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Abstract

Mainly, the current study demonstrates the comparison of panel cointegration tests. This
study comprised of comparative assessments of 24 tests and their comparison using
stringency criterion. Among the compared tests, 21 tests are based on the null hypothesis
of no cointegration, while 3 tests are based on the null hypothesis of cointegration. As far
as novelty of the study is concerned, none of the existing studies have used this
stringency criterion for the power comparison of panel cointegration tests. within the
framework of null of no cointegration, this study evaluates the performance of 21 tests
included; Residual based tests (parametric/nonparametric), Maximum Likelihood based
tests, Fisher type tests, Average Weighted Symmetric test and Error Correction Based
tests.

The current study also extended toward comparison of power 3 panel cointegration tests
having null hypothesis of cointegration. This study also evaluates the empirical size of
the under consideration panel cointegration tests using asymptotic critical values and
found that most of the tests are oversized. Therefore, size of all these tests have been
controlled by using simulated critical values. The results of current study depicts that two
residual based tests (PdP_V, PdPrho) and average weighted symmetric based test
(PAWS) performed in paramount way throughout all time and cross sectional
dimensions. current study also reveals that maximum likelihood based test LR and
second generation test W_Gt perform worst in the current scenario. The LM_OLS test
having null hypothesis of cointegration performed better than LM DOLS and
LM_FMOLS. Three better performing tests have reasonably high bootstrap powers based

on Fisher hypothesis.

XVi



Chapter 01: Introduction

1.1. Background of Study

The use of cointegration techniques in economic empirical literature has been widely
recognized during the last three decades. In 1987 Economist (Engle and Granger)
introduced the core concept of cointegration firstly. The phenomena of cointegration
efaborates the extended relationship between integrated variables. The concept of
cointegration was introduced first time by Engle and Granger (1987). The cointegration
describes the long run relationship between the integrated variables that is, if the
‘variables are integrated of order d then their linear combination must have the order
smaller than 4. For example, variables are said to be cointegrated if components of p-

dimensional process Z are integrated of order one that is, Z ~I(1) and the lincar
combination of the components of Z, are integrated of order zero (stationary) that is,
YZ ~1(0)fory =0,

Cointegration was also described by Liitkepohl (2005) in another way. “if at least one of
the components of a p-dimensional process Z, is integrated of order 4 that is, Z, - I(d),
and their linear combination yZ, is integrated of order less than d, then the components
of the process Z, are cointegrated™ (for detail reference is provided; Liitkepohl (2005).
From the provided reference it can be concluded that all components of Z, may not

necessarily have the same order of integration. It is known that the regression of an
uncorrelated integrated process. Factually, variance of regression cannot be estimated

consistently. However, spurious regression has non-stationary residuals. Morcover,



residuals of regression are present in stationary form, it may resulits cointegration of
integrated process. Theoretically for explaining economic models in best ways,
researchers relies more on cointegration technique as compared to conventional
methodologies.

Within comparative assessment of panel data models and time series analysis
cointegration showed complex behavior in former data models. Complexity in panel data
models occurs due to multiple factors such as sectional dependence, non-homogeneity,
unbalanced data and many others. Mainly, two prominent categories of cointegration
tests exist primarily based on residuals and maximum likelihood technique. Former
category tests consist of single equation model which detect extended relationship while
later category'consists system of equations, detecting not only the presence of extended
-re-la;tionship, but also determines the numeral relationships of cointegration among the
variables of the system.

Panel cointegration tests are the extension of panel unit root tests. Pedroni (1999), Kao
(1999) and Pedroni (2004) have introduced the first panel cointegration residuals based
tests having null hypothesis of no cointegration of Dickey and Fuller {1979) (DF) and
Said and Dickey (1984) (ADF) statistics which are the extension of panel unit root of
Levin and Lin (1993). Furthermore, Pedroni (1999) also introduced the panel
cointegration tests having null hypothesis of no cointegration. These tests are the
extensions of the variance ratio tests proposed by Phillips and Ouliaris (1990) and
Phillips and Perron (1988).

Firstly, deliberate discovery of panel cointegration tests (mainly residual based ) was

done by McCoskey and Kao (1998) using the principle; null of cointegration. Basically



mentioned test (McCoskey and Kao) was an extension of test proposed by Harris and
Inder (1994) and Shin (1994). According to Harris and Inder (1994) and Shin (1994), the
tests having null hypothesis of cointegration can be very appealing in application, where
the cointegration is predicted prior by the economic theory.

Keeping in mind heterogencous panel, Larsson, Lyhagen et al. (2001) introduced
cointegration tests based on maximum likelihood technique. Another test proposed by
Groen and Kleibergen (2003) for cointegration also have maximum likelihood approach.
Breitung (2005) introduced a new procedure of estimation of panel cointegration tests.
Breitung (2005) suggested Wald, Lagrange multiplier and LR tests, based on the
procedure of Saikkonen (1999). Westerlund (2007) also developed four panel
cointegration tests that may explain the generalized posture of tests given by Banerjee,
Dolado et al. ( 1998)‘. All these four tests are based on the Error Correction Model (ECM).
Out of these four, two tests are group mean tests, which assume that error correction
terms are varied in cross sections. While, the other two panel tests assume that error
correction terms are homogenous in cross sections.

The empirical size and power of any test represents the performance of that test. The
performance of any test is being considered the best, if empirical size of the test is close
to the nominal size with high power. In the literature, different Monte Carlo studies have
been conducted to compare the size and power of the panel cointegration tests. Usually,
whenever someone proposes a new test for panel cointegration, also compares the size
and power of this new test with the existing ones in literature (Monte Carlo simulations).
In most of the Monte Carlo comparisons of size and power, two or three points of

alternative hypothesis have been considered. Similarly, in these comparisons most of the



researchers have used asymptotic critical values., The problem with the asymptotic
critical values is that the size of tests is not controlled and does not converge to the
nominal size.

In this study two classes of panel cointegration tests have been compared that are , the
tests having null hypothesis; no cointegration and cointegration by using stringency
criterion discussed by Asad Zaman (1996). For this scenario two point optimal tests with

opposite null hypothesis have been used

1.2. Motivation

Cointegration technique is most popular, significant and important technique in the
economic literature for testing the long run relationship among the economic variables as
well as financial variables. The popularity of cointegration technique has been growing in
the empirical literature becaqse it ié used to test the presence of Iohg run relationship
among the integrited variables. In recent years, there has been an increase in the
im'portance and use of panel data sets, where economic variables have been observed
over extended periods of time across a large number of cross-sectional units, such as
countries, industries and households. This development has in turn given rise to a great
amount of interest in econometric techniques for dealing with potentially non stationary
panel data variables. There has been a rapid growth in the use of cointegration methods
with large panel data sets, to empirically evaluate important economic theories.

Multiple studies have been conducted in literature to evaluate the performance of tests
using simulation to prime factors; power and size. Comparative studies from existing

literature depicts that tests showed fluctuating behavior regarding their performance. To



tackle this, an integrated framework may be developed for their comparison on whole
alternative space

In all these studies, different Monte Carlo simulation designs are used. In the economic
literature, there has not been such study where both types of panel cointegration tests
have been compared using stringency criterion. The above gape in literature inspired us
to carry out a comprehensive evaluation of cointegration (24 tests). The mentioned tests

have been assessed with robust technique; stringency criterion.

In this study, two different classes of tests have been compared with opposite null
hypothesis of (no) cointegration. simulated critical values have been used for both classes
of tests. This study has compared the Panel cointegration tests which are residual based,
maximum likelithood based, average weighted symmetric based, Fisher type tests and
those tests which are based on the vector error correction model. So, this study has ﬁﬁeci
this gap in the literature and provides the guidelines to practitioners about the best panel

cointegration tests.

1.3. Significance of the Study

As researchers and practitioners are aware of the importance of the concept of
cointegration in the empirical literature of panel data, therefore they have frequently used
this concept to check the long run relationship among the integrated economic as well as
financial variables. But the core problem faced by the practitioners and researchers in this
regard is that there is no clear cut guideline in the existing literature that which test can be
applied according to the length of time dimension and cross sectional dimension. Usually
in the literature practitioners and researchers have applied the cointegration tests without

knowing the flaws of the cointegration tests, that is, size distortion and low power.
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Practitioners also have made the decision about the rejection of null hypothesis by using
the asymptotic critical values, which usually leads towards misleading results.

There exist a few studies in which the size and power comparisons have been done.
These include but are not limited to, McCoskey and Kao (1998), Kao (1999), Gutierrez
(2003), Pedroni (2004) and Orsal (2007). But these studies have limitations, only few
tests have been considered in each study. In most of the studies size of the tests has not
been controlled before comparing their power leading to meaningless results. Another
thing which is common in these exiting comparisons in the literature is that no one has
used whole alternative space, tests have been compared on few points of alternative
hypothesis.

This study has tried to overcome all these problems and has compared most of the tests
in the existing literature by using ‘Monte Carlo simulation experiment. In spite of
Asymbtotic critical values (ACV), simulated critical values (SCV) have been used in this
Monte Carlo experiment. Critically, ACV have not been used due to unstable size,
- therefore SCV might be used.

In present study when the empirical size of tests has been checked. Study also evaluate
SCV have been used to control/ stabilize the size of tests and then their power
comparison is carried out using stringency criterion. This study has also investigated the
bootstrap empirical powers of best cointegration tests based on Fisher hypothesis by

using the OECD countries quarterly data.

1.4. Objectives of Study

»  The first most important aim of this current study is to evaluate the pragmatic

size of panel cointegration test keeping in view ACV To complete this two



different classes will be compared based on opposite null hypothesis of (no)
cointegration.

As researchers/practitioners know that the power of two tests can only be
compared if their size is stable and close to the assumed nomtnal size. So, in this
regard, to evaluate whether the under consideration tests are stable sized,
oversized or under sized, empirical size of tests has been estimated. Within this
objective, the impact of time and cross sectional dimensions are also assessed on
empirical size of test.

The Second prime and integral objective of the study is to stabilize or control size
of panel cointegration tests by means of SCV. As discussed earlier, this study
should compare the tests of stable size using stringency criteria. Within this
objective, the impact of time and cross sectional dimensions are also assessed on
stabilizing size of test.

The third main and core aim is to investigate power of both classes of panel
cointegration tests and assess the pattern of power of each test at all alternative
space. Within the sphere of third objective, the impact of time and cross sectional
dimensions are also assessed on power of test.

The fourth main and vital objective of this study is to investigate the most
stringent test of all under consideration tests in each type of tests.

The fifth and last objective is to investigate the bootstrap empirical powers of best
panel cointegration tests based on Fisher Hypothesis. For this, OECD countries

quarterly data have been used.



1.5. Scheme of Dissertation

The structure of current dissertation consists of workpackeges; Chapter 1 consists of
motivation, significance of the study and objectives of the study. Chapter 2 dissects the
contents into two parts; regressive review on panel cointegration tests and their
comparison with existing methodologies. Chapter 3 provides the details of methodology
regarding Monte Carlo comparison using stringency criteria. Chapter 4 gives an overview
of empirical size of the cointegration tests. In Chapter 5, size of the tests has been
controlled because most of the tests have not stable size. Chapter 6 is the discussion on
the power of the tests by using stringency criteria. Chapter 7 discusses the bootstrap
empirical powers of the best tests using real data. The final and last part (chapter 8)

constitutes the core finding and future directives..

.. -



Chapter 02: Literature Review
2.1. Regressive Review of Findings

Mainly, two types of the panel cointegration tests exist namely residual based
cointegration and maximum likelihood tests. Researchers have developed residual based
cointegration test for two classes of tests; tests having the opposite null hypothesis of (no)
cointegration. Core theme of current tests is to evaluate the unit root presence in residuals
of cointegration regression. The existence of (no) cointegration in the integrated variables
can be checked via presence of unit root in residuals and stationary residuals
respectively. Principally, if only one cointegration relationship exist among the variables
then residual based tests are used if vice versa (more than one) relationship exist trh_en
mentioned tests cannot be used. }

The second most important category of tests to hand panel data is maximum likelgﬁood
based tests which is extended form of Johansen (1988). Advantages of mentioned tests
are; former type determine more than one cointegration relationship among the variables

it more than one relationship exists. The phenomena of autonomous behavior (free from

choice of variable) is prominent outcomes of maximum likelihood based tests.

Multiple comparative studies exist for panel cointegration tests (Kao, 1999; McCoskey
and Kao,1998; Wu and Yin, 1999; Larsson et al, 2001; Pedroni, 2004). Whenever,
researchers have developed the new panel cointegration tests, mostly, these developed
tests have been compared with some existing panel cointegration tests. Kao (1999) has
developed five tests of panel cointegration having null of no cointegration, in which four
are Dickey-Fuller (DF) type and one is augmented Dickey-Fuller type (ADF) that is,
DF,, DF,, DF,, DF,, ADF. Two Dickey-Fuller (DF) tests; DF, and DF, » have assumed strong

9



exogeneity where two tests DF, and DF, have relaxed this assumption. Kao (1999) has

also developed the asymptotic distribution of these tests which converges to standard

normal distribution when N and T converge to infinity.

McCoskey and Kao (1998) proposed the residual based Lagrange Multiplier (LM) tests
for the null hypothesis of cointegration. McCoskey and Kao, 1998 also performed the
Monte Carlo comparison for size and power properties of these tests. McCoskey and Kao
concluded that the empirical size of LM-FMOLS and LM-DOLS are closed to the
nominal size of 5% (even in small samples). According to McCoskey and Kao (1998)
power of these two tests is quite good when time dimension is greater than 50. When
cross sectional and time dimensional length is fixed at 50, the presence of endogeneity
and moving average term, these two tests performed differently. In general LM-DOLS
test performed better, nevertheless, LM-FMOLS test is more powerful in some cases.
Kao (1999) has developed residual based five panel cointegration tests

Authors also conducted simulation experiments to compare size and power of these five
tests using asymptotic critical values. In these five tests, comparative study concluded

that empirical size of tests; DF and DF,, is close to the nominal size (of 5%) when both

time "T" and cross sectional "N" dimensions are large. Whereas, the empirical size of

ADF test is greater than 9% for all values of N and T, similarly, the size of DF, and DF,

is greater than 7% for all values of N and T. Kao (1999) concluded that when time
dimension "T" is small (around 25} then size of all tests distorts even though the N is
large enough. Kao (1999) also described the unadjusted powers of these five tests for
power comparison using asymptotic critical values and considered only one point for

alternative hypothesis.

10



According to Kao (1999), all these five tests have small powers when T and N are small,

however, DF, has small power even though the N is large. Once, the time dimension is
increased DF, dominates the DE . Regressors are endogenous in the data generating
process (DGP) while the DF and DF, perform well even though tests are misspecified.
Hence, experiments suggest that the distribution of DF’ ,DF, and ADF can be far different

from standard normal N(0,1) when the DGP contains the moving average (MA)

components. It is also evident that the DF and DF,tests are substantially robust (even

though the model is misspecified).

McCoskey et al., 1999 have compared power and size characteristics of five tests;

(ADF',PO;, PO, APG’ and LM’),where first four tests have the null hypothesis of no

cointegration while last one has the null hypothesis éf cointegration. In this compaﬁséﬁ‘
firstly, authors compared 04 tests having null of no cointégration subsequently, select two
best tests re;ga;ding size and power. Laterally, these 02 best tests were co.mpared with the
test having null hypothesis of cointegration. The empirical size of these four tests having
null hypothesis of no cointegration, ADF performed best as compared to other, In the
power comparison of these four test, the two tests, ADF and APG™ performed best.

Lastly, these two tests have been compared with LM’ . Also, these three tests ADF', APG’

and LM have been compared with each other by using two different DGPs where LM’

performed best as compared to other two.

Wu and Yin (1999) have compared empirical size and power of ADF and maximum

Eigen value based tests in pooling information on means and p-values respectively. Wu
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and Yin (1999) concluded that the average ADF performs better with respect to power
and their maximum eigen value based p-value perform better with regards to size.

Firstly, for panel framework, maximum likelihood based test proposed by Larsson et al.
(2001), subsequently, also compared size and power of standard trace test with the
standardized LR-bar test. Comparison revealed that standard trace test has better size than
standardized LR-bar test.

Pedroni (2004) studied the sample properties (small} of the five tests which were initiaily
developed by the same research group (Pedroni 1999). Author conducted that Monte

Carlo experiments to analyze the empirical size and power of the test

Z . 2, and ZINT). In this experiment Pedroni employed two DGPs one

(va’zpm"’ INT?
for empirical size and the other for power comparison of the tests. First the empirical size
of these tests is observed as time dimension "T" varies and cross sectional "N" size is
fixed. When cross sectional dimension is 20 and time dimension varies from 40 to

onward then two tests based on t-statistics converge to nominal size (5%) from above

whereas, three tests Z . Z_ ., and Zat converge to nominal size (5%) from below.

pNT™!
In other words, when time dimension is small; two tests are oversized and three tests are
undersized but when time dimension approaches to 150 then the size of all five tests lie in
the range (4% to 7.5%). Proceeding this further, author also considered the reverse
process that was fixed the time dimension (T=250) and varied the cross sectional
dimension "N". Pedroni also observed that in the start the empirical size of all five tests
lie in the range (4.5% to 8.5%) as cross-sectional dimension (N=150) then range becomes

little narrow (3% to 6%).

12



Next Pedroni analyzed the empirical size of only two tests; panel-tho and group-rho

(Z.m-' and anrl)respectively and varied both cross-sectional dimension (N) and time

i 5
dimension (T) from N =T2 toN =T¢. Pedroni observed that the empirical size of panel-

3
rho (Z pm_‘) converges quickly to the nominal size (5%) whenN=T* then converges

1
slowly when N=T? . Similarly, the empirical size of group-rho test (Zm-i) converges

3
very quickly when rate of expansion is N=T¢ and converges slowly when the rate of

]
expansion is N=T2 |

Pedroni  (2004) also examined the empirical power of the tests
Z 1o Ly Ly » v and Ziwe using different combination of time dimension and
cross sectional size. Pedroni observed that when cross sectional size is fixed (N=20) and
time dimension varied from 20 with increment of 10 and AR(1) coefficient for the

regression residuals is ¢ = 0.9 then most of the tests approach to 100% power at T=50.

When the value of ¢ =10.95, then all the tests attain 100% power for larger value of "T"
and N=20 is fixed. Panel-v test has achieved the 100% power quickest at T=90. When
author considered the extreme case ¢=0.99 very close to the unit root, resultantly, all
these five tests gained 100% power for large value of T keeping the fixed cross section
dimension (N=20. Similarly, Pedroni observed the power of these tests by reversing the
process, fixing T=250 and then N varied, resultantly, the behavior of these tests remained
approximately same. Very importantly, Pedroni (2004) also applied these tests to check

the purchasing power parity hypothesis.
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Gutierrez (2003) investigated the powers of different tests which were proposed by Kao
(1999), Pedroni (1999) and Larsson, Lyhagen et al. (2001) by using Monte Carlo
simulation experiment. The DGP used for this study was based similar to one proposed
by Engle and Granger (1987) and the same DGP was also reported by Gonzalo (1994),
Haug (1996) and Kao (1999). Gutierrez (2003) used different combination of time
dimension "T" and cross sectional "N" length where the value of T and N are

T'={10,25,50,100} ¥ ={10,25,50,100} . Gutierrez displayed those tests in his article
which has the best power inside the group of Kao's tests, that is, DF, and DE.

Furthermore, Pedroni tests that is Panel-tho and group-rho and also inserted LR-bar test

which is proposed by Larsson et al.,2001.

Gutierrez used the simulated critical value at 5% lgvel of significance. When time
dimension is 10 and cross section dimension varied then Kao's tests showed higher power
as compared to other tests but power of other tests was still fairly low even the number of
cross section is reached to 100. Gutierrez showed that Kao (1999) tests performed better
than Pedroni (1999) tests when time dimension is small but when time dimension is
stimulated the Pedroni's tests performed better than Kao's tests. For small sample size,
LR-bar test has very low power because for small-T, the test size is distorted. Generally,
the power of the tests increases when the time and cross section dimension is stimulated.

Hoang (2006) has proposed three new tests that are, average weighted symmetric test
(AWS), fisher weighted symmetric test (FWS) and fisher augmented dickey fuller test

(FADF) and also compared the size and power of these three tests with Pedroni group —r
group— p and Kao ADF test by using Monte Carlo’s simufation. In above mentioned

six tests comparison, author considered four different groups of DGPs by taking and
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relaxing the assumption of endogeneity and autocorrelation of the residuals. Overall,
three new tests such as AWS, FWS and FADF performed well having good size,
converged to the nominal size 5% for all four sets of experiments. The AWS and FWS
have performed consistently most powerful tests in all data generating process.

Hoang (2006) concluded that two tests dominate the other four tests in all aspects. The
AWS test has little bit more power than FWS but AWS test only works with balance
panel data whereas the FWS can be applied to both kind of panel data balance or
unbalance. |

Orsal (2007) has compared the size and size-adjusted power of five panel cointegration
tests by using Monte Carlo’s simulation study, in which four are residual based whic‘h are.
Pedroni (1999) tests that is, panel—p, panel—t, group—p and ﬁ group—t and one is
maximum likelihood based L.LR-bar statistic of Larsson et al., 2001. et
Orsal used the DGP of Toda (1995) which has been used in the literature. Author
reported in this experiment that pragmatic size of Group pand Panel pare always zero
(T=10,25, N=1). Whereas, severe size distortion has occurred for the other test when
time dimension is small and N is large and tests statistics oversized when T is small and
N is increasing. Hence author concluded that the empirical size of tests is not appropriate
when time dimension is much smaller than cross sectional dimension. Orsal also
concluded that the empirical size of panel/—¢ and LR-bar statistics converges to the
nominal size when time dimension is 200 and cross sectional size is greater than five

whereas the group—p and panel —p converge to the nominal size when time

dimension is 100 and 50 respectively and cross sectional size is greater than five.
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Orsal also observed the size-adjusted power properties of these five tests. When the time
dimension is 10, the cointegrating parameter w =0.5, the LR-bar statistic and
group—1 statistic have least power for cointegration rank of 1 and 2 whereas the power
of panel - p reached 89% and 68% for cointegrating rank 1 and 2 respectively. If the
cointegrating parameter is i, — 0.95 near the unity then all the tests have the power less
than 8% at T=10. The LR-bar statistics have gained the highest power among these entire
five tests when time dimension is 100 and cointegration rank is three.

Orsal (2009) has also applied these cointegration tests to check Fisher hypothesis. Orsal
. {2009) has also proposed a maximum likelihood-based new panel cointegration tests that
is, Panel SL test. ()rsal compared this Panel SL test with Larsson, Lyhagen ét al. (2001)_
test that is, LLL test by using Monte Carlo’s experiment. Orsal (2009) considered three -
different DGPs to study the size and power properties of these t\;o teéts.'The simulation
results have indicated that the size of these two tests distorted for lower value of T,
whereas size of mentioned two tests converged to nominal size (5%) when time
dimension is increased. When the phenomena of uncorrelated component of DGP exist
then panel SL test has more advantageous characteristic regarding size as compared to
LLL test evident from Orsal findings.Generally, the power of both the tests approached to
100% if cross sectional dimension is increased and time dimension is small.

There are also many empirical application of pane! cointegration technique exist in the
literature, for example testing of purchasing power parity hypothesis, Fisher hypothesis,
energy consumption and economic growth and so forth.

In this study discussed, the empirical application of Fisher hypothesis, it is not only tested

via cointegration technique in time series case but also tested via cointegration technique
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in panel case. Crowder (2003), Westerlund (2008), Orsal (2007), Toyoshima and Hamori
(2011), and Badillo et al., 2011 have used panel data analysis to test the Fisher hypothesis
via panel cointegration. Crowder (2003) have studied on panel data having nine
industrialized countries to test the Fisher hypothesis. Westerlund (2008) have used the
data from 1980-2004 for 20 OECD economies and examined the relationship between
the nominal interest rate and the inflation rate. The results did not reject the existence of
the Fisher effect.

Orsal (2007) have also tested the Fisher hypothesis by using two data sets of OECD
countries having different time dimension and cross sectional size. and concluded that
Fisher hypothesis exist. Similarly Badillo, Reverte et al. (201 1) have also investigated the
Fisher hypothesis for the 15 European Union countries via the cointegration test data
from 1983-2009. Researchers found evidence in support of a weak Fisher effect.
Toyoshima and Hamori (2011) have also performed panel data analysis by using monthly
data of United States, United Kingdbm, and Japan (January 1990-December 2010), and
concluded strong evidence in favour of the Fisher hypothesis. |

Presently, this study defines the Fisher hypothesis, it states that the real interest rate is the

difference between the nominal interest rate and expected inflation.

where L, 1 and T, represent the real interest rate, nominal interest rate and expected

inflation respectively. It is elaborated that no personal and intuitional entity lends at
nominal interest rate than the expected inflation in reduced order. In other word real

interest rate could also be defined; additive product of expected inflation and borrowing
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capacity. Fisher (1930) stated that real interest rates show little trend in the long run or

real interest rates are constant.

2.2, Tests having Null Hypothesis of No Cointegration

In this study, twenty one panel cointegration tests are included having nuli hypothesis of
no cointegration, which are given below with details. These twenty one tests are divided
into five sub-categories

1. Residual-based tests (parametric/ non parametric)

2. Error correction based tests

3. Maximum likelihood based tests

4. Fisher type tests

5. Average weighted symmetric test
2.2.1. Residual-Based Tests
Residual based panel cointegration tests have been introduced by Pedroni and Kao.
Furthermore, Pedroni (1999) has also introduced both parametric and non parametric type

tests the detail of tests are give below:

2.2.1.1. Pedroni Tests

There are two well-known types of tests in panel cointegration frame work, one type is
residual based tests and other is likelihood based tests. Residual base panel cointegration
tests have been introduced first by Pedroni (1996), further Pedroni (1999) and Pedroni
(2004) has extended this work by using multiple regressors in the panel cointegration
tests. Pedroni (1999) has developed 07 cointegration tests having null of no cointegration,

where, 04 statistics are within dimension based whereas three statistics are between
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dimensions based. The four within dimension based statistics are calculated by summing

up the denominator and numerator separately over N cross section, these four within
dimension based statistics are Panel-v, Panel _p, semi parametric Panel _t and
parametric Panel t,

The three between dimension statistics are calculated by dividing the numerator and
denominator first and then summing up over the N cross section , these three between
dimension statistics are Group _p , Group _t parametric and Group t non- parametric.
It is to be noted that Panel-vis the extended form calculated by ratio of variance

introduced by famous authors; Phillips and Ouliaris (1990). Whereas authors such as

Phillips and Perron (1988) and Phillips and Ouliaris (1990). proposed non parametric
rho-statistics, which is further extend to Panel p. In a same way, t-statistic (non
parametric) proposed by Phillips and Perron (1988), further extended to Panel t.
Panel _t (parametric) is the extended form of ADF t-statistics. To calculate the seven

Pedroni panel cointegration tests we first compute residuals from the regression (2.2) ;

Yie =0 O+ X B e i (2.2)

wherei1=1,2,3,.......... N; t=1,2,3,.......... ,T

T denotes the time length and N denotes the number of cross section, ¥, and X; are

assumned integrated of order one I (1) that is

Xt T X TV eretemaem et (2.3)
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where X;; has K-dimension vector of independent variables. The ¢, , and ; denote
the individual specific intercept and trend parameter respectively which vary across the

cross sections, B, = (B,;.By;»------» By;) denotes the cointegration vector which also vary

across the cross section. Furthermore, error process w, =(€,,V,)is assumed

independently identically distributed (IID) with respect to cross section. The ordinary
least square (OLS) method is used to estimate the cointegration regression (2.2)

separately for each individual. Moreover, differenced equation (2.4) is used to calculate

tests; Panel —v and parametric Panel _t
Ay, =CiAX +CuAX + e +CAX  + G

After estimating the above differenced equation (2.4), calculate the long run variance of

. 2
residual &, which is denoted by L

t=s+1]

1< 2
Lis = =D 6+ —Z(l— )Z Gt Gy wrneremmemeereenn 2.5)
=1

s

For non parametric statistics, the residual of cointegration regression (2.2) is used in the

following regression equation and then compute contemporaneous and long run variance

Cit = P;€Ci, -1 F U creiririii i riciiiaeaaaees (2.6)
~2 1 & 2
S1 T o D LI ettt e (2.7)
T =
2
o T - U (2.8)
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1 & s T
h Ai =— ]l —— Wlit Wi,tm8 eeennrnrennenncnnannns 2.9
where TZ( M +112 t Ui (2.9)

=s5+1

~Z 2 .
si and o; denote the contemporaneous and long run variance of ui respectively.

For parametric test statistics that is, Group t which is also known as Group~ ADF and
Panel _t which is also known as Panel - ADF , residual of cointegration regression (2.2)is

used in the following regression equation

€, =P, éi,n_l +(Pi|Aéi,t-l +(pi2Aéi,|-z F e +(pipAéi,t—p +l.1;l ....... (2.11) )
-
s 1 T -2
St T = D Uit et (2.12)
T D
—=Z 1 N a2
SNT = —T:I- 2] L I T U (2. 13)

[
Si denotes the contemporaneous variance of u;, .
Pedroni’s seven test statistics are described as follows:

1. Panel — v Statistic:

N T > -1
T*N*%Zz  _ =T1>N% [ZZL.ﬁei”] .................... (2.14)
i=1 1=1
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2. Panel _p Statistic:

3. Panel _t Statistic non parametric

> N T ., VAN T, .
ZtN,T:(GF«TZZei,t-xj ZZ(ei..ﬂIAen—xi) ................... (2.16)

=1 t=1

4. Panel _t Statistic parametric

NS

N T 2~ N
D D> Lui€ic1Ait s (2.17)

i=1 t=1

. a2 N T 3 A2
Z[N.T = SNTZZLlliei,tfl

i=1 t=1

5.  Group pStatistic:

6.  Group_t Statistic non parametric

_ s N 5 T s b o1 " -
N %ZlN‘T =N AZ[[O‘. Ze;,l—l] Zei,t—lAeit —lijl ........... (2.1

7. Group_t Statistic parametric:

T

-1
Ni}é Z:N_T = N_}é i[(é: iéiz,tfl ) ’ Z éi.tflAéit } --------- (2.20)
i=l1 t=1

t=1
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If we describe the summary of above mentioned Pedroni’s seven statistics, we will

perform the following steps

1. Estimate the regression equation (2.2) and collect the residuals e .

2. For every cross section, estimate the difference regression (2.4) separately and collect

the residuals ;. .
3. Calculate the long run variance L of &, by using any kernel estimator.

4. Using the residuals ex of regression (2.2), estimate the regression (2.6) and ((2.11) for

the parametric and non parametric statistics.

The asymptotic distributions of above seven statistics are standard normally distributed

——F— = N{0,1)

7

ANT "“-\/N
Y

Where X, denotes the suitably standardized form of the above seven test statistics with
respect to the time dimension T and cross section dimension N whereas M and v denote
the moments of Brownian motion functional. Respective values of variance and mean; L

and V respectively are reported in Pedroni (1999).

Nuil of no cointegration for all above mentioned 07 statistics,
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The alternate hypothesis is different for both between dimension and within dimension.

The alternate hypothesis for between dimension test statistics is

H, :p, <], Vi=L2,.... , N
The alternate hypothesis for within dimension statistics is,
H :p,=p<], Vi=L2,.... , N

Under the alternate hypothesis only the test statistics Panel~v diverges to positive
infinity while other six statistics diverge to negative infinity. So. right tail of the standard
normal distribution to reject the null hypothesis of Panel—v is used whereas left tail is

used to reject the null hypothesis of other six statistics.

2.2.1.2. Kao Tests (1999)

Parametric residual based (panel cointegration) tests have been proposed by Kao (1999)
having null of no cointegration. These tests are extended form of DF and ADF unit root
tests to panel cointegration. Kao's tests have based on the spurious least square dummy

variable panel regression equation with one single regressor
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where ¢, ~N(0,02) iid. and v, ~N(0,6?) iid. and also assumed that the

error process W, =(G,,Vv, ) is independent across the individuals i , and it has satisfied
the invariance principle. o; Denotes the intercept of ith cross section and which varies
for each cross section, in other words heterogeneous across i and 3 denotes the slope

parameter of the ith cross section which remains unchanged/fixed for each cross section,
in other words heterogeneous across i . Fixed effect Model of regression (2.21) can be
estimated using Least square dummy variable or within dimension approach. Kao (1999)
has proposed DF type tests using the auto regressive least square dummy variable

residuals of regression (2.21),

Cit = PCi(1—1) F Wy cei it 2.24)

Where p is homogeneous.

Null hypothesis of no cointegration is defined as H, : p = 1 which implies that the

residuals e are unit root, and Alternate hypothesis is defined as H :0<p<l.
Estimator of pis given as,
T

>
i=1 t=

e L L T DI

CitCice—1>
2

o=

> -2 ke

i=1 t=2

The t-statistic to test p = 1, £, is as follow
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t, = s 2.26
o S. C )
2
1 N T A A A
2 2 2 o .
Where S. = ———NT T (e,t pe,(t_l)] ............................ (2.27)

The test statistics of DF type are defined as follows:

B \/_I:I-T(;; — 1)+3\/ﬁ

1. DF, = — 228
e J10.2 ¢ )
2. DF, =~/1.25t, +/1.875N ... (2.29)

In these two DF type tests that is, DF, and DF, are assumed the strict exogeneity of the
regressors with respect to residuals, while the other two tests DF, and DE, are allowed for
endogeneity of the regressors, the test statistics of DE; and DF, are given as,

a2
JNT[S _1J+3_%_~@"11

3 DF; = O e, (2.30)

3 i
At AT
Where o, and oo, are defined as follow,
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ou and o0, are consistent estimator of contemporaneous variance and long run conditional
variance respectively of the Wy, :(G,-,,V,-,). So for this obtained the estimate of

W, z(g,';avir)ﬂ'lat is, Wi and use for estimation off and Q.

2

N T '
==| % ° =—1—22witwh ................. (2.34)
NT = &

2
Cve O

2
T

Gog Goqy 1 N l T ' 1 1 . ' '
Q , == z TZ Wit Wi + :I': Zﬁ)ﬂ Z (Wn Wit-t + Wit Wi ) ..... (2.35)
o t=l

GDV‘; Gov i=l =l t=t+1

Where @x denotes the weight function or a kernel, so use appropriate bandwidth and a

kernel estimator for the estimation of long run variance and covariances. The asymptotic

distribution of DF type tests that is, DF,, DF,,DF,’, DF,’ converge to standard normal

distribution N(0,1) as T —» o0, N —> oo

5. ADF type panel cointegration test has been based on the following auto regressive

regression,

~ ~ p ~ -
€it = Pei(e—1)+ E PiACiI(t—j)F Wigeoereerenianmiinanananaaaaas (2.36)
j=1

H, : p =1 (no cointegration) and Alternate hypothesis is defined as,H, :0<p <1,
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N Y4
(5 - 1)[Ze{prei]

ADE =~ et
5 s
u

Where p is the estimated value of p by using OLS and also noted that

(p—1)= [g(e;prei )_l [g(e;prsi )) ...................... (2.38)

N
[ 2 rei'prgi )
=1

S tapp = d ey n—————— (2.39)

N X
S - [ E ei’prei]
i=1

~

Where €; is the vector of observation of €:.¢-1, 9, denotes the vector of observations of

*
Al

*
Uit which is the estimate of U;; .

Where Q,, =I+X, (X,X,) X/ cooreoreriernnn. (2.40)
1 A2
82, = =D Uit vt (2.41)
TS

where X, denotes the matrix of observations on the having p regressors that is,

(8€,1,. 08,

L 6N Su

tADF ~
ADF = _ 2 DO (2.42)
T ou 3 (;u
+
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Under the null hypothesis of no cointegration ADF statistics is converged to standard

normal distribution N(0,1) as T — oo, N >0,

2.2.1.3. Average Phillips Zt Statistics for Panel Cointegration

As Phillips and OQuliaris (1990) have suggested that the autocorrelation and
contemporaneous correlation can be removed through differencing and Augmented
Dickey Fuller t-statistics method or through non parametric correction. So McCoskey and

Kao (1998) used this idea and considered the test which is based on the average of the

Phillips Z, statistics, which is calculated as given below:

The model is defined as

Yie = O + XitBi L= (2.43)
Where i=12.....N t=12 ... T
Eit = Py ict=1) H Uy wemnnreemeeenn oommeeeeeeeenannns (2.44)

1 7
Define ST, = — TREE wumeemn e ee e me e e mae e (2.45)
T <=
t=1
T .2 T P »
S?T- = TLIZun +2T_IZW(S/M)Z Wit Ui{t—5)ervenvreneoncenn (2.46)
1 s=1 t=s+1

Where w( s/ M )denotes the kernel or weighting function, in this case we have used

quadratic spectral kernel Andrews (1991) which is given as:
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w(s/M)= 25 Sin(6“,1:(5/1\7[))/5—c:os 6n(s/M))/5 } 2.47
(s/M) 12n2(s/1\7[)2{ (en(a/ 1)) 5 ((6n(s/8))/5)}vo (2.47)

s 1/5
NI = 1.3221{%} .................................. (2.48)

Where, ris the first-order autoregressive coefficient estimate of u,

Lo 2
- a—1 _(Sj - _Siu)
Z, (@-1) . 2 TT T (2.49)
1 &
(Ze'(t DJ S [eriz(t—l)J
t=2

Z;, can be simply written in the following form

thz{(a—l)(iéi.n) Zw(s/M)Zu..um.sj[ZE,u|.] J/{ Zu,,m Zw(s/M)Zuﬂuw} (250)

t=g+] =5+

The average of cross section Z, statistic can be defined as Z, .

7. — L > e (2.51)

Asymptotic distribution of Z. is normal distribution.
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2.2.2. Error Correction Based Tests

Error correction based panel cointegration tests are developed by Westerlund (2007) the

detail of tests are given below.

2.2.2.1. Westerlund Cointegration Tests (2007)

Westerlund (2007) has developed four panel cointegration tests which are based on
structural rather than residual dynamic and Westerlun_d_ (2007) has not imposed the
common factor restriction, these tests are the generali:;ed version of tests proposed by the
Banerjee, Dolado et al. (1998). All these fm;r tests have null hypothesis qf no
cointegration and are the error correction based tests. These four tests aécommodate
serially correlated error term and also non-strictly exogenous regress'o‘rs. These foﬁr tests
are classified into two categories; two tests-have aitcrrmlativ'e' hypott;esxs that at least one
unit/ one individual is cointegrated, these are called group mean tests and two tests have
the alternative hypothesis that panel is cointegrated as a whole, these are called panel
tests. These four tests are normally distributed. These tests have based on the following

error correction model.

Pi Pi
Ay, =8,d, +a, (Yii _Bixi_t—l)+zaijAyi,t-j + Z VildX te . (2.52)
=

=9,

wheret=1,2,__.......... ,Tandi=1,2,........,N, d | denotes the deterministic
part and there are three possible cases for d, , If d, = O so the deterministic part has
been eliminated in the regression (2.52), if d, =1 then only the intercept will be

included in the regression (2.52), if d, =(1,t) then both intercept and trend will be
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included in regression. The vector x,, having dimension K is integrated of order one.

Moreover it is assumed that the error process is independent across both i and t. Further
added that dependency across the cross section will be handled through bootstrapping.

Regression (2.52) can be written as

) P,
AV, =8, + 00y, MK+ Y AT D VAR €y (2.53)
_ =l

1=-q;

where A; =-o,B; . The parameter o, has determined the rate of speed at which system
converges to the equilibrium relationship ¥,,, —ﬁ;xi,[_[ after the sudden shock. If
o, <0 then X;, and Y, are cointegrated, so error correction term will exist, if o, =0

then x,, and Y, are not cointegrated, thus error correction term will not exist. Thus
null hypothesis is stated as H,, : o¢; = 0 V i. the alternative hypothesis is assumed in two
different Ways depend upon the homogeneity ofa,. Two tests which are called group
mean tests, have not assumed,'s to be equal, so the alternative hypothesis is
H, :a; <0 for at least one i, the other pair of the tests which are called panel tests, are
assumed that all a; are equal and hence the alternative hypothesis isH, :a, =a <0 for
all i

Estimation Procedure for Westerlund (2007) Group Mean Tests

To estimate the group mean tests we follow the three steps, the first step is to estimate the

regression equation (2.53) using OLS for every cross section separately, which is given
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,-\‘ A /\‘ Pi Fay 4] ~ al
Ay, =&id, +ay,, +hi X t Z oy Ay + Z ¥y AX ) Heit - (2.54)
i |

1=-4;

where p; and g; denote the lag and lead, which can be varied across the individuals and

~

tag and lead are determined by any information criterion. After obtaining € and ;ij

the second step is computed

~ Pi ~
€ = E Y AX
j=-q,

Fal
F €t cevenrcrcrcscrcncreccreraccvancs (2.55)

iCt—j)
. A_ l _ Wei ~ A
which we use to estimate the a.( )— ~ where Wei and wyi are the long run
Wi
variance usual Newey and West (1994) based on €. and Ay, respectively.
Bandwidth parameter selection problem has been occurred during the estimation

procedure for «,, so for this when intercept or both intercept and trend are included in

regression model (2.53) , the estimation of Wyi using a kernel estimator instead of Ay, ,
residuals from first stage regression of Ay, on 4, is being used.

Third step is to estimate the group means statistics in the following way:

where SE(&.) standard error of d;.

N o
G, — 2 > TR (2.57)
N = o (1)
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Estimation Procedure for Westerlund (2007) Panel Tests:
Three steps procedure is followed to estimate the Panel tests,

First step is to regress the following two regressions separately by using OLS, and collect

the residuals of both regressions that is, €1 and \Ln which are given as below,

A A ' Pi A Bi A
€ = Ay, —8id, —Ai X, = D0 AY L D Yy AKXy e (2.58)
=l =q
A ~ A~ Pi A SN
Wi = Yieeny =i dy —Ri Xy 5 — D2 Qi Ay sy — D Vi ARipy_jyeenereenns (2.59)
j=1 i=—q;

Second step is to estimate the common error correction parameter o and its standard

n A
error by using €i and

/\2 1 N /\2
where Sn = EZsi ................................................. (2.62)
i=1
S = =l (2.63)

o denotes the regression standard error in equation (2.53).
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Third step is to estimate the panel statistics as follows

B = i (2.64>
P = T Ot oo e e e (2.65)

oL

The asymptotic distribution of these four tests is normal distribution as the N and T
approach to infinity sequentially. In other words these four statistics are normally
distributed after standardizing with appropriate moments and also these asymptotic
distributions and moments have depended upon the deterministic part and number of

regressors included in the regression model.

The test statistics P,,P,,G; and G, diverge to negative infinity under the alternative
hypothesis, so the test decision has been made on the left tail of the standard normal
distribution. Furthermore, the Westerlund (2007) has suggested using bootstrap approach
of Chang (2004) for panel cointegration testing, which compensate_for cross-sectional

dependence.

2.2.3. Average Weighted Symmetric Test (AWS)

Average weighted symmetric (AWS) test proposed by Hoang (2006), AWS test is based
on the idea of average test statistics for each cross section which is used in Im, Pesaran et
al. (2003) for panel unit root. The procedure of AWS test is similar to the McCoskey and
Kao (1998) test. In the AWS test weighted symmetric estimation is used for €Very Cross

section. Run the following regression for the estimation of WS panel statistics,

Yie — O + xitB+eit ........................................... (2.66)
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Where i=1,2,........... LN t=1,2, ... , T

After estimating the regression (2.66) the residualsei is obtained, then estimate the

following equation,
Cit = Py Cit-1DF Wy ceiiiiiiiit tiiiiiiai et 2.67)

where ieN, teT .

Null hypothesis of no cointegration is given as, H, : p, = 1

Under the alternative hypothesis H, : p, <.

T ~ FaN
E Cit Ci(t—1)
t=2
pl - T—1 /\2 1 T /\2 """"""""""""""" (2 68)
E Cit +T E Cit
t=2 t=

A
where ¢ir denotes the residual of ith cross section.

Weighted symmetric test statistic of ith cross section is given as is:

—1\3

~l T-1 A2 1 T A2 2 A
tin =| Ou, [Zeit +?Zeit] [pl—lj ........................... (2 69)
t=2 t=1 J
A2 1 T A ~ \\2
where o, = ?Z(eit—en .................................. (2.70)
t=2 /
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Finally weighted symmetric test statistic for panel is computed after taking the average of

all cross section weighted symmetric test statistic which is given as follows:

Whereas the WS panel statistics converge to N (0, 1) by using the central limit theorem

such that

JN [&J_&_}N(O, ), Where E[t,  }=pn,,, var (tm) =o,
g

WS
WS

The value of u,, and o, is found through simulation and given in the table 1 Hoang

(2006).

~

If the residuals €;; of (2.67) are correlated then use the augmented equation (2.72) instead
of using (3.67)

eit = Py €i(t—1)+ E PO Ci(t—5) F Ulgeuemneeaameananannasaanacaanns (2.72)

P
=1

2.2.4. Fisher Type Tests

The Fisher type panel cointegration tests have also developed byHoang (2006) and the

detail of the tests are discussed below

2.2.4.1. Fisher Augmented Dickey-Fuller Test (FADF)

Hoang (2006) has developed the Fisher type tests and based on the Fisher approach to
combine the p-value of all test statistics of each cross sections which has introduced in

Maddala and Wu (1999). The Procedure of Fisher Augmented Dickey-Fuller (FADF) test
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is similar to the panel unit root test of Maddala and Wu (1999). The FADF tests have also
been based on the results of ADF t-statistics for cointegration from Phillips and Ouliaris

(1990), which converge to the standard Wiener process.

Run the following regression (2.73) for each cross section and obtained the residuals

Where 1 =1,2,........... N t=1,2,........ , T

After obtaining the residual from (15), estimate the following regression.

A A p N .
Cit = P €i(t-1)F D PACI(1—j)F Ujperererrrrerrencmemeriranennaes (2.74)
j=1

Null hypothesis of no cointegration is givenas, H_ :p, =1

Under the aiternative hypothesis H, : p, <1.

Then find t-statistics of regression (2.74) for each cross section,

The FADF test is required to drive the distribution of the DF t- statistics, so for this
simulated t- statistics values are generated for each cross section, and then calculate the

p-values m_, for each t-statistics. Finally FADF test statistics is calculated as;

N
Peapr = “22 Lo, TCqr ~ Mo wrerrercmmrmreareasenaianannns (2.76)
i=1

We will use x° table for the critical value of the test statistics of FADF.
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2.2.4.2. Fisher Weighted Symmetric Test (FWS)

The procedure of FWS test is approximately similar to the procedure of the FADF tests,
only the disparity in procedure, use the WS estimation procedure for each cross section

rather than the ADF estimation procedure. The WS estimation procedure is already

defined above in panel AWS test. The f,,; is calculated for each cross section which is

given as follows:

Where én are the residuals of the regression (2.66).

Null hypothesis of no cointegration is given as, H_:p, =1

Under the alternative hypothesis H, : p;, < 1.

To derive the distribution of FWS test, generate the simulated t._ values and then
calculate the p-values n_, for each cross section. Then final Panel FWS statistics is

given as,

Prys =2 108, T ~ Xing oerereemressreriseseseseresesessessesesesees (2.79)

We use the y’table for the critical values of the table.
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2.2.5. Maximum Likelihood Based Test

Maximum-likelihood based test for panel cointegration has been proposed by the
Larsson, Lyhagen et al. (2001). In this test standardized LR-bar statistics has been
proposed, which are based on the average of individual rank trace statistics of Johansen
(1995). Heterogeneous VAR model for K-dimensional process has been considered by

the Larsson, Lyhagen et al. (2001), which is given as follows:

he 11
YFit - z ,Tcin;_t_j —+ eit """""""""""""""" 2°80)
i=1

Wherei=123,...,N,t=12_...,T , theresiduals e, are ii.d, e, ~N{(0,€) .
Johansen (1995). has also introduced error correction representation of k-dimensional
VAR model, so the regression (2.80) has been given in heterogeneous error correction

model representation,

Where the order of I1; is PXP, P denotes the number of regressors in each cross
section 1[I, =—(It A - —A,._P,), If II;is of reduced rank then II, can be
decomposed to I =B, where o, (the adjustment parameter) and B, (the long-run

coefficients) be the matrices of order PXI with full column rank, Note that the

dimension of time T should large enough , so that the regression (81) can be estimated

for each cross section separately.
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Larsson, Lyhagen et al. (2001} has considered the null hypothesis that there are at most r
cointegrating relations among the p variables in all cross section N. So the null

hypothesis can be expressed as,
H, :rank(I1l,) <, =<r, H, :rank(IT)=p YV 1

The Likelihood ratio test which is called trace statistic, denoted by LR, for the ith cross

section which is given as below:

LR {H,|{H,}=-2InQ,{H, |H,} =T Zp: A=A, ). (2.82)

1=r+l

Where X, is the Eigen value of the ith cross section. Now define the trace statistics for

panel cointegration by taking the average of N cross section,
—_— 1 N
LR~ {H, | H,} =-1:I-ZLR5T (Hy 1 HL) oo (2.83)
i=1

The standardized LR-bar statistics is given as follows:

VN(LRw {H, |H,} - E(Z,))

Jvar(Z,)

Y ik {Ho I Hl} =

Where E(Z, )and var(Z, ) denote the mean and variance respectively of the asymptotic

trace statistics. Asymptotic distribution of panel trace statistics will converge to standard

normal N (0, 1) as T and N converge to infinity.
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2.3. Panel cointegration Tests for Null Hypothesis of Cointegration

In panel framework, residual based cointegration tests was proposed by McCoskey and
Kao (1998) for null of cointegration. Harris and Inder (1994) and also Shin ( 1994) have

proposed the univariate LM test, which is extended in panel cointegration frame work by

McCoskey and Kao (1998). Suppose ¥, and X, are integrated of order one.

Yie =0 X, B, +€,, oot (2.85)
X = X e T Ve (2.86)
-1 B B (2.87)
e e 1 & (2.88)

By using backward substitution in the above system we can get the following equation

yit = ai +xitBi +('pzuij -+ uit """""""""""""""" (2-89)

i=1

H, : ¢ =0 (Null Hypothesis of Cointegration).

H, :|¢] 20  (Null Hypothesis of no Cointegration).

The test statistics is defined as follows,
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Where S22 = ?{r—zzeh ................... e, (2.92)

I[f ¢=0 then residuals are stationary and x, and y, are cointegrated.

Furthermore authors assumed that the error process u, and &, is dependent weakly and

heterogeneously. OLS estimator is asymptotically biased when the residuals are sertally

correlated and regressors are endogenous, for unbiased estimation McCoskey and Kao

(1998). have proposed to use optimal estimator, in which one is fully-modified OLS

(FMOLS) estimator of Phillips and Hansen (1990) and other one is dynamic OLS

(DOLS) estimator of Saikkonen (1991).

McCoskey and Kao (1998) have proposed the panel LM test based on the FMOLS

estimator, for this long run covariance matrix of w, is defined as:

Q:(W'_ W'zj ............................................... (2.93)

w21 922

Up =, —wWi2 Q22 & i (2.94)
~ ~ 1

Yie = Yiu —Wi2 €222 & eoiiiiiiii i (2.95)
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Where Z22 and wz are the consistent estimators of Z,, and w,, respectively.

The panel LM test statistics using FMOLS is defined as follows:

ARSI )

— - €ij

lezl: T? t=1 \_j=1 !

LM* = e (2.96)
Wiz

Where €x = Vi — i — x'itB;M are the fully modified OLS residuals and By denotes

FMOLS beta, where w.2 : denotes the long run variance for all T and N, which is defined

as follows
~ 2 ~ 2 ~ 2 -~ —1
W12 = Wi — Wiz L2522 VW21 cecmcmnininanaannn. (2.97)
Birm = X, ) T Y — T8 i (2.98)
Where 8 =TlI21 —IT228200 Woteeeeeeenoonannn, (2.99)
Il = AL e, (2.100)
. T
3= %ﬂ—ZﬁEE(w“w“) ....................................... (2.101)
1 T--1 T ]
I' = lim — D UE(WLW, ) e (2.102)
T T k=1 t=k+1 ’

X and I'denote the contemporaneous variance and long run auto covariances

respectively.
Average of individuals of locally best unbiased invariant (LBUI) test is known as LM"

test, which is extension of LBUI (locally best unbiased invariant) test of Harris and Inder
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(1994) and also Shin (1994). Similarly LM"_DOLS can also be computed using DOLS

regression, for this LM" test statistics based on the following dynamics regression,

P
Yie =0 X, B + D CLAX; |+ € ceeeinenn.n. (2.103)

i.t+} it
i=—p

Thus in (2.96) instead of using en , the residual e of (2.103) is used to calculate LM .

The standardized Panel LM statistic for DOLS and FMOLS is calculated as given below:

.................................. 2.104)

VN (LMm” —u)= N(0,6%)
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Chapter 03:Methodology

For the assessment of power and size of under consideration twenty four panel
cointegration tests, in which twenty one tests have no cointegration in their null
hypothesis and three tests have cointegration in their null hypothesis, this study uses
artificial data generating experiments using time dimension 7 =10,25,50,100 and cross
sectional length N =02,08,16,32. As this study analyzes both types of tests in which
some have no cointegration as null hypothesis whereas some have cointegration as null
hypothesis, therefore, two data generating processes (DGP) for Monte Carlo experiments
are introduced., From these two DGPs, one is for no cointegration as null hypothesis and
the other is for null cointegration as null hypothesis. This study compares tests using
stringency criterion because this method considers the whole alternate space. In this
chapter, firstly details of the both types of DGP are laid down. Then point optimal tests
and stringency criterion are listed. Lastly, the step by step algorithms for simulated

critical values, empirical size and power curve are discussed.
3.1 Artificial Data Generation (DGP)

This study is considering the simplest DGP for both types of tests. If a test performs
worst in simplest case, it is obvious that it will perform worst in all scenarios. However,
if the test is robust in this simplest case then it may not be robust in more complex DGPs.

It can be explored in further studies.

To compare the cointegration tests in heterogeneous panels, this study has considered two

different artificial data generations (DGP).

46



3.1.1. DGP-A: No Cointegration as Null Hypothesis

Let x, andy, be two series whereieNandteT.These two series are generated using

following statistical/ econometric model

ylt = a; -+ Bixit —+ elt """""""""""""""""""" (3 1)
e]t - pelt—l + u[t """""""""""""""""""""""""" (3 2)
Xit X:t—l -+ WKL  seccereeeircrearaa i eiaceaneeatas i, (3 3)

Where u;, ~ N(0,1), v;,, ~ N(0,62).

Where "i" represents the individual and "t" denotes the time dimension. «,,B; ando; can

take any value such that B #0ando,>0. But in this case, assume that

o, ~ U(0,10),8, ~ U(0,2)ando? ~ U(.5,1.5),

Under no cointegration as null hypothesis p =1, whereas under cointegration as alternate
hypothesis 0<p<1. In our analysis we will take the values of p under the alternative

hypothesis as p={0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0}
3.1.2.D GP-B: Null of Cointegration

Let x, andy, be two series where ie Nandte T, These two series are generated using

following statistical/ econometric model,
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I 0
Where n, :(um,vm) and n, ~ N(0,€) where Q. =[0 ZJ.
o

Where "i" represents the individual and "t" denotes the time dimension. o;,p; ando, can

take any value such that P z0ando,>0. But in this case, assume that

a; ~ U(0,10),B, ~ U(0,2)ands® ~ U(.5,1.5).

Under cointegration as the Null hypothesis Hy :¢ =1 where under no cointegration as

the alternate hypothesis H, :0 <¢ <1. Under the alternative hypothesis we will take the

values of ¢ as $={0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1,0}

The case A's null hypothesis is same as case B's alternate hypothesis., Similarly, case B's
null hypothesis is same as Altemnative hypothesis in case A. Now before describing the
point optimal tests for the above stated DGP-A and DGP-B, first Neyman-Pearson

Lemma is stated.
3.2. Neyman-Pearson Lemma

Suppose X, X,,X;,.......X, denote the random sample. The likelihood functions of these

random samples under the null and alternative hypothesis are ¥(x,Z,)and £¥(x,&,)

respectively. Then there exist a constant 1, such that P(PO(X)<n_ /H,) = awhere o> 0
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and PO(X)denotes Likelihood ratio, defined as PO(X):%. According to Neyman-
X.G

Pearson lemma, for a given size a this PO(X) is the test of maximum power at point nuil

and alternative £ and & respectively. In literature, also known as Point Optimal test.

3.3. Point Optimal (PO) Test for No Cointegration as Null Hypothesis

To derive the PO test for no cointegration as null hypothesis, in panel frame work, this
study has modified the PO test of Jansson (2008). This study is considering the simple

case by taking only two series x, and y, having time length 7.

Yig = O + Bixit T e G.7)
Cit T PCir—1 T Wi ceeerr e 3.8)
I T T o (3.9)

where u;, ~N(0,1), v;; ~N(0,67) .

Where "i" represents the individual and "t" denotes the time dimension.
H, :p=1LH, :p<1

Based on Neyman Pearson lemma, PO test is:

LLR:%{g[g(eit €iem 1)) ] (Z(eu pe, ) j} ........ (3.10)

Where N denotes the cross sectional dimension. Hence in this case, LLR is the panel PO

test for no cointegration as null hypothesis.
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3.4. Point Optimal (PO) Test for Cointegration as the Null Hypothesis

To describe, in panel framework, the PO test for cointegration as the null hypothesis, this
study has used and modified the concept of Jansson (2005). For this, Point optimal test is

described for a single cross section and then extended this point optimal test for panel

data. The following procedure is adopted for two series X, and y, having time length

Bl A

R ATEE e M G T T e G.1D
€t = Cj(r-1y _¢uiy(t—1) g 3.12)
Xip = Xy 1 ¥ \-/Iixt ............................................ 3.13)

i o0
Where 1, :(uiwvm) and n, ~ N(0,Q;) where Q, :[O 2].
Where "i" represents the individual and "t" denotes the time dimension. a;,; ands, can
take any value such that B, #0 and 5, > 0.

Under cointegration as the Null hypothesis Hy:¢=1 where under no cointegration as

the alternate hypothesis H, :0<¢ <1,

Assume that, H,:¢=¢ where0<¢’<l and R=(x,, D, )where D,denotes the

deterministic component. Partition Q. in conformity with 77, as
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and define Z, = £/°5Y* where L) is a lower triangular matrix of order TxT given as

1 O 0 e o (0
1-¢ 1 0 e o 0
1-¢ 1—-¢ 1 e o 0
vz _
== A o e e g ——————— (3.14)
- ™ Y o o 0
1—¢ 1-¢ 1—¢ o o 1
Cpax =0, —O, €2 'S, il (3.15)
Then Likelihood function given by Jansson (2005) is
LH(¢) =|RZ,'R|*exp(s,,., 'Y, (z;‘ -5R(RZ;'R) " RE} )Y¢) .......... (3.16)
Where Y, = Y, — b= %, 2, 'O, cereeeieieee 3.17)
As there are " 1=1,2,3........ ,N" independent cross section so for the "ith" cross

section, Likelihood function is

LH (¢) =|R;z;‘R,|*exp(aw,,(,,-'1;'(z;' ~2'R (R;z;‘&)" 1{'2;')1;).........(2.18)

As it is assumed that these entire "N cross sections are independent, so their joint

Likelihood function is given as

JLH(¢) =LH(d, )< LH(d,)=<......... < LH(by ) ooooeaenne. G.19)
JLH ($) = I?[(IR'Z;IRI)xexp(i(a}qu']}‘;' ():;j ~5;'R (RZ;R) " RE, )Y,,D ..... (3.20)
Taking log both sides we get,
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N il _
£(¢) =2 log(|R'Z,'R|) +Z(an_,(,;‘1;' (z;} -%;'R (RS, 'R) ' RE] )Y,) ........... (3.21)
1=t 1=1
Panel data PO test having cointegration as the null hypothesis is given by
PO = €(1)— (™ )ttt (3.22)
where 0<¢’ <1
3.5. Stringency Criterion
* Shortcoming of the Test
Suppose Y indicates the test .7 s power estimated at a specific point alternative

hypothesis “i” and PO' denotes the PO test's power at the same specific point

alternative hypothesis "i”, then 7's shortcoming S(r)is the gap between the PO
test's power and test 7 's power at "i”, i.e. S(1}=PO' - T where S(1) >0 .

e Stringent Test

Suppose there are N tests, having X number of point alternative hypotheses. Then,
shortcomings of each test are calculated at K points of alternative hypotheses. Therefore,

the maximum shortcoming or stringency of each test at all given X points is,

= max 5(t) wherete N,

The test which has the minimum of these stringencies is declared to be the most stringent

test, defined as, MT = min( max $(t)/¥ 1eN)
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3.6. Mote Carlo Simulation (MCS) Design

This section explains and elaborates the step by step algorithms used for calculating the
critical values based on artificial data generations, empirical size based on asymptotic as
well as simulated critical values and empirical power based on simulated critical values,
for both types of tests having cointegration as the null hypothesis and no cointegration as

the null hypothesis.

3.6.1. Monte Carlo Simulation Design for Simulated Critical Value

1. This study adopts the following procedure to calculate the critical values based
on artificial data generations. Generate the data using the DGP A under the null
hypothesisH, :p=1.

2. Apply the tests having the same null hypothesis on the Data one by one and
obtain the test statistic

3. Above two steps are repeated according to fix number of Monte Carlo Sampie
Size (MCSS)M .

4. Find the5” or 95" percentile according to the nature of test whether it is left
tail or right tail. However, for two tailed test, calculate 2.5th and 97.5th

percentile as lower and upper critical value .

For tests having cointegration as null hypothesis, only the first step changes i.e. instead

one has to generate the data following DGP-B.
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3.6.2. Monte Carlo Simulation Design for Obtaining Empirical Size

I. . The empirical size i.e. probability of committing Type-II

(Rejecting Hy | Hy isTrue)is calculated using the algorithm detailed

as:Generate the data according to above stated DGP A under the null hypothesis

H,:p=1

2. Apply the under consideration cointegration tests on the data one by one and

obtain the test statistic of each cointegration test.

3. According to above test statistic of each cointegration test, decision about the

rejection or no rejection of null hypothesis is taken based on asymptotic critical

value.

4. The steps mentioned in 1, 2 and 3 are carried out over and over again for a fixed

number of times M (MCSS) and the number of rejections of nuil hypothesis are

totalled.

5. Calculate the empirical size of test as AS.= (—%)*100 where AS. is the

empirical size and K is the number of rejections. For the empirical size of the test

having null of cointegration the above simulation design is followed except the

first step because in this case data is generated using DGP B.

For stabilizing/controlling the empirical size of tests having the "null hypothesis of no

cointegration/ null hypothesis of cointegration” same Monte Carlo Simulation design is

adopted as above except the third step. In the third step simulated critical values are used

instead of asymptotic ones.



3.6.3. Monte Carlo Simulation Design for Power Curves
Power is the proportion of rejections of the nuil hypothesis when data are artificially

generated under a specific point alternative hypothesis. Thus, power of a test is defined as

Power = P(Reject H,/H , is true}. Power curve of a test is obtained by plotting

the powers of test against the points of alternative hypotheses.

The following simulation procedure is adopted to obtain the power curves having null

hypothesis of no cointegration.

I. Generate the data according to DGP-A under the point alternative hypothesis
0<p<l.

2. Apply the tests having no cointegration as the null hypothesis on the data one by
one and calculate the test statistic of each test.

3. Decision has been drawn regarding the null hypothesis by using simulated critical
value of each test.

4. The steps 1, 2 and 3 are repeated for a fixed number of Monte Carlo Sample Size

(MCSS) "M" and number of rejections are totaled.
5. Calculate the power of test as PS. = (%)* 100 where PS. is the power and K is

the total number of rejections. To obtain power for each point alternative
hypothesis, the steps 1 to 5 are repeated for each point in alternative space i.e.
p=1{0.9,0.8,0.7,0.6,0.5,04,0.3,0.2,0.1,0} .

6. Plot the power of test against each point in alternate space to obtain the power

curve of test.
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For cointegration tests with cointegration as null hypothesis, the same above algorithm is
used to estimate their power curves with one difference i.e. the artificial data generation

is done using DGP-B.

Power envelop is obtained by plotting the power of PO test (DGP-A, DGP-B) against
different altenatives. For the power envelop above same simulation design is adopted

which is illustrated in the case of power curves of the test.

3.7. Evaluation Based on Bootstrap Empirical Power

After analyzing the characteristics of cointegration tests based on their size and power,
when data are artificially generated, there is a need for the comparison_of better
performing tests based on some real economic theory. To serve this purpose, this study
uses better performing cointegration tests on the real e&momic data based on Fisher
hypothesis and evaluate the better performing tests using bootstrap. empirical powers.
Few studies have already investigated about the existence of Fisher hypothesis. These
studies include but are not limited to Crowder (2003), Westerlund (2008), Orsal (2007),
Toyoshima and Hamori (2011), and Badillo, Reverte et al. (2011). All these have found
that Fisher hypothesis holds. In this study, we pick best three tests of cointegration and
then their bootstrap empirical powers are assessed. This study has used two quarterly data

sets of OECD countries of different time and cross sectional dimension.
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Chapter 04: Empirical Size of Panel Cointegration Tests

In this chapter of dissertation, size of under consideration panel cointegration tests are
analyzed using asymptotic critical values. Some cointegration tests have null hypothesis
of no cointegration whereas others have null of cointegration. In order to calculate the
size of tests, data are generated under null hypothesis and the number of rejections are
counted. Nominal size is considered 5% as this is taken as frequent. Empirical size of two
different classes of panel cointegration tests are displayed and discussed from Figure 4.1
to Figure 4.8 which are also displayed in tables section in appendix from Table A-1 to

Table A-8.

4.1. Empirical Size of Tests having Null Hypothesis of No Cointegration

In this study, twenty one tests are included which have null of no cointegration. These
under consideration tests are from different categories that are, residual based
(parametric, non-parametric) , error correction based, maximum likelihood based,
average weighted symmetric based and fisher type tests. In this study, four different time

(T=10, 25, 50, 100) and four cross sectional dimensions (N = 2, 8, 16, 32).

In Figure 4.1; number of cross sections are fixed N=2, along x-axis time dimension is
displayed and along y-axis size of test is displayed. From Figure 4.1; indicates dissimilar
behavior of different tests. When time dimension is 10, three tests, namely PdPtp, PdGtp
and PADF have size of 70%, 72% and 77% respectively. When time dimension is
increased from 10 to 25 then size of these three tests is decreased. However, PdPtp and
PdGtp have sharp rate of decreasing whereas, PADF does not depict sharp rate of

decreasing. When time dimension is 25, the size of PdPtp, PdGtp and PADF tests is 21%,
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29% and 65% respectively. Similarly, when time dimension is increased, the size of these

three tests converges to nominal size (5%) with different rate of convergence. The size of

LR test has totally different pattern as compared to the rest of tests, when time dimension

is 10 the size of LR test is 31% but when the time dimension 1$ increased, the size of LR

Figure 4.1: Empirical Size of Tests having Null of No Cointegration, N=02
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test is increased and hence size of LR test shows a divergent behavior. The size of PhZt is

40% when time dimension is 10 and shows a decreasing pattern when time dimension is

increased. The size of six tests ranges from 20% to 30% when time dimension is 10, out

of which four are Kao's tests such as, PDFT , PDFrho, PDFTstar, PDFrhostar and two are

Pedroni's tests like, PdGtnp, PdPtnp. When time dimension is 25 then PDFrho and
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PDFrhostar have increased as compared to time dimension 10 and size of tests 30% and
34% respectively. A slight change occurs in the size of these two tests when time
dimension is 50 and 100. The size of PDFT and PDFTstar have diminished from 20% to
15% when time dimension increases from 25 to 100. The size of PdGtnp and PdPtnp
converges to nominal size when time dimension is increased from 25 to 100. Only two
tests out of these compared tests have nominal size 5%, which are fisher's tests such as,
Pfadf, Pfaws for all of four time dimensions.

The size of PAWS starts from 0.6% and converges to nominal size 5% as time dimension
increases from 10 to 100. Three tests which are PdPrho, PdP_V and PdGrho have not a
single rejection throughout the time dimension. Comparative analysis in term of size
means that these three tests have zero size at all time dimensions considered in the study.
Briefly, size of three tests out of compared ones tests remains zero throughout all the four
time dimensions which are PdGrho, PdPrho and PdP_V. Four tests that are, Pfadf, Paws,
PAWS and PdPtnp converge to nominal size when time dimension gradually increased
and size of four tests that are, PhZt, PdPtp, PdGtp and PdGtnp converge to 10% when
time dimension is 100. While, size of remaining six tests is more than 15% when time
dimension is even 100.

Figure 4.2, size of tests are displayed having cross sections fixed (N=8),where time
dimension T is varied along x-axis and size of test is along y-axis. From the starting point
of time dimension (T=10), three tests that are, PADF, PdGtp and PdPtp have size 100%
approximately. Out of these three, PADF shows consistent size 100% at all four time
dimensions; however, remaining two tests have convergent behavior towards nominal

size 5% with increase in time dimension. When time dimension is 10, then size of PhZt
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test is 73%, whereby, time dimension is increased size of PhZt is decreased quickly, as it
is observed when time dimension is 25 the size of PhZt becomes 34% Similarly, when
time dimension is further increased the size of PhZt test is decreased and it demonstrates
a convergent pattern towards nominal size 5%. Maximum likelihood based LR test, there
15 a positive relationship between size and time dimension, that is, when time dimension
is increased, size of LR test is also amplified. When time dimension is 10, size of LR test
15 3.6% which is considered as stable around nominal size {5%) but when time dimension

1s increased from 10 to 25, then size of LR test becomes 50%.

Figure 4.2: Empirical Size of Tests having Null of No Cointegration, N=08
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Similarly, when the time dimension further increased the size of LR test also increased,

so the pattern of size of LR test is divergent with increase in time dimension. Three tests,
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that are, PdPrho, PdGrho and PdP_V out of these compared tests, behave consistently
thoroughly for time dimension as showed in Figure 4.1. These three tests are under sized
and even have not a single rejection, hence have zero size. Two tests are consistent as
time dimension varied from 10 to100, throughout the time dimension the size of these

tests is around nominal size, and these are Pfadf and Pfaws tests.

Average weighted symmetric based test PAWS test is also convergent towards nominal
size (5%) as time dimension increased from 10 to 100. When time dimension is 10 its
size is 14% but when time dimension is 25 then its size becomes 6% which is very close
to nominal size, and hence showed convergent behavior. PDFrho test behaves better as
compared to Figure 4.1 while numbers of cross sections are fixed (N=8), it shows non
convergent behavior. In this case, when time dimension is 10, size becomes 17% but
when time dimension is increased, its size is also increased and become 21%. When time
dimension is 100, its size becomes 19%. However, its size does not converge to nominal
size (5%). The remaining five tests exhibit convergent behavior when time dimension is
increased. Figure 4.2; it is observed that when time dimension is 10 the size of PdGtnp
and PdPtnp is round about 40% and the size of PDFT, PDFTstar and PDFrhostar is 19%,

24% and 28% respectively.

When time dimension is increased from 10 to 25 then the size of PdGtnp and PdPtnp
becomes 16% and 12% respectively and the size of PDFT, PDFTstar and PDFrhostar
becomes 15%, 16% and 24% respectively, which is relatively lesser decrease as
compared to PdGtnp and PdPtnp. Hence these five tests show convergent behavior. In
general, it can be summarized that size of four tests that are, PdPrho, PdGrho, PdP_V and

PADF lie on extreme points 0% and 100% throughout time dimension, in which three
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tests PdPrho, PdGrho, PdP_V are at one extreme (0%) and PADF lies on other extreme
(100%). Size of LR tests starts from nominal size and increases as time dimension varies.
Size of two tests that are, Pfadf and Pfaws remains around nominal size throughout the
time dimensions. All other tests except PDFrho pursue the convergent pattern but rate of

convergence of each test is variable.

In Figure 4.3, the number of cross section is fixed N=16, along x-axis time dimension is
labeled and along y-axis size of tests is labeled. In this case few tests behave like earlier
as in Figure 4.2. When time dimension is 10, the size of PdPrho, PdGrho, and PdP V is
zero and size of these does not change even though when the time dimension varies. So
the pattern of size of these tests is totally same with previous case where number of cross
section was 8. It means that cross sectional variation does not have an impact on these
.teéts; The behavior of PADF test is also same as in the previous case,, that is, the size of
PADF is 100% throughout the time dimension in this case also. Size of two tests, that is,
PdGtp and PdPtp is 100% approximately and PhZt has 91% of size when time dimension
is 10. If compare current stage of these three tests with the previous case when time
dimension was 10 and cross sectional size was 8, two tests, PdGtp and PdPtp have
approximately same size as they had in previous case but the third one, PhZt test faces an

increase in size.

In Figure 4.3, as increase the time dimension from 10 to 25 then size of these three tests
become 50% and in same manner, when time dimension is further increased the size of
these three tests converge to nominal size 5%, however, each test has different rate of
convergence. The size pattern of LR test is similar as shown in Figure 4.2. In Figure 4.3

when time dimension is 10, size of LR test is zero but when time dimension increases
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size Of LR test increases. When time dimension is 100 size of LR test becomes 36%, size
of LR test has increasing pattern with respect to time dimension and hence does not
converge to nominal size 5%. In Figure 4.3, there are only two tests, that is, Pfadf and

Pfaws, exist which have approximately nominal size throughout the time dimension.

Figure 4.3: Empirical Size of Tests having Null of No Cointegration, N=16
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When size behavior of these two tests are compared with previous Figure 4.2 then a
similar results are obtained. It means that cross sectional dimension do not have much
impact on the size of these two tests. The patten of size of PDFrho test is changed as
compared to Figure 4.2. In Figure 4.3, size of PDFrho has decreasing pattem. When time
dimension is 10 its size is 16% but when time dimension is increased, its size becomes
decreased and shows convergence towards nominal size 5%. It can be easily observed
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from Figure 4.3 that the remaining six tests have convergent behavior with different rate
of convergence. When time dimension is 10, then size of PDFT, PDFTstar, PDFrhostar
and PAWS are 22%, 29%, 31% and 36% respectively and size of Pedroni non parametric
tests, that is, PdGtnp and PdPtnp have sizes of 55% and 61% respectively. However,
when time dimension increases, the size of these six tests decreases with different

magnitude.

While summarizing Figure 4.3 may be stated as; two tests have size around nominal size
throughout the time dimension which is ﬁshel;’s tests, that is, Pfadf and Pfaws. Four tests
remain on extreme throughout the time dimension, in which three tests, that is, PdGrho,
PdPrho and PdP_V remain on lower extreme and the fourth test, that is, PADF remains’
on upper extreme. Maximum likelihood based LR test shows clear cut increasing pattern
throughout the time dimension. Size of three tests, that is, PdPtp, PdGtp and Pth start

" from approximately upper extreme -when time dimeﬁsidn starts from 10 but converge
tO\-vards nominal size of 5% with different convergence rate as time dimension increases.

Size of five tests start befween 15% to 35% and then converge towards nominal size and
the size of remaining two tests start between 55% to 60% and then converge towards

nominal size with different rate of convergence.

In Figure 4.4, size of test is displayed along y-axis and time dimension along x-axis. In
Figure 4.4, 32 numbers of cross sections have been taken, which is fixed throughout the
time dimension. Cumulatively, four tests have extreme size of zero and 100%, the size of
PdGrho, PdPrho and PdP_V are zero when time dimension is 10 and do not change when
time dimension increases and hence these three have zero size throughout the time

dimension like as in previous case in Figure 4.3. While the size of fourth test, which is
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PADF, lies on the upper extreme, that is, 100% throughout the time dimension. The size
of three tests which are PdGtp, PdPtp and PhZt becomes 100% when time dimension is
10, however, size of these three tests decreases when time dimension is increased just like
when time dimension is 25 then size of these three tests becomes 70% approximately.
Hence, the size of these three tests converges towards nominal size 5% when time
dimension is increased. Two tests out of these three tests have equal rate of convergence
approximately. The size of two tests, that is, PAGtp, PAWS are around 70% and size of
PdPtnp is 83% when time dimension is 10, but the size of these three tests decreases

sharply and becomes approximately 20% when time dimension is 25.

Figure 4.4: Empirical Size of Tests having Null of No Cointegration, N=32
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Similarly, when time dimension has increased the size of these three tests have decreased,
and hence converge to nominal size with different rate of convergence. The size of Pfadf
and Pfaws is around 7% and 8% respectively when time dimension is 10, the size of
Pfadf is exactly 5% when time dimension is 50, however, with varying time dimension,
the size of these two tests fluctuate from 7% to 9%. The size pattern of LR tests is
slightly different from the previous pattern, when time dimension is 10, size of LR test is
zero but when time dimension becomes 25, its size converges to nominal size of 5% and
when time dimension is increased to 50, the size of LR test increases and becomes 10%.
In Figure 4.4, increasing pattern of size of LR test is stow as compared to Figure 4.3. In
Figure 4.4, the size of remaining four tests (PDFT, PDFTstar, PDFrho, and PDFrhostar)
behave moderately, when time dimension is 10 then the size of these four tests lies
between 20% to 30%, but when time dimension is increased the size of these four tests
slightly decrease. Moreover, the size of these four tests lies in the range of 10% to 20%

for three time dimensions, that are, 25, 50 and 100.

To summarize, Figure 4.4, in which three tests, that are, PdGrho, PdPrho and PdP_V
have zero size and PADF have 100% size throughout the time dimension. Three tests
PdGtp, PdPtp, and PhZt have size 100% when time dimension is 10, with increase in time
dimension to 100 these tests have size in range 25% to 15%. Size of LR test lies in the
range of zero to 10%, when time dimension increases from 10 to 100. Size of ali other
tests lies in the range of 10% to 20% when time dimension is 100 but when time

dimension is different than 100 then size lies in multiple range.
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4.2. Empirical Size of Tests having Null Hypothesis of Cointegration

In this section, the empirical size of tests having null of cointegration is discussed. In
Figure 4.5, along x-axis time dimension along y-axis size of test are displayed
respectively and number of cross section is fixed N=2. The size of three tests, OLS based
(LM-OLS), Dynamic OLS based (LM-DOLS), and Fully Modified OLS based (LM-
FMOLS) tests are displayed. When time dimension is 10, the size of OLS based test
(LM-OLS) and Dynamic OLS based (LM-DOLS) tests is around 80% while size of Fully
Modified OLS based test (LM-FMOLS) test is around 73%. Figure 4.5 shows that the
size of LM-OLS and LM-DOLS tests have decreasing pattern whereas the size of LM-

FMOLS has increasing pattern.

Figure 4.5: Empirical Size of Tests having Null of Cointegration, N=02
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When the time dimension is 25, the size of LM-OLS and LM_DOLS tests are 65% and

76% respectively, whereas the size of LM-FMOLS test is 75%. As time dimension

67



increases tol00 the size of LM-FMOLS test becomes 90%. Similarly, the size of LM-

OLS and LM-DOLS becomes 41% and 46% respectively.

Figure 4.5 summarized that these three tests do not converge to nominal size when time
dimension becomes large. Although, two tests have decreasing pattern while third test has
increasing pattern which clearly diverges when time dimension is increased. The size of
LM-OLS and LM-DOLS tests have decreasing pattern and lies in range (80% to 40%) for
time dimension range (10 to 100). Similarly, LM-FMOLS test lies in the range (73% to

90%) for time dimension range (10 to 100).

In Figure 4.6, number of cross sections is 8 which are fixed and time dimension is varied
from 10, 25, 50 and 100. In Figure 4 6, time dimension and size are labeled along x-axis
y-axis, respectively. When time dimension is 10, size of LM-OLS and LM-DOLS tests is
90% and 94% respectively whereas size of LM-FMOLS test is 84%. When time
dimension increases size of LM-OLS and LM-DOLS tests slightly decreases. When time
dimension is 25, size of LM-OLS and LM-DOLS tests is 85 % around and size of LM-
FMOLS test is around 94%. The size pattern of these three tests are not much more
different from the previous Figure 4.5, where size of LM-OLS and LM-DOLS tests has
slightly decreasing pattern and size of LM-FMOLS has increasing pattern and attains the
maximum value 100%. Empirical size of these three tests are much more away from the
nominal size. These three tests have over rejection problem when asymptotic value are

used.
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Figure 4.6: Empirical Size of Tests having Null of Cointegration, N=08
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The size of LM-OLS and LM-DOLS tests lie in the range (94% to 60%) for all time
dimensions, (10 to 100), while the size of third tests LM-FMOLS lies in the range (84%
to 100%) for all time dimensions. Hence, it is concluded from Figure 4.6 that the size of
these three tests have ambiguous behavior, although the size of two tests have slightly
decreasing pattern but not much useful while the size of the third test has divergent

pattern for the given time dimension.

Figure 4.7 presents the results when number of cross sections is 16. Size of three tests
(LM-OLS, LM-DOLS, and LM-FMOLS) have been displayed in which two tests have
little bit decreasing pattern but the size of third test lies on the upper extreme throughout
the time dimension. When time dimension is 10, size of LM-OLS and ILM-DOLS tests

arc at upper extreme (100%.) Similarly, the size of LM-FMOLS test is also on upper
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extreme. When time dimension increases to 25 then size of LM-OLS and LM-DOLS tests

slightly decreases but stil lies around upper extreme.

Flgure 4.7: Empirical Size of Tests havmg Null of Comtegrat]on, N=16
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Whereas, size of LM-FMOLS test has remained fixed on the upper extreme. Overall,
from the analysis of Figure 4.7, it is summarized that size of LM-OLS and LM-DOLS
tests lie in the range (100% to 80%) throughout the time dimensions. Whereas, size of
third test, LM-FMOLS, exists on the upper extreme throughout the time dimension.
Hence, all three tests have over rejection in other words over size throughout the time

dimension.

In Figure 4.8, size of three tests (LM-OLS, LM-DOLS and LM-FMOLS) has been
analyzed by taking 32 numbers of cross sections. It is observe that these three tests have
exactly same size pattern throughout the time dimension. The size of these three tests is at

extreme upper bound throughout the time dimension,
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Figure 4.8: Empirical Size of Tests having Null of Cointegration, N=32
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When time dimension increases from 10 to 25, then size of LM-OLS, LM-DOLS and
LM-FMOLS tests remain at 100% and does not change even when time dimension is
changed. Hence, it is concluded from Figure 4.8 that these three tests have over rejection

in all cases, in other words these tests are over sized throughout the dimension.

4.3. Conclusion

The above two sections of this chapter describe the results of both classes of tests, in
which one section describes results of empirical size of tests having null of no
cointegration while other section describes the results of empirical size of tests having
null of cointegration. Firstly, Figure 4.1 to Figure 4.4 explains the results of empirical
size of tests having null hypothesis of no cointegration. The aim of the comparison of
empirical size of these tests is to analyze the asymptotic properties of these under
consideration tests with respect to time and cross-sectional dimensions variations. In each

figure number of cross sections is fixed and time dimension is varied.
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In the first section, the empirical size of six types of tests, such as, parametric residual
based, non parametric residual based, maximum likelihood based, weighted symmetric
based, and fisher type tests have been displayed from Figure 4.1 to Figure 4.4 when
asymptotic critical values are used. From Figure 4.1 to Figure 4.4, it is evident that
residual based parametric tests show mix behavior, that is, either increasing, decreasing
or constant when time and cross sectional dimension are varied. From eleven parametric
residual based tests, only three tests, that are, PdGrho, PdPrho, and PdP_V have constant
size of 0% at all time and cross sectional dimensions. Whereas, another parametric
residual based test, that is, PADF has also constant behavior of size 100% for N=38, 16,
32. However, when N=02 then the residual based test PADF has a decreasing pattern of

size with increase in time dimensions.

The remaining seven parafnetric residual based tests,( PdGtp, PdPtp, PDFT, PDFTstar,
PDFrho, PDFrhostar, and PhZt) have decreasing pattern of empirical size when time
dimensions are increased. From these seven parametric residual based tests, three tests,
that are, PdGtp, PdPtp, and PhZt have sharp rate of decrease as time dimension increases
as compared to other four tests, that are, PDFT, PDFTstar, PDFrho, and PDFrhostar.
However, none of these seven tests have achieved the nominal size of 5% throughout the
given time and cross sectional dimensions. Nevertheless, these seven parametric residual
based tests have increasing pattern of size as cross sectional dimension increases.
Nonetheless, both the non-parametric residual based tests have a decreasing pattern of
size as the time dimension increases. Very interestingly, only one of them (PdPtnp) test

achieves nominal size of 5% at time dimension 100 or more.
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Maximum likelihood based test (LR) shows a divergent behavior as it has an increasing
pattern of size with increase in time and cross sectional dimension, Two fisher type test,
(Pfadf and Pfaws) have their size around nominal size of 5% at all time and cross
sectional dimensions. While, the single weighted symmetric type of test (PAWS) shows a
unique behavior as it has decreasing pattern of size with increase in time dimension for
N=08, 16, 32. However, it has increasing pattern with increase in time dimension for
N=02. Although it achieves nominal size of 5% at time dimension of 100 for all given

Cross section.

In the second section, the empirical size of tests is described having the null of
cointegration . In this section, there are only three type of tests, that are, OLS based (LM-
OLS), Dynamic OLS based (LM-DOLS), and Fully Modified OLS based (LM-FMOLS).
The size of these three type of tests have been analyzed for different time and cross
sectional dimension, which are portrayed in Figure 4.5 to Figure 4.8. Fully Modified OLS
based test, (LM-FMOLS) has an increasing pattern of size as the time dimension
increases for N = (2, 08. However, for N = 16, 32 this test has maximum size of 100% at
all time dimensions. The rest of two type of tests, that are, LM-OLS and LM-DOLS have
decreasing pattern of size with increasing time dimension for N = 02, 08, 16. However,

these two tests show constant behavior of size 100% at all time dimension for N=32.
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Chapter 05: Controlling the Size of Tests

In this chapter, size of tests are discussed by using simulated critical values. As
mentioned earlier, this study has considered two classes of tests, one class of tests have
the null of no cointegration while other class of tests have null of cointegration. In the
previous chapter, it is observed that both classes of tests do not have empirical size
around the nominal size when asymptotic critical values are used for the given time and
cross sectional dimension. In order to stabilize the size, simulated critical values are used

for both classes of tests under consideration.

5.1. Stabilizing the Size of Tests having Null of No Cointegration

In this section, size of twenty-one tests are analyzed having null of no cointegration by
using simulated critical values. In Figure 5.1 along x-axis time dimension has been
displayed which is 10, 25, and 50 and 100 while, along y-axis the size of test has been
displayed and the number of cross sections is 2 which is fixed in this case. Now the size
of each test in Figure 5.1 is around the nominal size, size of all tests lie in the range
between 4% to 6% for all given time dimension, hence now size of all tests are stabilized
around 5%. Hence, size of tests has been stabilized when simulated critical values are

used while using the asymptotic critical values size of tests was not stable.

74



Figure 5.2, Simulated Size of Tests having Null of No Cointegration, N=08
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In the Figure 5.3, size of 21 tests have been displayed which have null of no
cointegration. In this figure, time dimension has been labeled along x-axis and size of test
has been labeled along y-axis for the number of cross section 16. It is observed that size
of all tests lie between the range of 4% to 6% because simulated critical values are used
instead of asymptotic critical values. Now, the size of each test is stable which is
approximately around the nominal size. In the previous chapter, when asymptotic critical
values were used, most of the tests have not stabilized the size of tests. Hence, in this

study, simulated critical values are used for stabilizing the size of tests.

76



Figure 5.3, Simulated Size of Tests having Null of No Cointegration, N=16
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The following Figure 5.4, size of 21 tests have been showed in which time dimension is
labeled along x-axis and the size of test has been displayed along y-axis for N=32. Here,
simulated critical values are used because when asymptotic values was used then size of
tests was not stable as have seen in the previous chapter for the same time dimension and
number of cross section. Here, the size of each test remains between 4% to 6%

throughout the time dimension and cross section. Hence, size of each test is stable and

remains around nominal size of 5% when simulated critical values are used.




Figure 5.4, Simulated Size of Tests having Null of No Cointegration, N=32
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5.2. Stabilizing the Size of Tests having Null of Cointegration

In this section, the size of tests that bave null of cointegration is analyzed. Here,
simulated critical values are used instead of using asymptotic critical values as have seen
the distortive size behavior of tests in the previous chapter. In this section, three tests
having the null of cointegration are considered which are LM-OLS, LM-DOLS, and L. M-
FMOLS. All of these three tests are over sized for all time dimensions and number of
cross sections when asymptotic critical values were used. Here, simulated critical values

for time dimension 10, 25, 50 and 100 and cross sectional size 2, 8, 16 and 32. The Cross
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section is fixed in each figure and varying the time dimension to analyze the size of three

tests.

In Figure 5.5, size of three tests LM-OLS, LM-DOLS, and LM-FMOLS are displayed.
The time dimension which is 10, 25, 50, and 100 have been displayed along x-axis and
the size of tests have been displayed along y-axis for the number of cross section two.
The size of each test remains in the bound 4% to 6%, which shows that the size of these

tests are stable now and approximately around the nominal size.

Figure 5.5, Simulated Size of Tests havin

g Null of Cointegration, N=02
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In Figure 5.6, size pattern of tests under consideration have been displayed. The number
of cross sections in this case is eight which is fixed and time dimension varies. Here, time
is labeled along x-axis whereas the size of test is labeled along y-axis. It is observed
Figure 5.6 when simulated critical values are used size of each test remains between 4%
to 6% throughout the time dimension, whereas in case of asymptotic critical value all
three tests were oversized. Hence, sizes of all three under consideration tests are stable

around 5% under simulated critical valyes.
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Figure 5.6, Simulated Size of Tests having Null of Cointegration, N=08
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In Figure 5.7, the time dimension is displayed along x-axis and the size of test is
displayed along y-axis whereas the number of cross sections is 16. In Figure 5.7,
simulated critical values are used instead of using asymptotic critical values. As, it has
seen in the previous chapter that each test was oversized throughout the time dimension
when asymptotic critical values were used. But, in this case when simulated critical
values are used the size of each test remains between 4% to 6% throughout the time
dimension and size of all three tests lies around the nominal size 5%. Hence now size of

all three tests are stabled which is clearly evident from Figure 5.7.

Figure 5.7, Simulated Size of Tests having Null of Cointegration, N=16
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The following Figure 5.8 shows the simulated size of three tests having the null of
cointegration. In this figure, time dimension is displayed along x-axis and size of test is
displayed along y-axis, whereas the number of cross section is 32. It is observed from the
following figure that size of all three test lies between 4% to 6% throughout the time
dimension which shows that size of tests is stable. Whereas, size of these tests was
oversized for ali time dimensions when asymptotic critical values are used. Hence, now
the size of each test lies around the nominal size throughout the time dimension.

Figure 5.8, Simulated Size of Tests having Null of Cointegration, N=32
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5.3. Conclusion

From the overall conclusion of above two sections, in which one section has briefly
discussed the size of those tests which have null of no cointegration whereas other section
has discussed the size of those tests which have null of cointegration by taking simulated
critical values. In both section of this chapter the time dimension is 10, 25, 50, and 100
which is varied in each figure whereas the cross sections are varied from figure to figure
which are 2, 8, 16 and 32. From Figure 5.1 to Figure 5.8, it is evident the size of both

type of tests having null of no cointegration and null of cointegration have stable size
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when simulated critical values are used. Hence, from Figure 5.1 to Figure 5.8, it can be
observed that the size of all under consideration tests lie in the range 4% to 6% for all
given time and cross sectional dimension and converge to the nominal size of 5%. So,

simulated critical values are used for power comparison.
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Chapter06: Power Comparison

As the two characteristics of the test are very important for assessing the test in which
one is the size of the test and other is the power of test. It is commonly accepted concept
that the tests having equivalent size level should be comparable on basis of power. In this
chapter, the power of different panel cointegration tests having null of no cointegration
and nuli of cointegration are discussed. Furthermore in this power comparison, this study

has considered both first generation and second generation tests,

As from the previous chapter, it is observed that size of both classes of tests have been
stable by using simulated critical values. Now, to compare the power of tests using
stringency criterion which is discussed by {(Zaman (1996)) and also (Zaman, Zaman et al.
{2017)). According to Zaman, Zaman et al. (2017), if the best tests have stringency above
50% then there is need to search an alternative methods for testing whereas if the best

tests have the stringency between 5% to 10% then there is no need to search furthermore.

In the first section of this chapter, a Monte Carlo power comparison of 21 tests is briefly
discussed which have null of no cointegration with figures and tables. In second section
of the chapter the Monte Carlo power comparison of three test having the null of
cointegration is discussed and in the end of the chapter the overall summary and
conclusion of the both sections are described. The time dimension T=10, 25, 50, 100 and
cross section dimension N=02, 08, 16, 32 are taken to make a power comparison. A
Monte Carlo sample size of 50,000 is used for all tests except PAWS, Pfadf, and Pfaws,
for these three tests a Monte Carlo sample size of 10,000 is taken. In all tables, tests are

categorized into six categories from A to F according to their maximum shortcomings
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values, the test having maximum shortcomings less than 10% is assigned in category A
and test having the maximum shortcomings between 10% to 20% (10%<MS<20%,
where MS denote the maximum shortcomings of the test) is assigned in category B, test
having maximum shortcomings between 20% to 30% (20%<MS<30%) is assigned in
category C, test having maximum shortcomings between 30% to 40% (30%<MS<40%) is
assigned in category D, test having maximum shortcomings between 40% to 50%
(40%=<MS<50%) is assigned in category E, and test having the shortcoming greater than
50% is assigned in category F. Maximum shortcomings of two classes of tests null of no
cointegration and null of cointegration are displayed section appendix from Tables A-6 to

Tables A-13.

6.1. Power of Tests having Null of No Cointegration

To describe the power analysis of panel cointegration tests having null hypothesis of no
cointegration, all tests are classified into three categories according to their maximum
shortcomings; best performing, mediocre performing, and worst performing tests. After
finding the power of cointegration tests at all time and cross sectional dimensions, it is
observed that majority of the tests perform poorly at low time and cross sectional
dimensions. Moreover, these tests have approximately same power of 100% at high time
and cross sectional dimensions. So, in order to classify all tests in three categories, the
appropriate time and cross sectional dimension of 50 and 8 respectively is taken as these

dimensions are neither very low nor very high.

According to this time dimension and cross sectional dimension, that is, T=50, N=08, the
tests having maximum shortcomings less than 20% declared as best tests, tests having

maximum shortcomings between 20% to 50% declared as mediocre tests, and tests
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having maximum shortcomings greater than 50% declared as worst tests. According to
this benchmark, two tests have performed best in which one is residual -based test, that is,

PdP_V and other best test is average weighted symmetric based test, that is, PAWS.

Table 6.1: Best, Mediocre and Worst Performing Tests According to their MS

Category Tests Maximum Shortcomings

Best Performing Tests e 10>
PAWS 12.4%*

PdPrho 38.6*

Mediocre Performing Tests Pfaws 44.8*
PdGrho 47.66*

PdPtnp : 56.66

PdPtp ) 58

PhZt 62.1

PDFrho 62.56

W _Pa 63.6

PdGtp 66.3
PdGtnp 66.66
Worst Performing Tests PDFrhostar 69.06
W_Ga 71.5
PADF 72.46
PDFT 76.16
PDFTstar 7943

Pfadf 81

W_Pt 83.7

W_Gt 91.2

LR 93.8
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There are three tests which perform mediocre in which two tests are residual based, that
is, PdPrho, PdGrho and one Fisher type test. According to this benchmark, sixteen tests

perform worst. All best, mediocre, and worst tests are displayed in Table 6.1.

Next, the performance of these best, mediocre and worst tests are analyzed by varying the
time and cross sectional dimensions and check whether these two best tests also perform
best in other time and cross section dimensions. Also, the performance of mediocre and
worst tests are checked whether these tests are improved or worsen when time and cross

sectional dimensions increase or decrease.

Figure 6.1 portrays the maxtmum shortcomings of best two tests. At T=10, both
parametric residual-based test, that is, PAP_V and average weighted symmetric based
test, that is, PAWS perform worst for all given number of cross section. At the same time

dimension their maximum shortcomings are greater than 50%.

Figure 6.1: Best Performing Tests Having Null of No Cointegration
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When time dimension is 25 then maximum shortcomings of these two tests lie between
50% to 60% for cross sectional size 02 and 08. As cross sectional dimension is 16 then
both these parametric residual-based test, that is, PdP_V and average weighted symmetric
based test, that is, PAWS perform mediocre corresponding to their maximum
shortcomings are 30% and 40% respectively. At this time dimension, T=25, both tests
perform best at cross sectional dimension 32, where parametric residual based test PdP_V
has maximum shortcomings less than 10% while average weight symmetric test has

maximum shortcomings less than 20% .

When time dimension is 50 then these two tests perform best for all given cross section
except for cross sectional size 02, where these two tests perform mediocre. These two
tests, that is, parametric residuals based PdP_V and average weighted symmetric test
PAWS have zero maximum shortcomings and most stringent tests when cross sec;tional
dimension is 16 or above sixteen. When time dimension is 100 then both these tests
perform best and have zero shortcomings for all given cross section except for the cross

sectional dimension 02. At this cross sectional dimension these two tests perform

mediocre and have maximum shortcomings 20% to 30%.

Overall, Figure 6.1 summarized that when time dimension is 10 then cross sectional
dimension does not improve the performance of these two tests. When time dimension is
25 then the performance of these two tests approximately equal for cross sectional
dimension 02 and 08 but improve when cross sectional dimension is 16 and above. At
time dimension 50, these two tests perform mediocre at cross sectional size 2 and
perform best at cross sectional size 8 and also equaily perform best at cross sectional

dimension 16 and above. When time dimension is 50 these two tests, that is, parametric
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residual based PdP_V and average weighted symmetric based PAWS perform equally

best at cross sectional dimension 8 and above.

These two best tests are explained in table form by classifying into six categories from 'A’
to 'F' and Table 6.2 shows that when cross sectional dimension is 02 then two tests, that
is, residual based PdP_V and average weighted symmetric based PAWS fail to lie in the

top two categories 'A' and 'B'.

Table 6.2 : Best Performing Tests having Null of No Cointegration

N=02 N=08
Tests | PdP_V PAWS Tests | PdP_V PAWS
SS SS
I0[F F 10[F F
25(F E 25 |F F
50| D E 50 (B B
100 | C D 100 | A A
N=16 ~ N=32
Tests | PAP_V PAWS Tests | PAP_V PAWS
SS SS
10 F F 10|F F
25| C D 25 | A B
50 A A 50 A A
100 A A 100 | A A

When cross sectional dimension is 08, these tests lies in category 'B' and 'A’ for time
dimension 50 and 100 respectively. In case of cross sectional dimension 16 residual
based test PAP_V lie in the category 'C' whereas average weighted symmetric based test
lie in the category 'D' at time dimension 25 but both tests switch in the category ‘A’ at
time dimension 50 and onward. In the last case, when cross sectional dimension is 32

then residual based test PdP_V and average weighted symmetric based test PAWS lie in
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the category 'A' and 'B' respectively at time dimension 25. But, both tests lie in the

category 'A' at time dimension 50 and onward.

Figure 6.2 portrays the maximum shortcoming of three tests in which two tests are
residual based, that is, PdPrho , PdGrho and one test is Fisher type test, these three tests
are performed mediocre according to benchmark at N=08 and T=50. Figure 6.2 depicts
the performance of these three tests at different time and cross sectional dimension. When
cross sectional dimension is 02, then all these three tests perform worst for all given time

dimension except 100, where these three perform mediocre.

Figure 6.2: Mediocre Performing Tests having Null of No Cointegration
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Although, at time dimension 50 these are performed worst but their maximum
shortcomings are close to 50%. When cross section dimension is 08, all these three tests
perform worst for time dimension less than 50. However, at the same time dimension,
residual based test PdPrho perform little bit better as compared to other two tests but as
whole these three tests perform mediocre at this time dimension. But, as the time
dimension increased from 50 maximum shortcoming of all these three converge to zero.
At the time dimension 100, all these three perform best and their performance is equal to

the above best two test which were discussed in Figure 6.1.

When cross sectional dimension is 16, all these three tests perform worst when time
dimension is 25 or less but the residual based test PdPrho perform batter as compared to
other two throughout the given time dimensions. When time dimension is increased the
maximum shortcomings of these three tests decrease, and at time dimension 50 all three
tests perform best. However, residual based test PdPrho perform bettér than the other two
tests which clearly evident from the figure. When time dimension is 100 then all these
three tests equally perform best and have the zero percent maximum shortcomings.
Hence, at this stage the performance of these three tests equal to the above two tests, that
is, residual based test PAP_V and average weighted symmetric test PAWS which were

discussed in the Figure 6.1.

At last cases, when cross sectional dimension is 32 at time dimension 10 all three
perform worst but when time dimension is 25 then these three tests perform mediocre.
Although, the residual based test PdPrho and Fisher type test Pfaws perform equally and
better then the third one test PdGrho which is residual based test. When time dimension is

50 then all three tests perform best, the residual based tests PdPrho and PdGrho perform
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cqually and have the zero percent maximum shortcomings whereas the Fisher type test
Pfaws has maximum shortcomings around 10%. At the same stage, the performance of
residual based tests PdPrho and PdGrho are equal with the performance of two best tests,
that is, PdP_V and PAWS. At time dimension 100, all three tests perform best having
zero percent maximum shortcomings and the performance of these three tests is equal to

best two tests which were discussed in Figure 6.1.

Three mediocre performance tests are also discussed in the Table 6.3 by varying time
and cross sectional dimension. When cross sectional dimension is 2 then residual based
test PdPrho performs better a little bit from the other two and lie in category 'E' at time
dimension 50. Whereas other two test perform worst and lie in category 'F'. All three tests
lie in the category 'E’ at time dimension 100. Similarly when cross sectional dimension is
08 then all these three tests lies in the category 'A' at time dimension 100. At time

dimension 50 residual based test PdPrho lies in the category 'E".

Table 6.3: Mediocre Performing Tests having Null of No Cointegration

N=(2 N=08
PdPrho | Pfaws | PdGrho Tests | PdPrho | Pfaws | PdGrho
T SS
SS
10 F F F 10| F F F
251F F F 25| F F F
50 E F F 50D E E
100 | E E E 100 | A A A
N=16 N=32
PdPrho | Pfaws | PdGrho Tests | PdPrho | Pfaws | PdGrho
T SS
SS
10 (F F F 10| F F F
25| F F F 25| D C F
501 A B C 501 A A A
100 | A A A 100 | A A A
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When cross sectional dimension is 16, all these three tests lie in the category 'F' when
time dimension is 25 or less than 25. When time dimension is 50 then residual based tests
PdPrho lies in category 'A’ whereas Fisher type test Pfaws lies in category 'B' and residual
based test PdGrho lies in the category 'C’, At time dimension 100, all these three li¢ in the
category 'A’. In the last case of the Table 6.3, when cross sectional dimension is 32 then

all these three tests lie in the highest category 'A’ at time dimension 50 and onward.

Figure 6.3 depicts the shortcomings of sixteen tests of different categories which perform
worst according to benchmark at different time and cross sectional dimension. When the
cross sectional dimension is 02 then all the test perform worst throughout the given time
dimension. When cross section dimension is 08, it is observed from the figure that all
tests is worst at the time dimension 50 or less than 50 having maximum shortcomings

above 50%.

Figure 6.3: Worst Performing Tests having Null of No Cointegration
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When the time dimension increase and become 100 then six tests perform best and have
maximum shortcomings less than 20% in which one test is error correction base, that is,
W_Pa and two tests are non parametric residual based, that is, PdPtnp, PdGtnp and three
tests are parametric residual based, that is, PhZt, PdPtp, PdGtp, At this cross sectional
and time dimensions, five tests perform mediocre in which one test is error correction
based, that is, W _Ga , one test is Fisher type, that is, Pfadf and three tests are residual
based, that is, PDFrho, PDFrhostar, PADF. Whereas five tests still perform worst at this
time and cross sectional dimension. In these five worst performing tests two tests are
error correction based, that is, W_Pt, W_Gt and one test is maximum likelihood hood

based, that is, LR and two tests are residual based tests, that is, PDFT, PDF Tstar.

In the above Figure 6.3 when cross sectional dimension is 16, all these sixteen tests
perform worst when time dimension is 25 or less _than 25. When time dimension is 50
S th_en eight tests perform mediocre and eight tests perform worst, in which eight mediocre

' Vperformance tests one is error correction based test, that is, W Pa whereas two non-
parametric residual based PdPtnp, PdGtnp and five residual based which are PDFrho,
PDFrhostar, PhZt, PdPtp, PdGtp. The eight worst performance tests consist one
maximum likelihood based test, that is, LR, one Fisher type test, that is, Pfadf, three
error correction based tests, that is, W_Pt, W_Gt , W_Ga and three residual based tests

PDFT, PDFTstar, PADF.

When time dimension is increased and become 100 then nine tests perform best, five tests
perform mediocre and one test perform worst which is maximum likelihood based test,
that is, LR test. The nine best tests consist two error correction based tests, that is, W_Pa,

W_Ga, two non-parametric residual based tests, that is, PdPtnp, PdGtnp and six residual
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based, that is, PDFrho, PDFrhostar, PhZt, PdPtp, PdGtp whereas five mediocre
performance tests consist two error correction based tests, that is, W_Pt, W_Gt and two
residual based tests, that is, PDFT, PDFTstar and one Fisher type test, that is, Pfadf.
When cross sectional dimension is 32, in this case when time dimension is 10 then all
these sixteen tests perform worst but when time dimension is 25 then only three tests
perform mediocre while thirteen tests perform still worst. The three mediocre

performance tests are residual based, that is, PDFrho, PDFrhostar, PdPtp.

When time dimension is 50 then nine tests perform best, four tests perform mediocre and
three tests perform worst. Nine best performing tests consist one is error correction based
test, that is, W_Pa, one Fisher type test, that is, Pfadf whereas two non-parametric
residual based PdPtnp, PdGtnp and five residual based which are PDFrho, PDFrhostar,
. PhZt, PdPtp, PdGtp. In the four mediocre performing tests three consist residual based,
that is, PDFT, PDFTstar, PADF and one error correction based, that is, W_Ga whereas
three worst performing tests are error correction based, that is, W_Pt, W Gt and
maximum likelihood based test LR. When time dimension is 100 then fifteen tests
perform best and only one test still perform worst which is maximum likelihood based

test.

Table 6.4 have also discussed the worst performance sixteen tests at different time and
cross sectional dimension. When cross sectional dimension is 02 then all sixteen tests lie
in lowest category 'F’ throughout the given time dimension. When cross sectional
dimension is 08 then all these sixteen tests lie the category 'F' at time dimension 50 or

less than 50, but at time dimension 100 five tests much improve and switch in the
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Table 6.4: Worst Performing Tests having Null of No Cointegration

N=02 N=08§
SS 10 25 50 100 S 10 25 50| 100

Tests Tests

PDFT F F F F PDFT F F F F
PDFrho F F F F PDFrho F F F E
PDFTstar | F F F F PDFTstar | F F F F
PDFrhosta | F F F F PDFrhosta | F F F E
r r

PADF F F F F PADF F F F C
PhZt F F F F PhZt F F F A
PdGtnp F F F F PdGtnp F F F A
PdGtp F F F F PdGtp . F F F A
PdPtnp F F F F PdPtnp F F F A
PdPtp F F F F PdPtp F F F A
Pfadf F F F F Pfadf F F F E
W Gt F F F F W Gt F F F F
W Ga F F F F W Ga F F F C
W Pt F F F F W Pt F F F F
W Pa F F F F W Pa F F F B
LR F F F F LR F F F F

: N=16 N=32
SS 10 25 50 160 SS 10 25 50 100

Tests Tests

PDFT F F F C PDFT F F C A
PDFrho F F D A PDFrho F F A A
PDFTstar | F F E C PDFTstar | F F D A
PDFrhosta | F F D B PDFrhosta | F F B A
r T

PADF F F F A PADF F F E A
PhZt F F D A PhZt F F A A
PdGinp F F D A PdGtnp F F B A
PdGtp F F D A PdGtp F F A A
PdPtnp F F D A PdPtnp F F A A
PdPtp F F C A PdPtp F F A A
Pfadf F F F C Pfadf F F B A
W Gt F F F D W Gt F F F B
W Ga F F F A W Ga F F D A
W Pt F F F D W Pt F F F A
W Pa F F D A W Pa F F B A
LR F F F E F F F F F
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category ‘A’ and one error correction based test W_Pa lies in the category 'B". In these

five tests, two tests are non parametric residual based and three tests are residual based.

When cross sectional dimension is 16 then all of these sixteen tests lie in the category 'F'
at time dimension 25 and less than 25, few tests a little bit improve and switched the
higher category at time dimension 50. When time dimension is 100 then nine tests lie in
the category 'A’ in which two tests are error co_rrection based, that is, W_Pa, W_Ga, two
tests are non parametric residual based, that is, PdPtnp, PdGtnp and five tests are residual
based, that is, PDFrho, PDFrhostér, PADF, PdPtp, PdGtp, maximum like!ihood based
test, that i-s,_LR still lie in the lowest category 'F'. In the last case when cross sectional
dimensio’n_is 32, all these sixteen tests lie in the worst category 'F' at time dimension 25
' B_ut Wﬁen time dimension is 100, all these tests lie in the category ‘A’ excel;t the

maximum likelihood based test, that is, LR which is still perform worst and lie in the

category F.

6.1.1. Summary

Overall, the summary of the above sections consists of three figures and three tables. In
the above section,- the power of 21 of tests is analyzed of different categories. These
categories include: residual based parametric/nonparametric, error correction based,
maximum likelihood based, Fisher type tests which are based on p-values, average
weighted symmetric based tests having null of no cointegration using stringency criteria.
A benchmark is marked on the performance of these 21 tests at cross sectional dimension
08 and time dimension 50. At this benchmark, two tests perform best, that is, residual
based test PAdP_V and average weighted symmetric based test PAWS. From the Figure
6.1 and Table 6.2, the performance of these two tests is observed on different time and

96



cross sectional dimension. When, comparing Figure 6.1 with other two Figures 6.2 and
Figure 6.3 or comparing Table 6.2 with other two Table 6.3 and Table 6.4, and the
performance of these two best tests residual based test PdP_V and average weighted
symmetric based test PAWS at different time and cross sectional dimension. These two
tests are performed better as compared to all other tests at all time and cross sectional
dimension. Also these two tests, that is, residual based tests PdP_V and average weighted
symmetric based test PAWS are most stringent test. Furthermore, the stringencies of the
most tests approach to zero at time dimension 100 and cross sectional dimension 32.
Their performance become equal to cach other and also the stringencies of more than half
tests approach to zero at cross sectional dimension 16 and time dimension 100 in all
above three figures. From the Figure 6.2, three mediocre performance tests are discussed,
in these three tests the residual based test PdPrho perform better the other two tests. In
other words, from Table 6.3 the residual based test PdPrho lies in the higher category as
compared to other two tests but equally perform when time dimension is 50 and onward

at cross sectional dimension 32.

Next, comparing Figure 6.2 with Figure 6.3 or Table 6.3 with Table 6.4, overali these
three mediocre performance tests perform better than the other sixteen worst performing
tests. Although, these half of the worst performing tests equally well and their
stringencies approach to zero like mediocre and best performing tests when time
dimension is 100 and cross sectional dimension is 32. Form our above power of the tests
analysis, first two best performing tests are residual based tests PdP_V and average

weighted symmetric test PAWS, third best performing test is also residual based test, that
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is, PdPrho, the maximum likelihood based test, that is, LR perform worst throughout the

time and cross sectional dimension.

6.2. Power of Tests having Null of Cointegration

In this section, the analysis of power of tests having null of cointegration is explained
using stringency criterion. Here, tests are explained using figures and tables. In the
figures the maximum shortcomings of three tests OLS based test, that is, LM _OLS,
Dynamic OLS based test, that is, LM_DOLS and Fully Modified OLS based test, that is,
LM_FMOLS have been drawn. In the table, all the under consideration tests are
classified into six categories from A to F as have discussed above. As, already mentioned
that the time length is 10, 25, 50 and 100, and number of cross section are 2, 8, 16 and 32

to compare tests.

In Figure 6.4, the maximum shortcomings of three tests have been displayed. The time
dimension is labeled along x-axis and along y-axis maximum shortcomings have been
labeled. In Figure 6.4, two numbers of cross sections have been taken in this case. When
time dimension is 10, one test LM_OLS performs better than the other two tests. It has
maximum shortcomings around 30% where as LM_DOLS and LM_FMOLS tests have
the maximum shortcomings above 65% but when the time length is increased and
becomes 25, then maximum shortcomings of LM_OLS test is around 15% whereas the
maximum shortcomings of LM_DOLS is around 40%. The third test LM_FMOLS still

performs badly and has the shortcoming above 70%.

When the time dimension is 50 then LM_OLS does not change the behavior, it has still
shortcoming around 15% but LM_DOLS improves the position as compared to previous
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time length position and has shortcoming around 25%. But, LM FMOLS test still

performs badly and has shortcoming above 70%.

Figure 6.4: Maximum Shortcomings of Tests having Null of Cointegration, N=02
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Finally, when time dimension is 100 then LM OLS test has still same maximum
shortcomings as it was in the previous time length. LM_DOLS again improve its position
and has shortcomings around 15%. The LM_FMOLS still performs badly and has
maximum shortcomings above 70%. Figure 6.4 concludes that over all LM_OLS
performs best as compared to other two and LM_FMOLS performs worst throughout the

time dimension.

Now we summarize the Figure 6.4 in table form which is expressed in Table 6.5. Again,
all three tests LM_OLS, LM DOLS, and LM _FMOLS are classified into the six
categories from 'A’ to 'F. When time dimension is 10, the test LM_OLS lies in the
category 'C' whereas the other two tests LM_DOLS and LM_FMOLS lie in the lowest

category 'F'. When time dimension is 25 then LM_OLS has switched from the category
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'C' to 'B' where the test LM_DOLS has switched from the category 'F" to 'E', but the test
LM_FMOLS still performs worst and lie in the category 'F’. When time dimension
becomes 50, the test LM_OLS maintains same position as in category 'B', the test
LM_DOLS has switched the category from 'E' to 'C' whereas the test LM_FMOLS still

remained in the lowest category 'F".

Table 6.5: Power of Tests having Null of Cointegration (N=02)

ests
SS LM_OLS LM_DOLS |LM_FMOLS
10 C F F
25 B E F
50 B C F
100 B B F o

When the time dimension is 100 then the tests LM_OLS does not improve and still
remains in the category 'B' and LM_DOLS has improved and switched from the category
'C' to 'B'. Whereas the test LM_FMOLS has still performed worst and lied in the category
F'. Overall, summery of Table 6.5, shows that LM_OLS performs best as compared to
other two tests where as the test LM_FMOLS performs worst for all time dimensions and

given cross section.

In the following Figure 6.5, the maximum shortcomings has been displayed. In this case,
a numbers of cross sections 8 is discussed where the time dimension has been labeled

along x-axis and maximum shortcomings along y-axis. From the figure when time
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dimension is 10, LM_OLS test has maximum shortcomings around 22%, LM_DOLS and
LMFMOLS have maximum shortcomings around 70% and 90% respectively. When time
dimension is 25, LM-OLs performs weil and has the maximum shortcomings around
10% whereas the test LM_DOLS has shortcoming between 40% and 50%, LM_FMOLS
still performs badly and has shortcoming around 80%. Similarly, when time dimension is
50, the maximum shottcomings of LM OLS remains around 10% whereas the test
LM DOLS has improved the position and has maximum the shortcoming around 20%.
But the test LM_FMOLS still performs worst and has maximum shortcoming between
75% and 80%. Finally, when time dimension is 100, then the maximum shortcoming of

LM_OLS converges to zero.

Figure 6.5: Maximum Shortcomings of Tests having Null of Cointegration, N=08
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Similarly the maximum shortcoming curve of LM_DOLS has also approached to zero but
the maximum shortcoming of test FM_OLS has remained at 60%. Overall, the

performance of all three tests, the LM_OLS performs best as compared to other tests in
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all time dimensions and the LM_FMOLS performs worst though out the time dimension.
These findings are also explained in table form, where the tests have been classified into
six different categories from 'A’ to 'F'. In Table 6.6, it is observed that when time
dimension is 10 then LOM_OLS test lies in the category 'C’ and the other two LM_DOLS
and LM_FMOLS lie in the category 'F'. When time dimension is 25 then LM_OLS lies in
the category 'A’ whereas test LM_DOLS lies in the category 'E', but LM_FMOLS still
performs badly and lies in the category 'F'. When time length further increases and
becomes 50 then LM_OLS lies in category 'A’ and test LM DOLS improves and
switched from category 'E' to 'C". But, test LM_FMOLS still lies in the lowest category
'F. Finally, when time dimension becomes 100, then both tests LM_OLS and LM_DOLS
lie in the category 'A’, whereas test LM_FMOLS still performs worst and lies in the

lowest category 'F.

Table 6.6. Power of tests having null of cointegration (N=08)

Tests
SS LM_OLS LM_DOLS LM_FMOLS
10 C F F
25 A E F
50 A C F
100 A A F

In Table 6.6, overall performance of LM_OLS test is best and most stringent test as
compared to all other two tests in all time length, whereas test LM_FMOLS performs

worst throughout the time dimension.
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In Figure 6.6, maximum shortcomings of three tests have been displayed. In this case 16
number of cross sections have been taken, time dimension has been labeled along x-axis
whereas maximum shortcomings have been labeled along y-axis. It is seen from Figure
6.6 that when time dimension is 10, two tests LM_DOLS and L_FMOLS perform worst
and have maximum shortcomings above 70% whereas the LM_OLS has maximum
shortcomings around 30%. As the time length increases and becomes 25 then the test
LM_DOLS improves and it has maximum shortcoming around 47% whereas the
maximum shortcomings of LM_OLS is also more decreased and around 13%, the test
LM_FMOLS still performs worst. When the time dimension is 50 then the test LM_OLS
has maximum shortcomings around 10% where the test LM_DOLS has maximum
shortcomings around 25 %, the test LM_FMOLS still performs badly and has maximum
shortcomings around 80%. Similarly, when time dimension is 100 then both the tests, that
is, LM_OLS and LM DOLS have the zero maximum shortcomings and the test

LM_FMOLS has the maximum shortcomings around 45%.

Figure 6.6: Maximum Shortcomings of Tests having Null of Cointegration, N=16
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Overall, Figure 6.6 indicates that LM_OLS test performs best as compared to all other
two tests and is most stringent test in this figure, whereas the test LM_FMOLS performs

worst throughout the time dimension.

[n Table 6.7, the summary discussion of Figure 6.6 is explained. In Table 6.7, three tests
are classified into six different categories from 'A' to 'F'. As we can see from the
following Table 6.7, when time dimension is 10 then the test LM_OLS lies in the
category 'C' whereas, the other two tests LM_DOLS and LM_FMOLS lie in the lowest
category 'F'. But when the time length is increased and becomes 25 then test LM_OLS
lies in the category 'B' whereas the test LM_DOLS switches from the category ' to 'E/,
test LM_FMOLS still lies the lowest category 'F'. When time length is 50 then LM_OLS
remains in the same category 'B' whereas test LM_DOLS switches from the category 'E’

to 'C’ and the test LM_FMOLS still performs worst and lies in the category 'F".

Table 6.7 Power of Tests having Null of Cointegration (N=16)

ts SS | LM_OLS LM_DOLS LM_FMOLS
10 C F F
25 B E F
50 B C F
100 A A E

Finally, when time dimension is 100 then both tests LM_OLS and LM_DOLS lie the
highest category 'A'. whereas, the test LM_FMOLS lies in category 'E’. Hence, in this

case again LM_OLS test is best and most stringent test.
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Figure 6.7 explains the results for N=32, where time dimension has been taken along x-
axis and maximum shortcomings of tests have been taken along y-axis. It is evident from
Figure 6.7 that when time dimension is 10 then the test LM _OLS has maximum
shortcomings around 30%. Whereas, the other two tests LM DOLS and LMFMOLS
have performed badly and have maximum shortcomings around 75% and 95%
respectively. When time length increases and becomes 25 then maximum shortcomings
of LM _OLS is around 23%. At the same time level, LM _DOLS has maximum
shortcomings around 50% and test LM_FMOLS has performed badly and has maximum
shortcomings about 87%. Similarly, when time dimension is 50 then LM OLS performs
well and has maximum shortcomings less than 5% whereas the other test LM_DOLS also
performs well and has maximum shortcomings around 5%. LM _FMOLS test still

performs worst and has maximum shortcomings around 80%.

Figure 6.7: Maximum Shortcomings of Tests having Null of Contegration, N=32
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At last when time dimension is 100 then both the tests LM_OLS and LM_DOLS have a
zero maximum shortcomings, test LM_FMOLS has a maximum shortcomings around
30%. In Figure 6.7, test LM_OLS performs best as compared to other tests throughout
the time dimension and LM_FMOLS performs worst throughout time dimension except

at 100 sample size. Hence, LM_OLS test is the most stringent test.

Table 6.8 also explains the results shown in Figure 6.7. Three tests have been classified
into six different categories from 'A' to 'F'. It is seen from Table 6.8, when time
dimension is 10 then test LM_OLS lies in the category 'C' whereas the other two tests
LM_OLS and LM_FMOLS lie in the lowest category 'F'. When time dimension is 25
then LM_OLS still lies in the category 'C' but test LM_DOLS switches the category 'F' to
'E’, test LM_FMOLS still performs worst and lies in the category 'F'. As the time length
inér;aases and becomes 50 then both tests LM_OLS and LM_DOLS lie in the highest

category 'A’, but the test LM_FMOLS still lies in.the lowest category 'F’

Table 6.8. Power of Tests having Null of Cointegration (N=32)

Tests
SS LM OLS |LM_DOLS |LM FMOLS
10 C F F
25 C E F
50 A A F
1060 A A D
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Finally, when time length is 100 then again both tests LM_OLS and LM_DOLS lie in the
highest category 'A' and the test LM_FMOLS lies in the category 'D". Hence again the
test LM_OLS performs better as compared to other tests and LM_FMOLS performs
worst throughout the time dimension. Hence, the test LM_OLS is the best and most

stringent test.

6.2.1. Summary

Second section explains analysis of tests having null of cointegration according to power
using stringency criterion. This section consisted of four figures and four tables. When
time dimension is 10, then two tests, that is, LM_DOLS and LM_FMOLS perform worst
for all cross sections and have maximum shortcomings between 70% and 90%. But, test
LM_OLS performs better as compared to other two tests for all cross sectional dimension
and lies between in range of 20% to 30%. At this stage LM_DOLS and LM _FMOLS
tests lie in the category 'F' for all number of cross sections and LM_OLS lies in the

category 'C' for all number of cross sections.

When time dimension is 25 then maximum shortcomings of LM _OLS and LM_DOLS
tests move downward but the cross sectional dimension does not affect the range of
maximum shortcomings of these two tests, and LM_FMOLS test performs worst for all
cross sections. At this stage two tests LM_OLS and LM_DOLS lie in the category 'B' and
'E' respectively for all cross sections, whereas test LM_FMOLS lies in the category 'F' for

alt number of cross sections.

When the time length is 50, then the maximum shortcomings of test LM_OLS is around

10% for cross sections 2, 8, and 16 but its maximum shortcomings is less than 5% when
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cross sections are 32. In other words, it lies in the category 'B' and 'A' for cross section 2,
8, 16, and 32 respectively. Whereas the maximum shortcomings of LM-DOLS test lies
between the range 20% to 30% for the cross sections 2, 8, and 16 but its maximum
shortcomings is less than 5% for cross section 32. In other words, it lies in the category
'C" and 'A’ for the cross section 2, 8, 16, and 32 respectively. The test LM_FMOLS still
lies in the range of 70% to 80% for all cross sections, it lies in the lowest category F'. In
this case the cross section length has not much effect on the maximum shortcomings of

LM_OLS and LM_DOLS fests except when its length is 32.

Finally, when time length is 100, then it is observed that cross sectional variation does
not affect the maximum shortcomings of all these three tests, the maximum shortcomings
of tests LM_OLS and LM_DOLS are zero for all cross sections. In other words, these
tests lie in the highest category 'A', where the maximum shortcomings of LM_FMOLS
test lies in category 'F' except the case when cross section length is 32. Hence, overall
analysis shows that test LM_OLS performs best and most stringent test for time
dimension and cross section whereas the test LM_FMOLS performs worst for all time

lengths and for all cross sectional lengths.

6.3. Conclusion

Now, a general conclusion of both sections is explained in which first section deals with
the power comparison using stringency criterion of tests having nuil of no cointegration
whereas the other section deals with the power comparison using stringency criterion of
tests having null of cointegration. In the first section, it is observed that most of the tests
have maximum shortcomings downward as the time length and cross section length

increases.
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For the sake of simplicity, tests are classified into six categories from 'A' to 'F'. A cutoff
point is marked at time dimension 50 and cross sectional dimension 08. At this cutoff
point, it is observed that two tests perform best and have stringencies between 0% to 20%
and three tests perform mediocre and have a stringencies between 20% to 50%. Whereas,

sixteen worst performing tests have a stringencies above 50%.

From Figure 6.1, the performance of these two best tests is observed, that is, Parametric
residual based test PAdP_V and average weighted symmetric based test PAWS at different
time and cross sectional dimension. Both of these two tests perform worst when time
dimension is 10 in all four cases of cross sectional dimensions. Iin Figure 6.1, when cross
sectional dimension is 2 these two tests perform mediocre at time dimension 50 and
onward. When cross sectional dimension is 08 these two tests perform mediocre at time
diménsion 50 and perform best at time dimension 100, However, when cross sectional
dimension is 16 these th tests are performed mediocre at time dimension 25 but
- performed bést at time dimension 50 and onward. When cross sectional dimension is 32
then residual based test, that is, PdP_V and average weighted symmetric based test

PAWS perform best at time dimension 25 and onward.

Figure 6.2 portrays the stringencies of three mediocre tests in which two tests are
Parametric residual based, that is, PdPrho, PdGrho and one test is Fisher type test, that is,
Pfaws. if the performance of these three tests are compared, then it is concluded that
Parametric residual based test PdPrho perform better the other two tests. When cross
sectional dimension is 02 all these three tests perform worst at time dimension 25 and
less than 25 and at time dimension 50 only parametric residual based test PdPrho perform
mediocre whereas the other two tests perform worst, at time dimension 100 all three
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perform mediocre. When cross sectional dimension is 08 these three tests perform
mediocre at time dimension 50 and all these three tests perform best at time dimension
100. When cross sectional dimension is 16 the parametric residual based test PdPrho and
Fisher type test perform best at time dimension 50 and onward but residual based test
PdGrho perform mediocre at time dimension 50 and it performs best at time dimension
100. When cross sectional dimension is 32 then parametric residual based test PdPrho
and Fisher type test Pfaws perform mediocre at time dimension 25 whereas the third
residual based test perform worst at this time dimension. When time dimension is 50 or

more, all these three tests perform best.

From Figure 6.3, stringencies of sixteen worst performance tests of different types, that
is, parametric/non parametric residual based tests, error correction based tests, maximum
likelihood based tests, Fisher type test are displayed and their performance are observed
at different time and cross sectional dimension. All of these sixteen different types of
tests perform worst throughout the given cross section and time dimension when cross
sectional dimension is 2. At time dimension 100 and cross section dimension 08, six tests
perform best in which three tests are parametric residual based tests PhZt, PdPtp, PdGtp,
one test is error correction based test W_Pa and two tests are non-parametric residual
based tests PdPtnp, PdGtnp. Seven parametric/non parametric residual based tests, that is,
PDFrho, PDFrhostar, PhZt, PdPtp, PdGtp, PdPtnp, PdGtnp and one error correction
based test, that is, W_Pa perform mediocre while one maximum likelihood based test,
three error correction based tests, one Fisher type test and three parametric residual based

tests perform worst at cross section dimension [6 and time dimension 50.
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When time dimension is increased from 50 then most of the tests improve their
performance in which eight parametric /nonparametric residual based tests and two error
correction based tests perform best at time dimension 100. Five tests perform mediocre
and maximum likelihood based test, that is, LR still perform worst. When cross sectional
dimension is 32 and time dimension is 50 then seven tests perform best in which one test
is Fisher type test, one tests is error correction based test and five tests are parametric
/non parametric residual based test, while seven tests perform mediocre and two tests
perform worst in which one is maximum likelihood based and one is error correction
based test, at time dimension 100 all these tests perform best except maximum likelihood

based test, that is, LR.

In the second section, three tests having null of cointegration have been analyzed. In this
section Figure 6.4 to Figure 6.7 and Tables 6.5 to Table 6.8 have been explained. When
-tim_é iength is 10 then the maximum shortcomings of test LM_OLS have been lied in the
range 20% to 30% for all cross section, length of cross section does not have impact on
the performance of this test. Where the tests LM_DOLS and LM_FMOLS perform worst
for all cross section at this time length. At this time length in Table 6.5 to Table 6.8,
LM_OLS test has been lied in the 'C’ category and tests LM_DOLS and LM_FMOLS
have been lied in the category 'F'. When time length is 25 then LM_OLS has been lied in
the range 10% to 20% for all cross section and LM_DOLS test has been lied in the range
40% to 50% for all cross sections. Third test LM_FMOLS perform worst for ail cross
sections. At this time length, LM OLS test has been lied in category 'B' and test
LM DOLS has been lied in category 'E' and the test LM_FMOLS has been lied in the

category 'F. In this section, two tests LM_OLS and LM _DOLS improve their
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performance when time length increases but the cross section length does not have
impact on these two tests. Where the test LM_FMOLS test performs worst for all
situation in the analysis. In the second section of analysis, LM_OLS test performs best

throughout and the LM_DOLS test performs better except when time length is ten.
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Chapter 07: Bootstrap Empirical Power

As in the previous chapters, the size and power properties of different panel
cointegration tests are discussed using simulated critical values. In this chapter, the
empirical power of best performing tests, that are, PdP_V, PAWS, PdPrho are
demonstrated using the example of Fisher hypothesis. If the series of nominal interest
rate and inflation rate are non-stationary then the application of panel cointegration
technique is a suitable choice to test for the presence of long run relationship between the
nominal interest rate and inflation rate. In the existing empirical literature, the evidence
on the existence of Fisher hypothesis is found. There are several studies in the literature
of time series analysis and panel data analysis finding that the Fisher hypothesis holds.
The Fisher hypothesis describes that the real interest rate is the difference between the

nominal interest rate and expected inflation rate that is

where T, , 0. and Hf, denote the real interest rate, nominal interest rate and expected

inflation, respectively. The Fisher hypothesis is tested by using the following equation

that is,

Ny =0 +BiT 48wttt e (7.2)

where n, and m, represent the nominal interest rate and observed inflation rate for ith
cross section at time t respectively. Similarly, o, represents the country specific constant

which also denotes the mean of the ex-ante real interest rate. To evaluate the performance

of three best performing tests on the basis of real data, it is assumed that the cointegration
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relation does exist between the nominal interest rate and the inflation rate, that is, Fisher
hypothesis holds. For the evaluation of performance of the said three tests, the concept of
empirical power is used which is derived from real data using bootstrap method.

Therefore, bootstrap critical values are used instead of simulated critical values.

Here, two different data sets are considered, that is, two cross sectional dimensions of
OECD countries for three different time dimensions. For this purpose, quarterly data of
nominal interest rate and the inflation rate are used. The data are taken from Organization
of Economics Co-operation and Development (OECD). The first data set is called "Data-
A", which consists of eight OECD countries (N=8), “Australia, Belgium, Canada,
Germany, Spain, France, the United Kingdom, 'Italy" having three time dimension, that
is, from 2004Q2-2016Q4 (T=50), 2010Q4-2016Q4 (T=25), 2014Q2-2016Q! (T=10).
Whereas, the second data set is called "Data-B", which consists of sixteen OECD
countries (N=16) "Australia, Austria, Belgium, Canada, Germany, Spain, France,
Finland, Ireland, Iceland, Korea, the United Kingdom, Italy, Norway, Sweden" having
three time dimension from 2004Q2-2016Q4 (T=50), 2010Q4-2016Q4 (T=25), 2014Q2-

2016Qt1 (T=10).
7.1. Empirical Powers (N=08)

Table 7.1 depicts the bootstrap empirical powers of three best performing tests, that is,
PdP_V, PdPrho and PAWS for eight countries and three time dimensions, that is, 10, 25
and 50. It is evident that at the smallest time dimension of 10, two tests, that is, PAWS
and PdPrho perform far better than the third test, that is, PAP_V. When time dimension is

increased from 10 to 25 then bootstrap empirical powers of all three tests increase with
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significant magnitude, as empirical power of PAWS increases from 56.93% to 99.8%,
empirical power of PdP_V increases from 45.03% to 77.8% and the empirical power of
PdPrho increases from 56.63% to 99.3%. This behavior shows that when time dimension
is increased then empirical powers of all three tests are also increased which is analogous
with the conclusion earlier drawn in Chapter 6. Again, when time dimension is increased
from 25 to 50 then empirical power of all three tests are 100% which is again in
accordance with the conclusions earlier drawn in Chapter 6. From these three better
performing tests, two tests, that is, PAWS and PdPrho are performing superior than the

third one, that is, PdP_V in terms of bootstrap empirical power.

Table 7.1: Bootstrap Empirical power for N=08

" 45.03 " "~ 56.63 |

7.2. Empirical Powers (N=16)

Table 7.2 portrays the bootstrap empirical powers of three best performing tests in which
two tests are residual based, that is, PdP_V, PdPrho and one test is average weighted
symmetric based, that is, PAWS. In this case, "Data-B" is taken which consists of sixteen
countries (cross sections) and three time dimensions, that is, 10, 25 and 50. When time
dimension is 10 then bootstrap empirical power of average weighted symmetric based
test, that is, PAWS is 77.7%. Whereas bootstrap empirical power of residual based test,

that is, PdP_V is around 60% and empirical power of other residual based test, that
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i5,75.66% at this time dimension. When time dimension increases from 10 to 25 then
bootstrap empirical power of all these three best performing tests increase and converge
to 100%. Also, bootstrap empirical power of these three tests, that is, two are residual
based and one test is average weighted symmetric based converge to 100% when time
dimension increase from 25 to 50. Which is also again the similar conclusion which is

drawn in Chapter 6, that is, time dimension increase power of test is also increased.

Table 7.2: Bootstrap Empirical power for N=16

From careful inspection of both Tables 7.1 and Table 7.2, it is evident that with increase
in cross sectional dimension empirical powers of test increase. It is observed that the
average weighted symmetric based test, that is, PAWS has bootstrap empirical power
56% at time dimension 10 and cross sectional dimension is 8. However, when cross
sectional dimension is 16 then average weighted symmetric based test, that is, PAWS
has bootstrap empirical power 77% at time dimension 10, same effect of cross sectional
dimension enlarge happened with the bootstrap empirical power of other two residual

based tests, that is, PAP_V and PdPrho in the Table 7.1 and Table 7.2.
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7.3. Conclusion

In this chapter, bootstrap empirical power of three best tests have been compared in
which two tests are parametric residual based , that is, PdP_V and PdPrho and third test is
average weighted symmetric based test, that is, PAWS. The performance of these three
tests is evaluated on Fisher hypothesis and bootstrap method is used to obtain the
empirical power of tests at different cross sectional and time dimensions. It is concluded
that with increase in time dimension, the empirical power of tests increase as mentioned
in Table 7.1 that the two parametric residual based tests, that is, PAP_V and PdPrho have
bootstrap empirical power 45% and 56 %, respectively, at time dimension 10. But, when
time dimension increases from 10 to 25 then these two parametric residual tests have

bootstrap empirical power 77% and 99%, respectively.

The bootstrap empirical power of these two residual based tests converge to 100% at time
dimension 50, a similar situation is observed for these two residual based tests in table
7.2 when time dimension is large. The average weighted symmetric based test, that is,
PAWS has bootstrap empirical power 56% at time dimension 10. When time dimension
increases from 10 to 25 then average weighted symmetric based test, that is, PAWS has
bootstrap empirical power 99% and converge to 100% at time dimension 50, a similar
situation is observed for PWS in Table 7.2 when time dimension is large. This is similar

to the conclusions stated earlier in Chapter 6.

Moreover, when cross sectional dimension is increased then again empirical powers of
tests also increase as has been observed in Table 7.1 and Table 7.2. In Table 7.1, when
time dimension is 10 then average weighted symmetric test, that is, PAWS has 56%

empirical power whereas in Table 7.2. When cross sectional dimension is 16 then PAWS
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has 77% bootstrap empirical power at time dimension 10. The same pattern is followed
by the other two residual based tests, that is, PdP_V and PdPrho in Table 7.1 and Table
7.2. Here, when cross sectional dimension increase their bootstrap empirical powers also
increase. This is again in accordance with the conclusions of Chapter 6. However, among
three best tests, PdPrho and PAWS tests perform far better than the third residual based
test, that is, PdP_V at small time dimensions. But, these three tests have similar

performance at larger time dimensions.
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Chapter: 08  Conclusions and Recommendations

In this chapter, the overall conclusions are drawn about the simulated comparison of
panel cointegration tests of both types, that is, the tests having null hypothesis of no
cointegration and the tests having null hypothesis of cointegration. Based on these
conclusions, some useful recommendations are given for applied researchers and

practitioners. At the end, some suggestions are stated for further research direction.

8.1. Conclusions

In Chapter 4, the empirical size of panel cointegration tests are assessed by using the
asymptotic critical values. For this purpose, four time dimensions and four cross sectional
dimensions are used. The results are displayed from Figure 4.1 to Figure 4.8, Figure 4.1
to Figure 4.4 depicts the empirical size of panel cointegration tests having null
hypothesis of no cointegration. Whereas, Figure 4.5 to Figure 4.8 have portrayed the
empiifical size of three panel cointegration tests having null hypothesis of cointégration.

In all figures, the cross sectional dimension is taken fixed and time dimension is varied.

The empirical size of tests having null of no cointegration, when asymptotic critical
values are used are portrayed in the Appendix from Table 9-9 to 9-12. The empirical size
of two Fisher type tests, that is, Pfadf and Pfaws remains near the assumed nominal size
of 5% throughout all the time and cross sectional dimensions. The empirical size of these
two tests lies in the range 4.4% to 9% for all time dimensions and cross sectional
dimensions. Three parametric residual based tests, that is, PdGrho, PdPrho, and PdP V
have remained under sized throughout the time dimensions and cross sectional

dimensions. These three parametric residual based tests have empirical size zero for all
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time dimensions and cross sectional dimensions. The empirical size of parametric
residual based PADF test, has remained over the nominal size throughout the time
dimensions and cross sectional dimensions. Size of parametric residual based test PADF,
is approximately 100% for all time and cross sectional dimensions except when cross
sectional size is very low. Empirical size of other four parametric residual based tests also
have remained over nominal size for all time and cross sectional dimensions. Empirical
size of these -four parametric residual based tests PDF, PDFrho, PDFTstar, and
PDFrhostar have lied in the range 10% to 40% throughout the time and cross sectional

lengths.

The empirical size of maximum likelihood based LR test behave differently as compared
to all other panel cointegration tests, as time dimension increases its empirical size is also
increased. One more thing about empirical size of maximum likelihood based LR test is

noted, that its empirical size has decreased as cross sectional size increases.

The empirical size of two nonparametric residual based tests, that is, PdGtnp and PdPtnp
converged to nominal size of 5% as time dimension increases. The empirical size of non-
parametric residual based tests, PdGtnp and PdPtnp, is far from the nominal size of 5%
when time dimension is close or less than the cross sectional dimension. But, when time
dimension is increased and is much greater than the cross sectional dimension then
empirical size of these two non-parametric residual based tests converges to the nominal
size of 5%. The decreasing pattern of empirical size of parametric residual based tests,
that is, PdGtp and PdPtp are also same as the pattern of non-parametric residual based
tests. Although, the empirical size of PdGtp and PdPtp tests have also converges to

nominal size 5% as time dimension is increased.
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In the second section of the Chapter 04, the empirical size of three tests is analyzed which
have the null hypothesis of cointegration. For this, again four time dimension and four
cross sectional dimensions are used and the resuits are displayed in Figure 4.5 to Figure
4.8. In this analysis, it is concluded that all three tests, that is, fully modified based,
dynamic OLS based and OLS based tests are over sized for each case. All three tests have
over rejection for all time dimensions and cross sectional dimensions and do not

converge to the nominal size of 5%.

In Chapter 05, the size of both types of panel cointegration tests are evaluated by using
simulated critical values. In Chapter 04, it is seen that different panel cointegration tests
have different size and most of the tests have size far from the nominal size 5%. As, it is
known that two or more tests are comparable if their size are equal, usually equal to
nominal size of 5%. The results of size based on simulated critical values are displayed

from Figure 5.1 to Figure 5.8.

Figure 5.1 to Figure 5.4 depict the results of the twenty one panel cointegration tests
having nuil hypothesis of no cointegration. Whereas, Figure 5.5 to Figure 5.8 depict the
results of three panel cointegration tests having null hypothesis of cointegration. For
controlling the size of tests, four time and four cross sectional dimensions are taken.
Form Figure 5.1 to Figure 5.4 time dimension is fixed and cross sectional size is varied.
In the case of panel cointegration tests having null hypothesis of no cointegration the size
of all the twenty tests have lied in the range of 4% to 6% for all time and cross sectional
dimensions when simulated critical values are used instead of using asymptotic critical

values.
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A similar procedure is adopted in the case of panel cointegration tests having null
hypothesis of cointegration. Figure 5.5 to Figure 5.8 have shown the size of three panel
cointegration tests having null hypothesis of cointegration by using simulated critical
values. These four figures have depicted that size of all these three tests lie in the range
4% to 6% throughout the time dimensions and cross sectional dimensions. In the Chapter
06, the Monte Carlo power comparisons of the panel cointegration tests are performed
using stringency criterion. In this comparison, simulated critical values are used in order
to get nominal size of a test equal to 5%. As, under the asymptotic critical values the size
of different panel cointegration tests are different and most of the tests are over sized and
few tests are under sized. So, to overcome this problem we have used simulated critical

values.

Figure 6.1 to Figure 6.7 depict the results of maximum shortcomings of both types of
panel cointegration tests having null hypothesis of no cointegration and the null
hypothesis of cointegration. The power comparisons of tests are also explained in
alternative way of table form by classifying the tests into different categories 'A' to 'F'
according to their maximum shortcomings. First section deals with the power comparison
using stringency criterion of tests having null of no cointegration. Whereas, the other
section deals with the power comparison of test having null of cointegration using

stringency criterion.

In the first section, it is observed that most of the tests' maximum shortcomings are
downward trending as the time length and cross section length increases. For the sake of
simplicity, tests are classified into six categories from 'A’ to 'F'. A cutoff point is marked

at time dimension 50 and cross sectional dimension 08. It has been observed that two
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tests perform best and have stringencies between 0% to 20% and three tests perform
mediocre and have stringencies between 20% to 50%. Whereas, sixteen worst performing

tests have stringencies above 50%.

Figure 6.1shows the performance of these two best tests, that is, parametric residual
based test PdP_V and average weighted symmetric based test PAWS at different time
and cross sectional dimensions. In Figure 6.1, four cases are discussed by varying the
Cross s;ectional dimension, that is, N = 2, 8, 16, 32. Figure 6.1 depicts that both of these
two tests perform worst when time dimension is 10 in all four cases of cross sectional
dimension.- When cross sectional dimension is 2 then residual based test, that is, PdP_V
performs better and average weighted symmetric based test, that is, PAWS performs
mediocre at time dimension 25. These two tests PAP_V and PAWS perform mediocre at
time dimension 50 and onward. When, cross sectional dimension increases from 02 to 08
then these two tests perform worst at time dimension 25 and less than 25. But these tests
improve their performance when time increase and, hence at time dimension 50 these two
tests perform best. When cross sectional dimension is more increased and become 16
then these two residual based tests and average weighted symmetric based test perform
mediocre at time dimension 25.,However,they perform best at time dimension 50 and
onwards. When cross sectional dimension is 32 then parametric residual based test, that
is, PdP_V and average weighted symmetric based test PAWS perform best at time
dimension 25 and onwards. Hence, it is concluded that when cross sectional dimension

increases the power of these two tests also increases.

Figure 6.2 portrays the stringencies of three mediocre performing tests in which two tests

are parametric residual based, that is, PdPrho, PdGrho and one test is Fisher type test, that
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is, Pfaws. The performance of these three tests are compared and it is concluded that
residual based test PdPrho perform better than the other two tests. In Figure 6.2, four
cases are discussed in which cross sectional dimension vary in each case. Moreover, all
these three tests perform worst at time dimension 10 in all four cases. When cross
sectional dimension is 02, all these three tests perform worst at time dimension 25 and
less than 25 and at time dimension 50 only residual based test PdPrho performs mediocre.
Whereas, at time dimension 100 all these three tests perform mediocre. When cross
sectional dimension increase from 02 to 08, then these three tests perform worst at time
dimension 25 and less than 25. However, these three tests perform mediocre at time
dimension 50 and these three tests perform best at time dimension 100. When cross
sect.iox;lal dimension increase from 08 to 16 then again, all these three tests perform worst
at time dimension 25 and less than 25 but the parametric residual based test PdPrho and
Fisher type test perform best at time dimension 50 and onwards. The third test, that is,
parametric residual based test PdGrho performs mediocre at time dimension 50 and best
at time dimension 100. When cross sectional dimension is more increased and it becomes
32, then parametric residual based test PdPrho and Fisher type test Pfaws perform
mediocre at time dimension 25. Whereas, the third parametric residual based test perform
worst at time dimension 25 or less than 25. All three tests perform best at time dimension
30 and onwards. In Figure 6.2, it is noted that not only the increase in time dimension
effect the power of tests but also the power of tests is impacted by the cross sectional

dimension.

Figure 6.3 displays the stringencies of sixteen worst performing tests according to our

benchmark, that is, T=50 and N=08. From these sixteen worst performing tests, two tests
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are nonparametric residual based, that is, PdPtnp, PdGtnp, one Maximum Likelihood
based test, that is, LR, four error correction based tests, that is, W_Pa, W _Pt, W _Ga,
W_Gt, one Fisher type test, that is, Pfadf, and eight parametric residual based test, that is,
PDFrho, PDFrhostar, PDFT, PDFTstar, PADF, PhZt, PdPtp, PdGtp. In Figure 6.3, four
cases are discussed in which cross sectional dimension varies and time dimension

remains fix in all four cases, that is, T=10, 25, 50, 100.

All these sixteen different types of tests perform worst when time dimension is less than
or equal to 25 throughout the cross sectional dimensions. Also, all these sixteen tests
perform worst throughout the time dimensions when cross sectional dimension is 02 .
Three parametric residual based tests, that is, PhZt, PdPtp, PdGtp, two non parametric
residual based tests, that is, PdPtnp, PdGtnp and one error correct based test, that is,
W_Pa perform best at time dimension 100 for cross sectional dimension 08. When cross
sectional dimension is 16, then eight tests perform mediocre in which seven tests are
parametric or nonparametric residual based and one error correction based test. While,
eight tests perform worst at time dimension 50. When time is increased from 50, then
most of the tests improve their performance. Ten tests perform best at time dimension
100, five tests perform mediocre and one test, that is, Maximum Likelihood based test LR
still performs worst. When cross sectional dimension is 32 and time dimension is 50 then
nine tests perform best. From these nine, seven tests are parametric or nonparametric
residual based, one error correction based, and one is Fisher type test. While, four tests
perform mediocre in which three are parametric residual based tests and one is error

correction based test. Whereas, three tests perform worst in which two are error
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correction based tests and one is maximum likelihood based test. At time dimension 100

all these tests perform best except maximum likelihood based test, that is, LR.

Further, the conclusions of power comparison of three panel cointegration tests having
null hypothesis of cointegration are drawn using stringency criterion. Figure 6.4 to Figure
6.7 depict maximum shortcomings of these three types of tests, that is, Fully Modified
Based (LM_FMOLS), Dynamic OLS based (LM-DOLS) and OLS based (LM-OLS) tests
and also these results have been explained in Table 6.5 to Table 6.8. For the power
comparison analysis of these three tests, the same four time dimensions and four cross

sectional dimensions are used.

Figure 6.4 clearly shows that Fully Modified Based (LM_FMOLS) test has worst
performance as its maximum shortcomings lie between 70% to 80% throughout the time
and cross sectional dimensions. Whereas, the OLS based (LM-OLS) test has performed
better as compared to Dynamic OLS based (LM-DOLS). Although, the curves of
maximum shortcoming of both these tests have a decreasing pattern. When time
dimension is 10 then LM-DOLS and LM-OLS tests have maximum shortcomings around
70% and 30% respectively. When time dimension is increased and become 25 then
maximum shortcomings become around 40% and 16% respectively. But when time
dimension is more increased, then the LM-DOLS has improved more but maximum
shortcoming of LM-OLS remains same around 15%. When time dimension is 100 then
the maximum shortcomings of LM-DOLS and LM-OLS tests are equal around 15%.
From Figure 6.5, it is observed that LM-FMOLS test still performs worst in this case, and
maximum shortcoming of this tests remains between 60% to 90% throughout the time

dimensions. Whereas, the maximum shortcomings of other two tests LM-DOLS and LM-
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OLS have decreasing pattern. When time dimension is 10, then maximum shortcomings
are 20% and 70% respectively. But when time dimension is 50 then maximum
shortcomings are 20 % and 10% respectively. Moreover, maximum shortcomings of
these two tests LM-DOLS and LM-OLS have been approximately equal and less than 5%

when time dimension is 100.

From Figure 6.6, the maximum shortcomings behavior of these three tests have remained
same as has been behaved in Figure 6.5. In Figure 6.5, it is seen that LM-FMOLS test has
still performed worst and its maximum shortcomings have lied in the range 45% to 90%
throughout the time dimensions. The other two tests, that is,, LM-DOLS and LM-0QLS
have performed not well when time dimension is 10. But when time dimension is
increased and it becomes 25 then both tests have improved and their maximum
shortcomings become 47% and 13% respectively. When time dimension is 100 then
maximum shortcomings of LM-DOLS and LM-OLS tests have been zero. From Figure
6.7, it is concluded that LM-FMOLS test has performed worst and its maximum
shortcomings range is 30% to 94%. LM-DOLS has also performed worst when time
dimension is less than 50. LM-OLS test has performed not well when time dimension is
10 and 25 but has performed better relatively and is the most stringent test as compared to

other two tests that is, LM-FMOLS and LM-DOLS.

In Chapter 07, bootstrap empirical powers of three best tests are compared using real data
in which two tests are parametric residual based tests, that is, PdP_V and PdPrho and

third test is average weighted symmetric based test, that is, PAWS.
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The performance of these three tests based on Fisher hypothesis are evaluated using the
bootstrap method to obtain the empirical power of tests at different cross sectional and
time dimensions. It is concluded that with increase in time dimension, the empirical
power of tests increases as mentioned in Table 7.1. Here, two parametric residual based
tests, that is, . PdP_V and PdPrho have bootstrap empirical power 45% and 56%
respectively at time dimension 10. But when time dimension increases from 10 to 25 then
these two residual based tests have bootstrap empirical power 77% and 99% respectively.
While, bootstrap empirical power of these two residual based tests converge to 100% at
time dimension 50. Similar results are obtained for two parametric residual based tests in
Table 7.2. In Table 7.2, the empirical power of these two residual based tests, that is,,
PdP_V and PdPrho are 59% and 77% respectively at time dimension 10. But when time

dimension is 25 then these two residual based tests have 100% empirical power.

Third average weighted symmetric based test, i.e PAWS has bootstrap empirical power
56% at time dimension 10 in Table 7.1. But when time dimension increases from 10 to
25, then average weighted symmetric based test, i. PAWS has bootstrap empirical power
99% and converge to 100% at time dimension 50. Similar results are obtained for the
average weighted symmetric test, i.e PWS in Table 7.2. This is very similar to
conclusions stated earlier in Chapter 06. Moreover, when cross sectional dimension is
increased then again empirical power of tests also increases as depicted from Table 7.1

and Table 7.2.

However, from the three tests, two tests in which one is residual based test, that is,,
PdPrho and other is average weighted symmetric based test, that is,, PAWS perform far
better than the third residual based test, that is,, PdP_V at small time dimensions. But,
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these three tests have similar performance at larger time dimensions. Overall, these three

tests perform best and have high bootstrap empirical powers using real data.

Finally, above whole conclusion is summarized about the empirical size, power of tests,
and bootstrap empirical power of first best three tests. The only two Fisher type tests
having stable empirical size throughout the time and cross-sectional dimensions, i.e
Pfaws, Pfadf, when asymptotic critical values are used. Whereas, residual based tests,
that is,, PdP_V and PdPrho have zero empirical size throughout the time and cross-
sectional dimensions when asymptotic critical values are used. Empirical size of
maximum likelihood based test LR is increasing when time dimension increases
throughout cross sectional dimensions. All other tests are oversized throughout the time
and cross sectional dimensions when asymptotic critical values are used. The OLS based
test, i.e LM;OLS, dynamic OLS based test, i.e LM-DOLS and Fully modified OLS based
test, i.e LM-FMOLS have remained over sized throughout the time and cross sectional
dimensions when asymptotic critical values are used. The size of all tests having null
hypothesis of no cointegration and tests having null hypothesis of cointegration have
remained around the nominal size 5% when simulated critical values are used instead of

asymptotic critical values.

Based on power comparison, residual based test, i.e PdP_V and average weighted
symmetric test, i. PAWS have outperformed all other tests except at time dimension 10.

Another better performer is residual based test PdPrho.

Maximum likelihood based test, that is, LR and error correction based test, i. W_Gt

performed worst throughout the time and cross section dimensions. Note that all tests
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have performed worst when time dimension is 10 for all cross sections. Similarly, when
cross section dimension is 02, all tests performed worst throughout the time dimensions.
Most of the tests outperformed when time dimension is 100 and cross-sectional
dimension is greater than or equal to 8. Similarly, all the tests performed worst when time
dimension is 25 and cross section dimension is less than or equal to 8. But, when cross
section dimension increases and become 16 then residual based test, that is, PAP_V and
average weighted symmetric test, i.e PAWS performed mediocre. Whereas, all other

performed' worst, at this stage of time dimension, i.e 25.

When cross sectional size more increases and becomes 32 then residual based test, that
is,, PAP_V and average weighted symmetric test, that is,, PAWS performed best. Four
residual based tests, that is,, PdPrho, PdPtp, PDFrho, PDFrhostar and one Fisher type test,
that is,, Pfaws performed mediocre while all other performed worst at this stage of time
and cross-sectional dimension. When time dimension is 50 and cross sectional
dimension is 8 then residual based test, that is,, PAP_V and average weighted symmetric
test, that is,, PAWS performed best. Three other tests performed mediocre in which two
tests are residual based, that is,, PdGrho, PdPrho and one test is Fisher type test, that is,,
Pfaws. Whereas, all tests perform worst. When cross sectional dimension increases at this
stage of time dimension and becomes 16 then residual based tests, that is,, PdP_V,
PdPrho and average weighted symmetric based test, that is,, PAWS outperformed. Six
parametric residual based tests, that is,, PdPtp, PdGrho, PdGtp, PhZt, PDFrho,
PDFrhostar, two nonparametric residual based tests, that is,, PdPtnp, PdGtnp, one Fisher
type test, that is,, Pfaws and one error correction based test, that is,, W_Pa performed

mediocre. Whereas, the remaining eight tests performed worst. Similarly, when cross-
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sectional dimension increases and becomes 32, at this time dimension 50 then maximum
likelihood based test, that is,, LR and two error correction based tests W_ Pt W Gt
performed worst. Seven different types of tests in which parametric residual based tests,
that is,, PDFtstar, PADF, PDFrhostar, error correction based tests, that is,, W_Ga, W Pa,
nonparametric residual based test, that is,, PdGtnp, and Fisher type test Pfadf performed
mediocre. Whereas, the remaining eleven different types of tests in which residual based
tests, that is,, PdP_V, PdPrho, PdPtp, PdGrho, PdGtp, PhZt, PDFrho, PDFrhostar
average weighted symmetric based test, that is,, PAWS, Fisher type test, that is,, Pfaws

and nonparametric residual based test, that is,, PdPtnp performed best equally.

When time dimension is 100 and cross sectional dimension is 8 then eleven different
types of tests, residual based tests, that is, PdP_V, PdPrho, PdGrho, PhZt, PdPtp,
PdGtp, nonparametric residual based tests, that is,, PdGtnp, PdPtnp, error correction
based test, that is,, W_Pa, average weighted symmetric based test, that is,, PAWS and
Fisher type test, that is,, Pfaws performed best. Five different types of tests performed
mediocre in which three tests are residual based, that is,, PDFrho, PDFrhostar, PADF,
one Fisher type test, that is,, Pfadf, and one error correction based test, that is,, W_Gt.
Whereas, five tests performed worst in which one test is maximum likelihood based, that
is,, LR, two tests are error correction based, that is,, W_Ga, W_Pt and two tests are
residual based, that is,, PDFT, PDFtstar. When cross sectional dimension increases and
becomes 16 and time dimension is 100 then only maximum likelihood based test, that is,,
LR performed worst. Six different types of tests performed mediocre in which three tests
are residual based, that is,, PDFT, PDFtstar, PDFrhostar, one Fisher type test, that is,,

Pfadf, and two tests are error correction based tests W_Pt, W_Gt. Whereas, all other tests
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performed best at this stage of time and cross-sectional dimension. When cross sectional
dimension is 32 and time dimension is 100 then only maximum likelihood based test, that
is,, LR performed worst and error correction based test, that is,, W_Gt performed

mediocre while all other tests performed equally best.

Overall, now summarizing the other type of tests having null of cointegration. The OLS
based test, that is,, LM-OLS performed mediocre throughout the time dimension when
cross sectional dimension is 2. LM-OLS test performed best when time dimension is
greater than or equal to 50 throughout the cross sectional dimensions. Fully Modified
OLS based test, that is,, LM-FMOLS performed worst throughout the time and cross-
sectional dimensions except when time dimension is 100 and cross-sectional dimension is
greater than or equal to 16.,At this stage it performed mediocre. Dynamic OLS based test,
7 that is,, LM-DOLS performed worst throughout the cross sections when time dimension
is 10. LM-DOLS outperformed when time dimension is 100 and cross sectional
dimension lies in the range 8 to 16. But it outperformed when time dimension is 50 and

cross sectional dimension is greater than or equal to 32.

Finally, bootstrap empirical power of best three tests are summarized which is concluded
from our power analysis. This study concludes from power analysis using simulated data
that the three tests in which two tests are residual based, that is,, PdP_V, PdPrho and one
average weighted symmetric based test, that is,, PAWS tests performed best as compared
to other tests. It is observed that these three tests also perform best on real data, that is,,
based on Fisher hypothesis and these three tests have also high bootstrap empirical

powers for the real data.
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8.2. Recommendations

As it has been concluded from analysis that when asymptotic critical values are used for
assessing the size of test of panel cointegration tests then most of the tests have unstable
size except the two Fisher type tests, that is,, Pfaws and Pfadf throughout the time and
cross sectional dimensions. Whereas, the size of tests has been stable for all tests when
simulated critical values are used. Keeping in view our analysis, it is strongly
recommended to use simulated critical values instead of using asymptotic critical values.
For the other type of panel cointegration tests which have null hypothesis of
cointegration, all three tests in which Fully Modified OLS based test, that is,, LM-
FMOLS, Dynamic OLS based test, that is,, LM-DOLS and OLS based test, that is,, LM-
OLS have been over sized when asymptotic critical values are used. Whereas, all three
tests have stable size when simulated critical values are used. So, it is also recommended

to use simulated critical values for panel tests having nuil hypothesis of cointegration.

From Monte Carlo simulation power comparison, it has concluded that residual based
test, that is,, PAP_V and average weighted symmetric test, that is,, PAWS are the most
stringent tests and performed best as compared to all other tests. So, it is recommended
that these two tests should be used for the detection of long run relationship. Beside these
two tests, three tests, that is,, two are residual based PdPrho, PdGrho and one is Fisher
type test, that is,, Pfaws have also performed better as compared to remaining tests. In
this regard, it is also recommended to use these three tests for the detection of
cointegration. From the analysis of this study, it is also concluded that when time and
cross section dimensions are very small and less than 25 then all of the tests performed

worst except parametric residual based test, that is,, PdP_V and average weighted
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symmetric test, that is,, PAWS. These tests have performed a little bit better as compared
to all other tests at small time and cross sectional dimensions. Hence, for the detection of
cointegration, it is suggested that time and cross sectional dimension should be
appropriate. Based on analysis, for the detection of cointegration it is recommended to
use TxN =800 at least dimension for parametric/nonparametric residual based tests and
average weighted symmetric based tests. Whereas for error correction based tests and
maximum likelihood based tests a high time and cross sectional dimensions should be
needed for detection of long run relationship. Although, it has not a theoretical
background. It is also strongly recommended that the error correction based Westerlund

tests should be used when time and cross section dimensions are large.

-

Moréover, it is recommended to the practitioners that when time dimension is 100 and
cross sectional is greater than or equal to 8, then seven parametric residual based tests,
that is,, PdP_V, PdPrho, PdPtp, PdGrho, PdGtp, PhZt, PADF, two nonparametric residual
based tests, that is,, PdPtnp, PdGtnp, one error correction based test W_Pa, one average
weighted symmetric based test, that is,, PAWS and one Fisher type test, that is,, Pfaws
are used. Because, all equally performed best at this time and cross sectional dimension.
From tests with null of cointegration, OLS based test, that is,, LM-OLS is best test as
compared to other tests and the Fully Modified OLS based test, that is,, LM-FMOLS
performed worst throughout the time and cross sectional dimensions. Although, all three
tests performed worst when time and cross sectional dimension is small and less than 10
but when time dimension is 50 then LM-OLS and LM-DOLS have performed equally.
So, it is recommended to the researcher to use LM-OLS and LM-DOLS panel

cointegration tests for the detection of cointegration. From the evaluation of performance
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of three better performing cointegration tests (average weighted symmetric based test,
that is,, PAWS, and residual based tests, that is,, PdP_V, PdPrho ) on basis of Fisher
hypothesis, it is recommended that these three tests may be used for real data

investigations.

8.3. Directions for Future Research

In this study, size and power of panel cointegration tests are compared by using simple
DGP of two regressors and heterogeneous panel considering the cross sectional
independence. The size and power of existing panel cointegration tests can be analyzed
by using more than one DGPs with respecf to cross sectional dependence, heterogeneity,
number 'of re.gresso-rs? more thaﬁ one cointegrating vectors etc. In this study, it is .-
. :Zigserved thai.-still there is huge gap between the power of point optimal test an&ﬁiSt}ng
cointegration tests, when time and cross sectional dimension are small. There is a need to
develop a new cointegration test which has an appropriate power when time and cross

sectional dimension are small and has the ability to detect the genuine long-run

relationship.
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Appendix

Table A-1: Empirical Size of Tests having Null Hypothesis of No Cointegration

using Asymptotic Critical values N=02

SS
Tests 10 25 50 100
PDFT 25.8 19.65 17.75 15.35
PDFrho 25.2 30.9 31.8 33.1
PDFTstar 23.7 19.85 17.15 17.3
PDFrhostar 278 33.9 334 35.75
PADF 71.7 65.5 55.7 46.6
PdGtnp 252 13.5 10.7 9.8
PdGtp 72.4 214 15.5 10.4
PdGrho 0 0 0 0
PdPtnp 274 11.6 7.8 59
PdPtp 70.3 29 16.5 9.8
PdP V 0 0 0 0
PdPrho 0 0 0 0
PhZt 403 18.3 15.7 11.9
PAWS 0.6 3.3 3.8 4.5
Pfadf 5.3 44 44 5.1
Pfaws 5 4.1 5.8 4.7
LR 31.1 73.7 80.2 80.7
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Table A-02: Empirical Size of Tests having Null Hypothesis of No Cointegration

using Asymptotic Critical values N=08

SS
Tests 10 25 50 100
PDFT 19.8 15.95 12.35 12.8
PDFrho 17.8 21 19.3 19.9
PDFTstar 249 16.85 15 13.8
PDFrhostar 28.8 24.8 235 229
PADF 100 99.85 99.8 99.65
PdGtnp 394 16.7 10.7 9.6
PdCtp 98.5 37.8 20.8 14.5
Pddrho 0 | 0 0 0
PdPtnp 41.9 12.4 9 7.1
PdPtp 96.2 43.6 19.2 14.4
PdP V 0 0 0 0
PdPrho 0.1 0 0 0
PhZt 73.2 344 23.7 15.8
PAWS 14.9 6.7 7.3 7.3
Pfadf 5.7 54 6.6 4.8
Pfaws 5.6 5.9 5 5
LR 3.6 50.7 57.9 58.5
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Table A-03: Empirical Size of Tests having Null Hypothesis of No Cointegration

using Asymptotic Critical values N=16

SS
Tests 10 25 50 100
PDFT 22.8 133 11.05 10.1
PDFrho 16.1 14.2 15.4 14.75
PDFTstar 293 17.7 14.1 12.95
PDFrhostar 31.8 2435 19.9 18.6
PADF 100 100 100 100
PdGtnp 554 19.6 1.7 10.4
PdGtp 100 50.1 234 14.6
PdGrho 0 0 0 0
PdPtnp 61.4 14.3 11 7.5
PdPtp 99.4 52 28.1 12.7
PdP V 0 0 0 0
PdPrho 0.1 0 0 0
PhZt 91.8 53.7 31.1 19.9
PAWS 36.7 13 10 9.9
Pfadf 5.6 49 5.5 6.3
Pfaws 7.3 5.4 5.5 5.5
LR 0.1 23.7 333 36.9
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Table A-04: Empirical Size of Tests having Null Hypothesis of No Cointegration

using Asymptotic Critical values N=32

88
Tests 10 25 50 100
PDFT 26.5 14.6 11.15 9.65
PDFrho 18.8 14.65 13.2 13
PDFTstar 346 20.15 15.6 12.45
PDFrhostar 37.6 27.1 20.05 16.1
PADF 100 1060 100 100
PdGtnp 71 224 15.3 10.4
PdGtp 100 70.7 304 18.4
PdGrho 0 0 0 0
PdPtnp 83 19.1 11.1 7.9
PdPtp 100 72 31 15.7
PdP_V 0 0 0 0
PdPrho 0.3 0 0 0
PhZt 99.3 71.9 441 26
PAWS 71.3 255 17.8 17.5
Pfadf 7.7 73 5.7 9
Pfaws 8.2 8.8 7 8
LR 0 5.4 10.3 12.5

139




Table A-05 Empirical Size of Tests having Null Hypothesis of Cointegration using

Asymptotic Critical values N= 02, 08, 16, 32

N=2 N=08
SS SS
Tests 0| 25( 50{ 100 Tests 10} 25| 50| 100
LM_OLS 77.7]165.555.7 416 LM-OLS 90 |83.6|78.9|57.3
LM _DOLS |83.5(76.3]548( 46 LM-DOLS | 94.4|88.7|79.4 | 65.4
LM _FMOLS | 7321759822 | 90 LM-FMOLS | 8451932 95| 100
N=16 N=32
SS SS
Tests 101 25( 501 100 Tests 10| 25| 501 100
LM_OLS 100 /903 /81.1| 76 LM_OLS 100} 100 ] 100 | 100
LM_DOLS 1001 96.8 | 91.3 | 85.9 LM _DOLS 100 { 100} 100 | 100
LM _FMOLS | 100} 100 100 | 100 LM_FMOLS | 100| 100 | 100 { 100
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Table A-06 Maximum Shortcomings of Tests having Null Hypothesis of No

Cointegration N=02
SS

Tests 10 25 50 100
PDFT 75.96 82.73333 80.22667 89.76667
PDFrho 71.4 78.16667 74.58667 86.26667
PDFTstar 80.94 82.66667 82.82667 91.5
PDFrhostar 89.3 83.76667 79.70667 91.03333
PADF 80.34 79.2 73.22667 87.86667
PhZt 723 74.3 58.26667 59.6
PdGtnp 69.2 73.8 61.06667 61.06667
PdGtp 89.25 73.06667 63.66667 58.86667
PdGrho 66.6 64.3 54.66667 48.86667*
PdPtnp 67.2 71.4 55.36667 57.16667
PdPtp 88.25 71.56667 59.66667 57.56667
PdP V 82.55 55.73333 38.56667* 23.4*
PdPrho 63.3 63.36667 49.76667* 42 96667*
PAWS 63.8 49.03333* 45* 32.6*
Pfadf 82.65 82.83333 78.46667 734
Pfaws 67.5 57.23333 51.96667 43.9
W Gt 91.35 91.46667 86.86667 83.2
W Ga 89.05 87.26667 75.46667 69.2
W Pt 88.15 91.5 86.16667 87.2
W Pa 86.2 82.83333 72.56667 68.9
LR 87.35 92.81667 92.71667 89.8

Note: "**" represents the best performing tests when test has maximum shortcomings
less than 20%, "*" represents mediocre performing test when test has maximum
shortcomings between 20% to 50%, maximum shortcoming without "*" represents worst

performing tests when maximum shortcoming is greater than 50%.
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Table A-07 Maximum Shortcomings of Tests having Null Hypothesis of No

Cointegration N=08
SS

Tests 10 25 50 100
PDFT 83.15 83.5 76.16667 56.36667
PDFrho 72.79 75.23333 62.56667 40.63333*
PDFTstar 84.37 82.96667 79.43333 54.63333
PDFrhostar 81.55 77.33333 69.06667 42.7*
PADF 88.47 824 72.46667 22.7**
PhZt 85.31667 81.6 62.1 4.833333**
PdGtnp 87.55 84.13333 66.66667 5.6%*
PdGtp 96.5 83.03333 66.3 5.133333*+
PdGrho 75.75 77.83333 47.56667* 1.733333+*
PdPtnp 83.75 77.53333 56.66667 3.333333%*
PdPtp 91.8 76.5 58 2,9%*
PdP V 78.15 58.2 10.5%* Q**
PdPrho 72.9 71.53333 38.6* 0.333333%**
PAWS 65.3 56.2 12.4** Q**
Pfadf 88.05 84.8 81 43.4*
Pfaws 83.25 73.6 44.8* 1.2*%*
W Gt 95.4 87.7 91.2 55.9
W Ga 93.15 89.2 71.5 23.6*
W Pt 94.5 90 83.7 60.5
W Pa 92.65 78.4 63.6 13.9**
LR 91.8 93.75 93.8 75.95

Note: "**" represents the best performing tests when test has maximum shortcomings

less than 20%, "*"

represents mediocre performing test when test has maximum

shortcomings between 20% to 50%, maximum shortcoming without "*" represents worst

performing tests when maximum shortcoming is greater than 50%.
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Table A-08 Maximum Shortcomings of Tests having Null Hypothesis of No
Cointegration N=16

SS
Tests 10 25 50 100
PDFT 80.93 75.5 532 21.93333*
PDFrho 68.31 61.23333 30.23333* 8.933333*+
PDFTstar 83.21 82 60.46667 29.9*
PDFrhostar 74.17 66.66667 37.56667* 14.43333**
PADF 88.67 84.73333 57.23333 4. 7+*
PhZt 86.65 77.5 33.9* (0**
PdGtnp 85.35 824 37.8* (**
PdGtp 87.9 78.95 34.7* O**
PdGrho 77.5 68.65 21.65* 0**
PdPtnp 81.05 71.7 30.5* 0**
PdPtp 78.45 68.05 23* O**
PdP V 75.55 29.2% 0.25%* O**
PdPrho 73.3 60.4 7.55%+ (>
PAWS 57.15 39.2* 2.8%* 0**
Pfadf 87 87 78.6 20%*
Pfaws 85.55 70.4 18.8%* 0**
W Gt 94.6 87 . 81.2 39.9*
W Ga 91.65 9145 53.45 7.05**
W Pt 92.4 91.2 76.7 33.2*
W Pa 92.85 80.6 34.2* 1.2%+
LR 94.4 94.9 92.15 75.85

Note: "**" represents the best performing tests when test has maximum shortcomings
less than 20%, "*" represents mediocre performing test when test has maximum
shortcomings between 20% to 50%, maximum shortcoming without "*" represents worst

performing tests when maximum shortcoming is greater than 50%.
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Table A-09 Maximum Shortcomings of Tests having Null Hypothesis of No
Cointegration N=32

SS
Tests 10 25 50 100
PDFT 76.36 62.86667 26.66667* | 5.333333**
PDFrho 65.24 36.83333* 74** | 0,766667**
PDFTstar 81.08 66.73333 31.83333* 8.266667**
PDFrhostar 75.38 42.66667* 11.13333%* 1.766667**
PADF 88.26 78.73333 49.06667* |  0.333333%+
PhZt 84.8 68.5 6.8%* 0**
PdGtnp 84.6 63.85 [1.35%* 0**
PdGtp 86.6 69.05 10** O**
PdGrho 81.26667 52.3 2.3*%* o**
PdPtnp 81.06667 53.65 2.9%* (U
PdPtp 74.7 48.6* 2.85%* Q0**
PdP V 72 7.8+ 0** Uik
PdPrho 76.4 31.95* (.4** 0**
PAWS 88.1 20.3* O** 0**
Pfadf 86.375 80.3 11.6** 32+
Pfaws 88.75 29.8* G.4** 0**
W Gt 94 86.7 75.6 11.3%*
W Ga 92.2 68.3 32.2% 0.2%*
W Pt 93.6 86.4 56.6 g**
W Pa 92.6 64.8 13.8** 0**
LR 94.3 94.15 90.55 81.55

Note: "**" represents the best performing tests when test has maximum shortcomings
less than 20%, "*" represents mediocre performing test when test has maximum
shortcomings between 20% to 50%, maximum shortcoming without "*" represents worst

performing tests when maximum shortcoming is greater than 50%.
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Table A-10 Maximum Shortcomings of Tests having Null Hypothesis of

Cointegration N=02
SS
Tests
10 25 50 100
LM OLS 28.45* 16.45** 16.35%* 15.2*+
LM DOLS 67.1 41.7* 25.1% 14.6**
LM FMOLS 78.85 74.1 78 80

Table A-11 Maximum Shortcomings of Tests having Null Hypothesis of

Cointegration N=08

SS
Tests 10 25 50 100
LM _OLS 22.5* g** 10, 7%* 1.7%*
LM _DOLS 69.2 44.7* 23.2* 4.1%*
LM FMOLS 89.4 82.5 77.55 58.55

Table A-12 Maximum Shortcomings of Tests having Naull Hypothesis of
Cointegration N=16

SS
Tests 10 25 50 100
LM OLS 29.2% 13.25%% 10,15%* O**
LM DOLS 71.1 47.2* 25.2% 0.2**
LM FMOLS 91.7 85.2 80.1 45.2

Note: "**" represents the best performing tests when test has maximum shortcomings
less than 20%, "*" represents mediocre performing test when test has maximum
shortcomings between 20% to 50%, maximum shortcoming without "*" represents worst

performing tests when maximum shortcoming is greater than 50%.
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Table A-13 Maximum Shortcomings of Tests having Null Hypothesis of

Cointegration N=32

SS
Tests 10 25 50 100
LM OLS 29.95 23.9* 2+ 0**
LM DOLS 76.3 48 4% 6.1** 0**
LM FMOLS 94 .4 87.2 8§23 30.2*

Note: "**" represents the best performing tests when test has maximum shortcomings

less than 20%,

represents mediocre performing test when test has maximum

shortcomings between 20% to 50%, maximum shortcoming without "*" represents worst

performing tests when maximum shortcoming is greater than 50%.
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