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Abstract

Spin magnetization, Bohm potential and arbitrary temperature degeneracy effects
on the electromagnetic waves propagating in arbitrary direction in spin magnetized
quantum plasmas are considered. We study the high frequency modes in the presence
of the above mentioned quantum corrections, and that’s why because of large inertia
of ions these are assumed to be static and act as the neutralizing background. While
the electrons are considered dynamically and quantum mechanical.

Using the Fermi-Dirac distribution the generalized temperature degeneracy formula
for pressure is derived in terms of polylogarithm function. The expansion of these poly
log for £ << 1 and £ >> 1, (£ = e®™ with 8 = 7 and 4 is the chemical potential),
corresponds to nearly nondegenerate and nearly degenerate quantum plasmas respec-
tively. The parallel and perpendicular modes dispersion relations is then derived for
both nearly nondegenerate and nearly degenerate limits of the plasma. The effects of
arbitrary degeneracy in the presence of Behm potential and spin magnetization, on the
dispersion curve of parallel and perpendicular modes are discussed for both degenerate
limits.

The resonant and cut-off frequencies for perpendicular (x-mode) in the presence of
all quantum corrections are derived analytically and discussed numerically. The effects
of number density, degeneracy factor and that of magnetic field are discussed with their

physical significance.
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Chapter 1

Introduction

The word plasma originates from Greek mAaopie, which represents something fabri-
cated or jellylike. In the mid nineteenth century the Czech physiologist Jan Evangelista
Purkinje (1787-1869) has used this word for the first time for the remaining clear fluid
after separation of all the corpuscular things in blood. In 1929 Tonks and Langmuir
have used the word to inscribe the internal portion of a glowing ionized gas produced in
electric discharge tube. In 1930 few researchers, each motivated by a specific problem,
developed the field of plasma physics. Their work was mainly focused on understanding
of radio wave absorption and distortion through ionospheric plasma (partially ionized
gas lies at a distance of about 60 kn: in the upper atmosphere) and gaseous electron
(vacuum) tubes used for rectification, amplification, and regulation of voltage in the
early days of electronics [1]. Astrophysicists come to know that most part of the known
universe is in plasma state , and thus a better understanding of astrophysical phenom-
ena requires an advancement in plasma physics. Hannes Alfven was one of the main
contributer, who presented a theory of hydromagnetic waves (Alfvén waves) around in
1940. And suggested that this theory would be significant in astrophysical plasmas and
this theory has been successfully used to investigate sunspots, solar flares, the solar
wind, star formation, and many other areas in astrophysics [2]. In 1950 fusion energy
research started sinwltaneously in the USA, Britain, and Russia. Since this work was
a part of thermonuclear weapon research, it was initially classified but, because of less

progress in each country’s effort and the realization that controlled fusion research was



unlikely to be of military value. Nowadays many other countries cotribuited in fusion
research as well [3].

In 1952 the creation of hydrogen bomb by US (one of the major applications of
plasma physics) increased the interest in controlled thermonuclear fusion reaction as a
possible energy source for future. Fusion physics is mostly concerned with understand-
ing the trapping of plasma (mostly this trapping is done with the help of magnetic
field) and searching many instabilities in plasma which may cause escape of particles.
In 1958 James A. Van Allen’s systematically explored the Earth’s magnetosphere by
discovering the Van Allen radiation belts surrounding the Earth [4], in addition to
explore area contained in space plasma physics. In 1960’s LASER plasma interaction
was developed, when solid object is strike with a high power laser beam the object
condensed to a shorter volume and than fused with creation of energy. Another ap-
plication of laser plasma interaction is the generation of extremely strong polarized
electric fields when an intense laser pulse passes through a plasma to accelerate the

charge species (which separate the charge particles at sorme distances) [5].

1.1 What is Plasma Physics?

Plasma is a quasi-neutral mixture of charged and neutral particles which exhibits col-
lective behavior. Quasi-neutrality means that contain approximately equal number
of positive and negative charge particles (n; = n. = n) on scale length long as com-
pared to Debye length (small deviation from quasi-neutrality can be developed on scale
shorter than Debye length). Where n; is number density of positive ions , n. is num-
ber density of electrons and n is a common density of species called plasma density
.Collective behavior is because of long range coulombic force involved in plasma. The
variation in coulombic force (that describe the electrostatic interaction between the
charged particles ) occur very slowly with distance as r—2 which makes it a long range
force. This means that each particle interact with a large number of particles. There-
fore the plasma particles shows a significant response to an external electric field, such

a behavior is called collective behavior. On the other hand in neutral gases, particles



interact via short range Vander Waal’s force i.e. during binary collisions. This force
decay very rapidly with distance as r~% [6].

It is believed that about 39% of the known matter of our universe lies in the plasma
state. Plasma may be fully ionized or partially ionized. Fully tonized plasma occurs in
the solar wind and in fusion reaction experiments while partially ionized plasmas occur
in different types of gas discharges (flucrescent lamps, gas lasers, arc discharges, plasma
for materials processing) and the earth’s ionosphere. Naturally, occurring plasmas
includes the stellar objects {(sun and stars), aurora borealis, radiation belts, comet
tails, Earth’s ionosphere, solar corona and interstellar media, etc. Moreover, man-made
plasmas are, plasma lamps, gas discharges, gas laser, the welding sparks, controlled

fusions, the arcs and plasma screens [7)].

1.2 Importance of plasma physics

The earliest research work in plasmas was inspired by the need to develop gas discharge |

tubes (feld with ionized gases) that could carry large currents. These vacuum tubes are
nowadays, used in mercury rectifiers, ignitrons, spark gaps, welding arcs and lightning
discharges. The observation of the earth’s environment in space such as that of earth
magnetosphere (which prever;t us from solar winds) is another significant application
of plasma [7]. The field of quantum plasma physics has vast applications in modern
technology, metallic and semiconductor nanostructures such as metallic nanoparticles,
thin-metal films, quantum wells and quantum dots, Nano-plasmonic devices, quantum
X-ray free-electron lasers etc. [8]. Last but never least one of the most important
application of plasma physics is controlled thermonuclear fusion reaction which is one

of the possible solution of all the energy crises [9].

1.3 Classification of Plasmas

Plasma is generally classified into, classical plasma and quantum plasma on the basis of

certain specific parameters such as plasma frequency, velocity scales and characteristic
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length. By using basic dimensional analysis the above mentioned parameters can be
find out. Certainly, better scientific studies will be important to know about the

interceding of above mentioned parameters in real phenomena.

1.3.1 Classical Plasmas

Classical plasma is well-defined by high temperature and low number density regimes.
Classical plasma obey the laws of Newtonian mechanics, in which no overlapping of

quantum surfaces occur in plasma particles [10], as show in Fig 1.1.

Figure 1.1: Particles behavior in low density, high temperature plasma, that’s classical
Maxwellian plasma.
The coupling parameter, for classical plasma which contain particles concentrations
n, electric charge q and temperature T can be written as [11].
g’n3

= 1.
Le EngT ( 1)

Where ¢, is the permittivity of free space and kg is the Boltzmann’s constant. For
collisionless plasma it is necessary that T'c < 1.0n the basis of plasma constituents
such as neutral particles, electron density, and ion density we can define other quan-
tities, like plasma ionization degree which is the ratio between numbers of charged
particles in a certain unit volume to the total number of particles in the same unit
volume. The number density variation changes the degree of ionization. Ionization de-

gree is in the range of 10~* — 10~ for ordinary classical plasma at low pressure in the
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absence of external magnetic field, while by applying external magnetic field {used for
confinement) the ionization degree could be increased up to 1072 [12]. Because of free
charge carrier plasma behave like an excellent conductor. By introducing an external
test charge to the plasma, the charge carriers inside the plasma shield off its field and
preserve quasineutrality. Therefore, the field of the test charge particle does not fallow
the inverse square law, but follow exponential law. This phenomenon is called Debye
shielding, and the typical length scale of the exponentially decreasing field from the

test charge is defined as the Debye length [13]

kol
Aps = ) EE (1.2)
ooy

Where Ap, is the Debye length, ng, is the density and T, is the temperature for any

particle x with a Boltzmann’s constant kg. Classical plasma shields out the potential
of the charge particle in a vacuum and this shielding can be observed on scale length
that is Debye length. Usually in Debye sphere of radius Ap, the value of thermal energy
exceed the value of potential energy. The number of particles inside a certain volume

with linear size of a Debye length gives the definition of plasma parameter as

Np=n\,_>»1 (1.3)

If there is a finite temperature of plasma then, we can construct the average thermal

velocity V, of a particle with mass m,

V, = 2B (1.4)

By taking the ratio Ap;/v, gives the definition of time scale 1;Egm$. Its inverse
E€4Tor

defines the plasma frequency which is the characteristic frequency for Quctuations of

concentration in plasma

2
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quantum plasma as well as the relevant parameters. We must considered that simple
expressions can only be found in the limiting casesi.e. T, >> Tr correspond to classical
plasma and T, << Tp leads to quantum plasma regime. It is important to keep in
mind that there is transition between these two regimes but this can not be treated
using straight forward dimensional arguments. The time scale for collective behavior
in quantum plasma can be write in terms of plasma frequency i.e. {g. = i For deep
degenerate quantum limits x >> 1, then Eq. {1.9) becomes much significant.

In very low temperature limit thermal velocity of electron should be replaced by a

typical velocity known as Fermi-velocity, and in terms of Er = kpTr = (%)(ngn)g,

it is defined by

=

e B (3m2n.)
me’  me

: (1.10)

Using plasma frequency and Fermi-velocity we can define a length scale, called the

Fermi length

vV
Ape = —2, (1.11)

Wpe

which is quantum picture of Debye length. Since it shows the length above which a
positive charge is completely screened and thus a plasma approximation is valid. The

quantum coupling parameter is defined in term of Fermi temperature Tr as,

1 \3
To = , 1.12
@ (nAie) (1.12)

while the classical coupling parameter is defined by

N
=1 —— . .
° (nA%) (113)

Eq. (1.12) and Eq. (1.13) are equivalent, but the first has no classical part and -

inscribes the quantum coupling parameter in the form of ratio between the energy of
an elementary excitation and Fermi energy. By means of quantum plasma models we
can study the motions of electrons in metals as well as metallic nanostructures like
nanoparticles, thin films and clusters etc. [18].

In these days, there has been a great deal of attention in examining quantum

15



plasma which is described by high number density of particle and low temperature in
comparison to the classical plasma which has high temperatures and low plasma particle
concentration [19]. Quantum plasmas are common in dissimilar atmospheres, e.g. in
intense laser-solid density plasma experiments [20, 21] and in ultra-small electronic
devices [22], quantum dots and nanowires [23], carbon nanotubes [24], quantum diodes
[25], in super dense astrophysical bodies [26] (i.e. the inner portion of Jupiter and
massive white dwarfs magnetors, and neutron stars), micro plasmas [27], ultra-cold
plasmas [28], biophotonics [29] and Laser produced plasma [30]. Different region of

plasma is shown in the Fig 1.3.

Figure 1.3: Plasma diagram in the log T - log n plane. TONO: ionospheric plasma;
SPACE: interstellar space; CORONA: solar corona; DISCHA: typical electric discharge;
TOK: tokamak experiment (magnetic confinement fusion); ICF: inertial confinement
fusion; MET: metals and metal clusters; JUP: Jupiter’s core; DWARF: white dwarf
star

1.4 Degeneracy Effect in Quantum Plasma

Degenerate plasma have vast applications in strong laser produced plasmas, dense
and compact astrophysical plasmas likewise white dwarfs, neutron stars and high den-
sity electronic devices [31]. In degenerat- plasma the equilibrium distribution of elec-

trons/positrons changes from Maxwellian (classical plasmas) to Fermi-Dirac distrib-
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ution (quantum plasmas). For electrons, Fermi-Dirac distribution function can be

written as

A

flont) = e (1.14)

Where 8 = - T ,E= m‘g , kg is Boltzmann’s constant, T, is the electron tem-
perature, v, is velocity of electron, A is normalization constant and g, is a chemical
potential regarded as & function of space and time. On the basis of above equation the

number of electrons (n.) can be written as

= fm flv,r, t)dudrdt (1.15)
0

inserting the value of f(v,r,t) from (1.14) in (1.15), yields
oo oo [= =] o0
Ne = 2] flv,r,t)dv x 2] flv,r t)dr x 2/ flv,r t)dt = {2] f(v,r, t)dv}3
0 0 0 0

Where 2 on the right side is because of electron spin

i A
={2 ¥
o 14 eﬁ[%meuf)xe—ﬂl‘

Let s = B(imcv?) = ds = B(mev.)dv = dv = ﬁn‘::vg and ;le- = "‘7:2

(
So dv = - x o/ %2 x 5712 then

ne = {24 f /% _U?d'g ¥

meﬁ X e—,)’g:‘

By simplification, we get

=4 ﬂ r1/2/ — = %F

Where © g /271 cds = Li ~Pue) th
I‘1/2f - 3( ),then
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Ne PMe.2 Me 3
— =9 1.16
A L?a( 5)( 27 ) (Qwﬁ) (1.16)
L-i% represents polylogarithmic function of argument (—£ = —e**) and order % Poly-

logarithm is a special function Li,(Z) of order s and argument Z. Only for special
value of "s” (like s = 1) the polylogarithm reduces to an elementary function such as
natural logarithm or rational logarithim function. In quantum statics the poly logarith-
mic function appear as the closed form of integral of Fermi-Dirac distribution and the
Bose-Einstein distribution and it is also known as the Fermi-Dirac integral or Bose-
Einstein integral. It can also be written in term of power series (for order s, argument
Zand k=1,23..).
)
Liy(Z) = gf—_z+—i+-§;+ ....... (1.17)
Pauli exclusion Principle for fermions obeying Fermi-Dirac distribution function and
Heisenberg uncertainty principle due to the wave like nature of particles give rise to the
pressure in quantum plasma. The distribution function for completely degenerate limit
is a constant below the Fermi speed, vp and zero for speeds v >vp, or alternatively
for energies E = 1muv?® below and above the Fermi energy or temperature, Tp= Im.f
respectively. The dense astrophysical quantum objects contain degenerate particles
like electrons and holes as well as non-degenerate particles like ions. The degenerate
particles exist at high number densities, and low temperature, i.e. the characteristics
of all the particles are identical, They do not lose their individuality at a distance from
each other [32]. In quantum plasmas, the electron and positrons/holes are considered
to be degenerate particles while the ions are considered as non-degenerate particles due
to their much smaller de-Broglie wavelength as compared to the electrons. Because of
electron degeneracy pressure many electrons are caused to closed in a little volume.
The parameter { = e, which describes the degeneracy level, is defined in term of
chemical potential 4. In complete non degenerate case £ — 0 which mean that Su,,
is greater than 1 and negative. While for complete degenerate case £ — oo which

mean that Ju, is greater than 1 and positive. With z, ~ Tp:%mv%, The completely
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degenerate limit corresponds to, In§ = % [33]. At £ = 1, which separates the nearly
non degenerate, %-{? « 1 and nearly degenerate, %:f > 1 limits. The polylogarithm is
well explain for arbitrary degeneracy, with its asymptotic from { — oo corresponding
to the completely degenerate limit, g, — 7F, 7, = 0. In the other way round in the
limit T, — O of the Fermi Dirac distribution n(e) = ;—Eﬁ This gives n{¢) = 0 for
¢ — 0. For a complete degenerate Fermi gas u, = ¢ shows that Fermi energy become
equal to the chemical potential. For nearly non degenerate we have £ << 1 when an
expansion in powers converges rapidly. The expansion i.e. G,(§) = :i—%;—:)i) can be
derived directly without the intermediate step of expanding and is exact in the sense
that it applies for arbitrary degeneracy. Here Li 3 is the polylogarithm function of order

3/2 [34).

1.5 Quantum plasma Application

Along with the applications discussed in the previous section, quantum plasma have
wide applications in dense Astrophysical objects. These objects are composed of de-
generate particles like electrons and holes as well as non-degenerate particles like ious
(due to their much smaller de-Broglie wavelength as compared to electrons). These
degenerate particles exists at low temperature and high number density, i.e. the de-
Broglie wavelength actually exceeds the average inter-particle dista.nce(nu_—'“"l ). Some
of the important application of quantum plasma in dense Astrophysical objects are

discussed below in detail.

1.5.1 White Dwarf

A star that is in hydrostatic equilibrium because of electron degeneracy pressure rather
than due to thermal pressure . The white dwarf shows a spectacular case for the
occurrence of complete relativistic degenerate plasmas. They are thought to be the
last phase of around 97% of all stars including our Sun. The white dwarf are developed
from very massive stars specially from those stars that have mass in the range 6 ~ 8M

[34], where My is the mass of sun.
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These stars have offetnally fascinating composition where the quantum properties
combine the degeneracy of thermal electrons on micron scales to the stability of the
white dwarf stars on large scales through wue equilibrium between gravitational force
and the pressure of degeneracy of thermal electrons. The white dwarf star have mass
smaller than one solar mass and the radius smaller than 10~ solar radius due to high
surface emissivity and low luminosity, which has average volume densities in the range

of ~ 10° — 1012 kg m~2.

Figure 1.4: sketch of white dwarf.

Several interesting properties exist for degenerate matter. For example, if the mass
of the white dwarf star is increased (which enhance the gravitional force), then the
electrons are forced to “squeeze” together even more as a result the radius of star
actually decrease. Due to electromagnetic radiation, physical and dynamically charac-
teristics of white dwarf stars are studied [35]. Nowadays, there are numerous comments
of oscillating wh**~ dwaxf stars. Non-radial gravity oscillation mode (g-mode) is as-
signed to the pulsation rate that lies in the range 2-25 minutes. The asteroseismology
ig investigating the rotation time period, mass in addition to the equation of State
due to theoretical and observational clues of white dwarf, where ions are inertial and
the degenerate thermal electrons provide the restoring force 36, 37]. The duration of
oscillation of universally propagating acoustic mode (p-mode) is recognized through
the time for the wave to travel over the stars as well as comes within the range of a

couple of seconds, two orders of magnitude smaller than the non-radial gravity oscil-
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lation modes (g-modes). Experimental study has not been carried out so far on these
modes {38]. But the lack of information did not suggest the non appearance of acoustic
modes, however may be concerned with the dynamics below the detection boundary
[39]. The chance of the formation of the finite amplitude sound waves is also proposed

in the case of events such as supernova explosions. [40].

1.5.2 Neutron Star

A neutron star is an astrophysical object that contain complete relativistic degenerate
quantum plasmas. They are over dense degenerate matter which exist in the galaxies.
The mass of neutron star is about 1.4 times of our sun and having diameter approxi-
mately 20 x 10® m. Because of its less size and large density we can guess that neutron
star is highly dense that one tea spoon full of neutron star would weight a billion tons.
The gravitational field of neutron star is about 2 x 10! times stronger than that of
earth and also the magnetic field of neutron star is million times stronger as compared
to the magnetic fields produced on earth. Actually these types of stars contain massive
amount of neutrons in its core that’s why they are termed as neutron stars. Along
with huge amount of neutrons in its core, hopefully they will contain slight amount of
protons as well as electrons to neutralize the matter. Most of the neutron stars contain
iron as their main component, but the outer layers which comes in contact with outer
atmosphere might collect lighter clements above the core of iron layer [41]. An image
of neutron star is shown in the Fig 1.5.

The neutron star radius is estimated in the range of R ~ 10—14 km and a basic mass
M around 1—2M, the density is calculated up to p ~ 1017 —5x 10'8kg.m=2 [35], which
is round about 3 times the typical density of atomic nucleus, g, = 2 - 8 x 10*7kg.m 2.
These stars can change its density, which in some cases are higher than the atomic
density p,. DBecause of their small size these stars are collapsed more by inward
gravitational force as compared to white dwarf stars. In cases where the neutron star’s
core shrinks, a neutron degeneracy pressure is created due to the flattening of neutrons.
Due to this flattening effect the neutron star resists the degeneracy and that creates

the more stable neutron star [41].
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Figure 1.6: The Crab Nebula, filled with gaseous filaments, is the result of a star that
was seen to explode in 1054 AD. Red indicates the electrons are recombining with
protons to form neutral hydrogen, while blue indicates synchrotron emission from the
inner nebula. The lower image shows synchrotron emission of plasma accelerated by
tremendous electric voltages created by the central pulsar (red: radio emission, green:
visible emission, blue: X-ray emission). The inner ring, with prominent knots, of this
X-ray nebula is about one lightyear in diameter. The Crab pulsar is the hot spot in
the center of the torus-like structure.

1.5.4 Black Hole

Mathematically a black hole is the portion of space-time sbowing such a high gravi-
tational force that no particle or EM radiation can escape from it. For the first time
black holes were predicted by Albert Einstein, on the basis of his general theory of
relativity. The theory of general relativity shows that a huge and dense object can
deform space-tin o form a black hole. However, for proper understanding of black
holes we need to include quantum effects [48].

In 1987 two scientists Roger Penrose and Stephen Hawking suggested that on the
basis of general tbeory of relativity any object that collapses to make a black hole will
keeps on to collapse to a singularity inside the black hole. This means that on small
distance inside a black hole there exist strong gravitational effects. To understand
the collapsing matter inside black hole on smaller distance, we surely need a quantum

theory. The existence of a singularity in the classical theory similarly means that once
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we go appropriately far inside the black hole, we will no longer be able to guess that
what will happen. Hopefully this letdown of the classical physics can be preserved by
quantizing gravity as well [49].

Black holes are strange and most attractive matters found in outer space. There
are high number of much smaller black holes lies around the universe. Collapsing of
stars is not their only reason while black holes may be formed by collapsing of highly
compressed matter in the hot, dense medium that is believed to exist shortly after the
"big bang" in which the universe came into existence. Such "primitive" black holes
are of greatest interest on quantum point of view. Although black hole are very large
in number in universe among them the well-known black holes are three. Thesc are
primordial (mimature) black holes, stellar black holes and supermassive black holes.
An image of black hole as shown in Fig 1.7.

A black hole having weight of billion tons (near the mass of a mountain) would
have a radius of about 107!% cm which is approximately equal to the size of a neutron
or a proton. It could be in orbit whichever around the sun or about the center of the

galaxy [49].

1.6 Quantum Hydrodynamic Model

The formulation of quanturn hydrodynamic, which shows behavior in quantum me-
chanical subsystems is under study from the time of Schrodinger wave equation. It
was Madelung in the begiuning era of quantum mechanics, who suggested that the
Schrodinger wave equation for spinless uni-electron problems can be converted into
the form of quantum hydrodynamics (QHD) equations. By considering the wave func-
tion of the form ¥ = ae'® with real valued & and 3, which depends on time. From
Schrodinger wave equation Madelung obtained continuity equation and Euler equation
. After a long break, Bohm and others played an important role in the development
of quantum hydrodynamic equations. The so-called Madelung hydrodynamics is com-
monly considered as an initiative of the Bohmian mechamics, a quantum theory deals

with reasonable explanation in terms of hidden parameters {50] in which the reinterpre-
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into accounts. This could be possible by considering the second order moment of the
Wigner function. However, the inclusion of a magnetic field in QHD is straight forward
by starting from a quantum kinetic equation with an EM field inclusion. QHD model
has been broadly used in resounding burrowing diode, super liquid, and electrical con-
duction [51]. New interest in QHD models are found in gaseous quantum plasmas [52],
and other important applications to the dense plastnas found in some astrophysical ob-
jects like white dwarfs, giant planets and in experiments on inertial confinement fusion

(ICF) [53]. Following are the mathematical formulation of quantum hydrodynamic

(QHD).

on.

V- e} = 1.

5 +V - (neve) =0 (1.18)
dv, R Vi o
neme—a-g— = —BRE(E + v, X B) — Vpe -+ 2me V( né‘ ) + _h_v(BDSe) (119)
And maxwell’s equations
OB

E=-—. 1.

v x 5 (1.20)

. oE
V x B = pip{je +jm + € (1.21)

o)

where n, is number density, v, is the velocity , m, is the mass of electron, p, is the
pressure of electrons respectively, i, is magnetic permeability, ¢, is permittivity of free
space, j. is the free electron current density and j,, is electron magnetization current

density.

1.7 Waves in plasmas

Oscillation of fields and particles in regular interval generate waves in plasma. Basically
plasma contain thermal electrons and positive ions, but it may contains different ion
species like positrons, negative ions, dust and neutral particles. Due to complex set of
particles and fields Plasma can supports a larger variety of waves. The detail study

of these waves in plasma are very important for plasma diagnostics, because the wave
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modes of a plasma depend on the plasma characteristics. On the basis of oscillating
magnetic field waves in plasmas can be classified as electrostatic or EM waves. By using
a plane wave solution Faraday’s law of induction can be interpreted as, k x E = wB,
which verify that an electrostatic wave should be longitudinal and on other hand an
EM wave must have a transverse component, but may also be partially longitudinal
[54]. On the basis of oscillating species electrostatic and electromagnetic waves can

further be classified as under.

1.7.1 Electrostatic waves

Those waves having only electric field component with zero magnetic field component
are termed as electrostatic waves. Vlasov equation has been verified the existence of
electrostatic waves. In small amplitude limit this wave is time and space dependent,

which can be written as

exp(ik - x — iwt) + c.c{complex — conjugate) (1.22)

Where k is propagation vector {number} and w is angular frequency. k represents the
propagation direction of wave which is always parallel to the electric field E. ie. k|E
for electrostatic wave [4]. By adopting the above statement (ki|E) the electrostatic

waves can also be proved from one of the Maxwell’s equation.

OB
VxE=-—, (1.23)
using plane wave solution Eq. (1.23) becomes
k x E = wB. (1.24)

Thus it is clear from the Maxwell’s Equation, that for wave to show an electrostatic
nature k must be parallel to E.
To understand quantum mechanically an electrostatics wave (high frequency longi-

tudinal waves), considering a wave having propagation vector k and angular frequency
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w propagating in a plasma, given by the quantum Vlasov equation, as

of  of _ e v
E -+ vg;; = /d?)k(_\)[ﬁb‘v v, X, t] f(xa f) (125)

Where ¢ is the electrostatics potential and ky[¢ |v/ — v, x.t] = = [ & exp( ﬂ"—"}s)x(q’a(
3.1) ~ 8x — 5.1))

for first-order disturbances it is supposed an equilibrium quantum Vlasov function
f = fo(v) such that [dvfy(v) = ng and a zero equilibrium electrostatic potential.
Linearization and simplification of Eq. (1.25), give the result as

hZ4

e (1.26)

w? = wy 2 4 3k 4+

Eq. (1.26) is the Bohm-Pines dispersion relation, the quantum counterpart of the
Bohm—Gross dispersion relation of classical high frequency longitudinal plasma waves
[12]. Some other examples of electrostatic waves in plasma include ions acoustic waves
(IAW), lower hybrid waves (LHW), uper hybrid waves (UHW), ion cyclotron waves

(ICW) and electrostatic drift waves etc.

1.7.2 Electromagnetic Waves

A Scottish mathematician named James clerk Maxwell in 1873 give a new idea about
electromagnetic waves. According to his idea electromagnetic wave consist of oscilat-
ing electric and magnetic field , both of which are perpendicular to the propagation
vector k. This idea combined the subjects of electricity and magnetism and form the
foundation of modern electromagnetism as shown in Fig 1.8,

Maxwell had the advantage of his ancestor’s brilliant experiments and that must
not be neglected. He kept the experimental laws of Faraday, Ampere and Gauss on af-
firming the mathematical foundation and made an important contribution to ampere’s
law that allowed the prediction of electromagnetic waves. Electromagnetic waves carry
energy or momentum from one point in space to another point by means of electric
and magnetic field. An accelerated charge particle is necessary for the generation of

EM waves [55].
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Figure 1.8: Geometry of electromagnetic waves with electric field E, and magnetic field
B.

Thus any electromagnetic waves consist of perturb electric and magnetic field both
of which are alw-——- ~erpendicular to the direction of propagation. By using Maxwell’s
Equation Eq. (1.23} we can differentiate between electrostatic and electromagnetic
waves, as discussed and proved previously that a wave with zero perturbation in mag-
netic field i.e. (B, = 0) is called an electrostatic wave. while for an electromagnetic
wave the perturb magnetic field should not equal to zero {B; # 0), because in Maxwell’s
equation k must be perpendicular to E.

To study EM wave quantum mechanically, assuming Eq. (1.18), (1.19) and Poisson
equation along with fermi pressure (pr = %’:{-na, where vy = ”2’,‘—;9) for a wave having
frequency w and wave number k. Linearizing around the homogeneous equilibrium

n=ng, v=0 ep=mvs/2,

give the following dispersion relation

2kt

w2=w§+k2\f§‘+m

(1.27)

This is a further indication that the effective Schrodinger—Poisson system is a good
approximation to the complete Wigner-Poisson system for long wavelengths. In the

same way for I'g — 0, the dispersion relation become

2 _ 2 12,2
w” =, + k°vE

This is exactly the dispersion relation derived from the classical Vlasov—Poisson equa-
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tion with a zero-temperature Fermi—Dirac equilibrium. Alternatively, when the quan-
tum coupling parameter is vanishingly small, a classical dynamic equation can be used,

as the only quantum effects come from the Fermi-Dirac statistics [12].

Ordinary and Extraordinary Waves

Assuming a magnetized plasma with external magnetic field B, and wave electric fleld
E;. Electromagnetic (EMW) waves can further be classified into ordinary waves {O-
waves) and extraordinary waves (X-waves), on basis of relative propagation of electric
and magnetic fields. If both fields are parallel to each other then such waves are
called Ordinary waves or (O-waves). Generally ordinary wave is not affected by the
magnetic field. When electromagnetic waves propagate along the magnetic field By
then circularly polarized waves are formed likewise, right hand circular polarized (R-
wave) and left hand, L-wave. The electric field vector for R-waves rotate clockwise in
time in the direction of By and L-waves rotate anticlokwise in the direction of Bg. In
this case the direction of rotation vector E; and wave number k are independent of

each other as shown in Fig 1.9 [7].

-
L,

Eq

Figure 1.9: Geometry of circular right and left hand waves

Furthermore when electric and magnetic field are perpendicular to one another then
electron dynamics will he effected by magnetic field By, which will effect the dispersion
relation . The X-waves with electric E; 1 By, tend to be elliptically polarized and did
not show plane polarization. Such a waves propagate into a plasma, develop an E,,

component along wave number k, thus the waves become partly longitudinal and partly
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transverse. To treat this X-mode properly E; should have both r and y component.
The electric field vector of extraordinary waves has elliptically polarized component
E,. and E,, which oscillate out of phase so that the total electric field vector has a tip

that moves in an ellipse, once in each wave time period as shown in Fig 1.10 [8].

o]

Figure 1.10: Geometry of electric field components for elliptically polarized waves

1.8 Layout of Thesis

Outline of thesis has been described in the following way: The first chapter of disserta-
tion deals basically to the introduction of the subject, its application and importance.
We give the detail of the definition, historical background, and occurrence of plasma.
The difference between classical and quantum plasmas is discussed. Arbitrary tem-
perature degeneracy effects in quantum plasma are discussed, Application of quantum
plasma in dense astrophysical objects are discussed .The suitable approach i.e. quan-
tum hydrodynamic model detail are given. Different wave modes i.e. electrostatic and
electromagnetic waves are studied.

The chapter 2 is divided into two sections. In first section, we derive the disper-
sion relation for EM wave modes for parallel and perpendicular propagation, for both
nearly non degenerate and nearly degenerate quantum plasma by using quantum hydro-
dynamic model. And discuss the effects of Bohm potential and arbitrary temperature
degeneracy on the wave dispersion. In 2nd section, we derive the resonant and cut-off
frequencies only for perpendicular propagation, along with discussion of the effects of

Bohm potential and arbitrary temperature degeneracy.
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In chapter 3 the analytical results are discussed numerically. The cffect of temper-
ature, mumber density and magnetic field are observed on different modes, for both
nearly non degenerate and nearly degenerate quantum plasma

In chapter 4 we give the summary and conclusion of the work.
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Chapter 2

Electromagnetic waves in spin
magnetized plasmas with

temperature degeneracy effects

2.1 Introduction

The wave function of particles start overlapping in case of plasma containing large
number of charge carrier (high density) and having low temperature. In such situation
we can say that the wavelength assoctated with particles (de Broglie wavelength) is
large as compared to the interparticle distances, then quantum effects start playing a
role. For plasma to behave quantum mechanically it should obey certain condition as
discussed by Manfredi [66]. It must be mentioned that the equilibrium distribution
of the degenerate electrons obey the Fermi-Dirac statistics in dense quantum plasmas
and there are new aspects of collective behavior due to the forces involved electron
tunneling as a result of quantum Bohm potential and electron spin effects. Quantum
plasma can be described by three known models the Wigner-Poisson (WP) model {in
the presence of magnetic fields the so called Wigner-Maxwell model), Hartree model
and quantum hydrodynamic (QHD) model. The WP model explain the statistical
aspects of quantum plasmas whereas the Hartree model explain the hydrodynamic as-

pects. The QHD model, illustrating the transport of some microscopic variables such
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as charge mementum and energy in plasmas, has been introduced to deal with some
issues in semiconductor phyéics [67]. The concept of spin magneto hydrodynamics
introduced by Brodin and Marklund has attracted much interest [68]. Similarly quan-
tum effects including the Bohm potential and electron spin effects have been studied by
many researchers [69]. The temperature degeneracy can be investegated via chemical

potential p in Fermi distribution (FD), discussed with detail in chapter 1.

2.2 Literature Review

M. Marklund and G. Brodin for the first time presented fully nonlinear governing
equations for spinl/2 quantum electron plasmas. Started from the Pauli equation de-
scribing the nonrelativistic electron behavior, they have shown that the electron-ion
plasma equations are subjected to spin-related terms, and under certain circumstances
the collective spin effects can dominate the plasma dynamics [68]. Later on Mark-
lund and Brodin have shown that these particles may constitute electrons, positrons
(albeit non-relativistic) and holes [70]. Shukla et al. [71] have derived a set of non-
linear equations for finite amplitude EM waves in highly dense self-gravitating dense
magnetoplasmas. Furthermore, they shown that the electron 1/2 spin force should
play a role in plasma assisted nancscale structures in plasmonic devices . Mushtag
et al. have investigated the dispersive characteristic of low frequency magnetosonic
waves in magnetized degenerate quantum EPI (electron, positron and ion) plasmas
with effects of quantum diffraction, temperature degeneracy, peositron concentration
and spin-1/2 magnetization. They have observed that quantum effects, and in par-
ticular the electron and positron spin, may produce new and interesting aspects in
plasma theories and experiments [72]. Ren, Wu, and Chu have studied the disper-
sion properties of linear waves in cold quantum magnetized plasmas. Their results
have shown that the quantum corrections have an important influence on the disper-
sion properties of the Langmuir wave. Due to quantum influence, the electrostatic
oscillation becomes a Langmuir wave, which has weak propagation and group veloc-

ity enhancing with the frequency [73]. Mushtaq and Qamar have studied linear and

34



nonlinear dispersion of obliquely dispersive magnetosonic waves in quantum plasina, in
the presence of magnetic field. The linear dispersion relations for slow and fast quan-
tum magnetosonic waves have been inscribed in detail especially with reference to the
effects of quantum corrections and obliqueness [74]. Haas and Mahmood have studied
the linear and nonlinear ion-acoustic waves in a non-relativistic quantum plasma with
arbitrary degeneracy of electrons. Along with degeneracy, the quantum diffraction ef-
fect of electrons was also considered in terms of the Bohm potential. They concluded,
that derivation covers both the basic quantum effects in plasmas (arising from quan-
tum statistics and wave-like behavior of the charge carriers). in both the dilute and
dense regimes [75]. Maroof et al. have investegated the propagating aspects of mag-
netohydrodynamic waves in spin magnetized dusty quantum plasma by incorporating
the effects of exchange and correlation on electrons. Started from onc-dimensional
quantum hydrodynamic equations, incorporating the terms of spin magnetization and
cxchange correlation, they derived a generalized dispersion relations [76]. Andreev has
analyzed the non-linear spin-electron acoustic waves, by developing a gencralization of
the separate spin evolution quantum hydrodynamics. This generalization included the
Coulomb exchange interaction, which appears from the interaction of the spin-down
electrons being in states occupied by one electron only [77]. Maroof et al. have studied
the properties of high and low frequency (MHD) waves in a magnetized degenerate
(EPI) plasmas by including the relativistic degeneracy pressure effects of electrons and
positrons. They have obtained a generalized dispersion relation with oblique geometry
by considering the inertia of all three species. The electrons and positrons due to their
low inertia were treated quantum mechanically, whereas the ions were taken as clas-
sical and non-degenerate [78]. Li et al. have studied the quantum corrections to the
elliptically polarized x-waves while ignoring quantum electrodynamics (QED) and rel-
ativistic effects. They have shown the modification of the group velocity of the x-wave
due to the quantum forces ahd magnetization effects within a certain range of wave
numbers. It means that the quantum spinl/2 effects can minimize the transformation
of energy in such quantum plasma [79]. Hu et al. have investigated the spin effects

on the electromagnetic {(EM) wave propagating in arbitrary direction in plasma, in the
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presence of external magnetic field. They have derived the dispersion relations for EM
wave propagating parallel and perpendicular to the applied magnetic field. They have
shown that the spin effects influence the lower frequency modes in comparison to high
frequency modes. The significance of work in understanding the dense and compact
astrophysical objects and the condensed matter physics were pointed out [63].

To the best of our knowledge no one has analyzed this problem [63] with inclusion
of Bohm potential and degenerate finite temperature effects. The motivation of our
work is to study electromagnetic waves in spin magnetized plasma with arbitrary tem-

perature degeneracy effects. The cutoff and resonant frequencies are also investigated

in spin quantum plasma (in case of § = 7 ), for both nearly non degenerate and nearly . -

degenerate plasma. The arbitrary degeneracy in temperature has been taken from the
expansion of chemical potential p involved in Fermi-Dirac distribution function. The
detail of these calculation were discussed by Melrose and Mushtaq [65], and by Hass

and Shahzad 73], and all these were discussed in chapter 1.

2.3 Basic Formulation and Dispersion Relation

Consider a quantum electron-ion plasma with quantum corrections. The ions are sup-
posed to be stationary, since their inertia is too high for response to high-frequency
electromagnetic wave. On the basis of this reason, ions are treated classically, while
one component electrons plasma is considered to be placed in an external background
magnetic field Bq in Z~direction, wave vector k lies is in zz plane i.e. k =k, & + Ay 2.
And electric field E has components in all three directions as shown in Fig 2.1 [63].

In order to analyze the electromagnetic wave in spin magnetized quantum plasmas
with arbitrary temperature degeneracy effects, we start with the linearized form of
Maxwell’s equations.

The Faraday law

oB
The Ampere law
V x B = e +im + D) (2.2)

ot
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k = ksinfz + kcosfz (2.6)

Then first term on left side of Eq. (2.5) give the result in the following form
kxkxE = k* cos 8(E, sin § — E, cos 0}z — k*E, )+ k* sin6(— E, sin 8+ E, cos §)z (2.7)

Using Eq. (2.7} in (2.5) , and making equation for z, y and 2z components, we get
the below relation by following exactly the procedure of [63], as

1 — 72 cos 0* 0 n?siné cos f ( E,

0 1—n? 0 E, | =
7% sin f cos 8 0 1 — »?sin? \ E. (2.8)
I 3 )
(s—;iw) Ty | — (EL:-W') Jey
Jme Jo-

Where 7° = %‘E’-, Jezs Jey a0d j,, represents the current density in their respective
direction.

The first term on right side of Eq. (2.8) is magnetization current density, which can
be calculated by taking start with spin evolution equation for spin quanturmn plasma,

(% +v. V)8, = Z¢B xS, 29 -

k
Writing S, = S.0+ S., where 8;p = -85 = %2, and S, is the perturbation of spin,

the lowest order of approximation of Eq. (2.9) gives
.' —24
— wS, = T(Bo x 8.+ B x S.) (2.10)

Meking r, y and z components of Eq. (2.10), we get the below relation by following
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exactly the procedure of [63].

S,. - i 0 B,

— g;‘u HSPO I D] 11
Spy h.{)..-'(l B }’2) —1 —} 0 ¥ (“" )
S.- 0 0 0 .

Where Y/ = 22, with w, = g—”ﬁﬂ = (g/2)§2. By letting (g) the electron g factor

w?

equal to 2, weget Y/ =Y = I,

Additionally from Eq. (2.3), we can calculate the z, ¥ and z components of B, as

B. 0 —cosi 0 E,
k
vy | = | cosf 0 —sinf E, {2.12)
B. ' 0 sin 0 E.
Substituting Eq. (2.12) into (2.11), gives
Ser : teosf Yceosf —isind E,
iaS.0k '
Sey | = hj;(?—_ﬂyg) —Y cos®? icosf  Ysinfl E, (2.13)
Se: 0 0 0 E.

Considering S;9 = —8)g, Eq. (2.13} implies that 8; = —8,. So, the magnetization

current density can be written as
. 21 24
Jm = V x (M T +M l) = FV X ('nTST +n181) = E(nT - ni)V X ST (2.14)

In the nondegenerate plasmas (T’ >> Tr), nt — 1) = nta.nh(‘ﬂ%’), and in the degen-
erate plasmas (T’ << Tx), ny —ny = %“:%, where T is the Fermi temperature of the
electrons.

Making z, y and z components of Eq. (2.14), we get the below relation by following
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exactly the procedure of [63], as

Jone 0  —cost 0 S.-

—igugy(ng —n )k
Jmy | = ot hT ) cosf@ 0 —sin S., (2.15)
']m:: 0 ginf 0 S,,:

Using Eq. (2.13), Eq. (2.15) can be written as

Jonr Y cos B2 —icos®  —Ysinflcosd
g2 s (in—nl-l)k"z ) - : ..
Joy | =~ }:z:.zu_yz) | cos B Y cos #? —isinfcosfl
S —Y sinflcos@ isinficosd Y sin 0
E,
E,
E.
(2.16)

In order to find the second term on right side of Eq. (2.8) , let’s take equation of

force with an electrons spin and arbitrary temperature degeneracy effects as

nﬁeme% = —ene(E + v, X Bg) -~ Vp. +n.Fy (2.17)

In equation (2.17)} me, n., V. is the mass, number density and velocity of electron
respectively, By is applied magnetic field, E is electric field, Pe represents the arbitrary
pressure of electrons which can be written in term of arbitrary degeneracy G {detail is
given in chapter 1) as

pe = Gn, (2.18)

Where G = %-ﬁ:—:ﬁ% is the arbitrary degeneracy factor in term of polylogarithm
function Li,(—¢) with £ = e¥sTe for nearly non degenerate £ << 1 and for nearly

degenerate £ >> 1. and Fg is quantum force given by
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52 v2 % 2 52
Fg = 5—V(-—%) + V(By.8,) =

: V¥, + 2—“V(BU.SE) (2.19)
né

4m, h

Where the first term on the right side of equation (2.19) is quantum Bohm potential
with % being the reduced plank constant and the second term is spin term with S,
being the spin of electron and y = “2& with ug = 2. By taking gradient of Eq.

(2.18) and put § = =5, e get

Vpe = GVn, (2.20)

Where G is arbitrary degeneracy term and is given by [75].

1 Lis(—
_ 1 ?'sz( £) (2.21)
3 Lr‘r_,fz(—f)
B
where £ = e*sT i3 the degeneracy factor depends on chemical potential i and elec-
trons temperature T, for nearly non degenerate case £ << 1 and for nearly degenerate

case £ >> 1. The poly logarithmic functionin in arbitrary degeneracy can be expanded

under the assumption { << 1 as [65].

2
Liya(-§) = ~¢ + =3

2
Lip(-§) =~ + 3

By putting the expanded Value of the Liz/(—¢) and Liy/p(—£) in Eq. (2.21), gives

arbitrary degenerate term G in the following form
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Expanding arbitrary Degeneracy term by using the binomial expansion (keeping
term up to first order) we have {1 — ﬁ;)“ =1+ ;iq then arbitrary degeneracy term

G for nearly non degenerate case becomes

_lgf 6
=50t ap

By putting § = k5T., the above relation gives

G = (1+—)k3 *m, = (1+2£ Yo m, (2.22)

Relation (2.22) shows the arbitrary degeneracy factor for nearly non-degenerate
limit (£ <« 1). The general formula of polylogarithmic expansion in the nearly degen-
erate case (£ >> 1) can be expanded as [64)

. (In¢)’
—Li(=6) = T(s+1)
Or
s = 208

For s = 3/2 and s = 1/2 the Li,(—£) become

1
2

The ratio of the two relations gives

Lig(—§) —(m¢)?,, T

3
Liy(—¢) =1 r3 )(—(lnEJ*)
Lig(=8) _ (me)}(mg)~Hr}
Liy(~6) ~ 3/2T3



Li
Li

(=€) _Ing
(-&}  3/2

Using the expanded value of the Lizp(—£) and Liy/(—€) under the assumption
(€ >> 1) from Eq. (2.23) in Eq. (2.21) we can write

bajes

(2.23)

Baf -

—_
oy

n

8
Where £ = e7# = In& =u3 then p will be In£/4. Using the Sommerfeld’s lemma as

G= (2.24)

L=

given in ([65]), the value of In £ for nearly degenerate quantum plasma can be written

as

Tro 7 T

¢ ==={1- (G}

= o (2.25)

Inserting the value of Eq. (2.25) in (2.24), gives

T
ZFe 7|‘2T;

_ T g™
6 =450~ T3z

Putting 8 = 1, for nearly degenerate case the simplified form of arbitrary de-
EeTe g

generate factor G becomes

2
G- %(1 - T me} (2.26)

2 _kgTy 5_ T
Where vp = *2°E, § = 72

Dividing Eq. {2.17) by m,, and ng and neglecting the spin term. Then put Egs.
(2.19), (2.21) in Eq. (2.17), we get

2
aWe=—i(]3+‘-".‘3><]30)— GV, + L

ot Me TigeMe  4dngemn? YV (2:27)

Using the plane wave solution Eq. (2.27) can be written as

— 21,2
—iwve = —S(B + v, x By) — i(G + 1) X (”"‘) (2.28)

M, dm,  m, \ neg

To find 72, we use the continuity equation for electrons as



on,

Bt + V‘(neve) ={ (2‘29)

Incorporating the plane wave solution, in Eq. (2.29), we obtained

et _ i v 4 kuva) (2.30)
Noe w

In the same way if v, have z, y and 2 component and By have ouly z component

then (v, x By) can be written as

A T
v. xBo=| u, Voy  Uez {2.31)
0 0 Dy
The determinant of Eq. (2.31), gives
Ve X Bg = Ue.yBoi - ‘L’e:Bgﬁ (232)

Putting the values of Eq. (2.30) and (2.32) in Eq. (2.28), we get

—e e R’k?. k
— v, = 2B — = (upy Bot — ez Bof) — i
W, eE B(Ue’" 0% — Vez Bof)) z(G+4 e) ”

(Kzvez + k.ver)  (2.33)

The z-component of Eq. (2.33) will be

—e e K2k
—1 ezz"_Ez__e - (G : kze:l: kzez
wv o mev 4Bo — (G + . )mew( Vex + Kz Ve )
Re-arranging the terms, we get
Rk k2 —ie ie F?k? k. k
1-{G = ex = z € — €z
f1-@G+ 4m, )mng b mewE + mewv yBo+ (G + 4m, )mew2

Further simplification gives



‘d

2 "G ie Bk? k. k, —ie

1-— o fYex T T Ye By — z = T .
{1-(G+ g e)me S} Ver + mewv ,Bo— (G+ . mew2ve mewE (2.34)
Similarly y-component of Eq. (2.33) is,
—ie e
= E e:B
Yy T mew v T mewv 0
Further simplification gives
i€ —ie
VYey i \"e:Bo + Ovez = TTTe(JEy (235)
For z component Eq. (2.33) can be simplified as
h?k?. k2 Rk?, k. k —ie
1- = ez ey — o ex = 2 2.
{1-(G+ pr— )mewz ez + 0vey — (G + i mewzv mewE (2.36)
Let {2 = 28 represents the electron cyclotron frequency and Y = £ is the ratio

of cyclotron to wave frequency then Eq. (2.34) to (2.36) can be smlphﬁed in matrix

notation as
B2k kI e v Rk hake
Yer 1 — (G + +m. )m w? 2 —(G+ 4m, )m w? . E.
—ic -
Ve, —5} 1 0 = e E, | (237)
o hKE N kok, nky k2
Vez _'(G + dri, )frl,u."" 0 1- (G + im, )n'i..,.,l2 E:

Suppose N=1 - (G + )y, M=(C + 52) 2k and P=1- (G + £0)75r,
then above Eq. (2.37) become

Ver VoY = E,

—ie
Yoy -y 1 0 = i (2.38)
v, ~M 0 P E
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Suppose

N Y -M
L= =Yy 1 0
-M 0 P

To find the inverse of matrix L of E¢. (2.38) we need matrix of minor which is

P 1PY M \
Lmin = iPY NP -— M2 iMY
M —iMY N-Y2

Matrix of cofactor

P Py A
Liy=| —iPY NP-1* —iMY
M MY N 17
Adjoint of matrix
P —iPY M

Logg=| iPY NP-A? MY
M -iMY N7

determinant of cofactor matrix, which is

Lua = NP = PY? = M? = {1 - (G + §)25H1L - G+ Pz}
{(1-(G+ 5y K y? (G + 20 daly 42

4me Mot

In simplified form determinant can be written as

Lot =P(1-Y®) +(N-1)

Let P(1 - Y?) + (N —1) = Q, s0 the inverse which is Alumiolnalis oo he

determinant of matrix

found as
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P —iPY A
1
L,.m..zé iPY NP — 2 MY (2.39)
M MY N2

Now multiply both side of Eq. 2.38 by inverse of matrix L, we get

Vy P - PY A E.
1 —ie

Ve, | = é(m —) | iPY NP-M? MY E, (2.40)
V., M —iMY N-Y? E.

Using the definition of current density j. = —en.t,.. we can modified Eq. (2.40) as
Jer F —iPY A E,

_n ie? . ) ] i 9

Joy | = é(mcw) iPY NP-M? MY E, (2.41)
J.. M —iMY O N-Y° E.

Putting values of Eq. (2.41) and (2.16) in Eqg. (2.8) , we get

1 — 7? cos ¢* 0 72 sin & cos f
0 1— 7 0

1 sin & cos & 0 1—n?siné?

Ycos 6? —icos  —Ysinfcosd
+ﬂ—_”fr) i cos 2 Y cos 62 —isinfl cos (2.42)
~Y sinfcos@ isinfcosd 1 sin 67
P —iPY Af E,
*Q:Ei iPY NP -A? MY E, | =0

M —iAY N-Y? E,

a
Where w, = g:ne—mjl"—‘f;::"—‘g is spin magnetized frequency for both spin up and spin

down electrons and n = £ is the refractive index.
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2.3.1 Parallel propagation mode

For parallel propagation (# = 0) leads k, = 0 and k, # 0 which consequently makes
M=0,k=k; and N =1, so Eq. (2.42) becomes

a2 wa¥Yn? X —iwsn? iNY
L=+ n5 — 1o vy T 0 E,
wen® XY I B ¥ A ¢ _
H1-YT T vh =+ a5y o5 0 E, 0
X
0 0 1= E.

(2.43)

Where X =§§ shows the ratio of plasma frequency to wave frequency. In limiting
case, if we put Bohm term and G equal to zero, then we obtain the result given in {63].
In order to have a nontrivial solution, the determinant of Eq. (2.43) must vanish which
gives the dispersion relation of EM wave mode propagating parallel in spin magnetized

plasmas, with the effect of arbitrary temperature degeneracy effect as

w, Y7 X — i, T iXY

X a 2 2
- - - = 2.
U=pHl-m+ o o) Ty Tamry) T O
Either
X
[ 2.
1 B 0 (2.45)
Or
3 w, Y X . — i, 1P iXY 4
(1=m+ w(l-Y%) (1- Yz)) + (w(l - Y?) + (1- Yz)) =0 (2.468)
Eq. (2.45) can be simplified as
P-X=0
By putting the values of P and X we get
2 N N
R il ey ey Bl Bl



mew? — (G + % ﬂz"‘z)ki w?

M el?

Which can be simplified as

= w,[l + (G LAANR AN 2.47
w = wp[l + o )mwzl (2.47)

This is Langmuir mode clearly modified by the Bohm potential and arbitrary de-
generacy factor G. In the limiting case i.e. by putting Bohm potential and G terms
equal to zero we get the longitudinal electron plasma oscillation [63].

‘We can expand this result for nearly non degenerate (N.n.D) and nearly degenerate
(N.D) limits by using the value of G from Eq. (2.22) and (2.26) respectively. For
(N.n.D) case with G = (1 + ;%—)vfhme Eq. (2.47), become

K2kt
Winnp) = \/ +(1+ o3 )kz th (4m;) (2.48)

For complete non degenerate plasma we have £ — 0 and we get

s, Pekd
Ween.D) = 4wl +K2vip + ( yv )

For (N.D) case with G=2{1 — ’f—;(g:;)z}mgvﬁ-e Eq. (2.47), can be written as

h"k“

2
WN.Dp) = \/ + 3(1 - __62)1(2 Ve ) (249)

For complete degenerate pressure we put § — 0, which leads

9 RaKe
We.D) = \/ wp + 3KiVE + (3

Which is Langmuir mode in quantum plasma derived earlier by Shukla et al. [57].
For second root Eq. (2.46), gives

w,Y 7P X XY wen?

e R i - ) {(250)

L'+ 1-79 w(1-Y%
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For positive sign Eq. (2.50) gives the dispersion relation as

u|‘-- S

2

7 = (2.51)

,_._.\l,_.\

£ |,§ 3 |:)

sr—w

Which is right-hand secularly polarized mode (RCP). If we set w, = 0, Eq. (2.51)
reduced to the dispersion relation of RCP mode in classical magnetized plasmas [4].
For negative sign Eq. (2.50) gives the dispersion relation as

(2.52)

Which is left -hand circularly polarized mode (LCP).

2.3.2 Perpendicular Propagation mode

For perpendicular mode (¢ = I), we have k, = 0 and k; # 0, and that makes again
M =0, P =1 and k = k,. These then make Eq. (2.42) as

X Xy
1 - Ty )= (N1} Ty (N -1 U E.
XYy 2 NN ==
TOVEHAA-T 1= (1=y 21— {~—1) 0 E.u 0
0 0 1—:,:2+Ll’?—,,r\ E.

w{l
(2.53)

In limiting case i.e. by putting Bohm term and G equal to zero we obtain ex-
actly equation (48) of [63]. In order to have a nontrivial solution, the determinant of
Eq. (2.53) must vanish which gives the dispersion relation of EM wave propagating

perpendicular in spin magnetized plasmas with the effect of temperature degeneracy,

as
{1= 7+ 25y + XH — opmsr) (1 — 7 — v+ (2.54)
( sXY )2} 0
Either
2 w, Y’ -
1-n +w(1-Y2)+X_0 (2.55)
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Or

X XN 1 XY
R TP wyy g A Ukl s 7 oy oy DR e & g s il
(2.56)
Eq. (2.55) gives the dispersien relation as
g (@~ w)w? i) (257)

w20 — w2~ wawg)

This relation is exactly the same as equation (52) of [63). In case of w, — 0 Eq.
(2.57), reduced to the dispersion relation of ordinary mode in classical magnetized
plasmas [4]. Eq. (2.56), can be simplified as

X XN Xy
(1_w_—ygg))(1_n2_ (N_Yg))_((N_YQ)) =0
Which gives
X XN XY
(lam)(l—ng—(N-—-Yz))=((N—Y2))2 (258)
From this equation the value of 5 is
s (o = )= e

(1-555)

This shows the refractive index of extra ordinary mode (x-mode) clearly effected by
Bohm potential and arbitrary temperature degeneracy factor G. In limiting case i.e.
by putting (N = 0), means Bohm term and G equal to zero we obtain the dispersion

relation as
s (w?—uw? —wO) (W —wl4+w)

= 2.60
d wHw? — w2 — 02) (2.60)

Which is exactly same as equation (50) of [63], and Eq. (2.60) further shows that
it is not effected by spin effects.
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Eq. (2.59) can be simplified as

X X XN XY
172(1— (.[V'——Yz))=(1_ (N_Yg))(l'_' (N—W))_((N—Y2))2

PN -Y - X)(N-Y)=(N-Y2-X)(N-Y?-XN)- (XY)?

Simplification, yields
P(N?—2NY?—XN+Y*+XY?) = —(XY)*+(N*-2NY?~XN+Y*+ XY -XN*-XNY*+ XN)

Putting the values of N, X, Y and 7, and keeping w power up to 4, gives us

i1 - G+ 52255 - 201 - (G + ) )% - {1 - (G + Rd)ren)
+E+ B = B (1- O+ Tk - 201 - O+ e B
~F1- O+ D%+ B+ GE - R - G+ R
~H1- @+ TG + R - 0+ TR

Where y = ck, re-arranging the terms on the basis of w power, gives us

wiy? +2(G + T—:E);—-‘i + 2w — 2(G + %‘E);ﬁ%yz +20%2 + wdy’
+H(G+ B oG+ 22803 4 2(G+ X% 40+ 022
+22(G + X 22 4 o) + {(G + ) Kz 4 oy (2.61)
+2(G + %‘:i) %szg +(G+ %‘::‘);Ew;y’ + QPwiy? + Q%
+A{(G+ Bk a4 PRk 07 4 (G 4+ By swt =0

4m,

Eq. (2.61) is biquadratic in w, and solution gives

b+ B — dac .
WA= L VY~ dac ga dac (2.62)
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Where g, b and ¢ is given by Eq. (2.63) to (2.65), respectively

2 S TR
G = y” + 2(G + E);{; + 2(0',, (263)

b=2(G+ M) 2 1 90%2 W22 +{(G+ BE) 5 4 26 + SR 02y

GG+ e + 0+ O+ 2O+ ) - 4
(2.64)

c={(G+¥8) 2132 1 042 + 2(G + 1) E0%7 + (G + ) Kuy? + Q7uly?
02+ WH{(G + B Ky W2((G + BB 0% + (6 + 1R B

(2.65)

We can expand this result for nearly non degenerate (N.n.D} limit and nearly de- . .

generate (N.D) limit by using the value of G from Eq. (2.22) and (2.26), respectively.
Thus for (N.n.D) case Eq. (2.62), become

b+ vb?% — 4a'c
w?N.ﬂ.D) = 2“; (2'66)
Where ¢/, ¥/ and ¢ is given by Eq. (2.67) to (2.69), respectively
ot .3 £ \aa , Fki
o =92 +2(1+ 2—§)k=vth + pr + 23 (2.67)

4
Y =201+ 5)EvEL + e + 2077 + 0l + {(L+ S)kEVE + )
21+ RV + 10 +of{(L+ §vh + T + 0t -y (268)
i
w3 {(1+ ANIvE + o} — Q)+ wf
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¢ = {(1+ A)AVE + TR 4+ %P 4+ 2{(1 + A)IcVE + 0%+
2pd y K4
{1+ ApK2vi, + Tf hopy? + Qi + Q%+ wp{(1+ kv, + -

eI 2t
wp{(1+ K3V, + T} + {1+ kv, + o el
- (2.69)

For complete non degenerate case £ — 0, which will modify Eq. (2.67) to (2.69),

accordingly.
And for nearly degenerate (N.D) case Eq. (2.62), can be written as

1t W2 { M
b+ /b dare (2.70)

2 - —
Wivpy = 20

Where a”, ¥ and ¢” is given by Eq. (2.71) to (2.73), respectively

21,4
ks + w2 (2.71)

' =y + E(1 - ﬁég)kzvz +
3 127 7R T 4m2

2
B = 4(1 - ZOEVEL? + 201 + 20%7 + WP + (3(1 - BNV, + )+
Kl x 2k
2(3(1 - HONIEVE, + 10 + L2 {301 - oKV, + TN}

+O 4+ 022 + 22 3(1 - S84 K3vE, + %“g‘:} — Q%2 4 uf
(2.72)

. 2
¢ = {3(1 - HENEVE, + T2 + Q% + 2{2(1 - BAKEVE, + )02+
{3(1 - Z8HK2vE, + %“g}w;yz + Q2wP + Q2w + w231 - HMkEvE,+

: " 2kl 24
P - (30 - HOavE. + T+ (30 - FKivE + T

(2.73)
For complete degenerate case 6 — 0, which will modify Eq. (271) to (2.73),

accordingly.
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Resonant Frequency

Resonance occurs when refractive index 7 = (%) — oo, a wave is generally absorbed

)

at resonance. Thus for x-mode in quantum spin plasma with effect of Bohm potential

and arbitrary temperature degeneracy the resonant condition occurred in the following

form
X
1— =
( N—Yﬁ) 0
N-Y’—-X=0
N=Y*4+X

Putting the values of N, Y and X gives

3 N I o L

1-(G+

dm, 'mu?  w? 2

2 hﬂkﬂ 2 2 2
me’ — (G+ 5tk _ @ o,
Mew? w? Wl

Solving for w, we get the following resonant frequency

“ r?k-k
W= \/Q~ + w2+ (G L) (2.74)

Am}

This resonance mode for perpendicular case (k LBy} is clearly effected by Bohm
potential and arbitrary temperature degeneracy factor G. We can expand this result
for nearly non degenerate (N.n.D) case and nearly degenerate (N.D) case by using the
values of G from Eq. (2.22) and (2.26) respectively. So for (N.n.D) case Eq. (2.74),

becomes

w . QZ 2 1 & 22 ﬁzk:
R{N.mp) = +wl+(1+ 2—3)1‘:":5 a3 (2.75)

For complete non degeneracy, § — 0, yields

— QZ 2 242 ﬁzki'
wﬂ(c_n_p) - + wp + kzvﬂl + 4m2 (2.76)

]
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1€

And for (N.D) case Eq. (2.74), can be written as

2 72 2k
WR(N.D) = ng + wi + -3;(1 - ﬁé Jk3vZ_ + a3 (2.77)
For complete degeneracy, § — 0, yields
2 RPkd
WR(e.D) = \/ D +up+ FKvE + yo= (2.78)

Cut-off Frequency

Cut-off occur when refractive index n = (£} — 0, a wave is generally reflected at

cut-off. Thus for x-mode in quantum spin plasma with effect of Bohm potential and

arbitrary temperature degeneracy the cut-off condition occurred in the following form *

X XN

Xy
B P U

_(N—w

)=0
By taking L.C.M, and simplilgy

~(XYP 4+ N 4 V42NV - X(N-Y)) - XNN-YH) + X’N =0
Putting the values of X and Y gives
~wi0% + N8 4 0%? — 2NQw* — w2 (Nw? — Q)w? — Nuwj(Nw? - %) + Nufw? = 0
Putting the value of N, and maintaining w power up to to 4, we get
WA — (G + BEYE 22 4 o0+ B 0 047 4 20%4 - 2(C + F) k0%,

2 3
+ut = (@ + ) R - ol + ot + (G + T N

~2(G + KK 207 - 03,207 + (G + PR BO%Z - wh? + (G + PR Bt = 0

e/ My P
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B = {(1+ &)icvh + T)2 + 0+ 2{(1+ kv, + TR0 + {1+ S)KdvE + el

20252 +2{(1+ fi-)kivfh + %ﬂ;}wﬁ +wj
(2.86)

2 2.4
C' = wg® + {(1+ )klvi + PR Yul+ {1+ SKVE + T}

(2.87)
{01+ Ao, + o )t

For complete non degeneracy, § — 0, which modify Eq. (2.85) to (2.87), accordingly
And for nearly degenerate (N.D) case Eq. (2.80), become

2 Bb" ﬁ: /Bﬂﬂ — 4A#CH

w(N.D) = 2AH (2.88)
Where A", B” and C” is given by Eq.
2 2 h2 4
A" = 2{5(1 - %éz)kiv}e + 4;:;} +20% + 2} (2.89)

B = {3(1 - S6IAvE, + 1 + 0 4 2(3(1 - BoKEvE, + T 10%+

301 - 5KAVE, + S5 fl + 2022 + 2{3(1 - BKEvE, + S5l + wf
(2.90)
214 2
C” = Wi + {31 - oKV, + DYl + (31 - BOKIVE, + T 1%+

2
31 - 5)AvE, + e
(2.91)

For complete degeneracy, § — 0, which will modify Eq. (2.89) to (2.91), accordingly . .
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Chapter 3

Results and Discussion

We have calculated the analytical result of electromagnetic waves in magnetized spin
quantum plasmas with effect of arbitrary temperature degeneracy. In this regard we
have calculated the generalized dispersion relation {for parallel and perpendicular prop-
agation to external magnetic' field Bg) for both nearly non-degenerate (N.n.D) and
nearly degenerate (N.D} quantum plasma. The £ = "% has been expanded for
nearly non-degenerate and nearly degenerate limits. The resonant and cut-off frequen-
cies are derived (in case of § = %) for both {N.n.D} and {N.D} limits, and their
limiting cases for complete non-degenerate and complete degenerate are discussed. In
order to analyze these results parametrically and graphically we are going to discuss
some results {equation (2.48, 2.49, 2.66, 2.70, 2.75, 2.77, 2.84 and 2.88) numerically.
These numerical results are plotted for various values of degeneracy factor, electron
densities and magnetic field By. To visualize the complete picture of quantum effects
including spin of electron, the temperature arbitrary degeneracy term £ (incorporated
in the from of pressure term), some typical parameter for degenerate quantum plasma
in the interiors of neutron stars, white dwarfs and black holes are presented in S.1
system [80], m, = 9.11 x 1073kg, e = 1.6 x 107, n. = 10'%/m?® — 10%/m?, By
= 10°T — 10°7, T, = 10% — 10%k, g9 = 8.85 x 10712c2/Nm?, h = 1.054 x10~*js,
ks = 1.3807 x 1072%j/k. If we put these values into the defined parameters, we ob-
tained some interesting and significant effects in the system. These all are explained

graphically in the following paragraphs.
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Fig 3.1 shows the dispersion plot for EM wave modes propagating along the external
magnetic fleld for both {a) nearly non degenerate and (b) nearly degenerate quantum
plasma, The number density for (a) is n = 10'2/m?, and for (b) is n = 10*/m*. Fig
3.1 (a) shows the parallel mode variation with respect to degeneracy factor i.e. £ = e
. The solid line (¢ = 0) represents complete non degenerate plasmas, while the dashed
(¢ = 0.4) and dotted (£ = 0.9) lines give some degeneracy. From plot (a) of Fig 3.1,
it is clear that increasing the degeneracy factor € causes the frequency to enhance.
Plot (b) of Fig 3.1, shows the variation of deep degenerate factor ie. § = 7= in
nearly degenerate plasma, and it shows that mode frequency decreases with increasing
the value of §. Fig 3.1 overall indicates that in nondegenerate plasma if we enhance
the probability of some degeneracy of fermionic factor then phasc velocity of parallel
mode of EM waves increases, while viceversa phenomena is observed if we enhance the
probability of non degeneracy of Maxwellian factor in degenerate plasma.

Fig 3.2 gives the dispersion plot for EM wave modes propagating along the external
magnetic field for both {a) nearly non degenerate and (b) nearly degenerate quantum
plasma for different values of number density. It shows that for plot (a) the frequency
increases by increasing the value of number density. Frequency trend for plot (b) is
same as for (a). Thus for increasing number density, the plasma frequency is increasing,
which consequently enhance the mode frequency both in nearly nondegenerate and
nearly degenerate quantum plasmas.

Fig 3.3 reveals the dispersion plot for EM wave modes propagating perpendicular
the external magnetic field for both (a) nearly non degenerate and (b} nearly degencrate
quantum plasma for different values of £ and §. The number density and magnetic field
for plot (a) are n = 10'%/m?, By = 1 x 10777 and for (b) are n = 10 /m?, By = 2
T. Plot (a) of Fig 3.3, shows the variation of degeneracy factor i.e. £ = e that’s
solid line (£ = 0) show complete non degenerate plasmas, dashed line (£ = 0.4) and
dotted line (£ = 0.9) is for nearly non degenerate quantum plasmas. Plot (a) shows
that frequency increases by increasing the value of £. Plot () shows the variation of

deep degeneracy factor i.e. § = %{— . It is clear from Fig 3.3 that for plot (b) the

L4

frequency decreases by decreasing the value of 4.
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Figure 3.1: Dispemion plots for EM wave modes propagating parallel to the magnetic
feild (k||B,) for both (a) nearly non degenerate and (b) nearly degenerate quantum
plasma for various values of (a) £ = 0 (solid line), 0.4 (dashed line) and 0.9 (dotted
line) and of (b) § = 0.01 (solid line), 0.3 (dashed line) and 0.5 (dotted line). The
number density for plot (a) is n = 10'*/m®, and for (b) is n = 10%/m?, For case (a)
we have T, = 100 Tk, and for case (b) T, < Te..
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Figure 3.2: Dispemion plots for EM wave modes propagating along the magnetic feild
(k{|Bo) for both (a) nearly non degenerate and (b) nearly degenerate quantum plasma
for various values of (a) n = 1% 10'2/m2 (solid line), 1.0001 x 10" /m? (dashed line) and
1.0002 x 10'2/m? (dotted line) and of (b} 1 x 1028 /m? (solid line),1.000002 x 1026 /m3
(dashed line) and 1.000004 x 10%°/m? (dotted line). The value of £ for plot (a) is
£ = 0.2 and ¢ for (b) is § = 0.02. For case (a) we have T, = 100 T, and for case (b}
T, < Tp,.
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Fig 3.4 shows the dispersion plot for EM wave modes propagating perpendicular to
external magnetic field for both (a) nearly non degenerate and (b) nearly degenerate
quantum plasma for different values of number density. The value of magnetic field
and ¢ for plot (a) are By = 0.00000017", £ = 0.1 while for (b) are By = 10 7', § = 0.1.

Piot {(a) of Fig 3.4 shows that the perpendicular x-mode frequency with increasing

trend with respect to k is further increasing for greater values of number density, for =~

nearly non degenerate quantum plasma. Similar trend and behavior but with different
magnitude have shown in Fig 3.4 (b) for nearly degenerate quantum plasma. These
plots manifests, that since x-mode depend both on plasma and cyclotron frequency. So
for fixed cyclotron frequency, by increasing number density since increase the plasma
frequency and that consequently enhance the mode frequency.

Fig 3.5 depicts the dispersion plot for EM wave modes propagating perpendicular
the external magnetic field for both {a) nearly non degenerate and (b) nearly degenerate
quantum plasma for different values of external magnetic field. The number density
and ¢ for plot (a) of Fig 3.5 are n = 10'2/m?3 ¢ = 0.3 and number density and §
for (b) are n = 10%/m?, 4§ = 0.2. Plot (a) shows the magnetic field variation. It
is clear from Fig 3.5 {a) that by increasing the value of magnetic field increases the
frequency in nearly non degenerate limits for x-mode. While Fig 3.5 (b) shows that
x-mode frequency decreases with increasing magnetic fleld for nearly degenerate limits.
this interesting behavior is because of high number density compared to magnetic field.
Also magnetic fleld variation increment is very small.

Fig 3.6 shows the behavior of resonant frequency as a function of k for x-modes
perpendicular the external magnetic field for various values of € and 4 respectively,
for both {a) nearly non degenerate and (b) nearly degenerate quantum plasma. The
variation in Fig 3.6 {(a) with respect to £ is such that solid line (£ = 0) show complete
non degenerate plasmas, dashed line (£ = 0.4) and dotted line (¢ = 0.8) represents
nearly non degenerate quantum plasmas. It is observed that resonant frequency iu-
creases for increased values of £, Physically increased € means that degeneracy increases,
which consequently enhance the probability of wave particle interaction and hence the

resonant frequency. The opposite phenomena occurs in Fig 3.6 (b), where resonant
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frequency decreases with increased value of § = Irf; , for nearly degenerate limits. For

fixed T, the decreasing values of Tr,., shows increasing 6. Thus for decreasing Tr. the
degeneracy in the system decrease, this then decrease the probability of wave particle
interaction and hence the resonant frequency.

Fig 3.7 shows dispersion plot for Resonant frequency of EM wave modes propagating
perpendicular to external magnetic field for various values of number density for both
{a) nearly non degenerate and (b) nearly degenerate quantum plasma. The value of
magnetic field and & for plot (a) are By = 0.57, £ = 0.1 and value of magnetic and
§ for (b) are By = 1037, J§ = 0.001. Both Fig 3.7 {a) and {b) shows that resonant
frequency increase with increased number density for nearly non degenerate and ncarly
degenerate quantum plasma. Physically it is obvious that with increasing number
density enhance the probability of wave particle interaction and hence the resenant
frequency.

Fig 3.8 shows the dispersion plot for Resonant frequency of EM wave modes prop-
agating perpendicular to external magnetic field for various values of magnetic field
for both (a) nearly non degenerate and (b) nearly degenerate quantum plasma. The
number density and ¢ for plot (a) are n = 10%?/m?, £ = 0.2 and number density and
§ for {b) are n = 10%/m3, § = 0.001. Both Fig 3.8 {a) and (b) shows that reso-
nant frequency increases with increased magnetic field for nearly non degenerate and
nearly degenerate quantum plasma. Physically it is obvious that with increasing mag-
netic fleld enhance the probability of wave particle interaction and hence the resonant
frequency.

Fig 3.9 depicts the behavior of cut-off frequency as a function of k for x-modes
perpendicular the external magnetic field for different values of £ and 4 respectively,
for both (a) nearly non degenerate and (b) nearly degenerate quantum plasma. The
variation in Fig 3.9 {(a} with respect to £ is such that solid line (¢ = 0) show complete
non degenerate plasmas, dashed line (¢ = 0.3) and dotted line {£ = 0.7) represents
nearly non degenerate quantum plasmas. It is observed that cut-off frequency increases
for increased values of €. Physically increased £ means that degeneracy increases, which

consequently enhance the probability of wave particle interaction and hence the cut-
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off frequency. The opposite phenomena occurs in Fig 3.9 (b), where cut-off frequency

Te
Tr,’

decreases with increased value of § = for nearly degenerate limits. For fixed T, the
decreasing values of Tr., shows increasing §. Thus for decreasing Tr. the degeneracy
in the system decrease, this then decrease the probability of wave particle interaction
and hence the cut-off frequency.

Fig 3.10 reveals the dispersion plot for cut-off frequency of EM wave modes prop-
agating perpendicular to external magnetic field for various values of number density
for both (a) nearly non degenerate and (b) nearly degenerate quantum plasma. The
values magnetic field and £ for plot {(a) are By = 0.0087, £ = 0.1 and values of mag-
netic and § for (b) are By = 1087, ¢ = 0.0003. Both Fig 3.10 (a) and (b) shows that
cut-off frequency increase with increased number density for nearly non degenerate and
nearly degenerate quantum plasma. Physically it is obvious that with increasing num-
ber density enhance the probability of wave particle interaction and hence the cut-off
frequency.

Fig 3.11 shows the dispersion plot for cut-off frequency of EM wave modes propa-
gating perpendicular to external magnetic field for different values of magnetic field for
both (&) nearly non degenerate and (b) nearly degenerate quantum plasma. The num-
ber density and £ for plot (a) are n = 10?!/m?, £ = 0.2 and number deusity and é for ‘
(b) are n = 103 /m?, § = 0.03. Both Fig 3.11 {a) and (b) shows that cut-off frequency
increases with increased magnetic field for nearly non degenerate and nearly degenerate
quantum plasma. Physically it is obvious that with increasing magnetic field enhance

the probability of wave particle interaction and hence the cut-off frequency.
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Figure 3.3: Dispersion plots for EM wave modes propagating perpendiculer to the
magnetic feild (k1Bo) for both (a) nearly non degenerate and (b) nearly degenerate
quantum plasma for various values of (a) £ = 0 (solid line), 0.4 (dashed line} and 0.9
(dotted line) and of (b) § = 0.1 (solid line), 0.6 (dashed line) and 0.9 {dotted line).
The number density and magnetic feild for plot (a) are n = 10'?/m3, By = 0.0000001T
and number density and magnetic field for (b) are n = 103 /m?, By = 2T For case (a)
we have T, = 100 Tr, and for case (b) T, < Tre.
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Figure 3.4: Dispersion plots for EM wave modes propagating perpendiculer to the
magnetic feild (k1By) for both (a) nearly non degenerate and (b) nearly degenerate
quantum plasma for various values of (a) n = 1 x 10'2/m? (solid line), 1.005 x 10'?/m?
(dashed line) and 1.009 x 10'?/m?® (dotted line) and of (b} 1 x 10%/m? (solid line),
1.000002 x 10*/m?® (dashed line) and 1.000004 x 10%/m?® (dotted line). The vale
magnetic feild and ¢ for plot (a) are By = 0.0000001T", £ = 0.1 and value of magnetic
and § for (b) are Bq = 10°T, & = 0.1. For case (a) we have T, = 100 Tr. and for case
(b) Te < TFe- ’
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Figure 3.5: Dispersion plots for EM wave modes propagating perpendiculer to the
magnetic feild (k1 By) for both (a) nearly non degenerate and (b) nearly degenerate
quantum plasma for various values of (a) By = 0.0000001T (solid line}, 1.000004 x
0.0000001 (dashed line) and 1.000008 x 0.0000001T (dotted line) and of (b) By =
1 x 10°T (solid line), 1.0000004 x 10°T (dashed line) and 1.0000009 x 10°T (dotted
line). The number density and £ for plot (a) are n = 10'%3/m?, £ = 0.3 and number
density and 4 for (b) are n = 10°°/m?, ¢ = 0.2. For case (a) we have T, = 100Tf, and
for case (b) T, <« Tpe..
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Figure 3.6: Dispersion plots for EM wave modes (Resonance frequency) propagating
perpendiculer to the magnetic feild (kLBg) for both (a) nearly non degenerate and
(b) nearly degenerate quantum plasma for various values of (a) £ = 0 (solid line), 0.4
{dashed line) and 0.8 (dotted line} and of (b} § = 0.3 (solid line), 0.5 (dashed line) and
0.9 (dotted line). The number density and magnetic feild for plot (a) are n = 1072 /m?,
By = 0.5T and for (b) are n = 10%/m3, By = 103T For case (a) we have T, = 100
Tr. and for case (b) T, < Tr..
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Figure 3.7: Dispersion plots for EM wave modes {Resonance frquency) propagating
perpendiculer to the magnatic feild (kL Bg) for both (a) nearly non degenerate and (b)
nearly degenerate quantum plasama. For various values of (a) n = 1 x 10%/m3 (solid
line), 1.2 x 10*?/m?® (dashed line) and n = 1.4 x 10%2/m?® (dotted line} and of (b} n =
1x10%/m? (solid line) , 1.000001 x 1038 /m? (dashed line) and n = 1.000002 x 10% /m?
{dotted line). The value of magnetic feild and £ for plot (a) are By = 0.5T", £ = 0.1
and values of magnetic feild and § for plot (b) are By = 103T, § = 0.001. For case (a)
we have T, = 100 T, and for case (b} T, < Tx..
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Figure 3.8: Dispersion plots for EM wave modes (cut-off frequency) propagating per-
pendiculer to the magnetic feild (kLBg) for both {a) nearly non degenerate and (b)
nearly degenerate quantum plasme for various values of (a) £ = 0 (solid line), 0.3
(dashed line) and 0.7 (dotted line) and of (b) § = 0.1 (solid line}, 0.4 (dashed
line} and 0.7 (dotted line}. The number density and magnetic feild for plot (a}
are n = 102 /m3, B; = 0.008T and number density and magnetic feild for (b) are
n = 10%/m?, By = 10°T , Fuor case (a) we have T, = 100 Tp, and for case (b)
Te < TFe-
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Figure 3.9: Dispersion plots for EM wave modes (cut-off frequency) propagating per-
pendiculer to the magnetic feild (k1 Bg} for both (a) nearly non degenerate and (b)
nearly degenerate quantum plasma for different values of (a) n = 1 x 10%/m? (solid
line), 1.004 x 10 /m? (dashed line) and 1.009 x 10! /m?® (dotted line) and of (b)
1 x 103 /m? (solid line), 1.00004 x 103 /m? (dashed line) and 1.00009 x 10*/m? {dot-
ted line). The values magnetic feild and ¢ for plot (a) are By = 0.008T, £ = 0.1 and
values of magnetic and § for (b) are By = 10°T, § = 0.0003. For case (a} we have
T. = 100 Tp, and for case (b) T, <« Tg,.
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