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Chapter No.1 

INTRODUCTION 

The revolution occurred in the field of embedded systems due to the microelectronics 
market is ever-increasing. In such a context the definition of efficient and cost-effective 
design approaches is mandatory. Hardware and software co-design solutions generally 
take into account architectures composed of one or more standard microprocessors and of 
suitable application specific integrated circuits executing the most time-critical segments 
of the application. Recently, the innovative concept of "mass customization" has been 
introduced. This concept considers the possibility of specialization of a micro-processor 
instruction set so as to optimize its performance for a given application or for a group of 
applications. Such an approach combines the time efficiency of application-specific 
functional units with the flexibility of logic circuits. This innovation of 
programmable technology opens doors towards a new field of research known as Flexible 
Insfruction Set Micro-processors. 

In a broader sense the different levels of coupling or integration can be envisioned in 
architecture. A more traditional design approach is that of considering the reconfigurable 
part as a coprocessor, which is effectively working like a hardware accelerator that stalls 
the core-processor when under execution. Normally the co-processor approach requires 
coarse-grain functions to be executed in the part and therefore the speedup given by the 
co-processor program execution, when compared to processor application execution, 
must be considerably high [4]. A more realistic or innovative approach and an interesting 
challenge in academic terms is one that see; the part of the 'processor as a Functional 
Unit while operating in parallel with the otheidata-paths of the processor and where an 
extension of the instruction set is executed. The programmable processor so envisioned 
issues a set of native instructions to the native Functional Units, while these new 
customized instructions are issued to the Reconfigurable Functional Units (RFUs) [5]. A 
fine-grained function can be chosen for implementation in the part when compared to the 
co-processor approach since the integration is much higher and the RFU can be reached 
without any additional delay being embedded in the micro-processor. 

Reconfigurable Arclriteclures can be divided in two main categories: fine grained 
and coarse grained architectures 121. The fine-grained architectures are based on 
programmable devices such as FPGAs (Field Programmable Gate Arrays) which include 
units (CLBs - Configurable Logic Blocks) that perform single functions on a bit basis. 
On the other hand, the coarse-grained architectures include word length units or small 
micmprocessor distnbuted on an array of processing units. All architectures also ~nclude 
110, memory and Inter connect units. The advantages of coarse-grained architectures over 
fine-grained ones are mainly the reduction of configuration time and reconfiguration 
memory [I]. Fine-grained architectures also use significantly more area overhead to 
routing functions between CLBs and expend significantly more ... energy. 
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Reconfgurable computing devices can be configured after their fabrication to solve 
any computational algorithm or task. Such kind of reconfigurable devices are best 
exemplified now-a-days by FPGA [3]. In such devices the algorithms or tasks are 
implemented by spatially composing the built-in or primitive operations and operators 
with the possibility of temporally varying or changing the hardware of the operators. The 
re-configurable processor on FPGA can perform different operations on each bit of data 
or program and hence the re-configurable devices can be optimized to the data width of 
streaming data flows. The main theme of this kind of research work is to mix the 
advantages of non Von-Neumann architectures with the advantages of re-configurable 
processing devices or fabrics. 

Field-Programmable Gafe Array (FPGA) is a kind of silicon chip containing a set or 
an array of configurable logic blocks known as CLBs [3]. Unlike an Application Specific 
Integrated Circuit (ASIC) which can perform a single dedicated or specific function for 
the lifetime of the chip; a FPGA can be re-programmed many times to perform a variety 
of different functions in a matter of micro-seconds. Before it is programmed an FPGA 
knows nothing about how to communicate with the external connected devices 
surrounding it. Hence this is in fact both a blessing and a curse as it allows a great deal of 
flexibility in using the FPGA while greatly increasing the complexity of programming it. 
This type of generic ability to reprogram FPGAs has led them to be widely used by 
hardware engineers and designers for prototyping digital electronic circuits. The 
performance advantage achieved from the FPGAs derives from the fact that the 
programmable hardware is likcly to be customized to a particular algorithm. The field 
programmable gate arrays are configured to comprise only the operations that are 
appearing in the concerned algorithms [6].  The specialized instruction set micro- 
processor in fact contain ALUs of specific or specialized data bandwidths like 8-bits, 16- 
bits and 32-bits and always has pre-coded or determined control flow pattcms. 

The re-programmability and versatility of FPGAs definitely comes at a price. Only a 
few years ago, the algorithms or tasks that could be implemented in a single FPGA chip 
were very small. For example in 1995 the largest kPGAs could be programmed for 
circuits of about maximum of 10,000 to 15,000 logic gates at most. Since only a fast 32- 
bit adder requires a few hundreds logic gates, the capabilities of such devices were 
somewhat bounded. More recently the FPGAs have reached a size where it is possible to 
implement reasonable sub-pieces of an application in a single FPGA part [7]. This has led 
to an emerging new concept for computing. If a processor was to include one or more 
FPGA-like devices, it could in theory support a specialized application-specific circuit for 
each program. 

The unlimited re-configurability of an FPGA permits a continuous sequence of 
custom circuits to be employed where each one is optimized for the task of the moment. 
Bccause FPGAs demonstrate a better performancc scale than superscalar techniques, 
such designs have the potential to make better use of continuing advances in device 
electronics in the long term. The idea of reconfigurable computing has been a subject of 
research for a more than a decade, but most projects have investigated the potential of 
connecting one or more commercial FPGAs to an existing micro-processor via a standard 
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external bus such as the PC1 bus [%I. If reconfigurable computing is really to become the 
computing paradigm of the future high speed platforms, then the main parts must be 
brought closer together. Only a few studies have considered the integrating of a micro- 
processor core and FPGA into a single device with the both tailored to co-operate very 
closely with each other and so there remains an important question about how such a 
device might be built and re-programmed and how it would fit within an existing general 
purpose-computing framework. Such a question must be addressed before the bigger 
issue of whether reconfigurable computing is really a good design model for 
computations can be answered. 

Reconfgurable compufing using reconfigurable devices like FPGAs have become an 
alternative to fill the gap between ASICs and general-purpose computing systems. 
Although the basic concept of reconfigurable computing was proposed in the 1960s, the 
reconfigurable computing systems have only recently become very vital and quite 
feasible. This is mainly due to the availability of high-density VLSI devices that use the 
programmable switches and routing networks to implement the extremely flexible 
hardware architectures. Most of the reconfigurable systems consist of a general-purpose 
processor core tightly or loosely coupled with reconfigurable logic [9 ] .  These systems 
can implement specific functionality of applications or a set of applications on 
reconfigurable hardware rather than on the general-purpose processor and hence 
providing significantly better performance. 

In a sfafically programmed system the individual data operations of an application 
will remain idle when they are no more required. For an example, the data dependencies 
within an application program may cause an operation to be idle and waiting for data 
inputs from other operations. Hence placing all operations onto the FPGA all at once is a 
poor choice hence resulting of wasting of a h g e  no of precious hardware resources. Run- 
time re-configuration can be used to remove or recover such kind of idle operations by 
making them share limited hardware resources. Also the tun-time reconfiguration 
provides a design method for large class of applications that are too big for the available 
hardware resources on the FPGA [lo]. 

Many recently advanced systems, such as Garp [4], PipeRench [I  I ]  and Chimaera 
[lo], are using run-time reconfiguration. In such kind of systems the hardware 
configuration can change frequently at run-time to reuse hardyare resources for several 
different parts of a computation. Such systems have the potential to make more effective 
use of chip hardware resources than even standard well designed ASICs, where fixed 
hardware may be used only in a portion of the application algorithm or computation. Also 
the run-time reconfigurable systems have been shown to accelerate a variety of 
applications. An example of such kind of systems is the run-time reconfiguration within 
automatic target recognition (ATR) application developed at the UCLA to accelerate a 
template matching. The algorithm in this system was based on a correlation process 
between incoming image data from the radar and a set of target templates. Without taking 
considerations of the reconfiguration time, thi~~system improves performance by a factor 
of 25 to 30 over a general-purpose computing'system. 
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However, the drastic speed advantages of run-time reconfiguration do not come 
without a cost. By requiring a set of multiple reconfigurations to complete a computation, 
the time it takes to reconfigure the FPGA becomes a really significantly a key concern. 
The serial-shift configuration method transfers programming bits into the FPGA device 
in a serial way. This type of very slow method or programming approach is still used by a 
large class of existing FPGAs [7], [12]. Recent devices have moved the technology to 
cutting-edge domain and hence resulting in FPGAs with more than one million logic 
gates. The configuration size for such devices is more than one megabyte [13]. It could 
take from few hundred milliseconds to few seconds to transfer such a large configuration 
data stream using the serial-shift approach. 

In most of such systems the devices must sit idle while they are being reconfigured 
and hence wasting cycles that could otherwise be performing useful work. For example, 
the ATR system uses 98% of its execution time on performing reconfiguration process, 
meaning that it uses merely 2% of total time in doing computation. DISC and DISC-I1 
systems have been found to spend up to 90% (61 of their execution time on performing 
reconfiguration process. It is obvious that a significant improvement in system 
performance can be achieved by eliminating or reducing this configuration overhead 
associated with reconfiguration delays. 

1.1 RC Architecture 

, .*:, 

Recortjigurable Imtruction Set Processor (RISP) design offers many advantages 
over ASIC Processor design. It offers the flexibility of in circuit hardware re- 
programmability. By using RISP design we can get the speed advantage of nearly an 
ASIC Processor design and flexibility of software. RISP design is not an easy task [ l  11. 
In RISP designing the most important issue is the reconfiguration methodology. Many 
different techniques have been introduced to provide an efficient reconfiguration process 
including partial reconfiguration, run time reconfiguration, static reconfiguration and the 
most recently introduced configuration cloning [I], [2]. Most of these methods of 
reconfiguration suffer from a problem of ~xcessive reconfiguration (reconfiguration 
overheads). 

Till now the reconfigurable computing is suffering from this problem and no one has 
provided satisfactory solution. Reconfiguration time should be minimized in order to 
obtain a level of satisfactory performance [3], [4], [l l].This can be easily achieved by 
using the already existing resources within the programmed device [15]. But the solution 
to this problem is in software tools not hardware [14]. 
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VLIW Architectures 

Disk Serial 
110 

Very Long Instruction Word architecture rcfers to a CPU architecture that has been 
designed to take the advantage of instruction level parallelism (ILP) found in the program 
execution. A micro-processor that executes every instruction one after the other may use 
the micro-processor resourccs inefficiently at any time instant, potentially leading to . 

drastically poor performance. The performance of such system can be improved by 
executing different sub-steps of sequential inshctions simultaneously using the concept 
of pipelining or even executing the multiple instructions entirely simultaneously as is 
done in superscalar micro-processor architectures [15], [ I  61. 

Micro processor 

Data, Instruction Cache 

Increase of computational performance is better achieved, for this case, if a micro- 
processor architecture supporting instruction level parallelism is chosen as the 
architectural platform or paradigm. Instruction level parallelism processing has become 
the new emerging architectural challenge since the eighties up to now, by enabling issue 
and execution of multiple instructions of an application within the same clock cycle. This 
paradigm would allow our envisioned reconfigurable architecture to fully exploit the 
native functional unit in parallel with t h ~  customized, reconfigurable cores. 

110 
Bus * 

Two main classes of ILP machines naming superscalar and VLIW have been 
flourishing. 'The fonner performs dynamic scheduling algorithms of instructions, and 
therefore granting binary compatibility with previous code versions, the latter relies on 
static or compile time scheduling, by delivering all instruction dependence analysis to the 
related compiler. 

I 
Memory Subsystem 

Figure 1.1 Reconfigurable Computing System 
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1.2 Motivation 

Future interactive multimedia applications will be based on standards like MPEG-4. 
Using an object-based approach to describe and composite an audiovisual scene, MPEG- 
4 combines many different coding tools not only for natural audio and video but also for 
synthetic objects and graphics. Objects are coded and transmitted separately and 
composed at the decoder side, letting the receiver interact and influence the way the 
scene is presented on the receiving display and speakers. Due to this user interaction, the 
number and the type of decoders that needs to be implemented on the system is not 
known at the design time, but rather at the run-time [17]. 

This fact forces the designers of the platforms for these applications to use new 
approaches. Traditionally, multimedia applications have been implemented on custom 
VLIW processors that provide enough parallelism to accelerate these computation 
intensive applications [IS], while at the same time retaining low power consumption. In 
order to increase even hrther the computational power of these devices, they have been 
enhanced with costume hard ware for acceleration of the most common multimedia 
operations. An example of this is the Trimedia Processor [IS], which contains the 
specialized units for DCT (Discrete Cosine Transform) and motion estimation. 

Unfortunately, due to the a variety of the algorithms that can be used in new 
interactive applications and the fact that the actual number and the type of the objects is 
not known till run time, i t  is no longer economically viable to make specialized 
functional units for each algorithm. The picture is further complicated if we also take into 
account that a platform designed for these applications may have to decode an object 
encoded with an algorithm for which it was not conceived. Therefore, in order to 
maintain the power efficiency and the real time constrains, we need a platform that can be 
specialized at ~ n - t i m e  to the algorithm at hand. A platform based on reconfigurable 
instruction set processors (RISPs) provides this type of run-time specialization [5]. 
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Chapter No.2 

Literature Review 

Introduction 

Reconfigurable computing architectures have been evolved from the most 
prominently Field Programmable Gate Arrays (FPGAs). Recently, there is a variety of 
FPGAs now available commercially. A large class of computing systems has been 
developed by integrating multiple FPGAs chips and dedicated memory modules. A small 
no of systems have been coupled with a general purpose processor or some kind of 
application specific integrated circuit core such as a DSP processor to the field 
programmable gate arrays. In order to minimize the communication overhead and 
memory access bottlenecks being faced by the system for configuration bits the new 
arriving computing systems are integrating a reconfigurable logic onto the single same 
chip as that of the processor core chip [19]. 

There has been much different reconfigurable computing architecture that has been 
developed over the last few years by researchers. Reconfigurable computing 
architectures can be broadly classified based on several different parameters. In the 
following section, some of the most distinguishing architectural parameters which can be 
used to classify reconfigurable computing architectures have been discussed. 

2.1.1 Granularity 

The granularity of the computational or reconfigurable logic is the size of the smallest 
functional unit that is addressed by the sofhvare mapping tools. In general the FPGAs 
have smaller granularity such as 2-input or 4-input functional units [20]. Several 
reconfigurable computing architectures such as Chameleon [I91 implement coarse grain 
computational or arithmetic units of larger size such as 32-bits. Lower granularity in fact 
provides more flexibility in adapting the hardware to the computational algorithm. But, 
lower granularity has a great performance penalty due to the larger delays introduced 
when constructing computation modules of larger size using smaller functional units. A 
class of reconfigurable computing architectures implements features that are specifically 
targeted towards the reduction of these computational overheads. 

2.1.2 Host Coupling 

A large amount of logic is utilized,as a processing fabric attached to a host micro- 
processor. The host micro-processor performs the control and supervision functions to 
configure the logic, schedule data input and output streams, external interfacing, among 
other the things. The type of logic coupling to such a host system dictates the 
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computational as well as configuration overheads in utilizing logic to speed-up 
computations. The degree of coupling in fact affects the reconfiguration and the data 
access cosr. The degrce of coupling can be roughly partitioned into three basic classes: 

Tightly Coupled Loosely Coupled 

111-1- 

1 Functional  Unit  I Standa lone  

I Processing Unit  I - , , , - , , , - , , - ,  
Figure 2.1 Host Coupling Approaches 

System-level Coupling (Loosely coupled): This type of coupling includes the 
computing architectures which have logic communicating to the host through an VO 
interface similar to other peripheral devices. A large class of inilial FPGA based logic 
boards were architected with this degree of host coupling. Such architectures include 
SPLASH. 

Chip-level Coupling (Coprocessor or Attached Processing Unit): These systems 
reduce the overheads in communicating to the relevant host by using direct 
communication between the host and the ieconfigurable logic. An example of such a 
computing architecture is the PRISM [25]. A large class of the existing computing 
architectures with rcconfigurable logic has been architected using this technique. 

Tight On-chip coupling (Tightly coupled): The availability of large class of the 
transistors has resulted in the intensive integration of reconfigurahle logic on the same 
chip as a host micro-processor, and hence significantly reducing the communication 
overheads between different components of the architecture. Such kind of architectures 
includes the well known Garp, Chameleon etc. 
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2.1.3 Recoofiguration Methodology 

Conventionally, a reconfigurable deviceis configured by downloading a sequence of 
bits known as a bit-stream onto the device [21] during its operation. The speed and 
methodology being used during the download of bit stream depends on the interface 
supported by the device [22]. n e r k  are two main types of interfaces namely, Bit-serial 
and bit-parallel interfaces. The time required for the configuration of the device is 
directly proportional to the s i x  of the bit-streams as well as on the type of the interfaces 
being used for this purpose [ 2 2 ] .  Fine-grain and Coarse-grain devices have difference in 
the configuration overheads or time because course grain devices typically need smaller 
amount of configuration bit-streams. The flexibility of reconfiguration is achieved at the 
cost of reconfiguration cost. Reconfigurable logic has to stop computations for initiating 
a new configuration process. This reconfiguration time or overhead can be significant, 
especially for fine-grain multi-million gate FPGAs. 

Some architectures support partial and dynamic reconfiguration processes. Partial 
reconfiguration allows the reconfiguration of the functionality of a piece or portion of the 
device while the remaining portion retains its functionality (231. On the other hand the 
dynamic reconfiguration allows the reconfiguration of a piece or portion of the device 
while other portions of the device are performing computations 1231. 

A large class of other computing architectures, addresses this problem by utilizing 
multiple contexts of reconfiguration or a reconfiguration cache [24]. Both are similar in 
basic principle. Some configurations of the device can be stored in on-chip memory. At 
run-time, it is less expensive to switch to one of the configurations being available in 
thcse memory chips or areas compared with loading a new configuration from extemal 
memory devices [24]. The organization of the cache varies among the computing 
architectures. Some computing architectures implement the architecture as an extemal 
memory device, whereas some other architectures have distributed context memories For 
example, Chameleon RCP has a cache holding one configuration on-chip, which allows 
single cycle reconfiguration completion 1271, [28]. . . 

2.1.4 Memory Organization 

The computations being performed on the reconfigurable logic needs to access data 
from memory. Intermediate results from computations also need to be stored back before 
the reconfigurable logic can be reconfigured to perform the next computation 1291. The 
organliarion of lhr memoiy system affects ihe data access cost and rs a really sign$cant 
fi.acfion of the actual execution rime or overhead. Recently the most of the computing 
architectures include a large memory on the reconfigurable logic device 1311, [33]. This 
memory can be implemented as large memory blocks just like those being available in 
Virtex FYGA as a Block RAMS or as distributed memory blocks just like those being 

-available in Chameleon LSMs [34], 1351. 
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2.2 Reconfigurable Computing Architectures; A Survey 

In the latest computing domain the parallel processing techniques being based on 
Field Programmable Gate Arrays first time appeared in the domain of computing in the 
year of start of 1985-1990. In a broader sense the reconfigurable computational 
architectures can be classified into four main categories: 

1 .  The Input / Output Bus Accelerators Systems 
2. The Massively Parallelly Processing FPGAs Architectures 
3. The Reconfigurable Computing Super-computers 
4. The Reconfigurable Processing Logic Co-processors 

2.4 Related Work 

2.4.1 Coupling of Reconfigurable Architecture and a Multithreaded Processor Core 
with Integrated Real-Time Scheduling [47] 

This research paper defines a real-time interface between the simultaneous multi- 
threaded CarCore micro-processor and a MOLEN-based reconfigurable computing unit. 
The CarCore is in fact IP core that enables simultaneous execution of one hard-real-time 
thread and further multiple non-real-time threads. The type of the hardware coupling 
described in this research paper extends CarCore by a reconfigurable computing 
hardware such that the both can execute different threads simultaneously, while the real- 
time behaviour of the hard-real-time thread is not disturbed. The main challenge under 
consideration is the design of a common memory interface for both, the CarCore and the 
recontigurable computing hardware such that the memory operations fulfil hard-real-time 
constraints. Experimental results with an MJPEG benchmark have been obtained which 
show an overall application speedup of 2.75 which approaches the theoretically attainable 
maximum speedup of 2.78. 

2.4.2 Introduction to ~ e c o n f i ~ u r a b l e  Computing Architectures 1481 

In fact this mentioned research paper describes an overview of the research of the 
currently developed hardware and software based systems for reconfigurable computing 
architectures. This research paper also presents the alternating techniques that dedicatedly 
are targeting the concept of run-time reconfiguration process. They conclude this 
discussion by considering FPGAs in general and also by an exploration of the various 
hardware architectures used in reconfigurable computing systems. Further they worked at 
the layer of software based applications that were required for the assembling or de- 
compilation or compilation of the algohthms to reconfigurable computing systems and 
the trade-offs between manual map and rout and automatic techniques. Further more they 
have discussed FPGAs hardware in details and have also presented the detailed study 
about the hardware level coupling of the reconfigurable computing devices. 
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2.4.3 Reconfigurable Instruction Set Processors from a HardwarelSoftware 
Perspective [49] 

In this research paper the authors have presented the design alternatives for 
reconfigurable instruction set processors (RISPs) from a hardwarelsoftware point of 
view. Reconfigurable instructions set processors are in fact programmable processors that 
contain a reconfigurable logic in one or more of their functional units. Hardware design 
of such processors can be split in two main tasks. First task is the design of the 
reconfigurable logic and the design of the interfacing mechanisms to the rest of the 
micro-processor. Among the most important design parameters include the granularity of 
the reconfigurable logic, the design or structure of the configuration memory, the 
instruction encoding formats and the type of instructions being supported. On the 
software side the code generation tools require new techniques to be coping up with the 
reconfigurability of the processor. Aside from the traditional computing techniques, the 
code generation requires the creation and evaluation of new reconfigurable instructions 
and the selection of instructions to minimize reconfiguation time. 

2.4.4 Re-configurable VLIW processor for streaming data [SO] 

This research paper describes the instmction set level design of a reconfigurable 
VLIW processor for streaming data applications with alternating data bandwidths. It 
discusses the design of reconfigurable data stream processor, the design of VLIW 
processor for the reconfigurable approach, data control and address path design of the 
configurable VLIW and generating the FPGA code - VLIW re-configuable procedure. 

-: 

Reconfgurable RISC processor for variable data bandwidfhs: 

The reconfigurable processor core is in fact a two-address machine with RISC instruction 
set architecture and orthogonal general purpose register file. 

Address bus width is of size of 16 bits. 
Data busses width is of sizes of.8-bits, 16-bits, 32-bits and 64 bits for different 
functional units (ALU, GPR) 

Re-confgurable systolic arraj~ - the data width sorter: 

The reconfigurable systolic array - the data width sorter is based on the hardware design 
research work. The research in Generic Algorithms is centered on the development of a 
novel design which uses systolic arrays. The generic concept is in fact extended by 
exploiting the pipeline architecture and principle to design a device that is independent of 
the lengths of the chromosomes being used in a particular problem [36]. The systolic 
arrays themselves are easily scalable to implement different population sizes. Prototype 
systolic array cells have been designed and targeted to the Xilinx XC4000 FPGA [37]. 



VLIW-RISP (Architecture & Simulation) Page 14 of 77 

Re-configurable VLIW-CPU instruction set and formal 

The first task designing the instruction set is to discuss the instruction to join the 
instruction set for the data stream approach in order to ensure ISA and E X 0  compatibility 
of the processor. Each VLIW instruction has 8 major fields: 

The Systolic sorter fields controls the systolic operation ALU and the global 
LOADISTORE operations via crossbar. The information on the streaming data 
type sorted on every data output of the systolic sorter is coded as output in the 
FPGA Condition Code Registers of the systolic sorter 

The R-CPUa, R-CPUb, R-CPUc and R-CPUd fields control the four R-CPU's 
function. The R-CPU is a two-address machine. 

The FPU memory and FPU control fields control the 32 bit RISC FixedProcesor 
Unit (MU) in performing LOADISTORE and/or control oprerations. 

The FPGA-code contains the FPGA-SRAM images of the RPU and systolic units. 

Data control and address path design of the configurable W W  

The VLIW core implements the host function for the systolic sorter and the four 
reconfigurable R-CPU calculators. The VLIW core executes all ALU, control and 
LOADISTORE instructions in the program. There are no streaming data instructions. The 
main task of the VLIW core is to synchronize the Out-of-Order the operations of the R- 
CPU and the systolic sorter to execute the FPGA based code to reconfigure the R-CPUs 
and to invoice the LOADISTORE operations for the systolic sorter. The crossbar switch 
between the R-C'PU data registers, the main memory and the execution units is in fact a 
central part of the VLIW architecture. The R-CPU data register set is read-only through 
this device which virtually provides it with four ports. The crossbar switch extends the R- 
CPU data register set's read ports, making four "vertical" buses for all R-CPU and each 
bus is connected to one of the input ports of the dual-port memory with "horizontal" 
buses. It also perfoms some data width formatting (byte, word, etc). Accessing a R-CPU 
data register takes two cycles.One cycle for the register set and another for the crossbar. 
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64 M B y t e  DRAM 

Systolic Array sorter 

Figure 2.2 Generating the FPGA code - VLIW re-configurable procedure 

The main task of the systolic sorter is to generate a condirion code for the 
different data widths as the rcsult of sorting the streaming data. The compiler drives 
reconiigurations of the FPGA prior to execution of the application code, or possibly at 
the beginning of every section of code that requires reconfiguration. 

2.4.5 Reconfrgurable Computing Systems Design: Issues at System-Level 
Architectures 

In this research paper the authors discuss the issues involved in the design space of 
reconfigurable computing systems. They have identified nine key steps in RCS design as 
application analysis, system partitioning into hardware (HW) and softwarc (SW), 
architectural design space analysis, mapping of the design library onto the architecture, 
partitioning of fixed HW and RLU of HW part, reconfiguration process, HW and SW 
synthesis. compilation and scheduling tasks and Integration of all the components. They 
briefly described the different models, architectures, compilation and scheduling of tasks, 
reconfiguration methods, optimal mapping of the design library on the RLU and the state- 
of-the art of RCSs. Finally they explain how they are going to solve some of the issues 
and methods in their system design. The nine steps of system design described in seven 
steps are as follows. 
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1. First step 

The first step is the modeling different architectural choices for a given application which 
will be optimized in terms of performance versus either given constraints or default 
design constraints after the application analysis. 

2. Second step 

The second step is the proposing the optimized reconfigurable the architecture for a given 
application by exploring the different 'design space of the architecture1 for reconfigurable 
architectures. 

3. Third step 

The third step is the translating application onto DFGKDFG or Hybrid architecture 
depending upon application requirement. 

4. Forth step 

The fourth step is the partitioning the application using hardware (HW)-software (SW) 
partitioning methods and algorithms; here we may use best existing HW-SW partitioning 
methods and algorithms for our application with two level one level for basic partitioning 
that is HW-SW tasks and other level is reconfigurable logic block (RLB)-fixed kind of 
HW (F-HW) partitioning. 

5. Fifth step 

The fifth step is the design and implementation of the optimized algorithms for mapping 
of the design library on to the proposed reconfigurable architecture. 

6. Sixth step 

The sixth step is the design and implementation of optimized algorithms for scheduling 
the reconfigurable tasks (RTs), which will be implemented in RLB before mapping the 
design on to the reconfigurable architecture (RA). 

7. Seventh step 

The seventh step is the implementation of prototype of the complete system; this involves 
integration of the entire modules using designed algorithms for scheduling of RTs and 
mapping of these RTs on to the proposed RA for given application. 

2.4.6 Intelligent Reconfigurable Instruction Set Processor (I-RISP) Design [38] 

This Thesis presents the design alternatives for Reconfigurable Instruction Set 
Processor (RISP) from hardware point of view. Reconfigurable Instruction Set Processors 
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are programmable processors that contain reconfigurable logic in one or more of their 
processing units. In RISP the most important aspect is the re-configurability. 
Reconfiguration time will have to be minimized in order to obtain satisfactory 
performance. The solution to this problem is in software tools or to design such a 
hardware which minimizes the configuration overheads. In order to avoid excessive 
reconfiguration, the I-RISP (Intelligent Reconfigurable lnstruction Set Processor) design 
has introduced an ICAU (Intelligent Configuration Analyzer Unit) using hardware 
approach. ICAU intelligently analyzes the expected configurations and reuses the 
existing resources (configuration). The ability to reuse the existing resources significantly 
increases the performance of I-RISP. 

The proposed processor is based on VLIW architecturc, having an Intelligent 
Reconfiguration Analyzer Unit. The purpose of Intelligent Reconfiguration Analyzer 
Unit is to minimize re-configuration overheads faced by RISPs. In existing systems the 
intelligence was created by using software techniques. This software based intelligent 
reconfiguration techniques are considerably slow speed due to the conventional 
instruction cycle concept. In order to eliminate this software based overhead the 
intelligence has been incorporated in hardware rather then in software. 
The detailed architecture of the proposed design consists of the following modules: 

1. Scheduler 
2. Fetch Unit (FU) 
3.  VLIW (Very Long lnstruction Word) 
4. Intelligent Computational Unit 
5. Intelligent Configuration Analyzer Unit (ICAU) 
6 .  Configuration Unit (CU) 
7. Reconfigurable Processing Units (RPUs) 
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Chapter No.3 

Dedicated Machines and Reconfigurable Computing 

3.1 The Philosophy of a dedicated machine 

One of the main issues in the evolution of computing architectures is their 
specialization. Many reasons can lead hardware designers towards pursuing a specialized 
computing architecture. The requirement of obtaining the high performances in a typical 
or particular application domain is one reason for it. Also, the timing issues in real-time 
embedded applications pushed the designers towards architectwing application-specific 
solutions which could more aggressively meet these requirements. Similarly other very 
important parameters include the cost and the power consumptions. These are the key 
design factors in the domain of embedded systems. 

All these reasons and constraints introduce the requirements for a new design 
paradigm which takes these features into account and leads to the definition df new 
specialized cores or architectures. Hence one option is the general purpose computers, 
where the main issue is that of achieving more generally high performance in a very large 
spectrum of applications. The second option is the application-specific computers, where 
embedded applications or algorithms guide architectural design in more compact form. 
Dedicated or application specific architecture, performances are generally not measured 
on conventional benchmarks but they are measured only on the application the machine 
is designed for. 

A large no of the different approaches have been taken by architectural researchers to 
guide the design of application-specific solutions or algorithms. One of the early 
approaches proposed for the design of this kind of machines was the ASIP (Applications 
Specific Instruction set Processor) philosophy. It was an emerging design paradigm in the 
field of application specific computing. ASIPs are programmable processors where the 
Instruction Set is adopted to a particular application. 

3.1.1 The main theme behind Instruction Set Specialization 

The elements of the Instruction Set of a micro-processor, i.e. the op-codes are the 
brich into which a high level code is broken down for execution on a micro-processor. 
The operation specified by each op-code is commonly executed on a most dedicated and 
highly optimized functional unit and therefore we can see the functions specified by each 
of the op-codes as the hardware execution brich of the software execution flow. 

If these bricks increase in granularity or size by performing more complex operations 
than those which are typically available in the instruction set of RISC micro-processors, 
then the instructions in the code will more generally correspond to more complex 
functional units, possibly characterized by more latency and performing 'larger' 
computations when compared to RISC functional units. Since we know that the hardware 
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execution speed is much faster than the software execution speed hence an application 
broken down into bigger bricks will in generally be faster to execute than one broken 
down into smaller ones. However, no doughty that the simple operations are common to 
many software applications, the more complex operations become the less likely it is that 
they are common to a large number of applications. Therefore, while a more complex 
functional unit will speed up execution of the algorithm when extensively used by a 
typical application, it is also true that the area dedicated to such a type of the unit would 
result wasted, when running those applications programs that do not exhibit such 
complex operations in their program code. Moreover, the presence of complex 
instructions mostly complicates some program code generation tasks such as code 
selection and register allocation among others. 

The ISA specialization has been studied deeply in the past few decades [39]. In a 
library of re-current sub-graph patterns is generated. Pattern matching and graphs 
covering is then performed. The problem of optimizing area of h c t i o n a l  units through 
their specialization is also deeply considered and it is observed that much of the ALU 
functionality is not used when only one or a few embedded system applications are 
considered for execution. The embedded system application code is analyzed so as to 
discover that which functionalities of the ALU are actually required. Functional Units 
having lower cost and area can then be designed and specialized to the application 
analyzed. 

3.2 FPGAs 

A Field Programmable Gate Array is consisting of an array of combinational logic 
clouds or blocks overlaid with an interconnectibn network of horizontal and vertical 
wires. Both the combinational logic blocks and the interconnection network are 
configurable or programmable [40]. Their configurability is achieved by using either anti- 
fuse elements based technology or SRAM based memory bits to control the 
configurations or programming of the transistors. The A n t i - h e  based technology uses a 
strong electric or electronic charges or currents in order to create a programming 
connection between the two adjacent required terminals. Hence in this way in fact this is 
a typically less reprogrammable system. Static RAM based program configuration can be 
re-programmed unlimited number of times on the fly by simply downloading a set of 
different configuration bit streams into the Static RAM based memory cells. 

Typically a configurable logic block shortly known as CLB architecture in fact is 
consisting of a look-up table shortly known as LUT, a Delay flip-flop shortly known as 
D-FF, some other form of additional combinational logic circuitry and a also consisting 
of a set of Static RAM based memory cells to control the process of configuration of the 
laid down configurable logic blocks (See Figure 3.1) [41]. The laid down digital logic 
circuitry or blocks of the FPGA device also perform the InputIOutput operations in order 
to load and store the data streams being required for the processing. On the other hand the 
horizontal and vertical interconnecting networks can also be reconfigured by 
programming or changing the connections between the laid down configurable logic 
blocks and the set of wires and by configuring the integrated switch boxes 
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shortly known as PSB, which connect different horizontal and vertical wires. These 
programmable switch boxes (PSB) for the interconnecting networks are also controlled or 
programmed by the Static RAM based memory cells. In this way the logical functions 
being computed inside the available configurable logic block (CLBs), the horizontal and 
vertical interconnecting networks and the Input/Output blocks can be configured and 
reconfigured by using the external data streams. Field Programmable Gate Arrays 
typically allow the unlimited number of reconfigurations for the laid down device. These 
versatile kind of programmable devices so far have been usPd to build even large scale 
micro-processor cores and co-processor cores whose internal architectures and as well as 
interconnections can be reconfigured in order to match the requirements of a hand on 
running application. In order to a very brief reconfigurable computing architectural 
survey of Field Programmable Gate Arrays and some other important improvements of 
the concerned technology consider the references of [3], [7], [13]. 

Current and future generations of reconfigurable computing systems or devices have 
ameliorated the reconfiguration and configuration costs by providing a typically high 
speed and most optimized partial and dynamic reconfigurability process 1421. In the 
process of partial reconfiguration of the under laid device 1231, it is quite possible to up 
date or change the configuration bit streams of any one part of the working under laid 
device while the at the same time the configurations of the remaining part is still retained 
in its original form. On the other hand in the process of dynamic reconfiguration of the 
under laid device, the under laid devices allow this partial reconfiguration process even 
during the interval when even other configurable logic blocks are performing their 
regular operations or computations [43]. 
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MUHI-FPGA Board 

Figure 2 Typical FPGA Board, Device and Logic block architecture 
. . 

Typically, the requirements of the applications are increasing at a rate which is much 
faster than the increasing rate in the size or density of the computational logic resources 
mostly available on the most of Field Programmable Gate Arrays. Field Programmable 
Gate Arrays architectures have limitations on their InputlOutput capability of processing 
due to the limitation on the available total number of Input/Output (10) pins which are 
physically available on the under laid device. In order to map and rout such kind of large 
scale user applications onto the available configurable logic blocks, the different 
computing systems have been designed which have several Field Programmable Gate 
Arrays some times on a single board or even some time on a single chip. 

These board level reconfigurable computing architectures are mostly designed to 
function under the supervision an external configuration controller or kind of 
configuration supervisor or some times even they may use one of the on-board Field 
Programmable Gate Arrays as a main controller. There are a large number of such 
systems available. The examples of such systems may include the DECPeRLe board, and 
SPLASH-2 [30], the TERAMAC and the WILD series of devices being provided from 
Annapolis Micro-systems. Also some other son of s o h a r e  tools exist which have the 
ability to automatically partition the whole design between the physically available 
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multiple Field Programmable Gate Arrays on a single board by using the kind of higher- 
level of programming abstractions ,[27]. 

3.2.1 The Basic FPGA Architecture 

Thc basic architecture of Field Programmable Gate Arrays consists of broadly three 
kinds of components. These mentioned components include configurable logic blocks, 
programmable routing resources and a set of'input/output logic blocks or I 0  blocks 1-14]. 

Generally, Field Programmable Gate Arrays consist of an array of programmable 
logic blocks known as CLBs that can be intcrconnected to other CLBs and also as well as 
to the programmable Input/Output blocks of the system through some kind of 
reprogrammable routing resources or architecture. Figure 3.2 provides a very simplified 
block diagram of the internal architecture of a generic Field Programmable Gate Array. 

Figure 3 A Generic FPGA Architecture 

i. The Programmable Logic 

Field Programmable Gate Arrays designers have designed a large number of a variety 
of progrnmrnable logic architectures for Field Programmable Gate Arrays after their great 
invention in the mid-1980-1990. Since from few decades the much of the programmable 
logic structures being used in Field Programmable Gate Arrays can be optimally 
generalized as shown in Figure 3.3. The fundamental programmable logic element being 
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integrated inside the FPGA generally consists of some kind of programmable 
combinational logic or CLB, a delay type flip-flop D-FF or kind of latching mechanism, 
and a kind of fast carry control logic to reduce the area density and typical delay costs for 
implementing such kind of cany logic. 

Unlike other generic configurable logic component or element, the currently available 
commercial Field Programmable Gate Arrays devices provide a large number of 
programming flexibility within the available logic element. For example, a delay flip-flop 
D-FF in many commercially available Field Programmable Gate Arrays can be made to 
operate as a simple latch circuit and can be programmed to have many combinations of 
asynchronous as well as synchronous sets / resets and can be negatively- edge triggered 
or positively-edge triggered. 

Carry Out 

Inputs , h 

Carry In 

Flip 
Flop 

-. .. . - 

Clock 

3 out Put 

..- ~onfi~uration 
Memory Cell 

Figure 4 A Generic Programmable Logic Block 

Although the most of the reprogrammable Field Programmable Gate Arrays use 
Look-Up Tables for their combinational logic, several other architectures like [12], [13], 
[14]) have been found to be used combinations of multiplexers and digital logic design 
gates to implement this programmable logic architecture or structures [45]. 
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ii. Programmable Routing Resources 

The Field Programmable Gate Arrays designers have used a large class of different 
routing resources or strucNres within their Field Programmable Gate Arrays. Different 
kinds of forms or designs of routing resources exist through out the designs of each Field 
Programmable Gate Array. Commonly some amount of routing resources is also included 
within the design of the each logic clustering element so that the laid down logic 
elements can be combined to form bigger and more complex functions. 

In order to implement the nature of the programmable routing of the resources, there 
are three basic switch types that have been used. These types include the digiul 
multiplexers, the pass transistor circuits and a commonly used tri-state buffer gates. 
Figure 3.5 describes each of these mentioned switches with a Static RAM memoy cells 
controlling their outputs. Commonly, the passing transistor circuits and the digital 
multiplexers have been used within the area of a logic cluster in order to connect the logic 
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elements or components together while all of the above three have been used for the more 
global routing structure. 

. . 
ENB 

11 IA1 Multiplexer ( B  I Pass Transistor ( C ) Tri State Buffer (1 

iii. Programmable InpuUOutput Architectures 

Unlike programmable logic resources and routing resources, the basic input/output 
resources or I 0  architecture, as is shown in Figure 3.6, is very similar among the different 
Field Programmable Gate Array families being evolved so far. The Input/Output logic 
blocks have been found with the tri-state buffer gates for the outputs and input buffer 
gates for the inputs of the system. The tri-state logic enable I disable signal, the output 
logic control signal and the input logic control signals can be individually latched or 
registered by using flip-flops within the 1npuUOutput blocks or can be programmed as the 
un-registered being depending on the fact that how the UO block is being programmed. 

r 
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Figure 7 VO Block Architecture 
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3.2.2 FPGA technology 

Field Programmable Gate Arrays can be traditionally divided into two main 
categories: 

I .  Anti-fuse Based FPGAs 

2. SRAM Based FPGAs ' 

Recently another FPGA technology has been introduced by Alcatel, which is based on 
FlasNCMOS based circuits [72]. 

The first type or category of FPGAs uses anti-fuses as a mean to program the device. 
Anti-fuses implemented in a CMOS tecGology'arebe<iig iniGally open circuits and after 
that once they are programmed they take on a low resistance. The main characteristic of 
this kind of FPGA is the fact that it can be programmed only once. 

The second category of FPGAs uses SRAM cells as a mean for programming the 
device. A I-bit SRAM can control FPGA switches in two different ways including either 
by controlling the gate node of a pass transistor or by controlling the select line of a 
multiplexer drives the inputs of logic blocks. 

The main advantage of ~ ~ ~ ~ - b a i e d  FPGAs lays in their nature of re- 
programmabilily. The logic value of the SRAM cells can be overwritten or updated for a 
number of times and hence allowing the FPGA to be reconfigured even on-the-fly. 
Another characteristic of such kind of FPGAs is the fact of being volatile, i.e. the 
configuration must be loaded onto the device every time the system is booted up or 
powered-up. The interest of this thesis for SRAM-based FPGA is indeed due to re- 
programmability nature of it on-the-fly: as it will be seen, this allows change of the IS of 
the proposed architecture while the application is running. 

Further FPGA technology features of interest for this thesis include the latest 
techniques of partial reconfiguration or re-programmability and context switching. The 
former is the capability of re-programming only a specific part of the whole device, while 
the rest part of the device is remains operational. The latter feature called context- 
switching of the configuration is a new technology which enables an FPGA to hold 
contexts of the multiple configurations at the same time. Configurations are stored in a 
series of memory blocks or memory banks so that it is possible to rapidly switch between 
them within the delay of nanoseconds [36].  

' 

FPGA Mapping Tools 

Implementation of a circuit onto an FPGA platform requires sophisticated CAD tools. 
Hardware description language or a schematic description is used to enter the design. In 
the process of transforming such descriptions into the FPGA configuration, there are 
three main phases. 
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I .  Mapping phase 

2. PIacemenf phase 

In the mapping phase the circuit is logically partitioned into modules or parts so that each 
one is assigned to one configurable logic block of the FPGA. The second phase, called 
placement, is the process of assigning the computation of every configurable logic cell 
generated in the mapping phase to aphysical logic cell being available on the device. The 
third phase, callcd routing, targets at defining all the connections among cells through 
programming the available horizontal and vertical switches. The complexity of the CAD 
tools is very high and the three phascs can take much more time from few seconds to few 
hours for large circuits. 

3.2.4 Commercial FPGAs 

Xilinx: 

Xilinx FPGA devices consist of a two dimensional array of configurablc logic cells 
connected by horizontal and vertical layers of wircs. The most widely used FPGA include 
the generations of Xilinx devices XC4000 [45] which claimed the density or capacity 
from 2K to 15K equivalent gates. 

In the XC4000 FPGA device Configurable Logic Block (CLB) is based on lookup 
tables. A lookup table is in fact an array of !-bit memory cells, where inputs are the 
address of memory lines, and the one bit output is the data line: thus, a lookup table with 
K inputs will have Zk-1 bit possible memory cells. A lookup table can implement any k- 
inputs logic function or computation. A CLB mostly has more than one lookup tables, 
and one or more than one flip-flops. The XC4000 CLB consists of 3 lookup tables, two of 
them with 4-inputs and one with 13-inputs and two flip-flops. One of the circuits that a 
CLB can implement is a full adder, so that CLB can be configured or programmed to 
implement any fast arithmetic circuit as carry-save or carry-look-ahead adders. CLBs can 
also be used as readwrite SRAM cells. A CLB is programmed by setting the memory 
cells to the values given by the truth table of the digital logic circuit to be implemented. 

The second distinguishing feature of FPGAs is their. routing connections or 
interconnects. The XC4000 features horizontal and vertical channels. Each of these 
channels consists in short, long. and medium distances wires. Short distance wires are 
used for interconnecting two close CLBs, while the long distance wires can connect far 
CLBs. In fact long distance wires tend to have much less switches than shorter wires. The 
final delay of the circuit depends heavily on how the CAD tool has assigned wire 
segments to physical wires after the process of routing. 
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Altera FLEX 

The Altera Flex 8000 series of FPGAs has a logic density or capacity of 4K to more 
than 1SK equivalent logic gates. The device consists of a 3-level hierarchy. The lowest 
level is a set of lookup tables. The basic logic block, called configurable logic element, 
consists of a 4-input lookup table, a flip-flop and some additional circuitry for fast carry 
propagation purposes. At a highest level, is the Logic A m y  Block? This consists of eight 
logic elements, connected together through a local interconnect. Any two logic elements 
of the block can bc connected to each other by programmable wires. The local 
interconnect and every logic element are. connected to the Fast Track global 
interconnects, similar to the XC4000 long distance wires. 

The Flex 10000 family of FPGA features a different characteristic to that of 8000 
series of family. Every row of the device contains an embedded array block which can be 
configured either as an SRAM memory cell block or as a lookup table. The latter use 
serves to implement any complex digital logic circuit through a multi-output lookup 
table. To more exploit this feature Flex tools contain various macro-functions to bc 
implemented in embedded logic blocks. 

The AT40K and AT6000 FPGAs family or series present the particular feature of 
purtial conjigurabilify. lh i s  means that specific parts of the an FPGA device can be 
reconfigured while the rest continues to operate~without . ~ -  .- disruption. This is particularly 
useful in reconfigurable systems wher&'instructions are'tikcn in &d out of th 
programmable functional unit. The AT6000 logic cell contains a D-type register and 
about twelve logic gates. Interconnect is peculiar in that it provides diagonal connection 
as well, in addition to the usual vertical and horizontal programmablc interconnections. 
Every cell is therefore octagonal andhence it can be connected with eight neighbors. The 
Atmel devices provide an internal SRAM memory that can be used for caching 
coniigurations. A more advanced context-switching FPGA device is currently under 
development at NEC. It is claimed that the area required to store multiple contexts does 
not grow linearly with the number of context [12]. In the future, the usage of even 
DRAM cells instead of SRAM cells to save FPGA contexts could increase even more 
FPGA potentialities. 

3.2.5 FPGA performances 

The FPGA performance in terms of execution speed is affected by two main features. 
The time needed to download a configuration describing a certain circuit and the time 
nccded to execute the function implemented by loaded circuit. Another important issue is 
the time the software tool takes to generate configurations. 

This is not as easier to glve these performaGe figures in a straight forward way. The 
time overhead for reconfiguration varies considerably depending on the size of the 
device. Obviously a device implementing small logic. functions will take less time to 
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reconfigure because a smaller number of reconfiguration bits streams are involved. A 
good measure of reconfiguration time overhead could therefore be given per configurable 
logic block used or even per gate equivalent which is even better because it is not 
affected by the block granularity of the FPGA device. Another important issue is the 
frequency at which the device operates, which is directly proportional to reconfiguration 
time overhead. In the Atme16000 the reconfiguration for the full device takes from 1 to 8 
mili seconds and this corresponds to almost 0.2 micro seconds for per Cell. Altera 10K 
claims 115 MHz performances with a density of up to 250 K logic gates. Xilinx has 
recently launched a new line of FPGAs called VIRTEX series which targets operation 
frequency of more than 300 MHz. 

Table 3.1 gives performance of the Atme16000 in terms of - execution delay of some 
. 3  .. arithmetic circuits. 

Table 2 Cell Count and maximum Operating speed (one operation per cycle) for some 
arithmetic circuits in the Atmel 6000 device 

3.3 Reconfigurable CPUs 

Since FPGAs present both advantages of re-programmability as well as the high 
4 - performance of custom circuit; it is appealing to combine a micro-processor core with 

reconfigurable resources in order to achieve a speed or performance improvement over 
either a separate micro-processor or a separate reconfigurable FPGA device [3]. While it 

i\ is possible to combine conventional micro-processors with available reconfigurable 
FPGA devices at the circuit board level; the integration changes the 110 costs for both 
devices. An architectural solution which is definitely appealing is therefore the 
integration of an FPGA on-chip. A number of different solutions are as under: 

i Totally reconfigurable processor. 
ii. The co-processor approach. 
iii. A partially reconfigurable CPU 

3.3.1 Totally Reconfigurable Processors 

This is a kind of the design approach where a CPU together with a reconfigurable 
accelerator is designed or implemented by means of a reconfigurable logic. An important 
project of this kind is the Dynamic Instruction Set Computer (DISC), designed at 
Brigham Young University [6 ] .  DISC consisted of two CLAy31 FPGAs developed by 
National Semiconductors and memory on a circuit board connected to a personal micro 
computer. DISC made extensive use of the latest technique of partial reconfiguration. The 
first FPGA was consisting of a permanent control unit while the second was divided into 
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rows to simplify array management and allow for custom-instruction spatial caching. 
Custom instructions were intended to be swapped into and out of the FPGA similar to 
that of the pages of virtual memory. Before initiating execution of a custom instruction 
the device operating program asks the FPGA for the presence of the custom-instruction 
configuration. If the custom instruction is currently really on the FPGA, then the 
execution is initiated otherwise program execution pauses while the custom instruction is 
configured on the FPGA. 

3.3.2 The Co processor Approach 

Such an approach in fact proposes a loose coupling between micro-processor core and 
the reconfigurable logic. The latter acts as a coprocessor where it is a slave computational 
unit located either on the same die as the processor or off the chip. The granularity of the 
implemented function in the reconfigurable section is much higher than that of the mixed 
CPU approach. This is due to the fact that the communication with a coprocessor is much 
slower than that of the communication with a parallel data-path of the CPU. l'herefore 
the block of computation delivered to it must be large in order to give high performance 
gain or improvement. A research project that fits in this category of reconfigurable 
computing is the Garp by the BRASS group at Berkeley [4]. The proposed architecture in 
fact consists of a MIPS processor placed in the same die with a reconfigurable 
coprocessor. The coprocessor is activated by the processor when a reconfigurable 
function is called. At this point the processor turns off and the coprocessor cames out the 
computation of the reconfigurable instruction set having also access to both the processor 
corc and cache memory. The coprocessor also includes a memory for caching 
configurations so that to allow a fast context switching. 

3.3.3 A Partially Reconfigurable CPU 

This kind of approach proposes a very close or tight coupling between the main 
processor core and the CPU. Contrarily to the coprocessor approach here the CPU and 
thc reconfigurable logic both compute simultaneously. The reconfigurable module is 
indeed added to the data-paths of the core CPU and hence introducing a special kind of 
hct ional  units called Reprogrammable Functional Units (RFUs). This kind of system 
organization allows definition of an extension of the architecture Instruction Set by the 

- m e  implementation of new instructions on the RFUs. Also since the FPGA can be run t' 
reprogrammed; one element of the instruction 'set can. be mapped onto an RFU for the 
whole length of the application as well as such element can va& during the application 
execution time through reconfiguration of the FPGA section. A number of projects have 
used the mixed CPU architectures in the past. The PRlSC project [35] developed at 
Harvard presented to extend the Instruction Set of a RlSC processor through 
implementation of particular functions onto one or more ~rogammable  Functional Units. 
A framework is proposed where the choick of the functions to be implemented in the 
PFUs is very transparent to the programmer. The most general computational model for a 
PFU is said to be a multi-cycle sequential state machine. Performance gains were 
measured on the SPECint92 benchmark suite and a speedup factor of 10% to 90% was 
reported. A second proposal of tightly coupled micro-processor core and a 
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Reconfigurable Logic is that of the OneChip project. OneChip proposes an architecture 
which is very close to that of PRISC. The major difference from the PRISC approach is 
that in this system any kind of function is allowed to be implemented in the PFU. 

Chimaera [lo], is a reconfigurable system that was developed at Northwestem 
University. In this system the FPGA and the processor core are placed in the same chip: It 
focuses on the optimization of the reconfiguration overhead and elimination of the 
communication bottleneck between the reconfigurable logic and the micro-processor 
core. By enhancing the speed of reconfigurations and communications, even fine grained 
reconfiguration can become practical. This project mainly focuses on the definition of the 
Chimaera architecture. A caching logic is also present in order to hold multiple 
configurations and minimize overhead. Reconfiguration is done on a per-raw basis and 
W U  functions occupy one or more of the rows. 
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Chapter No.4 
The Proposed Architecture 

This chapter focuses on the design of a Very Long Instruction Word Reconfigurable 
Instruction set Processor (VLIW-RISP).Hardware design aspects and concerning issues 
have been discussed along with each component under consideration. In proposed system 
an alternative design for Reconfigurable Instruction Set Processor (RISP) has been - - 
proposed with the capability of the most optimal configuration overhead for'Very Long 
Instruction Word (VLIW) based architectures. The processor has been integrated with the 
high speed partially recokigurable Field ~ r o ~ r a m m a b l e  Gate Array (FPGA) cores as its 
Reconfigurable Functional Units (RFUs) in place of ALUs and it treats instructions as 
removable modules which can be paged in and paged out through the partial 
reconfigurations according to the requirements of the application being under execution. 

4.1 Overall Design Goal 

The overall goal of the thesis was to develop VLIW based Reconfigurable Instruction 
Set Processor with a reconfigurable ALU that can implement any computational 
algorithm on fly and reconfigure it later on for some other algorithm. The processor was 
required to be the partially reconfigurable during the execution of the application. As 
such, the design has been divided into two main modules: 

Module No.1 (Compiler Design for VLIW-RISP) 

This module deals with the design of the compiler for the VLIW-RISP. The compiler 
is supposed to be able to allocate the Op-Codes to the instructions according to the 
available configuration streams in the configuration memory. In this thesis the compiler 
designing is not the main goal and hence a hypothetical compiler according to the 
requirements of the proposed RISP is considered for the instructions being used for 
execution purpose on the processor. Compiler is supposed to generate the instructions 
with the instruction format as is used in the designed processor. 

Module No.2 (VLIW-RISP Design using Verilog-HDL) 

This module deals with the design of the RISC based partially reconfigurable VLIW- 
FUSP processor. In this phase the proposed VLIW-RISP and its programming interface is 
developed using the Verilog-HDL. Inside the proposed design only the computational 
units (ALUs) are supposed to be reconfigurable and the remaining all components of the 
design are truly non-reconfigurable. 

4.2 Tuol Issues 

For designing the processor a hardware description language was required, Verilog 
HDL was chosen due to its popularity and simplicity. 
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4.2.1. Importance of HDLs 

HDLs have many advantages compared to traditional schematic-based design. 
Designs can be described at very abstract level by use of HDLs. Designers can write their 
RTL description without choosing a specific fabrication technology. Logic synthesis 
tools can automatically convert the design to any fabrication technology. If a new 
technology emerges, designers do not need to redesign their circuit. Thcy simply input 
the RTL description to the logic synthesis tool and create a new gate-level netlist, using 
the new fabrication technology. The logic synthesis tool will optimize the circuit in area 
and timing for the new technology. 

By describing designs in HDLs, functional verification of the design can be done 
early in the design cycle. Since designers work at the RTL level, they can optimize and 
modify the RTL description until it meets the desired functionality. Most design bugs are 
eliminated at this point. This cuts down design cycle time significantly because the 
probability of hitting a functional bug at a later time in the gat-level netlist or physical 
layout is minimized. Designing with HDLs is analogous to computer programming. A 
textual description with comments is an easier way to develop and debug circuits. This 
also provides a concise representation of the design, compared to gate-level schematics. 
Gate-level schematics are almost incomprehensible for very complex designs. 

4.2.2.Why not to use a general purpose language 

General-purpose programming languages do not provide support for structure and 
instantiation of objects or modules. Also 'they do not support bit-level behavior 
description. Execution in general-purpose languages is sequential, therefore are unable to 
support the concurrent nature of hardware modules. Also, they do not provide the 
requircd timing support. 

Vcrilog HDL has evolved as a standard Hardware Description Language. Verilog 
HDL offers many useful features for hardware design. Verilog HDI. is a general-purpose 
hardware description language that is easy to learn and easy to usc. It is similar in syntax 
to the C programming language. Designers with C programming experience will find it 
easy to learn Verilog HDL. Verilog HDL allbws different levels of abstraction to 'tje 
mixed in the same model. Thus, a designer can define a hardware model in terms of 
switches, gates, RTL, or behavioral code. Also, a designer nccds to learn only one 
language for stimulus and hierarchal design. Most popular logic synthesis tools support 
Verilog HDL. This makes it the language of choice for designers. All fabrication vendors 
provide Verilog HDL libraries for post logic synthesis simulation. Thus, designing a chip 
in Verilog HDL allows the widest choice of vendors. Verilog is really a language for 
modeling event driven systems. The design flow using Verilog-HDL or VHDL is shown 
in figure 4.1. 
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4.3 Instruction Format of proposed -VLIW-RISP 

The proposed Very Long Instruction Word Reconfigurable Instruction Set Processor 
VLIW-RISP is basically a reconfigurable RISC architecture having each instruction of 
size 32-bits. Instruction format is below. 

contiguntion Memory 

R 

Figure 10 Op-Code Interpretation 

This is the instruction format for the instructions of the application to be cxecuted on 
the proposed VLIW-RISP. These instructions are of the size 32-bits. The &bits on the 
most significant side of the instructions represent to the operdtion code shortly known as 
thc OP-CODE and hence leading to a maximum of the 256 possible operations or 
instructions in thc instruction set being active (Configured) at any time. Each op-code of 
an instruction is in fact a pointer to some configuration block in the multi-port 
configuration memory as shown in figure 4:3 and hence is responsible for loading the 
required configuration stream of the relevak hardware module. Here each op-code is a 
relocatable pointer which can be recontigured for some other hardware module by 
loading a new kind of bit stream over thcre in the configuration memory. IIence due to 
this relocatable nature of the op-codes, the instruction set of the proposed processor is 
bigger than the actual one supported by the design according to 8-bits of the op-codes. 
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Theoretically the reconfigurable instruction set processor defines to an unlimited sized 
instruction set due to relocatable nature of op-codes. 

Because the proposed VLIW-REP is basically a RISC architecture using only the 
Register-Register architecture with a register file havirig'32-~&+ters each register pf the 
size 32-bits, hence in order to access each register for source or for the destination 
requires an address of size 5-bits. Also the instruction format 1s a three-address 
instruction format containing two addresses for sources and one address for the 
destination. Hence there arc three addresses Sourcel, Source2 and Destination operand 
address, each of the size 5-bits hence consuming a total of 15-bits of the instruction. 
There are a total of the 9-bits being declared as the Un-Used Bits. These bits will be used 
in the future to further enhance the VLIW-RISP design and the instruction set. 

4.4 VLIW-RISP Design Siml~lation using Verilog-HDL 

In the simulation of the design the program will be written in the editor and will be 
compiled. The compiler after doing its all jobs will generate a binary file which will 
contain the instructions of the program in the binary form as are required by the designed 
VLIW-RISP. Hence now this file contains one instruction of size 32-bits in one row and 
so on. Then this file is given to the "Stimulus of the VLIW-RISP". This stimulus loads 
this file into the instruction cachc of the processor and then processor executes it as it is 
designed for. Before loading the application program written by the user, the required 
data operands are loaded into the data cache of the VLIW-RISP as are required by the 
proposed design. Then these data operands are lorided into. the register file of ihe 
processor, containing a total of 24-General Purpose and 8-Flag Registers, where each one 
is a 32-bits register. 

4.5 PROPOSED RISP DESIGN: 

Very Long Instruction Word Reconfigurable Instruction Set processor VLIW-RISP 
design is divided into different modules that were interfaced together to make the whole 
processor. The different modules being designed for the VLIW-RISP using Verilog-HDL 
are followings: 

1. Input/Output Interface (101) 

2. Cache Memories 

3. Pre-fetch Unit (PFU) 

4. Instruction Scheduler Unit (ISU) 

5. Instruction Pack Logic (IPL) , - . . 
-. 

6. Computational Pipeline-l (CP-1) 
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VLIW Fetch Unit (VFU) 

VLIW Dispatch Unit (VDU) 

7. Computational Pipeline-2 (CP-2) 

VLIW Execution Unit (VEU) 

VLIW Configuration Unit (VCU) 

8. Micro-programmed Control Unit (MCU) 

In this chapter the detailed architecture of the proposed RISP has been discussed with 
the detailed computational and control hnctionality explanations. The detailed 
architecture has becn overviewed in a top-down hierarchy. The detailed architecture of 
the proposed processor is shown in the Fig.4.4 and different modules are discussed below 
along with their functionality. 
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4.5.1 Input  I Output Interface (10 Interface): 

The 1 0  interface of RISP is used to communicate with the external devices being 
interfaced with it. The first job of the UO Interface is to load the configuration streams 
from external Configuration EPROM or main memory of system during the booting 
processes of the processor and it takes only a few clock cycles. These configuration 
streams contain the different hardware modules like Adders, Subtractors, Multipliers and 
Shifters etc. The second job of the I 0  interface is to load the instructions and their 
relevant data operands to bc executed on the procekor. The third job of the I 0  interface 
is to store the results of the computations performed on the processor in main memory of 
the system. The fourth job of the 10  interface is to send and receive the control signals 
generatcd and acknowledged by the control unit of the KISP to the extemal devices. 110 
Interface interacts with extemal environment by using the following signals. 

1. Data Bus Signals 

2. Address Bus Signals 

3. Control Bus Signals 

Processor 
External Interface 

Control ' L  Multiplexed Bus 

Bus AddresslDatalConSguration 

I 32-bi-8-bi 
J 

Figure 12 External Interface 
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The major functions and requirements for an 110 module fall into the following 
categories [28]. 

a. Control and timing 

b. Processor Communication 

c. Device Communication 

d. Data Buffering 

e. Error Detection 

f. Processor Configuration 

Cache Memories 

The cache memory holds (stores) the data used by a program and also the instruction 
of the program. The cache is organized as set associative cache, with each location (line) 
containing 32-bits of data in case of Data Cache and 32 x 8-bits in case of Instruction 
Cache. The cache operates as a write through cache. Note that the cache changes only if a 
miss occurs. This means that data written to a memory location not already cached are 
not written to the cache. In many cases, much of the active portion of the program is 
found completely inside the cache memory. This causes the execution to occur at the rate 
of one clock cycle for many of the instructions that are commonly used in a program 
[29]. The architecture of the cache is supposed to be the standard cache architecture being 
used by the standard micro processors. 

1- Write-Back Cache: When the system writes to a memory location that is currently 
held in cachc, it only writes the new information to the appropriate cache line. When 
the cache line is eventually needed for some other memory address, the changed data 
is "written back" to system memory. This type of cache provides better performance 
than a write-through cache, because it saves on (time-consuming) write cycles to 
memory. 

2- Write-Through Cache: When the system writes to a memory location that is 
currently held in cache, it writes the new information both to the appropriate cache 
line and the memory location itself at the same time. This type of caching provides 
worse performance than write-back, but is simpler to implement and has the 
advantage of internal consistency, because the cache is never out of synchronous with 
the memory the way it is with a wile-back cache. 
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a. Instruction Cache 

The user interface, along with the compiler, generates a program file containing the 
application program written by the user in the specified editor. Each row of the file 
contains a 32-bits instruction. This program file is loaded into the to internal instruction 
cache of the VLIW-RISP. 

Figure 13 Instruction Cache 

The internal instruction cache of the RISP is of the size 16KW. Where W=Memory 
Word. The size of the memory word is same as that of the size of the VLlW and is 
32 x 8 - 256 bits. 

b. Data Cache 

The data operands given by the user for the registers of the VLIW-RISP through the 
interface are written to a data file initially. The each row of this data file is of the size 32- 
bits and contains a single data operand of some instruction. This data file is loaded into 
the internal data memory of the VLIW-RISP. The infernal data memory of the VLIW- 
RISP is of the size 16KW, Where W=Memory Word. Thc size of the data memory word 
is 32-bits because the processor being designed is a 32-bits machine. 
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Figure 14 Data Cache 
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Initially the data cache is loaded with the configuration streams that are then being 
transferred into the multi-port configuration memory. Then the data cache is loaded with 
the data operands of the application program. Thesc data operands are the source 
operands of the different instructions, written by the user in the program editor being 
dcveloped. These data operands are then loaded into the register file of the processor so 
that the Register Window becomes able to fetch them during the execution of the relevant 
instructions. The last job of the internal data cache is to store the results being generated 
by the execution of the program instructions. These results are initially stored into the 
registers of the VLIW-RJSP and later on thesc results are shifted into the internal data 
memory of the VLIW-RISP. From this data cache the results are stored into the external 
data memory (Data File) of the system from where the user interface receives and 
displays them on the system. 

4.5.3 Pre-fetch Unit (PFU): 

The basic job of the PFU is to fetch or pre-fetch the configuration stream or 
instruction stream and the data stream of the application program being under execution. 
Fetched configuration stream is loaded into the multi-port configuration memory and 
instructions are loaded in the Instruction Pool and then transferred into the Instruction 
Cache. Similarly the data stream is loaded into the Data Pool and then transferred into 
the Data Cache. 
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4.5.4 Instruction Scheduler Unit (ISU) 

The ISU is the micm-programmed implementation of the Tomasoulo's Algorithm 
being used in VLIW and Super-scalar processors for the scheduling of the instructions. 
The instruction scheduler reads instructions from the instruction pool and thcn it analyzes 
them for dependencies (if any) and resolves these dependencies. Dependencies being 
analyzed include Data Dependency, Control Dependency, Resource Conflicts and Data 
Hazards etc. Then it after analysis ISU transfers these instructions to IPL. 

4.5.5 Insfruction Pack Logic (IPL) 

The main job of the IPL is to pack thc eight instructions in the form of a VLIW. The 
32-bits instructions transferred from the ISU are given to the IPL. The IPL arranges these 
instructions in a buffer in a FIFO order on their arrival from the ISU. After the arrival of 
each instruction, the IPL increments its instruction counter and checks either there are 
eight instruction arrived from the ISU or not. If a total of eight instructions have been 
arrived from the ISU then the IPL transfers them into a VLIW buffer of size 8 x 32-bits. 
Then it enables this buffer to transfers this VLIW to instruction cache of the RISP if 
signal Load-VLIW = I .  The same process is repeated constantly throughout the 
application execution. Consider the Fig. 4.8 of IPL. 

Load-VUW 
Signal 

Instruction Cache 
Size = 16 KW 

W s 256-bits (8x32) 

Figure 4.8 Instruction Pack Logic 
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4.5.6 Computational Pipeline-1 (CP-1) 

CP-I is consistingof a VLIW Fetch Unit (VFU) and a VLlW Dispatch Unit (VDU). 

i. VLlW Fetch Unit (VFU): . ~: .. 

VFU is a State Machine based unit and works like a Propammable Counter. VFU 
fetches VLIW From the instruction cache and the Op-Codes of all instructions of the 
VLlW are transferred to the Confinurarion Unit and the VLIW itself is transferred to 

Figure 15 VLI W   etch Unit 
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ii. VLIW Dispatch Unit (VDU): 

VDU is consisting of an array of eight De-MUXs whose select lines are controlled by 
the contiguration controller. According to the select lines activated by the configuration 
controller all of the instructions of VLIW arc dispatched or issued by VDU to their 
relevant RFUs. Consider the Fig. 4.10 of VDU. 

RFUJ RFU-6 RFU.5 RFU-4 RFU-3 RFU-2 RFU-1 RFU4 
t * 9 + v Z * v 

Figure 16 VLIW Dispatch Unit 

4.5.7 Computational Pipeline-2 (CP-2) 

The CP-2 is composed of a VLIW Execution Unit (VEU) which contains an array of eight 
RFUs and a Register Window of 32 registers (32-bits) and a Configuration Unit which 
contains a ConJiguration Controller and a Multi-port Configuration Memory. 
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i. VLIW Execution Unit (VEU): 

VEU is the core component of the processor because it contains an array of RFUs being 
used for program execution. Consider the Pig. 4.1 1 of VEU. The VEU conlains the 
following major modules. 

Figurc 17 VLIW Execution Unit 

a) External 10 Logic (EIOL) 

b) Rn's Data-inlData-out Logic (RDIOL) 

c) General-Purpose and Flag Registers (GFRs) 
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d) Registers Input/Output Logic (RIOL) 

e) Reconfigurable Functional Units (RFUs) 

f) Flags Generation Logic (FGL) - - - -.. - .- .. --- . * 
a) External 10 Logic (EIOL) 

The EIOL of the VEU is used to load instructions in the instruction register, source 
operands in general-purpose registers and the configuration stream in RFUs. The second 
job of the EIOL is to store the configuration stream being loaded in the RFUs for the 
analysis purpose and results being generated after the execution of VLIW. 

The source operands Sr-land Sr-2 ate loaded into the internal general-purpose 
registers (GPRs) by the External De-MUX of size 1 x 24. The address given for the Data- 
in is connected to the select lines of De-MUX as well as to Decoder (5 x 24) input. De- 
MUX selects one of the general-purpose registers for data loading and the decoder 
enables its output channel connecting to the registers through the MUX of the size 2 x l .  
This MUX receives 32-bits data operand from External De-MUX at input "1" and 
receives 32-bits results from RFUs at the input "0". If the Ext-10-En=O then it selects the 
result coming from the RFUs and loads it in the register. If the Ext-10-En=l then it 
selects the data coming from the External De-MUX and loads it in the registers. Since 
there are eight RFUs that can load their results in the same register, hence in order to 
solve this problem an 8 x 1 MUX (32-bits) is interfaced with each register input. Each 
MUX is controlled by the RFU Data-path Cpztroller which analyzes the Destination 
Addresses of all the RFUs and selects only that RFU-whose-output is valid output. i n  
order to store the results and the flags being available in the GPRs and flag registers 
(FRs) into the data cache of the RISP, the 32 x 1 External MUX (32-bits) is used which 
can read the contents of the selected register and sends it to the data cache of the RISP. 
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Figure 18 RFU Data Path Controller 

b) RFUs Data-in /Data-out Logic (RDIOL) 

In order to loadlstore the data across the RFUs there are two 32 x 1 MUXs (32-bits) 
and one I x 24 De-MUX (32-bits) for each RFIJ. Using the two MUXs thc WU is able to 
read the source data operands (Sr-1 and Sr-2) from any one of the 32 registers and using 
the one De-MUX it stores its results back to any one of the GPRs. Flags generated during 
the execution of the VLIW are loaded into the relevant FRs. 

c) Genernl-Purpose and Flag Registers (GFRs) 

There is an array of eight FRs (32-bits) and twenty four GPRs (32-bits). GPRs can be 
read and written by the programmer but the FRS can only be read by the programmer and 
can not be written. RFUs can readwrite any one of these thirty two registers. More than 
one RFU can read the contents of the same register at the same time but only one RFU 
can write in a register at the same time because the read operation is shareable but the 
write operation is not shareable. 
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d) Registers lnpcct/Output Logic (RIOL) 

FRs are loaded with the flags, being generated by the WUs  and can be read by the 
programmer through the External MUX. In case of the GPRs, the programmer can read 
the registers through the Extemal MUX but in order to write contents into registers there 
is a 2 x 1 MUX (32-bits) which sclects the data for the register either from some RFU 
output or from data cache. The 8 x 1 MUX interfaced at the input of the 2 x 1 MUX 
selects the valid RFU for the results to be stored in the register. In order to select the valid 
RFU for results, there is a RFU Data path Controller shown in Fig.6 is attached with all 
MUXs. This controller reads the select lines of all the De-MUXs of RFUs and after 
analysis it selects that RFU whose output is a valid output. 

e) Reconfigurable Functional Units (RFUs) 

There are a total of eight reconfigurable functional units RFUs. Each RFU has some 
standard I 0  interfaces for conlieuration and data flow in and out the unit as is shown in - 
the fig. 4.13 

Reconfigurable Functional Unit 
Configuration 

Stream 
(RFU) 

Instruction 

-- 
S r i  Srl Sr2 Sr2 Dst Dsl 

32-bits addn 32-bib addrs 32-bits addrs 3 2 - b k  
Ib i t s  5-bits Ehits 

Figure 19 Reconfigurable Functional Unit Interfaces 
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Hence from the fig it is obvious that it receives 32-bits sized two source operands 
from the register file of the VLIW-RISP and after computation generates one 32-bits 
result and 32-bits flags. When it reads its source operands and sends the destination 
operands f rod to  registers it also sends, 5-bits sized each, source and the destination 
addresses. Each RFU has a data bus dedicated for instruction loading and its size is 32- 
bits. Also there is a 32-bits configuration bus that is used by it, to readtwrite the 
configuration data into or out of the device. -.- 

RFU Data-path Controller Algorithm 

The Algorithm Initially Reads the Register Address (Rmn) and Destination Operand 
Addresses of all RFUs 

if (RFUO-Dest-Address == Rmn Address) 
Then Sel-out = 0; 

else if (RFU1-Dest-Address = Rmn Address) 
Then Sel-out = 1; 

else if (RFU2-Dest-Address = Rrnn Address) 
Then Sel-out = 2; 

else if (RFU3-Dest-Address = Rmn Address) 
Then Sel-out = 3; 

else if (RFU4-Dest-Address = Rmn Address) 
Then Sel-out = 4; 

else if (RFUS-Dest-Address = Rmn Address) 
Then Sel-out = 5; 

else if (RFU6-Dest-Address == Rmn Address) 
Then Sel-out = 6; 

else if (RFU7-Dest-Address = Rmn Address) 
Then Sel-out = 7; 

else Sel-out =Nil; 

If we take the more detailed' view of the RFU, we get the picture shown in the 
fig.4.14. It contains an Instruction Register IR and an FPGA Logic. The FPGA Logic is 
hrther subdivided into the two areas. One is the Non-Reconfigurable Area, which 
generates the flags of the RFU, and the second area is the Reconfigurable area, which is 
the most important portion of the VLIW-RISP. This is the only region inside the VLIW- 
KISP that can be reconfigured. This reconfigurable are is used to map many hardwares on 
the device and reconfiguration of the device during its execution; 
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Reconfigurable Functional Unit 
(RFU) 

Configuration W o r d s  I n s t r ~ ~ t i o n  
(32-bits) 32-bits 

The reconfigurable functional Unit is the reconfigurable area of the proposed VI,IW- 
REP. In fact this area is the area of the Field Programmable Gate Array FPGA being 
used for the design and the testing of the VLIW-RISP. The FPGA being required should 
have the property of the partial rcconfiguration at any tlme of the device working. There 
are many different venders of the FPGA devices like Xilinx, Altera, Atmel and Triscend 
etc. But only a few of them are providing the FPGAs that can be configured at run time, 
partially. They include the well known Xilinx Corporation and the Atmel. The Virtex- 
Series of the FPGAs provided by the Xilinx Corporation are all partially reconfigurable at 
run time of the devicc. Also the 6200 Series of the FPGAs pro6ided by the Atmel are also 
partially reconfigurable. But if we compare both of them, then we will found that the 
Virtex-Series FPGAs provided by the Xilinx Corporation are much better solution than 
the 6200 Series FPGAs of the Atmel. This comparison is based on the following factors 

Dcvice Capacity (No of the logic gates) 

Device Speed (Configuration and Working Speeds) 

Device Flexibility (Methods of usage of internal components) 

Device Compatibility (Ineffaceability with Processors) 

Device Maturity (Device ardhitecture Maturity) 
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Device Availability (Device Market) 

Hence due to all these factors, the device being chosen for the proposed VLIW-RISP 
design is the Virtex-E of the Xilinx Corporation. Hence in this manner the reconfigurable 
are being mentioned above is the area of the Virtex-E FPGA. The internal structure and 
the working of the structure of the Virtex-E FPGA is explained here in detail. 

fl Flags Generation Logic (FGL) 

The outputs generated by the RFUs are also read by the FGL and the flags are 
calculated for each RFU. Flag register is a 32-bits register but recently only Carry Flag, 
Sign Flag, Zero Flag, Overflow Flag and Equal Flag have been computed in the system 
and the remaining twenty-seven bits are available for the future extension. 

Flags Generation Logic 

32-bits RFU 

. . . . . . . . , . . . . . . . . . . . . . . . . . . 

Flags Rrgirtcr : 

Figure 2 1 Flags Generation Logic 

i. VLIW Configuration Unit (VCU): 

VCU is composed of a Configuration Controller as shown in Fig.4.16 and a Multi- 
port Conjiguration Memory as shown. Configuration controller receives the op-codes of 
the eight instructions of the VLIW from the VFU and on the basis of these op-codes it 
decides to load one of the configuration blocks available in the memory for each RFU (if 
required). Also it checks if the op-code is a No Operation (NOP) or is same as that of any 
one of the existing op-codes. If so then the configuration controller does not load this new 
configuration into the RFUs but the hardware that is already loaded in the RFUs is reused 
and hence the configuration time that was required for the reconfiguration of RFUs is 
saved. Hence only those RFUs are reconfigured that are quite new ones. Hence the 
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processor always tnkes the minimum possible time to rcconfigure the RFUs during the 
execution of the application program and always has the most optimal configuration 

Figure 4.1 6 RFU Configuration Controller 



VLIW-RISP (Architecture 8 Simulation) Page 54 of 77 

Map Logic 

I 

Figure 226 Micro-programmed Control Unit 

4.5.8 Micro-programmed Control Unit (MCU) 

The control unit is the central controlling module of the RISP. All activities are 
generated and managed inside the control unit. There are two different approaches 
available for the design of the control unit. One is the Hardwired Control Unit Design and 
the other is the Micro-Programmed Control Unit. The control unit of the KISP is based on 
the Micro-programmed technology. It is a micro-coded state machines design. State 
machine of the VLIW-RISP control unit is shown later 

It controls all the activities inside and outside of the processor from the hard ware 
configuration to the program execution. MCU is being designed using Micro-coded State 
Machine architecture. Consider the Fig.4.18 of MCU. 

At each state of the control unit state machine, a set of the micro codcs is generated 
and sent to the VLIW-RISP modules. Thesc control signals actually control the 
processing of the processor. There is a handshaking mechanism developed between the 
control unit and the other modules of the VLIW-RISP. Due to this handshaking 
mechanism the different modules of the processor are synchronized with each other. 
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The control unit of a microprocessor directs the operation of the other units by 
providing timing and control signals. It is h e  function of the microcomputer to execute 
programs which are stored in memory in the form of instructions and data. The control 
unit contains the necessary logic to interpret instructions and to generate the necessary 
signals for the execution of those instructions. The descriptive words "fetch" and 
"execute" are used to describe the actions of the control unit. It fetches an instruction by 
sending address and a read command to the memory unit. The instruction at that memory 
address is transferred to the control unit for decoding. It then generates the necessary 
signals to execute the instruction. 

For the control unit to perform its function, it must have input that allow it to 
determine the state of the systemsand output that allow it to control thc behavior of the 
system. These are the external specificarion ofthe control unit. Internally, the control unit 
must have the logic requircd to perform its sequencing and execution functions 1281. 
Figure 3.4 is a general model of the control unit, showing all its inputs and outputs. 

Figure 23 Micro-programmed Control Unit 
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The Inputs: 
. .- .- 

Clock: This is how the control unit "keeps time." The control unit causes one micro- 
operation (or a set of simultaneous micro operations) to be performed for each clock 
pulse. This is sometime referred to as the processor cycle time, or the clock cycle. 

instruction register: The op code of the instruction is used to determine which micro- 
operation to perform during the execute cycle. 

Flags: These are needed by the control unit to determine the status of the processor and 
the outcome of previous ALU operations. For example for the increment and skip-if-zero 
(ISZ) instruction, the control unit will increment the PC if the zero flag is set. 

Control Signals from control Bus: the control bus portion of the system bus provides 
signals to the control unit, such as interrupt signals and acknowledgements. 

The Outputs: 

Control signals within the processor 
These are of two types: Those that cause data to be moved from one register to another, 
and those that activate specific W U s  functions. 

Control Signals to control bus 
These are also of two types: Control signals to mernbry, and control signals to the IIO 
modules. 
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Chapter No.5 

Statistics and Performance Analysis 

5.1 DSP (TMS320C6X) Statistics 1461 

In order to compare the performance of the proposed VLIW-RISP with a DSP we 
have chosen the DSP processor TMS320C6X provided by the Texas Instruments. It is a 
fixed-point VLIW architecture containing a total of eight functional units. They include 
two Multipliers and six ALUs. The pipeline of the TMS320C6X can fetch a VLIW of 
eight instructions. It is known as Fetclr-Pocket. A fetch packet is converted into an 
Execute-Packet by looking at the resources available. An execute packet consists of 
thosc instructions that can be executed in the pipeline in parallel without any resource 
conflicts. The program fetch, the program dispatch and instruction decode units can 
deliver up to eight 32-bits instructions (One VLIW) to the functional units every CPU 
clock cycle. Hence it can execute a maximum of eight instructions in a single CPU clock 
cycle, if these instructions have no internal resource conflicts. In case of internal resource 
conflicts, these fetch-packets are converted into two to eight execute packets and then 
each execute-packet takes one CPU cycle to execute it. 

The execution of fixed-point instructions of the TMS320C6X can be dcfined in terms 
of Delay Slofs. The number of delay slots is equivalent to the number of cycles required 
after the source operands are read for the result to be available for reading. For a single- 
cycle type instruction (such as ADD, SUB) source operands read in cycle i produce a 
result that can be read in cycle i + 1 (Hence Delay slot is zero). For a multiply instruction 
(MPY), source operands read in cycle i produce a result that can be read in cycle i + 2 
(Hence Delay slot is one). Delay slots are equivalent to an execution or result latency. All 
of the instructions that are common to the 'C62x and 'C67x have a functional unit latency 
of 1. This means that a new instruction can be started on the functional unit each cycle. 
The following statistics and execution formula are calculated from the technical notes of 
DSP processor (TMS320C6X) 

TT = FP (Tpm + Tom) + ((F,, + Dn) + . ..+ (Fo + DO)) Cycles 
Where 

Table 3 Statistics and Execution Formula of DSP.Processor 
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5.2 VLIW-RISP Statistics 

The VLIW-RISP is fetching the instructions externally one by onc using a Pre-fetch 
Unit. This pre-fetching of instructions and its packing into VLIW and loading into the 
Instruction cache has been overlapped with the program execution. Hence time consumed 
is considered to be zero. 

The VLIW-Fetch Unit takes one cycle to fetch one VLIW. Since the proposed 
architecture is a Register-Register Architecture hence operands fetch time for each 
fetched VLIW is always one cycle. The Configuration Unit takes maximum of one cycle 
to update the configuration of RFUs. The VLIW-Dispatch Unit takes one cycle to 
dispatch (Issue) one VLIW. The execution time taken by Execution Unit depends upon 
the type of the instructions to be executed. The followings are the statistics and execution 
formula of the proposed VLIW-RISP. 

Table 4 Statistics and Execution Formula of VLIW-RISP 

:, .. 
Now according to the above statistics the following assembly !anguage programs have 
been executed and the no of execution cycles have been calculated. 

Proqram N O . ~ :  
This application program is consisting of simple arithmetic operations including 
Addition, Subtraction and Multiplication. In simulation and calculations, the all of these 
operations have been taken with the same delay slots and functional unit latencies as that 
of those provided by TMS320C6X DSP processor. The assumptions have been taken for 
the sake of easy and authentic performance comparison. This program has been supposed 
to be consisting of only eight instructions which make only one VLIW for the proposed 
processor. 
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ADD ROO, R01, R02; 
ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

1. TMS320C6X Performance (Maximum) 

TT= FP (Tpn + TO") + (Fo + DO) Cycles 
= 1 (1 + 1) + (2) = 4 Cycles 

2. VLIW-RISP Performance (Minimum) 
TT= FP (Tpn + Tom) + (Tc) + (To) + ((Fo + Do)) Cycles 

= 1 (1 + 1) + (1) + (1) + ((2)) = 6 Cycles 

Proaram N O . ~ :  
This application program is consisting of simple arithmetic operations including Addition 
and Subtraction. In simulation and calculations, the all of these operations have been 
taken with the same delay slots and functional unit latencies as that of those provided by 
TMS323C6X DSP processor. The assumptions have been taken for the sake of easy and 
authentic performance comparison. This program has been supposed to be consisting of 
only eight instructions which make only one VLlW for the proposed processor. 

ADD ROO, R01, R02; 1 

ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, R01, R07; 
SUB ROO, R01, R08; 
SUB ROO, R01, R09; 

. - .. - 

1. TMS320C6X Performance (TlIaximum) 

TT= FP (Tpn + TOFT) + ((FI + Dl) + (Fo + DO)) Cycles 
= 1 (1 + 1) + ((1) + (1)) = 4 Cycles 
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Program N O . ~  
This application program is consisting of simple arithmetic operation of Multiplication. 
In simulation and calculations, the operations have been taken with the same delay slots 
and functional unit latencies as that of those provided by TMS320C6X DSP processor. 
Thc assumptions have been taken for the sake of easy and aurhentic performance 
comparison. This program has been supposed lo be consisting of only eight instructions 
which make only one VLIW for the proposed processor. 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

- -. - .- 
1. TMS320C6X Performance (Maximum) 

TT= FP (Tpk~ + TOFT) + ((F3 + D3)+ . . . . . . . . ...+ (Fo +DO)) Cycles 
= 1 (1 + 1) + ((2) + (2) + (2) t (2)) = 10 Cycles 

2. VLIW-RISP Performance (Minimum) 
TT = FP (Tpm + TOFT) + (Tc) + (TD) + (Fo + DO)) Cycles 

= 1 (1 + I) +(I) + (1) + ((2)) = 6 Cycles 

Proqram NO.~: 
This application program is consisting of simple arithmetic operations including only 
Multiplication. In simulation and calculations, the operations havc been taken with the 
same delay slots and functional unit latencies as that of those provided by TMS320C6X 
DSP processor. The assumptions have been taken for the sake of easy and authentic 
performance comparison. This program has been supposed to bc consisting of sixteen 
instructions which make two VLIWs for the proposed processor. Since all instructions 
are representing to the same operation, hence only first VLIW. will be reconfigured and 
the same configuration will bc used by the ..: second ~ -. VLIW. Hence the performance will be 
much higher as compared to a conventional DSP processor. 



VLIW-RISP (Architecture & Simulation) Page 61 of 77 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, RO?, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

1 .  TMS320C6X Performance (Maximum) 

TT= FP (Tprr + TO") + (F7 + D7) + ... .. . .. .. + (Fo + DO) Cycles 
= 2 ( 1  + 1) + ((2) + (2) + (2) + (2) + (2) + (2) + (2) + (2)) = 20 Cycles 

2. VLIW-RISP Performance (Minimum) 
TT= FP (Tmr + TOFT) + (Tc)+ (TD) + ((Fl + Dl) + (Fo + DO)) Cycles 

= 2 (1 + 1) + (1) + (2) + ((2) + (2)) = 11Cycles 

This application program is consisting of simple arithmt&c operations including 
Addition, Subtraction and Multiplication. In simulation and calculations, the operations 
have been taken with the same delay slots and functional unit latencies as that of those 
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake 
of easy and authentic performance comparison. This program has been supposed to be 
consisting of sixteen instructions which make three VLIWs for the proposed processor. 
Since all ~ n s t ~ c t i o n s  are representing to the different operation, hence both times the 
VLIWs will be reconfigured and hence some what higher configuration time will be used 
by the second VLIW. Hence the performance will be effected as compared to a 
conventional DSP processor. 

ADD ROO, R01, R02; 
ADD ROO, R01, R03; 



VLIW-RISP (Architecture & Simulation) Page 62 of 77 

ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, R01, R07; 
SUB ROO, R01, R08; 
SUB ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, ROT, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

1. TMS320C6X Performance ~ a r i m u m )  

TT= FP (TPm + 10FT) + ((F5 + Dj) f .. . . . .. . ...+ (Fo + DO)) Cycle~ 
= 2 (1 + 1) + ((2) + (2) + (2 )  t (2) + (1) t (1)) = 14 Cycles 

2. VLIW-RISP Performance (Minimum) 
'TT = FP (TPR. + TOFT) + (Tc) + (TD) + ((Fl + DI)  + (Fo + DO)) Cycles 

=2(1+1)+(2)+(2)+( (2)+(1) )=11Cycles  

Program No.6: 
This application program is consisting of simple arithmetic operations including only 
Addition and Subtraction. In simulation and calculations, thc operations have been taken 
with the same delay slots and functional unit latencies as that of those provided by 
TMS320C6X DSP processor. The assumptions have been taken for the sake of easy and 
authentic performance comparison. This program has been supposed to be consisting of 
sixteen instructions which make two VLIWs for the proposed processor. Since both 
VLIWs are representing to the same operations, hence only first VLIW will be 
reconfigured and the same configuration will be used by the second VLIW. Hence the 
performance will be much higher as compared to a conventional DSP processor. 

ADD ROO, R01, R02; 
ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, ROI, R06; 
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SUB ROO, R01, R07; 
SUB ROO, R01, R08; 
SUB ROO, R01, R09; 

ADD ROO, R01, R02; 
ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, ROI, R07; 
SUB ROO, ROI, R08; 
SUB ROO, R01, R09; 

% .  

1. TMS320C6X Performance (Maximum) 

TT= FP (Tpw +TOFT) + ((F3 + D3) + . . . .. . . . ...+ (FO + DO)) Cycles 
= 2 (1 t 1) + ((1) + (1) + (1) + (1)) = 8 Cycles 

2. VLIW-RISP Performance (Minimum) 
T1-= FP (TPFT + Tom) + (TC) + (To) + ((FI + Dl) + . . .. . . . . ...+ (Fo + DO)) CYC~CS 

= 2 (1 + 1) + (1) + (2) + ((1) + (1)) = 9 Cycles 

Proqram N O . ~ :  
This application program is consisting of simple arithmetic operations including 
Addition, Subtraction and Multiplication. In simulation and calculatians, the operations 
have been taken with the same delay slots and functional unit latencies as that of those 
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake 
of easy and authentic performance comparison. This program has been supposed to be 
consisting of twenty four instructions which make three VLlWs for the proposed 
processor. Since all instructions are representing to the different operation, hence first 
VLIW will be reconfigured and similarly second and third VLIW will also be 
reconfigured. Hence the configuration time of the program will be higher. 

ADD ROO, ROI, R02; 
ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, R01, R07; 
SUB ROO, R01, R08; 
SUB ROO, R01, R09; 
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MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

ADD ROO, R01, R02; 
ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, R01, R07; 
SUB ROO, R01, R08; 
SUB ROO, R01, R09; 

1. TMS320C6X Performance (Maximum) 

TT= FP (TpR + Ton) + ((F, + D7) + .. . . .. . . ...+ (Fo + DO)) Cycles 
= 3 (I + 1) +((I) + (1) + (2) + (2) + (2) + (2) + (1) +( I ) )  9 18 Cycles 

2. VLIW-RISP Performance (Minimum) 
TT = FP (Tpm + Ton) + (Tc)+ (TD) + ((F2 + Dz) + . . . . . . . . . ..+ (Fo + DO)) Cycles 

= 3 (1 + 1) + (3) + (3) + (( I )  + (2) + (1)) = 16 Cycles 

This application program is consisting of simple arithmetic operations including 
Addition, Subtraction and Multiplication. In simulation and calculations, the operations 
have been taken with the same delay slots and functional unit latencies as that of those 
provided by TMS320C6X DSP processor. The assumptions have been taken for the sake 
of easy and authentic performance comparison. This program has been supposed to be 
consisting of twenty four instructions which make three VLIWs for the proposed 
processor. Since all instructions are representing to the different operation, hence first 
VLIW will be rcconfigured and similarly second and third VLIW will also bc 
reconligured. Hence the configuration time of the program will be much higher. 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
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MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, ROI , R08; 
MUL ROO, R01, R09; 

ADD ROO, R01, R02; 
ADD ROO, R01, R03; 
ADD ROO, R01, R04; 
ADD ROO, R01, R05; 
ADD ROO, R01, R06; 
ADD ROO, R01, R07; 
ADD ROO, R01, R08; 
ADD ROO, R01, R09; 

SUB ROO, ROI, R02; 
SUB ROO, R01, R03; 
SUB ROO, R01, R04; 
SUB ROO, R01, R05; 
SUB ROO, R01, R06; 
SUB ROO, R01, R07; 
SUB ROO, R01, R08; 
SUB ROO, R01, R09; 

1. TMS320C6X Performance (Maximum) 

TT= FP (TPFT + TOFT) + ((F7 + D7) + .. . . .. . . ...+ (Fo + DO)) Cycles 
= 3 (1 + 1) + ((1) + (1) + (1) + (1) + (2) + (2) + (2) + (2)) = 16 Cycles 

2. VLIW-RISP Performance (Minimum) 
TT=FP(Tpn-+TOn)+(TC)+(T~)+((F1+Dl)+ ...........+ (Fo+Do)) Cycles 

= 3 (1 + 1) + (3) + (3) t ((I) + (1) + (2)) = 16 Cycles 

Program N O . ~ :  
This application program is consisting of simple arithmetic operations including only 
Multiplication. In simulation and calculations, the operations have been taken with the 
same delay slots and functional unit latencies as that of those provided by TMS32CC6X 
DSP processor. The assumptions have been taken for the sake of easy and authentic 
performance comparison. This program has been supposed to be consisting of forty 
instructions which make five VLIWs for the proposed processor. Since all instructions 
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are representing to the same operation, hence only first VLIW will be reconfigured and 
thc same configuration will be used by the remaining four VLIWs. Hence the 
performance will be much higher as compared to a conventional DSP processor. 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, ROI, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO. R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, RO1, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
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MUL ROO, R01, R03; 
MUL ROO, ROI , R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, ROI, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

1. TMS320C6X Performance (Maximum) 

TT= FP (TPm + 'Tom) + ((Fl9 + D19) + ...... ..... + (Fo + DO)) Cycles 
= 5 (1 + 1) + ((2) + (2) + (2) + (2) + (2) + (2) + (2 )  + (2) + (2) + (2) + (2) + 

+ (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2)) 
= 50 Cycles 

2. VLIW-RISP Performance (Minimum) 
TT=FP(TPFI.+ToFT)+(Tc)+(T~)+((F~ + D l ) +  ........... f (Fo+Do)) Cycles 

= 5 (1 + 1) + (1) + (5) + ((2) + (2) + (2) + (2) + (2)) 

= 26 Cycles 

Proqram No.10: 
This application program is consisting of simple arithmetic operations including only 
Multiplication. In simulation and calculations, the operations have been taken with the 
same delay slots and functional unit latencies as that of those provided by TMS320C6X 
DSP processor. I h e  assumptions havc been taken for the sake of easy and authentic 
performance comparison. This program has been supposed to be consisting of eighty 
instructions which make ten VLlWs for the proposed processor. Since all instructions are 
representing to the same operation, hence only first VLIW will be reconfigured and the 
same configuration will be used by the remaining nine VLIWs. Hence the performance 
will be much higher as compared to a conventional DSP processor. This program 
execution on proposed RISP shows that the reconfigurable processor exhibits a much 
higher performance gain than any conventional DSP processor. 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 
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MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 
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MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
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MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, R01, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, R01, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, R01, R09; 

MUL ROO, R01, R02; 
MUL ROO, ROI, R03; 
MUL ROO, R01, R04; 
MUL ROO, R01, R05; 
MUL ROO, ROI, R06; 
MUL ROO, R01, R07; 
MUL ROO, R01, R08; 
MUL ROO, RO?, R09; 
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1. TMS320C6X Performance (Maximum) 

(2)) 
= 100 Cycles 

2. VLIW-RISP Performance (Minimum) 
T T = F P ( T P ~ + T O ~ ) + ( T ~ ) + ~ D ) + ( ( F ~ + D ~ ) + .  ..........+( Fo+DO)) Cycles 

= 10 (1 + 1) + (1) + (10) + ( 
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Calculated Statistics 

Table 5 Calculated Statistics of Both Processors 

5.3 DSP vs VLIW-RISP Performance Analysis 
The graph being obtained by comparing the speed of the conventional DSP processor 
named TMS320C6X with the proposed RISP is shown in Figure 5.1. 
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Chapter No.6 

Conclusion and Future Work 

6.1 Conclusion 

Now the reconfigurable computing based systems are becoming an important part of 
research work by different researchers in the fields of computer architectures. In this 
domain of computing; placing the computationally very intense portions of any under 
execution application program onto the reconfigurable computing hardware, that 
application is being accelerated to a much high performance. It happens due to the fact 
that reconfigurable computing architectures combine the advantages of both the software 
based and Application Specific Integrated Circuits based implementations. Like software 
based applications, the mapped circuits are quite flexible and hence can be changed 
during the execution time of the system. Similar reconfigurable computing systems 
provide us a method to map circuits into hardware in the same manner as that of the 
ASICs. Therefore the reconfigurable computing systems or devices have a great potential 
to achieve much greater performance gain as compared to that of the software based 
solutions due to bypassing the conventional fetch-decode-execute instruction cycle of the 
general or traditional microprocessors. 

Reconfigurable Instruction Set Processors (RISPs) have been evolved through many 
design alternatives but the main theme of the design was always the tightly coupled 
nature of integrated reconfigurable logic inside the processor core. In the resent era the 
main focus of the research is to overcome the drastic execution delays being introduced 
by the configuration overheads of WUs. Researchers have introduced different 
techniques to tackle this overhead including Run-time Reconfiguration, Partial 
Reconfiguration, Configuration Compression, Pipelined Configuration, Multi-threaded 
Configurations, Configuration Cloning, Configuration Re-usability and Configuration 
Overhead Optimization using the intelligent configuration controllers. 

In this research thesis a Reconfigurable Instruction Set Processor (RISP) design has 
been proposed with the capability of the most optimized configuration overheads. Due to 
the VLTW nature of the proposed processor; at one hand the multi-threaded 
reconfiguration of the RFUs has been exploited along with the partial nm-time 
reconfiguration as well as on the other hand the configuration intelligent re-usability has 
been overlapped. In order to achieve the multi-threaded reconfiguration and the 
intelligent re-usability of the existing configurations, a multi-port configuration memory 
and a hard wired algorithmic configuration controller has been designed so that to 
optimize the configuration overheads by configuring the minimum number of RFUs. The 
processor always takes the maximum advantage of the existing configurations and hence 
providing the minimum possible configuration overheads. 
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6.2 Future Work 

It is in general true that no project is ever finished and done with 100% satisfactory 
performance in accordance with the requirements leading to its origin. It is just halted on 
different stages in the development process and is realized as product. As a designer it is 
an obligation to look forward some generations and make sure that the design will be able 
to continue to improve. Some suggestions are given below. 

6.2.1 Hardware Improvement 

The possible refmement in the proposed VLIW-RISP design is to improve the design 
of Configuration Unit so that to adopt the most complicated and advanced techniques of 
partial reconfiguration. While keeping the extemal interface same. The Configuration 
Unit is using multi-port memory to storr the status of -Us. Multi-port memory is an 
expensive solution. We must find an alternate solution to reduce the cost. 

6.2.2 Configuration Protocol 

The processor is reconfigured through an external interface, hence slow. We can work 
on the reconfiguration protocol as part of the processor's module. The extemal processor 
would then be able to reconfigure the FPGA simply by writing the configuration into a 
special memory area handled by the static module. Static module will in turn reconfigure 
the RPUs. 

6.2.3 Configuration Techniques 

Keeping all the existing resources of the proposed processor unchanged there are 
many new techniques, which can be used to minimize the configuration size and 
configuration overheads. The configuration minimization is a process relevant to 
configuration compression techniques. This area is quite new and open for researches to 
give compression techniques. The configuration.overhead can be reduced by providing 
the emerging technique of partial reconfiguration. Along with partial reconfiguration 
techniques a new process of configuration cloning has been introduced in which the 
existing configuration streams can be replicated within the chip and hence introducing 
another very optimistic process for research work. 
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~drhocr  - The rrconligmrablc processon sn the ka&g custom ASlCs but with design flexibility not available in 
platforms being under considerdioe as s role model for custom hardware. The role of FPGAs and rewnfigwable 
r e m n ~ r s b l c  computing systems An aPpUcation can be WatlY processon include many scientific and signal processing 
aerelrmted by phcing iU campuhtionaUy in(rn5ivc portion1 of applicatiom, 
donrithmr onto the rrmnfieursble nlntform. Tbr p~inr are ..-.. ~ ~~ ~ ~~ 

realized because the reant&blr bmputing combine1 the 
bmrfill of botk the rofhvam and the ASlC solutions. However, 
the advantsges of mo~figumbleeamputingdo not come without 
n wrL By requiring multiple monfiguratioas to complete a 
cornputstion, the time rrquircd to reeonfigore the hardwan 
rignifiemtiy drgndo the p r f ~ m s o c e  of such system The 
rmcrgiag retonfigunblr archilectvrrs are focusing the efficient 
solutions for the mnfiguration usit designs Configuration unit is 
responsible for managing d l  activities relevant te the system 
configuration and beace it plays a riul role in rrconfigursble 
procaron. la thi rucwcb paper I. rfncient configontion unit 
design bas k n  proented for a VXlW bared rccasflgursble 
procaror. The p r w n t d  configuntioa unit i s  expected to be one 
of the most rmcirnt design dtem.tivrr being availnblr for 
reroafigursble pmcerron Tbe presented CooSguratioa unit 
design h opnbk of landiag the miaimurn configuration streams 
Mth the mort optimal eoafigunlion overhudl and hmcc It lads  
lo a dramtic Lmbmcement in the pdonnsncc of rrconfigunbte 
prorruor. 

The architecture of a comnutin~ system o h  can affect its ~~ ~ 

performance for a given ap&cati& Issues such as dedicated 
and non-dedicated resounes, memory sizes and organizations, 
communication interfaces and inshuction sets all affect the 
performance capability of wmputing systems. Reconfigurable 
pmcessor is a combination of reconfigurable logic Oike 
FPGAs) with a general-prrrpose micropmessor wre Oike 
standard CPU). The architecrural goal is to achieve the higher 
performance than the typically available software-only 
solutions with more flexibility than the application specific 
intemated circuits (ASICs) as shown in the Fig.2. In 
rcro&turablc pm&ors, the micmpmcjror perform tho% 
opcntions that cannot bc done efficienlly in the reconfiprable 
logic such as Imps, branches and possible memory accesses 
while computational cores are mapped to reconfigurable logic 
[4]. Performance of reconfigurable devices such as Field 
Programmable Gate Anays (FPGAs) now rivals that of the 
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The design of a reconfigurable processor can be divided in 
two main tasks. The fmt one is the interfacing between the 
micropmessar core and the reconfigurable logic. This 
includes all the issues related to how data is transferred to and 
from the reconfigurable logic, as well as syochronization 
between the two elements. The s a n d  task is the design ofthe 
reconfigurable logic itself. Granularity, Reconfigurability and 
Interconnections are the issues included in this task. The 
reconfimble loaic will orovide hardware spialimtion u, 
the appkation being under execution. It will provide similar 
benefits to those offered by Application Specific Iostiuction 
Set Pmessors (ASIPs). ASIPs have specialized hardware that 
accelerates the execution of the applications it was designed 
for. A rewnfigurable processor would have this same benefit 
but without having to commit the hardware into silicon. 
Reconfigurable processors can bc adapted after design, in the 
m e  way as that of programmable processon can adapt to 
application changes. 

Different coupling appmacha for the reconfigurable wre 
beine used in the reconf imble  systems include; as a ~ ~ 

F&ltionsl Unrt Coupling, as; ~ o - ~ r & e s s i n ~  Unit Couplmg. 
as an Attached Recessing Unit Coupling and as a Standalone 
Processing Unit Couplmg as shown in F1g.1. Many of recent 
computationally intenswe applications can benefit from the 
speed offered by applicat~on ~pccific h x d w m  co-pmesson 
(ASIC or ASIP), but fog applicalionr with multiple spre~siucd 
needs. it is not fcrriblc lo have a dilfnent cepmccssor for 
every specialized function. Such diverse applications stand to 
benefit from the flexibility of reconfigurable computing 
architechlres since one reconfigurable computing unif can 
provide functionality of several ASlC or ASIP Co-processors. 
Manv reseanh soups have demonstrated the succesrll 
launch of reconfi&able computing architechlres 13). Another 
a m  in which the reconfigurable devices are becoming more 
popular is the Systems on Chip (SoC) technology. Known as 
Systems on a Programmable Chip (SoPC), the Xilinx [5] ,  the 
Altera [6] and other venders have developed programmable 
devices which give the flexibility to application user to include 
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the user reconfigurable area in addition to the sophisticated 
intellecnwl pmpcrty mres, embedded processots, mcmory and 
other complex lagic all on samechip. 

PPGAs or FPGA-like devices are most common hardwas 
be~ng used for rewnfigwable romputlng FPGA cmls~ns an 
m y  of lhc compulat8onal clrmens whore funclronalry ic 

detrmned through mult~plc S U M  barrd configsat~on b ~ t  
,warm These elements. also know a j  configwablc logc 
IItxLr (CLBs), an. clnnmted using a sel of muung remmes 
that is also programmable. In this way, the cuslom circuits can 
be mapped to the FPGA by computing the logic functions of 
the circuit within the CLBs and then using the configurable 
routing to connect the blocks lo form the necessary cincnil. 
Although ihe logic capacity of FPGAs is lower than that of 
ASKS because of the area overhead for providing undcdicated 
logic and muting FPGAs provide significantly higher 
flexibility than the ASICs, while still offering a wnsiderable 
speedup over gcncral purpose systems as shown in Fig.2. In 
addition, the run-time reconfigurability provided by advanced 
FPGAs like Xilinx Vinex series has greatly improved the 
hardware utilization [S]. 

11. RELATED &SEARCH WORK 

A large number of reconfigurable architectures have been 
proposed in the last few decades. The previously proposed 
reconfigurable architechlres generally fit inlo one of Iwo 
major categories depending on the grain of computations they 

map onto r e c o a f i ~ b l e  logic. Fine-pined Reconfigmble 
Architecrures, such as CHIMERAE (71 intepate the small 
blocks of the reconfigurable logic into superscalar pmcessor 
amhiteeturn, heating rewnfigurable logic as programmable 
ALUs that can be configured to implement the application 
specific insmctions. There systems can achieve the bener 
perfnnn~~cc thao convenlional superscalar processors on a 
wide range of a~plicationr by mapping commonly-executed . .. - 

wquencc; of insiictionr onto thcir rwonfigurablc units, but 
the max:mwn spedup they can achmc is I nlttcd by ihs small 
nmount of logic in Lheu rewnfimvdble units. Coarse-mined 
~econfipmbie ArchihNres. such as PipeRench [a] provide 
larger blocks of monfiyrable logic that are less tightly- 
co&ed with programmable portions of the processor. &.e 
m h i t e c m s  can achieve extremely good performance on 
applications that contain long-ming nested loops that can be 
mapped onto the pmeessnr's monfigurable logics but perform 
lcss well on applications that require frequent wmmunication 
beween programmable and rewnfigurable portions of the 
processor. 

111. PROPOSED ARCHITECIURE 

The p e r t o m e  of the monftgurable processor is mainly 
dependant on the time overhead required by it to cod~gwe its 

recontigurable function units (WUs). Normally it har been 
observed t h l  this cmfiguration overhead negatively hits la 
the wmpufational spced of any monfigurable processor [I]. 
Hence researchers arc now focusing the irsuc of configuration 
overhead minimization for recanfimble prncessors (11. In . . 
this regard many software and hardware hased snl~tionr ha\c 
bcrn propord which lncludr the Configuntion C m p r a s i o ~  
~ i c  Configuration Cubing, the Configuration Clon~ng, Pantal 
Configwacon. h e  Run-urne Conliguraticn [I]. Mu!li-threaded 
Confipnuon, !he h t  Parallc' Configuration, the Intc'ligent 
Configuration I?] and the iOptimal Cuuliguau~n (11 elc. 

In order to minimize the configuration overheads for the 
recoofigurablc processom; an efiicient hybrid design has been 
proposed for configuration unit of a typical VLlW based 
reconfigurable processor. The proposed design includes bo!h 
the hardwired and the programmable logic modules. The 
reconfigurable processor being targeted in I& research paper 
is a VLlW processor having a very long inswction word of 
eiehl insmnions where each inrtrvction is 32-bits instruction. - 
Cuufigurauon unit p lqs  a vilal role in h e  ?crformulrc 
enhulcemmt ofthc reconGgunble processor. lleccc in such a 
tyge of processor thcre is an extra h a r d w e  unit being known 
as configuration unit along with srandard micro-programmed 
wnml  unit whow job is to manage the configuration 
activities of the reconfimble omessor. The location and !he 
interconnections of the configuration unit inside a typical 
VLlW bared rcconfigurable processor have been shown in 
Fig.3. Few aspects of dsigx &e described below. 

A. Imllvcrion F a m u  Encoding 
In case of a styldard pmgamnble mimpracersor the 

instruction format is mainly composed of an Opcode and an 
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Operand addresses field. The Opcode of the insmction 
f m t  defmes the nature of operation m bc pcrfonned by the 
instruction while the opemd addresses field defines the 
source and destination addresses for data operands for thu 
operation. In a similar way the insrruction format of 
reconfigurable processor is consisting of an Op-code and ils 
operand addresses field but the Ogcode of the insmaion is 
bang mapped or convened into an address of either the 
confiaurallon table enw which contains the effective - 
ajdreues if concerned anfigumuon s m m s  in ~ur~figmrton 
mcnlcry o. 11 IS i w l f m  cffeclweaddrc~s of the cor.fil(wanon 
rvcdms in the multi-Don confiwation memorv. Confimu;ition - - 
memory being used is a multi-pon random access memory 
which conrains a set a configuration streams that are required 
by the RFUs of reconfipable processor to configure h e  
relevant hardware modules like Addcrr, Subtnctors, 

Multiplie~ and Shifterr etc. Consider the Fig.4 for instruction 
format of a typical reconfigurable prwessor. 

B. Gmputntionnl Pipeline Design 
The proposed remnfigurable processor is a high speed 

VLIW based design using an intensive pipelined architmure. 
W wmputatian pipeline contains a Fetch Unit (RIX 
Schedule Unit (SU), Dispatch Unit @U), Execution Unit (EU) 
and Regisla Window (RW) as shown in F ig5  

The FU of the pipeline is responsible to fetch a packer 
(Long Word) of eighi insmtionswhere each instruction is a 
32-biu insmction. The N is a Slate Machine (Mealy 
Machime or Moore Machine) bawd module. It fetches a long 
ward corn the instruction cache of processor and loads it into 
the SU of the pipeline. 

The SU of the heioeline is reswnsible for whedulin~ the 
received long wordfrom the FU. SU loads the long wordinto 
the DU of thc pipeline and Op-ccdes of all inswctions of the 
long word arealso uansfemd towards the configuration unit 
of the pmessor which updates the RFUs configurations wid 
accordingly sends the dispatch sigaals to DU so that the 
insmction can be dispatched to their relevant RRls. 

Thc DU of the pipeline is responsible for dispatching the 
insmctions of long word into their relevant RFUs inside the 
EU for execution. .... 

The DU contains a layer of eight De-multiplexers whose 
conuol signals are received hrn the configuralion unit of 
pmcesror. Each De-multiplexer is a I x 8 DMUX of 32-bits 
size. It uansfers one insfmction of the lmg word ro one af the 
eight RNs which has been reconfigwed for it by the 
configuration unil. 

Ths EU of ths pipeline is rerponsible for the execution of 
the insmctions of the lone word. The EU contains a laver of 
eight RFUs. Each RFU has been integrated with an FPGA 
core likc provided by the X i l i i  Corporation and a layer of 
common hara buses. The FPGA wre is configured by the 
configuration unit of the processor according m the execution 
rcqviremeots of running application pmgram. The proposed 
design is a Register-Register hhitecture in wtuch the soune 
operands required by each insuuctian ue fetched fmm the 
register window of h e  processor and similarly the results 
generated a h  the execution of wch inswction are rtorcd 
back rempordy to same register window of processor. 

The register window of pipeline is responsible for providing 
the so- data operands for the execution of eight instructions 
of the long word and tempmily storing their results. The 
register window contains a laycr of thirty two registers where 
caeh register is a 32-biu register. 
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The main job of the configuration unit is to update the 
loaded configwations of the RFUs according w the changing 
requirements of the running application. The RFUs have been 
integrated with the high speed partially monfigurnble FPGA 
cores like those provided hy the Xilinx Vinex series of 
FPGAs. RFUs d e  the actual execution layer of the EU 
being available inside rhe wmputatioml pipeline. The 
rcco&unble systems mostly require a lot of ti& to perform 
this configuration update prwas. Hence this wnfiguration 
overhead greally d e p d e s  ihc performance of such systems. 

In order to optimire ihe configuration overhead of a rypical 
reconfigwable processor based on VLlW architecture; a 
unique idea of W U  Parlial Configuration har been 

introduced. In this technique the configuration unit constantly 
keeps on monitoring the currently loaded configurations and 
newly demandcd configurations. It maps the newly demanded 

configurations aa the cvrrently available configurations and 
maximixes the reusability of the already available 
configurations and loads only thore configwtions which are 
no more cuncntly available in any Rlll of the reconfigurable 
processor. 

The contiyralion unit contains a layer of Opeode Map 
LDgic (OM) which acmlly compares each Opcode of the 
incominn lone w a d  with all Opcodff of the currently - - 
configured long nord in the RFUs. This mapping pmcss is 
wriormed concurrently with a high spced ASIC c~ruull uhtch 
contaim a parallel network of camparators as shown in Fig.7 
and in Fig.8. All those opcods  who have been compared 
vith any of the existing m o d e s  are then allacatcd their 
resoective WU no. where thev will be executed. Ifan OD-code 
has oot been compared with any one of the existing opcodes 
then it is not allocated any RFU no. mis  information of RFU 
allocation or not allocation is rent to nvo programmable logic 
cnntmllers. One is known as the ConPgurorion Memory 
Connoller (CMC) and is responsible to genente the RFU 
Configurntion nddrrzses for only those RFUs who really need 
configuration updation and a1 the same time it calculates and 
sen& the sufficient conml signals to DU of computational 
oioeline. On the basis of these simals the DU disuatches the 
~~tructitions inlo their relevant R k s .  Second is &om as the 
O ~ ~ o d e s  Memory Update Lo& (OMUL) and is responsible 

update the o&codes memory contents according to the 
newly arrived opcales of the long word. The lime taka by 
the Map Logic to cornpan the all incoming op-codes with the 
all existing opcodes is always conslant and is equal to 
1Cycle. But the time laken by the CMC and OMUL are 
variable and are dependent on the na of the newly anived 
op-codes that are not matched with the existing op-codes and 
it may v a q  fmm M y c l a  w 8-Cycles. If all op-codes are 
matched then its latency is OCycles and if none of them is 
matched with the existing op-coder then is latency will be 
8-Cycler and so on. For thorn applications where the same 
operation is repeated again and again like the operation of 
convolution in conventional DSPs; they will always bc given 
0-Cycle laency and hence it dramtically enhances the 
eompufation speed of the system by minimizing the 
configuration overhead m &Cycles. Such kind of drastic 
performance revolutions that have been observed are shown in 
the performance graph of RISP in Fig9 which have k e n  
obtain by using the proposed configmlioo unit ia a typjc.31 
VLlW bascd recomigurable processor and benchmarking ils 
performance with a DSP (TMS320ChX). The coniiguration 
unit has a RFU Confirmration Conholler and a Multi-port 
Conf ipn tm Memory as shown in Fig 6. RkU configu-ahon 
conmller s rcnpomiblc for providing opt~mal configratiun 
overhead. The multi-pl wnfiguration memoty contains a set 
of most frequently used configurations that can be 
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dynamically changed during the execution of the application 
by loading them externally thmughConfiyralion EPROM. 

Iv. PERFORMANCE ANALYSIS EQUATION 

Following is the mathematical eqpation being formulaled 
for the calculations of the total no of cycles (Trow), consumed 
for the updation of the RFU wnfigurationi for each of the 
VLlW packet. Consider the equation parameten in Table.1 

" . " 

being under active research work. The following topics outline 
the different asoecis of rcurnfieurable computing that research . - 

has been addre& in the p a s l k r a l  years: 

A. ReconjgurabieArchiieefu~er 

Device and system architeclures are being devclopcd which 
propose the various ways of organizing and interfacing the 
umfigurable logic. Some monfigurable architectus are 
based on w e  grain functional uni$ that are configured on 
fhc Ry to e x ~ u t e  an operation fmrn a givm set of operations. 
Commercial architectures arc exploring integration of 
monfigwable logic and microprocessors on the same chip. 

6. Reconjgumbb Applications 
Somializd confirmrable architechlies. which are utilired far - 

speding up specific applications, are replacing some ASICs. 
Some appl~llfations also exploit optimization based on a spmfic . . 
input instance of the cornpuration. 

C Algon'lhmic Syntherir 
Dynamically reconfipble architecectum give rise lo new 

classes of problem in mapping computations onto the 
architectures. New algoriifunic techniques ~IX needed to 
schedule the computations. Existing algorithmic mapping 
techniques focus primarily on loops in general purpose 
pmpms. Loop svuctures provide repetitive computauong 
scope for pipelining and parallelkation are candidates for 
mapping to monfigurable hardware. 

TABLEI ANALYSIS EQUATtDN PARAMETERS 

Parmmrter 1 Par~rneter I Pouible 1 
Dwri tiom Vdu" 

T i m  wlral m map o m  o p  
~ M L  Eodcr with dl of the misting I Qclc 

T~r.w"irdLO+lethr 
opccdesmmory fornrvop 0.1.2 ... 8 C y d c  

rtm ~quiw ~ogmsnte thr 

TCHC RNmfig.ddwssand 0. 1.2 ... 8Cyda 
dil hhunifv da 

T i m  w i d  lo configwe dl 
TW R N r  fa u c b  of rrw 0. I Cyslr 

D. S0fM.m Took 
Current s o h  m l s  still rely on CAD based mapping 
techniques. But then are several m l s  being de~loped  to 
address nm-dme monfigurafio~ compilation from high.level 
languages such as C, simulation of dynamically resonfigurable 
logic in software and complete operating system for 
dynamically reconfiguable plalfom. There is a significant 
lack of research in development of models of reconfigurable 
architecture h a t  can be utilLed for developing a formal 
framework for mapping applications. The Rmonfigwable 
Mcsh &I was the earliest theoretical model that addressed 
dynamic reconfiguration in computation and communication 
soucue. However, Recanfigurable Mesh model is more 
theoretical and hardware implemenrations have only been able 
to approximate the delay and spced assumptions in the model. 
There have been several  search efforts thal focused on 
developing arcbitechues and ths w i a t c d  soffrvam tmls fm 
mapping onto their specific architecture. Some of these projecs 
have addressed generic mapping techniques that can be 
extended m a class of the reconfigurable architectures. Such 
projects includeGarp [9], PipeRench [8] and SPLASH [lo]. 

Customizing the configurable hndware to suit the 
computations h been acknowledged as the most significant 
advantage of such architectures. Some nsearchers have 
adaped the hardware to paform computations with exactly the 
required precision for the wmputations. Such static approaches 
do not erdoit the abilih of confi~wable hardware to be 
adapted to'the exact precisyon as the computations 
pmgrers. The maximum possible precision of vsrilbles, which 
is d-&mined in the sWi; aoomaih can still involve execution 

and wmponents, precision being one of the parameters. Most 
FPGA device vendors pmvide such highly optimized 
parameterized tibm'es for their architeaures. EffoRs have also 
been made to g e m &  such modules using the high-level 
descriptions 
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Sevaal simulation tools have been develop& for the 
reprogrammable FPGAs. Mort of the tnols are device based 
simulators and are not system level simulators The most 
significant effon in his area has been the Dynamic Circuil 
Switching (DCS) based simulation tools. These m l s  study the 
dynamically reconfigurable behanor of FPGAs and are 
integated into the CAD h e w o r b  Though the simulation 
tools can analyre the dynamic circuit behavior of FPGAs, the 
tools a-e *ill low level. 

In domain of reconfigurable computing the reconfigurable 
processon are becoming an imponant pan of ressarch due lo 
their ability to exhibit the high performance of ASlCs and 
flexibility of programmable processors. The pcrfonmncc of 
such a processor is greatly dependent on the configuration 
overhead required by it to provide the flex~blllty of hardwax 
desip. In order lo provide the most optimal configuration 

overhead for these pmesrors, an efXcient configuration unit 
design har been progored which always Irks to optimize the 
configuration overhead by loading the minimum possible 
configuahn bit sbuuns. The proposed configuration unit 
always analyzes the coniiguration requirements of the 
application being under execution and loads only those 
configurations which are not currently available in the RFUs 
and thase which arc avxilablc art reused as many timer as 
needed The paformance band of computing can be greatly 
e n h c e d  by using the rewnfigumbleproccsson which will be 
inlegated with such kind of efficient canfiguration uniu. 
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Abstraa - Revolutions in the domain of computiq haw 
molded the slmclurtr and chnrncfer*rirs 01 computing systems. 
Convrnrionnl cornpuling rrchniprs involved the urr of opplicohon 
rprciJic inlegrued cirrrrirr lo achieve n high perfomonce ol lhr 

ond prrj'ormmcr of Sysfmr. Rccon/igunrbb cornpuling cambinrr 
rhr high speed of opplicuion sprc$ii inregrad rircuiu with thr 
fleribiliry of the pmgrammbk prorrrsorr. The reronJigunrbk 
proerrson hove funher boosted up Ihc dmmaic m f m  of 
rrcanfirurab& c o m u l i n ~  msrrmr. 7'hest morrrsorr confirmre the 

- 0  . " ,  ." 
most o p h l  ond eflicirnl hardware resources according to fhr 
demands of running opplicnrion. Thr ronJigurrd hardwore 

new demand, of lhe running opplirmion. In fhis rrrrorsh paper 
reronfigurabk pmeraor mchitrrlurr hm 6em presented for high 
speed o p p h l i o n r  The pmporrd rrconfigumblr pmcrrror i s  based 
on vm lone insrrucfion word mhifcclurc. me ,wopmcdproccssor 
is urinr on cffihnt multi-1hread.d ronlimmfion ronrmnrr and a " - - - 
multi-porled eon/ixuIorion m a o r ) ,  fo ronl@rr the muh$e 
reconfigumbk junefion uniu eoncurrrntly with minimum p s r i b k  
conjiigumlion orrrhed. 

Kewordc - Configurations, Configuration Oveheads, 
Reconfigurable Computing, Reconfigurable Functional Units. 

I. INTRODUCTION 

Reconfieurable mocessor i s  based on a reconfinurable " 

f~nctional un~t  ( R F W  bemg ~mgmJ in,ide the pmcr.s,ors ;ls 

5huu.n ir. FIC I .  WJ is r'onlrwvcJ cf rNnv ~urll~uLltlon3l 
elcmenu whore functionality can be determihed &ough the 
programmable configuration bit streams. Reconfigurable 
computing is introduced to fill the gap between hardware and 
software based systems. The goal is to achieve the 
performance bener than that of software based solutions while 
maintaining the greater flexibility than that of che hardware 
based solutions as shown in Fig. 2. Reconfigurable computing 
is an alternative of the superscalar and VLIW paradigms. The 
main distinction between a rewnfigurable processor and a 
s-:. 
standard processor is in the insmction stream. In its pwest 
form, a remnfigurable processor has no cycle-by-qcle 
instnction stream. Rather, thc processor is mnfigured by 
loading a complete specification of the function of each part of 
it at once. Once mfigured, the intention is for the processor 
to mn in that contigumtion for a decent intend before being 
reconfigured. Each configuration responses an ASK-Like 
circuif like that specialized far the particular task at hand. 
Changing configurations might take from a few clock cycles 
to a few thousand clock cyclcs. In accordance with the simpler 
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~fomammina mechanism, the dvnamic forwardinn crossbar is . - - - 
replaced by a less flexible configurablc network for making 
mtic  connections amone, the functional units and shon queues 
of retiming registen ask ia ted  with each functional uoit takc 
the place of the traditional processor's shared, multi-ported 
register file. 

The most fascinating and familiar 90-10 rule asserts that 
90% of execution time is some times consumed by about 10% 
of a pmgram's cade and that 10% is generally c&nprising of 
inner loops. Reconfigurable processors excel in those c a r s  
where the computation represented by a configuration is 
repeated many times and so the time required to load a 
configuration can in amortized over a long execution time 
andlor overlapped with other executions. When all of an 
application's imponant loop bodies can be configured to fit 
within the reconfigurable pmcesror (one at a time), there 
would secm to be no need for the overhead of a fully dynamic 
instruction fetch and issue mechanism, allowing the pmcessor 
to be leaner and more eficient. By reducing the hardware to 
just the essentials needed to support computation, lhe 
reconfigurable processor scales better to larger sizes than the 
more complex supencdar and VLIW based systems 
Although a native expansion of the configurable network 
would cause it to grow quadratically with the number of 
functional units. it only needs to grow enough to support the 
connectivity required by the real applications. Furthermore, 
unlike a supcncalar or VLIW processor. Ihe reconiigurable 
processor can easily exploit not only simple instruction level 
parallelism but also inter-itrration and thread parallelism. 
making reconfigurable computing well poised to work with a 
large number of functional units. 

J 
Fig. I Rcconfipuuble Procersor Data-path 



Fig. 2 Perfoimancc vs Fleribility 

I1 RESEARCH WORKIN ACIIVE DOMAIN 

A l a r a  numkr of reconfigurable computing systems 
have been proposed with different debign objectives. 
parameters, methodologies and implementations but they do 
share the same design framework. Reconfigurable functional 
units ( R N s )  with the configurable interconnects are the 
foundation of a reconfigurable computing platform. Various 
configuration combinations can define numerous possible 
functionalities. Design implementations of a monfigurable 
processing unit can be a simple microprocessor or even a gate 
level operator such as lookup tables being available inside the 
CLBs of most of currently available SRAM based field 
progranunable gale mays  (FkGAs). Inferconnects or routing 
networks in different reconfigurable systems have different 
smcmres as well, such as mesh, linear and crassbnr structures. 

For reconfigurable systems a compiler based software 
tool is required to map an application onto the rcconfigurable 
core. This a~olication is expressed in the form of . . 
configuration bits used to define-the operation of each CLB 
and inter-connecr This compilation tool can bc as simple as an 
assisting tool that helps a pmgrammer to perform manual 
circuit mapping and can be as complex as a fully automated 
system that wn deal with all configuration works by itself. 
The conlfigurablc nature of a reconfigurable system allows the 
hard- to be programmed with new sets of configurations to 
suppon new operations. Depending on the nature of the 
architecmrc, some systems can only be reprogrammed in non- 
executing state and are commonly known as simple 
reconfieurable systems while some may support dynamic " 
rucuufiguro~~on A the NU t>rnP hy illownp m operatton lo be 
altcrcd 3unna exucu:lun and ire commmly knoun a, rmulne  - 
reconfigurable systems. The reconfiguration process latency 
will dsu vary from sysrem to system and from hardware to 
hardware to-be reconfigured. Recently a large number of 
reconfigwable computing systems are available in the market: 
as w r l l m n y  still "nderp research. Followings are the some 
of well known examples: 

A- MIT Raw: 
The MIT Raw (11 is based on a mesh smcmre of 
interconnected simple RlSC processors cares. Its basic design 
goal is to benefit the parallel execution of applications from 
multide microomcesson at a come-grained environment 
The ;otic contmunicauon nctvurk in the ~rch~leclwr makc> 
g.mJ use of prcdefintd cummunicalion pattern al cornplle 
tlme and reduzcs network latency by uell ah& prcp3saIion. 
' h s  u ih . tu~ure  csn prw:Jc grcel flex,bihly and pccssin: 
mwer kvond that of a sinele orocessor. Raw can perform - .  
k l l  with'mdom programs but i u  performance is muih bener 
with o d e l  aoohcations. Howevcr, high power consumption . . - - 
will result from the execution of multiple processors, which is 
a big drawback of the architecture. 

B- C.MU PipReneh: 
The heU PlpeRench 131 is hadware based computing 
solution being specialized for pipcline based applications. 
Run-time reconfiguration of hardware modules is used to 
execute a large sized application using small amount of 
hardware resources. The efficient architectwe and simple 
implementation of the design dissipates less than one wan of 
average power while achieving good performance. This 
architecture is a perfect candidate for pipcline based 
applications because of its highly specialized design. small 
area consumption and low power implementation. 

C- xpurer: 
The Xputer [6J is a computing design suggested to use d a b  
driven conuol instead of insmction sequence control as in 
conventional computers. Its basic aim is to avoid data latency 
and data dependency problems by executing in the order of 
data accessing sequence. The applications with regular data 
parterns such as multimedia, smaming and encryption 
applications can fit well with Xputer design. 

D- NEC DRP: 
The NEC DRP [7] is a coarse-grained reconfigurable sysmn. 
The syslem composes of many small processing elements for 
computations where repository of contexts is stored on-chip. 
Bv choosine a different context. the chip will implcmrnt a 
dkferent da&path lo rcprcscnt u new o&ation or igorithm. 
This feanue enahles the dynamic run-time reconfiguration in a 
single clock cycle. Applications such as networks, image 
pmcessing and signal processing work well with the parallel 
processing environment and fast run-time reconfiguration for 
any dynamic events. 

G NASA Evolvnble Hardware: 
The NASA Evolvable Hardware (81 is reconfigurable 
hardware with the configuration process working under the 
conml of a genetic algorithm In evolutionary synthesis of 
analog and digital circuits, a htudware circuit evolves lo 
realize a design specification dynamically at mn time without - .  
the need of any pre-defined information. The ultimate goal of 
this research is to develop an architecture that can adapt to any 
possible environment without any human control. Hence the 
theme of the design is to provide an evolvable intelligent 
machine that can be used to perform work independcnlly in 
environment such as space exploration. Negatively hurting 
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parameters of design are the resource demanding and time 
consuming evolution process. 

F- IPFkx DAPDNA: 
Thr IPWex DAPDNA [9] is basically a dual-core processor 
including a RlSC core coupled with a two-dimensional 
processing mamx. The two-dimensional processing matrix is a 
rrconfiprnble core. The reconfiguration of the processing 
matrix is controlled by the RlSC core to suppon different 
operations to achieve parallel processing efficiently. The 
system has shown a dramatic performance gain for multi- 
threaded applications. 

G- Mathstor FPOA: 
The MathSm FPOA or Field Rogrammable Object Anay 
(101 swtem is ao enhanccd FFGA based solution. lnsfead of . . ,  
using CI.Rs or lookup tables as elementary cell in the device, 
F W A  uses its o m  building block, as foundations. Having 
pre-defined block types allow the blocks to achieve higher 
performance gain. less area consumption and a better 
communication with other working blocks. PipeRcnch is a 
hardware bared pipelined architecture with great flexibility, 
while Raw is software based general purpose processor 
approach with enhanced parallelism. The two systems arc very 
representative to the two extremes of design. NEC DRP. 
IPFlex DAPDNA. and MathStar FPOA are commercial 
products and are FPGA based solutions with higher 
griu~ulxity and advanced features. 

H- Chimerae: 
The Chimerae 141 is a fine-grain architecnue which integrates 

~ ~ 

the small blocks of recohigurable logic into supericalar 
processor architecrures. wearing the rcconfigurable logic as 
programmable A1.Us that can be configured to implement 
application-specific insrmctions. These systems can achieve 
the better performance than the conventional superscalar 
processors on a wide range of applications by mapping the 
commonly executed sequences of instructions onto their 
reconfigurable units, but the rncximum speedup they can 
achieve ic limited by the small amount of logic in their 
reconligurable units. 

I- Remarc: 
The Remarc 121 is a coarse-grain arclutecutre which provides 
larger bloclo of recanfigurablc logic that are less tightly- 
coupled with the programmable portions of the processor. 
These architectures can achieve extremely go& performance 
on applications that contain long-running active nested Imps 
that can be mao~ed  onto the Drocessor's reconlieurable ways  . . 
but perform less well on applications that require frequent 
communication between pragramnuble and reconfigurable 
portions of the p m e s s o ~ .  $stems such as ~ilch&d that 
integrates WGAs into conventional workstations over the 
prowssor's memory bus display similar behavior, although the 
relalively low bandmidth of a micropmcessor's memory bus 
makes them even more sensitive to the amount af the 
cornmuoication that an application requires benvcen the 
processor and the FPGA. 

IU. PROPOSUJ PROCESSOR ARCH17ECTURE 

In this section the detailed architecture of the proposed 
reconfipuable processor has been discussed. The detailed 
architecture of the proposed processor is shown in fig. 3 and 
the different modules are discussed below along with their 
functionality. 

A- Inprl/Output lnletfarr (101): 
The 1 0  intenxc of process"$ is used to runununliblr wth t'lc 

ciwrnnl device, k i n e  interfaced with rt. l h e  fin! iub of the 
uo Interface is to load the configuration streams fmm external 
Configuration EPROM or main memory of system during the 
booting pmcesses of the processor and it takes only a few 
clock cycles. These configuration swams contain the different 
hardware modules likc Addcrs, Subtractnrs. Multipliers and 
Shiftem etc. The second job of the 1 0  interface is tn load the 
instructions and their relevant data operands to be executcd on 
the processor. The third jab of the 1 0  interface is to store the 
results of the computations performed on the processor in 
main memory of the system. The fourth job of dle I 0  interface 
is to send and receive the control signals generated and 
acknowledged by the control unit of the processor to the 
external devices. 

B- J'refetch Unit (PFUJ: 
The basic job of the PFU is to fetch or prc-fetch the instruction 
slrcam and the data stream of  the application program being 
under execution. Fetched insrmctions are loaded in the 
IRFrrucrion Pool and then transferred into the Inrtmction 
Cache. Similarly the data stream is loaded into the Data 
Cache. Consider the Fig. 4 for instruction format encoding of 
the p r o p o d  processor. 
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Consider the Fig. 5 of VEU. The VEU contains the following 
m i o r  modules. 

Fig. 4 Processor lnsmction Format Encoding 

C- Insmcrwn Scheduling UniI (ISU): 
The ISU is the micro-programmed implementation of the 
TomnsouloS Algorithm being used in VLIW and Super-scalar 
processon for the scheduling of the inswctions. The 
instruction scheduler reads insmcfions from the instruction 
pwl  and then it analyzes them for dependencies (if any) and 
resolves these dependencies. Dependencies being analyzed 
include Data Dependency, Conml Dependency, Resource 
Conflicts and Data Hazards dc. Then it afcer analysis ISU 
umsfers these instrunions to insrmction packing unit (IPU). 

D- lnslmction Packing Unit (IPU): 
The main job of the IPU is to pack the eight instructions in the 
form of a VLlW The 32-bits insmctions transferred hum the 
ISU arc given to the IPU. The IPU arranges these insmctions 
in a buffer in a FIFO order on their arrival from the ISU. After 
the arrival of each instruction, the IPU incremenu its 
instruction counter and checks either there are eight 
instruction arrived from the ISU or not. If a total of eight 
inrrmctions have been arrived from the ISU then the IPU 
transfers them into a VLlW buffer of size 8 x 32-bits. Then it 
enables this buffer to transfers this VLrW to insrmction cnche 
of the processor if signal Load-VLIW =I. The same process is 
repeated constantly throughout the application execution. 

E- VLIW Fetch Unit (VFUJ: 
VFU is a slate machine based unit and works like a 
programmable counter. V N  fetches VLlW from the 
in$mction cache and the Op-Codes of all insmctions of the 
VLlW are wansferred to the Configuration Management Unit 
and the VLlW itself is transferred to VDU. 

F- VLnVDispaf~h Unit (YOU): 
VDU is consisting of an array of eight De-MUXs whose select 
lines are c o n m l l d  by the configuration controller. According 
to the select lines activated by the configwation controller all 
of the inswctions of VLlW are dispatched by M U  to their 
rclevant RFUs. 

G- VUIVExecurion Unif (VEUJ; 
VEU is the core component of the processor because it 
contains an array of RFVs k i n g  used for program execution. 

a) ErfemnllO Logic (ElOLJ: 
The ElOL of the VEU is used to load insrmctions in Ihe 
instruction register, source operands in general-purpose 
regislcn and the canfiguration stream in RFUs. The second 
job of the ElOL is to store the configuration stream being 
loaded in the RFUS for the analysis purpose and results being 
generated after the execution of VLIW. The source operands 
Sr-land Sr-2 are loaded into the internal general-purpose 
registen (GPRs) by the External De-MUX of size 1 x 24. The 
address given for the Data-in is connected to the select lines of 
De-MUX as well as to Decoder (5 x 24) input. De-MUX 
selecu one nf the general-purpose registers for data loading 
and the decoder enables i s  output channel connecting to the 
registers Ouuugh the MUX of the size 2 XI.  Thn MUX 
receiver 32-bits data operand from External De-MUX at input 
"1" and receives 32-bits results from RWs at the input 'l)". If 
the Ent-10-En4 then it selecu the result coming from the 
RFUs and loads it in the register. If the ExtlO-En=l then it 
selects the data coming from the External De-MUX and loads 
it in the registen. Since there are eight RFUs that can load 
their results in the same register, hence in order to solve this 
problem an 8 r 1 MUX (32-bits) is interfaced with each 
register input. Each MUX is conmlled by the RFU Data-porh 
Conrroller which analyzes the Destination Addresses of all the 
RFUs and selens only that RFU whose output is valid output. 
In order to store the results and the flags being available in the 
GPRs and flag registers (Rls) into the data cache of the RISP. 
the 32 x 1 External MUX (32-bits) is used which can read the 
contents of the selecied rcgirter. 

b) RFUsDoh-in/Dara-out Logic (TUJIOL): 
lo  order to loadlstore the data across the RFUs there are two 
32 x 1 MUXs (32-bits) and one I x 24 Dc-MUX (32-bits) for 
each WU. Using the two MUXs the RRI is ahk  to mad the 
source data operands (Sr-l and Sr-2) from any one of the 32 
registers and using the one De-MUX it stores its ~ s u l t s  back 
lo any one of the GPRs. Flags generated during the execution 
of the VLlW are loaded into the relevant FRs. 
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C) General-Purpose and Flag Registers (GFRs): 
There is an m y  of eight FRs (32-bits) and twenty four G P O  
(32-bits). GPRs can be read and written by the programmer 
but the FRs can only be read by the programmer and can not 
be written. RF'Lls can readlwrite any one of lhrso thirty two 
registers. Morc than one RFU can read the contents of the 
same register at the same time but only one RFU can write in a 
register at the same time. 

d) Registers hpul/OupuI Logic (RIDL): 
FRs are loaded with the flags, being generated by the RFUs 
and can be read by the programmer through the External 
MUX. In case of the GP&, thc pmgranuner can read the 
registers through the External MUX but in order to write 
contents into registers there is a 2 x 1 MUX (32-bits) which 
selecls the data for the register either from some RFU output 
or from data cache. The 8 x I MUX interfaced at the input of 
the 2 x I MUX selects the valid RN for the results to he 
stared in the register. In order to select the valid RFU for 
results, there is a RFU Data path Controller as shorn in Fig. 5 
is anached with all MUXs. Thin convoller reads the select 
lines of all the De-MUXs of RRls  and after analysis it selects 
that RFU whose output is a valid output. 

e) Reconfigurable Fundionol Units (RFUs): 
RFVs are the computational units of processor and can be 
reconfigured at any time according to the application demand. 
They have been tightly coupled in the form of an integrated 
FPGA care. 

H- Conjiguraiion Manngrmcnf UniI (CMU): 
ChlU is composed of a Configuration Controller and a Multi- 
p o n  Configurufion Memory as shown in Fig.5. Configuration 
conuoller as shown in Fig. 6 receives the opcodes of the eight 
insmctions of the VLIW from the V N  and on the basis of 
these opcodes it decidcr to load one of the configuration 
blocks available in the memory for each RFU (if required). 
Also it checks if the op-code is a No Operation (NOP) or is 
ssmc us that of any one of the existing op-cdes. If so then the 
configuration controller docs not load this new configuration 
into the R N s  bet the hardware that is already loaded in the 
RFUs is reused and hence the configuration time that was 
required for the recanfigurntion of KFUs is saved. llencc only 
tliosc R R l s  are reconfigured that are quite new ones. Hence 
the processor always takes the minimum possible time to 
reconfigure the R F V s  during the execution of the application 
program and always has the most optimal configuration 
overhead. A micro-programmed control unit has been u a d  to 
work like a control unit of processor. 

IV. PERFORMANCE ANALYSIS h l u U E ~  

Following is h e  mathematical model being formulated 
for the calculations of the total no of cycles (TT& cnnsumed 
by proposed reconiigurable processor for the execution of an 
application. Consider the Table. 1 for the model parameters. 

Table. 1 Mathematical Model Parameten 

( Parameters Description I Possible Values I 

Performance statistics have been m s u r e d  in terms of the no 
of clock cycles consumed by a typical DSP 151 and proposed 
reconfigurable processor for the execution of different 
application programs. It  has been observed that the segments 
of code of an application containing loops of repeated 
operations will be drastically boasted up when executed on the 
proposed reconfigurable processor as shown in Fig. 7. 

V. COMPARISON WITH EXlSnNG ARCllllFCnmES 

In this scction the propmed remniigurable processor 
architecture is compared with some of the well known 
recoofigurable architectures. 

A- Configuration Granulariry: 
The proposed processor is fine grain architecture. n e r e  exist 
many systems using this approach like CHIMERAE 141. Using 
fine grain approach the system can bc reconfigured at 
insuuetion level and even al operator level. But there exist 
many other system which use the coarse grain architecture 
and can be reconfigurcd at U U  level. Among them are 
REMARC 12). PipeRench I101 and RAW [91. 

D- RFU Coupling Approach: 
The proposed processor is a tightly coupled architecture like 
CHIMAERA [4]. Others m y  use a coprocessor approach or 
attached processor approach. Tightly coupled designs have the 
small configuration overheads but  IT suffered by the 
dependant execution of RFU with standard CPU core. 

Fig. 6 Configuration Controller 
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Fig. 7 Proposed Pmcessor vs DSP 

C- Operands Address Decodinx; 
The pn,posed procesur ic  based on a firell operond rodrng 
,theme hkc PtprRench 131 BUI \ome drslgn, a e  bawd on the 
hordw~rcdop~randrvd~nq s~hemd hhe CHIMAERA I J J  

the execution of the application. Reconfigurable processors 
arc very suitable processors for those applications where the 
different kinds of processing unis are frequently required to 
boast up the performance of the application. 
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bang dcqigned using th~. slmple slnglc-pon RAV or Cache. 

VI. CONCLUSION 

Reconfigurable computing is becoming an imponant part 
of research in the domain of the high performance computing. 
Rwonfrgurable processors are intensively used platforms for 
achieving such a kind of high performance in computing. 
Reconfigurable processors provide us a great performance 
parameter over the traditional micro-processors. In such kind 
of processors the hardware changes according to the 
requiremenu of the active application. Hence the system 
follows the strategy of the demand-driven operators. The 
required hardware is swapped in and the unused hardware is 
swapped out and hence vinually providing more hardware 
resources than the physically available in the system during 
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Abmncr--In this research paper m alternative design for 
Rcconfigurable Instruction Set Processor (RISP) has been 
proposed nith thc capability of the most optimal configuration 
overhead far Very Long Instruction Word (VLIW based 
architectures. This Drocrrwr suononr the demand-driven ~ . . 
modilic.tion or its in,truclion set during Itc program execution. 
The processor has been integrated nith the high sprrd pardally 
rrconfieurablc Ficld Progr.mmsble C a t e  Arm) IFPCA) corm as 
its ~ec&fieurahle ~unetionnl Units IRFUs) in  lace of ALUS and - . . 
it 1rW1 i n s t ~ ~ t i o n r  as IEmOv1bIC module$ nhirh ran be psged in 
and paqrd out throuzh the  panial rrronfigurarion, according lo 
the requirements of the application being under erecurion. 
Instructions occupy the FPGA resources only -hen neded and 
FPGA resources can he released and reused at run-time on a fly 
for other kind of instructions belonging to the rnnrc or the 
different applications without tfkting thore who are currently 
under erecotion on the FPGA platform. RlSPs are the next 
generation of processors which can adapt their iostruction sets 
through I, reconfiguration in their hardware according to the 
requiremenls ofthe spplieationr being under execution on them. 
In this way the procerwr adapts its instruction set for the 
hardware design whieh is the most suitable for the application 
beine executine an it. durine the rrocers of its crccutian and " 
hence it acccleratn the performance. RISPs arc tbe 
programmable processors which contain the reconligurable logic 
in one or more of their luncrional units. The hardware design of 
such s kind o f  processor can be categorized into wo main tsrh:  
The first trrk is to desien the reconlieurable loeic itself and the " - " 
second lark ir lo design the communication interface of 
rsonlgurshle logic nith the remaining modules ofthe processor. 

Keywords- NSP, Configuration overhead, RFUs, FPGA, 
VLIW, Multi-pon Memory, Configuration Controller. 

1. NTRODUCTION 

The Reconfimrrable Instruction Set Processors (RISPs) - 
combine a microprocessor core with a reconfigurable logic in 
one or more of their functional units. The reconfirmrahle loeic - 
provides hardware specialization to the application being 
under execution. The location of the reconfigurable logic in 
the architecture, relative to the microprocessor core affects the 
perfonnancc. The speed advantages achieved by executing a 
~rogram in a rewnfirmrable lo!zic depend on the m e  of the 
co~munication interfaces used be&een the raonfigurable 
loeic and remaininn modules of the nrocessor 111 and the m e  
ofl the configuration methods ised. A ' rkonfigur&e 
functional unit can be placed in three different places, rclative 
to the processor cure [ S ] ;  fin1 as an Attached Processor [2]; 
second as a Coprocessor [6]: and third as a Functional Unit 
Reconfigurable logic loads its configuration from an extemal 
memory i.e. Configuration EPROM or main memory of the 

system etc. The configuration is loaded in the form of a bit 
stream either serially or parallelly, just like the hit shcam 
loaded in an FPGA [6]. If we can configure the RFUs after 
initialization, the insmction set can be bigger than the size 
allowed by the reconfimrable logic. If we divide the 
application-in functional1;different blocks, the W U s  can be 
reconfieured accordine to the needs of the each individual 

v - 
block. Reconfiguration times depend on the size of the 
configuration bit stream, which is mostly quite large. 
Configuration times are critically dcpcndant an the 
configuration methods and the configuration interfaces being 
used (61. Confirmration stream depends on the m e  of hard 
ware to& reconfigurd and the type of the F P G A ~ W ~ ~  being 
intemated in the RFUs. If the contiexrations load owration 
stops the system working while the ioading of configuration 
sheam, there is a great loss of petiomance. IT the WUs can 
be used during the loading of the new configurations, it will 
give a great performance boast up. If we divide the execution 
unit in different RFUs which can independently be configured, 
we will not have to rsconfigure thc 911 of RfUs at the-same 
timc, thus reducing the reconfiguration time. Configuration 
pre-fetching, configuration cloning and configuration context 
switching are other alternative techniqucs used to reduce the 
monfiguntion over head 161. 

11. MOTIVATIONS 

In future the interactive multimedia applications will be 
based on the standards like M P E G 4  Using an object-based 
approach tn describe and composite an audio-visual scene, 
hlPEG4 combines many different coding tools not unly for 
natural audio and vidm but nlso for smthefic objects and 
graphics. Objects are coded and transmitted sepai-&ely and 
wmoosed at the decoder side. letlina the receiver interact and - 
influence the way the scrnr is prcsested on the receiving 
display and speakers. Due to this user interaction, the number 
and the type of decoders that needs to be implemented on the 
system are not known at the design time, but rather at the mn- 
timc [4]. This fact forces the designers of the platforms for 
these applications to use the new design approaches. 
Traditionallv, multimedia apolications have been imolwented 
on custom i k l ~  that provide enough &allelism 
to accelerate these com~utationallv intensive aoolicahons 171. . . - .. 
while at the same time retaining low power consumption. In 
order to increase even further the computational power of 
these devices, they have been enhanced with custom hard 
ware for acceleration of the most common multimedia 
operations. An example of this is the Tiimedia Processor [7], 



vhich contains the specialized units for DCT (Discrete Cosine 
rransfom) and motion estimation. 

Jnformnately, due to the variety of the algorithms that can be 
lsed in new interactive multimedia applications and thc fact 
hat the actual number and the type of the objects is not known 
ill run time, i t  is no longa ~cooomicaily viable to make 
.pcialized functional units for each algorithm. Toe picture is 
irnher complicated if we also take into account that a 
)larform designed for these applications may havc to decode 
In object encoded with an algorithm for which it was not 
:onceived. Hence in order to maintain the power efficiency 
md the real time constrains, we need a platform that can be 
:pecialized at ~ n - t i m e  to the algorithm at hand. A platfom 
m e d  on RlSP provides this type of run-time specialization. 

111. RELATED WORK 

iumerous reconfigurable hardware based architectures have 
m proposed. Previously proposed reconfigurable processor 
whitectures generally fit into one of two categories 
Icpending on the sizr of the computations they map onto the 
econfigurablc logic. 

Cinegrained Reconjigurable Processors, such as PRISC 121, 
XSC [!I], OneChip [I] and CHIMERAE [I21 integrate the 
mall blocks of rcwnfiyrable logic into superscalar processor 
irchitectures, treating the reconfigurable logic as 
rogrammable ALUs that can be configured to implement 
~pplication-specific inslnfctions. CHIMEME diffm from 
)thff systems primarily in that it supports a 9-input / I-output 
nstruction model. n e s e  systems can achieve better 
mfonnance than conventional supencalar processon on a 
wide range of applications by mapping commonly-executed 
quences  of instmct~ons onto their rcconfiyrable units, but 
he maximum speedup they can ach~eve is limited by the small 
mount of logic in their reconfigurable units. 

?oarse-grained Reconfigvrable Procersors, such as 
<EMARC [9), Garp 161, Napa [lo], PipeRench [S], Rapid [3] 
md RAW [B] provide larger blocks of reconfigutable logic 
hat are less tightly-coupled with the programmable portions 
,f the processor. These architechlrcs c a  achieve extremely 
p d  performance on applications that contain long-running 
tested loops that can be mapped onto the processor's 
econiigurable arrays but perform less well on applications 
hat require frequent communication between programmable 
md reconfigurable portions of thc processor. Systems such as 
'ilchard that integrates FPGAs into conventional workstations 
wcr the processor's memory bus display similar behavior, 
dthough the relatively low bandwidth of a processor's 
nemory bus makes them even more sensitive to the amount of 
:ommunication that an application requires between the 
lrocessor and the FPGA. 

IV. PKOPOSED RlSP DESIGN 

In this section the detailed architecture of the proposed RISP 
ias been discussed. The dctailed architecmre of the proposed 
xocessor is shown in the Fig.1 and different modules are 
liscussed below along with their functiwality. 

1. Input / Output lnterface (10 Interface): 
The 1 0  interface of NSP is used to communicate with the 
extemal devices being interfaced with it. Toe first job of the 
UO Interface is to load theconfiguration streams from external 
Configuration EPROM or main memory of system duting the 
booting processes of the processor and it a e s  only a few 
clock cycles. These configuration meams contain the different 
hardware modules like Adders, Subtractom, Multipliers and 
Shifkrs etc. The second job of the 1 0  interface is to load the 
instructions and their relevant data operands to be executed on 
the processor. The third job of the 1 0  interface is to store the 
results of the computations performed on the processor in 
main memory of the system. The fourth job of the 1 0  interface 
is to send and receivc the control signals generated and 
ackoowledged by the cnntrol unit of the RlSP to the external 
devices. 

2. Pre-fetch Unit (I'FU) 
The basic job of the PFU is to fetch or pre-fetch the instruction 
strcam and the data stream of the application program being 
under execution. Fetched inmuctions are loaded in thc 
InslnrcJion Pool and then transferred into thc Insfmtion 
Cache. Similarlv the data stream is loaded info the Dafa Pool 
and then transf&ed into the Data Cache. 



1. Instruction Scheduler Unit (ISU) 
'he ISU is the micro-programmed implanentation of the 
'bmaroulu's Algorilltm being used in VLlW and Super-scalar 
lmcesson for the scheduling of the instructions. The 
nstruction scheduler reads instructions from the inshuction 
ml and then it analyzes them for dependencies (if any) and 
esolves these dependencies. Dependencies being analyzed 
nclude Data Dependency, Control Dependency, Resource 
h f l i c t s  and Data Hazards etc. Then it afler analysis ISU 
ransfers these instructions to IPL. 

I. Instruction Pack Logic (IPL) 
h e  main job of the IPL is to pack the eight instructions in the 
brm of a VLIW. m e  32-bits instructions transferred from the 
SU are given to the IPL. The IPL arranges these inshuctions 
n a buffer in a FIFO order on their arrival h m  the ISU. After 
he arrival of each instmction, the IPL increments its 
nshuction counter and checks either there are eight 
nstruction arrived from the ISU or not. If a total of eight 
nstsuctions have been arrived from the ISU then the IPL 
ransfers them into n VLlW buffer of size 8 x 32-bits. Then it 
:nables this buffer to transfas this VLlW to instruction cache 
~f the RlSP if signal Load-VLIW =I. The same process is 
epeated constantly throughout the application execution. 
:onsider the Fig. 3 of IPL. 

i. Computational Pipeline-l (CP-I) 
:P-I is wnsisting o f  a VLIW Fetch Unit (VFU) and a VLIW 
lispatcb Unit (VDU). 

VLIlY Fetch Unit (YFU): 
IFU is a Stale Machine based unit and works like a 
'rogrammable Counter. VFU fetches VLlW h m  the 
asauction cache and the Op-Coder of all instructions of the 
lLlW are transferred to the Conjiguration Unit and the VLIW 
tself is transferred to VDU. 

i. VLfWOispa[ch Unrr (Z'iDU): 
JDU is consisting of an array ofeight De-MUXs whose select 
ines are conbolled by the configuration wntmller. According 
o the select lines activated by the configuration conuoller all 
,f the instructions of VLIW are dispatched or issued hy VDU 
o their relevant WUs. Consider the Fig. 4 ofVDU. 

6. Computational Pipeline-2 (CP-2) 
The CP-2 is composed of a VLlW Execution Unit FEU) 
which contains an m n y  o f  eight RFUs and a Register Wiodaw 
of 32 registers (32-bits) and a Configuration Unit which 
contains a Conz ro l i on  Coniroller and a Multi-port 
Configuration Memory. 

i. VLIWExecution Unit (YEW: 
VEU is the core component of the processor because it 
contains an array of RFUs being used for program execution. 
Consider the Fig. 5 of VEV. The VEU contains the following 
major modules. 

a) External 10 Logic (EIOLI 

d) Registers ln&~utput  L & i c y R l ~ ~ )  
e) Recontigurable Functional Units (RFUs) 
fl Flags Generation Logic (FGL) 

a) Ertemal I 0  Logic (EIOL) 
Tho ElOL of the VEU is used La load instructions in the 
instruction register, sauce  operands in general-purpose 
reasten and the configuration sueam in RFUs. The second 
job of the ElOL is to store tbc configuration sueam being 
loaded in the WUs for the analysis purpose and results being 
generated afierthe execution of VLIW. 

The source "perads Sr-land 9 . 2  u c  luadcd !"to the mternil 
sm rn l -p~ roc~se  rrrirlcn (GPRr) by the  Exrcmal De.MUX of 
size I ~ ' 24 :  The admess given for ;he Data-in is connected to 
the select lines of De-MUX as well as to Decoder (5 x 24) 
input. De-MUX selects one of the general-purpose registers 
for data loadmg and the decodcr enables its output channel 
c o ~ e c t i o g  to thc registers through the MUX of the size 2 X I .  
This MUX receives 32-bits data operand from External De- 
MUX at input "I" and receives 32-b~ts results Gum RFUs at 
the input "0". If the Ext-10-En4 thcn it selects the result 
coming 60m the RFUs and loads it in the register. If the 
Ext_lO-En=l then it selects the data coming from the 
External De-MUX and loads it in the registers. Since there are 
eight RFUs that can load their results in tbc same register, 
hence in order to solve this p roblm an 8 x I MUX (32-bits) is 
interfaced with each register input. Each MUX is wntrolled 



the RFU Dara-pallr Controller which analyzes the 
stination Addresses of all the RFUs and selects only that 
U whose output is valid output. In order to store the results 
f the flags being available in the GPRs and flag registers 
2s) into the data cache of the RISP, the 32 x 1 External 
JX (32-bits) is used which can read the contents of thc 
ected register and sends it to the data cache of the RISP. 

b) @US Dofain /Data-ouf Logic (RDIOL) 
order to loadlstore the data across the W U s  there are two 
x 1 MUXs (32-bits) and one 1 x 24 h M U X  (32-bits) for 
:h RFU. Using the two MUXs thc RFU is nble to read the 
lrce data operands (Sr-l and Sr-2) from any one of the 32 
:isms and using the one De-MUX it stores its results back 
any one of the GPRr. Flags generated during the execution 
the VLIW are loaded into the relevant FRs. 

c) General-Purpose and Flog Registers (GFRs) 
nc is an array of eight FRs (32-bits) and twenty four GPRs 
!-bits). CPRs can be read and written by the programmer 
i the FRs can only be read by the progammcr and can not 
written. W U s  can rcaflwritc any one of these thirty two 
isten. More than one RFU can read the contents of the 
ne register at the same time but only one RFU can write in a 
;ister at the same time because the read operdtion is 
(reable but the write operation is not shareable. 

d) Rcgisfcm InpuUGurput Logtc (RIOL) 
s are loaded with the flags, being generated by the RFLk 
1 can be read by the programmer through the Extmal 
JX. In case of the tiPRs, the programmer can read the 
isters through the External MUX hut in order to write 
,tents into registers there is a 2 x I MUX (32-bits) which 
:CIS the data for the register either from some KFU output 
from data cache. The 8 x 1 MUX interfaced at the input of 
2 x I MUX selects the valid W U  for the results to be 

red in the register. In order to select the valid RFU for 
ults, there is a RFU Data path Coniroller shown in Fig.6 is 
~ched with all MUXs. ?his controller reads the select lies 
all the De-MUXs of RFUs and after analysis it selects that 
U whose output is a valid output. 

1,) R e r o n j i ~ r o b l e  Funcrton~l ('nth (RFU:) 
U s  arc thc cornp~ol1~n3l  unitsol RISI' and can be 

. . . .. . .. . . , . . . ........ -, .., . . . . ... .. .. ,.. . . . 

Flg. 5 WW Exssutlon Unit (VEUI 

reconfigured at any time according t o  the application demand. 
They have been tightly coupled in the form of an integmted 
FPGA core. 

f i  Flags Generation Logic (FGL) 
The ourputs generated by the RFUs are also read by the FGL 
and the flags are calculated for each RFU. Flag register is a 
32-bits register bul recently only Carry Flag. Sign Flag, Zero 
Flag, Overtlow Flag and Equal Flag have been computed in 
the system and the remaining twenty-seven bits are available 
far the future extension. 

ii. VLnYConfguration Unit (VCY: 
VCU is composed of a Configurntion Controller as shown in 
Fig.7 and a Multi-port Configuration Memory as shown in 
F i g 5  Configuration controller receives the op-codes of the 
eight inshuctions of the VLIW tiom the VFU and on the basis 
of these opcodes it decides 10 load one of the configuration 
blocks available in the memory for each RFU (if required). 
Also it  checks if the op-code is a No Operation POP) or is 
same as that of any one of the existing opcodes. If so then the 
configuration controller does not load this new configuration 

RFU Datagath Controller 
Herdwired Algorithm 
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Abstract 

Due to the potential enhancements in the execution of 
finrare based applicorions shown by Recotfigurable 
strucrion S6I Processors (RISPs), reconJigurable compulirlg 
IS become a subject of great dm( of research in ihefjeld of 
mpuler sciemrs. Its keyfeature is rbe ability lo perforn~ the 
m~prrrarions in hardwor-e to brcrense the perfo~nrance on one 
~rrd ichilr I-eroining much ojrheflexibili~ of the sofiare on 
e orher hand The VLSI development is conrinuously 
rproving and new ways murt be obtained to become able lo 
lly t a k  tJre advantages of the emerging technology. 
rcon/ib.urable irurdware might be the next step which w.iN 
re computer perforrnancr a big leapfornard. 7hr idea is to 
:e the ,low a day S high peg'bnnance FPGA /eclrrro~ogy to 
lap: the hardware to the problem. This research paper 
~ P , I I , S  (111 alter~~atl).e design of a RISP dzich nrpport.~ 
ulriple rllreads tu~rrzi~tg conc~rrrmrly. all with instant 
~nhlore support. Core oJ'Xilinx FPGAs like Yirrerseries has 
!en used to adapt the possibilities of londing partial 
rrdware cor~jigurulions wlzilu wtaixing Ihe prpculios of the 
a~ainitr~ active parts oJthr application. 

Index T'ern~s - Fine-grain, Coarse-grain. Configurations, 
"A. KFUs, RISP, Multi-port Configuration Memoty. 

Reconfigurable Instruction Set Processors (RISPs) combine 
standard microprocessor core with a reconfigurable logic in 
le or more o f  their functional units [I]. The reconfigurable 
gic provides hardware specialization to the application being 
idrr execution. The location of the reconfigurable logic in 
e architecture, relative to the micmpmcessor core greatly 
fects the perfomance of the computational system. The 
Iced advantages achieved by executing a p r o p m  in a 
configomhle logic depend on the type of the communication 
terfaces used between the reconfigurable core and rest of 
odulcs of the processor and the type of thc cotifiguration 
ethods being use?. A Reconfigurable Functional Unit (RFU) 
In be placed in three difierent placcs, relative to the 
.ocessor core 161; first as an A I I U C ~ P ~  Processor; second as a 
opmcesso,:. and third as a Funrtionnl Unit (FU). 
cconfigurable logic loads its configxations from an external 
emory like confgur~tion EPROM or main memory of the 
(stem. The configurations are lnadcd either serially or 
~nllelly, just like loaded in an FPGA [2]. If we can configure 
e KFUs aRer initialization, virtually the instmction set can 

be bigger than the actually available. If we divide the 
application in functionally different blocks, the RFUs can be 
reconfigured according to the needs of the each individual 
block. Reconliguration times depend on the size of the 
configuration bit streams, which is mostly quite large. 
Configuration times are critically dependant on the 
configuration methods and the configuration interfaces bcing 
used. Configuration streams depend on the type of hardwvare to 
be reconfigured and the trpe of the FPGA core being 
integrated in the RFUs [Z]. If the co~~gura l ion  load operation 
stops the working of the platfbm then during the loading of 
configuration stream, there is a great loss of performance. If 
the RFUs can be used during the londing of the new 
configurations, it r i l l  give a grit performance boast up. If we 
divide the execution unit in different RFlJs which can 
independently be configurrd, wc will not have to reconfigure 
the all of RFUs at h e  same time, thus reducing the 
reconfiguration times. Thc Configuration Pre-fetching and the 
Configuration Cloning are other alternatives. i 

1 
2. Related Work I n  Active Domain 

Previously proposed reconfigurable architectures generally 
fit into one of two major categories depending on grain of 
computations thcy map onto the reconfigurable logic. 

Fine-graiwd ReconJigurnble Arcl~itecl~lrrrer. such as 
CHlMERAE [ 5 ]  integrate the small blocks of reconfigurable 
logic into superscalar processor architecturcs, treating the 
reconfigtable logic as  programmable ALUs that can be 
configured to implement application-specific inrtrucfions. 
These systems can achieve rhr bettcr performance than the 
conventional superscalar processors on a wide range of 
applications by mapping commonly-executed sequences of 
instructions onto their rcconfigurable units, but the maximum 
speedup they can achierc is limited by the small amount of 
logic in their reconfiynble units. 

Coarse-grained Reco~~figurable ArcJ~ife~~lures. such as 
REMARC 171, Napa [8] and PipeRench [6] provide larger 
blacks of reconfigurable logic that are less ti~htly-coupled 
with the programmable pottions of the processor. These 
architectures can achieve extremely good performance on 
applications that conllin long-running nested loops that can be 
mapped onto the processor's reconfigtrrable arrays but 
perform less nmell on applications that require frequent 
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B - Z,rpirl/O#gn~t I~~tcrface /lo Interface): 
The first job of the UO Interface is to load the configuration 

treams from external Configuration EPROM or main memoty 
~f master system during the booting pmcesses of the processor 
~ n d  it t aka  only a few clock cycles. These configuration 
:trrams contain the different hxdware modules like Adden, 
;mhtnctors, Multipliers and Shiften etc. The second job of 
he 10  interface is to load the instructions and their rclcvant 
lata operands. The third job of the 10  intcrfacc is to store the 
zsults of the computat~ons in main mcniory of the system. 
rhe fourth job of the 1 0  intorfacc is to send and receive the 
:ontrol signals generated and acknowledged by the conlrol 
mil of the RISP to the external devices. 

C - Prngranr Fetch Unit (PFU): 
PFU is a programmable conrroller which fetches 

nstructions one by one froni the program memory and loads 
hem into the VLIW Unit of thc RISP. A pre-fetch unit is 
ntegmted inside tllc 1 0  interface of the RlSP to fetch or pre- 
etch thc instruction and data streams of  the application 
)rugram. Fctched instructions are loaded in the program 
rwmog.a~td data are loaded into the data nrenrov. 

D - I'LIIV Unir (VLIIVU): 
The VLI\VU arranges the instructions in a buffer in a FIFO 

xder on their arrival from the PFU. After the arrival of each 
nstruction, the VLIWU iocrerncnts its instnction counter and 
:hecks either there arc nine insm~ction anived froni the PFU 
)r not. If a total of nine instructions have been anived from 
hc PFU then the VLIWU transfers them into a VLIW buffer 
,f size 9 x 32-bits. Then it enables this buffer to transfers this 
YLlW to Program Analyzer Unit (PAU) ofthe RISP if signal 
2oad_VLIW =I. The same process is constantly repeated 
hroughout program execution. 

E - Progran~ Armlyzer tirrir (PA U)r 
Program analyzcr unit receives the VLIW containing the 

,in, instructions in the form of a packet. It then analysis the 
,p-codes of instructions to check, which one is the 
:ontigoration instruction and which one is the application 
nstruction. After analysis it rearranges the VLIW in a pre- 
iefined order. A pre-detined op-cude (ix. 255) is dedicated 
'or configuration instruction, which cannot be assigned to any 
~ the r  instruction o r  the application probmm. Consider the 
'ig. 3 for PAU. PAU receives the 9 x 32 = 28s-bits long 
YLIW, from the VLIW IJnit, in the VLIW Receive Buffer. 
rhen the Inpur-in.~f MUXCorriroller generates the select lines 
me by one for the Input-lnsr MUXand instructions are loaded 
nto the A a a b ~ e r  Buffer one by one. For each insmction, the 
3p-Code of the instruction is used to control either the 
1.~8 De-AIUXor the tr8u//er. Ifop-code is between 0 - 254. 
h e  instruction is loaded into the De-MUX otherwise it is 
'oaded into the lo-Buffcr. Through the De-MUX it is loaded 
nto the proper instruction huffer from It.__ 1% At the end all 
nstruction buffers from lo-._. Is load their instructions into the 
288-bits Re-arranged YLllV Buffer. Now VLLW is in the 
-equired format, where the instruction on the leasi sipnificant 
side i.e. 10 is the Configuration lnslrucrion and the remaining 
nstructions i.e. It.._. la are the application instructions. Then 
.his VLIW is transferred to Prognm Schedule Unit (PSU) 
uhich sends confi~untion ins t~c l ion  to the Configurarion 

Main Memory 

Fig. 2 Proposed RISP Architecture 

R~Anangrd VLIW 

J 9 ~ 3 : r s  

Fig. 3 Program Analyzer Unit (PAll) 

unll and the application instructions to the Program Dispatch 
Unit (PDU). 

F - Program Dispatcl~ Unil (PDL'): 
PDlJ is consisting of an array of eight De-MUXs whose 

select lines are controlled by the ffiree coniigumtion bits being 
attached with each instructiori by the compiler or by the 
application layer. According to the select lines activated by 
these attached configuration bits, all o f  the instructions of 
VLl\V are dispatched or iswed by PDU to their relevant 
REUS. 



C - Progrant Execution Unit (PEU): 
PEU is the main unit of RlSP as it contains computational 

unctional units (RFUs) in it. The functionality of major 
nodules of PEU is as under. Consider the Fig. 4 of PEU. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . , . . . . . . . . . . 

Fig.4 Program Execution Unit (PEU) 

i. E.vrcrual I0 Logic (EIOL) 
The EIOL of the PEU is used lo load instructions in thc 

nstmction register, source operands in general-purpose 
egisten and the configuration stream in RFUs. The second 
oh of the EIOL is to store the results being gcnented after rhe 
recution of VLIW. The source operands St-land Sr-2 are 
oaded into the internal general-purpose registen (GPRs) by 
Ibe Exrernal De-MUX of s i ~ e  I x 24. The address given for 
he Data-in is c o ~ c c t e d  to the select lines of De-MUX as well 
s to Decoder (5 x 24)  input. De-MIJX selects one of  the 
:eneral-pulpuhc registers for data loading and the decoder 
nables its output channel connecting to the registers through 
he MUX of the size 2 X I .  This MUX receives 32-bits data 
pcrand from External De-MUX at input "1" and receives 32- 
,its resuhs from RFUs at the input 'Y)". If the Ext-10-En-0 
hen i t  selects the result coming from the RFUs and loads it in 
he register. If the Ext-10-En-l then it sclects the data 
oming from the External De-MUX and loads it in the 
egisters Since there are eight WUs that can load their results 
n the same register, hence in ordcr to solve this problem an 
; x I MUX (32-bits) is interfaced with each register input. 
Jach MUX is controlled by the RFU Data-path Controller 
vhich analyzes the Destination Addresses of all the RFUs and 
elects only that RFU whose output is valid output. In order to 
tore the msults and the flags being available in the GYKs and 
lag registers (FRs) into the data memory of the R E P ,  32 x 1 
ixternal MUX (32-bits) is used which can read the cantents of 
he selected register and sends it to the data mentory of the 
LISP. 

ii RFUs Data-irt /Data-out Logic (RDIOL) 
In order to loadlstore the data across the RFUs there are two 

2 a I MUXs (32-hits) and unc 1 x 24 De-MIJX (32-bits) for 
ach RFU. Using the two hlUXs the RFU is able to read the 
ource data operands (St-l and Sr-2) from any one of the 32 
eglsters and using the one De-MUX it stares its results back 
2 an) one of the General Purpose Registers (GPRs). klags 
:meratcd are loaded into the relevant Flag Reg~sters (FRs). 

There is an array of eight FRs (32-bits) and twenty four GPRs 
(32-bits). 

iii. Registers Input/Oupur Logic (RfOL) 
FRs are loaded with the flags, bcing generated by the RFUs 

and can be read by the programmer through the External 
MUX. In case of  h e  GPRs, the programmer cau read the 
registers through thc External MUX but in order to write 
contents into rcgisters there is a 2 x 1 MUX (32-hits) which 
selects the data for the register either from some RFU output 
or from data memory. The 8 x 1 hWX interfaced at the input 
of the 2 x 1 MUX selects the valid RFU for the results to bc 
stored in the register. In order to select the valid RFU for 
results. there is a RFU Data path Controller attached with all 
MU%. This controller reads the select lines of all De-hllJXs 
of RFUs and afler analysis it selects that RFU whose output is 
a valid output. 

iv. ReconJigurubIe Fu~zctional U I ~  R F U s )  
RFUs are the computationsl uni& of  RISP and can be 

reconfigured at any time according to the application demand. 
They have bccn tightly coupled in the form of an integrated 
FPGA core. The outputs generated by the RFUs are also read 
by the Flag Generation Logic (FGL) and flags are celculatcd 
for each RFU. 

H - IUSP Confgurntion Unit (Co~rfig Uttir): 
Configuration Unit of the RISP is responsible for the 

configuration of the RFUs being integrated inside the Program 
Execution Unit [I]. The configuration insmction inserted by 
the applica~ion software or by the compiler is the control 
instruction for the configuration unit. Configuration instruction 
format is shown in Fig. 1. Configunlion instruction has an 
8-bits opcode (255). When this instruction reaches to the 
configuration unit oftbe RISP, it loads it  into the ConJgumrim 
Buffer Register (CBR). f i e  op-code of  the configuration 
instruction is decoded for the interpretation. If the op-code.is 
the 255 then configuration controlling 24-bits on the least 
significant sidc arc loaded into the Configuation Annkzer 
Register (CAR). After loading these 24-bits into the CAR, 
thcsc are grouped into the )-hits each and then are sent to the 
Cozjigrcrnlion Analyzer Unit (CAU). The main job of the 
configuration analyzer unit is to analyze and update the 
configurations being running into thc RFUs. Consider the 
Fig. 5 of  the CAU. There are total cight configuration analyzer 
units inside the configuration unit of the RISP. Each one is 
responsible lor updating the contigurations of one RFU. The 
followings are the tasks performed inside the CAU. 

It checks the incoming configuration control bits for the 
No Change Operation (NCO) of the cumntly running 
configuration. If the incoming configuration control hits 
are 000, thcn it means no change in the currently 
running configuration. 

It checks [he incoming configuration control bits for the 
Same Configuratian Operation (SCO). This optlation 
occurs if the incoming configuration coutrol bits are 
same as that of the currently rumling configuration. 
Hence in this case the configuration should also not be 
loaded into the RFU and hence it saves the 
configuration overhead of thc device. 
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, Mathematical Rlodel for Analysis 

Follosing is the mathematics1 formula bein8 furmulated for 
le calculations ofthe total no ofcvcles ~ T T . A .  consumed for .- -~~ . 
le execution of an application program. Consider the model 
ammeters in Table.2. 

r.,., =.X(Tc. To) + ~ ( N F P .  PFP) +  EN (FN + DN)) C Y C ~ ~ S  

u'hcre Pn.= 1 (TPFT. TOFT) 

It has been observed that the segments o r  codcs of 
pplications containing loops o f  similar opcrations, like the 
pent ion of convolution UI digital signal processino. will be 
:rastically boasted up by the proposed RISP as shown in the 
,raph in Fig. 6. These results have been simulated by 
onfigwing the proposed RlSP for the loops containing fixed 
mint arithmetic and logical operations. 

'l'able.2 hlathemntical hlodcl Parameters 

i. Benchmark with Existing Architectures 

Parameters 
lo afFetched Packets,_Nrp 
a c k t  Fetch Time, T p n  
Grid Fetch Time, TOFT 
recure Packets, EN 
k l y  Slots, DN 
unctional Unit Latency, & -- 
'onfipuration Time. Ir 
)ispatchine Titnc. T,, 

In reference with CorrJipuario~t Grarrularil).; the proposed 
USP is fine-grain architecture like CHLMERAE [51. Using 
ine grain approach tbe system cm be reconfigured at 
nstmction level and even at operator level 141. But there exist 
nany other systcms which use the coarse-grain architechre 
md can be reconfigured a t  ALU level like REMARC [71, 
qaps [XI and PipeRench [6].  In reference with RFU 
:ouphg; the proposed RISP is a tightly-coupled architecture 
ike CHIMAERA [ S ] .  Others [nay use a coprocessor approach 
,r attached processor approach. Tightly-coupled designs have 
he small configuration overheads but are suffered by the 
lepcndant execution o f  RFU with standard CPU core. In 
eference with Operafrds Cod i~g ;  the proposed RISP is based 
1n a fired-operand coding schcme. But some of  designs are 
7ased on the burduimd oprund coding scheme like 
3HIMAER.4 [5]. In reference with Configuration h femo~ ' ;  

- Possible Values 
1.2.3. .......... N I Program 
I-Cycle 1 FeshedPacket 
ICycle I FctchedPacket 
1 1 FetchedJacket 
0-10-1 Cycle 
I-Cycle IExecuLe Packet 
0 -  to I Cycle -- 
I-Cycle 1 Execute Packet 

40 9 RISP 

20 NO Of 

0 
Cycles 

P I  P3 P S  P I  P9 Used 

1 Tested Programs 

Fie. 6 Periormanre Analysis Graph 

the proposed RlSY i s  using a multi-porl Configuration 
memory unlike the existing architectures which are using the 
single-pon configuration memory 131. 

7, Conclusion 

Reconfigurable Instruction Set Processors (RISPs) provides 
us a great performance parameter over the traditional micro- 
processors. In RISP the hardware changes according to the 
requirements o f  the application being under execution. Kcnce 
the system follows the strategy of ihe demand-driven 
operators. The required hardware is swapped in and the 
unused hardware is swapped out and hence virtually providing 
more hardware than the physically available in the system 
during the execution of the application. Reconfigurablc 
lnstruction Set Processors are very suitable processors for 
those applications where different kinds of processing units 
are frequently required to  b o a t  up the performance. 
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