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Preface

Convective heat transfer through cavities of various geometrical shapes is an
important research area because of its significant practical and engineering
applications. Most of time, energy flow with respect to natural or mixed convection is
considered in engineering system for example, solar ponds, dynamics of lakes,
cooling of electronic devices, heating and cooling buildings, thermal hydraulics of
nuclear reactors, growth of crystals, chemical reactors, production of float glass, heat
exchangers and food processing etc. In most of cases, several of such practical flow
conditions of energy transport and fluid flow take place in an enclosure in which flow
is produced by buoyant force, shear force or both together. Shape of the cavities plays
a dynamic role in transfer of heat in order to obtain higher energy transport rates. This
dissertation comprises of the investigations regarding natural and mixed convective
energy transport in triangular, rectangular, square and entrapped triangular enclosures
containing different type of fluids in vacuum or flows through saturated porous
medium. Furthermore, present study also contains the studies on heat transfer through
pure fluid, micropolar fluid, nanofluid and ferrofluid enclosed in the cavities.
Investigations are performed against different shapes of cavities subjected to the
various thermal boundary conditions. In this dissertation, Galerkin weighted residual
technique of finite element analysis is applied to solve governing nonlinear coupled
partial differential equations (e.g. conservation of mass, linear momentum, angular
momentum and conservation of energy) for the pure fluid or fluids saturated in porous
media against different velocities and thermal boundary conditions.

The first chapter mainly includes basic definitions related to heat transfer phenomena,

non-dimensional quantities and some basic laws considered in this study. This chapter



also includes a brief literature review on cavity flows. The detail of numerical scheme
used in this dissertation is also provided in this chapter.

Chapter two contains numerical simulations of free convection heat transfer through
fluid saturated in the isosceles triangular porous medium influenced by magnetic
force. The inclined walls of an isosceles triangular cavity are supposed to be heated
uniformly/non-uniformly. Effects of involved flow parameters are shown through
graphs of streamline contours, isotherm contours, heat transfer rate and average heat
transfer rate. The investigation presented in this chapter is published in Zeitschrift
fir naturforschung A (ZNA) 70 (11) (2015) 919 - 928.

Computational study of natural convection energy transport through liquid gallium
saturated in porous medium enclosed in square cavity influenced by inclined magnetic
force has been performed in chapter three. Bottom wall of the cavity is considered to
be heated uniformly, top wall is taken insulated, left side of enclosure is heated
linearly and right side is subject to linear heating or taken cold. Governing nonlinear
coupled partial differential equations are solved by using Galerkin weighted residual
method and obtained results are presented through graphs. The study presented in this
chapter has been published in Thermophysics and Aeromechanics 25 (3) (2018).
Chapter four comprises numerical simulations of mixed convection through
micropolar fluid contained in square cavity influenced by constant magnetic field.
Bottom wall of the cavity is subject to non-uniform heating profile while remaining
walls are maintained at low temperature. Numerical results are computed
incorporating Galerkin method of finite element technique against different values of
involved parameters in terms of micropolar parameter, Grashof, Reynolds and
Hartmann numbers. The investigation considered in this chapter is published in

Journal of Molecular Liquids 249 (2018) 831 - 842.



Numerical simulations of free convective heat transfer affected by external magnetic
field through ferrofluid contained in a square cavity when a heated square blockage
with different aspect ratios is placed at the centre of enclosure have been discussed in
chapter five. Results are shown against various ranges of physical flow parameters
such as Hartmann, Prandtl and Rayleigh numbers. This chapter is published in
International Journal of Thermal Sciences 125 (2018) 419-427.

Chapter six includes computational results for mixed convective energy flow in
cobalt-based ferrofluid enclosed in a two-sided lid-driven square container provided
heat from left vertical moving boundary under MHD effects influenced by a source of
heat generation/absorption when a square adiabatic block of different aspect ratios
located in a center of a square container. The obtained numerical results against flow
parameters such as nano-scale ferromagnetic particles, heat generation/absorption
coefficient, Hartmann, Reynolds and Richardson numbers are shown through graphs
of streamlines, isotherms, local and average heat transfer rates. The findings of this
chapter are accepted for publication in The European Physical Journal Plus (2018).
Numerical computations for free convective heat transfer through nanofluid saturated
porous medium in entrapped triangular cavities have been discussed in chapter seven.
Inclined walls of cavities are taken cold while horizontal walls are assumed heated
uniformly. Obtained numerical results are shown in the form of flow patterns,
isotherms, temperature gradient and average temperature gradient for wide range of
physical parameters including solid volume fraction, porosity parameter, Darcy,
Prandtl and Rayleigh numbers. The outcomes of this chapter are submitted in
Advances in Mechanical Engineering for possible publication.

Chapter eight conveys the mixed convection heat transfer within entrapped triangular

enclosures saturated with a micropolar. The horizontal upper and lower walls of the



enclosures are moving with uniform velocity and these are subjected to uniform heat
however inclined walls are kept as cold. The pertinent flow parameters under
discussion are solid volume fraction, Hartmann number, Richardson number,
Reynolds number, microrotation coefficient and heat source/sink coefficient.
Obtained solutions are illustrated through graphs of isotherms, local and average heat
transfer rates. The contents of this chapter have been accepted for publication in

Canadian Journal of Physics (2018).
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Nomenclature

A Height of the heated/adiabatic block, m
Ar Aspect ratio (Ar = %), m
B Micropolar parameter
B, Magnetic induction, Tesla
Cp Specific heat, kgLK
Da Darcy number
g Gravitational acceleration, m/s?
Gr Grashof Number
H Cavity height, m
Ha Hartmann number
j Micro-inertia density
k Thermal conductivity
K Permeability of porous medium
Ky Microrotation coefficient
L Cavity length
N Microrotation, m
Nu Nusselt number
p Modified pressure
P Non-dimensional pressure
Pr Prandtl Number
Qo Heat generation/absorption
Q Non-dimensional heat generation/absorption
Ra Rayleigh number
Re Reynolds Number
Temperature

. Temperature at cold wall
T, Temperature at cold wall
(u,v) Dimensional velocity components
u,v) Non-dmensional velocity components
Uy, Vo) Velocities of moving walls



V

(x,y)

X, Y)

Greek Symbols

a

B
14

V1
AT

e

Subscripts

f
ff
nf

S

Velocity field

Dimensional Cartesian coordinates

Non-dimensional Cartesian coordinates

Thermal diffusivity

Coefficient of thermal expansion
Penalty parameter

Spin-gradient viscosity
Temperature difference

Porosity parameter
Non-dimensional temperature
Vortex viscosity

Dynamic viscosity

Kinematic viscosity

Local density

Characteristic density

Electrical conductivity

Solid volume fraction

Base functions

Non-dimensional stream function

Internal Domain

Base fluid
Ferrofluid
Nanofluid

Solid particles



Chapter 1

Preliminaries

This chapter contains some qualitative concepts of convective heat transfer, Non-
dimensional numbers, fundamental laws, mathematical models and numerical study
related to the research presented in this dissertation. The comprehensive literature
survey from the very beginning of the heat transfer in enclosures/cavities has also

been included for better understanding of the readers.

1.1 Convective Heat Transfer

Generally convective heat transfer, indicated as simply convection in which energy is
transmitted from one place to another because of the movement of fluid particles.
During the process of heat transfer in liquid and gases, convection is found dominant.
In most cases it is referred as a distinct mode of heat transfer. Instead of this
combination of convection and conduction is known as convective transfer of heat.
The heat transfer rate (q) can be measure with the help of given formula:

q = —hA(Tsurface — Teo), (1.1)
here T surrace represents the surface temperature, T, be the ambient temperature, A be
the surface area and h is convection coefficient. The convection coefficient is a
measure of how effectively a fluid transport energy away and towards the surface. It
depends on the factors such as velocity, viscosity and density of a flowing fluid. Heat
transfer coefficient usually has greater values for the fluids having higher velocity
and/or higher density.

Here, we can distinguish between three types of convection

Q) Natural convection

(i) Forced convection

(iii)  Mixed convection
1.1.1 Natural Convection
Transfer of heat through natural convection is a heat transfer among the surface and
fluid flowing over it and fluid movement is caused by the buoyance force that arises
because of changes in density due to temperature variations. In natural convection,
fluid expands when temperature increases and density decreases. Since hot fluids are

less dense or more buoyant than cold fluid, therefore when a hot surface is in contact
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with surrounding fluid, its molecules disperse and distributes within the domain,
which then arises because of buoyancy force. Then hot fluid molecules are exchanged
by cold fluid molecules. Similarly, cold substances will draw energy away from the
flowing fluid over the surface, which then collapse because of augmentation in fluid
density. The molecules of cold fluid are then exchanged by the molecules of the hot
fluid, originating convective flows. Familiar examples related to natural convection
are hot body and circulations of fluid in a pot subject to the heated from below and
flow of air because of fire.

1.1.2 Forced Convection

In forced convection flows, motion of fluid is caused by other than buoyant forces or
by means of some external forces such that fan or pump. Thermal expansion of fluid
may also be an example of forced convection. The term forced convective heat
transfer is only applicable to flows in which the influence of buoyant forces is
unimportant. Generally forced convective heat transfer is more effective as compared
to natural convective heat transfer because of the faster velocity of a flowing fluid.
Most common example related to forced convection is water pump placed in an

automobile engine.

1.1.3 Mixed Convection

The buoyance force arises due to change in temperature which originates the flow in
natural convective heat transfer, it also exist when there is a forced convective heat
transfer. During forced flows, the effects of buoyancy forces are usually negligible. In
many cases, buoyancy forces have a significant influence on heat transfer and flow
rates. In such cases, transfer of heat around the body is a mixture of natural and forced
convective heat transfer flows and this phenomenon is called combined or mixed
convective heat transfer flow.

Convective heat transfer is involved in many engineering applications e.g. cooling
and heating of buildings, cooling and heating of electronic components in computer,
cooking, thermal control of reentering spacecraft, generation and condensation in a
thermal power plant and cooling and heating of the cutting tool during a matching
operation.



1.2 Basic Equations

1.2.1 Law of Conservation of Mass

The mass conservation law yields the so-called continuity equation. The continuity
equation states that mass cannot be created or destroyed. Continuity equation may be
obtained by using the law of conservation of mass and expressed mathematically as:

dp (1.2)
—+ V.(pV) =0.
o, T V()
For steady and incompressible flows equation (1.2) becomes
V.(V) =0. (1.3)

1.2.2 Law of Conservation of Momentum

Each particle of fluid obeys Newton’s second law which is at rest or in steady state or
accelerated motion. This law states that the quantity of net external forces applied on
a set of particles must be equal to the time rate of change of the momentum of a set of
particles. Newton’s second law of motion acting on fluid particles may be defined

mathematically as:

p%zv.‘c+f, (14)
where T represents the Cauchy stress tensor which may be written as:
O xx Tyx Tox
Ty Oyy Ty |, (1.5)
Tz Tyz Oz

here o, 0y, and o,, denotes normal stresses along x,y and z —axis directions
respectively, while all remaining elements in symbol T with different subscripts given
in Eq. (1.13) represents shear stresses.

For micropolar fluid in the absence of the body forces, momentum equation along
with law of angular momentum becomes

_dN (1.6)
pior = Y.V(V.N) —y,V X (VX N) + kV X V — 2kN,

where N and V are micro-rotation and velocity vectors, j is gyration parameter of the
fluid, x and y, are vortex viscosity and spin gradient viscosity respectively.

1.2.3 Law of Conservation of Energy
The energy conservation law, which is also known as energy equation may be

described mathematically as:



DT 1.7
Py o = V. (KVT) + QoAT, (1.7)

where p represents density of fluid, c, be the specific heat, T be the temperature of

fluid and @, be the heat generation/absorption coefficient.

1.2.4 Maxwell’s Equations

Expression of Maxwell’s equations represents law like other well-known laws for
example gravitational law. A magnetic field is generated due to the production of
electric current and if this current changes with respect to time it will cause the
generation of electric field. Mathematically we may express Maxwell’s equations as:
VE=0,V.B=0,

oB (1.8)
VXE=——"VxB =

These Maxwell’s equations are valid only in the case of displacement current is
ignored.

1.25 Ohm’s Law

J =o(E+VxB). (1.9)
In above Equation J represents the electric current density, o be the electric
conductivity, E be the electric field in vector form, V be the velocity vector of the

moving charges and B be the magnetic field vector.

1.3 Non-Dimensional Quantities

The following numbers are the common non-dimensional numbers which are used in

fluid mechanics as well as in this dissertation.

1.3.1 Reynolds Number (Re)

Reynolds number may be expressed as a relationship between inertial and viscous
forces thus making Reynolds number useful for predicting the nature of the flow
(Laminar, Turbulent or transition) thus making some approximations valid by
knowing nature of the flow. Mathematically, it can be expressed as:

inertial force UL (1.10)

Re = . - )
viscous force v

where U represents the speed of moving surface, L be its length and v is kinematics

viscosity of the fluid.



1.3.2 Prandtl Number (Pr)

Ludwig Prandtl a German physicist, introduced Prandtl number as a dimensionless
parameter which also represents the ratio of viscous diffusivity to thermal diffusivity.
In mathematics, it may be defined as:

viscous diffusivity v cpu (1.11)

"= thermal diffusivity o«  k
where ¢, denotes the specific heat, a be the thermal diffusivity, k be the thermal

conductivity and u be the dynamic viscosity.

1.3.3 Grashof number (Gr)
The ratio of buoyant forces to the viscous forces acting on fluid particles is known as
Grashof number, named by the German engineer Franz Grashof. Mostly it occurs
during the study which involves natural or free convection and is similar to the
Reynolds number (Re). Mathematically, Grashof number denoted by

r = buoyancy forces _ gPATL3 (1.12)

)

viscous forces v?
where g represents the gravitational acceleration, L be a length of the cavity, g be

coefficient of thermal expansion, AT be temperature difference and v be the kinematic
viscosity
1.3.4 Rayleigh Number (Ra)
In fluid dynamics Rayleigh number is represented as non-dimensional parameter and
it is also associated with buoyancy driven flow. The magnitude of the Rayleigh
number is a good indicator of either natural or free convective boundary layer is
turbulent or laminar. Mathematically, it represents the product of Prandtl number (Pr)
and Grashof number (Gr) may be expressed as:

buoyancy _gBATLv (1.13)
viscous X rate of heat diffusion vZi a

1.3.5 Richardson Number

Lewis Fry Richardson first introduced Richardson number as a non-dimensional

Ra = GrPr =

parameter and it also associated with buoyance forces and inertial forces. It represents
the ratio between the buoyant forces to the inertial forces. If the Richardson number is
very small nearly equal to zero then buoyancy force becomes unimportant in the flow.
On the other hand dominance of buoyance force occurs if it is much greater than
unity. If it is equal to one then the flow is expected to be buoyance driven flow.

Mathematically it can be written in the form:

10
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Gr _ buoyance force  gBATL (1.14)
ReZ  inertial force = UZ? °

1.3.6 Nusselt Number (Nu)

German mathematician Nusselt, introduced Nusselt number as a non-dimensional

Ri =

parameter which is also expressed as a ratio of convection mode to conduction mode
under same conditions. Furthermore, it is used to investigate heat transfer rate
numerically at boundaries between the surface and flowing fluid. Nusselt number is
close to conduction and convection of same magnitude and it also described as
laminar flow. Mathematically, it is defined as follows:

Convective heat transfer  hL (1.15)

)

4= Conductive heat transfer  k
here h represents heat transfer coefficient, L be cavity length and k be thermal

conductivity of the flowing fluid.
In differential form it can be expressed as:

_96 (1.16)
- ax’
where 6 represents the non-dimensional temperature.

Nu

The average Nusselt number may be measured by performing integration on equation

(1.8) over the range of interest, which can be expressed mathematically as:

Nu = %J‘OH Nu(y)dy. (1.17)

1.4 Methodology

The fluid flows proposed in this study will be considered via two dimensional Navier-
Stokes equations which are represented by the set of nonlinear partial differential
equations. The nonlinearity occurs due to convective part in Navier-Stokes equations.
This is due to the reason why Navier-Stokes equations are difficult and are even
impossible to solve analytically. There are several circumstances in which fluid flows
may be associated with Navier-Stokes equations such as the fluid flowing inside or
around a pipe, flow in a channel, blood flow, flow inside a cavity, airflow around a
wing and many more. Recently, there are several numerical schemes which are in use
by various investigators to simplify these equations numerically e.g. finite difference
scheme, Keller box method, spectral method, finite volume technique, Lattice
Boltzmann simulation and finite element method. All these approaches are in wide
use to obtain numerical results of linear or nonlinear flow problems. It has been

noticed that the finite element technique is established as a precious tool for solving

11
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Navier-Stokes flow problems particularly where complex geometrical domains or
thermal conditions on boundaries are involved in comparison with other numerical
and analytical methods through which computing accurate solution is difficult or
impossible. To show this numerical methodology is more consistent, we can
summarize the advantages and disadvantages of these methods in few words as
follows:

Finite difference technique is very easy to implement and in programming for the
domain which may be divided in rectangles of equal dimensions. However, it has
major drawbacks because it is difficult for the curved domain, secondly it has difficult
convergence analysis and stability and finally, it is very difficult in mesh adaptation,
which is essential in future, investigation. The finite volume scheme depends on the
physical conservation laws of the system to be studied. It is problematic on the
unstructured meshed and its convergence analysis and stability are difficult as for
finite difference method. Opposite to this, finite element method is high in accuracy
and provides easy treatment for the complex boundary conditions with complex

geometries.

1.5 Finite Element Method (FEM)

FEM is a powerful numerical tool to analyze the nonlinear or linear differential
equations. It mainly assists the finding of the numerical results of the boundary value
problems for nonlinear or linear differential equations. In this method, a large domain
is subdivided into collection of smaller, simpler domain using mesh levels called
finite elements. Basically this method is an easy presentation of whole domain (Reddy
(1993)).
1.5.1 Galerkin Weighted Residual Method
Explaining the observation numerically, the Galerkin weighted residual method is
used in finite element scheme. Final calculations are easily originated by combining
the local system into global system with set of elements. Moreover, Galerkin method
is also compatible for linear and non-linear coupled partial differential equations. For
convergence, both Newton Iteration method and Jacobi method are applicable through
finite element coding (Atalla and Sgard (2015)).

e Define the strong formulation of governing equations.

e Multiply both sides of the governing equations by weighted function also

called test function w with given test space W where w e .
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Use integration by parts method to distribute the higher order of differentiation
among the test function w and unknown function U.

Evaluate the boundary integral values via induction of weighted function to
fulfill the essential boundary conditions and also unknown functions are used
to fulfill natural boundary conditions called as variational formulation.
Generate mesh which divides the entire domain into non-overlapping elements
depending upon the dimensions used for present problem.

Approximate the infinite dimensional trial space U, V and test space W by
finite dimensional spaces U, V, and W,, respectively where U, (finite
dimensional space) U (solution space).

Choose basis functions ¢4, ¢,, ..., ¢5 of wy, so that every weighted function
wy, € Wy, can be written as wy, = Y.V, w;@; € W),

Find u;, € Uy, such that

N
a(up,w,) =bwy) Vw,= Z wip, eWp
i=1

= a(up, @;) = b(¢;), where (i = 1,2,3,...,N).

Substituting u;, = Zj-vzlujq)j , in above equation gives a linear system, that is

N
a(Z w; ,<pi> = b((pl.), fori= 1,2,3,...,N.

j=1

N
= Za(%,tpi)uj =b(¢;), for i=1,23,..,N.
=1

where u; are the solution values at the points. Separate into linear b(w) and
bilinear forms a(u, w).

(AU = B) is transformed which assembles the algebraic equations by varying
i and j in row and column wise.

Penalty Method

The penalty model is very similar to Lagrange multiplier method that allows us to

reformulate the constrained problem into unconstrained problem. In this method, we

use continuity equation to obtain pressure distribution (Reddy and Gartling (2010)) by

introducing penalty parameter y as follows:

(6u+
Y\ox dy

av) - (1.18)

13



For large value of y i.e.y > 0, the continuity equation is satisfied automatically.
Penalty function allows us to eliminate pressure terms from momentum equations by

incorporating this function into the momentum equations.

1.6 Literature Survey

Natural convection is an important heat transfer phenomena. Based on geometry and
flow structure, natural convection may be categorized as internal or external. While in
an internal flows, moving fluid is covered by the solid boundaries. The flowing fluid
inside the duct or a pipe is a common example of internal flow systems. Opposite to
this in the case of external flows solid objects are surrounded by the flowing fluid.
Flows over the sphere, cylinder and flat plate are example of external flow systems.
However, thermal flow fields and essential hydrodynamic coupling complicates
natural convective flows. Mostly internal flow arrangements are complex as compare
to external flow arrangements. The arrangements of external flow may be modeled
with the help of classical boundary layer concept by using the assumption that solid
boundaries do not affect the region outside of boundary layer (Bejan (2013)). On the
other hand in case of internal convective flows, the collaborations between core and
boundary layer create a considerable complication in the problem.

The internal convective flow arrangements depending upon the thermal boundary
conditions can be categorized into two classes (a) enclosures heating through bottom
wall in which gradient of temperature is in the same direction of gravitational force
(b) enclosures heating through side walls which means that gradient of temperature is
perpendicular to the direction of gravitational force (Bejan (2013)). Rayleigh-Benard
convective flow within the two infinite parallel horizontal plates is related to class (a)
and natural convective flow within the differentially heated enclosures is related to
class (b). Furthermore, various thermal conditions may be incorporated with the
permutation of differential and Rayleigh-Benard heated from different parts of walls
and many more. Different sorts of heating configurations within the internal
convective flow involved in many engineering applications e.g. heat exchanger
(Haese (2002)), solar purification systems (Dayem (2006)), lubrication systems
(Payvar (1991)), electronic equipment of cooling (Chiang (1991)), solar energy
collectors (Joudi (2004)), melting and solid fraction process (Kalaiselvam (2008) and
Wang (2010)), electric ovens (Mistry (2006)) and many others.
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A natural convective flow in a square, rectangular, triangular or any regular or
irregular shapes of enclosure has been investigated experimentally, analytically and
numerically in the literature. These investigations are mostly based upon the influence
of thermal boundary conditions, medium in which energy is transferred and aspect
ratios of heated medium on natural convective flow. These type of investigations are
studied by (Hoogendoorm (1986)), (Ostrach (1972) and (1988)) and (Fusegi and
Hyun (1994)). (Ayden et al. (1999)) has been reported the influence of aspect ratios
on heat and fluid flows insides a rectangular shape of an enclosure subject to the
heated side walls and cooled ceiling with the help of stream function vorticity
formulation. Later, free convective flow inside a rectangular enclosure subject to the
non-uniform temperature profile on ceiling top wall and an insulated condition
applied on side and bottom walls has been inspected by (Sarris et al. (2002)). They
observed that the augmentation in thermal penetration depth and fluid circulation
intensity with increase in aspect ratios. (Basak et al. (2006)) reported the natural
convective heat transfer flow affected by thermal boundary conditions inside a square
enclosure with the help of penalty finite element analysis. They investigated
augmentation in average Nusselt number against uniform heating case as compared to
non-uniform heating. Natural convective flow affected by the distributed within the
square cavity via heatline approach has been studied by (Kaluri and Basak (2010)).
Their analysis revealed that the thermal mixing and heat distribution in an enclosure is
highly augmented in the case of disseminated heating as compared to isothermally
heated from lower side.

A lot of research works on free convective transfer of heat in cavities through
complex geometries besides regular shapes such as rectangular/square had been stated
within literature because of their uses in several engineering problems (Philip (1982),
Lee (1984) and Hyun and Choi (1990)). Mathematical modeling of the combination
of thermal fields and hydrodynamic of buoyancy in complicated geometries are quit
challenging. As a result, researchers conducted significant studies on natural
convective heat transfer inside the non-rectangular cavities through wavy side walls,
inclined, curved and triangular for last two decades. Some of previous research on
free convective heat transfer within different non-rectangular cavities is noted below.
First, (Philip (1982)) obtained exact solutions against low Rayleigh number within the
natural convective heat transfer with different geometries of different shapes e.g.
triangular, elliptic and rectangular cavities. He studied, flow field affected by the
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orientation and aspect ratios of a cavity and was reported that the convective flows are
not depending upon the orientation of a cavity at small Rayleigh number. (Lee (1984))
analyzed numerical and experimental studies related to convection energy transfer and
fluid motion inside a differentially heated non-rectangular cavity. He presented in his
analysis that flow and thermal characteristic are affected by the inclination, aspect
ratios of a cavity and Rayleigh number. One of the interesting results in his
investigation was that overall heat transfer rate manages maximum and minimum
values at the inclination angles of 180° and 270° respectively. Transient free
convection heat transfer inside a parallelogram shape of cavity for large Rayleigh
number with the help of finite difference scheme has been studied by (Hyun and Choi
(1990)). Their study revealed that the probability of employing the parallelogram
shape of cavity as a thermal diode for controlling the angle of inclination of an
enclosure. (lyian et al. (1980)) presented natural convection transfer of heat inside a
trapezoidal cavity having similar cylindrical upper and lower boundaries maintained
at different temperature profiles and plane side walls considered as adiabatic. Natural
convective flow contained in isosceles trapezoidal enclosures has been studied by
(Karyakin (1989)). (Verol et al. (2009)) explored free convective flow contained in
trapezoidal cavities in which inclined walls kept as cold temperature. A detail review
related to natural convective flow inside triangular cavities is studied by (Kamiyo et
al. (2010)). The main purpose of their study based on complete variety of buoyancy
flow regimes within triangular shaped cavities. Furthermore, the influences of
different thermal boundary conditions, Rayleigh number and pitch inclination on a
heat and fluid flows were also reported comprehensively.

Moreover, laminar free convective heat transfer within right angled triangular
enclosure full with air subject to the heated vertical side, inclined side as cold and
insulated horizontal side has been carried out by the (Ridouane et al. (2005)). They
employed finite volume technique and investigated that the heat and fluid flow
affected by apex angle 5°-63° for different Rayleigh number 10°-10°. Laminar free
convective transfer of heat in an isosceles triangular enclosure subject to the cold
horizontal side with heated inclined sides has been investigated by (Kent (2009)).
Later, (Kent et al. (2007)) executed numerical analysis to investigate phenomena of
free convective transfer of heat in air contained in right triangular cavity.
Furthermore, (Sahar et al. (2007)) presented tilted triangular cavity filled with air
subject to the discrete bottom heating. (Basak et al. (2007)) reported natural
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convective flow inside the right triangular cavity subject to thermal boundary
conditions (a) linear or uniform heating vertical and cold inclined walls (b) linear or
uniform heating inclined and isothermally cold vertical walls with the help of penalty
finite element scheme. Later, (Basak et al. (2007)) extended their work to investigate
the free convective flow within isosceles triangular enclosure affected by the two
dissimilar circumstances of thermal boundary conditions (i) isothermally cold bottom
wall with inclined walls are heated uniformly and (ii) isothermally cold bottom wall
with inclined walls are heated non-uniformly. (Koca et al. (2007)) investigated free
convective flow in air filled triangular enclosure affected by the Prandtl number by
emplying finite difference scheme. Further, (Verol et al. (2006)) numerically explored
free convective flow within a triangular cavity with the presence of heater on vertical
wall where remaining segment of this wall is supposed to be insulated. (Basak and co-
workers (2009), (2010), (2010) and (2017)) also studied free convective flow
phenomenon with the visualization of heat flow within triangular cavity via heatline
method.

A number of research works studied the large collection of applications related to
convective flows inside the porous cavities, which include grain storage and dying
(Togrul (2003)), thermal insulation (Kodah (1999)), thermal energy storage systems
(Dhifaoui (2007)) and many more. Such studies on natural convective flows inside
rectangular or square cavities full of porous media may be observed in the recent
work (Trevisan (1986), Lage (1993), Song (1994), Bin Kim (2001) and Hossain
(2002)). Natural convection through vertical slot packed with the porous media has
been reported numerically and analytically by (Trevisan and Bejan (1986). They
analyzed the correlation of average heat and mass transfer for buoyancy effects
governed by both concentration and temperature variation within porous media at Le
=1. Afterwards, (Lage and Bejan (1993)) has been investigated that natural convective
flow inside a porous enclosure affected by pulsating heat input. They reported
numerical experiment for Rayleigh number varying within 10°-10°, Prandtl number
0.01-7 and dimensionless frequency range 0-0.3. Natural convective flow inside a
rectangular cavity partially saturated with anisotropic porous media is investigated
experimentally and theoretically by (Song and Viskanta (1994)). They noticed that
energy and fluid flow affected by anisotropic flow characteristics of a porous media.
(Kim et al. (2001)) analyzed free convective flow inside a porous square cavity by
considering Brinkman-extended Darcy simulation. They investigated that in
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conductive dominant system, the porous section acts as a solid block of energy
generation. The result shows that there exists a convection regime of asymptotic
nature in which the flow is approximately free from the conductivity and permeability
of porous media. Unsteady laminar free convective transfer heat in a flowing fluid
soaked in a porous rectangular cavity subject to the heated lower side, non-
isothermally left side and right and ceiling sides kept as cold temperature has been
studied by (Hossain and Wilson (2002)). The results obtained during their study
represent the Nusselt number at the walls and volumetric flow rate are decreases with
augmentation in porosity. Two dimensional free convective flows inside porous right
angled triangular enclosure subject to fluctuating left wall are carried out by the
(Bharadwaj et al. (2013), (2015) and (2015)) . Convective heat transfer of flow within
two entrapped cavities is also visualized by (Basak et al. (2010)). A number of
qualitative research investigations contained free convective transfer of heat in porous
triangular enclosures ((Varol et al. (2007), (2008), (2009) and (2011)), (Basak et al.
(2008), (2010), (2011) and (2013)), (Baytas (1999)) and (Moukalled et al. (2010))).
The buoyance forces that rises due to the temperature differences and which cause the
fluid flow in natural convective flows. In forced convective flows effects of these
buoyancy forces usually supposed to be negligible. Mixed or combined convection
takes place when buoyancy forces do have some significance on heat transfer and
consequently on the flow fields. Most of the time flow and transfer of heat with
respect to combined convective are considered in engineering system e.g., solar
ponds, dynamics of lakes, cooling of electronic devices, heating and cooling
buildings, thermal hydraulics of nuclear reactors, growth of crystals, chemical
reactors, production of float glass, heat exchangers and food processing etc. The
simplest structure, several of such practical flow conditions is energy transport and
fluid flow in an enclosure in which flow is produced with the help of a combination of
buoyant force and shear force.

These problems are studied earlier by several researchers for various flow problems
with subject to the thermal boundary conditions e.g. one sided, double sided lid-
driven enclosures from bottom, upper, lower or side walls, oscillation of walls, non-
isothermally, partially or fully heated walls. (Ghia et al. (1982)) studied the problem
related to lid driven cavity in the absence of thermal effects for sake of validation of
CFD’s code with benchmark computations. Natural convection for small Prandtl

number fluids with specific essential frequency of 16.1 contains in square enclosure
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has been investigated numerically by (Mohammad and Viskanta (1991)). They
showed numerical simulations for Grashof (Gr = 107) and low Prandtl (Pr = 0.005)
numbers and also Hopf bifurcation is predicted in their work. In their another
numerical study (1995), they investigated 3-D simulation of heat and fluid flow in a
stably stratified fluid contains in a shallow lid driven enclosure and obtained results
related to moving lid on the flow configuration against the different important
parameters of the governing flow. Flow visualization and measurements of heat flux
conducted inside an adiabatic lid driven enclosure of fixed rectangular cross sectional
area with the variation of cavity depth subject to the heated bottom wall is carried out
by (Prasad and Koeseff (1996)). (Hsu et al. (1997)) studied the numerical simulations
of mixed convective heat transfer in a partially divided enclosure under the influence
of finite size heat source in it. They found numerical results against typical parameter
values and alternative structures resulting by placement of heating device in different
positions, opening of the outflows and baffle. In another study (Hsu (2000)), they
analyzed the effects of combined convective heat transfer on the thermal phenomena
within a rectangular lid driven cavity. (Aydm (1999)) examined the effects generated
by lid driven wall on the aiding and opposing flows and (Oztop and Dagtekin (2004))
extended his work to double lid driven enclosure. A numerical simulation of unsteady,
laminar and combined convective heat and fluid flow inside a square enclosure under
the influence of energy generation or absorption with MHD impact is investigated by
(Chamkha (2002)) by using finite volume method. A numerical simulations of
combined convection heat and fluid flow inside a U-shaped cavity with the help of
finite element technique has been studied by (Manca et al. (2003)), in their
investigation they considered three basic modes of heating. Different kinds of energy
related applications (Dalal (2003), and Sigey (2004)) have consumed the flow driven
by buoyancy force contained in an enclosed cavity. Several investigators have
examined the dynamics of heat and fluid flow inside rectangular or square enclosures,
which are stated widely in literature. Various investigations are found regarding
irregular shape of the sides of a cavity (Yapici (2015)), cavity structures (Gau et al
(2004), Cheng et al. (2014) and Waheed (2009)), transport media (Tiwari et al. (2007)
and Ramakrishna et al. (2012)) and imposed boundary condition of various
combinations (Ismael et al. (2014, Sivakumar et al. (2010), Barletta et al. (2009),
Wahba et al. (2009), Mahapatra et al. (2006) and Ji et al. (2007)). A complete
literature review on the lid-driven cavity has been studied by (Shankar and Deshpande
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(2000)). Furthermore, it has been observed that intricacy in fluid and heat flow
characteristics rises once the enclosure is driven by from one side (Ramakrishna et al.
(2012) and Barletta et al. (2009)) to double (Oztop et al. (2004), Guo et al. (2004),
Tiwari et al. (2007) and Ismael et al. (2014)) and to more sides (Wahba et al. (2009)).
The uniform magnetic force applied externally is broadly used, for instance to control
molten flow in crystal growth of semiconductors and in many other scientific
applications like water treatment device, corrosion inhibition treatment,
manufacturing processes of materials, magnetic cooling, magnetic refrigerator and
microelectronic heat transfer devices. The heat flow through conducting liquid metals
under the influence of a magnetohydrodynamics (MHD) has grabbed the attention of
many researchers because of its various applications to different scientific phenomena
including crystal growth processes. In particular gallium is considered to be a good
choice for magnetohydrodynamic (MHD) studies due to the suitable physical
properties of gallium including low melting point (gallium is a metal that appears in
liquid state at room temperature 29.8° C) close to ambient temperature, low viscosity,
high surface tension depending upon temperature and high thermal conductivity. In
general, the analysis of free convection through metals is of practical interest for the
crystal growing community as instabilities in molten state may be frozen in solid
product. Only a few simple problems could be solved analytically while most of the
problems of practical interest require numerical solutions when additional difficulty is
introduced under dealing with opaque material like liquid gallium.

(Braunsfurth et al. (1997)) has discussed heat transfer through natural convection in
liquid gallium with one end hot and another cold and gave comparison of numerical
with experimental results. They observed a great agreement in results for low Grashof
number while results diverge systematically for large Grashof number. (Ben-David et
al. (2014)) analyzed melting of gallium inside a closed enclosure, when heat is
provided one wall. They used COMSOL multi physics software to carryout numerical
simulations and validated his results against experimental results. They found that 3D
computational and experimental results are quite similar indicating profound effects
of boundaries. (Yamanaka et al. (1998)) examined free convective heat transfer in the
layer of liquid gallium placed between horizontal flat copper plates heated from lower
plate and above plate is taken cold with water flowing between plates.
(Sathiyamoorthy and Chamkha (2010)) investigated electrically conducting free
convection in liquid metal filled linearly heated cavity of square shape. They
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considered uniform heating along bottom and top walls of enclosure is considered

adiabatic where side walls were heated linearly while, inclined magnetic field is

applied with angles ¢ = 0and ¢ = g (Mohammad and Viskanta (1994)) worked on

experimental and numerical investigation of lid driven mixed convective heat flow
inside a rectangular enclosure full of liquid gallium. In their investigation, they
considered hot lower wall and hot upper wall while upper boundary is considered in
motion with constant velocity. They observed significant effects of moving lid on
flow and thermal structure.

In addition to its other uses, gallium is used in semiconductor industry also, this
metal is of interest for possessing many properties which make it different from other
metals, for instance, it is found in liquid form at room temperature (melting point of
gallium is 29.78 °C) and retains its liquid form for the large temperature range
(boiling point of gallium is 2403 °C). Therefore it may be used for high temperature
thermometers, high temperature lubricants and pressure gauges. Furthermore contrary
to most of other metals, gallium expands upon freezing and hence can’t be stored in
rigid container, gallium is known to be paramagnetic and it is good conductor of heat
and electricity.

Micropolar fluids are fluids having microstructure characteristic in it. Physically
micropolar fluids are combination of unsystematically oriented rigid particles
suspended in some viscous medium in which deformation of fluid particle is generally
not considered. The micropolar fluid simulation proposed by (Eringen (1966)), which
contracts with a type of fluid and shows specific microscopic results from the local
structure and microscopic movement of the fluid elements. Such fluids strengthen
stress moments as well as body moments and are affected by the spin inertia. The
applications of micropolar fluids include lubrication theory, blood flow, modelling of
pharmaceutical drug carrier, haematological devices, float glass production, heat
exchanger plants, automotive cooling and many more applications of engineering and
industrial processes.

Heat transfer through natural and forced convection within micropolar fluids
contained in containers of different geometries have been subject to extensive
investigation for past few decades because of its several applications in industry and
engineering, e.g. reactor designs, room ventilation, crystal growth, heat exchange

devices and various other systems of fluid transportation. Microstructure effects are
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generally not taken into account in classical Navier Stokes model. Applying shear
stress on particles, they may contract, expand, change their shapes or may rotate about
their own axis. These fluids have application in animal blood, liquid colloidal
solutions, crystals, suspensions and polymer fluids.

Using boundary element method (Zadravec et al. (2009)) conveyed numerical
simulations against natural convective flow within a square container carrying
micropolar fluid and shown results against various values of Rayleigh number and
microrotation. (Wang and Hsu (1993)) studied natural convection in buoyancy driven
flow of micropolar fluid inside a tilted enclosure of rectangular shape when heated
and cooled from side walls considering insulated top and bottom wall. They presented
numerical results for various Rayleigh number and aspect ratios of enclosure. (Hsu et
al. (1997)) numerically studied energy transmission in micropolar fluid in a container
of rectangular shape inclined at some angle when source of heat is present. Numerical
solutions for convection energy flow within micropolar fluid in rectangular container
when lower boundary is heated and vertical walls are taken cold are presented by
(Saleem et al. (2011)). (Gibanov et al. (2016)) chose wavy enclosure with heated
bottom wall to analysed heat flow through natural convection in micropolar fluid.
They found that microrotations increases and velocity attenuates with augmentation of
vortex viscosity parameter. (Hsu and Hong (2006)) numerically studied the heat and
fluid flow patterns through micropolar fluid filled in open cavity using cubic spline
collocation method and obtained results for different characteristic parameters of
microfluid and other flow parameters. (Hsu et al. (1995)) has been reported numerical
simulations for thermal convective flow within a lid-driven container containing
micropolar fluid. They obtained results against different values of involved
parameters like Reynolds number, Grashof number, spin gradient viscosity, vortex
viscosity etc. and gave a comparison with the results of Newtonian fluid.
Computational results of free convection through micropolar fluid in a rectangular
enclosure are also presented by (Hsu (1996)). (Aydin and Pop (2007)) conveyed
numerical results for convective energy flow in micropolar fluid flowing through a
square enclosure by providing heat to vertical walls where horizontal walls are
insulated. They computed results using finite difference scheme against different
Prandtl and Rayleigh numbers and shown that energy flow is low in micropolar fluids
comparing to Newtonian fluids. (Bourantas and Loukopoulos (2014)) extended the
idea of (Wang and Hsu (1993)) by considering micropolar nanofluid in an inclined
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rectangular cavity and analysed heat transfer under magnetic effects. (Aydin and Pop
(2005)) presented natural convection in a cavity affected by discrete heater when
heater is centrally placed of its walls. They computed results for various physical
parameters including heater length, material parameter of micropolar fluid, Prandtl
and Rayleigh number. (Alloui and Vesseur (2010)) reported on analytic and numerical
results for natural convective energy flow in micropolar fluid contained within
shallow enclosure for numerous values of pertinent flow parameters. (Hsu and Wang
(2000)) presented numerical results for laminar combined convective flow contained
in a square enclosure carrying micropolar fluid influenced by localised heat source.
(Ahmed et al. (2016)) numerically analysed the physical properties of mixed
convective heat transfer from discrete heat source inside an enclosure with oscillating
wall containing water based micropolar nanofluid. They considered couple of
adjacent walls of cavity moving with the same speed while source of heat is present at
centre of static lower boundary and different types of nanoparticles are used to
evaluate results for four different moving lid orientation cases using finite volume
method. (Periyadurani et al. (2016)) examined the influence of inclined Lorentz force
on free convective energy flow through micropolar fluid in square container
influenced by a thin plate provided with uniform and non-uniform heat. (Gibanov et
al. (2016)) took into account the trapezoidal cavity to examine free convective heat
transfer in micropolar fluid and computed numerical results using finite difference
method for variety of physical flow parameters. Recently, (Miroshnichenko et al.
(2017)) investigated the effects of local energy source on free convective flows
through various positions of trapezoidal enclosure filled with micropolar fluid.
(Sheremet et al. (2017)) analysed natural convective heat transfer in micropolar fluid
contained in an isosceles triangular cavity by using finite difference method. In other
study (2017), they carried out numerically, effects of Prandtl number, undulation
number and vortex viscosity parameter at Ra = 10° on unsteady free convective flow
inside a wavy triangular cavity subject to hot wavy wall containing micropolar fluid.

Ferrofluid is a combination of nanoscale ferromagnetic particles with some base fluid
in which these particles are mixed like water as in our case. Ferrofluids are known to
become heavily magnetized when strong magnetic field is applied upon it and this
property make the ferrofluids suitable for many scientific and engineering
applications like rocket fuel in space, high speed computer disk drives, audio speakers
and to form liquid seals around spinning drive shafts etc. Ferrofluids are also used in
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material sciences, medical applications, analytical instrumentations, optics, domain
detection, switches, solenoids and heat transfer etc. (Scherer (2005)). Some interesting
research work has been done on ferrofluids in recent years. Free convection in
ferrofluid flow contained in an inclined square container under the influence of
uniform magnetic field has been investigated numerically by (Kefayati (2014)). In his
work he has analysed the effects of the external magnetic device and pertinent flow
parameters on nano-scale ferromagnetic particles in an enclosure by using lattice
Boltzman method. Later on, he has extended his idea (Kefayati (2014)) to analyse the
effects of imposed magnetic field on nano-scale ferromagnetic particles of cobalt
along kerosene as a carrier fluid present in a square enclosure with linear temperature
distribution. (Sheikholeslami and Gorji-Bandpy (2014)) has numerically investigated
natural convection in ferrofluid flow contained inside a container under the influence
of imposed magnetic field when heat is provided from bottom side of the enclosure
with the help of lattice Boltzman technique. Free convective heat transfer flow in
ferrofluid contained inside C-shaped cavity in the presence of uniform magnetic field
has been investigated by (Satyajit et al. (2015)). They employed Galerkin weighted
residual technique to analyse the effects of MHD and Rayleigh number for two types
of fluid. (Rahman (2016)) used two-component nonhomogeneous thermal equilibrium
simulation to investigte the hydromagnetic free convection in water and kerosene
based ferrofluid contained inside of an equilateral triangular cavity by using weighted
residual technique. Other studies related with ferrofluid contains in an enclosures can
be found in (Rabbi et al. (2016)), (Gibanov et al. (2017)), (Jhumur and Bhattacharjee
(2017)), (Javed et al. ((2017)) and many more.
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Chapter 2

Heat Transfer of Hydromagnetic Flow in a Porous

Triangular Cavity

In this chapter, numerical simulations of free convective heat transfer inside isosceles
triangular enclosure saturated with an isotropic porous medium influenced by
magnetic force is investigated. The inclined walls of the cavity are supposed to be
heated uniformly/non-uniformly. Initially, pressure terms are eliminated from the
momentum equations with the help of penalty function. Afterwards, Galerkin
weighted residual method is evoked to obtain the results for various ranged of
involved parameters in terms of Hartmann, Rayleigh and Darcy numbers. The
obtained solution is first verified to achieve grid independence and then compared
with the results available in a literature against limiting case. Computed findings are
represented graphically by using streamlines, isotherms, temperature gradient and
average temperature gradient. It is noticed that the increase in the value of Rayleigh
number causes augmentation in the strength of streamline circulations and reduction
in strength of streamline circulation has been investigated due to increase in Hartmann
number against the case of uniformly heated inclined walls. For non-uniform heating

case, temperature gradient is seen to be maximum at the edges of bottom wall.

2.1 Problem Formulation

The configuration considered in the current investigation consists of isosceles
triangular enclosure enclosing porous media of an isotropic nature as shown in Figure
2.1. The electrically conducting viscous incompressible fluid is flowing through the
porous medium inside the enclosure. The fluid density has been considered to be
function of temperature and its variations causes buoyancy forces term in the
momentum equations after applying Boussinesq approximation (Gray (1976)). In
porous region, temperatures of fluid phase and solid phase are supposed to be equal
and local thermal equilibrium is applicable for present investigation (Nield and Bejan
(2006)).
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Figure 2.1: Geometrical description of the flow problem.
Moreover a uniform magnetic field is applied parallel to horizontal wall of a cavity.
Here induced magnetic field has been ignored being sufficiently small in comparison
to applied magnetic field B, under low-R,, approximation (Davidson (2001)).
Considering all boundaries of the container to be electrically insulated without Hall
effects, magnetic term can be simplified to a restraining factor —B3v (Garandet
(1992)). Therefore, electromagnetic force becomes a function of velocity component
v acting normal to magnetic field. Under the above assumptions in the absence of
Forchheimer’s inertia term, and following the earlier work (Du and Bilgen (1992) and
Ganzarolli and Milanez (1995)), the governing equations for conservation of mass,

momentum and energy in the absence of viscous dissipation may be expressed as:
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where x, y are the components in Cartesian coordinate system, u,v represents
components of velocity along horizontal and vertical directions respectively, p be the
pressure, p is density, K is specific permeability of the medium, a is thermal
diffusivity, L denotes the length of inclined wall of isosceles triangular enclosure and

v is kinematic viscosity.
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The boundary conditions can be defined as:
u(x,0) =v(x,0) =0,T(x,0) =T, and 0 < x < 2L,

u(x,y) =0=v(x,y), T = (T, — T,)sin (T[%) + T, atx =y

&0<x,y<L

u(x,y) =0=v(x,y), T = (T, — T,)sin (T[%) +T.aty=2—x
&0<y<LL<x<2L, (2.5)

The non-dimensional variables are introduced as follows:

Xx=Xy=2y="y="p_Pl g_TT p_Y X pa=
B A P Y - R Sy T a’ TN -

gBL3(Typ~T,)Pr 2 _ 0Bp?L? _ k.

— ,Ha® = — , Q= T (2.6)

By using Eq. (2.6) in Egs. (2.1) - (2.4), we get
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and the boundary conditions (2.5) are reduced to

UX,0) =V(X,0) =0,6(X,0) =0and 0 <X <2,

U=0=V,06=1orsin(rY)atX=Yand0 < X,Y <1,

U=V=060=1orsin(nY)atY =2—-Xand0<Y <11<X<2 (2.11)
Here U and V be the dimensionless components of velocity, 6 be non-dimensional
temperature, Pr, Ra, Da and Ha represents the Prandtl, Rayleigh, Darcy and Hartmann
numbers respectively. The h represents the coefficient of heat transfer appearing in
Newton’s law of cooling which can be obtained in the dimensionless form from the
temperature gradient Nu. The temperature gradient for bottom wall, left and right

inclined sides are expressed mathematically as:

09
Nup = =X, 6 5
—vy6 g (Z19¢: , 104
Ny, = i=191(ﬁax+ﬁay)’
—v6 g (L0 100 2.12
Nuy = l=101(ﬁax+ﬁay)' (212)

The average temperature gradient Nu for the bottom, left and right walls are defined

as follows:
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[ NupdX 1 .2
Nu;, = =2 Xl%b Efo Nu,dX,
1 V2
Nuj = Nu, = = J, “Nuds. (2.13)

2.2 Methodology

The continuity Eq. (2.7) is used as a constraint because of mass conservation and it
can be used to determine pressure distribution (Reddy (1993)). In order to simplify the
Egs. (2.8) and (2.9), we have to consider penalty function where the pressure terms
are eliminated with the help of penalty parameter y and the criteria of

incompressibility given in Eq. (2.7) which takes the form

Py (L4 2) .14

X oY

The continuity equation (Eq. (2.7)) is automatically satisfied for large value of penalty
parameter y. Generally y = 107 results into a consistent solutions. By substituting
Eq. (2.14) into Egs. (2.8) and (2.9), which takes the following form

U +Vay V%(Z—szay)*P(mem)—%U' (2.15)

a (oU %4 Pr
U +V6y yO_Y(a_X+6Y)+P (ﬁ+m)—D—aV+RaPr9—

Ha?PrV. (2.16)
Expanding the velocity and temperature profiles with the help of bi-quadratic basis
functions {¢ }N_, with 6-nodal triangular elements as follows
U= YR U (X, V),V = 53l Vi (X, V), 0 = X0 0k pr (X, V). (2.17)
Galerkin weighted residual method of finite element analysis has been evoked to

solve the Egs. (2.15), (2.16) and (2.10), which results into non-linear residual

equations for internal domain Q and takes the following form

= 2N U f, | (N Ui 225 + (BN, Vi) | rdXa +

a¢la¢>k 0¢; 0¢i
[2 L1 Ui 2228 gxdy + 3, v [, 222 dXdY]

0¢;d¢ 0¢;9¢ P
Pryi=. Uc [, [56—;+Wa—f]dXdY+—rf [XR=1 Uil :dXdyY, (5 1g)

RZ = S0 Vie [, | (50, Uiepio) 225 + (B, Vi) 22| i Xy +

[ 20126 0 9k
y 2 U [, 2 dXdY+2 Vi [, 22k gxay | +

09 9¢ | 909 Pr
PryN_ Vi [, [Ha_xk + Wa_yk] dXdY + 2 [ [SA_, Vi) prdXdy —

RaPr [ [YR=; Ok dy] p:dXdY — Ha?Pr [ [X3_1 Viedr] pidXdY, (2.19)
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= Yh=16k [, [(Zk Vi) 2+ (N 1Vk¢k)%] b.dXdY +
19kf [a¢l a¢k a¢la¢k] dXdY (220)

0X 0X ay ody

Obtained nonlinear residual Egs. (2.18) — (2.20) are solved by using Newton iterative
method. The gesture of fluid particles in the form of stream functions may be obtained

through components of velocity by defining the following relation

U==2Landv =-2L (2.21)

X

Which results into a single equation and takes the following form
%y %% _ou_ oV (2.22)

0x2 = oy?2 ay ox’

Expanding stream function with the help of bi-quadratic basis functions {¢}¥_, as
Y~ R e (X, Y) (2.23)

and again by evoking the Galerkin finite element method, the following residual

equation is obtained

RE = Sl [y S5+ 5 ] XY + ey Ui [ 1 T axay -

210x 0x ay oy

0
=1 Vie [y i 5 4”‘ dxdy. (2.24)

Solution of Eq. (2.24) is obtained by considering no slip conditions along all sides.

2.3 Validation

In order to develop the mesh free solution of the discussed problem, the numerical
values of the computed overall heat transfer rate at the bottom wall is demonstrated in
Table 2.1 against different refinement levels of non-uniform initial mesh. It is noted
that with the increase in the number of elements or by increasing the refinement level,
the percentage error of the solution with the solution at previous refinement level is
decreased. It is as minimum as 0.1% at the fourth refinement level, therefore
throughout the study; third refinement level is used for solution with 1776 number of
6-nodal triangular elements. Once the mesh free solution is achieved, the code is
further validated against the results of (Basak et al. (2008)) as a limiting case as
presented in Figure 2.2. The right column of the Figure 2.2 contains results found by
present investigation and left column contains the results of (Basak et al. (2008)) in
case of uniformly heated side wall with Pr = 0.7, Ra = 10° and Da = 10~>. The
results are evident to be accurate and in good agreement with the results of (Basak et
al. (2008)).
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2.4 Results and Discussions

This section contains the results obtained by numerical simulations for two
dimensional laminar convective flows through a porous medium saturated inside the
triangular cavity in the presence of MHD. Discussion is divided into two cases
isothermally cold bottom wall with (i) inclined walls are heated uniformly and (ii)
inclined walls are heated non-uniformly. Heat transfer rates have been computed and
presented through figures. The graphs are plotted against wide ranges of parameters,
which are Ra (103 <Ra < 10°), Pr(0.026 < Pr < 10),Da (107° < Da < 1073)
and Ha (50 < Ha < 103).

Uniformly Heated Inclined Walls

In this case of study, inclined sides of an isosceles triangle are maintained at uniform
temperature profile (6 = 1) and lower wall is maintained at low temperature. It is
therefore, jJump type finite discontinuity has been observed at the lower corners of the
cavity, as these corners are the joining of walls with dissimilar temperature profiles.
This discontinuity needs to be focused and it is discussed with respect to the criteria
described by the (Ganzarolli and Milanez (1995)). Temperature at these corner nodes
has been investigated by taking the average temperature of bottom and corresponding
side walls. However, the adjacent nodes have been taken at corresponding wall
temperature to avoid singularity. As bottom wall is kept on cold temperature and
inclined side walls are heated uniformly, therefore fluid present adjacent to the side
walls is at higher temperature than that of lower wall. Hence, the fluid present
adjacent to inclined walls is lesser dense in comparison to fluid present adjacent to
bottom cold wall due to the fact that the hot fluid is less dense than that of cold fluid.
In consequence, the variation of density of fluid near the walls produces circulation of
fluid in the enclosure in clockwise and anticlockwise directions. The hot fluid
expands, becomes more buoyant, and transfers the energy, again descends down to
the cold wall via central vertical line of a cavity, resulting two rolls of symmetric
circulations as shown in figures. Streamlines with positives values are shown as anti-
clockwise circulation and streamline with negative values are shown as clockwise
circulations according to definition of stream function.

Figures 2.3 and 2.4 illustrate contour plots for streamlines and isotherms at Da =
1073,Pr = 0.7,Ha = 50 for Ra = 4 x 10> and 10°® respectively. It has been

investigated that, heat flow in the cavity is purely due to conduction and isotherms
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appear to be smooth and monotonic in this case. Also two symmetric rolls of
clockwise and anti-clockwise circulation cells of streamlines are seen. The maximum
value of stream function (|1|,,4) 1S Noted to be 1.5 as presented in Figure 2.4. It has
been examined through this figure that with the increase in Rayleigh number, the
strength of the circulations is also increased. The upper corner of a cavity is observed
to be empty due to weak effects of circulation and isotherms. It may be seen from the
figure that isotherms are pushed towards bottom wall and contour lines are
concentrated in lower half of the cavity, where magnitude of stream function is
increased to|y|,,.x = 2.5. It is due to the reason that the left and right corners are the
places where the difference in the temperature is maximum.

Figures 2.5 and 2.6 contain plots for fluids for which thermal diffusivity dominates
i.e. Pr = 0.026 and momentum diffusivity dominates i.e. Pr = 10 respectively
when other parameters are fixed at Ra = 10°, Da = 10~3and Ha = 50. It is observed
that low Prandtl number corresponds to weaker clockwise and anti-clockwise
circulation of streamlines which is clearly due to conduction dominant effects. When
Prandtl number is 0.026, magnitude of circulation in noted to be 2 and when Prandtl
number is increased to 10, magnitude of circulation is also increased to 2.5. The
isotherms for smaller Prandtl number are more pressed toward bottom wall as shown
in Figure 2.6.

Figures 2.7 and 2.8 show numerical outputs for Pr = 0.026 and Pr = 10
respectively with large Hartmann number Ha = 103 and Da = 1073, Ra = 10°. It is
seen that higher values of Hartmann number results into very weak circulation of
streamlines, but the isotherms which were clustered in lower portion of the cavity at
Ha = 50 started expanding up in the cavity. Again isotherms are noted to be smooth,
monotonic symmetric with respect to the perpendicular line passing through centre of
horizontal side. Magnitudes of stream function are observed to be|y|ux =
0.06 at Pr = 0.026 and |Y|qx = 0.07 at Pr = 10 in Figure 2.7 and Figure 2.8
respectively.

Non-Uniformly Heated Inclined Walls

In this case, both left and right inclined walls are subject to sinusoidal heat wave 6 =

sin(rry) This type of heating is taken due to reason that it removes singularity from

the bottom left and right corners.
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Figures 2.9 - 2.11 show contour plots for stream function and isotherms for Ra =
10%, Pr = 0.026,0.7,Da = 1073and Ha = 50,103 with non-uniformly heated
inclined sides of an isosceles triangular cavity. Strong circulation is observed in the
case of non-uniformly heated inclined sides and it is shifted to the centre of the
enclosure from bottom corners (as observed in previous case). It is further noted that,
by increasing the value of Prandtl and Hartmann numbers, streamlines and isotherms
become smoother. It is pointed out that, two rolls of symmetric circulations are
observed in each case and streamlines are seen to be pushed towards the inclined
sides. It has been observed through Figure 2.9 that, when sinusoidal heat wave is
applied to side walls of cavity, isotherms are observed to be compressed towards
inclined walls and distributed throughout the triangular enclosure. It is important to
note that the high temperature gradient is seen near upper vertex of the enclosure in
this figure. However, for uniform heating case, it was examined that the isotherm
lines are compressed towards bottom side of a cavity and temperature gradient is
observed to be concentrated in lower half of a cavity and especially near the lower
two corners of a cavity due to maximum temperature difference there. It is observed
that isotherms for 6 < 0.6 are pushed towards bottom sidewall and for 8 > 0.7,
isotherm lines are pressed towards inclined walls. As we increase Prandtl number
from 0.026 to 0.7, isotherms near bottom wall get concaved up about the centre of
bottom wall from concaved down in a small interval as shown in Figure 2.10.

When Prandtl number is augmented from 0.026 to 0.7, magnitude of stream function
is noted to increase from |Y|,,4 = 3 (see Figure 2.10) to |Y|nax = 3.6 (see Figure
2.11) it is due to the phenomenon that the convection helps the fluid flow through
buoyancy. Opposite to this, when Hartmann number is increased from 50 to 103,
magnitude of stream function is reduced from |Y|,,.x = 3 (see Figure 2.8) to
|Y|max = 0.04 (see Figure 2.11) due to the fact that Hartmann number is ratio of
electromagnetic forces to the viscous forces and increase in Hartmann number is due
to the dominance of electromagnetic force, which in consequence produces resistance
to the flow, due to which |¢|,4 IS reduced to 0.04.

Figure 2.12 (a, b) is drawn to show the transfer of heat in the form of local Nusselt
number along the bottom side (a) and along the inclined walls (b). Since the cavity
under consideration is symmetric with respect to the perpendicular line passing

through the centre of the bottom side and both of the side walls are subjected to the
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same temperature, consequently temperature gradient at both inclined walls is
observed same therefore we have shown graph of Nusselt number for left side wall
only. In this figure, the solid lines represent the case of uniformly heated inclined
walls and dashed lines represent the case of non-uniformly heated inclined walls.
Curves have been plotted against dissimilar values of Prandtl (Pr) and Darcy (Da)
numbers, where Rayleigh (Ra) and Hartmann (Ha) numbers are fixed at 10% and 50
respectively. It is observed that, when side walls are heated uniformly (solid curves),
temperature gradient is noted very large at left and right edges of bottom wall as
shown in Figure 2.12 (a). This is due to the fact that both boundaries meeting at these
edges are at different temperatures and causes maximum temperature difference to
occur. It is further invetigated that the heat transfer rate is minimum at the centre of
the bottom wall for all values of Da and Pr. Similarly, heat transfer rate along the
side walls is maximum at the bottom edge where distance is taken to be zero as shown
in Figure 2.12 (b) which is also due to having maximum temperature difference at
this point. Furthermore, temperature gradient is almost zero at the upper vertex due to
the fact that no temperature difference occurs at this vertex causes no transfer of
energy shown in right hand side of Figure 2.12 (b), the increase in Nusselt number
due to Pr and Da is also observed through the Figure 2.12.

For the case of non-uniformly heated inclined walls (dashed curves), temperature
gradient Nu along bottom wall is also maximum at vertices and minimum at the
centre. The temperature gradient for this case is considerably minimum as compare to
the uniformly heated inclined walls. Whereas, along the side walls (Figure 2.12 (b))
temperature gradient shows sinusoidal nature due to non-uniformly heated side walls.
The temperature gradient at the upper vertex of the cavity for the case of non-
uniformly heated inclined walls is also minimum due to minimum temperature
difference at this point. The variation in heat transfer rate Nu for various values of
Darcy (Da) and Prandtl (Pr) numbers is also noted from the figure as a sinusoidal
wave.

Average temperature gradient at the bottom and inclined sides against Hartmann
number for various values of Darcy number is drawn in Figure 2.13. It has been
observed that average temperature gradient decreases with the increase in Hartmann
number and attain a constant values against Ha > 500. Similarly, by reducing the

values of Darcy number, the average temperature gradient decreases up to fixed
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values. The same observation is noted at the bottom and inclined walls and can be

further proved from Table 2.2.

Table 2.1: Overall heat transfer rates along bottom wall against different mesh sizes

Refinements Number of Elements Nuy, % Error
1™ 111 10.4548 -
2" 444 10.3528 0.98
3" 1776 10.2710 0.79
4" 7104 10.2600 0.1

Table 2.2: Average Nusselt numbers along different walls of cavity against various
values of flow parameters, Ha, Pr, for fixed Da

Uniform Heating Case Non-Uniform Heating Case
Ha Da Pr Nu, Nu; Nup Nu,
0 10° 0.026 7.4549 4.9936 5.1623 2.4169
5 - - 7.4093 4.9625 4.9550 2.3206
100 - - 7.3113 4.8950 4.8646 2.2807
200 - - 7.1637 4.7919 4.7495 2.2285
500 - - 7.0962 4.7382 4.6656 2.1876
1000 - - 7.0922 47323 4.6541 2.1816
0 - 0.7 7.6294 5.1212 5.0725 2.3580
5 - - 7.5108 5.0397 4.9990 2.3437
100 - - 7.3350 49175 4.8995 2.3065
200 - - 7.1070 4.7730 4.7418 2.2340
500 - - 7.0822 4.6817 4.6552 2.1911
1000 - - 7.0456 4.3435 4.6443 2.1850
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(Basak et al. (2008)) Present Study

Figure 2.3: Contours for stream function and isotherms for uniformly heated inclined
walls with Ra = 4 x 10% Pr = 0.7,Da = 1073 and Ha = 50

Figure 2.4: Contours for stream function and isotherms for uniformly heated
inclined walls with Ra = 10%,Pr = 0.7,Da = 1073 and Ha = 50
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Figure 2.5: Contours for stream function and isotherms for uniformly heated
inclined walls with Ra = 108, Pr = 0.026,Da = 103 andHa = 50.

A — A

Figure 2.6: Contours for stream function and isotherms for uniformly heated
inclined walls with Ra = 108, Pr = 10,Da = 1073 and Ha = 50

Figure 2.8: Contours for stream function and isotherms for uniformly heated
inclined walls with Ra = 10°,Pr = 10,Da = 1073 and Ha = 103
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Figure 2.9: Contours for stream function and isotherms for non-uniformly heated
inclined walls with Ra = 108, Pr = 0.026,Da = 1073 and Ha = 50

Figure 2.10: Contours for stream function and isotherms for non-uniformly heated
inclined walls with Ra = 108, Pr = 0.7, Da = 10~3and Ha = 50

Figure 2.11: Contours for stream function and isotherms for non-uniformly heated
inclined walls Ra = 10°, Pr = 0.026,Da = 1073 and Ha = 103
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Figure 2.12(a, b): Local Nusselt numbers for cold bottom wall & inclined side walls
heated uniformly (solid lines) and non-uniformly (dashed lines) with different values
of Pr, and Da where Ra = 10°and Ha = 50 are fixed
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Figure 2.13(a, b): Average Nusselt number for uniform and non-uniform heating

case against different values of Da, and Ha where Ra = 10°and Pr = 10 are fixed
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2.5 Conclusions

A computational investigation is executed to examine the two-dimensional laminar
steady state MHD natural convection flow within the isosceles triangular cavity
saturated with isotropic porous medium. The inclined walls of the triangular enclosure
are subjected to heated uniformly or non-uniformly. Finite element technique has
been employed to obtain the solution, governing conservation of mass, momentum
and energy equations are nonlinear requiring an iterative technique solver to solve
these equations by considering Hartmann number Ha = 50 - 10%, Prandtl number Pr =
0.026 — 10 and Rayleigh number Ra = 10% - 10’. For this purpose, we applied
Galerkin weighted residual method with penalty parameter.

For the case of uniform heated side walls, it has been noticed that the increase in
Rayleigh number above critical value i.e. (Ra = 4*10°) causes augmentation in
strength of circulations of streamlines, but increase in Hartmann number results in
decrease in the strength of streamline circulation. The effects on circulations of
streamlines due to Prandtl number are similar to that of Rayleigh number. Isotherm
contours gets closer towards the bottom of cavity due to increase in Rayleigh number
or Prandtl number. Whereas, with increase in Hartmann number isotherms moves
towards upper portion of the cavity. On the other hand, it is found that temperature
gradient is maximum at the edges of bottom wall due to maximum temperature
difference at the corner nodes and it is appeared to be constant near centre of bottom
wall. Heat transfer is higher near lower end of side walls due to the same reasons and
it is almost zero near upper corner, as two side walls are at same temperature. When
side wall is subjected to sinusoidal heat wave, streamlines are pushed towards side
walls of cavity and strength of circulation of streamline is increased with increase in
Prandtl number. Whereas, isotherms greater than 0.7 are pushed towards side walls
while other isotherms are pushed towards bottom wall when Hartmann and Prandtl
number is increased. It has been further noticed that the circulation strength of
streamlines is decreased due to escalation in Hartmann number in non-uniform
heating case as well. Furthermore, temperature gradient at the bottom wall for non-
uniformly heating case is considerably small as compared to that of uniform heating

case and it is further minimum at a centre of the bottom wall.
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Chapter 3

Heat Transfer through Hydromagnetic Flow of Liquid

Gallium contained in a Porous Square Cavity

This chapter comprises a numerical investigation of natural convection in a porous
square cavity saturated with liquid gallium influenced by magnetic force applied
either in horizontal or in vertical direction. Bottom wall of the cavity is maintained at
uniform temperature where top wall is considered to be adiabatic, left wall is
supposed to be heated linearly and right side is subject to linear heating or taken cold.
Computed effects are represented graphically by using streamlines, isotherms, heat
transfer and overall heat transfer rates Augmentation in streamline circulations is
observed due to increase in Darcy number while imposition of vertical magnetic field
instead of horizontal magnetic field causes slow rate of increase in strength of
streamlines circulation. Whereas, in case of linearly heated right wall, overall heat
transfer rate has been observed to be increasing function of Darcy numer, and vertical
magnetic field causes higher values for average Nusselt number as compare to
horizontal magnetic field along bottom and side boundaries of an enclosure.
Contrarily, in the case of cold right wall, horizontal magnetic field results into higher
values of average Nusselt number as compare to vertical magnetic field case and
average Nusselt number reduces as we move along lower and right boundary while

increases along left wall with increase in distance.

3.1 Problem Formulation

Consider laminar, hydro-magnetic, natural convective heat transfer in a chemically
inert porous media saturated with liquid gallium inside the square cavity in the
presence of uniform magnetic field as presented in Figure 3.1 and parameters of flow
are given in Table 3.1. The width and height of the square enclosure are represented
by L and length of the enclosure is supposed to be long enough so that the
investigation can be considered as two dimensional in Cartesian co-ordinate system. It
is assumed that fluid is viscous, incompressible and electrically conducting. The fluid
density has been considered to be function of temperature and the density variation
causes buoyancy forces terms in governing momentum equations after applying

Boussinesq approximation (Gray (1976)). In porous region, temperatures of fluid and
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solid phases are supposed to be equal and Local Thermal Equilibrium (LTE) is
considered valid for this study (Nield and Bejan (2006)).

y Adiabatic

T:Th

Figure 3.1: Graphical representation of the physical system
It has been further supposed that the magnetic force B having magnitude B, is
employed in horizontal (¢ = 0) or vertical (¢ = %) direction inside the cavity. Here
induced magnetic force has been neglected being very insignificant in comparison
with applied magnetic field under low-R,,, approximation (Davidson (2006)). During
present study joule heating effects, Hall effects and viscous radiation are ignored. In
the light of supposed assumptions, laws of mass, momentum and energy can take the

form such as:

Bty =0 (3.1)
ug—z+vg—;= —%g—z+v(g+g%) —%u+ai°2 (vsin ¢ cos ¢ —
usin? ¢), 2
uGr vy = i (G ) Ryt 9B T +
2
Gi" (usin ¢ cos ¢ — v cos 2 ), (3.3)
ug v =a(GE+ss) 3.4)

Boundary conditions for the governing problem may be expressed as:
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u(x,0) =v(x,0) =u(x,L) =v(x,L) = O,z—;(x, L)=0,T(x,0) =

Tp,where0 <x <L,

u(0,y) = v(0,y) = u(l,y) = v(L,y) = 0,T(0,y) = Tp — (Tn — Te) %,

T(L,y) =T, — (T, — Tc)%or T.where 0 <y <L, (3.5)

where x and y are defined as x —axis and y —axis respectively, u andv represents

velocity components along horizontal and vertical directions, ¢ is inclination angle of

magnetic field with the positive x —axis, which is either 0 or g T, represents

temperature at hot boundary, T, be temperature at cold boundary.

The following non-dimensionless variables are introduced such as:

x=%y=2Yy=Ly-"p_pP g_TT p v
L’ L’ a’ a’ pa?’ T a’ (3.6)
3 - 272 .
Da = %,Ra = —gﬁL (Thz TC)PT,Ha2 = —GBO L ,a = L
L v u pCp
Upon substituting Eq. (3.6) into Egs. (3.1) — (3.4), we get
ou . av
% + o 0, (37)
ou oUu _ 0P 0%U | 9%U Pr 2 .
U§+ VE =—-t Pr(ﬁ-l_ﬁ) _EU + PrHa*(Vsingcosp —
Usin?¢), (3.8)
av v oP a%v | 9%v Pr
UE-I_VE = —5+Pr(m+m)—av+RaPF9+
PrHa?(Usingcos¢p — Vcos? @), (3.9)
a6 a6  9%0 %8

Boundary conditions in dimensionless form may be defined in the following way
U(X,0) =V(X,0) = U(X,1) = V(X,1) = 22 (X,1) = 0,0(X,0) =
1,where0 < X <1,
uo,v)=vo,Y)=01,Y)=V(1,Y)=0,6(0,Y)=1-Y,
0(1,Y) =1—YorOwhere0 <Y <1. (3.11)
Here Pr,Ra, Ha and Da represents Prandtl, Rayleigh, Hartmann and Darcy numbers

respectively, U,V represents non-dimensional components of velocity and 8 be non-

dimensional temperature.
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3.2 Methodology
The momentum Egs. (3.8) — (3.9) are subject to the penalty function to remove
pressure term. In penalty function, we consider continuity Eq. (3.7) to obtain pressure

profile by defining the penalty parameter y as follows:

J0x 9y

Generally, law of conservation of mass given in Eq. (3.7) is satisfied against large
values of y, i.e. ¥ = 107 which results into consistent solutions as shown in Table
3.2. Incorporating Eq. (3.12) in Egs. (3.8) and (3.9) yields:

vy () s re(B ) s

ox \ox 0x2 = oy?
PrHa?(Vsingcosp — Usin?¢), (3.13)
v | oV a (U v\ Pr
UtV =ra e a) v PGt i)~V
RaPr6 + PrHa?(Usingcosp — Vcos?¢). (3.14)

By considering 6 nodal triangular elements and bi-quadratic shape functions

{ox }¥-1,we approximate components of velocity u, v and temperature 6 as follows
U= YR U (X,Y),V = Zi_, Vi (X, V), 0 = X1 0 i (X, Y). (3.15)
Galerkin weighted residual method of finite element analysis has been evoked to

solve the Egs. (3.13), (3.14) and (3.10), which results into non-linear residual

equations for internal domain Q and takes the following form

= Yk= 1ka [(Zk 1 Uk i) a¢k+(2 1Vk¢k)%] ¢;dXdY +

N a¢16¢k dp; ad’k
y [Zho U [, 222 axay + SR, v [, 22 2 dxay | +

0909y , 093¢ Pr
Pryi=: Uc J, [a_xa_xk + a_ya_yk] dXdy + - [ [Xk=1 Ux¢i] dpidXdY —

PrHa? [,((ZA., Vipi)singcosd — (Sh-, Uppi)sin?e) didXdY,  (3.1¢)
= Y=1 Vi f [(ZN 1 Uk¢k) a¢k + (=1 Vedr) a¢k] ¢p;dXdY +
[Zk LUy [, 2228k gxay + Y, v, f, 2200k dXdY]

ay o0x 2 9y 9y

99i 9%k

X 6X+

RaPr [ [T0_, il dudXay +PrEi, Vi f, |
20090 axdy + 2= [ [SH_ Vil ddXdY —

ay oy
<(le¥ 1 Uxdy)singcos

Pria* f (Z =1 Vk¢k)C052¢

X0}

) P.dXdY,
(3.17)
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= Yh=16k [, [(Zk Vi) 2+ (N 1qubk)a%] b.dXdY +
19kf [a¢l a¢k a¢la¢k] dXdY (318)

0X 0X ay ody

Reduced system of nonlinear algebraic Egs. (3.16) to (3.18) is further solved by using
Newton Raphson method. After evaluating components of velocity U and V, stream

function is determined by using the following relation

oy
U ——a ndV = -2 (3.19)

Which can be further reduced into a single second order equation given as:

oy oy _ou_ov
ax2 ' ayz 9y ax (3.20)

Expending stream function with the help of bi-quadratic basis functions {¢}}-, as
Y= YR e (X, Y) (3.21)

and again by evoking the Galerkin finite element method, the following residual

equation is obtained

00 99k, 0; 99 00
1¢kf [ax an oy ayk]dXdY+Zk 1ka ¢~ kdXdY

i)
=1 Vie [ b5 ¢k dxdy. (3.22)

Solution of Eq. (2.24) is obtained by considering no slip conditions along all sides.

The coefficient of heat transfer h appearing in Newton’s law of cooling can be
obtained by using dimensionless form from energy transfer rate. The temperature
gradient (Nu) and average temperature gradient (Nu) for lower and side walls may

take the form:

a i a i 9 —rt
Nub = _Z?zlgia%lNul = _Zl6= i a(?( N 19 ¢ and
S 1 —_— 1
Nuy, = fo Nu,dX,Nug = fo NugdY . (3.23)

3.3 Validation

In order to develop the grid independent solution of discussed problem, the numerical
values of average temperature gradient along bottom wall are demonstrated in Table
3.3 against different refinement levels of non-uniform initial mesh. It has been
observed that with increase in the number of elements or by increasing the refinement
level, the percentage error of the solution with the solution at previous refinement

level is decreased. It is as minimum as 1% at the fourth refinement level, therefore
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throughout the study; third refinement level is used for solution with 2048 number of
6-nodal triangular elements.

Once the grid independence is achieved, again code is tested against the findings of
(Sathiyamoorthy et al. (2010)) as a special case. Figure 3.2 represents the comparison
between results obtained by our developed code and the findings of (Sathiyamoorthy
et al. (2010)) and it shows that our findings are consistent with their results. In Figure
3.2, left column represents graphical results obtained by our code right column shows
the graphical results presented by (Sathiyamoorthy et al. (2010)).

3.4 Results and Discussions

This section contains results determined by numerical simulation of incompressible
viscous flow of liquid gallium contained in a square cavity packed with chemically
inert isotropic porous media (e.g. sand stone, pumice and SnO, based anode). We
have considered the suitable range of Darcy number for sandstone as its physical
parameters are more compatible with parameters considered in our problem.

Case I: Cold Right Wall

Figure 3.3 shows streamline and isotherms contours for uniform heating from the
bottom side, linearly heating from left side and right side is kept cold, under the
influence of horizontal ¢ = 0 magnetic field when Darcy number varies from 107>
to 10™3 (suitable values for sandstone porous medium (Loret and Huyghe (2004))
where other flow parameters are supposed to be fixed at Pr = 0.025 (gallium),
Ra = 10°and Ha = 30 respectively. It has been observed that there appear two
circulation cells for streamline contours with one large primary clockwise circulation
cell that covers most part of enclosure and the other small anticlockwise secondary
circulation cell appearing near top left corner of the square cavity. It has been
investigated that the fluid flow rises along the heated side and falls along cold side
forming primary circulation cells and due to thermal buoyancy effects secondary
circulation cells are formed near the upper left corner. Opposite to this, isotherms
contours change their behavior smoothly from linearly heated wall towards cold wall
as presented in Figure 3.3 (a).

When Darcy number is augmented to 10~#, strength of secondary circulation cells are
increased and it is stretched by pushing the primary circulation cell and moved the
centre of primary circulation cell slightly up along the diagonal of cavity. Isotherms

are increased in height and also bended towards cold right wall. Similar trend is seen
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for isotherms and streamlines when Darcy number is further increased to 1073 i.e.
size and strength of secondary cell is further increased and centre of primary
circulation cell is almost shifted to the centre of cavity by further moving along its
diagonal while isotherms are also increased further in height and bended towards right
cold wall owing the fact of energy transfer is maximum close to the centre of the
cavity.

Figure 3.4 displays isotherm and streamline contours for same values of flow
parameters as that in Figure 3.3 but direction of magnetic field is considered to be
vertical in this case. It is noticed that this direction of magnetic field causes reduction
in temperature gradient inside the cavity where contours for isotherms appears to be
broken towards side walls of cavity for & < 0.3. Similarly strength of streamline
circulation contours has also been reduced due to appearance of vertical magnetic
field. Like in the previous case, here also appear a large primary and a small
secondary roll of circulation cell in upper left corner. Increasing Darcy number to
10~* increases strength of circulations and height of isotherms but the rate of this
increase is considerably slow as compare to that of the case of horizontal magnetic
field ¢ = 0 (Figure 3.3 (b)). Whereas unlike the previous case, for the case of

vertical magnetic field ¢ = g increase in Darcy number beyond 10™ results in sharp

increase in strength circulation of primary and secondary cells and secondary
circulation cell is stretched towards uniformly heated bottom wall. Similarly non-
uniformity of isotherms has also been sharp in this case as shown in Figure 3.4 (c).
Case Il: Linearly Heated Right Wall

Figures 3.5 & 3.6 contain results for numerical simulations in the case when
uniformly heated bottom wall with both sidewalls are supposed to be linearly heated
while top wall is considered adiabatic. The values of parameters are considered as
Ra = 10°% Pr = 0.025 (gallium), Ha = 30,Da= 107°,107% 1073 and magnetic

field directions are ¢ = 0, g Figure 3.5 consist of isotherms and streamline contours

for the case of horizontal magnetic field i.e. (¢ = 0). Since two walls of the square
enclosure are subject to linear heating therefore two concentric rolls of clockwise left
and anticlockwise right circulations are formed. The fluid moves up along two
vertical sides and then comes down towards centre of the enclosure forming two rolls
of circulation cells (Figure 3.5 (a)). As compared to the case of right cold wall with

the case of linearly heated right wall temperature is comparatively high in the cavity
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and due to similar temperature profile along two boundaries; isotherms are observed
symmetric with respect to the perpendicular line passing through the centre of the
enclosure. Isotherms for 8 < 0.4 are broken towards the side walls where isotherms
for 8 > 0.7 are almost straight horizontal lines. Increase in the value of Darcy upto
10~* increases the strength of both clockwise and anticlockwise circulations in
streamlines while isotherms gain more heights near centre of horizontal walls of
cavity giving them a shape of wave for 8 > 0.4. Further increase in Darcy number
increases the strength of circulations of streamlines, height of isotherms and number
of broken isotherm contours.

Figure 3.6 depicts the effects for same values of flow parameters but in the presence
of vertical magnetic field. Effects of change in the direction of magnetic field are very
similar as that of cold right wall i.e. strength of circulation and temperature gradient
are noticed to be high for vertical magnetic field. The fluid moves up along two
vertical sides and then comes down towards the middle of the enclosure creating two
rolls of circulation cells.

Figure 3.7 contains the curves of temperature gradient for the case of cold right wall
where upper wall is considered adiabatic, uniform energy is provided from bottom
wall of a cavity and left wall is heated linearly. Curves for Nusselt numbers are
plotted against distance in the presence of horizontal (solid line) and vertical (dashed
line) magnetic fields with Pr = 0.025,Ha = 30,Ra = 10° and Da = 10751073,
It has been observed that along bottom wall as shown in Figure 3.7 (a), there are no
significant effects of Darcy number for distance X < 0.4 and X > 0.9 as curves are
almost coinciding for these values of distance while between 0.4 and 0.9 higher
Nusselt number is noticed for small value of Darcy number. Furthermore, the curves
for horizontal and vertical magnetic field are also almost overlapping showing
negligible effects of inclination of magnetic field on Nusselt number. Whereas along
cold right wall (Figure 3.7 (c)), local Nusselt number first increases very sharply with
distance up to Y = 0.15 then rate of increase becomes a little slower up to Y = 0.25
and afterwards curves are almost horizontal showing constant heat transfer rate while
higher Darcy number results in higher Nusselt number for 0.15<Y < 0.4 and
contrarily smaller heat transfer rate has been observed for larger values of Darcy
number Y > 0.4. No significant influences of inclination angle of magnetic field are

observed along right cold wall. On the other hand, along linearly heated left side as
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presented in Figure 3.7 (b), vertical magnetic field (¢ =g) returns higher heat

transfer rate as compared to horizontal magnetic field (¢ = 0) for Da = 107> while
for Da = 1073 horizontal magnetic field returns higher heat transfer rate up to
Y = 0.8 and reverse behavior has been noticed afterwards. Local Nusselt number
increases with enhancement in vertical distance Y but at a slower rate upto Y = 0.8
and afterwards rate of increase becomes sharp comparatively. Furthermore
enhancement in Darcy number results augmentation in heat transfer rate along left
side of the cavity as presented in Figure 3.7 (b).

In Figure 3.8, Nusselt number along bottom and side walls are shown against the case
of heated right wall and values of other flow parameters are same as these were
assumed in Figure 3.7. It is seen that along bottom wall, curve of local Nusselt
number looks like sinusoidal wave when Da = 1073, temperature gradient first
reduced up to X = 0.05 and then increases up to X = 0.5 then it decreases again up to
0.95 and then increases afterwards. However, for Da = 107>, Nu increases with
increase in distance X up to 0.5 and afterwards it reduces with escalation in distance,
the vertical magnetic field returns higher heat transfer rate as compare to horizontal
magnetic field when Da = 10~>where for Da = 1073, ¢ = 0 returns higher Nusselt
number up to X = 0.37 and for 0.37 < X < 0.63 vertical magnetic field returns
higher heat transfer rate as compare to horizontal one, while after X = 0.63 again
horizontal magnetic field gives higher Nusselt number as compare to that of vertical
magnetic field. Since both side walls are subject to similar temperature profile of

linear heating, therefore the graph of heat transfer rate is identical for both side walls.

Table 3.1: Gallium parameters for melting problem (Hannoun (2003))

Parameters Symbols Gallium Units
Density p 6.093 x 103 Kg/m®
Dynamic viscosity U 1.81 x 1073 N s/m?
Coeff. of vol. expansion B 1.20 x 10~* K1
Kinematic Viscosity v 3.126 x 1077 m?/s
Electrical Conductivity o 3.87 x 10° 0 1mt
Rayleigh number Ra 10°
Prandtl number Pr 0.025
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Table 3.2: Average Nusselt numbers along bottom side against various values of y

Y mb
10* -0.8963
10° -0.9189
10° -0.9212
10’ -0.9215
108 -0.9215
10° -0.9215

Table 3.3: Overall heat transfer rates along bottom wall against different mesh sizes

Refinements Number of Elements Nuy,
1 128 -2.7126
2" 512 -3.1566
3" 2048 -3.1590
4" 8192 -3.1920
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Figure 3.3: Isotherms and stream functions contours for cold right wall where

Ha = 30,Ra = 105, Pr = 0.025 (gallium), ¢ = 0 (a) Da = 105 (b) Da = 10~*
(c)Da=10"3
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Figure 3.4: Isotherms and stream functions contours for cold right wall where,

>

=)

Ha = 30,Ra = 10°, Pr = 0.025 (gallium), ¢ == (a) Da = 10~ (b) Da = 10~*

(c) Da = 1073
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(©)
Figure 3.5: Isotherms and stream functions contours for linearly heated right wall
& Ha = 30,Ra = 10°,Pr = 0.025 (gallium), ¢ = 0 (a) Da= 107> (b) Da = 10™*
(c)Da= 1073
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Figure 3.6: Isotherms and stream functions contours for linearly heated right wall
& Ha = 30,Ra = 10°,Pr = 0.025 (gallium), ¢ = g (@ Da=10"°(b) Da=10"*

(c) Da = 1073
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It is observed that for Da = 1075, curves of Nusselt number for vertical and
horizontal magnetic field are overlapping but when Da = 1073, vertical magnetic
field gives higher heat transfer rate than that of horizontal magnetic field if Y < 0.7
and reverse behavior is seen afterwards. It is further seen that along vertical sides of
cavity Nusselt number reduces with increase in vertical distance Y and higher values
of Darcy number returns higher heat transfer rate up to Y = 0.75 while reverse
behavior is observed afterwards.

Figure 3.9 contains plots of average Nusselt numbers Nu against porosity parameter
and Darcy number for the case of cold right wall. It has been seen through the graphs
that average temperature gradient along bottom wall decreases with increase in Darcy
number while overall heat transfer rate along left wall rises with augmentation in Da
and average temperature gradient along right wall first increases up to Da = 3 x 10™*
and then decreases afterwards for growing values of Darcy number. Whereas against
a particular value of Da average temperature gradient along bottom, left and right
walls of cavity is higher for horizontal magnetic field ¢ = 0 comparing to vertical
magnetic field ¢ = ~.

Figure 3.10 consists of average temperature gradient along bottom and side walls
against the case of linearly heated right side. Contrary to case of cold right wall, due
to linearly heated right wall average temperature gradient along the side walls for
vertical magnetic field is higher than that of horizontal magnetic field for a fixed
value of Darcy number while, along bottom wall similar behavior is observed up to
Da =9 x 10~* and afterwards reverse behavior of average temperature gradient is
seen. It is further noticed that for Da < 10~*, values of average temperature gradient
for both horizontal and vertical magnetic fields overlaps along bottom and side walls
of a cavity whereas, for Da > 10™* average temperature gradient increases with

augmentation in Darcy number along bottom and side walls.

3.5 Conclusions

In present chapter, numerical simulation has been made to investigate two
dimensional laminar flow of viscous liquid gallium though a square enclosure full
with porous media in the presence of horizontal/vertical magnetic field where bottom
wall is heated uniformly, top wall is perfectly insulated, left wall of cavity is heated
linearly and right wall is assumed either linearly heated or kept as cold. The

governing equations of the flow problem are solved by applying Galerkin finite
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element technique and resulting equations are subjected to Newton’s method. Results

are obtained for Hartmann number Ha = 30, Rayleigh number Ra = 105, Prandtl
number Pr = 0.025 (gallium) and Darcy number 10> < Da < 10~3 while two
inclination angles for magnetic field ¢ = 0 or g are considered.

After briefly examining the flow behavior, we have concluded that augmentation in
Darcy number results in both, enhancement of strength of streamline circulations and
growth in the height of isotherms in a cavity. Magnetic field applied in vertical
direction reduces the rate of increase up to Da = 10~* and increasing Darcy number
beyond this value sharpens the rate of increase in strength of streamline circulation
and height of isotherms. With increase in horizontal distance X, heat transfer rate Nu
decrease along bottom wall when right side is maintained at low temperature. When
the right side is subject to linear heating, Nusselt number shows sinusoidal type
behavior along bottom wall and it decreases with increase in vertical distance Y along
the side walls when right wall is considered to be heated linearly, while for cold right
wall Nu increases along left wall of the cavity and along right side Nu first increases
sharply and then becomes almost constant. Opposite to this, higher average Nusselt
numbers are observed under influence of magnetic field in vertical direction as
compare to applied magnetic field in horizontal direction where average Nusselt
number is observed to increase along bottom and side walls with augmentation in
Darcy number for the case in which right wall is supposed to be heated linearly.
Whereas for cold right wall, average heat transfer rate decreases with increase in
Darcy number along bottom and right wall while it increases along left wall of the
cavity and horizontal magnetic field results in higher average temperature gradient as
compare to that of vertical magnetic field.
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Chapter 4

Energy Transfer through Micropolar Fluid saturated in a

Lid-Driven Square Cavity influenced by Magnetic Force

This chapter contains computations for mixed convective energy flow through a
square container carrying micropolar fluid in the presence of constant horizontal
magnetic field. Bottom wall of the cavity is subject to non-uniform heat while
remaining walls of the cavity are maintained at low temperature. Numerical
simulations are computed incorporating Galerkin method of finite element technique
against different values of involved parameters like Grashof, Reynolds, Hartmann
numbers and micropolar parameter. It has been observed that the strength of
streamline circulations escalates due to augmentation in Grashof number where it
attenuates with augmentation in Hartmann and Reynolds numbers. Convection regime
dominates in the cavity for large Grashof number and small Hartmann number. Heat
transfer coefficient Nu rises with surge in Reynolds number, Hartmann number and
micropolar parameter and it reduces with rise in Grashof number along top wall
where overall heat flow rate is observed an increasing function of Grashof and

decreasing function of both Reynolds and Hartmann numbers along bottom wall.

4.1 Problem Formulation

A geometrical representation of the square cavity which is considered in this
investigation is presented in Figure 4.1. The width and height of the square enclosure
is represented by L and length of an enclosure is supposed to be long enough so the
investigation can be considered as 2D in cartesian co-ordinate system. It is supposed
that the ceiling or top wall is moving with constant velocity U, while rest of the walls
is in static position. The left and right vertical walls with top lid are maintained at a
low temperature T,, lower bottom horizontal wall is considered to be heated non-
uniformly. The gravitational force considered, acts in negative y-direction. Since
density variation of micropolar fluid is a function of temperature therefore,
Boussinesq’s approximation is valid and all remaining physical properties are

supposed to be constant.

Micropolarfluid



Th X
>
Figure 4.1: Geometrical representation of the present problem.

In present study, micropolar fluid is considered as steady, Newtonian, incompressible
and laminar. Furthermore, magnetic force with magnitude of strength By is assumed
parallel to horizontal axis. Here induced magnetic field has been ignored being
sufficiently small in comparison to applied magnetic field By under low-R,,
approximation (Davidson (2001)) Assuming the boundaries of container be insulated
electrically with no Hall effects, the damping factor B,v represents the total
electromagnetic force; here v is vertical velocity component. Therefore, Lorentz force
is a function of velocity component v. For electrically conductive micropolar fluid
flow considering peripheral magnetic field, the energy, mass, linear and angular

momentum conservation laws may be expressed in the form given below

7.V =0, (4.1)
p(V.V)V ==Vp+ u+K)V?V+kVXN—gpB(T—-T,)+] XB, (4.2)
(V.V)N =y, V2N + kV x V — 2kN, (4.3)
(V.7)T = aV>?T. (4.4)

Here V = (u(x, y),v(x, y¥),0) represents two dimensional velocity vector and its
rectangular components are u and v, where T represents temperature of fluid
everywhere in the cavity, N = (0,0,N"(x, y)) is two dimensional micro-rotation vector,
p represents the modified pressure, g is an acceleration vector due to gravity which is
acting perpendicular to x —axis, p is density of micropolar fluid, x is the vortex
viscosity, B is magnetic field, j is the micro-inertia density, p is dynamic viscosity,
Yy, is the spin-gradient viscosity, a is the thermal diffusivity of the micropolar fluid

and J is the current density defined in the absence of an electric field as follows:
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J =0a(V X B). (4.5)
Under the above suppositions, the governing model for two dimensional micropolar
fluid flow with the help of Egs. (4.1) — (4.4) may be reduced in the form given_below

ou . Ov

%t =0 (4.6)
ou ou . la_p (u+x) _u ON*
Trvi= oy p(wff )+K®, (4.7)
v ov . la_p (u+x) 9%y . O'Bo . a_N*
a+v5— >3y 5 (ax2+ay2)+gﬁ(T T,) K~ (4.8)
ON* ON* _ y1 (9°N* | 9°N"\ Kk « , Ou_ 0v
ox + vﬁ - '(6x2 + dy? ) pJj (ZN + y 6x)' (4.9)
aT aT a’t  a%T

uaﬁ'va—d(ﬁ'i'm) (410)

under the following boundary conditions

v—Ou—OT—(Th—T)sm( )+TandN*—71z—ufor0<x<

Ly=0,

v=0,u=UO,T=TCandN*=71a—ufor0<x<Ly—L

v=0,u=0,T=TCandN*=5£ for0<y<Lx=0,

+ _ 10v -
v=0,u=0T=T,and N —ZaxforOSySL,x—L. (4.11)

The non-dimensional variables are introduced as follows:

X_—Y—XU——V =P = g =—"TcR= S =

pU 2 Thp—T,
— 2
(b+5)jPr=2, Gr=w,Ha2 B’ p L Re=YoL y=
a v u j v
N*a
U’ (4.12)
After substitution of the above mentioned variables in Egs. (4.6 - 4.11), we get:

ou | av
X + Prei 0, (4.13)

U oU _ 9P | (1+R) (9%U , 9%U
vV = aX+—Re (6X2+ayz)+PR (4.14)

v  y _ _0p  (+R)(07V , 97V, Gr 2prv — prRY
u ax tv ay oy o+ Re (ax2 + 6Y2) + 9 Ha"PrV — PrR ax’

(4.15)
R

on  pon (1) 2w atwy _RE () oU_ov

u ox T v Y  Re (aX2 + ayz) Re (ZN oy ax)’ (4.16)
1 [9%6 | 3%6
UV oy = remm (o7 + 377
(4.17)
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Here U, V and 6 be dimensionless form of velocity components and temperature
respectively and R are the micropolar parameters.
The reduced boundary conditions for velocities U, V and temperature 6 in

dimensionless form are given below

V=U=0,9=sin(nX)andN=_713—Zfor0SXS1,Y=0,

V=0,U=1,9=OandN=_71g—Zfor0SXS1,Y=1,

V=0,U=0,9=0and1v=§g—;forosys1,x=0,

10V
V=O,U=O,9=OandN=Ea—XfOI‘OSYS1,X=1. (4.18)
The heat flow rate Nu and average heat flow rate Nu for horizontal walls are defined
as follows
26

Nu=-—= (4.19)

—  ["Nudx 1

Nu = °X|% = J, Nudx, (4.20)

where n represents the normal direction on the surface.

4.2 Methodology

Governing non-dimensional Egs. (4.13) — (4.17) subject to the transformed boundary
conditions defined in Eq. (4.18) are solved with the help of Galerkin weighted
residual method. Pressure terms are eliminated from Egs. (4.14) — (4.15) by using

penalty method. The penalty parameter y is defined as

ou | av
P=-y(E+2). (4.21)
For large values of y, ensure that continuity equation stated in Eq. (4.13) is satisfied.
Generally y = 107 returns consistent solutions. After substituting Eq. (4.21) in Egs.

(4.14 - 4.15), we get the following form:

U Ly B vy R (3 2Py oo
UtV =V (ax + ay) *t Re (axz + ayZ) +PrR o0, (4.22)
W 03U oV, (s (2 0
UE-I_VW_ an(aX+6Y)+ Re (ax2+ay2)+
Srog a2 _ oN
—r 8 — Ha“PrV — PrR o (4.23)

Galerkin weighted residual method is employed to simplify the system of Eqgs. (4.16),
(4.17), (4.22) and (4.23). As the solution methodology in details is described in
chapter 2 (Method of Solution). Therefore the detailed explanation of solution

procedure in not included in the present section.
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4.3 Results and Discussions

In this section we have presented and explained the obtained numerical results in the
form of plots against isotherms, streamlines, microrotations, heat transfer and overall
heat transfer rates against different values of governing parameters i.e. Grashof,
Rayleigh, Prandtl and Hartmann numbers and their explanation is made.

Since lower boundary is subject to heating therefore after absorbing heat from hot
bottom wall, fluid near bottom wall starts moving upward along vertical boundaries
and come down along the vertical line passing through centre of lower boundary
causing a pair of circulation cells with clockwise and counter clockwise rotations.
Figure 4.2 displays the influence of Grashof number on streamlines, isotherms and
microrotation of the flow. It has been noticed that effects of moving lid reduces with
augmentation in Grashof number and thus for Gr = 10, no effect of moving lid is
observed on streamline contours. The augmentation in magnitude of stream function
is noted due to enhancement in Grashof number where 0.25,1.5 and 4.5 are the
maximum values of stream function against Gr = 10%, 10> and 10° respectively.
Isotherm contours are seen to cover most part of the cavity for Gr = 10* and when
Gr is increased to 10° isotherm contour are compressed down towards bottom wall
while due to further increase in Grashof number (Gr = 10°), isotherms are clustered
near bottom wall becoming almost parallel to x —axis in central region near bottom
wall where most of cavity appears to be empty. The significant temperature gradient
near the bottom side results into appearance of thermal boundary layer alongwith
lower boundary of the enclosure. Two panels of microrotation are observed in the
cavity because of two circulations cells for streamlines and larger values of Grashof
number return stronger isotherms for microrotations.

Figure 4.3 presents the influence of magnetic field on streamlines, isotherms and
microrotation of the flow pattern. It is observed that escalation in magnitude of
Lorentz force weakens strength of streamline circulations and effects of moving lid
becomes prominent when Hartmann number is augmented and centre of circulation
cells gets pushed towards lower horizontal wall when Ha is raised. Magnitude of
stream function against Ha = 0,30,60 and 100 are noted to be 2.25,1.5,0.86 and
0.43 respectively. Conduction dominant regime is observed in the cavity for large
values of Ha while convection effect becomes dominant when Hartmann number gets

decreased. Furthermore contours for isotherms appear to be parallel to bottom wall in
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central region of the cavity and are clustered near bottom wall when magnetic field is
absent (Ha = 0). Introducing magnetic field causes smooth and monotonic isotherm
contours and when strength of magnetic field is increased the isotherms cover most of
the region in cavity. Surge in value of Ha causes a sheer stress due to which
isothermlines for microrotations are noticed to be clustered near the side walls of the
enclosure and near the boundaries of circulations cells.

Figure 4.4 presents impact of Reynolds number upon streamlines, isotherms and
microrotation of the flow. Just like Hartmann number Reynolds number also had
opposing influence upon strength of flow rotation. For Re = 1 there appear two
symmetric circulation cells out of which one is clockwise and other is anticlockwise
but when Re is increased to 10 there appears a secondary anticlockwise circulation
cell near top wall because of the moving lid.

The strength of secondary circulation cells is lesser than that of primary cells while
symmetry of circulation cells is lost. Magnitudes of stream function are observed to
be 1.5 and 0.04 for Re = 1 and 10 respectively while strength of secondary
circulation cell against Re = 10 is 0.03. When value of Reynolds number is further
increased to 100, symmetric primary circulation cells vanish and there appears only
one very weak anticlockwise circulation cell close to moving top wall because of the
significant effects of sliding wall and gradual reduction in the buoyancy whereas all
streamline contours in this case are clustered near top wall leaving rest of the cavity
empty where magnitude of stream function for this case is 0.002. Increase in
Reynolds number augments the influence of forced convection and free convection is
curbed in the enclosure. For small value of Re, a small amount of energy is seen to be
taken away from the moving top wall; afterwards, energy is mainly transported by
conduction regime inside the enclosure. Whereas due to escalation in value of
Reynolds number the isotherms get stretched towards upper wall of the cavity.
Smooth, monotonic and symmetric isotherm contour are seen in the enclosure against
all values of Reynolds number. The magnitude of microrotation contours has been
investigated to decrease by increasing the Reynolds number.

Figure 4.5 expresses the influences of micropolar parameter R on streamlines,
isotherms and micro-rotation of the flow. It is noticed that streamline rotation strength
is a decreasing function of micropolar parameter R. When value of micropolar

parameter is taken zero i.e. for the case of plain fluid, the effects of moving lid are
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negligible and there appear two symmetric circulation cells in the cavity. However,
when fluid becomes micropolar i.e. value of R is increased to 1 influence of moving
lid becomes visible and cores of circulation cells are stretched a little upward while
clockwise circulation cell is pushed down in upper portion of enclosure. When
micropolar parameter R is further increased to 100, effects of moving lid becomes
dominant and as a result a very weak counter clockwise secondary circulation cell
appears near moving top wall in addition to two primary circulation cells. Magnitudes
of stream function are observed to be 1.8,0.75 and 0.06 for R = 0,1 and 10
respectively. Whereas isotherm contours are observed to stretched upward when value
of R is increased. Isotherm lines get weaken with increase in R.

Figure 4.6 contains the graphs for heat flow rate Nu against varying Hartmann
number along horizontal walls of enclosure. It is noticed that heat transfer rate i.e. Nu
is minimum at edges along top horizontal wall and it increases while moving inward
from edges achieving maximum value at the center of top boundary. Moreover, rising
Ha augments the energy flow rate about top horizontal walls as represented in Figure
4.6 (b), whereas along bottom wall value of Nu first decreases slightly and then
increases by moving inward from corners of boundary and achieves its maximum at
middle of wall making a wave like pattern. Contrary to the top wall energy flow rate
decreases with augmentation in Hartmann number near central region of wall while
near the edges of this boundary Nu increases with surge in Ha.

Figure 4.7 shows results for local Nusselt number along top and bottom boundaries of
the cavity against various values of Grashof number. It has been noticed that the
escalation in Gr increases Nusselt number close to central portion of bottom
horizontal wall while Nu decreases with increase in Gr near the edges of lower
boundary where heat transfer rate follows a wave pattern along bottom wall. On
contrary, energy flow rate Nu attenuates due to augmentation in Grashof number
along top wall of the enclosure as shown in Figure 4.7 (b).

Figure 4.8 describes the behaviour of heat transfer rate along top and lower horizontal
boundaries of square enclosure for various values of micropolar parameter R. It is
seen in figure that following the case of effects of Grashof and Hartmann numbers on
heat transfer rate, curves are of wave shape along bottom wall in this case also.
Increase in the value of R results into decrease of Nusselt number in the central

portion of bottom wall while near corners of the wall an opposite effect of increase in
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R is observed. Whereas throughout along top wall, augmentation in Nu is found with
increase in values of R where curves follow bell shaped behaviour having minimum
value at the edges and maximum at middle of the top wall.

Figure 4.9 describes the behavior of overall heat transfer rate along top and lower
horizontal boundaries of square enclosure against Grashof number for varying
micropolar parameter R. Average Nusselt number is seen increasing with rise in
micropolar parameter R along top wall. However, along bottom wall it increases with
R up to Gr = 10° and for Gr > 10> overall heat transfer rate reduces due to
augmentation in R. Whereas, average Nusselt number first decreases slightly and then
escalates along bottom wall with augmentation in Grashof number against fixed value
of R while along top wall, augmentation in Gr results into attenuation in average
energy flow rate.

Figure 4.10 shows the graphs for overall energy flow rate along upper and lower
boundaries against Hartmann number for varying Reynolds number. It has been
observed that with increasing the Hartmann number, overall energy flow rate first
decreases and then increases for a fixed Reynolds number along with bottom and top
walls. Whereas increase in Reynolds number is observed to augment overall energy
flow rate along top boundary but the overall heat transfer rate reduces due to
augmentation in Re if Ha < 30 along the bottom wall.

Figure 4.11 contains the graphs for average energy flow rate along top and lower
boundaries of enclosure against Hartmann number for different micropolar
parameter R. Figure shows that increase in the value of micropolar parameter R
augments the mean heat flow rate along top boundary against all Ha and also along
bottom wall when Ha > 23 while for Ha < 23 average energy flow rate attenuates
with augmentation in R. Whereas for large values of micropolar parameter e.g.
(R = 5,10) magnetic field have insignificant effects on average heat transfer rate and
curves appears to be straight line along bottom wall but for small R mean heat flow
rate decreases with rise in Ha. Furthermore, increasing Hartmann number escalate

average Nusselt number along top wall of enclosure for any fixed R.
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Figure 4.2: Streamlines, isotherms and microrotations for Re=1, Pr=7.2, Ha=30 and
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Figure 4.4: Streamlines, isotherms and microrotations for Ha = 30, Pr = 7.2, Gr =
10° and (a) Re = 1 (b) Re = 10 (c) Re = 100
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4.4 Conclusions

Present investigation contains numerical simulations for MHD mixed convective flow
through micropolar fluid contained in a lid-driven square cavity subject to a uniform
horizontal magnetic field when heat is supplied non-uniformly from bottom wall of a
cavity. Equations governing the flow problem are modelled using laws of
conservation of mass, linear and angular momentums and energy. Developed
equations are first subject to penalty function to eliminate pressure term and then
Galerkin weighted residual technique is applied to reduced equations which transform
to a system of nonlinear algebraic equations. Afterwards, Newton Raphson method
has been evoked to obtain the final solution of reduced nonlinear algebraic system.
Computed effects are represented in the shape of streamline circulations, isotherms,
isothermlines of microrotations, heat transfer coefficient (Nu) and overall heat transfer
rate for wide range of governing parameters

Our computations reveal that the strength of streamline circulations and
microrotations gets increased with increase in Grashof number where increase in
micropolar parameter, Hartmann and Reynolds number decreases the strength of
circulations and isolines of microrotations. Convection heat transfer regimes are
found dominant in the enclosure for large Gr and small Re, Ha and R. Along bottom
wall, Nusselt numer (Nu) is observed to decrease due to increase in Grashof number
while increase in micropolar parameter, Hartmann and Reynolds number reduces the
heat transfer rate in the cavity while opposite behaviour of Nu is seen along top wall
for all parameters. Overall heat transfer rate along bottom wall is noticed to decrease
with escalation in Reynolds number, Hartmann number and micropolar parameter
while augmentation in Grashof number increases Average Nusselt number along
bottom wall where opposite behavior of average Nu is observed along top horizontal
wall of the enclosure. Prominent effects of moving lid are seen for small Grashof

number and for large Reynolds and Hartmann numbers.
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Chapter 5

Heat Transfer through Hydromagnetic Ferrofluid inside a

Square Cavity with Heated Obstacle

This chapter comprises the numerical simulations of free convective heat transfer
through ferrofluid contained in a square cavity affected by external magnetic field
when a heated square block with different aspect ratios (0.25 < A/H < 0.5) is placed
at the centre of enclosure. Vertical boundaries of enclosure are assumed insulated, top
wall is taken cold while bottom wall is heated uniformly. The square obstacle is
present at the centre of cavity which also serves as heat source in fluid. The
mathematical model is presented in the form of nonlinear PDE’s, which are simplified
with the help of Galerkin finite element method. Results are shown against wide
ranges of physical parameters like Prandtl, Rayleigh and Hartmann numbers etc. The
heat transfer and fluid flow structures are noticed to be significantly dependent on
strength of magnetic field, Rayleigh number and concentration of ferroparticles

present in the base fluid.

5.1 Problem Formulation

A geometrical representation of the square cavity which is considered in this
investigation is presented in Figure 5.1. The bottom boundary of enclosure is taken at
a constant hot temperature T, while top boundary is considered at cold temperature T,
whereas side walls of the cavity are maintained adiabatic. A heated square block with
different aspect ratios (0.25 < A/H < 0.5) is placed at the centre of the square
enclosure as presented in Figure 5.1. Gravitational force vector is supposed to be
acting along negative y —axis. All thermo-physical characteristics of fluid are
assumed to be constant excluding density and Boussinesq approximation (Gray and
Giorgini (1976)) is applied for the density variation due to temperature dependence of
ferrofluid in the buoyancy term. The entire enclosure carries a mixture of base fluid
(water) and nano-sized cobalt ferromagnetic particles. The ferromagnetic fluid is
considered incompressible and laminar in this study. Thermo-physical properties of
nanoscale ferromagnetic particles are presented in Table 5.1. Furthermore, magnetic

force with magnitude By is acting along negative x —direction. Here induced
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magnetic field has been ignored being sufficiently small in comparison to applied

magnetic field B, under low-R,,, approximation (Davidson (2001))

YA
T.
Bo
Cobalt with Water A E—
_
_
T,
X
>

Ty
Figure 5.1: Geometrical representation of the present problem
Assuming the boundaries of container be electrically insulated with no Hall effects,
the damping factor —B,*v represents the total electromagnetic force; here v is vertical
velocity component. Therefore, Lorentz force is a function of velocity component v.
Subject to above described assumptions, the equations describing the heat and fluid

flow for present investigation in the absence of viscous dissipation are expressed as

follows:
Uy + v, =0, (5.1)
1 u
Utk + Vil = =+ p—;; (tax + Uyy), (5.2)
__1 Krr 9PB)ss offB2
uv, + v, = — o Py + E(vxx +vy,) + o (T-T,) - P (5.3)
uTy + vTy = app(Tox + Tyy ). (5.4)

The assumed boundary conditions
u=v =0,T =T, (atlower horizontal side and heated square block),

u=1v=0,T =T, (at upper horizontal side),

oT

u=v=0—
ox

= 0 (at vertical sides), (5.5)
here u, v are velocity components along horizontal and vertical axis respectively, p
represents the pressure, psr be the density and usr dynamic viscosity of ferrofluid.
The following dimensionless variables are defined to transform the given problem
into dimensionless form:
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uH vH H? T-T, v
x=2y=2u==2v=2p="L"— 9g=-—"C pPr=-"L,Ra=
H ar ar prrafg Th—T¢ af

9BfH3 (Tp—T)PrT 2 _ OfBy°H?

vy? weo (5.6)
Above transformations are used in Egs. (5.2)-(5.4), we get

,Ha

UUX+VUY=_Px+

Hrff
Uyx + Uyy), .
prray (Uxx yy) (5.7)

UVX+VVY=_Py+

ufr ﬁff PrXoff 2
Vyx + Vyy) + == RaPr0 ——=Ha*PrV, 5.8
Prr af( xx T Vyy) Br prrof (5.8)

Uby + VO, = ";—f; (Oxx + Oyy). (5.9)

The boundary conditions of the problems take non-dimensional form such as:
U=V =0,0 =1 (at bottom horizontal side and heated square block),
U=0=1V,0 =0 (at top horizontal side),
Uu=V= O,g—z = 0 (at vertical sides). (5.10)
Here Pr, Ha and Ra represents Prandtl, Hartmann and Rayleigh numbers respectively,

U, V are dimensionless velocity components and 6 shows non-dimensional

temperature. Where

Mff = (1_7#, (pcp)ff = (1 - ¢)(pcp)f + ¢(pcp)s’

3((‘:—;—1)¢
Prp = (1- ¢)pf +p 05 =01+ —(Z—;+2)—(g—;—1)¢ ,
.Bff = (1 - ¢).Bf + ¢'Bs’
g = ke e (ks+2kp)—20(k—ks)
f (pep) " kp — (estakp)+(hp—ks)

(5.11)

The heat transfer rate (Nu) and overall heat transfer rate (Nu)for horizontal walls is

defined as follows:

_ krr 9¢;
Nuy, = ;(— ©,0,20), (5.12)
1
Nuj, = 2 lj‘:fx = [} NuydX.
% (5.13)

5.2 Grid Independence Test

For the purpose of developing grid independent solution of the discussed problem, the
numerical values of the computed average Nusselt number along top wall is
demonstrated through Table 5.2 against different refinement levels of non-uniform
initial mesh. It has been noticed that when number of elements are increased or by

increasing the refinement level, the percentage error of the solution with the solution
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at previous refinement level is decreased. It is as minimum as 1% at the fourth
refinement level, therefore throughout the study, third refinement level is used for

solution with 1776 number of 6-nodal triangular elements.

5.3 Validation

Once the grid independence is achieved, the code has been further authenticated by
making a comparison of computed results with that of (Ho et al. (2010)). He carried
out an experimental study on energy transfer through free convection within Al,O3-
water nanofluid contained in square container. Table 5.3 shows the values obtained in
experimental study through an explicit relation derived by (Ho et al. (2010)) for
average Nusselt number and result computed by our code for different concentrations
of nano-particles. Our results are found in a great agreement with the experimental
findings achieved by (Ho et al. (2010)) and that gives us the confidence about the
accuracy of developed code for solution.

5.4 Results and Discussions

This section contains the numerical results which are obtained by using Galerkin
weighted residual technique. The comprehensive procedure related to Galerkin
weighted residual method has been discussed in chapter 2. Numerical simulations for
free convective flow via ferrofluid confined in a square domain with cold upper wall,
insulated vertical walls and constant temperature profile at bottom wall. The heat is
also provided through a square shaped block with different aspect ratios (i.e. 0.25 <
A/H < 0.5) placed at the centre of enclosure. Obtained numerical results have been
presented in the form of isotherms contours, streamline contours, heat transfer and
overall heat transfer rates for different values of involved physical parameters
including Rayleigh number (10° < Ra < 107), Prandtl number Pr = 0.72, solid
volume fraction of nanoscale ferromagnetic particles (0.0 < ¢ < 0.06) and
Hartmann number (0 < Ha < 60).

Figure 5.2 (a, b) presents the influence of Ha on the flow and heat patterns for Ra =
105, Pr = 0.062, Ar = 0.25, ¢ = 0.015. Since bottom wall of square enclosure
is provided with uniform heat and vertical side walls are taken adiabatic therefore
fluid present near the centre of bottom wall becomes less dense due to high
temperature at the wall and moves upward along the central vertical line around the
blockage placed and comes back to lower region along vertical boundaries making

two symmetric rolls of circulation, one counter-clockwise and another clockwise
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rotation. Here counter-clockwise circulations are taken positive while clockwise
circulations are considered negative. The direction of considered magnetic field use to
play a dynamic role in transfer of heat and maximum heat flow rate has been found
when the magnetic force is assumed parallel to thermal gradient.

In left column of Figure 5.2 (a, b) streamline are shown for varying Hartmann
number Ha = 0 and Ha = 60. It is noticed that introducing magnetic field to the
flow causes weaker streamline circulations in comparison of the flow without
magnetic force. The greatest value of stream function is 0.3 in case of absence of
MHD and 0.12 in the presence of MHD. The adverse effects of augmentation in
magnetic field strength is caused by the fact that, increase in value of Ha results into a
stronger induced magnetic field which causes increase in Lorentz force acting on the
flow regime. Consequently, strength of flow current is decreased due to increase in
the Lorentz force and ferrofluid, having magnetic particles bears high magnetic
susceptibility gets intensively influenced by magnetic field. In right column of Figure
5.2 (a, b), isotherms contours are displayed for varying Ha = 0 and 60 at Ra = 10°.
It has been observed that the thermal boundary layer is developing as isotherm
contours are seen to be parallel to top boundary. These isotherms are noticed to be
nonlinear in the centre of a cavity between square blockage and vertical side walls.
Furthermore, introduction of magnetic field results into the increase of temperature in
flow field.

Results in Figure 5.3 (a-c) are shown to analyse the effects of Rayleigh number on
heat and fluid flow structures in the presence of MHD at Ha = 60. Left column
depicts the simulations of streamline circulations for varying Rayleigh number
(Ra = 10°,10° and 107 respectively). It has been noticed that two symmetric eddies
(one clockwise and one counter-clockwise) are formed in the enclosure. Since the
terms of Rayleigh number and Hartmann number have opposite signs in governing
equation therefore these parameters have opposite effects on flow behavior.
Furthermore, the heat and fluid flow structures are noted to get influenced more
significantly by Rayleigh number in comparison to Hartmann number. Streamlines
are noticed to have higher values of stream function as result of improved thermal
conductivity of fluid due to presence of ferroparticles in the fluid. As consequence of
the dominance of convection regime for large Ra stronger streamline circulations is

observed and for large Rayleigh numbers circulation rolls get stretched in the region
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between central blockage and vertical boundaries due to thermal buoyant force
generated by heated walls. Magnitudes of streamline circulations are 0.12, 3.6 and
17.6 for Rayleigh number 10°, 10® and 107 respectively. Right column of Figure 5.3
(a-c) isotherms are shown against various Rayleigh numbers when Ha = 60. It has
been observed that the isotherms appear smooth indicating conduction dominant
regime inside the cavity for comparatively small Rayleigh number (Ra = 10°),
while increase in Rayleigh number causes distortion in isotherms showing better
convection scenario in the enclosure. Parallel isotherms near upper wall of the cavity
indicate the development of thermal boundary layer near top wall of the enclosure for
all Rayleigh number.

Influence of aspect ratio Ar on the thermal and flow fields are shown in Figure 5.4 (a,
b), when Ra = 10° considering that there is no magnetic field. It has been observed
that increase in aspect ratio causes dominance of conduction regime inside the cavity
and isotherms are found clustered near upper wall for Ar = 0.5 in the middle of
enclosure while for Ar = 0.25 the isotherms are distributed non-uniformly
throughout the cavity showing better convection in the enclosure. The circulation
vortices appears to be compressed along the vertical sides and centres of circulations
are moved near upper left and right corners, however magnitude of rotation is reduced
considerably when aspect ratio is augmented. Greatest values of stream function are
7.7 and 1.3 for Ar = 0.025 and 0.5 respectively.

Figure 5.5 (a, b) contains plots for Nusselt numbers along horizontal walls for
increasing values of horizontal distance along x-axis. It has been noticed that the local
Nusselt number is maximum at the edges of lower horizontal boundary for the reason
of temperature singularity occurring at these corners. Reduction in Nusselt number is
seen while moving towards centre of bottom wall from edges and achieves lowest
value at the centre of bottom wall, whereas surge of Ha results into reduction of heat
flow rate along bottom wall. Opposite to this, local heat flow rate has been noticed to
have minimum value at boundaries of cold top wall and it increases while moving
inward achieving maximum value at the middle of the top wall. Furthermore, a better
transfer of heat rate is seen in the absence of MHD effects (Ha = 0) while
introducing MHD reduces heat transfer rate considerably. Furthermore, local Nusselt

number is seen to attenuate with increasing strength of magnetic field along top wall
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except for the region 0.25 < distance < 0.73 where increase in Ha increases the
heat flow rate.

Figure 5.6 (a, b) represents the effects of Rayleigh number on heat flow rate along
horizontal boundaries of the cavity. It is evident in figure that heat flow rate first
increases moving inward from both edges to 2 units of distance and then it decreases
attaining minima at the middle of bottom wall. Increasing Rayleigh number causes
escalation in heat flow rate for any fixed X whereas for comparatively small Rayleigh
number, rate of flow of heat is noted to be constant against both upper and lower
horizontal walls. Along top wall Nu is seen to increase moving inward from both ends
and attains its maximum value at the center of the top wall.

Figure 5.7 (a, b) compares the local Nusselt numbers for plain fluid (fluid without
ferroparticles) and ferrofluid at bottom and upper walls. It is seen that along hot
bottom wall heat transfer rates are similar for both plain and ferrofluid except minor
difference as shown in Figure 5.7 (a), while along cold top wall, Nusselt number is
significantly high in case of ferrofluid in comparison to that of base fluid as addition
of ferroparticles to the plain fluid causes augmentation in thermal conductivity of
fluid causing in higher Nusselt number. On the other hand, value of Nu decreases
moving inward from both ends along bottom wall and achieves minimum value at
centre of bottom wall while Nu rises moving inwards from both ends of top wall and
achieves maximum value at middle of the upper wall.

Figures 5.8 to 5.10 show the overall heat flow rate Nu against pertinent flow
parameters for different values of Ha. It may be seen in Figure 5.8 (a, b) that when
Hartmann number is increased, Nu is reduced along both lower and upper boundaries
due to decrease in Kinetic energy resulting from increase in Lorentz force but the rate
of decrease is very slow along top wall as compared to that of bottom wall because of
opposite temperature profiles present at two walls. Furthermore intensification of
ferromagnetic particles causes increase in the average heat flow rate at both lower and
upper boundaries. Augmentation in the average heat flow rate against concentration of
ferromagnetic particles is more prominent for stronger magnetic field. This effect is
because of higher suppression of buoyant flow of ferrofluid when concentration of
particles is higher. The overall heat flow rate escalates proportional to increase in

solid volume fraction against smaller Hartmann number.
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Table 5.1: Thermo-physical properties of ferromagnetic particles

Base fluid Cobalt
(Water)
Co(J/kgK) 4179 420
p(kg/m3) 997.1 8900
K(W /mK) 0.613 100
B(1/K) 21 %1075 1.3x 1075
o(W/m.K) 0.05 1.602x10’

Table 5.2: Overall heat transfer rate along top wall aainst different mesh sizes

Refinements Number of Elements Nu, %Error
1 111 2.4040 -
2" 444 2.3941 0.4
3" 1776 2.3893 0.2
4" 7104 2.3869 0.1

Table 5.3: Average Nusselt numbers for comparison between results obtained by (Ho

et al. (2010)) and results obtained by our developed code

%cy Nu, (Hoetal (2010))  Nu,(Present study)  %Error
1 32.2037 32.0903 0.35
2 31.0905 30.9078 0.58
3 29.0769 28.8528 0.77
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Figure 5.4: Isotherms and Streamline contours against Ra = 10%,Pr = 0.72,¢ =
0.015,Ha = 0 (a) Ar = 0.25 and (b) Ar = 0.5
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Figure 5.9 (a, b) depicts the combined effects of Hartmann and Rayleigh numbers on
the Average Nusselt number along lower and upper boundaries of the container. It has
been noticed that average heat flow rate gets insignificantly affected by Hartmann
number when Rayleigh number is comparatively small i.e. for Ra < 10> while
against higher Ra, Hartmann number influences the overall heat transfer rate
significantly. The decay in overall heat flow rate against increasing Ha (as shown in
Figure 5.9) is due to the increase in the strength of Lorentz force that causes
attenuation in strength of low current in the container. Whereas against any fixed
Hartmann number, Nu appears constant for smaller values of Ra while afterwards
Nu is seen to rise with escalation in Rayleigh number.

The combine effect of Ra and concentration of solid particles on average heat flow
rate are presented in Figure 5.10 (a, b). It is investigated that up to certain values of
Rayleigh number (Ra < 10° for bottom wall and Ra < 4 x 105 for top wall) the
increase in the concentration of ferroparticles escalates the overall heat flow rate in
container owing the fact that addition of ferroparticles rises the conductivity of
ferrofluid and that is responsible for increased heat flow rate exchanged among heated
boundary and ferrofluid. Whereas Nu is found to be a decreasing function of solid
volume fraction of ferroparticles afterwards the above mentioned values of Rayleigh
number. Opposite to this average heat transfer rate is seen to escalate with
augmentation in Rayleigh number against any fixed solid volume fraction of
ferroparticles, however this increase is significantly sharp after the above reffered
values of Rayleigh number.

5.5 Conclusions

In this chapter, we discussed the numerical simulations to investigate two dimensional
laminar flow of ferrofluid though a square enclosure considering uniform horizontal
magnetic field where lower boundary is provided constant heat, top wall is taken cold,
vertical side walls are insulated perfectly and a heated square blockage is placed with
different aspect ratios (0.25 < A/H < 0.5) at the centre of cavity. The solution of
momentum, energy and mass conservation equations governing the flow problem is
obtained using Galerkin weighted residual technique and resulting nonlinear algebraic
system is subjected to Newton’s method. Results are shown against various ranges of
solid volume fraction of nanoscale ferromagnetic particles, Prandtl, Rayleigh and

Hartmann numbers.
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It is observed that the intensification of strength of magnetic field weakens the
strength of streamlines circulation and conduction regime is dominant in container for
all Ha when Rayleigh number is taken small. Upsurge in Ra results in escalation of
strength of streamline circulations while isotherms become highly distorted showing
convection dominant regime in cavity for large Rayleigh numbers. Heat flow rate of
ferrofluid is greater than that of plain fluid and increase in aspect ratio of square

blockage reduces the magnitude of streamline circulations.
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Chapter 6

Thermal Energy of Hydromagnetic Ferrofluid Flow in a

Square Cavity with Adiabatic Block

The present chapter contains computational results for mixed convective energy flow
in cobalt-based ferrofluid enclosed in a two-sided lid-driven container provided heat
from left vertical moving boundary under MHD effects influenced by a source of heat
generation/absorption when a square adiabatic block of different aspect ratios is
located at the centre of the square container. The governing equations describing the
heat transfer and fluid flow are exposed to penalty method first and after that reduced
equations are simplified by Galerkin technique. The governing flow parameters are
the concentration of nano-scale ferromagnetic particles (0.0 < ¢ < 0.1), Reynolds
number (50 < Re < 200), Richardson number (0.1 < Ri < 100), Hartmann number
(0 < Ha < 100) and heat generation/absorption coefficient (—10 < Q < 10). The
results of present investigation shows that the enhancements in heat transport occur
due to presence of the block up to the certain block size. Streamlines recirculation
cells suppressed and augmentation in heat transfer is remarkably high due to presence
of an adiabatic block. The results also display that the arrangements of fluid and
energy flows are significantly depends on the concentration of nano-scale solid
ferromagnetic particles, heat generation/absorption coefficient, Richardson, Reynolds

and Hartmann numbers.

6.1 Geometrical Configuration and Governing Equations

A geometrical representation of the square cavity which is considered in this
investigation is presented in Figure 6.1. The width and length of the square container
is represented by L and height of a container is supposed to be long enough so the
investigation can be considered as two dimensional. It is assumed that vertical walls
of the container are oscillating in their own plane in upward and downward directions
respectively with the same speed V,, while rest of the walls is in static position. Side
left and right walls of square container are maintained at a high and low temperature
T, and T, respectively whereas the top and bottom walls are considered thermally
insulated. An adiabatic square block with different aspect ratios is placed at the centre
of the cavity which is used to modify the process of energy transport. The entire
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enclosure carries a mixture of base fluid (water) and nano-sized cobalt ferromagnetic
particles. The ferromagnetic fluid is considered as incompressible, steady and laminar
in this study. The gravitational force is considered to act along negative y —direction.
By imposing the Boussinique approximation, a physical factor appears as a result of
the density change in the momentum equation, where all other physical properties are
supposed to be constant except for the density as a function of temperature. Moreover
a uniform magnetic field is applied parallel to horizontal walls of the cavity. Here
induced magnetic field has been ignored being sufficiently small in comparison of
applied magnetic field B, under low-R,, approximation (Davidson (2001)).
Considering all boundaries of the container to be electrically insulated without Hall
effects, magnetic term can be simplified to a restraining factor —B,%v (Garandet et al.
(1992)). Therefore, electromagnetic force is a function of velocity component (v)

normal to magnetic fi\eld.

y
A
Vo Bo
Cobalt with Water D ZEE—
%
_
T, T,

Figure 6.1: Geometrical representation of the present problem

By considering above assumptions and in the absence of viscous dissipation,

equations describing the fluid and heat flows may be expressed in the following form:

uy + v, =0, (6.1)
1 u
uuy +vuy, = —pr + ﬁ (uxx + uyy), (6.2)
wvy + v, = ——py + L (v, + v )—i—M(T—TC)—ULBgv, (6.3)
Yoo et ey ¥y Prf Prs
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UTy + vT, = —LL— (T + Ty ) + —22—

(PCp)ry (T-T) (6.4)

(PC )f

subject to the following boundary conditions

oT
u=0,v=0,a=OifOSxSLandy=0,

oT
u=0v=0—=0if0<x<Landy =1L,

0x
u=0v=V, T=T,if0<y<Landx =0,
u=0v=-V,T=T,if0<y<Landx =, (6.5)

where u, v represents velocity components in cartesian coordinates system, p be the
modified pressure, psr and usy are ferrofluid ‘s density and dynamic viscosity. The

definitions of non-dimensional variables and parameters incorporated to derive the

dimensionless form of Egs. (6.1)-(6.5) are as follows:

(XY)_GJj(UV}—G%E)P=—£—ﬁ—7"¥Pr_ﬁ¢n=

Vo' Vo PrfVo? Typ—Te as
9BfL3AT _pfVol . 2 = 0fBy*H?
o ,Re = T ,Ri = Py 2,H =T (6.6)
Above transformation is used in Egs. (6.2)-(6.4), to get
Uy +Vy =0, (6.7)
1 wyrpr
UUX + VUy = _PX Re pff‘uf (UXX + Uyy) (68)
1 usrps eB)ss PrXoff Ha?
UVy +VVy = =Py +— + ——=——Rif — —V
X Y ¥ " Repgruy Wi + Vv PrBrPrf Prrof Re (6.9)
Ubx +VOy = ﬁ% (Oxx + Oyy) + RelPr O;ff Qo. (6.10)
The reduced boundary conditions are expressed in non-dimensional from as:
U=0V=10=1if0<Y<1landX =0,
U=0V=-1,0=0if0<Y<landX =1.
U=0V=02=0if0<X<landY =0,
26 : _
U—O,V—O,E—OlfOSXS1andY—, (6.11)

where Pr, Gr, Re, Ri and Ha represents the Prandtl, Grashof, Reynolds, Richardson
and Hartmann numbers respectively. U and V are dimensionless velocity components,
6 shows non-dimensional temperature and Table 6.1 represents the properties of
ferrofluid.

The heat flow rate (Nu) and average heat flow rate (m)for veritcal walls is defined

as follows:
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k a¢;
Nu, = (- 38.,6,5) (6.12)

1
——  ["NuydY
Nu, ==

1
= | " Nu,dY.
fol day fO v (6l 13)

6.2 Results and Discussions

The objective of present study is to obtain the numerical results for combined
convection heat transfer through ferrofluid contained in a square container with
constant temperature profile at left moving lid, cold right moving lid and insulated
both horizontal walls in the presence of an adiabatic square blockage with various
aspect ratios placed at middle of the cavity. The obtained results have been presented
in the form of streamline contours, isotherm contours, Nusselt number and average
Nusselt number against different ranges of the involved physical parameters including
Richardson number (0.1 < Ri < 200), Reynolds number (50 < Re < 200), solid
volume fraction of ferromagnetic particles (0.0 < ¢ < 0.1), coefficient of heat
generation or absorption (—10 < Q < 10) and Hartmann number (0 < Ha < 100).
The selected ranges for the governing flow parameters involved in the flow problem
(Reynolds, Grashof and Richardson numbers) represents the three flow regimes
namely, free convection when Ri — oo, forced convection when Ri — 0 and mixed
convection when Ri = 1.

The effects of Hartmann number and adiabatic block on the fluid flow and heat flow
structure have been presented in Figure 6.2 and Figure 6.3 respectively. It should be
noted that Prandtl number, Richardson number, Reynolds number, solid volume
fractions of nanoparticles and heat generation coefficient are fixed at 7.2, 1,200, 0.1
and 1 respectively. Mixed convection is caused by the motion of side walls and by the
influence of the buoyancy-induced flow at Re = 200 and Ri = 1 as shown in
Figure 6.2 (a). The fluid present near the heat source rises and flows down along with
cold wall forming primary clockwise circulations within the enclosure when there is
no block present as shown in figure. The strength of circulation of stream function in
the central region of the enclosure reduces due to augmentation in block size. In the
presence of block, the primary clockwise circulation cells of stream function are
divided into two small vortices and secondary counter-clockwise circulation cells are
also found near the central region of upper and lower horizontal walls of the cavity.
On the other hand, augmentation in strength of magnetic force causes reduction in the

magnitude of the stream function and flow becomes weaker. In general, influence of
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magnetic force suppresses the flowing fluid structure due to the retarding effects of
Lorentz force. Therefore, reduction in energy transport and fluid flow is expected for
large values of Hartmann number. The influence of magnetic force and adiabatic
block on heat flow in terms of isotherm lines is presented in Figure 6.3. Originating
heat flow from the heated wall and rises up via top region of the enclosure isotherm
lines reaches to the right cold wall where heat is released out finally with non-uniform
decreasing rate along cold right wall of the cavity. The insulating block is a complete
barrier to energy transport and significantly affects the temperature field. The
presence of the insulating block destroys some contours of the isotherm because it
acts as an internal flow boundary. The end of the isothermal profile on the surface of
the block significantly changes the position of the isotherms compared to the case
when block is not present. The end-to-end isotherm lines between the two side walls
establish energy transport between the source and the heat sink. Furthermore, increase
in magnetic force decreases the strength of isotherm lines and makes the flow
smoother as compared to the case which has no magnetic force.

Figures 6.4 and 6.5 depict the influence of centred block and Richardson number on
fluid flow and energy transport arrangements while the other pertinent parameters are
kept fixed at Re = 200, Ha = 30 and Pr = 7.2. From Eqg. (6.3), it can be noticed
that the sign of Ri is opposite to the sign of Ha in source terms which means that they
have opposite effects on flow regime. As expected, due to heated left vertical lid and
cold right vertical lid of square container, flowing fluid rise up through the heated
portion and flow down along the cold side developing circulation cells inside
enclosure. Figure 6.4 (a) reveals that the motion of the side walls causing forced
convection flow at Ri = 0.1, as buoyancy driven flow becomes weaker. Furthermore,
flowing fluid near the left heated wall rises in upward direction and fluid present near
the cold right wall compresses in downward direction due to motion of the lids and
forced convection regimes are found dominant at the corners of the cavity.
Streamlines are compressed and primary circulation cells have been divided into two
parts due to presence of the block as shown in Figure 6.4 (a). As block size increases,
the circulations strength of vortices in the central region of the cavity decreases due to
the fact that the block reduces the effective volume of the fluid present in the cavity.
Primary circulation cells are compressed towards the moving walls and secondary

circulation cells are also observed near the top and bottom insulating walls of the
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cavity. When Richardson number rises to 1 (Figure 6.4 (b)), the flow field is
categorized by mixed convection dominant regime. The shape of the streamline
circulation cells (Figure 6.4 (b) without block) mainly depends upon the values of
Richardson number. The streamline circulation cells are found as stretched in
elliptical shape at the comparable significance of natural and forced convection.
Further increase in Richardson number upto 100 (Figure 6.4 (c)) leads to natural
convection dominant regime as the forced convection flow is very weak, the
buoyancy driven flow is generated due to the influence of the gravitational force and
high temperature difference. The magnitude of the streamline circulation becomes
very high which results into strong circulations and dominance of the natural
convection. For the case of isotherm lines (Figure 6.5), aggregation of isotherms
indicating a high temperature gradient occurs near the lower left corner and at the
upper right corner. As mentioned earlier, the insulation module affects the isotherms.
It is observed from Figure 6.5 that the isotherms are moving towards adiabatic block
present in the cavity as if they were pulled or attracted. The adiabatic block attempts
to maintain the same thermal state as imposed on cavity walls.

Figure 6.6 shows heat transfer coefficient Nu against various values of Hartmann
number along vertical moving walls. It has been noticed that heat transfer rate is
maximum at the bottom edge of left heated moving lid where it reduces sharply while
moving inwards and becomes minimum near the region of upper adiabatic wall.
Contrary to case of cold moving right wall heat transfer rate achieved the maximum
value near the upper wall of a cavity and it reduces with distance Y along the vertical
right wall and reaches to its minimum value near the bottom of the right cold wall.
Furthermore, increase in Hartmann number has significant effects on heat transfer rate
along heated lid as shown in Figure 6.6 (a). Along both moving walls reduction in
heat transfer rate is seen with increase in Hartmann number. Augmentation in
Hartmann number causes stronger magnetic field, which results in a Lorentz force
acting on a flow field. This force reduces the intensity of fluid flowing in a cavity.
Figure 6.7 presents the effects of Richardson number on the heat transfer rate of
heated and cold moving walls in opposite direction. It has been observed that Nusselt
number is maximum near bottom region of left heated moving wall and it decreases to
its minimum value near upper region of heated wall as shown in Figure 6.7 (a).
Opposite to this in the case of cold moving wall heat transfer rate achieved its

maximum value in upper region of the right cold wall and it decreases slowly to its
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minimum value near bottom region of this wall as presented in Figure 6.7 (b). It has
also been noticed that heat transfer rate increases with increase in the values of
Richardson number, which also indicates that heat transfer rate is maximum in the
case of natural convection and it is minimum in the case of forced convection for both
heated and cold moving walls as presented in Figure 6.7.

Figure 6.8 contains graphs for local Nusselt number along both moving walls against
various values of Reynolds number. It has been noted that heat transfer rate along
heated wall is maximum in the lower segment of heated wall and then it reduces to its
minimum value at the top of it. Opposite to this, heat transfer rate is maximum at the
upper region of the cold wall, after that it reduces to meet its minimum value at the
lower segment of cavity as shown in Figure 6.8 (a, b). It has also been noticed that
escalation in Reynolds number causes enhancement in Nusselt number significantly
along heated and cold moving walls.

Figure 6.9 describes the linear trends of average Nusselt number along moving
vertical lids. It is seen through figure that overall heat transfer rate reduces with
augmentation in Hartmann number and there is a slight enhancement in overall heat
transfer rate due augmentation in Richardson number along left heated wall as
presented in Figure 6.9 (a). Average Nusselt number along moving cold right wall
also decreases with increase in Hartmann number. It can also be observed that there is
approximately uniform distribution of average Nusselt number within the cavity.
Figure 6.10 represents the overall heat transfer rate along left heated and right cold
vertical moving lids against Hartmann number for different values of nano-scale
ferromagnetic particles. It has been observed that augmentation in solid volume
fraction causes reduction in overall heat transfer rate and increasing the strength of
magnetic field also reduces average Nusselt number along heated lid and this rate of
decrease is more significant when Ha > 10. Average Nusselt number is maximum in
the absence of magnetic field and then it decreases monotonically under the influence
of magnetic field to its minimum value as shown in Figure 6.10 (a). Similar behavior
can be observed for the case of right moving cold lid.

Figure 6.11 contains curves for average heat transfer rate along left heated lid and
right cold lid against heat generation/absorption coefficient for various values of
nano-scale ferromagnetic particles. It is observed that at Q = —10, the addition of
nano-scale ferromagnetic particles slightly increases overall heat transfer rate.

Whereas, by enhancing the values of heat source/sink coefficient Q the average
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Nusselt number becomes significant along heated wall as shown in Figure 6.11 (a).
Furthermore, overall heat transfer rate is found to be more significant as compared to
the case of heated wall. It has also been observed that for the case of heat absorption
i.e.Q < 0, overall heat transfer rate is observed as an increasing function. Contrary
to this for the case of heat generation i.e. @ > 0, overall heat transfer rate is found to
be a decreasing function.

Figure 6.12 shows the graphs for average Nusselt number along both moving walls
against Richardson number for various values of nano-scale ferromagnetic particles. It
is shown through figure that for small value of Richardson number, addition of the
nano-scale ferromagnetic particles slightly reduces the overall heat transfer rate along
heated wall. Whereas, for the case of cold wall, this increment in overall heat transfer
rate is more significant as compared to heated wall. While by increasing the values of
Richardson number overall heat transfer rate is found to be an increasing function.
Throughout the entire domain of Richardson number, average Nusselt number of base
fluid is higher as compared to ferrofluid. From figure it is revealed that the use of
nano-scale ferromagnetic particles provide better results in heat transfer than that of
base fluid.

Figure 6.13 contains the graphs for overall heat transfer rate for Hartmann number
against various values of Reynolds number along both heated and cold moving walls.
From figure, it has been noticed that at Ha = 0, increase in values of Reynolds
number results into an augmentation in overall heat transfer rate along both heated
and cold moving walls. Furthermore, for the range of Ha < 40 for the case of Re =
50, overall heat transfer rate decreases and after Ha = 40 it becomes uniform. For
other two cases i.e. Re = 100 and Re = 200, average temperature gradient
decreases sharply for certain range i.e. Ha < 40 and after that decrease is slight.
Augmentation in Reynolds number causes enhancement in average temperature

gradient along both heated and cold moving walls as shown in Figure 6.13.
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Table 6.1: Applied formulation of nanofluid properties

Ferrofluid Properties

Dynamic viscosity
Heat capacitance

Density
Thermal expansion coefficient

Thermal conductivity

Thermal diffusivity

Electrical conductivity

(pcp)ff = (1 - d))(pcp)f + ¢(pcp)s

Applied Model
__
‘uff - (1_¢)2.5

pff = (1 - ¢)pf + ¢ps

(B s = (A=) (B + d(pB)s

ke (ks+2kp)—2¢(k—ks)
ke (ks+2kp)+o(kp—ks)

O'ff=0'f<1+<

kes

Apf = 77—~
ff (pcp)ff

3(”—3—1
af

Table 6.2: Overall heat transfer rate along heated wall for block sizes (0 — 0.8)

Mo
Re Ri No Ay A, As Ay As Ag A Ag Ag
Block
50 0.1 7856  7.857 7.858  7.835  7.743 7548 7235 6.830 6.384  5.932
1 8.074 8077 8083 8087 8033 7861 7523 7.032 6484 5964
10 8945 8951 8968  9.021 9.066  9.056  8.897 8382  7.367  6.280
100 11.240 11.245 11.261 11.308 11.365 11.422 11.454 11.402 10.940 8.771
100 0.1 14158 14165 14.187 14259 14.279 14130 13.717 13.019 12144 11.233
1 14.340  14.347 14372 14454 14523 14487 14219 13550 12.488  11.355
10 15.644 15653 15.676 15748 15836 15911 15917 15718 14.818 12.612
100 18.944 18.947 18959 19.002 19.102 19.148 19.192 19.231 19.128  17.927
200 0.1 21765 21.766 21.779 21.867 22.125 22.384 22325 21.616 20.141 18319
1 22086 22.095 22128 22263 22.456 22.628 22.661 22.299 21.019 18.756
10 23.834 23843 23.765 23.830 23.908 23.999 24.090 24.108 23.771 21.678
100 28511 28514 28524 28556 28.606 28.665 28.665 28.704 28.803  28.399
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Figure 6.6: Local heat transfer rate for various values of Hartmann number along
(a) Left heated wall (b) Right cold wall
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Figure 6.14: Overall heat transfer rate for different values of heat

generation/absorption coefficient against Hartmann number along (a) Left heated
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Figure 6.14 shows the effects of Hartmann number and coefficient of heat
generation/absorption on average temperature gradient along heated and cold moving
walls. In general, magnetic field causes reduction in average temperature gradient. It
is noted from the figure that for the case of heat absorption i.e. Q < 0, average
Nusselt number is high and influence of magnetic field is small which represents a
slight reduction in overall heat transfer rate. Opposite to this, for the case of heat
generation i.e. Q > 0, both heat generation and magnetic field causes reduction in
average temperature gradient which indicates that the large values of Hartmann
number reduces the overall heat transfer rate significantly. It is also noticed that
average Nusselt number is a decreasing function of Hartmann number along the left
heated moving wall as shown in Figure 6.14 (a). Contrary to this, overall heat
transfer rate is an increasing function along the right cold moving wall as it is
decreasing with increasing in the values of heat generation/absorption coefficient as
shown in Figure 6.14 (b). Furthermore, the average temperature gradient in the
presence and absence of block for Ri = 0.1 —100 and Re = 50 — 200 are
presented in Table 6.2.

6.3 Conclusions

Our computation reveals that the heat transfer process can be controlled with the help
of an adiabatic block. It is investigated that block present with different aspect ratios
severely affects the Nusselt number which depends upon the motion of the moving
lid, Re, Riand Ha. Augmentation in heat transfer up to a certain size of adiabatic
block is noticed and further increase in block size causes reduction in heat transfer.
Heat flow from left heated moving lid to the right cold moving lid is happened
through well-defined energy transport phenomenon represented by the isotherm lines.
In general, streamlines recirculation cells are strongly suppressed due to presence of
an adiabatic square blockage. Heat transfer in the presence of block shows an improve
trends for the range of Ri = 0.1 — 100 and Re = 50 — 200 except for some
exceptions. Convection heat transfer regime is found dominant in the enclosure for
large Richardson number and small Hartmann and Reynolds numbers. Along both left
and right moving walls, heat transfer rate is noted to reduce with augmentation in
Hartmann number while enhancement in Nusselt number has been observed for
increase in the values of Reynolds and Richardson numbers. Average temperature

gradient reduces with increase in Hartmann, Richardson numbers and solid volume
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fraction along both moving walls of a cavity. Augmentation in average temperature
gradient is seen for the cases of heat generation/absorption coefficient with nano-scale
ferromagnetic particles, Reynolds number and Hartmann number. It has also been
observed that average temperature gradient along left hot wall reduces with
augmentation in heat generation/absorption coefficient and Hartmann number.
Opposite to this, enhancement in average temperature gradient is seen due to increase
in heat generation/absorption coefficient along right cold wall. Prominent effects of
moving lid are seen for small Richardson number and for large Reynolds and

Hartmann number.
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Chapter 7

Heat Transfer in Flow of Nanofluid through Entrapped

Porous Triangular Cavities

In this chapter, Numerical simulations are carried out for free convective heat transfer
through nanofluid saturated in entrapped triangular cavities enclosing porous medium
has been discussed. Inclined walls of cavities are taken cold while horizontal walls are
assumed to be heated uniformly. Numerical results obtained are shown in the form of
flow patterns, isotherms, temperature gradient and average temperature gradient for
wide range of physical parameters including solid volume fraction, porosity
parameter, Darcy, Prandtl and Rayleigh numbers.

Most of results presented in this chapter are obtained using nanoparticles of copper
because the combination of water-Cu nonofluid returns better heat transfer rate as
compare to other combinations (Al,O3 and TiO,). This investigation shows that the
Darcy and Rayleigh numbers produce noticeable effects on flow patterns and
temperature distribution in both cavities. Increasing Darcy and Rayleigh numbers
increase the strength of streamline circulations. Similarly, overall heat transfer rate Nu
along the inclined walls of lower triangular enclosure is found increasing function of
Rayleigh and Darcy numbers. Further it is seen that the local heat transfer rate Nu is
maximum at the edges of horizontal boundaries of the cavities and it decreases while

moving toward centre from edges.

7.1 Problem Formulation

Configuration considered in this investigation consists of laminar, steady state, two
dimensional natural convective fluid flows within two entrapped triangular porous
cavities as presented in Figure 7.1. The porous medium enclosed in two entrapped
triangular cavities is full of nanofluid composed of a combination of H,0 and Cu
spherical nanoparticles. It is supposed that the inclined and horizontal walls of the
cavities are maintained at uniform temperatures T, (cold) and Tj, (hot) respectively.
With the help of Boussinesq approximation (Gray and Giorgini (1976)), variation in
the density of fluid with respect to temperature of fluid accounts for a body force term
within governing Naver-Stokes equation. Furthermore, the temperature of fluid and

solid sections in the porous region is equal and therefore Local Thermal Equilibrium
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(LTE) is applicable in this study (Nield and Bejan (2006)). The fluid is considered to
be Newtonian, viscous and incompressible. Furthermore, there is no slip between base
fluid and particles of nanofluid. Table 7.1 shows the thermo-physical properties of

water and nanofluid.

Al Th .C X>

Figure 7.1: Geometrical description of the problem
Under the above suppositions and by using the laws of conservation of mass,
momentum and energy, the governing equations of the current problem might be

expressed in dimensional form as:

Uy +v, =0, (7.1)
- __f Hnf€ 2 Pnflt

uu, + vu, = — o Px + . (Upx +uyy) — € paprs (7.2)
R Hnf€ 9(PBInfe? 2 Hnfv

uv, + vy, = — Epy + E (vxx + vyy) + P—nf (T - Tc) — & m, (73)

uTy, + vTy = anp(Tex + Tyy). (7.4)

where u and v be the components of velocity along x and y axis respectively, p be the
pressure, € is the porosity of the medium and it is supposed to be constant (¢ = 0.4).
The following non-dimensional variables are introduced to non-dimensionalize

equations governing the boundary value problem (7.1)—(7.4).

vL L?
v p=_P

L T-T v
X:£,Y=X’U=—u’V= = < Prz_f’Raz
L L ag ar

af' - pnfafz’ o Th—TC’

9BsL3(Th—Tc)PT _K
e T (75)
We get the following non-dimensional form as:
_ Elnf _ o2 _HagU
UUy +VUy = —ePx + ey (Uxx + Uyy) — € ;D3 (7.6)
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_ Elns 2 (PBnf 2 _HnfV
UVy +VVy = —€P V. % ——=RaPrf — ¢* ———, _
X + Y Ery + o ( XX + yy) + € pnfﬁf arr & pnrasDa (7 7)
Ubx +VOy = 0;_17 (Oxx + Oyy)- (7.8)

The dimensionless boundary conditions in the form of velocities U, V and temperature
0 are as follows:
U=V=00=0atY=0and0 <X < 2,
U=V=00=0atY=0and0 <X < 2,
U=0=V,0=0atY—-X=0and0 < X,Y <2,
U=V=06=0atY+X=2and0<X,Y <2. (7.9)
The dimensionless heat transfer coefficient Nu may be computed for heat transfer
analysis in free convection flow in an enclosure. The local Nusselt number for lower
and upper triangle can be expressed in the form of temperature field as

(a) Entrapped lower triangle

Nuy = 22 (2., 6,229,

Ky \Li=1Yi 5y
= (50 (2 %0 @10

(b) Entrapped upper triangle
_knr (<6 (ol
Nuh - kg ( o )’

i=1%i 5,
o= 31, (R 529). a2

The overall heat transfer rate Nu is computed by integrating Egs. (7.10) and (7.11) for
the horizontal and inclined walls as follows
foz Nupdx 1

- 2 _— —_— 1 2
Nuj, = 7 - Efo NupdX and Nu; = Nu, = \/_Efo Nu,dS.

(7.12)

7.2 Results and Discussions

This section contains numerical results and their analysis for free convection through
permeable entrapped triangular cavities filled with nanofluid when inclined and
horizontal walls are maintained at uniform cold and hot temperatures respectively.
The results are obtained and shown in terms of graphs for streamline contours,
isotherm contours, heat transfer rate Nu and overall heat transfer rate Nu for wide
range of involved physical parameters like Darcy number (10_5 <Da<1077) and
Rayleigh number (10* < Ra < 107), while Prandtl number, porosity ¢ and Solid
volume fraction ¢ are fixed at 6.2, 0.4 and 0.1 respectively.
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Figure 7.2 (a-c) shows the graphs for streamline circulations and isotherms contours
at Pr = 6.2, Da =10"%, ¢ = 0.1, ¢ = 0.4 and 10° < Ra < 10. It is evident from
this figure that there are significant effects of Raylegh number on flow patterns and
heat transfer in the cavity. It is noted that near the centre of bottom wall of lower
triangle, fluid rises up and after reaching to the top of lower triangle it comes down
along inclined walls forming two symmetric rolls of clockwise and counter-clockwise
circulations. Similarly two symmetric rolls of concentric circulations are seen in upper
triangle also. Here positive values are used to show the heights of counterclockwise
circulation contours and negative values are used to show the heights of clockwise
circulation contours. Furthermore, the increase in Rayleigh number causes increase in
the strength of both (clockwise and anticlockwise) circulations where the strength of
circulation is increased more significantly in the lower triangle with increase in
Rayleigh number as compare to that in upper triangle. The magnitude of maximum
values of streamline contours [|,,.are 0.15,1 and 4 in upper triangle, 0.15,3 and 18
in lower triangle for Ra = 10°, 10° and 107 respectively as shown in Figure 7.2 (a-
c). On the other hand, isotherm contours for small Rayleigh number appears to be
smooth and monotonic showing conduction dominant regime as shown in Figure 7.2
(a). When Rayleigh number is increased to 10° isotherms in lower triangle starts
stretching upward to top and isotherms in upper triangle gets compressed slightly to
top horizontal wall of upper triangle. Increasing Rayleigh number further to 10’
results into deformed isotherms in lower triangle showing convection dominant
effects and a plume like flow pattern is formed in lower triangle where stratification
of isotherms is seen near top horizontal wall of upper triangle due to which there were
less significant effects on streamline circulation in upper triangle as compared to the
effects on streamline circulation in lower triangle.

Figure 7.3 shows the graphs for streamline circulation and isotherms contours for two
values of Darcy number Da = 1073 and Da = 1075 respectively where Ra, Pr,
porosity & and solid volume fraction ¢ are fixed at 10°, 6.2,0.4 and 0.1 respectively.
It is noticed that increase in Darcy number results in stronger streamline circulations
in both clockwise and anticlockwise directions and change in the values of Darcy
number affects circulation contours in lower triangle more prominently. Magnitude of
highest value of streamline |Y],,., IS Noted to be 0.015 and 0.7 in upper triangle and

0.015 & 1.5 in lower triangle for Da = 1073 and 107> respectively as shown in
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Figure 7.3. On the other hand, an isotherm seems to be symmetric about vertical line
passing through the centre of horizontal walls of upper and lower triangles. It is seen
that for small value of Darcy number, isotherms are smooth and monotonically
distributed in the enclosure and when Darcy number is decreased to 10 isotherms
appears to be slightly pushed upward from near the centre of bottom wall in lower
triangle while in upper triangle isotherms are compressed a little towards top wall in
upper triangle.

Figure 7.4 contains the graphs for local Nusselt numbers along horizontal and
inclined walls of enclosure against increasing values of distance for three different
Rayleigh number Ra = 10°, 10° and 107 respectively where Prandtl number Pr,
Darcy number Da, Porosity £ and solid volume fraction ¢ are fixed at 6.2, 107*, 0.4
and 0.1. Since horizontal walls of both, upper and lower triangular cavities are
considered at a constant temperature (6 = 1) while inclined walls are taken cold
therefore, there appears a jump type discontinuity at the vertices of horizontal walls of
upper and lower triangular cavities. It is due to the fact that the two walls coinciding
at these vertices are at different temperature. This discontinuity has been given special
attention and is dealt according to (Ganzarolli and Milanez (1995)). Temperature at
these corners nodes is taken to be the average temperature of horizontal and
corresponding side walls. However, the adjacent nodes are taken at corresponding
boundary wall temperature to avoid singularity. In left column of Figure 7.4 (a),
symmetric distribution of local Nusselt numbers has been observed along the top
horizontal wall of upper triangle and value of Nusselt number Nu is noticed to be
maximum at both edges of the horizontal wall due to the singularity appearing at these
vertices. While moving toward centre from there corners, Nusselt number decreases
and attains minimum value at the centre of horizontal wall. Furthermore increasing
Rayleigh number increases local Nusselt numbers monotonically for a fixed value of
Distance X near the central area (0.3 < X < 1.7) of horizontal wall and Nu is straight
horizontal line in this region for a fixed value of Ra = 107, where Nusselt numbers
for other Rayleigh numbers coincide for X < 0.3 and 1.7 < X. Similarly for the
lower triangle, local Nusselt number is observed maximum at edges of horizontal
bottom wall due to the singularity there and it decreases while moving toward centre

from the corner edges and attains its minimum value at the centre of horizontal wall,
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while for a fixed value of distance X local Nusselt number Nu increases with
increasing values of Rayleigh number as shown in right column of Figure 7.4 (a).
Figure 7.4 (b) shows local Nusselt numbers along inclined side walls of triangular
cavities. Since both inclined walls are taken cold (at the same temperature), therefore
curves for both inclined wall are identical and thus we had shown Nusselt number
along any side wall of each triangular enclosure. It is observed that local Nusselt
number Nug increases slowly when distance is increased along inclined walls of upper
triangular cavity upto 1.8 but Nug increases significantly sharp for X > 1.8.
However, increasing Rayleigh number increases Nus non-significantly upto X = 1.6
and contrarily Nus decreases with increase in Ra afterwards as shown in left column
of Figure 7.4 (b). While in lower triangular cavity, Nus decreases sharply upto
distance = 0.1 and afterwards it changes slowly with increase in distance for
Ra = 10° and 108, but for Ra = 107 Nus increases in the region 0.1 < X < 1.2 and
then it decreases afterwards.

Figure 7.5 depicts the graphs for average Nusselt numbers along horizontal and
inclined walls of upper and lower triangular enclosures against Darcy number Da for
various values of porosity € by keeping other parameters fixed. It is seen from left
column of Figure 7.5 (a) for the upper triangle that the overall heat transfer rate along
horizontal wall Nuy, first decreases slightly and then increases with increase in Darcy
number Da where for a fixed value of Da, overall heat transfer rate Nu;, decreases
with increase in porosity € along left half of upper horizontal wall while reverse
behavior is seen along right half of this wall. Whereas for lower triangle, overall heat
transfer rate Nuy, along horizontal wall increases with increase in Darcy number Da
and for a fixed value of Da, Nuy increase with increase in porosity parameter & as
shown in right column of Figure 7.5 (a). In left column of Figure 7.5 (b), similar
behavior of overall heat transfer rate is seen along inclined side walls of lower
triangular enclosure while along the side walls of upper cavity, overall heat transfer
rate is observed to increase upto Da = 0.2 x 1073 and then decreases afterwards with
increase in Darcy number where increasing values of porosity parameter ¢ increases
the overall heat transfer rate Nug against the entire range of Darcy parameter.

Figure 7.6 (a) shows the plots for average Nusselt numbers using combination of
water to different nanoparticle including Cu, TiO, and Al,O3 with water as base fluid

against increasing values of solid volume fraction ¢. It has been evidently seen in the
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figure that increasing solid volume fraction increases the heat transfer rate and
comparatively highest heat transfer rate is returned with copper (Cu) nano particles.
Figure 7.6 (b) shows the ratio effect of average Nusselt number with different nano
particles to the average Nusselt number with Cu nano particles Nu/Nu¢ against
volume fraction parameter and it is found that the quantitative effects of solid volume
fraction ¢ on the ratio Nu/Nu. are maximum for the case of water-Cu nonofluid.

Figure 7.7 shows the effect of overall heat transfer rate along horizontal and inclined
walls of upper and lower enclosures against Rayleigh number for various values of
solid volume fraction ¢. It has been noticed that along top horizontal wall of upper
cavity and inclined walls of lower cavity, average Nusselt numbers increase with
increase Rayleigh number. While for a fixed value of Ra, increase in average Nusselt
numbers is observed with increase in the value of solid volume fraction. Similarly
increase in Rayleigh number increases average Nusselt number along bottom wall of
lower cavity and along inclined walls of upper cavity while for a fixed value of Ra,

average Nusselt number is observed to increase with increase in the value of ¢.

Table 7.1: Thermo-physical properties of pure water and nanoparticles

Physical water Tio, Al,04 Cu
Properties
C,J/kgK) 4179 686.2 765 385
p(kg/m?) 997.1 4250 3970 8933
K(W /mK) 0.613 8.9538 40 400
B(1/K) 21 x107° 0.9x10° 0.85x10° 1.67 x 1075
a(m?/s) 1.47 x 1077 30.7x107 131.7x107  57.45x 1077
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Figure 7.2: Streamline and isotherms contours for Da = 10™*,Pr = 6.2,¢p = 0.1,
e = 0.4 and () Ra = 10°, (b) Ra = 10°, (c) Ra = 107
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(b)

Figure 7.3: Isotherms and streamline contours for Ra = 10%,Pr = 6.2,¢p = 0.1, € =
0.4 and (a) Da = 1073, (b) Da = 1075
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Figure 7.4: Nusselt number against distance for different values of Ra, where
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Figure 7.5: Overall heat transfer rate against Da for various values of porosity (a)

Horizontal wall, (b) Inclined side walls where for Ra = 10°,Pr = 6.2,¢ = 0.1
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Figure 7.6: (a) Overall heat transfer rate (Nu) and (b) ratio of overall heat transfer

rate to overall heat transfer rate with water-Cu nanoparticles (Nu/Nu,) against solid

volume fraction ¢ for different nanoparticles
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Figure 7.7: Overall heat transfer rate (Nu) against Ra for various values of solid
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7.3 Conclusions

This chapter deals with natural convection through water-Cu nanofluid saturated in
porous medium filled in entrapped triangular cavities, when inclined walls of cavities
are considered cold and horizontal walls are taken at constant temperature. We first
applied penalty method to the governing momentum equations to eliminate pressure
terms and then reduced momentum equations along with energy equation are solved
using Galerkin weighted residual technique of finite element method. As a result we
get a system of nonlinear algebraic equations which is solved iteratively using
Newton- Raphsom method. Numerical results are obtained for wide range physical
parameters including Rayleigh number Ra, Darcy number Da, Prandtl number Pr,
Porosity parameter € and Solid volume fraction ¢.

Obtained results revealed that increase in Rayleigh number increases the strength of
clockwise and counter clockwise streamline circulation in both the upper and lower
triangular cavities. It is noted that more significant effects of Rayleigh number are
observed in lower cavity. For small Ra, conduction regime is dominant while for large
value of Rayleigh number heat transfers through convection and isotherms are
observed to form plume like flow. Similarly increasing Darcy number also increases
the strength of streamline circulations and it increases comparatively more sharply in
lower triangular enclosure then that of upper enclosure. Furthermore average Nusselt
number is found to be an increasing function of Da along the inclined and horizontal
walls of lower cavity. Where along horizontal wall of upper cavity, Nu, increases and
along inclined walls Nug decreases with increase inDa. Local Nusselt number
decreases with increase in distance along inclined wall of lower cavity. On the other
hand water-Cu nonofluid is observed to returns better heat transfer rate comparison to

that of water-Ti0, and water-Al, 05 nanofluids.

137



Chapter 8

Heat Transfer in Hydromagnetic Flow of Micropolar

Nanofluid through Entrapped Triangular Cavities

The present chapter conveys numerical computation for mixed convection heat
transfer through entrapped triangular enclosures saturated with a micropolar
nanofluid. The horizontal upper and lower walls of the enclosures are moving with
uniform velocity and these are subjected to uniform heat however inclined walls are
kept cold. Equations describing the flow are first subjected to the penalty function and
then resultant equations are simplified with the help of Galerkin variational method of
finite element analysis. The pertinent flow parameters with their ranges under
discussion are solid volume fraction (0.0 < ¢ < 0.1), Hartmann number (0 < Ha <
100), Richardson number (0.1 < Ri < 50), Reynolds number (1 < Re < 100),
microrotation coefficient (0 < K < 10) and heat source/sink coefficient (—10 < Q <
10). The results of the present investigation show that the structures of heat flow are
dependant significantly upon heat generation/absorption coefficient, solid volume
fraction of nanoparticles, microrotation parameter, Reynolds, Hartmann and
Richardson numbers. Effects of moving walls are more prominent for small values of
Hartmann number, large values of microrotaion parameter and Richardson number.
Average temperature gradient is remarkably high for small values of Hartmann
number against bottom wall and large values of Hartmann number against top wall.
Obtained solutions are illustrated through graphs of isotherms, local and average heat

transfer rates.

8.1 Problem Formulation

The present configuration of flow problem consists of two entrapped triangular
cavities filled with incompressible laminar micropolar nanofluid and magnetic field is
applied in the direction parallel to horizontal axis. It is supposed that the top and
bottom horizontal lids are moving with uniform velocity U,. Furthermore, horizontal
top and bottom lids of enclosure are subjected to heated uniformly where both
inclined walls are taken cold as shown in Figure 8.1. The fluid within entrapped
triangular cavities is micropolar water based nanofluid filled with solid spherical

nanoparticles of Cu. Nanofluid is considered to be incompressible and the flow is
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supposed to be steady, laminar and two dimensional. The particles of nanofluid are
assumed to be in thermal equilibrium within base fluid. Furthermore, there is no slip
between base fluid and particles of nanofluid. Fluid’s density is considered to be
function of temperature and the density variation causes a body force term in
governing expressions after applying Boussinesq approximation (Gray and Giorgini
(1976)). It is further supposed that magnetic field B with constant magnitude B, is
applied along direction parallel to x —axis. In this study, viscous, radiation and joule
heating effects are neglected with no Hall effects and induced magnetic field is also
ignored being very small as compared to B, under low-R,,, approximation (Davidson
(2001)).

D 0
<€—— Bo
y
A
Uo
A Th >

Figure 8.1: Graphical representation of the flow domain
Under these assumptions, governing conservation of mass, linear momentum, angular
momentum and energy balance equations are modeled in dimensionless form as:
Uy +Vy=0, (8.1)

_ Hnf
UUy +VUy = —Py + — (pnf) ( + K) Uxx + Uyy) + = (p f) Ny, (8.2)

UVy +VVy = —Py + (p f) (B2 + K) (Vi + Vi) + Ri (pi);; 6+

pronfHa?v K ( p )N
Prfong?®% 7 2% -

Pnfof e \Pns (8.3)

p Hns K p
UNy +VNy = — <E) (224 3) (N + Nyy) = 5 <E) 2N + Uy — Vy), (8.4)
UGX + VQY " RePr (a;lf) (BXX + HYY) + RePr (a;lf) qe (85)

The boundary conditions of the governing flow problem in dimensionless form are
expressed as:
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U=1,V=0,0=0,andN=0atY=0and0 < X < 2,
U=1,V=0=0andN=0atY=2and0 <X < 2,
U=0=V,0=0andN=0atY—-X=0and0<X,Y <2,
U=V=0,0=0andN=0atY+X=2and0<X,Y <2 (8.6)
The dimensionless heat transfer coefficient Nu may be computed for heat transfer
analysis in free convection flow in an enclosure. The Nusselt number can be

expressed in the form of temperature field as

Nu=—24(2), (87)

where n represents the direction normal to the plane.

The average Nusselt numer Nu is computed by integrating Eq. (8.7) as follows
szuhdx 1,2

01 = Efo NudX. (8.8)

Nu =
X1

8.2 Results and Discussions

This portion contains the results for mixed convective flow through two entrapped
triangular enclosures containing micropolar nanofluid in the presence of horizontal
external magnetic field when horizontal walls are provided with uniform heating
while inclined walls are considered cold. The effects are represented in the shape of
plots for isotherms, heat transfer rate and average Nusselt number for wide-ranging
pertinent flow parameters including heat generation coefficient, Reynolds number,
Richardson number, Hartmann number and microrotation coefficient etc.

Figure 8.2 includes the plots of isotherm contours for varying values of Hartmann
number where Ri,Re,K and Q are fixed at 0.01,10,1 and 1 respectively. It is
observed that a surge in the strength of Lorentz force causes attenuation in the
gradient of temperature within the cavity which is consequence of low currents due to
enhanced magnetic strength. The isotherm contours gets straighten near the horizontal
sides of an enclosure indicating the development of thermal boundary layer for large
values of Hartmann number. Furthermore, smooth and monotonic isotherms against
large Ha are due to the dominance of conduction regime inside entrapped enclosures.
Figure 8.3 shows the local heat transfer rates for varying Hartmann number where
Ri,Re, K and Q are fixed at 0.01,10,1 and 1 respectively. Figure reveals that along
bottom wall of the enclosure, heat transfer rate increases with increase in the values of
Hartmann number upto a certain value of distance and afterwards behavior of Nusselt

number gets reversed. Similarly the magnitude of heat flow rate decreases due to
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increase in strength of magnetic field upto certain distance along top wall and
afterwards reversed behavior of heat transfer rate is observed along top wall of the
enclosure. Figure 8.4 illustrate the influence of variation in K on the heat flow
structures in the entrapped cavities where values of Ri, Re, Ha and Q are fixed at 0.01,
10, 30 and 1 respectively. The isotherm contours are noted to be smooth and
monotonic for smaller values of K showing the dominance of conduction regime
within the enclosure while increase in the value of K escalates influence of convection
inside the cavity. The straightened isotherm contours near the upper and lower walls
of the enclosure indicate the development of thermal boundary layer near these
boundaries. Figure 8.5 depicts the effects of variation of K upon the heat flow rates
along lower and upper horizontal walls of entrapped cavities. These graphs reveals
that heat transfer rate is maximum at the edges of the lower horizontal wall and it
attenuates non-symmetrically while moving inward from corners of the boundary and
this non-symmetric reduction is due to motion of wall whereas reverse behavior of
heat transfer rate is seen along the upper horizontal wall of the enclosure. No
significant effects of change in the value of K on the rate of heat transfer along both
horizontal boundaries of cavity are observed. Figure 8.6 illustrate the effects of
variation in Richardson number on the heat flow structures where values of Re, Ha, K
and Q are fixed at 10, 30, 1 and 1 respectively. Increase in the value or Richardson
number increases the heights of isotherm contours which indicate that convection heat
transfer regime gets dominant for that case. Whereas this nonlinear behavior of
isotherms near the horizontal walls of entrapped cavities corresponds to the motion of
these walls. Figure 8.7 examines the nature of heat flow rates against horizontal
boundaries of cavity for different values of Richardson number where the other
pertinent parameters are kept fixed. It is noticed that heat flow rate is maximum at the
edges of the lower wall and it reduces non-symmetrically while moving inward from
corners of the wall and this non-symmetric reduction is due to motion of wall whereas
reverse behavior of heat flow rate is observed along the upper wall of the cavity. The
straightened isotherm contours near the upper and lower walls of an enclosure
indicate the development of thermal boundary layer near these boundaries. Figure 8.8
corresponds to the effects of average heat flow rates along bottom and top boundaries
for various values of solid volume fraction of solid particles and strength of magnetic
field where values of Q, K, Re and Ri are fixed at 1,1, 10 and 0.01 respectively. It has

been noticed that increase in the values of solid volume fraction increases the overall
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heat transfer rate along lower wall and increasing strength of magnetic field reduces
average Nusselt number along lower wall of the enclosure whereas along upper wall
of enclosure reverse behavior of overall heat flow rate is noted for both Hartmann
number and solid volume fraction. Figure 8.9 expresses the influence of varying
solid volume fraction and Q on overall heat transfer rate along bottom and top
boundaries where values of Ri,Re,K and Haare fixed at 0.01,10,1 and 30
respectively. It has been seen through graphs that with increase in heat generation
coefficient, the overall heat flow rate decreases along lower wall and increase in the
concentration of solid particles causes increase in overall heat flow rate along lower
wall, whereas along upper boundary, opposite behavior of overall heat transfer rate is
observed for both heat generation coefficient and solid volume fraction. Figure 8.10
shows the behaviour of overall heat transfer rate along horizontal boundaries for
varying Hartmann number and heat generation coefficient where values of K, Re and
Riare fixed at 1,10 and 0.01 respectively. It is noticed that overall heat flow rates
attenuates with augmentation in both Q and Ha along the bottom wall of container
whereas along top wall of the enclosure increase in heat generation coefficient and
strength of magnetic field results in escalation of average Nusselt number. Figure
8.11 contains the graphs for average Nusselt number against variation in strength of
magnetic field for different values of Reynolds number where Richardson number,
coefficient of heat generation and microrotation coefficient are fixed at 0.01,1 and
1 respectively. Along bottom wall, average heat flow rate is noted to decrease with
increase in Hartmann number and rate of this decrease is significant for large
Reynolds number whereas augmentation in Reynolds number escalates over all heat
flow rate for any fixed value of Ha. Along top wall, opposite behaviorin average heat

transfer rate is noted against both Reynolds and Hartmann numbers.

Ha=0 Ha = 30
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Figure 8.3: Local Nusselt number for varying Ha where Ri = 0.01,Re = 10,K =1
andQ =1
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Figure 8.4: Isotherm contours for varying K where Ri = 0.01, Re = 10, Ha = 30 and
Q=1
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Figure 8.5: Local Nusselt number for varying K where Ri = 0.01,Re = 10,Ha = 30
andQ =1
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Figure 8.7: Local Nusselt number for varying Ri where K = 1,Re = 10,Ha =
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8.3 Conclusions

This investigation comprises numerical study for MHD mixed convective heat flow in
entrapped triangular cavities enclosing copper-based micropolar nanofluid in the
presence of heat generation/absorption when uniform heat is supplied to both top and
bottom oscillating lids of a container while inclined sides are maintained as cold.
Equations describing the flow are modelled by using principles related to
conservation of mass, linear momentum, angular momentum and energy. Penalty
function is employed to eliminate pressure gradient terms from the governing
expressions and then reduced equations of linear momentum along with angular
momentum and energy equations are subjected to the Galerkin weighted residuals
technique which results into a system of nonlinear algebraic expressions and that
system is further simplified with the help of Newton Raphson technique to obtain a
numerical solution. Obtained numerical results are shown against different values of
pertinent flow parameters in the shape of isotherm contours, Nusselt and average
Nusselt numbers. Our computations reveal that the transfer of energy process can be
controlled through concentration of solid particles. Heat flows from top and bottom
moving lids to the cold inclined walls of a cavity through well-defined energy
transport phenomenon and is represented by isothermal lines. It is noticed that the
augmentation in Hartmann number causes decrease in overall temperature gradient
along bottom moving wall of the lower enclosure. Contrary to this, along top moving
wall of the upper enclosure, augmentation in Hartmann number results into an
enhancement in overall temperature gradient. Conduction regime is dominant for
small values of microrotation parameter and large values of Hartmann number and
convection regime is dominant for large Richardson number. Augmentation in
concentration of solid particles enhances overall temperature gradient along bottom
wall whereas overall heat transfer rate decreases along upper wall for large values of

solid volume fraction.
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