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ABSTRACT

Most of the data sets belonging to the real world contain observations at the extremes
that might not be in conformity with the remaining data set. These extreme
observations known to be outliers might have positive or negative effect on the data
analysis like iregression estimates, forecasting and ANOVA etc. Outliers are powerful
tools to identify the most interesting events of the world in cross sectional data and
historically important events can be picked by detecting outliers in time series data
sets. Numerous outlier detection techniques have been proposed in the literature. This
study provides a survey of these techniques and their properties. Most of these
techniques work well under the assumption that data come from a symmetric
distribution and these techniques fail to work in skewed distributions. Because of this
limitation, Hubert and Vandervieren (2008) proposed a technique for outlier’s
detection in skewed data sets. Our thesis presents a new technique to measure robust
skewness (SSS) and a new outlier detection technique (SSSBB) for skewed data
distributions. The study shows that the proposed technique measures skewness more
accurately than existing techniques and the proposed technique for outlier’s detections
works better than Hubert’s technique on a class of theoretically skewed and
symmetric distributions. The study also compares the technique with other established
outlier detec’t;ig()n techniques in the literature. This study uses simulation technique for
computer geﬁerated distributions and some real data sets for comparison purposes.
The study also analyzes real life data sets and compares the baby birth weight data
and stock returns, both of which are known to be skewed. These results will help us in
making a choice of appropriate oiitlier detection technique for skewed data sets for

different sample sizes which might be helpful in identifying underweight babies.
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CHAPTER 1

INTRODUCTION

Although ther'e is a lot of literature on outlier detection, most of the existing techniques
are suitable fc;r symmetric distributions as discussed in detail in chapter 2. Some of the
authors proposed outliers techniques for skewed data, but the performance of these
techniques needs improvement. The major prob]em of the existing outlier detection
techniques is that these work in symmetric distribution and fail to work in asymmetric
distribution. Some techniques assume normality assumptions while most of the real data
do not follow normal distribution. Literature needs techniques which work both in
symmetric and asymmetric distributions equally. This thesis proposes a new technique
for measuring; skewness and new technique for detection of outliers in skewed data. This
technique works well both in symmetric and skewed distribution. Its performance has
been proved i)etter than existing techniques by comparing their constructed fences with
the true lower and upper boundaries defined around the central 95 percent of the
distributions. . These calculations are analytical and easy to understand. The study has
been plannedAin the following way. In Chapter 2 this study provides literature review of
various aspects of skewness, its measurements, existence of outliers in the real data sets
due to natural effects and some time due to errors and contaminations. Benefits and

deleterious effects of outliers in data have been discussed along with the application of
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outlier detection in real life. Existing outlier detection techniques have also been

discussed.

Since this study is related to the skewed distributions, it is important to have robust tests
for measuring skewness of the given data set. Chapter 3 provides a review of techniques
of measuring' skewness in the data. This study also introduces a new technique for
measuring skéwness (the Split Sample Skewness henceforth abbreviated as SSS) that
splits the sample from the median as its name suggests. This study also compares SSS
with previous non parametric techniques like quartile skewness, octile skewness and
medcouple. A new methodology based on bootstrapping has been developed to compare
these techniques. Since all the techniques except moment measure of skewness are
designed to be robust measure of skewness, the performance of all robust techniques has
been compared by matching the size in symmetric distribution and then comparing the
power in ske\;\fed distributions adopting bootstrap simulation technique. Superiority of the

technique has been proven by simulation results.

In Chapter 4, a new technique has been developed based on split sample methodology to
detect outliers in the skewed distributions. This technique has been applied on different
distributions (%, P, and Lognormal) with different parameters, and the results are
compared with a very popular method named box plot developed by Tukey (1977).
Applications of the proposed technique show its dominance on Tukey’s and Kimber’s
techniques in constructing the fence around the true central 95% boundaries of the

different distribution and also in real data sets.



In Chapter 5, a modification is proposed in the HV box plot technique introduced by Mia
Hubert and Ellen Vandervieren (2008) which is specially designed for detection of
outliers in the: skewed distribution. The main problem of HV boxplot is that it generates a
larger fence a;ound the 95% boundary of the distribution and increases the chance of type
IT error. Simulation study has been done on the skewed distributions, like x* with different
degrees of freedom, P, and lognormal with different parameters and different sample
sizes and supremacy of proposed modification over HVBP has been proven by the

results.

In Chapter 6, a robust measure of skewness known as medcouple, introduced by G. Brys,
M. Hubert and A. Struyf (2004), has been incorporated in the technique developed in
Chapter 4. Again simulation study has been done on the early tested distributions in the

similar fashion.

Chapter 7 inciudes applications of the Tukey’s technique, SSSBB technique introduced in
Chapter 4, HYBP (2008) and MHVBP proposed in Chapter 5 and MCSSSBB technique
proposed in Chapter 6 on the real data sets of stock return of United Trust of Pakistan
(UTP-2008) and baby birth weight data followed up till 28" day. Chapter 8 comprises the
conclusions and recommendations based on the theoretical and empirical evidence and

directions for the future work.



CHAPTER 2

REVIEW OF LITERATURE

2.1 Wha; is an outlier?

Discordant observations may be defined as those which look different from other
observations with which they are combined with respect to their law of frequency
(Edgeworth, 1887; cited by Beckman and Cook, 1983). Another definition of discordant
observation is that observation which appears surprising or discrepant to the investigator
(Iglewicz and Hoaglin, 1993). An outlying observation, or outlier, is one that appears to
deviate markedly from the other members of the sample in which it occurs. These
statements illustrate that an outlier is a subjective, post-data concept. Historically,
"objective" methods for dealing with outliers were employed only after the outliers were
identified through a visual inspection of the data (Grubbs, 1969; cited by Beckman and
Cook, 1983). A contaminant is defined as an observation coming from a distribution
which is different from the distribution of the rest of the data. Contaminants may or may
not be noted by the investigator (Bamett, 1984). Contaminants and discordant
observations é}re jointly known to be outliers. S6 in the words of Iglewicz, inconsistent
observations v“vith respect to the remaining data may be defined as outliers (Iglewicz and
Hoaglin, 199%). For Hawkins, an outlier is an observation which deviates so much from

the other observations as to arouse suspicions that it was generated by a different

mechanism (Hawkins, 1980).



2.2 History of Outliers

Detection of qutliers in the analysis of the data sets dates back to 18™ century. Bernoulli
(1777) pointed out the practice of deleting the outliers about 200 years ago. Deletion of
outliers is not a proper solution to handle the outliers but this remained a common
practice in past. To address the problem of outliers in the data, the first statistical

technique was developed in 1850 (Beckman and Cook, 1983).

Some of the researchers argued that extreme observations should be kept as a part of data
as these observations provide very useful information about the data. For example, Bessel
and Baeuer (1838) claimed that one should not delete extreme observations just due to
their gap from the remaining data (cited in Barnett, 1978). The recommendation of
Legendre (1805) is not to rub out the extreme observations "adjudged too large to be
admissible". Some of the researchers favored to clean the data from extreme observations
as they distort the estimates. An astronomer of 19™ century, Boscovitch, put aside the
recommendations of the Legendre and led them to delete (ad hoc adjustment) perhaps
favoring the Pierce (1852), Chauvenet (1863) or Wright (1884). Cousineau and Chartier
(2010) said that outliers are always the result of some spurious activity and should be
deleted. Deleting or keeping the outliers in the data is as hotly discussed issue today as it

was 200 years ago.

Bendre and Kale (1987), Davies and Gather (1993), Iglewicz and Hoaglin (1994) and
Barnett and Lewis (1994) have conducted a number of studies to handle issues of
outliers. Defining outliers by their distance to neighboring examples is a popular

approach to finding unusual examples in a dataset known to be distance based outlier
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detection technique. Saad and Hewahi (2009) introduced Class Outlier Distance Based
(CODB) outlier’s detection procedure and proved that it is better than distance based
outlier’s detection method. Surendra P. Verma (1997) emphasize for detection of outliers
in univariate ‘data instead of accommodating the outliers because it provides better
estimate of mean and other statistical parameters in an international geochemical

reference material (RM).

2.3 Importance of Detecting Outliers

Outlier detection plays an important role in modeling, inference and even data processing
because outlier can lead to model misspecification, biased parameter estimation and poor
forecasting (Tsay, Pena and Pankratz, 2000 and Fuller, 1987). Outlier detection as a
branch of data mining has many important applications, and deserves more attention from
data mining community. The identification of outliers may lead to the discovery of
unexpected knowledge in areas such as credit card and calling card fraud, criminal
behaviors, and cyber crime, etc. (Mansur and Sap, 2005). Detection of outliers in the data
has significant importance for continuous as well as discrete data sets (Chen, Miao and
Zhang, 2010). Justel and Pena (1996) proved that the presence of a set of outliers that
mask each other will result in failure of the Gibbs sampling (In Bayesian parametric
model Gibbs sampling is an algorithm which provides an accurate estimation of the
marginal posterior densities, or summaries of these distributions, by sampling from the
conditional parameter distributions) with the result that posterior distributions will be

inadequately estimated.



Iglewicz and Hoaglin (1994) recommend that data should be routinely inspected for
outliers because outliers can provide useful information about the data. As long as the
researchers are interested in data mining, they will have to face the problem of outliers
that might come from the real data generating process (DGP) or data collection process.
Outliers are likely to be present even in high quality data sets and a very few economic

data sets meet the criterion of high quality (Zaman, Rousseeuw and Orhan, 2001).

Some techniques designed for skewed distributions such as the boxplot introduced by
Mia Hubert and Ellen Vandervieren (2008) and some other techniques introduced by
Banner and Iglewicz (2007) are designed for large sample sizes but there are also some
techniques V{/hich are designed for smaller sample size (3-12) like Dixon test
(Constantinos E. Efstathiou, 2006). Some techniques like 2SD (standard deviation)
perform well ‘in the symmetric distributions but fail in the skewed distribution due to the
fact that they construct large intervals of critical values around the means of
asymmetﬁcaliy centered distributions on the compressed side while short it on the

skewed side of the distribution according to the level of skewness.

2.4 Causes of Outliers

Anscombe (1:960) (cited by Beckman and Cook, 1983) divided outliers into two major
categories. F i;rst, there might be errors in the data due to some mistake/error and second,
outliers may i)e present due to natural variability. There might be the third category of
outliers when they come from outside the sample. Ludbrook (2008) discussed a number

of reasons of outlier’s existence and methods of handling them.
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Outliers in the first category might arise from a variety of sources some of which are
discussed in this section. Here are some of the possible sources of outliers which the
researcher observed during carrying out a survey at Keenjhar Lake district Thatta (Sind)

for the SANDEE study “Valuing Recreational Use of Pakistan Wetlands”.

2.4.1 Outliers in Survey Data Sets

i. Problem in Questionnaire

The design of questionnaire might have some ambiguous question that neither
enumérator can understand nor the respondent can follow so that outliers are expected to
appear in the :data. For example, if only income is mentioned in the questionnaire without
specifying ’theg period (monthly or annual etc.), the respondent might generally understand
it as monthly income and thereby give rise to an outlier in the annual income data.
Similarly for the monthly income data, an economic graduate respondent may understand
it as annual income rather than monthly salary and will create an outlier mistakenly on

the positive side of the monthly income distribution.
ii. Problem Arising out of Enumerators’ Mistakes

The enumerators themselves may also be responsible for giving rise to outliers. Taking
the same example as above, if one out of twenty enumerators confuses the annual income
with the monthly income, nearly five percent of the data will be detected as outliers

because of the mistake of one enumerator.



iii. Problem in Explaining Question by the Enumerator to Respondent

Similarly outlier might appear when enumerator fails to explain the question to the
respondent during the time questionnaire being filled. For example, an enumerator asks
the respondent for the family income but does not define family income to some of

respondents then outliers might exist.
iv.  Outliers Arising out of Misunderstanding on the Part of Respondent

In the developing world, most of the respondents are not familiar with the design of
questionnaire most probably because of illiteracy. As a result, they respond lose heartedly
or just answer by guess up till they understand the question. Lack of interest in the

response or responses based on hunch or guess may also result of appearance of outliers.
v.  Poor Handwriting of the Enumerator

One of the possible causes of the outliers in the survey data might be the result of
illegible handwriting of the enumerators, which the data entry operator may not

understand and fills the data wrongly.
vi. Problem in Data Entry by the Data Entry Operator

Outliers might be due to the mistake of the data entry operator. An advertent increase of a
single zero may register a huge increase of income of 70,000 to 700,000 thereby giving
rise to outliers. Such cases may arise when the data entry operator is not adequately
familiar with the project in hand and his job is to copy data from questionnaire to data

base.



All such type; of the outliers that arise from any mistake at any step of the collection or
documentation of data may be deleted or may be adjusted according to the actual
population. However the outliers arising from natural variation must be kept because they
are expected to tell interesting story behind data generating process and that specific

observation,

Figure 2.1 Naseer Soomro in Local Market

2.4.2 Natural Variation

Natural variation may also be responsible for
outliers. Naseer Soomro, a 7’ 8’ (233.6cm)
tall man from Shikar Pur of the Sind province
is one of the tallest person in the Pakistan.
Naturally he is markedly different from the
rest of the population in that area. Birth of a
person with such a height seems to be unusual
in that popoulation but all of us know this

reality and these type of outliers must not be

deleted or ignored without sound theoritical

justification. :

2.4.3 Contamination
Outliers of third category originate 'from mixing of two populations in an unbalanced

way. For example, mixing 97% and 3% of two populations from two different samples



respectively may show 3% of the population from one sample as outlier in the resulting

pooled sample.

2.5 Effects of Outliers

Outliers may fhawe good or bad effects on the data. If these are the real observations, they
point to some interesting dimensions of the data. The famous case of Hadlum vs.
Hadlum, held in 1949 (Barnett, 1978) is of statistical interest because of an outlier. Mrs.
Hadlum gave birth to a child after 349 days after Mr. Hadlum had left home to take up
his duty in the armed force. Such an unusually long gestation period will be considered as
an outlier against common gestation period which usually lasts around 280 days. The
claim of Mr. Hadlum was failed as the court drew the limit of gestation period of 360
days which is unusual and statistical}y unreasonable. This outlier seems to be away from
the distribution of gestation period but in reality it happened and was a natural outlier.
However, if the outlier appears due to some mistake, it will have negative effects in
analyzing the data. e. g. If ten dice are thrown ten times and a guy records the numbers of
sixes in the form 2,0,3,12,2,0,1,1,3 then surely 12 will be an outlier in the data besides
showing a missing value. Analysis of such type of data without giving attention to the

outlier will lead to incorrect or misleading results.

2.5.1 Damaging Effects of Outliers

Estimation of parameter is greatly influenced when outliers are present in the data
(Zimmerman, 1994, 1995, 1998), because they may result in an increase in the errors

variance and decrease the power of test. If the errors contain outliers, these outliers
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decrease theif normality in univariate case and sphericity and multivariate normality in
case of multi?ariate altering the odds of making both Type I and Type II errors. In this
way outliers jbecome responsible for committing Type I and Type Il error. Finally
regression es’gimates that might be of substantive interest are distorted by the outliers

(Osborne and Overbay, 2004).

2.5.2 Benefits of Outliers in the Data Set

Main benefit of the outliers in cross sectional data is that they reveal interesting facts.
Outlier has importance as they appear different from the remaining data and having some
genuine causes. The researcher may be interested in the causes that generate outliers. In
the time serieis data, they tell interesting stories about the past. Six sigma event, which is
the probability that an extreme value which is six SDs away from the means of a normal
distribution, was presented as a sop by the econometricians of the early years of 20"
century to qutify the remote probability of occurrence of economic change of a
magnitude ofT Great Depression. The ‘outlier’ in this case is the Great Depression itself

which has great historical significance in the world economy.

2.6 Masking and swamping effects of the outliers

Sometimes one outlier has a capability to hide the other outliers and sometimes one
outlier has the capability to expose an observation as outlier while it is inlier in real
terms. Iglewicz and Martinez (1982, cited by Maimon, Rockach and Bin-Gal, 2005) have

defined these two properties of the outliers as follows. For the regression analysis, due to

11



masking and swamping effects, false decisions are made but former is “false negative”

decision and latter is “false positive” (Chatterjee and Hadi, 2006).

2.6.1 Masl;ing Effect

If one observation is detected as inlier in the presence of the extreme observation and by
deleting this extreme obseryation, the observations nearer to it are also found to be
outliers, this phenomenon is considered as the masking effect. Masking occurs when
mean and covariance estimates are skewed towards a group of outliers, and the resulting
gap of the outlier from the mean is small. For example, let x be a univariate vector as

x=[1 2 3 4 5 8 10 20 35]

By use of Tuljcey method of outlier detection, it will just detect one outlier that is 35. But
after deleting this outlier and again applying Tukey’s method, 20 will be detected as
outlier. So it can be said that 35 masked 20. As the mask (35) is removed 20 appears to
be outlier. Some well-known real life data sets having the masking effec't are Pearson and
Sekar (1936), Belgian Telephone data, Hertzsprung-Russell Stars data, HBK data

(Hawkins, Bradu and Kass, 1984) and HS data (Hadi and Simonoff, 1993).

2.6.2 Swamping Effect

When an observation (inlier) appears to be outlier in presence of another outlier and by
deleting the specific outlier that observation is detected as inlier, it is called the swamping
effect. Swamping occurs when a cluster of outliers skews the mean and the covariance

estimates toward it and away from other inliers on the other side of the distribution, and

12
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the resulting distance from these observations to the mean is large, making them look like

outliers. For example

x = [-16,2,6,10,15,18,20,20,30,110]

Tukey’s technique detects -16 and 110 as outliers but when after deleting the observation
110,-16 appears inlier which suggests that 110 is swamping -16 (Maimon, Rockach and

Bin-Gal, 2005). Execution

2.7 Applications of Outlier Detecting Techniques

Outlier’s detection can be applied on lot of data sets for various purposes. Some of which

are discussed below:

2.7.1 Fraud Detection

Credit card fraud may be discovered when purchasing discontinuously jumps upward.
Generally purchasing pattern goes suddenly high when the credit card is stolen and the
person doing high shopping can be detected as Fraudulent and abnormal use of the credit

card can point out the holder as fake person.

2.7.2 Medical Data

Unusual indications or extraordinary test results may be found to be associated with
health troubles of a patient and to test whether a specific medical test result is abnormal.
It may depend on other characteristics of the patients (e.g. gender, age, race etc). While

analyzing the data of birth weight of babies, extraordinary less weighted babies are at

13



high risk and are treated as outliers. Similarly outliers in the data of blood pressure,

patients with extraordinary high blood pressure can be treated as outliers.

2.7.3 Community Based Diseases

When a public disease such as tetanus, cholera or plague etc. is disproportionately
congested in some parts of the area under study, it may be an indicator of ineffectiveness
of the treatment caused by some systematic human error. It points towards troubles with
the corresponding vaccination program in that city. Whether an occurrence is unusual or

usual it depends on different characteristic like frequency, spatial correlation, etc.

2.7.4 Sports Data Analysis

Presence of outliers in any variable related to the performance of a player may give
important clues about the intentions of the players. Match/spot fixing may be suspected
by the appearance of outliers. Presence of outliers in the data on “no balls” and “wide
balls” of a spc?ciﬁc player or a group of players may raise the suspicion of match or spot

fixing.
2.7.5 Detecting Measurement Errors

When data are collected through a scientific experiment, an outlier may readily point
towards measurement error. A very large or a very small observation relative to the
whole sample: may be removed if it is measurement error and in case this outlier is a real

observation it will open new doors for research.

14
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Hodge and Austin (2004) have pointed towards the significance of outliers in various
contexts such as making decision about the loan application of problematic customers,
intrusion detection, activity monitoring, network performance, fault diagnosis, structural
defect detection, satellite image analysis, detecting novelties in images, motion
segmentation, time-series monitoring, medical condition monitoring, pharmaceutical
research, motion segmentation, detecting image features moving independently, detecting
novelty in text, detecting unexpected entries in database and detecting mislabeled data in

a training data set besides many other situations.

2.8 Previous Techniques

Outliers labeling techniques are of two types

I. Formal Techniques

II. Informal Techniques

Formal tests ére designed to test any statistical hypothesis. Generally null hypothesis is
assumed for a particular distribution and then this hypothesis is checked if the extreme
values belong to the distribution or not at given level of significance. Some tests are for a
single outlier and others for multiple outliers. The choice of technique to detect outliers
depends on the objective of analysis. Selection might depend on type of target outliers,

numbers and type of data distribution (Seo, 2006).

Chauvenet (1852), Stone and Pierce (1863) first proposed a method of deletion of outliers
in the data sets and this practice prevailed till twentieth century. Irwin (1925) proposed

that gap between the first and second and the second and third order statistics should be
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used to decidé whether the extreme observations are from the same population or from a
different population. He computed critical values for the test statistics based on the
magnitude of variance. Walsh (1950) favored a non-parametric test to decide whether the
extreme values belong to the same population. Dixon’s (1950) had a similar view on the
gap test. For outlier rejection, Ferguson (1961) considered a number of invariant tests and
found that the tests based on sample skewness are locally best invariant for detection of
outliers with a minor mean shift towards positive side while the invariant tests based on
sample kurtosis are locally best invariant for outliers detection with minor mean shift on

either side (cited by Beckman and Cook, 1983).

Grubbs (19505 introduced a technique for outlier detection for univariate normal data sets
having sampie size greater than 3. This technique is based on mean and standard
deviation andfthe largest absolute value is treated as outlier. Commonly +2SD and £3SD
are used for normal /symmetric distributions. . These tests perform well in symmetric
distributions but fail in skewed distributions. Dixon was pioneer of the test for outlier
detection based on the statistical distribution “sub range ratio” for the data transformed in
any order (aséending or descending). This test is designed for small samples and used to
test small number of outliers. In this test, critical values are checked by Sachs (1982)
table (Gibbon;s, Bhaumic and Aryal, 1994). If one observation is suspected as outlier then
by Dixon testé statistic is checked in table of critical values if the specific observation is
outlier or in]iie‘r. A major drawback of this test is that it cannot be applied on the

remaining data set when one observation is deleted after being observed to be an outlier.

Iglewicz and ‘Hoaglin (1993) suggested using the median and median of the absolute

deviation and on the basis of these two parameters, they proposed the test statistic for
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outlier’s detection in univariate distribution. Hair et.al (1998) introduced the method for
outliers detection based on the leverage statistic and standard deviation. In MADg
method, median and median of the absolute deviation is used. Since this statistics is based

on median, it has a very high break point value equal to 50%. Carlings (1998) introduced

a technique based on the median and inter quartile range as against Tukey’s which used

1Lrst and third quartiles and inter quartile range.

2.8.1 Tukey’s Method (Boxplot)

Tukey test and its modifications are designed on the basis of first and third quartiles and
inter-quartile range in which Q, (first quartile) exist at 25" percentile, Q; 3" quartile) at

75" percentile and Inter quartile range (IQR) is the difference between the 3 and 1%

quartile. In order to construct boundaries for labeling an observation as an outlier, 1.5 times
IQR is subtracted from Q, for lower threshold and 1.5 times IQR in added to the Q; for
lipper threshold to get the “inner fence”. To find the critical values of outer fence 3 is used
instead of 1.5 as value of g, mathematically

[L Ul=[Q—g*(@:—Q) Q3+ g*(Q:—0)]

where g=1.5 for inner fence and 3 for outer fence. Kimber (1990) modified the Tukey’s
method by changing Q; and Q; by M (median) in the lower and upper range values
respectively and tried to resolve the problem of skewness. The modified form of the
Tukey’s approach proposed by Kimber is

[L Ul=[Qi—g*M—-Q1) Q3+ g=*(Q3—M)]

where M is the sample median. Kimber also used (like Tukey) g=1.5.Carling (1998)

introduced median rule on the basis of quadrants as

17
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L Ul=[Q2— 23+(Q3— Q1)@+ 23 *(Q3 — Q)]

Where Q, represent sample median and 2.3 is not fixed but it depends on target outlier

percentage.

2.8.2 Method Based on Medcouple

G. Brys, M. Hubert, and A. Struyf (2004) introduced a robust measure of skewness named

medcouple and found that it combines the robustness of quartile skewness and sensitivity

of octile skewness. If X, = {x;, X3, X3 e e .. X} is the set of continuous univariate
distribution and it is sorted such as x; € %3 € X3 .. v oo . € Xy < Xy, then medcouple
of the data is defined as

(x; — med,) — (med, — x;)
xj — X

MC(xy, x5, X3, ..... X)) = med

where med; is the median of X, and i and j have to satisfy x; < med; < xjandx; # X;

The idea of the medcouple is quite simple. It takes a pair of observations, one from below
the median a;ld another from above the median and compares the difference from the
median. If the difference is zero, then the pair is symmetric about the median. A positive
difference shows that the positive observation is farther away from the median than the

negative. Instead of taking the absolute value of this difference, the MC takes a ratio which

converts this to the proponionalidifference. All pairs of such differences are tabulated and
the median of these is taken as the measure of skewness. Some complications are
introduced in case of ties which are ignored in this study, since these do not matter for

continuous distributions. For details, the reader may see the original article.
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Il-lubert and Vandervieren (2008) used medcouple to modify Tukey’s box plot and called it
the Adjusted Box Plot for skewed distribution and defined the interval of critical values as
[L U]l=[Q;— 1.5*IQR *e%¥*MC Qs + 1.5 * IQR * e?*MC]

where MC is the Medcouple introduced by Brys, Hubert and Struyf (2004), defined above.

They selected a=-3.5 and b=4 for a simulation based study and were uncertain about the

appropriateness of these values. They also proposed the different values of a and b as

a=-379,b=387,-a=b=4and -a=b=3

Hubert and Vandervieren (2008) proposed a technique for detection of outliers, called HV
boxplot.

[L Ul=[Q,— 1.5+IQR*e 35MCQ, + 1.5 QR * e*MC)] If MC>0

[L Ul=[Q,— 1.5*IQR*e™*MCQ; + 1.5+ IQR x 3°MC)] IFMC=<0

The value of MC ranges between -1 and +1. Data are symmetric if MC is zero and when

value of MC is zero then HV box plot takes the shape of original Tukey’s method as

discussed above.
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CHAPTER 3

SPLIT SAMPLE SKEWNESS

3.1 Intro'duction

In this chapter, literature related to measuring skewness has been reviewed. This study

also introduces a new measure of skewness based on the split sample.

For analyzing the observed data by nonparametric estimates it is important to evaluate

different features of the distribution. In particular, the unimodality, bimodality and

multimodality of the data distribution are essential for the validity of conventional
descriptive statistics. If the distribution is unimodal, most of the test statistics for
detection of outliers which will be reviewed in forthcoming pages will be valid and
ipplicable. If the distribution is “two club”, “twin peak” or multimodal, these tests are
seless and will lead to the biased results. This study proceeds under the assumption that

the data are unimodal.
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3.2 Skewness

Asymmetry m the probability distribution of the random variable is known to be the
skewness of that random variable. Using the conventional third moment measure, the
value of skewness might be positive or negative or may be undefined. If the distribution
is negatively skewed, it implies that tail on the left side of the probability density function
is longer than the right hand side of the distribution. It also shows that larger amount of
the values including median lie to the right of the mean. Alternatively, positively skewed
distribution indicates that the tail on the right side is longer than the left side and the bulk
of the values lie to the left of the mean. If the value of the skewness is exactly zero, this
suggests symmetry of the distribution. The third moment is a crude measure of
symmetry, and in fact highly asymmetric distributions may have zero third moment. In
addition, the third moment is extremely sensitive to outliers, which makes it unreliable in
many practicéal situations. It is therefore useful to develop alternative measures of
skewness which are insensitive to outliers and more direct measures of symmetry.

Figure 3.1 Symmetric and Skewed Distributions

Histograms
of different
distributions
of data
values

Distribution
graphs
envalent
10 the
histograms
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3.3 Various Measures of Skewness

To find whether the data under consideration is symmetric or skewed, statisticians have

developed different measures of skewness some of which are discussed below:

3.3.1 Moment Based Measure of Skewness

Generally, skewness of a random variable X is calculated by the third standardized
moment. If X is a random variable and p is the mean and o standard deviation of the

random variable then skewness ( y,) can be defined as

(X—u)3] _E[(x -3l ps ks

= E[ o /| GBIX-w2D2 o3
2

Where E is the expectation operator, k; and k; are second and third commulants
respectively. This formula can also be transformed into non central moments just by
expanding the above formula as

B[ = %) EDX] = 3REDX*] + 2% _ E[X°] = 30 ~ 2

" T G-y PE a?

If {x1, x5, %3, ..., Xp—1, X5} is a random sample, skewness of the sample is given as

gl= 3 = _ 3/2
m/? (I, (- ?)

Where n is the number of observations, X is the average of the sample. From the given
sample of the population the above equation is treated as the biased estimator of the

population skewness and unbiased skewness is given as

Yy (= %)°

- Moment Measure of skewness =
e eof e N =153
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Where s denqted the standard deviation of the sample while N shows the sample size. If
the output is gf:g.realter than zero, the distribution is considered to be positively skewed but
if the output is less than zero ,distribution will be negatively skewed. However, if the
classical skewness is statistically zero then typically distribution is treated as symmetric.
Tabor (2010) discussed a number of techniques derived from the Tukey’s boxplot, five
point summary and from the ratio of mean to median to assess whether data are
symmetric or not and evaluated which statistic performs best when sampling from

various skewed populations.
3.3.2 Pearson Skewness

Karl Pearson introduced the coefficient of skewness which is estimated as

B Mean — Mode
~.Standard Deviation

Sk

Sometimes mode can’t be defined perfectly and is difficult to locate by simple methods.
Therefore it is replaced by an alternative form as (Stuart and Ord, 1994)

3(Mean — Median)

Sk = Standatd Deviation

The coefficient of skewness usually varies between -3 and +3 and sign of the statistic

indicate the dfrection of skewness.

3.3.3 Quartile Skewness

Arthur Lyon Bowley (1920, cited by Groeneveld and Meeden, 1984) proposed the
quartile skewness based on the first, second and third quartiles. The co-efficient of

skewness lies between -1and +1and is estimated as
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3.3.4 Octile Skewness

Hinkley (1976) introduced the octile skewness as

_ Qos7s + Qoazs'— 2 * Qoso

0§
Qos7s — Qoazs

Its value also varies between -1 and +1.
3.3.5 Medcouple

Since the classical skewness is limited to the measurement of the third central moment, it
may be affected by a few outliers. Keeping in view its limitations, Brys et al. introduced
an alternative measure of skewness named medcouple (MC) which is a robust alternative
to classical skewness (Brys, Hubert and Struyf, 2003). For any continuous distribution F,
let mp = Q, = F~1(0.5) be the median of F, medcouple for the distribution denoted as
MCr or MC (f), is then defined as:

MC(F) = x,smpsigh(x1, %2)

Where x, and x,are sampled from F and h denote the kernel. The kernel for the indicator

function I is defined as

4+ mgr

HF(H) =4 f * f ICh(xy,x2) < I(h(xy,%3) < #)dF(x1)dF(x2)
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Median of this kernel is known to be the Medcouple. The domain of Hgis [-1, !] with the

x{u~1)+2m
2(# ) F and

conditions h(x;,x;) < u,x; < mp,x; = myp are equivalent to x; < e

x, = mg. The simplified form of above equation is

x,(u—1) +2m

F
TG

Hp(u) = 4 ]mF(

mg
If X, = {x1, X3, X3, ...., X} is a random sample from the univariate distribution under
consideration then MC is estimated as

— med
MC = xiSmedksx;h(xiJ x])

Where med, is the median of X,,, and 7 and j have to satisfyx; < medy < x;, andx; #

(xj—medy)-(medy—x;)
(xj—x;)

x;. The kernel function h(x;, x;) is given as h(x;, ;) =

The case of ties in data requires a somewhat more complex treatment, for which the

reader may look at the ori ginal paper of HVBP.

The value of the MC ranges between -1 and 1. If MC=0, the data are symmetric. When
MC > 0, the data have a positively skewed distribution, whereas if MC < 0, the data have

a negatively skewed distribution.
3.4 Split Sample Skewness (SSS)

Classical measure of skewness is good when outliers are not present in the data. Being a
third central moment, this classical measure of skewness is disproportionately affected
even by a single outlier. For example, if exactly symmetric-data are like{ -5,-4,-3,-2,-1,
0, 1, 2, 3, 4, 5} then its classical skewness is exactly zero but by replacing just last
observation by 50, the classical skewness approaches to 2.66 whereas the other

25



nonparametric measures perform much better in presence of this outlier. Although the
latest measur;: of skewness (medcouple) is robust for outliers and has registered an
improvement on the previously introduced measures of the skewness like quartile and
octile skewness (Brys, Hubert and Struyf, 2003). It is difficult to compute the statistic
even for only twenty observations without a computer. For high frequency data sets such
as hourly stock exchange rates 5000 observations for example, a researcher has to
construct a complex matrix of the order 2500 x 2500 and this is not possible without
putting a heavy drain even on an efficient computing machine. This study introduces a
new techniqué for measuring skewness based on natural log of the ratio of IQRg to IQRy
where IQR, 1s the inter quartile range of the lower side from the median (difference of
37.5™ percentile to 12.5™ percentile) while IQRy is the inter quartile range of the upper
side from the :median (difference of 87.5" percentile to 62.5" percentile). Mathematically
IQR, =37.5% -12.5™ percentiles and IQRg =87.5" -62.5™ percentiles. Then the split
sample skewness is defined as

SSS = Ln (IQRz/ IQR,)

Since the proposed statistic is log ratio of IQRR to IQR,, so if the distribution is fairly
symmetric thén IQRg and IQRy must be equal concluding their ratio equal to one and
statistic valuei equal to 0 for the distribution to be symmetric. If the distribution is rightly
skewed, IQRg (numerator) will be greater than IQR,, (denominator) and their ratio will be
greater than lj that results the statistic value positive. If the IQR,. (denominator) is greater
than IQRRg (numerator) then their ratio will be less than 1 which results the statistic value
negative. So if the value of statistic is not statistically different from 0, distribution can be

treated as symmetric otherwise it will be significantly skewed. If the ratio is statistically
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less than zero, the distribution will be negatively skewed and if it is greater than zero then

it will be positively skewed.

A number of measures of skewness are suggested in the literature. It is well known fact
that moment measure of skewness is not trustworthy measure of skewness (see, for

example Groeneveld and Meeden, 1984; Li and Morris, 1991).

Van Zwet (1964) introduced the ordering of distributions with respect to the skewness
values. According to Van Zwet, if X and Y random variables having cumulative
distribution functions F(x) and G(x) and probability distribution functions f(x) and g(x)
with interval support, then G(x) is more skewed to the right than F(x) if R(x) =
G7'(F(x)) is convex. One writes F <c G and says F c-precedes G. This ordering,
sometimes called the convex ordering, is discussed in detail by Oja (1981). A sufficient
condition for F<c G is that the standardized distribution functionsF s(x) = F(xo, + i)
and G s(x) = F(xa, + u,) cross twice with the last change of sign of Fs(x) - Gs(x)
being positive. Intuitively, the standardized F distribution has more probability mass in
the lefi tail and less in the right tail than does the standardized G distribution. Gibbons
and Nichols (1979) have shown that Pearson coefficient of skewness does not satisfy the

ordering of Van Zwet (1964).

Oja (1981) aﬁd others (see, for example Arnold and Groeneveld, 1995) have found that
any general skewness measure y for any continuous random variable X should satisfy the
following conditions (Tajuddin, 2010)

a. y(aX ;)-‘b) =yX),Vva>0,—-0<b< o

b. Y(~X) =~y (%)
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c. IfF is symmetric then y(F)=0
d. IfF <c: G (F c-precedes G) then y (F) <y (G)
For SSS it caﬁ be observed that

a. Split s%ample skewness is unaffected by change of location and scale as IQRy, and
IQRR -will remain the same even after changing the location or scale for the
distﬁl;ution with the result that SSS will remain same.

b. By ch‘;mging the sign of complete data set, shape of distribution will be changed
in- the opposite direction. In case of SSS, IQRy and IQRy will be mutually
changed thus changing the sign of SSS.

c. If the distribution under consideration is symmetric, IQR, and IQRg will be equal
and the ratio of IQRy and IQRy will be close to 1 and natural log of 1 will be zero
satisfying the third property given above.

d. Van Zwet (1964) introduced the concept of ordering two distributions with regard
to ske;wness. According to Van Zwet, if F(x) and G(x) are cumulative
distribution functions of two random variables and f(x) and g(x) are their
probal;ility distribution functions with interval support, then G(x) will be treated
more skewed to the right than F(x) if R(x) = G~1(F(x)) is convex. This property

fails for split sample skewness

3.5 Methodology: Bootstrap Tests for Skewness

In the existing literature, most of the tests for skewness are based on asymptotic
distributions of the test statistics. This study has introduced a new technique to measure

skewness in both symmetric and asymmetric distributions using bootstrap method.
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Alternatively, normalizing transformations are used, and tests based on normal
distribution. Here a new method of testing for skewness based on the bootstrap is

suggested. It is expected that this method produces better finite sample results.

This study seeks to solve the following problem. Let {x,, x5, X3, ........ X5} be an ordered
sample from an i.i.d. distribution F. Is F symmetric around its median? In other words, is

it true that F(x + m) = 1 — F(m — x), where m is the median of F?

To solve this problem, let T(x;,x3,x3,........ X,) be any statistic which measures
skewness. We propose to reject the null hypothesis of symmetry if this statistic is
significantly different from zero. The problem is: how do we determine the critical value

to assess significance?
.

A natural soltition to this problem can be based on the method of bootstrapping. Let m be
the median of the sample y; =x; —m, .....,Yp =Xy —mand 2z = M — Xy, ..., Zp =
m— X, and G = [y, ¥z, -, Yo Z1, Z2, --- -+ 2] be the sample symmetrized around the
median. In a natural sense, this is the closest symmetric sample to the original one. The
empirical distribution of the symmetrized sample G is the symmetric distribution which
comes closest to observed empirical distribution of the actual data. So it is considered by

the null hypothesis that the observed sample is i.i.d. from this symmetric distribution G.

To test this null hypothesis, generate a bootstrap sample B* = (B, B;, Bs... By) i.i.d.
from G — such a sample can be generated by standard bootstrap re-sampling with
replacement from- the symmetrized sample G = [Y1, V2, - +) Y 21, Z2) oo o2 2] -
Calculate the test statistic T (B*), which measures the skewness of the sample B*. By

using repeated samples, 1000 i.i.d values were generated of this test statistic under the
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null hypothesis of symmetry: B; is an i.i.d. sample from the symmetric distribution G.
Arranging these values in order from T1 <T2 <... <T1000, let T (25) and T (975) be the

upper and lower 2.5% critical values for a test of skewness based on T.

Because there are many symmetric distributions and each distribution will have a
separate set of critical values and researcher does not know what the appropriate critical
values of the specific distribution are. The natural solution to the choice of critical values
is therefore the distribution is symmetrized by the proposed technique. Resample from
these symmein'zed distributions would be used to calculate the critical values. This
methodology - will overcome the problem of choice of critical values and will be
compatible with sample in hand. Calculations of the size and power of a test based on this

bootstrap procedure and several skewness measures are reported below.

The procedure just mentioned above provides decision about the series whether it is
symmetric or not. The above mentioned procedure is summarized step by step as

follows:

1. Given any data series X;, Xa, ... Xp, calculate the test statistics for skewness T(X)

2. Formulate the symmetrized series[ X;-m, Xz-m, ....X,-m, -(X;-m), -(X2-m), ...-
(Xz-m), m-X;, m-X;,m-X3,.....m-Xp.;,m-X,]

3. Generate 1000 re-samples of length n from the symmetrized series and calculate
the test statistics[T,, T, ...T)o00] for each resample

4. Sort Ty, T,, ...Tie0 to calculate 2.5% upper critical value UCV and 2.5% lower

critical value LCV
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5. Compare the T(X) with the two critical values; if LCV<T(X) <UCV than the

skewness will not be rejected.
3.6 Power and Size of the Test

Here we make a comparison of the size and power of the newly introduced technique
SSS with the existing measures of the skewness to show the robustness of the split
sample skewriess measuring technique. Various symmetric and skewed distributions are
taken to analyze the power and size of different tests of skewness. The bootstrap
technique discussed in previous section will give a logical decision about the symmetry
of the series under consideration. However it is interesting to know whether this bootstrap
based skewness testing scheme can differentiate between samples from symmetric and

asymmetric distributions.

For this pu@se, following algorithm has been used to calculate the size/power of the
bootstrap based skewness testing procedure.
1. Giver; any distribution F generate a sample of size n. i.e. {x;, X2, X3, ... ... X}
2. Appl)% the bootstrap skewness test algorithm discussed in section 3.5 to get the
logical decision about symmetry.
3. Count the percentage of rejections of null hypothesis of symmetry.
4. 1If the underlying distribution F was symmetric (as selected, N(0,1)), the rate of
rejection of symmetry would ::orrespond to the size of skewness testing scheme.
s. If thé underlying distribution was asymmetric (as selected y?,InN and B8),

rejection of symmetry corresponds to the power of the testing scheme.
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Since Classical skewness is highly affected even by single outlier and cannot be
compared to the robust measures of the skewness and hence it is omitted in this study for
the purposes of comparison. Power has been compared to different levels of moment
measure of skiewness in x%, B and lognormal distributions. Moment measure of skewness

of distributions under consideration is given below:

Skewness of, x* = ’B/k Where k is degree of freedom of y? distribution

Skewness of lognormal distribution = (e® +2)Ye® —1 where o is standard
deviation of the lognormal distribution

2(p—a)/o+p+1

P+ /o where o and § are the parameters of §

Skewness of B distribution =
distribution.

Left diagram for the standard normal distributioh (that is symmetric theoretically), the
size of the te;t, it can be observed that different measures of skeﬁess have different
sizes in ﬁguré 3.2 (left). It is also obvious that size of medcouple is greater than all
competing techniques. When someone wants to compare the power of these statistics,
size of statistic should be kept same. To equalize the size of tests, necessary adjustments
in the formulae of these statistics are made. By multiplying quartile skewness with 0.8,
octile skewnéss with 0.7, medcouple with 0.5 and SSS with 0.9 the size of the tests
become similar. Sizes of the techniques under comparison are matched for different

sample sizes 25, 50, 100 and 200. Sample size is taken on X-axis and on Y-axis size of

the statistics is represented. Now having equaled the size of all the statistics under
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comparison, a researcher is able to compare the power of these statistics in skewed

distributions by multiplying the power with same constants.

Table 3.1 Size of Different Tests for Standard Normal Distribution

Sample | Quartile Octile Medcouple Split Sample
Size Skewness Skewness Skewness
n
~ 3.4% 4.0% 4.2% 3.6%
o .
1 4.2% 4.6% 6.6% 3.6%
§ 6.0% 6.6% 9.8% 5.2%
Q
5 7.2% 7.8% 11.2% 5.6%
Figure 3.2 Comparison of Size in Standard Normal Distribution
Standard Normal Before . Standard Nofmai Aﬁeg
Adjusting Siz T
Justing Size Adjusting Size
120% -
35%
109% 4 1 |
§.0% - 23k
3 e | -~05 g 2% -+
" ~B=05 w 13% - &05
§0% < bl 1.9% 4
- 055 - M
205 "‘ i 883 3%
| - 58
39% ) ) .
. 5 1% 200 i 39 100 0
Sample Ste Sample Size

Power of different statistics to is used to identify if the sample under consideration is
generated from symmetric or from skewed distribution. Since chi square and lognormal
distributions are skewed to the right, the statistic which will detect it skewed to the right

maximum number of times in simulations will have the highest power.
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Figure 3.3 below shows the power of the different techniques using chi square
distribution with different degrees of freedoms: For small sample size in chi square
distribution, it can be observed that powers of medcouple are almost same for all levels of

moment measure of skewness.

Table 3.2 Power Computation of Skewness Tests in y* Distribution
Size = Degree of Moment Quartile Octile Med- Split
. Freedom Measure  Skewness Skewness couple Sample

Skewness Skewness
o 30 0.52 1.92% 3.50% 2.60% 5.58%
o 25 0.57 2.88% 4.62% 3.30% 7.02%
o 20 0.63 2.88% 6.16% 2.70% 7.20%
E 15 0.73 4.16% 7.28% 3.30% 9.36%
4 10 0.89 5.12% 9.10% 4.10% 11.16%
g 5 1.26 6.56% 13.72% 7.20% 18.90%
g 2 2.00 14.88% 36.54% 16.90% 50.58%
30 0.52 5.76% 10.64% 6.10% 13.68%
o 25 0.57 6.24% 13.16% 6.30% 15.66%
3 .20 0.63 8.16% 17.22% 9.90% 22.32%
3 15 0.73 6.56% 20.58% 8.30% 27.36%
£ 10 0.89 10.56% 26.18% 12.80% 34.74%
T £51 126 17.12% 44.66% 20.60% 61.56%
2w P 2.00 34.72% 65.80% 37.40% 84.24%
30 0.52 9.44% 22.82% 10.90% 32.04%
g ‘25 0.57 10.08% 21.98% 10.90% 30.42%
9 :20 0.63 11.04% 31.22% 13.80% 39.24%
£ ‘15 0.73 15.36% 36.96% 16.70% 49.86%
A ’10 0.89 17.60% 48.86% 22.40% 63.72%
% 5 1.26 28.80% 63.00% 34.10% 84.78%
3 2 200 58.08% 70.00% 47.60% 89.82%

Power of SSS is slightly better than octile skewness at small level of moment measure of
skewness while its power improves as level of skewness goes up. For medium sample
size, medcou;')lei performs better than quartile skewness while in overall comparison SSS
performs better than all the robust measures of skewness under comparison followed by
octile skewness in all the levels of moment measure of skewness. Again in large sample

size, medcouple has higher power than the quartile skewness and quartile skewness has
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minimum power but when skewness level increases, quartile skewness power becomes

better than medcouple.
Figure 3.3 ° Power Comparisons of Skewness Tests in Chi Square Distribution
¥* Small Sample Size ¥*Medium Sample Size
80%
5%
0 § 5% - -+~
205 g 4% 805
S 1% 1 # =5
11
051 037 063 071 O® 128 1% 35 057 083 073 08 126 200
Moment Measure of Skewmess Moment Measure of Skewness
) On x-axis is the theoretical skewness of the
y*Large Sample Size + distribution with 30,25,20,15,10,5, and 2
100% degree of freedom are taken and sample
9%% 4 sizes equal 25,100 and 200 which are
5% < considered small, medium and large
1% 5 sample.
5 S0% g s
3 50 - ]
& x4 +0 | QS; quartile skewness
W - +ue | OS; octile skewness
ig‘: ] oy | MC; medcouple
© : ' SSS; split sample skewness
52057 083 T3 088 11 200
Moment Measure of Skewness

Split sample skewness has the highest power of all the measures of skewness under
comparison for any level of moment measure of skewness. Hence for all sample sizes,
SSS has the highest power followed by octile skewness to pick the asymmetry from the

sample data sets coming from chi square distribution.
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Table 3.3 Power Computation of Skewness Tests in Lognormal Distribution

Size | Parameters Moment Quartile Octile Medcouple Split
Measure of Skewness Skewness Sample
Skewness Skewness
@ (0.0.2) 0.61 2.40% 3.92% 1.90% 4.68%
3 (0,0.4) 1.32 4.96% 8.68% 4.10% 11.34%
8 (0,0.6) 2.26 6.24% 16.10% 7.20% 22.68%
= o (0,0.8) 3.69 8.32% 19.74% 8.70% 32.76%
ES (0.1) 6.18 10.72% 24.08% 11.10% 34.38%
(0.0.2) 0.61 6.72% 15.96% 8.30% 18.54%
; ,§ (0,0.4) 1.32 16.32% 38.50% 17.20% 52.02%
' g; (0,0.6) 2.26 25.60% 59.92% 28.00% 78.84%
:qs, g— (0,0.8) 3.69 40.00% 65.52% 36.70% 86.76%
L 2 & {0,1) 6.18 52.16% 69.16% 44.10% 88.20%
@ (0.0.2) 0.61 8.64% 25.76% 10.30% 34.20%
A (0,0.4) 1.32 24.96% 58.94% 29.50% 79.56%
ool (006 226 4352% 68.88% 41.80% 88.92%
po E (0,0.8) 3.69 59.68% 70.00% 48.50% 90.00%
33 03 618  72.00% 70.00% 50.00% 90.00%

Figure 3.4 reyeals that in lognormal distribution, for any level of moment measure of
skewness, quz;rtile skewness and medcouple have almost the same power in small sample
sizes while SSS has the highest power of all the robust measures of skewness followed by
octile skewness. For medium sample size, again quartile skewness and medcouple have
equal power initially for low and high moment measure of skewness but at very high
moment measure of skewness (3.69 and 6.18), power of quartile skewness becomes
better than medcouple. Also from start to end, SSS performed better than all other
measures of skewness followed by octile skewness. For large sample sizes, it can be
observed that quartile skewness and medcouple have equal power for small levels of
moment measure of skewness but at high levels of skewness, quartile improves
significantly from the medcouple. As usual, SSS has greater power than any other

method while octile skewness has the highest power after split sample skewness.
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Figure 3.4 Power Comparisons of Skewness Tests in Lognormal Distribution
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Figure 3.5 below reveals the power of different statistics to pick whether sample under
consideration;is generated from symmetric or from skewed distribution. As B distribution
is skewed to the left, the statistic which will detect its skewness maximum number of
times in simulations will be considered to be of highest power. For small sample sizes,
octile skewnéss and SSS are performing almost equally and have a higher power as
compared to Equartile skewness and medcouple. Medcouple has a slightly higher power

than quartile skewness. For the medium sample size, quartile skewness and MC perform
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equally at low levels of moment measure of skewness but MC improves for high levels of
skewness. Split sample skewness has maximum power followed by octile skewness. For
large sample sizes, SSS has maximum power while octile skewness seems to chase it.

Remaining two measures i.e. quartile and medcouple perform almost equal.

Table 3.4 . Power Computation of Skewness Tests in f§ Distribution
Size Parameters Moment Quartile Octile Medcouple Split
Measure of Skewness Skewness Sample
Skewness Skewness

° (35,6) -0.30 0.64% 1.54% 1.20% 0.90%
s {35,5) -0.35 0.64% 2.52% 1.00% 1.98%
53 (35,4) -0.40 0.32% 1.82% 0.60% 2.34%
= (35,3) -0.49 1.12% 2.94% 1.50% 3.42%
E {35,2) -0.62 1.76% 5.60% 2.40% 5.76%
@ (35,1) -0.92 4.00% 10.08% 4.80% 10.80%
2 (35,6) -0.30 3.36% 7.70% 4.30% 11.34%
3 (35,5) -0.35 5.12% 12.60% 6.10% 14.58%
A @ (35,4) 040 5.12% 16.80% 6.00% 20.52%
Eax (35,3) -0.49 8.32% 22.68% 10.50% 30.06%
° (35,2) -0.62 10.72% 36.96% 15.10% 49.32%
= (35,1) 092 2288% 56.14% 28.80% 72.72%
o (35,6) -0.30 6.40% 19.60% 7.70% 26.46%
T (35,5) -0.35 10.08% 24.36% 9.50% 35.28%
§ @ (35,4) -0.40 9.60% 32.48% 13.20% 46.98%
o (35,3) -0.49 14.72% 44.24% 19.20% 60.12%
5 (35,2) -0.62 22.40% 60.34% 30.00% 80.64%
(35,1) -0.92 45.76% 69.02% 43.40% 89.28%

For small sample sizes, no technique had any power to detect the skewness B distribution
except classical skewness but for medium sample size (top right figure 3.4), split sample
skewness show nearly 30% power while the rest of robust measures of skewness show
zero power. For large sample sizes (bottom left figure 3.2), among the robust measures of
skewness, just split sample skewness has power which approaches 100% while other
robust measures have zero power in § distribution. Overall it is clear that split sample
skewness has greater power than all the robust measures of skewness in all the

distributions under consideration and in all sample sizes.
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Figure 3.5

Power Comparisons of Skewness Tests in B Distribution
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3.7 Merits of the New Technique

The importar;t thing about the proposed technique is that it is robust in presence of
outliers. Like quartile and octile skewness measurement techniques, it is easy to compute
and is free from the complexity that characterizes the medcouple methodology. Its power
to detect the 'discrepancy that distribution is symmetric is greater than all the robust
measures of si(ewness. More weights are given to IQR. and IQRg because at the central
octiles (37.5-;50, 50-62.5 percentiles) data strength nearly remains same in general even
in skewed distributions but spread declares its nature at IQR;, and IQRg while for the
external octiles (1 -12.5 & 87.5-100 percentiles) outliers might exist in these locations and
leaving these %positions to calculate the robust skewness as it is well known that classical
skewness is tﬁjrd central moment and it is highly affected even by 1 or 2 outliers. Major
spread or corr;pression of the data can be seen at IQR; and IQRg so that by giving more
weight to this portion will identify the skewness that will not be affected even by 12.5%
outliers on either side. It is therefore, a good addition to the class of robust methods for

measuring skewness.
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CHAPTER 4

SPLIT SAMPLE SKEWNESS BASED BOX PLOTS

4.1 Introduction

Tukey’s boxplot continues to be extensively used to obtain data summaries. Particularly in
cases where data are not normally distributed, it offers substantial advantages over other
standard data~summaries. It is also helpful in guiding one for detection of outliers in the
data. Tukey’s boxplot however tends to supply misleading results when distributions being
considered are skewed (Hubert and Vandervieren, 2008). In this chapter this study suggests
an alternative method to Tukey’s boxplot which offers improved data summaries and
greater accura;cy in the identification of outliers when the data being considered belongs to

skewed distributions.
4.2 Introduction

One of the important tools of exploratory data analysis (EDA) which has become widely
used is the bpxplot. The boxplot uses median and inter-quartile range (IQR), which are
substantially ;more robust than the mean and the SD, and hence provide better data
summaries of real data sets in most cases. In addition, the boxplot provides a useful guide

to identification of outliers, which is an important activity for many reasons.
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The mean and SD are perfectly adequate (in fact, theoretically optimal) data summaries for
normal distributions, but fail for more general types of distributions. It is also obvious that
the boxplot works well for unimodal and symmetric distribution but not so well for the
distributions outside this category. It is suggested that the boxplot should routinely be
accompanied :by a test statistics for both unimodality and skewness. This will provide users
a measure by which to assess the suitability of the boxplot in its applications to data

summary.

Statistical techniques and analyses were developed in the early twentieth century under the
assumption that data were normal. The assumption of normality offered theoretical
convenience, simplicity and elegance of analysis, and relative ease of computational
requirements. Developments in analysis of non-normal data sets required more
sophisticated Etechniques and computational power both of which have only recently
become available. Widespread use of the mean and standard deviation as data summaries is
built upon théz assumption of normality. These test statistics however fail badly in non-
normal data sets. It has become clear that normality often fails in real data sets. Following
the normal distribution assumption blindly as observed in many econometric models and in
research on Eapplied economics may affect the accuracy of inference and estimation
procedures, 1n both cross-sectional and time series data sets. Non-parametric techniques
make fewer gssumptions; the range of applications of the non parametric techniques is
therefore wider than that of parametric techniques. Another benefit of nonparametric
techniques is that these are often simpler than parametric techniques. In this chapter a non-

parametric technique for outlier’s detection has been introduced.
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4.3 Problem Statement

It is easy to see that the boxplot produces a misleading data summary for bimodal data,
since both the measures of central tendency and spread can be very far off descriptively.
For examp]e'a mixture of N (0, 1) and N (10, 1) data in equal proportion will be
characterized as having a median of 5 and spread (IQR) of 10. These statistics do not
describe either subpopulation distribution, nor is it a sensible description of the mixed
distribution. It is suggested that different data summaries may be useful for different data
sets. Unimodglity is an important assumption both for Tukey’s boxplot and the variant

which is proposed here. Thus a test for Unimodality, either formal or informal, should

routinely accompany these box plots.

Figure 4.1 ; Data Coverage by Tukey’s Technique in Lognormal (0, 1) Distribution
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It is also easy to see the failure of the boxplot for the case of skewed distributions as shown

in the Fig 4.1. Since this is the topic of our chapter, this study has provided a detailed

review of this issue. There are three main failings of the boxplot:
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i. It does not provide a good coverage of the centre.

ii.  Itis iileffective at catching outliers on the narrow side of the distribution as is
evident in the above figure 4.1. Lognormal distribution is rightly skewed and its
narrow side is on the left. In figure 4.1 above, it can be seen that on lower side
Tukey’s fence has covered an area away from the true 95% distributional boundary.

iii. It detects an excessive number of outliers on the long tailed side of the skewed
distribution. As shown in the above figure 4.1, Tukey’s fence has dropped a lot of
data on the extended side of the distribution between the Tukey’s fence and the true

95% distributional boundary.
4.4 Proposed Technique

Tukey (1982)5, concluded his arguments on “The role of statistical graduate training” with
the following ilines : “We plan to influence what actually goes on, today and tomorrow. .
.. We plan to help others in laying foundations for future” (Tukey, 1982, page 839, Cited
by Kafadar, 2003).This study tries to bring Tukey’s dream a step closer to reality
through research on the foundations he laid while devising a method that is robust enough

to detect outliers in skewed distributions.

As discussed earlier, Tukey’s method depends on the estimation of lower and upper
critical values resulting from the calculations of first and third quartile and the inter-
quartile range of the complete data set. The technique being proposed in the present
chapter separates the data into two parts from the median and subsequently applies

Tukey’s technique separately to both parts. In such a case, the first quartile, the third
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quartile and inter-quartile ranges lying to the left of the median generate the lower critical

value, while those to the right hand side of the median generate the upper critical value.

In this study ;he present technique “Split Sample Skewness Based Boxplot™ (henceforth
abbreviated as SSSBB), computes sets of information lying on either side of the median,
ranging from the 12.5 percentile to the 87.5 percentile of the complete data set. By
contrast, Tuk;ay’s technique is concerned with the central half of the data, i.e., a range
extending only from the 25Mpercentile to the 75" percentile of the complete data set. One
important advantage of the SSSBB technique over Tukey’s technique in the presence of
data with skewed distribution so that it is able to reliably produce coverage that
approaches the middle 95% values of data more closely than Tukey’s leaving 2.5% data
on either side of the distribution. Here the intuition suggests that skewness of interval
12.5th percer{tile-37.5th percentile is different from the skewness of the interval 62.5th
percentile-87.5th percentile. Skewness of the central 25% of the data (12.5% on either
side of the m.edian) is nearly equal and the extreme 25 % of the data (12.5 % on both
extremes of the data) is assumed to contain outliers. Tukey’s technique divides the data
into four parts for detection of outliers while the SSSBB technique divides it into eight

parts for detection of outliers in skewed distributions.
4.4.1 Construction

Here the proc:edure of the construction is discussed. Divide the data into two parts from the
median, so that exactly 50% data lies on both lower and upper sides of the median. Treat
these lower and upper sides as complete data sets and find the- first quartile for the lower

side Qu1, third quartile for the lower side Q3. and inter-quartile range for the lower side
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IQR,.. Similarly, first quartile for upper side Qr, third quartile for the upper side Qsg and
inter-quartile range for the upper side IQRg is also computed Lower and upper critical
values for detecting outliers in the skewed distributions are computed by subtracting 1.5
times the inter quartile range of the lower side from the first quartile of the lower side of the
median and a@ding 1.5 times the inter quartile range of the upper side with the third quartile
of the right side of the median. Mathematically, the boundaries for the complete data set are
as under:

Q= 12.5" percentile, Qr= g7.5™ percentile,

IQR. =Q3L-Q1L=37.5th percentile - 12.5% percentile,

IQRR =Q3r—Qir = 87.5™ percentile - 62.5" percentile

Lower and upper boundaries are defined as

(L U}=1[Qiu— 15*IQR, Q3+ 1.5=*IQRg]

Where L is the lower critical value and U is the upper critical value of the data. An

observation outside these boundaries [ U] would be labeled as an outlier.

4.4.2 Benefits/Advantages of Split Sample Skewness Adjusted
Technique

The split sample skewness adjusted (SSSBB) technique is superior to Tukey’s technique
when data z;re highly skewed. When data are moderately skewed or symmetric,
performance of Tukey’s technique is more or less equivalent to SSSBB technique with
respect to oqtliers. However 95% true boundary is to remain close to the fence in the
SSSBB technique. By applying the SSSBB technique, the interval of critical values moves
towards the skewed side of the data. A common problem inherent in Tukey’s and other

techniques for detection of outliers is that these techniques extend the fence of critical

46



values on the compressed side where data are not available and ignore the data on the side
in which distribution is skewed. The SSSBB technique drags the interval of critical values
towards the actual position of the data. In other words, it can be said that the interval of
critical values moves towards where data are found to be more abundant. Fig.4.2 below
compares the expected data coverage pattern of Tukey’s with SSSBB technique. Here the
square brackeﬁs represent the expected interval constructed by Tukey’s technique while
flower bmckeﬁ represent the same for the SSSBB technique.

Figure 4.2 Data Coverage by Tukey’s Technique Vs SSSBB
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The SSSBB technique provides a placement of fences that improve upon the Tukey’s
technique. In particular it substitutes interval of critical values of Tukey’s from the first and
3" quartile to 12.5 percentile and 87.5 percentile respectively along with the selection of
IQR and IQRg that are helpful in determining the fence whether the distribution is skewed
right or left. If IQR, is less than IQRg the distribution is right skewed and vice versa.
Further, the SSSBB technique is an improvement over the Tukey’s technique in that it is

more effective in detection of outliers in theoretical as well as empirical data sets.
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4.5 Hypothetical Data Example

Let us have tlie hypothetical data like X= [-200, 3, 7, 31, 63, 127, 255, 540]. Here it is clear
that distribution is skewed to the right while -200 on the left side of the distribution is much
away from thc; nearest observation and it should be treated as outlier.

Critical values of Tukey and SSSBB are given as

LCV (Tukey)i =.223.5 UCV (Tukey) = 388.5

LCV (SSSBB) =-88.93 UCYV (SSSBB) = 596.06

It is noticeable that Tukey’s technique cannot detect -200 as an outlier which is a real
outlier in the data and similarly it has detected the value of 540 as an outlier, when it is real

observation on the right side of the data.

4.6 Hyp(ithosis and Methodology

Outliers in a data set are small proportion coming from a different distribution from the
rest of the data set comes from. The outlier detection techniques suggest a fence such that
the observations outside the fence would be labeled as outliers. Five percent probability
of Type I errbr is allowed as sizes of both techniques match at 95% true distributional
boundary i.e. we make the fence such that there is 5% chance of the random draw to be
labeled as outlier when in fact it is not. However there are infinite types of distributions
each giving Qiff'erent fence; if different fences are designed for different distributions,
application to; real data would demand prior knowledge of distributions of the data which
a researcher L;lsually does not have, so the fence is formulated for the data generated by
normal distr'ibution. In normal distribution, the size of both techniques under
consideration is matched at 95% true boundary (shown in figure 4.3). So keeping in view
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the size of test statistics, five percent probability of Type I error is allowed, 2.5% on

either side of the distribution.

For the purpose of comparisons, treat all points outside the central 95% as outliers. In a
distribution with no outliers, this leads to a 5% type 1 error probability. The main theme
of this thesis is that the central 95% points are not symmetric around the median in
skewed distributions. Tukey’s technique is symmetric around the median and will
therefore construct a fence which is too short on the right hand side and too long on the
left hand side':for a distribution which is skewed to the right. For any given distribution F,
let LCV = F~1(2.5%) and UCV = F~1(97.5%) , then [LCV, UCV] are the true upper
and lower fence values of the distribution F. Different techniques will be assessed
according to their ability to approach these true values. As this study is dealing with
skewness and outliers in skewed data sets, the performance will be different on the two
sides. Distributions only skewed to the right can be considered only. This can be done

without loss of generality since if X is skewed left, -X is skewed to right.

It is important to note that this study is adopting the 95% fence to compare
methodologies instead of comparing the percentage of outliers as in previous studies.
This methodc;logy has advantage to be stay at 95% boundary as 95% fence is robust
measure than the extreme values i.e. Maximum and minimum so at the end percentage of

outliers detected by each technique are compared.

49



4.7 Theoiretical Approach

Every outlier detection technique makes a fence to discriminate between the usual
observations and the outliers. The comparison of outlier detection techniques is based on
the match between the fence and the true distribution of the data. If the distribution of the
data is skewed, the classical outlier detection techniques tend to treat symmetrically both
sides of the data. Therefore it leaves a lot of data on the skewed side of the distribution
and covers eéﬁtra area on the short'er tail of the distribution. As a result an unusual
observation on the shorter tail of the distribution cannot be detected. In order to ensure
the match between the distribution and the fence, the theoretical fence is calculated by
allowing 5% probability of type I error. That is 5% data are allowed to remain outside the
fence, 2.5% ;)n each side. Therefore the theoretical fence for any distribution can be
found in the following way

True Upper F;:nce= {U: P(x>U) =2.5%}

True Lower Fence= {L: P(x<L) = 2.5%} where x is a draw from the underlying distribution
Fortunately, this demarcation of fence matches the fence of Tukey and SSSBB
techniques when appliéd to the normal distribution. All outlier detection techniques are
compared with respect to the match between the true fence and the fence designed by
outlier detection techniques. In order to compare different techniques, adjustments in
techniques are made to ensure that there is an exact match between the fences drawn by
them at the standard N (0, 1) distribution. This ensures that they have equal sizes, so that
a fair comparison is possible.

In order to undertake a theoretical approach, the third central moment of the distribution for

normal and t distributions in case of symmetric distribution is computed to match the size
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of the test. Afterwards, fences of both techniques have been compared for the chi square
distribution using different degrees of freedom and with different parameters of the
lognormal and B distributions. Third central moments are found for the distributions under
consideration using different parameters of § and lognormal distribution and different
degree of free;dom of chi square. True boundaries are considered at 95% central values of
the distﬁbutic;n leaving 2.5% on each side of the distribution and fences of both techniques
are calculated by substituting theoretical values of the distribution in their respective
formulae. |

Figure 4.3 Tukey’s and SSSBB Technique Fences vs. 95% Boundaries in Standard

Normal Distribution
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Figure 4.3(left) shows that fence of the SSSBB (marked by green triangles), fence of
Tukey’s technique marked by red square and true 95% fence marked as grey ball. As the
size of both techniques is different from the true 95% fence which should be equal for the

comparison of power of both techniques. So it is necessary to equalize the size of both
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techniques at 95% true fence. Taking 95% true fence as base fence and then adjusting
Tukey’s fence at true 95% fence is possible by using the formula below:

[L Ul=[Q1—095%(Q3—Q1) Q3+ 0.95%(Q3— Q)]
While SSSBB formula is adjusted as

[L  Ul=[Qu— 097 *IQR,Qsr + 0.97 * IQRe]

After adjusting the size with respect to 95% fence, it can be observed that size of both
techniques is matched at 95% fence shown in figure 4.3 (right). So the size of both
techniques is matching at 5% probability of type I error. At 5%, true values of standard
normal distrii)utions are -1.96 and +1.96 (at 2.5% and 97.5%). The critical values
computed by Tukey technique and SSSBB are same after adjustment in formulae of both
techniques i.e. -1.96 and +1.96

Table 4.1 Fences of Tukey and SSSBB Techniques and True Boundary in 1

- Distribution
Degree Moment True Tukey's SSSBB True TUKEY'S  SSSBB
of Measure of LCV LCV LCV ucv Uucv ucv
Freedom Skewness
25 0.57 13.12 11.01 12.33 40.65 38.27 39.67
20 0.63 9.59 7.49 8.81 34.17 31.78 33.19
15 0.73 6.26 419 5.50 27.49 25.09 26.50
10 0.89 3.25 1.22 2.51 20.48 18.07 19.48
5 1.26 0.83 -1.08 0.18 12.83 10.38 11.80
2 2 0.05 -1.51 -0.39 7.38 4.86 6.29
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Figure 4.4 Fences of Tukey and SSSBB Techniques Matching with True 95%

Boundary in ¢’ Distribution

Chi Square Distribution
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Figure 4.4 above shows that fence of SSSBB (represented by triangles) is close to true 95%
fence (represe:nted by balls) as compared to Tukey’s fence (represented by squares) on both
sides of the distribution. In other words SSSBB has more power to approach the reality as
compared to Tukey’s fence. It is obvious that for any level of moment measure of skewness
(starting from 0.57 in chi square with 30 degree of freedom to 2 for chi square with 2
degree of freedom) fence of SSSBB is close to the true 95% fence. So it can be concluded
that SSSBB berforms-better than Tukey’s technique in constructing fence on both narrow

and extended iside of the distribution.



Table 4.2 Fences of Tukey and SSSBB Techniques and True Boundary in §§

Distribution
Parameters | Moment True Tukey's SSSBB True TUKEY'S SSSBB
Measure of LCV LCV LCV UCV ucv ‘ucv
Skewness )
(35,1) 10.92 0.90 0.93 0.91 1.00 1.02 1.01
{35,2) -0.62 0.85 0.88 0.87 0.99 1.02 1.00
(35,3) 0.49 0.82 0.84 0.83 0.98 1.01 0.99
(35,4) -0.4 0.79 0.81 0.79 097 0.99 0.98
(35,5) -0.35 0.76 0.78 0.77 0.96 0.98 0.97

Figure 4.5 below provides the comparison of fences with the true distributional fence at
95% central values of the B distribution which shows that on the lower side of the
distribution, SSSBB technique manages to construct a lower fence closer to the 2.5
percentile of the distribution. Again it is clear that for any level of skewness (in absolute
terms) SSSBB technique is performing better as compared to the Tukey’s technique. The
upper fence réveals that SSSBB fence is more close to the true 95% boundary than Tukey’s
technique fent::ed as Tukey’s fence is farther. So in B distribution, performance of SSSBB is
better for any moment measure of skewness on both narrow and extended sides of the

distribution.
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Figure 4.5 Fences of Tukey and SSSBB Techniques Matching with True 95% Fence in
B Distribution
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Figure 4.6 shows a comparison between Tukey’s and the SSSBB fences approaching the

95% true values of the lognormal distribution. It is observed that at any level of moment,

measure of skewness on the lower side of the distribution SSSBB fence is very close to the

true fence while fence of Tukey’s technique moving away from the true fence as the level

of skewness increases.

Table 4.3 . Fences of Tukey and SSSBB techniques and True 95% Boundary in
Lognormal Distribution
Parameters | Moment True Tukey’s SSSBB  True TUKEY'S SSSBB
Measure of LCV LCV Lcv ucv ucv ucv
Skewness
(0,0.2) 0.61 0.68 0.62 0.66 148 140 145
{0,0.4) 1.32 0.46 0.24 0.39 2.19 1.83 2.02
{(0,0.6) 2.26 0.31 -0.12 0.19 3.24 2.29 2.75
{0,0.8) 3.69 0.21 -0.49 0.03 4.80 2.79 3.69
(0,1) 6.18 0.14 -0.87 -0.08 7.10 3.34 4.89
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On the uppers side of the lognormal distribution, it is evident that true fence is moving
away from the fences of both techniques as the skewness is going to increase but the fence
of SSSBB is close to true fence as compared to Tukey’s fence. In other words it can be said
that SSSBB is constructing fence close to true fence around the central 95% of the data for
any level of skewness on both sides of the distribution.

Figure4.6  Fences of fukey and SSSBB Technique Matching with True 95% Fence in

Lognormal Distribution
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4.8 Con\fentional Approach: Best and Worst Case in Context of

Percentage Outliers

In conventional methodology it is frequently discussed how much percentage of outliers a
technique has the power to detect in a specific distribution and performance of the

technique is measured on the basis of this detected percentage of outliers. Both
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methodologies are more or less the same but the methodology introduced in previous
section has an advantage in that it reflects the theoretical background of constructing
fence around 95% by matching size of techniques under comparison and leaving 5% for
type I error. In earlier studies it is common to compare the percentage of outliers but a
confounding factor is that size is not matched. If a technique is generating larger fence it
will detect small number of outliers. For this purpose a researcher has to match the size

before power with respect to percentage of outliers which are to be compared.

In the section 4.6, it has been already discussed how to construct the fence around true
95% of the distribution. In this section, the best and worst cases in the context of
percentage of outliers will be discussed. The best case discusses the best performance of
SSSBB in rarfldom sample of the skewed distribution while the worst case means the
worst performance of SSSBB technique. From the figures4.5, 4.6 and 4.7 above, it is
clear that in all cases the fence of SSSBB is close to the 95% fence but here we wanted to
assess this in terms of percentage of outliers as conventionally just percentage outliers
has been discussed in earlier studies like in “A review and comparison of outliers
detecting techniques” (Songwon Seo0,2006).

Table 4.4 Percentage Outliers Detected by Tukey and

SSSBB Techniques in Chi Square Distribution

Degree | Skewness Left Left Right Right
of Outliers { Outliers | Outliers Outliers
Freedom ' Tukey SSSBB Tukey SSSBB
30 0.52 1.09 1.89 4.30 3.15
25 0.57 0.98 1.78 4.47 3.14
20 0.63 0.76 1.68 4.66 3.24
15 0.73 0.52 1.50 494 3.35
10 0.89 0.22 1.17 5.40 341
2 2 0.00 0.00 8.71 4.23
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A sample from chi square distribution of size equal to 100 is used for simulated study
with different degree of freedom. Some 5000 simulations were run and compiled to
compute the percentage of outliers detected by both techniques under comparison and it
can be obseriled that on both sides of chi square distribution, SSSSBB has detected
outliers close to 2.5 percent as compared to Tukey’s technique.

Table 4.5 _ Percentage Outliers Detected by Tukey and

SSSBB Techniques in Lognormal Distribution

Parameters | Skewness Left Left Right Right
Outliers | Outliers { Qutliers | Outliers
Tukey SSSBB Tukey SSSBB

{0.0.2) -0.61 1.01 1.88 4.61 3.20
(0.0.4) 1.32 0.15 1.18 6.51 3.92
{0.0.6) 2.26 0.00 0.60 8.33 4.52
{0.0.8) 3.69 0.00 0.22 9.84 5.01
{0,1) 6.18 0.00 0.06 11.22 5.48

Similarly for;the same sample size in lognormal distribution, percentage of outliers
detected by both techniques are presented in table 4.5 and it can be easily observed that
SSSBB is pe{'forming well as compared to Tukey’s technique as percentage of outliers
detected by SSSBB are close to 2.5 percent than percentage of outliers detected by

Tukey’s techﬁique.
4.9 Comparison of SSSBB Technique with Kimber’s Approach

Kimber (1990) proposed modification in Tukey’s technique for the skewed distribution
L Ul=[Qi—g*M—-Q) Q3+ g=(Qs—M))]

To address thée problem for skewed distributions, he replaced Q; with median for the left
critical value and Q; with median for the upper critical value. In the following section,
the performance of the newly introduced technique is compared with Kimber technique.
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4.9.1 Comparison in Symmetric Distribution

In symmetric distributions we do adjustment in SSSBB and Kimber technique to equalize
the interval in symmetric distributions at 95% true fence. From the formula for critical
values by Kimber method

L Ul=[Q—-g*M—Q) Qs+ g+(Qs—M)]

And the technique introduced in this chapter is defined as

[L Ul=[Qu— 15*IQR, Qsr + 1.5*IQRg]

But these tests do not construct equal interval in symmetric as given in the below figure
4.7 on left side. To equalize size at 95% fence, adjustment in SSSBB has been made and
sizes match ai 0.97 instead of original 1.5 at 95% fence (-1.96 and +1.96) and in Kimber
technique it is found the value of g equal to 1.9 instead of 1.5 matches at true 95% fence.
Here reader can observe the exact matching size at 95% fence in the figure 4.7 (right)

below.
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Figure 4.7 | Fences of Kimber and SSSBB Technique Matching with True Fence in

Standard Normal Distribution
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In the figure' golden round balls are at true 95% boundary of the distribution and red
squares repreéent the Kimber’s interval of critical values while the green triangles are for
the SSSBB technique. Intervals of critical values of both techniques under comparison

are overlapping with true 95% boundary.

4.9.2 Comparison in Skewed Distributions

In this section, the study compares the power of both tests in skewed distributions. The
better technique constructing interval of critical values closer to the true 95% boundary is
expected to perform better. The skewed distributions that were analyzed in previous

section are also taken here for power comparison.
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Figure4.8  Fences of Kimber and SSSBB Technique Matching with True 95% Fence in

_ Chi Square Distribution
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Figure 4.8 reveals that on the lower side of the chi square distribution, lower fence of
SSSBB is closer to the true lower fence (2.5%) as compared to the lower fence produced
by the Kimber technique. Same situation can be observed on the upper side of the
distribution. For both mild and high level of moment measure of skewness, performance

of SSSBB is better than Kimber technique on both side of the chi square distribution.
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Figure 4.9 Fences of Kimber and SSSBB Technique Matching with True 95% Fence in

P Distribution
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Figure 4.9 sh(E)ws that for the B distribution, on the left side of the distribution, fence of
SSSBB is cloée to true 95% fence than Kimber’s technique fence. Also on the upper side
of the distriﬁution, SSSBB fence is close to true upper fence. Hence SSSBB is
performing better on both sides of the distribution as compared to Kimber technique in

distribution.

Figure 4.10 shows that on the lower side of the lognormal distribution, SSSBB fence is
approaching the true 95% and on the upper side of the distribution, SSSBB fence is closer
to true upper fence than Kimber fence. Also it is noticeable that Kimber’s interval is on

the left side of the true fence on both sides unlike intervals produced by SSSBB.
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Figure 4.10 . Fences of Kimber and SSSBB Technique Matching with True 95% Fence in

Lognormal Distribution
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4.10 Conclusion

From the above discussion it can be concluded that in skewed distributions, Tukey and
Kimber techniques constructs interval of critical values wrongly that covers area along the
narrow side of the distribution while leave data on the extended side of the distribution.
Performance of Tukey’s and Kimber techniques falls when the moment measure of
skewness increases as compared to SSSBB technique. This phenomenon can be more
significant in the lognormal distribution. This newly devised technique constructs fences
closer to the true fence than Tukey and Kimber fences in all the distributions and has a
clear advantage over Tukey’s and Kimber techniques. Fences of SSSBB are always close to
the true 95% fence as compared to Tukey and Kimber technique fences. However no

technique constructs fence exactly equal to the true 95% fence.
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CHAPTER S

MODIFIED HUBERT VANDERVIEREN BOXPLOT

5.1 Introduction

Hubert and Vandervieren (2008) tried to modify Tukey’s technique for highly skewed
data for detection of outliers in univariate distribution. Here Hubert’s Vandervieren
boxplot will henceforth be referred as HVBP in this study. A new measure of skewness
“Medcouple” was introduced by G. Brys, M. Hubert and A. Struyf (2004) and the
medcouple was incorporated in Tukey’s technique to address the problem of identifying
outliers in skewed distributions. The problem was addressed partially. For skewed
distributions and large sample sizes, it performs well but a major problem relates to the
construction of fence. HVBP constructs a fence very far from the true 95% boundary of
the skewed distribution especially on the extended side of the distribution. Our proposed
modification in HVBP performs better in both moderately and highly skewed
distributions and more efficiently detects outliers asymptotically. Also it constructs fence
closer to the true central 95% boundary of the- distribution for most of the distributions.

Theoretical approach and simulation studies verify our claim.
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5.2 Problem statement

Tukey’s technique is used to detect outliers in univariate distributions for symmetric as
well as slightly skewed data. As the symmetry of the distribution decreases, i-ts
performance worsens and it starts to construct interval of critical values which exceeds
the data limit on the one side and leaves some portion on the other side of the data. If the
distribution is left skewed and the upper critical value exceeds even the maximum of the
data while lower critical value will leave out a lot of data in computer generated

distributions.

Hubert and Vandervieren (2008) tried to overcome the problem by incorporating a robust
measure of skewness in Tukey’s techniqué. Brys et. al. (2004) introduced “Medcouple”
which is a robust measure of skewness and Hubert and Vandervieren incorporated it as a
power of exponential times some constant on left and right as -3.5 and 4 changing
position depending upon sign of medcouple. Incorporating this function, it condenses the
interval from narrow side and extends the interval towards the puffy tail. It functions very
well for the distributions which are highly skewed (skewness > 3) and sample size is
sufficiently large but fails to work when the skewness is slightly less than 3. For example,
when a researcher checks the interval, fitting HVBP technique around the 95% true

values of the B distribution, a pattern given in the figure below appears.
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Figure 5.1  Fence Construction of HVBP Technique around True 95% Boundary in B

Distribution
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It constructs the interval of critical values even larger than extremes of the data leaving a
great space between true critical values (2.5% and 97.5% of the distribution) and test
statistics critical values as shown in the above figure 5.1. Performance of Hubert and
Vandervieren Box Plot (HVBP) depends more on the exponential function relative to
medcouple. This exponential function is multiplied on both sides with IQR. Medcouple is

a small number which remains generally between 0.4 and 0.6 in absolute terms and
cannot affect the constant multiplied by it as a power of exponential function. In this way
it moves the interval of critical valués away from the real position of the data especially
in case of skewed data sets.

[L Ul=[Q— 1.5%IQR*e35"M(Q, + 1.5« IQR * e**M¢] IfMC>0

For example if MC = 0.5 that is MC > 0, then ¢*"** = 7.39 and ¢**"%* = 0.17 showing that
HVBP technique is extending the upper critical value 7.39 times IQR and compressing the
lower critical values 0.17 times IQR respectively even in the distribution which is only
slightly skewed in the positive side due to which it extends the interval way above the true
upper critical value (97.5% of the distribution) of the data and compresses it even from the
true lower critical value (2.5%) of the data. Due to this the range of critical values is
incorrectly increased affecting the efficiency of the test. Negatively skewed data sets are
mirror images of the positively skewed and the range is now defined as

[L Ul=[Q:— 1.5+IQR*e™*MC Qi+ 1.5+IQR *e35*M¢] IfMC<0

These suffer from the same difficulties.
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5.3 Modified Hubert Vandervieren Boxplot (MHVBP)

Hubert and Vandervieren (2008) used constants (3.5 and 4) on different sides
[LCV  UCV] and changed the position of constants with respect to the sign of the
medcouple. The problem in using these constants as power of exponential times MC is
that it generates a wider fence especially when data are moderately skewed. To overcome
this problem of generating large fence for moderately skewed data sets this modification
is going to depend on, the compression or expansion of the interval of critical values
based on the classical skewness time’s medcouple (instead of just sign of classical
skewness, constants and medcouple) because by just using the constants HVBP
constructs a very large fence even away from the extremes of the data. When data are
moderately skewed, it will construct fence closer to the 95% fence and as the skewness is
large, the interval will approach to the critical values of HVBP technique. So the main
difference between the HVBP and Modified Hubert Vandervieren boxplot (latter on

referred as MHVBP) is the use of classical skewness instead of constants.

5.4 Construction of Technique by Proposed Modification

Using similar pattern of Hubert and Vandervieren boxplot, the technique is framed as

[L U]l=[Q— 1.5+IQRxe~SK*MClQ, 4+ 1.5 x QR x eSK-IMCl]

Here a condition is imposed that if classical skewness is greater than 3.5 then it should be
treated as 3.5. The reason to fix maximum level of skewness to 3.5 is to avoid the
problem of cOn‘structing the large interval of critical values with classical skewness test

statistic that might be higher than 3.5. Not allowing the skewness statistic to exceed 3.5
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synchronizes the interval of critical value with the data sets as against the adjusted box
plot and prevents the interval to be very large in case of highly skewed distributions. It
also constructs smaller interval in case of moderately skewed distributions. So, there are
clear advantages in making this modification. When the distribution is moderately
skewed, HVBP takes into account the constants raised to an exponent and generates an
interval large enough that even outliers actually present in the data are not detected and
the test commits type Il error frequently. By changing the constants with the classical
skewness, its performance gets better for small and slightly skewed data sets as we can

observe the results from the Monte Carlo simulation study.

5.5 Hypothesis and Methodology

Same methodology will be adopted as we discussed in the chapter 4 for comparison of
HVBP techniqlie and MHVBP technique. As both modifications are being made in the
Tukey’s technique and if the distribution under consideration is fairly symmetric, then both
techniques become exactly similar to Tukey’s technique. So it can be said that in case of
symmetric distributions both techniques with same size and power can be compared at any
level of confidence. As the powers of two techniques has been compared in chapter 4
allowing 5% probability of type I error, so in this section the same level for comparison of
both modifications in Tukey’s technique will be adopted. A comparison of both techniques

brings out the following facts:

» Fences of both techniques will be compared separately on both sides of the

distribution.
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» A technique constructing a both fences closer to the 95% true boundary of the
distribution on either side will be treated performing better on that side.

» If a technique is constructing fence close to true boundary on one side and other
technique on 2nd side of the distribution then distance of both sides will be
compared to access the performance of the technique.

» A technique constructing fence inside will be treated to show a better coverage if
the distance of both fences is same as the true fence. If both techniques have fences
on opposite side of the true fence there is a chance that some technique might
generate a larger fence and at the same time minimize the percentage of outliers

and increases chance of Type II error.

5.6 Theoretical Approach and Simulation Study

The study finds the moment measure of skewness of the distribution using various
degrees of freedom for chi square distribution and various parameters for the lognormal
and B distributions. True boundaries are constructed around 95% central values of the
distribution leaving 2.5% on either side and fences of both techniques are taken from the
simulated lower and upper critical values. Both upper and lower critical values for both
the techniques under discussion are computed through repeated samples. For this purpose
simulation study has been done for the distributions discussed above with different
number of sample sizes for different levels of skewness. One hundred thousand
repetitions have been done for y’distribution with 2, 10, 15, 20, and 25 degree of freedom
with sample size of 25, 50,100 and 500. Samples from [ distribution are taken with

similar sample sizes with parameters a and B as B (35, 2), B (35, 3), B (35, 4), B (35, 5).
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Correspondingly same sample sizes are taken from lognormal distribution as aMO, 0.2%),
GV (0, 0.45), BN (0, 0.6%), N (0, 0.89),mN (0, 1). A total of nine statistics were
computed including left outlier, right outlier, total outlier, lower critical value, upper
critical value, interval width (constructed by difference of the lower and upper critical
values), maximum of the data, minimum of the data and sample skewness of the data for
comparison of results obtained from various techniques. But in the methodology
discussed above the study is just using LCV and UCV. It is already defined in chapter 4,
the three sampie sizes 25,100 and 500 as small, medium and large sample sizes
respectively. The true boundary of 95% rémains the same for the entire sample sizes

which are plotted along y-axis and moment measure of skewness along x-axis.

5.7 Size of Tests

As both adjustments are based on Tukey’s technique, when the data are symmetric the
medcouple equals zero thereby approaching Tukey’s technique.
[L Ul=[Q— 1.5+IQR*e *MCQ;+ 1.5 IQR * e35"MC] I MC<0

It is clear from the above equation that when MC is zero, it will result in the exponent
approach the power zero which means the resulting test statistic equals 1. Substituting the
value of MC equal to zero will result in the above equation in Tukey technique. Similarly
by substituting the value of MC or skewness equal to zero (1n case of symmetric
distribution), the equation below will also be converted to Tukey technique

[L Ul=[Q;— 1.5+IQR+e SK*IMClQ, 4 15+ JQR + eSK*IMCl]

72



— - - PR v = . }om e————  —

The size of both the techniques is identical as based on the Tukey’s technique at any level
of significance. Adopting the standard methodology, we compare both the techniques at

95% level of confidence leaving 5% chance for type I error.

5.8 Power of the Test

As the size of both techniques is similar in symmetric distributions, comparison of the
powers of both techniques is justified in asymmetric distribution. Power of any technique
will depend on constructing the fence around true 95% fence of the distribution. For
comparison of powers, chi square, B and lognormal distributions are selected as they are
skewed distributions.

Table 5.1 Fences of HVBP and MHVBP Techniques and 95% True Boundary in 7

Distribution
Sample | Moment Measure 0.57 0.63 0.73 0.89 2.00
Size of Skewness
True Lower Fence (2.5%) 13.12 9.59 6.26 3.25 0.05
" _ HVBP 4.66 2.39 0.38 -1.08 -0.90
N 8 MHVBP 6.70 3.75 1.11 -1.09 -1.64
3 S 8 I'hvep 8.52 5.63 3.06 0.88 -0.53
= & S | MHVBP 6.56 3.64 1.06 -1.04 -1.32
3 2 [nver 9.29 6.29 3.56 1.24 0.47
n MHVBP 6.51 3.62 1.06 -0.99 -1.17
True Upper Fence (97.5%) 30.65 34.17 27.49 20.48 7.38
- _ HVBP 57.72 50.17 42.25 33.96 19.94
~ S MHVBP 4434 37.38 30.11 22.50 8.42
8 S 3 | HvBP 51.03 43.90 36.63 28.97 16.37
- § = | MHVBP 4418 37.22 30.01 22.40 8.90
8 8 HVBP 49.50 42.53 35.32 27.86 15.52
" MHVBP 44.14 37.17 29.97 22.39 9.14

Figure 5.1 (top) shows the interval fitting pattern of adjusted boxplot and proposed
treatment around the true 95% boundaries in % distribution for small sample size. It is
clear that on the lower side, fences of HVBP and MHVBP overlap and fences of both
techniques are at the same distance from the true lower fence implying equal
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performance. For the upper fence, it is obvious that true 95% fence and fence of MHVBP
overlap while the fence of HVBP is at a large gap from the true upper fence.

Figure 5.2 HVBP and MHVBP Technique Fences Matching with True 95% Boundary

in ¢’ Distribution
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For medium sample size it can be observed that on the lower side, HVBP fence improved
its performance as compared to that of MHVBP while on the upper side it can Ee noticed
that MHVBP has a great advantage over HVBP. Overall comparison of interval shows
that MHVBP interval is close to the 95% fence. Nearly same situation of medium sample
size can be observed in the large sample size of +¢ distribution.

Table 5.2. Fences of HVBP and MHVBP Techniques and 95% True Boundary in

Distribution

Sample | Moment Measure -0.35 -0.40 -0.49 -0.62

Size of Skewness
True Lower Fence (2.5%) 0.76 0.79 0.82 0.85
N _ HVBP 0.61 0.64 0.67 0.70
N S MHVBP 0.73 0.76 0.80 0.84
g S 8 hvee 0.67 0.69 0.72 0.75
~ 5 £ ¢ MHVBP 0.73 0.76 0.80 0.84
3 2 HVBP 0.68 0.71 0.73 0.76
B MHVBP 0.73 0.76 0.80 0.84
True Upper Fence (97.5%) 0.96 0.97 0.98 0.99
" _ HVBP 1.01 1.02 1.02 1.02
~ 8 MHVBP 1.01 1.02 1.03 1.03
3 S 8 HvBP 0.99 1.00 1.01 1.01
- 5 & | MHVBP 1.01 1.02 1.03 1.03
g g nver 0.98 0.99 1.00 1.01
n MHVBP 1.01 1.02 1.03 1.03

Figure 5.2 shows the fence construction pattern of HVBP and MHVBP techniques
around 95% true fence in B distribution. For small sample it is clear that on the lower side
of the distribution, fence of MHVBP is very close to true lower fence (constructed at
2.5% of the distribution) as compared to HVBP while the upper side fences of HVBP and
MHVBP overlap which implies that equal performance on the upper side while better
performance of MHVBP on the lower side of the distribution. For medium sample size,
again fence of HVBP is away (even from the range of the data) from the true lower fence

while HVBP has a bit of advantage on the upper side of the distribution. Again overall
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fence of MHVBP is close to the true 95% fence in B distribution. Almost similar pattern

can be observed in the large sample size.
Figure 5.3 HVBP and MHVBP Technique Fences Matching with True 95% Boundary

in p Distribution
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Table 5.3

Fences of HVBP and MHVBP Techniques and 95% True Boundary in

Lognormal Distribution

Sample | Moment Measure 0.61 1.32 2.26 3.69 6.18
Size of Skewness
True Lower Fence (2.5%) 0.68 0.46 0.31 0.21 0.14
" _ HvBP 0.44 0.12 -0.07 -0.19 -0.27
~ 8 MHVBP 0.49 0.06 -0.27 -0.51 -0.66
2 5% Hvep 0.55 0.28 0.1 0.00 -0.07
- 58 MHVBP 0.49 0.09 -0.15 -0.25 -0.27
g § HVBP 0.57 0.31 0.15 0.04 -0.04
0 MHVBP 0.49 0.11 -0.08 -0.09 -0.08
True Upper Fence (97.5%) 1.48 2.19 3.24 4.80 7.10
" HVBP 1.98 3.64 6.37 10.67 17.21
N T MHV8P 158 2.32 3.41 5.11 7.78
g g HVBP 1.78 3.11 5.28 8.66 13.69
= L o _MHVBP 1.57 2.33 3.54 5.64 9.12
S & 2 . Hvep 1.73 2.98 5.01 8.17 12.89
B = >  MHVBP 1.57 2,34 3.66 6.20 10.32

Figure 5.3 shows the fence constructing style of the HVBP and MHVBP techniques in

lognormal distribution. For small sample size, on the lower side of the distribution, fences

of HVBP and MHVBP overlap with the true lower fence while for the upper side of the

distribution, true upper fence and fence of MHVBP overlap and HVBP fence has a wide

gap from the true fence. For the medium and large sample size, lower fences of HVBP

and MHVBP approximate the true lower fence while on the upper tail MHVBP has a

significant improvement over HVBP.
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Figure 5.4 HVBP and MHVBP Technique Fences Matching with True 95% Boundary

in Lognormal Distribution
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4.11 Conventional Approach: Best and Worst Case in Context of

Percentage Outliers

As already discussed, detection of percentage of outliers and constructing the fence are
nearly the same things but for the sake of percentage of outliers detected, this study
presents the comparison of the percentage of out_lierf detected by both techniques in this
section. From the above figures 5.2, 5.3 and 5.4, it is evident that MVHB has constructed
fences accurately around the true 95% boundary in chi square distribution with small
sample size. So for the best case, chi square distribution with small sample size has been
selected .while for the worst case, B distribution with medium sample size has been
selected. Here both the techniques are based on the Tukey’s technique as already
discussed and a technique detecting outliers approaching 2.5 will be treated better. It is
observed that on the left side of the distribution, MHVBP has percentage much closer to
2.5% as compared to HVBP technique while for the right side of the distribution, at
smaller level of skewness both techniques are performing equally and for the high
skewness HVBP perform better.

Table 5.4 Percentage Outliers Detected by HVBP and

MHVBP Techniques in Chi Square Distribution Small Sample Size

Degree Moment Left Left Right Right
of Measure of | Outliers { Outliers | Outliers Qutliers
Freedom | Skewness HVBP MHVBP HVBP MHVBP
25 0.57 5.13 173 431 3.95
20 0.63 5.37 1.63 421 4.03
15 0.73 5.28 149 4.11 4.26
10 0.89 5.45 1.20 3.82 4.36
2 2 497 0.52 2.69 4.75
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For the worst case, medium size of the B distribution has been selected and has almost
same performance in bot]'q medium and large sample sizes. Here in table 5.5, it can be
observed that HVBP is performing better as its percentage is approaching 2.5 percent on
the left side of the distribution while for right side MHVBP has almost the same
performance as HVB has but by looking at total percentage MHVBP looks performing
better. So it can be concluded that in worst case MHVBP’s performance equals HVBP

technique.

Table 5.5 Percentage Qutliers Detected by HVBP and

MHVBP Techniques in f Distribution Medium Sample Size

Parameters | Moment Left Left Right Right
Measure of | Qutliers | Qutliers { Outliers Outliers
Skewness HVBP MHVBP HVBP MHVBP

(35,2) -0.62 2.09 4.48 411 0.12
(35,3) -0.49 2.42 434 4.19 0.27
(35,4) -0.40 2.64 4.17 425 0.45
(35,5) -0.35 2.82 4.02 4.26 0.64

5.10 Artificial Outlier Example

Twenty five numbers [10.52, 12.29, 12.75, 13.04, 14.72, 14.84, 15.01, 17.51, 17.87,
18.09, 18.94, 19.15, 19.82, 21.34, 21.54, 23.51, 25.21, 26.51, 27.08, 29.55, 29.73, 30.15,
31.35, 33.13, and 34.01] have been generated from chi square distribution with 20 degree
of freedom and last 3observations have been replaced with 3 outliers 40, 55, and 70 on
the right side of the distribution. Then by applying both the techniques gave the following

results.
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Table 5.6 One Sided Artificial Outliers Detected by HYBP and MHVBP
Left Outliers Right Outliers LCV ucv

HVBP 1 0 11.83 72.80

MHVBP 0 2 9.00 52.49

Here HVBP has wrongly extended the fence towards right side and has detected outliers
from the left which is not outlier. On the other hand it could not detect the inserted mild,
medium and big outliers in the data on right side of the distribution. Standard deviation of
the data (including outliers) is 13.63 and 3SD fence on right side is 65.07 while the fence
constructed by HVBP is 72.80 which is even away from 3.58D. In contrast MHVBP has
detected the medium and big outlier while it could not detect the mild outlier and no
outlier on the left side of the distribution. Also it is observed that fence of HVBP is close

to the real observations.

Again by replacement of the extreme observation on both sides by the outlier -20 and 60

and application of both techniques to detect outliers gave the following results.

Table 5.7 Two Sided Artificial Outliers Detected by HYBP and MHVBP
Left Outliers Right Outliers LCV ucv

HVBP 1 0 11.38 66.38

MHVBP 1 1 3.56 40.67

Here it can be observed that HVBP has detected left outlier accurately while it could not

detect the right outlier which is even bigger than left outlier. Looking at the fence, it is
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clear that HVBP has erroneously extended the fence on right side while MHVBP has

detected outliers accurately on both sides of the data; also its fence seems better than

HVBP over the data set,

5.11 Conclusion

On the basis of above discussion it can be concluded that for all sample sizes,
HVBP constructs a wider fence outside the true 95% distributional boundary on the
extended side of the distribution and chances of Type II error are increased while
MHVBP performs better. With the increase in sample size, performance of HVBP
improves a bit on the compressed side of the distribution as compared to MHVBP. At all
levels of moment measure of skewness, performance of HVBP is not good as compared
to MHVBP that performs efficiently in all sample sizes and smaller levels of skewness.
Generally HVBi’ over adjusts the fence while MHVBP constructs smaller fence around
the 95% true distributional boundary and shows greater power to-construct fence around

the true 95% fence. So finally it can be inferred that MHVPBP is a good modification

and shows a significant improvement on the HVBP technique.
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CHAPTER 6

MEDCOUPLE BASED SPLIT SAMPLE SKEWNESS
ADJUSTED TECHNIQUE

6.1 Introduction

The main purpose of this thesis is to introduce a technique which constructs the fence
accurately to.identify the outliers in the data set efficiently. As it has been already
discussed, the technique constructing fence around the 95% true boundary of the
distribution should be treated as performing better or in other words it will detect possible
outliers in the data set efficiently. A new technique for outlier detection has been devised
and discussed in chapter 4 and a modification in HVBP is proposed and discussed in
chapter 5. It has been shown that in both chapters 4 & 5, the devised technique and
proposed modification has outperformed to the rest of existing techniques. But by deep
look at the figures of the fences in chapter 4 and chapter 5, in spite of the fact that our
techniques construct fences close to true 95% fence, the constructed fences are still away
from the from the target. This study aims at the construction of a technique that overlaps
the true fence of 95% of the distribution. In search of our target for the best technique and
sophistication of results matching with true fence, medcouple is incorporated in SSSBB
technique that is introduced in chapter 4. Although this technique is difficult to apply

without computer programming like HVBP and MHVBP techniques, it constructs the
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fence nicely around the true 95% fence of the distribution. We have incorporated MC in
SSSBB technique in the similar fashion as in MHVBP (chapter 5), so it is named split

sample skewniess and medcouple based boxplot henceforth referred to as MCSSSBB.
6.2 Proposed Modification

The SSSBB technique was designed on the octile basis as
QiL = 12.5th percentile, Qix =875 percentile,
IQR =Q;.-Q =37.5" percentile - 12.5™ percentile,
IQRg =Q33—Qir = 87.5™ percentile - 62.5" percentile
Lower and upper boundaries were defined as
[L Ul=[Qu— 15%IQR, Qsz+ 15=IQRg]
Where L is the’lower critical value and U is upper critical value of the data. An observation
outside these boundaries [[. U] would be labeled as outlier. The medcouple is the

exponential power times the classical skewness with 1.5+ IQR, and 1.5+ IQRr A

restriction is imposed rather heuristically that if skewness is greater than 2, it should be
treated as 2 selecting this number by hit and trial method because when skewness exceeds 2
it enlarges the interval of critical values and interval width becomes greater leading to an
alteration in the parameters and watering down of the efficiency of the test. Mathematically

it can be written as
[L Ul=[Qy — 1.5%IQR, * e ISK*MCQ o 4 15« QR + e!SKI""MC1F MC < 0

[L  U]=[Q — 1.5*IQR, xe!SKI"™*MCQ. . + 1.5 % IQRy * e~ ISKI™*MC1 £ MC > 0

M 2if |Sk] =2
t =
Where |SK|T - f{lSk[ if ISKI <2
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Where SK is the moment measure of skewness and MC is the medcouple.
6.3 Monte Carlo Simulation Study

A simulation study has been done for the verification of the claim. The %, B and
lognormal distributions are used for this purpose with different sample sizes and different
parameters. Sample size has been taken equal to 25, 50 100 500 in all the distributions
while experiment has been done on the ¥* with 2, 10, 15, 20 and 25 degree of freedom
while for the P distribution, the parameters are (35,2), (35,3), (35,4), (35,5) and for the
lognormal are (0,0.2), (0,0.4), (0,0.6), (0,0.8), (0,1). One hundred thousand replications
have been made for each case that has been done in the Matlab sofiware and a total of
nine statistics have been computed as discussed in 5 but just 2 has been used for the

analysis purpose.

6.4 Comparison of Fences Produced by MCSSSBB and HVBP

Techniques with True 95 Percent Central Boundary

Comparison of these two techniques is reasonable because first both techniques have the
same size at 95% level because first HVBP is modification in Tukey’s boxplot while
MCSSSBB is modification in SSSBB. Both techniques become Tukey’s and SSSBB
respectively when data are symmetric. We have matched their sizes in chapter 4 section
4.6 at 95% cgntral values of the normal distribution. Since medcouple has been
incorporated in'the SSSBB technique and HVBP is specially designed for the skewed
distributions, these techniques will be compared with respect to fence construction

Fi
around the true 95 percent central values of the distributions under consideration. Same
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methodology has been adopted here as discussed in detail in chapter 4 sections 4.5 and
chapter 5 and section 5.5 respectively.

Figure 6.1 HVBP and MCSSSBB Technique Fences vs. 95% Boundaries in Standard

Normal Distribution
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HVBP is based on the Tukey’s technique while MCSSSBB is based on SSSBB. When
the distribution is fairly symmetric, the HVBP approaches Tukey’s technique while
MCSSSBB approaches SSSBBB exactly. Following equations clearly show when MC
equals zero (in case of symmetric distributions), both equations for HVBP approach
Tukey’s technique
[L Ul=[Q;— 1.5%IQR *e™35"MCQ, + 1.5 = IQR * e*MC)IfMC>0
[L Ul=[Q,— 15*IQR*e~*McQ; + 1.5=IQR x 35*MC]IfMC=0
As the distribution is symmetric for the MHVBP technique, MC and skewness will be
zero approaching the equations below to the SSSBB technique exactly.

[L  U]=[Qu— 1.5+IQR, e 1SkT*MCQ . 4 1.5+ QR * !SKI"*MC|1f MC < 0

[L Ul=[Q — 1.5%IQR, *eSKI™"MCQ.. + 1.5 % [QRy * e 1SKV"*MC)1 £ MC > 0
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2if |Sk| > 2
ISkl if |SK| <2

Where |SK|t = {
As sizes of both techniques (Tukey and SSSBB) have been matched with 95% true
boundary of standard normal distribution, the value of g is taken as 0.95 and 0.97 for
Tukey and SSSBB respectively. The size match of both techniques is shown in the above
figure 6.1. So for comparison of power of both techniques we shall use the same value of

g as mentioned above.

Table 6.1 Fences of HVBP and MCSSSBB Techniques and 95% True Boundary in

* Distribution
Sample | Moment Measure 0.57 0.63 0.73 0.89 2.00
Size of Skewness
True Lower Fence (2.5%) 13.12 9.59 6.26 3.25 0.05
" _ HVBP 6.56 4.25 193  -0.15 -0.57
~ S MCSSSBB 12.26 8.68 537 236 -0.67
2 S8 |nver 11.34 813 525 264 -0.13
- 5 S | MCSSSBB 12.15 8.61 525 221 -0.86
S § HVBP 12.92 9.53 623  3.24 -0.08
n MCSSSBB 12.10 8.56 522 217 -0.94
True Upper fence (97.5%) 40.65 34.17 27.49 20.48 7.38
N _ HVBP 48.43 4152 3446 2641 13.59
N S MCSSSBB 40.17 33.60  27.07 20.15 7.76
S T8 nHver 44.02 3734 3035 2331 11.45
- § S  MCsssBB 40.05 33.60 2697 20.07 7.99
S s HVBP 42.30 35.84  29.11 22.24 10.81
B MCSSSBB 39.99 33.56 2695  20.06 8.12

Figure 6.1 (top) shows the interval fitting pattern of +* distribution in small sample size
around the 95% values. For small sample sizes, it can be observed that on both lower and
upper sides of the distribution, fence of MCSSSBB is close to true fence at all levels of
skewness. For medium sample sizes, fences of both techniques almost overlap on the
lower side and have same distance from the true lower fence and are very close to true

lower fence.
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Figure 6.2 HVBP and MCSSSBB Technique Fences Matching with True 95%

Boundary in * Distribution
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On the upper side, MCSSSBB fence is close to the true fence as compared to HVBP
upper fence. For the large sample size, on the lower side of the distribution, fence of

HVBP is bit close to the true lower fence as compared to the MCSSSBB techniques; on
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the upper side MCSSSBB is very close to the true upper fence. The problem of over
adjusting of fence outside the data of HVBP technique is clear in all the cases of small,

medium and large sample sizes.

Table 6.2 Fences of HVBP and MCSSSBB Techniques and 95% True Boundary in

p Distribution
Sample Moment -0.35 -0.40 -0.49 -0.62
Size Measure of
Skewness
True Lower Fence (2.5%) 0.76 0.79 0.82 0.85
N _ HVBP 0.68 0.71 0.67 0.70
N S MCSSSBB :  0.83 0.87 0.79 0.83
) 5 & Hvee 0.72 0.76 0.72 0.75
- % & | MCsssBB | 0.83 0.87 0.79 0.83
8 § HVBP 0.73 0.76 0.73 0.76
1n MCSSSBB = 0.83 0.87 0.79 0.83
True Upper Fence (97.5%) 0.96 0.97 0.98 0.99
_ HVBP 1.01 1.01 1.02 1.02
N S MCSSSBB | 0.99 1.00 1.01 1.02
S 5¢ [Hwer 100 1.01 1.01 1.01
- 5 T | MCSSSBB | 0.99 1.00 1.01 1.02
S & | Hvep 1.00 1.01 1.00 1.01
» i MCSSSBB ;  0.99 100 1.01 1.02

Figure 6.2 (top) shows the fence designing pattern of MCSSSBB and HVBP techniques
around the true fence for small sample size in B distribution. For the entire sample sizes it
is observed that lower fence of MCSSSBB is close to the true fence as compared to
HVBP’s lower fence. Here the probl;m of over adjusting the fence by HVBP is solved.
Also on the upper side of the P distribution for small sample size, fence of MCSSSBB is
close to the true fence as compared to the HVBP upper fence. For medium and large
sample sizes, the fences of both techniques show almost same pattern as the HVBP
constructs a wider fence as compared to MCSSSBB. In B distribution, overall
performance of MCSSSBB is better than HVBP which can be observed from the figure

6.3.
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Figure 6.3
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Table 6.3 Fences of HVBP and MHVBP Techniques and 95% True Boundary in

~ Lognormal Distribution

Sample Moment 0.61 1.32 2.26 3.69 6.18
Size Measure of
Skewness
True Lower Fence (2.5%) 0.68 0.46 0.31 0.21 0.14
" _ HVBP 009 -0.01 -0.08 0.19 -0.27
N S MCSSSBB | 0.08  -0.17 -0.41 -0.49 -0.83
g 5 g HVBP 031 022 0.14 0.00 -0.07
- & 5 | MCSSSBB ! 0.03  -0.28 -0.55 -0.64 -1.03
3 E HVBP 034 024 0.16 0.04 -0.04
w MCSSSBB | 0.00  -0.30 -0.56 -0.69 -1.05
True Upper Fence (97.5%) 1.48 2,19 3.24 4.80 7.10
n _ HVBP 467 7.4 11.64 10.67 17.21
N 8 MCSSSBB | 3.17  4.78 7.06 5.98 9.37
g S S [Hver 389  6.16 9.45 8.66 13.69
- 5 S | MCsssBB 317 478 7.16 6.04 9.30
S s HVBP 372 580 8.87 8.17 12.89
in MCSSSBB | 3.22  4.81 7.04 6.07 9.15

Figure 6.4 shows the fence construction pattern of HVBP and SSSBB techniques for the
lognormal distribution for small sample size .On the lower side of the distribution, fences
created by both techniques nearly overlap and on the upper side of the distribution, fence
of HVBP is farther away from the true upper fence as compared to MCSSSBB. For the
medium and large sample sizes it can be observed that upper fences of MCSSSBB are
closer to the true upper fence while on the lower side fence of HVBP almost overlap the
true fence. As a whole, the upper and lower fence of MCSSSBB seems to be closer to

true fence than the fences produced by HVBP.
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Figure 6.4 HVBP and MCSSSBB Technique Fences Matching with True 95%

Boundary in Lognormal Distribution
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For the large sample sizes, lower side of the lognormal distribution in the presence of

high level of skewness, MCSSSBB seems to go away from the true fence while it still
5

performs better than the performance of HVBP technique on the upper side of the

distribution.

6.5 Conventional Approach: Best and Worst Case in Context of

Percentage Outliers

In this section, this study presents the percentage of outliers detected by HVBP and
MCSSSBB. As already discussed, comparison of percentage of outliers and fence
comparison are the same. Here for the best and worst cases, [ distribution with small size
has been selected and lognormal distribution with medium sample size. It can be
observed that on the left side of the distribution there is bit difference between percentage
of outliers detected by both techniques under comparison and with the increase of
skewness performance of MCSSSSBB is becoming better as percentage of outliers
approach 2.5 percent. On the right side of the p distribution it is clear that MCSSSBB has
performed better than HVBP as its percentage of outliers detected are approaching to 2.5
percent.

Table 6.4 Percentage Outliers Detected by HVBP and

MCSSSBB Techniques in B Distribution Small Sample Size

Parameter Moment Left Left Right Right
Measure of | Qutliers ! OQutliers : Outliers Outliers
Skewness HVBP : M(CSSSBB HVBP MCSSSBB

(35,2) -0.62 2.97 3.70 4,55 1.52
(35,3) -0.49 3.10 3.37 464 1.69
(35,4) -0.40 3.29 3.14 4.59 1.91
(35,5) -0.35 3.41 3.07 4.56 1.93
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Now looking for the worst case, on left side it can be seen that MCSSSBB has detected
percentage of outliers less than 2.5 percent while HVBP has detected more than
2.5percent. By looking at the difference from 2.5 it can be concluded that MCSSSBB is
close to the 2.5 percent. For the right side of the distribution it can be seen that for the
smaller level of skewness, HVBP is better than MCSSSBB. However by increasing the

skewness, percentage of outliers detected by MCSSBB approaches to 2.5 percent.

Table 6.5 Percentage Outliers Detected by HVBP and

MCSSSBB Techniques in Lognormal Distribution

Parameter | Moment Left Left Right Right
Measure of | Outliers | Outliers | Outliers Cutliers
Skewness HVBP | MCSSSBB HVBP MCSSSBB

(0,0.2) 0.61 3.63 1.65 2.69 3.04
(0,0.4) 1.32 4.13 0.58 2.32 3.07
(0,0.6) 2.26 4.37 0.08 2.12 2.92
(0,0.8) 3.69 4.59 0.01 2.01 2.79
(0,1) 6.18 451 0.00 1.97 2.78
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6.6 Conclusion

In 5 distribution, MCSSSBB techniques construct fence accurately on the 95% central
values of the distribution as compared to HVBP fence. For all the sample sizes of B
distribution, MCSSSBB technique performs better on both sides with respect to the
fences constructed around the true 95% boundary of the distribution. In lognormal
distribution, for small sample size both techniques under comparison perform nearly
equal on lower side while for the medium and large sample sizes, HVBP performs better
on lower side as compared to MCSSSBB technique. For the upper side of the
distribution, in all sample sizes MCSSSBB outperforms as compared to HVBP. Actually
in the modification proposed in this chapter we have tried to develop a technique which
constructs the fence accurately around the central 95% of the distributions but we observe
that some time HVBP performed better while maximum time performance of MCSSSBB

performed better.
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CHAPTER 7

APPLICATIONS

Summary

The newly introduced technique SSSBB in chapter 4, proposed modification MHVBP in
HVBP technique in chapter 5, Modification proposed in SSSBB in ‘chapter 6 and the
existing techniques (Tukey’s technique and HVBP) have been applied to the real data sets.
Two skewed data sets have been taken to test the performance of the tests in real life.
Section 7.1-deals with the data set of the stock return from Karachi Stock Exchange (KSE)
of the United Trust of Pakistan (UTP-2008) for daily return while section 7.2 deals with

baby birth weight data collected at Agha Khan Hospital Karachi (Pakistan).

7.1 Stock Return Data Set

Data for daily stock return of United Trust of Pakistan (UTP) Large Cap (2008) from
Karachi stock exchange (KSE) are analyzed and both tests are applied for the identification
of the outliersj. Histogram for the stock returns clearly shows that it is skewed towards left
and its classical skewness is nearly -1. Visually it seems that there are no outliers in the
data set so that performance of the test detecting less number of extreme observations as

outliers will be treated better.
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Figure 7.1 Histogram for the Stock Returns UTPL for the year 2008
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Data consists of a total of 186 observations of the stock prices in the whole year. Tukey’s
box plot detected 34 outliers (20 from left and 14 from right) constructing the interval of
width 0.1563. It can be said that Tukey’s method has detected more than 18 percent of
observations as outliers. Tukey’s has thus detected more observations on the skewed side

and lesser on the compressed side as per its nature.

Table 7.1 Synchronized Left and Right Outliers
Tukey's Technique SSSBB Technique
Negative Return Dates Positive Return Dates Negative Return Positive Return
. Dates Dates
18-Dec-08 23-Jun-08 7-Aug-08 19-Dec-08 18-Dec-08 18-Aug-08
17-Dec-08 16-Jul-08 1-Sep-08 5-Sep-08 17-Dec-08 29-Dec-08
23-Dec-08  23-May-08 | 23-Sep-08  8-Oct-08 23-Dec-08 22-jul-08
16-Dec-08 14-)Jul-08 27-May-08  26-Dec-08 16-Dec-08 4-Jun-08
30-Dec-08  12-Aug-08 | 25-Jun-08 30-Dec-08 19-Dec-08
22-Dec-08  28-May-08 24-Jun-08 22-Dec-08 5-Sep-08
9-0Oct-08 17-Jul-08 | 18-Aug-08 8-Oct-08
4-Sep-08 7-0ct-08 25-Dec-08 26-Dec-08
10-Mar-08  19-Sep-08 22-Jul-08
26-Aug-08 204_;ug~08 4-Jun-08
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It is observed that Tukey’s has detected nearly 11% observations as outliers on the left side
of the distribution and nearly 7 percent on the right side. Split sample skewness adjusted
technique has detected just 14(6 from left and 8 from right) outliers constructing interval of

width 0.2639. The left six observations (dates) are from December 16-30 which are the

same dates in which Mohtarma Benazir Bhutto (Ex prime minister of Pakistan) came to

Pakistan and was assassinated one year earlier. On the right, the outliers comprise 3 dates
from the sz;lme period and it can be said that the maximum fluctuations are during the
period of her 1* death anniversary (9 out of 14 outliers). The rest of the outliers relate to the
period when ex- president General Ret. Pervaiz Musharaf resigned from his office and Mr.
Zardari became the president and next day after 5" September is “Defense Day”. One
outlier is from the month of June which is near the annual budget days. Here it is known
that these are real observations and being at the extremes tell the story of the assassination
of Mohtarma Benazir Bhutto to a researcher who is not so familiar with the history. All the
negative returns are from the December which shows violence and agitation following the

assassination of Mohtarma Benazir Bhutto.

But Tukey’s test detects 34 outliers out of 186 observations (roughly 18% of the data).
Only a visual analysis of the data is enough to convince that all the bins of the histogram
are joined and no extreme outliers exist. However the SSSBB technique detects nearly 7.5
% of the data as outliers. The UCV and LCV are approaching the maximum and minimum
of the data in the SSSBB technique and they extend too far away from the original data in
Tukey’s method. The below given table 7.2 shows the different statistic for outliers in stock

return data.
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Table 7.2 Outliers and IW for all Techniques in Stock Return Data

Technique Left Right Total LCV** Ucv Interval
OL* Ol 0Ol Width_.
Tukey - 20 14 34 -0.08 0.08 0.16
SSSBB 6 8 14 -0.16 0.10 0.26
HVBP 19 14 33 -0.08 0.07 0.16
MHVBP 20 14 34 -0.08 0.08 0.16
MCSSSBB 6 8 14 -0.16 0.10 0.26

*OL OQutliers **LCV Lower Critical Value; UCV Upper Critical Value ‘

7.2  Baby Birth Weight Data

Data for baby birth weight has been taken from Agha Khan Hospital Karachi. Here our
assumption is that survival of the baby depends upon his/her birth weight. So an
underweight newborn baby is more vulnerable to mortality as compared to a baby with
higher birth weight. According to MclIntire et al. (1999), infants born with low birth weight
are more likely to die or succumb to morbidity. Vangen et.al (2002) proved that heavier is
better. Babies with low birth weight, either due to short gestation period or because of fetal
growth constraint, are at high risk for short- and long-term disabilities and death (Schieve
et al, 2002). Checkup of very low birth weight children points toward increased deaths

among all subpopulations.

There is a consensus on the point that socioeconomic conditions of the family and
educational background, especially mother’s education has a great role in the survival of
the infant. Also medical facilities have been so much improved that a baby with very low

birth weight might survive by availing these facilities and a baby with relatively higher
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birth weight from low income family might not due to unavailability of medical facilities.
But as already mentioned the data have been taken from the similar income groups (people
going to Agha khan hospital are well off and from the educated families and can bear any
cost in monetary terms for survival of their baby). Agha Khan Hospital is one of the most
efficient hospitals having latest facilities and equipment as compared to public sector
hospitals. So it is assumed that data belongs to similar group with respect to income and
education and is comparable. Keeping other things constant, the probability of the survival
increases as birth weight increases and vice versa.

Figure 7.2 Histogram for Baby Birth Weight -
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Here data are of 3613 observation of baby birth weight along with their follow up data till.
4™ week (28" day). Minimum weight is 500grams and the highest weight is 5000garms.
Average weight is 2974grams (nearly 3kg) and total deaths up to 4™ week are 19.Mortality

among the total population is just 0.5%. According to definition of low birth weight, an
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infant having birth weight less than 2500 gra¥is’is treated as low weight. Our data itself
o

i

proves our claim that low birth weight babies have more chances of mortality, as it is
observed that Tukey’s technique has detected 26 as left outliers while our proposed
technique SSSBB has detected 16 observations on left side as outlier. By mining into data
it can be observed that there are five deaths in both cases (either in Tukey’s or SSSBB). So
it is concluded that just 0.7% data (by Tukey’s technique) and 0.4% data (by SSSBB)
captures more than 25% of the deaths from the whole data set. This finding corroborates
the claim that birth weight has a very close relation with mortality. Secondly it shows the
improvement of our test on Tukey’s as Tukey’s technique detected same number of deaths
from 0.7% of the data while SSSBB from 0.4% .Our test is performing more efficiently

than Tukey’s does.

7.3  Comparison of Tukey’s Technique and SSSBB in Baby Birth

Weight Data

According to the assumption that birth weight has close relation with the survival, the
babies with higher birth weight are more likely to survive than low birth weight babies. For
this purpose, left outliers for the mortality should be compared. Summary of the data are as
under:

Table 7.3 Summary of Baby Birth Weight Data

Observations Mean(grams) SD Minimum Maximum Survivals Deaths

3613 2974 445 500 5000 3594 19

Left outliers detected by Tukey’s technique are 26 while left outliers detected by SSSBB

are 16. By analyzing the data with respect to left outliers it can be observed that there are 5
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deaths in both cases (in 26 left outliers by Tukey and 16 left outliers by SSSBB). So it can
be said that performance of Tukey’s technique is 19.23% while the performance of SSSBB
is 31.25%. As it can be seen that deaths are also inliers so the total number of deaths with
respect to total number of outliers detected are compared. Tukey’s has detected 111 outliers
in total while SSSBB has detected 29 outliers so the performance of Tukey’s as a whole is
17% while performance of SSSBB is 66%.

Table 7.4 Outliers and I'W for all Technigues in BBW Data

Technique LeftOL RightOL Total OL LCV ucv Interval Width
Tukey 26 85 111 1950 3950 2000

| SSSBB 16 13 29 1900 4250 2350

f HVBP 5 180 185 1621.10 3745.6 21245
MHVBP ' 26 85 111 194400 3944.0 2000.0
MCSSSBB 26 13 39 1904.80 4244.0 2339.2

BBW.: Baby Birth Weight
Table 7.5 Performance Comparison in BBW Data

Technique Left OL Performance Overall
left outliers Performance
TUKEY 26 19.23% 17.12%
SSSBB 16 31.25% 65.52%
HVBP 5 60.00% 10.27%
MHVBP 26 19.23% 17.12% .
MCSSSBB 26 19.23% 48.72%*

In comparison of all techniques under consideration, it can be observed that HVBP is
performing most efficiently among all the techniques under comparison by detecting just
5 left outliers and two deaths in these 5 outliers performing 60% while SSSBB seems to
chase it by 31% performance. Since deaths are also inliers, so looking at total outlier’s

performance reveals that HVBP have detected 180 right outliers and its performance falls
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drastically to 10.27% while SSSBB improves its performance from 31.25% to 65.52% by

just detecting 13 outliers on the right side leading all the techniques.

. 7.4 Cost Benefit Analysis

From the above section 7.3, it can be seen that some techniques detected less number of
outliers in baby birth weight data while others a greater number of left outliers. It is
observed that HVBP detected just 5 left outliers and SSSBB detected 16 left outliers
while remaining techniques detected 26 outliers. Also it can be seen that statistically
HVBP is more efficient than remaining techniques. This section includes the practical
significance of the techniques under consideration.

Let us suppose that underweight babies are advised an intensive care for a week at Agha
Khan Hospital and per day treatment expense is Rs.100,000/- per child. Then the total
treatment expense of low weight babies detected by Tukey’s, MHVBP and MCSSSBB
techniques is Rs.18,200,000/- (as 26 outliers detected by all techniques) while for SSSBB
and HVBP expenses are Rs. 11,200,000/- and Rs.3,500,000/- respectively. While
comparing SSSBB technique with Tukey’s, MHVBP and MCSSSBB, it is observed that
there are five deaths in both cases and expense on the low weight babies detected by
SSSBB is Rs. 7000000/- less than other techniques (excluding the opportunity cost of
time of the parents and care takers). On the other hand, it can be seen that HVBP has
detected just 5 low weight babies and their expense for one week is Rs.3500000/- (Rs.
7700000/- less than SSSBB) but the main issue arises here is of practical significance. As
HVBP has detected 5 low weight babies, so just five babies will be given the intensive

care while the remaining 2 babies will be ignored for treatment and are vulnerable to
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death (as five deaths in low weight babies detected By all other techniques). Keeping all
aspects of monetary cost and human life, SSSBB seems to perform better than all other

techniques in this data set.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The worth of our proposed technique and modifications made in different techniques for
detecting outliers is demonstrated in the previous chapters analytically, by the Monte
Carlo simulation and also graphically. It can be seen that there are a lot of problems
associated with the Tukey’s technique in skewed distributions. The HVBP technique for
skewed distribution which based on the medcouple for generating the interval of critical
values away from the true 95% fence of the univariate distributions is also not free from
problems. Thg performance of the HV box plot is good for large sample sizes in skewed
distribution, but it constructs a very large interval of critical values which takes it away
from the true 95% boundary of the distribution. On the other hand, SSSBB performs well
in spite of the fact that it is very simple and MHVBP is better than HVBP technique even
for the larger samples. Performance of MCSSSBB is maximum time better than HVBP

while sometime HVBP perform better than MCSSSBB.
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8.2.1 Advantages of Split Sample Skewness Based Boxplot

This study has formulated a directional technique for detecting outliers. Due attention has
been given to the shape of underlying distribution, i.e. for the skewed distributions, data
on either side of centre is treated separately. Data coverage by this technique is very
robust. This technique is very simple as compared to HVBP which uses medcouple that
has complicated calculations. This technique is applicable in both large and small sample

sizes.

8.3 Advantages of the Modified Hubert Vandervieren Boxplot

This technique detects lesser number of outliers from the random sample than adjusted
box plot. Modified Hubert and Vandervieren bo%(plot generates smaller interval of critical
values as compare to HVBP. The proposed modified test is useful for both small and
large data sets and its fence for outlier’s detection is very close to the true 95% boundary

of the distribution for all the sample sizes.

8.4 Recommendations

When a researcher is interested in detecting outliers from a skewed data and also wants to
get rid of the messy calculations involving a high computer power, one should use
SSSBB instead of Tukey’s technique as discussed in chapter 4. Buf if the researcher is
interested in accuracy, MHVBP and MCSSSBB are better alternatives to use because
with less skewness it acts like the SSSBB because the performance of the SSSBB is

overall better than any other technique. For the real data sets, it is observed that for the

106



left outliers, HVBP is good in its performance but overall performance of SSSBB is best
for both left and right outliers. The performance of Tukey and MHVBP techniques are
almost the same. Again it is recommended the MCSSSBB technique may be used for
detection outliers in skewed distributions when the reader is interested in sophisticated
technique and also sometime HVBP performance is better than MCSSSBB but if reader

is interested in simple technique the SSSBB is better.

8.5.1 Future Work

Following work is proposed for the future with respect to outlier’-s detection techniques.
These techniques can be designed based on both skewness and sample size. Also
contaminated data sets can be analyzed by these techniques and Research can be
extended from univariate to bivariate and multivariate. Outlier detection techniques can

be designed based on mode instead of mean and median.
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APPENDIX

Previous Techniques

Grubs test

Grubbs (1969) introduced a test for detection of outliers for the univariate normal

distribution with the sample size greater than 3. Grubbs statistics is given as

Gng@-@
B SD

Where, d and SD are the sample mean and standard deviation respectively. Null
hypothesis of Grubbs test is that data have no outliers while the alternative is that at least
one outlier in the data is present. As given in the above statistics largest absolute value of
G is suspected as the outlier and the decision whether the observation is outlier or not is

made by looking it in the table of critical values (Grubbs, 1969).
2SD and 3SD Methods

We construct the interval by p+ 20 and u + 3 6, where p is the sample mean and o is the
standard deviation of the sample under consideration. The observations that don’t lounge
in the intervals formed by above statistic are treated as outliers. According to
Chebychev’s Inequality, For any random variable X with mean p and variance o, then

for anyk > 0,
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P[IX — plka] < -

' 1
P[|X—p|<k6]21——7‘3, k>0

From the inequality [1 — (1/ k)?] we are able to determine what portion of our data will
be within k standard deviations of the mean. (Bain et al. cited by Seo, 2006) For example,
we can access that at least 75%, 89%, and 94% of the data are lying within 2, 3, and 4
standard deviations of the mean, respectively. Probabilities of existence of outliers in the
data sets can be determined by these results. Although Chebychev’s theorem is non
parametric and have no distributional assumptions, it has a major drawback that it gives
the smallest f)roportion of observations within & standard deviations around the mean
(Chebychev’s, cited by Seo, 2006). Having prior knowledge about the distribution
supports us to guess more efficiently. For example in case of standard 68%,95% and
99.7% data lies within 1,2,3 standard deviations respectively and we consider outlier

beyond 2SD or 3SD according to our null.
Dixon’s Test

Null hypothesis to apply Dixon test is that data are normally distributed and is based on
the statistical distribution of "sub range ratios" of ordered data samples, drawn from the
same normal population. Along with other demerits one major demerit of this test is that
it cannot be applied again on the remainder data set in any case if once observation is
detected as outlier or rejected.

Dixon’s test is used for small sample sizes to detect outliers when mean of N-1

observations are significantly different from the mean of N observations. The data are
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arranged in ascending or descending order, when the mean in question is smallest or

largest respectively. The critical values depend upon the sample size. Then the test

Xn — n-1

% is computed (e. g., for 3 <N < 7) and decided according to
n - 1

statistic Qe =

the critical values in the below given table. Null for the static is that there is no significant
difference between suspected value and the remaining data.

Critical Values of Dixon Test

N CV for 90% confidence cv for 95% confidence level | CV for 99% confidence level
level b

3 0.941 0.970 0.994
4 0.765 0.829 0.926
5 0.642 0.710 0.821
6 0.560 0.625 0.740
7 0.507 0.568 0.680
8 0.468 0.526 0.634
9 0.437 0.493 0.598
10 0.412 0.466 0.568
THE Modified Z-Score:

In normal distribution we encounter just with the two parameters mean and standard
deviations. These parameters are blessing as they are easy to compute and nearly
available in all software’s but this blessing becomes a problem if there are some outliers
in the sample data because these are highly affected in presence of some outliers even in
presence of single outlier mean is affected highly as it has zero break down value

(Zaman,1996). To overcome this problem Iglewicz and Hoaglin (1993) proposed to use
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the median and median of the absolute deviation. The given modified Z-Score (M;)

statistic was computed as

_ 0.6745(x; — %)
£ MAD

Where E(MAD) = 0.67450 for the large normal data sets, Iglewicz and Hoaglin
suggested that observations with Mi > 3.5 should be labeled as outliers and they verified
their claim (suggestion) through simulation technique on the pseudo normal observations

for the sample size of 10, 20, and 40.
Leverage Method

Leverage method is based on the following statistics

1 (% —%)° n _
==+ wh 2 — E . — %)?
h;; - + > where v i=1(xl x)

nis the sample size, x;is the i observationZis the mean. Observation can be said as
outlier if h; > 0.5. As we know that leverage is the observation that has substantial
effect on the regression line. The most common measure of the leverage point is the hat

value, contained in the hat matrix. (Hair et al. 1998, Iglewicz and Hoaglin, 1993)
MAD; METHOD

This method is similar to the Mean£2S_D method but robust for detection of outliers and
is unaffected by the extreme values. Here median and median absolute deviations are
used instead of the mean and standard deviation. This is method is robust as it has break
point value of 50%

Critical values for 2MADg outlier labeling technique: Mediant2MADg
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Critical values for 3SMADE outlier labéling method: Median+3MADg
Where MADEg = 1.483 xMAD
In this approach two robust estimators (median and median of absolute™deviations) are

used as in the above test in which robust skewness is used.
Median Rule

(Carling 1998) proposed the statistics for lower and upper’ critical values [L, U] f_

Q,+2.3IQR where Q; is the sample median where scale of IQRi.e. 2.3 is not fixed but it
depends on target outlier percentage and Generalized Lambda distributions (GLD) are

selecte_d.
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