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i magnetic field is presented. The three types of ferroparticles are considered namely-
i

magnetite, cobalt ferrite and Mn-Zn ferrite. The governing partial differential equations are
transformed into nonlinear ordinary differential equations and numerical solution is obtained

by using same numerical method“which is used in Chapter 4. The effects of pertinent

coefficients and local Nusselt number are discussed in detail and shown through graphs. The

contents of this chapter have been ‘published in the Journal of Molecular Liquids, 219 |

}’ - parameters on radial and azimuthal velocity profiles, temperature profile, skin friction
|

(2016) 526-532. N

«

| .

E o Chapter 6 presents the heat transfer analys1s in stagnation point flow of a nanoﬂuid
[ over a nonlinearly permeable stretching/shrlnking sheet in the presence of Newtonian heating
! effect. The physical problem is modeled by using Buongiorno model [58] and the resulting
E A nonlinear ordinary differential equations are obtained after using similarity transformation.
| The dual solntions against shrinking parameter is obtained numerically by using the
t Chebyshev spectral collocation method. The effects of émerging parameters namely Prandtl
k nnmber, ZSchmidt number, Brownian and thermophoresis parameters, conjugate parameter

and velocity ratio parameter on velocity and temperature proﬁles, skin friction coefficient and

) local Nusselt number are shown graphically. The contents of this chapter have been ;

4

. submitted in Applied Mathematics and Computation.

Chapter 7, deals with the study of heat transfer in mixed convection stagnation point . -

flow of a non-Newtonian third grade fluid on a vertical surface w1th slips and viscous

d15$1pat10n effects. The goveming equations related to third grade fluid model are

transformed into nonlinear ordinary differential equations after using s1m11ar1ty
* transformation and ‘numerical solution is obtained by using Chebyshev spectral collocation

method. The ma1n findings are velocity and temperature increase with i increasing the viscous

E opposing flow case and increase in assisting flow case with i 1ncreasmg mixed convection
' i parameter. The contents of this chapter have been published in the Journal of Applied
Mechanics and Technical'Physi'cs," 57 (2016) 527-536.

} -, Gox . A

dlSSlpatlon effects. The local skin friction coefficient and local Nusselt number decrease’ 1nl'_
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Nomenclature
Ay, Ay As

a,c
b

b
bi(r)
By
c/a

a"and b*

Coo

G, Cr, CF!"Cce*

Cw
Dg
Dr

.e

knf
Sc

3

Rivlin Ericksen tensors

Straining and stretchihg/shrinking constants
Constant of temperéture A

Body force

Time dependent radius

Strength of uniform magnetic field
Velocity ratio parameter

Length of semi major and minor axes

Specific heat constant
Nanoparticle concentration
Ambient nanoparticle concentration

Skin friction coefficient/local skin friction coefficients

Nanoparticle concentration at the wall
Brownian diffusion coefficient
Thermophbretic diffusion coefficient
Eccentricity |
Eckert number o
stream function in dimensionless fot;m‘ -
Acceleration due to gravity A
Grashof number, local Grash(;f numbér
Convection heat transfer coefficient
Physical parameters

Metric coefficient L
Thermal conductivity of fluid/base fluid
Thermal conductivity of nénoparticle -

Thermal conductivity of material

Thermal cbnductivity of nanofluid

- Schmidt number

Magnetic parameter
Exponent of nonlinear velocity

Number of grid points




nJj
Nb
Nt

Nu, Nuy, Nu,

p,p*

_ 4m

q, 49w -

Ri, R2, Rs

R4

Re

Rex, Re;, Re;

Ue, Ve
Uw
Ux

. Vw

U, v, w
We
X,y

r, 0% z

Y

Greek symbols

as

Integers

. Brownian motion parameter .

Thermophoresis parameter

Nusselt number/local Nusselt number

. Prandtl number

Pressure, modified pres,sure-

Mass flux at the wall

Heat flux, heat flux at the wall

Residuals

Radiation parameter

Reynolds number

Local Reynolds numbers

Unsteadiness parameter

Sherwood number

Time, dimensionless time

Critical points ‘
Temperature of the ﬂuid in the boundary layer
Basis function |
ambient fluid temperature
surface temperature
Potential v“elocitit;s
stretching/shrinking velocity
Free stream velocity
Suction velocity )
Velocity components in dimensionless form
Weissenberg number .

Cartesian coordinates

Cylindrical coqy&inates

Distance along the surface of elliptical cy;linder

* measured from the forward stagnation point

Normal to the surface of elliptical cylinder

Thermal diffusivity of fluid/base fluid
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Thermal diffusivity of nanoﬂuid ' ;
Rosseland mean absorption coefficient
Scattering coefficient

Thermal expansion éoefﬁcient of fluid/base fluid

Thermal expansion coefficient of nanoparticle
Material parameters of fluid

Third grade parameter .

©

Suction parameter _,
Velocity and thermal slip factors -
Angle measured from the fbrward stagnation point in-
streamwise direction

Mixed convection parameter

Stream function

Dimensionless stream function

_Angular velocity

- Dimensionless angular velocity

Blunt/slender drientation parametei R

Newtonian heating parameter , ,
Dimensionless velocity and thermal slip parameters ‘
Density of fluid/base fluid

Nanoparticle density . ) .
Nanofluid density

* Specific heat
Dynamic viscpsity of fluid/base fluid

Dynamic viscosity of nanofluid

Cauchy stress tensor

Ratio of heat capacity of the nanoparticle and heat
capacity of base fluid

Wall shear stress/shear stresses

Kinematic viscosity of fluid/base fluid - e
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Heat capacity of the fluid/base fluid
Heat capacity of the nanofluid

Heat capacity of the nanoparticle
Constants

Dimensionless temperature

‘Surface temperature parameter

Nanoparticle volume fraction
Angle between outward normal from the cylinder and
downward vertical

Electricity conductivity of fluid/base fluid
Stefan-Boltzmann constant

Dimensionless variables
Physical infinity

Elliptic coordinate

k3]
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dr .
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1 T dx

The above equation represents the Fourier’s law of heat conduction, which is stated as

. . . dT
heat flux ‘g’ (the rate of transfer of heat per unit area) is proportional to o temperature
X

gradient, where k. is known as thermal conductivity of the material.

1.2.2 Convection
Convection is another mode of heat transfer where energy is transferred by mass motion of

atoxﬁs or molecules in the body. The transfer of energy through convection is actually

conduction in a thin fluid layer on the surface and mixing caused by the fluid flow. It is the

transfer of energy by bulk flow and molecular diffusion. Such type of heat flow does not depend
- upon the properties of material but depends upon fluid properties. Convection plays a vital role
_in daily life e.g. the'cooling phenomenon of different electronic components in computer,
cooling of cutting tools in machining operations, the:heating and cooling of buildings etc.
Newton established a relationship for transfer of heat by convection usually known as law of

“cooling.
g = h(T,-T,),

which is stated as heat flux ‘q’is proportional to the difference of wall temperature and ambient

o R e

temperature of the fluid, where A, is known as convection heat transfer coefficient and depends

upon boundary layers conditions including surface geometry, nature of fluid motion, an

assortment of fluid thermodynamics and the transport properties. Convection is further divided

into three mechanisms, which are explained here

Forced convection

In forced convection, the transfer of heat is due to the motion of fluid occurring by some
external source for example blower, fan, jet and nozzle etc. In such mechanism, a small amount
of buoyancy force effect exists. In Fig. 1.1(a), it is seen that the motion of fluid around elliptic

cylinder occurs due to external source in term of free stream velocity. -

Free/Natural convection

In free convection, the transfer of heat is due to the motion of fluid, occurring by the body force

which depends not only on the gravitational field but also the variation in fluid density due to |

9 .
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the temperature difference. The body force is usually called the buoyancy force. In different
areas of engineering, this rmode of heat transfer is used such are “cooling of electric
transformers, room heaters and cooling of electronic devices” etc. In Fig. 1.1 (b), it is seen that

motion of the fluid occurs due to body force only in term of buoyancy force.

Mixed convection

A combination of both free convection and forced convection is known as mixed convection.

In such mechanism both external source of heat and buoyancy force act together. In Fig. 1.1.

(c), it is seen that motion of the fluid occurs due to the external source (free steam velocity)

%

and buoyancy force.

(a) —n ) ©
L » / \ - < )Buoy'\ncy force
—_— —_—
= = (

Free stream velocity \\_'/(

(Forced convection) BUO) ancy force T Free stream velocity
' (Forced convection)

Figure 1.1: Transfer of heat in (a) Forced convection (b) Free convection (c) Mixed

convection -

1.2.3 Radiation

Radiation is the process of transfer of heat without any medium or source. Since, the conduction
and convection require physical medium to transfer of heat but radiation can occur in vacuum.
In thermodynamics, the electromagnetic radiations propagate as a result of temperature
difference a_lso known as thermal radiations. In Newtonian physics, Stephen-Boltzmann law
explains the rate of energy radiated per unit area ‘g’ is proportional to the fourth poWer of

¥

temperature.
g=0c'T",
where o is the Stephen Boltzmann constant. The above equation is valid for black bodies

which are an ideal absorber and ideal emitter also which is applicable for thermal radiation

only. The above equation examines the radiations emitted by the black body [3].- -

10




1.3 Governlng equatlons for fluid motion

The fluid is a substance that has an ability to deform contmuously under the action of shear
stress no matter how small it is. In fluid mechanics all the physical phenomena of the fluid flow
can be expressed in mathematical model known as governing equations. The fundamental -

governing equations for the study of heat and mass transfer in the fluid flow based on three -

laws of conservation namely law of conservation of mass, law of conservation of momentum

and law of conservation of energy. In general, these laws are written in term of partial

differential equations. For different types of fluids these laws in term of govemihg equations

are explained as follows:

it

1.3.1 Continuity equation

Law of conservation of mass is represented by equation of continuity, which states that mass

cannot be created or destroyed. The equation of continuity for compressible fluid is
3 . ‘
: %+div(pr)=O, (.1)

where V(u,v,w) is the velocity vector, If the density P, 1s constant (incompressible fluid) Eq.

(1.1) becomes

A “ T2

“div(V) =0.
In cylindrical cqordinates; equation of continuity is i
1M+lg+a_w= (13)

r or ro@ oz

1.3.2 Momentum equation

Law of conservation of momentum is represented by the momentum equation. Which describes
the complete mechanism of fluid motion. The momentum equation for incompressible viscous

fluid can be written as

=

% av i : - o
pf(a—+(V V)V) °r+pfb,v (1.4)

where p, is density of the fluid, T is Cauchy stress tensor, which describes the nature of the

fluid and b is the bovdy force.
For Newtonian fluid the Cauchy stress tensor is defined as

T=—pl+u A,

11
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where p isv the pressure, I is the identity tensor, pj. is the ayllamic viscosity and A, is the first
Rivlin Ericksen tensor defined by B ' : , C
A =VV+VV, |
where VV and VV' répresent theﬁvelocity gradient and its transpose.
For Non-Néwtonian fluid ttllird order Iﬁodelj, Cauchy stress tensor is defined as [4]
T=—pl+ A +a A, + AT+ BA, + B, (A A +AA, )+ B, (1A} ) A,

where ¢; (i=1,2) and B, (i=1,2,3) are material constants. The Rivlin Erickson tensors A,

are defined as

(vv);uﬁ(vv)T A

A, (gt +Ve VjA" VA,
For third grade fluid the thermodynamic constraints are [5]

U, 20, 020, | +a,| < [24p, B, ,-
B = ,32—0 ,33>0

Cauchy stress tensor T becomes

- =23,

n—

T= =pl+ uA, +a A, + Al + B, (trA,2 )A,,

Momentum équation for nanofluid in Tiwari-Das model [60] can be written as
; o . . ,
Py (a_t+(V’V)V)=V'T+P,,fba + . (1.5)

where p,, is denbs.ity of nanofluid. The Cauchy stress tensor in nanofluid is defined as
T=-pl+ ,u,!,.Al.

4, is dynamic viscosity of nanofluid. ‘ :

- 133 Energy equation
Tﬁe analysis of heat transfer within the fluid is completely studied (By energy equation, which
can t;e derived using first law of thermodynamics under this statement that energy cannot be
destroyed or created but can transform from one form to. another Energy equatlon in

N ewtoman and non-N ewtonian fluids can be written as -

(£+(\} V)T) a,VeVT + ! ‘r:VV— ! V°q‘,., ' (1.6)
a i (pcp)f (pc[))f V P . -

7

where T is temperature, (pcp)f is heat capacity, o f is thermal diffusivity of the fluid, T:VV

represents the term of viscous dissi;;ation and q, isradiative heat flux. By using the Rosseland

: o
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diffusiOnlapproxilqation q, can be expressed as [3]

do VT

T3 ra)

where «, is the Rosseland mean absorption coefficient and «, is the scattering coefficient.

Energy equation for nanofluid in Tiwari-Das model is written as

(Q'T'+(V-V)T)=a,,fV'VT+- L. T:VV, (17
o (PC,), ’

where.(pc,),, 1s heat capacity and «,, is thermal diffusivity of nanofluid.
Energy equation for nanofluid in Buongiorno model [58] 1s written as b
or ‘ ‘| D,V Dryr.v | o
5+(V'V)T =q,V*VT+1'| D, C'VT+'T_ r° T |, <18

o0

~where 7’7 = (pc,), / (pc D) fs is the ratio of heat capacity of nanoparticle and base fluid, Dg and

Drare the Brownian and thermophoretic diffusion coefficients, 7 is the ambient temperature

of the fluid. ’

1.3.4 Concentration equation
The cohcentration equation for the nanoparticles in Buongiorno model is also known as
continuity equation and in the absence of chemical reaction [58] is described as

(?5?+(V'V)C)=DBV'VC=+%V'VT, (1.9)

o]

where C is the concentration of nanoparticle.
P R R

1.4 Literature survey

The analysis of heat transfer in stagnation point flow has received considerable attention since -
- last few decades due to its abundant number of applications in several engineering and
| industrial problems. It includes cooling of nuclear reactors during emergency shut down, heat
exchangers placed in a low velocity environment, cooling of electronic devices by fans, solar
central receivers exposed to wind currénts and many more. It is owing to the reasons that the
stagnation point ﬂoyv region encounters the highest pressure and highést heat transfer rate: In
a flow field, stagnation point represents such point at which the’veloci_ty of the fluid béC(;}ne

eventually zero. There are two types of stagnation point flow namely, 6rth0g0na1 and non-

13




orthogonal. The non-orthogonal stagnation point flow isvalso known as oblique stagnation point
flow in Hterature. It is the flow for which fluid impinges on a surface at an arbitrary angle other
than 90°. However, in orthogonal stagnation point, the angle of strike of the fluids remain fixed
~ at 90°. The study of two dimensional orthogonal stagnation point flow was first considered by
Hiemenz [6]. Later on, Séhlichting and Bussmann [7] provided a numerical solution of the
Hiemenz [6] flow problem. Eckert [8] extended the work of Hiemenz [6] and analyzed the
effects of heat transfer in the flow.

The study of fluid flow and heat transfer over a stretchihg/ shrinking sheet has attracted

attentions of many researchers. This phenomena remained important for many years for its

analysis as it was needed to cope with several practical problems in the industry. Some of the

S iake 2vi)

problems are extrusion of a polymer in a melt spinning process, manufacturing plastic films, .

hot rolling and paper production, wire drawing and glass fiber production etc. Sakiadis [9; 10]
was the first who studied the flow ﬁeld over a moving surface with uniform linear velocity.
After that, Crane [11] studied incompressible viscous fluid flow over a stretching sheet. The
study of the fluid ﬂpw over a stretching cylinder was ihitiated-by Wang [12], who invesﬁgated
the steady flow and_ heat transfer characteﬁstic outside of an infinite imp';ermeable stre}ching
cylinder. He obtained exact similarity solution of the governing Navier-Stoké equatioﬁs of tl;e
problem. Later on, Ishak et al. [13] extended this work to the case of permegble cylinder. They
found numerical solution of the governing equations and observed the fact that water is better

. cooling agent as compare to air. Again, Ishak et al. [14, 15] investigated the heat transfer effect
. on the flow over a stretching cylinder and heat transfer in MHD two dimensional flow over a
stretching cylinder. K. Vajravelu et al. [16] studied the heat transfer analysis of axisymme:ric

electrically conducting flow of a viscous fluid induced by a non-isothermal stretching cylinder.

Many other authors [17-20] have also worked on a stretching cylinder. The nature of the flow -

~ over a continuous shrihking surface is characterized by the fact that the flow over the surface
is alWays directed towards a fixed point. Miklavcic and Wang [21] were the first, who studied
the flow over a shrinking surface. Fang [22] studied boundary layer flow with power law

velocity over t,.h‘e shrinking sheet. Fang and Zhang [23] calculated the exact solution of

magneto-hydrodynamic viscous flow over a shrinking sheet. Sajid et al. [24] studied MHD |

rotating flow of a three dimensional viscous fluid over the surface which was assumed
continuously shrinking towards the origin. Noor et al. [25] found non-perturbative solution for

magneto-hydrodynamic viscous flow due to the shrinking sheet. Yao et al. [26] studied heat

transfer analysis in a fluid flow over a generalized stretching shrinking wall with convective -

14
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boundary conditions. Mishra and Singh [27] found dual solutions of mixed convection flow
over a permeable shrinking cylinder with momentum and thermal slip boundary conditions;

The combine study of stagnation point flow over a stretching/shrinking surface have
‘ been analyzed in detail by many researchers. Chiam [28] and Wang [29] were the first who
studied stagnation pomt flow over a stretching and shrinking sheet..Bachok et al. [30] studied
the decay of heat transfer in stagnation point flow of viscous fluid moving towards a
stretching/shrinking sheet. Bhattacharyya [31] studied the heat and mass transfer rates with
chemical reaction in a boundary layer stagnation point flow towards a stretching/shrinking
surface. He obtained dual solutions of the governing nonlinear boundary value problem. Yacg)b

et al. [32] extended the woik of Bachok et al. [30] by coﬁsidering micropolar fluid.

| Turkyilmazoglu and Pop [33] calculated exact analytical solutions of the governing problem
for the flow and heat transfer in Jeffrey fluid ne'arithe stagnation point on a stretching/shrinking
sheet. Weidman and Ali [34] investigated a stagnation point flow on a stretching cylinder. The
analysis was presented for the flow in aligned and nonaligned radial direction and discussed
the existence of unique and dual solution for wide range of shrinking parameter.’ Lok and Pop
[35] studied the Wang’s shrinking cylinder problem by considering it as permeable and of fixed A
‘radius with suction near a stagnation point. Lok et al. [36] considéred mixed convection
éxisymmetric flow near the region bf stagnation point on a stretching/shrinking cylinder. Najib
et al. [37] investigated the diffusion of mass in stagnation point flow towards a
stretching/shrinking cylinder with chemical reaction. | |

The analysis of unsteady flow has attracted considerable attention of many researchers -
due to its important practical applications due to time dependence. Such applicaﬁons are tor |
execute some devices in which time dependent motions are required, re-entry of space.vehicles ‘
fluid flow in vessels of human body in: which reverse flow reglon may develop due to
unsteadiness. Munawar et al. [38] studied the unsteady flow over an oscﬂlatory stretchlng
cylinder with time dependent oscillation and obtained the numerical solution of the governing
equations by usiﬁg an implicit finite difference scheme. Fang et al. [39] investigated unsteady
viscous flow over an expanding stretching cylinder. They analyzed that the velocity deéreases
with the increase of Reynolds number and more rapidly expanding stretching cylinder sl'owly
penetrate into the ambient fluid. Zaimi et al. [40] studied the mass transfer analysis of unsteady
viscous flow over a shrinking cylinder and found unique and dual solutions for the specific
fange of unsteadiness parameter. They indicated that skin friction coefficient ‘reduces with the
enhancement iﬁ unsteadiness parametér. In chapter 2, the work of Lok and Pop [35] is
extended by considering the flow near the stagnation point over an expanding/contracting
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Waqg’s cylinder as an unsteady flow. The cylinder is assumed as penneablé to ‘analyze the
suction phenomena while the cylinder is stretched or shrunk along the axis of the cylinder. .
In the study of heat transfer analysis, mixed convection flows have gained considerable
attentions of the researchers due to its many industrial and technological applications of solar
- central receivers placed in winds, with maximum cooling of nuclear reactors during emergency
shutdown, cooling éf electronic devices by fans and other heat exchangers placed in a low
velocity environment etc. A careful literature review reveals that an intensive works have been
done on convective boundary layer flow over a horizontal circular cylinder. Merkin [41] was
the first who initiated the study of mixed convection flow near the lower stagnation point over
a horizontal circular cylinder in which, he found that the separation point delays in case of
heated cylinder and it comes earlier in cooling cylinder case. Further, a detail works on mixed
convection flow along the same cylinder have been done in different investigations [42-47] By
considering the flow of Newtonian and different non Newtonian fluids around it. The circular
cylinder is a special case of an elliptic cylinder when major and minor axes are assumed ¢qual. |
The study of heat transfer analysis inside the flow around an elliptic cylinder has gained
great importance due to the fact that it offers iess resistance to the flow and heat transfer as
compared to that of circular cylinders. The study of boﬁndary layer ﬂoW over an elliptic -
cylinder is again initiated by Merkin [48]. In which, he investigated the free convection flow
by considering CWT and CHF and problem was solved using Blasius series and Gortler type
expansion techniques. In literature, few studies of mixed convection flow over an _elliptic.
circular cylinder have been analyzed for both Newtonian\non-Newtonian fluids in [49-52]. "
The‘ analysis of unsteady flow and heat transfer whose applications are mentioned
earlier over a cylinder with élliptic cross section was investigated by Alessio [53]. In this study,
he investigated the steady and unsteady flow over an inclined elliptic cylinder for the range of
Reynolds numbers Re from 40 to 70 with Prandtl number at 1 and observed that the unsteady -
flow converges to steady state for small values of Re. Williams [54] studied analytically
unsteady free cbnvection flow from an inclined elliptic cylinder. Jaman and Hossain [55] foﬁnd
the influence of fluctuating in surface temperature with small amplitude on natural convection
flow over an elliptic cylinder and obtained the numerical solution of the governing equation
for eccentric angle in the range 0<a<180°. The time dependent flow of comBined natural and
forced convection near the forward stagnation point region was first considered by J am_aludin
et al. [56]. They solved the governing equations related to the flow problem numerically by
using an implicit scheme of finite difference technique for both blunt and slender orientations.

They found that separation times come early in case of opposing flow for slender orientation. |
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In chapter 3, the effects of thermal radiation on unsteady mixed convection flow near the

forward stagnation point region over an elliptic cylinder is analyzed because thermal radiation

- in mixed convection flow has many practical applications such as the thermal energy storage

devices, gas turbines and nuclear power plants etc. _

In the preced1ng studies, a complete analysis on heat transfer have been made by the
researchers by considering the fluids wh1ch have low thennal conduct1v1ty Such fluids are
water, air, oil, and ethylene glycol mixture which are poor in heat transfer. In many industrial
and engineering problems heat transfer rate plays an important role in term of highest heat

transfer rate which can improve the efﬁc1ency of many processes in electronic cooling and heat

- exchangers. For improving the heat transfer rate and thermal conduct1v1ty of the fluids a huge

effort has been made by the researchers. Accordlng to the experlmental studies, the thermal
conductivity of fluids can be increased when nano -size solid particles with length up to 100 nm
are suspended in the base fluid, and this .m1xture is called a nanofluid introduced by Choi [57].

Various materials are considered, such as Cu, Ag, Au metals, CuO, Al;0;3 and TiO; for making

nanoparticles of different shapes: As‘a result, it is noted that the thermal conductivity of the
~ obtained nanofluid is- larger than that of “the base fluid. Buongiorno [58] studied

comprehensively the convective transport in nano-fluids and cons1dered seven mechanisms -

such as Inertia, Thermophores1s Brownian diffusion, grav1ty settl1ng, fluid dra1n1ng,
D1ffus1ophores1s and Magnus effect. He observed that the absolute ve1001ty of nanoparticle can

be considered as sum of the velocity of the base fluid and relative velocity. Among these

mechanisms, he found that only two mechanisms are very important namely Brownian
diffusion and Thermophore51s Invest1gat10n on the toplc of heat transfer in nanofluids was
done by many researchers namely, Abu Nada [59], Tiwari and Das [60], Maiga et al. [61];
* Oztop and Abu Nada [62], and Nield and Kuznetsov [63, 64], Jaluria et al. [65], and Mahian et

al. [66]. . ‘

, Mustafa et al. [67] were the first who studied two-dimensional flow.of a nanofluid near
the stagnation point region over the stretching sheet. They used the Buongiomo model and
considered the important two Brown1an motion and thermophoresis effects and solved

governing equations analyt1cally using homotopy analys1s method. Nazar et al. [68] analyzed

the stagnation point flow of a nanofluid past a shrinking sheet. They obtained a dual solution

for the specific values of shr1nk1ng parameter. Bachok et al. [69] studied stagnation point flow :

of a nanofluid over a stretching-shrinking sheet. They considered three types of nano-size

- particles: Cu, TiO; and A/;0; suspended in a base fluid like water. Kumar and Bandari [70]

studied melting heat transfer in the flow of nanofluid with Cu and Ag. (silver) as nano-size |
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_the equations. Two cases were considered namely prescribed surface temperature and

prescribed heat flux. Hayat et al. [96] studied MHD effects on stagnation point ﬂpw_ of a
micropolar fluid towards a non-linear stretching surface. Further, some very important studies
on stagnation point flow towards a non-linear stretching/shrinking sheet have been made by
the researchers [97-100]. ‘ . |

A detail studies on the boundary layer flow of nanofluid in the stagnation point region
over a linear stretching/shrinking sheet have been mentioned earlier. However, few studies of
nanofluid over non-linear stretching/shrinking sheet have been presented by the researchers.
Eirstly, Rana and Bhargav‘e [101] obtained the numerical solution of the boundary layer flow

of nanofluid over non-linear stretching sheet. They used Buongiorno model and discussed the

effects of thermophoresis and Brownian motion. Hady et al. [102] studied the heat transfer ‘

analysis of viscous fluid ,ﬂow'of a nanofluid over a non-linear stretching sheet in the presence
of radiétion effect with variable wall temperature. Some studies related to nonlinearly
stretching/shrinking sheet have been considered by the researchers [103-106].

Boundary conditions play a vital role in material processing technologies and
significantly modify the characteristic of manufactured products. In the above studies, two

types of boundary conditions were considered namely prescribed surface heat flux (PHF) and

prescribed surface temperature (PST). There is another type of boundary condition known as

Newtonian heatihgkz(conjugate convective ﬂows [107]) in which, heat is transported to the
convective ﬁuid pa;;ing near the boundary surface having finite h;:at capacity. Newtonian
heating occurs in some important engineering devices such as heat exchangers in which the
conduction in the solid wall is effected by convection in fluid [108]. Salleh et al. [109]
investigated the effect of Newtonian heating.on boundary layer flow and heat transfer over a
stretching sheet. They solved non-linear boundary layer equations numerically by using _ﬁnite
difference scheme along with two cases “constant wall temperéture (éWT)” and “constant heat
flux (CHF)”. Mohammed et al. [110] studied stagnation pbint flow over a stretéhing sheet with
Newtonian heating. A number of studies with Newtonian and convective boundary conditions
have been considered by many researchers [111-114]. Therefore, in chapter 6, the effect of
Newtonian heating in nanofluid near the stagnation point over ar rion-linear permeable
stretching/shrinking sheet is investigated.

The adherence of thé fluid to a solid boﬁndary_is known as no slip velocity i.e., the
velocity of the fluid at the solid boundary is zero. All the above studies were considered with

no slip boundary condition but physically the no slip boundary condition does not hold. Beavers -

.and Joseph [115] studied the fluid flow over a permeable wall with slip effects. They showed
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that a boundary layer region induce within the permeable fnaterial. The slip flow under different

flow geometries have been discussed by many researchers [116-122]. ;
The aforementioned studies were considered for the complete analysis of the flow

structure of Newtonian fluids. A study of heat transfer analysis in Non-Newtonian fluids have

been considered by the researchers due to its numerous important practical application in

industries, such as artificial fibers and plastic films. A few number of practical Non-Newtonian -

fluids such as food staff, molten plastic’and polymers etc. Rajagopal et al. [123] investigated
the flow-analysis over a stretching sheet of second order viscoelastic fluid. They obtained fourth
order highly nonlinear ordinary differential equation in which the order of boundary conditions

was one less than the order of nonlinear differential equation and solved it numerically by using«

augmented boundary condition. Ariel [124] and Andersson [125] provided a closed form’

analytical solut\.ilons of same order highly nonlinear differential equations of second grade fluid
and viscoelastic Walter’s B ﬂuid‘by considering magneto-hydrodynamic effects. Liu [126]
- investigated diverse phyéical effects on the flow of viscoelastic-second grade ﬂui&. Sahoo and
‘Sharma [127] investigated the flow and heat transfer analysis of second grade fluid over a
stretching sheet in which fluid was considered an electrically conducting. Aﬁerwards,_Corte_ll

[128] considered second grade incompressible fluid and arialyzed flow and heat transfer

characteristic over a stretching sheet. A detail studies on second grade fluid reveals that it -

exhibits normal stress only for steady state flow but it cannot predict the shear
thinning/thickehing properties. Another models of Non-Newtonian fluids are third and fourth
grade [129, 130] fluids models which can predict shear thinning/thickening properties.
Therefore, in chapter 7, the slip effects on mixed convection orthogonal stagnation point flow
of third grade fluid over a vertical plate is presénted.

All the govéming equations of the considered problems in this thesis are nonlinear
ordina%y/partial differential equations subject to different boundary conditions. The solution

. procedure used for these problems are discussed in the following section.

1.5 Methodology

For nonlinear differential equations, different analytical methods like homotopy arialysis

method, and Adomian:decomposition method with Pade approximations developed in last

decade have been used by researchers. Although these methods are efficient but are time -

- consuming. Similarly, numerical ‘methods like finite difference method and spectral method

are also in great use of the researchers for this purpose. Since, we will be dealing with very

N




complex equations in this study; we prefer to use these numerical methods instead of analytical

methods. The brief summary of these methods is as follows:

1.5.1 Finite difference method

The finite difference explicit/implicit schemes. are one of the oldest schemes to solve any

ordinary/partial differential -equation. These schemes are based on the replacement of

ordinary/partial derivatives of the eduation with the appropriate forward/backward/central

difference approximation: As a result, a system of algebraic equations is achieved, which can

easily be solved by using any standard technique. Keller Box method is one of the implicit -

finite difference method, in which the hi gfler order differential equations are first transformed
into a system of first order differential equations and then converted to the system of algebraic
equations. Since the flow problems regarding the boundary layer stagnation point flow are
always nonlinear, so it is necéssary to reduce the nonlinear differential equatioh to a system of

1* order linear differential equations as per criteria of Keller Box method and then these linear

differential equations are reduced to al gebraic equations and then solved. This finite difference

scheme is Vefy. famous scheme [131]. The details about this method for different equations

have been presented in chapters 3 and 4.

1.5.2 Spectral method
Spectral -method has developed rapidly in the past four decades and has been applied

successfully to numerical simulations in many fields, such as heat conduction, fluid dynamics,

- quantum mechanics, turbulence theofy and metrology. Spectral method [132] is one of the best

method for the numerical solutions of PDE’s. The basic theme of this method is to répresent
the solution of the nonlinear equatic;n as a sum of certain trial/basis functions with unknown
coefficients to be: found subject to satisfy the differential equation at different nodes and
boundary condition. The main feature of the spectral method is to take various oﬂhogonal
systems of inﬁnitgly differentiable global functions as trial functions. It is noted that the
different tliial functions lead to different spectral approximations. For instance, “trigonometric
polynomials” are chosen for bounded periodic- pf'oblems, “Legendre and Chebyshev
polynomiais” are for non-periodic problems, “Laguérre polynomials” are for problems on the

half line, and “Hermite polynomials” are for problems on the whole line. The details about this

method for different equations have been presented in chapters 2 and 7.
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Chapter 2

Heat transfer in stagnation point flow over an

unsteady expansion/contraction perm'eable cylinder

~ This chapter deals with the study of heat transfer analysis in unsteady boundary layer stagnation

point flow of an incompressible viscous fluid over an expanding/contracting permeable
cylinder. The mathematical model of the problem is made in terms of nonlinear partial

differential equations which is fui‘ther reduced to a system of nonlinear ordinary differential

. equationé by using similarity transformation. The numerical solution of system of nonlinear

ordinary differential equations is calculated by using Chebyshev speétral collocation method.
There exist unique, dual and triple solutions in different ranges of unsteadiness parameter.§

and for different values of velocities ratio parameter. The rdnges for which the kunique, dual.
and triple solutions exist are shown through graphs and in tabular form. It is observed that the
temperature and thermal boundary layer thickness decrease bil increasing the absolute values
of § in expanding cylinder case. HSwever, this behavior is opposité in contracting cylinder

case.

2.1 Mathematical formulation

Consider a laminar boundary layer axisymmetric stagnation point flow of an incompressible

viscous fluid over a cylinder of time dependent radius = b, (t) = bm/l — f't. ltis assumed that

the surface of the cylinder is permeable and its radius is kept flexible as to contract or expand.

For negative values of f°, the radius of the‘cylindér increases which is a case of expanding

‘cylinder and for positive values of 4", the radius of the cylinder decreases which is a case of

contracting cylinder. Fig. 2.1 shows the geometrical description of the problem in which

cylinder described by » = b,(t), and z'énd r.are the cylindrical polar coordinates measured

along axial and radial directions respectively. It is further assumed that the cylinider is stretched
or shrunk with time dependent velocity u,, = T&— which is linearly pfoportiéhal to the axial

®, 2

distance from its origin. It is clear that, the stretching or shrinking velocity of the surface
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accelerates or decelerates for positive and negative values of B". The stagnation point is taken
at r = b, and z =0 with wall temperature T, uniform ambient temperature 7, and veloci‘ty of T

potential flow outside the boundary layer uc; The flow is considered here is like axisynim'etric

about the z-axis, which enforces the azimuthal component of velocity to zero. The equations
representing the laws of conservation of mass, momentum and energy in cylindrical coordinate

system are

y

Ue Too

. 7
.
P

b0 = bl - f*0"7

pr—
4——4-
e |
l Vi

!

Figure 2.1: The physical model and coordinate system.
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" where u and v ‘are the components ‘of velocity in z and r directions respectively, v, is the

1
1
1
1

 kinematic viscosity and T is the temperature of the fluid. The assumed boundary conditions for
the problem are given by , ’ |
T=T,atr=b(f)

(2.5)
vov,u—u,l -1 asr—>w|




The suction velocity v, , stretching/shrinking velocity u,, and potential flow velocity

uc. are defined as follows:

. = 2cz v _ —ab,y andu = 2az i ” 6]
M A T R B T 20

where a and ¢ > 0 (stretching) and ¢ < 0 (shrinking) are the constants of dimension s~ Aﬁér;-

using thevboundéry layer approximations, Egs. (2.2-2.4) reduce to the form

. ) X
ou o o 1p (O 1o o
o0 or 0z p,oz or 'ror
ﬁ - P_g | (2.8)
1 ‘ ar "’
o OO, (0T 10T 29
o - or oz \ot ror) '

‘For eliminating the pressure gradient, the boundary condition » —co is used in Eq.

(2.7) (potential flow velocity outside the edge of the bOundary layer) which reduces to

Ou Ou Ou Ou, ou, &’u 1 6u
fy—=—24 +v (2.10)

= u, f _2+__ :
ot or 0z Ot oz or: ror

Upon using the following similarity variable

v=——f() 2 ry RS
,—ﬂt\/—‘ -p't . . PR

' T @.11)
L 2. 1 V ’ M ¢
Tw 1-8% |

the governing partial differential Eqs (2.10, 2.9) and boundary conditions Eq. (2 5) become

nf"+Re(ff"~ P+ D)+ [+ SA-(f +nf" )) 0 (2.12)
nd"+(1+PrRe f~SPrn)¢' =0, : (2.13).

9(77) =

SO=r. /0= § o(1)=1

s T 2 (2.14)
S —1, 0(n)>0as > ,
where
2 *12
Re = aby 9= p b° . and Pr——
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and brime denotes the differentiation w.r.t 7, Re is the Reynolds number, S is the

unsteadiness parameter, Pr is the Prandtl number, y >0 is the suction paraméter, andc/a is

the ratio of the constant of stretching/shrinking velocity and the free stream velocity, which -

represents stretching phenomenon when ¢/a >0 and shrinking phenomenon when ¢/ a <0.

The physical quantities of interest are the skin friction coefficient and Nusselt number,

which are defined as

T, b,q
C,=—3—, Nu=—F7"""¥—
I putl2’ k(T,-T,) . @D

where £, is the thermal conductivity of the fluid, 7, is the wall shear stress and q, 1sthe heat “

..
-

.ﬂux from the surface, which are defined as °

.- ‘(au) T V—.—k (GTJ . ) 5 16
w = 5 e 3 ) - (2.16)

After using the Eqs. (2.11) and (2.16) 1nt0 the Eq. (2 15), the skin friction coefficient

: and Nusselt number take the new form as follows:

C,R - L
LS ), Nufimpr=—20(1). 2.17)

\/l—ﬂ't

2.2 Spectral collocation method

In order to solve nonlinear boundary value problem given in Egs. (2.12) and (2.13) subject to
the boundary conditions Eq. (2.14) against the applicable range of involved phys}cal

parameters, a highly accurate Chebyshev spectral collocation method is used. In this method,

the solutions f(&) and #(&) are approximated byl sum of N+1 basis functions 7, with

unknown coefficients a, and b, are written as

n=0

f(f)sz(§)=za,, ,,(6) L (2.18)

0) ~ 0, =3 BT, ) @19

n=0

To obtain the highly accurate solution, the basis functions are chosen as Chebyshev

_ polynomial of degree n and defined in the interval —1< £ <1 as

T (£) = cos(ncos™ &).
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Since: the physical domain of the flow under consideration is [1,0). The following
transformation is used to convert the physical domain into the same domain as that of basis

functions is [-1,1] by

n-1
=21, - .
S — (2:20)
where n, represents the physical 1nﬁn1ty, i.e., the edge of the boundary layer. After usmg the

above transformatlon the obtamed boundary value problem will take the form

‘8{1+(”w‘lg(5+1)}‘;§f 4(n., - )‘;éf

Re{4(nw—1)fg;—{—4(nw 1)(dfj2 ('7«»71)} 2y -

. dé
+S{("°°‘”’-2<'7w-1>23_§'4(“(*ﬁ]m )"

}

) 1)+PrRe(f7 “i)/-
O E I I - .
{ 2 }dg 2 SPr(nw 1)(1+ e — 1)(5 +1) (2.22)
and boundary conditions become
c N A
f©O=y, = d§ =(1,, - ) o O =tatg=-1 |
e : (2.23)
& _n.-1 _0até=
dg‘— > , 0(&)=0at & =1 J

After substituting the assumed solutions (2.18, 2.19) into Egs. (2.21, 2.22); the

following non-zero residues R, and R,

8 (n _i)(fﬂ) N ~3n\J1- &2 cos(ncos™ &)
R = 2' 572 (1+ 2 5 JZna" +sin(ncos™ g‘i)—_n2 sin(ncos™' &)
(1 —¢ ) ' N +2£7 sin(ncos™ &)+ n’¢? sin(ncos™ &)

4(,7"’ Zna [ncos(ncos &)- éw}+

( 1+¢) & J1-¢&2

V- 2 xongsin(ncos &) (m.-1(E+1D)))
(7. -1) =2(n. I)MZ:O: s 41+—_2 .

A) +
(m.-1) & sin(ncos™' &)
( e )"Z(;na ncos(ncos g‘) & \/1——_5—2 |
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Figure 2.2(a-c): Variation of the skin friction coefficient with c/a for distinct values of Re (a)

when y =0.5 (b) when y = 0.5 and §=0 (c) when y =0.5 and §=0.04. .
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Figure 2.3(a-c): Variation of Nusselt number with c/a for distinct valués of Re (a) when Pr =

0.7 and y =0.5 (b) when S=0, Pr = 0.7 and » =0.5 (c) when S =0.04, Pr=0.7 and y =0.5
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Figure 2.4: Velocity profile f'(7) for distinct values of c/a when Re =1, §=0.04 and y =0.5.
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Figure 2.5: Velocity profile () for distinct values of ¥y when c¢/a =-1.2 and S = 0.04.
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Figure 2.7(a, b): Velocity profile f'(7) for distinct values of S when Re = 1, cla= -0.5 and

y=2.
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Figure 2.9: Streamlines for distinct values of stretching parameter ¢/a when Re = 1, § = 0.04

and y =0.5.
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Figure 2.10: Streamlines fdr distinct values of shrinking parameter c/a when Re =1, $=0.04 .

and y = 0.5 (first solution).
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velocity increases and temperature decreases by increasing the absolute values of unsteadiness
parameter. On the other hand velocity and thermal boundary lay:er thickness decrease due to it.

The opposite behavior is observed in the case of contracting cyfinder case.
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Figure 3.1: The physical model and coordinate system.

&

heat capacity of the fluid, 8 , is the thermal expansion coefficient, g is the acceleration due to

gravity and u, is the ve1001ty of potential flow. The radiation effect in Eq. (3 3) is considered

by using the Rosseland dlffu51on approximation [3]. Under this approx1mat10n the solution is
not valid for situations where scatt_ermg is expected to be non-isotropic .as well as in the
immediate vicinity of the surface of the cylinder. Now introducing the non-dimensional

variables as reported by Ali et al. [138]

—_ \ —_— U[ . T T ’
R 172 v ) )
vV =RKRE€ (_),t —.—‘t t,g— , ;‘ (3.5)

T,-T,

w

where Re=a'U,, / v, is the Reynolds number. Using Eq. (3.5) into the Eqgs. (3.1-3.3), the non-

dimensional form of governing equations are

8u c?v -0 : ,

= 6? ) | (3.6)
ou _ou _ou _ _ du, i P '
6_;“‘;;1%‘]6; =1, ,(t) af‘) @(@J+198m( ), : (3.7
20 _00 _36 1 0 4 0|
FALr-2ab— Pr@[{l+3R(1+(0 —1)9)}@]_ . (3.8)
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: T \or , X
., —ﬂ,@;)y = ka 3—22—%—))5} - 620
After using Eq. (3.20) into Eq. (3.19), the skin frictionA» coefficient and Nusselt number
take the form
1 _a*f(0,7)
| N

| | NuRe-‘”:—(l 4R0 ) 1 96(0,7)

3 \/Ta;;.

The skin friction coefficient Cr Re'? vanishes as iz, () = 0 at forward stagnation

o

point.

3 2 Keller Box method . ;

The system of partial differential Eqs (3.16, 3. 17) is nonlinear in nature and the solution of
this system subject to the boundary conditions Eq. 3.18) is hfll‘dly possible through analytical

methods. Therefore, a numerical method is used known as Keller Box method which is second

order accurate method and converges rapidly [131]. 1

-

Initially these differential equations are reduced to the system of first order differential

equations by introducing the new variables using U,V , P and Q defined as

['=UU'=V,0=Pand6'=Q0 . 321
l Egs. (3.16, 3.17) and boundary conditions Eq. (3.18) take new form as
1yt (1 1) 7Y T 2P o
Ve SV +E(1-U+ V) =1 o AP, (3:22)

0+prl TO+Pr0+ - R( (w-;l)P)JQ’+

i op | (3.23)
4R, (6, -1)(1+(8, -1)P)Q Ptgt—

£0,5y=U(0,7)=0,P(0,F) =1,

°=0,1"=1"" +AT ,n=12,...,

U(eo,7) =1, P, ) =0. 29

A g}idvnet on the plane (n7,7) is defined as , )
e =0,n,=n,_+A4An,n, = nm, i =1,2,. S =1, .

(3.25)

i
where » and j are positive integers, An and Af are widths of meshing variables on (77,1)

plane. The approximate quantities of functions f,U,V,PandQ at the net point (n,,t") are
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known as net functions whose derivatives in 7 and 7 - directions are replaced by the central
différénce formulae and functions itself are replaced by average centered at the midpoint

(122> T""%) defined as

n-1/2 i v2 L
(L) = r = =g U = and [ =2 £

t

f, 2 = (f f, 1) a

After discretizétion,’the system of nonlinear partial differential Egs. (3.22) and (3.23) .-

are converted to the system of difference equations written as ‘,

V(2 '7)( v +V,-".,]_2 i (U" LU ) prein w( il +P,-"_l)
An . 4 2 At 2 X 2 .
A n n n n n 2 . . (3'26)
',7/1—-1/2 f + f} 1 V +V; J-1 U Uj—l _ -1 :
- 2 2 2 —rj—l/23
Q-9 +Pr(’7j +'7,~_|)(Q}' +Q/—lj+ Pr7m- 1/2( Jy J(Q;Jer-l)Jr
- Ag 4 2 2 2

3 ' 2
4 P+ P P+ P P" P'
—R1(1-6 3(—’—"') +3(1-6 (—i—"‘J+3l ( ) }

P T, ) (3.27)
(o-o, { (P?'+P.’1) (Q'.’+Q’_’_
~—= 4R, (1-6, V(-0 L= | +(P/+P.) (| L
( AI] d( w ) ( R w) 2 ( Jj Al-l) 2
| B+ P ,.- Cot |
~Pr7m® (T}”’j—f/z, |
Eq. (3.21) become
“ : : n. A n n ‘ | ‘
==L+ UL, (3.28)
n n A’ n ‘n l
Y _U!'-l =—21(Vf +V), (3.29)
Py ~P! (Q 1o/ R - (3.30)

“Where

r.n._l _ I/jn—l _ I/ln_—ll B ( ’7 + ’7’ l )( Vn =1 V;:l )_

s An 4 2 |

) n-1 n-1 n— n— i i— _ 2

;—11—1/2 2+(.fj +f}-] )(I/j I+I/j_l]j—-(Uj 1+Uj_|l) _
2 2 2.
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~—,, n=-1 n-1 n~1 n—1 . )
5 1/2 ( Uj—l ) —n- 1/21 * (i__ij’ ‘ ) (331)
Al 2 2 ) '
o jn—l _ Q}:_—I] ’7j + ’7j_| Qn -1 + Qn 1
m;_y,=—| —————|-Pr -
. An 4 2
n—1 n-1 n—1 n-l n—-1
Prt_" IIZ(P _P j—Prt_" I/Z(f +f )(QJ Q )_
AT | 2 2

. ‘ ( n—1 n—1
1+(1-6 3(————1' = )
4 R G C(er-en
ERd{ A
3(1 0 ([)jn—l +Pn—]) 3(1 0 ) (P [)jn | I] N
+ - - - .
‘ W) 5 2
P” l n 1 n—1 I-
+
4R(19)1+(1‘9) Q
+(1-0,)(P" '+P" ! (3.32)
The boundary condltlon Eq. (3.24) become
fr=U =0,P" =1U," =1,P" =0. | (33

The above nonlinear algebraic Eqgs. (3.26) and (3.27) are linearized by using Newton

method by introducing (i+1)" iterates as A ‘ ‘
' gy s (3.34)

n(i)

51m11arly it is same for all other vanables in which f is known for 0< j < J as an initial

guess and & /¢

“terms containing square and higher order of & j”jf'(i),_é'U}'(i),51/']."(;),51‘;"(") and JQ}’(i) the system
of linear algebraic equations is obtained as follow's

Sfl ~8f - (5U" +U) = (; ),

(5),0] +(52), 0L +(s,), 5U_;’ +(54);6U 7 +(55),8V] +(54),0V], +
C(8),0T7 +(sp), 0T, = (1),

(30,67 +(510), 8T, +(5,),60; +(5:,),60), = (1),
sUT -8U"., —%(JV; LoV )= ” ),
68 -6, =180 +601.) =),
The boundary conditions Eq. (3.33) take the form as
' - 8/ =8U,"=0,6R"=0,6U," =0,6P" =0.
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is unknown. After using the Newton linearization process and neglecting the
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Finally, the above system of linear algebraic equations with boundéry conditions will

be written in matrix vector form. The coefficients in momentum and energy equations of

unknown functions 6 f',6U7, 6V, 6P and 5Q; and n();n-hgmogeneous parts are given as ;
Coefficient of momentum equation: )
n +n- ( V" ) . -
5f =(s), =T = 5 L = (53), =(9)
WU 1 N
no__ -1/ no_ —
sU (s3) =" 5 AT U =(5,),=(53),
: ) 2+ !
5Vi" =(s5),. =L+ (77_/ ﬂj—l) +t"_l/2 (.f_, : .f_/—l)’v
5V, = (s), = (n,+1, .) prean U+ S10). !
¢ An 8- j 4 ]
. t_‘an/Z/'{,w* ) 1 ; . .
SB] =(5,), = = 6B, £ (5), = (57), -
Coefficient of en(;rgy equation:i .
: | |
= L (PT+PL) PG N ! ; (Q —9),
68 =(5), = 3 R {3(9 -1y DA )+3(‘"2-)< epr) )

8 2 i Ang

R0, —n{@“—;—”— B+ B+ 0,0} @+ 0Ly pe L s, - 50 =)

1 Pr(”j +’],i—l) [ +n-1/2 (-fln +‘ff‘]) 4+
' 4

1
|
IR Vhyva e l
4 PP 30, 1) (0, -1’ | |
——R,31+(6, -1y L7 4 P"‘P” 3 (P + P f
3A7 d{ @, -1 2 5 ( |)+ 2 (P} +P) :,
ey L
+2R,(0, —D1+ (6, -1) ——4—+(<9w—1)(P_,- +P") (Q,-+Q,_|),_
n 1 Pr('?'+’];'—l) ! Th- (f"+f"—) i ]
5Qj—1 = (512)]- = —E+_;8—’+Prt l/ZL_',I_4__11_ . , 1 i
4 ’ (P +P",) 300D G .
SA_}]R‘I{I-'_(QW )3 P I > (P;+P,-1)+3(—_)(P’ +Pf-])2 4+

(P + P
4

2R,(6, -1) {1 +(0, -1’ +(0,=1(P + 1?;11)}((27 +Q,

Non-homogenous terms:

_ (n),»=(J’,il—J”,")+ (U"+U",)

!
:l
1
l

R . Ll - = Fe N T e m P e D



| VY @An) @Ry e
N i /O M AL A { vy e
! An 4 L2 4

2 2
t—.’,-l/z

— (U +U U -U D) -1 A

2 . An 4 2.
; n=1 | 132 I n=l i n-l -1y po-l
poe {2_<U_,- HUL) D ¢ V_,-,>} v g (7P
4 2 2 2
"_Q") Pr(n, +7, WD (g0
(’3)},.:_(Q, 05 r(77,+77,_1)(Q R ' pp S+ NG+ 0 )
An 8 4
—f‘-Rd{“(ew—lf T XDy P",>+3(‘9 Uy }(Q" Q;n)-
3Aq . 8 4

Rd(9w—1){1+(9w— )2(—4——)— +(6, —1)(P"+P"1)}(Q"+Q, D+ 1

" Q" -0r .‘) Pr(n, +n,.)

n n n-1 n-1 n- l -1
Pr———(P/+ P - P —P" )~ A g Q7 +9)-
| PPy
n- n- 11— n— 1+ 9 - 1-‘—
pr 712 (f: B f l)(Q ]+Q l) 4 R ( ) 8 .
4 “3Ap ¢ | 2
7 3(9 ]) (Pn 1 Pn l)+3 (9w4 1) (P’n—l +Pj':])2

$

: 2(1’,-"~'+ ,-"_.')
(Qn -0 - R(e —1){1+(9 )___4__

O ] [aRseed
(%), =W, ~U)) +—A-21(V;’ Vi,
(), = =P+ 20,

The resulting matrix vector form is solved by using block-tridiagonal elimination

technique, which consists on two sweeps namely forward sweep and backward sweep. The .

edge of the bdundary layer 7, and step sizes Ay and AT in 5 and 7 respectively are set for

different range of parameters involved in the problem.

3.3 Results and discussion

The effects of peftinent parameters like mixed convection parameter A,blunt and slender -

orientations parameter ", Prandtl number Pr, radiation parametér R, and surface temperature
parameter &, on the flow behavior are shown graphically by plotting velocity, temperature

profiles and Nusselt number. For the validation of our results, the values of separation times

near a forward stagnation point are compared with that of the work of J amal}idin et al. [56], as _
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observed in Fig. 3.5(a, b). The effect of thermal radiation parameter R, on velocity and

temperature profiles for both opposing and assisting flow cases are shown in Iiig‘s. 3.7(a, b) and

3.8(a, b), when Pr =1and7 = 0.04 are fixed. The dashed and solid lines represent the behavior

ofblunt (w" = (l.5) orientation and slender (w" = 4) orientation réspectively. Fig. 3.7(a) depicts

that velocity decreases in both blunt and slender orientations ‘zWith the increase of thermal

radiation in opposing flow case (4 =-3). Fig. 3.7(b) shows that velocity increases in both blunt .

and slender orientations with the increase of thérmal radiation in assisting flow case (4 = 2).

Fig. 3.8(a, b) shows that temperature and thermal boundary .layer thicknesses increase by

increasing the thern'lal radiation parameter'Rt, for both Corientations Also the values of -

temperature in both orientations are very close. In opposmg flow, the values of temperature in

blunt orientation become smaller as compare to slender orientation and 0ppos1te behavior is .

observed in ass1st1ng flow case. The effects of pertinent parameters on Nusselt number are

shown in Figs. 3.9(a, b) and 3.10(a, b). Fig. 3.9(a, b) illustrates the variation in Nusselt number
against ¢ for various values of @" when Pr= -1 1s fixed for both orientations in opposmg flow

(A =-3). Fig. 3.9(a) shows that Nusselt number decreases in blunt orientation with the increase

of @" in the presence as well as in the absence of radiation effect. The trans1t1on in Nusselt

3

number become smooth from initial unsteady state to steady state flow, but for @* =0.75 the

value of Nusselt number truncates up to a certain value of 7 due to the separation. It is seen-

that radiation effect further enhances the values of Nusselt number for all values of 7. In Fig.

3.9(b), Nusselt number decreases in slender orientation up to certain values of ¢ with the:

increase of @ due to the separation time, and the values of heat transfer rate increase due to
thermal radiation. Fig. 3.10(a, b) demonstrates the variation in Nusselt number against 7 for
various values of thermal radiation parameter R, for both opposing (4 =-3) and assisting
(A =2) flow cases. Nusselt number increases with the increase of thermal radiati(;n for both

blunt and slender orientations. This is because increasing values of R .help to enhance the

interaction of radiation with the thermal boundary layer and asa result, the heat absorption
1nten51ty of the fluid increases. In Fig. 3.10(a), the values of Nusselt number in blunt orientation

become smooth from 1n1t1al unsteady state flow to final steady state flow. In slender 0r1entat1on

the values of Nusselt number for each values of R, truncate up to certarn values of 7 due to.

the separation. In Fig. 3 lO(b) for assisting flow, the values of Nusselt number become smooth
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from initial unsteady state flow to final steady state flow in both
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orientations. It is further seen

that heat transfer rate in slender orientation is greater than that in blunt orientation.

Table 3.1: The separation times £, at (x =0) over elliptic cylinder for Pr=1andA=-3

(opposing flow).
Slender orientation @’ = (a'/b" )’ Blunt orientation @' =b"/d"
100 16 4 1.7778 0.75 05 025 0.1
[56] . 0.0033 00215 0.0954 02652 |1.521 - - )
R, =00 ) .,
present? | 0.0033 0.0215 0.0958 0.2652 | 1.521 - - -
R, =0.5 |
f,=0.8 | presentf |0.0031 0.0199 0.0877 0.23902 12215 . - -
1
1 O Limiting case results of [139], [56]
ot ‘ % Present(R =0.5,8_=08)
o
0.6f x
[
L 0
0.4 >
$
0.2}
(l’) i L L L J
. -5 -4 -3 2 vel 0

Figure 3.2: Separation times at (x =0) when Pr=1 and " =1.
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d. w
R=00 —
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0 i 1 ]
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n '
1.
0.8t
= 0.6
(b) > -
0 =001 0.04, 0.08 .
.41
R=050 =i4d uu-.
0.2 @
R=00 ——
,00 1 . 2 3 4 5 6

Figure 3.3(a, b): Velocity profiles for assisting flow for different time steps 7 at (¥ = 0) Wheﬁ

Pr=1and A =2 in (a) blunt orientation ' = 0.5' (b) slender orientation @" =4.
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Figure 3.4(a, b): Velocity profiles for opposing flow for different time steps ¢ at (X = 0) when

Pr=1and A =-3 in (a) blunt orientation & =0.5 (b) slender orientation " = 4.
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in _
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0(n)
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Figuré 3.5(a, b): Temperéture profiles for assisting flow for :iifferent time steps t_ﬁ at (X = o);“

when Pr=1and A =2 in (a) blunt orientation " =0.5 (b) slf‘:nderbrientation_ w =4,
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0.6} :
<
g
(a) N :
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Figure 3.6(a, b): Témperature profiles for opposing flow for Qifferent time steps 7 at (x =0)
I

when Pr=1and A =3 in (a) blunt orientation " = 0.5 (b) slender orientation @’ =4.
: : i o
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Figure 3.7(a, b): Velocity profiles for distinct values .of R, at (¥ =0) when Pr=1 and

t =0.04 in (a) opposing flow A =-3,0,, = 0.8 (b) assisting flow A=20,=14
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Figure 3.9(a, b): Variation in Nusselt number against? at (x = 0) for distinct values of »°

when Pr=1land A =-3 in (a) blunt orientation, (b) slender orientation.
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3.4 Conclusions

In this éhapter; the study of the effect of thermal radiation on unsteady mixed conveétion flow
near a forward stagnation point over an elliptic cylinder is ini/estigated. The analysis is made
for both orientations of the elliptic cylinder and focused only on flow near the regionlof forward
stagnation point.( Separation times in both orientations in the presence of thermal radiation are
calculated by using implicit scheme of finite difference me{‘thod and shown in Tabular and
graphical forms. It is observed that boundary layer separation occurs early due to thermal

radiation and the value of Cf Re'”? become zero at (¥ = 0). In opposing flow, the values of

velocity in blunt orientation become higher than the values in slender orientation due to thermal '

radiation. However, the values of temperature profile in blunt ogrientation become smaller than

the values in slender orientation. An opposite behavior is oﬁséwed in assisting flow case. In
opposing flow, for both orientations, heat transfer rate increasés due to thermal radiation. The
heat transfer rate in blunt orientation become higher than that of slender orientation in the
presence of thermal radiation in opposing flow case but an opposite behavioi is observed in

assisting flow case. :










the assumption that induced magnetic field is negligible as compared to applied magnetic field.
. 1

All the physical properties of the fluid are assumed to be independent of temperature except -

the density, which varies linearly with temperature in the ,body force according to the

Boussinesq’s hypothesis. Tiwari and Das model [60] has been chosen to model the governing

equations for the present flow problem and using the boundary layer approximations, the -

simplified form of the governing equations with MHD and viscous dissipation effects are

¥

written as

6u+6v 0 @.1)
A , '
& +(1- BY,
ua_“+va_“=ueﬂ+ﬂ(a ‘Z‘J+¢p"ﬂ" ( ¢)pfﬂfg(T—Tw) L2 (u,-u), (4.2)
ox oy dx  p,\ Oy Py o Py

oT T Ty (ou)

U—+v—=q, —+—| — | > (4.3)

ox . 6y - 6y (pcl’)nf 6y

where u and v are the velocity components in x and y directions, respectively, M, 1s the

dynamlc v1scos1ty of the nanoﬂuld which was introduced by Brinkman [140] B, and ,6 f are

" the thermal expansion coefﬁ01ents of the nanopartlcles and base fluid, respectlvely, g is the

acceleration due to grav1ty, o, is the electric _conductivity of base fluid, By is the strength of

uniform magnetic field and T is the temperature of nanofluid. The relatlons of yi,.,p,, e, and

4

(pc,),, are described as follows:

o o &f_:(k,,+2kf-)_72¢(kf_kp). (4.4)
o ﬁ(pCp),,f’ k, (kp+2kf)+¢(kjj—kp)

where 4, is the dynamic viscosity of the base fluid, ¢ is the solid volume fraction of
nanoparticles, pf,( pc, )f sk, and pp,( pcp) .k, are the densities, heat capacities and thermal
. . P, . oot

conductivities of the base fluid and nanoparticles, respectively and k,j is the thermal

conductivity of the nanofluid, which was described by Ma)gwell-Gamett model .[141]. The

boundary COIldlthIlS of the problems are

u(x O) 0, v(x 0) 0 T(x 0) T (x) T +bx, -
' . . (4.5)
u(x,y)-—)ite(x)zax, T(x,y)-—)Tw asy — oo,
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After reducing the equations in term of stream function ¥ by using the relations

oy oy

u=——andv=———, the following similarity transformatlon
oy Ox
V 172 .
a _T-T
= — X, /av = . 4.6)
! Yy /e T,-T, - ( ‘;)
is used in Egs. (4.2) and (4.3) to get .
f’”+hl(ﬁ“'—f’2+1+Z—5,16’+1M(1—f’)}=0, ' (4.7)
, - h e
k ' 2 i
- 0"+ Prh3 fO0'—f6+— ch - (4.8)
3 knf h4

1

where prime denotes the differentiation with respect to #, v ; 1s the kinematic viscosity of the

base fluid, Grx is a local Grashof number, Re; is a local Reynolds number, M is the magnetic
parameter and Ec is the Eckert number. Where k1, 12, b3, ha, hs and other physical parameter are

given by

=14y { o, } {1 4 pfﬂ 7 - ¢§P§
(pcp) '

'2 2T = 2 -
(pcr') C . Vi

o, B’ Cu? .
| 1-gg LB Re =e p-T20 peo M - p Vs
PB; Vs Pra (cp )f (7,-T.) &y

The values of 4 and Ec are considered positive or negative according to assisting and

h=(1-¢

.
‘o

opposing flows, respectively. The boundary conditions Eq. (4.5) take the new form as
o o f(0)=0,/"(0)=0,6(0)=1,
f'(0)=1,6(c0) =0.

The relation of skin friction coefficient and local Nusselt number and written as

(4.9)

Cpm—, Nug=— e | 10
L, u“:—-—_, ‘ )
1Tt Tk (T, -T) (4.10)

where 7, and ¢, are defined as

é)‘ T'=# (_a_uJ q —_k (27.:) ' 4 1
w nf ay y=0’ w nf ay y=0' | ( .1 )




After inserting Eq. (4.11) into Eq. (4.10), the skin friction coefﬁ01ent and local Nusselt
number take the form :
. k
7"(0), Nu_Re "> =—-L¢'(0). (412
= 7°(0). N = 00) @12)

\'-..

4.2 Keller Box method

To obtam the numerical solution of the system of nonlinear boundary value problem (4.7-4.9)
an implicit finite difference method is used known as Keller Box method, which has been used
for the solution‘of the system of partial differential equations in previous chapter. The details
of the method for the system of nonlinear ordinary differ¢ntia1 Egs. (4.7, 4.8) subject to
boundary condition Eq. (4.9) are explained as follows | ‘ '
Initially these higher order system of ordinary dlfferentlal equatlons are transformed
into system of first order ordinary differential equations.by 1ntroducmg the new variables using
U,V,PandQ defined as | S |
B ['=UU'=V,0=Pand6' =Q. (4.13)

Eqgs. (4 7), (4.8) and boundary condltlons Eq. (4.9) take new form as
V’+h,(1'—U2+fV¢%—AP+M(1—U)]=O, . . (4.14)
' ' L b
- k, , 1 ) .
Q' +Pr—h| fO-UP+—EcV* |=0, 4.15)
knf h4 [ . .
- f(0)=U(0) =0, P(0) =1,U(x) =1, P() =0. - (4.16)

A net on 7 is defined as
o :O,nj =n,.,+tAnn, =n,, j= L2,..,J-1 4.17)
where ; is positive integer and Az is the width of meshing‘\_\)ariabies on 7. The approximate
quantities of functions f,U,V,PandQ at the net point 77, are known as net functions whose
derivatives in n- direction are replaced by the central differenr:e,forrnulae and functions iisel f

are replaced by average centered at the midpoint 7 12 defined as

f, 2 = (f f, sand £, = gf/ +-fj—l)'l

After discretization, the system of first order nonlinear ordinary differential Eqgs. (4.13- |

4.15) are converted to difference equations in terms of nonlinear algebraic equations written as

;
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N2
- (fj+ﬁ_1)(%+%_1)_(U,+U;.lj
V,-V 2 2 2 _'_h(
] =y

= . 1+_h"‘1} ©@.18)
4 +£l5——'1(P.+P._,)——(Uj+Uj_I) ?
AR AT
(e
—~0. k 2 2 2 2 oo
&9 k) 2 - -0, (4.19)
An k. +E(V./‘+Vi-lj K -
h, 2
Eq. (4.13) becomes t )
Ji= S =,?,7—(UJ' +U;), . (4.20)
A
U~U, =S, 4.21)
An | - % '
P—P, =_2—(Qj +0,.)- (4.22)

The above nonlinear algebraic Eqs. (4.18) and (4.19) are linearized using Newton

method by introducing (i+1)" iterates as
{

fj(.'n) _ fi(i) +5fj(i)’ ‘ __— (4.23)
similarly it is same for all other variables in which fj(i) is known for Osjs J as an initial

guess and O fj(") is unknown. After using the Newton linearization process and neglecting the

terms containing square and higher order of 5ff”, oU j.(’ ), 5Vj("), 51‘}(") and 5Qj.(i),the system of

linear algebraic equations is obtained as follows: -
Ik

A _
0f;=0f~ _2’Z (OU; +3U,.)=(n)

(5,81, (55,8 £,4+(8,),8U, +(53),8U,., +(5,), 8V, +(s5), V., +
(S7)j57;‘+("s'8)j57}_] =(r2)j>‘ )
© (89),0T; +(8),; 6T, +(5,,),6Q, +(5,,),60,, = (1),

A

A .
8U, =8U,, ==&V, +6V,,)=(r)

j

A
5P, =58P, =160, +50,.) = ()

The boundary conditions Eq. (4.16) take the form as
8/, =0U,=0,6F=0,6U, =0,5P, =0.
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Al;0z-water nanofluid both for assisting and opposfng flow cases. The values of velocity in the
presence of magnetic field and viscous dissipation for both types of nanofluids become higher -
than that .in the absence of these effects. Fig. 4.5 shows that magnetic and viscous dissipation
effects increase the temperature in both nanoﬂui&s for assisting flow case because these effects
generate additional heat in the boundary layer region. However, the opposite behavior is -
observed in opposing flow case. Figs. 4.6 to 4.9 presént the velécity and temperature profiles
for different values of magnetic parameter and Eqkert number in which solid and dashed lines
fepresent the results for Cu—w'ater and Aleg-watef nanofluids, respectively. In Fig. 4.6(a, b), it -
is seen that vélocity increases with incfeasing the magnetic parameter M for both nanofluids.

Physically this behavior occurs because in this case Lorentz force assists the flow and

consequently velocity increases as M increases and hence flow rate increases. It is further seen

that the values of velocity become higher for Cu-water nanofluid than that of Alej-wélter
nanofluid in both assisting and opposing flow cases and opposite behavior is observed for
momentum boundary layer thickness. Fig. 4.7(b) shows that: temperature decreases with the
increase of magnetic parameter M for both nanofluids, but in Fig. 4.7(a), temberature increases
near the surface of the plafe (7 = 0), but for large values of‘n it decreases. Figs. 4.8 and 4.9
illustrate the velocity and temperature profiles against 1 for various values of Eckert number
Ec. Figs. 4.8(a) and 4.8(b) depict that veloéity increases and momentufn’boundéry layer
thickness decreases in both nanofluids for both assisting and opposing flows by increasing the
absolute values of Ec. In F igs. 4.9(a) and 4.9(b), it is seen that temperature increases in assisting
flow case but decreases in opposing flow case by increasing the absolute values of Ec. This is
because the combined effects of viscous dissipation and magnetic field gener;lte additional heat
in the boundary 1ayer region. Also the values of temperatur;: for Cu-water nanofluid become

smaller than that of Ale3-yvater nanofluid. Figs. 4.10 and 4.11 show the effects of magnetic

field and viscous dissipation on C, Re!? and Mu, Re;"* against volume fraction parameter ¢

for both types of nanofluids. The solid line represents the pervious study, which was

investigated by Tamim et al. [77] a;xd dashed line represents the present study. In Figs. 4.10(a)
and 4.10(b), it is seen lihat the C, Re!”? increases for both nanofluids with the increase ;\éf
volume fraction parameter ¢ for both aséisting andhopposing flow cases. It is fu}rther seen that
the inclusion of magnetic and viscous dissipation effects enhance the values of C ; Rei/2 against

¢ in both nanofluids for both assisting and opposing flow ca§e§. On the other hand, the effects

of magnetic and viscous dissipation help to reduce the values of local Nusselt number against
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Figure 4.5(a, b): Temperature profile for different nanopartlcles when ¢ =0.2 and Pr=6.2 for
(a) ass1st1ng flow A =1 (b) opposing flow 1 = -1.
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"Figure 4.10(a, b): Skin friction coefficient against ¢ for different nanoparticles wheﬁ Pr=6.2

for (a) assisting flow A =1 (b) opposing flow 4 =-1.
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Figure 4.12(a, b): Skin friction coefficient against ¢ for distinct values of M when Pr= 6.2 for
(a) assisting flow 4 =1 and Ec = 0.3 (b) opposing flow 4 = -1 and Ec = -0.3.
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‘Figure 4.13(a, b): Local Nusselt number against ¢ for distinct values of M when Pr = 6.2 for
(a) assisting flow A =1 and Ec = 0.3 (b) opposing flow 4 =-1 and Ec =-0.3.
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Figure 4.14(a, b): Skin friction coefficient against ¢ for distinct values of Ec when M = 0.5
and Pr = 6.2 for (a) assisting flow A=1 (b) opposing flow A = -1.
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Figure 4.15(a, b): Local Nusselt number against ¢ for distinct valfues of Ec when M = 0.5 and
Pr=6.2 for (a) assisting flow 4 =1 (b) opposing flow A = -1.
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Table 4.2: The effects of ¢ on C " Re}? and Nu, Re;'" for different nanoparticles, when Pr =

6.2, hs/hy =1 and M = Ec = 0 are fixed.

Tamim et al. [77] Present result Tamim et al. [77] Present result
? =1 A=1 C o a=-l L A=-l
C,Rel> Nu Re]" C.Rel®> NuRel™ C, Re?  Nu Re " C,Re!’? Nu, Re "

Nanoparticle Cu (Copper) ,

0 30535 1.6524 | 3.0539  1.6525 | 1.8262 1.4779 | 1.8269  1.4781
0.05 39183 1.8728 | 3.9184 1.8728 | 22207 1.6562 | 2.2210 "‘1.65":63,
0.10 48153 20834 | 48154 - 2.0834 | 2.6168 18265 2.6170 1.8265
0.15 57758 22901 | 57758 22901 | 3.0346  1.9939 | 3.0347  1.9940
020 6.8274 24964 | 6.8274  2.4964 | 3.4906  2.1617 | 3.4907 2.1617
‘ _ Nanoparticle 4703 (Alumina) .
0 3.0535  1.6524 30539 1.6525 | 1.8262 . 14779 | 1.8269  1.4781
0.05 3.5180 - 1.8065 | 3.5184 1.8066 | 2.0542 1.6076 | 2.0549  1.6078
0.10 4.0276 . 1.9606 | 4.0280  1.9607 | 2.3042  1.7372 | 23052  1.7375
0.15 45929 21153 | 45935  2.1154 | 2.5829  1.8676 | 2.5843  1.8680

0.20 5.2269 22715 | 52277 22716 2.8982 . 1.9996 | 2.9004  2.0002

. Table 4.3: Numerical values of Nu_Re;"? for distinct values of nanoparticle volume fraction

parameter ¢, when Pr = 6.2 and M ;0.5 are fixed.

¢ Nanoparticle Cu (Copper) Nanoparticle 4/;03 (Alumina)

| Ee=03,A=1 Ee=-03,A=-1 Fe=03,A=1 Fc=-03,4=-1
0.0 0.6225 23300 06225 23300
005 05482 27670 0.6210 2.6026
0.0 04570 32116 0.6074 . 2.8889
0.15 0.3445 36755 05795 3.1933

0.20 0.2057 4.1679 - 0.5346 3.5196

4.4 ConclusiOns

A numerical study on MHD mixed convection stagnation point flow of a nanofluid over a

vertiqal flat plate is investigated. Tiwari and Das model [60] has been used to develop the
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: mathematiczil formulation in terms of the governing equations. Similarity transformation is
used to convert governing syétem of partial differential equations into a system of ordinary
differential equations along with boundary conditions. The Keller Box method is used to
compute the numerical solution and detail procedure involved in this scheme for system of
ordinary differential eciuations are explained in this chapter. Analysis is carried out to
investigate these effects on two types of nanoparticles, namely, Cu and 4/;0;. From the result
and discussion, it is observed that velocity increases for both nanofluids in the presence of
magnetic and viscous dissipation effects in assisting and opposing flow cases. In assisting ﬂow,
temperature increases because of the combined effects of magnetic and viscous dissipation for

both nanofluids, and opposite behavior is oBse-rved‘in bpposing flow. Both magnetic and

viscous dissipation effects help to enhance op Re’lr/-2 for both nanofluids in assisting and

opposing flow cases. The heat transfer rate decreases in assisting flow case and increases in

opposing flow case for both nanofluids in the presence of combined effects. However, the

values of Nu_ Re;"* for Cu-water nanofluid become smaller than that of AlLOs-water

nanofluid in assisting flow because of the combined effects of magnetic and viscous

dissipation.
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‘strongly magnetized due to the reason that ferrofluids vdo not maintain magnetization in the
absence of an external applied magnetic field. The induced magnetic field is considered
negligible under the assumption of small magnetic Reynolds number. Further, it 1s assumed
that velocity outside the boundary layer is prescribed as ue = ar (potential flow) and uniform
y surface temperature at the rotating disk is T, ambient fluid temperature is T under the
- assulpption Tw> Tw. The thermophysical pr_opertiés'of base fluid and magnetic nanoparticles
1 are shown in Table 5.1 and are taken as independent of temperature. The continuity, momentum

and energy equations of the flow problém in cylindrical co-ordinate system can be written as

;J | | ¢ | Ferrofluid

Figure 5.1: The physical model of the flow towards a rotating disk near stagnation point

region.
,;‘ o ou L ow 0 ‘ ‘ 5 .
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or r 0z P ar P at ror. r ot p,!,

X . oV uv ov Hy 52 lov v 8 v GfBoz
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In which u, v and w represent the velocity vector components in the direction of », 6* and z

respectively. The relevant boundary conditions of the problem are
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where F, G and H are dimensionless velocities in radial, azimuthal and axial directions

respectively, the symbol prime denotes the differentiation w.r.t. # and a/c is the velocities
ratio parameter. The boundary conditions Eq. (5.6) take the new form as
F)=1LH(0)= O,G(O) = w,H(O) =1,

. (5.18)
F(oo):Z,G(oo)zO,Q(oo) =0.

- where w = Q is the rotation parameter. The skin friction coefficients in radial and azimuthal

C

difections and local Nusselt number are defined as

- T T. . rq ’ ' :
Cp=—2—,C =—= - Ny =——"% 5.19)
" Pf(cr)2 . Pf(cr)2 . kf(Tw —_T“’) 19

in which 7,7 o, are the radial and azimuthal shear stresses at wall and ¢, are defined as

ou 1 ow v 1 ow ory ’
= _— T . = . —+— . s W;;_k” —_ . 5.20 ‘
= ,unf (az r agt )zzo TH z :u!f(az r 06 )FO‘ q (az jzzo ( )

take the form

¢, Rel” = (1_25)” F/(0),C,p Rel” =

k . .
Nu,Re;"* ==-2L¢'(0).
kf

(5.21).

5.2 Results and discussion -

The numerical solution of the system of nonlinear ordinary differential Egs. (5.14-5.17) subject

to the boundary conditions Eq. (5.18) is obtained using Keller Box method. The details of this

method for the system of nonlinear ordinary differential equations have been described in ”

172
r

chapter 4. The variation of skin friction coefficient in radial direction C,, Re"? and Nusselt

number Nu, Re;"? for water base ferrofluid against volume fraction parameter of magnetic

nanoparticle ¢, rotation parameter « and magnetic parameter M are given in Tables 5.2 and
5.3. It is observed that the values of Cy, Re;” and Nu, Re;"? are smaller in the absence of
magnetic field and i)ecome higher in the pres;ence of magnetic field. It is due to the reaéon that
the magnetic field aligns the magnetic nanoparticles in order. It is also observed that by

increasing the rotation of the disk, the values of C,. Re!? and Nu, Re "? enhance for all

4 93

Using Eq. (5.20) into Eq. (5.19), the skin friction coefficients and local Nusselt number |
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Table 5.4: Comparison of the present results with the published work Turkyilmazoglﬁ [142]

fora/c=¢ =0 and Pr=1.

o Fo ~G'0) ~7(0)
Present [142] Present [1 42] Present [142]
result result . result
0 -1.1737 -1.1737 0.0000 0.0000 0.8520  0.8520 -
-1 -0.9483  -0.9483 1.4870 1.4870 0.8757  0.8757
o 2 -0.3263 -0.3262 3.1278 3.1278 = 0.9304  0.9304
é 3.1937 ’3.1937 9.2536 92535 © 1.1292  1.1291°
10 127206 12.7209 229139 229134  1.4260 »‘ 1.4259
20 40.9056. 40.9057  59.6895 60.0129_ . 1.8743 1.8944 __
| 0  -1.8305 -1.8305 0.0000 0.0000 0.7261  0.7261
1 -1.6635 -1.6634 2.0239 2.0239 0.7422.  0.7422
~ 2 -11754 -1.1753  4.1135 4.1135 0.7854  0.7854
é 5 1.8928  1.8929 = 11.1407 11.1406  0.9803  0.9803
10 10.8329 10.8334 257231  25.7225. 12993  1.2992
20 38.1857 38.1880  64.0635  64.0604 | 1.7974 © 1.7973
M

- FMm)

| Figure 5.2: Radial velocity profile for magnetite (F egO;:) water ferrofluid for distinct values of

¢ when w = 0.5 and a/c = 1.5.
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Figure 5.3: Azimuthal velocity profile for magnetite (Fe304) water ferrofluid for distinct

values of ¢ when @ = 0.5 and-a/c = 1.5.
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Figure 5.4: Temperature profile for Magnetite (Fe30y) water ferrofluid for distinct values of ¢

"when w=0.5, Pr= 6.2 and a/c = 1.5.
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Figure 5.5: Radial velocity profile for Magnetite (Fe;Oy) water ferrofluid for distinct values
of w when ¢ =0.2, M=1 and a/c = 1.5.

Figure 5.6: Azimuthal velocity profile for.Maghetite (Fe30q) water ferrofluid for distinct
values of w when ¢ = 0.2, M=1and a/c=1.5..
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F igui'e- 5.7: Temperature profile for Magnetite (Fe304) water ferrofluid for distinct values of

" wwhen¢=02,Pr=62, M=1andalc=1.5.

24

——1

22F ---M=3

r
.-“ -
O .

r

Mn—ZnFe 20 . CoFe20 o Fé30 .

0 0.05 0&)1 YT 0.2

Figure 5.8: Skin friction coefficient in radial direction for distinct values of M when @ = 0.5

and alc=1.5.
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- Figure 5.9: Skin friction coefficient in azimuthal direction for distinct values of M when w =

6.5 and a/c=1.5.
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Figuré 5.10: Local Nusselt numbet for distinct values of M
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Figure 5.11: Skin friction coefficient in radial direction for distinct values of @ when M =2

‘and a/c=1.5.
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Figure 5.12: Skin friction coefficient in azimuthal direction for distinct values of & when M =

 ‘2 and a/c = 1.5. .
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Figure 5.13: Lécal Nusselt number for distinct values of w when M =2,Pr=6.2 and alc=1.5.
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5.3 Conclusions . N
A study on heat transfer analysis in boundary layer flow of ferrofluid near the stagnation point

region over a stretchable rotating disk in the presence of external magnetic field is investigated.

The governing equations are modeled in .terms of system |of nonlinear partial differential

equations which are later reduced to four nonlinear ordinary differential equations. The’K‘e.ll,‘er
Box method is again used to compute its solution in terms of velocity, temperature, skin friction
coefficients and local Nusselt number. The effects of pertinent pafameter‘s namely, volume
fraction parameter of: nanofluid, magnetic parameter~ rotation parameter on velocity profiles in
radial and a21muthal directions, temperature profile, skin friction coefﬁments and local Nusselt
number are examlned through graphs. It is observed that for magnetite ferroparticle (Fe;0y),
the radial veIOCIty decreases and the velocity in azimuthal d1rect10n and temperature increase
by increa§ing the volume fraction parameter ¢. The effects of magnetic parameier‘on velocity
profiles in both radial and azimuthal directions and temperature profile show an opposite
behavior as’observed against volume fraction parameter 4. For magnetite ferroparticle (Fe;Oy),
the velocities iﬁ both radial and azimuthal directions increase and temperature decreaseé by
increasing the effects of rotation parameter. The values of skin friction coefficient in radial

direction and local Nusselt number of magnetite ferropartlcle (Fe30y) are higher than that of
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other ferroparticles. An opposite behavior is observed in azimuthal direction. Skin friction

coefficient in rad_ial direction and local Nusselt number i

parameter and skin friction coefficient decreases in azimuthal direction.
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Chapter 6

Heat transfer in stagnation point flow of a nanofluid
over a nonlinearly perméable stretching/shrinking

sheet with Newtonian heating

E)

In this chapter, the heat transfer analysis in nanofluid flow near the region of ;stagriation poiqt
over a non-linear permeable stretching/éhrinking sheet in the presence of Newtonian heating is
presented. The two very impoftant mechanism on the transportation of nanopar’iicles in base
fluid are diséussed, which are known as Brownian (Nb) and Thérmophoresi§ (Nf) parameters.
This physical problem is modeled using Buongiorno [58] model undér the boundary layer
'éassuinption aﬁd_ similarity solution is calculated through numerical scheme using Chebyshev
spectral collocation method. Dual solution is reported against shrinking parameter and ranges
of these solutions are affected by suction parameter which are discussed through graphs and
table. The effects of emerging dimensionless parameters on velocity, temperature and
concentration profiles as well as skin friction coefficient, local Nusselt number and Sherwood
number are shown through graphs. For the validity of the computed results, a comparison -is
: established with published studies in limiting case. Thréugh the results, the enhancement in

temperature and concentration profiles is observed in the presence of Newtonian heating.

6.1 Mathematical formulation

A boundary layer steady flow of viscous incompressible nanofluid in the region of stagnation

point towards a non-linear stretching/shrinking horizontal permeable sheet is discussed. The

sheet is stretched or shrunk non-linearly along x—axis keeping O fixed as a stagnation point and ,

y-axis is taken normal to the sheet as shown in Fig. 6.1. The non-linear stretching/shrinking

velocity and straining velocity in potential flow are assumed as uw(x) = cx™ and ue(x) = ax™ )

respectively, where a is +ve constant and c is the constant in|wall velocity, which is considered
less than zero (¢ < 0) in shrinking case and greater than 210 (¢ > 0) in stretching case. Using
the Buongiorno model the governing equations of the problem under the boundary layer

approximations can be written in the simplified form as
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Figure 6.1: The physical geometry of the flow model near

ou + o =0, (6.1)
ox Oy
d ,
u—aﬁ+vl= L(x) ad (x) V,—1 (6.2)
ox Oy dx - 6y
a1 2 p (T} | :
u-‘?zw?—T—_afa—I;-H‘ p, %€ oL Drjor )| (6.3)
x oy oy | oy T\
C ‘oC 0'C D, d'T
X & op, Tt (6.4)
x Oy " T, '
with boundary conditions
: m or .
u=u (x)=cx",v=v,(x),~k,—=nT,C=C, aty=0,
oy - (6.5)
u—u(x)=ax",T->T,,C—>Casy>x
The components of velocity along and normal to the surface are u and v respectively, C
is the nanoparticle concentration, &, is the thermal diffus vify of base fluid, vy is suction

the region of stagnation point.

velocity at the wall along y-axis, which exhibits suction in case of less than zero (v < 0) or

injection in case of greater than zero (vw > 0), A is the heat transfer coefficient, m # 1 is a

nonlinear parameter, Cw and Cx are nanoparticle concentrations at the wall and far away from

the wall. Now introducing the similarity transformation [101
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| .b ! av (’n+1) m— i ' m—l ’
.u:axn,f (77),v=—\/:x( I)/Zl:_f(ﬂ)'f‘ ; 77," (U):I’
| 2 - m+1
=y 2D e g ToTo | C5Ca
2Vf . T;o Cw—Cw

where differentiation with respect to # is denoted by prime. For simi]arity solution of the

(6.6)

governing equations, a suction or injection velocity vw is assumed as

v =— ’a}/f (;” +1) x(_m—l)/z},’ :

where vy is a constant and stand for suction when 7y is greater than zero (y > 0) and injection

when v is less than zero (7y < 0). Using the similarity transformatlon (6.6) 1nto the Egs. (6.2—

6.4), the dlmensmnless form of ordinary differential equations is obtained as .

Y s (1-r7)=0, | (6.7)
. m+1 C
0" +Pr( 10+ Nb6'y'+ Ntg* ) =0, | (6.8)
Nt
”+S '+—0"=O, 69
oS+ | (69

with boundary conditions Eq. (6.5) reduce to

() =7,1(0)= g,efm) =y, (1+6(0)),¢(0) =1,

, (6.10)
S(2) =1,60(0) = 0,(0) =0,

where Sc = 7 /D is the.Schmidt number, Nb=1D (C -C )/vf is the Brownian .mogion .

parameter, Nt = rDT /v, is the thermophoresis parameter, y| =h [k, ,/2/ (rn+l)x Re;'"? is the

conjugate parameter for Newtonian heating and c/a is the ratio of.,the constant of

stretching/shrinking velocity and straining velocity, which corresponds to stretching in case of 1

greater than zero (c/a > 0) and shrinking in case of less than zero (c/a < 0). The relations of

skin friction coefficient, local Nusselt and. Sherwood numbers are defined as

C, : Nu _ xqw —_ x;qm

Shy=—n
s K (1,-T.)"" " D,(C,-C.) (6.11)

where r;” is shear stress at the wall, g, and g, are the heat and mass fluxes from the wall

respectiveiy, which are written as
ou oT oC
Tw =H (—_) » 4y = —k ( J s :_DB (_] . 6.12
oy y=0 o y=0 o y=0 ] ( )
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shrinking sheet as compared to that of stretching sheet. Figs. 6.8(a) and 6.8(b) depict that |
" nanoparticle concentration increases with the increase of Nt for both first and second solutions, -

this is due to the physical mean that the thermophoresis increases the mass transfer of

o

nanofluids. In Fig. 6.8(a), a positive concentration gradient qo'(O) is obtained at the surface of

the plate for the second solution when thermophoresis parameter is Nt = 0.7 and become
negative for other values of Nt = 0.4 and 0.1. Also In F igs. 6.8(a, b) concentration bQundary

layer thickness is higher in second solution as compared to first solution. F igs. 6.9(a, b) and

6.10 (a, b) are piotted to show the effect of Nb (Brownian motion) on temperature and

nanoparticle concentration profiles. Figs 6.9(a) and 6.9(b) demonstrate that variation of Nb
from 0.1 to 0.3 enhances temperature and thermal boundary layer thickness for all solutions.
This is due to the reason that the Brownian motion of nanoparticles enhances the temperatufe
of the fluid. Figs. 6.10(a) and 6.10(b) illustrate that nanopartiqle concentration decreases with
the increase bf Branian motion parameter Nb for bothi solutions. Also for the second solution,

- the concentration boundary layer thickness in both shrinking|and stretching cases is greater

than that of the first solution. In Fig. 6.10(a), a positive concentration gradient ¢'(O) is

obtained for Nb = 0.1 and negative concentration gradient ¢'(O) for other values of Nb = 0.2

and 0.3 is observed. The effects of Schmidt number on temperature profile and nanoparticle
concentration profile are presented through Figs. 6.11(a, b) and 6.12(a, b) for both shrinking
atid stretching cases respéctively. In Figs. 6.11(a) and 6:11(b), it is seen that temperature and
thermal boundary layer thickness increase with increasing values of Sc for both solutions. On
the other hand, nanoparticle concentration profile shows an opi)osite behavior by increasing Sc
for both first and §econ(ii solutions. From both Figs. 6.12(a) and 6.12(b), it is observed that
concentration boundary layer thickness for Sc =2 as predicted by the second solution are larger
than that of the first solution in shrinking and stretching cases, which is responsible for
instability of the second solution. The temperature and nanoparticle concentration profiles for
different values of conjugate parameter y; are presented in Figs. 6.13(a, b) and 6.14(a, b). The
effect of conjugate pélrameter s on iemperature profile by both ﬁrst and second solutions shows
- that temperature and thermal boundary layer thickness increase with the increase of ¥s in both
shrinking and strétching .cases respectively. It is noted that when conjugate parameter y; is zeré

the temperature at the wall becomes zero i.e. insulated wall case and when ys; —o the

Newtonian heating condition becomes the condition of constant wall temperature. Physically .: |

it is due to the fact that the temperature becomes zero when conjugate parameter ¥s 1S zero,

therefore, by increasing conjugate parameter y; the temperature enhances within the b(;undary N
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layer. The same behavior 'is observed in nanoparticle conc

— e men e pT

entration profile but in 'second

solution the boundary layer thickness is greater than that for the first solution.

Table 6.1: Numerical results of f"(0) for some values of ¢/a

with m = land y = 0.

cla Wang [29]  Bachok et al. [69] Present
4 ) study
2 -1.88731 _1.887307 | -1.887307
1 0 0 0

0.5 0.71330 .~ 0.713295 0.713295
0 1.232588 . 1232588 - | 1232588
.05 149567 1.495670 1.495670
B 132882 1.328817 1.328817

(0] [0] (0]

115 1.08223 1082231 1082231
[0.116702] [0.116702) | [0.116702]

12 0.932473 0.932473
’ [0.233650] | [0.233650]
212465  0.55430 0.584281 0.584282
[0.554296]

Table 6.2: Numerical results of —'(0)and 6(0) for some values of Pr when m = y; = 1 and yl

- 10.554297)

=cla=0.
Mohammed et al. [110] }l’resent result

Pr 40 -9'(0) 9(0); -6'0)

5 23.0239 24.0239 23.0239 24.0239
7 5.6062 6.6062 5.6062 6.6062

10 2.9516 3.9516 2.9516 3.9516
100 0.5034 1.5034 0;50357 1.5033
1000°  0.1809 1.1809 0.180:9 1.1809
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Figure 6.4: Sherwood number against c¢/a for distinct values of suction parameter 7.
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(b)

Figure 6.6(a, b): Velocity profile for distinct values of y wheﬂ

= first solution
= = =second solution

4 5
y=2530,35
—TErTTTe—
= first solution

' Sy .
= = =second solution

m=2,5c=15Pr=7,y=1

Nt = Nb = 0.3 (a) shrinking sheet c/a = -3 (b) stretching sheet c/a =2.
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——first solution
second solution

(a) )
0.8 1
0.12r
: ~—— first solution
0.1 = = = second solution
0.08
R
(b) ;. 0.06 "
=07 04 01
o.04k Nt=07040 |
0.02f
0 'l Il - I ']
0. 0.2 0.4 0.6 . 0.8 1

Figure 6.7(a, b): Temperature profile for distinct values of Nt whenm=2,8Sc=1.5,Pr=7,y,

=1,Nb=0.3,y =2.5 (a) shrinking sheet ¢/a = -3 (b) stretching sheet ¢/a = 2.
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(b)

Figure 6.8(a, b): Nanoparticle concentration profile for distinct

1.5,Pr=7,y=1,Nb= 0.3,y =2.5 (a) shrinking sheet c¢/a = -3 (b) stretching sheet c/a = 2.
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0.12

(a) ' E 0.06 “

Nb=0302 01

6(n).

(b)

0.041

0.02F

0.06{(}

— first solution
= = =second solution

Y 06 | 08

— first solution
'second solution

Figure 6.9(a, b): Temperature profile for distinct. values of Nbwhenm=2,Sc=1.5,Pr=7

0.6 . 0.8
n

" %=1,Nt=03,y =2.5 (a) shrinking sheet c/a = -3 (b) stretching sheet ¢/a = 2.
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= = =second solution
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—first solution
- - -lsecond solution
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ke ‘l

’Figugje 6.10(a, b): Nanoparticle concentration profile for distinct values of Nb when m=2, Sc '

=1.5,Pr=7,7=1,Nt=0.3,7 = 2.5 (a) shrinking sheet ¢/a =

&
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-3 (b) stret.ching sheet ¢/a = 2.
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Figure 6.11(a, b): Temperature profile for distinct values of Scwhenm=2,Pr=7, .ys =1

=Nb=0.3,y=2.5 (a) shrinking sheet c/a = -3 (b) stretching sheet c/a = 2.
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Figure 6.12(a, b): Nanoparticle concentration profile for distinct values of Sc when m = .2, Pr

=7,¥s=1, Nt = Nb= 0.3, and y = 2.5 (a) shrinking sheet c/a = -3 (b) stretching sheet c/a = 2.
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-+ = =l=second solution
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~
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Figure 6.13(a, b): Temperature profile for distinct values of yswhenm =2,Sc=1.5,Pr=7,
Nt=Nb= 0.3,y=25(a) shrinkiné sheet'c/a = -3 (b) stretching sheet c/a = 2.
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Figure 6.14(a, b): Nanoparticle concentration profile for distin
=1.5,Pr="7, Nt=Nb=0.3,y=2.5 (a) shrinking sheet ¢/a =-3
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6.3 Conclusions

Table 6.3: The cﬁtical values #; of ¢/a for the some values of y when m = 2.
|

Zaimi et al. [103]  Present Iiesﬁlts

Y t t

2.5 -1.4278 -3.565
30 -2.0561 4286
3.5 -2.7986 | 5.101

In this study, the heat transfer analysis in nanofluids flow near the stagnation point region
over a non-linear permeable stretching/shrinking sheet is iﬁvestigated. The governing

equations of the flow problem are solved numerically by using a Chebyshev spectral

collocation method and-dual solutions are found for the speciﬁc ranges of suction parameter

v. The effects of pertinent parameters namely suction, velocity ratio, Prandtl numb‘ér,
- thermophoresis and Brownian motion parameters, Schmidt number and Newtonian heating
parameter y; on the velocity, temperature, nanoparticle| concentration profiles in the
boundary layer as well as the skin friction coefficient, local Nusselt number and- local

Sherwood number are examined through graphs. It is seen that temperature and

concentration increase by increasing the values of Nt for both stretching and shrinking sheet

cases. Also thermal and concentration boundary layer thicknesses are higher in shrinking

case as compared to that of stretching case. By increasing the values of Nb and Schmidt

number Sc temperature increases and concentration decreases for both stretching and

shrinking sheet. Temperature and concentration profiles increase by increasing Newtonian

heating parameter y; for both ;st;etching and shrinking sheet. Skin friction coefficient

increases in first solution and decreases in second solution with the increase of suction

¢

parameter y and the values of first solution are higher than the values of second solution.
The suction parameter y widens the ranges of dual solutions! The local Nusselt number and
Sherwood number increase by increasing -y for both first and second solutions. The values

/2

of first solution in Nu, Réx" are smaller than that of second solution and opposite

behavior is observed in Sk, Re 2.
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Chapter 7

Heat transfer in mixed convection stagnation point
flow of a third grade fluid on a vertical surface with
slip effects

This chapter deals with the study of mixed. convection stagnation point flow of a third grade

fluid on a vertical surface with slip and viscous dissipation|effects. The governing partial

- differential equations for third grade fluid are transformed into a coupled non-linear ordfnary
differential equations [146] by using similarity transformation!and the resulting equations are
solved _numérically by using Chebyshev spectral collocation method. The effects Q_f various

parameters including Weissenberg number We, third grade parameter ¢, local Reynolds
number Rey, Prandtl number Pr, Eckert number Ec, mixed convection parameter 4, velocity
slip y, ‘and thermal slip y, on velocity and temperature profiles, local skin friction coefficient

and local Nusselt number are discussed through graphs for both assisting and opposing flow

cases.

7.1 Mathematical formulation

Consider a steady laminar two dimensional mixed convection stagnation point flow of an
incompressible third grade fluid on a vertical heated surface placed at y = O The geometry of
the flow problem in which the fluid flow is occurring is shown in Fig. 7.1. It is assumed that
»the origin of the Cartesian coordinate system Oxy is taken at the center of the surface, however,.
the x-axis and y-axis are taken along and perpendicular to the surface. The veloci{y components
of potentiai flow in the neighborhood of the stagnation poirit are u. = ax and v. = -aqy, where a
being positive constant. In this stuZiy, only the heated surface case is studied which is valid for

T, >T,. The governing boundary layer equations for the considered flow problem in the

presence of viscous dissipation effect are written as

ou ov

™ ay=0, . , © (7.1
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Opposed Region !

Figure 7.1: The physical description of the flow domain.

ou ou -—10p M, 0% al[ O'u  Oudu 36u d%u ,63u:l+

U—+V —=— "+ ————+—|u s+t ——F+3— +V——
- ox oy p,0x p,d° p,| Oxd° Oxdy Oy Ox0y Oy

(7.2)
2&@ o%u +6_ﬂ_3_(6uj 6 U, ﬁf(T_qu)9
Cproyoxdy  p\dy) O |
. o 2
‘ ~ O=—%+(2a,'+'a,)§(%) , | } o ( ;(7'3)
LT, or_ kT (@)2+ a, [611611 6116_22}
& &y (), (pe,) \) (pe,) | Doty oy 4

i (ﬁx.p )f aJ} ,
where u and v are the components of velocity in x and y directions respectively, Q, Q,, B

are the material parameters of the fluid, g is acceleration due to gravity. The last term on the

right hand 51de of Eq. (7.2) represents the presence of buoyancy force effects with +ve and -ve

signs. The +ve sign 1s con51dered when surface extends in vertlcally upward d1rect10n called

assisting flow case and -ve 51gn is considered when surface extends in vertically downward
direction called opposing flow case. .

From Eq. (7.3), a modified pressure is obtained as

/ 2
. ou
| P_:P"(Zal‘*'?z)(aJ y
_ After using the above relation of modified pressure in Egs. (7.2) and (7.3), the

following equations [146] are obtained as
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Weissenberg number, g'= Ba’/ A, -is the third gr‘aae parameter, A = Gr, /Re? is a buoyancy
or mixed convection parameter, when A = 0 the flow corresp<|)nds to pure forced cor_wection
~and when A#0the flow corresponds to mixed convection flow and
Ec=a’x? / ((cp ) (T, —Tw)) is Eckert number which will be talken positive in the wall heating
case (T, >T,) and’ (c,), is specific heat.

The boundary conditions take the form as

f©0)=0,1'(0) =y, f"(O[1+3We f'(0)+ 22Re, (f"(0))’]
| ' T , (712
f'(@) =1, f"(0) = 0,0(0) =1+7,0'(0),6(x)|=0

where y =y, /_ and y, = 5, /_ are d1mens1onless veloc1 ty and thermal slip parameters.

. The local skin friction coefﬁc1ent Cp and the local Nusselt number Nu_ are

T xq :
Cp=—"5,Nu,=———, . - (7.13
’ pfu: kf(Tw—Tco) 1 A i' ( ' )

r,, and g, are given by

ou Ov 0*u o'v  0%u d%v Oudu ,0vov ]
Mol —+—|+ay|u tU—+V—+V——+2——+2——
oy Ox oxdoy  oOx éy Ox0y | Ox oy  Ox Oy
Ty = - 2 12 2 (7.14)
+ 5, éﬁ+a—v 4(6_14) +2 — ou) 4@_@ 2(@) +4 4
oy ox ox oy Ox Oy ox oy .
L. E . Jy=0
’ oT
qw = _k (——J ¢
. . ! a-y y=0
In dimensionless form, Eq. (7.13) is reduced to
CRe!> =|f"+We(3f)"~ M +2¢Re, /7] ,, s
Nu, /Re!'* =-6'(0). I (7.16)

In order to solve the coupled nonlinear system of Brdinary differential Eqgs. (7.11)
subject to the boundary conditions (7.12), Chebyshev spectrallcollocation method is used [132],

and the detail of this method is discussed in the next section.

7.2 Spectral collocation method

To solve highly nonlinear system of ordinary differential equations given in Eq. (7.11) subject

to the boundary conditions Eq. (7.12) a Chebyshev spectral collocation method is used. In
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‘which the solution f(&) and 6(¢) are written as a sum of N+1 basis functions .

T (f ) = COS (n cos” & ) known as Chebyshev polynomial of degree n and defined in the interval

—1< &< 1. The physical domain of the present flow problem!is [0,0), which is transformed «

into the domain of basis functions [-1, 1] by using the following transformation

g=21_y, | | : (7.17)

o0

After using the above transformation, the obtained boundary value problem will take

the form .
&f s df { df &f A (dzfﬂ
8., +4n 2 f—L 4+ +We 32— -16f -
d d dg?
3 | dgr " dg g’ 5‘. . (7.18)
477:(1) +7_638€Re"(d {) 2L xn20=0,
dé) n, dg” ) d& ’
. v__[df) ,S12¢Re (d ) |
) 2 d 2 6 d 2 .
451-€+2P [fﬁ—edf}rpr& LN ‘ﬂ”f & =0, (7.19)
dé’ ¢ d¢ {d[(d’f)z & f & }
——W f
A | | n, (dg\dé? ’ & dg’ |
and bouhdary conditions become 5 -
df 2 df 2 df 16 (d’fY
:O'— —
SO=0 =1, az {1 e ag TR (d&”
2 do : '
2 — it - _ 7.20)~
(&) 1+7’n,,d§ atE=—1, | ( «)
d _n, d’f om sl
R 0,9(5)_oat§_15_

Substituting the assumed solutions Egs. (2.1 8,2.1 9) into Eqgs. (7.18, 7.19), the following

non-zero residues R, and R, are obtained as

N . -1 2
R=n'+n, /1 b cos(ncos™ &)—4n,? Z na, sinfncos™ &) N
. n=0 s v \/1 — 52

i [3;75“\/1 &% cos(ncos™ &) +sin(ncos™ §)—n sm(ncos §)
( ) n=0 +2&2 sin(ncos™ &)+ n* £ sin(ncos™ &)

(- ‘;+§ )Zan cos(ncos” §)§na anos(ncos £)— gw}L

J1-&
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768cRe [ & na, ) sin(rr cos” '$) 2
o [; ayE [n cos(ncos™ £)— & — 7 ] X
~3né\[1- &£ cos(ncos™ f-) +

o Zna" sin(ncos™ &)—n’sin(ncos™ &)+ |+

( 5) ™ | 2&%sin(ncos™ f)*”zgzsi}ﬁ(nc()?—l )

y -3né\1- & cos(ncos™ &)+ ) , |
(132;%) Zna sin(ncos™ £)x Znan sin(ncos™ & )}— n’sin(ncos™ &)+ |-

=0 | 2&%sin(ncos™ f) +n*E* sin(ncos™ &)

16 e[z}v:( (ncos(ncos /;) ‘f—s—lw]] 16WeZa cos(ncos™ £)x

n \’1 - 52 n=0

~15a,n’&? cos(ncos™ &) 4a,n’ cos(ncos™ 5),' a n' cos(ncos™ &)
(-8} ey ey

15a n&’ sin(n cos” '&)  9a nésin(ncos” /;) 6a nEsin(ncos™ &)

S = N A

N
g

and -

N _ N Y
R, =-2Pry, Zb" cos(ncos™ f)z na, sin(# cos f)

n=0 n=0 \/1’

2Prn, Za" cos(ncos” f)z b, sm(n cos” ) + 42 nb, sin(ncos™ &) |+

n=0 ,’ nO—l ‘f ‘é:
| Ji-¢

16 na, ~ . sin(n cos™ &) 2
. (;( 1+&° )(mos@cos §)—§—W—D '

ncos(ncos” /;) -

PrEc : N
512Re, ¢| &  na, sin(ncos™' &)
oy [”z:(; Cle &Y (n cos(ncos &) - {————h_l Z J}
\oWePr Ee X v —3n§«/1 — &% cos(ncos §)+
————-——z cos(ncos” f)xz ! sin(n cos g”) n’sin(ncos™ &)+ |x

Ne n=0 ( f ) 2§ sm(ncos §)+n f sm(ncos $)

sm(n cos~ f)J 32We Pr Ec i na, sin(ncos™' &) o

ncos(néos™ £)—¢&
z(; [ \/ - wr » n=0 \ll—g
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.
other parameters are kept fixed at A =1, Ec = 0.05,We=0.3,& =} landRe_=0.1. The graphs are
drawn for assisting ﬂow case. It is seen that by increasing Pr the velocit)i profile f'() and

| temperature proﬁle 9(77) decrease it is also seen that thermal boundary layer th1ckness
decreases. Fig. 7. S(a b) is drawn to show the effects of third grade parameter £ on the velocity
profile f'(n) and temperature proﬁle 6(n) respectively for assisting ﬂow case when
A=1, Ec:Q.OS, We=0.3, Re, =0.1, Pr =0.5and £¢=0, 4,8, il2 Dotted lines show the effects

when no slip case is considered and it is observed that in thi’s case the velocity profile starts
from the surface and approaches free stream velocit}:I' uniformly. As soon as, velocity and

thermal slips are cons1dered it is observed that 1n1t1a11y for different values of & velocity

profile changes but near 7 =0.25 the velocity profile becomes constant for all £ and after it

the velocity profile starts changing with the change in £.The variation of £ minimizes the

change in temperature profile when ‘the slips effect are considered. Although, it is’

comparatively active for no slip case. Third grade parameter is responsible for increase in”

boundary layer thickness, however, thermal boundary layer thickness remains ineffective with

the variation of ¢. "Eckert number Ec produces increase in the ~velocity and temperature profiles
for a551st1ng flow case as shown in Fig. 7.6(a, b) when 4 =1, 8 1, We= 0 3, Re, =0.1 and Pr

"= 0.5 for both slip and no sllp cases. The effect of velocity and thérmal slips on velocity and
temperature proﬁles are shown in Fig. 7.7(a, b) when A =1, Ec = 0.05, We=0.3, Re, =0.1,
g£=1andPr=0.5.Itis proved from Fig. 7.7(a, b) that by incorporating the slip effects velocity
increases and temperature decreases at the wall,_. it is also observed that boundary layer

/2 against different parameters

thickness decreases. The variations of C, Re;” and Nu, Re;/
are shown through Figs. 7. 8-7.11. The effects of C, Re!? and Nu, Re"”2 against velocity slip
parameter 7. and thermal slip parameter ¥, are shown in F1g 7.8 whenA =1, Ec=0.05,

We=0.3, Rejr =0., e=1and Pr= 0.5 are fixed. It is seen through these figures that both

12 - L . . L . ‘
C,Re)? and Nu, Re;"? decrease with the increase in their slip parameters. However, mixed

b

convection parameter A is responsible for increase in C,/Re,? and Nu, Re "’ for assisting
flow case and C & Re!? and Nu, Re "2 decrease for opposmg flow case when Ec 0.05,
We=0.3, Re, —O 1 e=1and Pr = O 5 as shown in Fig. 7.9(a, b) The effects of Prandt]

2

numberon C Re'? and NuJr Re;'"? are shown through F1g 7. 10(a b) for s11p and no slip cases

131 E

-




R A e Ot S RN S i e L B

when 1=1.0, Ec=0.05, Re, =0.1, ¢ =1.0,~ We=0.3 (for assl'isting flow). It is observed that

. . . S o o 1/2
when slip parameters are considered, local skin friction coefficient C, Re,~ decreases and

/2

X

2

behaves as a decreasing

local Nusselt number Nu, Re;"? increases. It is found that Cy, Re

function of Pr and Nu_Re;'"? behaves as an increasing function of Pr. The effects of Eckert

number Ec on C ' Re” and Nu, Re;"” are shown in Fig. 7.11(a, b) for slip and no slip cases.

It is easily seen that C;Re.” is increasing function of Ecfand Nu, Re;"? as a decreasing

- function of Ec. It is further important to observe that Nu_Re"? crosses the zero line during

the increase in Ec when A =1, Pr=0.5, Re, =0.1, ¢ =1 and We =0.3.

Table 7.1: Comparison of /"(0) and —#'(0) for distinct yalués' of We when Pr=A4=0.2 and
Ec=Re, =¢ =y, =y, =0 with Hayat et al. [148] and Li et zill. [147] for second grade fluid.

We ~ Lietal. [147] Hayat et al. [1489 Present Result
Assisting:. Opposing  Assisting  Opposing. Assisting  Opposing
flow j‘i flow flow ﬂoyv : flow flow
S7(0) | } '
00 - 135426  1.10711 1.3543 1.1072 1.35426 1.10711
0.5 098230 081854 09821 9.81!‘84 098230 081854
1.0 0.81738 . 0.68434  0.8174 . 0.6844 0.81738 0.68434
1.5 0.71694 0.60129 0.7171 . 0.63‘15 0.71694 0.60129
20 064713 054310 0.6474 ©  0.5435 064713 0.54310
| -0 | |
0.0 0.44198. 0.42351 0.4420 0.4235+ 0.44198 0.42351
0.5 - 04099 039499 04097 . 03939 040990  0.39499
1.0 O._3‘9189. 0.37837 0.3920 0.3"[785 0.39189  0.37837
1.5 0.37922 | 0.556652 0.3793 0231667 0.37922 0.36652 '
2.0 0.36944 0.35729 - 0.3698 0.3:5\78 0.36544 0.35729
132 .

R - e ™

gy o

s e "







~ = - o o (S
|
Ir =
0.8}
, |
0.6}
p B
- ~ 04 i
@) T |
0.2t/:
£ t,=027,=01
ok :
........... y,=00,y,=00
0.2 ' ' - e e
0 1 2 3 y 5 6
1
It ‘
’ Opposed flow — 7 =02y=01
T,
4\
E,,
®) >
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| 7.4 Conclusions

In this chapter, the heat transfer analysis on mixed convection orthogonal stagnation point flow
P ; ’ . -.

of a third grade fluid in presence of velocity and thermal: slips on a vertical surface is

investigated. The governing equations of the considered third grade fluid model are reduced;in

term of fourth and second order nonlinear ordinary differential equations. The Chebyshev

spectral collocation method is again applied to obtain its solution. The effects of numerous

important parameters on flow pattern in terms of velocity proﬁle temperature profile, skin

friction coefficient and Nusselt number are seen and presented through graphs. It i is noted that

in assisting flow velocity enhances by ‘increasing A and reduces in opposing flow also the

influence of m1xed convection parameter A on temperature proﬁle shows an oppos1te behavior

as notlced in velocity proﬁle In presence of slip effects on the surface velocity increases near

the surface and reduces away from the’surface by i 1ncreasmg . In assisting flow, velocity . .-

increases and temperature” decreases by increasing ve1001ty Jand thermal slip effects on the

surface. For the effects of viscous dissipation Ec, it is noted that velocrty and temperature

increase with enhancing the effects of viscous dlss1patlon‘ Local skin friction coefficient

Cr Re!”? and local Nusselt number Nu_ Re 2 decrease W1th the increase in velocity and

thermal slip parameters for assisting flow case. On the other hand by 1ncreasmg mixed

convection parameter A, local skin friction coefficient and local Nusselt number de,crease for

opposing flow case and increase in assisting flow case.
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