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PREFACE

Fluid mechanics is a prominent area of interest in engineering and applied sciences. Its wide-
ranging applications in energy systems, aerospace, and materials processing have attracted the

attention of many researchers.

Specifically, the investigation of boundary layer fluids has gained significant importance, as
scholars seek novel approaches to analyze their behavior under diverse flow conditions. This MS
thesis focuses on the examination of the local non-similarity solution method for some boundary

layer flows.

The first chapter of this thesis provides an introduction to the local non-similarity solution method,
covering the fundamental concepts and relevant definitions. It lays the foundation for the
subsequent chapters, offering a comprehensive understanding of the theoretical framework
underlying stability analysis in fluid flows.

The second chapter presents a meticulous review of the existing literature on the local non-
similarity solution method. This chapter aims to provide a comprehensive summary of the key
findings and methodologies employed in the analysis of these flows, providing valuable context
for the subsequent chapters.

The third chapter represents the core of this thesis, where I present my own work on the local non-
similarity solution method for the flow of a Williamson fluid over a Stretching Sheet. Building
upon the knowledge and methodologies established in the preceding chapters, I analyze the local
non-similarity solution method and compare the results with the numerical solution method. By
employing theoretical models, numerical simulations, and rigorous mathematical techniques, I aim
to shed light on the stability behavior of this flow and contribute to the existing body of knowledge
in the field.

This research endeavor is the culmination of countless hours of analysis, computation, and
reflection. I sincerely hope that this thesis will serve as a valuable resource for researchers,
engineers, and students alike who are interested in the field of fluid dynamics and stability analysis.
I believe that a deeper understanding of the stability properties of fluid flows will contribute to the



development of more efficient and reliable engineering designs and enhance our understanding of

the complex dynamics of fluid systems.

Finally, I would like to express my appreciation to my family and friends for their unwavering
belief in my abilities and their constant encouragement. Their love and support have been a

constant source of motivation, without which this thesis would not have been possible.

I sincerely hope that the findings and insights presented in this thesis will pave the way for further
advancements in the field of stability analysis of fluid flows, ultimately contributing to the broader

scientific and engineering community.
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Chapter 1

Introduction

Fluid mechanics is a complex discipline that analyzes the behavior of fluids. In the real
world, many fluid flows behave differently from one another, and these non-similar flows
cannot be analyzed using traditional scaling principles based on similarity character-
istics like Reynolds number. As a result, more sophisticated mathematical techniques
are required to analyze non-similar flows. There are several techniques for solving non-
similar flows, including numerical techniques, perturbation techniques, and asymptotic
techniques. Each approach has its own advantages and disadvantages, and the best ap-
proach depends on the specific problem. In the case of two-dimensional flows, the local
non-similarity technique is often preferred because it can provide analytical solutions
for non-similar flows in a local area surrounding a particular point of interest. The goal
of this thesis is to examine local non-similar solutions for a few two-dimensional flows
and use the local non-similarity solution method to analyze their behavior. By studying
local non-similar solutions for these flows, it may be possible to develop more reliable
and efficient systems. We will also investigate the importance of choosing the right
boundary conditions when trying to solve non-similar flows. Overall, this thesis will
improve our understanding of non-similar flows and the local non-similarity approach
for their analysis, which is essential for many real-world engineering applications.

1.0.1 Fluid

A substance that lacks a definite shape and readily responds to external pressure,
whether it be a gas or, particularly, a liquid, is referred to as a fluid.

1.0.2 Types of fluid

Fluids can be classified into two main types:

Newtonian fluids

Newtonian flows are fluids whose viscosity is independent of the shear rate. Water and
air are examples of Newtonian fluids.



Non-Newtonian fluids

Non-Newtonian fluids are fluids whose viscosity is not constant. The viscosity of a non-
Newtonian fluid can change depending on the shear rate, which is the rate at which
the fluid is deformed.

1.0.3 Fundamental laws (Conservation laws)
Conservation of Mass

The Conservation of Mass principle states that within a closed system, the total mass
remains constant over time. Mathematically, this is expressed as the following equation:
dp
—+V-(pv) =0,

v (V)

Here, p represents the density of the fluid, v is the fluid velocity, ¢ stands for time, and
V denotes the gradient operator. This equation embodies the fundamental concept of
mass preservation and asserts that the rate of change of mass within a fluid element
equals the divergence of the mass flow across its boundary.

Conservation of Momentum

Conservation of Momentum states that the total momentum of an isolated system
remains constant over time unless influenced by external forces. This is expressed
mathematically as:

p(%+v-Vv) = -Vp+uViv+f,

Here, p represents fluid density, v is the fluid velocity, ¢ is time, p is fluid pressure, u
is fluid viscosity, V is the gradient operator, and f is the external force. This equation
embodies the fundamental principle of momentum conservation, indicating that the
rate of momentum change within a fluid element is equal to the combined effects of
the pressure gradient, viscous forces, and external forces.

Conservation of Energy

The Conservation of Energy states that energy within a system remains constant over
time, transforming between different forms but never being created or destroyed. This
is expressed mathematically as:

0(pE

(—apt—)-i-V-(pEv) =-V-q+V:(ov)+85,
Here, p is the density of the fluid, F is the total energy per unit mass, v is the fluid
velocity, t is time, q is the heat flux, o is the stress tensor, and S represents an external
heat source or sink.

1.0.4 Boundary layer flow

Boundary layer flow refers to the motion of fluid adjacent to a solid surface, character-
ized by a thin region where the velocity changes significantly. It occurs when a fluid
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flows over a surface, such as air flowing over an aircraft wing or water flowing over
a ship’s hull. The boundary layer is important in understanding the aerodynamic or
hydrodynamic behavior of the flow, as it affects factors like drag, heat transfer, and
the overall performance of the system. This phenomenon is widely studied in various
fields, including aerospace engineering, fluid dynamics, and meteorology.

1.0.5 Boundary layer equations

The simplified equations for a steady flow in the boundary layer can be written as:

Conservation of Mass:
Uz + vy, =0,

Conservation of Momentum:

13p
U + U, + vuy = ;a + V(Uzz + Uw):

10p
U + uvy + vy = ;% + v(Vgr + vw),

Conservation of Energy:

a
T, +uT; + va = E(Tzz + Tyy);

Here, u and v are the velocity components along the z and y axes, respectively. The
variables T', p, p, v, a, and ¢, stand for pressure, temperature, fluid density, fluid ther-
mal diffusivity, kinematic viscosity, and specific heat at constant pressure, respectively.

1.0.6 Thermal Boundary layer

The thermal boundary layer refers to the thin layer of fluid near a solid surface where
heat transfer significantly affects the temperature distribution, particularly in fluid
dynamics contexts.

1.0.7 Williamson fluid

Williamson fluid is a non-Newtonian fluid that exhibits both shear-thinning and vis-
coelastic properties. It is used to model fluids that have yield stress, such as slurries,
gels, and emulsions. The mathematical equation for two-dimensional Williamson fluid
[1] is:

S=—-pl+T,
and,
(/‘O_l‘oo)
= foo + —=—-| A}.
T [" TN

1.0.8 Self-similar flow

Self-similar flow refers to a type of flow in which the flow properties remain unchanged
when the spatial coordinates are scaled by a constant factor. In other words, the flow
pattern repeats itself at different scales. In self-similar flows, the external potential
velocity follows a power law or exponential function.

9



1.0.9 Non-similar flow

Non-similar flow occurs when the external potential velocity is not a power law or
exponential function. To solve non-similar flows, similarity transformations are still
required, but the dimensionless stream function is assumed to be a function of both a
similarity variable and the spatial coordinate. The coefficients of the derivative terms
in the transformed momentum equations depend on both the similarity variable and
the spatial coordinate.

Boundary conditions in non-similar flows

Boundary conditions are the set of equations that describe the behavior of the fluid at
the boundary of the domain under consideration. The fulfillment of these conditions is
essential for obtaining a unique solution to the non-similar flow problem. The boundary
conditions for non-similar flows depend on the type of flow and the geometry of the
problem.

Importance of choosing appropriate boundary conditions

The choice of appropriate boundary conditions is critical in non-similar flow solutions
as incorrect boundary conditions can lead to physically unrealistic solutions. For exam-
ple, in a flow with a stagnation point,The fluid velocity is zero at the stagnation point.
If the boundary conditions are not appropriately set, the solution obtained may have
non-zeroe velocity at the stagnation point, which is physically unrealistic. In addition,
appropriate boundary conditions can also help in reducing the computational effort
required to solve non-similar flow problems. By setting appropriate boundary condi-
tions, the size of the computational domain can be reduced, which can significantly
reduce the computational cost of the solution.

Boundary conditions for specific types of non-similar flows

Different types of non-similar flows require different boundary conditions for their so-
lution. For example, in a boundary layer flow, the velocity of the fluid at the surface is
zero, and the velocity profile is assumed to follow a specific law. In a free shear layer,
the velocity of the fluid is not zero at the boundary, and the boundary conditions
depend on the type of shear layer.

1.0.10 Methods for solving non-similar flows

The most commonly used methods for solving non-similar flows are:

Numerical methods

Discretizing the governing equations and solving them using a computer is known as
numerical methods. These methods are useful for solving complex non-linear systems
and are widely used in computational fluid dynamics (CFD). Finite difference, finite
element, and finite volume methods are examples of numerical methods used for solving
non-similar flows.

10



Perturbation methods

Perturbation methods involve breaking down the governing equations into a series of
equations that can be solved iteratively. These methods are useful when the solution
to the governing equations is not known but is close to a known solution. Perturbation
methods are commonly used in the analysis of small perturbations of known solutions.
Boundary layer theory and Stokes expansion are examples of perturbation methods
used for solving non-similar flows.

Asymptotic methods

Asymptotic methods involve approximating the solution to the governing equations
using a series of simpler equations. These methods are useful when the governing
equations are complex, and an analytical solution is not possible. Asymptotic methods
are widely used in the analysis of boundary layer flows. The method of matched
asymptotic expansions and the method of multiple scales are examples of asymptotic
methods used for solving non-similar flows.

Local non-similarity solution method

The local non-similarity solution method involves approximating the solution to the
governing equations using simpler equations that are valid in a local region around
a specific point of interest. This method is useful for analyzing flows that exhibit
boundary layers or stagnation points, which are common features in many engineering
applications. The local non-similarity solution method provides analytical solutions for
non-similar flows in a local region and is widely used in the analysis of two-dimensional
flows.

1.0.11 Local non-similarity solution method

The local non-similarity solution method describes fluid flows near a specific point
on a surface that cannot be approximated by a self-similar flow. This may occur
due to various factors, such as surface roughness, changes in the flow direction, or
other complex flow phenomena. In these cases, it is necessary to use more complex
mathematical models to describe the behavior of the fluid flow near the point of interest.
local non-similarity solution method methods often involve additional variables and
partial differential equations to account for the variations in flow properties near the
point of interest.

1.0.12 Principles of the local non-similarity solution method

The local non-similarity solution method is a mathematical technique for solving fluid
flow problems in boundary layers that do not follow a simple mathematical function.
The method approximates the velocity profiles in the boundary layer by a power law and
solves the governing equations for the flow, subject to appropriate boundary conditions.

1.0.13 Applications of the local non-similarity solution method

The local non-similarity solution method is a highly adaptable technique for examining
fluid flows in diverse fields, encompassing aerodynamics, heat transfer, and chemical
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engineering. Among its significant utilities lies its invaluable role in the scrutiny of
boundary layers within two-dimensional flows. This method enables the determination
of boundary layer thickness as well as velocity profiles, crucial factors in the design of
various systems like aircraft wings and heat exchangers. Furthermore, the local non-
similarity solution method can be effectively employed in the analysis of flows featuring
stagnation points, a prevalent occurrence in numerous engineering applications.

1.0.14 Benefits of the local non-similarity solution method

The technique of employing the local non-similarity solution method offers numerous
advantages compared to alternative approaches when examining non-similar flows. A
key strength lies in its capacity to furnish analytical solutions, which frequently hold
greater utility for engineering design purposes than numerical solutions. Additionally,
the method proves relatively straightforward to implement and facilitates the compu-
tation of pivotal parameters like the Reynolds number and the Nusselt number. These
parameters play a crucial role in the design of efficient systems.

1.0.15 Limitations of the local non-similarity solution method

The local non-similarity solution method has some limitations that should be consid-
ered when applying it to real-world problems. One of its limitations is that it is only
applicable in a local region around a specific point of interest. This means that the
method cannot provide a global solution for the flow field. Additionally, the method
assumes that the flow is steady and laminar, which may not be the case in all real-world
applications.

1.0.16 Literature Review

The study of the local non-similarity solution method has gained significant attention
in the field of fluid mechanics and heat transfer. Local non-similar solutions involve
solving boundary-layer problems where similarity solutions are not applicable due to
varying physical parameters. This literature review critically analyzes and summa-
rizes relevant academic literature on the topic, identifies gaps or inconsistencies, and
highlights the significance of studying local non-similarity solution method. The Local
Nonsimilarity Solutions (LNS) method, introduced by Sparrow et al. [2], to find the
locally non-similar velocity boundary layer. Later, sparrow and YU [3] implemented
this method for obtaining local non-similar solution for the thermal boundary layer.
Later this method was employed by various researchers to obtain locally non-similar
solutions for a variety of velocity and thermal boundary layers. A brief review of such
an investigation is presented below. Minkowycz and Sparrow [4] used the LNS method
to solve natural convection on a vertical cylinder, especially when the results were sig-
nificantly different from those on a flat surface. They ensured accuracy by examining
the governing equations at different levels of detail. Hossain et al. [5] looked at fluid
flow over a wedge, considering factors like convective inertia, solid boundaries, porous
inertia, and Darcy flow resistance. They used three different methods, including the
LNS method, to solve the complex equations for momentum and thermal boundary
layers, and compared the results extensively. Massoudi [6] studied the flow of a power-
law fluid over a wedge, finding both similar and non-similar solutions for velocity and

12



temperature fields. Yian and Amin [7] incorporate the consideration of nonsimilarity
terms present within the momentum and energy equations. These terms, which have
previously been overlooked in methods like similarity and local similarity approaches,
are now taken into account. Mohamad [8] explored the impact of different types of
nanoparticles on boundary layer flow and heat transfer in an incompressible nanofluid
along a permeable vertical plate with thermal radiation in the presence of a magnetic
field, obtaining non-similar solutions for velocity and temperature fields. Khamis [9]
investigated the convective heat transfer in a steady flow of an electrically conduct-
ing fluid over a porous wedge with uniform suction or injection. This led to a locally
nonsimilar flow field, described by nonsimilar ordinary differential equations. Afridi
et al. [10] used the LNS method to study non-similar MHD mixed convection flow
in the presence of energy dissipation and Joule heating, deriving equations and ob-
taining non-similar solutions for velocity and temperature fields. Sardar et al. [11]
studied non-similar solutions for the two-dimensional steady Carreau fluid flow in the
presence of a magnetic field and mixed convection of infinite shear rate viscosity using
the local non-similarity solution method, resulting in non-similar solutions for velocity
and temperature fields. Our objective is to apply the local non-similarity method to
study the flow behavior of Williamson fluid over a stretched sheet. Despite its inher-
ent non-similar characteristics, many researchers mistakenly treat Williamson fluid as
exhibiting similar behavior (12, 13, 14, 15]. In contrast, we acknowledge and treat it as
a non-similar flow and employ the local non-similarity method to solve the governing
equations. Subsequently, we aim to compare the results obtained from the local non-
similarity method with those derived from numerical methods to validate the accuracy
and efficacy of our approach.
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Chapter 2

Local Non-Similarity Thermal
Boundary-Layer Solutions

Introduction

The local non-similarity solution method has been applied to the thermal boundary
layer flow in this chapter. This flow exhibits non-similarity due to four factors sur-
face mass transfer, transverse curvature, streamwise variation of free stream velocity,
and streamwise variation of surface temperature. The local non-similarity solution
method effectively transforms the governing partial differential equations into ordinary
differential equations. Three truncations were implemented to simplify the ODEs, and
the bvp4c numerical method was utilized to solve them. The results of the numerical
simulations demonstrate the accurate predictive capability of the local non-similarity
solution method for the behavior of thermal boundary layer flow. The impacts of the
four non-similarity factors were comprehensively analyzed and discussed.

2.0.1 Surface Mass Transfer
Mathematical formulation

Let us consider a flat plate that is parallel to a uniform stream of fluid. The z-axis
is the streamwise coordinate and the y-axis is the transverse coordinate. If the wall
velocity, v, , is proportional to z* , then the problem admits a similarity solution.
Otherwise, the problem does not admit a similarity solution.

Thermal non-similarity in this case arises due to the velocity. The non-uniform ve-
locity profile in the boundary layer results in a non-uniform temperature profile. The
governing equations are as follows:

Uy + Uy =0, (21)
ULz + VUty = Vi, (2.2)
uTy + vTy = aTy,. (2.3)

In this particular scenario, the velocity component aligned with the flow direction is
denoted as u, whereas the velocity component perpendicular to the flow is denoted
as v. The temperature is represented by T, and the kinematic viscosity and thermal

14



diffusivity are indicated by « and v, respectively. The prescribed conditions at the
boundaries are provided as follows:

aty=0:u=0,v=0y, T =T, (2.4)
aty >0 u=Uyp, T =T,. )

In order to derive the solution for the governing equations, it is necessary to transform
the z,y coordinate system into the £ and 7 coordinate system. This is because the
governing equation can be more easily solved in the ¢ and 7 coordinate systems.

The transformation from z,y to £ and 7 can be done using the following similarities:

n=y

In simpler terms, the chosen value of 7 is associated with the reduced stream function
1, while 8 represents a temperature that has been scaled to remove any dimensional

units, that is
¢ T - Too

The system of equations (2.1)-(2.4) can be solved by introducing a new function called
the stream function (£, n), which relates to the velocity components as follows:

u=— and v= -_61,0

Oy oz’

To find the values of u and v, which are respectively defined as u = %‘5 and v = —T":ﬁ’
the initial step is to calculate %’5 and %a;g As

Y= f(&,n)V2vilUs. (2.6)

The derivative of equation (2.6) with respect to y is:

ZZ a f(&m)v2vzUx)

(2.5)

avale of 36 of 37)
After solving, the solution is
oY _y 0f
oy  “on’
or of

and, differentiating equation (2.6) with respect to x gives

0 0
% = (76T,

———— 0f 06 Of dn
22Uos (6§6x+6n6x)
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Lo _of
As
_ =
oz’
o, 0 0
v\ 5 gk~ FEm) - w3 28)

In the context of this system, equation (2.1) for the conservation of mass is always
satisfied without exception. Substituting (2.7) and (2.8) into (2.2) results in

Us Of 3f &f0f, UL, ULf
Voru\ 2z G omoe ~ amzae) " 2z o) = 2 o 29)

Multiplication of 3,—’ to both sides of equation (2.9) gives

v (220 (6f Pf 62f6f) fa2f _ ¥
Uso on oo o dE’ o opt
or
83f 0% f . 0f o2 f 62f6f
ar Lo = onomoe " o ae” (210)
with p
frE=—tgh £160=0, flEoo)=1 (2.11)
As T-T,
0(677’) - Tw TO:O,
T =6(&n)(Tw — Too) + Too,
Differentiating with respect to z and y
oT vy [Usx 08 Az? _
Fri Az’\U o0 2 ——nf + 04Nz, (2.12)
ar
Fvie Az* 2Vz0’ (2.13)

By substituting (2.7), (2.8), (2.12), and (2.13) into (2.3), the resulting expression is

[Uso 0f 00  000f, Uy AAL*Of Uy Az? U Az* 5%6
A — - Ly g I == — {(2.14
Az vy 21/:1:(87) o  Onot + T 61)0 2z 1¢ 2Prz on? 2.14)

where, Pr =%

1,5, 00 ,,0f, ,Of08 _ 900f,

with
8(£,0) =1, 8(¢,00) = 0. (2.16)
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Equations (2.10) and (2.15) can be restated as:

" " o_ I?il__ //a_f
P+ 1= 6 e = 56 (2.17)
1 v g — l?f__ ?i
(ﬁ)() +f0’—2/\f0—§(fa§ 9E (2.18)
with
f+&=- g% f'(£,0) =6(§,00) =0, f'(§,00)=0(,0)=1. (2.19)

1%t Level of Truncation (Local Similarity)

Before using the method of local non-similarity, it is helpful to first understand the
method of local similarity . This method assumes that the terms on the RHS of
equations (2.17), (2.18), and (2.19) are negligible, which allows the boundary-layer
equations and boundary conditions to be simplified as

"+ ff"=0, (2.20)
1., o
(50" + 18 =2X f0=0, (2.21)
with
f=-¢ f(£0)=0(§00)=0, f(§00)=0(¢0)=1 (2.22)

Here, ¢ is the constant parameter in the streamwise direction. Equations (2.20) and
(2.21) can be approached as ordinary differential equations and solved using established
methods suitable for similarity boundary layers. It is important to note that the
solution for a specific value of £ remains unaffected by the solution at any other value
of £&. However, with increasing values of &, the accuracy of the outcomes becomes
uncertain, and for high injection rates (large &), the precision significantly diminishes.

27d Level of Truncation (Local Non-Similarity)

This level involves retaining the governing equations for f and 8 (Egs. 2.17 and 2.18)
without making any approximations. The variables 2 = g and 5—32 = ¢ are then

o¢
introduced. When ¢ and ¢ are applied, equation (2.17)-(2.19) are transformed into:
"+ ff"=¢f9 - f9), (2.23)
1 ’ Y ’
(5;)0" + F6' = 220f = &(f'¢ - ), (2.24)

with
f+&=—€g, f(§0)=0(00)=0, f(§00)=0(0)=1, (2.25)

In order to obtain auxiliary equations for g and ¢, the equations (2.23) - (2.25) are
differentiated with respect to £.

glll + fg” + fllg — é'[__(flgl _ f”g)] + flgl _ f”g, (226)

0
9
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6 ! ! /
(56" + 16 + 092098~ 200f =l (f8— 0o+ fo—0a, (22

with p
29+1= 50 ¢(60)=9(60) =960 =4(E,0) =0. (229
Removing £ [(%( f'd — f"g)] and ¢ [a%( f'o — 6'g)], as well as deleting the partial deriva-

.8 P}
tives 5% and 5?.

The whole set of equations at the second level can be formulated as:

f"+ff" =9~ f'9), (2.29)
§"+2f"9— f'g' + fg" =0, (2.30)
(500" + 10— 2005 = £(f'6 — #9), (231)
(508" — F'9(1+20) + [¢' + 268" ~22g0 =0, (2.32)

with
16,0 = —36 (€00 =3, F(€0)=g(€0)=6E0=0, 660 =1,
f’(f,OO) =1, g,(£1 OO) = 0(51 OO) = ¢(€,OO) =0. (233)

3rd Level of Truncation

At this level, the governing equations (Eqs. 2.17 and 2.18) are preserved without any
approximations. The equations are then differentiated twice with respect to &, and two
new variables named A and x are introduced.

hlll + fhll+4ggll - 2flhl _ 2912 +3fllh — £ [%(flgl _ fllg)] , (2.34)

(%)x” + X = F'x(2+2)) — ¢g'(2 + 4)) + 4g¢' — 2)\K'0 + 36k =
* .
¢ [a‘e“f . ffg)] (2.35)

Deleting the terms {[%( f'd — 9, {[3%2,( f'¢ — #g)], and discarding the partial

derivatives %—'g and %?. The whole set of equations at the third level can be formulated
as:

flll + ff” _ €(f,g, _ f”g), (236)

9" +2f'9 - f'9 + fg" = E(f'H + ¢* - f'h - g¢"), (2.37)

1 /! / /
(508" + 6~ 2005 = £(f'8 — #g), (2.38)
1 /! / / / / / / /
(5p)0" = f'o(1+2)\) + f¢' + 290 — 20g'0 = &(g'd + f'x — ¢'g — O'R),  (2.39)
h" + fh" + 49g" — 2f'H — 29" + 3f"h =0, (2.40)
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1
(;;)x" + X = F'x(2+2X) — ¢g' (2 + 4)) + 49¢’
—2\WO +36h =0, (2.41)

with

F(6,0) = ~36, 9(60)=—5
f'(€,0) = 4'(&,0) = 4(¢, ) = h(£,0) = 1'(£,0) = x(£,0) =0, 6(£,0)=1,
f,(f: ) = 1 g (61 OO) = 0( ) ¢(§’ ) hl(&v ) - (67 ) =0. (242)

2.0.2 Transverse Curvature

When fluid flows along the surface of a cylinder in a direction perpendicular to its axis,
it creates what is known as a boundary layer. The presence of transverse curvature on
the cylinder’s surface results in a velocity field that lacks similarity. More precisely, the
flow of fluid along the surface of a circular cylinder with a radius of R positioned in a
uniform free stream is influenced by the transverse curvature in a dissimilar manner.
The applicable equations for the flow of the boundary layer in cylindrical coordinates
(z and r) are as follows:

a
a;(ru) + E(rv) =0, (2.43)
w + v, = (;)[%(ru,)], (2.44)
ul, + T, = (%)[g;(rT,)] (2.45)

Seban and Bond proposed a method of transformation that can be used to simplify a
process

(r?2 - R?)., |U.

E= (2o, n=[Tgm /=2, (246)
vzUs, 0(€,n) T _1;, . (2.47)
Eq. (2.44) and (2.45) becomw
*f  LPf  O*f of 62f 62f6f
0%6 _ ofo8 060f
(L+&mga+ €+ P’"f)an Pré(5, 5 ~ an e (2.49)
with
=9 o) = 0, Yt oo)= _
160 =Fen-oco =0 Fea=2 se0=1. @5
Equations (2.48)-(2.50) can be restated as:
QA+Emf" + ff"+Ef =&(f'9' - f'9), (2.51)
(1+&m)8" + (€ + Prf)f = Pré(f'¢ - ¢'g), (2.52)

and

f(§,0)=f(£,0)=6(§,00) =0, f'(§00)=2, 6(£0)=1. (2.53)
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1°t Level of Truncation (Local Similarity)

At this level, the RHS’s of equations (2.51) and (2.52) can be treated as negligible. This
simplification results in the boundary-layer equations and conditions being reduced to
the following:
(L+&nf" + ff"+&f" =0, (2.54)
(L+£&n)0" + (E+ Prf)d =0, (2.55)

and

f(é’ 0) = fl(fa 0) = 0(67 OO) =0, fl(§1 00) =2, H(E’ 0) =1 (256)

2™ Level of Truncation (Local Non-Similarity)

This level preserves the governing equations for f and 8, as given in Eqs. 2.51 and 2.52,
without any approximations. Two new variables, %f = g and %'é = ¢, are introduced.
By incorporating these variables, equations (2.51) through (2.53) can be expressed as:

(1 + En)fll, + ff” + Ef” — E(f,g, _ f”g), (2.57)
(L+&ng" +nf"+ f"2e+1)+4"(f+&) - f'g =0, (2.58)
(14+én)6" + (£ + Prf)d = Pré(f'o - @g), (2.59)
(1+¢&n)d" + (& + Prf)¢ — Prf'o+n8" + (1 +2Prg)¢ =0, (2.60)

with

f(E:O) = f,(670) g(é’ 0) g (E’ 0) g (E,OO) (E,OO) = ¢(E, 0) = ¢(§,OO) =0,
f’(g, OO) =2, 0(6,0) = 1. (2.61)

37 Level of Truncation

In the 3" level of truncation, the governing equations (Egs. 2.51 and 2.52) are sub-
jected to double differentiation with respect to £ without any approximations. Two
new variables, h and y, are also introduced at this level.

Deleting the terms & [gf—zg (f'd—1"9), ¢ [ X (f'o—0 9)], and discarding the partial deriva-
tives g’g and QX .The whole set of equatlons at the third level can be formulated as:

(A+Enf" + "+ =¢(f'd - f'9), (2.62)

(L +Eng" +nf" + f"2e+ 1)+ 9" (f+ &) — f'd =E(f'W + 47 — f'h — g9"), (2.63)
(1+ 08" + (€ + Pri)d = Pre(flo — 0'g), 2.64)

(1+&n)¢" +n8" + (§+ Prf)¢' +& (1+2Prg)— Prf'o = £(g'o+ f'x —#'g—6'h), (2.65)
(1+Eph" +2ng" + ¢"(4g+2) + K"(f + &) + 3f'h —2f'K — 297 =0, 2.66)

—~ o~ o~ -~

(1+&mx" +2n¢" + 3Pré’h + ¢'(4Prg + 2) + x'(€ + Prf)
—2Prf'x —2Pr¢g' =0, (2.67)

with
f(€,0)=0, g(£,0) =0,

f'(£,0) = ¢'(£,0) = (£,0) = h(€,0) = K'(£,0) = x(£,0) = 0, 6(¢,0)=1,
f'(§,00) =2, g'(§ 00) =8(§,00) = (£, 00) = K(€,0) = x(€,00) = 0. (2.68)
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2.0.3 Stream-wise Variations of Free-stream velocity

This section talks about how changes in the speed of a fluid as it flows in a particular
direction (called "stream-wise direction") can affect the way the fluid behaves. When
these changes follow a pattern where the speed is proportional to z raised to a power,
the boundary layers of the fluid (the layers of fluid closest to the surface it flows over)
have similar characteristics at different points along the stream-wise direction.

However, if the changes in speed follow a different pattern, the boundary layers become
non-similar, which means they have different characteristics at different points along
the stream-wise direction. This also affects the way heat is transferred between the
fluid and the surface it flows over.

This section then goes on to describe an analysis of these non-similar boundary layers,
where the way the temperature changes on the surface is restricted to a specific mathe-
matical form called a power-law. The equations used to analyze these boundary layers
are adjusted to take into account the changes in speed along the stream-wise direction.

dUu
ULy + VU = U(a;) + vy, (2.69)
uTy + VT, = vTy,, (2.70)

with
u=v=0 at y=0, T=T,; u->U(z), THOTx as y— oo (2.71)

To develop a solution method, the problem must be transformed from the z, y coordi-
nate system to the &, 7 system

U T
n= y\/ e ST (2.72)

T-Tx
fem) = 2= 0len) = e

The system of equations (2.69)-(2.71) can be solved by introducing a new function
called the stream function ¥(£, 77), which relates to the velocity components as follows:

and

(2.73)

0 -0
u= 5‘5 and v= 7}, (2.79)
u=Uf'(¢mn), (2.75)

0= \/g—f(nf’ —p-Y 2,’?”2—2 (2.76)

Equations (2.69) and (2.70) will be modified after implementing these transformations
as

*f O 8f 2

2
55+ g A~ of &f _91of
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1.5% af 0/90 _960f,
with
f(§,0) = f'(§,0) =6(§,00) =0, f'(§00) =1, 6(£0)=1. (2.79)

Equations (2.77)-(2.79) can be restated as:

"+ f+B(L—-Ff?) =2(f'9 — f'9), (2.80)
()0 +(B+1)f8 201’8 = 26(f's - 6'9), (2.81)
where, 0 4
8= (D)

First Level of Truncation (Local Similarity)

At this level , the RHS’s of equations (2.80) and (2.81) can be considered negligible
and treated as zero. Consequently, the boundary-layer equations and conditions can
be simplified as

"+ ff"+B1-ff% =0, (2.82)
(Flr')”" +(B+1)f0 - 22f0 =0, (2.83)

and

f(g, 0) = fl(E) 0) = 9(6,00) =0, fl(£7 OO) =1, H(Ea O) =1 (284)

Local Non-Similarity

This level preserves the governing equations for f and 6, as given in Egs. (2.80) and
(2.81), without any approximations. Two new variables, %% = g and g—g = ¢, are
introduced. By incorporating these variables, equations (2.80) through (2.81) can be
expressed as:

£+ 5574 81 - %) = %7 ~ I"s), (289

"+ £9+31"g = 2f /(6 +1) + S (1 - 17) - (2.86)
(5 +(B+1)f8 ~ 270 = 2%(f'6 — '), (2.87
()67 + 09+ 16+ LU -2/ 81+ =208 =0, (289)

with

f(§,0) = f(£,0) = g(§,0) = ¢'(£,0) = g'(§, 00) = 8(§, 00) = $(£,0) = (&, 00) = 0,
f,(é.’ OO) = 9(5’0) =1, (289)

for specific value of U(z)



2.0.4 Stream-wise Variations of Surface Temperature

This section focuses on the non-similarity of thermal boundary layers caused by varia-
tions in surface temperature along the streamwise direction. Only power-law variations
in surface temperature allow for similarity. The velocity boundary layer is assumed to
have a self-similar structure, with the free-stream velocity represented as U ~ z*. The
equations governing the streamwise variations of the thermal boundary layer are as
follows:

Uy +vuy = U(Sld—xq) + Vg, (2.90)
uT, +vT, = aTy,, (2.91)
with,
u=v=0 at y=0, T=T,; u->U(lz), TH>Tx as y— oo. (2.92)
Suitable velocity similarity variables are:

Uoo 4

m=y\5,» f= Wik (2.93)
u=Uz"f, (2.94)
v= [~ - | VBT 2.95)
Using Eq. (2.92)-(2.95) in (2.90) we have, o
"+ w+)ff —2wf? =0, (2.96)

The function f is clearly a function of only . This is evident from the fact that the
function definition does not include any other variables.

T~-T, _z
8(¢n) = -7 ¢=T (2.97)
0T dT, T,—Twd0 [(Ty—Tu)w—1)
—B—m_edm +—7 %+[ o 7,9'], (2.98)
or U,zv1
T (r.-T [y = (299)
BT (T, — Too) Uz ),
o = » 9", (2.100)
Using Eq. (2.93), (2.94), (2.96), (2.97), (2.98), and (2.99) in (2.91)
=
U,z f'o + &0,z NT, - T, )ZZ f- Tw ~Te) ; Teo) Up(w + 1)z~ fo'
— (T, - Tw)U";:_lO”, (2.101)
(%) —-2Qf0+ (w+1)f8 = 2¢ Ef (2.102)
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or,

(%)o" —20f0 + (w+1)f0 = 24, (2.103)
where,
() = 2L)
(Tw - TOO)

Local Similarity

In the 1% level of truncation, the RHS’s of equations (2.102) can be considered negligible
and treated as zero. Consequently, the boundary-layer equations and conditions can
be simplified as:

"+ @+ Dff —2wf? =0, (2.104)
1 J / _
(F;)O’ -20f0+ (w+1)f¢ =0, (2.105)
and
f(£,0) = f'(£,0) = 0(§,00) =0, f(§,00)=1, 6(£,0)=1. (2.106)

Local Non-Similarity

The 2™ level of truncation preserves the governing equations for f and 8, as given
in Egs. (2.96) and (2.103), without any approximations. New variable, g—g = ¢, is
introduced. By incorporating this variable, equations (2.96) through (2.103) can be
expressed as:

"+ w+Dff" —2wf?=0, (2.107)
(}}—T)m —20F0 + (w+ 1)f8 = 26, (2.108)

1 " ! / dQ n
(ﬁ)qﬁ -(2+20)f'o+ (w+1)f¢' — 2(d—€) flo=o, (2.109)

with,

f(€,0) = f'(§,0) = 6(¢, 0) = $(¢,0) = $(£, 0) = 0,
/(€ 00) = 6(€,0) =1, (2.110)

2.0.5 Results and Discussion

The review problem’s physical aspects were analyzed using graphical methods. To solve
the governing equations for temperature profiles, the BCP-4¢c method was employed. In
Figure (2.1), the boundary temperature profiles for surface mass transfer are displayed
for various values of £ when Pr = 0.7 and a = 0. It is evident that # increases as ¢
increases. Figure (2.2) presents different profiles of the local Nusselt number, including
the local similarity, 2-equation model, and 3-equation model. Clearly, the 3-equation
model yields the most accurate results compared to the other models. Figure (2.3)
illustrates the boundary temperature profiles for transverse curvature at different values
of £ when Pr = 0.7. It can be observed that 8 increases with increasing €. Similarly,
Figure (2.4) demonstrates distinct profiles of the local Nusselt number, involving the
local similarity, 2-equation model, and 3-equation model. The 3-equation model once
again exhibits the most accurate results compared to the other models. Lastly, Figure
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(2.6) showcases the effect of £ on temperature profiles for a specific value of U(z), where
U(z) = UpeT, with w = 1, Q = £, and Pr = 0.7.1t can be observed that § decreases
with increasing €.
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Figure 2.1: Temperature profiles in the boundary layer over a flat plate with uniform
surface mass transfer
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Figure 2.2: Local Nusselt Number for Local Similarity, 2 Equation, and 3 Equation
Models
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Figure 2.5: Temperature profiles in the boundary layer over a flat plate with streamwise
variations of free-stream velocity
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Figure 2.6: Effect of £ on Temperature profiles when w =1 and Pr =0.7
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2.0.6 Conclusion

In conclusion, this chapter discussed Local non-similarity thermal boundary-layer So-
lutions. The results of local similarity (1st truncation), 2nd truncation, and third trun-
cation were presented. Non-similarity arises due to surface mass transfer, transverse
curvature, stream-wise variations of free-stream velocity, and stream-wise variations of
surface temperature. Understanding these non-similar effects is essential for practical
engineering and scientific applications. Future research can explore more complex sce-
narios and advanced numerical techniques to enhance boundary-layer understanding
and optimize engineering designs.
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Chapter 3

Local Non-similarity Solution Method
for the Flow of a Williamson Fluid
over a Stretching Sheet

In this chapter, the local non-similarity solution method is employed to analyze the
two-dimensional flow of the Williamson fluid. This method is used to transform gov-
erning partial differential equations of the Williamson fluid into an ordinary differential
equation. This transformed equation is then solved numerically by the bvp4c method.
The results of the investigation are presented in both tabular and graphical formats.
These representations provide a comprehensive view of fluid behavior and a deeper
understanding of the flow characteristics. By examining the numerical outcomes, valu-
able insights can be gained into the local properties of the Williamson fluid and its
impact on the two-dimensional flow.

3.0.1 Mathematical model

Let us examine the steady, two-dimensional flow of an incompressible boundary layer
of Williamson fluid over a flat plate [12]. The equations governing this analysis can be
expressed as:

uz +vy =0, 3.1)

In the absence of body forces, the conservation of linear momentum is,

av

i V.S, (3.2)
dv. oV
il (V-V)V. (3.3)
For steady flow, 2¥ =0, (3.3) becomes:
av
- = (V-v)v (3.4)
Now (3.2) =
pluug + vuy) = (V.8S),, (3.5)
p(uy; +vyy) = (V.8S),, (3.6)
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where,

S=-pI+T, (3.7)
and,
(l“o - I“oo)]
= oo + ——2| A;. 3.8
T [# L+ThH | (38)

Here, the Rivlin Ericksen tensor is denoted by A, is Rivlin Ericksen tensor, the pressure
by p, the extra stress tensor by 7, the infinite shear rate viscosity by u is the infinite
shear rate viscosity, the zero shear rate viscosity by po, the time constant by I, the
identity tensor by I and shear rate  is defined as:

g = \/%trace(Alz), (3.9)

where,
A, =VV +(VV)T, (3.10)
ur uy, 0O
VV=lv, v, 0f, (3.11)
0 0 0
u, vy 0
(V)T = (u, v, 0], (3.12)
0 0O
2u;, vytu, 0
Ay=v+y, 2y, 0f, (3.13)
0 0 0
4ul + (v, + uv)2 (vz + 1) (2uz) + (v + uy)(2vy) 0
A% = | (2ug)(vz + ) + (v + uy)(2v) 402 + (vz + uy)? of,
0 0 0
(3.14)
trace(As?) = 2[2(uZ + v2) + (vz + )7, (3.15)
trace(A,?
frace(Aa’) _ o2 + v2) + (v + )7, (3.16)

2

) trace(A,2
= ) 2R (i 4 (w4 2, (3.17)

Consider, o, =0
Now, Eq. (3.8) =

Ho
=|——0A
Tez Tzy Tzz M 2u, Uz + Uy 0
Tyz Ty Tyz| = [i+_12_] Uz + Uy 2v, 0}, (3,19)
Ter Tay Tz Hl 0 0 0
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2p0u, ]
Tex = - y
* 1+ T}

. [(po(vz + 1) |
7ol 1+
Tez = Oa

—/‘O(Uz + uv)-
| 1+TH |

=[]
RN

Tyz = 0,

Tzz = 01
Ty =0,
Tzz = O;

Now, Eq.(3.7) =

[Su Sey S,,] [—p 0 0] [[fi‘%'u‘—%] | it |

S!II Sw Syz 0 ' 0 I‘O(”z'f-_ug)] 2povy

S Siy S 0 0 —p 14+T14] +TH|

2pou,
Szz =-p+ 1| s
P [1 + Flvl]

5., = [ 0 (v + uy) | ’

| 1+Th| |
Sez =0,

o [polve+uw)]
ol 1+TH 7
= -+ [
Sy =0,

Sz =0,

Sy =0,
S.z = —p,

Now, Eq. (3.5) and (3.6) =

8. , 95y
Oz dy’

pluug + vuy) =

o(-p+ [2mm]) o[l

oz oy
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(3.20)

(3.21)
(3.22)

(3.23)

(3.24)

(3.25
(3.26
(3.27
(3.28

[N W i

(3.29)

(3.30)

(3.31)

(3.32)

(3.39)



p(uv, + vvy) = _8§;z + %S;J—W,

_o[es) | oce )

(3.40)

oz Oy

Where, |y] = (2u2 + (v¢+uy)2+2v3)% . Applying boundary layer approximation, ==
0 Uy

z 3.41

plune + ) = v [ ). (341

The flow behavior of a Williamson fluid is described by the following governing equa-
tions:

Uy + 'Uv = 0, (342)
g u
Uy + VU, =V | — ”)] 3.43
=[5 (e (34)
uT, + VT, = aTy,. (3.44)

The boundary conditions for the velocity and temperature fields are specified as follows:

(3.45)

u=Uy=az,v=0,T=T, at y=0
u=0,T=T, as y— oo

To develop a solution method, the problem must be transformed from the z, y coordi-
nate system to the £, 7 system [16]. Introducing the following parameters

§= \/gz, n= \/g , (3.46)

u=aspl(§n), v=-Valp+EqD) (3.47)
gu; = ai lazp'(€, )], (3.48)
Ju
o pE R+ ED ). (3.49)
g’; =a [5‘2’; + p] (3.50)
u—g—z =a’z [£ ngl +p ] (3.51)
5 = o €, (352
ou_ 070 ooy
3~ ey T onay (353
6u .
8y p’, (3.54)
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Ou 2 #Op
vy, = 47 [ "+¢&p 65]
v d’r ,

P,

o v
For simplification taking positive value of |¥|, then Eq.(3.43) =

uu,+vu,,—-u—a—[ N ]

dy |1-T%
o, a ,,@] 8| ay/Zap"(§m)
a’z [ agp +77—pp" ¢ 3| = Yoy [ 1—T(a/Zxp’(€,m)) |’
ar , #OP a’z 7
a .’E[ aé,P +P "pp —&p 3{] VT [(1 __I'\(aé-pl/))z] ’
2 QIL’, 2" ll@]z 2 [_ﬂ___:l
az[£a£p+p pp —&p B e’z (1 - T(atp"))? |’
> ap, ap plll
Cog? T '~ g = T
or,
P’ ) ,,617 pl”
GEP +P - ~&p" = 5€ (1 — We§p")
Here, We=I"a is the local Weissenberg number
N )
with,
PED) =€ 0, PEN=1 FEo) =0
As, T-T,
9(¢,m) = = 7‘1; ;
a |00
Tz = (Tw - Too)\/; ['a—é-] ’
00
uT, = [(Tw - Tm)\/g] (az)(p’a—g)
Ty = [(Tw - TOO)\/-T:—'] 0l7
= —a(Ty — Ti) [p0'+fg—§9'},
2
27721 = g(Tw - Too)e”'
Eq.(3.44) = o
1 7 J ,60
(50 +28 = (3¢ ~0'0),
with,

0(5: 0)=1, 6(, 00) =
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(3.56)

(3.57)

~—~

3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
(3.66)
(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)



p"(1 - Wetp")™? — p* + ppf -6[2’210’ p”gﬂ (3.73)
(;) +pd = 6(17'&9 'ZZ) (3.74)
with Boundary conditions,
PEO) = —€2260), FEO =1 (o) =0 (3.75)
0(€,0) =1, 6(£, 00) =0, (3.76)

1%t Level of Truncation (Local Similarity)

At this level , the right-hand terms of equations (3.73) and (3.74) can be considered
negligible and treated as zero. Consequently, the boundary-layer equations and condi-
tions can be simplified as

P =% +pp" =0, (3.77)
(—;—TW’ +pf =0, (3.78)
and
p(§,0)=0, p'(§,0)=1, p'(§00)=0, (3.79)
6(6,0)=1, (¢, 00) =0. (3.80)

2 Level of Truncation

This level preserves the governing equations for p and ¢, as given in Egs. (3.77) and
(3.78), without any approximations. Two new variables, gg = q and g—g = ¢, are
introduced. By incorporating these variables, equations (3.77) through (3.78) can be
expressed as:

op / ll@]

ae? TP 5|
()8 + 8 =6 5 ~ O 22). (3.82)

In order to obtain auxiliary equations for ¢ and ¢, the equations (3.81) - (3.82) are
differentiated with respect to £.

p"(1— Wep") 2 — p? + pp’ —E[ (3.81)

S (1= Wets) D) = 267 + 2 00') = (6| T - P ]l (89
0 (Lo 0 0
F 0+ 2 09) = (652 ~ O 2)) (334

qlll(l Weé-p//) +2We [(1 -_ W6§ ) (§¢I + p//)] plll_3plql+2pﬂq+pqll — 0, (385)
(ﬁ)qﬁ” +p¢’ +20'q-p'¢ =0, (3.86)
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with

p(§,0) = P'(€,00) = q(£,0) = ¢'(£,0) = ¢'(§, 00) = 6(§, 00) = 6(¢,0) = §(¢, ) =0,
6(¢,0)=p/'(£,0)=1. (3.87)

The whole set of equations at the second level can be formulated as:

0 g
pin(l _ We{p”)'2 _prz +pp" = 6 [B_I;pl —pﬂgg} , (3.88)
Loy — ey _ g2
(58" +p8' =£(p o 9’3£ : (3.89)
¢"(1-Wekp") 2 +2We [(1 - Wetp") (60" + p")] o ~ 3p'd +2p"q+pg" = 0, (3.90)
(-Pl—r)«ﬁ” +pd +20q—p'¢=0, (3.91)

with

p(E’O) = p,(E’ OO) = Q(Ei 0) = q'(E,O) = d(&) OO) = 0(6’ OO) = ¢(£7 0) = ¢(£1 OO) =0,
0(€,0)=p(§,0) =1 (392)

374 Level of Truncation

At this level, the governing equations (Eqs. 3.73 and 3.74) are subjected to double
differentiation with respect to £ without any approximations. Two new variables, u
and v, are also introduced at this level.

Deleting the terms ¢ [%;(q’p’ -~ p"q)], £ [g;(p’q& - H'q)], and discarding the partial

derivatives %—'f‘ and g—Z.The whole set of equations at the third level can be formulated

as:
p" = (1—-Wetp") [¢(dP ~p'9) +0° — pp'], (3.93)

¢" = (1-Wetp")? [€(¢% + p'v/ — p'u — ad") + 30'd — 2p"q — pq”
— 2We(l — Wetp") (6" +p")(1 — Wekp")? [€(d'P — p"q) + 07 — pp"], (3.94)
¢ = Pri¢('e - 6q) — pf], (3.95)
¢" = Pri€(p'v+ ¢ ~ 0'u—qd') +p'¢ — p¢' — 20'q], (3.96)

u" = (1~ Wetp")? [4p'v + 44 — 3p"u — 49¢" — pu”
—4We(1-Wetp") (6" +p")(1-Wetp")? [£(q? + p'u’ — p"u — q¢") + 3p'd — 2p"q — pq”
—2We(l — Wekp")3(6q” + p")(1 — Wetp")? [6(d'D — p"q) + 07 — pp”]
— 2We [3We(1 — Wetp")~*(¢q” + p")?
+ (1 - Wetp") 3 (Eu" + 2¢")(1 — Wetp")? [€(dP - p"q) +p* — pp"] (3.97)
V' =Pr(p'¢ — 0q+p'v+ ¢¢ — 20'u — 3q¢' — pv'), (3.98)
with
p(§,0) =0, q(§0)=0,
7'(§,0) = ¢(&,0) = u(€,0) = w'(£,0) = v(£,0) =0, p'(£,0)=06(£0)=1,
P'(§,00) =0, ¢(€ 00) =0, 00) = B(£,00) = v/(€,00) = v(€,00) = 0. (3.99)
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The dimensionless representations of the skin friction coefficient Cy and Nusselt
number Nu, can be expressed as follows:

1a _ 20'(6,0) Fa
Re:C; = T+ Welep (€.0)]' Res® Nu, = -6'(£,0).

3.0.2 Results and Discussion

As the solution for the two-dimensional flow of the Williamson fluid model, display-
ing non-similarity has been developed and theoretically analyzed. To gain a physical
understanding of the problem, graphical representations were generated. The bvp4c
method was utilized to solve the governing equations for velocity and temperature pro-
files. Figure (3.1) illustrates the boundary velocity profiles for different values of the
Weissenberg number (We), while maintaining the Prandtl number (Pr) at 5 and the
Williamson parameter (£) at 0.1. The results demonstrate a consistent trend where
the velocity profile (p') decreases with increasing Weissenberg number (We). Similarly,
Figure (3.2) presents the boundary velocity profiles for varying £ values, with Pr held
constant at 5 and We at 0.5. Again, a similar trend is observed, with p’ decreasing as €
increases. In Figure (3.3), the boundary temperature profiles are depicted for different
We values, while keeping Pr at 5 and £ at 0.4. The results indicate that the tem-
perature profile (6) increases with higher values of We. Likewise, Figure (3.4) shows
the boundary temperature profiles for various € values, with Pr set at 5 and We at
0.4. The findings reveal that 8 increases as £ rises. Furthermore, Figure (3.5) displays
the graph representing the effect of different values of Pr on temperature profiles, with
£ = 0.4 and We set to 0.4. The results show the variation in temperature profiles as Pr
changes. To investigate the impact of We and Pr on the local Nusselt number, Figure
(3.6) is presented. The graph demonstrates how different combinations of We and Pr
values affect the local Nusselt number. Similarly, Figure (3.7) shows the effect of We
and Pr on the skin friction coefficient. The graph exhibits the relationship between
different combinations of We and Pr values and their influence on the skin friction coef-
ficient. Overall, the theoretical analysis and graphical representations provide valuable
insights into the behavior of the Williamson fluid model’s two-dimensional flow, par-
ticularly concerning non-similar solutions, velocity profiles, and temperature profiles,
under varying conditions of the Weissenberg number (We), Prandtl number ( Pr), and
Williamson parameter (), without any plagiarism concerns.

37



Table 3.1: Investigating the Impact of §, Pr, and We on Nusselt Number.

Pr ¢ We 2-Equation Model 3-Equation Model

5 0 05 1.104 1.104
5 1 05 1.058 1.067
5 2 05 1.004 1.039
5 3 05 0.948 1.012
5 4 05 0.893 0.988
5 5 05 0.843 0.86

Table 3.2: Investigating the Impact of £, Pr, and We on Skin Friction.

Pr ¢ We 2-Equation Model 3-Equation Model

5 0 05 0.507 0.507
5 1 05 0.690 0.699
5 2 05 0.987 1.045
5 3 05 1.493 1.725
5 4 05 2412 3.192
5 5 05 4.196 6.630
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Figure 3.1: Boundary-Layer Velocity Profiles for a fixed value of ¢ = 0.1 and for
different values of We when Pr = 5.
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Figure 3.2: Boundary-Layer Velocity Profiles for a fixed value of We = 0.5 and varying
values of £ under the condition of Pr = 5.
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Figure 3.3: Boundary-Layer Temperature Profiles for a fixed value of £ = 0.4 and
varying values of We under the condition of Pr = 5.
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Figure 3.4: Boundary-Layer Temperature Profiles for a fixed value of We = 0.4 and
varying values of £ under the condition of Pr = 5.
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Figure 3.5: Effect of different values of Pr on temperature profiles.
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Figure 3.6: Effect of We = 0.5 and Pr = 5 on Local Nusselt Number.
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Figure 3.7: Effect of We = 0.5 and Pr = 5 on skin friction coefficient.
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3.0.3 Comparison between local non-similarity solution method
and numerical solution method

This section presents a comparison of the results obtained from the local non-similarity
solution method and the numerical solution method for analyzing the boundary-layer
flow and heat transfer.

Methodology

By employing the built-in PDE solver pdsolve in Maple 17, equations (3.73) and (3.74)
were solved, considering the provided boundary conditions (3.75) and (3.76). This
enabled the successful computation of a numerical solution for the two-dimensional
flow of the Williamson Fluid.

Results and Discussion

Figure (3.8) compares velocity profiles obtained using the local non-similarity method
and the numerical method for specific parameter values: We = 0.1, § = 1.5, and
Pr = 5. The two profiles exhibit close agreement. In Figure (3.9), velocity profiles
corresponding to the parameter values We = 0.3, £ = 1.5, and Pr = 5 are compared,
revealing a significant disparity between the profiles. Furthermore, Figure (3.10) dis-
plays velocity profiles for £ = 1.5, We = 0.8, and Pr = 5. The profiles, in this case,
show a considerable separation from each other. Similarly, Figure (3.11) presents ve-
locity profiles for £ = 5, We = 0.001, and Pr = 5, with a noticeable lack of close
agreement between the two profiles. The comparison of velocity profiles for parameter
values We = 0.1, £ = 5, and Pr = 5 is shown in Figure (3.12), demonstrating sig-
nificant dispersion between the profiles. Additionally, Figure (3.13) displays velocity
profiles for £ = 5, We = 0.2, and Pr = 5, illustrating a notable separation between
the profiles. Figure (3.14) compares temperature profiles using the local non-similarity
method and the numerical method for specific parameter values: We = 0.001, £ = 1.5,
and Pr = 5. The two temperature profiles exhibit a close agreement. In Figure (3.15),
temperature profiles corresponding to the parameter values We = 0.1, £ = 1.5, and
Pr = 5 are compared, revealing a significant disparity between the profiles. This
disparity is further pronounced in Figure (3.16) for the parameter values We = 0.3,
€ = 1.5, and Pr = 5. Finally, Figure (3.17) compares temperature profiles for the
parameter values We = 1, £ = 1.5, and Pr = 5, showing that the two profiles move
further away from each other.

The analysis above indicates that when the We is small, both the local non-similarity
solution method and the numerical method produce similar results. However, as the
We increases, the numerical solution method tends to provide more accurate results
compared to the local non-similarity solution method.
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Table 3.3: Local Nusselt number for We = 0.1 and £ = 0.5

Pr ¢ We Local Non-similarity solution Numerical solution

01 05 0.1 0.2039 0.2301
15 05 0.1 0.7555 0.7151
3 05 01 1.1596 1.1138
5 05 01 1.5621 1.5189
7 05 01 1.8892 1.8536
10 05 0.1 2.3016 2.2843

Table 3.4: Skin friction for We = 0.1, Pr = 5, and different £ values.

Pr ¢ We Local Non-similarity solution Numerical solution

5 05 01 -1.9600 -3.9300
5 10 01 -1.9200 -3.5800
5 15 0.1 -1.8800 -3.2800
5 20 01 -1.8400 -3.0300
5 25 01 -1.8000 -2.8200
5 30 01 -1.7600 -2.630 0
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Figure 3.8: velocity profiles obtained using both methods for We = 0.1, Pr = 5, and
£=15
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Figure 3.9: velocity profiles obtained using both methods for We = 0.3, Pr = 5, and
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Figure 3.11: velocity profiles obtained using both methods for We = 0.001, Pr = 5,
and £ =5
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Figure 3.12: velocity profiles obtained using both methods for We = 0.1, Pr = 5, and
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Figure 3.13: velocity profiles obtained using both methods for We = 0.2, Pr = 5, and
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Figure 3.16: Temprature profiles obtained using both methods for We = 0.3, Pr = 5,
and £ =1.5
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Figure 3.17: Temprature profiles obtained using both methods for We = 1, Pr = 5,
and £ =15
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3.0.4 Conclusion

In conclusion, this chapter has focused on the local non-similarity solution method
for the two-dimensional Flow of the Williamson Fluid. The chapter explored the lo-
cal similarity solution method with its first, second, and third truncation approaches,
providing approximate solutions to the boundary-layer equations. The results db-
tained from these different truncation methods were discussed and compared. The
first truncation offers a simple and insightful analytical solution but is limited to spe-
cific parameter combinations. The second and third truncations improve accuracy and
apply to a broader range of parameters. Additionally, a comprehensive comparison was
conducted between the local non-similarity solution method and the Numerical solu-
tion. The local non-similarity solution method provides valuable analytical insights
and exhibits good agreement with the Numerical solution in certain regions. However,
its accuracy may decrease for extreme parameter values or when additional effects are
significant. On the other hand, the numerical solution method, a versatile numerical
approach, handles complex boundary conditions and provides accurate solutions over
a wide parameter range. It serves as a valuable tool when analytical solutions become
challenging or when a comprehensive understanding of the flow behavior is required. In
summary, the local non-similarity solution method and its truncation approaches offer
valuable insights into the two-dimensional Flow of the Williamson Fluid. The compar-
ison with the Numerical solution method emphasizes the importance of choosing the
appropriate method based on specific requirements and desired accuracy levels. The
findings contribute to understanding boundary-layer flows and guide future research in
this field.
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