
Comparative study of solutions for non-Linear 
problems

Ahmed Zeeshan

A Thesis
Submitted in the Partial Fulfillment of the 

Requirements for the Degree of 
DOCTOR OF PHILOSOPHY 

MATHEMATICS

Dr. RAHMAT ELLAHI

Department of Mathematics and Statistics 
Faculty of Basic and Applied Sciences 

International Islamic University, Islamabad
Pakistan

2011



p l ^ P

A H ^





Comparative study of solutions for non-Linear 
problems

Ahmed Zeeshan

Department of Mathematics and Statistics 
Faculty of Basic and Applied Sciences 

International Islamic University, Islamabad
Pakistan



Certificate

Comparative Study for the Solutions for Non-linear 
Problems

Ahmed Zeeshan

A THESIS SUBM ITTED IN THE P A R TIA L FULFILLMENT OF THE 
REQUIREM ENTS FO R THE DEGREE OF THE DOCTOR OF PHILOSOPHY in

MATHEMATICS

We accept this thesis as conforming to the required standard.

1 .
Dr. Irshad Ahmad Arshad

2 .

(Chairman)
Dr. Ranmat Ellahi 

(Supervisor)

Prof. Dr. Nawazish AN ^fiah

/

4 .

(External Examiner)
Prof. Dr. Muhammad Ayub 

(External Examiner)

5.
Dr. Ambreen Afsar Khan 

(Internal Examiner)

Department of Mathematics and Statistics 
Faculty of Basic and Applied Sciences 

International Islamic University, Islamabad 
Pakistan

2011



Declaration

The work described in this thesis was carried out under the supervision and direction of 
Dr. Rahmat Ellahi, Department of Mathematics and Statistics, International Islamic 
University. No portion of the work referred to in this thesis has been submitted in 
support of an application for another degree or qualification of this or any other 
university or other institution of learning. The thesis is my original work except where 
due reference and credit is given.

Signature:
Ahmed Zeeshan 

PhD. (Mathematics)



D ed ic a tio n

This thesis is dedicated to my father, 

my beloved mother, 

my family and my micle Dr. Saleem Asghax.

IV



Acknowledgements

First and foremost, I am thankful to Almighty Allah, who created us, taught us everything 
we know, provided us with the balance, health, knowledge and'̂ lntelligence to explore his world.

No doubt hesitation while saying ^  j thank lord Almighty whose

help and will I, today able to achieve yet another milestone of life. Salaam upon last 

Messenger of Allah, Hazrat Muhammad (SALLAH O ALl WALI WASALAM) who is 
forever a torch o f gaudiness, a source of knowledge and blessings for entire creation. His 

teaching shows us a way to live withTdignity, stand with honor and learn to be humble.

I express my profound gratitude to my respectable devoted supervisors, Dr. Rahmat 

Ellahi, who helped me through my PhD. with his kind and cooperative guidance. His many 

valuable comments and suggestion greatly improve my knowledge in the field. I am 

placing my earnest thanks to Dr. Rahmat Ellahi. I express my gratitude to all my teachers 
whose teaching has brought me to this stage o f academic zenith. I couldn’t thank my 

teachers specially Dr. sohail Nadeem, Dr. Malik M. Yousaf and Mr. Waseem siddique 

without whose continues help I couldn’t stand here today.

I express my gratitude to Dr. Mumtaz president International Islamic University whose 
vital support enable me to complete my thesis well on time. I thank Dr. Irshad Ahmed 

Arshad chairman Department of Mathematics and statistics for providing support and 

helpful environment in the department.

I would like to thank all my friends specially Aftab, Waqar, Nouman, Arshad, Kashif, 

Arshad Raiz, Shafiq and Sana. My collegues Dr. Arshad Zia, Dr. Zaheer Abbas, Dr. Nasir 
Ali, Dr. Ahmer mehmood, Mr Naiz Ahmed and everyone directly or indirectly helped me 

and pray for me.

I am also grateful to Higher Education Commission o f Pakistan (HEC) to provide funding 
during my research work under NRPU.



VI

Finally, I pay my Gratitude to Dr. F. M. Mahomed who helped me during his visit to 

Pakistan in Lie Analysis, Dr. S. Abbasbandy and Dr. Tariq Javed for their time and 

support regarding HAM in chapter 2 and 9 of this work. Dr. Tasweer Hayat for his 

continues support and well wishing.

I am indebted to my Uncle and fatherly figure Prof. Dr. Saleem Asghar without whose 

continuous persuasion, encouragement, moral and academic support his kind, eminent, 
affectionate nature and encouraging behavior enlightened me to work in this field and 

achieve what is a distant dream for most and I express my gratitude to my beloved family, 

who are always there for encouragement and support, even in the gloomiest time of life 

they were always encouraging me and showered their everlasting love, care and support 

throughout my life. Their humble prayers have always been a source of success for me and 

whose sustained hope led myself to where, I am today.

Abmadleeshah



This thesis deals with the comparative study of finding solutions of non-lineai- prob­

lems arising in fluid mechanics. The choice of such problem is challenging mathemat­

ically and desirable from applications point of view. The governing Naiver Stokes 

equations for the fluid flow axe non-linear partial differential equations and it is 

overwhelmingly difficult to find exact analytic solution of these equations. Various 

approximate analytic methods and numerical techniques are available to address 

such problem to certain level of accuracy. In this thesis the applicabihty and con­

sequences of these methods are investigated to make a comparison between these 

and to find the best solution for a variety of problems arising in the domain of 

non-Newtonian fluids.

In chapter one, we present basic ideas of nonlinear differential equations arising in 

fluid mechanics and discuss various analytic techniques used to solve these equations 

Chapter two contains modeling and analytic solution for the flow of non- 

Newtonian fluid lubricating linear and parabolic slider bearings. Such fluids are 

important when polymers are added to lubricating oils for improving their viscosity 

index and make them less temperature dependent,Some interesting investigations 

explaining the phenomenon of non-Newtonian lubrication in bearings have been 

presented. Some numerical treatment of such problems was available in the htera- 

ture and the main objective is to present analytical solution using HAM. The error 

analysis and the convergence questions are also addressed.

The results of this chapter are published in the journal of Numer Methods for 

Partial Differential Eq 27; n/a. doi: 10.10021num. 20578, 2010.
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In chapter four some fundamental problems such as Couette, Poiseuille and Gen­

eralized Couette flows in the presence of a slip condition have been studied. The slip 

condition gives rise to nonlinear boundary conditions in contrast to the usual no slip 

condition. The shp condition in non-Newtonian fluids are less attended which are 

otherwise important in such flows .Exact solutions are developed while solving the 

nonlinear governing equations with nonlinear boundary conditions. These observa­

tions are published in the journal of Zeitschrift f u r  angewandte Mathematik 

und Physik (ZAM P) 61; 877-888, 2010.

The aim of chapter five is to examine the steady flow of an incompressible third 

grade fluid through a porous horizontal pipe with variable viscosity. A new dimension 

of variable viscosity has been added instead of most frequented constant viscosity 

assumptions. Only a limited work has been accomplished taking viscosity as tem­

perature and space dependent. The solution for MHD third grade fluid flow in the

horizontal porous pipe with viscous dissipation is addressed taking into considera- 
i

tion the slip effects. These results has been submitted for publication in the journal 

of IVansport in porous media (2011 ).

Chapter six deals with recent phenomenon of nanofluids (NF).A brief descrip­

tion of nano fluids goes like: The nanoparticles are ultra fine particles in the size 

of nanometer order. A base fluid with suspended nano size particles are called 

nanofluids. These suspended nanoparticles can change the transport and thermal 

properties of the base fluid. The model used for the nanofluid incorporates the effects 

of Brownian motion and thermophoresis. The pipe flow of third grade nano fluid with 

variable viscosity is considered and solved by HAM. Effects of porosity and MHD are 

considered on emerging velocity field. These findings are submitted in the journal of 

Applied mathematical modelling (2011).

In chapter seven, we extend the problem of chapter six by introducing linear 

partial shp effects and using Optimal Homotopic Asymptotic Method (OHAM) to

viii



solve differential equation of third grade nanofluid between coaxial porous cylinders 

with variable viscosity. The efl'ects of heat transfer analysis and concentration of 

nanoparticles are considered in the presence of magnetohydrodynamic. The contents 

of this chapter are submitted in the journal of Porous media (2011).

The aim of chapter eight is to examine the MHD steady flow of a third grade 

fluid in the annular region when both cyUnders rotate with different but constant 

angular velocity. Approximate analytical solutions to the resulting nonlinear problem 

is derived when the magnetic and third grade material parameters are small. The 

contents of this chapter are published in Commun Nonlinear Sci Nrnner Sim- 

ulat, 15; 1224-1227, 2010.

The main objective in chapter nine is to venture further in the regime of non- 

Newtonian fluids (Oldroyd constant) with nonlinear conditions while investigating 

the closed form solutions of Couette, Poiseuille and Generedized Couette flows. These 

findings are published in Commun Nonlinear Sci Numer Simulat, 15; 322-330, 2010.

In chapter three, we draw comparison of HAM with the other analytical tech­

niques in finding the solution of second painleve equation. The results obtained with 

HAM are found to be better in ciccuracy than ADM, HPM and Legendre Tau. These 

results are published in the journal of Numer Methods for Partial Differential 

Eq, 26; 1070-1078, 2010.
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C h a p t e r  1 

P r e l im in a r ie s

Fundamental laws of nature can be generally formulated in terms of differential 

equations and their solutions and analysis is widely used in applied mathematics, 

physics, engineering and other fields of natural and social sciences. These differen­

tial equations may be linear or nonlinear. The solution of non hnear equations is 

generally very complex and there are no well estabhshed methods to solve these 

equations. There are therefore some methods which provide approximate analyt­

ical and numerical solutions. We will be particularly interested in non hnear partial 

differential equations occurring in non Newtonian fluid mechanics. In this chapter, 

we will discuss some recent analytical techniques which will be used in our subse­

quent analyses. Before that we present the formulation of the basic equations of fluid 

mechanics.

NewtoniEin and Non-Newtonian Fluids:

The fluids in which the shear stress is Uneally proportional to the rate of shear 

strain are called Newtonian fluid. Water and air are considered as Newtonian fluid.

The fluids in which there is nonlinear proportionality between shear stress and 

rate of shear strain are termed as non-Newtonian fluids. A nmnber of industrially 

important fluids such as molten plastics, polymers, pulps, foods and slurries display 

non-Newtonian fluid behavior.

Non-Newtonian fluid flow is a topic of great interest and several investigations 

have been made in this direction; for example the work appearing in the references [1

1



to [17]. The interest in these flows is generated due to their extensive apphcations 

in industry and engineering. An assessment of technological apphcations requires 

knowledge of the Theological characteristics of the non-Newtonian fluids. We now 

know that the features of non-Newtonian fluids, being different from the viscous 

fluids, cannot be predicted by employing a single constitutive equation. Therefore, 

several models of non-Newtonian fluids have been suggested. A second grade model 

is the simplest subclass of differential type fluids. The constitutive relations of non- 

Newtonian fluids further add complexities to the mathematical expressions. A novel 

feature of the problem governing the flow of non-Newtonian fluids, in general, is the 

presence of viscoelasticity of the fluid which increases the order of the differential 

equation.

Nanofluids:

The nanoparticles are ultra fine particles of the size of nanometer order. A base 

fluid with suspended nano size particles is called nanofluids (NF). Materials with 

sizes of nanometers possess imique physical and chemical properties These particles 

help in increasing the thermal conductivity of fluids. Although, the enhancement 

of thermal conductivity of conventional fluids by the suspension of sohd particles, 

such as millimeter- or micrometer-sized particles, has been known for more than 

100 years. However, they have not been of interest for practical apphcations due 

to problems of sedimentation, erosion, fouhng and increased pressure drop of the 

flow channel. The nano size particle now have come to overcome these issues. Nan­

otechnology has been now widely used in industry. These suspended nanoparticles 

can change the transport and thermal properties of the base fluid. The model used 

for the nanofluid incorporates the effects of Brownian motion and thermophoresis. 

These are firstly mtroduced by Choi [18]. Choi et al. [19] showed that the addition 

of a small amoimt (less than 1 % )of volume of nanoparticles to conventional heat 

transfer hquids increased the thermal conductivity of the fluid two times (approxi­

2



mately). Khanafer et al. [20] seem to be the first who have examined heat transfer 

performance of nanofluids inside an enclosure taking into account the sohd particle 

dispersion. After these studies, nanotechnology is considered by many to be one of 

the significant forces that drive the next major industrial revolution of this century. 

It aims at manipulating the structure of the matter at the molecular level with the 

goal for innovation in virtually every industry and its applications include biolog­

ical sciences, physical sciences, electronics cooling, transportation, environment and 

national security etc. Some numerical and experimental studies on nanofluids can 

be found in [21] to [23 .

Porous Medium:

A porous medium is a material consisting of a solid matrix with interconnected 

void (Pores). Examples of natural porous media are beach sand, sandstone, Ume- 

stone, rye bread, wood, and the hmnan lung. The porosity -0 of a porous medium is

defined as the ratio of the void space to the total volume of the mediinn . Neild and

Bejan explained different model and constitutive equations along with their merits 

and demerits in their book [24],

Henry Darcy after experimental investigations on steady-state unidirectional 

water flow in a uniform medium showed a relationship between flow rate and the 

apphed pressmre difference. In mathematical form this is expressed by

«  = (1.1)/i ox

Here is the dynamic viscosity of the fluid. The coefficient ki is independent 

of the nature of the fluid but it depends on the geometry of the medium. It has 

dimensions (length)^ and is called the specific permeabiUty or intrinsic permeability 

of the medium. In three dimensions, Eq. (1.1) generahzes to

V  =  (1.2)
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where the permeabihty ki is in general a second-order tensor. Rearranging the Eq. 

(1.2), we obtain

V p = - ^ V .  (1.3)

M agnetohydrodynamics (M H D):

Magnetic fields are known to influence many natural and man-made flows. They 

are routinely used in industry to heat pump, stir and levitate liquid metals. There is 

the terrestrial magnetic field which is maintained by fluid motion in the earth’s core, 

the solar magnetic field which generates simspots and solar flares, and the galactic 

field which influences the formation of stars.

In MHD, the charge density plays no significant part. The electric force, gE, is 

minute by comparison with the Lorentz force, and that the contribution of dpjdt  to 

the charge conservation equation is also neghgible (see [25]-[26]). MaxweU’s equations 

can now be written as:

4

Solenoidal nature of B

Faraday’s law

Ampere equation

Charge conservation

Lorentz Force

Ohm’s law

V.B =  0. (1.4)

V x E  =  - ^ .  (1.5)

V X B =  /iJ. (1.6)

V.J =  0. (1.7)

F =  J x B .  (1.8)

J = (j(E  +  u x B ) .  (1.9)



Slip Conditions:

With the advent of viscous fluid theory,it is widely accepted that the flow satisfies 

no slip boundary conditions. These conditions have been widely used in the fluid 

flow problems arising in Newtonian and non- Newtonian fluids [27] to [29]. However, 

there could be situations where no slip conditions are not adequate and it is more 

reasonable to assume shp conditions [30] to [33] instead. Such situations arise for 

fluid flow past permeable walls, slotted plates, rough and coated surfaces, gas and 

Hquid flows in micro devices.

It is now established that slip effects may appear for two types of fluids i.e., rare 

field gases and fluids having much more elastic character. In these fluids, sUppage 

appear subject to large tangential traction. Naiver [34] suggested shp condition at a 

rigid boundary which states that the fluid velocity at the plate is hnearly proportional 

to the shear stress at the plate, later proposed independently by Maxwell [35] The 

constant of proportionality is called a shp length and may be regarded as the distance 

at which the velocity of the fluid is equal to that of the boundary [36]. Qian and 

Wang [37] showed that the amoimt of shp for Newtonian fluid is proportional to 

the shear rate. This is the simplest known boundary condition used to improve the 

no-shp condition.

The Naiver boimdary conditions at the sohd wall may be written as

V  =  27A 1, (1.10)

where 7  is the slip length with the same sign as A i is first rivihn erickson tensor.
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1.1 G o v e r n in g  E q u a t io n s  o f  F l u id  M e c h a n ic s

The basic equations of fluid dynamics are conservation of mass, momentum and 

energy equations. These equations show the time rate of change of mass, momentum 

or energy at a point in a fluid representing various physical mechanisms.

C o n t i n u i t y  E q u a t io n

The partial differential equation expressing conservation of mass is called the conti­

nuity equation. The continuity equation involves only the fluid density and the fluid 

velocity. It is apphcable to all fluids, compressible and incompressible, Newtonian 

and non-Newtonian. For the whole range of flow speeds it is given by

f  +  V .(pV) =  0. (1.11)

For an incompressible fluid, the density is constant and the continuity equation

reduces to

V .V  =  0. (1.12)

For nanofluid the additional equation for the continuity of nanoparticles in 

nanofluids.

^  +  (V.V)V5 =  V . ( d b V>p+ ^ V 0 ^  , (1.13)

where 6 is temperture and <p is volume fraction of nanoparticle.

M o m e n t u m  E q u a t io n

The partial differential equations expressing conservation of linear momentum 

are caUed momentum equation. The equations representing Newtonian fluids are 

famously known as Naiver-Stokes equation. General momentum equation is given 

by



(V V )v )  = pb + V.T, (1.14)

where T is Cauchy stress tensor, b is body forces.

Different fluids are defined by different Cauchy stress tensor, i.e.,

i. For inviscid fluid

T  =  - p i .  (1.15)

ii. For Newtonian fluid the tensor become

T = - p l + n A u  (1.16)

where

Ai =  (grad V ) +  (grad V)^. (1.17)

iii. Non- Newtonian second grade fluid

T  =  —p i +  /iA i  +  0̂ 1 A 2 +  oi2 ( A i )  , (1*18)

where and a 2 are the normal stress moduH. The second grade fluid model is 

compatible with thermodynamics when the Helmholtz free energy of the fluid 

is a minimum for the fluid in equilibrium. The Clausius-Duhem inequahty and 

the assumption that the Helmholtz free energy is a minimum in equilibrium 

provide the following restrictions [38

/I ^  0, Qi ^  0, a i  +  a2  — 0. (1.19)

The fluid model of a second grade exhibits the normal stress effects only 

and cannot explain the shear thinning/shear thickening phenomena. The fluid 

model possessing shear thinning properties is known as a third grade fluid.



iv. Non- Newtonian third grade fluid

T =  — + ciiA2 +  02AJ +  /SjAs -I- /?2 (A1A 2 +  A 2A 1) +  Ai,

(1.20)
here A i, A 2, and A 3 are Rivihn Erickson tensors. For n > 1, it is generally 

defined by

An = dt
+ An-i(gradV) +  (grad V ) An-i- (1.21)

The material constants satisfy following thermodynamical constraints as 

defined [39

/i >  0, ai >  0, |ai +  0:2! < >/2 4 //^ 3 , — /32 — 0, ^3 >  0 (1.22)

V. Oldroyd model

T  = -j)I  +  S,

S + Ai ^  f  (SAi +  A iS) +  ^  (trS) A i +  ^  [ir (SAi)] I 

=  fi A i + +  A4A 1 + ^  [tr (Aj)] I

where S is defined as

/  ^
S =

S x x S x y S x z

S y x S y y S y z

S z x S z y S z z

(1.23)

(1.24)

(1.25)

E n e r g y  E q u a t io n

The partial differential equation expressing conservation of energy for fluids is simply 

referred to as the energy equation. The derivation of this scalar equation is based 

on the thermodynamic principle that the time rate of change of internal energy plus 

kinetic energy for a volimie of fluid is equal to the rate at which work is done on the 

fluid plus the rate at which heat is added to the fluid.



The energy equation is derived using the principle of conservation of heat energy. 

This is given by

9

(Ig
p ^  =  T .gra d V -d ivQ . 

at
(1.26)

where e is internal energy.

For nanofluids the equation modified as

=  d iv Q - {pc\ { D i , v > p . v e + ^ v e . v 9 ^ .

1.2 M e t h o d s  o f  S o l u t io n s  f o r  N o n l in e a r  D if f e r e n t ia l  E q u a t io n s

The nonlinear differential equations, nonhnear or complex boundary conditions, vari­

able coefficients differential equations and coupled differential equations have fittle 

chances of getting exact or closed form solutions. This results in the need of approx­

imate solutions using numerical or some approximate analytical techniques. With 

the advent of modern computers many numerical techniques have been evolved and 

exact numerical solutions can be obtained. However, analytical solutions are still 

important as they provide a standard for checking the accuracies of many approxi­

mate solutions which can be numerical or empirical. They can also be used as tests 

for verifying numerical schemes that are developed for studying more complex flow 

problems.

There are various approximate analytical methods to find the solutions of non 

hnear governing equations in almost aU branches of science and engineering. To name 

a few these are: lie symmetry methods [40] to [50], perturbation methods [51], artifi­

cial parameter method [52], Tanh method [53], Jacobi elliptic function method [54], 

Adomian decomposition method [55], homotopy perturbation method [56], modified 

homotopy perturbation method [57], variational method [58], iteration perturbation 

method [59] Homotopy Analysis Method [60] and Optimal Homotopic Asymptotic



Method [61]. Since we shall be using HAM and OHAM in our thesis, which are 

relatively recent methods,therefore we would like to give some mathematical details 

for the convenience of reading,

1 .2 .1  H o m o t o p y  A n a l y s is  M e t h o d

In 1992 Liao apphed the concept of homotopy [62], a basic concept in topology [63], 

to get analytic approximations of nonhneax equations. The methodology is explained 

as below.

In order to describe the basic idea of HAM, presented by LIAO, we consider the 

following nonlinear differential equation

N  [ip (3:)] =  0, B ( i f  (a:)) =  0, (1.27)

where N  is the nonlinear operator, (p is an miknown dependent function, B is the 

boundary conditions and x denotes the independent variable. The zero — order 

deformation equation is written as

( ! - ? ) £  [tp (x- q) -  ipg (3:)] =  q W  {x; g )], (1.28)

where € [0 , 1] is called the embedding parameter, h is the non-zero-auxihary 

parameter, L is the auxihary linear operator, {x) is the initial approximation 

which satisfy all the boundary conditions. It is vital that one has freedom to choose 

the initial approximation and auxihary linear operator. In the above equation g = 0 

and g =  1

^  (a;; 0) =  ifQ (x) and ^ {x; I) =  (p (x) (1.29)

respectively. Thus as q increases from 0 to 1, the solution varies from initial approx­

imation <Pq (x) to the desired solution ^ (rr). Expanding ^ { x ‘,q) in the Taylor series

10
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with respect to q, one has

m=l ml dq̂
(1.30)

q=0

The mth order deformation equation is

•C [Pm iv) -  XmVm- 1  (»?)] =  Mlm {fm-l)  >

where

and

(1.31)

(1.32)
q=0

~Km (1.33)
j o ,  m < l ,

1, m >  1.

Eq. (1.31) can be easily solved by using a symbolic computation software such as 

MAPLE or MATHEMATICA. If the auxihary hnear operator, the initial approxi­

mation and the auxiliary parameter h is properly chosen, the series (1.30) converges 

at g =  1 and one has
CO

f ( x )  =  Vo(x) +  '^<p,„(x) (1.34)
Tn=l

which is the solutions of the original nonhnear Eq. (1.27). The higher order defor­

mation equations can be found using [64]. HAM contains an auxiliary parameters h, 

which provides us with a simple way to control and adjust the convergence of the 

series solution emerging in (1.34). A few recent investigations in the hterature that 

contain Homotopy Analysis Method (HAM) solutions is mentioned in the references 

[65j to [77].

1 .2 .2  O p t i m a l  H o m o t o p i c  A s y m p t o t i c  M e t h o d

Recently, Marinca et al. [61] developed a very interesting method Optimal Homotopic 

Asymptotic Method (OHAM) to approximate the solution of nonlinear problems in 

the frame work of the homotopy analysis method. This method is not only vahd for
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small (or large) values of physical parameter but also minimizes the residual error 

which shows its validity and great potential to solve the nonlinear problems. The 

application of this method in fluid mechanics, heat and mass transfer analysis has 

been successfully studied by Marinca et al [78] to [80 .

In order to understand the method, we give a brief procedure as described by 

marinca in solving the following differential equation:

£  (?;) +  5 +  N (t;) =  0, B  (ti) =  0.

where  ̂ is a known function.

A homotopy is first construct ais (p (r, q) : R x [0,1] — i? which satisfies

£(¥>(»■,«))

(1.35)

(1 -  q) [C {<p (r, q)) +  g (r)] =  H (q)
+N(v?(r,g)) (1.36)

B{ip{r,q)) =  0

where r E R and 0 < o' < 1 is an embedding parameter, H {q) is a non-zero auxihary 

function for g /  0 and H (0) =  0 , (r, q) are unknown functions, the values q =  0

and q =  I gives

ip (r, 0) =  tJo W  , (p (r, 1) =  t>(r). 

let us choose the auxihary function H {q) in the form

(L37)H(q) =  ^ q ^ D j ,
j=l

where Dj are constants.

By Taylor’s theorem one can write Eq. (1.36) to get <p {r,q,  D j )  in the following 

form

^{r,q ,D j) =  u{r) +  (r, D̂ -) j  =  1, 2 , .....  (1.38)
fc>i

Using Eq. (1.36) and Eqs. (1.37) to (1.38) the zeroth and first order problems as 

foUows

£(wo(r))+p(7-)  =  0, 5(^io) =  0, (1.39)



C (Ui (r)) =  KiNo K  (r ) ) , J5 (ui) -  0 

and the corresponding k ~ t h  order equation will be defined by

(1.40)
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C. (uk (r) -  Uk-i (r)) =  Dktid (uo (r))
*-l

i=i

{Uk—j (̂ )̂)

_ +Ni(fc_j) (uo (r), Ui (r), Uk-j {r)) _

where

N {u (r)) =

B { u k ,^ ) = 0 - ,  A: =  2,3,4....

No («o {r)) +  qNi (ug ( r ) , Ui (r))

(1.41)

+ 9^N2 (uo (r) , « i ( r ) , U2 (r)) +  .. .

(1.42)

The approximate solution of Eq. (1.36) can be determined in the form
m

«(”*’ (r, g, Dj) =  Vio (r) +  ^  Uik (r, D j) . (1.43)
fe=l

By substitute Eq. (1.38) into Eq. (1.36) and as a result we get the following 

residual

Er (r, Dj) =  C (« '”')) +  g + N . (1.44)

If Er (r, Dj) =  0 then (r, Dj) happens to be the exact solution. Generally such 

case will not arise for nonlinear problems, but we can minimize the functional by
0

E n (Kj) =  jE r ^  (r, Dj) dr, (1.45)

where a and b are two values, depending on the given problem for locating the

desired Dj and finally the imknown constants Dj (j =  1,2,3, ..... m) can be optimally

identified firom the conditions
dEn
dDj = 0, (1.46)

or simply we can use Er (r, Dj) =  0 generates a set linear equations at different 

points in domain to gain the values of constants Dj, with these constants known, 

the approximate solution of order m is well determined now.



C h a p t e r  2

A  S t u d y  o f  P r e s s u r e  D is t r ib u t io n  f o r  a  S l id e r  B e a r i n g  L u b r ic a t e d

WITH A S e c o n d  G r a d e  F l u id

In this chapter, the pressure distribution of sHder bearing lubricated with second 

grade fluid for inchned and parabohc sHder bearings is studied.Some numerical 

treatment for such problem for different fluids are available in the literature [81 

to [84]. Interest here is to develop a series solution. A numerical solution is also 

computed. The solutions are valid not only for small but also for large values of 

all the emerging parameters. Convergence values and residual error are examined. 

Comparison between inclined and parabohc bearings is also presented.

2.1 M a t h e m a t ic a l  F o r m u l a t i o n  o f  t h e  P r o b l e m  

Assume the velocity field to be

V  =  [u{x,y),v{x,y),%

Setting non dimensional parameters as,

X y u V p b(x) -
^ =  =  =  =  =  =  (2 .1)

Using Eqs. (1.12), (1.14), (1.18), (1.19) and (2.1)

du dv  ̂ , s

I ,9 ^  _   ̂ dp- I 1
dx dy Re dx Re dx aRe dy ' ^

14



+
1 ax,^  _____1

^dx'^^dy a^Re dy a Re 5a; ' a^Re dy
yy (2.4)
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where and ^yy are components of stress tensor T, Re =  pUL/fj, is the

Reynolds number and a is the small parameter of same order as that of channel 

slope. Furthermore, in deriving these equations it is assumed that, in addition to the 

usual boundary layer approximations, the contribution due to the shear stresses is 

of the same order of magnitude as that due to the normal stresses and . Thus, both

V and ai/p are of 0{S^), where 6 is the boundary layer thickness.

It is intended to develop the lubrication equations for the second grade fluid for 

the geometries, where a 1 and for the Reynolds number such that a  Re 1. 

Under these assumptions, Eqs. (2.2) to (2.4) reduce to

du dv
dx dy (2.5)

Defining

dp*
-f  (2Aj +  A2)

d { du

+A

dx '  ̂ dx \dy^
d (  d‘̂ u\ du d^u

+

u -\-v-

d'̂ u

d^u
dx \ dy^)  dydxdy dy^

dy dy

.du.

Eqs. (2.5) -(2.7) become

ay

du dv 
+  ^  =  0,dx dy

dp\ d^u  ̂ (  9 f  d^u\ du d^u d^u\ +  Ai —   ̂ -\~vdx dy‘̂ dx V dy"̂  J dydxdy dy  ̂j 
dpi
dy

=  0,

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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in which Ai =  Uai/Lfi =  A and A2 =  Ua2 /Lii are the dimensionless material 

constants. The boundary conditions axe

u(a;, 0) =  1, 6) =  0 ,

v{x, 0) =  0 , v{x, h) =  0 .

(2.12)

(2.13)

2.2 S o l u t io n s  o f  t h e  P r o b l e m

The slider bearing for inclined and parabolic slider bearings are shown in the figures

2.1 and 2.2 respectively

Fig. 2.1: IncHned sHder bearing.
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Fig. 2.2 : Parabolic slider bearing.

For the series solution of u{x, y), we choose

dpo ( y^\Uo{x,y) =

^̂0 (^, y ) =  

Pq{x) =

+dx \ 2 2 J
6(1 -  5)y2

2b^ ’
6 (s -  1) (rr -  1) 2:

(2.14)

(2.15)

(2.16)
(1 + s) 62 ’

as the initial approximations of u,v and p respectively which satisfy the corre­

sponding boundary conditions. We use the method of higher order differential map­

ping in order to choose the linear operator C

£1 i f ) = r , (2.17)

whereas the nonlinear operator Af is

M [2 (s/,,)] =  - ^  +  ^ ^  + A
dx dy^

v ( y , Q ) ^ J
(2.18)
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If the convergence parameter is h and 0 < 9 < 1 is an embedding parameter then 

the zeroth order deformation problem is

(1 -  q)Ci\u{y,q) -  Mo(j/)] = (2.19)

(2.20)u (0 ,q ) = 1, 2 (6, 9) =  0. 

mth-order Deformation Equation

Taking derivative of Eq. (2.19) m times with respect to q and then setting g =  0 , 

one can write

Cl\u^{y) -  (2-21)

u(0) =  u{b) =  0 , (2.22)
/  ^ m -l I v^m-1 I \

Z ^ n - 0  ^ 3  Z ^ n = 0  1- n 53.5̂ 2 T

Em - 1  d U m -l^ n  d'^Un _  Y ^ m - l  d U m -l -n  d'^Un 
n = 0  d x  d y  d yd x  )

(2.23)

dx

Now Eq. (2.20) is solved by using MATHEMATICA.

Prom Eqs. (2.5) to (2.6) one can easily calculate v and p by using the following 

relations
r

(2.24)

(2.25)

" = - J  Tx^y'

Pi ( 0 ) = p , ( l )  =  0.

To interpret the solution for the variation of pressure distribution with second grade 

fluid of lubricants b{x) we consider the following two cases:

Case 1: Inclined slider bearing

6 =  1 — (1 — 5) a:. (2.26)

Case 2: Parabolic slider bearing

(2.27)

where s =  >̂2/^1.
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2 .3  C o n v e r g e n c e  o f  t h e  S o l u t io n

Here, the convergence of the solutions containing the convergence parameter h is 

discussed. Figs. 2.3 and 2.4 are plotted for the /I—curves of inclined and parabolic 

slider bearings respectively. In Fig. 2.3 the h—curve is plotted for 16th order approxi­

mation for dimensionless pressure and it is found that the range for admissible values 

of h is —0.3 < h <  —0.1. In Fig. 4, the /i—curve is plotted for 13th order approxima­

tion for dimensionless pressure and it is found that the range for admissible value 

of h is —0.2 < h <  —0 .1. In Figs. 2.5 and 2.6, the graphs of residual errors for 

inclined and parabolic slider bearings are plotted respectively. For different values 

of convergence parameter /i, it is seen that the error is minimum at ^ =  —0.24 for 

inchned and at h =  —0.15 for parabohc shder bearings.

Fig. 2.3 : curve for inclined slider bearing.
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Fig. 2.4 : fl—curve for parabolic slider bearing.

2I—
UJ

Fig. 2.5 : Residual for inclined slider bearing for different values of h.
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Fig. 2.6 : Residual for parabolic slider bearing for different values of h.

2.4 G r a p h ic a l  R e s u l t s

In this section, the pressure distribution is discussed for the various values of non- 

Newtonian parameter A and clearance ratio s in the sUder bearings. In Figs. 2.7 

and 2.8, we observe that the effects of variation of non-NeM^onian parameter A in 

slider bearings when 5 =  0.5. For larger values of A, it is found that an increase in 

A increases the pressure. In Figs, 2.9 and 2.10, we reverse the order and now plot 

dimensionless pressure versus dimensionless length for constant A =  1 and different 

values of clearance ratio s. Comparison of pressure distributions in the two slider 

bearings namely parabohc and incHned slider bearing at A =  I and 5 =  0.5 is given 

in Fig. 2.11.
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Fig. 2.7: Pressure distribution for various values of non-Newtonian parameter A in 

inclined slider bearing for clearance ratio s =  0.5.

Fig. 2.8: Pressure distribution for slider bearings for various values of 

non-Newtonian parameter A in parabolic slider bearing for clearance ratio s =  0.5.
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Fig, 2.9: Pressure distribution for various values of clearance ratio 5 in an inclined

slider bearing for A =  1.

0.2 0.4 0.6 O.Q
X

Fig. 2 .10: Pressure distribution for various values of clearance ratio s in parabolic

slider bearing.
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Fig. 2 .11: Comparison of pressure distribution in parabolic and inclined slider

bearings.

2.5  N u m e r ic a l  R e s u l t s

Numerical results and Analytic solution obtained for pressure distribution by HAM 

are compared for inclined (Table 2.1) and parabolic (Table 2.2) slider bearings at 

A =  1 and s =  0.5. Also comparison of pressure distribution between both type of 

bearings are shown in Table 2.3.



Table 2.1
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X Analytic Numerical

0.1 0.471019 0.471028

0.2 0.970697 0.970700

0.3 1.49408 1.49418

0.4 2.02851 2.02856

0.5 2.54649 2.54652

0.6 2.99863 2.99864

0.7 3.26005 3.26007

0.8 3.14836 3.14839

0.9 2.28815 2.28818

Table 2.2

X Analytic Numerical

0.1 0.548634 0.548668

0.2 1.11304 1.11312

0.3 1.68339 1.68345

0.4 2.24195 2.24200

0.5 2.75340 2.75338

0.6 2.17395 2.17395

0.7 3.39191 3.39189

0.8 3.12742 3.12748

0.9 2.23005 2-23000
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Table 2.3

X Inclined Parabolic

0.1 0.471019 0.548634

0.2 0.970697 1.11304

0.3 1.49408 1.68339

0.4 2.02851 2.24195

0.5 2.54649 2.7534

0.6 2.99863 2.17395

0.7 3.26005 3.39191

0.8 3.14836 3.12742

0.9 2.28815 2.23005

2.6 C o n c l u s io n

The main results axe listed below.

• An increase in non-Newtonian parameter A leads to an increase in pressure.

• An increase in r decreases the pressure,

• Comparison of slider bearings show that the pressure in parabolic slider bearing 

attains higher value.

• The pressure distribution in an incHned shder bearings is shghtly greater than 

the parabohc shder bearing in the later part of flow i.e., 0.7 <  x < 1.

• Homotopy perturbation method (HPM) is the special case of HAM. For h — —I 

in Eq. (2.19) we get HPM solution.

The residual is almost neghgible (see Figs. 2.5 and 2 .6).
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The analytic solutions for inclined and parabolic slider bearings with viscous 

fluid can be obtained by choosing A =  0.



C h a p t e r  3

S o m e  F u n d a m e n t a l  F l o w s  T h ir d  G r a d e  F l u id  w i t h  N o n l in e a r  Slip

C o n d it io n s

The objective of this chapter is to study the Couette, Poiseuille and generalized Cou- 

ette flows in the presence of a sHp condition. Exact solutions have been constructed 

for the problems consisting of nonlinear equations with non-hnear boundary condi­

tions. The slip conditions in terms of shear stress are defined. Graphic and niunerical 

results are presented.

3.1 M a t h e m a t ic a l  F o r m u l a t io n  o f  t h e  P r o b l e m  

Considering the steady unidirectional flow described by the velocity field

V  =  [«(?/), 0,0] (3.1)

Setting the following dimensionless variables

and by using Eqs. (1.2), (1.3) and (1.9), we get the dimensionless governing equation

of the form
d

dy
~\-2 p =  c, (3.2)dy \dy

where asterisks have been suppressed for simphcity, u the kinematic viscosity, Uq the 

characteristic velocity, p the modified pressure and c =  dpjdx.

28
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3 .2  S o l u t io n  o f  t h e  P r o b l e m

We use first integral approach to find the solution of three cases of flows, namely

1. Couette flow.

2. Poiseuille flow.

3. Generahzed Couette flow.

3 .2 .1  C a s e  1: C o u e t t e  F l o w

Here the third grade fluid is bounded between two rigid plates a distant h apart. 

No pressure gradient is apphed. The lower plate is suddenly jerked while the upper 

plate is fixed. The resulting dimensionless problem is

3'
A .
dy

u(0) — 7

w(l) + 7

du { du +  2^
dy dy.

= 0,

du
dy

du
dy

+  2^

-\-2j3

(S)
/  du'̂
.<^y)

=  1,
y=0

0,

(3.3)

(3.4)

(3.5)

where 7 * (= 7 //i) is the slip parameter and asterisk is suppressed here. 

Eq. (3.3) has first integral

du
dy

+ 2^ =  C a . (3.6)

After the use of Eqs. (3.4) and (3.5), the equivalent boundary conditions are

m(0 ) =  7 C3 +  1, u(l) =  - 7 C3, (3.7)

where Cz is the constant to be selected.
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The exact solution is given as follows

dy V4/9 ' 2 7 ] j 40 4 / 3 ''' 27^

Therefore,

u =  Ay + C4, (3.9)

where C4 is a further constant.

From Eqs. (3.7) and (3.9), we deduce

C'4 =  7<̂ 3 +  1. (3.10)

In view of Eqs. (3.6), (3.9) and (3.10) we obtain

A = - 27(73- 1. (3.11)

Eqs. (3.8) and (3.11) imply that

4^ V 27/? 4/J V 4;8 V 27;0 4;3

Thus the exact solution is

w =  A y  +  7C3 +  l ,  (3.13)

with the condition that Eq. (3.12) be satisfied. The relation between j3 and 7  for 

fixed C3 is given in Table 3.1.

3 .2 .2  C a s e  2: P o i s e u i l l e  F l o w

Here an incompressible third grade fluid is bounded between the two stationary 

plates distant h apart and the flow is caused by an appUed constant pressure gradient. 

The resulting dimensionless problem is of the form

A.
dy

+ 2/3
dy \dy^

=  c, (3.14)
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w(0) -  7
_

=  0 ,
y=0

(3,15)

ti(l) + 7
fd u V
Kdy)

=  0 .
y=i

(3.16)

The first integral of Eq. (3.14) is

du du
= cy-^Cs, (3.17)

dy ' " \dy^

where C5 is a constant to be selected. After the invocation of Eqs. (3.15) and (3.16), 

the boundary conditions reduce to

î(O) =  7 C's,

u{\) =  - 7 C5 -  7 c. 

The exact solution of Eq. (3.17) is

(3.18)

(3.19)

u = 9(i/ +  ^ )
8(6)5

31 ̂ 81(cy+C75)̂ +̂ +9(cjf+C'5)

31 ^81(cy+C5)̂ +f-9(cy+C'5)

1

24 (6)3c

31 ^81(cy+C5r+f-9(cy+C5)

3/  ŷ 81(cy+C5)̂ +|+9(cy+C5)

xyS ^ q /H -C s) +  — +  Ce, (3.20)

where Ce is a constant. In view of Eqs. (3.18) and (3.19), Eq. (3.20) yields the 

following two relations

9 ( ^ )
7 C5 =  4 ^

8 (6)3 \
^SICI +  I +  9Cs y/81C| +  I  -  9C5

/3

24(6)3 c \
81C| +  I -  9C5 3

/?
+ \

^81C| +  I +  9C5

^\lsiC^ +  — +  Ce (3.21)



and

9(1 + ^ )
8(6)5

3/ J81(c+C’5)̂ +|+9(c+C75)

3 j  ̂ 81(c+C5)^+^—9(c+C5)

1

24 (6)3c

81(c+C75) +^—9(c+C5)

.2 6x y 8 1 (c  +  C5) +  ^ +  C'e-
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(3.22)

The relation between f5 and 7  for fixed c when C5 =  0 and C5 7  ̂ 0 are given in 

Tables 3.2 and 3.3 respectively. The relation among p, 7 , c and C5 is obtained after 

ehminating between Eqs. (3.21) and (3.22).

3 .2 .3  C a s e  3: G e n e r a l iz e d  C o u e t t e  F l o w

In this case the geometrical description of the flow is similar to that of the previous 

one. Only the flow here is generated by a constant pressure gradient and sudden 

motion of the lower plate. The imderlying dimensionless problem is

d
dy 

u(0 ) — 7

“ (1 ) + 7

(
\dyj = c,

du
dy

du

+  2/?

+  2/3

/  du\

du

y = 0

=  0 .

(3.23)

(3 .24)

(3.25)

y=i(^y '  ̂ \ d y

The first integral of Eq. (3.21) is the same as Eq. (3.17). The solution of Eq. (3.21) 

is Eq. (3.20). However, the boundary conditions reduce to

w(0) =  7C5 +  1,

« ( 1) =  - 7 C5 -  7 c.

(3.26)

(3.27)



Again in view of Eqs. (3.26) and (3.27), we arrive at the following relation

9 ( f )7 C5 +  I =
(6)̂ \

+ 1 +  9C5

\
8 1 C | + f-9 C 5

1

24 (6 ) 5 c \ P
+ \

^ S lC f +  I  +  9C5
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(3.28)

and Eq. (3.22). The relation between /? and 7  for fixed c when 0^ =  0  and C5 ^  0 

are given in Tables 3.4 and 3.5 respectively.

3.3 G r a p h i c a l  R e s u l t s

In order to illustrate the influences of third grade parameter p, and slip parameter 

7  on the velocity u we have plotted figures* Figs. 3.1 and 3.2 for the Couette flow, 

Figs. 3.3 and 3.4 for the Poiseuille flow and Figs. 3.5 and 3.6 for the Generahzed 

Couette flow.

Fig. 3.1 ; Velocity profile u{y) for Couette fiow for various values of p.
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Fig. 3.2 : Velocity profile u{y) for Couette flow for various values of 7 .

Fig. 3.3 : Velocity profile u[y) for Poiseuille Flow for various values of (5.
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0.8

0.6

0 .4

0.2

—  7 = 0.01 
-  -  r  = 0 .0 5  

y  = 0 . l 0  

=  0,15

0  0 .2  0 .4  0 .6  0 .3  i

y

Fig. 3.4 : Velocity profile u(y) for Poisemlle Flow for various values of 7 .

Fig. 3.5 : Velocity profile u{y) for Generalized Couette flow for various values of (3.
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Fig. 3.6  : Velocity profile u{y) for Generalized Couette flow for various values of 7 . 

3 .4  N u m e r ic a l  R e s u l t s

We now compute the numerical values of 7  on c, C5 and C3. Table 3.1 corresponds 

to the first problem. Tables 3.2 is prepared for the second problem whereas Tables

3.3 is computed for the third problem.

Table 3.1

C3 p 7

1 1 0.7948

2 0.7500

3 0.7253

4 0.7087



Table 3.2
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Cs c p 7

0 1 1 1.4905

2 1.1268

3 0.9616

4 0.8609

1 1 1 1.3778

2 1.0771

3 0.9343

4 0.8453

Table 3.3

C's c 7

0 1 1 0.4905

2 0.1268

3 -0.0384

4 -0.1391

1 1 1 1.0444

2 0.7930

3 0.6010

4 0.5118



In this chapter the velocity profiles in a third grade fluid are found analytically. 

Three interesting cases of Couette flow, Poiseuille flow and generalized Couette flow 

are discussed. The first integral approach is used to find the velocity profiles. The 

variation of the third grade parameter pressure gradient c and sHp parameter 7 

on the velocity profiles are illustrated. As a result, the following observations are 

made.

• In all three cases, we see that the flows show similar behavior of velocity profiles 

for different values of /?, 7  and c. However, as expected from the boundary 

conditions, the boundary layer for nonzero C5 is translated when compared to 

the case C5 =  0.

• It is noted that the solution of the first problem is linear whereas in the other 

two cases the solutions are nonhneax. Since all solutions are independent, one 

cannot obtain the solution of the Couette flow from the Generahzed Couette 

flow by setting c =  0 .

• Furthermore, a comparison between the third grade parameter /3 and the shp 

parameter 7  are also presented in Tables 3.1 to 3.3. It is noted that the increase 

of /3 reduces 7  in aU cases and this fact is basically reflected from the tables 

as well.

• It is also worth mentioning that our exact analytical solutions axe not only 

valid for smaU but also for large values of (3 .

38

3.5 Conclusion



C h a p t e r  4

M H D  F l o w  o f  a  T h ir d  G r a d e  F l u id  w i t h  V a r ia b l e  V is c o s it y  a n d  S lip  

E f f e c t s  in  P o r o u s  Sp a c e  T h r o u g h  a  C y l i n d e r

In this chapter, the motivation comes from a desire to understand the effects of 

magnetic field on the pipe flow of a third grade fluid. The fluid is electrically con­

ducting under the application of a constant magnetic field. The flow is induced by a 

constant pressure gradient. The viscosity here depends upon the space coordinates. 

The relevant equations for fiow and temperature have been solved analytically by 

using homotopy analysis method. Convergence of the obtained solutions is explicitly 

shown. The efliects of the various parameters of interest on the velocity and tem­

perature are pointed out. The heat transfer analysis is also examined. The solutions 

of arising problems have been presented for two cases of viscosity. Convergence of 

solution is obtained. Graphical results are also shown.

4 .1  M a t h e m a t ic a l  F o r m u l a t i o n  o f  t h e  P r o b l e m

Consider the steady unidirectional flow and heat transfer through a porous pipe. 

The velocity field is of the form

V  =  [0 ,0 , ?;{r)]. (4.1)

The governing momentum and energy equations can be expressed as

I d  dv 2/?3 d
r dr dr r dr
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dv
dr + 2/?.

 ̂dv\ 
\dr) + k

I d ( de\
---------r —
r dr \ dr J

= 0 , (4.3)
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where ip is porosity, k\ is the perrQeabihty, a is the electrical conductivity, Bq is the 

magnetic field strength and k is the thermal conductivity.

The corresponding slip conditions are

);(!) -  7*

Putting

d v /  dv 
dr (1) =  0 ; 0 (1) =  0 , g ( 0 )  =  f ( 0 )  =  0. (4.4)

dpi
0  =  c = r  V f i  0 - 9 o

fiQVo R Vo fj,Q Oi -

r =
k {e i -9 o Y   ̂ h

The non dimensional problem are

X
R

oBlR^
(4.5)

d îdv fj,dv (Pv /3 f  dv\
dr dr r dr ^dr^ r \dr j

+ sp
V  d?v 

dr )  dr'̂
- P

 ̂dv\^ 
dr J

^  r T — ^
dr"̂  r dr \dr

2\

dr
= 0 ,

V -  M ' ^ v  =  c,

(4.6)

(4.7)

=  0; 0(1) =  O, ^ (0 )  =  J ( 0 ) = 0 .  (4.8)

where R, P, vq, fiQ, Oq, 9 and 9\ denote the radius, nondimensional form of porosity, 

reference velocity, reference viscosity, reference temperature, pipe temperature and 

fluid temperature respectively and bars have been dropped for simphcity.

4 .2  S o l u t io n  o f  t h e  P r o b l e m

‘ I

In this case, we find the solutions of the arising equations for the two values of 

dynamic viscosity.



4.2.1 C a s e  1 : F o r  c o n s t a n t  v i s c o s i t y
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For constant viscosity model take

For HAM solution we select

(4.9)

(4.10)

as initial approximations of v and 0  respectively, which satisfy the corresponding 

boundary conditions. We use the method of higher order differential mapping, to 

choose the linear operator £2 which is defined by

(f  1 d
dr̂  r dr

such that

£ 2(^7 +  Cghir) =  0 ,

where Cy and Cg are the arbitrary constants.

The zeroth—order  deformation problems

(4.11)

(4.12)

(1 -  <l)C2[v'(r, g) -  ■uo(r)] =  qhU3[v*{r, q ),6’ (r, «)],

(1 -  q)C2 [B'‘{r,q) -  0o(r)j =  gMf4[v"(r, g),&*(r, g)l,

v*(r, g) -  7
dr dr =  0,

r—1

=  0 ,

dv’ {r,q)
dr

de\r,q)

(4.13)

(4.14)

= 0,

dr
= 0, (4.15)

=̂0

■^Av*(r, q),e*(r, q)

q),0 *(r, q)

1 dv* (Pv* /3 /  dv* \  ̂ r. /I /  \ ̂+  +  -  I —  I +  S/3 ‘r dr dr‘̂  r \ dr 
—Pv* — M^v — c,

1 ^  ^  V
r dr dr"̂  V c?r /

dr"̂

+ r^
/  dv* 

dr

(4.16)

(4.17)
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For q =  0 and g =  1, we have

v*{r, 0) =  voW, 0*{r, 0) =  6 o{r) and v*(r, 1) =  ?;(r), 9*{r, 1) =  9{r). (4.18)

By Taylor’s theorem and Eq. (4.18) we have

1 d^v*(r,q)oo /

e\r,q) =  Oo(r) + ^”   ̂ 1 d^e*(r,q)

\
r ,

9=0/

]I r ,
9=0/

(4.19)

Where the convergence of the series (4.19) depends upon the choice of /I, such that 

series converges at =  1, then Eq. (4.19) becomes

v{r) =  Vo(r) +  - j
1 _ drv*{r, q) 

—; m\ dq^
771=1 q=0

g= 0

(4.20)

mth order Deform ation Equations

■C2[l’m(r) -  X m ^ ' m - i ( r ) ]  =  h^3„ {r ) , (4.21)

•C2[^m(f) -  X „C -l(» ')] =  ^4m (r), (4.22)

=  0„(1) =  0, < (0 )  =  C (0 )  =  0, (4.23)

1 d V m - 1  d ‘̂ V n i-1  f  d V m - l - k \  d V k - l  d V j

r dr dr'̂  r \ dr )  dr dru—n 4—n \  '

^  ^  V )  dr dr-̂k=0 1 0̂  ̂ /

-PPvi -

> , (4.24)

1 dOm-l d^6jn-i / dVm-l-k\ dvk
r dr dr"̂  ^  \ dr j  dr

AC—“U

^ d_____________
dr dr dr

r ar ar  ̂ ^  \ ar j  ar
^ s^ {r )=  ^

j dvk-j dvj^i dvj 

fe=0 j=o i=o V /

. (4.25)
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4.2.2 C a s e  2 : S p a c e  d e p e n d e n t  v i s c o s i t y

In this case we choose

and the hnear operator

such that

2 _rf
3 ŷ,2 r dr'

A(C9 +  ^ )  =  0,r

(4.26)

(4.27)

(4.28)

(4.29)

where Cg and C\q are the arbitrary constants. The zeroth— and mi/i—order order 

deformation problems in this case are developed as

(1 -  q)C3 [v'{r,g) -  );o(’“}] =  9fiA/'5[w*(r,g),6»*(r,g)],

(1 -  g)C3 l0 *{r, g) -  0o(f)] =  gWe[v*(r, q), e*(r, g)],

D*(r,9) - 7 d r + = 0 ,
dv"(r, q)

= 0 ,
dO'(r,q)

dr

dr

= 0 ,
r = 0

= 0
r = 0

C.3[6m[r) -  x,Jm-i{r)\ =  fi3i6m(r),

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

t'm(l) -  7 (1) , /  dVm (1)
dr + r \ dr ) =  O ,0„(l) =  0, vUO) =  C (0 ) =  0, (4.35)

•A/'5[t'*(r, 9). e*(r, 9)
r dr dr  ̂ \ dr

A fV  c 
r r ’

r \ dr J dr‘̂

~Pv* - (4.36)

M K (r,«),0* (r ,9 )] =  -Ide' d̂ 9- ^/dv-V
r dr dr̂

+ r
dr ~\-rp dv*\ 

>  j
+ Tr dv*

dr , (4.37)



dVm—1 I o 1—A; \ 1
2 r — .—  +  r-̂  . „ + P 2 ^  2 ^ { ------r:— )dr dr"̂

fc=0 i=0
dr dr dr

+3^ r g E (
Jt=0 i=0 ^

 ̂ ( dv,n-i-k\ dvk-i d̂ Vi
dr J dr dr"̂  

-M^rvm-i -  qr^Vm-i ~ Pprvi,

-  (1 -  Xm)cr

m—1X 1 d!̂ Offi—1  ̂ ■v f  di)m.—1—fc\ dVi
H----- rr;---- 1- i  ̂2 _̂

^em (r)=  ,

+ f £ E E ,
fc=0 j = 0  i-0  ^

4 .3  C o n v e r g e n c e  o f  t h e  S o l u t io n

r dr ' dr'̂  '  ̂ ^  \ dr J drfc=0 '
f  d v m - i -k \  d v k -j  d v j - i  dvi

dr dr dr dr

.
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(4.38)

(4.39)

The most important aspect of series solution is to discuss the convergence of solution. 

In homotopy analysis method the convergence of series is ensiured by using a auxihary 

parameter h Figs. 4.1 and 4.2 provide the cinrves in constant viscosity case for 

different sets of parameters M, P  and 7 . The admissible values of velocity are —1.8 < 

/i < 0 and for temperature are —1.8 < h <  —0.2. Figs. 4.3 and 4.4 represent the 

/i—curves for variable viscosity when /z =  r. The admissible ranges for both velocity 

and temperature profiles are —1.8 < h < —0.6 and —1.4 < h <  —0.5, respectively. 

In Figs. 4.3 and 4.6, the graphs of residual errors for constant and variable viscosity 

are plotted, respectively.
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Fig. 4.1 : /I—curve for velocity profile in case of constant viscosity.

Fig. 4.2 : h—curve for temperature in case of constant viscosity.
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h

Fig. 4.3 : curve for velocity profile in case of variable viscosity.

h

Fig. 4.4 : /i—curve for temperature in case of constant viscosity.
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4 .4  G r a p h ic a l  R e s u l t s

In this we present the results by plotting both velocity v and temperature 0 against 

the pipe radius r. Figs. (4.5 — 4.7) provide the variation of velocity with respect to 

slip parameter 7 , magnetic parameter M  and porosity P  for suction and injection. 

Figs. (4.10 — 4.14) show the variation of v and 9 when viscosity is space dependent 

the effect of the different parameter is shown. Note that the other parameters hke 

third grade parameter /?, pressure c and P are kept fixed.

Fig, 4.5 : Variation of velocity with the change in slip parameter 7  for M  =  1 and

P = l .
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Fig. 4.6 : Variation of velocity with the change in M  for 7  =  0.05 and P = 1.

Fig. 4.7 : Variation of velocity with the change porosity P  for 7  =  0.05 and M  =  1.
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Fig. 4.8 : Variation of 9 by changing values of M, with P =  1 and 7  — 1.

Fig. 4.9 : Variation of 6  by changing values of P, with M  — 1 and 7  =  0.05.
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Fig. 4.10 : Variation of velocity with the change of sHp parameter 7 , for P  =  1 and

M =  1.

r

Fig. 4.11 : Variation of velocity with the change of M  for 7  =  0.05 and P =  1.
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Fig. 4.12 : Variation of velocity with the change of porosity P  for 7  =  0.05 and

M = L

Fig. 4.13 : Variation of 0 by changing values of M  with P =  l and 7  =  0.05.
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Fig. 4.14 : Vaxiation of d by changing values of P, with 7  =  0.05 and M = 1.

4.5 C o n c l u s i o n

The main emphasis in this study is given to the effects of MHD, porosity and shp 

parameter on a constant and variable viscosity for steady flow of a third grade fluid 

in a pipe. Series solutions have been developed and their convergence is carefully 

analyzed.

• The velocity and temperature are increasing function of M.

• Increase in suction suppression in the velocity and temperature.

• Increase in suction parameter the resistance in the flow increase developing a

suppression in velocity v and temperature 9.

• There is decreases in v and 6  when shp parameter 7  is increased.

• The effects of 7 , p and M  on ?; and 9 for variable viscosity are shown in Figs.

4.5 to 4.14.



C h a p t e r  5

E f f e c t  o f  M H D  o n  a  T h ir d  G r a d e  N a n o f l u id  in  a  C o a x i a l  P o r o u s

C y l in d e r s

The objective of the present study is to analyze the effect of MHD on a third grade 

nanofiuids (NF) in a coaxial porous cylinders. Assuming, a unidirectional, electri­

cally conducting, an incompressible and thermodynamic third grade NF between two 

infinite coaxial cyUnders. The outer cylinder is porous under the influence of per­

pendicular magnetic field. The flow is induced by a constant pressure gradient and 

motion of an inner cylinder with no-shp conditions is taken in account. The heat 

transfer analysis and nanoparticle concentration equations are also analyzed. The 

nonlinear governing equations have been solved by the homotopy analysis method 

which does not require any small or large parameters appearing in the problem. 

This method has already been successfully used to solve highly non-hnear problems. 

Convergence of the obtained solutions are properly discussed. Two cases for variable 

viscosity and viscous dissipation are discussed.

5.1 M a t h e m a t ic a l  F o r m u l a t io n  o f  P r o b l e m

Considering the velocity, temperature and nano particle concentration field as

V  =  [0,0,v(r) 
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. (5 .1)
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The dimensionless problems can be written as follows: 

dadv udv d̂ v B.dv...

C  +  P f l V  +  W ^ V  -  GrO — Br4>

d!̂ e ide dd d(j)
+ aiNt

rdB\
\drj

Nb dr"̂  r dr
+  Nt dr‘̂  r dr

= 0 ,

=  0 .
/

The corresponding boundary conditions are

^(1) =  1, v{2 ) =  0; 9(1) =  1, 9{2) =  0; 0(1) =  1, <̂ (2) =  0.

(5.2)

(5.3)

(5.4)

(5.5)

The non-dimensional quantities are defined as

^  _ { P p - P w ) H ‘̂ (4 > m -'l> w )9
0  ---  I I t  ---

Gr —

(5.6)

where is mass concentration, Gr is thermophoresis diffusion constant and is 

Brownian diffusion constant.

5.2 S o l u t i o n  o f  t h e  P r o b l e m

In this section, we find the series solutions of the nonlinear governing equations using 

homotopy analysis method for two cases namely; constant and variable viscosity.

5.2.1 C a s e  1: F o r  C o n s t a n t  V i s c o s i t y

For constant viscosity model we select

(8 -r S )  ̂ (8 -r ^ ) ,  (8 -  r )̂
«o(r) =  -  „  6o =  — „ <Po = (5.7)7 ’ 7 ■ 7

as initial approximations of  ̂and (f> respectively, which satisfy the corresponding 

boundary conditions. We choose the Hnear operator C± same as given in Eq, (9.1).
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The zeroth—ovdev deformation problems

(1 -  q)Ci[v'(r, q) -  Do(r)] =  qhM^\v (̂r, q), 6»*(r, q), ip” (r, g)],

(1 -  q)Ci[0'(r, q) -  6»o(r)] =  qWs[v"'(r,q), 6*{r, q), (j)* (r, g)], 

(1 -  g)£i[0*{r, q) -  0o(r)] =  qhAfglv’ r̂, q), 6’ (r, q), (j)’  (r, g)],

9)lr=i =  1- 9)1=2 =  0.

= 0,
'/’*(’■> 9)U l =  l.^*('',9)lr=2 =  0 .

p  z ^ Y _
r \ dr J

1 dv* d̂ v* p / dv*
r dr dr"̂  ' *

AA7[t)*(r, q), e*(r. q), 4,* (r, g)] =  f  ^
\dr J dr̂

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

, (5.15) 

(5 .16)

-P v*  -  M h

, r , , ,  ̂  ̂ M ade* cPe* /d e * \K [v  (r, g), e (r, q),<p (r ,q)] = - — + a - ^  +  N ,— — +  a M  J

s . . /   ̂ ld<^' Nt n d 0 ‘  cf^r\M b  (r,g),e (r,g),0 (r,g)] =  +  _  +  -  _  j  .

For 5 =  0 and q =  I, we get

'u*(r,0) =  -yoM: <̂ *(̂ ",0) =  <̂ oW, <l>*(r,0 ) =  (^ {̂r) 

v*{r, 1) =  t;(7-), 0*{r, 1) =  6»{r), <j>*{r, 1) =  0{r)

where 5 increases from 0 to 1, t?*(r, g), 6 *{r, q), (j)*{r, q) varies from t'o(?")5 0̂ W  j 0oW 

to v(r), 0{r), (p{r) respectively. By Taylor’s theorem we have

(5.17)

v*(r,q) =vo(r)-\-Y^
m=l

9'{r,q) =  0o(r) +  ^
m=l

00

4,'{r, q) =  M r )  +  ' ^

1 d^v*(r, q)
m! dq^ g - i

1 a-r(r ,9)
m! dq^
1 d ĉ/>*ir,q)

m! dq^
\

(5.18)



where the convergence of the series given in Eqs. (5.11) — (5.13) depends upon the 

choice of h, such that series converges at q =  1, then Eq. (5.18) becomes
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m = Joo

1 d'^v*(r,q)
ml dq^ q=0
1 d^6 *{r,q)

ml dq^ g=0
1 d^(p*(r,q)

ml dq"̂ 9=0 >

> , (5.19)

The mth order deformation problems are given by

^lbm(r) -  =  hdljmir),

Vm{2) =  0, (2) =  0, (2) =  0, V ^ { 1 )  =  1, 9^{l) =  1, (1) =  1,

where

dr

(5.20)

(5.21)

(5.22)

(5.23)

;EE
fc=0 t=0

1 ^  ̂ m—1;

3i8m(r) =
dOm~l , <P6m-l . .  fd<Pm-l-k\ dOk ^  /d(p„_i 

+  - X T -  +  ^  , ~ “ :7r’  +  •

f d V j n - l ^ k \  d V k - l  ( f v j  

dr )  dr dr"̂

(5.24)

-k \ ^  
/  dr ’
(5.25)

(5.26)'rm—L _|_ " 'I ---- 7ft—1 ^  "  "Tu-
r dr ' dr̂  Nb \r dr dr̂

5.2.2 C a s e  2: F o r  S p a c e  D e p e n d e n t  V i s c o s i t y

For space dependent viscosity, the zeroth— and mth—order order deformation prob­

lems with the same linear operator and initial guess axe developed as

(1 -  q)Ci[v*{r, q) -  t)o(r)] = gWio[n*(r’. q),6 '{r, q), f  (r, q)], (5.27)



(1 -  q)Ci[e*{r, q) -  ^oW] =  <lhN'\\[v*{r,q),e'{r, q),^' (r,q)

(1 -  Q)^\[<l>'{r,q) -  0o(r)l =  qhN'u[v'‘{r,q),0 ‘ {r,q),<j>' (r,q)

? ) U i  =  1. » ''(n 9 )U 2  =  0 

^‘ (» '.9 )U i =  1. 9)1=2 =  0

r ( ' - , 9 ) U  =  i .< ^ '( n 9 ) U  =  o

C i [ v ^ { r )  -  X m ^ m - i { r ) ]  =  M a m { r ) ,

^ \ [ 6 m { r )  -  X m ^ m - \ { r ) ]  =  nSRiOmW,

Ĵ ™(2) =  0 , e „ ( 2) =  0,<^„(2) =  0

2 dv* d V  /3 fd v * V  3/3 f d v 'Y  (Pv'■f̂ io[v’ {r,q),0 '{r,q)
r dr dr̂ + \ dr J dr'̂

+Br4>' -  Pv* -
M \ '

M ib  (r,q),9 {r,q),<l> (r,q)] = - — + a - ^  + N t— —  +  aiN,

M’n{v'{r, q), ̂ '(r, q), <j>* (r, q)

where

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

+ a r

(5.35)

2
, (5.36) 

(5.37)
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dVjn-l , f  dVm^i-k\ d.Vlc-1 dVi
5)?9m (r) =  2r dr

+ r‘
dr̂ +/^EE dr dr dr +

dr dr dr'̂ -  (1 -  Xm)cr

l̂Om (^) — r dr

-M^rvm^i +  Grr9m -  qr^Vm-i ~ Prvi +
m—1

(5.38)

- a -

k=Q k=Q dr

^iim(r) = ------;------h — r-;̂ --1- — ---------;—  +r dr dr"̂ Nb \r dr dr̂

dr ’
(5.39)

(5.40)
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5.3 G r a p h i c a l  R e s u l t s

Here we discuss the convergence of solutions. The convergence of the solution is 

discussed by drawing the curve in Figs 5.1 to 5.4. These figures depict the con­

vergence region and rate of approximation for the homotopy analysis method. It is 

noticed that the admissible values of h in all cases is approximately —1.5 < ^ < 0. 

To see the effects of emerging parameters Figs. 5.5 to 5.12 have been displayed. The 

effects of MHD and porosity on velocity profile are shown in Figs. 5.5 to 5.8. Figs. 

5.9 and 5.10 have been prepared to explain the variation of thermophoresis and 

Brownian parameters on the temperature distribution. Finally Figs. 5.11 to 5.12 

bring out the influence on nanoparticle concentration.

Fig. 5.1 : curve for velocity profile for constant viscosity.
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CD

Fig. 5.2: curve for temperature profile.

Fig. 5,3 : fi—curve for nano particle concentration profile.
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Fig. 5.4 : /i—curve for velocity profile for variable viscosity.

constant viscosity.

Fig. 5.5 : Eflfect of M  on velocity profile when =  1, =  1 and P  =  0.5 for
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Fig. 5.6 : Effect of M  on velocity profile when Ni, =  I, Nt =  I and P  = 0.5 for

variable viscosity.

constant viscosity.

Fig. 5.7 : Effect of P  on velocity profile when = l^Nt ~  I and M =  0.5 for
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Fig. 5.8 : Effect of P  on velocity profile when =  I, Nt =  I and M =  0.5 for

variable viscosity. »

Wi- = 0 . 1 0
1 . .................

0.3

0.6 \
OA

0.2

0

-  -  N t,= 0 .1 5  
- — N t,= 0 .2 0

Fig. 5.9 : Effect of on temperature distribution when Nt =  0.1.
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Fig. 5.10 : Effect of Nt on temperature distribution when =  0.1.

Fig. 5.11 : Effect of on nanoparticle concentration when =  0.1,
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Fig. 5.12 : Effect of Nf on nanoparticle concentration when =  0.1.

5.4 C o n c l u s i o n

The effect of MHD on a third grade nanofluid in coaxial porous cylinders has been 

examined. In order to point out the salient features of the analysis of MHD and 

heat transfer for nanofluid the following discussions are set out. The graphs showing 

the behavior of the velocity temperature and nanoparticle concentration are plotted 

against r. Separate figures have been drawn in order to see the variation of each of 

the simdry parameter. To see the effects of emerging parameters for constant and 

variable viscosity Figs. 5.5 to 5.8 have been displayed. It is found that the velocity 

decreases with an increase in the values of M  and P. The effects of and Nt on 

nanoparticle concentration and temperature distribution are shown in Figs. 5.9 to 

5.12. Figs. 5.9 and 5.10 have been prepared to exphan the varition of Nh and Nt on 

the temperature distribution. Here, it is revealed that the thermal boundary layer 

thickness increases when large values of Nh have been taken into account and the 

thermal boundary layer decreases with increasing Nt. Figs. 5.11 and 5.12 bring out



the influence of nanopaxtide concentration for constant and variable viscosity. It is 

observed that the nanoparticles concentration increase with the decrease in Nb and 

decreases by increasing Nt.
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C h a p t e r  6

A n  O p t i m a l  H o m o t o p y  A s y m p t o t i c  M e t h o d  f o r  S t r o n g l y  N o n l i n e a r  

D i f f e r e n t i a l  E q u a t i o n s  o f  N a n o f l u i d

In this chapter, an optimal homotopic asymptotic method is used to solve nonhnear 

differential equation of third grade NF between coaxial porous cyhnders with variable 

viscosity. A unidirectional, electrically conducting and incompressible flow between 

two infinite porous coaxial cyhnders under the influence of perpendicular magnetic 

field is considered. The flow is driven by constant pressure gradient and the motion of 

inner cyUnder with partial shp conditions are considered on outer cylinder. The heat 

transfer and nanoparticles concentration equation are also taken into account. The 

efliects of heat transfer analysis and concentration of nanoparticles are considered 

in the presence of magnetohydrodynamic and partial shp are also examined. The 

solutions axe compared for slip length equals to zero with solutions of chapter six.

6.1 M a t h e m a t i c a l  F o r m u l a t i o n  o f  P r o b l e m

Considering the velocity, temperature and nano particle concentration field as

V  =  [0,0, v{r) 

 ̂=  [0 , 0 ,% ) ]  

(f) =  [0, 0 , (j)(r)]

(6.1 )
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The problem in non-dimensional form is

dfidv fidv (fv  P f  dv  ̂ ^
H----3 ----h ---- +  3^

'dv\‘̂  dPv
dr dr ' r dr ' d̂r"̂  ' r \dr J '

= c +  PfJ,V +  M' v̂ — Gr9 -  Br(p,

d‘̂ 6 Ide ,,d9d(t>
dr  ̂ r dr dr dr U) ='^ ’

 ̂dr  ̂ r dr 

subject to boundary conditions

dv

fd^e \dO\ fd̂ (t> ldct>\ ^
dr"̂  r dr

v(l) =  1, v(2 ) = 7
dr (2)
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(6.2)

(6.3)

(6.4)

; ^(1) =  1, 6(2) =  0; (^i(l) =  1, <^(2) =  0. (6.5)

6 .2  S o l u t io n  o f  t h e  P r o b l e m

In this section, we find the series solutions of the nonlinear governing equations using 

Optimal Homotopic Asymptotic Method for two cases of viscosity namely; constant 

and variable viscosity.

6 .2 .1  C a s e  1: F o r  C o n s t a n t  V is c o s it y

For constant viscosity model, we choose the Unear operator C{ which is defined by

3 V i(n p )A  (Vi (r,p)) = dr^
(6.6)

such that non linear operators are

Kr / / \\ P fdv\  ^  /I ±
^u('P i{r,p )) -  +  : ^ 2  +  +  Br<l>

- P v  -  M^v,

Ide Nbded(f) aiNt f d O V
(r-,rt =  - X  +  + ------- h r  ’r dr a dr dr a \dr J

. . .  . ,, \d(j> Nt f i d e  d^e\

(6.7)

(6.8) 

(6 .9)
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The corresponding conditions are

dipi=  l,v?i(2 ) - 7
dr r=2

The zeroth-ordeT  deformation problems are of the form

(^vq
dr̂

dvQ
dr

=  0 ,
r=2

(Pea
dr^

dr‘̂

= 0, ^o(l) =  l , 0o(2) =  O,

=  0 , 0o(l) =  l:^o(2 ) =  O.

First and second order problems are defined as

d'̂ vi
dr'̂

1 dvo 
r dr + r \ dr J V

GrOo +  Br<j)Q -  PVq -  M'̂ Vq

^  \ldeo , Nbd9od(^o , aiNt fdO oV=  Oi3 < ----;----1----------------------------- ;------- ; hdr̂ r dr a dr dr a ydr /

d<j)Q Nt 1 dBo d‘̂ 00
+ +dr Nbr dr dr"̂ ] ■

dr  ̂ dr̂
+ G r O o  +  B r4>Q  — P v q  —  M ^ V q 

d'^Vi 1 dvi 3/3 (  dvQ \  ̂ dvi

+C 13 i

+ r
2

\dr J dr
dvo\ d?Vi dvodvid'^VQ
dr )  dr  ̂ dr dr dr"̂

Pvi — M^Vq

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

,(6 .17)

d̂ 0 2

dr̂
(fOi
dr̂ ^ +  C14

1 dOo Nb d$Q d(f)Q a\Nt ( dOo\
r dr +

+^^13 {
a dr dr 

dOi

+ a dr + (6.18)

(PQi a d0i Nt /d 6 i d4>o
dr  ̂ (a +  a\Ni)r dr ^  (a +  aiNt) \ dr dr ^  dr dr )  j  ’



^<t>2

dr"̂ + C,4{;
d(f)̂  Nt 1 dOQ (POq

flj.2 ' \r dr NhV dr dr"̂ } (6.19)
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\ r rfr r dr dr"̂  J

and so forth.

The solutions of the above deformation problems up to second order are

V  =  V o +  V 1 + V 2

9 =  Oq +  9i O2 5

(p =  (l>Q +  (f>2

where

Vo =
—4 — 2c +  2r +  Scr -  cr  ̂+  27 +  Serf — 4cr'f +  cr^j

0 o =  2 ~ r,

1

Oi =

24(1 +  7 )  ̂

1

(po =  2 - r ,

All +  ^^12 + Aiz + r̂  A\4̂  +  A\̂

2 a
2Ci3iVt -  SCiaiVfcr +  CisiV r̂^

—4C13Q: In 2 +  ACizar In 2 — 2 C\za In r

4>i =
2 [—2Ci3A^tln2 +  2Ci3riVfln2 — C13 TVtr In r

N,

V2 =

Oo^

A21 +  TA22 +  A2Z +  r ^ ^ 2 4  +  "̂'̂ >'425 +  'f'̂ A26 +  ^ ^ ^ 2 7

[ - 6Ci3a {iVi, (r -  2) +  a In 16}] -  QCua 

Ni (r — 2) +  aln 16] +  (6 — 7r +  2r )̂

+3Art(-2iV, (r -  2) ai + a  (6 -  12 In 2 +  r(ln 16 -  3))] 

+ 6Q(Aft (r — 2 +  r In 16 -  ai In 16) — a (2 (In 2 )̂

+  In 16 -  In 4 In 16)] +  ^  [ -2 C u a -

2Cua +  Cl^{Nt (r -  3) +  2Nt (r -  ai) 

+ a  (In 16 — 2)) Inr +  6 C^^rc  ̂(Inr)^],

(6.20)

(6.21)

(6 .22)

(6.23)

(6.24)

(6.25)

(6.26) 

(6.27)

(6.28)
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^ [S C n N b  (r -  1) a In 2 +  SCuNi, (r -  1) a In 2+

C?3 (-4iVt (r -  1) a In 2 In 8 +  (4 +  2r̂  -  6 In 2) -  r

(-6  +  In 16) -  Ni, (r + 1) a (2 (In r)  ̂-  In 4 In 16 +  In 4096)]

+  2^(-4C,3iVta -  4CuNta + C U ~3N i +  4Af,aln4+
b

Nba (In 16 — 6))] Inr — (TV̂  +  2Nt) r a  (Inr)^ .

6 .2 .2  C a s e  2: F o r  S p a c e  D e p e n d e n t  V is c o s it y

For space dependent viscosity model, defining non-linear operator as

Kf I f w 2 d?; 13 fdv\^ oQ fdv\

+ > ! ■ « + * ♦ - ?  [l +  S ® ”

(fv  
dr"̂

v - ^ v
T

„ IdJd NidOddi a iN t f d S V
Ms Vi {r,p) =  “ X  + ~ T T '  + ------  Tr dr a dr dr a \dr J

. . . .  ,, \d<j>̂ Nt (ide d?e
along with boundary conditions

+

dr r^ 2
V’lCl) =  1,V5i (2) - 7

<P2(1) =  1.¥>2(2) =  0 

V’sCl) =  1>V3(2) =  0 

The zeroth -order problem is given by

^ = c ,  t;o(l) = l,«;o(2) = 7

(Peo

=  0

dvo
dr r=2

dr̂
rfVo

= 0 , ^o(l) =  l,^o(2) =  0 ,

- ^ = 0 ,  0 o ( l )  =  l , 0 o ( 2 ) = O .

First order and second order problems are given by

d̂ Vi
dr̂

=  C 15
y.2 d j .  J.2 dr J dr J  dr“̂

Vq

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)



dr"̂
=  C15

1 d9o ^  Nt d9o dcpQ ^a\Nt ( dOo
r dr a dr dr a

^4>i
dr"̂

d(j)Q

(fv 2

dr̂

2 dvo 
r dr r

N},r dr 
3

\ dr

(POq 
dr̂ }■

( * o V  j_ Qfl Z'
dr y ^  \ dr )  dr^

-\~Grr9o +  Br<pQ ~ PVq ~ M^Vq

(fvi 2 dvi 3/0 /d v o d v•---- i _|------- i -j- _L_ —1  
dr'2 r dr r \ dr J dr

3/3

\dr J

' + 2

r dr
^dvodvid'^vo 

dr J dr̂  dr dr dr'̂

— h GrO\ +

Pvi — M'̂ Vq

d[̂ e,
dr‘̂ dr  ̂ ^^\rdr dr dr “ dr +

+C'l5 +
a dQi

(a +  aiNt) r dr 
d:̂ (t>2 d^^

+ (a+aiNt) I
d9i d(j)Q ^  d0Q d^i

dr“̂ dr̂

{

d<l>Q , Nt  ̂^^0
dr

j_ iit— +
^^r dr dr̂

dr dr 
d̂ Oo

]

}

dr  ̂ ' r dr ‘ r dr ' dr“̂
The solutions of the above deformation problems up to second order are

V =  Vq - \ - V i +  V2,

6 =  0Q -\- $i -\- $2 5

^ =  00 +  l/’l +  '̂ 2

—4 — 2c +  2r +  3cr — cr  ̂+  27  +  Zcj — 4ct7  +  cr^7 

2(1 +  7) ^
eo =  2 - r ,

'/'o =  2 -  r,

where

«0 =

Vi =
4 8(1+ 7)

4 L̂ îi +  rBi2 +  r^Bis + r^Bii

(6.38)

(6.39)
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(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

61 =  — [2Ci5Af(,-3Ci5Afi,r+Ci5Wfcr-4Ci5aln2+4(7i5ra:ln2—2C'i5mlnr), (6.48)



01 =

V2 =

2 [ - 2 Ci5Nt In 2 +  2 Ci5 N,r In 2 -  Ci^Ntr In r
Nb

---------- h S22 +  ?'-^23 +  ^ ^ ^ 2 4  "t" ^ ^ ^ 2 5  +  ^"*-^26

09 =

i ^ ( ( - 6C7i5a (JVt (-2  +  r) +  aln 16) -  6c2a 

(iVi,{-2 +  r) +  aln 16) +  C U K  (6 -  7r +  2r̂ ) +  SiVt 

(-2AT( (r -  2) ai +  a (6 -  12 In 2 +  r(ln 16 -  3))] +  6a 

JV( (r — 2 +  rlnl6 — ai In 16) — a (In 16 — In41nl6)] 

' - 2Ci5a -  2Ci5a +  C l(N t (r -  3) +  2«, (r -  ai) 

+ a  (In 16 — 2))Ci5a In r),
12q

Ni
2N£̂  [SCisiVt (r -  1) a In 2 +  8Ci5 Âi, (r- -  1) a In 2

<̂ 2 —

(6.49)

(6.50)
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(6.51)

(6.52)

+ C U -l2 N ta ln 2  -  6 -  12iVf,Qln22 + 2N^

(r -  2 +  ln8) -  12Af,aln22) -  iV̂  (r +  l)a  

(2 (Inr)  ̂-  In 4 In 16 +  In 4096)] +  ^

[-ACiMa -  ACiMa + CU^N^ + 87Vtaln2 

+iVba (4In2 +  6))] +  {N^ -\ -2 N t)a ]n n

The coefficients An — A15, A 21 — ^ 27, -^ii — ^is and B21 — B 27 are calciilated using 

MATHEMATICA.

6 .3  G r a p h ic a l  R e s u l t s

The solution is obtained by optimal Homotopic Asymptotic Method. The inves­

tigation of the effect of magnetohydrodynamic parameter M, porosity P  and shp 

parameter 7  on velocity for both constant and variable viscosity are shown in Figs. 

6.1 to 6.6. In Figs. 6 .7  to 6.10 the effect of Nb and Nt axe shown on nanoparticles 

concentration and temperature distribution.
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Fig. 6.1 : Effect of M  on velocity profile when Nb =  I ,  N t =  1, p =  0.25 and

7  =  0.05 for constant viscosity.

7  =  0.05 for variable viscosity.

Fig. 6.2 : Effect of M  on velocity profile when Ni, =  l,Nt =  l ,p  =  0.25 and
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Fig. 6.3 : Effect of P  on velocity profile when =  1, N t =  1, M  =  0.5 and

7  =  0.05 for constant viscosity.

7  =  0.05 for variable viscosity.

Fig. 6.4 ; Effect of P  on velocity profile when Nb =  1, Nt =  1 , M =  0.5 and
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Fig. 6.5 : Effect of 7  on velocity profile when Nb =  1, M  =  0.5 and P  = 0.25 for

constant viscosity.

P  =  0.25 for variable viscosity.

Fig. 6.6 : Effect of 7  on velocity profile when Ni =  1, Nt =  1, M  =  O.b and
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r

Fig. 6.7 : Effect of TVj, on temperature distribution when =  0.1.

Fig. 6.8 : EflFect of Nt on temperature distribution when Nb =  0.1.
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Fig. 6.9 : Effect of on nanoparticles concentration when iV* =  0.1.

Fig. 6.10  : Effect of Nt on nanoparticles concentration when Ni =  0.1.

6 .4  N u m e r ic a l  R e s u l t s

The comparison with the HAM solution from previous chapter with obtained OHAM 

for 7  =  0 with different values of the emerging parameters is given for different 

values. Tables 6.1 and 6.2 are constructed for velocity profile for constant and variable 

viscosity respectively. Tables 6.3 and 6.4  are for heat and nanoparticle concentration.
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Table 6.1

M P r OHAM HAM D iffern ce

1 0.25 1 .2 0.74741378 0.74741463 8.5 X lO-*̂

1.4 0.52535753 0.52537756 2.003 X 10-^

1 .6 0.33577505 0.33563555 1.395 X 10-^

1.8 0.16704901 0.16703548 1.353 X 10-^

0.5 0.5 1.2 0.76462881 0.76462887 6.0 X 10-®

1.4 0.55632853 0.55628164 4.689 X 10-5

1 .6 0.35626568 0.35692155 6.558 7 X 10“ ^

1 .8 0.16605189 0,16641218 3.602 9 X 10-4

Table 6.2

M P r HAM D iffern ce

1 0.25 1 .2 0.70250818 0.70251454 6.36 X 10-®

1.4 0.44967697 0.44969555 1.858 X 10-5

1 .6 0.24829228 0.24828963 2.65 X 10-^

1.8 0.09394581 0.09394601 2.0 X 10-^

0.5 0.5 1 .2 0.64312867 0.6431581 2.943 X 10-5

1.4 0.35587631 0.35585551 2.08 X 10-5

1 .6 0.15833565 0.15833286 2.79 X 10-®

1 .8 0.04580312 0.04580024 2.88 X 10-^
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Table 6,3

N, Nt r OHAM HAM D iffern ce

0.1 0.1 1.2 0.73932345 0.7393236 1.5 X lO-"̂

1.4 0.46673214 0.46673212 2.0 X 10'®

1.6 0.22712271 0.22712301 3.0 X 10'^

1.8 0.06013782 0.06013742 4.0 X 10"'̂

0.2 0.15 1.2 0.91716062 0.91716091 2.9 X lO-"̂

1.4 0.73405661 0.73405662 1.0 X 10"®

1.6 0.49341726 0.49341726 0.0

1.8 0.23581424 0.23581433 9.0 X 10“ ®

Table 6.4

N, Nt r OHAM HAM D iffernce

0.1 0.1 1.2 0.46482512 0.46482537 2.03 X 10-®

1.4 0.18078829 0.18078827 1.91 X 10"^

1.6 0.05426173 0.05426168 5.07 X 10-®

1.8 0.01342030 0.01342030 0.0

0.2 0-15 1.2 0.54874301 0.54870510 5.359 X 10-®

1.4 0.26159829 0.26159836 7.0 X 10-^

1.6 0.09571721 0.09571718 3.6 X 10-^

1.8 0.01769187 0.01769188 1.7 X 10-^

6.5  C o n c l u s i o n

The effect of partial slip on MHD flow of a third grade nanofluid in a coaxial porous 

cylinders has been examined. In order to point out the salient features of the analysis 

of MHD and heat transfer for nanofluid the following discussions is presented. The



graphs showing the behavior of the velocity temperature and nanoparticles concen­

tration are plotted against r. Separate figures have been drawn in order to see the 

variation of each of the sundry parameter. To see the effects of emerging parameters 

for constant and variable viscosity Figs. 6.1 to 6.14 have been displayed. In Figs. 6.1 

to 6 .6 , it is found that the velocity decreases with an increase in the values of M, 

7  and P. The effects of iVj, and Nt on nanoparticles concentration and temperature 

distribution are shown in Figs. 6.7 to 6.14. Figs. 6.7 and 6.8 explain the variation 

of Nb and Nt on the temperatme distribution. Here, it is revealed that the thermal 

boundary layer thickness increases when large values of Nb have been taken into 

account and he thermal boundary layer decreases with increasing Nf. Figs. 6.9 and 

6.10 bring out the influence of nanoparticles concentration for constant and vari­

able viscosity. It is observed that the nanoparticles concentration increases with the 

decrease in Nb and decreases by increasing Nt, Tables 6.1 to 6.4 shows that the 

results obtained HAM without slip effects in chapter six and the results obtained 

this chapter if we take 7  =  0 are identical.
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A n a l y t i c  S o l u t i o n s  f o r  M H D  F l o w  in a n  A n n u l u s

In this chapter, flow of thkd grade fluid is discussed in a rotating frame though 

coaxial cylinder. An incompressible and homogeneous MHD third grade fluid 

between two cyhnders rotating with constant but different angular velocities. The 

inner and outer cylinders have radii v\ and 7*2, respectively. These cylinders rotate 

with constant angular velocities fii and ^ 2. The exact solutions are calculated for 

zero and non-zero MHD.

7.1 M a t h e m a t i c a l  F o r m u l a t i o n  o f  t h e  P r o b l e m

Considering the velocity, temperature and nano particle concentration field as

Chapter 7

V  =  [0,0, ?;(r) .

The mathematical statement of the problem is

(fv  1 dv
dr"̂  ' r dr H  ̂ \dr 

subject to the boundary conditions

dv
r )

g 2 dv 2v
dr‘̂  r dr

where

V =

(r) =  1 at r 1,

?; (r) = 6 at r =  i2,

V _  027*2 D _  ^̂2
o  ’  ̂ ’ r> ’riUi Uiri ri

and bars have been suppressed throughout.
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(7.1)

(7.2)

(7.3)
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7.2  S o l u t i o n  o f  t h e  P r o b l e m .

We obtain analytic solutions with and without magnetic field.

7 .2 .1  C a s e -1 :  E x a c t  S o l u t i o n  w i t h  Z e r o  M a g n e t i c  F i e l d

We first obtain exact solution when there is no magnetic field, i.e., M  = 0. In this 

case we let

dr r

Then Eq. (7.2) with M  = 0 becomes

which has first integral

W {l-¥  2eW' )̂ =  r-^Cu.

where Cn is a constant. Thus

Therefore, we have the solution for v

=  s {C n ,e ,s )d s+  r, v{R ) =  b.

(7.4)

(7.5)

(7.6)

} = r - i r ( C i j , e , r ) .  (7.7)

(7.8)

7.2.2 C a s e -2 : S o l u t io n  w it h  M a g n e t ic  F ield

We now solve Eq. (7.2) for e and small, i.e., we let (gi is the small parameter)

€ =  giv,

and assume a perturbation solution of the form

(7.9)

V  =  Vo  +  Q l V i . (7.10)
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The substitution of Eq. (7.10) into Eq. (7.2) results in

(fvQ Idvo ^0 _  ^
I 1 ndr"̂  r dr

d̂ Vi 1 dvi vi ( dvQ vq
H------;-------- \ dr r )

'd^vo 2dvo 2 vq

dj>2 r dr r"̂ =  M * W
dr“̂ ' r dr ' \dr

The solution of Eq. (7.11) subject to the boundary condition (7.3) is

R b - l  R (R - b )  _i

(7.11)

(7.12)

Vo = •r +R 2_ I ^2 _  1

where R ^  ± 1. The insertion of Eq. (7.13) into Eq. (7.12) yields

(7.13)

+  =  m *2
dr"̂  r dr r̂

f R h - l  R iR -h )  A  r + ---- —r~̂
[B? -  1)-

r~\ (7.14)
\ i p - i  R ^ - i  y

After some calculations the solution of (7.14) subject to the boundary conditions 

(7.3) is

r-  Cis (1 +  R^) -

^1= +  +  W  +  C i 9 ^ )  r - ‘

-\-OisT̂  +  C\ r̂ Inr — C<2aV ® 

where Cis, C19 and Cjo are given by

(7.15)

C'ls =  ~
1 {Rb -  1)

C19 =  -
_  1

(7.16)
3 ' ( R ^ - l f  ■

Thus the first order approximate solution of Eq. (7.2) is (7.10) with vq and vi given 

by the Eq. (7.13), (7.15) and (7.16).

7 .3  G r a p h i c a l  R e s u l t s

In order to illustrate the influences of M* and e on the velocity u\ we have plotted 

three figures. Fig. 7.1 for no magnetic field and Fig. 7.2 for magnetic field.
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r

Fig. 7.1 : Profiles of dimensionless velocity u in the absence of magnetic field and

with various values of e

r

Fig. 7,2 : Velocity profile in the presence of magnetic field with various values of

M\

7.4  C o n c l u s i o n

As a result, the following observations are made.
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• Our exact solutions are more general with variable boundary conditions. There­

fore, one can easily obtain other exact solutions for different parameters with 

different boundaries.

• It is also worth mentioning that the exact solution in the absence of magnetic 

field is given for the first time here.

• the authors investigated this problem in the presence of magnetic field and 

obtained the numerical solutions.



E x a c t  S o l u t i o n s  f o r  F l o w s  o f  a n  O l d r o y d  8 - c o n s t a n t  F l u id  w i t h

N o n l i n e a r  S lip  C o n d i t i o n s

C h a p t e r  8

The objective of the present chapter is to investigate the three nonUnear flow cases 

of an Oldroyd 8-constant fluid with sUp conditions. Flow is considered between 

the concentric cyhnders. In the first problem, the inner cylinder moves and the 

outer cylinder remains stationary. Second problem deals with Poiseuille Flow. Third 

problem is for Generalized Couette Flow. All the differential systems are subjected to 

nonhnear differential equations and nonhnear boundary conditions. Exact solutions 

axe developed and computations have been made for the salient features of the 

involved pertinent parameters.

8.1 M a t h e m a t i c a l  F o r m u l a t i o n  o f  P r o b l e m

The Cauchy stress tensor in an Oldroyd 8-constant is given in Eqs. (1.25) — (1.24). 

For unidirectional steady flow,

V  =  [u(y),Q,0]. (8 .1)

The continuity equation is identically satisfied and the equation of motion and the 

dimensionless variables, viz.

O i -  2̂ , ■



yield

A
dy

1 + “ 1 ( 5 )
= c,

i + « 2 ( g )

the asterisks are omitted for brevity.

0̂ 1 =  ^̂ 3 {-̂ 6 +  A9) ”  (^5 +  A7) (Ae +  Ag — A4)

2̂ =  A3 (A5 +  As) — (A5 +  A7) (A's +  Ag — A5) 

(1 [(A4 +  A7) -  (A3 +  Ae)]
p =  p i - Ni +fJL [(A4 +  A7) — 0,1 (A3 +  Ag)]
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(8.2)

A7A9 
2 ’

(8.3)

A7A8 
2 ’

(8.4)

2 ^

(8.5)
d y j

Ni =  1 +  02 dy)
(8.6)

In the next section we find analytic solutions for three flows.

8 .2  So l u t i o n s  o f  t h e  P r o b l e m

The exact solution of the problem is computed using first integral method for the 

cases of flow problem.

8 .2.1 C a s e  1: C o u e t t e  F l o w

We investigate the steady flow of an Oldroyd 8-constant fluid between two rigid 

plates h apart. The lower plate at 1/ =  0 is suddenly moved while the upper plate (at 

y = h) is fixed. No pressure gradient is apphed. The resulting mathematical problem 

is of the form

A.
dy

u{0) — 7

f J (  du

1 + ( t ) '  

1 + - ( ! ) '

=  0 ,

= 1,

(8.7)

(8.8)
y = 0



u(l) + 7
l  +  Ol ( t )

= 0,
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(8.9)

y = l
l +  a . ( | )

where 7 * (= 7 / / 1) is the slip parameter, asterisk is suppressed here and dimensionless 

shp conditions (8 .8) and (8.9) are defined in terms of the shear stress. Note that Eqs. 

(8 .8) and (8 .9) can be reduced into no-shp conditions iff 7  =  0 .

A first integral of Eq. (8.7) is
2

/  /Yi/ \
=  Ci6, (8 .10)

l +  “ i {% )

where Cie is an arbitrary constant. As a consequence of Eq. (8.10), the boundary 

conditions (8 .8) and (8.9) become

'w(O) =  1 +  7 C16, 'u(l) =  -7^16- (8 .11)

Since the arbitrary constant Cie appears in the boundary conditions (8 .11), we can 

select any value for it.

The general solution of (8.10) is

u =  ^y-\-d, (8.12)

where d is another constant and ^  is

\
\a\CiQ (fli — 502) +  -^CiQal +  I 

yjtaialCie +  (af -  |a?fl2 Ciq +

+
\ yj^alalCfe +  {a\ -  |a?a2 -  ^ajaj) Ĉ q +

The substitution of boundary conditions (8 .11) into Eq. (8 .12) yields the exact solu­

tion

u =  ^ C i e 1, (8.13)
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together with the condition or relation

- 27C16 -  1 = (8.14)

8.2.2 C a s e  2: P o i s e u i l l e  F l o w

In this section an Oldroyd 8-constant fluid is bounded between two fixed plates. 

The flow is governed by an applied pressure gradient. The resulting mathematical 

problem is expressed as follows

A
dy

î(O) — 7

u(l) + 7

=  C, (8.15)

= 0,
y= Q

=  0.

(8.16)

(8.17)

»=i
A first integral of Eq. (8.15) is

1 +  Qi ( t ) du
— cy Ci6, (8.18)

i+..(S)
where C\̂  is an arbitrary constant. Hence the boundary conditions (8.16) and (8.17) 

become

w(0) =  7 C16, 'w(l) =  “ 7 C'i6 -  7 c. (8.19)

Since Cie is in the boimdary condition (8.19), we can choose any value for Cie- 

By means of the transformation

y =  q/ + Ci6, c^ O

u =  cu, (8.20)
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Eq. (8.18) becomes

l +  a2 ( | ) ' .<w.
= y

and the boundary conditions (8.21) transform to

u{d) =  C7 C16, 

u{c +  Cie) =  -C7 C16 -  jc^-

One can solve for M/dy from (8.21) to obtain 

du
dy \

+
\ I \ / | « i “ 23/‘'  +  ( “ 1 -  hl02 -  ^a\al) 

S  Ai (01, 02,5 ).

If the relation
4  ̂ 5 3 ( a 2 3  1 2 2^

=  (a? - - a ^ a 2  -  \

holds, then one can obtain a simplification for Ai (fli, 02, y) given by

A] {<11,02,2/) =  -  ^«2j+^022/* +  3 i (oio|y +  af)

(8 .2 1)

(8.22)

(8.23)

(8.24)

2 " V” ‘ 3 - 7  ' 33

The exact solution of Eq. (8.23) subject to the boundary conditions (8.22) is given 

by
y

w(ai, Q2,y) =  y  (^1’ ^2, z) dz +  cCi67 (8-25)
C16

provided that the following relation holds
C+C16

/  Ai{ai,a2,y)dy =  ~2(rfCi6-^c^.
C16

(8.26)
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8 ,2 .3  C a s e  3 : G e n e r a l i z e d  C o u e t t e  F l o w

Here the physical model is similar to that of the Couette flow. Additionally a constant 

pressure gradient is apphed. The problem statement is

dy

u{0) — 7

u{l) + 7

j t )

 ̂ i t )  fd u

=  C,

=  1,

y= 0

=  0.

(8.27)

(8.28)

(8.29)

y=ll  +  a2 ( ^ )

As Eq. (8.27) is the same as Eq. (8.15), a first Integral of Eq. (8.27) is (8.18) and 

the boundary conditions as a consequence become

^z(O) =  7 C 16  +  1 , w ( l)  =  - 7 C 1 6  7C- (8.30)

The boundary conditions (8.30) transform to

uiCie) =  C7 C16 +  C, 

w(c +  Ci6) =  -c 7 C i6 -7 c ^

(8.31)

Here too Cie is in the boundary conditions (8.30) or (8.31) and we can choose it to 

be any value. The transformation (8.20) reduces the Eq. (8.27) to Eq. (8.23). Eq. 

(8.23) now needs to be solved subject to the conditions (8.31) with the relation given 

below
C+C16

/CiG
Ai (ai,a2 ,y)dy =  - 2C7 C16 -  ~ c. (8.32)

We obtain the exact solution
y

u { a i , a 2 , y )  = j  Ai (ai , 02, z) dz +  C7 C16 +  c. 
Ci6

(8.33)



Here too A can be simplified as before if the relation (8.24) holds. Note that we 

cannot set c =  0 in (8.32) to obtain Eq. (8.7) which is the Couette flow as the 

transformation (8 .20) breaks down when c =  0. Thus the solutions for the Couette 

and Generalized Couette flows are distinct.

8 .3  G r a p h i c a l  R e s u l t s

92

In order to illustrate the influences of non-Newtonian parameters ai, a2, and slip 

parameter 7  on the velocity u, we have plotted eleven figures. Figs. 8.1—8.3 for the 

Couette flow, Figs. 8.4 to 8.6 for the PoiseuiUe Flow and Figs. 8.7 to 8.10 for the 

Generalized Couette Flow.

a

Fig. 8.1 : Velocity profile u{y) for Couette flow with various values of the non- 

Newtonian parameter ai when ^2 and 7  are fixed.
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Fig. 8.2 : Velocity profile u [y )  for Couette flow with various values of the non- 

Newtonian parameter 02 when and 7  are fixed.

Fig. 8.3 : Velocity profile u{y) for Couette flow with various values of the non-

Newtonian parameter 7  when a\ and 02 are fixed.
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Fig. 8.4 : Velocity profile u {y )  for Poiseuille flow with various values of the non- 

Newtonian parameter a\ when 7  and 02 are fixed.

Fig. 8.5 : Velocity profile u{y) for Poiseuille flow with various values of the non-

Newtonian parameter a2 when 7 and a\ are fixed.
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Fig. 8.6 : Velocity profile u [y )  for Poiseuille flow with various values of the non- 

Newtonian parameter 7  when a\ and are fixed.

Fig. 8.7 : Velocity profile u{y) for Generalized Couette Flow with various values of

the non-Newtonian parameter ai when 7  and a2 are fixed.
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Fig. 8.8 : Velocity profile u{y) for Generalized Couette Flow with various values of 

the non-Newtonian parameter a2 when 7  and a\ are fixed.

Fig. 8.9 : Velocity profile u(y) for Generalized Couette Flow with various values of

the non-Newtonian parameter 7  when ai and a2 are fixed.



In this work the velocity profiles in an Oldroyd 8-constant fluid are found analytically. 

Three interesting cases of Couette flow, Poiseuille flow and Generalized Couette 

flow subject to nonlinear slip boundaries conditions are discussed. The first integral 

approach is used to find the velocity profiles.

• It is noted that the solution of the first problem is linear whereas in the other 

two cases the solutions axe nonhneax. Since all solutions are independent, one 

cannot obtain the solution of the Poiseuille flow from the Generalized Couette 

flow by setting c =  0 as the transformation that reduce the problem breaks 

down.

• As expected from the boundary conditions for c > 0 , the velocity profile u for 

the generahzed Couette flow are greater than to Couette flow. The curvature 

of the velocity profile will depend on the amphtude of the parameters

• It is also worth mentioning that our exact solutions are more general with vari­

able boundary conditions. Therefore, one can easily obtain another exact solu­

tions for different parameters with different boundaries. Moreover, our exact 

analytical solutions are not only vaUd for small but also for large values of aU 

emerging parameters.
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8.4 C o n c lu s io n



C h a p t e r  9

S o l u t i o n  o f  S e c o n d  Pa i n l e v e  E q u a t i o n  b y  H o m o t o p y  A n a l y s is

M e t h o d

In this chapter, we presents the series solution of second type of Painleve equation 

by using the HAM. Comparison of the present solution is given with the existing 

solutions by other methods for instant ADM, HPM and Legendre Tau Method. 

Numerical and Graphical results are presented.

9.1 M a t h e m a t i c a l  F o r m u l a t i o n  o f  t h e  P r o b l e m

There are fifty canonical forms of Painlev^ equations. Six of them define the Painleve 

transcendent [87]. These equations require the introduction of new functions to solve 

them. Taking in account Dehan and Shakeri [86] solved the following problem with 

the help of HAM

u” ~  2û  X UQ ,  (9.1)

with the initial conditions

w(0) =  1, u'(0) =  1. (9.2)

in which g  =  ( — 8^1)^^^ — 1 and k i  is a constant of integration.

9 .2  S o l u t i o n  o f  t h e  P r o b l e m

Here we tend to solve it with Homotopic Analysis Method (HAM) and compare 

them with exiting solution of Dehan and Shakeri [86 .

98
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Zeroth-order Deformation Equation

The function u (a:) can be expressed by the set of base functions

{a;* i >  0 } (9.3)

in the form <DO
u{x) =  (9.4)

k=0
where axe the coefficients. By considering the rule of solution expressions for 

u{x) and Eqs. (9.1) and (9.2) one can choose

+  1 (9.5)

as the initial approximation of u (x) . Using auxihaxy hnear operator as in Eq. (2.17)

Cl [Cix +  C2] =  0, (9.6)

where Ci and C2 are arbitrary constants.

Eq. (9.1) suggests that the nonlinear operator is of the form

d‘̂ u[x,q)  ̂ ( du{x,qY ^
N2^{x,q)

dH
- 2

V dx
— xu{x, q) -  Q (9.7)

The zeroth order deformation problem can be constructed by taking a non-zero 

auxihaxy parameter h

(1 -  q )C i[u {x ,  q) -  Uo(x)) =  qhAf2 [u{x, 9)), (9.8)

2(0,9) =  1, S '(l,9) =  0 (9.9)

where g 6 [0,1] is the embedding parameter. For q =  0 and q =  I, one respectively 

has

u(x, 0) =  ^0(3:), u{x , l )= u {x ) .  (9.10)

When q increases from 0 to 1, u{x, q) varies continuously from initial guess uq {x) to 

the final solution u (a;). By Taylor’s theorem and Eq. (9.10) one can write
00

u{x,q)^UQ[x) +  '^ u ^ {x )  q^, (9.11)
m = l
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1 d^u{x, q) (9.12)
q=0m\ dq^

and convergence of series (9.12) depends upon h. Assume that h is selected such that 

th e^ ies  (9̂ .12) is convergent at g =  1, then due to Eq. (9.11) oiJe get
oo

u {x) =  uo {x) +  (9.13)
m —1

mth-order Deformation Equation

Differentiating m times the zeroth order deformation Eq. (9.8) with respect to 

q. Dividing by m! and finally setting q =  0 the following mth-order deformation 

problem can be obtained

« „ ( 0 )  =  « : „ ( ! )  =  0/  (9.15)

m —1 k

k = 0  1^0

This is an easy way to solve hnear Bqs. (9.14) subject to conditions (9.15) in the order 

m =  1,2,3,... with the help of symbolic computation software MATHEMATICA.

9 .3  C o n v e r g e n c e  o f  t h e  S o l u t i o n .

In this section we wiU discuss the convergence of our solution. The explicit, analytic 

expression given in Eq. 9.4 contains the auxiliary parameter h. In Fig. 9.1 and 9.2 

the /i—curves have been shown for the parameter Q = I and q =  2. These figures 

depict the convergence region and rate of approximation for the homotopy analysis 

method. For this purpose ^-curves are sketched for 20th order of approximation to 

the corresponding solution of the problem for different values of o. It is apparent

from Fig. 9.1 that the range for the admissible values for h is —1.8 < h <  —0 .1. Also
■r

the error of norm 2 with HAM by. 20th-order approximation is calculated



\
1

i=0
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(9.17)

where u{xi)  are plotted in Fig. 9.3 for  ̂=  1 and in Fig. 9.5 for g =  2 . From Fig. 9.3 

and 9.4 it can be seen that for =  1 error is minimum at h =  —1.49 and for  ̂=  2 

error is minimum at h =  —1.54, also these values of h lies in admissible range of h.

Fig. 9.1 : /i-curve for 20th order approximation at  ̂=  1.

::3

Fig. 9.2: /I—curve for 20th order approximation at =  2.
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h

Fig. 9.3 : Error of norm 2 for the 20th-order approximation by HAM or u{x) per h.

Fig. 9.4 : Error of norm 2 for the 20t/i-order approximation by HAM for u(x) per h.



9.4 N u m e r ic a l  R esults

HAM solution is compared with other analytic method used in [86]. In Table 9.1 

and 9.3 comparison of the values of u{x) by different methods and HAM at  ̂ =  1 

and 2. Tables 9.2 and 9.4 comparison of the values of u'(x) by different methods 

and HAM at  ̂ =  1 and 2 is given. Tables 9.1 — 9.4 show that the HAM solution 

presents a better approximation as compared with ADM solution, HPM solution 

and Legendre tau solution. Tables 9.5 — 9.7 give comparison of the error of u(x) by 

different methods at  ̂=  1 and 2. Tables 9.6 -  9.8 Compare the values of u'{x) by 

different methods and HAM at =  1 and 2 .
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Table 9.1

X analytic continuation ADM and HPM Legendre Tau method HAM solution

0.05 1.0038 1.00377556945843 1.0376658057109 1.00378

0.10 1.0152 1.01524353738588 1.01525769105649 1.01524

0.15 1.0347 1.03470887678813 1.03470091241366 1.03471

0.20 1.0626 1.06261465111813 1.06259867821323 1.06261

0.25 1.0996 1.09956760325147 1.09959144661382 1.09957

0.30 1.1464 1.14637603460243 1.14638760701734 1.14638

0.35 1.2041 1.20410448048055 L20407307763244 1.20410

0.40 1.2742 1.27415228539083 1.27413995233202 1.27415

0.45 1.3584 1.35836736627797 1.35840243876556 1.35837

0.50 1.4592 1.45921344816914 1.45923019232761 1.45921

0.55 1.5800 1.58002119375708 1.57998509852588 1.58002

0.60 1.7254 1.72537554656527 1.72535519560916 1.72538

0.65 1-9017 1.90173288879669 1.90176944030828 1.90173

0.70 2.1184 2.11844346203985 2.118446103714198 2.11844

0.75 2.3895 2.38952666502192 2.38948818144855 2.38953

0.80 2.737 2.73693554820900 2.73693515523338 2.73694

0.85 3.197 3.19700338869069 3.19703536410817 3.19701

0.90 3.834 3.83438275510100 3.83437315572520 3.8344

0.95 4.776 4.77593656643791 4.77624693047256 4.77623
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X analytic continuation ADM and HPM. Legendre Tau method HAM

0.05 0.1516 0.15163005612500 0.151522147109079 0.15163

0.10 0.3081 0.30809994093753 0.30839616285499 0.3081

0.15 0.4720 0.47198211410548 0.47120076741792 0.471982

0.20 0.6463 0.6625891667356 0.64686068663295 0.646259

0.25 0.8345 0.83453560799690 0.83505827505242 0.834536

0.30 1.0413 1.04132442194996 1.04041642453365 1.04132

0.35 1.2724 1.27244080661556 1.27203305549665 1.27244

0.40 1.5256 1.53557674523997 1.53660136211238 1.53558

0.45 1.8412 1.84115754906510 1.84162918219226 1.84116

0.50 2.2037 2.20366299100167 2.20258598447253 2.20366

0.55 2.6440 2.64373198583305 2.64313353371108 2.64373

0.60 3.1920 3.191637681455640 3.19276051287306 3.19164

0.65 3.8930 3.89326306291223 3.89390846667811 3.89327

0.70 4.8210 4.82087325717188 4.81961487256922 4.82088

0.75 6.0940 6.09365539825298 6.09328083763830 6.09366

0.80 7.9190 7.91963993781202 7.92110979463905 7.91965

0.85 10.700 10.68878979691819 10.68810973968357 10.6889

0.90 15.200 15.20291903194554 15.20358105190098 15.2039

0.95 23.300 23.32488089779040 23.34147297218442 23.341
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Table 9.3

X Analytic continuation ADM and HPM. Legendre Tau method HAM solution

0.05 1.0050 1.00502714606259 1.00452901168885 1.00503 '

0.10 1.0203 1.02026919477424 1.02104733101283 1.02027

0.15 1.0461 1.04609205682859 1.04568805007883 1.04609

0.20 1.0830 1.08304976093849 1.08211622538865 1.08305

0.25 1.1319 1.13192491551257 1.13321491002347 1.13192

0.30 1.1938 1.19379024536885 1.19453158450896 1.19379

0.35 1.2701 1.27009977531541 1.26838341456581 1.2701

0.40 1.3628 1.36282365175205 1.36199227404374 1.36282

0.45 1.4746 1.47464972088494 1.41656054759296 1.47465

0.50 1.6093 1.60929103954460 1.61041647339453 1.60929

0.55 1.7720 1.77196801040459 1.77002375632266 1.77197

0.60 1.9702 1.97019074865113 1.96881771762475 1.97019

0.65 2.2151 2.21508321179155 2.21705133168309 2.21508

0.70 2.5237 2.52374246288910 2.52502186102312 2.52374

0.75 2.9237 2.92371780534123 2.92156709341536 2.92372

0.80 3.4622 3.46222343428592 3.46189169209309 3.46223

0.85 4.2270 4.22716380111867 4.22917124265622 4.22718

0.90 5.4020 5.40230384073914 5.40095659634246 5.40256

0.95 6.9250 7.44220956078449 7.44903796388528 7.4479
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X Analytic continuation. ADM and HPM. Legendre Tau method HAM solution

0.05 0.2018 0.2017565935233 0.19506737519209 0.201756

0.10 0.4091 0.40913700000763 0.4266978440918 0.409136

0.15 0.6256 0.62561099607917 0.58180200663215 0.625611

0.20 0.8553 0.85528574376796 0.88690901421489 0.855286

0.25 1.1033 1.10326643289016 1.13471732639540 1.10327

0.30 1.3761 1.137614962029666 1.32713207266902 1.37615

0.35 1.6827 1.68273330750550 1.65624172867177 1.68273

0.40 2.0351 2.03508180897498 2.09055954859542 2.03508

0.45 2.4502 2.45018266771106 2.48155989614621 2.45018

0.50 2.9526 2-95262120064461 2.89480407392915 2.95262

0.55 3.5790 3.57907120593636 3.53916714774305 3.57907

0.60 4.3860 4.38617741400896 4.4459235753419 4.38618

0.65 5.4650 5.46512495162840 5.5097378842758 5.46514

0.70 6.9700 6.97028178853458 6.90225094640852 6.9703

0.75 9.1800 9.17992302915627 9.14737093027648 9.17995

0.80 12.640 12.63780233521595 12.72413192501885 12.6379

0.85 18.50 18.52647814752540 18.49529693564642 18.5272

0.90 29.80 29.82591522501663 29.80537398992756 29.8414

0.95 56.10 55.74810648174442 56.15249937871179 56.1052
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X
Analytic continuation 

&  ADM and HPM

Analytic continuation 

&  Legendre Tau method

Analytic continuation 

&  HAM at -1.49!

0.05 0.033737603 0.033737603 1.99243£  ̂-  05

0 10 4.28855E' -  05 5.68273^; -  05 3.94011£:-05

0.15 8.57909E -  06 8.81815K -  07 9.66464£J -  06

0.20 1.3788£; -  05 1.24392£; -  06 9.41088£; -  06

0.25 2.94623£; -  05 7.77863£? -  06 9.41088£; -  06

0.30 2.09049^ -  05 1.08103£; -  05 1.74459£  ̂-  05

0.35 3.72102E -  06 2.23589£’ -0 5 0.000000

0.40 3.74467£; -  05 4.71258£; -  05 3.92403E -  05

0.45 2.40236£; -  05 1.79532£? -  06 2.20848^; -  05

0.50 9.21612£; -  06 2.0691^ -  05 6.85307£; -  06

0.55 1.34138£;-05 9.43131£; -  06 1.26582£; -  05

0.60 1.41726£;-05 2.59675£; -  05 1.15915£; -  05

0.65 1.72944£; -  05 3.65149E -  05 1.57754E-05

0.70 2.05164^; -  05 2.17635£;-05 1.88822£; -  05

0.75 1.11592£;-05 4.94604E -  06 1.25549£; -  05

0.80 2.35483^ -  05 2.36919£;-05 2.19218£;-05

0.85 2.35483£;-05 1.10617£;-05 3.12793£; -  06

0.90 9.98318£J -  05 9.7328E -  05 0.00010433

0.95 1.32817f;-05 5.17024£;-05 4.81575£;-05
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X
Analytic continuation 

& ADM and HPM

Analytic continuation 

& Legendre Tau method

Analytic continuation 

& HAM a t -1.49

0.05 0.000198259 0.000513541 0.000197889

0.10 1.91699£'-07 0.000961256 0

0.15 3.78938£; -  05 0.001693289 3.81356^ -  05

0.20 0.025203724 0.000867533 6MSSE -  05

0.25 4.26699^ -  05 0.000668993 4.31396£  ̂-  05

0.30 2.34533E' -  05 0.000848531 1.92068£’ -0 5

0.35 3.20706£; -  05 0.000288388 3.14367£;-05

0.40 0.006539555 0.007211171 0.006541689

0.45 2.30561£'-05 0.000233099 2.1725E-05

0.50 1.6794^-05 0.000505521 1.81513^;-05

0.55 0.000101367 0.00032771 0.000102118

0.60 0.000113508 0.000238256 0.000112782

0.65 6.75733£; -  05 0.000233359 6.93553£  ̂-  05

0.70 2.62897E -  05 0.000287311 2.48911£J-05

0.75 5.65477^ -  05 0.000118012 5.57926£: -  05

0.80 8.08104£  ̂-  05 0.000266422 8.20811^;-05

0.85 0.001047683 0.001111239 0.001037383

0.90 0.000192042 0.000235596 0.000256579

0.95 0.00106785 0.001779956 0.001759657



Table 9.7
1 10

X
Analytic continuation 

&  ADM and HPM

Analytic continuation 

&  Legendre Tau method

Analytic continuation' 

&H AM at ?i=-1.54^

0.05 2.7011^ -  05 0.000468645 2.98507J5 -  05

0.10 3.01923£  ̂-  05 0.000732462 2.94031£; -  05

0.15 7.59313£; -  06 0.000393796 9.55932£: -  06

0.20 4.59473£? -  05 0.000816043 4.61681J5 -  05

0.25 2.20121£  ̂-  05 0.001161684 1.76694J5 -  05

0.30 8.17108£'-06 0.00061282 S.S im E  -  06

0.35 1.76903^ -  07 0.001351536 0.0000000

0.40 1.73553£;-05 0.000592696 1.46757E -  05

0.45 3.37182E -  05 0.039359455 3.39075E -  05

0.50 5.56792£; -  06 0.000693763 6.21388£; -  06

0.55 1.80528^-05 0.001115262 1.693E -  05

0.60 4.69564£; -  06 0.000701595 5.07563£; -  06

0.65 7.57898£; -  06 0.000880923 9.02894E -  06

0.70 1.68256E-05 0.000523779 1.58497£; -  05

0.75 6.09E -  06 0.000729523 6.84065£; -  06

0.80 6.76861£; -  06 8.90497E -  05 8.66501E -  06

0.85 3.87512^; -  05 0.00051366 4.25834£’ -  05

0.90 5.6246S -  05 0.000193151 0.000103665

0.95 0.074687301 0.075673352 0.075509025



Table 9.8
11 1

X
Analytic continuation 

h  ADM and HPM

An£ilytic continuation 

& Legendre Tau method

Analytic continuation 

& HAM a t -1.54^

0.05 0.000215097 0.033362858 0.000218038

0.10 9.04425^; -  05 0.043015996 S.799SE -  05

0.15 1.75769£; -  05 0.07000958 1.75831^;-05

0.20 1.66681^;-05 0.03695664 1.63685£: -  05

0.25 3.04243£; -  05 0.028475778 2.71912£; -  05

0.30 0.17330502 0.03558457 3.63346£; -  05

0.35 1.97941£?-05 0.015723701 1.78285£; -  05

0.40 8.93864^ -  06 0.02725151 9.82753£; -  06

0.45 7.07383£? -  06 0.012798913 8.1626E -  06

0.50 7.18033£; -  06 0.019574587 6.77369E -  06

0.55 1.98955£;-05 0.011129604 1.95585£; -  05

0.60 4.04501E -  05 0.013662466 4.10397£;-05

0.65 2.2864£; -  05 0.008186255 2.56176£; -  05

0.70 4.04288£; -  05 0.009720094 4.30416£; -  05

0.75 8.38462£; -  06 0.003554365 5.44662E -  06

0.80 0.000173866 0.006656007 0.000166139

0.85 0.001431251 0.00025422 0.00147027

0.90 0.000869638 0.000180335 0.001389262

0.95 0.006272612 0.000935818 9.26916£; -  05



9 .5  C o n c l u s i o n

The following features were noted in this study:

• As we used a Taylor’s series expansion, the solution obtained is valid in the 

interval (0 ,1).

• HPM is the special case of HAM at =  —1 in Eq. (9.13) one can easily get 

HPM solution.

• The given comparison in Tables 9.1 -  9.4 indicate that HAM solution is better 

than ADM solution, HPM solution, and Legendre Tau solution.
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A ppendix 

A ppendix A

All  =  2 4 C i { P - M ^ + B r ( j - l f  +  G r h - l f - h 3 M S - 2 P j - 3 M ^ ' r ^  
_l_p^2 ^— 4^ In 2 +  In 4 +  7  ̂In 4 +  A In4) H- 2c^Ci A(81 In 2 — 56 —
67 (64 In 2 -  37) +  67  ̂(72 In 2 -  49) -  64j^ (In 8 -  2)) +  36c^O  ̂A 
(_^  S7 (!n S -  2) +  27' '̂(in 256 -  5) +  In 512) +  24c (7 +  1 +  2cC|
(M^ (7 -  1)  ̂ -  6{P  (7 -  1)  ̂(27 -  1) +  2(1 +  6A +  7  ̂ ( 3 -1 1  In 2) 
-9 A ln 2  -  lnS +  7 ^ (-1  +  In 16) +  7 ( - 3  +  4 -  1) +  In 1024))) ,

^12 — 6c^Ct A(3S -  27 In 2 +  7(3 ( -4 9  -i- 36 In 2) -(- (7 IS9 -  144 In 2 +
I67 (In 16 -  5 )))) -  36c (7 -  1 f  cCi { - M ^  (7 -  1)'' (137 ~  9) +  
2( P (7 -  1)  ̂( -1 3  -!- 227) +  672 (9 -  22 In 2) -  3 ( - l  H- 6A (ln2 -  1) 
-I- In 4) H- 7(20 in 2 -  9 +  6A (In 16 -  3) +  7  ̂(In 256 -  3)) -  36c^Ci 
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c ( - 3  +  4 7 »(4 (7  -  1 )= +  ( - 2  H- c (47 -  3))^ A) In r,
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A i4 =  -2<7i (7 - I f  - 2 B r -  2Gr - M ^  {2 +  3c) -h 2c{P  +  {2Br +  <?r
+2cM^ cP )7 -1- 9c  ̂( c ( 4 ^  3) -  2) A)̂

=  cC i(7 -  1)  ̂ (M® +  8c^A) ^
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(ATi,(24+ 6M^ -  11P ) ( - 1> 7)= + 6iVj,(-2 +  c (-3  +  47))(-6 + c(-20 
+237))A -  24ATt(-l + 7)* ln2) +  iVj(144c^A“(299 -11797 + lo427® 
- 6687’  +  4 {-3  + 47f  In 2) -  36c®(-3 +  47)A^(157 -  54 In 2 +  2 j  
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( - 9  +  137)) -h M^(6c^A(519 -  14107 -h 11007  ̂ -  1987^ -  6(3 -  47)̂
In 2) c^A(1254 -  48337 +  61667  ̂ -  25977^ -h 6 ( - 3  +  4 j f  +  In 2) +
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In 64)) H- 7 ^ (-1 9  +  In 256))) -  12c^ A (P ( -1  H- 7)(-66  +  857) +  6 ( -4  
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+C t  ( -1  +  7 ) ( -2  +  c ( -3  +  47))®A) ln[r),
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— 72Ci (Br +  G r -  A/® ) +  c 'C i A( 748 -  27517'“+  33607^ -  136O7® -  6 

(3 -  47)=(27 +  47(-10  +  37)) ln[2]) +  18c®C, ( - 3  +  47)A (-12  +
38 ln[2] +  7(5 -  56in[2] +  87(1 +  ln[4]))) +  4 e ( -6 ( - l  +  7 )  ̂ +
( - 3  +  47) +  C l(M ® (-1  +  7)^{7(41 +  1S7(-1 +  ln[2]) -  48 ln[2])
+ 4 ( -5  +  In[64])) -  3(87*(2 +  ln[2]) -  27®(23 +  28 ln[2]) -  
7(14 +  33A +  96(1 +  A)ln[2]) +  2 P (-1  +  j )^ ( -3  +  47)(1 +  7  ln[2]
-  ln[4]) +  (14 +  33A) In[4] +  47^(11 +  29 In[2] +  A(9 +  In(64j))) 1

-2 4 C j ( -8 M ’  ln[2j +  ^ (-2  +  9B , +  9Gr -  6M^ -  2P> -  A -  2(4 +  14B^ 
14Gr -  12JW’  +  5/>) ln[2]) +  A ln[4) -  7®(2 -  3Br -  3Gr +  20(Br +  G ,) 
ln[2] +  P(2 +  ln[4]) -  4M^(1 +  ln[8])) +  (1 +  P) ln[16] +  7*
(-JVf=(2 +  ln[4]) +  (Br +  Gr) ln(16)) +  7^(4 -  9Br -  9Gr +  M^(l -  
261n[2]) +  4J»(1 +  ln[4]) +  ln[16) +  9(Br +  Gr) ln[16]) +  (Br +  Gr) 
]n(256]) +  24Ci ( -1  +  -/)^(4Br(-l +  -  (-1  +  7)(2(-P +
(-2  +  7 ) - 2 G r ( - l  + 7 )) +  c(4 +  3 P -4 ( 1  +  P )7 +  M *(-2  +  37))) 
+ 3 c (-2  +  c ( -3  +  47))'^A) ln[rj,

B i 3 =  -1 2 (-1  +  7)’ (2Ci(Af’  +  B r ( - r  +  7) +  Gr(-1 +  7)) + c ( 2  +  Ci(Af’
(3 -  47) +  2 P ( - l  +  7 )) -  27) -  ISc^Ci A +  9c®C’i ( - 3  +  47)A)^

B,4 =  4cC i(7-l)'*  (Af2 +  8c^A),
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C, (2 +  C, ) ( -2  +  c (-3  +  47) ) ( - 8 (-1  +  7 )̂  -  ( -2  +  c (-3  +  47))=A
1 6 (-l +  7 f  ’

B 2 2  — -y(1152CfGrJV6“ -  47(3(377 +  7501n[2]) +  47(-293
1152JVsa(-l+ 7 )'
-34Sln[2] +  367(3 +  ln[4])120iVsa(-l +  7)^(c^ +  C2A(-12(-1 +  7)(281 
+ 7 (-7 9  +  1567)) +  ( -3  +  47 )̂  In 8) -  -  P +  B r(-1  +  7 )® +  Gr
( -1  +  7 )® +  In4 +  (7 = +  A) In 4 -  '■/(P(-2 +  7 ) +  M=(3 +  ( -3  +  7 )7 ) +  In 
+ c ( - 12( - l  +  7 )̂  +  C’2(M =(-1 +  'i f  -  6 (-2  +  P ( - l  +  7 )^ (-l +  27) 
-12A  +  27(3 -  37 +  7  ̂+  6A -  (10 -  II7  +  47  ̂ +  12A) In 2) +  6A In 
S +  In64))) -  18c^C2A(-6 +  27(8 -  57 +  4 (-3  +  27) ln(2]) +  In[512])) 
+C f (60GV.Vj(-l +  7)®(2(40^+ M ‘‘ -  bP )a  +  2 N t( - l  +  -y f  +  a(2(40 +  
M ' -  5P )(-2  +  7)7  +  3(60 +  c(180 +  137c))A +  6c7(-120 +  c(-182 +  
12l7 ))A -  120ln[2) -  2160Aln[2] +  7 (-5 8  -  123A -  288(1 +  A) ln[2]) 
+ 47®(6(20(-2  +  7)7  +  11(2 +  c(3 -  47))*A) In[2])) -  +  7 )®
(ATi,(6380(-l +  7)2 +  2Af=(-l +  7 )=' -  10F(-1 +  -y f  +  3(60 +  c(180 +  
137c -  4(60 +  91c)7 +  242cy^))A -  22 (4 (-l +  j f  +  3(2 +  3c -  4c7)^
A) ln2) -  8iV«(-l +  7 )*(-5  +  In256)) +  iVj(30A^(4(-l +  7)(-2886 + ‘7  

(12320 +  7(-17621 +  83037))) -  J8(-3 +  47)(-449 +  27(888 + 7 

(-1161 +  5OO7 ))) In 2 +  135(3 -  47)“* in 2 )̂ +  3c^A’ ( - 4 ( - l  +  7)(8832 +  
7(-49T58 +  7(105437 +  7(-99493 +  352527)))) +  90(3 -  47)^(-91 +  
27(181 -t- 7(-239 +  IO47)))In2 -  135(-3 +  47)° In2 )̂ -  10c^A((-l +,7 ) 
( -9 P ( -1  +  7 )(-5  +  67)(33 +  2 y ( -5 2  +  4I7 )) +  8( - l  +  7)’̂ (364 +  7 

(-1052 +  7697)) +  24(1831 +  7(-5201 +  36947))A) +  18((-1 +  7)(458 
+P(3 -  47)®(-13 +  227) -  27(903 +  27(-591 +  2567)))12(-434 +  7 

(1692 +  7(-2181  +  9287)) )A) ln[2] +  ln[2])) +  60c=*A(2Af=(-l +  7)^(339^- 
10787 +10547^ -  2947® +  + 6 ( -3  +  47)(27 +  27(-25  +  97)) ln[2]) +  3(P  
( -1  +  7)“{-223 +  6327 -  4427^ +  ( -3  +  47>(-53 +  8O7 ) ln[4]) +  12(27 

(-6 (9  +  23A) +  (165 +  326A) In[2] -  18(7 +  lOA) ln[2] +  120Ci 
( -1  +  7)®(12Br(-l +  7 ) +  c®A(2(-l +  7)(112 +  7(-305 +  2117)) -  .
3(3 -  47)̂  + (-12 +  137) tn[2]) +  12((P +  G r ( - 1  +  7) + A /( - l  + >))
( -1  +  7 )̂  -  2(3 +  7^(9 -  20 ln[2]) -  6A (-2  +  ln[8]) +  7 (-9  +  191n[2; 
+ 3 A (-4  +  lnfl28j)) +  7^ ( -3 +  In[l28])) +  ln[4096])))^



=  m N , a U  t  ^  ^  "-W>

+ ln[16])(-l +  t ) (2C2(P +  M H -2  + 7 ) -  2B ,(-1  +  7 )
- 2 G r i - l  +  7 )) +  c(2 -  2 7  +  C2(2 +  3P  -  27  -  4P 7  +  M ^ (-2  +  3 7 )))) 

+ 3cC-2 ( - 2  +  c ( - 3  +  4 7 ) f  A) +  24Ci A '»a (-1  +  7 )^ ( ( - l  +  7 )(2 (P  +

(-2  +  7 ) +  2G r(-l  +  7 )) +  14Br{-l +  7 ) +  c(-T P 7  +  6( - l  +  P  +  7 ) +  
M ^ - 4  +  07))) +  6c(-2  +  c (-3  +  47))(-2 +  c (-6  +  77))A) +  Ct(8Gr 

+  7)^(6JV»(-1 +  7 )̂  +  q(6M 2(-1 + 1 ?  -  17P(-1 + 1 ?  + 6(4 
+ 2(2 +  3c)(3 +  10c)A -  ln4 +  7(-8  -  c(70 +  149c)A +  7(4 +  92cU 
- ln 4 )  +  ln l6))) +  a (8 5 r (-r+  7f(A^(24 +  6M2 -  11P)(-1 + 7 )̂  +  
6 N i{-2  +  c (-3  +  47))(-6 +  c(-20 +  237))A '- 24A't(-1 +  7 )̂  In 2) +  

iV(,(144c‘'A^(299 -  11797 +15427^ "  6687’  +  4 (-3  +  47)̂  In 2) -  
36c^(-3 +  47)A^(157 -  64 In 2 +  27(-309 +108 In 2 +  P ( - l  +  7)^(1 

- 7(3 +  ln[4]) +  ln[16]) +  37^A(7 +  ln[64]) +  7(405 -  1441n 2 + 167 

(-11 +  In 16)))) +  c®A(4M^(299 -15027  +  28147  ̂ -  23277  ̂+  7167'* 
- 3 ( - l  +  7)(-3  +  47)® In 2) +  3(P (-1 +  7)(761 -  108 In 2 +  47(-758 +  
108 In 2 + 7(997 -1 4 4  In 2 + 167(-27+ In 16)))) -  24(-45 -  564A +  
7®(-345 -  924A +  292 In 2 +  384A in 2) - 127(-17 -  121A +  (7 +  24A) 
ln4) +  9 In 16 +  8 j \ - 9  +  In 256)))) +  6c= A ( - P ( - l  +  7)(-749 +19127 
-11967^ +12(3 -  47)2 In 2) +  48(-37(13 +  7 (-14  +  67) +  22A) +
47(10 +  7 ( - l l  +  47) +  8A) In 2 +  6(2 +  9A -  In 4) -  6A In 16) +  4M^

( -1  +  7)(7(551 -  72 In 2 +  7(-497 +  I2O7  +  48In 2)) +  3(-61 +  In 512))) 
+2c(2M^(-1 +  7 )̂  +  2(P^(-1 +  7)’ (-13  +  227) +  24(1 -  47’  +  7'* +  
9A(1 +  2A) +  7^(6 +  9A -  12A In 2) -  6A(1 +~A) In 4 +  2^{-2  +  3A(^3 
+  In 16))) +  3P (-1  +  7)(7^(51 -  44 In 2) +  3(5 +  69A"- 4(1 +  3A) In 2) 
+ 87(-6  +  !n 32 +  A(-30 +  In 64)) +  27*(-9 +  In 256))) -  M ^(-1 +  7 ) 
( P ( - l  +  7)*(-21 +  377) -  2 +  c (-3  +  47))(P ( -1  +  7 ) +  6c(2 +  c 
(3 -  47))A)(4(-1 +  7 )*A) lnr)j
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^  l  f a - 2 P ( - l  +  j )  +  M ^ - ^ +  27) +

(4S +  16c=(-l +  7) -  10S",)A) -  24C2N^6a(-l +  -  2Gr +
(2 +  3c)Af= -  7cP +  2(Br +  Gr +  c{-2M ^  +  P »7  +  9c=(-2 +  c ( -3  +  
4 t ) ) A ) -  12CiiV»a(-l + 7 ) ’ (-2(1  +  3c)Af’  +  4cP +  2 B r(-l +  7 ) +  
2 G r{-l  +  7 } +  c(7M- j  -  iP'i +  27c(-2 -  4c +  b(ry).\)) +  C ^ -G rN i  
( -1  +  7)(36.Vj(-1 +  7 )’  +  q(16 +  44M =(-1 +  7)= -  4SP(-1 +  j f  
+9(12 +  c(132 +  215c))A +  47(7(4 +  639c= A -  12 In 2) -  4(2 +
9c(9 +  31c)A -  6 In2)) -  4Sln2)) +  167®(-40 +  3A{-751 +  3481ni2])) 
+ 7 (-6 4 0  +  9A(-2413 +  2016 ln[2]) -  3 2 r '( -5  +  18A(-19 +  ln(64|))) 
+ 9 a (B r (-l  +  7)(-4ATi,(9 +  IIM^ -  12P )(-1  +  7 )’  -  9iV»(12 +  c(I32 
+215c -  16(9 +  31c)7 +  284c7*))A +  8JVt(-l +  7)^(5 +  In 4096)) 
H-JV»(-JW*(-1 +  7)®(-23 +  36-/'+ c ( -9 ,+  137))'+ M^(6c’ A(215 
- I 4IO7  +  IIOO7* -  1987^ -  6(3 -  4 y f  ln2) +  c®A(12S4 -  48337 
+61657=' -  25977® +  6 ( -3  +  4y)^ +  In 2) +  4 (3P (-1  +  7)’  ( - 7  +  27)
+ 2(2 +  l l A + 7 ^(2 - 61n2) -  181n 2 +  7 ’ { - i r  +  241n2) -9 A ( -4 1  +
In 64) +  7(-47  +  SSln 2 +  6A (-32 +  In 16))))) +  3(8P ''(-1  +  y f  +  
4 c P (-l  +  7)‘ ( o ( -1 +  7 }̂  +  P ( -3  +  (7 -  47)7 ) +  5A) +  54c^A^(l 75 
-4647  +  3067  ̂ -  (3 -  47)̂  In 4) +  9c®A®(535 -  541n 2 -  67(355 -  
36 In 2 +  7 (-471  +  2OS7  +  48 In 2)) +  327’  In 16) +  3c^A(P(-l +  7)
(32 -  9267 +  367®) +  12(7^(53 -  22In 2) +  7 (-4 9  +  20In 2 +  6A (-37 +
In 16)) - 3 ( - 5  +  ln4 + A ( -5 7  +  ln64)) + 7 ® (-1 9  +  in256))) -  12c^A 
( P ( - l  +  7)(-66  +  867) +  6 ( -4  +  A (-1 7  +  In4) +  j^ ( -4  +  In 4) -  7(-8  +  
In 16)) +  ln4096)))) -  3Cfa(8GrJV»(-l +  7 )̂  +  16BrArt(-1 +  j f  +  
36c^JVi(-l +  7)^(-2 -  3c +  4cr)®A +  9(^Ni,{-2 - 3 c  +  4 c jfA '‘ +
PNi(3 +  4 c7)(4 (-l +  7 )“ +  (3 -  4C7)’  +  A)) Inr)^
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B2b =

—

— -T-J;-------^6cC io(-l +  7)(--W® -  24A) +  2cC'2a(-l +  7 )24q;(—1 + 7 )
(M^ -  9SA) +  aU2Gr(6B  -h 7c)M^a -h 6 4 G r (- l  -H +
l2M ^a -  P a ) ( -1  +  7 ) H- 12cck(-2 +  c ( - 7  +  S7 ))A ^+  a (6P »(-B r 
4 -cP )(-l -I- 7 )̂  +  -h 7){-4  -  2c H- 27 +  3cy) +  ( -1  -h 7 )'
{c(342Br -h c(154P(3 47) +  134(-1 -I- y f  )] +  1 2 B A -7  - M c - h
S3o'f))A +  58Sc^(2 +  c(3 -  47)) +  3c{€8 -f c(300 -H 201c -  16 
(26 4- 33c)7 +  8(6 +  43c)7^))A))),

cCf (JVf̂  — 45A) — 8c^A)


