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Abstract

Poloidal field coils are extremely significant for plasma confinement in tokamak. 

These Poloidal field coils are act as electromagnetic control for controlling the electric 

and magnetic fields, which sustain or change the plasma position, shape, current and 

control plasma discharge. These also contribute to the radial and toroidal pressure 

stability required to sustain the plasma in equilibrium. This thesis is associated with the 

design o f poloidal field coils and control o f their currents. The mathematical model for 

calculation of currents in poloidal field coils as well as forces on poloida! field coils are 

build up by using Maxwell’s equations, magnetohydrodynamics (MHD) equations and 

Grad-Shafranov (GS) equation. GS equation contains a poloidal flux function. We have 

computed poloidal flux fiinction in expression o f vector potential for circular current 

loop, elliptical integral and Green function. Plasma section has a field which is controlled 

by GS equation, but in vacuum section have a field which is achieved by solving the 

Laplace’s equation. GS equation is derived using MHD equations. TOKAMEQ code is 

used as virtual design tools for poloidal field coils and control o f currents in them. The 

TOKAMl^Q code is dependent on the numerically solved GS equation. The poloidal flux 

cross section as an output result obtained from the TOKAMEQ code. In this cross section 

plasma shape is elongated. Elongation is very significant for safety factor and stability o f  

plasma.



CHAPTER1 

1. Introduction

1.1 Tokamak Plasma Fusion

Nuclear fusion is foundation in the contact o f two light nuclei which merge into a 

heavier and extra stable nucleus generating a huge quantity o f energy. Two light nuclei 

are contained into an ionized gas called plasma. This plasma can be confined by means o f  

electromagnetic forces produced by exterior  ̂magnetic fields, which is identified as 

magnetic confinement. Currently, the most talented magnetic confinement system is the 

Tokamak.

A Tokamak fundamentally is a toroidal machine that confines the hot plasma by 

means of a helical rhagnetic field [1].

The objective o f controlled nuciear fusion research is to produce energy by 

merging two light mass nuclei to form an extra huge nucleus. This reaction is the power 

cause o f the sun and other stars, where confinement and heating take place through 

compression below massive gravitational forces. Oh earth, probable candidates for using 

fusion energy are the subsequent reactions;

2 2 3 1
D +  T (1.01M ev)+ p (3.03MeV) (1.1)

2 2 3 1
D + D ^  He (0.82MeV) + n (2.46MeV) (1.2)

2 3 4 1
D +  T ^  H e(3.57M eV )+ n(14.06MeV) (1.3)

2 3 4 1
D +  He*^ H e(3.67M eV)+ p(14.67MeV) (1.4)

Beyond a doubt the most available and capable reaction for fusion reactors is a 

reaction in which Deuterium (D) and Tritium (T) combine, producing a Helium nucleus 

(He) and a neutron (n). This reaction has the biggest cross section at the least energy [2],
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Figure-1.1: Cross section for the reactions D-T, D-D and D- He.
The two D-D reactions have similar cross sections [2],

Both nuclei have to overcome the existing repulsive Coulomb force for a fusion 

reaction to take place, 'fhe nuclear force is energetic only for distances in the order o f the
-15

nucleus size (10 m!. For bigger distances, the repulsive Coulomb force dominates 

where potential barrier is numerous lOOkeV. A Deuterium and Tritium fuel merge must 

be confined for an enough time at an adequately tall temperature in a state where ions and 

electrons are separated, called a plasma state. For break-even, so-called Lawson criterion, 

the fusion energy unconfined equals the quantity o f energy functional to heat the plasma; 

p
fusion gain Q ~ = 1, where and are the fusion and input heating power, in that

în

order. A step advance is the fiision ignition, where the supplementary heating can be 

turned off. For the Deuterium/Tritium reaction an essential condition, the so-called fusion 

triple product, for the ignition is:

(1.5)nTt^  > 3 x 1 0 ‘*/m ^keVoltSecond

Where n is the mean density over the plasma volume, T the mean temperature and is

the energy confinement time; proportion between the energy in the plasma W = —{nT)



w
and the input heating p o w e r i . e .  = ^ .  The necessary temperature is in the order

în
8

of 10 K that is analogous to about one hundreds to two hundreds million degree 

centigrade [2].

1.2 Tokamak Machine

In view o f the fact that an enormously high temperature is wanted for 

confinement o f hot plasma is not a minor problem. At recent, two most important 

approaches exist; inertial and magnetic fusion.

In inertial fusion, thick, hot plasma is created and confined just for an extremely 

small time (nanoseconds) dictated by its inertia. In fusion reaction, influential lasers or 

particle beams at the same time converge on a small target (D-T fuel pellet), powerfully 

heating the exterior and squeezing the fuel into the centre of the pellet. The powerful heat 

and stress force the fuel io fuse, to a' large extent similar to within a star. The fuel pellet 

reaches the necessary temperature and at last the burning pellet ignites.

In magnetic fusion, warm plasmas are confined by means o f magnetic fields. 

Converse to inertial fusion, plasma densities are moderate, however the energy 

confinement time can be greatly longer, o f the order of one second in the recent fusion 

machines. Magnetic fusion exploits the information that the charged particles in a 

magnetic field are joined to the field lines. For a toroidal machine, the magnetic field 

lines are closed. But, in addition to the motion o f particles adjacent to the field lines and 

the gyro motion in the region o f the field lines, the particles contain a drift velocity in the 

direction upright to the magnetic field and its gradient [2].

For this cause, additional magnetic field components are summed, forming 

helically winding field lines in the region of the centre o f  the torus. The heliciiy o f the 

magnetic field lines stops the particles from escaping confinement due to the upright



drift. In order to wind tiie magnetic field lines, two unlike principles are utilized; the 

stellarator and the tokamak.

For a stellarator, exterior coils create both the toroidal and the poioidal magnetic 

field components. All the magnetic fields are controlled from exterior and can stream 

continually, so steady state circumstances are essentially present

Inner Poioidal field coils 
(Primary transformer circuit)

Poloidai magnetic field Outer Poloidai flekj coils 
(for plasma positioning and shaping)

Toroidal field c a ls

Plasma eiectric c:rrent  
(secondary transformer circuit)

Toroidal magnetic field

Figure-1.2: Schematic view of a tokamak [3],

For a tokamak, exterior coils construct the toroidal field component, at the same 

time as a toroidal current flowing inside the plasma itself creates a poioidal field 

component. This current is created by induction, the plasma performing as the secondary 

winding o f a transformer through the primary winding in the centre o f the torus. The 

magnetic field is axisymmetric in toroidal way.

The poioidal field is principally created by current in the plasma itself, this current 

is flowing in the toroidal way. The current also supply for plasma build-up and heating 

[2].



1.3 Toroidal Field

Toroidal coordinate system exposed in Figure. The toroidal magnetic field created 

by current carrying wire has magnitude Bq atR = Rq, and drops o ff in power withi^“  ̂ is 

described by:

R

(1.6)

(1.7)

(1.8)

Figure-1.3: Toroidal Co-ordinates [4].

The guiding centre o f the Larmor motion moves with velocity given by Equation 

(1.9), where ^and Z are unit vectors.

m



Electrons and ions round the torus in Larmor movement, but tiie second term in 

equation involves that ions and electrons gradually drift in reverse directions along the z- 

axis. This happens due to the field power lessening inversely with 7?. Since a particle

moves into a weaker field section, its Larmor radius amplify and foundations upright Z 

drift when the particle travels reverse into stronger fields. This drift generates charge 

separation, which outcomes in an upright electric field {E = E^z). This foundations ions

and electrons to drift radially externals, by means o f a radial drift velocity agreed by 

Equation

(1.10)

For confine plasma in the toroidal arrangement, one necessity stops the charge 

disconnection that creates the electric field causing the radial drift. Count an orthogonal 

part to the magnetic field is individual technique o f doing that [4].

1.4 Poloidal Field

If a current is contain in the toroidal direction, a magnetic field in the poloidal
A

(0 )  direction is formed. The radial coordinate in the toroidal cross section is specified as 

r in Figure 1.3. Suppose the amount o f the poloidal field be and the amount o f the

toroidal field be . Then the revolving transform angle, which explains the quantity the 

magnetic field revolves in the poloidal cross-section, when  ̂ development through , 

is:

I ttRB^
s - ^  ( l .U )

The frequency at which a particle revolves about the small axis of the torus, each 

time 6  increments by 2;r, is:



£V.
m = ^  (1.12)

*■0

This revolution in the poloidal direction contain the effect o f removing the charge 

separation that led to radia! drift velocities when just toroidal fields are present [4].

1.5 Limiter and Divertor

The powerful interactions arise between the extremely hot plasma and the at once 

neighbouring material that make up the plasma chamber. Electrons, Ions, and radiation 

from the plasma are occurrence on the neighbouring material surfaces, heating them and 

creating molecules and neutral atoms o f plasma and barrier materials which come again 

to the plasma and which together dilute and cool the plasma fuel. Two dissimilar 

approaches present to reduce and organize the plasma material interactions in a tokamak. 

The initial opportunity is to materially limit the radius o f plasma by introducing a so- 

called limiter in the vacuum vessel.

The limiter describes the LCFS short form for Last Closed Flux Surface, which is 

the border between the central part plasma where each and every one magnetic surfaces 

close back on themselves and the SOL short form for Scrape-Off Layer plasma where 

field lines are open and finish on the neighbouring material structures (called primary 

wall).

The other opportunity to describe the LCFS is to utilize an exterior magnetic coil 

creating a current parallel to tiie plasma current. These parallel current outcomes in the 

formation o f an X-point where the poloidal magnetic field disappears. This diverts the 

poloidal field lines to toroidally symmetric plates: the divertor targets. Therefore, the 

name diverter.

A limiter is extremely close to the confined hot plasma; the plasma-surface 

interaction being localized to the foremost edge of the limiter. The limiter can so suffer 

from harsh heating, erosion and melting. Furthermore, the nearness to the confined



plasma implies that any impurity free from the limiter can without difficulty penetrate 

into the plasma and infect the core. When ingoing in the core plasma, the impurities can 

chili it down by radiation which is to be avoided to favour fusion reactions. A number o f  

modem tokamaks still utilize the limiter arrangement similar to TEXTOR (Germany) and 

Tore Supra (France) [5].

The majority modem tokamaks favour the divertor arrangement, where the LCFS 

is defined exclusively by the magnetic field and plasma-surface interactions are contained 

near the divertor target plates.

The impurities free from the target are ionized and possibly swept reverse to the 

target by the plasma flow earlier than they can go into the confined plasma. The section 

under the X-point and within the separatrix is called the Private Flux Region, it contains a 

slim layer o f plasma lying beside the two separatrix arms and ending at the target [5].

Figure-1.4: Poloidal cross-bections o f a tokamak illustrating the limiter (left) and divertor (right) 

configurations [5]. ^

The first aim o f a divertor design is to reduce the impurity content o f the plasma 

by keeping the plasma surface interactions isolated from the confined plasma, and 

avoiding any impurities formed at the target to go into the confined plasma (by the 

divertor particle flow)



The second aim o f a divertor design is to eliminate the alpha particle power, by 

heat relocate through a solid surface to a chilling fluid,

The third aim o f a divertor design is to create a high helium neutral density 

section to simplicity tire out of the helium vestiges formed by the fusion reactions.

By reason o f the localization o f the plasma-surface interactions close to the target 

plates, erosion of the target surface, in addition to momentous power deposition on the 

target plates, can take place and be a serious difficulty for their life span. A probable 

move toward to decrease this difficulty is to create a “detached divertor plasma”. For 

sufficiently elevated piasma density (which depends on the power input), a fall o f the 

plasma temperature close to the targets is experiential. Temperature can go down low 

sufficient for electron-ion recombination to become significant, therefore eliminating 

charged particles and extinguishing nearby the plasma fiow. This is habitually 

accompanied by an important reduce in the incident power to the targets and plasma flux 

density [5].

1.6 Plasma Heating System

One o f the major necessities for fusion is to warmth the plasma particles to 

extremely tall temperatures or energies. The subsequent techniques are characteristically 

used to warmth the plasma [3].

1.6.1 Ohmic Heating
The primary heating in all tokamaks arrives from the ohmic heating sourced by 

the toroidal current. At small temperatures ohmic'heating is quite influential and, in huge 

tokamaks, makes temperature o f a little keV, The current intrinsically warmth the plasma 

by refreshing plasma electrons and ions in a particular toroidal direction. Only some 

mega watt o f heating power is supplied in this way [3].

According to Ohm’s Law heat energy is



* -

1.6.2 Neutral Beam Heating
An extensive method of the extra plasma heating is foundation on the vaccination 

o f influential beams o f unbiased atoms into ohmicaliy preheated plasma. The beam atoms 

hold a huge only single directional kinetic energy. In the plasma, beam atoms baggy 

electrons due to collisions, i.e. they obtain ionized and as an outcomes are arrested by 

the magnetic field of tokamak. These fresh ions are greatly quicker then mean plasma 

particles. \n a sequence o f collisions, the group velocity o f beam atoms is relocated into 

an amplified average velocity of the disordered motion of every plasma particles. In 

fusion research, the unbiased beams are habitually created by atoms o f hydrogen isotopes 

(hydrogen, deuterium or tritium). The energy o f the beam should be enough to arrive at 

the plasma centre. If the beam atoms were too sluggish, they would get ionized at once at 

the plasma border. Simultaneously, the beam is hypothetical to have sufficient power to 

distribute important quantity o f speedy atoms into plasma; otherwise the heating result 

would not be manifest [3].

1.6.3 Radio Frequency Heating
Since the plasma ions and electrons are confined to revolve in the region of the 

magnetic field lines (gyro-motion) in the tokamak, electromagnetic waves o f a frequency 

coordinated to the ions or electrons gyrofrequency are capable to resonate or humid their 

wave power into the plasma particles.

Ion cyclotron resonant heating (ICRH) is regularly applied on Tokamak. It is 

resonant by means of the second harmonic frequency o f ion gyration o f major plasma 

ions (deuterium) or by means of a base frequency of gyration o f minority kinds (tritium, 

helium). There are numerous additional resonant frequencies in tokamak plasmas but 

experiments have established a few to be incompetent or not practical while others just 

cannot penetrate through the plasma border section. Even though the lesser hybrid 

frequency can obtain into the plasma, regrettably it has an incompetent heating effect. 

However one more important application o f lesser hybrid frequency has evolved: the 

equivalent lower hybrid wave can coerce electric current credit to the information that it 

has an electric component parallel to magnetic field lines [3].



1.7 Basic Tokamak Variable

1.7.1 Toroidal Beta

The ratio o f plasma kinetic pressure ^  and toroidal magnetic 

pressure p  -  —^  is equal to toroidal beta (/? ) [6].

Y n k T
P  = (1.14)

1.7.2 Poloidal Beta

The ratio of plasma kinetic pressure p  = ^ ^n kT m A  poloidal magnetic

2//o
pressure is equal to poloidal beta (^0^) [7].

V  nkT
(1.15)

2//o

1.7.3 Aspect Ratio
The ratio of major horizontal radius to minor horizontal radius is called aspect 

ratio A . From figure-1.5 ^

A ^ ~  (1.16)
a



study of Poloidal Field Coils and Their Control Systems in Tokamaks

1.7.4 Inverse Aspect Ratio
The ratio o f minor horizontal radius to major horizontal radius is called inverse 

aspect ratio . From figure-1.5

a
£ = — 

R
( i .l7 )



j

1.7.5 Elongation
The ratio o f minor vertical radius to minor horizontal radius is called 

elongation A:. From figure-1.5

. b ^ k a  (1.18)

= (1.19)
a

1.7.6 Triangularity
Triangularity 5  is describe as from figure-L5

aS = R - R ^  (1.20) 

■ S = (1.21)
a

where 7?̂  is the horizontal distance to the highest point o f the external plasma flux 

surface.

1.7.7 Safety Factor
The kink safety factor is define as [9]

=
27tBr.a  ̂ ( \  + k^

(1.22)

1,7,8 Stability Factor
The stability factor is define as

Ll
R



Where r is the vertical instability growth time and — is the longest up-down 
 ̂ R

asymmetric time constant o f the surrounding structure [10],

1.8 Scheme of Tokamaks Poloidai Field Coils

The plan and location o f the Central Solenoid (CS) and Poloidal Field (PF) coils 

was based on the necessities o f plasma physics.

The poloidal field coil organization offers the balance, shaping and manage fields 

for the plasma. Near the beginning round side view tokamaks contain upright field 

scheme but because perpendicularly elongated plasma in tokamak attain superior 

presentation for specified tokamak plan constraint like toroidal magnetic field, main and 

small radii, due to amplified plasma current. Poloidal magnetic field schemes are 

consider to attain superior confinement time and presentation. Tokamaks contain a 

physically powerful taroidal magnetic field, measure in tesla, but the force applied by 

toroidal field is not sharp towards the plasma and can not avoid external spreading out o f  

toroidal shaped plasma by reason o f the ring force, consequently a poloidal field is 

necessary [11-20].

In a characteristic tokamak, poloidal magnetic field is significantly minor thafi the 

toroidal magnetic field. A lot o f practical constraints are available in poloidal coil 

locations plan. A number o f them are admittance to the torus, its protection, assembly and 

limitations on the consumption o f gap in the internal tokamak column. Poloidal field coils 

plan involves complicated exchange between every one o f these thoughts. Also, this 

exchange is subjective by confinement time of plasma and performance. A great deal o f  

variables are available associated to poloidal field coils plan o f tokamaks similar to beta, 

ion and electron temperature, plasma current, plasma confinement time, plasma volume 

and much more. And diverse variable in plan procedure similar to entity location, 

currents and quantity o f  coil turns and summation o f every current in poloidal field coils. 

Ambition o f the poloidal magnetic field plan is to maintain the plasma stability. So above



plasma variable are essential for the confinement o f plasma. The plan procedure required 

a number o f hypotheses like plasma temperature, plasma, current, toroidal magnetic field, 

plasma shape, numeral of poloidal magnetic field coils and much more. Additionally, 

pre-postulation for entity location, currents and numeral o f coil turns are utilized to 

acquire the time for plasma confinement and modify these variables until come up to the 

greatest time o f confinement. The peak time o f confinement provides the numeral o f 

turns, locations and currents o f poloidal field coils. The outcomes are required to 

reconcile inside universal tokamak stability restrictions, i.e. greatest plasma density, 

greatest plasma beta and greatest plasma current.

Precise calculation o f the currents in poloidal field coils are made by exact 

explanation o f Maxwell’s equations used for the magnetic fields in neighbouring vacuum 

segment and in the plasma segment. Above calculations shows that the current in the 

poloidal field coil is transfer to the entire ampere-tums in the same coil. So simply single 

power supply is required for whole the poloidal field coils. If the numeral of turns o f the 

coils is amplified then it creates the necessary current in the poloidal field coils. The 

Grad-Shafranov (GS) equation is used to control the plasma area field while solution o f 

Laplace’s equation control the vacuum area field.

The function o f poloidal field coils are very significance for tokamak machines. 

Poloidal field coils are utilized in different scheme for all tokamaks [11-20].

1.9 Outline of the Thesis

In the present chapter, we describe fundamental o f fusion, plasma physics, 

tokamak plasma, tokmak machines, tokamak variables and the scheme b f poloidal field 

coils for different tokamaks.

In second chapter, we derive the tokamak equilibrium, poloidal fiux and Grad- 

Shafranov equation.

In third chapter, we construct the mathematical model for poloidal field coils 

currents solver and force calculations.



In fourth chapter, we write the result o f simulation of poloidal field coils draw out 

put flux contours.

At last in chapter five we wTite the summary and conclusion o f the simulation of 

poloidal field coils.



CHAPTER 2

2. Equilibrium and Grad Shafranov Equation

2.1 Tokamak Equilibrium

Tokamak equilibrium can be measured as an interior balance between the forces 

from the magnetic field and plasma pressure. This offer grows to the shape and location 

of the plasma, controlled by the currents in the exterior poloidal field coils.

According to single fluid magnetohydrodynamics (MHD) equation o f motion.

Dv — —p ~  = J x B - W p  + pg  (2.1)
ot

Above equation express the mass flow.

For steady state conditions ^  ~  ̂ = 0

Equation (1) becomes

J x B  = Wp (2 .2 )

This is plasma equilibrium equation in which J x  ^ ^magnetic pressure and 

V/7 = Plasma Kinetic Pressure [21].

Taking dot product o f 5  and Equation (2.2)

B * J x B  = B*V p  

J  • B x B  = B »V p



Also taking dot product o f J  and Equation (2.2)

J • J x  B = J  9Vp  

B » J x J - J * V p

0 = (2.4)

Now Ampere law in differential form is

(2.5)

Equation (2.5) in ^and Zcomponents

(2.6)

and (2 7)
dr

Gauss’s Law in Magnetism can be written as

VmB = Q (2.8)

Screw pinch consists o f a cylindrical plasma by means o f both angular and axial 

components o fJ  and 5 .  So Gauss’s Law in Magnetism for screw pinch cylindrical 

coordinates is [22]

V . 5  = i ^  + ̂  = 0 (2.9)
r de  dz

Equation (2.2) in cylindrical coordinates is

(2 .10)
dr

By using Equation (2.6) and (2.7), we have



d { r B j _ d p------B
//q dr fif^r dr dr

2/̂ 0 fu^r
dr dB.

Ba-----1- r
dr dr dr

1 dB^^ i dBg Bg _  dp
2 //q dr 2 //q dr dr

dr
Ba + B

2/̂ ,
Bg _ d p  
Mar dr

dp d
dr dr

Bo +B,:
2a

+ ̂  = 0

dr 2//,0 7
+ ̂  = 0 

Maf
(2 -11)

Equation (2,11) indicate that information of the profiles o f the plasma pressure 

and one of the magnetic field parts constructs it achievable to decide the profile of the 

other magnetic field part. Consider that the axial part o f the field is known, the azimuthal 

part can be determined from [22]

dp r dBg r d s /  Eg „
r — + ----------^  + ----------^  + —̂  = 0

dr 2 /7q dr 2 dr //q

dp d  r —  + r
dr dr

B

2/̂ 0
+  r-

dr
B

/̂ o

d
dr 2/̂ 0

Bq dp d+ - ^  = - r  —  - r
Mo dr dr Ip,

(2.12)

For discover this part of the field accurately, however, needs information of the 

boundary conditions.



Overall, the plasma is holed in equilibrium by an outwardly applied magnetic 

field. This field is created by a set o f current hauling conductors neighbouring the plasma. 

Additionally, a vacuum section is assumed to be present between the plasma and the 

conductors. From this, it is achievable to define the generally non circular plasma surface 

like the curve beside which the plasma pressure is efficiently zero [22].

2.2 Boundary Conditions

At the plasma surface, boundary conditions are specified by

(2.13)

h x B l = h x B l  (2.14)

(2.15)

Where B = magnetic field inside the plasma 

B = vacuum magnetic field

K = outward pointing unit vector normal to the plasma surface.

Above boundary conditions guarantee that the normal and tangential parts o f the 

magnetic field and the magnetic pressure are incessant across the plasma surface and it is 

supposed that no surface current flow. Also by using B • S/P ~ 0 then [22]

« .B |„ = 0  (2.16)

« .B |„ = 0  (2.17) 

The vacuum field B is found from



Where == magnetic field o f conductor and B = vacuum magnetic field o f the 

plasma [22].

2.3 Poloidal Flux Function, Current Flux Function and 

Grad Shafranov Equation

Consider Cylindrical and Quasi Cylindrical {p,co,^) coordinates systems.

Figure-2.1: Cylindrical and quasi cylindrical coordinates systems [23]

Poloidal flux ^ (r ,z) is define as

r

(2.19)

Where Area = a = 7ir

\!/{r,z) = ^  \B Ja  
I n l



i!/{r,z) = - ^  B*da  
2m I

(2.20)

Up to a factor of I n  the magnitude \j/ is tlierefore equivalent to the poloidal flux 

(across Z>) of the magnetic field B .

(2.21)

Taking partial derivative o f equation (2.21) with respect to r

dif/ d ,
dr dr

dr ’ dr

d\j/ = rB,

r dr
(2.22)

Now taking partial derivative o f equation (2.21) with respect to z [23]

di!/ d r B d r ’

dz ^dz



dxj/ \ d  ,-X-rB^^dr
0dz Id r  

dij/
dz

= -rB.

(2.23)
r dz

In cylindrical c o o r d i n a t e s , Gauss’s Law in magnetism can be written as

V . J  = i ^  + i ^  + ̂  = 0 (2.24)
r dr r d<j) dz

According to hypothesis o f axisymmetric B is independent of co and —  = 0 , so
d(!>

Equation (2.24) becomes [23]

V . 5  = i »  + ̂  = 0 (2.25)
r dr dz

dr dz

SjrB,) ^  djrB^) 
dr dz

Now gradient o f y/ in cylindrical coordinates can be written as

= + + (2.27)
dr r d(j) dz

For hypothesis o f axisymmetric —  = 0 , we get [23]
d(f>

= + (2.28)
dr dz



By using equation (2.22) and (2.23) in equation (2.28), we get

Vy/ = rB^r-rB^z,  (2.29)

Magnetic field ^  in r and z coordinate can be written as

B = B /  + B J .  (2.30)

Taking vector product o f Equations (2.29) and (2.30) then 

= (B^r + B J )  X {rB.r -  rB^z)

5 x V ^  = 0 (2.31)

Now, taking scalar product of equation (2.29) and (2.30) then 

B ^ V  y/ = {B/- -\- B J )  • {rB,r -  rB^z)

B * V y/ = 0 (2.32)

By equation (2.3) and (2.32) we can write

P = P(¥^) (2.33)

Where p is pressure as a function of y/

Then a current flux function /  also exists, and can be written as [24]

f  = f { ¥ )  (2.34)

So current density can be written in r and z components as

J r = - ~  (2.35)
r dz

J. = (2.36)
r dr



According to Ampere’s Law in rand z components

oz r dr
(2.37)

Now comparing rand z components o f equation (2.37), we have

dz
(2.38)

, 1 ^{rB,)
=----- ^r dr

(2.39)

Putting equation (2.35) in Equation (2.38) tiien

_  j _ ^  

r d z  /ig  'd z

f  =
Mo

(2.40)

The function /  contains the whole current in the windings creating the toroidal 

field [24]

Now equation (2.4) in rand z components as

(J ,r + y .f)'
dp . dp . —  r + —  z 
dr dz

( - - ^ r  + - ^ z )  
r dz r dr

-r + - ^ z  
dr dz

r dz dr r dr dz



dz _ dr dr dz

V /xV /7 = 0 , (2.41)

this shows that /  is a function o f P ,so  we can write

p  = p (v )  and/  = /(((/) .

Consider is unit vector in toroidal (j> direction. Now taking dot product o f  

e^with equation (2.29) then

= 0 (2.42)

and also similarly

e,.V/ = 0 (2.43)

so we can write

e^.V(^ = e^«V/ = 0. (2.44)

Now equation (2.2) in component can be written as [25]

J (2.45)

where Vp  = plasma pressure

Jp =poloidal current density 

=poloida! magnetic field.

Now, poloidai magnetic field can be written as

S,=i(Vy/x(.^) (2.46)



and poloidal current density can written as

Put equations (2.46) and (2.47) in equation (2.45), then

Now e^y.(V/x<r^) = V /(e^•  e^)- (e^ • V /)e^, 

where

so X (V /x  e^) = V / . (2.49)

Similarly x ( V ^ x = V y/{e^*e^)- (e^• V y/)e^

Where {e  ̂•  V ^0 so

e^x(V^i/xe^) = (2.50)

Put equation (2.49) and (2.50) in equation (2.48) then [25]

B J
— ^ V f  + -^V>i/ = V p .  (2.51)

r r

Consider

= (2.52)
dij/

dP
and S^P{y/) = -----V y / . (2.53)

d\}/



Put equations (2.52) and (2.53) in equation (2.51) then

d f  ^  dP ̂
r dy/ r dy/

+ . (2.54)
 ̂ dy/  ̂ dy/

Equation (3.40) can be written as

B , = ! ^  (2.55)

Put equation (2.55) in equation (2.54) then [25]

dP. f i j  d f  , , ,
J  + (2.56)

dy/ r dy/

Only J .  component o f Ampere’s law can be written as

dB^ dB^
(2-57)

oz dr

Put equation (2.22) and (2.23) in equation (2.57) then

oz r oz or r or

j 5 , 1  dy/. 1 5 V  
dr r dr r dz'

+ ̂  (2.58)
dr r dr dz~

Put equation (2.56) in equation (2.58) then

0 dP  ̂ r d f  d A dy /. d'y/ 
r n ^ - -----fJ, = + ^dy/ dy/ dr r dr dz
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* ^

(2.59)
or r or dz~ dij/ di}/

Let F  = f i j  (2.60)

Then equation (2.59) becomes

d A dy/. 1 dP d fr —  (-----—) + — ^  = - r - u ^—
dr r dr dz dy/ dy/

d \ d\f/ d~y/ T dP diju^f)
r — (---- - )  + — ^  = - r ~ u . ------- F - - ■ -

dr r dr dz dy/ dy/

d A dy /. d~y/  ̂ dP dFr — (-------------------------------------
(V) . dr r dr dz dy/ dy/
h -

^   ̂ 1 dP dF n
^  ^ y / ^ - r j i ^ - ----- . (2.61)

d w d y/

Equation (2.61) is GRAD SHAFRANOV equation [25], 

where

. ^ d A d . d -
A =r— {~— ) + ̂  (2.62)

or r or oz



CHAPTERS

3. Model for Poloidal Field Coil Current Solver 

and Force Computation

Precise calculation o f the poloidal field coil currents needed the self reliable result 

of Maxwell’s equation for the vacuum sections and the magnetic fields in the tokamak 

plasma. Solution o f Grad-Shafranov equation gives plasma field, and the solution o f  

Laplace’s equation gives vacuum field. Boundary conditions required at the plasma 

surface join the two solutions [22].

3.1 Parameters of Plasma Surface

The toroidally axisymmetric plasma surface is describe by

r = r^{pi) (3.1)

z = zp{ju), (3.2)

where is a random angular coordinate.

The unit normal vector is describe by

(3-3)

And also unit tangent vector is described by

1  re, = — V’-^e ,  + z ^ e ^ ]  (3.4)

Where and e, are units vector in r and z direction [22].



The magnitude o f both unit normal and tangential vector is

Q = i> (3.5)

( )c c

Figure-3.1: Geometry o f plasma surface and conductors for use in the poloidal field coil current calculation 

[22].



Normal derivative is describe by

And also Tangential derivative is describe by

g e , . v  = — = r — + z ^ -  (3.7)

The differential component o f arc length is work out from

d s ^ = d r / + d z ;  (3.8)

ds^ = r ; d f i  + z^^d^ = Q^dfi^ (3.9)

ds = Qd^  (3.10) 

And differential surface area is

ds  ̂= rdsd^ = rQdpd<j) (3.11)

The plasma represented in figure is imagined to be bounded by vacuum. Total number o f 

j  toroidally axisymmetric conductors are present in vacuum section. The location o f

every conductor is described by(r^ ,z^.). These conductors are act as filaments to make 

simpler the calculation of the currents. Every conductor is supposed to contain a 

rectangular cross-section by means o f a height hj and width cOj [2 2 ].

Vacuum magnetic field can be written as

where

= vacuum magnetic field



Bp = plasma magnetic field

= magnetic field due to external coils 

The field in the vacuum region due to the plasma satisfies

(3.13)

(3.14)

Plasma magnetic field can be expressed as

+ (3.15)

(j) is scalar magnetic potential, B̂  is field due to single filament or coil. is located at 

magnetic axis.

Scalar magnetic potential (Zi satisfied Laplace Equation. Taking divergence o f equation

(3.15) then [22]

V •Bp = V  • V  <j> + V *3^

o = v V + o

V V  = 0 (3.16)

3.2 Poloidal Flux in Elliptical Integral

By using distance formula and cosine law o f triangle [22]

\ r - r \ = { z - z ’Y + r ^ ^ + P - 2 r r  cos,{<f>- ^') (3.17)

According to relation



E  = - V  ^  (3.19)

Similarly

V * B  = 0 (3.20)

B = V x A  (3.21)

and B = (3.22)

where E  is electric field,

(j) is electric scalar potential,

A is magnetic vector potential.

In cylindrical coordinate ( r ,^ , i: ) .  B = V x A  can be written as [26]

(3.23)
r dz

(3.24)
oz dr

(3-25)r or r d(p

E = - —  (3.26)
dt

According to Faraday’s Law

dt

By using equation (3.21) then



V x E  = - — (V xA )
d r

V x £  + — (VxJ4) = 0 
dt

V x £ + V x — = 0  
dt

-  dA 
V x { E  + — ) = 0  

dt

By using equation (3.18) and (3.19) then

E + -  = - V ^  
dt

BA
E = - V ^ - —  (3.28)

According to Ampare Law

/IqJ  = V x B 

By using equation (3.21) then

//q J  = V X (V X Ji)

/JqJ  = (V • A)V -  (V • V)A  (3.29)

Since V • ^ = 0 (3.30)

Then equation (3.29) becomes [26]



Solution o f this equation (3.31) can be written as

J(r')
4 ; r J \ r - r

, current rn where J { r ) = ---------- , (3.3 j)
Area

By using Gauss’s and Stake’s theorem, equation (3.32) becomes

r — r

So r'^os(P)d(P) 3̂ 3 ^̂

.2 /?

Equation (3.39) can be written as

(3.34)
4;r ^,

where dl^= r’cos{<j>-<j)*)d{<̂ -<l>'). (3.35)

Then equation (3.34) becomes

4-  ̂ 0 ^]{ z - z 'y  + r~ + r^ -  2rr cos(^ -  ̂ ')

Let = (3.37)

4?r I ^ (^2  -  z ’f  +r’- +r^ -  2rr' cos{P)

If circular loop so small then p  can be written as

P  = 7T + 2e  (3.39)

Now half angle identity



2 2
(3.41)

Taking ‘ cos ’ on both sides of equation (3.41) then

cos
/  \  
^  + 0 

v 2  y

cos = cos
J

cos(^ )-sin  y  sin(^)

cos
v 2 /

(3.42)

Put equation (3.42) in equation (3.40) then

cos/? = 2sin^(9-l (3.43)

For Lower limit of equation (3.38), if  = 0 then equation (3.39) becomes

0  = ;r + 26>

e  = - ^ (3.44)

For Upper limit of equation (3.38), if  = Othen equation (3.39) becomes

27t ~7r-¥ 2$

0 =  - (3.45)

Taking differential o f equation (3.39) then

dj3 = 2de

By using equations (3.46), (3.45), (3.44), (3.43) in equation (3.38) then



r { 2 s m - 9 - \ ) 2 d 6

4;r _i ^ ( z  -  z')~ + + r' -  2rr'{2 s in ' - 1)

A. = \
{ 2 s m ^ e - \ ) d e

27t i  ^(z -  z')’ + r'^ + r ^ -  2 /-r'(2 sin" - 1)

0 ^ ( z - z')- + r'~ + r" + 2rr'- 4rr'sin" 9

A. = (2 sin’ 6 »-l)rf6 '

2 ^ 0 V(z -  z’)" + C?- + -  4rr'sin^ 0

A. =
( 2 s m ^ e - i ) d e

2 ;r-J (z-z ')“ + ( r + /•')" o
1-

(3.47)

Where

= (z -  z 'Y  + (r + /)^

4rr' 4rr'
f\ 2

(3.48)

(3.49)

Put equations (3.49) and (3.48) in equation (3.47) then

/ /« / /  V 2sin'(9-l)t/<9

I tt



{2sm~ 9 ~\)dO

0 9

A  =
I n

2sin 9d9 d9

0 sin' 9  0 -A:^“ sin‘ 9

r'
2n

2 M \ - k ; s W 9 - \ ) d 9  \  d9

0 0 ^ \ - k ^  s\n^ 9

A . = ^ k
27T H r

2 - 2 > - d 9

d9

0 sin“ 9

A . = ^ k

\ - k p S m ^ 9 d 9 ^
2 -f d9

p̂ 0 -kp'  sin"6̂

I

- J
d9

0 ^ \ - k p  sin“ 9

(3.50)

) d9



and E  = E{k^) = U l - k /  sin- OdO (3.52)

are Elliptical integrals o f  first and second kind respectively and modulus of elliptical 

integral [27]. So equation (3.50) becomes

* I n
2 2 •

A. = - E  + K —  
2

A. = z V _ L
TV

(3.53)

According to hypothesis o f axisymmetric, magnetic field B is independent o f co and

a
d<p

= 0, So B = 'Vx A can be write in cylindrical coordinate as [23]

B = -
dz

(3.54)

(3.55)

Above equation can be written as

d(r'A.) = r%dr' (3.56)

Integrate on both sides o f equation (3.56) then

rA. = / B . d /



If

M

1 7rA, = —  Inr’BMr
2 ^ 0

rA^ =
2.K t

rA. =
I tt

B.da

1 7 -  
rA^ = —  B* da 

* 2 n i

rA. = —  B^ da 
* 2a -

(3.57)

Where area = a = titn

By comparing equation (2.20) and equation (3.57) then

rA.

Xj/{r,z) = rA. (3.58)

Where \}/{r^z) is poloidai flux

Equation (3.58), represent the poloidai flux in term o f vector potential.

Putting the value o f vector potential from equation (3.53) in equation (3.58) then

Hf{r,z) = r M l
7t

k

w ( r , z )  =
n  k

rr (3.59)



Equation (3.59) represent poloidal flux in term o f elliptical integrals [22]

Where
rr

rr
{ 2 - k ; ) K - 2 E

(3.60)

(3.61)

(3.62)

Now by using equation (2.46) and (3.60), filamentary magnetic field 5, can be written as

(3.63)

= filamentary magnetic field [2 2 ].

3.3 Green Function in Term of Elliptical Integral

The technique utilized to conclude the vacuum field By is foundation on an application o f  

Green’s theorem for the scalar magnetic potential (j>, which is describe as follow[22]

a m  + [^ i( /)«  • V'G(^ /)) -  G(r, r ' ) «  • V ^ ( / ) ) W  = 0 (3.64)

2.T

-<^M+ [Km>-- r-̂ ---- ydju=0
2  ̂ on on

(3.65)

Where a  is a coefficient which depends on the position o f the inspection point 

comparative to the plasma surface. If r is outside the plasma then value ofcr = 1, if  r is



on the plasma surface then value o f cr = — and if  r is inside the plasma then value o f  

<j = 0 .

Green function can be describe as

1
(3.66)

And reduced Green function G can be describe as [22]

2 /t
(3.67)

2 ,t

G
47r\r—r

(3.68)

Put

and

(3 = 7 1 2 6  

dj3-^2d0

then G = -
1 2d9

Att i \ r  - r '
(3.69)

By using equation (3.17) then

G = - 1 2d0

4-  ̂ + / '  +r^ - 2 rr'(2 sin“ 6 ^ -l)

G = - 2d0
4^ 0 yjiz ■~z)-+(r + / ) -  -  4rr sin" 0



G = -  ■
7 r ^ ( z - z ' y  + (r  + r )' j 4rr'sin"6^ 

~ { z ~ - z f + { r ^ r y -

G = -

G = ------V -  (3-70)
iTtyjrr’

Equation (3.70) is Green’s function in term o f elliptical integrals [22].

3.4 Properties for Derivative of Elliptical Integrals

Some properties for derivative o f elliptical integrals are as follows [27]

dk, l - k ^

dF 1
= - [ E - K ]  (3.73)

K

dr' 2r' Ar 4r
(3.74)

3.5 Normal derivative of Green’s Function in term of 

Elliptical Integrals

Now normal derivative o f Green function can be finding by using the properties for 

derivative o f elliptical integrals [2 2 ].



dG , dG , dG 
dri ~ dr’ dz

(3.75)

dG _ d k^K
dr' dr 27r4ir'

(3.76)

dG ____ !____
dr' 4w '^ fr /  2 ;r V ^   ̂ dr

dG
dr’ A7rr’4 ^  27tJ  rr’

K + k. dK
dk.

dk.
dr’

dG k ,K 1 E ~ k^ A:' k ^  p p p
dr ATTr' ĵrr’ 27rjrr’ [ i - v j 2r’ Ar' Ar

dG _
dr’ iTir'yfn^ 

Now

E k ;
K 1 1 + - >

1 - V 1 2  ̂ r )
(3.78)

dG _ d k^K
dz' dz’ I tiJ tt’

dG _ \ d
dz’ iTTyfn^ dz

dG 1 d

^ — {k k )

__________________ [ k K ^
dz’ 2k 4 ^  dk„  ̂ dz’

(3.79)

dG
dz 27t4 ^ ’ "^dk.

dk.
dz'



1
dz' iTTyfir' 

Now

/■ \

v‘ - V

dk.
dz'

(3.80)

dkp d 2 Vrr
5z' ^ ( z - z ' f + ( , r  + r ' f

(3.81)

dk^ k ^ ( z - z ' )  
dz’ A-

Skp V ( z - z ' )  .

dz' 4rr’

Put equation (3.82) in equation (3.80) then

(3.82)

dG 1

dz' 27t4 ^ ' \ - k p y Arr’
(3.83)

Substitute equation (3.83) and (3.78) in equation (3.75) then multiply by r' so

r'^—  = r'z'^dn’ rr
K - E

\ - k .

k /  
1 — ^

V iTTyjrr
E

\ - k

k X z - z )

p Arr'

dn’ 4;rVr/

,a G  k^

\ - k .

k ;  
1 — ^

V f'y AttJ.

dn A TV 4 ^

2 /  .N 
1 + ^  

r )

rr

r,E

2r

1 - *

k " ( z ' - z )

p y 2 r

,dG
on A7t4 ^ '

z ' K -
Z..E

\ - k .
+

1 -^: " 2 r )
{ 1 k , \ z ’- z )

I ' - V j Ir
(3.84)



Now equation (3.49) can be written as

\ - k ^ = \ ________ __________
( z - z ' ) ’ + ( r + /■')-

2 (z-z')" +(r + r')~-Arr' 
" ~ { z - z ' f ^ ( r  + r ' f

(3.85)

Putting equation (3.85) in (3.84) then

K z;£{(z--0 "+ ('•+ '•?} ,

l  r j

Arr' {’■'A 4?r'(z'-z)
dn 4;rV?/ { z - ^ f + { r - r ' f  2 { z - ^ f ^ ' r - r ' f U'J { z - f f + { r - r ^ f

,dG rV* __  —______
dH 27t4 ^ ’

v ^ - 1 .  IZ
d7 2 jr \r

, ^  _ J _  I?
cn' 27t \ r

1 + -
z.k^K z Ek \(z~-z)^ + (/*+ry | p p____  ̂ p  ̂ , I r '  Ek’

2r' l r % z - z ' f  + ( r - r ' f ]  " \  ‘ r j i z - z ' f + { r - r ' f  ( z - z ' f + ( r - r ’)

^'^Ek j z - z ' f + { r + r ' f }   ̂ z'^Ek^(r+r') r'^Ek^{z'-z)
2 /  2 /''|(z—z')“ + (r— I (z—z')“+ (r—/)■ (z—z')^+(r—r')

’’’̂ Ek^i^'-Z) z '^Ek^z-z ' f+{r-^r ' f ]  z'^Ek^(r+r') 

7r ( z - z f ^ { r - / f  V {(z-z ')- + ( r - r f ) ^ (z -z ') ’ + ( r - 0 ’

,ac  1
dd 7jt\

z^Jc^K r[EkXz^-z) U z - z r H r ^ r ' Y
2r' ( z - z ' f + { r - r ' f  ( z - z f - ^ { r - r ' ) -  Ir' '

,dG 1 7 ~z\k^K r^Ek^iz'-z) z^̂ Ek̂ (z -  z')" + (r+/)■ -  l r \ r + r')r —
dy 27̂ ^ r 2 r' ( z - z ^  + (r - /)^  (z-z')- + (/* -/)- 2r’



,cG
— ' p

r'„Ek^<^'-z) ( r - z f + ( r + / - y - 2 n -'- 2 r'-
2 t  V r Ir' ( z - z ' f H r - r ' f (z-z')^+(r-r')- 2 r'

,dG
1 I'-' rlEk^(z'-z) (z-zO -+(/■-/■')■+ 2 ? r '- 2 r'̂

dj' l a i r V ( ^ z - z ' f H r - r ' f ( z - z y + ( r - r ' ) - V

m  r
rlEk^iz'-z)

,dG 1
drl 2jt\

,dG 1 r —  =

2r' { z - z ' f  +{r-r 'y  ( z - z ' f + ( r - r f

dri 2 n \  r 

J
dn’ I n  \

fi p'
> '  ( z - 2')“ + ( r - / - ' ) ’ ( z - / f + ( r - r ) -

2 r'

( z - z ' f + i r - r l ^

7r’

dn' 2 n \ r
'■lEk^{z’- z )  z\Ek^

( z - z ' ) - + ( r - r ' f  { z - z f H r - r f  2r' 2r'

r' '■^Ek^(z'-z) z ; £ i ,   ̂ z ' ^ E k y - r )  I

r 2r' (z — z*y + ( f  — /■')■ 2 /  ( z - z ' ) ' + ( r - r ' ) \

,5G 1

dn' 2 n \

. ' ^  = X
&?' 2 n \

, ------— ^ E k p  + ^ { k K - E k )
( z - z ' f + ( r - r ' ) -  ( z - z ' f + { r ~ r ' f \   ̂ 2r'^

z' (r - r ) ~ r ! ( z ' - z )  z  / \ 
------~ \ E k p  + - ^ ( k  K - E k )

b i  2 ;r V ( z - z ' f + ( r - r ’)f\2 (3.86)

Where T = ^  
2 /

(3.87)



and
( z - z f H r - r ' ) '

(3.88)

then

,dG_  !_ 
an’ 2n \

-[ .U p £ + r A (3.89)

Equation (3.89) is the normal derivative o f Green’s function in terms o f elliptical 

integrals [2 2 ].

3.6 Vector Potential in Terms of Green’s Function

Vector potential can also be written in volume Integral as (Distributed 

currents)[2 2 ]

A(r) = e -<pydr’dzd{^^ - f j  

z J  0 s i  +r'^ + r^ -2 r r ' c o s ( ^ - ^ ' )J J (3.90)

Air) = e cos{ '̂ ~ ^ y d r  dzd{^’ -<!>)
7_A 0 ^ | -  2 r /  cos{^ -  <j>') + (z -  z 'y

(3.91)

Where
Area

(3.92)

Coils with rectangular crossection o f width w,  height h , major radius R and elevation Z 

earring a uniform current density /.a n d  is unit vector direction.

Put j8 -  ^ '-^ then  equation (3.91) becomes

cos{p)r'drdzd {0)

2A 0 V ' cos(̂ zi -  (f>) + { z -  z f



In term of Green function (G)

^('*) = frG{r, z\ r ,  z )d r ’dz
4;r

(334)
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Where G{r,z\r \z ')  = cos{(3)d^

^jr'^ +r^ - 2 rr'_cos(^-^') + (z-z')^
(3.95)

By using equations from equation (3.39) to equation (3.46) then equation (3.95) becomes 

[22]

G(r,z;r\z ')  = {2sm ^0- \ )2d0

^ { z - z f + / ^ + r ^ - 2 r / [ 2 s m ^ 0 - \ )

G (nz ;r \ z ' )  = 2 i2s 'm ^0- l )d0

0 ^ ( z - z ' ) “ + (r  + r')' -4rr'sin" 0

G{r,z\r \z ')  = {2 sm ~ e- \ )d e

^ ( z - z ) -  +(r + / f  0
1 -

4r/sin-6»

M7U I 2 4rr' 4rr Where = --------- r------------
( z - z ' ) -+ ( r  + / )  A-

, .  2  > ( 2  s i n ' 1 ) ^ / 0G(r,z;r ' , z)  = — j

, .  2  > 2sm^ Ode 2"'G (r,z;r ,z)= r — dO

G ( r , z ; r \ z ) ^  — de



Where K  = K{k^) = |
d9

is first Elliptical integral.

- 8  M \ - k ^ ' s m ^ 0 - \ ) d O  4 ^ G {r , z ; r , z )  = ----- r ------r-̂  . . . -- -------k
Akp 0

G {r , z \ r \ z )  =

/T .T

- 8  \ ( 1 -A : /s in ' 0 ) ^ / 0  8  }  de
r f

0

2 --------------------------------------—

Where £  = sin  ̂OdO is second Elliptical integral.

G{r,z\r \z ')  = - ^  
Ak~

- E  + K —  
2

8G(r,z;r',z' )=  ̂
Ak„

- E  + K
\ /

8G ( r , z ; r \ z )=   ̂
Ak„

(   ̂ 0

1 — ^ K - E
2

V /



By using

r f  'G (r ,z ;r ,z )  = — - 
rr

f k
I ^ K - E

2_  ̂ j _
(3.96)

A current J  flowing in a very thin loop can be considered filamentary so that [22]

J{r) = 18{r' -  R)S{z' -  Z)e^, (3.97)

where S  is the Dirac Dalta function

So vector potential A{r) = e. {f*G(r, z; r \ z ) d r d z  can be written as
 ̂ An

= ^6 ~  r’G{r, z; r'. z')Jdr'dz' 
 ̂Att

(3.98)

~  f''G{r, z: r \ z ' ) l S { /  -  R)S(z' -  Z)dr'dz' 
 ̂47T ^

(3.99)

By using property o f Dirac Dalta function [26]

f ( x ) S ( x  - a )  = f{a)S{x  ~d)  (3.100)

y { x ) S { x - a ) d x  = f { a )  (3.101)
—cc-

Then vector potential can be written as

A{r) = e^i^RG(r,z-R,Z) (3.102)
4;r

Equation (3.102) represents vector potential in terms o f Green's fiinction. [22]
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3.7 Magnetic Energy of a System of Currents

The amount o f charge per unit time passing down the wire is current /  so the total 

work done per unit time is [26]

dW  , ^ d l  ,
----- = - I s  -  L — I .
dt dt

(3.103)

where s  -  Electromotive force=electric potential for self inductance L

£ ~ - L
dt

(3.104)

Put equation (3.104) in equation (3.103) then

dW = LIdl (3.105)

Integrate on both sides

fV = I Lid/

W = L Idl

W = - I ^ L  
2

(3.106)

Magnetic flux is

(3.107)

Put

Then = J(VX^)«

Applying Stokes Theorem on equation (3.108)



(3.109)

Magnetic flux can also be written as

(3.110)

Where Lis called self inductance.

Comparing equation (3.110) and equation (3.109) then [26]

L I=  A*dl (3.111)

Equation (3.106) can be written as

(3.112)

By using equation (3.111) in equation (3.112) then

W = - I  
2

A*dl

W : = -
2

lA^dl (3.113)

The relation between current and current density is" [26]

1= J ^ d a (3.114)

By using equation (3.114) in equation (3.113) then

1W = ~ j{J  • da) A 9dl



2
{J • A)da •  dl

I S

W = - j i J » A ) d V  (3.115)
2  y.

The above work done is equal to the magnetic energy i.e. W = U , so

U = -  j ( J» A )d V '  (3.116)
2

This magnetic energy associated with current density J  and vector potential A [22].

3.7.1 Magnetic Energy for Two Distributed Currents

Let the set o f coils shown in fig. One o f them coil has height h.  ̂ radial width , major 

radius /?,and height given by . The properties of the other coils are indicated with a 

subscript j . The energy linked with the interaction of J. with magnetic field formed by 

Jj\s  establish from

U j ^ , = U j , ( r ) * A , { r ) d V ’ (3.117)

Where Aj{r) is the vector potential linked with J  ̂and F'is volume surrounding [26].

3.7.2 IVIaghetic Energy for a Single Distributed Currents
Current also interrelate with its own magnetic field so[22]

U , ^ , = U j X r ) » A , ( r W '  (3.118)
2  y.

3.7.3 Magnetic Energy for Two Filamentary Currents
The current density for ith and 7 th current is [22]



J,{r) = I .S{r-R ,)5 iz~Z,)e^

The vector potential for yth and ;th current is

A,{r) = e , ^ ^ R , G ( R „ Z , ; r W )
7̂T

Above equations using in equation (3.117) then

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

By using the properties o f Dirac Delta function then

= ^ R , R j G { R „ Z , ; R j . Z j ) (3.124)

The magnetic energy o f a set o f two filamentary currents is described by above equation 

[22].

3.7.4 Magnetic Energy for a Single Filamentary Current

If expands the elliptical integrals for approaches to 1 in equation (3.96) and (3.99) 

then the vector potential A. can be written as [2 2 ]

=
2 k

In - 2
I « J

Where a is the comparable radius o f the coil, given by



A,®,
(3.126)

Substitute equation (3.125) in equation (3.118), then we get magnetic energy for a single 

filamentary current as [2 2 ]

In - 1 (3.127)

3.8 Computation of Force

The net force acting on the on the poloidal field coils system can be written as 

negative gradient o f magnetic potential energy [2 2 ].

For two coil system total energy is given by

(3.128)

(3.129)

When u,^, = c/,^, then

U,=U,^ ,+2U,^ ,+U

To compute force on coil i the V operator is replaced with V.

Magnetic energy for mutual induction can be written as



And for self induction

W = - 1 ^  = - L I I  = 
1 1 1

Where O = flux

So magnetic energy coils is

Since flux -  <I) = M J ,

Total flux through each coil as [22]

where .

Now since the flux is constant so

V ,0, = +/,V,M ,, +M ,V ,/^ + /,V,M„ = 0

+ « > / ,)



By using equation (3.128) then force on coil i is

(3,132)

wliere <j) specify that the energy gradient has been calculated with respect to the constant 

flux requirement.

This expression can be created to an N coil system [22],

F. = /,'V , (3.133)

3.8.1 Force Between Two Filamentary Currents
The equation (4.124) represents the magnetic energy o f a set o f two filamentary 

currents i.e. [2 2 ]

Where 2A

R,R,
1 ^ K - E

2_V ) _

Where A- = ( Z , - Z j f  + ( R , + R , f  and A / =
4R,R^ AR,R^

( Z , - Z , ) - ^ ^ { R , + R ^ f  Â - 

So magnetic energy o f a set o f two filamentary currents is given by

U j ^ , = f ^ A {
1 ^ K - E

2_\
(3.134)



. J ' ‘ I
I-

By using equation (3.128), (3.131) and (3.134) then magnetic force between two 

filamentary currents can be written as

a t / , a t / ,  
+ €■

dR̂ dZ.
(3.135)

The component o f magnetic force can be finding by using the derivative properties o f  

elliptical integrals as follow: [2 2 ]

8u,^, MqI J j d 

dR, 2 dR,

'
f  VA< 1 ^

2

K - E
_ k J

dR.
dA f V d ( dk

1 K ~ E [ + A < I K - E > ^
dR. 2 dk^ 2 dR^I J J p V J > I

Where
dA (R. + R.) R. + Rj
8R- p , - Z ^ y - + ( R ,  + R ^ f  A

and

dk
^ ( Z , - Z ^ y - + ( R , + R , )

T R,

dR
p _

____________2( R . + R , ) ^

^  p , - z , y - + ( R , + R j y

( z , - z y - + { R , + R , y

Multiply and divide by k

4R,R ,(R,+R)  
dk_ ‘ i z - z , f + { R . + R , yp _
dR, k X z - z ^ y + ( R , + R . y \  

^R,Rj(R, +R,)
ek,  _  -
dR̂

Â -



dk^ _2A^R^-AR^R^{R,^R^)
dR,

And

d
dk„

f  V f< 1 ^ K - E > = - k K  + 1

2
p

2\  J \  /

dK dE
dk^ 8k,

By using

dK 1 r ^  , dE 1 _  , -----= — [-------- — [ £ - ^ 1  then
dk, K ^ - K  ‘̂ K C

dk.
f  ^ 1J 1 ^ K - E > = - k K  + 1 ^

2
p

2  ■■V  ̂ /

\ F 1
~ [ — ^ - K ] - — [E--K]

dk.
1 - ^ K - E

V y

K
k ^ { \ - k ; )  k^ 2 { \ - k ; )  2 k^ k^

dk.
K - E

V /

=  - k K  +
E k^E ^ k ^ K  E

' A ^ ( l- V )  2 (1 - V )  2

dk.
[ k ^ ^

1 K - E  >
I 2

_  K K
+ ■ E

d
dk.

J 1 ^
2V V

_  P
2 k J \ - k ~ )

dk.
K - E

\ 2  2 ^ ( 1 - A:/)



dk.
 ̂ k ^ ^
1 ^ K - E

2V J

dk.
{ k

1 K - E _ p
2 2 _

E
\ - k .

- K

dU^^, _ MoIJj
dR.

R^+R
A

1- ^ K - E
\  /

2A"Rj -4R,R j{R,+R^)
k fA ‘

SUj^, Mohh 
dR, 2

R, + R‘‘ J
A

K - E
IV /

+ “----- 2 - ^
v ' -V  .

A^^R-2R,RAR,+R,)

dR,
R, + Rj

A
k

1- ^
2V y

K - E + Rj ^R.RAR.+R,)
A^

dR,
 ̂ k 
1- ^ K - E

\  /
+

R. 2R,R^
R,+R^ A-

dR̂
K - E

V y
+

1- C\  p /

as,
V '

1 — e
2  ,V y

K - E  + K ‘
\ - k . R,+Rj  2

- X
if.

2

dU^^, _ ^ „ I , I / R ,  + R
dR,

'I J
R,+R.

K  + Rj K ‘

J y 1-^ . R.+R^ 2

- E

dR. 2

i?.. K +
R, k.

\ - k .
-------------- + A '
R, + Rj 2



dR,
R,

R . + R , ,V ' j  J

K  +
\ - k . 2 R,+R,

8Uj^,  //„ /,/,

dR, A

/  \  
R,

R . + R , ,V ' J J

K  +
\ - k . 2 K + R .

(3.136)

Similarly

dR.
R + R' J

A
R,

V ' J y
K  +

\ - k .
R.

2 R + Rf J
(3.137)

Now the component o f  magnetic force can be finding by using the derivative 

properties o f elliptical integrals as follow [2 2 ]

dZ. 2  az.-
(A< 1  ̂

2

K - E >
_  ̂ J

az. 2

dA
az, 2V. y

K - E + A-
az.

k j  
1 - - ^  

2  LV
K ~ E

dZ. 2
dA
a z 2A /

K - E + A-
dk.

K ~ E
V y

az.

dA _

dz, ^ ^ - z ^ y + { R ,  + R^y

dA _ Z , - Z j  
dZ, ~ A

dk^ _ - k ^ ( Z , - Z , )  
dZ, { Z , - Z , y + { R , + R , f



dZ, {(Z, - Z j f +  {R, + R j f  %Z, - Z ^ f +  (R, + R ^ f  }

dk^ _ - 4 R , R , { Z , - Z , )
dZ.

sz, k^A*

dUj^, z, - 2 .
dZ, 2

-
A

8 U ,^ , _  mJ.1, 2, - Z j
dz, 2

-
A

_ (Z, -  7

5Z, 2 V A

SUj^, _  Mol.lj (Z,
dZ, 2 \ A

_  mJ.J, ^Z, - Z j
dZ, 2 A

_ -^ y
dZ, 2 A

eu ,^ ,
dZ, 2 A

 ̂ k 
1 - ^ K - E

Lv /

k E
/ - K  

1 -A: “\  P

-4 R ,R j ( Z , - Z j )
k^A‘

k
1 — ^ K - E

Lv /
-------2 - ^

J

2R,R^iZ,-Z^)

'  k j ^  
1 — ^ K - E

\ /
-------2 - ^\ - k\  p / A^V /

 ̂ k
K - E ~

\  / \ - k A^

\ /  
+ K

p \  J

2R,R^
Â -V /

1 — ^ K - E -
\  / \ - k .

+ K

 ̂ k 
1 — ^ K  + K

\  / 2V J
- E - E

\ - k .

\  y

2V /
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az, 2 A
K  +

\ - k .

k '  
- 1  + - ^

dZ. 2

z . - zf } K +
^ k ;

V /

(3.138)

Similarly

a z , 2

z  - Z  ^z . ,

K  +
\ - k .

-1
V /

(3.139)

By comparing equation (3.138) and equation (3.139) it is proved that

dZ. 5Z..
(3.140)

Substitute equations (3.136) and (3.139) in equation (3.135) then total magnetic force on 

coil / due to coil' j  is given by [2 2 ]

F
2

R .+ RI R.
R .+ R

K + E
\ - k .

R.
2  R^+RI -'J

+ K  +
\ - k .

(3.141)

and similarly total magnetic force on coil 7  due to coil / is given by

Z - Z j

\  / R,
K+-

E

\ - k . 2

K+-
l - k .

^ - 1  

2V y



3.8.2 Self Force of a Filamentary Current
The magnetic self force o f a filamentary coil interrelating by means o f its own magnetic 

field is expressed by taking negative gradient o f equation (3.127) so [22]

f 8̂ , ̂in - 1

k « )
(3.143)

3.8.3 Force Between Two Distributed Currents
The interaction energy o f a distributed current J, in the magnetic field created by a 

current J j  is given by [2 2 ]

(3.144)

Where drdz

' 2 ^ 2

and
hi vtv

then C/̂ ,̂ =
2i+

2  ̂• 2 ^ 2 ^

4
2r w h, V-J-7_Lq_3̂ 2 J

rrG{r, z\ r \  z)drdzdrdz' (3.145)

By using

j__a
2  dR̂

J X r ) ^ A X r ) d r  + e, L A .
2 az, J , { r ) * A X r ) d r (3.146)



Z,+̂ Z +^R Ji,+̂
a  ' r r G { r , z \ r \ z )  drdzdr ’dz'

+ e- J

5Z.
j rr'G{r,z\r\z')drdzdr'dz'

(3.147)

/j >*’,Z,+-Z,+- /̂?,+  ̂
2 '' 2 ■' 2

' - e ,

+ e-

- e

^ qJ^J

A, h, w.
I j j ( R . - ^ y G ( R , - ^ , z - , r ’,z')dzdr'dz'

R,+̂ Zj+-^R +-  ̂
' 2 •' 7 7

„ W, h: W,
jrr'G(r,Z, + — ;r' ,z')drdr'dz'

w- li, w,li:+-^Z,+̂ R,+-  ̂' 2 " 2 J 2

rr'G(r,Z^ - ~ ; r \ z ' ) d r d r 'd z '

(3.i48)

Equation (3.148) represents the magnetic force between two distributed currents [22].



CHAPTER 4

4. Simulation of Poloidal Field Coils

The TOKAMEQ Code (Tokamak Equilibrium) is utilized in this thesis to design 

the poloidal field coils and control the currents in them. This code was developed in 

Moscow State University for calculations o f the magnitudes o f the exterior coils currents. 

This code has foundation on the numerical solving o f GRAD-SHAFRANOV equation 

[28].

4.1 Poloidal Field Coils Design and Currents Controls

Adjusting the initial parameters, coils currents and positions in TOKAMEQ 

Codes then obtain following are possible Poloidal Cross Sections and poloidal flux 

contours as outputs.

4.1.1 Case-1
Domain centre on R = \5 centimetre

Domain magnitude R =20  centimetre, Z = 50 centimetre

Mesh magnitude 7? ^ 45 Z ^ 62

Symmetry on Z

Poloidal Beta -  0.1

Total current = 40 Kilo Ampere

Co-ordinates of magnetic axis R ^ 15.7809 centimetre, Z = 0 centimetre

Plasma diameter R = 18.1251 centimetre, Z = 28.3058 centimetre

Elongation ^ 1.561691



Flux at the axis = 5.910 millivolt seconds

Flux at the boundary ^ 8.25 millivolt seconds

Flux at the separatrix = 5.938 millivolt seconds

Cord triangularity average^O.2341, top=0.2341, bottom=0.234I

95% region triangularity average ^0.2063, top=0.2063, bottom=0.2063

r: tn t- 
Fttax- ^ 0 0 S 9  

'̂ JwaxSS:
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Fbnd- Sraar' 

a,0008 -OiOD53 
RpiifiiS: I^nd95:
0.0615 0^0011 

Elon^^ Bnid^:' 
jl .5235 0 .1483 
: T r isep :Zdouo95: 
0.2341 -0-1321 

^Boimdary: R: 0 .(B. . .O '^  
^  ̂  ̂  25 .’  : 0 .25 

Real currents:

.pcx^

0.03 
0 2 4  
0.24 
O 23 O .^  
0.32 
0.32 
0:34 
0.34 
0.14 
0.14 
0.21 
0-21 
0.27 
0.27 
0.27 
0.27

0.00 
031  

-0.31 
0 25 

-0 2 5  
0 18 

-0.18  
0 1 0  

- 0.10  
0.27 

-0.27  
0.21 

- 0.21 
0 1 4  

-0 14 
0.08 

-0.08

-0.00501 
-0.0050s 
-O.OtEOl 
-O^OtSOI 
-0.0050i 
-0.0050 
-0.0050’ 
-0.00501 
-0100501 
0.00301 
0.0030i 
0 00205 O; 0 0 2 0 1  

- 0.00101 
-000105 
-0 .0 0 1 0 J 
- 0 ; 00101

Figure-4.1: Position o f poloidal field coils and poloidal cross-section.



In above case adjusting the center o f domain on R=  15 centi metre, Domain 

magnitude R^2 0  centimetre and Z^50 centi metre, Poloidal p  =0.1, Total plasma 

current = 40 Kilo Amperes, and also adjust cuurents in Kilo Amperes and position o f  

poloidal field coils as shown in figure, the magnetic axis is approximately at the center o f  

the rectangular region.

Total seventeen poloidal field coils arc us?d. The poloidal field coil-1 represents 

central solenoid, coil 1 0  and 1 1  are elongation poloidal field coils to control of elongation 

and remaining poloidal field coils are shaping coil for plasma.

Elongation =1.470373 is obtained by adjusting above parameters.

4.1.2 Case-2
Domain centre on jR = 15 centimetre

Domain magnitude = 20 centimetre, Z -  50 centimetre

Mesh magnitude R =45, 

Symmetry on Z

Z =62  centimetre

Poloidal Beta =  0.1

Total current 35 Kilo Ampere

Co-ordinates o f magnetic axis 7? ^ 15.5928 centimetre, Z = 0 centimetre

Plasma diameter on R = 18.2688 centimetre, Z ^ 28.7086 centimetre

Elongation = 1.571459

Flux at the axis = 4.964 millivolt seconds

Flux at the boundary = 0.6 millivolt seconds 

Flux at the separatrix = 5.678 millivolt seconds



Cord triangularity

95% region triangularity average = 0.2273 , top = 0.2273 , bottom = 0.2273

In case-2 adjusting the Poloidal Beta ^0.1, Total plasma current = 35 Kilo 

Ampere, and also change coils cuurents in Kilo Ampere and changed position o f  

poloidal field coils as shown in fig.. The magnetic axis is approximately at the center of 

the rectangular region.
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0 = 2 2
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Figure-4.2: Position of poloidal field coils and poloidal cross-section.



Total nine poloidal field coils are used. The poloidal field coil-1 represents 

central solenoid, coil-2 and 3 are elongation poloidal field coils to control o f elongation 

and remaining poloidal field coils are shaping coil for plasma.

Elongation~1.571459 is obtained by adjusting above parameters.

The toroidal field is generated by a series of coils in an even way spaced around 

the torus, and the poloidal field is generated by a strong electric current flowing through 

the plasma.

Elongation and poloidal beta is important for stability, safety factor and 

confinement o f plasma. If elongation is equal to one then plasma shape is circular and if 

elongation is greater than one plasma shape is elongated. Large value of elongation is 

needed for large confinement time o f plasma. Poloidal beta should be less than one for 

stability and large time o f confinement. Elongation and poloidal beta are obtained by 

control o f currents in the poloidal field coils.



CHAPTER 5

5. Summary and Conclusion

The goal o f this thesis was the design of poloidal field coils and their control o f  

currents. For this purpose inputs was given to the TOKAMEQ Code and out put results 

was obtained in the form o f poloidal flux cross section and poloidal flux contours. In the 

output o f TOKAMAQ Code, the poloidal flux cross section and poloidal flux contours 

are distributed around the horizontal and symmetrical vertical axis and within the 

rectangular boundary. The position o f the poloidal field coils is keep near rectangular 

boundary inside or out side. The shape of the coil is adjusted by size o f horizontal width 

and vertical width. The poloidal field coil on the left side of rectangular boundary is act 

as central solenoid and’ its function is like the primary of transformers. The plasma is 

present inside the rectangular boundary and act as secondary o f the transformers. The 

distance between the vertical axis and central solenoid is keep very small. The current in 

the central solenoid and the coils on the right side is negative. These poloidal field coils 

induced positive current in the plasma. The poloidal field coils on the top and bottom of 

the rectangular boundary are act as elongation coils and current in them is positive as in 

plasma. The magnetic field is produced due to changing the currents in the poloidal field 

coils. The magnetic field produced magnetic force act on the plasma by poloidal field 

coils. The pressure on the center o f the plasma is greater than the pressure towards the out 

side of plasma boundary. The last close flux contour which make X-point is called 

separatrix. All the close flux contour o f the plasma is present in side the boundary.

The force o f interaction is also present between the coils. Plasma will occupy all 

the geometrical space accessible, because o f the collisions between the particles. 

Magnetic fields are utilized for confine a plasma, because the electrons and ions o f which 

it consists w ill pursue helical paths in the region o f the magnetic field lines.



If a vessel containing plasma is located in a rectilinear magnetic field, the 

particles o f plasma cannot get in touch with the side walls, but they will hit the ends o f  

the vessel. Tokamak poloidal field configuration is used to put o ff the particles from 

coming into contact with the material walls in this way. For tokamak configuration, the 

danger o f losses is separated by curving the magnetic lines just about to form a closed 

loop. Theoretical study o f particle trajectories demonstrates that, if  the particles are to be 

confined, the toroidal field be required to have superimposed upon it a field component 

perpendicular to it. This component is poloidal field. The force lines o f the whole field 

thus become helical paths, aroilnd and along which the plasma particles are guided.

Different out put elongation are obtained by changing position o f coils, changing 

their shapes, changing their currents, changing total plasma current, changing poloidal 

beta. These values o f elongation are importance for plasma stability. An elongated 

plasma contain a higher poloidal beta than a rounded plasma by means o f the same safety 

factor and aspect ratio Elongated plasma provides the greater value o f plasma current 

density. Increasing the value o f plasma elongation then increasing the value o f safety 

factor. Large value o f safety factor shows the more stability of the elongated plasma. 

Stability o f plasma is essential for large amount o f plasma confinement time. Greater 

plasma confinement time is required for confinement of plasma in the tokamak machine.

Above conversation point out that the poloidal field coils are compulsory to 

stabilize the upright instability linked by means o f extremely elongated equilibria. 

Because the plasma floats in the upright direction, current is provided to poloidal field 

coils in sequence to push the plasma reverse to the center o f the tokamak. The design 

goal is achieved by satisfactory results.
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