Automatic Code Generation using
Swarm Intelligence

Submitted by:

Hina Mahmood
297-FBAS/MSSE/F09

Supervised by:
Mr. Atif Aftab Ahmed Jilani

Co-Supervised by:

Mr. Qaisar Javaid

Department of Computer Science and Software Engineering
Faculty of Basic and Applied Sciences
International Islamic University Islamabad
(June 2012)

Accession No

>"V(
>6 i

N T

Department of Computer Science and Software Engineering

International Islamic University Islamabad

L3

Date: \\- OG6 - 2 0\,

Final Approval

This is to certify that we have read the thesis submitted by Hina Mahmood, 297-
FBAS/MSSE/F09. 1t is our judgment that this thesis is of sufficient standard to warrant its
acceptance by International Islamic University, Islamabad for the degree of Masters of Science

in Software Engineering (MSSE).
Committee:

External Examiner:

Dr. Arshiad Ali Shahid

Professor, HOD

Department of Computer Science
National University of Computer and
Emerging Sciences (NUCES) - FAST

Internal Examiner:

Dr. Zunera Jahl

Assistant Professor

Department of Computer Science and
Software Engineering

International Islamic University, Islamabad

Supervisor

Mr. Atif Aftab Ahmed Jilani
Assistant Professor
Department of Computer Science

National Umversity of Computer and
Emerging Sciences (NUCES) - FAST

\

v

M

At

. 3
.Co-supervisor
4

Mr. Qaisar Javaid

Assistant Professor

Department of Computer Science and
Software Engineering

International Islamic University

ii

Dedication...

Te my famdly especially my mom
who o an embodiment of Diligence and Foncoty.
withoat ken Prayens and Support

il

A dissertation Submitted to
Department of Computer Science and Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islarnabad
As a Partial Fulfillment of the Requirement for the Award of the
Degiee of Masters of Science in Software Engineering (MSSE).

iv

Declaration

I hereby declare that this thesis “Automatic Code Generation using Swarm Intelligence”
neither as a whole nor as a part has been copied out from any source. It is further declared that I
have done this research with the accompanied report entirely on the basis of my pérsonal efforts,
under the proficient guidance of my teachers especially my supervisor Mr. Atif Aftab Ahmed
Jilani. If any part of the system is proved to be copied out from any source or found to be
reproduction of any project from any of the training institute or educational institutions, I shall

stand by the consequences.

Hina Mahmood
297-FBAS/MSSE/F09

Acknowledgement

In the name of Allah, the passionate, whose blessings made it possible for me to
complete this complex and hard task. Its completion is a matter of great enthusiasm and pleasure

for me. It is all because of Almighty Allah’s guidance that made me so able.

Every mission and project has a brain behind that vivifies the theoretical raw ideas. I am
fortunate enough that a masterful intellect, in the mind of my supervisor Mr. Atif Aftab Ahmed
Jilani, was with me. I offer my sincerest gratitude to him, who has supported me throughout my
thesis with his patience and knowledge whilst allowing me the room to work in my own way.
My thesis would have been a complete fiasco in the absence of such a mastermind. I attribute the
level of my Masters degree to his encouragement and effort. I have no words to thank the
laborious and tiring contributions of this extraordinary personality. One simply could not wish

for a better supervisor.

I wish to express my deepest gratitude to Mr. Qaisar Javaid for his worthy support and
kind cooperation particularly near the completion of my thesis. I would also like to acknowledge
Dr. Abdul Rauf for his genuine support, valuable advice, sincere comments and motivation
throughout the project. He regularly gave his precious time to this thesis despite of his tight
schedules. I thank the members of my graduate committee for their worthy comments and
valuable criticism. I am also grateful to my friends and colleagues for their love and

encouragement.

It will be failing in my duties if 1 miss to thank my beloved famil"y. I am indebted to my
parents and would like to express my deepest gratitude to them for their constant encouragement,
affection and motivation. Their prayers always contribute a lot in completing difficult tasks. It is
due to their unexplainable care and love that I am at this position today. I am thankful to my
caring brothers especially Dr. Salman Mahmood for constantly helping me during hard times and
offering me his valuable advice. Thanks are also due to my brother Imran for his support and
assistance. My brother Irfan deserves my special appreciation for providing me his amusing

companionship during my tight and strained schedules, after which I always feel fresh and

yave

W

Ay

relaxed. Last but not least, I am particularly thankful to my sweet sister-in-law Aysha for her

love, care and valuable discussions.

Every work is bound to flaws. I accept complete responsibility for all flaws in this
dissertation. I shall be grateful for valuable suggestions and all positive criticism will be

welcomed.

Hina Mahmood
297-FBAS/MSSE/F09

Project In Brief

Project Title: Automatic Code Genération using Swarm
Intelligence
Undertaken By: Hina Mahmood

297-FBAS/MSSE/F09

Supervised By: Mr. Atif Aftab Ahmed Jilani

Start Date: December 01, 2010

Completion Date: January 31, 2012

Tools & Technologies Java™ SE Development Kit 7
Visual Paradigm for UML 7.0

Microsoft Office Visio 2003
Rational Rhapsody Developer V7.6

Documentation Tools Microsoft Office Word 2007)
Endnote X Volume Liceénse Edition
Pdf95 Suite

Operating System: Microsoft Windows 7, Home Premium

System Used: HP ProBook 4530s Notebook PC

viii

2 A

as

'
~z ¥

Abstract

Automatic code generation refers to the mechanical generation of implementation code
from system design model$ by executing a set of transformation rules. Existing approaches for
model-to-code (M2C) transformation assume these rules to be manually defined by the domain
experts, by exploiting the source and target languages’ metamodels and expressed in some model
transformation language. However in reality, the definition, maintenance and evolution of a
complete, correct, consistent and non-redundant transférmation rule set is not an obvious task,
especially in the availability of little domain knowledge. The complex nature of metamodels and
transformation languages further aggravates the situation, making the code generation process

complicated and time-consuming.

A

It has been observed that many organizations maintain a record of their past M2C
transformations and feel more comfortable to show these transformation examples instead of
defining a complete and consistent transformation rule set. Our work starts from thése
observations to view automatic code generation problem as the one to solve with fragmentary
knowledge i.e. with only examples of M2C transformations. In this research, we present a novel
approach for automatic code generation by utilizing the previously solved M2C transformation
problems. We view M2C transformation as an optimization problem and select the best solution
from all feasible solutions. The existing set of examples is used to train the system regarding
automatic code generation. After the system is trained transformation blocks, that best match the
constructs of the input source model to be transformed, are extracted from the transformation
examples. These transformation blocks are then used to translate the source model constructs
into target code. An optimal transformation solution is searched by utilizing the heuristic search
technique Particle Swarm Optimization. We implemented this approach in a tool named C@de

Swarm.

This approach is generic and its application is not limited to any set of models. However
as a proof of concept, we have applied this approach for generating Java code from class model
and state model, as these two models are representatives of both the static structure and the

dynamic system behavior. Experiments performed for the validation of this approach indicate

ix

LTy

that up to 100% correct code can be generated. However, the only prerequisite of this approach is
to have a set of previously solved transformation examples. Besides them, no extra information -
is needed. Furthermore, we can easily start with a small and non-exhaustive set of transformation
examples, no special expertise are required. Moreover, the proposed approach always proposes a
transformation strategy, nearest match in case if no exact match exists in the training data. This is
rather impossible in the existing code generation approaches in which the absence of a rule

results in a failure to perform the corresponding transformation.

Conclusively, our proposed approach does not rely on using an explicitly defined
transformation rule set for performing the transformations, rather it is intelligent enough to
automatically derive the rules from the existing set of transformation examples. In the absence of
an explicit transformation rule set definition, automatic code generation process becomes
independent of transformation languages. Moreover, by automatic extraction of transformation
rules from previously solved transformation examples, our approach also becomes independent
of source and target formalisms. In this way, our proposed approach makes the code generation
process painless by dissociating it from explicit transformation rule set définition, its expression

and metamodels’ comprehension.

Table of Contents

N 5.3 2 1o SO G PP
List of Figuresccoooiiiiiiiiiiiiiiie s e e
LSt Of TADIES ...ttt it e e ettt e e e
List Of PUBLICALIONSovvvnet ottt e e e

Acronyms and Abbréviationsooooiiiiiiiiii e

Chapter 1. Introduction

1.1 IDETOGUCHON . vnvesn e e ettt e e e e e e e et
1.2 Problem Statementvtiiiiiiniiietiiirae e e e e taeaeateaaanannreae e aaaaraaaain
) ST, (015177 18 1o) o KPP
1.4 Research Questionsccoviiiiiiiiiaean, e eere e e ereraetesttaniens
1.5 Proposed Solutioncceieeens Feeiesttetiveeensa e e raataas
1.6 Thesis ContribULIONSouvueeeenoe i vee v eaeaeranaas OO
1.7 Dissertation Outhne ettt raeereaeie et e e et raaaiaeeaiaaan,

Chapter 2. Background

2.1 INrOAUCHION ..ot e e e
2.2 Model Driven Architectureccociiiiiiiiiiinieiii i
221 MOdEL . e

222 Model Transformationc.oovviriiveiiieroaeeai e cceeianees

2.3 Code GENETAtIONoonieeiiitieesr s cae ettt eer e e et eeetaneaeaasns
231 Metamodels ..ot e

2.3.2 Transformation Rules ..., e

233 Transformation Languagescocociiiiiiiiii

234 Code Generation Processccooiiviveiiiiiiiiiiiiiiiiiiin..

2.4 Swarm Intelligence S D PP OO
2.4.1 Particle Swarm Optimizationccocoiiviiiiiniiiireneiinniaiaenn

2.5 Action Languageccooiiiiiiiiiiiii e
2.5.1 Action Specification Langnage j

Chapter 3. Related Work

70 T 4114 (o7 L o 5 1o] « B T PPN
3.2 Code Generation Approachesccoiiiiiiiiiiiiiiiiii i,
3.2.1 Class Model Transformation Approachescooooiiiiiie

322 State Model Transformation Approachesccooovviiin

323 Interaction Model Transformation Approaches
324 Hybrid AppProachescoeeuveveeeeuiamieiiaaiieiiiiaaennn BT
3.3 Code Generation TOOIS ...ttt e e e

SN B RWNN

\O 00 00 00 00 ~1

10
11
11
12
12
13
13

e

3.3.1 Rational ROSEeeccecemmeeenmmciicen Frveererensereeeererernersreessneeeneerneeeacsen
3.3.2 Rational Rhapsody ... e
3.3.3 StructureBUildercvooveioniiiieette s
3.3.4 Enterprise€ ArChiteCtocooooomvomiociininnisiee e
3.3.5 Visual Paradigmccoocooiveriiinecienticceneeir i s
33.6 ANAroMDA ... e e e s sa e
337 MaAZICDIAW oo e
3.3.8 PAPYTUS orioeiiiccccccie ettt s
33.9 JUML ettt e et er s
3.3.10 AZIOUML ..ottt s
3.4 Swarm Intelligence for Model Transformationcc.ecceeerecuncreenirmensenernes
34.1 Model-to-Code Transformationcoccooeecerermrorreeiereieeenneecocannn
342 Model-to-Model Transformationc.coeeeeoeeiieivernrieenreetenserenemnesesins
3.5 ABAIYSIS coieeireeiriereee ettt s et bbb ern e nnes

Chapter 4. Problem Definition

4.1 INTOQUCHION .eveeeiiiicce ettt se et d e es v et b a e e sr s saaensan s
4.2 Issues of Transformation RUIES ..ot
4.3 Concerns of Transformation LANGUAZESccorreerieereerrnisersssnssecssemseesesmcenenne
4.4 Complexity of Metamodels ..o
4.5 THE GAP ceeereeereeret ettt sttt s e e e e e e sr e

Chapter 5. Proposed Approach for Code Generation

5.1 INEOQUCION oottt st et e eb st st st ean s
5.2 Preliminariesccocccccerimrrininesieensrennecescace e ereee e eeaes s SIUON e
5.2.1 Input Source Modelcoooorimiii i e e
5.2.2 Model CONSITUCEcooeieiviricriceninecrr et svisreere st srssass e saes s
5.2.3 Mapping BIocK .o
5.24 Transformation Example (Traifing Data)cccccioiiiininiininnnns
5.2.5 PrediCate ..ot s s s s
5.3 APPIOACh OVEIVIEW ...couociiivioiiieiireiimreee e ne i in st s se s e es e se s e esan e e e seranes
5.4 Knowledge Representationocoococviieiiincciniiiniiccineni e
5.4.1 Class Model Representationc..cccvvcenivonniiniieninnncinninscinee i
542 State Model Representationcoccooicoimiiiiinnniienenne i i
54.3 Action Specificationcooieeiiiiiiiiiei e s
5.5 PSO Adaptation for Automatic Code GENErationc..oeeeeremeenreresersreiornoenns
5.5.1 Representation of Transformation Solutioncccoceeiivcniiines
5.5.2 Evalunation of Transformation SOIutionc.cccccemveieinneciiovrisicncinnnns
5.5.3 Deriving an Optimal SOIUtionc..ceereevirvceirinininncnsiinie it
5.54 Parameter TURINGcccooiviiieiinenierecric e et seees s aaestasaren
5.6 Automatic Code GENeration PTOCESSccoveieeeeeiemeriireererisaressiesnssassssessessessasens
5.6.1 Build a Knowledge Baseccccoiiviiniiiiniiiiiiiccice
5.6.2 Prepare Input Source Modelliviiiinii
5.6.3 Search for an Optimal SOItION ...
5.6.4 Transform the Model using Optimal Solutioncccocoiieeein

xii

;’f\‘ﬁm

Chapter 6. Tool Implementation 49

6.1 INtroducCtionccceevevecccoimeeiccnrececeeereneens eeemmeveetbesseranreea e e aeeertaneaaaaerraanaaaares 50
6.2 COAS ATCRILECIUIE ..voocoeeeiceceeeriecrs st ecsecere e seseenenscesecareas e cee s sasras s e s siaens 50
6.2.1 PreGiCatEPArSET ..oeovieeeeeeevveet e eieeeeeeeeeeeeetaeesvaeeseseeeeseiaes e eesrenessnarennes 50

6.2.2 SearchENEINEccooevieeeerireeiicicnicimrccree sttt st sne b e 52

6.2.3 M2CTransformationEngineoccoovviimviiniiniiiniiiinsiceenn feereerees 52

6.3 COAS IMPIEMENLAtIONooorieeeeieiicecteeeeereetretecseesenese s reseaseescesanseaeeaneoeane S 53
6.3.1 AUtOCOEGENETALOT .ovveevveeiiereeeirrereieeeerteresrnneeeseseeneeeeeesnees e 53

6.3.2 PSSO ettt et ame e e et e e as e s ienane 55

6.3.3 | 275 D0) GOV UV PO UUs VO TRV US TSP 56

6.4 COAS PIOCESS FIOW vv.vvovesveceiceiereaceessises s sess s cs st s sssesseessesasssessesesacnesseasconae 56
6.4.1 Import Training Datdcccruoeeeerermeeirerereenemeemcneecacsesemeeensesssessnnens 57

6.4.2 Import Source Model ... 58

6.4.3 Transform Model ... tevnarieeenresssteeareesearenerenresesr iasarnean 59
6.4.4 Generate JAVa COAEoccommeereeorreeereesrerecssseesasrsssssiemsnsneeeeeessenmsnienes 01
Chapter 7. Case Study 63
T 1 IDETOAUCLION wuvvvvreietriiiiiiesiieeecirreesesrersertessesnnneseeesseneaammeeeemmnneeaseseasansssareenas sonmneen 64
7.2 Elevator Control SYSIEIMeecieoiiiicerceiee e sttt s ssas s e s 64
7.2.1 Scope of the ECS ..o e 64

7.2.2 Functional REQUITEMENLScccoiiereeiimieeirecnnrerense e cere e canes 65

T3 ClasS MOAEL ...cooiiteiiceeete ettt eesitteeer e s sen e et eraae e s sen s seeeesmnnee s sanmatassnsbaans 66
Td State MOGEL ..ottt ee et e e e s e e s a e seee e e e e baes 69
7.4.1 State Model of Elevator eeerrrrreaanieneeezane e eeerrteeaeraaraaaearars 69

7.4.2 State Model of EmergencyBrake ... 71

74.3 State Model of HallCallButtonccoiiiiiiiiniiiirnirerieec e e 71

74.4 State Model of CarButtonc...ooovevevvreererreererssnrnrasrereesasaeee s ammceeeeees 71

7.4.5 State Model of CarPositionIndicatorcccccevereevereenecncceneens eeieeeeanns 72

7.4.6 State Model of CarLanternccoovevvvveivmmierrecnerreceeeeeseesnsaeesasssnases 72

7.4.7 State Model OF DOOT ...ttt rre e rearn e e senseenne 72

7.4.8 State Model 0f DIIVE ...oooveiiieviieicernr e e e eecvesee s e ereees 73
Chapter 8. Evaluation 74
8.1 INrOQUCHION .ot e et e e srae s ae s nnmananaeessssnsesnensssstanessraensbinee 1D
8.2 Elevator Control SYStEIMccccooirerierreiiicriece e cerciae e csnes s n s 75
8.2.1 Experimental SEttingcccceeuveiimrmmieiiieiie it 75

8.2.2 Results and DISCUSSION ...eoiieniieeee et cetr e sesvaie e ene 76

8.3 10-fold Cross Validationcccccveeeivieeiirireeeiieceiiirreseeeesseenaaeessnsnnrees s nnnnens 80
8.3.1 Experimental SEttingcccovevvvoinienmeciinnnnririe et e 30

8.3.2 Results and DISCUSSION vveeiiiiiieeiiiceee e ceeeeeeeee e e eeee e e e e eeeeeeeemnesanee e 80

8.4 COMPAIISOM ...eiiiiiiieetie sttt sttt e st bbb bbb bbb st st a st sene ot aen 84
8.4.1 Code Generation ApPproachescccoocooieciincincnnciincrne e 84

8.4.2 Code Generation TOOIScc..ooireicececee e ee e eeae e sareaee 85

8.5 ASSESSIMEIL .oecivcrvirreriiiiieciriirrererieerssrrerersstrrenreeereassrressasessesnarssrsansssassseersns 86
8.5.1 BENEIIES ovvvvieiiviiieieitiieeieericece e e e ce et treeeeesrbenraaae e seseebbarsrnnsaeeeeesaaeenbene 86

8.5.2 LIMIAONS ..oooriiverieecccrecrstecestasressiiss e ssesstessssrros e esesn e esss e esssbess 88
Chapter 9. Conclusion 89
LS 20 B 118 Yo U7 7o)) KOOSO ST PORORO 90
0.2 CONCIUSIOMN .oeevveeiverrieerireneaemaneeeeaeeae e trrt e e sse s e aesesssceeses e e coomanaesesssesossensninnsennn 90
0.3 FUture WOTK .ottt tb et s n e s er s 92
9.3.1 Improve Code COITECINESScoceomeviivniiinenrrineirieimee e B, 92

9.3.2 Reduce Execution Timeccoceuuceemrmrriinenrenee e e ceeneseresesanncncass 92

9.3.3 Application to large-Scale MOdels ..o, e 92

9.3.4 Application to Multiple System Design Modelsccooovennn 93

9.3.5 Automate Expression of Predicatesccccovvviiniinininicieeeea 93

9.3.6 Automation of Transformation Examples Representation 93

0.3.7 Enhance COAS TOOLoooeereeeeeerercierecrriaenieseem e e cesncsaessan 93
REFEIRIICESuviiiiiiiiieciecieeee e et eet e seee et b e srae e s e s e e r e st st e e e e st amte st e s sabsaaas sne s nn s 94
Appendix A. Predicate Structure TEMPIAtesccccccmvivmviimmiiinicivr e 99
Appendix B. User Manual ettt et b e bbbt e Fisbenresrniees e 109
Appendix C. Training Dataccccomiennnicininninincc e Bevveeceesessrarsnessnesensens 127
Appendix D. Generated (003 LR Civereresieratete e nt e anra e st eneeane reeeveieen 162

LT

Figure 1.1

Figure 2.1
Figure 2.2

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

Figure B.1
Figure B.2
Figure B.3
Figure B.4
Figure B.5
Figure B.6

e

List of Figures
DISSEITAtION OULIE ...veeeveeeereeeerereeeeeeereeesreeeesereeesreeseeesreeeereeeeesesesecsorsessnens

MIDA PIOCESS ottt st sre s e s s be s b s e s na s e s aris
Traditional code ZENETation PIOCESScc.cvceerereeerrertencrreeesesencrnesmersenssecserens

Knowledge base SYSteMcoocomicomceiricei et e e e
Code generation approach OVEIVIEWcocoocoeoieiiiiiiecee e
Class model of an ‘Online Shopping System’ ...
State model of the class ‘ShoppingCart’ccccoiiniinin eeseeieineie e
Steps of automatic code generation ProCessooovcvrievrceiircrnieinnnens

COAS ArCHIECIUTEeoveeveeerereesssemeeeeseseesee e eermceesseeeeessassesssanses e snaes S
CAAS IMPIEMENEALIONuvoivrveeveceererceeeaneriereee e enaes e eseneses s ssseseeesssesenaseacs
Interaction pattern within the ‘AutoCodeGenerator’ package5...........
Main interface of CAAS ..ot sasae e enass s
Training data filec.oooeoroiii e
Input source models fileoooioieeriiniciii e B
Predicates file ‘Predicates.tXt’ ...c.vveeccceereceeeee et rrereseee s cenne e srae s
Model transformation ‘readme.txt’ Ereereesanennnete sr e s e e e e naeead TSR
Java code file ‘Command.java’ccociiiiiniinnn. Breereerb e
Code generation ‘readme.tXt’ ..o s

Class diagram of the ‘Elevator Control System’ccccoccoeniiiiccnneennne
State model of the ‘BIevator’ ... e ernnnaae e
State model of the ‘EmergencyBrake’ ...,
State model of the ‘HallCallBUtton’occcooeemrmeeeeeceeeeenns SN
State model of the ‘CarButton’coooeoveiiiriiiiieeeeee. rrrreeesrrasnrrrerarnnts
State model of the ‘CarPositionIndicator’ccccoooriieiiicciieieceee s
State model of the ‘CarLantern’cocccovvvvrmiirrreercirevvieii e sssescvsseeeeeeeas
State model 0f the DOoOI” ..o eveeecereiverrre s ee e feerrrrrreeesnenreeans
State Mmodel 0f the ‘DIIVE’ ..ot s crreae e resre s s sreeeas

C@AdS screenshot highlighting doubtful transformations
C@dS screenshot highlighting missing transformationscccceeveuunn.e.
Correctly mapped constructs vs. Correctly transformed constructs
Best fitness vs. Code COITeCtNeSS ...ooccioiiiiieieicece e
Model constructs vs. Execution timec.ccoccooneeiinersicncnnscniccniiecrennienene

COAS INLEMFACEvveeeeieeeeceeee e en s eeenesenee e
File MENU oo ettt et e e sat e sea s s aes
INEW PIOJECE .vuevevrerriiireereeienteiee et et teeeate s st eassaeasessennessassansesnbntasarasasens
New projéct confirmation screen ettt ettt e e
ClOSE PIOJECE ..eeeirmteeireerretettree ittt ettt em e et st e et semeenneees
Delete project CONfIrmationcccccvcorvveeecerenrierereeneunieeressrensnesreeessseeseerseces

Figure B.7

Figure B.8

Figure B.9

Figure B.10
Figure B.11
Figure B.12
Figure B.13
Figure B.14
Figure B.15
Figure B.16
Figure B.17
Figure B.18
Figure B.19
Figure B.20
Figure B.21
Figure B.22
Figure B.23
Figure B.24
Figure B.25
Figure B.26

Figure C.1
Figure C.2
Figure C.3
Figure C.4
Figure C.5
Figure C.6
Figure C.7
Figure C.8
Figure C.9
Figure C.10
Figure C.11
Figure C.12
Figure C.13
Figure C.14
Figure C.15
Figure C.16
Figure C.17
Figure C.18
Figure C.19
Figure C.20
Figure C.21
Figure C.22
Figure C.23
Figure C.24
Figure C.25

Delete project CONfIrmedcouverireceeriiii it e 116
OPI Il ..eeeeceeeeieeee et e e 116
ClOSE TI1E .ottt cer e e et a s 117
EXIE oottt eee e e reiesst et e s e e s e e s e s smae e saen e e e e eeen e e 117
TRADK YOU worreieiieir vttt ettt e e et e st s e 118
Edit MENU <o crec e e e reer e e en e e s e e resna s e on 119
Import training data - browsing dialogcooveeuermereceurreeneeeierseeeseesenn. 119
Import training data - cOnSOIEccccvmviinniiiniiiicnie e L. 120
Import input model - browsing dialogcccvvinivninniiiiiiienee 120
Import input model - CONSOIEooociiiiii e 121
Transform model - IN PrOZTESS «.orveeirecrieerrec e cirste e srtesssisen svesme s s s 122
Transform model - process completedcoovevnnnennd oo e 122
Generate code - IN PIOZIESSccccirieimiisrivesienivnsios e ssas st ssaeasssnsassassessans 123
Generate code - process completed ..o e 123
Help MEeNU ..ottt 124
Help menu - Welcome SCIEENcccerrvrecermieceniicei e creenceme e eeen 124
Help menu - about CAAS PrOJECt uevvvriivereerreerernrreseeraesesnmsesssserseseeeensioens 125
Help menu - USer gUidecciviiiniiininmiion s e, 125
Help menu - working SEqUENCEccoiieciimeiiinicc e 126
Help menu - important POINLSceeceveeeoerrereecsrnmsuesmeesmssessnnmeesessenens o 126
Class model of ‘Task Management SyStem’ccccvvrrecrenmicrcrncnninecnnne 128
State model of ‘EMPIOYee’cocccvniiniccmicnniiiiicnnncicrie e, 129
State model of “Task’ ..o 129
State MOel Of “TIOICE’vvvvvecurereeeeesirsessesersssesnessssssesssessssssessesesssssnessees 130
State model of POSILION’covererii e 130
Class model of ‘Book Bank™ ... 131
State model of ‘Person’cc.ovevrecrmneiitc et e 132
State model of ‘Loan’ ... e e 132
State model of ‘BOOK™ ...c.eoimii e 133
Class model of ‘Bill Payment System’coccooieimiiirinincicne e 133
State model of ‘Command’cccocimiiini e 134
State model of ‘Bill’ ... 134
State model of ‘TEeIM’coccomevieriiinccre e e 135
State model of ‘CHENt” ..o e 135
Class model of ‘Student Enrollment System’ccccoooivmriiiiceneriienricnnens 136
State model of “Student’ ...t 137
State model of ‘Enrollment’ ...t 138
State model of ‘Seminar’ccooevcinmicrncirn s, 138
State model Of ‘Professor’ ... 139
Class model of ‘Purchase Order’ applicationccoccvcecnniceienicerecrrnnnnne. 140
State model of “CUSLOMET”cccoovierireicrrecereecc et 141
State model of ‘Phone’ccooviiirmnr et s 141
State model of ‘PurchaseOrder’ ... 142
State model of ‘Lineltem’cccoovvirieiinciinininie e 142
State model of ‘Address’ ..ot s 143

Figure C.26
Figure C.27
Figure C.28
Figure C.29
Figure C.30
Figure C.31
Figure C.32
Figure C.33
Figure C.34
Figure C.35
Figure C.36
Figure C.37
Figure C.38
Figure C.39
Figure C.40
Figure C.41
Figure C.42
Figure C.43
Figure C.44
Figure C.45
Figure C.46
Figure C.47
Figure C.48
Figure C.49
Figure C.50
Figure C.51
Figure C.52
Figure C.53
Figure C.54
Figure C.55
Figure C.56
Figure C.57
Figure C.58
Figure C.59
Figure C.60
Figure C.61
Figure C.62
Figure C.63
Figure C.64

State model of ‘Stockltem’
Class model of ‘Library Management System’
State model of ‘Catalogue’
State model of ‘Book’
State model of ‘Alert’
State model of ‘Librarian’
State model of ‘Member’
Class model of ‘Online Shopping System’
State model of ‘TtemtoPurchase’
State model of ‘ShoppingCart’

State model of ‘Product’
State model of ‘CreditCard’
State model of ‘Customer’

Class model of ‘Purchase Management System’
State model of ‘Customer’
State model of ‘Order’
State model of ‘Payment’
State model of ‘Item’
State model of ‘OrderDetail’
Class model of ‘Drawing Application’
State model of ‘Object’
State model of ‘Shape’
State model of ‘List’
State model of ‘Eventhandler’
State model of ‘Application’

State mode] of ‘Box’
State model of ‘Circle’
State model of ‘Document’
State model of ‘Palette’
State model of ‘Window’
Class model of ‘Account Management System’
State model of ‘Product’
State model of *Cash’
State model of ‘ManagedFund’
State model of ‘Loan’
State model of ‘Address’
State mode] of ‘Person’

State model of ‘Transaction’
State model of ‘Account’

xvii

Table 2.1

Table 5.1

Table 8.1
Table 8.2
Table §.3
Table 8.4
Table 8.5
Table 8.6

List of Tables

SEPS OF PSO ..ottt eer e e ses s s se st s ssesesas e esnansesenes 13
Transformation solution VECEOT ..ot e 40
Traiming data ..ot et e et e et 5
Execution results for ECS ... e e emeae 79
Post-analysis execution results for ECS ... 79
Number of input model constructs and mapping blocksccccociiiiins 80
Execution results for 10-fold cross validationc.ccooorviiiniininnniieneeneen. 81
Post-analysis execution results for 10-fold cross validationcc..ccceveennne 82

xviii

bl .‘-w

List of Publications

1. Hina Mahmood, Atif Aftab Ahmed Jilani, Abdul Rauf, “A Lightweight Framework for
Automated Model-to-Code Transformation”, in Proc. of the 14th IEEE International
Muttitopic Conference (INMIC), pp. 279-283, Dec. 22-24 2011

2. Hina Mahmood, Atif Aftab Ahmed Jilani, Abdul Rauf, “Code Swarm: A Code Generation

Tool Based on Automatic Derivation of Transformation Rule Set”, accépted in the 9™
International Conference on Information Technology: New Generations (ITNG), April 2012,
USA

3. Hina Mahmood, Atif Aftab Ahmed Jilani, Abdul Rauf, “An Optimization Approacii for

Automatic Code Generation using Swarm Intelligence”, under-review in the Journal of

Systems and Software (JSS)

Acronyms and Abbreviations

ASL Action Specific Language

CIM Corriputation Independent Model

ECS Elevator Control System

EHA Extended Hierarchical Automata

Fujaba From UML to Java And Back Again

FXU Framework for eXecutable UML

GReAT Graph Rewriting and Transformation

IE Inference Engine "
KBS Knowledge Base System

M2C Model-to-Code 8
M2M Model-to-Model

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MOTOE Model Transformation as.Optimization by Examples
OCL Object Constraint Language

OMG Object Management Group

OMT Object Modeling Technique

00 Object Oriented

PIM Platform Independent Model

PLC Programmable Logic Controller

PSI Platform Specific Implementation

PSM Platform Specific Model 1
PSO Particle Swarm Optimization

rCOS Relational Calculus of Object Systems

SMC Source Model Construct

STD State Transition Diagram

TCC Target Code Construct

UJECTOR Uml to Java Executable Code GeneraTOR

UML Unified Modeling Language

VUML View-based UML

XMI - XML Metadata Interchange

xUML Executable UML

Chapter 1

1.1 Introduction

Within software engineering, implementation phase is considered as the core activity of
developing a software system. However, the advent of Model Driven Engineering (MDE)
brought a paradigm shift in the history of software engineering by changing it from a code-
centric to a model-centric activity. MDE focuses on developing a software system by performing
a series of model transformations to generate target code, referred to as Platform Specific

Implementation (PSI).
. 3
The goal of software engineeting is to produce a quality software product in a faster and

cheaper way [2]. As a result, automatic model-to-code (M2C) transformation remains an actively
explored research area as it makes the activity of software development more efficient,
productive and less error-prone. The existing approaches and tools for M2C transformation rely
on three fundamental building blocks; 1) transformation rules, 2) transformation languages and
3) source and target metamodels. Currently, program code can be automatically generated from
system models by executing a set of transformation rules, which are defined on the base of

source and target languages metamodels and expressed in a model transformation language.

-

1.2 Problem Statement

Due to various benefits offered by automatic code generation, it remains an extensively
explored research area for the last few years. Consequently, literature is stuffed with approaches
to automatically generate source code from system’s design artifacts. By analyzing these
approaches, it can be concluded that all existing approaches are based on transformation rules,

which define the mapping between source and target metamodels.

As for any rule-based system, defining a set of transformation rules is not an obvious task
and many unwanted limitations confine the results [3]. Some of these limitations are: 1) Some
transformations cannot be easily expressed in the form of rules [4). 2) In some cases, the
availability of httle domain knowledge also hinders the way of defining a complete
transformation rule set [3]. 3) Furthermore, experts may find it difficult to master both the source
and target metamodels [5]. 4) Due to the availability of a wide range of transformation languages
for expressing rules, it often becomes complex for experts to choose the one that best serves the

-2-

needs of their domain. All these difficulties are amplified when we consider that transformation
rule set may evolve. During the evolution, addition and adaptation of transformation rules makes
it difficult to ensure their consistency and correctness. Due to all these reasons, the development
of a correct, complete, consistent and non-redundant transformation rule set becomes a complex

and demanding activity.

More specifically, the definition of transformation rules is a human-dependent activity at
the moment and expert intervention is needed during the whole process. There is no method to
automatically derive or extract transformation rules withoit human intervention. No such™
approach currently exists that can perform the task of automatic code generation: 1) without
explicit transformation rule set definition, 2) independent of transformation languages and 3}

irrespective of source and target metamodels.

1.3 Motivation

It is recognized that experts can more easily give transformation examples instead of
defining complete and consistent transformation rules [6]. In most cases, the companies have
accumulated knowledge from past industrial transformation examples [4, 7]. However, currently
there is no way to automatically extract transformation rules from these previously accumulated

transformations and utilize them to solve new M2C transformation problems.

From these observations, our work starts to view automatic code generation problem as
the one to solve with fragmentary knowledge i.e. with only examples of M2C transformations. In
this case, there should be some procedure to automatically derive transformation rules from
existing set of industry-based transformation examples. The automatic extraction of
transformation rules will circumvent the manual definition of transformation rule set by domain
experts. It will make the M2C transformation process independent of source and target
formalisms. In this way, all the difficulties associated with manual definition, maintenance and
expression of a complete, consistent and non-redundant transformation rulé set will be

eradicated.

1

puppn

-

1.4 Research Questions

This research aims to address the following three research questions:

1. How to perform the process of M2C transformation without explicitly defining

transformation rules?

2, How to make the automatic code generation process independent of transformation

languages?

3. How to generate code from models irrespective of source and target languages’

metamodels?

1.5 Proposed Solution

Keeping in view all the problems and complexities associated with the existing code
generation approaches, we aim to propose an approach that can make the task of automatic code
generation simple, easy and unproblematic. The core theme of our approach is to use knowledge
from previously solved industrial transformation examples to solve new M2C transformation

problems.

We propose to use a Knowledge Base System (KBS) for M2C transformation. The set of
existing transformation examples are used to train the system regarding automatic code
generation. After the system is trained, new M2C transformations are performed. Thus, instead
of providing transformation rules directly as input, our aim is just to provide an existing set of
transformation examples and let the system automatically extract transformation rules from
them, without any expert intervention. Besides transformation examples, no extra information is

needed to utilize this approach.

In the absence of an explicit transformation rule set definition, automatic code generation
process becomes independent of transformation languages. Moreover, by automatic extraction of
transformation rules from previously solved transformation examples, our approach also
becomes independent of source and target formalisms. In this way, our proposed approach

makes the process of automatic code generation independent of manual transformation rule set

-4-

definition, transformation languages and metamodels. However, the only prerequisite of this
approach is to have a set of previously solved transformation examples to be used as the training

data.

1.6 Thesis Contributions

This dissertation introduces a novel approach developed for automatic code generation
from system design models. Qur approach makes use of the existing transformation examples,
heuristic search and swarm intelligence to automate the process of code generation. To the best
of our knowledge, these concepts have never been used in the context of M2C transformation
before, making it significantly different from what already exists in cuirent literature regarding

M2C transformation. The core characteristics of this approach are as follows.

1. It can utihze previously solved transformation examples to solve iew M2C transformation

problems.
2. It can transform models into code without explicit definition of transformation rules.
3. It does not rely on the metamodels of source and target languages.
4. It is irrespective of any transformation language.

The benefits achieved by developing an approach having the above-mentioned

characteristics are given below.

1. Ease the process of transformation from models to code.

2. Utilize the existing fragmentary knowledge in solving new M2C transformation problems.

3. Transform models into code without using transformation languages.

4, Generate code from models without explicitly writing transformation rules.

5. Make the transformation process independent of metamode]s complexities.

6. Our approach always proposes a transformation strategy, nearest match if no exact match is

found in the training data, which is rather impossible in the existing rule-based approaches.

.5.

fant 2

e

7. Accelerate the process of M2C transformation by eradicating the need of learning complex

technologies.

1.7 Dissertation Outline

Figure 1.1 illustrates the organization of this dissertation: Chapter 2 establishes the background
for understanding the dissertation by providing an introductory knowledge regarding M2C
transformation. Chapter 3 presents the related work in the fields of automatic cdde gefieration
and swam intelligence. The issues and limitations of existing code generation approaches and
rescarch gaps are highlighted in Chapter 4. Our proposed approach for automatic M2C
transformation is described in Chapter 5. Chapter 6 introduces the tool based on the
implementation of our approach. Case study used for the validation of proposed approach is
explained in Chapter 7. Chapter 8 discusses and evaluates the results of our research work.

Finally, chapter 9 concludes this dissertation and presents the findings of our research work.

Chapter 2: Background ‘ Chapter 3: Re?éted Work

E]

¥

Chapter 4: Problem Definition

!

Our Research Work

Chapter 7: Case Study -

Chapter 5: Proposed Approac.h

for Code Generation Chapter 6: Tool Implementation

Chapter 8: Evaluation

:

Chapter 9: Conclusion

Figure 1.1 Dissertation outline

Chapter 2
BACKGROUND

2.1 Introduction

This chapter is dedicated to establish the background for understanding the dissertation.
Section 2.2 presents a brief description of Model Driven Architecture. An explznation of major
building blocks of code generation process is provided in Section 2.3. Section 2.4 introduces the
concept of swarm intelligence. Finally, Section 2.5 covers the topic of action language,

particularly Action Specification Language (ASL).

2.2 Model Driven Architecture

MDE, first proposed by Kent in [8], is a promising approach that raises the level of
abstraction of program specification by using models as the major driving objects throughout the
software engineering life cycle. Model Driven Architecture (MDA) defined by Object
Management Group (OMG) [9, 10] in 2000, is the best realization of MDE principles. By
keeping the application and implementation logic separate, MDA provides the advantage of
realizing the same system model on multiple platforms [11], thus allowing the reuse of models

over a software lifespan. Models and model transformation form the basis of MDA.

2.2.1 Model

MDE is a model-centric software engineering approach [12]. In MDE system, a model is
composed of a complete and consistent set of formal elements describing a software system that
is amenable to analysis [13]. Models representing a software system should be exptessed in a
well-defined modeling language. In 1997, OMG defined Unified Modeling Language (UML)
[14], which quickly became the de facto industry standard for the design and specification' of
object-oriented (OO) software systems [15]. MDA defines three classes of models: Computation
Independent Model (CIM), Platform Independent Model (PIM) and Platform Spegffic Model
(PSM) [16].

2.2.2 Model Transformation

A central concept of MDA is model transformation [17]. According to OMG [11], model
transformation is the process of translating one model to another model of the same system. In

-8-

Model Driven Development (MDD) of software systems, CIM is transformed into a PIM and
PIM is transformed into one or more PSMs. These PSMs are finally used to generate target code.
In this way, the whole software development process can be seen as a series of model
transformations, where one source model is transformed into one or more target models.
Consequently, model transformation has been considéred as the heart and soul of MDD by
Sendall and Kozaczynski in [18]. .

At the most abstract level, model transformation can be divided into two main categories;
1) model-to-model (M2M) transformation and 2) mddel-to-code (M2C) transformation
(automated code generation) [19, 20]. In MDA, automated transformations are performed using
transformation tools. These tools work on the basis of transformation definitions. Figure 2.1
shows the process of MDA with transformation definition and transformation tool incorporated

into it.

Transformation
PIM . Definition

Transformation Tool 4

PSM

, Transformation ‘

Code | Definition :
(PSH

Transformation Tool

Figure 2.1 MDA process (adopted from [10])

2.3 Code Generation

The most significant use of a model representing a software system is code generation
[21]. Manual transformation of system models into code is a very timé-consuming and tedious
task. Produced code may not be fully compliant with the models due to cﬁanccs of human error.
Consequently, researchers have developed dpproaches to automate this process, resulting in
increased productivity, improved efficiency and reduced errors. The existing approaches of
automatic code generation are based on three fundamental building blocks; 1) metamodels of

source languages and target languages, 2) transformation rules and 3) transformation languages.

Ll

LN L

oy

2.3.1 Metamodels

Metamodel defines the semantics, structure and constraints of a language for a family of
models [22]. In simple words, a metamodel is a model of the modeling language. A system
model expressed in some modeling language, e.g. in UML, is said to conform to its metamodel if
each and every element in UML model is a valid class in UML’s metamodel. As the code
generation process aims at transforming elements of modeling language’s metamodel into
programming language’s metamodel, therefore the comprehension of these two metamodels is

vital for M2C transformation.

2.3.2 Transformation Rules *

The entire process of generating code from system models is based on defining and using
transformation rules. These rules define the mapping between the source modeling and the target
programming languages [23]. In M2C transformation, the correctness ariZi quality of generated
code depends upon the quality of the transformation rule set. For the correct transformation of

system models into code, defined rule set should have the following characteristics:

1. Transformation rule set should be completé i.e. for every element of source language’s

metamodel, a rule should be defined for its transformation into target metamodel’s element.

2. All transformation rules must be consistent with each other and there should not be any two

conflicting rules in the transformation rule set.

3. Rules set should be non-redundant i.e. there should not exist two or more different rules for
transforming same source metamodel’s element into a different target metamodel’s

element, under same circumstances.

4. Rules should be syntactically correct i.e. every element of source metamodel should be

transformed into a valid target metamodel’s element.

5. Transformation rules should be semantically correct i.e. the transformation rules should

preserve the meaning of the source model.

-10-

2.3.3 Transformation Languages

In the field of model transformation, the major contributions are concerned with the
definition of transformation languages which are utilized to state the transformation rules [4].
Transformation rules can be expressed using general-purpos¢ programming languages like Java
or C#, graph-transformation languages like AGG, VIATRA, TGG, VMTS and model
transformation languages like ATL (Atlas Transformation Language), Kermeta, GReAT (Graph
Rewriting and Transformation), MOLA and QVT {4, 7].

2.3.4 Code Generation Process

The complete code generation process is shown in Figure 2.2. Based upon the elements
of source modeling and target programm{ng languages’ metamodels, transformation rules are
developed. These transformation rules, expressed in a model transformation language, are fed
into the transformation tool. In the automatic code genération process, transformation tool takes
system model as input and applies transformation rules to generate the target implementation

code.

) . Target
Source Mod?llng Programming
Language’s Language’s
Meta-model
Meta-model

used to define
Transformation Rules
fedinto | v expressed in

Inoul Model providedto ¢ Transformation Transformation
nput Mode > Tool Language

enerate
\ 9

Resultant Code

Figure 2.2 Traditional code generation process

-11-

-~

2.4 Swarm Intelligence

Swarm intelligence refers to a kind of problem-solving ability that emerges in the
interactions of simple information processing-units [24]. These units are autonomous agents, as
there is no leader or global plan to follow. However, the units must interact and cooperate with
each other so as to achieve a common goal collectively, as this goal is difficult to achieve for any
unit individually. Several algorithms have been designed on the base ‘of swarm intelligence
including Particle Swarm Optimization (PSO), Ant Colony Optimization, Honeybées algorithm,
etc. The aim of these algorithms is to search for an optimal solution in the search space of a

given problem. From all algorithms utilizing swarm intelligence, our prime focus is on PSO.

2.4.1 Particle Swarm Optimization

PSO is a stochastic-based optimization technique originally proposed in 1995 [24]. The
main idea of this algérithm is to iteratively improve the optimal solution with iési)ect to a given
measure of quality. PSO is inspired by the social behavior of bird flocking and fish schooling. In
PSO, a population of candidate solutions is called a swarm and each individual solution is called
a particle. As there are many birds in a flock, similarly the swarm is composed of multiple
particles. In a flock, each single bird adjusts its movement (position) by coordinating with its

flock mates. Likewise, particles fly in the swarm by updating their velocities and positions.

Table 2.1 summarizes the steps of PSO algorithm. PSO starts by initializing the swarm
with randomly generated particles. These particles are placed in the search space of a problem.
The fitness of particle at its current location is calculated according to a user-defined objective
function. Each particle has a memory which keeps a record of the best position achieved by the
particle until now in the search space. This is known as ps.y. Overall, the swarm also remembers

the best position achieved so far by any particle in the search space. This is known as gpes.

In every iteration, each particle updates its position and velocity by combining some
aspect of the history of its own current and best locations with those of other members of the
swarin [25]. The number of particles in the search space, the number of iterationis, and some

other parameters are problem-dependent and are set by the user. The values of these parameters

-12 -

it

%

have a significant influence on the performance, efficiency and ability of PSO to search an

optimal solution.

Table 2.1 Steps of PSO

1. Randomly initialize particle positions and velocities
2. While not terminate
A. For each particle i
a. Evaluate fitness at current position x;
b. If fitness is better than ppes, update ppes; and p:
¢. If fitness is better than gpes;, update gpesr and p,
B. For each particle
d. Update velocity v; and position x;

2.5 Action Language

Executable UML (xXUML) bridges the semantic gap between the UML design models and
implementation [26) by the use of an action language. Action language is a high-level
implementation-independent language that provides control logic and manipulation of the UML
structural models. They present a way to build complete system models by incorporating logical
actions at the UML level of abstraction. From among a vast variety of available action

languages, this research work uses Action Specification Language (ASL).

2.5.1 Action Specification Language

ASL [27] was developed in 1993 with the aim of providing an unambiguous, concise and
readable definition of the processing to be carried out by an OO system. Since then, it has been
successfully applied for specifying and developing many small and large-scale software systems
ranging from embedded controllers to distributed databases. It is a rich language that is capable
of specifying all the processing required. Because of its simplicity and readability, any human

reader can easily and quickly scan through it.

-13-

Chapter 3
RELATED WORK

-14 -

nyl"“ -

'Y

3.1 Introduction

The use of models in the development of software has a rich history [28]. In the planet of
research, automatic code generation remains an actively explored area by researchers for the last
few years. Consequently, a plethora of approaches, techniques and tools are curréntly available

to automatically generate executable code from system’s analysis and design artifacts.

This chapter of dissertation is devoted to discuss the existing work in this field. Keeping
in view the title of the thesis, our work can be associated to two areas of Softwate engineering —
automatic code generation and the application of swarm intelligence to model transformation.
Section 3.2 presents the code generation approaches, techniques and research based-tools from
existing literature. Some prominent commercial and open source tools for M2C transformation
are discussed in Section 3.3. Section 3.4 discusses transformation of models in the light of swarm
intelligence. Finally, Section 3.5 concludes the chapter with an analysis of the common traits of

existing approaches and tools.

3.2 Code Generation Approaches

Initially, researchers focused on specifying mapping between individual UML models
and target language. With the passage of time, they developed approaches for transforming a set
of models into source code, so as to generate maximum implementation code automatically. We

categorize the existing literature on the bases of models covered by these approaches and tools.

3.2.1 Class Model Transformation Approaches

Favre et al. {29] presented an approach to map static desigh artifacts particularly UML
class diagram to OO code. Annotations in class diagram were expressed using OCL. Initially
class diagram is converted into GSBL™ specification, an QO algebraic language. This
specification is then converted into a more complete specification using SpRelm library. Nassar
et al. [30} presented a model-driven technique to generate code in VUML (View-based UML)
profile. VUML metamodel extends UML with OCL rules. In the proposed approach, VUML
PIM is transformed into an OO PSM, which is then used to generate OO code in Java. The
transformation rules are specified and implemented using ATL.

-15-

3.2.2 State Model Transformation Approaches

Prior to MDE, Weg ét al. [31] presented a method named CORSQ, “CASE tool support
for real-time systems design” to generate PLC (Programmable Logic Controller) code from State
Transition Diagram (STD) in two steps - first STDs are translated to an intermediate PL.C

independent textual code, which is then used to generate PLC specific code.

Ali and Tanaka [1] presented an approach to automatically convert dynamic model,
represented as OMT (Object Modeling Teéchnique), into implementation code. OMT is a
predecessor of UML statechart diagram. The proposed approach focuses on generatipg Java code
by applying transformation rules. This approach has been implemented in a tool called O-Code.
A few years later, this approach was extended to generate code from UML activity diagrams
[32]). dCode is a tool that implements the enhanced approach. Knapp and Merz [33] presented a
set of tools called Hugo to generate Java code from state machines. A generic set of Java classes

. . . #
provides a standard runtime component state for UML state machines. '

In 2003, for the first time, design patterns were used for transforming statecharts into
Java code. Niaz and Tanaka [23] proposed a novel approach based on State design pattern. Their
approach extends the State pattern and focuses on implementing sequential substates, concurrent
substates and compound transitions in Java. They enhanced this approach in {34] to include

transformations for more complex statechart elements.

Pinter and Majzik [35] providéd an implementation pattern for the instantiation of UML
statecharts at the source code level. In this pattern, Extended Hierarchical Automata (EHA) is
used as an intermediate representation of statecharts, as UML statecharts can be automatically

mapped to EHA. A prototype of this pattern was implemented in C.

3.2.3 Interaction Model Transformation Approaches

Sangal et al. [36] presented a technique to generate code from UML interaction diagrams,
particularly UML sequence diagram. As sequence diagrams lack sufficient details for generating
completely executable code, the concept of interaction schemata was introduced. An interaction
schema is a textual description of object-interaction, represented as a list of actions. All méssages

of sequence diagram are translated into actions. This technique has been implemented in a Java

-16 -

jroTy

programming tool named StructureBuilder. Engels et al. [37] presented a methodical approach
for deploying UML collaboration diagrams to model functional behavior. This approach focuses

on specifying transformation rules to generate Java code from UML collaboration diagrams.

3.2.4 Hybrid Approaches

Niaz and Tanaka [38, 39] proposed a behavioral approach for generating code from class
and state models. This approach has been implemented in a tool named JCode. JCode takes the
specifications of statecharts as input and uses transformation rules to generate Java code from
these specifications. Noe and Hartrum {40] also automate the process of transforming class and
state transitions diagrams into Ada code by merging two tools, Rational Rose 98 and AFIT.
Derezinska and Pilitowski [41, 42] proposed Framework for eXecutable UML (FXU) for
transforming UML class and state models intd C# source codé. Class ahd state models are given

as input in the form of XMI (XML Metadata Interchange).

Thongmak and Muenchaisri [43] proposed a rule-based transformation approach for
generation of Java code from UML sequence and class diagrams. This approach was
implemented in a tool for automating the transformation process. Long et al. (44] presented an
algorithmn to generate rCOS (Relational Calculus of Object Systems) code from UML class and
sequence diagrams. rCOS is an OO language and its code is quite similar to Java. The algorithm
uses class diagram to generate code skeletons. Sequence diagram is traversed by the algorithm to

generate method bodies.

Nickel et al. [45] developed an environment Fujaba (From UML to Java And Back
Again) that supports code generation from UML collaboration, activity and statechart diagrams.
Java code skeletons are generated by UML class diagrams and method bodies are generated by
using behavioral diagrams of UML. Bjorklund et al. [46] also proposed an approach to generate
C++ source code. UML statecharts, activity and collaboration diagrams are given as input in the
form of XMI. These input models are translated into Rialto using SMW toolkit. Rialto is an

intermediate formal description language used between models and code.

Usman et al. [47, 48] developed a tool named UJECT OR (UML to Java Executable Code

GeneraTOR) for automatic generation of executable Java code from UML class, sequence and

-17-

i

A

e

activity models. Structural code is generated from class model whereas behavior is added to the
code by transforming sequence and activity diagrams. Models are given as input to the tool in the
form of XML XMI is parsed and metamodel instances are created. These metamodel instanices
are used to produce isolated Java code, which is then merged with code of activity and sequence

diagrams.

Jakimi and Elkoutbi [49] presented a method to generate code from UML sequence
diagrams. An extension of this work [50] focuses on generating Java code from UML statecharts.
The proposed approach defines transformation rules for converting UML statechart elements into

Java code constructs.

Doungsa-ard and Suwannasart [51] proposed an approach for automatic transformation of
CafeOBJ specifications to Java template code. CafeOBJ is a formal algebraic specification
language. The proposed approach describes the steps and transformation rules for generating
Java Template code. This approach is implemented in a tool, Cafe2Java. The aforementioned
approach only generates Java code skeletons. This approach was extended to include system

behavior to generate more complete code [52].

3.3 Code Generation Tools

This section is dedicated to discuss some of the renowned commercial and open-source

code generation tools.

3.3.1 Rational Rose

IBM® Rational® Rose® Enterprise (53] is a commercial OO UML-based software
design tool capable of generating code in several languages including .[aVa/JZEETM, C++ and
Visual Basic. It provides support for generating code from UML class, component, deployment,
sequence, statechart and use case diagrams. However, it only provides facility to generate code

skeletons and do not provide any support for specifying system behavior.

-18-

3.3.2 Rational Rhapsody

IBM® Rational® Rhapsody® [54] is a commercial rule-based CASE tool relying on
UML modeling standard. It allows developmént of source code from UML class and statechart

diagrams. Like IBM Rational Rose, this tool is also capable of generating code frames only.

3.3.3 StructureBuilder

StructureBuilder [55] is a tool to develop UML class and sequence diagrams and generate
Java code from these. However, the core limitation of this tool is that it can generate class

structures only.

3.3.4 Enterprise Architect

Sparx System Enterprise Architect [56] is a comprehensive UML design tool capable of
generating source code in multiple languages including Java. This commercial tool uses template
technology and follows the traditional MDA process of transforming PIM to PSM to target code.

However, it does not support any action language for behavior specification.

3.3.5 Visunal Paradigm

Visual Paradigm [57] is a UML modeling and design tool by OMG to generate
implementation code in multiple languages from thirteen UML diagrams. Still, no support for

specifying behavioral actions in any action language is currently provided:

3.3.6 AndroMDA

AndroMDA [58] is an open-source framework following MDA paradigm. It generates
Java/J2EE code by using template technology. It is a rule-based tool and does not offer support

for generating class and method bodies automatically.

3.3.7 MagicDraw

MagicDrawTM [59} is a commercial UML software and system modeling tool supporting

template-driven transformations by following the traditional MDA process. It provides partial
-19.

e,

-

support for specifying behavioral actions. Yet, behavioral actions need to be added manually to

complete the implementation code.

3.3.8 Papyrus

Papyrus [60] is an open-source tool by OMG capable of transforming UML class and
statechart diagrams to Java and Ada2005 code. In order to specify constraints, OCL is supported

by Papyrus. Nevertheless, complete support for behavioral actions is lacking.

3.3.9 iUML

iUML [61] is a commercial product that allows code generation from UML use-case,
class, sequence and statechart models. This tool supports ASL for behavioral action
specification. However, it relies on rule-based approach, where rules have been explicitly

specified for transforming UML models into target implementation code.

3.3.10ArgoUML

ArgoUML [62] is an open-source modeling tool built upon standard UML 1.4
metamodel. It possesses the capability of transforming nine UML models into Java, C++, C# and
PHP code. Constraints on the models can be specified using OCL but no support for any action

language is currently available.

3.4 Swarm Intelligence for Model Transformation

In the context of model transformation, we can discuss the application of swarm

intelligence to M2C and M2M transformation.

3.4.1 Model-to-Code Transformation

A brief review of the existing literature reveals that the concept of swarm intelligence has

never been applied in the context of automatic code generation before.

-20-

proees

’-

»!

3.4.2 Model-to-Model Transformation

The intelligent behavior of swarms has been recently employed in the field of M2M
transformation. Kessentini et al. [4] preserfted an approach MOTOE (Model Transformation as
Optimization by Examples) to perform M2M transformation by using PSO. In [7], MOTOE is
extended to build a more sophisticated M2M transformation process. In addition to PSO,
enhanced approach also uses Simulated Annealing to perform the transformation. Since it is a
M2M transformation approach, it covers only the structural aspects of a model rather than

focusing on both the structural ahd dynamic aspects of a system.

3.5 Analysis

By analyzing the aforementioned approaches and tools, we can draw following

conclusions:

1. All existing approaches and tools for automatic code generation are based on three major

building blocks:

¢ Transformation rules
¢ Formal language to express transformation rules

* Metamodels of source and target languages

2. All presented approaches and tools are rule-based i.e."transformation rules explicitly need to
be defined for transforming different models into target code. Different approaches and tools

use different transformation rules.

3. All presented approaches are directly dependent on UML metamodel, which implies that
these metamodels must be understood before defining a mapping betweén sourcé and target

languages’ metamodels.

4. For automatic M2C transformation, rules must be expressed in some formal language. It can
be general purpose programming language, graph transformation language or model

transformation language.

-21-

Major focus of research-based approaches and tools is on transforming UML class and

statechart diagrams into implementation code.

A vast majority of tools do not provide support for action languages, meaning that these tools

do not generate complete class and method bodies.

-22-

o

Chapter 4
PROBLEM DEFINITION

223

4.1 Introduction

Automatic M2C transformation drastically improves the productivity and efficiency of
software developers. Keeping in mind this very advantage, the process of automatic code
generation has been made quite mature. However, despite the many efforts invested by software
researchers and practitioners in this field, there still exist some problems and issues that can

obstruct the way to smooth and easy transformation.

This chapter of dissertation explains the issues and limitations associated with the
existing approaches for automatic code generation. As there are three pillars of code generation
process, consequently this chapter is divided into three sections, each section explaining the
concerns of each building block. Section 4.2 discusses the difficulties associated with the
definition and maintenance of transformation rule set. Section 4.3 highlights the issues of
transformation languages. The complexit;es of metamodels are elaborated in Section 4.4. Finally,

Section 4.5 summarizes the problem statement and states the existing research gap.

4.2 Issues of Transformation Rules

Presently, the activity of formulating a transformation rule set is considered as the central
task of automatic code generation process. However in reality, the definition of a transformation
rule set is not a simple task. This is due to several reasons. First, some transformations cannot be
easily expressed as rules [4]. In some situations, rule induction can become impossible or
difficult to achieve [7]. Rule set needs to be correct, complete, consistent and non-redundant so
as to obtain the accurate target code. These properties are especially difficult to ensure in

situations where little domain knowledge is available [3].

Moreover, transformation rule set is not only difficult to define, rather it is also hard to
express and maintain. With the passage of time, transformation rule sets may evolve. Adding
new rules or changing existing rules makes it complex to ensure their consistency and
correctness. Furthermore, the definition of a complete transformation rule set requires
proficiency in high-level programming languages, knowlédge of the underlying metamodels and

knowledge of the semantic equivalency between the metamodels’ concepts [63] , which further

-24-

aggravates the situation. These unwanted limitations make the activity of transformation rule set

difficult, tricky and complex.

4.3 Concerns of Transformation [.anguages

So far, the contributions in model transformation havé mostly relied on defining
transformation languages for expressing M2C transformation rules [4, 7] . As a result, a vast
variety of model transformation languages have emerged, rn?iking it difficult for experts to
choose the one that best serves the needs of their domain. Learning and specializing these
languages is a difficult task and lingers the process of formulating a complete transformation rule
set. Moreover, some languages are not expressive enough and all transformations cannot be

easily expressed as rules using these languages.

4.4 Complexity of Metamodels

The development of a complete transformation rule set requires understanding of the
source and target languages’ metamodels. Practically, experts may find it difficult to master both
the source and target metamodels [5] . Besides understanding the individual metamodels, they
also need to realize the intricate mapping between the metamodels’ elements. These activities

delay the process of defining transformation rule set and also make the task comphcated.

4.5 The Gap

Existing research gaps that motivated this research are listed below:

1. Up till now, there is only one way of automatic code generation i.e. to use a transformation

rule set, no alternatives exist.

2. Currently, all transformation approaches require explicit formulation of a transformation rule
set. No such approach exists that can automatically extract or derive transformation rules

without human intervention.

-25.

]
&

No single approach is capable of transforming source model element in the casé of a missing

transformation rule.

All M2C transformation approaches presented in literature so far use high-level
programming languages or dedicated model transformation languages to express

transformation rule set, no substitutes found.

All approaches proposed for automatic code generation rely on source and target languages’
metamodels. No approach can be found in literature that is independent of source and target

formalisms.

A vast majority of existing approaches and tools are capable of generating code skeletons

only, with little or no support for generating behavioral code from system specification.

Most industrial organizations maintain a record of past M2C transformations. There is no
way to use this fragmentary knowledge for solving new M2C transformation problems, by

skipping the manual task of defining a complete transformation rule set.

-26 -

Chapter 5

CODE GENERATION

-27-

s

5.1 Introduction

In order to lessen the pains of existing code generation process and to target the research
gaps highlighted in the previous chapter, we propose a novel approach for automatic code
generation. Our proposed approach is significantly different from what already exists regarding
code generation in current literature. This approach makes use of the existing transformation
examples, heuristic search and swarm intelligence to automate the process of generating code
from system models. To the best of our knowledge, these concepts have never been applied in

the context of code generation before.

This chapter of dissertation is dedicated to elucidate our novel approach for automatic
code generation. The chapter starts by introducing some basic terminologies related to our
approach in Section 5.2. Section 5.3 gives an overview of the approach and discusses our core
transformation scheme. Section 5.4 provides a detailed insight to the structure and representation
of the training data. An adaptation of PSO to our problem of automatic M2C transformation is
presented in Section 5.5. Finally, the entire process of generating code from system models by

using this approach is explained in Section 5.6.

5.2 Preliminaries

In order to facilitate further discussion, we start by introducing some basic concepts and

terminologies related to our approach.

5.2.1 Input Source Model

An input source model M is a system design model] that needs to be transformed to
generate the target implementation code. The input source model consists of one or more model

constructs.

5.2.2 Model Construct

A model construct is defined as an element of a model, e.g. in UML class diagram,
classes and their relationships are the model constructs. Model constructs may contain properties

that describe it, e.g. names of classes, names and multiplicities of associations, etc.
-28-

Th-fsvef

A model construct can be simple or complex. A complex model construct consists of one

or more sub-constructs. For example, a class construct consists of attributes and operations.

5.2.3 Mapping Block

A mapping block depicts a previously performed transformation trace by rélating thé
subset of source model constructs to their equivalent constructs in the target implementation
language. In our case, we assume that these mapping blocks are manually defined by the domain

experts.

Although our mapping block shows the transformation between the constructs of the
source model and target code, they are different from transformation rules. Transformation rules
involve general concepts which are defined at the metamodel level. However, our mapping
blocks represent specific examples involving concrete concepts instances at the model level. For
example, transformation rules are defined for the general concepts “Class” and “State” while

mapping block includes the concrete concept instances “Student class” and “Idle state”.

5.2.4 Transformation Example (Training Data)

Transformation example defines the mapping of constructs from source model to the

target code language. A transformation example ¢onsists of one or more mapping blocks.

5.2.5 Predicate

In our context, we define a predicate as an expression that represents the construct of a

model. We propose to express the input source model and training data as predicates.

S

Each predicate has a name for its identification. In M2C transformation, we propose to
use the model construct as the predicate name. Each predicate has some parameters. The
properties of the model construct are expressed as the predicate paramieters. For example in
UML. class diagram, the class ‘ShoppingCEut’ can be expressed as predicate in the following

way:

Class {ShoppingCart)

-29.

e

»
P
7 el

5.3 Approach Overview

The main theme of our approach is to use knowledge from previously solved
transformation examples to solve new M2C transformation problems. The existing set of
examples is used to train the system regarding automatic code generation. After the system is
trained transformation blocks, that best match the constructs of the input source model to be
transformed, are extracted from the training data. These transformation blocks are then used to
convert the source model constructs into target code. So, instead of explicitly providing a
transformation rule set as input, our aim is just to provide a set of transformation examples and

let the system automatically extract transformation rules from them.

As industry is becoming knowledge-oriented and relying on expert’s decision making
abilities [64], our approach relies on using a Knowledge Base System (KBS) to generate code
from system models. A KBS is a computer-based system that acts as an expert on demand, saves
time and money and increases productivity [64] . Our KBS consists of two main components, as

shown in Figure 5.1.

1. Knowledge Base (KB) is a repository of knowledge. In our problem of automatic code

generation, existing set of training data constitutes a KB.

2. Inference Engine (IE) is a software program that infers knowledge available in KB [64]. In

our approach, we use a heuristic search optimization technique as an IE.

Iznowledge Base
ining D
Problem (Training Data) Solution

Inference Engine
{Heuristic Search Technique)

Figure 5.1 Knowledge base system

In our approach, training data is divided and represented as a set of mapping blocks. Our
approach searches for the best mapping block corresponding to every construct of the input
source model. During the search, all transformation examples are taken into account and not only

the most similar one. For that reason, our approach actually differs from case-based reasoning

-30-

[65] in which only most similar example is selected. We take the best from ail examples rather

than selecting the most related example and adapting its transformation.

By selecting the best mapping block corresponding to every construct of the input source
model, the final optimal solution consists of a combination of mapping blocks extracted from
multiple transformation examples. If the source model constructs or thé number of mapping
blocks of training data is large, the nuinber of possible combinations or solutions quickly
becomes huge and exhaustive search becomes impractical. For example, if the source model
contains 50 constructs and training data consists of 60 mapping blocks, the number of possible
combinations raises to 60%. Exploring and evalua(ing such a large number of possible

combinations is time-consuming and inefficient.

For that reason, we view the problem of automatic code generation as an optimization
problem. An optimal solution to this problem is found by using a heuristic search technique of
Particle Swarm Optimization (PSO). An introduction of PSO can be found in section 2.4.1. From
a wide range of available optimization techniques, we selected PSO because of the following

reasons:
1. Itis used to solve complex problems for which no easily implementable solution exists.
2. It is well-adapted for solving multi-modal problems.

3. As compared to other heuristic search optimization techniques, PSO consumes less

computational resources.

Using PSO, solutions are represented as particles in the search space and each particle is
evaluated using a user-defined 6bjective function. Particle that produces the best fitness value for

the objective function is selected as the final solution for M2C transformation.

Figure 5.2 gives an overview of our automatic code generation approach. At an abstract
level, our approach divides the process of automatic code generation into four major steps, as

listed below:

1. Training data répresented as mapping blocks is given as input to our KBS. These
transformation examples compose the KB and are used to train the system by inferring the
mapping patterns of different model cornistructs.

-31-

Knowledge Base System

Knowledge Base

(Transformation Examples)
Source Model] Optimal Solution

(Predicates) o . (Target Code)
Inference Engine

(Particte Swam Optimization)

System Training

Figure 5.2 Code generation approach overview
2. Source model to be transformed is also provided as input.

3. One mapping block corresponding to each construct of input sourcé model is selected from

the set of training data by using PSO.

4. Finally, the selected mapping blocks from the training data are used to transform the

constructs of the input source model into target code.

5.4 Knowledge Representation

Training data is given as input to the system as a set of mapping blocks. Each mapping

block consists of a set of two building blocks:

1. Source Model Construct (SMC)
2. Target Code Construct (TCC)

SMCs represent the constructs of the input source model to be transformed and TCCs
represent their equivalent constructs of the target code, expressed as predicates. In this way, each
mapping block statement depicts that which SMC has been transformed into which TCC at

model level, expressed as the following structure
<SMC> : <TCC>

A mapping block may include the mapping of SMC to TCC for more than one model
construct. More specifically, the interrelated constructs or the constructs that should be
transformed together are grouped into a single mapping block. Each model construct is expressed

as one or more predicates.

-32.

Our approach of automatic code generation is a generic approach and can be used to
transform any source model into target code. However, in order to illustrate and clarify our
approach we will use class and state models as examples. Our choice of using these two models
as examples is motivated by the fact that class and state models are representative of both the
static structure and the dynamic system behavior. Moreover, our proposed approach cannot only
be used to represent skeletons of model and code, rather behavioral actions inside the models can
also be easily expressed as predicates and can be automatfcally transformed to generate complete

implementation code.

5.4.1 Class Model Representation

Figure 5.3 shows the class diagram of a case study, an “Online Shopping System”. The
class model consists of 6 classes and 6 relationships (1 generalization + 5 associations). As in a
class diagram, classes along with its attributes and operations are treated as a single construct and
relationship as a separate construct, therefore total constructs of this class model add up to

twelve.

In the class model, each relationship has a class at its both ends. This illustrates that the
transformation of a relationship in a class model is dependent on these two classes. Therefore,
every relationship in the class model along with its two associated classes forms a single
mapping block i.e. each mapping block consists of the transformation of two classes and their
relationship. This implies that the total number of mapping blocks required to represent the SMC
of a class model is equal to the total number of relationships in a class model i.e. this class model

can be represented by 6 mapping blocks.

Constructs of the class model are expressed as predicates and the propertics of the
constructs become the parameters of these predicates. For example, ‘class’ construct can be

expressed as predicate in the following way:
Class (<name>)
For the class named ‘ShoppingCart’, its predicate can be expressed as follows:

Class (ShoppingCart)

-33.-

ﬂlapping block blN .
~ Customer
ShoppingCart -customerName : string
— -billingAddress : string
-subTotalMoney : ng
_vatAmount - in¥ nt -shipingAddress : string
totalMoney : int -emailAddress : string
y - 0.* -otherDetails : string .
+placeOrder) : void) +createCustomer() : void
+cancefOrder() : void CreditCard +getCustomer() - void
-issuer : string +changeStatus() : void
1 1 -cardNumber : int
1 -dateOfExpiry : Date
+authorizeCharge() : void .
1.* L a)
PreferredCustomer
ItemtoPurchase Product B -discountRate : double
-quantity : int -productName : string -approvalDate : Date
-pricePerUnit : int -productDescription : string 1 +approve()i: void .
+addltem(} ; void 0..* 1 [otherDetails : string : +disapprove() : void
+removeltem() : void +getProductDescription() : string

Figure 5.3 Class model of an ‘Online Shopping System’

We have used only one property of class in its predicate representation. This does not
imply that name is the only property of class rather it means that name is the only property of
class that is required for code generation. This approach can be used with many different kinds
of predicate structures, as it is a general approach. However, we have defined and used this
structural scheme throughout this research project. The complete templates of our predicate

structures and transformation schemes can be found in Appendix A.

Using our templates, the relationship between the classes of ‘ShoppingCart’ and
‘ItemToPurchase’ in Figure 5.3 can be represented as a comiplete mapping block in the following
way:

Begin bl

Class(ShoppingCart):Class(public, ShoppingCart})

Attribute (SubTotalMoney, int, 0, ShoppingCart,_) :Attribute (private,

int, SubTotalMoney, 0, ShoppingCart, _)

Attribute(vatAmount,int,O,ShoppingCart,_):Attribuze(private,int,

vatAmount, 0, ShoppingCart, _)

Attribute(totalMoney, int, 0, ShoppingCart,_) :Attribute(totalMoney,

int, 0, ShoppingCart,)

-34-

o

e

oy

Operation{placeOrder, ShoppingCart, void) :Method (public, void,
placeOrder, ShoppingCart)
OperationParam(-, -placeOrder, ShoppingCart, 1} :MethodParam(-, -,
placeOrder, ShoppingCart, 1)
Operation(cancelOrder, ShoppingCart, void) :Method(public, void,
cancelOrder, ShoppingCart, void)
OperationParam(—, -, cancelOrder, ShoppingCart, 1) :MethodParam(-,

-, cancelOrder, ShoppingCart, 1)

Class (ItemToPurchase) :Class(public, ItemToPurchase)
Attribute(quantity, int, 0, ItemTcPurchase,_) :Attribute (private, int,
quantity, 0, ItemToPurchase, _)
Attribute(pricePerUnit,int,O,ItemToPufchase,_):Attribute(private,
int, pricePerUnit, 0, ItemToPurchase,_) -
Operation{addItem, ItemToPurchase,void) :Method (public, void,
addIlItem, ItemToPurchase)
OperationParam(—,—,addItem,ItemToﬁurchase,l):MethodParam(—,
-,addItem, ItemToPurchase, 1)
Operation(removelItem, ItemToPurchase, void) :Method{public,void,
removelItem, ItemToPurchase)

OperationParam (-, -, removeltem, ItemTcPurchase,l):MethodParam(-,
-,addItem, ItemTcPurchase, 1)
Associaticn(_,1,1,n,_, ShoppingCart, ItemToPurchase) :Attribute
{private, ShoppingCart, shoppingcart (), ShoppingCart, ItemToPurchase)
End bl

This mapping block indicates that the SMCs of the classes ‘ShoppingCart’ and

‘ItemtoPurchase’ in the class model are transformed to the corresponding classes in the TCCs
with the same names. Attributes and operations of source model classes become the attributes
and methods of the corresponding classes in the target implementation code. The association

relationship between these two classes in the source model is translated by making an object of

-35-

[i'?‘-‘ 3

-

Pl

gt g

class ‘ShoppingCart’ in the class ‘ItemtoPurchase’ as an attribute. All this information is

expressed as predicates in the aforementioned mapping block.

5.4.2 State Model Representation

In the state diagram, states along with its entry, do and exit activities form one construct
while transition is taken as a separate construct. For example, consider the state model of class
‘ShoppingCart’ shown in Figure 5.4. It has two possible states and four transitions that change
the state of an object. Since a transition is dependent on its source and target states, each
mapping block consists of source state, transition and its target state. Total number of mapping
blocks required to represent a state model is equal to the number of transitions that causes an

object to change its state.

Create

—~ | mapping block b7
Empty |

)
)

!

Deleteftem [itemcount==0} Addltern

:

Cantainltems

. i Deleteltem [itemcount>¢]

Checkoutltems

Figure 5.4 State model of the class ‘ShoppingCart’

The transition from state ‘Empty’ to ‘Containltems’ can be representéd as a mapping

block in the following way:

Begin b7
State (SCartEmpty, ShoppingCart) :Class (public, SCartEmpty,

ShoppingCart)

-36-

»,

Operation(Entry, SCartEmpty, void) :Method(public, void,Entry,
SCartEmpty)
OperationParam(—,—,Entry,SCartEmpty,1):MethodParaE(—,—,Entry,
SCartEmpty, 1)

Operation(Exit, SCartEmpty,void) :Method (public, void, Exit,
SCartEmpty)
OperationParam(-,-,Exit, SCartEmpty, 1) :MethodParam(-, -, Exit,
SCartEmpty, 1)
Operation(doActivity, SCartEmpty, void) :Methed (public, void,
doActivity, SCartEmpty)
OperationParam(~,-,doActivity, SCartEmpty, 1) :MethodParam(-,
-,doActivity, SCartEmpty, 1)
State(SCartContainItems,ShoppingCart):Class(publ}c,
SCartContainlItems, ShoppingCart)

Operation(Entry, SCartContainitems, void) :Method (public, void, Entry,
SCartContainitems)

OperationParam(-,-,Entry, SCartContainltems, 1) :MethodParam(-, -,
Entry, SCartContainItems, 1) ~
Operation(Exit,SCartContainItems,void):Method(public,Void,Exit,
SCartContainItems)

OperationParam(-,~-,Exit, SCartContainItems, 1} :MethodParam(-, -,
Exit, SCartContainlitems, 1)

Operation{doActivity, SCartContainItems, void}:Method(public, void,
doActivity, SCartContainItems)
OperationParam(—,—,doActivity,SCartContainItems,13:MethodParam(—,
-,doActivity, SCartContainItems, 1)
Transition(Empty,AddItem,Containitems) :Method(public, void,
AddItem, Empty)

End b7

-37-

In this mapping block, the SMC of state in the state model is translated into a TCC of
class (i.e. each state is translated into an implementation class). For every class corresponding to
a state, there are separate methods for encapsulating entry, exit and do activitie§ of state. The
construct of transition is mapped to a method in the target code. The complete predicate

templates of state model can be found in Appendix A.

5.4.3 Action Specification

Generating the implementation code only in terms of class and method declarations is not
sufficient. Program logic and actions is the most sig’niﬁcant part of the software systems for
execution. Our approach can not only be used to generate code skeletons, rather it is powerful
and flexible enough to transform models that encapsulate dynamic actions. In our approach, each

action within a model] is treated as a separate construct.

Currently, several action languages are available for incorporating dynamic behavior in
the system models at the design level. Logically speaking, our approach is independent of all
these languages and is capable of transforming any action language into any target programming
language, provided that transformation examples for that set of action and implementation
languages are available. For example, if we have transformation examples for converting Object
Constraint Language (OCL) model actions into C# code statements, we can perform new
transformations from OCL to C# using these examples by utilizing this approach. Similarly, if
the transformation examples show the translation of Action Specification Language (ASL) into

Java code, our approach can also be used for this set of mapping, and so on.

To apply our approach, we only need to express the available transformation examples as
predicates. The different types of actions become the predicate names and the .properties of
action statements become the predicate parameters. For example, consider the following

statement for method call expressed in ASL.
[number] = opl:getPhoneNo[] on phone

This ASL statement indicates that the operation of ‘getPhoneNo’ is called on the ‘phone’

object and the result is stored in a variable ‘number’. Its corresponding Java statement can be

written like this:

-38-

e

number = phone.getPhoneNo();

Suppose that this function call is in the body of the operation ‘GetNumber’ of class

‘Customer’, then this example can be expressed as predicate in the following way:

OpBodyFn (GetNumber, Customer, number, getPhoneNo, phone, ~, 4)
MethodBodyFn (GetNumber, Customer, number, phone, getPhoneNo, -
y4)

The predicate name (OpBodyFn) indicates that the action of ‘function call’ is represented
by this predicate. In the ‘GetNumber’ operation of class ‘Customer’, there is an action for calling
the operation of ‘getPhoneNo’ on the ‘phone’ object. Moreover, the predicate also depicts that

this action is the 4th statement in the ‘GetNumber’ operation.

In this manner, all action statements (e.g. sequentiai, iteration, decision statements, etc.)
can be easily expressed as predicates, no matter which action or implementation language has
been used. In the context of class model, action languages can be used to specify operation body.
Entry, do, exit activities and transition guards can be expressed in the state model by using the
action languages. The complete predicate templates of all action statements can be found in

Appendix A

5.5 PSO Adaptation for Automatic Code Generation

Our approach works by finding the most appropriate mapping for every model construct
from the set of provided transformation examples. As described in section 2.4.1, PSO represents
solutions as particles in the search space. Likewise, in our problem of M2C transformation these
particles are the transformation blocks extracted from the available set of training data. The task
of PSO is to search for the mapping block that contains the transformation of construct similar to
the one in the source model. The transformation construct from the training data is considered to
be similar to the source model construct if it shares the same construct name with similar

properties.

To apply heuristic search techniques to a specific problem, it is nécessary to Specify the

representation of solutions, the fitness function to evaluate the quality of the searched solution

-39.

bt o

and the operators that allow movement in the search space so as to find new solutions [7] . The
next sub-sections elaborate the adaptation of these PSO elements t6 our problein of automatic

M2C transformation.

5.5.1 Representation of Transformation Solution

Using PSO, solutions are represented as particles in the search space. These particles
move in the D-dimensional space to find an optimal solution. In our problem, we consider the
dimensions of the search space as the constructs of the input source model to be transformed.
This implies that the number of dimensions in the search space is equal to the total number of
input source model constructs. For example, the transformation of the class model shown in
Figure 5.3 will generate a 12-dimensional search space that accounts for 6 classes and 6

relationships (1 generalization + 5 associations).

The mapping blocks in the training data will be numbered from 1 to m, m being the total
number of mapping blocks. These mapping block numbers are the possib]e coordinates of the
D-dimensional search space. It means that the dimensions of the search space will take discrete
values from 1 to m [1, m]. Each of the input source model construct will be associated a discrete

value from 1 to m that represents a transformation possibility for that construct.

This solution is implemented as a vector in the D-dimensional search space. The
constructs of the source model are the elements of the vector whereas the mapping block
numbers that show the transformation possibilities aré the values in the vector elements. For
example, let us consider that the training data for transforming class model of Figure 5.3 has 30
mapping blocks. Table 5.1 shows a possible transformation solution vector. This vector has 12
elements (total number of source model constructs) and each element can take values from 1 to
30 (total number of mapping blocks). First element has a value of 4, which means that 1%
construct of the inpiit source model can be transformed using mapping block number 4, 2"

construct using block number 25, 3™ construct using block number 8 and so on.

Table 5.1 Transformation solution vector

Construct number 1 2 34 5 6 7 89 10 11 12
Mapping block number 4 25 8 9 20 23 22 7 1 19 30 12

-40 -

o

e

5.5.2 Evaluation of Transformation Solution

The quality of the transformation solution produced by PSO is evaluated against a user-
defined objective function. In M2C transformation, fitness value of a particle indicates the
appropriateness of the mapping blocks selected for the transformation of their corresponding
source model constructs. For our problem of generating code from systém models, we have

defined the following fitness function:

where D is the total number of constructs in the input source model to be transformed,

{ 0, if source model construct cannot be transformed by the selected mapping block
Ci

1, if source model construct can be transformed by the selected mapping block

number of key paraﬁleters matched in the predicates of the i construct
total number of parameters in the predicates of i” construct

This fitness function is generic and can be used to evaluate the transformation solution of
any source model. The fitness function can be divided into two parts: ¢; and #;. The value of ¢ 18
calculated by matching the construct names and the comparison of construct parameter values

determines the value of #;. These points are further elaborated below.

Using this fitness function, first the names of the source model construct and the selected
mapping block construct are matched. If the construct names are different, ¢; is assigned the
value of zero. In this case, there is no need to match the predicate parameters as construct names
are different. If the construct names match, the value of ¢; is set to 1 and the parameters are then

compared to determine the value of #;.

In calculating the value of #, instead of using all predicate parameters, only key
parameters are involved. Its reason will be explained shortly after defining the term key
parameters. The term key parameters represent those parameters of predicates which are
significant in the construct and the difference of these parameters can result in a wrong

transformation. In order to further clarify this term, we will use an example of the class model
-41-

h

shown in Figure 5.3. Consider the transformation of the following relationship construct of the

class model into code construct:
Association(_,1,1,n,_, ShoppingCart, itemToPurchase)
The target mapping block contains the following mapping:
Association(0,1,90,n,_,Person,Lean):Attribute(private,Person,
person,Person(}), Lean)

In this example, the association construct has total 7 parameters - 4 multiplicities, 1
association name and 2 classes. In this particular case, 5 parameters of the input source model
construct (2 multiplicities, association name and 2 classes) match with the transformation
mapping block construct whereas two parameters (1% and 3" parameter) are different. But these
two parameters that do not match are NOT the key parameters. Whether these parameters are
zero or undefined (-), they have no effect on the correctness of the transformation. SMC can be

accurately transformed into its code construct, even when these two parameters are different.

The key parameters in this example are 2" and 4™ parameters because these two
parameters decide that object of which class will be ctreated in another class (object of class with
multiplicity of 1 will be an attribute of class with multiplicity of n). In case of aggregation and
composition constructs, key parameters indicate that either a single object or an a}ray of objects
will be created in the contained class. In case, if a construct has no key parameters, the value of #;
will be considered as 1 by default. For example, the generalization construct of class model has 2
predicate parameters. These two parameters are the names of the parent and child classes
respectively. For example, the generalization relationship in Figure 5.3 can be represented as

follows:
Generalization (Customer, PreferredCustomer)

In this case, there is no key parameter and the construct can be correctly transformed if
the construct names are similar. So in the absence of key parameters, the comparison and
matching of construct names is sufficiént to evaluate the quality of the selected transformation
solution. As we have used class and state models as examples to explain our approach, the details

of key parameters of their constructs are given in Appendix A.

-42.-

-

\y

In case of ‘Association’ construct, if we use all parameters in calculating ¢, and assign
equal weight to all parameters of the predicate, each parameter will be awarded a weight of 0.145
approximately (1.0/7). For the above-mentioned example of association construct where key
parameters are similar, the value of # is 1, indicating that the selected transformation block is
appropriate for the translation of the corresponding SMC. However, if we consider all predicate
parameters, the value of f; will become 0.725 (0.145*5), as two predicate parameters do n(:t
match. Involvement of all parameters in the fitness function has penalized the value of ¢

although the transformation is correct.

Now let us consider another case in which the key parameters of the source model
construct of ‘Association” do not match with the transformation construct of the mapping block,
i.e. 5 parameters of the predicates match while 2 key parameters are different. Practically
speaking, if key parameters are different, the transfo'rmation should NOT be considered
appropriate, as it will result in a wrong transformation. If we consider the-above-mentioned
fitness function, the value of #; will be zero (as it should be) but if we considér all parameters in
calculating t;, its value will be 0.725 (0.145*5), which is a reasonably good, if not perfect, fitness

value for making the transformation solution worth-considering.
3

If we compare the above two examples, using all parameters for ;:alculating t; results in
the same fitness value of 0.725, although the selected transformation block is correct in the I
case and incorrect in the 2™. This will result in a weak fitness function as the ‘solution with
wrong transformations will also generate an acceptable fitness value. However, if we involve
only key parameters, the fitness values are different, 1 in the case of accurate transformation
selection and zero in the case of selecting incorrect transformation block. This means that if we
consider only key parameters, our fitness function will be .Strong and intelligent enough to search
for better solutions. This justifies our choice of using key parameters in evaluating the

transformation solution, instead of involving all parameters in the fitness function.

By using the above-mentioned formula for calculating ¢, a value between 0 and | is
obtained. So for each construct of the input source model, the values of ¢; and # will multiply up
to 1. Depending upon the number of constructs in the input source model, the fitness function

shown in equation 1 will generate fitness values in different ranges. In order to make the fitness

-43-

Y

»TT

values comparable across models having different number of constructs, a normalized fitness

value in the range {0, 1] can be obtained by using the following equation.

where D is the total number of constructs in the input source model.

5.5.3 Deriving An Optimal Solution

Our PSO starts by initializing the swarm with randomly generated particles. This is done
by assigning random block numbers to the vector elements. The block numbers are in the range
i1, m], where m is the total number of mapping blocks that constitute the training data. The
number of particles in the swarm is a user-defined parameter. The value of this parameter is set
on the basis of the dimensions of the search space and the complexity of a pr?)blem whose

optimal solution is to be searched. Typical value of this parameter ranges from 20 to 50 [25].

In the swarm, each individual particle is composed of three D-dimensional vectors, D
being the dimensionality of the search space. Using these vectors, particles keep a record of their
current position (x;), velocity (v;) and the previous best position (p;). The current position of a
particle can be considered as a set of coordinates that describe the position of that particle in the

search space [25].

.

These randomly initialized particlés are evaluated against the fitness function to
determine the quality of the generated transformation solutions. The particle with the highest
fitness value is stored as the global best position (geest). 8vest is the best position achieved so far
by any particle in the search space. The coordinates of the gs.s: are recorded in p,. As this is the
first iteration, each particle stores its fitness value in pg.s and its coordinates in p;. This value is
stored for comparison on later iterations. In each of the next iterations, the fitness values of the
particles are compared with pp.s and gp.s. If the values in current iteration are better, new values

are assigned t0 Ppes and gpes:-

Next iteration starts by updating the values of x; and v;. The current position of every

particle is updated using the following formula [24]:

-44 -

Using the two best positions ppes: and gpes, the velocity of particles are updated in each

iteration by applying the following formula [24]:
vi=W* v+ Cl *randl * (p; = x;) + C2 *rand2 * (Dg — X)) oveverreeeneenn 4)

where W is the inertia weight. It is used to better control the scope of the search [25] and
sets a balance between the local and global exploration abilities in the swarm [66]. Global
exploration of swarm is facilitated by the large value of inertia while the small inertia value

supports local exploration to fine-tune the current solution.

Cl and C2 are the learning factors called acceleration coefficients [67]. These two
parameters represent cognitive and social weights associated to the individual and global
behavior respectively [4, 7]. CI is used to control the impact of particle’s own history on the
particle’s new position whereas C2 is used to control the impact of swarm history on the new
position of the particle. These two factors are also known as the self-confidence and the swarm-
confidence factors respectively [68]. Empirical studies suggest that C! and C2 should not be
equal to 2 all the time [69].

randl and rand2 are two uniformly distributed random values between 0 and 1. These
two values represent the stochastic acceleration during the attempt to pull each particle towards

the Ppese and gpess positions [7] .

Collectively, the first part of equation (4) represents the previous velocity which provides
the necessary momentum for particles to roam across the search space. The second part is the
cognitive component which represents each particle’s personal thinking. It encourages the
particles to move towards their own best positions found so far. The third part is the social
component. It represents the collaborative effect of the particles in finding the global optimal

solution [70] .

The algorithm iterates until the particles converge to a good transformation solution or
the maximum number of iterations is completed. In our approach, we define the maximum
number of iterations as the stopping criterion for our search of finding an optimal transformation

solution.

-45-

h Bk

5.54 Parameter Tuning

Parameter values play a significantly important role in PSO’s ability to search for the
optimal solution. We set the following parameter values in our approach to find an optimal

solution:

1. First parameter is the size of the population i.e. the number of particles in the search space. In
our approach, we set the number of particles to 40, as typical implementations of PSO use

this swarm size {68, 70].

2. Acceleration coefficients CI and C2 change the amount of tension in the system. Low values
allow particles to roam far from target regions before being tugged back while high values
result in abiupt movement toward or past target regions [69]. We set the values of C/ and C2

to 1.75, to give equal importance to both the local and the global search.
3. Ineach iteration, inertia is calculated as follows [25, 69]:
W = Winay — (Winax — Wnin) / i€Tmag) ¥ (eI wevevvnvriviiniieieieiieineeanea 5)

where W, is the initial value of W, W, is the final value of W, iterna, is the maximum
number of iterations and iter is the current iteration riumber. We set W, to 0.9 and Wi, to 0.4,

as researchers have found that best performance could be obtained between these values [25].
4. We set the maximum number of iterations i.e. iferm.. to 20.

Velocity and position of a particle must be limited t0 V. and X, respectively so that the
values always remain within the specified range. v, determines the resolution or fitness with
which regions between present position and target position are searched. If v is too high,
particles might fly past good solutions. If v is too small, particles may not explore sufficiently
beyond locally good regions [69]. In M2C transformation, Vg, should be in the range of [-m, m]
and Xpq should be in the range of [1, m], where m is the total number of mapping blocks

constituting the training data.

-46 -

5.6 Automatic Code Generation Procéss

Using this approach, the process of automatic code generation can be divided into the

following four major steps, as shown in Figure 5.5.
1. Build a Knowledge Base

2. Prepare input source model

3. Search for an optimal solution

4. Transform the model using the optimal solution.

Build a Knowledge Base Prepare Input Source
by providing a set of - Model tobe
Training Data Transformed
N

Transform the Source
Mode! by using the
searched Optimal
Solution

Search for an Optimal
Transformation Solution by
using PSO

Figure 5.5 Steps of automatic code generation process

5.6.1 Build a Knowledge Base

Our proposed approach for M2C transformaﬁon relies on the existing set of
transformation examples. The training data is divided and represe’r’ite& as a set of mapping
blocks, expressed as predicates. The mapping blocks are numbered with integral values starting
from 1. We assume that these mapping blocks are manually defined and represented by the
domain experts. These transformation examples constitute the KB and are provided as input to
the KBS. They are used to train the system regarding code generation and provide a base for

automatic M2C transformation.

-47-

.

5.6.2 Prepare Input Source Model

This approach is generic and can be used to transform any input source model into target
code. Like training data, the input source model also needs to be expressed as predicates.
Currently, the task of expressing model as predicates needs to be carried out manually. After

expressing the source model as predicates, it is given as input to our KBS.

5.6.3 Search for an Optimal Solution

After providing the training data and the source model to be transformed as input, an IE
of the KBS then searches for the appropriate transformation corresponding to each model
construct from the mapping blocks of the training data. This search space of training data is
explored by using the heuristic search optimization technique of PSO. The task of PSO is to
search for the mapping block that contains the transformation of the construct similar to the
source model construct to be transformed. Each solution generated by PSO i$ evaluated against
the fitness function. The solution having the best fitness value is selected as the final optimal
solution. This solution is in the form of a vector in which the vector elements indicate the

mapping block numbers corresponding to every source model construct.

5.6.4 Transform the Model Using Optimal Solution

Finally, an optimal solution searched by PSO is used to transform the constructs of the

. f .
source model. The resultant code construct is expressed as predicates.

-48 -

o

Chapter 6
TOOL IMPLEMENTATION

-49.

6.1 Introduction

We have successfully implemented our proposed approach in a tool named C@de
Swarm, abbreviated as C@dS. Currently, C@dS is capable of generating code from two systém
design models, class model and state model. Our motivation for selecting these two models lies
in the fact that class and state models are representatives of both the static structure and the
dynamic system behavior. Moreover, the method bodies of classes and other system behavior
can be incorporated in these models using action language ASL. C@dS is capable of
understanding and interpreting ASL, so that complete target code can be generated instead of just

the code skeletons.

This chapter is dedicated to explain the tool C@dS, based on the application of our
proposed approach. Section 6.2 presents the architecture and major components of C@dS. The
implementation specific details of C@dS are explained in Section 6.3. Finally, section 6.4

describes the working and process flow of our tool.

6.2 C@dS Architecture

Figure 6.1 shows the overall architecture of our tool C@dS. The architecture of CAdS has
three major components; PredicateParser, SearchEngine and M2CTransformationEngine. Our
tool takes a set of M2C transformation examples and soirce models as input. This input is
managed and organized by the PredicateParser. SearchEﬁgine finds an optimal solution for the
input models by using the available transformation examples. Finally, the
M2CTransformationEngine uses the optimal solution produced by the SearchEngine to transform
the input model constructs into target code predicates. Moreover, C@dS is capable of
transforming these code predicates into complete Java statements. Therefore, a set of files
containing Java code is also produced as the final output. An explanation of the three major

components of CA4S follows.

6.2.1 PredicateParser

PredicateParser initiates the execution of C@dS. First, it takes a set of transformation
examples as input and uses them to build a knowledge base. The training data is represented as a

-50-

set of mapping blocks stored in plain text files. The main responsibilities of PredicateParser are

listed below:
1. To count the number of mapping blocks.
2. To divide the mapping blocks into SMCs and TCCs.

3. To organize the training data and form a knowledge base by creating separate structures for

storing SMCs and TCCs of input transformation examples.

<<input>>

UML Cilass and State Models
containing ASL

A .
<<tomponents> @

PredicateParser

<<component>> @

SearchEngine

!

<<tomponents> g]

M2CTransformationEngine

<<output>>

Generated Code Predicates
and Java Code Files

Figure 6.1 C@d$ architecture

C@4s takes a set of class and state models as input stored in a text file. These models
contain ASL statements to depict the dynamic system behavior, expressed as predicates.
PredicateParser organizes and stores these models to be used by the later components. For the

input source models, following tasks are performed by the PredicateParser.
1. To store the input source models.

2. To count the number of constructs to be transformed.

-51-

)

W

Wy 4

3. To divide the source models into separate constructs and maintain their record.

6.2.2 SearchEngine

SearchEngine is a vital and major component of our tool. We have used PSO algorithm
as the search engine. The core responsibility of the SearchEngine is to search for an optimal
transformation solution for the input source model constructs. The transformation solution is in
the form of a set of mapping block numbers, one mapping block corresponding to every input

source model construct.

SearchEngine initializes by assigning random mapping blocks ., for transforming the
source model constructs. The quality of this random solution is assessed by using the fitness
function defined in Section 5.5.2. Depending on the fitness value calculated by the objective
function, the parameters of PSO are updated and more transformations solutions are generated in
the next iterations. The component of the SearchEngine remains active until the total number of
iterations of PSO is completed. The solution having the maximum fitness value is selected as the

final optimal solution.

6.2.3 M2CTransfomationEngine

M2CTransformationEngine is a significantly important component of our tool. The
principal job of M2CTransformationEngine is to produce the target code, both in terms of
predicates and code statements, corresponding to the input source models. It does so by using the

optimal transformation solution produced by the SearchEngine component.

The optimal solution generated by the SearchEngine is taken as input by the
M2CTransformtaionEngine. For every input source model construct, it searches for the matching
construct in the selected mapping block. The code predicate of this mapping block construct is
then used to transform the corresponding input source model construct. In this way, output
produced by M2CTransformationEngine is a set of code predicates produced for the input source

models.

This component is also responsible for transforming these code predicates into complete

Java statements. The automatic convétsion of code predicates into code statements eradicates the

-52-

oA

e

manual effort and time required for the conversion. The complete Java code generatéd by

M2CTransformationEngine is organized and stored into a set of Java files.

6.3 C®dS Implementation

C@dS tool is realized using Java programming language. We used Eclipse IDE [71] with
JDK 7 for the implementation of C@dS. From the implementation point of view, C&dS is
organized into three main packages as shown in Figure 6.2. AutoCodeGenerator is the major
package of our tool that implements the core logié of transforming input source models into the
target code. PSO package encapsulates the general logic of our heuristic search optimization
technique PSO. The package of Editor mainly deals with the GUI of Cd$. A brief description
of the main packages of C@d$ is given below.

PSO K AutoCodeGenerator

1

Editor

Figure 6.2 C(dS implementation

6.3.1 AutoCodeGenerator

The package of AutoCodeGenerator is mainly responsible for the transformation of input
source models into code predicates and eventually into the final Java code. More specifically,

following tasks are assigned to this implementation package.
1. Manage the input source models which are to be transformed.
2. Manage and organize the input training data to form the knowledge base.

3. Evaluate the quality of each transformation solution genérated by PSO.
-53.

4. Select the final optimal solution.

5. Transform the input source model constructs into target code constructs by using the

mapping blocks selected in the optimal solution.

6. Generate complete Java code statements from the resultant code predicates of the input

source models.

AutoCodeGenerator package consists of five classes which collaborate with each other to
accomplish the above-mentioned jobs. The interaction pattern of these classes is shown in Figure

6.3. These classes perform the following tasks:

FitnessCalculator

N
1
|
]

MyParticle ModelTransformer PredicateParser

™
1
1

CodeGenerator

Figure 6.3 Interaction pattern within the ‘AutoCodeGenerator’ package

PredicateParser: This class is responsible for managing the input source models,. particularly

for counting the input model constructs and organizing them into proper structures. The
management of the input training data to form a knowledge base is also the responsibility of this

class.

FimessCalculator: The fitness function defined in our approach is realized by this class. It takes

a solution vector as input and calculates the fitness value corresponding to that transformation

solution.

ModelTransformer: This class of AutoCodeGenerator package is responsible for generating
target code predicates corresponding to the input source model constructs. It takes an optimal

solution vector, searches for the mapping block to be used for the transformation and performs

-54-

the M2C transformation. In case if a construct similar to input SMC is not found in the mapping
block, it calculates the relevance score for that input SMC. Relevance score tells the ratio of
similarity between the input SMC and the SMC present in the mapping block. This score is

calculated by using the construct name and the key parameters of the SMC.

CodeGenerator: This class performs the task of generating complete Java code statements from
the TCCs produced by the ‘ModelTransformer’ class. It also organizes and afranges the code to

be placed in multiple Java class files.
MyParticle: This class is responsible for passing the total number of input model constructs to

another package. s

6.32 PSO

The implementation logic of our search engine is encapsulated in this package named

PSO. This package is responsible for performing the following tasks:

1. Provide a generic base class for defining specialized fitness functions.

2. Generate, update and manage multiple particles in the swarm.

3. Realize the equations defined in section 5.5.3 for updating particle velocities and positions.

4. Compare the different fitness values and keep a record of the solutions having the best fitness

value.
5. Mange and evolve the swarm in accordance with the fitness values of particles.
6. Update parameters of PSO.

These responsibilities are divided among the six classes of PSO package in the following

manner.

Swarm: It is the major controlling class in the PSO package and performs the task of managing
the swarm of particles. It calls the methods of other classes to evaluate the swarm, update
particles’ positions and velocities and applies the positions and velocities constraints. It also
performs the task of initializing the swarm with random particles.

\

-55.

e

FitnessFunction: This class acts as a parent class for realizing the user-defined fitness functions.
It compares fitness values of different particles in the swarm and maintains a record of the best

particles.

VariablesUpdate: This class is assigned the task of revising and updating parameter values of
PSO. In our tool, the strategy for changing the value of inertia according to the equation 5 is

implemented in this class.

ParticleUpdate: This class is a representative base class for defining the customized strategies to

update the swarm particles.

ParticleUpdateSimple: Our strategies for updat;’ing the particles’ velocities and positions are

implemented in this class.
Particle: It is an abstract class providing a generic representation for the structure and

management of particles in the swarm.

6.3.3 Editor

The implementation package of Editor deals with the GUI of C@dS. The controller of our
C@dS application “CodS.java” initiates the execution of our tool. The five classes of this

package are responsible for performing the following jobs:
1. Manage the GUI of CAdS.
2. Manage the Cde_S project directory.

3. File reading and writing.

=

. Managing the C@d$ help content.

6.4 COdS Process Flow

Figure 6.4 shows the main interface of our tool C@AdS. CAJS manages the activity of

M2C transformation in terms of projects. Separate projects are created for different

-56 -

transformation processes. By default, these projects are stored in the ‘D’ difectory under the

“CodS” folder. Each project directory of CAd$ has the following structure:
D:\ CodS\<Project Name> \ Input \
D:\ CodS\ <Project Name> \ Output \ Predicates \
D:\ CodS \ <Project Name>\ Output \ Java Code \

The complete information of C@dS tool and its user manual is detailed out in Appendix
B. The process of automatic code generation implemented in CQQS can be divided into four

major steps, as discussed below.

— - " S =
ot et OS) _e: — —T== e e e =y]
fle Edd Hep i % - T - i
gnioiny {@ix ﬁ$ﬂ}lr
W 0\CosSnoppingCan i Bmm i Em.m Emm Tﬂﬁtm I TESErt ETE&m { S5 Con
& G D'CosSSheppirpCartinput i e S - by Ex 5 DXCodSEigh
-) Cods Fite_BA5H Class(public, Sheppinglart), Constractar (p‘.b__\.,m;;.ng’a—tu) - = F& & Dicaessint
- B "ottt Ripritute(privece,doshie, subtotalmecey, 9, Shoppzuglart) 1= [& €3 DCodSHine
-RTEIN Attribate(privace, izt, vatamount, d, Sacppinglart))| E2 €3 DCeasSampic
- 1E2n Rttribute (private,dosble, tetaiveney, 3, Shoppinglart} | k5 €9 DCossBaccne
g ~ R TE ¥=thod (public,double, GetSubTotalMoney, ShepprngTart) i [€3 DxCeastShappingC
‘ - e redParan(-, -, GezSzbToral¥asey, Shoppiagtart, i} €2 DiCosSTen
[-DrEx ¥ethod (pablic,o1d, SetSubTotalMoney, Stoppingoart] :
£ TE5 11 5 PPAnY
- }{:.h:d!uu(w.bl:,:-hg;:cg SetSwbTotalMoray, ShoppingCart, I}
~Biens thod (gublic, 1nt, GerVatianant, 53
Met 4 50 i}
. gl’;g: Meth dFaxan(-,-,cecvn&mnnt Shoppiagtazt,l)
3 G DCOCSIShEpDGC MO hsouE, F20pp2 2
iy . SerVathzcunt, ShCppingli
- G -~ GC artf H
& G DiCocshoppmeCatiuoutCocs Predica Hatnod(“lic,dc‘;b‘e.ae’;:a:aimmv,s‘ho "
= BY Cous Fie_3332 o= 2 PP
B Pradicates b v.s‘}::dpuu(-,-,se::o:am?ev , Shoppieglar
B reacmed
= far DXCodSiShoppingCat Outputava Code
— B courdransjaa ;
b B cearmenng v - =l
[} $ o e] i) e | i
HCNSM1 .
L SUCCESS ! e

Uodel Zransformed.

ctal Cenmatructs:r LEE
¥epping 3Blecks: &

[Sest fitness: :‘.99;7%535,:35’;*
Sest position: [6G.0, 51.0, 1.9, L1.D, €2.3, 9.0, 53.0, 12.0, 45.¢, 1.0, 8.0, 1.0, €2.2, £0.4, 59.0, L., &0.9, 69.0, €9.9, 6.2, 1.9, £0.0, 5%.9,
Nu=te: of evaluaticns: 800

e P — ~ =

S K AT NN T

|

1

Figure 6.4 Main interface of CAqS

6.4.1 Import Training Data

“After creating a new C@d$ project from the CS main interface, user first néeds to
import the training data to build the knowledge base. This is done by using the option available
-57.

[

in the menu bar and toolbar of the CAdS inferface. Training data can comprise of multiple text

files containing a set of mapping blocks. When the user browses the training data files, these files

are read and stored in the “Input” folder of the current C@d$ project. Besides the classes that

handle GUI of the C@dS, the logical class involved in building the knowledge base is

“PredicateParser”. A sample training data file is show in Figure 6.5.

:Begin bl

Class(Employee):Class{public,Esployee),Constructor(public, Employae{))

Attribute(Empid,int,0,Employee,unique) :Attribute(private,int,empid,0,Employee)
‘Artribute(Ekame,String,null Employee,):Attribute(private,String,ename,nul], Employee)

Attribute(StartDate,Date,nuil, Exployee, Y:Attribute(private,Date,startdate,null,Employee)
‘Operation(Gethame,Employe2,String):Methed(public,String, GetName ,Employee)]
‘OperationParam(-, - ,Gethame,Employee, 1) :MethodParam(-,- ,GetNane, Employee,1)

‘Operation(SetNane ,Employee,void):¥ethod(public,void,SetName ,Employee}

‘OperationParam(Name,String,Sethame Eqployee, 1) :KethodParam(String, name, SetName Employee, 1)
ZOperat'ion(GetStarthte,Enpinyez,Date):!ethnd(pubHc,Date,GetStartDate,Ewloyee)

‘OperationParam(-,-,GetStartDate Employee, 1) :MethodParam{- - ,GetStartDate,Erployee,1)
‘Operation{SetStartDate,Employee,void):Method{public,void,Set5StartDate ,Erpioyee}
OperationParam(SDate,Date,SetStartDate,Employee,l):MethodParam(Date, sdate,SetStartDate Eaployee,1)
f0peration(cetEmPosition,Enp]oyce.string):uethod(public,String.GetEmpPosition.En?loyeej

OperationParam(-, - ,GetEmpPosition,Employee,l):MethodParam(-,- ,GetEspPosition Employee,1)
‘Operation(SetEmpPosition,Eaployee,void) :Method(public,void,5etEmpPosition, Employee) .
OperatiorParam({EPosition,String,SetEmpPosition, Employes, 1) :MethodParana(String,eposition, SetEmpPosition,Employee,1)
:OpBedyReturn(GetName,Empioyee,Output,Nm,-,1):Herhodsodyaetum(6emame,Em]oyee,retum,ename,-,l)
OpBadyAssign(SetNane Employee Exaneﬂame,-,l):uethodﬂod'slkssi (SetName,Emp loyee, ename=nase ,-,1) .
iOpBouyﬁeturn(GetStartDate,Emp1oyee,Output,startDate,-,l :Metggdsodyketum(Gets:artnate,Eﬁioyee,retum,startdate,- ,1)
OpBodyAssipn(SetStartDate,Employee,StartDate=SDate, -, 1) :MethodBodyAssign(SetStartDate ,Employee ,startdate=sdate,-,1)
opsn;—ynedaration(GetEmpPosit1‘on.Emp]o{ee,String,EmTit]e,nun.-,1):uethodsodyneclaran'on

{GetEmpPosition, Employee,String,emptitle,null,- 1) R R
OpBadyFn(GetEmpPosition,Employee EmpTitle, GetTitle, worksat,-,2) :MethodBodyFn{GetEmpPosition,Erployee emptitle, worksat GetTitle,-,2)
OpBodyFnParan(GetempPosizion,Employee,GetTitle,-,2 1):MethedBodyFnParan(GetErmpPosition, Exployee GetTitle,-,2,1)
OpBodyReturn{GetEmpPosition Employee Qutput,EepTitie,~,3) :MethodBodyReturn(GetempPosition Employee, return, exptitle = 1)
‘OpBodyFa(SetEmpPousition,Employee, - ,SetTitle worksat 4~ 1) :MethodBodyFn(SetEmpPosition, Emplayee, - worksat,SetTitle, -, 15
OpBodyFnParan(SetEmpPosition,Eeployee,SetTitle,EPosition, 1, 1) :MethodBodyFnParan(SetempPosition,Employee,SetTitle,eposition,1,1)
State(EmpInitial,Employee):(1ass(wb'lic,5w1nitial,Esp'loyee)
Operation(Entry,EmpInitial,void):method(public,void,Entry,EmpInitial)

OperationParam(-,-,Entry, EmpInitial,1):methodParam(- ,-,Entry,EmpInitial 1)

Dperation(ix'it,Emlnit'iai ,vo'id):Metﬁod(pub]ic,void,Ex'it,ElpIn'itia'l}

‘OperaticrParam(-,- ,Exit,kmpInitial,l):MethodParam(-,-,Exit,EmpInitial,l)
Operation(doActivity,EmpInitial¥,void):Method(public,void, deActivity, EmpInitial)

OperatiorParam(-,-,doActivity, EmpInitial,l):NethodParanm(-,-,doActivity,EmpInitial,l)

:State (Empworking,Employee):Class{public,EmpWorking,Esployee)
‘Operation(Entry,Empworking, void) :Method(public,void,Entry,EmpwWorking)

OperatiorParam(-,- ,Entry Empworking, 1) :MethodParam{- ,-,Entry,Empworking,1)

‘Operation(£xit, Empworking,void) :Method (public,void,Exit ,EmpWorking)

OperatiorParam(-,- ,Exit,Empworking,1) :#ethodParan(-,- Exit,Empeorking, 1)

Qperation(doActivity,Erpworking, void):kethod(public,void,deActivity, Emporking)

OperationParam(-,-,doactivity,Empworking, 1):MethodParam(-,- doActivity, Ecpworking, 1}

nggxte(Echtired,Elqﬂoyec):C ass{public,EmpRetired,Employee) i i

Figure 6.5 Training data file

6.4.2 Import Source Model

After building up the knowledge base, user selects the option for importing the source

models which are to be transformed into target code. All the input source models are present in a

single text file i.e. all the class and state models along with the ASL statements belonging to one

application system are stored in one text file. This input file is stored in the “Input” folder of the

current C@AdS project. The class of “PredicateParser” is mainly responsible for performing the

back end tasks of organizing and managing the input source model constructs. Figure 6.6 shows

a file containing the input model constructs to be transformed.

.58-

= s M s i & - s o
sFler kit fomat - View- Help s = — - T T ————— ettt

Class(ShoppingCart) :
Attnbute(SubTota]uoney,doubie 0, Shoppmgcart,_) [
:Attribute (VatAmount,int, ,Shoppl art
Attnbute(‘!ota'lnoney double, 0, shoppmg(art)
,09eratwn(6et5ub7nta1noney,shopp1ng(art,douh]e)
‘OperationParam{-,- ,GetSubTotalMoney,ShoppingCart,1) i
-Operation{SetSubTotai¥oney,ShoppinaCart,void) :
‘OperationParam{subMoney, doubie,SetSubTotaMoney, ShoppingCart,1)
‘Operation(GetvatAmount ,SheppingCart,int)
‘OperationParam{-, - ,GetVatAmount ,Shoppingcart, 1)
‘Operation(SetvatAmount Shoppmgcart void)

‘Operat ionParam{Amount mt SetvatAmount,ShoppingCart,l)
OQQratlon(GetTa*aIMoney,Shopp]ng(art dou eg
‘OperationParam{-,- ,GetTotaldoney, shoppmg(art,l)

09erat10ﬁ(5etrotamoncy,Shopp‘lngcart,vmd) B
OperationParam{Total,double,SetTotal#oney, ShoppingCart,1)

Operatiosn (GetCartOwner ShoppingCart,void

‘OperatiorParam{-,-, GetCartOwner, ShoppingCart,1) X
OpBodyReturn(GetSubTotal®oney, ShoppingCart,Output,SubTotalMoney,-,1) B
OpBodyAssign(SetSubTotalMeney, ShoppingCart, SubTotalMoney=SubMoney, - ,1}

OpBodyReturn (Getvatasount , ShoppingCart ,Output,vatamount .-, 1)

OpBodyassign[SetvatAamount , ShoppingCart , VatAmount=Asount -, 1)

OpBodyReturn{GetTotalMoney, ShoppingCart ,Output, Total¥oney, -,1) 4
opBodyassign(SetTotalMoney,ShoppingCart , TotalMoney=Total,-,1) d
OpBodyDcclaration(GctCartmmer,Sheppingcart,String,km,nui'l ,-, 1)
OpBodyfn(GetCartOwner ShoppingCart,Xame ,GetCustonerName, customer,-,2)
OpBodyFnParam(GetSartOnner ShoppingCart ,GetCustosarkame,-, 2,1}
OpBodyReturn{GetCartoemer,ShoppingCart,Output Nazne -, 3)
state(sCartInitial,ShoppingCart)

operation(Entry,SCartInitial,void)

OperationParams(-,- Entry,SCartInitial,l)

Operation(Exit, ScartIn'lna} void)

OperationParam(-,-,Exit, scartInitial 1)
Operatmn(doAcnwty,S(artImhal vmd)

OperationParam(-,- duActhty,SCartImna?,l))
State(SCartempty, shoppmgcart) :
Operation{Entry,SCartEmpty,vozd) . -
OperationParam(-,-,Entry,SCartEmpty,1) » &
Operation{exit, SCartElrpty void) :
DperatwnParam(- -,Exit,SCartEmpty,1) '
Operation{doActi .nty SCartEmty void)

DperatwnParam(‘,—,doAct1v1ty,SCart£mty,1)

SE‘a\te(SCartCmtainItem,Shoppingcart) .

g oae B et

-

T

Figure 6.6 Input source models file

6.4.3 Transform Model

The third option user needs to select is the option for transforming the input solrce
model. This is the most important step in which an optimal solution is generated by using the
PSO algorithm. Moreover, this optimal solution is then used to transform the SMCs of input
models into TCCs. Majorly, the implementation package of PSO and classes of

“FitnessCalculator” and “ModelTransformer” are involved in performing this step.

i
The target code predicates produced at the end of this step are stored in a text file named
“Predicates”. This text file is stored in the “Output\Code Predicates” folder of the current C@d_S
project. Figure 6.7 shows a sample predicate file generated for the input models of an application

of an “Online Shopping System”.

-59.

Class{puklic, SheppingCart), Constructor (public, SheppingCart ()
Attribute (private,double, subtotalmoney, 9, Shoppingcart)
Attribute (private, int, vatamount, 0, SheppingCart]

Attribute (private, double, totalmoney, 0, ShoppingCart)

Methcd {public, double, GetSubTotalMoney, SheppingCart)
MzthedParam(-,-,GetSub®ctalMoney, ShoppingCart, 1)

¥ethed (public, void, SetSubTotal¥oney, ShoppingTart}

MethodParah (double, submoney, SetSubTctzlMoney, ShoppingCart, 1)
Methed (public, int, GetVatAmount, ShoppingCart) s
MethccParam{-, -, GetVatdmcunt, ShoppingCart, 1)

Methcd (public, void, Setvetamount, ShoppirgCart)
KethcdParam{int, amount, Setvatamouat, Shoppingtart, 1)

Method {public, double, GetTotal¥cney, ShoppingCart)
MethcdParam(-, -, GetTetaldcney, ShoppingZare, 1) !
Method {public, void, S2tTotalMoney, ShoppingCart) i
MethedParam(double, total, Set7stalMoney, SheppingCart, 1)

¥ethed (public, void, SetCzrtOwner, ShoppingCart}

MethodParam({-, -, GetCartCwner, Shoppingcarte, 1)

MethodBodyReturn {GetSubTctaiMoney, ShoppingCart, return, subtotalioney, -, 1)
M¥ethcdBodyAssign{SetSubTotalMeney, SheppingCart, subictalmeney=stbmoney, -, 13
MethodBodyReturn {GetVathrount, ShoppingCart, return, vatamount, -, 1)
MethedBodyAssign {SetVatAzcount, ShoppingCart, vatamcunt =amount, -, 1}
MethedBodyReturn {ZetTotzIMoney, ShoppingTart, returp, totalmeney, -, 1)
MethodBodyAssign{SetTotal¥oney, ShoppingCart, totalmoney=teotal, -, 1)
MethcdBodyDeclaration {GetCartOwner, Shoppinglert, String, naze, null, -, 1) .
MethedBodyFr {GetCartOwner, SheppingCart, naze, custemer, GetCustomeryane, -, 2)
MethecEodyFnParam (GetCartCwner, ShoppingCart, GetCustezeriarze, -, 2,1} B
¥ethsdBodyReturni{GetCartOwner, ShoppingCart, return, nare, -, 3) i
Class{publiz, SCartInitial, ShoppingCart) '
Method (public, void, Entry, SCartInitial)]
MethodParam(-,-,Entry,SCartInitial, 1} -

Figure 6.7 Predicates file “Predicates.txt”

Another text file named “readme” is generated in this step. A sample readme file is

shown in Figure 6.8. This file contains the following information about the M2C transformation.
1. Total input model constructs.

2. Total mapping blocks in training data.

3. Best fitness value of the optimal solution.

4. Mapping block numbers selected in the optimal solution for every input model construct.

5. Number of evaluations performed by PSO.

6. Details of the source construct and mapping block, if an exact match of input model construct

is not found in the mapping block.

This information is also displayed on the console of our C@dS$ application.

-60 -

= T

Total Constructs

155

Tctal ¥apping Blocks
60

Best fitness: 0.94903225506451613

Best position: (1.0, 1.0, 60.0, 45.0, 1.0, 1.¢, 1.0, 1.4, 0.0, €0.0, 1.0, &3.0, 1.0, 1.0, 60.0, 60.0, 1.0, 16.0, 1.0,
€0.6, 1.0, §0.0, 1.0, 36.0, 5.0, 66.0, 60,0, 1.0, 60.0, 1.6, 1.0, 1.0, 1.0, 60.0, 1.0, 1.0, 60.¢, 1.0, £0.0, 21.0, 50.0,
60.0, €0.0, 55.0, €0.0, 1.0, 50.0, 22.9, 60.0, 69.0, €0.0, 1.0, 60.0, 14.¢, §.C, 0.0, 11.0, 1.0, 23.6, 13.9, 32.0, 1.0,
€0.0, 1,0, 1.6, 1.0, 60,5, 1.0, 1.0, 1.0, €0.0, &3.0, 6C.0, ©0.C, 28.0, 1.0, 60.C, 41.0, 1.0, 1.0, 1.0, 60.0, %0.%, 0.0,
2.9, €0.0, 15.¢, €0.¢, €0.0, 1.0, 1.0, 2,0, 1.0, 60.0, 29.0, 60.9, 1.9, 23.0, 52.0, €0.0, 1.0, 12,0, &0.G, 1.9, 60.0,
60.C, €0.9, €2.0, €.0, 4.0, 1.5, 58.0, 1.0, €0.0, 1.0, 0.0, €0.0, 66.0, 1.0, 40.0, €0.0, 33.0, 1.0, 33.9, 1.0, £0.0,
80.8, 1.0, 1.0, 1.0, 60.0, €0.0, 60.0, &0.0, §0.0, 1.2, £0.0, €0.0, 0.3, 1.0, 1.2, 1.0, 60.0, 1.9, 1.0, 1.0, 55.0, 41.0,
£0.0, €0.0, 6€0.0, 0.0, 13.0, £1.0, 60.0)

Nurber of evaluatiens: 800

Decubtful Transformations: 3

Mcdel Construct: Association {,1,L,n,_, ShoppingCart, ItemToPurchasa)

Target Transformation: Rttribute(private,ShoppingCart,sheppingcart,ShoppingCart(}, ItenToPurchase]
Target Mapping Used: ascociatien(,1,1,n,_,ShoppingCart, IteaToPurchase)

Relevance Score: 0,67

Mcdel Construct: Assaciation(_,1,0,n,_,?roduct, ItemToPurchase)

Target Transformation: Attribute{private,Product,product,Product (), ItemToPurchase)

Target Mapping Used: Associatien(,1,0,n,_,2roduct, ItemToPurchase)

Relevance Scere: 0.¢7

Mcdel Censtruct: Associatien(_,1,9,n,_,Customer, SheppingCart) .
Target Transfcrmation: Attribute(private,Customer,custermer,Customer{),ShoppingCart) ek
Target Mapping Used: Association(_,1,6,n, ,Customer, ShoppingCart)

Relevance Score: 2,67

Figure 6.8 Model transformation “readme.txt”

6.4.4 Generate Java Code

Finally, user selects the option of generating Java code corrésponding to the code
predicates produced in the previous step. The output produced by this step is a set of Java files
containing the complete Java code statements. The class of “CodeGenerator” is mainly
responsible for performing this task. Figure 6.9 shows a sample Java code file generated by
C@d$ for the class “Command”. These java files are stored in the “Output\Java Code” folder of
the C@AdS project.

Moreover, a readme file is also generated in this step. This readme file contains the
information about the input model constructs for which partial or no exact match was found in

the mapping blocks. A sample readme file is shown in Figure 6.10.

-61 -

public clzss Command {

public Cemmand{){

]

private int coxmandid = 0;

private Date emissiondate = null;
private String deliveryaddress = mull;
private 8ill payableby = new Bill{};

public int GetlItexCount()

{

int count = 0;

string desc = nuil;

far{int i=0; i<100; i++) |
desc = item.Getbescriptisn():

if (desz != null) {
count=count+l;

return csunt;
t

public Late GetEmissicnisted)

return erissicndate;

)

public vcid SetEmissicnDate (Date edate)
{
emissiondate=edate;

!

e

Figure 6.9 Java code file “Command.java”

doubtful Transformations: 3

Fiie Name: ShoppingCart.java

Model Censtruct: Attribute(private,Custeomer,customer, Customer(),ShoppingCart)
Target Code Construct: privats Customer cusiczer = new Custcmer():

kelevance Score: 0.¢€7

File Name: ItenTo2urchase.java

Model Construct: Attribute{private, ShoppirgCart,sheppingeart, ShoppingCart (), ItezToPurchase)
Target Code Construoci: private ShoppingCart shoppingcarf = new SheppingCarti);
Relevarce Score: 0.67

File Name: ItenmToPurchase.java

¥odel Conmstruct: Attribate({private,Preduct,preduct,Product (), itenfoPurchase)
Target Code Comstruct: private Product product = new Product();

Relevance Score: 0.€7

Figure 6.10 Code generation “readme.txt”

-62-

Chapter 7
CASE STUDY

-63-

o oA T e -=re. o

A

7.1 Introduction

This chapter is dedicated to provide a thorough explanation of the case study used for the
validation of our proposed approach. We have chosen a real-life example of an Elevator Control
System (ECS) to generate the implementation code by utilizing our approach. In this chapter, we
describe the ECS by conisidering two UML design diagrams. Particularly, the static structural
design view of ECS is modeled by using the UML class diagram. As ECS is a real-time reactive
system, UML state model is utilized to illustrate the dynamic view of the system. ASL is used to

express the method bodies and behavioral logic of the ECS at the design level.

The rest of this chapter is structured as follows. Section 7.2 gives anh ovérview of the ECS
and states its functional requirements. The class diagram of ECS is described in Section 7.3.

Section 7.4 demonstrates the state models corresponding to the ECS classes.

7.2 Elevator Control System

This section is divided into two subsections. The first subsection provides an overview of .

the scope of the Elevator Control System (ECS). The functional requirements of the system are

detailed out in the second subsection.

7.2.1 Scope of the ECS

The task of an ECS is to control and manage the elevator of a building. The major object
of the ECS is the ‘Elevator’, which has the basic function of moving up and down, open and
close doors and picking up passengers from different floors of the building. The elevator is
supposed to be used in a building having floors from lA to max, where max is the maximum

number of floors in a building. The first floor of the building is a lobby.

The elevator has the car call buttons corresponding to each floor of the building. On each
floor except for the top floor and the lobby, there are two hall call buttons for the passengers to
call the elevator for going up and down. At the top floor, there is only one down hall call button
and in the lobby, there is only one up hall call button. When the elevator stops at a floor, the

doors are opened and the car lantern indicating the current direction the elevator is going is

-64-

illuminated so that the passengers can get to know the current moving direction of the elevator.
The elevator changes its speed from slow to fast while visiting the floors of the building. In order
to ensure the safety of the elevator, the elevator is equipped with the emergency brakes which are

triggered to force stop the elevator during unsafe conditions.

7.2.2 Functional Requirements

-

Process Hall Call: When the passenger requests an elevator by pressing the hall call button, the

light of the hall call button is turned on. If the elevator is idle, it starts moving towards the
requested floor immediately, otherwise the requested floor number is saved in the queue

maintained by the elevator. When the hall call button is released, the button light is turned off.
]
Process Car Call: 'When the passenger enters the elevator, (s)he presses the car call button to

express the desired destination floor. The pressed car button is illuminated, doors are closed and
the desired moving direction is determined. The elevator starts moving towards the destination
floor with the car lantern indicating the current moving direction of the elevator and the car

position indicator showing the destination floor number.

Move/Stop the Elevator: When the elevator starts moving towards the desired floor, it moves

from slow speed to a fast speed. The elevator moves with fast speed only when the source and
the destination floors are more than two floors apart. When the elevator stops at a desired floor,
the doors are opened, car lantern is cleared to show the next moving direction of the elevator and

the car position indicator is refreshed to indicate the current floor of the building.

Open/Close the Doors: The doors of the elevator are closed before the elevator starts moving
from the source floor and are opened after the elevator stops at a destination floor. However,
when the doors are closing and are not fully closed, if there are passengers who want to get into

the elevator, the doors are openetf again.

Trigger Emergency Brakes: During unsafe conditions, the elevator controller triggers the

emergency brakes to force stop the elevator at a floor. When the unsafe condition ends, the

brakes are released to continue the normal operation of the elevator.

-65-

[

7.3 Class Model

Figure 7.1 shows the class diagram of our ECS consisting of 14 classes. The

responsibilities of these classes are described below.

Building: The ECS is deployed in a building to move the passengers up and down with the help

of an elevator.

ElevatorControl: ElevatorControl is the central controling object in the ECS. It is responsible
for receiving input messages from the outside world, passing these messages on for further
processing by the ECS and sending response and output messages to the hardware and

environmental objects of ECS.

Elevator: Elevator is the major object in the ECS. It is being controlled by the ElevatorControl to
move up and down in the building at different speeds and to make stops at different floors when

needed.

EmergencyBrake: In case of an emergency or an exceptional situation, EmergericyBrake of an

elevator is triggered by the ElevatorControl.

Button: In our ECS, the Button class generalizes two sub-classes - HallCallButton and
CarButton. The ElevatorControl communicates with the Button objects, gets the information

whether a button is pressed and in turn controls the illumination of the button lights.

HallCallButton: HallCallButton exists in pair at each floor, except for the top floor and lobby.
ElevatorControl commands the elevator in response to the HallCallButton press and gives

feedback to HallCallButton lights.

CarButton: For each floor in the building, there exists a CarButton in the Elevator. The
ElevatorControl moves the elevator according to the press of the CarButton and is in charge of

turning the CarButton lights on and off.

Floor: The ECS is supposed to be used in a building having floors from 1 to max, max being the
total number of floors in a building. Each floor has a pair of HallCallButtons for calling the

elevator, except for the first floor and lobby, which have a.single HallCallButton.

- 66 -

Bulding

name : sting = I

Hminfoors :int = 0
Hmaxfiodrs ; int = 50

laddress : string = H- 10, islamabad

+getName() : s¥mg
|+getAsdress() : string
[+ gethinFloorsy) : int

+getMaxFloors() ; int

1 [rsetMaxFloorsimax_foor ; infj : void

+halCalButtonPressed{cating_toorNo: int, currant_floorNo - i) : void
+haliCalBultenReleased(caling_floomo : inti : void

+vahdFloartfaoriNe : int) : badean

+SetNamefbname : siring} : void

JrostAddressibaddress : string) : void

selhinFlocrsimin_floor - nt) : void

1

Floor

Icaling_floor ;i =0
+<urreni_floor (it =0
l-cuirent_button_no it =0

+haButtenPress(cal_tocr - inl, curr_floor : int) : void
“haliButtonReleasel} : void

+getCurtentFloct() :int

+getCatingFloorifoos - int) : int
+satCallingFloar{efloer : int) : vaid

Button

Fstatus © sirng = ide

Elevator Control
EmeigencyBeake reontrdller :ind = t
-status - string = ide -
|ermor sﬂui:gn"nw +ha)ButonPressed{caling_foorNo @ ait) ; void
e +tarButt onPressed(de stinationFloar int) - void
“2ppi) : void s doorReversak) : viid
+release) : vaid otri o
. ggerEmergencyBrakes() | void
+getStatus) : string 1 eleaseE fBrakes() : void
+selStatusiebrake_stais : string) : void |+move BlevatordestinationFloor * nl) void
+getEmarValue(- int +stopElevatarr) : veid
+seiErorValee(era : int) void
+qelEBSale() : EmergencyBrakeState 1
+setE BState(ebrake _state : EmergencyBrake State) - void
| 1.10
oo .
prp—— ! * Elevator
loor_status =dlosed =
Ldocs_reversal - =0 “-’":;?;g_'om
ropen{) : vnid -currenl-_l'loof (=0
*close() : vad | destination_flocx : int =0
*revemDoorso:vuq 2 ® |-safe_skustion : string = safe
+ getDoorStatus{) : string -moving_diection : string = noll
+setDoorStatus(status : sting) - stng 1 s hakCalealing focrNo i) - wid
4+getDocrR tint - L
gebouRevrsa:in scarCalidestnation_tloao:) : void
+setDoorReversal(reverse : ind) - vaid detemi inali - eid
+getDocrState() : DoorState m;gm D_"m 0w
+setDoorStete(d_state : Do Sate) . void ., ge(NexlDesﬁnaiim - veid
[+moveidestinabionFloor : int) : void
Hstop() : void
[+isEmpty] : bodlean
[+Encue} : void 1
CarLantern +::MFMOZVG% -
. tFioor(
Hantem_status : string = off mos:gﬁso ‘\u‘éw
+duminete() : void I+ openDoars!) : void
+unCfY) : void 2 +call(} : vaid
g]
+ petStatus() : string +selactFioorj - void

[+selStatusistalus : string) : void
+getLantemState() : CarlantemState
+setlanternStateqcistate : CarlantemStale) : void

1 +ele_move) : vaid

Orlve

Helevator_slatus : string = stopped
-elevator_direction : string = nul
Fspeed: nt=0

Fdrive_sfioor it = 0

-ditve_dfioor -t =0

+moveUp({source_floor : int, destinaion_floor : int) : vaid
+moveDown(source_floor : inl, destination_loor : ind) - void
+stop(} - void

+gelStatusi; : sbing

+setStatusiestatus : string) : void

+gelDirection() - string

+setirection{edrection : sting) : void

+geiSpeed)) s int

+5etSpeed{espeed : inf) : vad

+geiDriveQated) : DriveState

|+ setDrive Sateqdetale - DriveState) : void
+getSourceFlotr) < int

[+ setSourceflood(s_foar : int) - void
+getOestinglionFloor) ; int

+setDestinationFloor(d_flook : int) - veid

+getBevatarState() : BevalorState
+setElevatorState{estate : ElevatorState) : vaid
+getfleStatus() : sting

+setEleStalust stetus : sing) : void
+gelSourceFlocrt) :int

+setSarceFloorsoor :int} : void
+getCumentFioon) © int

+seiCurrent Floar(cloor - ird} : void
+getDestinationFloar () - int

+etStatus]) : string
ssetStatus(stal : sting) : void

CaButton

HaliCaltButton

Foutton_status : string = ide
Hight_status ; slring = off

Hutton_status : sting = ide
Might_status : string = off

+uminate() : void

[+hemOff} : vaid

|+ getButt onStatus) ; string

+selButton Status(stat : string) : void

|+ getlightStatus() : string
+setlightStatus{istatus : string) : waid
+gatCarButtonState() : CarBuionState

rpress(] - vaid

+release() : vaid

+getButtonStatus(] : void
+selButtonStatusibstatys : siring} : void
+getLightStatus() : string
+seilightSiatusiistatus : sting) : void
+getHalCal ButionState() : HalCallButtonSlate

+seiDestinationF loor(doar :int) : void eatCarBi (chstate : Carl):void | [rsetHalCabButt - HalCallB) void
+getBlevatorSiuation() : sting
+5¢1SafeSluation(safely : string) - void -
[+getMovngDirectiont) : sting
+sethovingDirectionienn_drecion : strng) :vaid | 1 Dispasher
¢ [P int = 1000
1 [destinationQueuef} : int = MAX
tHiontzint = 0
1 Hrear it =1
| [! [eurrent_floor it =
DriveConrol _CaPositionindcalor s enquetfonrio: inty- vaid
reoa o0 -pcs'ﬂm_status.: skring = passive +dequeq) :int
. - — - [desired_floor (inl =0 +isEmptyl : boclean
+moveUptsaurce_doar - nl, destialion_foor i) void | [, oy goerno st void +aiFlocx(source_foar : int, destination_floor :int. diraction * strng) void
+move Down(saurce_floor int, destination_floor * int) vaid clear) : veid 4 getCurrentFloor) - int
+stopd) : void +getStatush) : string +setCurrentFlocx(foar_no : i) - void
+setStatus(stalus : string) : void vincrementFloon) : void
+getDestedFlocr(} . int +decrementFloor() : vord
+setDesiredFloor(dfoor : int) : vaid
+0etCPState() : CPIState
+sedCPSate{cpstate : CPiState} : void

Figure 7.1 Class diagram of the ‘Elevator Control System’

-67 -

CarPositionIndicator: CarPositionIndicator is used to inform the passengers about the current

position of the Elevator. When the Elevator is at rest, it indicates the current floor whereas the

desired floor is shown to the passengers when the elevator is moving,

CarLantern: Carl.antern are two in number, for indicating the up/down moving direction of tlie
elevator to the passengers. One of the two car lanterns is illuminated according to the current

moving direction of the elevator.

Door: There are two doors in the system. The ElevatorControl commands the Doot object to

open, close or make a door reversal according to the situation.
DriveControl: DriveControl is responsible for controlling the elevator Drive.

Drive: Drive controls the movement of the elevator. It moves the elevator up and down and

makes stops at different floors.

Dispatcher: Dispatcher is an important component of the software system alfho'ugh it does not
control the actual elevator components. The main function of the dispatcher is to calculate the

target moving direction and destination for the elevator.

The method bodies of these classes are expressed using ASL. As an example, the body of
the method ‘getNextDestination’ in the ‘Elevator’ class is expressed in ASL below. The

keywords of ASL are expressed with the bold font style.
Boolean gueue_empty = FALSE
[gueue_empty] = op9%9:isEmpty[] on dispatcher
if queuve_empty == FALSE then
. i
Integer next_floor =,;-1
(next_floor] = op3:déque[] on dispatcher
Op5:carCall[next_£floor] on this
. +
endif

else

-68-

op4:stop{} on drivecortrol
ele_status = “idle”
for i in {1,2}

op2:close[] on door[i]

opZ:turnocff[] on carlantern(i])

endfor
source_floor = current_floor
destination_floor = -1

op2:turnoff[] on carbutton[current_floor]

op2:clear[} on caprpositionindicator

E)

opl:show{current_floor] on carpositionindicator
endif

In this method, the next destination of the elevator is determined. If the waiting queue of
the elevator is non-empty, the elevator takes its next destination flodr from the queue and moves
towards it. However, if the waiting queue is empty i.e. there are no passengers waiting for the
elevator on any floor of the building, the elevator is stopped at the current floor, doors are closed,
car lantern is turned off and the car position indicator is set to show the current floor of the

elevator.

7.4 State Model

This section illustrates the state diagrams corresponding to the classes of the ECS to show

the behavior of the reactive objects.

7.4.1 State model of Elevator

Figure 7.2 shows the state model of the major reactive object in the ECS, the Elevator.

The state model consists of 13 states and 29 transitions, including 3 self transitions. Within the

269 -

Ehd :;&'; & - ==

state, the ‘entry/Activity’ and ‘do/Activity’ illustrate that there are activities in the entry and do

methods of the state respectively. These activities are expressed in ASL at the design level.

Key:
«f = current floor
sf = source floor
oplcall] - {cf>df] (IidleDoorClosed 4f = destinaticn flecr
entry / Activity .
do / Activity op1:callf] : [cf < f}
StartMovingDown
: fef 1=
op3:move [] : [ef 1= 5f] do 1 Activity J/
s StartMovingUp
(cf t=df) MovingDownTheFlcors 1l - - —
! — il op3:move []: [cf i=sf}
emrylﬁc'ﬂvny 3
do / Activity optcall[] : [ef == df] =
‘ @
\ — - / 2 opt:call [: [of = df]
. :
D n
3 ,| .] TR TiaN .
y . - optcalf MavingUpTheFloors \ icf I= df]
W 5] eDoorOpen oy
T entry / Activity entwlww
et e PPy - . do 1 Activity
% ResumeMovingDown do / Activity ~ .
3 entry / Activity) lqueue_empty == false]
a do / Actiity
= = P Cloced
g /ResumeDoorClosed
/ ~— g do / Activity
(ideDoorOpenReached opt:cal|) E, op:call [
do / Activity ° \ J
o =
ey op3imave []: [df < cf] l g .
. eV .)
‘ op2:selectFloor f) FloorSelectedDocrClosed = =
do ! Activity s "
- £ K&
oplcall[): [cfl=dff ‘é -
%' —
(FloorSelectedDoorClosedCalled) i -] . ResumeMovingUp
do / Activity 5 § op3move []: [df > e entry / Activity
= g do / Activity
E ®
- &N
) &
(FloorSetectedDoorOpen)
opticall[]:[ef==df) . _ | entry/Activity
“| do / Achity
e
op1:call [} : [cf ==df]
fof == df &8 dir == "up”]
[queue_empty = false]

P op3:move [] :[df <ef]

Figure 7.2 State model of the ‘Elevator’

-70 -

T

7.4.2 State Model of EmergencyBrake

Figure 7.3 demonstrates the state model of the EmergencyBrake of the ECS.
op2:applyBrakes []

{ Idle) (Active)

entry / Activity entry / Activity
do / Activity do / Activity

op1:releaseBrakes []

Figure 7.3 State model of the ‘EmergencyBrake’

7.4.3 State Model of HallCallButton
The state model of the class Ha]]Cal]Butt»on is shown in Figure 7.4.
opt:illuminate [)

{ HallCallButtonOff { HallCallButtonOn
to / Activity J Ldo / Activity J

op2:darken []

Figure 7.4 State model of the ‘HallCallButton’

7.4.4 State Model of CarButton

Figure 7.5 shows the state model of the CarButton class.

op1:illurmninate(} :
{ CarButtonOff) { CarButtonOn
Ldo 1 Activity J Ldo / Activity J

op2:tumOff[]

Figure 7.5 State model of the ‘CarButton’

-71-

et

7.4.5 State Model of CarPositionIndicator

Figure 7.6 shows the behavior of the CarPositionIndicator class in the ECS.

.op1:show |[]

, _ N
{ CPIPassive) { CPlActive)

entry / Activity do { Activity
do / Activity)

op2-clear]

Figure 7.6 State model of thé ‘CarPositionIndicator’

7.4.6 State Model of CarLantern
The state model of the car lantern is shown in Fikgufe 7.7.

op1tilluminate []

N
(CarLanternOff) (CarLantenOn)
Ldo / Activity J Ldo 1 Activity J

op2:tumOff [}

Figure 7.7 State model of the ‘CarLantern’

7.4.7 State Model of Door

Figure 7.8 shows the dynamic behavior of the Door class of the ECS.

-72-

[r_status == 0]

.. Closed

do / Activity

{ Ciosing .

opi:open []

\—

fr_status == 1)/ op3.reverseDoors [|

A4

.Opening)

entry / Activity
do / Activity

82

entry / Activity

| do / Activity

V—J

T ARened)
Opened

op2:close []

fr_status == 1]/ op3: reverseDoors []

N

do / Activity

[r_status == Q]

Figure 7.8 State model of the ‘Door’

7.4.8 State Model of Drive

The state model of Drive is illustrated in Figure 7.9.

opd:stop []

MoveUpFast

op1:moveUpSlow []

V¥
Move

UpSlow
entry / Activity
do / Activity

op3:stop]

Stopped
entry / Activity
do / Activity
hN -/
/)
g g
[yed «
& &

op2:move DownSlaw []

: A
(Move Down Slow

entry / Activity

Move DownFast

do / Activity

opS:moveUpFast [}

|

~—

op4:moveDownFast []

Figure 7.9 State model of the ‘Drive’

-73-

Chapter 8
EVALUATION

-74-

8.1 Introduction

This chapter is devoted to explain, discuss and evaluate the results of the experiment
performed to validate our proposed dpproach for automatic codé generation. Section 8.2 presents
and discusses the results of the application of our approach on the comprehensive models of the
Elevator Control System described in Chapter 7. The outcome of 10-fold cross validation is
discussed in Section 8.3. Section 8.4 presents the comparison of our approach with the existing
code generation approaches and tools. Finally, the overall assessment of our approach in terms of

benefits and hmitations is given in Section 8.5.

8.2 Elevator Control System

In this section, we describe the experimental setting and present and discuss the results

for the application of our approach to the class and state models of the ECS.

8.2.1 Experimental Setting
The steps of our experiment are summarized below.

1. In the first step, we express the training data as predicates. The class and state models of 9
different software systems are used as the training data. The complete models of the training
data can be found in Appendix C. For ECS, the models M2-M10 constitute our training data.
We stored the predicates of our training data in 9 text files i.e. one text file contains the class
and state model predicates of one software system. This training data is given as input to our
C@d$ tool. Table 8.1 shows the details of the model constructs and mapping blocks of the

training data.

Tablé 8.1 Training data

Model M2 M3 M4 M5 M6 M7 M8 M9 MI10
Model constructs 106 96 135 145 249 155 202 135 200
Total mapping blocks 60

-75-

o
b3
1
i

v

2. During the second step, we expiess the constructs of the input source models to be
transformed as predicates. These predicates are stored in a single text file, which is given as

input to the C@dS. The input source models are demonstrated in Chapter 7.

3. The input source models are transformed to generate code in terms of predicateés through

C@ds$ tool.

4. The code predicates generated by C@dS are transformed to generate complete Java code

files.

In order to check the correctness of the solution generated by C@dS, we used the

following formula to calculate the percentage of the correctly produced code.

Number of correctlv transformied constructs S0 e (6)
Total number of mode] constructs

Correctness (%) =

As the proposed approach uses a stochastic algorithm, for which two different executions
may produce different results for the same model, we choose the best result for each input source

model from five executions.

8.2.2 Results and Discussion

Figure 8.1 shows the scréenshot of the result generated by C@dS. According to the result,
from the total of 703 input model constructs, there are 27 doubtful transformations which
constitute 3.84% of the total input model constructs. By doubtful transformation we mean that
for 27 input model constructs, exact match was not present in the optimized solution searched by
our approach, either because their matching constructs do not exist in the training data or our
approach is unable to find them. Because of these doubtful transformations, the fitness value is
penalized, as their exact match is not present in the optimal solution. Our tool highlights these
doubtful transformations separately so that users can analyze their correctness manually in order
to avoid the generation of incorrect code. Moreover for the doubtful transformations, CAd$ also
calculates and shows the relevance between the input model constructs and the selected
transformation from the training data in terms of the relevance score to facilitate its intended

Uscrs.

-76-

e

-

{4 Code Sworm (Tods) 3 o

e gty

the EdN_tew
[

o DACaSRECSOUPUL
= Y DACOISECSOUBUNC
- B Cogs Fae 3322
- E) presicatas it

4

i+ Lo O\CoISECTOupuS

Tetal Constructs

703

Tctal ¥apping 3liocks

(1]

Sest fitness: 0.9722517334188301

Beat positisn: {1.0, 60.0, 1.0, £3.0, 1.9, €0.0, d0.2, €0.0, $0.3, 6C.0, 1.3, 1.0, 1.g, 80,9, @O

vator, ElevatexContrel)
,elevater, Blevator (), Slevas,

¥odel Constmaet: Msc:iatisn{_,i,_, i,hh_cff, Salifall3utteslff,SaiifallBattazScate)

Target Transforgation: A xte (privaba,EallellB:ttawff,hh_:ff,EaliCnl}B:ttcncff() LEallfalisny
Targey Mapping Used: Assccistiondd, I, 0, =, _,Pezsen Leas)

Reletance Score: .87

Modei Ceastract: Associacien(,1, ,I,ck state,CariuttcoState, CarZuticn)

Target Tramsformation: Attrzibuvelprivate,CarSuttonState,chb state,CazSuttonState (},Car3uiten)
Terge: Mappizg Used: Rascciationdd,i,C,xn, ,Person,Ican)

Relevarce Score: ¥.57 . R

Msdel Construct: Ass::ia:icn(_,1,_,1,<;b_cff,ca:5n':scnoff,Ca:sut:cészate}

Taxgec Transforrmatvion: Atiribuce(private,CarButtonCif,cb off, Car3uttonCif (},CazRucconstate)
Target Mappicg Used: Aasscctaticaid,i,0,z,_,Perssr,icac)

Relevazce Score: (.87

Model Construct: A:snr:ia:icn(_,‘;,_,1;c1_cn,:a:La=se:nDn, Carfanterniate)

Zazger Trapafsrmavion: Attribure{prisate,CazlanterzOn, :i_on,:a::ancei:ca(),ca:‘.az:e::\s:ate)
Carget Mapping Used: Associatioai9,l,{,n,_,Perssr,Ican)

Relevarce Sceze: (.67

Merdel Censtruct: A.s'sacia:ien(_,1,_.1,cl_eff,Car’.{nce:noff,ca:mnte:—:state)

Terger Tracsformation: kb::ihate(pr‘.‘:a:e,Caxm:er;—cff,cl_oif,ca:mz:e:soff(),Ca::e:.tems:a:el
Target Magping Used: Rascctarisedd, I, ¢,5,_,Fezscn, loan)

1]

Relevacce Seore: 0.67
]

Figure 8.1 CQ3dS screenshot highlighting doubtful transformations

The complete code generated by C@Ad$ can be found in Appendix D. When we analyzed

the generated code corresponding to thése doubtful transformations manually, we found that the:

code generated for 22 of these doubtful transformations is correct. This is due to the reason that

our fitness function is intelligent enough to look for the nearest match, in case if no exact match

is found in the training data.

For the remaining 5 input model constructs, their matching constructs are not even

present in the training data. For this reason, PSO could not find their corresponding correct

matching transformations. However, our approach does not leave out these constructs and maps

these input model constructs to their nearest match from the training data. For example, the

following input model construct is not present in the training data.

Composition(_,10,_,1,carbutton,CarButton, Elevator)

However, PSO chooses its nearest match and proposes the following transformation.

-77-

Composition{_,1,_,1,_,Address,Customer)

This transformation is very close to the desired transformation, as our approach is able to
find the transformation from the training data with the similar model construct (predicate name).
Again, this supports our choice of the good fitness function. But since the key parameters 2"
parameter) of the two constructs are different, we considered this transformation as incorrect.
The chosen transformation creates only one instance of the ‘CarButton’ in the ‘Elevator’ class

instead of the desired object array of size 10.

However besides these doubtful transformations, there are 3 input model constructs for
which our approach suggests incorrect transformation. Although their matching constructs are
present in the training data but our approach is unable to find them. This is because of the reason
that our approach uses PSO which utilizes stochastic search instead of the exhaustive search
while looking out an optimal solution. Qur tool C@dS is also able to keep track of these input
model constructs and highlights them separately so that the intended users can come to know
about the missing code statements. Figure 8.2 shows the screenshot of the C@d$ tool

highlighting these missing code constructs.

Table 8.2 and Table 8.3 summarize the execution and the post-analysis €xecution results
obtained for the ECS respectively. From Table 8.2 it can be inferred that our approach finds the
exact transformation for 673 input model constructs from the training data. However in Table
8.3, it can be seen that the number of correctly transformed constructs rises to 695. This implies
that our approach proposes 22 correct transformations. This is another sign of our strong and

sharp fitness function.

The best fitness value obtained for an optimal solution is 0.9722 whereas the correctness
of the generated code is 0.9886 (98.86%). Here we can observe that the fitness value of the
optimal solution is less than the code correctness. This is because of the reason that for 22 correct
doubtful transformations, the correctness is 1.0 (100%) but the individual fitness values of these
constructs are less than 1.0. The dissimilar names (predicate name) and the properties (predicate
parameter) of the input model constructs and the training data constructs penalizes the overall

fitness function, resulting in the low fitness value.

-78 -

-

How|

ar DC003

= (e Dictsels

2 DCoESECSDuEmiA i lhpp.mg Csed A:ac‘...auc:(f,‘, ’Z,_, P:—s::.,!.can) =3 OitedSiBample
T D'CodSECHCUtpUTT zce Scere: 0.87

. i E CogS Fie_ 3332 Model Comstruct: Cogpesition(_,: b i : DriveTcutrol,Zlevatsr)

BF‘redﬂeshi aalgz' Transforzation: Attoibute(ze,Drivelentrel, drivecertrsl, Drivesou x:}.(),tleﬂt:::)
v L Target Mapping Used: A=scciaticmé_, i, l,n,payableby, 3ill,Commarnd)
- DDWE"SMDPJS Reievasce Score: 2.5
" Mode Comstzuct: Composition{Z, ,1,zazlantern, CarLanters, Bievator)
Target Trazsfzrmation: Attrib: vate,Carianters, carlanters,CarLacters{), Elevatcr)
Tazget Mapping Used: A3scciati 2. 0,5,_,Pezacn, Loen)
Relevance Sccre: 0.0
Medel Conatract: Compositizzf_,2,_,I,dcor,Door, Elevator)
Target Trazaformation: A vate,door,docr, Sear{), Elevates)
Tazget Mapping Used: Asscciacionlf,i,§,5,_,Fersac,loan)
Reievance Score; 0.0
Model Comatmuct: Compesitiss(_,I0, ,I,carkatton, Car3ubtes, Elevator)
Targat Tranzfcr=atisc: AL utelprivate, Carduttern, cazbutteon, Carlatton() ,Elevater}
Target Mappirng Gsed: asscciaticni?,l,d, s, ,Perscs,ican) . E]
Relevance Sz 0
Hode: Comstruct: ..9:;:::‘.:‘;"(2,2,_,‘;,hall_cail_ cn, SallCalldatten, Plasr)
Tazget Trarsformation: Attzibutelprivave,HallCallButton,hall call | attea, HalllallBuscon(}, Floer
Target Mapping Deed: Asscclation(_,I,_.%,_,Zransactian,Prodact)
Relevasce Scere: 3.0

Cemparitiond 30, _, I, ,Flesrz,Building)
:(p'i‘u-e Flaor, Elcoz,FPloarl}, Suilding)

Dispatcher,conditd
Blevater,-,clesr, carpomitionindicatas, §,17)
$STTOR)

Flgure 8.2 C@d$ screenshot highlighting missing transfornmations

Table 8.2 Execution results for ECS

Input Exactly
model matched
constructs constructs

Doubtful Incorrect/Missing Best
transformations transformations fitness

27 (3.84%)

Osmamy e et 304%) 09722
(81.5%) (18.5%)

703

Table 8.3 Post-analysis execution results for ECS

No. of

- ; m
Mapping Input correctly Best Corréctness M.lmm.“
Model model : s execution
blocks transformed fitness (%) .
constructs time (sec.)
constructs

ECS 60 703 695 0.9722 98.86 165

-79 -

[

-

S

8.3 10-fold Cross Validation

This section is divided into two sub-sections. The first subsection describes the

experimental setting followed by a discussion of the obtained results in the second subsection.

8.3.1 Experimental Setting

The class and state models of 10 different software systems, given in Appendix C, are
used for performing the 10-fold cross validation of our proposed approach. For each fold, the
class and state models of one software system is transformed by using the remaining 9 software
models as the transformations examples. This implies that the 9 software models are used to

create the initial swarm to find an optimal transformation solution for the 10" model.

The experimental steps described in Section 8.2.1 are performed to carry out the 10-fold
cross validation. The generated code is analyzed with respect to the correctness by using the
formula given in Equation 6 (Section 8.2.1). The total number of input source model constructs

and the mapping blocks used in each execution are surnmarized in Table 8.4.

Table 8.4 Number of input model constructs and mappmg blocks

Model ‘M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Coistructs 187 106 96 135 145 249 155 202 135 200
Mapping blocks 60 62 63 62 60 57 60 59, 53 58

8.3.2 Results and Discussion

Table 8.5 presents the execution results obtained by performing the 10-fold cross
validation of our proposed approach. Highest fitness value obtained for models of 3 software
systems (M2, M3 and M4) is 1.0 and lowest finess value found during execution is 0.9758 for
MS. Fitness value of 1.0 indicates that the solution searched by our approach is 100% correct.
This imphes that models of 3 software systems are perfectly transformed and 100% correct code

is generated for the corresponding input model constructs.

However, when we manually anaiyzcd the code in detail, we found that there are 6

software systems for which 100% correct code has been generated, as shown in Table 8.6. It

-80-

" e

‘
e

Table 8.5 Execution results for 10-fold cross validation

Input Exactly Doubtful . NP
Model model matched transformations _ 1ncorrect/Missing Best
transformations fitness
constructs constructs Correct Incorrect _ ,
186 1 (0.53%)
M1 187 :]
L 9947%) 1(100%) _ 0 0 0.9973
Mz 106 106 — 2 0 L0
| 0
M3 96 96 0 1.0
. s . . L
M4 135 135 0 1.0
140 32.07%)
145 : - ; .
M5 (96.55%) 3 (100%) 0 2 (1.38%) 0.9758
246 3 (1.20%)
M6 24 - - .
9 (98.80%) 0 3 (100%) 0 0.9899
154 1(0.65%)
M7 155 (99.35%) 1 (100%) 0 0 0.9967
. 201 1(0.5%)
202 .
M8 99.50%) 1(100%) 0 0 0.9975
134 0]
M9 1357 (99.26%) — — 1 (0.74%) 0.9925
2 (1.0%)
M10 200 197 (98.5%) — 2 (100%) 1(0.5%) 0.9899

indicates that although no exact match was found in the transformation examples, still some

constructs of their models are correctly transformed. This is due to the intelligence of our fitness

function which searches for the nearest matching transformation, in case no exact mapping is

found in the training data. For example, for M1 the fitness value is 0.9973, still 100% correct

code is generated. For one input model construct (one-to-many association) our approach could

not find the exact mapping and selects one-to-one association, which is the nearést match of one-

to-many association. Since, the final solution searched by the PSQO does not contain exact

transformation of one construct, it penalizes the fitness value. Figure 8.3 shows a comparison

between the correctly matched constructs and the correctly transformed constructs. Out of 7

system models with missing/incorrect tfansformations, the code correctness of 4 system models

-81-

e

-t

re

(M1, M5, M7 and MS) is increased by using the correct transformation proposed by our

|

approach.
Table 8.6 Post-analysis execution results for 10-fold cross validation
No.of Totalno, o-of Minimum
. correctly Best Correctness .
Model mapping of ¢ formed fitness (%) execution
blocks constructs . ° time (sec)
= constructs N -
M1 60 187 187 0.9973 100 41
M2 62 106 106 1.0 100 25
M3 63 96 96 1.0 100 22
M4 62 135 135 1.0 100 31
M5 60 145 143 0.9758 98.62 33
M6 57 249 246 0.9899 98.79 52
M7 60 155 155 0.9967 100 35
M8 59 202 202 0.9975 100 45
M9 53 135 134 0.9925 99.26 30
M10 58 200 7 197 0.9899 98.50 42
Average 59.4 160.9 160 0.99396 99.516 35.6
'Sl Correctly matched Consirucis
250 ‘C=z1 Correctly transformed constructs
«» 2004~ 2 =
2 150 - z 2
o Z A
- Z A
5 ‘ERR
g 190+ Z bl
= A Z . s
£ lunr
2 s0- RN
M1 M2 M3 M4 M5 M6 M7 M8 M8 M10
Models
A Figure 8.3 Correctly mapped constructs vs. Correctly transformed constructs
-82-

[T

*

The lowest fitness value obtained during execution is 0.9758 for the model MS. This low
fitness value can be attributed to the fact that there are 5 constructs in the input source model for
which no €xact transformation is present in the training data, as we have taken a non-exhaustive
set of transformation examples. Still due to the intelligerice of our fitness function, there are only
2 constructs for which no or incorrect transformation is found. Again, this increases our

confidence on the appropriateness of the selected fitness function.

In most of the cases, the best fitness value is an indicator of the correctnéss of the code
generated i.e. the more the fitness value, the better the percentage of the code correctness.
However, in some cases, we can see that although the fitness value is high, the percentage of
code correctness is less. For example, we can observe that although the fitness value of M10 is
better than M5, still the percentage of code correctness of M5 is high, as shown in Figure 8.4.
This is due to the fact that the percentage of code correctness depends upon the number of
constructs in the input source model to be transformed, whereas the fitness value is independent

of this count.

During the experiment, we observed that our approach always proposes a transformation,
even in the absence of an exact construct match in the transformation examples. It is
advantageous as this is rather impossibPIe in the existing rule-based code generation approaches,
in which the absence of a rule results in a failure to perform the transformation. The
transformation rule set needs to be exhaustive and complete t0 ensure that it proposes a
transformation for every construct of the input source model. This implies that we can employ
this approach, even if we have a small and non-exhaustive set of transformation examples
available. The use of the transformation examples also eliminatés the need of understanding
transformation languages and complex metamodels. Moreover, besides the existing
transformation examples, no other information or expertise are required to perform the

experiment.

From the performance point of view, these experiments were performed on a laptop with
1GB RAM and 1.86 GHz processor. As we can see in Figure 8.5, the larger the model, the more
the time required to generate the code. However, in our experiments it took less than one minute
to generate the corrésponding code using the tool based on this approach. Hence, we can say that

if system models consist 6f less than 250 constructs, its corresponding code can be generated in

-83-

less than a minute. However, time taken for the execution also depends on the swarm size and
number of iterations. In our experiment, we limit the swarm size to 40 and the number of

iterations to 20.

1.005- | EEMFitness Value 7] Correctness | 60
1.000 4 50
0.995 4
0.990 - T 40
o
0.985—‘ ; 30
0.980 £
0.9751 20
0.970+ 10
0.965 -
0.960 iN EE 8 EN BN UN f L S S
3 4 5 6 1 8 9 10 96 106 135 135 145 155 187 200 202 249
Models ' Model constructs
Figure 8.4 Best fitness vs. Code correctness Figure 8.5 Model constructs vs. Execution time

8.4 Comparison

Currently, all the approaches and tools that are in existence are capable of generating
correct and consistent code by utilizing their own transformation rules. Our proposed approach
and tool also does so. However, the major difference lies in the way this code is generated and
the process that is being followed to generate the code. Thérefore, instead of focusing solely on
the characteristics of the produced output (generated code), we have based our comparison on
the entire process of generating code from system models. This section is dedicated to present a

description of our comparison.

8.4.1 Code Generation Approaches

The parameters of comparison and their details are given below.

Essence of Approach: All the existing code generation approaches focus on defining a set of

transformation rules to perform the transformation process. These approaches identify that which

source model construct should be transformed into which target code element in the

transformation process. Keeping this in view, it can be said that the existing code generation
-84 -

approaches basically consist of a set of transformation rules. However, our code generation
approach is significantly different from"what already exists regarding code generation in current
literature. Our approach is a generic approach which can transform any source model into target
code without the need of formulating a transformation rule set. Therefore, all complexities
associated with the formulation, maintenance and evolution of the transformation rule set are

circumvented by this approach.

Foundation of Approach: All existing code generation approaches are based on the metamodels

of source modeling and target code languages. However, our approach is independent of the

metamodel complexities and does not exploit metamodels as its foundation.

Level of Ease: Since our approach is independent of the complexities of metamodels and

transformation rules, it is easy to comprehend and implement. -

Degree of Generality: The existing code generation approaches are specific as new

transformation rules need to be defined for generdting code from different design models.
However, our approach is generic and is able to transform any input design model into target

code without the need to modify the fitness function.

8.4.2 Code Generation Tools

Among the plethora of tools that support automatic code generation, we have focused on
three commercial tools 1) Rhapsody [54], 2) Enterprise Architect {56] and 3) Visual Paradigm
[57], and four research-based tools 1) fJJECT OR [47, 48], 2) JCode [39], 3) dCode [32] and 4)

OCode [1]. A description of the comparison follows.

Behavioral Action Specification: From the available set of automatic code generation tools, only
some tools support the transformation of system’s dynamic behavior. For different tools,
behavioral actions need to be specified using different programming or action languages. For
example, in UJECTOR, the actions need to be specified in the UML superstructure. The use of
UML superstructure actions raises the level of complexity as it is difficult and time-consuming to
specify and understand these actions. On the other hand, CodS rélies on a light-weight action

language ASL for specifying the behavioral actions, which is simple, readable and easy to learn

-85.-

and comprehend [27]. Currently there is only one tool that can transform ASL actions into target

code language, but it is a rule-based commercial tool.

Explicit Transformation Rules: Existing commercial and research-based tools generate the

implementation code by creating a mapping between the source modeling and the target
programming languages. All these tools rely on the explicit specification of the transformation
rule set. However, our tool does not take a set of transformation rulés as input. Rather it is
intelligent enough to automatically derive transformation rules from the existing set of

transformation examples. Besides the training data, no extra information is needed.

Exhaustive Rule Set: All the existing automatic code generation tools utilize an exhaustive set of

transformation rules to correctly generate the target code. These tools will fail to perform the
transformation if a rule does not exist for any source model construct. However, our tool is smart
enough to assist the user by proposing a nearest transformation, if no exact transformation is

found in the training data for the input model construct.

Underlying Approach: All the contemporary commercial and research-based tools are based on

the approaches that are model-specific. However, CodS uses a generic approach for automatic
Ry
code generation i.e. this approach can be used to generate code for any set of source models in

any target programming language, provided that the transformation examples exist.

8.5 Assessment

This section is dedicated to precisely present the potential benefits and limitations of our

proposed approach.

8.5.1 Benefits

Our proposed approach offers many benefits over the existing code generation

approaches. These benefits are given below.

Automatic Extraction of Transformation Rules: Our approach does not rely on the domain

experts to manually and explicitly define a set of transformation rules for automatic code

- 86-

I4
generation. Rather, our aim is just to provide a set of transformation examples and'let the system

automatically extract transformation rules from them without human intervention.

Irrespective of Metamodels: Our approach is not based on the source and target languages’
metamodels, making the M2C transformation process independent of the metamodel

complexities.

Independence from Transformation Languages: This approach is capable of transforming models

into code without the need to learn and comprehend the complex transformation languages.

Intelligence _of Transformation Proposition: The proposed approach always proposes a

transformation strategy, nearest match in case if no exact match exists in the training data. This is
rather impossible in existing code generation approaches in which the absence of a rule results in

a failure to perform the corresponding transformation.

Ease of Transformation Process: This approach makes the automatic code generation process
effortless and unproblematic by eradicating the need to learn complex technologies and
minimizing human intervention. Besides transformation examples, no extra information is

needed and no special expertise is required.

Utilization of Existing Knowledge: Our approach utilizes the éxisting fragmentary knowledge to

perform the automatic code generation process. It uses knowledge from previously solved

transformation examples to solve new M2C transformation problems.

Generic _Approach: Our proposed approach is a generic approach which is capable of

transforming any source model into target code.

Action Specification: This approach is ‘not only capable of generating structural code rather it

also provides full support for transforming dynamic actions into the target implémentation code.
Currently, we have used ASL for specifying the behavioral actions in system models but this

approach is not specific to any action language.

Acceleration of Transformation Process: By circumventing the need to manually formulate a
/
transformation rule set and learn complex technologies, the transformation process becomes

quick and fast.

-87-

8.5.2 Limitations

Availability of Transformation Examples: This approach uses knowledge from previously solved

transformation examples to solve new M2C transformation problems. Therefore, the availability

of training data is a pre-requisite for the application of this approach.

Increasing Time: Our experimental results revealed that code generation may become time-

consuming with the increasing size of models ie. the larger the models, the more the time
required to generate code. However, still it has an acceptable execution time and is many times
less than the time required to manually define the transformation rule set and follow the

traditional code generation process.

Different Execution Results: As this approach relies on the heuristic search optimization

technique, therefore multiple executions for the same input source models may lead to different

results. The generation of best solution is not guaranteed in every execution.

Quality of Transformation: As this approach utilizes existing M2C transformation examples to

perform the automatic code generation process, therefore the quality of the resulting code is

entirely dependent on the correctness of the transformation examples.

-88 -

Chapter 9
CONCLUSION

-89-

N

9.1 Introduction

This chapter is devoted to present the significant findings from this dissertation. A
comprehensive summary of the general conclusions is given in Section 9.2. Finally, Section 9.3

concludes this dissertation by summarizing some future research directions:

9,2 Conclusion

This work can be considered as a contribution io the study of model transformation
particularly M2C transformation that have continued to be an area of intense research. For the
last few years, a plethora of code generation approaches and tools have been contributed to this
field, both by the software researchers and practitioners. Due to these various efforts, the process
of automatic code generation has become quite mature and expert intervention is extensively

required to carry out the entire code generation process. 3

Existing code generation approaches rely on the domain experts to manually formulate a
transformation rule set, based on the source and target langauges’ metamodels and expressed in
some model transformation language. In reality, the definition, maintenance and evolution of a
complete, consistent, correct and non-redundant transformation rule set is a complex and hard
task and many unwanted limitations confine the results. This task i$ further complicated by the
scarcity and paucity of domain knowledge, complcxi'ty of metamodels and obscurity of

transformation languages.

A comprehensive survey of the existing literature reveals that currently there is only one
way to generate code from system models i.e. to manually formulate a transformation rule set.
None of the existing approach offers a replacement for manual transformation rule set definition.
On the other hand, it can be observed that many organizations keep a memory of their past M2C
transformations and feel more comfortable to show these transformation examples instead of
defining a complete and consistent transformation rule set. Our work starts from these
observations to view automatic code generation as the one to solve with fragmentary knowledge

i.e. with only examples of M2C transformations.

-90-

el

2\

In this thesis, we have presented a novel approach for automatic code generation by
utilizing the previously solved M2C transformation problems. The available set of
transformation examples are used to train the system regarding automatic code generation. After
the system is trained, the input models to be transformed are provided. The search space of the
transformation examples is explored by using the heuristic search algorithm PSO. The task of
PSO is to search for the matching transformation block from the training data corresponding to
every construct of the input source model. Every solution searched by PSO is evaluated against
an objective function that we have tailored for the M2C transformation problem. The fitness
value produced by the fitness function indicates the appropriaténess of the transformation block
selected by PSO for the transformation of the corresponding input model construct. The
transformation solution with the best fitness value is selected as the final optimal solution. The
optimal solution searched by PSO is then utilized to transform the input source models into
target code. So instead of explicitly providing a transformation rule set as input, our aim is just to
provide a set of transformation examples and let the system automatically extract transformation

rules from them.

We implemented this approach in a tool named C@de $warm, abbreviated as C@d$. This
approach is generic and its application is not limited to any set of models. However as a proof of
concept, we validated this approach by generating Java code from class model and state mode! of
software systems, as these two models are representatives of both the static structure and the
dynamic system behavior. Our experimental results indicate that up to 100% correct code can be
generated by this approach. Moreover, the only prerequisite of this approach is to have a set of
previously solved transformation examples. Besides these transformation examples, no extra

information is needed to perform the M2C transformation process.

A comprehensive analysis of our experimental results reveals that our fitness function is
intelligent enough to look for the nearest match of constructs, in case if no exact match is found
in the transformation examples. This implies that we can easily start with a small and non-
exhaustive set of transformation examples. This is rather impossible in existing rule-based
approaches where an exhaustive set of transformation rules is required to ensure the correct and
complete M2C transformation. Our evaluation shows that this approach is not only effective in

generating code for small sized models, rather it is also capable of generating quality code for

-91-

3

o

el oy

models containing hundreds of constructs. Furthermore, no special expertise is required for the
application of this approach. This approach makes the M2C transformation process painless by
dissociating it from transformation rule set definition, transformation languages and source and

target languages’ metamodels.

However, this approach also has some limitations. The availability of the transformation
examples is a prerequisite of this approach. As the size of input source models increases, the task
of generating code may become time-consuming. Since we use heuristic search for finding an

optimal solution, the generation of best solution is not guaranteed in every execution.

9.3 Future Work

In this section, we present some guidelines for the potential future work that would be

interesting to investigate further.

9.3.1 Improve Code Correctness

Although the use of PSO as heuristic search techniqué yields good results, the use of

other evolutionary algorithms to further improve code correctness can be interésting.

9.3.2 Reduce Execution Time

Although the target code is generated in an acceptable execution time at the moment, this

i
time should be further reduced in order to speed-up the automatic code generation process. One
of its possible solutions is to improve the efficiency of PSO. This can be achieved either by using

a guided search for PSO or improve the stopping criterion of the heuristic search.

9.3.3 Application to Large-Scale Models

We have validated this approach by applying it to small and medium sized system design
models. Howeveér, in future the effectiveness of this approach should be investigated by the

application of this approach to large-scale structural and dynamic software design models.

-92.

9.3.4 Application to Multiple System Design Models

Currently, this appreach has been applied to generate code from class and state models of
the software system. In future, this approach should be validated by utilizing it to generate code

for other system design models e.g. UML sequence diagram, UML activity diagram etc.

9.3.5 Automate Expression of Predicates

The task of representing transformation examples and input source model constructs as
predicates is performed manually at the moment. An algorithm should be designed and

implemented to perform this task automatically.

9.3.6 Automation of Transformation Examples Representation

Currently, the development of mapping blocks from the available transformation
examples is a human-dependent activity. Automation of this task can further facilitate the code

generat ion process.

9.3.7 Enhance C@dS Tool

Presently, C@dS is capable of generating Java code from UML class and state models,
with the behavioral actions specified in ASL. This tool should be enhanced to generate code in
multiple programming languages from various system design models. Moreover, the support for

other action languages should also be incorporated in CAdS.

-93.

REFERENCES

-94-

tl

(21

31

(4]

(5]

(6]

(7]

(8]

9

(10]

(11]
[12)

(13]
[14]
[15]

(16]

[17]
(18]

(19]

[20]

[21]

[22]

J. Ali and J. Tanaka, "An Object-Oriented Approach to Generate Executable Code from OMT-based
Dynamic Model" Journal of Integrated Design and Process Design, Vol. 2, No. 4, pp. 65-77, 1998.

B. Pierre, R. Dupuis, A. Abran, J. Moore, and L. Tripp, "The Guide 10 the Sofrware Engineering Body of
Knowledge” IEEE Software, Vol. 16, Issue 6, ISSN: 0740-7459, pp. 35-44, 1999.

U. Behrens, M. Flasinski, L. Hagge, J. Jurek, and K. Ohrenberg, "Recent Developments of the ZEUS Expert
System ZEX" TEEE Transactions on Nuclear Science, Vol. 43, Issue 1, ISSN: 0018-9499, p. 65, 1996.

M. Kessentini, H. Sahraoui, and M. Boukadoum, "Mode!l Transformation as an Optimization Problem"
Model Driven Engineering Languages and Systems, Lecture Notes in Computer Science, Vol. 5301, pp.
159-173, Springer Berlin / Heidelberg, 2008.

D. Varro, O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, "Model Transformation by Example" Model
Driven Engineering Languages and Systems, Lecture Notes in Computer Science, Vol. 4199, pp. 410-424,
Springer Berlin / Heidelberg, 2006.

E. Alexander, "Auwromated Abstraction of Class Diagrams” Journal of ACM Transactions on Software
Engineering and Methodology (TOSEM), Vol. 11, Issue 4, pp. 449-491, New York USA, 2002.

M. Kessentini, H. Sahraoui, M. Boukadoum, and Q. Omar, "Search-based Mode! Transformation by
Example” Software and Systems Modeling, pp. 1-18, 2010

K. Swart, "Model Driven Engineering" in Proc. of the 3™ International Conference on Integrated Formal
Methods (TFM), Springer-Verlag, London UK, 2002.

J. Bezivin, R. Limmel, J. o. Saraiva, and J. Visser, "Mode! Driven Engineering: An Emerging Technical
Space” Generative and Transformational Techniques in Software Engineering, Lecture Notes in Computer
Science, Vol. 4143, pp. 36-64, Springer Berlin / Heidelberg, 2006.

A. Kleppe and J. B. Warmer, W., "MDA Explained: The Practice and Promise of Model Driven
Architecture" Addison-Wesley, 2003.

J. Miller and J. Mukerji, "MDA Guide" Version 1.0.1, 2003.

H. Liu, "A Template-Based Model Transformation Approach using a Simplified Hierarchical Metamodel”
PhD. Dissertation, College of Computing and Digital Media, DePaul University, 2010.

S. Ed, "What Models Mean" IEEE Software, Vol. 20, Issue 5, ISSN: 0740-7459, pp. 26-32, 2003.
"OMG Unified Modeling Language Specification" Version 1.3.1, 1* Edition, 2000.

"OMG Unified Modeling Language (OMG UML) Infrastructure” Vol. 2.3, Doc. no. formal/2010-05-03,
May 2010.

D. D. Ruscio, "Specification of Model Transformation and Weaving in Model Driven Engineering” PhD.
Thesis, Universita di L'Aquilla, 2007.

R. Runde and S. K., "What is Model Driven Architecture?" Research Report 304, University of Oslo, 2003.

S. Sendall and W. Kozaczynski, "Model Transformation: The Heart and Soul of Model-Driven Software
Development" IEEE Software, Vol. 20, Issue 5, ISSN: 0740-7459, pp. 42-45, 2003.

K. Czamecki and S. Helsen, "Classification of Model Transformation Approaches” in 2nd QOPSLA
Workshop on Generative Techniques in the Context of Model Driven Architecture, Oct. 2003.

T. Mens and P. Gorp, "A Taxonomy of Model Transformation" in Proc. of the International Workshop on
Graph and Model Transformation (GraMoT), Vol. 152, pp. 125-142, March 2006

M. Piefel, "A Common Metamodel for Code Generation" in Proc. of the 3" International Conference on
Cybernetics and Information Technologies, Systems and Applications (IIIS), 2006.

S. Mellor, K. Scott, A. Uhl, and D. Weise, "MDA Distilled: Principles of Model Driven Arghitecture"
Addison-Wesley, 2004,

~-95.

[23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

[31]

{32]

(33]

(34]

(35]

(36]

(37}

[38]

(39]

[40]

(41}

[42]

I. Niaz and J. Tanaka, "Code Generation from UML Statecharts" in 7th International Conference on
Software Engineering and Applications (SEA), pp. 315-321, 2003.

J. Kennedy and R. Eberhart, "Particle Swarm Optimization" in Proc. of the IEEE International Conference
on Neural Networks, Vol. 4, pp. 1942-1948, Perth Australia, 1995.

R. Poli and J. Kennedy, "Particle Swarm Optimization: An Overview” Swarm Intelligence, Vol. 1, pp. 33-
57, 2007.

J. Ke, Z. Lei, and S. Miyake, "An Executable UML with OCL-based Action Semantics Language” in 14*
Asia-Pacific Software Engineering Conference (APSEC), ISSN: 1530-1362, pp. 302-309, Dec. 2007.

K. Carter, "UML ASL Reference Guide for ASL Language Level 2.5" Manual Version D, 2003.

A. W. Brown, S. Iyengar, and S. Johnston, "A Rational Approach to Model-Driven Development" IBM
Systems Journal, Vol. 45, Issue 3, ISSN:0018-8670, pp. 463-480, 2006.

L. Favre, L. Martinez, and C. Pereira, "Transforming UMi Static Models into Object-Oriented Code" in
Proc. of the 37" International Conference on Technology of Object-Oriented Languages and Systems
TOOLS-Pacific, pp. 170-181, 2000.

M. Nassar, A. Anwar, S. Ebersold, B. Elasri, B. Coulette, and A. Kriouile, "Code Generation in VUML
Profile: A Model Driven Approach” IEEE/ACS International Conference on Computer Systems and
Applications (AICCSA), pp. 412419, May 2009.

R. van de Weg, R. Engmann, R. van de Hoef, and V. ten Thij, "An Environment for Object-Oriented Real-
Time Systems Design" in 8" Conference on Software Engineering Environments, pp. 23-33, Apr. 1997.

J. Ali and J. Tanaka, "Implementing the Dynamic Behavior Represented as Multiple State Diagrams and
Activity Diagrams™ ACIS International Journal of Computer and Information Science, Vol. 2, Issue 1, Mar.
2001.

A. Knapp and S. Merz, "Model Checking and Code Generation for UML State Machines and
Collaborations” in Proc. of the Sth Workshop on Tools for System Design and Verification, Technical
Report, Vol. 11, pp. 59-64, 2002.

I. Niaz and J. Tanaka, "Mapping UML Statecharts to Java Code" in Proc. IASTED International
Conference on Software Engineering, pp. 111-116, 2004.

G. Pinter and I. Majzik, "Automatic Code Generation Based on Formally Analyzed UML Statechart
Models" in Proc. of the Workshop on Formal Methods for Railway Operation and Control Systems, pp. 45-
52, 2003.

S. Neeraj, F. Edward, L. Karl, and L. David, "Interaction Schemata: Compiling Interactions to Code" in
Proc. of the Technology of Object-Oriented Languages and Systems (TOOLS) 30, pp. 268-277, Aug. 1999.

G. Engels, R. HWicking, S. Sauer, A. Wagner, R. France, and B. Rumpe, "UML Collaboration Diagrams
and Their Transformation to Java" in UML'99 The Unified Modeling Language, Lecture Notes in
Computer Science, Vol. 1723, Springer Berlin / Heidelberg, 1999.

1. Niaz, "Automatic Code Generation from UML Class and Statechart Diagrams" PhD. Dissertation,
University of Tsukuba, Japan, 2005.

I. Niaz and J. Tanaka, "An Object-Oriented Approach to Generate Java Code from UML Statecharts”
International Journal of Computer and Information Science, Vol. 6, No. 2, June 2005.

P. A. Noe and T. C. Hartrum, "Extending the Notation of Rational Rose 98 for use with Formal Methods"
in Proc. of the IEEE National Aerospace and Electronics Conference NAECON, pp. 43-50, 2000.

A. Derezinska and R. Pilitowski, "Correctness Issues of UML Class and State Machine Models in the C#
Code Generation and Execution Framework" International Multiconference on Computer Science and
Information Technology (IMCSIT), pp. 517-524, Oct. 2008.

A. Derezinska and R. Pilitowski, “Realization of UML Class and State Machine Models in the C# Code
Generation and Execution Framework" Informatica, Vol. 33, pp. 431-440, 2009.

-96 -

[43]

(441

{45]

[46]

(47)

(48]

(49]

(50

[51]

(52]

{53]

[54]
[55)
[56]
[57]
(58]
[59]
[60]

[61]
[62]
[63]

[64]
[65]

[66]

M. Thongmak and P. Muenchaisri, "Design of Rules for transforming UML Sequence Dfagrams into Java
Code" in 9" Asia-Pacific Software Engineering Conference, ISSN: 1530-1362, pp. 485-494, 2002.

L. Quan, L. Zhiming, L. Xiaoshan, and J. He, "Consistent Code Generation from UML Models" in Proc. of
the Software Engineering Conference, ISSN: 1530-0803, pp. 23-30, Apr. 2005.

N. Ulrich, J. Niere, and A. Zundorf, "The FUJABA Environment" in Proc. of the 22nd International
Conference on Software Engineering, pp. 742-745, Limerick, Ireland, June 2000.

D. Bjorklund, J. Lilius, and I. Porres, “A Unified Approach to Code Generation from Behavioral
Diagrams" Languages for System Specification, pp. 20-34, 2004.

M. Usman and A. Nadeem, "Awtomatic Generation for Java Code from UML Diagrams using UIECTOR"
International Journal of Software Engineering and its Applications, Vol. 3, No. 2, Apr. 2009.

M. Usman, A. Nadeem, and K. Tai-hoon, "UJECTOR: A Tool for Executable Code Generation from UML
Models” in Advanced Software Engineering and Its Applications ASEA, pp. 165-170, Dec. 2008.

A. Jakimi and M. Elkoutbi, "An Object-Oriented Approach to UML. Scenarios Engineering and Code
Generation” International Journal of Computer Theory and Engineering (IJCTE), Vol. 1, No. 1, pp. 35-41,
Apr. 2009.

A. Jakimi and M. Elkoutbi, "Automatic Code Generation from UML Statechart” Intefnationat Journal of
Engineering and Technology, Vol. 1, No. 2, pp. 165-168, June 2009.

D. C. and S. T., "An Automatic Approach to Transform CafeOBJ Specifications to Java Template Code" in
Proceedings of the International Conference on Software Engineering Research and Practice (SERP), pp.
171-176, 2003. -

C. Doungsa-ard and T. Suwannasart, "A Semantic Part Generated Java Statement from a CafeOBJ
Specification” in IEEE Internaticnal Conference on Electro/information Technology, pp. 388-393, May
2006.

"IBM® Rational® Rose® Enterprise",
http://www-01.ibm.com/software/awdtools/developer/rose/enterprise/.

"IBM® Rational® Rhapsody®", http://W‘ww—Ol.ibm.comlsoftware/rationa]/productsirhapsodylswarchitect/.
N. Sangal and K. Lieberherr, "StructureBuilder Tendeil Software Inc." in OOPSLA, 1998.

"Sparx Systems - Enterprise Architect" http://www.sparxsystems.com/.

"Visual Paradigm (VP-UML)" http://www.visual-paradigm.com/product/vpuml/.

"AndroMDA" http://www.andromda.org/docs/index.html, 2011.

"MagicDraw" https.//www.magicdraw.com/, 2011.

"Papyrus UML, Open Source Tool for Graphical UML2 Modeling" htttp://www.papyrusuml.org,
http:/fwww eclipse.org/modeling/mdt/papyrus/.

K. Carter, "Abstract Solutions - iUML" htip://www.kc.com.
"AgroUML, Open Source Software Engineering Tool" http://argouml.tigris.org/.

P. Gorp, "Model-Driven Development of Model Transformations" PhD. Theésis, University of Antwerp,
2008.

R. Akerkar and P. Sajja, "Knowledge-Based Systems" 2010.

A. Agnar and P. Enric, "Case-based reasoning: founddtional issues, methodological variations, and system
approaches” Journal of Al Communications, Vol. 7, No. 1, pp. 39-59, TIOS Press Amsterdam, Netherlands,
Mar. 1994.

W. Elloumi, N. Rokbani, and A. M. Alimi, "Ant Supervised by PSO" in 4th International Symposium on
Computational Intelligence and Intelligent Informatics, (ISCII), pp. 161-166, Oct. 2005.

-97.

nade

e

1

http://www-01
http://www.sparxsystems.coni/
http://www.visual-paradigm.com/product/vpuml/
http://www.andromda.or%5edocs/index.html
https://www.magicdraw.coni/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.kc.com
http://argouml.tigris.org/

[67]

[68]

[69]

(70]

(711

Z. Lanlan, W. Ling, W. Xiuting, and H. Ziyuan, "A Novel PSO-Inspired Probability-based Binary
Optimization Algorithm™ in 8® Intenational Symposium on Information Science and Engineering (ISISE),
Vol. 2, pp. 248-251, Dec. 2008.

B. Soudan and M. Saad, "An Evolutionary Dynamic Population Size PSO Implementation” in 3"
International Conference on Information and Communication Technologies: From Theory to Applications,
pp. 1-5, Apr. 2008.

P. N. Suganthan, " Particle Swarm Optimiser with Neighbourhood Operator” in Proceedings of the 1999
Conference on Evolutionary Computation (CEC), Vol. 3, 1999.

A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, "Self-Organizing Hierarchical Particle Swarm
Optimizer with Time-Varying Acceleration Coefficients” IEEE Transactions on Evolutionary Computation,
Vol. 8, Issue 3, ISSN: 1089-778X, pp. 240-255, June 2004.

Eclipse, "Eclipse IDE for Java Developers"” http://www.ec]ipSc.brg/downloads/m'ofeinfo/java.php.

-98.

http://www.eclipse.org/downloads/mcreinfo/java.php

Appendix A

PREDICATE STRUCTURE TEMPLATES

-99.

e 4

A.1 Class Model Templates

This section presents the templatés of predicates structure of class diagram constructs

defined and used in this research project.

A.1.1 Class Construct

The construct of ‘Class’ along with its attributes and operations is treated as a single

construct.

Source Model Construct

Class (<name>}

Attribute (<name>, <datatype>, <initialvalue>, <classname>, <unique/notunique>)
Operation{<name>, <classname>, <returntype>)
OperationParam(<paramname>, <paramtype>, <operationname>, <classname>,
<paramnumber>)

Target Code Constiuct

Class (public, <classname>)

Attribute(private, <datatype>,<name>,<initialvalue>, <classname>)

Method (public, <returntype>, <name>, <classname>}

MethodParam (<paramtype>, <paramname>, <methodname>, <classname>, <pararuiumber>)

Mappin

Class (<name>):Class (public, <classname>)

Attribute (<name>, <datatype>,<initialvalue>, <classname>,
<unique/notunique>) :Attribute(private,<datatype>, <name>,<initialvalue>,

<classname>)

Operation(<name>, <classname>, <returntype>) :Method (public, <returntype>, <name>,
<classname>)

OperationParam{<paramname>, <paramtype>, <operationname>, <classname>, <paramnumb
er>) :MethodParam(<paramtype>, <paramname>, <methodname>, <classname>,
<paramnumber>}

Key Parameters

None

-100 -

fat
X

A.1.2 Generalization Construct

The generalization relationship of class diagram is transformed into an inheritance

relationship in OO programming languages.

L]

Source Mode! Construct

Generalization(<parentclassname>; <childclassname>)

Target Code Construct

Class{public, <childclassname>, extends, <parentclassname>)

Mappin

Generalization(<parentclassname>, <childclassname>) :Class{public,
<childclassname>, extends, <parentclassname>)

Key Parameters

None
A.1.3 Association Construct

Associations of class model are transformed to the corresponding class attributes.

Source Model Construct

Association(<multiplicity>,<multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>, <classname>, <classname>)

Target Code Construct

Attribute (private, <objecttype>, <objectname>, <objecttype>,
<containingclassname>)

Mappin

Association(<multiplicity>, <multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>, <classname>, <classname>) :Attribute (private, <objecttype>,
<objectname>, <objecttype>, <containingclassname>)

Key Parameters

1st and 3rd parameters

-101 -

~

A.1.4 Composition Construct
Composition construct in class model is transformed to the corresponding class attribute.

Source Model Construct

Composition(<multiplicity>,<multiplicity>,<multiplicity>,<mu1tiplicity>,
<relationshipname>, <classname>, <classname>)

Target Code Construct

Attribute (private, <objecttype>, <objectname>, <objectcount>,
<containingclassname>)

Mappin

Composition({<multiplicity>, <multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>, <classname>, <classname>} :Attribute(private, <objecttype>,
<objectname>, <objectccunt>,

<containingclassname>)

Key Parameters

1¥ parameter

A.1.5 Aggregation Construct

Aggregation construct in class model is transformed to the corresponding class attribute.

Source Model Construct

Aggregation(<multiplicity>, <multiplicity>,<multiplicity>,<multiplicity>,
<relationshipname>, <classname>, <classname>}

Target Code Construct .

Attribute{private, <objecttype>, <objectname>, <objectcount>,
<containingclassname>)

Mapping
Aggregation(<multiplicity>, <multiplicity>,<multiplicity>,<multiplicity>,

<relationshipname>, <classname>, <classname>) :Attribute(private, <objecttype>,
<objectname>, <objectcount>, <containingclassname>)

-102 -

Key Parameters

1* parameter

A.2 State Model Templates

The state model constructs are represented as predicates using the following templates.

A.2.1 State Construct

State along with its entry, do and exit activities is treated as a single construct.

Source Model Construct

State (<statename>, <classname>)

Operation(Entry, <statename>, <returntype>)
OperationParam(<paramname>, <paramtype>, Entry, <statename>, <paramnumbér>)
Operation{Exit, <statename>, <returntype>) ’
OperationParam(<paramname>,<paraﬁtype>,Exit,<statename>,<paramnumber>)
Operation{doActivity,<statename>, <returntype>)

OperationParam(<paramname>, <paramtype>,doActivity, <statename>, <paramnumbér>)

Target Code Construct

Class(public, <statename>, <classname>)

Method (public, <returntype>, Entry, <statename>)

MethodParam (<paramtype>, <paramname>,Entry, <statename>, <paramnumber>)
Method (public, <returntype>, Exit, <statename>)
MethodParam(<paramtype>, <paramname>,Exit, <statename>, <paramnumber>)
Method (public, <returntype>,doActivity, <statename>)
MethodParam(<paramtype>, <paramname>,doActivity, <statename>, <paramnumber>)

Mapping
State{<statename>, <classname>} :Class (public, <statename>, <classname>)

Operation(Entry,<statename>,<returntype>):Methdd(public,<retufntype>,Entfy,
<statename>)

OperationParam(<paramname>, <paramtype>,Entry, <statename>, <paramhumber>) :
MethodParam(<paramtype>, <paramname>, Entry, <statename>, <paramnumber>)
Operation (Exit, <statename>, <returntype>) :Method (public, <returntype>, Exit,
<statename>)

OperationParam(<paramname>, <paramtype>,Exit, <statename>, <paramnumber>) :
MethodParam(<paramtype>, <paramname>,Exit, <statename>, <paramnumber>)

- 103 -

iy

i

Operation (doActivity, <statename>, <returntype>) :Method (public, <returntype>,
doActivity, <statename>)

OperationParam(<paramname>, <paramtype>,doActivity, <statename>, <paramnumber>) :
MethodParam(<paramtype>, <paramname>,doActivity, <statename>, <paramnumber>)

Key Parameters

None
A.2.2 Transition Construct

Transitions are transformed to the methods in the corresponding state.

Source Model Construct

Transition(<sourcestate>,<transitionname>, <targetstate>)

TransitionParam(<transitionparamname>, <transitionparamtype>, <transitionname>,
<sourcestate>, <transitionparamnumber>)

Target Model Construct

Method (public,void, <transitionname>,<sourcestate>)

MethodParam(<transitionparamtype>, <transitionparamname>, <transitionname>,
<sourcestate>, <transitionparamnumber>))

Mappin

Transition(<sourcestate>,<transitionname>, <targetstate>) :Method (public, void,
<transitionname>, <sourcestate>)

TransitionParam(<transitionparamname>, <transitionparamtype>,<transitionname>,
<sourcestate>, <transitionparamnumber>) :MethodParam(<transitionparamtype>,
<transitionparamname>, <transitionname>, <sourcestate>, <transitionparamnumber>)

Key Parameters

None

A.3 Action Specification

Generating code only in terms of class and method declarations is not enough. Program

logic is the most significant part of software systems for execution. Our proposed approach

-104 -

et]

-

W

cannot only be used to represent skeletons of model and code, rather the behavioral actions
inside the models can also be easily expressed as predicates. In the context of class model,
dynamic actions are used to specify operation body. Within a state model, entry, do and exit
activities and transition guards are specified to represent the dynamic system behavior.

A.3.1 Variable Declaration

The predicate structure template for declaring a variable is given below.

Source Model Construct

OpBodyDeclaration(<methodname>,<ciassname>,<datatype>,<v3riablename>,
<initialvalue>, <iterationnumber>, <statémentnumber>)

Target Code Construct

MethodBodyDeclaration (<methodname>, <classname>, <datatype>, <variablename>,
<initialvalue>, <iteraticnnumber>, <statementnumber>) -

Mappin

OpBodyDeclaration{<methodname>, <classname>, <datatype>, <variablename>,
<initialvalue>, <iterationnumber>, <statementnumber>) :MethodBodyDeclaration
(<methodname>, <classname>, <datatype>, <variablename>,<initialvalue>,
<iterationnumber>, <statementnumber>)

Key Parameters

None
A.3.2 Assignment Statement

Assignment statements have the following structural template.

Source Model Construct

OpBodyAssign {<methodname>, <classname>, <assignment>, <iterationnumber>,
<statementnumber>)

Target Code Construct

MethodBodyAssign (<methodname>, <classname>, <assignment>,
<iterationnumber>, <statementnumber>)

- 105 -

i asd

lui'v

v S

Mappin

OpBodyAssign {<methodname>, <classname>, <assignment>, <iterationnumber>,
<statementnumber>):MethodBodyAssign(<methodname>,<classname>,<assignment>,
<iterationnumber>, <statementnumber>)

Key Parameters

None
A.3.3 Return Statement

Return statements are expressed using the following predicate template.

Source Model Constnuct

OpBodyReturn (<methodname>, <classname>, OQutput, <variablename>,
<iterationnumber>, <statementnumber>)

Target Code Construct

MethodBodyReturn {(<methodname>, <classname>, return, <variablename>,
<iterationnumber>, <statementnumber>)

Mappin

OpBodyReturn (<methodname>, <classname>, Qutput, <variablename>, <iterationnumber>
, <statementnumber>) :MethodBodyReturn (<methodname>, <classname>, return,
<variablename>, <iterationnumber>, <statementnumber>)

Key Parameters

None
A.3.4 Iteration/Loop
Loops have the following predicate template.

Source Model Construct

OpBodyLoop (<methodname>, <classname>, condition, <conditionstatement>,
<iterationnumber>, <statementnumber>)

Target Code Construct -

MethodBodyLoop {<methodname>, <classname>, for, int, <loopinitialization>,

- 106 -

-

D

e rac

<conditionstatement>, <loopincrement/decrement>, <iterationnumber>,
<statementnumber>)

Mappin

OpBodyLoop (<methodname>, <classname>, condition, <conditionstatement>,
<iterationnumber>, <statementnumber>) :MethodBodyLoop (<methodname>, <classname>,
for,int,<loopinitialization>,<conditionstatement>, <loopincrement/decrement>,
<iterationnumber>, <statementnumber>)

Key Parameters

None
A.3.5 Decision Statement
We defined the following template for decision statements’ predicates.

Source Model Construct

OpBodyCondition (<methodname>, <classname>, if, <conditionvariable>,
<conditionsymbol>, <conditionvalue>,<iterationnumber>, <statementnumber>)

Target Code Construct

MethodBodyCondition (<methodname>, <classname>, if, <conditionvariable>,
<conditionsymbol>, <conditionvalue>, <iterationnumber>, <statementnumber>)

Mapping :

OpBodyCondition (<methodname>, <classname>, if, <conditionvariable>,
<conditionsymbol>, <conditionvalue>, <iterationnumber>, <statementnumber>) :
MethodBodyCondition(<methodname>,<classname>,if,<conditionvariable>,
<conditionsymbol>, <conditionvalue>,<iterationnumber>, <statementnumber>)

dd ket

Key Parameters

None
A.3.6 Function Call

The function call along with its parameters is treated as a single construct.

-107 -

Ty

Source Model Construct

OpBodyFn{<callermethodname>, <callerclassname>, <storagevariable>,
<calledmethodname>, <calledclass/object>, <iterationnumber>, <statementnumber>)
OpBodyFnParam(<callermethodname>, <callerclassname>, <calledmethodname>,
<paramname>, <statementnumber>, <paramnumber>}

Target Code Construct

MethodBodyFn(<callermethodname>, <calledclassname>, <storagevariable>,
<calledclass/object>, <calledmethodname>, <iterationnumber>, <statementmimber>)
MethodBodyFnParam(<callermethodname>, <callerclassname>, <calledmethodname>,
<paramname>, <statementnumber>, <paramnumber>)

Mappin

OpBodyFn (<callermethodname>, <callerclassname>, <storagevariable>,
<calledmethodname>, <calledclass/object>, <iterationnumber>, <statementnumber>) :
MethodBodyFn (<callermethodname>, <calledclassriame>, <storagevatriable>,

<calledclass/object>, <calledmethodname>, <iterationnumber>, <stateméntnumber>)

OpBodyFnParam(<callermethodname>, <callerclassnafie>, <calledmethodname>,
<paramname>, <statementnumber>, <paramnumber>) :MethodBodyFnParam (
<callermethodname>, <callerclassname>, <calledmethodname>, <paramname>,
<statementnumber>, <paramnumber>)

Key Parameters

None

- 108 -

Woraka

Appendix B
USER MANUAL

-109 -

.

B.1 Main Interface of COdS

The main interface of C@dS can-be divided into five sections, as show in Figure B.1.

. Left Panel
. Right Panel

1

2

3. Center Panel
4. Console

5

. Menu Bar and Toolbar

R 2§ Code Swarms {C08Y o

B -
Talely |- _
CarneatProjati u-m o | [of eron | i rese | Y o B 1 :

Dot Shospinar Emm l E:mn [r DCedS
S G DICoeSShopqnsCartinput: . (3 DCasiansle

[E Cnes File_§955 H Cperaticnfaram{~-, -, Exit, Baslccupied, 1) i¥ethodParan-, -, Exit, Feslooupied) i~ 3B+ €5 DCoschhoptingCai
: Cperation {daAcuivity, Foabccupied, veid): !etizad{wblic.void,d&*ti ¢ PC30CCTpLed) R
OperationFaraz{-,-,deisvivity, Pealccipied,) iMethodraran(- ¥, Pealocupie! d)
Traza:tzen{Posinitial, NewEceitics, PosCreaced] Jd;p.bl::,v:‘d,xewp, i
Op2edyRaa:gn{RewPoaition, Fosinitial, currentatata="Created", -, 1} s¥ethodScdyAssion [Reubesiticy
TrazsiticoiPoslreated, Approve, PosVacant) :Mathod{pabl ated}
Up3cdyhesign (Approve, Poslreated, currentatate="Vazazt” vhesigniApprove Poslreas
Tracsitica{Pcslreated, Disipprove, PesRemoved) t¥ethod (public, void, iakyprove, Foslraatad)
OpdcdyAssign{Sizippreve, PosCreated, correntstate="Remcved™, -, 1) :¥athodSndyAsai oo (Sishpprove B]
Trazs:iiot{FosVazast, Nawhppointment, Pealcoupied) tMethod (public, 7214, Kewkppaintzent, PosVazars
%EDCDGS“SMD{:M;CH{Q Cp3o: ,ﬂs‘sigxsmeakppeinr:ea:,Pcf‘i?:i::,mz:rentita:-_-:'ec"':p:ed', Fi}e Me"'-c&d\i:si;n(rfl'euh:pc.
8 D‘Ck%hopomm Trans:ticn{Fosvacazt, ositipr, Py } :Method (pubiic, void,RemcvePoaicicn, Fosvacast

Op2odyAssign {RemevePesition, Fesvacant, current state="gencved®, -, 1} iketiod3odyhasion {RancveFos

: TransitisniPosCesupied, dohctivity, Fosvacant) s¥athod {pablic, void, doActivity, Fostcsupied)
Op3edyCeondition{dohctivaty, FosCooapied, i, xovacant, =, true, -, 1) s¥ethod3edilendivion [dohctivy E
Cp3odyAssign {dchctivity, PosDerupied, currentatate="vacant®, I, 2} :MetnodBedyhssign [dahotivity, B |
Traceilicn{FosCosaplied, ReagoveFoaiticn, PraRemcved) iMetiod (public, 7oid, RemovePosition, Pesfoouy
Op3cdydssign(RempveFositisn, PaaCeospied, cozrent state="Reme %, 2) :MetnodSadyRes gu [Removel :
Rasociation{l, :,_,:,vo:nat,sésitic:,&’zpmyee) tAttribute(privete Fositicn worksat, Fosition(

Exd b . X | .. k
ooy —T1 - InHe T S R e e e e [MSETEE | [Hawmy ey 031
COMSOLE
Izporting I
Flease wait .,. Tni 5t take a faw seconds.

Traizizg Data orted fzom 9 files.
Zetel Mepping Ficcks:

4 Figure B.1 C@dS$ interface 3

-110 -

bt

L

B.1.1 Left Panel

The left panel of the CBS editor displays the currently opened project. At a time, only

one project can be opened for working.

B.1.2 Right Panel

The right panel of the interface displays a list of all existing CQQS projects. These
projects are present in the “D:\CodS” folder.

B.1.3 Center Panel

The center panel of the editor is used for displaying text files. Multiple files can be

opened.

B.1.4 Console

The bottom panel of the editor is used as a console for displaying informative and error

messages to the end-user.

B.1.5 Menu Bar and Toolbar

The top of C@JS interface contains a menu bar and a toolbar. All options of the menu

bar are also available in the toolbar for ease of use and quick selection.

B.2 File Menu

The File menu consists of five options, as shown in Figure B.2.

-111-

rent

nl‘.

T TN Leid S W N P .

OvtmLevveiova | Elmwm j—'ﬂsnwusnmm

i~ B Emptoyee jaa
- D EmpOniene
- D) Eingieignaa

" Elsocea mmm 13 23 Lﬂm.mm]www

Begin BS
Class{Command) :Ciass(public, Command), Constructer(public, Commandi}} -
Attribute {(CommandIs, int;), Sommand, unique) sAttribyute (private, int, cams«uu G, u:m:d)
Attribute(Emizsiorlate,Date,pull, Comnand,):httribute(private,late,emizeiorndate, null,
Attribute({DaliveryAddress, String, pall, Caﬂa:zd _):Atizibute{{private, String, deliveryadd
Cpezaticr(Cetfxissioniate, Command, Date) :Methed (prblic, Date, GetEmissicedate, Commazd)
Cp::nu.ur.?a:m(' -, Set¥nissiorlate, Command, 1) :Methodraram{~-,~, SatExzaazonlate, Co=nand,
Ope:an.cr.t&tm:ncs)ace,m..d,void) tlethod(public, ¥
o;ezn:xez?a'u :e,.,a:e sa.?.nissxq:.:,n’e Commar:

Oﬂe:rxonlsv.,ehv:vym s,Com:rd,vaxd
CperaticnParan{TAddresa, String, SetTeliver,
{peraticn{@et2iliAmount, Command, double} ¥
'c;evacmnpa-m(- -, Get3illAmcunt, Commaczd, I

%M,Msxgn(‘:th‘ss-nﬂate "mnd m:sx"n:at ESate
CTp3odyAssign (Set.eAlve—‘Add.ess Commard, .,e;lve:ykxxess

Tily

Rk 9335‘13!5

—— e

B.2.1. New Project

This option enables the user to create new project. This new project is created in D:\CodS

If another project is already opened (i.e. displayed in the left panel); user will be asked to
close the currently opened project, as only one project can be opened at a time. This scenario is

shown in Figure B.4.

Figure B.2 File riienu

B.3. New project is created with the following structure:
D:\ CodS\<Project Name> \ Input
D:\ CodS\ <Project Name> \ Output \ Predicates

D:\ CodS \ <Project Name> \ Output \ Java Code

\

-112 -

folder and is displayed in the left panel. Project name is provided by the user, as shown in Figure

Ak Ll
N

3

i

il .

D¥CoaSBank i
£ DX odSBHllPaymes |
€i DACosTENS |
€3 OXCorsiSamule i
&

L3 L

[BOrICN

-2

-B

v
-
“

w

N

.

L POSEDMIDD 2 (D0 |

Coad Fle_BISE
Hocaltn

AMESTCREw T b
CodS Fie_117
EnsoBCancefe;
Y EnvofiClosed.)

"]
il

- L

cam{-, -, Batry, PrefTemioated, 2} -

£ 131 T#l 1sb 18 BF g

yoid, Exek, FrofTer=inated)
Exic, Proflermirated,l)
Metrod{pablic, Ly, Pxoflemanated)
¥eithodParan (-, -, dahkor Lvity, ProfTarzinated, 1) g OIS SIS

exminate, ProfRorking)

{Taraxpate, Fro =reerminated”, -, 1)

Atczibute fprivaze, Student, exzciied, Student (), Sazelineny)

£
i I

o
g
ER

Artribute {private, SeRinar,in, Seminaz (), Ensoiinent)
Attribate {pravats, Frofaasss, instructa, Ercfesssr{), Seminar)

Jransforming Nodelivee.

srecE st

lease wart ... I&is

Model Transformed.

take a few aeconds.

eI

i

Figure B.4 New project confirmation screen

-113 -

B.2.2. Close Project

This option allows the user to close the currently opened project. The user is provided

with a confirmation dialog to confirm the selection for closing the project (Figuré B.S).

sy (a[smjm

e . M — <.n' = — = -
U L Breaement o l’_nomm] Em.lﬂnmgl-nmu:nMEm(| Bl neravermasigedizn rmuss '

= O:Ffﬁ?&ﬂb‘fztw public class OpOnLeave {
- £ Cods Fite_11 puablic veid Enrzyi)
i~ B} Empinfiatjava 1

1

: EmpRedtad sy public veid Exat()
i- P EmpTarmuate §

+ B Managerjoa
B Marageriaitial
& B Managercal.e:

ManageiTenmst
Hanagerdorcy
Operabye)33
Cpinivdl ;8va
SpOnL eav jay
%% OpResignedia 3
OpRetran javay | :

'4];,» Ii;ﬁ I3 ; pablic void SubmitResignatiaa{) . . 153

1=l

T
[EolEA AR AR A Lt LA b

o
)
2

4

Figure B.5 Close project
B.2.3. Delete Project

Selecting this option will enable the user to delete the currently opened project. When the
user selects this option, he/she is asked to confirm the decision for deleting the project (Figure
B.6, B.7).

B.2.4. Open File

A text file can be opened by selecting this option. When the user selects this option, a
dialog box is opened to browse the file (Figure B.8). Picture formats are not supported by this

C@dS application. The opened file is displayed in the center panel.

-114 -

APy

B.2.5. Close File

This option permits the user to close the file which is currently in focus. The user can also

close the file by making right-click on the tab and selecting the appropriate option (Figure B.9).

- -~ - — St i
T Crerm
ialsmin. - (e
|) - Pt i ey ey
= ol - CEEE . EENY - CREE - EERA - rﬂw-w-w = oo i
- B) Coct Fes gess | & Segiz b3 = Dcmssdmmm %
) Modaitg 3 ClassiCanzand) :Class (publiic, Commasd) , Conatructer (publac, Compand)) = &1 h
TEY &t it ibute {Comaardlz, sns, D, Command, mique) sAttzibute (private, int, cosmand:id, 9, Command = Gc(mss“ms B
¥ :
TEZ W =i te(EmtssiozDate, Jate, null,Coxmacd,) tAttributeiprivate,late, emissicndate = I G CodSGhocpinTat %
~ g TEZw 5 ote{Deliveryhddress, String, sull, Command,) :Rrtoibute{{private, Stzing,deliveryasd F- 5 GCeasSIs H
TEd Wt E ...an(setm-sx rDate, ‘__-n..d :hce) neumﬂp 135, Date, GetEmissionDate, Camnacd)
TEE bt ~ .n{—,—,ue:msuan»ate,\.mﬂd H
~ 8 TES.t b Jcommazd)
- BTE7 v nPl"lhl R . . SetPmiasis
’;E:': ion (GetTel -4 :';Lii:zss,-:l
B - Cpe‘a::anfn':ll- lcaddress, Sa
= E’E‘:ﬁm cpen:;;mm-r el \dress, Commd
= Cods Fur. 233 b (o]0 te,daddezad
Predicates bd Cperation(Geysil Joormass)
(sadme.l'ﬂ. Cperac ionPardm (-] »Jommacd, 1}
3 G DICoUSERSOW] | Cperasian{Geqive :
£ coasFie_11Y Cperatisnfarga(-, = Getlt v -7 GeETY . Cogmand, 1)
I:B Emginibaljava) | CpB ignfSetEmiss: catate, Command, hss‘cn.t*e'i:‘n:e, 1}: an {Setfmzax
72 Emplosee java ; OpSodyAassign({SetDeiiveryaddress, Comaa=d, DeiiveryAddrsaa=Caddse: =, 1) :Method3odyRasis:
B Crp3cdyReturn(SetEnissicadate, Commard, Cutput, Eniasioniace, =, 1) i Math mm_t.x.niaez_z.:
CpBodyReturn{GetDelivaryAdd-ess, Command, Cutput, DeliveryAddress, -, 1} iMethoddcdrResurn (S]]
L Y T 1 D

Figure B.6. Delete project confirmation

B.2.6. Exit

This option is used to close the CAdS application. Upon selection of this option, user is

asked to confirm the decision (Figure B.10, B.11).

- 115 -

N

L:ﬁ By P

[

Toje

Oes
€ D3CadSBank

T F —g——1

Figure B.7 Delete project confirmed

PYCICE 2=

i DCodS
i} G DI 3 Qo
: E} Coss File_s25s ¥ £3 CKCosSEdParment
£ dodeltd = €2 GXRESENS:
8 TEIN

CodS File_110}
Empinibai)sra
Emploses)ava

EmpOnLexee
} EmpResigne

Exis

dyRetarn{de’

= £ 6XosSSameli
= £3 CCotSShappingCat
w9 (3 DICIISSIS

Figure B.8 Open file

- 116 -

qxnr.ionrs:ul-,v Pxit, SCartlon
« B CodS File_§556 raticr{dcAstivity, SCartlontain.

Zostsinltems,)| |
5{public, vead, dohctarsty, SCaztlantay

- 8 sodel e icnfazam(-, -, dohctivity, SCax doRztivity, SCaztled { % &B DRGOISERS;

s 2 TE1m e (SCartArchive, ShoppingCars) :Class , SCaztAzchive, ShoppingCart} T @ DACocSiSample
o DTEm operation{Entry, SCarthrchive, void) :Method (pubiic, Toid, Batry, SCartarcha = L D3CaeSiShappingCant
v ~RTEIw opereticzFazam{-, -, Zatzy, SCastAschive, 1} :MetncdPazan{-, ~, Entry, SCarshrchive, 1) % B D\CocsiNS

B i Dpezatios [Exit,SCartArchive, void) :Method{Fublic, veid, Exit, SCaztazchive)

8 TEEm 3 UpersticoParam{-, -, Exit, 5Cartdrchive, i) iMethodFaras (-, ~, Exit, SCastArchive,l)
. BoEsm ez [dohctiTaty, ST 1d) :Metacd {public, void, doActivicy, SCartArchive)
. B TET M

cParams{-, ivity, SCarthrehive, 1} :MeshodPaTam(-, -, dohetivaty, SCasthrchive,
irien(SCaztisazial,lreate,5Caztiact Metaod{pzblic, vead, S e, SCaztInitial}

T {Creats, SCaztIncitial, casrentstate="Dppry®™, -, 1) :MethodSodyResaign(treate, 33
Cartfapry,Additem, SCertContainitens) :Methed (public, vesd, addItem, SCartBepty

.
S Tr DXCoISERSTUrut

G%cg::;ﬁ; 333’ Op3cdyAseigs (Addzem, SCartEmpty, euzzentstate="Corta:sltems?, -, 1) 1 KethedSedyhs: {(Adds ;
A Ploﬂﬁe;tﬂ Trarsitior (STariTontaznitens, Daietelren, SCartiBxpty) (Kechod ipublic, vold, DeleteTtexs, 5Car ;

= 2 ceadme.td opbodyCordicicr (Deletreltes, SCartCentainitens, if, itemee =,9,-,%) iMathedBodyCondstad

= G DACOISENSOUS Op3cdyAsaign(Deletelter, SCarilontainitens, garrentataie="ropty™, 1, 2) : XechoddodyAesign il
r—% Cod5 Fla_110) Transitics{SCartConcasnltems, CheckoutItens, SCarthrchive} sHeshod Ipublic, vatd, Cneckaut It ;

8 Emainiialjzva) pScdyAssigniCheckoutitens, SCartContainltens, carrertatate="acch:va", -, I} s¥ethed=cdyhss

3] Ass=ccistien{_,1,0,n,_,Tustomes, ShoppiagCari) sAtiribute (private, fustomer, custczer (), Cus

Eag £32 1

Bither no £:1e has been selected TR
The selezted file contaizs utsupported contest

Please select ERRCR FREE correct file.

Aokl =
. F
Figure B.9 Close file
2 - — . - ia L ..
— o =) =
v Code Swarm {Cods) S e e e .. P L= ——— :
E"' fde Hetp
H ‘I_Le'E" - = - -
B ——
[ol B i 4 —
1 ' sanagesov | [emunesirasion
) o1z 533, ERit, S2astCCtta
B D CoaSERSInmA Exit, SCartlantainltems, 1} :MethodF, {~,~,Zxi%,3CactContasnlitams, IH
< I_ CodS Fie_B3H ,5CaztCestaiultens, void) :¥athod (publac, veid, dohctiviry, SCarzContas]
Wooe| bd operationPazam{~, -, dohsiyvity, SCartCantainlte=s, 1) Ha-ncuPrc:l-.'.doh--ivi?-‘, SCartlon
i Stata {SCartAzchive, ShoppingCart) iClass (publie, STartArchive, Shoppinglert, T
= Operacicn |Entry, SCartarchive, votd) :Method (puklic, void, Batry, S-.:'d.::n‘ve) €5 D'CousiShoppagCart
4 OperationParami-, -, Ectry, SCactAschive, 1) iMethodFazan{-, -, Entty, STacrthschive, 1) €3 DiCodnsts
Operatinn (Exit, SCartArchive, v:sxd) Ker...cd(pubhc,mid,m:,SCar:A. e)
Operaticnk - T -
- Operazion|doActy SCartArchive, voidh He'-‘md(;ahi:c vo_d d_A-t:v;'v Cazthzohive)
OperationPazem(- o d s T P ivigy, SCazthzchive,
Transsiion(SCaT - m e, 5§aztlpitsal)
§ CpBodyssaign{Cre dyAdsign (Cxeate, 5
B 5 e orcsENsOu 2ranaition (SCazt E A79 you Sere o wamt s cose £043 aoptenton? (B, A ites, SCazcenpey
o P e B Cogt Fite_333 Cp3odyhsalgn {Add E s94gnlAdd?
[B Pradicatestt ransition [STart -§ -‘I- (Feidfcelecercen, Stax
OpBedyConditton{felc < l V:Kz‘uan.cdncni.c‘q
Cp3odyassign{DelfreT 1¥efnoddedyneal qz(.‘
Transition|SCart§octainle »Chrckoiit Toeza, SCartAvchive) :Yatond (publicivold, CheckoutIg
OpRsdyhssign {Chec Te=s, toar 4) :MezhodSodyAas
Asssciatiend_, !, 0,5, _,Customer, Shoppanglart) tAtiribute {privace, Custemes, customer (}, Cus
Eed B32
= By ppr— e T e
Bither no file has heer aelected oR

The seiected file ccriairms unmupparted ccnvent

Please select ERRCR FRPE coxxect file,

Figure B.10 Exit

-117 -

Figure B.11 Thank you

B.3 Edit Menu

This menu provides the options for transforming system models into code predicates and

complete Java code statements (Figure B.12).

B.3.1 Import Training Data

This option allows the user to import files containing previously solved transformation
examples represented in the form of mapping blocks. The content of these files are displayed in
the center panel. The imported files are automatically made a part of the currently opened

project. All files of training data must be imported at once (Figure B.13, B.14).

B.3.2 Import Input Model

This option is used to import the models from which code is to be generated. All the

models must be stored in a single text file (Figure B.15, B.16).

-118-

o GoaSSiSnet

F3 Wiy PR
- B mogelt

K B e
8 TE28
~ B TEam
TEAM
~Besx

g TES ™
TEZ

~

CperationParam{-, -, fotry, FrciTermisaced, i)
Cperatizn{Bxic, ated, void)

Speration{dodctivity, FrofTermicated, void}
OperaticaFazam{-, -, dokctivivy, FrefTermizated, 1)
Transiticn{FrcfRerking, Terminate, Pzofleszinated)
OpBodyhssign(ZTe-mirate, FrzfRorking, cuzrentstate="Term-cated”™, -, L
Zraasition (Proflnleave, ScActivity, ProfWosking)
Sp3sdyConditics (doActivity, ProfOnleave, L, Currastdate, ==, leaveenddate, -, 1)
CpBodyAssionidolirtavaty, FzofOnleave, currentstate="working™, 1,2)
Transition(ProfCrleave, SutmitResigraticn, ProfResigrad)
opBodyconditicn (9shmitResignation, Proflnleave, if, resigaation_statas,==, "accepved”, -, i}
CpBodyhesion {Subm: tResignaticn, ProfOnieare, currentstate="Rasigued”, 1,2}
Zreas:tion(PrcfCnleave, dokotivity, FrofRetized)

2odyCondition (doherivity, ProfCaleass, 1 f, 83¢, 5=, €%,-,3)
CpBodyAssign (deActavity, FrofColeave, currentavate="Retired®, 3, 4)
Tzaasition(ProflnLeave,ernitate, FrefTemipsted)
OpBodyAssign(Terminata, PzocfCnleave, curr=nt
Aesccisticn!_,1,1,n,en7nlled, Stodent Exn
Assactation{_,3,1,r, in, Sexinar, Eazcllmeat)
hssociarien(t,n, %, n,cowaitioglist, Semrnaz, Scadent)
Resccieticonls, 1,8, n,snstzasts, Professor, Sexinar)

ate="Termiaazed®,~, 1)
izent)

I

Fle Bome T TE2DF TED ST TEA ST TES by 6T -TE7 b TEBAT TED b
ResoiIrpe: [ARFles

B |

T 500§ i
-G DACouSBark :
€05 DCoccBEP ayment |

G DICoESENS {

Figure B.13 Import training data - browsing dialog

-119 -

A
i
2 {50 3
2] 3 L3 O<CoaSBMPaymenl
Ope:ancnitac:) PozdactDeleted, void) t¥ethod [public, vead, Botry, Frodustieleced) ® {3 0 CoISEMS
(Eutry, P:cu‘«ct_\Ae:eﬂ :MetzadFaraa{-,~ Ectry, Productleleted, 1) 2 {3 0Koss'Sampie
:Method(public, void, Exat, FreduceDeleted) = {3 DX oISShopeingCad
aJul_l- -, mxit, ced,1) :Nethod) (-, - Exzt, Froductieleted & E
z{dahctivivy, Eo ct.')ele:zn',vn;d) :Method{pablis, void, doRstivity, Fradu
rationParam(-, -, dehctivity, ProduciDeleted, 1) iMathcdPazan (- ty, Produzideleted,
Trazsitics {FroductXew, TeleteProduct, ProductDeleted) :Netzod (pub. leteProduct, Producy
CpScéyAasign{DeleteProduct, Froductiew, curzentatate="teleced”, - 1) iNethodBcdyhasign (TeletePxg
Transition{FroductAveilable,doact ¥, FrodustOoutc EStock) tKethad {publ wvoid,dodstivity, Prod
Cp3odylondition (defictivity, Fredx ilakbie,if,pr d8cdyCondition (dg
CpBodyhasy, grl:l.lzt-vx.y,l:-cd‘.'c:Arr’nble,:u.:::ntstatv.-:'o:tcfszccl', _,2) ..dsc:iskaaq:(dmd
ZIrazsitasen{Frodacthvailable, DeieteProde ateProduct,k
Cp3cdyrssign (DeleteProds & ilekie,currentstate="Selatad”, -, 1).!'.ct_-m‘E vAzaign (Del
Transiticz{Froducicute ‘Stccl,dcuts.vs.:y, PzoductAvailable} iMezhod{pubiic, void, dcActivity, Bxed
Op3cdyCondition (doAstizity, ProductOutofStock, L, pr 1) sMethodSodyTondition (dg
CpBodyhsazgn (Gohetivity, FroductlutefStock, cusrentstate="as; .2} t¥ethoddodyRssign (dan
‘ranzitiss ProductCutofBtock, DeletePradact, Pr od.lcr..&‘er.ed} xer.sodqpub ,void, DeleteProducs,
OpScdyhssign [Jeizn?:nd:-t FrodastiontzfSteck, currentatate="deleted lethoddodyRerise lDeE
on(_, X _,Transacvion, Produst) :Attribute [private, Transaction, transastios, Trandscy
,A.,Aﬂ_dg__ssg - H N - T g X v
cousoLs §
rting Tralning Data.....
lezse wait ... This meght take a few seccrds.
SDCCESS!
Training Data imported from 2 files.
Tcval Mappizg 3lecks: 69

o
- - 10T
o |
i DX 075 i
= (@0X {
B D*coaseusmu State({Prcductleletad, Prca'acc) ::lrus (p:hhc, Prodac:Deleted, Producty . . 21 1% @ 0CasS 3P aymant !
Cperaticn (Rt amuiimnmn RS e, " T . = {3 DACUISENS !
opezationpaltds Please seiect file, = ed, 1) = @ 0\CoaSssample
Cpeiation{H] ‘ﬁ = g Umdﬂ%Owﬂwaﬁ |
OpezatiozFall Laok " Tv e,z = €3 DACoaSIS i
o;e:at;nr.(d b “'l EE ipccDeleted) :
czationka pected ownm {feductdeleted, 1Y
iauztio: i D ex [reea ! i RProduer, product 1
OpRcdyAssi Uogelin] D reron | tpaasgnoeecerse ‘
cransstrend]] | TELm [ree 1 §fi donctivasy, Prod
cpBodyCondi] [M vrasa [tes.a H gCond:ition (dd [
OpRadyAssigy N\ TELoa i odyAssigan {doi !
Transitian§) i ! LeteProdact, ¥ |
CpBodyAzsigl [TELo : lvassign (Tl i
Trans:tionfi|) TS % ¥E danctivicy, Prod {
CpBodyCorndi] i podyCondition{dd
CpBodyAanid| (o namer Modellt } VpdBodrAssign (ded i
Transition g d, JeleteProdaet]
CpBodyhssiglf Fies of Iype ;\—lﬁu iv: jBedacdyassign(oe !
Association]

P —
ECWHXE L

Imperiang ;-.-ran Data. ...

[fPlease wait ... Thia might take & few sccondy.

Iraiming Data imported frem 8 files,

]ﬁ! Toral Marping 2Blcocka: &0

Figure B.15 Import input model - browsing dialog

- 120 -

S SR |

{35 Code Swama Codm)

,a
e rer0a f.m.mi.
-l’tz.lxl

TRt

..
ﬁﬁ ;Emm l

cpsad;hs;g:(&'eﬂ*s&:h: PosImizial, :nz—entnatﬁ'::nted' -, 1} [+ f3- (2 DacossEitPagment ‘
Transition{PosCrested, Approve, Foavacant) 2 (D DCocT RS i
OpBodyhesign (Approve, PosCreated, currentstate="vacaat®, -, i} =1 (G DCucTSampls
Transitioc(FesZreated, DisApprove, PosReacved) = QDCncsampcro"af q
CpBodrhsaign {Diakpprove, FesCreated, cazrentstate="Resgved”, -, i} = (G D:Caeses

Transiticn{PosVacant, Newhppeintuant, Ecslcapied)

Cp3odyAsaion (Sewhppointment, Posvacant, correstotate="scoupied”, -, 1}
Traesiticn{PcaVecant, RemcvePesitien, PasRemored)

Or30dvAssign (RexsvePosition, PosVacant, curreststate="Rexoved™, -, 1}
Iransitics{Peadcoapied, deRctivity, FosVacant)
SpodyCondizion (dekotivity, PesOccuzied, 1£, isvacant, ==,
OpSodvAssignidadstivity, FosOooupaad, cuszentstate=
Treassiticaf =4, tvisa, ez}
CpodyAzsign (RemcveFositicn, PosSooupied, cavrentsctate="Removed®, i, 7)
Zexnexalizacion{Explcyee,{pacative)

Zeperalization(Empioyee, Manager]

kssociatioe{d, n, 0,5, 6531gnedto, Task, E=pioyee)
Aasociazioni_,i,0,n,assignedtc, Task, 2Porzce)

Rggregaticall,s, , I, ,EZeployee, T¥croe)

Asmcszatzon(8,1, , n,worksat, Positicn, Esployee) E :

s true, -, 1)
Vacsnt®, i, &)

et — v
¢l cowsone |

d
feporsing Input Medel.....

pSUCCESS
Iaput Model i=ported.
2ctal Construcie: 187

Figure B.16 Import input model - console

B.3.3 Tralisform Model

This option is used to transform input class and state models containing ASL into code
predicates. The resultant predicates are stored in the file “Predicates.txt”. The information about
the transformation process is displayed on the console and stored in a file named “readme.txt”

(Figure B.17, B.18).

B.3.4 Generate Code

This option is used to generate the complete code statements and Java code files

corresponding to the previously produced code predicates (Figure B.19, B.20).

-121-

eam |

CpBodyA=sign{SswPcsitior, o arrentscete="Created®, -, 1
ion{Poslzeated, Approve, PosTacant)

Op3cdyhssics {Apprave, PosCreated, sazreststate="vacaz:®, -, 1)
Transiticn{Posizeated, Diakrrrove, Eosiencved)
Op3coyAssign{Disirprove, Paslreated, cosrentstate="Rexcved®, -, 1)
Transition{FosYacast, NewArpointment, PesOcoupied)

Op5osyassign [NewAppoinzzent, FosVacant, carrentstate="Oooupied”, =, I}
Trarsizicrn{PesVazant, RemsvePosition, FosRemoved)

Op3ScdyAssige (NemoveFoaztion, FosVacant, curscntstate="Removed"”, -, 1)
Zransiticr{Posdecupied, doActivity, FosVacant)
Op3cdyCezdition {dohctivity, PasCerap: if, iavacacns,==,irue,
Cp3odyAseign{donctivity, Fostocupied, surrentstate="vacast®, 1,7)

Trana:

Trassitios (P ied svaP ticn, Pcad)
OpBodyissign (RemevePesztian, Poslccupied, carrectstate="Removed®, I,2)
Seneralizatiss(Exployee,Operative)

Generalizatvicz (Empityee, Hanager)
hsscciatzcz{?,®,0,z,25523ned:
Assoctavion(_,i,0,r,ads:gnedt
Rggregation(i,n,_,%,_, loye
Rasceiatiez (9,1, ,n,wozksst, Foo

ask, Tmpicyee)

=8 D""odS‘<‘:ocp«'\g~. i

t take a few meccods.

Class(puklic, ®epicyee}, Constructor (pukl
Rttribute {private, int, enpid, 0, Emplicyee)
Actribate{private, Stoing, ecane, null, Fopl
RAttribute (private,fate, scarcsave, nuii, Employee)
Kethed (public, Strisg, SatHame, Exployes)
MztasdPazan{-, -, GetNase, Exployes, 1}
Mathod{puklic,veid, SexRane, Eaployee]
XethodFaram{3tring, sane, Setane, Exployee, l)
Method (public, Date,Get3tartDate, Employee)
MethodParam{-, -, GetStartlete, Employee, 1}

Nethod {puklic, void, Set3tartlate, Bmpl:)
MathodParam(Date, sdate, SerStartDace, Exployee, I)
Metkod (public, 3tring, GetZapFositics, Eglevez)
¥ethodParam(-, -, GetBmpPozitiox, Byplo:
Metheod(pablic, void, SetEmpPcsitics, Exp.

u Dtoes*smppmgcar'

H) 19183} 3} 19

Mot hadiaraml Sxid. ARGAALAGT i DALA i)

Tobal Constracts: i€7

Total Mappisng Blccka: €3

2

Best fitpess: ‘0.994§324%6417
st pesitten: {i.0, 1.0, 1.0, 14.5, 1.0, 60.0, .0, 1.0, 1.0, 1.0, 1.0, €0.D, 2.0, 1.7,
a=ber 0f eralwabions: 200

P

S —

1

S ——— =

Figure B.18 Transform model - process completed

-122-

Ll
>y

e

1
T DO EMSIutpul Iava Coce 4]

- B assignedto java
£ CosSFile_1100 E

- £) Empinitaijaaa E

- 7% Emplores jaa J‘i Ltt:zb‘;te (p:lva‘.e, S::lr.;, ernaze, £

t- 3 EmpOnLeas iava " Ritrikate(ceivate, Date, staTidate, puil, Puploves)

+ 21 EmpResignedjava E Kethod(pubitc, String, SetNace, Erplcyee}

b 2 EmpRatretjzia MetnodFaraxm (-, -, GetName, Exployee, 1)

I £} EmpTenminsted s H Method{publiic,vcid, Satlame Puployee)

i+ B Empitonsngss uetnodPazan {StIing, nasc, Setiaxe, Expioyee, 1}
£ wanaget java ¥etrod(public, Dete, GetSsazilate, Expl

Sanagednitial j3va

MethodPerami~, =, GetStartlate, Exploys:
Uethnd {pablic, void, SetStaztDate, l-yu)
HethodFaran{late, sdate, SerStartlate, Expl
Method {public, Stzing, GetEwpPositisn, E=pl

i EY HanagsrDnieave java
. E MarazeResignedjaa

& UanggeReizedjove

£ BanagarTeminated java

B managarworkng jars NethcdPazem (-, -, GetZapPositicn, Ep.

B Cperates j3va & Method (public, vo1d, SetEapPesities, Exployes)

= ad r 4 {8rrine annsitins SetPweRoaizipn. Serlooes I3
3 — T .

EXACT code may not have feen geperated for the fellowirng comatructs. Rindiy ciack them for cozvectiess:

fscURCE: Actzibutelprivate,Task,assignedto,Task{), TForee) ---»> TARGET: priva
Relevance Scoarer 0,&7

ta Zask assignadin = cew Task(); iz File “TPorce.iava”

@ DCod et

£ €3 DICoISEUSIpU
= [3 DXCoCSENS Ot

Class (publiz, Explogee), Constructoz (pubiic, Bxpleyee)}
Attribuve {private,iat, expid, O, Esployee)
Attraihate(pzivate,String, ename,sull, Employee}
Attribate{private,late, startdate,sull,Exmployes}
Methcd (pubiic, Stzing, Getiaxe, Foplcyee)
HathcdFaram(-, tName, Exployee, 1}

Mecrzd {pub, void, Set¥ans Poployee) .
HKethodPazan (35rin T EEDITTeE, 1T
Mathod {public, Dkl Ry T
MethocFazaal-, -, G5y Message N
Hathod{public, voill, 54
MetnedPazan{Dete, bda SUCCESS! Projoct covmpiesed.

18l

(<]

©- (3 DCeasts

E5 0 CodSBillFayment |
€3 DACodSEMS

G oxcocstanple
(G D oasShiogpingC

ze: D.67

7y

e{private, loyee, employee !}, loyeefi0Q}, TFozee} ~-=-> TARGET: praivate loyee empioyeeii = naw Empicyeelidd];
ye ¥ ye ¥ ap

in File "T¥cr

Figure B.20 Generate code - process completed

-123-

B.4 Help Menu

This option opens the frame for displaying help content to the user. The following figures

show the different views of help content.

- S v we —

BEN wfal—

E TERD | TE?1xt rn.m _Hlmel.m b n Pred\:n-m
W E3oct | - I |~

chss ({public,Zep’cyee), Senstouctes {public, T=ployee(H

Rerribute{private, inc,aapid, O, Poplcvee)

3te{private, Stricyg, ecane, 83l l, Emplayee)

sre{private, Date,staztdate, rull, Employee)

Netbod{pablic, String, GetRarme, Employeet

et odPaTam (-, -, Setlade, Beglcyee, X)

Metbod {pubisr, void, 2zilane, Frplioves}

MethodPazam({Stiing, name, SetNane, Pagloyee, i)

Method{pablic, Dat Startate, Zaplaree}

Methodfaram(-, -, GetStartiate, ZRplioyee, i)

Ketpnod{public, ¥ .Secstartlate, Explcyes)

MethodFaram{Date, adate, SetStarthate, Puployee, 1}

Method{p=klix, String, Gertapfoslivion, Zaplcyee)

MethodFaram{- SatgmpPositian, Prplioyee, 1)

Method (public 3, SexZ=pfeaiticn, Employee)

PRVING SELPISOCETY

Tafr L

AT

0.67

pieicevance Scoze:

Ce: A=esibuze tprivate,Bmgloyee,empioyee{}, Bmplayse{ID0), Tforce} ---> TARGET: ES1vate Employee emgloyee{] = pev Employeel:
lsvazce Scoze: 0.3 e

Figure B.21 Help menu

C@_wmsmfmm r_wn-u--n -;-th 1
CodS APPLICATION AT A GLANCE

Appiicaton Name:
Code Sw3an (CodS)

Venlon: .
1.0

Release Date:
Avgoat 31, 2111
Developers:

4 Hioa Mahmood
® AtfAftab Ahowd fiand
4 Abdnl Rauf

Working:

This tocl surned Code Swarm (CodS),’ nmmdmwwwmmau anefoaation. This
epproach wies kaorledge from previously solved ansfoonation examples 1 solve sear A2C ol Pirse, usex provides 2 serof
t:aining dats {transfommarion exampies) and input model ahick is to be d Tke o(moddsuc d as pre Kacwiedge

from treining data is infenred by using heudstic seasch alposithm named Parscle Swaan Optisyzation PSO}. Cucently, this toal is capetle of geaentiag
Java code from UML Class Model 24 State Mode Bebavioa! logic in system models can be specified using Acuoa Spcas‘;man Eaaguape {ASL).

Bl

g - « B

Figure B.22 Help menu - welcome screen
-124 -

TeFeo e

4] Overview:

e et ; g =
g kﬁﬂ#
] ot ,
o DCosSEN, e mex e
2 Emmf Viokcome E:mwmg] User Guide I o Wm
% L@ DMCoss ——
® ABUUTC“HS?ROUECT
“Introduction:
This CodS appb is a0 imp of the appocach proposed £or i< code g fooen spetem exodels. Ths wal
is developed for the vali of ot pmp -

This CodS spplicatioa ia s positive step forwend touerds sutnmatic M2C tanstaomation. Focus of this applicztion is 0 gmcuré;t\'ioodth
K20 Qlaxs todels and UBLL Stare models.

There e severa! fiee, mdﬂndmwymmmmumm.o.gdmugm&msnmm All

these toals telv on eppeoaches that are moally based oo metariod rcales and i0a & However, dels ace

&

(3

wmdustmd,msfomummlcszcdzﬁ:d{ndgﬁnamdmlmmwﬂm mr_hnnsemdmm Tizs makes

process it

lndcx:um Hawe'v:::, ihis CodS tool i based oin approach trat makes MIC

paiziess by

le'zwn L

B

e set, soume and tarpet languages’ metznodels and thes

1 Intended Users:

This CodS spplication works br taking transfomution cxamples znd models 0 be tranaforned 23 Tsput. These models ase repeeseated 23 peedicates in
foron of a text Sle. Heudstic search algodthmn PSO it used to scarch fox the mowt optimal texssfanmations for the input models. Txput models are
d uting this g ¢ a2 szared ag codz predicates i a text file. Finally, these code predicates are used bo generate 1ava cods Glek

d

atoume | About Cod's Profect | Ve Gade] Werking Secuencs | impariant Fowts |

SLORCE: Rt g
elevance 4

<58}) Center Panel:

USER GUIDE

The edizx of Cod$ application i divided in 5 sections.

1) Currently Opened Project:
The left pane? of the CodS editor divplars the ¢amrentlv opeaed paovect. At 3 tane, only 0ae peoject can be
opencd lor wodking. :

2) All Existing CodS ijm:
wmuuwumn.atdmmcmmmmuemum
"Dr\CodS” folder.

The ceater panel of te editor is nsed for &iaing xt lew. Multiple Gles can be opened.

4) Console:
The botroe paned of the et is used a3 1 console for Esplaring messages to the end-oser

£) Menn Bar aud Toolbar: _
The top of Cods editoe cantaing 2 Mean bac snd 2 Toalr All opticos of the Menu bar are slao availadle ig

ES .
=

s

-

=T

L

Figure B.24 Help menu - user guide

-125-

A

T—— M
4 -

hel.

i . =
Wikcoms | Roont Coas oY s oo Y Vo ogewace] wpaream vows |

Aelevance §

A Possible Working Sequence

@& - Create 3 new provect or seleck an already emivtng project from the Gt panel. Wheo wrex elicks 0a aoy Sl of the project displaved in the
oght pancl; the provect is opened aad is displaved in the left panel

L4 Scmmtopzionkx’mpom'thﬁ;dxuﬁks.AnMolmtuwhanmMﬂnmmm&lmhm
"lapot” folda of B coreet project aad ase also displated to the oser.

® Seleet the option for importing file containmg irput model constrocta This apat moded & be timfoemed is 4 3tocuticaly saved in the “lnpus™
folder of the cuspent project and is aise displsved i the conter panel o '

@& Click the optioa foc transfoming model. Tz produces a £ie i Thich Quget code is ropresented a1 predicazes and Cod$ storet this £e in the
=Outpot) Precicates” folder of the carreat)y opened prosect.

. Opc;e:!xop:imﬁzgew:ﬁngcode.m;ﬂgeumﬂ:xo{unw«ﬁuhepmlgmimam&um,’mcummesm
taved in the “Octpur)Java Code™ foider of the cument pecject. :

S~

oot s

‘ﬁ

= é

= RS

Figure B.25 Help menu - working sequence

P
Vecicome | Aboui CodS Project ¥ Uaer Guise | Werking Sequence 1 imperiam Pows |

SCURCE: AL
Relevance ;3

j gL

_ b

IMPORTANT POINTS

® Moltiphe projects can be created. AB these projects ast sated in D:\Cod$ folder

® Only one peoject ¢an be opened at 2 ime.

® Aauof o cristing peojects is dirplared in e right panel of the CodS editor. Cunently opened peorect is displaved in ta left paael.

& When uses imperts transformation examples and inpot mode] to be tansfommed, these fles are 2itamaScally made 2 part of the coaeady

opeoed project br saving the imported models fJes in the following tolder:
D:\CodS$\ <Curvently Opeced Project Name» \lnput

® Al £l of training dats cust be imported at ooce.

® The

o Eles of focmation exampl Nnm—ﬁ&umimm&lmymhmdmw

& Class models and State mode!s taken a) inpat may cortain actioa language -

@ The ouly setion Linguspe suppocted by CodS is ASL (Actioa Specificaton Langaege). No oer sction Languspe is cumendy supported.
¢ Pichure formaty are v sappocted by this CodS spplicaton.

[ox]

v

A

Figure B.26 Help menu - important points

- 126 -

Appendix C
TRAINING DATA

-127 -

C.1 Model 1 (M1)

This section illustrates the class and state diagrams for the ‘Task Management System’.

C.1.1 Class Model

s o oo .- Task
-TaskD :int =0
Position R . TaskName : stiing =
—— Employec as! ame. gmn.g _null_
-Positionid : int = Pp— - TaskDescription : string = null
-Titte : string = ul - D.* +GetTaskNane() : string

-EName : String = nul

-SalaryMin : int = 5000
-StartDate : Date = nul

-SalaryMax ; long = 500000

0.*]+SetTaskName(TName : string) : void
+(Get TaskDescription() : string

+GefTitle() : string . +GetNamef) ; string) +SetTaskDe scription(TDesctiption : string) : void
+SefTitle{PTe : strng) :void 0.4 |+SetName{Name : sting) : void
+GetMinSalary() - int +GetStartDatef) : Date 1
+SetMnSalary(MinSelary : in) :void +SetStaDate(SDate Date) :vaid | |
+GetMaxSalary() : long +GelEmpPosition() -sting L. - o
+SetMaxSalarytMaxSalary : long) : vaid +SetEsmpPosition{Eposition : sting)
i 0.*
[I\ T TForce
- - - -TForceid:int=0
Manager . Operative . -GroupName : string = null
-MonthlySalary :int = 0 -HoustySalary it =0 +GelTFarceTask(): string
+GetMonthlySalary() : int +GetHourlySalany() - int +GelGroupName() :string
+SetMonthiySalary(MSatary : int) : void | {+SetHourlySatary(HSalary . int) : void +SetGroupName(GName : string) : vaid

Figure C.1 Class model of “Task Management System’

C.1.2 State Model

This section shows the state models corresponding to classes in the class model of the

Task Management System.

-128 -

State Model of ‘Employee’

Terminated
do / Activity

op4:Terminatef)

OnLeave
do / Activity

op1:NewApppointment[]

[age>=60]

op4:Terminate[) Working

do / Activity | -

do / Activity

S

fcurr_date==leaveenddate]

.

op3:SubmitL eave[] : [leave_status=="accepted"}

IS

[age>=60]

op2:SubmitResignation[} : [resignation_status=="accepted"]

(Resighed)

State Model of ‘Task’

=1 do / Activity

N—

Figure C.2 State model of ‘Employee’

2:SubmitResignation[] : [resignation_status==accepted]

¥ 5
w
]
=
=
(10
=
=
[+]
op3:CancelTask{] Created op2:AssignTaskK[]
do / Activity - - '
v o N
‘ Cance"ed 0p3:CancelTaSk[] ASSIgn
do 7 Activity : do/ ActMty

r__/

op3.CancelTask[]

{ Completed)

) S

=rue) l

l do / Activity

, g
inProgress . g‘
do / Activity s
=z
[workcompleted==true] _ . . 3,

Figure C.3 State model of “Task’

-129 -

T

State Model of 'TForce’

op2:TaskAssigned|]

Idle
do 7 Activity

R__—/

W4

op1:NewTask(}

do / Activity

op3:TaskCompleted]]

N

op2:TaskAssigned(]

Figure C.4 State model of “TForce’

State Model of ‘Position’

&
38
o
=
a
=
g
op3:DisApprovel] {(Created .) op2:Approve(]
EE— do / Activity
. : S/
A\ /4 . Sositi N
. op5:.RemovePlPosition([] = =
{ Removed |} — " Vacant)
do / Activity . L -] do / Activity
[isvacant==true] ~
A L.

(" Occupied)

hoad

do /7 Activity
op5:RemovePosition]]

<.

J

op4:NewAppointment[]

Figure C.5 State model of ‘Position’

-130 -

—

. K

TR S
- .

C.2 Model 2 (M2)

This section shows the class and state models for the application of ‘Book Bank’.

C.2.1 Class Model

Person

-PID:int=0

-Name : string = null
-Address ; string = nult

Loan

-Loanid :int=0

+GetName() : string

+SetName(PName : string, parameter) : void
+GetAddress() : string
+SetAddress(PAddress : string) : void

i

I

Student

Lecturer

-TermAddress : string = null
-Course : string = null

-Subject : string = null

+GelTermAddress() : string

+GetCourse() : string
+SetCourse(TCourse : string) : void

+GelSubject() : string
+SetSubject{Subj : string) : void

+SetTermAddress(TAddress : string) : void

-FromDate : Date = null
-ToDate : string = null

+GetToDate() : Date
+SetToDate(TDate : Date) : void
+GetFromDate() : Date
+SetFromDate(SDate : Date) : void
+GetLoanOwner() : string

+SetBookAuthor(Author : string) : string

Q.

1

. _ .. Book

-Bookid ;int=0
-Title : string = null
-Author - string = nuil

+GetTitle(} : string
+SetTitte(BTille : string) : void
+GetAuthor() ; string
+SetAuthor(BAuthor : string) : void

Figure C.6 Class model of ‘Book Bank’

C.2.2 State Model

The state models of the Book Bank application are presented in this section.

-131-

State Model of ‘Person’

op1:NewRegistration[]

{ NoDebt

(Added) op2:LoanApproved]]

Ldo / Activity

op4:LoanPaid[]

./

4
(InDebt)

Ldo / Activity
S/

(Deleted e - -

do / Activity J
A

—1 do / Activity

op3:DeletePerson(]

- s e o

op3:DeletePerson(]

Figure C.7 State model of ‘Person’

State Model of ‘Loan’

Lo

(Rejected) op3:RejectlLoan(]

Reguested

do / Activity

N i’
(Paid \
do / Activity

R a—

op1:AppSubmittéd(}

op2:Acceptioan(]

“do / Activity

N’

(F Re’turnInProgress\

do / Activity

{loan_amount==paid_amount}

\
Sanctioned
do / Activity i

_

loan_amount<paid_amount]

Figure C.8 State model of ‘Loan’

-132-

yort

B

State Model of ‘Book’

SEATITTRIRIETR .V Y

op1:NewBook][]

(Available)

do / Activity

op2:lssueBook[]

/

op4:ReturnBook]] {~

/
Issued)

{ Reserved)
do / Activity -

do /7 Activity

op3:ReserveBook{]

G

Figure C.9 State model of ‘Book’

C.3 Model 3 (M3)

This section illustrates the class and state models for the ‘Bill Payment System’.

C.3.1 Class Model

Command

-CommandID :int =0
-EmissionDate : Date = null
-DeliveryAddress : string = null

+GetEmissionDate() : Date
+SetEmissionDate(EDate : Date) : void
+GetDeliveryAddress() : string
+SetDeliveryAddress(DAddress : string) : void
+GetBllAmMmount() : double

+GetltemCOunt() : int

Q..

[=]11)

-BIND :int=0

-Amount . double =0
-lssueDate : Date = null
-DeliveryDate : Date = null

+GetAmount() : double

Item

-ltemID :int=0
-Description : string = null
-Picture | string = null
-Price : double = 0

+GetDescription() : string
+SetDescription(IDescription : string) : void
+GetPicture() : string

+SetPicture(IPicture : string) : void
+GetPrice() : double

+SetPrice(IPrice : double) : void

Client
-ClientiD : int =0
-Balance : double =0
-Holder : string = null

+SetAmount(BAMount : double) : void
+GetlssueDate() : Date
+SetlssueDate(IDate : Date) : void
+GetDeliveryDate() : Date
+SetDeliveryDate(DDate : Date) : void
+GetClientHolder() : string

—{+GetBalance() : double
+SetBalance(CRBalance : double) : void
+~GetHolder() : string
+SetHolder(CHolder : string) : void

Figure C.10 Class model of ‘Bill Payment System’

-133 -

RS
-t

C.3.2 State Model

This section demonstrates the state models corrésponding to the classes of the Bill

Payment System.

State Model of ‘Command’

op1:lssueCommand(]

op4:RemoveCommand]] ,7 Issued

op2:FulfillCommand(}

{ Removed)

do / Activity

do / Activity

\Vi
{ Cancelled

Y .
Completed)

op3:CancelCommand]] l do / Activity I
| do/ Activity
op4.RemoveCommand]]

Figure C.11 State model of ‘Command’

State Model of ‘Bill’

(Paid

op1:IssueBillf]

Issued

do / Activity op2:DeIivérBiI.I[] |
L———/ VY

(DeIive'red

t do / Activity

~op3-PayBill]]

Figure C.12 State model of ‘Bill’

-134-

do / Activity ‘

o

State Model of ‘Item’

op1:Newltem|]

op3:Deleteitem[]{~ Available)
do / Activity
\ N Y,

op2:GetltemCountf] : litem_cou nt==0]

(Deleted \

op2:GetltemCount[] : {item_count>0]

Y
(" OutofStock \ .

do / Activity

Ldo / Activity J

)

op3:DeleteItém

Figure C.13 State model of ‘Item’

State Model of ‘Client’

op1:NewClient[]

's Active)

op2.GetlLastBill[] : [paydate-currdate>365]

Ldo 1 Activity
)

op3:DeleteClient[]

op3:BillPaid]]

[Passive)

do / Activity

(1 Del\L\

eted

l do / Activity

op3 DeleteClient]]

Figure C.14 State model of ‘Client’

-135.-

C.4 Model 4 (M4)

This section illustrates the class and state diagrams for the ‘Student Enrollment System’.

C.4.1 Class Model

Student] Enrollment

-Studentid : int=0 -EnrollmentID : int=0

-Name : string = null enrolled -MarksReceived : double = 0
-Address : string = null 1 1.* |+GetMarks() : double
-PhoneNo:long =0 +SetMarks(Marks : double) : void
-Email : string = null +GetEnrolledStudet() ; string
-AverageMark : string = null

+GetName() : string 1.*
+SetName(SName : string) : void
+GetAddress() . string
+SetAddress(SAddress : string) : void
+GetPhoneNo(} : string
+SetPhoneNo{Phone : long) : void
+GetEmail() : string

+SetEmail(Mait : string} : void onwattinglist

+GetAverageMark() : string "
+SetAverageMark(AvgMark : string) : void 0.
Professor

-Professorid : int=0

-Name : string = null . E

-Address : string = null 0. - - !

-PhoneNo : long=0 .] Seminar,

-Email ; string = null -Seminarid : int=0

-Salary :int=0)) -Name : string = null

+GetName() : string rFees:int=0 : . o

+SetName(PName : string) : void instructs +GetSeminarName() : string

+GetAddress() : string =-_1+SetSeminarName(SName : string, parameter) : void

+SetAddress(PAddress : string) : void 1 0. +GetSeminarFees() : int

+GetPhoneNo() : long +SetSeminarFees(SFees ; int) : vaid

+SetPhoneNo(Phone ; long) : void +GetSeminarProfessor() : string

+GetEmail() : string = -

+SetEmail{Mail : string) : void

+GetSalary() : int

+SetSalary(PSalary : int) : void

Figure C.15 Class model of ‘Student Enrollment System’

-136 -

b

C.4.2 State Model

The state models corresponding to the classes of the Student Enrollment System are

presented in this section.

State Model of ‘Student’

Onleave

[leaveenddate==currdate]

B

do / Activity

op3:ExpelStudent[]

DeQreechﬁp!eled
do / Activity

J = op4:SubmitLeave]] : {leave_status=="accepted")

op1:AddStudent[}
Active N
do / Activity op2:GetDeferrment([]
N/
AN
| Deferred)
g _ do / Activity
5 =
3 L J
w 2
©]
H 8
8 i
T “
a g defenddate==currdate
:
&
3
£
'13 = .
9 Expelled ‘»
X do / Activity op3:ExpelS{udent[]
ogZ;Q@iDgfemnent]}

Figure C.16. State model of ‘Student’

-137 -

-

o pmed

R

State Model of ‘Enrollment’

op1:OpenEnrollmentf]

[enrollenddate==currdate] Open op2:Enrdll(]
— do / Activity " '
AVS
\/ — (New

[Closed)

l do / Activity [enrolimentcount=noofseats]
- (Cancélied)

Ldo / Activity J

l do / Activity

op3:CancelEnroliment(]

Figure C.17 State model of ‘Enrollment’

State Model of ‘Seminar’

op1:NewSeminar(]

(Closed

(Open))
op2:CancelSeminar|] {45 / Activity - [regdate='—fcurrdate]
N\ N~ - 4
(Cancelled)
do / Activity
op2:CancelSeminar[]
) \.

(" Done)

do / Activity J

Ldo / Activity
J

Figure C.18 State model of

-138-

[semdate==currdate]

Seminar’

State Model of ‘Professor’

Retired
do / Activity

y

[;age==60}

op1 :NewAppointmen_t‘[]

% op2:SubmitResignation[] : {res_status="accepted"] (" Work
i — §
> op4:Terminate]] - /
KA / =
ol
Resigned .3
do / Activity §
@

V.
Terminated
do / Activity

[leaveenddate==currdate]

op3:Submitl.eave] : [leave_status

\

._op4:Terminate(] (" OnLeave
do / Activity

op2:SubmitResignation[] : [res_status="accepted"]

Figure C.19 State model of ‘Professor’

C.5 Model 5 (MS5)

This section illustrates the class and state diagrams for the ‘Purchase Order’ application.

-139 -

C.5.1 Class Model

'

Customer

-Customerid : int=0
-Name : string = null

“Phone
-Number = int
+GetPhoneNo() : int
+SetPhoneNo(phno : int) : void

+GetCustomerName() : string

+SetCustomerName(CName : string) : void

+GetPhoneCount() : int

1
places

*

PurchaseOrder

-Pid:int=0
-Ordeerate = Date
-SHipDate = Date

+GetOrderDate() : Date

+GetShipDate() : Date
+SetShipDate(SDate : Date) : void
+ContainsLineltem() : boolean

+SetOrderDate(ODate : Date) : void

1
Address
-Street = string
-City = string
-State = string
-Zip = int

+GetStreet() : string

+SetStreet(st : string) : void
+GetCity() : string
+SetCity(cityname : string) : void
+GetState() : string
+SetState(statename : string) : void
+GetZip() :int

+SetZip(Zipcode : int) : void

*

_Lineltem
-Lid :int=0

1
l * shipto
étockltem ~
-Sid : int=0
-Price :int=0
-TaxRate : float =0
réfe'r'sto

+GetPrice() : int

+GetLineltem() : int 1

+Setprice(SPrice : int) : void
+GetTaxRate() : float
+SetTaxRate(TRate : float) : void

Figure C.20 Class model of ‘Purchase Order’ application

- 140 -

C.5.2 State Model

This section shows the state models corresponding to the classes in the class model of the

Purchase Order application.

State Model of ‘Customer’

op1.:NewCustomer]

{ Active) |
Ldo / Activity op2:GetLastBill[] : [paydate-currdate>365]
- v
5 (" Passive
P . . »
g /l\ op3.B|IiPa|d[] [do 7 Activity J
k7]
o
2 (.
K
D
I~
s (" Deleted) o
~_| do 7 Activity op2:DeIeteCus_'tome_r[]
—

- L

Figure C.21 State model of ‘Customer’

State Model of ‘Phone’

op1:NewNumber(]

(Added) - (" Deleted)
do /Activity | op2:DeleteNumber(] 17457/ Activity
—
Y "

Figure C.22 State model of ‘Phone’

-141 -

B e

s

State Model of ‘PurchaseQrder’

op3:CancelOrder|]

op1:CreateOrder|]

\4

{ Cancelled)

l do / Activity l

[order_delivery==true]

State Model of ‘Lineltem’

OutofStock
do / Activity

[lineitemcount==0]

Created L
do / Activity op2:ShipOrder{]
— Y
{ Shipped)
/ do / Activity
(Delivered)
do / Activity § L
[order_delivery==true]
Figure C.23 State model of ‘PurchaseOrder’
op1:Createlineltem(]
New (rAvailable)
do / Activity [lineitemcount>0] do / Activity J
A\ y /\

op:DeIeteItgm[] 7

| do/ Activity

N
(Deleted)

/

[lineitemcount==0]

op2:Deleteltem(]

op2:Deleteltem[]

\ —_,

[lineitemcount>0}

Figure C.24 State model of ‘Lineltem’

-142 -

State Model of ‘Address’

op1:NewAddress[]

(" Added) (" Deleted)
tlo/Activity op2:DeleteAddress] do / Activity J
-
S _ ..

Figure C.25 State model of ‘Address’

State Model of ‘Stockltem’

op1 :CréateStockItem[]

New
[stockitemcount==0] "4~ Activity [stockitemcount>Q]

) SE———— A
Y \,

(OutOfStock) Available

to/Activity J op2:Deleteltem] Ldo/ActMty J

A
Deleted)

, el
op2:DeIeteItemQ do / Activity . op2:DeIeteItem[]

N/

[stockitemcount==0]

[stockitemcount>0]

Figure C.26 State model of ‘StockItem’

-143 -

e g

L i

C.6

This section illustrates the

System’.

C.6.1 Class Model

Model 6 (M6)

accessedupdatedby .

Cadal

-Name : string = nul
[-CreatedBy : string = null
-TctalBocks : int = 0

+GetName() © string

+SetName(CName : string) : void
+GetCatalogueCreator() : sting
+SetCatalogueCreator(CCreatar : string) : void
+GetTotalBooks() : int
+SetTotalBooks(TBooks : int) ; vaid
+GetBocksCounty) : int

class and state diagrams for the ‘Library Management

.~ Ubradan .. .-

HLbID it =0

-FName : string = rull

- Middieinitial ; string = medl
-LastName : string = null
FLoginlD : string = nul
-Passward : siring =nul
|-DateAdded : Date = nul
F-EmaiAddress - string = null
FHemeAddress ; string = aull
I-Contaciinfa - string = nut

+GeiFMame() : string
+SetFName(LFname : string) : void

Book

| Tde : string = null
-Author ; string = null
SubjectAvea : string = null
[-ISBN : siring = nuit
-DateAdded : Date = null
!} NumberofCopies :int = 0

+GelMi iiak} : string
+SetMiddle lotiakMlnitiai : string) : void
+GetLastName) : string
+SetLastName{LName : siring) - void
+GetLoginlD() - siring
+SetLogniD{Login : string) : vaid
+GetPassward() : string
+SetPasswordPswd : string) : void
+GetDateAdded() : Date

+SetDateAddeAdkdDate - Date) - void

|+GetTitley) - string
[+GetAuthor() : string
+GelSubjectArea() : string
+GetlSBN() : string
+GelDateAdded() : Dale

+GetNoofCopies() : int

+SetTitle(BTitte ; string) : void

[+ SetAuthor(BAuthar . string) : void
+SetSubjectArea(SArea © sring) : void
+SetISBN(BISBN : string) : voic
+SetDateAddediBDate : Date) : void

+SetNoofCopies(noc : int) - void

natifiedby

GetEmali) : string

+SetEmall(Email : string) : void
+GetHameAddress() ; string

+SetHame Address(Address : string) : void
+GetContactinfol) : string
+SetContactinio{Clnto : string) : void

getsupdatedby

Member

FMemberdD :int =0

[-FName : string = nul
I-Middlelnitial ; string = aull
[-LastName : string = nul
-DOB : Date = null
-MembershipDate : Date = nuil
-Address : string =null
[ContactNumber | string = null
[EmaiAddress : string = null

+GetFName() : string

Alort
-AlertNumber : string = nuli

containsinfoabout

+CreatedBy : slring = nuil
-Conterd - string = nuli
-CreatedOn : string = aul
-Category : string = null
+GetCreator() : string

i

i

IssubateBook

ReferenceBook

-IssuancelD :int=0
-ssueCount :int =0
-LastlssueDate : Date = nul

[ReflD int =0

+GetRefBooksCount() : int

+SetCreator{Meme : string) : void
+GetContenl() : string
+SetContent(AContent : string) : vad
+GetCreatedOn() © string
+SetCreatedOn(Name : string} : void
+GetCategory() - string
+SetCategory(Name : string) - vaid

+SetFName{Mame : string) : vaid
+GetMiddelnitiak) : string

+SetMiddie inttiatMindtial : string; : void
+GetLastName(): sting
+SetLastName{LName : string) : void
+GeDOBY() : Date
+SetDOB(BathDate : Date) : vaid
+GetembershipDate() : Dale
+GetMembershipDate{MOate - Date) : vaid
+GelAddress() | string

+SetAddre ss(MAddress : string) : vaid
+GetContacti) - szing
+SefCOntact{Contact : string) : vaid
+GetEmall) : string

{+SelEmall{EMail : string) : void

+GetlssueCountf) : int
+SetlssueCount{Count : it} : void
+GetlastissueDate() : Date

+ Setlastissue Date{IDate : Date) : vad

i

Fau;tyn-;r;t;«

Student

-EmployeelD :int =0
-CallegeName - string = nuil

-SchoolNumber :int =0
-SchoolName : string = null

+GetCollegeName() : string
+SetCollegeName(Name : string) : void

+GetSchoolNamey) : string
+SetSchodName{Name : string) . void

Figure C.27 Class model of ‘Library Management System’

-144 -

[n

e

et vy

i
P
c

C.6.2 State Model

This section shows the state models corresponding to the classes in the class model of the

Library Management Systermn.

State Model of ‘Catalogue’.

op1:NewCataloguef]

_ Created (Deleted)

l do / Activity op2:DeleteCatatoguel] - do / Activity I
/ N

Figure C.28 State model of ‘Catalogue’

State Model of ‘Book’

op1:NewBodk(]

Available B
op3:ReserveBook(] | do 7 Activity op2:lssueBook]]

{ Reserved . (Issued \
do / Activity .] . .. | do / Activity
op4:BookReturned[]

Figure C.29 State model of ‘Book’

)

i

State Model of ‘Alert’

op1:NewAlert[]

e op2:DisableAlert(] (" Disabled)

do / Activity =>! do / Activity
op3:ActivateAlert[] '

Figure C.30 State model of ‘Alert’

La

State Model of ‘Librarian’

op1 :NewAppBintment[]

o L Working
op2:SubmitResignation(] : [res_status==accepted"] do / Activity

[age==60])

——

\'4 ~
Resigned
do / Activity

Retired
do / Activity

"accepted”] \

opd:Terminate]]
[currdate==leaveenddate)

Terminated
do / Activity

— \

op4:Terminatef] (. OnlLeave
do / Activity

~ op3.SubmitLeave[]': [leave_status

J

[age==60]

op2:SubmitResignation : [res_stétus=="accepted"] \ . /
Figure C.31 State model of ‘Librarian’

State Model of 'Member’

op1:NewMember[]

Active i .
[expirydate=—currdate] do / Activity op2:RequestBook([] : [book_status=="available"]

Passive g _ Issued
do / Activity) . do f Activity
op4d.RenewMembership op3:ReturnBooks(]
(.
Waiting op2:RequestBook(] : [bok_status=="available"]
do / Activity

op2:RequestBook(] : [book_status=="notavailable"]

Figure C.32 State mode] of ‘Member’

- 146 -

C.7 Model 7 (M7)

This section illustrates the class and state diagrams for the ‘Online Shopping System’.

C.7.1 Class Model

Product

ShoppingCart

- ProductName : string = null
-ProductDeseription : string = null
-OtherDetails : stiing = null

-SubTotalMoney : double =0
FvatAmeount : int = 0
-TotalMonry - int = 0

+GetProductName) - string
+SetProduciName(Name : sting) : vaid
+GetProductDescription() : string

+GetOtherDetails() © string
+SetOtherDetails(Delails : string) : void

+SetProductDescription(Description : string) : void

+GetSubTdlalManey() - dauble
+SetSubTotalMoney(SUbMoney : doubie) : vaid
+GetVatMoney() : int

Customer

t-CustomerName : string = null
-BillingAddress : string = null
-ShippingAddress : string = null
-EMailAddress : string = null

[+ GetCustomerAddress{) : string
+SetCustomerAddress{Name : string) : void

+SetVatAmaount(Amaount : int) : void
+GetTotalMoney() double

1

0.*

SetTolalMoney(Total : deuble) : void
+GetCartOwner() ; string

ItamToPuschase

-Qunatity : int =0
-PricePerUnit . double =0

+GetQuantity() : int

+SetQuantity{quan : int) : void
+GetPricePerUnit() : double
+SetPricePerUnit(price : double) : void
+GetProductNamey) : string
+SetCartVatAmount(vat : int) : void

1

1

CreditCard
-Issyer : siring = nul
|-CardNumber : string = null
I-DateOfExpiry : Date = null
+Getlssuer) : string
+Setlssuer(IssuerName : striing) : void
+GetCardNumber() : int
-+ SetCardNumber(Number - int) ; vaid

+GetBillingAddress() : shing
+SetBilingAddress(Address - string) : vaid
+GetShippin gAddress() : stning
+SetShippingAddress(Address : string) : void
+GetEmalAddress() - string
+SetEmailAddress(Email : string) : vaid
+GetOtherDetails() : string

+SetOtherDetails(Details : string) : void

PraferredCustomer

-DiscountRale : double =0
-ApprovalDate : Date = null

+GetDiscauntRate() : double

+GetDateofExping) : Date
+SetDateofEXpiryiExpiry : Date} : void
+GetDiscountRate() : double

- +SetDiscountRate(Discount ; double) : vaid
+GetApprovelDate() : Date
+SetApprovalDate(Approval . Date) : void

Figure C.33 Class model of ‘Online Shopping System’

C.7.2 State Model

‘This section shows the state models for the classes of Online Shopping System.

State Model of ‘ItemtoPurchase’

op3:GetlTPCount : [amount==0] . | do / Activity

Available

op1:New(]

op2:Deletel TP[]

op3:.GetiTPCount : [amount>0]

;_7_/

do / Activity

.
-

\
(Deleted)

do / Activity

op2:Deletel TP[)

- 147 -

Figure C.34 State model of ‘ItemtoPurchase’

»n

»
‘A,

State Model of ‘ShoppingCart’

op1:.Create[]

Empty _
do /7 Activity op2:Additem(]
N N .
Containltems)

Deleteltem : [itemcount==0] do / Activity

{ Archive)

do / Activity - . N N ..
op3:Checkoutitems(]

Figure C.35 State model of ‘ShoppingCart’

State Model of ‘Product’ .

op1:CreateProduct[]

 New)
[prod_count==0] do / Activity [prod_count?O]
\ /
VW /.
{ OutofStock) — (. Available)
do / Activity g do / Activity
8
£
N 2
3
o
[oR
(o]
N4] 7
(" Deleted) op2:DeleteProduct(]
op2:DeleteProduct(] do / Activity
. vy
[prod_count==0]
[prod_count>f)]

Figure C.36 State model of ‘Product’

- 148 - i

State Model of ‘CreditCard’

4
i{1

~ Active

op1:Activate[]

op3:.Charge]]

op4:Expire]] do / Activity
\/ K‘ . . . Vo /
{ Expired)
do / Activity

(Validating)
ldo/Activity l

\'4

op2 Validate[] (" Debiting)

do / Activity

Figure C.37 State model of ‘CreditCard’

State Model of ‘Customer’

op2:DeleteCustomer]

op1:NewCustomer[]

Active op2:GetlLastBill{] : [paydate-currdate>365]

Deleted
do / Activity

do / Activity

(_____\/

.. y, ~ Passive
N do / Activity
o3 BlPaid] L

op2:DeleteCustomer(]

Figure C.38 State model of ‘Customer’

C.8 Model 8 (M8)

This section presents the class and state diagrams for the classes in the ‘Purchase

Management System’.

-149 -

C.8.1 Class Model

Itern

-ShippingWeight : double = 0
+-Oescription : string = null

Cuslomer
-Name : string = null
l-Acdress : string = null
+GeiName() : string
+SetName(CName : string) : void

+GetShippingWeight() : double
+SetShippingveight{Weight : double) : void
+GetDescription() : string
+SetDescription(Desc : string) : void

Order

-OrderDate : Date = null
-Or der Status : string = null

+GetOrder Date() - Date
+SetOrderDate{CDate : Date, parameter) : void
+GetOrder Status() : string

+GetAddress() : string
+SelAddress(CAddress : string) : void

+SetOrderStatus(Status : string) : vaid

1.

Payment

[-Amcunt : double =0

+Getamount() : double
+SetAmount(PAmount : double) : void

?j%

GetOrderQwner{) : string
+GetOrderftemsi} : string

1. 0.*
OrderDetall
-Ouar_\ljty ‘nt=0
-TaxStatus : string = null

Credit

_. Cheque

-Number :int =0

-Type : string = nulk

-ExpiryDate : Date = nulf
+GetNumber() - int
+SetNumber{CreditNo : int) : void
+GetCredi Type() : string

+SeiCreci Type(CType : string) : void
+GetExpiryDate() : Date
+SetExpiryDate(ExpDate : Date) : void

-CashTendered :int =0

+GetCashTendered() : im
+SetCashTenderad TenderedAmount : int) : vaid

-Name : string = null
-BaokiD @ int =0

+GetQuantity() : int
+SetQuantity(Quan : int} : void
+GetTaxStatus() : string
+SetTaxSRtatus(Status : stang) : void
+GetlitemWeight() : double

+GetName(} : string
+SetName(CNarne : string) - void
+GetBankI{X) : int

+SetBankIO(BID : int) : void

Figure C.39 Class model of ‘Purchase Management System’

C.8.2 State Model

This section shows the state models for the classes of Purchase Management System.

State Model of ‘Customer’

op3:DeleteCustomeri]

7 Active 7
do / Activity

\

bz

eleted

do / Activity

. op1:NewCustomer(]

op2:GetlLastBill[] : [paydate-currdate>365]

R —

op4:BillPaidf]

\
(Passive

op3:DeleteCustomer(]

Figure C.40 State model of ‘Customer’

- 150 -

do / Activity

State Model of ‘Order’

op1:CreateOrder{]

op3:ShipOrder : [alltemsavailable==true] Created .
= —1 do / Activity [order_delivery—true]

-/ (___\/
Delivered)
op2:CanceIOrder[]/ do / Activity
\ / Cancelled
Shm-\ do / Activity
do / Activity)

[order_delivered==true]

Figure C.41 State model of ‘Order’ =

State Model of ‘Payment’

op1:NewPayment[]

1 Delivered) Created

do / Activity l do / Activity op2:AuthorizePayment[}

op4:DeliverPayment[]

\
y PRSP N (Authorizing
{ Authorized . _ - do / Activity
do / Activity op3:pay(] : [status=="ok"]
N

{ Rejected)
do / Activity op3:Payl] : [status!="ok"]

\ . /
Figure C.42 State model of ‘Payment’

SN\

-151-

State Model of ‘Item’

op1:Newltem(]

Available

op3:Déleteltem]]

Y
(Deleted ‘

do / Activity
Dy —

op2:GetltemCount : [item_count>0] { OutofStock(]

m

op2:GetltemCount][] : [item_count==0]

\

{ do / Activity

op3:Deleteltem(]

do / Activity l

Figure C.43 State model of ‘Item’

State Model of ‘OrderDetail’

op1:NewOrderDetail[]

count== New
do / Activity
W [count>0]
(OutofStock Y M N
do / Activity » A { Available)
L J op2:Delete|] LdolActivity J
VYV
(Deleted)
op2:Deletef]_| 90/ ActMlY op2:Delete(]
' =
\ R,
[count==0]
{count>0]

Figure C.44 Stateé model of ‘OrderDetail’

Ny

-152 -

JORSY ST NV

K oem i

At

C.9 Model 9 (M9)

This section illustrates the class and state diagrams for the ‘Drawing Application.

C.9.1 Class Model

ObJect

EventHandler

-Name : string = null

-NextEventHandler : string=nuf

+GetName() : string <

+SetName(CbjName ; string) : void

+GetNext EventHander() : string

+SetNextEventhandler(Next : string) : void

ZP AN jl FANITAN
Shape —
-Position ; float =0 — Application Window
-Type : string = null pName : string = null -Name : string = null
-Selected : string = null +GetName() : string +GetName() : stri
” et +SetName Name : string) : void civamey) - sling
+GetPos-:t.|m() : st.nng . . GetApth(::‘sa(p) ot 9 +SetNarme(WName : string) : void
+SetPosition(Pos : ficat) : void o +GetWindowPalette() : stiing
+GetType() : string 1 <> - -
+SetType{SType : string) : void ™8 1. 1.*
+GetSelected() : string - st
+SetSelected(Select : string) : void -ltemCount : int = 0 1
+GetltemCount(} : int Palette R
? +SetitemCount(Count :int) : void .Todl string = null
P B +GetTodl() : string
Box . v +SetTool(PTool : string) : void
-Width : double =0 o Circle .
-Height - double =0 Radius : double = 0 L0

+GetWidth() : double
+SetWidth(BWidth : double) : void
+GetHeight() : double
+SetHeight(BHeight : double) : void

+GetRadius(} : double
+SetRadius(Rad : double) : void

Figure C.45 Class model of ‘Drawing Application’

C.9.2 State Model

Document

-Name : string = null

S +GetName() : string

17 [+SetName(DocName : string) : void

+GetDocListCount() : int

This section shows the state models corresponding to the classes in the class model of the

Drawing Application.

-153 -

State Model of ‘Object’

op1:NewObjectf]

{ Created)

op2:DeleteObject[]

(" _E-)él-ete»c.:i » N

Ldo / Activity
o/

do / Activity J
-

\.

Figure C.46 State model of ‘Object’

State Model of ‘Shape’

op1:NewShape[]

Created

l do / Activity

(Deleted)

opzzDgleteShape[] do / Activity]
/

Figure C.47 State model of ‘Shape’

State Model of ‘List’

op1:NewlList[]

Cfeafed

(Deleted =)

do / Activity op2:DeleteList[]

Figure C.48 State model of ‘List’

-154 -

do / Activity I
-

State Model of ‘EventHandler’

op1:NewEventHandler{]

) ‘Deleted
op2.DeIeteEventHandIer[]\ do / Activity

- |

Creatéd
do / Activity

Figure C.49 State model of ‘Eventhandler’

State Model of ‘Application’

op1:NewApplication[]

YV . 5
Created) _ . Deleted
do / Activity op2.DeieteApplication[} | do 7 Activity

-

Figure C.50 State model of ‘Application’

State Model of ‘Box’

op1:NewBox|]

Deleted
do / Activity

Created

do / Activity op2:DeIeteBox[] A

P

Figure C.51 State model of ‘Box’

-155-

State Model of ‘Circle’

op1:NewCircle[]

.) - Déléted
op2:DeleteCircle(] | do / Activity

Created
do / Activity

Figiere C.52 State model of ‘Circle’

State Model of ‘Document’

op1:NewDocument([]

Deleted
do / Activity

Created

do /ACtMty 0p2.De|eteDocument[]

P

Figure C.53 State riiodel of ‘Document’

State Model of ‘Palette’

op1:NewCircle[]

_ Created (Deleted)

I do / Activity op2:DeleteCircle(] [4o7 Activity l
~

Figure C.54 State model of ‘Palette’

State Model of ‘Window’

op1:NewWindow(]

(Deleted \

op2:DeIeteV\.ﬁndow[]\ do / Activity l
/

Figure C.55 State model of ‘Window’

do / Activity

NS

- 156 -

C.10 Model 10 (M10)

This section illustrates the class and state diagrams for the classes corresponding to the

‘Account Management System’.

C.10.1 Class Model

Accournt L
I-Neme : string = null 1 i !
-owner : string = nuit 1 Product
{ Manager : siring = nul Transaction [-Name : siring = nuli
Hnvestrmant : double = 0 Lisit - double = 0 |- Description : string = null
+GetNamed) : string LinicialUnitPrice : doudie = 0 [ManagementFos ; double = 0
+SelName{AccName : string) . void L TransactionDate : Date = null [+GetName(} : siring
+GetOwned() : string '+ GetUnity) : double +SetName (ProdName : string) : void
+SelOwner{OwnerName : string) : void +SetUnit(TUnit : double) : veid +GetGescription() : string
+GetManagerName(} : string .+ GetlnitialUnitPrice{] : double ¢Se(DesaiMProdDesc : sring} : void
[+ SetManagerName(Name string} : void 4 SetlnttialUnPrice{Price : double) : void *GetManagementFee() - dasble
+Getinvestmentt) : double 4+ GetTransactionDate(y : Date +SetmanagementFee{Fee : doubte) : void
+Setinvestmsnti Ameount © double) : vold 4 SetTransactionDate{TDate : Dale} - void +GutProdiransaction() : Date
1 +GetParticpatingA V| ?T?
1.0 I 1 1 l —] —
Loan g ManagedFund] Cash
Addsoss Parson Cinterest : foat =0 Fundi0 :int =0 Literest :foat = 0

-SreetName : sting = mll
StreetNumber * int =D

-City : string = null

[-ZipCode : sming = it

[Stale : string = nult

-Coundry : siring = nutt
+GetSucctName() © sting

'+ SetStrestNametName : string) : veid
+ GetSueetNumban) : int

4+ Sef Streat Number{ Number ; Int) : void
[+ GelCity() : string

[+ SetCiy(Name : string) : void

[+ GetZipCade() : string

|+ SetzipCodesCode : siiing) : void
+GetState{) : string

[+ SetSRale(Name : siring) : void
+GetCountng) : string
+SetCountry(Name : siing) : vaid
+GetResidend() | siring

Figure C.56 Class model of ‘Account Management System’

C.10.2 State Model

[-FirstName : stng = el
[-LastName : stiing = null
FEmai : string = null

[-Usemame : string = null
-Passward - sbing = mull

[+ Getinterest() : foat

[+ Setinterest(Amount : float} : vaid

| Distrtvution : gaunte =0 %
-CurtentUnitPrice : float =0

+Getinteresii) : foat
Amaounl - float) : void

+GetDistribution{) : dauble

1

+Getf ustNamef) : string
-+ GetL astName() ; string
+GetEmaill) : string

+GetUserName() . stsing

[+ GetPassword() ; string

+ SetFrstName(FName : string) : veid x>~-————
+SetLastName{LName : string) : void
+ SetEmaikMail : string) . voud

[+ SetUsesName({Name : string) : void

+SetPassword(Pswd : string) : void
+ GetPersoninterest() : double

+SetDistribution(Dist : double) . vaid
+GetCurrentUnkPrices) : float

-+ SetCurr entUnil Price(Price : float) : vaid

The state models corresponding to the classes of the Account Mahagement System are

illustrated in this section.

- 157 -

RN S

State Model of ‘Product’

op1:CreateProduct|]

[productcount==0] New . [productcount>0}
do / Activity
A4 V..
OutofStock ' Awvailable
do / Activity = do f Activity
S
o
9 e
o
2
2
[1]
a
o~
g
A 4
) (Deleted \ .
op2:DeleteProduct[] do / Activity op2:DeleteProductf]
~.)
Ne—— S
{productcount==0]
[productcount>0]

Figure C.57 State model of ‘Product’

State Model Qf ‘Cash’

op1:NewCash(]

(Deiivered 7)| Created . }
op2:AuthorizeCash[]

do / Activity do / Activity
- L_/ - v
g

(Authorizin

do / Act ivity‘J
op3:Pay(] : [status=="0k"] N e

op4:DeleiverCash(]

YV
(Authorized) (Rejected)

ido/Activity] ‘do/Activity op3Pavi] [etatusi="ok"]

\} Figure C.58 State model of ‘Cash’

- 158 -

w

R

\|

State Model of ‘ManagedFund’

op1:NewManagedFund(]

Deleted

op2:DeleteMangedFund(] {457 Activity

/

do / Activity

Figure C.59 State model of ‘ManagedFund’

State Model of ‘Loan’

op1:ApplicationRequested(}

(Rejected)

do / Activity

op3:RejectLoan(]

Requested

do / Activity

op2:AcceptLoan(]

—_
(Paid)

do / Activity

—p—

N/

A4

Sanctioned-

do / Activity

(ReturninProgress

™~

do / Activity

[loan_amount==paid_amount]

State Model of ‘Address’

\.

[loan_amount<paid_amount]
S

Figure C.60 State model of ‘Loan’

op1:NewAddress[] -

Added

l do / Activity

(" Deleted)

op2:DeleteAddress[] do / Activity
EN ;

Figure C.61 State model of ‘Address’

-159-

Stare Model of ‘Person’

op1:NewRegistration[]

Added
op3:DetetePerson(] do 7 Activity
Y

y VY.
\ e),

Deleted) {. .InDebt)
do / Activity 1 do 7 Activity i
[NoDebt)
do / Activity
op3:DeletePerson[]

__. .

Figure C.62 State model of ‘Person’

op2:LoanApproved]

op4:LoanPaid[]

State Model of ‘Transaction’

op1:NewTransaction(]

. Created
do / Activity

op2:Authorize Transaction(]

Y
(Authorizing

{ Completed 1} { Rejected) do / Activity

do / Activity do / Activity op3:Pay(] - [tatusl="ok']
—

(Authorized)

do / Actity op3:Payl] : [status=="ok"]

| N——

Figure C.63 State model of ‘Transaction’

op4:CompleteTransaction]]

s

- 160 -

”

State Model of ‘Account’

Active [lasttransdate-currdate>365] .

(Inactive \

/

{ do / Activity
op2:NewTransaction(]

Figure C.64 State model of ‘Account’

- 161 -

do / Activity I

Appendix D

-162 -

ek p =

N -

D.1 Elevator Control System

This appendix is dedicated to illustrate the code generated by C@dS corresponding to the

Elevator Control System (ECS).

Building.java

public class Building {
public Building{){

}

private
private
private
private
private

String name = "IIUI";

String address = "H-10 - Islamabad";
int minfloors = 0;

int maxfloors = 50;

Floor floor = new Floor(});

public void hallCallButtonPressed({int calling_floorno,int current_floorno)

{

floor[calling_floorno] .hallButtonPress{calling_floorno, current_£floorno);

}

public void hallCallButtonReleased(int calling: floorno) e

{

floor[calling_floorno].hallButtonRelease();

}

public boolean validfloor (int floorno)

{

boolean

valid = false;

if (floorno >= minfloors) {

if (floocrno <= maxfloors) {

}
}

-valid=true;

return valid;

}

public String getName()

{

return name;

}

public void setName(String bname)

{

name=bname;

}

public String getAddress()

{

return address;

}

- 163 -

g

e a2

public void setAddress(String baddress)
{

address=baddress;

}

public int getMinFloors ()
{

return minfloors;

}

public void setMinFloors(int min_£floor)
{
minfloors=min_floor;

}

public int getMaxFlcors({)
{

return maxfleoors;

}

public void setMaxFldorS(iﬁt max_floor)
{

maxfloors=max_floor;

}

}

Button. java

public class Button {

public Button{() {

}

private String status = "idle";
public String getStatus()

{

return status;

}

public void setStatus(String stat)
{

status=stat;
}
}

CarButton.java

public class CarButton {

public CarButton()}{

}

private String button_status = "idle";
private String light_status = "off";

private CarButtonState cb_state = new CarButtonState():

public void illuminate()
{

cb_state.illuminate();

- 164 -

-

E)

}

public void turnOff ()

{
cb_state.turnOff();

}

public String getButtonStatus()
{

return button_status;

H

public void setButtonStatus(String stat)

{
button_status=stat;

}

public String getLightStatus()
{

return light_status;

}

public void setLightStatus(String lstatus)

{
light_status=lstatus;

}

public CarButtonState getCarButtonState()
{
return cb_state;

}

public void setCarButtonState(CarButtonState cbstate)
{

cb.state=cbstate;
}
}

CarButtonoff.java

public class CarButtonOff {
public void Entry ()

{
this.doActivity();

}

public void Exit()
{
}

public void doActivity()

{
this.setButtonStatus("idle");
this.setLightStatus("off");

}

public void illuminate ()

- 165 -

e

{
this.setCarButtonState(cb_on};
getCarButtonState () .Entry () ;

}

}

CarButtonOn.java

public class CarButtonOn ({
public void Entry()

{

this.doActivity();

}

public void Exit ()
{
}

public void doActivity()

(

this.setButtonStatus ("pressed”);
this.setLightStatus("on");

}

public void turnOff ()

{
this.setCarButtonState(cb_off);
getCarButtonState () .Entry();

}

}

CarButtonState.java

public class CarButtonState {

private CarButtonOn cb_on = new CarButtonOn();
private CarButtonOff cb_off = new CarButtonOff ();
public void Entry{()

{

)

public void Exit ()

public void doActivity()

public void illuminate()

public void turnOff ()
{

- 166 -

by

Carlantern. java

public class CarLantern {
public CarLantern(){
}

private String lantern_status = "off";

private CarLanternState cl_state = new CarlanternState();

public void illuminate ()

{

cl_state.illuminate();

}

public void turnOff ()

{
cl_state.turnOff();

)

public String getStatus()
{

return lantern_status;
} .

public void setStatus(String status)
{

lantern_status=status;

}

public CarLanternState getLanternState(}
{

return cl_state;

}

public void setLanternState(CarLanternState clstate)

{

cl_state=clstate;
}
}

CarLanternOff java

public class CarLanternOff {
public void Entry{()

{

this.doActivity();

}
public void Exit ()
{
}

public void doActivity()

- 167 -

et

{
this.setStatus ("off");

}

public void illuminate()

{
this.setLanternState{(cl_on);
getLanternState () .Entry();

}

)

CarLanternOn.java

public class CarLanternOn {
public void Entry(}

{
this.doActivity();

}

public void Exit ()
{
}

public void doActivity()
{ ..
this.setStatus("on");

}

public void turnOff ()

{
this.setLanternState(cl_off);

getlLanternState () .Entry();
}
}

CarLanternState. java

public class CarlLanternState {

private CarLanternOn c¢l_on = new CarlLanternOn();
private CarLanternOff cl_off = new CarLanternOff(};
public void Entry()

{

}

public void Exit ()
{
)

public void doActivity()
{
}

public void illuminate ()

g {

- 168 -

W ew

. R

-

}

public void turhGff ()
{
)
}

CarPositionIndicator. java

public class CarPositionIndicator {

public CarPositionIndicator () {

}

private String position_status = "passive";
private int desired_floor = 0;

private CPIState cpi_state = new CPIState();
public void show(int floorno)

{

cpi_state.show(flcorno);

}

public void clear ()

{

cpi_state.clear();

)

public String getStatus()
{

return position_status;

}

public void setStatus(String status)
{

position_status=status;

}

public int getDesiredFlocor ()
{

return desired_floor;

}

public void setDesiredFloor{int dfloor)

{

desired_floor=dfloor;

}

public CPIState getCPState()
{

return cpi_state;

}

public void setCPState(CPIState cpstate)
{

cpi_state=cpstate;

}

}

- 169 -

CPlActive java

public class CPIActive ({
public void Entry ()

{

this.doActivity();

}

public void Exit()
{
}

public void doActivity()
{

this.setStatus ("active");

}

public void clear ()

{
this.setCPState(cpi_passive};
getCPState () .Entry();

}

}

CPIPassive.java

public class CPIPassive {
public void Entry ()

{
this.setDesiredFloor(=1);
this.doActivity();

)

public void Exit ()
{
}

public void doActivity()
{

this.setStatus{"passive");

}

public void show(int floorno)
{
this.setDesiredFloor(floorno);
this.setCPState(cpi_active);
getCPState() .Entry();

}

}

CPIState. java

public class CPIState ({
private CPIActive cpi_active =

new CPIActive();

-170 -

private CPIPassive cpi_passive = new CPIPassive();
public void Entry()

public void Exit ()

public void doActivity()

public void show{int floorno)

public void clear()

Dispatcher.java

public class Dispatcher {
public Dispatcher (}{
}

private int max = 1000;

private int destinationQueue{] = new int[max};
private int front = 0;
private int rear = 1;

private int current-floor = 0;
public int getCurrentFloor ()
{

return .current_fioor;

}

public void setCurrentFloor(int floor_no)

{

current_floor=floor_no;

)

public void enque{int floorno)

{

if (front != rear) {
destinationQueuefrear]=floorNo;
rear=rear+l;

if (rear == max) {
rear=0;

}

}

}

public int deque()
-171 -

{
int temp = -1;

if(front == rear-1) {
return temp;

}
if (front == max-1) {

if (rear == 0) {

return temp; -
}

}

front=front+1;

if (front == max) {

front=0;

}
temp=destinationQueue[front};
return temp;

}

public boolean isEmpty()

{ s

boolean empty = false;

if (front == rear-1} {
empty=true;
} »

if(front == max-1) {

if (rear == 0) ¢{
empty=true;

}

}

return empty;

}

public void atFloor (int source_floor, int destination_floor,String direction)

{

current_front=source_floor;

if (direction == "down") {
this.decrementFloor (});

}

if (current_floor > destinatiocn_£floor)

}

if (current_floor > destination_floor)
this.decrementFloor () ;

}

if(direction == "up") {
this.incrementFloor () ;
for(int i=0; i<50; i++){

{

{

-172 -

ke

Oy

P

if (current_floor < destination_floor) {

}
}
}
}

public void decrementFloor ()
{
current_floor=current_floor-1;

}

public void incrementFloor ()

{
current_floor=current_floor+l;
}

)

Door.java

public class Door ({

public Door () {

} o

private String door_status = "closed";
private int door_reversal = 0;

private DoorState doorstate =
public void close()

{

doorstate.close();

}

new DoorState();

public void open(}
{

docrstate.open();

}

public void reverseDoors()
{

door_reversal=1l;
doorstate.reverseDoors () ;

}

public String getDoorStatus()
{

return door_status;
}

public void setDoorStatus(String status)
{

door_status=status;

}

public int getReversalStatus()
{

return door_reversal;

}
-173 -

L

wr

public void setReversalStatus{(String reverse)

{

door_reversal=reverse;

if (door_reversal == 1) {
doorstate.reverseDoors();
}
}

public DoorState getDoorState()
{

return doorstate;

}

public void setDoorState (DoorState d_state)
{

doorstate=d_state;
}
}

DoorClosed.java

)
public class DoorClosed {
public void Entry ()
{
this.doActivity();
}

public void Exit ()
{
}

public void doActivity()
{

this.setDoorStatus("closed");

)

public void close()

{
this.Entry();

}

public void open{()

{

this.setDoorState (doorOpening) ;
getDoorState() .Entry();

}

}

DoorClosing. java

public class DoorClosing {
public void Entry()

-174 -

il

{
this.setbDoorStatus("closing™);
this.doActivity{);

}

public void Exit()

{
}

public void dolActivity()
{

int r_status = 0;

r_status = this.getReversalStatus();

if (r_status == 0) {
this.setDoorState {doorClosed);
getDoorState () .Entry();

}

if(r_status == 1) {
this.setReversalStatus(0);
this.setDoorState (doorOpening) ;
getDoorState () .Entry();

}

}

public void reverseDoors({()

{

this.setReversalStatus(0};
this.setDoorState{doorOpening};
getDoorState() .Entry();

}

}

DoorOpened. java

public class DoorOpened
public void Entry{()

{
this.doActivity();

}

public void Exit ()
{
}

public void doActivity ()
{

this.setDoorStatus ("opened") ;
}

public void open{)

{
this.Entry();

-175-

public void close()

{
this.setDoorState{doorClosing);
getDoorState() .Entry();

}

}

DoorOpening.java

public class DoorOpening {
public void Entry ()

{

this.setDoorStatus ("opening™);
this.doActivity(});

}

public void Exit()
{
}

public void doActivity()

{

int r_status = 0;

r_status = this.getReversaiStatus();

if(r_status == 0) {
this.setDoorState (doorOpened) ;
getDoorState() .Entry () ;

}

if(r_status == 1) {
this.setReversalStatus(0);
this.setDoorState (doorClosing);
getDoorState () .Entry();

}

}

public void reverseDoors ()

{

this.setReversalStatus(0);
this.setDoorState{doorClosing);
getDoorState() .Entry();

}

}

DoorState. java

public class DoorState {

private DcorOpened doorOpened new DoorOpened();
private DoorClosed doorClosed new DoorClosed();
private DoorCpening doorOpening = new DoorOpening();
private DoorClosing doorClosing = new DoorClosing({();
public void Entry ()

{

-176 -

}
public void Exit()
{
}

public void doActivity()

public veoid close()

public void open()

public void reverseDoors()

Drive java

public class Drive {

public Drive () {

}

private String elevator_status = "stopped";
private String elevator_direction = null;

private int speed = 0;

private int drive_sfloor 0;

private int drive_dfloor 0;

private DriveState drive_state = new DriveState();
public void moveUp(int source_floor, int destination_floor)
{

drive_sfloor=source_floor;
drive_dfloor=destination_floor;

drive state.moveUpSlow();

}

public void moveDown({int source_floor,int destination_floor)

{

drive_sfloor=source_floor;
drive_dfloor=destination_floor;
drive_state.moveDownSlow();

}

public void stop()
{

drive_state.stop();

}

public String getStatus/()
{

return elevator_status;

)
-177 -

13

L T

]

‘i:' -

public void setStatus(String estatus)
{

elevator_status=estatus;

)

public String getDirection(}
{

return elevator_direction;

}

public void setDirection(String edirection)

{

elevator_direction=edirection;

}

public int getSpeed()
{

return speed;

}

public void setSpeed(int espeed)

(
speed=espeed;
}

public DriveState getDriveState ()
{

return drive_state;

}

public void setDriveState(DriveState dstate)
{

drive_state=dstate;

}

public int getSourceFloor()
{

return drive_sfloor;

}

public void setSourceFloor{int s_floor)

{

drive_sfloor=s_floor;

}

public int getDestinationFloor ()
{

return drive_dfloor;

}

public void setDestinationFloor{(int d_floor)

{

drive_dfloor=d_floor;
}
}

-178 -

e,

e

DriveControl java

public class DriveControl {

public DriveControl() {

}

private int contrcl = 0;

private Drive drive = new Drive();

public void moveéUp{int source_floor, int destination_floor)
{

drive.moveUp(source_floor, destination_floor);

}

public void moveDown(int source_floor, int destination_floor)

{

drive.moveDown {source_floor, destination_£floor);

}

public void stop()
{

drive.stop();
}
}

DriveMoveDownFast.java

public class DriveMoveDownFast ¢
public void Entry()

{

this.doActivity();

}

public void Exit ()
{
}

public void doActivity()
{

this.setSpeed(2);

}

public void stop(}

{

this.setbriveState (d_stopped);
getDriveState() .Entry();

}

)

DriveMoveDownSlow.java

public class DriveMoveDownSlow {
public void Entry{)

{

this.setDirection("down");
this.doActivity();

-179 -

)

public void Exit()
{
}

public void doActivity()
{

this.setStatus ("moving");
this.setSpeed(1l);
this.moveDownFast () ;

}

public void moveDownFast ()

{

int sflcoor = 0;

int dfloor = 0;

sfloor = this.getSourceFloor();
dfloor = this.getDestinationFloor();

if (dfloor < sfloor-2) {
this.setDriveState (dmove_downfast);
getDriveState() .Entry();

}

}

public void stop(}

{
this.setDriveState(d_stopped);
getDriveState() .Entry();

)

}

DriveMoveUpFast java

public class DriveMoveUpFast ({
public void Entry()

{

this.doActivity();

}

public veoid Exit ()
{
}

public void doActivity()
{

this.setSpeed(2);

}

public void stop()

{

this.setDriveState (d_stopped);
getDriveState () .Entry();

}

}

- 180 -

Ead

DriveMovel/pSlow.java

public class DriveMoveUpSlow {
public void Entry()

{

this.setDirection("up");
this.doActivity();

}

public void Exit()
{
}

public void doActivity()
{

this.setStatus ("moving”);
this.setSpeed(1l);
this.moveUpFast () ;

}

public veid moveUpFast ()

{

int sfloor = 0;

int dfloor 0; o
sfloor = this.getSourcefloor();

dfloor = this.getDestinationFloor (};

if (dfloor > sfloor+2) {
this.setDriveState (dmove_upfast);
getDriveState () .Entry();

}

}

public void stop()

{

this.setDriveState (d_stopped);
getDriveState () .Entry();

}

}

DriveState.java

public class DriveState {

private DriveStopped d_stopped = new DriveStopped();

private DriveMoveUpSlow dmove_upslow = new DriveMoveUpSlow();
private DriveMoveUpFast dmove_upfast = new DriveMoveUpFast (};
private DriveMoveDownSlow dmove_downslow = new DriveMoveDownSlow();
private DriveMoveDownFast dmove_downfast = new DriveMoveDothast();
public void Entry ()

{

}

public void Exit ()
{
}

- 181 -

w

-t

e

public void doActivity()

{
}

public void moveUpSlow()
{
}

public void moveUpFast ()}

public void moveDownSlow()

public void moveDownFast ()

public void stoep()

DriveStopped. java

public class DriveStopped ({
public void Entry(}

{

this.setSpeed(0);
this.doActivity();

}

public void Exit ()
{
}

public void doActivity()

{
this.setStatus{"stopped"};
this.setDirection(null);

}

public void moveUpSlow()

{

this.setDriveState (dmove_upslow);
getDriveState() .Entry();

}

public void moveDownSlow()

{

this.setDriveState (dmove_downslow);
getDriveState() .Entry();

}

}

- 182 -

Elevator java

public class Elevator {
public Elevator(}{
}

private String ele_status = idle;
private int source_floor = 0;

private int current_floor = 0;

private int destination_floor = 0;
private String safe_situation = "safe";

private String moving_direction = null;

private ElevatorState elevator_state = new ElevatorState () ;
private CarPositionIndicator carpositionindicator = new
CarPositionindicator();

private Dispatcher dispatcher = new Dispatcher();
private Building building = new Building();

private DriveControl drivecontrol = new DriveCantrol();
private CarLantern carlantern = new CarLantern(};
private Door door = new Door();

private CarButton carbutton = new CarButton();

public ElevatorState getElevatorState()

{ -~

return elevator_state;

} 4

public void setElevatorState({ElevatorState estate)

{
elevator_state=estate;

}

<+

public String getEleStatus(}
{

return ele_status;

)

public void setEleStatus(String status)
{

ele_status=status;

}

public int getSourcelrloor ()
{

return source_floor;

return cf;

}

public void setSourceFloor (int sfloor)

{
source_floor=sfloor;
current_floor=cfloor;

}

public int getCurrentFloor ()

{
int cf = -1;
cf = dispatcher.getCurrentFloor();

- 183 -

mew

il

public void setCurrentFloor (int cfloor)

{
}

public int getDestinationFloor ()
{

return destination_floor;

}

public void setDestinationFloor (int dfloor)

{

destination_floor=dfloor;

}

public String getElevatorSituation{()
{
return safe_situation;

}

public void setSafeSituation(String safety)
{

safe_situation=safety;

}

public String getMovingDirection()
{

return moving_direction;

}

public void setMovingDirection(String cur_direction)
{
moving_direction=cur_direction;

}

public void hallCall(int calling_floorno)
{

" building.hallCallButtonPressed(calling_floorNo, current_floorNo);

dispatcher.engue(calling_floorNo);)
building.hallCallButtonReleased(calling_floorNo);

if(ele_status == "idle") {
this.getNextDestination();
}
}

public void carCall(int destination_floorno)

{

boolean isValid = false;

isValid = building.validFloor (destination_floorNo);

if(isValid == true) (
ele_status="active";
int carlantern_no = 0;

carbutton([destination_floor].illuminate();
destination_floor=destination_floorNo;

-184 -

current_floor=socurce_floor;
this.determineMovingDirection();
for{int i=0; 1i<2; i++){

door[i] .close();

}

if (moving_direction == "up") {
carlantern_no=l;

}

carlantern(carlantern_no].illuminate();
carpositionindicator.show{destination_floor);

if (moving_direction == "up") {
drivecontrol .moveUp (source_floor, destination_floor);

}

if (moving_direction == "down") {

drivecontrol .moveDown {source_floor, destination_floor);

}

dispatcher.atFlcor (source_floor, destination_floor, moving_direction);
drivecontrol.stop();
carlantern(carlantern_no].turnOff();
carbutton([destination_floor].turnOff ();
current_floor=destination_floor;
source_floor=current_floor;

for(int i=0; i<2; i++){

door(ij.open();

}

carpositionindicator.clear();
carpositionindicator.show{current_floor});
}

}

public void determineMovingDirection{)

{

if (source_floor < destination_floor) {
this.setMovingDirection{"up");

}

if (source_floor > destination_floor) {
this.setMovingDirection("down");

}

}

public veid doorReversal()
{

for(int i=0; i<2; i++){
door[i] .reverseDoors();

}

}

public void setSafety(int safety)
{

if (safety == 0) {
safe_situation="unsafe";

- 185 -

if (safety == 1) {
safe_situation="safé";
}

}

public void getNextDestination ()}

{

boolean queue_empty = false;
gueue_empty = dispatcher.isEmpty();

if (quevue_empty == false) {
ele_status="active";
int next_floor = -01;

next_floor = dispatcher.deque();
this.carCall (next_floor);

1

if (queuve_empty == true) {
drivecontrol.stop(});
ele_status="idle";

for (int i=0; i<2; i++){

door (i} .close();
carlantern{i}.turnCftf ();

}

source_floor=current_floor;
destination_floor=-1;
carbutton|[current_floor].turnOff();
carpositionindicator.show (current_floor);
}

}

public void move(int destinationfloor)

{

boolean isValid = false;

isValid = building.validFloor {(destinaticnFioor) ;

if {isValid == true) {
this.carCall();
}

if (isvalid == false) {
this.getNextDestination(};
}

}

public void stop()

{

drivecontrol.stop(};

for (int i=0; i<2; i++){
carlantern{i].turnOff () ;

}

int curr_floor = -}3;

curr_floor = dispatcher.getCurrentFloor();
current_floor=curr_floor;
source_floor=curr_floor;

- 186 -

destination_floor=-1;

for(int i=0; i<2; i++){

door{i] .open{);

}

carpositionindicator.clear();
carpositionindicator.show(current_floor);

}

public boolean isEmpty()

{

booldan queue_status = false;
queue_status = queue.isEmpty();
return queue_status;

}

public void incrementFloor ()

{

dispatcher.incrementFloor () ;

}

public void decrementFloor ()
{
dispatcher.decrementFloor ();

}

public void closeDoors()
{

for(int i=0; i<2; i++)}{
door[i].close();

}

}

public void openDoors()
{

for(int i=0; i<2; i++){
door[i].open();

}

}

public void call()
{

elevator_state.call();

}

public void selectFloor ()

{
elevator_state.selectFloor();

}

public void ele_move ()
{
}
}

- 187 -

Bl

ElevatorControl.java

public class ElevatorControl ({
public ElevatorControl (}{
}

private int controller = 1;

private EmergencyBrake emergencybrake = new EmergencyBrake();

private Elevator elevator = new Elevator();
public veoid hallButtonPressed(int calling_floorno)

{
elevator.hallCall(calling_floorno);

}

public void carButtonPressed{int destinationfloor)

{

elevator.carCall{(destinationfloor);

}

public void doorReversal()
{

elevator.doorReversal();

}

public void triggerEmergencyBrakes()
{ i

emergencybrake.apply(};
elevator.setSafety(0);

}

public void releaseEmergencyBrakes(}

{
emergencybrake.release () ;
elevator.setSafety(1l);

}

public void moveElevator (int destinationfloor)

{

elevator.move (destinationFloor); =

}

public void stopElevator ()
{

elevator.stop();
}
}

ElevatorState. java

public class ElevatorState {

private IdleDoorClosed idleDocrClosed = new IdleDoorClosed();
private StartMovingUp startMovingUp = new StartMovingUp();
private StartMovingDown startMovingDown = new StartMovingDown();

private MovingDownTheFloors movingDownTheFloors =

new MovingDownTheFloors();

private MovingUpTheFloors movingUpTheFloors = new MovingUpTheFloors();
private ResumeMovingUp resumeMovingUp = new ResumeMovingUp();

- 188 -

L}

W

private ResumeMovingDown resumeMovingDown = new Re€sumeMovingDown();
private ResumeDoorClosed resumeDoorClosed = new ResumeDoorClosed();
private IdleDoorOpen idleDoorOpen = new IdleDoorCOpen();

private FloorSelectedDoorClosed floorSelectedDoorClosed = new
FloorSelectedDooxrClosed() ;

private IdleDoorOpenReached idleDoorOpenReached = new IdleDoorQOpenReached{);
private FloorSelectedDoorClosedCalled floorSelectedDoorClosedCalléd = new
FloorSelectedDoorClosedCalled();

private FloorSelectedDoorCpen floorSelectedDoorOpen = new
FloorSelectedDoorOpen(});

public void Entry()

public void Exit ()

public void doActivity ()

public void call()

public void move()
{
}

public void selectFloor ()
{
}
}

EmergencyBrake.java

public class EmergencyBrake (
public EmergencyBrake () {
}

private String status = "idle";

private int error_situation = 0;)

private EmergencyBrakeState eb_state = new EmergencyBrakeState();
public String getStatus()

{
return status;

)

public void setStatus(String ebrake_status)

{

status=ebrake_status;

)

public int getErrorValue()
{

return error_situation;

- 189 -

AR~

}

public void setErrorValue(int error)

{

error_situation=error;

}

public EmergencyBrakeState getEBStatel()
{ .

return eb_state;

}

public void setEBState (EmergencyBrakeState ebrake_state)
{

eb_state=ebrake_state;

}

public void apply()

{ -
eb_state.applyBrakes();
}

public void release()

{

eb_state.reieaseBrakes();
}
}

EmergencyBrakeActive.java

public class EmergencyBrakehActive {
public void Entry ()

{

this.setErrorValue(0l);
this.doActivity();

}

public void Exit ()
{
}

public void doActivity()
{
this.setStatus ("active");

}

public void releaseBrakes()
{

this.setEBState(eb_idle);
getEBState() .Entry();

}

}

- 190 -

EmergencyBrakeldie.java

public class EmergencyBrakeldle {
public void Entry ()

{

this.setErrorvValue(0);
this.dcActivity(};

}

public void Exit ()}
{
}

public void doActivity()
{
this.setStatus{"idle");
}

public void applyBrakes()

{

this.setEBState(eb_active);

getEBState() .Entry ()

1

} 2

EmergencyBrakeState.java

public class EmergencyBrakeState { ¥

private EmergencyBrakeActive eb_active = new EmergéncyBrakeActive();
private EmergencyBrakelIdle eb_idle = new EmergencyBrakelIdle(};
public void Entry()

{

}

public void Exit ()

public void doActivity()

public void applyBrakes()

public void releaseBrakes()

Floor.java

public class Floor {

-191 -

public Floor () {

}

private int calling_floor = 0;

private int current_floor = 0O;

private int current_button_no = 0;

private HallCallButton hall_call_button = new HallCallButton(};
public void hallButtonPress(int call_floor, int curr_floor}

{
calling_floor=call_floor;
current_floor=curr_floor;

if (calling_floor < current_floor) {
current_putton_no=0;

)

if (calling_floor > current_floor) {
current_button_no=1;

}
hall_call_button[current_button_ncl.press();

}

public void hallButtonRelease()
{
hall_call_button([current_button_nc].release();

}

public int getCurrentFloor()
{

return current_floor;

}

public void setCurrentFloor (int floor)

{
current_floor=floor;

}

public int getCallingFlocr ()
{

return calling_floor;

}

public void setCallingFloor{int cfloor)
{

calling_floor=cfloor;
}
}

FloorSelectedDoorClosed. java

public class FloorSelectedDoorClosed {
public veoid Entry ()

{
this.doActivity();

}

public void Exit()
-192-

by

b

{
}

public void doActivity ()
{
this.closeDoors();

}

public void call()

{

int curr_floor = -01;

curr_£floor = this.getCurrentFloor();

if (curr_floor == destination_floor) {
this.setElevatorState (floorSelectedDoorOpen) ;
getElevatorState() .Entry();

}

if(curr_floor == destination_floor) {
this.setElevatorState (floorSelectedDoorClosedCalled) ;
getElevatorState() .Entry();

}

}

public void move ()

{ .

int curr_floor = -01;

curr_floor = this.getCurrentFloor();

if (destination_floor < curr_floor) {
this.setElevatorState (resumeMovingDown) ;
getElevatorState().Entry();

}

if (destination_floor > curr_floor) {
this.setElevatorState (resumeMovingUp) ;
getElevatorState() .Entry();

}

}

}

FloorSelectedDoorClosedCalled. java

public class FloorSelectedDoorClosedCalled {
public void Entry({)

{
this.doActivity();

)

public void Exit ()
{
)

public void doActivity()

{
this.Enque();

-193 -

-t

)

}

public void call()

{

int curr_floor = -03%;

curr_floor = this.getCurrentFloor();

if(curr_floor == destination_£floor) {
this.setElevatorState(floorSelectedDoorOpen) ;
getElevatorState () .Entry();

}

}

}

FloorSelectedDoorOpen.java

public class FloorSelectedDoorOpen {
public void Entry{)

{

this.closeboors(};
this.doActivity (};

}

public void Exit ()
{ .
}

public void doActivity ()
{
}

public void call()

{

int curr_£floor = -01%;

curr_floor = this.getCurrentFloor(};

if (curr_floor == destination floor} {
this.setElevatorState (floorSelectedDoorOpen};
getElevatorState() .Entry(};

}

}

public void selectFloor ()

{
this.setElevatorState(floorSelectedDoorOpen);
getElevatorState() .Entry(};

}

}

HallCallButton.java

public class HallCallButton extends Button {
public HallCallButton() {
super () ;

-194 -

&

}
private String button_status = "idle";
private String light_status = "off";

private HallCallButtonState hb_state = new HallCallButtonState();

public String getButtonStatus()
(

return button_status;

}

public void setButtonStatus(String bstatus)
{

button_status=bstatus;

)

public String getLightStatus()
{
return light_status;

)

public void setLightStatus(String lstatus)

{
light_status=1lstatus;

)

public HallCallButtonState getHallCallButtonState(} -
{ 1
return hb_state;

)

public void setHallCallButtonState(HallCallButtonState hbstate)

{
hb_state=hbstate;

)

public void pressf{)
{
hb_state.illuminate();

}

public void release()

{
hb_state.darken();

}
}

HallCallButtonOff .java

public class HallCallButtonOff (
public void Entry ()

{

this.doActivity();

}

public void Exit ()
{
}

-195 -

public void doActivity()

{
this.setButtonStatus("idle");
this.setLightStatus("off");

}

public void illuminate ()

{
this.setHallCallButtonState(hb_on);
getHallCallButtonState () .Entry();

}

}

HallCallButtonOn.java

public class HallCallButtonOn {
public void Entry ()

{

this.doActivity();

}

public void Exit ()
{
}
L
public wvoid doActivity()
{
this.setButtonStatus ("pressed");
this.setLightStatus("on");
}

public void darken()

{
this.setHallCzallButtonState(hb_off);
getHallCallButtonState() .Entry();

}

}

HallCallButtonState.java

public class HallCallButtonState |{

private HallCallButtonOn hb_on = new KallCallButtonOn();
private HallCallButtonOff hb_off = new HallCallButtonOff ();
public void Entry ()

{

}

public void Exit ()
{
}

public void doActivity()
{
}

- 196 -

public void illuminate()
{
}

public void darken()
{
}
}

IdleDoorClosed.java

public class IdleDocorClosed {
public void Entry()

{

this.closeDoors();
this.doActivity();

}

public void Exit()
{
}

public void doActivity ()

{

super.setEleStatus ("idle”);
source_floor=0;
current_floor=0;
destination_floor=0;

)

public void call({()
{

if (current_floor < destination_floor) {
this.setElevatorState{startMovingUp);
getElevatorState() .Entry();

)

if (current_floor > destination_floor)
this.setElevatorState(startMovingDown) ;
getElevatorState() .Entry();

)

if (current_floor == destination_floor) |
this.setElevatorState(idleDoorOpen);
getElevatorState{) .Entry();

}

)

}

ldleDoorQOpen.java

public class IdleDoorOpen ({

- 197 -

A

public void Entry()
{

this.openDoors();
this.doActivity();
}

public void Exit ()
{
)

public void doActivity()

{

boolean queue_empty = false;
queue_empty = this.isEmpty();

if (queue_empty == false) |
this.setElevatorState (resumeDoorClosed);
getElevatorState() .Entry();

}

}

public void call()
{
this.Entry();

} s
L

public void selectFloor ()

{

this.setElevatorState (floorSelectedDoorClosed) ;
getElevatorState.Entry();

}

}

IdleDoorOpenReached. java

public class IdleDoorOpenReached ({
public void Entry()

{

this.doActivity();

}

public void Exit ()
{
}

public void doActivity ()

{

boolean queue_empty = false;
queue_empty = this.isEmpty();

if (queue_empty == false) {
this.setElevatorState (resumeDoorClosed);
getElevatorState() .Entry();

}

}

-198 -

bat..d

public void call(}

{
this.setElevatorState{idleDoorOpen) ;
getElevatorState () .Entry();

}

public void selectFloor ()

{ .
this.setElevatorState(floorSelectedDoorClosed);
getElevatorState() .Entry();

}
}

MovingDownTheFloors.java

public class MovingDownTheFloors {
public void Entry()

{

this.setEleStatus{"moving™);
this.doActivity();

}

public void Exit ()
{
}

public void doActivity(}

{

this.decrementFloor () ;

int curr_floor = -01;

curr_floor = this.getCurrentFloor();

if (curr_floor == destination_floor) {
String dir = null;
dir = this.getMovingDirection(};

if (dir == "down") {

this.setElevatorState (idleDoorOpenReached) ;
getElevatorState() .Entry();

}

}

if (curr_floor != destination_floor) {
this.doActivity(};

}

}

public void call({)

{

int curr_floor = -01;

curr_floor = this.getCurrentFloor();

if (curr_floor == destination_floor) {
this.setElevatorState(idlebDoorOpen) ;
getElevatorState({) .Entry();

}

-199 -

MovingUpTheFloors.java

public class MovingUpTheFloors {
public void Entry ()

{

this.setEleStatus ("moving™);
this.doActivity();

}

public void Exit ()}
{
}

public void doActivity()
{

this.incrementFloor ();

int curr_floor = -01;
curr_floor = this.getCurrentFloor();
if (curr_floor == destination_floor) {

String dir = null;
dir = thisigetMovingbirection();

if (dir == "up") {
this.setElevatorState(idleDoorOpenReached);
getElevatorState() .Entry{);

}

}

if{curr_floor != destination_floor) {
this.doActivity();

}

}

public void call()

{

int curr_floor = -01;

curr_fioor = this.getCurrentFloor ();

if{(curr_floor == destination_floor) {
this.setElevatorState (idleDoorOpen) ;
getElevatorState() .Entry (),

}

}

}

ResumeDoorClosed.java

public class ResumeDoorClosed {
public void Entry{()
{

- 200 -

this.doActivity();
}

public void Exit ()
{
}

public void doActivity()
{
this.closeDoors{);

}

public void call(}

{

this.setElevatorState (idleDoorOpen) ;
getElevatorState() .Entry();

}

public void move(}

{

int curr_floor = -01;

curr_floor = this.getCurrentFloor ();

if (destination_floor > curr_£floor) {
this.setElevatorState (resumeMovingUp) ;
getElevatorState().Entfy{);

}

if(destination_floor < curr_floor) {
this.setElevatorState (resumeMovingDown) ;
getElevatorState () .Entry();

}

}

}

ResumeMovingDown. java

public class ResumeMovingDown {
public void Entry()

{

this.setEleStatus{"moving");
this.doActivity();

}

public void Exit ()
{
}

public void doActivity ()

{

int curr_floor = -01;

curr_floor = this.getCurrentFloor();

if(curr_floor !'= source_floor) {
this.setElevatorState {movingDownTheFloors);”
getElevatorState () .Entry();

-201-

ResumeMovingUp.java

public class ResumeMovingUp {
public void Entry ()

{
this.setEleStatus("moving”);
this.doActivity();

}

public void Exit ()
{
}

public void doActivity()

{

int curr_floor = -01;

curr_floor = this.getCurrentFloor();

if(curr_floor != source_floor}) {
this.setElevatorState (movingUpTheFloors) ;
getElevatorState().Entry{();

}

}

}

StartMovingDown. java

public class StartMovingDown {
public void Entry()

{
this.doActivity();

)

public veoid Exit ()
{
}

public void doActivity()
{

this.setEleStatus ("moving");
this.setMovingDirection("down") ;

)

public void move()

{
int curr_floor = -01;
curr_floor = this.getCurrentFloor();

if{curr_floor != source_floor) /{
this.setElevatorState (movingDownTheFloors) ;

-202 -

getElevatorState() .Entry();
}
}
}

StartMovingUp.java

public class StartMovingUp {
public void Entry{)

{

this.doActivity();

}

public void Exit ()
{
}

public void doActivity()

{

this.setEleStatus("moving™);
this.setMovingDirection("up");

}

public void move()

{

int curr_floor = -01;

curr_floor = this.getCurrentFloor();

if{curr_floor != source_floor) {
this.setElevatorState (movingUpTheFioors);
getBElevatorState().Entry();

}

}

}

-203 - -
AT TRa N
Vi -~ r;.“_
i &Ef

