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Preface

In the field of science, a great importance has been given on the topic of heat transfer

due to its numerous industrial applications. lt is therefore, we focused our attentions on two

things namely temperature and flow of heat. Temperature is represented as amount of

thermal energy and the flow of heat explains the complete mechanism of the movement of

such thermal energy within the body from one position at higher temperature to another

position at lower temperature. There are many material properties which modulate the heat

transferred involves specific heat, thennal conductivity, fluid velocity, viscosity and density

etc. The mechanism of heat transfer can be divided into three modes namely conduction,

convection and radiation. The second mode of heat transfer is further divided into three

categories namely forced convection, natural convection and mixed convection. The main

purpose of this thesis is to study the heat transfer analysis in stagnation point flows which

also have numerous applications in engineering and industrial problems which are cooling'bf

nuclear reactors during emergency shut down, heat exchangers placed in a low velocity

environment, cooling of electronic devices by fans, solar central receivers exposed to wind

currents and many more. Initially we studied the flow and heat transfer rates in stagnation

point flow by considering Newtonian fluid such as water which has low thermal conductivity

and heat transfer rate. To improve the thermal conductivity and heat transfer rate in such base

fluid like water we extended the work by considering nanofluid which is a colloidal

suspension of nano-size particles in a base fluid. Finally, we studied the heat transfer analysis

in non-Newtonian fluid flow near the stagnation point due to its practical application in

polymer industry. The resulting highly nonlinear ordinary and partial differential equations of

the considered fluid models are solved numerically by using well known methods which are

Keller Box and spectral collocation methods.

In chapter l, some basic definitions, literature survey related to heat transfer analysis

in stagnation point flow of different fluids on different geometries, mathematical models of

Newtonian fluid, nanofluid and non-Newtonian fluid are discussed. I hope that on the basis of

the information given in this chapter, a reader will be able to comprehend different flow

problems discussed in forthcoming chapters relatively easily.

In chapter 2,heat transfer in stagnation point flow over an unsteady Wang's cylinder

is discussed. The term unsteady Wang's cylinder represents to rnean that the cylinder is

assumed of the nature of having ability to expand radially and contract along its length at the

tx



same time. To make the problem more interesting we further assume that the cylinder surface

is subjected to the suction phenomenon. The problem is modeled in terms of partial

differential equations which are transformed into nonlinear ordinary differential equations by

using sirnilarity transformation. The numerical solution of the problem is computed with the

help of a very rapid convergent numerical method narnely Chebyshev spectral collocation

method. The ranges of the parameters for which unique, dual and triple solutions exist are

explored. The effects of pertinent parameters namely Reynolds number, unsteadiness

parameter, Prandtl number, suction parameter and velocity ratio parameter on velocity

profile, temperature profile, skin friction coefficient and Nusselt number are discussed and

shown through graphs. The analysis presented in this chapter has been published in Asia

Pacific Journal of Chemical Engineering, 10 (2015) 184'192.

Chapter 3 deals with analysis of radiative heat transfer in unsteady mixed convection

flow near forward stagnation point over a cylinder of elliptic cross section for both blunt and

slender orientations. The goveming partial differential equations are transformed into

dimensionless partial differential equations by using suitable transformation and numerical

solution is obtained with the help of implicit finite difference scheme known as Keller Box

scheme. The effects of pertinent parameters namely Prandtl number, mixed convection

parameter, thermal radiation parameter, surface temperature parameter and blunt/slender

orientation parameter on the velocity and temperature profile and Nusselt number are shown

graphically also the separation times for both orientations are presented through table. The

contents of this chapter have been published in Thermal Science, 2l (2017) l-12.

Chapter 4 presents the heat transfer analysis in MHD mixed convection stagnation

point flow of a nanofluid over a vertical plate with viscous dissipation. It is assumed that the

nanofluid contains two types of nano-size particles namely copper and alumina with water as

a base fluid. The constitutive equations related to the nanofluid model are converted into a

dimensionless nonlinear system of ordinary differential equations by using similarity

transformation and numerical solution is obtained by using Keller Box scheme. The graphs of

velocity profile, temperature profile, skin friction coefficient and local Nusselt number are

plotted against different values of involving parameters namely magnetic parameter, Eckert

number and volume fraction parameter with fixed value of Prandtl number. This work has

been published in Canadian Journal of Physics, 93 (2015) 1365-1374.

In chapter 5, heat transfer analysis in three dimensional boundary layer stagnation

point flow of the ferrofluid over a stretchable rotating disk in the presence of external



.1

magnetic field is'presented. The three type! of ferroparticles are considered namely

rnagnetite, cobalt,ferrite and Mn-Zn ferrite. The governing partial differential equations are

transformed into nonlinear ordinary differential equations and numerical solution is obtained

by using same numerical method which is used in Chapter 4. The effects of pertinent

parameters on radial and azimuthal velocity profiles, temperature profile, skin friction

coefftcients and local Nusselt number are discussed in detail and shown through graphs. The

contents of this chapter have been'published in the Journal of Molecular Liquid,s, 219

(2016) 526-532. "
.i,

Chapter 6 piesents the heat transfer analysis in stagnation point flow df a nanofluid

over a nonlinearly permeable stretching/shrinking sheet in the presence of Newtonian heating

effect. The physical problem is modelbd by using Buongiorno model [58] and the resulting

nonlinear ordinary differential equations are obtained.hfter using similarity transformation.

The dual solutions against shrinking parameter is obtained numerically by using the

Chebyshev spectral collocation method. The effects of emerging parameters namely Prandtl

number, 
'Schmidt 

number, Brownian and thermophoresis parameters, conjugate parameter

and velocity ratio parameter on velocity and temperature profiles, skin friction coefficient and
.i

local Nusselt numbet it" shown graphically. The contents of this chapter have been
;!

submitted in Applied Mathematics and Computation.

' Chapter 7, deali with the study of heat transfer in mixed convection btagnation point

flow of a non-Newtonian third grade fluid on a vertical surface with slips and viscous

dissipation effects. The governing equations related to tfr11a grade fluid model are

transformed into nonlinear ordinary differential equations after using i;imilarity

transfo'rmation and numerical solution is obtained by using Chebyshev spectral collocation

method. The main findings are velocity and temperature increase with increasing the viscous

dissipation effects. The local skin friction coefficient and local Nusselt.number decrease'in'

opposing flow case and increase in assisting flow case with increasing mixed convection

parameter. The contents of this chapter have been published in the Journal of Apptied

Mechanics and Technical Physics;57 (2016) 527-536. , i
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Nomenclature

Ar, Az, As Rivlin Ericksen tensors

a, c Straining and stretching/shrinking constants

b Constant of temperature

b Body force

b(t) Time dependent radius

Bo Strength of uniform magnetic field

c/a Velocity ratio parameter

a' and b' Length of semi major and minor axes

cp Specific heat constant

C Nanoparticle concentr?rtion

C,o Ambient nanoparticle concentration

Cr, Ca,Cr,,Cor. d Skin friction coefficient/local skin friction coefficients

C* Nanoparticle concentration at the wall

Da Brownian diffusion coefficient

Dr Thermophoretic diffusion coefficient

e Eccentricity

Ec Eckert number 
., 

,

f stream function in dimensionless form'

g Acceleration due to gravity

Gr, Gr, Grashof number, local Grashof number

h, Convection heat transfer coefficient

ht,hz,ht, h+ Physical parameters

hu, hzz - Metric coefficient

fu hermal conductivity of fluid/base fluid

ke Thermal conductivity of nanoparticle -

k, Thermal conductivity of material

ka Thermal conductivity of nanofluid

Sc Schmidt number

M Magnetic parameter

m Exponent of nonlinear velocity

N Number of grid points



lx, j,

Nb

Nt

Nu, Nur, Nu,

Pr

P, P*

Qm

Q, Qn

Rt, Rz, Rs

Ra

Re

Re*, Rer, Re,,

s

Sh,

trT

tt, t? Critical points

T

Tn

T*

T*

Ue, le

Uw

U*

Vw

U,V,W

We

xry

r, 0*, z

X

Y

Integers

Thermophoresis parameter

Nusselt number/local Nusselt number

- Prandtl number

Pressure, modified pressure

Mass flux at the wall

Heat flux, heat flux at the wall '.,

Residuals

Radiation parameter

Reynolds number

Loeal Reynolds numbers

Unsteadiness parameter

Sherwood number

Time, dimensionless time

Temperature of the fluid in the boundary layer 
:

Basis function

ambient fluid temperature '.

surface temperature -

Potential velocities

. stretching/shrinking velobity

Free stream velocity

Suction velocity
, {' 1't-

Velocity components in dimensionless form

Weissenberg number

Cartesian coordinates

Cylindrical coordinates

Distance ulong tt 
" 

surface of elliptical cylinder

' measured from the forward,stagnation point

Normal to the surface of elliptical cylinder

?,
.l
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Greek symbols

df Thermal diffusivity of fluid/base fluid
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dnf Thermal diffusivity of nanofluid

.*'

as Scattering coefficient 
"

Br Thermal expansion coefficient of fluid/base fluid

Pn hermal expansion coefficient of nanoparticle

: a,d2,gr,gr,0, Material parameters of fluid

Third grade parameier

' y Suctibn parameter
I"i' 

Tt, Tz Velocity and thermal slip factors

,,, y' i ' Angle measured from the forward stagnation point in'

. streamwise direction

)" ixed convection parameter

V Stream function

V/* Dimensionless st'ream function

O Angular velocity .

o Dimensionless angular velocity 
,t

;(D , OlulrusrtilluEr url(illtauull 
.

ls Newtonian heating parameter . t

Tu, Tt Dimensionless velocity and thermal slip parameters

pf'. Densityoffluid/basefluid . 'i:.

Pp NanoParticle densitY ; r. i .r

' (cpb ' Specific hdat 1' 1

, ltf r i Oynu"*i"viscosityoffluid/basefl1id, * r ,_, !.
,\

' P,,f DYnamic viscositY of nanofluid

t

T*

Cauchy stress tensor

Ratio of heat capacity of the nanoparticle and heat

.. capacity of base fluid ti,,

Tw tTryrT,. rT e'i

" vS-

Wall shear stress/shear stresses

Kinematic viscosity of fluid/base fluid i ts



(prr)r Heat capacity of the fluid/base fluid

(Pc),,1 Heat capacity of the nanofluid

(pcr), Heat capacity of the nanoparticle

bo, F* Constants

0* Surface temperafure parameter

0 . Nanoparticle volume fraction

. (p* Angle between outward normal from the cylinder and

,,. downward vertical

o r. Electricity conductivity of fluid/base fluid

o' Stefan-Boltzmann constant

. ,1, € Dimensionless variables

\a Physical infinity

(;/' Elliptic coordinate
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Chapter 1

Preliminaries

In this chapter, we introduced the readers with the basics of heat transfer, mathematical models

of different fluids, and fundamental laws relevant to the studies presented in the upcoming

chapters for better understanding.

1.1 Heat

Heat is a thermal form of energy which flows from hotter to cooler direction. The flow of heat

in any body is in general due to the temperature difference between the two positions. Heat was

the earlier form of energy that human being might have used in this world. Heat can be

converted from one form to another form such as mechanical work or internal energy etc. First

law of thermodynamics is the simple relation among these forms of energy [].
"Amount of heat transferred to the system : change in internal energy of the system + work

done by the system"

1.2 Heat transfer and its modes

In the study of heat transfer, it is explained that how energy will be transferred and with what

rate, which is the most important phenomenon to understand. Thermodynamics deals only with

the equilibrium state of a system but does not explain the rate with which the change occurred.

Study of heat transfer based on three modes namely conduction, convection and radiation [2],

which are explained as follows

1.2.1 Conduction

Conduction is one of the mode of heat transfer in which energy can be transferred through solid

body and it is due to the temperature gradient within a body. Conduction normally takes place

in solids because of bound atoms, which gains thermal energy and vibrates about a fixed point.

Due to the motion of the atoms about a fixed point, the thermal energy is transferred'to

neighboring atom. The part of solid, which gains thermal energy, will vibrate faster and passes

the vibration to the next atom and so on. The rate of transfer of heat q'through conduction is

given by the equation



dTq = -k, &
The above equation represents the Fouiier's law of heat conduction, which is stated as

heat flux 'q' (the rate of transfer of heat per unit area) is proportional to{temperature
dx

gradient, where k, is known as thermal conductivity of the rnaterial.

1.2.2 Convection

Convection is another mode of heat transfer where enbrgy'is transferred by mass motion of

atoms or molecules in the body. The transfer of energy through convection is actually

conduction in a thin fluid layer on the surface and mixing caused by the fluid flow. It is the

transfer of energy by bulk flow and molecular diffusion. Such type of heat flow does ncit depend

upon the properties of material but depends upon fluid properties. Convection plays a'vital role

in daily life e.g. the'cooling phenomenon of different electronic components in computer,

cooling of cutting tools in machining operations, the.heating and cooling of buildings eic.

Newton established a relationship for transfer of heat by convection usually known as law of

cooling.

q = h,(T*-T*),

which is stated as heat flux q'is proportional to the difference of wall temperature and ambient

temperature of the fluid, where ft, is known as convection heat transfer coefficient and depends

upon boundary layers conditions including surface geometry, nature of fluid motion, an

assoitment of fluid thermodynamics and the transport properties. Convection is further divided

into three mechanisms, which are explained here

Forced convection

In forced convection, the transfer of heat is due to the motion of fluid occurring by some

extemal source for example blower, fan, jet'andnozzleetc. In such mechanism, a small amount

of buoyancy force effect exists. In Fig. 1.1(a), it is seen that the motion of fluid around elliptic

cylinder occurs due to external source in term of free stream velocity.

Free/Natural convection

In free convection, the transfer of heat is due to the motion of fluid, occurring by the body force

which depends not only on the gravitational field but albo the variation in fluid density due to

9

,l

'r
I

l

i

t

j

;



I
I

I

l
I

the temperature difference. The body force is usually called the buoyancy force. In different

areas of engineering, this mode of heat transfer is used such are "cooling of electric

transformers, room heaters and cooling of electronic devices" etc. In Fig. 1.1 (b), it is seen that

motion of the fluid occurs due to body force only in term of buoyancy force.

i

Mixed convection

A combination of both free convection and forc'ed convection is known as mixed convection.

In such mechanism both extemal source of heat and buoyancy force act together. In Fig. 1.1 ,

(c), it is seen that motion of the fluid occurs due to the external source (free steam velocity)

and buoyancy force.

('l Za--- (r')

+. ,+
---> | l-++\ i---

Free srream 
". 

*..*,,, \=/ 
*

(Forced convection)

"J\a,
Buoyattcy fbrcc

(c) Jt
Orluoyirncy 

ftrrcc

\=:
i t t i t Frce srrcarn vetocity
I I I I l(Forccrl convccrion)

Figure 1.1: Transfer of heat in (a) Forced convection (b) Free convection (c) Mixed

convection

1.2.3 Radiation

Radiation is the process of transfer of heat without any medium or source. Since, the conduction

and convection require physical medium to transfer of heat but radiation can occur in vacuum.

In thermodynamics, the electromagnetic radiations propagate as a result of temperature

difference also known as thermal radiations. In Newtonian physics, Stephen-Boltzmann law

explains the rate of energy radiated per unit area'q' is proportional to the fourth power of
temperature. i

q=o'Tu,

where o' is the Stephen Boltzmann constant. The above equation is valid for black bodies

which are an ideal absorber and ideal emitter also which is applicable for thermal radiation

only. The above equation examines the radiations emitted by the black body [3]. '

10
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1.3 Governing equations for fluid motion

The fluid is a substance that has an ability to deform continuously under the action of shear i

stress no matter how small it is. In fluid mechanics all the,physical phenomena of the fluid flow

can be expressed in mathematical model known as governing equations. The fundamentat I '

governing equations for the study of heat and mass transfer in the fluid flow based on three

laws of conservation namely law of conservation of mass, law of conservation of momentum

and law of conservation of energy. In general, these laws are written in term of partial

differential equations. For different types of fluids these laws in term of governing equations

are explained as follows:

{

1.3.1 Continuity equation

Law of conservation of mass is represented by equation of continuity, which states that inass

cannot be created or hestroyed. The equation of continuity for compressible fluid is

. Op, -. l
++div(p,Y)=9, (l.l) I
6t ' ' \-'-l 

I.,!
, whereY(u,v,w) is the velocity vector, If the density p1 is constant (incompressible fluid) Eq. j

(l.l) becomes

In cylindri cal coord i na n, "rJ:l;l " 
l ;,t:ir 

t 

:
r 0r r00 0z

1.3.2 Momentum equation , ., 
I

Law of conservation ofmomentum is represented by the momentum equation. Which describes , . ,

the complete mechanism of fluid motion. The momentum equation for incompressible viscous I

fluid can be written as

(av \
P,l ++(V'V)V I = Y' r + prb,''(dr )

r =-pl+ prA,,

I
(1.4)

.I

I

I'I

where p7 is density of the fluid, r is Cauchy stress tensbr, which describes the nature of the

fluid and b is the body force.

For Newtonian fluid the Cauchy stress tensor is defined as

l1



! I 
F r)G* l!

". 
,

,j

wherep is the pressure, I is the identity tensor, lr. is the dynamic viscosity and A, is the first

Rivlin Ericksen tensor defined by 
.

.!

r A, =VV+Wr' 
:1

t,

where W and VVr represent the velocity gradient and its transpose.

For Non-Newtonian fluia (third ordermodel), Cauchy stress tensor is defined as [4]

a =-pl+ ltAr+a,Ar+arAl + 0rAr+ Bz(AzAt+ArA2 )+ Br(n"$)a,,,

where d, (i:1,2) and F, Q =1,2,3) are material constants. The Rivlin Erickson tensors A,,

are defined as

o,, =( *+v.v)o,-, iA,,,-, (vv)+(vv)',r,,-,.,=2,3,...
( af ) 

n-t tr-r \ '/ \ 't t'-l

Forthirdgradefluidthethermodynamicconstraintsare[5]

F r )- 0, d, ) 0, la, + arl< 
"1i+ Opr, -

0r= 0r=0, 0120'

Cauchy stress tensor t becomes

. ^ r\ ^a ---pl+ ltAr+a,Ar+arAl + pr(trll)1,,.
,:7',''

Momentum equation for nanofluid in Tiwari-Das model [60] can be written as

I

I'l
,]

ti
I

:

i (1.5)

;

where p,6 isdensity ornanonuir r:"r.::;;;:.,,",,n,::ooo,l,l 9"0*0,.

O,: * dynamic viscosity of nanofluid: ' )

, ,,

1.3.3 Energy equation

The analysis of heat transfer within the fluid is completely studied by energy equation, which

can be derived using first law of thermodynamics under this statement that energy cannot be

destroyed or created but can transform froni one form to another. Energy equation in

Newtonian and non-Newtonian fluids can be written as '

'(ar \ r I
| "- +(V'V)f l=orY.Vf+ t:VV---V.q,., (1.6)( ar : , ) (pc)r (pc)r 1r'

,.I

where 7is temperature, (pr) r is heat capacity, a, is thermal diffusivity of the fluid, r: W
represents the tenii of viscou.s dissipation and q,. is radiative heat flux. By using the Rosseland

:,\'-



,;.

diffusion'approximation q,. can be expressed as [3]

A*'
q t.------::-VT4,' 3(a, +a,)

where a, is the Rosseland mean absorption coefficient and a" is the scattering coefficient.

Energy equation for nanofluid in Tiwari-Das model is written as

({.(v.Dr) =d,,Y.v7n+.; 
l: r:vv,

\At, ) ' (pcp),1

where,(pc,,),,y is heat capacity and a,, is thermal diffrrsivity of nanofluid.
..1

Energy equation for nanofluid in Buongiorno model [58] is writlen.as

(X+ (v' Dr) = a rY'Y r + ;lo,v c'Y r + 
?o 

r' o.],

(r.7)

t,o'

(1.8)

where r' = (pc 
n) r f @c ) r, is the ratio of heat capacity of nanoparticle and base fluid, Dn and

Dr drethe Brownian and thermophoretic diffusion coefficients, 7L is the ambient temperature

of the fluid. i

1.3.4 Concentration equation

The concentration equation for the nanoparticles

continuity equation and in the absence of chemical

in Buongiorno model is also known as

reaction [58] is described as

(1.e)

where C is the concentration of nanoparticle.

1.4 Literature survey

The arialysis of heat transfer in stagnation point flow has receiired considerable attention since

last few decades due to its abundant number of applications in several engineering and

industrial problems. It includes cooling of nuclear reactors during emergency shut down, heat

exchangers placed in a low velocity environment, cooling of electronic devices by fans, solar

central receivers exposed to wind currents and many more. It is owing to the reasons that the

stagnation point flow region encounters the highest pressure and highest heat transfer rate. In

a flow field, stagnation point represents such point at which the,velocity-of the fluid become

eventually zero. There are two types of stagnation point flow namely, brthogonal and non-

(#.ry'DC) = D.Y'VC.+ lv'vr,
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orthogonal. The non-orthogonal stagnation point flow is also known as oblique stagnation point

flow in literature. [t is the flow for which fluid impinges on a surface at an arbitrary angle other

than 90o. However, in orthogonal stagnation point, the angle of strike of the fluids remain fixed

at 90o. The study of two dimensional orthogonal stagnation point flow was first considered by

Hiemenz [6]. Later on, Schlichting and Bussmann [7] provided a numerical solution of.the

Hiemenz [6] flow problem. Eckert [8] extended the work of Hiemenz 16l and analyzed the

effects of heat transfer in the flow.

The study of fluid flow and heat transfer over a stretching/shrinking sheet has attracted

attentions of many researchers. This phenomena remained important for many y"urr for its

analysis as it was needed to cope with several practical problems'in the industry. Some of the

problems are extrusion of a polymer in a melt spinning process, manufacturing plastic films,

hot rolling and paper production, wire drawing and glass fiber production etc. Sakiadis [9, 10]

was the first who studied the flow field over a moving surface with uniform linear velocity.

After that, Crane [11] studied incompressible viscous fluid flow over a stretching sheet. The

study of the fluid flow over a stretching cylinder was initiated by Wang [2], who investigated

the steady flow and heat transfer characteristic outside of an infinite imp'ermeable stretchin"g

cylinder. He obtained exact similarity solution of the governing Navier-Stoke equations of the

problem. Later on,Ishak et al. [13] extended this work to the case ofpermeable cylinder. They

found numerical solution of the governing equations and observed the fact that water is better

cooling agent as compare to air. Again, Ishak et al. [ 14, l5] investigated the heat transfer effect

on the flow over a stretching cylinder and heat transfer in MHD two-dimensional flow over a

stretching cylinder. K. Vajravelu et al. [16] studied the heat transfer analysis of axisymmetric

electrically conducting flow of,a viscous fluid induced by a non-isothermal stretching cylinder.

Many other authors [17-20] have also worked on a stretching cylinder. The nature of the flo'w

over a continuous shrinking surface is charactenzedby the fact that the flow over the surface

is always directed towards a fixed point. Miklavcic and Wang [21] were the first, who studied

the flow over a shrinking surface. Fang [22] studied boundary layer flow with power law

velocity over the shrinking sheet. Fang and Zhang [23] calculated the exact. solution of
magneto-hydrodynamic viscous flow over a shrinking sheet. Sajid et al. pal studied MHD

rotating flow of a three dimensional viscous fluid over the surface which was asstimed

continuously shrinking towards the origin. Noor et al. [25] found non-perturbative solution for

magneto-hydrodynamic viscous flow due to the shrinking sheet. Yao et al. [26) studied heat

transfer analysis in a fluid flow over a generalized stretching shrinking wall with convective

. -{
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boundary conditions. Mishra and Singh [27] found dual solutions of mixed convection flow

over a permeable shrinking cylinder with momentum and thermal slip boundary conditions.

' The combine study of stagnation point flow over a stretching/shrinking surface have

been analyzed in detail by many researchers. Chiam [28] and Wang [29] were the first who

studied stagnation point flow over a stretching and shrinking sheet..Bachok et al. [30] studied

the decay of heat transfer in stagnation point flow of viscous fluid moving. towards a

stretching/shrinking sheet. Bhattacharrya 131] studied the heat and mass transfer rates with

chemical reaction in a boundary layer stagnation point flow towards a stretching/shrinkrpB

surface. He obtained dual solutions of the governing nonlinear boundary value problem. Yacob

et al. [32] extended the woik of Bachok et al. [30] by considering micropolar fluid.

Turkyilmazoglu and Pop [33] calculated exact analytical solutions of the governing problem

for the flow and heat transfer in Jeffrey fluid near the stagnation point on a stretching/shrinking

sheet. Weidman and Ali [34] investigated a stagnation point flow on a stretching cylinder. The

analysis was presented for the flow in aligned and nonaligned radial direction and discussed

the existence of unique and dual solution for wide range of shrinking parameter. Lok and Pop

[35] studied the Wang's shrinking cylinder problem by considering it as permeable and of fixed
"radius 

with suction near a stagnation point. Lok et al. [36] considdred mixed convection

axisymmetric flow near th'e region of stagnation point on a stretching/shrinking cylinder. Najib

et al. l37l investigated the diffusion of mass in stagnation point flow towards a

stretching/shrinking cylinder with chemical reaction.

The analysis of unsteady flow has attracted considerable attention of many researchers

due to its important practical applications due to time dependence. Such applications are to

execute some devices in which time dependent motions are required, re-entry of space vehicles,

fluid flow in vessels of human body in which reverse flow region.may develop due to

unsteadiness. Munawar et al. [38] studied the unsteady flow over an oscillatory shetching

cylinder with time dependent oscillation and obtained the numerical solution of the governing

equations by using an implicit finite diiference scheme. Fang et al. [39] investigated unsteady

viscous flow over an expanding stretching cylinder. They analyzedthat the velocity decreases

with the increase of Reynolds number and more rapidly expanding stretching cylinder slowly

penetrate into the ambient fluid. Zaimi et al. [40] studied the mass transfer analysis of unsteady

viscous flow over a shrinking cylinder and found unique and dual solutions fcir the specific

.ung" of unsteadiness parameter. They indicated that skin friction coefficient reduces with the

enhancement in unsteadiness parameter. In chapter 2, the work of Lok and Pop [35] is

extended by considering the flow near the stagnation point over an expanding/contracting

15



Wang's cylinder as an unsteady flolv.' The cylinder is assumed as permeable to analyze the

suction phenomena while the cylinder is btretched or shrunk along the axis of the cylinder. .,

In the study of heat transfer analysis, rnixed convection flows have gained considerable

attentions of the researchers due to its many industrial and technological applications of solar

central receivers placed in winds, with maximum cooling of nuclear reactors during emergency

shutdown, cooling of electronic devices by fans and other heat exchangers placed in a low

velocity environment etc. A careful literature review reveals that an intensive works have been

done on convective boundary layer flow over a-horizontal circular cylinder. Merkin [41] was

the first who initiated the study of mixed convection flow near the lower stagnation point over

a horizontal circular cylinder in whieh, he found that the separation point delays in case of

heated cylinder and it comes earlier in cooling cylinder case. Further, a detail works on mixed

convection flow along the same cylinder have been done in different investigatio ns 142-47lby

considering the flow of Newtonian and different non Newtonian fluids around it. The circular

cylinder is a special case of an elliptic cylinder when major and minor axes are assumed equal.

The study ofheat transfer analysis inside the flow around an elliptic cylinder has gained

great importance due to the fact that it offers less resistance to the flow and heat transfer as

compared to that of circular cylinders. The study of boundary layer flow over an elliptic

cylinder is again initiated by Merkin [48]. In which, he investigated the free convection flow

by considering CWT and CHF and problem was solved using Blasius series and Gortler type

expansion techniques. In literature, few studies of mixed convection flow over an elliptic

circular cylinder have been analyzed for both Newtonian\non-Newtonian fluids in la9-52]. 
'

The analysis of unsteady flow and heat transfer whose dpplications are mentioned

earlier over a cylinder with elliptic cross section was investigated by Alessio [53]. In this study,

he investigated the steady and unsteady flow over an inclined elliptic cylinder for the range of

Reynolds numbers Re from 40 to 70 with Prandtl number at 1.and observed that the unsteady

flow converges to steady state for small values of Re. Wiliiams [54] studied analytically

unsteady free convection flow from an inclined elliptic cylinder. Jaman and Hossain [55] found

the influence of fluctuating in surface temperature with small amplitude on natural convection

flow over an elliptic cylinder and obtained the numerical solution of the governing equation

for eccentric angle in the range 0<a<180o. The time dependent flow of combined natural and

forced convection near the forward stagnation point region was first considered by Jamaludin

et al. [56]. They solved the governing equations related to the flow problem numerically by

using an implicit scheme of finite difference technique for both blunt and slender orientations.

They found that separation times come early in case of opposing flow for slender orientation.
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In chapter 3, the effects of thermal radiation on unsteady mixed convection flow near the

forward stagnation point region over an elliptic cylinder is analyzed because thermal radiation

in mixed convection flow has many practical applications such as the thermal energy storage

devices, gas turbines and nuclear power plants etc.

In the preceding studies, a complete analysis on heat transfer have been made by the

researchers by considering the fluids which have low thermal conductivity. Su.t fluids are

water, air, oil, and ethylene glycol mixture which are poor in heat transfer. In many industrial

and engineering problems, heat transfer rate plays an important role in term of highest heat

r transfer rate which can improve the efficiency of many processes in electronic cooling and heat

exchangers. For improving the heat transfbr rate and thermal conductivity of the fluids a huge,:
effort has been made by the researchers. According to the experimental studies, the thermal

conductivity of fluids can be increased when nano-size solid particles with length up to 100 nm

are suspended in the base fluid, and this mixture is called a nanofluid introduced by Choi [57].

' Various rnaterials are considered, such as Cu, Ag, Aumetals, CuO, AlzOs and TiOz for making

nanoparticles of different shapes, As'a result, it is noted that the thermal conductivity of the

obtained nanofluid is larger than that of lthe base fluid. Buongiorno t58l studied

comprehensively the convective transport in nano-fluids and considered seven mechanisms

such as Inertia, Thermophoresis, Brownian diffusion, gravity settling, fluid drainingl

Diffusiophoresis and Magnus effect. He observed that the absolute velocity of nanoparticle can

be considered as sum of the velocity of the base fluid and relative velocity. Among thg-se

mechanisms, he found that only two mechanisms are very important namely Brownian

diffusio.n and Thermophoresis. Investigation on the topic"of heat transfer in nanofluids was

done by many researchers, namely, Abu Nada [59], Tiwari and Das [60], Maiga et al. [61];
' Oztop and Abu Nada [62], andNield and Kuznetsov [63, 64], Jaluria et al. [65], and Mahian et

al. [66], 
,

Mustafa et al. [67] were the first who studied two-dimensional flow of a nanofluid near

the stagnation point region over the stretching sheet. They used the Buongiorno modei and

considered the important two Brownian motion and thermophoresis effects and solved

governing equations analytically using homotopy analysis method. Nazar et al. [68] analyzed

the stagnation poiirt flow of a nanofluid past a shrinking sheet. They obtained a dual solution

for the specific values of shrinking parameter. Bachok et al. [69] studied stagnation point flow
of a nanofluid over a stretching-shrinking sheet. They considered three types of nano-size

particles: Cu, TiOz and AlzO: suspended in a base fluid like water. Kumar and Bandari t70]
studied melting helt transfer in the flow of 

;;"rr,O 
with Cu and, Ag.(silver) as nano-size



particles suspended in water as a based fluid over a stretching/shrinking sheet near the

stagnation point region. They noted that the heat transfer rate decreases with the increase of

melting parameter. Khalili et al. [71] studied numerically the stagnation point flow and heat

transfer of a nanofluid over a linear stretching/shrinking sheet. They considered three nano-

size particl es: Cu, AlzOs, and TiOz, and found that the values of skin friction coefficient dnd

heat transfer rate are higher for Cu-water nanofluid as compared to that of AlzOs and TiOt.In

another studies, Zaimi et al. l72l investigated stagnation point flow of a nanofluid over a

stretching/shrinking permeable sheet for both nanoparticles and gyrotactic microorganisms.

They calculated dual solutions for specific values of stretching-shrinking parameter and found

that the skin friction coefficient, Nusselt number, Sherwood number, and density of the rnotile

microorganisms increase in case of suction.

The effects of magnetic field on the electrically conducting fluid flow problem have

attained more importance due to its numerous applications in engineering problems such as

geothermal energy extractions, magneto-hydrodynamic generators, plasma studies and nuclear

reactors etc. Ibrahim et al. [73] investigated the two-dimensional stagnation point flow of a

nanofluid towards a stretching sheet in the presence of magnetic field. Khalili et al.l7 4l studied

MHD effects on stagnation point flow of nanofluids through a porous medium over a

stretching/shrinking penneable plate. The effects of magneto-hydrodynamic on rnixed

convection flow of a nanofluid in the region of stagnation point flow over a convectively heated

stretching/shrinking sheet was studied by Makinde et al. [75]. They presented dual solutions

for the specific values of stretching-shrinking parameter. Yazdi et al. [76] analyzed the effects

of thermal radiation in the presence of uniform magnetic field on mixed convection stagnation

point flow along a vertical plate. The nanofluid was considered with Cu, AlzOs, and TiOz as

nanoparticles in a base fluid. The flow was assumed through an isotropic porous medium

sticked with vertical plate. The plate was assumed as stretching with small pores on it. They

observed that the magnitude of skin friction coefficient and local Nusselt number increase with

the increase of nanoparticle volume fraction for both assisting and opposing flow cases. Tamim

et al. l77l presented the analysis of opposing and assisting flow cases on mixed convection

stagnation point flow of a nanofluid along a vertical sheet without considering the effects of

magneto-hydrodynamic. In chapter 4, the work of Tamim et al.l71l is extended by considering

the combine effects of magneto-hydrodynamic and viscous dissipation because viscous

dissipation plays an irnportant role as an energy source and affects the heat transfer rates, which

was ignored in all of the preceding studies.
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Ferro or magnetic fluids are also known as a special type of nanofluids. Which is a

colloidal suspension of magnetic nanoparticles namely; magnetite FesOq, hematite FezOs,

cobalt Ferrite CoFezOt and many other compounds contain iron with nano-size about l0 to
l00nm and dispersed in a base fluid [78]. Ferrofluid was first discovered in 1963 by NASA.

The scientist Papell [79] found that "ferrofluid as a liquid rocket fuel that could be drawn

toward a pump inlet in a weightless environment by applying magnetic field". Ferrofluids have

a several applications in biomedicine and engineering fields. In biomedicine field, drug

delivery is targeted magnetically up to a certain area of human body, in-vivo monitoring in the

human brain for chemical activity, removal of toxin from the body and destruction of tumors

[80, 8l]. In engineering field, ferrofluid are extensively used in sealing of hard drives, rotating

shafts, rotating X-ray tubes, rods and sink float systems for separation of materials, lubrication

in bearing and dumpers, heat controller in electric motors and in hi-fi speakers [82] etc. A few

studies on ferrofluid in the presence of external magnetic field were performed by the

researchers [83-86]. Literature survey reveals that there are few studies in which ferrofluid

over a rotating disk was considered. Ram et al. [87-89] studied the flow analysis of ferrofluid

through the porous medium over rotating disk. After it, Ram and Sharma [90, 9l] investigated

the rotation and MHD effects on ferrofluid with rotating disk. To the best of the literature

review, study of stagnation point flow of ferrofluid over a stretchable rotating disk was not

considered by any other authors, therefore, in chapter 5, such analysis is presented in the

presence of external magnetic field. For the general purpose of the study, we have studied three

different magnetic nanoparticles namely, magnetite (FesOi,cobalt ferrite (CoFezOt)and Mn-

Zn ferite (Mn-ZnFezO) and which become paramagnetic on the nanoscale (around 1gnm)

level.

All the above mentioned studies have been performed for linear stretching/shrinking

sheet. Since, practically the rate of heat transfer at the stretching/shrinking sheet plays an

important role for determining the quality of the final product. Therefore during the process,

the kinematics of both stretching/shrinking and coolinglheating have major influence on the

quality of the final product. It is, therefore, Vajravelu [92] studied viscous flow over a non-

linear stretching sheet. Again, Vajravelu and Cannon [93] investigated the fluid flow over a

non-linearly shetching sheet. Cortell [94] extended the work of Vajravelu l92l inthe presence

of viscous dissipation by considering two different cases of surface temperature namely
constant and prescribed surface temperatures. Bataller [95] investigated the heat transfer

analysis of quiescent fluid flow due to nonlinear stretching sheet and obtained the similarity
solution of the problem in the presence of viscous dissipation and thermal radiation terms in
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the equations. Two cases were considered namely prescr{bed surface temperature 
" 
dnd

prescribed heat flux. Hayat et al. [96] studied MHD effects on stagnation point flow of a

micropolar fluid towards a non-linear stretching surface. Further, some very important studies

on stagnation point flow towards a non-linear stretching/shrinking sheet have been made by

the researchers [97-l 00].

A detail studies on the boundary layer flow of nanofluid in the stagnation point region

over a linear stretching/shrinking sheet have been mentioned earlier. However, few studies of

nanofluid over non-linear stretching/shrinking sheet have been presented by the researchers.

Firstly, Rana and Bhargave [01] obtained the numerical solution of the boundary layer flow

of nanofluid over non-linear stretching sheet. They used Buongiorno model and discussed the

effects of thermophoresis and Brownian motion. Hady et al. [102] studied the heat transfdr

analysis of viscous fluid flow of a nanofluid over a non-linear stretching sheet in the presence

of radiation effect with'variable wall temperature. Some studies related to nonlinearly

stretching/shrinking sheet have been considered by the researcheis [103-106].

Boundary conditions play a vital role in material processing technologies and

significantly modify the characteristic of manufactured products. In the above studies, two

types of boundary conditions were considered namely prescribed surface heat flux (PHF) dnd

prescribed surface temperature (PST). There is another type of boundary condition known as

Newtonian heating"'(conjugate convective flows tl07]) in which,'heat is transported to the

convective fluid passing near the boundary surface having finite heat capacity. Newtonian

heating occurs in some important engineering devices such as heat exchangers in which the

conduction in the solid wall is effected by convection in fluid [08]. Salleh et al. [109]

investigated the effect of Newtonian heating on boundary layer flow and heat tranSfer over a

stretching sheet. They solved non-linear boundary layer equations numerically by using finite

difference scheme along with two cases "constant wall temperature (CWT)" and "constant heat

flux (CHF)". Mohammed et al. [110] studied stagnation point flow over a stretching sheet with

Newtonian heating. A number of studies with Newtonian and convective boundary conditions

have been considered by many researchers [111-114]. Therefore, in chapter 6, the effect of
Newtonian heating 

'in 
nanofluid near the stagnation point over a non-linear permeable

stretching/shrinking sheet is investigated. i

The adherence of the fluid to a solid boundary is known as no slip velocity i.e., the

velocity of the fluid at the solid boundary is zero. All the above studies were considered with

no slip boundary condition but physically the no slip boundary condition does not hold. Beavers

.and Joseph [115] studied the fluid flow over a permeable wall with slip effects. They showed
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that a boundary layer region induce within the permeable material. The slip flow under different

flow geometries have been discussed by many researchers Ul6-122).

The aforementioned studies were considered for the complete analysis of the flow

structure of Newtonian fluids. A study of heat transfer analysis in Non-Newtonian fluids have

been considered by the researchers due to its numerous important practical application in

industries, such as artificial fibers and plastic films. A few number of practical Non-Newtonian

fluids such as food staff molten plastic'and polymers etc. Rajagopal et al. |23linvestigated

the flow analysis over a stretching sheet of second order viscoelastic fluid. They obtained fourth

order highly nonlinear ordinary differential equation in which the order of boundary conditions

was one less than the order of nonlinear differential equation and solved it numerically by using

augmented boundary condition. Anel |24] and Andersson [125] provided a closed form'

analytical solutions of same order highly nonlinear differential equations of second grade fluid

and viscoelastic Walter's B fluid by considering magneto-hydrodynamic effects: Liu [126]

investigated diverse physical effects on the flow of viscoelastic second grade fluid. Sahoo and

Sharma [127] investigated the flow and heat transfer analysis of second grade fluid over a

stretching sheet in which fluid was considered an electrically conducting. Afterwards,,Cortell

[128] considered second grade incompressible fluid and analyzed flow and heat transfer

characteristic over a stretching sheet. A detail studies on secohd grade fluid reveals that it

exhibits normal shess only for steady state flow but it cannot predict the shear

thinning/thickening properties. Another models of Non-Newtonian fluids are third and fourth

grade 1129, 1301 fluids models which can predict shear thinning/thickening properties.

Therefore, in chapter 7,the slip effects on mixed convection orthogonal stagnation point flow

of third grade fluid over a vertical plate is presented.

.All the governing equations of the considered problems in this thesis are nonlinear

ordinary/partial differential equations subject to different boundary- conditions. The solution

procedure used for these problems are discussed in the following section.

1.5 Methodotogy 
i

For nonlinear differential equations, different analytical methods like homotopy analysis

method, and Adomian decomposition method with Pade approximations developed in last

decade have been used by researchers. Although these methods are efficient but are time

consuming. Similarly, numerical methods like finite difference method and spectral method

are also in lreat use of the researchers for this purpose. Since, we will be dealing with very
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complex equations in this study; we prefer to use these numerical rnethods instead of analytical

methods. The brief summary of these methods is as follows:

1.5.1 Finite difference method

The finite difference explicit/implicit schemes are one of the oldest schemes to solve any

ordinary/partial differential equation. These schemes are based on the replacement of

ordinary/partial derivatives of the equation with the appropriate forward/backward/central

difference approximation: As a result, a system of algebraic equations is achieved, which can

easily be solved by using any standard technique. Keller Box method is one of the implicit

finite difference method, in which the higher order differential equations are first transformed

into a system of first order differential equations and then converted to the system of algebraic

equations. Since the flow problems regarding the boundary layer stagnation point flow are

always nonlinearl so it is necessary to reduce the nonlinear differential equation to a system of

1't order linear differential equations as per criteria of Keller Box method and then these linear

differential equations are reduced to algebraic equations and then solved. This finite difference

scheme is very famous scheme [131]. The details about this method for different equations

have been presented in chapters 3 and 4.

1.5.2 Spectral method

Spectral method has developed rapidly in the pist four decades and has been applied

successfully.to numerical simulations in many fields, such as heat bonduction, fluid dynamics,

quantum mechanics, turbulence theory and metiology. Spectral method [32] is one of the best

method for the numerical solutions of PDE's. The basic theme of this method is to represent

the solution of the nonlinear equation as a sum of certain trial/basis functions with unknown

coeffrcients to be: found subject to satisfy the differential equation at different nodes and

boundary condition. The main feature of the spectral method is to take various orthogonal

-.systems of infinitely differentiable global functions as trial functions. It is noted that the

different trial functions lead to different spectral approximations. For instance, "trigonometlic

polynomials" are chosen for bounded periodic problems, "Legendre and Chebyshev

polynomials" are for non-periodic problems, "Laguerre polynomials" are for problems on the

half line, and "Hermite polynomials" are for problems on the whole line. The details about this

method for different equations have been presented in chapters 2 and 7.
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Chapter 2

Heat transfer in stagnation point flow over an

unsteady expansion/contraction permeable cylinder

This chapter deals with the study of heat transfer analysis in unsteady boundary layer stagnation

point flow of an incompressible viscous fluid over an expanding/contracting permeable

cylinder. The mathernatical model of the problem is made in terms of nonlinear partial

differential equations which is further reduced to a system of nonlinear ordinary differential

equations by using similarity transformation. The numerical solution of system of nonlinear

ordinary differential equations is calculated by using Chebyshev spectral collocation method.

There exist unique, dual and triple solutions in different ranges of unsteadiness parameter..S

and for different values of velocities ratio parameter. The rdnges for which the,unique, dual

and triple solutions exist are shown through graphs and in tabular form. It is observed that the

temperature and thermal boundary layer thickness decrease by increasing the absolute values

of 
^S 

in expanding cylinder case. However, this behavior is opposite in contracting cylinder

case.

!

2.1 Mathematical formulation
:

Consider a laminar boundary layer axisymmetric stagnation point flow of an incompressible

viscous fluid over a cylinder of time dependent radius r = br(t) = b6l@. It is assumed that

the surface of the cylinder is permeable and its radius is kept flexible as to contract or expand.

For negative values of f",the radius of the'cylinder increases which is a case of expanding

cylinder and for positive values of B' ,the rbdius of the cylinder decreases which is a case of

contracting cylinder. Fig. 2.1 shows the geometrical description of the problem in which

cylinder described by r=b,(r), and z'and,r.are the cylindrical polar coordinates measured

along axial and radial directions respectively. It is further assumed that the cylirider is stretched

or shrunk with time dependent velocity , ' 2cz -' t

," = ffi, which is linearlyproportional to the axial

distance from its origin. It is clear that, the stretching or shrinking velocity of the suriace
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accelerates or decelerates for positive and negative values Qt B' .The stagnation point is taken

ur, , =&o and z = 0 with wall temperature (, uniform ambient temperature \ andvelocity of

potential flow outside the boundarylayer u". The flow is considered here is like axisymmotric

aboui the z-axis, which enforces the azimuthal component of velocity to zero. The equations

representing the laws of conservation of mass, mornenfum and energy in cylindrical coordinate

system are

, .1 
,

i

I

7;lle

I

" Figure2.lz The physical model and coordinate dystem.
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where u and v'are the components of velocity in z and r directions respectively,v, isthe

kinematic viscosity and Zis the temperature of the fluid. The assumed boundary conditions for

the problem are given by . '

V =l*s 7l = Uns

v)V., Ll)u.,

r =r* at r =D,(:r1.

T -+T-^, - *J

24

br{0: b,,{l - p*t)tt}

(2.s)



The suction velocity v*, stretching/shrinking velocity u* and potential flow velocity

tue aredefined as follows:

2cz -abnl , 2azu*: 
1- p1''* =ffianduE r- B1' (2'6)

where a and c>0 (stretching) and c<0 (shrinking) aretheconstantsofdimension s-r. After

using the boundary layer approximations, Eqs. (2.2-2.4) reduce to the form

Ou ' Ou Ou -l Op ( A'u I Dr.r)

-+v- 
+u- 3 

---!_*v.i ^ +_- t.0t 0r 0z p1 0z '\Ar' r0r)' '

?=0,

aT ar aT ( a'r I ar)
-+r'-+tt-=a.l ^ +__ l.0t 0r 0z '\0r' r 0r )

' For eliminating the pressure gradient, the boundary condition r +6 is used

(2.7) (potential flow velocity outside the edge of the boundary layer) which reduces to

Ou Ou Ou Au Ou ( A', I 6rr\
A*, ar+Lt az=;*Lt":*rrlut*;A I : e.to)

Upon using the folowing similarity variable

(2.7)

(2.8)

(2.s)

in Eq.

"=ffif(ri,,=3*rrrf
f,'e;i=#,rt ('\' I I

r,u-r* =[aJ 

--ft ]

(2.11)

(2.t2)

(2.13)

the govemihg partial differentiai Eqs. (2.10, 2.9) andboundary conditions Eq. (2.5) become

I

,J

rlf (l) = y, f'(l) = 9, e(I):l
,a

f'Qil -+1, 0(ry) + 0 as ry -+ @

(2.r4)

R"=o4
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and prime denotes the differentiation w.r.t r7, Re is the Reynolds number, S is the

unsteadiness parameter, Pr is the Prandtl number, 7 > 0 is the suction parameter, dndc I a is

the ratio of the constant of stretching/shrinking velocity and the free stream velocity, which

represents stretchingphenomenon when cla> 0 and shrinkingphenomenon when c/a<0.

The physical quantities of interest are the skin friction coefficient and Nusselt number,

which are defined as

where t, is the thermal conductivity of the fluid, r* is the wall shear stress and qn is the heat

flux from the surface, which are defined as '

(ou\ - (ar\: otl* 
),.=htet 

Q*:-kr [, J,=0,,, (2'16)

After using the Eqs. (2.11) and (2.16) into the Eq. (2.15), the skin friction coefficient

and Nusselt number take the new form as follows:

g, = --!-v-. Ml =l Pru; l2'

' $IL = f,(r), NuJt- Bl = io,(t).
,{-P.t 

r \" rr

(2.rs)

(2.17)

:

2,2 Spectral collocation method

In order to solve nonlinear boundary value problem given in Eqs. (2.12) and (2.13) subject to

the boundary conditions Eq.. (2.14) against the applicable range of involved physical

parameters, u highly accurate Chebyshev spectral collocation method is used. In this method,

the solutions f (O and e$) ary approximated by sum of N+l basis functions f, with

unknown coefficients a, and b,, arewritten as

iV

f (€) * "f*(€)=|r,,7,,(4),
rr=0

N

0(0 = e*(€) =Zb,,T,(€).
tr=0

To obtain the highly accurate solution, the basis functions are chosen as Chebyshev

. polynomial of degree n and defined in the interval -l< € ( 1 as

7,,(€)= cos(ncos-r 6).

(2.18)

(2.1e)
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Sin"" the physical domain of the flow under consideration is [,o). The following

transformation is used to convert the physical domain into the same domain as that of basis

functions is [-1,1] by :

(2.21)

' (2.22)

(2.23)

. €=2fit,
where 17@ represents the physical infinity, i.e., the edge of the boundary layer.

above transformation, the obtain;d boundary value problem will take the form

-{'.@#9}#+4(n*-\#

n. 
{+ 

1,a - \ t # - + (n* - r(#)' * (r- .,)' }
(

.s{tr. -r)' - z(n* -\' #-o[,. 
@4L!),^ - r#]= o,

o{, . w}p,{*Y; ila::@ )l# 
=,,

and boundary conditions become

f G)= r, fr=(n*-t)*, oG)=,'", r = -,1 :

(2.20)

After using the

d{ =rl*-l . oG):o at €:ld€ 2)
After substituting the assumed solutions (2.18, 2.I9)

following non-zero residues R, and R,

into Eqs. (2.21, 2.22),

t)

+

the

*' = Gh [' 
. t+9' 

)ir"[. ;*{il.i,*,# :r,, ]
. !.(!- -)f oo,,f, "or1, "or-, 

g; - r 8r9{' fl ) *- er+€'z)L' t '-@- f
(,r * - t)' - z (a * - \' 1ruff-L- o (, . r"+g?)

(ry--l) $rr,, Ir.o.1r"or-, 6) -, sin(tios-' 6))
FilL ( -'-@-)

t



0t--t)'-q(rt--
,a,, sin(rcos-rd))'*, (ry- -r)

lQ )'(-,*r'),)[i
(,=o

Re (2.24)

and

(ry. -t)({+t)

(2.2s)

$ ,4, sin(n cos-' f)
Ll.-t

will be left due to the fact that the proposed solutions of Eqs. (2.12) and (2.13) are not the exact

solutions of the problem. To find the coefficients a,, and b,, in such a way that these residues

R, and R, are minimized throughout the domain. In the present work, collocation point

method is used in which the residues are forced to become exactly equal to zero at the set of

N+ I collocation points. These points are called Gauss-Lobatto collocation points Il 32] defined

AS:

(2.26)

In this way, two systems of N+l linear algebraic equations are obtained with N+l

unknowns constant coefficients each for o,, and b, respectively and Newton's iteration metllod

[33] is used for this purpose. The self-built code in MATLAB is used to compute the solution.

It is observed that the grid independent solution is achieved when N : 52 is chosen for all

values of the parameters in the discussion.

2.3 Results and discussion

For the validity of obtained result, a comparison for the values of f'(l) with the work of Lok

and Pop [35] is shown in Table 2.1 for distinct values of Re and y as a limiting case when

S :0 and c I a = -0.5. It is observed that the computed solution is in good agreement with the

previous work in which the solution was obtained both analytically and numerically. Figs.

2.Z(a-c) and2.3(a-c) show the graphical values of skin friction coefficient and Nusselt number

as a function of velocity ratio parameter c / a <0 for shrinking cylinder case for different

N N ( .. _ sin(n .or-' 4) )
},,cos{,rcos_'41},o,[,,cos(ncos-'51_6ffi,1

o':.t'75['.
\v (

h,,0, [,,.orr,, 
cos-' 6; - t ffi;.

2(,t* -,,[, e.(r. ry-!1, *..*"i,,, 
"o,1,"o,-' o).
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values of Re when /=0.5 and Pr :0.7 are fixed. It is observed that the boundary value

problem Eq. (212) subject to the boundary conditions Eq. (nq satisfies the solution of spiral

like shape for these values of the parameters for S = 0 and S:0.04 as shown in Fig. 2.2(a),

which is evident from the previous study [35] for S = 0. It is further noticed that when S :0,

this spiral ends very near to the point (-1, 0) as shown in Fig. 2.2(b), but in the presence of

unsteadiness parameter S = 0.04, this spiral ends at the different points for different values.of

Reynolds number Re as shown in Fig. 2.2(c).ln other words, one can say that there exist triple

solutions of boundary value problem Eq. (2.12) subject to the boundary conditions Eq. (21ra)

for different values of velocity ratio param eter c I a for shrinking cylinder case as shown

through Tables 2.2 and2.3.lt is further observed that the solution of the problem does not exist

when cla<1, for both S=0 and S:0.04. The ranges of parameters c la for which unique,

dual and triple solutions exist are mentioned in Tables 2.2 and 2.3 for S = 0 and S = 0.04

respectively. The points t, and l, are turning points where dual and triple solutions are found.

One can easily observe from these figures that t, < c I a < 0 is the unique solution region for all

given values of Reynolds number Re and unsteadiness parameter S, which is in fact the

continuation of the solution for stretching case (cla> 0). As in the paper of Riley and

Weidman [134] and Lok and Pop [35], the upper branch solution of the triple solutions as that

for which /'(l) is greatest for a given value of c I a. Similarly the other solutions are known as

lowerbranch solutions. Wilks and Bramley [35] and Merkin [136] performed the stability

analysis of dual solutions for the same boundary value problem and it was revealed that the

solution along the upper branch (first solution) was linearly stable however, the solution along

the lower branch (second solution) was linearly unstable. Similar discussion can be found on

the multiplicity of solution of boundary value problems in the paper of Riley and Weidman

[134] and Wang [29]. Unsteadiness parameter further helps to decrease the skin friction

coefficient for all values of Reynolds number Re as shown in Fig. 2.2(a) for first solution and

by increasing the value of Re in presence of unsteadiness parameter the skin friction coefficient

increases. Similar behavior was mentioned in [35] in the absence of unsteadiness parameter.

Fig. 2.3(a-c) shows the variation in the values of Nusselt number against c / o with different

values of Reynolds number Re for shrinking cylinder case. It is observed that for the upper

branch solution, the value of Nusselt number decreases with the increase in the magnitude of

c / a till the critical points for both S = 0 and S : 0.04 as shown in Fig. 2.3(a). It shows that

the transfer of heat from the surface of cylinder to the fluid decreases for shrinking case. It is



also observed that the induction of unsteadiness parameter further reduces the heat transfer rate

from cylinder to the fluid. In case of second solution, the Nusselt number increases with the

increase in magnitude of c I a . Finally for S : 0, the Nusselt number ends near the point (-1,

0) as shown in Fig. 2.3(b) as reported in [35] but for.S=0.04, it ends at different points

depending upon the values of Re as shown in Fig. 2.3(c). Fig. 2.4 shows the velocity profile

for different values of velocity ratio parameter c / a (shrinking cylinder) with suction parameter

y=0.5, Reynolds number Re : I and unsteadiness parameter 5=0.04 are fixed. It is

observed that for the first solution velocity decreases and boundary layer thickness increases

by increasing the absolute values of c/ a. In the second solution for the starting values of r7

velocity decreases but for large values of r7 velocity increases and boundary layer thickness

decreases with the increase of absolute values of c I a. Fig. 2.5 shows the velocity profile for

various values of mass suction parameter and Reynolds nurnber Re with c I a = -1.2 and

S = 0.04. It is seen that velocity increases and boundary layer thickness decreases by

increasing the values of y. The lower branch solution attains its minimum value near the wall,

which gives the negative velocity gradient and causes the reverse flow. Physically, the velocity

gradient will be considered positive when fluid will exert drag forces on the wall and will be

opposite in negative velocity gradient. Fig. 2.6 shows the effects of various values of Re, Pr

and y on the temperature profile when cla=-1.2 and S=0.04 are fixed. It is observed that

thermal boundary layer thickness increases by increasing the values of Prandtl Pr. Figs. 2.7(a,

b) and 2.8(a, b) show the velocity and temperature profiles for various values of unsteadiness

parameterwith c /a=-0.5, T=2, Pr:0.7 andRe:1 arefixed. InFig.2.7(a), itis seenthat

velocity increases by increasing the absolute values of unsteadiness parameter ,S (expanding

cylinder) but it produces apposite effects on boundary layer thickness. On the other hand

velocity decreases and boundary layer thickness increases by increasing the unsteadiness

parameter for contracting cylinder case as shown in Fig. 2.7(b). Fig. 2.8(a) shows that the

temperature and thennal boundary layer thickness decrease by increasing the absolute values

of ,S (expanding cylinder). However, behavior of temperature and thermal boundary layer

thickness is found opposite against unsteadiness parameter for contracting cylinder as shown

in Fig. 2.8(b). Figs. (2.9-2.12) show the streamlines for stretching and shrinking cylinder with

T=0.5, Re: I and S:0.04are fixed. Figs. (2.10-2.12) show the streamlines of the first,

second and third solution for the shrinking cylinder case.
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Table 2.1: Numerical values of .f'(1) for distinct values of Re with c / a = -0.5.

T =0.5 / =1.5

Re

Lok and Pop [35] Present work

Analytical Numerical Numerical

Lok and Pop [35]

Analytical Numerical

Present work

Numerical

0.5

1

5

l0

50

100

1.7297

2.4038

6.3380

10.5448

41.4347

79.1703

1.6800

2.3709

6.3331

10.s456

41.4368

79.1714

1.6800

2.3709

6.3331

10.5456

41.4368

79.1714

2.1975 2.1794

3.442t 3.4406

12.6513 12.6579

23.9478 2395ts

113.9897 113.9900

226.4949 226.4950

2.1794

3.4406

12.6579

23.9515

113.9900

226.4950

(a) Re = 0.2,0.5, 1.0

-s=0S = 0.04

-t
c/a

3l
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Re = 0.2,0.5, 1.0

-1.15
c/a

,,,,',,' Second solution
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Thirdsolution
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-1

c/a
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I
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I
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(c)

Figure 2.2(a-c): Variation of the skin friction coefficient with cla for distinct values of Re (a)

when y:0.5 (b) when T =0.5 and S:0 (c) when T =0.5 and S:0.04. . l
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0.03
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Re = 0.2,0,5, 1.0

-0,01 ' ' ' ' ' '

-1.1 -1.08 -1.06 -1.04 -1.02 -1
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I r_iF-{_- I .F FE

(c)

-1.25 -1,2 -1.15
c/a

-1.1 -1.05

Figure 2.3(a-c): Variation of Nusselt number with cla for distinct values of Re (a) when Pr =

0.7 and /=0.5 (b) whenS= 0, Pr= 0.7 and y:0.5 (c) when S:0.04, Pr:0.7 and y=0.5'

--- Fiistsolution

,,,,,,,' Secorul solution

c/a = -1.2, -1.35, -1.5

10
11

Figure2.4: Velocityprofile "f'(D fordistinctvalues of clawhenRe:1,S:0.04 and y =0.5.
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Figure 2.5: Velocity profile f'(q) for distinct values of 7 when cla = -1.2 and S: 0.04.

-First 
solution

" 'second solution

Re = l,y =.2;
t Re=I,yJl;

\. X, = 0.5,y = 1;

Figure 2.6: Temperature profile 0(ry) when cla = -1.2 and,S: 0.04.
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Figure 2,7(a, b): Velocity profile -f'(d for distinct values of S when Re : l, cla = -0.5 and
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Figure 2.8(arb): Temperature profile 0Q) for distinct values of ,S'wien Re : I , c/a:-0.5, Pr

= 0.7 and T =2.
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- 
c/a = a,5

,",,,,c/a= 1.0

---c/o=1.5

-3-2-10123
?/b^ !

,o
Eigure 2.9: Streamlines for distinct values of stretching paralneter cla when Re = l, ^l: 0.04

and y = 0.5.

-202
7/bo

Figure 2.10: Streamlines foi distinct values of shrinking paramete r cla whenRe : l, ,S: 0.04

and y = 0.5 (first solution).
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0
?/h0

Figure 2.1 1 : Streamlines for shrinking parameter cl a : -1.2 when Re : l, S : 0.04 and y = $.5

(second solution).

ty/(b

0
?/b0

Figure 2.12: Streamlines

T =0.5 (third solution).

for shrinking parameter cla: -1.0383 when Re: 1, S: 0.04 and
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Table 2.22 The regions for which three solutions exist related to the Fig. 2.2 and Fig. 2.3 for

distin"t talu"t of R" *hen / = 0'5 und s = 0'

Lok and Pop [35] (S: 0)

Re 0.2 0.5 1.0

1't solution

2nd solution

3'd solution

I't solution

2nd solution

3'd solution

-0.9377 <cla< 0 -0.9633 < cla<0

-19042< cla < -l -1.8138 < cla < -l

-l < cla < -0.9377 -l < cla < -0.9633

Present work (,S: 0)

-0.93779 < cla < 0 -0.96339 < cla <0

-1.904169< cla < -l -1.81379 < cla < -7

-l < cla < -0.93779 -l < cla < -0.96339

-0.9731 <cla<0

-1.8047 <cla<-l

-1 <cla<-0.9731

-0.97319 < cla <0

-1.80469<cla<-l

-l<cla<-0.97319

Table 2.3: The regions for which three solutions exist related to the Fig. 2.2 and Fig. 2.3 for

distinct values of Re when T = 0.5 and S: 0.04.

Present work (S: 0.04

ltt solution
-1.2<clq<0

-1.0741112<cla<0

2nd solution 3to solutionRe
0.2

0.5

-1.9444<cla<-1.236

-1.8144 < cla < -1 .0803

-1.236<cla<-1.2

-1.0803 < c/a < -1.0741112

1.0 -1.03022<cla< 0 -l .795<cla<-1.04005 -1.04005 <cla<-1.03022

2.4 Conclusions

In this study, the effect of unsteadiness parameter on the fluid flow near the stagnation point

region over an expandingicontracting permeable cylinder is investigated. The positive value of

unsteadiness parameter corresponds to contracting cylinder and negative value corresponds to

expanding cylinder. The governing partial differential equations are modeled as to describe the

considered flow problem which is then reduced to system of nonlinear ordinary differential

equations. The solution of the obtained system is computed with the help of highly accurate

Chebyshev spectral collocation method. The Chebyshev polynornial are used as a basis

function over the Gauss Lobatto points as grid points in the domain. The computed solution is

first validated by comparing the values of the obtained solution as a limiting case with the

results available in the literature. It is ensured that the computed solution is highly accurate, so

the analysis presented in this chapter are valid. The dual and triple solutions of the present

problem are obtained in the specific ranges of the parameters. In the case of expanding cylinder,
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velocity increases and temperature decreases by increasing the ibsolute values of unsteadiness

parameter. On the other hand velocity and thermal boundary layer thickness decrease due to it.

The opposite behavior is observed in the case of contracting 
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Chapter 3

Radiative heat transfer in unsteady mixed convection

flow near forward stagnation point over a cylinder of

elliptic cross section

In this chapter, the effect of thermal radiation on unsteady mixed convection boundary layer

flow near a forward stagnation point over a cylinder of elliptic cross section is presented. The

governing partial differential equations contain three independent variables are converted into

dimensionless partial differential equations by using a suitable transformation and become

partial differential equations with two independent variables for the case of forward stagnation

point and then solved numerically by using an implicit finite difference scheme. The detail

about the solution procedure for the obtained partial differential equations are elaborated in this

chapter. This method is commonly known as Keller Box method and the accuracy of the results

is verified by comparing the obtained results with that of previous studies available in the

literature. It is shown that the results are highly accurate and are in good agreement. The

separation times for both blunt and slender orientations in the presence of thermal radiation are

shown in tabular form. Moreover, the effects ofpertinent parameters including Prandtl number

Pr, mixed convection parameter ),, thermal radiation parameter R, surface temperature

parameter 0* and blunt/slender orientation parameter o)* onthe velocityprofile, temperature

profile and Nusselt number are shown graphically and discussed in detail. From the present

study, it is observed that boundary layer separation occurs early due to presence of thermal

radiation and Nusselt number increases for both blunt and slender orientations of the elliptic
cylinder.

3.1 Mathematical formulation
Consider a two dimensional unsteady mixed convection flow of an incompressible viscous

fluid over an elliptic cylinder near the region of forward stagnation point. It is assumed that the

heat is transferring through the boundary layer due to both external agent and buoyancy effects

called mixed convection in the presence of thermal radiation. A uniform temperaturee is
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considered at the surface of the elliptic cylinder and I is temperature of the fluid away from

the cylinder.

Coordinate sy$tem: The relation between Cartesian coordinate ("v, y) and elliptic coordinate

((,y') is defined as [137] 
.

x = a* e cosh ( cos y', y = a* esirth ( sin y.

The surface of an ellipse can be defined by ( = (,,, so

tanh(^ =b*/ ,,- /a
and the metric coefficients of elliptic coordinate system are defined as

where a* is semi major axis, e is eccentricity and y. is angle measured in the streamwise

direction from the forward stagnation point.

Governing equations: For the sfudy of fluid flow and heat transfer around the surface of
elliptic cylinder, it is convenient to use a local coordinate system in which X-coordinate is

measured in the streamwise direction along the surface of the elliptic cylinder from the forward

stagnation point and I-coordinate is taken normal to the surface as shown in Fig. 3.1 . The free

stream velocity is considered as ll2U- as taken by Merkin l4ll, very far from the cylinder

which impulsively starts in vertically upward direction. After using the bound ary layer

approximations, the governing equations of the flow problem can be written as

0u 0v

-+- 
= 0.AX AY

fu*ufu*uL=,,6)#.,,*(*)* B,r(, -r )sin(r.), (3.2)0t AX AY

(3.1)

(3.3)
ar aT aT t alf. t6o'r3 larl
-+, ax*'aY= @q, aYlto'.ffi]*l

subject to the initial and boundary conditions

'' o',!f 
;&: ;;: ;&:,i =',:; &,;i:i:x.''

u(X,f) + u"(X),T (x,y) -+ f as I -+ oo,

where u and v are the velocity components in X and, Y directions respectively and p. is the

angle between outward normal from the cylinder with downward vertical axis, (prr), is the

(3.4)

sitthz ( +sin2 y
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^t

Figure 3.1: The physical model and coordinate system.

.-li

heat capacity of the fluid, B, is the thermal expansion coefficieirt, g is the acceleration due to

gravity and, u" is the velocity of potential flow. The radiation et'fect in Eq. (3.3) is considered

by using the Rosseland diffusion approximation [3]. Under this approximation, the solution is

not valid for situations where scattering is expected to be non-isotropic as well as in the

immediate vicinity of the surface 'of the cylinder. Now introducing the non-dimensional

variables as reported by Ali et al. [138]

I l,u,*

where Re = a"(J * lv, is the Reynolds number. Using Eq. (3.5) into the eqr. 1:. f -: .3), the non-

dimensional form of governing equations are

. ir

i = +,, = I!| y,i = !!. ,v :*"',, [*) ,T :u? t,s = !-!r-.a-' a- U-'- (U-l'- .o',"'" \-T_'

an an

T.* ry=u'

I *n 4 *v 4 =v 61ffi,(r) . I( q\+ ).tsin( co.\. ;

0t di ry, "," di rylq) /'

#., # +i 
#= #[, *1 o,(, * (a- - \E}#),

(3.s)

(3.6)

(3.7)

(3.8)
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where ),=G.lkez is the mixed convection parameter, Rd=4o'73*f kr1o, +a,) is the

radiationparameter, Gr=ggr(t-T*)a" f vr'istheGrashofnumberand 0*=\lT* isthe

surface temperature parameter. It is necessary to mention here that )">0 conesponds to

assisting flow when T* )T* and )"<0 corresponds to opposing flow when T* 1T*. The initial

and boundary conditions (3.a) take the new form as

t <0: n(7,t)=n(i,V)=0, 0(i,v)=0forany x,/
T>0: u (7,0) =, (;,0):0, 0(t,o)=t,
n (i,r) -+ u 

" 
(t), o (i,r)-+ o as y -+ o.

Now introduce the following transformation stated below

vr' :T'''li" (i) f (r,,l,T),0 = 0 (i,rl,T), n = 4,

where y. is a dimensionless stream function, defined by the relationship u=ff una

,=-UY' .Using Eq. (3.10) into the Eqs. (3.7-3.8), the system of dimensionless partial
ox

differential equations is obtained as follows ''.

(3.e)

(3.10)

*.+Y., +1, W)' 
. t #)=T # -, )"0"i"9.)ort 2ou 

+Ti"(##-o-#),

+ #[{, 
*t 

^,(r 
+ (a* -\ q']#)., *, X. +#

:,(#.,"(## *#))
Initial and boundary conditions Eq. (3.9) take the form as

T<o: f =#=0,0=o foranyxand4

T>-o: f =#=o, o=l at u=0,

{ -t,o ->ooq

(3.11)

(3.12)

(3. r 3)

as r/ -> co.

Blunt orientation of the cylinder: The blunt orientation of the cylinder is defined as when the

major axis of the cylinder remain parallel to the axis.
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Slender orientation of the cylinder: When the major axis of the cylinder remain parallel-to

they-axis, the orientation of cylinder is called slender orientation.

Here x and sin(f') in terms of angle y' for blunt and slender orientations are

/. , tlllt: 
J (t -e'sirr's) ds,
0

/
i : I(,-"' "o.',)"'d",

0

sin(p')=5
(r-"',in'y')"'

sin 7'

atrT-0,

aSry -+ oo.

aQ,u

sln / (3.14)

sin(e'): (3. I s)
(r-"' "o"' r')t''

respectively, where a' arrd b' are the length of semi major and minor axes and e is the

eccentricity which is given by ,' =l-(b'la')'. ,n case of blunt orientation at' = b'la' is

consideredlessthan 1 andinslenderorientations ro'= (o'lU')' isconsideredgreaterthan 1.

3.1.1. Forward stagnation point flow

The present study is concerned to investigate the flow and heat transfer near forward stagnation

point(x=0)over an elliptic cylinder. The term on the R.H.S. of Eq. (3.11),"i"(e')fu"

approaches ar' when 7 approaches zero. The potential velocity n"(7) = sln (7) as reported by

Ingham and Merkin [39] becomes zero in case of forward stagnation point and )u"f Tx=1.

The governing partial differential Eqs. (3.11,3.12) near the forward stagnation point become

#.+#.'[' (#| .'#)r #-'[, oa',

+ *[{, *t ^,(r 
+ (a* -\'ll/,].u H. iH =r(#),

and the boundary conditions become

T>o: f={=o, o=1-dq

{ -t,o -+o
on

(3.16)

(3.17)

(3. l 8)

The relation of local skin friction coefficient and Nusselt number are written as

g . : ---!o- , Nu =-I (o-)ru'*

where r* and q* are defined as

kt (\ -T*)' (3.1e)



a,

+.- i('ott\ l( . 16o'73 )arlr* = ttrl* 
),=,, 

ct,u = -L[e +r@;;J)* 
),=.,

:,

(:.zo) '

After using Eq. (3.20) into Eq. (3.19), the skin friction coefficient and Nusselt number

take the form

CrRe"'=fir" a, f (0,7)
^1 ,
dq'

point.

The skin friction coefficient CyRetD vanishes as u"(i) , 0 at forward stagnation
.t. ,

3.2 Keller Box method
t,t

'The system of partial differential Eqs. (3.16,3.17) is nonlinear in nature and the solution of
this system subject to the boundary conditions Eq. (3.1 8) is hardly possible through analytical

methods. Therefore, a numerical,method is used known as Keller Box method which is second

, order accurate method and converges.rapidly tl31]. , i. ,"

Initially these differential equations are reduced to the sy'stem of first order differential

equations by introducing the new variables using (J,V,'Pandp defined as

f' -U,U' =V,0 = Pand?' 
=Q

Eqs. (3.16, 3.17) and botndary conditions Eq.(3.18) take new form as

; 
g'+vrle+P:rTfe*1*,(r+(a* -r)r)' e'+

4R,t(o*-txl+(a," -t)r )'g, =v,rTff
-.- j. j-'

"f 
(:0,t) =U(0,/ ) = 0,P(0,7):1,

U(a,7):1,P(oo,r)=0.

A grid net on the plane (rt,T) is defined as

Uo =0,U i =e,,-, + Lq,U.r : 0-, j =7,2,...J -1,
To =0,t" -T'-'+LT, n=1,2,..., 

f
where n and j are positive integers, Ar7 and L,7 are widths. of meshing variables on (r7,7)

plane. The approximate quantities of functions f,u,v,pande at the net point (0r,t") are

t

(3.2r)

(3.23)

(3.24)

(3.2s)
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known as net functions whose derivatives in 17 and 7 - directions are replaced by the central

differdnce fomrulae and funbtions itself are replaced by average centered at the midpoint

(4 ;r,T 
n-tt 2 

) defined as

(#)|," : orL(r; - r;')' r;:'' = *(r; - ri'-')'andr',-''' - !ui' + rj'-')'

After discretization, the system of nonlinear partial differential Eqs. (3.22) and (3.23)

are converted to the system of difference equations written as

(3.26)

t"

(3.27)

il.

fj' - fi-,=Iru'; +(J'j-,),

ui -ui ,=*rr; *,vi),

Pi - Pi-,=*rn; +e;-,).

(3.28)

(3.2e)

(3.30)

Where



(3.31)

!n,
J

(3.32)

(3.33)

The above nonlinear algebraic Eqs. (3.26) and (3.27) are linearized by using Newton

method by introducing (i+l)'fr iterates as

similarly it is same for all other variables in which f j'o is known for 0 < j < J as an initial

guess and 6 f'o is unknown. After using the Newton linearization piocess and neglecting the
I

terms containing square and highei order of 67;'tit,*',(i\,6V':u),6P:'o anddQj(') the system

of linear algebraic equations is obtained a; follows

6 fi - 5.fi-, - * ru'; + \ui-)= (,i),,

(s) i6f;' +(sr),5fi_, +(s,),dU'i +g),\Ui_, +(s,),dVi' +(s),6V'i_,+

(s,),67i + g),|Ti-r = (rz) t,
(s ), dT I + (s,), dT i_, + (s,,), 6 el + g,',r), d ei _r = (rr );,

5u; - 5u;-, - + (6vi + 5v;-,) = (i,) ),

The boundary conditions Eq. (3.33) take the form as

. 5/;' - 8Uo' =0,5P0" =0,5U.r" =O,6PL' =0.
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I

(oi'-o;--l')
t Arl .l-

4 R,, 0- r-, {' 
+ (t - o*)2 (ry)' 

}1',.' ;', 1'
t +Q - 0*)(Pj'-' + Pj'-l) j

The boundary condition Eq. (3.24) become

fr" =(Jrn -o,Po" =1,(Ir" =l,Pt'=0.

(3.34)
I

I

I

?,

.t
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Finally, the above system of linear algebraic equations with boundary conditions will

be written in matrix vector form. The coefficients in,momentum and energy equations of
i

unknown functions 6f;,N';,6V; ,6P; and6Qj and non-homogeneous parts are given as

Coefficient of momentum equation: . 
'

I
I

I

6 .f ;' =(s, ) i = 7'-''' lLjI!, 6 fi,= (s,) i = (", ),,

z(Ui +U'i-) 7n-tt2
5U'; =(sr); = -7n-rt -- -- - - ,\Ui-r =(so); =(s:);,

^t
6v;' =(s,)i =|* 

(rt'+:t''') *|'-''''(fl' + f;-') 
.Lr1' 8 '"i '4 '

$Vi_, = (s),
L17 8' r {
7n_Uz 7r*

I \ t'l 
2

Coefficient of energy equation:'

l,
,5Pi-r=(sr)i =(sz)r,

api =(s,)i = !*,{rrr--1y'(Pi 
tj'1')' }Y{i@+e; *r;,r}W.

Ro(o*-,;{t'--'l' ei + pi)+@--D}roi *e'j-,,')'-vr-t*!,upi-,=(s,o)i =(r's)i,

!oi=(",'), =)-*'J9+'!*]'l-'''q? .

-1;,(P,1+-Pi,)' .rye; I 
pji)+r*#e;, +rl,l,)+fi^,{'*r'-

i

I
I

F
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pfTn-U2\J.i 'J.i-t)\Y.i 'Y.i-t)_. R,l 1
8

(Q;-' -O;-l)- R,t(o* -l

4

' [ 2 ':'/ ^j-t' - 4 
\-/' 'i-l

3Art i 
| 
:te*- tl 

'(p;,, * pi_;,) *r(0,, . t)' ,p; ., + pi;\,

' ,',, (Prl'-' * Pi-rt)' I
-l)z :--J----J::-:- + (0* -l)(P;'-' + Pi.')J(o;-' + g;_l)' ,r{';ra

(r) i =Qi, u')+lrrr; *rr;)),,

(r,)i = Qli-,- Pl,)+*rn; *Q,;-):.

i

!

:

:

The resulting matrix vector form is solved by using block-tridiagonal elimination

technique, which consists on two sweeps namely forward sweep and backward sweep. The,

edge of the boundary layer ry- and step sizes Ary and Ar in t7 andt respectively are set for

different range of parameters involved in the problem.

3.3 Results and discussion

The effects of pertinent parameters like mixed convection parameter Z,blunt and slender

orientations parameter ar', Prandtl number Pr, radiation parameter R, and surface temperature

parameter 0n on the flow behavior are shown graphically by plotting velocity, temperature

profiles and Nusselt number. Foi the validation of our results, the values of separation times

near a forward stagnation point are compared with that of the work of Jamaludin et al. [56], as
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shown in Tables 3.1 for the particular values of a)*,).,Pr,Rrand 0*. It is found that the

computed results are in good agreement with the previous study and hence it is accurate. Table

3.1 presents the separation times along the elliptic cylinder near a forward stagnation point in

absence as well as in presence of thennal radiation for both blunt and slender orientations with

the fixed values of other parameters like Pr = I and )" = -3 (opposing flow). In blunt

orientation, separation times do not occur for values of parameter co*:0.1,0.25and0.5. tn

slender orientation, separation time reduces with the increase of rti. It is also seen that

separation time in blunt orientation is higher than that of the slender orientation. It is further

observed that, in the presence ofthermal radiation, separation times of the boundary layer flow

reduce. The variation in separation time near forward stagnation point against mixed

convection parameter ,1, in the absence as well as in the presence of thermal radiation is shown

in Fig. 3.2. lt is noticed that separation time decreases with the increase of absolute values of
mixed convection parameter 2. Further, the separation time reduces due to the presence of

thermal radiation. The effects of involving parameters on velocity and temperature profiles for

both orientations are given in Figs. 3.3-3.8. Figs. (3.3-3.6) show the velocity and temperature

profiles for specific values of time I in the absence as well as in the presence of thermal

radiation in which dashed lines represent the thermal radiation effect. Fig. 3.3(a, b) shows

velocity profiles in assisting flow case for blunt orientation (@' =0.5)and slender orientation

(o* :4) in (a) and (b) respectively. The Fig. 3.3(a, b) depicts that the velocity increases with

the increase of time r in both blunt and slender orientations. It can be further verified through

the figure that velocity profile increases due to the effect of thermal radiation. Fig. 3.4(a, b)

shows the variation in velocity profile in opposing flow case for both orientations. It is seen

that velocity profile in the boundary layer increases in blunt orientation and decreases in slender

orientations with the increase of time r. It is further seen that velocity reduces in the presence

of thermal radiation for both blunt and slender orientation cases. The momentum boundary

layer thickness in blunt orientation decreases with the increase of time r . Fig. 3.5(a, b) presents

the temperature profiles for different values of time r in assisting flow for both blunt and

slender orientations. It is seen that temperature and thermal boundary layer thickness decrease

with the increase of time r in both orientations but the values of temperature become higher

in the presence of thermal radiation. Fig. 3.6(a, b) is drawn to show the behavior of temperature

in opposing flow case for different values of time. Fig. 3.6(a, b) shows the same behavior as
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observed in Fig. 3.5(a, b). The effect of thermal radiation parameter R, on velocity and

temperature profiles for both opposing and assisting flow cases are shown in Figs. 3.7(a,b) and

3.8(a, b), when Pr = 1and7= 0.04 are fixed. The dashed and'solid lines represent the behavior

ofblunt (at' =0.5) orientation and slender (r* =4) orientatior."rp""tively. Fig. 3.7(a) depicts

that velocity decreases in both blunt and slender orientations with the increase of thermal
I:

radiation in opposing flow case (4= -l).Fig. 3.7(b) shows that Velocity increases in both blunt

and slender orientations with the increase of thermal radiation in assisting flow case (1.=2).

Fig. 3.8(a, b) shows that temperature and thermal boundary layer thicknesses increase by

increasing the thenflal radiation parameter'4, fo. both'orientations. Also the values of

temperature in both orientations are very close. In opposing floy, the values of temperature in

blunt orientation become smaller as compare to ilender orientation and opposite,behavior is

obseived in assisting flow case. The effects of pertinent parameters on Nusselt number are

shown in Figs. 3.9(a,b) and 3.10(a, p). Fig. 3.9(a,b) illustrates the variation in Nusiltt number

against 7 for various values of @' when Pr = I is fixed for both orientations in opposing flow

Q' = -3). Fig. 3.9(a) shows that Nusselt number.decreases in blunt orientation with the increase

of ai in the presence as well as in the absence of radiation effect. The transition in Nusselt

number become smooth from initial unsteady state to steady 1,u,. flo*, but for a. =0.75 the

value of Nusselt number truncates up to a certain value of r due to the separation. It is s'een

that radiation effect further enhances the values of Nusselt number for all.values of r. In Fig.

3.9(b), Nusselt number decreases in slender orientation up to certain values of r with the

increase of @'due to the separation time, and the values of heat transfer rate increase due to

thermal radiation. Fig. 3.10(a, b) demonstrates the variation iri Nusselt number against r for

various values of thermal radiation parameter 4, for both opposing Q"- -3) and assisting

(1=2) flow cases. Nusselt number increases with the increase of thermal radiation for both
j

blunt and slender orientations. This is because increasing values of R,, help to enhance the

interaction of radiation with the thermal boundary layer and as a result, the heat absorption

intensity of the fluid increases. In Fig. 3.10(a), the values of Nusselt number in blunt orientation

become smooth from initial unsteady state flow to final steady state flow. In slenderorientation,

the values of Nusselt number for each values of R, truncate up to certain values of r due to

the separation. In Fig. 3. l0(b) for assisting flow, the values of Nusselt number become smooth
I

i.t
,l

I
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frorn initial unsteady state flow to final steady state flow in both orientations. It is furt'her seen

that heat transfer rate in slender orientation is greater than that in blunt orientation.

Table 3.1: The separation times t, at(i =0) over elliptic cylinder for Pr =landl=-3
(opposing flow).

Limiting case results'of [39], [56]

Present (Ro= 0..5,0* = 0.8 )

Figure 3.2: Separation times at (7 = 0) when Pr:1 and ai =1.

..i
1

.i

o

t

Slender orientation ,. = 1a. f b. )' Blunt orientation r,; =b.ld.

100 l6 4 1.7778 0.75 0.5 0;.25 0.1

Ra = 0'0
ts6l I
present t,

0.0033 0.0215 0.0954 0.2652

0.0033 0.0215 0.0958 0.2652

t.52r

1.521

4r = 0'5

0*:0.8 present l" 0.0031 0.0199 0.0877 0.23902 t.2215

I
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(a)

Figure 3.3(a, b): Velocityprofiles for assisting flow for diffeient time steps r at (x = 0) when

Pr = 1 and )" = 2 in (a) blunt orientation a.r- : 0.5 (b) slender orientation a)' = 4.

t*

trv
\

(b)
7 = 0.01, 0.04,0.08
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Figure 3.4(arb): Velocity profiles for opposing flow for different time steps r at (f : 0) when
ll

Pr =land)"= -3 in (a) blunt orientation at* =0.5 (b) slender orientation a* = 4.
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Figure 3.5(a, b): Temperature profiles for assisting flow for ilifferent time steps r at (x = 0);

when Pr=land )"=2in(a)bluntorientation a* =0.5 (b)slenderorientation 0)* =4.

7 = 0.2, 0.4,0.8
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Figure 3.6(a, b): Temperature profiles for opposing flow for different time steps / at (x- = 0)

t,

when Pr : 1 and)"::3 in (a) blunt orientation ar* : 0.5 (b) slender orientation 0)' = 4.
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(b)

Figure 3.7(a, b): Velocity

T =o.04in (a) opposing flow

Ro= 0.0, 1.0,2.0, 3.0

!

!

profiles for distinct values ,of R, at (7 = 0) when Pr = 1

)"=-3,0* =0.8(b) assisting flow )"=2,0*:l:4.
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o(a)

F

o
(b) Ro= i.0,2,0, 1,0,0.0

Figure 3.8(a, b): Temperature profiles for distinct values of R, at (t = 0) when r = 0.04 and

Pr = 1 in (a) opposing flow ). = -3,0*: 0.8 (b) assisting flow ), = 2,0n =1.4-
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Figure 3.9(a, b): Variation in Nusselt number againsil at (t = 0) for distinct values of ar'

when Pr.= l and )": -3 in (a) blunt orientation (b) slender orientation.
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Ro= j.0,2.0, 1.0,0.0

Figure 3.10(a, b): Variation in Nusselt number against r at (x = 0) for distinct values of R,

when Pr = I in (a) opposing flow ). = -3,0n = 0.8 (b) assisting flow )"=2,0* =1.4.
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3.4 Conclusions

In this chapter, the study of the effect of thermal radiation on unsteady mixed convection flow

near a forward stagnation point over an elliptic cylinder is investigated. The analysis is made

for both orientations of the elliptic cylinder and focused only on flow near the region of forward
I

stagnation point. Separation times in both orientations in the presence of thermal radiation are

calculated by using irnplicit scheme of finite difference method and shown in Tabular and

graphical forms. It is observed that boundary layer separatioh occurs early due to thermal

radiation and the value of Cl Rel/2 becomezero at (x=0). In opposing flow, the values of

velocity in blunt orientation becorne higher than the values in slender orientationdue to thermal

radiation. However, the values of temperature profile in btunt orientation bebome smaller than
,lr

the values in slender orientation. An opposite behavior is observed in assisting flow case. In

opposing flow, for both orientations, heat transfer rate increasds due to thermal radiation. The

heat transfer rate in blunt orientation become higher than that of slender orientation in the

presence of thermal radiation in opposing flow case but an opposite behavior is observed in

assisting flow case. 
i

t

1

I

I

t:
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Chapter 4

Heat transfer in MHD mixed convection stagnation

point flow of a nanofluid over a vertical plate with

viscous dissipation

In this chapter, magnetohydrodynamic effects on the mixed convection stagnation point flow

of electrically conducting nanofluid over a vertical plate in the presence of viscous dissipation

is presented. The nanofluid consists of Cu (copper) and AlzOs (alumina) nano-particles with

water as base fluid. Tiwari and Das model [60] is used to develop the mathematical formulation

ofnanofluid flow in terms of governing equations. The developed governing equations are then

reduced to the system of ordinary differential equations by using similarity transformations.

The solution of the resulting system of ordinary differential equations is obtained numerically

by using Keller Box method. The developed numerical code is validated through a comparison

of computed results with previous studies is shown in tabular form. The effects of pertinent

parameters like magnetic parameter M,Eckert number Ec, andvolume fraction parameter @ on

velocity, temperature, skin friction coefficient and local Nusselt number with fixed value of
Prandtl number Pr = 6.2 are shown graphically and discussed in detail. These results show that

by increasing M and Ec, the skin friction coefficient increases for both nanoparticles in both

assisting and opposing flow cases. However, the heat transfer rate increases in opposing flow

case and decreases in assisting flow case due to these parameters. Similarly, by increasing the

volume fraction parameter @ of the nanoparticles, the skin friction coefficient increases in boih

assisting and opposing flow cases, and the value of skin friction coefficient become maximum

for Cu nanoparticle as that of AlzOs nanoparticle. The same behavior is observed for local

Nusselt number in opposing flow as in skin friction coefficient, but in assisting flow the local

Nusselt number decreases with the increase of / in the presence of magnetic and viscous

dissipation effects and the values of local Nusselt number in Cu nanoparticle become smaller

than that of AlzOs nanoparticle.

4.1 Mathematical formulation
Consider a two-dimensional steady-stable laminar mixed convection boundary layer flow of
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an incompressible electrically conducting nanofluid in the vicinity of stagnation point over a

vertical flat plate. The geometry of the flow problem is shown in Fig. 4.1 in which the x-axis

and y-axis are taken along and normal to the plate. The velocity of potential flow outside the

boundary layer and wall temperature are considered as a linear functions of x in the form of

7i< T-

T;< T* r*> T-

(a)

Figure 4.1: The physical model of the flow

region for (a) assisting

ur(x): ax and T*: T* I bx, respectively, where a and b are constants in which b > 0
corresponds to assisting flow case (7* > 7L) and b < 0 corresponds to opposing flow case (Z*
< T-).The case for 6 > 0 occurs when the upper half of the vertical plate is heated and lower

half is cooled' On the other hand, the case of b < 0 occurs when upper half of the plate is taken

as cooled and lower half is heated and x is the distance from the stagnation point on the vertical

Table 4.1: Thermophysical properties of base fluid and nanoparticles.

Properties Cu AlzOt Fluid

(b)

towards a vertical plate near stagnation point

flow (b) opposing flow.

c, (J/kgK)

fr(WmK)

p(kelm3)

Bxt}-s0tK)

385

400

8933

1.67

765

40

3970

0.8s

4179

0.613

997.1

2t

plate. It is further assumed that the nanoparticles and base fluid are in thermal equilibrium and

the thermophysical properties of base fluid and nanoparticles are given in Table 4.1. A uniform
magnetic field is applied perpendicular to the flow in the direction normal to the surface under

65



-{

lld is neelisible as cr Ithe assumption that induced magnetic field is negligible as compared to applied magnetic field.

All the physical properties of the fluid are assumed to be independent of temperature except I

fhe density, which varies linearly with temperature in the ,body force according to the 
1Boussinesq's hypothesis. Tiwari and Das model [60] has been chosen to model the governing I

equations for the present flow problem and using the boundary layer approximations, the "

simplified form of the governing equations with MHD and viscous dissipation effects are

written as
I

(4.1) |

i'

6u 0v

-+--0.0x 0y

AT aT A'T tt-, ( au\'
Lt &+u ar=o* ayr+,ffilur) , (4.3)

where u and v are thd velocity components in x and y directions, respectively, F,6 is the

dynamic viscosity of the nanofluid, which was introduced bl Brinkman [40], 0n and 0r. are ,.., i

the thermal expansion coefficients of the nanoparticles and base fluid, respectively, g is the

acceleration due to gravity, o, is the, electric.conductivity of base fluid, Bo is the strength of

uniform magnetic field and 7 is the temperature of nanofluid. The relations of lt,ts, p,1,a,n and

(pc,,),6 are described as follows:

Fr / \ .,/ \ ./ \
lt,,r :;:1,2s ,(r"n),n':0-O)(p,n),*d(o",,) r,o,n =0-d) pr +dpn,' lt-df 

,

o _ k,r k,,r :(tr,+zt r)-z\(t ,-t r) 
(4'4)

"*,,f_w,\_@
where /t7 is the dynamic viscosity of the base fluid, / is the solid volume fraction of

nanoparticles, .pr,(pcr)r,orayd po,(pcr)o,krare"the densities, heat capacities and thermal

bonductivities of the base fluid and nanoparticles, respebtively and kr,is .the, thermal

conductivity of the nanofluid, which was described by Maxwell-Garnett model [141]. The

boundary conditions'of the problems are

. tt(x,0) = 0, ,(r,O) = 0, 7(x,0) = 4" (x)=\+bx,
(4.s)



After reducing the equations in term of stream function r4 by using the relations
:

,, =U uo6u = - 9{, the following similarity transformation0y 0x'

, =l;)" !,v (x, v) = *,[ory r ('t), e ('t) = Ft, (4.61

is used in Eqs. (4.2) and (4.3) to get 
,

f ' + rr,( O' - ,'' +t + lL .a"e + Y (t- ,')) =" ' (.- h2 lrr' "

k. (
0' + *P, 4l f0' - f'0*1f'./"] : o,

rK,{ \ fto )

where prime denotes the differentiation with respect to 17, rz, is the kinematic viscosity of the

base fluid, Gr, is a local Grashof nurnber, Rex is a local Reynolds number, M is the magnetic

parameter and Ec is the Eckert number. Where h,hz.h3, hq, hs iind other physical parameter are

given by

h, = (t - o)"1,, . rE\, o =1, -, . r(ff)], o =l*', . rp* 
f1,

ho=(t_o),,l, r.oh),^=ft,o, =W, 
\

f r - \-l
hs= 

[, 
-,. r(#J], *". = I!u, tur = #, r, = 

6;1r_q,r, 
= t.

The values of 2 and Ec areconsidered positive or n6gative according to assisting and

opposing flows, respectively. The boundary conditions eq. (4.5) take the new form as

(4.7) i

(4.8)

(4.e)

(4.10)

f (0) =0,"r'(0) = 0,d(0) = l, 
I

-f'(*)= l,d(oo)= 0.

The relation of skin friction coefficient and local Nusselt number and written as

ci ,= 'o- Mr = 
'x8*'

' orr! 12' - -r kr(T*-T*)'

where t* and qw are defined as

(4.11)



After inserting Eq. (a.11) into Eq. (4.10), the skin friction coefficient and local Nusselt

number take the form

(4.12)

t"

4.2 Keller Box method

To obtain the numerical solution of the system of nonlinear boundary value problem (4.7-4.9)

an implicit finite difference method is used known as Keller Box mefhod, which has been used

for the solution'of the system of partial differential equations in previous chapter. The details

of the method for the system of nonlinear ordinary differential Eqs. (4.7, 4.8) subject to

boundary condition Eq. (a.9) are explained as follows: 
i
I

Initially these higher order system of ordinary differential equations are transformed

into system of first order ordinary differential equations by introducing the new variables using

c, Rel2 = # f' (o), Ntt*r.e,tlz : -y o' @)'

:U,U'=V,0=Pand)'=Q.

Eqs. (4.7), (4.8) and boundary conditions Eq. (a.9) take new form as

v' +,0(, -u, + ly +! 
^, 

*f tr -ull= o, ,'( t4 hz )

k.(
e' +pr --L t,,l fQ -(.tP + ! frcV')= g,

k,,f '(" ., h4 ) r

f (0) = U(0) = 0,P(0) = 1,U(oo) =l,P(oo) = 0.

A net on 7 is defined as

eo:0,0i =t1.1_r*L4,4t =e*, j =1,2,...,J -l

(4.13)

(4.14)

(4.1s)

(4.16)

(4.17)

where 7 is positive integer and Ar.. is the width of meshing variables on 17. The approximate

quantities of function s f ,U ,V , P and,Q at the net point n.,are known as net functions whose

derivatives in ,l -direction are replaced by the central difference formulae and functions itself

are replaced by average centered at the midpoint 7r_-r72 defined as

1l

. 
fi-t,z = 

*(fi -.f;,),ffid.f,-,,, = ;\f, +.fi-).

After discretization, the system of first order nonlinear ordinary differential Eqs. (4.13.-

4.15) are converted to difference equations in terms of nonlinear algebraic equations written as

:

i

:68 1



I

(4.18)

(4.1e)

Eq. (a.13) becomes

f1 - .f1-,=*rr, +(J 1-), 
i

(t, -(Ji-r=*rr, +vi-t), 
:

1- 1-,=*',, +Qi-,)'

The above nonlinear algebraic Eqs. (4.18) and

method by introducing (;+1)/' iterates as i

f,(i*rt - 'f l'' *6f,''' , 
t

similarly it is same for all other variables in which .f|') i, known for 0 < j < J as an initial

guess and 57rit '"unknown. After using the Newton linearization process and neglecting the

terms containing square and higher order of 5.f", 6U;'r, Ur|r, dp,$) and, \gf),thesystem of

linear algebraic equations is obtained as follows:

a.fi - d.fi, - ! or, + 6(J,_t) = (r,) i,

(s,) i 6 fi + g )), 6 f ,-, + (s r), 3u, + (i;) j 5u j-, + 1i ;, 5r, + (s u), 5v,-, +

(sr) ,67, + (s, ), df_ r = (rz) i ;
' L , (sr)rd7, +(s,o),d7,_, +(s,,),6e.,+(s,r),6e,_, = (4)7, '

.(v),, ;.

6 Pj - 5 Pj-t - + (xei + xei-)= (t )r.
z

The boundary conditions Eq. (4.16) take the form as

(4.20)

(4.21)

(4.22)

(4.19) are linearized using Newton

(4.23)
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Finally, the above system of linear algebraic equations with boundary conditions are

written in matrix vector form. The coefficients in momenfum and energy equations ofunknown

functionsd{. ,5U j,5vj,51anddQ, and non-homogeneous parts are given as

Coefficient of momentum equation:

6fi =(s,); = *rr,+v,_r),6f1_r =(sz)i =(sr);,

5(Ji-(s,); = -h((u,*!,-') .#),*,-, =(sr)i =(sr)i,

nl/j -(s,); = *.1U,+ fi-,),

nvi_r =(su)r = **!tt, + fi_,),

6 1 =(sr)i = rnT,ur-r = (ss)i = (sr)i,

Coefficient of energy equation:

5\ = (s) 
1 = 

*r, n(J, +(J,-r),d1-,= (s,o)i =(sr)i,

6Qi =(s,,)i = !*rrS(ft+ f'-') 
-Lr1 - kor 4

6eir=(tr)7= **r+ry
Non-homogenous terms:

(r,)i = (fj, - fj) * *rr, +[J i-r),

(a#)(ry) e")' . t*e, + P,,) -

#P,+ui,)*'.f
(6, = "# Y{(+)(u") (u")(ry). r(*)' },

(r)i =(t j-t-u j)**rr,+vyt),

(\), = (P,-, - 1) * ! O, + ei-,).

For solving the above system of linear algebraic equations the same procedure is used
as discussed in chapter 3.

(rr)i=t't^?'-O



4.3 Results and discussion ..

Numerical solution of nonlinear boundary value problem as a system of ordinary differential

equations is obtained for important values of involving parameters M, Ec, Pr, 2 and / in the

presence of nanoparticles for both assisting and opposing flow cases by using Keller Box

method. The results are shown through graphs in terms of velocity, temperature profiles, skin

friction coefficient C, Rel/2 and local Nusselt number Mr, Re,r/2. Two types of nanoparticles,

namely, Crz (copper) and, AlzOs (alumina) are considered with water as a base fluid. The value

of Prandtl number is taken Pr : 6.2 (water) as considered by Oztop and Abu Nada [62] and

Tamim et al. [77]. To ensure the accuracy and validity of the numerical code, a comparison of

the computed values of CrRef2 and Nu,,Re,t/2 for limiting case is made with the work of

Tamim et al. 177) and presented in Table 4.2 for various values of volume fraction parameter

Q mdmixed convection parumeter ). It is found that the computed results are in good agreement

with Tamim et al. l77l and hence the code is valid and computed results are accurate. Table

4.3 shows the values of Mr.. R",'" for different values of / when mixed convection parameter

2 is considered equal to I (assisting flow) and -l (opposing flow). It is observed that heat

transfer rate for assisting flow case decreases for both nanoparticles and the quite opposite

behavior is observed for opposing flow. Figs. 4.2 to 4.5 show the velocity and temperature

profiles for both assisting and opposing flows in which solid line represents the results of
Tamim et al. [77] and dashed line represents the present work in which magnetic and viscous

dissipation effects are taken into account. Figs. 4.2 and4.3 show the velocity and temperature

profiles against various values of volume fraction parameter Q for Cu-water nanofluid. It is
seen that velocity and temperature profiles increase in the boundary layer region with the

increase of volume fraction parameter r/ from 0 to 0.2 for both assisting and opposing flow
cases. This phenomena physically shows that when the amount of Cunanoparticle is increased,

the thermal conductivity increases and consequently thermal boundary layer thickness

increases. It is also seen that the values of velocity become higher in the presence of magnetic

field and viscous dissipation for both assisting and opposing flow cases. In Figs. 4.3(a) and

4.3(b), the values of temperature increase in assisting flow and decrease in opposing flow
because of magnetic and viscous dissipation effects also the thermal boundary layer thickness

increases in assisting flow and decreases in opposing flow. Figs. 4.4 and4.5 display the effects

of particular nanoparticles on velocity and temperature profiles respectively. It is seen through

Figs. 4.4(a) and a.a@) that the velocity in Cu-water nanofluid become higher as compared to
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i

AlzOs-water nanofluid both for assisting and opposing flow cases. The values of velocity in the

presence of magnetic field and viscous dissipation for both types of nanofluids become higher

than that in the absence of these effects. Fig. 4.5 shows that magnetic and viscous dissipation

effects increase the temperature in both nanofluids for assisting flow case because these effects

generate additional heat in the boundary layer region. However, the opposite behavior is

observed in opposing flow case. Figs. 4.6 to 4.9 present the velocity and temperature profiles

for different values of magnetic parameter and Eckert number in which solid and dashed lines

represent the results for Cu-water and AlzO:-water nanofluids, respectively. In Fig. 4.6(a, b), it
is seen that velocity increases with increasing the magnetic paiameter M forboth nanofluids.

Physically this behavior bccurs because in this case Lorentz force assists the flow and

consequently velocity increases as M iincreases and hence flow rate increases. It is further seen

that the values of velocity become higher for Cu-water nanofluid than that of AltOrwater

nanofluid in both assisting and opposing flow cases and opposite behavior is observed for

momentum boundary layer thickness. Fig. 4.7b) shows that temperature decreases with the

increase of magnetic parameter M for both nanofluids, but in Fig. 4.7(a),temperature increases

near the surface of the plate (r7:0), but for large values of ry it decreases. Figs. 4.8 and,4.9

illustrate the velocity and iemperature profiles 
.against ry for various values of Eckert number

Ec. Figs. a.8(a) and 4.8(b) depict that velocity increases and momentum boundary layer

thickness decreases in both nanofluids for both assisting and opposing flows by increasing the

absolute valuei of Ec.In Figs. a.9@) and 4.9(b), it is seen that temperature increases in assisting

flow case but decreases in opposing flow case by'increasing the absolute values of Ec. This is

because the combined effects of viscous dissipation and magnetic field generate additional heat

in the boundary iayer region. Also the values of temperature for Cu-water nanofluid become

smaller than that of AlzOs-water {ranofluid. Figs. 4.10 and 4.1 1 show the effects. of magnetic

field and viscous dissipation on CrRetl2 andNz,R";"' against volume fraction parameter @
i

for both types of nanbfluids. The solid line represents the pervious study, which was 
'

investigated by Tamim et' al. [77)and dashed line represents the present study. In Figs. 4.l0(a)

and 4.10(b), it is seen,that the CrRetlz increases for'both nanofl.uids with the increase-of

volume fraction parameter / for both assisting and"opposing flow cases. It is further seen that

the inclusion ofmagnetic and viscous dissipation effects enhance the values of CrRef2 against

/ in both nanofluids for both assisting and opposing flow casei. on the other hand, the effects
of magnetic and viscous dissipation help to reduce the values of local Nusselt number against !

t.

I

L
i,

72



/ in the assisting flow case and increase the values of Nal, R","'in the opposing flow case as

slrown in Fig. 4.ll(a, b). In assisting flow, it is noted that a lower heat transfer rate is obtained

for Cu-water nanofluid than that of AllOywater nanofluid in the presence of magnetic and

viscous dissipation effects. In other cases, the heat transfer rate for Cu-water nanofluid become

higher than that of AltOs-water nanofluid. This is because Cuhas higher thermal conductivity

as comparedto AlzOs.Figs.4.12 to 4.15 show the variations in C, Ref 2 and Mr,R","' against

@ for both types of nanofluids at different values of magnetic parameter and Eckert number.

Figs.4.12(a) and 4.12(b) depict thatC, Ref2 increases forboth nanofluids in both assisting and

opposing flow cases by increasing the magnetic parameter. It is also observed that the value of

CrRe! for Cu-water nanofluid in both assisting and opposing flows become higher in

magnitude than that of AlzOrwater nanofluid. In Fig. 4.13(a), it is seen that Mr.R","'

decreases by increasing the magnetic parameter and the values of Mr, R","' become smaller

in magnitude for Cu-water nanofluid than that of AlzOs-water nanofluid. In Fig. a.l3(b), quite

opposite behavior is observed in case of opposing flow as compared to assisting flow. Fig.

a.la@) and 4.14(b) show that C, Relf increases in both assisting and opposing flows for both

nanofluids by increasing the absolute values of Eckert Ec.Itis important to note that the value

of C, Ref' become higher in magnitude for Cu-water nanofluid than that of AlzOrwater

nanofluid. Fig. 4.15(a) depicts that for nonzero Eckert number (Ec * 0), Mr, R",'" decreases

by increasing the volume fraction parameter Q and, for Ec: 0, it becomes an increasing function

of Q.lt is also observed that the values ofMl, R..'" become smaller in magnitude for Cu-water

nanofluid than that of AlzOs-water nanofluid for Ec * 0. For opposing flow, as shown in Fig.

4.15(b), Nlt..Re"r'2 increases by increasing the absolute values of Ec and it values become

higher in magnitude for Cu-water nanofluid than that of AlzOs_water nanofluid.
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Figure 4.2(a, b): Velocity profile (Cu-water nanofluid) for distinct values of @ when pr: 6.2
for (a) assisting flow 2 : I (b) opposing flow 2 : -1.
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Figure 4.3(a, b): Temperature profile (Cu-water nanofluid) for distinct values of @ when pr:
6.2 for (a) assisting flow ,t : 1 (b) opposing flow 2 : _1.
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Figure 4.4(a, b): velocity profile for different nanoparticles when 0:0.2and pr :6.2 for (a)
assisting flow,l. : I (b) opposing flow 2 : -1.
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Figure 4.5(a, b): Temperature profile for different nanoparticles when Q:0.2and pr : 6.2 for
i

(a) assisting flow 2: 1 (b) opposing flow 2: -1.
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Figure 4.6(a, b): Velocity profile for distinct values of M when Q : 0.2 and pr : 6.2 for (a)

assisting flow,l. : I and Ec: 0.3 (b) opposing flow ),: -l and Ec: _0.3.
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Figure 4.7(a, b): Temperature profile for distinct values of M when Q: 0.2 and Pr : 6.2 for

(a) assisting flow,l.: I and Ec:0.3 (b) opposing flow ).: -l and Ec = -0.3.
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Figure 4.8(a, b): Velocity profile for distinct values of Ec when 0 : 0.2, M: 0.5, andPr: 6.2
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Figure 4.9(a, b): Temperature profile for distinct values of Ec when Q:0.2, M:0.5, and Pr

: 6.2 for (a) assisting flow,t : I (b) opposing flow,t : -1.
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Figure 4.10(a, b): Skin friction coefficient against / for different nanoparticles when Pr:6.2

for (a) assisting flow ,t = I (b) opposing flow /, : -1.
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Figure 4.ll(a, b): Local Nusselt number against / for different nanoparticles when Pr:6.2
for (a) assisting flow ,l : 1 (b) opposing flow ,t : -1.
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Figure 4-12(a,b): Skin friction coefficient against / for distinct values of Mwhen ir: 6.2 for
(a) assisting flow )': I and Ec:0.3(b) opposing flow ),: -l and, Ec= -0.3. .:.
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Figure 4.13(t, b): Local Nusselt number against / for distinct values of Mwhen Pr = 6.2

(a) assisting flow 2 : I and Ec = 0.3 (b) opposing flow ).: -l and Ec: -0.3.
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Figure 4.14(a, b): Skin friction coefficient against @ for distinct values of Ec when M:0.5
and Pr : 6.2 for (a) assisting flow ,t : I (b) opposing flow 2.: -1.
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Tabte 4.2: The effects of / on C, nefl and Nu*R";"' for different nanoparticles, when Pr :

6.2, hs/hz: 1 and M: Ec = 0 are fixed.

Tamim et al.l77l
6' )"= |

Present result Tamim et al.l77l

),: I
Present result

1- 
'A--l

C, Re.f2 Mr,.8","'CrR:etlz Mr, Re]r/z CrRelz Mr., Re,"'

-')- 1
/L- -l

CrRetlz Mr., Re]r/2

0 3.0s3s

0.05 3.9183

0.10 4.8153

0.15 5.7758

o.r9 6.8274

0 '3.0535

0.05 3.5180

0.10 4.0276

0.15 4.5929

0.20 5.2269

Nanoparticle Cu

3.0539 1.6525

3.9184 1.8728

4.8154 2.0834

s.77s8 2.2901

6.8274 2.4964

3.0539 1.6525

3.5184 1 .8066

4.0280 1.9607

4.5935 2.1154

5.2277 2.2716

Nanoparticle AlzOs

(Copper)

1.8262

2.2207

2.6t68

3.0346

3.4906

(Alumina)

t.8262

2.0542

2.3042

2.s82e

2.8982

1.8269 r.478t

2.2210 1.6563

2.6170 r.8265

3.0347 1.9940

3.4907 2.t617

1.8269 t.4781

2.0s49 1.6078

2.30s2 1.7375

2.s843 1.8680

2.9004 2.0002

1.6524

1.8728

z.oil,.;,q

2.2901

2.4964

t.6524

1.8065

1.9606

2.1t53

2.2715

t.4779

1.6562

1.8265

t.9939

2.16t7

t.4779

t.6076

1,.7372

1.8676

1.9996

Table 4.3: Nurnerical values of Mt,R","' for distinct values of nanoparticle volume fraction..-
parameter /, when Pr: 6.2 and, M:0.5 are fixed.

Nanoparticle Crz (Copper)

Ec: 0.3, ).: I Ec: -0.3, ), = -l
Nanoparticle A I z O s (Alumina)

Ec:0.3, ),: I Ec: -0.3, ),: -7

I

{
i

I
I

0.0

0.0s

0.10

0.15

0.20

0.6225

0.s482

0.4s70

0.344s

0.20s7

2.3309

2.7670

3.2t16

3.67ss

4.1679

0.6225

0.6210

0.6074

0.s79s

0.5346

2.3309

2.6026

2.8889

3.1 933

3.5196

4.4 Conclusions . "
A numerical study on MHD mixed convection stagnation point flow of a nanofluid over a

vertical flat plate is investigated. Tiwari and Das model [60] has been used to develop the
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mathematical formulation in terms of the governing equations. Sirnilarity transformation is'

used to convert governing system of partial differential equations into a system of ordinary

differential equations along with boundary conditions. The Keller Box method is used to

compute the numerical solution and detail procedure involved in'this scheme for system of

ordinary differential equations are explained in this chapter. Analysis is carried out to

investigate these effects on two types of nanoparticles, namely, Cu and AlzOs. From the result

and discussion, it is observed that velocity increases for both rianofluids in the presence of

magnetic and viscous dissipation effects in assisting and opposing flow cases. In assisting flow,

temperature increases because of the combined effects of magnetic and viscous dissipation for

both nanofluids, and opposite behavior is otiserved in opposing flow. Both magnetic and

viscous dissipation effects help to enhance Crket!? for both nanofluids in assisting and

opposing flow cases. The heat transfer rate decreases in assisting flow case and increases in

opposing flow case for both nanofluids.in the presence of combined effects. However, the

values of Nu,R","' for Cu-water nanofluid become smaller than that of AlzOs-water

nanofluid in assisting flow because of the combined effects of magnetic and viscous

dissipation
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Chapter 5

Heat transfer in MHD stagnation point flow of L

ferrofluid over a stretchable rotating disk

In this chapter, analysis of three dimensional boundary layer stagnation point flow of an

incompressible viscous ferrofluid and heat transfer over a stretchable rotating circular disk in

the presence of uniform external magnetic field is presented. For this purpose, three different

types of ferroparticles namely, magnetite (FesOa), cobalt ferrite (CoFezOa) and Mn-Zn ferrite

(Mn-ZnFezO) are considered with water as a base fluid. The mathematical modelling of the

considered problem is made in terms of nonlinear partial differential equations which are then

reduced to nonlinear ordinary differential equations after using similarity transformation [142].

The solution of obtained equations are computed numerically using Keller Box method, the

detail procedure of this method has been explained in previous chapters both for partial and

ordinary differential equations. The effects of pertinent parameters namely, volume fraction

parameter of magnetic nanoparticle, rotating parameter, magnetic parameter, velocity ratio

parameter and Prandtl number on both radial and azimuthal velocity profiles, temperature

profile, skin friction coefficients and local Nusselt number are computed and shown through

graphs and tables. For magnetite ferroparticle (FesOt) radial velocity decreases and azirnuthal

velocity and temperature increase with increasing the value of volume fraction parametet Q.

The values of skin friction coefficient in radial direction and local Nusselt number of magnetite

ferroparticle (FesO) become higher than that of other ferroparticles due to its maximum

density and thermal conductivity.

5.1 Mathematical formulation

Consider a three dimensional stagnation point flow of an incompressible electrically

conducting ferrofluid over a stretchable rotating disk as shown in Fig.5.1. The flow is

considered as axisymmetric and steady flow. Let (r, 0*,2) be the cylindrical co-ordinates and

the disk rotates about z-axis with a constant angular velocity O. The disk is stretched in radial

direction at a constant rate c with velocity uw = cr. Due to axisymmetric flow, the variation

w.r.t. 0* is ignored. It is assumed that a uniform external magnetic field of strength ,Bo is

applied normal to the circular disk along z-axis and consequently the ferrofluid becomes

90



strongly magnetized due to the reason that fenofluids do not maintain magnetization in the

absence of an external applied magnetic field. The induced magnetic field is considered

negligible under the assumption of small magnetic Reynolds number. Further, it is assumed

that velocity outside the boundary layer is prescribed as u" = ar (potential flow) and uniform

surface temperature at the rotating disk is Z*; ambient fluid temperature is 7- under the

assumption T*> T*. The thermophysical properties'of base fluid and magnetic nanoparticles

are shown in Table 5.1 and are taken as independent oftemperature. The continuity, momenfum

and energy equations of the flow problern in cylindrical co-ordinate system can be written as

Figure 5.1: The physical model of th, Uo* towards a rotating disk near stagnation point

reglon.

0uuAw
,,r*;*E =u' (5'1)

, Ott y' ' 

Ou I Oo tt,., ( Ozu I Ott tt 6'zr ) o ,Bn2u--;*n';=- p.;.;lal*; a,-j+ u,, f ;'' (s'2)

Av uv Av F,,, ( O'v I Av v 0'y) o,Bn'
u ar*;** ar=ilul*; ar- z=+ rr, f ;'' (5'3)

Aw Aw I Op p,,, ( O', I Aw d'ry)u_+ __,+"''l ^+ - +-.1, (5.4)dr 0z pa 0z p,,r\)r' . r 0r 0r' )'
ar ar ( a'r I ar a2r)

u 
a, 

*n 
a, 

= "rlur, *; a,.E I (5.5)

In which u, v and lv represent the velocity vector components in the direction of r, 0* and z

respectively. The relevant boundary conditions of the problem are

Ferrofluid
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u=u*=cr, v=rd2, w=0rT =T* atz:o,

u)u"=ar, v)v"=0, w+ we=-ZclzrT +T- asz +@.

Using the boundary layer approximations, the Eqs. (5.1-5.5) take the form as

AuuAwJ+:+a =0,Arr0z

(s.6)

(s.13)

,u-t+w\=- t op.b(*\-o,'o' 
u,

Ar r 0z p4 0r pq\02' ) pt

u?*L**?=b(*\-o'Bo' ,,Ar r dz p,r\fu" ) P,f

?=0,
oz

ar ar ( a'r\u ar**E="*lE l

(5.7)

(s.8)

(s.e)

(5.10)

(s.r r)

For eliminating the pressure gradient, the boundary condition z+@ is used in Eq.

(5.8) (potential flow velocity outside the edge of the boundary layer) which reduces to

, * -+ . ** = 
" " * . *(#). # (u 

" 
- u), (s.12)

jAfter using the following suitable hansformation |421

( ^\'''
, =1il z, u(r,z)= rrF(rt),v(r,z)= crG(rt),w(r,z)=,[a,,u Q7),

e(q) - r -r'
'- T*-T-'

into Eqs. (5.7, 5.9, 5.11,5.12), the following systern of ordinary differential equations are

obtained

H'+2F =0,

(
F, + 4[ -., + G2 - rr, . ff(:- 

r).(:)') = n

''o*ro'*{o)=0,c'-412F L )

e'-lvrt4Ho'=:0,
kd

(s.14)

(s.ls)

(s.r6)

(5.17)



:--.ll

where F, G and H aredimensionless velocities in radial, azimuthal and axial directions

respectively, the symbol prime denotes the differentiation w.r.t. r7 and a lc is the velocities

ratio parameter. The boundary conditions Eq. (5.6) take the new form as

F(0) = 1, H(0) = 0, G(0) = at7 (0) =1,

F(*) =1,o@)= 0,d(*) = 0.

(s.r 8)

. o.
where @ - - is the rotation parameter. The skin friction coefficients in radial and azimuthal

c
i .. ,

diiections and local Nusselt number are defined as

f4,u

in which 7,r,T0", are the radial and azimuthal shear stresses at wall and q* are defined as

(au lalr\ (a tall\ (ar\
r';= Pnrla*; 

ae. ),=o"u'== 
p"rlaz*; 

uo )-=r.' 
8* =-kdl; ),=r' (5'20)

Using Eq. (5.20) into Eq. (5.19), the skin friction coefficients and local Nusselthumber

kr(r*-L)' (s.1e)

(s.2t)

take the form
1

, . c,,,.r,.e'!' = 
dtrr'(o), 

Crr.Re',!z = 
@G'(o),

Mr,. Re.r/2 = -fu-e'(o). :

Kf

' 5,2 Results and discussion

The numerical solution of the system of nonlinear ordinary differential Eqs. (5.14-5.17) subject

to the boundary conditions Eq. (5.18) is obtained using Keller flox method. The details of this

method for the system of nonlinear ordinary differential equations have been described in

chapter 4. The variation of skin friction coefficient in radial direction Cr,Ret,? and Nusselt

numberNu, R"."' for water base ferrofluid against volume fraction parambter of riagnetic

nanoparticle /, rotation parameter at and magnetic parameter M are given in Tables 5.2 and

5.3. It is observed that the values of Cr, Ref/2 and Nu,.Re,.tt2 are smaller in the absence of
i

magnetic field and become higher in the presence of magnetic field.It is due to the reason that

the, magnetic field aligns the magnetic nanoparticles in order. It is also observed that by

increasing the rotation of the disk, the values of C, Ref12 and Nu,.Re,tt2 enhance for all

I
I

1

,*-i.,..EI}
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ferroparticles. It is moreover seen that the values of Cr, Rell' and Mr,. Re,r/2 for magnetite

(FesOt) ferroparticle are greater than that of other ferroparticles. When the values of volume

fraction parameter of magnetic nanoparticle $ :0 (pure fluid) and velocity ratio parumeter alc

= 0 are considered, the present problem becomes a lirniting case of Turkyilmazoglu [142]

which was solved numerically using classical fourth-order Runge-Kutta scheme. A comparison

of the present study with the work of Turkyilmazogfufia\ is shown in Table 5.4 for various

values of rotation parameter ar. It is found that our results are valid and in good agreement. The

effects of pertinent parameters namely magnetic parameter M, velocity ratio parametet alc

rotation parameter ar, volume fraction parameter of magnetic nanoparticle fi and Prandtl

number Pr on velocity and temperature profiles, skin friction coefficients and local Nusselt

number are shown graphically through Figs. 5.2-5.13. The effects of magnetic parameter M

for various values of / on radial and azimuthal velocities and temperature profiles for magnetite

fenoparticle (FesO) are shown in Figs. (5.2-5.4). Fig. 5.2 depicts that radial velocity is

maximum in the absence of magnetite ferroparticle (FesOt) i.e. d : 0 and decreases by

increasing the values of volume fraction parameter of magnetic nanoparticle $ for both values

of magnetic parameter M:3 and 6. It is because of the reason that due to the enhancement of

volume fraction of magnetic nanoparlicle $, the viscosity of ferrofluid increases as predicted

by Brinkman [40] by using theoretical model for viscosity and consequently momentum

diffusivity within the boundary layer increases. In Fig. 5.2, itis further seen that radial velocity

increases and momentum boundary layer thickness decreases by increasing the values of M

because, in this case Lorentz force assists the flow (the sign of Lorentz force is *ve in

momentum Eq. 5.15) and helps to control the boundary layer. In Fig. 5.3, the effects of volume

fraction parameter / on azimuthal velocity show an opposite behavior as observed in Fig. 5.2.

Both azimuthal velocity and boundary layer thickness decrease by increasing the values of M

because in this case Lorentz force retards the flow (the sign of Lorentz force is -ve in

momentum Eq. 5.16). Fig. 5.4 shows that temperature and thermal boundary layer thickness

increase by increasing the values of magnetic nanoparticle volume fraction parameter / for

both values of magnetic parameter M : 3 and 6, which is interpreted physically as when the

amount of magnetite (Fe:Oa) ferroparticle is increased, the thermal conductivity increases as

reported by Choi [57] using thermal conductivity model known as Maxwell model [141] and

consequently thermal boundary layer thickness increases. It is observed that temperature of the

fluid become smaller in the presence of high magnetic fteld (M : 6) as compared to low

magnetic field (M: 3). Figs. (5.5-5.7) show the effect of rotation parameter ar on radial and
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azimuthal velocities and temperature profile for magnetite fen'oparticle (Fesot). Fig. 5.5

depicts that the radial velocity increases and momentum boundary layer thickness decreases by

increasing the values of rotation parameter ar respectively. It physically shows that ferrofluid

particles are pushed in the radial direction due to the existence of centrifugal force. As a result,

the velocity in this direction increases. Figs. 5.6 and 5.7 show that the azimuthal velocity

enhances and temperature reduces by increasing the values of rotation parameter ar. It is also

noted that the thermal boundary layer thickness decreases due to increase in the rotation of the

disk. In Figs. (5.8-5.10), the values of skin friction coefficient in radial and azimuthal

directions and local Nusselt number are plotted against magnetic nanoparticle volume fraction

parameter fi for different values of magnetic parameter in the presence of ferroparticles

considered in this problem. Fig. 5.8 shows that the skin friction coefficient in the radial

direction increases by increasing the magnetic nanoparticle volume fraction parameter Q

because the viscosity of ferrofluids becomes higher due to the enhancement of magnetic

nanoparticle concentration in the base fluid. It is further seen that the values of skin friction

coefficient for magnetite ferroparticle (Fesot) are greater than that of other ferroparticles,

because of its higher density as compared to other ferroparticles (see Table 5.1). It is also seen

that skin friction coefficient increases in the presence of magnetic field. In Fig. 5.9 the resrilt

of skin friction coefficient in the azimuthal direction shows an opposite behavior as observed

in Fig. 5.8. Fig. 5.10 depicts that the local Nusselt number increases by increasing the magnetic

nanoparticle volume fraction parameter / because the thermal conductivity of fenofluids

becomes higher due to the enhancement of magnetic nanoparticle concentration in the base

fluid. It is observed that local Nusselt number in magnetite (FesOe) ferroparticle is greater than

that of other ferroparticles due to the higher thermal conductivity of magnetite (FesOt)

ferroparticle (see Table 5.1). It is also observed that local Nusselt number increases in the

presence of magnetic field. The effects of rotation parameter ar on skin friction coefficient in

radial and azimuthal directions and local Nusselt number for three different ferroparticles are

plotted against magnetic nanoparticle volume fraction parameter ( and shown in Figs. (5.1l-

5.13). Fig. 5.1 I shows that skin friction coefficient in radial direction increases by increasing

the values of rotation parameter a,l due to the existence of centrifugal force, which pushes the

ferrofluid particles in radial direction, therefore, the flow rate increases in this direction. In Fig.

5.l2,the skin friction coefficient in azimuthal direction shows an opposite behavior as observed

in Fig 5.1 1. Fig. 5.13 depicts that the local Nusselt number increases by increasing the rotation

parameter o and magnetic nanoparticle volume fraction parameter /. This is due to the fact

that the rotation parameter reduces the temperature within the boundary layer.
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Table 5.1: Thermophysical properties of base fluid and magnetic nanoparticles [43].
Properties FesOt CoFezOt Mn-ZnFezOt Fluid

cp (lkgK)

ft(WmK)

p(kdm3)

670

9.7

5180

700

3.7

4907

800

5

4900

4179

0.6r3

997.r

Table 5.2: The values of Co, Refl'z at alc: I.5.

M:0 M:2
Ferroparticles a:0 ar : 0.5 a: 1.0 a.l=0 ar = 0.5 a: 1.0

magnetite

(FesOt)

1.0688

1.3605

1.7942

0.02

0.1

0.2

t.tt20 r.2409

1.4155 1.5796

1.8667 2.0831

1.2866 1.3229 1.4315

1.5763 r.6242 1.7675

2.0t71 2.0821 2.2764

cobalt ferrite

(CoFezOt)

1.0661

1.3473

1.7673

0.02

0.1

0.2

1.1092 1.2378

1.4018 t.5643

1.8387 2.0519

1.2843 1.3205 1.4287

1.5649 1.6122 1.7538

1.9932 2.0570 2.2479

Mn-Zn ferrite

(Mn-ZnFezOt)

1.0660 l.l09l

1.3470 t.4014

r.7666 t.8379

1.2377 1.2843

1.5639 1.5646

2.0511 1.9926

1.3204 r.4287

1.6119 1.7535

2.0564 2.2471

0.02

0.1

0.2

Table 5.3: The values of Nu,.R","' when Pr: 6.2 and alc: 1.5.

M=0 M:2
Ferroparticles a:0 a.r = 0.5 al : 1.0 a=0 at = 0.5 a; = 1.0

magnetite

(FesOt)

0.02

0.1

0.2

3.0484

3.3507

3.7420

3.0521

3.3s49

3.7467

3.0629

3.3670

3.7604

3.0699

3.3701

3.7595

3.0727 3.0808

3.3733 3.3830

3.7634 3.7748

cobalt ferrite

(CoFezOq)

3.0286 3.0322

3.2482 3.2521

3.s245 3.5288

0.02

0.1

0.2

3.0430 3.0500 3.0528 3.0608

3.2639 3.2670 3.2701 3.2795

3.5417 3.5411 3.5447 3.sss4

Mn-Zn ferrite

Ar[n-ZnFezOt)

3.0429 3.0s37 3.0608

3.3084 3.3204 3.3236

3.6496 3.6629 3.6623

3.063s 3.0716

3.3268 3.3363

3.6660 3.6771

0.02

0.1

0.2

3.0393

33044

3.6451
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Table 5.4: Comparison of the present results with the published work Turkyilmazoglir [142]

for.alc: d :0 and Pr = 1.

r"(0) -G'(0) -0'(0)

Present

result )

lr42) Present

result

u42l Present U42l

result

0

1

2

5

10

20

O
il

-1.1737

-0.9483

-0.3263

3.1937

12.7206

40.90s6

-t.1737

-0.9483

--0.3262

3.1937

12.7209

40.9057

0.0000

1.4870

3.1278

9.2536

22.9139

59.6895

0.0000

t.4870

3.1278

9.2535

22.9134

60.ot2g

0.8s20 0.8s20

0.8757 0.87s7

0.9304 0.9304

t.1292 1.1291

1.4260 " 1.4259

1.8743 1.8944

t\
il

0 -1.8305

1 -l .663s

2 -1.1754

5 1.8928

10 10.8329

20 38.18s7

-1.8305

-1.6634

-1.t753

1.8929

10.8334

38.1 880

0.0000

2.0239

4.1135

11.1407

25.7231

64.063s

0.0000

2.0239

4.1t3'5

tt.t406

25.7225,

64.0604

0.7261 0.7261

0.7422 0.7422

0.7854 0.7854

0.9803 0.9803

1.2993 1.2992

1.7974', 1.7973

-M: 
j

'-'M=6

b = 0.2,0.1,0.0
I\

Figure 5.2: Radial velocity profile for magnet ite (Fe:O)water ferrofluid for distinct values of
/ when at:0.5 and alc = 1.5.
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Figure 5.3: Azimuthal velocity profile

values of / when a-r : 0.5 and alc: 1.5.

.1 1.5 2
q

for magnetite (FesOe) water ferrofluid for distinct

.g
o

Figure 5.4: Temperature profile for Magnetite (FesOi water ferrofluid for distinct values of /
when at: 0.5,Pr: 6.2 and, alc: 1.5.
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a=0,1,2,3

i

Figure 5.5: Radial velocity profile for Magnetite (FesO) water ferrofluid for distinct values

of al when d : 0.2, M: I and alc: 1.5.

Figure 5.6: Azimuthal velocity

values of ar when d : 0.2, M: I
profile for Magnetite (FesOt) water ferrofluid for distinct

and alc: 1.5.

€
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Figure 5.7: Temperature profile for Magnetite (FejOa) water ferrofluid

ar when d = 0.2,Pr : 6.2, M : I and alc: 1.5.
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Figure 5.12: Skin friction coefficient in azimuthal direction
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2 and alc: I.5.
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direction and local Nusselt number of magnetite ferroparticie (Fesoa) are higher than that of

Figure 5.13: Local Nusselt number for distinct values of , *1r", M:2,Pr: 6.2 and, alc: 1.5.
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A study on heat transfer analysis in boundary layer flow of felrofluid near the stagnation point

region over a stretchabie rotating disk in the presence of extenlral magnetic field is investigated.

The governing equations are modeled in,tenns of systemf of nonlinear partial differential
I

equations which are later reduced to four nonlinear ordinary &ifferential equations. The Keller

Box method is again used to compute its solution in terms of vllocity, temperature, skin friction

coefficients and local Nusselt number. The effects of nertiJ,rent parameters namely, volume

fraction parameter oinanofluid, magnetic parameter; rotationlparameter on velocity profiles in

radial and azimuthal directions, temirerature profile, skin frictlon coefficients and local Nusselt
I

number are.examined through graphs. It is observed that foJ magnetite ferropart icle (FetOi,
the radial velocity decreases and the velocity in azimuthot il."tion and temperature increasel'
by increasing the volume fraction parameter Q. The effects ohmagnetic parameter on velocity
profiles in both radial and azimuthal directions and tempJrature profile show an opposite

behavior as"observed against volume fraction parameter O f lfmagnetite ferroparticl e (FesOt),
t-

the velocities in both radial and azimuthal directions increalse and temperature decreases by,t
increasing the effects of rotation parameter. The values of lkin friction coefficient in radial
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I

other ferroparticles. An opposite behavior is observed in azimuthal direction. Skin friction

coefficient in radial direction and local Nusselt ,ru,ob.. il,
I

parameter and skin friction coefficient decreases in azirnuthal
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Chapter 6

Heat

over a

transfer

nonlinearly permeable stietching/shrinking

in stagnation point flow of a nanofluid '

I
I r-I r I o t l' . I .

sheet with Newtonian heating

In this chapter, the heat transfer analysis in nanofluid flow near the region of stagnation point
t"t^-.

presented. The two very important mechanism on the transplrtation of nanopariicles in base
I

fluid are discussed, which are known as Brownian (Nb) ana 
inermophoresis 

(Nr) parameters.

This physical problem.is modeled using Buongiorno [5S] inodel under the boundary layer
I:assumption and similarity solution is calculated through nurlerical scheme using Chebyshev
I

spectral collocation method. Dual solution is reported agains[ shrinking parameter and ranges

of these solutions are affected by suction parameter which Jre discussed through graphs and
I

table. The effects of emerging dimensionless parameterl on velocity, temperature and

cohcentration profiles as well as skin friction coefficient, locll Nusselt number and Sherwobd
I

number are shown through graphs. For the validity of the cpmputed results, a comparison is
I

established with published studies in limiting case. Through the results, the enhancement in
I

temperature and concentration profiles is observed in the prdsence of Newtonian heating.

I

I

6.1 Mathematical formulation 
I

A boundary layer steady flow of viscous incompressible rrionuia in the region of stagnation
I

point towards a non-linear stretching/shrinking horizontal $ermeable sheet is discussed. The
I

sheet is stretched dr shrunk non-linearly along.r-axis keepin! O fixed as a stagnation point and

y-axis is taken normal to the sheet as shown in Fig. O.f . ffe non-linear stretching/shrinking
I

velocity and straining velocity in potential flow ur" ass.rm6d as r,r*(x) : c{ and ur(x) - a{'
respectively, where a is *ve constant and c is the constant inlwall velocity, which is considered

.t '
less than zero (c. olt: shrinking case and greater ,1": ,nrP.(: , ,) i1 str;tctrlns cas9. Using

over a non-linear permeable stretching/shrinking sheet in the firesence of Newtonian heating is

the Buongiorno model the governing equations of the problem under the boundary layer

approximations can be written in the simplified form as
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with boundary conditions

0u Av

-+--0.0x d'
" 0u 0u . . du-(x\ O'ull-+V-=l/ l-r)g+V"-Ox fu=u"@)T*" u,'

'".aT 
,..ar _^. a'T , -.1 ,, u, or , Dru-+y-=d. 2+rlDB ^ ^ +-0x il 'Ay' 1"fuil T-

ac ac _ a2c D- a2T
ll-+ l'- = D^-+ t"' Ox'' Oy-"' Ay' ' T* Ay"

he region of stagnation point.

(6.1)

(6.2)

(6.3)xI7,

(6.4)

u-)ue\x):clx ,.1 -, l*rL -)L_itsyi)@.

The components of velocity along and normal to the Ju.fu.. are u andv respectiv ely, C
I

is the nanoparticle concentration, a, is the thermal diffusfviiy of base fluid, v* is suction
I

velocity at the wall along y-axis, which exhibitS suction in base of less than zero (v* < 0) or

injection in case of greater than zero (v* > 0), ft, is the helt transfer coefficien t, m * I is a
Inohlinear parameter, C* and C*are nanoparticle concentratibns at the wall and far away from

the wall. Now introducing the similarity.transformation [10
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governing equations, a suction or injection velocity ,* i, ur.uin"d u,

6.4), the dimensionless form of ordinary differential 
"quationf

I

when 7 is less than zero (y < O). Using the similarity transfofmation (6.6) into the Eqs. (6.2-

is obtained as

'f* +'ffo . #0 -'['') =' o'.

'+rr(f o'+ Nbo'cp; + Nto'2)=0,

. (p'+ Scf cp'* !!-g' =g,,Nb

with boundary conditions Eq. (6.5) reduce to

(6.7)

(6.8)

(6.e)

-f'(*) =1,0(q) = o, p(m) = g, 
I

where sc -vyf D, is the.Schmidt number, Nb=tDu(C,,-9)lr, is the Brownian motion
I

parameter, Nt = cD, f v., is the thermophoresis param eter, y) 

= 

h,lkr.^,lZl1*+g*R","' is the

conjugate parameter for Newtonian heating and, c/a i.j tn" ratio of tn" constant of
stretbhing/shrinking velocity and straining velocity, which 

"J*"rpords 
to stretching in case oft'

greater than zero (c/a > 0) and shrinking in case of less thah zero (c/a < 0). The relations of
skin friction coefficient, local Nusselt and Sherwood numbeJs are defined as

t,

-f (0) = y,f'(0) =9,0'.(0) = -y,(t+ d(0)),d(O) = r,al
, f'(*) = 1,0(a) = o,p(m) = g, 

I

, is the.Schmidt number, Nb=tDa1C--l)lrr

D-lv is the thermonhoresis nerarn .t., ,l :h lb

a I (6.10)

(6.11)

fluxes from the wall

respectively, which are written as

( a,\
'y: t'rlu, 

),=r, 
n* (6.12)

1,07

,8r, = -DL (x),,



After using Eq. (6.12) into Eq. (6.1 1), the skin friction coefficient, local Nusselt number

and local Sherwood number take the new form as follows

c, R.,; = {ylf,(o), M,, R.,-} = -$ffi,sft. Re,-; = -ffr, 1o).

6.2 Results and discussion

To obtain the numerical solution of the non-linear ordinary differential equations given in Eqs.

(6.7 -6.9) subject to the boundary conditions given in Eq. (6. 10), a numerical method is applied

known as Chebyshev spectral collocation method. The details of this method have been

discussed in chapter 2. The effects of pertinent parameters namely suction, velocity ratio,

Prandtl number, thermophoresis and Brownian motion, Newtonian heating and Schmidt

number on the f' (velocity), 0 (temperature), g (nanoparticle concentration) profiles,

C, Re.,r/2 lskin friction coefficient), Nu,Re."-"' (local Nusselt number) and Sft, Re.,-',,

(Sherwood number) are computed and shown in terms of figures. Dual solution of the problem

for a range of values of suction parameter 7 are found by considering different ry* and initial
guess and two distinct structure of boundary layer thicknesses are observed. The solid line

represents the first solution and dotted line represents the second solution. For the validity of
applied Chebyshev spectral collocation method, a comparison of the values of f,,(0),
0(0)and- 0'(0) with that of previous studies considered by Wang [29], Bachok et al. [69] and

Mohammed et al. [110] are shown in Tables 6.1 and 6.2. This shows that the computed

solutions are in good agreement and hence the solution scheme and code are accurate. Figs.

6.24.4 show the variation of crRe.,"',Mr.,Re,-rl2 and,sh,Re.,-,,, against velocity ratio

parameter cla for some values of suction parameter 7 with the fixed values of remaining
parameters ffi: 2,,sc : 1.5, Pr : 7, Ts: I and Nt : Nb: 0.3. From these figures, it is seen that
dual solutions exist for each positive value of c/a under the different values of suction
parameter T:2.5,3 and 3.5. However, for negative values of c/a, there exist critical values /r
for which dual solution exists in the case (c/a > /r) and no solution exists in the case (c/a < t1),

which are presented in Table 6.3. It is also seen that the region of c/afor which the dual solution
exists increases with the increase of suction parameter y. Zaimiet al. [103] found dual solutiohs
for the same values of suction parameter T:2.5,3 and 3.5 without considering stagnation point
flow and they showed the critical values for which dual solutions exist, which are shown in
Table 6'3' From Table 6.3, it is seen that the ranges of the dual solutions in the present study
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are increased as compared to previous study due to stagnation point flow. This finding shows

that stagnation point flow widens the ranges of dual solutions. A number of researchers like

Weidman et al. [144] and Rosca and Pop [145] have discussed the stability analysis of rnultiple

solutions. They have proved that the first solution as a stable solution and second solution as

an unstable solution. Fig.6.2 depicts that the values of C.rRe,"' increase in stable solution

(first solution) and decrease in unstable solution (second solution) by increasing the values of

suction parameter 7. In Figs. 6.3 and 6.4 the local Nusselt number and Sherwood number are

plotted against velocity ratio parameter c/a for some values of suction parameter y : 2.5,3.0

and 3.5. From these Figs. 6.3 and 6.4,it is noted that both Na. Re,-'l2 and S/r, Re,-'" increase

by increasing of suction parameter 7. In case of first solution, both the values of Nu,Re..-"'

and Sh, Re..-"' decrease by reducing the values of c/a. The values of Nu,Re."-"' in first

solution become smaller than that of the second solution and an opposite behavior is noticed

for the values of Sft. Re..-"' . Fig. 6.5 illustrates the variation of Nu. Re..-"' against c/a for

some values of Pr. It is seen that Mr. Re..-"' increases with the increase of Pr, it is also seen

that for the small value of Pr: 3, the first solution maintained a higher value of Mt, Re.,-'l'for

-3.565<c/a<-0.15, and after it, the second solution bisects the first solution. For large values of

Prandtl number Pr, first solution has smaller values of Nu.Re.,-'" than the second solution.

Figs. 6.6(a) and 6.6(b) demonstrate the effects of 7 (suction) on velocity profiles for shrinking

and stretching cases respectively while other parameters are considered fixed. For the first

solution in Fig. 6.6(a), velocity increases and momentum boundary layer thickness reduces by

increasing of 7 (suction). Because suction enhances the flow near the surface and reduces the

momentum boundary layer thickness in case of shrinking sheet. Also for the second solution

negative velocity gradient is found at the edge of the sheet and become positive away from the

sheet. In Fig. 6.6(b), velocity reduces for first solution with the increase of suction parameter

y because suction is responsible for delay in fluid motion over a stretching sheet. In case of

second solution velocity reduces by increasing suction parameter 7 for the initial values of r7

and becomes an increasing function for large r7. Figs. 6.7(a, b) and 6.8(a, b) illustrate

temperature and nanoparticle concentration profiles against the thermophoresis parameter M.

Figs.6.7(a) and 6.7(b) reveal that variation of M from 0.1 to 0.7 enhances both temperature

and thermal boundary layer thickness for first and second solutions respectively. But it is
noticed that the magnitude of temperature difference and increase in boundary layer is almost

negligible. It is further noticed that thermal boundary layer thickness is higher in case of
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.l
this is due to the physical mean that the thermophoresis increases the mass transfer of

I

nanofluids. In Fig. 6.8(a), a positive concentration gradient ,"{O) is obtained at thd surface of
I

the plate for the second solution when thennophoresis paraineter is Nt : 0.7 and become

negative for other values of M:0.4 and 0.1. Also In Figs. OlS1a, b) concentration boundary
I

layer thickness is higher in second solution as compared to first solution. Figs. 6.9(i, b) and

6.10 (a, b) are piotted to show the effect of Nb (Browniafr motion) on temperature and

nanoparticle concentration profiles. Figs 6.9(a) and 6.9(b) dJmonstrate that variation of Nb
I

from 0.1 t9 0.3 enhances temperature and thermal boundary l[yer thickness for all solutions.
I

This is due to the reason that the Brownian motion of nanoparticles enhances the temperature
I

of the fluid. Figs. 6.10(a) and 6.10(b) illustrate that nanoparticle concentration decreases with

the increase of Brownian motion parameteri[b for both solutiohs. Also for the second solution,

the concentration boundary layer thickness in both shrinkingland stretching cases is greater
I

than that of the first solution. ln Fig. 6.10(a), a positive Concentration gradient f'(0) t
I

obtained for,A/b : 0.1 and negative concentration gradient A'(:r0) for other values of Nb:0.2
_i:l

and 0.3 is observed. The effects of Schmidt number on tempdrature profile and nanoparticle
I

concentration profile are presented through Figs. 6.11(a, b) arid 6.12(a,b) for both shrinking
rl

and stretching cases respectively. In Figs. 6.11(a) and 6;ll(b)Jit is seen that temperature and

shrinking sheet as compared to that of stretching sheet. Figs. 6.8(a) and 6.8(b) depict that

nanoparticle concentration increases with the increase of M foiUott first and second solutions,

therefore, by increasing conjugate paramete r y, thetemperatur!"rn*"., within the boundary

thermal boundary layer thickness increase with increasing uutr!", of Sc for both solutions. On
I

the other hand, nanoparticle concentration profile shows an op{osite behavior by increasing ^lc

for both first and second solutions. From both Figs. 6.12(a) lnd 6.12(6), it is observed that

concentration boundary layer thickness for Sc :2 aspredicted lr,n" second solution are larger

than that of the first solution in shrinking and stretchirg 
"f,r.r, 

which is responsible for

instability of the second solution. The temperature and nuropuki"le concentration profiles for

different values of conjugate parameter fs dtepresented in FigJ. 6.13(a, b) and 6.14(a,b). The

effect of conjugate parameter 7s on iemperature profile by both *.st and second solutions shows

that temperature and thermal boundary layer thickness increasJ with the increase of 7, in both

shrinking and stretching cases re.pectiu"ly. It is noted that whed conjugate parameter ys is zero

the temperature at the wall becomes zero i.e. insulated *ul, .u." and when 7, ---+o the

Newtonian heating condition becomed the condition of .onrtuJ, wall temperature. physically
I

it is due to the fact that the temperature becomes zero when {onjugate parameter n is zero,
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layer. The same behavior is observed in nanoparticle concpntration profile but
I

solution the boundary layer thickness is gteater than that for the first solution.
I

I

I

I

Table 6.I: Nurnerical results of /"(0) for some values of clalwith ln = I and y = 0.
. I

Present

study

in second

andy

cla Wang [29] Bachok et al. [69]

2

1

0.5

0

-0.5

-1

-1.15

-t.2

-1.88731

0

0.71330

1.232558

t.49567

1.32882

t0l

1.08223

10.rt67021

-1.887307

0

0.713295

1.232588

r.4gs67o

1.328817

t0l

1.082231

[0.1t67021

0.932473

[0.2336s0]

0.584281

'lo.ss42e7l

-1.887307

0

0.713295

1.232s88

1.495670

1.328817

t0l

t.082231

10.t167021

0.932473

[0.2336s0]

o.ssqzaz

l0.ss42e6)

-1.2465 0.55430

Table 6.2: Numerical results of -d'(0)andd(0)
: c/a:0.

I

for some rul,lr", of Pr when fii:'/s = |

Mohammed et al. I l0] Present result
I

Pr 0(0) -0(0) o(o) _0(0)

5

7

10

100

1000

23.0239

5.6062

2.9516

0.s034

0.1809

24.0239

6.6062

3.9s 16

1.5034

1.1809

23.02139
I

s.6062
I

2.9st6
L

0:50327
I

0.1809
I

24.0239

6.6062

3.9516

1.s033

1.1809
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I6.3 Conclusions

In this study, the heat transfer analysis in nanofluids flow hear the stagnation point regionl,

parameter y and the values of first solution are higher tha

The suction parameter 7 widens the ranges of dual solution

,t
I

Sherwood numberincrease by increasing y for both first anld second solutions. The values

of first solution in Ntt,Re,-"' are smaller than that of !""ond solution and bpposite

123

Zaimi et al. [103] Present results

I

8
I

0
I

over a non-linear permeable stretching/shrinking sheet is investigated. The governing

equations of the flow problem are solved numerically dy using a Chebyshev spectral'r
collocation method and'dual solutions are found for the speiiiic ranges of suction parameler

y. The effects of pertinent parameiers namely suction, Jelocity ratio, Prandtl numbir,
I

thennophoresis and Brownian motion parameters, Schmidtlnumber and Newtonian heating

parameter y, on the velocity, temperature, nanoparticlel concentration profiles in the

boundary layer as well as the skin friction coefficient, tJ"ut Nusselt number and local
I

Sherwocid number are examined through graphs. It i's seen that temperatuie and
I

concentration increase by increasing the values of N/ for both stretching and shrinking sheet
I

cases. Also thermal and concentration boundary layer thicknesses are higher in shrinking
I

case as compared to that of stretching case. By increasingilhs values of ND and Schmidt
I

number ,Sc temperature increases and concentration decreases for both stretching and,l
.htirrking sheet. Temperature and concentration profiles inJrease by increasing Newtonian

heating parameter y, fo, both shetching and .nr,*,n, f"",. Skin friction coefficient
I

increases in first solution and decreases in second solutioh with the increase of suction
l1'

d the values of second solution.
I

sl The local Nusselt number and

.---:_-i-._"""=_:Ti

'l I

I

It. l

I

Table 6.3: The critical values tt of c/a for the some values of j, when m:2.
I

behavior is observed in Si, Re.,-"'



This chapter deals with the study of mixed convection stagnafion point flow of a third grade

fluid on a vertical surface with slip and viscous dissipationleffects. The governing partial

differential equatiohs for third grade fluid are transformed int6 a coupled non-linear ordinary
I

differential equations Ia6] by using similarity transformationland the resulting equations are

solved numerically by using Chebyshev spectral collocation Inethod. The effects of various
I

parameiers including Weissenberg number We, third grad6 parameter e,local Reynolds
I

number Rer, Prandtl number Pr, Eckert number Ec, mixed c{nvection parameter 2, velocity
I

slip 7, and thermal slip y, on velocity and temperature profile!, local skin friction coefficient

Chapter 7

Heat transfer in mixed convectionHeat transfer in mixed convectiori stagnation point
I

flow of a third grade fluid on a ve{tical surface with

slip effects

t'
and local Nusselt number are discussed through graphs forUltn assisting and opposing flow

7.1 Mathematicalformulation

I

T*>T*. The governing boundary layer equations for the c{nsidered flow problem in the

presence of viscous dissipation effect are written as

0u Av

-+--0.0x Ay

I

' (7.1)

I

Consider a steady laminar two dimensional mixed convectidn stagnation point flow of an
I

incompressible third grade fluid on a vertical heated surface plbced at y :0. The geometry of-l
the flow problem in which the fluid flow is occurring is shown in Fig. 7.l.lt is assumed that

the origin of the Cartesian coordinate system Ory istaken at thd center of the surface, however,t-
the x-axis andy-axis are taken along and perpendicular to the sufface. The velocity components

of potential flow in the neighborhood of the staghation point u]" ug: ax and vr: -ay,where a
I

being positive constant. In this study, only the heated surface clse is studied which is valid for
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I

I

I

",--J
I

a

Assisted Region

t4: ax
ve = -ay

0u 0uLl- +v- =0x 0y

AT ATu- +v_oxfu

direction called opposing flow case.

From Eq. (7.3), a modified pressure is obtained as

n fr, ( ar\^
, - I lr(p,) r \fu )

,l,,on, respectivel y, d1, d2, 0,
I

are the material parameters of the fluid, g is acceleration du! to gravity. The last term on the
I

right hand side of Eq. (7.2) represents the presence of buoyuJcy force effects with +ve and -ire

signs. The +ve ,ign i. considered when surface extends in.Jerticaliy upward direction called
lr

assisting flow case and -ve sign is considered when surfac{ extends in vertically downward

Figure 7.1: The physical description <

-lOo lt,O2u o,l du Oui

---:--)----:--r 

I I r,-r-

pr 0x pr fu' prL lrfu' 0x i

,sry*.ug'(*\' *tso,p ," 0y 0x0y pr \fu ) Ay' "' r

o: -? *Q.o,, * *)*(*'Ay 'AylAy,

kr a2r fu (ar\' , G,
- (pq,T- @\lar)- @),

ption of thejflow domain.

I

Ott Oztt I - Au a'u O'u1
r--Jl I- r,- l-L

0x 0y' | 0y 0x0y q,' )"l
x sor@ -ie)

I

y(au\' j' .,,

vlq).'| -

d, f du O', Ou O2u1I I at --)-- -L ir-- l -L

Nn)rl At AxAY 0Y 0Y' )

(7.2)

lt'tl

(7.4\

p..: p-(zo,-"r(X)'

. After using the above relation of modified pressure i

following equations |461are obtained as

Eqs. (7.2) and (7.3), the

t2s



Ou Ou I Op. lt, O2u o,l Otu Ou Ozu Ott O2u O'u1lt-+v-: *j-----=+ 'llt------------=*-----= +y - l+0x 0y p1 Ax pr 0y' prL O*fu' 0x 01'' 0y 0x0y 4,' )

ufr(y\' *, sB r@ _r*),
Pr\d!) dy'

op'=o-
q,

and upon using the potential flow velocity in Eq. (7.5), Eqs. (7.a) and (7.5) will become

Ou Ou du. lt, O'u o, f O'u Ou Ozu Ou Ozu Otttlu 
a**u ar= 

u";.i u .;1" 
a-ar...a ur, 

-i ,-rr*t ,r, )*
,!r(+)' *tso,(r _r*),

Pr \oY ) dY'

aT . aT kt azT pr ( ar,\' a, f Ou O'u Ou O2u1u a**" ar= @,), ur, 
*Wla) . ,*;l' u, u-ur.' urq;f

, o, ( a'\'
(Pr),\aY )

u = tr*,v = o,r =rn + r,(X) at y :0,

tl =Lle = AX)Y =V" =-Oy,T =\ ilsy-)oo,

Here Eq. (7.6) is of the same form as that of the study [46] after setting Qs =0 .The

boundary conditions in the presence of velocity and thermal slips are given by

(7.s)

(7.6)

(7.7)

(7.8)

(7.e)

where T, md lz tre the velocity slip and thermal slip factors. The wall temperature which

varies linearly along x is defined as (, = \ +AIx, where AZ is the temperature difference.

The governing Eqs. (7.6, 7.7) are nonlinear partial differential equations. After using the

following similarity transformation

f; r-r
,= lir, u=axf'(4), v=-,{iryffD, o(ry)=# (7.10)

the governing equations are converted into coupled ordinary differential equations as follows

u46)

-f' - -f'' + ff' +l+We(Zffn - flt'(iv\ - f"r)+ 6eRe_. fT", t U =O)

f, (7.1 t)
0' +Pr(fl' - .f'0) +Vr Zcff", +We(ff"z - -fff\+ 2eRe, .f"^)= O)

where prime sign denotes the differentiation with respect to ,1, We: adr / 1t, is the
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,l
Weissenberg number, €:02a2 I p, is the third grade parametbr, )" :Gr,/Re] is a buoyancyJ.Jl-

or mixed convection parameter, when 1= 0 the flow conesp6nds to pure forced convection
Iand when A * 0 the flow corresponds to rnixed convection flow and

Ec = a':x'l(kr) 1(\-L)) is Eckert number which will be tu["n positive in the wall heating
I

case (( > f ) and (co), is specific heat. l' ' 
,

The boundary conditions.take the fonn as 
I

I

"f(0) = 0,,f'(0) = y" f'(O)U+3W.e f'(0) + 2eRe. ("f'(O))' ll
I l' (7'12)

-f'(*)=l)f'(a)=0,d(0) =1'+ y,0'(0),d(oo;j= g 
)

I

where T" : Tr ^l 
a 

and /, = j/z^l n 
are dimensionless velocity and thermal slip parameters..'\" ''\" 

I

(7.13)

The local skin friction coefficient Cu and the local Ndsselt number Mr,

C.=3-,MI,=, r4*
tx Pfl!' ' kr(T* -T*)'

(7.r4)

=0

(7.1s)

r* and qw are given by 
I

lr,(x. *)* 
o,l' #.' # . 

" # . 
" # *l'u'* .' o u,l,

' " 
1 
:: {{ . xi^g;' .h)' 

" 
. 

^ i x 
: l*f ?,r;ffi,

'r,,=-or(#)r=, 
I

In dimensionless form, Eq. (7.13) is reduced to I

I

c/in"f; = l, *w"1ty, --ffi)+2aRe, |"'L=r,

!r.r,/X"'1'=-e'(0). 
I

In order to solve the coupled nonlinear system of brdinary differential

subject to the boundary conditions (7. 1 2), Chebyshev spectrallcollocation method is

and the detail of this method is discussed in the next iection.f

I

7.2 Spectral collocati,on method I

I

To solve highly nonlinear system of ordinary differential eqJations given in Eq. (7,

to the boundary conditions Eq. (7.12) a Chebyshev spectrAl collocation method

r27 
I

I

I

(7.t6)

Eqs. (7.11)

used [132],

1 l) subject

is used. In



I

-r < € < 1. The physical domain of the present flow proble,r,l i. ;0, *; , which is transformed

I

1'

I

which the solution f (6) and 0(O are written as a sdm of l/+1 basis functions

f,G)=cos(rcos-'6) UrownasChebyshevpolynomialofdefee nanddefinedintheinterval

(7.18)

- 0, (7.19)

and boundary conditions become

- 

# + 2Pr r7 *(t # -, #)+ 
Pr Ec

eG) =r* r, ?y at € = -r,rl- d6
i

t ='* ,or'{ =0,0(6) =oat€ =ld6 2'd€' "'"\>' vst

(7.20)".
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.I
qF (X*"[' "o't''o'-' r) - t ff ;;"

r .A ( -r,tF":rf,.'{ 'f2* l
7, ;fr/T\"o,,1 sin(rrcot-' {)-rr' s'n1r6os-' €)* l.
\r- €' ) ,=o 

[26, 
sin1,cor-' 6) * *fit,cos-' n) "

l,r,,*ffiH[Ifli,,]tl'/ 
' ,in(llcos-lrl').)i,*,|Z#ilncos(ncos-,f)-fffi))l_'*,fo,,"o,tncos-'6;x'lZ;;[''o't' "os-' r) - r W ))1 "*'fo"'o'1''o'

(-l5a,n'62 cos(rcos-rf) 4ann'cos(r.or-'61J . ouno cos(rcos-rf) 
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same procedure is used as

The solution of highly non-linear coupled ordinary differential Eqs. (7.11) subject to the

boundary conditions (7.12) is obtained by using Chebyshev spectral collocation method which

is well established method and applicable for highly nonlinear system of ordinary differential

equations. For verification, the results of Li et al. laTl and Hayat et al. [148] are reproduced

in the absence of slip effects and is found in excellent agreement for different values of
Weissenberg number We andPr:0.2 as shown in Table 7.1. After ensuring the validity and

accuracy of the numerical method used, Figs. 7.2-7.11 are drawn for distinct values of the

involving parameters. It is ensured that the value of numerical infinity is adjusted according to

the value of parameters. It is, therefore, different values of infinity are chosen for different

values of the parameters. Dashed lines represent the solution, when the parameters of velocity

and thermal slips are fixed at zero i.e., for no slip case. Solid lines represent the solution

showing slip effects which is the main focus in this chapter. Figs. 7.2-7.7 show the velocity

and temperature profiles against ry for involving parameters. Fig. 7.2(a, b) shows the velocity

andtemperatureprofilesfordifferentvalues of ), ()">0 i.e.assistingflow),when Pr:0.5,Ec

: 0.05, We = 0.3, Rer: 0.1and €=lare fixed. It is observed that velocity increases and

temperature decreases with the increase of mixed convection parameter ,1. Further, it is seen

that for 2 > I velocity attains its maximum value near the surface which is even larger than the

free stream and then ultimately approaches to the free stream velocity. The increasing of mixed

convection parameter 2 does not affect much on the momentum boundary layer thickness and

thermal boundary layer thickness. Fig. 7.3(a, b) shows the velocity and temperature profiles

for opposing case with the same values of parameters as considered in Fig. 7.2(a, b). In
opposing case, the opposite behavior is observed as that in Fig. 7.2 withthe increase of mixed

convection parameter )". Fig.7 .4(a, b) is drawn to show the effects of Prandtl number Pr, which

is the ratio of the momentum diffusivity and thermal diffusivity on the velocity and temperature

profiles. For the variation of Prandtl number, the values are chosen as Pr : | , 2, 5 and 1 0 while
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aE*lr^ -.r7- !--F!-'-r''.]El

I
.J

otherparametersarekeptfixed at)"=l,Ec=0.05,We=0.3,€]lunAn",=0.l.Thegraphsare
'1

drawn for assisting flow case. It is seen that by increasing pl the velocity profile f'(r) and,I
temperature profile 0(r) decroase, it is also seen that thermal boundary layer thickness

I

decreases. Fig. 7.5(a, b) is drawn to show the effects of third S(ade parameter e on the velocity
I

profile f'(D and temperature profile 0(r) respectively t assisting flow case when
. I?

), =1, Ec = 0.05, We = 0.3,Re, = 0.1, Pr = 0.5 and € = 0, 4,8,'1.2. Dotted lines show the effects
L

whin no slip case is considered and it is observed that in thfs case the velocity profile starts

from the surface and approaches free stream velocity ,rri{r*fV. As soon as,'velocity and

thermal slips are considered, it is observed that initially f4r different values of e velocity

profile changes but near U :0.25 the velocity profile b""oJ", constant for all e and after it

the velocity profile starts changing with tfr" 
"frung" 

i, 
". 

filt 
" 

variation of a minimizes the
i

change 
, 
in temperature profile.'when the slips effect ale considered. Although, it is

I

comparatively active.for no slip case. Third grade parameter is responsible for increase in'
I'

boundary layer thickness, however, thermal boundary layer thickness remains ineffective with

the variation of e. Eckert number Ec produces increase in thelvelocity and temperature profiles
I,

forassisting flow case as shown in Fig. 7.6(a,b) when I =r, F, =1, We= 0.,3, Re., = 0.1 and Pr

: 0.5 for both ilip and no slip cases. The effect of velocity Lna thermal slips on velocity ahd
I

temperature profiles are shown in Fig. 7.7(a, b) when ), =l! Ec =0.05, We=0.3, Re, = 6.1,
I

a = I and Pr: 0.5. It is proved frorn Fig. 7.7(a,b) that by incpmorating the slip effects velocity

increases and temperature decreases at the wall, it is alfo observed that boundary layer

thickness decreases. The variations of Cu Ref2 and Nu*i.;"' against different puru-r*.,
I

are shown through Figs. 7.8-7.1l. The effects of Conef' ala Na.. Re,r/2 against velocity slip

I

parameter y, and thermal slip parameter y, are shown iri Fig. 7.8 when ),=1, Ec =0.05,
I

We=0.3, Re, =0.1,e =l and Pr:0.5 are fixed. It is seJn through these figures that both

C oRetl2 and, Nu,R","' d""."ur" with the increase in theil slip parameters. However, mixed
.t

convection parametei 2 is responsible for increase i, Coln"y' and Nu,11"-rl2 for assisting

flow case andCoRef2 and Na.Re*r/2 decrease fo, oppfring flow case when Ec=0.05,

We=0.3,R".. = 0.7', e=l and Pr: 0.5 as shown in figl 7.9(a,b). The effects of Prandtl

number onCtr*Ref2 and Mr,Re,r/2 areshownthroughfiJ.Z.f Ofu,b)forslip'andnoslipcases
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We Li et al.ll47l Hayat et al. [148]
I,

I,l
l' r
I

I

Present Result

i,
when ),=1.0, Ec =0.05,Re, = 0.1, a = 1.0, We=0.31fo, *rJ.ting flow). It is observed that

I

when slip parameters are considered, local skin friction 
"oelffi"i"ntC.oRef2 

decreases and
l'.

local Nusselt number Nz, Re,r/2 increases. It is found that C;Ref ' behaves as a decr6asing

I

function of Pr and Mr.. Relr/2 behaves as an increasing function of Pr. The effects of Eckert

number Ec on CoRelland Na.. R";"' are shown in Fig. ;., !f", b) for slip and no slip cases.
I

It is easily seen that Cu Re.f2 is increasing function -of 
Ecfand Mr. R","' as a decreasing

i

function of Ec.It is further important to observe that Mr., Rd;'/' crosses the zero line during
lr

theincreaseinEcwhen )u=1, Pr=0.5, R", =0.1, e=l andlrY"=0.1.

I

I

Table 7.1 : Comparison of /'(0) and - 0'(0) for distinct valdes of We when Pr = ). =0.2 and.

I

Ec = Re.. = s = f, = /, =.0 with Hayat et al. [l48] and Li et dl. [l47] for second grade fluid.

Assisting,. Opposing Assisting Oppoiing. Assisting Opposing
ilflow '' flow flow floir flow flow

I

f '(0)

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

1.35426

0.98230

0.81738

0.71694

0.647t3

. I .1071 I

0.81854

0.68434

.0.60129

0.54310

t.3s43

0.982r

0.8174

0.717 t

0.6474

- e'(0)

0.4420

0.4097

0.3920

0.3793

0.3698

1.1072
I

0.8184'l
0.6844

t"

0.6015
I

0.s435

0.4235."i
0.3939

I

' 0.3795
I

0.3667
I

0.3578

1.35426

0.98230

0.81738

0.71694

0.64713

0.44198

0.40990

0.39189

0.37922

0.36944

1.10711

0.8r 854

0.68434

0.60t29

0.s4310

0.42351

0.39499

0.37837

0.366s2"

0.3s729

0.44198. 0.42351

0.40990 0.39499

0.3'9189 0.37837

0.37922 0.366s2

0.36944 0.3s729
I
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7.4 Conclusions : I

In this chapter, the heat transfer analysis-on mixed convection orthogonal stagnation point flow

of a third grade fluid in presence of velocity and thermali slips on a vertical surface is

investigated. The governing equations of the considered third grade fluid model are reduced-in

term of fourth and second order nonlinear ordinary differeritial equations. The Chebyshev

spectral collocation method is'again applied to obtain its solltion. The effects of numeroub

important parameters on flow pattern in terms of velocity profile, temperature profile, skin
.t

friction coefficient and Nusselt number are seen and presented through graphs. It is noted that

in aSsisting fiow velocity enhances by'increasing )" and redlces in opposing flow also the

influence of mixed convection parameter 2 on temperature prAfile shows an opposite behavior

as noticed in velocity profile. In presence of slip effects on inl .rra.. velocity increases near,,t

the surface and reduces away from the'surface by increasing e. In assisting flow, velocity .

1

increases and temperature'decreases by increasing velocity ]and thermal slip effects on the'.i r

surface. For the effects of viscous.dissipation.Ec, it is noted that velocity and temperature

increase with enhancing the effeits of viscous dissipation.if-o.uf skin friction coefficient

CoRetl2 and local Nusselt number Na., Relr/2 decrease with the.increase in veloiity and

thermal slip parameters for assisting flow case. On the other hand, by increasing mixed
t,'

conv'ection parameter )", local skin friction coefficient and lotal Nusselt number decrease for

opposing flow case and increase in assisting flo*'"u." ;
i

i.
i

1.\ -li ,
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