
Architecture and Simulation of
Very Long Instruction Word

Reconfigurable Instruction Set Processor
(VLIW-MSP)

:

M. Aqeel Iqbal
and

Asim Munir

Department of Computer Science,
Faculty of Applied Sciences,

International Islamic University,
Islamabad

IN
THE

NAME
OF ALLAH

THE MOST BENIFIICIENT
AND THE MOST MERCIFUL

Department of Computer Science
International Islamic University

Islamabad

Date of External

It is certified that we have read the project report submitted by Ms. Uzma Saeed
reg. no 275-FASIMSICSIF05 and that this project is of sufficient standard to
warrant its acceptance by Intemational Islamic University, Islamabad for the
Masters of Science in Computer Sciences.

COMMITTEE

External Examiner

Dr. Abdul Sattar . i

Director General (Ret.)
Pakistan Computer Bureau

Internal ~xaminer
'4

Mr. Muhammad ~ a d e e m
Assistant Professor,
Intemational Islamic University,
Islamabad

External Supervisor

Mr. M. Aqeel Iqbal
Assistant Professor,
Fauji Foundation University,
Rawalpindi

Internal Supervisor

Mr. Asim Munir
Assistant Professor,
Intemational Islamic University,
Islamabad

VLIW-RISP (Architecture and Simulation) Acknowled~ement

ACKNOWLEDGEMENT

First of all I would like to sincerely thank my supervisors Mr. M. Aqeel Iqbal and Mr.
Asim Munir for giving me this wonderful opportunity to work on this project under their
kind supervision and guidance throughout the project. I do acknowledge their true
coordination and support.

Then at last but not the least, I would like to thank my dear parents for their moral and all
kind of support during this project. I never forget their help during the tough times of the
project.

Thank you all again!

Uzma Saeed
275-FASIMSICSIF05

VLIW-RISP (Architecture and Simulation) Declaration

DECLARATION

All sentences or passages quoted in this report, or computer code of any form whatsoever
used andlor submitted at any stages, which are taken from other people's work have been
specifically acknowledged by clear citation of the source, specifying author, work, date
and page(s). Any part of my own written work, or software coding, which is substantially
based upon other people's work, is duly accompanied by clear citation of the source,
specifying author, work, date and page(s). I understand that failure to do this amount to
plagiarism and will be considered grounds for failure in this module and the degree . -

examination as a whole.

Uzma Saeed
275-FASIMSICSIF05

VLIW-RISP architecture & Sir~r~rlafion) Table o f Contents

Table of Contents

Chapter No . l .. 3
... INTRODUCTION

1 . 1 RC Architecture 1.2 Mot~vat~on 8
Chapter No.2 .. 9
Literature Review ... 9

2.1 Classification ... 9
2.1 . 1 Granularity ... 9
2.1.2 Host Coupling .. 9

... 2.1.3 Reconfiguralion Methodology 11 . .
2.1.4 Memory Organ~zat~on .. 11

.. 2.2 Reconfigurable Computing Architecturr; A Survey 12
.. 2.4 Related Work 12

2.4.1 Coupling of a Reconfigurable Architecture and a Multithreaded Processor
Core with Integrated Real-Time Scheduling 12

... 2.4.2 Introduction to Reconfigurahle Computing 12
2.4.3 Reconfigurable Instruction Set Processors from a HardwareISoftware

.. Perspective 13
............................. 2.4.4 Reconfigurable VLIW Processor for Streaming Data 13

2.4.5 Reconfigurable Computing Systems Design: Issues at System-Level
... Architecture 15

....... 2.4.6 Intelligence Reconfigurable Instruction Set Processor (I-RISP) Design I6
Chapter No.3 ... 18
Dedicated Machines and Reconiigurable Computing .. 18

... 3.1 The Philosophy of a dedicated machine 18
................................ 3.1.1 The Main Theme Behind Instruction Set Specialization 18

3.2 FPGAs .. 19
.. 3.2.1The Basic FPGA Architecture 22

3.2.2 FPGA Technology ... 26
3.2.4 Commercial FPGAs ... 27

.. 3.2.5 FPGA Performances 28
3.3 Reconfigurable CPUs ... 29

3.3.1 Totally reconfigurable processors .. 29
.. 3.3.2 The coprocessor Approach 30

... 3.3.3 A Partially reconfigurable CPU 30
... Chapier No.4 32

.. The Proposed Architecture 32
4.1 Overall Design Goal ... 32

Module No . 1 (Compiler Design for VLIW-RISP) ... 32
... Module No.2 (VLIW-RISP Design using Verilog-HDL) 32

4.2 Tool Issues .. 32
4.2.1 .Importance of HDLs .. 33
4.2.2.Why not to use a general purpose language .. 33
4.2.3.Verilog.HDL .. 33

4.3 instruction Format of proposed VLIW-RISP .. 35
... 4.4 VLIW-RISP Design Simulation using Verilog-HDL 36

VLIIV-RISP (Architecture & Sinlulatioir) Table of Contents

.. 4.5 PROPOSED RISP DESIGN: 36
... 4.5.1 input / Output interface (10 Interface): 39

4.5.2 Cache Memories .. 40
4.5.3 Pre-fetch Unit (PFU): ... 41
4.5.4 Instruction Scheduler Unit (ISU) ... 43
4.5.5 Instruction Pack Logic (IPL) ... 43 . .
4.5.6 Computational P~pelme-I (CP-I) .. 44 . .
4.5.7 Computational P~pel~ne-2 (CP-2) .. 45
4.5.8 Micro-programmed Control Unit (MCII) .. 54

Chapter No.5 ... 57
. . Stat~st~cs and Performance Analysis ... 57

5.1 DSP (TMS320C6X) Statistics [46] ... 57 . .
5.2 VLIW-RISP Statistics ... 58

... 5.3 DSP vs VLIW-RISP Performance Analysis 71
Chapter No.6 ... 72

.. Conclusion and Future Work 72
6.1 Conclusion ... 72
6.2 Future Work .. 73

6.2.1 Hardware Improvement .. 73
6.2.2 Configuration Protocol ... 73
6.2.3 Configuration Techniques .. 73

Bibliography ... 74
... Appendix 78

VLIFZ'-RISP lArcl~itecfure & Simulation) Table ofFiarires

Table of Figures

Figure 1 .1 Rrconfigurable Computing System ... 07
Figure 2.1 Host Coupling Approaches ... 10
Figure 2.2 Generatiug the FPGA code .. 15

............................... Figure 3.1 Typical FPGA Board. Device and Logic block architecture 21
Figure 3.2 A Generic FPGA Architecture ... 22

... Figure 3.3 A Generic Programmable Logic Block 23
Figure 3.4 Three-Input Look-Up Table .. 24
Figure 3.5 Basic Programmable Switch Types ... 25
Figure 3.6 110 Block Architecture ... 25
Figure 4.1 Event driven Systems .. 34
Figure 4.2 Design Flow Using Verilog-HDL ... 34
Figure 4.3 Op-Code Interpretation .. 35
Figure 4.4 Proposed VLIW-KISP Design ... 38
Figure 4.5 External lnterface .. 39
Figure 4.6 Instruction Cache ... 41
Figure 4.7 Data Cache ... 42
Figure 4.8 Instruction Pack Logi 3
Figure 4.9 VLIW Fetch Unit ... 44
Figure 4.10 VLIW Dispatch Unit ... 45
Figure 4 . I I VLlW Execution Unit .. 46
Figure 4.12 RFU Data Path Controller ... 48
Figure 4.1 3 Reconfigurable Functional Unit Interfaces ... 49

... Figure 4.14 Reconfigurable Functional Unit Interfaces 51
Figure 4.1 5 Flags Generation Logic ... 49
Figure 4.1 6 Micro-programmed Control Unit .. 54
Figure 4.1 7 Micro-programmed Control Unit .. 55
Figure 5.1 DSP vs VLIW-RISP Performance Analysis ... 71

VLIW-RISP (A~ltiteettrre & Sintulalion) Table o f Figures

List of Tables

Table 3.1 Logic Component Clustering Sizes o f LUT Based FPGAs 24
Table 3.2 Cell Count and maximum Operating speed (one operation per cycle) Tor
some arithmetic circuits in the Atmel 6000 device 28
Table 5.1 Statistics And Execution Formula of DSP Processor 54
Tahle 5.2 Statistics And Execution Formula of VLIW-RISP ... 55
Table 5.3 Calculated Statistics of Both Processors ... 67

Chapter No. 1
Introduction

VLIW-REP (Architecture & Simulation) Page 3 of 77

Chapter No.1

INTRODUCTION

The revolution occurred in the field of embedded systems due to the microelectronics
market is ever-increasing. In such a context the definition of efficient and cost-effective
design approaches is mandatory. Hardware and software co-design solutions generally
take into account architectures composed of one or more standard microprocessors and of
suitable application specific integrated circuits executing the most time-critical segments
of the application. Recently, the innovative concept of "mass customization" has been
introduced. This concept considers the possibility of specialization of a micro-processor
instruction set so as to optimize its performance for a given application or for a group of
applications. Such an approach combines the time efficiency of application-specific
functional units with the flexibility of logic circuits. This innovation of
programmable technology opens doors towards a new field of research known as Flexible
Insfruction Set Micro-processors.

In a broader sense the different levels of coupling or integration can be envisioned in
architecture. A more traditional design approach is that of considering the reconfigurable
part as a coprocessor, which is effectively working like a hardware accelerator that stalls
the core-processor when under execution. Normally the co-processor approach requires
coarse-grain functions to be executed in the part and therefore the speedup given by the
co-processor program execution, when compared to processor application execution,
must be considerably high [4]. A more realistic or innovative approach and an interesting
challenge in academic terms is one that see; the part of the 'processor as a Functional
Unit while operating in parallel with the otheidata-paths of the processor and where an
extension of the instruction set is executed. The programmable processor so envisioned
issues a set of native instructions to the native Functional Units, while these new
customized instructions are issued to the Reconfigurable Functional Units (RFUs) [5]. A
fine-grained function can be chosen for implementation in the part when compared to the
co-processor approach since the integration is much higher and the RFU can be reached
without any additional delay being embedded in the micro-processor.

Reconfigurable Arclriteclures can be divided in two main categories: fine grained
and coarse grained architectures 121. The fine-grained architectures are based on
programmable devices such as FPGAs (Field Programmable Gate Arrays) which include
units (CLBs - Configurable Logic Blocks) that perform single functions on a bit basis.
On the other hand, the coarse-grained architectures include word length units or small
micmprocessor distnbuted on an array of processing units. All architectures also ~nclude
110, memory and Inter connect units. The advantages of coarse-grained architectures over
fine-grained ones are mainly the reduction of configuration time and reconfiguration
memory [I]. Fine-grained architectures also use significantly more area overhead to
routing functions between CLBs and expend significantly more ... energy.

VLIW-RISP (Architecture & Simulation) Page 4 of 77

Reconfgurable computing devices can be configured after their fabrication to solve
any computational algorithm or task. Such kind of reconfigurable devices are best
exemplified now-a-days by FPGA [3]. In such devices the algorithms or tasks are
implemented by spatially composing the built-in or primitive operations and operators
with the possibility of temporally varying or changing the hardware of the operators. The
re-configurable processor on FPGA can perform different operations on each bit of data
or program and hence the re-configurable devices can be optimized to the data width of
streaming data flows. The main theme of this kind of research work is to mix the
advantages of non Von-Neumann architectures with the advantages of re-configurable
processing devices or fabrics.

Field-Programmable Gafe Array (FPGA) is a kind of silicon chip containing a set or
an array of configurable logic blocks known as CLBs [3]. Unlike an Application Specific
Integrated Circuit (ASIC) which can perform a single dedicated or specific function for
the lifetime of the chip; a FPGA can be re-programmed many times to perform a variety
of different functions in a matter of micro-seconds. Before it is programmed an FPGA
knows nothing about how to communicate with the external connected devices
surrounding it. Hence this is in fact both a blessing and a curse as it allows a great deal of
flexibility in using the FPGA while greatly increasing the complexity of programming it.
This type of generic ability to reprogram FPGAs has led them to be widely used by
hardware engineers and designers for prototyping digital electronic circuits. The
performance advantage achieved from the FPGAs derives from the fact that the
programmable hardware is likcly to be customized to a particular algorithm. The field
programmable gate arrays are configured to comprise only the operations that are
appearing in the concerned algorithms [6]. The specialized instruction set micro-
processor in fact contain ALUs of specific or specialized data bandwidths like 8-bits, 16-
bits and 32-bits and always has pre-coded or determined control flow pattcms.

The re-programmability and versatility of FPGAs definitely comes at a price. Only a
few years ago, the algorithms or tasks that could be implemented in a single FPGA chip
were very small. For example in 1995 the largest kPGAs could be programmed for
circuits of about maximum of 10,000 to 15,000 logic gates at most. Since only a fast 32-
bit adder requires a few hundreds logic gates, the capabilities of such devices were
somewhat bounded. More recently the FPGAs have reached a size where it is possible to
implement reasonable sub-pieces of an application in a single FPGA part [7]. This has led
to an emerging new concept for computing. If a processor was to include one or more
FPGA-like devices, it could in theory support a specialized application-specific circuit for
each program.

The unlimited re-configurability of an FPGA permits a continuous sequence of
custom circuits to be employed where each one is optimized for the task of the moment.
Bccause FPGAs demonstrate a better performancc scale than superscalar techniques,
such designs have the potential to make better use of continuing advances in device
electronics in the long term. The idea of reconfigurable computing has been a subject of
research for a more than a decade, but most projects have investigated the potential of
connecting one or more commercial FPGAs to an existing micro-processor via a standard

VLIW-RISP (Architecture & Simulation) Page 5 of 77

external bus such as the PC1 bus [%I. If reconfigurable computing is really to become the
computing paradigm of the future high speed platforms, then the main parts must be
brought closer together. Only a few studies have considered the integrating of a micro-
processor core and FPGA into a single device with the both tailored to co-operate very
closely with each other and so there remains an important question about how such a
device might be built and re-programmed and how it would fit within an existing general
purpose-computing framework. Such a question must be addressed before the bigger
issue of whether reconfigurable computing is really a good design model for
computations can be answered.

Reconfgurable compufing using reconfigurable devices like FPGAs have become an
alternative to fill the gap between ASICs and general-purpose computing systems.
Although the basic concept of reconfigurable computing was proposed in the 1960s, the
reconfigurable computing systems have only recently become very vital and quite
feasible. This is mainly due to the availability of high-density VLSI devices that use the
programmable switches and routing networks to implement the extremely flexible
hardware architectures. Most of the reconfigurable systems consist of a general-purpose
processor core tightly or loosely coupled with reconfigurable logic [9] . These systems
can implement specific functionality of applications or a set of applications on
reconfigurable hardware rather than on the general-purpose processor and hence
providing significantly better performance.

In a sfafically programmed system the individual data operations of an application
will remain idle when they are no more required. For an example, the data dependencies
within an application program may cause an operation to be idle and waiting for data
inputs from other operations. Hence placing all operations onto the FPGA all at once is a
poor choice hence resulting of wasting of a h g e no of precious hardware resources. Run-
time re-configuration can be used to remove or recover such kind of idle operations by
making them share limited hardware resources. Also the tun-time reconfiguration
provides a design method for large class of applications that are too big for the available
hardware resources on the FPGA [lo].

Many recently advanced systems, such as Garp [4], PipeRench [I I] and Chimaera
[lo], are using run-time reconfiguration. In such kind of systems the hardware
configuration can change frequently at run-time to reuse hardyare resources for several
different parts of a computation. Such systems have the potential to make more effective
use of chip hardware resources than even standard well designed ASICs, where fixed
hardware may be used only in a portion of the application algorithm or computation. Also
the run-time reconfigurable systems have been shown to accelerate a variety of
applications. An example of such kind of systems is the run-time reconfiguration within
automatic target recognition (ATR) application developed at the UCLA to accelerate a
template matching. The algorithm in this system was based on a correlation process
between incoming image data from the radar and a set of target templates. Without taking
considerations of the reconfiguration time, thi~~system improves performance by a factor
of 25 to 30 over a general-purpose computing'system.

VLIW-RISP (Architecture & Simulation) Page 6 of 77

However, the drastic speed advantages of run-time reconfiguration do not come
without a cost. By requiring a set of multiple reconfigurations to complete a computation,
the time it takes to reconfigure the FPGA becomes a really significantly a key concern.
The serial-shift configuration method transfers programming bits into the FPGA device
in a serial way. This type of very slow method or programming approach is still used by a
large class of existing FPGAs [7], [12]. Recent devices have moved the technology to
cutting-edge domain and hence resulting in FPGAs with more than one million logic
gates. The configuration size for such devices is more than one megabyte [13]. It could
take from few hundred milliseconds to few seconds to transfer such a large configuration
data stream using the serial-shift approach.

In most of such systems the devices must sit idle while they are being reconfigured
and hence wasting cycles that could otherwise be performing useful work. For example,
the ATR system uses 98% of its execution time on performing reconfiguration process,
meaning that it uses merely 2% of total time in doing computation. DISC and DISC-I1
systems have been found to spend up to 90% (61 of their execution time on performing
reconfiguration process. It is obvious that a significant improvement in system
performance can be achieved by eliminating or reducing this configuration overhead
associated with reconfiguration delays.

1.1 RC Architecture

, .*:,

Recortjigurable Imtruction Set Processor (RISP) design offers many advantages
over ASIC Processor design. It offers the flexibility of in circuit hardware re-
programmability. By using RISP design we can get the speed advantage of nearly an
ASIC Processor design and flexibility of software. RISP design is not an easy task [l 11.
In RISP designing the most important issue is the reconfiguration methodology. Many
different techniques have been introduced to provide an efficient reconfiguration process
including partial reconfiguration, run time reconfiguration, static reconfiguration and the
most recently introduced configuration cloning [I], [2]. Most of these methods of
reconfiguration suffer from a problem of ~xcessive reconfiguration (reconfiguration
overheads).

Till now the reconfigurable computing is suffering from this problem and no one has
provided satisfactory solution. Reconfiguration time should be minimized in order to
obtain a level of satisfactory performance [3], [4], [l l].This can be easily achieved by
using the already existing resources within the programmed device [15]. But the solution
to this problem is in software tools not hardware [14].

VLIW-REP (Architecture & Simulation) Page 7 of 77

VLIW Architectures

Disk Serial
110

Very Long Instruction Word architecture rcfers to a CPU architecture that has been
designed to take the advantage of instruction level parallelism (ILP) found in the program
execution. A micro-processor that executes every instruction one after the other may use
the micro-processor resourccs inefficiently at any time instant, potentially leading to .

drastically poor performance. The performance of such system can be improved by
executing different sub-steps of sequential inshctions simultaneously using the concept
of pipelining or even executing the multiple instructions entirely simultaneously as is
done in superscalar micro-processor architectures [15], [I 61.

Micro processor

Data, Instruction Cache

Increase of computational performance is better achieved, for this case, if a micro-
processor architecture supporting instruction level parallelism is chosen as the
architectural platform or paradigm. Instruction level parallelism processing has become
the new emerging architectural challenge since the eighties up to now, by enabling issue
and execution of multiple instructions of an application within the same clock cycle. This
paradigm would allow our envisioned reconfigurable architecture to fully exploit the
native functional unit in parallel with t h ~ customized, reconfigurable cores.

110
Bus *

Two main classes of ILP machines naming superscalar and VLIW have been
flourishing. 'The fonner performs dynamic scheduling algorithms of instructions, and
therefore granting binary compatibility with previous code versions, the latter relies on
static or compile time scheduling, by delivering all instruction dependence analysis to the
related compiler.

I
Memory Subsystem

Figure 1.1 Reconfigurable Computing System

VLIW-RISP (Architecture & Simulation) Page 8 of 77

1.2 Motivation

Future interactive multimedia applications will be based on standards like MPEG-4.
Using an object-based approach to describe and composite an audiovisual scene, MPEG-
4 combines many different coding tools not only for natural audio and video but also for
synthetic objects and graphics. Objects are coded and transmitted separately and
composed at the decoder side, letting the receiver interact and influence the way the
scene is presented on the receiving display and speakers. Due to this user interaction, the
number and the type of decoders that needs to be implemented on the system is not
known at the design time, but rather at the run-time [17].

This fact forces the designers of the platforms for these applications to use new
approaches. Traditionally, multimedia applications have been implemented on custom
VLIW processors that provide enough parallelism to accelerate these computation
intensive applications [IS], while at the same time retaining low power consumption. In
order to increase even hrther the computational power of these devices, they have been
enhanced with costume hard ware for acceleration of the most common multimedia
operations. An example of this is the Trimedia Processor [IS], which contains the
specialized units for DCT (Discrete Cosine Transform) and motion estimation.

Unfortunately, due to the a variety of the algorithms that can be used in new
interactive applications and the fact that the actual number and the type of the objects is
not known till run time, i t is no longer economically viable to make specialized
functional units for each algorithm. The picture is further complicated if we also take into
account that a platform designed for these applications may have to decode an object
encoded with an algorithm for which it was not conceived. Therefore, in order to
maintain the power efficiency and the real time constrains, we need a platform that can be
specialized at ~ n - t i m e to the algorithm at hand. A platform based on reconfigurable
instruction set processors (RISPs) provides this type of run-time specialization [5].

Chapter No. 2
Literature Review

VLIW-RISP (Architecture & Simulation) Page 9 of 77

Chapter No.2

Literature Review

Introduction

Reconfigurable computing architectures have been evolved from the most
prominently Field Programmable Gate Arrays (FPGAs). Recently, there is a variety of
FPGAs now available commercially. A large class of computing systems has been
developed by integrating multiple FPGAs chips and dedicated memory modules. A small
no of systems have been coupled with a general purpose processor or some kind of
application specific integrated circuit core such as a DSP processor to the field
programmable gate arrays. In order to minimize the communication overhead and
memory access bottlenecks being faced by the system for configuration bits the new
arriving computing systems are integrating a reconfigurable logic onto the single same
chip as that of the processor core chip [19].

There has been much different reconfigurable computing architecture that has been
developed over the last few years by researchers. Reconfigurable computing
architectures can be broadly classified based on several different parameters. In the
following section, some of the most distinguishing architectural parameters which can be
used to classify reconfigurable computing architectures have been discussed.

2.1.1 Granularity

The granularity of the computational or reconfigurable logic is the size of the smallest
functional unit that is addressed by the sofhvare mapping tools. In general the FPGAs
have smaller granularity such as 2-input or 4-input functional units [20]. Several
reconfigurable computing architectures such as Chameleon [I91 implement coarse grain
computational or arithmetic units of larger size such as 32-bits. Lower granularity in fact
provides more flexibility in adapting the hardware to the computational algorithm. But,
lower granularity has a great performance penalty due to the larger delays introduced
when constructing computation modules of larger size using smaller functional units. A
class of reconfigurable computing architectures implements features that are specifically
targeted towards the reduction of these computational overheads.

2.1.2 Host Coupling

A large amount of logic is utilized,as a processing fabric attached to a host micro-
processor. The host micro-processor performs the control and supervision functions to
configure the logic, schedule data input and output streams, external interfacing, among
other the things. The type of logic coupling to such a host system dictates the

VLIW-RISP (Architecture & Simulation) Page I0 of 77

computational as well as configuration overheads in utilizing logic to speed-up
computations. The degree of coupling in fact affects the reconfiguration and the data
access cosr. The degrce of coupling can be roughly partitioned into three basic classes:

Tightly Coupled Loosely Coupled

111-1-

1 Functional Unit I Standa lone

I Processing Unit I - , , , - , , , - , , - ,
Figure 2.1 Host Coupling Approaches

System-level Coupling (Loosely coupled): This type of coupling includes the
computing architectures which have logic communicating to the host through an VO
interface similar to other peripheral devices. A large class of inilial FPGA based logic
boards were architected with this degree of host coupling. Such architectures include
SPLASH.

Chip-level Coupling (Coprocessor or Attached Processing Unit): These systems
reduce the overheads in communicating to the relevant host by using direct
communication between the host and the ieconfigurable logic. An example of such a
computing architecture is the PRISM [25]. A large class of the existing computing
architectures with rcconfigurable logic has been architected using this technique.

Tight On-chip coupling (Tightly coupled): The availability of large class of the
transistors has resulted in the intensive integration of reconfigurahle logic on the same
chip as a host micro-processor, and hence significantly reducing the communication
overheads between different components of the architecture. Such kind of architectures
includes the well known Garp, Chameleon etc.

VLIW-RISP (Architecture & Simulation) Page 1 1 of 77

2.1.3 Recoofiguration Methodology

Conventionally, a reconfigurable deviceis configured by downloading a sequence of
bits known as a bit-stream onto the device [21] during its operation. The speed and
methodology being used during the download of bit stream depends on the interface
supported by the device [22]. n e r k are two main types of interfaces namely, Bit-serial
and bit-parallel interfaces. The time required for the configuration of the device is
directly proportional to the s i x of the bit-streams as well as on the type of the interfaces
being used for this purpose [2 2] . Fine-grain and Coarse-grain devices have difference in
the configuration overheads or time because course grain devices typically need smaller
amount of configuration bit-streams. The flexibility of reconfiguration is achieved at the
cost of reconfiguration cost. Reconfigurable logic has to stop computations for initiating
a new configuration process. This reconfiguration time or overhead can be significant,
especially for fine-grain multi-million gate FPGAs.

Some architectures support partial and dynamic reconfiguration processes. Partial
reconfiguration allows the reconfiguration of the functionality of a piece or portion of the
device while the remaining portion retains its functionality (231. On the other hand the
dynamic reconfiguration allows the reconfiguration of a piece or portion of the device
while other portions of the device are performing computations 1231.

A large class of other computing architectures, addresses this problem by utilizing
multiple contexts of reconfiguration or a reconfiguration cache [24]. Both are similar in
basic principle. Some configurations of the device can be stored in on-chip memory. At
run-time, it is less expensive to switch to one of the configurations being available in
thcse memory chips or areas compared with loading a new configuration from extemal
memory devices [24]. The organization of the cache varies among the computing
architectures. Some computing architectures implement the architecture as an extemal
memory device, whereas some other architectures have distributed context memories For
example, Chameleon RCP has a cache holding one configuration on-chip, which allows
single cycle reconfiguration completion 1271, [28]. . .

2.1.4 Memory Organization

The computations being performed on the reconfigurable logic needs to access data
from memory. Intermediate results from computations also need to be stored back before
the reconfigurable logic can be reconfigured to perform the next computation 1291. The
organliarion of lhr memoiy system affects ihe data access cost and rs a really sign$cant
fi.acfion of the actual execution rime or overhead. Recently the most of the computing
architectures include a large memory on the reconfigurable logic device 1311, [33]. This
memory can be implemented as large memory blocks just like those being available in
Virtex FYGA as a Block RAMS or as distributed memory blocks just like those being

-available in Chameleon LSMs [34], 1351.

VLIW-RISP (Architecture & Simulation) Page 12 of I7

2.2 Reconfigurable Computing Architectures; A Survey

In the latest computing domain the parallel processing techniques being based on
Field Programmable Gate Arrays first time appeared in the domain of computing in the
year of start of 1985-1990. In a broader sense the reconfigurable computational
architectures can be classified into four main categories:

1 . The Input / Output Bus Accelerators Systems
2. The Massively Parallelly Processing FPGAs Architectures
3. The Reconfigurable Computing Super-computers
4. The Reconfigurable Processing Logic Co-processors

2.4 Related Work

2.4.1 Coupling of Reconfigurable Architecture and a Multithreaded Processor Core
with Integrated Real-Time Scheduling [47]

This research paper defines a real-time interface between the simultaneous multi-
threaded CarCore micro-processor and a MOLEN-based reconfigurable computing unit.
The CarCore is in fact IP core that enables simultaneous execution of one hard-real-time
thread and further multiple non-real-time threads. The type of the hardware coupling
described in this research paper extends CarCore by a reconfigurable computing
hardware such that the both can execute different threads simultaneously, while the real-
time behaviour of the hard-real-time thread is not disturbed. The main challenge under
consideration is the design of a common memory interface for both, the CarCore and the
recontigurable computing hardware such that the memory operations fulfil hard-real-time
constraints. Experimental results with an MJPEG benchmark have been obtained which
show an overall application speedup of 2.75 which approaches the theoretically attainable
maximum speedup of 2.78.

2.4.2 Introduction to ~ e c o n f i ~ u r a b l e Computing Architectures 1481

In fact this mentioned research paper describes an overview of the research of the
currently developed hardware and software based systems for reconfigurable computing
architectures. This research paper also presents the alternating techniques that dedicatedly
are targeting the concept of run-time reconfiguration process. They conclude this
discussion by considering FPGAs in general and also by an exploration of the various
hardware architectures used in reconfigurable computing systems. Further they worked at
the layer of software based applications that were required for the assembling or de-
compilation or compilation of the algohthms to reconfigurable computing systems and
the trade-offs between manual map and rout and automatic techniques. Further more they
have discussed FPGAs hardware in details and have also presented the detailed study
about the hardware level coupling of the reconfigurable computing devices.

VLIW-RISP (Architecture & Simulation) Page 13 of 7'1

2.4.3 Reconfigurable Instruction Set Processors from a HardwarelSoftware
Perspective [49]

In this research paper the authors have presented the design alternatives for
reconfigurable instruction set processors (RISPs) from a hardwarelsoftware point of
view. Reconfigurable instructions set processors are in fact programmable processors that
contain a reconfigurable logic in one or more of their functional units. Hardware design
of such processors can be split in two main tasks. First task is the design of the
reconfigurable logic and the design of the interfacing mechanisms to the rest of the
micro-processor. Among the most important design parameters include the granularity of
the reconfigurable logic, the design or structure of the configuration memory, the
instruction encoding formats and the type of instructions being supported. On the
software side the code generation tools require new techniques to be coping up with the
reconfigurability of the processor. Aside from the traditional computing techniques, the
code generation requires the creation and evaluation of new reconfigurable instructions
and the selection of instructions to minimize reconfiguation time.

2.4.4 Re-configurable VLIW processor for streaming data [SO]

This research paper describes the instmction set level design of a reconfigurable
VLIW processor for streaming data applications with alternating data bandwidths. It
discusses the design of reconfigurable data stream processor, the design of VLIW
processor for the reconfigurable approach, data control and address path design of the
configurable VLIW and generating the FPGA code - VLIW re-configuable procedure.

-:

Reconfgurable RISC processor for variable data bandwidfhs:

The reconfigurable processor core is in fact a two-address machine with RISC instruction
set architecture and orthogonal general purpose register file.

Address bus width is of size of 16 bits.
Data busses width is of sizes of.8-bits, 16-bits, 32-bits and 64 bits for different
functional units (ALU, GPR)

Re-confgurable systolic arraj~ - the data width sorter:

The reconfigurable systolic array - the data width sorter is based on the hardware design
research work. The research in Generic Algorithms is centered on the development of a
novel design which uses systolic arrays. The generic concept is in fact extended by
exploiting the pipeline architecture and principle to design a device that is independent of
the lengths of the chromosomes being used in a particular problem [36]. The systolic
arrays themselves are easily scalable to implement different population sizes. Prototype
systolic array cells have been designed and targeted to the Xilinx XC4000 FPGA [37].

VLIW-RISP (Architecture & Simulation) Page 14 of 77

Re-configurable VLIW-CPU instruction set and formal

The first task designing the instruction set is to discuss the instruction to join the
instruction set for the data stream approach in order to ensure ISA and E X 0 compatibility
of the processor. Each VLIW instruction has 8 major fields:

The Systolic sorter fields controls the systolic operation ALU and the global
LOADISTORE operations via crossbar. The information on the streaming data
type sorted on every data output of the systolic sorter is coded as output in the
FPGA Condition Code Registers of the systolic sorter

The R-CPUa, R-CPUb, R-CPUc and R-CPUd fields control the four R-CPU's
function. The R-CPU is a two-address machine.

The FPU memory and FPU control fields control the 32 bit RISC FixedProcesor
Unit (MU) in performing LOADISTORE and/or control oprerations.

The FPGA-code contains the FPGA-SRAM images of the RPU and systolic units.

Data control and address path design of the configurable W W

The VLIW core implements the host function for the systolic sorter and the four
reconfigurable R-CPU calculators. The VLIW core executes all ALU, control and
LOADISTORE instructions in the program. There are no streaming data instructions. The
main task of the VLIW core is to synchronize the Out-of-Order the operations of the R-
CPU and the systolic sorter to execute the FPGA based code to reconfigure the R-CPUs
and to invoice the LOADISTORE operations for the systolic sorter. The crossbar switch
between the R-C'PU data registers, the main memory and the execution units is in fact a
central part of the VLIW architecture. The R-CPU data register set is read-only through
this device which virtually provides it with four ports. The crossbar switch extends the R-
CPU data register set's read ports, making four "vertical" buses for all R-CPU and each
bus is connected to one of the input ports of the dual-port memory with "horizontal"
buses. It also perfoms some data width formatting (byte, word, etc). Accessing a R-CPU
data register takes two cycles.One cycle for the register set and another for the crossbar.

VLIW-RISP (Architecture & Simulation) Page 15 of 77

64 M B y t e DRAM

Systolic Array sorter

Figure 2.2 Generating the FPGA code - VLIW re-configurable procedure

The main task of the systolic sorter is to generate a condirion code for the
different data widths as the rcsult of sorting the streaming data. The compiler drives
reconiigurations of the FPGA prior to execution of the application code, or possibly at
the beginning of every section of code that requires reconfiguration.

2.4.5 Reconfrgurable Computing Systems Design: Issues at System-Level
Architectures

In this research paper the authors discuss the issues involved in the design space of
reconfigurable computing systems. They have identified nine key steps in RCS design as
application analysis, system partitioning into hardware (HW) and softwarc (SW),
architectural design space analysis, mapping of the design library onto the architecture,
partitioning of fixed HW and RLU of HW part, reconfiguration process, HW and SW
synthesis. compilation and scheduling tasks and Integration of all the components. They
briefly described the different models, architectures, compilation and scheduling of tasks,
reconfiguration methods, optimal mapping of the design library on the RLU and the state-
of-the art of RCSs. Finally they explain how they are going to solve some of the issues
and methods in their system design. The nine steps of system design described in seven
steps are as follows.

VLIW-RISP (Architecture & Simulation) Page 1 6 o t l l

1. First step

The first step is the modeling different architectural choices for a given application which
will be optimized in terms of performance versus either given constraints or default
design constraints after the application analysis.

2. Second step

The second step is the proposing the optimized reconfigurable the architecture for a given
application by exploring the different 'design space of the architecture1 for reconfigurable
architectures.

3. Third step

The third step is the translating application onto DFGKDFG or Hybrid architecture
depending upon application requirement.

4. Forth step

The fourth step is the partitioning the application using hardware (HW)-software (SW)
partitioning methods and algorithms; here we may use best existing HW-SW partitioning
methods and algorithms for our application with two level one level for basic partitioning
that is HW-SW tasks and other level is reconfigurable logic block (RLB)-fixed kind of
HW (F-HW) partitioning.

5. Fifth step

The fifth step is the design and implementation of the optimized algorithms for mapping
of the design library on to the proposed reconfigurable architecture.

6. Sixth step

The sixth step is the design and implementation of optimized algorithms for scheduling
the reconfigurable tasks (RTs), which will be implemented in RLB before mapping the
design on to the reconfigurable architecture (RA).

7. Seventh step

The seventh step is the implementation of prototype of the complete system; this involves
integration of the entire modules using designed algorithms for scheduling of RTs and
mapping of these RTs on to the proposed RA for given application.

2.4.6 Intelligent Reconfigurable Instruction Set Processor (I-RISP) Design [38]

This Thesis presents the design alternatives for Reconfigurable Instruction Set
Processor (RISP) from hardware point of view. Reconfigurable Instruction Set Processors

VLIW-RISP (Architecture & Simulation) Page 17 of 77

are programmable processors that contain reconfigurable logic in one or more of their
processing units. In RISP the most important aspect is the re-configurability.
Reconfiguration time will have to be minimized in order to obtain satisfactory
performance. The solution to this problem is in software tools or to design such a
hardware which minimizes the configuration overheads. In order to avoid excessive
reconfiguration, the I-RISP (Intelligent Reconfigurable lnstruction Set Processor) design
has introduced an ICAU (Intelligent Configuration Analyzer Unit) using hardware
approach. ICAU intelligently analyzes the expected configurations and reuses the
existing resources (configuration). The ability to reuse the existing resources significantly
increases the performance of I-RISP.

The proposed processor is based on VLIW architecturc, having an Intelligent
Reconfiguration Analyzer Unit. The purpose of Intelligent Reconfiguration Analyzer
Unit is to minimize re-configuration overheads faced by RISPs. In existing systems the
intelligence was created by using software techniques. This software based intelligent
reconfiguration techniques are considerably slow speed due to the conventional
instruction cycle concept. In order to eliminate this software based overhead the
intelligence has been incorporated in hardware rather then in software.
The detailed architecture of the proposed design consists of the following modules:

1. Scheduler
2. Fetch Unit (FU)
3. VLIW (Very Long lnstruction Word)
4. Intelligent Computational Unit
5. Intelligent Configuration Analyzer Unit (ICAU)
6 . Configuration Unit (CU)
7. Reconfigurable Processing Units (RPUs)

Chapter No. 3
Dedicated Machines and

Reconfigurable Computing

VLIW-RISP (Architecture & Simulation) Page 1 8 o t I I

Chapter No.3

Dedicated Machines and Reconfigurable Computing

3.1 The Philosophy of a dedicated machine

One of the main issues in the evolution of computing architectures is their
specialization. Many reasons can lead hardware designers towards pursuing a specialized
computing architecture. The requirement of obtaining the high performances in a typical
or particular application domain is one reason for it. Also, the timing issues in real-time
embedded applications pushed the designers towards architectwing application-specific
solutions which could more aggressively meet these requirements. Similarly other very
important parameters include the cost and the power consumptions. These are the key
design factors in the domain of embedded systems.

All these reasons and constraints introduce the requirements for a new design
paradigm which takes these features into account and leads to the definition df new
specialized cores or architectures. Hence one option is the general purpose computers,
where the main issue is that of achieving more generally high performance in a very large
spectrum of applications. The second option is the application-specific computers, where
embedded applications or algorithms guide architectural design in more compact form.
Dedicated or application specific architecture, performances are generally not measured
on conventional benchmarks but they are measured only on the application the machine
is designed for.

A large no of the different approaches have been taken by architectural researchers to
guide the design of application-specific solutions or algorithms. One of the early
approaches proposed for the design of this kind of machines was the ASIP (Applications
Specific Instruction set Processor) philosophy. It was an emerging design paradigm in the
field of application specific computing. ASIPs are programmable processors where the
Instruction Set is adopted to a particular application.

3.1.1 The main theme behind Instruction Set Specialization

The elements of the Instruction Set of a micro-processor, i.e. the op-codes are the
brich into which a high level code is broken down for execution on a micro-processor.
The operation specified by each op-code is commonly executed on a most dedicated and
highly optimized functional unit and therefore we can see the functions specified by each
of the op-codes as the hardware execution brich of the software execution flow.

If these bricks increase in granularity or size by performing more complex operations
than those which are typically available in the instruction set of RISC micro-processors,
then the instructions in the code will more generally correspond to more complex
functional units, possibly characterized by more latency and performing 'larger'
computations when compared to RISC functional units. Since we know that the hardware

VLIW-RISP (Architecture & Simulation) Page 1901 1 1

execution speed is much faster than the software execution speed hence an application
broken down into bigger bricks will in generally be faster to execute than one broken
down into smaller ones. However, no doughty that the simple operations are common to
many software applications, the more complex operations become the less likely it is that
they are common to a large number of applications. Therefore, while a more complex
functional unit will speed up execution of the algorithm when extensively used by a
typical application, it is also true that the area dedicated to such a type of the unit would
result wasted, when running those applications programs that do not exhibit such
complex operations in their program code. Moreover, the presence of complex
instructions mostly complicates some program code generation tasks such as code
selection and register allocation among others.

The ISA specialization has been studied deeply in the past few decades [39]. In a
library of re-current sub-graph patterns is generated. Pattern matching and graphs
covering is then performed. The problem of optimizing area of h c t i o n a l units through
their specialization is also deeply considered and it is observed that much of the ALU
functionality is not used when only one or a few embedded system applications are
considered for execution. The embedded system application code is analyzed so as to
discover that which functionalities of the ALU are actually required. Functional Units
having lower cost and area can then be designed and specialized to the application
analyzed.

3.2 FPGAs

A Field Programmable Gate Array is consisting of an array of combinational logic
clouds or blocks overlaid with an interconnectibn network of horizontal and vertical
wires. Both the combinational logic blocks and the interconnection network are
configurable or programmable [40]. Their configurability is achieved by using either anti-
fuse elements based technology or SRAM based memory bits to control the
configurations or programming of the transistors. The A n t i - h e based technology uses a
strong electric or electronic charges or currents in order to create a programming
connection between the two adjacent required terminals. Hence in this way in fact this is
a typically less reprogrammable system. Static RAM based program configuration can be
re-programmed unlimited number of times on the fly by simply downloading a set of
different configuration bit streams into the Static RAM based memory cells.

Typically a configurable logic block shortly known as CLB architecture in fact is
consisting of a look-up table shortly known as LUT, a Delay flip-flop shortly known as
D-FF, some other form of additional combinational logic circuitry and a also consisting
of a set of Static RAM based memory cells to control the process of configuration of the
laid down configurable logic blocks (See Figure 3.1) [41]. The laid down digital logic
circuitry or blocks of the FPGA device also perform the InputIOutput operations in order
to load and store the data streams being required for the processing. On the other hand the
horizontal and vertical interconnecting networks can also be reconfigured by
programming or changing the connections between the laid down configurable logic
blocks and the set of wires and by configuring the integrated switch boxes

VLIW-RISP (Architecture & Simulation) Page zu or I I

shortly known as PSB, which connect different horizontal and vertical wires. These
programmable switch boxes (PSB) for the interconnecting networks are also controlled or
programmed by the Static RAM based memory cells. In this way the logical functions
being computed inside the available configurable logic block (CLBs), the horizontal and
vertical interconnecting networks and the Input/Output blocks can be configured and
reconfigured by using the external data streams. Field Programmable Gate Arrays
typically allow the unlimited number of reconfigurations for the laid down device. These
versatile kind of programmable devices so far have been usPd to build even large scale
micro-processor cores and co-processor cores whose internal architectures and as well as
interconnections can be reconfigured in order to match the requirements of a hand on
running application. In order to a very brief reconfigurable computing architectural
survey of Field Programmable Gate Arrays and some other important improvements of
the concerned technology consider the references of [3], [7], [13].

Current and future generations of reconfigurable computing systems or devices have
ameliorated the reconfiguration and configuration costs by providing a typically high
speed and most optimized partial and dynamic reconfigurability process 1421. In the
process of partial reconfiguration of the under laid device 1231, it is quite possible to up
date or change the configuration bit streams of any one part of the working under laid
device while the at the same time the configurations of the remaining part is still retained
in its original form. On the other hand in the process of dynamic reconfiguration of the
under laid device, the under laid devices allow this partial reconfiguration process even
during the interval when even other configurable logic blocks are performing their
regular operations or computations [43].

VLIW-RISP (Architecture & Simulation) Page 21 of 77

MUHI-FPGA Board

Figure 2 Typical FPGA Board, Device and Logic block architecture
. .

Typically, the requirements of the applications are increasing at a rate which is much
faster than the increasing rate in the size or density of the computational logic resources
mostly available on the most of Field Programmable Gate Arrays. Field Programmable
Gate Arrays architectures have limitations on their InputlOutput capability of processing
due to the limitation on the available total number of Input/Output (10) pins which are
physically available on the under laid device. In order to map and rout such kind of large
scale user applications onto the available configurable logic blocks, the different
computing systems have been designed which have several Field Programmable Gate
Arrays some times on a single board or even some time on a single chip.

These board level reconfigurable computing architectures are mostly designed to
function under the supervision an external configuration controller or kind of
configuration supervisor or some times even they may use one of the on-board Field
Programmable Gate Arrays as a main controller. There are a large number of such
systems available. The examples of such systems may include the DECPeRLe board, and
SPLASH-2 [30], the TERAMAC and the WILD series of devices being provided from
Annapolis Micro-systems. Also some other son of s o h a r e tools exist which have the
ability to automatically partition the whole design between the physically available

VLIW-RISP (Architecture & Simulation) Page 22 of 77

multiple Field Programmable Gate Arrays on a single board by using the kind of higher-
level of programming abstractions ,[27].

3.2.1 The Basic FPGA Architecture

Thc basic architecture of Field Programmable Gate Arrays consists of broadly three
kinds of components. These mentioned components include configurable logic blocks,
programmable routing resources and a set of'input/output logic blocks or I 0 blocks 1-14].

Generally, Field Programmable Gate Arrays consist of an array of programmable
logic blocks known as CLBs that can be intcrconnected to other CLBs and also as well as
to the programmable Input/Output blocks of the system through some kind of
reprogrammable routing resources or architecture. Figure 3.2 provides a very simplified
block diagram of the internal architecture of a generic Field Programmable Gate Array.

Figure 3 A Generic FPGA Architecture

i. The Programmable Logic

Field Programmable Gate Arrays designers have designed a large number of a variety
of progrnmrnable logic architectures for Field Programmable Gate Arrays after their great
invention in the mid-1980-1990. Since from few decades the much of the programmable
logic structures being used in Field Programmable Gate Arrays can be optimally
generalized as shown in Figure 3.3. The fundamental programmable logic element being

VLIW-RISP (Architecture & Simulation) Page 23 of 77

integrated inside the FPGA generally consists of some kind of programmable
combinational logic or CLB, a delay type flip-flop D-FF or kind of latching mechanism,
and a kind of fast carry control logic to reduce the area density and typical delay costs for
implementing such kind of cany logic.

Unlike other generic configurable logic component or element, the currently available
commercial Field Programmable Gate Arrays devices provide a large number of
programming flexibility within the available logic element. For example, a delay flip-flop
D-FF in many commercially available Field Programmable Gate Arrays can be made to
operate as a simple latch circuit and can be programmed to have many combinations of
asynchronous as well as synchronous sets / resets and can be negatively- edge triggered
or positively-edge triggered.

Carry Out

Inputs , h

Carry In

Flip
Flop

-. .. . -

Clock

3 out Put

..- ~onfi~uration
Memory Cell

Figure 4 A Generic Programmable Logic Block

Although the most of the reprogrammable Field Programmable Gate Arrays use
Look-Up Tables for their combinational logic, several other architectures like [12], [13],
[14]) have been found to be used combinations of multiplexers and digital logic design
gates to implement this programmable logic architecture or structures [45].

VLIW-RISP (Architecture & Simulation) Page 24 or I 1

ii. Programmable Routing Resources

The Field Programmable Gate Arrays designers have used a large class of different
routing resources or strucNres within their Field Programmable Gate Arrays. Different
kinds of forms or designs of routing resources exist through out the designs of each Field
Programmable Gate Array. Commonly some amount of routing resources is also included
within the design of the each logic clustering element so that the laid down logic
elements can be combined to form bigger and more complex functions.

In order to implement the nature of the programmable routing of the resources, there
are three basic switch types that have been used. These types include the digiul
multiplexers, the pass transistor circuits and a commonly used tri-state buffer gates.
Figure 3.5 describes each of these mentioned switches with a Static RAM memoy cells
controlling their outputs. Commonly, the passing transistor circuits and the digital
multiplexers have been used within the area of a logic cluster in order to connect the logic

VLIW-RISP (Architecture & Simulation) Page 25 of 77

elements or components together while all of the above three have been used for the more
global routing structure.

. .
ENB

11 IA1 Multiplexer (B I Pass Transistor (C) Tri State Buffer (1

iii. Programmable InpuUOutput Architectures

Unlike programmable logic resources and routing resources, the basic input/output
resources or I 0 architecture, as is shown in Figure 3.6, is very similar among the different
Field Programmable Gate Array families being evolved so far. The Input/Output logic
blocks have been found with the tri-state buffer gates for the outputs and input buffer
gates for the inputs of the system. The tri-state logic enable I disable signal, the output
logic control signal and the input logic control signals can be individually latched or
registered by using flip-flops within the 1npuUOutput blocks or can be programmed as the
un-registered being depending on the fact that how the UO block is being programmed.

r

I

Tri-State -
Enable

output --

I n p Y t ~

Clock , ll
Figure 7 VO Block Architecture

VLIW-FUSP (Architecture & Simulation)

3.2.2 FPGA technology

Field Programmable Gate Arrays can be traditionally divided into two main
categories:

I . Anti-fuse Based FPGAs

2. SRAM Based FPGAs '

Recently another FPGA technology has been introduced by Alcatel, which is based on
FlasNCMOS based circuits [72].

The first type or category of FPGAs uses anti-fuses as a mean to program the device.
Anti-fuses implemented in a CMOS tecGology'arebe<iig iniGally open circuits and after
that once they are programmed they take on a low resistance. The main characteristic of
this kind of FPGA is the fact that it can be programmed only once.

The second category of FPGAs uses SRAM cells as a mean for programming the
device. A I-bit SRAM can control FPGA switches in two different ways including either
by controlling the gate node of a pass transistor or by controlling the select line of a
multiplexer drives the inputs of logic blocks.

The main advantage of ~ ~ ~ ~ - b a i e d FPGAs lays in their nature of re-
programmabilily. The logic value of the SRAM cells can be overwritten or updated for a
number of times and hence allowing the FPGA to be reconfigured even on-the-fly.
Another characteristic of such kind of FPGAs is the fact of being volatile, i.e. the
configuration must be loaded onto the device every time the system is booted up or
powered-up. The interest of this thesis for SRAM-based FPGA is indeed due to re-
programmability nature of it on-the-fly: as it will be seen, this allows change of the IS of
the proposed architecture while the application is running.

Further FPGA technology features of interest for this thesis include the latest
techniques of partial reconfiguration or re-programmability and context switching. The
former is the capability of re-programming only a specific part of the whole device, while
the rest part of the device is remains operational. The latter feature called context-
switching of the configuration is a new technology which enables an FPGA to hold
contexts of the multiple configurations at the same time. Configurations are stored in a
series of memory blocks or memory banks so that it is possible to rapidly switch between
them within the delay of nanoseconds [36].

'

FPGA Mapping Tools

Implementation of a circuit onto an FPGA platform requires sophisticated CAD tools.
Hardware description language or a schematic description is used to enter the design. In
the process of transforming such descriptions into the FPGA configuration, there are
three main phases.

VLIW-RISP (Architecture & Simulation) Page 27 of 77

I . Mapping phase

2. PIacemenf phase

In the mapping phase the circuit is logically partitioned into modules or parts so that each
one is assigned to one configurable logic block of the FPGA. The second phase, called
placement, is the process of assigning the computation of every configurable logic cell
generated in the mapping phase to aphysical logic cell being available on the device. The
third phase, callcd routing, targets at defining all the connections among cells through
programming the available horizontal and vertical switches. The complexity of the CAD
tools is very high and the three phascs can take much more time from few seconds to few
hours for large circuits.

3.2.4 Commercial FPGAs

Xilinx:

Xilinx FPGA devices consist of a two dimensional array of configurablc logic cells
connected by horizontal and vertical layers of wircs. The most widely used FPGA include
the generations of Xilinx devices XC4000 [45] which claimed the density or capacity
from 2K to 15K equivalent gates.

In the XC4000 FPGA device Configurable Logic Block (CLB) is based on lookup
tables. A lookup table is in fact an array of !-bit memory cells, where inputs are the
address of memory lines, and the one bit output is the data line: thus, a lookup table with
K inputs will have Zk-1 bit possible memory cells. A lookup table can implement any k-
inputs logic function or computation. A CLB mostly has more than one lookup tables,
and one or more than one flip-flops. The XC4000 CLB consists of 3 lookup tables, two of
them with 4-inputs and one with 13-inputs and two flip-flops. One of the circuits that a
CLB can implement is a full adder, so that CLB can be configured or programmed to
implement any fast arithmetic circuit as carry-save or carry-look-ahead adders. CLBs can
also be used as readwrite SRAM cells. A CLB is programmed by setting the memory
cells to the values given by the truth table of the digital logic circuit to be implemented.

The second distinguishing feature of FPGAs is their. routing connections or
interconnects. The XC4000 features horizontal and vertical channels. Each of these
channels consists in short, long. and medium distances wires. Short distance wires are
used for interconnecting two close CLBs, while the long distance wires can connect far
CLBs. In fact long distance wires tend to have much less switches than shorter wires. The
final delay of the circuit depends heavily on how the CAD tool has assigned wire
segments to physical wires after the process of routing.

VLIW-RISP (Architecture & Simulation) Page 28 of 77

Altera FLEX

The Altera Flex 8000 series of FPGAs has a logic density or capacity of 4K to more
than 1SK equivalent logic gates. The device consists of a 3-level hierarchy. The lowest
level is a set of lookup tables. The basic logic block, called configurable logic element,
consists of a 4-input lookup table, a flip-flop and some additional circuitry for fast carry
propagation purposes. At a highest level, is the Logic A m y Block? This consists of eight
logic elements, connected together through a local interconnect. Any two logic elements
of the block can bc connected to each other by programmable wires. The local
interconnect and every logic element are. connected to the Fast Track global
interconnects, similar to the XC4000 long distance wires.

The Flex 10000 family of FPGA features a different characteristic to that of 8000
series of family. Every row of the device contains an embedded array block which can be
configured either as an SRAM memory cell block or as a lookup table. The latter use
serves to implement any complex digital logic circuit through a multi-output lookup
table. To more exploit this feature Flex tools contain various macro-functions to bc
implemented in embedded logic blocks.

The AT40K and AT6000 FPGAs family or series present the particular feature of
purtial conjigurabilify. lh i s means that specific parts of the an FPGA device can be
reconfigured while the rest continues to operate~without . ~ - .- disruption. This is particularly
useful in reconfigurable systems wher&'instructions are'tikcn in &d out of th
programmable functional unit. The AT6000 logic cell contains a D-type register and
about twelve logic gates. Interconnect is peculiar in that it provides diagonal connection
as well, in addition to the usual vertical and horizontal programmablc interconnections.
Every cell is therefore octagonal andhence it can be connected with eight neighbors. The
Atmel devices provide an internal SRAM memory that can be used for caching
coniigurations. A more advanced context-switching FPGA device is currently under
development at NEC. It is claimed that the area required to store multiple contexts does
not grow linearly with the number of context [12]. In the future, the usage of even
DRAM cells instead of SRAM cells to save FPGA contexts could increase even more
FPGA potentialities.

3.2.5 FPGA performances

The FPGA performance in terms of execution speed is affected by two main features.
The time needed to download a configuration describing a certain circuit and the time
nccded to execute the function implemented by loaded circuit. Another important issue is
the time the software tool takes to generate configurations.

This is not as easier to glve these performaGe figures in a straight forward way. The
time overhead for reconfiguration varies considerably depending on the size of the
device. Obviously a device implementing small logic. functions will take less time to

VLIW-RISP (Architecture & Simulation) Page 29 01 I I

reconfigure because a smaller number of reconfiguration bits streams are involved. A
good measure of reconfiguration time overhead could therefore be given per configurable
logic block used or even per gate equivalent which is even better because it is not
affected by the block granularity of the FPGA device. Another important issue is the
frequency at which the device operates, which is directly proportional to reconfiguration
time overhead. In the Atme16000 the reconfiguration for the full device takes from 1 to 8
mili seconds and this corresponds to almost 0.2 micro seconds for per Cell. Altera 10K
claims 115 MHz performances with a density of up to 250 K logic gates. Xilinx has
recently launched a new line of FPGAs called VIRTEX series which targets operation
frequency of more than 300 MHz.

Table 3.1 gives performance of the Atme16000 in terms of - execution delay of some
. 3 .. arithmetic circuits.

Table 2 Cell Count and maximum Operating speed (one operation per cycle) for some
arithmetic circuits in the Atmel 6000 device

3.3 Reconfigurable CPUs

Since FPGAs present both advantages of re-programmability as well as the high
4 - performance of custom circuit; it is appealing to combine a micro-processor core with

reconfigurable resources in order to achieve a speed or performance improvement over
either a separate micro-processor or a separate reconfigurable FPGA device [3]. While it

i\ is possible to combine conventional micro-processors with available reconfigurable
FPGA devices at the circuit board level; the integration changes the 110 costs for both
devices. An architectural solution which is definitely appealing is therefore the
integration of an FPGA on-chip. A number of different solutions are as under:

i Totally reconfigurable processor.
ii. The co-processor approach.
iii. A partially reconfigurable CPU

3.3.1 Totally Reconfigurable Processors

This is a kind of the design approach where a CPU together with a reconfigurable
accelerator is designed or implemented by means of a reconfigurable logic. An important
project of this kind is the Dynamic Instruction Set Computer (DISC), designed at
Brigham Young University [6] . DISC consisted of two CLAy31 FPGAs developed by
National Semiconductors and memory on a circuit board connected to a personal micro
computer. DISC made extensive use of the latest technique of partial reconfiguration. The
first FPGA was consisting of a permanent control unit while the second was divided into

VLIW-RISP (Architecture & Simulation) Page 30 of 77

rows to simplify array management and allow for custom-instruction spatial caching.
Custom instructions were intended to be swapped into and out of the FPGA similar to
that of the pages of virtual memory. Before initiating execution of a custom instruction
the device operating program asks the FPGA for the presence of the custom-instruction
configuration. If the custom instruction is currently really on the FPGA, then the
execution is initiated otherwise program execution pauses while the custom instruction is
configured on the FPGA.

3.3.2 The Co processor Approach

Such an approach in fact proposes a loose coupling between micro-processor core and
the reconfigurable logic. The latter acts as a coprocessor where it is a slave computational
unit located either on the same die as the processor or off the chip. The granularity of the
implemented function in the reconfigurable section is much higher than that of the mixed
CPU approach. This is due to the fact that the communication with a coprocessor is much
slower than that of the communication with a parallel data-path of the CPU. l'herefore
the block of computation delivered to it must be large in order to give high performance
gain or improvement. A research project that fits in this category of reconfigurable
computing is the Garp by the BRASS group at Berkeley [4]. The proposed architecture in
fact consists of a MIPS processor placed in the same die with a reconfigurable
coprocessor. The coprocessor is activated by the processor when a reconfigurable
function is called. At this point the processor turns off and the coprocessor cames out the
computation of the reconfigurable instruction set having also access to both the processor
corc and cache memory. The coprocessor also includes a memory for caching
configurations so that to allow a fast context switching.

3.3.3 A Partially Reconfigurable CPU

This kind of approach proposes a very close or tight coupling between the main
processor core and the CPU. Contrarily to the coprocessor approach here the CPU and
thc reconfigurable logic both compute simultaneously. The reconfigurable module is
indeed added to the data-paths of the core CPU and hence introducing a special kind of
hct ional units called Reprogrammable Functional Units (RFUs). This kind of system
organization allows definition of an extension of the architecture Instruction Set by the

- m e implementation of new instructions on the RFUs. Also since the FPGA can be run t'
reprogrammed; one element of the instruction 'set can. be mapped onto an RFU for the
whole length of the application as well as such element can va& during the application
execution time through reconfiguration of the FPGA section. A number of projects have
used the mixed CPU architectures in the past. The PRlSC project [35] developed at
Harvard presented to extend the Instruction Set of a RlSC processor through
implementation of particular functions onto one or more ~rogammable Functional Units.
A framework is proposed where the choick of the functions to be implemented in the
PFUs is very transparent to the programmer. The most general computational model for a
PFU is said to be a multi-cycle sequential state machine. Performance gains were
measured on the SPECint92 benchmark suite and a speedup factor of 10% to 90% was
reported. A second proposal of tightly coupled micro-processor core and a

VLIW-RISP (Architecture & Simulation) Page 3 1 of 77

Reconfigurable Logic is that of the OneChip project. OneChip proposes an architecture
which is very close to that of PRISC. The major difference from the PRISC approach is
that in this system any kind of function is allowed to be implemented in the PFU.

Chimaera [lo], is a reconfigurable system that was developed at Northwestem
University. In this system the FPGA and the processor core are placed in the same chip: It
focuses on the optimization of the reconfiguration overhead and elimination of the
communication bottleneck between the reconfigurable logic and the micro-processor
core. By enhancing the speed of reconfigurations and communications, even fine grained
reconfiguration can become practical. This project mainly focuses on the definition of the
Chimaera architecture. A caching logic is also present in order to hold multiple
configurations and minimize overhead. Reconfiguration is done on a per-raw basis and
W U functions occupy one or more of the rows.

Chapter No. 4
The Proposed Architecture

VLIW-RISP (Architecture & Simulation) Page 32 of 77

Chapter No.4
The Proposed Architecture

This chapter focuses on the design of a Very Long Instruction Word Reconfigurable
Instruction set Processor (VLIW-RISP).Hardware design aspects and concerning issues
have been discussed along with each component under consideration. In proposed system
an alternative design for Reconfigurable Instruction Set Processor (RISP) has been - -
proposed with the capability of the most optimal configuration overhead for'Very Long
Instruction Word (VLIW) based architectures. The processor has been integrated with the
high speed partially recokigurable Field ~ r o ~ r a m m a b l e Gate Array (FPGA) cores as its
Reconfigurable Functional Units (RFUs) in place of ALUs and it treats instructions as
removable modules which can be paged in and paged out through the partial
reconfigurations according to the requirements of the application being under execution.

4.1 Overall Design Goal

The overall goal of the thesis was to develop VLIW based Reconfigurable Instruction
Set Processor with a reconfigurable ALU that can implement any computational
algorithm on fly and reconfigure it later on for some other algorithm. The processor was
required to be the partially reconfigurable during the execution of the application. As
such, the design has been divided into two main modules:

Module No.1 (Compiler Design for VLIW-RISP)

This module deals with the design of the compiler for the VLIW-RISP. The compiler
is supposed to be able to allocate the Op-Codes to the instructions according to the
available configuration streams in the configuration memory. In this thesis the compiler
designing is not the main goal and hence a hypothetical compiler according to the
requirements of the proposed RISP is considered for the instructions being used for
execution purpose on the processor. Compiler is supposed to generate the instructions
with the instruction format as is used in the designed processor.

Module No.2 (VLIW-RISP Design using Verilog-HDL)

This module deals with the design of the RISC based partially reconfigurable VLIW-
FUSP processor. In this phase the proposed VLIW-RISP and its programming interface is
developed using the Verilog-HDL. Inside the proposed design only the computational
units (ALUs) are supposed to be reconfigurable and the remaining all components of the
design are truly non-reconfigurable.

4.2 Tuol Issues

For designing the processor a hardware description language was required, Verilog
HDL was chosen due to its popularity and simplicity.

VLIW-RISP (Architecture & Simulation) Page 33 of 77

4.2.1. Importance of HDLs

HDLs have many advantages compared to traditional schematic-based design.
Designs can be described at very abstract level by use of HDLs. Designers can write their
RTL description without choosing a specific fabrication technology. Logic synthesis
tools can automatically convert the design to any fabrication technology. If a new
technology emerges, designers do not need to redesign their circuit. Thcy simply input
the RTL description to the logic synthesis tool and create a new gate-level netlist, using
the new fabrication technology. The logic synthesis tool will optimize the circuit in area
and timing for the new technology.

By describing designs in HDLs, functional verification of the design can be done
early in the design cycle. Since designers work at the RTL level, they can optimize and
modify the RTL description until it meets the desired functionality. Most design bugs are
eliminated at this point. This cuts down design cycle time significantly because the
probability of hitting a functional bug at a later time in the gat-level netlist or physical
layout is minimized. Designing with HDLs is analogous to computer programming. A
textual description with comments is an easier way to develop and debug circuits. This
also provides a concise representation of the design, compared to gate-level schematics.
Gate-level schematics are almost incomprehensible for very complex designs.

4.2.2.Why not to use a general purpose language

General-purpose programming languages do not provide support for structure and
instantiation of objects or modules. Also 'they do not support bit-level behavior
description. Execution in general-purpose languages is sequential, therefore are unable to
support the concurrent nature of hardware modules. Also, they do not provide the
requircd timing support.

Vcrilog HDL has evolved as a standard Hardware Description Language. Verilog
HDL offers many useful features for hardware design. Verilog HDI. is a general-purpose
hardware description language that is easy to learn and easy to usc. It is similar in syntax
to the C programming language. Designers with C programming experience will find it
easy to learn Verilog HDL. Verilog HDL allbws different levels of abstraction to 'tje
mixed in the same model. Thus, a designer can define a hardware model in terms of
switches, gates, RTL, or behavioral code. Also, a designer nccds to learn only one
language for stimulus and hierarchal design. Most popular logic synthesis tools support
Verilog HDL. This makes it the language of choice for designers. All fabrication vendors
provide Verilog HDL libraries for post logic synthesis simulation. Thus, designing a chip
in Verilog HDL allows the widest choice of vendors. Verilog is really a language for
modeling event driven systems. The design flow using Verilog-HDL or VHDL is shown
in figure 4.1.

VLIW-RISP (Architecture & Simulation) Pagc 34 of 77

Events t__(

Figure 8 Event driven Systems

I
I
I High-level
I
I Svntllesis
I I

. - 1 - I

Logic I I

Sy n h i i s I . I
I

Nedist (device specifc)l

rech~~ology

Independent

Technolozy

Dependent

L - - - - - - _ - --------- - - - - - - - - - A

Figure 9 Design Flow Using Verilog-IIDL

VLIW-RISP (Architecture & Simulation) Page 35 of 77

4.3 Instruction Format of proposed -VLIW-RISP

The proposed Very Long Instruction Word Reconfigurable Instruction Set Processor
VLIW-RISP is basically a reconfigurable RISC architecture having each instruction of
size 32-bits. Instruction format is below.

contiguntion Memory

R

Figure 10 Op-Code Interpretation

This is the instruction format for the instructions of the application to be cxecuted on
the proposed VLIW-RISP. These instructions are of the size 32-bits. The &bits on the
most significant side of the instructions represent to the operdtion code shortly known as
thc OP-CODE and hence leading to a maximum of the 256 possible operations or
instructions in thc instruction set being active (Configured) at any time. Each op-code of
an instruction is in fact a pointer to some configuration block in the multi-port
configuration memory as shown in figure 4:3 and hence is responsible for loading the
required configuration stream of the relevak hardware module. Here each op-code is a
relocatable pointer which can be recontigured for some other hardware module by
loading a new kind of bit stream over thcre in the configuration memory. IIence due to
this relocatable nature of the op-codes, the instruction set of the proposed processor is
bigger than the actual one supported by the design according to 8-bits of the op-codes.

VLIW-RISP (Architecture & Simulation) Page 36 of 77

Theoretically the reconfigurable instruction set processor defines to an unlimited sized
instruction set due to relocatable nature of op-codes.

Because the proposed VLIW-REP is basically a RISC architecture using only the
Register-Register architecture with a register file havirig'32-~&+ters each register pf the
size 32-bits, hence in order to access each register for source or for the destination
requires an address of size 5-bits. Also the instruction format 1s a three-address
instruction format containing two addresses for sources and one address for the
destination. Hence there arc three addresses Sourcel, Source2 and Destination operand
address, each of the size 5-bits hence consuming a total of 15-bits of the instruction.
There are a total of the 9-bits being declared as the Un-Used Bits. These bits will be used
in the future to further enhance the VLIW-RISP design and the instruction set.

4.4 VLIW-RISP Design Siml~lation using Verilog-HDL

In the simulation of the design the program will be written in the editor and will be
compiled. The compiler after doing its all jobs will generate a binary file which will
contain the instructions of the program in the binary form as are required by the designed
VLIW-RISP. Hence now this file contains one instruction of size 32-bits in one row and
so on. Then this file is given to the "Stimulus of the VLIW-RISP". This stimulus loads
this file into the instruction cachc of the processor and then processor executes it as it is
designed for. Before loading the application program written by the user, the required
data operands are loaded into the data cache of the VLIW-RISP as are required by the
proposed design. Then these data operands are lorided into. the register file of ihe
processor, containing a total of 24-General Purpose and 8-Flag Registers, where each one
is a 32-bits register.

4.5 PROPOSED RISP DESIGN:

Very Long Instruction Word Reconfigurable Instruction Set processor VLIW-RISP
design is divided into different modules that were interfaced together to make the whole
processor. The different modules being designed for the VLIW-RISP using Verilog-HDL
are followings:

1. Input/Output Interface (101)

2. Cache Memories

3. Pre-fetch Unit (PFU)

4. Instruction Scheduler Unit (ISU)

5. Instruction Pack Logic (IPL) , - . .
-.

6. Computational Pipeline-l (CP-1)

VLIW-RISP (Architecture & Simulation) Page 37 of 77

VLIW Fetch Unit (VFU)

VLIW Dispatch Unit (VDU)

7. Computational Pipeline-2 (CP-2)

VLIW Execution Unit (VEU)

VLIW Configuration Unit (VCU)

8. Micro-programmed Control Unit (MCU)

In this chapter the detailed architecture of the proposed RISP has been discussed with
the detailed computational and control hnctionality explanations. The detailed
architecture has becn overviewed in a top-down hierarchy. The detailed architecture of
the proposed processor is shown in the Fig.4.4 and different modules are discussed below
along with their functionality.

VLIW-RISP (Architecture & Simulation) Page 38 of 77

Main Memory Configuration PROM

32-bits 32-bits

A A
II
5 2 Address I Dab I Conflgurahon
0 2

V)

t 32Dlls

UO
32ditS Si4KW

C Data Cache a
interface W32-bits

W = 32 bits

insinschon Cache

W=256

8x32 bas

Insbuttion

I Size= fKW Sdvdulo Pack -10

W 32 bik

Size= 16KW

onfiguration

ds (32-bits)
o ~ ~ ~ ~ ~ o * ~ ~ - ~ ~ ~ ~ o o . * o * - - - ~

,. ..
Figure 11 Proposed VLIW-RISP Design

VLIW-RISP (Architecture & Simulation) Page 39 of 77

4.5.1 Input I Output Interface (10 Interface):

The 1 0 interface of RISP is used to communicate with the external devices being
interfaced with it. The first job of the UO Interface is to load the configuration streams
from external Configuration EPROM or main memory of system during the booting
processes of the processor and it takes only a few clock cycles. These configuration
streams contain the different hardware modules like Adders, Subtractors, Multipliers and
Shifters etc. The second job of the I 0 interface is to load the instructions and their
relevant data operands to bc executed on the procekor. The third job of the I 0 interface
is to store the results of the computations performed on the processor in main memory of
the system. The fourth job of the 10 interface is to send and receive the control signals
generatcd and acknowledged by the control unit of the KISP to the extemal devices. 110
Interface interacts with extemal environment by using the following signals.

1. Data Bus Signals

2. Address Bus Signals

3. Control Bus Signals

Processor
External Interface

Control ' L Multiplexed Bus

Bus AddresslDatalConSguration

I 32-bi-8-bi
J

Figure 12 External Interface

VLIW-RISP (Architecture & Simulation) Page 40 of 77

The major functions and requirements for an 110 module fall into the following
categories [28].

a. Control and timing

b. Processor Communication

c. Device Communication

d. Data Buffering

e. Error Detection

f. Processor Configuration

Cache Memories

The cache memory holds (stores) the data used by a program and also the instruction
of the program. The cache is organized as set associative cache, with each location (line)
containing 32-bits of data in case of Data Cache and 32 x 8-bits in case of Instruction
Cache. The cache operates as a write through cache. Note that the cache changes only if a
miss occurs. This means that data written to a memory location not already cached are
not written to the cache. In many cases, much of the active portion of the program is
found completely inside the cache memory. This causes the execution to occur at the rate
of one clock cycle for many of the instructions that are commonly used in a program
[29]. The architecture of the cache is supposed to be the standard cache architecture being
used by the standard micro processors.

1- Write-Back Cache: When the system writes to a memory location that is currently
held in cachc, it only writes the new information to the appropriate cache line. When
the cache line is eventually needed for some other memory address, the changed data
is "written back" to system memory. This type of cache provides better performance
than a write-through cache, because it saves on (time-consuming) write cycles to
memory.

2- Write-Through Cache: When the system writes to a memory location that is
currently held in cache, it writes the new information both to the appropriate cache
line and the memory location itself at the same time. This type of caching provides
worse performance than write-back, but is simpler to implement and has the
advantage of internal consistency, because the cache is never out of synchronous with
the memory the way it is with a wile-back cache.

VIJW-RISP (Architecture & Simulation) Page 41 of 77

a. Instruction Cache

The user interface, along with the compiler, generates a program file containing the
application program written by the user in the specified editor. Each row of the file
contains a 32-bits instruction. This program file is loaded into the to internal instruction
cache of the VLIW-RISP.

Figure 13 Instruction Cache

The internal instruction cache of the RISP is of the size 16KW. Where W=Memory
Word. The size of the memory word is same as that of the size of the VLlW and is
32 x 8 - 256 bits.

b. Data Cache

The data operands given by the user for the registers of the VLIW-RISP through the
interface are written to a data file initially. The each row of this data file is of the size 32-
bits and contains a single data operand of some instruction. This data file is loaded into
the internal data memory of the VLIW-RISP. The infernal data memory of the VLIW-
RISP is of the size 16KW, Where W=Memory Word. Thc size of the data memory word
is 32-bits because the processor being designed is a 32-bits machine.

VLIW-RISP (Architecture & Simulation) Page 42 of 77

Figure 14 Data Cache

Data Cache
32-bils 0

.

-

This internal data cache of the VLIW-REP is used for many different jobs and these are
as followings.

1
2
3
4
5
6
I
I
I
I
I
I
I
I
I
I
I

; 6 ~ - 1

Initially the data cache is loaded with the configuration streams that are then being
transferred into the multi-port configuration memory. Then the data cache is loaded with
the data operands of the application program. Thesc data operands are the source
operands of the different instructions, written by the user in the program editor being
dcveloped. These data operands are then loaded into the register file of the processor so
that the Register Window becomes able to fetch them during the execution of the relevant
instructions. The last job of the internal data cache is to store the results being generated
by the execution of the program instructions. These results are initially stored into the
registers of the VLIW-RJSP and later on thesc results are shifted into the internal data
memory of the VLIW-RISP. From this data cache the results are stored into the external
data memory (Data File) of the system from where the user interface receives and
displays them on the system.

4.5.3 Pre-fetch Unit (PFU):

The basic job of the PFU is to fetch or pre-fetch the configuration stream or
instruction stream and the data stream of the application program being under execution.
Fetched configuration stream is loaded into the multi-port configuration memory and
instructions are loaded in the Instruction Pool and then transferred into the Instruction
Cache. Similarly the data stream is loaded into the Data Pool and then transferred into
the Data Cache.

VLIW-RISP (Architecture & Simulation) Page 43 of 77

4.5.4 Instruction Scheduler Unit (ISU)

The ISU is the micm-programmed implementation of the Tomasoulo's Algorithm
being used in VLIW and Super-scalar processors for the scheduling of the instructions.
The instruction scheduler reads instructions from the instruction pool and thcn it analyzes
them for dependencies (if any) and resolves these dependencies. Dependencies being
analyzed include Data Dependency, Control Dependency, Resource Conflicts and Data
Hazards etc. Then it after analysis ISU transfers these instructions to IPL.

4.5.5 Insfruction Pack Logic (IPL)

The main job of the IPL is to pack thc eight instructions in the form of a VLIW. The
32-bits instructions transferred from the ISU are given to the IPL. The IPL arranges these
instructions in a buffer in a FIFO order on their arrival from the ISU. After the arrival of
each instruction, the IPL increments its instruction counter and checks either there are
eight instruction arrived from the ISU or not. If a total of eight instructions have been
arrived from the ISU then the IPL transfers them into a VLIW buffer of size 8 x 32-bits.
Then it enables this buffer to transfers this VLIW to instruction cache of the RISP if
signal Load-VLIW = I . The same process is repeated constantly throughout the
application execution. Consider the Fig. 4.8 of IPL.

Load-VUW
Signal

Instruction Cache
Size = 16 KW

W s 256-bits (8x32)

Figure 4.8 Instruction Pack Logic

VLIW-RISP (Architecture & Simulation) Page 44 of 77

4.5.6 Computational Pipeline-1 (CP-1)

CP-I is consistingof a VLIW Fetch Unit (VFU) and a VLlW Dispatch Unit (VDU).

i. VLlW Fetch Unit (VFU): . ~: ..

VFU is a State Machine based unit and works like a Propammable Counter. VFU
fetches VLIW From the instruction cache and the Op-Codes of all instructions of the
VLlW are transferred to the Confinurarion Unit and the VLIW itself is transferred to

Figure 15 VLI W etch Unit

VLIW-RISP (Architecture & Simulation) Page 45 of 77

ii. VLIW Dispatch Unit (VDU):

VDU is consisting of an array of eight De-MUXs whose select lines are controlled by
the contiguration controller. According to the select lines activated by the configuration
controller all of the instructions of VLIW arc dispatched or issued by VDU to their
relevant RFUs. Consider the Fig. 4.10 of VDU.

RFUJ RFU-6 RFU.5 RFU-4 RFU-3 RFU-2 RFU-1 RFU4
t * 9 + v Z * v

Figure 16 VLIW Dispatch Unit

4.5.7 Computational Pipeline-2 (CP-2)

The CP-2 is composed of a VLIW Execution Unit (VEU) which contains an array of eight
RFUs and a Register Window of 32 registers (32-bits) and a Configuration Unit which
contains a ConJiguration Controller and a Multi-port Configuration Memory.

VLIW-RISP (Architecture & Simulation) -. .?
. - Page 46 of 77

i. VLIW Execution Unit (VEU):

VEU is the core component of the processor because it contains an array of RFUs being
used for program execution. Consider the Pig. 4.1 1 of VEU. The VEU conlains the
following major modules.

Figurc 17 VLIW Execution Unit

a) External 10 Logic (EIOL)

b) Rn's Data-inlData-out Logic (RDIOL)

c) General-Purpose and Flag Registers (GFRs)

VLIW-NSP (Architecture & Simulation) Page 47 of 77

d) Registers Input/Output Logic (RIOL)

e) Reconfigurable Functional Units (RFUs)

f) Flags Generation Logic (FGL) - - - -.. - .- .. --- . *
a) External 10 Logic (EIOL)

The EIOL of the VEU is used to load instructions in the instruction register, source
operands in general-purpose registers and the configuration stream in RFUs. The second
job of the EIOL is to store the configuration stream being loaded in the RFUs for the
analysis purpose and results being generated after the execution of VLIW.

The source operands Sr-land Sr-2 ate loaded into the internal general-purpose
registers (GPRs) by the External De-MUX of size 1 x 24. The address given for the Data-
in is connected to the select lines of De-MUX as well as to Decoder (5 x 24) input. De-
MUX selects one of the general-purpose registers for data loading and the decoder
enables its output channel connecting to the registers through the MUX of the size 2 x l .
This MUX receives 32-bits data operand from External De-MUX at input "1" and
receives 32-bits results from RFUs at the input "0". If the Ext-10-En=O then it selects the
result coming from the RFUs and loads it in the register. If the Ext-10-En=l then it
selects the data coming from the External De-MUX and loads it in the registers. Since
there are eight RFUs that can load their results in the same register, hence in order to
solve this problem an 8 x 1 MUX (32-bits) is interfaced with each register input. Each
MUX is controlled by the RFU Data-path Cpztroller which analyzes the Destination
Addresses of all the RFUs and selects only that RFU-whose-output is valid output. i n
order to store the results and the flags being available in the GPRs and flag registers
(FRs) into the data cache of the RISP, the 32 x 1 External MUX (32-bits) is used which
can read the contents of the selected register and sends it to the data cache of the RISP.

- - - - - - - - - --- - - -

VLIW-RISP (Architecture & Simulation) Page 48 of 77

Figure 18 RFU Data Path Controller

b) RFUs Data-in /Data-out Logic (RDIOL)

In order to loadlstore the data across the RFUs there are two 32 x 1 MUXs (32-bits)
and one I x 24 De-MUX (32-bits) for each RFIJ. Using the two MUXs thc WU is able to
read the source data operands (Sr-1 and Sr-2) from any one of the 32 registers and using
the one De-MUX it stores its results back to any one of the GPRs. Flags generated during
the execution of the VLIW are loaded into the relevant FRs.

c) Genernl-Purpose and Flag Registers (GFRs)

There is an array of eight FRs (32-bits) and twenty four GPRs (32-bits). GPRs can be
read and written by the programmer but the FRS can only be read by the programmer and
can not be written. RFUs can readwrite any one of these thirty two registers. More than
one RFU can read the contents of the same register at the same time but only one RFU
can write in a register at the same time because the read operation is shareable but the
write operation is not shareable.

VLIW-RISP (Architecture & Simulation) Page 49 of 77

d) Registers lnpcct/Output Logic (RIOL)

FRs are loaded with the flags, being generated by the WUs and can be read by the
programmer through the External MUX. In case of the GPRs, the programmer can read
the registers through the Extemal MUX but in order to write contents into registers there
is a 2 x 1 MUX (32-bits) which sclects the data for the register either from some RFU
output or from data cache. The 8 x 1 MUX interfaced at the input of the 2 x 1 MUX
selects the valid RFU for the results to be stored in the register. In order to select the valid
RFU for results, there is a RFU Data path Controller shown in Fig.6 is attached with all
MUXs. This controller reads the select lines of all the De-MUXs of RFUs and after
analysis it selects that RFU whose output is a valid output.

e) Reconfigurable Functional Units (RFUs)

There are a total of eight reconfigurable functional units RFUs. Each RFU has some
standard I 0 interfaces for conlieuration and data flow in and out the unit as is shown in -
the fig. 4.13

Reconfigurable Functional Unit
Configuration

Stream
(RFU)

Instruction

--
S r i Srl Sr2 Sr2 Dst Dsl

32-bits addn 32-bib addrs 32-bits addrs 3 2 - b k
Ib i t s 5-bits Ehits

Figure 19 Reconfigurable Functional Unit Interfaces

VLIW-RISP (Architecture & Simulation) Page 50 of 77

Hence from the fig it is obvious that it receives 32-bits sized two source operands
from the register file of the VLIW-RISP and after computation generates one 32-bits
result and 32-bits flags. When it reads its source operands and sends the destination
operands f rod to registers it also sends, 5-bits sized each, source and the destination
addresses. Each RFU has a data bus dedicated for instruction loading and its size is 32-
bits. Also there is a 32-bits configuration bus that is used by it, to readtwrite the
configuration data into or out of the device. -.-

RFU Data-path Controller Algorithm

The Algorithm Initially Reads the Register Address (Rmn) and Destination Operand
Addresses of all RFUs

if (RFUO-Dest-Address == Rmn Address)
Then Sel-out = 0;

else if (RFU1-Dest-Address = Rmn Address)
Then Sel-out = 1;

else if (RFU2-Dest-Address = Rrnn Address)
Then Sel-out = 2;

else if (RFU3-Dest-Address = Rmn Address)
Then Sel-out = 3;

else if (RFU4-Dest-Address = Rmn Address)
Then Sel-out = 4;

else if (RFUS-Dest-Address = Rmn Address)
Then Sel-out = 5;

else if (RFU6-Dest-Address == Rmn Address)
Then Sel-out = 6;

else if (RFU7-Dest-Address = Rmn Address)
Then Sel-out = 7;

else Sel-out =Nil;

If we take the more detailed' view of the RFU, we get the picture shown in the
fig.4.14. It contains an Instruction Register IR and an FPGA Logic. The FPGA Logic is
hrther subdivided into the two areas. One is the Non-Reconfigurable Area, which
generates the flags of the RFU, and the second area is the Reconfigurable area, which is
the most important portion of the VLIW-RISP. This is the only region inside the VLIW-
KISP that can be reconfigured. This reconfigurable are is used to map many hardwares on
the device and reconfiguration of the device during its execution;

VLIW-RISP (Architecture & Simulation) Page 5 1 of 77

Reconfigurable Functional Unit
(RFU)

Configuration W o r d s I n s t r ~ ~ t i o n
(32-bits) 32-bits

The reconfigurable functional Unit is the reconfigurable area of the proposed VI,IW-
REP. In fact this area is the area of the Field Programmable Gate Array FPGA being
used for the design and the testing of the VLIW-RISP. The FPGA being required should
have the property of the partial rcconfiguration at any tlme of the device working. There
are many different venders of the FPGA devices like Xilinx, Altera, Atmel and Triscend
etc. But only a few of them are providing the FPGAs that can be configured at run time,
partially. They include the well known Xilinx Corporation and the Atmel. The Virtex-
Series of the FPGAs provided by the Xilinx Corporation are all partially reconfigurable at
run time of the devicc. Also the 6200 Series of the FPGAs pro6ided by the Atmel are also
partially reconfigurable. But if we compare both of them, then we will found that the
Virtex-Series FPGAs provided by the Xilinx Corporation are much better solution than
the 6200 Series FPGAs of the Atmel. This comparison is based on the following factors

Dcvice Capacity (No of the logic gates)

Device Speed (Configuration and Working Speeds)

Device Flexibility (Methods of usage of internal components)

Device Compatibility (Ineffaceability with Processors)

Device Maturity (Device ardhitecture Maturity)

VLIW-RISP (Architecture & Simulation) Page 52 of 77

Device Availability (Device Market)

Hence due to all these factors, the device being chosen for the proposed VLIW-RISP
design is the Virtex-E of the Xilinx Corporation. Hence in this manner the reconfigurable
are being mentioned above is the area of the Virtex-E FPGA. The internal structure and
the working of the structure of the Virtex-E FPGA is explained here in detail.

fl Flags Generation Logic (FGL)

The outputs generated by the RFUs are also read by the FGL and the flags are
calculated for each RFU. Flag register is a 32-bits register but recently only Carry Flag,
Sign Flag, Zero Flag, Overflow Flag and Equal Flag have been computed in the system
and the remaining twenty-seven bits are available for the future extension.

Flags Generation Logic

32-bits RFU

. ,

Flags Rrgirtcr :

Figure 2 1 Flags Generation Logic

i. VLIW Configuration Unit (VCU):

VCU is composed of a Configuration Controller as shown in Fig.4.16 and a Multi-
port Conjiguration Memory as shown. Configuration controller receives the op-codes of
the eight instructions of the VLIW from the VFU and on the basis of these op-codes it
decides to load one of the configuration blocks available in the memory for each RFU (if
required). Also it checks if the op-code is a No Operation (NOP) or is same as that of any
one of the existing op-codes. If so then the configuration controller does not load this new
configuration into the RFUs but the hardware that is already loaded in the RFUs is reused
and hence the configuration time that was required for the reconfiguration of RFUs is
saved. Hence only those RFUs are reconfigured that are quite new ones. Hence the

VLIW-RISP (Architecture & Simulation) Page 53 of 77

processor always tnkes the minimum possible time to rcconfigure the RFUs during the
execution of the application program and always has the most optimal configuration

Figure 4.1 6 RFU Configuration Controller

VLIW-RISP (Architecture 8 Simulation) Page 54 of 77

Map Logic

I

Figure 226 Micro-programmed Control Unit

4.5.8 Micro-programmed Control Unit (MCU)

The control unit is the central controlling module of the RISP. All activities are
generated and managed inside the control unit. There are two different approaches
available for the design of the control unit. One is the Hardwired Control Unit Design and
the other is the Micro-Programmed Control Unit. The control unit of the KISP is based on
the Micro-programmed technology. It is a micro-coded state machines design. State
machine of the VLIW-RISP control unit is shown later

It controls all the activities inside and outside of the processor from the hard ware
configuration to the program execution. MCU is being designed using Micro-coded State
Machine architecture. Consider the Fig.4.18 of MCU.

At each state of the control unit state machine, a set of the micro codcs is generated
and sent to the VLIW-RISP modules. Thesc control signals actually control the
processing of the processor. There is a handshaking mechanism developed between the
control unit and the other modules of the VLIW-RISP. Due to this handshaking
mechanism the different modules of the processor are synchronized with each other.

VLIW-RISP (Architecture & Simulation) Page 55 of 77

The control unit of a microprocessor directs the operation of the other units by
providing timing and control signals. It is h e function of the microcomputer to execute
programs which are stored in memory in the form of instructions and data. The control
unit contains the necessary logic to interpret instructions and to generate the necessary
signals for the execution of those instructions. The descriptive words "fetch" and
"execute" are used to describe the actions of the control unit. It fetches an instruction by
sending address and a read command to the memory unit. The instruction at that memory
address is transferred to the control unit for decoding. It then generates the necessary
signals to execute the instruction.

For the control unit to perform its function, it must have input that allow it to
determine the state of the systemsand output that allow it to control thc behavior of the
system. These are the external specificarion ofthe control unit. Internally, the control unit
must have the logic requircd to perform its sequencing and execution functions 1281.
Figure 3.4 is a general model of the control unit, showing all its inputs and outputs.

Figure 23 Micro-programmed Control Unit

VLIW-RISP (Architecture & Simulation) Page 56 of 77

The Inputs:
. .- .-

Clock: This is how the control unit "keeps time." The control unit causes one micro-
operation (or a set of simultaneous micro operations) to be performed for each clock
pulse. This is sometime referred to as the processor cycle time, or the clock cycle.

instruction register: The op code of the instruction is used to determine which micro-
operation to perform during the execute cycle.

Flags: These are needed by the control unit to determine the status of the processor and
the outcome of previous ALU operations. For example for the increment and skip-if-zero
(ISZ) instruction, the control unit will increment the PC if the zero flag is set.

Control Signals from control Bus: the control bus portion of the system bus provides
signals to the control unit, such as interrupt signals and acknowledgements.

The Outputs:

Control signals within the processor
These are of two types: Those that cause data to be moved from one register to another,
and those that activate specific W U s functions.

Control Signals to control bus
These are also of two types: Control signals to mernbry, and control signals to the IIO
modules.

Statistics
Chapter No. 5

and Performance
Analysis

VLIW-RISP (Architecture & Simulation) Page 57of77

Chapter No.5

Statistics and Performance Analysis

5.1 DSP (TMS320C6X) Statistics 1461

In order to compare the performance of the proposed VLIW-RISP with a DSP we
have chosen the DSP processor TMS320C6X provided by the Texas Instruments. It is a
fixed-point VLIW architecture containing a total of eight functional units. They include
two Multipliers and six ALUs. The pipeline of the TMS320C6X can fetch a VLIW of
eight instructions. It is known as Fetclr-Pocket. A fetch packet is converted into an
Execute-Packet by looking at the resources available. An execute packet consists of
thosc instructions that can be executed in the pipeline in parallel without any resource
conflicts. The program fetch, the program dispatch and instruction decode units can
deliver up to eight 32-bits instructions (One VLIW) to the functional units every CPU
clock cycle. Hence it can execute a maximum of eight instructions in a single CPU clock
cycle, if these instructions have no internal resource conflicts. In case of internal resource
conflicts, these fetch-packets are converted into two to eight execute packets and then
each execute-packet takes one CPU cycle to execute it.

The execution of fixed-point instructions of the TMS320C6X can be dcfined in terms
of Delay Slofs. The number of delay slots is equivalent to the number of cycles required
after the source operands are read for the result to be available for reading. For a single-
cycle type instruction (such as ADD, SUB) source operands read in cycle i produce a
result that can be read in cycle i + 1 (Hence Delay slot is zero). For a multiply instruction
(MPY), source operands read in cycle i produce a result that can be read in cycle i + 2
(Hence Delay slot is one). Delay slots are equivalent to an execution or result latency. All
of the instructions that are common to the 'C62x and 'C67x have a functional unit latency
of 1. This means that a new instruction can be started on the functional unit each cycle.
The following statistics and execution formula are calculated from the technical notes of
DSP processor (TMS320C6X)

TT = FP (Tpm + Tom) + ((F,, + Dn) + . ..+ (Fo + DO)) Cycles
Where

Table 3 Statistics and Execution Formula of DSP.Processor

VLIW-RISP (Architecture & Simulation) Page 58 of 77

5.2 VLIW-RISP Statistics

The VLIW-RISP is fetching the instructions externally one by onc using a Pre-fetch
Unit. This pre-fetching of instructions and its packing into VLIW and loading into the
Instruction cache has been overlapped with the program execution. Hence time consumed
is considered to be zero.

The VLIW-Fetch Unit takes one cycle to fetch one VLIW. Since the proposed
architecture is a Register-Register Architecture hence operands fetch time for each
fetched VLIW is always one cycle. The Configuration Unit takes maximum of one cycle
to update the configuration of RFUs. The VLIW-Dispatch Unit takes one cycle to
dispatch (Issue) one VLIW. The execution time taken by Execution Unit depends upon
the type of the instructions to be executed. The followings are the statistics and execution
formula of the proposed VLIW-RISP.

Table 4 Statistics and Execution Formula of VLIW-RISP

:, ..
Now according to the above statistics the following assembly !anguage programs have
been executed and the no of execution cycles have been calculated.

Proqram N O . ~ :
This application program is consisting of simple arithmetic operations including
Addition, Subtraction and Multiplication. In simulation and calculations, the all of these
operations have been taken with the same delay slots and functional unit latencies as that
of those provided by TMS320C6X DSP processor. The assumptions have been taken for
the sake of easy and authentic performance comparison. This program has been supposed
to be consisting of only eight instructions which make only one VLIW for the proposed
processor.

VLIW-RISP (Architecture & Simulation) Page 59 of 77

ADD ROO, R01, R02;
ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

1. TMS320C6X Performance (Maximum)

TT= FP (Tpn + TO") + (Fo + DO) Cycles
= 1 (1 + 1) + (2) = 4 Cycles

2. VLIW-RISP Performance (Minimum)
TT= FP (Tpn + Tom) + (Tc) + (To) + ((Fo + Do)) Cycles

= 1 (1 + 1) + (1) + (1) + ((2)) = 6 Cycles

Proaram N O . ~ :
This application program is consisting of simple arithmetic operations including Addition
and Subtraction. In simulation and calculations, the all of these operations have been
taken with the same delay slots and functional unit latencies as that of those provided by
TMS323C6X DSP processor. The assumptions have been taken for the sake of easy and
authentic performance comparison. This program has been supposed to be consisting of
only eight instructions which make only one VLlW for the proposed processor.

ADD ROO, R01, R02; 1

ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, R01, R07;
SUB ROO, R01, R08;
SUB ROO, R01, R09;

. - .. -

1. TMS320C6X Performance (TlIaximum)

TT= FP (Tpn + TOFT) + ((FI + Dl) + (Fo + DO)) Cycles
= 1 (1 + 1) + ((1) + (1)) = 4 Cycles

VLIW-RISP (Architecture & Simulation)

- - -

Page GO of 77

Program N O . ~
This application program is consisting of simple arithmetic operation of Multiplication.
In simulation and calculations, the operations have been taken with the same delay slots
and functional unit latencies as that of those provided by TMS320C6X DSP processor.
Thc assumptions have been taken for the sake of easy and aurhentic performance
comparison. This program has been supposed lo be consisting of only eight instructions
which make only one VLIW for the proposed processor.

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

- -. - .-
1. TMS320C6X Performance (Maximum)

TT= FP (Tpk~ + TOFT) + ((F3 + D3)++ (Fo +DO)) Cycles
= 1 (1 + 1) + ((2) + (2) + (2) t (2)) = 10 Cycles

2. VLIW-RISP Performance (Minimum)
TT = FP (Tpm + TOFT) + (Tc) + (TD) + (Fo + DO)) Cycles

= 1 (1 + I) +(I) + (1) + ((2)) = 6 Cycles

Proqram NO.~:
This application program is consisting of simple arithmetic operations including only
Multiplication. In simulation and calculations, the operations havc been taken with the
same delay slots and functional unit latencies as that of those provided by TMS320C6X
DSP processor. The assumptions have been taken for the sake of easy and authentic
performance comparison. This program has been supposed to bc consisting of sixteen
instructions which make two VLIWs for the proposed processor. Since all instructions
are representing to the same operation, hence only first VLIW. will be reconfigured and
the same configuration will bc used by the ..: second ~ -. VLIW. Hence the performance will be
much higher as compared to a conventional DSP processor.

VLIW-RISP (Architecture & Simulation) Page 61 of 77

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, RO?, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

1 . TMS320C6X Performance (Maximum)

TT= FP (Tprr + TO") + (F7 + D7) + + (Fo + DO) Cycles
= 2 (1 + 1) + ((2) + (2) + (2) + (2) + (2) + (2) + (2) + (2)) = 20 Cycles

2. VLIW-RISP Performance (Minimum)
TT= FP (Tmr + TOFT) + (Tc)+ (TD) + ((Fl + Dl) + (Fo + DO)) Cycles

= 2 (1 + 1) + (1) + (2) + ((2) + (2)) = 11Cycles

This application program is consisting of simple arithmt&c operations including
Addition, Subtraction and Multiplication. In simulation and calculations, the operations
have been taken with the same delay slots and functional unit latencies as that of those
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake
of easy and authentic performance comparison. This program has been supposed to be
consisting of sixteen instructions which make three VLIWs for the proposed processor.
Since all ~ n s t ~ c t i o n s are representing to the different operation, hence both times the
VLIWs will be reconfigured and hence some what higher configuration time will be used
by the second VLIW. Hence the performance will be effected as compared to a
conventional DSP processor.

ADD ROO, R01, R02;
ADD ROO, R01, R03;

VLIW-RISP (Architecture & Simulation) Page 62 of 77

ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, R01, R07;
SUB ROO, R01, R08;
SUB ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, ROT, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

1. TMS320C6X Performance ~ a r i m u m)

TT= FP (TPm + 10FT) + ((F5 + Dj) f+ (Fo + DO)) Cycle~
= 2 (1 + 1) + ((2) + (2) + (2) t (2) + (1) t (1)) = 14 Cycles

2. VLIW-RISP Performance (Minimum)
'TT = FP (TPR. + TOFT) + (Tc) + (TD) + ((Fl + DI) + (Fo + DO)) Cycles

=2(1+1)+(2)+(2)+((2)+(1))=11Cycles

Program No.6:
This application program is consisting of simple arithmetic operations including only
Addition and Subtraction. In simulation and calculations, thc operations have been taken
with the same delay slots and functional unit latencies as that of those provided by
TMS320C6X DSP processor. The assumptions have been taken for the sake of easy and
authentic performance comparison. This program has been supposed to be consisting of
sixteen instructions which make two VLIWs for the proposed processor. Since both
VLIWs are representing to the same operations, hence only first VLIW will be
reconfigured and the same configuration will be used by the second VLIW. Hence the
performance will be much higher as compared to a conventional DSP processor.

ADD ROO, R01, R02;
ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, ROI, R06;

VLIW-RISP (Architecture & Simulation) Page 63 of 77

SUB ROO, R01, R07;
SUB ROO, R01, R08;
SUB ROO, R01, R09;

ADD ROO, R01, R02;
ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, ROI, R07;
SUB ROO, ROI, R08;
SUB ROO, R01, R09;

% .

1. TMS320C6X Performance (Maximum)

TT= FP (Tpw +TOFT) + ((F3 + D3) ++ (FO + DO)) Cycles
= 2 (1 t 1) + ((1) + (1) + (1) + (1)) = 8 Cycles

2. VLIW-RISP Performance (Minimum)
T1-= FP (TPFT + Tom) + (TC) + (To) + ((FI + Dl) ++ (Fo + DO)) CYC~CS

= 2 (1 + 1) + (1) + (2) + ((1) + (1)) = 9 Cycles

Proqram N O . ~ :
This application program is consisting of simple arithmetic operations including
Addition, Subtraction and Multiplication. In simulation and calculatians, the operations
have been taken with the same delay slots and functional unit latencies as that of those
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake
of easy and authentic performance comparison. This program has been supposed to be
consisting of twenty four instructions which make three VLlWs for the proposed
processor. Since all instructions are representing to the different operation, hence first
VLIW will be reconfigured and similarly second and third VLIW will also be
reconfigured. Hence the configuration time of the program will be higher.

ADD ROO, ROI, R02;
ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, R01, R07;
SUB ROO, R01, R08;
SUB ROO, R01, R09;

VLIW-RISP (Architecture & Simulation) Page 64 of 77

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

ADD ROO, R01, R02;
ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, R01, R07;
SUB ROO, R01, R08;
SUB ROO, R01, R09;

1. TMS320C6X Performance (Maximum)

TT= FP (TpR + Ton) + ((F, + D7) ++ (Fo + DO)) Cycles
= 3 (I + 1) +((I) + (1) + (2) + (2) + (2) + (2) + (1) +(I)) 9 18 Cycles

2. VLIW-RISP Performance (Minimum)
TT = FP (Tpm + Ton) + (Tc)+ (TD) + ((F2 + Dz) ++ (Fo + DO)) Cycles

= 3 (1 + 1) + (3) + (3) + ((I) + (2) + (1)) = 16 Cycles

This application program is consisting of simple arithmetic operations including
Addition, Subtraction and Multiplication. In simulation and calculations, the operations
have been taken with the same delay slots and functional unit latencies as that of those
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake
of easy and authentic performance comparison. This program has been supposed to be
consisting of twenty four instructions which make three VLIWs for the proposed
processor. Since all instructions are representing to the different operation, hence first
VLIW will be rcconfigured and similarly second and third VLIW will also bc
reconligured. Hence the configuration time of the program will be much higher.

MUL ROO, R01, R02;
MUL ROO, R01, R03;

VLIW-RISP (Architecture & Simulation) Page 65 of 77

MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, ROI , R08;
MUL ROO, R01, R09;

ADD ROO, R01, R02;
ADD ROO, R01, R03;
ADD ROO, R01, R04;
ADD ROO, R01, R05;
ADD ROO, R01, R06;
ADD ROO, R01, R07;
ADD ROO, R01, R08;
ADD ROO, R01, R09;

SUB ROO, ROI, R02;
SUB ROO, R01, R03;
SUB ROO, R01, R04;
SUB ROO, R01, R05;
SUB ROO, R01, R06;
SUB ROO, R01, R07;
SUB ROO, R01, R08;
SUB ROO, R01, R09;

1. TMS320C6X Performance (Maximum)

TT= FP (TPFT + TOFT) + ((F7 + D7) ++ (Fo + DO)) Cycles
= 3 (1 + 1) + ((1) + (1) + (1) + (1) + (2) + (2) + (2) + (2)) = 16 Cycles

2. VLIW-RISP Performance (Minimum)
TT=FP(Tpn-+TOn)+(TC)+(T~)+((F1+Dl)++ (Fo+Do)) Cycles

= 3 (1 + 1) + (3) + (3) t ((I) + (1) + (2)) = 16 Cycles

Program N O . ~ :
This application program is consisting of simple arithmetic operations including only
Multiplication. In simulation and calculations, the operations have been taken with the
same delay slots and functional unit latencies as that of those provided by TMS32CC6X
DSP processor. The assumptions have been taken for the sake of easy and authentic
performance comparison. This program has been supposed to be consisting of forty
instructions which make five VLIWs for the proposed processor. Since all instructions

VLIW-RISP (Architecture & Simulation) ' Page 66 of 77

are representing to the same operation, hence only first VLIW will be reconfigured and
thc same configuration will be used by the remaining four VLIWs. Hence the
performance will be much higher as compared to a conventional DSP processor.

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, ROI, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO. R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, RO1, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;

VLIW-RISP (Architecture & Simulation) Page 67 of 77

MUL ROO, R01, R03;
MUL ROO, ROI , R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, ROI, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

1. TMS320C6X Performance (Maximum)

TT= FP (TPm + 'Tom) + ((Fl9 + D19) + + (Fo + DO)) Cycles
= 5 (1 + 1) + ((2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) +

+ (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2))
= 50 Cycles

2. VLIW-RISP Performance (Minimum)
TT=FP(TPFI.+ToFT)+(Tc)+(T~)+((F~ + D l) + f (Fo+Do)) Cycles

= 5 (1 + 1) + (1) + (5) + ((2) + (2) + (2) + (2) + (2))

= 26 Cycles

Proqram No.10:
This application program is consisting of simple arithmetic operations including only
Multiplication. In simulation and calculations, the operations have been taken with the
same delay slots and functional unit latencies as that of those provided by TMS320C6X
DSP processor. I h e assumptions havc been taken for the sake of easy and authentic
performance comparison. This program has been supposed to be consisting of eighty
instructions which make ten VLlWs for the proposed processor. Since all instructions are
representing to the same operation, hence only first VLIW will be reconfigured and the
same configuration will be used by the remaining nine VLIWs. Hence the performance
will be much higher as compared to a conventional DSP processor. This program
execution on proposed RISP shows that the reconfigurable processor exhibits a much
higher performance gain than any conventional DSP processor.

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

VLIW-RISP (Architecture & Simulation)

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

Page 68 of 77

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;

VLIW-RISP (Architecture & Simulation)

MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, R01, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, R01, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, R01, R09;

MUL ROO, R01, R02;
MUL ROO, ROI, R03;
MUL ROO, R01, R04;
MUL ROO, R01, R05;
MUL ROO, ROI, R06;
MUL ROO, R01, R07;
MUL ROO, R01, R08;
MUL ROO, RO?, R09;

Page 69 of 77

VLIW-RISP (Architecture & Simulation) Page 70 of 77

1. TMS320C6X Performance (Maximum)

(2))
= 100 Cycles

2. VLIW-RISP Performance (Minimum)
T T = F P (T P ~ + T O ~) + (T ~) + ~ D) + ((F ~ + D ~) ++(Fo+DO)) Cycles

= 10 (1 + 1) + (1) + (10) + (

VLIW-RISP (Architecture & Simulation) Page 71 of 77

Calculated Statistics

Table 5 Calculated Statistics of Both Processors

5.3 DSP vs VLIW-RISP Performance Analysis
The graph being obtained by comparing the speed of the conventional DSP processor
named TMS320C6X with the proposed RISP is shown in Figure 5.1.

100
90
80
70
60

1 !I
Jo

20
" 10
:yc1es
Jsed 0

Tested Programs 4
Figure 24 DSP vs VLIW-REP Performance Analysis

Chapter No. 6
Conclusion and Future Work

VLIW-KISP (Architecture & Simulation) Page 72 of 77

Chapter No.6

Conclusion and Future Work

6.1 Conclusion

Now the reconfigurable computing based systems are becoming an important part of
research work by different researchers in the fields of computer architectures. In this
domain of computing; placing the computationally very intense portions of any under
execution application program onto the reconfigurable computing hardware, that
application is being accelerated to a much high performance. It happens due to the fact
that reconfigurable computing architectures combine the advantages of both the software
based and Application Specific Integrated Circuits based implementations. Like software
based applications, the mapped circuits are quite flexible and hence can be changed
during the execution time of the system. Similar reconfigurable computing systems
provide us a method to map circuits into hardware in the same manner as that of the
ASICs. Therefore the reconfigurable computing systems or devices have a great potential
to achieve much greater performance gain as compared to that of the software based
solutions due to bypassing the conventional fetch-decode-execute instruction cycle of the
general or traditional microprocessors.

Reconfigurable Instruction Set Processors (RISPs) have been evolved through many
design alternatives but the main theme of the design was always the tightly coupled
nature of integrated reconfigurable logic inside the processor core. In the resent era the
main focus of the research is to overcome the drastic execution delays being introduced
by the configuration overheads of WUs. Researchers have introduced different
techniques to tackle this overhead including Run-time Reconfiguration, Partial
Reconfiguration, Configuration Compression, Pipelined Configuration, Multi-threaded
Configurations, Configuration Cloning, Configuration Re-usability and Configuration
Overhead Optimization using the intelligent configuration controllers.

In this research thesis a Reconfigurable Instruction Set Processor (RISP) design has
been proposed with the capability of the most optimized configuration overheads. Due to
the VLTW nature of the proposed processor; at one hand the multi-threaded
reconfiguration of the RFUs has been exploited along with the partial nm-time
reconfiguration as well as on the other hand the configuration intelligent re-usability has
been overlapped. In order to achieve the multi-threaded reconfiguration and the
intelligent re-usability of the existing configurations, a multi-port configuration memory
and a hard wired algorithmic configuration controller has been designed so that to
optimize the configuration overheads by configuring the minimum number of RFUs. The
processor always takes the maximum advantage of the existing configurations and hence
providing the minimum possible configuration overheads.

VLIW-RISP (Architecture & Simulation) Page 73 of 77

6.2 Future Work

It is in general true that no project is ever finished and done with 100% satisfactory
performance in accordance with the requirements leading to its origin. It is just halted on
different stages in the development process and is realized as product. As a designer it is
an obligation to look forward some generations and make sure that the design will be able
to continue to improve. Some suggestions are given below.

6.2.1 Hardware Improvement

The possible refmement in the proposed VLIW-RISP design is to improve the design
of Configuration Unit so that to adopt the most complicated and advanced techniques of
partial reconfiguration. While keeping the extemal interface same. The Configuration
Unit is using multi-port memory to storr the status of -Us. Multi-port memory is an
expensive solution. We must find an alternate solution to reduce the cost.

6.2.2 Configuration Protocol

The processor is reconfigured through an external interface, hence slow. We can work
on the reconfiguration protocol as part of the processor's module. The extemal processor
would then be able to reconfigure the FPGA simply by writing the configuration into a
special memory area handled by the static module. Static module will in turn reconfigure
the RPUs.

6.2.3 Configuration Techniques

Keeping all the existing resources of the proposed processor unchanged there are
many new techniques, which can be used to minimize the configuration size and
configuration overheads. The configuration minimization is a process relevant to
configuration compression techniques. This area is quite new and open for researches to
give compression techniques. The configuration.overhead can be reduced by providing
the emerging technique of partial reconfiguration. Along with partial reconfiguration
techniques a new process of configuration cloning has been introduced in which the
existing configuration streams can be replicated within the chip and hence introducing
another very optimistic process for research work.

Bibliography

VLIW-RISP (Architecture & Simulation) Page 74 of 77

Bibliography

[I] M. Aqeel Iqbal and U m a Saeed Awan, 'Reconfigurable Instruction Set Processor
Design Using Software Based Configuration', Proceedings of IEEE computer society,
IEEE International Conference on Advanced Computer Theory and Engineering 2008
(ICACTE-2008), December 20-22, 2008, Phuket Island, Thailand.

[2] M. Aqeel Iqbal, Shoab A. Khan and U m a Saeed Awan, 'RISP Design with Most
Optimal Configuration Overhead for VLIW Based Architectures', Proceedings oflEEE
computer society, 2nd IEEE International Conference on Electrical Engineering 2008
(ICEE-2008), March 25-26, 2008, UET Lahore, Pakistan.

[3] M. Aqeel Iqbal and Uzma Saeed Awan, "An Efficient Configuration Unit Design for
VLIW Based Reconfigurable Processors", Proceedings of lEEE Computer Society, 12th
IEEE International Multi-topic Conference 2008 (IEEE INMIC-2008), December 23-24,
2008, Bahria University, Karachi, Pakistan.

[4] M. Aqeel Iqbal and Uzma Saeed Awan, "Run-Time Reconfigurable Instruction Set
Processor Design: RT-RISP", Proceedings of IEEE Computer Society, 2nd IEEE
International Conference on Computer, Control and Communication 2009 (IEEE
ICCCC-2009), February 17- 18,2009, ~akistan Navy Engineering College, Karachi,
Pakistan.

[5] M. Aqeel Iqbal and U m a Saeed Awan, "Reconfigurable Processor Architecture For
High Speed Applications", Proceedings of IEEE Computer Society, IEEE International
Advance Computing Conference 2009 (IEEE IACC-2009), March 6-7,2009, Patiala,
India.

[6] M. J. Wirthlin, Brad L. Hutchings. A dynamic instruction set computer. In Peter
Athanas and Kenneth L. Pocek, editors, Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, pp 99- 107, April 1995.

[7] Lucent Technology Inc. FPGA Data Book, 1998.

[8] Xilinx Inc. The Programmable Logic Data Book, 1994.

(91 A. DeHon. Reconfigurable Architectures for General Purpose Computing. PhD
thesis, MIT A1 Lab, September 1996.

[lo] S. Hauck, et al, The Chimaera Reconfigurable Functional Unit, Proc. 5th IEEE
Symp. FCCM, 1997, pp. 87-96.

[I I] S.C. Goldstein, et al, PipeRench: a Coprocessor for Streaming Multimedia
Acceleration, Proc. Int'l Symp. Computer Architecture, 1999, pp. 28-39.

-

VLIW-RISP (Architecture & Simulation) Page 75 of 77

[12] Altera Inc.. Altera Mega Core Functions,
hrtp://www.~ltera,~~m/html/~ools/mega~ore. html, San Jose, CA, 1999.

[13] Xilinx, Inc. Virtex I1 Configuration Architecture Advanced Users' Guide. March,
2000. . .
[I41 G. Estrin et al. Parallel Processing in a Restmcturable Computer System. IEEE
Trans. Electronic Computers, pp. 747-755, 1963

[I51 P. Athanas and H. F. Silverman. Processor Reconfiguration Through Instmction-
Set Metamorphosis. IEEE Computer, 26(3):11-18,March 1993.

[I61 J. D. Hadley and B. L. Hutchings, "Designing a partially reconfigured system," in
Field Programmable Gate Arrays (FPGAs) for Fast Board Development and
Reconfigurable Computing, Proc. SPIE 2607 (.I. Schewel, ed.), (Bellingham, WA), pp.
210-220, SPIE - The International Society for Optical Engineering, 1995.

[17] Johannes Kneip, Bernd Schmale, Henning Moller, "Applying and Implementing
the MPEG-4 Multimedia Standards", IEEE Micro NovemberIDecember 1999 (Vol.
19, No. 6)

[18] Trimedia Technologies Inc, "Trimedia 32 CPU Hand Book",
http://www.trimedia.com.

[I91 C. Systems. http://www.chameleonsystems.com/.

[20] Xilinx. XC6200 Field Programmable Gate Arrays, 1996.

[21] Xilinx, Inc. Virtex Configuration Architecture Advanced Users' Guide. June, 1999.

[22] S. Brown and J. Rose. FPGA and CPLD Architectures: A Tutorial. IEEE Design
& Test of Computers, Summer 1996.

[23] Edson L. Horta and John W. Lockwood. PARBIT: A Tool to Transform Bitfiles to
Implement Partial Reconfiguration of Field Programmable Gate Arrays (FPGAs).
Washington University Department of Computer Science Technical Report WUCS-OI-
13. July 2001. (Available at http:/lw)~w.arl.wstl.edu/arl/projectslfpxlparbit

[24] S. Scalera and J. V'azquez. "The design and implementation of a context switching
Field Programmable Gate Array". Published in the IEEE Symposium organized on the
Field-Programmable Computing Machines, held in April 1998.

[25] Athanas and Silverman. "The Processor Reconfiguration m o u g h Instmction-
Set Metamorphosis". Published in IEEE Computer spciery, 26(3): 1 1-1 8, organized in
March 1993.

VLIW-RISP (Architecture & Simulation) Page 76 of 77

[26] Xilinx, Inc.. XC6200 Field Programmable Gate Arrays Product Description. April
1997.

[27] Rose, E. Gamal and Sangiovanni. "The Architecture of the Field Programmable
Gate Arrays (FPGAs). Published in the Proceedings of the IEEE, in July 1993.

[28] J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli. Architecture of Field
Programmable Gate Arrays. Proceedings of the IEEE, July 1993.

[29] A. DeHon. Reconfigurable Architectures for General Purpose Computing. PhD
thesis, MIT A1 Lab, September 1996. . .

[30] By Hoang, "Searching the genetic databases on splash 2" in IEEE Workshop on
Field Programmable Gate Arrays (FPGAs) for Custom Computing Machines (D. A.
Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 185-191, IEEE Computer Society
Press, 1993.

[3 I] S. J. Hauck. "The Roles of Field Programmable Gate Arrays in Programmable
Systems". Published in the Proceedings of IEEE, 86, in April 1998.

[32] P. S. Sidhu, A. Mei, and V. K. Prasanna, "string matching on multicontext FPGAs
using self-reconfiguration", in ACMISIGDA International Symposium on Field
Programmable Gate Arrays, pages 2 17-226, Monterey, CA, February 1999.

[33] Philip James-Roxby and Steven A. Guccione. Automated Extraction of Run-Time
Parameterisable Cores from Programmable Device Configurations. In Proceedings of
IEEE Workshop on Field Programmable Custom Computing Machines, pages 153-161,
April 2000.

[34] By Dehon. "DPGA-Coupled Microprocessors; The Commodity ICs for the Early
21" Century". Published in IEEE Symposium on Field Programmable Gate Arrays for
Custom Computing Machines, held in April 1994.

[35] R. Razdan. PRISC: ~ r o ~ r a m r n a b l e ~ e d u c e d ~ t r u c f i o n Set Computers. PhD thesis,
Harvard University, May 1994. Ap.eecs.harvard.edu:userslsmith/theseslrazdan-
thesis.tar.gz.

[36] C. J. Rupp and M. L. Landguth and Gamerick and Gomersall and Gokhale. "The
NAPA Adaptive Processing Architecture". Published in IEEE Symposium on Field
Programmable Gate Arrays for Custom Computing Machines, held in April 1998.

[37] Xilinx Inc.(www.xilinx.com). Xilinx Plafform FPGAs.

[38] Aziz-Ur-Rehman, Dr. Aqeel A. Syed and M. Aqeel Iqbal, 'Intelligent
Reconfigurable Instruction Set Processor (IRISP) Design', Proceedings oflEEE

VLIW-RISP (Architecture & Simulation) Page 77 of 77

computer socieiy. I lth IEEE International Multi-topic Conference 2007 (INMIC-2007).
Dec 28-30. 2007, COMSA TS Lahore, Pakistan.

[39] P. Bertin, H. Touati, and E. Lagnese, "PAM programming environments: Practice
and experience," in IEEE Workshop on FPGAs for Custom Computing Machines (D. A.
Buell and K. L. Pocek, eds.), (Los Alamitos, CA), pp. 133-138, IEEE Computer Society
Press, 1994.

[40] Atmel Inc., ATMEL AT6000 data sheet, 1996.

[41] Xilinx Inc.(www.xilinx.com). Virrex Series FPGAs.

[42] J. M. Ditmar, "A Dynamically Reconfigurable FPGA-based Content Addressable
Memory for 1P Characterization," Master's thesis, KTH- Royal Institute of Technology,
Stockholm, Sweden, 2000.

[43] V. C. Corporation. Reconfigurable Computing Products, http://www.vcc.com/.

[44] Xilinx Inc., "Virtex 2.5 V Field Programmable Gate Arrays", Advance Product Data
Sheet, 1998.

[45] X. Inc., "Virtex-E 1.8 v field programmable gate arrays." Xilinx DS022, 2001.

[46] TMS320C62x / C67x CPU and Instruction Set Reference Guide Literature Number:
SPRU189C March 1998.

[47] Sascha Uhrig, Stefan Maier, Georgi Kumanov, Theo Ungerer, "Coupling of a
Reconfigurable Architecture and a Multithreaded Processor Core with Integrated Real-
Time Scheduling", 2006 IEEE.

[48] Katherine Compton, Scott Hauck, "An Introduction to Reconfigurable Computing",
lEEE Computer, April, 2000.

[49] Francisco Barat, Rudy Lauwereins, Geert Deconinck, "Reconfigurable Instruction
Set Processors from a Hardware/Software Perspective", IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2002.

[50] K. Solomon Raju, M. V. Kartikeyan, R C Joshi and Chandra Shekhar,
"Reconfigurable Computing Systems Design: Issues at System-~evel Architectures".

Appendix

An Efficient Configuration Unit Design For
VLIW Based Reconfigurable Processors

M.Aaeel lsbal Uzma Saeed Awao . .
Faculty of Eng~nrenng and IT Depanment of Computer Sc~ences

toondataon Un~\cmty. lnst~tutc of Engtncenng and Intemanonal l s l ~ m ~ c U n ~ v e n ~ v . I ~ l m ~ b a d
Management Sciences, ~awalpindi, Pakistan

maqeeliqbal@hounail.com
Police Line, Islamabad, ~akisfan

uawan-80@hohnail.com

~drhocr - The rrconligmrablc processon sn the ka&g custom ASlCs but with design flexibility not available in
platforms being under considerdioe as s role model for custom hardware. The role of FPGAs and rewnfigwable
r e m n ~ r s b l c computing systems An aPpUcation can be WatlY processon include many scientific and signal processing
aerelrmted by phcing iU campuhtionaUy in(rn5ivc portion1 of applicatiom,
donrithmr onto the rrmnfieursble nlntform. Tbr p~inr are ..-.. ~ ~~ ~ ~~

realized because the reant&blr bmputing combine1 the
bmrfill of botk the rofhvam and the ASlC solutions. However,
the advantsges of mo~figumbleeamputingdo not come without
n wrL By requiring multiple monfiguratioas to complete a
cornputstion, the time rrquircd to reeonfigore the hardwan
rignifiemtiy drgndo the p r f ~ m s o c e of such system The
rmcrgiag retonfigunblr archilectvrrs are focusing the efficient
solutions for the mnfiguration usit designs Configuration unit is
responsible for managing d l activities relevant te the system
configuration and beace it plays a riul role in rrconfigursble
procaron. la thi rucwcb paper I. rfncient configontion unit
design bas k n proented for a VXlW bared rccasflgursble
procaror. The p r w n t d configuntioa unit i s expected to be one
of the most rmcirnt design dtem.tivrr being availnblr for
reroafigursble pmcerron Tbe presented CooSguratioa unit
design h opnbk of landiag the miaimurn configuration streams
Mth the mort optimal eoafigunlion overhudl and hmcc It lads
lo a dramtic Lmbmcement in the pdonnsncc of rrconfigunbte
prorruor.

The architecture of a comnutin~ system o h can affect its ~~ ~

performance for a given ap&cati& Issues such as dedicated
and non-dedicated resounes, memory sizes and organizations,
communication interfaces and inshuction sets all affect the
performance capability of wmputing systems. Reconfigurable
pmcessor is a combination of reconfigurable logic Oike
FPGAs) with a general-prrrpose micropmessor wre Oike
standard CPU). The architecrural goal is to achieve the higher
performance than the typically available software-only
solutions with more flexibility than the application specific
intemated circuits (ASICs) as shown in the Fig.2. In
rcro&turablc pm&ors, the micmpmcjror perform tho%
opcntions that cannot bc done efficienlly in the reconfiprable
logic such as Imps, branches and possible memory accesses
while computational cores are mapped to reconfigurable logic
[4]. Performance of reconfigurable devices such as Field
Programmable Gate Anays (FPGAs) now rivals that of the

978- 1-4244-2824-3/08/$25.00 02W8 IEEE

The design of a reconfigurable processor can be divided in
two main tasks. The fmt one is the interfacing between the
micropmessar core and the reconfigurable logic. This
includes all the issues related to how data is transferred to and
from the reconfigurable logic, as well as syochronization
between the two elements. The s a n d task is the design ofthe
reconfigurable logic itself. Granularity, Reconfigurability and
Interconnections are the issues included in this task. The
reconfimble loaic will orovide hardware spialimtion u,
the appkation being under execution. It will provide similar
benefits to those offered by Application Specific Iostiuction
Set Pmessors (ASIPs). ASIPs have specialized hardware that
accelerates the execution of the applications it was designed
for. A rewnfigurable processor would have this same benefit
but without having to commit the hardware into silicon.
Reconfigurable processors can bc adapted after design, in the
m e way as that of programmable processon can adapt to
application changes.

Different coupling appmacha for the reconfigurable wre
beine used in the reconf imble systems include; as a ~ ~

F<ionsl Unrt Coupling, as; ~ o - ~ r & e s s i n ~ Unit Couplmg.
as an Attached Recessing Unit Coupling and as a Standalone
Processing Unit Couplmg as shown in F1g.1. Many of recent
computationally intenswe applications can benefit from the
speed offered by applicat~on ~pccific h x d w m co-pmesson
(ASIC or ASIP), but fog applicalionr with multiple spre~siucd
needs. it is not fcrriblc lo have a dilfnent cepmccssor for
every specialized function. Such diverse applications stand to
benefit from the flexibility of reconfigurable computing
architechlres since one reconfigurable computing unif can
provide functionality of several ASlC or ASIP Co-processors.
Manv reseanh soups have demonstrated the succesrll
launch of reconfi&able computing architechlres 13). Another
a m in which the reconfigurable devices are becoming more
popular is the Systems on Chip (SoC) technology. Known as
Systems on a Programmable Chip (SoPC), the Xilinx [5] , the
Altera [6] and other venders have developed programmable
devices which give the flexibility to application user to include

47

A m e d isensod ure UmlM to. C O U W S INSTITUTE OF INFORM~IONTECHNOLOGI. Cawbadeaon hbrm 21.2004at W:12 han IEEE m. R a r m a a W h l .

Proceedings of the lP IEEE 1ntemrional ~ u l t i t o ~ i c Confirmce. December 23-24, 2W8

-5 1 Pl)yamm.oie
2 ' LIO:es%s

I A r r n ~ m -
Ti; : Pc8forrnanre r c Fkubdi"Grrph

the user reconfigurable area in addition to the sophisticated
intellecnwl pmpcrty mres, embedded processots, mcmory and
other complex lagic all on samechip.

PPGAs or FPGA-like devices are most common hardwas
be~ng used for rewnfigwable romputlng FPGA cmls~ns an
m y of lhc compulat8onal clrmens whore funclronalry ic

detrmned through mult~plc S U M barrd configsat~on b ~ t
,warm These elements. also know a j configwablc logc
IItxLr (CLBs), an. clnnmted using a sel of muung remmes
that is also programmable. In this way, the cuslom circuits can
be mapped to the FPGA by computing the logic functions of
the circuit within the CLBs and then using the configurable
routing to connect the blocks lo form the necessary cincnil.
Although ihe logic capacity of FPGAs is lower than that of
ASKS because of the area overhead for providing undcdicated
logic and muting FPGAs provide significantly higher
flexibility than the ASICs, while still offering a wnsiderable
speedup over gcncral purpose systems as shown in Fig.2. In
addition, the run-time reconfigurability provided by advanced
FPGAs like Xilinx Vinex series has greatly improved the
hardware utilization [S].

11. RELATED &SEARCH WORK

A large number of reconfigurable architectures have been
proposed in the last few decades. The previously proposed
reconfigurable architechlres generally fit inlo one of Iwo
major categories depending on the grain of computations they

map onto r e c o a f i ~ b l e logic. Fine-pined Reconfigmble
Architecrures, such as CHIMERAE (71 intepate the small
blocks of the reconfigurable logic into superscalar pmcessor
amhiteeturn, heating rewnfigurable logic as programmable
ALUs that can be configured to implement the application
specific insmctions. There systems can achieve the bener
perfnnn~~cc thao convenlional superscalar processors on a
wide range of a~plicationr by mapping commonly-executed . .. -

wquencc; of insiictionr onto thcir rwonfigurablc units, but
the max:mwn spedup they can achmc is I nlttcd by ihs small
nmount of logic in Lheu rewnfimvdble units. Coarse-mined
~econfipmbie ArchihNres. such as PipeRench [a] provide
larger blocks of monfiyrable logic that are less tightly-
co&ed with programmable portions of the processor. &.e
m h i t e c m s can achieve extremely good performance on
applications that contain long-ming nested loops that can be
mapped onto the pmeessnr's monfigurable logics but perform
lcss well on applications that require frequent wmmunication
beween programmable and rewnfigurable portions of the
processor.

111. PROPOSED ARCHITECIURE

The p e r t o m e of the monftgurable processor is mainly
dependant on the time overhead required by it to cod~gwe its

recontigurable function units (WUs). Normally it har been
observed t h l this cmfiguration overhead negatively hits la
the wmpufational spced of any monfigurable processor [I].
Hence researchers arc now focusing the irsuc of configuration
overhead minimization for recanfimble prncessors (11. In . .
this regard many software and hardware hased snl~tionr ha\c
bcrn propord which lncludr the Configuntion C m p r a s i o ~
~ i c Configuration Cubing, the Configuration Clon~ng, Pantal
Configwacon. h e Run-urne Conliguraticn [I]. Mu!li-threaded
Confipnuon, !he h t Parallc' Configuration, the Intc'ligent
Configuration I?] and the iOptimal Cuuliguau~n (11 elc.

In order to minimize the configuration overheads for the
recoofigurablc processom; an efiicient hybrid design has been
proposed for configuration unit of a typical VLlW based
reconfigurable processor. The proposed design includes bo!h
the hardwired and the programmable logic modules. The
reconfigurable processor being targeted in I& research paper
is a VLlW processor having a very long inswction word of
eiehl insmnions where each inrtrvction is 32-bits instruction. -
Cuufigurauon unit p lqs a vilal role in h e ?crformulrc
enhulcemmt ofthc reconGgunble processor. lleccc in such a
tyge of processor thcre is an extra h a r d w e unit being known
as configuration unit along with srandard micro-programmed
wnml unit whow job is to manage the configuration
activities of the reconfimble omessor. The location and !he
interconnections of the configuration unit inside a typical
VLlW bared rcconfigurable processor have been shown in
Fig.3. Few aspects of dsigx &e described below.

A. Imllvcrion F a m u Encoding
In case of a styldard pmgamnble mimpracersor the

instruction format is mainly composed of an Opcode and an

IEEE Inlemarionol Muhilopic Conference. Decunber 23-24, 2008 Proceedings of fhe 12*

m* 1,pk.I USP l.,Q&b. F*sll

Operand addresses field. The Opcode of the insmction
f m t defmes the nature of operation m bc pcrfonned by the
instruction while the opemd addresses field defines the
source and destination addresses for data operands for thu
operation. In a similar way the insrruction format of
reconfigurable processor is consisting of an Op-code and ils
operand addresses field but the Ogcode of the insmaion is
bang mapped or convened into an address of either the
confiaurallon table enw which contains the effective -
ajdreues if concerned anfigumuon s m m s in ~ur~figmrton
mcnlcry o. 11 IS i w l f m cffeclweaddrc~s of the cor.fil(wanon
rvcdms in the multi-Don confiwation memorv. Confimu;ition - -
memory being used is a multi-pon random access memory
which conrains a set a configuration streams that are required
by the RFUs of reconfipable processor to configure h e
relevant hardware modules like Addcrr, Subtnctors,

Multiplie~ and Shifterr etc. Consider the Fig.4 for instruction
format of a typical reconfigurable prwessor.

B. Gmputntionnl Pipeline Design
The proposed remnfigurable processor is a high speed

VLIW based design using an intensive pipelined architmure.
W wmputatian pipeline contains a Fetch Unit (RIX
Schedule Unit (SU), Dispatch Unit @U), Execution Unit (EU)
and Regisla Window (RW) as shown in F ig5

The FU of the pipeline is responsible to fetch a packer
(Long Word) of eighi insmtionswhere each instruction is a
32-biu insmction. The N is a Slate Machine (Mealy
Machime or Moore Machine) bawd module. It fetches a long
ward corn the instruction cache of processor and loads it into
the SU of the pipeline.

The SU of the heioeline is reswnsible for whedulin~ the
received long wordfrom the FU. SU loads the long wordinto
the DU of thc pipeline and Op-ccdes of all inswctions of the
long word arealso uansfemd towards the configuration unit
of the pmessor which updates the RFUs configurations wid
accordingly sends the dispatch sigaals to DU so that the
insmction can be dispatched to their relevant RRls.

Thc DU of the pipeline is responsible for dispatching the
insmctions of long word into their relevant RFUs inside the
EU for execution.

The DU contains a layer of eight De-multiplexers whose
conuol signals are received hrn the configuralion unit of
pmcesror. Each De-multiplexer is a I x 8 DMUX of 32-bits
size. It uansfers one insfmction of the lmg word ro one af the
eight RNs which has been reconfigwed for it by the
configuration unil.

Ths EU of ths pipeline is rerponsible for the execution of
the insmctions of the lone word. The EU contains a laver of
eight RFUs. Each RFU has been integrated with an FPGA
core likc provided by the X i l i i Corporation and a layer of
common hara buses. The FPGA wre is configured by the
configuration unit of the processor according m the execution
rcqviremeots of running application pmgram. The proposed
design is a Register-Register hhitecture in wtuch the soune
operands required by each insuuctian ue fetched fmm the
register window of h e processor and similarly the results
generated a h the execution of wch inswction are rtorcd
back rempordy to same register window of processor.

The register window of pipeline is responsible for providing
the so- data operands for the execution of eight instructions
of the long word and tempmily storing their results. The
register window contains a laycr of thirty two registers where
caeh register is a 32-biu register.

Proceedings of the 1Th IEEE Intemorionol Mvllifopie Conference, December23-24. 2008

~ -

The main job of the configuration unit is to update the
loaded configwations of the RFUs according w the changing
requirements of the running application. The RFUs have been
integrated with the high speed partially monfigurnble FPGA
cores like those provided hy the Xilinx Vinex series of
FPGAs. RFUs d e the actual execution layer of the EU
being available inside rhe wmputatioml pipeline. The
rcco&unble systems mostly require a lot of ti& to perform
this configuration update prwas. Hence this wnfiguration
overhead greally d e p d e s ihc performance of such systems.

In order to optimire ihe configuration overhead of a rypical
reconfigwable processor based on VLlW architecture; a
unique idea of W U Parlial Configuration har been

introduced. In this technique the configuration unit constantly
keeps on monitoring the currently loaded configurations and
newly demandcd configurations. It maps the newly demanded

configurations aa the cvrrently available configurations and
maximixes the reusability of the already available
configurations and loads only thore configwtions which are
no more cuncntly available in any Rlll of the reconfigurable
processor.

The contiyralion unit contains a layer of Opeode Map
LDgic (OM) which acmlly compares each Opcode of the
incominn lone w a d with all Opcodff of the currently - -
configured long nord in the RFUs. This mapping pmcss is
wriormed concurrently with a high spced ASIC c~ruull uhtch
contaim a parallel network of camparators as shown in Fig.7
and in Fig.8. All those opcods who have been compared
vith any of the existing m o d e s are then allacatcd their
resoective WU no. where thev will be executed. Ifan OD-code
has oot been compared with any one of the existing opcodes
then it is not allocated any RFU no. mis information of RFU
allocation or not allocation is rent to nvo programmable logic
cnntmllers. One is known as the ConPgurorion Memory
Connoller (CMC) and is responsible to genente the RFU
Configurntion nddrrzses for only those RFUs who really need
configuration updation and a1 the same time it calculates and
sen& the sufficient conml signals to DU of computational
oioeline. On the basis of these simals the DU disuatches the
~~tructitions inlo their relevant R k s . Second is &om as the
O ~ ~ o d e s Memory Update Lo& (OMUL) and is responsible

update the o&codes memory contents according to the
newly arrived opcales of the long word. The lime taka by
the Map Logic to cornpan the all incoming op-codes with the
all existing opcodes is always conslant and is equal to
1Cycle. But the time laken by the CMC and OMUL are
variable and are dependent on the na of the newly anived
op-codes that are not matched with the existing op-codes and
it may v a q fmm M y c l a w 8-Cycles. If all op-codes are
matched then its latency is OCycles and if none of them is
matched with the existing op-coder then is latency will be
8-Cycler and so on. For thorn applications where the same
operation is repeated again and again like the operation of
convolution in conventional DSPs; they will always bc given
0-Cycle laency and hence it dramtically enhances the
eompufation speed of the system by minimizing the
configuration overhead m &Cycles. Such kind of drastic
performance revolutions that have been observed are shown in
the performance graph of RISP in Fig9 which have k e n
obtain by using the proposed configmlioo unit ia a typjc.31
VLlW bascd recomigurable processor and benchmarking ils
performance with a DSP (TMS320ChX). The coniiguration
unit has a RFU Confirmration Conholler and a Multi-port
Conf ipn tm Memory as shown in Fig 6. RkU configu-ahon
conmller s rcnpomiblc for providing opt~mal configratiun
overhead. The multi-pl wnfiguration memoty contains a set
of most frequently used configurations that can be

Procepdngs offhe lf'lEEElnfemofiona1 Mulriropic Conference, Decmber 23-24.2008

dynamically changed during the execution of the application
by loading them externally thmughConfiyralion EPROM.

Iv. PERFORMANCE ANALYSIS EQUATION

Following is the mathematical eqpation being formulaled
for the calculations of the total no of cycles (Trow), consumed
for the updation of the RFU wnfigurationi for each of the
VLlW packet. Consider the equation parameten in Table.1

" . "

being under active research work. The following topics outline
the different asoecis of rcurnfieurable computing that research . -

has been addre& in the p a s l k r a l years:

A. ReconjgurabieArchiieefu~er

Device and system architeclures are being devclopcd which
propose the various ways of organizing and interfacing the
umfigurable logic. Some monfigurable architectus are
based on w e grain functional uni$ that are configured on
fhc Ry to e x ~ u t e an operation fmrn a givm set of operations.
Commercial architectures arc exploring integration of
monfigwable logic and microprocessors on the same chip.

6. Reconjgumbb Applications
Somializd confirmrable architechlies. which are utilired far -

speding up specific applications, are replacing some ASICs.
Some appl~llfations also exploit optimization based on a spmfic . .
input instance of the cornpuration.

C Algon'lhmic Syntherir
Dynamically reconfipble architecectum give rise lo new

classes of problem in mapping computations onto the
architectures. New algoriifunic techniques ~IX needed to
schedule the computations. Existing algorithmic mapping
techniques focus primarily on loops in general purpose
pmpms. Loop svuctures provide repetitive computauong
scope for pipelining and parallelkation are candidates for
mapping to monfigurable hardware.

TABLEI ANALYSIS EQUATtDN PARAMETERS

Parmmrter 1 Par~rneter I Pouible 1
Dwri tiom Vdu"

T i m wlral m map o m o p
~ M L Eodcr with dl of the misting I Qclc

T~r.w"irdLO+lethr
opccdesmmory fornrvop 0.1.2 ... 8 C y d c

rtm ~quiw ~ogmsnte thr

TCHC RNmfig.ddwssand 0. 1.2 ... 8Cyda
dil hhunifv da

T i m w i d lo configwe dl
TW R N r fa u c b of rrw 0. I Cyslr

D. S0fM.m Took
Current s o h m l s still rely on CAD based mapping
techniques. But then are several m l s being de~loped to
address nm-dme monfigurafio~ compilation from high.level
languages such as C, simulation of dynamically resonfigurable
logic in software and complete operating system for
dynamically reconfiguable plalfom. There is a significant
lack of research in development of models of reconfigurable
architecture h a t can be utilLed for developing a formal
framework for mapping applications. The Rmonfigwable
Mcsh &I was the earliest theoretical model that addressed
dynamic reconfiguration in computation and communication
soucue. However, Recanfigurable Mesh model is more
theoretical and hardware implemenrations have only been able
to approximate the delay and spced assumptions in the model.
There have been several search efforts thal focused on
developing arcbitechues and ths w i a t c d soffrvam tmls fm
mapping onto their specific architecture. Some of these projecs
have addressed generic mapping techniques that can be
extended m a class of the reconfigurable architectures. Such
projects includeGarp [9], PipeRench [8] and SPLASH [lo].

Customizing the configurable hndware to suit the
computations h been acknowledged as the most significant
advantage of such architectures. Some nsearchers have
adaped the hardware to paform computations with exactly the
required precision for the wmputations. Such static approaches
do not erdoit the abilih of confi~wable hardware to be
adapted to'the exact precisyon as the computations
pmgrers. The maximum possible precision of vsrilbles, which
is d-&mined in the sWi; aoomaih can still involve execution

and wmponents, precision being one of the parameters. Most
FPGA device vendors pmvide such highly optimized
parameterized tibm'es for their architeaures. EffoRs have also
been made to g e m & such modules using the high-level
descriptions

Pmceedingr o/the 12"IEEE Inlernorionol Multifopic Conference. December 23-24.2008

1 & - & l rrwu-4r- = -
Pt=.rsrl

: .

Fig. 8 !lap Lopic

Sevaal simulation tools have been develop& for the
reprogrammable FPGAs. Mort of the tnols are device based
simulators and are not system level simulators The most
significant effon in his area has been the Dynamic Circuil
Switching (DCS) based simulation tools. These m l s study the
dynamically reconfigurable behanor of FPGAs and are
integated into the CAD h e w o r b Though the simulation
tools can analyre the dynamic circuit behavior of FPGAs, the
tools a-e *ill low level.

In domain of reconfigurable computing the reconfigurable
processon are becoming an imponant pan of ressarch due lo
their ability to exhibit the high performance of ASlCs and
flexibility of programmable processors. The pcrfonmncc of
such a processor is greatly dependent on the configuration
overhead required by it to provide the flex~blllty of hardwax
desip. In order lo provide the most optimal configuration

overhead for these pmesrors, an efXcient configuration unit
design har been progored which always Irks to optimize the
configuration overhead by loading the minimum possible
configuahn bit sbuuns. The proposed configuration unit
always analyzes the coniiguration requirements of the
application being under execution and loads only those
configurations which are not currently available in the RFUs
and thase which arc avxilablc art reused as many timer as
needed The paformance band of computing can be greatly
e n h c e d by using the rewnfigumbleproccsson which will be
inlegated with such kind of efficient canfiguration uniu.

.
009 E E E International Advance Computing Conference (IACC 2009)
'atiala, India, 6-7 March 2009

Reconfigurable Processor Architecture
For High Speed Applications

' M . ~ ~ e e l lqbal
Faculty of Engineering and IT

Foundation University, lnstirute of Engineering and
Management Sciences. Rawalpindi. Pakistan

maqeeliqbal@hotmail.com

Abstraa - Revolutions in the domain of computiq haw
molded the slmclurtr and chnrncfer*rirs 01 computing systems.
Convrnrionnl cornpuling rrchniprs involved the urr of opplicohon
rprciJic inlegrued cirrrrirr lo achieve n high perfomonce ol lhr

ond prrj'ormmcr of Sysfmr. Rccon/igunrbb cornpuling cambinrr
rhr high speed of opplicuion sprc$ii inregrad rircuiu with thr
fleribiliry of the pmgrammbk prorrrsorr. The reronJigunrbk
proerrson hove funher boosted up Ihc dmmaic m f m of
rrcanfirurab& c o m u l i n ~ msrrmr. 7'hest morrrsorr confirmre the

- 0 . " , ."
most o p h l ond eflicirnl hardware resources according to fhr
demands of running opplicnrion. Thr ronJigurrd hardwore

new demand, of lhe running opplirmion. In fhis rrrrorsh paper
reronfigurabk pmeraor mchitrrlurr hm 6em presented for high
speed o p p h l i o n r The pmporrd rrconfigumblr pmcrrror i s based
on vm lone insrrucfion word mhifcclurc. me ,wopmcdproccssor
is urinr on cffihnt multi-1hread.d ronlimmfion ronrmnrr and a " - - -
multi-porled eon/ixuIorion m a o r) , fo ronl@rr the muh$e
reconfigumbk junefion uniu eoncurrrntly with minimum p s r i b k
conjiigumlion orrrhed.

Kewordc - Configurations, Configuration Oveheads,
Reconfigurable Computing, Reconfigurable Functional Units.

I. INTRODUCTION

Reconfieurable mocessor i s based on a reconfinurable "

f~nctional un~t (R F W bemg ~mgmJ in,ide the pmcr.s,ors ;ls

5huu.n ir. FIC I . WJ is r'onlrwvcJ cf rNnv ~urll~uLltlon3l
elcmenu whore functionality can be determihed &ough the
programmable configuration bit streams. Reconfigurable
computing is introduced to fill the gap between hardware and
software based systems. The goal is to achieve the
performance bener than that of software based solutions while
maintaining the greater flexibility than that of che hardware
based solutions as shown in Fig. 2. Reconfigurable computing
is an alternative of the superscalar and VLIW paradigms. The
main distinction between a rewnfigurable processor and a
s-:.
standard processor is in the insmction stream. In its pwest
form, a remnfigurable processor has no cycle-by-qcle
instnction stream. Rather, thc processor is mnfigured by
loading a complete specification of the function of each part of
it at once. Once mfigured, the intention is for the processor
to mn in that contigumtion for a decent intend before being
reconfigured. Each configuration responses an ASK-Like
circuif like that specialized far the particular task at hand.
Changing configurations might take from a few clock cycles
to a few thousand clock cyclcs. In accordance with the simpler

'~zrna Saeed Awan
Depmment of Computer Sciences

International lslarnic University, lslarnabad
Police Line. Islamabad, Pakistan

uawan_80@hotmail.com

~fomammina mechanism, the dvnamic forwardinn crossbar is . - - -
replaced by a less flexible configurablc network for making
mtic connections amone, the functional units and shon queues
of retiming registen ask ia ted with each functional uoit takc
the place of the traditional processor's shared, multi-ported
register file.

The most fascinating and familiar 90-10 rule asserts that
90% of execution time is some times consumed by about 10%
of a pmgram's cade and that 10% is generally c&nprising of
inner loops. Reconfigurable processors excel in those c a r s
where the computation represented by a configuration is
repeated many times and so the time required to load a
configuration can in amortized over a long execution time
andlor overlapped with other executions. When all of an
application's imponant loop bodies can be configured to fit
within the reconfigurable pmcesror (one at a time), there
would secm to be no need for the overhead of a fully dynamic
instruction fetch and issue mechanism, allowing the pmcessor
to be leaner and more eficient. By reducing the hardware to
just the essentials needed to support computation, lhe
reconfigurable processor scales better to larger sizes than the
more complex supencdar and VLIW based systems
Although a native expansion of the configurable network
would cause it to grow quadratically with the number of
functional units. it only needs to grow enough to support the
connectivity required by the real applications. Furthermore,
unlike a supcncalar or VLIW processor. Ihe reconiigurable
processor can easily exploit not only simple instruction level
parallelism but also inter-itrration and thread parallelism.
making reconfigurable computing well poised to work with a
large number of functional units.

J
Fig. I Rcconfipuuble Procersor Data-path

Fig. 2 Perfoimancc vs Fleribility

I1 RESEARCH WORKIN ACIIVE DOMAIN

A l a r a numkr of reconfigurable computing systems
have been proposed with different debign objectives.
parameters, methodologies and implementations but they do
share the same design framework. Reconfigurable functional
units (R N s) with the configurable interconnects are the
foundation of a reconfigurable computing platform. Various
configuration combinations can define numerous possible
functionalities. Design implementations of a monfigurable
processing unit can be a simple microprocessor or even a gate
level operator such as lookup tables being available inside the
CLBs of most of currently available SRAM based field
progranunable gale mays (FkGAs). Inferconnects or routing
networks in different reconfigurable systems have different
smcmres as well, such as mesh, linear and crassbnr structures.

For reconfigurable systems a compiler based software
tool is required to map an application onto the rcconfigurable
core. This a~olication is expressed in the form of . .
configuration bits used to define-the operation of each CLB
and inter-connecr This compilation tool can bc as simple as an
assisting tool that helps a pmgrammer to perform manual
circuit mapping and can be as complex as a fully automated
system that wn deal with all configuration works by itself.
The conlfigurablc nature of a reconfigurable system allows the
hard- to be programmed with new sets of configurations to
suppon new operations. Depending on the nature of the
architecmrc, some systems can only be reprogrammed in non-
executing state and are commonly known as simple
reconfieurable systems while some may support dynamic "
rucuufiguro~~on A the NU t>rnP hy illownp m operatton lo be
altcrcd 3unna exucu:lun and ire commmly knoun a, rmulne -
reconfigurable systems. The reconfiguration process latency
will dsu vary from sysrem to system and from hardware to
hardware to-be reconfigured. Recently a large number of
reconfigwable computing systems are available in the market:
as w r l l m n y still "nderp research. Followings are the some
of well known examples:

A- MIT Raw:
The MIT Raw (11 is based on a mesh smcmre of
interconnected simple RlSC processors cares. Its basic design
goal is to benefit the parallel execution of applications from
multide microomcesson at a come-grained environment
The ;otic contmunicauon nctvurk in the ~rch~leclwr makc>
g.mJ use of prcdefintd cummunicalion pattern al cornplle
tlme and reduzcs network latency by uell ah& prcp3saIion.
' h s u ih . tu~ure csn prw:Jc grcel flex,bihly and pccssin:
mwer kvond that of a sinele orocessor. Raw can perform - .
k l l with'mdom programs but i u performance is muih bener
with o d e l aoohcations. Howevcr, high power consumption . . - -
will result from the execution of multiple processors, which is
a big drawback of the architecture.

B- C.MU PipReneh:
The heU PlpeRench 131 is hadware based computing
solution being specialized for pipcline based applications.
Run-time reconfiguration of hardware modules is used to
execute a large sized application using small amount of
hardware resources. The efficient architectwe and simple
implementation of the design dissipates less than one wan of
average power while achieving good performance. This
architecture is a perfect candidate for pipcline based
applications because of its highly specialized design. small
area consumption and low power implementation.

C- xpurer:
The Xputer [6J is a computing design suggested to use d a b
driven conuol instead of insmction sequence control as in
conventional computers. Its basic aim is to avoid data latency
and data dependency problems by executing in the order of
data accessing sequence. The applications with regular data
parterns such as multimedia, smaming and encryption
applications can fit well with Xputer design.

D- NEC DRP:
The NEC DRP [7] is a coarse-grained reconfigurable sysmn.
The syslem composes of many small processing elements for
computations where repository of contexts is stored on-chip.
Bv choosine a different context. the chip will implcmrnt a
dkferent da&path lo rcprcscnt u new o&ation or igorithm.
This feanue enahles the dynamic run-time reconfiguration in a
single clock cycle. Applications such as networks, image
pmcessing and signal processing work well with the parallel
processing environment and fast run-time reconfiguration for
any dynamic events.

G NASA Evolvnble Hardware:
The NASA Evolvable Hardware (81 is reconfigurable
hardware with the configuration process working under the
conml of a genetic algorithm In evolutionary synthesis of
analog and digital circuits, a htudware circuit evolves lo
realize a design specification dynamically at mn time without - .
the need of any pre-defined information. The ultimate goal of
this research is to develop an architecture that can adapt to any
possible environment without any human control. Hence the
theme of the design is to provide an evolvable intelligent
machine that can be used to perform work independcnlly in
environment such as space exploration. Negatively hurting

4 2W9 IEEE Intemnrionnl Advnnce Computing Conference (IACC 2009)

parameters of design are the resource demanding and time
consuming evolution process.

F- IPFkx DAPDNA:
Thr IPWex DAPDNA [9] is basically a dual-core processor
including a RlSC core coupled with a two-dimensional
processing mamx. The two-dimensional processing matrix is a
rrconfiprnble core. The reconfiguration of the processing
matrix is controlled by the RlSC core to suppon different
operations to achieve parallel processing efficiently. The
system has shown a dramatic performance gain for multi-
threaded applications.

G- Mathstor FPOA:
The MathSm FPOA or Field Rogrammable Object Anay
(101 swtem is ao enhanccd FFGA based solution. lnsfead of . . ,
using CI.Rs or lookup tables as elementary cell in the device,
F W A uses its o m building block, as foundations. Having
pre-defined block types allow the blocks to achieve higher
performance gain. less area consumption and a better
communication with other working blocks. PipeRcnch is a
hardware bared pipelined architecture with great flexibility,
while Raw is software based general purpose processor
approach with enhanced parallelism. The two systems arc very
representative to the two extremes of design. NEC DRP.
IPFlex DAPDNA. and MathStar FPOA are commercial
products and are FPGA based solutions with higher
griu~ulxity and advanced features.

H- Chimerae:
The Chimerae 141 is a fine-grain architecnue which integrates

~ ~

the small blocks of recohigurable logic into supericalar
processor architecrures. wearing the rcconfigurable logic as
programmable A1.Us that can be configured to implement
application-specific insrmctions. These systems can achieve
the better performance than the conventional superscalar
processors on a wide range of applications by mapping the
commonly executed sequences of instructions onto their
reconfigurable units, but the rncximum speedup they can
achieve ic limited by the small amount of logic in their
reconligurable units.

I- Remarc:
The Remarc 121 is a coarse-grain arclutecutre which provides
larger bloclo of recanfigurablc logic that are less tightly-
coupled with the programmable portions of the processor.
These architectures can achieve extremely go& performance
on applications that contain long-running active nested Imps
that can be mao~ed onto the Drocessor's reconlieurable ways . .
but perform less well on applications that require frequent
communication between pragramnuble and reconfigurable
portions of the p m e s s o ~ . $stems such as ~ilch&d that
integrates WGAs into conventional workstations over the
prowssor's memory bus display similar behavior, although the
relalively low bandmidth of a micropmcessor's memory bus
makes them even more sensitive to the amount af the
cornmuoication that an application requires benvcen the
processor and the FPGA.

IU. PROPOSUJ PROCESSOR ARCH17ECTURE

In this section the detailed architecture of the proposed
reconfipuable processor has been discussed. The detailed
architecture of the proposed processor is shown in fig. 3 and
the different modules are discussed below along with their
functionality.

A- Inprl/Output lnletfarr (101):
The 1 0 intenxc of process"$ is used to runununliblr wth t'lc

ciwrnnl device, k i n e interfaced with rt. l h e fin! iub of the
uo Interface is to load the configuration streams fmm external
Configuration EPROM or main memory of system during the
booting pmcesses of the processor and it takes only a few
clock cycles. These configuration swams contain the different
hardware modules likc Addcrs, Subtractnrs. Multipliers and
Shiftem etc. The second job of the 1 0 interface is tn load the
instructions and their relevant data operands to be executcd on
the processor. The third jab of the 1 0 interface is to store the
results of the computations performed on the processor in
main memory of the system. The fourth job of dle I 0 interface
is to send and receive the control signals generated and
acknowledged by the control unit of the processor to the
external devices.

B- J'refetch Unit (PFUJ:
The basic job of the PFU is to fetch or prc-fetch the instruction
slrcam and the data stream of the application program being
under execution. Fetched insrmctions are loaded in the
IRFrrucrion Pool and then transferred into the Inrtmction
Cache. Similarly the data stream is loaded into the Data
Cache. Consider the Fig. 4 for instruction format encoding of
the p r o p o d processor.

2009 IEEE Infernational Advance Cornpuling Conference (IACC 2W9) 735

Consider the Fig. 5 of VEU. The VEU contains the following
m i o r modules.

Fig. 4 Processor lnsmction Format Encoding

C- Insmcrwn Scheduling UniI (ISU):
The ISU is the micro-programmed implementation of the
TomnsouloS Algorithm being used in VLIW and Super-scalar
processon for the scheduling of the inswctions. The
instruction scheduler reads insmcfions from the instruction
pwl and then it analyzes them for dependencies (if any) and
resolves these dependencies. Dependencies being analyzed
include Data Dependency, Conml Dependency, Resource
Conflicts and Data Hazards dc. Then it afcer analysis ISU
umsfers these instrunions to insrmction packing unit (IPU).

D- lnslmction Packing Unit (IPU):
The main job of the IPU is to pack the eight instructions in the
form of a VLlW The 32-bits insmctions transferred hum the
ISU arc given to the IPU. The IPU arranges these insmctions
in a buffer in a FIFO order on their arrival from the ISU. After
the arrival of each instruction, the IPU incremenu its
instruction counter and checks either there are eight
instruction arrived from the ISU or not. If a total of eight
inrrmctions have been arrived from the ISU then the IPU
transfers them into a VLlW buffer of size 8 x 32-bits. Then it
enables this buffer to transfers this VLrW to insrmction cnche
of the processor if signal Load-VLIW =I. The same process is
repeated constantly throughout the application execution.

E- VLIW Fetch Unit (VFUJ:
VFU is a slate machine based unit and works like a
programmable counter. V N fetches VLlW from the
in$mction cache and the Op-Codes of all insmctions of the
VLlW are wansferred to the Configuration Management Unit
and the VLlW itself is transferred to VDU.

F- VLnVDispaf~h Unit (YOU):
VDU is consisting of an array of eight De-MUXs whose select
lines are c o n m l l d by the configuration controller. According
to the select lines activated by the configwation controller all
of the inswctions of VLlW are dispatched by M U to their
rclevant RFUs.

G- VUIVExecurion Unif (VEUJ;
VEU is the core component of the processor because it
contains an array of RFVs k i n g used for program execution.

a) ErfemnllO Logic (ElOLJ:
The ElOL of the VEU is used to load insrmctions in Ihe
instruction register, source operands in general-purpose
regislcn and the canfiguration stream in RFUs. The second
job of the ElOL is to store the configuration stream being
loaded in the RFUS for the analysis purpose and results being
generated after the execution of VLIW. The source operands
Sr-land Sr-2 are loaded into the internal general-purpose
registen (GPRs) by the External De-MUX of size 1 x 24. The
address given for the Data-in is connected to the select lines of
De-MUX as well as to Decoder (5 x 24) input. De-MUX
selecu one nf the general-purpose registers for data loading
and the decoder enables i s output channel connecting to the
registers Ouuugh the MUX of the size 2 XI. Thn MUX
receiver 32-bits data operand from External De-MUX at input
"1" and receives 32-bits results from RWs at the input 'l)". If
the Ent-10-En4 then it selecu the result coming from the
RFUs and loads it in the register. If the ExtlO-En=l then it
selects the data coming from the External De-MUX and loads
it in the registen. Since there are eight RFUs that can load
their results in the same register, hence in order to solve this
problem an 8 r 1 MUX (32-bits) is interfaced with each
register input. Each MUX is conmlled by the RFU Data-porh
Conrroller which analyzes the Destination Addresses of all the
RFUs and selens only that RFU whose output is valid output.
In order to store the results and the flags being available in the
GPRs and flag registers (Rls) into the data cache of the RISP.
the 32 x 1 External MUX (32-bits) is used which can read the
contents of the selecied rcgirter.

b) RFUsDoh-in/Dara-out Logic (TUJIOL):
lo order to loadlstore the data across the RFUs there are two
32 x 1 MUXs (32-bits) and one I x 24 Dc-MUX (32-bits) for
each WU. Using the two MUXs the RRI is ahk to mad the
source data operands (Sr-l and Sr-2) from any one of the 32
registers and using the one De-MUX it stores its ~ s u l t s back
lo any one of the GPRs. Flags generated during the execution
of the VLlW are loaded into the relevant FRs.

16 2W9 IEEE Inrernarionol Advanc*

FA < D--.mrrl- C--..&*" 1 ,"it

Computing Conference (IACC 2009)

C) General-Purpose and Flag Registers (GFRs):
There is an m y of eight FRs (32-bits) and twenty four G P O
(32-bits). GPRs can be read and written by the programmer
but the FRs can only be read by the programmer and can not
be written. RF'Lls can readlwrite any one of lhrso thirty two
registers. Morc than one RFU can read the contents of the
same register at the same time but only one RFU can write in a
register at the same time.

d) Registers hpul/OupuI Logic (RIDL):
FRs are loaded with the flags, being generated by the RFUs
and can be read by the programmer through the External
MUX. In case of the GP&, thc pmgranuner can read the
registers through the External MUX but in order to write
contents into registers there is a 2 x 1 MUX (32-bits) which
selecls the data for the register either from some RFU output
or from data cache. The 8 x I MUX interfaced at the input of
the 2 x I MUX selects the valid RN for the results to he
stared in the register. In order to select the valid RFU for
results, there is a RFU Data path Controller as shorn in Fig. 5
is anached with all MUXs. Thin convoller reads the select
lines of all the De-MUXs of RRls and after analysis it selects
that RFU whose output is a valid output.

e) Reconfigurable Fundionol Units (RFUs):
RFVs are the computational units of processor and can be
reconfigured at any time according to the application demand.
They have been tightly coupled in the form of an integrated
FPGA care.

H- Conjiguraiion Manngrmcnf UniI (CMU):
ChlU is composed of a Configuration Controller and a Multi-
p o n Configurufion Memory as shown in Fig.5. Configuration
conuoller as shown in Fig. 6 receives the opcodes of the eight
insmctions of the VLIW from the V N and on the basis of
these opcodes it decidcr to load one of the configuration
blocks available in the memory for each RFU (if required).
Also it checks if the op-code is a No Operation (NOP) or is
ssmc us that of any one of the existing op-cdes. If so then the
configuration controller docs not load this new configuration
into the R N s bet the hardware that is already loaded in the
RFUs is reused and hence the configuration time that was
required for the recanfigurntion of KFUs is saved. llencc only
tliosc R R l s are reconfigured that are quite new ones. Hence
the processor always takes the minimum possible time to
reconfigure the R F V s during the execution of the application
program and always has the most optimal configuration
overhead. A micro-programmed control unit has been u a d to
work like a control unit of processor.

IV. PERFORMANCE ANALYSIS h l u U E ~

Following is h e mathematical model being formulated
for the calculations of the total no of cycles (TT& cnnsumed
by proposed reconiigurable processor for the execution of an
application. Consider the Table. 1 for the model parameters.

Table. 1 Mathematical Model Parameten

(Parameters Description I Possible Values I

Performance statistics have been m s u r e d in terms of the no
of clock cycles consumed by a typical DSP 151 and proposed
reconfigurable processor for the execution of different
application programs. It has been observed that the segments
of code of an application containing loops of repeated
operations will be drastically boasted up when executed on the
proposed reconfigurable processor as shown in Fig. 7.

V. COMPARISON WITH EXlSnNG ARCllllFCnmES

In this scction the propmed remniigurable processor
architecture is compared with some of the well known
recoofigurable architectures.

A- Configuration Granulariry:
The proposed processor is fine grain architecture. n e r e exist
many systems using this approach like CHIMERAE 141. Using
fine grain approach the system can bc reconfigured at
insuuetion level and even al operator level. But there exist
many other system which use the coarse grain architecture
and can be reconfigurcd at U U level. Among them are
REMARC 12). PipeRench I101 and RAW [91.

D- RFU Coupling Approach:
The proposed processor is a tightly coupled architecture like
CHIMAERA [4]. Others m y use a coprocessor approach or
attached processor approach. Tightly coupled designs have the
small configuration overheads but IT suffered by the
dependant execution of RFU with standard CPU core.

Fig. 6 Configuration Controller

2009 IEEE Inremarionol Advance Computing Conference (IACCZWY)

P-I P.2 P-3 P-3 P J P 4 P-7 P-8 P-9 P-10
SlmulaIed ~pp~CaLf0o

Programs

Fig. 7 Proposed Pmcessor vs DSP

C- Operands Address Decodinx;
The pn,posed procesur ic based on a firell operond rodrng
,theme hkc PtprRench 131 BUI \ome drslgn, a e bawd on the
hordw~rcdop~randrvd~nq s~hemd hhe CHIMAERA I J J

the execution of the application. Reconfigurable processors
arc very suitable processors for those applications where the
different kinds of processing unis are frequently required to
boast up the performance of the application.

 REFERENCE^
[I{ M B . Taylor. W. k I. Miller. D . W e n M . 1. Bran 8. Grrenwald. H.
Hoffmam~ P. lohnsm J. Kim. I. P I M ~ , A Saraf, N. Shoidman. V. Svumpeh
M. Frmb, S. Am-ioghc, md A Agmal . "Eraluaioo of the Raw
Mioopmsror An Expod-Ww-Delay hhilrcrvre for W and Strrm'.
R o c d o g s of the Inuma"oaal Sympaivm on Compvrsr Archisxhm 2 W
June Zan.

p1 MiyamM. T. and Olukm~q K. REMARC: Reco~gurablc Multimedia
A m y Copmccsm IElCE Tranrstirms on l n f m i o o m d Syrumr E82-D.
val. pp. 389-397. Feb, 199.

131 H. Schmil, D. Whelihah A Tsi. M. M n . B. LPvinz aad R. R. Tayla
"PipRro~h: A Vi""a l i~ F m g m m b 1 s Dnlapatll io 0.18 Mi-
Technology'. Roccedingr of Custom Inupled C i ~ u i D Confm- (CICC)
2W pages 63166. May 2mt .

IS1 TMS32OC6211 C67r CPU and Lnrrmsuao Set Rehence Guide titcratm
NvrnbK SPRU189C M m h 1998.

of the concemed configuration block in the configuration 171 NEC E I S ~ ~ O ~ ~ C ~ . - ~ ~ u n i ~ a l l ~ ~ ~ ~ n i i g u r & ~ ~ m r o r (DRP) -
rnernorv Orher alternative is to use the oosode as an ArchiWuce'.2001. - 2. ~~-~ ~

identifier to a configuration table which conlains the address 18) Michael Tayla. '7he Raw Roserror - A Scalable 32-bil Flbris lor
of the concerned configuration block in the configuration purpow computing.. ~ a s e d i ~ g s of ~ o l m p r 13.
memory like in CHIMAERA [41. Augurl2001.

E- Application Multi-fl~reoding: [9] M. B. Taylor, I. Kim. J. Mill-. D. Wcnulalf. F. Ghodrat. 8. Grrcnwdd.
H. Haffmano. P. Johnson. I. Lce. W. k, A. M 4 A Saraf. M. Senski. N.

The ~roposed processor can execute more than one insmction S-, V. M, han~, S. h - i n g b + A. ma). -n,c
(eight) at the same time. Most reconfigurablc processors are nav ~ i ~ m p a e r u r : A computational Fabric for Software C ico i s ~d
only able to execute one insmction at the same time. They arc G e n d -Y mgrams'. IEEE Micm, M ~ c h April2mt.

bascd on both CISC and RlSC designs. In order to maintain
1101 S, C, SrhmnL &,, Bus,,, S. M, Mn, md

the high performance of sysrem, the multi-threading has been n y w . -pip~ench: A R e m ~ g u n b l c ~ , ~ h i t = t - and Compikf. IEEE
supported by the on chip hardware suppon. Computer. Vol. 33(4):pp. 70177, ZO(X1.

F- Configuration Memory Design:
The proposed processor has introduced a new concept of
confieuration memow beina implemented as a multi-pon - - .
R A h l memory unhkr the exnting archilcrture which are 30 for
bang dcqigned using th~. slmple slnglc-pon RAV or Cache.

VI. CONCLUSION

Reconfigurable computing is becoming an imponant part
of research in the domain of the high performance computing.
Rwonfrgurable processors are intensively used platforms for
achieving such a kind of high performance in computing.
Reconfigurable processors provide us a great performance
parameter over the traditional micro-processors. In such kind
of processors the hardware changes according to the
requiremenu of the active application. Hence the system
follows the strategy of the demand-driven operators. The
required hardware is swapped in and the unused hardware is
swapped out and hence vinually providing more hardware
resources than the physically available in the system during

738 2W9 IEEE International Advance Computing Conference (IACC 2009)

-- - ~ ~- -

Second International Conference on Electrical Engineering
25-26 March 2008

University of Engineering and Technology, Lahore (Pakistan)

RISP Design with Most Optimal Configuration
Overhead for VLIW Based Architectures

'M. Aqeel Iqbal, ' ~ h o a b Ahmed Khan, ma Saeed Awan
' ~ e n t c r for Advanced Studies in Engineering (CASE), Islamabad, Pakistan

'~ntemational Islamic University (IN), Islamabad, Pakistan
maiqhal-786p&@homdil.~om, shoab@case.edu.pk

uawan-80@hotmail.com

Abmncr--In this research paper m alternative design for
Rcconfigurable Instruction Set Processor (RISP) has been
proposed nith thc capability of the most optimal configuration
overhead far Very Long Instruction Word (VLIW based
architectures. This Drocrrwr suononr the demand-driven ~ . .
modilic.tion or its in,truclion set during Itc program execution.
The processor has been integrated nith the high sprrd pardally
rrconfieurablc Ficld Progr.mmsble C a t e Arm) IFPCA) corm as
its ~ec&fieurahle ~unetionnl Units IRFUs) in lace of ALUS and - . .
it 1rW1 i n s t ~ ~ t i o n r as IEmOv1bIC module$ nhirh ran be psged in
and paqrd out throuzh the panial rrronfigurarion, according lo
the requirements of the application being under erecurion.
Instructions occupy the FPGA resources only -hen neded and
FPGA resources can he released and reused at run-time on a fly
for other kind of instructions belonging to the rnnrc or the
different applications without tfkting thore who are currently
under erecotion on the FPGA platform. RlSPs are the next
generation of processors which can adapt their iostruction sets
through I, reconfiguration in their hardware according to the
requiremenls ofthe spplieationr being under execution on them.
In this way the procerwr adapts its instruction set for the
hardware design whieh is the most suitable for the application
beine executine an it. durine the rrocers of its crccutian and "
hence it acccleratn the performance. RISPs arc tbe
programmable processors which contain the reconligurable logic
in one or more of their luncrional units. The hardware design of
such s kind o f processor can be categorized into wo main tsrh:
The first trrk is to desien the reconlieurable loeic itself and the " - "
second lark ir lo design the communication interface of
rsonlgurshle logic nith the remaining modules ofthe processor.

Keywords- NSP, Configuration overhead, RFUs, FPGA,
VLIW, Multi-pon Memory, Configuration Controller.

1. NTRODUCTION

The Reconfimrrable Instruction Set Processors (RISPs) -
combine a microprocessor core with a reconfigurable logic in
one or more of their functional units. The reconfirmrahle loeic -
provides hardware specialization to the application being
under execution. The location of the reconfigurable logic in
the architecture, relative to the microprocessor core affects the
perfonnancc. The speed advantages achieved by executing a
~rogram in a rewnfirmrable lo!zic depend on the m e of the
co~munication interfaces used be&een the raonfigurable
loeic and remaininn modules of the nrocessor 111 and the m e
ofl the configuration methods ised. A ' rkonfigur&e
functional unit can be placed in three different places, rclative
to the processor cure [S] ; fin1 as an Attached Processor [2];
second as a Coprocessor [6]: and third as a Functional Unit
Reconfigurable logic loads its configuration from an extemal
memory i.e. Configuration EPROM or main memory of the

system etc. The configuration is loaded in the form of a bit
stream either serially or parallelly, just like the hit shcam
loaded in an FPGA [6]. If we can configure the RFUs after
initialization, the insmction set can be bigger than the size
allowed by the reconfimrable logic. If we divide the
application-in functional1;different blocks, the W U s can be
reconfieured accordine to the needs of the each individual

v -
block. Reconfiguration times depend on the size of the
configuration bit stream, which is mostly quite large.
Configuration times are critically dcpcndant an the
configuration methods and the configuration interfaces being
used (61. Confirmration stream depends on the m e of hard
ware to& reconfigurd and the type of the F P G A ~ W ~ ~ being
intemated in the RFUs. If the contiexrations load owration
stops the system working while the ioading of configuration
sheam, there is a great loss of petiomance. IT the WUs can
be used during the loading of the new configurations, it will
give a great performance boast up. If we divide the execution
unit in different RFUs which can independently be configured,
we will not have to rsconfigure thc 911 of RfUs at the-same
timc, thus reducing the reconfiguration time. Configuration
pre-fetching, configuration cloning and configuration context
switching are other alternative techniqucs used to reduce the
monfiguntion over head 161.

11. MOTIVATIONS

In future the interactive multimedia applications will be
based on the standards like M P E G 4 Using an object-based
approach tn describe and composite an audio-visual scene,
hlPEG4 combines many different coding tools not unly for
natural audio and vidm but nlso for smthefic objects and
graphics. Objects are coded and transmitted sepai-&ely and
wmoosed at the decoder side. letlina the receiver interact and -
influence the way the scrnr is prcsested on the receiving
display and speakers. Due to this user interaction, the number
and the type of decoders that needs to be implemented on the
system are not known at the design time, but rather at the mn-
timc [4]. This fact forces the designers of the platforms for
these applications to use the new design approaches.
Traditionallv, multimedia apolications have been imolwented
on custom i k l ~ that provide enough &allelism
to accelerate these com~utationallv intensive aoolicahons 171. . . - ..
while at the same time retaining low power consumption. In
order to increase even further the computational power of
these devices, they have been enhanced with custom hard
ware for acceleration of the most common multimedia
operations. An example of this is the Tiimedia Processor [7],

vhich contains the specialized units for DCT (Discrete Cosine
rransfom) and motion estimation.

Jnformnately, due to the variety of the algorithms that can be
lsed in new interactive multimedia applications and thc fact
hat the actual number and the type of the objects is not known
ill run time, i t is no longa ~cooomicaily viable to make
.pcialized functional units for each algorithm. Toe picture is
irnher complicated if we also take into account that a
)larform designed for these applications may havc to decode
In object encoded with an algorithm for which it was not
:onceived. Hence in order to maintain the power efficiency
md the real time constrains, we need a platform that can be
:pecialized at ~ n - t i m e to the algorithm at hand. A platfom
m e d on RlSP provides this type of run-time specialization.

111. RELATED WORK

iumerous reconfigurable hardware based architectures have
m proposed. Previously proposed reconfigurable processor
whitectures generally fit into one of two categories
Icpending on the sizr of the computations they map onto the
econfigurablc logic.

Cinegrained Reconjigurable Processors, such as PRISC 121,
XSC [!I], OneChip [I] and CHIMERAE [I21 integrate the
mall blocks of rcwnfiyrable logic into superscalar processor
irchitectures, treating the reconfigurable logic as
rogrammable ALUs that can be configured to implement
~pplication-specific inslnfctions. CHIMEME diffm from
)thff systems primarily in that it supports a 9-input / I-output
nstruction model. n e s e systems can achieve better
mfonnance than conventional supencalar processon on a
wide range of applications by mapping commonly-executed
quences of instmct~ons onto their rcconfiyrable units, but
he maximum speedup they can ach~eve is limited by the small
mount of logic in their reconfigurable units.

?oarse-grained Reconfigvrable Procersors, such as
<EMARC [9), Garp 161, Napa [lo], PipeRench [S], Rapid [3]
md RAW [B] provide larger blocks of reconfigutable logic
hat are less tightly-coupled with the programmable portions
,f the processor. These architechlrcs c a achieve extremely
p d performance on applications that contain long-running
tested loops that can be mapped onto the processor's
econiigurable arrays but perform less well on applications
hat require frequent communication between programmable
md reconfigurable portions of thc processor. Systems such as
'ilchard that integrates FPGAs into conventional workstations
wcr the processor's memory bus display similar behavior,
dthough the relatively low bandwidth of a processor's
nemory bus makes them even more sensitive to the amount of
:ommunication that an application requires between the
lrocessor and the FPGA.

IV. PKOPOSED RlSP DESIGN

In this section the detailed architecture of the proposed RISP
ias been discussed. The dctailed architecmre of the proposed
xocessor is shown in the Fig.1 and different modules are
liscussed below along with their functiwality.

1. Input / Output lnterface (10 Interface):
The 1 0 interface of NSP is used to communicate with the
extemal devices being interfaced with it. Toe first job of the
UO Interface is to load theconfiguration streams from external
Configuration EPROM or main memory of system duting the
booting processes of the processor and it a e s only a few
clock cycles. These configuration meams contain the different
hardware modules like Adders, Subtractom, Multipliers and
Shifkrs etc. The second job of the 1 0 interface is to load the
instructions and their relevant data operands to be executed on
the processor. The third job of the 1 0 interface is to store the
results of the computations performed on the processor in
main memory of the system. The fourth job of the 1 0 interface
is to send and receivc the control signals generated and
ackoowledged by the cnntrol unit of the RlSP to the external
devices.

2. Pre-fetch Unit (I'FU)
The basic job of the PFU is to fetch or pre-fetch the instruction
strcam and the data stream of the application program being
under execution. Fetched inmuctions are loaded in thc
InslnrcJion Pool and then transferred into thc Insfmtion
Cache. Similarlv the data stream is loaded info the Dafa Pool
and then transf&ed into the Data Cache.

1. Instruction Scheduler Unit (ISU)
'he ISU is the micro-programmed implanentation of the
'bmaroulu's Algorilltm being used in VLlW and Super-scalar
lmcesson for the scheduling of the instructions. The
nstruction scheduler reads instructions from the inshuction
ml and then it analyzes them for dependencies (if any) and
esolves these dependencies. Dependencies being analyzed
nclude Data Dependency, Control Dependency, Resource
h f l i c t s and Data Hazards etc. Then it afler analysis ISU
ransfers these instructions to IPL.

I. Instruction Pack Logic (IPL)
h e main job of the IPL is to pack the eight instructions in the
brm of a VLIW. m e 32-bits instructions transferred from the
SU are given to the IPL. The IPL arranges these inshuctions
n a buffer in a FIFO order on their arrival h m the ISU. After
he arrival of each instmction, the IPL increments its
nshuction counter and checks either there are eight
nstruction arrived from the ISU or not. If a total of eight
nstsuctions have been arrived from the ISU then the IPL
ransfers them into n VLlW buffer of size 8 x 32-bits. Then it
:nables this buffer to transfas this VLlW to instruction cache
~f the RlSP if signal Load-VLIW =I. The same process is
epeated constantly throughout the application execution.
:onsider the Fig. 3 of IPL.

i. Computational Pipeline-l (CP-I)
:P-I is wnsisting o f a VLIW Fetch Unit (VFU) and a VLIW
lispatcb Unit (VDU).

VLIlY Fetch Unit (YFU):
IFU is a Stale Machine based unit and works like a
'rogrammable Counter. VFU fetches VLlW h m the
asauction cache and the Op-Coder of all instructions of the
lLlW are transferred to the Conjiguration Unit and the VLIW
tself is transferred to VDU.

i. VLfWOispa[ch Unrr (Z'iDU):
JDU is consisting of an array ofeight De-MUXs whose select
ines are conbolled by the configuration wntmller. According
o the select lines activated by the configuration conuoller all
,f the instructions of VLIW are dispatched or issued hy VDU
o their relevant WUs. Consider the Fig. 4 ofVDU.

6. Computational Pipeline-2 (CP-2)
The CP-2 is composed of a VLlW Execution Unit FEU)
which contains an m n y o f eight RFUs and a Register Wiodaw
of 32 registers (32-bits) and a Configuration Unit which
contains a Conz ro l i on Coniroller and a Multi-port
Configuration Memory.

i. VLIWExecution Unit (YEW:
VEU is the core component of the processor because it
contains an array of RFUs being used for program execution.
Consider the Fig. 5 of VEV. The VEU contains the following
major modules.

a) External 10 Logic (EIOLI

d) Registers ln&~utput L & i c y R l ~ ~)
e) Recontigurable Functional Units (RFUs)
fl Flags Generation Logic (FGL)

a) Ertemal I 0 Logic (EIOL)
Tho ElOL of the VEU is used La load instructions in the
instruction register, sauce operands in general-purpose
reasten and the configuration sueam in RFUs. The second
job of the ElOL is to store tbc configuration sueam being
loaded in the WUs for the analysis purpose and results being
generated afierthe execution of VLIW.

The source "perads Sr-land 9 . 2 u c luadcd !"to the mternil
sm rn l -p~ roc~se rrrirlcn (GPRr) by the Exrcmal De.MUX of
size I ~ ' 24 : The admess given for ;he Data-in is connected to
the select lines of De-MUX as well as to Decoder (5 x 24)
input. De-MUX selects one of the general-purpose registers
for data loadmg and the decodcr enables its output channel
c o ~ e c t i o g to thc registers through the MUX of the size 2 X I .
This MUX receives 32-bits data operand from External De-
MUX at input "I" and receives 32-b~ts results Gum RFUs at
the input "0". If the Ext-10-En4 thcn it selects the result
coming 60m the RFUs and loads it in the register. If the
Ext_lO-En=l then it selects the data coming from the
External De-MUX and loads it in the registers. Since there are
eight RFUs that can load their results in tbc same register,
hence in order to solve this p roblm an 8 x I MUX (32-bits) is
interfaced with each register input. Each MUX is wntrolled

the RFU Dara-pallr Controller which analyzes the
stination Addresses of all the RFUs and selects only that
U whose output is valid output. In order to store the results
f the flags being available in the GPRs and flag registers
2s) into the data cache of the RISP, the 32 x 1 External
JX (32-bits) is used which can read the contents of thc
ected register and sends it to the data cache of the RISP.

b) @US Dofain /Data-ouf Logic (RDIOL)
order to loadlstore the data across the W U s there are two
x 1 MUXs (32-bits) and one 1 x 24 h M U X (32-bits) for
:h RFU. Using the two MUXs thc RFU is nble to read the
lrce data operands (Sr-l and Sr-2) from any one of the 32
:isms and using the one De-MUX it stores its results back
any one of the GPRr. Flags generated during the execution
the VLIW are loaded into the relevant FRs.

c) General-Purpose and Flog Registers (GFRs)
nc is an array of eight FRs (32-bits) and twenty four GPRs
!-bits). CPRs can be read and written by the programmer
i the FRs can only be read by the progammcr and can not
written. W U s can rcaflwritc any one of these thirty two
isten. More than one RFU can read the contents of the
ne register at the same time but only one RFU can write in a
;ister at the same time because the read operdtion is
(reable but the write operation is not shareable.

d) Rcgisfcm InpuUGurput Logtc (RIOL)
s are loaded with the flags, being generated by the RFLk
1 can be read by the programmer through the Extmal
JX. In case of the tiPRs, the programmer can read the
isters through the External MUX hut in order to write
,tents into registers there is a 2 x I MUX (32-bits) which
:CIS the data for the register either from some KFU output
from data cache. The 8 x 1 MUX interfaced at the input of
2 x I MUX selects the valid W U for the results to be

red in the register. In order to select the valid RFU for
ults, there is a RFU Data path Coniroller shown in Fig.6 is
~ched with all MUXs. ?his controller reads the select lies
all the De-MUXs of RFUs and after analysis it selects that
U whose output is a valid output.

1,) R e r o n j i ~ r o b l e Funcrton~l ('nth (RFU:)
U s arc thc cornp~ol1~n3l unitsol RISI' and can be

. , -, .., ,.. . . .

Flg. 5 WW Exssutlon Unit (VEUI

reconfigured at any time according t o the application demand.
They have been tightly coupled in the form of an integmted
FPGA core.

f i Flags Generation Logic (FGL)
The ourputs generated by the RFUs are also read by the FGL
and the flags are calculated for each RFU. Flag register is a
32-bits register bul recently only Carry Flag. Sign Flag, Zero
Flag, Overtlow Flag and Equal Flag have been computed in
the system and the remaining twenty-seven bits are available
far the future extension.

ii. VLnYConfguration Unit (VCY:
VCU is composed of a Configurntion Controller as shown in
Fig.7 and a Multi-port Configuration Memory as shown in
F i g 5 Configuration controller receives the op-codes of the
eight inshuctions of the VLIW tiom the VFU and on the basis
of these opcodes it decides 10 load one of the configuration
blocks available in the memory for each RFU (if required).
Also it checks if the op-code is a No Operation POP) or is
same as that of any one of the existing opcodes. If so then the
configuration controller does not load this new configuration

RFU Datagath Controller
Herdwired Algorithm

Page 1 of 5

Reconfigurable Instruction Set Processor Design
Using Software Based Configuration

M. Aqeel Iqhal and Uzma Saeed Awan
Facttlty of E~~gincerirrg and i~ t for~nat ion Technology

Fottndafion U~liversiiy, hsriture of Errgtme~rirrg and Managemertt Sciemm
1rlaiqbal_786pak@hotr11ail.con1, 1iou~an-80@/1otrnail.co11r

Abstract

Due to the potential enhancements in the execution of
finrare based applicorions shown by Recotfigurable
strucrion S6I Processors (RISPs), reconJigurable compulirlg
IS become a subject of great dm(of research in ihefjeld of
mpuler sciemrs. Its keyfeature is rbe ability lo perforn~ the
m~prrrarions in hardwor-e to brcrense the perfo~nrance on one
~rrd ichilr I-eroining much ojrheflexibili~ of the sofiare on
e orher hand The VLSI development is conrinuously
rproving and new ways murt be obtained to become able lo
lly t a k tJre advantages of the emerging technology.
rcon/ib.urable irurdware might be the next step which w.iN
re computer perforrnancr a big leapfornard. 7hr idea is to
:e the ,low a day S high peg'bnnance FPGA /eclrrro~ogy to
lap: the hardware to the problem. This research paper
~ P , I I , S (111 alter~~atl).e design of a RISP dzich nrpport.~
ulriple rllreads tu~rrzi~tg conc~rrrmrly. all with instant
~nhlore support. Core oJ'Xilinx FPGAs like Yirrerseries has
!en used to adapt the possibilities of londing partial
rrdware cor~jigurulions wlzilu wtaixing Ihe prpculios of the
a~ainitr~ active parts oJthr application.

Index T'ern~s - Fine-grain, Coarse-grain. Configurations,
"A. KFUs, RISP, Multi-port Configuration Memoty.

Reconfigurable Instruction Set Processors (RISPs) combine
standard microprocessor core with a reconfigurable logic in
le or more o f their functional units [I]. The reconfigurable
gic provides hardware specialization to the application being
idrr execution. The location of the reconfigurable logic in
e architecture, relative to the micmpmcessor core greatly
fects the perfomance of the computational system. The
Iced advantages achieved by executing a p r o p m in a
configomhle logic depend on the type of the communication
terfaces used between the reconfigurable core and rest of
odulcs of the processor and the type of thc cotifiguration
ethods being use?. A Reconfigurable Functional Unit (RFU)
In be placed in three difierent placcs, relative to the
.ocessor core 161; first as an A I I U C ~ P ~ Processor; second as a
opmcesso,:. and third as a Funrtionnl Unit (FU).
cconfigurable logic loads its configxations from an external
emory like confgur~tion EPROM or main memory of the
(stem. The configurations are lnadcd either serially or
~nllelly, just like loaded in an FPGA [2]. If we can configure
e KFUs aRer initialization, virtually the instmction set can

be bigger than the actually available. If we divide the
application in functionally different blocks, the RFUs can be
reconfigured according to the needs of the each individual
block. Reconliguration times depend on the size of the
configuration bit streams, which is mostly quite large.
Configuration times are critically dependant on the
configuration methods and the configuration interfaces bcing
used. Configuration streams depend on the type of hardwvare to
be reconfigured and the trpe of the FPGA core being
integrated in the RFUs [Z]. If the co~~gura l ion load operation
stops the working of the platfbm then during the loading of
configuration stream, there is a great loss of performance. If
the RFUs can be used during the londing of the new
configurations, it r i l l give a grit performance boast up. If we
divide the execution unit in different RFlJs which can
independently be configurrd, wc will not have to reconfigure
the all of RFUs at h e same time, thus reducing the
reconfiguration times. Thc Configuration Pre-fetching and the
Configuration Cloning are other alternatives. i

1
2. Related Work I n Active Domain

Previously proposed reconfigurable architectures generally
fit into one of two major categories depending on grain of
computations thcy map onto the reconfigurable logic.

Fine-graiwd ReconJigurnble Arcl~itecl~lrrrer. such as
CHlMERAE [5] integrate the small blocks of reconfigurable
logic into superscalar processor architecturcs, treating the
reconfigtable logic as programmable ALUs that can be
configured to implement application-specific inrtrucfions.
These systems can achieve rhr bettcr performance than the
conventional superscalar processors on a wide range of
applications by mapping commonly-executed sequences of
instructions onto their rcconfigurable units, but the maximum
speedup they can achierc is limited by the small amount of
logic in their reconfiynble units.

Coarse-grained Reco~~figurable ArcJ~ife~~lures. such as
REMARC 171, Napa [8] and PipeRench [6] provide larger
blacks of reconfigurable logic that are less ti~htly-coupled
with the programmable pottions of the processor. These
architectures can achieve extremely good performance on
applications that conllin long-running nested loops that can be
mapped onto the processor's reconfigtrrable arrays but
perform less nmell on applications that require frequent

Page 3 of 5

B - Z,rpirl/O#gn~t I~~tcrface /lo Interface):
The first job of the UO Interface is to load the configuration

treams from external Configuration EPROM or main memoty
~f master system during the booting pmcesses of the processor
~ n d it t aka only a few clock cycles. These configuration
:trrams contain the different hxdware modules like Adden,
;mhtnctors, Multipliers and Shiften etc. The second job of
he 10 interface is to load the instructions and their rclcvant
lata operands. The third job of the 10 intcrfacc is to store the
zsults of the computat~ons in main mcniory of the system.
rhe fourth job of the 1 0 intorfacc is to send and receive the
:ontrol signals generated and acknowledged by the conlrol
mil of the RISP to the external devices.

C - Prngranr Fetch Unit (PFU):
PFU is a programmable conrroller which fetches

nstructions one by one froni the program memory and loads
hem into the VLIW Unit of thc RISP. A pre-fetch unit is
ntegmted inside tllc 1 0 interface of the RlSP to fetch or pre-
etch thc instruction and data streams of the application
)rugram. Fctched instructions are loaded in the program
rwmog.a~td data are loaded into the data nrenrov.

D - I'LIIV Unir (VLIIVU):
The VLI\VU arranges the instructions in a buffer in a FIFO

xder on their arrival from the PFU. After the arrival of each
nstruction, the VLIWU iocrerncnts its instnction counter and
:hecks either there arc nine insm~ction anived froni the PFU
)r not. If a total of nine instructions have been anived from
hc PFU then the VLIWU transfers them into a VLIW buffer
,f size 9 x 32-bits. Then it enables this buffer to transfers this
YLlW to Program Analyzer Unit (PAU) ofthe RISP if signal
2oad_VLIW =I. The same process is constantly repeated
hroughout program execution.

E - Progran~ Armlyzer tirrir (PA U)r
Program analyzcr unit receives the VLIW containing the

,in, instructions in the form of a packet. It then analysis the
,p-codes of instructions to check, which one is the
:ontigoration instruction and which one is the application
nstruction. After analysis it rearranges the VLIW in a pre-
iefined order. A pre-detined op-cude (ix. 255) is dedicated
'or configuration instruction, which cannot be assigned to any
~ the r instruction o r the application probmm. Consider the
'ig. 3 for PAU. PAU receives the 9 x 32 = 28s-bits long
YLIW, from the VLIW IJnit, in the VLIW Receive Buffer.
rhen the Inpur-in.~f MUXCorriroller generates the select lines
me by one for the Input-lnsr MUXand instructions are loaded
nto the A a a b ~ e r Buffer one by one. For each insmction, the
3p-Code of the instruction is used to control either the
1.~8 De-AIUXor the tr8u//er. Ifop-code is between 0 - 254.
h e instruction is loaded into the De-MUX otherwise it is
'oaded into the lo-Buffcr. Through the De-MUX it is loaded
nto the proper instruction huffer from It.__ 1% At the end all
nstruction buffers from lo-._. Is load their instructions into the
288-bits Re-arranged YLllV Buffer. Now VLLW is in the
-equired format, where the instruction on the leasi sipnificant
side i.e. 10 is the Configuration lnslrucrion and the remaining
nstructions i.e. It.._. la are the application instructions. Then
.his VLIW is transferred to Prognm Schedule Unit (PSU)
uhich sends confi~untion ins t~c l ion to the Configurarion

Main Memory

Fig. 2 Proposed RISP Architecture

R~Anangrd VLIW

J 9 ~ 3 : r s

Fig. 3 Program Analyzer Unit (PAll)

unll and the application instructions to the Program Dispatch
Unit (PDU).

F - Program Dispatcl~ Unil (PDL'):
PDlJ is consisting of an array of eight De-MUXs whose

select lines are controlled by the ffiree coniigumtion bits being
attached with each instructiori by the compiler or by the
application layer. According to the select lines activated by
these attached configuration bits, all o f the instructions of
VLl\V are dispatched or iswed by PDU to their relevant
REUS.

C - Progrant Execution Unit (PEU):
PEU is the main unit of RlSP as it contains computational

unctional units (RFUs) in it. The functionality of major
nodules of PEU is as under. Consider the Fig. 4 of PEU.

. ,

Fig.4 Program Execution Unit (PEU)

i. E.vrcrual I0 Logic (EIOL)
The EIOL of the PEU is used lo load instructions in thc

nstmction register, source operands in general-purpose
egisten and the configuration stream in RFUs. The second
oh of the EIOL is to store the results being gcnented after rhe
recution of VLIW. The source operands St-land Sr-2 are
oaded into the internal general-purpose registen (GPRs) by
Ibe Exrernal De-MUX of s i ~ e I x 24. The address given for
he Data-in is c o ~ c c t e d to the select lines of De-MUX as well
s to Decoder (5 x 24) input. De-MIJX selects one of the
:eneral-pulpuhc registers for data loading and the decoder
nables its output channel connecting to the registers through
he MUX of the size 2 X I . This MUX receives 32-bits data
pcrand from External De-MUX at input "1" and receives 32-
,its resuhs from RFUs at the input 'Y)". If the Ext-10-En-0
hen i t selects the result coming from the RFUs and loads it in
he register. If the Ext-10-En-l then it sclects the data
oming from the External De-MUX and loads it in the
egisters Since there are eight WUs that can load their results
n the same register, hence in ordcr to solve this problem an
; x I MUX (32-bits) is interfaced with each register input.
Jach MUX is controlled by the RFU Data-path Controller
vhich analyzes the Destination Addresses of all the RFUs and
elects only that RFU whose output is valid output. In order to
tore the msults and the flags being available in the GYKs and
lag registers (FRs) into the data memory of the R E P , 32 x 1
ixternal MUX (32-bits) is used which can read the cantents of
he selected register and sends it to the data mentory of the
LISP.

ii RFUs Data-irt /Data-out Logic (RDIOL)
In order to loadlstore the data across the RFUs there are two

2 a I MUXs (32-hits) and unc 1 x 24 De-MIJX (32-bits) for
ach RFU. Using the two hlUXs the RFU is able to read the
ource data operands (St-l and Sr-2) from any one of the 32
eglsters and using the one De-MUX it stares its results back
2 an) one of the General Purpose Registers (GPRs). klags
:meratcd are loaded into the relevant Flag Reg~sters (FRs).

There is an array of eight FRs (32-bits) and twenty four GPRs
(32-bits).

iii. Registers Input/Oupur Logic (RfOL)
FRs are loaded with the flags, bcing generated by the RFUs

and can be read by the programmer through the External
MUX. In case of h e GPRs, the programmer cau read the
registers through thc External MUX but in order to write
contents into rcgisters there is a 2 x 1 MUX (32-hits) which
selects the data for the register either from some RFU output
or from data memory. The 8 x 1 hWX interfaced at the input
of the 2 x 1 MUX selects the valid RFU for the results to bc
stored in the register. In order to select the valid RFU for
results. there is a RFU Data path Controller attached with all
MU%. This controller reads the select lines of all De-hllJXs
of RFUs and afler analysis it selects that RFU whose output is
a valid output.

iv. ReconJigurubIe Fu~zctional U I ~ R F U s)
RFUs are the computationsl uni& of RISP and can be

reconfigured at any time according to the application demand.
They have bccn tightly coupled in the form of an integrated
FPGA core. The outputs generated by the RFUs are also read
by the Flag Generation Logic (FGL) and flags are celculatcd
for each RFU.

H - IUSP Confgurntion Unit (Co~rfig Uttir):
Configuration Unit of the RISP is responsible for the

configuration of the RFUs being integrated inside the Program
Execution Unit [I]. The configuration insmction inserted by
the applica~ion software or by the compiler is the control
instruction for the configuration unit. Configuration instruction
format is shown in Fig. 1. Configunlion instruction has an
8-bits opcode (255). When this instruction reaches to the
configuration unit oftbe RISP, it loads it into the ConJgumrim
Buffer Register (CBR). f i e op-code of the configuration
instruction is decoded for the interpretation. If the op-code.is
the 255 then configuration controlling 24-bits on the least
significant sidc arc loaded into the Configuation Annkzer
Register (CAR). After loading these 24-bits into the CAR,
thcsc are grouped into the)-hits each and then are sent to the
Cozjigrcrnlion Analyzer Unit (CAU). The main job of the
configuration analyzer unit is to analyze and update the
configurations being running into thc RFUs. Consider the
Fig. 5 of the CAU. There are total cight configuration analyzer
units inside the configuration unit of the RISP. Each one is
responsible lor updating the contigurations of one RFU. The
followings are the tasks performed inside the CAU.

It checks the incoming configuration control bits for the
No Change Operation (NCO) of the cumntly running
configuration. If the incoming configuration control hits
are 000, thcn it means no change in the currently
running configuration.

It checks [he incoming configuration control bits for the
Same Configuratian Operation (SCO). This optlation
occurs if the incoming configuration coutrol bits are
same as that of the currently rumling configuration.
Hence in this case the configuration should also not be
loaded into the RFU and hence it saves the
configuration overhead of thc device.

Page 5 of 5

, Mathematical Rlodel for Analysis

Follosing is the mathematics1 formula bein8 furmulated for
le calculations ofthe total no ofcvcles ~ T T . A . consumed for .- -~~ .
le execution of an application program. Consider the model
ammeters in Table.2.

r.,., =.X(Tc. To) + ~ (N F P . PFP) + EN (FN + DN)) C Y C ~ ~ S

u'hcre Pn.= 1 (TPFT. TOFT)

It has been observed that the segments o r codcs of
pplications containing loops o f similar opcrations, like the
pent ion of convolution UI digital signal processino. will be
:rastically boasted up by the proposed RISP as shown in the
,raph in Fig. 6. These results have been simulated by
onfigwing the proposed RlSP for the loops containing fixed
mint arithmetic and logical operations.

'l'able.2 hlathemntical hlodcl Parameters

i. Benchmark with Existing Architectures

Parameters
lo afFetched Packets,_Nrp
a c k t Fetch Time, T p n
Grid Fetch Time, TOFT
recure Packets, EN
k l y Slots, DN
unctional Unit Latency, & --
'onfipuration Time. Ir
)ispatchine Titnc. T,,

In reference with CorrJipuario~t Grarrularil).; the proposed
USP is fine-grain architecture like CHLMERAE [51. Using
ine grain approach tbe system cm be reconfigured at
nstmction level and even at operator level 141. But there exist
nany other systcms which use the coarse-grain architechre
md can be reconfigured a t ALU level like REMARC [71,
qaps [XI and PipeRench [6]. In reference with RFU
:ouphg; the proposed RISP is a tightly-coupled architecture
ike CHIMAERA [S] . Others [nay use a coprocessor approach
,r attached processor approach. Tightly-coupled designs have
he small configuration overheads but are suffered by the
lepcndant execution o f RFU with standard CPU core. In
eference with Operafrds Cod i~g ; the proposed RISP is based
1n a fired-operand coding schcme. But some of designs are
7ased on the burduimd oprund coding scheme like
3HIMAER.4 [5]. In reference with Configuration h femo~ ' ;

- Possible Values
1.2.3. N I Program
I-Cycle 1 FeshedPacket
ICycle I FctchedPacket
1 1 FetchedJacket
0-10-1 Cycle
I-Cycle IExecuLe Packet
0 - to I Cycle --
I-Cycle 1 Execute Packet

40 9 RISP

20 NO Of

0
Cycles

P I P3 P S P I P9 Used

1 Tested Programs

Fie. 6 Periormanre Analysis Graph

the proposed RlSY i s using a multi-porl Configuration
memory unlike the existing architectures which are using the
single-pon configuration memory 131.

7, Conclusion

Reconfigurable Instruction Set Processors (RISPs) provides
us a great performance parameter over the traditional micro-
processors. In RISP the hardware changes according to the
requirements o f the application being under execution. Kcnce
the system follows the strategy of ihe demand-driven
operators. The required hardware is swapped in and the
unused hardware is swapped out and hence virtually providing
more hardware than the physically available in the system
during the execution of the application. Reconfigurablc
lnstruction Set Processors are very suitable processors for
those applications where different kinds of processing units
are frequently required to b o a t up the performance.

8. References

[I] Aziz-Ur-Rehman, Dr. Aqeel A. Syed and M. Aqeel lqhal.
'htelligent Rrco~f~gurable Instruction Set Procersor(1RISP)
Dcsign',Pnreedings of IEEE computer society, I lth IEEE
INMIC-2007 Conference, Dec 28-30,ZM)7 CIIT, Pakistm.

[2] X. Inc., "Virtex-E 1.8 v FPGAs." Xilinx DS022.2WI.
131 Edson L. How and John W. Lockwwd. PARBIT: A Twl to

T m s f n m , Bitfiles lo Implement Panial Reconfiynhon of
FPGAs. Washington University. Uep. of Cumputcr Science
Technical Repon WUCS-01- 13. July 2001.

141 Xilinx. Inc. Virtex I1 Canfirmration Architecmre Advanced . .
lkers Guide'. March, 2 0 6

1.51 Ye. 2. A,, Moshovos, A., Haucl;, S., and Banerjee, P..
"CHIMAERA: A Hieh~Perfonnance Architecture With a Tlghtlv-

225-235,2000.
161 S. C. Goldslcin, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R

R.Taylor. and R. Laufer. "PipeRench: A Coprocessor for
Smeaming Multimedia Acceleration", in Proe. Intl Symp on
Computer Architecture. May 1999.

[7] Miyamori, T and Olukahm, K., REMARC: Reconfigurable
Multimedia Array Coprocessor IElCE 'l'ransacrionr on
Information and Systems E82-D, vol. pp. 389-397. Feb. 1999.

181 C . Rupp, M. Landyth, T.Garverick, E. Gomcrsall, H.Holt.
I.Amold and M. Gokhale, "The NAPA Adaptive Processing
Architecture", IEEE Symposium on FPGAs for Custom
Computing Machines. Api. 1998.

Cc, i3AL
L I ~ I % A R Y
ISLAMABAD.

