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Preface 

Convective heat transfer through cavities of various geometrical shapes is an 

important research area because of its significant practical and engineering 

applications. Most of time, energy flow with respect to natural or mixed convection is 

considered in engineering system for example, solar ponds, dynamics of lakes, 

cooling of electronic devices, heating and cooling buildings, thermal hydraulics of 

nuclear reactors, growth of crystals, chemical reactors, production of float glass, heat 

exchangers and food processing etc. In most of cases, several of such practical flow 

conditions of energy transport and fluid flow take place in an enclosure in which flow 

is produced by buoyant force, shear force or both together. Shape of the cavities plays 

a dynamic role in transfer of heat in order to obtain higher energy transport rates. This 

dissertation comprises of the investigations regarding natural and mixed convective 

energy transport in triangular, rectangular, square and entrapped triangular enclosures 

containing different type of fluids in vacuum or flows through saturated porous 

medium. Furthermore, present study also contains the studies on heat transfer through 

pure fluid, micropolar fluid, nanofluid and ferrofluid enclosed in the cavities. 

Investigations are performed against different shapes of cavities subjected to the 

various thermal boundary conditions. In this dissertation, Galerkin weighted residual 

technique of finite element analysis is applied to solve governing nonlinear coupled 

partial differential equations (e.g. conservation of mass, linear momentum, angular 

momentum and conservation of energy) for the pure fluid or fluids saturated in porous 

media against different velocities and thermal boundary conditions.  

The first chapter mainly includes basic definitions related to heat transfer phenomena, 

non-dimensional quantities and some basic laws considered in this study. This chapter 



also includes a brief literature review on cavity flows. The detail of numerical scheme 

used in this dissertation is also provided in this chapter. 

Chapter two contains numerical simulations of free convection heat transfer through 

fluid saturated in the isosceles triangular porous medium influenced by magnetic 

force. The inclined walls of an isosceles triangular cavity are supposed to be heated 

uniformly/non-uniformly. Effects of involved flow parameters are shown through 

graphs of streamline contours, isotherm contours, heat transfer rate and average heat 

transfer rate. The investigation presented in this chapter is published in Zeitschrift 

für naturforschung A (ZNA) 70 (11) (2015) 919 - 928. 

Computational study of natural convection energy transport through liquid gallium 

saturated in porous medium enclosed in square cavity influenced by inclined magnetic 

force has been performed in chapter three. Bottom wall of the cavity is considered to 

be heated uniformly, top wall is taken insulated, left side of enclosure is heated 

linearly and right side is subject to linear heating or taken cold. Governing nonlinear 

coupled partial differential equations are solved by using Galerkin weighted residual 

method and obtained results are presented through graphs. The study presented in this 

chapter has been published in Thermophysics and Aeromechanics 25 (3) (2018). 

Chapter four comprises numerical simulations of mixed convection through 

micropolar fluid contained in square cavity influenced by constant magnetic field. 

Bottom wall of the cavity is subject to non-uniform heating profile while remaining 

walls are maintained at low temperature. Numerical results are computed 

incorporating Galerkin method of finite element technique against different values of 

involved parameters in terms of micropolar parameter, Grashof, Reynolds and 

Hartmann numbers. The investigation considered in this chapter is published in 

Journal of Molecular Liquids 249 (2018) 831 - 842. 



Numerical simulations of free convective heat transfer affected by external magnetic 

field through ferrofluid contained in a square cavity when a heated square blockage 

with different aspect ratios is placed at the centre of enclosure have been discussed in 

chapter five. Results are shown against various ranges of physical flow parameters 

such as Hartmann, Prandtl and Rayleigh numbers. This chapter is published in 

International Journal of Thermal Sciences 125 (2018) 419–427. 

Chapter six includes computational results for mixed convective energy flow in 

cobalt-based ferrofluid enclosed in a two-sided lid-driven square container provided 

heat from left vertical moving boundary under MHD effects influenced by a source of 

heat generation/absorption when a square adiabatic block of different aspect ratios 

located in a center of a square container. The obtained numerical results against flow 

parameters such as nano-scale ferromagnetic particles, heat generation/absorption 

coefficient, Hartmann, Reynolds and Richardson numbers are shown through graphs 

of streamlines, isotherms, local and average heat transfer rates. The findings of this 

chapter are accepted for publication in The European Physical Journal Plus (2018). 

Numerical computations for free convective heat transfer through nanofluid saturated 

porous medium in entrapped triangular cavities have been discussed in chapter seven. 

Inclined walls of cavities are taken cold while horizontal walls are assumed heated 

uniformly. Obtained numerical results are shown in the form of flow patterns, 

isotherms, temperature gradient and average temperature gradient for wide range of 

physical parameters including solid volume fraction, porosity parameter, Darcy, 

Prandtl and Rayleigh numbers. The outcomes of this chapter are submitted in 

Advances in Mechanical Engineering for possible publication. 

Chapter eight conveys the mixed convection heat transfer within entrapped triangular 

enclosures saturated with a micropolar. The horizontal upper and lower walls of the 



enclosures are moving with uniform velocity and these are subjected to uniform heat 

however inclined walls are kept as cold. The pertinent flow parameters under 

discussion are solid volume fraction, Hartmann number, Richardson number, 

Reynolds number, microrotation coefficient and heat source/sink coefficient. 

Obtained solutions are illustrated through graphs of isotherms, local and average heat 

transfer rates. The contents of this chapter have been accepted for publication in 

Canadian Journal of Physics (2018). 
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Nomenclature 

  Height of the heated/adiabatic block,   

   Aspect ratio     
 

 
 ,   

  Micropolar parameter 

   Magnetic induction,        

   Specific heat, 
 

    
 

   Darcy number 

  Gravitational acceleration,      

   Grashof Number 

  Cavity height,   

   Hartmann number 

  Micro-inertia density 

  Thermal conductivity 

  Permeability of porous medium 

   Microrotation coefficient  

  Cavity length 

  Microrotation,   

   Nusselt number 

  Modified pressure
 

  Non-dimensional pressure 

   Prandtl Number 

   Heat generation/absorption  

  Non-dimensional heat generation/absorption  

   Rayleigh number 

   Reynolds Number 

  Temperature 

   Temperature at cold wall 

   Temperature at cold wall 

      Dimensional velocity components  

      Non-dmensional velocity components  

        Velocities of moving walls 
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  Velocity field 

      Dimensional Cartesian coordinates 

      Non-dimensional Cartesian coordinates 

Greek Symbols  

  Thermal diffusivity 

  Coefficient of thermal expansion
 

  Penalty parameter 

   Spin-gradient viscosity 

   Temperature difference 

  Porosity parameter 

  Non-dimensional temperature 

   Vortex viscosity 

  Dynamic viscosity 

  Kinematic viscosity 

  Local density
 

   Characteristic density 

  Electrical conductivity 

  Solid volume fraction 

   Base functions 

  Non-dimensional stream function 

  Internal Domain 

  

Subscripts  

  Base fluid 

   Ferrofluid 

   Nanofluid 

  Solid particles  
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Chapter 1 

Preliminaries 

This chapter contains some qualitative concepts of convective heat transfer, Non-

dimensional numbers, fundamental laws, mathematical models and numerical study 

related to the research presented in this dissertation. The comprehensive literature 

survey from the very beginning of the heat transfer in enclosures/cavities has also 

been included for better understanding of the readers. 

1.1 Convective Heat Transfer 

Generally convective heat transfer, indicated as simply convection in which energy is 

transmitted from one place to another because of the movement of fluid particles. 

During the process of heat transfer in liquid and gases, convection is found dominant. 

In most cases it is referred as a distinct mode of heat transfer. Instead of this 

combination of convection and conduction is known as convective transfer of heat.  

The heat transfer rate     can be measure with the help of given formula: 

     (           )  (1.1) 

here          represents the surface temperature,    be the ambient temperature, A be 

the surface area and   is convection coefficient. The convection coefficient is a 

measure of how effectively a fluid transport energy away and towards the surface. It 

depends on the factors such as velocity, viscosity and density of a flowing fluid. Heat 

transfer coefficient usually has greater values for the fluids having higher velocity 

and/or higher density. 

Here, we can distinguish between three types of convection 

(i) Natural convection 

(ii) Forced convection 

(iii) Mixed convection 

1.1.1 Natural Convection 

Transfer of heat through natural convection is a heat transfer among the surface and 

fluid flowing over it and fluid movement is caused by the buoyance force that arises 

because of changes in density due to temperature variations. In natural convection, 

fluid expands when temperature increases and density decreases. Since hot fluids are 

less dense or more buoyant than cold fluid, therefore when a hot surface is in contact 
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with surrounding fluid, its molecules disperse and distributes within the domain, 

which then arises because of buoyancy force. Then hot fluid molecules are exchanged 

by cold fluid molecules. Similarly, cold substances will draw energy away from the 

flowing fluid over the surface, which then collapse because of augmentation in fluid 

density. The molecules of cold fluid are then exchanged by the molecules of the hot 

fluid, originating convective flows. Familiar examples related to natural convection 

are hot body and circulations of fluid in a pot subject to the heated from below and 

flow of air because of fire. 

1.1.2 Forced Convection 

In forced convection flows, motion of fluid is caused by other than buoyant forces or 

by means of some external forces such that fan or pump. Thermal expansion of fluid 

may also be an example of forced convection. The term forced convective heat 

transfer is only applicable to flows in which the influence of buoyant forces is 

unimportant. Generally forced convective heat transfer is more effective as compared 

to natural convective heat transfer because of the faster velocity of a flowing fluid. 

Most common example related to forced convection is water pump placed in an 

automobile engine. 

1.1.3 Mixed Convection 

The buoyance force arises due to change in temperature which originates the flow in 

natural convective heat transfer, it also exist when there is a forced convective heat 

transfer. During forced flows, the effects of buoyancy forces are usually negligible. In 

many cases, buoyancy forces have a significant influence on heat transfer and flow 

rates. In such cases, transfer of heat around the body is a mixture of natural and forced 

convective heat transfer flows and this phenomenon is called combined or mixed 

convective heat transfer flow. 

Convective heat transfer is involved in many engineering applications e.g. cooling 

and heating of buildings, cooling and heating of electronic components in computer, 

cooking, thermal control of reentering spacecraft, generation and condensation in a 

thermal power plant and cooling and  heating of the cutting tool during a matching 

operation. 
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1.2 Basic Equations 

1.2.1 Law of Conservation of Mass 

The mass conservation law yields the so-called continuity equation. The continuity 

equation states that mass cannot be created or destroyed. Continuity equation may be 

obtained by using the law of conservation of mass and expressed mathematically as: 

  

  
           

(1.2) 

For steady and incompressible flows equation (1.2) becomes 

         (1.3) 

1.2.2 Law of Conservation of Momentum 

Each particle of fluid obeys Newton’s second law which is at rest or in steady state or 

accelerated motion. This law states that the quantity of net external forces applied on 

a set of particles must be equal to the time rate of change of the momentum of a set of 

particles. Newton’s second law of motion acting on fluid particles may be defined 

mathematically as: 

 
  

  
        

(1.4) 

where   represents the Cauchy stress tensor which may be written as: 

(

         
         
         

)  

 

(1.5) 

here    ,     and     denotes normal stresses along     and   axis directions 

respectively, while all remaining elements in symbol   with different subscripts given 

in Eq. (1.13) represents shear stresses. 

For micropolar fluid in the absence of the body forces, momentum equation along 

with law of angular momentum becomes  

  
  

  
                              

(1.6) 

where   and   are micro-rotation and velocity vectors,   is gyration parameter of the 

fluid,   and    are vortex viscosity and spin gradient viscosity respectively. 

1.2.3 Law of Conservation of Energy 

The energy conservation law, which is also known as energy equation may be 

described mathematically as: 
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(1.7) 

where   represents density of fluid,    be the specific heat,   be the temperature of 

fluid and    be the heat generation/absorption coefficient.  

1.2.4 Maxwell’s Equations 

Expression of Maxwell’s equations represents law like other well-known laws for 

example gravitational law. A magnetic field is generated due to the production of 

electric current and if this current changes with respect to time it will cause the 

generation of electric field. Mathematically we may express Maxwell’s equations as: 

             

     
  

  
          

 

(1.8) 

These Maxwell’s equations are valid only in the case of displacement current is 

ignored. 

1.2.5 Ohm’s Law 

            (1.9) 

In above Equation   represents the electric current density,    be the electric 

conductivity,   be the electric field in vector form,   be the velocity vector of the 

moving charges and   be the magnetic field vector.  

1.3 Non-Dimensional Quantities 

The following numbers are the common non-dimensional numbers which are used in 

fluid mechanics as well as in this dissertation. 

1.3.1 Reynolds Number (  ) 

Reynolds number may be expressed as a relationship between inertial and viscous 

forces thus making Reynolds number useful for predicting the nature of the flow 

(Laminar, Turbulent or transition) thus making some approximations valid by 

knowing nature of the flow. Mathematically, it can be expressed as: 

    
              

             
 

  

 
  

(1.10) 

where   represents the speed of moving surface,   be its length and   is kinematics 

viscosity of the fluid. 
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1.3.2 Prandtl Number (  ) 

Ludwig Prandtl a German physicist, introduced Prandtl number as a dimensionless 

parameter which also represents the ratio of viscous diffusivity to thermal diffusivity. 

In mathematics, it may be defined as: 

   
                   

                   
 

 

 
 

   

 
  

(1.11) 

where    denotes the specific heat,   be the thermal diffusivity,   be the thermal 

conductivity and   be the dynamic viscosity.  

1.3.3 Grashof number (  ) 

The ratio of buoyant forces to the viscous forces acting on fluid particles is known as 

Grashof number, named by the German engineer Franz Grashof. Mostly it occurs 

during the study which involves natural or free convection and is similar to the 

Reynolds number (  ). Mathematically, Grashof number denoted by 

   
               

              
 

      

  
  

(1.12) 

where   represents the gravitational acceleration,   be a length of the cavity,   be 

coefficient of thermal expansion,    be temperature difference and   be the kinematic 

viscosity  

1.3.4 Rayleigh Number (  ) 

In fluid dynamics Rayleigh number is represented as non-dimensional parameter and 

it is also associated with buoyancy driven flow. The magnitude of the Rayleigh 

number is a good indicator of either natural or free convective boundary layer is 

turbulent or laminar. Mathematically, it represents the product of Prandtl number (  ) 

and Grashof number (  ) may be expressed as: 

        
        

                              
 

      

  

 

 
  

(1.13) 

1.3.5 Richardson Number 

Lewis Fry Richardson first introduced Richardson number as a non-dimensional 

parameter and it also associated with buoyance forces and inertial forces. It represents 

the ratio between the buoyant forces to the inertial forces. If the Richardson number is 

very small nearly equal to zero then buoyancy force becomes unimportant in the flow. 

On the other hand dominance of buoyance force occurs if it is much greater than 

unity. If it is equal to one then the flow is expected to be buoyance driven flow. 

Mathematically it can be written in the form: 

https://en.wikipedia.org/wiki/Thermal_diffusivity
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(1.14) 

1.3.6 Nusselt Number (Nu) 

German mathematician Nusselt, introduced Nusselt number as a non-dimensional 

parameter which is also expressed as a ratio of convection mode to conduction mode 

under same conditions. Furthermore, it is used to investigate heat transfer rate 

numerically at boundaries between the surface and flowing fluid. Nusselt number is 

close to conduction and convection of same magnitude and it also described as 

laminar flow. Mathematically, it is defined as follows: 

   
                        

                        
 

  

 
  

(1.15) 

here   represents heat transfer coefficient,   be cavity length and   be thermal 

conductivity of the flowing fluid. 

In differential form it can be expressed as: 

   
  

  
   

(1.16) 

where   represents the non-dimensional temperature.  

The average Nusselt number may be measured by performing integration on equation 

(1.8) over the range of interest, which can be expressed mathematically as: 

  ̅̅ ̅  
 

 
∫         

 

 
  (1.17) 

1.4 Methodology 

The fluid flows proposed in this study will be considered via two dimensional Navier-

Stokes equations which are represented by the set of nonlinear partial differential 

equations. The nonlinearity occurs due to convective part in Navier-Stokes equations. 

This is due to the reason why Navier-Stokes equations are difficult and are even 

impossible to solve analytically.  There are several circumstances in which fluid flows 

may be associated with Navier-Stokes equations such as the fluid flowing inside or 

around a pipe, flow in a channel, blood flow, flow inside a cavity, airflow around a 

wing and many more. Recently, there are several numerical schemes which are in use 

by various investigators to simplify these equations numerically e.g. finite difference 

scheme, Keller box method, spectral method, finite volume technique, Lattice 

Boltzmann simulation and finite element method. All these approaches are in wide 

use to obtain numerical results of linear or nonlinear flow problems. It has been 

noticed that the finite element technique is established as a precious tool for solving 

https://en.wikipedia.org/wiki/Characteristic_length
https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Thermal_conductivity
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Navier-Stokes flow problems particularly where complex geometrical domains or 

thermal conditions on boundaries are involved in comparison with other numerical 

and analytical methods through which computing accurate solution is difficult or 

impossible. To show this numerical methodology is more consistent, we can 

summarize the advantages and disadvantages of these methods in few words as 

follows: 

Finite difference technique is very easy to implement and in programming for the 

domain which may be divided in rectangles of equal dimensions. However, it has 

major drawbacks because it is difficult for the curved domain, secondly it has difficult 

convergence analysis and stability and finally, it is very difficult in mesh adaptation, 

which is essential in future, investigation. The finite volume scheme depends on the 

physical conservation laws of the system to be studied. It is problematic on the 

unstructured meshed and its convergence analysis and stability are difficult as for 

finite difference method. Opposite to this, finite element method is high in accuracy 

and provides easy treatment for the complex boundary conditions with complex 

geometries.  

1.5 Finite Element Method (FEM) 

FEM is a powerful numerical tool to analyze the nonlinear or linear differential 

equations. It mainly assists the finding of the numerical results of the boundary value 

problems for nonlinear or linear differential equations. In this method, a large domain 

is subdivided into collection of smaller, simpler domain using mesh levels called 

finite elements. Basically this method is an easy presentation of whole domain (Reddy 

(1993)). 

1.5.1 Galerkin Weighted Residual Method 

Explaining the observation numerically, the Galerkin weighted residual method is 

used in finite element scheme. Final calculations are easily originated by combining 

the local system into global system with set of elements. Moreover, Galerkin method 

is also compatible for linear and non-linear coupled partial differential equations. For 

convergence, both Newton Iteration method and Jacobi method are applicable through 

finite element coding (Atalla and Sgard (2015)). 

 Define the strong formulation of governing equations. 

 Multiply both sides of the governing equations by weighted function also 

called test function   with given test space   where         
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 Use integration by parts method to distribute the higher order of differentiation 

among the test function   and unknown function  . 

 Evaluate the boundary integral values via induction of weighted function to 

fulfill the essential boundary conditions and also unknown functions are used 

to fulfill natural boundary conditions called as variational formulation. 

 Generate mesh which divides the entire domain into non-overlapping elements 

depending upon the dimensions used for present problem. 

 Approximate the infinite dimensional trial space  ,   and test space   by 

finite dimensional spaces       and     respectively where    (finite 

dimensional space)   (solution space). 

 Choose basis functions            of     so that every weighted function 

        can be written as    ∑     
 
        

 Find         such that  

       
                  ∑     

 

   

     

                                         

Substituting    ∑      
 
     in above equation gives a linear system, that is  

 (∑     

 

   

   )   (  )                           

 ∑    

 

   

                                   

where    are the solution values at the points. Separate into linear      and 

bilinear forms       . 

 (      ) is transformed which assembles the algebraic equations by varying 

i and j in row and column wise. 

1.5.2 Penalty Method 

The penalty model is very similar to Lagrange multiplier method that allows us to 

reformulate the constrained problem into unconstrained problem. In this method, we 

use continuity equation to obtain pressure distribution (Reddy and Gartling (2010)) by 

introducing penalty parameter   as follows: 

 (
  

  
 

  

  
)      

(1.18) 
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For large value of   i.e.    , the continuity equation is satisfied automatically. 

Penalty function allows us to eliminate pressure terms from momentum equations by 

incorporating this function into the momentum equations.  

1.6 Literature Survey 

Natural convection is an important heat transfer phenomena. Based on geometry and 

flow structure, natural convection may be categorized as internal or external. While in 

an internal flows, moving fluid is covered by the solid boundaries. The flowing fluid 

inside the duct or a pipe is a common example of internal flow systems. Opposite to 

this in the case of external flows solid objects are surrounded by the flowing fluid. 

Flows over the sphere, cylinder and flat plate are example of external flow systems. 

However, thermal flow fields and essential hydrodynamic coupling complicates 

natural convective flows. Mostly internal flow arrangements are complex as compare 

to external flow arrangements. The arrangements of external flow may be modeled 

with the help of classical boundary layer concept by using the assumption that solid 

boundaries do not affect the region outside of boundary layer (Bejan (2013)). On the 

other hand in case of internal convective flows, the collaborations between core and 

boundary layer create a considerable complication in the problem.  

The internal convective flow arrangements depending upon the thermal boundary 

conditions can be categorized into two classes (a) enclosures heating through bottom 

wall in which gradient of temperature is in the same direction of gravitational force 

(b) enclosures heating through side walls which means that gradient of temperature is 

perpendicular to the direction of gravitational force (Bejan (2013)). Rayleigh-Benard 

convective flow within the two infinite parallel horizontal plates is related to class (a) 

and natural convective flow within the differentially heated enclosures is related to 

class (b). Furthermore, various thermal conditions may be incorporated with the 

permutation of differential and Rayleigh-Benard heated from different parts of walls 

and many more. Different sorts of heating configurations within the internal 

convective flow involved in many engineering applications e.g. heat exchanger 

(Haese (2002)), solar purification systems (Dayem (2006)), lubrication systems 

(Payvar (1991)), electronic equipment of cooling (Chiang (1991)), solar energy 

collectors (Joudi (2004)), melting and solid fraction process (Kalaiselvam (2008) and 

Wang (2010)), electric ovens (Mistry (2006)) and many others.  
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A natural convective flow in a square, rectangular, triangular or any regular or 

irregular shapes of enclosure has been investigated experimentally, analytically and 

numerically in the literature. These investigations are mostly based upon the influence 

of thermal boundary conditions, medium in which energy is transferred and aspect 

ratios of heated medium on natural convective flow. These type of investigations are 

studied by (Hoogendoorm (1986)), (Ostrach (1972) and (1988)) and (Fusegi and 

Hyun (1994)). (Ayden et al. (1999)) has been reported the influence of aspect ratios 

on heat and fluid flows insides a rectangular shape of an enclosure subject to the 

heated side walls and cooled ceiling with the help of stream function vorticity 

formulation. Later, free convective flow inside a rectangular enclosure subject to the 

non-uniform temperature profile on ceiling top wall and an insulated condition 

applied on side and bottom walls has been inspected by (Sarris et al. (2002)). They 

observed that the augmentation in thermal penetration depth and fluid circulation 

intensity with increase in aspect ratios. (Basak et al. (2006)) reported the natural 

convective heat transfer flow affected by thermal boundary conditions inside a square 

enclosure with the help of penalty finite element analysis. They investigated 

augmentation in average Nusselt number against uniform heating case as compared to 

non-uniform heating. Natural convective flow affected by the distributed within the 

square cavity via heatline approach has been studied by (Kaluri and Basak (2010)). 

Their analysis revealed that the thermal mixing and heat distribution in an enclosure is 

highly augmented in the case of disseminated heating as compared to isothermally 

heated from lower side. 

A lot of research works on free convective transfer of heat in cavities through 

complex geometries besides regular shapes such as rectangular/square had been stated 

within literature because of their uses in several engineering problems (Philip (1982), 

Lee (1984) and Hyun and Choi (1990)). Mathematical modeling of the combination 

of thermal fields and hydrodynamic of buoyancy in complicated geometries are quit 

challenging. As a result, researchers conducted significant studies on natural 

convective heat transfer inside the non-rectangular cavities through wavy side walls, 

inclined, curved and triangular for last two decades. Some of previous research on 

free convective heat transfer within different non-rectangular cavities is noted below. 

First, (Philip (1982)) obtained exact solutions against low Rayleigh number within the 

natural convective heat transfer with different geometries of different shapes e.g. 

triangular, elliptic and rectangular cavities. He studied, flow field affected by the 
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orientation and aspect ratios of a cavity and was reported that the convective flows are 

not depending upon the orientation of a cavity at small Rayleigh number. (Lee (1984)) 

analyzed numerical and experimental studies related to convection energy transfer and 

fluid motion inside a differentially heated non-rectangular cavity. He presented in his 

analysis that flow and thermal characteristic are affected by the inclination, aspect 

ratios of a cavity and Rayleigh number. One of the interesting results in his 

investigation was that overall heat transfer rate manages maximum and minimum 

values at the inclination angles of 180
o
 and 270

o
 respectively. Transient free 

convection heat transfer inside a parallelogram shape of cavity for large Rayleigh 

number with the help of finite difference scheme has been studied by (Hyun and Choi 

(1990)). Their study revealed that the probability of employing the parallelogram 

shape of cavity as a thermal diode for controlling the angle of inclination of an 

enclosure. (Iyian et al. (1980)) presented natural convection transfer of heat inside a 

trapezoidal cavity having similar cylindrical upper and lower boundaries maintained 

at different temperature profiles and plane side walls considered as adiabatic. Natural 

convective flow contained in isosceles trapezoidal enclosures has been studied by 

(Karyakin (1989)). (Verol et al. (2009)) explored free convective flow contained in 

trapezoidal cavities in which inclined walls kept as cold temperature. A detail review 

related to natural convective flow inside triangular cavities is studied by (Kamiyo et 

al. (2010)). The main purpose of their study based on complete variety of buoyancy 

flow regimes within triangular shaped cavities. Furthermore, the influences of 

different thermal boundary conditions, Rayleigh number and pitch inclination on a 

heat and fluid flows were also reported comprehensively. 

Moreover, laminar free convective heat transfer within right angled triangular 

enclosure full with air subject to the heated vertical side, inclined side as cold and 

insulated horizontal side has been carried out by the (Ridouane et al. (2005)). They 

employed finite volume technique and investigated that the heat and fluid flow 

affected by apex angle 5
o
-63

o
 for different Rayleigh number 10

3
-10

6
. Laminar free 

convective transfer of heat in an isosceles triangular enclosure subject to the cold 

horizontal side with heated inclined sides has been investigated by (Kent (2009)). 

Later, (Kent et al. (2007)) executed numerical analysis to investigate phenomena of 

free convective transfer of heat in air contained in right triangular cavity. 

Furthermore, (Sahar et al. (2007)) presented tilted triangular cavity filled with air 

subject to the discrete bottom heating. (Basak et al. (2007)) reported natural 
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convective flow inside the right triangular cavity subject to thermal boundary 

conditions (a) linear or uniform heating vertical and cold inclined walls (b) linear or 

uniform heating inclined and isothermally cold vertical walls with the help of penalty 

finite element scheme. Later, (Basak et al. (2007)) extended their work to investigate 

the free convective flow within isosceles triangular enclosure affected by the two 

dissimilar circumstances of thermal boundary conditions (i) isothermally cold bottom 

wall with inclined walls are heated uniformly and (ii) isothermally cold bottom wall 

with inclined walls are heated non-uniformly. (Koca et al. (2007)) investigated free 

convective flow in air filled triangular enclosure affected by the Prandtl number by 

emplying finite difference scheme. Further, (Verol et al. (2006)) numerically explored 

free convective flow within a triangular cavity with the presence of heater on vertical 

wall where remaining segment of this wall is supposed to be insulated. (Basak and co-

workers (2009), (2010), (2010) and (2017)) also studied free convective flow 

phenomenon with the visualization of heat flow within triangular cavity via heatline 

method. 

A number of research works studied the large collection of applications related to 

convective flows inside the porous cavities, which include grain storage and dying 

(Togrul (2003)), thermal insulation (Kodah (1999)), thermal energy storage systems 

(Dhifaoui (2007)) and many more. Such studies on natural convective flows inside 

rectangular or square cavities full of porous media may be observed in the recent 

work (Trevisan (1986), Lage (1993), Song (1994), Bin Kim (2001) and Hossain 

(2002)). Natural convection through vertical slot packed with the porous media has 

been reported numerically and analytically by (Trevisan and Bejan (1986). They 

analyzed the correlation of average heat and mass transfer for buoyancy effects 

governed by both concentration and temperature variation within porous media at Le 

=1. Afterwards, (Lage and Bejan (1993)) has been investigated that natural convective 

flow inside a porous enclosure affected by pulsating heat input. They reported 

numerical experiment for Rayleigh number varying within 10
3
-10

9
, Prandtl number 

0.01-7 and dimensionless frequency range 0-0.3. Natural convective flow inside a 

rectangular cavity partially saturated with anisotropic porous media is investigated 

experimentally and theoretically by (Song and Viskanta (1994)). They noticed that 

energy and fluid flow affected by anisotropic flow characteristics of a porous media. 

(Kim et al. (2001)) analyzed free convective flow inside a porous square cavity by 

considering Brinkman-extended Darcy simulation. They investigated that in 
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conductive dominant system, the porous section acts as a solid block of energy 

generation. The result shows that there exists a convection regime of asymptotic 

nature in which the flow is approximately free from the conductivity and permeability 

of porous media. Unsteady laminar free convective transfer heat in a flowing fluid 

soaked in a porous rectangular cavity subject to the heated lower side, non-

isothermally left side and right and ceiling sides kept as cold temperature has been 

studied by (Hossain and Wilson (2002)). The results obtained during their study 

represent the Nusselt number at the walls and volumetric flow rate are decreases with 

augmentation in porosity. Two dimensional free convective flows inside porous right 

angled triangular enclosure subject to fluctuating left wall are carried out by the 

(Bharadwaj et al. (2013), (2015) and (2015)) . Convective heat transfer of flow within 

two entrapped cavities is also visualized by (Basak et al. (2010)). A number of 

qualitative research investigations contained free convective transfer of heat in porous 

triangular enclosures ((Varol et al. (2007), (2008), (2009) and (2011)), (Basak et al. 

(2008), (2010), (2011) and (2013)), (Baytas (1999)) and (Moukalled et al. (2010))). 

The buoyance forces that rises due to the temperature differences and which cause the 

fluid flow in natural convective flows. In forced convective flows effects of these 

buoyancy forces usually supposed to be negligible. Mixed or combined convection 

takes place when buoyancy forces do have some significance on heat transfer and 

consequently on the flow fields. Most of the time flow and transfer of heat with 

respect to combined convective are considered in engineering system e.g., solar 

ponds, dynamics of lakes, cooling of electronic devices, heating and cooling 

buildings, thermal hydraulics of nuclear reactors, growth of crystals, chemical 

reactors, production of float glass, heat exchangers and food processing etc. The 

simplest structure, several of such practical flow conditions is energy transport and 

fluid flow in an enclosure in which flow is produced with the help of a combination of 

buoyant force and shear force. 

These problems are studied earlier by several researchers for various flow problems 

with subject to the thermal boundary conditions e.g. one sided, double sided lid-

driven enclosures from bottom, upper, lower or side walls, oscillation of walls, non-

isothermally, partially or fully heated walls. (Ghia et al. (1982)) studied the problem 

related to lid driven cavity in the absence of thermal effects for sake of validation of 

CFD’s code with benchmark computations. Natural convection for small Prandtl 

number fluids with specific essential frequency of 16.1 contains in square enclosure 
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has been investigated numerically by (Mohammad and Viskanta (1991)). They 

showed numerical simulations for Grashof (Gr = 10
7
) and low Prandtl (Pr = 0.005) 

numbers and also Hopf bifurcation is predicted in their work. In their another 

numerical study (1995), they investigated 3-D simulation of heat and fluid flow in a 

stably stratified fluid contains in a shallow lid driven enclosure and obtained results 

related to moving lid on the flow configuration against the different important 

parameters of the governing flow. Flow visualization and measurements of heat flux 

conducted inside an adiabatic lid driven enclosure of fixed rectangular cross sectional 

area with the variation of cavity depth subject to the heated bottom wall is carried out 

by (Prasad and Koeseff (1996)). (Hsu et al. (1997)) studied the numerical simulations 

of mixed convective heat transfer in a partially divided enclosure under the influence 

of finite size heat source in it. They found numerical results against typical parameter 

values and alternative structures resulting by placement of heating device in different 

positions, opening of the outflows and baffle. In another study (Hsu (2000)), they 

analyzed the effects of combined convective heat transfer on the thermal phenomena 

within a rectangular lid driven cavity. (Aydm (1999)) examined the effects generated 

by lid driven wall on the aiding and opposing flows and (Oztop and Dagtekin (2004)) 

extended his work to double lid driven enclosure. A numerical simulation of unsteady, 

laminar and combined convective heat and fluid flow inside a square enclosure under 

the influence of energy generation or absorption with MHD impact is investigated by 

(Chamkha (2002)) by using finite volume method. A numerical simulations of 

combined convection heat and fluid flow inside a U-shaped cavity with the help of 

finite element technique has been studied by (Manca et al. (2003)), in their 

investigation they considered three basic modes of heating. Different kinds of energy 

related applications (Dalal (2003), and Sigey (2004)) have consumed the flow driven 

by buoyancy force contained in an enclosed cavity. Several investigators have 

examined the dynamics of heat and fluid flow inside rectangular or square enclosures, 

which are stated widely in literature. Various investigations are found regarding 

irregular shape of the sides of a cavity (Yapici (2015)), cavity structures (Gau et al 

(2004), Cheng et al. (2014) and Waheed (2009)), transport media (Tiwari et al. (2007) 

and Ramakrishna et al. (2012)) and imposed boundary condition of various 

combinations (Ismael et al. (2014, Sivakumar et al. (2010), Barletta et al. (2009), 

Wahba et al. (2009), Mahapatra et al. (2006) and Ji et al. (2007)). A complete 

literature review on the lid-driven cavity has been studied by (Shankar and Deshpande 



20 

 

(2000)). Furthermore, it has been observed that intricacy in fluid and heat flow 

characteristics rises once the enclosure is driven by from one side (Ramakrishna et al. 

(2012) and Barletta et al. (2009)) to double (Oztop et al. (2004), Guo et al. (2004), 

Tiwari et al. (2007) and Ismael et al. (2014)) and to more sides (Wahba et al. (2009)). 

The uniform magnetic force applied externally is broadly used, for instance to control 

molten flow in crystal growth of semiconductors and in many other scientific 

applications like water treatment device, corrosion inhibition treatment, 

manufacturing processes of materials, magnetic cooling, magnetic refrigerator and 

microelectronic heat transfer devices. The heat flow through conducting liquid metals 

under the influence of a magnetohydrodynamics (MHD) has grabbed the attention of 

many researchers because of its various applications to different scientific phenomena 

including crystal growth processes.  In particular gallium is considered to be a good 

choice for magnetohydrodynamic (MHD) studies due to the suitable physical 

properties of gallium including low melting point (gallium is a metal that appears in 

liquid state at room temperature 29.8
o 

C) close to ambient temperature, low viscosity, 

high surface tension depending upon temperature and high thermal conductivity. In 

general, the analysis of free convection through metals is of practical interest for the 

crystal growing community as instabilities in molten state may be frozen in solid 

product. Only a few simple problems could be solved analytically while most of the 

problems of practical interest require numerical solutions when additional difficulty is 

introduced under dealing with opaque material like liquid gallium.      

(Braunsfurth et al. (1997)) has discussed heat transfer through natural convection in 

liquid gallium with one end hot and another cold and gave comparison of numerical 

with experimental results. They observed a great agreement in results for low Grashof 

number while results diverge systematically for large Grashof number. (Ben-David et 

al. (2014)) analyzed melting of gallium inside a closed enclosure, when heat is 

provided one wall. They used COMSOL multi physics software to carryout numerical 

simulations and validated his results against experimental results. They found that 3D 

computational and experimental results are quite similar indicating profound effects 

of boundaries. (Yamanaka et al. (1998)) examined free convective heat transfer in the 

layer of liquid gallium placed between horizontal flat copper plates heated from lower 

plate and above plate is taken cold with water flowing between plates. 

(Sathiyamoorthy and Chamkha (2010)) investigated electrically conducting free 

convection in liquid metal filled linearly heated cavity of square shape. They 
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considered uniform heating along bottom and top walls of enclosure is considered 

adiabatic where side walls were heated linearly while, inclined magnetic field is 

applied with angles     and   
 

 
. (Mohammad and Viskanta (1994)) worked on 

experimental and numerical investigation of lid driven mixed convective heat flow 

inside a rectangular enclosure full of liquid gallium. In their investigation, they 

considered hot lower wall and hot upper wall while upper boundary is considered in 

motion with constant velocity. They observed significant effects of moving lid on 

flow and thermal structure.  

      In addition to its other uses, gallium is used in semiconductor industry also, this 

metal is of interest for possessing many properties which make it different from other 

metals, for instance, it is found in liquid form at room temperature (melting point of 

gallium is 29.78 
0
C) and retains its liquid form for the large temperature range 

(boiling point of gallium is 2403 
0
C). Therefore it may be used for high temperature 

thermometers, high temperature lubricants and pressure gauges. Furthermore contrary 

to most of other metals, gallium expands upon freezing and hence can’t be stored in 

rigid container, gallium is known to be paramagnetic and it is good conductor of heat 

and electricity.  

Micropolar fluids are fluids having microstructure characteristic in it. Physically 

micropolar fluids are combination of unsystematically oriented rigid particles 

suspended in some viscous medium in which deformation of fluid particle is generally 

not considered. The micropolar fluid simulation proposed by (Eringen (1966)), which 

contracts with a type of fluid and shows specific microscopic results from the local 

structure and microscopic movement of the fluid elements. Such fluids strengthen 

stress moments as well as body moments and are affected by the spin inertia. The 

applications of micropolar fluids include lubrication theory, blood flow, modelling of 

pharmaceutical drug carrier, haematological devices, float glass production, heat 

exchanger plants, automotive cooling and many more applications of engineering and 

industrial processes. 

Heat transfer through natural and forced convection within micropolar fluids 

contained in containers of different geometries have been subject to extensive 

investigation for past few decades because of its several applications in industry and 

engineering, e.g. reactor designs, room ventilation, crystal growth, heat exchange 

devices and various other systems of fluid transportation. Microstructure effects are 
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generally not taken into account in classical Navier Stokes model. Applying shear 

stress on particles, they may contract, expand, change their shapes or may rotate about 

their own axis. These fluids have application in animal blood, liquid colloidal 

solutions, crystals, suspensions and polymer fluids. 

Using boundary element method (Zadravec et al. (2009)) conveyed numerical 

simulations against natural convective flow within a square container carrying 

micropolar fluid and shown results against various values of Rayleigh number and 

microrotation. (Wang and Hsu (1993)) studied natural convection in buoyancy driven 

flow of micropolar fluid inside a tilted enclosure of rectangular shape when heated 

and cooled from side walls considering insulated top and bottom wall. They presented 

numerical results for various Rayleigh number and aspect ratios of enclosure. (Hsu et 

al. (1997)) numerically studied energy transmission in micropolar fluid in a container 

of rectangular shape inclined at some angle when source of heat is present. Numerical 

solutions for convection energy flow within micropolar fluid in rectangular container 

when lower boundary is heated and vertical walls are taken cold are presented by 

(Saleem et al. (2011)). (Gibanov et al. (2016)) chose wavy enclosure with heated 

bottom wall to analysed heat flow through natural convection in micropolar fluid. 

They found that microrotations increases and velocity attenuates with augmentation of 

vortex viscosity parameter. (Hsu and Hong (2006)) numerically studied the heat and 

fluid flow patterns through micropolar fluid filled in open cavity using cubic spline 

collocation method and obtained results for different characteristic parameters of 

microfluid and other flow parameters. (Hsu et al. (1995)) has been reported numerical 

simulations for thermal convective flow within a lid-driven container containing 

micropolar fluid. They obtained results against different values of involved 

parameters like Reynolds number, Grashof number, spin gradient viscosity, vortex 

viscosity etc. and gave a comparison with the results of Newtonian fluid. 

Computational results of free convection through micropolar fluid in a rectangular 

enclosure are also presented by (Hsu (1996)). (Aydin and Pop (2007)) conveyed 

numerical results for convective energy flow in micropolar fluid flowing through a 

square enclosure by providing heat to vertical walls where horizontal walls are 

insulated. They computed results using finite difference scheme against different 

Prandtl and Rayleigh numbers and shown that energy flow is low in micropolar fluids 

comparing to Newtonian fluids. (Bourantas and Loukopoulos (2014)) extended the 

idea of (Wang and Hsu (1993)) by considering micropolar nanofluid in an inclined 
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rectangular cavity and analysed heat transfer under magnetic effects. (Aydin and Pop 

(2005)) presented natural convection in a cavity affected by discrete heater when 

heater is centrally placed of its walls. They computed results for various physical 

parameters including heater length, material parameter of micropolar fluid, Prandtl 

and Rayleigh number. (Alloui and Vesseur (2010)) reported on analytic and numerical 

results for natural convective energy flow in micropolar fluid contained within 

shallow enclosure for numerous values of pertinent flow parameters. (Hsu and Wang 

(2000)) presented numerical results for laminar combined convective flow contained 

in a square enclosure carrying micropolar fluid influenced by localised heat source. 

(Ahmed et al. (2016)) numerically analysed the physical properties of mixed 

convective heat transfer from discrete heat source inside an enclosure with oscillating 

wall containing water based micropolar nanofluid. They considered couple of 

adjacent walls of cavity moving with the same speed while source of heat is present at 

centre of static lower boundary and different types of nanoparticles are used to 

evaluate results for four different moving lid orientation cases using finite volume 

method. (Periyadurani et al. (2016)) examined the influence of inclined Lorentz force 

on free convective energy flow through micropolar fluid in square container 

influenced by a thin plate provided with uniform and non-uniform heat. (Gibanov et 

al. (2016)) took into account the trapezoidal cavity to examine free convective heat 

transfer in micropolar fluid and computed numerical results using finite difference 

method for variety of physical flow parameters. Recently, (Miroshnichenko et al. 

(2017)) investigated the effects of local energy source on free convective flows 

through various positions of trapezoidal enclosure filled with micropolar fluid. 

(Sheremet et al. (2017)) analysed natural convective heat transfer in micropolar fluid 

contained in an isosceles triangular cavity by using finite difference method. In other 

study (2017), they carried out numerically, effects of Prandtl number, undulation 

number and vortex viscosity parameter at Ra = 10
5
 on unsteady free convective flow 

inside a wavy triangular cavity subject to hot wavy wall containing micropolar fluid.  

Ferrofluid is a combination of nanoscale ferromagnetic particles with some base fluid 

in which these particles are mixed like water as in our case.  Ferrofluids are known to 

become heavily magnetized when strong magnetic field is applied upon it and this 

property make the ferrofluids suitable for many scientific and engineering 

applications like rocket fuel in space, high speed computer disk drives, audio speakers 

and to form liquid seals around spinning drive shafts etc. Ferrofluids are also used in 



24 

 

material sciences, medical applications, analytical instrumentations, optics, domain 

detection, switches, solenoids and heat transfer etc. (Scherer (2005)). Some interesting 

research work has been done on ferrofluids in recent years. Free convection in 

ferrofluid flow contained in an inclined square container under the influence of 

uniform magnetic field has been investigated numerically by (Kefayati (2014)). In his 

work he has analysed the effects of the external magnetic device and pertinent flow 

parameters on nano-scale ferromagnetic particles in an enclosure by using lattice 

Boltzman method. Later on, he has extended his idea (Kefayati (2014)) to analyse the 

effects of imposed magnetic field on nano-scale ferromagnetic particles of cobalt 

along kerosene as a carrier fluid present in a square enclosure with linear temperature 

distribution. (Sheikholeslami and Gorji-Bandpy (2014)) has numerically investigated 

natural convection in ferrofluid flow contained inside a container under the influence 

of imposed magnetic field when heat is provided from bottom side of the enclosure 

with the help of lattice Boltzman technique. Free convective heat transfer flow in 

ferrofluid contained inside C-shaped cavity in the presence of uniform magnetic field 

has been investigated by (Satyajit et al. (2015)). They employed Galerkin weighted 

residual technique to analyse the effects of MHD and Rayleigh number for two types 

of fluid. (Rahman (2016)) used two-component nonhomogeneous thermal equilibrium 

simulation to investigte the hydromagnetic free convection in water and kerosene 

based ferrofluid contained inside of an equilateral triangular cavity by using weighted 

residual technique. Other studies related with ferrofluid contains in an enclosures can 

be found in (Rabbi et al. (2016)), (Gibanov et al. (2017)), (Jhumur and Bhattacharjee 

(2017)), (Javed et al. ((2017)) and many more. 
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Chapter 2  

Heat Transfer of Hydromagnetic Flow in a Porous 

Triangular Cavity 

In this chapter, numerical simulations of free convective heat transfer inside isosceles 

triangular enclosure saturated with an isotropic porous medium influenced by 

magnetic force is investigated. The inclined walls of the cavity are supposed to be 

heated uniformly/non-uniformly. Initially, pressure terms are eliminated from the 

momentum equations with the help of penalty function. Afterwards, Galerkin 

weighted residual method is evoked to obtain the results for various ranged of 

involved parameters in terms of Hartmann, Rayleigh and Darcy numbers. The 

obtained solution is first verified to achieve grid independence and then compared 

with the results available in a literature against limiting case. Computed findings are 

represented graphically by using streamlines, isotherms, temperature gradient and 

average temperature gradient. It is noticed that the increase in the value of Rayleigh 

number causes augmentation in the strength of streamline circulations and reduction 

in strength of streamline circulation has been investigated due to increase in Hartmann 

number against the case of uniformly heated inclined walls. For non-uniform heating 

case, temperature gradient is seen to be maximum at the edges of bottom wall. 

2.1 Problem Formulation  

The configuration considered in the current investigation consists of isosceles 

triangular enclosure enclosing porous media of an isotropic nature as shown in Figure 

2.1. The electrically conducting viscous incompressible fluid is flowing through the 

porous medium inside the enclosure. The fluid density has been considered to be 

function of temperature and its variations causes buoyancy forces term in the 

momentum equations after applying Boussinesq approximation (Gray (1976)). In 

porous region, temperatures of fluid phase and solid phase are supposed to be equal 

and local thermal equilibrium is applicable for present investigation (Nield and Bejan 

(2006)). 
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Figure 2.1: Geometrical description of the flow problem. 

Moreover a uniform magnetic field is applied parallel to horizontal wall of a cavity. 

Here induced magnetic field has been ignored being sufficiently small in comparison 

to applied magnetic field    under low-   approximation (Davidson (2001)). 

Considering all boundaries of the container to be electrically insulated without Hall 

effects, magnetic term can be simplified to a restraining factor    
   (Garandet 

(1992)). Therefore, electromagnetic force becomes a function of velocity component 

  acting normal to magnetic field. Under the above assumptions in the absence of 

Forchheimer’s inertia term, and following the earlier work (Du and Bilgen (1992) and 

Ganzarolli and Milanez (1995)), the governing equations for conservation of mass, 

momentum and energy in the absence of viscous dissipation may be expressed as: 
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where  ,   are the components in Cartesian coordinate system,     represents 

components of velocity along horizontal and vertical directions respectively,   be the 

pressure,   is density,   is specific permeability of the medium,   is thermal 

diffusivity,   denotes the length of inclined wall of isosceles triangular enclosure and 

  is kinematic viscosity. 

0
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The boundary conditions can be defined as:       
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The non-dimensional variables are introduced as follows: 
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By using Eq. (2.6) in Eqs. (2.1) - (2.4), we get 
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and the boundary conditions (2.5) are reduced to 
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(2.11) 

          or         at     and          

          or         at       and              

Here   and   be the dimensionless components of velocity,   be non-dimensional 

temperature,          and    represents the Prandtl, Rayleigh, Darcy and Hartmann 

numbers respectively. The   represents the coefficient of heat transfer appearing in 

Newton’s law of cooling which can be obtained in the dimensionless form from the 

temperature gradient   . The temperature gradient for bottom wall, left and right 

inclined sides are expressed mathematically as: 
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(2.12) 

The average temperature gradient    for the bottom, left and right walls are defined 

as follows: 
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2.2 Methodology 

The continuity Eq. (2.7) is used as a constraint because of mass conservation and it 

can be used to determine pressure distribution (Reddy (1993)). In order to simplify the 

Eqs. (2.8) and (2.9), we have to consider penalty function where the  pressure terms 

are eliminated with the help of penalty parameter   and the criteria of 

incompressibility given in Eq. (2.7) which takes the form 
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)   (2.14) 

The continuity equation (Eq. (2.7)) is automatically satisfied for large value of penalty 

parameter  . Generally      
 results into a consistent solutions. By substituting  

Eq. (2.14) into Eqs. (2.8) and (2.9), which takes the following form  
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Expanding the velocity and temperature profiles with the help of bi-quadratic basis 

functions {  }   
  with 6-nodal triangular elements as follows 
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Galerkin weighted residual method of finite element analysis has been evoked to 

solve the Eqs. (2.15), (2.16) and (2.10), which results into non-linear residual 

equations for internal domain   and takes the following form 
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Obtained nonlinear residual Eqs. (2.18) – (2.20) are solved by using Newton iterative 

method. The gesture of fluid particles in the form of stream functions may be obtained 

through components of velocity by defining the following relation 
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Which results into a single equation and takes the following form  
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Expanding stream function with the help of bi-quadratic basis functions { }   
  as  

  ∑           
     (2.23) 

and again by evoking the Galerkin finite element method, the following residual 

equation is obtained  

Solution of Eq. (2.24) is obtained by considering no slip conditions along all sides. 

2.3 Validation 

In order to develop the mesh free solution of the discussed problem, the numerical 

values of the computed overall heat transfer rate at the bottom wall is demonstrated in 

Table 2.1 against different refinement levels of non-uniform initial mesh. It is noted 

that with the increase in the number of elements or by increasing the refinement level, 

the percentage error of the solution with the solution at previous refinement level is 

decreased. It is as minimum as      at the fourth refinement level, therefore 

throughout the study; third refinement level is used for solution with 1776 number of 

6-nodal triangular elements. Once the mesh free solution is achieved, the code is 

further validated against the results of (Basak et al. (2008)) as a limiting case as 

presented in Figure 2.2. The right column of the Figure 2.2 contains results found by 

present investigation and left column contains the results of (Basak et al. (2008)) in 

case of uniformly heated side wall with               and        . The 

results are evident to be accurate and in good agreement with the results of (Basak et 

al. (2008)). 
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2.4 Results and Discussions  

This section contains the results obtained by numerical simulations for two 

dimensional laminar convective flows through a porous medium saturated inside the 

triangular cavity in the presence of MHD. Discussion is divided into two cases 

isothermally cold bottom wall with (i) inclined walls are heated uniformly and (ii) 

inclined walls are heated non-uniformly. Heat transfer rates have been computed and 

presented through figures. The graphs are plotted against wide ranges of parameters, 

which are                                                     

and                  

Uniformly Heated Inclined Walls 

In this case of study, inclined sides of an isosceles triangle are maintained at uniform 

temperature profile (   ) and lower wall is maintained at low temperature. It is 

therefore, jump type finite discontinuity has been observed at the lower corners of the 

cavity, as these corners are the joining of walls with dissimilar temperature profiles. 

This discontinuity needs to be focused and it is discussed with respect to the criteria 

described by the (Ganzarolli and Milanez (1995)). Temperature at these corner nodes 

has been investigated by taking the average temperature of bottom and corresponding 

side walls. However, the adjacent nodes have been taken at corresponding wall 

temperature to avoid singularity. As bottom wall is kept on cold temperature and 

inclined side walls are heated uniformly, therefore fluid present adjacent to the side 

walls is at higher temperature than that of lower wall. Hence, the fluid present 

adjacent to inclined walls is lesser dense in comparison to fluid present adjacent to 

bottom cold wall due to the fact that the hot fluid is less dense than that of cold fluid. 

In consequence, the variation of density of fluid near the walls produces circulation of 

fluid in the enclosure in clockwise and anticlockwise directions. The hot fluid 

expands, becomes more buoyant, and transfers the energy, again descends down to 

the cold wall via central vertical line of a cavity, resulting two rolls of symmetric 

circulations as shown in figures. Streamlines with positives values are shown as anti-

clockwise circulation and streamline with negative values are shown as clockwise 

circulations according to definition of stream function.  

 Figures 2.3 and 2.4 illustrate contour plots for streamlines and isotherms at    

                  for          and     respectively. It has been 

investigated that, heat flow in the cavity is purely due to conduction and isotherms 
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appear to be smooth and monotonic in this case. Also two symmetric rolls of 

clockwise and anti-clockwise circulation cells of streamlines are seen. The maximum 

value of stream function (      ) is noted to be     as presented in Figure 2.4. It has 

been examined through this figure that with the increase in Rayleigh number, the 

strength of the circulations is also increased. The upper corner of a cavity is observed 

to be empty due to weak effects of circulation and isotherms. It may be seen from the 

figure that isotherms are pushed towards bottom wall and contour lines are 

concentrated in lower half of the cavity, where magnitude of stream function is 

increased to          . It is due to the reason that the left and right corners are the 

places where the difference in the temperature is maximum. 

Figures 2.5 and 2.6 contain plots for fluids for which thermal diffusivity dominates 

i.e.            and momentum diffusivity dominates i.e.         respectively 

when other parameters are fixed at               and      . It is observed 

that low Prandtl number corresponds to weaker clockwise and anti-clockwise 

circulation of streamlines which is clearly due to conduction dominant effects. When 

Prandtl number is      , magnitude of circulation in noted to be   and when Prandtl 

number is increased to 10, magnitude of circulation is also increased to    . The 

isotherms for smaller Prandtl number are more pressed toward bottom wall as shown 

in Figure 2.6. 

Figures 2.7 and 2.8 show numerical outputs for          and       

respectively with large Hartmann number        and                 It is 

seen that higher values of Hartmann number results into very weak circulation of 

streamlines, but the isotherms which were clustered in lower portion of the cavity at 

      started expanding up in the cavity. Again isotherms are noted to be smooth, 

monotonic symmetric with respect to the perpendicular line passing through centre of 

horizontal side. Magnitudes of stream function are observed to be       

     at          and             at       in Figure 2.7 and Figure 2.8 

respectively. 

Non-Uniformly Heated Inclined Walls 

In this case, both left and right inclined walls are subject to sinusoidal heat wave   

       . This type of heating is taken due to reason that it removes singularity from 

the bottom left and right corners. 
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Figures 2.9 - 2.11 show contour plots for stream function and isotherms for    

                        and           with non-uniformly heated 

inclined sides of an isosceles triangular cavity. Strong circulation is observed in the 

case of non-uniformly heated inclined sides and it is shifted to the centre of the 

enclosure from bottom corners (as observed in previous case). It is further noted that, 

by increasing the value of Prandtl and Hartmann numbers, streamlines and isotherms 

become smoother. It is pointed out that, two rolls of symmetric circulations are 

observed in each case and streamlines are seen to be pushed towards the inclined 

sides. It has been observed through Figure 2.9 that, when sinusoidal heat wave is 

applied to side walls of cavity, isotherms are observed to be compressed towards 

inclined walls and distributed throughout the triangular enclosure. It is important to 

note that the high temperature gradient is seen near upper vertex of the enclosure in 

this figure. However, for uniform heating case, it was examined that the isotherm 

lines are compressed towards bottom side of a cavity and temperature gradient is 

observed to be concentrated in lower half of a cavity and especially near the lower 

two corners of a cavity due to maximum temperature difference there. It is observed 

that isotherms for       are pushed towards bottom sidewall and for      , 

isotherm lines are pressed towards inclined walls. As we increase Prandtl number 

from       to 0.7, isotherms near bottom wall get concaved up about the centre of 

bottom wall from concaved down in a small interval as shown in Figure 2.10.  

When Prandtl number is augmented from       to    , magnitude of stream function 

is noted to increase from          (see Figure 2.10) to            (see Figure 

2.11) it is due to the phenomenon that the convection helps the fluid flow through 

buoyancy. Opposite to this, when Hartmann number is increased from    to    , 

magnitude of stream function is reduced from          (see Figure 2.8) to 

            (see Figure 2.11) due to the fact that Hartmann number is ratio of 

electromagnetic forces to the viscous forces and increase in Hartmann number is due 

to the dominance of electromagnetic force, which in consequence produces resistance 

to the flow, due to which        is reduced to     . 

Figure 2.12 (a, b) is drawn to show the transfer of heat in the form of local Nusselt 

number along the bottom side (a) and along the inclined walls (b). Since the cavity 

under consideration is symmetric with respect to the perpendicular line passing 

through the centre of the bottom side and both of the side walls are subjected to the 
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same temperature, consequently temperature gradient at both inclined walls is 

observed same therefore we have shown graph of Nusselt number for left side wall 

only. In this figure, the solid lines represent the case of uniformly heated inclined 

walls and dashed lines represent the case of non-uniformly heated inclined walls. 

Curves have been plotted against dissimilar values of Prandtl      and Darcy      

numbers, where Rayleigh      and Hartmann      numbers are fixed at     
and    

respectively. It is observed that, when side walls are heated uniformly (solid curves), 

temperature gradient is noted very large at left and right edges of bottom wall as 

shown in Figure 2.12 (a). This is due to the fact that both boundaries meeting at these 

edges are at different temperatures and causes maximum temperature difference to 

occur. It is further invetigated that the heat transfer rate is minimum at the centre of 

the bottom wall for all values of    and   . Similarly, heat transfer rate along the 

side walls is maximum at the bottom edge where distance is taken to be zero as shown 

in Figure 2.12 (b) which is also due to having maximum temperature difference at 

this point. Furthermore, temperature gradient is almost zero at the upper vertex due to 

the fact that no temperature difference occurs at this vertex causes no transfer of 

energy shown in right hand side of Figure 2.12 (b), the increase in Nusselt number 

due to    and    is also observed through the Figure 2.12. 

For the case of non-uniformly heated inclined walls (dashed curves), temperature 

gradient    along bottom wall is also maximum at vertices and minimum at the 

centre. The temperature gradient for this case is considerably minimum as compare to 

the uniformly heated inclined walls. Whereas, along the side walls (Figure 2.12 (b)) 

temperature gradient shows sinusoidal nature due to non-uniformly heated side walls. 

The temperature gradient at the upper vertex of the cavity for the case of non-

uniformly heated inclined walls is also minimum due to minimum temperature 

difference at this point. The variation in heat transfer rate    for various values of 

Darcy      and Prandtl      numbers is also noted from the figure as a sinusoidal 

wave. 

Average temperature gradient at the bottom and inclined sides against Hartmann 

number for various values of Darcy number is drawn in Figure 2.13. It has been 

observed that average temperature gradient decreases with the increase in Hartmann 

number and attain a constant values against         . Similarly, by reducing the 

values of Darcy number, the average temperature gradient decreases up to fixed 
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values. The same observation is noted at the bottom and inclined walls and can be 

further proved from Table 2.2. 

 

 

 

Table 2.1: Overall heat transfer rates along bottom wall against different mesh sizes 

 

 

 

 

 

 

 

 

 

Table 2.2: Average Nusselt numbers along different walls of cavity against various 

values of flow parameters, Ha, Pr, for fixed Da 

   Uniform Heating Case Non-Uniform Heating Case 

                         

0 10
-3

 0.026 7.4549 4.9936 5.1623 2.4169 
50 - - 7.4093 4.9625 4.9550 2.3206 
100 - - 7.3113 4.8950 4.8646 2.2807 
200 - - 7.1637 4.7919 4.7495 2.2285 
500 - - 7.0962 4.7382 4.6656 2.1876 
1000 - - 7.0922 4.7323 4.6541 2.1816 

0 - 0.7 7.6294 5.1212 5.0725 2.3580 
50 - - 7.5108 5.0397 4.9990 2.3437 
100 - - 7.3350 4.9175 4.8995 2.3065 
200 - - 7.1070 4.7730 4.7418 2.2340 
500 - - 7.0822 4.6817 4.6552 2.1911 
1000 - - 7.0456 4.3435 4.6443 2.1850 

 

 

 

Refinements Number of Elements     
% Error  

1
st
 
 

111 10.4548 - 

2
nd

 
 

444 10.3528 0.98 

3
rd

 
 

1776 10.2710 0.79 

4
th

  7104 10.2600 0.1 
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(Basak et al. (2008)) Present Study 

 

 

  

 

 

Figure 2.2: Contours for isotherms and stream function against           

    and         

 

  

Figure 2.3: Contours for stream function and  isotherms for uniformly heated inclined 

walls with                         and       

 

 

 

Figure 2.4: Contours for stream function and  isotherms for uniformly heated 

inclined walls with                       and       
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Figure 2.5: Contours for stream function and isotherms for uniformly heated 

inclined walls with                         and       

  

Figure 2.6: Contours for stream function and isotherms for uniformly heated 

inclined walls with                      and       

 

  

Figure 2.7: Contours for stream function and isotherms for uniformly heated 

inclined walls with                        and  a      

 

 

 

Figure 2.8: Contours for stream function and isotherms for uniformly heated 

inclined walls with                      and        
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Figure 2.9: Contours for stream function and isotherms for non-uniformly heated 

inclined walls with                         and       

 

 

 

 

 

Figure 2.10: Contours for stream function and isotherms for non-uniformly heated 

inclined walls with                      and       

 

 

 

 

 

Figure 2.11: Contours for stream function and isotherms for non-uniformly heated 

inclined walls                         and        
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(a) 

 

 

 
 

(b) 

 

 

Figure 2.12(a, b): Local Nusselt numbers for cold bottom wall & inclined side walls 

heated uniformly (solid lines) and non-uniformly (dashed lines) with different values 

of   , and    where       and       are fixed 
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(a) 

 

 

 
 

(b) 

 

 

Figure 2.13(a, b): Average Nusselt number for uniform and non-uniform heating 

case against different values of   , and    where       and       are fixed 
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2.5 Conclusions 

A computational investigation is executed to examine the two-dimensional laminar 

steady state MHD natural convection flow within the isosceles triangular cavity 

saturated with isotropic porous medium. The inclined walls of the triangular enclosure 

are subjected to heated uniformly or non-uniformly. Finite element technique has 

been employed to obtain the solution, governing conservation of mass, momentum 

and energy equations are nonlinear requiring an iterative technique solver to solve 

these equations by considering Hartmann number Ha = 50 - 10
3
, Prandtl number Pr = 

0.026 – 10 and Rayleigh number Ra = 10
3
 - 10

7
. For this purpose, we applied 

Galerkin weighted residual method with penalty parameter.  

For the case of uniform heated side walls, it has been noticed that the increase in 

Rayleigh number above critical value i.e. (Ra = 4*10
5
) causes augmentation in 

strength of circulations of streamlines, but increase in Hartmann number results in 

decrease in the strength of streamline circulation. The effects on circulations of 

streamlines due to Prandtl number are similar to that of Rayleigh number. Isotherm 

contours gets closer towards the bottom of cavity due to increase in Rayleigh number 

or Prandtl number. Whereas, with increase in Hartmann number isotherms moves 

towards upper portion of the cavity. On the other hand, it is found that temperature 

gradient is maximum at the edges of bottom wall due to maximum temperature 

difference at the corner nodes and it is appeared to be constant near centre of bottom 

wall. Heat transfer is higher near lower end of side walls due to the same reasons and  

it is almost zero near upper corner, as two side walls are at same temperature. When 

side wall is subjected to sinusoidal heat wave, streamlines are pushed towards side 

walls of cavity and strength of circulation of streamline is increased with increase in 

Prandtl number. Whereas, isotherms greater than 0.7 are pushed towards side walls 

while other isotherms are pushed towards bottom wall when Hartmann and Prandtl 

number is increased. It has been further noticed that the circulation strength of 

streamlines is decreased due to escalation in Hartmann number in non-uniform 

heating case as well. Furthermore, temperature gradient at the bottom wall for non-

uniformly heating case is considerably small as compared to that of uniform heating 

case and it is further minimum at a centre of the bottom wall.  
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Chapter 3 

Heat Transfer through Hydromagnetic Flow of Liquid 

Gallium contained in a Porous Square Cavity 

This chapter comprises a numerical investigation of natural convection in a porous 

square cavity saturated with liquid gallium influenced by magnetic force applied 

either in horizontal or in vertical direction. Bottom wall of the cavity is maintained at 

uniform temperature where top wall is considered to be adiabatic, left wall is 

supposed to be heated linearly and right side is subject to linear heating or taken cold. 

Computed effects are represented graphically by using streamlines, isotherms, heat 

transfer and overall heat transfer rates Augmentation in streamline circulations is 

observed due to increase in Darcy number while imposition of vertical magnetic field 

instead of horizontal magnetic field causes slow rate of increase in strength of 

streamlines circulation. Whereas, in case of linearly heated right wall, overall heat 

transfer rate has been observed to be increasing function of Darcy numer, and vertical 

magnetic field causes higher values for average Nusselt number as compare to 

horizontal magnetic field along bottom and side boundaries of an enclosure. 

Contrarily, in the case of cold right wall, horizontal magnetic field results into higher 

values of average Nusselt number as compare to vertical magnetic field case and 

average Nusselt number reduces as we move along lower and right boundary while 

increases along left wall with increase in distance. 

3.1 Problem Formulation 

Consider laminar, hydro-magnetic, natural convective heat transfer in a chemically 

inert porous media saturated with liquid gallium inside the square cavity in the 

presence of uniform magnetic field as presented in Figure 3.1 and parameters of flow 

are given in Table 3.1. The width and height of the square enclosure are represented 

by   and length of the enclosure is supposed to be long enough so that the 

investigation can be considered as two dimensional in Cartesian co-ordinate system. It 

is assumed that fluid is viscous, incompressible and electrically conducting. The fluid 

density has been considered to be function of temperature and the density variation 

causes buoyancy forces terms in governing momentum equations after applying 

Boussinesq approximation (Gray (1976)). In porous region, temperatures of fluid and 
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solid phases are supposed to be equal and Local Thermal Equilibrium (LTE) is 

considered valid for this study (Nield and Bejan (2006)).  

 

     Adiabatic 

 

 

 

 

  

 

 

 

 

       

 

Figure 3.1: Graphical representation of the physical system   

It has been further supposed that the magnetic force   having magnitude    is 

employed in horizontal (   ) or vertical (  
 

 
) direction inside the cavity. Here 

induced magnetic force has been neglected being very insignificant in comparison 

with applied magnetic field under low-   approximation (Davidson (2006)). During 

present study joule heating effects, Hall effects and viscous radiation are ignored.  In 

the light of supposed assumptions, laws of mass, momentum and energy can take the 

form such as: 
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Boundary conditions for the governing problem may be expressed as:   
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   where         
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(3.5) 

where   and   are defined as   axis and   axis respectively,   and  represents 

velocity components along horizontal and vertical directions,   is inclination angle of 

magnetic field with the positive   axis, which is either   or  
 

 
,    represents 

temperature at hot boundary,    be temperature at cold boundary. 

The following non-dimensionless variables are introduced such as: 

Upon substituting Eq. (3.6) into Eqs. (3.1) – (3.4), we get  
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Boundary conditions in dimensionless form may be defined in the following way 
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Here          and    represents Prandtl, Rayleigh, Hartmann and Darcy numbers 

respectively,     represents non-dimensional components of velocity and   be non-

dimensional temperature.  
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3.2 Methodology 

The momentum Eqs. (3.8) – (3.9) are subject to the penalty function to remove 

pressure term. In penalty function, we consider continuity Eq. (3.7) to obtain pressure 

profile by defining the penalty parameter   as follows: 
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)   (3.12) 

Generally, law of conservation of mass given in Eq. (3.7) is satisfied against large 

values of    i.e.       which results into consistent solutions as shown in Table 

3.2. Incorporating Eq. (3.12) in Eqs. (3.8) and (3.9) yields: 
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(3.14) 

By considering 6 nodal triangular elements and bi-quadratic shape functions 

{  }   
  we approximate components of velocity  ,   and temperature   as follows 

  ∑           
      ∑           

      ∑            
     (3.15) 

Galerkin weighted residual method of finite element analysis has been evoked to 

solve the Eqs. (3.13), (3.14) and (3.10), which results into non-linear residual 

equations for internal domain   and takes the following form 
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Reduced system of nonlinear algebraic Eqs. (3.16) to (3.18) is further solved by using 

Newton Raphson method. After evaluating components of velocity   and  , stream 

function is determined by using the following relation  

  
  

  
       

  

  
   (3.19) 

Which can be further reduced into a single second order equation given as: 

   

    
   

    
  

  
 

  

  
   (3.20) 

Expending stream function with the help of bi-quadratic basis functions { }   
  as  

  ∑           
     (3.21) 

and again by evoking the Galerkin finite element method, the following residual 

equation is obtained  

Solution of Eq. (2.24) is obtained by considering no slip conditions along all sides. 

The coefficient of heat transfer   appearing in Newton’s law of cooling can be 

obtained by using dimensionless form from energy transfer rate. The temperature 

gradient (  ) and average temperature gradient (  ) for lower and side walls may 

take the form: 

3.3 Validation 

In order to develop the grid independent solution of discussed problem, the numerical 

values of average temperature gradient along bottom wall are demonstrated in Table 

3.3 against different refinement levels of non-uniform initial mesh. It has been 

observed that with increase in the number of elements or by increasing the refinement 

level, the percentage error of the solution with the solution at previous refinement 

level is decreased. It is as minimum as 1% at the fourth refinement level, therefore 
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throughout the study; third refinement level is used for solution with 2048 number of 

6-nodal triangular elements. 

Once the grid independence is achieved, again code is tested against the findings of 

(Sathiyamoorthy et al. (2010)) as a special case. Figure 3.2 represents the comparison 

between results obtained by our developed code and the findings of (Sathiyamoorthy 

et al. (2010)) and it shows that our findings are consistent with their results. In Figure 

3.2, left column represents graphical results obtained by our code right column shows 

the graphical results presented by (Sathiyamoorthy et al. (2010)). 

3.4  Results and Discussions 

This section contains results determined by numerical simulation of incompressible 

viscous flow of liquid gallium contained in a square cavity packed with chemically 

inert isotropic porous media (e.g. sand stone, pumice and SnO2 based anode). We 

have considered the suitable range of Darcy number for sandstone as its physical 

parameters are more compatible with parameters considered in our problem. 

Case I: Cold Right Wall 

Figure 3.3 shows streamline and isotherms contours for uniform heating from the 

bottom side, linearly heating from left side and right side is kept cold, under the 

influence of horizontal      magnetic field when Darcy number varies from      

to      (suitable values for sandstone porous medium (Loret and Huyghe (2004)) 

where other flow parameters are supposed to be fixed at            (gallium), 

         and         respectively. It has been observed that there appear two 

circulation cells for streamline contours with one large primary clockwise circulation 

cell that covers most part of enclosure and the other small anticlockwise secondary 

circulation cell appearing near top left corner of the square cavity. It has been 

investigated that the fluid flow rises along the heated side and falls along cold side 

forming primary circulation cells and due to thermal buoyancy effects secondary 

circulation cells are formed near the upper left corner. Opposite to this, isotherms 

contours change their behavior smoothly from linearly heated wall towards cold wall 

as presented in Figure 3.3 (a). 

When Darcy number is augmented to     , strength of secondary circulation cells are 

increased and it is stretched by pushing the primary circulation cell and moved the 

centre of primary circulation cell slightly up along the diagonal of cavity. Isotherms 

are increased in height and also bended towards cold right wall. Similar trend is seen 
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for isotherms and streamlines when Darcy number is further increased to      i.e. 

size and strength of secondary cell is further increased and centre of primary 

circulation cell is almost shifted to the centre of cavity by further moving along its 

diagonal while isotherms are also increased further in height and bended towards right 

cold wall owing the fact of energy transfer is maximum close to the centre of the 

cavity. 

Figure 3.4 displays isotherm and streamline contours for same values of flow 

parameters as that in Figure 3.3 but direction of magnetic field is considered to be 

vertical in this case. It is noticed that this direction of magnetic field causes reduction 

in temperature gradient inside the cavity where contours for isotherms appears to be 

broken towards side walls of cavity for      . Similarly strength of streamline 

circulation contours has also been reduced due to appearance of vertical magnetic 

field. Like in the previous case, here also appear a large primary and a small 

secondary roll of circulation cell in upper left corner. Increasing Darcy number to 

     increases strength of circulations and height of isotherms but the rate of this 

increase is considerably slow as compare to that of the case of horizontal magnetic 

field     (Figure 3.3 (b)). Whereas unlike the previous case, for the case of 

vertical magnetic field   
 

 
, increase in Darcy number beyond 10

-4
 results in sharp 

increase in strength circulation of primary and secondary cells and secondary 

circulation cell is stretched towards uniformly heated bottom wall. Similarly non-

uniformity of isotherms has also been sharp in this case as shown in Figure 3.4 (c). 

Case II: Linearly Heated Right Wall 

Figures 3.5 & 3.6 contain results for numerical simulations in the case when 

uniformly heated bottom wall with both sidewalls are supposed to be linearly heated 

while top wall is considered adiabatic. The values of parameters are considered as 

                    (gallium),                            and magnetic 

field directions are      
 

 
. Figure 3.5 consist of isotherms and streamline contours 

for the case of horizontal magnetic field i.e. (   ). Since two walls of the square 

enclosure are subject to linear heating therefore two concentric rolls of clockwise left 

and anticlockwise right circulations are formed. The fluid moves up along two 

vertical sides and then comes down towards centre of the enclosure forming two rolls 

of circulation cells (Figure 3.5 (a)). As compared to the case of right cold wall with 

the case of linearly heated right wall temperature is comparatively high in the cavity 



48 

 

and due to similar temperature profile along two boundaries; isotherms are observed 

symmetric with respect to the perpendicular line passing through the centre of the 

enclosure. Isotherms for       are broken towards the side walls where isotherms 

for       are almost straight horizontal lines. Increase in the value of Darcy upto 

     increases the strength of both clockwise and anticlockwise circulations in 

streamlines while isotherms gain more heights near centre of horizontal walls of 

cavity giving them a shape of wave for      . Further increase in Darcy number 

increases the strength of circulations of streamlines, height of isotherms and number 

of broken isotherm contours. 

Figure 3.6 depicts the effects for same values of flow parameters but in the presence 

of vertical magnetic field. Effects of change in the direction of magnetic field are very 

similar as that of cold right wall i.e. strength of circulation and temperature gradient 

are noticed to be high for vertical magnetic field. The fluid moves up along two 

vertical sides and then comes down towards the middle of the enclosure creating two 

rolls of circulation cells. 

Figure 3.7 contains the curves of temperature gradient for the case of cold right wall 

where upper wall is considered adiabatic, uniform energy is provided from bottom 

wall of a cavity and left wall is heated linearly. Curves for Nusselt numbers are 

plotted against distance in the presence of horizontal (solid line) and vertical (dashed 

line) magnetic fields with                             and               . 

It has been observed that along bottom wall as shown in Figure 3.7 (a), there are no 

significant effects of Darcy number for distance         and         as curves are 

almost coinciding for these values of distance while between   4 and     higher 

Nusselt number is noticed for small value of Darcy number. Furthermore, the curves 

for horizontal and vertical magnetic field are also almost overlapping showing 

negligible effects of inclination of magnetic field on Nusselt number. Whereas along 

cold right wall (Figure 3.7 (c)), local Nusselt number first increases very sharply with 

distance up to        then rate of increase becomes a little slower up to        

and afterwards curves are almost horizontal showing constant heat transfer rate while 

higher Darcy number results in higher Nusselt number for            and 

contrarily smaller heat transfer rate has been observed for larger values of Darcy 

number      . No significant influences of inclination angle of magnetic field are 

observed along right cold wall. On the other hand, along linearly heated left side as 
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presented in Figure 3.7 (b), vertical magnetic field (  
 

 
) returns higher heat 

transfer rate as compared to horizontal magnetic field (   ) for           while 

for           horizontal magnetic field returns higher heat transfer rate up to 

      and reverse behavior has been noticed afterwards. Local Nusselt number 

increases with enhancement in vertical distance   but at a slower rate up to         

and afterwards rate of increase becomes sharp comparatively. Furthermore 

enhancement in Darcy number results augmentation in heat transfer rate along left 

side of the cavity as presented in Figure 3.7 (b). 

In Figure 3.8, Nusselt number along bottom and side walls are shown against the case 

of heated right wall and values of other flow parameters are same as these were 

assumed in Figure 3.7. It is seen that along bottom wall, curve of local Nusselt 

number looks like sinusoidal wave when        , temperature gradient first 

reduced up to        and then increases up to       then it decreases again up to 

     and then increases afterwards. However, for        , Nu increases with 

increase in distance   up to     and afterwards it reduces with escalation in distance, 

the vertical magnetic field returns higher heat transfer rate as compare to horizontal 

magnetic field when        where for             returns higher Nusselt 

number up to        and for             vertical magnetic field returns 

higher heat transfer rate as compare to horizontal one, while after        again 

horizontal magnetic field gives higher Nusselt number as compare to that of vertical 

magnetic field. Since both side walls are subject to similar temperature profile of 

linear heating, therefore the graph of heat transfer rate is identical for both side walls.  

 

Table 3.1: Gallium parameters for melting problem (Hannoun (2003)) 

Parameters Symbols Gallium Units 

Density             Kg/m
3 

Dynamic viscosity             N s/m
2 

Coeff. of vol. expansion             K
-1 

Kinematic Viscosity              m
2
/s 

Electrical Conductivity                   

Rayleigh number         

Prandtl number    0.025  
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Table 3.2: Average Nusselt numbers along bottom side against various values of    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: Overall heat transfer rates along bottom wall against different mesh sizes  

 

 

 

 

 

 

 

 

 

      

10
4 

-0.8963 

10
5 

-0.9189 

10
6 

-0.9212 

10
7
 -0.9215 

10
8
 -0.9215 

10
9
 -0.9215 

Refinements Number of Elements     

1
st
 
 

128 -2.7126 

2
nd

 
 

512 -3.1566 

3
rd

 
 

2048 -3.1590 

4
th

  8192 -3.1920 



51 

 

Present Work (Sathiyamoorthy et al. (2010)) 

  

  

 

 

 

 

Figure. 3.2: Code validation for                      ,     and 
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(a) 

  

(b) 

  

(c) 

Figure 3.3: Isotherms and stream functions contours for cold right wall where 

                      (gallium),     (a)         (b)         

(c)         
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(a) 

  

(b) 

  

(c) 

Figure 3.4: Isotherms and stream functions contours for cold right wall where, 

                      (gallium),   
 

 
 (a)         (b)         

(c)         
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(a) 

  

(b) 

  

(c) 

Figure 3.5: Isotherms and stream functions contours for linearly heated right wall 

&                       (gallium),     (a)         (b)         

(c)         
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(a) 

  

(b) 

  

(c) 

Figure 3.6: Isotherms and stream functions contours for linearly heated right wall 

&                       (gallium),   
 

 
 (a)         (b)         

(c)         
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(a) 

 

(b) 

 

(c) 

Figure 3.7: Nusselt number for cold right wall (a) bottom wall (b) left wall and (c) 

right wall 
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(a) 

 

 

 

(b) 

 

Figure 3.8: Nusselt number against linearly heated right wall (a) bottom wall and 

(b) Side walls 
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(a) 

 

(b) 

 

(c) 

Figure 3.9: Average Nusselt number for cold right wall (a) bottom wall (b) left 

wall and (c) right wall 
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(a) 

 

 

 

 

(b) 

 

 

Figure 3.10: Average Nusselt Number for linearly heated 

right wall along (a) bottom wall (b) side walls 
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It is observed that for        , curves of Nusselt number for vertical and 

horizontal magnetic field are overlapping but when        , vertical magnetic 

field gives higher heat transfer rate than that of horizontal magnetic field if       

and reverse behavior is seen afterwards. It is further seen that along vertical sides of 

cavity Nusselt number reduces with increase in vertical distance   and higher values 

of Darcy number returns higher heat transfer rate up to        while reverse 

behavior is observed afterwards. 

Figure 3.9 contains plots of average Nusselt numbers   ̅̅ ̅̅  against porosity parameter 

and Darcy number for the case of cold right wall. It has been seen through the graphs 

that average temperature gradient along bottom wall decreases with increase in Darcy 

number while overall heat transfer rate along left wall rises with augmentation in    

and average temperature gradient along right wall first increases up to           

and then decreases afterwards for growing values of Darcy number. Whereas against 

a particular value of    average temperature gradient along bottom, left and right 

walls of cavity is higher for horizontal magnetic field     comparing to vertical 

magnetic field   
 

 
.     

Figure 3.10 consists of average temperature gradient along bottom and side walls 

against the case of linearly heated right side. Contrary to case of cold right wall, due 

to linearly heated right wall average temperature gradient along the side walls for 

vertical magnetic field is higher than that of horizontal magnetic field for a fixed 

value of Darcy number while, along bottom wall similar behavior is observed up to 

          and afterwards reverse behavior of average temperature gradient is 

seen. It is further noticed that for         , values of average temperature gradient 

for both horizontal and vertical magnetic fields overlaps along bottom and side walls 

of a cavity whereas, for         average temperature gradient increases with 

augmentation in Darcy number along bottom and side walls. 

3.5 Conclusions  

In present chapter, numerical simulation has been made to investigate two 

dimensional laminar flow of viscous liquid gallium though a square enclosure full 

with porous media in the presence of horizontal/vertical magnetic field where bottom 

wall is heated uniformly, top wall is perfectly insulated, left wall of cavity is heated 

linearly and right wall is assumed either linearly heated or kept as cold. The 

governing equations of the flow problem are solved by applying Galerkin finite 
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element technique and resulting equations are subjected to Newton’s method. Results 

are obtained for Hartmann number      , Rayleigh number       , Prandtl 

number          (gallium) and Darcy number   -          while two 

inclination angles for magnetic field        
 

 
 are considered.   

After briefly examining the flow behavior, we have concluded that augmentation in 

Darcy number results in both, enhancement of strength of streamline circulations and 

growth in the height of isotherms in a cavity. Magnetic field applied in vertical 

direction reduces the rate of increase up to         and increasing Darcy number 

beyond this value sharpens the rate of increase in strength of streamline circulation 

and height of isotherms. With increase in horizontal distance  , heat transfer rate Nu 

decrease along bottom wall when right side is maintained at low temperature. When 

the right side is subject to linear heating, Nusselt number shows sinusoidal type 

behavior along bottom wall and it decreases with increase in vertical distance   along 

the side walls when right wall is considered to be heated linearly, while for cold right 

wall Nu increases along left wall of the cavity and along right side Nu first increases 

sharply and then becomes almost constant. Opposite to this, higher average Nusselt 

numbers are observed under influence of magnetic field in vertical direction as 

compare to applied magnetic field in horizontal direction where average Nusselt 

number is observed to increase along bottom and side walls with augmentation in 

Darcy number for the case in which right wall is supposed to be heated linearly. 

Whereas for cold right wall, average heat transfer rate decreases with increase in 

Darcy number along bottom and right wall while it increases along left wall of the 

cavity and horizontal magnetic field results in higher average temperature gradient as 

compare to that of vertical magnetic field.  
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Chapter 4 

Energy Transfer through Micropolar Fluid saturated in a 

Lid-Driven Square Cavity influenced by Magnetic Force 

This chapter contains computations for mixed convective energy flow through a 

square container carrying micropolar fluid in the presence of constant horizontal 

magnetic field. Bottom wall of the cavity is subject to non-uniform heat while 

remaining walls of the cavity are maintained at low temperature. Numerical 

simulations are computed incorporating Galerkin method of finite element technique 

against different values of involved parameters like Grashof, Reynolds, Hartmann 

numbers and micropolar parameter. It has been observed that the strength of 

streamline circulations escalates due to augmentation in Grashof number where it 

attenuates with augmentation in Hartmann and Reynolds numbers. Convection regime 

dominates in the cavity for large Grashof number and small Hartmann number. Heat 

transfer coefficient    rises with surge in Reynolds number, Hartmann number and 

micropolar parameter and it reduces with rise in Grashof number along top wall 

where overall heat flow rate is observed an increasing function of Grashof and 

decreasing function of both Reynolds and Hartmann numbers along bottom wall. 

4.1 Problem Formulation 

A geometrical representation of the square cavity which is considered in this 

investigation is presented in Figure 4.1. The width and height of the square enclosure 

is represented by L and length of an enclosure is supposed to be long enough so the 

investigation can be considered as 2D in cartesian co-ordinate system. It is supposed 

that the ceiling or top wall is moving with constant velocity    while rest of the walls 

is in static position. The left and right vertical walls with top lid are maintained at a 

low temperature   , lower bottom horizontal wall is considered to be heated non-

uniformly. The gravitational force considered, acts in negative y-direction. Since 

density variation of micropolar fluid is a function of temperature therefore, 

Boussinesq’s approximation is valid and all remaining physical properties are 

supposed to be constant. 

 y 

 Tc                                  U0 

 

 

 

Micropolarfluid 
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Figure 4.1: Geometrical representation of the present problem. 

In present study, micropolar fluid is considered as steady, Newtonian, incompressible 

and laminar. Furthermore, magnetic force with magnitude of strength B0 is assumed 

parallel to horizontal axis. Here induced magnetic field has been ignored being 

sufficiently small in comparison to applied magnetic field B0 under low-   

approximation (Davidson (2001)) Assuming the boundaries of container be insulated 

electrically with no Hall effects, the damping factor   
   represents the total 

electromagnetic force; here v is vertical velocity component. Therefore, Lorentz force 

is a function of velocity component  . For electrically conductive micropolar fluid 

flow considering peripheral magnetic field, the energy, mass, linear and angular 

momentum conservation laws may be expressed in the form given below 

        
 

(4.1) 

                                         
 

(4.2) 

          
             

 
(4.3) 

              (4.4) 

Here V = (u(x, y),v(x, y),0) represents two dimensional velocity vector and its 

rectangular components are u and v, where T represents temperature of fluid 

everywhere in the cavity, N = (0,0,N
*
(x, y)) is two dimensional micro-rotation vector, 

p represents the modified pressure, g is an acceleration vector due to gravity which is 

acting perpendicular to   axis,   is density of micropolar fluid,   is the vortex 

viscosity, B is magnetic field, j is the micro-inertia density,    is dynamic viscosity, 

   is the spin-gradient viscosity,   is the thermal diffusivity of the micropolar fluid 

and J is the current density defined in the absence of an electric field as follows: 
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(4.5) 

Under the above suppositions, the governing model for two dimensional micropolar 

fluid flow with the help of Eqs. (4.1) – (4.4) may be reduced in the form given below 
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under the following boundary conditions  
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(4.11) 

The non-dimensional variables are introduced as follows: 
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(4.12) 

After substitution of the above mentioned variables in Eqs. (4.6 - 4.11), we get:  
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Here U, V and   be dimensionless form of velocity components and temperature 

respectively and R are the micropolar parameters. 

The reduced boundary conditions for velocities U, V and temperature   in 

dimensionless form are given below 

                      
  

 

  

  
                 

                  
  

 

  

  
                 

                  
 

 

  

  
              ,   

                  
 

 

  

  
                 

 

 

 

 

(4.18) 

The heat flow rate    and average heat flow rate    for horizontal walls are defined 

as follows 

    
  

  
  (4.19) 
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where   represents the normal direction on the surface. 

4.2 Methodology 

Governing non-dimensional Eqs. (4.13) – (4.17) subject to the transformed boundary 

conditions defined in Eq. (4.18) are solved with the help of Galerkin weighted 

residual method. Pressure terms are eliminated from Eqs. (4.14) – (4.15) by using 

penalty method. The penalty parameter   is defined as  

    (
  

  
 

  

  
)   (4.21) 

For large values of  , ensure that continuity equation stated in Eq. (4.13) is satisfied. 

Generally       returns consistent solutions. After substituting Eq. (4.21) in Eqs. 

(4.14 - 4.15), we get the following form: 
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(4.23) 

Galerkin weighted residual method is employed to simplify the system of Eqs. (4.16), 

(4.17), (4.22) and (4.23). As the solution methodology in details is described in 

chapter 2 (Method of Solution). Therefore the detailed explanation of solution 

procedure in not included in the present section.  
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4.3 Results and Discussions 

In this section we have presented and explained the obtained numerical results in the 

form of plots against isotherms, streamlines, microrotations, heat transfer and overall 

heat transfer rates against different values of governing parameters i.e. Grashof, 

Rayleigh, Prandtl and Hartmann numbers and their explanation is made. 

Since lower boundary is subject to heating therefore after absorbing heat from hot 

bottom wall, fluid near bottom wall starts moving upward along vertical boundaries 

and come down along the vertical line passing through centre of lower boundary 

causing a pair of circulation cells with clockwise and counter clockwise rotations. 

Figure 4.2 displays the influence of Grashof number on streamlines, isotherms and 

microrotation of the flow. It has been noticed that effects of moving lid reduces with 

augmentation in Grashof number and thus for         , no effect of moving lid is 

observed on streamline contours. The augmentation in magnitude of stream function 

is noted due to enhancement in Grashof number where          and     are the 

maximum values of stream function against         ,     and     respectively. 

Isotherm contours are seen to cover most part of the cavity for          and when 

   is increased to     isotherm contour are compressed down towards bottom wall 

while due to further increase in Grashof number (        ), isotherms are clustered 

near bottom wall becoming almost parallel to   axis in central region near bottom 

wall where most of cavity appears to be empty. The significant temperature gradient 

near the bottom side results into appearance of thermal boundary layer alongwith 

lower boundary of the enclosure. Two panels of microrotation are observed in the 

cavity because of two circulations cells for streamlines and larger values of Grashof 

number return stronger isotherms for microrotations.   

Figure 4.3 presents the influence of magnetic field on streamlines, isotherms and 

microrotation of the flow pattern. It is observed that escalation in magnitude of 

Lorentz force weakens strength of streamline circulations and effects of moving lid 

becomes prominent when Hartmann number is augmented and centre of circulation 

cells gets pushed towards lower horizontal wall when    is raised. Magnitude of 

stream function against              and 100 are noted to be               and 

     respectively. Conduction dominant regime is observed in the cavity for large 

values of    while convection effect becomes dominant when Hartmann number gets 

decreased. Furthermore contours for isotherms appear to be parallel to bottom wall in 
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central region of the cavity and are clustered near bottom wall when magnetic field is 

absent (      ). Introducing magnetic field causes smooth and monotonic isotherm 

contours and when strength of magnetic field is increased the isotherms cover most of 

the region in cavity. Surge in value of    causes a sheer stress due to which 

isothermlines for microrotations are noticed to be clustered near the side walls of the 

enclosure and near the boundaries of circulations cells. 

Figure 4.4 presents impact of Reynolds number upon streamlines, isotherms and 

microrotation of the flow. Just like Hartmann number Reynolds number also had 

opposing influence upon strength of flow rotation. For        there appear two 

symmetric circulation cells out of which one is clockwise and other is anticlockwise 

but when    is increased to    there appears a secondary anticlockwise circulation 

cell near top wall because of the moving lid.  

The strength of secondary circulation cells is lesser than that of primary cells while 

symmetry of circulation cells is lost. Magnitudes of stream function are observed to 

be     and      for        and    respectively while strength of secondary 

circulation cell against         is     . When value of Reynolds number is further 

increased to    , symmetric primary circulation cells vanish and there appears only 

one very weak anticlockwise circulation cell close to moving top wall because of the 

significant effects of sliding wall and gradual reduction in the buoyancy whereas all 

streamline contours in this case are clustered near top wall leaving rest of the cavity 

empty where magnitude of stream function for this case is      . Increase in 

Reynolds number augments the influence of forced convection and free convection is 

curbed in the enclosure. For small value of   , a small amount of energy is seen to be 

taken away from the moving top wall; afterwards, energy is mainly transported by 

conduction regime inside the enclosure. Whereas due to escalation in value of 

Reynolds number the isotherms get stretched towards upper wall of the cavity. 

Smooth, monotonic and symmetric isotherm contour are seen in the enclosure against 

all values of Reynolds number. The magnitude of microrotation contours has been 

investigated to decrease by increasing the Reynolds number. 

Figure 4.5 expresses the influences of micropolar parameter   on streamlines, 

isotherms and micro-rotation of the flow. It is noticed that streamline rotation strength 

is a decreasing function of micropolar parameter  . When value of micropolar 

parameter is taken zero i.e. for the case of plain fluid, the effects of moving lid are 
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negligible and there appear two symmetric circulation cells in the cavity. However, 

when fluid becomes micropolar i.e. value of   is increased to 1 influence of moving 

lid becomes visible and cores of circulation cells are stretched a little upward while 

clockwise circulation cell is pushed down in upper portion of enclosure. When 

micropolar parameter R is further increased to 100, effects of moving lid becomes 

dominant and as a result a very weak counter clockwise secondary circulation cell 

appears near moving top wall in addition to two primary circulation cells. Magnitudes 

of stream function are observed to be          and      for         and    

respectively. Whereas isotherm contours are observed to stretched upward when value 

of R is increased. Isotherm lines get weaken with increase in R. 

Figure 4.6 contains the graphs for heat flow rate    against varying Hartmann 

number along horizontal walls of enclosure. It is noticed that heat transfer rate i.e.    

is minimum at edges along top horizontal wall and it increases while moving inward 

from edges achieving maximum value at the center of top boundary. Moreover, rising 

   augments the energy flow rate about top horizontal walls as represented in Figure 

4.6 (b), whereas along bottom wall value of    first decreases slightly and then 

increases by moving inward from corners of boundary and achieves its maximum at 

middle of wall making a wave like pattern. Contrary to the top wall energy flow rate 

decreases with augmentation in Hartmann number near central region of wall while 

near the edges of this boundary    increases with surge in   . 

Figure 4.7 shows results for local Nusselt number along top and bottom boundaries of 

the cavity against various values of Grashof number. It has been noticed that the 

escalation in    increases Nusselt number close to central portion of bottom 

horizontal wall while    decreases with increase in    near the edges of lower 

boundary where heat transfer rate follows a wave pattern along bottom wall. On 

contrary, energy flow rate    attenuates due to augmentation in Grashof number 

along top wall of the enclosure as shown in Figure 4.7 (b). 

Figure 4.8 describes the behaviour of heat transfer rate along top and lower horizontal 

boundaries of square enclosure for various values of micropolar parameter  . It is 

seen in figure that following the case of effects of Grashof and Hartmann numbers on 

heat transfer rate, curves are of wave shape along bottom wall in this case also. 

Increase in the value of   results into decrease of Nusselt number in the central 

portion of bottom wall while near corners of the wall an opposite effect of increase in 
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  is observed. Whereas throughout along top wall, augmentation in    is found with 

increase in values of   where curves follow bell shaped behaviour having minimum 

value at the edges and maximum at middle of the top wall. 

Figure 4.9 describes the behavior of overall heat transfer rate along top and lower 

horizontal boundaries of square enclosure against Grashof number for varying 

micropolar parameter  . Average Nusselt number is seen increasing with rise in 

micropolar parameter   along top wall. However, along bottom wall it increases with 

  up to          and for         overall heat transfer rate reduces due to 

augmentation in R. Whereas, average Nusselt number first decreases slightly and then 

escalates along bottom wall with augmentation in Grashof number against fixed value 

of   while along top wall, augmentation in    results into attenuation in average 

energy flow rate. 

Figure 4.10 shows the graphs for overall energy flow rate along upper and lower 

boundaries against Hartmann number for varying Reynolds number. It has been 

observed that with increasing the Hartmann number, overall energy flow rate first 

decreases and then increases for a fixed Reynolds number along with bottom and top 

walls. Whereas increase in Reynolds number is observed to augment overall energy 

flow rate along top boundary but the overall heat transfer rate reduces due to 

augmentation in    if          along the bottom wall. 

Figure 4.11 contains the graphs for average energy flow rate along top and lower 

boundaries of enclosure against Hartmann number for different micropolar 

parameter  . Figure shows that increase in the value of micropolar parameter   

augments the mean heat flow rate along top boundary against all    and also along 

bottom wall when         while for         average energy flow rate attenuates 

with augmentation in R. Whereas for large values of micropolar parameter e.g. 

(        ) magnetic field have insignificant effects on average heat transfer rate and 

curves appears to be straight line along bottom wall but for small   mean heat flow 

rate decreases with rise in   . Furthermore, increasing Hartmann number escalate 

average Nusselt number along top wall of enclosure for any fixed  .    
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Figure 4.2: Streamlines, isotherms and microrotations for Re=1, Pr=7.2, Ha=30 and 

(a) Gr=10
4
 (b) Gr=10

5 
(c) Gr=10
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(d) 

   

Figure 4.3: Streamlines, isotherms and microrotations for Re=1, Pr=7.2, Gr=10
5
 

and (a) Ha=0 (b) Ha=30
 
(c) Ha=60 (d) Ha=100 
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Figure 4.4: Streamlines, isotherms and microrotations for                 

    and (a)      (b)       
(c)        
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Figure 4.5 (a-c): Streamlines, isotherms and microrotations for          

                      and (a)       (b)        
(c)         
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Figure 4.6: Local Nusselt number against different values of Hartmann number 

along (a) Bottom wall (b) Top wall 
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Figure 4.7: Local Nusselt number against various values of Gr along (a) Bottom 

wall (b) Top wall 
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Figure 4.8: Local Nusselt number against various values of microrotation parameter 

along (a) Bottom wall (b) Top wall 
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Figure 4.9: Average Nusselt number for Grashof number against different values of 

microrotations number along (a) Bottom wall (b) Top wall 
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Figure 4.10: Average Nusselt number for Hartmann number against different values 

of Reynolds number along (a) Bottom wall (b) Top wall 
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Figure 4.11: Average Nusselt number for Hartmann number against different values 

of micropolar parameter along (a) Bottom wall (b) Top wall 
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4.4 Conclusions 

Present investigation contains numerical simulations for MHD mixed convective flow 

through micropolar fluid contained in a lid-driven square cavity subject to a uniform 

horizontal magnetic field when heat is supplied non-uniformly from bottom wall of a 

cavity. Equations governing the flow problem are modelled using laws of 

conservation of mass, linear and angular momentums and energy. Developed 

equations are first subject to penalty function to eliminate pressure term and then 

Galerkin weighted residual technique is applied to reduced equations which transform 

to a system of nonlinear algebraic equations. Afterwards, Newton Raphson method 

has been evoked to obtain the final solution of reduced nonlinear algebraic system. 

Computed effects are represented in the shape of streamline circulations, isotherms, 

isothermlines of microrotations, heat transfer coefficient (Nu) and overall heat transfer 

rate for wide range of governing parameters 

Our computations reveal that the strength of streamline circulations and 

microrotations gets increased with increase in Grashof number where increase in 

micropolar parameter, Hartmann and Reynolds number decreases the strength of 

circulations and isolines of microrotations. Convection heat transfer regimes are 

found dominant in the enclosure for large    and small   ,    and R. Along bottom 

wall, Nusselt numer (  ) is observed to decrease due to increase in Grashof number 

while increase in micropolar parameter, Hartmann and Reynolds number reduces the 

heat transfer rate in the cavity while opposite behaviour of Nu is seen along top wall 

for all parameters. Overall heat transfer rate along bottom wall is noticed to decrease 

with escalation in Reynolds number, Hartmann number and micropolar parameter 

while augmentation in Grashof number increases Average Nusselt number along 

bottom wall where opposite behavior of average Nu is observed along top horizontal 

wall of the enclosure. Prominent effects of moving lid are seen for small Grashof 

number and for large Reynolds and Hartmann numbers. 
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Chapter 5 

Heat Transfer through Hydromagnetic Ferrofluid inside a 

Square Cavity with Heated Obstacle  

This chapter comprises the numerical simulations of free convective heat transfer 

through ferrofluid contained in a square cavity affected by external magnetic field 

when a heated square block with different aspect ratios (            ) is placed 

at the centre of enclosure. Vertical boundaries of enclosure are assumed insulated, top 

wall is taken cold while bottom wall is heated uniformly. The square obstacle is 

present at the centre of cavity which also serves as heat source in fluid. The 

mathematical model is presented in the form of nonlinear PDE’s, which are simplified 

with the help of Galerkin finite element method. Results are shown against wide 

ranges of physical parameters like Prandtl, Rayleigh and Hartmann numbers etc. The 

heat transfer and fluid flow structures are noticed to be significantly dependent on 

strength of magnetic field, Rayleigh number and concentration of ferroparticles 

present in the base fluid. 

5.1 Problem Formulation 

A geometrical representation of the square cavity which is considered in this 

investigation is presented in Figure 5.1. The bottom boundary of enclosure is taken at 

a constant hot temperature    while top boundary is considered at cold temperature   , 

whereas side walls of the cavity are maintained adiabatic. A heated square block with 

different aspect ratios (            ) is placed at the centre of the square 

enclosure as presented in Figure 5.1. Gravitational force vector is supposed to be 

acting along negative   axis. All thermo-physical characteristics of fluid are 

assumed to be constant excluding density and Boussinesq approximation (Gray and 

Giorgini (1976)) is applied for the density variation due to temperature dependence of 

ferrofluid in the buoyancy term. The entire enclosure carries a mixture of base fluid 

(water) and nano-sized cobalt ferromagnetic particles. The ferromagnetic fluid is 

considered incompressible and laminar in this study. Thermo-physical properties of 

nanoscale ferromagnetic particles are presented in Table 5.1. Furthermore, magnetic 

force with magnitude B0 is acting along negative   direction. Here induced 
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magnetic field has been ignored being sufficiently small in comparison to applied 

magnetic field    under low-   approximation (Davidson (2001)) 

   

     

 B0 

           Cobalt with Water 

    

    

 

 

  

   

    

Figure 5.1: Geometrical representation of the present problem 

Assuming the boundaries of container be electrically insulated with no Hall effects, 

the damping factor    
   represents the total electromagnetic force; here   is vertical 

velocity component. Therefore, Lorentz force is a function of velocity component  . 

Subject to above described assumptions, the equations describing the heat and fluid 

flow for present investigation in the absence of viscous dissipation are expressed as 

follows: 

          (5.1) 

         
 

   
   

   

   
(       )   (5.2) 

         
 

   
   

   

   
(       )  

       

   
       

     
 

   
    (5.3) 

           (       )   (5.4) 

The assumed boundary conditions  

                                                                 

                                        

      
  

  
                          

 

 

(5.5) 

here u, v are velocity components along horizontal and vertical axis respectively, p 

represents the pressure,     be the density and     
dynamic viscosity of ferrofluid. 

The following dimensionless variables are defined to transform the given problem 

into dimensionless form: 
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(5.6) 

Above transformations are used in Eqs. (5.2)-(5.4), we get 

            
   

     
            (5.7) 
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            (5.9) 

The boundary conditions of the problems take non-dimensional form such as: 

                                                                

                                     

      
  

  
                         

 

 

(5.10) 

Here   ,    and    represents Prandtl, Hartmann and Rayleigh numbers respectively, 

U, V are dimensionless velocity components and   shows non-dimensional 

temperature. Where 

 
  

 
  

        
 (   )        (   )   (   )  

 
  

       
 
   

 
       (  

 (
  
  

  ) 

(
  
  

  ) (
  
  

  ) 
)  

 
  

       
 
   

 
 

    
   

(   )  
 
   

  
 

(      )   (     )

(      )  (     )
 

 

 

 

 

 

 

(5.11) 

The heat transfer rate (Nu) and overall heat transfer rate (  )for horizontal walls is 

defined as follows: 

    
   

  
( ∑   

 
   

   

  
)   (5.12) 
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(5.13) 

5.2 Grid Independence Test 

For the purpose of developing grid independent solution of the discussed problem, the 

numerical values of the computed average Nusselt number along top wall is 

demonstrated through Table 5.2 against different refinement levels of non-uniform 

initial mesh. It has been noticed that when number of elements are increased or by 

increasing the refinement level, the percentage error of the solution with the solution 
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at previous refinement level is decreased. It is as minimum as 1% at the fourth 

refinement level, therefore throughout the study, third refinement level is used for 

solution with 1776 number of 6-nodal triangular elements. 

5.3 Validation 

Once the grid independence is achieved, the code has been further authenticated by 

making a comparison of computed results with that of (Ho et al. (2010)). He carried 

out an experimental study on energy transfer through free convection within Al2O3- 

water nanofluid contained in square container. Table 5.3 shows the values obtained in 

experimental study through an explicit relation derived by (Ho et al. (2010)) for 

average Nusselt number and result computed by our code for different concentrations 

of nano-particles. Our results are found in a great agreement with the experimental 

findings achieved by (Ho et al. (2010)) and that gives us the confidence about the 

accuracy of developed code for solution. 

5.4 Results and Discussions 

This section contains the numerical results which are obtained by using Galerkin 

weighted residual technique. The comprehensive procedure related to Galerkin 

weighted residual method has been discussed in chapter 2. Numerical simulations for 

free convective flow via ferrofluid confined in a square domain with cold upper wall, 

insulated vertical walls and constant temperature profile at bottom wall. The heat is 

also provided through a square shaped block with different aspect ratios (i.e.      

       ) placed at the centre of enclosure. Obtained numerical results have been 

presented in the form of isotherms contours, streamline contours, heat transfer and 

overall heat transfer rates for different values of involved physical parameters 

including Rayleigh number (             ), Prandtl number          , solid 

volume fraction of nanoscale  ferromagnetic particles (              ) and 

Hartmann number (           ).  

Figure 5.2 (a, b) presents the influence of Ha on the flow and heat patterns for     

                                     Since bottom wall of square enclosure 

is provided with uniform heat and vertical side walls are taken adiabatic therefore 

fluid present near the centre of bottom wall becomes less dense due to high 

temperature at the wall and moves upward along the central vertical line around the 

blockage placed and comes back to lower region along vertical boundaries making 

two symmetric rolls of circulation, one counter-clockwise and another clockwise 
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rotation. Here counter-clockwise circulations are taken positive while clockwise 

circulations are considered negative. The direction of considered magnetic field use to 

play a dynamic role in transfer of heat and maximum heat flow rate has been found 

when the magnetic force is assumed parallel to thermal gradient.  

In left column of Figure 5.2 (a, b) streamline are shown for varying Hartmann 

number        and        . It is noticed that introducing magnetic field to the 

flow causes weaker streamline circulations in comparison of the flow without 

magnetic force. The greatest value of stream function is 0.3 in case of absence of 

MHD and 0.12 in the presence of MHD. The adverse effects of augmentation in 

magnetic field strength is caused by the fact that, increase in value of Ha results into a 

stronger induced magnetic field which causes increase in Lorentz force acting on the 

flow regime. Consequently, strength of flow current is decreased due to increase in 

the Lorentz force and ferrofluid, having magnetic particles bears high magnetic 

susceptibility gets intensively influenced by magnetic field. In right column of Figure 

5.2 (a, b), isotherms contours are displayed for varying        and 60 at       . 

It has been observed that the thermal boundary layer is developing as isotherm 

contours are seen to be parallel to top boundary. These isotherms are noticed to be 

nonlinear in the centre of a cavity between square blockage and vertical side walls. 

Furthermore, introduction of magnetic field results into the increase of temperature in 

flow field. 

Results in Figure 5.3 (a-c) are shown to analyse the effects of Rayleigh number on 

heat and fluid flow structures in the presence of MHD at        . Left column 

depicts the simulations of streamline circulations for varying Rayleigh number 

(             and     respectively). It has been noticed that two symmetric eddies 

(one clockwise and one counter-clockwise) are formed in the enclosure. Since the 

terms of Rayleigh number and Hartmann number have opposite signs in governing 

equation therefore these parameters have opposite effects on flow behavior. 

Furthermore, the heat and fluid flow structures are noted to get influenced more 

significantly by Rayleigh number in comparison to Hartmann number. Streamlines 

are noticed to have higher values of stream function as result of improved thermal 

conductivity of fluid due to presence of ferroparticles in the fluid. As consequence of 

the dominance of convection regime for large Ra stronger streamline circulations is 

observed and for large Rayleigh numbers circulation rolls get stretched in the region 
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between central blockage and vertical boundaries due to thermal buoyant force 

generated by heated walls. Magnitudes of streamline circulations are 0.12, 3.6 and 

17.6 for Rayleigh number    ,     and     
respectively. Right column of Figure 5.3 

(a-c)   isotherms are shown against various Rayleigh numbers when        . It has 

been observed that the isotherms appear smooth indicating conduction dominant 

regime inside the cavity for comparatively small Rayleigh number (        ), 

while increase in Rayleigh number causes distortion in isotherms showing better 

convection scenario in the enclosure. Parallel isotherms near upper wall of the cavity 

indicate the development of thermal boundary layer near top wall of the enclosure for 

all Rayleigh number. 

Influence of aspect ratio    on the thermal and flow fields are shown in Figure 5.4 (a, 

b), when          considering that there is no magnetic field. It has been observed 

that increase in aspect ratio causes dominance of conduction regime inside the cavity 

and isotherms are found clustered near upper wall for          in the middle of 

enclosure while for           the isotherms are distributed non-uniformly 

throughout the cavity showing better convection in the enclosure. The circulation 

vortices appears to be compressed along the vertical sides and centres of circulations 

are moved near upper left and right corners, however magnitude of rotation is reduced 

considerably when aspect ratio is augmented. Greatest values of stream function are 

    and     for            and     respectively. 

Figure 5.5 (a, b) contains plots for Nusselt numbers along horizontal walls for 

increasing values of horizontal distance along x-axis. It has been noticed that the local 

Nusselt number is maximum at the edges of lower horizontal boundary for the reason 

of temperature singularity occurring at these corners. Reduction in Nusselt number is 

seen while moving towards centre of bottom wall from edges and achieves lowest 

value at the centre of bottom wall, whereas surge of Ha results into reduction of heat 

flow rate along bottom wall. Opposite to this, local heat flow rate has been noticed to 

have minimum value at boundaries of cold top wall and it increases while moving 

inward achieving maximum value at the middle of the top wall. Furthermore, a better 

transfer of heat rate is seen in the absence of MHD effects (      ) while 

introducing MHD reduces heat transfer rate considerably. Furthermore, local Nusselt 

number is seen to attenuate with increasing strength of magnetic field along top wall 
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except for the region                        where increase in    increases the 

heat flow rate. 

Figure 5.6 (a, b) represents the effects of Rayleigh number on heat flow rate along 

horizontal boundaries of the cavity. It is evident in figure that heat flow rate first 

increases moving inward from both edges to 2 units of distance and then it decreases 

attaining minima at the middle of bottom wall. Increasing Rayleigh number causes 

escalation in heat flow rate for any fixed X whereas for comparatively small Rayleigh 

number, rate of flow of heat is noted to be constant against both upper and lower 

horizontal walls. Along top wall    is seen to increase moving inward from both ends 

and attains its maximum value at the center of the top wall. 

Figure 5.7 (a, b) compares the local Nusselt numbers for plain fluid (fluid without 

ferroparticles) and ferrofluid at bottom and upper walls. It is seen that along hot 

bottom wall heat transfer rates are similar for both plain and ferrofluid except minor 

difference as shown in Figure 5.7 (a), while along cold top wall, Nusselt number is 

significantly high in case of ferrofluid in comparison to that of base fluid as addition 

of ferroparticles to the plain fluid causes augmentation in thermal conductivity of 

fluid causing in higher Nusselt number. On the other hand, value of Nu decreases 

moving inward from both ends along bottom wall and achieves minimum value at 

centre of bottom wall while    rises moving inwards from both ends of top wall and 

achieves maximum value at middle of the upper wall. 

Figures 5.8 to 5.10 show the overall heat flow rate   ̅̅ ̅̅  against pertinent flow 

parameters for different values of Ha. It may be seen in Figure 5.8 (a, b) that when 

Hartmann number is increased,   ̅̅ ̅̅  is reduced along both lower and upper boundaries 

due to decrease in kinetic energy resulting from increase in Lorentz force but the rate 

of decrease is very slow along top wall as compared to that of bottom wall because of 

opposite temperature profiles present at two walls. Furthermore intensification of 

ferromagnetic particles causes increase in the average heat flow rate at both lower and 

upper boundaries. Augmentation in the average heat flow rate against concentration of 

ferromagnetic particles is more prominent for stronger magnetic field. This effect is 

because of higher suppression of buoyant flow of ferrofluid when concentration of 

particles is higher. The overall heat flow rate escalates proportional to increase in 

solid volume fraction against smaller Hartmann number.  
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Table 5.1: Thermo-physical properties of ferromagnetic particles 

 Base fluid 

(Water) 

Cobalt 

                   

                    

                  

                        

 (W/m.K) 0.05 1.602 10
7
 

 

 

 

 

Table 5.2: Overall heat transfer rate along top wall aainst different mesh sizes 

 

 

 

 

Table 5.3: Average Nusselt numbers for comparison between results obtained by (Ho 

et al. (2010)) and results obtained by our developed code 

 

 

Refinements Number of Elements    ̅̅ ̅̅̅ 
%Error 

1
st
 
 

111 2.4040 - 

2
nd

 
 

444 2.3941 0.4 

3
rd

 
 

1776 2.3893 0.2 

4
th

  7104 2.3869 0.1 

%cv     ̅̅ ̅̅ ̅ (Ho et al (2010))     ̅̅ ̅̅ ̅(Present study) %Error 

 1 32.2037 32.0903 0.35 

2 31.0905 30.9078 0.58 

3 29.0769 28.8528 0.77 
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Figure 5.2: Isotherms and Streamline contours against                , 

        (a)      and (b)       
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Figure 5.3: Isotherms and Streamline contours against               ,   

       (a)       ,  (b)        and (c)        



91 

 

 

 

Streamlines 

 

 

 

Isotherms 

  

 

(a) 

 

  

 

(b) 

 

Figure 5.4: Isotherms and Streamline contours against                   

           (a)         and (b)        
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Figure 5.5 (a, b): Nusselt number against distance along   axis for different Ha 

against (a) lower boundary (b) upper boundary 
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Figure 5.6: Nusselt number against distance along   axis for various values of 

Rayleigh number along (a) bottom wall (b) top wall 
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Figure 5.7: Nusselt number against distance along   axis for base fluid and 

ferrofluid against (a) lower boundary (b) upper boundary 
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Figure 5.8:   ̅̅ ̅̅  against Hartmann number for different   along (a) lower boundary 

(b) upper boundary 
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Figure 5.9:   ̅̅ ̅ against Rayleigh number for different    along (a) lower boundary 

(b) upper boundary 
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Figure 5.10:   ̅̅ ̅ against Rayleigh number for different   along (a) lower boundary 

(b) upper boundary 
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Figure 5.9 (a, b) depicts the combined effects of Hartmann and Rayleigh numbers on 

the Average Nusselt number along lower and upper boundaries of the container. It has 

been noticed that average heat flow rate gets insignificantly affected by Hartmann 

number when Rayleigh number is comparatively small i.e. for          while 

against higher   , Hartmann number influences the overall heat transfer rate 

significantly. The decay in overall heat flow rate against increasing    (as shown in 

Figure 5.9) is due to the increase in the strength of Lorentz force that causes 

attenuation in strength of low current in the container. Whereas against any fixed 

Hartmann number,   ̅̅ ̅̅   appears constant for smaller values of    while afterwards 

  ̅̅ ̅̅  is seen to rise with escalation in Rayleigh number.  

The combine effect of Ra and concentration of solid particles on average heat flow 

rate are presented in Figure 5.10 (a, b). It is investigated that up to certain values of 

Rayleigh number (         for bottom wall and            for top wall) the 

increase in the concentration of ferroparticles escalates the overall heat flow rate in 

container owing the fact that addition of ferroparticles rises the conductivity of 

ferrofluid and that is responsible for increased heat flow rate exchanged among heated 

boundary and ferrofluid. Whereas   ̅̅ ̅̅  is found to be a decreasing function of solid 

volume fraction of ferroparticles afterwards the above mentioned values of Rayleigh 

number. Opposite to this average heat transfer rate is seen to escalate with 

augmentation in Rayleigh number against any fixed solid volume fraction of 

ferroparticles, however this increase is significantly sharp after the above reffered 

values of Rayleigh number. 

5.5 Conclusions 

In this chapter, we discussed the numerical simulations to investigate two dimensional 

laminar flow of ferrofluid though a square enclosure considering uniform horizontal 

magnetic field where lower boundary is provided constant heat, top wall is taken cold, 

vertical side walls are insulated perfectly and a heated square blockage is placed with 

different aspect ratios (            ) at the centre of cavity. The solution of 

momentum, energy and mass conservation equations governing the flow problem is 

obtained using Galerkin weighted residual technique and resulting nonlinear algebraic 

system is subjected to Newton’s method. Results are shown against various ranges of 

solid volume fraction of nanoscale ferromagnetic particles, Prandtl, Rayleigh and 

Hartmann numbers.   
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It is observed that the intensification of strength of magnetic field weakens the 

strength of streamlines circulation and conduction regime is dominant in container for 

all Ha when Rayleigh number is taken small. Upsurge in Ra results in escalation of 

strength of streamline circulations while isotherms become highly distorted showing 

convection dominant regime in cavity for large Rayleigh numbers. Heat flow rate of 

ferrofluid is greater than that of plain fluid and increase in aspect ratio of square 

blockage reduces the magnitude of streamline circulations.   
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Chapter 6 

Thermal Energy of Hydromagnetic Ferrofluid Flow in a 

Square Cavity with Adiabatic Block  

The present chapter contains computational results for mixed convective energy flow 

in cobalt-based ferrofluid enclosed in a two-sided lid-driven container provided heat 

from left vertical moving boundary under MHD effects influenced by a source of heat 

generation/absorption when a square adiabatic block of different aspect ratios is 

located at the centre of the square container. The governing equations describing the 

heat transfer and fluid flow are exposed to penalty method first and after that reduced 

equations are simplified by Galerkin technique. The governing flow parameters are 

the concentration of nano-scale ferromagnetic particles (         ), Reynolds 

number (         ), Richardson number (          ), Hartmann number 

(        ) and heat generation/absorption coefficient (        ). The 

results of present investigation shows that the enhancements in heat transport occur 

due to presence of the block up to the certain block size. Streamlines recirculation 

cells suppressed and augmentation in heat transfer is remarkably high due to presence 

of an adiabatic block. The results also display that the arrangements of fluid and 

energy flows are significantly depends on the concentration of nano-scale solid 

ferromagnetic particles, heat generation/absorption coefficient, Richardson, Reynolds 

and Hartmann numbers.  

6.1 Geometrical Configuration and Governing Equations  

A geometrical representation of the square cavity which is considered in this 

investigation is presented in Figure 6.1. The width and length of the square container 

is represented by L and height of a container is supposed to be long enough so the 

investigation can be considered as two dimensional. It is assumed that vertical walls 

of the container are oscillating in their own plane in upward and downward directions 

respectively with the same speed    while rest of the walls is in static position. Side 

left and right walls of square container are maintained at a high and low temperature 

   and    respectively whereas the top and bottom walls are considered thermally 

insulated. An adiabatic square block with different aspect ratios is placed at the centre 

of the cavity which is used to modify the process of energy transport. The entire 
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enclosure carries a mixture of base fluid (water) and nano-sized cobalt ferromagnetic 

particles. The ferromagnetic fluid is considered as incompressible, steady and laminar 

in this study. The gravitational force is considered to act along negative   direction. 

By imposing the Boussinique approximation, a physical factor appears as a result of 

the density change in the momentum equation, where all other physical properties are 

supposed to be constant except for the density as a function of temperature. Moreover 

a uniform magnetic field is applied parallel to horizontal walls of the cavity. Here 

induced magnetic field has been ignored being sufficiently small in comparison of 

applied magnetic field    under low-   approximation (Davidson (2001)). 

Considering all boundaries of the container to be electrically insulated without Hall 

effects, magnetic term can be simplified to a restraining factor    
   (Garandet et al. 

(1992)). Therefore, electromagnetic force is a function of velocity component ( ) 

normal to magnetic field.  

                            y 
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Figure 6.1: Geometrical representation of the present problem 

By considering above assumptions and in the absence of viscous dissipation, 

equations describing the fluid and heat flows may be expressed in the following form: 
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subject to the following boundary conditions  

        
  

  
                     

        
  

  
                     

                                

                                

 

 

 

(6.5) 

where u, v represents velocity components in cartesian coordinates system, p be the 

modified pressure,     and     are ferrofluid ‘s density and dynamic viscosity. The 

definitions of non-dimensional variables and parameters incorporated to derive the 

dimensionless form of Eqs. (6.1)-(6.5) are as follows: 
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Above transformation is used in Eqs. (6.2)-(6.4), to get 
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The reduced boundary conditions are expressed in non-dimensional from as: 

                                

                                

        
  

  
                      

        
  

  
                     

 

         

 

(6.11) 

where Pr, Gr, Re, Ri and Ha represents the Prandtl, Grashof, Reynolds, Richardson 

and Hartmann numbers respectively. U and V are dimensionless velocity components, 

  shows non-dimensional temperature and Table 6.1 represents the properties of 

ferrofluid. 

The heat flow rate (  ) and average heat flow rate (  )for veritcal walls is defined 

as follows: 
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6.2 Results and Discussions  

The objective of present study is to obtain the numerical results for combined 

convection heat transfer through ferrofluid contained in a square container with 

constant temperature profile at left moving lid, cold right moving lid and insulated 

both horizontal walls in the presence of an adiabatic square blockage with various 

aspect ratios placed at middle of the cavity. The obtained results have been presented 

in the form of streamline contours, isotherm contours, Nusselt number and average 

Nusselt number against different ranges of the involved physical parameters including 

Richardson number (          ), Reynolds number (         ), solid 

volume fraction of ferromagnetic particles (         ), coefficient of heat 

generation or absorption (        ) and Hartmann number (        ). 

The selected ranges for the governing flow parameters involved in the flow problem 

(Reynolds, Grashof and Richardson numbers) represents the three flow regimes 

namely, free convection when     , forced convection when      and mixed 

convection when     . 

The effects of Hartmann number and adiabatic block on the fluid flow and heat flow 

structure have been presented in Figure 6.2 and Figure 6.3 respectively. It should be 

noted that Prandtl number, Richardson number, Reynolds number, solid volume 

fractions of nanoparticles and heat generation coefficient are fixed at               

and   respectively. Mixed convection is caused by the motion of side walls and by the 

influence of the buoyancy-induced flow at          and        as shown in 

Figure 6.2 (a). The fluid present near the heat source rises and flows down along with 

cold wall forming primary clockwise circulations within the enclosure when there is 

no block present as shown in figure. The strength of circulation of stream function in 

the central region of the enclosure reduces due to augmentation in block size. In the 

presence of block, the primary clockwise circulation cells of stream function are 

divided into two small vortices and secondary counter-clockwise circulation cells are 

also found near the central region of upper and lower horizontal walls of the cavity. 

On the other hand, augmentation in strength of magnetic force causes reduction in the 

magnitude of the stream function and flow becomes weaker. In general, influence of 
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magnetic force suppresses the flowing fluid structure due to the retarding effects of 

Lorentz force. Therefore, reduction in energy transport and fluid flow is expected for 

large values of Hartmann number. The influence of magnetic force and adiabatic 

block on heat flow in terms of isotherm lines is presented in Figure 6.3. Originating 

heat flow from the heated wall and rises up via top region of the enclosure isotherm 

lines reaches to the right cold wall where heat is released out finally with non-uniform 

decreasing rate along cold right wall of the cavity. The insulating block is a complete 

barrier to energy transport and significantly affects the temperature field. The 

presence of the insulating block destroys some contours of the isotherm because it 

acts as an internal flow boundary. The end of the isothermal profile on the surface of 

the block significantly changes the position of the isotherms compared to the case 

when block is not present. The end-to-end isotherm lines between the two side walls 

establish energy transport between the source and the heat sink. Furthermore, increase 

in magnetic force decreases the strength of isotherm lines and makes the flow 

smoother as compared to the case which has no magnetic force. 

Figures 6.4 and 6.5 depict the influence of centred block and Richardson number on 

fluid flow and energy transport arrangements while the other pertinent parameters are 

kept fixed at                  and         . From Eq. (6.3), it can be noticed 

that the sign of    is opposite to the sign of Ha in source terms which means that they 

have opposite effects on flow regime. As expected, due to heated left vertical lid and 

cold right vertical lid of square container, flowing fluid rise up through the heated 

portion and flow down along the cold side developing circulation cells inside 

enclosure. Figure 6.4 (a) reveals that the motion of the side walls causing forced 

convection flow at         , as buoyancy driven flow becomes weaker. Furthermore, 

flowing fluid near the left heated wall rises in upward direction and fluid present near 

the cold right wall compresses in downward direction due to motion of the lids and 

forced convection regimes are found dominant at the corners of the cavity. 

Streamlines are compressed and primary circulation cells have been divided into two 

parts due to presence of the block as shown in Figure 6.4 (a). As block size increases, 

the circulations strength of vortices in the central region of the cavity decreases due to 

the fact that the block reduces the effective volume of the fluid present in the cavity. 

Primary circulation cells are compressed towards the moving walls and secondary 

circulation cells are also observed near the top and bottom insulating walls of the 
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cavity. When Richardson number rises to   (Figure 6.4 (b)), the flow field is 

categorized by mixed convection dominant regime. The shape of the streamline 

circulation cells (Figure 6.4 (b) without block) mainly depends upon the values of 

Richardson number. The streamline circulation cells are found as stretched in 

elliptical shape at the comparable significance of natural and forced convection. 

Further increase in Richardson number upto 100 (Figure 6.4 (c)) leads to natural 

convection dominant regime as the forced convection flow is very weak, the 

buoyancy driven flow is generated due to the influence of the gravitational force and 

high temperature difference. The magnitude of the streamline circulation becomes 

very high which results into strong circulations and dominance of the natural 

convection. For the case of isotherm lines (Figure 6.5), aggregation of isotherms 

indicating a high temperature gradient occurs near the lower left corner and at the 

upper right corner. As mentioned earlier, the insulation module affects the isotherms. 

It is observed from Figure 6.5 that the isotherms are moving towards adiabatic block 

present in the cavity as if they were pulled or attracted. The adiabatic block attempts 

to maintain the same thermal state as imposed on cavity walls.  

Figure 6.6 shows heat transfer coefficient Nu against various values of Hartmann 

number along vertical moving walls. It has been noticed that heat transfer rate is 

maximum at the bottom edge of left heated moving lid where it reduces sharply while 

moving inwards and becomes minimum near the region of upper adiabatic wall. 

Contrary to case of cold moving right wall heat transfer rate achieved the maximum 

value near the upper wall of a cavity and it reduces with distance Y along the vertical 

right wall and reaches to its minimum value near the bottom of the right cold wall. 

Furthermore, increase in Hartmann number has significant effects on heat transfer rate 

along heated lid as shown in Figure 6.6 (a). Along both moving walls reduction in 

heat transfer rate is seen with increase in Hartmann number. Augmentation in 

Hartmann number causes stronger magnetic field, which results in a Lorentz force 

acting on a flow field. This force reduces the intensity of fluid flowing in a cavity. 

Figure 6.7 presents the effects of Richardson number on the heat transfer rate of 

heated and cold moving walls in opposite direction. It has been observed that Nusselt 

number is maximum near bottom region of left heated moving wall and it decreases to 

its minimum value near upper region of heated wall as shown in Figure 6.7 (a). 

Opposite to this in the case of cold moving wall heat transfer rate achieved its 

maximum value in upper region of the right cold wall and it decreases slowly to its 
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minimum value near bottom region of this wall as presented in Figure 6.7 (b). It has 

also been noticed that heat transfer rate increases with increase in the values of 

Richardson number, which also indicates that heat transfer rate is maximum in the 

case of natural convection and it is minimum in the case of forced convection for both 

heated and cold moving walls as presented in Figure 6.7.  

Figure 6.8 contains graphs for local Nusselt number along both moving walls against 

various values of Reynolds number. It has been noted that heat transfer rate along 

heated wall is maximum in the lower segment of heated wall and then it reduces to its 

minimum value at the top of it. Opposite to this, heat transfer rate is maximum at the 

upper region of the cold wall, after that it reduces to meet its minimum value at the 

lower segment of cavity as shown in Figure 6.8 (a, b). It has also been noticed that 

escalation in Reynolds number causes enhancement in Nusselt number significantly 

along heated and cold moving walls. 

Figure 6.9 describes the linear trends of average Nusselt number along moving 

vertical lids. It is seen through figure that overall heat transfer rate reduces with 

augmentation in Hartmann number and there is a slight enhancement in overall heat 

transfer rate due augmentation in Richardson number along left heated wall as 

presented in Figure 6.9 (a). Average Nusselt number along moving cold right wall 

also decreases with increase in Hartmann number. It can also be observed that there is 

approximately uniform distribution of average Nusselt number within the cavity. 

Figure 6.10 represents the overall heat transfer rate along left heated and right cold 

vertical moving lids against Hartmann number for different values of nano-scale 

ferromagnetic particles. It has been observed that augmentation in solid volume 

fraction causes reduction in overall heat transfer rate and increasing the strength of 

magnetic field also reduces average Nusselt number along heated lid and this rate of 

decrease is more significant when Ha > 10. Average Nusselt number is maximum in 

the absence of magnetic field and then it decreases monotonically under the influence 

of magnetic field to its minimum value as shown in Figure 6.10 (a). Similar behavior 

can be observed for the case of right moving cold lid.  

Figure 6.11 contains curves for average heat transfer rate along left heated lid and 

right cold lid against heat generation/absorption coefficient for various values of 

nano-scale ferromagnetic particles. It is observed that at         , the addition of 

nano-scale ferromagnetic particles slightly increases overall heat transfer rate. 

Whereas, by enhancing the values of heat source/sink coefficient   the average 
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Nusselt number becomes significant along heated wall as shown in Figure 6.11 (a). 

Furthermore, overall heat transfer rate is found to be more significant as compared to 

the case of heated wall.  It has also been observed that for the case of heat absorption 

i.e.      , overall heat transfer rate is observed as an increasing function. Contrary 

to this for the case of heat generation i.e.      , overall heat transfer rate is found to 

be a decreasing function.  

Figure 6.12 shows the graphs for average Nusselt number along both moving walls 

against Richardson number for various values of nano-scale ferromagnetic particles. It 

is shown through figure that for small value of Richardson number, addition of the 

nano-scale ferromagnetic particles slightly reduces the overall heat transfer rate along 

heated wall. Whereas, for the case of cold wall, this increment in overall heat transfer 

rate is more significant as compared to heated wall. While by increasing the values of 

Richardson number overall heat transfer rate is found to be an increasing function. 

Throughout the entire domain of Richardson number, average Nusselt number of base 

fluid is higher as compared to ferrofluid. From figure it is revealed that the use of 

nano-scale ferromagnetic particles provide better results in heat transfer than that of 

base fluid. 

Figure 6.13 contains the graphs for overall heat transfer rate for Hartmann number 

against various values of Reynolds number along both heated and cold moving walls. 

From figure, it has been noticed that at       , increase in values of Reynolds 

number results into an augmentation in overall heat transfer rate along both heated 

and cold moving walls. Furthermore, for the range of         for the case of     

   , overall heat transfer rate decreases and after         it becomes uniform. For 

other two cases i.e.          and         , average temperature gradient 

decreases sharply for certain range i.e.         and after that decrease is slight. 

Augmentation in Reynolds number causes enhancement in average temperature 

gradient along both heated and cold moving walls as shown in Figure 6.13.  
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Table 6.1: Applied formulation of nanofluid properties 

 

 

 

 

 
 

Table 6.2: Overall heat transfer rate along heated wall for block sizes (      ) 

 

Ferrofluid Properties Applied Model 

Dynamic viscosity  
  

 
  

        
  

Heat capacitance (   )        (   ) 
  (   )   

Density  
  

       
 
   

 
  

Thermal expansion coefficient                           

Thermal conductivity    

  
 

(      )   (     )

(      )  (     )
  

Thermal diffusivity     
   

(   )  
  

 

Electrical conductivity 
      (  

 (
  
  

  ) 

(
  
  

  ) (
  
  

  ) 
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     ̅̅ ̅̅  

      No 

Block 

                           

50 0.1 7.856 7.857 7.858 7.835 7.743 7.548 7.235 6.830 6.384 5.932 

 1 8.074 8.077 8.083 8.087 8.033 7.861 7.523 7.032 6.484 5.964 

 10 8.945 8.951 8.968 9.021 9.066 9.056 8.897 8.382 7.367 6.280 

 100 11.240 11.245 11.261 11.308 11.365 11.422 11.454 11.402 10.940 8.771 

100 0.1 14.158 14.165 14.187 14.259 14.279 14.130 13.717 13.019 12.144 11.233 

 1 14.340 14.347 14.372 14.454 14.523 14.487 14.219 13.550 12.488 11.355 

 10 15.644 15.653 15.676 15.748 15.836 15.911 15.917 15.718 14.818 12.612 

 100 18.944 18.947 18.959 19.002 19.102 19.148 19.192 19.231 19.128 17.927 

200 0.1 21.765 21.766 21.779 21.867 22.125 22.384 22.325 21.616 20.141 18.319 

 1 22.086 22.095 22.128 22.263 22.456 22.628 22.661 22.299 21.019 18.756 

 10 23.834 23.843 23.765 23.830 23.908 23.999 24.090 24.108 23.771 21.678 

 100 28.511 28.514 28.524 28.556 28.606 28.665 28.665 28.704 28.803 28.399 
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Figure 6.2: Contours of stream function against                        and 

(a)        (b)         
(c)         
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Figure 6.3: Isothermlines against                        and (a)        (b) 
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Figure 6.4: Contours of stream function against                         and 

(a)           (b)        (c)          
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Figure 6.5: Isothermlines against                         and (a)     

      (b)        (c)          



113 

 

 

 

(a) 

 

 

 

(b) 

 

Figure 6.6: Local heat transfer rate for various values of Hartmann number along 

(a) Left heated wall (b) Right cold wall 
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Figure 6.7: Local heat transfer rate for various values of Richardson number along 

(a) Left heated wall (b) Right cold wall 
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Figure 6.8: Local heat transfer rate for various values of Reynolds number along 

(a) Left heated wall (b) Right cold wall 
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Figure 6.9: Overall heat transfer rate for various values of Hartmann number 

against Richarson number along (a) Left heated wall (b) Right cold wall 
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Figure 6.10: Overall heat transfer rate against Hartmann number for various values 

nano-scale ferromagnetic particles along (a) Left heated wall (b) Right cold wall 
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(b) 

Figure 6.11: Overall heat transfer rate against heat generation/absorption 

coefficient for various nano-scale ferromagnetic particles along (a) Left heated wall 

(b) Right cold wall 
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(b) 

Figure 6.12: Overall heat transfer rate against Richardson number for different 

values of nano-scale ferromagnetic particles along (a) Left heated wall (b) Right 

cold wall 
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Figure 6.13: Overall heat transfer rate against Hartmann number for different 

values of Reynolds number along (a) Left heated wall (b) Right cold wall 
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(b) 

Figure 6.14: Overall heat transfer rate for different values of heat 

generation/absorption coefficient against Hartmann number along (a) Left heated 

wall (b) Right cold wall 
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Figure 6.14 shows the effects of Hartmann number and coefficient of heat 

generation/absorption on average temperature gradient along heated and cold moving 

walls. In general, magnetic field causes reduction in average temperature gradient. It 

is noted from the figure that for the case of heat absorption i.e.      , average 

Nusselt number is high and influence of magnetic field is small which represents a 

slight reduction in overall heat transfer rate. Opposite to this, for the case of heat 

generation i.e.      , both heat generation and magnetic field causes reduction in 

average temperature gradient which indicates that the large values of Hartmann 

number reduces the overall heat transfer rate significantly. It is also noticed that 

average Nusselt number is a decreasing function of Hartmann number along the left 

heated moving wall as shown in Figure 6.14 (a). Contrary to this, overall heat 

transfer rate is an increasing function along the right cold moving wall as it is 

decreasing with increasing in the values of heat generation/absorption coefficient as 

shown in Figure 6.14 (b). Furthermore, the average temperature gradient in the 

presence and absence of block for              and             are 

presented in Table 6.2. 

6.3 Conclusions 

Our computation reveals that the heat transfer process can be controlled with the help 

of an adiabatic block. It is investigated that block present with different aspect ratios 

severely affects the Nusselt number which depends upon the motion of the moving 

lid,   ,    and   . Augmentation in heat transfer up to a certain size of adiabatic 

block is noticed and further increase in block size causes reduction in heat transfer. 

Heat flow from left heated moving lid to the right cold moving lid is happened 

through well-defined energy transport phenomenon represented by the isotherm lines. 

In general, streamlines recirculation cells are strongly suppressed due to presence of 

an adiabatic square blockage. Heat transfer in the presence of block shows an improve 

trends for the range of              and             except for some 

exceptions. Convection heat transfer regime is found dominant in the enclosure for 

large Richardson number and small Hartmann and Reynolds numbers. Along both left 

and right moving walls, heat transfer rate is noted to reduce with augmentation in 

Hartmann number while enhancement in Nusselt number has been observed for 

increase in the values of Reynolds and Richardson numbers. Average temperature 

gradient reduces with increase in Hartmann, Richardson numbers and solid volume 
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fraction along both moving walls of a cavity. Augmentation in average temperature 

gradient is seen for the cases of heat generation/absorption coefficient with nano-scale 

ferromagnetic particles, Reynolds number and Hartmann number. It has also been 

observed that average temperature gradient along left hot wall reduces with 

augmentation in heat generation/absorption coefficient and Hartmann number. 

Opposite to this, enhancement in average temperature gradient is seen due to increase 

in heat generation/absorption coefficient along right cold wall. Prominent effects of 

moving lid are seen for small Richardson number and for large Reynolds and 

Hartmann number. 
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Chapter 7 

Heat Transfer in Flow of Nanofluid through Entrapped 

Porous Triangular Cavities 

In this chapter, Numerical simulations are carried out for free convective heat transfer 

through nanofluid saturated in entrapped triangular cavities enclosing porous medium 

has been discussed. Inclined walls of cavities are taken cold while horizontal walls are 

assumed to be heated uniformly. Numerical results obtained are shown in the form of 

flow patterns, isotherms, temperature gradient and average temperature gradient for 

wide range of physical parameters including solid volume fraction, porosity 

parameter, Darcy, Prandtl and Rayleigh numbers. 

Most of results presented in this chapter are obtained using nanoparticles of copper 

because the combination of water-Cu nonofluid returns better heat transfer rate as 

compare to other combinations (Al2O3 and TiO2). This investigation shows that the 

Darcy and Rayleigh numbers produce noticeable effects on flow patterns and 

temperature distribution in both cavities. Increasing Darcy and Rayleigh numbers 

increase the strength of streamline circulations. Similarly, overall heat transfer rate    

along the inclined walls of lower triangular enclosure is found increasing function of 

Rayleigh and Darcy numbers. Further it is seen that the local heat transfer rate    is 

maximum at the edges of horizontal boundaries of the cavities and it decreases while 

moving toward centre from edges. 

7.1 Problem Formulation 

Configuration considered in this investigation consists of laminar, steady state, two 

dimensional natural convective fluid flows within two entrapped triangular porous 

cavities as presented in Figure 7.1. The porous medium enclosed in two entrapped 

triangular cavities is full of nanofluid composed of a combination of     and    

spherical nanoparticles. It is supposed that the inclined and horizontal walls of the 

cavities are maintained at uniform temperatures    (cold) and    (hot) respectively. 

With the help of Boussinesq approximation (Gray and Giorgini (1976)), variation in 

the density of fluid with respect to temperature of fluid accounts for a body force term 

within governing Naver-Stokes equation. Furthermore, the temperature of fluid and 

solid sections in the porous region is equal and therefore Local Thermal Equilibrium 
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(LTE) is applicable in this study (Nield and Bejan (2006)). The fluid is considered to 

be Newtonian, viscous and incompressible. Furthermore, there is no slip between base 

fluid and particles of nanofluid. Table 7.1 shows the thermo-physical properties of 

water and nanofluid. 
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Figure 7.1: Geometrical description of the problem 

Under the above suppositions and by using the laws of conservation of mass, 

momentum and energy, the governing equations of the current problem might be 

expressed in dimensional form as: 
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where u and v be the components of velocity along x and y axis  respectively,   be the 

pressure,   is the porosity of the medium and it is supposed to be constant (     ). 

The following non-dimensional variables are introduced to non-dimensionalize 

equations governing the boundary value problem (7.1)–(7.4). 

  
 

 
   

 

 
   

  

  
   

  

  
   

   

     
    

    

     
    

  

  
    

    
          

  
 

    
 

  
   

 

              

(7.5) 

We get the following non-dimensional form as: 

             
    

     
                

       
   (7.6) 
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The dimensionless boundary conditions in the form of velocities U, V and temperature 

  are as follows: 
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The dimensionless heat transfer coefficient    may be computed for heat transfer 

analysis in free convection flow in an enclosure. The local Nusselt number for lower 

and upper triangle can be expressed in the form of temperature field as  

(a) Entrapped lower triangle 
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(7.10) 

(b) Entrapped upper triangle 
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(7.11) 

The overall heat transfer rate    is computed by integrating Eqs. (7.10) and (7.11) for 

the horizontal and inclined walls as follows 
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(7.12) 

7.2 Results and Discussions  

This section contains numerical results and their analysis for free convection through 

permeable entrapped triangular cavities filled with nanofluid when inclined and 

horizontal walls are maintained at uniform cold and hot temperatures respectively. 

The results are obtained and shown in terms of graphs for streamline contours, 

isotherm contours, heat transfer rate    and overall heat transfer rate    for wide 

range of involved physical parameters like Darcy number (            
) and 

Rayleigh number (          
), while Prandtl number, porosity   and Solid 

volume fraction   are fixed at 6.2, 0.4 and 0.1 respectively. 
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Figure 7.2 (a-c) shows the graphs for streamline circulations and isotherms contours 

at       ,        ,      ,       and           
. It is evident from 

this figure that there are significant effects of Raylegh number on flow patterns and 

heat transfer in the cavity. It is noted that near the centre of bottom wall of lower 

triangle, fluid rises up and after reaching to the top of lower triangle it comes down 

along inclined walls forming two symmetric rolls of clockwise and counter-clockwise 

circulations. Similarly two symmetric rolls of concentric circulations are seen in upper 

triangle also. Here positive values are used to show the heights of counterclockwise 

circulation contours and negative values are used to show the heights of clockwise 

circulation contours. Furthermore, the increase in Rayleigh number causes increase in 

the strength of both (clockwise and anticlockwise) circulations where the strength of 

circulation is increased more significantly in the lower triangle with increase in 

Rayleigh number as compare to that in upper triangle. The magnitude of maximum 

values of streamline contours       are        and 4 in upper triangle,        and    

in lower triangle for        ,     and     respectively as shown in Figure 7.2 (a-

c). On the other hand, isotherm contours for small Rayleigh number appears to be 

smooth and monotonic showing conduction dominant regime as shown in Figure 7.2 

(a). When Rayleigh number is increased to 10
6
 isotherms in lower triangle starts 

stretching upward to top and isotherms in upper triangle gets compressed slightly to 

top horizontal wall of upper triangle. Increasing Rayleigh number further to 10
7
 

results into deformed isotherms in lower triangle showing convection dominant 

effects and a plume like flow pattern is formed in lower triangle where stratification 

of isotherms is seen near top horizontal wall of upper triangle due to which there were 

less significant effects on streamline circulation in upper triangle as compared to the 

effects on streamline circulation in lower triangle. 

Figure 7.3 shows the graphs for streamline circulation and isotherms contours for two 

values of Darcy number          and         respectively where Ra, Pr, 

porosity   and solid volume fraction   are fixed at    ,         and     respectively. 

It is noticed that increase in Darcy number results in stronger streamline circulations 

in both clockwise and anticlockwise directions and change in the values of Darcy 

number affects circulation contours in lower triangle more prominently. Magnitude of 

highest value of streamline        is noted to be       and     in upper triangle and 

      &     in lower triangle for          and      respectively as shown in 
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Figure 7.3. On the other hand, an isotherm seems to be symmetric about vertical line 

passing through the centre of horizontal walls of upper and lower triangles. It is seen 

that for small value of Darcy number, isotherms are smooth and monotonically 

distributed in the enclosure and when Darcy number is decreased to 10
-5

 isotherms 

appears to be slightly pushed upward from near the centre of bottom wall in lower 

triangle while in upper triangle isotherms are compressed a little towards top wall in 

upper triangle. 

Figure 7.4 contains the graphs for local Nusselt numbers along horizontal and 

inclined walls of enclosure against increasing values of distance for three different 

Rayleigh number        ,     and     respectively where Prandtl number   , 

Darcy number Da, Porosity   and solid volume fraction   are fixed at    ,     ,     

and    . Since horizontal walls of both, upper and lower triangular cavities are 

considered at a constant temperature (   ) while inclined walls are taken cold 

therefore, there appears a jump type discontinuity at the vertices of horizontal walls of 

upper and lower triangular cavities. It is due to the fact that the two walls coinciding 

at these vertices are at different temperature. This discontinuity has been given special 

attention and is dealt according to (Ganzarolli and Milanez (1995)). Temperature at 

these corners nodes is taken to be the average temperature of horizontal and 

corresponding side walls. However, the adjacent nodes are taken at corresponding 

boundary wall temperature to avoid singularity. In left column of Figure 7.4 (a), 

symmetric distribution of local Nusselt numbers has been observed along the top 

horizontal wall of upper triangle and value of Nusselt number Nu is noticed to be 

maximum at both edges of the horizontal wall due to the singularity appearing at these 

vertices. While moving toward centre from there corners, Nusselt number decreases 

and attains minimum value at the centre of horizontal wall. Furthermore increasing 

Rayleigh number increases local Nusselt numbers monotonically for a fixed value of 

Distance X near the central area (         ) of horizontal wall and Nu is straight 

horizontal line in this region for a fixed value of       , where Nusselt numbers 

for other Rayleigh numbers coincide for        and      . Similarly for the 

lower triangle, local Nusselt number is observed maximum at edges of horizontal 

bottom wall due to the singularity there and it decreases while moving toward centre 

from the corner edges and attains its minimum value at the centre of horizontal wall, 
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while for a fixed value of distance   local Nusselt number Nu increases with 

increasing values of Rayleigh number as shown in right column of Figure 7.4 (a).  

Figure 7.4 (b) shows local Nusselt numbers along inclined side walls of triangular 

cavities. Since both inclined walls are taken cold (at the same temperature), therefore 

curves for both inclined wall are identical and thus we had shown Nusselt number 

along any side wall of each triangular enclosure. It is observed that local Nusselt 

number     increases slowly when distance is increased along inclined walls of upper 

triangular cavity upto     but     increases significantly sharp for        . 

However, increasing Rayleigh number increases Nus non-significantly up to         

and contrarily Nus decreases with increase in Ra afterwards as shown in left column 

of Figure 7.4 (b). While in lower triangular cavity, Nus decreases sharply upto 

distance       and afterwards it changes slowly with increase in distance for 

       and    , but for        Nus increases in the region           and 

then it decreases afterwards. 

Figure 7.5 depicts the graphs for average Nusselt numbers along horizontal and 

inclined walls of upper and lower triangular enclosures against Darcy number Da for 

various values of porosity   by keeping other parameters fixed. It is seen from left 

column of Figure 7.5 (a) for the upper triangle that the overall heat transfer rate along 

horizontal wall    
̅̅ ̅̅ ̅̅  first decreases slightly and then increases with increase in Darcy 

number Da where for a fixed value of Da, overall heat transfer rate    
̅̅ ̅̅ ̅̅  decreases 

with increase in porosity   along left half of upper horizontal wall while reverse 

behavior is seen along right half of this wall. Whereas for lower triangle, overall heat 

transfer rate    
̅̅ ̅̅ ̅̅  along horizontal wall increases with increase in Darcy number Da 

and for a fixed value of   ,     
̅̅ ̅̅ ̅̅  increase with increase in porosity parameter   as 

shown in right column of Figure 7.5 (a). In left column of Figure 7.5 (b), similar 

behavior of overall heat transfer rate is seen along inclined side walls of lower 

triangular enclosure while along the side walls of upper cavity, overall heat transfer 

rate is observed to increase upto             and then decreases afterwards with 

increase in Darcy number where increasing values of porosity parameter   increases 

the overall heat transfer rate      
̅̅ ̅̅ ̅  against the entire range of Darcy parameter. 

Figure 7.6 (a) shows the plots for average Nusselt numbers using combination of 

water to different nanoparticle including Cu, TiO2 and Al2O3 with water as base fluid 

against increasing values of solid volume fraction  . It has been evidently seen in the 
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figure that increasing solid volume fraction increases the heat transfer rate and 

comparatively highest heat transfer rate is returned with copper (  ) nano particles. 

Figure 7.6 (b) shows the ratio effect of average Nusselt number with different nano 

particles to the average Nusselt number with    nano particles     ̅̅ ̅̅     
̅̅ ̅̅ ̅̅  against 

volume fraction parameter and it is found that the quantitative effects of solid volume 

fraction   on the ratio   ̅̅ ̅̅     
̅̅ ̅̅ ̅̅  are maximum for the case of water-   nonofluid. 

Figure 7.7 shows the effect of overall heat transfer rate along horizontal and inclined 

walls of upper and lower enclosures against Rayleigh number for various values of 

solid volume fraction  . It has been noticed that along top horizontal wall of upper 

cavity and inclined walls of lower cavity, average Nusselt numbers increase with 

increase Rayleigh number. While for a fixed value of   , increase in average Nusselt 

numbers is observed with increase in the value of solid volume fraction. Similarly 

increase in Rayleigh number increases average Nusselt number along bottom wall of 

lower cavity and along inclined walls of upper cavity while for a fixed value of   , 

average Nusselt number is observed to increase with increase in the value of   .   

 

 

Table 7.1: Thermo-physical properties of pure water and nanoparticles  

Physical 

Properties 

 water               

               686.2 765     

               4250 3970 8933 

              8.9538 40     

               0.9 10
-5

 0.85 10
-5 

          

                  30.7 10
-7

 131.7 10
-7
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(c) 

Figure 7.2: Streamline and isotherms contours for                      

      and (a)       , (b)       , (c)        
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Figure 7.3: Isotherms and streamline contours for                       

     and (a)        , (b)          
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Upper Triangle Lower Triangle 

  

 

(a) 

 

  

 

(b) 

Figure 7.4: Nusselt number against distance for different values of   , where 

                           and (a) Horizontal wall, (b) Inclined side 

walls 



134 

 

  

Upper Triangle Lower Triangle 

  

 

(a) 

 

  

 

(b) 

Figure 7.5: Overall heat transfer rate against Da for various values of porosity (a) 

Horizontal wall, (b) Inclined side walls where for                     
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(b) 

 

Figure 7.6: (a) Overall heat transfer rate (  ̅̅ ̅) and (b) ratio of overall heat transfer 

rate to overall heat transfer rate with water-Cu nanoparticles (  ̅̅ ̅   ̅̅ ̅ ) against solid 

volume fraction   for different nanoparticles 
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Upper Triangle Lower Triangle 

  

 

(a) 

 

  

 

(b) 

Figure 7.7: Overall heat transfer rate (  ̅̅ ̅) against    for various values of solid 

volume frction (a) Horizontal wall, (b) Inclined side walls where for    
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7.3 Conclusions 

This chapter deals with natural convection through water-   nanofluid saturated in 

porous medium filled in entrapped triangular cavities, when inclined walls of cavities 

are considered cold and horizontal walls are taken at constant temperature. We first 

applied penalty method to the governing momentum equations to eliminate pressure 

terms and then reduced momentum equations along with energy equation are solved 

using Galerkin weighted residual technique of finite element method. As a result we 

get a system of nonlinear algebraic equations which is solved iteratively using 

Newton- Raphsom method. Numerical results are obtained for wide range physical 

parameters including Rayleigh number Ra, Darcy number Da, Prandtl number Pr, 

Porosity parameter   and Solid volume fraction  . 

Obtained results revealed that increase in Rayleigh number increases the strength of 

clockwise and counter clockwise streamline circulation in both the upper and lower 

triangular cavities. It is noted that more significant effects of Rayleigh number are 

observed in lower cavity. For small   , conduction regime is dominant while for large 

value of Rayleigh number heat transfers through convection and isotherms are 

observed to form plume like flow. Similarly increasing Darcy number also increases 

the strength of streamline circulations and it increases comparatively more sharply in 

lower triangular enclosure then that of upper enclosure. Furthermore average Nusselt 

number is found to be an increasing function of    along the inclined and horizontal 

walls of lower cavity. Where along horizontal wall of upper cavity,    
̅̅ ̅̅ ̅̅  increases and 

along inclined walls    
̅̅ ̅̅ ̅ decreases with increase in   .  Local Nusselt number 

decreases with increase in distance along inclined wall of lower cavity. On the other 

hand water-Cu nonofluid is observed to returns better heat transfer rate comparison to 

that of water-     and water-      nanofluids.        

 

  



138 

 

Chapter 8  

Heat Transfer in Hydromagnetic Flow of Micropolar 

Nanofluid through Entrapped Triangular Cavities  

The present chapter conveys numerical computation for mixed convection heat 

transfer through entrapped triangular enclosures saturated with a micropolar 

nanofluid. The horizontal upper and lower walls of the enclosures are moving with 

uniform velocity and these are subjected to uniform heat however inclined walls are 

kept cold. Equations describing the flow are first subjected to the penalty function and 

then resultant equations are simplified with the help of Galerkin variational method of 

finite element analysis. The pertinent flow parameters with their ranges under 

discussion are solid volume fraction (         ), Hartmann number (     

   ), Richardson number (         ), Reynolds number (        ), 

microrotation coefficient (      ) and heat source/sink coefficient (      

  ). The results of the present investigation show that the structures of heat flow are 

dependant significantly upon heat generation/absorption coefficient, solid volume 

fraction of nanoparticles, microrotation parameter, Reynolds, Hartmann and 

Richardson numbers. Effects of moving walls are more prominent for small values of 

Hartmann number, large values of microrotaion parameter and Richardson number. 

Average temperature gradient is remarkably high for small values of Hartmann 

number against bottom wall and large values of Hartmann number against top wall. 

Obtained solutions are illustrated through graphs of isotherms, local and average heat 

transfer rates. 

8.1 Problem Formulation 
The present configuration of flow problem consists of two entrapped triangular 

cavities filled with incompressible laminar micropolar nanofluid and magnetic field is 

applied in the direction parallel to horizontal axis. It is supposed that the top and 

bottom horizontal lids are moving with uniform velocity   . Furthermore, horizontal 

top and bottom lids of enclosure are subjected to heated uniformly where both 

inclined walls are taken cold as shown in Figure 8.1. The fluid within entrapped 

triangular cavities is micropolar water based nanofluid filled with solid spherical 

nanoparticles of   . Nanofluid is considered to be incompressible and the flow is 
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supposed to be steady, laminar and two dimensional. The particles of nanofluid are 

assumed to be in thermal equilibrium within base fluid. Furthermore, there is no slip 

between base fluid and particles of nanofluid. Fluid’s density is considered to be 

function of temperature and the density variation causes a body force term in 

governing expressions after applying Boussinesq approximation (Gray and Giorgini 

(1976)). It is further supposed that magnetic field B with constant magnitude    is 

applied along direction parallel to   axis. In this study, viscous, radiation and joule 

heating effects are neglected with no Hall effects and induced magnetic field is also 

ignored being very small as compared to    under low-   approximation (Davidson 

(2001)).  

                                      D   Th                           E      U0 

 

     B0 

                                                Tc                        Tc     g                    

   y    B  

 

                                                     

  Th        

                                       U0 

                                      A                       Th                             C       x   

Figure 8.1: Graphical representation of the flow domain 

Under these assumptions, governing conservation of mass, linear momentum, angular 

momentum and energy balance equations are modeled in dimensionless form as: 
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The boundary conditions of the governing flow problem in dimensionless form are 

expressed as: 
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 The dimensionless heat transfer coefficient    may be computed for heat transfer 

analysis in free convection flow in an enclosure. The Nusselt number can be 

expressed in the form of temperature field as  

    
   

  
(
  

  
)   (8.7) 

 

where   represents the direction normal to the plane. 

The average Nusselt numer    is computed by integrating Eq. (8.7) as follows 

   
∫      
 
 

   
  

 

 
∫     

 

 
   (8.8) 

8.2 Results and Discussions 

This portion contains the results for mixed convective flow through two entrapped 

triangular enclosures containing micropolar nanofluid in the presence of horizontal 

external magnetic field when horizontal walls are provided with uniform heating 

while inclined walls are considered cold. The effects are represented in the shape of 

plots for isotherms, heat transfer rate and average Nusselt number for wide-ranging 

pertinent flow parameters including heat generation coefficient, Reynolds number, 

Richardson number, Hartmann number and microrotation coefficient etc. 

Figure 8.2 includes the plots of isotherm contours for varying values of Hartmann 

number where         and   are fixed at           and   respectively. It is 

observed that a surge in the strength of Lorentz force causes attenuation in the 

gradient of temperature within the cavity which is consequence of low currents due to 

enhanced magnetic strength. The isotherm contours gets straighten near the horizontal 

sides of an enclosure indicating the development of thermal boundary layer for large 

values of Hartmann number. Furthermore, smooth and monotonic isotherms against 

large Ha are due to the dominance of conduction regime inside entrapped enclosures. 

Figure 8.3 shows the local heat transfer rates for varying Hartmann number where 

        and   are fixed at           and   respectively. Figure reveals that along 

bottom wall of the enclosure, heat transfer rate increases with increase in the values of 

Hartmann number upto a certain value of distance and afterwards behavior of Nusselt 

number gets reversed. Similarly the magnitude of heat flow rate decreases due to 

                                         

 

 

(8.6) 
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increase in strength of magnetic field upto certain distance along top wall and 

afterwards reversed behavior of heat transfer rate is observed along top wall of the 

enclosure. Figure 8.4 illustrate the influence of variation in K on the heat flow 

structures in the entrapped cavities where values of Ri, Re, Ha and Q are fixed at 0.01, 

10, 30 and 1 respectively. The isotherm contours are noted to be smooth and 

monotonic for smaller values of K showing the dominance of conduction regime 

within the enclosure while increase in the value of K escalates influence of convection 

inside the cavity. The straightened isotherm contours near the upper and lower walls 

of the enclosure indicate the development of thermal boundary layer near these 

boundaries. Figure 8.5 depicts the effects of variation of K upon the heat flow rates 

along lower and upper horizontal walls of entrapped cavities. These graphs reveals 

that heat transfer rate is maximum at the edges of the lower horizontal wall and it 

attenuates non-symmetrically while moving inward from corners of the boundary and 

this non-symmetric reduction is due to motion of wall whereas reverse behavior of 

heat transfer rate is seen along the upper horizontal wall of the enclosure. No 

significant effects of change in the value of K on the rate of heat transfer along both 

horizontal boundaries of cavity are observed. Figure 8.6 illustrate the effects of 

variation in Richardson number on the heat flow structures where values of Re, Ha, K 

and Q are fixed at 10, 30, 1 and 1 respectively. Increase in the value or Richardson 

number increases the heights of isotherm contours which indicate that convection heat 

transfer regime gets dominant for that case. Whereas this nonlinear behavior of 

isotherms near the horizontal walls of entrapped cavities corresponds to the motion of 

these walls. Figure 8.7 examines the nature of heat flow rates against horizontal 

boundaries of cavity for different values of Richardson number where the other 

pertinent parameters are kept fixed. It is noticed that heat flow rate is maximum at the 

edges of the lower wall and it reduces non-symmetrically while moving inward from 

corners of the wall and this non-symmetric reduction is due to motion of wall whereas 

reverse behavior of heat flow rate is observed along the upper wall of the cavity. The 

straightened isotherm contours near the upper and lower walls of an enclosure 

indicate the development of thermal boundary layer near these boundaries. Figure 8.8 

corresponds to the effects of average heat flow rates along bottom and top boundaries 

for various values of solid volume fraction of solid particles and strength of magnetic 

field where values of        and    are fixed at        and      respectively. It has 

been noticed that increase in the values of solid volume fraction increases the overall 
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heat transfer rate along lower wall and increasing strength of magnetic field reduces 

average Nusselt number along lower wall of the enclosure whereas along upper wall 

of enclosure reverse behavior of overall heat flow rate is noted for both Hartmann 

number and solid volume fraction.  Figure 8.9 expresses the influence of varying 

solid volume fraction and   on overall heat transfer rate along bottom and top 

boundaries where values of         and    are fixed at           and    

respectively. It has been seen through graphs that with increase in heat generation 

coefficient, the overall heat flow rate decreases along lower wall and increase in the 

concentration of solid particles causes increase in overall heat flow rate along lower 

wall, whereas along upper boundary, opposite behavior of overall heat transfer rate is 

observed for both heat generation coefficient and solid volume fraction. Figure 8.10 

shows the behaviour of overall heat transfer rate along horizontal boundaries for 

varying Hartmann number and heat generation coefficient where values of      and 

   are fixed at      and      respectively. It is noticed that overall heat flow rates 

attenuates with augmentation in both   and    along the bottom wall of container 

whereas along top wall of the enclosure increase in heat generation coefficient and 

strength of magnetic field results in escalation of average Nusselt number. Figure 

8.11 contains the graphs for average Nusselt number against variation in strength of 

magnetic field for different values of Reynolds number where Richardson number, 

coefficient of heat generation and microrotation coefficient are fixed at        and 

  respectively.  Along bottom wall, average heat flow rate is noted to decrease with 

increase in Hartmann number and rate of this decrease is significant for large 

Reynolds number whereas augmentation in Reynolds number escalates over all heat 

flow rate for any fixed value of   . Along top wall, opposite behaviorin average heat 

transfer rate is noted against both Reynolds and Hartmann numbers.    
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Figure 8.2: Isotherm contours for varying    where                   and 
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Figure 8.3: Local Nusselt number for varying    where                   

and     
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Figure 8.4: Isotherm contours for varying   where                     and 
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Figure 8.5: Local Nusselt number for varying   where                     

and     
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Figure 8.6: Isotherm contours for varying    where                   and 
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Figure 8.7: Local Nusselt number for varying    where              

   and     
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Figure 8.8: Average Nusselt number for varying solid volume fraction and    where 
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Figure 8.9: Average Nusselt for varying solid volume fraction and   where    
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Figure 8.10: Average Nusselt number for varying   and    where           
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Figure 8.11: Average Nusselt for varying    and    where         and 
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8.3 Conclusions 

This investigation comprises numerical study for MHD mixed convective heat flow in 

entrapped triangular cavities enclosing copper-based micropolar nanofluid in the 

presence of heat generation/absorption when uniform heat is supplied to both top and 

bottom oscillating lids of a container while inclined sides are maintained as cold. 

Equations describing the flow are modelled by using principles related to 

conservation of mass, linear momentum, angular momentum and energy. Penalty 

function is employed to eliminate pressure gradient terms from the governing 

expressions and then reduced equations of linear momentum along with angular 

momentum and energy equations are subjected to the Galerkin weighted residuals 

technique which results into a system of nonlinear algebraic expressions and that 

system is further simplified with the help of Newton Raphson technique to obtain a 

numerical solution. Obtained numerical results are shown against different values of 

pertinent flow parameters in the shape of isotherm contours, Nusselt and average 

Nusselt numbers. Our computations reveal that the transfer of energy process can be 

controlled through concentration of solid particles. Heat flows from top and bottom 

moving lids to the cold inclined walls of a cavity through well-defined energy 

transport phenomenon and is represented by isothermal lines. It is noticed that the 

augmentation in Hartmann number causes decrease in overall temperature gradient 

along bottom moving wall of the lower enclosure. Contrary to this, along top moving 

wall of the upper enclosure, augmentation in Hartmann number results into an 

enhancement in overall temperature gradient. Conduction regime is dominant for 

small values of microrotation parameter and large values of Hartmann number and 

convection regime is dominant for large Richardson number. Augmentation in 

concentration of solid particles enhances overall temperature gradient along bottom 

wall whereas overall heat transfer rate decreases along upper wall for large values of 

solid volume fraction.  
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