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Abstract

Poloidal field coils are extremely significant for plasma confinement in tokamak.
These Poloidal field coils are act as electromagnetic control for controlling the electric
and magnetic fields, which sustain or change the plasma position, shape, current and
control plasma .discharge. These also contribute to the radial and toroidal pressure
stability required to sustain the plasma in equilibrium. This thesis is associated with the
design of poloidal field coils and control of their currents. The mathematical model for
calculation of currents in poloidal field coils as well as forces on poloidal field coils afe
build up by using Maxwell’s equations, magnetohydrodynamics (MHD) equations and
Grad-Shafranov (GS) equation. GS equation contains a poloidal flux function. We have
computed poloidal flux function in expression of vector potential for ciréular current
loop, elliptical integral and Green function. Plasma secticn has a field which is controlled
by GS equation, but in vacuum section have a field which is achieved by: solving the
Laplace’s equation. GS equation is derived using MHD equations. TOKAMEQ code is
used as virtual design tools for poloidal field coils and control of currents in them. The
TOKAMLQ code is dependent on the numerically solved GS equation. The poloidal flux
cross section as an output result obtained from the TOKAMEQ code. In this cross section
plasma shape is elongated. Elongation is very significant for safety factor and stability of

plasma.

xi
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CHAPTER1

1. Introduction

1.1 Tokamak Plasma Fusion

Nuclear fusion is foundation in the contact of two light nuclei which merge into a
heavier and extra stable nucleus generating a huge quantity of energy. Two light nuclei
are contained into an ionized gas called plasma. This plasma can be confined by means of
electromagnetic forces produced by exterior magnetic fields, which is identified as
magnetic confinement. Currently, the most talented magnetic confinement system is the

Tokamak.

A Tokamak fundamentally is a toroidal machine that confines the hot plasma by

means of a helical magnetic field [1].

The objective of controlled nuclear fusion research is to produce energy by
_merging two light mass nu:lei to form an extra huge nucleus. This reaction is the power
cause of the sun and other stars, where confinement and heating take place through
compression below massive gravitational forces. On earth, probable candidates for using

fusion energy are the subsequent reactions:

D+ Do T (1.01Mev) + 1p (3.03MeV) (1.1
"D+ Do He (0.82MeV) + n (2.46MeV) (1.2)
D+ T— He(3.57MeV) + n (14.06MeV) (1.3)
"D+ He— He (3.67MeV) + 1p (14.67MeV) (1.4)

Beyond a doubt the most available and capable reaction for fusion reactors is a
reaction in which Deuterium (D) and Tritium (T) combine, producing a Helium nucleus

(He) and a neutron (n). This reaction has the biggest cross section at the least energy [2].
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Figure-1.1: Cross section for the reactions D-T, D-D and D- He.
The two D-D reactions have similar cross sections [2].

Both nuclei have to overcome the existing repulsive Coulomb force for a fusion

reaction to take place. The nuclear force is energeticonly for distances in the order of the

-15
nucleus size (10 m!. For bigger distances, the repulsive Coulomb force dominates

where potential barrier is numerous 100keV. A Deuterium and Tritium fuel merge must
be confined for an enough time at an adequately tall temperature in a state where ions and
electrons are separated, called a plasma state. For break-even, so-called Lawson criterion,
the fusion energy unconfined equals the quantity of energy functional to heat the plasma;
fusion gain Q0 = ;ﬁ =1, where P, and P, are the fusion and input heating power, in that
order. A step advance is the fusion ignition, where the supplementary heating can be
turned off. For the Deuterium/Tritium reaction an essential condition, the so-called fusion
triple product, for the ignition is:

nTt, >3x10" m > keVoltSecond (1.5)
Where n is the mean density over the plasma volume, T the mean temperature and T is

the energy confinement time; proportion between the energy in the plasma W = %(nT)
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ie 7, = 7 The necessary temperature is in the order

n

and the input heating power P,

in?

8
of 10 K that is analogous to about one hundreds to two hundreds million degree

centigrade [2].

1.2 Tokamak Machine

In view of the fact that an enormously high temperature is wanted for
confinement of hot plasma is not a minor problem. At recent, two most important

approaches exist; inertial and magnetic fusion.

In inertial fusion, thick, hot plasma is created and confined just for an extremely
small time (nanoseconds) dictated by its inertia. In fusion reaction, influential lasers or
particle beams at the same time converge on a small target (D-T fuel pellet), powerfully
heating the exterior and squeezing the fuel into the centre of the pellet. The powerful heat
and stress force the fuel :o fuse, to a large extent similar to within a star. The fuel pellet

reaches the necessary temperature and at last the burning pellet ignites.

In magnetic fusion, warm plasmas are confined by means of magnetic fields.
Converse to inertial fusion, plasma densities are moderate, however the energy
confinement time can be greatly longer, of the order of one second in the recent fusion
machines. Magnetic fusion exploits the information that the charged particles in a
magnetic field are joined to the field lines. For a toroidal machine, the magnetic field
lines are closed. But, in addition to the motion of particles adjacent to the field lines and
the gyro motion in the region of the field lines, the particles contain a drift velocity in the

direction upright to the magnetic field and its gradient [2].

For this cause, additional magnetic field components are summed, forming
helically winding field lines in the region of the centre of the torus. The helicity of the

magnetic field lines stops the particles from escaping confinement due to the upright
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drift. In order to wind the magnetic field lines, two unlike principles are utilized; the

stellarator and the tokamak.

For a stellarator, exterior coils create both the toroidal and the poloidal magnetic
field components. All the magnetic fields are controlled from exterior and can stream

continually, so steady state circumstances are essentially present

inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field colls
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal fieid coils

Plasma electric ¢ .rrent ; Toroidal magnetic field
(secondary transformer circuit)

Figure-1.2: Schematic view of a tokamak [3].

For a tokamak, exterior coils construct the toroidal field component, at the same
time as a toroidal current flowing inside the plasma itself creates a poloidal field
component. This current is created by induction, the plasma performing as the secondary
winding of a transformer through the primary winding in the centre of the torus. The

magretic field is axisymmetric in toroidal way.

The poloidal field is principally created by current in the plasma itself, this current
is flowing in the toroidal way. The current also supply for plasma build-up and heating

[2].
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1.3 Toroidal Field

Toroidal coordinate system exposed in Figure. The toroidal magnetic field created

by current carrying wire has magnitude B, atR = R, and drops off in power with R™" is

described by:
B, =0 (1.6)
B, R
B, =20 1.7
4= TR (1.7)
B. =0 _ (1.8)
Az

Figure-1.3: Toroidal Co-ordinates [4].

The guiding centre of the Larmor motion moves with velocity given by Equation

(1.9), where ¢3and 7 are unit vectors.

a m 3 v 2 A
Vg ZV“¢ +;B¢—R(v" +?)Z (1.9)

Rt aii A B
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Electrons and ions round the torus in Larmor movement, but the second term in
equation involves that ions and electrons gradually drift in reverse directions along the z-

axis. This happens due to the field power lessening inversely with R. Since a paﬂféle

moves into a weaker field section, its Larmor radius amplify and foundations uprightZ

drift when the particle travels reverse into stronger fields. This drift generates charge
separation, which outcomes in an upright electric field ( E = E,#). This foundations ions

and electrons to drift radially externals, by means of a radial drift velocity agreed by

Equation

5= ) (1.10)

For confine plasma in the toroidal arrangement, one necessity stops the charge
disconnection that creates the electric field causing the radial drift. Count an orthogonal

part to the magnetic field is individual technique of doing that [4].

1.4 Poloidal Field

If a current is contain in the toroidal (¢7) direction, a magnetic field in the poloidal

(é ) direction is formed. The radial coordinate in the toroidal cross section is specified as
r in Figure 1.3. Suppose the amount of the poloidal field be B, and the amount of the
toroidal field be B,. Then the revolving transform angle, which explains the quantity the
magnetic field revolves in the poloidal cross-section, when ¢ development through27z,
is:

B 27RB,

rB p

(.11)

&

The frequency at which a particle revolves about the small axis of the torus, each

time & increments by 27 , is:
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U

&y
a) =
27R,

(1.12)

This revolution in the poloidal direction contain the effect of removing the charge

separation that led to radial drift velocities when just toroidal fields are present [4].

1.5 Limiter and Divertor

The powerful interactions arise between the extremely hot plasma and the at once -
neighbouring material that make up the plasma chamber. Electrons, lons, and radiation
from the plasma are occurrence on the neighbouring material surfaces, heating them and
creating molecules and neutral atoms of plasma and barrier materials which come again
to the plasma and which togéther dilute and cool the plasma fuel. Two dissimilar
approaches present to reduce and organize the plasma material interactions in a tokamak.
The initial opportunity is to materially limit the radius of plasma by introducing a so-

called limiter in the vacuum vessel.

The limiter describes the LCFS short form for Last Closed Flux Surface, which is
the border between the central part plasma where each and every one magnetic surfaces
close back on themselves and the SOL short form for Scrape-Off Layer plasma where
field lines are open and finish on the neighbouring material structures (called primary

wall).

The other opportunity to describe the LCFS is to utilize an exterior magnetic coil
creating a curient parallel to the plasma current. These parallel current outcomes in the
formation of an X-point where the poloidal magnetic field disappears. This diverts the
poloidal field lines to toroidally symmetric plates: the divertor targets. Therefore, the

name diverter.

A limiter is extremely close to the confined hot plasma; the plasma-siirface
interaction being localized to the foremost edge of the limiter. The limiter can so suffer

from harsh heating, erosion and melting. Furthermore, the nearness to the confined

7
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plasma implies that any impurity free from the limiter can without difficulty penetrate
into the plasma and infect the core. When ingoing in the core plasma, the impurities can
chill it down by radiation which is to be avoided to favour fusion reactions. A number of
modern tokamaks still utilize the limiter arrangement similar to TEXTOR (Germany) and

Tore Supra (France) [5].

The majority modern tokamaks favour the divertor arrangement, where the LCFS
is defined exclusively by the magnetic field and plasma-surface interactions are contained

near the divertor target plates.

The impurities free from the target are ionized and possibly swept reverse to the
target by the plasma flow earlier than they can go into the confined plasma. The section
under the X-point and within the separatrix is called the Private Flux Region, it contains a

slim layer of plasma lying beside the two separatrix arms and ending at the target [5].

Limitet Divertor

Figure-1.4: Poloidal cross-sections of a tokamak iltustrating the limiter (left) and divertor (ﬁght)
configurations [5]. ,

The first aim of a divertor design is to reduce the impurity content of the plasma

by keeping the plasma surface interactions isolated from the confined plasma, and
avoiding any impurities formed at the target to go into the confined plasma (by the

divertor particle flow)
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The second aim of a divertor design is to eliminate the alpha particle power. by

heat relocate through a solid surface to a chilling fluid,

The third aim of a divertor design is to create a high helium neutral density

section to simplicity tire out of the helium vestiges formed by the fusion reactions.

By reason of the localization of the plasma-surface interactions close to the target
plates, erosion of the target surface, in addition to inomentous power deposition on the
target plates, can take place and be a serious difflculty for their life span. A probable
move toward to decrease this difficulty is to create a “detached divertor plasma”. For
sufficiently elevated plasma density (which depends on the power input), a fall of the
plasma temperature close to the targets is experiential. Temperature can go down low
sufficient for electron-ion recombination to become significant, therefore eliminating
charged particles and extinguishing nearby the plasma flow. This is habitually
accompanied by an important reduce in the incident power to the targets and plasma flux

density [5].

1.6 Plasma Heating System

One of the major necessities for fusion is to warmth the plasma particles to
extremely tall temperatures or energies. The subsequent techniques are characteristically

used to warmth the plasma [3].

1.6.1 Ohmic Heating

The primary heating in all tokamaks arrives from the ohmic heating sourced by
the toroidal current. At smal! tcmperatures ohmic heating is quite influential and, in huge
tokamaks, makes temperature of a little keV. The current intrinsically warmth the plasma
by refreshing plasma electrons and ions in a particular toroidal direction. Only some

mega watt of heating power is supplied in this way [3].

According to Ohm’s Law heat energy is

Energy=1,'R (1.13)
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1.6.2 Neutral Beam Heating

An extensive method of the extra plasma heating is foundation on the vaccination
of influential beams of unbiased atoms into ohmically preheated plasma. The beam atoms
hold a huge only single directional kinetic energy. In the plasma, beam atoms baggy
electrons due to collisions, i.e. they obtain ionized and as an outcomes are arrested by

the magnetic field of tokamak. These fresh ions are greatly quicker then mean plasma
particles. In a sequence ;)f collisions, the group velocity of beam atoms is relocated into
an amplified average velocity of the disordered motion of every plasma particles. In
fusion research, the unbiased beams are habitually created by atoms of hydrogen isotopes
(hydrogen, deuterium or tritium). The energy of the beam should be enough to arrive at
the plasma centre.‘If the beam atoms were too sluggish, they would get ionized at once at
the plasma border. éimultaneously, the beam is hypothetical to have sufficient power to
distribute importaﬁt quantity of speedy atoms into plasma; otherwise the heating result

would not be manifest [3].

1.6.3 Radio Frequency Heating

Since the plasma ions and electrons are confined to revolve in the region of the
magnetic field lines (gyro-motion) in the tokamak, electromagnetic waves of a frequency
coordinated to the ions or electrons gyrofrequency are capable to resonate or humid their

wave power into the plasma particles.

Ton cyclotron resonant heating (ICRH) is regularly applied on Tokamak. It is
resonant by means of the second harmonic frequency of ion gyration of major plasma
ions (deuterium) or by means of a base frequency of gyration of minority kinds (tritiim,
helium). There are numerous additional resonant frequencies .in tokamak plasmas but
experiments have established a few to be incompetent or not practical while others just
cannot penetrate through the plasma border section. Even though the lesser hybrid
frequency can obtain into the plasma, regrettably it has an incompetent heating éffect.
However one more important application of lesser hybrid frequency has evolved: the
equivalent lower hybrid wave can coerce electric current credit to the information that it

has an electric component parallel to magnetic field lines [3].

10
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1.7 Basic Tokamak Variable

1.7.1 Toroidal Beta

The ratio of plasma Kkinetic pressure p=anT and toroidal magnétic

2 —

pressure p,, = 5 ? _ is equal to toroidal beta (3) [6].
Ho

g2 | (1.14)

B’
2u,

1.7.2 Poloidal Beta

The ratio of plasma Kkinetic pressure p=anT and poloidal magnetic

-

pressure p, = -259— is-equal to poloidal beta ( 5,) [7].
0

Z nkT (1.15)
B, '
2,

B, =

1.7.3 Aspect Ratio

The ratio of major horizontal radius to minor horizontal radius is called aspect

ratio 4. From figure-1.5 v

A== (1.16)

11
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The ratio of minor horizontal radius to major horizontal radius is called inverse

aspect ratio ¢ . From figure-1.5

g== (1.17)

1.7.4 Inverse Aspect Ratio '
|
|

b=Xa

Figure-1.5: D-Shaped plasma shape parameters: X is elongation and & is triangularity [8]

12
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1.7.5 Elongation
The ratio of minor vertical radius to minor horizontal radius is called

elongation £ . From figure-1.5

b=ka (1.18)
k=2 (1.19)
a

1.7.6 Triangularity

Triangularity & is describe as from figure-1.5

" as=R-R, (1.20)

Cs=2T0m (1.21)

where R is the horizonta! distance to the highest point of the external plasma flux

~

surface.

1.7.7 Safety Factor
The kink safety factor g. is define as [9]

2 2
g = i’:B;“I [”2" J (122)

1.7.8 Stability Factor

The stability factor f, is define as

—_ z.g -
ft =l+— (1.2.))

I

R

13
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Where 7, is the vertical instability growth time and z’?Lis»the longest up-down

asymmetric time constant of the surrounding structure [10].

1.8 Scheme of Tokamaks Poloidal Field Coils

The plan and location of the Central Solenoid (CS) and Poloidal Field (PF) coils

was based on the necessities of plasma physics.

The poloidal field coil organization offers the balance, shaping and manage fields
for the plasma. Near the beginning round side view tokamaks contain upright field
scheme but because perpendicularly elongated plasma in tokamak attain superior
presentation for specified tokamak plan constraint like toroidal magnetic field, main and
small radii, due to amplified plasma current. Poloidal magnetic field schemes are
consider to attain superior confinement time and presentation. Tokamaks contain a
physically powerful toroidal magnetic field, measure in tesla, but the force applied by
toroidal field is not sharp towards the plasma and can not avoid external spreading out of
toroidal shaped plasma by reason of the ring force, consequently a poloidal field is

necessary [11-20].

In a characteristic tokamak, poloidal magnetic field is significantly minor than the
toroidal magnetic field. A. lot of practical constraints are available in poloidal coil
locations plan. A number of them are admittance to the torus, its protection, assembly and
limitations on the consumption of gap in the internal tokamak column. Poloidal field coils
plan involves complicated exchange between evéry one of thesg thoughts. Also, this
exchange is subjective by confinement time of plasma and performance. A great deal of
variables are available associated to poloidal field coils plan of tokamaks similar to beta,
ion and electron temperature, plasma current, plasma confinement time, plasma volume
and much more. And diverse variable in plan procedure similar to entity location,

currents and quantity of coil turns and summation of every current in poloidal field coils.

Ambition of the poloidal magnetic field plan is to maintain the plasma stability. So above

14
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plasma variable are essential for the confinement of plasma. The plan procedure required
a number of hypotheses like plasma temperature, plasma, current, toroidal magnetic field,
plasma shape, numeral of poloidal magnetic field coils and much more. Additionally,
pre-postulation for entity location, currents and numeral of coil turns are utilized to
acquire the time for plasma confinement and modify these variables until come up to the
greatest time of confinement. The peak time of confinement provides the numeral of
turns, locations and currents of poloidal field coils. The outcomes are required to
reconcile inside universal tokamak stability restrictions, i.e. greatest plasma density,

greatest plasma beta and greatest plasma current.

Precise calculation of the currents in poloidal field coils are made by exact
explanation of Maxwell’s equations used for the magnetic fields in neighbouring vacuum
segment and in the plasma segment. Above calculations shows that the current in the
poloidal field coil is transfer to the entire ampere-turns in the same coil. So simply single
power supply is required for whole the poloidal field coils. If the numeral of turns of the
coils is amplified then it creates the necessary current in the poloidal field coils. The
Grad-Shafranov (GS) equation is used to contro! the plasma area field while solution of

Laplace’s equation control the vacuum area field.

The function of poloidal field coils are very significance for tokamak machines.

Poloidal field coils are utilized in different scheme for all tokamaks [11-20].

1.9 Outline of the Thesis

In the present chapter. we describe fundamental of fusion, plasma physics,
tokamak plasma, tokmak machines, tokamak variables and the scheme of poloidal field

coils for different tokamaks.

In second chapter, we derive the tokamak equilibrium, poloidal flux and Grad-

Shafranov equation.

In third chapter, we construct the mathematical model for poloidal field coils

currents solver and force calculations.
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In fourth chapter, we write the result of simulation of poloidal field coils draw out

put flux contours.

At last in chapter five we write the summary and conclusion of the simulation of

poloidal field coils.
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CHAPTER 2

2. Equilibrium and Grad Shafranov Equation

2.1 Tokamak Equilibrium

Tokamak equilibrium can be measured as an interior balance between the forces
from the magnetic field and plasma pressure. This offer grows to the shape and location

of the plasma, controlled by the currents in the exterior poloidal ﬁeld coils.

According to single fluid magnetohydrodynamics (MHD) equation of motion.

p%=ij—Vp+pg 2.1)

Above equation express the mass flow.

For steady state conditions g =0and g=0

Equation (1) becomes

JxB= Vp (2.2)

This is plasma equilibrium equation in whichJ x B =magnetic pressure and

Vp =Plasma Kinetic Pressure [21].

Taking dot product of Band Equation (2.2)

o
[ J
i
X
o311
1l
oo}

*Vp

<
'Y
o)
X
(=3}
1l
oo]]

on

2.3)
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Also taking dot product of .J and Equation (2.2)

<
[ ]
i
X
S
1l
i

*Vp

Sl
Y
L)
X
L)
It
L}

*Vp
0=JeVp @4)
Now Ampere law in differential form is

VB =y, 2.5)

Equation (2.5) in @and Z components

g, =— 19 2.6)
Hy dr
and J, = L dtBy) 2.7)
Hor dr

Gauss’s Law in Magnetism can be written as
VeB=0 (2.8)

Screw pinch consists of a cylindrical plasma by means of both angular and axial
components of/ and B. So Gauss’s Law in Magnetism for screw pinch cylindrical

coordinates is [22]

Vep=19% 9 _, (2.9) -
rod oz
Equation (2.2) in cylindrica! coordinates is
JyB,—-J,B, _ap (2.10)
dr

By using Equation (2.6) and (2.7), we have

18
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.

1 pdB 1, d(rB,) _dp
Ho ©odr pyr * dr dr

1 48, 1
2y dr pyr

30(36 dr +r-‘-1§i)=£13

dr = dr dr
1 dB | dB) B dp
2uy dr 2uy dr pr  dr

d {392+Bj)_392 _dp

B dr 24, Ho? dr

d_p+i(392 +BZZ)+362

dr dr\  2u, Ho?

2 L2 2
ApiB 8 B g (2.11)
dr 2 ) or -

Equation (2.11) indicate that information of the profiles of the plasma pressure
and one of the magnetic field parts constructs it achievable to decide the profile of the
other magnetic field part. Consider that the axial part of the field is known, the azimuthal

part can be determined from [22]

dp, r dB,,2+ r dez+B;
dr 2u, dr 2u, dr py,

dr  dr\2u, dri2uy, | u,

2 2 2
;A8\ By __ dp_ d[B; 2.12)
dri2u, ) dr  dr{2u,

For discover this part of the field accurately, however, needs information of the

r =0

boundary conditions.

19
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Overall, the plasma is holed in equilibrium by an outwardly applied magnetic
field. This field is created by a set of current hauling conductors neighbouring the plasma.
Additionally, a vacuum section is assumed to be present between the plasma and the
conductors. From this, it is achievable to define the generally non circular plasma surface

like the curve beside which the plasma pressure is efficiently zero [22].

2.2 Boundary Conditions

At the plasma surface, boundary conditions are specified by

Ao B|,=heB]|, (2.13)
AxB|,=hAxB|, (2.14)
B =8|, (2.15)

Where B =magnetic field inside the plasma

A

B =vacuum magnetic field
n =outward pointing unit vector normal to the plasma surface.

Above boundary conditions guarantee that the normal and tangential parts of the

magnetic field and the magnetic pressure are incessant across the plasma surface and it is

supposed that no surface current flow. Also by using Be VP =0 then [22]

S

l,=0 (2.16)

ne

=0 2.17)

o>

&>

lo
The vacuum field B is found from

B=B +B (2.18)
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Where B, =magnetic field of conductor and B =vacuum magnetic field of the

plasma [22].

2.3 Poloidal Flux Function, Current Flux Function and
Grad Shafranov Equation

Consider Cylindrical (r,¢,z) and Quasi Cylindrical (p,©,¢) coordinates systems.

j/, Meridian
1 grass-seglion
z /

Figure-2.1: Cylindrical (r,¢,z) and quasi cylindrical (p,®,¢) coordinates systems [23]

Poloidal flux w(r,z) is define as

w(r,z) = j »'B.dr' (2.19)
0

i >

,2)y=— |B.d(zr'"”

w(r,z sz- (zr"?)
Where Area=a=m"

1
,z)=— |B.d
w(r,z) 2”13[ _da
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.3

W“”=Jiw'“ (2.20)
27zD

Up to a factor of 27 the magnitude  is therefore equivalent to the poloidal flux

(across D) of the magnetic field B.
w(rsz)= [r'B.dr @.21)
0

Taking partial derivative of equation (2.21) with respect to ~

—Vl:i]' 'B.dr’
or  or}

—— =rB,

or )

B = Loy (2.22)
T r or

Now taking partial derivative of equation (2.21) with respect to z [23]

Oy _ 0t .p .,
Oz 8..-[ rB.dr

% "o, ,
Y _ Jlg(rB:)dr

< 0

r

jw“BM'

0

9 _
oz

22



Study of Poloidal Field Coils and Their Control Systems in Tokamaks

¥ LBy
oz jdr
6_:// =-rB,
oz
g1 (2.23)
roce
In cylindrical coordinates (r,¢, z) , Gauss’s Law in magnetism can be written as
- OB
Vep-128 195 0B _, (2.24)
r or ro¢g oz
According to hypothesis of axisymmetric B is independent of @ and ai =0, s0
Equation (2.24) becomes [23]
Vep LOUB: 8B, (2.25)
r or Oz
o(rB.) +r@£:’= 0
or oz
o(rB,) _ _&(rB,) (2.26)
or Oz
Now gradient of y in cylindrical coordinates can be written as
oy . 1oy, Oy,
Vy="—r+——""og+— "2 2.27
v or r o¢ ¢ oz (2.27)
For hypothesis of axisymmetric— = 0, we get [23]
oy . Ow .
Vi ="2r+ z 2.28
v or oz (2.28)

23
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- ________________ ___ ___

By using equation (2.22) and (2.23) in equation (2.28), we get

Vy=rBr-rB:z.

Magnetic field Bin r and z coordinate can be written as

B=Bi+B:.

r

Taking vector product o-f Equations (2.29) and (2.30) then

BxVy =(BF+B.2)x(rB.f —rB %)

BxVy =0

Now, taking scalar product of equation (2.29) and (2.30) then

BeVy =(B,f+B.2)e(rB.F —rB, %)

BeViy =0

By equation (2.3) and (2.32) we can write

p=py)

Where p is pressure as a function of

Then a current flux function £ also exists, and can be written as [24]

f=rf)

So current density can be written in r and z components as

o
r oz

P
r or

24
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(2.30)

(2.31)

(2.32)
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(2.34)
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According to Ampere’s Law in rand z components

3B, . 10(B
07, 1005,

oz r or

o (J F+J 2)=-

Now comparing rand z components of eqliation (2.37), we have

J = aBa‘
IUO r- 62
o

Putting equation (2.35) in Equation (2.38) then

18f 1 9B,

r 0z M, Oz

f_B

roooH,

P
Hy

The function f contains the whole current in the windings creating the toroidal

field [24]

Now equation (2.4) in rand z components as
(Jrr‘~+J,2)o(—r+—z) =0
) or

-llnl@g).{@n@z}o
r oz r Or

dep 1 _,

E

(2.37)

(2.38)

(2.39)

(2.40)
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»

0z Or Or Oz

of op afap_o

VfxVp=0, (2.41)
this shows that f is a function of P, so we can write

p=ply) and f = f(y) .

Consider e, is unit vector in toroidal ¢ direction. Now taking dot product of

e, with equation (2.29) then
e,oViy =0 (2.42)
and also similarly
e,oVf=0 (2.43)
SO we can write
e,oVy =e,oVf=0. (2.44)
Now equation (2.2) in component can be written as [25]
J,xe,B,+J,e,xB,=Vp, (2.45)
whgre Vp =plasma pressure
J, =poloidal current density
B, =poloidal magnetic field.

Now, poloidal magnetic field can be written as

1
B, =;(Vt//xe¢) (2.46)
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and poloidal current density can written as
1
J, :;(foe¢). (2.47)
Put equations (2.46) and (2.47) in equation (2.45), then
1 1
—(Vf xe)xe,B,+Je,x—(Virxe,)=Vp
¥ r

B J
—%eéx(foe¢)+7¢e¢x(Vy/xed)=Vp. (2.48)

Now e, x(Vfxe;)=Vf(e,oe,)—(e,*Vf)e,,
where (e, ¢ Vf)e,=0,
s0 e, x(Vfxe,)=Vf. (2.49)
Similarly e, x(Vy xe,) =Vy(e,0e,)—(e, e Viy)e,
Where (e, e Vy)e, =0 so
e, x(Vixe,)=Vy (2.50)

Put equation (2.49) and (2.50) in equation (2.48) then [25]

B J
¥ ¥ i R
Consider
d
Vi) =Ly (2.52)
dy
and VPy)= £V v . (2.53)
dy
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Put equations (2.52) and (2.53) in equation (2.51) then

B J
_.iiv +_1V(//:divl//
r dy r dy

Jy= dP+B LA

2.54
d‘// ' dy (2.54)
Equation (3.40) can be written as
B, = H (2.55)
r
Put equation (2.55) in equation (2.54) then [25]
J, =r£+ﬁi (2.56)
dy r dy
Only J, comporent of Ampere’s law can be written as
0B, 0B,
J, = 2.57
Hody = o ( )
Put equation (2.22) and (2.23) in equation (2.57) then
loy, 0,10y
( s ) ar( o -
_ 0 Moyy 10
e & er’ roz?
0 1oy, Oy
—ruJ, = p— (=~ 2.58
ol = e e (2.5%)

Put equation (2.56) in equation (2.58) then

dp 6 16 ol
—-r luod!// of W)*'_l//

6 r or oz’
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0,10 o’ dapP dj
"_(__AZ)"‘ l,;/ = _"zauo—_luo2 & (2.59)
orror 0Oz dy dy -
Let F=u,f (2.60)

Then equation (2.59) becomes

0 Movy Oy __ b dP

"orror o May M ay

ooy By L AP Ldunf)

or'r o’ 8 Odgu dy

z

8(1%)4.6“;” 2 dP_Ffiji

N orror 87 o 'UOE dy
}:1;
N Ny =, A _pdE 2.61)
o dw dy
Equation (2.61) is GRAD SHAFRANOYV equation {25},
where
. o 10, &
A=rp2dLoy, 2.62
r@r(r Gr) oz’ (2.62)
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CHAPTER 3

3. Model for Poloidal Field Coil Current Solver

and Force Computation

Precise calculation of the poloidal field coil currents needed the self reliable result
of Maxwell’s equation for the vacuum sections and the magnetic fields in the tokamak
plasma. Solution of Grad-Shafranov equation gives plasma field, and the solution of
Laplace’s equation gives vacuum field. Boundary conditions required at the plasma

surface join the two solutions [22].

3.1 Parameters of Plasma Surface

The toroidally axisymmetric plasma surface is describe by
r=r,(x) 3.1)
z=2,(), (32
where g is a random angular coordinate.

The unit normal vector is describe by

1
e,= :[zﬂe, -r.e.] (3.3)

And also unit tangent vector is described by
1
e, = E[me, +z,e. ] (3.4)

Where e, and e, are units vector in » and z direction [22].
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The magnitude of both unit normal and tangential vector is

(R,.Z,)

l’*’
[

| s

o |

(R,.2Z,)

[o]

Figure-3.1: Geometry of plasma surface and conductors for use in the poloidal field coil current calculation

[221.
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Normal derivative is describe by

Qe,,OV:%:zyg—r#% (3.6)
And also Tangential derivative is describe by

Qe‘o‘?’:%=rﬁ§+zﬂ§ 3.7
The differential component of arc length is work out from

ds’ =dr,’ +dz,’ (3.8)

ds’ = rﬂzd,u + zﬂzd,u = Q’dy’ (3.9)

ds = Qdu (3.10)
And differential surface area is

ds' = rdsdg = rQdudé B.11)

The plasma represented in figure is imagined to be bounded by vacuum. Total number of

j toroidally axisymmetric conductors are present in vacuum section. The location of
every conductor is described by (r;,z;). These conductors are act as filaments to make

simpler the calculation of the currents. Evéry conductor is supposed to contain a

rectangular cross-section by means of a height 4 and width @, [22].

Vacuum magnetic field can be written as

B,=B,+B, (3.12)

v

where

B, =vacuum magnetic field
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B, =plasma magnetic field

B, =magnetic field due to external coils

The field in the vacuum region due to the plasma satisfies

VeB =0 (3.13)

P
VxB,=0 (3.14)

Plasma magnetic field can be expressed as

B, =V¢+B, ' (3.15)

¢ is scalar magnetic potential, B, is field due to single filament or coil. B, is located at

magnetic axis.

Scalar magnetic potential ¢satisfied Laplace Equation. Taking divergence of equation

(3.15) then [22]
VeB,=VeVg+VeB
0=V’¢+0
Vg=0 (3.16)
3.2 Poloidal Flux in Elliptical Integral
By using distance formula'and cosine law of triangle [22]
|F=F |=(z=2)Y +r'? +r* =2rr' cos(¢ — ¢") (3.17)
According to relation

VxE=0 (3.18)
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E=-V§¢
Similarly

VeB=0

B=VxA4
and B=-V¢,

where Eis electric field,

¢ is electric scalar potential,

A is magnetic vector potential.

In cylindrical coordinate (r,#,z), B=Vx A can be written as [26]

_lod. o4,
" rogp oz
5,24,
oz oOr
190 1 04
B =2 ()~
) rar(r 2 r o¢
F=-4
dt

According to Faraday’s Law
VxE=——
ot

By using equation (3.21) then

34
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wE:-i(Vx}i)
ot
- P -
VxE+—(VxA4)=0
ot

VxE+Vx%=O
ot

Vx(E+6—A)=0
o

By using equation (3.18) and (3.19) then

~ 04

E+—=-V
ot ¢

~ oA
E=—V¢—E

According to Ampare Law
foJ =Vx B
By using equation (3.21) then
Hod =V x(Vx A)
U = (Ve A)V—(VeV)4
Since Ved=0
Then equation (3.29) becomes [26]

tod =~(VeV)4

UyJ ==V°4

35
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Solution of this equation (3.31) can be written as

A(r):ﬁj‘](r), dVr
dr slr—r'|
where J@r)= current ,
Area

By using Gauss’s and Stake’s theorem, equation (3.32) becomes

_H T ]dl¢
Ry

=]
where dl, =r'cos(¢p—¢')d(¢—¢") .
Then equation (3.34) becomes
e
orNEZ-2)Y +r+r°=2rrcos(¢—¢)
Let p=¢-¢

S r'cos(B)d(B)

1f circular loop so small then S can be written as
B=rm+26

Now half angle identity
cos 3 =2cos’ g—l

Equation (3.39) can be written as

36
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A¢ - ) I 2
4z § \/(z — 2V +77 +7> =2 cos(f)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Taking  cos ’ on both sides of equation (3.41) then
cos(—é) = cos(E + 0)
2 2
p g (Y.
—|= — |cosl@) - — |sinl@
cos(z co 2 Jeos(6)-si] Z Jsin(9)

cos(—g-) = —sin(9)

Put equation (3.42) in equation (3.40) then
cos B =2sin’8-1

For Lower limit of equation (3.38), if =0 then equaticn (3.39) becomes

0=7+20
g=-=
2

For Upper limit of equation (3.38), if £ =0then equation (3.39) becomes

2r =7+ 26
o==
2

Taking differential of equation (3.39) then
dp=2de6

By using equations (3.46), (3.45), (3.44), (3.43) in equation (3.38) then
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Py ¥ (2sin26—1)2d6
4, = ,[ 5
4z 2 \/(z —ZY +r7 47 —2rr'(2 sin® @ —])
2
,uo]r ,[ (2sin’ 0 -1)d@
T i z=2) +r? 412 =2 (2sin* 0 -1)
ol (2sin’ 6 -1)do

' 2 o\/(z ZY +F 2 —4rr'sin® 0

‘uolr']‘ (2sin’* @8- 1)d0 _
sNG—2) +(r+r) —4r'sin’ 6

Y wlr (2sin’ @ - 1)d@

27(z - 2')’ +(r+r)2 Oj\/ 4rr'sin’ 0

(z- z')2 +(r+ r')2
Where
A=z +(r+r)

5 4rr’ 4rr'

PTG A A

Put equations (3.49) and (3.48) in equation (3.47) then

a Holr' j(25in20 1)do
2t 4"?’ \/l k sin’ @
kl’

_ Mlrk, J-(2sin249 1Hdé
¢ 4”\/; \/1 k sin’ 9
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Lkl [ i.(zsm 6-1)dg
*om Nr ,fl k sin’ @
15 >
4 ,uolkp\/: | 2sin’ 446 I~ d:9
2z r o\fl k sin’ @ o\/l—kp‘sinzﬁ )
Ao, 3 p
4 - #Olkp\[—' _i‘l- k sin” 846 J- do
2z r|l k, o\] k sin’ @ o\/l—kpzsinze
4 ol L \/7' izj kp’sinzﬁ—l)d ]-
27 rl kS Jl—kpzsinzﬁ o\/l k sin’ @
_,kiz]\n—kp-sinzyar@—kz2 j‘[ _ 4
7 by ?sin’ @
A¢ _‘u_Ujkar_r_ g g
27 ri
_] deo
o y1-k,’sin’ @
: L "
-2 ik, sin* 6a0 + 22j a6
A )94 ' kp 0 p ]—-k “sin’ @
PR (3.50)
2z r{ z
_ZJ- de
B l—kp2 sin” @ ]
Where K=K(k,)= j (3.51)

,fl k sin’ @
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3
and E=E(k,))= Nl —k,?sin’ 9do (3.52)
0

are Elliptical integrals of first and second kind respectively and k,modulus of elliptical

integral [27]. So equation (3.50) becomes

A bl \ﬁ[__-g“_{;,{_,(}
2 ri k k=

I3 ?

PE
A¢=/‘_IL JL _E+K_-lr K
T k r 2
k
4, Sl 1 [(1——-—)1( E] (3.53)
T k

According to hypothesis of axisymmetfic, magnetic field B is independent of @ and

Ea— =0, So B =Vx_. can be write in cylindrical coordinatz us [23] :

04,

B =—+ (3.54)
Oz

B. =l'%( A ) (3.595)

Above equation can be written as
a(ra,) = ¥B.or (3.56)

Integrate on both sides of equation (3.56) then

rA, = ]r'B:dr'

0
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= [22'B.ar"
2z ;
1 )
rd,=— |B.d(mw'"
b= j (")
rd, = [B.da
27 g
rd, = 1 IB eda
27 ]

217 J.B eda

rA¢= -
“D

Where area=a = '’

By comparing equation (2.20) and equation (3.57) then
rd, =y (r,z)
w(r,z) =r4,

Where y(r,z) is poloidal flux

Equation (3.58), represent the poloidal flux in term of vector potential.

Putting the value of vector potential from equation (3.53) in equation (3.58) then

’ k2
wirsy=rtol LT 5 e
V4 kp r 2

pd U = kS
w(r,z)=—"——Arr'|1-—L)K -E
Tk, 2

41
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Equation (3.59) represent poloidal flux in term of elliptical integrals [22]

w(r.z)=mly, (3.60)

— )
Where v, = f{(l—%)K—E} (3.61)
» J;[(Z kK - 2E} (3.62)

Now by using equation (2.46) and (3.60), -ﬁlamentary magnetic field B, can be written as

= —(V#OIWp xe,)

_ Ml (Vy, xe,) (3.63)
r

e

B, = filamentary magnetic field [22].

3.3 Green Function in Term of Elliptical Integral

The technique utilized to conclude the vacuum field B, is foundation on an application of

Green’s theorem for the scalar magnetic potential ¢, which is describe as follow[22]

ob(r)+ [[9(r e, o V'G(r,r) - Glr,r)e, s V' g DHs' =0 (3.64)
SP
S+ J[¢(;z) D) _ G i 2y =0 (3.65)

Where o is a coefficient which depends on the position of the inspection point

comparative to the plasma surface. If ris outside the plasma then value of o =1, if ris
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- .

on the plasma surface then value of o =% and if ris inside the plasma then value of
oc=0.

Green function can be describe as

Giryr)= - (3.66)
4| F-r'|
And reduced Green function G can be describe as [22]
2x _
G= de(;zs —¢) (3.67)
]
2T
G= [~———d(-¢) (3.68
3 an|F-F|
Put B=m+20
and dp =2de
then G=—1 { 2d9 (3.69)
Ar Hr—r'|
By using equation (3.17) then
co_ L I 246 1
AT 2 J(z=2) +r7 +r2 =2r"(2sin’ 6-1)
2

2d0

G =_LJ' -
4r g \/(z»z')‘ +(r+r) —4rr'sin’ @
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>
2 e
ﬂ'\/(z ZY +(r+r) 5 4rr'sin” @
C(z-Z) +(r 47
k, % de
G=——2=L
27’ 5[\/1—1: 25in2@
I
G e (3.70)
2rlrr '
Equation (3.70) is Green’s function in term of elliptical integrals [22].
3.4 Properties for Derivative of Elliptical Integrals
Some properties for derivative of elliptical integrals are as follows [27]
dk 1 _E
—=—[—=-K] 3.71)
dk, k, 1-k,
k) =1-k,’ (3.72)
dE_1ip_kj (.73)
dk, k,

e e e TP (3.74)

3.5 Normal derivative of Green’s Function in term of
Elliptical Integrals

Now normal derivative of Green function can be finding by using the properties for

derivative of elliptical integrals [22].
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oG

, G, 3G

on Zu or' u o 3.75)
oG __ 9 kK (3.76)
or' or' 2are )
oG_&Ro 1, 1 24k
or 22 &' N - /_6 !
oG kK ( K)
or' 47:7'@ 27:'\/;7 ok,
oG _ kK | [ OK|OK,
or' 4717'«/—; 272’—\/;_ "ak or'
G_ kK 1 | B Tk k&
or' 4717‘\/; 22 | 1=k | 27 4 4r
G __ Kk g E '1~~L2 1+’—'] | (3.78)
or' 4717"\/; 2 r
Now
oG__0 kK (3.79)
oz’ oz’ 271'\/?
8G E;
—_ = _— n(, JK
oz’ 271'\5 oz ( )
oG 1 0 ok
— = — (k K)—2
o 2z 6kp( g )62'
oG _ 1 [, oK %,
o' 2xr'\ " ok, o'
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oG 1 E |0k,
A . 3.80
oz 27&/?(1—1(17'] oz' (3.80)
Now
ok '
; =i, 2rr’ - (3.81)
0 O J(z=2Y +(r+rY
ok, _ k,(z-2)
o4 A
3 '
Ok, k,(z-2). (3.82) /
oz' 4rr'
Put equation (3.82) in equation (3.80) then
. k 3o or
6Cf=_ 1 [ E ’ p(z’Z) (3.83)
Oz 22 1-k, 4rr

Substitute equation (3.83) and (3.78) in equation (3.75) then multiply by #'so
oG k, E k 2( r'] 1 E k' (z-2)
rr_ — rlzr K _ — __P 1+_ _ ryr,o _ P
on' “ AN |: 1- kp' { 2 r Mg 1= kp2 4ry
- ! 2 4 ’ 2 ’
pO0 K ko E 1-"L(1+L) b [ B =)
on' Amrr' 1-k 2 r drNrr 1=k, 2r
’ 2 ’ ’ 2,
on'  Agrr' 1-k,’ 2 r 1-k, 2

k ZE  ZE K[ E k(2 -
rr‘?\_Glz P (Z;,K— L+ ol L (l+r)—[ T ,] p Z):l (3.84)
%

1-k° 2r

P
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Now equation (3.49) can be written as

!

4rr

-k =1- - -
(z=2')Y +(r+r)

p

-Z)V +(r+r) —4r
(z=2ZY +(r+r)

k2=

P

2 _ (z—z’)2 +(r—r')2

=k (z=2)V +(r+r')
kpz _ 4rr' (3.85)
-k, (=Y +@-ry '
Putting equation (3.85) in (3.84) then
Gk [, 2B ey 2, ( AN ( E} 47 )
r—= z K- o — +——

ol 41(\/_ # (z 2y +(r-ry r)(a 22V +r—1) (z—=2) +(r—r)
oG ¥ [ZkK ZEkfz-ZY +o+ry } , ( "\ r Y Ek(Z -2)
r—= - - s+, ) 1+ — 2 >

o 2| 2 2r'{(z—z')'+(r —r')'} r) =Y +>r—ryY (@-ZY+F-r)

pO_1 ﬁ kK LRV e V) L ER) R E-2)
o 2Nr| 2 2e-IY +O-rY]  @-2Y +-r) (@-2Y +-r)

(kK rEK(E -2 ZEk|c-2) +(+r) o Bk frer)
4 (z=2V +(r—-r) Qr’{(z —ZY +(r —r')z} (z=2Y +(r—rYy |

p3G_1 F kK nEk(E ~2) L (Gl e A,
of 2z\r| 2¥ =2V +(r-ry (@-ZY +(@-ry 2

pO_1 JZ—Z;"ka_ nEk(-2  zEk (z=2) +(+7'y - 2(r+r)
o 2z\r| 2 -2V +@-rY (@-ZY+0-rY 2

S:Iés,

ﬁ;

1
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rlm:i i_z;,ka_ ’}ZEkp(E'—Z) A’Ek ( Z) +(r+r) i 2]"'7 7]
o 2\Nr| 2 @YY -V +e-r) |

4 mziJZFZLkPK r,l,lEkp(Z’_z) _ Z/‘Ekp (Z Z') +(r r') +2?T’ 2rr2
o 2zNr| 2 (@=ZY+-r) (@-2V+e-r)y i

r'ani i_ZLka nEk(Z ~2) z,Ek, (z-2) +(r - 2rr' 92
o 2xNr| =2 +r-rY @E-ZY+e-ry ¥

G _ 1 [F|zkK  rEkE-2)

2;z7_ 2

0G| [F[ZhK  rEkE-2)

- (z=2Y +(@-r)

=2V +(@-ry

z' Ek,

rg_;r i z-2Y +@—rYy

r,Ek (z'-z2)

1
z.Ek, {(z Y )}
d

(z-2) +(r ry (r,_r)P

(7—"') +(r— r)

z' Ek
__H P +

,6G 1 Z;,ka_
on' 2x\r

2]" (Z_Zr)z +(r_rl')2 2rr

z;Ekp (r' - r) }

(z=2) +(r-ry

LG _ 1| z;Ekp(;-'—r) | nER(G-2  ZkK z, Ek
o 2mNr| G-IV +G-rY =V +C-ry 2

» r;(z' —-z)

r,@G’_L r' ZLP(r'—r)
rl|GE=2V +(r -7

(z=2') +(r—r')

,0G 1

- @=2Y +@r~rYy

[ _{ZL,,(P’—r)—r;(z’—z)}E -
r

\F Z, (' =r)-r(z ~2)
ra 2 (z— z) +(r—#)

Where

}kPE+%(KkP ~Ek,)

; }Ekp +2Z—;’;(ka— Ek, )}

I

- “u (k K—Ek )}

(3.86)

(3.87)
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and ATl —rz)_r”(z ~7) (3.88)
(z=-2)Y +(r-r')

,0G '
then = i \/g Ak, E+T{K#, - ER )|
261 \/7 [Ak,E+Tk (K ~E)] (3.89)
on 2nm

Equation (3.89) is the normal derivative of Green’s function in terms of elliptical

integrals [22].

3.6 Vector Potential in Terms of Green’s Function

Vector potential can also be writtéen in volume Integral as (Distributed

currents)[22]

N
h
\
N
N

cos(¢' — g)r'dr'dzd (¢’ — 9) (3.90)

A(r) =
(= e¢ o \/(: — z')2 +r? 4+t =2 cos(¢—¢")

\

Z-

wl:r — o
S S—

N
+
| =
)

ro
Sy

=

cos(¢' —yr'dr'dz'd(¢’ - ¢) 3.91)
\/ 41 =21 cos(p— @) +(z - z')’

A(r) =e, %

g ‘ = o
[ ‘ S ‘_1101“,

N

Where e (3.92)

Area

Coils with rectangular crossection of width w, heiglit /2, major radius R and elevation Z

carring a uniform current density J.and e, is unit vector direction.
Put = ¢'— ¢ then equation (3.91) becomes

2*22' ; ) :
A() =e, 0;[] j J- cos(p)r'dr'dz'd(3)
0 R»

11’ =2rr'cos(@— @) +(z -

(3.93)

\’!‘
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e L
- o o
—_— e A R A DEDB>___®©©>___—_——__—_B_B__L———_—__>_ B B ———€———

In term of Green function (G)

A(r)=e, /Z (;r] Jr'G(r,z; r',z"Ydr'dz’' (3.94)

Where G(r,z;7',2') = Zf costF)dp (3.95)
0 \/r'z +r’ - 2rr}gos(¢ *,¢') +(z— z")2

By using equations from equation (3.39) to equation (3.46) then equation (3.95) becomes
(22]

NN

G(r.z:r',2') = J (2sin’ 6 -1)2d6
T 1\/(2—2')3+r'2+r2—2rr’(25in29—1)

, i (2sin” 8- 1)do
2)=2
Z) 6[\/(2_2')2

G(r,z;r' - -
+(r+¢) —4rr'sin @

; 2 J' (2sin’ @8-1)dé
\/(z —ZY+@r+r) \/l B 4rr'sin’ 0

-2V +(@+r)

G(r,zr'.2') =

’ !

4rr _Arr
-2V +@r+r)y 4

Where kp2 =

G(r,z;r,2') = 2 j(2sm“ 6-1)d6
A 0

JI-k *sin?6 : .

3] 2sin’ 640 _-2_,7 do
Ao\/l—kpzsinzﬁ Ao\/l—kpzsinzﬁ

G(r,z;r',z")y =
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kg

Where K = K(k,)= j is first Elliptical integral.

1/]—k sin” @

i-k sin’ 646 4K
0

G(r,z;r, 2"y =
k, 1fl—k sin?g 4
, . -8 2(1—k sin29—1)d9 4
G(r,z;v', 2y = 2! _ZK
Ak, 1- k sin’ @
Glr.zr ') = -8 T(l—k sin 8)d9 8 ’J- —iK
Akpzo \f—kp sin’ @ A o\/ k sing 4

5 Zj\h—kj sin’ @ 8 k-2
i Ak P

G(r,z;¥,2') = —
s

G(r,z;r',z") = _8;E+ S,K—iK
Ak~ Ak~ A

P P

%
Where E = E(k,) = Hl —kp2 sin? 6d@ is second Elliptical integral.
0

G(r,z;r',2') =

D
0
| 1
Iy
+
=
|
M’wfr
>
| I

8
G(r,z;r',2') =
( ) Ak’

8 k)’
G(r,z;r,2') = -2 K-E
(?‘Zr ) Akz( 2} J

P
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. 2 A
By using £ = Vi
24|, k'
G(r,zr',2)=—||1-4 |K-E (3.96)
rr 2

A current J flowing in a very thin loop can be considered filamentary so that [22]
J(r)=I18(r' = RYS(z' - Z)e,, : (3.97)

where ¢ is the Dirac Dalta function

So vector potential A(r)=¢, ‘ZLJ ‘j'r'G(r,z;r',z')dr'dz' can be written as
T
— ﬂ ’ v gd ! 'yt
Ay =c,’, jr G(r, z;r', 2 Jdr'dz (3.98)
u :

A(r) =e, :‘—:[ Ir'G(r, z;r . Z2NIS(r' — R)S(2' - Z)dr'dz' (3.99)

By using property of Dirac Dalta function [26]

J(x)o(x-a)= f(a)5(x~a) (3.100)

jf(x)&(x—a)dx=f(a) (3.101)
Then vector potential can be written as
—o Bl :
A(r)=e, , RG(r,z;R,Z) (3.102)
T

Equation (3.102) represents vector potential in terms of Green’s function. [22]
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3.7 Magnetic Energy of a System of Currents

The amount of charge per unit time passing down the wire is current 7 so the total

work done per unit time is [26]

W =14 (3.103)
dt di

where £ = Electromotive force=electric potential for self inductance L

=14 (3.104)

dt

Put equation (3.104) in equation (3.103) then

aw = LldI (3.105)
Integrate on both sides

w = (Ldr

W=L [l

W:%FL (3.106)
Magnetic flux ¢, is

4, = [Beda ) (3.107)
Put :+ B=VxA4
Then ¢, = j(v x 4)e da (3.108)

5

Applying Stokes Theorem on equation (3.108)
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m

4, = [Aedl (3.109)
!

Magnetic flux can also be written as
@,=LI (3.110)

Where L is called self inductance.

Comparing equation (3.110) and equation (3.109) then [26]

LI = [dedl (3.111)
i

Equation (3.106) can be written as
W:%I(LI) (3.112)
By using equation (3.111) in equation (3.112) then

Wzllj';hdf
2 i

_»a _1 l 7 ~
W_E_[Mod! (3.113)

!

The relation between current and current density is [26]

1= [Jeda (G.114)

By using equation (3.114) in equation (3.113) then
1ee - - -
W= ljj(JOda)AOdI
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R —

IV:%;U(on)daOdf

1 Ta A '
W= 5J(J-A)an/ (3.115)

The above work done is equal to the magnetic energy i.e. W = U, so

~

U=

l T4 [
EVI(JoA)dV (3.116)

This magnetic energy associated with current density J and vector potential 4 [22].

3.7.1 Magnetic Energy for Two Distributed Currents

Let the set of coils shown in fig. One of them coil has height h,, radial width w,, major
radius R and height given by Z, . The properties of the other coils are indicated with a
subscript j. The energy linked with the interaction of J, with magnetic field formed by

J,is establish from
| , N
u,, :EJJ,.(r)-Aj(r)dV (3.117)
P

Where A4 ;(r)is the vector potential linked with J and V"is volume surrounding J, [26].

3.7.2 Magnetic Energy for a Single Distributed Currents

Current also interrelate with its own magnetic field so[22]

I e Y '
U, =5yj (r)e A, (r)dV (3.118)

3.7.3 Magnetic Energy for Two Filamentary Currents

The current density for ith and jth current is [22]
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J(r)=18(r-R)5(z~Z,)e, (3.119)
J, (" =18("-R)S(='~Z,)e, (3.120)

The vector. potential for jth andith current is

A(r)=e

Hol .
4” LRG(r,z;R ,Z) (R.121)

A =e, ‘j’; RG(R,Z;r',2) (3.122)

Above equations using in equation (3.117) then

1
ja: _;

fe, ”‘“RG(, \R,Z)e [5(r~R)S(z—Z,)e,dV’ (3.123)
v’
By using the properties of Dirac Delta function then

Joi

I ’
U, ”"4’ LRRG(R,Z;R,.Z,) (3.124)

The magnetic energy of a set of two filamentary currents is described by above equation

[22].

3.7.4 Magnetic Energy for a Single Filamentary Current

If expands the elliptical integrals for k, approaches to 1 in equation (2.96) and {3.99)

then the vector potential A,can be written as [22]

R, R
4, = "0—1*[1n(8 ')-2] (3.125)
27 a

Where ais the comparable radius of the coil, given by
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a= [P0 (3.126)

Substitute equation (3.125) in equation (3.118), then we get magnetic energy for a single

filamentary current as [22]

U, = 'U°ILMR" [ln(SR’ 122

|
ii 5 a ) _'

~ (3.127)

3.8 Computation of Force

The net force acting on the on the poloidal field coils system can be written as

negative gradient of magnetic potential energy [22].

F=-VYU,_, ' - (3.128)

For two coil systém total energy is given by

U =U_,+U, +U,_ +U, (3.129)

v =u, +Ui—>j +Uj—)i +Uj-—>j

When U . =U._. then

i—>i Ji

U,=U,

i—i

+2U.,+U,,
To compute force on coil i the V operator is replaced with V,

V=V,:eR£+eZa—z- (3.131)

1]
Magnetic energy for mutual induction can be written as

wo=Lm1r

o) yoity
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And for self induction

W= iL12 = lLU =ch>1
2 2 2

Where O = flux

So magnetic energy 7/ _ coils is

1

Uy = 5 sl
22U,
M, ="
Ing
Since flux=0,_, = Mﬁfj

Total flux through each coil as [22]
®,=MI+M,/I,
O, =M, +M,,
O, =MI+M,I,

where M,=M,.

Now since the flux is constant so

VO, =MVI+IV.M, +MNVI+IVM, =0

VO, =MV, +IV,M,+ M1 =0

i g 1y

Total energy can be written as

U, =%(q>,,1j+cpj1j)

58



Study of Poloidal Field Coils and Their Control Systems in Tokamaks

VU, = Lrvm —11vm,
2 i i i [ B | i

!

By using equation (3.128) then force on coil i is

Fi = _(viUl)¢ :F;'IlzviMii +IinV1My’ (3.132)

where ¢ specify that the energy gradient has been calculated with respect to the constant

flux requirement.

This expression can be created to an N coil system [22].

= 2 U:’—)i > U.Ai 3
F =1, V’[J_Z]H' > 21jv{ 111 J (3.133)

i J=hj#l ity

3.8.1 Force Between Two Filamentary Currents
The equation (4.124) represents the magnetic energy of a set of two filamentary

currents i.e. [22]

Ju(][a[' .
U_ . ZTLR’-R]G(R’,Z,‘,R/‘SZ})

J—=

k2
Where G(R,Z;R.,Z)= 24 -2 [K-E
7T RR L 2

4RR, 4R R

[

(Z, - Zj)2 +(R, +R) A?

Where 4> =(Z,—-Z,)’ +(R,+R) and k,’ =

So magnetic energy of a set of two filamentary currents is given by

LI i k&
U, =t -2 |k E (3.134)
J——)I 2 2
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By using equation (3.128), (3.131) and (3.134) then magnetic force between two

filamentary currents can be written as

_ ou,,, U,
F, =e, +e, (3.135)

The e, component of magnetic force can be finding by using the derivative properties of

elliptical integrals as follow: [52]

oR 2 oR, 2

oU . . Il k kK’ ok
o Folili | OA r \K-E v a0 g _pl%%
oR 2 | oR 2 ok, 2 OR

4 1

R +R) R +R,
Where %= (&, ’) = J
OB, [(Z,-Z,) +(R+R) A

and

\/(Z;—Z,)2+(R,+Rj)3 R, 2R+R)RR,
Oy _ JR,RI \/(Z.-—Z,-)2+(R,.+RJ.)2

OR (Z,-Z))'+(R +R)

1

Multiply and divide by £,

4RR,(R +R)
ok, 7 (Z-Z)Y+QR+R)
oR  kNZ-Z) +(R+R)}

_ 4R,RJ.(R,. +Rj)
r__ 7 A
kpA’
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ok, 2A4°R,—4RR.(R +R)

P

R, k,4°
And
2 k2
i -2 |[K—E\=—k K+|1——£— 8_K_6_E
ok, 2 2 jok, ¢k,
By using
K _1_£ d£~—[E K] then
k, k, 1-k, dk, k,
k’ kXY 1.
0 IaLJK Eb=—k K+(1—LJL[- Ez 1-—[E~K]
ok, 2 2 Jk, 1-k, .
k,E kK
ﬁ{ LN _E___K_ K_E K
k, k(l k) k, 41—k) 2k, k,
k'’ k,E kK
Okl E _E
Ok, |\ 2 k(l—k) 2-kD 2 &,
o (. k7 E kE E
_ ]__P_K E
ok, 2 2 k(]k)2(1k)k
kK 2E-k,'E-2(1-k,)E
akp 2k,(1-k,%)
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k2
i 1-2\K—-E =_kPK+ ka2
ok 2 2 20-k,)

k, k
i - (K-E\=_"P Ej_K
ok, 2 21—k,

Uy _Hl | RAR N k) L k[ E|24°R —4RR (R +R)
oR, 2 A 2 21—k, ky4*
OU,, _ Ml ;| R+ .
2 3
oR, 2 4 U 2 -k, A

2 { 2
R,{ k, }+ E _K]AR,—.zR,Rj(R,+Rj)

{ 2\ { ;
k R, 2RR (R +R,
1=2p K—E}+ £ Z—KJ{_J__.'_M}

oU,,, il ],
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2
6Uj_,,=;101,11. R +R, R K4 E : k2—~k~"~+ R, »
OR, 2 4 R +R, -k, (" 2 R+R |

r 2

ouU . . I1. (R +R . k ,

Joi — ﬂO it i Jj RI K+ E - _P____RJ_ (3]36)
OR, 2 A R +R, 1-k,7| 2 R+R,
Similarly

N II.(R+R . k' R
aUJ_)/ =/10 it ,+ s R} K+ E S %p o ] (3137)
OR, 2 A R +R, -k 2 R+R,

Now the e,component of magnetic force can be finding by using the derivative

properties of elliptical integrals as follow [22]_

2
OU jon :#01"1!‘ i[A l_ff_ K-E
0Z, 2 07, 2

‘L

oU ., wll| k) k2
TS L) N | PN P SRR | O3 PO
oz, 2 |0z 2 oz, 2

oU. . ull| k> k> ok
o Hl | OA N K e gty g 90 R (g gl
oz, 2 oz 2 ) ok 2 o7

o4 _ Z-Z
0Z, \J(Z,-Z,)'+(R,+R)’

ok,  —k(Z-Z)

P

0z, (Z,-Z) +(R+R)’
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ok —4RR(Z,-Z))

P

6Z,~ B kp{(Zi_Zj)2 +(Ri +Rj)2}{(zi _ZJ)Z +(R’ +Rj)2}

ok, —4RR(Z-Z)

oZ k4’4

4

ok - . 4RiRi(Zi _Zj)

14

oz, k4
Uy ML 222, )1 ko Ve ply g% B g —4R,.Rj(Z4,.—Zj)
oz, 2 A 2 2{1-k, k, 4
U, _ ol 22, ) k) | _E _k 2R,.Rj(z;,.—zj)
oz, 2 | 4 2 1-k, A
i 2
U, _mll, (Z,-2, fl_L el (B YRR,
oz, 2 A 1_1¢p2 A’
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- 2
6Uj_,i=,uoli1j Z,-Z, K+ E h1+kL
oz, 2 4 ) 1k 2 2

ou . wlIl (Z -7\ k>
L L RN N VI (3.138)
oz, 2 A 1-£71 2
Similarly -
ouU ., L1,(z-2, K’
o Pl (222, ) E 1% ). (3.139)
oz, 2 A 1-k7| 2

By comparing equation (3.138) and equation (3.139) it is proved that

Uy _ U, . (3.140)
0Z, oz,

Substitute equations (3.136) and (3.139) in equation (3.135) then total magnetic force on

coil idue to coil jis given by [22]

_ I (R +R, ‘ k)’ .
F/‘—n:,uoj} —— & K+ Ez - R €r
2 4 R+R | 1-k7| 2 R +R,

, (3.141)
LI (Z -2, k
G ST e, B S
2 A 1-k | 2
P
and similarly total magnetic force on coil jdue to coil iis given by
2
P .:yofjlj R +R, R, N E Z(L_ R,
2 A NR+R | 1-k7|2 R+R|[["
(3.142)

I1.(Z -7 k?
_ILIOJ_] 1 _] K+ E}) L—I Z
2 A 1-k,' 2
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3.8.2 Self Force of a Filamentary Current
The magnetic self force of a filamentary coil interrelating by means of its own magnetic

field is expressed by taking negative gradient of equation (3.127) so [22]

F. =-VU_ =e, “02 [1 [&J—l] (3.143)

a

3.8.3 Force Betweeéen Two Distributed Currents

The interaction energy of a distributed current J, in the magnetic field created by a

current J ,1s given by [22]

1 = - . -
Upmi =5 [T.rye A,(ryav (3.144)
b
Z‘+£R,+ﬁ
2 2
Where I=1=J, I J.drdz
Z}+%'Rj+?
and I's1,=J, [draz
z, ?fRf%
3 i
a 2R’+? : 2RJ+?
then i I I j Irr'G(r zyr', 2" Ydrdzdr'dz' (3.145)
73R, R
By using F ., =-VU_,
. 1@ ¢ o0 a1 8 o o
F . =eg 55_&;.[“” (rye d,(r)dV'+e, EEV[J, (r)ye A (r)dV (3.146)
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JJ R.+— 'ZJ+-2’—'RI+“J
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At

Equation (3.148) represents the magnetic force between two distributed currents [22]
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CHAPTER 4

4. Simulation of Poloidal Field Coils

The TOKAMEQ Code (Tokamak Equilibrium) is utilized in this thesis to design
the poloidal field coils and control the currents in them. This code was developed in
Moscow State University for calculations of the magnitudes of the exterior coils currents.

This code has foundation on the numerical solving of GRAD-SHAFRANOV equation
[28].

4.1 Poloidal Fiéld Coils Design and Currents Controls

Adjusting the initial parameters, coils currents and positions in TOKAMEQ
Codes then obtain following are possible Poloidal Cross Sections and poloidal flux

contours as outputs.

4.1.1 Case-1

Domain centre on R =15 centimetre
Domain magnitude R =20 centimetre, Z = 50 centimetre
Mesh magnitude R =45 Z =62

Symmetry on Z

Poloidal Beta = 0.1

Total current =40 Kilo Ampere

Co-ordinates of magnetic axis R =15.7809 centimetre, Z = 0 centimetre
Plasma diameter R =18.1251 centimetre, Z = 28.3058 centimetre
Elongation =1.561691
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Flux at the axis = 5.910 millivolt seconds

Flux at the boundary = 8.25 millivolt seconds

Flux at the separatrix = 5.938 millivolt seconds

Cord triangularity average=0.2341, top=0.2341, bottom=0.2341

95% region triangularity average =0.2063, top=0.2063, bottom=0.2063
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Figure-4.1: Position of poloidal field coils and poloidal cross-section.
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£

In above case adjusting the center of domain on R= 15 centi metre, Domain

magnitude R =20 centimetre and Z=50 centi metre, Poloidal B =0.1, Total plasma

current = 40 Kilo Amperes, and also adjust cuurents in Kilo Amperes and position of

poloidal field coils as shown in figure, the magnetic axis is approximately at the center of

the rectangular region.

Total seventeen poloidal field coils arc us>d. The poloidal field coil-1 represents

central solenoid, coil10 and 11 are elongation poloidal field coils to control of elongation

and remaining poloidal field coils are shaping coil for plasma.

Elongation =1.470373 is obtained by adjusting above parameters.

4.1.2 Case-2

Domain centre on

R = 15 centimetre

Domain magnitude R = 20 centimetre, Z= 50 centimetre

Mesh magnitude R =45, Z =62 centimetre
Symmetry on Z

Poloidal Beta =0.1

Total current

= 35 Kilo Ampere

Co-ordinates of magnetic axis R=15.5928 centimetre, Z = 0 centimetre

Plasma diameter on
"Elongation

Flux at the axis

Flux at the boundary

Flux at the separatrix

R =18.2688 centimetre,

=1.571459

= 4.964 millivolt seconds

= 0.6 millivolt seconds

= 5.678 millivolt seconds
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Cord triangularity average = 0.2554 , top = 0.2554 , bottom = 0.2554
95% region triangularity average = 0.2273 , top = 0.2273 , bottom = 0.2273

In case-2 adjusting the Poloidal Beta =0.1, Total plasma current = 35 Kilo
Ampere, and also change coils cuurents in Kilo Ampere and changed position of
poloidal field coils as shown in fig.. The magnetic axis is approximately at the center of

the rectangular region.
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Figure-4.2: Position of poloidal field coils and poloidal cross-section.
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Total nine poloidal field coils are used. The poloidal field coil-1 represents
central solenoid, coil-2 and 3 are elongation poloidal field coils to control of elongation

and remaining poloidal field coils are shaping coil for plasma.
Elongation=1.571459 is obtained by adjusting above parameters.

The toroidal field is generated by a series of coils in an even way spaced around
the torus, and the poloidai field is generated by a strong electric current flowing through

the plasma.

Elongation and poloidal beta is important for stability, safety factor -and
confinement of plasma. If elongation is equal to one then plasma shape is circular and if
elongation is greater than one plasma shape is elongated. Large value of elongation is
needed for large confinement time of plasma. Poloidal beta should be less than one for
stability and large time of confinement. Elongation and poloidal beta are obtained by

control of currents in the poloidal field coils.
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CHAPTER 5

5. Summary and Conclusion

The goal of this thesis was the design of poloidal field coils and their control of
currents. For this purpose inputs was given to the TOKAMEQ Code and out put results
was obtained in the form of poloidal flux cross section and poloidal flux contours. In the
output of TOKAMAQ Code, the poloidal flix cross section and poloidal flux contours
are distributed around the horizontal and syminetrical vertical axis and within the
rectangular boundary. The position of the poloidal field coils is keep near rectangular
boundary inside or out side. The shape of the coil is adjusted by size of horizontal width
and vertical width. The poloidal field coil on the left side of rectangular boundary is act
as central solenoid and' its function is like the primary of transformers. The plasma is
present inside the rectangular boundary and act as secondary of the transformers. The
distance between the vertical axis and central solenoid is keep very small. The current in
the central solenoid and the coils on the right side is negative. These poloidal field coils
induced positive current in the plasma. The poloidal field coils on the top and bottom of
the rectangular boundary are act as elongation coils and current in them is positive as in
plasma. The magnetic field is produced due to changing the currents in the poloidal field
coils. The magnetic field produced magnetic force act on the plasma by poloidal field
coils. The pressure on the center of the plasma is greater than the pressure towards the out
side of plasma boundary. The last close flux contour which make X-point is called

separatrix. All the close flux contour of the plasma is present in side the boundary.

The force of interaction is also present between the coils. Plasma will occupy all
the geometrical space accessible, because of the collisions between the particles.
Magnetic fields are utilized for confine a plasma, because the electrons and ions of which

it consists will pursue helical paths in the region of the magnetic field lines.
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If a vessel containing plasma is located in a rectilincar magnetic field, the
particles of plasma cannot get in touch with the side walls, but they will hit the ends of
the vessel. Tokamak poloidal field configuration is used to put off the particles from
coming into contact with the material walls in this way. For tokamak configuration, the
danger of losses is separated by curving the magnetic lines just about to form a closed
loop. Theoretical study of particle trajectories demonstrates that, if the particles are to be
confined, the toroidal field be required to have superimposed upon it a field component
perpendicular to it. This component is poloidal field. The force lines of the whole field

thus become helical paths, arotind and along which the plasma particles are guided.

Different out put elongation are obtained by changing position of coils, changing
their shapes, changing their currents, changing total plasma current, changing poloidal
beta. These values of elongation are importance for plasma stability. An elongated
plasma contain a higher poloidal beta than a rounded plasma by means of the same safety
factor and aspect ratio Elongated plasma. provides the greater value of plasma current
density. Increasing the value of plasma elongation then increasing the value of safety
factor. Large value of safety factor shows the more stability of the elongated plasma.
Stability of plasma is essential for large amount of plasma confinement time. Greater -

plasma confinement time is required for confinement of plasma in the tokamak machine.

Above conversation point out that the poloidal field coils are compulsory to
stabilize the upright instability linked by means of extremely elongated equilibria.
Because the plasma floats in the upright direction, current is provided to poloidal field
coils in sequence to push the plasma reverse to the center of the tokamak. The design

goal is achieved by satisfactory results.
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