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PREFACE

This thesis deals with the comparative study of finding solutions of non-linear prob-
lems arising in fluid mechanics. The choice of such problem is challenging mathemat-
ically and desirable from applications point of view. The governing Naiver Stokes
equations for the fluid flow are non-linear partial differential equations and it is
overwhelmingly difficult to find exact analytic solution of these equations. Various
approximate analytic methods and numerical techniques are available to address
such problem to certain level of accuracy. In this thesis the applicabihty and con-
sequences of these methods are investigated to make a comparison between these
and to find the best solution for a variety of problems arising in the domain of
non-Newtonian fluids.

In chapter one, we present basic ideas of nonlinear differential equations arising in
fluid mechanics and discuss various analytic techniques used to solve these equations

Chapter two contains modeling and analytic solution for the flow of non-
Newtonian fluid lubricating linear and parabolic slider bearings. Such fluids are
important when polymers are added to lubricating oils for improving their viscosity
index and make them less temperature dependent,Some interesting investigations
explaining the phenomenon of non-Newtonian lubrication in bearings have been
presented. Some numerical treatment of such problems was available in the litera-
ture and the main objective is to present analytical solution using HAM. The error
analysis and the convergence questions are also addressed.

The results of this chapter are published in the journal of Numer Methods for
Partial Differential Eq 27; n/a. doi:10.10021num. 20578, 2010.

vii
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In chapter four some fundamental problems such as Couette, Poiseuille and Gen-
eralized Couette flows in the presence of a slip condition have been studied. The slip
condition gives rise to nonlinear boundary conditions in contrast to the usual no slip
condition. The slip condition in non-Newtonian fluids are less attended which are
otherwise important in such flows .Exact solutions are developed while solving the
nonlinear governing equations with nonlinear boundary conditions. These observa-
tions are published in the journal of Zeitschrift " ur angewandte Mathematik
und Physik (ZAMP) 61; 877-888, 2010.

The aim of chapter five is to examine the steady flow of an incompressible third
grade fluid through a porous horizontal pipe with variable viscosity. A new dimension
of variable viscosity has been added instead of most frequented constant viscosity
assumptions. Only a limited work has been accomplished taking viscosity as tem-
perature and space dependent. The solution for MHD third grade fluid flow in the
horizontal porous pipe with viscous dissipation is addressed taking into considera-
tion the slip effects. These results has been submitted for publication in the journal
of Transport in porous media (2011).

Chapter six deals with recent phenomenon of nanofluids (NF).A brief descrip-
tion of nano fluids goes like: The nanoparticles are ultra fine particles in the size
of nanometer order. A base fluid with suspended nano size particles are called
nanofluids. These suspended nanoparticles can change the transport and thermal
properties of the base fluid. The model used for the nanofluid incorporates the effects
of Brownian motion and thermophoresis. The pipe flow of third grade nano fluid with
variable viscosity is considered and solved by HAM. Effects of porosity and MHD are
considered on emerging velocity field. These findings are submitted in the journal of
Applied mathematical modelling (2011).

In chapter seven, we extend the problem of chapter six by introducing linear

partial slip effects and using Optimal Homotopic Asymptotic Method (OHAM) to
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ix
solve differential equation of third grade nanofluid between coaxial porous cylinders
with variable viscosity. The effects of heat transfer analysis and concentration of
nanoparticles are considered in the presence of magnetohydrodynamic. The contents
of this chapter are submitted in the journal of Porous media (2011).

The aim of chapter eight is to examine the MHD steady flow of a third grade
fluid in the annular region when both cylinders rotate with different but constant
angular velocity. Approximate analytical solutions to the resulting nonlinear problem
is derived when the magnetic and third grade material parameters are small. The
contents of this chapter are published in Commun Nonlinear Sci Numer Sim-
ulat, 15; 1224-1227, 2010.

The main objective in chapter nine is to venture further in the regime of non-
Newtonian fluids {Oldroyd constant) with nonlinear conditions while investigating
the closed form solutions of Couette, Poiseuille and Generalized Couette flows. These
findings are published in Commun Nonlinear Sci Numer Simulat, 15; 322-330, 2010.

In chapter three, we draw comparison of HAM with the other analytical tech-
niques in finding the solutio‘n of second painleve equation. The results obtained with
HAM are found to be better in accuracy than ADM, HPM and Legendre Tau. These
results are published in the journal of Numer Methods for Partial Differential
Eq, 26; 10701078, 2010.
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CHAPTER 1

PRELIMINARIES

Fundamental laws of nature can be generally formulated in terms of differential
equations and their solutions and analysis is widely used in applied mathematics,
physics, engineering and other fields of natural and social sciences. These differen-
tial equations may be linear or nonlinear. The solution of non linear equations is
generally very complex and there are no well established methods to solve these
equations. There are therefore some methods which provide approximate analyt-
ical and numerical solutions. We will be particularly interested in non linear partial
differential equations occurring in non Newtonian fluid mechanics. In this chapter,
we will discuss some recent analytical techniques which will be used in our subse-
quent analyses. Before that we present the formulation of the basic equations of fluid
mechanics.

Newtonian and Non-Newtonian Fluids:

The fluids in which the shear stress is lineally proportional to the rate of shear
strain are called Newtonian fluid. Water and air are considered as Newtonian ftuid.

The fluids in which there is nonlinear proportionality between shear stress and
rate of shear strain are termed as non-Newtonian fluids. A number of industrially
immportant fluids such as molten plastics, polymers, pulps, foods and slurries display
non-Newtonian fluid behavior.

Non-Newtonian fluid flow is a topic of great interest and several investigations

have been made in this direction; for example the work appearing in the references [1]
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to [17]. The interest in these flows is generated due to their extensive applications
in industry and engineering. An assessment of technological applications requires
knowledge of the rheological characteristics of the non-Newtonian fluids. We now
know that the features of non-Newtonian fluids, being different from the viscous
fluids, cannot be predicted by employing a single constitutive equation. Therefore,
several models of non-Newtonian fluids have been suggested. A second grade model
is the simplest subclass of differential type fluids. The constitutive relations of non-
Newtonian fluids further add complexities to the mathematical expressions. A novel
feature of the problem governing the flow of non-Newtonian fluids, in general, is thé
presence of viscoelasticity of the fluid which increases the order of the differential
equation.

Nanofluids:

The nanoparticles are ultra fine particles of the size of nanometer order. A base
fluid with suspended nano size particles is called nanofiuids (NF). Materials with
sizes of nanometers possess unique physical and chemical properties These particles
help in increasing the thermal conductivity of fluids. Although, the enhancement
of thermal conductivity of conventional fluids by the suspension of solid particles,
such as millimeter- or micrometer-sized particles, has been known for more than
100 years. However, they have not been of interest for practical applications due
to problems of sedimentation, erosion, fouling and increased pressure drop of the
flow channel. The nano size particles now have come to overcome these issues. Nan-
otechnology has been now widely used in industry. These suspended nanoparticles
can change the transport and thermal properties of the base fluid. The model used
for the nanofluid incorporates the effects of Brownian motion and thermophoresis.
These are firstly introduced by Choi [18]. Choi et al. [19] showed that the addition
of a small amount (less than 1 % )of volume of nanoparticles to conventional heat

transfer liquids increased the thermal conductivity of the fluid two times (approxi-
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mately). Khanafer et al. {20] seem to be the first who have examined heat transfer
performance of nanofluids inside an enclosure taking into account the solid particle
dispersion. After these studies, nanotechnology is considered by many to be one of
the significant forces that drive the next major industrial revolution of this century.
It aims at manipulating the structure of the matter at the molecular level with the
goal for innovation in virtually every industry and its applications include biolog-
ical sciences, physical sciences, electronics cooling, transportation, environment and
national security etc. Some numerical and experimental studies on nanofluids can
be found in [21] to [23].

Porous Medium:

A porous medium is a material consisting of a solid matrix with interconnected
void {Pores). Examples of natural porous media are beach sand, sandstone, lime-
stone, rye bread, wood, and the human lung. The porosity 9 of a porous medium is
defined as the ratio of the void space to the total volume of the medium . Neild and
Bejan explained different model and constitutive equations along with their merits
and demerits in their book [24].

Henry Darcy after experimental investigations on steady-state unidirectional
water flow in a uniform medium showed a relationship between flow rate and the

applied pressure difference. In mathematical form this is expressed by

_ kdp
u__uax' (1.1)

Here p is the dynamic viscosity of the fluid. The coefficient k; is independent
of the nature of the fluid but it depends on the geometry of the medium. It has
dimensions (length)? and is called the specific permeability or intrinsic permeability

of the medium. In three dimensions, Eq. (1.1) generalizes to

k
V= —-ij, (1.2)
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where the permeability k; is in general a second-order tensor. Rearranging the Eq.

(1.2), we obtain

Vp = —kﬂlv. (1.3)

Magnetohydrodynamics (MHD):

Magnetic fields are known to influence many natural and man-made flows. They
are routinely used in industry to heat pump, stir and levitate liquid metals. There is
the terrestrial magnetic field which is maintained by fluid motion in the earth’s core,
the solar magnetic field which generates sunspots and solar flares, and the galactic
field which influences the formation of stars.

In MHD, the charge density p, plays no significant part. The electric force, gE, is
minute by comparison with the Lorentz force, and that the contribution of dp, /8t to
the charge conservation equation is also negligible (see [25]-[26]). Maxwell’s equations
can now be written as:

Solenoidal nature of B

V.B=0. (1.4)
Faraday’s law
JB
VxE=——. 1.5
xE=- (19
Ampere equation
VxB=ul (1.6)
Charge conservation
vVJI=0 (1.7)
Lorentz Force
F=J xB. (1.8)

Ohm’s law
J =0 (E+uxB). (1.9)



Slip Conditions:

With the advent of viscous fluid theory,it is widely accepted that the flow satisfies
no slip boundary conditions. These conditions have been widely used in the fluid
flow problems arising in Newtonian and non- Newtonian fluids [27] to [29]. However,
there could be situations where no slip conditions are not adequate and it is more
reasonable to assume slip conditions [30] to [33] instead. Such situations arise for
fluid flow past permeable walls, slotted plates, rough and coated surfaces, gas and
liquid flows in micro devices.

It is now established that slip effects may appear for two types of fluids i.e., rare
field gases and fluids having much more elastic character. In these fluids, slippage
appear subject to large tangential traction. Naiver [34] suggested slip condition at a
rigid boundary which states that the fluid velocity at the plate is linearly proportional
to the shear stress at the plate, later proposed independently by Maxwell [35] The
constant of proportionality is called a slip length and may be regarded as the distance
at which the velocity of the fluid is equal to that of the boundary [36]. Qian and
Wang [37] showed that the amount of slip for Newtonian fluid is proportional to
the shear rate. This is the simplest known boundary condition used to improve the
no-slip condition.

The Naiver boundary conditions at the solid wall may be written as

V = 27A,, (1.10)

where vy is the slip length with the same sign as A, is first rivilin erickson tensor.
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1.1 GovEeERNING EQUATIONS OF FLUID MECHANICS

The basic equations of fluid dynamics are conservation of mass, momentum and
energy equations. These equations show the time rate of change of mass, momentum

or energy at a point in a fluid representing various physical mechanisms.

CONTINUITY EQUATION

The partial differential equation expressing conservation of mass is called the conti-
nuity equation. The continuity equation involves only the fluid density and the fluid
velocity. It is applicable to all fluids, compressible and incompressible, Newtonian

and non-Newtonian. For the whole range of flow speeds it is given by

% +V.(pV) =0. (1.11)

For an incompressible fluid, the density is constant and the continuity equation

reduces to

VV=0. | (1.12)

For nanofluid the additional equation for the continuity of nanoparticles in

nanofluids.

%‘P +(V.V)p=V. (DBV<,0+%—T—V0) , (1.13)

where 6 is temperture and ¢ is volume fraction of nanoparticle.

MOMENTUM EQUATION

The partial differential equations expressing conservation of linear momentum
are called momentum equation. The equations representing Newtonian fluids are
famously known as Naiver-Stokes equation. General momentum equation is given

by



p (%V + (V.V)V) = pb+ V.T, (1.14)

where T is Cauchy stress tensor, b is body forces.

Different fluids are defined by different Cauchy stress tensor, i.e.,

i. For inviscid fluid

T = —pL. (1.15)

ii. For Newtonian fluid the tensor become

il

T = —pl+uA,, (1.16)

where

A; = (grad V) + (grad V)7 (1.17)
Non- Newtonian second grade fluid
T = —pl+ pA; + 1Ay + a3 (A4)?, (1.18)

where a;, and a; are the normal stress moduli. The second grade fluid model is
compatible with thermodynamics when the Helmholtz free energy of the fluid
is a minimum for the fluid in equilibrium. The Clausius—-Duhem inequality and
the assumption that the Helmholtz free energy is a minimum in equilibrium

provide the following restrictions [38]
020 020, a+a=0 (1.19)

The fluid model of a second grade exhibits the normal stress effects only
and cannot explain the shear thinning/shear thickening phenomena. The fluid

model possessing shear thinning properties is known as a third grade fluid.
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iv. Non- Newtonian third grade fluid

T = —pltpA; + 01Az + 02A2 + BiAs + B85 (A1 Az + AsA)) + B; (trA2) A,
(1.20)
here A;, As, and Aj are Rivilin Erickson tensors. For n > 1, it is generally

defined by

_ djxn—l
- dt

A, + Ay (grad V) + (grad V)T A, 1. (1.21)

The material constants satisfy following thermodynamical constraints as

defined [39]

>0, a1 >0, |ar+ag| < /24p8;3, B =58,=0, B3>0 (1.22)

v. Oldroyd model

T— pI+8, (1.23)
S+ M2+ 22 (SA; + AiS) + 3 (1rS) Ay + 3 [tr (SAY)]T } . (1.24)
= pu [Ay + Ao BB+ N A2+ 2 [tr (AY)]T]
where S is defined as
Sex  Soy Sz
s=| s s s _ (1.25)

yz vy yz

ENERGY EQUATION

The partial differential equation expressing conservation of energy for fluids is simply
referred to as the energy equation. The derivation of this scalar equation is based
on the thermodynamic principle that the time rate of change of internal energy plus
kinetic energy for a volume of fluid is equal to the rate at which work is done on the

fluid plus the rate at which heat is added to the fluid.
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The energy equation is derived using the principle of conservation of heat energy.

This is given by

p% = T.grad V—div Q. (1.26)
where e is internal energy.

For nanofluids the equation modified as

de

: Dy
Py = div Q- (pc), <D3V<p.V9+—9—V9.V9) :

1.2 METHODS OF SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS

The nonlinear differential equations, nonlinear or complex boundary conditions, vari-
able coefficients differential equations and coupled differential equations have little
chances of getting exact or closed form solutions. This results in the need of approx-
imate solutions using numerical or some approximate analytical techniques. With
the advent of modern computers many numerical techniques have been evolved and
exact numerical solutions can be obtained, However, analytical solutions are still
important as they provide a standard for checking the accuracies of many approxi-
mate solutions which can be numerical or empirical. They can also be used as tests
for verifying numerical schemes that are developed for studying more complex flow
problems.

There are various approximate analytical methods to find the solutions of non
linear governing equations in almost all branches of science and engineering. To name
a few these are: lie symmetry methods [40] to [50], perturbation methods[51], artifi-
cial parameter method [52], Tanh method [53], Jacobi elliptic function method {54],
Adomian decomposition method [55], homotopy perturbation method [56], modiﬁe:d
homotopy perturbation method [57], variational method (58], iteration perturbation

method [59] Homotopy Analysis Method [60] and Optimal Homotopic Asymptotic
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Method [61]. Since we shall be using HAM and OHAM in our thesis, which are
relatively recent methods,therefore we would like to give some mathematical details

for the convenience of reading,

1.2.1 HomoTorPY ANALYSIS METHOD

In 1992 Liao applied the concept of homotopy [62], a basic concept in topology [63],
to get analytic approximations of nonlinear equations. The methodology is explained
as below.

In order to describe the basic idea of HAM, presented by LIAQ, we consider the

following nonlinear differential equation
Nlp ()] =0, B(p(z)) =0, (1.27)

where A is the nonlinear operator, ¢ is an unknown dependent function, B is the
boundary conditions and z denotes the independent variable. The zero — order

deformation equation is written as

(1—q) LB (z;9) — wo (z)] = AN [ (z;9)], (1.28)

where ¢ € [0, 1] is called the embedding parameter, % is the non-zero-auxiliary

parameter, £ is the auxiliary linear operator, ¢, (z) is the initial approximation

which satisfy all the boundary conditions. It is vital that one has freedom to choose

the initial approximation and auxiliary linear operator. In the above equation ¢ = 0
and ¢ =1 .

- @(2;0) = ¢ (z) and @ (z;1) = ¢ (z) (1.29)

respectively. Thus as ¢ increases from 0 to 1, the solution varies from initial approx-

imation ¢, () to the desired solution ¢ (x) . Expanding $ (z; q) in the Taylor series
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with respect to ¢, one has

= 1 3 (z,q)
“ ; — T + ' T 7717 m )= . 1.30)
? (z;9) = gy (2) ;w (z)g om (@) = i i (
The mth order deformation equation is
L [0 (1) = XmPm1 ()] = FRm (0rn_1) (1.31)
where i
1 0"'%(z,9)
= i 1.32
Rm (Qom—l) (m . 1)| Bq’“—l 40 ( )
and
0, m<l1,
1, m>1.

Eq. (1.31) can be easily solved by using a symbolic computation software such as
MAPLE or MATHEMATICA. If the auxiliary linear operator, the initial approxi-
mation and the auxiliary parameter F is properly chosen, the series (1.30) converges

at ¢ = 1 and one has
0 (z) =0 (z)+ ) on (@) (1.34)

which is the solutions of the original nonlinear Eq. (1.27). The higher order defor-
mation equations can be found using [64]. HAM contains an auxiliary parameters £,
which provides us with a simple way to control and adjust the convergence of the
series solution emerging in (1.34). A few recent investigations in the literature that
contain Homotopy Analysis Method (HAM) solutions is mentioned in the references

[65] to [7T).

1.2.2 OpTIMAL HOMOTOPIC ASYMPTOTIC METHOD

Recently, Marinca et al. [61] developed a very interesting method Optimal Homotopic
Asymptotic Method (OHAM) to approximate the solution of nonlinear problems in

the frame work of the homotopy analysis method. This method is not only valid for
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small (or large) values of physical parameter but also minimizes the residual error
which shows its validity and great potential to solve the nonlinear problems. The
application of this method in fluid mechanics, heat and mass transfer analysis has
been successfully studied by Marinca et al [78] to [80].

In order to understand the method, we give a brief procedure as described by

marinca in solving the following differential equation:
L{v)+g+N((w)=0, B(v)=0. (1.35)

where g is a known function.

A homotopy is first construct as ¢ (r,¢) : R x [0, 1] — R which satisfies

(-9t +om-a@| =Y
+N{p(r9)) ) (1.36)
B(p(r,q) =0
where r € R and 0 < ¢ < 1 is an embedding parameter, H (g) is a non-zero auxiliary
function for ¢ # 0 and H (0) = 0, ¢, (1, ¢) are unknown functions. the values ¢ = 0
and g = 1 gives

e(r,0)=v(r), w©(r1l)=u(r).

let us choose the auxiliary function H (g) in the form
k
H(q)=) ¢D;, (1.37)
=1

where D; are constants.
By Taylor’s theorem one can write Eq. (1.36) to get ¢ (7, ¢, D;) in the following

form

()O(T:Q! D.')) =U(T')+Z‘U,k (Ta D.‘i)qka J= L2,... (138)

k>1

Using Eq. (1.36) and Egs. (1.37) to (1.38) the zeroth and first order problems as
follows

L(ug(r))+g(r)=0, B (ug) =0, (1.39)
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L(u () = KiNo(uo (),  B(w) =0 (1.40)

and the corresponding & — th order equation will be defined by

L (ug (r) — uk—1(r)) = DeNo (up (r))

= L; (we—j (r))
+Y D > | (1.41)
JZ; +Nig—j) (w0 (1), (1), ur—; (7))

B (ug, &%) =0 k=234..,

where

Np (uo (r N, (u (r),u1 (7
N (u(r)) = o ) 4l (i (7) 2 (1) } (1.42)
+¢* Ny (ug (1), ug (), uz (1)) + ...

The approximate solution of Eq. (1.36) can be determined in the form
w™ (r,0, D) = wio (r) + ) _ w (r, Dy) . (1.43)
k=1

By substitute Eq. (1.38) into Eq. (1.36) and as a result we get the following
residual

Er(r,D;) = L (u™) + g+ N (u™) . (1.44)

If Er (r, D;) = 0 then u™ (r, D) happens to be the exact solution. Generally such

case will not arise for nonlinear problems, but we can minimize the functional by

Eri (K;) = / Er?(r, D;) dr, (1.45)

a

where a and b are two values, depending on the given problem for locating the
desired D; and finally the unknown constants D; (j =1, 2,3, ...... m) can be optimally

identified from the conditions
8Er1
aD;

=0, (1.46)

or simply we can use Er (r, D;) = 0 generates a set linear equations at different
points in domain to gain the values of constants D;, with these constants known,

the approximate solution of order m is well determined now.



CHAPTER 2

A STUDY OF PRESSURE DISTRIBUTION FOR A SLIDER BEARING LUBRICATED

WITH A SECOND GRADE FLUID

In this chapter, the pressure distribution of slider bearing lubricated with second

grade fluid for inclined and parabolic slider bearings is studied.Some numerical

treatment for such problem for different fluids are available in the literature {81]

to [84]. Interest here is to develop a series solution. A numerical solution is also

computed. The solutions are valid not only for small but also for large values of

all the emerging parameters. Convergence values and residual error are examined.

Comparison between inclined and parabolic bearings is also presented.

2.1 MATHEMATICAL FORMULATION OF THE PROBLEM

Assume the velocity field to be

V = [u(z,y),v(z,y),0],

Setting non dimensional parameters as,

S I A B SN ) )]
R AR A AR T A 4 p%’b* al
Using Eqs. (1.12), (1.14), (1.18), (1.19) and (2.1)
Ou Ov
5;+a—y—0,
ou du 1 op* 1 907T,, 1 07T,
uc')x_H)@y __QQReE_l_f{E Or +aRe Ay ’

14

(2.1)

(2.2)

(2.3)
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ov 0w 1 Op* 1 0T, 1 9Ty
il = 2.4
u3m+v6y atRe Oy +aRe Oz +a2Re oy’ (24)

where T.;, T,y and Ty, are components of stress tensor T, Re = pU L/u is the
Reynolds number and a is the small parameter of same order as that of channel
slope. Furthermore, in deriving these equations it is assumed that, in addition to the
usual boundary layer approximations, the contribution due to the shear stresses is
of the same order of magnitude as that due to the normal stresses and . Thus, both
v and a;/p are of O(6%), where § is the boundary layer thickness.

It is intended to develop the lubrication equations for the second grade fluid for
the geometries, where @ < 1 and for the Reynolds number such that a Re <« 1.

Under these assumptions, Eqgs. (2.2) to (2.4) reduce to

ou  Ov

5; + @ =0, (2.5)
0 = - Lontag 2 (2 P 2.6
" oz P bg \ By Oy? )
+A [2_ (u@) — ?E_azu + @
Yoz \“8y2) T Gy azoy " V7]
op* 8 [ou\?
0=— 9 (o) .
By + (221 + Ag) By (ay) (2 7)
Defining
— Ou,,
n=p" —(2M+ /\2)(6y) ) (2.8)
Egs. (2.5) -(2.7) become
Ou Ov
% + 5& =0, (2.9)
Op1 _ O%u d [ u du O%u 3u
=t (5 (v5%) - 5323 +o55 ) (210)
0
P, (2.11)

8y_
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in which A\; = Uey/Ly = X and Ay = Uay/Ly are the dimensionless material

constants. The boundary conditions are
w(z,0) = 1, u(z,b) =0, (2.12)
v(z,0) = 0, v(z,b)=0. (2.13)
2.2 SOLUTIONS OF THE PROBLEM

The slider bearing for inclined and parabolic slider bearings are shown in the figures

2.1 and 2.2 respectively

y/N\

Fig. 2.1 : Inclined slider bearing.
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Fig. 2.2 : Parabolic slider bearing.

For the series solution of u(z,y), we choose

uo(iﬂ, y)

v (2,9)

o (z)

dpo (¥* b y
dx (2 2 +( b)’ (2.14)
6(1 — s)y?

6(s—1)(z— 1z (2.16)

(1+s)02 °

as the initial approximations of uw,v and p respectively which satisfy the corre-

sponding boundary conditions. We use the method of higher order differential map-

ping in order to choose the linear operator £

Li(f)= 1", (2.17)

whereas the nonlinear operator NV is

2/‘\
Nifi(y, ) = — 22 4 22 9)

or Oy?

o~ 324y, Dii(y,q) Pily,
+A(g’;(u(y,q) Hya)) _ 00 Filua)
~ 3y, '
v (y, q) S5
(2.18)
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\ If the convergence parameter is 7 and 0 < ¢ < 1 is an embedding parameter then

the zeroth order deformation problem is

(1 - @)Ly [uly, q) — uo(y)] = ghM [uly, )], (2.19)
@(0,¢) =1, G(b,q) = 0. (2.20)

mth-order Deformation Equation
Taking derivative of Eq. (2.19) m times with respect to g and then setting ¢ = 0,

one can write

Ly [tm(y) = XmUm-1(y)] = AR1m(y), (2.21)
u(0) = u(b) =0, (2.22)
8plm—l 62um—1 Z:‘Ln 01 Um—1- nB;;S" + n= 0 Um—1- nc’;?zagyz-f-
le(y)z_ 61' + 6y2 +/\ m—1 Sum—1- nau mlaufnln32
P~ P = Dne Syor
(2.23)
. Now Eq. (2.20) is solved by using MATHEMATICA.
] From Eqs. (2.5) to (2.6) one can easily calculate v and p by using the following
relations
ve— [ (2.24)
Oz
p1(0)=p (1) =0. (2.25)
To interpret the solution for the variation of pressure distribution with second grade
fluid of lubricants & (z) we consider the following two cases:
Case 1: Inclined slider bearing
b=1—(1-3s)z. (2.26)
Case 2: Parabolic slider bearing
b=1-(1-s)(z*-21z), (2.27)
3

. where s = by /b;.
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2.3 CONVERGENCE OF THE SOLUTION

Here, the convergence of the solutions containing the convergence parameter £ is
discussed. Figs. 2.3 and 2.4 are plotted for the A—curves of inclined and parabolic
slider bearings respectively. In Fig. 2.3 the i—curve is plotted for 16th order approxi-
mation for dimensionless pressure and it is found that the range for admissible values
of his —0.3 < i < —0.1. In Fig. 4, the fi—curve is plotted for 13th order approxima-
tion for dimensionless pressure and it is found that the range for admissible value
of his —0.2 < h < —0.1. In Figs. 2.5 and 2.6, the graphs of residual errors for
inclined and parabolic slider bearings are plotted respectively. For different values
of convergence parameter fi, it is seen that the error is minimum at A = —0.24 for

inclined and at i = —0.15 for parabolic slider bearings.

¢
23

2pU [, Y]

Fig. 2.3 : h—curve for inclined slider bearing.
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Fig. 2.4 . h—curve for parabolic slider bearing.

2

L

Error

-4

-6

=0.2 -0.28 8.2 ‘}.113 6.1 ~0.0% 0

Fig. 2.5 : Residual for inclined slider bearing for different values of A.

A Do
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-1 F

Error

-3

~0.0% 0

o
v
-

Q.2 =0.15

Fig. 2.6 : Residual for parabolic slider bearing for different values of A.

2.4 GRAPHICAL RESULTS

In this section, the pressure distribution is discussed for the various values of non-
Newtonian parameter A and clearance ratio s in the slider bearings. In Figs. 2.7
and 2.8, we observe that the effects of variation of non-Newtonian parameter A in
slider bearings when s = 0.5. For larger values of A, it is found that an increase in
A increases the pressure. In Figs. 2.9 and 2.10, we reverse the order and now plot
dimensionless pressure versus dimensionless length for constant A = 1 and different
values of clearance ratio s. Comparison of pressure distributions in the two slider
bearings namely parabolic and inclined slider bearing at A = 1 and s = 0.5 is given

in Fig. 2.11.
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Fig. 2.7: Pressure distribution for various values of non-Newtonian parameter A in

inclined slider bearing for clearance ratio s = 0.5.

—A=05
4} 1—-1=10

Fig. 2.8: Pressure distribution for slider bearings for various values of

non-Newtonian parameter A in parabolic slider bearing for clearance ratio s = 0.5.
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slider bearing for A = 1.

—s=04

slider bearing.
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Fig. 2.9: Pressure distribution for various values of clearance ratio s in an inclined

Fig. 2.10: Pressure distribution for various values of clearance ratio s in parabolic
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41 | — parabolic
- - jinear
Ik
Q.
2 3

Fig. 2.11: Comparison of pressure distribution in parabolic and inclined slider

bearings.

2.5 NUMERICAL RESULTS

! Numerical results and Analytic solution obtained for pressure distribution by HAM
are compared for inclined (Table 2.1) and parabolic (Table 2.2) slider bearings at
A =1and s = 0.5. Also comparison of pressure distribution between both type of

bearings are shown in Table 2.3.



Table 2.1

T

Analytic

Numerical

0.1 0471019 0.471028

0.2 0.970697 0.970700
0.3 1.49408  1.49418
0.4 202851  2.02856
0.5 2.54649 2.54652
0.6 2.99863 2.99864
0.7 3.26005  3.26007
0.8 314836  3.14839
0.9 228815  2.28818
Table 2.2
z  Analytic Numerical
0.1 0.548634 0.548668
0.2 111304  1.11312
0.3 1.68339  1.68345
0.4 2.24195 2.24200
0.5 2.75340  2.75338
06 217395  2.17395
0.7 3.39191  3.39189
0.8 3.12742  3.12748
0.9 223005  2.23000

25
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Table 2.3

z Inclined Parabolic

0.1 0471019 0.548634

0.2 0970697 1.11304

0.3 149408 1.68339

0.4 2.02851  2.24195

0.5 2.54649 2.7534

0.6 299863 2.17395

0.7 3.26005  3.39191

0.8 3.14836  3.12742

0.9 2.28315  2.23005

2.6 CONCLUSION

The main results are listed below.

e An increase in non-Newtonian parameter A leads to an increase in pressure.

e An increase in  decreases the pressure,

e Comparison of slider bearings show that the pressure in parabolic slider bearing

attains higher value.

The pressure distribution in an inclined slider bearings is slightly greater than

the parabolic slider bearing in the later part of flow i.e., 0.7 < 7 < 1.

Homotopy perturbation method (HPM) is the special case of HAM. For i = —1
in Eq. (2.19) we get HPM solution.

The residual is almost negligible (see Figs. 2.5 and 2.6).
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e The analytic solutions for inclined and parabolic slider bearings with viscous

fluid can be obtained by choosing A = 0.



CHAPTER 3

SOME FUNDAMENTAL FLows THIRD GRADE FLUID wiTH NONLINEAR SLIP

CONDITIONS

The objective of this chapter is to study the Couette, Poiseuille and generalized Cou-
ette flows in the presence of a slip condition. Exact solutions have been constructed
for the problems consisting of nonlinear equations with non-linear boundary condi-
tions. The slip conditions in terms of shear stress are defined. Graphic and numerical

results are presented.

3.1 MATHEMATICAL FORMULATION OF THE PROBLEM

Considering the steady unidirectional flow described by the velocity field

V = [u(y),0,0] (3.1)

Setting the following dimensionless variables

Ay 2
P P e N
U—Uo,y—hap_ hQ’IB_/J,(h),

and by using Egs. (1.2), (1.3) and (1.9), we get the dimensionless governing equation

d |du du\?®
& [@“ﬂ (%) } =° 2

where asterisks have been suppressed for simplicity, v the kinematic viscosity, U, the

of the form

characteristic velocity, p the modified pressure and ¢ = dp/dzx.

28
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3.2 SOLUTION OF THE PROBLEM

We use first integral approach to find the solution of three cases of flows, namely

1. Couette flow.
2. Poiseuille flow.

3. Generalized Couette flow.

3.2.1 CASE 1: CouETTE FrLow

Here the third grade fluid is bounded between two rigid plates a distant A apart.

No pressure gradient is apphied. The lower plate is suddenly jerked while the upper

plate is fixed. The resulting dimensionless problem is

3
[ du du\’]
’LL(O) - ‘d_y + 2,3 (@) |, =1, (34)
_ 5
u(1) +7 Z—Z + 28 (%) =0, (3.5)
| Jy=1

where v* (= v/h) is the slip parameter and asterisk is suppressed here.

Eq. (3.3) has first integral

du du\?®
X 20 (@) =Gy (3.6)

After the use of Egs. (3.4) and (3.5), the equivalent boundary conditions are

7 -85,

u(0) = vCs + 1, u(l) = —Cs, (3.7)

where (5 is the constant to be selected.



The exact solution is given as follows

du_ 2, 2 Gy 1 + 2 o
o M+ \/C+27ﬂ+\/ EAAL 27;3_A'

Therefore,

u=Ay+C4,

where Cy is a further constant.

From Egs. (3.7) and (3.9), we deduce
Cy=vCs5 + 1.
In view of Egs. (3.6), (3.9) and (3.10) we obtain
A =-2vCy — 1.

Egs. (3.8) and (3.11) imply that

\/4ﬂm+“ - \/4[3\/_—%

Thus the exact solution is

u=Ay+vC3+1,

—2’)’03 — 1.
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

with the condition that Eq. (3.12) be satisfied. The relation between 8 and « for

fixed C} is given in Table 3.1.

3.2.2 CASE 2: POISEUILLE FLOow

Here an incompressible third grade fluid is bounded between the two stationary

plates distant ~ apart and the flow is caused by an applied constant pressure gradient.

The resulting dimensionless problem is of the form

d |du du\?
dy {d—y”ﬂ(d—y) ] e

(3.14)
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[ du du®
—y == - = 3.15
w0 -7 | T2 (R)| o (3.19
L - y:O
[ du du\’]
1 — + 20| — = (. 3.16
)+ | 5 +2 () | (3.16)
= - y:
The first integral of Eq. (3.14) is
du du\®
—+ 28— ) = 17
7" 5(@) cy + Cs, (3.17)

where Cj is a constant to be selected. After the invocation of Egs. (3.15) and (3.16),

the boundary conditions reduce to

w(0) = ~Cs, (3.18)

u(l) = —Cs - ve. (3.19)

The exact solution of Eq. (3.17) is

Cs [ {[ \/m+9(cy+05)
9I(y+ %) B -
8(6) i/ /BUe+Cs)"+ §-9(cy+Cs)

L B
1 3 1/81(cy+C5)°+§—9(cy+Cs) N
— 8
24(6)fc| /81(cy+C5)7+5 +9(cy+Cs)
L B

x\/81 (cy +Cs)? + % + Cs, (3.20)

where Cg is a constant. In view of Eqgs. (3.18) and (3.19), Eq. (3.20) yields the

following two relations

9 Cs 3 \/81052'*'%4-905 3 \/810?'*-%—905
705 = (cg) \J —
8(6)3 B g

1 ij‘/81og+%~gcs+j1/8103+%+905
C

24 (6) 5 B

/ 6
X 81052 + E + Cs (3.21)

wIN
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and

[ 3f /81(c+C5)2 4§ 4+9(c+Cs) ]
9(1+%) \/ 7 -
8 (s)g i/ ,/81(c+cs)2+g—9(c+cs)
L B

( </ 81(c+Cs)2+%-9(c+Cs)+
B

—1Cs — e =

1
- 24 (6)§ c \s/, /81(c+C5)%+§+9(c+Cs)
i B J
o 6
X\/Sl (C+Cs) + B +CG. (322)

The relation between S and v for fixed ¢ when C5 = 0 and Cs # 0 are given in
Tables 3.2 and 3.3 respectively. The relation among 8, v, ¢ and Cj is obtained after
eliminating Cg between Egs. (3.21) and (3.22).

3.2.3 CASE 3: GENERALIZED COUETTE FLOW

In this case the geometrical description of the flow is similar to that of the previous
one. Only the flow here is generated by a constant pressure gradient and sudden

motion of the lower plate. The underlying dimensionless problem is

d | du du\?®
& [d“y”ﬁ (%) } = 42
w0 | 1o (Y] (320
,7 dy dy ] - Y .
R y=0
~du du 3]
u(l) + —+2 —_ = 0. 3.25
W+ |G ﬂ(dy)_yzl (3.29

The first integral of Eq. (3.21) is the same as Eq. (3.17). The solution of Eq. (3.21)
is Eq. (3.20). However, the boundary conditions reduce to
u(0) = vCs+1, (3.26)

u(l) = —vCs — e (3.27)
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Again in view of Eqs. (3.26) and (3.27), we arrive at the following relation

(%) \,,/81C2+ §+9Cs j1/81052+%—905
1Cs+1 = c2
8(6)5 p

1 \’ 81c§+g—905 \',/810§+%+905

B

X 4 / 81C? + + Ce (3.28)

and Eq. (3.22). The relation between S and <y for fixed ¢ when Cs = 0 and Cs # 0

2
3

are given in Tables 3.4 and 3.5 respectively.

3.3 GRAPHICAL RESULTS

In order to illustrate the influences of third grade parameter 8, and slip parameter
\ v on the velocity u we have plotted figures. Figs. 3.1 and 3.2 for the Couette flow,
Figs. 3.3 and 3.4 for the Poiseuille flow and Figs. 3.5 and 3.6 for the Generalized

Couette flow.

- ﬁ =7
o8| B2
0.6 -4

3
0.4
0.2 |
g ‘ g
o 02 04 06 0.8 1

. Fig. 3.1 : Velocity profile u(y) for Couette flow for various values of 3.
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Fig. 3.3 : Velocity profile u(y) for Poiseuille Flow for various values of 3.
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Fig. 3.5 : Velocity profile u(y) for Generalized Couette flow for various values of .
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(44 0.2 0.4 0.6 8.8 i
Fig. 3.6 : Velocity profile u(y) for Generalized Couette flow for various values of 7.

3.4 NUMERICAL RESULTS

We now compute the numerical values of 3,y on ¢, Cs and Cs. Table 3.1 corresponds
to the first problem. Tables 3.2 is prepared for the second problem whereas Tables

3.3 is computed for the third problem.

Table 3.1
Cs B v
1 1 07948
0.7500

3 0.7253

4 0.7087
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Table 3.2

Cs

c B

v

0

1

1

1.4905

1.1268

0.9616

=W N

0.8609

e

1.3778

1.0771

(.9343

= W | N

0.8453

Table 3.3

Cs

¢ B

fy

0

1

1

0.4905

0.1268

—0.0384

—0.1391

ot

1.0444

0.7930

0.6010

W[ [N

0.5118
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3.5 CONCLUSION

In this chapter the velocity profiles in a third grade fluid are found analytically.
Three interesting cases of Couette flow, Poiseuille flow and generalized Couette flow
are discussed. The first integral approach is used to find the velocity profiles. The
variation of the third grade parameter 3, pressure gradient ¢ and slip parameter
on the velocity profiles are illustrated. As a result, the following observations are

made.

o In all three cases, we see that the flows show similar behavior of velocity profiles
for different values of 3, v and c¢. However, as expected from the boundary
conditions, the boundary layer for nonzero Cjs is translated when compared to

the case C5 = 0.

o It is noted that the solution of the first problem is linear whereas in the other
two cases the solutions are nonlinear. Since all solutions are independent, one
cannot obtain the solution of the Couette flow from the Generalized Couette

flow by setting ¢ = 0.

e Furthermore, a comparison between the third grade parameter S and the slip
parameter -y are also presented in Tables 3.1 to 3.3. It is noted that the increase
of 3 reduces v in all cases and this fact is basically reflected from the tables

as well.

o [t is also worth mentioning that our exact analytical solutions are not only

valid for small but also for large values of 3.



CHAPTER 4

MHD FLow OF A THIRD GRADE FLUID WITH VARIABLE ViISCOSITY AND SLIP

EFrFeECTS IN POROUS SPACE THROUGH A CYLINDER

In this chapter, the motivation comes from a desire to understand the effects of
magnetic field on the pipe flow of a third grade fluid. The fluid is electrically con-
ducting under the application of a constant magnetic fleld. The flow is induced by a
constant pressure gradient. The viscosity here depends upon the space coordinates.
The relevant equations for flow and temperature have been solved analytically by
using homotopy analysis method. Convergence of the obtained solutions is explicitly
shown. The effects of the various parameters of interest on the velocity and tem-
perature are pointed out. The heat transfer analysis is also examined. The solutions
of arising problems have been presented for two cases of viscosity. Convergence of

solution is obtained. Graphical results are also shown.

4.1 MATHEMATICAL FORMULATION OF THE PROBLEM

Consider the steady unidirectional flow and heat transfer through a porous pipe.

The velocity field is of the form
V =[0,0,v(r)] . (4.1)
The governing momentum and energy equations can be expressed as
L ey o[ dog] 8, 2P w3

habd -, = ¥ 2
(r'udr)+ r dr | ‘dr klv Oz +oByv,

39
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dv\? dv\* 1d [ df
&v bk kl-=—[r=)]| =0, 4.3
'u(dr> +20s (dr) + L"dr (Tdr)] 0 (43)
where ¥ is porosity, k) is the permeability, o is the electrical conductivity, By is the

magnetic field strength and & is the thermal conductivity.

The corresponding slip conditions are

3
o) — 7 [j_z(mg (o) ] =0 0m=0, FO=T0=0 @

Putting
8])1 2 _ —
g Wb @ 7w B, 0-06
MORZ) uO'UO 1 R, UO’ “0’ 91 _ 90’
2 2 * 2 R2
Folo YR 2 :_09Bi R
r = 2% p_7°2 -7 M= . (4.5
k(0: — o) k'R o )

The non dimensional problem are

dudv pdv v B [dv\® dv\* d®v dv\? 9
o oI Gt R e N Al ZYED_p ke — M=
ardr Trar TPaE T (dr) 3P dr /) dr? ntp ar ) |” o

(4.6)
%+%j—i+r(z—:)2 (p(r)+,6’(j—:f)2) =0, (4.7)

o(1) - 7 [j— w+2 (%) } 0 0m =0, Xy =Yoo (g

where R, P, vy, ito, 80, 8 and 6, denote the radius, nondimensional form of porosity,
reference velocity, reference viscosity, reference temperature, pipe temperature and

fluid temperature respectively and bars have been dropped for simplicity.

4.2 SOLUTION OF THE PROBLEM

In this case, we find the solutions of the arising equations for the two values of

dynamic viscosity.
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4.2.1 CASE 1: FOR CONSTANT VISCOSITY

For constant viscosity model take

For HAM solution we select
21‘\ _ 4
'U(](T) = %( 2_ 1 + 27); 90 = C(%) (410)

as initial approximations of v and @ respectively, which satisfy the corresponding

boundary conditions. We use the method of higher order differential mapping, to

choose the linear operator £, which is defined by
& 1d

T rar

Ly

such that
Lo(C7 + Cilar) =0,

where Cy and Cjy are the arbitrary constants.

The zeroth—order deformation problems
(1= q)La[v*(r, q) — vo(r)] = gAN3[v*(r, 9), 6" (7, )],

(1 — q)La[6%(r, g) — Bo(7)] = gANafv*(r, 9), 0*(r, 9)],

. Bv* (r, ov* (r,q)\ v*(r,
v@m—v{”§”+ﬁ(”£@)} - o, Xira)
r=1
. . 06*(r, q)
0(7',(])],,,:1 - 01 aT

* * xy 3 .
Ml (r,0), 8" (r0) = 15 +d2—”+§(dv) +38 ((Z;

r dr dr?

—Pv* — M%y — ¢,

dr

* * * 2 * 4
M[v'(r,q),é"(r,Q)Flda +d20 +F(dv> +I5 (dv) '

r dr dr? dr dr

(4.11)

(4.12)

(4.13)

(4.14)

=10,

=0, (4.15)

2 dv*
dr?

(4.16)

(4.17)



For ¢ =0 and ¢ = 1, we have

v*(r,0) = vo(r), 8*(r,0) = Bo(r) and v*(r, 1) = v(r), €°(r,1) = 6(r). (4.18)
By Taylor’s theorem and Eq. (4.18) we have
. o~ (1 8" (rq) m
v (r,q) = wo(r)+ Z (‘”j o q=0) q,
8 (r,q) = 6o(r)+ Z ( 1 81710* 96" (r,q) ) q”, (4.19)
q=0

Where the convergence of the series (4.19) depends upon the choice of fi, such that
series converges at ¢ = 1, then Eq. (4.19) becomes
1
5 Lrees
i 1 6"‘9* (r, amg*(r,q)

m!

m=1

H

=0 % (4.20)

g=0

mth order Deformation Equations
Lo[tm(r) = XmVm-1(r)] = MRam(r), (4.21)

Lo[0m(r) = XmOm-1(r)] = ARem(r), (4.22)

vmu)—v[% +5(M) ] —0n(1) =0,  ,(0) = #,(0) =0, (4.23)

or
m—1 k ) “
Pty Tt DY 3 (et )
Ram(r) = +35'§§(dv,§:k> dz;rl ‘firzi—(l—xm)c—qvml . (4.24)
—Pfv; — M, )
1d0ny d"’ﬂm_ dvm-1-x\ dvi
R = . dHZ(d drd)dr+ . )
w3y ()

k=0 ;=0 i=0
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4.2.2 CASE 2: SPACE DEPENDENT VISCOSITY

In this case we choose

p=r, (4.26)
4 1-— 2
wi) = D —142y), 0= THETT) (427
6 64
and the hnear operator
d? 2d
_4 2a 2
£s ot (4.28)
such that
C
L3(Co + %) =0, (4.29)

where Cy and Cjg are the arbitrary constants. The zeroth— and mth—order order

deformation problems in this case are developed as

(1= q)La[v*(r, q) — vo(r)] = ghN;[v" (r, q), 6" (, 9)], (4.30)
(1= Ll0" (1) = 0o = WG (1,),0°( ), (a31)

*(rg * (g 3 ov* 7

’U*(T, q) -7 [ava(r’ ) +§ (ava(r )) ] r=1 o a(r q) r=0 =0
. 69*(7_’—(1) = , (4.32)
(n ) =0, T 20 —o

L3[m(r) — XnVm-1(r)] = WRsm (1), (4.33)
L3[0m(r) = XmbOm-1(r)] = MRem(r), (4.34)

vm(1) =7y [?”g# + g- (@3@) } = 0,0,(1) =0, o/, (0) =6 (0) =0, (4.35)

. . N\ 3 £\ 2 *
Ns[v*(r, q),0%(r,q)] = gy (dv> +%(d”) "

rdr | dr?2 ' r2\ dr r \dr /) dr?
A{Q *

~pyt -2 S (4.36)
T T

* * *\ 2 +\ 4 +\ 2
M[v*(r,q),o*(r,q)]=1d9 +d29 +I‘(dv) +T3 (d” ) +Dr (di) , (4.37)

rdr = dr? dr dr dr
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Rsm(r) = +3ﬁr1:§: 2 (dvm - k) di:j:;ﬂi:;z — (L= xp)er
—M?*rvy,_y — qrivg,_; — PBru;,

e (M) 8

"7 () s

4.3 CONVERGENCE OF THE SOLUTION

44

3\

L (wss)

7/

(4.39)

The most important aspect of series solution is to discuss the convergence of solution.

In homotopy analysis method the convergence of series is ensured by using a auxiliary

parameter i Figs. 4.1 and 4.2 provide the h—curves in constant viscosity case for

different sets of parameters M, P and -y. The admissible values of velocity are —1.8 <

h < 0 and for temperature are —1.8 < A < —0.2. Figs. 4.3 and 4.4 represent the

h—curves for variable viscosity when u = r. The admissible ranges for both velocity

and temperature profiles are —1.8 < i < —0.6 and —1.4 < iz < —0.5, respectively.

In Figs. 4.3 and 4.6, the graphs of residual errors for constant and variable viscosity

are plotted, respectively.
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Fig. 4.2 : h—curve for temperature in case of constant viscosity.
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Fig. 4.4 : h—curve for temperature in case of constant viscosity.
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4.4 GRAPHICAL RESULTS

In this we present the results by plotting both velocity v and temperature 6 against
the pipe radius r. Figs. (4.5 — 4.7) provide the variation of velocity with respect to
slip parameter v, magnetic parameter M and porosity P for suction and injection.
Figs. (4.10 — 4.14) show the variation of v and 8 when viscosity is space dependent
the effect of the different parameter is shown. Note that the other parameters like

third grade parameter 3, pressure ¢ and I' are kept fixed.

0.15 |

.1

0.05

-7 -0.5 o5 7

¢
r

Fig. 4.5 : Variation of velocity with the change in slip parameter -y for M = 1 and
P=1.
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Fig. 4.7 : Variation of velocity with the change porosity P for v = 0.05 and M = 1.



Fig. 4.8 : Variation of # by changing values of M, with P =1 and v = 1.
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Fig. 4.9 : Variation of ¢ by changing values of P, with M =1 and y = 0.05.
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Fig. 4.10 : Variation of velocity with the change of slip parameter -y, for P = 1 and

M=1
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Fig. 4.11 : Variation of velocity with the change of M for v =0.05 and P = 1.
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Fig. 4.12 : Variation of velocity with the change of porosity P for v = 0.05 and
M=1.
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Fig. 4.13 : Variation of ¢ by changing values of M with P =1 and v = 0.05.
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Fig. 4.14 : Variation of # by changing values of P, with v = 0.05 and M = 1.

4.5 CONCLUSION

The main emphasis in this study is given to the effects of MHD, porosity and slip
parameter on a constant and variable viscosity for steady flow of a third grade fluid
in a pipe. Series solutions have been developed and their convergence is carefully

analyzed.

The velocity and temperature are increasing function of M.

e Increase in suction suppression in the velocity and temperature.

Increase in suction parameter the resistance in the flow increase developing a

suppression in velocity v and temperature 6.

There is decreases in v and # when slip parameter ~ is increased.

The effects of v, p and M on v and 6 for variable viscosity are shown in Figs.

4.5 to 4.14.



CHAPTER 5

EFrecT oF MHD on A THIRD GRADE NANOFLUID IN A CoOAXIAL POROUS

CYLINDERS

The objective of the present study' is to analyze the effect of MHD on a third grade
nanofluids (NF) in a coaxial porous cylinders. Assuming, a unidirectional, electri-
cally conducting, an incompressible and thermodynamic third grade NF between two
infinite coaxial cylinders. The outer cylinder is porous under the influence of per-
pendicular magnetic field. The flow is induced by a constant pressure gradient and
motion of an inner cylinder with no-slip conditions is taken in account. The heat
transfer analysis and nanoparticle concentration equations are also analyzed. The
nonlinear governing equations have been solved by the homotopy analysis method
which does not require any small or large parameters appearing in the problem.
This method has already been successfully used to solve highly non-linear problems.
Convergence of the obtained solutions are properly discussed. Two cases for variable

viscosity and viscous dissipation are discussed.

51 MATHEMATICAL FORMULATION OF PROBLEM

Considering the velocity, temperature and nano particle concentration field as

V =0,0,v(r))
0=1[0,06(r)] ¢ (5.1)
¢ =[0,0,(r)]
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The dimensionless problems can be written as follows:

dpudv pdvu B dv d"‘v
dr dr rdr+”d2+ dr @) 3ﬂ( ) , (5.2)
c+ Puv+ M?v— G0 — B¢
ﬁ-l-ldg-l—ngdd) a NV, i =0 (5.3)
Y&z rdr dr dr Yi\dr ) '
d*e 1do d*¢ 1d¢
-— | =0. 4
Nb(d2+rd>+N<dr +Tdr) 0 (5.4)
The corresponding boundary conditions are
(1) =1, 0(2) =0; 6(1) =1, 6(2) =0 §(1) =1, $2)=0.  (55)
The non-dimensional quantities are defined as
— B R B
. ¢ ~ ¢ Holo
G. = ( -9 )pwa2(1_¢w)
T LU0 )

where ¢, is mass concentration, G, is thermophoresis diffusion constant and B, is

Brownian diffusion constant.

5.2 SOLUTION OF THE PROBLEM

In this section, we find the series solutions of the nonlinear governing equations using

homotopy analysis method for two cases namely; constant and variable viscosity.

5.2.1 CASE 1: FOr CONSTANT VISCOSITY

For constant viscosity model we select

B=r) o _E=r)

7 7

(8-
7

volr) = (5.7)

as initial approximations of v, # and ¢ respectively, which satisfy the corresponding

boundary conditions. We choose the linear operator £, same as given in Eq. (9.1).



The zeroth—order deformation problems

)

(1 —q)Lafv*(r, @) — wo(r)] = ghiNz[v* (7, ), 0% (7, q), ¢" (7, )], (5.8)
(1 - Q)£1 [9*(7‘1 q) - 90(7')] = an/’B[’U* (T’ Q), 0* (T: Q): ¢* ('f‘, Q)]7 (59)
(1= q)L1[¢"(r,q) — do(r)] = gAiNs[v*(r,9),0°(r, q), ¢" (r, )], (5.10)
v (r,¢)|.—y = 1, v (r, @), =0, (5.11)
' (ral,oy = L0°(rgl,, =0, (5.12)
¢ (rloy = 1L, ¢ (nal—2=0, (5.13)

1dv* é )

T dr d'r2‘2 r \ dr ) —¢

Nilv*(r,9),6°(r,9), 8" (@) = 435 (dvr*) fg LGB (0 (B19)

-Pv* — M*v )

* * * *\ 2
,/V;;[’U‘(T, q)rg*(rv q)!¢* (T7 q)] (:(Zg +acf:92 +Nbddg dj ath ((f;;‘ ) 3 (515)
Mlo(r,0).0°00 8" () = 22+ D4 T (ML T8N g
For ¢g=0and ¢ =1, we get
v*(r,0) = vo(r), 0%(r,0) = fo(r), 6"(r,0) = go(r) } | 6510
v (r,1) = v(r), 0°(r, 1) = 0(r), ¢"(r,1) = 4(r)

where ¢ increases from 0 to 1, v*(r, q), 8*(r, q), ¢*(r, ¢) varies from vo(7), 6o(7) , do(r)

to v(r), 6(r),

= (1 m™u*(r,
v¥(r,q) = vo(r +Z m!—_gq(,:q)
,, L e,
o(r,q)=eo(r+Z el
1 0m¢" (7,
#(r0) = ¢or)+2 S Teta)

@(r) respectively. By Taylor's theorem we have

\
m
q=0
e
1
q=0
m
g=0 y

(5.18)
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where the convergence of the series given in Egs. (5.11) — (5.13) depends upon the

choice of A, such that series converges at ¢ = 1, then Eq. (5.18) becomes

wolr) + Z 1 8’"1} (r q)
=0

= 1 8"‘9 (r, q)
8(r) = Go(r) + —_— . 5.19
(r) = bo(r) mZ=1 m o | 4 (5.19)

o 1 0m¢'(r,q)

=)+ Y ol

0 mz__l m!  Oq =0
The mth order deformation problems are given by

Li[vm(r) = XmVm—1(r)] = BRem(r), (5.20)
L[0n(r) = XmOm-1(r)] = ARem(r), (5.21)
L1[$pn(7) = Xmbm1(r)] = Rom(r), (5.22)

vm(2) =0,0n (2) =0,0m (2) =0, Um(]-) = 1:0m(1) =1,¢, (1) =1, (523)

where
1dv,_y vy,
= = B, —(1—
Rren (1) i + s + Gl + Brd,, — (1 — xp)c+
mz:li (dvnzi_1—k) di()ik_1 C(iivi 4 3ﬁm_1 i <dvnzi_1—k) dl:ik—1 (f:‘lg
k=0 i=0 r roar k=0 i—0 T roar
—P’Umﬁl — M2’Um,1, (524)
Cadhny POy R (g k) bk T A,y 6
Rom(r) = r dr to dr? Ny ;_0 dr ﬁ-i_ath ; dr dr’
(5.25)
1d¢,_, , &, 1dfm_y d%0pm1
= — . 5.2
Rom(1) r dr dr? + Nb r dr dr? (5.26)

5.2.2 CASE 2: FOrR SPACE DEPENDENT VISCOSITY

For space dependent viscosity, the zeroth— and mth—order order deformation prob-

lems with the same linear operator and initial guess are developed as

(1 = @)Li[v*(r, @) — vo(r)] = ghNo[v"(r,q), 67 (7, 9), 47 (7, )], (5.27)



57
(1 - Q)El[at(r! q) - QO(T)] = Qﬁ.N‘u[’U*('f', q)v 0* ('I‘, q)v ¢. (T') Q)]v (528)

(1 - q)Lq[8*(r,q) — ¢o(r)] = ghN 2[v* (7, 0), 0% (7, q), ¢" (7, q)], (5.29)
v(rg)l,oy =1, v (rq)l,,=0
0 (r,q)l,oy = 1,8 (r, g}, =0 > (5.30)

¢'(r @),y =1, ¢ (na)l,_, =0

L1[m(r) = X1 (r)] = FERom(r), (5.31)
L10m(r) = XonBro1 ()] = FRiom(r), (5.32)
Lr[¢pm(T) = XmPm—1(r)] = ERun(r), (5.33)
Um(2) =

(2)=0,6,,(2) =0 } 6530

0,0,
Um(1) = 1,0m(1) = 1,¢,, (1) =

. . 2dv  d%v* B [dv*\® 38 [dv*\? d®’ .
Mo[?} (T') Q)ae (Ta q)] ; d'l" + W + ﬁ ( dT ) + ? ( dr ) dr2 —+ Grg
M** ¢

+B,¢* — Pv* — -2 (5.35)
T r

f

. , do*  d2* _do*d d6*\?
Nu[v*(r,q),0*(r,q), 8" (r,q)] = ad ta—g+ Ny j ath<dr) , (5.36)

x * * ld lde* d20*
Niab*(r,),6°(r,0), " (r, )] = 298 287 Nb ( ar e

) . (5.37)

where

m—1 k
%gm(’r) _ ZT‘dvm_l T‘ dQ’Um 1 +/BZ Z (dvmﬁl_k) dvk—l@ +

dr parienr dr dr dr
m—1 k
AVm—1—k \ dUs—1 d? (%

3BT Z Z ( dr ) dr  dr? - (1 - Xm)CT'

k=0 i=0
~M?rvg  + GerBy, — qrv,_1 — Pro; + Bré,, (5.38)

adé)m_ cfzﬂm_ AP, do;. de,, dg
mmm(’f“)=; T sz< Prm—1— k) +athZ( ¢dT1 k) d:,

= (5.39)

2
Riim(r) = 180y T L+ = N, (1 By, 4 6’"‘1) : (5.40)

r dr dr? r dr dr?
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5.3 GRAPHICAL RESULTS

Here we discuss the convergence of solutions. The convergence of the solution is
discussed by drawing the h—curve in Figs 5.1 to 5.4. These figures depict the con-
vergence region and rate of approximation for the homotopy analysis method. It is
noticed that the admissible values of & in all cases is approximately —1.5 < ki < 0.
To see the effects of emerging parameters Figs. 5.5 to 5.12 have been displayed. The
effects of MHD and porosity on velocity profile are shown in Figs. 5.5 to 5.8. Figs.
5.9 and 5.10 have been prepared to explain the variation of thermophoresis and
Brownian parameters on the temperature distribution. Finally Figs. 5.11 to 5.12

bring out the influence on nanoparticle concentration.

Fig. 5.1 : h—curve for velocity profile for constant viscosity.
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Fig. 5.2: hi—curve for temperature profile.

Fig. 5.3 : A—curve for nano particle concentration profile.
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Fig. 5.4 : h—curve for velocity profile for variable viscosity.
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Fig. 5.5 : Effect of M on velocity profile when Ny = 1, N; =1 and P = 0.5 for

constant viscosity.
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Fig. 5.6 : Effect of M on velocity profile when Ny =1, N; =1 and P = 0.5 for

variable viscosity.
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Fig. 5.7 : Effect of P on velocity profile when N, =1, N, =1 and M = 0.5 for

constant viscosity.
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Fig. 5.8 : Effect of P on velocity profile when N; =1, N; =1 and M = 0.5 for

variable viscosity.
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Fig. 5.9 : Effect of NV, on temperature distribution when N; = 0.1.
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Fig. 5.10 : Effect of N; on temperature distribution when N, = 0.1.
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Fig. 5.11 : Effect of N, on nanoparticle concentration when N, = 0.1.
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Fig. 5.12 : Effect of N, on nanoparticle concentration when , = 0.1.

5.4 CONCLUSION

The effect of MHD on a third grade nanofluid in coaxial porous cylinders has been
examined. In order to point out the salient features of the analysis of MHD and
heat transfer for nanofluid the following discussions are set out. The graphs showing
the behavior of the velocity temperature and nanoparticle concentration are plotted
against r. Separate figures have been drawn in order to see the variation of each of
the sundry parameter. To see the effects of emerging parameters for constant and
variable viscosity Figs. 5.5 to 5.8 have been displayed. It is found that the velocity
decreases with an increase in the values of M and P. The effects of N, and N; on
nanoparticle concentration and temperature distribution are shown in Figs. 5.9 to
5.12. Figs. 5.9 and 5.10 have been prepared to explian the varition of N, and N, on
the temperature distribution. Here, it is revealed that the thermal boundary layer
thickness increases when large values of N, have been taken into account and the

thermal boundary layer decreases with increasing V;. Figs. 5.11 and 5.12 bring out
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the influence of nanoparticle concentration for constant and variable viscosity. It is
observed that the nanoparticles concentration increase with the decrease in N, and

decreases by increasing N;.



CHAPTER 6

AN OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR STRONGLY NONLINEAR

DIFFERENTIAL EQUATIONS OF NANOFLUID

In this chapter, an optimal homotopic asymptotic method is used to solve nonlinear
differential equation of third grade NF between coaxial porous cylinders with variable
viscosity. A unidirectional, electrically conducting and incompressible flow between
two infinite porous coaxial cylinders under the influence of perpendicular magnetic
field is considered. The flow is driven by constant pressure gradient and the motion of
inner cylinder with partial slip conditions are considered on outer cylinder. The heat
transfer and nanoparticles concentration equation are also taken into account. The
effects of heat transfer analysis and concentration of nanoparticles are considered
in the presence of magnetohydrodynamic and partial slip are also examined. The

solutions are compared for slip length equals to zero with solutions of chapter six.

6.1 MATHEMATICAL FORMULATION OF PROBLEM

Considering the velocity, temperature and nano particle concentration field as

V =10,0,v(r))
0 =1[0,0,0(r)] ¢- (6.1)
¢ = [Oa 0, ¢(T)]
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The problem in non-dimensional form is

dudv pdv v B [dv)® dv\? d®v
arar Tra et \a +35 dr) dr? (6.2)

=c+ Puv+ M*v — G, — B¢,

d20 1d9 df d¢ do\?
asgt gt N+, (5) =0, (6.3)
d20  1d9 d’¢ 1d¢
el St T 20 ) = 4
e (dr2+rdr)+Nt(dr2 +rdr) 0 (6.4)

subject to boundary conditions
W) =1, 02) =7 [F @] B0 =1 0@ =0 o) =1 6@ =0, (63)

6.2 SOLUTION OF THE PROBLEM

In this section, we find the series solutions of the nonlinear governing equations using
Optimal Homotopic Asymptotic Method for two cases of viscosity namely; constant

and variable viscosity.

6.2.1 CASE 1: FOr CONSTANT VISCOSITY

For constant viscosity model, we choose the linear operator £; which is defined by

2 .
Lo () = 202 (65)

such that non linear operators are

3 2
N (0 (r,p) = 1@ﬂ(@) +38 (d—) | G0+ B

rdr ' r \dr dr ) dr?
— Py — M?v, (6.7)
1dd Nydddp oN, (dO\?
Ms[%‘ (T,P)] = T dr f@g la : (Zi?) ) (6-8)
1dé¢ N, [1d8 d20
\ Niglw; (r,p)] = s ﬁ: (;3; gﬁ) ~ (6.9)
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The corresponding conditions are

) = L) =7 || = 0alt) = 1) = 0il1) = Lin(2) =0

The zeroth—order deformation problems are of the form

(6.10)

d2’U0 d’UO
v _ - Ay |Ee 11
= w)=Lw@-1|G - (611
d*0
T’f =0, 6o(1)=1,6,(2) =0, (6.12)
d*¢
?j’ =0, (1) =1,¢(2)=0. (6.13)
First and second order problems are defined as
].d’UO ,B d’UQ 3 d’l)o 2 d? Yo
2 — ——— - - - - -
%:CB rdr +1" (dr) +36 dr dr2+ , (6.14)
Grao + B,.qf)o - P’Uo - MZ’UO
d26, 1dfy  Nydbodgy, aiN: [dfo\>
udlid S S Rl Sl ids 1
dr? lg{rdr+adr dr+ a (dr) ’ (6.15)
d%¢, 1d¢, N;1d8, d%6,
) -013{;5 ma*w}’ (6.16)
1@4_@ @9 3+3ﬁ % 2@
(22_7}22 = %.{.CM rdr r \ dr dr /] dr?
" " +G,60 + Buhy — Pug — M?ug
((d2,  ldv, 38 [duw\’du )
@ Trar Ty (7) @ T CO By
2 2
+Ch ¢ duo\" d*vy | dvodvi d'u| , (6.17)
b [(dr dr? +2dr dr dr?
L P’Ul - M2’UO )
%6, 426, 1dfy Nydboddy oyN, [dfo\>
2 = e 14{;ﬂ+zmﬁ+ a (d_) + (6.18)
O LI
dr2  (a+ o N)rdr  (o+a V) \dr dr ~ dr dr ’



oy _ Lo
dr? dr2

dr = Nyt dr dr?
_d2_¢_1 4 1% + %l% + %
dré  rdr Nyrdr dr?

N; 1d0
(Lo, Moo, i)

and so forth.

The solutions of the above deformation problems up to second order are

U=+ + 2
5=00+91+92 )
$:¢0+¢1+¢2

where

—4—2c+2r+3cr—cr? 4+ 2y+ 3¢y — 4cr'y+cr'y

= 2(1+7)

00=2--’I‘,

¢0=2—T,
1

STl

p 1 2013Nb — 3013Nb’f‘ + 013Nbr2
1= — )
2a —4C;3aln2 + 4C3arn2 — 2C3alnr

2 [—2013Nt In2 + ZClngt In2 - CwN{T‘lIIT]
Ny ’

¢ =

Uy = [Azl +7rAx + ’!‘2A23 + 1‘3A24 + T‘4A25 + T'5A26 + T6A27] ,

= 1+r) [-6Chi3a {N; (r — 2) + aIn16}] — 6Cya
[Ny (r — 2) + aln16] + CL[NZ (6 - 7r + 2r?)
+3Ny (2N, (r —2) oy + a (6 — 12In 2 + r(In 16 — 3))]
0 = +6a[N, (r —2+rInl6 — a11n16) — a(2(In2)?
+1n16 — In4n 16)] + & [-2C30—
2C1a + CZ4L(Ny (1 = 3) + 2N, (r — o)
+a(In16 — 2))In7 4+ 6C%4ra? (InT)?,

A+ 1A+ r?Aig + P A + T4A15] ;
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(6.19)

(6.20)

(6.21)
(6.22)
(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)
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- 2%'3[86'13% (r—1)aln2+8CyNy (r — 1) aln2+
C4L(—4N,(r — 1)aln2ln8+ N2 (4+2r* —61n2) —r
= (~6+1n16) — Ny (r + 1)@ (2(In7)* — In41n 16 + In 4096)] (6.29)
+ﬁb§[—46’13Nba — 4C Ny + C?%(—3N? + 4N,aln 4+
Ny (In 16 — 6))] In7 — C% (N, + 2N,) ra (In7)?.

6.2.2 CAaSE 2: FOR SPACE DEPENDENT VISCOSITY
For space dependent viscosity model, defining non-linear operator as

2dv B (dv\® dv\? v
Nulpi(rp)) = 5+ 5 (J;) +7 (%) dr? (6.30)

+G'0+B”¢ [1+,5( )]v—ﬁv |

1d9 | Nydodp N, (d6)?
. Bt — 31
Nalp (ol = 150 + R+ 2 () (631
1d¢ N, (1df d6
Nulp; (rp) = -+ 3 (r - dr2) (6.32)
along with boundary conditions
991(1) =1Ly (2) - [%]rﬂ =0
(1) = 1,105(2) = - (6.33)
903(1) = la(p3(2)
The zeroth -order problem is given by
d2'Uo d’Uo
—d?z— =c, 'Uo(l) = 1, ?)0(2) =7 [?]’:2 , (634)
d*,
5z = 0, (1) =1,60(2) =0, (6.35)
d2
T2 _0,  4ol1) = Ln(2) = 0. (6.36)
First order and second order problems are given by
2dvy B [dyg dvg\ * d*v
2, £-0
du _ =C;s{ Tdr e ( dr) +5 ( dr ) dr? ) (6.37)

dr?
+—;F90 + ';Eqso - ;"Uo - MT’UO



dr? r dr a dr dr « dr

%—C’ {1d¢0+&1d_90+d200}

2
G 015{1d90+&4@%+a11vt () }

dr? dr Nyrdr dre
2d’Uo ﬁ d'U() 3 _ d’Uo 2 d2’U0
@:@_{.Qm rd’r+r(dr +3 dr / dr?
dr? dr? T
+Grr00 + Br¢0 PUO - szo
d?v;  2dv; 38 (dw\° dv; )
—+ - — 6.+ B
T&E T r(dr) dr Gl By
2
+%s ¢ dw\ dv | pdwdndu) R
’ 3[3(( 7‘) dr? +2dr dr dr?
L P’U] - M2'U0 J
d0, d%*, 1dfy |y, dbodd dby
V% _ 891, n 280 0
ar? g T rdr+°‘dr dr+ « (dr) +

6, a  do,  n  [(dOidgy dBodd,
+015{ az T (@ +ayN)r dr T GFa ) (E ar T dr dr }’

oy _ &', [Ldbo , w1d0 , &0

dr? dZ; Blrdr " Nrdr Codr?
6 Ldb g 1ds 0,

+Cl5{ PR e 2

The solutions of the above deformation problems up to second order are

—17=U()+’U1+'U2,
0=0y+6,+80, ,
b=+ ¢+,

where
—4—2c+2r+3cr —cr? +2y+ 3¢y — 4cr'y+cr'7
2(147)

0022—’!‘,

Vo =

¢0=2—T',

1
v = m [Bii + rBia + r*Bis + m° By ,
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(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)
(6.45)
(6.46)

(6.47)

1
91 = 2—&[2015Nb—3015NbT+C15NbT—4015a1112+40157'a In2—2Cl5ralnr], (648)



¢ i 2[—2015Nt In2 + 2015Nt7' In2 — 015Nt’l" In ’I"]
1= )
Ny

B
Up = % 4+ Boy + 1853 + 7’2324 + 7”3325 + T4B’ZG y

0 ((—6C150a (Ns (=2 + 1) + aIn 16) — 6c2er
(Np(=2+7) + aln16) + CE[NZ (6 — Tr + 2r2) + 3N,
6, — (=2N;(r —2)ay + a (6 —12In2 + r(In 16 — 3))] + 6
[Ne(r —2+4+7In16 —a;In16) — a(In16 — In41n 16)]
2L [—2C5a — 2C 5 + C4(Ny (r — 3) + 2N, (1 — 1)

+a(In16 — 2))C4alnr],

12a

awga[8Cs s (7 — 1) aln2 4 8C1sNy (r — 1) aln 2

+C%(—12N,aln2 — 6 — 12Ny In 22 + 2N
(r—2+1n8) - 12N;,aln2?) — N, (r + 1) a

¢y =

(2(n7)” ~ In41n16 + In4096)] + 5z

{—4CI5N1,O! — 4C’15Nba + 025(3N52 + 8Ntah12
+Nya (4In2 + 6))] + C% (Ny + 2N,) aln T,
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(6.49)

(6.50)

(6.51)

(6.52)

The coefficients A;; — A1, Ay — A7, Bip — Bis and Bsy — By are calculated using

MATHEMATICA.

6.3 GRAPHICAL RESULTS

The solution is obtained by optimal Homotopic Asymptotic Method. The inves-

tigation of the effect of magnetohydrodynamic parameter M, porosity P and slip

parameter -y on velocity for both constant and variable viscosity are shown in Figs.

6.1 to 6.6. In Figs. 6.7 to 6.10 the effect of N, and N, are shown on nanoparticles

concentration and temperature distribution.
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Fig. 6.1 : Effect of M on velocity profile when N, =1, N; =1, p =0.25 and

v = 0.05 for constant viscosity.
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Fig. 6.2 : Effect of M on velocity profile when Ny, =1, N; = 1,p = 0.25 and

~v = 0.05 for variable viscosity.
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Fig. 6.3 : Effect of P on velocity profile when Ny =1, N, =1, M = 0.5 and

v = 0.05 for constant viscosity.

. . . .
— P-0.00
0.8 — - P-0.25
- P-0.50
0.6
N
a.4
0.2
Ot

Fig. 6.4 : Effect of P on velocity profile when Ny, =1, N; =1, M = 0.5 and

~v = 0.05 for variable viscosity.
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Fig. 6.5 : Effect of v on velocity profile when N, =1, M = 0.5 and P = 0.25 for

constant viscosity.
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Fig. 6.6 : Effect of v on velocity profile when Ny =1, N; =1, M = 0.5 and
P = 0.25 for variable viscosity.



Fig. 6.7 : Effect of N, on temperature distribution when N, = 0.1.
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Fig. 6.8 : Effect of N, on temperature distribution when &, = 0.1.
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Fig. 6.9 : Effect of N, on nanoparticles concentration when V; = 0.1.
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Fig. 6.10 : Effect of N, on nanoparticles concentration when N, = 0.1.

6.4 NUMERICAL RESULTS

The comparison with the HAM solution from previous chapter with obtained OHAM
for v+ = 0 with different values of the emerging parameters is given for different
values. Tables 6.1 and 6.2 are constructed for velocity profile for constant and variable

viscosity respectively. Tables 6.3 and 6.4 are for heat and nanoparticle concentration.



Table 6.1
M P r OHAM HAM Dif fernce
1 025 1.2 074741378 0.74741463 85 x 1077
1.4 052535753 0.52537756 2.003 x 107°
1.6 0.33577505 0.33563555 1.395 x 10~*
1.8 0.16704901 0.16703548 1.353 x 1075
05 05 1.2 0.76462881 0.76462887 6.0 x 1078
1.4 0.55632853 0.55628164 4.689 x 10~°
1.6 0.35626568 0.35692155 6.5587 x 10~*
1.8 0.16605189 0.16641218 3.6029 x 10~*
Table 6.2
M P r OHAM HAM Dif fernce
1 025 1.2 0.70250818 0.70251454 6.36 x 106
1.4 0.44967697 0.44969555 1.858 x 109
1.6 0.24829228 (.24828963 2.65 x 1078
1.8 0.09394581 0.09394601 2.0 x 1077
0.5 05 1.2 064312867 0.6431581 2.943 x 108
1.4 0.35587631 0.35585551 2.08 x 10~%
1.6 0.15833565 0.15833286 2.79 x 106
1.8 0.04580312 0.04580024 2.88 x 10~°

78



Table 6.3

Ny N, r OHAM HAM  Differnce

0.1 0.1 1.2 073932345 0.7393236 1.5x 1077
14 046673214 046673212 2.0 x 1078
1.6 022712271 0.22712301 3.0 x 1077
1.8 0.06013782 0.06013742 4.0 x 1077

02 015 1.2 091716062 091716091 2.9 x 107
1.4 073405661 0.73405662 1.0 x 10~8
1.6 0.49341726 0.49341726 0.0
1.8 0.23581424 0.23581433 9.0 x 1078

Table 6.4

Ny N 71 OHAM HAM Dif fernce

01 01 1.2 046482512 0.46482537 2.03 x 1078
1.4 0.18078829 0.18078827 1.91 x 1077
1.6 0.05426173 0.05426168 5.07 x 1076
1.8 0.01342030 0.01342030 0.0

0.2 0.15 12 0.54874301 0.54870510 5.359 x 107°
1.4 0.26159829 0.26159836 7.0 x 1077
1.6 0.09571721 0.09571718 3.6 x 1077
1.8 0.01769187 0.01769188 1.7 x 1077

6.5 CONCLUSION

79

The effect of partial slip on MHD flow of a third grade nanofluid in a coaxial porous
cylinders has been examined. In order to point out the salient features of the analysis

of MHD and heat transfer for nanofluid the following discussions is presented. The
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graphs showing the behavior of the velocity temperature and nanoparticles concen-
tration are plotted against r. Separate figures have been drawn in order to see the
variation of each of the sundry parameter. To see the effects of emerging parameters
for constant and variable viscosity Figs. 6.1 to 6.14 have been displayed. In Figs. 6.1
to 6.6, it is found that the velocity decreases with an increase in the values of M,
~ and P. The effects of N, and N; on nanoparticles concentration and temperature
distribution are shown in Figs. 6.7 to 6.14. Figs. 6.7 and 6.8 explain the variation
of N, and N; on the temperature distribution. Here, it is revealed that the thermal
boundary layer thickness increases when large values of N, have been taken into
account and he thermal boundary layer decreases with increasing ;. Figs. 6.9 and
6.10 bring out the influence of nanoparticles concentration for constant and vari-
able viscosity. It is observed that the nanoparticles concentration increases with the
decrease in N, and decreases by increasing V;. Tables 6.1 to 6.4 shows that the
results obtained HAM without slip effects in chapter six and the results obtained

this chapter if we take v = 0 are identical.



CHAPTER 7

ANALYTIC SOLUTIONS FOR MHD FLOwW IN AN ANNULUS

In this chapter, flow of third grade fluid is discussed in a rotating frame though
coaxial cylinder. An incompressible and homogeneous MHD third grade fluid
between two cylinders rotating with constant but different angular velocities. The
inner and outer cylinders have radii m and 75, respectively. These cylinders rotate
with constant angular velocities €2; and 2,. The exact solutions are calculated for

zero and non-zero MHD.

7.1 MATHEMATICAL FORMULATION OF THE PROBLEM

Considering the velocity, temperature and nano particle concentration field as

V =[0,0,v(r)] . (7.1)

The mathematical statement of the problem is

2
subject to the boundary conditions
v(r) = latr=1,
v(r) = batr=R, (7.3)
where
2

and bars have been suppressed throughout.
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7.2 SOLUTION OF THE PROBLEM.

We obtain analytic solutions with and without magnetic field.

7.2.1 CASE-1: EXACT SOLUTION WITH ZERO MAGNETIC FIELD

82

We first obtain exact solution when there is no magnetic field, i.e., M = 0. In this

case we let

dv v
W=—-— -,
dr r

Then Eq. (7.2) with M = 0 becomes

aw

— (1 +6¢ w?) += W(1+26W2)

which has first integral
W (1 + 2€W2) = T—2C17,

where C)7 is a constant. Thus

+ % 46 ﬁr4+
r=3 \/ — 5D (Cr7,€,1) -

Ciz _ L _2. 4
\/ 2767-

Therefore, we have the solution for v

v=r/ s_%F(Cn,e,s)ds+r, v(R) =b.
1

7.2.2 CASE-2: SOLUTION WITH MAGNETIC FIELD

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

We now solve Eq. (7.2) for € and M? small, i.e., we let (¢; is the small parameter)

€ = qv,

M 2 = i M *2
and assume a perturbation solution of the form

vV =1+ Q17;.

(7.9)

(7.10)
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The substitution of Eq. (7.10) into Eq. (7.2) results in

d21}0 1d’l)0 Vo
222 _Z g 7.11
dr? + rdr 72 ’ (7.11)

v, ldvn, v dve v\’ [.d%w 2dvy 2 9
gh 2t n oYy gt 2 = M. (7.12
iz i Tt ( dr 7 ) {6 i rdr 2 “o (7.12)

The solution of Eq. (7.11) subject to the boundary condition (7.3) is

Rb—1 R(R-b) _,

(7.13)

WER—1 T TR-1
where R # +1. The insertion of Eq. (7.13) into Eq. (7.12) yields
v, 1du v Rb-1 R(R-b) R (R-b)°
ol e - 1) 640 T (714
drr " rdr r2 M (R2 1T TR-1 " ) 0 (R2 —1)° - (1)

After some calculations the solution of (7.14) subject to the boundary conditions

(7.3) is
[020(R4R;RS+1! — Cis(1 4+ R2) — Cio &2 mR] r

U = + (%}?} + 013R2 + ClQ?:Jif) rt s (715)

+Clg’f‘3 + Clorlnr — 020?”_5

where Cg, C19 and Cqp are given by

1 M*2(Rb—1)
Cs = g7 R-1
o, _ LM?R(R-b)
T2 Rl
8 R*(R-1b)°

= —y—s. 7.1

020 3'U (32_1)3 ( 6)

Thus the first order approximate solution of Eq. (7.2) is (7.10) with vy and v, given
by the Eq. (7.13), (7.15) and (7.16) .

7.3 (GRAPHICAL RESULTS

In order to illustrate the influences of M* and € on the velocity u; we have plotted

three figures. Fig. 7.1 for no magnetic field and Fig. 7.2 for magnetic field.
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Fig. 7.1 : Profiles of dimensionless velocity u in the absence of magnetic field and

with various values of ¢
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Fig. 7.2 : Velocity profile in the presence of magnetic field with various values of

M*.

7.4 CONCLUSION

As a result, the following observations are made.
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e Our exact solutions are more general with variable boundary conditions. There-
fore, one can easily obtain other exact solutions for different parameters with

different boundaries.

e It is also worth mentioning that the exact solution in the absence of magnetic

field is given for the first time here.

e the authors investigated this problem in the presence of magnetic field and

obtained the numerical solutions.



CHAPTER 8

ExacT SOLUTIONS FOR FLOWS OF AN OLDROYD 8-CONSTANT FLUID WITH

NONLINEAR SLIP CONDITIONS

The objective of the present chapter is to investigate the three nonlinear flow cases
of an Oldroyd 8-constant fluid with slip conditions. Flow is considered between
the concentric cylinders. In the first problem, the inner cylinder moves and the
outer cylinder remains stationary. Second problem deals with Poiseuille Flow. Third
problem is for Generalized Couette Flow. All the differential systems are subjected to
nonlinear differential equations and nonlinear boundary conditions. Exact solutions’
are developed and computations have been made for the salient features of the

involved pertinent parameters.

8.1 MATHEMATICAL FORMULATION OF PROBLEM

The Cauchy stress tensor in an Oldroyd 8-constant is given in Egs. (1.25) — (1.24).

For unidirectional steady flow,
V = {u(y),0,0]. (8.1)

The continuity equation is identically satisfied and the equation of motion and the

dimensionless variables, viz.

alUg
h? ’

agUg
h2

*

02=

a; =

86
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yield

1+ (“)2
d a1\ gy du
dy 1+a2(j—;) <@> —° 82

the asterisks are omitted for brevity.

a =~ Ag (AG + /\g) - (A5 + A7) (/\6 + Ag - /\4) — %A_g’ (83)

g = )\3 (A5 + Ag) — ()\5 + A7) ()\5 + Ag — )\5) - /\—72)\-§, (84)

5= py — 7Vl_ 1[(Aa + A7) = (As + Aq)] ( ) (8.5)
1 +,u [()\4 + )«7) s — Q1 ()\3 + )‘6)] (g—)

N =14as (ZZ) . (8.6)

In the next section we find analytic solutions for three flows.

8.2 SOLUTIONS OF THE PROBLEM

The exact solution of the problem is computed using first integral method for the

cases of flow problem.

8.2.1 CASE 1: CoueETTE FLOW

We investigate the steady flow of an Oldroyd 8-constant fluid between two rigid
plates h apart. The lower plate at y = 0 is suddenly moved while the upper plate (at
y = h) is fixed. No pressure gradient is applied. The resulting mathematical problem

is of the form

d|ttals) (dy)2 (d_“) _0, (8.7)



88

l1+a (d_u)2 du
u(l) + v -HT(-)— (dy) =0, (8.9)

y=1
where v* (= v/h) is the slip parameter, asterisk is suppressed here and dimensionless

slip conditions (8.8) and (8.9) are defined in terms of the shear stress. Note that Egs.
(8.8) and (8.9) can be reduced into no-slip conditions iff y = 0.
A first integral of Eq. (8.7) is

1+a (,Tu)z (du) Cio, (8.10)
ea(s)

where Cjg is an arbitrary constant. As a consequence of Eq. (8.10), the boundary

a3

conditions (8.8) and (8.9) become
U(O) =1 +’}’Clﬁ, ’U.(l) = —’}’016. (811)

Since the arbitrary constant C, appears in the boundary conditions (8.11), we can
select any value for it.

The general solution of (8.10) is
uv=Qy+d, (8.12)

where d is another constant and @ is

1 1 1 1
1a1C16 (a1 — 3a2) + 35Crea3 + 3

Sﬂ — 3

2.3 1,22 43
\/3a1a2016 + {(a? — 2alay — 3—3a1a2) Cis + 307

1 1 1,3 3 1

—(110’16 (a1 — 5(12) + gC 6q2 — D)
2.3 '

\/ a?a3Cis + (at — 2aday — $alad) Cf + 563

The substitution of boundary conditions (8.11) into Eq. (8.12) yields the exact solu-

+3

tion

u=QRy+vCy +1, (8.13)
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together with the condition or relation

—2’)’016 -1= 92 (814)

8.2.2 CASE 2: POISEUILLE FLOwW

In this section an Oldroyd 8-constant fluid is bounded between two fixed plates.
The flow is governed by an applied pressure gradient. The resulting mathematical

problem is expressed as follows

L [rons) s
W4 (%)2 (d_D - (%19
_ , .
w(0) — 7 _1+al—(d_3”)3 (_Z_u) =0, (8.16)
] ) -
(1) + 7 H—m(—d_”—)ng (Z—“) =0. (8.17)
e (g)

A first integral of Eq. (8.15) is

1+ a (d_u)2 J
:T—) (d—y) =+ Ce (8.18)

where Cjg is an arbitrary constant. Hence the boundary conditions (8.16) and (8.17)

become

u(0) = vCis, u(1) = —yCis — YC. (8.19)

Since Cig is in the boundary condition (8.19), we can choose any value for Ci.

By means of the transformation

g = Cy+016, C#O

cu, (8.20)

&)
Il
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Eq. (8.18) becomes
2
iI+a; (@)
7 () Ly 8.21
T, 2 d_y =Y (8.21)
1+ ar (%‘)
and the boundary conditions (8.21) transform to

a(d) = cyCs, (8.22)

Tlc+Ci) = —cyCis— v,

One can solve for du/dy from (8.21) to obtain

(01 Jos) + g+

& &

Y
1 fa,.2 3.4 4_ 2.3 1,22)22 4 4.3
5\/“11“29 + (af — 3afas — 55aial) 7° + 3ai

57 (01~ o) + oy~

1 4.2 3-4 4 2.3 1,2.2Y=2 4 4,3
§\/§a1a2y +(al_§a1a2'3_3a102)y + 307

>~ A] (0,1, az,?) . (823)

If the relation
36 3 3

holds, then one can obtain a simplification for A; (a1, ag,7) given by

_ af 01 _ 1 1 3=-3 -3 %— %
A (a1,02,7) = S¥la—3a +§a2y +372 (a1a2y+a1)

a 1 1 3 3
-I-\S/—l@ (a1 - §a2) + 33(13373 —373 (alagy + af).

43 2 1 2
a3 = (a’f — ~alay — ——a%a%) (8.24)

2
The exact solution of Eq. (8.23) subject to the boundary conditions (8.22) is given

by
]
z(ay, a,¥) = /Al (a1, as, 2) dz + cCigy (8.25)
Cis
provided that the following relation holds
- c+Cig
A1 (a1,a9,7) df = —2cyChs — YC°. (8.26)

Cie
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8.2.3 CASE 3: GENERALIZED COUETTE FLOW

Here the physical model is similar to that of the Couette flow. Additionally a constant

pressure gradient is applied. The problem statement is

d 1+a (Z_;;: (d_u) . (8.27)

1+ aq (d—;) du

’U,(O) -7 -W (d—y)- g = 1, (828)
-1+a1 (%)2 " .

u(l) +7 m_‘z—)—z (@)- B =0. (8.29)

As Eq. (8.27) is the same as Eq. (8.15), a first integral of Eq. (8.27) is (8.18) and

the boundary conditions as a consequence become
u(0) = vCis + 1, u(l) = —yCis — Y. (8.30)
The boundary conditions (8.30) transform to

H(C]ﬁ) = C’)’Clﬁ-i-C, (831)

E(C + C]s) = —C'}’C]s — ’}’62.

Here too Cig is in the boundary conditions (8.30) or (8.31) and we can choose it to
be any value. The transformation (8.20) reduces the Eq. (8.27) to Eq. (8.23). Eq.
(8.23) now needs to be solved subject to the conditions (8.31) with the relation given

below
c+Che

f Ay (a1,a9,7) dy = —2¢vChg — y¢% —c. (8.32)
Che
We obtain the exact solution

Yy
u(ay,a,7y) = /Al (@1, a2, 2)dz + cyCis + c. (8.33)
Cis
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Here too A can be simplified as before if the relation (8.24) holds. Note that we
cannot set ¢ = 0 in (8.32) to obtain Eq. (8.7) which is the Couette flow as the
transformation (8.20) breaks down when ¢ = 0. Thus the solutions for the Couette

and Generalized Couette flows are distinct.

8.3 GRAPHICAL RESULTS

In order to illustrate the influences of non-Newtonian parameters a;, a2, and slip
parameter v on the velocity u, we have plotted eleven figures. Figs. 8.1—8.3 for the
Couette flow, Figs. 8.4 to 8.6 for the Poiseuille Flow and Figs. 8.7 to 8.10 for the

Generalized Couette Flow.

5F :
— a,-0.0
4| o
S 3 )
2 L
1L .
0 0.2 04 06 0.8 1

Fig. 8.1 : Velocity profile u(y) for Couette flow with various values of the non-

Newtonian parameter a; when as and 7y are fixed.
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Fig. 8.2 : Velocity profile u(y) for Couette flow with various values of the non-

Newtonian parameter a; when a; and 7y are fixed.

I y = 0-01 o'/. " ]
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Fig. 8.3 : Velocity profile u(y) for Couette flow with various values of the non-

Newtonian parameter v when a; and a, are fixed.
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Fig. 8.4 : Velocity profile u(y) for Poiseuille flow with various values of the non-

Newtonian parameter a; when ~ and ay are fixed.

— a,-3.0
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Fig. 8.5 : Velocity profile u(y) for Poiseuille flow with various values of the non-

Newtonian parameter a; when « and a; are fixed.
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o 0.2 0.4 0.6 0.8 1

y

Fig. 8.6 : Velocity profile u(y) for Poiseuille flow with various values of the non-

Newtonian parameter v when a; and as are fixed.

o 02 0.4 0.6 0.8 1

y

Fig. 8.7 : Velocity profile u(y) for Generalized Couette Flow with various values of

the non-Newtonian parameter a; when - and a, are fixed.
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Fig. 8.8 : Velocity profile u(y) for Generalized Couette Flow with various values of

the non-Newtonian parameter a, when v and a, are fixed.
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Fig. 8.9 : Velocity profile u(y) for Generalized Couette Flow with various values of

the non-Newtonian parameter v when a, and a; are fixed.
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8.4 CONCLUSION

In this work the velocity profiles in an Oldroyd 8-constant fluid are found analytically.
Three interesting cases of Couette flow, Poiseuille flow and Generalized Couette
flow subject to nonlinear slip boundaries conditions are discussed. The first integral

approach is used to find the velocity profiles.

e It is noted that the solution of the first problem is linear whereas in the other
two cases the solutions are nonlinear. Since all solutions are independent, one
cannot obtain the solution of the Poiseuille flow from the Generalized Couette
flow by setting ¢ = 0 as the transformation that reduce the problem breaks

down.

o As expected from the boundary conditions for ¢ > 0, the velocity profile « for
the generalized Couette flow are greater than to Couette flow. The curvature

of the velocity profile will depend on the amplitude of the parameters

e It is also worth mentioning that our exact solutions are more general with vari-
able boundary conditions. Therefore, one can easily obtain another exact solu-
tions for different parameters with different boundaries. Moreover, our exact
analytical solutions are not only valid for small but also for large values of all

emerging parameters.



CHAPTER 9

SOLUTION OF SECOND PAINLEVE EQUATION BY HOMOTOPY ANALYSIS

METHOD

In this chapter, we presents the series solution of second type of Painlevé equation
by using the HAM. Comparison of the present solution is given with the existing
solutions by other methods for instant ADM, HPM and Legendre Tau Method.

Numerical and Graphical results are presented.

9.1 MATHEMATICAL FORMULATION OF THE PROBLEM

There are fifty canonical forms of Painlevé equations. Six of them define the Painlevé
transcendent [87]. These equations require the introduction of new functions to solve
them. Taking in account Dehan and Shakeri {86] solved the following problem with
the help of HAM

v = 2u® + zu+ o, (9.1)

with the initial conditions

w(0) =1, 4(0)=1. (9.2
in which ¢ = (—8k;)? — 1 and k&, is a constant of integration.
9.2 SOLUTION OF THE PROBLEM

Here we tend to solve it with Homotopic Analysis Method (HAM) and compare
them with exiting solution of Dehan and Shakeri [86].

98
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Zeroth-order Deformation Equation

The function u (z) can be expressed by the set of base functions

{z*]i >0} (9.3)
in the form
u(z) = Zam,imi, (9.4)
k=0

where a,,; are the coefficients. By considering the rule of solution expressions for

u(z) and Egs. (9.1) and (9.2} one can choose

2

up(z) = g%— +1 (9.5)

as the initial approximation of u (z) . Using auxiliary linear operator as in Eq. (2.17)
.Cl [Clx + Cg] — 0, (96)

where C) and C; are arbitrary constants.

Eq. (9.1) suggests that the nonlinear operator is of the form
&u(z,q) 5 (aﬁ(z, q

) 3
Nafi(, q)] = ) _ ciile,q) - o 0.7

0%z Oz
The zeroth order deformation problem can be constructed by taking a non-zero

auxiliary parameter A
(1 - q)Ls[ti(z, 9) — uo(z)] = ghN:[u(z, g)), (9:8)
u(0,q) =1, w(1,¢)=0 (9.9)

where g € [0, 1] is the embedding parameter. For ¢ = 0 and ¢ = 1, one respectively

has
u(z,0) = up(x), u(z, 1) = u(z). (9.10)
When ¢ increases from 0 to 1, %z, ¢) varies continuously from initial guess ug (z) to

the final solution u (z) . By Taylor’s theorem and Eq. (9.10) one can write

U(z,q) =uo(z) + ¥ um (z) ¢, (9.11)
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1 0mulz, q)

B (9.12)

U (2) =

q¢=0

and convergence of series (9.12) depends upon 7. Assume that % is selected such that

-

.
the series (9.12) is convergent at g = 1, then due to Eq. (9.11) orfe get

u(z) =uo (z) + Y tm (z). (9.13)

mth-order Deformation Equation
Differentiating m times the zeroth order deformation Eq. {(9.8) with respect to
g. Dividing by m! and finally setting ¢ = 0 the following rmth-order deformation

problem can be obtained
Li[um(z) — XmUm-1(z)] = AR2m(), (9.14)

um(0) = 4 (1) = 0, (9.15)
Rim(Z) = Up_1(2)+2 i V1 k(2) > vk (2)V}(@) —TUm 1 (2)— 0(1 = X). (9.16)

1=0
This is an easy way to solve linear Egs. (9.14) subject to conditions (9.15) in the order

m =1,2,3, ... with the help of symbolic computation software MATHEMATICA.

9.3 CONVERGENCE OF THE SOLUTION.

In this section we will discuss the convergence of our solution. The ex:plicit, analytic
expression given in Eq. 9.4 contains the auxiliary parameter £. In Fig. 9.1 and 9.2
the Ai—curves have been shown for the parameter ¢ = 1 and ¢ = 2. These figures
depict the convergence region and rate of approximation for the homotopy analysis
method. For this purpose fi—curves are sketched for 20th order of approximation to
the corresponding solution of the problem for different values of o. It is apparent
from Fig. 9.1 that the range for the admissible values for 2 is —1.8 < A < —0.1. Also

the error of norm 2 with HAM by 20th-order approximation is calculated
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20
(9.17)

l 2
=3 (ulz)®

=0

where u(z;) are plotted in Fig. 9.3 for ¢ = 1 and in Fig. 9.5 for ¢ = 2. From Fig. 9.3
and 9.4 it can be seen that for ¢ = 1 error is minimum at 5 = —1.49 and for p = 2

error is minimum at A = —1.54, also these values of £ lies in admissible range of h.

4F T
39}
S
£ 38
S
37
=2 -15 -1 -0.8 1]
Fig. 9.1 : hi—curve for 20th order approximation at ¢ = 1.
2}
a9}
)
'
e 3
as}
37}
-2 -f5 -1 -n3 9

Fig. 9.2: A—curve for 20th order approximation at o = 2
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Fig. 9.3 : Error of norm 2 for the 20th-order approximation by HAM or u(z) per h.
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Fig. 9.4 : Error of norm 2 for the 20th-order approximation by HAM for u(z) per A.
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9.4 NUMERICAL RESULTS

HAM solution is compared with other analytic method used in [86]. In Table 9.1
and 9.3 comparison of the values of u(z) by different methods and HAM at ¢ = 1
and 2. Tables 9.2 and 9.4 comparison of the values of ¥/(z) by different methods
and HAM at ¢ = 1 and 2 is given. Tables 9.1 — 9.4 show that the HAM solution
presents a better approximation as compared with ADM solution, HPM solution
and Legendre tau solution. Tables 9.5 — 9.7 give comparison of the error of u(z) by
different methods at ¢ = 1 and 2. Tables 9.6 — 9.8 Compare the values of %'(z) by
different methods and HAM at o =1 and 2.
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Table 9.1
r  analytic continuation ADM and HPM  Legendre Tau method HAM solution
0.05 1.0038 1.00377556945843 1.0376658057109 1.00378 ~
0.10 1.0152 1.01524353738588 1.01525769105649 1.01524
0.15 1.0347 1.03470887678813 1.03470091241366 1.03471
0.20 1.0626 1.06261465111813 1.06259867821323 1.06261
0.25 1.0996 1.09956760325147  1.09959144661382 1.09957
0.30 1.1464 1.14637603460243 1.14638760701734 1.14638
0.35 1.2041 1.20410448048055 1.20407307763244 1.20410
0.40 1.2742 1.27415228539083 1.27413995233202 1.27415
0.45 1.3584 1.35836736627797  1.35840243876556 1.35837
0.50 1.4592 1.45921344816914  1.45923019232761 1.45921
0.55 1.5800 1.58002119375708 1.57998509852588 1.58002
0.60 1.7254 1.72537554656527  1.72535519560916 1.72538
0.65 1.9017 1.90173288879669  1.90176944030828 1.90173
0.70 2.1184 2.11844346203985  2.118446103714198 2.11844
0.75 2.3895 2.38952666502192 2.38948818144855 2.38953
0.80 2.737 2.73693554820900  2.73693515523338 2.73694
0.85 3.197 3.1970033886906%  3.19703536410817 3.19701
0.90 3.834 3.83438275510100  3.83437315572520 3.8344
0.95 4.776 4.77593656643791  4.77624693047256 4.77623

-y
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Table 9.2

z  analytic continuation = ADM and HPM. Legendre Tau method HAM
0.05 0.1516 0.15163005612500  0.151522147109079  0.15163
0.10 0.3081 0.30809994093753 0.30839616285499 0.3081
0.15 0.4720 0.47198211410548 0.47120076741792  0.471982
0.20 0.6463 0.6625891667356 0.64686068663295  0.646259
0.25 0.8345 0.83453560799690 0.83505827505242 0.834536
0.30 1.0413 1.04132442194996 1.04041642453365 1.04132
0.35 1.2724 1.27244080661556 1.27203305549665 1.27244
0.40 1.5256 1.53557674523997 1.53660136211238 1.53558
0.45 1.8412 1.84115754906510 1.84162918219226 1.84116
0.50 2.2037 2.20366299100167 2.20258598447253 2.20366
0.55 2.6440 2.64373198583305 2.64313353371108 2.64373
0.60 3.1920 3.191637681455640 3.19276051287306 3.19164
0.65 3.8930 3.89326306291223 3.89390846667811 3.89327
0.70 4.8210 4.82087325717188 4.81961487256922 4.82088
0.75 6.0940 6.09365539825298 6.09328083763830 6.09366
0.80 7.9190 7.91963993781202 7.92110979463905 7.91965
0.85 10.700 10.68878979691819  10.68810973968357 10.6889
0.90 15.200 15.20291903194554  15.20358105190098 15.2039
0.95 23.300 23.32488089779040  23.34147297218442 23.341

oy

£
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Table 9.3
z  Analytic continuation ADM and HPM. Legendre Tau method HAM solution

0.05 1.0050 1.00502714606259  1.00452901168885 1.00503 °
0.10 1.0203 1.02026919477424 1.02104733101283 1.02027
0.15 1.0461 1.04609205682859 1.04568805007883 1.04609
0.20 1.0830 1.08304976093849 1.08211622538865 1.08305
0.25 1.1319 1.13192491551257 1.13321491002347 113192
0.30 1.1938 1.19379024536885 1.19453158450896 1.19379
0.35 1.2701 1.27009977531541 1.26838341456581 1.2701
0.40 1.3628 1.36282365175205 1.36199227404374 1.36282
0.45 1.4746 1.47464972088494 1.41656054759296 1.47465
0.50 1.6093 1.60929103954460 1.61041647339453 1.60929
0.55 1.7720 1.77196801040459 1.77002375632266 1.77197
0.60 1.9702 1.97019074865113 1.96881771762475 1.97019
0.65 2.2151 2.21508321179155  2.21705133168309 2.21508
0.70 2.5237 2.52374246288910  2.52502186102312 2.52374
0.75 2.9237 2.92371780534123  2.92156709341536 2.92372
0.80 3.4622 3.46222343428592  3.46189169209309 3.46223
0.85 4.2270 4.22716380111867  4.22917124265622 422718 |
0.90 5.4020 5.40230384073914  5.40095659634246 5.40256
0.95 6.9250 7.44220956078449  7.44903796388528 7.4479
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Table 9.4
z  Analytic continuation. =~ ADM and HPM.  Legendre Tau method HAM solution
0.05 0.2018 0.2017565935233 0.19506737519209 0.201756
0.10 0.4091 0.40913700000763 0.4266978440918 0.409136
0.15 0.6256 0.62561099607917 0.58180200663215 0.625611
0.20 0.8553 0.85528574376796 0.88690901421489 0.855286
0.25 1.1033 1.10326643289016 1.13471732639540 1.10327 |
0.30 1.3761 1.137614962029666  1.32713207266902 1.37615
0.35 1.6827 1.68273330750550 1.65624172867177 1.68273
0.40 2.0351 2.03508180897493 2.09055954859542 2.03508
0.45 2.4502 2.45018266771106 2.48155989614621 2.45018
0.50 2.9526 2.95262120064461 2.89480407392915 2.95262
0.55 3.5790 3.57907120593636 3.53916714774305 3.57907
0.60 4.3860 4.38617741400896 4.4459235753419 4.38618
0.65 5.4650 5.46512495162840 5.5097378842758 5.46514
0.70 6.9700 6.97028178853458 6.90225094640852 6.9703
0.75 9.1800 9.17992302915627 9.14737093027648 9. 17995:
0.80 12.640 12.63780233521595  12.72413192501885 12.6379
0.85 18.50 18.52647814752540  18.49529693564642 18.5272
0.90 29.80 29.82591522501663  29.80537398992756 29.8414
0.95 56.10 55.74810648174442  56.15249937871179 56.1052
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Table 9.5

Analytic continuation Analytic continuation Analytic continuation

& ADM and HPM

& Legendre Tau method & HAM at A = —1.49'

0.05 0.033737603 0.033737603 1.99243E - 05
0.10 4.28855E — 05 5.68273E — 05 3.94011F — 05
0.15 8.57909F — 06 8.81815E — 07 9.66464F — 06
0.20 1.3788F — 05 1.24392F — 06 9.41088F — 06
0.25 2.94623E — 05 7.77863F — 06 9.41088E — 06
0.30 2.09049E - 05 1.08103E — 05 1.74459F — 05
0.35 3.72102E — 06 2.23589EF — 05 0.000000
0.40 3.74467F — 05 4.71258F — 05 3.92403F — 05
0.45 2.40236EF — 05 1.79532E — 06 2.20848E — 05
0.50 9.21612F — 06 2.0691F - 05 6.85307E — (06
0.55 1.34138E — 05 9.43131F - 06 1.26582E — 05
0.60 1.41726E — 05 2.59675F — 05 1.15915E — 05
0.65 1.72944F — 03 3.66149F — 05 1.57754E — 05
0.70 2.05164E — 05 2.17635F - 05 1.88822F — 05
0.75 1.11592F — 05 4.94604F — 06 1.25549F — 05
0.80 2.35483FE — 05 2.36919EF — 05 2.19218F — 05
0.85 2.35483E —05 1.10617E — 05 3.12793E — 06
0.90 9.98318F — 05 9.7328F — 05 0.00010433
0.95 1.32817F — 05 5.17024F — 05 4 81575F ~ 05
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Table 9.6
Analytic continuation Analytic continuation Analytic continuation
: & ADM and HPM & Legendre Tau method & HAM at h = —1.49
0.05 0.000198259 0.000513541 0.000197889
0.10 1.91699F — 07 0.000961256 0
0.15 3.78938E — 05 0.001693289 3.81356E — 05 f
0.20 - 0.025203724 0.000867533 6.3438E — 05 3 i
0.25 4.26699F — 05 0.000668993 4.31396EF — 05 f
0.30 2.34533E — 05 0.000848531 1.92068E — 05
0.35 3.20706E — 05 0.000288388 3.14367F — 05
0.40 0.006539555 0.007211171 0.006541689
0.45 2.30561E — 05 0.000233099 2.1725F — 05
0.50 1.6794E — 05 0.000505521 1.81513E — 05
0.55 0.000101367 0.00032771 0.000102118
0.60 0.000113508 0.000238256 0.000112782 L
0.65 6.75733E — 05 0.000233359 6.93553EF — 05
0.70 2.62897E — 05 0.000287311 2.48911F — 05
0.75 5.65477E — 05 0.000118012 5.57926 F — 05
0.80 3.08104F — 05 0.000266422 8.20811F — 05
0.85 0.001047683 0.001111239 0.001037383
0.90 0.000192042 0.000235596 0.000256579
0.95 0.00106785 0.001779956 0.001759657
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Table 9.7

Analytic continuation Analytic continuation Analytic continuation

& ADM and HPM & Legendre Tau method & HAM at h = —1.54:

0.05 2.7011E — 05 0.000468645 2.98507F — 05
0.10 3.01923E — 05 0.000732462 2.94031E — 05
0.15 7.59313F — 06 0.000393796 9.55932F — 06
0.20 4.59473F — 05 0.000816043 4.61681E — 05
0.25 2.20121EF - 05 0.001161684 1.76694F — 05
0.30 8.17108F — 06 0.00061282 8.37661F — 06
0.35 1.76903E — 07 0.001351536 0.0000000
0.40 1.73553E — 05 0.000592696 1.46757E — 05
0.45 3.37182E — 05 0.039359455 3.39075E — 05
0.50 5.56792F — 06 0.000693763 6.21388F — 06
0.55 1.80528E — 05 0.001115262 1.693F — 05
0.60 4.69564E — 06 0.000701595 5.07563F — 06
0.65 7.57898E — 06 0.000880923 9.02894F — 06
0.70 1.68256 F — 05 0.000523779 1.58497E — 05
0.75 6.09E — 06 0.000729523 6.84065E — 06
0.80 6.76861F — 06 8.90497F — 05 8.66501F — 06
0.85 3.87512E — (05 0.00051366 4.25834F — 05
0.90 5.6246FE — 05 0.000193151 0.000103665
0.95 0.074687301 0.075673352 0.075509025
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Table 9.8

Analytic continuation Analytic continuation Analytic continuation

& ADM and HPM & Legendre Tau method & HAM at i = —1.54:

0.05 0.000215097 0.033362858 0.000218038

0.10 9.04425F — 05 0.043015996 8.7998E — 05
0.15 1.75769F — 05 0.07000958 1.75831E — 05
0.20 1.66681F — 05 0.03695664 1.63685L — 05
0.25 3.04243F — 05 0.028475778 2.71912E — 05
0.30 0.17330502 0.03558457 3.63346E — 05
0.35 L.97941F — 05 0.015723701 1.78285E — 05
0.40 8.93864E — 06 0.02725151 9.82753E — 06
0.45 7.07383F — 06 0.012798913 8.1626 E — 06
0.50 7.18033F — 06 0.019574587 6.77369E — 06
0.55 1.98955F — 05 0.011129604 1.95585E — 05
0.60 4.04501F — 05 0.013662466 4.10397E - 05
0.65 2.2864F — 05 0.008186255 2.56176E — 05
0.70 4.04288EF — 05 0.009720094 4.30416E — 05
0.75 8.38462F — 06 0.003554365 5.44662F — 06
0.80 0.000173866 0.006656007 0.000166139

0.85 0.001431251 0.00025422 0.00147027

0.90 0.000869638 0.000180335 0.001389262

0.95 0.006272612 0.000935818 9.26916F — 05
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9.5 CONCLUSION
The following features were noted in this study:

e As we used a Taylor’s series expansion, the solution obtained is valid in the

interval (0,1).

e HPM is the special case of HAM at A = —1 in Eq. (9.13) one can easily get
HPM solution.

e The given comparison in Tables 9.1 — 9.4 indicate that HAM solution is better

than ADM solution, HPM solution, and Legendre Tau solution.
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APPENDIX A

2C1 (P — M2+ Br (v = 1)° + Gy (v = 1)° + 3M*y — 2Py — 3M°*
+P4% + —4yIn2+1In4+ 7’ Ind + Aln4d) + 2°C1A(81In2 — 56 —
67 (54In2 — 37) + 677 (72In2 — 49) — 64° (In8 — 2)) + 36c2C1 A
(-6 — 8~,(tn3—2)+?v2'(1n936 5) +1n512) + 24c (v + 1) + 2¢C,
(M2 (y—1)° —6(P (v -1)° (27 — 1)+ 2(1 + 6A + (3 — 11In2)
—9AIn2 —In8+ 7 (—1+41In16) ++ (=3 +6A (In4 — 1) + In1024))) ,

6cPCLA(38 —27In2 + ¥(3(—49 +361n2) + (¥189 — 144 In2 +

16+ (In 16 — 5)))) — 36c (v — 1)° cO1(—M2 (v — 1)* (13y — 9) +
2P (y—1)? (—13+227) + 6742 (9 —221n2) — 3(—1 + 6A(In2 — 1)
+1n4) + ¥(201In2 — 9 + 6A (In 16 — 3) + 7° (In 256 — 3)) — 36c°C4
A(—114++28 - 1774+ 167In2 — 4In64 + In512) — 4Cy (—11M* +
9P +11B, (v — 1 + 11G, (v — 1) + y(9P(7 — 2) + M*(31 +
(97 — 29))) + 12((v — 2) + A) In 2 + In4096) — 3C1(—2 +

(=3 + )y — 12+ (—2+c(4y—3))’A)Inr,

6(7 — 1)((v — DECUP + M*(y = 2) + 2B,(7 — 1) + 2G,(v — 1)
+e(2y - D+ C1(BP -2+ 27+ 4Py + M (=2 4+ 3y))) +
3cCi{—2 + e —3 + 47))°A) .

—2C(7—1)2 = 2B, —2G, — M? (2 + 3¢} + 2¢(P + (2B, + G,
4+2cM? — ¢P)y + 9¢2 (c(47 = 3) — 2) A),

Ags = cCr(y — 1)° (M? + 8c°A) ,
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1
1440N,a(—1 +7)®
+v(-83 + 647)) +(-3+ 43,-)3 In8) — 12C5(M? — P + Br(-1++)°
+Gr(~1+ 7% + ] + (2 + A) Injd] — y(P(-2+ ) + M*(3+

(=3 + 7)) +Inj16])) + c( 12(-1+7)P + CQ(M (=1+7)° —6(-2
+P(-1+7)3(-1+27) - 12A+29(3 -3y +y* +6A - (10 - 117+
472 4+ 12A)In[2]) 4+ 6A In[8] + In[64]))) — 18c*C2A(—6 +27(8 — 57
+4(=3 + 27) In[2)) + In[512])) + C2(60G, Np(—1 +7)*(2(40 + M*
—5P)a + 2Ny(—1 + )% + a(2(40 + M? — 5P)(—2+ )y + 3(60 + ¢
(180 + 137¢))A + 6¢7(—120 + ¢(—182 + 1217))A — 1201nf2] — 6(20
(=2+9)7 + 112+ c(3 — #))2A) In[2])) — a(—60B,(~1+ 7)2(Ns (60
(=1 +7)2 + 2M3(=1 4 7)? = 10P(—1 + 7)? + 3(60 + c(180 + 137c —
4(60 + 91c)7 + 242e72)A — 22(4(—1+ )% + 3(2 + 3¢ — 4ey)*A)

Inf2]) — SNy (=1 + 7)* (=5 + In[256])) + No(30c* A’ (4(—1 + 7)

(—2886 + (12320 4 +(—17521 + 83037))) — 18(—3 + 47)}{—449
+2(888 + (—1161 + 5007))) In[2] + 135(3 — 47)* In[2}?) +

3¢ A2(—4(—1 + 7)(8832 + v(—49758 + (103437 + v(—99493 +
352527)))) + 90(3 — 4v)? (=91 + 2%(181 4 7(—239 + 1047))) In[2]
—135(=3 + 47)* In[2]?) — 10PA((=1 + 7)(—9P(—1 + v)(—5 +67)(33
+27(—52 + 417)) + 8(—1 +7)2(364 + 7(—1052 + 7697)) + 24(1831
+7(—5201 + 36947))A) + 18((—1 + 7)(458 + P(3 — 47)* (=13 + 227)
—27(903 + 27(—591 + 2567))}12(—434 + 1(1692 + (—2181 + 9281 )))
A) In[2] + In[2])) + 602 A(2M2(—1 4 7)2(339 — 1078 + 10547* —
294~° + +6(—3 + 47)(27 + 29(—25 + 97)) In[2]) + 3(P (-1 + 7)*(—223
+63277 — 44272 + (=3 + 47)(—53 + 807) In{4]) + 12(2+(—6(9 + 23A)
+(165 + 326A) In[2] — 18(7 + 10A) In[2] + 120C; Nya(—1 + 7)*(12B,
(=1 +9)+ SAR(=1+ 7)(112 +4(-305 + 2117)) — 3(3 — 47)* +
(—12+137) In[2]) + 12((P + Gr(—1 +7) + M(-1 + ))(~1+7)* -
2(3 + v%(9 — 201n[2]) — 6A(—2 +In8) + (-9 + 191n2 + 3A(—4 +
In128)) + 7°(-3 + In128)) — In 4096))

(—120N,a(—1 +7)*(c® + CoA(=2(—1 + 7)(28
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1
96 Nya(—1 + )
—9B,(-1+7) = 2G,(-1+ 7)) + ¢(2 =27+ C5(2 + 3P - 2y — 4Py
FMU=24+37)))) + 3cCo(=2 + ¢(=3 + 47))*A) + 24C Ny
(—1+9)2(=14+7) 2P+ M* (=2 +7) +2G- (-1 + 7)) + 4Br(-1+7)
+e(—TPy+6(-1+ P+7)+ M* (-4 +57))) +6c(—2+ c(-3+47))
(=2 + (=6 + 77))A) + CHBG, Ny (=1 + )2 (6N, (=1 +7)* + a(6M*
(=1+79)2 = 11P(~1+7)* + 6(4+2(2+ 3¢)(3 + 10c)A - In4 + (-8
—c(70+ 149¢)A + (4 + 92¢7A — Ind) + In 16))) + a(8B, (-1 +7)*
(Ny(24+ 6M — 11P)(=137) + 6Ny(=2 + o =3 + 47))(=6 + (20
+237))A — 24Ne(—1 4 7)7 In2) + Nyp(144¢* A% (299 — 1179y + 1342
—6687° + 4(=3+ 47)* In2) — 36¢% (=3 + 4y)A* (157 — 54In2 + 2y
(—309 + 1081n2 + ¥(405 — 144In 2+ 167(~11 +In 16)))) + " A(4M?
(299 — 1502y + 28149 — 23277 + 7167* — 3(-1 +)(-3 + 47)°In2)
+3(P(—1 4+ 7)(761 — 108In2 + 47(~758 + 1081n2 + (997 — 1441n 2+
16v(—27 + In16)))) — 24(—45 — 564A + 7°(—345 — 924A + 2921n2 +
384A1In2) — 12:(—17 - 121A + (T + 24A) In4) + 91n 16 + 87 (-9 +
In256)))) + 62 A(—P(—1+ 7)(—749 4 1912y — 11967* + 12(3 - 47)°
In2) +48(=37(13 + 7(—14 + 5y) + 224) + 4y{10 + y(—11 + 47) + 8A)
In2 +6(2+9A — In4) — 6AIn16) + 4M2(—1+ 7)(4(551 — 72In2+ v
(—497 + 1207 + 481n2)) + 3(=61 + In512))) + 26(2M*(—1 +7)* +2
(PA=14+73(-13+229) + 24(1 — 47 + v + IA(1 + 24) + Y2 (6 + 9A.
—12A1n2) — 6A(1 + A)In4 + 29(=2 + 3A(=3 + In 16))) + 3P(—1 + 7)(7’
(51— 441n2) +3(5+ 69A — 4(1+ 3A)In2) + 8y(—6 +1n32 + A(-30 +
In64)) + 24°(-9+In256))) — M2 (=1 4+ )(P(-1 + )} (=21 + 379) -
2+ ¢(=3+ 47 P(=1+7) +6¢(2 + ¢(3 - 47))A)(4{=1+7)*A) In7) ’

(24N (=1 + )X (—~(-1+7)(2C:(P + M*(-2+7)
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Ay = 14aNb(i] T (=12Ca Npa(—1 %+ ¥)2(=2Br — 2Gr + (2 + 3c)M?
—2¢P + 2B, + Gy + c(—2M? + P))v + 92 (=2 + c(—3 + 47))A) —
12C; Npa(—1 + ¥)2(—2(1 + 3c)M? + 4cP + 2B, (-1 + ) + 2G,
(—149) + c(TM2%y — 4P~ + 27¢(—2 — d4¢c + 5¢y)A)) + CF(—Gr Ny
(—1 +YHB6N (=1 4+7) + (16 + 44M* (—1 + )% —48P(—1+7)?
+9(12 + c(132 + 215¢))A + 47(¥(4 + 639cA — 12In2) — 4{2 +
9¢(9 + 31c)A —61n2)) — 481n2)) + a (B (—1 + 7 (—4N,(9 + 11 M?
—12P)(—1 + ¥)% — 9N, (12 + ¢(132 + 215¢ — 16(9 + 31c)y + 284cy?))
A + 8Ny (=1 4+ 7)%(5 +1n4096)) + Np(—MH(—1+4)2(—44+ 367 + ¢
(—9 + 13%)) + M>(6c*A(519 — 1410 + 11005 — 198" — 6(3 — 4+)?
In2) + c®A(1254 — 48337 + 616572 — 2597+° + 6(—3 + 47)° +In2) +
4BP(—1+¥)H{—7+27) + 2(2+ 11A + 2(2 —6In2) —18In2++°
+(—17 4 241n2) — 9A(—41 + 11 64) +7( —47 +601n2 + 6A(—85 +
In 4096)))3(8P%(—1 + 1) + 4eP(—1 + v)(B{—1 + )2 + P(—3 + (7
—49)7) + 57A) + 54c?A2(175 — 464+ + 30672 — (3 — 4+v)% In4) +
9:°A%(535 — 541n2 — 6+(355 — 361n 2 + +(—471 + 208y + 481n 2))

. +329%In16) + 3P A(P{—1 + 7)(197 — 526~ + 348+2) + 12(~°*(53 —
221n2) + y(—49 +20In2 + 6A(—37 +In 16)) — 3(—5 + In4 + A(—57 +
In 64)) + ¥ (—19 + In 256))) — 12¢>A(P(—1 + ¥)(—66 + 857) + 6(—4
+A(—=174+In4) + y?(—4 + In4) — v(—8 + In 16)) + In4096)))) — 3C]
a(8G,Ny(—1 +7)2 +16B, Ny (—1 + 7)% + 36Ny (=1 + 7)?(=2 — e +
4cy)A + 9Ny (—2 — 3+ 4oy} A% + M2N,(—2 — 3¢ + dev)4(—1 +7)?
+(24+3c—4eyv)  +A))Inr) ;

Ay = 144&{-}1 +’y)26cxcga(—1.+’y) 4+ (—M? 4+ 8c2A) + 12¢Ca(—1 + 7)?
(M? +16c%A) + CH2A6B + 7a)M e + 6G(—1 + 5)M( Ny + 2M%a — Pa)
(—1+75) + 12ca(—2 + c(—T7 + 8¥))A) + a(6P(—Br + cP)(—1 + )% + 3M*
(—1+9)(—4—2c+ 27+ 3cy) +e(—1 + ¥)(c(342P + (171 P(3 — 47} +
208(—1+ 7))} + 72B,.(—2 — 7c + 8cy))A + 588c%(2 + (3 — 47v))2A% +
M2(2(8B + Tel (=2 + 7))y — 6 P(—1 + ¥)(—2 — 3¢+ 4ey) +
3c(68 + (300 + 201c — 16(26 + 33c)y + 8(6 + 43c)v2))A))) ,

1 ] 3 1]
Asg = W_—1)(01 (M?(2B, + 2G, + M* (2 + 3¢) — 4¢P — 2(B, + G,
+9¢ (M"’ —P))y) — 2¢%(—42(2 4 3¢)M? + 53¢P + 45B,. (v — 1)

+45G, (7 — 1) + c(168M> — 53P)y)A — 645¢*(—2 + c(—3 + 4v))A?
?
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Agr = _—1—0012 (M2 +8c%A) (M? + 72c°A)
720 )

By; = —48C1(B, 4+ Gy — M?) + 18c*C1A(—24 + 277 + 4077 — 44+° — 2
(—3 + 47)(19 + 4v(—7 + 27)) In[2]) + CC1A(—456 + 14757 —
1284~+2 — 132+7 + 400~ + 6(3 — 4+)7 (27 + 4v(—10 + 3v)) In[2]}
+24C(8( By + G,)In[2} — 8M21Ini2] + 4(1 + P)In[2} + v(—2 +
5B, + 5G, — 3M? — 2P — A — 2(4 + 14B, + 14G, — 12M? 4+ 5P) In{2})
+v (B, + Gy + 4By + G,;) In[2] — 2M (1 + In[2])) + A In[4] — +°
(2 + By + G, — 5M? 4+ 2P + (10B, + 10G, — 6M? + P)In[4]) ++*
(4 — 3By — 3G, — 2M? + 4P + (18B, + 18G; — 13M? + 4P)In[4]
+1In[16])) — 4c(—=6(—1 + V)3 (=2 + 37) + C1 (M2 (=1 + ¥)*(—12 +
22y — 772 + 6(—2+y)(—2 +37) In[2]) — 3(8+*(2 + In[2]) — 29°
(23 + 281n[2]) — (14 + 33A +96(1 + A} 1A[2]) + (14 + 33A) In[4}
+2P(—1 + 7)2(—2 + ¥(2 + ¥ — 111n[2] ¥~ 1n[16]) + Inf64]) + 4+°
(11 + 291n[2] + A(9 + In[64]))))) + 6(8C1(—1 + 7)?(—2 + (-3 + 47))
+C1(—1 4+ V{—2 + (=3 + 47))°A) In[r},

Bis = T2C1(B,+ G, — M?) + FCA(748 — 2751 ¥+ 33602 — 1360+° — 6
(3 — 47)2(27 + 44(—10 + 37)) In[2}) + 187 C (=3 + 47)A(-12 +
381n[2] + (5 — 56 In[2] + 8v(1 + In[4]})) + 4e{ —6(—1 + ) +
(=3 + 47) + C1(MZ{—1 + 4)2{(41 + 18y(—1 + In[2]) — 48 n[2])
+4(—5 + In[64])) — 3(8v*(2 + In[2]) — 2+°(23 + 281n[2]) —
~(14 4+ 33A +96(1 + AYIn{2]) + 2P(—1 + 7)?(—3 + 47)(1 + ¥In[2]
—1n[4]) + {14 4+ 33A) In[4] + 492 (11 + 29 1n[2] + A(9 + In{64]))) i
—24C, (—8M?2In[2] + v(—2+ 9B, +9G, —6M? — 2P — A — 2(4 + 14B, +
14Gy — 12M2 4+ 5P) Inf2])} + A In[4] — °(2 — 3B, — 3Gy + 20(By + Gy)
In{2] + P(2 + In[4]) — 4M?*(1 + In[8])) + (1 + P) In[16] + ~*
(—M3*(2 + In[4}) + (B, + G,) In[16}) + v2(4 — 9B, — 9G, + M?*(1 —
26 In[2]) + 4P(1 + In{4]) + In[16} + 9(B, + G,) In{16]) + (B, + G,)
In{256}) + 24C (—1 + )2 (4B (—1 + 1) — (=1 + ) (2P + M?
(=24 9) —2G (=1 +9)+c(4+3P — 41+ P)y + M?*(—2 + 37)))
+3c(—2 + e(—3 + 47))*A) Injr]

Biz = —12(-1+2C1(M> 4+ Br(—14+7)+Gr(—1 + 7)) +c(2+ C1(M?
(3—47) +2P(—1+ 7)) — 27) — 186°C1 A + 95C (-3 + 47):&),

By, = 4eCy(y—1)* (M? + 8c%A),
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Ci(2+C1)(—2+c(—3 + 47))(=8(—1+7)? — (—2+ (=3 + 47))*A

16(—1+7)° ?

1
1152Npa(—1 + 7)7 .
—3481n[2] + 367(3 + In[4])120Npa(—1 + v)(c® + C2A(—12(—1 + 7)(281
+7(—79 +1567)) + (=3 + 47)* In8) — 12C3(M® - P + B, (—1+7)° + G,
(—1+9)° +md4+ (2 +A)nd —4(P(-2+ )+ M2(3+ (-3+7y)y)+In’
+e(=12(—1 + %)% + Co(M? (=1 + ) — 6(—2+ P(=1+ 7)*(—-1 + 2v)
—12A +2v(3 =37+ v +6A — (10 — 117 +47% + 12A)In2) + 6AIn

8 +In64))) — 18c*CLA(—6 + 2v(8 — 57 + 4(—3 + 27) In[2]) + In[512)))
+C2(60GNo(—1 4+ 7)1 (2(40 & M2~ 5P)a + 2Ns(—1 + )2 + a(2(40 +
M? — 5P)(—2 4 )7 + 3(60 + c(180 + 137¢))A + 6¢y(—120 + c(—182 +
1219))A — 1201n]2] — 2160A Inf2] + 7(—58 — 123A — 288(1 + A) In[2])
F4Y(6(20(—2 + 7)7 + 11{2 + ¢(3 — 47))?A) In[2])) — a(—60B-(—1 + 7)?
(N,(6380(—1 + 7)% + 2M%(—1 + v)* — 10P(—1 + )® + 3(60 + (180 +
137¢ — 4(60 + 91c)y + 242¢7?))A — 22(4(—1+ )% + 3(2 + 3¢ — 4cy)?
A)In2) — 8N:(—1 + 7)2(—5 + In256)) + Np(30A%(4(—1 + 7)(—2886 +'v
(12320 + ¥(—17521 + 83037))) — 18(—3 + 47)(—449 + 2v(888 +

(—1161 4+ 500+))) In 2 + 135(3 — 47)* In22) 4+ 3c*A2(—4(—1 + 7){8832 +
~(—49758 + (105437 + v(—99493 + 35252%)))) + 90(3 — 47)2(—91 +
2v(181 + 7(—239 + 1047))) In2 — 135(—3 + 47)> In 22) — 10 A((—1 +.¥)
(—9P(—1 + ¥)(—=5 + 67)(33 + 27(—52 + 4175)) + 8{—1 + ) (364 + v
(—1052 + 7697)) + 24(1831 + 7(—5201 + 3694))A) + 18((—1 + v)(458
+P(3 — 47)% (=13 4+ 227) — 27(903 + 29(—591 + 2567)))12(—434 + 7y
(1692 + v(—2181 + 9287)))A) In[2] + In[2])) + 602 A(2M2(—1 + 7)%(339'—
1078y + 105477 — 29497 + +6(—3 + 47)(27 + 2v(—25 + 97)) In[2]) + 3(P
(—147)%(—223 + 632y — 44292 + (=3 + 49)}{—53 + 80v) In[d]) + 12(2v
(—6(9 + 23A) + (165 + 326A) In[2] — 18(7 + 10A) In[2] + 120C; Nyo

(=14 7)%(12Br (=1 + 7) + CA2(—1 + ¥)(112 4 4(—305 + 2114)) —

3(3 - 47 + (=124 139)In[2]) + 12({P + Gr(—1 + 7} + M(—=1 + 7))
(—14+4)2 —2(3++%(9 — 201n[2]) — 6A(—2 + In[8]) + ¥(—9 + 191n[2]
+3A(—4 + InJ128])) + ¥ (=3 + In[128])) + In4096]))),

(1152CE G, Nb®* — 4y(3(377 + 750 1n[2]) + 47(—293
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1 o ) L
=(124Nea(=147)° + P(—=1 +9)*(1 = y(3 + In[4
ToAv T 77 (1 2400 (=1 4 )" + P14 ) (1 = 5(3 4 Inf4)

+1Inf16]}(=1 + 7)(2C3 (P + M3 (=2 + ) — 2B, (-1 + )

—2G, (=1 +7)) +¢(2 — 27+ Cy(2+ 3P — 2y — 4Py + M2 (-2 + 37))))
+3cCa{(—2 + (-3 + 47))°A) + UC1 Mo (—1 +9)2 (=1 + V(2P + M?
(=24+7) +2Gr(-1+ 7)) + 14B:(-1+7) + ¢(=TPy+ 6(-1+ P +7) +
M (=44 57))) +6c(=2 + (=3 + 47))(—2 + ¢(—6 + T7))A) + C} (8G,
Ny(=1 + 16Ny (-1 4 9)* + a(6M? (=1 +4) = 1TP(=1 + )* + 6(4
+2(2 4 3¢)(3 + 10c)A — In4 + 4(—8 — (70 + 149¢)A + (4 + 92¢°A
—In4) 4 In16))) + a(8B, {1+ ) (N,(24+6M7 —11P)(-1+7)* +
ENo(—2 + (=3 + 47))(~6 + ¢(—20 + 237))A'— 24N;(—=1 + 7) In2) +
Np(144¢*A%(299 — 1179 + 1542+° — 668+° 4+ 4(-3 + 47)° In2) -
36¢*(—3 + 47)A2(157 — 541n2 + 27(—309 + 108In2 + P(—1 + 7)*(1
—+(3 + In[4]) + In[16]) + 37*A(7 + In[64]) + 7(405 — 144In 2 + 16y
(=11 +In16)))) + A(4M?(299 — 1502y + 2814 — 2327+° + 716*
—3(=1+7)(-3+47°In2) + 3(P(~1+)(761 — 1081n2 + 4(—T758 +
1081n2 + (997 — 144In 2 + 167y(—27 + In 16)))) — 24(—45 — 564A +

7 (—345 — 924A +292In2 4+ 384AIn2) — 129(—17 — 121A + (7 + 24A)
In4) + 91n 16 + 87*(=9 +1n 256)))) + 6c? A (= P(~1 + y)(—749 + 1912y
—1196+2 +12(3 — 47)2In2) + 48(=3v(13 + v(—14 4+ 57) + 22A) +
47(10 + (=11 4+ 47) + 8A)In2 + 6(2 + 9A — In4) — 6AIn 16) + 4M*
(—14+7)(¥(551 = 721n 2 + 7(—497 + 120 + 481n 2)) + 3(~61 + In 512)))
+2e2M* (<149 F2AP (-1 + 9 (-134+229) + M1 -4 ++* +
9A(1+2A) + 72 (6 + 9A — 12A1In2) — 6A(1 +A) In4 + 24(—2 + 3A(=3
+1In16))) + 3P(—1+ 7)(v*(51 — 441n2) + 3(5 + 694 — 4(1 + 3A} In2)
+87(—6+1n32 4+ A(=30 + In64)) + 24°(—9 + In 256))) — M*(—1 + )
(P(=14+ 9 (=21 +377) = 2+ ¢(-3+ 4Y))(P(=1+7) +6¢(2 + ¢
(3—4MA)(4(-147)’A)Inr),
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1
96Nba(—1 + 7)
(45 + 162 (—1 + v) — 1087)A) — 24C, Nba(—1 + 7)°*(—2B; — 2G, +
(2 + 3c)M? — 2¢P + 2(By + Gy + c(—2M? + P))y+ 9¢*(—2 + (-3 +
4)A) — 1201 Npa(—1 + 7)%(=2(1 + 3c)M® + 4¢P + 2B, (-1 +7) +
2G(—1 + 7) + c(TM?y — 4P+ + 27¢(—2 — 4c + 5ey)A)) + CH{(—Gr Ny
(=1 4+ ¥)(B6N, (-1 + )2 + (16 + M2 (=1 + 7)® — 48P(—1 +7)°
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+616572 — 2597+° + 6(—3 + 47)° + In2) + 4(3P(—1 + 7)*(—7 + 2v)
+2(2+11A +4%(2—61n2) —18In2 +~¥*(—17+ 241n2) — 9A(—41 +
In64) + v(—47 + 581In 2 + 6A(—32 + In 16))))) + 3(SP* (-1 + 7)* +
4cP(—1 + 7)2(5(=1 + 7)* + P(=3 + {7 — 47)7) + 5A) + 54c*A%(175
—4647 + 3062 — (3 — 4v)2In4) + 9c®A%(535 — 54In2 — 6+(355 —
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By = T(24C1 Npa(—1 + 7)°((—2P(—1+ 1)+ M* -1+ 27) +
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83cy)A + 588c%(2 + ¢(3 — 47)) + 3¢(68 + (300 + 201c — 16
{26 + 33c)vy + 8(6 +- 43c)72))!&))),
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