
Finding Maximal Frequent Itemsets Using Similarity
Measure

Developed by:

Fazal Ahmad

378-FBAS/MSCS/F07

Supervisor:

Mr. Muhammad Imran Saeed

Co-Supervisor:

Mr. Saif Ur Rehman

Department of Computer Science & Software Engineering 

Faculty of Basic & Applied Sciences 

International Islamic University, Islamabad 

(2012)



•‘U. ^J7

J- -  A  J> JX o ^J io x 'y r)yv ^  \

/



<FimCApp^ovaC

Department of computer Science & Software Engineering, 

International Islamic University Islamabad 

FINAL APPROVAL

Dated: / -  0

Certified that we have examined the project report titled “Finding Maximal Frequent 

Itemset Using Similarity Measure”̂  submitted by Mr. Fazal Alt mad, Registration No: 378- 

FBAS/MSCS/F07. In our judgment this research project is o f sufficient standard to warrant 

its acceptance by the International Islamic University, Islamabad for the award of the degree 

of MS in Computer Science.

Committee: \
External Examiner 
Dr. Abdus Sattar,
Former D.G.,
Pakistan Computer Bureau,
H-NO: 143,S t:60,1-8/3,
Islamabad.

Internal Examiner 
Prof. Dr. M uham m ad Sher,
Chairperson,
Department of Computer Science,
International Islamic University,
Islamabad.

Supervisor
M uham m ad Im ran  Saeed,
Assistant Professor,
Department of Computer Science & Software Engineering, 
International Islamic University,
Islamabad.

Co-Supervisor 
M r. Saif U r Rehm an
Lecturer, Institute o f Information Technology (IIT),
Kohat University o f Science & Technology (KUST), 
Kohat.

binding iMoJcitrmf frequent Itemsets Vsing SitniCarity ^Measure



(Dissertation

A dissertation submitted to the 

Department of Computer Science 
and Software Engineering, 

International Islamic University, Islamabad, 
As a partial fulfillment of the requirements 

for the award of the degree of 
MS in Computer Science.

binding !Mcv(imaC Trequent Itemsets Vsirig Similarity !Measure



(Dedication

< I> E (D IC m iC X N '

(Dedicated to my Coving parents 

. JfonoraBCe teachers.

binding ^axjmaC frequent Itemsets Vsing SimiCarity Measure til



<Dec(aration

DECLARATION

I hereby declare that this research work ''Finding Maximal Frequent Itemsets Using 

Similarity Measure*^ neither as a whole nor as a part has been copied from any source. 

Furthermore it is declared that the research project and the thesis report are entirely 

developed by my personal efforts under the supervision and sincere guidelines of Mr, 

Muhammad Imran Saeed and Mr. Saif Ur Rehman. In addition no part of this research 

work has been submitted to this or any other university for the award of degree or 

qualification.

Fazal Ahmad
378-FBAS/MSCS/F07

^Finding 9ii(VQmaCfrequent Itemsets VsingSimiCarity ^Measure iv



Jlc^owledgements

ACKNOWLEDGEMENTS

All praises and much gratitude to Almighty Allah, the most merciful and glorious, 

who granted me the potential to work hard and perseverance to accomplish this research 

work.

I would like to sprinkle special thanks on my co-supervisor Mr. Saif Ur Rehmatiy 

who always provided me greatest support and help whenever I needed throughout my 

research work. He was readily available for consultation, shared his knowledge with me 

as well as motivated me for successful completion of this research work.

I am very thankful to my loving supervisor Mr. Muhammad Imran Saeed who 

not only provided me support in this research work but his kind cooperation and 

encouragement throughout my degree is always memorable.

I cannot forget the successful support of my affectionate parents, who always 

show desire and pray for my success as well as provided me financial and every other 

kind of support throughout my life.

I would like to thank my honorable teachers, friends specially Mr. Kamran Ullah 

and all those who helped me during this research project.

Fazal Ahmad

378-FBAS/MSCS/F07

‘Finding frequent Itemsets Vsing SimiCarity Measure



(Project in <3rief

PROJECT IN BRIEF

PROJECT TITLE: 

UNIVERSITY:

UNDERTAKEN BY:

SUPERVISED BY:

CO-SUPERVISOR

TOOLS USED:

OPERATING SYSTEM: 

SYSTEM USED:

START DATE: 

COMPLETION DATE:

Finding Maximal Frequent Itemsets Using Similarity 
Measure

Department of Computer Science & Software Engineering, 

International Islamic University, Islamabad.

Fazal Ahmad 

(378-FBAS/MSCS/F07)

Mr. Muhammad Imran Saeed,

Assistant Professor,

Department of Computer Science & Software Engineering, 

International Islamic University, Islamabad.

Mr. Saif Ur Rehman,

Lecturer in Institute of Information Technology (IIT), 

Kohat University of Science & Technology (KUST).

C++ for development of project,

ARTool for generating dataset.

MS Office Word 2007 for documentation.

Windows 7 (64-bit).

DELL STUDIO 1555

Intel Core 2 Due 2.20 GHz 2.20 GHz

RAM 3.00 GB.

June 2010.

February 2012

‘Firufing Mcudmaf ̂ Frequent Itemsets Using Similarity Measure VI



JlSstroa

ABSTRACT

Maximal Frequent Item set (MFI’s) generation is less computationally 

intensive than Frequent Itemsets. Once MFI’s are determined FIS can be deduced from 

them easily. Proposed technique presents a novel technique to discover MFI’s of specific 

size very easily than the other established existing techniques. Proposed technique finds 

similarity among every two items. Then the similarity of the items of combination size is 

calculated from the two items similarity without generating the intermediate results. The 

itemset having maximum similarity is the most frequent maximal frequent itemset. The 

proposed technique will produce results more efficiently than MAFIA.
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1 INTRODUCTION
From the last few decades there exists huge amount of data in every field of the 

world. This huge availability of data and rapid increase in data require processing, 

analysis and storage. There are interesting patterns in the data which are unknown to the 

user. Extracting these patterns manually fi-om huge amount of data is a difficult task, 

therefore to discover interesting hidden patterns automatically and to analyze and process 

huge amount of data is possible by the process of data mining.

Data mining is the combination of two words, “Data” and “Mining”.

Facts and figures in the raw form are known as data. Whereas when the data is processed 

it is converted into meaningful information. For example facts such as cloud, moisture 

etc results into the weather broadcasting. The historical background of information can 

be used for future decision making process, which is known as knowledge. Such as 

collecting information about consumer buying behavior results into making best 

marketing strategy to increase the sale of a particular product. Another query could be 

what is the buying habit of consumers? What is the financial position of consumers of 

the product? Thus on the basis of these information the manufacturer or retailer could 

determine which product required special offer and display etc.

Different definitions of data mining are as under:

Data mining is the process of extracting knowledge from large amount of data [1]. 

Data mining digs out valuable, non-trivia! information from large multidimensional, 

apparently unrelated databases (sets) [2].

Data mining is the process to sort large amount of data and get your related 

information. This information is normally used by business intelligence organizations 

and financial analysts but increasingly being used in the science to extract information 

from the enormous datasets generated by modem experimental and observational 

methods [3].

The process of data mining is possible by the use of sophisticated algorithms to 

uncover meaningful patterns and correlations that are hidden. For this purpose there exist 

many algorithms but one will concentrate on those which are more efficient.

Cfiapter 1 Introduction
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1.1 DATA MINING TECHNIQUES
There are various techniques through which the data mining process extracts 

hidden patterns to discover knowledge. Here we will discuss some of these 

methodologies.

1.1.1 CLASSIFICATION AND PREDICTION
Classification is a data mining technique in which different classes are modeled 

and for a particular data object whose class label is unknown, a class is predicted.

In classification different classes are predefined and a data object must belong to a 

particular class. No new class can be defined for a new data object but the data object can 

be mapped to the relevant class. Consider a business organization; products can be 

classified based on per day profit. Profit can be classified as high profit and low profit. A 

high profit product can be categorized as class “A” product and a low profit product can 

be categorized as class “B” product, ff a new product is introduced it will belong to 

either class “A” or class “B” based on the profit of the product.

Classification is often referred to as supervised learning because the classes are 

predetermined before examining the data. Classes are defined based on data attribute 

values with the help of classification algorithms [1].

In real world the classification problem involves more dimensions and therefore 

more complex to classify. For example consider the bank loan decision problem. It 

involves at least two dimensions “age” and “income”. If age dimension is youth then 

loan decision is risky. If income is high then loan decision is safe. If age is middle aged 

and income is low then loan decision is risky [1]

1.1.1.1 PREPARING THE DATA FOR CLASSIFICATION AND PREDICTION

Before the data can be classified it is required that the data must be prepared for 

classification. The data can be prepared for classification with the help of following 

techniques [1].

Cfiapter 1 Introduction
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• DATA CLEANING
Data cleaning is required to prepare data for classification and prediction. The 

noise deviate the general behavior of data therefore it is required to be removed or at least 

must be reduced. The missing values will be replaced with most probable values. For 

example consider analyze the AIIEIectronics sales and customer data. Many tuples may 

have not recorded values for certain attributes such as customer income. Fill it by means 

of a constant label such as “unknown” or by average income of customers.

RELEVANCE ANALYSIS
Many attributes in the data may be redundant or irrelevant. These attributes slow 

down the data mining task. Therefore in classification it is required that if two attributes 

in data are redundant then one of it will be removed. If an attribute is irrelevant, that 

attribute will not be considered in classification process. For example consider the 

resulting classes the attribute birth-place and residence included. Birth-place is removed 

in the subsequent analysis.

DATA TRANSFORMATION AND REDUCTION
The value for a given attribute will be scaled to a small range. For example 

consider an attribute say income. The range of income may be from 10000 to 100000 per 

month. So by the process of normalization it will be scaled down from -1.0 to 1.0 or 0.0 

to 1.0.

1.1.2 CLUSTER ANALYSIS
Cluster analysis is different from classification because in cluster analysis classes 

are not known. Clustering also referred to as unsupervised partitioning because the 

classes are not known in advance. In cluster analysis data objects are grouped based on 

their similarities. Data objects in the same group are very similar as compared to data 

objects of other groups.

Cfiapterl Introduction
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1.1.2.1 CATEGORIZATION OF MAJOR CLUSTERING 

METHODS
There exist various algorithms for different clustering methods in the literature. 

Clustering methods are divided into the following broad categories [1]:

PARTITIONING METHODS
Consider a database o f n data objects. The partitioning method constructs K 

partitions of data such that the number of partitions will not exceed the number of data 

objects.

Initially the partitioning method constructs K partitions then the objects move 

from one partition to another by a technique called iterative relocation technique, in order 

to improve the quality of partitioning. Each partition is referred to as a cluster. Data 

objects in the same cluster are very similar or related as compared to the data objects of 

other clusters. The two most popular partitioning methods are k-means and k-medoids 

algorithms [I].

HIERARCHICAL METHODS
The hierarchical clustering creates a tree like structure of clusters. Hierarchical 

method may either be agglomerative (bottom-up) or divisive (top-down). Agglomerative 

approach merges the data objects until all the data objects are in one group or until the 

given conditions are satisfied. In divisive approach the data objects are split until there is 

one data object in each group [1],

Consider four data objects {w, x, y, z}. In the following diagram we will explain 

both agglomerative and divisive hierarchical clustering approaches on these four data 

objects.

- Cfiapterl Introduction
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Figure 1.1 Hierarchical Clustering Approaches.

The advantage of hierarchical methods is that it is less expensive but once a step 

is taken it cannot be roll backed. Therefore once erroneous decisions are taken it cannot 

be corrected.

• DENSITY-BASED METHODS
Density-based clustering methods are developed to discover clusters of arbitrary 

shapes. In density-based methods the dense region of data objects are separated by sparse 

region. The sparse region can be considered as noise therefore the density-based 

clustering can also be used to remove noise or for outlier analysis [1].

Typical examples of density-based clustering methods are DBSCAN and 

OPTICS.

GRID-BASED METHODS
In grid-based clustering methods the data objects are quantized into a finite 

number of cells in order to form a structure called grid structure. Then all clustering 

operations are performed on this structure. One of the important advantages of this 

approach is that its processing time is fast [1].
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Examples of this approach are STING, WaveCIuster and CLIQUE etc.

STING explores statistical information stored in the grid cells. WaveCIuster clusters 

objects using a wavelet transform method. CLIQUE represents a grid and density-based 

approach for clustering in high dimensional data space.

• MODEL-BASED METHODS
In this approach a model is hypothesized for each of the clusters. Then the given 

data is fit into the model which is more relevant.

EM, COMWEB, and SOM are algorithms for this approach.

1.1.3 OUTLIER ANALYSIS
Some data objects in the database deviate from general behavior of data. These 

data objects are called outliers. In data mining process these outliers are considered as 

noise or exceptions and can be thrown away, however in some applications these are very 

interesting patterns can be used for important purposes such as fraud detection etc. 

Consider students admission section of a university. If a candidate’s qualification is less 

than the required qualification for a particular program, it can be recorded as outlier.

There are four methods for outlier detection:

The statistical approach, the distance-based approach, the density-based local outlier 

approach, and the deviation based approach [1].

Here we will not go into the details of these approaches.

1.1.4 ASSOCIATION RULE MINING
Association means relationship. In data mining association means hidden 

relationship among data items in data sets. Thus association rules mining uncover data 

items that are statistically related in the underlying data.

Data items that occur more frequently together in a given data set are called 

frequent itemset. Associations among items in large data set (transactional or relational) 

are discovered by means of frequent itemset mining. Many industries collect and store

Cfiapter 1 Introduction
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heavy amount of data continuously therefore they are becoming interested to mine such 

type of patterns from their databases.

Market basket analysis is a typical and most interesting example of frequent 

itemset mining. Different customers visit to the supermarket and each has its own needs 

and desires as well as financial status. This process analyzes buying habits of customers 

by finding associations between different items that customer put in their shopping 

baskets. The discovery of such type of associations can provide help to retailers in 

developing marketing strategies by gaining insight that which items are purchased 

together frequently by customers. Consider association between pepsi and chips. If 

customers are buying pepsi, how likely are they to also buy chips (and what kind of 

chips) on the same trip to the supermarket?

{Pepsi} ----------------- ► {Chips}

This shows a strong association between pepsi and chips. If a customer visits to the 

supermarket to buy pepsi there are more chances that he will also buy chips on the same 

trip. Such information increases sales of retailers by helping them to do selective 

marketing and planning their shelf space [1].

Market basket analysis helps retailers in designing different store layouts. One 

strategy is that items which are frequently purchased together can be placed closed so that 

the sale of such items can be further increased. If customer who purchases pepsi tends to 

also buy chips at the same time, then placing pepsi display close to the chips display help 

in increasing the sale of both the items. Similarly consider association between milk and 

bread. If customer who purchases milk tends to also buy bread at the same time, then 

placing the milk display close to the bread display. Alternative strategy is that placing 

pepsi display opposite to the chips display or placing milk display opposite to the bread 

display of the store motivates the customers who purchase one item to pick up the second 

item along the way [1].

Association rule mining is a two step process given bellow.

chapter 1 Jntwduction
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1.1.4.1 FREQUENT ITEMSET GENERATION
When two or more items occurring more frequently in a given data are called 

frequent itemset. An itemset is fi-equent if it satisfies a minimum support threshold. 

Support of an itemset means that how many transactions in the database contain the 

itemset.

Support can be defined as:

“The percentage of transactions from a transaction database that the given rule 

satisfies” [1].

If we have two items A and B in an itemset then their support is given as;

Support (A=>B) = P (A C/ B)

1.1.4.2 ASSOCIATION RULE GENERATION
When the frequent itemset is generated, it is quite easy to generate association 

rule. Association rule can be generated by using confidence measure. A rule is strong 

association if it satisfies minimum support threshold and minimum confidence threshold.

Confidence can be defined as:

“The conditional probability P (Y|X), that is, the probability that a transaction containing 

X also contains Y” [1].

Consider two items A and B, the rule A=>B has confidence “c” and can be 

calculated as;

Confidence (A“>B) = P (B|A)

Once frequent itemset generated, it is straight forward to construct association 

rule from it. Therefore our in-depth concentration is on frequent itemset generation.

1.2 EXISTING TECHNIQUES
Many algorithms exist to find Frequent Itemset and Maximal frequent itemset. Each 

algorithm has its own pros and cons. Here we will discuss some of these techniques.

chapter 1 Introduction
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1.2.1 APRIORI ALGORITHM
Apriori algorithm is proposed by R. Agraw41 and R. Srikant in 1993 [4]. Apriori is one of 

the basic algorithms to find the frequent itemset in a simple way. Apriori is a breadth first 

search algorithm that is used to prune the itemsets which are not frequent. This algorithm 

scans the data base many times.

Apriori Algorithm suffers from the following shortcomings:

• It may need to generate a huge number of candidate itemsets which results in storage 

— —̂ w astage.

• Due to many database scans and candidate generation it results in low efficiency.

• It is computationally unfeasible.

• It is I/O Intensive.

1.2.2 MAX-MINER ALGORITHM
Max-Miner Algorithm was proposed by Bayadro (1998) also searches for MFIS 

[5]. Max-Miner uses Rymon’s set enumeration framework to order the search space as a 

tree [6]. Max-Miner algorithm employs a breadth first traversal of the search space. It 

reduces the database scanning by employing a look ahead pruning strategy based on 

superset frequency.

Max-Miner has the following drawbacks:

• As Max-Miner requires only one transaction at a time in memory, therefore it is I/O 

Intensive.

• Scans the Database more than two times.

• It uses clever lower bound techniques to determine whether an itemset is frequent 

without accessing the database and actually counting its support. Hence, in this case 

too the method is not able to exactly determine the support of all frequent itemsets

[7].

1.2.3 GENMAX ALGORITHM
GenMax is used to mine the Maximal Frequent Itemset [8]. It is backtrack search 

based algorithm. It is optimized by using new techniques.

Cfiapter 1 Introduction
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First, progressive focusing technique is used to eliminate the non-maximal 

Frequent Itemset.

The second technique is the use of difFset algorithm for fast frequency checking

[8]. The main idea of the difFset is to avoid the storing the entire transaction IDs of each 

element in the combine set. Instead it stores only the IDs of the itemset which is 

combined (i.e. //u{x}).

Although GenMax is optimized by using new techniques but it has also some 

drawbacks. It follows the bottom-up approach and hence generates too many Frequent 

Itemsets on the way to Maximal Frequent Itemset.

1.2.4 SB-MINER
SB-Miner is an approach to mine the frequent itemsets. This technique utilizes the 

set enumeration tree and inclusion exclusion principle to correctly discover the frequent 

item sets [9]. This technique works on apriori property and performs single scan of the 

data sets. It suffers from a few drawbacks given below.

1) Node size of the set enumeration tree is large because every node is storing tid’s 

lists.

2) Time to find FI’s is quite large because of operation performed on the long tid’s 

list is computationally intensive.

1.2.5 HBMFI
Hash based Maximal Frequent Itemsets was proposed by A.M.J Zubair Rahman 

and P. Balasubramanie in 2008 [10]. This algorithm uses vertical data format for storing 

the transactions in the database and uses hash data structure to represent this data format 

[10].
This algorithm is very efficient because:

• Pruning does not require after finding FI completely, but can be done while finding 

MFIs.

• At each level, after computation of FI, we are computing MFI also. So, the time taken 

to compute MFI is negligible [10].

chapter 1 Introduction
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Besides its advantages HBMFI is computationally intensive.

1.2.6 BOMO ALGORITHM
BOMO algorithm is a frequent pattem-growth (FP-growth) based approach and 

known as the currently best algorithm in mining N-most interesting itemsets category 

[11]. BOMO uses a compact frequent pattern-tree (FP-tree) to store compressed 

information about frequent itemsets. FP-growth is a depth first search based approach, 

and does not rely on candidate generation-and-test mechanism and achieves impressive 

results in frequent itemset mining problems.

Cfiapter 1 Introduction

1.2.7 N-MOSTMINER AND TOP-K-MINER ALGORITHM
fri this paper they present novel efficient algorithms (N-MostMiner and Top-K- 

Mlner) [12] using Bit-vector dataset representation approach. The major advantage of 

using Bit-vector dataset representation approach in our algorithms is that, it optimizes the 

itemset frequency counting cost. This paper also presents a novel bit-vector projection 

technique which we named as projected-bit-regions (PBR). The main advantage of using 

PBR in N-MostMiner and Top-K-Miner is that, it consumes a very small processing cost 

and memory space for projection.

1.3 PROBLEMS FACED BY FIM ALGORITHMS
All the frequent itemset mining algorithms share the following problems.

1.3.1 USER THRESHOLD SUPPORT VALUE

In order to find out the required frequent patterns users run the algorithm with 

different support threshold. Hence hit and trial methods are used to discover interesting 

frequent patterns. Incorrect settings may cause an algorithm to fail in finding the true 

patterns [13]. Perhaps more insidious problem is that we may find patterns that do not 

exist [14].
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1.3.2 INCREMENTAL IN NATURE

All frequent itemsets mining algorithms are incremental in nature. In order to 

produce frequent itemsets of larger size these algorithms use information from immediate 

previous computational step.

1.3.3 COMPUTATIONAL TIME

Non expert users required ample amount of time to find the intended patterns and 

results in too many patterns with the FIM algorithm, because users are not data mining 

experts or domain expert. Mining generally becomes inefficient or, often, simply 

unfeasible [15]. Expert users require little amount of computation time to find the 

interesting patterns as they are domain experts.

1.4 SCOPE OF THE PROJECT
Association rule mining is a very effective and useful research area. Association 

rule mining consists of the following two steps:

• Finding frequent itemsets.

• Association rules generation from frequent itemsets.

Once frequent itemset generated, it is straight forward to construct association rule from 

it. Later on the paradigm has been shifted from FIS to MFIS. Maximal Frequent Itemset 

generation is less computational intensive than FIS. Therefore our in-depth concentration 

is on maximal frequent itemset generation. All the MFIS generation techniques use 

support measure. In order to compute MFIS these algorithms need user provided support 

threshold as primary parameter among other parameters. Now if the user sets high 

support value lesser number o f MFIS is discovered. On the other hand if user provides 

low support threshold value large number of MFIS is computed. In case of lesser MFIS it 

is quite possible that user’s desired pattern is dropped because of very high support 

threshold value. To our knowledge no such technique exists so far which does not 

requires any threshold value from the data miner.

Cdayter 1 Introduction
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2 LITERATURE SURVEY

Frequent itemsets generation can be handy in consumer market basket analysis, 

network intrusion detection and analysis of web page access logs and in many other data 

mining areas. Apriori and all post Apriori solutions will eventuate in a large number of 

rules. But now the recent paradigm has shifted towards techniques which can produce 

fewer FI’s by having enough information encoded into them to produce association rules. 

These variants of FIS are called Maximal frequent itemsets (Maximal FIS) [16], [17]; 

maximum length frequent itemsets (Maximum LFIS) [18] and constraint based methods 

[19], [20], [21], [22], [23], [24], [25]. We will discuss the following techniques to find 

FIS in our literature survey.

2.1 PAPERS STUDIED AND THEIR LIIMITATIONS

We have studied many papers in our literature survey. In the following section we 

discuss only those which are more relevant to our research work and their limitations.

2.1.1 IVIINING ASSOCIATION RULES BETWEEN SETS OF ITEMS 

IN LARGE DATABASES

This research paper represents apriori algorithm proposed by R. Agrawal [4] in 

1993. Author represents that algorithm incorporate buffer management and pruning 

techniques. This algorithm finds frequent itemsets by using support and confidence 

measure. It scans the database many times and follows breadth first searching technique.

The data mining problem is decomposed into two sub problems. Combinations of 

items that are above minimum support threshold are called large itemsets and that are 

below minimum support threshold are called small itemsets.

If memory is low during a pass this algorithm puts some data on disk in order to 

utilize memory. The data on the disk will be considered in the next pass in order to avoid 

missing important data.

c o p te r  2 Literature Survey
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This algorithm follows iterative approach and candidate k itemsets is used to find 

candidate k+1 itemsets. To explain how apriori algorithm works consider transactional 

database:

• First of all scan the database to find candidate 1-itemset denoted by Cl. Then find 

support count for each item of the candidate itemset by calculating that how many 

times each item exists. Now compare the support count of each item of the candidate 

1-itemset (Cl) with minimum support threshold let minimum support threshold is 3. 

If the calculated support of an item is less than the minimum support threshold then 

the item will be pruned away else add the item to the list of frequent 1-itemset 

denoted by LI. In order to understand easily and systematically store the items in LI 

in ascending order.

• In order to find frequent 2-itemset, first find candidate 2-itemset denoted C2 by 

joining LI with itself in such a way that each item will be joined with each and 

every item that comes next it. Calculate the number of occurrences of each itemset 

and compare it with minimum support threshold. If calculated support is less than 

the minimum support threshold prune it else add to frequent 2-itemset denoted by 

L2.

CftapterZ Literature Survey

Similarly find C3 by joining L2 with itself in the same way as discussed above. For 

efficiency purposes and removing headache of long processing the algorithm use 

apriori property [1]:

“If any of the subset of an itemset is not frequent the itemset will be pruned away”.

now calculate support count for remaining items of candidate group, compare it 

with minimum support count, prune away items that have support less than 

minimum support threshold and add remaining items to frequent 3-itemset L3.

Repeat the process until candidate itemset results in empty itemset.

The above whole process of apriori algorithm is given in the table given below.
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Table 2.1 Apriori Mining Process

(a) Original Database (b) C l (Candidate 1-Itemset)

TID List of Item lDs

TlOO 11,12,15

T200 12,14

T300 12,13

T400 11,12,14

T500 11,13

T600 12,15

T700 11,13

T800 11,12,13,15

T900 11,12,13

TIOOO 11,12,15,16

Itemset Calculated Support

[11] 7

[12] 8

[13] 5

[14] 2

[15] 4

[16] 1

(c) LI (1-FIS) (d) C2 (Candidate 2-Itemset) (e) L2 (2-FIS)

Itemset Calculated Support Large 2-Itemsets

[11,12] 5 [11,12]

[11,13] 4 [11,13]

[11,15] 3 [11,15]

[12,13] 3 [12,13]

[12,15] 4 [12,15]

[13,15] 1
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(f) C3 (Candidate 3-Itemset) (g) L3 (3-FIS)

Itemset Calculated Support

[11,12,13] 2

[11,12,15] 3

Large 3-Item sets

SHORTCOMINGS OF APRIORI ALGORITHM
Apriori Algorithm suffers from the following shortcomings:

• It may need to generate a huge number of candidate itemsets which results in storage 

wastage.

• Due to many database scans and candidate generation it results in low efficiency.

• It is computationally unfeasible.

• It is I/O Intensive.

2.1.2 NEW ALGORITHMS FOR FAST DISCOVERY OF 

ASSOCIATION RULES
This research paper is presented by M. J, Zaki, S. Parthasarathy, M. Ogihara and 

W. Li [26] in 1997. The algorithms of this research paper use vertical database layout and 

scan the database only once. In order to mine maximal frequent itemset, the techniques

used in this research paper first approximate the maximal frequent itemsets. For rough

approximation two clustering approaches are used i, e, Equivalence Class Clustering and 

Maximal Hyper graph Clique Clustering. The latter approach is more precise than the 

previous one. Bottom-up and hybrid traversal approaches are used to discover true 

maximal frequent itemsets from these potential maximal frequent itemsets. The hybrid 

approach provides more accurate results than the bottom-up approach.

SHORTCOMINGS
The available algorithm is quite simple and provides an order of magnitude 

performance improvement over the previous techniques but it is quite expensive because
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of finding tid lists by means of intersection process. Also an extra amount of storage is 

required.

2.1.3 EFFICIENTLY MINING LONG PATTERNS FROM 

DATABASES
This research paper explains Max-Miner algorithm proposed by Roberto J. 

Bayardo Jr [5] in 1998. This algorithm is developed to overcome the short comings of 

Apriori like algorithms for the discovery of maximal frequent item sets. An item set is 

maximal frequent if it is frequent and has no frequent super set. For mining long patterns 

Max-Miner provides a minimum two order of performance improvement over Apriori 

algorithm. Max-Miner follows bottom-up traversal and using look ahead pruning 

strategy. Max-Miner can be implemented by using set enumeration tree and follows 

breadth first search.

Unlike Apriori, Max-Miner algorithm uses superset frequency pruning in addition 

to subset infrequency pruning. If any of the subset of an itemset is infrequent the item set 

will also be infrequent and can be pruned away as Apriori does. If a superset of an 

itemset is frequent the itemset will be discarded to reduce the search space because it will 

not be maximal. Max-Miner uses item reordering in order to increase the effectiveness of 

superset frequency pruning. Support lower bounding play an important role in increasing 

efficiency of superset frequency pruning.

SHORTCOMINGS OF MAX-MINER
Max-Miner has the following drawbacks:

• As Max-Miner requires only one transaction at a time in memory, therefore it is I/O 

Intensive.

• Scans the Database more than two times.

• It uses clever lower bound techniques to determine whether an itemset is frequent 

without accessing the database and actually counting its support. Hence, in this case 

too the method is not able to exactly determine the support of all frequent item sets

m-
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2.1.4 MEMORY ISSUES IN FREQUENT ITEMSET MINING
This research paper was proposed by Bart Goethals [27] in 2004. It represents 

Medic, an efficient algorithm for frequent itemsets mining with low memory 

requirements. Medic is proposed to remove the drawbacks of FP-growth and Eclat 

algorithm. Both FP-growth and Eclat require the entire database to be in main memory. 

Sometime there is not enough memory to store all the transactions of database therefore 

affect the efficiency and effectiveness of the algorithm. Like FP-growth and Eclat, Medic 

also uses depth first search. Medic sorts the items of the database in ascending order of 

support count. The items that are not satisfying minimum support threshold are deleted 

from the search space. Medic store the cover of only those items that occurring in current 

read transactions. The items that are not required long will be removed from memory.

SHORTCOMINGS
The techniques work well for sparse databases however not effective for dense 

databases.

2.1.5 MAFIA: A MAXIMAL FREQUENT ITEMSET ALGORITHM
MAFfA algorithm is developed by Doug Burdick, Manuel Calimlim, Jason 

Flannick, and Johannes Gehrke [28]. They first create algorithm with depth first traversal 

without pruning mechanism but there was no improvement over breadth first traversal in 

regard of search space, therefore they adopt various pruning strategies. In parent 

equivalence pruning (PEP) they compare the head and tail items. In FHUT they adopt 

superset pruning mechanism. As the head and tail union of a node is the largest itemset at 

that node, if it is frequent the subtree initiated at that node will be pruned away. An 

enhanced version of FHUT is HUTMFI, unlike FHUT there is no need to explore 

leftmost branch of subtree. HUTMFI is more advantageous than FHUT in regard of 

memory requirement because HUTMFI calculate lesser number of itemsets as compared 

to FHUT.

Cfiapter2 ~ Literature Survey
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The effectiveness of pruning mechanism can be increased by storing the items in 

increasing order of support count instead of lexicographic ordering. This may result in 

sufficient utilization of the storage at the left side of the tree.

MAFIA algorithm can also find frequent itemsets and frequent closed itemsets by 

slightly changing in pruning mechanism but we will not go in details because this 

algorithm is basically designed for maximal frequent itemsets.

MAFIA algorithm uses vertical bitmaps for database representation. If an item set 

is present in a transaction the bit value for that itemset will be set to one in that 

transaction. If the itemset is not present, the bit value is set to zero.

SHORTCOMINGS OF MAFIA ALGORITHM
One problem is that if there are more zeros in a transaction, useless operations 

will be performed.

For performance enhancement MAFIA uses compression techniques. The zero 

will be ignored in subsequent transactions.

2.1.6 GENMAX: AN EFFICIENT ALGORITHM FOR MINING 

MAXIMAL FREQUENT ITEMSES
GenMax algorithm is proposed by K. Gouda and Muhammad J. Zaki [8] in 2005. 

In this algorithm backtrack search technique is used to find maximal frequent itemsets. It 

follows depth first traversal and performs pruning at the time of mining exact maximal 

frequent itemset instead of performing pre-pruning and post pruning steps. If a superset 

of a frequent itemset is found to be frequent, the existing itemset will be deleted from the 

search space. For performance improvement the itemsets are reordered in increasing 

order of support count.

For maximality checking GenMax uses progressive focusing technique. In 

progressive focusing technique a list of local maximal frequent itemsets is generated 

which limit the search of maximal supersets to the list of local maximal frequent itemsets. 

This technique is very helpful for dense datasets.

So for different algorithms use either horizontal or vertical data format for 

frequency testing. Vertical data format has some advantages over horizontal data format.

CHapter2 ' Literature Survey
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Vertical format is simple and faster in computing the support of item sets. Instead vertical 

format is more versatile than horizontal format. However the intersection time of vertical 

data format is very large. Besides the intermediate results for finding frequent patterns is 

large to fit in memory. GenMax uses a new format called diffset to remove shortcomings 

of vertical data format. Diffset stores the differences of transaction ID’s instead of storing 

the entire Tidset.

Consider two TID’s A and B its difference is given as; 

d(AB) = t(A)-t(B) and 

Support of (AB) is given as;

6(AB) -  6(A) - ld(AB)|.

SHORTCOMINGS OF GENMAX
Although GenMax is optimized by using new techniques it has also some 

drawbacks. It follows the bottom-up approach and hence generates too many Frequent 

Itemsets on the way to Maximal Frequent Itemset.

2.1.7 SIMILARITY BASED MINING FOR FINDING FREQUENT 

ITEMSETS
This research paper is presented by Sikandar Hayat Khiyal, Saif Ur Rahman, 

Dawlat khan and Abdus Salam [9] in 2007. In this research paper they proposed an 

algorithm called SB-Miner algorithm. SB-Miner is an approach to mine the frequent 

itemsets. This technique utilizes the set enumeration tree and inclusion exclusion 

principle to correctly discover the frequent item sets [9]. This technique works on apriori 

property and performs single scan of the data sets. The itemsets in set enumeration tree is 

arranged in such a way that every child node is superset of its parent node. In this 

research paper they make use of vertical layout for clustering related data and mine 

frequent itemsets on the basis of similarity measure.

As the set enumeration tree nodes store level wise frequent itemsets, in level 2 

only those itemsets of level 1 can be linked whose similarity satisfies minimum similarity 

threshold. Similarly in level 3 only those itemsets of level 2 can be linked and will be

CfiapterZ Literature Survey
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frequent that satisfies minimum similarity threshold and so forth. Similarity can be 

calculated with the help of union and intersection operations.

DRAWBACKS OF SB MINER
SB-Miner algorithm suffers from a few drawbacks given below:

1) Node size of the set enumeration tree is large because every node is storing tid’s 

lists.

2) Time to find FI’s is quite large because of operation performed on the long tid’s 

list is computationally intensive.

2.1.8 AN EFFICIENT ALGORITHM FOR MINING MAXIMAL 

FREQUENT ITEM SETS
Hash based Maximal Frequent Itemsets was proposed by A.MJ. Md Zubair 

Rahman and P. Balasubramanie [10] in 2008. Their main objective is to mine maximal 

frequent itemsets efficiently. They use a special kind of data structure called Hash data 

structure to represent data in vertical format. Initially two hashes are maintained one for 

itemset and another for tidset. The support threshold is specified and now in the second 

level the permutation of only those itemsets will be considered and put in hash data 

structure for itemsets that satisfy minimum support threshold i.e. frequent. Now the 

intersection of tidset of each permutation is taken and only those permutations will be 

considered for next level that are frequent taking into consideration maximality checking 

and so forth. The time to find maximal frequent itemsets is inversely proportional to the 

support threshold.

At the end they compare their algorithm with MAFIA and experimental result showed 

that HBMFI is 2 to 3 times faster than MAFIA. The reason for efficiency of this 

algorithm is that:

• Pruning does not require after finding FI completely, but can be done while finding 

MFls.

• At each level, after computation of FI, computing MFI also. So, the time taken to 

compute MFI is negligible [10].

Cfiapter2 Literature Survey
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SHORTCOMINGS
Besides its advantages, the HBMFI is computationally intensive.

2.1.9 PADS: A SIMPLE YET EFFECTIVE PATTERN AWARE 

DYNAMIC SEARCH METHOD FOR FAST MAXIMAL 

FREQUENT PATTERN MINING
PADS is another efficient algorithm for mining maximal frequent patterns by 

Xinghou Zeng, Jian Pei, Ke Wang, Jinyan Li [29] in 2008. In this algorithm they modify 

depth first search by incorporating latest approach called pattern-aware dynamic search. 

Most of the search space is pruned away by having knowledge about prior known 

maximal frequent patterns. If a pattern is found to be maximal the remaining sub tree will 

be arranged in such a way that the patterns intended to be maximal will be scheduled to 

be find earlier and the subsets of already known maximal patterns will be arranged at the 

last to be pruned away.

2.1.10 MINING TOP-K FREQUENT PATTERNS WITHOUT 

MINUMUM SUPPORT THRESHOLD
This research paper is written by A. Salam, M. Sikandar Hayat Khayal [30] in 

2011. In this research paper they represent an efficient method for mining a little amount 

o f top maximal patterns. Most of the algorithms for mining frequent patterns use 

minimum support threshold as a primary parameter and scans the database many times 

which results in performance degradation. The technique used in this research paper is 

support free and scans the database only once. Also the algorithm used in this research 

paper uses top-down approach. In support based technique if minimum support value is 

incorrect may not produce required patterns and erroneous patterns may be reported 

therefore the author is motivated of using support free technique.

2.2 PROBLEM STATEMENT
All the MFIS generation technique use support measure. In order to compute 

MFIS these algorithms need users provided support threshold as primary parameter

chapter 2 Literature Survey
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among other parameters. Now if the user sets high support value lesser number of MFIS 

are discovered. In case of lesser MFIS it is quite possible that user’s desired patterns are 

dropped because of high support threshold value. To our knowledge no such technique 

exists so far which does not requires any threshold value from the data miner and which 

uses similarity measure to compute MFIS.

CHapterZ , Literature Survey
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3 PROPOSED SOLUTION AND ARCHITECTURE
In this chapter we will discuss the architectural design of the software to show 

how the proposed technique will work. The proposed technique will work in the 

following three phases.

3.1 INITIALIZATION PHASE
In this phase the data set is scanned only once. During this phase similarity of 

every item with other item of the data set is created. This similarity of itemsets along the 

corresponding items is stored in two dimensionally array.

Algorithm for initialization phase is shown in figure 3.1 below;

Algorithm for Module 1 

Input

D: database o f transactions

Output

F^: Frequent itemset o f size 2

1) S=Readfile_Makelist (D)

2) F^=find2FIS(S)

3) EXIT

Figure 3.1: 2FIS Generator

The algorithm takes the data set “D” as input parameter. The output of the 

algorithm is frequent itemset of size 2. Algorithm will work in three steps. Step I of the 

algorithm creates a linked list. The linked list has nodes linked by pointers. Each node 

has a tag field and an info field. The tag field contains the actual item which is to be 

compared with other items for similarity. The info field contains the transaction id’s list 

of those transactions in which the item in tag field is present. The pointer links the nodes
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of the linked list and points to the next node. A model linked list created by step of the 

algorithm is given in the following diagram.

1,2,3,4 * B 2,4

Figure 3.2: linked List Representation

The 2"*̂  step of the algorithm will generate frequent 2 itemset of the items of the 

linked list by finding similarity of the item sets and put it in 2 dimensional arrays.

The 3"̂^̂ step performs termination of the algorithm.

EXAMPLE 3.1:

Consider a data set of four items A, B, C and D with transaction ID’s I, 2, 3, 4.

Table 3.1 Dataset of four items for initialization phase

TID A B c D

1 1 0 1 1

2 1 1 1 1

3 1 0 0 1

4 1 1 1 I

A ={1,2 , 3, 4}, 

C = {1 ,2 ,4} ,

B = {2,4}, 

D -{ 1 ,2 ,3 ,4 }

AOB = {2.4}, AUB = {1,2, 3, 4}

Sim ab = lAOBj / jAUB| = 2/4 = 0.5

A n C = { l , 2, 4}, AUC = {1,2,3,4}
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Sim Ac= |AnC| / |AUC| = 3/4 = 0.75

AHD ={1,2 , 3,4}, AUD = {1,2, 3, 4}

Sim ad = lAfiD] / |AUDj = 4/4=1

B n C -{ 2 ,4 ) , BUG = {1,2, 4}

Sim BC = |BnC| / jBUCI = 2/3 = 0.67

B flD -{ 2 ,4 } , BUD = (1 ,2 , 3,4)

Sim b d  = iBflDI / |BUDi = 2/4 -  0.5

CnO = {1, 2,4}, CUD = {1, 2, 3, 4}

Sim CD = lCnD[ / |CUD| = 3/4 = 0.75

COMBINATION NO l^^ITEM 2^  ̂ITEM SIMILARITY

1 A B 0.5

2 A C 0.75

3 A D 1

4 B C 0.67

5 B D 0.5

6 C D 0.75

Figure 3.3: Two Dimensional Arrays
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3.2 2 FREQUENT ITEMSET SORTING USING QUICK SORT
This is second phase in proposed technique. In this phase every frequent-2-itemset 

(calculated in previous step) is sorted in descending order according to their similarity by 

means of quick sort.

The required algorithm for the second phase is given below;

Algorithm for second phase 

Input

A: Two dimensional arrays.

Output

As: sorted arrays.

1) Select top-most similarity.element as pivot. Define two variables m, n to 

scan the array use variable m as top pointer, and n as down pointer to 

scan the array

2) Scan array firom down-to-upward, by decreasing n, until a key greater 

than or equal to pivot is encountered

3) Scan array from top-to-downward, by increasing m, until key smaller 

than or equal to pivot is encountered

4) Swap the keys identified by m and n, swap 2”̂  column.item, swap 

column, item

5) Move pointers to next cells (increase m by 1, and decrease nby  1)

6) Repeat step§ 2 through stepU 5 until m<n

7) Partition array at m ^n

8) Repeat step# 1 through stepU7 until each partition results into single row 

Figure 3.4: Quick sort algorithm
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Consider 2 dimensional array of figure 3.3 of example 3.1. The sorting will be 

performed on the basis of similarity.

The top most key 0.5 is chosen as pivot. The variables “m” and “n” are used to 

scan the array. The top pointer m is positioned at cell 1 and pointer n is positioned at cell

6 of the array. Scanning is started from down to up. Since key 0.75 is larger than the 

pivot 0.5, the up scanning is stopped. The scanning from top to down is started. Since the 

key in cell 1 is equal to the pivot, the top scanning is stopped. The keys 0.5 and 0.75 in 

cell 1 and 6 respectively are swapped. Similarly the items of 2"  ̂and 3̂*̂ columns are also 

swapped. The top pointer is moved to next down cel! 2, and the down pointer is moved to 

next up cell 5. The down to up scanning is started. Since key 0,5 is equal to the pivot the 

down to top scanning is stopped. The top to down scanning is started. Since the key 0.75 

at ceil 2 is greater than pivot 0.5, the top pointer is moved to the next down cell 3. The 

key at cell 3 is 1 which is greater than pivot; therefore the top pointer is moved to next 

down cell 4. The key at cell 4 is 0.67 which is greater than pivot; therefore the top pointer

“m” is moved to next down cell 5. Now the pointers “m” and “n” point to the same cell,
it«

the partitioning procedure is terminated and results into the following two partitions.

1 C D 0.75

2 A C 0.75

3 A D 1

4 B C 0.67

5 B D 0.5

Figure 3.5: Tod oartition

6 A B 0.5

Figure 3.6: Down partition
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Now the down partition is a single row therefore the same procedure will be 

applied only on top partition recursively.

3.3 MAXIMAL FREQUENT ITEMSET GENERATION
In this phase maximal frequent item set is created from the already calculated 

frequent-2-itemsets. This module takes total number of items incurred in the dataset and 

combination size as input parameter to produce maximal frequent itemsets.

The algorithm for finding frequent itemsets is given below;

Algorithm for Module 2

Input

i:

It:

Totalitem=4

CSIZE=3

Output

All MFI’s o f  size having C size

1) UCombinatiom = NoofCombination(totalitem, CSIZE),

2) Combinations = New [^Combinations]

3) for(int k^O; k<ikombinations; k++)

3.1)for(int i-0; i<CSIZE-l; i++)

3.2) Combination[k].run+=FindPositionNumber(i, j)

Figure 3.7: All MFI’s of Combination Size

First step of the algorithm takes both input parameters and returns the number of 

combinations. Second step creates combinations. Third step creates required maximal 

frequent itemsets by finding similarity of the combinations.
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We will explain the working of the algorithm by considering dataset of example

3.1.

A = { 1 ,2 ,3 ,4 } , B -{ 2 ,4 } , .

C = {1 ,2 ,4} , D = { 1 ,2 ,3 ,4 }

SimAB = 0.5, Sim AC = 0.75, SimAD=l,

Sim B c  =  0.67, SimBo = 0.5, Sim c d =  0.75

As total number of items is 4 and combination size is 3 therefore number of 

combinations will be;

n!/(r!(n-r)!) = 4!/(3!(4-3)!) = 4 

The following combinations will be formed;

ABC, ABD, ACD, BCD 

The similarity of each combination is equivalent to the sum of similarities of all subsets 

of the combination that is;

Sim ABC ^ Sim ab + Sim ac + Sim bc ~ 0,5 + 0.75 + 0.67 = 1.92 

Sim a b d  ~ Sim a b  "I"’ Sim a d  Sim bd ~ 0.5 + 1 + 0,5 2

Sim a c d =  Sim ac + Sim ad+ Sim cd  = 0.75 + 1+ 0.75 = 2.5 

Sim BCD = Sim bc + Sim bd + Sim cd = 0.67 + 0.5 + 0,75= 1.92

The itemset having maximum similarity is the most maximal frequent itemset so 

on so far.
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4 IMPLEMENTATION
This section of research thesis covers the implementation details of the algorithm. 

Here we will discuss the data structure used and also the tools and techniques used in the 

proposed technique.

4.1 DATA STRUCTURE USED IN THE ALOGORITHM
Our algorithm uses direct approach instead of iterative approach. It finds the 

similarity between every two items of the linked list. Then the similarity of items will be 

calculated equivalent to the number of combination size without generating the 

intermediate results. That is if the combination size is 5, the similarity of every 5 items 

will be calculated directly from similarity of every two items contained the items in 5 

itemset without calculating similarity of 3 items, then 4 items.

4.2 ARTOOL
ARtool is a Java based application tool In our research work it is used to create 

synthetic database with .db extension. This database is then converted into ASCII format 

with .asc extension. Synthetic database can be created by opening the graphical user 

interface of ARtool, then clicking on the tools menu -> generate synthetic database, a 

new window will be opened. Relevant name will be given to the database with .db 

extension. The database will also have some characteristics i.e. number of items, number 

of transactions, average size of transactions, number of patterns and average size of 

patterns, correlation and corruption. Proper values will be assigned to each of these 

characteristics keeping in view importance and level of each one.

Ciiapter 4 Implementation
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Figure 4.1: User Interface of ARtool

4.3 C++ LANGUAGE
C++ is middle level object oriented programming language. Our proposed idea is 

implemented in C++. The motivation of using C++ programming model by most of the 

programmers is that they knov̂  ̂exactly what they vt̂ ant to do and how to use the language 

constructs to accomplish that goals [31]. As the data in the binary form can be easily 

understand and implemented in C++, therefore the database created in .db format by 

ARtool can first be converted into ASCII format then from ASCII to binary format.

4.4 DB TO ASCII CONVERSION
The dataset created by ARtool with .db extension can be converted into ASCII 

format by means of ARtool utility. For this conversion we will have to open command 

prompt. Then the following line of code is used for conversion.

C:\Program Files\Java\jdkl.6.0_07\bin>java dblasc dbjjlename ascJilename
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If we do not specify ASCII filename then the default name for new file in ASCII format 

will be the name of file in db format with only change in extension of .asc instead of .db.

4.5 ASCII TO BINARY CONVERSION
The dataset in the ASCII format will be converted into binary format. In binary 

format the transaction is represented in the form of O’s and I’s. 1 represents presence of 

item in the transaction whereas 0 represent absence of item in the transaction. In binary 

format the dataset will be stored with .txt extension. We have converted the dataset from 

ASCII to binary format by means of C++ programming language.

4.6 MAXIMAL FREQUENT ITEMSET GENERATION
The proposed algorithm takes the dataset in binary format. The similarity of every 

two items is created and stored in two dimensional arrays. The combination size is given 

as input parameter on the basis of which combinations are created. Then the similarity of 

every combination is calculated from already being calculated 2 frequent itemsets. The 

above whole idea is implemented by means of C++ code. The pseudo code is given in 

two modules. Module 1 creates similarity of every two items of the data set where as the 

module 2 finds the maximal frequent itemsets of size “k” from already calculated two 

items similarity. The pseudo code for module 1 is available at page no 24 figure 3.1 and 

for module 2 available at page no 29 figure 3.7.

Cfiapter4  ̂ Imyfementation
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CAapterS ^Ej^perimentaC^suCts and Comparison

5 EXPERIMENTAL RESULTS
For experimental results we will test proposed algorithm with different datasets. 

The same datasets will also be checked with some other algorithms in order to analyze 

the accuracy and correctness of our algorithm and to compare that how efficiently it 

generates results.

5.1 DATASETS GENERATED
For our experiments we will generate datasets by means of ARtool. We have 

generated three datasets given below in table 5.1;

Table 5.1 Synthetic Datasets for Experiments

DATASET T AT I P AP

T 1000_AT5 J7_P4_AP4.db 1000 5 7 4 4

T1500_AT7_110_P40_AP5.db 1500 7 10 40 5

T2000_AT 10J 13_P50_AP8.db 2000 10 13 50 8

First column of the table shows the name of the dataset used. The remaining 

columns represent properties of the concerned dataset i.e.

T -> Represents the number of transactions in the dataset.

AT -> Represents the average size of transactions.

I -> Represents the number of items incorporated in the dataset.

P -> Represents the number of patterns in the dataset.

AP -> Represents the average size of patterns in the dataset.

5.2 EXPERIMENTAL RESULTS OF PROPOSED ALGORITHM
The datasets of table 5,1 is executed by proposed algorithm in order to generate 

maximal frequent itemsets of “k” size given in appendix A.
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5.3 EXPERIMENTAL RESEULTS OF MAFIA
The datasets of table 5.1 is executed with MAFIA [28] for maximal frequent 

itemsets generation and the results given in appendix “B” were recorded. MAFIA can run 

at any support threshold value, in our experiment we have taken support threshold of 

“0.02” for MAFIA

It is clear that MAFIA provide the experimental results of proposed algorithm 

which is the evidence of the correctness of proposed algorithm.

5.4 PERFORMANCE IN VARIOUS SCENARIOS
Performance can be evaluated by analyzing that how long the proposed system 

will take to produce the required results. For performance evaluation, the proposed 

algorithm is run with different datasets by changing one of the parameters that is either 

changing the number of items and keeping number of transactions fixed or changing the 

number of transactions and keeping the number of items fixed.

5.4.1 DATASETS WITH VARIABLE NUMBER OF ITEMS
For checking the performance of proposed algorithm, we will keep the number of 

transactions fixed and will change the number of items for each dataset given in table 5.2. 

The datasets will be run at both the proposed algorithm (SIMMFI) and MAFIA. We have 

executed the MAFIA algorithm with support threshold value of “0.02”

CHapter S %y^erimenta( ̂ suCts and Comparison
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Table 5.2 Datasets with Constant Transactions and Variable number of Items

DATASET T AT I P AP TIME (MS)

SIMMFI MAFIA

T5000_AT5_I6_P30_AP4.db 5000 5 6 30 4 16 n o

T5000_AT6_I8_P30^AP4.db 5000 6 8 30 4 47 125

T5000_AT7_I10_P40„AP5.db 5000 7 10 40 5 110 328

T5000_AT10_I12_P40_AP6.db 5000 10 12 40 6 156 484

T5000_AT13_I15_P50_AP8.db 5000 13 15 50 8 297 703

Figure 5.1 shows the performance measure of the datasets of table 5.2. The graph 

shows that the execution time changes with increase in the number of items.

Performance Graph for Variable Items 

800

O MAFIA (EXISTING) 

BSIMMFI (PROPOSED)

6 8 10 12 15

Number of Items

Figure 5.1: Performance of the Algorithm with Variable number of Items
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5.4.2 DATASETS WITH VARIABLE TRANSACTIONS
Performance of the proposed algorithm can also be evaluated by changing the 

number of transactions in the datasets and keeping the number of items fixed given in 

table 5.3. The datasets have run with both the proposed algorithm (SIMMFI) and MAFIA. 

We have run MAFIA with support threshold value of “0.02”.

Table 5.3 Datasets with Variable Transactions and Constant number of Items

DATASET T AT I P AP TIME (MS)

SIMMFI MAFIA

T3000_AT9_I1 l_P40„AP5,db 3000 9 11 40 5 109 141

T4000_AT9_I1 l_P50_AP6.db 4000 9 11 50 6 109 141

T5000_AT9_Ii l_P50_AP6.db 5000 9 11 50 6 125 156

T6000_AT9_I1 l_P50_AP6.db 6000 9 11 50 6 125 141

T7000_AT9_I1 l_P50_AP6.db 7000 9 11 50 6 n o 172

Figure 5.2 represerits performance measure of the datasets of table 5.3. It may be 

noted that the execution time varies with increasing the number of transactions.
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Performance Graph for Variable Transactions
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Figure 5.2: Performance of the Algorithm with Variable number of Transactions
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6 CONCLUSIONS
We have proposed a novel technique that discovers MFIS of specific size very easily 

without any support threshold and without intermediate results than the other establishing 

techniques available.

6.1 ACHIEVEMENT
The main objective of our research work is to find Maximal Frequent Itemsets in 

efficient way. For the said purpose we select similarity measure. Our technique finds 

MFIS by top down approach. Some of the previous algorithms found other itemsets on 

the way to find MFIS which results in performance degradation and also consume a lot of 

memory. Our techniques find limited number of itemsets of size K according to the 

requirements. The already existing algorithms were required user specified support 

threshold as a parameter with other parameters. If the support value is high a very limited 

number of itemsets are generated so there is chance that some of the important itemsets 

may be dropped. Our technique does not require any user provided support threshold so 

the MFIs are generated most frequently as compared to other techniques. In the previous 

chapter we have compared our algorithm (SIMMFI) with MAFIA which shows that our 

algorithm is efficient in comparison to MAFIA on different synthetic data sets.

6.2 FUTURE WORK
We applied similarity measure to compute MFFs of size to transactional 

database. The transactional databases were synthetic in nature. In fiature we intend to 

apply this technique to mine textual data from textual databases because of the in built 

capability of the algorithm to mine the frequent words of specific length with required 

changes.

Cfiapter6 ConcCusions
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Table A.l Experimental Results of Proposed Algorithm

DATASET

TIOOO AT5 17 P4 AP4.db 1000

AT AP
MFI

SIZE

FOUND MFI’S

1 3 5 7 (6000) 

1 3 4 5 (5091) 

1 34 7(5091) 

1 45 7(5091) 

3 4 5  7(5091) 

1 3 5 6(4215) 

1 3 67(4215) 

1 567(4215)

3 56 7(4215) 

1 2 3 5 (3822) 

1 2 3 7(3822)

1 2 5 7 (3822)

2 3 5 7 (3822) 

1 3 4 6 (3785) 

1 4 5 6 (3785) 

1 4 6 7 (3785)

3 4 5 6 (3785) 

3467(3785)

4 5 6 7 (3785) 

1 2 3 4 (3335) 

1 24  5 (3335)

1 2 4 7 (3335)

2 3 4 5 (3335) 

2 3 4 7 (3335)

2 4 5 7 (3335) 

1 2 3 6(3035) 

1 2 5 6 (3035)
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1 2 6 7 (3035)

2 3 5 6 (3035) 

2 3 6 7 (3035) 

2 5 6 7 (3035)

1 2 4 6 (3027)

2 3 4 6 (3027) 

2 4 5 6 (3027) 

2 4 6 7 (3027)

T1500 AT7 110 P40 AP5.db 1500 10 40 2 3 4 5 6 7 8 9

(17685)

1 2  3 4 5 7 8 9 

(17083)

1 2  3 4 5 6 7 9 

(17057)

1 2  3 5 6 7 8 9 

(16233)

1 2  3 4 6 7 8 9 

(16047)

1 2  4 5 6 7 8 9 

(15489)

1 2 3 4 5 6 7 8 

(15438)

13  4 5 6 7 8 9 

(15437)

1 2  3 4 5 6 8 9 

(15306)

2 3 4 5 7 8 9 10 

(14911)

2 3 4 5 6 7 9  10 

(14826)
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1 2 3 4 5 7 9 10 

(14357)

2 3 5 6 7 8 9  10 

(14069)

2 3 4 6 7 8 9  10 

(13872)

1 2 3 5 6 7 9 10 

(13470)

1 2 3 5 7 8 9 10 

(13445)

1 2 3 4 7 8 9 10 

(13401)

2 4 5 6 7 8 9  10 

(13255)

1 2 3 4 6 7 9 10 

(13252)

2 3 4 5 6 7 8  10 

(13218)

3 4 5 6 7 8 9  10 

(13199)

2 3 4 5 6 8 9  10 

(13114)

1 2 4 5 6 7 9 10 

(12814)

1 3 4 5 6 7 9 10 

(12775)

1 2 4 5 7 8 9 10 

(12771)

1 2 3 4 5 7 8 10 

(12764)

1 3 4 5 7 8 9 10
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(12718)

1 2 3 4 5 6 7 10 

(12700)

1 2 3 4 5 8 9 10 

(12632)

1 2 3 6 7 8 9 10 

(12604)

1 2 3 4 5 6 9 10 

(12593)

1 2 5 6 7 8 9 10 

(12177)

1 2 3 5 6 7 8 10 

(12134)

1 3 5 6 7 8 9 10 

(12115)

I 2 3 5 6 8 9 10 

(12032)

1 2 3 4 6 7 8 10 

(12030)

1 2 4 6 7 8 9 10 

(11991)

1 3 4 6 7 8 9 10 

(11965)

I 2 3 4 6 8 9 10 

(11892)

1 4 5 6 7 8 9 10 

(11694)

1 2 4 5 6 7 8 10 

(11581)

1 3 4 5 6 7 8 10 

(11558)
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T2000 ATIO 113 P50 APS.db 2000 10 13 50 11

1 2 4 5 6 8 9 10 

(11502)

1 2 3 4 5 6 8 10 

(11466)

1 3 4 5 6 8 9 10 

(11456)

I 3 4 5 6 7 8 10

II 12 13 (35768) 

1 2  3 4 5 6 7 8

10 12 13 (35520) 

1 2 3 4 5 7 8 10

11 12 13 (34096)

1 2 4 5 6 7 8 10 

11 12 13 (34089)

2 3 4 5 6 7 8 10

11 12 13 (33905)

1 2  3 4 5 6 7 8 

10 11 13 (33897) 

1 2  3 4 5 6 7 8 

10 11 12(33560) 

1 3 4 5 6 7 8 9

10 12 13 (33514) 

1 2 3 4 5 6 7 10

11 12 13 (32703)

I 2 3 4 6 7 8 10

II 12 13 (32628)

I 2 3 5 6 7 8 10

II 12 13 (32618) 

1 2 3 4 5 6 7 8  

11 12 13 (32484) 

1 2 3 4 5 6 8 10
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11 12 13 (32442)

I 4 5 6 7 8 9 10

II 12 13 (32234)

I 3 4 5 7 8 9 10

II 12 13 (32200) 

13  4 5 6 7 8 9

10 11 13 (32089) 

3 4 5 6 7 8 9  10

11 12 13 (32039)

1 2 3 4 5 7 8 9

10 12 13 (31946)

1 2  4 5 6 7 8 9

10 12 13 (31902)

2 3 4 5 6 7 8 9

10 12 13 (31767) 

1 2 3 4 5 6 7 8 9

10 13 (31737)

1 3  4 5 6 7 8 9

10 11 12 (31593) 

1 2 3 4 5 6 7 8 9

10 12(31448)

1 3 4 5 6 7 9 10

11 12 13 (30752)

I 3 4 6 7 8 9 10

II 12 13 (30739)

I 3 5 6 7 8 9 10

II 12 13 (30735) 

2 3 4 5 7 8 9  10

11 12 13 (30688)

1 2  3 4 5 6 7 9

10 12 13 (30596)
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I 2 4 5 7 8 9 10

II 12 13 (30585)

1 3  4 5 6 7 8 9

11 12 13 (30567)

I 3 4 5 6 8 9 10

II 12 13 (30560)

1 2  3 4 6 7 8 9

10 12 13 (30534)

I 2 3 5 6 7 8 9

10 12 13 (30521)

1 2  3 4 5 7 8 9

10 11 13 (30479) 

2 4 5 6 7 8 9  10

II 12 13 (30444) 

2 3 4 5 6 7 8 9

10 11 13 (30440)

1 2  4 5 6 7 8 9

10 11 13 (30412) 

1 2 3 4 5 6 7 8 9

12 13 (30372)

1 2  3 4 5 6 8 9

10 12 13 (30343)

1 2  3 4 5 7 8 9

10 11 12 (30094)

1 2  4 5 6 7 8 9

10 11 12(30037) 

1 2 3 4 5 6 7 8 9

10 11 (29957) 

2 3 4 5 6 7 8 9

10 11 12(29917)

1 2 3 4 5 7 9 10
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11 12 13 (29344)

I 2 3 4 7 8 9 10

II 12 13 (29236)

I 2 4 6 7 8 9 10

II 12 13 (29230)

I 2 4 5 6 7 9 10

II 12 13 (29228)

I 2 5 6 7 8 9 10

II 12 13 (29224)

I 2 3 5 7 8 9 10

II 12 13 (29220)

2 3 4 5 6 7 9  10

II 12 13 (29177)

I 2 3 4 5 7 8 9

II 12 13 (29142)

I 2 3 4 5 8 9 10

II 12 13(29140)

1 2  3 4 5 6 7 9

10 11 13 (29094) 

2 3 4 6 7 8 9  10

11 12 13 (29083) 

2 3 5 6 7 8 9  10

11 12 13 (29083)

I 2 4 5 6 7 8 9

II 12 13 (29069)

1 2 3 4 6 7 8 9

10 11 13 (29014)

1 2 4 5 6 8 9 10

11 12 13 (29006)

1 2  3 5 6 7 8 9

10 11 13(29005)
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2 3 4 5 6 7 8 9

11 12 13 (29001) 

2 3 4 5 6 8 9  10

11 12 13 (28986) 

1 2 3 4 5 6 7 8 9

11 13 (28907)

1 2 3 4 5 6 8 9 

10 11 13 (28889)

1 2  3 4 5 6 7 9

10 11 12(28858)

1 2  3 4 6 7 8 9

10 11 12(28678)

I 2 3 5 6 7 8 9

10 11 12(28669)

1 2  3 4 5 6 8 9

10 11 12(28602) 

1 2 3 4 5 6 7 8 9

II 12 (28587)

1 2 3 6 7 8 9 10

11 12 13 (28072)

I 2 3 4 6 7 9 10

II 12 13 (28015)

I 2 3 5 6 7 9 10

II 12 13 (28010)

1 2  3 4 5 6 7 9

11 12 13 (27922)

I 2 3 4 5 6 9 10

II 12 13 (27921)

I 2 3 5 6 7 8 9

II 12 13 (27881)

1 2  3 4 6 7 8 9
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11 12 13 (27875)

I 2 3 4 6 8 9 10

II 12 13 (27796)

I 2 3 5 6 8 9 10

II 12 13 (27792)

1 2  3 4 5 6 8 9

11 12 13 (27693)
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Table B.l Experimental R^ults of MAFIA with Support Threshold “0.02”

DATASET AT AP
MFI

SIZE

FOUND MFI’S

TIOOO AT5 17 P4 AP4.db 1000 7 5 3  1 (1000)

4 5 3 1 (698)

4 7 3 1 (698)

4 7 5 1 (698)

4 7 5 3 (698)

6 5 3 1 (406)

6 7 3 1 (406)

6 7 5 1 (406)

6 7 5 3 (406)

2 5 3 1 (275)

2 7 3 1 (275)

2 7 5 1 (275)

2 7 5 3 (275)

6 4 3 1 (406)

6 4 5 1 (406)

6 4 7 1 (406)

6 4 5 3 (406)

6 4 7 3 (406)

6 4 7 5 (406)

2 43  1 (275)

2 4 5 1 (275)

2 4 7 1 (275)

2 4 5 3 (275)

2 4 7 3 (275)

2 4 7 5 (275)

2 6 3 1 (275)

2 6 5 1 (275)
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Jippendix.^

2 67 1 (275) 

2 6 5 3 (275) 

2 6 7 3 (275) 

2 6 7 5 (275)

T1500 AT7 110 P40 AP5.db 1500 10 40 6 8 4 5 9 7 3 2

(380)

1 8  4 5 9 7 3 2 

(318)

1 6  4 5 9 7 3 2 

(332)

1 6  8 5 9 7 3 2

(300)

1 6  8 4 9 7 3 2

(301)

1 6  8 4 5 9 7 2 

(299)

1 6  8 4 5 7 3 2 

(301)

1 6  8 4 5 9 7 3

(299)

1 6  8 4 5 9 3 2

(300)

10 8 4 5 9 7 3 2  

(77)

10 6 4 5 9 7 3 2  

(72)

10 1 4 5 9 7 3 2

(70)

10 6 8 5 9 7 3 2

(71)

10 6 8 4 9 7 3 2
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(71)

10 1 6 5 9 7 3 2 

(69)

10 1 8 5 9 7 3 2 

(69)

10 1 8 4 9 7 3 2 

(69)

10 6 8 4 5 9 7 2  

(71)

10 1 6 4 9 7 3 2 

(69)

10 6 8 4 5 7 3 2  

(71)

10 6 8 4 5 9 7 3

(71)

10 6 8 4 5 9 3 2

(72)

10 1 6 4 5 9 7 2 

(69)

10 1 6 4 5 9 7 3 

(69)

10 1 8 4 5 9 7 2 

(69)

10 1 8 4 5 7 3 2 

(69)

10 1 8 4 5 9 7 3

(69)

10 1 6 4 5 7 3 2

(69)

10 1 8 4 5 9 3 2

(70)
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10 1 6 8 9 7 3 2 

(68)
10 1 6 4 5 9 3 2

(70)

10 1 6 8 5 9 7 2 

(68)

10 1 6 8 5 7 3 2 

(68)
10 1 6 8 5 9 7 3 

(68)

10 1 6 8 5 9 3 2 

(69)

10 1 6 8 4 7 3 2 

(68)

10 1 6 8 4 9 7 2 

(68)
10 1 6 8 4 9 7 3 

(68)
10 1 6 8 4 9 3 2

(69)

10 1 6 8 4 5 9 7

(70)

10 1 6 8 4 5 7 2 

(68)
10 1 6 8 4 5 7 3 

(68)
10 1 6 8 4 5 9 2 

(69)

10 1 6 8 4 5 3 2 

(69)

10 1 6 8 4 5 9 3
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T2000 AT 10 113 P50 AP8.db 2000 10 13 50 11
(69)

II 3 6 12 1 13 8 

7 5 4 10 (336)

2 3 6 12 1 13 8 7 

5 4 10(367)

2 11 3 12 1 13 8 

7 5 4  10(275)

2 11 6 12 1 13 8 

75 4 10(273)

2 11 3 6 12 13 8 

7 5 4 10 (269)

2 11 3 6 1 13 8 7 

5 4 10(273)

2 11 3 6  12 1 87  

5 4 10(312)

9 3 6 12 1 13 8 7 

5 4 10(162)

2 11 3 6 12 1 13

7 5 4 10 (267)

2 11 3 6 12 1 13

8 74  10(267)

2 11 3 6 12 1 13 

8 75 10(267)

2 11 3 6 12 1 13 

8 7 5 4 (267)

2 11 3 6 12 1 13

8 54  10(267)

9 11 6 12 1 13 8 

7 5 4 10 (92)

9 11 3 12 1 13 8 

7 5 4  10(88)
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9 11 3 6 I 13 8 7 

5 4 10 (92)

9 II 3 6 12 13 8

7 54 10(85)

9 2  3 12 1 13 8 7 

5 4 10(126)

9 2  6 12 1 13 8 7 

5 4 10(129)

9 2  3 6 12 13 8 7 

54  10(141)

9 2 3 6 1 13 8 7 

5 4 10(128)

9 11 3 6 12 1 8 7 

5 4 10(91)

9 2 3 6 12 1 8 7 

5 4 10(135)

9 113 6 12 1 13 

7 5 4  10(85)

9 11 3 6 12 1 13

8 74  10(85)

9 11 3 6 12 1 13

8 75 10(85)

9 2 11 3 12 13 8 

75 4 10(96)

9 2 3 6 12 1 13 7 

5 4 10(125)

9 2 11 12 1 13 8 

7 5 4  10(66)

9 11 3 6 12 1 13

8 7 5 4 (85)

9 11 3 6 12 1 13
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85 4 10(85)

9 2  3 6 12 1 13 8

7 4 10(125)

9 2  3 6 12 1 13 8

7 5 10 (125)

9 2 11 3 1 13 8 7 

5 4 10(66)

9 2 11 6 12 13 8

7 54 10(63)

9 2  11 3 6 13 8 7 

5 4 10(66)

9 2  11 6 1 13 8 7 

5 4 10 (65)

9 2  3 6 12 1 13 8

7 54(125)

9 2 3 6 12 1 13 8 

5 4 10(125)

9 2 11 3 12 1 87 

5 4 10(69)

92  11 6 12 1 8 7 

5 4 10(69)

9 2 11 3 6 1 8 7 

5 4 10 (70)

9 2 11 3 6 12 8 7

5 4 10 (68)

9 2  11 3 12 1 13 

7 5 4  10(63)

9 2 11 3 12 1 13

8 74 10(63)

9 2 11 6 12 1 13

8 74 10(63)
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9 2 11 6 12 1 13

7 5 4 10(63)

9 2 11 6 12 1 13

8 75 10(63)

9 2 11 3 12 1 13

8 75 10(63)

9 2 11 3 6 12 13

7 5 4  10(62)

9 2 11 3 12 1 13

8 7 5 4 (63)

9 2 11 3 12 1 13

8 54 10(63)

9 2  11 3 6 I 13 7

5 4 10 (64)

9 2 11 3 6 12 13

8 74 10(62)

9 2 11 3 6 12 13

8 7 5 10 (62)

9 2 11 6 12 1 13

8 7 5 4 (63)

9 2 11 3 6 1 13 8

7 4 10(64)

9 2 11 6 12 1 13 

85 4 10(63)

9 2  11 3 6 I 138

7 5 10 (64)

9 2 11 3 6 12 13

8 7 5 4 (62)

9 2 1! 3 6 12 13 

8 5 4  10(62)

9 2  11 3 6 I 13 8
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7 5 4 (64)

9 2 11 3 6 1 13 8

5 4 10 (64)

9 2 11 3 6 12 1 7

5 4 10(68)

9 2 11 3 6 12 1 8

7 4 10(68)

9 2 11 3 6 12 1 8

7 5 10(68)

9 2 11 3 6 12 1 8

5 4 10(68)

9 2  11 3 6 12 1 8

7 5 4 (68)

9 2 11 3 6 12 1

13 8 7 10(62)

9 2 11 3 6 12 1

13 7 4 10(62)

9 2 11 3 6 12 1

13 7 5 10(62)

9 2 11 3 6 12 1

13 7 5 4(62)

9 2 11 3 6 12 1

13 5 4 10(62)

9 2 11 3 6 12 1

13 8 7 5 (62)

9 2 11 3 6 12 1

13 8 7 4 (62)

9 2 11 3 6 12 1

13 8 4 10(62)

9 2 11 3 6 12 I

13 8 5 10(62)
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9 2 11 3 6 12 1 

13 8 5 4(62)
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