. These activities

delay the process of defining transformation rule set and also make the task comphcated.

4.5 The Gap

Existing research gaps that motivated this research are listed below:

1. Up till now, there is only one way of automatic code generation i.e. to use a transformation

rule set, no alternatives exist.

2. Currently, all transformation approaches require explicit formulation of a transformation rule

set. No such approach exists that can automatically extract dr derive transformation rules

without human intervention.

- 2 5 -

3. No single approach is capable of transforming source model element in the case of a missing

transformation rule.

4. All M2C transformation approaches presented in literature so far use high-level

programming languages or dedicated model transformation languages to express

transformation rule set, no substitutes found.

5. All approaches proposed for automatic code generation rely on source and target languages’

metamodels. No approach can be found in literature that is independent of source and target

formalisms.

6. A vast majority of existing approaches and tools are capable of generating code skeletons

only, with little or no support for generating behavioral code from system specification.

7. Most industrial organizations maintain a record of past M2C transformations. There is no

way to use this fragmentary knowledge for solving new M2C transformation problems, by

skipping the manual task of defining a complete transformation rule set.

-26-

Chapter 5

PROPOSED APPROACH FOR

CODE GENERATION

-27-

- ' ->

5.1 Introduction

In order to lessen the pains of existing code generation process and to target the research

gaps highlighted in the previous chapter, we propose a novel approach for automatic code

generation. Our proposed approach is significantly different from what already exists regarding

code generation in current literature. This approach makes use of the existing transformation

examples, heuristic search and swarm intelligence to automate the process of generating code

from system models. To the best of our knowledge, these concepts have never been appHed in

the context of code generation before.

This chapter of dissertation is dedicated to elucidate our novel approach for automatic

code generation. The chapter starts by introducing some basic terminologies related to our

approach in Section 5.2. Section 5.3 gives an overview of the approach and dikusses our core

transformation scheme. Section 5.4 provides a detailed insight to the structure and representation

of the training data. An adaptation of PSO to our problem of automatic M2C transformation is

presented in Section 5.5. Finally, the entire process of generating code from system models by

using this approach is explained in Section 5.6.

5.2 Preliminaries

In order to facilitate further discussion, we start by introducing some basic concepts ^ d

terminologies related to our approach.

5.2.1 Input Source Model

An input source model M is a system design model that needs to be transformed to

generate the target implementation code. The input source model consists of one or more model

constructs.

5.2.2 Model Construct

A model construct is defined as an element of a model, e.g. in UML class diagram,

classes and their relationships are the model constructs. Model constructs may contain properties

that describe it, e.g. names of classes, names and multiphcities of associations, etc.
-28-

A model construct can be simple or complex. A complex model construct consists of one

or more sub-constructs. For example, a class construct consists of attributes and operations.

5.2.3 Mapping Block

A mapping block depicts a previously performed transformation trace by relating the

subset of source model constructs to their equivalent constructs in the target implementation

language. In our case, we assume that these mapping blocks are manually defined by the domain

experts.

Although our mapping block shows the transformation between the constructs of the

source model and target code, they are different from transformation rules. Transformation rules

involve general concepts which are defined at the metamodel level. However, our mapping

blocks represent specific examples involving concrete concepts instances at the model level. For

example, transformation rules are defined for the general concepts “Class” and “State” while

mapping block includes the concrete concept instances “Student class” and '‘Idle state”.

5.2.4 Transformation Example (Training Data)

Transformation example defines the mapping of constructs from source model to the

target code language. A transformation example consists of one or more mapping blocks.

5.2.5 Predicate

In our context, we define a predicate as an expression that represents the construct of a

model. We propose to express the input source model and training data as predicates,
k

Each predicate has a name for its identification. In M2C transformation, we propose to

use the model construct as the predicate name. Each predicate has some parameters. The

properties of the model construct are expressed as the predicate p^'ameters. For example in

UML class diagram, the class ‘ShoppingCart’ can be expressed as predicate in the following

way:

Class {ShoppingCart)

-29-

5.3 Approach Overview

The main theme of our approach is to use knowledge from previously solved

transformation examples to solve new M2C transformation problems. The existing set of

examples is used to train the system regarding automatic code generation. After the system is

trained transformation blocks, that best match the constructs of the input source model to be

transformed, are extracted from the training data. These transformation blocks are then used to

convert the source model constructs into target code. So, instead of explicitly providing a

transformation rule set as input, our aim is just to provide a set of transformation examples and

let the system automatically extract transformation rules from them.

As industry is becoming knowledge-oriented and relying on expert’s decision making

abilities [64], our approach relies on using a Knowledge Base System (KBS) to generate code

from system models. A KBS is a computer-based system that acts as an expert on demand, saves

time and money and increases productivity [64] . Our KBS consists of two main components, as

shown in Figure 5 . 1 . ^

1. Knowledge Base (KB) is a repository of knowledge. In our problem of automatic code

generation, existing set of training data constitutes a KB.

2. Inference Engine (IE) is a software program that infers knowledge available in KB [64], In

our approach, we use a heuristic search optimization technique as an IE.

Problem

Knowledge Base
(Training Data)

Solution
----------------- ►

Inference Engine
{Heuristic Search Technique)

Figure 5.1 Knowledge base system

In our approach, training data is divided and represented as a set of mapping blocks. Our

approach searches for the best mapping block corresponding to every construct of the input

source model. During the search, aU transformation examples are taken into account and not only

the most similar one. For that reason, our approach actually differs from case-based reasoning

-30-

[65] in which only most similar example is selected. We take the best from all examples rather

than selecting the most related example and adapting its transformation.

By selecting the best mapping block corresponding to every construct of the input source

model, the final optknal solution consists of a combination of mapping blocks extracted from

multiple transformation examples. If the source model constructs or the number of mapping

blocks of training data is large, the nuinber of possible combinations or solutions quickly

becomes huge and exhaustive search becomes impractical. For example, if the source model

contains 50 constructs and training data consists of 60 mapping blocks, the number of possible

combinations raises to 60̂ ^̂ . Exploring and evalua/ing such a large number of possible

combinations is time-consuming and inefficient.

For that reason, we view the problem of automatic code generation as an optimization

problem. An optimal solution to this problem is found by using a heuristic search technique of

Particle Swarm Optimization (PSO). An introduction of PSO can be found in section 2.4.1. From

a wide range of available optimization techniques, we selected PSO because of the following

reasons:

1. It is used to solve complex problems for which no easily implementable solution exists.

2. It is well-adapted for solving multi-modal problems.

3. As compared to other heuristic search optunization techniques, PSO consumes less

computational resources.

Using PSO, solutions are represented as p r id e s in the search space and each particle is

evaluated using a user-defined objective function. Particle that produces the best fitness value for

the objective function is selected as the final solution for M2C transformation.

Figure 5.2 gives an overview of our automatic code generation approach. At an abstract

level, our approach divides the process of automatic code generation into four major steps, as

listed below:

1. Training data represented as mapping blocks is given as input to our KBS. These

transformation examples compose the KB and are used to train the system by inferring the

mapping patterns of different model constructs.

-31-

Knowledge Base System

Source Model

Knowledge Base
(Transformation Examples)

Optimal Solution
■.......... ■ W

(Predicates)
inference Engine

[Particle Swam Optimization)

w-
(Target Code)

System Training

Figure 5.2 Code generation approach overview

2. Source model to be transformed is also provided as input.

3. One mapping block corresponding to each construct of input source model is selected from

the set of training data by using PSO.

4. Finally, the selected mapping blocks from the training data are used to transform the

constructs of the input source model into target code.

5.4 Knowledge Representation

Training data is given as input to the system as a set of mapping blocks. Each mapping

block consists of a set of two building blocks:

1. Source Model Construct (SMC)

2. Target Code Construct (TCC)

SMCs represent the constructs of the input source model to be transformed and TCCs

represent their equivalent constructs of the target code, expressed as predicates. In this way, each

mapping block statement depicts that which SMC has been transformed into which TCC at

model level, expressed as the following structure

<SMC> : <TCC>

A mapping block may include the mapping of SMC to TCC for. more than one model

construct. Moi*e specifically, the interrelated constructs or the constructs that should be

transformed together are grouped into a single mapping block. Each model construct is expressed

as one or more predicates.

-32

Our approach of automatic code generation is a generic approach and can be used to

transform any source model into target code. However, in order to illustrate and clarify our

approach we will use class and state models as examples. Our choice of using these two models

as examples is motivated by the fact that class and state models are representative of both the

static structure and the dynamic system behavior. Moreover, our proposed approach cannot only

be used to represent skeletons of model and code, rather behavioral actions inside the models can

also be easily expressed as predicates and can be automatically transformed to generate complete

implementation code.

5.4.1 Class Model Representation

Figure 5.3 shows the class diagram of a case study, an “Online Shopping System”. The

class model consists of 6 classes and 6 relationships (1 generahzation + 5 associations). As in a

class diagram, classes along with its attributes and operations are treated as a single construct and

relationship as a septate construct, therefore total constructs of this class model add up to

twelve.

In the class model, each relationship has a class at its both ends. This illustrates that the

transformation of a relationship in a class model is dependent on these two classes. Therefore,

every relationship in the class model along with its two associated classes forms a single

mapping block i.e. each mapping block consists of the transformation of two classes and their

relationship. This implies that the total number of mapping blocks required to represent the SMC

of a class model is equal to the total number of relationships in a class model i.e. this class model

can be represented by 6 mapping blocks.

Constructs of the class model are expressed as predicates and the properties of the

constructs become the parameters of these predicates. For example, ‘class’ construct can be

expressed as predicate in the following way:

Class(<name>)

For the class named ‘ShoppingCart’, its predicate can be expressed as follows:

Class(ShoppingCart)

-33-

mapping block b l

ShoppingCart
-subTotalMoney : int
-vatAmount: int
-totalMoney: int
+placeOrder(): void
+cancefOrder(): void

1..*

ItemtoPurchase
quantity: int
■pricePerUnit: int
+addltem(): void
+removeltem{): void

0 . . ‘

CreditCard
-issuer: string
-cardNumber; int
-dateOfExpiry: Date
+autfiorizeCharge{); void

Product
produ(^Name: string

-productDescription: string
-otherDetails; string
+getProductDescription(); string

Customer

customerName; string
-biiiingAddress : string
shipingAddress: string

-emailAddress; string
-OtherDetails: string.
+createCustomer(): void
+getCustomer(): void
+changeStatus(): void

--------ZX----------

PreferredCustomer

-disojuntRate: double
approvalDate ; Date

+approve{): void
+disapprove(): void

Figure 5.3 Class model of an ‘Online Shopping System’

We have used only one property of class in its predicate representation. This does not

imply that name is the only property of class rather it means that name is the only property of

class that is required for code generation. This approach can be used with many different kinds

of predicate structures, as it is a general approach. However, we have defined and used this

structural scheme throughout this research project. The complete templates of our predicate

structures and transformation schemes can be found in Appendix A.

Using our templates, the relationship between the classes of ‘ShoppingCart’ and

‘ItemToPurchase’ in Figure 5.3 can be represented as a complete mapping block in the following

way:

Begin bl
Class{ShoppingCart):Class(public,ShoppingCart)

Attribute(SubTotalMoney,int,0 ,ShoppingCart,_) :Attribute(private,

int, SubTotalMoney,0 ,ShoppingCart,_)

Attribute(vatAmount,int,0 ,ShoppingCart,_) :Attribute(private,int,
vatAmount,0 ,ShoppingCart,_)

Attribute(totalMoney,int,0 ,ShoppingCart,_):Attribute(totalMoney,
int,0 ,ShoppingCart,_)

- 3 4 -

Operation(placeOrder,ShoppingCart, void):Method(public,void,
placeOrder,ShoppingCart)
OperationParam(-,-placeOrder,ShoppingCart, 1) :MethodParam(-,
placeOrder,ShoppingCart,1)
Operation{cancelOrder,ShoppingCart,void):Method(public,void,
cancelOrder,ShoppingCart,void)
OperationParam(-,cancelOrder,ShoppingCart, 1):MethodParam{-,

cancelOrder,ShoppingCart,1)
Class(IteinToPurchase):Class(public,ItemToPurchase)

Attribute(quantity,int,0 ,ItemToPurchase,_);Attribute(private,int,

quantity,0 ,ItemToPurchase,_)

Attribute(pricePerUnit,int,0 ,ItemToPurchase,_) :Attribute(private,

int,pricePerUnit,0 ,ItemToPurchase, _)
Operation(addltem,ItemToPurchase,void):Method(public,void,
addltem,ItemToPurchase)
OperationParam(-,-,addltem,ItemToPurchase,1):MethodParam(-,

addltem,ItemToPurchase, 1)
Operation(removeltem,ItemToPurchase, void) :Method(public,void,
removeltem,ItemToPurchase)
OperationParam(- , removeltem, ItemToPurchase,1):MethodParam(-,

addltem,ItemToPurchase, 1)

Association (_, 1, 1 ,n,_,ShoppingCart, ItemToPurchase) :Attribute
(private,ShoppingCart,shoppingcart(),ShoppingCart,ItemToPurchase)
End bl
This mapping block indicates that the SMCs of the classes ‘ShoppingCart’ and

‘ItemtoPurchase’ in the class model are transformed to the corresponding classes in the TCCs

with the same names. Attributes and operations of source model classes become the attributes

and methods of the corresponding classes in the target implementation code. The association

relationship between these two classes in the source model is translated by making an object of

- 35-

class ‘ShoppingCart’ in the class ‘ItemtoPurchase’ as an attribute. All this information is

expressed as predicates in the aforementioned mapping block.

5.4.2 State Model Representation

In the state diagram, states along with its entry, do and exit activities form one construct

while transition is taken as a separate construct. For example, consider the state model of class

‘ShoppingCart’ shown in Figure 5.4. It has two possible states and four transitions that change

the state of an object. Since a transition is dependent on its sourcfe and target states, each

mapping block consists of source state, transition and its target state. Total number of mapping

blocks required to represent a state model is equal to the number of transitions that causes an

object to change its state.

C re a te

D e le te lte m [item count==01

M/
Em pty

Addltem

mapping block b7

D elete ltem [item caunt>0]
\

Checkout Item s

\/
m

Figure 5.4 State model of the class ‘ShoppingCart’

The transition from state ‘Empty’ to ‘Containltems’ can be represented as a mapping

block in the following way:

Begin b7
State(SCartEmpty,ShoppingCart)rClass(public,SCartEmpty,
ShoppingCart)

- 3 6 -

Operation(Entry,SCartEmpty,void):Method(public,void,Entry,
SCartEmpty)
OperationParam(-,-,Entry,SCartEmpty,1):MethodParam(- , Entry,
SCartEmpty,1)
Operation(Exit,SCartEmpty,void):Method(public,void. Exit,
SCartEmpty)

O p e r a t i o n P a r a m E x i t , S C a r t E m p t y , 1)iMethodParam(- , Exit,
SCartEmpty,1)
Operation(doActivity,SCartEmpty,void):Method(public,void,
doActivity,SCartEmpty)
OperationParam(" , doActivity,SCartEmpty, 1) :MethodParam(-,

doActivity,SCartEmpty, 1)
State(SCartContainltems,ShoppingCart) :Class(public,
SCartContainltems,ShoppingCart)
Operation(Entry,SCartContainltems,void):Method(public,void,Entry,
SCartContainltems)
OperationParam(- , Entry,SCartContainltems,1) :MethodParam(-,
Entry,SCartContainltems, 1)
Operation(Exit,SCartContainltems,void):Method(public,void,Exit,
SCartContainltems)
OperationParam(-,-,Exit,SCartContainltems,1):MethodParam(-,-,
Exit,SCartContainltems,1)
Operation(doActivity,SCartContainltems,void):Method^public,void,
doActivity,SCartContainltems)
OperationParam(- , doActivity,SCartContainltems, 1):MethodParam{-,

doActivity,SCartContainltems, 1)
Transition(Empty,AddItem,ContainItems):Method(public,void,
Addltem,Empty)
End b7

-37-

In this mapping block, the SMC of state in the state model is translated into a TCC of

class (i.e. each state is translated into an implementation class). For every class corresponding to

a state, there are separate methods for encapsulating entry, exit and do activities of state. The

construct of transition is mapped to a method in the target code. The complete predicate

templates of state model can be found in Appendix A.

5.4.3 Action Specification

Generating the implementation code only in terms of class and method declarations is not

sufficient. Program logic and actions is the most significant part of the software systems for

execution. Our approach can not only be used to generate code skeletons, rather it is powerful

and flexible enough to transform models that encapsulate dynamic actions. In our approach, each

action within a model is treated as a separate construct.

Currently, several action languages are available for incorporating dynamic behavior in

the system models at the design level. Logically speaking, our approach is independent of all
V A

these languages and is capable of transforming any action language into any target programming

language, provided that transformation examples for that set of action and implementation

languages are available. For example, if we have transformation examples for converting Object

Constraint Language (OCL) model actions into C# code statements, we can perform new

transformations from OCL to C# using these examples by utilizing this approach. Similarly, if

the transformation examples show the translation of Action Specification Language (ASL) into

Java code, our approach can also be used for this set of ihapping, and so on.

To apply our approach, we only need to express the available transformation examples as

predicates. The different types of actions become the predicate names and the properties of

action statements become the predicate parameters. For example, consider the following

statement for method call expressed in ASL.

[number] = opl:getPhoneNo[] on phone

This ASL statement indicates that the operation of ‘getPhoneNo’ is called on the ‘phone’

object and the resuk is stored in a variable ‘number’. Its corresponding Java statement can be

written like this:

- 3 8 -

number = phone.getPhoneNo();

Suppose that this function call is in the body of the operation ‘GetNumber’ of class

‘Customer’, then this example can be expressed as predicate in the following way:

OpBodyFn (GetNumber, Customer, number, getPhoneNo, phone, 4) :
MethodBodyFn (G e t N u m b e r , C u s t o m e r , n u m b e r , p h o n e , g e t P h o n e N o , -
,4)

The predicate name (OpBodyFn) indicates that the action of ‘function call’ is represented

by this predicate. In the ‘GetNumber’ operation of class ‘Customer’, there is an action for calling

the operation of ‘getPhoneNo’ on the ‘phone’ object. Moreover, the predicate also depicts that

this action is the 4th statement in the ‘GetNumber’ operation.

In this manner, all action statements (e.g. sequential, iteration, decision statements, etc.)

can be easily expressed as predicates, no matter which action or implementation language has

been used. In the context of class model, action languages can be used to specify operation body.

Entry, do, exit activities and transition guards can be expressed in the state model by using the

action languages. The complete predicate templates of all action statements can be found in

Appendix A

5.5 PSO Adaptation for Automatic Code Generation

Our approach works by finding the most appropriate mapping for every model construct

from the set of provided transformation examples. As described in section 2.4.1, PSO represents

solutions as particles in the search space. Likewise, in our problem of M2C: transformation these

particles are the transformation blocks extracted from the available set of training data. The task

of PSO is to search for the mapping block that contains the transformation of construct similar to

the one in the source model. The transformation construct from the training data is considered to

be similar to the source model construct if it shares the same construct name with similar

properties.

To apply heuristic search techniques to a specific problem, it is necessary to specify the

representation of solutions, the fitness function to evaluate the quahty of the searched solution

-39-

and the operators that allow movement in the search space so as to find new solutions [7] . The

next sub-sections elaborate the adaptation of these PSO elements to our problem of automatic

M2C transformation.

5.5.1 Representation of Transformation Solution

Using PSO, solutions are represented as particles in the search space. These particles

move in the D-dimensional space to find an optimal solution. In our problem, we consider the

dimensions of the search space as the constructs of the input source model to be transformed.

This implies that the number of dimensions in the search space is equal to the total number of

input source model constructs. For example, the transformation of the class model shown in

Figure 5.3 will generate a 12-dimensional search space that accounts for 6 classes and 6

relationships (1 generalization + 5 associations).

The mapping blocks in the training data will be numbered fi-om 1 to m, m being the total

number of mapping blocks. These mapping block numbers are the possible coordinates of the

D-dimensional search space. It means that the dimensions of the search space will take discrete

values fi’om 1 to m [1, m]. Each of the input source model construct will be associated a discrete

value from 1 to m that represents a transformation possibihty for that construct.

This solution is implemented as a vector in the £>-dimensional search space. The

constructs of the source model are the elements of the vector whereas the mapping block

numbers that show the transformation possibilities are the values in the vector elements. For

example, let us consider that the training data for transforming class model of Figure 5.3 has 30

mapping blocks. Table 5.1 shows a possible transformation solution Vector. This vector has 12

elements (total number of source model constructs) and each element can take values from 1 to

30 (total number of mapping blocks). First element has a value of 4, which means that 1̂ ‘

construct of the input source model can be transformed using mapping block number 4, 2"“̂

construct using block number 25, 3"* construct using block number 8 and so on.

Table 5.1 Transformation solution vector

Construct number 1 2 3 4 5 6 7 8 9 10 11 12
Mapping block number 4 25 8 9 20 23 22 7 1 19 30 12

-40-

The quality of the transformation solution produced by PSO is evaluated against a user-

defined objective function. In M2C transformation, fitness value of a particle indicates the

appropriateness of the mapping blocks selected for the transformation of their corresponding

source model constructs. For our problem of generating code from system models, we have

defined the following fitness function:

D

...
i = l

where D is the total number of constructs in the input source model to be transformed,

{

5.5.2 Evaluation of Transformation Solution

0, if source model construct cannot be transformed by the selected mapping block

■ /, if source model construct can be transformed by the selected mapping block

 ̂ _ number of key parameters matched in the predicates of the construct
total number of parameters in the predicates of construct

This fitness function is generic and can be used to evaluate the transformation solution of

any source model. The fitness function can be divided into two parts: c, and f,-. The value of ci is

calculated by matching the construct names and the comparison of construct parameter values

determines the value of u. These points are further elaborated below.

Using this fitness fiinction, first the names of the source model construct and the selected

mapping block construct are matched. If the construct names are different, a is assigned the

value of zero. In this case, there is no need to match the predicate parameters as construct names

are different. If the construct names match, the value of c, is set to 1 and the parameters are then

compared to determine the value of

In calculating the value of u, instead of using all predicate parameters, only key

parameters are involved. Its reason will be explained shortly after defining the term key

parameters. The term key parameters represent those parameters of predicates which are

significant in the construct and the difference of these parameters can result in a wrong

transformation. In order to further clarify this term, we will use an example of the class model
-4 1 -

shown in Figure 5.3. Consider the transformation of the following relationship construct of the

class model into code construct:

A s s o c i a t i o n 1 , 1 , n , _ , ShoppingCart,ItemToPurchase)

The target mapping block contains the following mapping:

Association(0,1,0,n, Person,Loan):Attribute(private,Person,

person,Person(),Loan)

In this example, the association construct has total 7 parameters - 4 multiplicities, 1

association name and 2 classes. In this particular case, 5 parameters of the input source model

construct (2 multiplicities, association name and 2 classes) match with the transformation

mapping block construct whereas two parariieters (1®* and 3"̂^̂ parameter) are different. But these

two parameters that do not match are NOT the key parameters. Whether these parameters are

zero or undefined (-), they have no effect on the correctness of the transformation. SMC can be

accurately transformed into its code construct, even when these two pararheters are different.

The key parameters in this example are 2"̂ ̂ and parameters because these two

parameters decide that object of which class will be created in another class (object of class with

multiphcity of 1 will be an attribute of class with multiplicity of n). In case of aggregation and

composition constructs, key parameters indicate that either a single object or an array of objects

will be created in the contained class. In case, if a construct has no key parameters, the value of r,

will be considered as 1 by default. For example, the generalization construct of class model has 2

predicate parameters. These two parameters are the names of the parent and child classes

respectively. For example, the generalization relationship in Figure 5.3 can be represented as

follows:

G e n e r a l iz a t io n (C u s to m e r , P r e f e r r e d C u s to m e r)

In this case, there is no key parameter and the construct can be correctly transformed if

the construct names are similar. So in the absence of key parameters, the comparison and

matching of construct names is sufficient to evaluate the quality of the selected transformation

solution. As we have used class and state models as examples to explain our approach, the details

of key parameters of their cbnsthicts are given in Appendix A.

-42-

In case of ‘Association’ construct, if we use all paranieters in calculating h, and assign

equal weight to all parameters of the predicate, each parameter will be awarded a weight of 0.145

approximately (1.0/7). For the above-mentioned example of association construct where key

parameters are similar, the value of r,- is 1, indicating that the selected trarisfofmation block is

appropriate for the translation of the corresponding SMC. However, if we consider all predicate

parameters, the value of ti will become 0.725 (0.145*5), as two predicate parameters do not

match. Involvement of all parameters in the fitness function has penalized the value of ti

although the transformation is correct.

Now let us consider another case in which the key parameters of the source model

construct of ‘Association’ do not match with the transformation construct of the mapping block,

i.e. 5 parameters of the predicates match while 2 key parameters are different. Practically

speaking, if key parameters are different, the transformation should NOT be considered

appropriate, as it will result in a wrong transformation. If we consider the above-mentioned

fitness function, the value of ti will be zero (as it should be) but if we consider all parameters in

calculating ti, its value will be 0.725 (0.145*5), which is a reasonably good, if not perfect, fitness

value for making the transformation solution worth-considering.
I

If we compare the above two examples, using all parameters for calculating /, results in

the same fitness value of 0.725, although the selected transforrnation block is correct in the

case and incorrect in the 2"*̂ . This will result in a weak fitness function as the solution with

wrong transformations will also generate an acceptable fitness value. However, if we involve

only key parameters, the fitness values are different, i in the case of accurate transformation

selection and zero in the case of selecting incorrect transformation block. This means that if we

consider only key parameters, our fitness function will be strong and intelligent enough to search

for better solutions. This justifies our choice of using key parameters in evaluating the

transformation solution, instead of involving all parameters in the fitness function.

By using the above-mentioned formula for calculating a value between 0 and 1 is

obtained. So for each construct of the input source model, the values of c,- and ti will multiply up

to 1. Depending upon the number of constructs in the input source model, the fitness function

shown in equation 1 will generate fitness values in different ranges. In order to make the fitness

-43-

values comparable across models having different number of constructs, a normalized fitness

value in the range [0, 1] c ^ be obtained by using the following equation.

f n = ^ (2)
D

where D is the total number of constructs in the input source model.

5.5.3 Deriving An Optimal Solution

Our PSO starts by initializing the swarm with randomly generated particles. This is done

by assigning random block numbers to the vector elements. The block numbers are in the range

[1, m], where m is the total number of mapping blocks that constitute the training data. The

number of particles in the swarm is a user-defined parameter. The value of this parameter is set
A

on the basis of the dimensions of the search space and the complexity of a problem whose

optimal solution is to be searched. Typical value of this parameter ranges from 20 to 50 [25].

In the swarm, each individual particle is composed of three D-dimensional vectors, D

being the dimensionahty of the search space. Using these vectors, particles keep a record of their

current position (xi), velocity (v,) and the previous best position (pi). The current position of a

particle can be considered as a set of coordinates that describe the position of that particle in the

search space [25].

These randomly initialized particles are evaluated against the fitness function to

determine the quality of the generated transformation solutions. The particle with the highest

fitness value is stored as the global best position (gbest)- gbest is the best position achieved so far

by any particle in the search space. The coordmates of the gbest are recoMed in pg. As this is the

first iteration, each particle stores its fitness value in ptest and its coordinates in pi. This value is

stored for comparison on later iterations. In each of the next iterations, the fitness values of the

particles are compared with pbest and gbesu If the values in current iteration are better, new values

are assigned to pbest and gbest.

Next iteration starts by updating the values of Xi and v,-. The current position of every

particle is updated using the following formula [24]:

-44-

X i = X i + Vi (3)

Using the two best positions pbest and gbest, the velocity of particles are updated in each

iteration by applying the following formula [24]:

v,= W * V, + Cl * randl * (p, - xi) + C2 * rand2 (pg-Xi) (4)

where W is the inertia weight. It is used to better control the scope of the search [25] and

sets a balance between the local and global exploration abilities in the swarm [66]. Global

exploration of swarm is facilitated by the large value of inertia while the small inertia value

supports local exploration to fme-tune the current solution.

Cl and C2 are the learning factors called acceleration coefficients [67]. These two

parameters represent cognitive and social weights associated to the individual and global

behavior respectively [4, 7]. Cl is used to control the impact of particle’s own history on the

particle’s new position whereas C2 is used to control the impact of swarm history on the new

position of the particle. These two factors are also known as the self-confidence and the swarm-

confidence factors respectively [68]. Empirical studies suggest that Ci and C2 should not be

equal to 2 all the time [69].

rand] and rand2 are two uniformly distributed random values between 0 and 1. These

two values represent the stochastic acceleration during the attempt to pull each particle towards

the Pbest and gtest positions [7].

Collectively, the first part of equation (4) represents the previous velocity which provides

the necessary momentum for particles to roam across the search space. The second p ^ is the

cognitive component which represents each particle’s personal thinking. It encourages the

particles to move towards their own best positions found so fair. The third part is the social

component. It represents the collaborative effect of the particles in finding the global optimal

solution [70] .

The algorithm iterates until the particles converge to a good transformation solution or

the maximum number of iterations is cornpleted. In our approach, we define the maximum

number of iterations as the stopping criterion for our search of finding an optimal transformation

solution.

- 4 5 -

5.5.4 Parameter Tuning

Parameter values play a significantly important role in PSO’s ability to search for the

optimal solution. We set the following parameter values in our approach to find an optimal

solution:

1. First parameter is the size of the population i.e. the number of particles in the search space. In

our approach, we set the number of particles to 40, as typical implementations of PSO use

this swarm size [68, 70].

2. Acceleration coefficients Cl and C2 change the amount of tension in the system. Low values

allow particles to roam far from target regions before being tugged back while high values

result in abrupt movement toward or past target regions [69]. We set the values of Cl and C2

to 1.75, to give equal importance to both the local and the global search.

3. In each iteration, inertia is calculated as follows [25, 69]:

w = Wn., - ((Wn., - W„,n) / iter^^) * iter ... (5)

where Wmax is the initial value of W, Wmin is the final value of W, itermax is the maximum

number of iterations and iter is the current iteration huinber. We set Wmax to 0.9 and Wmin to 0.4,

as researchers have found that best performance could be obtained between these values [25].

4. We set the maximum number of iterations i.e. itermax to 20.

Velocity and position of a particle must be limited to Vmax and x^ax respectively so that the

values always remain within the specified range. Vmax determines the resolution or fitness with

which regions between present position and target position are searched. If v^ax is too high,

particles might fly past good solutions. If Vmax is too small, particles may riot explore sufficiently

beyond locally good regions [69], In M2C transformation, should be in the range of [-m, m]

and Xmwc should be in the range of [1, m], where m is the total number of mapping blocks

constituting the training data.

-46-

5.6 Automatic Code Generation Process

Using this approach, the process of automatic code generation can be divided into the

following four major steps, as shown in Figure 5.5.

1. Build a Knowledge Base

2. Prepare input source model

3. Search for an optimal solution

4. Transform the model using the optimal solution.

Figure 5.5 Steps of automatic code generation process

5.6.1 Build a Knowledge Base

Our proposed approach for M2C transformation rehes on the existing set of

transformation examples. The training data is divided and represented as a set of mapping

blocks, expressed as predicates, llie mapping blocks are numbered with integral values starting

from 1. We assume that these mapping blocks are manually defined and represented by the

domain experts. These transformation examples constitute the KB and are provided as input to

the KBS. They are used to train the system regarding code generation and provide a base for

automatic M2C transformation.

-47-

5.6.2 Prepare Input Source Model

This approach is generic and can be used to transform any input source model into target

code. Like training data, the input source model also needs to be expressed as predicates.

Currently, the task of expressing model as predicates needs to be carried out manually. After

expressing the source model as predicates, it is given as input to our KBS.

5.6.3 Search for an Optimal Solution ^

After providing the training data and the source model to be transformed as input, an IE

of the KBS then searches for the appropriate transformation corresponding to each model

construct from the mapping blocks of the training data. This search space of training data is

explored by using the heuristic search optimization technique of PSO. The task of PSO is to

search for the mapping block that contains the transformation of the construct similar to the

source model construct to be transformed. Each solution generated by PSO is evaluated against

the fitness function. TTie solution having the best fitness value is selected as the final optimal

solution. This solution is in the form of a vector in which the vector elements indicate the

mapping block numbers corresponding to every source model construct.

5.6.4 Transform the Model Using Optimal Solution

Finally, an optimal solution searched by PSO is used to transform the constructs of the

source model. The resultant code construct is expressed as predicates.

-48-

Chapter 6

TOOL IMPLEMENTATION

-49-

6.1 Introduction

We have successfully implemented our proposed approach in a tool named C0cte

$warm, abbreviated as C04$- Currently, C04S is capable of generating code from two system

design models, class model and state model. Our motivation for selecting these two models lies

in the fact that class and state models are representatives of both the static structure and the

dynamic system behavior. Moreover, the method bodies of classes and other system behavior

can be incorporated in these models using action language ASL. C0^$ is capable of

understanding and interpreting ASL, so that complete target code can be generated instead of just

the code skeletons.

This chapter is dedicated to explain the tool C0(^$, based on the application of our

proposed approach. Section 6.2 presents the architecture and major components of C04.$. The

implementation specific details of C0(}̂ S ^le explained in Section 6.3. Finally, section 6.4

describes the working and process flow of our tool.

6.2 C 04$ Architecture

Figure 6.1 shows the overall architecture of our tool C04S. The architecture of C04S has

three major components; PredicateParser, SearchEngine and MlCTransformationEngine. Our

tool takes a set of M2C transformation examples and source models as input. This input is

managed and organized by the PredicateParser. SearchEngine finds an optimal solution for the

input models by using the available transformation examples. Finally, the

MlCTransformationEngine uses the optimal solution produced by the SearchEngine to transform

the input model constructs into target code predicates. Moreover, C0c[$ is capable of

transforming these code predicates into complete Java statements. Therefore, a set of files

containing Java code is also produced as the final output. An explanation of the three major

components of C0(^$ follows.

6.2.1 PredicateParser

PredicateParser initiates the execution of C0(^$. First, it takes a set of transformation

examples as input and uses them to buUd a knowledge base. The training data is represented as a

-50-

set of mapping blocks stored in plain text files, the main responsibilities of PredicateParser are

listed below:

1. To count the number of mapping blocks.

2. To divide the mapping blocks into SMCs and tCCs.

3. To organize the training data and form a knowledge base by creating separate structures for

storing SMCs and TCCs of input transformation examples.

Figure 6.1 C0c|̂ S architecture

C04$ takes a set of class and state models as input stored in a text file. These models

contain ASL statements to depict the dynamic system behavior, expressed as predicates.

PredicateParser organizes and stores these models to be used by the later component^ For the

input source models, following tasks are performed by the PredicateParser.

1. To store the input source models.

2. To count the number of constructs to be transformed.

-51-

A
I

3. To divide the source models into separate constructs and maintain their record.

6.2.2 SearchEngine

SearchEngine is a vital and major component of our tool We have used PS6 algorithm

as the search engine. The core responsibility of the SearchEngine is to search for an optimal

transformation solution for the input source model constructs. The transformation solution is in

the form of a set of mapping block numbers, one mapping block corresponding to every input

source model construct.

SearchEngine initializes by assigning random mapping blocks,for transforming the ̂

source model constructs, tlie quality of this random solution is assessed by using the fitness

function defined in Section 5.5.2. Depending on the fitness value calculated by the objective

function, the parameters of PSO are updated and more transformations solutions are generated in

the next iterations. The component of the SearchEngine remains active until the total number of

iterations of PSO is completed. The solution having the maximum fitness value is selected as the

final optimal solution.

6.2.3 M2CTransfomationEngine

M2CTransformationEngine is a significantly important component of our tool. The

principal job of MlCTran^ormationEngine is to produce the target code, both in terms of

predicates and code statements, corresponding to the input source models. It does so by using the

optimal transformation solution produced by the SearchEngine component.

The optimal solution generated by the SearchEngine is taken as input by the ^

M2CTransformtaionEngine. For every input source model construct, it searches for the matching

construct in the selected mapping block. The code predicate of this mapping block construct is

then used to transform the corresponding input source model construct. In this way, output

produced by M2CTransformationEngine is a set of code predicates produced for the input source

models.

This component is also responsible for transforming these code predicates into complete
- * -S

Java statements. The automatic conversion of code predicates into code statements eradicates the

-52-

manual effort and time required for the conversion. The complete Java code generated by

M2CTransformationEngine is organized and stored into a set of Java files.

6.3 C0(JS Implementation

C0c[S tool is realized using Java programming language. We used Eclipse IDE [71] with

JDK 7 for the implementation of C0{̂ _$. From the implementation point of viev/, C04.$ is

organized into three main packages as shown in Figure 6.2. AutoCodeGenerdtor is the major

package of our tool that implements the core logic of transforming input source models into the

target code. PSO package encapsulates the general logic of our heuristic search optimization

technique PSO. The package of Editor mainly deals with the GUI of C04$. A brief description

of the main packages of C04$ is given below.

Figure 6.2 C04S implementation

6.3.1 AutoCodeGenerator

The package of AutoCodeGenerator is mainly responsible for the transformation of input

source models into code predicates and eventually into the final Java code. More specifically,

following tasks are assigned to this implementation package.

1. Manage the input source models which are to be transformed.

2. Manage and organize the input training data to form the knowledge base.

3. Evaluate the quality of each transformation solution generated by PSO.

-53-

4. Select the final optimal solution.

5. Transform the input source model constructs into target code constructs by using the

mapping blocks selected in the optimal solution.

6. Generate complete Java code statements from the resultant code predicates of the input

source models.

AutoCodeGenerator package consists of five classes which collaborate with each other to

accomplish the above-mentioned jobs. The interaction pattern of these classes is shown in Figure

6.3. These classes perform the following tasks:

FitnessCalculator

II
MyParticle

N
ModelTransfonmer

1/

Predicate Parser
\

CocteGenerator

Figure 6.3 Interaction pattern within the ‘AutoCodeGenerator’ package

Predicate Parser: th is class is responsible for managing the input source models, particularly

for counting the input model constructs and organizing them into proper structures, the

management of the input training data to form a knowledge base is also the responsibility of this

class.

FitnessCalculator: The fitness function defined in our approach is realized by this class. It takes

a solution vector as input and calculates the fitness value corresponding to that transformation

solution.

ModelTransformer: This class of AutoCodeGenerator package is responsible for generating

target code predicates corresponding to the input source model constructs. It takes an optimal

solution vector, searches for the mapping block to be used for the transformation and performs

-54-

the M2C transformation. In case if a construct similar to input SMC is not found in the mapping

block, it calculates the relevance score for that input SMC. Relevance score tells the ratio of

similarity between the input SMC and the SMC present in the mapping block. This score is

calculated by using the construct name arid the key parameters of the SMC.

CodeGenerator: This class performs the task of generating complete Java code statements from

the TCCs produced by the ‘ModelTransformer’ class. It also organizes and Ganges the code to

be placed in multiple Java class files.

MvParticle: This class is responsible for passing the total number of input model constructs to

another package. ^

6.3.2 PSO

The implementation logic of our search engine is encapsulated in this package named
««

PSO. This package is responsible for performing the following tasks:

1. Provide a generic base class for defining specialized fitness functions.

2. Generate, update ^ d manage multiple particles in the swarm.

3. Realize the equations defined in section 5.5.3 for updating particle velocities and positions.

4. Compare the different fitness values and keep a record of the solutions having the best fitness

value.

5. Mange and evolve the swarm in accordance with the fitness values of particles.
f

6. Update parameters of PSO.

These responsibilities are divided among the six classes of PSO psickage in the following

manner.

Swarm: It is the major controlling class in the PSO package and performs the task of managing

the swarm of particles. It calls the methods of other classes to evaluate the swarm, update |

particles’ positions and velocities and applies the positions and velocities constraints. It also ^
\

performs the task of initializing the swarm with random particles. %
A

- 5 5 -

1

FitnessFunction: This class acts as a parent class for realizing tHe user-defined fitness functions.

It compares fitness values of different particles in the swarm and maintains a record of the best

particles.

VariablesUpdate: This class is assigned the task of revising and updating pararheter values of

PSO. In our tool, the strategy for changing the value of inertia according to the equation 5 is

implemented in this class.

ParticleUpdate: This class is a representative base class for defining the customized strategies to

update the swarm particles.

ParticleUpdateSimple: Our strategies for updating the particles’ velocities and positions are

implemented in this class.

Particle: It is an abstract class providing a generic representation for the structure and

management of particles in the swarm.

6.3.3 Editor

The implementation package of Editor deals with the GUI of C0cj^$. The controller of our

C0(^S apphcation “CodS.java” initiates the execution of our tool. The five classes of this

package are responsible for performing the following jobs;

1. Manage the GUI of C04S.

2. Manage the C0(^$ project directory.

3. File reading and writing.

4. Managing the C0c[$ help content.

6.4 C04S Process Flow

Figure 6.4 shows the main interface of our tool C0(jS. C0c|S manages the activity of

M2C transformation in terms of projects. Separate projects are created for different

-56-

transformation processes. By default, these projects are stored in the ‘D’ directory under the

“CodS” folder. Each project directory of C04.$ has the following structure:

D:\ CodS\<Project Name> \ Input \

D:\ CodS\ <Project Name> \ Output \ Predicates \

D:\ CodS \ <Project Name> \ Output \ Java Code \

The corriplete information of C0c|_S tool and its user manual is detailed out in Appendix

B. The process of automatic code generation implemented in C0^$ can be divided into four

major steps, as discussed below.

Î CorfrWmlCodSJ ^
Fie

 ̂ ------ ■ •-
1

-fS|3 a |g |-
camMPraiKt

e & DXo<JSShCFpir=?Carflrifut
- Q Co3S Fi;!_B956- B- B Til M
- B TE2 td

- B Ttrw
- B TEs.a
- 6 TE5 M
- B T E 7.ta 0TE8.M
■ S tes.w& DV̂3i!S\St<cppi»;CaifOut(Kjl

E & D’iCo(3S'£*ioppin5Cart'Cutei*Coi6 PretSca
- B C o a S F te _ 3 3 3 2

- L g Pisdicstcs.Mi! resSmE.M B & D:>CflJŜ5i>spDjngCa<r£)ulpufJâO>d«
- B CCa>aAd-,'s iava
I- B C G a rc O e se n s jav^

H ” ” ra ^ . i H ^ { g
RiEijjit r QiEz-tti I Qiiuti I Bmtn

Pretfluicsixl

Class [p a t i ic , ShciFpi-igCs^t), C o iu trac to r !p-jbli=,3heppiiigC«rt!) J
A i t r ih a te [pi?iTa£*,dQabie, s '^ ta t^B lso u y , 0, Shcpf itigCort)
A t t r ib a te fp iiv a te , i= t, Tstisaim i:, 0,
A t t r i tu t e IpriTar^ , doable, to taiaoneyjDjSiiOE^iiigCart}
Ksthod ic ,d o 'jb le , SeMBii :a talKone y, S h cp p ia^a r t J
M!th=dEarMif-,-,Get:S3bIst4ll[aiiey, Siuippia^Cart, 1)
M sth3d[pah lic ,ve id ,E e tS iila ta lB o te y ,ShoppingCart)
lie thsdE axaaiacable,sjiscaey ,S ecS jfc7otaiy= csy ,;h= fpingC art,i)
Mith3<i(p!bllc,iE'!;,3e':TatA;Eta!it,SiK:FpiEgCa:t)
Meth=dFaraa{-,-,GecTaUiasant:,SbcppiEgCii3:t,l)
JSethsdfputliC fToia, SetVitAssoaiit, SioppiEgCart)
StethidFaraa Cliit:, am=-i=t, SetT atise-jnt, SbcpFicgCart, 1}
Hffthsd (j;shil=rde-jble,3etTatallfeiney, SflkopplrigCar?}
JfethadJaraK [-,-,SeE tQ ^iJtoney , SboppitgCar!:, 1)
Sicthsd [p’jfcilo , void, SeilSM iltaney, ScOf^iiigCait)
KsthodPai4a(do-jble, t= tai,Setr=talK ci!iey,3iQ ppi!j5C *rt,l)
Hsthad (public , void, GeiiCaivCsiitr, ShoppiiigCart)
MsthadFaiaK (- , -,5etC tr=0w aer, ShappiEcCart, 1)

|Pio(«et»

Cr.CoSS£jm CWCoJiSfB̂I a D;«:o<JS-«=r.3 ^ DSCcKJSNSanipit © O'COiS'Ssccnfi
£3 CrVCcdS'Sh.̂ ppjigCjrt
S D.-Cc<J3-<T«n

Xodel ?ra;̂ 3£orsied*
T=:.al CcEStracts: 155
“Dtal Mapping Sleeks: eO

3 e s t f it r is s s : 0 .59S774iS35453S7i
b e s t F ^ s itlo ii: [60.0, 51.0, 1 .0 , 1 .0 . €2.0. 9 .3 , 53.0, 12.3, 45.0, 1 .0 , 9 .0 , 1 .0 ,

sf e v a i 'ja r ic s s : SOO
3----------------------------̂------------------------------------— ------------ — ---------

£0.0, €Q.fl, S9.0, l.G , «0.0, 40.S, 69.D, 6 .0 , 1 .0 , €0.0, 51.0,

M

Figure 6.4 Main interface of C0c|S

6.4.1 Import Training Data

After creating a new C0^$ project from the C04$ main interface, user first needs to

import the training data to build the knowledge base. This is done by using the option available

-57-

in the menu bar and toolbar of the interface. Training data can comprise of multiple text

files containing a set of mapping blocks. When the user browses the training data files, these files

are read and stored in the “Input” folder of the current C0(^$ project. Besides the classes that

handle GUI of the C04.S, the logical class involved in building the knowledge base is

“PredicateParser”. A sample training data file is show in Figure 6.5.

Begin bl
Class(Einp1oyee);Class(public,EH^)1^ee),Coostructor(publiC|E«ployse())
Attribute(Eapid,int.0,Esployee,uni q u e);A ttrib u te (p riva te ,in t,^ id ,0 , Employee)
ACtribute{EK2Jtie,String,null,Eii?iloyee,_):Attribute(private,String,ena-Tie,null .Employee)
Attribute(StartOate,Date,raill,En^}loyee,_):AttributeCpriyate.£)ate,startdate,null .Enployee)
Operat i on (Gettiaiee, Erapl oyee, St ri ng)Hethod(publ 1 c, St r ing, GetKame, E*vl oyee)
Operat i orParajnC-, - , GetKanie .Employee, 1) ;KethodParara(-, - .GetNaiae, Eitipl oyee
Operat i on (SetKajse, En^loyee, voi d): Kethod Qjub 1 i c, void, SetKajse. Enpl oyee)
Operat i onPara»i(Naiie, Stri ng, SetKawe, E«pl oyee, 1): Kethoca»arafl (Str ifig, name, SetNaae, Empl oyee, 1)
Operat i o»i(Get St artOate, Enqjl oyee, Date): Method (publ i c, Date, GetStartDate, Espl oyee)
OperationParam(-.GetStartDate .Employee, 1) :HethodParani(-.GetStartDate, E«p1oyee, 1)
Operation(SetStartDate,Ea?p}oyee,void):Hethod{public,void,SetStartDate.ERployee)
Operati onParajn(SDate, Date, SetStartDate, Eispl oyee ,1): HethodParaia (Date, sdate, SetStartOate, E(^l oyee, 1)
Operat i on(GetE«ipPos i t i on, E«pl oyee, Stri ng): Method(publ i t , Stri ng, GetErapPos i t i on .Employee)
Operat i ofiParajn(-, - , GetEm^os i t i on, Espl oyee, 1): »ethodParaBi(-, - ,tetE)^osi t i on, Eapl oyee, 1)
Operati on(SetE8ipPosition,EHployee,void):«ethcd{[Hjblic,voi(i,5etE*pPosition,Ersployee)
Operat i orsParM(EPos i t i on j Str i ng, SetEspPos i t i on, Enpl ojî ee, 1): Wetb^araa (St ri ng, eposi t ion. SetEgpPosi t i on. Empl oyee, 1)

«pioyee,return,startdate,-,l)
;OpBD<^Assign(SetStartDate,Ei|iployeeistartDate-SOate,-,i);Kcth«iBo<SyAssigntSetStartDate.Enployee,startdate=sdate,-,l)
iopBodyOec 1 arat i on(GetEispPos i t i on, Eapl oyee, Str i ng, E«|)Ti t l e , n u ll, - , 1): HethodBodyOecl arati oo
! (GetEmpPosi t ion, Enpl oyee, St r ing, esfjti t l e, ra jll, - , 1)
:OpBodyFn(GetE(npPosition,Einployee,Ei3pTitle,6etTitle,»K>rksat,-,2):HethodBo<fyFnC6etE^Position,Effployee,es?)title,worksat,GetTitlc,-,2)
!OpBod^nPafan(Get£mpPosi?ion,Ei®loyee,GetTitle,-,2 l):KethodBodyFnParasj(GetEE^)Position,Eaployee,GetTitle,-,2,1)
Cp6od>1?eturn(GetEtspPos i t i on. Eaipl oyee .Output, EapTi 11 e, - , 3): HethodBodyHeturnCGetE^Posi t i on, E«pl oyee, return, eispti t l e , - B)
OpBod^n (SetEnpPosi t i on, Employee. - , SetTi 11 e, »orksat, - . 1): HetbodBodyFn (SetE«̂)Pos i t i on ,E«pl oyee, - ,worksat, SetTi t l e, - , 1)
lOpBodyFnParamCSetEr ĵPosition Enployee,SetTitie,EPosmon, 1 ,1)iMethodEodyFnParaciCSetEnpPosition,E»^iloyee,SetTitie,eposition.l, 1)
StateCEmpInitial ,Employee):Class(p«jblic,EHpInitial .Eaployee)
Operati on(Entry, Emplni t i a l , vold):Hethod(public, voi d, Entry, Eaplni t i a l)
Operat i onParanC - , - , Entry, Empini t i a l , 1): »ethodParaRi{ - , - , Entry, Eq^Ini t i a l , 1)
Operation(Exit,E»pInitia 1,void):Kethod(public,void,Exit,EopInitial)
iOperati crParamC-, - , E xi t , Enplni t i a 1,1) :MethodParataC-, - , Exi t , Etaplni t i a l , 1)
Operat ion(doAc t ivity,EBipInitia1, void) :Method (public, void, doActivity, Empini t ia l)
;0perationPara]n(-,-,doActivity,Eii!pInitial,l):NethodParafflC-i-,doActivity,Er!?iInitial ,1)

):Cla ; ■ ' ■ . . ■ ■ ;
. .E«pKtorking)

iOperati onParamC-, - , Entry,EmpWorking,1):MethodParam{ - , - , Entry,EnpWorki ng,1)

State(EinpWorking,EBployee);Class(ptiblic,E
lOperat i on(£nt ry , Erapitorki ng, voi d) ;Method Cl

j,E«?iloyee)
blic,void,Entry,Ei

lOperat i on(£xi t , EipWork i ng,voi d):Method(publi c,vo s d,£ x i t ,Empktorki ng)
OperationParantC-,- .Exit,EMpiKorking.l);«ethodParaa(-,-,Exit,Erapttorking,!)
fope rat i on (coAc t i V i ty , E «!pi»o r k i ng, VO i d); V ethod Cpu b 1 i c, voi d, doAc t i vi ̂ , Eapitork i ng)
iOperationParamC-,- ,doActivity,EmpWorking,l):KethodParainC*,-,doActivity,Er:^iHorfcing,l>
State(EinpRetircd,Employee):Class(pub1ic,Empaetired,E»ployee)

Figure 6.5 Training data file

6.4.2 Import Source Model

After building up the knowledge base, user selects the option for importing the source

models which are to be transformed into target code. All the input source models are present in a

single text file i.e. all the class and state models along with the ASL statements belonging to one

application system are stored in one text file. This input file is stored in the “Input” folder of the

current C0c|S project. The class of ‘TredicateParser” is mainly responsible for performing the

back end tasks of organizing and managing the input source niodel constructs. Figure 6.6 shows

a file containing the input model constructs to be transformed.

-58-

i:Class(ShoppingCart)
Att ri bute (SubTotalHoney, doubl e, 0, Shoppi n ^ a r t ,_)
;Attn‘bute CVatAfliount, i nt, 0 , Sh<^pi ngCart, _)
A ltri bote CTotalWoney,double,0 ,Shoppi ngCart,_)
:Operation(GetSubTotalMoney,5h^pin^art,double)
iOperat i onParaJn(-, - ,CetSubTotal«oney, Shoppi ngC a rt , 1)
Operati on{SetSubTotalv!oney, Shoppi n ^ a r t , voi d)
Operat i ORPa rajn(5ub«ofT«y, doobi e, SetSubTotalMoney, Stwppi ngCart ,1) '
:Operation(6etVatAraount,ShoppifigCart,int) ;
Operati onParaaC-, - .GetVatAMount, Shoppi rigC a r t , 1)
iOperati Ofi (SetVatAraount, ShoppingCart, voi d) f
Ope rat i onParaa(Amount, i n t, SetvatAiaoont, Shoppi ngCart ,1)
Operat ion(GetTotalKotiey,ShoppingCart,double)
Operati onPara»(-, - , GetTotalHorey,Shoppi ngCart,1) .
:Operatior.(SetTotalHoney,ShoppingCart,void) ?
iOperat ionPara*i(Total, doubl e , SetTotalMofiey, Shoppi ngCart ,1)
Operatior, (GetCartOwne r,ShoppingCart,void)
Operati orParastC-, - .GetCartOwner, Shoppi ngCart, 1)
iOpBodyRetu rn CGetSubTotalMoney,Shoppi ngCart,Output,SubTotalMoney,- ,1) ^
OpBodyAS sign(SetSijbTotalKoney,ShoppingCart,SubTotalMo(iey=SubMor»ey,-,l)
:DpBod>l?eturn (Get vatA»oont, Shoppi n ^ a rt .Output, VatAiwunt, - , 1)
OpBodyAS si gn CSetVatAaount, Shoppi ngCart, VatA»»unt=Aiiount, - , 1) f
OpBodyReturn(GetTotalMoney,ShoppingCart,Output,TotalHoney,-,1) ^
OpBo^AssignCSetTotalHoney,Shoppin^art,Tota1»ofjey=Total ,- ,1) E
OpBodyOeclaration(GetCartOwner,ShoppingCart,5tring,KaBK,nu1l,- ,1) P
OpBodyf n (GetCartOwne r , Shoppi ngCart, Kane, GetCustoeierhara«, customer, - , 2)
OpBodyf nPara«(6etCartOwner jShoppin^art .GetCustoeer^ai^, - , 2,1)
OpBodyReturn CGetcartOfner,Shoppi ngCart.Output,Na»e, - ,3)
S tate(SCartinitial, ShoppingCart)
Operation(Entry,SCartInitial,void) I
:OperationParaB(-.-,Entry,SCartlnitial,!) {
:0peratiorCExit,SCartlnitia1,void>
Operatior,Paraoi(-, -, E x it, SCarilniti al j I)
O p e r a t i o n (d o A c t i v i t y , S C a r t I n i t i a l , v o i d) ̂ ^

: O p e r a t i o n P a r a m (- , - , d o A c t i v i t y , 5 C a r t I n i t i a 1 , l) ! [
: S t a t e (S C a r t £ n i p t y . S h o p p i n g C a r t) : i
O p e r a t i o n { E n t r y , S C a r t E i n p t y , v o i d) I ;

; O p e r a t i o n P a r a c i (- , - , E n t r y , S C a r t E m p t y . l) - « s
: O p e r a t i o n (£ x i t , S C a r t E i n) t y , V O i d) 1
i D p e r a t i o n P a r a j » { - , - , E x i t , S C a r t E i ^ t y , l) ’ I
O p e r a t i o n (d o A c t i v i t y , S C a r t E f f l p t y , v o i d) |
O p e r a t i o n P a r a j n (- , - , d o A c t i v i t y , S C a r t E B ? p t y , l) I

; S m e (S C a r t C o r t a i n I t e i i K , S h o p p i n g C ^ r t > _ ^ » !

Figure 6.6 Input source models file

6.4.3 Transform Model

The third option user needs to select is the option for transforming the input source

model. This is the most important step in which an optimal solution is generated by using the

PSO algorithm. Moreover, this optimal solution is then used to transform the SMCs of input

models into TCCs. Majorly, the implementatidn package of PSO and classes of

“FitnessCalculator” and “ModelTransformer” are involved in performing this step.

j
The target code predicates produced at the end of this step are stored in a text file named

‘Predicates”. This text file is stored in the “Output\Code Predicates” folder of the current C04$

project. Figure 6.7 shows a sample predicate file generated for the input models of an application

of an “Online Shopping System”.

- 5 9 -

M. m i " . . .

...... - - -■» ' _________ 'i
C l d s s (public, ShoppingCart), Constructsr(public,ShcppingCart())
Attribute(private, double,subtctalaoney,0 ,shoppiagcart) ||
Attribute (private,int,v3tdEKmnt,0 ,ShcppingCart) ^
Attribute (private, double, totaliKsney, 0, ShoppingCart)
Xethcd (public, double, SetSublTotalKor.ey, Shcppingcart)
Method?iran(-,-,Get3ubTotalMoDey,ShoppingCart,1)
Method(public,void,SetSubTotaIKoney,Shopp ingCa rt)
KethsdParsii (double, submoney, SetSubTctalMcney, Shopp ingCart, 1J
KgthM (public, iat,GetVat?oiOuiit, ShoppingCart)
KethocParaj!i{-, GetVatAmount, ShoppiagCart, 1)
Method (public, void,SetVatAsiount, ShoppicgCart)
KethotfParan {int, amount, setTat&nouat,shoppingCart,1) ’
MetriDd (public, double, GetTctalMcney, SboppingCart) j
XethcdPar2Ei(-, -,GetTctalXoney, ShoppingCartj 1) \

Methsd(public,void, EatTotalMoney^ShoppingCart) |*
KethCG?aram((Jouble, total, SetTjtalMoney, Shcppingcart, 1) "j
Method (public,7oid/3etC:artOwn5r,ShoppingC2rt)
MethodParaiD(-, -, GetC3 rtc-rfner,ShoppingCart, 1}
KethodBodyReturn(GetSubTotalMoney, ShcppingCart,retura, subtotali-oney, - ,1 1
yethccBodyAssign (SetSubTctaLKcney, ShcppingCart,subtctalJiicaey=submor.ey, 1)
MethodBodyP.eturn (GetVatAxount, ShcppingCart, return, vat'arujuntr 1)
MethcdBodyAssign (SetVatAmcurit, ShoppingCart, vata]acunt=aBiount, - , 1) =
MethodBodyRetura('3etTotalMoney,Shopping'3art,retuiD,tctalJtc-ney,-, 1) ^
KethodBodyAssign(SetrotalMoney, SboppingCart, totaljnoney=total, 1)
MethcdBodyDeolaration(Getc:artOwner,ShoppingCert,String,n£3ie,null,-,l)
XethcdBodyFa (GetCartOwnerjShcppingCart, naa^, custcsKr, GetCustomer^IaiK, - , 2) I
KethodBodyFnParam (GetCartOwner, ShoppingCart, GetCusteiierNaie, - , 2 , 1 1 ^
.MethcdBodyReturn ('SetCartDwner, ShcppingCart, return, r̂ ajee, 3) f
Class (public, SCartlnitial, ShoppingCart) i;
Method(public,void, Entry,SCartlnitial) |
MsthcdParaa(-,-, Entry,SCartlnitial,1)

Figure 6.7 Predicates file “Predicates.txt”

Another text file named “readme” is generated in this step. A sample readme file is

shown in Figure 6.8. This file contains the following information about the M2C transformation.

1. Total input model constructs.

2. Total mapping blocks in training data.

3. Best fitness value of the optimal solution.

4. Mapping block numbers selected in the optimal solution for every input model construct.

5. Number of evaluations performed by PSO.

6. Details of the source construct and mapping block, if an exact match of input model construct

is not found in the mapping block.

This information is also displayed on the console of our C0c|^$ application.

-60-

noat \Te»

Total 'Cc-iistriicts
155
Tctai Kapping slocks
60
Best fitness; 0,5903225806451613
Best positioai [1.0, 1.0, 60.0, 45.0, 1.0, 1,0, 1.0, 1.0, 60.0, 60.0, 1.0, 50.0, 1.0, 1.0, 60.0, 50.0, 1.0, 16.0, 1.0,
60.0, 1.0, 60.0, 1.0, 36.0, 58,0, 60.0, 60,0, 1.0, 60.0, 1.0, 1.0, 1.0, 1.0, 60.0, 1.0, 1.0, 60.0, 1.0, €0.0, 21.0, 60.0,
60.0, €0.0, 55,0, 60.0, 1.0, SO.O, 22.0, 50.0, 60.0, 60.0, 1.0, 60.0, 14.0, S.C, 60.0, 11.0, 1.0, 23.0, 13.0, 32.0, 1.0,
60.0, 1,0, 1,0, 1.0, 60,0, 1.0, 1.0, 1.0, 60.0, 60.0, 60.0, 60.0, 23.0, 1.0, 60.0, 41.0, 1.0, 1.0, 1.0, 60.0, 60.0, £0.0,
2.0, 60.0, 15.C, 60.0, £0.0, 1.0, 1,0, 2,0, 1.0, 60.0, 39.0, 60.0, 1.0, 23.0, 52.0, 50.0, 1.0, 12.0, 60.C, 1.0, 60.0,
60.0, €0.0, 60.0, 60.0, 4.0, l.G, 58.0, 1.0, 60.0, 1.0, 50.0, 60.0, 50.0, 1.0, 60.0, 60.0, 3?.0, 1.0, 33.0, 1.0, 60.0,
60.C, 1.0, 1.0, 1.0, 60.0, 60.0, 60.0, 60.0, 60.0, 1.0, 60.0, €0.0, 60.0, 1.0, 1.0, 1.0, 50.C, 1.0, 1.0, 1.0, 55.0, 41.0,
60.G, 60.0, 60.0, 60.0, 13.0, 41.0, 60.0]
Suiiser cf evaluations: 800

Bcubtful Transfonnations: 3
Model Construct: Association {_, 1, l,n,_, ShoppingCart, IteaiToPmchass)
Target Transformation; Attribute(private,ShoppingCart,shoppihgcsrt,ShopplngCart{!,ItemToPurchase)
Target Mapping Used; As5ociaticn(_,l,l,ti,_,ShoppingCart,Ite3iToPurcha£e)
Relevance Score: 0,67
Model construct: Association1,0,n,_,Product,ItsnToPurchase)
Target Transfcrmation: Attribute (private. Product,product. Product (), IteniToPurchase)
Target Mapping Used; Association(_, 1,0,n,_. Product,iteaHoPurchase)
Relevance Score: 0.67
Mcdei Construct: A3sociation(_, l,0,n,_,Custraier,ShGppingCart)
Target Transfcrmation: Attribute(private,Customer,custcmer,CustOEier() ,ShoppiDgCart)
Target Mapping Used: Association (_, 1,0, n, custonier, shcppingCart)
Relevance Score: 0,67

Figure 6.8 Model transformation “readme.txt”

6.4.4 Generate Java Code

Finally, user selects the option of generating Java code cdfresporiding to the code

predicates produced in the previous step. The output produced by this step is a set of Java files

containing the complete Java code statements. The class of “CodeGenerator” is mainly

responsible for performing this task. Figure 6.9 shows a sample Java code file generated by

C04.$ for the class “Command”. These Java files are stored in the “OutputMava Code” folder of

the 004$ project.

Moreover, a readme file is also generated in this step. This readme file contains the

information about the input model constructs for which partial or no exact match was found in

the mapping blocks. A sample readme file is shown in Figure 6.10.

-61-

piiblis 3les3 Cossjtand {
public Cc33acmd() {
)
private int coKisandid = 0 ;
private Date emissiondate = null;
private String deliveryaddress = null;
private Hill payablety = n s v Bill{};

p^lic int GetlteT^ountC)
{
ir.t count = 0;
String desc = n’jll;
for{iat i^O; i<1 0 0,- i+r) (
desc = iteu.GetDsscripticnO;

if (desc != null)
coTint=count+l;
)
1
return c^unt;
1
public Date '3et3mis5icr.Date
I
return ejdssiondate;
}
public vcid SetSmissionDcte(Date edate)
\
emi 5 s i oiidate=eda te;
}

Figure 6.9 Java code file “Command.java’

Doubtful Transfcrsations: 3
File Nane: ShoppinqCart.jara

Model Construct: Attribute(private,Cu3tomet,CG3to3fer,Custcmer{),ShoppingCart)
Target Code Construct: private Customer custcser = new Cu3tc[Kr{);

Relevance Score: 0.67
File fiaiae; ItemToPurchase. java

Model Construct: Attribute(private,ShoppingCart,shcppingcart,ShoppisqCart(),ItesiToPurchase}

Target Code Constract: private ShiOppingCart shoppingcart = new ShcfppingCartl);
Relevar.ce Score: 0.67
File Name: ItenToPurchase.java

Model Construct: Attribi!te(private,Product,prcd-act,?rodGCt{) ,Ite!Ei0Purch3se)

Target O Me Construct: private Product product = new Product();

Relevance Score: 0.67

Figure 6.10 Code generation “readme.txt’

-62-

Chapter 7

CASE STUDY

-63-

7.1 Introduction

This chapter is dedicated to provide a thorough explanation of the case study used for the

vahdation of our proposed approach. We have chosen a real-life example of an Elevator Control

System (ECS) to generate the implementation code by utilizing our approach. In this chapter, we

describe the ECS by considering two UML design diagrams. Particularly, the static structural

design view of ECS is modeled by using the UML class diagram. As ECS is a real-time reactive

system, UML state model is utilized to illustrate the dynamic view of the system. ASL is used to

express the method bodies and behavioral logic of the ECS at the design level.

The rest of this chapter is structured as foUows. Section 7.2 gives ah overview of the £CS

and states its functional requirements. The class diagram of ECS is described in Section 7.3.

Section 7.4 demonstrates the state models corresponding to the ECS classes.

7.2 Elevator Control System

This section is divided into two subsections. The first subsection provides an overview of

the scope of the Elevator Control System (ECS). The functional requirements of the system are

detailed out in the second subsection.

7.2.1 Scope of the ECS

The task of an ECS is to control and manage the elevator of a building. The major object

of the ECS is the ‘Elevator’, which has the basic function of moving up and down, open and

close doors and picking up passengers from different floors of the building. The elevator is

supposed to be used in a building having floors from 1 to max, where max is the maximum

number of floors in a building. The first floor of the building is a lobby.

The elevator has the car call buttons corresponding to each floor of the building. On each

floor except for the top floor and the lobby, there are two hall call buttons for the passengers to

call the elevator for going up and down. At the top floor, there is only one down hall call button

and in the lobby, there is only one up hall call button. When the elevator stops at a floor, the

doors are opened and the car lantern indicating the current direction the elevator is going is

-64-

illuminated so that the passengers can get to know the current moving direction of the elevator.

The elevator changes its speed from slow to fast while visiting the floors of the building. In order

to ensure the safety of the elevator, the elevator is equipped with the emergency brakes which are

triggered to force stop the elevator during unsafe conditions.

7.2.2 Functional Requirements

Process Hall Call: When the passenger requests an elevator by pressing the hall call button, the

light of the hall call button is turned on. If the elevator is idle, it starts moving towards the

requested floor immediately, otherwise the requested floor number is saved in the queue

maintained by the elevator. When the hall call button is released, the button Ught is turned off.

Process Car Call: When the passenger enters the elevator, (s)he presses the car call button to

express the desired destination floor. The pressed car button is illuminated, doors are closed and

the desired moving direction is determined. The elevator starts moving towards the destination

floor with the car lantern indicating the current moving direction of the elevator and the car

position indicator showing the destination floor number.

Move/Stop the Elevator: When the elevator starts moving towards the desired floor, it moves

from slow speed to a fast speed. The elevator moves with fast speed only when the source and

the destination floors are more than two floors apart. When the elevator stops at a desired floor,

the doors are opened, car lantern is cleared to show the next moving direction of the elevator and

the car position indicator is refreshed to indicate the current floor of the building.

Open/Close the Doors: The doors of the elevator are closed before the elevator starts moving

from the source floor and are opened after the elevator stops at a destination floor. However,

when the doors are closing and are not fully closed, if there are passengers who want to get into

the elevator, the doors are opened again.

Triseer Emereencv Brakes: During unsafe conditions, the elevator controller triggers the

emergency brakes to force stop the elevator at a floor. When the unsafe condition ends, the

brakes are released to continue the normal operation of the elevator.

- 6 5 -

Figure 7.1 shows the class diagram of our ECS consisting of 14 classes. The

responsibilities of these classes are described below.

Buildins: The ECS is deployed in a building to move the passengers up and down with the help

of an elevator.

ElevatorControl: ElevatorControl is the central controlling object in the ECS. it is responsible

for receiving input messages from the outside world, passing these messages on for further

processing by the ECS and sending response and output messages to the hardware and

environmental objects of ECS.

Elevator: Elevator is the major object in the ECS. It is being controlled by the ElevatorControlto

move up and down in the building at different speeds and to make stops at different floors when

needed.

EmereencvBrake: In case of an emergency or an exceptional situation, EihergericyBrake of an

elevator is triggered by the ElevatorControl.

Button: In our ECS, the Button class generalizes two sub-classes - HallCallButton and

CarButton. The ElevatorControl communicates with the Button objects, gets the information

whether a button is pressed and in turn controls the illumination of the button Hghts.

HallCallButton: HallCallButton exists in pair at each floor, except for the top floor and lobby.

ElevatorControl commands the elevator in response to the HaliCallButton press and gives

feedback to HallCallButton hghts.

CarButton: For each floor in the building, there exists a C^Button in the Elevator. The

ElevatorControl moves the elevator according to the press of the CarButton and is in charge of

turning the CarButton hghts on and off.

Floor: The ECS is supposed to be used in a building having floors from 1 to max, max being the

total number of floors in a building. Each floor has a pair of HallCallButtons for calling the

elevator, except for the first floor and lobby, which have a single HallCallButton.

7.3 Class Model

-66-

Em^ncyBt*e

status: string ̂ ide

-errer.sSualion: irt = 0

appl>():wj(J

+feleas*0 : vdd

+getStahJsO: sftiig

♦se(Sl3tus(etitalte_aatus; siring): vdd
tga&ToValijeO: nf
+sdEiToVa!ue<HTa: ril): void

gdEBanleO: Emwpercy&BkeState

♦set£BState(ebfal(e_state; B nagoK yB ^eS ta ie}; vdd

Door

-doof.staais:sfiifi8 =dosed

-(Joo rf«f$a);irt = CI

+openO:vod

+dose();¥dd

♦revei3eDooRO:vad
+getDoorStiitus(l: string

«s«tDooiStalus(stalus: stirig): striig

+g«JD(KrRevw5alO: irt

+s«DoofRevasal(revefse: irt): vdd

tgaDocrSlaleO; DoaStale

♦srtDocrStale<d slate; DowStatel ;vdd

CxLsitern

-lanlen.status: siring = off

ikjmin8te() :vdd

♦tumOflO: vdd

♦jefStalusO; string

+selSIatus<statu:: string); vdd

+gefl.antMnStsteO: CarLmtemStale

♦setUnlwnasteClstste; CsrlenlemStale): vdd

Oflv»

-elevatcr.slatus; string = stopped

•elevatof_(iredkin: siring = nul

spe«i:rt = 0
■diTve_sloo(: int = 0
■diiw dflocr;»il = 0

♦mweUrtsojreê loor: int. destiialiai_Joaf: ini): vdd

+mcwDoMi(sotrce_floor: Ini, destinaficnjoof: ml): vdd

+slcp():void

+gdSlatusO; sliina

setStahjsiestatus: stiing): vdd

+gelDiredion(): string

setCsediaifulrctton: sting): vdd

gelS(;«edO;int

+sfiispeed(esj!eed; int): vdd

+gelDrivea8teO: DriveStale

♦5elDrivea8te<d$<«le:Driveaat«}:wiid

♦gel&xjrceFlocnCirl

♦selSourceFloof(sJcicr: iH): vdd

♦grtOesdnaljonFI(»0 : rt

+s€tOestinattaiflooi(d_t1oo(: ill); WDitf

BewiwConlrol

♦halBultonnessed(calfing_»ocrNo; fit): vdd

♦carButlanPressed(deslinatjonFk)ar: Ini): vdd

♦dootReversalOJvdd

♦tiigget&TiefgencyBrakesO: vdd

+re(ea5eEm<fgencyBfskesO -W d
mweBevatcrtdestiraticnFkxr: nl): vdd

+slopB«vatMt): vdd

1

1
1J0

Bevlor.

-ete_sialijs: sding = id t

-soucejocr:irt=0
■cuTOiI_1loof;nt = 0
■desljnali«iJoo:W = 0
-safe_siiMlion: siring = safe

-mowig_dlfeclj(n: string=«ol

+haKa«caling_l(»No:im}:vdd

+carCaKdestinaliai_teaN(!: ill): void

tdejemineMaingCtedionO: vdd

tdooffievefsalO: voW

tgeiNeidDestinalionO; vdd

tmcweideslitaljonFlocr; ml): vdd

■»stĉ : void

+isEmf*yij: bodean

+Eni|«():¥dd

+|[xjs™otFk)ô : vctd

+decr«T«(itF)a)(0 :wi(!

♦doseDoofsOivdiJ

cpenDocrsf): vdd

+caaO: vdd
+sdectFtoor{j:vd[J

+de_mweO:vdd

♦getBevatofaaleO: BevalotStalt
+ŝ BBvalorStale(estate: EtevatorSUle); vdd

+getaeStalusO: string

+s«tBeStHus(status: strkig): vdd

+gelSourceFlocr():W

+s<lSourteFlooits(oof: int): vdd

tgetCuiTeiilFlooiO; id

+selCurTHilfloa(cloer: ii): vdd

♦getOestinaliaiFlocrO: ill
♦setDestâ FlodHdlloof: int): vdd

♦getaevatofSluafeiK): siring

♦s«iSafeSauali(ii(saiyy: straig) ;vdd

+getMoymgOiedionO: slriig

+setMovinflOifection{cw_*edion; string): vdd

DriveControl

B<£ifng
-nanw: striig = UUI

-addess: stoing = H-10, Islamabad

■mriOTS: fit = 0
-maxllod5:int=50

♦halCalBultcnPre5sed(caBng_«oofNo: ril, eurrertJocxNo; Int): vdd

+haKaIBullonReleased(ca6ng_1toOTo; intj: void

+validFk>cntoortto: i<); t»d«ar

■getNameyrshig

+seWame(ljnanie; string): void

tjitAddressO: striig

+$«<Address(t>ad4ess: striig): vdd

+9etMnFlootsO:int

+seOfeF!ocrs(nwJocr: int): vdd

+̂aiFloorsO: rt
+MtMaxFlooc5(max_locr: W); vdd

1

Floor

-caBng_loor;W = 0
-ciHrHilJoor:inl=0
-current tutton no:int=0

fiallButlQnftess(cilJoor; InL citfrjoor; iit); vdd

♦hcdlButtonRdeaseO: void

♦getCuirenlFloort): W

tgetCalngFloor(loo(: int): Irt

♦setCalngnoorfdlocr: lrt|: vdd

1.-2
Bunoci

getStatusO: siring

+5etStalus(5lal: string): vdd

CarButton KaBCallSutton

-button_status: string = ide

-î il.status: string = off

-button_status: string=idle

■ight.stalus: string = off

l̂uninaleO: vdd

+lumOft[) :vdd

tgetBtdonaalusj): string

+ŝ Bultonaatus(sta!: string): vdd

+geU.Î Statusfl: strmg

+setLlghtaatus(lstalus; striig): wad

+getCar8uHaiaatefl: CarButtonStale

+s«tCarButtc<iStateld)5tale: Car&rttaiaate) :v»d

♦pressO; vdd

♦release();vdd

♦getButtonaatus():vdd

+5etButto(iaatus(bstatus: siring): vdd

+9etlî aalus0 ; striig

+selUghiaatus(lstalus: siring): vdd

ĝetHalCdButlonaateO: KaDCalButlanaate

+setHaBCaIButtaiaale(]ilKt3ie: HaHCaDaittonaate) :-vdd

■eortrd;iit=0
+nwel̂ saifce_kior: int destiiatoijoa :W): vdd

+nwviDoMilsairce_llocr: ii, destiialionjocr: Irt) :vdd

tstcpfl: vdd

CarPositlonlndicator

■posilioR.slatus: string = passive

-de^d floor: int=0

shoiKtoarNo: inti: vokJ

clear!}: vdd

♦gelSlaliisO: strmg
«setStatus(ststus: string): void

♦gelDesfedFlocr(); rt

+satDesire<lFlocr(dloor: int): vdd

♦gefCPSMey:CPIState

+setCPSale(cp«ale: CPiaale): void

DIspalchar

MAX:lnl = 1000
•destinat!onQueueQ:inl = MAX

■tont;W = 0
■rear:nt = 1
<urrenl_floof:int = C

enqLie(IocrHo:iitt:vdd

+dequ«0 : ini

•isEmpt-yi}: bodean

+atFloor(sajrce Joor: int, desdnation_floof: Int. drection: string): vdd

+getCurrHilFloon]: rt

+setCurienlFlociltOCT_no :ml): vdd

+iicfementf locrfl: void

+decrementFloot{): void

Figure 7.1 Class diagram of the ‘Elevator Control System’

-67-

CarPositionlndicator: CarPositionlndicator is used to inform the passengers about the current

position of the Elevator. When the Elevator is at rest, it indicates the current floor whereas the

desired floor is shown to the passengers when the elevator is moving.

CarLantem: CarLantern are two in number, for indicating the up/down moving direction of the

elevator to the passengers. One of the two car lanterns is illuminated according to the current

moving direction of the elevator.

Door: There are two doors in the system. The ElevatorControl commands the Door object to

open, close or make a door reversal according to the situation.

DriveControl: DriveControl is responsible for controUing the elevator Drive.

Drive: Drive controls the movement of the elevator. It moves the elevator up and down and

makes stops at different floors.

• -i
Dispatcher: Dispatcher is an important component of the software system although it does not

control the actual elevator components. The main function of the dispatcher is to calculate the

target moving direction and destination for the elevator.

The method bodies of these classes are expressed using ASL. As an example, the body of

the method ‘getNextDestination’ in the ‘Elevator’ class is expressed in ASL below. The

keywords of ASL are expressed with the bold font style.

Boolean queue_empty = FALSE

[queue_empty] = op9:isEmpty[] on dispatcher

if queue_empty == FALSE then
fInteger next_floor = -1

[next_floor] = op3:deque(] on dispatcher

O p 5 :carCall[next_floor] on this

endif

else

-68-

op4:stop[] on drivecoritrol

ele_status = "idle"

for i in {1, 2 }

op2:close[] on door[i]

o p 2 :turnoff[] on carlantern[i]

endfor

source_floor = current_floor

destination_floor = -1

op2:turnoff[1 on carbutton[current_floor]

op2:clear[] on caprpositionindicator

opl:show[current_floor] on carpositionindicator

endif

In this method, the next destination of the elevator is determined. If the waiting queue of

the elevator is non-empty, the elevator takes its next destination floor from the queue and moves

towards it. However, if the waiting queue is empty i.e. there are no passengers waiting for the

elevator on any floor of the building, the elevator is stopped at the current floor, doors ^ e closed,

car lantern is turned off and the car position indicator is set to show the current floor of the

elevator.

7.4 State Model

This section illustrates the state diagrams corresponding to the classes of the ECS to sho w

the behavior of the reactive objects,

7.4.1 State model of Elevator

Figure 7.2 shows the state model of the major reactive object in the ECS, the Elevator.

The state model consists of 13 states and 29 transitions, including 3 self transitions. Within the

-69-

state, the ‘entry/Activity’ and ‘do/Activity’ illustrate that there are activities in the entry and do

methods of the state respectively. These activities are expressed in ASL at the design level.

\/
o p 1 :c a n [] ;l c f > d f]

op3:m c»ve [1 : fcf != sfl
Sta rtM cw ing D o w n ^
do/A ctivity

[c f!= d f]

entry/Activity

d o / A c t w t y op1:ca[l{];(cf<df)

rf - -ruL'L-ent tloou
s f = s o u r c e f l o o r
d f = d e s t i n a t i o n f l o o t

■>

e n try /A c tiv ity
d o / A c tiv ity o p 1 :c a j H] :| c f = = d f]

/\

\/

Re s u m e M o v in g D o w n
entry I Activity

do/A ctivity

IdePoofOpen Reach ed
/\

do/ArCtivity

cp 1:ca!l []

S ta rtM o vin g U p
d o / A c tiw ty o p 3 ;m o v e [] : [cf != sf)

o p 1 : c a l i n ; [c f = c (f]

\

Id le D o o fO p e n ^
entry / Activity

do/Activity

o p i :calJ []

[q u eue_ em p ty = false]

op2:selectFloCT [)

op3:moven:[df<cn. g-

/\

A to v in g U p T t ie R o o r s ^ [c f != d f]
entry / Activity
d o / A c tiv ity

V /

\/
'ResumeDoorClosed''

□ p lx a li □
do/A ctiv ity

o p 1:c a ll I) ; [c f ! = d f)

RoaSeJectedDocfOosed

do/Activity

\/
m o o r S d e c te d D o o fC io s e d C a ile d

d o / A c trv ity

/\

\/

\/
op3:move [I : [df > d]

ResiimeMot/ingUp

e n try /A c tiv ity
do/A ctivity

o p l c a i i [] : [c f = = d f]
'FloofSeiectedDoofOpen^

entry/Activity

do/Activity

op1 :caH D ; [cf = = df]

f c f = d f & & dir = "up"1

[qtJeue_empty = false]

Qp3 :move []:[df<cf]

Figure 7.2 State model of the ‘Elevator’

-70-

7.4.2 State Model of EmergencyB^e

Figure 7.3 demonstrates the state model of the EmergencyBrake of the ECS.

c^2:applyBrakes []
- \i/

r Idle ^ r Active
entry/Activity
do / Activity

entry / Activity
do / /̂ trvity

V J V ■ - J

csp1 :releaseBrakes []

Figure 7.3 State model of the ‘EmergencyBrake’

7.4.3 State Model of HallCallButton

The state model of the class HallCallButton is shown in Figure 7.4.

op1:illuminate[]

op2 :darken []

Figure 7.4 State model of the ‘HallCallButton’

7.4.4 State Model of CarButton

Figure 7.5 shows the state model of the CarButton class.

o p i .ilJuminatet]

op2;tum Off []

Figure 7.5 State model of the ‘CarButton’

-71-

7.4.5 State Model of CarPositionlndicator

Figure 7.6 shows the behavior of the CarPositionlndicator class in the ECS.

_______ op1:shown ,_________

CPIPassrve
entry / Activity
do / Activity

CPIActive
do /^ t iv ity

7 \

op2:c!ear []

Figure 7.6 State model of the ‘CarPositionlndicator’

7.4.6 State Model of CarLantern

The state model of the car lantern is shown in Figure 7.7.

opIiHluminate []

op2:tumOff [j

Figure 7.7 State model of the ‘CarLantern’

7.4.7 State Model of Door

Figure 7.8 shows the dynamic behavior of the Door class of the ECS.

-72-

[r_status == 0]
■>

\|/
Closed

do / Activity op1:open []

\ /
r Closing ^ [r status == 1] / op3:reverseboors [] r Opening]

entry / Activity
do / /Activity

V J

^ ^ --------------------------- entry / Activity
do / Activity

V V

 ̂ ___ ^
fr_status == 1] / op3: reverse Doors []

7K

op2:close []

Opened
do / Activity [r_status == 0]

Figure 7.8 State model of the ‘Door’

7.4.8 State Model of Drive

The state model of Drive is illustrated in Figure 7.9.

o p 3 ;s t o p [1

d o / A c t i v i t y

IK

stopped
e n t r y / A c t i v i t y
d o / A c t i v i t y

\ /

o p 5 : m o v e U p F a s t [}

l\<1oveUpSlow
e n t r y / A c O v i t y
d o / A c t iv it y

o p 3 :s t o p n

MoveDownFast
d o / A c t iv it y

\ /
f M o v e D c w n S l o w ^

e n tr y / A c t iv it y
d o / A c t i v i t y op4;moveDcwnFast [1

Figure 7.9 State model of the ‘Drive’

- 7 3 -

Chapter 8

EVALUATION

-74-

8.1 Introduction

This chapter is devoted to explain, discuss and evaluate the results of the experiment

performed to validate our proposed approach for automatic code generation. Section 8.2 presents

and discusses the results of the application of our approach on the comprehensive models of the

Elevator Control System described in Chapter 7. The outcome of 10-fold cross validation is

discussed in Section 8.3. Section 8.4 presents the comparison of our approach with the existing

code generation approaches and tools. Finally, the overall assessment of our approach in terms of

benefits and hmitations is given in Section 8.5.

8.2 Elevator Control System

In this section, we describe the experimental setting and present and discuss the results

for the application of our approach to the class and state models of the ECS.

8.2.1 Experimental Setting

The steps of our experiment are summ^ized below.

1. In the first step, we express the training data as predicates. The class and state models of 9

different software systems are used as the training data. The complete models of the training

data can be found in Appendix C, For ECS, the models M2-M10 constitute our training data.

We stored the predicates of our training data in 9 text files i.e. one text file contains the class

and state model predicates of one software system. This training data is given as input to our

C0c[$ tool. Table 8.1 shows the details of the model constructs and mapping blocks of the 1

training data.

Table 8.1 Training data

Model M2 M3 M4 M5 M6 M7 M8 M9 MIO

Model constructs 106 96 135 145 249 155 202 135 200

Total mapping blocks 60

- 75 - 4

1

2. During the second step, we express the constructs of the input source models to be

transformed as predicates. These predicates are stored in a single text file, which is given as

input to the C0c|^S. The input source models are demonstrated in Chapter 7.

3. The input source models are transformed to generate code in terms of predicates through

C0(}.$ tool.

4. The code predicates generated by C04S are transformed to generate complete Java code

files.

In order to check the correctness of the solution generated by C0c^S, we used the

following formula to calculate the percentage of the correctly produced code.

r' Nimiber of correctly traiisfornied coustnicrs ̂ (^)Correctness (%) = — ;------ — ^— —-----——------ * 100Total number of model constructs

As the proposed approach uses a stochastic algorithm, for which two different executions

may produce different results for the same mode!, we choose the best result for each input source

model from five executions.

8.2.2 Results and Discussion
s

Figure 8.1 shows the screenshot of the result generated by C0<̂ $̂. According to the result,

from the total of 703 input model constructs, there are 27 doubtful transforinations which

constitute 3.84% of trie total input model constructs. By doubtful transformation we mean that

for 27 input model constructs, exact match was not present in the optimized solution searched by ^

our approach, either because their matching constructs do not exist in the training data or our ^

approach is unable to find them. Because of these doubtful transformations, the fitness value is

penalized, as their exact match is not present in the optimal solution. Our tool highlights these |

doubtful transformations separately so that users can analyze their correctness manually in order

to avoid the generation of incorrect code. Moreover for the doubtful transformations, C04S also

calculates and shows the relevance between the input model constructs and the selected

transformation from the training data in terms of the relevance score to facilitate its intended

users.

-76-

S CW;oiJS£CSinpiJt ̂DlCoSStCSOutput s & DlCoiS'HCŜOu?u?Cc
Cfl«SFae_3332

^ m DlCirfS£C&3utfKJ!\.!3

I c t i i C c o s trsc ts
703
T c t i l K appiss 31=cls
60
Best f itB B Js: 3 .5722S1-:354X5530!
3«3t p oa ltisT i: j i . o , 6 0 .o, i .C , SO.O, 1 .0 , 60 .0 , SO.3, £0 .0 , £0 .0 , 6D.0, ! .5 , 1 .0 , l.G , SO.O, Si
Kuzfcsr o f C T a lu a tic a s : SOO

^ Joiifctful I r a s s f a i ^ E ic a s : 27
Hodei C o a itn ic t: A sscc ia tic D (_ ,I,_ ,l ,e ie v B ;> o r ,S iiT ito r ,2 1 e T s to rC o E tro i)
T arg st T rS E jfo r^ a tica : A t t r i i - i te < p r i7 a te ,E le T s tc r ,e ie T a to r ,E le 7 a to r () , £ le7 a tc rC aE tro l)
Tar j e t Kappisg Used: £ 3 jc c ia ti= = (0 , l ,C ,c ,_ , Per3C2,Lcaa)
R eisvaace S ^sie : 0.E7
Sfcdel C c a j t - jc t : A3S0ciaticB{_, 5.,_, l,fcb _ cff , E a ilC il lB u ttC E C ff ,B il lC a ll3 u tt iiS isb e)
T arg e t ” r a n a f3r c a t in s : A ttrifc ttte ^ p r iv a te , ga iIC a llB u tto eD ff, hh_of£ ,H aliC « llB ittacC ff(),H ailC :*115 i
S s rg e t Kappisg Used: a 3 J c c ia tio s < 3 ,l ,0 ,a ,_ ,P e r3 a a ,L c a i)
R el-vasce Score: 5.67
Kodel CciLstr'iSct: ft33Dci&wicn(, lrC b 5t4tt,C arBu*'tcLSvatc,Car3ut.tc!i)
T arget T ians f a i a a t i o s ; A ttii iR ite jp r iv a te , C arS ^ itto iS tate , c b _ s ta te , C i r S i t tc n S t i te (J , CarB^ttcn)
T arget Uappicg Used: A ssccietio=<!5,1 ,G ,E ,_ ,P erisa ,L oac)
R eievacce S ro re : 0.S7
Jicdei CoastiTjct: A s s s i i a t i c a f ,1 , , l ,c b c f f ,C a r3 u ttc s C ff , CarSsittonSSate}
T arg e t T ra c s fa iE a tio a : A t t r ib u te J p rlv a te , CarS-JttonCff, cb _ o ff, CarSuttCECff () ,C a :& :ttc iiS ta te)
T arget aappir-g Csed: A sscc ia tin a lO , 1 ,0 ,E ,_,PerasE ,Loan)
R elevarce Score: 0.S7Mcdel Coastr'ict-t A25Dciat̂ĉ(,1, jl̂cl
T arg e t T ra rs fs rE a tio o : A itrib a te lp iiv a te ,C a iL a a te rtiO ii,c l_ o a ,"a x L a n te rcC n () , C aiLanterLState)
T arget H appirg rTsed; A 33ociati= s(0 , i ,0 ,B ,_ ,P e rssE ,I^ a n)
B e lerasce S ccre : 0.67
Mcdel C onstr-jct: A ssQ cia ticn (_ , i , l,c i_off,C arL -4aten iO f f .C arL an teriiS ta te)
T arg e t T ra is f a r a a tio ji : A ttr i l ia te < p r iv a te , CaiLantsrii-Off, c l_ o f f , CarLaEternCf f () , C a rL a ite m S ts te l
T a ras t H icp lag Used: A a s c c la t is L lO .i,0 ,c ,_ ,P e rs ia ,L e a s)

< _ _______________ ______ —^

Figure 8.1 C0t^$ screenshot highlighting doubtful transformations

The complete code generated by C04$ can be found in Appendix D. When we analyzed

the generated code corresponding to these doubtful transformations manually, we found that the

code generated for 22 of these doubtful transformations is correct. This is due to the reason that

our fitness function is intelhgent enough to look for the nearest match, in case if no exact match

is found in the training data.

For the remaining 5 input model constructs, their matching constructs are not even

present in the training data. For this reason, PSO could not find their corresponding correct

matching transformations. However, our approach does not leave out these constructs and maps

these input model constructs to their nearest match from the training data. For example, the

following input model construct is not present in the training data.

Composition(_ , 1 0 , 1 , carbutton,CarButton,Elevator)

However, PSO chooses its nearest match and proposes the following transformation.

-77-

re ­

composition (_, 1 , 1 , Address,Customer)

This transformation is very close to the desired transformation, as our approach is able to

find the transformation from the training data with the similar model construct (predicate name).

Again, this supports our choice of the good fitness furiction. But since the key parameters (2"*̂

parameter) of the two constructs are different, we considered this transformation as incorrect.

The chosen transformation creates only one instance of the ‘CarButton’ in the ‘Elevator’ class

instead of the desired object array of size 10.

However besides these doubtful transformations, there are 3 input model constructs for ■

which our approach suggests incorrect transformation. Although their matching constructs are

present in the training data but our approach is unable to find them. This is because of the reason

that our approach uses PSO which utilizes stochastic search instead of the exhaustive search

while looking out an optimal solution. Our tool C0(̂ _$ is also able to keep track of these input

model constructs and highlights them separately so that the intended users can come to know

about the missing code statements. Figure 8.2 shows the screenshot of the C0c[$ tool

highlighting these missing code constructs.

Table 8.2 and Table 8.3 summarize the execution and the post-analysis execution results

obtained for the ECS respectively. From Table 8.2 it can be inferred that our approach finds the

exact transformation for 673 input model constructs from the training data. However in Table

8.3, it can be seen that the number of correctly transformed constructs rises to 695. Tliis implies

that our approach proposes 22 correct transformations. This is another sign of our strong and

sharp fitness function. 1

The best fitness value obtained for an optimal solution is 0.9722 whereas the correctness

of the generated code is 0.9886 (98.8(5%). Here we can observe that the fitness value of the

optimal solution is less than the code correctness. This is because of the reason that for 22 correct

doubtfiil transformations, the correctness is 1.0 (100%) but the individual fitness values of these

constructs are less than 1.0. The dissimil^ names (predicate name) and the properties (predicate

parameter) of the input model constructs and the training data constructs penalizes the overall

fitness function, resulting in the low fitness value.

- 7 8 -

1

{fflCodtS<«ro(Co<g)=i

t i S l B

:sV DliCtKS'fCSmpiit
3 l^DACodS'ECSOtj^uKf

C«BF0e_3332
Pr«*at«sbt

i Q D-vC9<lS'£CS'TGufl3ufj3

n n z

I B

roEsr-
TargiS ? r a s j£

I -
A s s ic ia t ia i i l , - , e D

a t i a c : i t t r i t u t e i p r i T a t e , E » rg e n e y 3 ra k e Id ie ,s b _ iiIe ,E = e rg e n c y S ra k iId i t!) ^EBerj*!;
T e r je t HaRjiiig Jiaed; il33cc id ticc< 0 , i , S, Per3C2,I^aa)
Reiffiarice Score; 0,67
Hcjdel C ouatr-jc t: C Jo E p c 3 itic c { _ ,l,_ ,l ,d r i7 e c c 2 l:rs l,P rIv e C c a tro l,£ ie » a to r)
T a ig e t T r tn s f o rs a t is n : A ttr ifc u te (p r i7 a c « ,D ri^ e C c c trc l ,3 riT e = ffr trs i,D riv e C e n tro i() , E leTstsT)
T a ig e t K applig Used: fc53C ii4 ti2n(_ , 1 ,1 ,2, payahlehy, 3 i l l , vC ^asd)
R tlevaace Score: 0 .5
Jicdel C o n a trijc t: C o s p c 3 i t i5 c { _ ,2 ,_ , l ,c a r i2D teia,CarLanters,E levafcoi:)
T a rg e t T ra s s fo ra a t lo c : A ttr lb a ts (p riv a te .C a iL a a te rS rC a rlf ln te rE .C ar-L a i- ts rsU ,E ie T a tc r)
Target JJapping Used: f t j jc c i s t is c f D , 1 .0 ,n ,_ ,Perscc,irO sn)
Relevance S ccre : 0 .0
Moifcl C ocatr-jc t: C oaf= 3 iti= = {_ ,2 ,_ , 1, dcor,D 3or, E le fa to r)
T arget I r a s s f c i ^ t i s B : i t t r l f c u te Ip r i ra te ,3 n n r ,d o o r ,D e a r (I jS le v a to r)
T arg e t Ksppicg Ojed: i i a c c ia t i c r . (D, 1 ,0 ,a ,_ , te rs^c .L eaa)
Relevance Score: 0 . 0

Xode1 C 0E 3tract: C o3ps5 itlO E < _ ,I0 ,_ ,1 ,c a it^ t tsQ ,C a r2 u ttc a ,E le T a to r)
T arget T ra r is fc r ia t is c : A t t r i tu te Ip r i r a te ,C a r S ’J tte r ; ,c a rb -J t tc c ,C a r3 itto n () .E iey a to r?
T arg e t Kflfpicg Caed; ii35cciaticE<C’, l , 0 , ! ; , _ , Fer3cs,Lcan)
a e leT tcce S cc rs : 0 .0
Kcdel C o tJ tz -jc t: C o :^ c* itiC E (l,Z ,_ , 2 ,h a l l_ c a ii_ b 'j t tc ! i , S a iiC a ll3 -J ttra ,F ls2 r>
T arg e t t ia c r fo r js a t ic i ; : A t t r ib u te fp riT a t« ,H a llC allS ittO E ,h a ll_ ca ll_ fc -J ttcS r“ a llC a ilS ! i tto a (> , f io c r
T arget Ksppi=g C jed; a s 3 c c la t ic n (_ , 1 , T ra asa c tio a ,P ro d u c t)
ReleTaEi:e Sccre: O.C
Kodei C o n stru c t: C Q ^^ s itl2 E < _ ,5 0 ,_ , 1 ,_ ,F is jr .E -J iid lc g)
T arg e t T r a n s ic is a t ic c : i t t r i i i t e (p riv a te ,F lo o r , f l= : r , F io ar () ,5 'J lld i5 g)
T arget HflR>iEg Used: f i j3 c i ia t ic n (2 ,1 ,C rD ,_,F ersst,Loao)
j£'̂ £jLSSS£-̂ S-̂ - '--0 '-■
Hd ^ ra a s fo o ia ti iE S found; 3
Rcdel C oastr-Jct: C p3cdyL ccp(atF l!!cr,5 ispat=her, condltlCE^KSD, 2, 4}
Model C o a s t r i c t : C^SodyFa(g e ti ie ;c t! !e 3 ti= a tio s ,E le v a tc r ,- ,c ie a r ,c a rp = s iti2 S l£ d io a to r ,S ,1 7)

C o n s t r jc t : G e n e ra liza tio n f S a t t i s , C ir& jtton)

-jm:

u m

Figure 8.2 C04S screenshot highlighting missing transformations

Table 8.2 Execution results for ECS

Input
model

constructs

Exactly
match^

constructs

Doubtful
transformations

27 (3.84%)

Incorrect/Missing
transfo rmations

Best
fitness

703 673
(95.73%)

Correct Incorrect
22 5

(81.5%) (18.5%)

3 (0.42%) 0.9722

Table 8.3 Post-analysis execution results for ECS

Model Mapping
blocks

Input
model

constructs

No. of
correctly

transformed
constructs

Best
f itn ^

Correctness
(%)

Minimum
execution
time (sec.)

ECS 60 703 695 0.9722 98.86 165

-79-

This section is divided into two sub-sections. The first subsection describes the

experimental setting followed by a discussion of the obtained results in the second subsection.

8.3.1 Experimental Setting

The class and state models of 10 different software systems, given in Appendix C, are

used for performing the 10-fold cross validation of our proposed approach. For each fold, the

class and state models of one software system is transformed by using the remaining 9 software

models as the transformations examples. This implies that the 9 software models are used to

create the initial swarm to find an optimal tr^sformation solution for the 10* model.

The experimental steps described in Section 8.2.1 are performed to carry out the 10-foid

cross vahdation. The generated code is analyzed with respect to the correctness by using the

formula given in Equation 6 (Section 8.2.1). The total number of input source model constructs

and the mapping blocks used in each execution are suihmmzed in Table 8.4.

Table 8.4 Number of input model constructs and mapping blocks

8.3 10-fold Cross Validation

Model Ml M2 M3 M4 M5 M6 M7 M8 M9 MIO

Cohstructs 187 106 96 135 145 249 155 202 135 200

Mapping blocks 60 62 .63 62 60 57 60 59^ 53 58

8.3.2 Results and Discussion

Table 8.5 presents the execution results obtained by performing the 10-fold cross

validation of our proposed approach. Highest fitness value obtained for models of 3 software

systems (M2, M3 and M4) is 1.0 and lowest fitness value found during execution is 0.9758 for

M5. Fitness value of 1.0 indicates that the solution searched by our approach is 100% correct.

This imphes that models of 3 software systems are perfectly transformed and 100% correct code

is generated for the corresponding input model constructs.

However, when we manually analyzed the code in detail, we found that there are 6

software systems for which 100% correct code has been generated, as shown in Table 8.6. It

-80-

Table 8.5 Execution results for 10-fold cross validation

Model
Input
model

Exactly
matched

Doubtful
transformations Incorrect/Missing

transformations
Best

fitnessconstructs constructs Correct Incorrect

M l 187 186 1 (0.53%)
0 0.9973(99.47%) 1(100%) . 0

M2 106 106
0

0 1.0
—

M3 96 96
0

0 1.0
^ —

M4 135 135
0

0 1.0
—

M5 145 140 3 (2.07%)
2(1.38%) 0.9758(96.55%) 3 (100%) 0

M6 249 246 3(1.20%)
0 0.9899(98.80%) 0 3 (100%)

M7 155 154 1 (0.65%)
0 0.9967(99.35%) 1 (100%) 0

M8 202 201 1 (0.5%)
0 0.9975(99.50%) 1 (100%) 0

M9 135 134 0 1 (0.74%) 0.9925(99.26%) —

MIO 200 197 (98.5%)
2(1.0%) 1 (0.5%) 0.9899

2(100%)

indicates that although no exact match was found in the transformation examples, still some

constructs of their models are correctly transformed. This is due to the intelligence of our fitness

function which searches for the nearest matching transformation, in case no exact mapping is

found in the training data. For example, for Ml die fitness value is 0.9973, still 100% correct

code is generated. For one input model construct (one-to-many association) our approach could

not find the exact mapping and selects one-to-one association, which is the nearest match of one-

to-many association. Since, the final solution searched by the PSO does not contain exact

transformation of one construct, it penalizes the fitness value. Figure 8.3 shows a comparison

between the correctly matched constructs and the correctly transformed constructs. Out of 7

system models with missing/incorrect tfansformations, the code correctness of 4 system models

-81-

(Ml, M5, M7 and M8) is increased by using the correct transformation proposed by our

approach.

Table 8.6 Post-analysis execution results for 10-fold cross validation

Model
No. of

mapping
blocks

Tot^ no.
of

constructs

No. of
correctly

transformed
constructs

Best Correctness
fitne^ (%)

Minimum
execution
time (sec)

M l 60 187 187 0.9973 100 41

M2 62 106 106 1.0 100 25

M3 63 96 96 1.0 100 22

M4 62 135 135 1.0 100 31

M5 60 145 143 0.9758 98.62 33

M6 57 249 246 0.9899 98.79 52

M7 60 155 155 0.9967 100 35

M8 59 202 202 0.9975 100 45

M9 53 135 134 0.9925 99.26 30

MIO 58 200 197 0.9899 98.50 42

Average 59.4 160.9 160 0.99396 99.516 35.6

250-
■ m CorrecUy matched constructs |
EZZ} Correctty transfonmed constfucte p

M2 M3 M4 M5 M6 M7
Models

M10

Figure 83 Correctly mapped constructs vs. Correctly transformed constructs

-82-

The lowest fitness value obtained during execution is 0.9758 for the model M5. This low

fitness value can be attributed to the fact that there are 5 constructs in the input source model for

which no exact transformation is present in the training data, as we have taken a non-exhaustive

set of transformation examples. Still due to the intelligence of our fitness function, there are only

2 constructs for which no or incorrect transformation is found. Again, this increases our

confidence on the appropriateness of the selected fitness function.

In most of the cases, the best fitness value is an indicator of the correctness of the code

generated i.e. the more tiie fitness value, the better the percentage of the code correctness.

However, in some cases, we can see that although the fitness value is high, the percentage of

code correctness is less. For example, we can observe that although the fitness value of MIO is

better than M5, still the percentage of code correctness of M5 is high, as shown in Figure 8.4.

This is due to the fact that the percentage of code correctness depends upon the number of

constructs in the input source model to be transformed, whereas the fitness value is independent

of this count.

During the experiment, we observed that our approach always proposes a transformation,

even in the absence of an exact construct match in the transformation examples. It is

advantageous as this is rather impossible in the existing rule-based code generation approaches,

in which the absence of a rule results in a failure to perform the transformation. The

transformation rule set needs to be exhaustive and complete to ensure that it proposes a

transformation for every construct of the input source model. This implies that we can employ

this approach, even if we have a small and non-exhaustive set of transformation examples

available. The use of the transformation examples also eliminates the need of understanding

transformation languages and complex metamodels. Moreover, besides the existing

transformation examples, no other information or expertise are required to perform the

experiment.

From the performance pomt of view, these experiments were performed on a laptop with

1GB RAM and 1.86 GHz processor. As we can see in Figure 8.5, the larger the model, the more

the time required to generate the code. However, in our experiments it took less than one minute

to generate the corresponding code using the tool based oh this approach. Hence, we can say that

if system models consist of less than 250 constructs, its corres^nding code can be generated in

-83-

less than a minute. However, time taken for the execution also depends on the swarm size and

number of iterations. In our experiment, we hmit the swarm size to 40 and the nufnber of

iterations to 20.

1.005

1.000

0.995

0.990

0.985

0.980

0.975

0.970

0.965

0.960

1 Fitness Value Correctness

J-

2 3 4 5 6 7
Models

8 9 10

Figure 8.4 Best fitness vs. Code correctness

8.4 Comparison

96 106 135 135 145 155 187 200 202 249
Mode! constructs

Figure 8,5 Model constructs vs. Execution time

Currently, all the approaches and tools that are in existence are capable of generating

correct and consistent code by utilizing their own transformation rules. Our proposed approach

and tool also does so. However, the major difference lies in the way this code is generated and

the process that is being followed to generate the code. Therefore, instead of focusing solely on

the characteristics of the produced output (generated code), we have based our comparison on

the entire process of generating code from system models. This section is dedicated to present a

description of our comparison.

8.4.1 Code Generation Approaches

The parameters of comparison and their details are given below.

Essence of Approach: All the existing code generation approaches focus on defining a set of

transformation rules to perform the transformation process. These approaches identify that which

source model construct should be transformed into which target code element in the

transformation process. Keeping this in view, it can be said that the existing code generation

-84-

approaches basically consist of a set of transformation rules. However, our code generation

approach is significantly different from'what already exists regarding code generation in current

literature. Our approach is a generic approach which can transform any source model into target

code without the need of formulating a transformation rule set. Therefore, all complexities

associated with the formulation, maintenance and evolution of the transformation rule set are

circumvented by this approach.

Foundation of Approach: All existing code generation approaches are based on the metamodels

of source modeling and target code languages. However, our approach is independent of the

metamodel complexities and does not exploit metamodels as its foundation.

Level of Ease: Since our approach is independent of the complexities of metamodels and

transformation rules, it is easy to comprehend and implement. -

Desree o f Generality: The existing code generation approaches are specific as new

transformation rules need to be defined for generating code fi-om different design models.

However, our approach is generic and is able to transform any input design inodel into target

code without the need to modify the fitness fiinction.

8.4.2 Code Generation Tools

Among the plethora of tools that support automatic code generation, we have focused on

three commercial tools 1) Rhapsody [54], 2) Enterprise Architect [56] and 3) Visual Paradigm

[57], and four research-based tools 1) UJECTOR [47, 48], 2) JCode [39], 3) dCode [32] and 4)

OCode [1]. A description of the comparison follows.

Behavioral Action Specification: From the available set of automatic code generation tools, only

some tools support the transformation of system’s dynamic behavior. For different tools,

behavioral actions need to be specified using different programming or action languages. For

example, in UJECTOR, the actions need to be specified in the UML superstructure. The use of

UML superstructure actions raises the level of complexity as it is difficult and time-consuming to
i5

specify and understand these actions. On the other hand, CodS relies on a light-weight action

language ASL for specifying the behavioral actions, which is simple, readable and easy to learn

-85-

and comprehend [27], Currently there is only one tool that can transform ASL actions into target

code language, but it is a rule-based commercial tool.

Explicit Transformation Rules: Existing commercial and research-based tools generate the

implementation code by creating a mapping between the source modeling and the target

programming languages. All these tools rely on the explicit specification of the transformation

rule set. However, our tool does not t ^ e a set of transformation rules as input. Rather it is

intelligent enough to automatically derive transformation rules from the existing set of

transformation examples. Besides the training data, no extra information is needed.

Exhaustive Rule Set: All the existing automatic code generation tools utilize an exhaustive set of

transformation rules to correctly generate the target code. These tools will fail to perform the

transformation if a rule does not exist for any source model construct. However, our tool is smart

enough to assist the user by proposing a nearest transformation, if no exact transformation is

found in the training data for the input model construct.

Underlying Approach: All the contemporary commercial and research-based tools are based on

the approaches that are model-specific. However, CodS uses a generic approach for automatic

code generation i.e. this approach can be used to generate code for any set of source models in

any target programming language, provided that the transformation examples exist.

8.5 Assessment

This section is d^icated to precisely present the potential benefits and hmitations of our

proposed approach.

8.5.1 Benefits

Our proposed approach offers many benefits over the existing code generation

approaches. These benefits are given below.

Automatic Extraction of Transformation Rules: Our approach does not rely on the domain

experts to manually and explicitly define a set of transformation rules for automatic code

86-

generation. Rather, our aim is just to provide a set of transformation examples and’ let the system

automatically extract transformation rules from them without human intervention.

Irrespective of Metamodels: Our approach is not based on the source and target languages’

metamodels, making the M2C transformation process independent of the metamodel

complexities.

Independence from Transformation Lansuaees: This approach is capable of transforrfiihg models

into code without the need to learn and comprehend the complex transformation languages.

Intelligence of Transformation Proposition: The proposed approach always proposes a

transformation strategy, nearest match in case if no exact match exists in the training data. This is

rather impossible in existing code generation approaches in which the absence of a rule results in

a failure to perform the corresponding transformation.

Ease of Transformation Process: This approach makes the automatic code generation process

effortless and unproblematic by eradicating the need to learn complex technologies and

minimizing human intervention. Besides transformation examples, no extra information is

needed and no special expertise is required.

Utilization of Existins Knowledse: Our approach utilizes the existing fragmentary knowledge to

perform the automatic code generation process. It uses knowledge from previously solved

transformation examples to solve new M2C transformation problems.

Generic Approach: Our proposed approach is a generic approach which is capable of

transforming any source model into target code.

Action Specification: This approach is not only capable of generating structural code rather it

also provides full support for transforming dynamic actions into the target implementation code.

Currently, we have used ASL for specifying the behavioral actions in system models but this

approach is not specific to any action language.

Acceleration of Transformation Process: By circumventing the need to manually formulate a

transformation rule set and leam complex technologies, the transformation process becomes

quick and fast.

-87-

Availahilitv o f Transformation Examples: This approach uses knowledge from previously solved

transformation examples to solve new M2C transformation problems. Therefore, the availability

of training data is a pre-requisite for the application of this approach.

Increasins Time: Our experimental results revealed that code generation may become time-

consuming with the increasing size of models i.e. the larger the models, the more the time

required to generate code. However, still it has an acceptable execution time and is inany times

less than the time required to manually define the transformation rule set and follow the

traditional code generation process.

Different Execution Results: As this approach relies on the heuristic search optimization

technique, therefore multiple executions for the same input source models may lead to different

results. The generation of best solution is not guaranteed in every execution.

Quality o f Transformation: As this approach utilizes existing M2C transformation examples to

perform the automatic code generation process, therefore the quahty of the resulting code is

entirely dependent on the correctness of the transformation examples.

8.5.2 Limitations

-88

Chapter 9

CONCLUSION

-89-

9.1 Introduction

This chapter is devoted to present the significant findings from this dissertation. A

comprehensive summary of the general conclusions is given in Section 9.2. Finally, Section 9.3

concludes this dissertation by summarizing some future research directions:

9.2 Conclusion

This work can be considered as a contribution to the study of model transformation

particularly M2C transformation that have continued to be an area of intense research. For the

last few years, a plethora of code generation approaches and tools have been contributed to this

field, both by the software researchers and practitioners. Due to these various efforts, the process

of automatic code generation has beconte quite mature and expert intervention is extensively

required to carry out the entire code generation process. ^

Existing code generation approaches rely on the domain experts to manually formulate a

transformation rule set, based on the source and target langauges’ metamodels and expressed in

some model transformation language. In reahty, the definition, maintenance and evolution of a

complete, consistent, correct and non-redundant transformation rule set is a complex and hard

task and many unwanted limitations confine the results. This task is further complicated by the

scarcity and paucity of domain knowledge, complexity of fnetamodels and obscurity of

transformation languages.

A con^)rehensive survey of the existing literature reveals that currently there is only one

way to generate code from system models i.e. to manually formulate a transformation rule set.

None of the existing approach offers a replacement for manual transformation rule set definition.

On the other hand, it can be observed that many organizations keep a memory of their past M2C

transformations and feel more comfortable to show these transformation examples instead of

defining a complete and consistent transformation rule set. Our work starts from these

observations to view automatic code generation as the one to solve with fragmentary knowledge

i.e. with only examples of M2C transformations.

-90-

In this thesis, we have presented a novel approach for automatic code generation by

utihzing the previously solved M2C transformation problems. The available set of

transformation examples are used to train the system regarding automatic code generation. After

the system is trained, the input models to be transformed are provided. The search space of the

transformation examples is explored by using the heuristic search algorithm PSO. The task of

PSO is to search for the matching transformation block from the training data corresponding to

every construct of the input source model. Every solution searched by PSO is evaluated against

an objective function that we have tailored for the M2C transformation problem. The fitness

value produced by the fitness function indicates the appropriateness of the transformation block

selected by PSO for the transformation of the corresponding input model construct. The

transformation solution with the best fitness value is selected as the final optimal solution. The

optimal solution searched by PSO is then utilized to transform the input source models into

target code. So instead of explicitly providing a transformation rule set as input, our aim is just to

provide a set of transformation examples and let the system automatically extract transformation

rules from them.

We implemented this approach in a tool named C0tje $warm, abbreviated as C0(|_$. This

approach is generic and its application is not limited to any set of models. However as a proof of

concept, we validated this approach by generating Java code from class model and state model of

software systems, as these two models are representatives of both the static structure and the

dynamic system behavior. Our experimental results indicate that up to 100% correct code can be

generated by this approach. Moreover, the only prerequisite of this approach is to have a set of

previously solved transformation examples. Besides these transformation examples, no extra

information is needed to perform the M2C transformation process.

A comprehensive analysis of our experimental results reveals that our fitness function is

intelligent enough to look for the nearest match of constructs, in case if no exact match is found

in the transformation examples. This implies that we can easily start with a small and non-

exhaustive set of transformation examples. This is rather impossible in existing rule-based

approaches where an exhaustive set of transformation rules is required to ensure the correct and

complete M2C transformation. Our evaluation shows that this approach is not only effective in

generating code for small sized models, rather it is also capable of generating quality code for

-91-

models containing hundreds of constructs. Furthermore, no special expertise is required for the

application of this approach. This approach makes the M2C transformation process painless by

dissociating it from transformation rule set definition, transformation languages and source and

target languages’ metamodels.

However, this approach also has some limitations, th e availability of the transformation

examples is a prerequisite of this approach. As the size of input source models increases, the task

of generating code may become time-consuming. Since we use heuristic search for finding an

optimal solution, the generation of best solution is not guaranteed in every execution.

9.3 Future Work

In this section, we present some guidelines for the potential future work that would be

interesting to investigate further.

9.3.1 Improve Code Correctness

Although the use of PSO as heuristic search technique yields good results, the use of

other evolutionary algorithms to further improve code correctness c ^ be interesting.

9.3.2 Reduce Execution Time

Although the target code is generated in an acceptable execution time at the moment, this
id

time should be further reduced in order to s p ^ -u p the automatic code generation process. One

of its possible solutions is to improve the efficiency of PSO. This can be achieved either by using

a guided search for PSO or improve the stopping criterion of the heuristic search.

9.3.3 Application to Large-Scale Models

We have validated this approach by applying it to small and medium sized system design

models. However, in future the effectiveness of this approach should be investigated by the

application of this approach to large-scale structural and dynamic software design models.

-92

9.3.4 Application to Multiple System D^ign Models

Currently, this approach has been applied to generate code from class and state models of

the software system. In future, this approach should be validated by utilizing it to generate code

for other system design models e.g. UML sequence diagram, UML activity diagram etc.

9.3.5 Automate Expression of Predicates

The task of representing transformation examples and input source model constructs as

predicates is performed manually at the moment. An algorithm should be designed and

implemented to perform this task automatically.

9.3.6 Automation of Transformation Examples Representation

Currently, the development of mapping blocks from the available transformation

exarriples is a human-dependent activity. Automation of this task can further faciUtate the code

generation process.

9.3.7 Enhance C04$ Tool

Presently, C04S is capable of generating Java code from UML class and state models,

with the behavioral actions specified in ASL. This tool should be enhanced to generate code in

multiple programming languages from various system design models. Moreover, the support for

other action languages should also be incorporated in C04$.

-93-

REFERENCES

-94-

[1] J. Ali and J. Tanaka, "An Object-Oriented Approach to Generate Executable Code from OMT-based
Dynamic Model" Journal of Integrated Design and Process Design, Vol. 2, No. 4, pp. 65-77, 1998.

[2] B. Pierre, R. Dupuis, A. Abran, J. Moore, and L. Tripp, "The Guide to the Software Engineering Body of
Knowledge" IEEE Software, Vol. 16, Issue 6, ISSN: 0740-7459, pp. 35-44, 1999.

[3] U. Behrens, M. Flasinski, L. Hagge, J. Jurek, and K. Ohrenberg, "Recent Developments o f the ZEUS Expert
System ZEX" IEEE Transactions on Nuclear Science, Vol. 43, Issue 1, ISSN: 0018-9499, p. 65, 1996.

[4] M. Kessentini, H. Sahraoui, and M. Boukadoum, "Model Transformation as an Optimization Problem"
Model Driven Engineering Languages and Systems, Lecture Notes in Computer Science, Vol. 5301, pp.
159-173, Springer Berlin / Heidelberg, 2008.

[5] D. Varro, O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, "Model Transformation by Example" Model
Driven Engineering Languages and Systems, Lecture Notes in Computer Science, Vol. 4199, pp. 410-424,
Springer Berlin / Heidelberg, 2006.

[6} E. Alexander, "Automated Abstraction o f Class Diagrams" Journal of ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 11, Issue 4, pp. 449-491, New York USA, 2002.

[7] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. Omar, "Search-based Model Transformation by
Example" Software and Systems Modeling, pp. 1-18, 2010

[8] K. Stuart, "Model Driven Engineering" in Rroc. of the 3"* International Conference on Integrated Formal
Methods (IFM), Springer-Verlag, London UK, 2002.

[9] J. Bezivin, R. Limmel, J. o. Saraiva, and J. Visser, "Model Driven Engineering: An Emerging Technical
Space" Generative and Transformational Techniques in Software Engineering, Lecture Notes in Computer
Science, Vol. 4143, pp. 36-64, Springer Berlin / Heidelberg, 2006.

[10] A. Kleppe and J. B. Warmer, W., "MDA Explained: The Practice and Promise o f Model Driven
Architecture" Addison-Wesley, 2003.

[11] J. Miller and J. Mukerji, "MDA Guide" Version 1.0.1, 2003.

[12] H. Liu, "A Template-Based Model Transformation Approach using a Simplified Hierarchical Metamodel"
PhD. Dissertation, College of Computing and Digital Media, DePaul University, 2010.

[13] S. Ed, "What Models Mean" IEEE Software, Vol. 20, Issue 5, ISSN: 0740-7459, pp. 26-32, 2003.

[14] "OMG Unified Modeling Language Specification" Version 1.3.1, l'^ Edition, 2000.

[15] "OMG Unified Modeling Language (OMG UML) Infrastructure" Vol. 2.3, Doc. no. formal/2010-05-03,
May 2010.

[16] D. D. Riiscio, "Specification o f Model Tran^ormation and Weaving in Model Driven Engineering" PhD.
Thesis, Universita di L'Aquilla, 2007.

[17] R. Runde and S. K., "What is Model Driven Architecture?" Research Report 304, University of Oslo, 2003.

[18] S. Sendall and W. Kozaczynski, "Model Transformntion: The Heart and Soul of Model-Driven Software
Development" IEEE Software, Vol. 20, Issue 5, ISSN; 0740-7459, pp. 42-45, 2003.

[19] K. Czamecki and S. Helsen, "Classification o f Model Transformation Approaches" in 2nd OOPS LA
Workshop on Generative Techniques in the Context of Model Driven Architecture, Oct. 2003.

[20] T. Mens and P. Gorp, "A Taxonomy o f Model Transformation" in Proc. of the International Workshop on
Graph and Model Transformation (GraMoT), Vol. 152, pp. 125-142, March 2006

[21] M. Piefel, "A Common Metamodel for Code Generation" in Proc. of the 3"* Intematicxial Conference on
Cybemedcs and Information Technologies, Systems and Applications (inS), 2006.

[22] S. Mellor, K. Scott, A. Uhl, and D. Weise, "MDA Distilled: Principles o f Model Driven Architecture"
Addison-Wesley, 2004.

-95-

[23] I. Niaz and J, Tanaka, "Code Gene ration from UML Statecharts" in 7th International Conference on
Software Engineering and Applications (SEA), pp. 315-321,2003.

[24] J. Kennedy and R. Eberhart, "Particle Swarm Optimization" in Proc. of the IEEE International Conference
on Neural Networks, Vol. 4, pp. 1942-1948, Perth Australia, 1995.

[25] R. Poli and J. Kennedy, "Particle Swarm Optimization: An Overview" Swarm Intelligence, Vol. 1, pp. 33-
57, 2007.

[26] J. Ke, Z. Lei, and S. Miyake, "An Executable UML with OCL-based Action Semantics Language" in
Asia-Pacific Software Engineering Conference (APSEC), ISSN: 1530-1362, pp. 302-309, Dec. 2007.

[27] K. Carter," UML ASL Reference Guide for ASL Language Levd 2.5" Manual Version D, 2003.

[28] A. W. Brown, S. Iyengar, and S. Johnston, "A Rational Approach to Model'Driven Development" IBM
Systems Journal, Vol. 45, Issue 3, ISSN:0018-8670, pp. 463^80, 2006.

[29] L. Favre, L. Martinez, and C. Pereira, "Transforming UML Static Models into Object-Oriented Code" in
Proc. of the 37* International Conference on Technology of Object-Oriented Languages and Systems
TOOLS-Pacific, pp. 170-181, 2000.

[30] M. Nassar, A. Anwar, S. Ebersold, B. Elasri, B. Coulette, and A. Kriouile, "Code Generation in VUML
Profile: A Model Driven Approach" IEEE/ACS Intmiational Conference on Computer Systems and
Applications (AICCSA), pp. 412-419, May 2009.

[31] R. van de Weg, R. Engmarm, R. van de Hoef, and V. ten Thij, "An Environment for Object-Oriented Real-
Time Systems Design" in 8* Conference on Software Engineering Environments, pp. 23-33, Apr. 1997.

[32] J. All and J. Tanaka, "Implementing the Dynamic Behavior Represented as Multiple State Diagrams and
Activity Diagrams" ACIS International Journal of Computer and Information Science, Vol. 2, Issue 1, Mar.
2001.

[33] A. Knapp and S. Merz, "Model Checking and Code Generation for UML State Machines and
Collaborations" in Proc. of the 5th Workshop on Tools for System Design and Verification, Technical
Report, Vol. 11, pp. 59-64, 2002.

[34] I. Niaz and J. Tanaka, "Mapping UML Statecharts to Java Code" in Proc. lASTED International
Conference on Software Engineering, pp. 111-116, 2004.

[35] G. Pinter and 1. Majzik, "Automatic Code Generation Based on Formally Analyzed UML Statechart
Models" in Proc. of the Workshop on Formal Methods for Railway Operation and Control Systems, pp. 45-
52, 2003.

[36] S. Neeraj, F. Edward, L. Karl, and L. David, "Interaction Schemata: Compiling Interactions to Code" in
Proc. of the Technology of Object-Oriented Languages and Systems (TOOLS) 30, pp. 268-277, Aug. 1999.

[37] G. Engels, R. rfVicking, S. Sauer, A. Wagner, R. France, and B. Rumpe, "UML Collaboration Diagrams
and Their Transformation to Java" in UML'99 The Unified Modeling Language, Lecture Notes in
Computer Science, Vol. 1723, Springer Berlin / Heidelberg, 1999.

[38] I. Niaz, "Automatic Code Generation from UML Class and Statechart Diagrams" PhD. Dissertation,
University of Tsukuba, Japan, 2005.

[39] I. Niaz and J. Tanaka, "An Object-Oriented Approach to Generate Java Code from UML Statecharts"
International Journal of Computer and Information Science, Vol. 6, No. 2, June 2005.

[40] P. A. Noe and T. C. Hartrum, "Extending the Notation of Rational Rose 98 for use with Formal Methods"
in Proc. of the IEEE National Aerospace and Electronics Conference NAECON, pp. 43-50, 2000.

[41] A. Derezinska and R. Pilitowski, "Correctness Issues o f UML Class and State Machine Models in the CU
Code Generation and Execution Framework" International Multiconference on Computer Science and
Information Technology (IMCSIT), pp. 517-524, Oct. 2008.

[42] A. Derezinska and R. Pilitowski, "Realization of UML Class and State Machine Models in the C# Code
Generation and Execution Framework" Informatica, Vol. 33, pp. 431-440, 2009.

-96-

[43] M. Thongmak and P. Muenchaisri, "Design of Rules fo r transforming UML Sequence Diagrams into Java
Code" in 9'*’ Asia-Pacific Software Engineering Conference, ISSN: 1530-1362, pp. 485-494, 2002.

[44] L. Quan, L. Zhiming, L. Xiaoshan, and J. He, "Consistent Code Generation from UML Models" in Proc. of
the Software Engineering Conference, ISSN: 1530-0803, pp. 23-30, Apr. 2005.

[45] N. Ulrich, J. Niere, and A. Zuridorf, "The FUJABA Environment" in Proc. of the 22nd International
Conference on Software Engineering, pp. 742-745, Limerick, Ireland, June 2000.

[46] D. Bjorklund, J. Lilius, and I. Porres, "A Unified Approach to Code Generation from Behavioral
Diagrams" Languages for System Specification, pp. 20-34, 2004.

[47] M, Usman and A. Nadeem, "Automatic Generation for Java Code from UML Diagrams using UJECTOR"
International Journal of Software Engineering and its Applications, Vol. 3, No. 2, Apr. 2009.

[48] M. U sm ^, A. Nadeem, and K. Tai-hoon, "UJECTOR: A Tool for Executable Code Generation from UML
Models" in Advanced Software Engineering and Its Applications ASEA, pp. 165-170, Dec. 2008.

[49] A. Jakimi and M. Elkoutbi, "An Object-Oriented Approach to UML Scenarios Engineering and Code
Generation" International Journal of Computer Theory and Engineering (IJCTE), Vol. 1, No. 1, pp. 35-41,
Apr. 2009.

[50] A. Jakimi and M. Elkoutbi, "Automatic Code Generation from UML Statechart" Inteniational Journal of
Engineering and Technology, Vol. 1, No. 2, pp. 165-168, June 2009.

[51] D. C. and S. T., "An Automatic Approach to Transform CafeOBJ Specifications to Java Template Code" in
Proceedings of the International Conference on Software Engineering Research and Practice (SERP), pp.
171-176, 2003.

[52] C. Doungsa-ard and T. Suwannasart, "A Semantic Part Generated Java Statement from a CafeOBJ
Specification" in IEEE International Conference on Electro/information Technology, pp. 388-393, May
2006.

[53] "IBM® Rational® Rose® Enterprise",
http://www-01 .ibm.com/software/awdtools/developer/rose/enterprise/.

[54] "IBM® Rational® Rhapsody®", http;//www-OLibm.com/software/rational/products/rhapsody/swarchitect/.

[55] N. Sangal and K. Lieberherr, "StructureBuilder Tended Software Inc" in OOPSLA, 1998.

[56] "Sparx Systems - Enterprise Architect" http://www.sparxsystems.coni/.

[57] "Visual Paradigm (VP-UML)" http://www.visual-paradigm.com/product/vpuml/.

[58] "AndroMDA" http://www.andromda.or^docs/index.html, 2011.

[59] "MagicDraw" https://www.magicdraw.coni/, 2011.

[60] "Papyrus UML, Open Source Tool for Graphical UML2 Modeling" htttp://www. papyrusuml.org,
http://www.eclipse.org/modeling/mdt/papyrus/.

[61] K. Carter, "Abstract Solutions - iUML" http://www.kc.com.

[62] "AgroUML, Open Source Software Engineering Tool" http://argouml.tigris.org/.

[63] P. Gorp, "Model-Driven Development o f Model Transformations" PhD. Thesis, University of Antwerp,
2008.

[64] R. Akerkar and P. Sajja, "Knowledge-Based Systems" 2010.

[65] A. Agnar and P. Enric, "Case-based reasoning: foundational issues, methodological variations, and system
approaches" Journal of AI Communications, Vol. 7, No. 1, pp. 39-59, lOS Press Amsterdam, Netherlands,
Mar. 1994.

[66] W. Elloumi, N. Rokbani, and A. M. Alimi, "Ant Supervised by PSO" in 4th International Symposium on
Computational Intelligence and Intelligent Informatics, (ISCni), pp. 161-166, Oct. 2009.

-97-

http://www-01
http://www.sparxsystems.coni/
http://www.visual-paradigm.com/product/vpuml/
http://www.andromda.or%5edocs/index.html
https://www.magicdraw.coni/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.kc.com
http://argouml.tigris.org/

[67] Z. LanLan, W. Ling, W. Xiuting, and H. Ziyuan, "A Novel PSO-Inspired Probability-based Binary
Optimization Algorithm" in 8* IntematiOTal Symposium on Information Science and Engineering (ISISE),
Vol. 2, pp. 248-251, Dec. 2008.

[68] B. Soudan and M. Saad, "An Evolutionary Dynamic Population Size PSO Implementation" in 3"̂
Interaational Conference on Information and Conmiunication Technologies: From Theory to Applications,
pp. 1 -5, Apr. 2008.

[69] P. N. Suganthan, "Particle Swarm Optimiser with Neighbourhood Operator" in Proceedings of the 1999
Conference on Evolutionary Computation (CEC), Vol. 3,1999.

[70] A. Ratnaweera, S. K. Halgamuge, and H. C. Watsai, "Self-Organizing Hierarchical Particle Swdiih
Optimizer with Time-Varying Acceleration Coefficients" IEEE Transactions on Evolutionary Computation,
Vol. 8, Issue 3, ISSN: 1089-778X, pp. 240-255, June 2004.

[71] Eclipse, "Eclipse IDE for Java Developers" http://www.eclipse.org/downloads/mcreinfo/java.php.

-98-

http://www.eclipse.org/downloads/mcreinfo/java.php

Appendix A

PREDICATE STRUCTURE TEMPLATES

-99-

This section presents the templates of predicates structure of class diagram constructs

defined and used in this research project.

A.1.1 Class Construct

The construct of ‘Class’ along with its attributes and operations is treated as a single

construct.

Source Model Construct

Class(<name>)
Attribute{<narae>,<datatype>,<initialvalue>,<classname>,<unique/notunique>)
Operation{<name>,<classname>,<returntype>)
OperationParam(<paramname>,<paramtype>,<operationname>,<classname>,
<paramnumber>)

Target Code Construct

class(public,<classname>)
Attribute(private, <datatype>,<name>,<initialvalue>,<classname>)
Method(public,<returntype>,<name>,<classname>)
MethodParam(<paramtype>,<paramname>,<methodname>,<classname>,<paramhumber>)

Mapping

Class(<name>)tClass(public,<classname>)
Attribute(<name>,<datatype>,<initialvalue>,<classname>,
<unique/notunique>) rAttribute (private,-<datatype>, <name>, <initialvalue>,
<classname>)
Operation(<name>,<classname>,<returntype>):Method(public,<returntype>,<name>,
<classname>)
OperationParam(<paramname>,<paramtype>,<operationname>,<classname>,<paramnumb
er>):MethodParam(<paramtype>,<paramname>,<methodname>,<classname>,
<paramnumber>)

Key Parameters

None

A,1 Class Model Templates

-100-

The generalization relationship of class diagram is transformed into an inheritance

relationship in OO programming languages.

Source Model Construct

Generalization(<parentclassnarae>^ <childclassname>)

Target Code Constmct

class{public, <childclassname>,extends,<parentclassname>)

Mapping

Generalization (<parentclassname>, <childclassnaiTie>) : Class {public,
<childclassname>,extends,<parentclassname>)

Key Parameters

None

A .1.3 Association Construct

Associations of class model are transformed to the corresponding class attributes.

Source Model Construct

Association(<multiplicity>,<multiplicity>^ <multiplicity>,<multiplicity>,
<relationshipnarae>, <classnarae>, <classnaine>)

Target Code Construct

Attribute(private,<objecttype>,<objectname>, <objecttype>,
<containingclassname>)

Mapping

Association(<multiplicity>,<multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>,<classname>,<classname>):Attribute(private,<objecttype>,
<objectname>,<objecttype>,<containingclassname>)

Key Parameters

1st and 3rd parameters ^

-101 - ,

A.1.2 Generalization Construct

Composition construct in class model is transformed to the corresponding class attribute.

Source Model Construct

Composition(<multiplicity>,<multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>,<classname>,<classname>)

Target Code Construct

Attribute(private,<objecttype>,<objectname>, <objectcount>,
<containingclassname>)

Mapping

Composition(<multiplicity>,<multiplicity>,<multipiicity>,<multiplicity>,
<relationshipname>,<classname>,<classname>):Attribute(private,<objecttype>,
<objectname>,<objectcount>,
<containingclassname>)

Key Parameters

r ' parameter

A .1.5 Aggregation Construct

Aggregation construct in class model is transformed to the corresponding class attribute.

Source Model Construct

Aggregation(<multiplicity>,<multiplicity>,<multiplicity>,<muitiplicity>,
<relationshipname>,<classname>,<classname>)

Target Code Construct v

Attribute{private,<objecttype>,<objectname>, <objectcount>,
<containingclassname>)

Mapping

Aggregation(<multiplicity>,<multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>,<classname>,<classname>);Attribute(private,<objecttype>,
<objectname>,<objectcount>,<containingclassname>)

A.1.4 Composition Construct

-102-

Key Parameters

parameter

A.2 State Model Templates

The state model constructs are represented as predicates using the following templates.

A.2.1 State Construct

State along with its entry, do and exit activities is treated as a single construct.

Source Model Construct

State(<statename>,<classname>)
Operation(Entry, <statename>,<returntype>)
OperationParam(<paramname>,<paramtype>,Entry,<statename>,<paramhufnber>)
Operation{Exit, <statename>,<returntype>)
OperationParam(<paramname>,<paramtype>,Exit, <statename>, <paramnumber>)
Operation(doActivity,<statename>,<returntype>)
OperationParam(<paramname>,<paramtype>,doActivity, <statename>,<pararanumber>)

Target Code Construct

Class(public, <statename>,<classname>)
Method(public, <returntype>,Entry,<statename>)
MethodParam(<paramtype>,<paramname>,Entry,<statename>,<paramnumber>)
Method(public,<returntype>,Exit,<statename>)
MethodParam(<paramtype>,<paramname>,Exit,<statename>, <paramnumber>)
Method(public, <returntype>,doActivity,<statename>) I
MethodParam(<paramtype>,<paramname>,doActivity,<statename>,<paramnumber>)

f
Mapping

state(<statename>,<classname>)iClass(public,<statename>,<classname>)
Operation(Entry,<statenarae>,<returntype>)rMethod(public,<retufntype>,Entry,
<statename>)
OperationParam(<paramname>, <pararatype>. Entry, <st'atename>, <paramnuraber>) :
MethodParam(<paramtype>,<paramname>,Entry,<statename>,<paramnumber>)
Operation(Exit,<statename>,<returntype>):Method(public,<returntype>,Exit,
<statename>)
OperationParam(<paramname>,<pararatype>,Exit,<statename>,<paramnumber>):
MethodParam(<paramtype>,<paramname>,Exit,<statename>,<paramnumber>)

-103-

Operation(doActivity,<statename>,<returntype>):Method(public,<returntype>,
doActivity, <statename>)
OperationParam(<paramname>,<paramtype>,doActivity, <statename>,<paramnumber>) :
MethodParam (<paramtype>, <paramname>, doActivity, <statenarae>, <paramnuniber>)

Key Parameters

None

A.2.2 Transition Construct

Transitions are transformed to the methods in the corresponding state.

Source Model Construct

Transition(<sourcestate>,<transitionname>,<targetstate>)
Transit ionParam (<transitionparamnaine>, <transitionparamtype>/ <transit ionname>,
<sourcestate>, <transitionparamnumber>)

Target Model Construct

Method(public, void,<trahsitionname>,<sourcestate>)
MethodParam(<transitionparamtype>,<transitionparamname>,<transitionname>,
<sourcestate>, <transitionparairLnuinber>)

Mapping

Transition(<sourcestate>,<transitionname>,<targetstate>):Method(public,void,
<transitionnaine>, <sourcestate>)
TransitionParam(<transitionparamname>,<transitionparamtype>,<transitionname>,
<sourcestate>,<transitionparamnumber>):MethodParam(<transitionparaintype>,
<transitionparamname>,<transitionname>,<sourcestate>, <transitionparamnumber>)

Key Parameters

None

A.3 Action SpeciHcation

Generating code only in terms of class and method declarations is not enough. Program

logic is the most significant part of software systems for execution. Our proposed approach

-104-

cannot only be used to represent skeletons of model and code, rather the behavioral actions

inside the models can also be easily expressed as predicates. In the context of class model,

dynamic actions are used to specify operation body. Within a state model, entry, do and exit

activities and transition guards are specified to represent the dynamic system behavior.

A.3.1 Variable Declaration

The predicate structure template for declaring a variable is given below.

Source Model Construct

OpBodyDeclaration(<methodname>,<classname>,<datatype>,<variablename>,
<initialvalue>, <iterationnumber>,<statementnumber>)

Target Code Construct

MethodBodyDeclaration(<methodname>,<classname>,<datatype>,<variablename>,
<initialvalue>, <iterationnumber>,<statementnumber>)

Mapping

OpBodyDeclaration{<methodname>,<classname>,<datatype>,<variablename>,
<initialvalue>, <iterationnumber>,<statementnumber>):MethodBodyDeclaration
(<methodname>,<classname>,<datatype>,<variablename>,<initialvalue>/
<iterat ionnuniber>, otatementnumber>)

Kev Parameters

None

A.3.2 Assignment Statement

Assignment statements have the following structural template.

Source Model Construct

OpBodyAssign{<methodname>,<classname>,<assignment>,<iterationnuniber>,
<statementnumber>)

Target Code Construct

MethodBodyAssign(<methodname>,<classname>,<assignment>,
\ <iterationnumber>,<statementnumber>)

-105 -

Mapping

OpBodyAssign{<methodname>,<classname>,<assignraent>, <iterationnuraber>,
<statementnumber>)iMethodBodyAssign(<raethodnarae>,<classname>,<assignment>,
<iterationnumber>,<statementnumber>)

Key Parameters

None

A.3.3 Return Statement

Return statements are expressed using the following predicate template.

Source Model Construct

OpBodyReturn(<methodname>,<classname>,Output,<variablename>,
<iterationnumber>,<statementnumber>)

Target Code Construct

MethodBodyReturn(<methodname>,<classname>,return,<variablename>,
<iterationnumber>,<statementnumbef>)

Mapping

OpBodyReturn(<methodname>,<classname>,Output,<variablename>,<iterationnumber>
, <stateinentnumber>) : MethodBodyReturn {<methodnarae>, <classname>, return,
<variablename>, <iterationnumber>,<statementnumber>) ^

Key Parameters

None

A.3.4 Iteration/Loop

Loops have the following predicate template.

Source Model Construct

OpBodyLoop(<methodname>,<classname>,condition,<conditionstatement>,
<iterationnumber>,<statementnumber>)

Target Code Construct

MethodBodyLoop{<methodname>,<classname>,for,int,<loopinitialization>,

-106 - ^

<conditionstatement>,<loopincrement/decrement>,<iterationnumber>,
<statementnumber>)

Mapping

OpBodyLoop(<methodname>,<classname>,condition,<conditionstatement>,
<iterationnumber>,<statementnumber>)iMethodBodyLoop(<methodname>,<classname>,
for,int,<loopinitialization>,<conditionstatement>,<loopincrement/decrement>,
<iterationnumber>, <statementnurTiber>)

Key Parameters

None
1

A.3.5 Decision Statement

We defined the following ten^late for decision statements’ predicates.

Source Model Construct

OpBodyCondition(<methodname>,<classname>,if, <conditionvariable>,
<conditionsyinbol>, <conditionvalue>, <iterationnumber>, <stateraentnumber>)

Target Code Construct

MethodBodyCondition (<inethodname>, <classname>, if, <conditionvariable>,
<conditionsymbol>,<conditionvalue>,<iterationnumber>,<statementnumber>)

Mapping

OpBodyCondition{<methodname>,<classname>,if,<conditionvariable>,
<conditionsymbol>,<conditionvalue>,<iterationnui^er>, <statementnumber>) ;
MethodBodyCondition(<methodname>,<classname>, if, <conditionvariable>, ^
<conditionsymbol>, <conditionvalue>, <iterationnuinber>, <statementnumber>) ^

Key Parameters i

None

A.3.6 Function Call

The ftmction call along with its parameters is treated as a single construct.

-107-

Source Model Construct

OpBodyFn (<callermethodname>, <callerclassnaine>, <storagevariable>,
<calledjnethodname>,<calledclass/object>,<iterationnuraber>, <statementnumber>)
OpBodyFnParam{<callermethodname>,<callerclassname>,<calledmethodname>,
<pararaname>, <statenientnumber>, <paramnumber>)

Target Code Construct

MethodBodyFn (<callermethodnaine>, <calledclassname>, <storagevariable>,
<calledclass/object>,<calledmethodnaine>,<iterationnumber>,<statementhumber>)
MethodBodyFnParam(<callermethodnarae>,<callerclassname>, <calledinethodname>,
<paramname>, <statementnumber>, <paramnuniber>)

Mapping

OpBodyFn(<callermethodname>,<callerclassname>,<storagevariable>,
<calledmethodname>,<calledclass/object>,<iterationnumber>,<statementnumber>)
MethodBodyFn(<callermethodname>,<calledclassriame>,<storagevariable>,
<calledclass/object>, <calledmethodnaine>, <iterationnumber>, <statemehtnumber>)
OpBodyFnParam (<callermethodnanie>/ <callerclassna:me>, <calledmethodname>,
<paramname>, <statementnumber>,<paramnumber>):MethodBodyFnParam(
<callermethodname>,<callerclassname>,<calledmethodname>,<paramname>,
<statementnumber>,<paramnumber>)

Key Parameters

None

j

I

4

-108-

Appendix B

USER MANUAL

-109-

B.l Main Interface of C0cl$

The main interface of C0<^$ can be divided into five sections, as show in Figure B.l.

1. Left Panel

2. Right Panel

3. Center Panel'

4. Console

5. Menu Bar and Toolbar

frD;'Cc.3&S}i!!ppn3CafK>JpifrSD:'CodS'StopfingCaK)D'CsiSStiopimsCartO

--- 1

Cper»tis5il»raai*, Ps^c-^ ied , 1) iXethodlfliEaj-, FoaCce^ îedJ
OperstiDu {daActiTity, FoaDccufiefifVcid) :5fe^od [piibiic,veid,dsA«inty,PesOcci:5!ied)
Cterati3nFsraa{-,-,dsAsti-ity,Fe»Ccc^-pied,l) :!iathodiaraat-,-,dcSi:tiTltY,Pc»Occi.-Fied,:)
?ra£3iii2n{Fo3lciriai,NevEositiCE, PcsCreatedj ;«-1;2Ddip=jbii=,7cid,SewPc-itiGn, In itia l)
Op3^:dyJl33igii(SewPo3ition, Fosltitial, !r.:rrcKatati=’£reated*,-, 11 :!SetiodBcdy?j3igL (5*¥Pcjitis;
?r»i3iti2n)pjsCT:aated,J^pr5'ce,Fcs7ici:it):!fcthod(publ i =, 73 id, fippro?: ,FosCrsatsd}
OpSadyJLsii^ iiFproTefPc3Created, cu rres t3 ta t:= * V acan t1) :Kethod3odyA**igr.{Spprcyi,FciCrea
?ri!i3iticn(FoiCreated,Di3SpprEve,Fc3.=leB3Yed) : ! t e t h c d (p a b i i c , v c i d , F s s C r e a t s d }
Cj:32dvAs3igTi(Dia^reTe, Pc3Created, <Ti;r!reEt3tite="Re2Cve:i*, *,I) iHstisdSsdyAssig:; (Dlsifprcve,
rra2Sitia&{F037ai4!:t,Ss-.iafpii!itEeEt, FisOcĉ ied) :Hethod(pv:bUs,T2id,Keûp2iEtEeiit, FosVaian
OpaidWlssigs (N e « ;^ p c in tiis t , FisVacaEt, c i:rrea t3 ta te= ‘0 c j^ ^ iid * , I) tlieti-c-dSc-dyJjsign (Sestepc j
TranjitiE!i(PD37a:aiLt,aeacTeF=sitiGC, PcitescTcd) :Ket3cdip-jblic,Tr^id,Re3CTePC31tica, FsaVacait
CSp3=dya33lĝi(ilea0TePasiti3E,FcsVdcaaT:,esrrsat3tate="Seac7Ed",-, 1) :ltethG<i3irfyi35ign{A£EC7eFo:
?r4a3itiM|PcsCcripied,dcActiTit7, FeuVacant} ;HsthKJJpiili=, void, dsActiTity, FcsSccopied)
Op3*dyCcKlitianido£cti7it7, FasOcc^pied, if , i3 vacant,= , tr je , - , 1) :Xet'aod3*dyCeaditisa (doftctivj
C p S c d y is s ig c f d c ic t iT i ty , PosOcc-jpied, c u i rentstate="Vacasf, 1 , 2) :M ethod3cdyA 3sigii(dcA ctiT-ity,
Trasslti0Ji{F0*Ccr^ied,RiS5vsF«siticE, F=sSe=cved) iKeticd (p u b l ic , t i i d.ResicveFcsitic l , FcsC-ccui
0p3cdv'fts9igTi(aeao«Fo3iti2ii,F:sCcci:pied,c3rreiit3tate=’RtBeTsd',l,2> :Ket£Od3odyJlssign[ReoC!ret
lL33iclati23i(!S, 1, ,2,vsr!t3at,Fc3iticn,E^l3yee) : l t :r iti ;ts (private, F03itlc?s,«crk3at,Fajitic:i(f a
End b€ ' . * ‘ _ .

lE
ICONiOtl

rOrSKiS
i ©Dt:ŝ S 5a.T!r!e
^ OXoiS Jiio«wgC3ff

Hi i l

lisporting IiaiaiEg 3atA----
Fiease wait . . . a>l3 sight t a k t a f it f seconds.

i!33i
T ra is in g Data
? c t i i Jteppiag

■crted f r c s 9 f i l e s ,
iocks; €0

Figure B .l C0^$ interface

-110-

B.1.1 Left Panel

The left panel of the C0cj_$ editor displays the currently opened project. At a time, only

one project can be opened for working.

B.1.2 Right Panel

The right panel of the interface displays a list of all existing C0t^$ projects. These

projects are present in the ‘T):\CodS” folder.

B.1.3 Center Panel

The center panel of the editor is used for displaying text files. Multiple files can be

opened.

B.1.4 Console

The bottom panel of the editor is used as a console for displaying informative and error

messages to the end-user.

B.1.5 Menu Bar and Toolbar

The top of C0(^$ interface contains a menu bar and a toolbar. All options of the menu

bar are also available in the toolbar for ease of use and quick selection.

B.2 File Menu

The File menu consists of five options, as shown in Figure B.2.

- I l l -

ĵ Coî ivBtn (Codi)

Open Fie
OroFae

[M

~ r i3 T E 1 Mr-B TE2.M r g TE3.M I- gl TE4.M B TE5.W g? TES.M i-BTE7.W r- g TE6.W •- B TE3.W & D'CodŜEaSlOWBut S ̂ 0?Ct«ĴMS-i0un i h E Co<3S FM*_333 h 13 FVeflicatis.tB
- S resaine w B & ÔCodSiHS'Cutt § C5<JSF!!s_1« g Emp»riSaj3«) - S Emp(oyssiara i ” S EmpOnLfave. r- 0 Cfl»R4«is*a

'R
PBJ H uoMM~P|̂ TEi.ut ^ |3 |te;j« 1

OpOaUm̂ f|3lten«9«rjaYe
LH mm I UMagerftesisDed̂avd

3e9l£ fc5Cia33 oaand): Cias 9 (pub lie, Ccsaaod), Cot̂ t ruct 5 r (p'ubl 1 c, C csaAJid < HAttrlbvtc (CcsMr<dIZ> i2t;0rCcmasdrUî que) (pxlyarê lnr, ÔCcasaîd}Attribute < Cud ssiocDate, Date, c jii, Cosaod, : Attrib.ite (priva t e, t c, eai s s icnda t e, euI 1, CAttribute (DellveryAddress,Scrl&g, :Atvrli>uteUF-î ate, String, deliverŷ dcOperatlcjj t Get£Eissiĉ -ate, Ccmazid, rate) : Kethcd (pubii c, I)«te, G«t23ai JSicsDate, Cĉaa &d) Cperati0nP«raa{',-, 3etQ5i55i0RDate,C0E!»aad, I) ;XethcdParaa{-,SetEs£iaas.cti2iate,Cc=aa Cpeiatlcn (Set2ai»slcz;3ate,Cc«Ba!id,TOld> :(tethod<public, void, 3er£sLi5dlorJ>are, C<̂aaŝ} OperatlosFarMt̂ £Late,I>8te, SetSalssloiî te ̂ Cĉ ar-d, 1) :ltetbcdfaraa{l;:ate, «d»te, S€t£aai55ic
C^e r atict t!> 1 i tc * yiddre 33, Cc=m .^, S t r ̂ nJ} : Method (pjbi i c , 5t r i ̂ 5 , GetD-11 ryAddre s s , COpexatlcnParaa{“, -,Getr*llTeryAddre3»,CccciAi>d, 1> zKet̂ jiodPaxaa?-, - ,Getl5eIivcxyAdd*e35,Cc Ope r a tioa J 3e 1 iveryAddre as, C<imâd, va id): Kethcd {public, ¥cid, Sct̂ i ivcryAdd re 2 2 , Co!TM■Cper&tlocParaa(i:AddrE23, String, Sett̂ ll’TtryAddress, Cĉ iaiid, :MrthcdP̂ (̂̂ tc, daddersa Ope r ati cn (iSetSi 1 lAncrjiit, Comazid, double >: Ketic-d <p'-ibi ic, dojbl e, GetBJ. 1 lAscuat, CcffTJ r*d} Cp«=aticcFaraa{-, - ,Get311lAsouiit,C3maiLd, 1) :KethodFara3(-,-,Get3ilU»=-̂ ct,Comazd, 1> Ope rat l (ger IteaCcrast, Crtirî t; d, i&t} zHethcdtp-ibllc, i:it, GeuTteECĉint, Ccatcasd)Ope r a tlccFaraa. (-, ̂ , GetlteaCcust, ccnaatd, 1 >: Ke the dFaras.{ -, -, GetltcBCGvzzst, CcBMsd, 1) ■̂aodyAasign{S ^ t t a i s s ^ doaate,Ceannacd,EgljslgnPatg, I) :Meth:>d5cdyA5»i jnCSetSaî a CpBodyAa si gn [Sett« 1 ive ryAddre a a ̂ Cca&aẑd, n«l ive r jXddx c s s ^ I& d d jic 3 a, -, 1 >: Hcthô3<?dyA3 slgr CpBodŷ tur £ {Cet£ai a a iozill̂ te, Comaiid, Output, fiai a a i cuJjs te, ̂ , i >: KctbcdScdyRet'jra (Ge tgisia CpBodylte t im { GetDe live ryAddr e a a, C rgiand, <Xitpat, I> 1 i veryAddress, -, 1 > J >!et hodScd yRe t urn < G

Pn4̂
&[r£MS :*■ Er a-cotOSsni:\m Q D:-Ĉ(JS!SSPa)TO-0nt
:$ S D:-&:JS'S3me(j :$■ & [?;!ĉ(<s!sh»ppfe>gc:3rt o:a:3ijs®s

Figure B.2 File menu

B.2.1. New Project

This option enables the user to create new project. This new project is created in D:\CodS

folder and is displayed in the left panel. Project name is provided by the user, as shown in Figure

B.3. New project is created with the following structure:

D:\ CodS\<Project Name> \ Input

D:\ CodS\ <Project Naihe> \ Output \ Predicates

D;\ CodS \ <Project Name> \ Output \ Java Code

If another project is already opened (i.e. displayed in the left panel), user will be asked to

close the currently opened project, as only one project can be opened at a time. This scenario is

shown in Figure B.4. '

-112-

gffemos

Figure B. 3 New project

s iv o-c»as->sis*'.pui
- e CMS fne_e95S- B HOCSLM- E IE1.M- E TE2.M
- B

' - E TE4 M
- E TE£. W

E TET M
r- E tes.m, »- E T£S M3 & D̂CadS'-SISautcut
5 b C.-£«(̂ IŜ Culpi •■ ► eCotf3Fll«_33

r f i PieScatei ai
>- E r«>(lme a- DXôsissjinpi
y g CoilSFSe_113
► B EttfoSCanctfti j:
, E Enfanacssd.ii i;r g EnfaWli#3)J3vj i

Keti-£df*ra!3 (- , -,£2Ery, P rcf'e rm inated , 1)
Metiiod {pablic;, v i id , £ x l t , FrofTc^=iJi*ted) Ke".odFir«=(-,-,£iit, ProflemiMted, 1)«* t io a {pafclic,TDid, dsActi i n si n*te d)Keiao!iPara3(-, daftc; Pr3fr=:niii!ated, 1)

(p u b l i c , Tcid, feraiaatex TrofKerJciag)
K =thod3odyfcsai5n(riiaiii»te,P r=fs=tkliig , cuj:i:Eiitatiit=
Keihsd jp u ti ic , »Qld, d d lc s iv ity , prsioai««Te)
Ketied: cd j^Method: odj itechcd ptii
Ketbca cdj Xethcd ods pubMEtbed odj Jicti

S<4«:t V I J a r-^ f
0 CK»fi»»w nail «■ dose *»CWT«M% ppMi< >«ai>a. Perwn»—tia»me«««T

psib I i e t « l M t e 7 Sib fCcSita «>*k:
J

Atcrit-jw ipriiraie, ssudesl, esrslied. Student ().AtErib-jr* (privatt, SeBiaar, ic, Seslnir () .InioilMSi)At tribate (private, pj-ofaaasr, lastzTjsrtj, Jrcf ejasr I)»Sfcsiaar)

W D.TC-irlS
S ^ DSCodSBank
I £3 D:'Csttseii!P3;rrint
35 S D;'iCcdS\EHS
$ 3 C>'C5(iSlSa.T!p:e
S ^ CfiCocJSiShoppingCart
m ^ CttCo<JSSIS

;r̂ a.i3f=r=ir.5 «sdel.....please wiit--IBia El̂ hi take a feu ae=s=da.

Mcdel ?rA5J/DJ=ea. }-i

Figure B.4 New project confirmation screen

-113-

B.2.2. Close Project

This option allows the user to close the currently opened project. The user is provided

with a confirmation dialog to confirm the selection for closing the project (Figure B.5).

I rssiPTis.M
S & 0;Co«3’£ l

H B Co<iSFi!<_11i
EmphiffiaLjavaiI)

K E'TipfteSrftij!
E EmpTfi
E Empwoniha,|j il»a) j3V3

- B HafMj6rj3-.3
I Uanagerinitial,
I M snage^Le i

; Hinag««»Ei
j - Si HanaBErfleafei
[- E HanaccrTei
I* E ManajeiWc

E OperatwEjafv^
j - E OiWiit!a);By»
} - E opOnLeaw,S OtR85i?r?ii

fS OtReS/sS j.IldMMlSdj-

p'jblic claae CpOnLsAve (p\2bllc void tctryO
i1
p u b l ic TC id E x i tO
i }

V£>td dcAct{
i f < cu r reii^da^e — cjrrestst* te-*wc z'. }
i f (ag« >= tcTir re nt s t At c= " r ct })
public void Subaitlteaigaatiaan

Aninaiv*t<«n«MclaMawnrTtMrop«M<pniiKff

^DrCodS
S iS D̂CodSiBanS:S S D̂CodSiBBPavmsnta eaticĝ aê
3 & D,Y:oiS«amc(s
$ ̂ DXo^«h! ÎiingCirt S fi3 D̂COŜSIS

a

Figure B.5 Close project

B.2.3. Delete Project

Selecting this option will enable the user to delete the currently opened project. When the

user selects this option, he/she is asked to confirm the decision for deleting the project (Figure

B.6, B.7).

B.2.4. Open File

A text file can be opened by selecting this option. When the user selects this option, a

dialog box is opened to browse the file (Figure B.8). Picture formats are not supported by this

C04S appHcation. The opened file is displayed in the center panel.

-114-

B.2.5. Close File

This option permits the user to close the file which is currently in focus. The user can also

close the file by making right-click on the tab and selecting the appropriate option (Figure B.9).

SPIiJW:
t~| 13 opom.»K8»»»

jm —
ICainîPrĉ

S WOWodSitUSfeipiii
 ̂ - 0 CoeSFi!»_MS«i) MG491.M : -0TC1M; r fi

■- B TO W- fi TE4.M
I- B TE5 “» B TE6.M r D TE7.W
- B res .M : - B fES.W

3 W D1C«aS‘£HS»otBiJ!
& W OCcfiSfHSOUp

t>- CJ<1S Fllf_333l
B PTfiScates.M B feadmf.M S WOCodŜ EMS'̂

) - B C«SFil»_l-.!l 13 EmplniSalJav̂ S Emploreejava
r B
i?^r —tt;;

I u«ag«4iAnxiiin9̂
lTI1« T t i x a r a KUnagerRefi)Qne<Msva

Segia b5CltsaiCaaxajid) iClass (public,Ccsw:idl, ccoatrjctcr (public, Cca»arJO)ibate (C OffitM ndZTi, iSv, 0, CcmAzyi, ual̂ e); At t ribut e (p r i c c saadid, 0, C o»ind>At t r ibut - tSai s s i . o':Z>*te, Date, n i l I , C<3=and, _) i Attr Ibite t private, tc, icudate, ,
X z t rlbutc V eryaddre 5s, S t ring, a .li 1, Ccaao:̂ , < < p * i , S tr lag, de live r yadfOperation <̂tEHl=3ictiDate,CcHe»2;d,I}»te> taietaDdtpybll<;,5ete,GetiMssiQaDate,CQsaeiaEdf Cper*tieaPuraa(-,-,G<t£ala9loaDftterCggg»o<̂r X? zMcthcxiParaŝ -̂ -̂ êtaslaalonPatg,Ccroend, êr̂ tico (Set EalsalcaDate, C ^ i d j ;tet̂ ed IpifaXicr rcid, SetEai33iosi3ate ^̂ eratioaPar! Bt{C

Seiner art

■ isMMilMtttrTie

t̂ cration (Sit Dei Cpeiaiicnfari iH
c^^atisQlSet :«I
OperatiinPftii »<3 (̂ ratloii(Set 3il
(^ra^lonPari a l - Ope râ onlGefjlteĈratioalari a<-,—i ̂etJiSFoanti- CeCM̂Î li'iMitlwdtiBui'F/̂ -eeS'rtiEBrCTint , Co* a4ati, 1)

O E ^ O

C p B ca-j-AssigafSetE aiJsioaP aet, C 3m m d,£3i33iei^tt.e=£Satei - ,1} iMeihsdBs jyftjs _OpSodyAs sijn < Se t S«ii veryaddre s s , Ccmasi, 3eii v= lyAddii a a =ijftddre * i, i V :Kt ciiod3odyaj a ig: Cp3cdyatt’.im{SetSalsslaa2ate,Coaaa=d,Ostfjt,EEi.3Sicfi3ate,-,i) !Meth=d3!idy5lit-jit:(5ev£s-ia<̂3odyKet-itii (SetSeliTervAdit e s s, C= !sd,OiitF-ji,SeliTeryAddie33, -, i) :Methsd3GdyBet:uxs(S»

l̂ DY;odS s-S orCo<!S>Ssnl;
» £3 0:Codff£as=’â meM
sS Gi O.iidSiSafnpis $ E D.'CsdŜJCpin jCait * S D'CsaŜS

_

Figure B.6. Delete project confirmation

B.2.6. Exit

This option is used to close the C04$ application. Upon selection of this option, user is

asked to confirm the decision (Figure B.IO, B .ll).

-115-

Figure B. 7 Delete project confirmed

S»i.?ro fCodSj ^

Pte JS» Help _ • ' ■ . !

y a i e j i l i t ® * i . . R » M l - ,...... -i...._ ... - •
1 i
m

Figure B.8 Open file

-116-

{*» tan m>
■ :m î *1). M

lc«TMiPr4*a

^ D̂ CoaS-€M3
CytC0<i3^£!iSVnpiM

- g) Co-jS FHe_665e- a Uo4elM Stei.m
Gtb2.w- B TE3W S TEJ td il TE5 W g TE5 M

; B TC7 M
- B Tts M

i - B TCS M
& V D«!vjs'£ugeutcm S &• Dv:o<js-£Mseuij- p) CO(JSFilc_333

- iJ Pt*<»ateiW
- E l f e » a m « .w5 & D'VCo.jSS*SCutj h- 0 CoiS Fil«_i10
- B EmelmSalisva
- B Em*«^6jsra- B Efn;iOnL« i
~ B

n:

0p er«^ Q s7u 2 t . SC^gt;Cc;it:axaItgag^Q3 OttotriOperatiotParaaE*it, SCartCoĉ î ^êrati::=.idcAr;tivi£y, SCttrtContainltt_
Oper*^iGrkP«r&a<-, - ,d o A c t lT ity , SCar

irTv5T27E55t75v5r̂ cn"6aIE2tS5r5Car̂ 03tAiQlce»,I] vcid, dcActiVity, SCaztConta: alnlteu)̂ :kethcdPar»(', -,doÂ ivitv, SCartCcB State (SCartArcSiiTe, SfccppingCart) : Cla3̂ 2̂t4T?7̂ rtXrchlvc, Shŝ ingCarc) Cpcratioŝ Enr̂ ry, SCarcArchî e, id) :Xethod (public, void, Êitry, 5CartAr;<̂'r=)Ope T9%i CTiFa r̂a2B { - , - , Cc'try, SCartArchiT-, 1> : Ke t he IParaa (-, - , Ent ry, 5C«̂ Jlr =riiive , 1)Ope rati 05 SCtti-tAr=hiv«, veld) :Kethod(jrubiic, vcid, SCartArchiTe)OperetlC!iPeraa(-,-,Exit, 5C«rtArchiT«, 1) ;KcthodParaa(-,̂ ,£*it,SCartArchiv-, 1)Cperatlcz (doActiTity, SCaitAriiiilre.TcLd) :Metacd(p:ibitc:, void,d=Accl.vicy* SCartArchive)CJpe ratlcii?arasft (“ “ r dcAct ivity, SĈrtArcilve, 1): Method F sreta (-, -, dcŝ iri ty, 3 Car t&rciiiT« TraTisitioii(2Ĉ rtl&itialrCreaterSCa:tâ ty):Kethod(public ,vcid ,Crsate,SCartItitia 1) CpBcdyAs s lea (Cr« a ts, SCartI ju. tl al, car re &t3 tat«="Qî c y * / ̂ »1) rKe chodSodyAs a ign | Create, SC Trajisitî n t SC«rt£ŝ i.y,Addltea, SCartCciitaiiirteaaJ :Metbcd (p’Jbiic, Tcid, Additeji, SCart£sf!t\j 0p3odyA5aiga(idaTt«,SCartE£pty» c'irrest5tatc="CcEta3.nItftaa“, 1) :Kethod3c:dyAssign{Add̂ Traii2itiot(SCartCcnt«iiî te=s,l;eleteIteii, SCaztSa?:tyJ iKethcdipjblic, Told, Deietelt̂ sir 5C7a:̂ £̂Bi>dyCcLdlrisr.fDeIeteIte=,5C:artCc&tai2lteB9, i f —, 0, -, 1) ̂ Kathcd3ddyCc&d̂t:iea OpScdyXs a loa (:>e 1 etelte!3, SCar tCcntalai t eaa, ciif rent a t at e=■ tept y*, 1,2): XêhodSodyAa s igji 1S rraiî itics CSC:artĈvai.firter:ar =̂ ckcjutltema, SCartfcrchiTe); Me the d ̂ put lie, veld, Checkojitlt̂ Op5odyA55ig:i(Checkca?;Iteis5, SCartCcataialteaa, CJzre£tatate="Archiva"# - , I) ;Hcthsd2cdyAĵ Aasc; ci ft tlfii {_, 1,0, c, CisstCTse::, ShiSppi agCart): Att rib-t c <priYat;e, Cua “ oser, cyatcae r {J r tsd b32 t
a :

^ o.icods
S- S D-Coc?«»»ii;
W: is ĈoeS'fiiaPaiiTTfni
jg ^£?SS^3^aS:S ^ DSGocS'iSarapIt $ ^ DAGa'SŜShSFpinjCart S ^ C?ACaeS\SS

Either no fiii? has bcpE silecled OKaelectcd file con-taî is ^̂ suppcrted costeat
PleA3c jelcct E3i±lCR F?i££ correct file.

Figure B.9 Close file
 ̂s. ... -■ ..^ -

3̂ Cod«S%irannfCodS) 4K •’“
jTite m im __________ .

|;SlL«i5;' [ipil
lUy'HH-- ' - /> 1 MM

V. s. .

r CrCcSS'fHS
D £saS-£MS«ip;t

i-B C«efil«_B3^
!- g IftxMI U
i~BTE1D4 r g T€2 W ̂ TC3 M
- B TE-tM
- B TE5 M
i- B td
!- g TE7 W
i- g TC3W - S T«ia&• ÔCoJS-eiSlOulJiut
B &• aCoa^MSKhnj
i ;-g c o < 3SFae_33a

h g PrtScalts.Bt- B resdmn.W
S 'm DSCoflSf HŜ Ouif

. BCO!firHe_110
f B Empfritjat;9.-a- B EmpliiyiiejM
- f i ErnpO^»3« j

iM

I t̂ a i lTE4At |mtxt ̂gg iianegerja« | |fig |
Vo ii)l'itetKSd|̂ ufei i c, id, Ex'it, SCaHî cntatil tt

Lty,SCartAr^.i^e,Tcjid}:Method ̂ pjblic,

Cpexat̂ cu{£xlt« SCartcsntain"ti CperancaFaraa Exit, ?CaztCa£itai&Ite», I): MethodFaraa £xis, SCartCo5tai.slte=s, I)Ope rat ioa {doAct̂ rit v, SCartCcntai nlt«s»a * void):)<̂tbod {pub 1 ic , Tcld, dcAct , SCar îCciita iOp*ratiQcParami,dcActivity, SCartCcataiaiS, I>:Kcthedfaran[- f - , doActivity, SCartco: State (SCartJircaiw, ̂ cf̂ tagcartj iClass (p̂Xt<?,scartArcrilve, ShsppifigCartJ Cpe rat icn (Eiitry, SCaxtAr cblve, vol d> j Me thod (pub X ic, va id, fistry, SCa rttArcai vc) Oper&tis&ParoÂ-, -̂ EiitzrŷSCartAJciiiTe, i) :Kethi>d?aratt{-, Entry, SCartAxchive,!}Cpe ra tion (Exl t, SCartAr =?iive, vaid J t Ke thod (pafcl i c, veid, Exl c * SCartArchive)
CartArchive)
Y /̂ CaztArcblve art2citial) ̂Cre a te , £C4 lltcB, SCart£spt̂ BodyÂ a i gn (Addl l̂eteltea, 5Caz| ĉdŜdyCfi ndi 113 hodSc dyAa 3 i gn (t̂ void, Ch.ec kcut 1 ;Ketbsd5odyAâ r,cu3tc2̂ i:(},Ĉ

iit;t*,=ptj
;cst.
fcieitel:

^e r at i CRPar aa (“Cperation | dcJVcti Ope ti onPar aa <- Tranaiticn(SCart GpŜdyAaaign\Cr«,?raiai£ion(SCarti Ĉ̂BodyÂa i gr̂ {Add Tranaition [SCart̂OpS6dyCosuil.t t o n {CpBodyAsslgc, {T rajw i tion I SCar t>
O^cdyAaa ig n {C.Aascc i at i an 1,0, n, CuatTOcr, Shoppiŝ art)! Attrifcyte i private, Cua tEiid b22

MKMSvniMBWlxMMCedSappluleaT

id,dsActivity,: :ivii
Sê Sl idvA
l,Adi
itho; ■aid,
:K e*

he *ĝ'd'b'!b'e:̂ ,5i!arU!c:;iW'î !UE3.carrenk̂ lake5"3Lr̂ ^̂ '

\P nm »z

|S -D 0.iC:Kj?£3n̂ i$-& Oî oaŜPajntfnt
iS-D ^C W 3E^;£ © O jCo<̂ŜSâ?p̂e
m-G OXo(JŜShocptfK:Cart ifŝoiccdsftsrs

iflcOtilOLE' ĵ_

Sither !io file haa b«̂ selected Cft7i.e selected file ccRt̂ iiis unaiipparted ccstest
Pleaae aeiect ERROR TR£Z csrreet file.

Figure B.IO Exit

- 117-

^ T l h a n k y o u , i ^ s s B s a r

T h a n k y o u f o r u s i r i g e o d S ! ! ! ^ 1

^ ^ 1

-2:
k J

- p K r
'' ~i gj

-

Figure B .l l Thank you

B.3 Edit Menu

This menu provides the options for transforming system models into code predicates and

complete Java code statements (Figure B.12).

B.3.1 Import Training Data

This option allows the user to nnport files containing previously solved transformation

examples represented in the form of mapping blocks. The content of these files are displayed in

the center panel. The iniported files are automatically made a part of the currently opened

project. All files of training data must be imported at once (Figure B.13, B.14).

B.3.2 Import Input Model

This option is used to import the models froni which code is to be generated. All the

models must be stored in a single text file (Figure B.15, B.16).

-118-

MCodSFJ'OSS?
- a Koaei.W- at-a TE2 W- a TEIM

B TC4 taB TiS.M 8 TiS M B TC7 W
- TI8M S TE9MWO.TiiesasriOuw:£ D-cocsB)sOKriffic*a4
i - B C0(!SFae_3332 B Predicate: til a r&3̂6.&l $ B D̂CodS-.SlS’Oi.UwJfJsya

EtifyrFS6i2*2aiaair«H7vaiaj Cp*r»ti3cParD(-,-,£ats5,SrcfTerEi3sted, i)Cptzati=E (Exit, prs f 7e ritls'ated, to * d)Ĉ rati=iiParia(-, Pr=fTeralaa-ed, i)Cpcrarisa idtaAs:̂ ivitŷ F̂afrefsl&Ated, TOicO OptraticflFar»a!<-,-,datctivity, troKeisiaated, I)7j-iiLsiticTs(FrcE15erkiag, TgTTaipatg, PrcfTeraio«t«d>Oĵ odyissiga !Temioate,Fr3£Karki:;g,C5ii£eocstite=’Ter»iii«tsd’, 1)^̂ aasltloclPrs fOsI*aTe, doAct iTity, Pro£*o : k̂ng >5p3sd̂ :ciiditi05 [ooAotiTlty, ProfOsLeave, if, cairejitdate; =, le are e Qddat e, -, 1) <̂AadyAssign IdeAciiTity, FzsfCsLeâe, c’irrEntstate=*»orki:i5“, 1,2)!:caultlac(P;sfCĵ ava,SabaitSUsxgiaa. PrcfSeaIgriedjOpSodyCosdltiori (3̂:faisitSe3i?aaCios, Prof3i;Le«ve,if ,xesigii»̂ on_stata5,==, "accepted" (̂ >SodyA3sigi!fS-ab!titB*sigMticn,PiijfOsI«ave,crarreniJta;s="Resigned",i,2} SraajltioEfPrc fCsLeave, dctcti vity, f :rc£ae 111 ed V 0FS3dyC=oditiO5(dGAc!; jTity. ProfCsLeavs, if, age, >̂, eo, -,3)OpSodyAssign (dcictivity, FzafCsLeaire, current»tate='Retiz;Ed", 3,4) risajltlon(P:of07iLeave,rer5ii,ii*t«, FrcfTeiaiDaicd)OpSsdyAssl̂ (Terslsata, PrcfCnl/eave, curr=Titatate="TeralaaMd", - , 1)A38sciaticti1_, eaioXIcd, st=dffEt,Zi:r=liaeat)fcjsacisEion(_, 1,1 , c , iii,Se=isar,EaKiliseat) fe3soclactcn(0,E, 5,c,E!iHiiitiagiisl, StaiEar, Stodeatf Aassclatieii 10,1, D, a, iaa tracts, Prc fessor, SetiBar)

S S OrCodSBsn!!$ SS 0:̂C-3d3»e"5V7T!«nt $ £S0:CiNS9£HS IS-S 0;'i;oaS'4amBletrCsciSasiMipp̂sGar :* tO:«5SS-5!SS3 ̂ D-iCocS'SISanput C0!iSFiti_S9f
TE-iW TH2.W THIW
Te4M TE5M TESW tEJW
TEew _ IE9 W S D.'Co âiSS'XXiliK.

jcoui ̂I

Figure B.12 Edit menu

w O.̂ dStMS * ^ D-iCotJS'£MSlir.put : ^ D̂:&tfS*£WS<OytlMjt

Id Eiqiected OnpuUxt{̂ l̂tlŜ~
IQ UcHfcilxt O HI

pTifcdl
KteXwI QTt̂ jS
Ô WnJ
l3,TE5.t*t1

n»BMK |<r TE2 ur TE3i!<nE<.tfTEsig' t k w th? tr m1
nMatllpa:

WD-CodS i® -© D«oOS«afM:
i-e -^ [5:«(><iS'fl<!f=afiiisnt Is &D:«c<lS'£US
i 3 W D«oSSl£HSlnpu!: B̂cSaSFŜ isasI $E3D:’rCi3SSJSOuas Is-S 0:eodS!Sampi« I O.'CftfSaisppmgCsr;

iS-C ̂C.£odSQ>S

Figure B.13 Import training data - browsing dialog

-119-

751sg|«

rDICoeSfiUS
 ̂E3 D:Cj -3S£»JS%1!«i»

- E i D:Cc-<2S'£«S10ulpi!(

H TEmt yiB fE5J;a r |S|Tt7.pt ’’jfltaja fjfl
M T£2Jxt

5cat:«{PrcdactD<ieted, Product) ;Claaj(p?4blAc,Prcd'jctr«2«t«tf, Product)OperaCica (Entry, Prcductrielcted, voldj :ieethod (pybiic,vcid, F=:cdn.etDel«zed>C5pe raE iccParas (-, -, Estry, F rcd̂ ct̂ eleted, 1): Me tiadParaa < - r', tot r j, Prcdactr̂ leted, 1)Opexfltioa <Eii t, Pr oduct Deie t ed, void): Methcd { p - j t l i c, tc id, £ju.r, FicdiictDele te d)CpcratioiiPftx*2i“»ProductDeieted,!) :>tethodPArAB(-,- ,tju,t/prcduct5elet«d,I)Cpe rat i=c i daXctiV ity ̂ Erod- ct^ 1 ct̂ ri, void) ;iie thod < pabi 1 c, vc id, dcAĉ , FrĉJ-j ittied JOp« z uParAA (“, “» dcActivit y, Pr©dactl>el eted, 1 > : Mrt̂ cdPft rftK < - , - r d c k - t i ' r i ty, Pro d ieted7rai tl c& {Ft odactSew, Pr oduct, Pr̂ uct De ieted): Ke tbod {publ ic, TOid, ̂ I« t c Pi oduct, Frodac?Cp5cdyA33 L jn \ ̂ lete Product, Frcd'ict»cw, ĉixr e ntatate= "Delered**,-,!)! JfethcdScdyAssigz: {î eietePr i Trftr*3itivC<Pzsdjic*Jlvaiiabie,dcActiTity, FroAiutO-jtcfStcck) ;kethcd(public, TcixdrdcsJlTtivity, Free Op3odyCoitdi ti oa (dcftntivity, Pr od««Ar&i labie, if, prodjctcouit1) j H« thodBcdyCosditioa c dc CpBcdyAss 1 gn i dc*£rtivi*y, Fr c ductir* 1 1 ab 1-, carz ectstatê ’Ôtc f S i ccfc", 1,2 M KetiiGd3cdyAj5ig= (daii s < Pr sdiictATailab ic, Dei et« daet, PrcductT̂ I« ted >; K« thod {pab lie, tr̂ î d, DftlsteP rcduc t, I
C p S c d y S is s i .^ t DeietePr od'Jiit, Pr od'-ctAr ai i efcie, ĉir res ts tats=" Del sted",-,!): KefaodaodyAi s Iga (De 7r««l X iCE < FroductOute f5tcck, dcĴ ti t i ty, Frod̂ctATai. lab le): Me z h o d ipub ♦ i c, va id, dcXctivity, P =g< Op3odj-Coaditica(dsA:;tirity, PrcdictOutsf5tcck,lf ,pi:cd'jctcc.;ntir>, 0, - , I) :JteChod5odyC:̂ Jndi!:ioii(di qp3odyAsaign (dcActivity, Prod jcti>at̂ £Stoc)t,curr«it»tate="Availabl̂ “, 1,2} :Method3odyAs«ignfd<i;| 7razLs it i»»i i PrJ>dac tC'Jto f Stock, te Prĵ act, Pzoduc lê ed);OpScdyAaaiga (Delete Product, Frod:iCtĈtcfStccJc,currcr»t«t:at;e- â Q̂Ciaticri l,_,Transactios, Product):Attribute (p

3: iii=

fcb'Csds;$-Si D-CixJffeanfi
®- CS 0iC<NiS»BPas:7>8Bl $- Q Dx;oa?£HS $- C3 EttCodffSam̂e s- £j OKoas’Kwî injCa!
S a QiCoiiS'as

|cottsou 1
Î ortiiig ;ral&x!j9f Data.....Flesse wait ... This take a few 5«cc{̂d3.

T ra iix lD g !^ata i^ > o r re d f rc s t 9 f l i e s
i C t a l K ap pirg E lc c k a : 60

Figure B.14 Import training data - console

2Cod« StMsM fCodS) Tirearef^T

^flcwKPTO im j
CcdTfMS

IS S DriCadS'f HSilnout
^ D:\CodS\EKSVOotBUt

I ^ IK Jx t r | | |T E 5 . tx l j E | T t t J r t T | B j TET.til

T IBI ITZmt
5t«te(FTGductDeleted» Product) :Cl»s (piabllc, PrDctacwDeleted, Prcduct̂ Op«catica{̂
Cp«ratiD£Lp«Cperatlcii {£
O peratiouF ;

d e r a t i o n (c

O perattoiiF,

T r a a s it io ECpSedyJLasie
T r a » « itiG ii

Op&ods<oAdiOpSfidyAsaigrroasitioiîCpSodyAssl̂
T ra n s

OpSodyCo^di;

CpSodyAsai^

T z & ^ L Z L o ^ iCpSodyAsaig
A s a o c ia t l

^ P ie a M select

l l̂a: b l ElEBlfES
O Expected OavatbctQmJxt

□ tet̂
[> Tll.IM
[>Tt2Jxl
DT£*JxS
D TSS.>«

Drts-ttt
Dman

FMMDpa: jjafilM
(■ OfWfl Be roll'sC«iK«< S] I

ĉcSeleted) cfidactDeletsdj1 fcPrcduct̂ Product Mflign(DeieteFn d̂fiActlrity, Pro;
f ŷCoz*ditioii<dc ̂KiŜdyXoaiga idcd ' f:>eleteProd.ict,P

‘dBedyiLs a l gn t Z^i daActiTity, Pros jc dyConditl3n(dc jdEcdjAa slgs (dejl
i , DeieteProdjCt̂ d̂BcdvAsaign (;:ac*-la actisaî ? ran5a c

^ D .^ 9 iS I5 DtVCo4S'̂ ank j$ ̂ DX:odŜBiUPa7TnMl } $ ̂ DiXCo-iS'fHS ID:\Co<JS'.Sample iS- ̂OiCo4S\SRO«ttngCv£ Q OACo<isisrs I

iĵ rLizig Trâ aiag Data.....Pleaae vait; ... Thia sight take a few â ccada.

ST:-CCE5S‘
TraiE^ag T'ata iinportad f r c
To&al Mapping S lc c k a : €0

Figure B A S Import input model - browsing dialog

-120-

i chc6<jsaisS £3 D.iCDlJŜKSWDU) S ^ D:CC<IS<EUSi>jl!xA c?:3odyAs slga(SewFcsietcji,Po3laitiBi,C!mentetate=""rs»ted",-,i! :T:ij!jltio!:l?ss!:re«ted,approvE, PcaVicaot)Op3odvAjrsig3(ApprQ7«, PosCreatei, carreotst«te='Vacaat', - , i) rrso5itioE(P=3Cie«ted,Sla itp p r a v e , Posaeacved)CpSodyijalgiilDlaJipprove, Fcsc;«BUd, coireotu-«CE=■Reserved",-, 1) ■i*ji5itici(?a3V4caat, NeitAĵ tEiasct, Ei*Occjpi«d)Cp3odyAa a ig a t iiita e T it, Pa's Vacant ,c;3rr«;t5t«te= "̂ ĉ led" , - , 2 Jr=an3iti=Hj ?33 Vttwilit, Rcncre £»cjiticn,P: ̂ ^ t s o ^ e i)Cp3odvJtflaiĝ âMaT»P&jitioE, PoaVasraiit, - , 1>rraiisi'ticTiiPcaOcĉapied, dcÂlv-ity,pG9Vacart»OpSodyCsTidl" ior-fdisX̂iTi-ty, Fcsi>ccQEied, if, l»-̂ acanc,—, trve, OpSodvAssigsidoActivity, PosOccî iid, :raire!kt5tate="Vacent”, i, 2) r̂ sAsltlcsfPcsOcẑ lsd.RacvePcsittEin, PosREscTCd)Cp3odyAssig= tKeacvePositicji, PoaOcciipled, cirrent5tace=*Reao'ved*, 1,1) Stfseraliiatisoi Eq:I cyee, Cpe ra tive)ScMralizati c= 1 Espioye e, Kanage c I i3aocl»tioE(0,n,0,&,asaigse<ita,Ia5)c, teplai-Ee) 63Soclaiio!ii_,i,0,o,assig=edto,"«3k,?F2r2e)*ggregatlC3{l,E,_, 1,_, E»ployee,Trsiqcj Assc=iatio2(0,1,_, n,ncrk3*t, Posit̂ so, â loyeej

V 0:̂308 9 © DKoŜesnt!®- ̂ DTCosseinPafTTjen; S' a DKotSOlS 'S ^ crcotjysamfii s ^ DriCoaSanoFFir.oCir a îKCoasws

ilr̂ rtiiig Zcput Model
5UCC2SS!lapat Hedel iĵ oT-ted. 3ctal loMtructj: 1S7

Figure B.16 Import input model - console

B.3.3 Transform Model

This option is used to transform input class and state models containing ASL into code

predicates. The resultant predicates are stored in the file ‘'Predicates.txt”. The information about

the transformation process is displayed on the console and stored in a file named “readme.txt”

(Figure B.17,B.18).

B.3.4 Generate Code

This option is used to generate the complete code statements and Java code files

corresponding to the previously produced code predicates (Figure B.19, B.20).

- 1 2 1 -

jiioriC9«e«O Di1Co«SOISlnpiJt - fi3 D‘CciS!EMS»t1put CpBsdyAssigz:<2s*TfPc51tioi:, EcaXiiiti«-l,=rirxe2i-tst«te=“Created*, - , X Tz *=3itios 1 Fa sCiea d, ippr ot« , Pss Va c ant)Oj:3cdyi33le2{if̂ EST*, Po3Cie»ted, ra:rEEtit*te='*Vacan̂*, - , i) Ti4TJttic?:<Ps=;reated, DlsAfprcve, Ssaaencved)0F3c<jyJl«si5=<3i3;̂ iave,PasCreated, C3iieotitatE='Ke3ic»ed*, - , i) Tran5itioc<rci3Va<i«£t, Ir.cse at, PcsOcir̂ led)
C p 3 0 ^ y A s s ig 7 : (N ^ w ^ p s L r : t s e i t t ,F 0 3 V s c ^ i^ , c3ZT«itjtate="Dcc;ipi«d", -, 1} Tr»:s«it±cn(Pc3¥Bcaot, RaKsvaPasitian, PcsScsored)Cp3odylssig3i(Ki5asrsFiiaitloii,FssVec«ot, cririrnt̂ ate=*ReaoTed", - , i) 7ras« iticciPssOccapied, dsActl v i t y , Fss Va cant)0p3c-dyCci.̂ tlca{d!iictirlty, PosCccspi.>d, if, laTacati, —, trie. - . 1) OjSodyftasigEldcâ jtivlty, Fcs6c=apied,c'ir;®i;ts1;at«=*Vacast", 1,21 rrasflitios<Po3&cccpied,Re=£;TaPofliticn, Pcĵ esov̂)OpScdĵ ssigi{ReiBCTePcsitlaii, PosCccupied, ĉ rectstate=“ReoK!Ted",- ,:) Geceraliiatioa (E-pl: ye e. Operatic)5«=eraliiati=!i(syCE.xasager) k5fociatic2{0, c,0,E, aaai.5nedtc,ra3k, DBpicyeeJ Xsa9cla£lo.':(_, i,C, s.MSijncdtc, "ask, rreroej i5gregaties(i,n,_,l,_, EEpioi-e5, ;fo:ce>Aĵ d-clat̂ c:̂ (0, i,_,3i,wcrkjBt, F=3lti£n,̂ ipIoyee}

$Dt»CiKJS«3nk ^ e; DiCodSsBSPsyrrjufl i
£ S DiCodSiEUS S-£j DSCodŜSampl€$- £5 D!<i:i!<JS«h jpp>mC3(‘ D:C!KiS«IS

Figure B.17 Transform model - in progress

D ̂&3C1S'£«S 1̂ OWo-lSl£«9lnixjl icwguawuwu= W DXodŜ£HSVOutpmi£̂ (B C5dsn!«_3332 ̂B PreificatesM ~ B f*a<jTne ai

i(pot:lic,!EyloyeeK!̂ o!i3T:riiotorlpatli=,Ê loyee(| | AstiIbvt.̂ (private, lit, es{:ld, 0, El̂ icyte)Ascribatc ipî ivate. String, ecase, s-ili, Eẑ lsyee) Attribute (private,£ate,ataitdate,cuii,E=̂ !l3i'eel Xethcd (puhlie, string, SetHaae, Eaplcyte) M*taodP»r»ii(-,-,Get!Jaste,Eiq>loye», I)>!eth=d (public, vcid,SetKaiie.Eiiploy«») l{ethcdSaiait{3triiig,aaBe,SetKaj«e,Ei5:lnyEe,l) MethodJpjblic.Iiate.CetStartSate.Eapioyep} >!ethsdParaii{-, -,3etStirt3*te,Ŝ loyee, 1}Method {patiic,»oid, 3etStartDBte,£5?>ioy==) HetiisdParamluAte, sdate, spt̂ tarti>ate,Eâ lsyvF,l) {public, Stri3g,̂ t£*̂ Fc3itics,EEployee) KethadParaaj-, -.GetEî Positiai., Eâsloyss, 1)Methcd (p-jfcl lc,vold, Set&pPc3itio?i, £̂ 1 oyee 1
- Z B i i

IwDACoiiS
$ DKo«S'£ank $ IS DfCo<JS;Bi8Pa,TiM.Ti S li3 DfCwJSTEUS $ |3 DfCodSSampie $ iS DX:0<̂S■>Ŝ0PP̂̂.̂Ca/ $ ej DACoflS-̂IS

Model Trasifcrs«d.
7st*i CoiLstriiCts: 157 Total Happily 3lcckj: £0
Beat fitneaa: 0.&S4S524064I71223 3«st pcsiticn: C1,0, i-0, i.O, 15.0, Nasfcftr of €valuAtioas: SOO laO, €0,0, l.C, 1.0, 1.0, 1.0, i.O, 60.0, 1.0, 1.0, ISaO, €0.0, €0.C £0.0, 26.0, 1.0, €0.0, 1.0,

Figure B.18 Transform model - process completed

-122-

? 1m DlCiHJS'f Co«r 0 assî eao.jara)- g Co«SFiie_HOOr ii ET4*iit̂ jawa- 0 tni[)io»*?Ja«a- EmpOfiLea'/s Java m- g £.T.|̂ e5i9ned.jav3■ B Err.̂ etiTslj».s■ B EmpTenfaistsi.iaira

j

)• B E!7ipVVi»«nsjy-'aI - B Uaragef 1 g Uaragcrtnffî jwa 1 0 M»r.a5frt)fiLe»« java 1 • fi UanaiêcsiipisdjM U»!>8g?rf?6iEe!Jj3va S UariajsiTamiRatcS java g Mana39nA'ortong.ja,-a B CMtattrt jsra

class (pukl̂ ĉ Eŝ loyee), Casstrucwr (publ:LC,es{?lcy«e ()) Attriiate iprivate, lit, ê id, C, Es5>l=ye=) ittiibatc fpjlva'e, Siilug.eaaae, ouii,B=?>loyee) AttriJs-Jte st*rt<i«te,n’jil,E«plQyet)XetoodlpvibXle, Strisg, SetKaae, Cẑ l=7ce)KethodEai*»(-,-,GetBaKp,ê loyee,ii)«eth!>d(pabiic,-7cid, SetKine, Ê l oye e)»etho[iPar«a (S t z i s g , s a x c , S r tH a x x , Z s p i s y e e , I) >!rth&d(p-jhlic,3ste,SetStflrti?ate,Ê ioyee))fcti3odP*r»a{-, -,GetStart3ate, Cŝ jloŷs, 1) Uethfldfpabllc.Told, 5et£tartiJatc,Ei?>loyee) 34ethcdP«raa{D«te, 3date,Set3Mrt3a», EayioVee, i) fethodjp'jblic, stxiiic, GfttE2̂Po3itioo,Ŝ l3?=s> Msthsdf&ru(-, - .G ^ ^ E B p ¥ c 3 iz L c r . ,E s p lz y c ^ , I)Me'thod (public, Tcid, SctiEHFPc3lti.aa, £=pl o y« «>

^ D:-£sdS a Q Dx:«(&Ban(r S D DrCodŜiliPijTTient ; S £3 DX:odS£US ^a- G D̂odS-̂ jmpe 3 £3 D:VCi>dSvS!wccin3Car;
3- a D-iC?aSvSIS

.cl

Code 5eser*tcd.

ArrSKTIw;: exact code =Bj 2iOt hâ bees gewrated fcr the t c l l o v t x r g constructs. check the* for ccxrect&e»a:

SCCRCE: Attribute<pri7Bte,raak,assigcedto,Ta»kU--> "ARSrT: private *ask aaflignedtc = nev Taak(>; ia Pile “Iforce-java"R«ifcTftac* Scsze: 0rc7

SvS7l5C£: Attribute (private, 8=ployee, ê lcyee 11 rBaplcyccilGG] ,?Forcel--> ta&S£T: private Sî Ioyee ê ioyeeH ~ aey SgyXcyee ; la file Tfsc

Figure B.19 Generate code - in progress

r Dy;3iSB«s
B DSCovSStUSSnput

1$ ̂ D.-CoeS£HS'>Ctfpul Cl»== (piitTii, Esployee), CcnstniiMt (p-jtiio,Ŝ i=yee tf > Attiiiiiite (private, inc. t s p i d , 0, EBpioyee)At-trihate (pilTati,StIlag, eim=e, £-̂ l,fĴ loyeel Attribute (pri.i?aie,E«te,startdate,B‘jll,£:̂ l(!jett Kethc«(piiiic, Stiitg, G«tN&Ee, feplcyeel He tfccctr araa(-,-,Si Uiase, EBpl=yee, 1}Me ih=d (pi±>i i=, VO id, SetS»=e, Esplcyee JItotiodParan (Stj ioKEEl, bSMlES, 5?f!, 1J.... Method (public, 3«t i,ĜKpihodPar*al-,-,S ttSI Meti<id{pGblio,irai E,Sj MethodParaa(D«te, tdal Meti*d(piilic,St/MetbedPar*!*/-, -,^ta Method fpublic,v3i i,s«, V fr h m S r t ,r t .m i^ r r

M««g.
WCCESS PntKtt

& O'CiflS 5:-Q OiCcilSfianK £- ̂OXIsdS-fiillPaitnenl ifi-E) OXIstfS-EHS s-Gi ox:t!<»’«arnpi4
& £3 D.1Cff4S«t50epingCar S-£3 0-!CoaS-£tS

50USCS: Attribate<pri’rate,Ssiployee,e5?>Xoyeef j.El̂ loyeeflSOj.-̂ t-ee)--> TRaGE?: pri»at« EBpioyte ê spioyeer] = OSH E,̂ i=yee [ioci; in nip "T?cr=<
s « le v a ii::c S c c re : S. 5

Figure B.20 Generate code - process completed

-123-

B.4 Help Menu

This option opens the frame for displaying help content to the user. The following figures

show the different views of help content.

£ (D Drvcocjs-̂ ŝoutpui ClAss<pabi2.c, C e ^ lcy e e) , Ccn̂ ruĉ c: ipublle* e , eapld, 0 , Z s p le v^)
A ttzU ^ ^ t^ < p r ± 7 •re , c M » e , o sU i, C a p lo ve e f
A t t z <p r iir A te , D a t e s ^ a r e E t ^ l o y t e)
Ke-ti)o<i (pufcii. e , S t n.119, 5 e t R « e , & 9p lc ye ® j
)tet>«odFa.T«B (- , - , dct:j;aa«, I c y v e , 1 >
Metiacjd { p u b lic , TOldr gg *yjTW» E gp la fftc >
Ke%bodP«r«Ji{S-t;«T»g,Ti«aerSetf74& *,£ B p lo y«e r I)
H e th o d ip u b li.?, S g t? v sr & ^ ^ « ,£ B p la y e e >
M e^hodfA xoa(-, i)
K e t n o d ip u b llc , s e ^ s c c r r 2 « r e , E a ^ Ic yee l
He^^iCxi^a»a(I>«bCr a d » tC rS « t5 t A r t T « t e ,E ^ l o y E s , 1}
He th od < pisbl i c;, S t a: i i ig , Pc« i t i c a , S b ^ Icy« *)M«t.Sodfftru4-,-,̂ rê Po9xt4aQ,Ê loyftc, 1>

(p'ciblic, vẑ Ld, S e tE ^ P C 9 t M s n ,£ ^ lo y e e >
a 9.^.X n^

Wd!̂ oj?3e-̂DVC0«S.S5n)r 3̂ £ 3 D:̂Q«S3&IIPafTTi*ni
S ^ DrCotfSieiiS
2>- ea ox\?<3s--£«m<?}d
S D'SCo »̂Sf>oppingCa(‘ ŝ cttcô vata

SiAleyaace Scĉe: 0.67
KXJRCS: Attr̂ bû Sifiplâ'ee, eaployeeCI r Cẑlwyee [l?9j r rPsrce> —‘“> TAACsrr: priT&'te BapioyeELelSTAsce Scc«re: E{1C-0I; i= f i l e

Figure B.21 Help menu

sc iac2 : XtX îevaiice

C o d s APPLXCATION AT A GLANCE

AppUratltm Na>»:

V c n io n ; .
1.0

R H casc D ite^

Code S m m (Co4$>

AafiMtJI, 2011
D«>-fU>pcn:

« AAab .\hmt4 jilifli* .̂ b̂ifal Raî
W o r id n j:

Tbu tDbi Codc Swann (CodŜ >« it in jny^cmrnration of fte approach pcraosed fdi Model>to>Codc QI2C) LrxinfoanitkiCL *Tbit
tp p a * ^ «»<i koiST-Icd^e &om previous^ soivcd trKufoanatioa csamplcs tD sohrc aetr M2C tnaifiocnitMO picblems. First, w e p£OTidt« %%ctcf
TfAtr^ng Attm (trim 6>onatkai csac^les) aad input model is to be tca^ss&macd- The coastftacts d Aodds a t zeprescated as predicates. Knsrxicd^
fccsn craimng data is iiifem d by usitig hm dstic ic 2rch ft^gonthm iii^ ied P iitid e Sxraun OptLnz&tron {P5 0). Cucicntiy, this todl is o f gencfxtiac
Ja r* c o « from U ilL Class M od^ Sute ModtL logic ic svsittft mod^s c^n be »p«c;£ed u iiag Actjoa Specificitioc Laaguage <ASL).

OK

Figure B.22 Help menu - welcome screen
-124-

Pfjuti
{US?

D"C‘3d9£l

SC13RCE: At ileIeT»:̂ c«

YMcem t «ba«C4iJlPi»a~| Uwrttaw H ^lWotlMs tmpertaat l»otBtsi
SBOUT~Coas‘PRD3ECT'

iBtrodactloB;
T te C o d S a{^)lie«tieptt la k n p ig n c a B O O o o fa it ippioadipio|fio««d b n 3 to o » a < c o « te f a m ly icem tnodd t^T V atoo l

it dcrdo iicd fo i ihc ra lid2tioa o f p n p cx c d appw «fh

ThuCodS ipplkitioa ii X poutire fonnri towwh ctnoBatic U2C Bsufaontioa. Foctu 9t 41i>i tpfHoLOoa h to |o k u k jmi code baa
L'ML O u i tnoddi ind L.1IL StilE modcU:

Ch-errl*w!
Thtre lit i«ve«l fir«̂ ceenicidjl ud prepMmy toob Ihu tntntmte tlic tisk of ger.etati3g code 6dhi spteai models. Ail

ttesc]mIi t£lr GO tpptoKkti Out m motay bijfd <xi racticvxieU, tontfentKbon and aanifacmatio-ii Usiguages. Howevec, metainodds lie
rnfnpW n Qsilentasd, dusfbmBboa rules 2ie diScult W de£s£ aad tiaatfopnatioa s x bud m choose xad coeip»ebt3d, T& irukrt
M2C Craaifaoitttkia pmceti taae-fongBnifie, CUOIXXKOC tod cctt'^noe. Hcnrevci, ±is CodS tool it based <s: i^pnacfa t e t cukes KE2C
taatbxnalioo pusins by dmociitiat il Enxn truufaoDilM UopA{n, tnmfomution (u£e set. soon taa Ltii^Jigei' metiaxxkti and ifaca
evabtioa.'

CodS appUcat^vorb br abut tmsfi»sitionexai>^.e3 aadiaadc)* W be tnrnfbmied u ŝ kK. "niese ciOde!s ue leprese:^ u pitdict«r» in
fasai of 1 ‘ext ̂ e. Kcuailic seareh algodtiBi PSO it used to seuch for tlie mott opsimil cnrufccfTatioss for Ox Input modeb. laput ;nodds 3ic
tzM2i£>ime4 uiiaf Aic fcaex3tc<3 tobitiaa tad code piedicuet ia a text file. Fimllf, lte;e co<k piedicatn ̂ used eoeeneots nvt codc Oct.

IstcD<)<i9 l'Kr»:

OK

Figure B.23 Help menu - about C0(^$ project

t&nK
Ismp̂>hop(̂S'
1

zini

B '
|e>\ ^ OX:9>si

SOURCE: At̂ î eicTA2ce

Fie I 0 t tj«l --------------------------

dISir
~V̂ teciiW~f «boirtC<x«l>n^ f UwrGiiM»'t WcrttisS«!Bet>C9~| >nportairtPiMts f

U SER GUIDE
The ediMi of CodS appfi<9IM ii divided is 5 lesctsao).

1) C w m tly Opcmcd Projecn

opened (bi
Tbc left p*ae! of i&e CodS editn dii|4«n tbe cmemty opeoed pcDicet At 1 t=n^ col;: oae ptoiert n a be

2) AH Existing CodS ProJ«fts:
Theot^ptaelof(iicedi«M dk^niii*tafilleBtt2ntCodSpta)eeti.Tbeiepcojecl] ice ptncat is (be

1>;\Codr foiOa.

3) Ce»terP»Mli
The ceatci piael of Ac cdtw is OMd t e dii|rfiTiat « t £let-Ifuitiplc filet can be opcsed.

4) C o u o k ;
Tbt bottom pific! of tfce editoc « oied u 1 cceaoie fi> ± ip fa ^ metutei to the eod-UKL

5) M « b B ir Tovlbmr:
__________________________ The top of CodS editoi coctaiei t Menu bat «ari i Toefcai. AH optico»of ifct iitau bar ire ilio iTiikble ia

OK

îjpj/fr̂errt I ■ws
>tiGppingC3d
3S 1

Figure B.24 Help menu - user guide

-125-

JS.-,--

I H Edn Hc<
S[al«g

rMCodSSl D̂KO(JS 1 D̂Xodi

fH«-

SCCKCEr Atl EVAle7ftsce I

'̂ CodSHe-ip* T T ^

Ŵctra f AXWtC«mSPni)»ct f*
A Possible Working Sequence

♦ ' CieitE a oc«’pn^tciise:eclani]xEadvcinta|piO{ect&om±cd|fopacL V%xatxac!k]uoouf Slcoftbcpt^ectdtptxyrdiottie
c ^ t p ix x i f the fe o ^ te t i t opcacd s sd i; C b tp U ^ ia Ifce left p t c d

♦ Select ±top6<xi tar inyntiim aiatat d»a Ekf. AB Ces of tmaiac 4sa mKt bt impotttd tt ooce. Tbc«« Qci m mtomatioltT tttvcd « Ibt
Iqpac* fbUa of Ac u j ipU po «̂<t tad ue ibo dapUycd to ttic o k l

Sdeel &e optioa for ioqxxtii^ file jnptx model ooosMxti. Thii Jiput n c d d » be tu m & m ed it i-jtoc i i ttcaay u r e d is (be 'In put'
io idu of ^ cuixeol pnncct aod is iliD <Ŝ £pl<yed in tbe u s ic f pi!i£l.

CIi£k tlic ojMioa foe lm*!baaiBg modd. K p€0* ic« a £Ie ia ' s l^ a i{« code n npirwstcd u ptediciu* lod CodS »ID(«i ttai file in die
“OoJpot\Pre<lealei'Md« Of the ameaCj’opened pK w t

<2ccie opdoa fn^cnenb'sg coiie. T^s gCBtmit Sci of >i'ra code t e the pccnooilr piod^Kcd code p n ^ om . Tkde iir i files ue
ured iQ * e “Oaput'JiTa Code” tbidei of &e cuonu p(cje«.

OK

Figure B.25 Help menu - working sequence

^ D'Coasak 3 Saco« B aô cod!

•SCJKCE: Att

W3g. fTc

IMPORTANT POINTS

♦ Maltipfepraject* o n be cteattd. ABil:««ep(Oi«ca in »ved in D:\CodSfahiei.

♦ OalyonepnicctciQbeopenedatabaie.

♦ AlUtof iaaii:iB|pcoieftii>dupitT«d»;fc£ s l^pm dofllic CodSeditDt. Cuaeaclr opcaH pnjea it d itpU ^ is tiiclcftptaeL.

♦ ^Thcnnscfisipeitt taa><ba»6c& isd io|Kn model ^ be Emufoonc^ tboe £lci ue rAonutx)^ cude a put of tfce caoeadf
opened psojeet br upti^ JSe jfflpomed modeU Sfs in * e ftJJowiag fcMtr

D:\C<idS\«CLJnefltK- Opeced P « ^ l N'»a>e>\Ioput

« A3£!ei oftoiniafdm aiatbc isspoiteditoocc.

♦ Tlie iafioRnlfila of matlBcmuioaeximplet itouldbe <DO(-bee.*t BnpO(ti<i|iacoaeet &et ataTrcKtttio izie^ectedootpoi.

» Oa»t laodeli lad Sate isotkll takea ai iapot miT cacciin ictioa laafiute.-

♦ TWoaivtcCMBtaacDisenf;p2(tedbyC«dSi>ASL(Aca0â)e<i£ei(ioaLex-«ce>.K«o<fatta<(MoIjag'jageucuaeaaTR>ppcrted.
♦ PictuteCnaniaarenattafpottedbydiitCodSippacmop.

OK

Figure B.26 Help menu - important points

-126-

>h.jpF̂;Car

X3

Appendix C

TRAINING DATA

-127-

C.l Model 1 (Ml)

This section illustrates the class and state diagrams for the ‘Task Management System’.

C.1.1 Class Model

Position

*

-PositionkJ: ini = 0
T it le ; string = nul
■SalaryMin: int = 5000
-SaiaryMax: long = 500000

Employee

-E m p k J: int = 0
- E N a m e : String = nijH
-StartDate: Date = nul

♦GetTitleO: string
tSelTitle{PTitle: string): void
♦GetMinSalaryO: int
+SelMinSalary()rfnSa!arv: in t): void
+GetM axSalarv(): long
+SetMaxSalary(MaxSalaiy: long); vd d

+GetNam e{): string
+ S«tNanie{Nam e: a iin g): void
+GeiStartDate(): Date
+SetStartDate{SDate: Date): void
+Gei&npPositionO: string
+S€tEmpPosition(Eposition; string)

0..1

-T a s k ID : int = 0
-T askN am e ; string = null
-TaskDescription: string = null

0..’

.- .T a s k

+GetTaskNam e(); siring
+SetTaskNam e(TNam e; siring): void
+GetTaskDescfiptionO: string
+SetTaskDescription(TDes<jiption: string): void

1

0./

Manager Operative

-MonthlySalary: ini = 0 -HouflySalary; int = 0

+ G etM o(i0 ilyS alar^: int
+SetMonth]ySalary(MSalary; in i): void

♦GetHo(jrtySalafv():int
♦SelHourtySalary(HSaIary i int): void

TForcfl

-T Fo rce id: int = 0
- a o u p N a m e : string = null

+ G etTForc eTask O : string
+GetGroupNam e(); striig
+SelGfoupNam e (G Nam e; string); void

Figure C J Class model of Task Management System’

C.1.2 State Model

th is section shows the state models corresponding to classes in the class model of the

Task Management Systenx

-128-

State Model o f ‘Employee'

Figure C.2 State model of ‘Employee’

State Model of ‘Task'

op3 :CancelT askl]
\ /

\ /

Created op2:AssignTask[]

do / Activity

Cancelled
do / Activity

op3 iCancelT ask[]

\ /
Assigned

do / Activity

-̂------ 7
J

op3 .C ancelT ask[]

V
d>
Tfti
?

r C om pleted ^ C InProgress*'^
do / Activity ^ ----------------------------------

do / Activity < — O5
V J [workcom pleted==tnje] V ^ - J

Figure C.3 State model of Task’

-129-

Figure C.4 State model of ‘TForce’

State Model of ‘Position ’

SQ_

op3:DlsAp prove []
\ /

\ /

Created
do / Activity

op2;Approve[]

Removed
op5; RemovePosition[] A /

do / Activity
[isvacant==true]

Vacant
do / Activity

/ \

...........

1

-----------------------------^C Occupied ^

op5; Remove Posit! on []
do / Activity

L J

op4:NewAppolntment[]

Figure C.5 State model of ‘Position’

-130-

C.2 Model 2 (M2)

This section shows the class and state models for the application of ‘Book Bank’.

C.2.1 Class Model

Person

-P ID ; int = 0
-Name: string = null
-Address: string = nuH

+GetName(): string
+SetName(PName: string, parameter); void
+GetAddress{): string
+SetAddress(PAddress : string): void

Student

-TermAddress : string = null
-Course : string = null

+GetTermAddress(): string
+SetTermAddress(TAddress : string): void
+GetCourse(); string
+SetCourse(TCourse ; string) :void

Lecturer
-Subject; string = null

+GetSubject(): string
+SetSubject{Subj: string); void

Loan
-Loanid : int = 0
-FromDate: Dale = null
-ToDate ; string = null

+GetToDate(): Date
+SetToDate(Tbate: Date): void
+GetFromDate(); Date
+SetFromDate(SDate ; Date): void
+GetLoanOwner(); string
+SetBookAuthor(Author; string); string

0..’

Book

-Bcokid : Int = 0
-Title; string = null
-Author; ^ring = null

+GetTitle(): string
+SetTitte(BTitle; string); void
+GetAuthor(); string
+SetAuthor(BAuthor; string): void

Figure C.6 Class model o f ‘Book Bank’

C.2.2 State Model

The state models of the Book Bank application are presented in this section.

-131-

State Model o f 'Person ’

Figure C J State model of ‘Person’

State Model of ‘Loan'

\ /

op1 :AppSubmitted[l

f Rejected ^ op3:RejectLoan[] C Requested ^ op2:AcceptLoan[]
do/Activity

V J

< - - - - - - - - -̂ - - - - - - - - - - - - - do / Activity

V _ J
\ k

f Sanctioned |

Paid
do / Activity

/ \

[loan_amount==paid_amount]

ReturnlnProgress
do / Activity

loan_amount<paid_annount]

Figure C.8 State model of ‘Loan’

-132-

State Model o f ‘Book’

Figure C,9 State model of ‘Book’

C.3 Model 3 (M3)

This section illustrates the class and state models for the ‘Bill Payment System’.

C.3.1 Class Model

Figure C.IO Class model of ‘Bill Payment System’

-133-

C.3.2 State Model

This section demonstrates the state models corresponding to the classes of the Bill

Payment System.

State Model of 'Command'

Figure C .ll State model of ‘ Co mmand ’

State Model of ‘BilV

Figure C.12 State model of ‘Bill’

-134-

op3:Deleteltem

Figure C.13 State model of ‘Item’

State Model o f 'Client’

Figure C. 14 State model o f ‘Client’

-135-

t

C.4 M odel 4 (M 4)

This section illustrates the class and state diagrams for the ‘Student Enrollment System’.

C.4.1 Class Model

Student

-Studentid: int = 0
-Name: string = null
-Address : string = null
-PhoneNo:long = 0
-Email: string = null
-AverageMark : string = null

+GetName(): string
+SetName(SName ; string); void
+GetAddress(): string
+SetAddress(SAddress ; string): void
+GetPhoneNo{): string
+SetPhoneNo(Phone : long): void
+GetEmail(): string
+SetEmall(Mail: string): void
+GetAverageMark(): string
+SetAverageMark(AvgMark : string): void

enrolled

0..*

Professor

-Professorid : int = 0
-Name; string = null
-Address: string = null
-PhoneNo: long = 0
-Email: string = null
-Salary: int = 0

+GetName(): string
+SetName(PName : string): void
+GetAddress(): string
+SetAddress(PAddress : string); void
+GetPhoneNo{): long
+SetPhoneNo(Phone : long): void
+GetEmail(): string
+SetEmail{Mail: string): void
+GetSalary(): int
+SetSalary(PSalary: int): void

instructs

1..*

Enrollment

■EnrdlmentlD: int = 0
■MarksReceived: double = 0

+GetMari(s(): double
+SetMarks(Marks: double): void
+GetEnrolledaudet(); string

1..*

onwaitinglist

0..*

0..*

in

1

Seminar

■Seminarid; int = 0
■Name: string = null
■Fees: int = 0

+GetSeminarName(): string
+SetSenninarName(SName ; string, parameter): void
+GetSeminarFees(); int
+SetSeminarFees(SFees : int): void
+GetSeminarProfessor(): string

Figure C.15 Class model of ‘Student Enrollment System’

-136-

C.4.2 State Model

The state models corresponding to the classes of the Student Enrollment System are

presented in this section.

State Model of ‘Student’

-137-

State Model o f ‘Enrollment'

Figure C J7 State model of ‘Enrollment’

State Model of 'Seminar'

Figure C.18 State model of ‘Seminar’

-138-

State Model o f ‘Professor’

Figure C.19 State model of ‘Professor’

C.5 Model 5 (M5)

This section illustrates the class and state diagrams for the ‘Purchase Order’ apphcation.

-139-

C.5.1 Class Model

0..10

Customer
-Custcxnerid : int = 0
-Name : string = null
+GetCustomerNanrie(): string
+SetCustomerName(CName : string): void
+GetPhoneCount(): int

1

places

PurchaseOrder
-Pid : int = 0
-OrderDate = Date
-SHipDate = Date
+GetOrderDate(): Date
+SetOrderDate(Obate : Date): void
+GetShiipDate(): Date
+SetShipDate(SDate : Date): void
+Contains Li neltemO : boolean

Phone
-Numbe'r = int
+GetPhoneNo(): int
+SetPhoneNo(phno : int): void

1
Address

-Street = string
-City = string
-State = string
-Zip = int
+GetStreet(); string
+SetStreet(st: string); void
+GetCity(): string
+SetCity(cityname : string): void
+GetState(): string
+SetState(statename : string): void
+GetZip(): int
+SetZip(2ipcode ; int): void

1

shipto

Stockltem

*
-Sid : int = 0
-Price : int = 0
-TaxRate : float = 0Lineltem

refersto-Lid : int = 0 +GetPrice(): int
+Setprioe(SPrice : int): void
+GetTaxRate(): float
+SetTaxRate(TRate ; float); void

+GetLine!temO: int 1 1

Figure C.20 Class model of ‘Purchase Order’ application

-140-

'<r

This section shows the state models corresponding to the classes in the class model of the

Purchase Order application.

State Model of ‘Customer'

C.5.2 State Model

Figure C M State model of ‘Customer’

State Model o f 'Phone’

Figure C.22 State model of ‘Phone’

- 141-

State Model o f ‘PurchaseOrder’

Figure C.23 State model of ‘PurchaseOrder’

State Model of ‘Lineltem’

Figure C.24 State model of ‘Lineltem’

-142-

State Model o f ‘Address'

Figure C.25 State model of ‘Address’

State Model of ‘Stockltem ’

Figure C.26 State model of ‘Stockltem’

-143-

C.6 Model 6 (M6)

This section illustrates the class and state diagrams for the ‘Library Management

System’.

C.6.1 Class Model
accessedupdatedby

Catalogue

Name: string = nuD

-Created :̂ string = nud

-TotalBooks: int = 0

+G«tNameO: string
SetName(CName: string); void

+GetCatedogueQeatofO: string

■SetCatalogueCrealorlCaeator: string): void

+GetTol8lBot*s(): int

*SetTo(alB<x]ks{TBooh$: int): voKi

GetBooksCountO; int

J

■ W t : string = ml

Author: string = n u l

-SubjectVea : stiing = null

•ISBN; stiing = nun

•DateAdded; Date = nuH

-NumberolCopies : kit = 0

Book

+G«tTitle(): string

+S«Title(BTitle: string): void

+GetAultiofO; stiiig

S«lAiJthQr(BAijttvar: siring): void

+GetSubjectAfeaO: striig

+S«tSubje«Afea(SAfea: siring): void

CetlSSNO: string

+S«tlSBN{BISBN: siring): void

+G«tDateAddecl(): O i\e
ŜetDateAdded̂ BDate: Date): \«id

-̂ GetNoo<CDpies{):
SetNoofCopie5(noc: int): void

■ A

notifiediy

containsinfoabout

IssubateBooK

IssuancelD; int = 0

IssueCount: int = 0

•LastlssueDate: Date = nuB

+GetlssueCojnt{): int

fSetlssueCountiCount: lit): void

GetLastlssueDateO: Date
♦SetlastlssueDate(IDate: Date): vdd

ReferenciBooh

-RetlD; int = 0

+GefRe1BooKsCaunt(): int

-LljlD:int = 0

-FNa'me : string = nul

■WdJelnitial: string = nuU

-LastName: string = nul

■LosinID: string = nul

-Password: striig = nul

-OateAJded: Date = nuB

-EmaiAd*ess: string = nul

-HoneAdiess: string = null
-Contacthf 0 : string = nul

Librarian

+GetFName(): string

+SetFNfune(LFname; string): vdd

+GetMiddlelnSal(): string
+SdMddlelnibal(Mbiitiai: string): vdd

+GetLastNameO: string
+SetLastNaine{LName: string): wiid

GetLô lDO; striig

+SetLoginlD(LDgfi: string): vdd

+GetPasswcrdO: string
+SetPassword(Pswd: stririg): void

+GdDateMded(); Date

+SetDateAtlded(AddDate: Date): void

GetEmalO; string

'•■SdErMll(Eniay: string): vdd

+GetHomeAddressO: string
+Ê HcrTieAi!lress(Addr«ss: string): void

+GetCaitactlnfo(): string
+SetContadlnfo(Clnfo: string): vdd

■AlertNumber: striig = nuB

-CreatedBy: string=nul

-Content; string = nul

-CreatedOn: string = nul

-Categcry; string = nul

Alert

♦OdCr^dO: string
+SdCrealof{NBme; dring): vdd

♦GetContenlO: striig

+SetContent(ACantent: Striig): vcid

♦GetCreatedOnO; string

+S«CreatedOn(Name: string); void

♦GetCategoryO; stiing

+SetCategory(Name: string) ivdd

getsupdatecby

-MembetiD: int = 0

•FName: string = nul

•Middelnitial: string = null

-LastName: string =nul

-DOB: Dale = nul
-Memt>er$tiipDate: Date = null

■Address: string = nul

■CcntaetNumber: string = nul

EmalAdciess; string = rwl

Membw

GetFName(): stnng

SetFNamê fJame: string): void

+GetMkJdlelnitial(): string
+SelMddleiuU3l(Mlrriial: string): vdd

+GetLastNarrie(): string

♦SetLastHame(LKam«: string): void

GdDOB(): Date
+SetDOB(EithDate: Date): vdd

+GetemberstiipDatef); Dale
SetMembershipDateiMDate : Date): vdd

GetAd*Ms(); string

*SetAddress<MAdciess: sding): vdd

+GetContaĉ): stihg

+SefCOntact(Ccntact: string): vdd

+GetEmal{]: string

+SetEtT)all(EMa3: string); vdd

A

FacUtyMember Student

-EmployeelD: iit = Q -Sct5OdNuir*er:inl = 0

-CdlegeName: string = niil -SchadNanie: string = null

+Ge4CdlegeNameO: string +GetSdioolNan«(): string

+SdCcJegeName<Narne: stiing): vdd +SetScTiodNameiName: strrg): vdd

Figure C.27 Class model of ‘Library Management System’

- 144-

C.6.2 State Model

This section shows the state models corresponding to the classes in the class model of the

Library Management System,

State Model of *Catalosue’

Figure C.28 State model of ‘Catalogue’

State Model of 'Book’

Figure C.29 State model of ‘Book’

State Model of ‘Alert’

op1 :NewAlert[]
\ /

r Active ^ op2:DlsableAlertt] r Disabled ^
do / Activity

V y
do / Activity

op3:ActlvateAlert[]

Figure C.30 State model of ‘Alert’

State Model o f ‘Librarian ’

Figure C.31 State model of ‘Librarian’

State Model of ‘Member’

\ /
op1 :NewMember[]

[expirydate=currdate]
C Active j

op2:RequestBook[]; [book_status=="availab[e'Tdo/Activity

N / V - - - J
\ /

^ ;.- ..■;..."N
Passive

do/Activity
op4:RenewMembership op3:ReturnBooks[]

do/Activity

/
r Waiting ^ op2:RequestBook[]: [bok_status=="available'']

do / ActMty

V ^
op2:RequestBook[]: (book_status=="nota vail able"]

Figure C.32 State model o f ‘Member’

-146-

C.7 Model 7 (M7)

This section illustrates the class and state diagrams for the ‘Online Shopping System’.

C.7.1 Class Model

P ro d uct

-ProductName: string = nul
- Product Descriptien: string = null
OtherDetails ; string = null

+GetProductName(); string

+Se<PTOductName(Nam«: string): void

Get Product DescriptionO : strmg
♦SetPrcxJuclDescriptionlDescrpticn : string): vcid

GetOtherDdailsO; string
+SetOtherOetaiIs(Details : string): void

1

0..*
lls m T o P u r chase

-Q u na tity ; int = 0
-P rice P e rU n it: double =

GctQuanlity(): int'
+Se{Quantity<quan : int): void

+GetPricePerUnitO : double
SetPricePertlnit(price : double): v o id

+GelProdUctName<): siring

+SetCartVatAniount(va[: int); void

S h o p p ln g C a it

-SubTotalMoney: double =
-VatAmount: rt = 0
-TotalMonry: int = 0

+GetSutTdalMoney(): double

-»Ŝ SubTotalMoney(SUbMoney; double): void
+G*tVatMi:oey(): ini
+SetVatAmount(Amount: int); void

+GetTotaJMoney(): douWe

+SetTotalMcneytTotal: double): void

+GetCartOwnerO : string

C u s to m e r

■CustomerName: siring = null
■BillirjgAddress: striig = null

-ShippnaAdd-ess: string = null
■EMaaAri*ess : sfring = null

C re d it C ard

-Issuer: string = nul
-CardJ*jmber: string = null
-DateOfExpiiy: Date = nuH

+Getlssuer(): string

+Setlsajer(lssuerName : string): void

GetCardNuntert); int
+SetCardNumb«(Number: Int): vdd

GetMeofExptrvO: Date
+SetDateof&:piy(Expiry: Date); vo(d

tGetOiscountRateO: douKe

+GetCuston»erAd(*ess{}: string

+SetCustcoierAd*ess{Nam« : string); void

IBillingAddressO: String
+SetBifingAddress(Ad(*ess; string); void

♦GetStiippingAddressO: string
+SetShippinĝ ress(Address : string): void

♦GelEmalAdctessO: string

+SetEriTailAdctess(Email: string): void

+G«OtherDetails(): string

+SetOtherDe}ails(Details ; string): void
---- --------------

PreferrgdCustomef

DiscountFiale : double = 0

■AppfovalDate : Date = null

♦GetDiscountRateO: douljle

♦SetDiscduntRatetascount: doubfe); void

+GetApprcvalOateO; Date

■i'SetApprovalDate(A(̂ roval: Date): void

Figure C.33 Class model of ‘Online Shopping System’

C.7.2 State Model

This section shows the state models for the classes of Online Shopping System.

State Model of ItemtoPurchase'

Figure C.34 State model of ‘ItemtoPurchase’

-147-

m
op1 :C reate[]

State Model o f ‘ShoppinsCart’

Em pty
do / A ctivity op2:A dd ltem []

N/

D e le te lte m : titem count==:0]

C o n ta in lle m s
do / A ctivity

A rch ive
do / A ctivity <■ op3:C heckoutJtem s[]

Figure C.35 State model of ‘ShoppingCart’

Figure C.36 State model of ‘Product’

-148-

State Model o f ‘CreditCard'

Figure C.37 State model of ‘CreditCard’

State Model of ‘Customer’

op2:DeleteCustomer[]

Figure C.38 State model of ‘Customer’

C.8 Model 8 (M8)

This section presents the class and state diagrams for the classes in the ‘Purchase

Management System’.

-149-

C.8.1 Class Model

Customsf

Name; string = nuU

•Adtiess : string = nuB

♦GelNameO: sftmo
♦SetName(CName : string): void

♦G«lAddressO: siring

+SetAddress(CAddress ; string): void

C r « d il

•Numbef ; int = 0
•Tvpe : string = null
ExpiryDate : Date = nuH

+GetNumber(): int
-»SetNun4er{CredltNo: ini); void

♦GetCrMflType(>: string

+SetCretiHTypc(CType ; string): void

+GetExpiryf3ateO : Date
*S«tExpiryOa(e<B(pDate : Date); void

-ShippmgWeiŝ it: double =
-Descriptioo ; string = null

♦GetShippngWeiŝ tO: dout>le
+SetShiRjinflWeight(Weî t: double): void

+Ge4Descriptioii(): string

+SeJDescrip<ioo(Desc : string): void

1..*
Payment

■Amount: double =0

+GetArtv5un(0: double

+SetAmount(PMiount: double): vdd

YTT
C as h

-CashTefidered: int = 0

+GetCashTenderedO : ir*t
+SetCashTendered(TenderedAmaint: int): void

. _ . Order .

-OrdefDate : Date = null

-OrderStatus; string = nul

♦G rtO rderD ateO : Date
♦SetOfderDate{ODate : Date, parameter): void

♦GdOrderStatu so: string
♦SetOderStatus(Status : string): void

♦G<rfOrdcrOwner(): string
♦GetOrderltema;): string

Cheque
■Name; string = null
■BanklD:int = 0

■tGetNameO: string

■fSetName(CName : string); vdd

+GetBanKIO(); int
+SetSanklD(BID: int): void

-Quantity: iit = 0

Tax^tus : string = null

♦GetQuantityO: int

SetQuantity(Quan : int): void

+GetTaxStatus(): string

SetTaxSfatusiStatus : stnng): void

♦GetltemWeightO; double

Figure C.39 Class model of ‘Purchase Management System’

C.8.2 State Model

This section shows the state models for the classes of Purchase Management System.

State Model of ‘Customer'

-150-

State Model o f ‘Order’

V
op1 :CreateOrder{]

op3:ShipOrder: [allitemsavailable==true]r Created
do / Activity [order_delivery=true]

op2:CancelOrder(

\ /

/
\ /

Shipped
do / Activity

Cancelled
do / Activity

Delivered
do / Activity

/ \

[order_delivered==true]

Figure C.41 State model of ‘Order’ ^

State Model of 'Payment’

Figure C.42 State model of ‘Payment’

-151-

State Model o f ‘Item ’

Figure €.43 State model o f ‘Item’

State Model of "OrderDetaiV

Figure C.44 State model of ‘OrderDetail’

-152-

C.9 Model 9 (M9)

This section illustrates the class and state diagrams for the ‘Drawing Application.

C.9.1 Class Model

Object EventHandler
- N a m e : string = null -NextEventHandler: string = nuB

+GetName(): string
+ S e t N a m e (O b j N a m e : siring): void

<!------------ ♦GetNextEventHandlerO : string
+SetNextEventtiander(Next: string): void

-Position : float = 0
-Type : string = null
-Selected : string = null

Shapa

+GetPositior(): string
+SetPosition(Pos : Uoat): void
+GetType(): string
+SetType(SType : string): void
+GetSelected(): string
+SetSelected(Seled : string): void

Box

•Width : double = 0
-Height: double = 0

+GetWidth(): double
+SetWidth(BWidlh : double): void
+GetHeight(): double
+Se{Height(BHeight; douWe): void

Z—5

Application
-Name : string = null

+GetName(): string
+SetName(AppName: string)
+GetAppDocs{): int

void

List

■ltemCount:int=0

!+GetltemCountO: int
l+SetltemCount(Caint: int): void

Circle
-Radius : double = 0

+GetRadius(}: double
+SetRadius(Rad ; double): void

V *

Window

-Name : string = null

+GetName{}: string
+SetNarrie(WName : string): void
+GetWindowPalette(); string

1 1..*

Palette

•Tool; string = null

+GetToolO; string
+SetTod(PTool: string); void

Document
-Name; string = null

+GetName(); string
+SetName(D6cName : string); void
+GetDocListCount(): int

Figure C.45 Class model of ‘Drawing Application’

C.9.2 State Model

This section shows the state models corresponding to the classes in the class model of the

Drawing Application.

-153-

State Model o f ‘Object’

Figure C.46 State model of ‘Object’

State Model of ‘Shape'

Figure C.47 State model of ‘Shape’

State Model of ‘List’

Figure C.48 State model of ‘List’

-154-

State Model o f ‘EventHandler’

Figure C.49 State model of ‘Eventhandler’

State Model of ‘Application’

Figure C.50 State model of ‘Application’

State Model of ‘Box'

Figure C.51 State model of ‘Box’

-155-

State Model o f ‘Circle'

Figure C.52 State model of ‘Circle’

State Model of ‘Document’

Figure C.53 State liiddel of ‘Document’

State Model of ‘Palette’

Figure C.54 State model of ‘Palette’

State Model of ‘Window’

Figure C.55 State model of ‘Window’

-156-

CIO Model 10 (MIO)

C.10.1 Class Model

This section illustrates the class and state diagrams for the classes corresponding to the

‘Account Management System’.

Account

-Name: siring = mil
Hwnee: string - nun
■̂ ilanager r string = niM
p̂ vestment: double = 0

+GetNarie<): string
SetNameCAccName; string); voW
G«tOwnef(): strhg
5etO»mer(OAnefName : string): void

-t^GelMa/iagetNuneO: string
SetManaBwName(Nane : string): void

♦Getlnvestmenti): double
«-Setlnvestmsnl(^cunt: double); void

1

-Unit: dod>le = 0
-toMalUnflPrice: douMe = 0
TransadiorO^e : Dale = nu*

tGetUnitl): double
+SetUnit(TUnit: double): void
+G«tlnitialUriaPrice{): double
+Seflniiian;nilPrice(Price: double): vdd
+GetTtansacticrDa!eO ̂ Date
+SetTiansacliooDale(TDate: Date): void

GetParbc^alingAccountst): ini

Name : string = nuH
-Description : string = nuO
-ManagementFee ; (kxjhle = 0

«GelName(): string
SetName(ProdName : string): void
■GetD«OTpfian(); string

+SetOesaiption(ProdDeBC: string): void
+Ge(Msnagen>entFee(l: doiAile
+SetMaria9ernentFee(Fee : double): void
+Ge(ProdTransacdonO: Date

j n
Address

StreetNaine : sbing = nul
SireelNumber: int = D
City: sbng = nui
ZipCcde : slrirg = nul
State 1 string = nul
Courtry; strings nul

+GetSlicetllafneO: strirg
SetStree4Name(Name : string): void

+C5etStreeU*Jti*flfO; int
+Se1 Street Mumbef(Number : Int): void

GelCityU: strirg
SeJCiy(NaiT» ; string): void

+GetZipCcde(): string ,
+SetZipCo<Je<Code: sbing): void
-»GetSlate(): string
♦SetSlilelName : siring): void
♦Getceunljy.); siring
«SetCountiy(Nanie : strirg): vcid
♦GaResidenlO: sltig

Psreon
FirstName; suiig = nJi
lastName : siring = nul
Emal: string = nul
Ltsemame : strtig = nul
Passwnd: string = nul

+Getf»stNaine{): string
SetF5fst«ame{FName: string): vdd
GetlastNameO: siring

+SetUstNarr*(LName : string): void
-^GetEmail): siring
■>SetEnal(Ma3 ; siring): void
'»GetUserN«ne(): string

SetUsetNameiName: string) Lvcid
+GetPasswordO: siring
«SetPassword(Pswd : string): void
♦ GetPefsonlnlerestO: double

■Inlerest: loat = 0

+GetWerestO: floe!
+Setlnterest(Miount: tloat} ̂

llanag^dFmd
-FunaO : int» 0
QstJtution ; douUle = 0 1

-CunentUnitPrke : Joat = 0
GelDistribubonO: double

-•-SetDisttSxitkxWDist: double); void
GdCufrentUn»ftice(): lost
SefCunentUnilPtjce(Price; loel): void

-Inlefest: tloat - 0

'•’GetlfiterestO: toat
♦Setlnterest(^ourjl: Joal): vdd

Figure C.56 Class model of ‘Account Management System’

C.10.2 State Model

The state models corresponding to the classes of the Account Management System are

illustrated in this section.

157-

State Model o f ‘Product’

Figure C.57 State model of ‘Product’

State Model of 'Cash'

Figure C.58 State model o f ‘Cash’

-158-

State Model o f ‘M anaeedFund’

Figure C.59 State model of ‘ManagedFund’

State Model of ‘Loan’

Figure C.60 State model o f ‘Loan’

State Model of ‘Address’

Figure C.61 State model of ‘Address’

-159-

State Model o f ‘Person ’

Figure C.62 State model o f ‘Person’

State Model of ‘Transaction’

Completed
do/Activity

op1 :NewTransaction[]

\ /
Created

do / Activity op2:AutiiorizeTransaction[]

\ /
^Authorizing ^(Rejected] do / Activity

V - J
r

do / Activity ^ op3:Pay{]: [status!="ok”]

op4:CompleteTransaction[]
Authorized

do/Activity op3:Pay(l: |status=="ok")

Figure C.63 State model of Transaction’

-160-

State Model o f ‘Account'

Figure C.64 State model of ‘Account’

-161-

Appendix D

GENERATED CODE

-162-

• s w

D,1 Elevator Control System

This appendix is dedicated to illustrate the code generated by C0(^S corresponding to the

Elevator Control System (ECS).

Buildins.iava

public class Building {
public Building(){
}
private String name = "IIUI";
private String address = "H-10 - Islamabad";
private int minfloors = 0;
private int maxfloors = 50; »■
private Floor floor = new Floor();
public void hallCallButtonPressed(int calling_floorno,int current_floorno)
{
floor[calling_floorno].hallButtonPress(calling_floorno, current_floorno);
}

public void hallCallButtonReleased(int calling_floorno) ^
{
floor[calling_floorno].hallButtonRelease() ;
}

public boolean validFloor(int floorno)
{
boolean valid = false;
if(floorno >= minfloors) {
if(floorno <= maxfloors) {
-valid=true;
}
}
return valid;
}

public String getName{)
{
return name;
}

public void setName(String bname)
{
name=bname; ^
}

public String getAddressO
^ 1 ,return address; ^
}

J

-163-

public void setAddress{String baddress)
{
address=baddress;
}

public int getMinFloors()
{
return minfloors;
}

public void setMinFloors(int min_floor)
{
minfloors=min_floor;
}

public int getMaxFloors{)
{
return maxfloors;
}

public void setMaxFldors(int max_floor)
{
maxfloors=max_floor;
}
}

Button, iava

public class Button {
public Button{){
}
private String status = "idle";
public String getStatusO
return status;
}

public void setStatus(String stat)
{
status=stat;
}
}

CarButton.iava

public class CarButton {
public CarButton(){
}
private String button_status = "idle";
private String light_status = "off";
private CarButtonState cb_state = new CarButtonState();
public void illuminate()
{
cb_state.illuminate();

-164-

public void turnOffO
{
cb_state.turnOff();
}

public String getButtonStatus()
{
return button_status;
}

public void setButtonStatus(String stat)
{
button_status=stat;
}

public String getLightStatus()
{
return light_status;
}

public void setLightStatus(String Istatus)
{
light_status=lstatus;
}

public CarButtonState getCarButtonState{)
{
return cb_state;
}

public void setCarButtonState(CarButtonState cbstate)
{
cb^state=cbstate;
}
}

CarButtonoff. iava

public class CarButtonOff {
public void Entry{)
{
this.doActivity0;
}

public void Exit()
{
}

public void doActivityO
{
this.setButtonStatus("idle");
this.setLightStatus("off") ;
}

}

public void illuminate()
i

-165-

L
i
f
I

this,setCarButtonState(cb_on);
getCarButtonState().Entry();
}
}

CarButtonOn. iava

public class CarButtonOn {
public void Entry()
{
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
this.setButtonStatus("pressed");
this.setLightStatus("on");
}

public void turnOffO
{
this.setCarButtonState(cb_off);
getCarButtonState().Entry();
}
}

CarButtonState. iava

{

public class CarButtonState {
private CarButtonOn cb_on = new CarButtonOn{);
private CarButtonOff cb_off = new CarButtonOff();
public void Entry{)

public void Exit()

public void doActivity{)

public void illuminate 0

public void turnOff()
{

-166-

}
}

CarLantem.iava

public class CarLantern {
public CarLantern0{
}private String lantern_status = "off";
private CarLanternState cl_state = new CarLanternState();
public void illuminate{)
{
cl_state.illuminate();
}

public void turnOff()
{
cl_state.turnOff();
}

public String getStatusO
{
return lantern_status;
}

public void setStatus(String status)
{
lantern_status=status;
}

public CarLanternState getLanternState()
{
return cl_state;
}

public void setLanternState(CarLanternState clstate)
{
cl_state=clstate;
}
}

CarLantemOff. iava

public class CarLantemOff {
public void Entry()
{
this.doActivity();
}

public void Exit()
{
}

public void doActivity()

-167 -

this.setStatus("off");
}

public void illuminate()
{
this.setLanternState(cl_on);
getLanternState().Entry();
)
)

CarLantemOn. iava

public class CarLanternOn {
public void Entry()
{
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
this.setStatus("on");
}

public void turnOffO
{
this.setLanternState(cl_off);
getLanternState().Entry();
}
}

CarLantemState. iava

public class CarLantemState {
private CarLanternOn cl_on = new CarLanternOn();
private CarLanternOff cl_off = new CarLanternOff();
public void Entry()

{

public void Exit()

public void doActivity()

public void illuminate()
{

1

■ ■ I

public void turhOffO
{
}
}

CarPositionlndicato r. iava

public class CarPositionlndicator {
public CarPositionlndicator0{
}
private String position_status = "passive";
private int desired_floor = 0;
private CPIState cpi_state = new CPIStateC);
public void show(int floorno)
{
cpi_state.show(floorno) ;
}

public void clear()
{
cpi_state.clear() ;

}

public String getStatus()
{
return position_status;
}

public void setStatus(String status)
{
position_status=status;
}

public int getDesiredFloor{)
{
return desired_floor;
}

public void setDesiredFloor(int dfloor)
{
desired_floor=dfloor;
}

public CPIState getCPState{)
{
return cpi_state;
}

public void setCPState(CPistate cpstate)
{
cpi_state=cpstate;
}
}

-169-

public class CPIActive {
public void Entry()
{
this.doActivity{);
}

public void Exit{)
{
}

public void doActivity()
{
this.setStatus("active");
}

public void clear 0
this.setCPState(cpi_passive);
getCPState().Entry();
}
}

CPlPassive.iava

public class CPIPassive {
public void Entry()
{
this.setDesiredFloor(-1);
this.doActivity(};
}

public void Exit()
{
}

public void doActivity()
{
this.setStatus{"passive");
}

public void show(int floorno)
{
this.setDesiredFloor(floorno);
this.setCPState(cpi_active);
getCPState().Entry();
}
}

CPIState.iava

public class CPIState {
private CPIActive cpi_active = new CPIActive()

CPIActive.iava

-170-

private CPIPassive cpi_passive = new CPIPassiveO;
public void Entry()

public void Exit()

public void doActivityO

public void show{int floorno)

public void clear()

Dispatcher, iava

public,class Dispatcher {
public Dispatcher(){
}
private int max = 1000;
private int destinationQueue{] = new int[max];
private int front = 0;
private int rear = 1;
private int current^floor = 0;
public int getCurrentFloor()
{
return current_floor;
}

public void setCurrentFloor(int floor_no)
{
current_floor=floor_no;
}

public void enque(int floorno)
{

if (front != rear) {
destinationQueue[rear]=floorNo;
rear=rear+l;
if (rear == max) {
rear=0;
}
}
}

public int deque{)
-171-

int temp = -1;

if(front == rear-1) {
return temp;
}

if(front == max-1) {
if (rear == 0) {
return temp;
}
}
front=front + l;
if(front == max) {
front=0;
}
temp=destinationQueue[front];
return temp;
}

public boolean isEmptyO
{
boolean empty = false;
if(front == rear-1) {
empty-true;

if(front max-1) {

if(rear == 0) {
empty=true;
}
}
return empty;
}

public void atFloor(int source_floor,int destination_floor,String direction)
{
current_front=source_floor;

if(direction == "down") {
this.decrementFloor();
}

if (current_floor > destination_floor) {
}

if(current„floor > destination_floor) {
this.decrementFloor();
}

if (direction == "up") {
this.incrementPloor();
for(int i=0; i<50; i++){]

>•
t
I
V

{

- '̂72 ̂ I

if(current_floor < destination_floor) {
}
}
}
}

public void decrementFloor0
{
current_floor=current_floor-1;
}

public void increraentFloor()
{
current_floor=current_floor+1;
}
}

Door.iava

public class Door {
public Door(){
}
private String door_status = "closed";
private int door_reversal = 0;
private DoorState doorstate = new DoorStateO;
public void close()
{
doorstate.close() ;
}

public void open()
{
doorstate.open();
}

public void reverseDoors()
{
door_reversal=l;
doorstate.reverseDoors() ;
}

public String getDoorStatus()
{
return door_status;
}

public void setDoorStatus(String status)
{
door_status=status;
}

public int getReversalStatus()
{
return door_reversal;

-173-

public void setReversalStatus(String reverse)
{
door_reversal=reverse;
if(door_reversal ==1) {
doorstate.reverseDoors();
}
}

public DoorState getDoorState()
{
return doorstate;
}

public void setDoorState(DoorState d_state)
{
doorstate=d_state;
}
}

DoorClosed.iava

public class DoorClosed {
public void Entry()
{
this-doActivity();
}

public void Exit()
{
}

public void doActivityO
{
this.setDoorStatus{"closed");
)

public void close ()
{
this.Entry();
}

public void open()
{
this.setDoorState(doorOpening);
getDoorState().Entry{);
}
}

DoorClosins. iava

public class DoorClosing {
public void Entry()

-174-

this.setDoorStatus("closing");
this.doActivity{);
}

public void Exit()
{
}

public void doActivity()
{
int r_status = 0;
r_status = this.getReversalStatus() ;
if(r_status == 0) {
this.setDoorState(doorClosed);
getDoorState().Entry();
)

if(r_status == 1) {
this.setReversalStatus(0) ;
this.setDoorState(doorOpening);
getDoorState().Entry();
}
}

public void reverseDoors{)
{
this -setReversalStatus(0) ;
this.setDoorState{doorOpening};
getDoorState().Entry();
}
}

DoorOpened. iava

public class DoorOpened {
public void Entry()
{
this.doActivity();
}

public void Exit()
{
}

public void doActivity(}
{
this.setDoorStatus{"opened");
}

public void open()
{
this-Entry();
}

{

-175-
t

public void close ()
{
this.setDoorState(doorClosing);
getDoorState().Entry();
}
}

DoorOpening, mva

public class DoorOpening {
public void Entry{)
{
this.setDoorStatus("opening");
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
int r_status = 0;
r_status = this.getReversalStatus();
if(r_status == 0) {
this.setDoorState(doorOpened) ;
getDoorState().Entry();
}

if(r_status == 1) {
this.setReversalStatus(0);
this.setDoorState(doorClosing);
getDoorState0 .Entry();
}
}

public void reverseDoors()
{
this.setReversalStatus(0) ;
this.setDoorState{doorClosing};
getDoorState().Entry();
}
}

DoorState.iava

public class DoorState {
private DoorOpened doorOpened = new DoorOpened();
private DoorClosed doorClosed = new DoorClosed();
private DoorOpening doorOpening = new DoorOpening();
private DoorClosing doorClosing = new DoorClosing();
public void Entry()
{

-176-

public void Exit()
}

public void doActivityO

public void close 0

public void open()

public void reverseDoors()

Drive java ^

public class Drive {
public Drive(){
}
private String elevator_status = "stopped";
private String elevator_direction = null;
private int speed = 0;
private int drive_sfloor = 0;
private int drive_dfloor = 0;
private DriveState drive_state = new DriveState{);
public void moveUp(int source_floor,int destination_floor)
{
drive_sfloor=source_floor;
drive_dfloor=destination_floor;
drive_state.moveUpSlow();
}

public void moveDown{int source_floor,int destination_floor)
{
drive_sfloor=source_floor;
drive_dfloor=destination_floor;
drive_state.moveDownSlow();
}

public void stopO
{
drive_state.stop();
}

public String getStatusO
{
return elevator_status;
}

-177-

public void setStatus(String estatus)
{
elevator_status=estatus;
}

public String getDirection()
{
return elevator_direction;
}

public void setDirection(String edirection)
{
elevator_direction=edirection;
}

public int getSpeedO
{
return speed;
}

public void setSpeed(int espeed)
(
speed-espeed;
}

public DriveState getDriveState()
{
return drive_state;
}

public void setDriveState(DriveState dstate)
drive_state=dstate;
}

public int getSourceFloor()
{
return drive_sfloor;
}

public void setSourceFloor(int s_floor)
{
drive_sfloor=s_floor;
)

public int getDestinationFloor()
{
return drive_dfloor;
}

public void setDestinationFloor (int d_floor)
{
drive_dfloor=d_floor;
}
}

-178-

public class DriveControl {
public DriveControl(){
}
private int control = 0;
private Drive drive = new DriveO;
public void moveUp{int source_floor,int destination_floor)
{
drive.moveUp(source_floor, destination_floor);

public void moveDown{int source_floor,int destination_floor)
{
drive.moveDown(source_floor, destination_floor);
}

public void stop{)
{
drive.stop() ;
}
}

 ̂ i
DriveMoveDownFast.iava '

public class DriveMoveDownFast {
public void Entry()
{
thi s.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
this.setSpeed(2);
}

public void stop()
{
this.setDriveState(d_stopped);
getDriveState{).Entry() ;
}
}

DriveMoveDownSlow. iava

public class DriveMoveDownSlow {
public void Entry()
{
this.setDirection("down");
this.doActivity();

DriveControL iava

-179-

}

public void Exit ()
{
}

public void doActivityO
{
this.setStatus("moving");
this.setSpeed(1) ;
this . inoveDownFast () ;
}

public void moveDownFast()
{
int sfloor = 0;
int dfloor = 0;
sfloor = this.getSourceFloor();
dfloor = this.getDestinationFloor{);
if(dfloor < sfloor-2) {
this.setDriveState{dmove_downfast);
getDriveState().Entry();
}
}

public void stopO
{
this.setDriveState(d_stopped);
getDriveState().Entry();
}
}

DriveMoveUpFast. iava

public class DriveMoveUpFast {
public void Entry()
{
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
this.setSpeed(2) ;
}

public void stopO
{
this.setDriveState(d_stopped);
getDriveState().Entry();
}
}

- 180-

public class DriveMoveUpSlow {
public void Entry(}
{
this.setDirection("up");
this.doActivity();
}

public void ExitO
{
}

public void doActivity0
{
this.setStatus("moving");
this.setSpeed(l);
this.moveUpFast() ;
}

public void moveUpFastO
(
int sfloor = 0;
int dfloor = 0; t;*
sfloor = this.getSourceFloor();
dfloor = this.getDestinationFloor();
if (dfloor > sfloor+2) {
this.setDriveState(dmove_upfast);
getDriveState().Entry();
}
}

public void stopO
{
this.setDriveState(d^stopped);
getDriveState().Entry();
}
}

DriveState.iava

public class DriveState {
private DriveStopped d_stopped = new DriveStopped();
private DriveMoveUpSlow dinove_upslow = new DriveMoveUpSlow () ;
private DriveMoveUpFast dmove_upfast = new DriveMoveUpFast();
private DriveMoveDownSlow dmove_downslow = new DriveMoveDownSlow();
private DriveMoveDownFast dmove_downfast = new DriveMoveDownFast();
public void Entry()
{
}

public void ExitO
{
}

DriveMoveUpSlow. iava

-181-

public void doActivityO

public void moveUpSlow()

public void moveUpFastO

public void moveDownSlow()

public void moveDownFast{)

public void stopO

DriveStopped. iava

public class DriveStopped {
public void Entry(}
{
this.setSpeed(0);
this.doActivity();
)

public void Exit()
{
}

public void doActivity()
{
this.setStatus("stopped");
this.setDirection(null);
}

public void moveUpSlow()
{
this.setDriveState(dmove_upslow);
getDriveState().Entry();
)

public void moveDownSlow()
this.setDriveState(dmove_downslow);
getDriveState().Entry{);
}
}

-182-

public class Elevator {
public Elevator(){
}
private String ele_status = idle;
private int source_floor = 0;
private int current_floor = 0;
private int destination_floor = 0;
private String safe_situation = "safe";
private String moving_direction = null;
private ElevatorState elevator_state = new ElevatorState();
private CarPositionlndicator carpositionindicator = new
CarPositionlndicator() ;
private Dispatcher dispatcher = new Dispatcher();
private Building building = new BuildingO;
private DriveControl drivecontrol = new DriveControl();
private CarLantern carlantern = new CarLantern(};
private Door door = new Door();
private CarButton carbutton = new CarButton();
public ElevatorState getElevatorState{)
return elevator_state;
}

public void setElevatorState(ElevatorState estate)
{
elevator_state=estate;
}

public String getEleStatus ()
{
return ele_status;
}

public void setEleStatus(String status)
{
ele_status=status;
}

public int getSourceFloor()
{
return source_floor;
return cf;
}

public void setSourceFloor(int sfloor)
{
source_floor=sfloor;
current_floor=cfloor;
}

public int getCurrentFloor()
{
int cf = -1;
cf = dispatcher.getCurrentFloor0;

Elevator.iava

- 183 -

public void setCurrentFloor(int cfloor)
{
}

public int getDestinationFloor ()
{
return destination_floor;
}

public void setDestinationFloor{int dfloor)
{
destination_floor=dfloor;
}

public String getElevatorSituation()
{
return safe_situation;
}

public void setSafeSituation{String safety)
{
safe_situation=safety; ^
}

public String getMovingDirection()
{
return moving_direction;
}

public void setMovingDirection(String cur_direction)
{
moving_direction=cur_direction;
}

public void hallCall(int calling_floorno)
{
building.hallCallButtonPressed(calling_floorNo, current_floorNo);
dispatcher.enque(calling_floorNo);
building.hallCallButtonReleased(calling_floorNo);
if(ele_status == "idle") {
this.getNextDestination();
}
}

public void carCalKint destination_floorno)
{
boolean isValid = false;
isValid = building.validFloor(destination_floorNo);

if(isValid == true) {
ele_status="active";
int carlantern_no = 0;
carbutton[destination_floor].illuminate();
destination_floor=destination_floorNo;

}

-184-

current_floor=source_floor;
this.determineMovingDirection();
for{int i=0; i<2; i++) {
door ti].close () ;
}

if(moving_direction == "up") {
carlantern_no=l;
}
carlantern[carlantern_no],illuminate();
carpositionindicator.show(destination_floor);
if{moving_direction == "up") {
drivecontrol.moveUp(source_floor, destination_floor);
}

if(moving_direction == "down") {
drivecontrol.moveDown(source_floor, destination_floor);
)
dispatcher.atFloor(source_floor, destination_floor, moving_direction)
drivecontrol.stop();
carlantern[carlantern_no].turnOff();
carbutton[destination_floor].turnOff{) ;
current_floor=destination_floor;
source_floor=current_floor;
for(int i=0; i<2; i++){
door [i] .open () ;
}
carpositionindicator.clear();
carpositionindicator.show(current_floor);
}
}

public void determineMovingDirection{)
{

if (source_floor < destination_floor) {
this.setMovingDirection{"up");
}

if(source_floor > destination_floor) {
this.setMovingDirection("down");
}
}

public void doorReversal()
{
for(int i=0; i<2; i++){
door[i].reverseDoors();
}
}

public void setSafety(int safety)

if(safety ==0) {
safe_situation="unsafe";

-185-

if(safety == 1) {
safe_situation="safe";
}
}

public void getNextDestination()
{
boolean queue_einpty '= false ;
queue_empty = dispatcher.isEmpty();
if(queue_empty == false) {
ele_status="active";
int next_floor = -01;
next_floor = dispatcher.deque();
this.carCall(next_floor);
}

if(queue_empty == true) {
drivecontrol.stop();
ele_status="idle";
for(int i=0; i<2; i++){
door[i].close();
carlantern{i}.turnOff();
}
source_floor=current_floor;
destination_floor=-l;
carbutton[current_floor].turnOff();
carpositionindicator.show(current_floor);
}
}

public void move(int destinationfloor)
{
boolean isValid = false;
isValid = building.validFloor(destinationFloor)
if{isValid == true) {
this.carCall() ;
}

if (isValid == false) {
this.getNextDestination();
}
}

public void stop{)
{
drivecontrol.stop();
for(int i=0; i<2; i + +) {
carlantern{i],turnOff();
}
int curr_floor = -1;.
curr_floor = dispatcher.getCurrentFloor();
current_floor=curr_floor;
source_floor=curr„floor;

-186-

destination_floor=-l;
for(int i=0; i<2; i++){
door fi] ,open {) ;
}
carpositionindicator.clear();
carpositionindicator.show(current_floor) ;
}

public boolean isEmptyO
{
boole’an queue_status = false;
queue_status = queue,isEmpty();
return queue_status;
}

public void incrementFloor()
{
dispatcher.incrementFloor();
}

public void decrementFloor()
{
dispatcher.decrementFloor();
}

public void closeDoorsO
for(int i=0; i<2; i++){
door[i] .close () ;
)
}

public void openDoorsO
{
for(int i=0; i<2; i++){
door[i].open() ;
}
}

public void call()
{
elevator_state.call();
}

public void selectFloor()
elevator_state.selectFloor();
)

public void ele_move()
{
}
}

-187-

public class ElevatorControl {
public ElevatorControl(){
}
private int controller = 1;
private EmergencyBrake emergencybrake = new EraergencyBrake{);
private Elevator elevator = new Elevator{);
public void hallButtonPressed(int calling_floorno)
{
elevator.hallCall{calling_floorno);
}

public void carButtonPressed(int destinationfloor)
{
elevator.carCall(destinationfloor);
}

public void doorReversal()
{
elevator.doorReversal();
}

public void triggerEmergencyBrakes() &
{ *
emergencybrake.apply();
elevator.setSafety(0);
}

public void releaseEmergencyBrakes(}
{
emergencybrake.release ();
elevator.setSafety (1) ;
}

public void moveElevator(int destinationfloor)
{
elevator.move(destinationFloor);
}

public void stopElevator()
{
elevator.stop();
}
}

ElevatorState. iava

public class ElevatorState {
private IdleDoorClosed idleDoorClosed = new IdleDoorClosed();
private StartMovingUp startMovingUp = new StartMovingUp();
private StartMovingDown startMovingDown = new StartMovingDown();
private MovingDownTheFloors movingDownTheFloors = new MovingDownTheFloors()
private MovingUpTheFloors movingUpTheFloors = new MovingUpTheFloors();
private ResumeMovingUp resumeMovingUp = new ResumeMovingUp{);

ElevatorControl. iava

- 188-

private ResumeMovingDown resumeMovingDown = new ResumeMovingDown();
private ResumeDoorClosed resumeDoorClosed = new ResumeDoorClosed{);
private IdleDoorOpen idleDoorOpen = new IdleDoorOpen();
private FloorSelectedDoorClosed floorSelectedDoorClosed = new
FloorSelectedDoorClosed();
private IdleDoorOpenReached idleDoorOpenReached = new IdleDoorOpenReached{);
private FloorSelectedDoorClosedCalled floorSelectedDoorClosedCalled = new
FloorSelectedDoorClosedCalled();
private FloorSelectedDoorOpen floorSelectedDoorOpen = new
FloorSelectedDoorOpen ();
public void Entry()

public void Exit()

public void doActivityO

public void call()

public void move()

public void selectFloor()

Emergency Brake, iava

public class EmergencyBrake {
public EmergencyBrake0{
}
private String status = "idle";
private int error_situation = 0;
private EmergencyBrakeState eb_state = new EmergencyBrakeState{);
public String getStatus()
{
return status;
)

public void setStatus(String ebrake_status)
{
status=ebrake_status;
}

public int getErrorValue()
{
return error_situation;

-189-

public void setErrorValue(int^error)
{
error_situation=error;
}

public EmergencyBrakeState getEBStateO
{
return eb_state;
}

public void setEBState(EmergencyBrakeState ebrake_state)
{
eb_state-ebrake_state;
}

public void apply()
{
eb_state.applyBrakes();
}

public void release()
eb_state.releaseBrakes() ;
}
}

EmereencvBrakeActive. iava

public class EmergencyBrakeActive {
public void Entry()
{
this.setErrorValue (01) ;
this.doActivity ();
}

public void Exit()
(
}

public void doActivity ()
{
this.setStatus("active”);
}

public void releaseBrakes(}
{
this.setEBState(eb„idle);
getEBState().Entry();
}
)

}

-190-

public class EraergencyBrakeldle {
public void Entry()
{
this.setErrorValue(0);
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
this.setStatus("idle");
}

public void applyBrakes()
{
this.setEBState(eb_active);
getEBState().Entry();
}
}

EmersencvBrakeldle.iava

EmersencyBrakeState. iava

public class EmergencyBrakeState { '
private EinergencyBrakeActive eb_active = new EmergencyBrakeActive ()
private EmergencyBrakeldle eb_idle = new EmergencyBrakeldle(};
public void Entry()

public void Exit()

public void doActivity{)

public void applyBrakes()

public void releaseBrakes()

Floor.java

public class Floor {
-191-

public Floor(){
}
private int calling_floor = 0;
private int current_floor = 0;
private int current„button_no = 0;
private HallCallButton hall_call_button = new HallCallButton ();
public void hallButtonPress(int call_floor,int curr_floor)
{
calling_floor=call_floor;
current_floor=curr_floor;
if (calling_floor < current_floor) {
current_button_no=0;
)

if (calling_floor > current_f loor) {
current_button_no=l;
}
hall_call_button[current_button_no].press() ;
}

public void hallButtonRelease()
{
hall_call_button[current„button_no].release();
}

public int getCurrentFloor()
{
return current_floor;
}

public void setCurrentFloor(int floor)
{
current_floor=floor;
}

public int getCallingFloor0
{
return calling_floor;
}

public void setCallingFloor(int cfloor)
{
calling_floor=cfloor;
}
}

FloorSelectedDoorClosed. iava

public class FloorSelectedDoorClosed {
public void Entry()
{
this,doActivity();
}

public void Exit()
-192-

{
)

public void doActivity()
{
this.closeDoors();
}

public void call()
{
int curr_floor = -01;
curr_floor -= this . getCurrentFloor () ;
if(curr_floor == destination_floor) {
this.setElevatorState(floorSelectedDoorOpen);
getElevatorState{).Entry();
}

if(curr_floor == destination_floor) {
this.setElevatorState(floorSelectedDoorClosedCalled)
getElevatorState().Entry();
}
}

public void move()
{
int curr__floor = -01;
curr_floor = this.getCurrentFloor();
if(destination_floor < curr_flocr) {
this.setElevatorState(resuraeMovingDown);
getElevatorState().Entry() ;
}

if (destination_floor > curr_floor) {
this.setElevatorState(resumeMovingUp);
getElevatorState().Entry();
}
}
}

FloorSelectedDoorClosedCalled.iava

public class FloorSelectedDoorClosedCalled {
public void Entry{)
{
this.doActivity();
)

public void Exit{)
{
}

public void doActivity()
{
this.Enque();

-193-

int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if(curr_floor == destination_floor) {
this.setElevatorState(floorSelectedDoorOpen);
getElevatorState().Entry();
}
}
}

FloorSelectedDoorOpen. iava

public class FloorSelectedDoorOpen {
public void Entry()
{
this.closeDoors();
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
}

public void call{)
{
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if(curr_floor == destination_floor) {
this.setElevatorState(floorSelectedDoorOpen);
getElevatorState{).Entry();

)

public void selectFloor()
{
this.setElevatorState(floorSelectedDoorOpen);
getElevatorState().Entry();
}
}

HallCallButton. iava

public class HallCallButton extends Button {
public HallCallButton() {
super() ;

}

public void call()
{

-194-

private String button_status == "idle”;
private String light_status = "off";
private HaliCallButtonState hb_state = new HallCallButtonState();
public String getButtonStatus{)
{
return button_status;
}

public void setButtonStatus(String bstatus)
{
button_status=bstatus;
)

public String getLightStatus{)
{
return light_status;
)

public void setLightStatus(String Istatus)
{
light_status=lstatus;
)

public HallCallButtonState getHallCallButtonState(}
{ 1
return hb_state;
}

public void setHallCallButtonState(HallCallButtonState hbstate)
{
hb_state=hbstate;
}

public void press{)
{
hb_state.illuminate();
}

public void release()
{
hb_state.darken{) ;
}
}

HallCallButtonOff. iava

public class HallCallButtonOff {
public void Entry 0
{
this.doActivity();
}

public void ExitO
{

}

-195-

this.setButtonStatus("idle");
this.setLightStatus("off") ;
}

public void illuminate()
this.setHallCallButtonState(hb_on);
getHallCallButtonState().Entry{);
}
}

HallCallButtonOn. iava

public class HallCallButtonOn {
public void Entry ()
{
this.doActivity() ;
}

public void Exit()

}
I

public void doActivity()
{
this.setButtonStatus("pressed");
this.setLightStatus("on");
}

public void darken()
{
this . SetHallCallButtonState(hb_off);
getHallCallButtonState().Entry();
}
}

HallCallButtonState. iava

public class HallCallButtonState {
private HallCallButtonOn hb_on = new HallCallButtonOn();
private HallCallButtonOff hb_off = new HallCallButtonOff();
public void Entry()

public void doActivityO
{

public void Exit()

public void doActivity()

-196-

public void illuminate()
{
}

public void darken()
{
}
}

IdleDoorClosed. iava

public class IdleDoorClosed {
public void Entry()
{
this.closeDoors();
this.doActivity();
}

public void ExitO
{
}

public void doActivity0
{
super.setEleStatus("idle");
source_floor=0;
current_f loor=0;
destination_floor=0;
}

public void call()
{

if (current_floor < destination_floor} {
this.setElevatorState{startMovingUp);
getElevatorState{).Entry{);
}

if(current_floor > destination_floor) {
this.setElevatorState(startMovingDown);
getElevatorState().Entry{);
)

if(current_floor == destination_floor) {
this.setElevatorState{idleDoorOpen);
getElevatorState().Entry{);
}
}
)

IdleDoorOpen. iava

public class IdleDoorOpen {

-197-

this.openDoors();
this.doAct ivity();
}

public void Exit()
{
}

public void doActivityO
boolean queue_empty = false;
queue_empty = this.isEmpty();
if(queue_empty == false) {
this.setElevatorState(resumeDoorClosed);
getElevatorState().Entry();
}
}

public void call{)
{
this.Entry();

public void selectFloor()
{
this.setElevatorState(floorSelectedDoorClosed);
getElevatorState-Entry();
}
}

JdleDoorOpenReached. iava

public class IdleDoorOpenReached {
public void Entry()
{
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
boolean queue_empty = false;
queue_empty = this.isEmpty();
if(queue_erapty == false) {
this.setElevatorState(resumeDoorClosed);
getElevatorState().Entry();

1 ^

public void Entry{)
{

-198-

this.setElevatorState(idleDoorOpen);
getElevatorState().Entry();
}

public void selectFloor()
{
this,setElevatorState(floorSelectedDoorClosed)/
getElevatorState().Entry();
}
}

MovinsDownTheFloors. iava

public class MovingDownTheFloors {
public void Entry()
{
this.setEleStatus("moving");
this.doActivity{);
}

public void Exit{)
{
}

public void doActivity()
{
this.decrementFloor();
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if (curr_floor == destination_floor) {
String dir = null;
dir = this.getMovingDirection(};
if (dir == "down") {
this.setElevatorState(idleDoorOpenReached);
getElevatorState{).Entry();
}
}

if(curr_floor != destination_floor) {
this.doActivity();
}
}

public void call()
{
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if(curr_floor == destination_floor) {
this.setElevatorState(idleDoorOpen);
getElevatorState{).Entry();
}

public void callO
{

-199-

public class MovingUpTheFloors {
public void Entry()
{
this.setEleStatus("moving");
this.doActivity() ;
}

public void Exit(}
{
}

public void doActivity{)
{
this.incrementFloor();
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if(curr_floor == destination_floor) {
String dir = null;
dir = thisigetMovingDirectionC);
if(dir == "up") {
this.setElevatorState(idleDoorOpenReached);
getElevatorState().Entry();
}
}

if(curr_floor !- destination_floor) {
this.doActivity();
}
}

public void call()
{
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if(curr_floor == destination_f loor) {
this.setElevatorState(idleDoorOpen);
getElevatorState().Entry();
}
}
}

ResumeDoorClosed. iava

public class ResumeDoorClosed {
public void Entry()
{

Movins UpTheFloors. iava

-200-

this.doActivity() /
}

public void Exit()
{
}

public void doActivity()
{
this.closeDoors();
}

public void callO
{
this.setElevatorState(idleDoorOpen);
getElevatorState().Entry();
}

public void move(}
(
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if(destination_floor > curr_floor) {
this.setElevatorState(resumeMovingUp);
getElevatorState().Entry{);
}

if (destination_floor < curr_floor) {
this.setElevatorState(resuraeMovingDown);
getElevatorState0 . Entry();
}
}
}

ResumeMovinsDown. iava

public class ResumeMovingDown {
public void Entry()
{
this.setEleStatus{"moving");
this.doActivity();
}

public void Exit()
{
)

public void doActivity()
{
int curr_floor = -01;
curr^floor = this.getCurrentFloor();
if{curr_floor != source„floor) {
this.setElevatorState{movingDownTheFloors)
getElevatorState().Entry();

-201-

public class ResumeMovingUp {
public void Entry ()
{
this.setEleStatus("moving");
this.doActivity();
}

public void Exit()
{
}

public void doActivity()
{
int curr_floor = -01;
curr_floor = this.getCurrentFloor{);
if(curr_floor != source_floor} {
this.setElevatorState(movingUpTheFloors);
getElevatorState().Entry{);
}
}
}

ResumeMovins Up.iava

StartMovinsDown. java

public class StartMovingDown {
public void Entry()
{
this.doActivity ();
}

public void Exit()
{
}

public void doActivity()
{
this.setEleStatus("moving");
this.setMovingDirection("down");
}

public void move()
{
int curr_floor = -01;
curr„floor = this.getCurrentFloor() ;
if(curr_floor != source_floor) {
this.setElevatorState(movingDownTheFloors);

-202-

getElevatorState().Entry();
}
}
}

StartMovineUp.iava

public class StartMovingUp {
public void Entry{)
{
this.doActivity();
}

public void Exit{)
{
}

public void doActivity()
(
this.setEleStatus("moving");
this.setMovingDirection("up");
}

public void move()
{
int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if{curr_floor != source_floor) {
this.setElevatorState(raovingUpTheFloors)
getElevatorState().Entry();
}
}
}

- 203 -

