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ABSTRACT

Most o f the data sets belonging to the real world contain observations at the extremes 

that might not be in conformity with the remaining data set. These extreme 

observations known to be outliers might have positive or negative effect on the data 

analysis like regression estimates, forecasting and ANOVA etc. Outliers are powerful 

tools to identify the most interesting events o f the world in cross sectional data and 

historically important events can be picked by detecting outliers in time series data 

sets. Numerous outlier detection techniques have been proposed in the literature. This 

study provides a survey of these techniques and their properties. Most o f these 

techniques work well under the assumption that data come from a symmetric 

distribution and these techniques fail to work in skewed distributions. Because of this 

limitation, Hubert and Vandervieren (2008) proposed a technique for outlier’s 

detection in skewed data sets. Our thesis presents a new technique to measure robust 

skewness (SSS) and a new outlier detection technique (SSSBB) for skewed data 

distributions. The study shows that the proposed technique measures skewness more 

accurately than existing techniques and the proposed technique for outlier’s detections 

works better than Hubert’s technique on a class o f theoretically skewed and 

symmetric distributions. The study also compares the technique vdth other established 
 ̂j

outlier detection techniques in the literature. This study uses simulation technique for 

computer generated distributions and some real data sets for comparison purposes. 

The study also analyzes real life data sets and compares the baby birth weight data 

and stock returns, both of which are known to be skewed. These results will help us in 

making a choice o f appropriate outlier detection technique for skewed data sets for 

different sample sizes which might be helpful in identifying underweight babies.
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CHAPTER 1 

INTRODUCTION

Although there is a lot o f literature on outlier detection, most of the existing techniques 

are suitable for symmetric distributions as discussed in detail in chapter 2. Some of the 

authors proposed outliers techniques for skewed data, but the performance o f these 

techniques needs improvement. The major problem of the existing outlier detection 

techniques is that these work in symmetric distribution and fail to work in asymmetric 

distribution. Some techniques assume normality assumptions while most o f the real data 

do not follow normal distribution. Literature needs techniques which work both in 

symmetric and asymmetric distributions equally. This thesis proposes a new technique 

for measuring skewness and new technique for detection of outliers in skewed data. This 

technique works well both in symmetric and skewed distribution. Its performance has 

been proved better than existing techniques by comparing their constructed fences with 

the true lower and upper boundaries defined around the central 95 percent of the 

distributions. These calculations are analytical and easy to understand. The study has 

been planned in the following way. In Chapter 2 this study provides literature review of 

various aspects o f skewness, its measurements, existence of outliers in the real data sets 

due to natural effects and some time due to errors and contaminations. Benefits and 

deleterious effects of outliers in data have been discussed along with the application of



outlier detection in real life. Existing outlier detection techniques have also been 

discussed.

Since this study is related to the skewed distributions, it is important to have robust tests 

for measuring skewness of the given data set. Chapter 3 provides a review o f techniques 

of measuring skewness in the data. This study also introduces a new technique for 

measuring skewness (the Split Sample Skewness henceforth abbreviated as SSS) that 

splits the sample from the median as its name suggests. This study also compares SSS 

with previous non parametric techniques like quartile skewness, octile skewness and 

medcouple. A new methodology based on bootstrapping has been developed to compare 

these techniques. Since all the techniques except moment measure of skewness are 

designed to be robust measure o f skewness, the performance of all robust techniques has 

been compared by matching the size in symmetric distribution and then comparing the 

power in skewed distributions adopting bootstrap simulation technique. Superiority o f the 

technique has been proven by simulation results.

In Chapter 4, a  new technique has been developed based on split sample methodology to 

detect outliers in the skewed distributions. This technique has been applied on different 

distributions (x^, p, and Lognormal) with different parameters, and the results are 

compared with a very popular method named box plot developed by Tukey (1977). 

Applications of the proposed technique show its dominance on Tukey’s and Kimber’s 

techniques in constructing the fence around the true central 95% boundaries of the 

different distribution and also in real data sets.



In Chapter 5, a modification is proposed in tlie HV box plot technique introduced by Mia 

Hubert and Ellen Vandervieren (2008) which is specially designed for detection of 

outliers in the skewed distribution. The main problem of HV boxplot is that it generates a 

larger fence around the 95% boundary of the distribution and increases the chance o f type

II error. Simulation study has been done on the skewed distributions, like with different 

degrees of freedom, p, and lognormal with different parameters and different sample 

sizes and supremacy of proposed modification over HVBP has been proven by the 

results.

In Chapter 6, a robust measure o f skewness known as medcouple, introduced by G. Brys, 

M. Hubert and A. Struyf (2004), has been incorporated in the technique developed in 

Chapter 4. Again simulation study has been done on the early tested distributions in the 

similar fashion.

Chapter 7 includes applications of the Tukey’s technique, SSSBB technique introduced in 

Chapter 4, HVBP (2008) and MHVBP proposed in Chapter 5 and MCSSSBB technique 

proposed in Chapter 6 on the real data sets o f stock return of United Trust o f Pakistan 

(UTP-2008) and baby birth weight data followed up till 28* day. Chapter 8 comprises the 

conclusions and recommendations based on the theoretical and empirical evidence and 

directions for the future work.



CHAPTER 2 

REVIEW OF LITERATURE

2.1 What is an outlier?

Discordant observations may be defined as those which look different from other 

observations with which they are combined with respect to their law of frequency 

(Edgeworth, 1887; cited by Beckman and Cook, 1983). Another definition of discordant 

observation is that observation which appears surprising or discrepant to the investigator 

(Iglewicz and Hoaglin, 1993). An outlying observation; or outlier, is one that appears to 

deviate markedly from the other members o f the sample in which it occurs. These 

statements illustrate that an outlier is a subjective, post-data concept. Historically, 

"objective” m'ethods for dealing with outliers were employed only after the outliers were 

identified through a visual inspection of the data (Grubbs, 1969; cited by Beckman and 

Cook, 1983). A contaminant is defined as an observation coming from a distribution 

which is different from the distribution of the rest o f the data. Contaminants may or may 

not be noted by the investigator (Barnett, 1984). Contaminants and discordant 

observations are jointly known to be outliers. So in the words of Iglewicz, inconsistent 

observations with respect to the remaining data may be defined as outliers (Iglewicz and 

Hoaglin, 1994). For Hawkins, an outlier is an observation which deviates so much from 

the other observations as to arouse suspicions that it was generated by a different 

mechanism (Hawkins, 1980).



2.2 History of Outliers

Detection of outliers in the analysis of the data sets dates back to 18* century. Bernoulli 

(1777) pointed out the practice o f deleting the outliers about 200 years ago. Deletion of 

outliers is not a proper solution to handle the outliers but this remained a common 

practice in past. To address the problem of outliers in the data, the first statistical 

technique was developed in 1850 (Beckman and Cook, 1983).

Some of the researchers argued that extreme observations should be kept as a part of data

as these observations provide very useful information about the data. For example, Bessel

and Baeuer (1838) claimed that one should not delete extreme observations just due to

their gap from the remaining data (cited in Barnett, 1978). The recommendation of

Legendre (1805) is not to rub out the extreme observations "adjudged too large to be

admissible”. Some of the researchers favored to clean the data from extreme observations

as they distort the estimates. An astronomer of 19* century, Boscovitch, put aside the

recommendations of the Legendre and led them to delete (ad hoc adjustment) perhaps

favoring the Pierce (1852), Chauvenet (1863) or Wright (1884). Cousineau and Chartier

(2010) said that outliers are always the result of some spurious activity and should be
p.

deleted. Deleting or keeping the outliers in the data is as hotly discussed issue today as it 

was 200 years ago.

Bendre and Kale (1987), Davies and Gather (1993), Iglewicz arid Hoaglin (1994) and 

Barnett and Lewis (1994) have conducted a number o f studies to handle issues of 

outliers. Defining outliers by their distance to neighboring examples is a popular 

approach to fading unusual examples in a dataset known to be distance based outlier



detection technique. Saad and Hewahi (2009) introduced Class Outlier Distance Based 

(CODB) outlier’s detection procedure and proved that it is better than distance based 

outlier’s detection method. Surendra P. Verma (1997) emphasize for detection of outliers 

in univariate data instead of accommodating the outliers because it provides better 

estimate of mean and other statistical parameters in an international geochemical 

reference material (RM).

2.3 Importance of Detecting Outliers

Outlier detection plays an important role in modeling, inference and even data processing 

because outlier can lead to model misspecification, biased parameter estimation and poor 

forecasting (Tsay, Pena and Pankratz, 2000 and Fuller, 1987). Outlier detection as a 

branch of data mining has many important applications, and deserves more attention from 

data mining community. The identification o f outliers may lead to the discovery of 

unexpected knowledge in areas such as credit card and calling card fraud, criminal 

behaviors, and cyber crime, etc. (Mansur and Sap, 2005). Detection of outliers in the data 

has significant importance for continuous as well as discrete data sets (Chen, Miao and 

Zhang, 2010). Justel and Pena (1996) proved that the presence of a set o f outliers that 

mask each other will result in failure of the Gibbs sampling (In Bayesian parametric 

model Gibbs sampling is an algorithm which provides an accurate estimation of the 

marginal posterior densities, or summaries of these distributions, by sampling fi'om the 

conditional parameter distributions) with the result that posterior distributions will be 

inadequately estimated.



Iglewicz and Hoaglin (1994) recommend that data should be routinely inspected for 

outliers because outliers can provide useful information about the data. As long as the 

researchers are interested in data mining, they will have to face the problem of outliers 

that might come from the real data generating process (DGP) or data collection process. 

Outliers are likely to be present even in high quality data sets and a very few economic 

data sets meet the criterion of high quality (Zaman, Rousseeuw and Orhan, 2001).

Some techniques designed for skewed distributions such as the boxplot mtroduced by 

Mia Hubert and Ellen Vandervieren (2008) and some other techniques introduced by 

Banner and Iglewicz (2007) are designed for large sample sizes but there are also some 

techniques which are designed for smaller sample size (3-12) like Dixon test 

(Constantinos E. Efstathiou, 2006). Some techniques like 2SD (standard deviation) 

perform well in the symmetric distributions but fail in the skewed distribution due to the 

fact that they construct large intervals of critical values around the means o f 

asymmetrically centered distributions on the compressed side while short it on the 

skewed side of the distribution according to the level of skevwess.

2.4 Causes of Outliers

Anscombe (1960) (cited by Beckman and Cook, 1983) divided outliers into two major 

categories. First, there might be errors in the data due to some mistake/error and second, 

outliers may be present due to natural variability. There might be the third category of 

outliers when they come from outside the sample. Ludbrook (2008) discussed a number 

of reasons o f outlier’s existence and methods of handling them.



Outliers in the first category might arise from a variety o f sources some of which are 

discussed in this section. Here are some of the possible sources of outliers which the 

researcher observed during carrying out a survey at Keenjhar Lake district Thatta (Sind) 

for the SANDEE study ‘‘Valuing Recreational Use of Pakistan Wetlands”.

2.4,1 Outliers in Survey Data Sets

i. Problem in Questionnaire

The design of questionnaire might have some ambiguous question that neither 

enumerator can understand nor the respondent can follow so that outliers are expected to 

appear in the data. For example, if  only income is mentioned in the questionnaire without 

specifying the period (monthly or annual etc.), the respondent might generally understand 

it as monthly income and thereby give rise to an outlier in the annual income data. 

Similarly for the monthly income data, an economic graduate respondent may understand 

it as annual income rather than monthly salary and will create an outlier mistakenly on 

the positive side of the monthly income distribution.

ii. Problem Arising out of Enumerators’ Mistakes

The enumerators themselves may also be responsible for giving rise to outliers. Taking 

the same example as above, if  one out of twenty enumerators confuses the annual income 

with the monthly income, nearly five percent of the data will be detected as outliers 

because of the mistake of one enumerator.



iii. Problem in Explaining Question by the Enumerator to Respondent

Similarly outlier might appear when enumerator fails to explain the question to the 

respondent during the time questionnaire being filled. For example, an enumerator asks 

the respondent for the family income but does not defme family income to some of 

respondents then outliers might exist.

iv. Outliers Arising out of Misunderstanding on the Part of Respondent

In the developing world, most of the respondents are not familiar with the design of 

questionnaire most probably because o f illiteracy. As a result, they respond lose heartedly 

or just answer by guess up till they understand the question. Lack of interest in the 

response or responses based on hunch or guess may also result o f appearance of outliers.

V. Poor Handwriting of the Enumerator

One o f the possible causes of the outliers in the survey data might be the result of 

illegible handwriting o f the enumerators, which the data entry operator may not 

understand and fills the data wrongly.

vi. Problem in Data Entry by the Data Entry Operator

Outliers might be due to the mistake of the data entry operator. An advertent increase of a 

single zero may register a huge increase of income of 70,000 to 700,000 thereby giving 

rise to outliers. Such cases may arise when the data entry operator is not adequately 

familiar with the project in hand and his job is to copy data from questionnaire to data 

base.



All such types of the outliers that arise from any mistake at any step of the collection or 

documentation of data may be deleted or may be adjusted according to the actual 

population. However the outliers arising from natural variation must be kept because they 

are expected to tell interesting story behind data generating process and that specific 

observation.

Figure 2.1 Naseer Soomro in Local Market

2.4.2 Natural Variation

Natural variation may also be responsible for 

outliers. Naseer Soomro, a 7’ 8” (233.6cm) 

tall man from Shikar Pur of the Sind province 

is one o f the tallest person in the Pakistan.

Naturally he is markedly different from the 

rest of the population in that area. Birth of a 

person with such a height seems to be unusual 

in that popoiilation but all of us know this 

reality and these type of outliers must not be 

deleted or ignored without sound theoritical 

justification. ^

2.4.3 Contamination

Outliers of third category originate from mixing of two populations in an unbalanced 

way. For example, mixing 97% and 3% of two populations from two different samples



respectively may show 3% of the population from one sample as outlier in the resulting 

pooled sample.

2.5 Effects of Outliers

Outliers may have good or bad effects on the data. I f  these are the real observations, they 

point to some interesting dimensions of the data. The famous case o f Hadlum vs. 

Hadlum, held in 1949 (Barnett, 1978) is of statistical interest because of an outlier. Mrs. 

Hadlum gave, birth to a child after 349 days after Mr. Hadlum had left home to take up 

his duty in the armed force. Such an unusually long gestation period will be considered as 

an outlier against common gestation period which usually lasts around 280 days. The 

claim of Mr. Hadlum was failed as the court drew the limit of gestation period of 360 

days which is unusual and statistically unreasonable. This outlier seems to be away from 

the distribution of gestation period but in reality it happened and was a natural outlier. 

However, if the outlier appears due to some mistake, it will have negative effects in 

analyzing the data. e.g. If ten dice are thrown ten times and a guy records the numbers of 

sixes in the form 2,0,3,12,2,0,1,1,3 then surely 12 will be an outlier in the data besides 

showing a missing value. Analysis of such type o f data without giving attention to the 

outlier will lead to incorrect or misleading results.

2.5.1 Damaging Effects of Outliers

Estimation o f parameter is greatly influenced when outliers are present in the data 

(Zimmerman, 1994, 1995, 1998), because they may result in an increase in the errors 

variance and decrease the power of test. If  the errors contain outliers, these outliers



decrease their normality in univariate case and sphericity and multivariate normality in 

case of multivariate altering the odds of making both Type I and Type II errors. In this 

way outliers become responsible for committing Type I and Type II error. Finally 

regression estimates that might be of substantive interest are distorted by the outliers 

(Osborne and Overbay, 2004).

2.5.2 Benefits of Outliers in the Data Set

Main benefit of the outliers in cross sectional data is that they reveal interesting facts. 

Outlier has importance as they appear different from the remaining data and having some 

genuine causes. The researcher may be interested in the causes that generate outliers. In 

the time series data, they tell interesting stories about the past. Six sigma event, which is 

the probability that an extreme value which is six SDs away from the means of a normal 

distribution, was presented as a sop by the econometricians o f the early years of 20* 

century to justify the remote probability of occurrence of economic change o f a 

magnitude of Great Depression. The ‘outlier’ in this case is the Great Depression itself 

which has great historical significance in the world economy.

2.6 Masking and swamping effects of the outliers

Sometimes one outlier has a capability to hide the other outliers and sometimes one 

outlier has the capability to expose an observation as outlier while it is inlier in real 

terms. Iglewicz and Martinez (1982, cited by Maimon, Rockach and Bin-Gal, 2005) have 

defined these two properties of the outliers as follows. For the regression analysis, due to



masking and swamping effects, false decisions are made but former is “false negative” 

decision and latter is “false positive” (Chatteijee and Hadi, 2006).

2.6.1 Masking Effect

If one observation is detected as inlier in the presence of the extreme observation and by 

deleting this extreme observation, the observations nearer to it are also found to be 

outliers, this phenomenon is considered as the masking effect. Masking occurs when 

mean and covariance estimates are skewed towards a group o f outliers, and the resulting 

gap of the outlier from the mean is small. For example, let x be a univariate vector as 

;c=  [1 2 3 4 5 8 10 20 35]

By use of Tukey method of outlier detection, it will just detect one outlier that is 35. But 

after deleting this outlier and again applying Tukey’s method, 20 will be detected as 

outlier. So it can be said that 35 masked 20. As the mask (35) is removed 20 appears to 

be outlier. Some well-known real life data sets having the masking effect are Pearson and 

Sekar (1936), Belgian Telephone data, Hertzsprung-Russell Stars data, HBK data 

(Hawkins, Bradu and Kass, 1984) and HS data (Hadi and Simonoff, 1993).

2.6.2 Swamping Effect

When an observation (inlier) appears to be outlier in presence o f another outlier and by 

deleting the specific outlier that observation is detected as inlier, it is called the swamping 

effect. Swamping occurs when a cluster of outliers skews the mean and the covariance 

estimates toward it and away from other inliers on the other side of the distribution, and



the resulting distance from these observations to the mean is large, making them look like 

outliers. For example

X =  [-16,2,6,10,15,18,20,20,30,110]

Tukey’s technique detects -16 and 110 as outliers but when after deleting the observation 

110,-16 appears inlier which suggests that 110 is swamping -16 (Maimon, Rockach and 

Bin-Gal, 2005). Execution

2.7 Applications of Outlier Detecting Techniques

Outlier’s detection can be applied on lot of data sets for various purposes. Some of which 

are discussed below:

2.7.1 Fraud Detection

Credit card fraud may be discovered when purchasing discontinuously jumps upward. 

Generally purchasing pattern goes suddenly high when the credit card is stolen and the 

person doing high shopping can be detected as Fraudulent and abnormal use of the credit 

card can point out the holder as fake person.

2.7.2 Medical Data

Unusual indications or extraordinary test results may be found to be associated wdth 

health troubles of a patient and to test whether a specific medical test result is abnormal. 

It may depend on other characteristics of the patients (e.g. gender, age, race etc). While 

analyzing the data o f birth weight of babies, extraordinary less weighted babies are at



high risk and are treated as outliers. Similarly outliers in the data o f blood pressure, 

patients with extraordinary high blood pressure can be treated as outliers.

2.7.3 Comhiuiilty Based Diseases

When a public disease such as tetanus, cholera or plague etc. is disproportionately 

congested in some parts o f the area under study, it may be an indicator o f ineffectiveness 

of the treatment caused by some systematic human error. It points towards troubles with 

the corresponding vaccination program in that city. Whether an occurrence is unusual or 

usual it depends on different characteristic like frequency, spatial correlation, etc.

2.7.4 Sports Data Analysis

l^esence of outliers in any variable related to the performance o f a player may give 

important clues about the intentions of the players. Match/spot fixing may be suspected 

by the appearance of outliers. Presence o f outliers in the data on “no balls” and “wide 

balls” of a specific player or a group of players may raise the suspicion of match or spot 

fixing.

2.7.5 Detecting Measurement Errors

When data are collected through a scientific experiment, an outlier may readily point 

towards measurement error. A very large or a very small observation relative to the 

whole sample may be removed if it is measurement error and in case this outlier is a real 

observation it will open new doors for research.



Hodge and Austin (2004) have pointed towards the significance of outliers in various 

contexts such as making decision about the loan application of problematic customers, 

intrusion detection, activity monitoring, network performance, fault diagnosis, structural 

defect detection, satellite image analysis, detecting novelties in images, motion 

segmentation, time-series monitoring, medical condition monitoring, pharmaceutical 

research, motion segmentation, detecting image features moving independently, detecting 

novelty in text, detecting unexpected entries in database and detecting mislabeled data in 

a training data set besides many other situations.

2.8 Previous Techniques

Outliers labeling techniques are of two types

I. Formal Techniques

II. Informal Techniques

Formal tests are designed to test any statistical hypothesis. Generally null hypothesis is 

assumed for a particular distribution and then this hypothesis is checked if the extreme 

values belong to the distribution or not at given level of significance. Some tests are for a 

single outlier and others for multiple outliers. The choice of technique to detect outliers 

depends on the objective of analysis. Selection might depend on type of target outliers, 

numbers and type o f data distribution (Seo, 2006).

Chauvenet (1852), Stone and Pierce (1863) first proposed a method o f deletion of outliers 

in the data sets and this practice prevailed till twentieth century. Irwin (1925) proposed 

that gap between the first and second and the second and third order statistics should be



used to decide whether the extreme observations are from the same population or from a 

different population. He computed critical values for the test statistics based on the 

magnitude o f variance. Walsh (1950) favored a non-parametric test to decide whether the 

extreme values belong to the same population. Dixon’s (1950) had a similar view on the 

gap test. For outlier rejection, Ferguson (1961) considered a number of invariant tests and 

found that the tests based on sample skewness are locally best invariant for detection of 

outliers with a minor mean shift towards positive side while the invariant tests based on 

sample kurtosis are locally best invariant for outliers detection with minor mean shift on 

either side (cited by Beckman and Cook, 1983).

Grubbs (1950) introduced a technique for outlier detection for univariate normal data sets 

having sample size greater than 3. This technique is based on mean and standard 

deviation and the largest absolute value is treated as outlier. Commonly ±2SD and ±3SD 

are used for normal /symmetric distributions. , These tests perform well in symmetric 

distributions but fail in skewed distnbutions. Dixon was pioneer o f the test for outlier 

detection based on the statistical distribution “sub range ratio” for the data transformed in 

any order (ascending or descending). This test is designed for small samples and used to 

test small number of outliers. In this test, critical values are checked by Sachs (1982) 

table (Gibbons, Bhaumic and Aryal, 1994). If one observation is suspected as outlier then 

by Dixon test statistic is checked in table of critical values if  the specific observation is 

outlier or inlier. A major drawback of this test is that it cannot be applied on the 

remaining data set when one observation is deleted after being observed to be an outlier.

Iglewicz and Hoaglin (1993) suggested using the median and median o f the absolute

deviation and on the basis of these two parameters, they proposed the test statistic for



outlier’s detection in univariate distribution. Hair et.al (1998) introduced the method for 

outliers detection based on the leverage statistic and standard deviation. In MADe 

method, median and median of the absolute deviation is used. Since this statistics is based 

on median, it has a very high break point value equal to 50%. Carlings (1998) introduced 

a technique based on the median and inter quartile range as against Tukey’s which used 

first and third quartiles and inter quartile range.

2.8.1 Tukey’s Method (Boxplot)

ukey test and its modifications are designed on the basis of first and third quartiles and 

inter-quartile range in which Qi (first quartile) exist at 25* percentile, Qs quartile) at 

75* percentile and Inter quartile range (IQR) is the difference between the 3̂^̂ and 1̂  ̂

quartile. In order to construct boundaries for labeling an observation as an outlier, 1.5 times 

QR is subtracted from Qi for lower threshold and 1.5 times IQR in added to the Q3 for 

upper threshold to get the “inner fence”. To fmd the critical values o f outer fence 3 is used 

instead of 1.5 as value o f g, mathematically

[L f/] = [ Q i - Q 3 + g * ( Q 3 - Q i ) ]  

where g=1.5 for inner fence and 3 for outer fence. Kimber (1990) modified the Tukey’s 

nethod by changing Q3 and Qi by M (median) in the lower and upper range values 

respectively and tried to resolve the problem of skewness. The modified form of the 

[Tukey’s approach proposed by Kimber is

[L U] = [Q ^ -  Q3 + 3 H Q 3 - M ) ]

where M is the sample median. Kimber also used (like Tukey) g= 1.5.Carling (1998) 

introduced median rule on the basis of quadrants as



[L U] = [Q2  -  2.3 .  W 3 -  QOQ2  +  2.3 * Wa "  Qi)]

Where Q2 represent sample median and 2.3 is not fixed but it depends on target outlier 

percentage.

2.8.2 Method Based on Medcouple

G. Brys, M. Hubert, and A. Struyf (2004) introduced a robust measure o f skewness named 

medcouple and found that it combines the robustness of quartile skewness and sensitivity

of octile skewness. If  = {x^, X2 , ..............x^}  is the set of continuous univariate

istribution and it is sorted such as <  X2  < x ^ ..............<  <  X-n then medcouple

of the data is defined as

(xj -  med^) -  {med„ -  X j )  
MCiX1.X2.X3 A f „ )  =  m ed  —   

X j  X i

where medk is the median of and i and j have to satisfy Xi < medf^ < xjaindxi ^  Xj

The idea of the medcouple is quite simple. It takes a pair of observations, one from below 

he median and another from above the median and compares the difference from the 

median. If  the difference is zero, then the pair is symmetric about the median. A positive 

lifference shows that the positive observation is farther away from the median than the 

legative. Instead of taking the absolute value of this difference, the MC takes a ratio which 

converts this to the proportional difference. All pairs of such differences are tabulated and 

he median of these is taken as the measure of skewness. Some complications are 

introduced in case of ties which are ignored in this study, since these do not matter for 

continuous distributions. For details, the reader may see the original article.



Hubert and Vandervieren (2008) used medcouple to modify Tukey’s box plot and called it 

le Adjusted Box Plot for skewed distribution and defined the interval of critical values as 

[L U] = [<?i -  1.5 * IQR * Q3  +  1.5 * IQR *

where MC is the Medcouple introduced by Brys, Hubert and Struyf (2004), defined above.

hey selected a=-3.5 and b=4 for a simulation based study and were uncertain about the 

appropriateness of these values. They also proposed the different values of a and b as 

a = -3 .79 ,b  = 3 .8 7 ,- a  = b = 4 and - a  = b = 3

Hubert and Vandervieren (2008) proposed a technique for detection of outliers, called HV 

boxplot.

[L U] =  [Qi -  1.5 * IQR * +  1.5 IQR * If  MC>0

[L U] = [(?i -  1.5 * IQR * +  1.5 + IQR * If MC<0

he value o f MC ranges between -1 and +1. Data are symmetric if MC is zero and when 

value o f MC is zero then HV box plot takes the shape o f original Tukey’s method as 

discussed above.



CHAPTER 3 

SPLIT SAMPLE SKEWNESS

3.1 Introduction

In this chapter, literature related to measuring skewness has been reviewed. This study 

Iso introduces a new measure of skewness based on the split sample.

For analyzing the observed data by nonparametric estimates it is important to evaluate 

different features of the distribution. In particular, the unimodality, bimodality and 

multimodality of the data distribution are essential for the validity of conventional 

descriptive statistics. If the distribution is unimodal, most of the test statistics for 

detection of outliers which will be reviewed in forthcoming pages will be valid and 

applicable. If the distribution is “two club”, “twin peak” or multimodal, these tests are 

useless and will lead to the biased results. This study proceeds under the assumption that 

the data are unimodal.



3.2 Skewness

Asymmetry in the probability distribution of the random variable is known to be the 

skewness of that random variable. Using the conventional third moment measure, the 

value of skewness might be positive or negative or may be undefined. If the distribution 

is negatively skewed, it implies that tail on the left side of the probability density function 

is longer than the right hand side of the distribution. It also shows that larger amount of 

the values including median lie to the right of the mean. Alternatively, positively skewed 

distribution indicates that the tail on the right side is longer than the left side and the bulk 

of the values lie to the left of the mean. If the value of the skewness is exactly zero, this 

suggests symmetry of the distribution. The third moment is a crude measure of 

symmetry, and in fact highly asymmetric distributions may have zero third moment. In 

addition, the third moment is extremely sensitive to outliers, which makes it unreliable in 

many practical situations. It is therefore useful to develop alternative measures of 

skewness which are insensitive to outliers and more direct measures of symmetry.

Figure 3.1 Symmetric and Skewed Distributions
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3.3 Various Measures of Skewness

To find whether the data under consideration is symmetric or skewed, statisticians have 

developed different measures of skewness some of which are discussed below:

3.3.1 Moment Based Measure of Skewness

Generally, skewness of a random variable X is calculated by the third standardized 

moment. If X is a random variable and \i is the mean and a standard deviation of the 

random variable then skewness ( Yx) can be defined as

Yi  = E
m i x  ~

Where E is the expectation operator, k2 and k3 are second and third commulants

respectively. This formula can also be transformed into non central moments just by

expanding the above formula as

E[(X -  /z)2] E[X^] -  3fiE[X^] +  E[X^  -  
~  (,E[(,x -  ~  ' ~

If {x^, %2 , x ^ , ;Cn} is a random sample, skevmess o f the sample is given as

Where n is the number of observations, x  is the average o f the sample. From the given 

sample o f the population the above equation is treated as the bieised estimator of the 

population skewness and unbiased skewness is given as

Moment  Measure o f  skewness  =
(N -  1)53



Where s denoted the standard deviation of the sample while N shows the sample size. If 

the output is greater than zero, the distribution is considered to be positively skewed but 

if the output is less than zero ,distribution will be negatively skewed. However, if the 

classical skewness is statistically zero then typically distribution is treated as symmetric. 

Tabor (2010) discussed a number o f techniques derived from the Tukey’s boxplot, five 

point summary and from the ratio of mean to median to assess whether data are 

symmetric or not and evaluated which statistic performs best when sampling from 

various skewed populations.

3.3.2 Pearson Skewness

Karl Pearson introduced the coefficient of skewness which is estimated as

Mean — Mode
Sk  =

Standard Deviation

Sometimes mode can’t be defined perfectly and is difficult to locate by simple methods.

Therefore it is replaced by an alternative form as (Stuart and Ord, 1994)

3{Mean — Median)
Standatd  Deviation

The coefficient of skewness usually varies between -3 and +3 and sign of the statistic 

indicate the direction of skewness.

3.3.3 Quartile Skewness

Arthur Lyon Bowley (1920, cited by Groeneveld and Meeden, 1984) proposed the 

quartile skewness based on the first, second and third quartiles. The co-efficient of 

skewness lies between - land +land is estimated as



Qi +  Qb “  2Median
OS = ^ ^ ----------------
^  Q 3 - Q 1

3.3.4 Octile Skewness

Hinkley (1976) introduced the octile skewness as

_  Q o .875  +  Q o.1 2 5 ' ~  ^  *  Q o .50 

Q o .875  “  Q o .125

P

Its value also varies between -1 and +1.

33.5 Medcouple

Since the classical skewness is limited to the measurement of the third central moment, it 

may be affected by a few outliers. Keeping in view its limitations, Brys et al. introduced 

an alternative measure of skewness named medcouple (M Q which is a robust alternative 

to classical skewness (Brys, Hubert and Struyf, 2003). For any continuous distribution F,
hr

\etmp = Qz = F~^(p.S) be the median of F, medcouple for the distribution denoted as 

MCf or MC (f), is then defined as:

MC(F) =

Where X i a n d  X2are sampled from F and h denote the kernel. The kernel for the indicator 

function I is defined as

+00  m p

H p ( j i )  =  4  j  *  j  <  I ( h ( x i , x 2 )  <  / i ) d F ( X i ) d f ( x 2 )
m p  - 0 0



Median o f this kernel is known to be the Medcouple. The domain of Hp is [-1, 1 ] with the 

conditions hiXi,X2 ) <  ^  > rup are equivalent to

X2  > Trip. The simplified form of above equation is

Hp(j0  = 4 I
+ 00 

TMp

I f Xn  =  {Xi,JC2;X3, i s  a random sample from the univariate distribution under 

consideration then MC is estimated as

MC =

Where med,^is the median ofX^, and i and J have to satisfyx^ <  med^ < Xj, and̂ Ti ^  

Xj.lhs, kernel function h(xi, Xj') is given as h(xi, Xj) =
_  ixj-med!c)-(Tnedk-Xi) 

ixj-xO

The case of ties in data requires a somewhat more complex treatment, for which the 

reader may look at the original paper of HVBP.

The value of the MC ranges between -1 and 1, If MC=0, the data are symmetric. When 

MC > 0, the data have a positively skewed distribution, whereas if  MC < 0, the data have 

a negatively skewed distribution.

3.4 Split Sample Skewness (SSS)

Classical measure of skewness is good when outliers are not present in the data. Being a 

third central moment, this classical measure of skewness is disproportionately affected 

even by a single outlier. For example, if  exactly syrrmietric data are like{ -5,-4,-3,-2,-l, 

0, 1, 2, 3, 4, 5} then its classical skewness is exactly zero but by replacing just last 

observation by 50, the classical skewness approaches to 2.66 whereas the other



nonparametric measures perform much better in presence of this outlier. Although the 

latest measure of skewness (medcouple) is robust for outliers and has registered an 

improvement on the previously introduced measures of the skewness like quartile and 

octile skewness (Brys, Hubert and Struyf, 2003). It is difficult to compute the statistic 

even for only twenty observations without a computer. For high frequency data sets such 

as hourly stock exchange rates 5000 observations for example, a researcher has to 

construct a complex matrix of the order 2500 x 2500 and this is not possible without 

putting a heavy drain even on an efficient computing machine. This study introduces a 

new technique for measuring skewness based on natural log o f the ratio o f IQRr to IQRl 

where IQRl is the inter quartile range o f the lower side from the median (difference of 

37.5^ percentile to 12.5* percentile) while IQRr is the inter quartile range of the upper 

side from the median (difference of 87.5* percentile to 62.5* percentile). Mathematically 

IQRl ="37.5* -12.5* percentiles and IQRr =87.5* -62.5* percentiles. Then the split 

sample skewness is defined as

S S S =  i n  {IQRji/IQRl)

Since the proposed statistic is log ratio of IQRr to IQRl, s o  if  the distribution is fairly 

symmetric then IQRr and IQRl must be equal concluding their ratio equal to one and 

statistic value equal to 0 for the distribution to be symmetric. If the distribution is rightly 

skewed, IQRr (numerator) will be greater than IQRl (denominator) and their ratio will be 

greater than 1 that results the statistic value positive. If  the IQRl (denominator) is greater 

than IQRr (numerator) then their ratio will be less than 1 which results the statistic value 

negative. So if the value of statistic is not statistically different from 0, distribution can be 

treated as symmetric otherwise it will be significantly skewed. If the ratio is statistically



less than zero, the distribution will be negatively skewed and if it is greater than zero then 

it will be positively skewed.

A number of measures o f skewness are suggested in the literature. It is well known fact 

that moment measure o f skewness is not trustworthy measure of skewTiess (see, for 

example Groeneveld and Meeden, 1984; Li and Morris, 1991).

Van Zwet (1964) introduced the ordering of distributions with respect to the skewness 

values. According to Van Zwet, if X and Y random variables having cumulative 

distribution functions F(x) and G(x) and probability distribution functions f(x) and g(x) 

with interval support, then G(x) is more skewed to the right than F(x) if R(x)  =  

is convex. One writes F <c G and says F c-precedes G. This ordering, 

sometimes called the convex ordering, is discussed in detail by Oja (1981). A sufficient 

condition for F<c G is that the standardized distribution fimctionsF s(x)  =  F^xcTx +  

and G s(;t) = F(xay + fiy) cross twice with the last change of sign o f Fs(x) - Gs(x) 

being positive. Intuitively, the standardized F distribution has more probability mass in 

the left tail and less in the right tail than does the standardized G distribution. Gibbons 

and Nichols (1979) have shown that Pearson coefficient of skewness does not satisfy the 

ordering o f Van Zwet (1964).

Oja (1981) and others (see, for example Arnold and Groeneveld, 1995) have found that 

any general skewness measure y for any continuous random variable X should satisfy the 

following conditions (Tajuddin, 2010)

a. /(oX  f  b) = y(X),  V a  >  0, —oo < b < co

b. Y d -x^  = - Y m



c. If F is symmetric then y(F)=0

d. If F <c G (F c-precedes G) then y (F) < y (G)

For SSS it can be observed that

a. Split sample skewness is unaffected by change o f location and scale as IQRl and 

IQ R r will remain the same even after changing the location or scale for the 

distribution with the result that SSS will remain same.

b. By changing the sign of complete data set, shape o f distribution will be changed 

in the opposite direction. In case of SSS, IQRl and IQRr will be mutually 

changed thus changing the sign of SSS.

c. If the distribution under consideration is symmetric, IQRl and IQRr vdll be equal 

and the ratio of IQRl and IQRr will be close to 1 and natural log of 1 will be zero 

satisfying the third property given above.

d. Van Zwet (1964) introduced the concept of ordering two distributions with regard 

to skewness. According to Van Zwet, if  F(x) and G(x) are cumulative 

distribution functions of two random variables and f(x) and g(x) are their 

probability distribution functions with interval support, then G(x) will be treated 

more skewed to the right than F(x) if  R(x) = G“^(F(x)) is convex. This property 

fails for split sample skewness

3.5 Methodology: Bootstrap Tests for Skewness

In the existing literature, most o f the tests for skewness are based on asymptotic 

distributions o f the test statistics. This study has introduced a new technique to measure 

skewness in both symmetric and asymmetric distributions using bootstrap method.



Alternatively, normalizing transformations are used, and tests based on normal 

distribution. Here a new method o f testing for skewness based on the bootstrap is 

suggested. It is expected that this method produces better finite sample results.

This study seeks to solve the following problem. Let {Xi,X2 ,X2 , ......... be an ordered

sample from an i.i.d. distribution F. Is F symmetric around its median? In other words, is 

it true that F(x- \ -m)  = 1 — F ( m -  x), where m is the median o f F?

To solve this problem, let T{xi ,x 2 , x ^ , ......... Xj^ be any statistic which measures

skewness. We propose to reject the null hypothesis o f symmetry if this statistic is 

significantly different from zero. The problem is: how do we determine the critical value 

to assess significance?

A natural solution to this problem can be based on the method o f bootstrapping. Let m be

the median of the sample = X i —m , ..... ,yn — Xn~Tn  and Zi = m  — X i , ...... ,Zn =

m - X n  and G =  [y i,y z ,..... ........................... be the sample symmetrized around the

median. In a natural sense, this is the closest symmetric sample to the original one. The 

empirical distribution of the symmetrized sample G is the symmetric distribution which 

comes closest to observed empirical distribution o f the actual data. So it is considered by 

the null hypothesis that the observed sample is i.i.d. from this symmetric distribution G.

To test this null hypothesis, generate a bootstrap sample B* = (Bi, B2, B3... Bn) i.i.d.

from G -  such a sample can be generated by standard bootstrap re-sampling with

replacement from the symmetrized sample G = [yi ,y 2 , ..... >yn> .........^n] •

Calculate the test statistic T (B*), which measures the skewness o f the sample B*. By

using repeated samples, 1000 i.i.d values were generated o f this test statistic under the



null hypothesis of symmetry: Bj is an i.i.d. sample from the symmetric distribution G. 

Arranging these values in order from T1 <T2 < ... < TIOOO, let T (25) and T (975) be the 

upper and lower 2.5% critical values for a test of skewness based on T.

Because there are many symmetric distributions and each distribution will have a 

separate set o f critical values and researcher does not know what the appropriate critical 

values o f the specific distribution are. The natural solution to the choice of critical values 

is therefore the distribution is symmetrized by the proposed technique. Resample from 

these symmetrized distributions would be used to calculate the critical values. This 

methodology: vdll overcome the problem of choice of critical values and will be 

compatible wdth sample in hand. Calculations o f the size and power of a test based on this 

bootstrap procedure and several skewness measures are reported below.

The procedure just mentioned above provides decision about the series whether it is 

symmetric or not. The above mentioned procedure is summarized step by step as 

follows:

1. Given any data series Xi, X2, .. .Xn, calculate the test statistics for skewness T(X)

2. Formulate the symmetrized series[ Xj-m, X2-m, ....Xn-m, -(Xi-m), -(X2-m), ...- 

(Xn-m), m -Xi, m-X2 ,m-X3 ,.....m-Xn-i,m-Xn]

3. Generate 1000 re-samples of length n from the symmetrized series and calculate 

the test statistics[Ti, T2, ...Tjooo] for each resample

4. Sort Ti, T2, ...Tiooo to calculate 2.5% upper critical value UCV and 2.5% lower 

critical value LCV



5. Compare the T(X) with the two critical values; if  LCV<T(X) <UCV than the 

skewness will not be rejected.

3.6 Power and Size of the Test

Here we make a comparison of the size and power of the newly introduced technique 

SSS with the existing measures o f the skewness to show the robustness o f the split 

sample skewness measuring technique. Various symmetric and skewed distributions are 

taken to analyze the power and size of different tests of skewness. The bootstrap 

technique discussed in previous section will give a logical decision about the symmetry 

of the series under consideration. However it is interesting to know whether this bootstrap 

based skewness testing scheme can differentiate between samples from symmetric and 

asymmetric distributions.

For this purpose, following algorithm has been used to calculate the size/power of the 

bootstrap based skewness testing procedure.

1. Given any distribution F generate a sample o f size n. i.e. {Xi, X2 . ....... x^]

2. Apply the bootstrap skewness test algorithm discussed in section 3.5 to get the 

logical decision about symmetry.

3. Count the percentage of rejections of null hypothesis o f symmetry.

4. If the underlying distribution F was symmetric (as selected, iV(0,l)), the r^ e  of 

rejection of symmetry would correspond to the size of skewness testing scheme.

5. If the underlying distribution was asymmetric (as selected ond p ), 

rejection o f symmetry corresponds to the power of the testing scheme.



Since Classical skewness is highly affected even by single outlier and cannot be 

compared to the robust measures of the skewness and hence it is omitted in this study for 

the purposes of comparison. Power has been compeired to different levels of moment 

measure of skewness in x ^ ,P  and lognormal distributions. Moment measure of skewness 

of distributions under consideration is given below:

\  Where k is degree of freedom of distribution

Skewness  o f  lognormal dis tribut ion  =  +  2 ) V — 1 where ct is standard 

deviation o f the lognormal distribution

Skewness o f  p  dis tribution  =  where a and p are the parameters of p

distribution.

Left diagram for the standard normal distribution (that is symmetric theoretically), the 

size of the test, it can be observed that different measures o f skewness have different 

sizes in figure 3.2 (left). It is also obvious that size o f medcouple is greater than all 

competing techniques. When someone wants to compare the power of these statistics, 

size of statistic should be kept same. To equalize the size o f tests, necessary adjustments 

in the formulae o f these statistics are made. By multiplying quartile skewness with 0.8, 

octile skewness with 0.7, medcouple with 0.5 and SSS with 0.9 the size of the tests 

become similar. Sizes of the techniques under comparison are matched for different 

sample sizes 25, 50, 100 and 200. Sample size is taken on X-axis and on Y-axis size of 

the statistics is represented. Now having equaled the size o f all the statistics under



comparison, a researcher is able to compare the power o f these statistics in skewed 

distributions by multiplying the power with same constants.

Table 3.1 Size of DifTerent Tests for Standard Normal Distribution

Sample
Size

Quartile
Skewness

Octile
Skewness

Medcouple Split Sample 
Skewness

CM 3.4% 4.0% 4.2% 3.6%
oin 4.2% 4.6% 6.6% 3.6%

8rH 6.0% 6.6% 9.8% 5.2%

1 7.2% 7.8% 11.2% 5.6%

Figure 3.2 Comparison of Size in Standard Normal Distribution

Power of different statistics to is used to identify if the sample under consideration is 

generated from symmetric or from skewed distribution. Since chi square and lognormal 

distributions are skewed to the right, the statistic which will detect it skewed to the right 

maximum number of times in simulations will have the highest power.



Figure 3.3 below shows the power o f the different techniques using chi square 

distribution with different degrees of freedoms. For small sample size in chi square 

distribution, it can be observed that powers of medcouple are almost same for all levels of 

moment measure o f skewness.

Table 3.2 Power Computation of Skewness Tests in Distribution

Size

_0J
a
Erei/>
■55
E

Degree of 
Freedom

Moment
Measure
Skewness

Quartile
Skewness

Octile
Skewness

Med­
couple

Split
Sample
Skewness

30
25
20

15
10
5
2

0}
a.
E

E3
■D
5 •=

01

30
25
20
15
10
5
2

Q.
E

S)

30
25
20
15
10
5
2

0.52
0.57
0.63
0.73
0.89
1.26
2.00

0.52
0.57
0.63
0.73
0.89
1.26
2.00

1.92%
2.88%

2.88%
4.16%
5.12%
6.56%

14.88%

0.52
0.57
0.63
0.73
0.89
1.26
2.00

5.76%
6.24%
8.16%
6.56%

10.56%
17.12%
34.72%

9.44%
10.08%
11.04%
15.36%
17.60%
28.80%
58.08%

3.50%
4.62%
6.16%
7.28%
9.10%

13.72%
36.54%

2.60%
3.30%
2.70%
3.30%
4.10%
7.20%

16.90%
10.64%
13.16%
17.22%
20.58%
26.18%
44.66%
65.80%
22.82%
21.98%
31.22%
36.96%
48.86%
63.00%
70.00%

6.10%

6.30%
9.90%
8.30%

12.80%
20.60%
37.40%

5.58%
7.02%
7.20%
9.36%

11.16%
18.90%
50.58%
13.68%
15.66%
22.32%
27.36%
34.74%
61.56%
84.24%

10.90%
10.90%
13.80%
16.70%
22.40%
34.10%
47.60%

32.04%
30.42%
39.24%
49.86%
63.72%
84.78%
89.82%

Power of SSS is slightly better than octile skewness at small level o f moment measure of 

skewness while its power improves as level of skewness goes up. For medium sample 

size, medcouple performs better than quartile skewness while in overall comparison SSS 

performs better than all the robust measures of skewness under comparison followed by 

octile skewness in all the levels of moment measure of skewness. Again in large sample 

size, medcouple has higher power than the quartile skewness and quartile skewness has



minimum power but when skewness level increases, quartile skewness power becomes 

better than medcouple.

Figure 3.3 Power Comparisons o f Skewness Tests in Chi Square Distribution

Small Sample Size
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On x-axis is the theoretical skewness of the 
^  distribution with 30,25,20,15,10,5, and 2 
degree of freedom are taken and sample 
sizes equal 25 ,100 and 200 which are 
considered small, medium and large 
sample.

QS; quartile skewness 
OS; octile skewness 
MC; medcouple 
SSS; split sample skewness

Split sample skewness has the highest power o f all the measures o f skewness under 

comparison for any level of moment measure of skewness. Hence for all sample sizes, 

SSS has the highest power followed by octile skewness to pick the asymmetry from the 

sample data sets coming from chi square distribution.



Table 3.3 Power Computation of Skewness Tests in Lognormal Distribution

Size

Q.
E
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N
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a
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Parameters Moment 
Measure of 
Skewness

Quartile
Skewness

Octile
Skewness

Medcouple Split
Sample

Skewness
(0.0.2)
(0,0.4)
(0,0 .6)

(0,0.8 )

(0,1)

0.61 2.40% 3.92% 1.90% 4.68%
1.32 4.96% 8.68% 4.10% 11.34%
2.26 6.24% 16.10% 7.20% 22.68%
3.69 8.32% 19.74% 8.70% 32.76%
6.18 10.72% 24.08% 11.10% 34.38%

(0.0.2) 0.61 6.72% 15.96% 8.30% 18.54%
(0,0.4) 1.32 16.32% 38.50% 17.10% 52.02%
(0,0.6) 2.26 25.60% 59.92% 28.00% 78.84%
(0,0.8) 3.69 40.00% 65.52% 36.70% 86.76%
(0,1) 6.18 52.16% 69.16% 44.10% 88.20%

(0.0.2) 0.61 8.64% 25.76% 10.30% 34.20%
(0,0.4) 1.32 24.96% 58.94% 29.50% 79.56%
(0,0.6) 2.26 43.52% 68.88% 41.80% 88.92%
(0,0.8) 3.69 59.68% 70.00% 48.50% 90.00%
(0,1) 6.18 72.00% 70.00% 50.00% 90.00%

Figure 3.4 reveals that in lognormal distribution, for any level o f moment measure of 

skewness, quartile skewness and medcouple have almost the same power in small sample 

sizes while SSS has the highest power o f all the robust measures of skewness followed by 

octile skewness. For medium sample size, again quartile skewness and medcouple have 

equal power initially for low and high moment measure o f skewness but at veiy high 

moment measure of skewness (3.69 and 6.18), power of quartile skewness becomes 

better than medcouple. Also from start to end, SSS performed better than all other 

measures of skewness followed by octile skewness. For large sample sizes, it can be 

observed that quartile skewness and medcouple have equal power for small levels of 

moment measure of skewness but at high levels of skewness, quartile improves 

significantly from the medcouple. As usual, SSS has greater power than any other 

method while octile skewness has the highest power after split sample skewness.



Figure 3.4 Power Comparisons o f Skewness Tests in Lognormal Distribution
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On x-axis is the theoretical skewness of 
the lognormal distribution with fixed 
mean 0 and varying standard deviation
0.2,0.4,0,6,0.8,1 and sample sizes equal 25 
,100 and 200 which are considered small, 
medium and large respectively.

QS; quartile skewness 
OS; octile skewness 
MC; medcouple 
SSS; split sample skewness

Figure 3.5 below reveals the power of different statistics to pick whether sample under 

consideration is generated from symmetric or from skewed distribution. As p distribution 

is skewed to the left, the statistic which will detect its skewness maximum number of 

times in simulations will be considered to be o f highest power. For small sample sizes, 

octile skewness and SSS are performing almost equally and have a higher power as 

compared to quartile skewness and medcouple. Medcouple has a slightly higher power 

than quartile skewness. For the medium sample size, quartile skewness and MC perform



equally at low levels of moment measure of skewness but MC improves for high levels o f 

skewness. Split sample skewness has maximum power followed by octile skewness. For 

large sample sizes, SSS has maximum power while octile skevmess seems to chase it. 

Remaining two measures i.e. quartile and medcouple perform almost equal.

Table 3.4 Power Computation of Skewness Tests in p Distribution

Size Parameters Moment 
Measure of 
Skewness

Quartile Octile 
Skewness Skewness

Medcouple Split
Sample

Skewness
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(35,6)
(35,5)
(35,4)
(35,3)
(35,2)
(35,1)

-0.30
-0.35
-0.40
-0.49
-0.62
-0.92

0.64%
0.64%
0.32%
1.12%
1.76%
4.00%

1.54%
2.52%
1.82%
2.94%
5.60%
10.08%

1.20%
1.00%

0.60%
1.50%
2.40%
4.80%

0.90%
1.98%
2.34%
3.42%
5.76%
10.80%

(35,6)
(35,5)
(35,4)
(35,3)
(35,2)
(35,1)

-0.30
-0.35
-0.40
-0.49
-0.62
-0.92

3.36%
5.12%
5.12%
8.32%
10.72%
22.88%

7.70%
12.60%
16.80%
22.68%
36.96%
56.14%

4.30%
6.10%
6.00%
10.50%
15.10%
28.80%

11.34%
14.58%
20.52%
30.06%
49.32%
72.72%

(35,6)
(35,5)
(35,4)
(35,3)
(35,2)
(35,1)

-0.30
-0.35
-0.40
-0.49
-0.62
-0.92

6.40%
10.08%
9.60%
14.72%
22.40%
45.76%

19.60%
24.36%
32.48%
44.24%
60.34%
69.02%

7.70%
9.50%
13.20%
19.20%
30.00%
43.40%

26.46% 
35.28% 
46.98% 
60.12% 
80.64% 
89.28% I

For small sample sizes, no technique had any power to detect the skewness p distribution 

except classical skewness but for medium sample size (top right figure 3.4), split sample 

skewness show nearly 30% power while the rest of robust measures of skewness show 

zero power. For large sample sizes (bottom left figure 3.2), among the robust measures of 

skewness, just split sample skewness has power which approaches 100% while other 

robust measures have zero power in p distribution. Overall it is clear that split sample 

skewness has greater power than all the robust measures of skewness in all the 

distributions under consideration and in all sample sizes.



Figure 3.5 Power Comparisons of Skewness Tests in p Distribution
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3.7 Merits of the New Technique

The important thing about the proposed technique is that it is robust in presence of 

outliers. Like quartile and octile skewness measurement techniques, it is easy to compute 

and is free from the complexity that characterizes the medcouple methodology. Its power 

to detect the discrepancy that distribution is symmetric is greater than all the robust 

measures of skewness. More weights are given to IQRl and IQRr because at the central 

octiles (37.5-50, 50-62.5 percentiles) data strength nearly remains same in general even 

in skewed distributions but spread declares its nature at IQRl and IQRr while for the 

external octiles (1-12.5 & 87.5-100 percentiles) outliers might exist in these locations and 

leaving these positions to calculate the robust skewness as it is well known that classical 

skewness is third central moment and it is highly affected even by 1 or 2 outliers. Major 

spread or compression of the data can be seen at IQRl and IQRr so that by giving more 

weight to this portion will identify the skewness that will not be affected even by 12.5% 

outliers on either side. It is therefore, a good addition to the class of robust methods for 

measuring skewness.



CHAPTER 4 

SPLIT SAMPLE SKEWNESS BASED BOX PLOTS

4.1 Introduction

Tukey’s boxplot continues to be extensively used to obtain data summaries. Particularly in 

cases where data are not normally distributed, it offers substantial advantages over other 

standard data summaries. It is also helpful in guiding one for detection o f outliers in the 

data. Tukey’s boxplot however tends to supply misleading results when distributions being 

considered are skewed (Hubert and Vandervieren, 2008). In this chapter this study suggests 

an alternative method to Tukey's boxplot which offers improved data summaries and 

greater accuracy in the identification of outliers when the data being considered belongs to 

skewed distributions.

4.2 Introduction

One of the important tools of exploratory data analysis (EDA) which has become widely 

used is the boxplot. The boxplot uses median and inter-quartile range (IQR), which are 

substantially more robust than the mean and the SD, and hence provide better data 

summaries o f real data sets in most cases. In addition, the boxplot provides a useful guide 

to identification of outliers, which is an important activity for many reasons.



The mean and SD are perfectly adequate (in fact, theoretically optimal) data summaries for 

normal distributions, but fail for more general types of distributions. It is also obvious that 

the boxplot works well for unimodal and symmetric distribution but not so well for the 

distributions outside this category. It is suggested that the boxplot should routinely be 

accompanied by a test statistics for both unimodality and skewness. This will provide users 

a measure by which to assess the suitability of the boxplot in its applications to data 

summary.

Statistical techniques and analyses were developed in the early twentieth century under the 

assumption that data were normal. The assumption of normality offered theoretical 

convenience, simplicity and elegance of analysis, and relative ease o f computational 

requirements. Developments in analysis of non-normal data sets required more 

sophisticated techniques and computational power both of which have only recently 

become available. Widespread use of the mean and standard deviation as data summaries is 

built upon the assumption of normality. These test statistics however fail badly in non­

normal data sets. It has become clear that normality often fails in real data sets. Following 

the normal distribution assumption blindly as observed in many econometric models and in 

research on applied economics may affect the accuracy of inference and estimation 

procedures, in both cross-sectional and time series data sets. Non-parametric techniques 

make fewer assumptions; the range of applications of the non parametric techniques is 

therefore wider than that of parametric techniques. Another benefit of nonparametric 

techniques is that these are often simpler than parametric techniques. In this chapter a non­

parametric technique for outlier’s detection has been introduced.



4.3 Problem Statement

It is easy to see that the boxplot produces a misleading data summary for bimodal data, 

since both the measures of central tendency and spread can be very far off descriptively. 

For example a mixture o f N (0, 1) and N (10, 1) data in equal proportion will be 

characterized as having a median of 5 and spread (IQR) of 10. These statistics do not 

describe either subpopulation distribution, nor is it a sensible description of the mixed 

distribution. It is suggested that different data summaries may be useful for different data 

sets. Unimodality is an important assumption both for Tukey’s boxplot and the variant 

which is proposed here. Thus a test for Unimodality, either formal or informal, should 

routinely accompany these box plots.

Figure 4.1 Data Coverage by Tukey’s Technique in Lognormal (0,1) Distribution
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It is also easy to see the failure of the boxplot for the case of skewed distributions as shown 

in the Fig 4.1. Since this is the topic o f our chapter, this study has provided a detailed 

review of this issue. There are three main failings of the boxplot:



i. It does not provide a good coverage of the centre.

ii. It is ineffective at catching outliers on the narrow side of the distribution as is 

evident in the above figure 4.1. Lognormal distribution is rightly skewed and its 

narrow side is on the left. In figure 4.1 above, it can be seen that on lower side 

Tukey’s fence has covered an area away from the true 95% distributional boundary.

iii. It detects an excessive number of outliers on the long tailed side of the skewed 

distribution. As shown in the above figure 4.1, Tukey’s fence has dropped a lot of 

data on the extended side of the distribution between the Tukey’s fence and the true 

95% distributional boundary.

4.4 Proposed Technique

Tukey (1982) concluded his arguments on “The role of statistical graduate training” with 

the following lines : “We plan to influence what actually goes on, today and tomorrow..

. . We plan to help others in laying foundations for future” (Tukey, 1982, page 889, Cited 

by Kafadar, 2003).This study tries to bring Tukey’s dream a step closer to reality 

through research on the foundations he laid while devising a method that is robust enough 

to detect outliers in skewed distributions.

As discussed earlier, Tukey’s method depends on the estimation of lower and upper 

critical values resulting from the calculations of first and third quartile and the inter­

quartile range of the complete data set. The technique being proposed in the present 

chapter separates the data into two parts from the median and subsequently applies 

Tukey’s technique separately to both parts. In such a case, the first quartile, the third



quartile and inter-quartile ranges lying to the left o f the median generate the lower critical 

value, while those to the right hand side o f the median generate the upper critical value.

In this study the present technique “Split Sample Skewness Based Boxplot” (henceforth 

abbreviated as SSSBB), computes sets of information lying on either side o f the median, 

ranging from the 12.5 percentile to the 87.5 percentile o f the complete data set. By 

contrast, Tukey’s technique is concerned with the central half o f the data, i.e., a range 

extending only from the 25*percentile to the 75**’ percentile o f the complete data set. One 

important advantage of the SSSBB technique over Tukey’s technique in the presence of 

data with skewed distribution so that it is able to reliably produce coverage that 

approaches the middle 95% values o f data more closely than Tukey’s leaving 2.5% data 

on either side of the distribution. Here the intuition suggests that skewness o f interval 

12.5th percentile-37.5th percentile is different from the skewness of the interval 62.5th 

percentile-87,5th percentile. Skewness of the central 25% of the data (12.5% on either 

side of the median) is nearly equal and the extreme 25 % of the data (12.5 % on both 

extremes of the data) is assumed to contain outliers. Tukey’s technique divides the data 

into four parts for detection of outliers while the SSSBB technique divides it into eight 

parts for detection of outliers in skewed distributions.

4.4.1 Construction

Here the procedure of the construction is discussed. Divide the data into two parts from the 

median, so that exactly 50% data lies on both lower and upper sides of the median. Treat 

these lower and upper sides as complete data sets and find the first quartile for the lower 

side Q il, third quartile for the lower side Qbl and inter-quartile range for the lower side



IQ R l. Similarly, first quartile for upper side Q ir, third quartile for the upper side Qsaand 

inter-quartile range for the upper side IQ R r is also computed. Lower and upper critical 

values for detecting outliers in the skewed distributions are computed by subtracting 1.5 

times the inter quartile range of the lower side from the first quartile of the lower side of the 

median and adding 1.5 times the inter quartile range of the upper side with the third quartile 

of the right side o f the median. Mathematically, the boundaries for the complete data set are 

as under:

Q il = 12.5*̂  percentile, Q3R = 87.5*  ̂percentile,

IQ R l =Q3l-Q il=37.5‘̂  percentile - 12.5*̂  percentile,

IQ R r =Q3r- Q ir =  87.5* percentile - 62.5*  ̂percentile 

Lower and upper boundaries are defined as

[L U] =  [Qii, -  1.5 * I Q R ,  +  1.5 * I Q R r ]

Where L is the lower critical value and U is the upper critical value of the data. An 

observation outside these boundaries [L U] would be labeled as an outlier,

4.4.2 Benefits/Advantages of Split Sample Skewness Adjusted 
Technique

The split sample skewness adjusted (SSSBB) technique is superior to Tukey’s technique 

when data are highly skewed. When data are moderately skewed or symmetric, 

performance o f Tukey’s technique is more or less equivalent to SSSBB technique with 

respect to outliers. However 95% true boundary is to remain close to the fence in the 

SSSBB technique. By applying the SSSBB technique, the interval of critical values moves 

towards the skewed side of the data. A common problem inherent in Tukey’s and other 

techniques for detection of outliers is that these techniques extend the fence of critical



values on the compressed side where data are not available and ignore the data on the side 

in which distribution is skewed. The SSSBB technique drags the interval of critical values 

towards the actual position of the data. In other words, it can be said that the interval of 

critical values moves towards where data are foimd to be more abundant. Fig.4.2 below 

compares the expected data coverage pattern of Tukey’s with SSSBB technique. Here the 

square brackets represent the expected interval constructed by Tukey’s technique while 

flower brackets represent the same for the SSSBB technique.

Figure 4.2 Data Coverage by Tukey’s Technique Vs SSSBB

The SSSBB technique provides a placement of fences that improve upon the Tukey’s 

technique. In particular it substitutes interval of critical values of Tukey’s from the first and 

3̂ "̂  quartile to 12.5 percentile and 87.5 percentile respectively along with the selection of 

IQRLand IQRathat are helpful in determining the fence whether the distribution is skewed 

right or left. If IQRl is less than IQRr the distribution is right skewed and vice versa. 

Further, the SSSBB technique is an improvement over the Tukey’s technique in that it is 

more effective in detection of outliers in theoretical as well as empirical data sets.



4.5 Hypothetical Data Example

Let us have the hypothetical data like X= [-200, 3, 7, 31, 63, 127, 255, 540]. Here it is clear 

that distribution is skewed to the right while -200 on the left side of the distribution is much 

away from the nearest observation and it should be treated as outlier.

Critical values of Tukey and SSSBB are given as

LCV (Tukey)' = -223.5 UCV (Tukey) = 388.5

LCV (SSSBB) = -88.93 UCV (SSSBB) = 596.06

It is noticeable that Tukey’s technique cannot detect -200 as an outlier which is a real

outlier in the data and similarly it has detected the value o f 540 as an outlier, when it is real

observation on the right side of the data.

4.6 Hypothesis and Methodology

Outliers in a data set are small proportion coming from a different distribution from the 

rest of the data set comes from. The outlier detection techniques suggest a fence such that 

the observations outside the fence would be labeled as outliers. Five percent probability 

of Type I error is allowed as sizes of both techniques match at 95% true distributional 

boundary i.e. we make the fence such that there is 5% chance of the random draw to be 

labeled as outlier when in fact it is not. However there are infinite types of distributions 

each giving different fence; if different fences are designed for different distributions, 

application to; real data would demand prior knowledge of distributions of the data which 

a researcher usually does not have, so the fence is formulated for the data generated by 

normal distribution. In normal distribution, the size of both techniques under 

consideration is matched at 95% true boimdary (shown in figure 4.3). So keeping in view



the size o f test statistics, five percent probability of Type I error is allowed, 2.5% on 

either side of the distribution.

For the purpose of comparisons, treat all points outside the central 95% as outliers. In a 

distribution with no outliers, this leads to a 5% type I error probability. The main theme 

of this thesis is that the centra! 95% points are not symmetric around the median in 

skewed distributions. Tukey’s technique is symmetric around the median and will 

therefore construct a fence which is too short on the right hand side and too long on the 

left hand side for a distribution which is skewed to the right. For any given distribution F, 

let LCV =  F"H 2.5% ) and UCV = F~^i97.S%') , then [LCV, UCV] are the true upper 

and lower fence values of the distribution F. Different techniques will be assessed 

according to their ability to approach these true values. As this study is dealing with 

skewness and outliers in skewed data sets, the performance will be different on the two 

sides. Distributions only skewed to the right can be considered only. This can be done 

without loss of generality since if X is skewed left, -X is skewed to right.

It is important to note that this study is adopting the 95% fence to compare 

methodologies instead o f comparing the percentage of outliers as in previous studies. 

This methodology has advantage to be stay at 95% boundary as 95% fence is robust 

measure than the extreme values i.e. Maximum and minimum so at the end percentage o f 

outliers detected by each technique are compared.



4.7 Theoretical Approach

Every outlier detection technique makes a fence to discriminate between the usual 

observations and the outliers. The comparison of outlier detection techniques is based on 

the match between the fence and the true distribution of the data. If the distribution of the 

data is skewed, the classical outlier detection techniques tend to treat symmetrically both 

sides of the data. Therefore it leaves a lot of data on the skewed side o f the distribution 

and covers extra area on the shorter tail of the distribution. As a result an unusual 

observation on the shorter tail of the distribution cannot be detected. In order to ensure 

the match between the distribution and the fence, the theoretical fence is calculated by 

allowing 5% probability o f type I error. That is 5% data are allowed to remain outside the 

fence, 2.5% on each side. Therefore the theoretical fence for any distribution can be 

found in the following way 

True Upper Fence= {U: P(x>U) = 2.5%}

True Lower Fence= {L: P(x<L) = 2.5%} where x is a draw from the underlying distribution 

Fortunately, this demarcation of fence matches the fence of Tukey and SSSBB 

techniques when applied to the normal distribution. All outlier detection techniques are 

compared with respect to the match between the true fence and the fence designed by 

outlier detection techniques. In order to compare different techniques, adjustments in 

techniques are made to ensure that there is an exact match between the fences drawn by 

them at the st^dard  N (0, 1) distribution. This ensures that they have equal sizes, so that 

a fair comparison is possible.

In order to undertake a theoretical approach, the third central moment o f the distribution for 

normal and t distributions in case of symmetric distribution is computed to match the size



of the test. Afterwards, fences of both techniques have been compared for the chi square 

distribution using different degrees o f freedom and with different parameters of the 

lognormal and p distributions. Third central moments are found for the distributions under 

consideration using different parameters of p and lognormal distribution and different 

degree of freedom of chi square. True boundaries are considered at 95% central values of 

the distribution leaving 2.5% on each side of the distribution and fences of both techniques 

are calculated by substituting theoretical values of the distribution in their respective 

formulae.

Figure 4.3 Tukey’s and SSSBB Technique Fences vs. 95% Boundaries in Standard 

Normal Distribution
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Figure 4.3(left) shows that fence of the SSSBB (marked by green triangles), fence of 

Tukey’s technique marked by red square and true 95% fence marked as grey ball. As the 

size o f both techniques is different from the true 95% fence which should be equal for the 

comparison o f power of both techniques. So it is necessary to equalize the size of both



techniques at 95% true fence. Taking 95% true fence as base fence and then adjusting 

Tulcey’s fence at true 95% fence is possible by using the formula below:

[L U] =  [Q^ -  0.95 * ((?3 -  Q i )  Qs  +  0.95 * ((?3 -  Q^)]

While SSSBB formula is adjusted as

[L U] =  [Qu -  0.97 * IQ R î Qsr +  0.97 * IQRfi]

After adjusting the size with respect to 95% fence, it can be observed that size o f both 

techniques is matched at 95% fence shown in figure 4.3 (right). So the size o f both 

techniques is matching at 5% probability of type I error. At 5%, true values of standard 

normal distributions are -1.96 and +1.96 (at 2.5% and 97.5%). The critical values 

computed by Tukey technique and SSSBB are same after adjustment in formulae of both 

techniques i.e. -1.96 and +1.96

Table 4.1 Fences of Tukey and SSSBB Techniques and True Boundary in 

Distribution

Degree
of
Freedom

Moment 
Measure of 
Skewness

True
LCV

Tukey's
LCV

SSSBB
LCV

True
UCV

TUKEY’S
UCV

SSSBB
UCV

25 0.57 13.12 11.01 12.33 40.65 38.27 39.67
20 0.63 9.59 7.49 8.81 34.17 31.78 33.19
15 0.73 6.26 4.19 5.50 27.49 25.09 26.50
10 0.89 3.25 1.22 2.51 20.48 18.07 19.48
5 1.26 0.83 -1.08 0.18 12.83 10.38 11.80
2 2 0.05 -1.51 -0.39 7.38 4.86 6.29



Chi Square Distribution
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Figure 4.4 above shows that fence of SSSBB (represented by triangles) is close to true 95% 

fence (represented by balls) as compared to Tukey’s fence (represented by squares) on both 

sides of the distribution. In other words SSSBB has more power to approach the reality as 

compared to Tukey’s fence. It is obvious that for any level of moment measure of skewness 

(starting from 0.57 in chi square with 30 degree of freedom to 2 for chi square with 2 

degree of freedom) fence of SSSBB is close to the true 95% fence. So it can be concluded 

that SSSBB performs better than Tukey’s technique in constructing fence on both narrow 

and extended side o f the distribution.



Parameters Moment 
Measure of 
Skewness

True
LCV

Tukey's
LCV

SSSBB
LCV

True
UCV

TUKEY'S
UCV

SSSBB
UCV

(35,1) -0.92 0.90 0.93 0.91 1.00 1.02 1.01
(35,2) -0.62 0.85 0.88 0.87 0.99 1.02 1.00
(35,3) -0.49 0.82 0.84 0.83 0.98 1.01 0.99
(35,4) -0.4 0.79 0.81 0.79 0.97 0.99 0.98
(35,5) -0.35 0.76 0.78 0.77 0.96 0.98 0.97

Figure 4.5 below provides the comparison of fences with the true distributional fence at 

95% central values of the p distribution which shows that on the lower side of the 

distribution, SSSBB technique manages to construct a lower fence closer to the 2.5 

percentile o f the distribution. Again it is clear that for any level of skewness (in absolute 

terms) SSSBB technique is performing better as compared to the Tukey’s technique. The 

upper fence reveals that SSSBB fence is more close to the true 95% boundary than Tukey’s 

technique fenced as Tukey’s fence is farther. So in p distribution, performance o f SSSBB is 

better for any moment measure of skewness on both narrow and extended sides of the p 

distribution.
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Figure 4.6 shows a comparison between Tukey’s and the SSSBB fences approaching the 

95% true values o f the lognormal distribution. It is observed that at any level of moment, 

measure of skewness on the lower side of the distribution SSSBB fence is very close to the 

true fence while fence o f Tukey’s technique moving away from the true fence as the level 

of skewness increases.

Table 4.3 Fences of Tukey and SSSBB techniques and True 95% Boundary in 

Lognormal Distribution

Parameters Moment 
Measure of 
Skewness

True
LCV

Tukey's
LCV

SSSBB
LCV

True
UCV

TUKEY'S
UCV

SSSBB
UCV

(0,0.2) 0.61 0.68 0.62 0.66 1.48 1.40 1.45
(0,0.4) 132 0.46 0.24 0.39 2.19 1.83 2.02
(0,0.6) 2.26 0.31 -0.12 0.19 3.24 2.29 2.75
(0,0.8) 3.69 0.21 -0.49 0.03 4.80 2.79 3.69
(OA) 6.18 0.14 -0.87 -0.08 7.10 3.34 4.89



On the uppers side of the lognormal distribution, it is evident that true fence is moving 

away from the fences of both techniques as the skewness is going to increase but the fence 

of SSSBB is close to true fence as compared to Tukey’s fence. In other words it can be said 

that SSSBB is constructing fence close to true fence around the central 95% of the data for 

any level of skewness on both sides of the distribution.

Figure 4.6 Fences of Tukey and SSSBB Technique Matching with True 95% Fence in 

Lognormal Distribution
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4.8 Conventional Approach: Best and Worst Case in Context of 

Percentage Outliers

In conventional methodology it is frequently discussed how much percentage o f outliers a 

technique has the power to detect in a specific distribution and performance of the 

technique is measured on the basis of this detected percentage of outliers. Both



methodologies are more or less the same but the methodology introduced in previous 

section has an advantage in that it reflects the theoretical background o f constructing 

fence aroimd 95% by matching size of techniques under comparison and leaving 5% for 

type I error. In earlier studies it is common to compare the percentage o f outliers but a 

confounding factor is that size is not matched. If a technique is generating larger fence it 

will detect small number of outliers. For this purpose a researcher has to match the size 

before power with respect to percentage o f outliers which are to be compared.

In the section 4.6, it has been already discussed how to construct the fence around true 

95% of the distribution. In this section, the best and worst cases in the context of 

percentage of outliers will be discussed. The best case discusses the best performance of 

SSSBB in random sample of the skewed distribution while the worst case means the 

worst performance of SSSBB technique. From the figures4.5, 4.6 and 4,7 above, it is 

clear that in all cases the fence of SSSBB is close to the 95% fence but here we wanted to 

assess this in terms of percentage of outliers as conventionally just percentage outliers 

has been discussed in earlier studies like in “A review and comparison o f outliers 

detecting techniques” (Songwon Seo,2006).

Table 4.4 Percentage Outliers Detected by Tukey and

SSSBB Techniques in Chi Square Distribution
Degree

of
Freedom

Skewness Left
Outliers
Tukey

Left
Outliers
SSSBB

Right
Outliers
Tukey

Right
Outliers
SSSBB

30 0.52 1.09 1.89 4.30 3.15
25 0.57 0.98 1.78 4.47 3.14
20 0.63 0.76 1.68 4.66 3.24
15 0.73 0.52 1.50 4.94 3.35
10 0.89 0.22 1.17 5.40 3.41
2 2 0.00 0.00 8.71 4.23



A sample from chi square distribution of size equal to 100 is used for simulated study 

with different degree o f freedom. Some 5000 simulations were run and compiled to 

compute the percentage of outliers detected by both techniques under comparison and it 

can be obseryed that on both sides of chi square distribution, SSSSBB has detected 

outliers close to 2.5 percent as compared to Tukey’s technique.

Table 4.5 Percentage Outliers Detected by Tukey and

SSSBB Techniques in Lognormal Distribution

Parameters Skewness Left
Outliers
Tukey

Left
Outliers
SSSBB

Right
Outliers
Tukey

Right
Outliers
SSSBB

(0.0.2) 0.61 1.01 1.88 4.61 3.20
(0.0.4) 1.32 0.15 1.18 6.51 3.92
(0.0.6) 2.26 0.00 0.60 8.33 4.52
(0.0.8) 3.69 0.00 0.22 9.84 5.01

(0,1) 6.18 0.00 0.06 11.22 5.48

Similarly for the same sample size in lognormal distribution, percentage of outliers 

detected by both techniques are presented in table 4.5 and it can be easily observed that 

SSSBB is performing well as compared to Tukey’s technique as percentage o f outliers 

detected by SSSBB are close to 2.5 percent than percentage of outliers detected by 

T ukey ’ s technique.

4.9 Comparison of SSSBB Technique with Kimber’s Approach

Kimber (1990) proposed modification in Tukey’s technique for the skewed distribution 

[Z. U] = [Q^~ 9 ^ { M - Q ^ )  Q z + g * { Q ^ - M ) ]

To address the problem for skewed distributions, he replaced Q3 with median for the left 

critical value and Qi with median for the upper critical value. In the following section, 

the performance o f the newly introduced technique is compared with Kimber technique.



4.9.1 Comparison in Symmetric Distribution

In symmetric distributions we do adjustment in SSSBB and Kimber technique to equalize 

the interval in symmetric distributions at 95% true fence. From the formula for critical 

values by Kimber method

[L U] = [Q,-  (?3 +  fif * (<?3 -  M)]

And the technique introduced in this chapter is defined as 

[L U] = [Oil -  1.5 * IQRl Qsr +  1-5 * IQRr]

But these tests do not construct equal interval in symmetric as given in the below figure 

4.7 on left side. To equalize size at 95% fence, adjustment in SSSBB has been made and 

sizes match at 0.97 instead of original 1.5 at 95% fence (-1.96 and +1.96) and in Kimber 

technique it is found the value of g equal to 1.9 instead of 1.5 matches at true 95% fence. 

Here reader can observe the exact matching size at 95% fence in the figure 4.7 (right) 

below.



STANDARD NORMAL

- i- f f ln ie r lC V

-•"afiterUC/

-i-SSSSSUCV

-#-TruslCV

- # - T r t e l0

Standard Normal After Matching Size 
at95% Fence

2.50

2.00

13D

1.00

3 350 
= 0.00 
5 3̂0 

- 1.00 

-liD 
•2.00 

-2.S0

- i-K in 'b s r lC ^

-§-:<iirtefUC/
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In the figure: golden round balls are at true 95% boundary o f the distribution and red 

squares represent the Kimber’s interval of critical values while the green triangles are for 

the SSSBB technique. Intervals of critical values of both techniques under comparison 

are overlapping with true 95% boundary.

4.9.2 Comparison in Skewed Distributions

In this section, the study compares the power o f both tests in skewed distributions. The 

better technique constructing interval o f critical values closer to the true 95% boundary is 

expected to perform better. The skewed distributions that were analyzed in previous 

section are also taken here for power comparison.



Figure 4.8 reveals that on the lower side of the chi square distribution, lower fence of 

SSSBB is closer to the true lower fence (2.5%) as compared to the lower fence produced 

by the Kimber technique. Same situation can be observed on the upper side of the 

distribution. For both mild and high level of moment measure of skewness, performance 

of SSSBB is better than Kimber technique on both side of the chi square distribution.
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Figure 4.9 shows that for the p distribution, on the left side of the distribution, fence of 

SSSBB is close to true 95% fence than Kimber’s technique fence. Also on the upper side 

of the distribution, SSSBB fence is close to true upper fence. Hence SSSBB is 

performing better on both sides of the distribution as compared to Kimber technique in p 

distribution.

Figure 4.10 shows that on the lower side of the lognormal distribution, SSSBB fence is 

approaching the true 95% and on the upper side of the distribution, SSSBB fence is closer 

to true upper fence than Kimber fence. Also it is noticeable that Kimber’s interval is on 

the left side of the true fence on both sides unlike intervals produced by SSSBB.





4̂.10 Conclusion

From the above discussion it can'be concluded that in skewed distributions, Tukey and 

Kimber techniques constructs interval of critical values wrongly that covers area along the 

narrow side of the distribution while leave data on the extended side of the distribution. 

Performance of Tukey’s and Kimber techniques falls when the moment measure of 

skewness increases as compared to SSSBB technique. This phenomenon can be more 

significant in the lognormal distribution. This newly devised technique constructs fences 

closer to the true fence than Tukey and Kimber fences in all the distributions and has a 

clear advantage over Tukey’s and Kimber techniques. Fences of SSSBB are always close to 

the true 95% fence as compared to Tukey and Kimber technique fences. However no 

technique constructs fence exactly equal to the true 95% fence.



CHAPTER 5 

MODIFIED HUBERT VANDERVIEREN BOXPLOT

5.1 Introduction

Hubert and Vandervieren (2008) tried to modify Tukey’s technique for highly skewed 

data for detection of outliers in univariate distribution. Here Hubert’s Vandervieren 

boxplot will henceforth be referred as HVBP in this study. A new measure of skewness 

“Medcouple” was introduced by G. Brys, M. Hubert and A. Struyf (2004) and the 

medcouple was incorporated in Tukey’s technique to address the problem of idenHfying 

outliers in skewed distributions. The problem was addressed partially. For skewed 

distributions and large sample sizes, it performs well but a major problem relates to the 

construction of fence. HVBP constructs a fence veiy far from the true 95% boundary of 

the skewed distribution especially on the extended side of the distribution. Our proposed 

modification in HVBP performs better in both moderately and highly skewed 

distributions and more efficiently detects outliers asymptotically. Also it constructs fence 

closer to the true central 95% boundary o f the distribution for most o f the distributions. 

Theoretical approach and simulation studies verify our claim.



5.2 Problem statement

Tukey’s technique is used to detect outliers in univariate distributions for symmetric as 

well as slightly skewed data. As the symmetry of the distribution decreases, its 

performance worsens and it starts to construct interval of critical values which exceeds 

the data limit on the one side and leaves some portion on the other side of the data. If the 

distribution is left skewed and the upper critical value exceeds even the maximum o f the 

data while lower critical value will leave out a lot of data in computer generated 

distributions.

Hubert and Vandervieren (2008) tried to overcome the problem by incorporating a robust 

measure of skewness in Tukey’s technique. Brys et. al. (2004) introduced “Medcouple” 

which is a robust measure of skewness and Hubert and Vandervieren incorporated it as a 

power of exponential times some constant on left and right as -3.5 and 4 changing 

position depending upon sign o f medcouple. Incorporating this function, it condenses the 

interval from narrow side and extends the interval towards the puffy tail. It functions very 

well for the distributions which are highly skewed (skewness > 3) and sample size is 

sufficiently large but fails to work when the skewness is slightly less than 3. For example, 

when a researcher checks the interval, fitting HVBP technique around the 95% true 

values of the p distribution, a pattern given in the figure below appears.



Figure 5.1 Fence Construction of HVBP Technique around True 95% Boundary in p 

Distribution
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It constructs the interval o f critical values even larger than extremes of the data leaving a 

great space between true critical values (2.5% and 97.5% of the distribution) and test 

statistics critical' values as shown in the above figure 5.1. Performance of Hubert and 

Vandervieren Box Plot (HVBP) depends more on the exponential function relative to 

medcouple. This exponential function is multiplied on both sides with IQR. Medcouple is 

a small number which remains generally between 0.4 and 0.6 in absolute terms and 

cannot affect the constant multiplied by it as a power of exponential function. In this way 

it moves the interval of critical values away from the real position of the data especially 

in case of skewed data sets.

[L U] =  [Qi -  1.5 ♦ IQR * +  1.5 * IQR * If  MC>0

For example if MC = 0.5 that is MC > 0, then = 7.39 and = 0.17 showing that 

HVBP technique is extending the upper critical value 7.39 times IQR and compressing the 

lower critical values 0.17 times IQR respectively even in the distribution which is only 

slightly skewed in the positive side due to which it extends the interval way above the true 

upper critical value (97.5% of the distribution) o f the data and compresses it even from the 

true lower critical value (2.5%) of the data. Due to this the range of critical values is 

incorrectly increased affecting the efficiency of the test. Negatively skewed data sets are 

mirror images of the positively skewed and the range is now defined as 

[L U] =  [(?i -  1.5 ♦ IQR * Q^ + 1.5 ♦ IQR * gS S.MCj if  m C ^

These suffer from the same difficulties.



5.3 Modified Hubert Vandervieren Boxplot (MHVBP)

Hubert and Vandervieren (2008) used constants (3.5 and  4) on different sides 

[ICV UCV'\ and changed the position of constants with respect to the sign of the 

medcouple. The problem in using these constants as power of exponential times MC is 

that it generates a wider fence especially when data are moderately skewed. To overcome 

this problem of generating large fence for moderately skewed data sets this modification 

is going to depend on, the compression or expansion of the interval of critical values 

based on the classical skewness time’s medcouple (instead o f just sign of classical 

skewTiess, constants and medcouple) because by just using the constants HVBP 

constructs a very large fence even away from the extremes o f the data. When data are 

moderately skewed, it will construct fence closer to the 95% fence and as the skewness is 

large, the interval will approach to the critical values of HVBP technique. So the main 

difference between the HVBP and Modified Hubert Vandervieren boxplot (latter on 

referred as MHVBP) is the use of classical skewness instead of constants.

5.4 Construction of Technique by Proposed Modification

Using similar pattern of Hubert and Vandervieren boxplot, the technique is framed as 

[L U] =  [Qi  -  1.5 * IQ R  * + 1.5 * I Q R  *

Here a condition is imposed that if  classical skewness is greater than 3.5 then it should be 

treated as 3.5. The reason to fix maximum level o f skewness to 3.5 is to avoid the 

problem o f constructing the large interval of critical values with classical skewness test 

statistic that might be higher than 3.5. Not allowing the skewness statistic to exceed 3.5



synchronizes the interval of critical value with the data sets as against the adjusted box 

plot and prevents the interval to be very large in case of highly skewed distributions. It 

also constructs smaller interval in case o f moderately skewed distributions. So, there are 

clear advantages in making this modification. When the distribution is moderately 

skewed, HVBP takes into account the constants raised to an exponent and generates an 

interval large enough that even outliers actually present in the data are not detected and 

the test commits type II error frequently. By changing the constants with the classical 

skewness, its performance gets better for small and slightly skewed data sets as we can 

observe the results from the Monte Carlo simulation study.

5.5 Hypothesis and Methodology

Same methodology will be adopted as we discussed in the chapter 4 for comparison of 

HVBP technique and MHVBP technique. As both modifications are being made in the 

Tukey’s technique and if the distribution under consideration is fairly symmetric, then both 

techniques become exactly similar to Tukey’s technique. So it can be said that in case of 

symmetric distributions both techniques with same size and power can be compared at any 

level o f confidence. As the powers o f two techniques has been compared in chapter 4 

allowing 5% probability o f type I error, so in this section the same level for comparison of 

both modifications in Tukey’s technique will be adopted. A comparison of both techniques 

brings out the following facts:

> Fences of both techniques will be compared separately on both sides of the 

distribution.



>  A technique constructing a both fences closer to the 95% true boundary o f the 

distribution on either side will be treated performing better on that side.

>  If a technique is constructing fence close to true boundary on one side and other 

technique on 2nd side of the distribution then distance o f both sides will be 

compared to access the performance of the technique.

>  A technique constructing fence inside will be treated to show a better coverage if 

the distance of both fences is same as the true fence. If  both techniques have fences 

on opposite side of the true fence there is a chance that some technique might 

generate a larger fence and at the same time minimize the percentage o f outliers 

and increases chance of Type II error.

5.6 Theoretical Approach and Simulation Study

The study finds the moment measure of skewness of the distribution using various 

degrees of freedom for chi square distribution and various parameters for the lognormal 

and p distributions. True boundaries are constructed around 95% central values of the 

distribution leaving 2.5% on either side and fences of both techniques are taken from the 

simulated lower and upper critical values. Both upper and lower critical values for both 

the techniques under discussion are computed through repeated samples. For this purpose 

simulation study has been done for the distributions discussed above with different 

number o f sample sizes for different levels of skewness. One hundred thousand 

repetitions have been done for x^distribution with 2, 10, 15,20, and 25 degree o f freedom 

with sample size of 25, 50,100 and 500. Samples from p distribution are taken with 

similar sample sizes with parameters a  and p as p (35, 2), p (35, 3), p (35, 4), p (35, 5).



Correspondingly same sample sizes are taken from lognormal distribution as 0.2 ), 

(0, 0.4^), (0, 0.6^), /nW (0, O.S^),Cn^ (0, 1). A total of nine statistics were 

computed including left outlier, right outlier, total outlier, lower critical value, upper 

critical value, interval width (constructed by difference of the lower and upper critical 

values), maximum of the data, minimum of the data and sample skewness of the data for 

comparison of results obtained from various techniques. But in the methodology 

discussed above the study is just usmg LCV and UCV. It is already defined in chapter 4, 

the three sample sizes 25,100 and 500 as small, medium and large sample sizes 

respectively. The true boundary o f 95% remains the same for the entire sample sizes 

which are plotted along y-axis and moment measure of skewness along x-axis.

5.7 Size of Tests

As both adjustments are based on Tukey’s technique, when the data are symmetric the 

medcouple equals zero thereby approaching Tukey’s technique.

[I y] =  [Q̂  -  1.5 * IQR * +  1.5 + IQR * e3.s*MCj if  m c<0

It is clear from the above equation that when MC is zero, it will result in the exponent 

approach the power zero which means the resulting test statistic equals 1. Substituting the 

value of MC equal to zero will result in the above equation in Tukey technique. Similarly 

by substituting the value of MC or skewness equal to zero (in case of symmetric 

distribution), the equation below will also be converted to Tukey technique

[L U] = [(?i -  1.5 * IQR * ^  ^ 5 *  ̂qSk*\mc\̂



The size o f both the techniques is identical as based on the Tukey’s technique at any level 

of significance. Adopting the standard methodology, we compare both the techniques at 

95% level of confidence leaving 5% chance for type I error.

5.8 Power of the Test

As the size of both techniques is similar in symmetric distributions, comparison o f the 

powers of both techniques is justified in asymmetric distribution. Power of any technique 

will depend on constructing the fence around true 95% fence o f the distribution. For 

comparison of powers, chi square, p and lognormal distributions are selected as they are 

skewed distributions.

T a b l e  5 .1  F e n c e s  o f  H V B P  a n d  M H V B P  T e c h n iq u e s  a n d  9 5 %  T r u e  B o u n d a r y  i n  

D i s t r i b u t i o n

Sample
Size

Moment Measure 
of Skewness

0.57 0.63 0.73 0.89 2.00

True Lower Fence (2.596) 13.12 9.59 6.26 3.25 0.05

l/> HVBP 4.66 2.39 0.38 -1.08 -0.90
rsl s MHVBP 6.70 3.75 1.11 -1.09 -1.64

s ■Z ^u  ̂
 ̂>

HVBP
MHVBP

8.52
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3.64

3.06
1.06

0.88
-1.04

-0.53
-1.32

o s HVBP 9.29 6.29 3.56 1.24 -0.47oin MHVBP 6.51 3.62 1.06 -0.99 -1.17
True Upper Fence (97.5%) 40.65 34.17 27.49 20.48 7.38

1/) HVBP 57.72 50.17 42.25 33.96 19.94
IN

u MHVBP 44.34 37.38 30.11 22.50 8.42
O u 3 HVBP 51.03 43.90 36.63 28.97 16.37o
tH V. <TJ

Q.3
MHVBP 44.18 37.22 30.01 22.40 8.90

O HVBP 49.50 42.53 35.32 27.86 15.52
wLTl MHVBP 44.14 37.17 29.97 22.39 9.14

Figure 5.1 (top) shows the interval fitting pattern of adjusted boxplot and proposed 

treatment around the true 95% boundaries in distribution for small sample size. It is 

clear that on the lower side, fences of HVBP and MHVBP overlap and fences of both 

techniques are at the same distance from the true lower fence implying equal



performance. For the upper fence, it is obvious that true 95% fence and fence of MHVBP 

overlap while the fence o f HVBP is at a large gap from the true upper fence.
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For medium sample size it can be observed that on the lower side, HVBP fence improved 

its performance as compared to that o f MHVBP while on the upper side it can be noticed 

that MHVBP has a great advantage over HVBP. Overall comparison of interval shows 

that MHVBP interval is close to the 95% fence. Nearly same situation of medium sample 

size can be observed in the large sample size of distribution.

T a b l e  5 . 2 .  F e n c e s  o f  H V B P  a n d  M H V B P  T e c h n iq u e s  a n d  9 5 %  T r u e  B o u n d a r y  i n  p  

D i s t r i b u t i o n

Sample Moment Measure -0.35 -0.40 -0.49 •0.62
Size of Skewness
True Lower Fence (2.5%) 0.76 0.79 0.82 0.85

HVBP 0.61 0.64 0.67 0.70
PM TO

.y MHVBP 0.73 0.76 0.80 0.84

% u  = HVBP 0.67 0.69 0.72 0.75
k_ ro MHVBP 0.73 0.76 0.80 0.84

O o HVBP 0.68 0.71 0.73 0.76
s MHVBP 0.73 0.76 0.80 0.84

True Upper Fence (97.5%) 0.96 0.97 0.98 0.99

in s
HVBP 1.01 1.02 1.02 1.02
MHVBP 1.01 1.02 1.03 1.03

g u = HVBP 0.99 1.00 1.01 1.01
L- TO MHVBP 1.01 1.02 1.03 1.03

8in
Q.Q. : HVBP 0.98 0.99 1.00 1.01

I MHVBP 1.01 1.02 1.03 1.03

Figure 5.2 shows the fence construction pattern of HVBP and MHVBP techniques 

around 95% true fence in p distribution. For small sample it is clear that on the lower side 

of the distribution, fence of MHVBP is very close to true lower fence (constructed at 

2.5% of the distribution) as compared to HVBP while the upper side fences of HVBP and 

MHVBP overlap which implies that equal performance on the upper side while better 

performance of MHVBP on the lower side of the distribution. For medium sample size, 

again fence of HVBP is away (even from the range o f the data) from the true lower fence 

while HVBP has a bit o f advantage on the upper side of the distribution. Again overall



fence o f MHVBP is close to the true 95% fence in p distribution. Almost similar pattern 

can be observed in the large sample size.
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Figure 5.3 shows the fence constructing style o f the HVBP and MHVBP techniques in 

lognormal distribution. For small sample size» on the lower side of the distribution, fences 

o f HVBP and NfflVBP overlap with the true lower fence while for the upper side of the 

distribution, true upper fence and fence of MHVBP overlap and HVBP fence has a wide 

gap from the true fence. For the medium and large sample size, lower fences o f HVBP 

and MHVBP approximate the true lower fence while on the upper tail MHVBP has a 

significant improvement over HVBP.



Figure 5.4 HVBP and MHVBP Technique Fences Matching with True 95% Boundary 

in Lognormal Distribution
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4.11 Conventional Approach; Best and Worst Case in Context of 

Percentage Outliers

As already discussed, detection of percentage of outliers and constructing the fence are 

nearly the same things but for the sake of percentage of outliers detected, this study 

presents the comparison of the percentage of outliers detected by both techniques in this 

section. From the above figures 5.2, 5.3 and 5.4, it is evident that MVHB has constructed 

fences accurately around the true 95% boundary in chi square distribution with small 

sample size. So for the best case, chi square distribution with small sample size has been 

selected .while for the worst case, p distribution with medium sample size has been 

selected. Here both the techniques are based on the Tukey’s technique as already 

discussed and a technique detecting outliers approaching 2.5 will be treated better. It is 

observed that on the left side of the distribution, MHVBP has percentage much closer to 

2.5% as compared to HVBP technique while for the right side of the distribution, at 

smaller level of skewness both techniques are performing equally and for the high 

skewness HVBP perform better.

Table 5.4 Percentage Outliers Detected by HVBP and 

MHVBP Techniques in Chi Square Distribution Small Sample Size

Degree
of

Freedom

Moment 
Measure of 
Skewness

Left
Outliers

HVBP

Left
Outliers
MHVBP

Right
Outliers

HVBP

Right
Outliers
MHVBP

25 0.57 5.13 1.73 4.31 3.95
20 0.63 5.37 1.63 4.21 4.03
15 0.73 5.28 1.49 4.11 4.26
10 0.89 5.45 1.20 3.82 4.36
2 2 4.97 0.52 2.69 4.75



For the worst case, medium size of the p distribution has been selected and has almost 

same performance in both medium and large sample sizes. Here in table 5.5, it can be 

observed that HVBP is performing better as its percentage is approaching 2.5 percent on 

the left side o f the distribution while for right side MHVBP has almost the same 

performance as HVB has but by looking at total percentage MHVBP looks performing 

better. So it can be concluded that in worst case MHVBP’s performance equals HVBP 

technique.

Table 5.5 Percentage Outliers Detected by HVBP and 

MHVBP Techniques in p Distribution Medium Sample Size
Parameters Moment 

Measure of 
Skewness

Left
Outliers

HVBP

Left
Outliers
MHVBP

Riglit
Outliers

HVBP

Right
Outliers
MHVBP

(35,2) -0.62 2.09 4.48 4.11 0.12
(353) -0.49 2.42 4.34 4.19 0.27
(35,4) -0.40 2.64 4.17 4.25 0.45
(35,5) -0.35 2.82 4.02 4.26 0.64

5.10 Artificial Outlier Example

Twenty five numbers [10.52, 12.29, 12.75, 13.04, 14.72, 14.84, 15.01, 17.51, 17.87, 

18.09, 18.94, 19.15, 19.82, 21.34, 21.54, 23.51, 25.21, 26.51, 27.08, 29.55, 29.73, 30.15, 

31.35, 33.13, and 34.01] have been generated fi*om chi square distribution with 20 degree 

of fi-eedom and last 3observations have been replaced v^th 3 outliers 40, 55, and 70 on 

the right side o f the distribution. Then by applying both the techniques gave the following 

results.



T a b l e  5 . 6  O n e  S id e d  A r t i f i c i a l  O u t l i e r s  D e t e c t e d  b y  H V B P  a n d  M H V B P

Left Outliers Right Outliers LCV UCV

HVBP 1 0 11.83 72.80

MHVBP 0 2 9.00 52.49

Here HVBP has wrongly extended the fence towards right side and has detected outliers 

from the left which is not outlier. On the other hand it could not detect the inserted mild, 

medium and big outliers in the data on right side o f the distribution. Standard deviation of 

the data (including outliers) is 13.63 and 3SD fence on right side is 65.07 while the fence 

constructed by HVBP is 72.80 which is even away from 3.5SD. In contrast MHVBP has 

detected the medium and big outlier while it could not detect the mild outlier and no 

outlier on the left side o f the distribution. Also it is observed that fence o f HVBP is close 

to the real observations.

Again by replacement o f the extreme observation on both sides by the outlier -20 and 60 

and application o f both techniques to detect outliers gave the following results.

T a b l e  5 . 7  T w o  S id e d  A r t i f i c i a l  O u t l i e r s  D e t e c t e d  b y  H V B P  a n d  M H V B P

Left Outliers Right Outliers LCV UCV

HVBP 1 0 11.38 66.38

MHVBP 1 I 3.56 40.67

Here it can be observed that HVBP has detected left outlier accurately while it could not 

detect the right outlier which is even bigger than left outlier. Looking at the fence, it is



clear that HVBP has erroneously extended the fence on right side while MHVBP has 

detected outliers accurately on both sides of the data; also its fence seems better than 

HVBP over the data set.

5.11 Conclusion

On the basis of above discussion it can be concluded that for all sample sizes, 

HVBP constructs a wider fence outside the true 95% distributional boundary on the 

extended side o f the distribution and chances o f Type II error are increased while 

MHVBP performs better. With the increase in sample size, performance of HVBP 

improves a bit on the compressed side o f the distribution as compared to MHVBP. At all 

levels of moment measure of skewness, performance of HVBP is not good as compared

to MHVBP that performs efficiently in all sample sizes and smaller levels of skewness.
i

Generally HVBP over adjusts the fence while MHVBP constructs smaller fence around 

the 95% true distributional boundary and shows greater power to construct fence around 

the true 95% fence. So finally it can be inferred that MHVPBP is a good modification 

and shows a significant improvement on the HVBP technique.



CHAPTER 6 

MEDCOUPLE BASED SPLIT SAMPLE SKEWNESS 

ADJUSTED TECHNIQUE

6.1 Introduction

The main purpose o f this thesis is to introduce a technique which constructs the fence 

accurately to. identify the outliers in the data set efficiently. As it has been already 

discussed, the technique constructing fence around the 95% true boundary o f the 

distribution should be treated as performing better or in other words it will detect possible 

outliers in the data set efficiently. A new technique for outlier detection has been devised 

and discussed in chapter 4 and a modification in HVBP is proposed and discussed in 

chapter 5. It has been shown that in both chapters 4 & 5, the devised technique and 

proposed modification has outperformed to the rest of existing techniques. But by deep 

look at the figures o f the fences in chapter 4 and chapter 5, in spite o f the fact that our 

techniques construct fences close to true 95% fence, the constructed fences are still away 

from the from the target. This study aims at the construction of a technique that overlaps 

the true fence of 95% of the distribution. In search o f our target for the best technique and 

sophistication of results matching with true fence, medcouple is incorporated in SSSBB 

technique that is introduced in chapter 4. Although this technique is difficult to apply 

without computer programming like HVBP and MHVBP techniques, it constructs the



fence nicely around the true 95% fence of the distribution. We have incorporated MC in 

SSSBB technique in the similar fashion as in MHVBP (chapter 5), so it is named split 

sample skewness and medcouple based boxplot henceforth referred to as MCSSSBB.

6.2 Proposed Modification

The SSSBB technique was designed on the octiie basis as 

Qil = 12.5th percentile, Qsr = 87.5 percentile,

IQ R l =Q3l-Q il=37.5* percentile - 12.5**̂  percentile,

IQ R r =Q3r- Q ir =  87.5^ percentile - 62.5^  ̂percentile 

Lower and upper boundaries were d e fm ^  as

IL U] = -  1 . 5  * IQR, +  1-5 * IQRr]

Where L is the’lower critical value and U is upper critical value of the data. An observation 

outside these boundaries [L U] would be labeled as outlier. The medcouple is the 

exponential power times the classical skewness with l.S * IQRi and l.S * IQRr A

restriction is imposed rather heuristically that if skewness is greater than 2, it should be 

treated as 2 selecting this number by hit and trial method because when skewness exceeds 2 

it enlarges the interval o f critical values and interval width becomes greater leading to an 

alteration in the parameters and watering down of the efficiency of the test. Mathematically 

it can be written as

[ L  U] =  [ Q i t  -  1 . 5  *  IQRl * +  1 . 5  »  IQRg •  MC < 0

[I U] =  [ Q i i  -  1 . 5  » IQRl, »  +  1 . 5  »  IQR^ »  g-\sKiUncyf m C > 0

Where |5if|+ = ;
2  i f  | 5 f c |  >  2  

| 5 f e |  i f  | 5 / f |  <  2



Where SK is the moment measure of skewness and MC is the medcouple.

6.3 Monte Carlo Simulation Study

A simulation study has been done for the verification o f the claim. The p and 

lognormal distributions are used for this purpose with different sample sizes and different 

parameters. Sample size has been taken equal to 25, 50 100 500 in all the distributions 

while experiment has been done on the with 2 , 1 0 ,  15, 20 and 25 degree of freedom 

while for the p distribution, the parameters are (35,2), (35,3), (35,4), (35,5) and for the 

lognormal are (0,0.2), (0,0.4), (0,0.6), (0,0.8), (0,1). One hundred thousand replications 

have been made for each case that has been done in the Matlab software and a total of 

nine statistics have been computed as discussed in 5 but just 2 has been used for the 

analysis purpose.

6.4 Comparison of Fences Produced by MCSSSBB and HVBP 

Techniques with True 95 Percent Central Boundary

Comparison o f these two techniques is reasonable because first both techniques have the 

same size at 95% level because first HVBP is modification in Tukey’s boxplot while 

MCSSSBB is modification in SSSBB. Both techniques become Tukey’s and SSSBB 

respectively when data are symmetric. We have matched their sizes in chapter 4 section 

4.6 at 95% central values o f the normal distribution. Since medcouple has been 

incorporated in the SSSBB technique and HVBP is specially designed for the skewed

distributions, these techniques will be compared with respect to fence construction
i

around the true 95 percent central values of the distributions under consideration. Same



methodology has been adopted here as discussed in detail in chapter 4 sections 4.5 and 

chapter 5 and section 5.5 respectively.

Figure 6.1 HVBP and MCSSSBB Technique Fences vs, 95% Boundaries in Standard 

Normal Distribution

standard Normal Distribution Before 
Size Adjustment

5.03- 

2.^-

i  OW 
£

-1.0D

m

-3 ,(0 -

S i

- i-H V E F lC V

-1-H V 5PU C V

-* -M H V 3 ?U 0 ?

-#-T rueO C V ‘

Standard Norm 
Size A

1
m \  1
1.^-1i

* n'Vi ^

al Distribution After 
djustment

-f-HTaSLC/

-f-H'i/SPir/

-#-MH¥5?iCV

 ̂ .̂50 -1 ; 

-1.50 j
■m i  !
•2.53 ^

i
“♦“TrtslĈ
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HVBP is based on the Tukey’s technique while MCSSSBB is based on SSSBB. When 

the distribution is fairly symmetric, the HVBP approaches Tukey’s technique while 

MCSSSBB approaches SSSBBB exactly. Following equations clearly show when MC 

equals zero (in case of symmetric distributions), both equations for HVBP approach 

Tukey’s technique

[L U] = [Qi -  1.5 * IQR * +  1.5 ♦ IQR *

[L U] = [Qi -  1.5 ♦ IQR * +  1.5 * IQR * MC<0

As the distribution is symmetric for the MHVBP technique, MC and skewness will be

zero approaching the equations below to the SSSBB technique exactly.

[L U] = [Oit -  1.5 » /QRt » +  1.5 » IQRr * MC < 0

[L U] = [Qii, -  1.5 * IQRi » +  1.5 * /QSg * MC > 0



As sizes of both techniques (Tukey and SSSBB) have been matched with 95% true 

boundary of, standard normal distribution, the value of g is taken as 0.95 and 0.97 for 

Tukey and SSSBB respectively. The size match o f both techniques is shown in the above 

figure 6.1. So for comparison of power o f both techniques we shall use the same value of 

g as mentioned above.

T a b l e  6 . 1  F e n c e s  o f  H V B P  a n d  M C S S S B B  T e c h n iq u e s  a n d  9 5 %  T r u e  B o u n d a r y  i n  

D i s t r i b u t i o n

Sample ; Moment Measure iI 0.57 0.63 0.73 0.89 2.00
Size i of Skewness i

True Lower Fence (2.5%) 13.12 9.59 6.26 3.25 0.05

m HVBP 6.56 4.25 1.93 -0.15 -0.57
fN roo MCSSSBB 12.26 8.68 5.37 2.36 -0.67

8r̂
c <u: U  3 HVBP 11.34 8.13 5.25 2.64 -0.13

i >
MCSSSBB 12.15 8.61 5.25 2.21 -0.86

Sin
$O HVBP 12.92 9.53 6.23 3.24 -0.08

MCSSSBB 12.10 8.56 5.22 2.17 -0.94

True Upper fence (97.5%) 40.65 34.17 27.49 20.48 7.38

m HVBP 48.43 41.52 34.46 26.41 13.59
nj MCSSSBB 40.17 33.60 27.07 20.15 7.76

§rH
^  Q) U 3 HVBP 44.02 37.34 30.35 23.31 11.45

MCSSSBB 40.05 33.60 26.97 20.07 7.99

Sin
Q. HVBP 42.30 35.84 29.11 22,24 10.81 1

MCSSSBB 39.99 33.56 26.95 20.06 8.12 1

Figure 6.1 (top) shows the interval fitting pattern o f x? distribution in small sample size 

around the 95% values. For small sample sizes, it can be observed that on both lower and 

upper sides of the distribution, fence o f MCSSSBB is close to true fence at all levels of 

skewness. For medium sample sizes, fences of both techniques almost overlap on the 

lower side and have same distance from the true lower fence and are very close to true 

lower fence.
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On the upper side, MCSSSBB fence is close to the true fence as compared to HVBP 

upper fence. For the large sample size, on the lower side of the distribution, fence of 

HVBP is bit close to tHe true lower fence as compared to the MCSSSBB techniques; on



the upper side MCSSSBB is very close to the true upper fence. The problem of over 

adjusting of fence outside the data o f HVBP technique is clear in all the cases o f small, 

medium and large sample sizes.

T a b l e  6 . 2  F e n c e s  o f  H V B P  a n d  M C S S S B B  T e c h n iq u e s  a n d  9 5 %  T r u e  B o u n d a r y  i n  

p  D i s t r i b u t i o n

Sample Moment -0.35 -0.40 -0.49 -0.62
Size Measure of 

Skewness
True Lower Fence (2.5%) 0.76 0.79 0.82 0.85

lA HVBP 0.68 0.71 0.67 0.70
fM CDU MCSSSBB 0.83 0.87 0.79 0.83

8
rH

a>- (V  
U  3 HVBP 0.72 0.76 0.72 0.75

1 >
MCSSSBB 0.83 0.87 0.79 0.83

g o HVBP 0.73 0.76 0.73 0.76
MCSSSBB 0.83 0.87 0.79 0.83

True Upper Fence (97.5%) 0.96 0.97 0.98 0.99 1

in HVBP 1.01 1.01 1.02 1.02
fM mu MCSSSBB 0.99 1.00 1.01 1.02

...... 1

I
.ti1-U 3 HVBP 1.00 1.01 1.01 1,01
^ nj
S > MCSSSBB 0.99 1.00 1.01 1.02

1
CLQ. HVBP 1.00 1.01 1.00 1.01

MCSSSBB 0.99 1.00 1.01 1.02

Figure 6.2 (top) shows the fence designing pattern o f MCSSSBB and HVBP techniques 

around the true fence for small sample size in p distribution. For the entire sample sizes it 

is observed that lower fence of MCSSSBB is close to the true fence as compared to 

HVBP’s lower fence. Here the problem of over adjusting the fence by HVBP is solved. 

Also on the upper side of the p distribution for small sample size, fence o f MCSSSBB is 

close to the true fence as compared to the HVBP upper fence. For medium and large 

sample sizes, the fences of both techniques show almost same pattern as the HVBP 

constructs a wider fence as compared to MCSSSBB. In p distribution, overall 

performance o f MCSSSBB is better than HVBP which can be observed from the figure 

6.3.



Figure 6.3 HVBP and MCSSSBB Technique Fences Matching with True 95% 

Boundary in p Distribution
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Sample
Size

Moment 
Measure of 
Skewness

0.61 1.32 2.26 3.69 6.18

True Lower Fence (2.5%) 0.68 0.46 0.31 0.21 0.14

in HVBP 0.09 -0.01 -0.08 -0.19 -0.27
IM TOy MCSSSBB 0.08 -0.17 -0.41 -0.49 -0.83

§
HVBP 0.31 0.22 0.14 0.00 -0.07

^ > MCSSSBB 0.03 -0.28 -0.55 -0.64 -1.03
o s HVBP 0.34 0.24 0.16 0.04 -0.04
in MCSSSBB 0.00 -0.30 -0.56 -0.69 -1.05

True Upper Fence (97.5%) 1.48 2.19 3.24 4.80 7.10
1

in HVBP 4.67 7.24 11.64 10.67 17.21
r\i mo MCSSSBB 3.17 4.78 7.06 5.98 9.37

I
■ti w) 1- oiU 3 HVBP 3.89 6.16 9.45 8.66 13.69

MCSSSBB 3.17 4.78 7.16 6.04 9.30
Q O.“V HVBP 3.72 5.80 8.87 8.17 12.89
tf) MCSSSBB 3.22 4.81 7.04 6.07 9.15

Figure 6.4 shows the fence construction pattern of HVBP and SSSBB techniques for the 

lognormal distribution for small sample size .On the lower side of the distribution, fences 

created by both techniques nearly overlap and on the upper side o f the distribution, fence 

of HVBP is farther away from the true upper fence as compared to MCSSSBB. For the 

medium and large sample sizes it can be observed that upper fences of MCSSSBB are 

closer to the true upper fence while on the lower side fence of HVBP almost overlap the 

true fence. As a whole, the upper and lower fence o f MCSSSBB seems to be closer to 

true fence than the fences produced by HVBP.
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For the large sample sizes, lower side of the lognormal distribution in the presence of 

high level o f skewness, MCSSSBB seems to go away from the true fence while it still 

performs better than the performance of HVBP technique on the upper side of the 

distribution.

6.5 Conventional Approach: Best and Worst Case in Context of 

Percentage Outliers

In this section, this study presents the percentage of outliers detected by HVBP and 

MCSSSBB. As already discussed, comparison of percentage of outliers and fence 

comparison are the same. Here for the best and worst cases, p distribution with small size 

has been selected and lognormal distribution with medium sample size. It can be 

observed that on the left side o f the distribution there is bit difference between percentage 

of outliers detected by both techniques under comparison and with the increase of 

skewness performance o f MCSSSSBB is becoming better as percentage of outliers 

approach 2.5 percent. On the right side of the p distribution it is clear that MCSSSBB has 

performed better than HVBP as its percentage of outliers detected are approaching to 2.5 

percent.

Table 6.4 Percentage Outliers Detected by HVBP and 

MCSSSBB Techniques in p Distribution Small Sample Size

Parameter I

I

Moment 
Measure of 
Skewness

Left 
Outliers  ̂

HVBP

Left ; 
j Outliers ; 
1 MCSSSBB

Right
Outliers

HVBP

Right I 
Outliers | 

MCSSSBB I
(35,2) 1 -0.62 2.97 3.70

■ •
4.55 1 1.52 !

(35,3) i -0.49 3.10 3.37 4.64 1i 1.69 1
(35,4) i -0.40 3.29 3.14 4.59 1.91 1
(35,5) 1 -035 3.41 3.07 4.56 1.93 !



Now looking for the worst case, on left side it can be seen that MCSSSBB has detected 

percentage of outliers less than 2.5 percent while HVBP has detected more than 

2.5percent. By looking at the difference from 2.5 it can be concluded that MCSSSBB is 

close to the 2.5 percent. For the right side of the distribution it can be seen that for the 

smaller level o f skewness, HVBP is better than MCSSSBB. However by increasing the 

skewness, percentage o f outliers detected by MCSSBB approaches to 2.5 percent.

T a b l e  6 . 5  P e r c e n t a g e  O u t l i e r s  D e t e c t e d  b y  H V B P  a n d

M C S S S B B  T e c h n iq u e s  i n  L o g n o r m a l  D i s t r i b u t i o n

1 Parameter

11

Moment 
Measure of 
Skewness

Left
Outliers

HVBP

Left 
Outliers k 

MCSSSBB

Right Right 
Outliers | Outliers 

HVBP 1 MCSSSBB

(0,0.2) 0.61 3.63 1.65 2.69 3.04
(0,0.4) 1.32 4.13 0.58 2.32 3.07
(0,0.6) 2.26 4.37 0.08 2.12 2.92
(0,0.8) 3.69 4.59 0.01 2.01 2.79
(0,1) 6.18 4.51 0.00 1.97 2.78



6,6 Conclusion

In distribution, MCSSSBB techniques construct fence accurately on the 95% central 

values of the distribution as compared to HVBP fence. For all the sample sizes of P 

distribution, MCSSSBB technique performs better on both sides with respect to the 

fences constructed around the true 95% boundary of the distribution. In lognormal 

distribution, for small sample size both techniques under comparison perform nearly 

equal on lower side while for the medium and large sample sizes, HVBP performs better 

on lower side as compared to MCSSSBB technique. For the upper side of the 

distribution, in all sample sizes MCSSSBB outperforms as compared to HVBP. Actually 

in the modification proposed in this chapter we have tried to develop a technique which 

constructs the fence accurately around the central 95% of the distributions but we observe 

that some time HVBP performed better while maximum time performance of MCSSSBB 

performed better.



CHAPTER 7 

APPLICATIONS

Summary

The newly introduced technique SSSBB in chapter 4, proposed modification MHVBP in 

HVBP technique in chapter 5, Modification proposed in SSSBB in chapter 6 and the 

existing techniques (Tukey’s technique and HVBP) have been applied to the real data sets. 

Two skewed data sets have been taken to test the performance of the tests in real life. 

Section 7.1 deals with the data set o f the stock return from Karachi Stock Exchange (KSE) 

of the United Trust of Pakistan (UTP-2008) for daily return while section 7.2 deals with 

baby birth weight data collected at Agha Khan Hospital Karachi (Pakistan).

7.1 Stock Return Data Set

Data for daily stock return o f United Trust of Pakistan (UTP) Large Cap (2008) from 

Karachi stock exchange (KSE) are analyzed and both tests are applied for the identification 

of the outliers. Histogram for the stock returns clearly shows that it is skewed towards left 

and its classical skewness is nearly -1. Visually it seems that there are no outliers in the 

data set so that performance of the test detecting less number o f extreme observations as 

outliers will be treated better.
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Data consists of a total of 186 observations of the stock prices in the whole year. Tukey’s 

box plot detected 34 outliers (20 from left and 14 from right) constructing the interval of 

width 0.1563. It can be said that Tukey’s method has detected more than 18 percent of 

observations as outliers. Tukey’s has thus detected more observations on the skewed side 

and lesser on the compressed side as per its nature.

Table 7.1 Synchronized Left and Right Outliers

Tukey’s Technique SSSBB Technique

Negative Return Dates Positive Return Dates Negative Return Positive Return
Dates Dates

18-Dec-08 23-Jun-08 7-Aug-08 19-Dec-08 18-Dec-08 18-Aug-08

17-Dec-08 16-Jul-OS l-Sep-08 5-Sep-08 17-Dec-08 29-Dec-08

23-Dec-08 23-May-08 23-Sep-08 8-Oct-08 23-Dec-08 22-Jul-08

16-Dec-OS 14-Jul-08 27-May-08 26-Dec-08 16-Dec-08 4-Jun-08

3O-D0C-O8 12-Aug-08 25-Jun-08 30-Dec-08 19-DeV08

22-D0C-O8 28-May-08 24-Jun-08 22-Dec-08 5-Sep-08

9-Oct-08 17-Jul-08 18-Aug-08 8-Oct'08

4-Sep-08 7-Oct-08 29-Dec-08 26-Dec-08

lO-Mar-08 19-Sep-08 22-Jul-08

26-Aug-08 20-Aug-08 4-Jun-08



It is observed that Tukey’s has detected nearly 11 % observations as outliers on the left side 

of the distribution and nearly 7 percent on the right side. Split sample skevmess adjusted 

technique has detected just 14(6 from left and 8 from right) outliers constructing interval o f 

width 0.2639, The left six observations (dates) are from December 16-30 which are the 

same dates in which Mohtarma Benazir Bhutto (Ex prime minister of Pakistan) came to 

Pakistan and was assassinated one year earlier. On the right, the outliers comprise 3 dates 

from the same period and it can be said that the maximum fluctuations are during the 

period of her 1®̂ death anniversary (9 out of 14 outliers). The rest of the outliers relate to the 

period when ex- president Genera! Ret. Pervaiz Musharaf resigned from his office and Mr. 

Zardari became the president and next day after 5* September is “Defense Day”. One 

outlier is from the month of June which is near the annual budget days. Here it is known 

that these are real observations and being at the extremes tell the stoiy of the assassination 

o f Mohtarma Benazir Bhutto to a researcher who is not so familiar with the histoiy. All the 

negative returns are from the December which shows violence and agitation following the 

assassination of Mohtarma Benazir Bhutto.

But Tukey’s test detects 34 outliers out of 186 observations (roughly 18% of the data). 

Only a visual analysis of the data is enough to convince that all the bins of the histogram 

are joined and no extreme outliers exist. However the SSSBB technique detects nearly 7.5 

% of the data as outliers. The UCV and LCV are approaching the maximum and minimum 

o f the data in the SSSBB technique and they extend too far away from the original data in 

Tukey’s method. The below given table 7.2 shows the different statistic for outliers in stock 

return data.



T a b l e  7 . 2  O u t l i e r s  a n d  I W  f o r  a l l  T e c h n iq u e s  i n  S t o c k  R e t u r n  D a t a

*0L Outliers **LCV Lower Critical Value; UCV Upper Critical Value

7.2 Baby Birth Weight Data

Data for baby birth weight has been taken from Agha Khan Hospital Karachi. Here our 

assumption is that survival of the baby depends upon his/her birth weight. So an 

underweight newborn baby is more vulnerable to mortality as compared to a baby with 

higher birth weight According to Mclntire et al. (1999), infants bom with low birth weight 

are more likely to die or succumb to morbidity. Vangen et.al (2002) proved that heavier is 

better. Babies with low birth weight, either due to short gestation period or because of fetal 

growth constraint, are at high risk for short- and long-term disabilities and death (Schieve 

et al, 2002), Checkup of very low birth weight children points toward increased deaths 

among all subpopulations.

There is a consensus on the point that socioeconomic conditions o f the family and 

educational background, especially mother’s education has a great role in the survival of 

the infant. Also medical facilities have been so much improved that a baby with very low 

birth weight might survive by availing these facilities and a baby with relatively higher



birth weight from low income family might not due to unavailability o f medical facilities. 

But as already mentioned the data have been taken from the similar income groups (people 

going to Agha khan hospital are well off and from the educated families and can bear any 

cost in monetary terms for survival of their baby). Agha Khan Hospital is one of the most 

efficient hospitals having latest facilities and equipment as compared to public sector 

hospitals. So it is assumed that data belongs to similar group with respect to income and 

education and is comparable. Keeping other things constant, the probability of the survival 

increases as birth weight increases and vice versa.

F i g u r e  7 . 2  H i s t o g r a m  f o r  B a b y  B i r t h  W e i g h t

1000

1000 2000 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0

Here data are o f 3613 observation of baby birth weight along with their follow up data tilf 

4* week (28* day). Minimum weight is 500grams and the highest weight is SOOOgarms. 

Average weight is 2974grams (nearly 3kg) and total deaths up to 4*̂  week are 19.Mortality 

among the total population is just 0.5%. According to definition of low birth weight, an



J
infant having birth weight less than 2500 g r^s^  is treated as low weight. Our data itself 

proves our claim that low birth weight babies have more chances o f mortality, as it is 

observed that Tukey’s technique has detected 26 as left outliers while our proposed 

technique SSSBB has detected 16 observations on left side as outlier. By mining into data 

it can be observed that there are five deaths in both cases (either in Tukey’s or SSSBB). So 

it is concluded that just 0.7% data (by Tukey’s technique) and 0.4% data (by SSSBB) 

captures more than 25% of the deaths from the whole data set. This finding corroborates 

the claim that birth weight has a very close relation with mortality. Secondly it shows the 

improvement o f our test on Tukey’s as Tukey’s technique detected same number of deaths 

from 0.7% of the data while SSSBB from 0.4% .Our test is performing more efficiently 

than Tukey’s does.

7.3 Comparison of Tukey’s Technique and SSSBB in Baby Birth 

Weight Data

According to the assumption that birth weight has close relation with the survival, the 

babies with higher birth weight are more likely to survive than low birth weight babies. For 

this purpose, left outliers for the mortality should be compared. Summary o f the data are as 

under:

Table 7.3 Summary of Baby Birth Weight Data

Observations Mean (grams) SD Minimum Maximum Survivals Deaths |

3613
i 2974 445 500 5000 3594 19 1

1

Left outliers detected by Tukey’s technique are 26 while left outliers detected by SSSBB 

are 16. By analyzing the data with respect to left outliers it can be observed that there are 5



deaths in both cases (in 26 left outliers by Tukey and 16 left outliers by SSSBB). So it can 

be said that performance of Tukey’s technique is 19.23% while the performance of SSSBB 

is 31.25%. As it can be seen that deaths are also inliers so the total number of deaths with 

respect to total number o f outliers detected are compared. Tukey’s has detected 111 outliers 

in total while SSSBB has detected 29 outliers so the performance of Tukey’s as a whole is 

17% while performance o f SSSBB is 66%.

T a b l e  7 . 4  O u t l i e r s  a n d  I W  f o r  a l l  T e c h n iq u e s  i n  B B W  D a t a

Technique LeftOL Right OL Total OL LCV u c v Interval Width |

Tukey 26 85 111 1950 3950 2000

SSSBB 16 13 29 1900 4250 2350

HVBP 5 180 185 1621.10 3745.6 2124.5

MHVBP 26 85 111 1944.00 3944.0 2000.0

MCSSSBB 26 13 39 1904.80 4244.0 2339.2

(&BW. (BaSy (Birth Weigfit
T a b l e  7 . 5  P e r f o r m a n c e  C o m p a r i s o n  i n  B B W  D a t a

Technique LeftOL Performance 
left outhers

Overall
Performance

TUKEY 26 19.23% 17.12%

SSSBB 16 31.25% 65.52%

HVBP S 60.00% 10.27%

MHVBP 26 19.23% 17.12%

MCSSSBB 26 19.23% 48.72%-

In comparison of all techniques under consideration, it can be observed that HVBP is 

performing most efficiently among all the techniques under comparison by detecting just 

5 left outliers and two deaths in these 5 outliers performing 60% while SSSBB seems to 

chase it by 31% performance. Since deaths are also inliers, so looking at total outlier’s 

performance reveals that HVBP have detected 180 right outliers and its performance falls



drastically to 10.27% while SSSBB improves its performance from 31,25% to 65.52% by 

just detecting 13 outliers on the right side leading all the techniques.

7.4 Cost BeneOt Analysis

From the above section 7.3, it can be seen that some techniques detected less number of 

outliers in baby birth weight data while others a greater number of left outliers. It is 

observed that HVBP detected just 5 left outliers and SSSBB detected 16 left outliers 

while remaining techniques detected 26 outliers. Also it can be seen that statistically 

HVBP is more efficient than remaining techniques. This section includes the practical 

significance of the techniques under consideration.

Let us suppose that underweight babies are advised an intensive care for a week at Agha 

Khan Hospital and per day treatment expense is Rs. 100,000/- per child. Then the total 

treatment expense of low weight babies detected by Tukey’s, MHVBP and MCSSSBB 

techniques is Rs. 18,200,000/- (as 26 outliers detected by all techniques) while for SSSBB 

and HVBP expenses are Rs. 11,200,000/- and Rs.3,500,000/- respectively. While 

comparing SSSBB technique with Tukey’s, MHVBP and MCSSSBB, it is observed that 

there are five deaths in both cases and expense on the low weight babies detected by 

SSSBB is Rs. 7000000/- less than other techniques (excluding the opportunity cost of 

time of the parents and care takers). On the other hand, it can be seen that HVBP has 

detected just 5 low weight babies and their expense for one week is Rs.3500000/- (Rs. 

7700000/- less than SSSBB) but the main issue arises here is o f practical significance. As 

HVBP has detected 5 low weight babies, so just five babies will be given the intensive 

care while the remaining 2 babies will be ignored for treatment and are vulnerable to



death (as five deaths in low weight babies detected by all other techniques). Keeping all 

aspects of monetary cost and human life, SSSBB seems to perform better than all other 

techniques in this data set.



CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The worth o f our proposed technique and modifications made in different techniques for 

detecting outliers is demonstrated in the previous chapters analytically, by the Monte 

Carlo simulation and also graphically. It can be seen that there are a lot of problems 

associated with the Tukey’s technique in skewed distributions. The HVBP technique for 

skewed distribution which based on the medcouple for generating the interval of critical 

values away from the true 95% fence of the univariate distributions is also not free from 

problems. The performance of the HV box plot is good for large sample sizes in skewed 

distribution, but it constructs a very large interval o f critical values which takes it away 

from the true 95% boundary o f the distribution. On the other hand, SSSBB performs well 

in spite of the fact that it is very simple and MHVBP is better than HVBP technique even 

for the larger samples. Performance o f MCSSSBB is maximum time better than HVBP 

while sometime HVBP perform better than MCSSSBB.



8.2,1 Advantages of Split Sample Skewness Based Boxplot

This study has formulated a directional technique for detecting outliers. Due attention has 

been given to the shape of underlying distribution, i.e. for the skewed distributions, data 

on either side o f centre is treated separately. Data coverage by this technique is very 

robust. This technique is very simple as compared to HVBP which uses medcouple that 

has complicated calculations. This technique is applicable in both large and small sample 

sizes.

8.3 Advantages of the Modified Hubert Vandervieren Boxplot

This technique detects lesser number o f outliers from the random sample than adjusted 

box plot. Modified Hubert and Vandervieren boxplot generates smaller interval of critical 

values as compare to HVBP. The proposed modified test is useful for both small and 

large data sets and its fence for outlier’s detection is very close to the true 95% boundary 

of the distribution for all the sample sizes.

8.4 Recommendations

When a researcher is interested in detecting outliers from a skewed data and also wants to 

get rid of the messy calculations involving a high computer power, one should use 

SSSBB instead o f Tukey’s technique as discussed in chapter 4. But if  the researcher is 

interested in accuracy, MHVBP and MCSSSBB are better alternatives to use because 

with less skewness it acts like the SSSBB because the performance o f the SSSBB is 

overall better than any other technique. For the real data sets, it is observed that for the



left outliers, HVBP is good in its performance but overall performance o f SSSBB is best 

for both left and right outliers. The performance of Tukey and MHVBP techniques are 

almost the same. Again it is recommended the MCSSSBB technique may be used for 

detection outliers in skewed distributions when the reader is interested in sophisticated 

technique and also sometime HVBP performance is better than MCSSSBB but if  reader 

is interested in simple technique the SSSBB is better.

8.5.1 Future Work

Following work is proposed for the future with respect to outlier’s detection techniques. 

These techniques can be designed based on both skewness and sample size. Also 

contaminated data sets can be analyzed by these techniques and Research can be 

extended from univariate to bivariate and multivariate. Outlier detection techniques can 

be designed based on mode instead of mean and median.
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APPENDIX 

Previous Techniques

Grubs test

Grubbs (1969) introduced a test for detection of outliers for the univariate normal 

distritlution with the sample size greater than 3. Grubbs statistics is given as

M a x 0  -  d)
G =

SD

Where, d and SD are the sample mean and standard deviation respectively. Null 

hypothesis of Grubbs test is that data have no outliers while the alternative is that at least 

one outlier in the data is present. As given in the above statistics largest absolute value of 

G is suspected as the outlier and the decision whether the observation is outlier or not is 

made by looking it in the table of critical values (Grubbs, 1969).

2SD and 3SD Methods

We construct the interval by |i± 2a and // ± 3 a, where is the sample mean and a is the 

standard deviation o f the sample under consideration. The observations that don’t lounge 

in the intervals formed by above statistic are treated as outliers. According to 

Chebychev’s Inequality, For any random variable X with mean \l and variance cf̂ , then 

for anyfc > 0,



From the inequality [1 -  (1/k)^]  we are able to determine what portion o f our data will 

be within k standard deviations o f the mean. (Bain et al. cited by Seo, 2006) For example, 

we can access that at least 75%, 89%, and 94% of the data are lying within 2, 3, and 4 

standard deviations o f the mean, respectively. Probabilities o f existence of outliers in the 

data sets can be determined by these results. Although Chebychev’s theorem is non 

parametric and have no distributional assumptions, it has a major drawback that it gives 

the smallest proportion of observations within k standard deviations around the mean 

(Chebychev’s, cited by Seo, 2006). Having prior knowledge about the distribution 

supports us to guess more efficiently. For example in case o f standard 68%,95% and 

99.7% data lies within 1,2,3 standard deviations respectively and we consider outlier 

beyond 2SD or 3SD according to our null.

Dixon’s Test

Null hypothesis to apply Dixon test is that data are normally distributed and is based on 

the statistical distribution o f "sub range ratios" o f ordered data samples, drawn from the 

same normal population. Along with other demerits one major demerit o f this test is that 

it cannot be applied again on the remainder data set in any case if once observation is 

detected as outlier or rejected.

Dixon’s test is used for small sample sizes to detect outliers when mean of N-1 

observations are significantly different from the mean of N observations. The data are



arranged in ascending or descending order, when the mean in question is smallest or 

largest respectively. The critical values depend upon the sample size. Then the test

n n—istatistic O =i s  exp x - x .
is computed (e. g., for 3 < N < 7) and decided according to

the critical values in the below given table. Null for the static is that there is no significant 

difference between suspected value and the remaining data.

Critical Values of Dixon Test

N CV fo r 90% confidence 
level

CVfor 95% confidence level CVfor 99% confidence level

3 0,941 0.970 0.994

4 0.765 0.829 0.926

5 0.542 0.710 0.821

6 0.560 0.625 0.740

7 0.507 0.568 0.680

8 0.468 0.526 0.634

9 0.437 0.493 0.598

10 0.412 0.466 0.568

THE Modified Z-Score:

In normal distribution we encounter just with the two parameters mean and standard 

deviations. These parameters are blessing as they are easy to compute and nearly 

available in all software’s but this blessing becomes a problem if  there are some outliers 

in the sample data because these are highly affected in presence of some outliers even in 

presence of single outlier mean is affected highly as it has zero break down value 

(Zaman,1996). To overcome this problem Iglewicz and Hoaglin (1993) proposed to use



the median and median of the absolute deviation. The given modified Z-Score (Mi) 

statistic was computed as

0.6745(Xi -  x)
^  MAD

Where E(MAD) = 0.6745<t for the large normal data sets, Iglewicz and Hoaglin 

suggested that observations with Mi > 3 . 5  should be labeled as outliers and they verified 

their claim (suggestion) through simulation technique on the pseudo normal observations 

for the sample size of 10,20, and 40.

Leverage Method

Leverage method is based on the following statistics

1 ( x i - x y  , „ v ” . -.9
ha = - - \ - ------=— ,where = /  (Xi -  x ^

n  ^ i = i

nis the sample size, ;Ciis the i*̂  observationxis the mean. Observation can be said as 

outlier if  ha > 0.5. As we know that leverage is the observation that has substantial 

effect on the regression line. The most common measure of the leverage point is the hat 

value, contained in the hat matrix. (Hair et al. 1998, Iglewdcz and Hoaglin, 1993)

MADe m e t h o d

This method is similar to the Mean±2SD method but robust for detection of outliers and 

is imaffected by the extreme values. Here median and median absolute deviations are 

used instead o f the mean and standard deviation. This is method is robust as it has break 

point value o f 50%

Critical values for 2MADe outlier labeling technique; Median±2MADE



Critical values for 3MADE outlier labeling method: Median±3MADE 

Where MADe = 1.483 xMAD

In this approach two robust estimators (median and median o f absoiute^deViations) ^ e , 

used as in the above test in which robust skewness is used.

Median Rule

(Carling 1998) proposed the statistics for lower and upper critical values [L, U] =
S—

W -tt .Ji

Q2±2.3IQR where Q2 is the sample median where scale o f IQR i.e. 2.3 is not fixed but it 

depends on target outlier percentage and Generalized Lambda distributions (GLD) are 

selected.
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