Architecture and Simulation of
Very Long Instruction Word
Reconfigurable Instruction Set Processor
(VLIW-RISP)

Submitted by

Uzma Saeed
275-FAS/MS/CS/FO5

Supervised by

M. Ageel Igbal
and
Asim Munir

Department of Computer Science,
Faculty of Applied Sciences,
International Islamic University,
Islamabad

IN
THE
NAME
OF ALLAH
THE MOST BENIFICIENT
AND THE MOST MERCIFUL

Department of Computer Science
International Isltamic University

Islamabad

DatéofExtemal QSU‘ Flummt 160G

FINAL APPROVAL

It is certified that we have read the project report submitted by Ms. Uzma Saeed
reg. no 275-FAS/MS/CS/FOS and that this project is of sufficient standard to
warrant its acceptance by International Islamic University, Islamabad for the
Masters of Science in Computer Sciences.

COMMITTEE

External Examiner

Dr. Abdul Sattar
Director General (Ret.)
Pakistan Computer Bureau

Internal Examiner

Mr. Muhammad Nadeem
Assistant Professor,
International Islamic University,
Islamabad

External Supervisor

Mr. M. Ageel Igbal
Assistant Professor,

Fauji Foundation University,
Rawalpindi

Internal Supervisor

Mr. Asim Munir

Assistant Professor,
International Istamic University,
Islamabad

VLIW-RISP {(Architecture and Simulation) Acknowledgement

ACKNOWLEDGEMENT

First of all 1 would like to sincerely thank my supervisors Mr. M. Ageel Igbal and Mr.
Asim Munir for giving me this wonderful opportunity to work on this project under their
kind supervision and guidance throughout the project. I do acknowledge their true
coordination and support.

Then at last but not the least, I would like to thank my dear parents for their moral and all
kind of support during this project. I never forget their help during the tough times of the

project.

Thank you all again!

Uzma Saeed
275-FAS/MS/CS/FO5

ii

VLIW-RISP (Architecture and Simulation) Declaration

DECLARATION

All sentences or passages quoted in this report, or computer code of any form whatsoever
used and/or submitted at any stages, which are taken from other people’s work have been
specifically acknowledged by clear citation of the source, specifying author, work, date
and page(s). Any part of my own written work, or software coding, which is substantially
based upon other people’s work, is duly accompanied by clear citation of the source,
specifying author, work, date and page(s). 1 understand that failure to do this amount to
plagiarism and will be considered grounds for failure in this module and the degree
examination as a whole.

Uzma Saeed
275-FASMS/CS/FO5

VLIW-RISP (Architecture & Simulation) Table of Contents

Table of Contents
CRAPLET NO. T vttt eem st er s oo b bbb st bbb s b bbb 3
INTRODUGCTION ..ot cse e ieeee et semeeesst e asa e s et s snaea e tsaesae s s srassaeserestmes s e ts s emanacrneanesns
1.1 RC Architecture et eeeEbeeivesehEesmTeebessanteenresceresatacarteibreiatissareyseae it eenastaneasnas
1.2 MOTIVAION ..o reetr et e eie e ccsace bt e svaesevec o resascassasse s e s asbe s agesa e n e s bt eseanat e vt s 3
CRAPLET ING.Z ettt em e b b e b et bbb et e b et e asas s se e st e et s e 9
LELETATUTE REVIEW .t cteeivrieeecteeieeetresaessencese s aseam e e crateacracesrssber s ssbeansmsbas s beis s aasan et shb s b ot s ane s as 9
2.1 CHaSSIIICALION. 1.oeueieeee e eieere e ssesee e s e st e re s scesrente s siarmebeds e e nses aag e s nmssn b e e e s b 9
2 11 Granularity ..ot e et ke e St 9
2.1.2 HOSt COUPNE ...t tas e st st et ea et 9
2.1.3 Reconfiguration Methodology ..o 11
2.1.4 Memory OrZAnIZAtiONc.oieriremsieeiaicesisesessee s sans st s st 11
2.2 Reconfigurable Computing Architecture; A SUIvey. oo, 12
2.4 Related WOrK. .. oiu e ettt e e 12
2.4.1 Coupling of a Reconfigurable Architecture and a Multithreaded Processor
Core with Integrated Real-Time Scheduling..........oocooiiiiiii i 12
2.4.2 Introduction to Reconfigurable Computing.............oooiiiiiiiiiiininnanns 12
2.4.3 Reconfigurable Instruction Set Processors from a Hardware/Software
P TS PECTIVE. Lot ittt i e e e s e 13
2.4 4 Reconfigurable VLIW Processor for Streaming Data.................c 13
2.4.5 Reconfigurable Computing Systems Design: Issues at System-Level
ATCHITECIUTE. .. oottt e v et et e e et e et e bs e et as e aa e amare e acenaaae 15
2.4.6 Intelligence Reconfigurable Instruction Set Processor (I-RISP) Design....... 16
CRAPIET INO.3 o ieie et art et e s e e e core e s oo b e e e eatas s ren b b be s m S e b aan e r s a s et e s e st s 18
Dedicated Machines and Reconfigurable COMPUHTE «.ccovvoveeerrrvnanin o 18
3.1 The Philosophy of a dedicated machme e ereereiseereeraueasras e ee st nren et 18
3.1.1 The Main Theme Behind Instruction Set Specializationcocieveeiviienns 18
3.2 FPGAS .ccoii i eee et ee s beeee s saan e b e b s e st e b reeerenereans 19
3.2.1The Basic FPGA ArchiteCture. oo e 22
3.2.2 FPGA TeChNOIOZY ..euvereveeermrecericirineincite s sn e 26
3.2.4 COMMERCIA] FPGAS coreieeiierreer et eerateseecae st cess s sb s s bnmb e onrasssaas 27
3.2.5 FPGA PEr OIMAMCES ..oveeveevieeenecriesnriresierrsesrceeessas s smess st s b saesraar e ar e aabonsanes 28
3.3 Reconfigurable CPUS ..ot 29
3.3.1 Totally reconfigurable ProCESSOTSoiierrirceminecienite s cssiesesae st enis 29
3.3.2 The coprocessor APPrOAchceueemiieirmere i 30
3.3.3 A Partially reconfigurable CPU...... ettt e e 30
CHAPIEE NOA L. eeiieeett et ee et ma e oo e iaa oo e et aa e e et a s e 32
The Proposed ATChItECIUIE.o . ee o aee e ia s b e 32
4.1 Overall Design GOalo.ecoeerreierre it sre s en et s 32
Module No.1 (Compiler Design for VLIW-RISP) oo 32
Module No.2 (VLIW-RISP Design using Verilog-HDL)...........oooiviiiiiin. 32
4.2 TOO] ISSUES ..ovveuerirrercaeamsenaresssereessessssasmsseesesenessmstsssanseessaneanssasanss s sasessarcassssassionn 32
4.2.1.Importance Of HDLS ..ottt 33
4.2.2. Why not to use a general purpose language........ooov e 33
4.2.3.Verllog-HDL ..ouooiiirieicicim e 33
4.3 lnstruction Format of proposed VLIW-RISP ..o 35
4.4 VLIW-RISP Design Simulation using Verilog-HDL ... 36

VLIW-RISP {Architecture & Simulation) Table of Contents

4.5 PROPOSED RISP DESIGN ..o oot e emaecn e st stas s ceb e i 36
4.5.1 Input / Qutput Interface (1O Interface):c.ocovvniicncrrrcncri e 39
4.5.2 CaACHE MEMOTIES 1vvveeeeerieceiecineeiceeerersteretrsebes e s e e ceabe e bn e nte s tas ssansans b anates 40
4.5.3 Pre-fetch Unit (PFUY .ottt s 41
4.5 4 Instruction Scheduler Unit (ISU) oot 43
4.5.5 Instruction Pack Logic (TPL) cooi e emensmn s 43
4.5.6 Computational Pipeline-1 {CP-1) .ccooovimiimce e 44
4.5.7 Computational Pipeling-2 (CP-2) o.co.cooveiiiiiei e 45
4.5.8 Micro-programmed Control Unit (MCU) ..o 54

Chapter No.5......... e eeeeereereasteieeeterestestetessieteiietineateres i rE s e e a e as ph e e R aa s Ry R e a st n 57
Statistics and Performance ANRALYSIS ..ovcvivvcenierrcrrcerninsise i aa e e s e 57

5.1 DSP (TMS320C6X) Statistics [46].......cocooveenrnn et ee et e et n bt e an 57

5.2 VLIW-RISD StatiStiCS ..oc.eeioieioeivee e stemssesescesassnas e sinsnmaseasrs s e st b e stasss s connacs 58

5.3 DSP vs VLIW-RISP Performance Analysis...........ocovviviaiiiiiiiiiiinae 71

CHAPIET NOLG oottt et b bR e b et 72
Conclusion and FUIIEe WOTKcoiueieeeemireerrience s resess e st e s sars s ssrasserens 72

6.1 Conclusion USSR ORI ROT P e eearieeetaneataebeea ey 72

6.2 FUTITE WOTK w.eeiviiieeis et iemeniitceueetesteniemee s e e nmesassaesseas en e dme st eransnastan hanaarns s s e s 73
6.2.1 Hardware Improvementceeerrmvesnunnienicncenninnne et e 73
6.2.2 Conliguration ProtOCOL.... ..o ciriricien i sinei i s g e 73
6.2.3 Configuration TEChNIQUES.ccreruriamee it s cnis ettt et 73

BIDHOETAPNY ooceeraiceemreimiic sttt et e b e 74
APPEIIALX ...t ettt ettt oo e bR e 78

VLIW-RISP (Architecture & Simulation) Table of Figures

Table of Figures

Figure 1.1 Reconfigurable Computing SYSTeM.........coooiicnciiirsreie st 07
Figure 2.1 Host Coupling Approaches ..., 10
Figure 2.2 Generating the FPGA code ... oot 15
Figure 3.1 Typical FPGA Board, Device and Logic block architecture...........ooovvvieennn, 21
Figure 3.2 A Generic FPGA ArchIteCtUIe ..cvvivenierc ettt 22
Figure 3.3 A Generic Programmable Logic Block ..o 23
Figure 3.4 Three-Input Look-Up Table......c.oovvrinninnii e aeeatesetetereeranreeeseeanrreeaaeeanen 24
Figure 3.5 Basic Programmable SWitch TYPeS....coomeemiiveiiciirii i, 25
Figure 3.6 /O Block Architecturecocovvevecveen et ererte e e b nas 25
Figure 4.1 Event driven SYSIEIMISu.coceeiineiire et st et eissassasn o 34
Figure 4.2 Design Flow Using Verilog-HDL ... 34
Figure 4.3 Op-Code Iterpretation.. ... coiviium e csverans oo st st s e s 35
Figure 4.4 Proposed VLIW-RISP DeSiZi.....oeerriermvirnirnieniresi sttt 38
Figure 4.5 External Interface ..ottt feterreeer————————— 39
Figure 4.6 InStruction CAChE ...cccocomiiieiiici ettt s, 41
Figure 4.7 Data CaChe.ooovrervveercereaineeceencecaamrissesssnisccanacensermnsssmsseessr s are e setascsenssanes 42
Figure 4.8 Instruction Pack LOZIC.43
Figure 4.9 VLIW Fetch Uittt 44
Figure 4.10 VLIW Dispatoh UNIl ..ottt e 45
Figure 4.11 VLIW Execution Unit ...t tnisns e 46
Figure 4.12 RFU Data Path Controller...........cciiiinn e, 48
Figure 4.13 Reconfigurable Functional Unit Interfaces ... 49
Figure 4.14 Reconfigurable Functional Unit Interfaces ..., 51
Figure 4.15 Flags Generation LOZICcccvvuvenimrsireeiniimne et satss e e nssiss st sans s ins 49
Figure 4.16 Micro-programmed Control Unitoooooviininiiiin e 54
Figure 4.17 Micro-programmed Control Unit ..o 55

Figure 5.1 DSP vs VLIW-RISP Performance Analysis.......ccvvmminnninicnivcnnncciivnerinns 71

VLIW-RISP (Architecture & Simulation} Table of Figures

List of Tables
Table 3.1 Logic Component Clustering Sizes of LUT Based FPGAS ..o viviivviecans 24
Table 3.2 Cell Count and maximum Operating speed (one operation per cycle) for
some arithmetic circuits in the Atmel G000 deVICe .o i et s 28
Table 5.1 Statistics And Execution Formula of DSP Processor....o.ovveiieeecvsireesinisenns 54
Table 5.2 Statistics And Execution Formula of VIIW-RISP. ... iveiiiiir e, 55

Table 5.3 Calculated Statistics of Both Processors......... et etreeteeeevaa e et e na e e renes 67

Chapter No. 1
Introduction

VLIW-RISP (Architecture & Simulation) Page 3 of 77

Chapter No.1

INTRODUCTION

The revolution occurred in the field of embedded systems due to the microelectronics
market is ever-increasing. In such a context the definition of efficient and cost-effective
design approaches is mandatory. Hardware and software co-design solutions generally
take into account architectures composed of one or more standard microprocessors and of
suitable application specific integrated circuits executing the most time-critical segments
of the application. Recently, the innovative concept of “mass customization” has been
introduced. This concept considers the possibility of specialization of a micro-processor
instruction set so as to optimize its performance for a given application or for a group of
applications. Such an approach combines the time efficiency of application-specific
functional units with the flexibility of programmable logic circuits. This innovation of
programmable technology opens doors towards a new field of research known as Flexible
Instruction Set Micro-processors.

In a broader sense the different levels of coupling or integration can be envisioned in
architecture. A more traditional design approach is that of considering the reconfigurable
part as a coprocessor, which is effectively working like a hardware accelerator that stalls
the core-processor when under execution. Normally the co-processor approach requires
coarse-grain functions to be executed in the part and therefore the speedup given by the
¢o-processor program execution, when compared to processor apphcation execution,
must be considerably high {4]. A more realistic or innovative approach and an interesting
challenge in academic terms is one that sees the part of the procéssor as a Functional
Unit while operating in parallel with the other data-paths of the processor and where an
extension of the instruction set is executed. The programmable processor so envisioned
issues a set of native instructions to the native Functional Units, while these new
customized instructions are issued to the Reconfigurable Functional Units (RFUs) [5]. A
fine-grained function can be chosen for implementation in the part when compared to the
co-processor approach since the integration is much higher and the RFU can be reached
without any additional delay being embedded in the micro-processor.

Reconfigurable Architectures can be divided in two main categories: fine grained
and coarse grained architectures [2]. The fine-grained architectures are based on
programmable devices such as FPGAs (Field Programmable Gate Arrays) which include
units (CLBs — Configurable Logic Blocks) that perform single functions on a bit basis.
On the other hand, the coarse-grained architectures include word length units or small
microprocessor distributed on an array of processing units. All architectures also include
I/0, memory and Inter connect units. The advantages of coarse-grained architectures over
fine-grained ones are mainly the reduction of configuration time and reconfiguration
memory [1]. Fine-grained architectures also use significantly more area overhead to
routing functions between CLBs and expend significantly more energy.

VLIW-RISP (Architecture & Simulation) Page 4 of 77

Reconfigurable computing devices can be configured after their fabrication to solve
any computational algorithm or task. Such kind of reconfigurable devices are best
exemplified now-a-days by FPGA [3]. In such devices the algorithms or tasks are
implemented by spatially composing the built-in or primitive operations and operators
with the possibility of temporally varying or changing the hardware of the operators. The
re-configurable processor on FPGA can perform different operations on each bit of data
or program and hence the re-configurable devices can be optimized to the data width of
sireaming data flows. The main theme of this kind of research work is to mix the
advantages of non Von-Neumann architectures with the advantages of re-configurable
processing devices or fabrics.

Field-Programmable Gate Array (FPGA) is a kind of silicon chip containing a set or
an array of configurable logic blocks known as CLBs [3]. Unlike an Application Specific
Integrated Circuit (ASIC) which can perform a single dedicated or specific function for
the lifetime of the chip; a FPGA can be re-programmed many times to perform a variety
of different functions in a matter of micro-seconds. Before it is programmed an FPGA
knows nothing about how to communicate with the external connected devices
surrounding it. Hence this is in fact both a blessing and a curse as it allows a great deal of
flexibility in using the FPGA whilc greatly increasing the complexity of programming it.
This type of generic ability to re-program FPGAs has led them to be widely used by
hardware engineers and designers for prototyping digital electronic circuits. The
performance advantage achicved from the FPGAs derives from the fact that the
programmable hardware is likcly to be customized to a particular algorithm. The field
programmable gate arrays are configured to compriseé only the operations that are
appearing in the concerned algorithms [6). The specialized instruction set micro-
processor in fact contain ALUs of specific or specialized data bandwidths like 8-bits, 16-
bits and 32-bits and always has pre-coded or determined control flow patterns.

The re-programmability and versatility of FPGAs definitely comes at a price. Only a
few years ago, the algorithms or tasks that could be implemented in a single FPGA chip
were very small. For example in 1995 the largest FPGAs could be programmed for
circuits of about maximum of 10,000 to 15,000 logic gates at most. Since only a fast 32-
bit adder requires a few hundreds logic gates, the capabilitics of such devices were
somewhat bounded. More recently the FPGAs have reached a size where it is possible to
implement rcasonable sub-pieces of an application in a single FPGA part [7). This has led
to an emerging new concept for computing. If a processor was to include one or more
FPGA-like devices, it could in theory support a specialized application-specific ciscuit for
each program.

The unlimited re-configurability of an FPGA permits a continuous sequence of
custom circuits to be employed where each one is optimized for the task of the moment.
Because FPGAs demonstrate a better performance scale than superscalar techniques,
such designs have the potential to make better use of continuing advances in device
electronics in the long term. The idea of reconfigurable computing has been a subject of
research for a more than a decade, but most projects have investigated the potential of
connecting one or more commercial FPGAs to an existing micro-processor via a standard

VLIW-RISP (Architecture & Simulation) Page 5 of 77

external bus such as the PCI bus [8]. If reconfigurable computing is really to become the
computing paradigm of the future high speed platforms, then the main parts must be
brought closer together. Only a few studies have considered the integrating of a micro-
processot core and FPGA into a single device with the both tailored to co-operate very
closely with each other and so there remains an important question about how such a
device might be built and re-programmed and how it would fit within an existing general
purpose-computing framework. Such a question must be addressed before the bigger
issue of whether reconfigurable computing is really a good design model for
computations can be answered.

Reconfigurable compuring vsing reconfigurable devices like FPGAs have become an
alternative to fill the gap between ASICs and general-purpose computing systems.
Although the basic concept of reconfigurable computing was proposed in the 1960s, the
reconfigurable computing systems have only recently become very vital and quite
feasible. This is mainly due to the availability of high-density VLSI devices that use the
programmable switches and routing networks to implement the extremely flexible
hardware architectures. Most of the reconfigurable systems consist of a general-purpose
processor core tightly or loosely coupled with reconfigurable logic [9]. These systems
can implement specific functionality of applications or a set of applications on
reconfigurabie hardware rather than on the general-purpose processor and hence
providing significantly better performance.

In a statically programmed system the individual data operations of an application
will remain idle when they are no more required. For an example, the data dependencies
within an application program may cause an operation to be idle and waiting for data
inputs from other operations. Hence placing all operations onto the FPGA all at once is a
poor choice hence resulting of wasting of a large no of precious hardware resources. Run-
time re-configuration can be used to remove or recover such kind of idle operations by
making them share limited hardware resources. Also the run-time reconfiguration
provides a design method for large class of applications that are too big for the available
hardware resources on the FPGA [10].

Many recently advanced systems, such as Garp 4], PipeRench {11} and Chimaera
{10], are using run-time reconfiguration. In such kind of systems the hardware
configuration can change frequently at run-time to reuse hardware resources for several
different parts of a computation. Such systems have the potential to make more effective
use of chip hardware resources than even standard well designed ASICs, where fixed
hardware may be used only in a portion of the application algorithm or computation. Also
the run-time reconfigurable systems have been shown to accelerate a variety of
applications. An example of such kind of systems is the run-time reconfiguration within
automatic targel recognition (ATR) application developed at the UCLA to accelerate a
template matching. The algorithm in this system was based on a comelation process
between incoming image data from the radar and a set of target templates. Without taking
considerations of the reconfiguration time, this system improves performance by a factor
of 25 to 30 over a general-purpose computing system.

VLIW-RISP (Architecture & Simulation) Page 6 of 77

However, the drastic speed advantages of run-time reconfiguration do not come
without a cost. By requiring a set of multiple reconfigurations to complete a computation,
the time it takes to reconfigure the FPGA becomes a really significantly a key concern.
The serial-shift configuration method transfers programming bits into the FPGA device
in a serial way. This type of very slow method or programming approach is still used by a
large class of existing FPGAs [7], [12]. Recent devices have moved the technology to
cutting-edge domain and hence resulting in FPGAs with more than one million logic
gates. The configuration size for such devices'is more than one megabyte [13]. it could
take from few hundred milliseconds to few seconds to transfer such a large configuration
data stream using the serial-shift approach.

In most of such systems the devices must sit idle while they are being reconfigured
and hence wasting cycles that could otherwise be performing useful work. For example,
the ATR system uses 98% of its execution time on performing reconfiguration process,
meaning that it uses merely 2% of total time in doing computation. DISC and DISC-II
systems have been found to spend up to 90% {6] of their execution time on performing
reconfiguration process. It is obvious that a significant improvement in system
performance can be achieved by eliminating or reducing this configuration overhead
associated with reconfiguration delays.

1.1 RC Architecture

Reconfigurable Instruction Set Processor (RISP) design offers many advantages
over ASIC Processor design. It offers the flexibility of in circuit hardware re-
programmability. By using RISP design we can get the speed advantage of nearly an
ASIC Processor design and flexibility of software. RISP design is not an easy task [11].
In RISP designing the most important issue is the reconfiguration methodology. Many
different techniques have been introduced to provide an efficient reconfiguration process
including partial reconfiguration, run time reconfiguration, static reconfiguration and the
most recently introduced configuration cloning [1], [2). Most of these methods of
reconfiguration suffer from a problem of excessive reconfiguration (reconfiguration
overheads).

Till now the reconfigurable computing is suffering from this problem and no one has
provided satisfactory solution. Reconfiguration time should be minimized in order to
obtain a level of satisfactory performance (31, [4], [11].This can be easily achieved by
using the already existing resources within the programmed device {15]. But the solution
to this problem is in sofiware tools not hardware [14].

VIL.IW-RISP (Architecture & Simulation) Page 7 of 77

Serial

4

~
Micro processor 11O Eﬂ
Bus >
FRAA 4_;.@
! Data, Instruction Cache -

Gﬂempry Subsysteﬂ

Figure i.1 Reconfigurable Computing System

VLIW Architectures

Very Long Instruction Word archilecture refers to a CPU architecture that has been
designed to take the advantage of instruction level parallelism (ILP) found in the program
execution. A micro-processor that executes every instruction one after the other may use
the micro-processor resources inefficiently at any time instant, potentially leading to
drastically poor performance. The performance of such system can be improved by
exccuting different sub-steps of sequential instructions simultaneously using the concept
of pipelining or even executing the multiple instructions entirely simultaneously as is
done in superscalar micro-procgssor architectures 151, [16].

Increase of computational performance is better achieved, for this case, if a micro~
processor architecture supporting instruction level parallelism is chosen as the
architectural platform or paradigm. Instruction level parallelism processing has become
the new emerging architectural challenge since the eighties up to now, by enabling issue
and execution of multiple instructions of an application within the same clock cycle. This
paradigm would allow our envisioned reconfigurable architecture to fully exploit the
nattve functional unit in parallel with the customized, reconfigurable cores.

Two main classes of ILP machines naming superscalar and VLIW have been
flourishing. The former performs dynamic scheduling algorithms of instructions, and
therefore granting binary compatibility with previous code versions, the latter relies on
static or compile time scheduling, by delivering all instruction dependence analysis to the
related compiler.

VLIW-RISP (Architecture & Simulation) Page 8 of 77

1.2 Motivation

Future interactive multimedia applications will be based on standards like MPEG-4.
Using an object-based approach to describe and composite an andiovisual scene, MPEG-
4 combines many different coding tools not only for natural audio and video but also for
synthetic objects and graphics. Objects are coded and transmitted separately and
composed at the decoder side, letting the receiver interact and influence the way the
scene is presented on the receiving display and speakers. Due to this user interaction, the
number and the type of decoders that needs to be implemented on the system is not
known at the design time, but rather at the run-time [17}.

This fact forces the designers of the platforms for these applications to use new
approaches. Traditionally, multimedia applications have been implemented on custom
VLIW processors that provide enough parallelism to accelerate these computation
intensive applications [18], while at the same time retaining low power consumption. In
order to increase even further the computational power of these devices, they have been
enhanced with costume hard ware for acceleration of the most common multimedia
operations. An example of this is the Trimedia Processor [18], which contains the
specialized units for DCT (Discrete Cosine Transform) and motion estimation.

Unfortunately, due to the a variety of the algorithms that can be used in new
interactive applications and the fact that the actual number and the type of the objects is
not known till run time, it is no longer economically viable to make specialized
functional units for each algorithm. The picture is further complicated if we also take into
account that a platform designed for these applications may have to decode an object
encoded with an algorithm for which it was not conceived. Therefore, in order to
maintain the power efficiency and the real time constrains, we need a platform that can be
specialized at run-time to the algorithm at hand. A platform based on reconfigurable
instruction set processors (RISPs) provides this type of run-time specialization (5}

Chapter No. 2
Literature Review

VLIW-RISP (Architecture & Simulation) Page 9 of 77

Chapter No.2

Literature Review

Introduction

Reconfigurable computing architectures have been evolved from the most
prominently Field Programmable Gate Arrays (FPGAs). Recently, there is a variety of
FPGAs now available commercially. A large class of computing systems has been
developed by integrating multiple FPGAs chips and dedicated memory modules. A small
no of systems have been coupled with a general purpose processor or some kind of
application specific integrated circuit core such as a DSP processor to the field
programmable gate arrays. In order to minimize the communication overhead and
memory access bottlenecks being faced by the system for configuration bits the new
arriving computing systems are integrating a reconfigurable logic onto the single same
chip as that of the processor core chip [19].

2.1 Classification

There has been much different reconfigurable computing architecture that has been
developed over the last few years by researchers. Reconfigurable computing
architectures can be broadly classified based on several different parameters. In the
following section, some of the most distinguishing architectural parameters which can be
used to classify reconfigurable computing architectures have been discussed.

2.1.1 Granularity

The granularity of the computational or reconfigurable logic is the size of the smallest
functional unit that is addressed by the software mapping tools. In general the FPGAs
have smaller granularity such as 2-input or 4-input functional units [20]. Several
reconfigurable computing architectures such as Chameleon [19] implement coarse grain
computational or arithmetic units of larger size such as 32-bits. Lower granularity in fact
provides more flexibility in adapting the hardware to the computational algorithm. But,
lower granularity has a great performance penalty due to the larger delays introduced
when constructing computation modules of larger size using smaller functional units. A
class of reconfigurable computing architectures implements features that are specifically
targeted towards the reduction of these computational overheads.

2.1.2 Host Coupling

A large amount of logic is utilized as a processing fabric attached to a host micro-
processor. The host micro-processor performs the control and supervision functions to
configure the logic, schedule data input and output streams, external interfacing, among
other the things. The type of logic coupling to such a host system dictates the

VLIW-RISP (Architecture & Simulation) Page 10 of 77

computational as well as configuration overheads in utilizing logic to speed-up
computations. The degree of coupling in fact affects the reconfiguration and the data
access cost. The degree of coupling can be roughly partitioned into three basic classes:

Tightly Coupled Loosely Coupled
F — - . L L] L _— - .. L L
| Attached '
| Coprocessor Processing Unit |
| : em—— |
| |
| 1
I cru S Memory RIS
l : Caches: Interfac
] Functional Unit | Standalone
] Processing Unit

Figure 2.1 Host Coupling Approaches

System-level Coupling (Loosely coupled): This type of coupling includes the
computing architectures which have logic communicating to the host through an YO
interface similar to other peripherai devices. A large class of initial FPGA based logic
boards were architected with this degree of host coupling. Such architectures include
SPLASH.

Chip-level Coupling (Coprocessor or Attached Processing Unit): These systems
reduce the overtheads in comununicating to the relevant host by using direct
communication between the host and the reconfigurable logic. An example of such a
computing architecture is the PRISM [25]. A large class of the existing computing
architectures with reconfigurable logic has been architected using this technique.

Tight On-chip coupling (Tightly coupled): The availability of large class of the
transistors has resulted in the intensive integration of reconfigurable logic on the same
chip as a host micro-processor, and hence significantly reducing the communication
overheads between different components of the architecture. Such kind of architectures
includes the well known Garp, Chameleon etc.

VLIW-RISP (Architecture & Simulation) Page 11 of 77

2.1.3 Reconfiguration Methodology

Conventionally, a reconfigurable device is configured by dowrnloading a sequence of
bits known as a bit-stream onto the device [21] during its operation. The speed and
methodology being used during the download of bit stream depends on the interface
supported by the device {22]. There are two main types of interfaces namely, Bit-serial
and bit-parallel interfaces. The time required for the configuration of the device is
directly proportional to the size of the bit-streams as well as on the type of the interfaces
being used for this purpose [22]). Fine-grain and Coarse-~grain devices have difference in
the configuration overheads or time because course grain devices typically need smaller
amount of configuration bit-sireams. The ficxibility of reconfiguration is achieved at the
cost of reconfiguration cost. Reconfigurable logic has to stop computations for initiating
a new configuration process. This reconfiguration time or overhead can be significant,
especially for fine-grain multi-million gate FPGAs.

Some architectures support partial and dynamic reconfiguration processes. Partial
reconfiguration allows the reconfiguration of the functionality of a piece or poriion of the
device while the remaining portion retains its functionality {23]. On the other hand the
dynamic reconfiguration allows the reconfiguration of a piece or portion of the device
while other portions of the device are performing computations {23].

A large class of other computing architectures addresses this problem by utilizing
muitiple contexts of reconfiguration or a reconﬁgurahon cache [24). Both are similar in
basic principle. Some configurations of the device can be stored in on-chip memory. At
run-time, it is less expensive to switch to one of the configurations being available in
these memory chips or areas compared with loading a new configuration from external
memory devices [24]. The organization of the cache varies among the computing
architecturcs. Some computing architectures implement the architecture as an external
memory device, whereas some other architectures have distributed context memories. For
example, Chameleon RCP has a cache holding one configuration on-chip, which allows
single cycle reconfiguration completion [27], [28].

2.1.4 Memory Organization

The computations being performed on the reconfigurable logic needs to access data
from memery. Intermediate results from computations also need to be stored back before
the reconfigurable logic can be reconfigured to perform the next computation [29). The
organization of the memory system affects the data access cost and is a really significant
fraction of the actual execution time or overhead. Recently the most of the computing
architectures include a large memory on the reconfigurable logic device [31], [33]. This
memory can be implemented as large memory blocks just like those being available in
Virtex FPGA as a Block RAMs or as distributed memory blocks just like those being

—available in Chameleon LSMs [34], [35].

H
Al

VLIW-RISP (Architecture & Simulation) ' Page 12 ot 77

2.2 Reconfigurable Computing Architectures; A Survey

In the latest computing domain the parallel processing techniques being based on
Field Programmable Gate Arrays first time appeared in the domain of computing in the
year of start of 1985-1990. In a broader sense the reconfigurable computational
architectures can be classified into four main categories:

1. The Input / Qutput Bus Accelerators Systems

2. The Massively Parallelly Processing FPGAs Architectures
3. The Reconfigurable Computing Super-computers

4. The Reconfigurable Processing Logic Co-processors

2.4 Related Work

2.4.1 Coupling of Reconfigurable Architecture and a Multithreaded Processor Core
with Integrated Real-Time Scheduling [47]

This research paper defines a real-time interface between the simultancous multi-
threaded CarCore micro-processor and a MOLEN-based reconfigurable computing unit.
The CarCore is in fact IP core that enables simultaneous execution of one hard-real-time
thread and further multiple non-real-time threads. The type of the hardware coupling
described in this research paper extends CarCore by a reconfigurable computing
hardware such that the both can execute different threads simultaneously, while the real-
time behaviour of the hard-real-time thread is not disturbed. The main challenge under
consideration is the design of a common memory interface for both, the CarCore and the
reconfigurable computing hardware such that the memory operations fulfil hard-real-time
constraints. Experimental results with an MJPEG benchmark have been obtained which
show an overall application speedup of 2.75 which approaches the theoretically attainable
maximum speedup of 2.78.

2.4.2 Introduction to Reconfiguraiﬂe Computing Architectures [48]

In fact this mentioned research paper describes an overview of the research of the
currently developed hardware and software based systems for reconfigurable computing
architectures. This research paper also presents the alternating techniques that dedicatedly
are targeting the concept of run-time reconfiguration process. They conclude this
discussion by considering FPGAs in general and also by an exploration of the various
hardware architectures used in reconfigurable computing systems. Further they worked at
the layer of software based applications that wete required for the assembling or de-
compilation or compilation of the algorithms to reconfigurable computing systems and
the trade-offs between manual map and rout and automatic techniques. Further more they
have discussed FPGAs hardware in details and have also presented the detailed study
about the hardware level coupling of the reconfigurable computing devices.

VLIW-RISP (Architecture & Stmulation) Page 13 ot 77/

2.4.3 Reconfigurable Instruction Set Processors from a Hardware/Software
Perspective [49]

In this research paper the authors have presented the design alternatives for
reconfigurable instruction set processors (RISPs) from a hardware/software point of
view. Reconfigurable instructions set processors are in fact programmable processors that
contain a reconfigurable logic in one or more of their functional units. Hardware design
of such processors can be split in two main tasks. First task is the design of the
reconfigurable logic and the design of the interfacing mechanisms to the rest of the
micro-processor. Among the most important design parameters include the granularity of
the reconfigurable logic, the design or structure of the configuration memory, the
instruction encoding formats and the type of instructions being supported. On the
software side the code generation tools require new techniques to be coping up with the
reconfigurability of the processor. Aside from the traditional computing techniques, the
code generation requires the creation and evaluation of new reconfigurable instructions
and the selection of instructions to minimize reconfiguration time.

2.4.4 Re-configurable VLIW processor for streaming data [50]

This research paper describes the instruction set level design of a reconfigurable
VLIW processor for streaming data applications with alternating data bandwidths. 1t
discusses the design of reconfigurable data stream processor, the design of VLIW
processor for the reconfigurable approach, data control and address path design of the
configurable VLIW and generating the FPGA code - VLIW re-conﬁgurable procedure.

Reconfigurable RISC processor for vanable data bandw:dtks

The reconfigurable processor core is in fact a two-address machine with RISC instruction
set architecture and orthogonal general purpose register file.

e Address bus width is of size of 16 bits.
o Data busses width is of sizes of .8-bits, 16-bits, 32-bits and 64 bits for different
functional units (ALU, GPR)

Re-configurable systolic array - the data width sorter:

The reconfigurable systolic array - the dafa width sorter is based on the hardware design
research work. The research in Generic Algorithms is centered on the development of a
novel design which uses systolic arrays. The generic concept is in fact extended by
exploiting the pipeline architecture and principle to design a device that is independent of
the lengths of the chromosomes being used in a particular problem [36]. The systolic
arrays themselves are easily scalable to implement different population sizes. Prototype
systolic array cells have been designed and targeted to the Xilinx XC4000 FPGA [37].

“ v

VLIW-RISP (Architecture & Simulation} Page 14 ot 77

Re-configurable VLIW-CPU instruction sef and format

The first task designing the instruction set is to discuss the instruction to join the
instruction set for the data stream approach in order to ensure ISA and EXO compatibility
of the processor. Each VLIW instruction has 8 major fields:

e The Systolic sorter fields controls the systolic operation ALU and the global
LOAD/STORE operations via crossbar. The information on the streaming data
type sorted on every data output of the systolic sorter is coded as output in the
FPGA Condition Code Registers of the systolic sorter

e The R-CPUa, R-CPUb, R-CPUc and R-CPUd fields control the four R-CPU’s
function. The R-CPU is a two-address machine.

o The FPU memory and FPU conirol fields control the 32 bit RISC FixedProcesor
Unit (FPU) in performing LOAD/STORE and/or control oprerations.

® The FPGA-code contains the FPGA-SRAM images of the RPU and systolic units.
Data control and address path design of the configurable VLIW

The VLIW core implements the host function for the systolic sorter and the four
reconfigurable R-CPU calculators. The VLIW core executes all ALU, control and
LOAD/STORE instructions in the program. There are no streaming data instructions. The
main task of the VLIW core is to synchronize the Out-of-Order the operations of the R-
CPU and the systolic sorter to execute the FPGA based code to reconfigure the R-CPUs
and to invoice the LOAD/STORE operations for the systolic sorter. The crossbar switch
between the R-CPU data registers, the main memory and the execution units is in fact a
central part of the VLIW architecture. The R-CPU data register set is read-only through
this device which virtually provides it with four ports. The crossbar switch extends the R-
CPU data register set's read ports, making four “vertical” buses for all R-CPU and each
bus is connected to one of the input ports of the dual-port memory with "horizontal”
buses. It also performs some data width formatting (byte, word, etc). Accessing a R-CPU
data register takes two cycles.One cycle for the register set and another for the crossbar.

VLIW-RISP (Architccture & Simulation) Page 15 of 77

Reconfgurabe VLIV srocessor for stredming daki appicitiors

Dats bus, sl
1 L i i
B
64 MByte DRAM T
Hats
RAM
Danbn ik | Datatus it | comvisegs | ooomiee | FiXEd CPU
64 bit R1SC
Systoli¢c Armay sorter
boererol by
byetolic
m
A T I
f";z""‘- 1 ! Il 1] 41
p2hEstn SRAM | [kityte SRAM WDrie SRAM [gmmn %‘m
Rec. CPU| Rec. CPUY Rec. CPU Rec, CPU

Figure 2.2 Generating the FPGA code - VLIW re-configurable procedure

The main task of the systolic sorter is to generate a condition code for the
different data widths as the result of sorting the streaming data. The compiler drives
reconfigurations of the FPGA prior to execution of the application code, or possibly at
the beginning of every section of code that requires reconfiguration.

2.4.5 Reconfigurable Computing Systems Design: Issues at System-Level
Architectures

In this research paper the authors discuss the issues involved in the design space of
reconfigurable computing systems. They have identified nine key steps in RCS design as
application analysis, system partitioning into hardware (HW) and softwarc (SW),
architectural design space analysis, mapping of the design library onto the architecture,
partitioning of fixed HW and RLU of HW part, reconfiguration process, HW and SW
synthesis, compilation and scheduling tasks and Integration of all the components. They
briefly described the different models, architectures, compilation and scheduling of tasks,
reconfiguration methods, optimal mapping of the design library on the RLU and the state-
of-the art of RCSs. Finally they explain how they are going to solve some of the issues
and methods in their system design. The nine steps of system design described in seven
steps are as follows.

VLIW-RISP (Architecture & Simulation) Page 16 of /7

1. First step

The first step is the modeling different architectural choices for a given application which
will be optimized in terms of performance versus either given constraints or default
design constraints after the application analysis. ’

2. Second step

The second step is the proposing the optimized reconfigurable the architecture for a given
application by exploring the different 'design space of the architecture’ for reconfigurable
architectures.

3. Third step

The third step is the translating application onto DFG/CDFG or Hybrid architecture
depending upon application requirement.

4. Forth step

The fourth step is the partitioning the application using hardware (HW)-software (SW)
partitioning methods and algorithms; here we may use best existing HW-SW partitioning
methods and algorithms for our application with two level one level for basic partitioning

that is HW-SW tasks and other level is reconfigurable logic block (RLB)-fixed kind of
HW (F-HW) partitioning.

5. Fifth step

The fifth step is the design and implementation of the optimized algorithms for mapping
of the design library on to the proposed reconfigurable architecture.

6. Sixth step
The sixth step is the design and implementation of optimized algorithms for scheduling

the reconfigurable tasks (RTs), which will be implemented in RLB before mapping the
design on to the reconfigurable architecture (RA).

7. Seventh step

The seventh step is the implementation of prototype of the complete system; this involves
integration of the entire modules using designed algorithms for scheduling of RTs and
mapping of these RTs on to the proposed RA for given application.

2.4.6 Intelligent Reconfigurable Instruction Set Processor (I-RISP) Design [38]

This Thesis presents the design alternatives for Reconfigurable Instruction Set
Processor (RISP) from hardware point of view. Reconfigurable Instruction Set Processors

VLIW-RISP (Architecture & Simulation) Page 17 of 77

are programmable processors that contain reconfigurable logic in one or more of their
processing untts. In RISP the most impertant aspect is the re-configurability.
Reconfiguration time will have to be minimized in order to obtain satisfactory
performance. The solution to this problem is in software tools or to design such a
hardware which minimizes the configuration overheads. In order to avoid excessive
reconfiguration, the I-RISP (Intelligent Reconfigurable Instruction Set Processor) design
has introduced an ICAU (Intelligent Configuration Analyzer Unit) using hardware
approach. ICAU intelligently analyzes the expected configurations and reuses the
existing resources (configuration). The ability to reuse the existing resources significantly
incrcases the performance of I-RISP.

The proposed processor is based on VLIW architecturc, having an Intelligent
Reconfiguration Analyzer Unit. The purpose of Intelligent Reconfiguration Analyzer
Unit is to minimize re-configuration overheads faced by RISPs. In existing systems the
intelligence was created by using software techniques. This software based intelligent
reconfiguration techniques are considerably slow speed due to the conventional
instruction cycle concept. In order to eliminate this sofiware based overhead the
intelligence has been incorporated in hardware rather then in software.

The detailed architecture of the proposed design consists of the following modules:

Scheduler

Fetch Unit (FU)

VLIW (Very Long Instruction Word)
Inteliigent Computational Unit

Intelligent Configuration Analyzer Unit (ICAU)
Configuration Unit (CU) ‘
Reconfigurable Processing Units (RPUs)

R o e

Chapter No. 3
Dedicated Machines and
Reconfigurable Computing

VLIW-RISP (Architecture & Simulation} Page 1B ot 77/

Chapter No.3
Dedicated Machines and Reconfigurable Computing

3.1 The Philosophy of a dedicated machine

One of the main issues in the evolution of computing architectures is their
specialization. Many reasons can lead hardware designers towards pursuing a specialized
computing architecture. The requirement of obtaining the high performances in a typical
or particular application domain is one reason for it. Also, the timing issues in real-time
embedded applications pushed the designers towards architecturing application-specific
solutions which could more aggressively meet these requirements. Similarly other very
important parameters include the cost and the power consumptions. These are the key
design factors in the domain of embedded systems.

All these reasons and constraints introduce the requirements for a new design
paradigm which takes these features into account and leads to the definition of new
specialized cores or architectures. Hence one option is the general purpose computers,
where the main issue is that of achieving more generally high performance in a very large
spectrum of applications. The second option is the application-specific computers, where
embedded applications or algorithms guide architectural design in more compact form.
Dedicated or application specific architecture, performances are generally not measured
on conventional benchmarks but they are measured only on the application the machine
is designed for.

A large no of the different approaches have been taken by architectural researchers to
guide the design of application-specific solutions or algoritims. One of the early
approaches proposed for the design of this kind of machines was the ASIP (Applications
Specific Instruction set Processor) philosophy. It was an emerging design paradigm in the
field of application specific computing. ASIPs are programmable processors where the
Instruction Set is adopted to a particular application.

3.1.1 The main theme behind Instruction Set Specialization

The elements of the Instruction Set of a micro-processor, i.c. the op-codes are the
bricks into which a high level code is broken down for execution on a micro-processor.
The operation specified by each op-code is commonly executed on a most dedicated and
highly optimized functional unit and therefore we can see the functions specified by each
of the op-codes as the hardware execution bricks of the software execution flow,

If these bricks increase in granularity or size by performing more complex operations
than those which are typically available in the instruction set of RISC micro-processors,
then the instructions in the code will more generally correspond to more complex
functional units, possibly characterized by more latency and performing larger’
computations when compared to RISC functionai units, Since we know that the hardware

VLIW-RISP (Architecture & Simulation) Page 19 of /¢

execution speed is much faster than the software execution speed hence an application
broken down into bigger bricks will in generally be faster to execute than one broken
down into smaller ones. However, no doughty that the simple operations are common to
many software applications, the more complex operations become the less likely it is that
they are common to a large number of applications. Therefore, while a more complex
functional unit will speed up execution of the algorithm when extensively used by a
typical application, it is also true that the area dedicated to such a type of the unit would
result wasted, when running those applications programs that do not exhibit such
complex operations in their program code. Moreover, the presence of complex
instructions mostly complicates some program code gencration tasks such as code
selection and register allocation amang others.

The ISA specialization has been studied deeply in the past few decades [39]. In a
library of re-current sub-graph patterns is generated. Pattern matching and graphs
covering is then performed. The problem of optimizing area of functional units through
their specialization is also deeply considered and it is observed that much of the ALU
functionality is not used when only one or a few embedded system applications are
considered for execution. The embedded system application code is analyzed so as to
discover that which functionalities of the ALU are actually required. Functional Units
having lower cost and area can then be designed and specialized to the application
analyzed.

3.2 FPGAs

A Field Programmable Gate Array is consisting of an array of combinational logic
clouds or blocks overlaid with an interconnection network of horizontal and vertical
wires. Both the combinational logic blocks and the interconnection network are
configurable or programmable [40]. Their configurability is achieved by using either anti-
fuse elements based technology or SRAM based memory bits to control the
configurations or programming of the transistors. The Anti-fuse based technology uses a
strong electric or electronic charges or currents in order to create a programming
connection between the two adjacent required terminals. Hence in this way in fact this is
a typically less reprogrammable system. Static RAM based program configuration can be
re-programmed unlimited number of times on the fly by simply downloading a set of
different configuration bit streams into the Static RAM based memory cells.

Typically a configurable logic block shortly known as CLB architecture in fact is
consisting of a look-up table shortly known as LUT, a Delay flip-flop shortly known as
D-FF, some other form of additional combinational logic circuitry and a also consisting
of a set of Static RAM based memory cells to control the process of configuration of the
laid down configurable logic blocks (See Figure 3.1) [41]. The laid down digital fogic
circuitry or blocks of the FPGA device also perform the Input/Output operations in order
to load and store the data streams being required for the processing. On the other hand the
horizontal and vertical interconnecting networks can also be reconfigured by
programming or changmg the connections between the laid down configurable logic
blocks and the set of wires and by configuring the integtated programmable switch boxes

VLIW-RISP (Architecture & Simulation) Page 2U o1 ¢4

shortly known as PSB, which connect different horizontal and vertical wires. These
programmable switch boxes (PSB) for the interconnecting networks are also controlled or
programmed by the Static RAM based memory cells. In this way the logical functions
being computed inside the available configurable logic block (CLBs), the horizontal and
vertical interconnecting networks and the Input/Output blocks can be configured and
reconfigured by using the external data streams. Field Programmable Gate Arrays
typically atllow the unlimited number of reconfigurations for the laid down device. These
versatile kind of programmable devices so far havé beén used to build even large scale
micro-processor cores and co-processor cores whose internal architectures and as well as
interconnections can be reconfigured in order to match the requirements of a hand on
running application. In order to a very brief reconfigurable computing architectural
survey of Field Programmable Gate Arrays and some other important improvements of
the concerned technology consider the references of [3], [7], [13].

Current and future generations of reconfigurable computing systems or devices have
ameliorated the reconfiguration and configuration costs by providing a typically high
speed and most optimized partial and dynamic reconfigurability process [42]. In the
process of partial reconfiguration of the under laid device [23], it is quite possible to up
date or change the configuration bit strearns of any one part of the working under laid
device while the at the same time the configurations of the remaining part is still retained
in its original form. On the other hand in the process of dynamic reconfiguration of the
under laid device, the under laid devices allow this partial reconfiguration process even
during the interval when even other configurable logic blocks are performing their
regular operations or computations [43).

VLIW-RISP (Architecture & Simulation)

Mulli-FPGA Board

Page 21 of 77

Memory Memory WMemory Memory
T E ﬁl I:
FPGA FPGA FRGA FPGA

_ _ 3 i) 73 ¥
° ln!ercannecti 7 !,

P e - — B e Ry A TR T ST A 2

! 7 t
Logic Block , L ‘
f, i
’ 1
’]
4.LUT H' L, v)
: TR
FF ‘!4'@-4{@_%{{?@_44’4544’ /
) Q== A2 ik AT s T T
Configuration SRAM ‘%@iﬁiﬁfﬁ
e, .-.-.-:-'_—.'_-.-_-:.:'.'.-_—_—_-.'.-:.—.:-:.‘..':_—.'-—-_-_=___ F
o I'W'_ﬁ?)ﬁ'ii;';fzf} ------------- EPGA

2 2k i Wy M o Wt .‘..’ P

Va7 47 b2 b Pise NPT "

Figure 2 Typical FPGA Board, Device and Logic block architecture

Typically, the requirements of the applications are increasing at a rate which is much
faster than the increasing rate in the size or density of the computational logic resources
mostly available on the most of Field Programmable Gate Arrays. Field Programmatle
Gate Arrays architectures have limitations on their Input/Output capability of processing
due to the limitation on the available total number of Input/Output (I0) pins which are
physically available on the under laid device. In order to map and rout such kind of large
scale user applications onto the available configurable logic blocks, the different
computing systems have been designed which have several Field Programmable Gate
Arrays some times on a single board or even some time on a single chip.

These board level reconfigurable computing architectures are mostly designed to
function under the supervision an external configuration controller or kind of
configuration supervisor or sotne times even they may use one of the on-board Field
Programmable Gate Arrays as a main controller. There are a large number of such
systems available. The examples of such systéms may.include the DECPeRLe board, and
SPLASH-2 [30], the TERAMAC and the WILD series of devices being provided from
Annapolis Micro-systems. Also some other sort of software tools exist which have the
ability to automatically partition the whole design between the physically available

VLIW-RISP (Architecture & Simulation) Page 22 of 77

multiple Field Programmable Gate Arrays on a single board by using the kind of higher-
level of programming abstractions [27].

3.2.1 The Basic FPGA Architecture

The basic architecture of Field Programmable Gate Arrays consists of broadly three
kinds of components. These mentioned components include configurable logic blocks,
programmable routing resources and a set of input/output fogic blocks ot 10 blocks [44].

Generally, Field Programmable Gate Arrays consist of an array of programmable
logic blocks known as CLBs that can be intcrconnected to other CLBs and also as well as
to the programmable Input/Output blocks of the system through some kind of
reprogrammable routing resources or architecture. Figure 3.2 provides a very simplified
block diagram of the internal architecture of a generic Field Programmable Gate Array.

InE=
0000
0o
o O

Programable
Routing

0 O
0O
Dooo
Ooooao
IR

Figure 3 A Generic FPGA Architecture

Programable

TROU OO s On

i. The Programmable Logic

Field Programmable Gate Arrays designers have designed a large number of a variety
of programmable logic architectures for Field Programmable Gate Arrays after their great
invention in the mid-1980-1990. Since from few decades the much of the programmable
logic structures being used in Field Programmable Gate Arrays can be optimally
generalized as shown in Figure 3.3. The fundamental programmable logic element being

VLIW-RISP (Architecture & Simulation) Page 23 of 77

integrated inside the FPGA generally consists of some kind of programmable
combinational logic or CLB, a delay type flip-flop D-FF or kind of latching mechanism,
and a kind of fast carry control logic to reduce the area density and typical delay costs for
implementing such kind of carry logic.

Unlike other generic configurable logic component or element, the currently available
commercial Field Programmable Gate Arrays devices provide a large number of
programming flexibility within the available logic element. For example, a delay flip-flop
D-FF in many commercially available Field Programmable Gate Arrays can be made to
operate as a simple latch circuit and can be programmed to have many combinations of
asynchronous as well as synchronous sets / resets and can be negatively- edge triggered
or positively-edge triggered.

" Combina
tional , %
Logic- s Out Put
\

Configuration
Memory Ceil

Figure 4 A Generic Programmable Logic Block

Although the most of the reprogrammable Field Programmable Gate Arrays use
Look-Up Tables for their combinational logic, several other architcctures like [12], [13],
[14]) have been found 1o be used combinations of multiplexers and digital logic design
gates to implement this programmable logic architecture or structures [45].

VLIW-RISP (Architecture & Simulation) Page 24 o1 /¢

/

———» Qut Put

ryYVYYy vy

Figure 5 Three-lnpt Look-Up Table

Device Name Year LUT Width Cluster Name | Cluster Size
Xilinx XC2000 1985 4 CLB |
Xitinx XC3000 1987 4 CLB 2
Xilinx XC4000 1990 3&4 CLB 1&2

Altera Flex 8000 1992 4 LAB 8
Altera Flex 10K 1995 4 LAB 8
Xilinx Vertex 1998 4 CLB '
Altera Apex 20K 1998 4 LAB 10
Xilinx Vertex I 2000 4 CLB 8

Altera Apex 11 2001 4 LAB 10

Altera Stratix 2002 4 LAB 10
Xilinx Vertex 4 2004 4 CLB 8
Altera Stratix I 2004 3&4 LAB 24 & 16

Table 1 Logic Component Clustering Sizes of LUT Based FPGAs

ji. Programmable Routing Resources

The Field Programmable Gate Arrays designers have used a large class of different
routing resources or structures within their Field Programmable Gate Arrays. Different
kinds of forms or designs of routing resources exist through out the designs of each Field
Programmable Gate Array. Commonly some amount of routing resources is also included
within the design of the each logic clustering element so that the laid down logic
elements can be combined to form bigger and more complex functions.

In order to implement the nature of the programmable routing of the resources, there
are three basic switch types that have been used. These types include the digital
multiplexers, the pass transistor circuits and a commonly used tri-state buffer gates.
Figure 3.5 describes each of these mentioned switches with a Static RAM memory cells
controlling their outputs. Commonly, the passing transistor circuits and the digital
multiplexers have been used within the area of a logic cluster in order to connect the Jogic

VLIW-RISP (Architecture & Simulation) Page 25 of 77

elements or components together while ali of the above three have been used for the more
global routing structure.

Out Put l ' I -

ENB

{ T

{A) Multiplexer (B) Pass Transistor { C) Tri State Buffer

Figure 6 Basic rogrammable Switch Types
ili. Programmable Input/Output Architectures

Unlike programmable logic resources and routing resources, the basic input/output
resources or [0 architecture, as is shown in Figure 3.6, is very similar among the different
Field Programmable Gate Array families being evolved so far. The Input/Output logic
blocks have been found with the tri-state buffer gates for the outputs and input buffer
gates for the inputs of the system. The tri-state logic enable / disable signal, the output
logic control signal and the input logic control signals can be individually latched or
registered by using flip-flops within the Input/Cutput blocks or can be programmed as the
un-registered being depending on the fact that how the /O block is being programmed.

+ Figure 7 /O Block Architecture

VLIW-RISP {Architecture & Simulation) Page 2001 /¢

3.2.2 FPGA technology

Field Programmable Gate Arrays can be traditionally divided into two main
categories:

1. Anti-fuse Based FPGAs
2. SRAM Based FPGAs '

Recently another FPGA technology has been introduced by Alcatel, which is based on
Flash/CMOS based circuits [72].

The first type or category af FPGAs uses anti-fuses as a mean to program the device.
Anti-fuses implemented in a CMOS technology are being initially open circuits and after
that once they are programmed they take on a low resistance. The main characteristic of
this kind of FPGA is the fact that it can be programmed only once.

The second category of FPGAs uses SRAM cells as 2 mean for programming the
device. A 1-bit SRAM can control FPGA switches in two different ways including either
by controlling the gate node of a pass transistor or by controlling the select line of a
multiplexer drives the inputs of logic blocks.

The main advantage of SRAM-based FPGAs lays in their nature of re-
programmability. The logic value of the SRAM cells can be overwritten or updated for a
number of times and hence allowing the FPGA to be reconfigured even on-the-fly.
Another characteristic of such kind of FPGAs is the fact of being volatile, i.e. the
configuration must be loaded onto the device every time the system is booted up or
powered-up. The interest of this thesis for SRAM-based FPGA is indeed due to re-
programmability nature of it on-the-fly: as it will be seen, this allows change of the IS of
the proposed architecture while the application is running.

Further FPGA technology features of interest for this thesis include the latest
techniques of partial reconfiguration or re-programmability and context switching. The
former is the capability of re-programming only a specific part of the whole device, while
the rest part of the device is remains operational. The latter feature called context-
switching of the configuration is a new technology which enables an FPGA to hold
contexts of the multiple configurations at the same time. Configurations are stored in a
series of memory blocks or memory banks so that it is possible to rapidly switch between
them within the delay of nanoseconds [36].

FPGA Mapping Tools

Implementation of a circuit onto an FPGA platform requires sophisticated CAD tools.
Hardware description language or a schematic description is used to enter the design. In
the process of transforming such descriptions into the FPGA configuration, there are
three main phases.

i

VLIW-RISP (Architecture & Simulation) Page 27 of 77

1. Mapping phase
2. Placement phase
3. Routing phase

In the mapping phase the circuit 1s logically partitioned into modules or parts so that each
one is assigned to one configurable logic block of the FPGA. The second phase, called
placement, is the process of assigning the computation of every configurable logic celt
generated in the mapping phase to a physical logic cell being available on the device. The
third phase, called routing, targets at defining all the connections among cells through
programming the available horizontal and vertical switches. The complexity of the CAD
tools is very high and the three phases can take much more time from few scconds to few
hours for large circuits.

3.2.4 Commercial FPGAs

Xilinx: T

Xilinx FPGA devices consist of a two dimensional array of configurable logic cells
connected by horizontal and vertical layers of wircs. The most widely used FPGA include
the generations of Xilinx devices XC4000 [45] which claimed the density or capacity
from 2K to 15K equivalent gates.

In the XC4000 FPGA device Configurable Logic Block (CLB) is based on lookup
tables. A lookup table is in fact an array of 1-bit memory cells, where inputs are the
address of memory lines, and the one bit output is the data line: thus, a lookup table with
x inputs will have 2¥.1 bit possible memory cells. A lookup table can implement any k-
inputs logic function or computation. A CLB mostly has more than one lookup tables,
and one or more than one flip-flops. The XC4000 CLB consists of 3 lookup tables, two of
them with 4-inputs and one with:3-inputs and two flip-flops. One of the circuits that a
CLB can implement is a fulf adder, so that CLB can be configured or programmed to
implement any fast arithmetic circuit as carry-save or carry-look-ahead adders. CLBs can
also be used as read/write SRAM cells. A CLB is programmed by setting the memory
cells to the values given by the truth table of the digital logic circuit to be implemented.

The second distinguishing feature of FPGAs is their- routing connections or
interconnects. The XC4000 features horizontal and vertical channels. Each of these
channels consists in short, long, and medium distances wires. Short distance wires are
used for interconnecting two close CLBs, while the long distance wires can connect far
CLBs. In fact fong distance wires tend to have much less switches than shorter wires. The
final delay of the circuit depends heavily on how the CAD tool has assigned wire
segments to physical wires after the process of routing.

VLIW-RISP (Architecture & Simulation) Page 28 of 77

Altera FLEX:

The Altera Flex 8000 series of FPGAs has a logic density or capacity of 4K to more
than 15K equivalent logic gates. The device consists of a 3-level hierarchy. The lowest
level is a set of lockup tables. The basic logic block, called configurable logic element,
consists of a 4-input lookup table, a flip-flop and some additional circuitry for fast carry
propagation purposes. At a highest level, is the Logic Array Block? This consists of eight
logic elements, connected together through a local interconnect. Any two logic elements
of the block can be connected to each other by programmable wires. The local
interconnect and every logic clement are. connected to the Fast Track global
interconnects, similar to the XC4000 long distance wires.

The Flex 10000 family of FPGA features a different characteristic to that of 3000
serics of family. Every row of the device contains an embedded array block which can be
configured either as an SRAM memory cell block or as a leokup table. The latter use
serves to implement any complex digital logic circuit through a multi-output lookup
table. To more exploit this feature Flex tools contain various macro-functions to be
implemented in embedded logic blocks.

Atmel:

The AT40K and AT6000 FPGAs family or series present the particular feature of
partial configurability. This means that specific parts of the an FPGA device can be
reconfigured while the rest continues to operate. without disruption. This is particularly
useful in reconfigurable systems where instructions are taken in and out of th
programmable functional unit. The AT6000 Jogic cell contains a D-type rcgister and
about twelve logic gates. Interconnect is peculiar in that it provides diagonal connection
as well, in addition to the usual vertical and horizontal programmable interconnections.
Every cell is thercfore octagonal and hence 1t can be connected with eight neighbors. The
Atmel devices provide an internal SRAM memory that can be used for caching
configurations. A more advanced context-switching FPGA device is currently under
development at NEC. It is claimed that the arca required to store multiple contexts does
not grow linearly with the number of context [12]. In the future, the usage of even
DRAM cells instead of SRAM cells to save FPGA contexts could increase even more
FPGA potentialities.

3.2.5 FPGA performances

The FPGA performance in terms of execution speed is affected by two main features.
The time needed to download a configuration describing a certain circuit and the time
nceded to execute the function implemented by loaded circuit. Another important issue is
the time the software tool takes to generate configurations.

This is not as easier to give these performance figures in a straight forward way. The
time overhead for reconfiguration varies considerably depending on the size of the
device. Obviously a device implementing small logic: functions will take less time to

THS442.

VLIW-RISP (Architecture & Simulation) Page 29 o1 /1

reconfigure because a smaller number of reconfiguration bits streams are involved. A
good measure of reconfiguration time overhead could therefore be given per configurable
logic block used or even per gate equivalent which is even better because it is not
affected by the block granularity of the FPGA device. Another important issue is the
frequency at which the device operates, which is directly proportional to reconfiguration
time overhead. In the Atmel 6000 the reconfiguration for the full device takes from 1 to 8
mili seconds and this corresponds to almost 0.2 micro seconds for per Cell. Aliera 10K
claims 115 MHz performances with a density of up to 250 K logic gates. Xilinx has
recently launched a new line of FPGAs called VIRTEX series which targets operation
frequency of more than 300 MHz.

Table 3.1 gives performance of the Atmel6000 in terms of execution delay of some
arithmetic circuits. ST s

Circuit Cell Count | Max Speed

16bit Ripple Carry Adder 64 8. 9MHZ
16bit Fast Ripple Carry Adder | 96 11.4MHZ
16bit Carry Select Adder 222 15.7MHZ

Table 2 Cell Count and maximum Operating speed (one operation per cycle) for some
arithmetic circuits in the Atmel 6000 device

3.3 Reconfigurable CPUs

Since FPGAs present both advantages of re-programmability as well as the high
performance of custom circuit; it is appealing to combine a micro-processor core with
reconfigurable resources in order to achieve a speed or performance improvement over
either a separate micro-processor or a scparate reconfigurable FPGA device [3]. While it
is possible to combine conventional micro-processors with available reconfigurable
FPGA devices at the circuit board level; the integration changes the /O costs for both
devices. An architectural solution which is definitely appealing is therefore the
integration of an FPGA on-chip. A number of different solutions are as under:

i. Totally reconfigurable processor.
ii. The co-pracessor approach.
iii. A partially reconfigurable CPU.

3.3.1 Totally Recohfigurable Processors

This is a kind of the design approach where a CPU together with a reconfigurable
accelerator is designed or implemented by means of a reconfigurable logic. An important
project of this kind is the Dynamic Instruction Set Computer (DISC), designed at
Brigham Young University [6]. DISC consisted of two CLAy31 FPGAs developed by
National Semiconductors and memory on a circuit board connected to a personal micro
computer. DISC made extensive use of the latest technique of partial reconfiguration, The
first FPGA was consisting of a permanent control unit while the second was divided into

YLIW-RISP (Architecture & Simulation) Page 30 of 77

*

rows to simplify array management and allow for custom-instruction spatial caching.
Custom instructions were intended to be swapped into and out of the FPGA similar to
that of the pages of virtual memory. Before initiating execution of a custom instruction
the device operating program asks the FPGA for the presence of the custom-instruction
configuration. If the custom instruction is currently really on the FPGA, then the
execution 1s initiated otherwise program execution pauses while the custom instruction is
configured on the FPGA.

3.3.2 The Co processor Approach

Such an approach in fact proposes a loose coupling between micro-processor core and
the reconfigurable logic. The latter acts as a coprocessor where it is a slave computational
unit located either on the same die as the processor or off the chip. The granularity of the
implemented function in the reconfigurable section is much higher than that of the mixed
CPU approach. This is due to the fact that the communication with a coprocessor is much
stower than that of the communication with a paralle! data-path of the CPU. Therefore
the block of computation delivered to it must be large in order to give high perforiance
gain or improvement. A research project that fits in this category of reconfigurable
computing is the Garp by the BRASS group at Berkeley [4]. The proposed architecture in
fact consists of a MIPS processor placed in the same die with a reconfigurable
coprocessor. The coprocessor is activated by the processor when a reconfigurable
function is called. At this point the processor turns off and the coprocessor carries out the
computation of the reconfigurable instruction set having also access to both the processor
corc and cache memory. The coprocessor also includes a memory for caching
configurations so that to allow a fast context switching.

3.3.3 A Partially Reconfigurable CPU

‘This kind of approach proposes a very close or tight coupling between the main
processor core and the CPU. Contrarily to the coprocessor approach here the CPU and
the reconfigurable logic both compute simultaneously. The reconfigurable module is
indeed added to the data-paths of the core CPU and hence introducing a special kind of
functional units called Reprogrammable Functional Units (RFUs). This kind of system
organization allows definition of an extension of the architecture Instruction Set by the
implementation of new instructions on the RFUs. Also since the FPGA can be run-time
reprogrammed; one element of the instruction set can-be mapped onto an RFU for the
whole length of the application as well as such element can vary during the application
cxecution time through reconfiguration of the FPGA section. A number of projects have
used the mixed CPU architectures in the past. The PRISC project [35] developed at
Harvard presented to extend the Instruction Set of a RISC processor through
implementation of particular functions onto one or more Programmable Functional Units.
A framework is proposed where the choice of the functions to be implemented in the
P¥FUs is very transparent 1o the programmer. The most general computational model for a
PFU is said to be a multi-cycle sequential state machine. Performance gains were
measured on the SPECint92 benchmark suite and a speedup factor of 10% to 90% was
reported. A second proposal of tightly coupled micro-processor core and a

VLIW-RISP (Architecture & Simulation) Page 31 of 77

Reconfigurable Logic is that of the OneChip project. OneChip proposes an architecture
which 1s very close to that of PRISC. The major difference from the PRISC approach is
that in this system any kind of function is allowed to be implemented in the PFU.

Chimaera {10], is a reconfigurable system that was developed at Northwestern
University. In this system the FPGA and the processor core are placed in the same chip: It
focuses on the optimization of the reconfiguration overhead and elimination of the
communication bottleneck between the reconfigurable logic and the micro-processor
core. By enhancing the speed of reconfigurations and communications, even fine grained
reconfiguration can become practical. This project mainly focuses on the definition of the
Chimaera architecture. A caching logic is also present in order to hold muhiple
configurations and minimize overhead. Reconfiguration is done on a per-raw basis and
RFU functions occupy one or more of the rows.

Chapter No. 4
The Proposed Architecture

VLIW-RISP (Architecture & Simulation} Page 32 of 77

Chapter No.4
The Proposed Architecture

This chapter focuses on the design of a Very Long Instruction Word Reconfigurable
Instruction set Processor (VLIW-RISP).Hardware design aspects and concerning issues
have been discussed along with each component under consideration. In proposed system
an alternative design for Reconfigurable Instruction Set Processor (RISP) has been
proposed with the capability of the most optimal configuration overhead for Very Long
Instruction Word (VLIW) based architectures. The processor has been integrated with the
high speed partially reconfigurable Field Programmable Gate Array (FPGA) cores as its
Reconfigurable Functional Units (RFUs) in place of ALUs and it treats instructions as
removable modules which can be paged in and paged out through the partial
reconfigurations according to the requirements of the application being under execution.

4.1 Overall Design Goal

The overall goal of the thesis was to develop VLIW based Reconfigurable Instruction
Set Processor with a reconfigurable ALU that can implement any computational
algorithm on fly and reconfigure it later on for some other algorithm. The processor was
required to be the partially reconfigurable during the execution of the application. As
such, the design has been divided into two main modules:

Module No.1 (Compiler Design for VLIW-RISP)

This module deals with the design of the compiler for the VLIW-RISP. The compiler
is supposed to be able to allocate the Op-Codes to the instructions according to the
available configuration streams in the conﬁgu'ration memory. In this thesis the compiler
designing is not the main goal and hence a hypothetical compiler according to the
requirements of the proposed RISP is considered for the instructions being used for
execution purpose on the processor. Compiler is suppased to generate the instructions
with the instruction format as is used in the designed processor.

Madule No.2 (VLIW-RISP Design using Verilog-HDL)

This module deals with the design of the RISC based partially reconfigurable VLIW-
RISP processor. In this phase the proposed VLIW-RISP and its programming interface is
developed using the Verilog-HDL. Inside the proposed design only the computational
units (ALUs) are supposed to be reconfigurable and the remaining all components of the
design are truly non-reconfigurable.

4.2 Tool Issues

For designing the processor a hardware description language was required, Verilog
HDL was chosen due to its populanty and simplicity.

VLIW-RISP (Architecture & Simulation) i ' Page 33 of 77

4.2.1. Importance of HDLs

HDLs have many advantages compared to traditional schematic-based design.
Designs can be described at very abstract level by use of HDLs. Designers can write their
RTL description without choosing a specific fabrication technology. Logic synthesis
tools can automatically convert the design to any fabrication technology. If a new
technology emerges, designers do not need to redesign their circuit. They simply input
the RTL description to the logic synthesis tool and create a new gate-level netlist, using
the new fabrication technology. The logic synthesis tool will optimize the circuit in area
and timing for the new technology.

By describing designs in HDLs, functional verification of the design can be done
early in the design cyele. Since designers work at the RTL level, they can optimize and
modify the RTL description until it meets the desired functionality. Most design bugs are
eliminated at this point. This cuts down design cycle time significantly because the
probability of hitting a functional bug at a later time in the gat-level netlist or physical
layout is minimized. Designing with HDLs is analogous to computer programming. A
textual description with comments is an easier way to develop and debug circuits. This
also provides a concise representation of the design, compared to gate-level schematics.
Gate-level schematics are almost incomprehensible for very complex designs.

4.2.2,Why not to use a genceral purpose language

General-purpose programming languages do not provide support for structure and
instantiation of objects or modules. Also ‘they do not support bit-level behavior
description. Execution in general-purpose languages is sequential, therefore are unable to
support the concurrent nature of hardware modules, Also, they do not provide the
requircd timing support.

4.2.3. Verilog-HDL

Verilog HDL has evolved as a standard Hardware Description Language. Verlog
HDL offers many useful features for hardware design. Venillog HDL. 1s a general-purpose
hardware description language that is easy to learn and easy to use, It is similar in syntax
to the C programming language. Designers with C programming experience will find it
casy to learn Verilog HDL. Verilog HDL allows different levels of abstraction to be
mixed in the same model. Thus, a designer can define a hardware model in terms of
switches, gates, RTL, or behavioral code. Also, a designer needs to learn only one
language for stimulus and hierarchal design. Most popular logic synthesis tools support
Verilog HDL. This makes it the language of choice for designers. All fabrication vendors
provide Verilog HDL libraries for post logic synthesis simulation. Thus, designing a chip
in Verilog HDL allows the widest choice of vendors. Verilog is really a language for
modeling event driven systems. The design flow using Verilog-HDL or VHDL is shown
in figure 4.1,

VLIW-RISP {Architecture & Simulation} Page 34 of 77

O f 14
Event [E[EE]wr ve-tens:| nus] oes| Su e [y [=

s § =7==F

| I

Events

Figure 8 Event driven Systems

WA AER W i R SR W T S R AW W

VHDL
Venlog

Y
High-level
Synthesis

Technology

L

Independent

RTipate-lovel
Network

¥
Analysis oK
(Area’Timing) i |

S—

’
1
l
1
1
i
1
|
1
}
|
I
I
'
1
| —_—
)
(
i
!
i
)
i
)
i
1
!
1
1
1
i
!

-

L T I I I

Library of l Lpaic
Modules Synthesis

Technology

Y Netlist {device specific)

e t
Layout Dependen

Placement/Routing }

Figurc 9 Design Flow Using Verilog-1IDL

VLIW-RISP (Architecture & Simulation) Page 35 of 77

4.3 Instruction Format of proposed VLIW-RISP

The propesed Very Long Instruction Word Reconfigurable Instruction Set Processor
VLIW-RISP is basically a reconfigurable RISC architecture having each instruction of
size 32-bits. Instruction format is given below.

OF-Coge | Somrce 1 | Source T | DEUINR |y o2 Bits Reserved For Furure Use
bty Oprd Oprd Cpr (@-bits)
s, T {5-bits) {S-bizs) (5-bits)
e — e - 2~ -~ - e e -»
Configuration Memory
0

W
|

Opcole Addtes=l Opezaads

Opcole ID=1 w

FIFA

o 7880 /)
t FIFA FFFC
2 0 FIFD
3 7500 FFFE
Configuration Controller FFE¥

Figure 10 Op-Code Interpretation

This is the instruction format for the instructions of the application to be cxecuted on
the proposed VLIW-RISP. These instructions are of the size 32-bits. The 8-bits on the
most significant side of the instructions represent to the operation code shortly known as
the OP-CODE and hence leading to a maximum of the 256 possible operations or
instructions in the instruction set being active (Configured) at any time. Each op-code of
an instruction is in fact a pointer to some configuration block in the multi-port
configuration memory as shown in figure 4.3 and hence is responsible for loading the
required configuration stream of the relevant hardware module. Here each op-code is a
relocatable pointer which can be reconfigured for some other hardware module by
loading a new kind of bit stream over there in the configuration memory. Hence due to
this relocatable nature of the op-codes, the instruction set of the proposed processor is
bigger than the actual one supported by the design according to 8-bits of the op-codes.

VLIW-RISP (Architecture & Simulation) Page 36 of 77

Theoretically the reconfigurable instruction set processor defines to an unlimited sized
instruction set due to relocatable nature of op-codes.

Because the proposed VLIW-RISP is basically a RISC architecture using only the
Register-Register architecture with a register file having 32-Registers each register of the
size 32-bits, hence in order to access cach register for source or for the destination
requires an address of size 5-bits. Also the instruction format is a three-address
instruction format containing two addresses for sources and onc address for the
destination. Hence there arc three addresses Scurcel, Source2 and Destination operand
address, each of the size 5-bits hence consuming a total of 15-bits of the instruction.
There are a total of the 9-bits being declared as the Un-Used Bits. These bits will be used
in the future to further enhance the VLIW-RISP design and the instruction set.

4.4 VLIW-RISP Design Simulation using Verilog-HPL

In the simulation of the design the program will be written in the editor and will be
compiled. The compiler afler doing its all jobs will generate a binary file which will
contain the instructions of the program in the binary form as are required by the designed
VLIW-RISP. Hence now this file contains one instruction of size 32-bits in one row and
so on. Then this file is given to the “Stimulus of the VLIW-RISP” This stimulus loads
this file into the instruction cache of the processor and then processor executes it as it is
designed for. Before loading the application program written by the user, the required
data operands are loaded into the data cache of the VLIW-RISP as are required by the
proposed design. Then these data operands are loaded into-the register file of the
processor, containing a total of 24-General Purpose and 8-Flag Registers, where each one
ts a 32-bi1s register.

4.5 PROPOSED RISF DESIGN:

Very Long Instruction Word Reconfigurable Instruction Set processor VLIW-RISP
design is divided into different modules that were interfaced together to make the whole
processor. The different modules being designed for the VLIW-RISP using Verilog-HDL
are followings:

1. Input/Output Interface (TOT)

2. Cache Memories

3. Pre-fetch Unit (PFU)

4, Instruction Scheduler Unit (ISU)
5. Instruction Pack Logic (IPL)

6. Computational Pipeline-1 (CP-1)

VLIW-RISP (Architecture & Simulation) Page 37 of 77

» VLIW Fetch Unit (VFU)
* VLIW Dispatch Unit (VDU)
7. Computational Pipeline-2 (CP-2)
* VLIW Executton Unit (VEU)
* VLIW Configuration Unit (VCU)
8. Micro-programmed Control Unit (MCU)
In this chapter the detailed architecture of the proposed RISP has been discussed with
the detailed computational and control functionality explanations, The detailed
architecture has been overviewed in a top-down hierarchy. The detatled architecture of

the proposed processor is shown in the Fig.4.4 and different modules are discussed below
along with their functionality.

VLIW-RISP (Architecture & Simulation) Page 38 of 77

Main Memory. r ‘Configuration PROM:
_32.bits 32bits. _ .- . _Bbits
r
ge Address / Data / Configuration
[
- . Data Pool .
\ A 32.bits Data
o = Size=1KW Cache | DataCathe
Interface: W=32.bits Controlier {Size = 16 KW
' | W =32bits

Inst. Instruction Cache
Cache Size =16 KW
Controller §- W =256

aébitsl — = 4

Pneretch 3z.bits

'ze'.-zHﬂ

Mmm—progmrmned
cBntrol Unit:
ZE &_‘L
‘."-'.'.". ww LE R 3 E Kk 1 1 J '.--."-.-'."""‘--."."-....-I "..
: CP Unit-1 VLW (8x37 bits) CP Unit-2 32-brts! :
: - S E T Register Window (RemslerFuh) :
ot VLIW Fetch Unit o-: nxzzms H
: ‘ — Fz, ' : :
: * VLIW (8x32bits)] & oy vy W v
' 3 - 28] e)relfee | i I!
¥ i T £] & 2: 1 Lo | T
' [VLIW Dispatch Unit ~ am b b 4
- o AT R
' VLW (8x32 bits) | S L i 1
£ ¥ . XY | " MultiPort Configurabon Memory »
o0 thetruction Registers Windc Size = 16 KW :
: . Instruction Registers Window W = 32 bits :
' : RFUTR I%E!u ?’Eu R!u U RFUL m=u A -
H B 5 |_s .-L .L“ Configuration :
- 3 L Vi _Controlier .)
i Conﬁgurailon Stream Words {32-bits) E

-‘-ﬂﬂ‘ﬂﬂ.l.'.....‘.. SESSLIBSTESEECSLEIDBORDEDSS ..'..-'....

"y

Figure 11 Proposed VLIW-RISP Design

VLIW-RISP (Architecture & Simulation) Page 39 of 77

4.5.1 Input / Qutput Interface (10 Interface):

The 10 interface of RISP is used to communicate with the external devices being
interfaced with it. The first job of the IO Interface is to load the configuration streams
from external Configuration EPROM or main memory of system during the booting
processes of the processor and it takes only a few clock cycles. These configuration
streams contain the different hardware modules tike Adders, Subtractors, Multipliers and
Shifters etc, The second job of the IO interface is to load the instructions and their
relevant data operands to be executed on the processor. The third job of the 10 interface
is to store the results of the computations performed on the processor in mnain memory of
the system. The fourth job of the 10 interface is to send and receive the control signals
generated and acknowledged by the control unit of the RISP to the cxternal devices. /O
Interface interacts with external environment by using the following signals,

1. Data Bus Signals
2. Address Bus Signals

3. Control Bus Signals

Processor
External interface

Main Memory . Configuration ROM

!

R
Multiplexed Bus
Ctél:]t;o' Address/Data/Configuration
32-bi 8-bi

VLIW- RISP

S e ——
Figure 12 External Interface

VLIW-RISP (Architecture & Simulation) Page 40 of 77

The major functions and requirements for an 1/0 module fall into the following
categories {28].

a. Control and timing

b. Processor Communication
¢. Device Communication

d. Data Buffering

e. Error Detection

f. Processor Configuration
Cache Memories

The cache memory holds (stores) the data used by a program and also the instruction
of the program. The cache is organized as sct associative cache, with each location (line)
containing 32-bits of data in case of Data Cache and 32 x 8-bits in case of Insiruction
Cache. The cache operates as a write through cache. Note that the cache changes only if a
miss occurs. This means that daia written to a memory location not already cached are
not written to the cache. In many cases, much of the active portion of the program is
found completely inside the cache memory. This causes the exccution to occur at the rate
of one clock cycle for many of the instructions that are commonly used in a program
[29]. The architecture of the cache is supposed to be the standard cache architecture being
used by the standard micro processors.

1- Write-Back Cache: When the system writes to a memory location that is currently
held in cache, it only writes the new information to the appropriate cache line. When
the cache line is eventually needed for some other memory address, the changed data
is "written back" to system memory. This type of cache provides better performance
than a write-through cache, because it saves on (time-consuming) write cycles to
memory.

2- Write-Through Cache: When the system writes to a memory location that is
currently held in cache, it writes the new information both to the appropriate cache
line and the memory location itself at the same time. This type of caching provides
worse performance than write-back, but is simpler to implement and has the
advantage of internal consistency, because the cache is never out of synchronous with
the memory the way it is with a write-back cache.

VLIW-RISP (Architecture & Simulation} Page 41 of 77

a. Instruction Cache

The user interface, along with the compiler, generates a program file containing the
application program written by the user in the specified editor. Each row of the file
contains a 32-bits mstruction, This program file is loaded into the to internal instruction
cache of the VLIW-RISP,

Instruction Cache .
256-bits (8x32)

e o — - —) U1 S D R D

16K-1

Figure 13 Instruction Cache

The internal instruction cache of the RISP is of the size 16KW. Where W=Memory

Word. The size of the memory word is same as that of the size of the VLIW and is
32 x 8 =256 bits.

b. Data Cache

The data operands given by the user for the registers of the VLIW-RISP through the
interface are written to a data file initially. The each row of this data file is of the size 32-
bits and contains a single data operand of some instruction. This data file is loaded into
the internal data memory of the VLIW-RISP. The internal data memory of the VLIW-
RISP is of the size 16KW, Where W=Memory Word. The size of the data memory word
is 32-bits because the processor being designed is a 32-bits machine.

VLIW-RISP (Architecture & Simulation) Page 42 of 77

Data Cache
B 32-bits 0
1
2
3
4
5
6
]
|
|
1
I
]
i
|
|
!
i
16K-1

Figure 14 Data Cache

This internal data cache of the VLIW-RISP is used for many different jobs and these are
as followings.

Initially the data cache is loaded with the configuration streams that are then being
transferred into the multi-port configuration memory. Then the data cache is loaded with
the data operands of the zpplication program. Thesc data operands are the source
operands of the different instructions, written by the user in the program editor being
developed. These data operands are then loaded into the register file of the processor so
that the Register Window becomes able to fetch them during the execution of the relevant
instructions. The last job of the internal data cache is to store the results being generated
by the execution of the program instructions. These results are initially stored into the
registers of the VLIW-RISP and later on thesc results are shifled into the internal data
memory of the VLIW-RISP. From this data cache the results are stored into the external
data memory (Data File) of the system from where the user interface receives and
displays them on the system.

4.5.3 Pre-fetch Unit (PFU):

The basic job of the PFU is to fetch or pre-fetch the configuration stream or
instruction stream and the data stream of the application program being under execution.
Fetched configuration stream is loaded into the multi-port configuration memory and
instructions are loaded in the Instruction Pool and then transferred into the instruction
Cache. Similarly the data stream is loaded into the Data Pool and then transferred into
the Data Cache.

VLIW-RISP (Architecture & Simulation) Page 43 of 77

4.5.4 Instruction Scheduler Unit (ISU)

The ISU is the micro-programmed implementation of the Tomasoulo's Algorithm
being used in VLIW and Super-scalar processors for the scheduling of the instructions.
The instruction scheduler reads instructions from the instruction pool and then it analyzes
them for dependencies (if any) and resolves these dependencies. Dependencies being
analyzed include Data Dependency, Control Dependency, Resource Conflicts and Data
Hazards etc. Then it after analysis [SU transfers these instructions to IPL.

4.5.5 Instruction Pack Logic (1PL)

The main job of the IPL is t0 pack the eight instructions in the form of 2 VLIW, The
32-bits instructions transferred from the ISU are given to the IPL. The IPL arranges these
instructions in & buffer in a FIFO order on their arrival from the ISU. After the arrival of
each instruction, the IPL increments its instruction counter and checks either there are
eight instruction arrived from the ISU or not. If a total of eight instructions have been
arrived from the ISU then the IPL transfers them into a VLIW buffer of size 8 x 32-bits.
Then it enables this buffer to transfers this VLIW to instruction cache of the RISP if
signal Load_VLIW =I1. The same process is repeated constantly throughout the
application execution. Consider the Fig. 4.8 of IPL.

Lozd_VLIW Input
Signal
32-bits
Instruction

Controller |

Load

L T Viwhder-sm

k ‘ VLIW=4132 (256-bits)

Instruction Cache.
 Sizez16KW
W = 256-bits (8x32)

Figure 4.8 Instruction Pack Logic

VLIW-RISP (Architecture & Simulation) Page 44 of 77

4.5.6

Computationat Pipeline-1 (CP-1)

CP-1 is consisting of a VLIW Fetch Unit (VFU} and a VLIW Dispaich Unit (VDU).

i

VLIW Fetch Unit (VFU):

VFU is a State Machine based unit and works like a Programmable Counter. VFU
fetches VLIW from the instruction cache and the Op-Codes of all instructions of the
VLIW are transferred to the Configurarion Unit and the VLIW itself is transferred to

VDU.
r------------.----------------------------.
"
¥ e - - - - "
. Address t4-bit ' Load t4-dit FEKX256. v
: Generation - e Addgess...ﬂ-.‘*’:’-’—.p ¢ -Instruction; .
" “Logic * Jogic. Cache. :
: ' v
s . .
LN ‘Read/Write. | Read signas ,
: Logic ’
H] , s]
3 i [
[] [
.
"3 B L
: . VLIW. e 2252550 (VLI of S drstraction:) '
2 | Receiveunsi !
' L :
1 VLIW :
: 3531 H
L {I56-bit) ¥

—

Figure 15 VLIW Fetcil Unit

VLIW-RISP (Architecture & Simulation} Page 45 of 77

i. VLIW Dispatch Unit (VDU):

VDU is consisting of an array of eight De-MUXs whose select lines are controlled by
the configuration controller. According to the select lines activated by the configuration
controller all of the instructions of VLIW arc dispatched or issued by VDU to their
relevant RFUs. Consider the Fig. 4.10 of VDU.

Dispatch Buffer
I I H}(32I-bits)
1 Qpabits) e
o l(32bis) S
B (32-bits) Y /owament
O M(320is) N [
) 15 (32-bifs) DH-1(32.bits) 042
- 16 {32-bits) 1 7 NI
Pon- vt id il
" 8,
e T
Vel IS
o 1x8 I -LL‘-LLUHU-H LLu.:LLU‘ ous
% 1 j«U«UwUul l U...UJJLI o
DMTS2DIS11 gy ¥ SHTHERY PPy 1 IAI A

%ﬂr; X l1 .-ii; Bl ‘7#;"1 Wy l-}nt':r) & Ldln ; r-*d:i ':;1;'; Fby r“#; bl pléj:%
IR-7 R4 IRS IR-4 IR-3 IR-2 iR-1 IR-0
T 1" 1T -1 1T I
RFU.7 RFU-6 RFUS5 RFU4 RFU-3 RFU-2 RFU4 RFU

v ¥ \j \ \j v ¥ v

Figure 16 VLIW Dispatch Unit

bl

4.5.7 Computational Pipeline-2 (CP-2)

The CP-2 is composed of a VLIW Execution Unit (VEU) which contains an array of eight
RFUs and a Register Window of 32 registers (32-bits) and a Configuration Unit which
contains a Configuration Controller and a Multi-port Configuration Memory.

VLIW-RISP (Architecture & Simulation) e _ Page 46 of 77

i. VLIW Execution Unit (VEU):

VEU is the core component of the processor because it contains an array of RFUs being
used for program execution. Consider the Fig. 4.11 of VEU. The VEU contains the

following major modules.

l it T Mult-Port Confiauration Memorv. . ks V——
L e ocds Mutti-Port Configuration Memory- e Wi oo | "
: Tnstraction (Lbity) gl | S
} R A - - B e 5
RFUT Ithy svererreresrnecsmnnimmnninanmnennes seevenens |ORFUO I & Nt
% ek |
. $1 803 imstroctions
‘“L s Dost
Enable
¢
A W
- 4 lmz!
l l M rwr—u—-ﬂ - T,_» i
b Flags - =1 General Purpose [I '
Nbis § Registers Window] 3268 - Ris | Registers Window | 3205

Sx24
DEC
-

il

.....

(RruDataPath Controler)

Figurc 17 VLIW Execution Unit
a) External 10 Logic (EIOL)
b) RFUs Data-in/Data-out Logic (RDIOL)

) General-Purpose and Flag Regi.sters (GFRs)

e ——

VLIW-RISP {Architecture & Simulation) Page 47 of 77

d) Registers Input/Output Logic (RIOL)

e) Reconfigurable Functional Units (RFUs)

f) Flags Generation Logic (FGL)
a) External IO Logic (EIOL) |

The EIOL of the VEU is used to load instructions in the instruction register, source
operands in general-purpose registers and the configuration stream in RFUs. The second
job of the EIOL is to store the configuration stream being loaded in the RFUs for the
analysis purpose and results being generated after the execution of VLIW.

The source operands Sr-land Sr-2 are loaded into the internal general-purpose
registers (GPRs) by the External De-MUX of size 1 x 24. The address given for the Data-
in is connected to the select lines of De-MUX as well as to Decoder (5 x 24) input. De-
MUX selects one of the general-purpose registers for data loading and the decoder
enables its output channel connecting to the registers through the MUX of the size 2 x1.
This MUX receives 32-bits data operand from Extermal De-MUX at input “1” and
receives 32-bits results from RFUs at the input “0™. If the Ext_IO_En=0 then it selects the
result coming from the RFUs and loads it in the register. If the Ext_10_En=1 then it
selects the data coming from the External De-MUX and loads it in the registers. Since
there are eight RFUs that can load their results in the same register, hence in order to
solve this problem an 8 x 1 MUX (32-bits) is interfaced with each register input. Each
MUX is controlled by the RFU Data-path Controller which analyzes the Destination
Addresses of all the RFUs and selects only that RFU whose ‘output is valid output. In
order to store the results and the flags being available in the GPRs and flag registers
(FRs) into the data cache of the RISP, the 32 x 1 External MUX (32-bits) is used which
can read the contents of the selected register and sends it to the data cache of the RISP.

VLIW-RISP (Architecture & Simulation) Page 48 of 77

REUD.Dest Addross [e o) \
F 1-Ackiress "5 bite— " S S 4
Y ‘:::d::::: _,ffr‘l’: : > ardwired MUX-00
RFid Dest-Address .- - d By Select Lines (3-bits)
REUS-Dest Address -2-5’."' S - Ngmm -
RFUs-Dest Addrass oy ;. L!r — ™1 (MUX-0D)
REUT DestAddress g—bi‘tzl T ; :
. :
N/ :
-1 : :
5dits 5 bits : :
5o : :
fog.num - 00 ' | feas] : :
Sts : :
g‘:b. i M’ '
: — ! Algorithm; et Stectiines D OIS,
(Mux.23) |
reg-num = 23 5 i —: p

Figure 18 RFU Data Path Controller
b) RFUs Data-in / Data-out Logic (RDIOL)

In order to load/store the data across the RFUs there are two 32 x 1 MUXs (32-bits)
and one | x 24 De-MUX (32-bits) for each RFU. Using the two MUXs the RFU is able to
read the source data operands (Sr-1 and Sr-2) from any one of the 32 regisiers and using
the one De-MUX it stores its results back to any one of the GPRs. Flags generated during
the execution of the VLIW are loaded into the relevant FRs.

c) General-Purpose and Flag Registers (GFRs)

There is an array of eight FRs (32-bits) and twenty four GPRs (32-bits). GPRs can be
read and written by the programmer but the FRs can only be read by the programmer and
can not be written. RFUs can read/write any one of these thirty two registers. More than
one RFU can read the contents of the same register at the same time but only one RFU
can write in a register at the same time because the read operation is shareable but the
Wwrite operation is not shareable.

VLIW-RISP (Architecture & Simulation) B Page 49 of 77

d) Registers Input/Output Logic (RIOL}

FRs are loaded with the flags, being generated by the RFUs and can be read by the
programmecr through the External MUX. In case of the GPRs, the programmer can read
the registers through the External MUX but in order to write contents into registers there
is a 2 x 1 MUX (32-bits) which sclects the data for the register either from some RFU
output or from data cache. The 8 x | MUX interfaced at the input of the 2 x 1 MUX
selects the valid RFU for the results to be stored in the register. In order to select the valid
RF1J for results, there is a RFU Data path Controller shown in Fig.6 is attached with all
MUXs. This controller reads the select lincs of all the De-MUXs of RFUs and after
analysis it selects that RFU whose output is a valid output.

e) Reconfigurable Functional Units (RFUs)

There are a total of cight reconfigurable functional units RFUs. Each RFU has some
standard 10 interfaces for configuration and data flow in and out the unit as is shown in
the fig. 4.13

Reconfigurable Functional Unit

Configuration (RFU)
Stream Instruction
32-bits Words 32-bits
RFU

it 31 3

Sr1 Sri Sr2 Sr2 Dst Drst Flags
32-bits addrs 32-bits addrs 32-bits addrs 32-bits
5-bits S-bits 5-hits

Figure 19 Reconfigurable Functional Unit Interfaces

EEEEE————

VLIW-RISP (Architecture & Simulation) Page 50 of 77

Hence from the fig it is obvious that it receives 32-bits sized two source operands
from the register file of the VLIW-RISP and after computation generates one 32-bits
result and 32-bits flags. When it reads its source operands and sends the destination
operands from/to registers it also sends, 5-bits sized cach, source and the destination
addresses. Each RFU has a data bus dedicated for instruction loading and its size is 32-
bits. Also there is a 32-bits configuration bus that is used by it, to read/write the
configuration data into or out of the device. -

RFU Data-path Controller Algorithm

The Algorithm Initially Reads the Register Address (Rmn) and Destination Operand
Addresses of all RFUs

if (RFUO-Dest-Address == Rmn Address)
Then Sel _out =0;

else if (RFU1-Dest-Address = Rmn Address)
Then Sel out=1;

else if (RFU2-Dest-Address == Rmn Address)
Then Sel_out = 2;

else if (RFU3-Dest-Address == Rmn Address)
Then Sel_out = 3;

else iIf (RFU4-Dest-Address == Rmn Address)
Then Sel_out=4;

else if (RFU5-Dest-Address = Rmn Address)
Then Sel_out = 5;

else if (RFU6-Dest-Address == Rmn Address)
Then Sel_out = 6,

else if (RFU7-Dest-Address == Rmn Address)
Then Sel_out =7,

else Sel_out = Nil;

If we take the more detailed view of the RFU, we get the picture shown in the
fig.4.14. It contains an Instruction Register IR and an FPGA Logic. The FPGA Logic is
further subdivided into the two areas. One is the Non-Reconfigurable Area, which
generates the flags of the RFU, and the second area is the Reconfigurable area, which is
the most important portion of the VLIW-RISP. This is the only region inside the VLIW-
RISP that can be reconfigured. This reconfigurable are is used to map many hardwares on
the device and reconfiguration of the device during its execution:

VLIW-RISP (Architecture & Simulation) Page 51 of 77

Reconfigurable Functional Unit
(RFU)
Configuration Words Instruction
(32-bits) 32-bits
IR
o) ~
OP-CODE " | Unused
sein B [| s [e
FPGA
Logic
Srl Sr2 Dst
5rl Sr2 Dst Flags
. - - - addrs addrs addrs
32-bits 32-bits 32-bits 3z-bies S-bits 5-bits S-bits

Figure 20 Reconfigurable Functional Unit Interfaces

The reconfigurable functional Unit is the reconfigurable area of the proposed VLIW-
RISP. In fact this area is the area of the Field Programmable Gate Array FPGA being
used for the design and the testing of the VLIW-RISP. The FPGA being required should
have the property of the partial rcconfiguration at any time of the device working. There
are many different venders of the FPGA devices like Xilinx, Altera, Atmel and Triscend
etc. But only a few of them are providing the FPGAs that can be configured at run time,
partially. They include the well known Xilinx Corporation and the Atmel. The Virtex-
Series of the FPGAs provided by the Xilinx Corporation are al] partially reconfigurabie at
run time of the device. Also the 6200 Series of the FPGAs provided by the Atmef are also
partially reconfigurable. But if we compare bath of them, then we will found that the
Virtex-Series FPGAs provided by the Xilinx Corporation are much better solution than
the 6200 Series FPGAs of the Atmel. This comparison is based on the following factors

» Device Capacity (No of the logic gates)

® Device Speed (Configuration and Working Speeds)

* Device Flexibility (Methods of usage; of internal components)
» Device Compatibility (Ineffaceability with Processors)

* Device Maturity (Device architecture Maturity)

I e—
VLIW-RISP (Architecture & Simulation) ’ Page 52 of 77

» Device Availability (Device Market)

Hence due to all these factors, the device being chosen for the proposed VLIW-RISP
design is the Virtex-E of the Xilinx Corporation. Hence in this manner the reconfigurable
are being mentioned above is the area of the Virtex-E FPGA. The internal structure and
the working of the structure of the Virtex-E FPGA 1s explained here in detail.

/) Flags Generation Logic (FGL)

The outputs generated by the RFUs arc also read by the FGL and the flags are
calculated for each RFU. Flag register is a 32-bits register but recently only Carry Flag,
Sign Flag, Zero Flag, Overflow Flag and Equal Flag have been computed in the system
and the remaining twenty-seven bits are available for the future extension.

Fiags Generation Logic

[—— 5 [An—— A]
1
tY__ v ¥ .

32-its ' ‘2blta Car———] L

['xon Logle XOR Logls - Coen e 32-bits RFU
Rias teeeeeia it R
1 ¥

L azbits
. L NOR Legic
9z A r 2 4 ¥y

k] :_x:: [T £ -0, ¥ % K'(}‘

Flags Register

Figure 21 Flags Generation Logic

i. VLIW Configuration Unit (VCU):

VCU is composed of a Configuration Controller as shown in Fig.4.16 and a Mulli-
port Configuration Memory as shown. Configuration controller recetves the op-codes of
the eight instructions of the VLIW from the VFU and on the basis of these op-codes it
decides to load one of the configuration blocks available in the memory for each RFU (if
required). Also it checks if the op-code is a No Operation (NOP) or is same as that of any
one of the existing op-codes. If so then the configuration controller does not load this new
configuration into the RFUs but the hardware that is already loaded in the RFUs is reused
and hence the configuration time that was required for the reconfiguration of RFUs is
saved. Hence only those RFUs are reconfigured that are quite new ones. Hence the

VLIW-RISP (Architecture & Simulation} Page 53 of 77

processor always takes the minimum possible time to reconfigure the RFUs during the
execution of the application program and always has the most optimal configuration
ovcrhead.

A\
¢ ™ RFUE .
opcom] 1 - -
_;* e » .};’{c T gt e RFU- CONM] 2005 Smmmmmank e
- ' RFUZ e RFH 1 CONMIG 2007088 mmmanpe
opcom Mzp | i RE -RFU
—I:P O e Logic] N > [eeREU-2 Conig oSt
== oy Ul e i
Hagl IR £ Logic : 1 . J=—eRFU-{ Config atdressmmmtio
S CA B N CT) BN ¢ R“f‘h CONRGUIANON. |y R CoNITG TS smusmme
Mall I h 1 cmmqi?;r eriru 8 Config address et
HIl poe frus| Controtier e g
L 100 ot 1 Programaabl) [~ 1L o A==
$ T ™ 1 RFUE |
e) et
¢ '
. ozt A . . . RFW .
i} HHey .
e r M : RFUS :-_ :
o e g NS Mep > 2
gD 1 a on
. : 4 i oK ¢
Vasabhashssvnnassncannanat . RE ’ DN 1
- v 2
_ - DH3
Op-Codes BMDM 4
© prord 5
Memory. DM§
ry
YYPYPYYY

Figure 4.16 RFU Configuration Controller

VLIW-RISP {Architecture & Simulation) Page 54 of 77

Map Logic
- - \
w Op-Godle]] N
e | posws V) wse || shws [esis o f sms §] e | sbis
Gomparator | | Comparater | | Comparator | '] Confparator | | Camparator §. { Complrator | { Comparator Comparator
Logic’ Legic) . Legic Segil | | Legic togle. § 1 .Logic' ‘) |. ‘Logic
. 47 kP 2 “a 4 5. B, 1Tt
Sptont 4 _" : '
Cp-Looe-1
Opriinde-2 .
On-Coda-3 i N
Op Loded - N
Cp-Cote—b
Qp-Lodet
Op-Code?
¥ . v A ¥ ¥ | I v
[T . RFU# Datection Logic' -]
RFU#
\, el -]

Figure 226 Micro-programmed Control Unit

4.5.8 Micro-programmed Control Unit (MCU)

The control unit is the central controlling module of the RISP. All activities are
generated and managed inside the control unit. There are two different approaches
available for the design of the control unit. One is the Hardwired Control Unit Design and
the other is the Micro-Programmed Control Unit. The control unit of the RISP is based on
the Micro-programmed technology. It is a micro-coded state machines design. State
machine of the VLIW-RISP control unit is shown later

It controls all the activities inside and outside of the processor from the hard ware
configuration to the program execution. MCU is being designed using Micro-coded State
Machine architecture. Consider the Fig.4.18 of MCU,

At each state of the control unit state machine, a set of the micro cades is generated
and sent to the VLIW-RISP modules. These control signals actually control the
processing of the processor. There is a handshaking mechanism developed between the
control unit and the other modules of the VLIW-RISP. Due to this handshaking
mechanism the different modules of the processor are synchronized with each other,

VLIW-RISP (Architecture & Simulation) Page 55 of 77

The control unit of a microprocessor directs the operation of the other units by
providing timing and control signals. It is the function of the microcomputer to execute
programs which are stored in memory in the form of instructions and data. The control
unit contains the necessary logic to interpret instructions and to generate the necessary
signals for the execution of these instructions. The descriptive words "fetch" and
"execute” are used to describe the actions of the control unit. It fetches an instruction by
sending address and a read command to the memory unit. The instruction at that memory
address is transferrcd to the control unit for decoding. 1t then generates the necessary
signals to execute the instruction.

For the contral unit to perform its function, it must have input that allow it to
dctermine the state of the system -and output that allow it to control the behavior of the
system. These are the external specification of the control unit. Internatly, the control unit
must have the logic requircd to perform its sequencing and execution functions {28].
Figure 3.4 is a general model of the control unit, showing all its inputs and outputs.

Ready =1

Ready = 0

Reset =1

Reset =1

SRYSTEM Reset ={

IOLE STATE

Reset =1

Resgt =1

Reset =1 Reset =1 Reset=1

Figure 23 Micro-programmed Control Unit

EEEEEssse———

VLIW-RISP (Architecture & Simulation) Page 56 of 77

The Inputs:

Clock: This is how the control unit “keeps time.” The control unit causes one micro-
operation (or a set of simultaneous micro operations) to be performed for each clock
pulse. This is sometime referred to as the processor cycle time, or the clock cycle.

Instruction register: The op code of the instruction is used to determine which micro-
operation to perform during the execute cycle.

Flags: These are needed by the control unit to determine the status of the processor and
the outcome of previous ALU operations. For example for the increment and skip-if-zero
(1SZ) instruction, the control unit will increment the PC if the zero flag is set.

Control Signals from control Bus: the control bus portion of the system bus provides
signals to the contro! unit, such as interrupt signals and acknowledgements.

The Qutputs:

Countrol signals within the processor
These are of two types: Those that cause data to be moved from one register to another,
and those that activate specific RFUs functions.

Control Signals to control bus ,
These are also of two types: Control signals 10 memory, and control signals to the VO
modules.

Chapter No. 5
Statistics and Performance
Analysis

VLIW-RISP (Architecture & Simulation) Page 57 of 77

Chapter No.S
Statistics and Performance Analysis

5.1 DSP (TMS320C6X) Statistics [46]

In order to comipare the performance of the proposed VLIW-RISP with a DSP we
have chosen the DSP processor TMS320C6X provided by the Texas Instruments. It is a
fixed-point VLIW architecturc containing a total of eight functional units. They include
two Multipliers and six ALUs. The pipeline of the TMS320C6X can fetch a VLIW of
eight instructions. It is known as Fefch-Packet. A fetch packet is converted into an
Execute-Packet by looking at the resources available. An execute packet consists of
those instructions that can be executed in the pipeline in parallel without any resource
conflicts. The program fetch, the program dispatch and instruction decode units can
deliver up to eight 32-bits instructions (One VLIW) to the functional units every CPU
clock cycle, Hence it can execute a maximum of eight instructions in a single CPU clock
cycle, if these instructions have no intemal resource conflicts. In case of internal resource
conflicts, these fetch-packets are converted into two to eight exccute packets and then
each execute-packet takes one CPU cycle to execute it.

The execution of fixed-point instructions of the TMS320C6X can be defined in terms
of Defay Siofs. The number of delay slots is equivalent to the number of cycles required
afier the source operands are read far the result to be available for reading. For a single-
cycle type instruction (such as ADD, SUB) source operands read in cycle i produce a
result that can be read in cycle 1 + 1 (Hence Delay slot is zero). For a multiply instruction
(MPY), source operands read in cyele i produce a result that can be read in cycle 1 + 2
(Hence Delay slot is one). Delay slots are equivalent to an execution or result latency. All
of the instructions that are common to the *C62x and *C67x have a functional unit latency
of 1. This means that a new instruction can be started on the functional unit each cycle.
The following statistics and execution formula are calculated from the technical notes of
DSP processor (TMS320C6X)

Fr=FP (Terr + Torr) + ((Fy + Dy) + ...+ (Fg + Do)} Cycles

Where
Sr# Parameter Values
! | No of fetch packets (FP) 1,.2,3, e n in each program
2 | Packet Fetch Time (Tpgr) 1-Cycle for each fetched packet
3 | Operands Fetch Time (Tort) 1-Cycle for each fetched packet
4 | Execute packets (E;= Fy + Dy) 1-4 for each fetched packet
5 | Delay Slots (D) 0-Cycles for ADD/SUB ,1-Cycle for MUL
6 | Functional Unit Latency (Fy) 1-Cycle for each exccute packet
7 | Total Execution Time Tr

Table 3 Statistics and Execution Formula of DSP_Processor

VLIW-RISP (Architecture & Simulation) Page 58 of 77

3.2 VLIW-RISP Statistics

The VLIW-RISP is fetching the instructions externally one by onc using a Pre-fetch
Unit. This pre-fetching of instructions and its packing into VLIW and loading into the
Instruction cache has been overlapped with the program execution. Hence time consumed
is considered to be zero.

The VLIW-Fetch Unit takes one cycle to fetch one VLIW. Since the proposed
architecture is a Register-Register Architecture hence operands fetch time for each
fetched VLIW is always one cycle. The Configuration Unit takes maximum of one cycle
to update the configuration of RFUs, The VLIW-Dispatch Unit takes one cycle to
dispatch (Issue) onc VLIW. The execution time taken by Execution Unit depends upon
the type of the instructions to be executed. The followings are the statistics and execution
formula of the proposed VLIW-RISP.

Tv=FP (Tper + Torr) + (Te) + (T} + (Fa+ Dy) ...+ (Fo + Dg)) Cycles
Where

Sr# Parameter Values
i | No of fetch packets (FP) 1,2,3, s n in each program
2 | Packet Fetch Time (Tper) 1-Cycle for each fetched packet
3 | Operands Fetch Time (Tosr) 1-Cycle for each fetched packet
4 | Execute packets (E,= Fp + Dn) 1 for each fetched packet
5 | Delay Slots (Dy) 0-Cycles for ADD/SUB ,1-Cycle for MUL
6 | Functional Unit Latency (Fn) 1-Cycle for each execute packet
7 | Configuration Time T¢ 0-Cycle (Min), 1-Cycle (Max)
8 | Dispatching Time Tp 1-Cycle N
| 9 | Total Execution Time Ty

Table 4 Statistics and Execution Formula of VLIW-RISP

Now according to the above statistics the foﬂf);'ing assembly language programs have
been executed and the no of execution cycles have been calculated.

I —— i e ——— iy S B e fs i Sy o S i s — iy i Syt S e Wite A — . T— ——— N . W_— Tt ot ROl M Wt Ay Samt. W) T s ——
e e E T e Sy - T iy g U ——. e ;. WD N i - W, g e} oD . B iy) Ty, S Bt ot o T St el U o e e it sl ety Sy o P S e " — vt

Program No.1:

This application program (s consisting of simple arithmetic operations including
Addition, Subtraction and Multiplication. In siraulation and calculations, the all of these
operations have been taken with the same delay slots and functional unit latencies as that
of those provided by TMS320C6X DSP processor. The assumptions have been taken for
the sake of easy and authentic performance comparison. This program has been supposed
to be consisting of only eight instructions which make only one VLIW for the proposed
Processor.

VLIW-RISP (Architecture & Simulation) Page 59 of 77

ADD R0Q, RO1, R0O2;
ADD RO0Q, R01, RO3;
ADD R0Q, RO1, R0O4,
ADD RO0O0, RO1, RO5;
SUB ROQO0, R0O1, ROS;
SUB RO0O0, RO1, RO7;
MUL RQO, R01, RO0S;
MUL ROO, R01, R0O9;

1. TMS320C6X Performance (Maximum)

Tr=FP (Tprr + Toger) + (Fp + Dg) Cycles
=1(1+1) +(2) =4 Cycles

2. VLIW-RISP Performance (Minimum)

Tr=FP (Teer + Torr) + (Tc) + (To) + ((Fo + Dg)) Cycles
=1(1+ 1)+ (1) + (1) + (2)) = 6 Cycles

—————— e T T T S — Y e b T S A S i B - T T e S e S Sy e b B S W Sy o S et S . S
e it T —— Ty —— T — —— T — T——— T—— . T ———— ——y T——— ——————— ———— " —

Program No.2:

This application program is consisting of simple arithmetic operations including Addition
and Subtraction. In simulation and calculations, the all of these operations have been
taken with the same delay slots and functional unit latencies as that of those provided by
TMS323C6X DSP processor. The assumptions have been taken for the sake of easy and
authentic performance comparison. This program has been supposed to be consisting of
only eight instructions which make only one VLIW for the proposed processor.

ADD R00, RO1, R0OZ, :
ADD RO00, RO1, RO3;
ADD RQ00, R0O1, RO4,
ADD RO00, RO1, RO5;
SUB ROO, R01, RO6;
SUB ROO, RO1, RO7;
SUB ROO, R01, RO8;
SUB ROO, RO1, ROS,

1. TMS320C6X Performance (Maximum)

Tr=FP (Tprr + TOFI') + ((F] + D]) + (FO + Do)) C)’CICS
=1(1+1)+{(1} + (1)} =4 Cycles

VLIW-RISP (Architecture & Simulation) Page 60 of 77

2. VLIW-RISP Performance (Minimum)

Tr=FP (Tper + Torr) + (Te) + (Tp) + ((Fo + D)) Cycles
=11+ + (1) +{1}+((1)) =5 Cycles

I B Sy S S — — ——— iy M g o e . W ity Wy S i P S T S A, . e Sl A M T W, e R Sl i B Sl e e el Lt S W e S S s
e e i S Tt i S A T oy B e e e et el i B W My, e i . S, . P e RO D M Rl e S i S — T S .

Program No.3

This application program is consisting of simple arithmetic operation of Multiplication.
In simulation and calculations, the operations have been taken with the same delay slots
and functional unit latencies as that of those provided by TMS320C6X DSP processor.
The assumptions have been taken for the sake of easy and authentic performance
comparison. This program has been supposed to be consisting of only eight instructions
which make only one VLIW for the proposed processor.

MUL R00, R01, R0OZ,
MUL R0O, R0O1, RO3;
MUL R0O, RO1, R04;
MUL ROO, RO1, RO5;
MUL ROO, R0O1, RO8,
MUL RGO, RO1, RO7;
MUL RGO, R01, ROS;
MUL ROO, RO1, ROS;

1. TMS320C6X Performance (Maximum}

Tr=FP (Tprt + Torr) + (Fs+Dy)+........... + (Fo + Dy)) Cycles
=1+ + (2 +(2)+ (2) + (2 =10 Cycles
2. VLIW-RISP Performance (Minimum)

Tr=FP (Tppr + Torr) + (Tc) +(Tp) + (Fo+ Du)) Cycles
=11+ 1)+ (1) + (1} + ((2)) = 6 Cycles

o S — i — T o oy Yo i — —— B T SO iy gy W S S Wl e e el L . Wy . S e S O S et VN TS Wl W S T S ey e ek iy k. Wb
. — ——— n e —— -t i il Yol . L iy o . S il N S, WAN Ty e o e kil M Wl P PR e S S S S e e el Wl e WL ToHe

Program No.4:

This application program is consisting of simple arithmetic operations including only
Multiplication. In simulation and calculations, the operations have been taken with the
same delay slots and functional unit latencies as that of those provided by TMS320C6X
DSP processor. The assumptions have been taken for the sake of easy and authentic
performance comparison. This program has been supposed to be consisting of sixteen
instructions which make two VLIWs for the proposed processor. Since all instructions
are representing to the same operation, hence only first VLIW. will be reconfigured and
the same configuration will be used by the second VLIW. Hence the performance will be
much higher as compared to a conventional DSP processor.

VLIW-RISP (Architecture & Simulation) Page 61 of 77

MUL ROO, RO1, ROZ;
MUL ROQ, R0O1, RO3;
MUL ROQ, RO1, RO4;
MUL R0O, RO1, ROS;
MUL ROO, RO1, RO6;
MUL RO0Q, RO1, RO7;
MUL ROOQ, R01, ROS;
MUL R0O0Q, R01, RQ9;

MUL R0OQ, RO1, ROZ;
MUL ROQ, R0O1, RO3;
MUL ROO, RG1, RO4,
MUL R00, R01, ROS5;
MUL R0O, R01, RO06;
MUL ROO, RO1, RO7;
MUL ROO, RO1, R08;
MUL ROO, RO1, RO9;

1. TMS320C6X Performance (Maximum)

Tr=FP (Tprr+ Tor) + (F7+ D)+ .eeeeo. + (Fg + Dyp) Cycles
22(1+ 1)+ () +(2)+ (@) + (2) + (2} + (2) + (2) +(2)) = 20 Cycles

2. VLIW-RISP Performance {Minimum}

Tr="TFP (Terr + Tory) + (Te)+ (Tp) + ((Fy + Di) + (Fo+ Dy)) Cycles
22(1+1)+ (1) + @) + () + 2)) = 11Cycles

——— — —— e At L ——

—— o — T iy Sk Sl A O T i i Gty Yty g St Wy e W . S, e el i Yo Sy W S Wk WS b e Mgl Ao S Wt
Ty . B —————

—— " Ty — — — ——t—— — T . — T i T S W P S et e S S P S — . s S i S -

Program No.5:

This application program is consisting of simple arithmetic operations including
Addition, Subtraction and Multiplication. In simulation and calculations, the operations
have been taken with the same delay slots and functional unit latencies as that of those
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake
of easy and authentic performance comparison. This program has been supposed to be
consisting of sixteen instructions which make three VLIWs for the proposed processor.
Since all instructions arc representing to the different operation, hence both times the
VLIWs will be reconfigured and hence some what higher configuration time will be used
by the second VLIW. Hence the performance will be effected as compared to a
conventional DSP processor.

ADD RO0G, R0O1, R02;
ADD R0Q, R01, R03; :

VLIW-RISP (Architecture & Simulation} Page 62 of 77

ADD R00, R0O1, R04,
ADD RO0, RO1, RO5;
SUB RO00, R0O1, ROS6;
SUB ROO, R01, RO7,;
SUB R0O0, R01, RO8;
SUB R00, R01, R0OS;

MUL ROO, R01, ROZ;
MUL ROO, R(01, ROS3;
MUL ROO, R01, R04,
MUL ROO, R0O1, ROS;
MUL ROO, R01, RO8;
MUL ROC, R01, RO7;
MUL ROOQ, R01, RO8;
MUL ROG, RO1, RGS;

1. TMS320C6X Performance (Maximum)

Tr=FP (Terr + Torm) + (Fs + D) + oinn + (Fo + Dy)) Cycles
=2(1+ 1) +(2)+(2) + (2} + (2) + (1) + (1)) = 14 Cycles

2. VLIW-RISP Performance (Minimum)

Tr=FP (Teer + Torr) + (Te) + (Tpy+ ((Fy +Dy) + (Fe + Do)) Cycles
=Z2(1+ 1)+ @) +{2) + {(2) + {1)} = 11Cycles

i . ——— ————————

P e —— A T . Y i iy el A O A S i W S e Sl G e S S s R ol i N W i
— e e " — e o ———— —"

A — — T, Wy T — — —— S Sy Y Y S S i . G, iy =y Ty S U S R T - ————— ——

Program No.6:

This application program is consisting of simple arithmetic operations including only
Addition and Subtraction. In simulation and calculations, the operations have been taken
with the same delay slots and functional unit latencies as that of those provided by
TMS320C6X DSP processor. The assumptions have been taken for the sake of easy and
authentic performance comparison. This program has been supposed to be consisting of
sixteen instructions which make two VLIWs for the proposed processor. Since both
VLIWs are representing to the same operations, hence only first VLIW will be
reconfigured and the same configuration will be used by the second YLIW. Hence the
performance will be much higher as compared to a conventional DSP processor.

ADD R00, R01, R0OZ;
ADD ROQ, R01, R03;
ADD RO00, R0*, RO4;
ADD RO00, R01, ROS;
SUB RO00, RO1, RO6;

VLIW-RISP (Architecture & Simulation)

SUB RO00, R0O1, RO7,
SUB RO00O, RO1, ROS;
SUB R0O0, R01, RO,

ADD R00, R01, R02:
ADD RO00, R01, RO3:
ADD R00, R01, R04:
ADD R00, R01, RO5:
SUB R00, RO1, ROB;
SUB RO00, R01, RO7;
SUB R00, RO1, RO8:
SUB R00, RO1, RO9;

1. TMS320C6X Performance (Maximum)

Tr=FP (Terr + Toer) + (F3 + D3) +
= 2(1 + 1)+ {(1) + (1) + (1) + (1)) = 8 Cycles
2. VLIW-RISP Performance (Minimum)

Tv=FP (Teer + Torr) + (Te)+ (Tp) + (F1 + Dy) +
S2{1+ N+ M+ @2+ (1 +{1))=9 Cycles

e i e B . e S S — T —— — ——— T Sy —— N S
g g el - e ———a———— e

Program No.7:

+ (Fg + D)) Cycles

Page 63 of 77

— ———————— i ———— . = Tt W b

This application program is consisting of simple arithmetic opcerations including
Addition, Subtraction and Multiplication. In simulation and calculations, the operations
have been taken with the same delay slots and functional unit latencies as that of those
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake
of easy and authentic performance comparison. This program has been supposed to be
consisting of twenty four instructions which make three VLIWs for the proposed
processor. Since all instructions are representing to the different operation, hence first
VLIW will be reconfigured and similarly second and third VLIW will also be

reconfigured. Hence the configuration time of the program will be higher.

ADD RO00, R01, R0Z,
ADD RQO, R0O1, RO3;
ADD R0QO, R01, R04,
ADD RO00, R0O1, ROS;
SUB ROO, RO1, ROS;
SUB RO0O, R0O1, RO7;
SUB ROO, R0O1, ROS;
SUB ROQ, R01, R09;

VLIW-RISP (Architecture & Simulation) Page 64 of 77

MUL ROO, RO1, RD2;
MUL RO0O, RO1, RO3;
MUL ROO, R01, RO4;
MUL R00O, R01, ROS;
MUL RQO, R01, RO6;
MUL R0O, R01, ROT7,;
MUL RO00O, R01, RO08;
MUL ROO, R01, RO9;

ADD ROO0, RO1, RO2;
ADD R00O, R01, R0O3;
ADD RO0OQ, RO1, R04;
ADD ROQ, RO1, RO5;
SUB RO00, RO1, ROS;
SUB R00Q, RO1, RO7,
SUB RO0Q0, RO1, RO,
SUB RO00, RG1, RO9;

1. TMS320C6X Performance (Maximum)

Tv=FP (Tprr + Torn) + ((F7+ D7)+ oo, + (Fo + Do)) Cycles
SN+ (2D + Q) +(2) + (2 + (1) + (1)) =18 Cycles
2. VLIW-RISP Performance (Minimum})

Tr=FP (Tper + Torr) + (Te)+ (To) + (F2 + D)+ ... + (Fo + Dg)) Cycles
=31+ 1)+3)+3)+ {(1) +(2)+ (1)) =16 Cycles

A e e B S i Sy . . Yl W W) Pt o Mokt ok Y [t et g B S M S e S . —— i . . S Egpe e, W - S W S e W s W . ot W
S — T—— ——— T T— ————— . S o T T Tl T Tl Sy at W il Gl ot Wl G B Sy e . e el el gl Sl WS Byl il A S S et i R S Ty

Program No.8:

This application program is consisting of simple arithmetic operations including
Addition, Subtraction and Muliiplication. In simulation and calculations, the operations
have been taken with the same delay slots and functional unit latencies as that of those
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake
of easy and authentic performance comparison. This program has been supposed to be
consisting of twenty four instructions which make three VLIWs for the proposed
processor, Since all instructions are representing to the different operation, hence first
VLIW will be rcconfigured and similarly second and third VLIW will also be
recontigured. Hence the configuration time of the program will be much higher.

MUL R0O, RO1, ROZ2;
MUL RQO, ROt, R0O3;

VLIW-RISP (Architecture & Simulation} Page 65 of 77

MUL R00, RO1, R04;
MUL RO0, R01, RO5; ~
MUL RCO, RO1, ROG;
MUL RGO, RG1, RG7;
MUL RQO, R01, ROS;
MUL RO00, R01, ROS;

ADD RO0O, R01, R02;
ADD R0O0, R01, RO0S3;
ADD ROO0, R01, R04;
ADD R0Q, R01, RO0S5;
ADD R00O, RO1, ROS;
ADD R00Q, RO1, RO7,
ADD RO00, R01, RO8,;
ADD RO0O, RO1, ROS;

SUB R00, RO1, R02;
SUB R00, R0O1, RO03;
SUB R00, R0O1, R04;
SUB R00, RO1, ROS5;
SUB RO00, R01, RO06;
SUB R00, RO1, RO7;
SUB R00, R01, ROS8;
SUB RO00, R0O1, RQ9;

1. TMS320C6X Performance (Maximum)

Tr=FP (Tepr + Torr) + ((Fr + Do+ .o + (Fop + Do)} Cycles
=3+ N+ (N + 1)+ () +(2)+(2) + (2) + (2)) = 18 Cycles
2. VLIW-RISP Performance (Minimum)

Tr=FP (Tprr+ Topr) + (T} + (Tp) + ((F1 + D)+ ..ol + (Fo+ Do)) Cycles
=3(1+1)+ @)+ 3+ (1) + (1) +(2) =16 Cycles

—— et e e e ey e B T i e T Ty S i Sl oy, . S L i Wt . Wy Sy . St Wt S e L oy e e e gy S S ey vl St WY N SO VS i W W e .
e S A W S S e e W Wy i (e e e . i i g B —— — ——— o S T — i — it SO . Wy i A o T W W T i, Pt i S

Program No.9:

This application program is consisting of simple arithmetic operations including only
Multiplication. In simulation and calculations, the operations have been taken with the
same delay slots and functional unit latencies as that of those provided by TMS32¢C6X
DSP processor. The assumptions have been taken for the sake of easy and authentic
performance comparison. This program has been supposed to be consisting of forty
instructions which make five VLIWs for the proposed processor. Since all instructions

VLIW-RISP (Architecture & Simulation) Page 66 of 77

are representing to the same operation, hence only first VLIW will be reconfigured and
the same configuration will be used by the remaining four VLIWs. Hence the
performance will be much higher as compared 10 a conventional DSP processor.

MUL ROQ, RO1, ROZ;
MUL ROO, RO1, RO3;
MUL R0O, R0O1, RO4;
MUL ROQ, RG1, ROS;
MUL R0O, RO1, ROS;
MUL ROC, RG1, RO7,
MUL ROO, RO1, RO8;
MUL ROO, RO1, R09;

MUL RQO, RO1, ROZ2;
MUL ROO, RO1, RO3;
MUL ROO, RO1, R04,
MUL ROO, RO1, RO5;
MUL ROO, RO1, ROG;
MUL R0OO, RO1, RO7;
MUL RQO, RO1, RO8;
MUL ROO, RO1, R09,

MUL ROO, R01, ROZ;
MUL R00, R01, RO3;
MUL R0OO, R01, R04;
MUL R00, R01, RG5;
MUL R0OO, RO1, RO6;
MUL R0O, RG1, RO7,
MUL ROQ, RO1, R08;
MUL ROG, RO1, ROS;

MUL ROO, R01, ROZ;
MUL R0OQ, R01, RO3;
MUL RO, RO1, RO4;
MUL ROQ, RO1, RO3,
MUL ROO, RO1, R0S6;
MUL R0OQ, RO1, RO7;
MUL ROO, RO1, RO8;
MUL ROQ, R01, ROS9;

MUL ROO, R0O1, R0OZ,;

VLIW-RISP (Architecture & Simulation) Page 67 of 77

MUL R00, RO1, R03,;
MUL R00Q, R01, R04;
MUL RQO, R01, R05;
MUL R00O, R01, RO0S;
MUL ROO, R01, RO7,
MUL R00O, RO1, R0S;
MUL R0O0, RO1, ROg;

1. TMS320C6X Performance (Maximum)

Tr=FP (Tprr + Torr) + ((Fig + Do} +..eo o + (Fg + Dg)) Cycles
=S5+ N+((D+ @+ 2+ QY+ Q+ 2+ (D+)+ @)+ @)+ (D) +
F @D DD+ (D) +(2)
=50 Cycles

2. VLIW-RISP Performance (Minimum)

Tr=FP (Teer + Torm) + (To)t (T) + ((F1 + D} + ...+ (Fo + Do)} Cycles
=51+ N+ M+ B+ {2+ (@) +(2) + (2) +(2)

=26 Cycles

—— e S — . T S — i S S S —— —— Sy T — N ——— ————— — T — . — — e —— — — {———— ——— P S—— — T
st —————— e ————————r i ——————p P ————=t P e g

Program No.10:

This application program is consisting of simple arithmetic operations including only
Multiplication. In simulation and calculations, the operations have been taken with the
same delay slots and functional unit latencies as that of those provided by TMS320C6X
DSP processor. The assumptions have been taken for the sake of easy and authentic
performance comparison. This program has been supposed to be consisting of eighty
instructions which make ten VLIWs for the proposed processer. Since all instructions are
representing to the same operation, hence only first VLIW will be reconfigured and the
same configuration will be used by the remaining nine VLIWs. Hence the performance
will be much higher as compared to a conventional DSP processor. This program
execution on proposed RISP shows that the reconfigurable processor exhibits a much
higher performance gain than any conventional DSP processor.

MUL R0O, RO1, ROZ;
MUL R0O, RO1, RO3;
MUL ROO, RO1, RQ4;
MUL RO0O, R01, ROS5;
MUL ROO, RO1, RO6;
MUL ROQC, R0O1, RO7;
MUL R0O, RO1, ROS8;

T

MUL R0O0, R01, R09;

VLIW-RISP (Architecture & Simulation) Page 68 of 77

MUL R00Q, R0O1, ROZ;
MUL RQ0, RO1, RO3;
MUL R0O, RO1, R04,
MUL RO0O, RO1, RO5;
MUL R0O, RO1, ROB;
MUL R0O, RO1, RO7;
MUL R0OO, RO1, ROS,
MUL R0O, RO1, ROS;

MUL ROO, RO1, ROZ;
MUL ROO, RO1, RO3;
MUL ROO, RO1, RO4;
MUL ROO, RO1, RO5;
MUL R0O, RO1, ROS;
MUL ROO, RO1, RO7,;
MUL R0OO, RO1, ROS8;
MUL R0O, RO1, ROS;

MUL ROQ, RO1, ROZ;
MUL ROO, R0O1, RO3;
MUL ROO, R01, R04;
MUL R0OO, R01, ROS;
MUL ROO, RO1, ROS;
MUL ROGC, RO1, RO7,;
MUL RO0O, R01, ROS;
MUL R0OO, R0O1, RO9;

MUL ROO, RO1, ROZ;
MUL ROO, R0O1, RO3;
MUL RGO, RG1, RO4;
MUL R0O, RO1, RO5;
MUL RO00, R01, RO8;
MUL ROO, R01, RO7;
MUL ROO, RO1, RO8,;
MUL ROO, R01, ROS;

MUL R0OO, R0O1, RQZ,
MUL R0OO, R0O1, RO3,;
MUL ROO, RO1, R04;
MUL ROO, R0O1, ROS5;

VLIW-RISP (Architecture & Simulation) Page 69 of 77

MUL R0OO, RO1, ROG;
MUL ROO, R01, RO7,;
MUL ROO, RO1, R0S;
MUL R0OO, RO1, R0S;

MUL ROQ, RO1, R02;
MUL ROO, RO1, RO3;
MUL ROO, RO1, RO4,
MUL R0OO, RO1, RO5;
MUL ROO, R0O1, R086;
MUL ROO, RO1, RO7,
MUL ROO, RO1, R0S;
MUL ROO, RO1, R0S;

MUL ROO, RO1, R02;
MUL RQ0, R01, RO3;
MUL ROO, RO1, RO4;
MUL ROO, R01, ROS;
MUL ROO, R0O1, ROS;
MUL RQO, R0O1, RO7;
MUL R0O, RO1, ROS;
MUL RGO, R01, ROS;

MUL R0OQ, R0O1, RO2;
MUL R0O0O, R0O1, RO3;
MUL R0OO, R0O1, R04;
MUL ROQOO, R0O1, RO5;
MUL RO0O, R0O1, R08;
MUL ROO, R01, RO7:;
MUL R0OO, R0O1, ROS8;
MUL R0OQ, R01, R09;

MUL ROQ, RO1, RO2;
MUL ROO, RG1, RO3;
MUL ROO, RO1, RO4;
MUL ROO, R01, RO5;
MUL ROO, RG1, RO6;
MUL R0OO, R01, RQ7,
MUL R0O, RO1, ROS;
MUL ROG, RO1, ROY;

VLIW-RISP (Architecture & Simulation) Page 70 of 77

1. TMS320C6X Performance (Maximum)

T1=FP (Tprr + Toer) + (Flot Dyg)+.vovevnnins + (Fp + Dp)) Cycles
=10 (1 + 1) +(
)+ @+ @+ @+ @+ {2+ Q)+ QY+ D+ + QY+ Q)+ (D
R+ @R+ 2+ @+ A+ D+ (+ QY+ (+ (2} + Y+ () + () +
g;)* R)+@Q+ 2+ A+ D+ Q)+)+ Q)+ A+ (2)+ () +
=100 Cycles

2. VLIW-RISP Performance (Minimum)

Tr= FP (Tegr + Torr) + (Te)+ (Tp) + ((Fo + Do) + wvveveneene +(Fg + Dg)) Cycles
=10 (1 + 1)+ (1) + (10} + (
@2 +{Q+Q)+ 2+ @+ Q)+ 2+ () +(2) + (2))
= 51 Cycles

——— e S— ———— i D W . o —

R — ——— e — — — i — T —— —— — T — S i o T N T W ot
. S — — i Y e — S —

o o e — i A e i el g T S T — T S i it e T Vg g S e e W ot

VLIW-RISP (Architecture & Simulation)

Page 71 of 77

Calculated Statistics

DSP VLIW-RISP
Program | Execution Time | Execution Time

No. (No of Cycles) (No of Cycles)
1 4 6
2 4 5
3 10 6
4 20 11
5 14 11
6 8 9
7 18 16
8 18 16
9 50 26
10 100 51

Table 5 Calculated Statistics of Both Processors

5.3 DSP vs VLIW-RISP Performance Analysis
The graph being obtained by comparing the speed of the conventional DSP processor
named TMS320C6X with the proposed RISP is shown tn Figure 5.1

Loops
(Max.

Performance) §

P3

Tested Programs

Figure 24 DSP vs VLIW-RISP Performance Analysis

Chapter No. 6
Conclusion and Future Work

VLIW-RISP (Architecture & Simulation) Page 72 of 77

Chapter No.6

Conclusion and Future Work

6.1 Conclusion

Now the reconfigurable computing based systems are becoming an important part of
research work by different researchers in the fields of computer architectures. In this
domain of computing; placing the computationally very intense portions of any under
execution application program onto the reconfigurable computing hardware, that
application is being accelerated to a much high performance. It happens due to the fact
that reconfigurable computing architectures combine the advantages of both the sofiware
based and Application Specific Integrated Circuits based implementations, Like software
based applications, the mapped circuits are quite flexible and hence can be changed
during the execution time of the system. Similar reconfigurable computing systems
provide us a method to map circunits into hardware in the same manner as that of the
ASICs. Therefore the reconfigurable computing systems or devices have a great potential
to achieve much greater performance gain as compared to that of the software based
solutions due to bypassing the conventional fetch-decode-execute instruction cycle of the
general or traditional microprocessors.

Reconfigurable Instruction Set Processors (RISPs) have been evolved through many
design alternatives but the main theme of the design was always the tightly coupled
nature of integrated reconfigurable logic inside the processor cere. In the resent era the
main focus of the research is to overcome the drastic execution delays being introduced
by the configuration overheads of RIUs. Researchers have introduced different
techniques to tackle this overhead including Run-time Reconfiguration, Partial
Reconfiguration, Configuration Compression, Pipelined Configuration, Multi-threaded
Configurations, Configuration Cloning, Configuration Re-usability and Configuration
Overhead Optimization using the intelligent configuration controllers.

In this research thesis a Reconfigurable Instruction Set Processor (RISP) design has
been proposed with the capability of the most optimized configuration overheads. Due to
the VLIW nature of the proposed processor; at one hand the multi-threaded
reconfiguration of the RFUs has been exploited along with the partial run-time
reconfiguration as well as on the other hand the configuration intelligent re-usability has
been overlapped. In order to achieve the multi-threaded reconfiguration and the
intelligent re-usability of the existing configurations, a multi-port configuration memory
and a hard wired algorithmic configuration controller has been designed so that to
optimize the configuration overheads by configuring the minimum number of RFUs. The
processor always takes the maximum advantage of the existing configurations and hence
providing the minimum possible configuration overheads.

VLIW-RISP (Architecture & Simulation) Page 73 of 77

6.2 Future Work

It is in general true that no project is ever finished and done with 100% satisfactory
performance in accordance with the requirements leading to its origin. It is just halted on
different stages in the development process and is realized as product. As a designer 1t 15
an obligation to look forward some generations and make sure that the design will be able
to continue to improve. Some suggestions are given below,

6.2.1 Hardware Improvement

The possible refinement in the proposed VLIW-RISP design is to improve the design
of Configuration Unit so that to adopt the most complicated and advanced techniques of
partial reconfiguration. While keeping the external interface same. The Configuration
Unit is using multi-port memory to store the status of RPUs. Multi-port memory is an
expensive solution. We must find an alternate solution to reduce the cost.

6.2.2 Configuration Protocol

The processor is reconfigured through an external interface, hence slow. We can work
on the reconfiguration protocol as part of the processor’s module. The external processor
would then be able to reconfigure the FPGA simply by writing the configuration into a
special memory area handled by the static module. Static module will in turn reconfigure
the RPUs.

6.2.3 Configuration Techniques

Keeping all the existing resources of the proposed processor unchanged there are
many new techniques, which can be used 10 minimize the configuration size and
configuration overheads. The configuration minimization is a process relevant to
configuration compression techniques. This area is quite new and open for researches to
give compression techniques. The configuration ‘overhead can be reduced by providing
the emerging technique of partial reconfiguration. Along with partial reconfiguration
techniques a new process of configuration cloning has been introduced in which the
existing configuration streams can be replicated within the chip and hence introducing
another very optimistic process for research work.

3

Bibliography

VLIW-RISP (Architecture & Simulation) : Page 74 of 77

Bibliography

[1] M. Ageel Igbal and Uzma Saeed Awan, ‘Reconfigurable Instruction Set Processor
Design Using Software Based Configuration’, Proceedings of IEEE computer society,
IEEE Intemational Conference on Advanced Computer Theory and Engineering 2008
(ICACTE-2008), December 20-22, 2008, Phuket Island, Thailand.

[2] M. Aqeel Igbal, Shoab A, Khan and Uzma Saeed Awan, ‘RISP Design with Most
Optimal Configuration Overhead for VLIW Based Architectures', Proceedings of IEEE
computer society, 2nd IEEE International Conference on Electrical Engineering 2008
(ICEE-2008), March 25-26, 2008, UET Lahore, Pakistan.

[3] M. Aqeel Igbal and Uzma Saeed Awan, “An Efficient Configuration Unit Design for
VLIW Based Reconfigurable Processors”, Proceedings of IEEE Computer Society, 12th
IEEE International Multi-topic Conference 2008 (IEEE INMIC-2008), December 23-24,
2008, Bahria University, Karachi, Pakistan.

[4] M. Aqeel Igbal and Uzma Saeed Awan, “Run-Time Reconfigurable Instruction Set
Processor Design: RT-RISP”, Proceedings of IEEE Computer Society, 2nd [EEE
International Conference on Computer, Control and Communication 2009 (IEEE
ICCCC-2009), February 17-18, 2009, Pakistan Navy Engineering College, Karachi,
Pakistan.

[5) M. Ageel Igbal and Uzma Saeed Awan, “Reconfigurable Processor Architecture For
High Speed Applications”, Proceedings of IEEE Computer Society, IEEE International
Advance Computing Conference 2009 (IEEE IACC-2009), March 6-7, 2009, Patiala,

India.

[6] M. J. Wirthlin, Brad L. Hutchings. A dynamic instruction set computer. In Peter
Athanas and Kenneth L. Pocek, editors, Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, pp 99--107, April 1995.

[7] Lucent Technology Inc. FPGA Data Book, 1998.

[8] Xilinx Inc. The Programmable Logic Data Book, 1994.

[9] A. DeHon. Reconfigurable Architectures for General Purpose Computing. PhD
thesis, MIT Al Lab, September 1996.

[10] S. Hauck, et al, The Chimaera Reconfigurable Functional Unit, Proc. 5th IEEE
Symp. FCCM, 1997, pp. 87-96.

[11] S.C. Goldstein, et al, PipeRench: a Coprocessor for Streaming Multimedia
Acceleration, Proc. Int’l Symp. Computer Architecture, 1999, pp. 28-39.

VLIW-RISP (Architecture & Simulation} Page 75 of 77

[12] Altera Inc.. Altera Mega Core Functions,
http:/twww. altera, com/html/tools/imegacore. htiml, San Jose, CA, 1999,

[13] Xilinx, Inc. Virtex II Configuration Architecture Advanced Users’ Guide, March,
2000. : .

[14) G. Estrin et al. Parallel Processing in a Restructurable Computer System. JEEE
Trans. Electronic Computers, pp. 747-753, 1963

[15] P. Athanas and H. F. Silverman, Processor Reconfiguration Through Instruction-
Set Metamorphosis. I[EEE Computer, 26(3):11-18 ,March 1993.

[16] J. D. Hadley and B. L. Hutchings, “Designing a partially reconfigured system,” in
Field Programmable Gate Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, Proc. SPIE 2607 (J. Schewel, ed.), (Bellingham, WA), pp.
210-220, SPIE - The International Society for Optical Engineering, 1995.

[17] Johannes Kneip, Bernd Schmale, Henning Moller, “Applying and Implementing
the MPEG-4 Multimedia Standards”, IEEE Micro November/December 1999 (Vol.
19, No. 6)

[18] Trimedia Technologies Inc, “Trimedia 32 CPU Hand Book”,
http://www.trimedia.com.

{19] C. Systems. http://www.chameleonsystems.com/.
[20] Xilinx. XC6200 Field Programmable Gate Arrays, 1996.
[21] Xilinx, Inc. Virtex Configuration Architecture Advanced Users’ Guide. June, 1999.

[22] S. Brown and J. Rose. FPGA and CPLD Architectures: A Tutorial. [EEE Design
& Test of Computers, Summer 1996.

[23] Edson L. Horta and John W. Lockwood. PARBIT: A Tool to Transform Bitfiles to
Implement Partial Reconfiguration of Field Programmable Gate Arrays (FPGAs).
Washington University Department of Computer Science Technical Report WUCS-01-
13. July 2001. (Available at http://www.arl. wustl.edw/arl/projects/fpx/parbit

[24] S. Scalera and J. V’azquez. “The design and implementation of a context switching
Field Programmable Gate Array”. Published in the IEEE Symposium organized on the
Field-Programmable Computing Machines, held in April 1998.

[25] Athanas and Silverman. “The Processor Reconfiguration Through Instruction-
Set Metamorphosis™. Published in IEEE Computer spciety, 26(3):11~18, organized in
March 1993.

VLIW-RISP (Architecture & Simulation) Page 76 of 77

[26] Xilinx, Inc.. XC6200 Field Programmable Gate Arrays Product Description. April
1997.

[27) Rose, E. Gamal and Sangiovanni. “The Architecture of the Field Programmable
Gate Arrays (FPGAs). Published in the Proceedings of the IEEE, in July 1993.

[28] J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli. Architecture of Field
Programmable Gate Arrays. Proceedings of the IEEE, July 1993.

{29] A. DeHon. Reconfigurable Architectures for General Purpose Computing. PhD
thesis, MIT Al Lab, September 1996.

[30] By Hoang, “Searching the genetic databases on splash 2” in IEEE Workshop on
Field Programmable Gate Arrays (FPGAs) for Custom Computing Machines (D. A.
Buell and K. L. Pocek, eds.), (L.os Alamitos, CA), pp. 185~191, IEEE Computer Society
Press, 1993.

[31] S. J. Hauck. “The Roles of Field Programmable Gate Arrays in Programmable
Systems™. Published in the Proceedings of IEEE, 86, in April 1998.

{32] P. S. Sidhu, A. Mei, and V. K. Prasanna, “étring matching on multicontext FPGAs
using self-reconfiguration”, in ACM/SIGDA Intemational Symposium on Field
Programmable Gate Arrays, pages 217-226, Monterey, CA, February 1999.

[33] Philip James-Roxby and Steven A. Guccione. Automated Extraction of Run-Time
Parameterisable Cores from Programmable Device Configurations. In Proceedings of
IEEE Workshop on Field Programmable Custom Computing Machines, pages 153-161,
April 2000.

[34] By Dehon. “DPGA-Coupled Microprocessors; The Commaodity ICs for the Early
21% Century”. Published in IEEE Symposium on Field Programmable Gate Arrays for
Custom Computing Machines, held in April 1994.

[35] R. Razdan. PRISC: ProgrammableReduced Instruction Set Computers. PhD thesis,
Harvard University, May 1994, fip.eecs.harvard.edu:users/smith/theses/razdan-

thesis.tar.gz.

[36] C. J. Rupp and M. L.. Landguth and Garverick and Gomersall and Gokhale. “The
NAPA Adaptive Processing Architecture”. Published in /EEE Symposium on Field
Programmable Gate Arrays for Custom Computing Machines, held in April 1998.

[37) Xilinx Inc.{www.xilinx.com). Xilinx Platform FPGAs.

(38] Aziz-Ur-Rehman, Dr. Ageel A. Syed and M. Ageel Igbal, ‘Intelligent
Reconfigurable Instruction Set Processor (IRISP) Design’, Proceedings of IEEE

L S .

VLIW-RISP (Architecture & Simulation) - Page 77 of 77

computer society, 11th IEEE Internationat Multi-topic Conference 2007 (INMIC-2007),
Dec 28-30, 2007, COMSATS Lahore, Pakistan.

[39] P. Bertin, H. Touati, and E. Lagnese, “PAM programming environments: Practice
and experience,” in IEEE Workshop on FPGAs for Custom Computing Machines (D. A.
Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 133-138, IEEE Computer Society
Press, 1994,

[40] Atmel Inc., ATMEL AT6000 data sheet, 1996.
[41] Xilinx Inc.(www.xi]inx.com).‘Virtex Series FPGASs.

[42] J. M. Ditmar, “A Dynamically Reconfigurable FPGA-based Content Addressable
Memory for IP Characterization,” Master’s thesis, KTH- Royal Institute of Technology,
Stockholm, Sweden, 2000.

[43] V. C. Corporation. Reconfigurable Computing Products, http://www.vce.com/.

[44] Xilinx Inc., "Vmex 2.5 V Field Programmable Gate Arrays", Advance Product Data
Sheet, 1998.

[45] X. Inc., “Virtex-E 1.8 v field programmable gate arrays.” Xilinx DS022, 2001.

[46] TMS320C62x / C67x CPU and Instruction Set Reference Guide Literature Number:
SPRU189C March 1998.

[47) Sascha Uhrig, Stefan Maier, Georgi Kuzmanov, Theo Ungerer, “Coupling of a
Reconfigurable Architecture and a Multithreaded Processor Core with Integrated Real-
Time Scheduling”, 2006 1EEE.

[48] Katherine Compton, Scott Hauck, “An Introduction to Reconfigurable Computing”,
{EEE Computer, April, 2000.

[49] Francisco Barat, Rudy Lauwereins, Geert Deconinck, “Reconfigurable Instruction
Set Processors from a Hardware/Software Perspective”, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEFTEMBER 2002,

{50] K. Solomon Raju, M. V. Kartikeyan, R C Joshi and Chandra Shekhar,
“Reconfigurable Computing Systems Design: Issues at System- Level Architectures™.

Appendix

An Efficient Configuration Unit Design For
VLIW Based Reconfigurable Processors

M.Aqeel Igbal
Faculty of Engineering and IT
Foundation University, Institute of Enginesring and
Management Sciences, Rawalpindi, Pakistan
magqeelighal@hotmail.com

Abstract — The reconfigurable processors are the leading
platforms being under considerstion as » role model for
reconfigurable computing systems. An application can be greatly
accelerated by placing its computationally intensive portions of
algorithms onto the reconfigurable platform. The gains are
realized because the reconfigurable computing combines the
benefits of both; the software and the ASIC solutions. However,
the advantages of reconfigurable computing do not come without
a cost. By requiring muitiple reconfigurations to complete a
computation, the time required to reconfigure the hardware
significantly degrades the performance of such systems. The
emerging reconfigurable architectures are focusing the efficient
solutions for the configuration unit designs. Configuration unit is
respoasible for managing all activities relevant to the system
configuration and hence it plays 2 vitsl role in reconfigurable
processors. Ia this resezrch paper an efficient configuratien unit
design has been presented for a VLIW based reconfigurable
processor, The presented configuration unit is expected to be one
of the most efficfent designm salternatives being avsilable for
reconfigurable processors. The preseated configuration unit
design is capable of loading the minimum configuration streams
with the mast optimal configuration overheads and hence it leads
1o a dramatic enhancement in the performance of reconfigurable
Processor.

Key Werds — Configurable Logic Blocks, Field Programmable
Gate Arrays, Multi-port Configuration Memory, Reconfigurable
Processors, Reconfigurable Logic.

. RECONFIGURABLE ARCHITECTURES

The architecture of 2 computing system often can affect its
performance for 2 given application. Issues such as dedicated
and non-dedicated resources, memory sizes and organizations,
communication interfaces and instruction sets all affect the
performance capability of computing systems. Reconfigurable
processor is & combination of reconfigurable logic (ke
FPGAs) with a general-purpose microprocessor core (like
standard CPU). The architectural goal is to achieve the higher
performance than the typically available software-only
solutions with more flexibility than the application specific
integrated circuits (ASICs) as shown in the Fig2. In
reconfigurable processors, the microprocessor performs those
operations that cannot be done efficiently in the reconfigurable
logic such as loops, branches and possible memory accesses
while computational cores are mapped to reconfigurable logic
{4]. Performance of reconfigurable devices such as Field
Programmable Gate Arrays (FPGAs) now rivals that of the

978-1-4244-2824-3/08/525.00 ©2008 IEEE

47

Uzma Saeed Awan
Department of Computer Sciences
[nternational Islamic University, Islamabad
Police Line, Islamabad, Pakistan
uawan_30@hotmail.com

cnstom ASICs but with design flexibility not availzble in
custom hardware. The role of FPGAs and reconfigurable
processors include many scientific and signal proeessing
applications.

The design of 2 reconfigurable processor can be divided in
two main tasks. The first one is the interfacing between the
microprocessor core and the reconfigurable logic. This
includes all the issues related to how data is transferred to and
from the reconfigurable logic, as well as synchronization
between the two elements. The second task is the design of the
reconfigurable logic itself. Granularity, Reconfigurability and
Interconnections are the issues included in this task. The
reconfigurable logic will provide hardware specialization to
the application being under execution. It will provide similar
benefits to those offered by Application Specific Instruction
Set Processors (ASIPs). ASIPs have specialized hardware that
accelerates the execution of the applications it was designed
for. A reconfigurable processor would have this same benefit
but without having to commit the hardware into silicon.
Reconfigurable processars can be adapted after design, in the
same way as that of programmable processors can adapt te
application changes.

Different coupling approaches for the recorfigurable core
being used in the reconfigurable systems include; as a
Functional Unit Coupling, as a Co-processing Unit Coupling,
as an Attached Processing Unit Coupling and as a Standalone
Processing Unit Coupling as shown in Fig.1. Many of recent
computationally intensive applications can benefit from the
speed offered by application specific hardware co-processors
(ASIC or ASIP), but for applications with multiple specialized
needs, it is not feasible to have a different co-processor for
every specialized function. Such diverse applications stand to
benefit from the flexibility of reconfigurable computing
architectures since one reconfigurable computing unit can
provide functionality of several ASIC or ASIP Co-processors.
Many research groups have demonstrated the successful
Taunch of reconfigurable computing architectures {3). Another
area in which the reconfigurable devices are becoming more
popular is the Systems on Chip (SoC) technology. Known as
Systems on a Programmable Chip (SoPC), the Xilinx {5], the
Altera [6] and other venders have developed programmable
devices which give the flexibility to application user to include

Authorized licensed use kmied 107 COMSATS INSTITUTE OF INFORMATION TECHNOLOGY. Downluaded on March 24, 2009 at 03:12 from LEEE Xpiore. Resirictions apply.

Proceedings of ihe 12" IEEE Infernational Multitopic Conference, December 23-24, 2008

Attached

i }

| i

i Coprocessor Processing Unit |

i H

5_ § Standalone

H : H Processing Unit
1] 1

e J_ l

; M 1 Memoary T - o

Fig. 1 Coupling Approaches for Reconfigurable Logic

h
3 _ -
P
4 Hetardgeneous,
- . J Conbgurabls Pladorm
¢
< o
T Contguraste
:_"; i Hardware
<
E
o} Pragrammszoie
&1 Prosessors

] Flexitm,
Fig 2 Performance vs Flenbilitv Graph
the user reconfigurable area in addition w the sophisticated
intellectual praperty cores, embedded processors, memory and
other complex logic all on same chip.

FPGAs or FPGA-like devices are most common hardwares
being used for reconfigursble computing. FPGA contains an
aray of the computational elements whose functionality is
determined through multiple SRAM based configuration bit
streams. These elements, also known as configurabie logic
blocks (CLBs), are connected using 4 set of routing resources
that is also programmable. In this way, the custom circuits can
be mapped to the FPGA by computing the logic functions of
the circuit within the CLBs and then using the configurable
routing to connect the blocks to form the necessary circuit.
Although the logic capacity of FPGAs is [ower than that of
ASICs because of the area overhead for providing undedicated
logic and routing, FPGAs provide significantly higher
flexibility than the ASICs, while still offering a considerable
speedup over general purpose systems as shown in Fig.2. in
addition, the run-time reconfigurability provided by advanced
FPGAs like Xilinx Virtex series has greatly improved the
hardware utilization {5].

I1. RELATED RESEARCH WORK

A large number of reconfigurable architectures have been
proposed in the last few decades. The previously proposed
reconfigurable architectures geperally fit into ene of 1wo
major categories depending on the grain of computations they

48

map onto reconfigurable logic. Fine-grained Reconfigurable
Architectures, such as CHIMERAE (7] integrate the small
blocks of the reconfigurable logic inte superscaler processor
architectures, treating reconfigursble logic as programmable
ALUs that can be configured to implement the application
specific instructions. These systemns can achieve the better
performance than conventional superscalar processors on a
wide range of applications by mapping commonly-¢xecuted
sequences of instructions onto their reconfigurable units, but
the maximum speedup they can achieve is limited by the small
amount of logic in their reconfigurable units. Coarse-grained
Reconfigurable Architectures, such as PipeRench (8] provide
larper blocks of reconfigursble logic that are less tightly-
coupled with programmable portions of the processor. These
architectures can achieve exiremely good performance on
applications that contain fong-running nested loops that can be
mapped anto the processor’s reconfigurable Jogics but perform
less well on applications that require frequent communication
between programmable and reconfigurable portions of the
Processor.

1I1. PROPOSED ARCHITECTURE

The performance of the reconfigurable processor is mainly
dependant on the time overhead required by it to configurc its

reconfigurable functien umits (RFUs). Normally it has been
observed that this configuration overhead negatively hits o
the computational speed of any reconfigurable processor [1).
Hence researchers are now focusing the issue of configuration
overhead minimization for reconfigurable processors [(]. In
this regard many software and hardware based solutions have
been proposed which include the Configuration Compression,
the Configuration Caching, the Configuration Cloning, Partial
Configuration, the Run-time Configuration [1], Multi-threaded
Configuration, the Bit Paralle! Configuration, the Intelligent
Configuration [2] and the Optimal Configuration [1] ete.

In order to minimize the configuration overheads for the
reconfigurable processors; an efficient hybrid design has been
propesed fer configuration unit of a typical VLIW based
reconfigurable processor. The proposed design includes both
the hardwired and the programmabie logic modules. The
reconfigurable processor being targeted in this research paper
is a VLIW processor having a very long instruction word of
eight instructions where each instruction is 32-bits instruction.
Configuretion unit plays a vital role in the performance
enhancement of the reconfigurable processor, Hence in such a
type of processor there is an extra hiardware unit being known
as configuration unit along with standard micro-programmed
control unit whose job is to manage the configuration
activities of the reconfigurable processor. The location and the
interconnections of the configuration unit inside a typical
VLIW based reconfigurable processor have been shown in
Fig3. Few aspects of design are described below.

A, Instruction Formats Encoding

In case of a standard programmable micro-processor the
instruction format is mainly composed of an Op-code and an

lthonzed licensed use imited lo: COMSATS INSTITUTE OF INFORMATION TECHNOLOGY. Downloated e March 24, 2009 a1 09:12 om 3ECE Xplore. Restrictions apply.

Proceedings of the 12* IEEE International Multitopic Conference, December 23-24, 2008

|

[

{

Midl B!
5

Fiz 3 Tvpical VLIV Based RISP Architecture

r P lu_-.”npalm.:qu b«-—.-..a“l
$oare 13 -

PP U —T
ey
-

] L
_———— — e~ — —— — - ATBMY — — = = = — o — =
L pabigns viuen Muymiry
[]
1]
T
3
0
¢ b
Ul oy =2 Cpt 228
Op Lot =4 i Cyria I

RT3
e Fm -—/ mE
1 TA I

»i 0 1 FI5D

— e, et
3) z i j

Candiar 350 £ onmaieg

Fig. 4 Typicsl RISP Instruction Format

Operand addresses field. The Op-code of the instruction
format defines the rature of operation 1o be performed by the
instruction while the operand addresses field defines the
source and destination addresses for data operands for this
operation. in a similar way the instruction format of
reconfigurable processor is consisting of an Op-code and s
operand addresses field but the Op-code of the instruction is
being mapped or converted into an address of either the
configuration table entry which conizins the cffective
addresses of concemed configuration streams in configuration
memory o it is itsclf an effective address of the configuration
streams in the multi-port configuration memory. Configuration
memory being used is a multi-port random access memory
which contains a set a configuration streams that are required
by the RFUs of reconfigurable processor to configure the
relevant hardware modules like Adders, Subtractors,

Multiplicrs and Shifters etc. Consider the Fig.4 for instruction
format of a typical reconfigurable processor.

B. Compuiationaf Pipeline Design

The proposed reconfigurable processor is a high speed
VLIW based design using an intensive pipelined architecture.
The computation pipeline contains a Fetch Unit (FU),
Schedule Unit (SU), Dispatch Unit (DU}, Execution Unit (EU)
and Register Window (RW) as shown in Fig.5.

The FU of the pipeline is respensible to fetch a packet
(Long Word) of eight instructions where each instruction is a
32-bits instruction. The FU is a State Machine (Mealy
Machine or Moore Machine) based module. It fetches a long
word from the instruction cache of processor and loads it into
the SU of the pipeline.

The SU of the pipeline is responsible for scheduling the
received long word from the FU. SU loads the long word into
the DU of the pipcline and Op-codes of all instructions of the
long word are also transferred towards the configuration unit
of the processor which updates the RFUs configurations and
accordingly sends the dispatch signals to DU so that the
instruction can be dispatched to their relevant RFUs.

The DU of the pipeline is responsible for dispatching the
instructions of long word into their relevant RFUs inside the
EU for execution.

The DU contains a layer of eight De-multipiexers whose
control signals are received from the configuration unit of
processor. Each De-multiplexer is a [x § DMUX of 32-bits
size, It wansfers one instruction of the {ong word o one of the
eight RFUs which has been reconfigured for it by the
configuration unit.

The EU of the pipeline is responsible for the execution of
the instructions of the long word. The EU contains a layer of
eight RFUs. Each RFU has been integrated with an FPGA
core like provided by the Xilinx Corporation and a layer of
common data buses. The FPGA core is configured by the
configuration unit of the processor accerding o the execution
requirements of running application program. The proposed
design is a Register-Register Architecture in which the source
operands required by cach instruction are fetched from the
register window of the processor and similarly the results
generated after the execution of each instruction are stored
back temporarily to same register window of processor.

The register window of pipeline is responsible for providing
the source data operands for the execution of eight instructions
of the long word and temporarily storing their results. The
register window contains a layer of thirty two registers where
cach register is a 32-bits regisier.

wthonzed licensed use imited to: COMSATS INSTITUTE OF INFORMATION TECHNOLOGY. Dawnloaded on March 24, 2009 at 09:12 from IEEE Xpiore. Restrictions apply.

Proceedings of the 12* IEEE International Multitapic Conference, December 23-24, 2008

W
it 32 btey

&z A2-bits
Fetch Unit (FUj

132

[TE-2—4

t iy en:
Schedute Unit (SU}] .
Eral-pme
! [T
D opick:
Signa-y
- COEFE

Disparch Unit (DU

Execurion Unit (€U}

ety T

-
Register Window
132 3 33-birs]

Fig. 5 Tryprcal RISP € omputational Pipeline

Data
Opevande

Reglsier Window (Register File)

I" 32 x 32-bis r L

rru][rruflreu]frReut{riu][aru
[5 4 3 2
1 b T 4T AT #1

A
b

Mutii-Port
Conflguration Memory

RFU
Configumation Controdier

Conhg Req Conhg ack

4

b
RFY
0

} 3

~T

4 A

rs

e

s

Fig. 6 Conficuranan Unit Interfaces

C. Configuration Unit Design

The main job of the configuration umit is to update the
loaded configurations of the RFUs according to the changing
requirements of the running application, The RFUs have been
ntegrated with the high spesd partially reconfigurable FPGA
cores like those provided by the Xilinx Virex series of
FPGAs. RFUs make the actual execution layer of the EU
being available inside the computational pipeline. The
reconfigurable systems mastly require a lot of time to perfomn
this configuration update process. Hence this configuration
overhead greaily degrades the performance of such systems.

In order to optimize the configuration overhead of a typical
reconfigurable processor based on VLIW architecture; a
unique idea of RFU Partial Configuration has been

50

introduced. In this technique the configuration unit constantly
keeps on monitoring the currently loaded configurations and
newly demanded configurations. It maps the newly demanded

configurations on the currently available configurations and
maximizes the reusability of the already available
configurations and loads only those configurations which are
no more currently available in any RFU of the reconfigurable
processor.

The configuration unit conlains a layer of Opcode Map
Logic (OML} which actually comparss each Op-code of the
incoming long word with all Op-codes of the currently
configured long word in the RFUs. This mapping process is
performed concurrently with a high speed ASIC circuit which
contains a parallel network of comparators as shown in Fig.7
and in Fig.8. All those op-codes who have been compared
with any of the existing op~codes are then allocated their
respective RFU no, where they will be executed. [fan op-code
has not been compared with any one of the existing op-codes
then it is not allocated any RFU no. This information of RFY
allocation or not allocation is sent to two programmable logic
controllers. One is known as the Configuration Memory
Controller (CMC) and is responsible to generate the RFU
Configuration addresses for only those RFUs who really need
configuration updation and ot the same time it calculates and
sends the sufficient control signels 10 DU of computational
pipeline. On the basis of these signals the DU dispatches the
instructions into their relevant RFUs. Second is known as the
Op-codes Memory Update Logic (OMUL) and is responsible
to updatz the op-codes memory contents according to the
newly artived op-codes of the long word. The time taken by
the Map Logic to compare the all incoming op-codes with the
all existing op-codes is always constant and is equal to
1-Cycle. But the time taken by the CMC and OMUL are
variable and are dependent on the no of the newly armrived
op-codes that are not matched with the existing op~codes and
it may vary from 0-Cycles o 8-Cycles. If all op-codes are
matched then its latency is 0-Cycles and if none of them is
matched with the existing op-codes then 1ts latency will be
8-Cycles and so on. For those applications where the same
operation is repeated again snd again like the operation of
convolution in conventional DSPs; they will always be given
0-Cycle latency and hence it dramatically enhances the
computation speed of the system by minimizing the
configuration overhead to Q-Cycles. Such kind of drastic
performance revolutions that have been observed are shown in
the performance graph of RISP in Fig.9 which have been
obtain by using the propesed configuration unit in 2 typical
VLIW based reconfigurable processor and berchmarking its
performance with a DSP (TM5320C6X). The configuration
unit has a RFU Configuration Centroller and a Multi-port
Configuration Memory as showa in Fig.6. RFU configuration
controller js responsible for providing optimal configuration
overhead. The multi-pont configuration memory contains a set
of most frequenly used configurations that can be

ithorized Scensed use imiled 10: COMSATS INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on March 24, 2003 at 09:12 kom IEEE Xpiore. Restrictions apply.

Proceedings of the 12" IEEE nternational Mutitopic Conference, December 23-24, 2008

dynamically changed during the execution of the application
by loading them externally through Configuration EPROM.

IV. PERFORMANCE ANALYSIS EQUATION

Following is the mathematical equation being formulated
for the calculations of the total no of cycles (Trowm), consumed
for the updation of the RFU configurations for ecach of the
VLIW packet. Consider the equation parameters in Table.1

Trowr = Tome + 2 omu + Zlome + Tonr
V. RESEARCH AREaS IN ACTIVE DOMAIN

There are many dimensions of reconfigurable computing
being under active research work. The following topics outline
the different aspects of reconfigurable computing that research
has been addressing in the past several years:

A Reconfigurable Architectures

Device and system architectures are being developed which
propose the various ways of organizing and interfacing the
configurable logic. Some reconfigurable architectures are
based on coarse grain functional units that are configured on
the fly to execute ar operation from a given set of operations.
Commercial architectures are exploring integration of
reconfigurable logic and microprocessors on the same chip.

B. Reconfigurable Applications

Specialized configurable architectures, which are utilized for
specding up specific applications, are replacing some ASICs.
Some applications also exploit optimization based on a specific
input instance of the computation.

C Algorithmic Synthesis

Dynamically reconfigurable architectures give rise to new
classes of problems in mapping computations onto the
architectures. New algorithmic techniques are needed o
schedule the computations. Existing algorithmic mapping
techniques focus pnmarily on loops in general purpose
programs. Loop structures provide repetitive computations,
scope for pipelining and parallelization are candidates for

mapping to reconfigurable hardware.
TABLE.| ANALYSIS EQUATION PARAMETERS
Parameter Parameter Possible
Name Description Values
Time required to map new op-
Tom codes with all of the existing | 1 Cycle
op-codes
Time required to update the
Tomu op~codes memory fornewop- | 0,1,2...8 Cycles
codes
Fume requited (o penerate the
Tewe RFU config, addresses and 0,4,2..8 Cycles
dispaich unit signale
Time required to configure all
Tenr RFUs for each of new | 0.1 Cycle
requirements
Total time required to update
Trotst the configuration of all RFUs | N Cycles
of Execution Urit

51

....... -:-- - . -
[Lo " et 118 C ity Mk vt e
Fiw) ' w ot sty mierra——{ e
- 1 = 3 .__muc_.--u—-E
- _@_ : st -1 Gty s ——f
r T .
[iw} s L]
[
—.__.'st:{*.r Numary ——
- 3)t - | Cortide
i o —cy =
1
-y u":l L
TG
L]
":.‘;::.‘:2.’-‘:-’:.‘::2, 1J. .
'
OwCodes H
O vy :
ot Update Laght E
Programahle) |}
oo :
'
] ‘
......... Py AR,

Fig. 7 RFV Configuration Controlier

D. Software Tools

Current software tools still rely on CAD based mapping
techniques. But there are several tools being developed to
address rum-fime reconfiguration, compilation from high-level
languages such as C, simulation of dynamically reconfigurable
logic in software and complete operating system for
dynamically reconfigurable platforms. There is a significant
lack of research in development of models of reconfigurable
architectures that can be utilized for developing a formal
framework for mapping applications. The Reconfigurable
Mesh model was the earliest theoretical model that addressed
dynamic reconfiguration in computation and communication
structure. However, Reconfigurable Mesh model i1s more
theoretical and hardware implementations have only been able
to approximate the delay and speed assumptions in the model.
There have been several research efforts that focused on
developing architectures and the associated software tools for
mapping onto their specific arckitesture, Some of these projects
have addressed geveric mapping techniques that can be
extended to a class of the reconfigurable architectures, Such
projects include Garp [9], PipeRench (8] and SPLASH {10].

Customizing the configurable hardware to suit the
computations has been acknowledged as the most significant
advantage of such architectures. Some researchers have
adapted the hardware to perform computations with exactly the
requiced precision for the computations. Such static approaches
do not exploit the ability of configurable hardware to be
adapied to the exact required precision as the computations
progress. The maximurr possivle precision of varizbles, which
is deterrnined in the static apptoach, can still involve execution
with superfluous precision and unnecessary overheads. Several
efforts have also focused on developing parameterized libraries
and components, precision being one of the parameters. Most
FPGA device wvendors provide such highly optimized
parameterized bibraries for their architectures. Efforts have also
been made to genmerate such modules using the high-level
descriptions.

withorized licensed use limited to: COMSATS INSTVTUTE OF INFORMATION TECHNOLOGY. Downloaded on March 24, 2009 a1 09:12 from IEEE Xplore Reslrictions apply.

Proceedings of the 1 2* IEEE International Multitopic Conference, December 23-24, 2008

Krw B ol -y
o
¥) i
oA | Jemtm [[t [[t | o | [ommi | ot | { comi
I R N
Ey .21
it
n.wu:
bt
- [
Cax 1% =
RO R
'"T Y SUURRE 1L..... veamsrhonnan -
i RFU Addrass Dectan Loge P Address Doweton Logie: .
' G- ogo) [$met Logi) 1
1) L3
) L)
L} 1
' N R A Dewaios - .
‘ \ . et / :
: ol :
CSUUUPPRUURUUE fo-i-... SO -
Fio. 8 Map Logic
1007
so T
7]
P | - —_— e
3% 60
[~
5 ao0]
%
20
0 s,
PL P3I PS5 P77 PO
BRISP Tested Pragrams

Fig. ¢ Performance of RISP Using Propoced Configuracon Unic

E Simulation Tools

Several simulation tools have been developed for the
reprogrammable FPGAs. Most of the tools are device based
simulators and are not system level simulators. The most
significant effort in this area has been the Dynamic Circuit
Switching (DCS) based simulation tools. These tools study the
dynamically reconfigurable behavior of FPGAs and are
integrated into the CAD framework. Though the simulation
tools can analyze the dynamic circuit behavior of FPGAS, the
tools are stili low level.

V1. CONCLUSION

In domain of reconfigurable computing the reconfigurable
processors are becoming an important part of rescarch due to
their ability to exhibit the high performance of ASICs and
flexibility of programmable processors. The performance of
such a processor is greatly dependent on the configuration
overhead required by it to provide the flexibility of hardware
design. In order to provide the most optimal configuration

52

overhead for these processors, an efficient configuration unit
design has been proposed which always tries to optimize the
configuration overhead by loading the minimum possible
configuration bit streams. The proposed configuration unit
always anafyzes the configuration requirements of the
application being wnder execution and loads only those
configurations which are not currently available in the RFUs
and those which are available are reused as many times as
needed. The performance band of computing can be greatly
enhanced by using the reconfigurable processors which will be
integrated with such kind of efficient configuration units.

REFERENCES

M.Aqeel Igbel, Sheab A. Khan and Uzma Saeed Awan, RISP Design
with Most Optimal Configuration Owveread for VLIW Based
Architectures”, Procoedings of IEEE computer society, 2* [EEE ICEE-
2008 Conference, March 25-26, 2008, UET Lahore,

Aziz-Ur-Rehman, Dr. Aqecl A. Syed and M. Aqeel Igbal. ‘Intelligent

Reconfigurable [nstruction Set Processor (YRISP) Design’, Proceedings

of IEEE computer society, }1ih IEEE INMIC-2007 Conference, Dec 28-

30, 2007,COMSATS Labore.

Leang, P, H. W., Leang, M. P., Cheung, O. Y. H,, Tung, T., Kwok, C.

M., Wong, M. Y., and lee, K. H, “Pilchard - A Reconfigurable

Computing Platform With Memory Slot Intetface,” Procecdings of the

IEEE Symposium on Fiekd-Programmable Custom Computing Machines

(FCCM), 2001, Califoruis USA, IEEE.

Compton, K. snd Hauck, S, “Configurable Computing: A Survey of

Systems and Software,” Nonhwestern University, Dept. of ECE

Technical Report, 1999, Northwestern University.

[5] Xilinx, Viriex Serics FPGAs, http/iwww.xilinx.com, 2001.

[61 Altera: Systems on 4 Programmable Chip, 2001,

[7] Ye, Z A., Moshovos, A., Hauck, 5., and Banegjee, P, “CHIMAERA: A
High-Performance Architecture with a Tightly-Coupled Reconfigurable
Functional Unit,” Procesdings of the 27ib International Symposium on
Computer Architscture, pp. 225-235, 2000,

[8) S. C. Goldstein, H. Schmit, M. Moe, M. Budiy, S. Cadambi, R
R.Taylor, and R. Laufer. "PipeRench: A Coprocessor for Streaming
Multimedia Accelcration”, in Proc. ind. Symp. on Cowmputer
Aschitecture, May 1999,

9] LR Hauser, and). Wawrzynek, Garp: A MIPS Processor with a
Reconfigurable Coprocessar, Proc. 1EEE Symp. FCCM, April 1997,
pp.12-21,

[10] D. A. Buell,). M. Amold, and W. I, Kleinfeider. Splash 2: FPGAs ing

Custom Computing Machine, IEEE Compuler Society Press, 1996,

in

2]

3

[4

Authorized crnsed use fimited to: COMSATS INSTITUTE QF iNFORMATION TECHNOLOGY . Demmicaded oa March 24, 2008 at (49:12 from IEEE Xplore. Restrictions apply.

009 1EEE International Advance Computing Conference (IACC 2009)

'atiala, India, 6~7 March 2009

Reconfigurable Processor Architecture
For High Speed Applications

'M.Aqeel Igbal
Faculty of Engineering and IT
Foundation University, Institute of Engineering and
Management Sciences, Rawalpindi, Pakistan
mageeligbal @ hotmail.com

Abstract — Revolutions in the domain of computing have
molded the siructures and churacterisiics of computing systems.
Conventional computing technigues involved the use of application
specific integrated circuits to achieve a high performance af the
cost of extremely inflexible hardware design meanwhile the
Aexibility of hardware design was achieved af the cost of slow speed
processing by using programimable processors. The emergence of
reconfigurable computing has filled the gap between the flexidility
and performance of system. Reconfigurable computing combines
the high speed of application specific integrated circuits with the
Sflexibility of the programmable processors. The reconfigurable
processors have further bogsted up the dramatic nature of
reconfigurable computing systems. These processors configure the
most optimal and efficient hardware resources according to the
demands of rumming application. The configured hardware
resources can be modified or reconfigured later on according to the
new demands of the running application. In this research paper
reconfigurable processor architecture has been presented for high
speed applications. The propased reconfigurable processor is based
on very long instruction word architecture. The propesed processor
ir using an efficient mulli-threaded configuration controller and a
multi-ported configuration memory {o configure the muftiple
recorfigurable function units concurrently with minimum possible
configuration grerhead.

Keywords — Configurations, Configuration Qverheads,
Reconfigurable Computing, Reconfigurable Functionat Units.

I. INTRODUCTION

Reconfigurable processor s based on a reconfigurable
functional unit (RFU) being integrated inside the processors as
shown in Fig. 1. RFU is composed of many computational
clements whose funcrionality can be determined through the
programmable configuration bit streams. Reconfigurable
computing is introduced to fill the gap between hardware and
software based systems. The goal is to achieve the
performance better than that of software based sclutions while
maintaining the greater flexibility than that of the hardware
based solutions as shown in Fig. 2. Reconfigurable computing
is an alternative of the superscalar and VLIW paradigms. The
main distinction between a reconfigurable processor and a
standard processor is in the instruction stream. In its purest
form, a reconfipurable processor has no cycle-bycycle
instruction stream. Rather, the processor is configured by
loading a complete specification of the function of each part of
it at once. Once configured, the intention is for the processor
to run in that configuration for a decent interval before being
reconfigured. Each configuraton responses an ASIC-ike
circuit, like that specialized for the particular task at hand.
Changing configurations might take from a few clock cycles
ta a few thousand ¢lock cycles. In accordance with the simpler

*Uzma Saced Awan
Department of Computer Sciences
Intermnational Islamic University, Islamabad
Pelice Line, Islamabad, Pakistan
vawan_80@hotmail.com

prograraming mechanism, the dynamic forwarding crossbar is
replaced by a less flexible configurable network for making
static conrections amang the functional units and short queues
of retiming registers associated with each functional upit take
the place of the traditional processor’s shared, multi-ported
register file.

The most fascinating and familiar 90-10 rule asserts that
90% of execution time is some times consumed by about 10%
of a program's code and that 10% is generally comprising of
inner loops. Reconfigurable processors excel in those cases
where the computation represented by a configuration is
repeated many Hmes and so the time required to load a
configuration can be amortized over a long execution time
and/or overlapped with other executions. When all of an
application's important loop bodies can be configured to fit
within the reconfigurable processor (one at a time), there
would seem to be no need for the overhead of a fully dynamic
instruction fetch and issne mechanism, allowing the processor
to be leaner and more efficient. By reducing the hardware 1o
just the essentials needed to support computation, the
reconfigurable processor scales better to larger sizes than the
more complex superscalar and VYLIW based systems.
Although a native expansion of the configurable network
would cause it to grow quadratically with the number of
functional units, it only needs to grow enough to support the
connectvity required by the real applications. Furthermore,
untike a superscalar or VLIW processor, the reconfigurable
processor can easily exploit not only simple instruction level
parallelism but also inter-iteration and thread paratlelism,
making reconfigurable computing well poised to work with a
large number of functional units.

s . 12
rs i v s
BLS RE Register o
b o el .
i Fila 32
Y B *
g7
3
= -
2
=] j_z
B
B 3z
jig pl
> L4
[]
v

Fig. I Reconfigurable Processor Data-path

733

-

2 Curent research is
= Resonlizurabie working fo quastify:
5 Compaing -
- -perfonnance
. po“‘cr
+size weight
» | <Difeeyclecost
Performance sapplicabilily
“The performance of ASIC's wih the of econfigurable
flexhility ol programmable processors.” Computing..

Fig. 2 Performance vs Flexibility

1. RESEARCH WORK IN ACTIVE DOMAIN

A larze number of reconfigurable computing systems
have been proposed with different design objectives,
parameters, methodologies and implementations but they do
share the same design framework. Reconfigurable functional
units (RFUs) with the configurable imerconnects are the
foundation of a reconfigurable computing platform. Various
configuration combinations can define numerous possible
functionalities. Design implementations of a reconfigurable
processing unit can be a simple microprocessor or even a gate
level operator such as lookup tables being available inside the
CLBs of most of currently available SRAM based field
progranunable gate arrays (FPGAs). Interconnects or routing
networks in different reconfigurable systems have differemt
structures as well, such as mesh, linear and crossbar structures.

For reconfigurable systems a compiler based sofiware
tool is required to map an application onto the reconfigurable
core. This application is expressed in the form of
configuration bits used to define the operation of each CLB
and inter-connect, This compilation tool can be as simple as an
assisting tool that helps a programmer to perform manual
circuit mapping and can be as complex as a fully automated
system that can deal with all configuration works by itself.
The configurable nature of a reconfigurable system allows the
hardware to be programmed with new sets of configurations to
support new operations. Depending on the natre of the
architecture, some systems can only be reprogrammed in ton-
executing state and are commonly known as simple
reconfigurable systems while some may support dynamic
reconfiguration at the run time by allowing an operation to be
altered during execuzion and are commenly known as run-time
reconfigurable systems. The reconfiguration process latency
will alsu vary from system to system and from hardware to
hardware to be reconfigured. Recently a large number of
reconfigurable computing systems are available in the market;
as well many still undergo research. Followings are the some
of well known examples:

A~ MIT Raw:

The MIT Raw [1] is based on a mesh structure of
interconnected simple RISC processors cores. Its basic design
goal is to berefit the paralle] execution of applications from
multiple micropracessors at a coarse-grained environment
The static communication network in the architecture makes
good use of pre-defined communication pattera at compile
time and reduces network latency by well ahead preparation.
This architecture can provide great flexibility and processing
power beyond that of a single processor. Raw can perform
well with random programs but its performance is much befter
with parallel applications. However, high power consumption
will result from the execution of multiple processors, which is
a big drawback of the architecture.

B- CMU PipeRench:

The CMU PipeRench [3] is hardware based computing
solution being specialized for pipeline based applications.
Run-time reconfiguration of hardware modules is used to
execute a large sized application using small amount of
hardware resources. The efficient architecture and simple
implementation of the design dissipates less than one watt of
average power while achieving good performance. This
architecture is a perfect candidate for pipeline based
applications because of its highly specialized design, small
area consumption and low power implementation.

C- Xputer:

The Xpater (6] is a computing design suggested 1o use data
driven control instead of instruction sequence control as in
conventional compulers. 1is basic aim is to aveid data latency
and data dependency problems by execufing in the order of
data accessing sequence. The applications with regular data
patterns such as multimedia, streaming and encryption
applications can fit well with Xputer design.

D-NEC DRP:

The NEC DRP I7} is a coarse-grained reconfigurable sysiemn.
The system composes of many small processing elements for
computations where repository of contexts is stored on-chip.
By choosing a different context, the chip will implement a
different data-path (o represent a new operation or algorithm,
This feature enahles the dynamic run-time reconfiguration in a
single clock cycle. Applications such as networks, image
processing and signal processing work well with the parallel
processing environment and fast run-time reconfiguration for
any dynamic events.

E- NASA Evolvable Hardware:

The NASA Evolvable Hardware (B8] is teconfigurable
hardware with the configuration process working under the
control of a genetic algorithm. In evoluuonary synthesis of
analog and digital circuits, a hardware circuil evolves to
realize a design specification dynamically at run time without
the need of any pre-defined information. The ultimate goal of
this research is to develop an architecture that can adapt to any
possible environment without any human control. Hence the
theme of the design is 10 provide an evolvable intelligent
machine that can be used to perform work independeatly in
environment such us space exploration. Negatively hurting

2009 IEEE International Advance Computing Conference (IACC 2009)

parameters of design are the resource demanding and time
consuimning evolution process.

F- IPFlex DAPDNA:

The IPFlex DAPDNA [9] is bagically a dual-core processor
including a RISC core coupled with 2 two-dimensional
processing mairix. The two-dimensional processing matrix isa
reconfigurable core. The reconfiguration of the processing
matrix is controlied by the RISC core to support different
operations to achieve paruallel processing efficiendy. The
system has shown a dramatic performance gain for multi-
threaded applications.

G- MathStar FPOA:

The MathSiar FPOA or Field Programmable Object Array
{10] system is an enhanced FPGA based solution. Instead of
using CT.Bs or lookup tables as elementary cell in the device,
FPOA uses its own building blocks as foundations. Having
pre-defined block types allow the blocks to achieve higher
performance gain, less area consumption and a betier
communication with other working blocks. PipeRench is a
hardware based pipelined architecture with great flexibility,
while Raw is software based general purpose processor
approach with enhanced parallelism. The two systems are very
representative to the two extremes of design. NEC DRP,
IPFlex DAPDNA, and MathStar FPOA are commercial
products and are FPGA based solutions with higher
granularity and advanced features.

H- Chimerae:

The Chimerae [4] is a fine-grain architecture which integrates
the small blocks of reconfigurable logic into superscalar
processor architectures, treating the reconfigurable logic as
programunable ALUs that can be configured to implement
application-specific instructions. These systems can achieve
the better performance than the conventional superscalar
processors on a wide range of applications by mapping the
commonly executed sequences of instuctions onto their
reconfigurable units, but the maximum speedup they can
achieve is limited by the small amount of logic in their
reconfigurable units.

I- Remarc:

The Remarc [2] is a coarse-grain architecture which provides
larger blocks of reconfigurable logic that are less tightly-
coupled with the programmable portions of the processor.
These architectures can achieve extremely good performance
on applications that contain long-running active nested loops
that can be mapped onto the processor’s seconfigurable arrays
but perform less well on applications that require frequent
communication between programmable and reconfigurable
poriions of the processor. Systems such as Pilchard that
imtegrates FPGAs into conventional workstations over the
processor’s memory bus display similar behavior, although the
relatively low bandwidth of a microprocessor's memory bus
makes them even more sensitive to the amount of the
communication that an application requires between the
processor and the FPGA.

I1L. PROPOSED PROCESSOR ARCRITECTURE

In this section the detailed architecture of the proposed
reconfigurable processor has been discussed. The detailed
architecture of the proposed processor is shown in Fig. 3 and
the different modules are discussed below along with their
functionality.

A- Input/Output Interface (101);

The IO interface of processor is uscd te communicate with the
external devices being interfaced with it. The first job of the
I/O Interface is to load the configuration streams from external
Configuration EPROM or main memory of system during the
booting processes of the processor and it takes only a few
clock cycles. These configuration streams contain the different
hardware modules like Adders, Subtractars, Multipliers and
Shifters etc. The second job of the 10 interface is to load the
instructions and their relevant data operands 1o be executed on
the processor. The third job of the 10 interface is to store the
results of the computations performed on the processor in
main memory of the system. The fourth job of the I(interface
is to send and receive the control signals generated and
acknowledged by the control unit of the processor to the
external devices.

B- Prefetch Unit (PFUJ:

The basic job of the PFU is to fetch or pre-fetch the instruction
stream and the data stream of the application program being
under execution. Fetched instructions are loaded in the
Instruction Pool and then wansferred into the Instruction
Cache. Similarly the data stream is loaded into the Data
Cache. Consider the Fig. 4 for instruction format encoding of
the proposed processor.

ket tacm .} - Risen 14K Winrn programensy
L Covarobe W 2 Conmroiind
3 - -
T e -
. . i-taies
: Y
m. e . = ; i Cuatase = o fabe
o bt e N R R D 12T
w3t viw Bl . 115 E——) w=ubm
"
ey i | pre
H
¥

l"l!']
slsts

Il!li'li'
miﬁ

P

Tim 2 Denrmnrad Dencanrcns A rchitastura

2009 IEEE International Advance Computing Conference (IACC 2009)

735

6

?M) Sewe i) " Segne.3 | Driimwie’ men-is ""';"_'_"1!,";“'“
i B Ehiny | - @b
" Tite
Configuratron Hemarys
]
¥
i
]
L]
e emee])
FFTA
o mm / T
¥ FFFA FFRC
? ¢ Gl
L} =0 L35
Configwadonh B
Controlier

Fig. 4 Processor Instruciion Format Encoding

C- Instruction Scheduling Unit (ISU):

The ISU is the micro-programmed implementation of the
Tomasoulo’s Algorithm being used in VLIW and Super-scalar
processors for the scheduling of the instructions. The
instruction scheduler reads instructions from the instruction
pool and then it analyzes them for dependencies (if any) and
resplves these dependencies. Dependencies being analyzed
include Data Dependency, Control Dependency, Resource
Conflicts and Data Hazards eic. Then it after analysis ISU
transfers these instructions to instruction packing unmt (JPU).

D- Instruction Packing Unis (IPU):

The main job of the IPU is to pack the eight instructions in the
form of a VLIW. The 32-bits instructions transferred from the
ISU are given to the IPU. The IPU arranges these insuwuctions
in a buffer in a FIFO order on their arrival from the 1SU. After
the arrival of each instruction, the IPU increments its
instruction couater and checks either there are eight
instruction arrived from the ISU or not. If a total of eight
instructions have been arrived from the ISU then the IPU
transfers them into a VLIW buffer of size 8 x 32-bits. Then it
enables this buffer to transfers this VLIW to instruction cache
of the processor if signal Load_VLIW =1. The same process is
repeated constantly throughout the application execution.

E- VLIW Fetch Unit (VFU):

VFU is a state machine based unit and works like 3
programmable counter. VFU fetches VLIW from the
instruetion cache and the Op-Codes of all instructions of the
VLIW are transferred to the Configuration Management Unit
and the VLIW itself is transferred to VDU,

F- VLIW Dispatch Init (VDU):

VDU is consisting of an array of eight De-MUXs whose select
lines are controlled by the configuration controller. According
to the select lines activated by the configuration controller all
of the instructions of VLIW are dispatched by VDU to their
rclevant RFUs.

G- VLIW Execution Unit (VEU):
VEU is the core component of the processor because it
contzins an array 9f RFUs being vsed for program execution.

Consider the Fig. 5 of VEU. The VEU contains the following
major modules.

a) External10) Logic (EIOL):

The EIOL of the VEU is used to foad instructions in the
instruction register, source operands in general-purpose
regisiers and the configuration stream in RFUs. The second
job of the EIQL is to store the configuration stream being
foaded in the RFUs for the analysis purpose and results being
generated afier the execution of VLIW. The source operands
Sr-1and Sr-2 are loaded into the internal general-purpose
registers (GPRs) by the External De-MUX of size 1 x 24, The
address given for the Data-in is connected to the select lines of
De-MUX as well as to Decoder (5 x 24} input. De-MUX
selects one of the general-purpose registers for data loading
and the decoder enables its output chamnel connecting to the
registers through the MUX of the size 2 x1. This MUX
receives 32-bits data operand from External De-MUX at input
*“1" and receives 32-bits results from RFUs at the input “0”. If
the Ext_10_En=0 then it selects the result coming from the
RFUs and loads it in the register. if the Ext_lO_En=] then it
selects the data coming from the External De-MUX and loads
it in the registers. Since there are eight RFUs that can load
their results in the same register, hence in order to solve this
problem an & x 1 MUX (32-bits) is interfaced with each
register input. Each MUX is controlled by the RFU Data-path
Controller which analyzes the Destination Addresses of all the
RFUs and selects only that RFU whose output is valid output.
In order to store the results and the flags being available in the
GPRs and flag registers (FRs} into the data cache of the RISP,
the 32 x 1 External MUX (32-bits) is used which can read the
contents of the selected register.,

b) RFUs Data-in / Data-out Logic (RDIOL):

In order to load/store the data across the RFUs there are two
32 x 1 MUXs (32-bits) and one 1 x 24 De-MUX (32-bits} for
each REU. Using the two MUXs the RFU is ahle to read the
snurce data operands (Sr-1 and S§r-2) from any one of the 32
registers and using the one De-MUX it stores its results back
1o any one of the GPRs. Flags generated during the execution
of the VLIW are loaded into the relevant FRs.

Fin & Drearnacear Dvanunan 1Taie

2009 IEEE International Advance Computing Conference (IACC 2009)

¢} General-Purpose and Flag Registers (GFRs):

There is an array of eight FRs (32-bits) and twenty four GPRs
{32-bits). GPRs can be read and written by the programmer
but the FRs can only be read by the programmer and can not
be written. RFUs can read/write any one of these thirty two
registers, Morc than one RFU can read the contents of the
same register at the same tirme but only one RFU can write ina
register at the same time.

d) Registers Input/Output Logic (RIOL):

FRs arc loaded with the flags, being generated by the RFUs
and can be read by the programmer through the External
MUX. In case of the GPRs, the programmer can read the
registers through the External MUX but in order fo write
conternits into registers there is a2 2 x 1 MUX (32-bits) which
selects the data far the register either from some RFU output
or from data cache. The 8 x 1 MUX interfaced at the input of
the 2 x I MUX selects the valid RFU for the results to be
stored in the register. In order to select the valid RFU for
results, there is a RFU Data path Controller as shown in Fig. 5
is attached with all MUXs, This controlier reads the select
lines of all the De-MUXs of RFUs and after analysis it selects
that RFU whose output is a valid output.

e} Reconfigurable Functional Units (RFUs):

RFUs are 1he computational units of processor and can be
reconfigured at any time according to the application demand.
They have been tightly coupled in the form of an integrated
FPGA core.

H- Configuration Monagement Unit ({CMU):

CMU is composed of a Configuration Controller and a Multi-
port Configuration Memory as shown in Fig.5. Configuration
controtler as shown in Fig. 6 receives the op-codes of the eight
instructions of the VLIW from the VFU and on the basis of
these op-codes it decides to load one of the configuration
blocks available in the memory for each RFU (if required).
Also it checks if the op-code is a No Operation (NOP} or is
same as that of any one of the existing op-codes, If so then the
configuration controller does not load this new configuration
mnto the REUs but dre hardware that is already loaded in the
RFUs is reused and hence the configuration time that was
required for the reconfiguration of RFUs is suved. Hence only
those RFUs are reconfigured that are quite new ones. Hence
the processor always takes the minimum possibie time to
reconfigure the RFUs during the execution of the application
program and always has the most optimal configuration
overhead. A micro-programmed control unit hay been used to
work like a contro! unit of processor.

1V. PERFORMANCE ANALYSIS MUDEL

Following is the mathematical model being formulated
for the calculations of the iotal no of cycles (Tyuu) consumed
by proposed reconfigurable processor for the execution of an
application. Consider the Table.1 for the model parameters.

Trow= {{Nm + Nno)/8} (Tvrr + Torr) + Evirw + (Newe X Ton)
coenron ByLrwn}

Where Evitw= z (Byvirow.o Evitw.d «reoes

Table. 1 Mathematical Mode] Parameters

Parameters Description Possible Values

Total Instructions, N 1 -K per program
Total NOPs Used, Nyo - 7 per VLIW
VLIW Fetch Time, Typr 1 cycle per VLIW

Operand Fetch Time, Toer | 0 - 1 cycle per VLIW

VLIWs Exe Time, Evpw 1 - L cycles per program

Total Config, Nenr 0 = (Ngv + Nnp)/B per program

Configuration Time, Towe] 1 - M cycles per VLIW

Performance statistics have been measured in terms of the no
of clock cycles consumed by a typical DSP [3] and proposed
reconfigurable processor for the execution of different
application programs. It has been observed that the segments
of code of an application containing loops of repeated
operations will be drastically boasted up when executed on the
proposed reconfigurable processor as shown in Fig. 7.

V. COMPARISON WITH EXISTING ARCHITECTURES

In this section the proposed reconfigurable processor
architecture is compared with some of the well krown
reconfigurable architectures.

A- Configuration Granularity:

The proposed processor is fine grain architecture. There exist
many systems using this approach like CHIMERAE [4]. Using
fine grain approach the system can be rcconfigured at
instruction level and even ar operator level. But there exist
many other systems which use the coarse grain architecture
and can be reconfigured at ALU [evel Among them are
REMARC [2}, PipeRench [10] and RAW [9].

B- RFU Coupling Approach:

The proposed processor is a tightly coupled architechure like
CHIMAERA [4]. Others may use 2 coprocessor approach or
attached processor approach. Tightly coupled designs have the
small configuratdon overheads but are suffered by the
dependant execution of RFU with standard CPU core.

|)

~geley e {o-fep-fo

TR pEas

iFBEEE
g

§-84-

------....-.,-_._-.,
s |

Fig. 6 Configuration Controiler

2009 IEEE International Advance Computing Conference (IACC 2009}

737

738

120 -
1001
8o
60
404

20+

PICCOSUFY S 0 dHquIny

P2 P3 P4 P5 PHS P7 P8 PSS P10
Simulated Application

Programs
Fig. 7 Proposed Processor vs DSP

P

C- Operands Address Decoding:

The proposed processor is based on a fixed operand coding
scheme like PipeRench [3]. But some designs are based on the
hardwired operand coding scheme like CHIMAERA [4].

D- Instruction Format Encoding:

The instruction of proposed processor is decoded such that the
op-code of each instruction is being translated into the address
of the concerned configuration block in the configuration
memory. Other aliernative is to use the op-code as an
identifier to a configuration table which contains the address
of the concemed configuration bloeck in the configuration
memory like in CHIMAERA, [4].

E- Application Multi-threading:

The propased processor can execute more than one instruction
{eight} at the same time. Most reconfigurable processors are
only able to execute one instruction at the same time. They are
based on both CISC and RISC designs. In order to maintain
the high performance of system, the multi-threading has bezn
supported by the on chip hardware support.

F- Cenfiguration Memory Design:

The proposed processor has introduced a new concept of
configuration memory being implemented as a multi-port
RAM memory unlike the existing architecture which are so for
being designed using the simple single-port RAM or Cache.

V1. CONCLUSION

Reconfigurable computing is becoming an important part
of research in the domain of the high performance computing,
Reconfigurable processors are intensively used platforms for
achieving such a kind of high performance in computing.
Reconfigurable processors provide us a great performance
parameter over the traditional micro-processors. In such kind
of processors the hardware changes according to the
requirements of the active application. Hence the system
follows the strategy of the demand-driven operators. The
required hardware is swapped o and the unused hardware is
swapped out and hence virually providing more hardware
resources than the physically available in the system during

the execution of the application. Reconfigurable processors
are very suitable processors for those applications where the
different kinds of processing units are frequently reguired to
boast up the performance of the application.

REFERENCES

[1] M.B. Taylor, W. Lee, J. Miller, D.Wentzlaff, 1. Bratt, B. Greenwald, H,
Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shoidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwa). “Evaluation of the Raw
Microprocessor: An Exposed-Wire-Delay Architecture for [LP and Streams”,
Proceedings of the Imemational Symposium on Computer Architecture 2004,
June 2004,

[2] Miyamori, T. and Olokotun, K., REMARC: Reconfigurable Multimedia
Array Coprocessor IEICE Transactions on Information and Systems E32-D,
vol. pp. 389-397, Feb, 1999,

[3] H. Schmit, D. Whelihan, A. Tsai, M. Mo, B. Levine, and R. R. Taylor.
“PipeRench: A Virtualized Programmable Datapath in 0.13 Micron
Technology™. Proceedings of Custom Imegrated Circuits Conference (CICC)
2002, pages 63{66, May 2002,

[4] Ye, Z. A., Moshovos, A., Hauck, §., and Banegjee, P., "CHIMAERA: 4
High-Performance Architecure With a Tighly-Coupled Reconfgurable
Functional Unil,* Proceedings of the 27th International Symposium on
Computer Architecture, pp. 225-235, 2000.

15] TMS320C62x / C67x CPU and Instruction Sex Reference Guide Literature
Number: SPRUIB9C March 1998,

[6] R. W. Hartenstein, R. Kress, and H. Reinig. \A Reconfigurable Data-
Driven ALU for Xputers*. [EEE Workshop on FPGAs for Custom Computing
Machines, April 1994.

7i NEC Electronics. “Dynamically Reconfigurable Processor (DRP) -
Architecture”, 2004,

{81 Michael Taylor. “The Raw Processor - A Scalable 32-bit Fabric for
Embedded and General Purpase Computing”. Proceedings of Hot Chips 13,
Avgust 2001,

[9] M. B. Tayior, J. Kim,). Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffmann, P. Johinson. J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N.
Shpidinan, V. Strumpen, M. Frank, 5. Amarasinghe, and A. Agarwal. “The
Raw Microprocessor: A Computational Fabric for Software Circuits and
General Purpose Programs™. JEEE Micro, March April 2002.

[10] 8. C. Goldstein, H. Schmit, M. Budiu, §. Cadambi, M. Moe, and R.
Taylor. “PipeRench: A Reconfigurable Architecture and Compiler”. TEEE
Computer, Vol. 33(4):pp. 70{77, April 2004.

2009 IEEE International Advance Computing Conference (IACC 2009)

Second International Conference on Electrical Engineering
25-26 March 2008
University of Engineering and Technology, Lahore {Pakistan)

RISP Design with Most Optimal Configuration
Overhead for VLIW Based Architectures

M. Ageel igbal, 'Shoab Ahmed Khan, *Uzma Saced Awan
'Center for Advanced Studies in Enginecring (CASE), Islamabad, Pakistan
*Jaternational [slamic University (IU), Islamabad, Pakistan
maigbal_786pak@hotmail.com, shoab@case.edu.pk
uawan_80@hotmail.com

Abstrace—In this research paper an alternative design for
Reconfipurable Instruction Set Processor (RISP} has been
proposed with the capability of the most optimal configuration
overhead for Very Long Instruction Word (VLIW) based
architectures., This processor supports the demand-driven
modification of its instruction set during the program execution.
The processor has been integrated with the high speed partially
reconfigurable Field Programntsble Gate Array (FPGA) cores as
its Reconfigurable Functigna! Units (RFUs) in place of ALUs and
it treats instructions as removable modules which can be paged in
and paged oot through the partial reconfigurations according to
the requirements of the application being under execution.
Instructions occupy the FPGA resources only when needed and
FPGA resources can be released and reused al run-time on a fly
for other kind of instructions befanging to the same o the
different applications witheut affecting thase who are currently
under execufion en the FPGA platform. RISPs are the next
generation of processors which can adapt their justruction sets
through a receafiguration in their hardware according to the
requirements of the applications being under execution on them.
In this way the processor adapts its instruction set for the
hardware design which is the most suitable for the application
being executing on it, during the process of ity execution and
hence it accelerates the performance. RISPs are the
programmahle processors which contain the reconfigurable logic
in one or mare of their funcrional uanits. The hardware design of
such a kind of processor can be cafegorized into two main tasks:
The first task is to design the reconfigurable logic itself and the
setond task Is to design the communication interface of
reconfigurable logic with the remaining modules of the processor.

Keywords— RISP, Configuration overhead, RFUs, FPGA,
VLIW, Multi-pert Memiory, Configuration Controller.

1. INTRODUCTION

The Recenfigurable Instruction Set Procegssors (RISPs)
combine a microprocessor core with a reconfigurable Togic in
one or more of their functional units. The reconfigurable logic
provides hardware specialization to the application being
under execution. The location of the reconfigurable logic in
the architecture, relative to the microprocessor core affects the
performance. The speed advantages achieved by executing a
program in a reconfigurable logic depend on the type of the
communication interfaces used berween the reconfigurable
logic and remaining modules of the processor [17 and the type
of the configuration methods used. A reconfigurable
functional unit can be placed in three different places, refative
to the processor cere [5); first as an Awtached Processor [2);
second as a Coprocessor [6]; and third as a Functiona! Unit.
Reconfigurable logic loads its configuration from an external
memory i.e, Configuration EPROM or main memory of the

078-1-4244-2293-7/08/$25.00 ©2008 IEEE

system etc. The configuration is loaded in the form of a bit
stream either serially or parallelly, just like the bit stream
loaded in an FPGA [6]. if we can configure the RFUs after
initialization, the instruction sct can be bigger than the size
allowed by the reconfigurable logic. If we divide the
application in functionally different blocks, the RFUs can be
reconfigured according to the needs of the each individual
block. Reconfiguration times depend on the size of the
configuration bit stream, which is mostly quite large.
Configuration times are critically dependant on the
configuration methods and the configuranion interfaces being
used [6]. Configuration stream depends on the type of hard
ware to be reconfigured and the type of the FPGA core being
integrated in the RFUs. If the configurations load operation
stops the system working while the loading of configuration
stream, there is a great loss of performance. If the RFUs can
be used during the loading of the pew configurations, it will
give a great performance boast up. If we divide the execution
unit in different RFUs which can independently be configured,
we will not have to reconfigure the all of RFUs at the same
time, thus reducing the reconfiguration time. Configuration
pre-fetching, configuration clening and configuration context
switching are other alternative techniques used to reduce the
reconfiguration over head [6].

1. MOTIVATIONS

In future the interactive multimedia applications will be
based on the standards like MPEG-4. Using an object-based
approach to describe and composite an audio-visual scene,
MPEG-4 combines many different coding tools nat unly for
natural audio and video but alse for synthetic objects and
graphics, Objects are coded and transmitted separately and
composed at the decoder side, letting the receiver interact and
influence the way the scene is presented on the receiving
display and speakers. Due to this user interaction, the number
and the type of decoders that needs to be implemented on the
system are not known at the design time, but rather at the run-
time [4], This fact forces the designers af the platforms for
these applications to use the new design approaches.
Traditionally, multimedia applications have been implemented
on custom YLIW processors that provide enough parallelism
to accelerate these computationally intensive applications [7],
while at the same time retaining low power consumption. In
order to increase even further the computational power of
these devices, they have been enhanced with custom hard
ware for acceleration of the most common multimedia
operations. An example of this is the Trimedia Processor [7],

ized hcensed Usa kmited to; COMSATS RSTITUTE OF INFORMATION TECHNOLOGY. Downinaded on Marc 24, 2009 2t 0907 from IEEE Xplors. Restricions apply.

vhich contains the specialized units for DCT (Discrete Cosine
lransform) and motion estimation.

Jnfortunately, due to the variety of the algonthms that can be
1sed in new interactive multimedia applications and the fact
hat the actual number and the type of the objects is not known
il run time, it is no longer economically viable to make
ipecialized functional units for each algorithm. The picture is
urther complicated if we also take into account that a
Narform designed for these applications may havc to decode
in object encoded with an algorithm for which it was not
sonceived. Hence in order to maintain the power efficiency
ind the real time copstrains, we need a platform that can be
ipecialized at run-titme to the algorithm at hand. A platform
rased on RISP provides this type of run-time specialization.

1. RELATED WORK

Jumerous reconfigurable hardware based architectures have
ree proposed. Previously proposed reconfigurable processor
wchitectures generally fit into one of two categories
lepending on the size of the computations they map onto the
econfigurable logie.

Fine-grained Reconfigurable Processors, such as PRISC [2],
J1SC {11}, OneChip [i] and CHIMERAE [12] integrate the
mall blocks of reconfigurabie logic into superscalar processor
wchitectures, treating the reconfigorable logic as
wogrammable ALUs that can be configured to implement
ipplication-specific instructions. CHIMERAE differs from
sther systems primartly in that it supports 3 9-input / |-output
nstruction model. These systems can achieve better
serformance than conventional superscalar processors on a
vide range of applications by mapping commonly-cxecuted
;equences of instructions onto their reconfigurable units, but
he maximum speedup they can achieve is limited by the small
unount of logic in their reconfigurable units,

Toarse-groined Reconfigurable Processors, such as
REMARC [9), Garp [6], Napa [10], PipeRench [5}, Rapid {3]
wnd RAW (8] provide larger blocks of reconfigurable logic
hat are less tightly-coupled with the programmable portions
»f the processor. These architecturcs can achieve extremely
rood performance on applications that contain long-rurning
1ested loops that can be mapped onto the processor’s
econfigurable arrays but perform less well on applicativns
hat require frequent communication between programmable
ind reconfigurable portions of the processor. Systems such as
Yilchard that integrates FPGAs into conventional workstations
wer the processar’s memory bus display similar behavior,
dthough the relatively low bandwidth of a processor's
pemory bus makes them even more sensitive to the amount of
:ommunication that an applicetion Tequires between the
srocessor and the FPGA.

IV. PROPOSED RISP DESIGN

In this section the detailed architecture of the proposed RISP
1as been discussed. The detailed architecrure of the proposed
srocessor i3 shown in the Fig.l and different modules are
liscussed below along with their functicnality.

1. Input/ Output Interface (10 Interface):

The 10 mnterface of RISP is used to communicate with the
external devices being interfaced with it. The first job of the
/O Interface is to load the configuration streams from external
Configuration EPROM or main memory of system dunng the
booting processes of the processor and it takes only a few
clock cycles. These configuration streams contain the different
hardware modules like Adders, Subtractors, Multipliers and
Shifiers etc. The second job of the 10 interface is to load the
instructions and their relevant data operands to be executed on
the processor. The third job of the 10 interface is to store the
results of the computations performed on the processor in
main memory of the system. The fourth job of the 10 interface
is to send and receive the contral signals generated and
acknowledged by the control unit of the RISP to the external
devices.

2. Pre-fetch Unit (PFU}

The basic job of the PFU is to fetch or pre-fetch the instruction
strcam and the data siream of the application program being
under execution. Fetched instructions are loaded im the
Instruction Pool and then transferred into the Instruction
Cache. Similarly the data stream is loaded into the Data Fool
and then transferred into the Data Cache.

3 .

= Fwwmi*“##ﬁﬁ%&l
LI

? i m-um T

i P W ey A Ry S o 9P

i ' cmyum mmgz&a
Fig. 1 Proposed RSP Design

ized icensad use kmited to: COMSATS INSTITUTE OF INFORMATION TECHNOLDGY. Downloaded on March 24. 2009 et 09:07 from IEEE Xplore. Reslrictions apply.

Fig. 2 RISF Instruction Format

ivictiontas
7Sl =15 KV¥ -
"W 256.bits (I}

fig. 1 Instruction Pack Logic (IPL)

i, Instruction Scheduler Unit (15U)

he ISU is the micro-programmed implementation of the
Yomasoulo's Afgorithm being used in VLIW and Super-scalar
wocessors for the scheduling of the instructions. The
nstruction scheduler reads instructions from the instruction
ool and then it analyzes them for dependencies (if any) and
esolves these dependencies. Dependencies being analyzed
rclude Data Dependency, Control Dependency, Resource
conflicts and Data Hazards etc. Then it after apalysis ISU
ransfers these instructions to 1PL.

j. Instruction Pack Logic (IPL}

rhe main job of the IPL is to pack the eight instructions in the
orm of a VLIW. The 32-bits instructions transferred from the
SU are given to the IPL. The IPL amanges these instructions
& a buffer in a FIFO order on their ammival from the ISU. After
he amival of each instruction, the IPL increments its
nstruction counter and checks either there are eight
nstruction arrived from the ISU or not. If a total of eight
nstructions have been arrived from the ISU then the IPL
ransfers them into a YLIW buffer of size 8 x 32-bits. Then it
nables this buffer to transfers this VLIW to instruction cache
if the RISP if signal Load VLIW =I. The same process is
epeated constantly throughout the application execution.
“onsider the Fig. 3 of IPL.

i. Computationzl Pipeline-1 {CP-1)
P-1 is consisting of a VLIW Fetch Unit (VFU) and a VLIW
dispatch Unit (VDU).

. VLDY Fetch Unit (VEU):
/FU is a State Machine based unit and works like a
>rogrammable Counter, VFU fetches VLIW from the
astruction cache and the Op-Codes of all instructions of the
/LIW are transferred to the Configuration Unit and the VLIW
tself is transferred to YDU.

i. VLIV Dispatch Unit (VBU):

/DU is consisting of an array of eight De-MUXs whose select
ines are controlled by the configuration controller. According
o the select lines activated by the configuration controller all
f the instructions of VLIW are dispatched or issued by VDU
o their relevant RFUs. Consider the Fig. 4 of VDU.

6. Computational Pipeline-2 (CP-2)

The CP-2 is composed of a2 VLIW Execution Unit (VEU)
which contains an array of cight RFUs and a Register Window
of 32 registers (32-bits) and a Configuraion Unit which
contains a Configuration Controller and a Mulii-port
Configuration Memory.

i. ¥LIW Execution Unit (VEU):

VEY is the core component of the processor because it
contains an array of RFUs being used for program execution.
Consider the Fig. 5 of VEU. The VEU contains the folfowing
major modules.

a) External 0 Logic (EIOL)
b) RFUs Data-in/Data~out Logic (RDIOL})

c) General-Purpose and Flag Registers (GFRSs})
d) Registers Input/Output Logic (RIOL)

e) Reconfigurable Functional Units (RFUs)

f) Flags Generation Logic {FGL)

a) External IO Logic (EIOL)
The EIOL of the VEU is used to load instructions in the
instruction register, source operands in general-purpose
registers 2nd the configuration stream in RFUs. The second
job of the EIOL is to store the configuration stream being
loaded in the RFUs for the analysis purpose and results being
generated after the execution of VLIW.

The source operands Sr-1and Sr-2 are loaded into the internal
general-purpose registers (GPRs) by the Extemal De-MUX of
size 1 x 24. The address given for the Data-in is connected to
the select lines of De-MUX as weil as to Decoder (5 x 24)
input. De-MUX selects one of the general-purpose registers
for data loading and the decoder enables its output channel
connecting to the registers through the MUX of the size 2 x1.
This MUX receives 32-bits data operand from External De-
MUX at input “1” and receives 32-bits results from RFUs at
the input “0”. If the Ext IO _Ep--D ihep it selects the result
coming from the RFUs and loads it in the register. If the
Ext 10 _En=1 then it selects the data coming from the
Exlernal De-MUX and loads it in the registers. Since there are
eight RFUs that can load their results in thc same register,
hence in order to solve this problem an 8 x 1| MUX (32-bits) is
interfaced with each register input. Each MUX is controlled

irerd ficensed use imited to: COMSATS INSTITUTE OF INFORMATION TECHNOLOGY, Downloatad on Marth 24, 2009 st 09.07 from IEEE Xplare. Resticfions apply.

Dispatch Bufter o ._j
s
gy B2t
wrae CORHS I
2 o
‘ s
o, T =N
—r, o R I s
15‘:1 yod [T il ™y
] L terive T Trrae Rt yrTivees

- ; PPN I PTIRTT
{TRIY I 1 BTN £ el B A TN
W | w2 | Wt | @D jI

S

FIF FREE SnCE o it X Y X
i Wi | K8 | RS R4 |
B

-)) | | . | g ; p
RFU-T RFUS RFUS U U5 RFE.2 RFGA RFU¢
* 1 * A ¥ A

Fig. 4 VLIW Dispatch Unit (VOU)

]
4

1

Tl Datadamn Comawier)]
Fig. 5 VLIW Execution Unit (VEU)

the RFU Data-path Controller which analyzes the
stination Addresses of al} the RFUs and sclects only that
U whose output is valid output. In order to store the results
1 the flags being available in the GPRs and flag registers
15) into the data cache of the RISP, the 32 x 1 External
JX (32-bits) is used which cap read the contents of the
ected register and sends it to the data cache of the RISP.

t) RFUs Data-in/ Data-put Logic (RDIOL}

order to load/store the data across the RFUs there are two
%x 1 MUXs (32-bits) and one { x 24 De-MUX (32-bits) for
:h RFU. Using the two MUXs the RFU is able to read the
wrce data operands (Sr-1 and Sr-2) from any one of the 32
isters and using the one De-MUX it stores its results back
any one of the GPRs. Flags gencrated during the execution
the VLIW are loaded into the relevant FRs.

¢) General-Purpose and Flag Registers (GFRs)

erc is an array of eight FRs (32-bits) and twenty four GPRs
'-bits). GPRs can be read and written by the programimer
: the FRs can only be read by the programmer and can not
written. RFUs can read/write any one of these thurty two
isters. More than one RFU can read the contents of the
ne register at the same time but only one RFU can write in a
ister at the same time because the read operation is
reable but the write operation is not shareabie.

d) Registers Input/Output Logic (RIOL)

s are loaded with the flags, being generated by the RFUSs
] ¢can be read by the programmer through the Extcrnal
JX. In case of the GPRs, the programmer can read the
isters through the External MUX but in order to write
tents into registers there is a 2 x 1 MUX (32-bits) which
acts the data for the register either from some RFU ouipul
from data cache. The 8 x 1 MUX interfaced at the tnput of
2 x ¥ MUX selects the valid RFU for the resuits to be
red in the register. in order to select the valid RFU for
ults, there is 2 RFU Data path Controller shown in Fig.6 is
ched with all MUXs. This controller reads the select lines
all the De-MUXs of RFUs and after analysis it selects that
LJ whose output is a valid output.

¢) Reconfigurable Functional Units (RFU5s}
Us are the computational units of RISP and can be

reconfigured at any time according to the application demand.
They have been tightly coupled in the form of an integrated
FPGA core.

P Flags Generation Logic (FGL)
The outputs generated by the RFUs are also read by the FGL
and the flags are calculated for each RFU. Flag register is a
32-bits register but recently oaly Camry Flag, Sign Flag, Zero
Flag, Overflow Fiag and Equal Flag have been computed in
the system and the remaining twenty-seven bits are available
for the future extension,

it. VLIW Configuration Unit (VCU):

VCU is composed of a Configuration Controller as shown in
Fig.7 and a Muiti-port Configuration Memory as shown in
Fig.5. Configuration controller receives the op-codes of the
eight instructions of the VLIW trom the VFU and on the basis
of these op-codes it decides 1o load one of the configuration
blocks available in the memory for each RFU (if required}.
Also it checks if the op-code is a No Operation (NOP) or is
same as that of any one of the existing op-codes. If 5o then (he
configuration controller does not load this new configuration

REU Data-path Controller
Hardwired Algorithm

The tigortthm iiady Aesds the RoGiret Aagress (Rm) snd
DeEERITION DPparand AKIFas6es of aff RFUE

i {(RFLD-Dest-Address == Rmn Address)
Then Sel_out = O;
alse
H {RFU1-Dest-Address == R Address)
Then Sel_out = 1
alsa
W {RFU2 Dest-Address == Rmn Address)
Then Sel_owt= 2,
else
i (RFU3Dest-Address == Rmn Address}
Then Sel_oid = 3;
else
f (RFU4-Dest-Address == Ran Address)
Then Sel_out = 4:
alse
i (RFUS-Dest-Address == Rrmn Address)
Then Sel_out = 5:;
else
(RFUS-Dust-Address, =x Rmn Addness)
Then Sel_out= 8;
alse
& (RFUT-Dest-Address == R Address)
Then Sal_out= 7.
aise Se? out = M

 ieensed use kmited 10! COMSATS NSTITUTE OF INFORMATION TECHNOLOGY . Downioadad on March 24, 2009 ot 09:07 from IEEE Xplore. Restricions apply.

Page 1 of 5

Reconfigurable Instruction Set Processor Design
Using Software Based Configuration

M. Ageel Igbal and Uzma Saeed Awan
Faculty of Engineering and Information Technology
Foundation University, Institute of Engineering and Management Sciences
maigbal 786pak@hotmail.com, uawan_80@hotmail.com

Abstract

Due to the potential enhancemenis in ihe execution of
foware based applications shown by Reconfigurable
struction Sét Processors (RISPs), reconfigurable computing
1s become a sulject of great deal af research in the field of
wmputer sciences. Its key feature is the ability to perform the
mnputations in hardware 1o increase the performance on one
md while retaining much of the flexibility of the seftware on
¢ other hand. The VLSI development is continwously
iproving and new ways must he obtained 1o become able to
My take the advantages of the emerging rtechnology.
econfigurable hardware might be the next step which will
ve computer performance a big leap forward. The idea is to
‘e the now a day’s kigh performance FPGA technology te
lapt the hardware to the problem. This research paper
esents an alternative design of a RISP which supports
wltiple threads running concurrently, all with instant
wdware stipport. Core of Xilinx FPGAs like Virtex series has
ren ised to adapr the possibilities of loading partial
wrdware configurations wiile retaining the execution of the
wmaining aclive parts of the application.

Index Terms — Fine-grain, Coarse-grain, Configurations,
*GA, REUs, RISP, Multi-pon Configuration Memory.

Introduction

Reconfigurable Instruction Set Processors (R1SPs) combine
standard microprocessor core with a reconfigurable logic in
1e or mose of their functional units [1]. The reconfigurable
gic provides hardware specialization to the application being
wler execution. The location of the reconfigurable logic in
e architecture, refative to the microprocessor core greatly
fects the performance of the computational sysiem. The
weed advantages achieved by executing a program in a
configurable Jogic depend on the type of the communication
terfaces used between the reconfigurable core and rest of
odules of the processor and the type of the coufiguration
ethods being used. A Reconfigurabie Functional Unit (RFU)
in be placed in three different places, relative to the
‘ocessor core [6]; first as an Awached Processor; second as a
oprocessor; and thitd as a Funcrional Unit (FU).
cconfigurable logic loads its configurations from an external
emory like configuration EPROM or main memory of the
istem. The configurations are loaded either serially or
irallelly, just like loaded in an FPGA [2]. If we can configure
e RFUs after initialization, virtually the instruction set can

be bigger than the actually available. If we divide the
application in functionally differen! blocks, the RFUs can be
reconfigured according to the needs of the each individnal
block. Reconfiguration times depend on the size of the
configuration bit streams, which is mostly quite large.
Configuration times are critically dependant on the
configuration methods and the configuration interfaces being
used. Configuration streams depend on the type of hardware to
be reconfigured and the type of the FPGA core being
integrated in the RFUs {2], If the configuration load operation
stops the working of the platform then during the loading of
configuration stream, there is 2 great loss of performance. if
the RFUs can be used during the loading of the new
configurations, it will give a greal performance boast up. If we
divide the execution unit in different RFUs which can
independently be configured, we wiil not have (o reconfigure
the all of RFUs at the same time, thus reducing the
reconfiguration times. The Configuration Pre-fetching and the
Configuration Cloning are other alternatives.

2. Related Work In Active Domain

Previously proposed reconfigurable architectures generally
fit into one of two major categories depending on grain of
computations they map onto the reconfigurable logic.

Fine-grained Reconfigurable Architectures, such as
CHIMERAE [5] integrate the small blocks of reconfigurable
logic into superscalar processor architecturcs, treating the
reconfigurabie logic as programmable ALUs that can be
configured to implement application-specific instructions.
These systems can achieve the better performance than the
conventional superscalar processors on a wide range of
applications by mapping commonly-executed sequences of
instructions onte their reconfigurable units, but the maximum
speedup they can achieve is limited by the small amount of
logic in their reconligurable units.

Coarse-grained Reconfigurable Architectures, such as
REMARC [7], Napa [8] and PipeRench [6] provide larger
blocks of reconfigurable logic that are less tightly-coupled
with the programmabie portions of the processor. These
architectures can achieve extremely good performance on
applications that contain long-running nested lonps that can be
mapped ontc the processor’s reconfigurable arrays but
perform less well on applications that require frequent

R,

ommunication between programmable and the reconfigurable
ortions of the processor.

. Software Support for Proposed RISP

The proposed RISP is a reconfigurable RISC architecture
sing 32-bits instruction format. In order to manage the
onfigurations for the applications, there is no need to have a
pecially designed toolset but the existing Xilinx ISE Tools
ill be used. There are two types of the instructions used for
e processor i.e. Application Instructions and Configuration
astructions. The instruction formats for both types are shown
1 Fig. |

Application Instructions Format
Op-Code Sr-d sr-2 Dst Dispaich Unused
{5k st Shilst {5-bits) (5-bits) (3-tits) (5-Ditsy
- 254

Configuration Instructions Format

OP-Cod# RFUY REUS RFUS RFU4 RFUJ3 RFU2Z RFUI1 RFUG
AR08} (3.bits) | (3-bis) [(3-bits) | {3s) | {3ods) | (3ods) | (3-bitsy | 13-0its)

255

Fig. | RISP Instruction Formats

i Application Instructions

These are the instructions of the application to be executed
n the proposed RISP. These are 32-bits RISC instructions.
\mong these 32-bits, 8-bits on the most significant side of the
1structions represent to the operation codes (Op-Code). The
p-codes ranging from 0-to-254 have been dedicated for
pplication instructions while the Op-Code 255 has been
edicated for the configuration instructions. In order 1o access
ach register a 5-bits address is required. Also the instruction
ormat is a three-address instruction format containing two
ddresses for sources and one address for the destination as
hown in Fig. 1. On the least significant side of the application
nstructions, there are 3-bits attached by the software (either
ompiler or application layer) for the Program Dispatch Unit
PDU). There are six unused bits which can be used in the
uture io further enhance the instruction set.

it. Configuration Instructions

Configuration instructions are also 32-bits RISC
nstructions. These instructions are used by the Configuration
Tnit of the RISP to configure the RFUs with a hardware that
s the most suitable one for the Execute-Packet (EP) of eight
nstructions of the application being under execution. Hence
ncluding this configuration instruction in the Fetched Packet
FP) it becomes a fetched-packet of nine instructions in it and
ence sized as 9 x 32 = 288-bits. Configuration instruction
antains an 8-bits op-code (i.e. 255). Because there are a total
f the eight RFUs inside the RISP, each capable of loading its
wi configuration from the Multi-port Configuration Memory
nd each requires a 3-bits address to mention which
onfiguration is to be loaded from it, among a total of cight
onfigurations available concurrently for the RFU. Hence
here are 8 x 3 = 24-bits available on the least side of the op-
ode for this information. Each FU (i.e. RFU) requires a
-bits configuration address for its configuration from multi-
ort configuration memory. For demonstration purpose the
ested configuration streams have been shown in Table.l.
"hese patterns are relocatable pointers, pointing to hardware
onfiguration streams and new kind of the configurations can
e allocated to these pointers by loading them into specific

Page 2 of 5

blocks of multi-port configuration memeory. CONF instruction
format is shown below

CONF (FU7, FUs, FU3, FU4, FU3, FU2, FU1L, FUO),

11111111 300K, XXX, XXX, XXX, XXX, XXX, XXX, XXX;

RISP Program Compilation Example:
Let Op-code ADD = 00000000 and SUB = 00000001

Machine Code before Compilation

00000000 00000, 00001, 00010, XXXXXXXXX;
00000000 00000, 00001, 00011, XXXXXXXXX,
Q0000000 00000, 00001, 00100, XXXXXXXXX;
00000000 60000, 00001, 00101, XXXXXXXXX;
00000001 00000, 60001, 00110, XXXxXXXXX;
000G0O01 00000, 00001, 00111, xxXXXXXXXX;
00000001 00000, 00001, 01000, XXXXXXNXX;
00000001 00000, 00001, 01001, XXXXXXXXX;

Machine Code after Compilation

11111111 010, 010, 010, 010, 001, 001, 001, 001,
00000000 00000, 00001, 00010, 000, xxxxXX;
00000000 00000, 00001, 00011, 001, xxxxxx;
Q0000000 00000, 00001, 00100, 010, xxXxXxXX;
00000000 00000, 00001, 00101, 011, xoexXxxX;
00000001 00000, 00001, 00110, 100, XxxxxX;
40000001 00000, 00001, 60111, 101, xxxxxx;
00000001 00000, 00001, 01000, 110, xxXxxxx;
00000001 00000, 00001, 01001, 111, xxXxxxXX;

4. Hardware Support for Proposed RISP

The detailed architecture of the proposed RISP is shown in
Fig.2. The functiomality of each module is as given below.

A - Program and Data Memories:

The program memory is loaded with two kinds of the
instructions i.e. the application instructions and configuration
instructions. The data memory is a multi-purpose memory.
Firstly; during the booting of the device it is loaded with the
Configuration Streams either using the Configuration
EPROM s or directly from the master system and then streams
are moved into the multi-port configuration memory {1}
Secondly; the data memory is loaded with the data operands of
the application program. These data operands are then moved
into the Register File of the processor. Thirdly; the data
memory is used to store the results being generated by the
execution of the program. From this data memory the results
are moved out into the main memory of the master system [1].

Table.l Tested Configuration Stream Patterns

Bit Patterns Referenced Configurations
000 No Change in configuration
001 Load ADDER configuration
010 Load SUBTRACTOR configuration
011 Load MULTIPLIER configuration
100 Load DIVIDER configuration
101 Load AND configuration
110 Load OR configuration
111 Load NOT configuration

B - Input 7 Qutput Interface (10 Interface):

The first job of the /O Interfuce is to load the configuration
treams from extemal Configuration EPROM or main memory
»f master system during the booting processes of the processor
nd it takes only a few clock ¢ycles. These configuration
areams contain the different hardware modules ke Adders,
subtractors. Multipliers and Shifters ete. The second job of
he [0 interface is to load the instructions and their relevant
lata operands, The third job of the 10 interface is to store the
esults of the computations in main memory of the system.
[he fourth job of the 10 interface is to send and receive the
-ontrol signals generated and acknowledged by the control
wnit of the RISP to the extemnal devices.

C - Program Fetch Unit (PFUj:

PFU is a vprogrammalble comroller which fetches
nstructions one by one from the program memory and lpads
hem into the VLIW Unit of the RISP, A pre-fetch unit is
niegrated inside the 10 interface of the RISP to fetch or pre-
etch the instruction and data streams of the application
srogram. Fetched instructions are loaded in the program
nemory and data are loaded into the data memory.

0 - VLIW Unit (VLIWU):

The VLIWU arranges the instructions in a buffer in a FIFQ
yrder on their arrival from the PFU. After the arrival of each
nstruction, the VLIWU increments its instruction counter and
‘hecks either there are nine instruction ammived from the PFU
x not. If a total of nine instructions have been amived from
he PERU then the VLIWL transfers them nto a VLIW buffer
>f size 9 x 32-bits. Then it enables this buffer to transiers this
VLIW o Program Analyzer Unit (PAU) of the RISP if signal
~oad VLIW =1, The same process is constantly repeated
hroughout program execution.

E - Program Analyzer Unit (PAU):

Program analyzer unit receives the VLIW containing the
1ine instructions in the form of a packet. it then analysis the
wp-codes of instructions to check, which one is the
:onfiguration instruction and which one is the application
nstruction. After amalysis it rearranges the VLIW in a pre-
fefined order. A pre-defined op-cuxde (1. 235) is dedicated
‘or configuration instruction, which cannot be assigned to any
sther instruction of the application program. Consider the
Fig. 3 for PAU. PAU receives the 9 x 32 = 288-bits long
VLIV, from the VLIW Unit, in the VLIW Receive Buffer.
Then the Input-Inst MUX Coniroller generates the select lines
sne by one for the fnput-Inst MUX and instructions are loaded
nto the Analy-er Buffer one by one. For each iustruction, the
Jp-Code of the instruction is used to control either the
Ix8 De-MUX or the fi-Buffer. if op-code is between § — 254,
he instruction is loaded into the De-MUX ctherwise it is
'oaded into the Ig-Buffer. Throngh the De-MUX it is loaded
nie the proper instruction buffer from T, .. Iy At the end all
nsiruction buffers from Ig_.__ [; load their instructions into the
288-bits Re-arranged VLIW Buffer. Now VLIW is in the
-equired format, where the instruction eon the least significant
side 1.e. Ig 1s the Configuration instruction and the remaining
nstructions ie. I;.._. I are the application instructions. Then
his VLIW is transferred to Program Schedule Unit (PSU)
~hich sends configuraton instruction to the Configuration

Page 3 of 5

Main Memo Confi
[e EPRO?J‘ ‘l
S
Cul Bys nddr.f-[-)mar(:nn;i Bug% 7
InputfCutput Interface j
Insty Source
L, Data Res;‘uln |
Prog Memory‘f#) b ; Data Memory Qm"
! —=1
A i8I H ot Sigs
1 L LY . o
RISP L g
Comrol Unit H
off [lg
Crr Sigs 2\l {l2
(s eonfiaumtY Sl 1 1
Cm. Ef
, Controller ¢5) 2
| T e Rl 2

WLy voyahfa iy

@ meririimransrrmeas
Register File

Fig. 2 Proposed RISP Architecture

| LAV 7]
- -

e T
e
alen J1am Al e Mlben Db dlbie W2be 32bie

SRS N TN ST L

1] 7 [L) 4 3 2 H o% %f_;m

PR A = lcontromer
_ M

214

— o, fnatyzer Buiter i
Cotvieder [I:‘l pyyen

N 0

E /n-_l\l‘:}qm—ili—_v—-:r-—\——-—-_-——-—»
T ool
oEoon
N . P Y -
Re-Accanged YLIW '
s

~
Fig. 3 Program Analyzer Unit (PAL)

L2+ IS

unit and the application instructions to the Program Dispatch
Unit (PDU).

F - Program Dispatch Unit (FDU):

PDU is consisting of an array of eight De-MUXs whose
select Jines are controlfed by the three configuration bits being
attached with each instruction by the compiler or by the
application layer. According to the select lines activated by
these attached configuration bits, all of the instructions of
VLIW are dispatched or issued by PDU to their relevant
RFUs.

G - Pragram Fxecution Unit (PEU}):

PEU is the main umt of RISP as it contains computational
unetional units {RFUs) in it. The functionality of major
nodules of PEU is as under. Consider the Fig. 4 of PEU.

e e Muiti-Port Conflqueation Memory e f_]:% .
I D IR o [V
.___i. I -
RFUT f_I.I IR R e b e ALt e d g an g s nre i RFUY 1; ;
T - -“ - q L tT mearncden-
LN ETER
tagey 114t oo
il _ "3
‘ J - | Dew
a == a3
I ol
- ¥ - -) el
Airs quismmlndw wam @ RG.‘;;',:. P&m‘ P] ph

L%!'L‘u [it Emlr
x 3 5 '—EJ

Yl - 3 \
oy, [F AN
oy v N E ey b T
{ A 22 ol
] 1 g1 _| EEE]

Fig.4 Program Execution Umit {(PEL)

i. External 10 Fogic (EIOL)

The EIOL of the PEU is used to load instructions in the
nstruction register, source operands in general-purpose
egisters and the configuration stream in RFUs. The second
ob of the EIOL is to store the resuits being generated after the
xecution of VLIW. The source operands Sr-land Sr-2 are
paded into the internal general-purpose registers (GPRs) by
he External De-MUX of size | x 24. The address given for
he Data-in ts connected to the select lines of De-MUX as well
s fo Decoder (5 x 24) input. De-MUX selects one of the
eneral-purpose registers for data loading and the decoder
nabies its output channel connecting to the registers through
he MUX of the size 2 x1. This MUX receives 32-bits data
perand from External De-MUX at input “1” and receives 32-
its resufts from RFUs at the input “07. If the Ext IO _En=0
hen it selects the resuit coming from the RFUs and loads it in
he register. If the Ext_lO_En=!l then it selects the data
oming from the External De-MUX and loads it in the
egisters. Since there are eight RFUs that can load their results
i the sante register, hence in order to solve this problem an
v x 1 MUX (32-bits) is interfaced with each register input.
‘ach MUX is controlled by the RFU Data-path Controller
vhich analyzes the Destination Addresses of all the REUs and
elects only that RFU whose output is valid output. In order to
tore the results and the flags being available in the GPRs and
lag registers (FRs) into the data memory of the RISP, 32 x 1
xternal MUX (32-bits) is used which can read the contenis of
ke selected register and sends it to the data memory of the
LISP.

it. RFUs Datn-in/Data-out Logic (RDIOL}

T order to load/store the data across the RFUs there are two
2x 1 MUXs (32-bits) and one 1 x 24 De-MIIX (32-bits) for
ach RFL. Using the two MUXs the RFU is able to read the
ource data operands (Sr-1 and Sr-2) from any one of the 32
egisters and using the one De-MUX it stores its results back
> any on¢ of the General Purpose Registers (GPRs). Flags
enerated are loaded into the relevant Flag Registers (FRs).

Page 4 of 5

There is an array of eight FRs (32-bits) and twenty four GPRs
(32-bits).

iii. Registers Input/Oupur Lagic (RIOL)

FRs are loaded with the flags, being generated by the RFUs
and can be read by the programmer through the External
MUX. In case of the GPRs, the programmer can read the
registers through thc Exiernal MUX but in order to wiite
contents into registers there is a 2 x 1 MUX {32-bits) which
selects the data for the register either from some RFU output
ot from data memory. The 8 x 1 MUX interfaced at the input
of the 2 x } MUX selects the valid RFU for the resulls to be
stored in the register. In order to select the valid RFU for
results, there is a RFU Data path Controller attached with all
MUXs. This controller reads the select lines of all De-MTXs
of RFUs and afier analysis it selects that RFU whose output is
a valid output,

iv. Reconfigurable Functionad Units (RFUs)

RFUs are the computational units of RISP and can be
reconfigured at any time according to the application demand.
They have been tightly coupled in the form of an integrated
FPGA core. The outputs generated by the RFUs are also read
by the Flag Generation Logic (FGL) and flags are calculated
for each RFU.

H - RISP Configuration Unit (Config Unit):

Configuration Unit of the RISP is responsible for the
configuration of the RFUs being integrated inside the Program
Execution Unit [1]. The configuration instruction inserted by
the application software or by the compiler is the control
instruction for the configuration unit. Configuratien instruction
fgrmat is shown in Fig. 1. Configuration instruction has an
8-bits op-code (255). When this instruction reaches to the
configuration unit of the RISP, it loads it into the Configuration
Buffer Register (CBR). The op-code of the configuration
instruction is decoded for the intecpretation. If the op-code is
the 255 then configuration controlling 24-bits on the least
significant side are loaded into the Coenfiguration Analyzer
Register (CAR). After loading these 24-bits inte the CAR,
these are grouped into the 3-bits cach and then are sent to the
Coanfiguration Analyzer Unit (CAU). The main job of the
configuration analyzer unit is to amalyze and wpdate the
configurations being running into the RFUs. Constder the
Fig. 5 of the CAU. There are total cight configuration analyzer
units inside the configuration unit of the RISP. Each one is
responsible [or updating the configurations of one RFU. The
followings are the tasks performed inside the CAU.

i. It checks the incoming configuration conlroi bits for the
No Change Operation (NCO) of the currently running
configuration. If the incoming configuration control bits
are 000, then it means no change in the currently
running configuration,

ii. It checks the incoming configuration control bits for the
Same Configuration Operation (SCO}. Fhis operation
occurs if the incoming configuration control bits are
same as that of the cumently running configuration.
Hence in this case the configuration should also pot be
loaded into the RFU and hence it saves the
configurstion overhead of the device.

New € anffuration
O1d € anfigurarisn ~NC
oc 3-cite 'q

< -
Camparnior

e
T xCro

tew Configuretion
HC

Fig. 5 Configuration Analyzer Unit (CAU)

. Mathematical Model for Analysis
Following is the mathematical formula being formulated for
1e calculations of the total no of cyeles {Trgp), consumed for

1e execution of an application program. Consider the model
arameters in Table 2.

Toa =8 (Te, To) + M(Nee , Bep) + 2 (En (Fy+ Du)) Cycles
vhere Bep= > (Trer Torr)

Table.2 Mathematical Model Parameters

Parameters Possible Values
fo of Fetched Packets, Nep 1,2.3,.........N/Program
acket Fetch Time, Toey 1-Cycle / Fetched Packet
iperand Fetch Time, Topr 1-Cycle / Fetched Packet
Xecute Packets, By 1 / Fetched Packet
Jelay Slots, Dy ___19-10-1Cycle
unctional Unit Latency, Fy 1-Cycle / Excoule Packet
"onfiguration Time, Tp 0-to-1 Cycle _
Nispatching Time, Ty, 1-Cycle / Execute Packet 1

It has been observed that the segments of codes of
pplications containing loops of similar operations, like the
iperation of convolution in digital signal processing, will be
'rastically boasted up by the proposed RISP as shown in the
gaph in Fig. 6. These results have been simulated by
onfiguring the proposed RISP for the loops containing fixed
spint arithmetic and logical operations,

.. Benchmark with Existing Architectures

In reference with Configuretion Granularity, the proposed
USP is fine-grain architecture like CHIMERAE (5]. Using
ine grain approach the system can be reconfigured at
nstruciion fevel and even at operator level [4). But there exist
nany other systems which use the coarse-grain architecture
ind can be reconfigured at ALU level like REMARC [7],
dapa [8] and PipeRench [6]. In reference with RFU
Toupling; the proposed RISP is a tightly-coupled architecture
ike CHIMAERA [5]. Others may use a coprocessor approach
r attached processor approach. Tightly-coupled designs have
ke small configuration overheads but are suffered by the
jependant execution of RFU with standard CPU core. In
eference with Operands Coding; the proposed RISP is based
n a fixed-operand coding scheme. But seme of designs are
ased on e hardwired operand coding scheme like
"HIMAERA [5}. Inreference with Configuration Memory;

Page 5 of 3

G OSP
@ RISP
No of

B Cycles

) Used
Tested Programs

Fig. 6 Performance Anatysis Graph

the proposed RISP is using a multi-port Canfiguration
memory unlike the existing architectures which are using the
single-port configuration memory [3].

7. Conclusion

Reconfigurable Instruction Set Processors (RISPs) provides
us a great performance parameter aver the traditional micro-
processers. In RISP the hardware changes according to the
requirements of ihe application being under execution. Heunce
the system {ollows the strategy of the demand-driven
operators. The required hardware is swapped in and the
unused hardware is swapped out and hence virtually providing
more hardware than the physically available in the system
during the execution of the application. Reconfigurable
Instruction Set Processors are very suitable processors for
those applications where different kinds of processing units
are frequently required to boast up the performance.

8. References

[1] Aziz-Ur-Rehman, Dr. Aqeel A. Syed and M. Agqeel Igbal,
‘Intelligent Reconfigurable Instruction Set Processor {IRISP)
Design’, Proceedings of IEEE computer society, 11th IEEE
INMIC-2007 Conference, Dec 28-30, 2007 CIIT, Pakistan.

[2] X. Inc., “Virtex-E 1.8 v FPGAs.” Xilinx DS022, 2001.

[3] Edson L. Horta and John W. Lockwood. PARBIT: A Toel to
Transform Bitfiles 1o Implement Partial Reconfiguration of
FPGAs. Washington Unjversity, Dep. of Computer Science
Technical Report WUCS-01- 13. July 2001.

[4] Xilinx, Inc. Virtex Tl Configuration Architecture Advanced
Users Guide™. March, 2000.

[5] Ye, Z. A., Moshovos, A, Hauck, S., and Banerjee, P,
"CHIMAERA: A High Performance Architecture Witha Tightly-
Coupled Reconfigurable Functional Unit,” Proceedings of the
27th Intemational Symposium on Computer Architecture, pp.
225.235, 2000,

I6) 8. C. Goldstein, H. Schmit, M. Moe, M. Budiu, 8. Cadambi, R.
R Taylor, and R. Laufer. "PipeRench: A Coprocessor for
Streaming Multimedia Acceleration”, in Proc. ntl. Symp. on
Computer Architecture, May 1999,

[7] Miyamori, T- and Olukotun, K., REMARC: Reconfigurable
Multimedia Array Coprocessor IEICE Transactions on
Information and Systems ES2-D, veol. pp. 389-397, Feb, 1999.

18} C. Rupp, M. Landguth, T. Garverick, E. Gomersall, HHolt,
J.Amold and M. Gokhale, "The NAPA Adaptive Processing
Architecture”, [EEE Symposium on FPGAs for Custom
Computimg Machines, Apr. 1998.

Ly RAL
LinRARY
ISLAMABAD.

